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Context

Since its creation in 1975, the European Space Agency (ESA) has actively participated in scientific research in various fields such as materials science. In addition to its financial support of projects, ESA provides its scientific partners with facilities to carry out their microgravity experiments. Microgravity allows researchers to decouple gravity-dependent phenomena from nongravity-dependent ones in order to better understand specific mechanisms such as solidification.

This can lead to the improvement of processes on Earth and the design of innovative materials with particular properties to meet industrial needs. Despite the growing number of scientific projects that express an interest in investigating under microgravity conditions, opportunities to benefit from microgravity facilities such as parabolic flights with aircrafts, sounding rockets and the International Space Station (ISS) are limited. In addition, few projects have been able to benefit from a flight ticket to the ISS. Centre for Material Forming (CEMEF) is one of the French research centres that participate in ESA research projects and have the privilege of operating their experiments in the ISS. CEMEF contributes to these projects through several doctoral theses. The present work is one of them. It is part of two ESA projects in the framework of the Microgravity Applications Promotion (MAP) programme. The first project is entitled Non EQUIlibrium SOLidification (NEQUISOL) and the second is entitled Chill Cooling for the Electromagnetic Levitator in relation with Continuous Casting of steel (CCEMLCC). The main common objective of these projects is to investigate the containerless solidification of levitated metallic alloys in microgravity [1; 2] using an electromagnetic field. This latter provides a Lorentz force to keep the sample in a stable position (Figure 1.1). The electromagnetic field is also used to heat the sample and melt it. The NEQUISOL project focuses mainly on the dynamics of crystal growth in non-equilibrium solidification of aluminium-based alloys. In this project, nucleation is naturally triggered from an undercooled state.

In the CCEMLCC project, investigation focuses on "surface defects formed during the treatment of steels in the liquid state". Solidification is triggered by contact with a ceramic substrate (Si 3 N 4 ) which extracts heat from the sample. 

Physical phenomena during solidification of a levitated steel droplet

Before addressing numerical modelling aspects dealt with in this work, it is essential to identify relevant physical phenomena involved in the solidification of a levitated droplet in microgravity.

Note that, hereafter, attention goes to solidification triggered by chill cooling. 

Conduction

Conduction is a mode of energy transfer that occurs on a macroscopic scale by the displacement of heat from hot regions to cold regions of the same body or several bodies in contact. Conduction is due to particle collisions at the microscopic scale. An atom (or molecule) in vibration releases part of its kinetic energy to the neighbouring atoms. The transport of heat by conduction occurs within and through the body itself without displacement of matter. Conduction is more important in solids because the relatively dense crystal lattice helps to transfer energy between atoms by vibration. It is heat conduction that is at the origin of triggering solidification in the CCEMLCC project experiment.

Convection

Convection is the movement of particles within a fluid (gas or liquid) leading to the transport of heat from one point to another. The movement of the fluid can be natural (natural convection) or forced (forced convection). Natural convection occurs when a gradient induces movement in the fluid. The gradient can concern different quantities such as temperature ("thermal convection"), the concentration of a solute ("solutal convection") or surface tension ("thermo-capillary convection"). A temperature or concentration gradient leads to differences in density within the fluid. Gravity drives the denser particles downwards and the less dense particles upwards, producing a vertical flow. In the absence of gravity, convection due to the difference in density is no longer possible because the driving force behind the movement of particles with different densities is the gravitational force. However, thermo-capillary convection can still exist in microgravity. Indeed, a surface tension gradient caused by a temperature or concentration gradient at the interface between two fluids induces a movement of particles along the interface towards regions CHAPTER 1. GENERAL INTRODUCTION of high surface tension. This effect, which is independent of the gravitational force, is called the "Marangoni effect". For forced convection, the movement of the fluid is artificially caused by an external mechanism such as a pump or turbine or by electromagnetic induction forced by a coil.

Radiation

Thermal radiation is the transfer of energy by emission of electromagnetic waves from any material whose temperature is above absolute zero. Thermal radiation is the direct result of the microscopic agitation of atoms and molecules in matter. Since these atoms and molecules are composed of charged particles (protons and electrons), their agitation causes the emission of electromagnetic waves, which carry the energy away from the body's surface. The radiation can propagate in a vacuum and does not require a physical medium.

Solidification

Solidification is the transformation of matter from a liquid-state to a solid-state. In the liquid phase, the atoms are in permanent agitation and without a specific ordered structure. On the contrary, in the solid phase, the atoms are "at rest" -or at least very slightly agitated -and above all are organised in an ordered crystalline structure (compact hexagonal, face-centred cubic...). This rearrangement of the matter is accompanied by the release of heat, known as latent heat of fusion, which compensates for the heat lost by cooling. Thus, for a pure metal under thermodynamic equilibrium, the phase transformation takes place at a constant temperature. In the case of a multicomponent alloy, the temperature generally drops during solidification.

Solidification begins with the appearance of a solid germ in the liquid. This solid germ can be created spontaneously (homogeneous nucleation) or from impurities in the liquid or by contact with a substrate (heterogeneous nucleation). Once nucleated, the solid structure develops in a particular form called dendrite. It can be columnar (Figure 1.3a) or equiaxed (Figure 1.3b). The evolution of the solid germ into an equiaxed or a columnar dendrite depends on the local temperature gradient. For columnar dendrite, the temperature gradient has a locally preferred direction, whereas for equiaxed dendrite the gradient is negligible. The growth of these structures during solidification gives rise to a zone where solid and liquid phases coexist. This is called the mushy zone. The size of this zone depends on the alloy, the process and the cooling conditions and can be several metres long, especially in continuous casting of steels. The dendritic microstructure is characterised by the primary, λ 1 , and secondary, λ 2 , interdendritic spacing.

Solidification is a crucial step in steel production. It is one of the factors that determine the future properties of the material. Defects occurring during this stage affect the quality of the solidified metal. These defects are only reversible to a certain extent through mechanical deformation and heat treatment. For this reason, it is important to better understand solidification in order to avoid the defects produced during this stage and to achieve the expected properties.

On an industrial level, three main processes are used to solidify liquid steel: continuous casting, ingot casting and foundry casting. 

Chemical segregation

Segregation is the non-uniform distribution of chemical species within a material. When it takes place at a microscopic scale (usually 10 -6 m-10 -4 m), it is called microsegregation. When segregation takes place on a macroscopic scale (usually 10 -4 m-1m), it is called macrosegregation.

Micro-segregation results from the redistribution of chemical species between the solid and the liquid phases. The formation of this heterogeneity is related to solubility. It often happens that the chemical solute species are difficult to incorporate into one of the two phases (the solid phase in general). Thus, during solidification, the solid "rejects" solute in front of the solidification front, resulting in an increase in concentration of the liquid phase. This difference extends to the macroscopic scale due to mass transfer caused by the relative movements of the phases in relation to the others.

It is easy to understand that segregation, as an intrinsic phenomenon of the solidification of alloys, is a source of heterogeneities in composition. It leads to non-homogeneous properties of the product, which can be disastrous for its lifetime or for its further processing. Usually, segregation cannot be corrected due to low diffusion in the solid metal. Limiting segregation as soon as it occurs would save time and money for the steel industry. The study of segregation is, therefore, of major interest.

Fluid flow

Convective fluid flow is an important factor in the solidification of alloys as it contributes to macrosegregation by impacting heat transfer and distribution of species. In the context of containerless solidification during Electromagnetic Levitation (EML), the convective flow in the liquid phase can be driven by solidification shrinkage, residual gravitational force, electromagnetic stirring, capillary forces at the liquid metal/gas interface (surface tension and Marangoni).

Solidification shrinkage

The transition from the liquid to the solid-state involves rearrangement of matter. This rearrangement leads to a variation in density, independently of thermal contraction. In steels, this volume change induces a convective motion of the liquid towards the denser solid phases to compensate
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for the volume difference. As solidification is at the origin of this volume difference, we talk about solidification shrinkage.

Microgravity

The effect of gravity on an object can be completely cancelled out when it is in a "free fall". This state is called weightlessness. The term "microgravity" refers to a condition in which weightlessness is not entirely achieved due to small residual forces. Microgravity is expressed as a fraction of g, where g is the gravitational acceleration at the Earth's surface, equal to 9.81 m.s -2 .

Practically speaking, the best way to achieve microgravity is to place an object in orbit, such as the ISS. This is because orbiting objects are theoretically subject only to the gravitational force, allowing them to experience a constant free fall.

Simulations of Saad [START_REF] Saad | Numerical Modelling of Macrosegregation Formed During Solidification With Shrinkage Using a Level Set Approach[END_REF] showed that microgravity can significantly drive the flow of the liquid in the absence of capillary forces.

Electromagnetic stirring

The particularity of the solidification experiments conducted in the context of these projects is the use of an electromagnetic levitator. This levitation device is used both to melt the metal by Joule effect and to maintain a stable position of the droplet by Lorentz force which counterbalances the external forces to which the droplet is subjected. Furthermore, the electromagnetic field used causes forced convection within the liquid with a velocity of up to 0.5 m.s -1 under terrestrial (1g) conditions [START_REF] Herlach | Non-equilibrium solidification, modelling for microstructural engineering of industrial alloys (nequisol)[END_REF]. In microgravity, the electromagnetic field needed is 1000 times less intense than on Earth. However, forced convection by the electromagnetic field is not completely eliminated.

Magneto-HydroDynamic (MHD) simulations carried out by Hyers [START_REF] Hyers | Computer-Aided Experiments in Containerless Processing of Materials[END_REF] estimate a fluid flow speed of around 0.05 m.s -1 .

Surface tension

In two-fluid flows, the interface is defined as the transition zone, which separates two fluids of different properties. The thickness of this zone is of the order of a few diameters of the molecule.

A molecule of the bulk is surrounded by molecules of the same type in all directions, and therefore the net inter-molecular force is zero. A molecule at the interface has not the same neighbouring molecules in all sides of it. It is consequently attracted more strongly in one side than the other.

The net inter-molecular force of the molecules at the interface is not zero. This implies that they have higher free energy than bulk molecules. The natural tendency of the system to reach the minimal free energy gives rise to the concept of surface tension. Surface tension is then that force per unit length which makes a fluid minimise the area of its interface with the other fluid. The surface tension is an important physical parameter that dominates deformable surfaces in many industrial processes in metallurgy like casting, welding and quenching. For liquid metals, surface tension is very high. For instance, for a pure liquid iron, it reaches 1.87 N.m -1 [START_REF] Egry | Surface tension of liquid metals and alloys -recent developments[END_REF], i.e. more than 20 times surface tension of liquid water which is about 0.075 N.m -1 .
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Marangoni effect

The surface tension can vary depending on the temperature and/or the composition of the fluid.

When a temperature or concentration gradient exists at the interface, this creates a gradient in surface tension. This causes the fluid to move along the interface from areas of low surface tension to areas of high surface tension. This movement of the liquid is known as Marangoni convection.

Marangoni convection can play an important role in heat and mass transport and can contribute considerably to segregation during the solidification process by altering the distribution of species.

Previous contributions

The contribution of CEMEF in the NEQUISOL project was initiated by the PhD work of Salem Mosbah [START_REF] Mosbah | Multiple scales modeling of solidification grain structures and segregation in metallic alloys[END_REF]. In his work, a 2D axisymmetric Cellular Automata Finite Element (CAFE) numerical model was proposed for the prediction of the segregation maps and the influence of nonequilibrium solidification for samples with spontaneous and triggered nucleation. The numerical model is based on coupling between the Finite Element (FE) method and Cellular Automata (CA) method. The FE is used to solve the diffusive transport of energy and solute mass using the method of volume averaging. The CA is used for modelling the grains structures accounting for the primary and the secondary dendrite arm spacing together with nucleation and growth undercooling via the coupling with a microsegregation model. The CAFE model was applied for simulation of solidification experiments of Al-Cu droplets processed by the EML technique in terrestrial conditions [START_REF] Mosbah | Experimental and numerical modeling of segregation in metallic alloys[END_REF]. Although the model allows coherent explanation of the measured temperature profiles, it presents some limitations such as the absence of the convective transport of heat and mass.

As for the contribution of CEMEF in the first phase of the CCEMLCC project, modelling was initiated by the PhD work of Benjamin Rivaux [START_REF] Rivaux | Simulation 3D éléments finis des macroségrégations en peau induites par déformations thermomécaniques lors de la solidification d'alliages métalliques[END_REF]. His work was based on a Lagrangian approach to consider both the steel sample and the ceramic chill using separate meshes for each domain. The conservation equations of energy, mass of chemical species, momentum and total mass were solved in the steel domain. In contrast, energy conservation was the only equation solved in the chill domain. The thermal contact between the chill and the droplet was taken into account by a Fourier boundary condition using a transfer coefficient calibrated on the experiments. The conservation equations for the steel domain were solved by coupling two calculation platforms: CimLib® for Navier-Stokes, energy and chemical species equations and TherCast® for solid mechanics equations. Shrinkage was considered as part of solid mechanics where an average density is tabulated with temperature. The interface between the solid and liquid phases of the metallic domain was implicitly represented by the volume average theory. The ALE (Arbitrary Lagrangian-Eulerian) method was used to update the position of the deformable surface of the droplet. However, the comparison (figure 1.4) with the experiments carried out on the sounding rocket (TEXUS) shows that the simulation does not make it possible to predict the deformed shape of the steel sample. In the simulation, the orientation of the gravity vector was arbitrarily set from the droplet to the chill with a magnitude of 10 -7 m.s -2 .

In the second phase of the CCEMLCC project, modelling was improved by the PhD work of Ali Saad [START_REF] Saad | Numerical Modelling of Macrosegregation Formed During Solidification With Shrinkage Using a Level Set Approach[END_REF]. In his work, he adopted an Eulerian approach. A single mesh was considered for both metal and surrounding gas. The chill was not included in the computational domain, but the thermal contact between the sample and the chill was implicitly taken into account via a Fourier boundary condition. The volume average method was retained to represent the solid-liquid interface within the metal. The energy solver was improved by achieving full coupling with thermodynamic tabulations for multicomponent alloys. The Level-Set method was used to track the droplet interface with the surrounding gas. A monolithic formulation of the conservation equations for energy, chemical species, momentum and total mass allowed the resolution of a single system of equations for the entire computational domain. The solid metal was assumed to be rigid and fixed. A condition of liquid compressibility was introduced into the Navier-Stokes equations to represent solidification shrinkage. Gravity was directed from the chill to the droplet. A parametric study of the amplitude of the residual gravity and the heat transfer coefficient at the contact surface between the sample and the substrate was carried out to find optimal values that approximate the experimental shape of the droplet (figure 1.5). Simulations showed that the droplet could be deformed by the liquid flow caused by residual gravity of the order of 10 -5 m.s -2 . As can be seen from the values of dimensionless numbers, surface tension is a force that pre-
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dominates over inertia, viscous forces and gravity. Therefore, it is a parameter that cannot be excluded from the study of the solidification of a levitated metal droplet. In addition to the surface tension, the Marangoni force caused by the temperature gradient is an important factor for this study as expressed by the Marangoni number calculated for a coefficient ∂γ ∂T = 5.44 × 10 -4 N.m -1 .K -1 and a temperature gradient of ∆T = 1000 K.

Taking capillary effects into account may clearly impact on the results of the numerical simulations performed in the PhD theses described earlier. The first objective of this PhD thesis is, therefore, to enrich the previous simulations by modelling of the capillary forces (surface tension and Marangoni) that govern the dynamics of the droplet free surface. Implementation of surface tension has been initiated within CEMEF by Khalloufi [START_REF] Khalloufi | Multiphase flows with phase change and boiling in quenching processes[END_REF] for water bubbles in the quenching process and Chen [START_REF] Chen | Modélisation numérique thermomécanique de fabrication additive par fusion sélective de lit de poudre par laser : Application aux matériaux céramiques[END_REF] for ceramics in additive manufacturing. However, there are several numerical difficulties related to surface tension, which are more pronounced and critical for high surface tension values, in particular calculation stability, mass loss and spurious currents. In this work, we propose some improvements in the modelling of surface tension in the context of the Level-Set method. These improvements deal with the numerical problems of mass loss, parasitic currents, stability and accuracy of the calculation. To evaluate the new contributions related to surface tension, we propose an analytical solution in both 2D and 3D of a benchmark based on the oscillating drop method used in ESA projects to measure surface tension and viscosity of the studied alloys.

Note that this objective oriented towards the improvement of Fluid Mechanics modelling, brings a new contribution for both CCEMLCC and NEQUISOL projects.

After the Fluid Mechanics aspect addressed in the first objective of the thesis, the second objective consists in improving the modelling of heat transfer in the presence of solidification. As previously mentioned, the NEQUISOL project focuses on the investigation of microstructure development in non-equilibrium solidification of Al-based alloys. Solidification is triggered spontaneously from an undercooling state which allows several modes of solidification, a wide range of metastable microstructures and structurally different phases [START_REF] Herlach | Non-equilibrium solidification of undercooled metallic melts[END_REF]. The CCEMLCC project focuses on the study of surface defects formed during continuous casting of steels. The two solidification conditions are different. Therefore, in the context of the CCEMLCC project, the volume averaging method in FE framework is adequate to predict the formation of surface defects at the macroscopic scale. As for the NEQUISOL project, a CAFE model is required to account for the grains structures. In this PhD, we confine our attention in solidification during chill cooling investigated in the CCEMLCC project.

In the previous contributions of the CCEMLCC project, the condition of thermal contact between the droplet and the chill was approximated by a Fourier condition. This approximation assumes that the temperature of the chill away from the contact surface is constant. This is equivalent to considering the chill as an infinite heat source whose temperature does not vary. However, the ceramic plate in contact with the sample has a finite volume and is heated by contact with the molten metal and its thermal radiation. Therefore, we propose to incorporate the chill in the calculation domain using the level-set method. Attention will be focused on the heat exchange between two bodies in contact. For this purpose, a contact thermal resistance model will be pro-CHAPTER 1. GENERAL INTRODUCTION posed and validated by analytical test cases and then applied to the chill cooling and solidification of the droplet. Thermal radiation will not be the subject of this work. However, this numerical framework will be suitable for possible consideration of the radiative exchanges studied within CEMEF by other work in progress.

The final objective will, therefore, be to couple these new models with previous contributions, in particular those of Saad [START_REF] Saad | Numerical Modelling of Macrosegregation Formed During Solidification With Shrinkage Using a Level Set Approach[END_REF], in order to propose a simulation of a steel droplet solidification experiment in microgravity. The comparisons will be based on the experiment recently carried out on board the ISS. Before coming to this point, we first present in the next chapter the state of the art of the solidification experiments performed in the framework of the CCEMLCC project, with particular attention to the most recent of the experiments and the first one performed on board the ISS.

Therefore, after the present introduction of the PhD thesis, the manuscript will be structured as follows:

• Chapter 2 entitled "Chill cooling experiments in microgravity" is dedicated to the experimental results of the CCEMLCC project.

• Chapter 3 entitled "Numerical modelling of multiphase flows including surface tension" is devoted to surface tension implementation and validation via the oscillating drop method.

• Chapter 4 entitled "Numerical modelling of heat transfer with solidification and thermal contact resistance" suggests a model for thermal contact resistance in the context of diffusive interfaces with level-set method • Chapter 5 entitled "Numerical simulation of chill cooling and solidification of a levitated steel sample in microgravity" is dedicated to modelling and simulation of the coupling of fluid mechanics including surface tension and Marangoni with heat transfer, solidification and chemical segregation. 

Introduction

The main objective of the CCEMLCC project is to enhance our understanding of solidification of steel products, in particular, the defects formed during casting processes of steels [START_REF] Gandin | Chill cooling for the electromagnetic levitator in relation with continuous casting of steels[END_REF]. For this purpose, the solidification of an initially freely suspended steel droplet in microgravity conditions is investigated. The mould, in a real continuous casting process, is modelled by the use of a ceramic chill plate which extracts the heat from the sample and thus triggers nucleation. The motivation for conducting experiments in microgravity is to reduce the effects of gravity-related sources of mass and heat transfers and to determine how gravity-independent phenomena can influence the solidification process of steels. The ISS provides a platform for such research projects to carry out experiments in ideal microgravity conditions. Despite the increasing number of scientific research projects investigating microgravity conditions, the opportunities to send the experiments into a spaceflight to the ISS are limited. Relatively few projects in material science have benefited from a flight ticket to the ISS.

Two complementary approaches are used in the CCEMLCC project: experiments and numerical modelling. It is well known that numerical simulations provide a rich insight into what happens in the experiments, and thus help to interpret the experimental results. With reliable numerical models, numerical simulations allow exploring other situations not investigated by the experiments. But before reaching this point of exploration, the numerical models must be validated.

Experimental data serve as a benchmark for numerical simulation to compare and validate.

The project being currently in its third phase, several campaigns of experiments have been performed since 2007. In this chapter, we present the experiments and their findings with a focus on the first successful experiment of this project recently performed on board the ISS. The objective is to take advantage of these experiments to extract data that will serve as a reference for the evaluation of our numerical modelling.

The experimental set-up

The main idea of the experiments is to contact a levitated molten steel sample with a ceramic Si 3 N 4 chill plate which extracts heat from the sample and thus triggers solidification. The sample is heated and positioned using an electromagnetic system consisting of two coils. One coil is used for heating, the so-called heater coil. The second coil, called the positioner, is designed to use Lorentz forces to counterbalance the external forces applied to the sample and hold it in a stable position. A cage, called the sample holder, surrounds the droplet to force it to stay within a certain area. A high-speed camera records the experiments from the side of the sample and monitors the solidification of the droplet. Through a tiny hole in the plate, an axial pyrometer measures the temperature of the metal at the contact interface with the chill plate (see Figure 2.1).

The experimental setup was designed by a team at the Institute for Materials Physics in Space in the German Aerospace Centre, Cologne. It was first tested on Earth, where the electromagnetic field required to levitate the drop against gravity is so large that it generates strong convection in the bulk liquid and thus adds more complexity to the process. Under microgravity conditions, the electromagnetic stirring vanishes because the intensity of the electromagnetic field is 1000 times CHAPTER 2. CHILL COOLING EXPERIMENTS IN MICROGRAVITY lower [START_REF] Egry | Surface tension of liquid metals and alloys -recent developments[END_REF]. The experimental device was then tested and validated in microgravity conditions by parabolic flights and sounding rockets before being sent to a long-time microgravity environment on the ISS.

In an ideal experiment cycle, the metallic droplet is heated and maintained in a stable floating position. After the temperature of the metal is well above the liquidus temperature, the heater is turned off. The sample holder moves towards the droplet so that the chill plate attached to the holder touches it. As the sample is still liquid, a flat contact interface is formed, allowing heat exchange between the metal and the chill plate. Chill cooling and complete solidification must ideally occur during microgravity. Note that these ideal experimental conditions are not easily respected when short-duration facilities are used (parabolic flight, sounding rocket). Several experimental cycles failed either because the chill-cooling had started before the heater was turned off, or because the microgravity period had ended before a complete solidification was achieved, or because other incidents like the sample stuck on the cage before chill cooling. 

Steel samples processed

In the CCEMLCC project, a variety of steel alloys are processed in microgravity using the EML facility. The choice of the steel alloys compositions was motivated by the applications of the industrial partners joining the project. The list of steel samples and their compositions are given in the following table 2.1. Note that, in this work, all the compositions are given in wt.%.

The steel alloys can be divided into 3 categories:

• Fe-C-Si steels (a1 , b1 and d1 ) which contain the same chemical elements but different concentrations in Carbon including austenitic steels b1 and d1 , and a ferritic steel a1 . Theses samples were provided by ArcelorMittal. • Fe-C-B steels (A, B and C) which contain a small quantity of Boron (< ppm B) with a Carbon concentration lower than 0.01 wt.%. They were also provided by ArcelorMittal.

Each of these samples was subjected to precursor chill cooling tests mostly during parabolic flights with one test in a sounding rocket trip for b1 sample. However, only a1 and d1 samples have been processed in the ISS so far, but processing of a1 failed as the sample stuck on the holder and the activation of the high speed camera did not work. Therefore, our attention is confined only in the Fe-C-Si category. It should be noted here that all microgravity tests are performed by the DLR partner.

Microgravity experiments: from precursor tests to experiment on board the International Space Station

Three microgravity facilities are provided by ESA to perform experiments: parabolic flights, sounding rockets and the ISS. Before sending the experiment to the ISS, precursor tests must be performed in parabolic flights or sounding rockets to validate the experimental instruments and the processing of the samples. In the following, we give an overview of the chill cooling experiments performed in each of these microgravity facilities. As it was stated previously, only the experiments concerning the Fe-C-Si alloys are shown.

Parabolic flights experiments

During a parabolic flight, a dedicated Airbus aircraft, called Zero-G, executes a series of around 30 parabolas. Around the apogee of each parabola, the aircraft and its contents experience a sensation of weightlessness period (10 -2 g) that lasts about 25 seconds [START_REF] Karmali | The dynamics of parabolic flight: flight characteristics and passenger percepts[END_REF]. Despite the short duration Several TEMPUS parabolic flights campaigns have been conducted. Each campaign lasts 4 days. During each day, about 30 parabolas, named cycles, were performed. Some of these cycles were dedicated to chill cooling experiments. The most recurrent problem is the fact that the droplet stuck on the sample holder during melting. In the following table, we give only the references to some experiments that could be considered successful. 
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For the chill-cooling experiment on Fe-0.1C-0.2Si, the time evolutions of the temperature, the heater control voltage and microgravity level are displayed in figure 2.6. The disturbances and spikes on the temperature curve are due to translation motions of the sample, which changes the pyrometer signal if the sample is not well-positioned in the centre of the levitation coil. Unstable positioning often occurs when starting the levitation process and cannot be damped during the short microgravity period of 20 s in most cases. At a temperature of about 50 o C above the liquidus temperature T L = 1493 o C, the sample touched the chill plate and the cooling process sets in, revealed by the steep drop of temperature with an initial cooling rate of about 500 K.s -1 . We can observe that the contact with the chill plate occurred slightly before the heater is turned off.

Solidification proceeds with a velocity of about 1 mm.s -1 and deformation of the droplet is monitored by the radial video camera at rate of 500 fps enabling to analyse the evolution of the droplet shape during solidification as illustrated in Figure 2.7. Once again, the microgravity period in the parabolic flight ended before the completion of solidification process was achieved (see Figure 2.6). 
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Sounding rocket experiments

A sounding rocket (also called research rocket) carries experimental instruments in a parabolic path, like a parabolic aircraft, but goes above the atmosphere of the Earth up to 750 km high. A sounding rocket is divided into two parts: a solid-fuel rocket motor and a payload. The typical trip profile of a sounding rocket trip, as shown in Figure 2.10a, starts from the launch of the rocket (see Figure 2.10b). The rocket motor consumes its fuel for propulsion then separates from the payload leaving it in a free-fall. After the separation, the payload continues upwards into space

where the experiments begin. After reaching the apogee of the parabolic arc, the payload goes down, re-renters the atmosphere and returns gently back to Earth under a parachute. The payload is then retrieved. During these flights, researchers can monitor the experiments and even modify parameters as data from experiments are sent to control stations on the ground during the flights.

The sounding rocket flight facility offers a higher-quality microgravity condition that lasts for a longer period than a parabolic flight. The residual gravity reaches around 10 -5 g and lasts for about lateral pyrometer no longer pointed to the drop: the temperature dropped. In addition, the chill was abnormally heated. The axial pyrometer pointed to the drop, and the chill was calibrated with the emissivity of the metal. Since the emissivity of the ceramic is greater than that of the steel, the measured temperature is much higher than the real temperature.

Of the last two cycles reserved for the CCEMLCC project, the fifth cycle is not usable, given the problem that has arisen. No analysis of the drop recovered at the end of the experiment was conducted. Therefore, the TEXUS experiment can only be exploited using the time-temperature curve shown in Figure 2.11 and the camera to follow the solidification of the drop during the 4 th .

Images from this video are shown in Figure 2.12. The time-evolutions of the droplet shape as well as the solidification front, are shown in Figure 2.12. As observed in parabolic flights, the sample showed an elongation in the vertical direction that is also the direction of the thermal gradient.

Figure 2.12: Sequence of video images for the Fe-0.9C-0.2Si TEXUS experiment showing the sample shape time evolution (from left to right). The time increment between images is 1 s starting at time of contact with the chill plate. The position of the growth front is marked by the red line [START_REF] Rivaux | Simulation 3D éléments finis des macroségrégations en peau induites par déformations thermomécaniques lors de la solidification d'alliages métalliques[END_REF] CHAPTER 2. CHILL COOLING EXPERIMENTS IN MICROGRAVITY

International Space Station experiment

After preparation and validation of the experimental instruments onboard the parabolic flights or sounding rockets, the experimental setup is then sent to the ISS for a long microgravity mission in ESA's Columbus laboratory. comparable to the growth value observed in parabolic flights. We can extrapolate the time evolution of the front growth by assuming that the front propagated with the average velocity of V front .

We obtain this extrapolated point (marked in figure 2.17 in blue) by computing the time t f i nal at which the front reaches the lowest point of the droplet located at Z final from the chill as follows: In figure 2.18, the contour of the sample after complete solidification (represented by the blue dashed line) is superimposed to the shape of the sample at several times. The key idea is to show that once the interface metal-gas is solidified, i.e. above the red line marking the front position, it remains fixed. This is to say that the assumption of a solid phase that does not deform is correct. Another observation which can confirm this hypothesis is given in figure 2.19. This figure highlights the existence of some light spots in the solid phase that remain fixed and do not deform after solidification.

t f i nal = Z f i nal V f r ont = 8.16s (2.1)
One additional observation is the appearance of a singular point at the front position where the slope of the sample shape changes from the solid to the liquid phase. This change in slope is very pronounced during the first few seconds after contact with the chill. We can express this change in slope in terms of the difference between the solid angle θ s and the liquid angle θ l . These two angles are calculated from the horizontal plane, indicating the position of the front, as shown in The present observations with respect to the shape of the droplet, the front growth and the time-temperature profile could be enriched by the chemical segregation profile of the solidified droplet. This will only be possible when the solidified sample is brought back to Earth, which is not the case so far. In the meantime, the present experiment can be supported by additional data concerning the thermophysical properties of the liquid phase of the steel. Knowing the values of the properties of the alloy is crucial for numerical simulation of the solidification process as they serve as input parameters. The lack of values in the literature for the properties of the same alloy created the need for experimental measurements to determine these properties. The properties of interest are surface tension and viscosity of the liquid phase of the alloy. The measurements have been carried out by the teams from ThermoLab/ThermoProp and ELFSTONE projects using the oscillating drop technique. The same experimental device used for the chill cooling experiment on board the ISS is usable for measurements of the surface tension and the viscosity. In addition, the ideal conditions on board the ISS are favourable for the technique to obtain accurate measurements of liquid alloy properties over a wide temperature range, including undercooling. 
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In the logic of deploying the experimental results in the service of numerical modelling, it is relevant to present in this chapter the experiment that had led to the measurement of surface tension and viscosity. In addition, the oscillating drop technique serves as a benchmark for the evaluation of the numerical modelling of surface tension, as it is shown in the next chapter. Like the chill cooling experiment, the oscillating drop technique follows the same steps of levitation, positioning, heating and melting. Once the liquid droplet is put in a stable position, the liquid droplet is excited by an electromagnetic pulse using the heating coil (see the peaks in Figure 2.

22).

This pulse causes the free surface of the droplet to oscillate as shown in Figure 2. [START_REF] Volkmann | Chill cooling for the electromagnetic levitator in relation with continuous casting of steel[END_REF]. More details about the experimental procedure can be found in [START_REF] Mohr | Surface tension and viscosity for sample #20, fec0.9si0.2[END_REF] where Mohr finds that the oscillation frequency is correlated with the value of the surface tension and the damping rate of the oscillation amplitude is related to the viscosity. The formulae used in this technique are presented in details in the following chapter. 3). The two peaks in the heater signal represent the electromagnetic pulses to make the droplet oscillate [START_REF] Mohr | Surface tension and viscosity for sample #20, fec0.9si0.2[END_REF].

The video sequence recorded by the high speed camera was analysed by the TEVI software, developed by teams at DLR, in order to extract the radius of the droplet. 

γ = γ 0 + ∂γ ∂T (T -T ref ) (2.2)
where The Marangoni coefficient ∂γ ∂T is positive which is not usual for pure liquid metals measured in [START_REF] Egry | Surface tension of liquid metals and alloys -recent developments[END_REF]. A possible explanation to the positive sign is that adsorption or desorption of surface-active species (typically oxygen) or segregated species of surface active elements from the melt might For viscosity, it was only possible to obtain the value at one temperature, namely for the second pulse. The viscosity can hence be given for T = 1460 o C as : µ = (9.5 ± 0.2) × 10 -3 Pa.s

γ 0 = 1.439 ± 0.002 N.m -1 γ = (5.44 ± 0.28) × 10 -4 N.m -1 .K -1 T ref = 1466 o C

Conclusion

This chapter is devoted to the experimental part of the CCEMLCC project. We first presented the experimental setup with the compositions of the samples under investigation. Then, we presented the results of experiments using three microgravity facilities: parabolic flights, sounding rockets and the ISS. Parabolic flights and sounding rockets are limited by short microgravity duration, as well as the non-negligible residual external forces that disturb the sample. However, they serve as precursor tests to validate the experimental device before sending it to the ISS.

The preliminary results obtained during parabolic flights and sounding rockets were presented for Fe-C-Si samples a1 , b1 and d1 . During these precursor chill cooling tests, the samples showed shape elongation in the growth direction, perpendicular to the chill plate. To confirm or disprove these observations and to draw reliable conclusions about the chill cooling experiments, the experiments must be operated in higher quality conditions where the entire droplet can solidify without external forces. Such ideal conditions were realised onboard the ISS, where the first chill cooling experiment of a steel sample was successfully performed in 2019.

The time-evolution of the temperature measured at the interface of the sample with the chill cooling was analysed. It showed a cooling rate of around 200 K.s -1 during the first 2 seconds starting from the contact, then a rate of around 25 K.s -1 . The temperature profile enables us also to have a value of temperature for the initialisation of numerical simulations T 0 = 1648 o C. Moreover, we analysed the digital images recordings of the experiment. We observed a final elongation in the vertical direction of around 22% of the sample diameter before processing. The average growth speed of the solidification front was estimated to 0.897 mm.s -1 . The observations of the solid phase during solidification allows us to consolidate the fixed-solid assumption, later postulated in numerical modelling. The experimental data were enriched by surface tension and viscosity of the liquid alloy, measured onboard the ISS with the oscillating drop technique.

Further analyses regarding the segregation profile can support the present observations. These analyses could be possible only when the solidified sample is brought back to Earth, which is not the case at the time of writing this manuscript. Accordingly, data are not yet available to compare the chemical segregation predicted by numerical simulations. 
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Résumé

Introduction

In fluid mechanics, multiphase flows refer to flows involving simultaneously two or several states of matter (liquid, gas, or solid), such as the flow of boiling water including vapour bubbles or the movement of a liquid drop on a solid substrate. This type of flows are characterised by the presence of interfaces through which the thermomechanical properties change. These flows can also involve surface forces at interfaces such as the surface tension and Marangoni forces. Multiphase flows cover a wide range of situations and applications including, for example, energy [START_REF] Hewitt | Multiphase flow in the energy industries[END_REF], petroleum engineering [START_REF] Aiyejina | Wax formation in oil pipelines: A critical review[END_REF], nuclear industry [START_REF] Visentini | Experimental investigation of heat transfer in transient boiling[END_REF], biomedicine [START_REF] Dong | Multiphase Flows in Biomedical Applications[END_REF] and environment [START_REF] Dutykh | Mathematical modeling of powder-snow avalanche flows[END_REF].

A recurring theme throughout the study of multiphase flows is the need to model and predict the behaviour of these flows and the phenomena involved. Adopting a theoretical approach is a very complex and challenging way to predict multiphase flows and may not be feasible when the flow is coupled with other phenomena such as heat transfer or turbulence. The experimental approach is limited to laboratory-scale prototypes. Besides, the experiments still require more sophisticated instruments to provide more detailed flow data. Consequently, predictive capacity relies heavily on numerical modelling. Computational algorithms for solving multiphase flows are widely present in the literature [START_REF] Balachandar | Computational Approaches to Multiphase Flow[END_REF]. Despite the maturity of numerical modelling for multiphase flows , many numerical challenges persist, and the magnitude of the challenges depends on the complexity of the phenomena involved. Moreover, further efforts are still needed to meet the growing demand for reliable and accurate numerical tools.

In this chapter, we will present our numerical framework for solving incompressible flows involving two fluids separated by an interface with surface tension force. The chapter is presented in two parts: the first part is dedicated for numerical modelling and the second part is for assessment and validation. In the first part, we will start with interface modelling. We will introduce the levelset method and show how we use it to track the interface over time. A numerical issue related to mass conservation is occurring when using level-method. A mass correction method will be then presented. After that, we will write the governing equations of an incompressible two-fluid flow starting from the strong formulation to the monolithic weak formulation, including surface forces. The diffuse interface method will be introduced. In this framework, the mixing laws of the properties will be given, and the Continuum Surface Force (CSF) method for surface tension will be shown. Finally, the Stabilised Variational MultiScale (VMS) method for Navier-Stokes solver will be presented. Through this part, we will present some additional numerical improvements to deal with the stability and accuracy of the solver. In the second part, the goal is to assess the performance of our numerical tools. For this purpose, we will present the oscillating drop benchmark. We will start by deriving the analytical solution both in 2D and 3D. Then, we will perform numerical tests and show comparisons of the numerical results with the derived solution.

Interface modelling

In Computational Fluid Dynamics (CFD), one of the questions that arise when dealing with multiphase flows is how to model the interface. There are two main classes of methods to model an of markers located all over the volume of a chosen phase such as Marker and Cell Method [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF], or located only at the interface such as Surface tracking method [START_REF] Daly | Numerical study of density-current surges[END_REF]. As for front capturing methods, the interface is implicitly represented by a phase function that identifies the phase to which a given element of the grid belongs. The interface is, thus, defined by the phase function. The most famous methods of front capturing are the Volume-of-Fluid method [START_REF] Hirt | Volume of fluid (vof ) method for the dynamics of free boundaries[END_REF] and the Level-Set method [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations[END_REF].

In the context of the FE method with fixed Eulerian grids, we use in this work the Level-Set method. It has attractive features as it handles a wide range of complex 3D geometries. In addition, it provides direct access to the geometrical properties of the interface that are necessary for the calculation of surface forces.

Level-Set function

Consider a computational domain Ω containing two sub-domains Ω 1 and Ω 2 separated by an interface Γ. The Level-Set method relies on an implicit representation of Γ via a signed distance function to the interface, defined at each position x, at any time t by: 

φ(x, t ) =          d (x, Γ) if x ∈ Ω 1 0 if x ∈ Γ -d (x, Γ) if x ∈ Ω 2 (3.

Level-Set transport

To track the time-evolution of the interface position, we solve the following advection equation:

∂φ ∂t + u.∇ ∇ ∇φ = 0 (3.2) CHAPTER 3.
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where u denotes the flow velocity vector. The zero iso-value resulting from equation (3.2) represents the new position of the interface. However, the non-zero levels can be distorted by the flow velocity, especially when the velocity field u is not uniform. Therefore, they are not guaranteed to represent the geometrical distance to the interface. Consequently, a regularisation or re-initialisation of the Level-Set function is needed in order to recover the intrinsic property of the distance function which writes ∇ ∇ ∇φ = 1 . Solving the Hamilton-Jacobi equation (3.3) is a classical way for re-distancing.

∂φ ∂τ + s(φ) ∇ ∇ ∇φ -1 = 0 (3.3)
where τ is a pseudo-time and s(φ) is the sign of the Level-Set function φ.

There is another way of re-initialisation based on a direct geometrical computation of the distance function [START_REF] Shakoor | An efficient and parallel level set reinitialization method -application to micromechanics and microstructural evolutions[END_REF]. Once the transport equation (3.2) is solved, the interface is obtained from the iso-value Φ(x, t ) = 0. Then, the smallest distance from each mesh node to the interface is computed.

To circumvent the need of two different solvers for transport and re-initialisation, the coupled convection-re-initialisation method formulated by equation (3.4) combines both equations (3.2)

and (3.3). ∂φ ∂t + U.∇ ∇ ∇φ = ks(φ) (3.4)
where k is a numerical constant dimensionally homogeneous to a velocity and U writes:

U = u + ks(φ) ∇ ∇ ∇φ ∇φ (3.5)
It should be noted that the convection equation (3.2) as well as the auto-reinitialisation transport equation (3.4) are solved in FE by means of Streamline Upwind Petrov-Galerkin (SUPG) method known to mitigate the numerical instabilities. See [START_REF] Bahbah | Conservative and adaptive level-set method for the simulation of two-fluid flows[END_REF] for more numerical details.

Mass correction

Despite its mathematical simplicity and attractive ability to deal with complex geometries, the classical Level-Set method (distance function) suffers from mass conservation issues. In fact, after the transport of Level-Set function, the volume (consequently the mass, for an incompressible flow) of the object described by the Level-Set (Ω 1 ) can be lost or gained due to numerical errors within each time iteration. After several time increments, the accumulation of numerical errors can lead to a significant mass gain/loss. In the present work, we use a simple correction method to enforce the volume (thus the mass) to be constant. The principle of this correction method is to shift the zero iso-value of the Level-Set function (distance function) by some signed distance c φ such as:

φ cor r (x, t ) = φ(x, t ) + c φ (t ) (3.6)
where φ cor r is the corrected Level-Set function, and φ is the transported Level-Set resulting from (3.4). The signed distance c φ (t ) is computed as the volume difference, taking as a reference the 

c φ (t ) = V(t ) -V(0) A Γ (t ) (3.7)
It should be mentioned that this adjustment |c φ | should be small enough (not greater than O(h 2 )

for P1-elements where h is the mesh size according to [START_REF] Smolianski | Numerical Modeling of Two-Fluid Interfacial Flows[END_REF]) to preserve the shape of the interface. This means that the numerical discretisation errors within each time step must be minimised as possible. For this purpose, we use a high order time-discretisation scheme (2 nd order is sufficient)

for solving the transport equation (3.4). Note also that the correction method given by the equations (3.6) and (3.7) applies only for a single object with invariant volume. This method will be extended in Chapter 5 to a shrinking-volume droplet during solidification.

Flow modelling

This section is devoted to the mathematical formulation of a flow involving two fluids separated by a moving interface governed by surface tension force. The numerical framework is based on solving the Navier-Stokes equations. The properties jump across the interface is smoothened via the diffuse interface approach. The surface tension force is included into Navier-Stokes equations as a volume force through the CSF method. The resolution strategy is based on stabilised FE VMS method.

Governing equations

Let ρ 1 and ρ 2 be the densities of the fluids in Ω 1 and Ω 2 respectively and µ 1 and µ 2 their respective dynamic viscosity. We consider in this chapter that the flow is incompressible, isothermal and that no phase transformation occurs. The flow in each subdomain, indexed by i , is described by the following Navier-Stokes equations:

     ρ i ∂u i ∂t + u i • ∇ ∇ ∇u i -∇ ∇ ∇ • σ i = f i ∇ ∇ ∇ • u i = 0 (3.8)
where u i is the velocity vector of the fluid in the subdomain Ω i and f i is its volume external force. σ i is the stress tensor which is linked to the pressure of the fluid p i and the strain rate tensor ˙ (u i ) by the following Newtonian-fluid constitutive law:

σ i = 2µ i ˙ (u i ) -p i I (3.9)
with I the identity tensor. In order to close the problem, Equations (3.8) are subjected to boundary and initial conditions.

At the interface Γ, the normal stress jump is given by the surface tension force such as:

σ • n = (σ 2 -σ 1 ) • n = -γ κ n = f ST (3.10) CHAPTER 3.
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where γ is the surface tension coefficient, κ is the mean curvature and n is a unit normal vector to

Γ oriented inwards Ω 1 .
These geometrical properties of the interface are directly computed thanks to the Level-Set function using the following expressions:

n = ∇ ∇ ∇φ ∇ ∇ ∇φ (3.11) κ = -∇ ∇ ∇.n (3.12)
Following these considerations, the surface tension force is calculated from the Level-Set function as: Let consider the interpolation functions U i and P i defined in the subdomain Ω i , i ∈ {1, 2}. The weak formulation of the problem (3.8) with the constitutive law (3.9) reads:

f ST = γ∇ ∇ ∇. ∇ ∇ ∇φ ∇ ∇ ∇φ ∇ ∇ ∇φ ∇ ∇ ∇φ (3.13)

Two-fluid flow formulation

           ρ 1 ∂u 1 ∂t , U 1 Ω 1 + ρ 1 u 1 • ∇ ∇ ∇u 1 , U 1 Ω 1 + 2µ 1 ˙ (u 1 ) : ˙ (U 1 ) Ω 1 -p 1 , ∇ ∇ ∇ • U 1 Ω 1 = f 1 , U 1 Ω 1 + (σ 1 • n 1 , U 1 ) ∂Ω 1 (∇ ∇ ∇ • u 1 , P 1 ) Ω 1 = 0 (3.14)            ρ 2 ∂u 2 ∂t , U 2 Ω 2 + ρ 2 u 2 • ∇ ∇ ∇u 2 , U 2 Ω 2 + 2µ 2 ˙ (u 2 ) : ˙ (U 2 ) Ω 2 -p 2 , ∇ ∇ ∇ • U 2 Ω 2 = f 2 , U 2 Ω 2 + (σ 2 • n 2 , U 2 ) ∂Ω 2 (∇ ∇ ∇ • u 2 , P 2 ) Ω 2 = 0 (3.15)
where

n 2 = -n 1 = n.
The monolithic formulation of a two-fluid flow consists in writing one set of equations to be solved in the whole computational domain. This approach involves considering the computational domain filled with a single fluid but with variable properties. For this reason, we define the global velocity vector u and the global pressure p such as:

u(x) =    u 1 if x ∈ Ω 1 u 2 if x ∈ Ω 2 (3.16) CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSION and p(x) =    p 1 if x ∈ Ω 1 p 2 if x ∈ Ω 2 (3.17)
In the same way, we define the global variable properties ρ and µ such as:

ρ(x) =    ρ 1 if x ∈ Ω 1 ρ 2 if x ∈ Ω 2 (3.18)
and

µ(x) =    µ 1 if x ∈ Ω 1 µ 2 if x ∈ Ω 2 (3.19)
By summing equations (3.14) and (3.15) and applying the boundary condition (3.10), the formulation of the two-fluid flow with surface tension reads:

           ρ ∂u ∂t , U Ω + ρu • ∇ ∇ ∇u, U Ω + 2µ˙ (u) : ˙ (U ) Ω -p, ∇ ∇ ∇ • U Ω = f , U Ω + f ST , U Γ (∇ ∇ ∇ • u, P ) Ω = 0 (3.20)
Note that in equation (3.20), we consider a zero Neumann boundary condition on ∂ O meg a, i.e.

σ i • n i , U i ∂Ω i ∩∂Ω = 0 (3.21)
At this stage, the two-fluid flow formulation (3.20) together with the variable properties as given by (3.18) and (3.19) are the basis of the sharp interface approach which requires appropriate methods able to handle the discontinuity of properties across the interface as well as a surface integral method to compute the surface tension force. To avoid dealing with discontinuities which can be source of calculation instabilities, we use in this work a different numerical approach, called the diffuse interface method.

Diffuse interface approach and mixing laws

Unlike the sharp interface approach, the diffuse interface method considers the interface as a nonzero thickness layer. The interface is then a region of thickness 2ε centred around the zero isovalue of the Level-Set function (-ε ≤ Φ ≤ +ε) in which the transition from one fluid to the other occurs continuously and smoothly (see Figure 3.2). We use for that a smooth Heaviside function H(φ) which allows computation of the smooth variable properties ρ and µ. There is a variety of
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smooth Heaviside functions. In this work, we choose a sinusoidal smoothing function such as:

H(φ) =              1 if φ > ε 0 if φ < -ε 1 2 1 + φ ε + 1 π sin πφ ε if φ ≤ ε (3.22)
Note that the half-thickness ε should be smaller than the smallest length scale of the problem.

On the other hand, the transition zone should contain enough mesh elements to ensure smooth variations across the interface.

The way the transition of fluid properties across the interface is given by mixing laws. For the density and the viscosity, the common way to define the transition across the transition zone is the arithmetic mixing law [START_REF] Hachem | Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method[END_REF], described as follows:

ρ = ρ 1 H + ρ 2 (1 -H) (3.23) µ = µ 1 H + µ 2 (1 -H) (3.24)
Figure 3.2: The diffuse interface approach illustrated via the density profile across the interface

Surface tension modelling

Continuum Surface Force method

In the context of the diffuse interface method, the surface tension force, defined originally as a surface integral, is approached by a volume integral via a smoothed Dirac function δ(φ) centred at the interface. This method is called the CSF [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF]. Accordingly, the surface tension force term is expressed as follows:

f ST , U Γ = δ f ST , U Ω (3.25)
where the Dirac function δ is derived from the smooth Heaviside function and given as follows:

CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSION δ(φ) =      1 2ε 1 + cos πφ ε if φ ≤ ε 0 if φ > ε (3.26)
For the sake of simplicity, the expression of the surface tension force henceforth will include the Dirac function δ:

f ST = -δ γ κ n (3.27)
Therefore, the two-fluid formulation (3.20) becomes:

           ρ ∂u ∂t , U Ω + ρu • ∇ ∇ ∇u, U Ω + 2µ˙ (u) : ˙ (U ) Ω -p, ∇ ∇ ∇ • U Ω = f , U Ω + f ST , U Ω (∇ ∇ ∇ • u, P ) Ω = 0 (3.28)

Density-scaled CSF method

The main numerical issue when using the standard CSF method for surface tension is the spurious oscillations around the interface. They are caused by high accelerations in the region of small density due to the symmetrical distribution of the surface tension force around the interface. The use of a centred Dirac function δ gives the same weight to the region of small density as the region of higher density. One way to minimise these spurious oscillations is to use a density-scaled force [START_REF] Yokoi | A density-scaled continuum surface force model within a balanced force formulation[END_REF]. The principle of this method is to shift the peak of the Dirac function to give more weight to the higher density region as shown in Figure 3. 

δ scal ed = 2 × H(φ) × δ(φ).
(3.30)
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Hence,

δ sc al ed =      1 2ε 1 + cos πφ ε 1 + φ ε + 1 π sin πφ ε if φ ≤ ε 0 if φ > ε (3.31)
To illustrate the issue of the spurious currents, we apply the framework to a simple benchmark called the equilibrium drop problem. In this benchmark a circular water drop of density ρ 1 = 1000 kg.m -3 and viscosity µ 1 = 10 -3 Pa.s surrounded by air of density ρ 2 = 1 kg.m -3 and viscosity µ 2 = 10 -5 Pa.s is released from an equilibrium circular shape. Surface tension is γ = 0.07 N.m -1 .

Physically, the velocity field must be zero as the drop is at equilibrium. But numerically, the solution is polluted by the numerical spurious current in the vicinity of the interface. Figure 3.4

shows that the density-scaled method enables a significant reduction of the intensity of these nonphysical currents comparing to the standard CSF method with a centred Dirac function. 

∆t max = ρh 3 2πγ (3.32)
where h is the grid size and ρ is the average density at the interface. This stability condition could be very penalising for computational time. For instance, in this thesis, we are dealing with liquid metals with surface tension coefficient of the order of 1.8 N.m -1 and density around 7000 kg.m -1 .

With a minimum mesh size of 10 -5 m, the maximum time step allowed by the use of explicit surface tension is ∆t max = 5.56 × 10 -7 s. It means that for a simulation of a process that physically lasts 1 s we need about 10 6 time-increments. Using an implicit time scheme for surface tension enables to circumvent this time step restriction. In this work, we adopt a semi-implicit formula-
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tion of surface tension. Such formulation has been implemented in Cimlib at CEMEF by Khalloufi [START_REF] Khalloufi | High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension[END_REF] and Qiang [START_REF] Chen | Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials[END_REF]. In this work, we express the implicit term of surface tension differently so that the implementation in FE is straightforward. For this purpose, we introduce another approach to express the weak form of surface tension, following the work of [START_REF] Buscaglia | Variational formulations for surface tension, capillarity and wetting[END_REF]. First, we rewrite the surface tension force integral such as:

ˆΓ -γκn • U d Γ = ˆΓ (-γκn + ¨∇ ∇ ∇ Γ γ) • U d Γ (3.33) = ˆΓ ∇ ∇ ∇ • γ(I -n ⊗ n) • U d Γ (3.34) = -ˆΓ γ(I -n ⊗ n) : ∇ ∇ ∇U d Γ (3.35)
We denote by P the projection tensor In ⊗ n on the interface Γ. We consider the identity function χ on Γ. According to [START_REF] Hysing | A new implicit surface tension implementation for interfacial flows[END_REF], we have the following properties:

∇ ∇ ∇ Γ χ = I ---n ⊗ ⊗ ⊗ n = P (3.36) ∆ Γ χ = ∇ ∇ ∇ Γ • ∇ ∇ ∇ Γ χ = -κn (3.37) 
where ∇ ∇ ∇ Γ is the surface gradient on Γ and ∆ Γ is the surface Laplacian, also known as the Laplace-Beltrami operator.

The derivation of the semi-implicit formulation of surface tension arises from the following approximation:

χ n+1 ≈ χ n + u n+1 ∆t (3.38)
The exponent ( * ) n+1 denotes the value of the quantity ( * ) at the current time step and ( * ) n its value at the previous time step.

ˆΓ γP n+1 : ∇ ∇ ∇U d Γ = ˆΓ γ∇ ∇ ∇ Γ χ n+1 : ∇ ∇ ∇U d Γ (3.39) ≈ ˆΓ γ∇ ∇ ∇ Γ χ n + u n+1 ∆t : ∇ ∇ ∇U d Γ (3.40) = ˆΓ γP n : ∇ ∇ ∇U d Γ + ∆t ˆΓ γ∇ ∇ ∇ Γ u n+1 : ∇ ∇ ∇U d Γ (3.41) = ˆΓ γP n : ∇ ∇ ∇U d Γ + ∆t ˆΓ γ ∇ ∇ ∇u n+1 .P : ∇ ∇ ∇U d Γ (3.42)
Note that this latter semi-implicit formulation also accounts for the Marangoni effect, which is accounted for in Chapter 5. In the present chapter, we work in the framework of isothermal flows and constant surface tension coefficient.

Using the CSF method and the equation (3.35), the equation (3.42) becomes:

f n+1 ST , U Ω = f ST , U Ω -∆t γ δ ∇ ∇ ∇u n+1 .P : ∇ ∇ ∇U Ω (3.43)

Semi-implicit BDF time discretisation of Navier-Stokes equations

For low discretisation errors, we approximate the time derivative of the transient term in Navier-Stokes equations (3.54) using high order Backward Differentiation Formulas (BDF) schemes [46; 47] If we denote by t n = n∆t the discrete times and σ the order of the discretisation, the BDF approximation of the time derivative of the velocity field is given by:

∂u h ∂t ≈ α σ u n+1 h -u BDF,σ h ∆t (3.44)
where

u BDF,σ h =              u n h if σ = 1 2u n h - 1 2 u n-1 h if σ = 2 3u n h - 3 2 u n-1 h + 1 3 u n-2 h if σ = 3 (3.45)
and

α σ =              1 if σ = 1 3 2 if σ = 2 11 6 if σ = 3 (3.46)
In this work, the nonlinear convection terms appearing in Navier-Stokes equations are approximated by a high order semi-implicit scheme based on Newton-Gregory backward polynomials:

∇ ∇ ∇u h .u h ≈ ∇ ∇ ∇u n+1 h .u BNG,σ h (3.47)
where

u BNG,σ h =          u n h if σ = 1 2u n h -u n-1 h if σ = 2 3u n h -3u n-1 h + u n-2 h if σ = 3 (3.48)
This leads to solve one linear system in each time step in stead of solving a nonlinear system which requires an iterative algorithm within each time step to converge to the solution.

Stabilised Variational MultiScale method

Let discretise the computational domain Ω into a FE mesh grid T h made of N el t elements K.

We approximate the functional spaces V for the velocity and Q for the pressure by the finitedimensional spaces V h and Q h respectively. In FE method, the stability of resolution of the mixed velocity-pressure formulation is restricted by the Babuska-Brezzi condition [START_REF] Hughes | A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-brezzi condition: a stable petrovgalerkin formulation of the stokes problem accommodating equal-order interpolations[END_REF]. This condition prescribes that the dimension of the functional space for the velocity V h must be richer than that
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for the pressure Q h . The classical Galerkin method with equal order linear interpolation P1/P1 is thus not stable and ends up with spurious oscillations which disturb the solution. There are two main methods to cope with this stability condition: (a) the stable mixed FE (b) the stabilised Variational MultiScale method (VMS). The stable mixed FE [START_REF] Arnold | A stable finite element for the stokes equations[END_REF] is based on the use of P1+/P1 formulation, i.e. the velocity field is discretised with continuous piecewise linear functions enriched by bubble functions, and the pressure by piecewise linear functions. The second method (VMS) is designed to circumvent the stability condition while allowing the use of equal order linear interpolation P1/P1. The key idea of VMS method is to split the velocity and the pressure into two resolution scales, a coarse scale and a fine one. The fine scales are approximated and re-injected in the large-scale problem. The explicit presence of the fine-scale thus disappears, but its effect is accounted for in the resolvable equations. Here we present briefly the outlines of the method. For further details, the readers are referred to [50; 51].

Let us split the velocity and the pressure fields into resolvable coarse-scale (u h , p h ) and unresolved fine-scale (u , p ) such as u = u h + u and p = p h + p . We apply the same decomposition to the interpolation functions such as U = U h + U and P = P h + P . The functional spaces are

defined as V = V h ⊕ V , V 0 = V h,0 ⊕ V 0 and Q = Q h ⊕ Q .
The discretised, FE approximation for the time-dependent Navier-Stokes problem therefore reads:

Find(u, p) ∈ V × Q such that:                    ρ ∂(u h +u ) ∂t , (U h + U ) Ω + ρ(u h + u ) • ∇ ∇ ∇(u h + u ), (U h + U ) Ω + 2µ˙ (u h + u ) : ˙ (U h + U ) Ω -(p h + p ), ∇ ∇ ∇ • (U h + U ) Ω + ∆t γ δ ∇ ∇ ∇(u h + u ).P : ∇ ∇ ∇(U h + U ) Ω = f + f ST , (U h + U ) Ω , ∀U ∈ V 0 ∇ ∇ ∇ • (u h + u ), (P h + P ) Ω = 0, ∀P ∈ Q. (3.49)
In order to derive the stabilised formulation, we split Equation (3.49) into a large-scale and a fine-scale problem. The fine-scale problem is defined on element interiors. Under several assumptions regarding the time-dependency and the non-linearity of the momentum equation of the sub-scale system detailed in [START_REF] Hachem | Stabilized finite element method for incompressible flows with high reynolds number[END_REF], the fine-scale solutions u and p are written in terms of the time-dependent large-scale variables using consistently derived residual-based terms. Consequently, we can use static condensation, that consists in substituting directly u and p into the large-scale problem, which gives rise to additional terms in the FE formulation, tuned by a local stabilising parameter. These terms are responsible for the enhanced stability compared to the standard Galerkin formulation. The large-scale system finally reads:

                   ρ ∂u h ∂t , U h Ω + ρu h • ∇ ∇ ∇u h , U h Ω + 2µ˙ (u h ) : ˙ (U h ) Ω -p h , ∇ ∇ ∇ • U h Ω + ∆t γ δ (∇ ∇ ∇u h .P) : ∇ ∇ ∇U h Ω -K∈T h τ 1 R M , ρu h ∇ ∇ ∇U h K -K∈T h (τ 2 R C , ∇ ∇ ∇ • U h ) K = f + f ST , U h Ω , ∀U h ∈ V h,0 (∇ ∇ ∇ • u h , P h ) Ω -K∈T h (τ 1 R M , ∇ ∇ ∇P h ) K = 0, ∀P h ∈ Q h (3.50) CHAPTER 3.

NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSION

where R M and R C are momentum and continuity residual expressed as

R M = f + f ST -ρ∂ t u h -ρu h • ∇ ∇ ∇u h -∇ ∇ ∇p h R C = -∇ ∇ ∇ • u h (3.51)
and τ 1 and τ 2 are stabilization parameters for which we adopt the definition proposed in [START_REF] Codina | Stabilization of incompressibility and convection through orthogonal subscales in finite element methods[END_REF]:

τ 1 = 2ρ u h K h K 2 + 4µ h 2 K 2 -1 2 , ( 3.52 
)

τ 2 = µ ρ 2 + c 2 u h K c 1 h K 2 1 2 (3.53)
where h K is the characteristic length of the element and c 1 and c 2 are algorithmic constants. We take them as c 1 = 4 and c 2 = 2 for linear elements [START_REF] Codina | Stabilization of incompressibility and convection through orthogonal subscales in finite element methods[END_REF]. Compared to the standard Galerkin method, the proposed stabilised formulation involves additional integrals that are evaluated element-wise.

These additional terms represent the stabilising effect of the sub-grid scales and are introduced consistently in the Galerkin formulation. They allow avoiding instabilities caused by both dominant convection terms and incompatible approximation spaces.

The final resolvable set of equations of Navier-Stokes including the implicit term of surface tension and the semi-implicit BDF time discretisation reads:

                     ρ α σ u h ∆t , U SUPG h K + ρu BNG,σ h .∇ ∇ ∇u h , U SUPG h K + 2µ˙ (u h ) : ˙ (U h ) K + ∇ ∇ ∇p h , U SUPG h K + (τ 2 ∇ ∇ ∇.u h , ∇ ∇ ∇.U h ) K + ∆t γ δ (∇ ∇ ∇u h .P) : ∇ ∇ ∇U h K = f + f ST + ρ u BDF,σ h ∆t , U SUPG h K ρ α σ u h ∆t , τ 1 ∇ ∇ ∇P h K + ρu BNG,σ h .∇ ∇ ∇u h , τ 1 ∇ ∇ ∇P h K + ∇ ∇ ∇p h , τ 1 ∇ ∇ ∇P h K + (∇ ∇ ∇.u h , P h ) K = f + f ST + ρ u BDF,σ h ∆t , τ 1 ∇ ∇ ∇P h K (3.54)
where

U SUPG h = U h + τ 1 ρu h ∇ ∇ ∇U h (3.55)
The term coloured in red expresses the contribution of semi-implicit surface tension. As for the terms coloured in blue, they are showing the contribution of the semi-implicit BDF time discretisation of the transient and advection terms in Navier Stokes. More details about this methodology are available in [START_REF] Hachem | Stabilized finite element method for incompressible flows with high reynolds number[END_REF].

Partial conclusion

Let us summarise what we have done so far in this chapter. We have presented our numerical The test case of the oscillating drop is a perfect candidate for the evaluation of current numerical modelling on the previously-mentioned criteria. This test case consists in studying the oscillations of a liquid drop surrounded by gas in weightlessness. The drop is released from a deformed shape. The surface tension at the liquid-gas interface causes the drop to oscillate around its equilibrium shape. The frequency of the oscillations is correlated with the value of the surface tension.

The amplitude of the oscillations is damped due to the viscous friction forces of the bulk liquid, thus related to the viscosity. In this test case, the system is considered to be isothermal. The volume of the drop must, therefore, be constant to preserve the mass. Accordingly, the time-evolution of the volume described by the Level-Set function will allow us to evaluate the mass conservation.

Knowing the analytical expression of the frequency of the oscillations and their damping rate as a function of the properties of the fluid, we will be able to compare the numerical results with the theory. Before being a numerical test case, the oscillating drop was first an experimental technique used to measure the surface tension and viscosity of liquids. The measurements are based on the use of some existing theories. Rayleigh [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF] and Lamb [START_REF] Lamb | On the oscillations of a viscous spheroid[END_REF] are pioneers in the development of such analytical solutions. Their theories are the most widely used in experiments. However, all these theories are developed in 3D. For the evaluation of our numerical modelling, we have to perform several simulations with different parameters and numerical methods. The execution of several simulations in 3D is obviously time-consuming for such a parametric study. Hence, we suggest in this section to develop the theory of damped oscillations of a viscous liquid drop in 2D.

3.5

The oscillating drop method : analytical solution

State of the art

One of the main physical phenomena behind the oscillation of fluid drops is surface tension. It is well-known that when a liquid drop is sustained in a gas under microgravity, the surface tension makes the drop minimise the area of its interface with the surrounding gas. The equilibrium shape that corresponds to the minimal surface area is a sphere. When the drop is distorted from its equi-CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSION librium shape, it displays oscillations with a frequency correlated to surface tension. If the liquid is viscous, the oscillations are damped with a decay rate linked to viscosity. The knowledge of how the observed frequency and the damping rate are related to surface tension and viscosity, yields access to the values of these properties. This is the principle of the oscillating drop technique used for the measurement of surface tension and viscosity [START_REF] Staat | Ultrafast imaging method to measure surface tension and viscosity of inkjetprinted droplets in flight[END_REF].

Shape oscillation of drops driven by surface tension has been addressed theoretically by several authors over more than a century. The earliest theoretical investigation started with Rayleigh who derived, under the irrotational flow assumption, the frequency spectrum of small-amplitude axisymmetrical oscillations of non-viscous drops in a vacuum with zero gravity [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF]. This analysis was extended by Lamb to inviscid drops immersed in an inviscid medium [START_REF] Lamb | Hydrodynamics[END_REF]. Lamb also showed that for weakly viscous liquids, the frequency spectrum is identical to that found by Rayleigh and the assumption of the irrotational flow can be used to determine the damping rate [START_REF] Lamb | On the oscillations of a viscous spheroid[END_REF]. Valentine et al. used the same approximation to derive the frequency and the damping rate of oscillating drops in liquid-liquid systems [START_REF] Valentine | The motion of drops in viscous media[END_REF]. Miller and Scriven established that the irrotational approximation does not account for the dissipation in the boundary layer near the interface which is predominant for liquid-liquid systems even though the viscosities are very low unless the droplet size is very small [START_REF] Miller | The oscillations of a luid droplet immersed in another fluid[END_REF]. They proposed a general solution for the linear oscillations of liquid droplets hosted in another fluid medium for arbitrary viscosities including the interfacial viscoelastic properties. However, their solution is limited to free non-extensible interfaces. Prosperetti derived a more general solution [START_REF] Prosperetti | Free oscillations of drops and bubbles : the initial-value problem[END_REF] and showed that for the limiting case of low viscosities, the drop behaves as a damped harmonic oscillator [START_REF] Prosperetti | Viscous effects on perturbed spherical flows[END_REF]. Further studies of this problem analysed the nonlinear oscillations starting from moderate-amplitudes by Tsamopoulos and Brown [START_REF] Tsamopoulos | Nonlinear oscillations of inviscid drops and bubbles[END_REF] to largeamplitudes with Lundgreen and Mansour [START_REF] Lundgreen | Oscillations of drops in zero gravity with weak viscous effects[END_REF], Trinh and Wang [START_REF] Trinh | Large-amplitude free and driven drop-shape oscillations: experimental observations[END_REF], and Foote [START_REF] Foote | A numerical method for studying liquid drop behavior: simple oscillation[END_REF]. Correction of the Rayleigh theory that includes the effect of both temperature variations and large-amplitudes was also proposed by Xiao et al. [START_REF] Xiao | Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement[END_REF].

Many other investigations have been dedicated to the oscillations of a drop sustained against gravity by a levitation technique. The use of a strong levitator field can make the equilibrium shape of the levitated drop aspherical. Thus, the presence of the levitator field affects the dynamics of the drop interface and the theories cited above must be revisited. For this purpose, Cummings and Blackburn proposed an approximated solution for a non-viscous drop in an electromagnetic levitator [START_REF] Cummings | Oscillations of magnetically levitated aspherical droplets[END_REF]. Later on, their work was extended by Bratz and Egry to account for the viscous dissipation effect for the same levitation technique [START_REF] Bratz | Surface oscillations of electromagnetically levitated viscous metal droplets[END_REF]. However, their theories cannot take into consideration the electromagnetic stirring, which leads to turbulent flow in the bulk liquid. In the presence of turbulence, the observed damping rate includes the effect of the turbulent viscosity, which is not modelled in the available theories.

For the sake of more accuracy, measurements under microgravity are carried out, preferentially within the limit of maximum 1% small-amplitude axisymmetrical oscillations with mode n = 2 [START_REF] Egry | Surface tension of liquid metals and alloys -recent developments[END_REF]. The objective is to approach at best the approximations of the Rayleigh and Lamb theories. Despite these efforts, it does not remain straightforward to tailor experimental conditions.

The thorough interpretations of raw data are indeed challenging due to various deleterious effects:
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oscillation amplitude, sample rotation and procession, temperature variation, mixture of oscillation modes [START_REF] Tsamopoulos | Nonlinear oscillations of inviscid drops and bubbles[END_REF]- [START_REF] Xiao | Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement[END_REF]. Only very recently and based on careful analyses of selected experimental data conducted in the ISS, Wunderlich and Mohr concluded that non-linear effects are not present even when reaching up to 10% deformation in liquid metallic drops [START_REF] Wunderlich | Non-linear effects in the oscillating drop method for viscosity measurements[END_REF].

Most of these theoretical analyses confine the attention to three-dimensional (3D) cases regarding their relevance for experiments and real applications, whereas the two-dimensional (2D)

cases have been marginally addressed. The 2D oscillations of a free-surface around a circular shape correspond to the oscillations occurring in a transverse section of a liquid jet injected from a non-circular orifice and showing no longitudinal variations. This configuration has been studied by Rayleigh for an inviscid liquid [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF]. For the best of our knowledge, no analytical solution for damped oscillations of this 2D configuration has been explicitly derived. This configuration will be referred to as the "2D drop" case.

The present work is an extension of Rayleigh's theory by adding the viscous effect of the inner flow. Lamb addressed the damped oscillations for small viscosities assuming a priori that the oscillation frequency found by Rayleigh is not altered by viscosity. Unlike Lamb, the solution derived hereafter applies for whatever value of the viscosity, i.e. for finite viscous and potential forces. Furthermore, it will be shown that three possible regimes of an initially-distorted drop can describe its behaviour: aperiodic regime, critically-damped regime and oscillatory regime. In the latter regime, the oscillation frequency results from the interaction between surface tension and viscosity. Although the effect of the non-negligible viscosity has been studied by Prosperetti in more comprehensive and sophisticated cases [START_REF] Prosperetti | Free oscillations of drops and bubbles : the initial-value problem[END_REF]- [START_REF] Prosperetti | Viscous effects on perturbed spherical flows[END_REF], the present work re-derives the 3D solution in a rather simple way through the energy balance. The novelty also lies in the 2D solution, which can provide a quantitative benchmark for testing the accuracy and the robustness of numerical modelling of multiphase flows.

The free-oscillating viscous drop problem

Hereafter we first present the set of equations to describe the oscillation of a free-surface around a (2D) circular and (3D) spherical shape while considering possible interactions between finite viscous and potential forces. The analytical solution will be derived for the time-evolution of the radius of the free-surface as well as the spatial-temporal variation of the velocity field in the bulk liquid.

Governing equations

Consider the motion of a Newtonian liquid of density ρ l and viscosity µ l . Let Ω l be the timedependent domain occupied by the liquid and Γ its interface with a surrounding low-density gas phase or, more simply, with a vacuum. The liquid is assumed incompressible with a constant density of ρ l , isothermal, and no phase transformation is considered. We also neglect all external forces (gravity, magnetic field, forced gas flow, etc.) applied to the liquid. In this framework, the
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flow is governed by the following Navier-Stokes equations:

       ρ l ∂u l ∂t + ∇u l • u l -∇ ∇ ∇ • σ l = 0 ∇ ∇ ∇ • u l = 0 (3.56)
u l is the liquid velocity vector and σ l is the liquid stress tensor given by the incompressible Newtonian constitutive law:

σ l = 2µ l ˙ l -p l I (3.57)
where ˙ l = 1 2 ∇ ∇ ∇u l + (∇ ∇ ∇u l ) T is the strain-rate tensor, p l is the pressure field in the liquid and I is the identity tensor.

At the time t = 0s, we assume that we know the initial shape of the liquid domain and its velocity field such as:

Ω l (0) = Ω l 0 , u l (x, 0) = u l 0 (x), ∇ ∇ ∇.u l 0 = 0 (3.58)
Since no mass exchange occurs through Γ, the local mass flux leaving the liquid domain ρ l (u l .nv Γ ) is zero, where n is the unit external normal vector on Γ and v Γ is its normal velocity. This leads to writing the kinematic interface condition as:

u l • n = v Γ (3.59) 
The second interface condition, named the dynamic condition, arises from the force balance at the interface Γ:

σ l • n = -γκn -p ext n (3.60)
where γ is surface tension coefficient, κ is the curvature of the interface and p ext is the pressure in the surrounding gas phase. Further assuming that the liquid is placed in vacuum, Γ is a free surface and p ext = 0.

Energy balance

To obtain the energy balance of the drop, we integrate the scalar product of the second equation of (3.56) with the velocity vector over Ω l as follows:

Ω l ρ l ∂u l ∂t + ∇u l • u l -∇ ∇ ∇ • σ l • u l d V = 0 (3.61)
After integrating by part the stress tensor term, we can write:

Ω l 1 2 ρ l ∂u l 2 ∂t + u l • ∇ ∇ ∇u l 2 d V - Γ σ l • n • u l d S + Ω l σ l : ∇ ∇ ∇u l d V = 0 (3.62) CHAPTER 3.
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The development of this equation (details are given in the appendix) leads to the following equation:

d d t   Ω l 1 2 ρ l u l 2 d V   E l ki n : kinetic energy + d d t   Γ γ d S   E l pot : potential energy + Ω l 2µ l ˙ l : ˙ l d V Ẇl vi s : work of viscous force = 0 (3.63)
This equation expresses the energy balance:

d d t E l ki n + E l pot = -Ẇl vi s
(3.64)

Analytical solutions in the framework of the linear theory

Drop shape description

The physics of oscillation refers to the time and space evolution of the surface at the liquid-gas interface Γ. As shown in figure 3.5a, we look for the solution of R(θ, φ, t ) for the interface position of a perturbed spherical droplet in 3D assuming axisymmetric variations with respect to z-axis (no dependence on φ). In 2D, the solution R(θ, t ) is the interface position of a perturbed cross section through an infinite cylinder as shown in figure 3.5b. In the latter case, denoting z the longitudinal axis of the cylinder, the analysis is focused on a cross section of infinitely small portion δz defining the liquid domain of surface Ω l and contour Γ. We consider that the liquid is Newtonian and the flow is incompressible. The radius of the free surface at each section of the cylinder can be expressed as the sum of a constant part represented by the equilibrium radius R 0 and a variable part f (θ, t ) which describes the spatial-temporal variations of the free-surface from its equilibrium shape:

R(θ, t ) = R 0 + f (θ, t ) (3.65)
As there is no dependency on φ angle in 3D axisymmetric configuration, formulation (3.65) is valid also for the 3D case.

In this paper, we work in the context of small-amplitude variations. Therefore, we can write CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSION f (θ, t ) as a linear combination of normal modes denoted by the integer n as follows:

f (θ, t ) = ∞ n=0 α n (t )cos(nθ) for 2D (3.66a) f (θ, t ) = ∞ n=0 α n (t )P n (cos(θ)) for 3D (3.66b) where • α n (t ) R 0
1.

• P n are Legendre polynomials.

• Mode n = 0 is related to the volume oscillation. We denote by b 0 (t ) the sum R 0 + α 0 (t ). Thus b 0 will be determined hereafter by the condition that the volume must remain constant.

• Mode n = 1 describes the translational oscillations of the mass centre. We consider that the mass centre is fix (zero translational velocity). Consequently α 1 (t ) = 0.

• Modes n ≥ 2 describe the shape oscillations around the equilibrium. In the linear theory we can consider that these modes are independent each other and can be treated separately.

Following these considerations, the radius reads:

R(θ, t ) = b 0 (t ) + α n (t )cos(nθ) for 2D (3.67a) R(θ, t ) = b 0 (t ) + α n (t )P n (cos(θ)) for 3D (3.67b)
Note that in the latter equation and in the following n ≥ 2.

Assuming that the flow is incompressible, the volume of the oscillating drop is the same as the volume at the equilibrium. Thus:

V = δz ˆ2π θ=0 ˆR(θ,t) r =0 r d r d θ = δz(πb 2 0 + 1 2 πα 2 n ) = δzπR 2 0 for 2D (3.68a) V = 2π ˆπ θ=0 ˆR(θ,t) r =0 r 2 d r si n(θ)d θ = 4π 3 b 3 0 1 + 3 2n + 1 α n b 0 2 = 4π 3 R 3 0 for 3D (3.68b) Hence, b 0 = R 0 1 - 1 2 ( α n R 0 ) 2 ≈ R 0 1 - 1 4 α n R 0 2 for 2D (3.69a) b 0 = R 0 1 + 3 2n + 1 α n b 0 2 -1 3 ≈ R 0 1 - 1 2n + 1 α n R 0 2 for 3D (3.69b)
Then the radius can be approximated as

R(θ, t ) = R 0 1 + ε n cos(nθ) - 1 4 ε 2 n for 2D (3.70a) R(θ, t ) = R 0 1 + ε n P n (cos(θ)) - 1 2n + 1 ε 2 n for 3D (3.70b) 1.
It is worth noting that for small-amplitude oscillations, the term ε 2 n is negligible. However, it will be shown in section 3.5.3.3 that potential energy is of the same order as ε 2 n . Consequently, its presence in equation (3.70) is crucial for the approximation of the potential energy

The objective now is to find the time-variation of ε n . The outlines of our demonstration are the following: we assume that the flow is irrotational, and we find the velocity potential, then

we compute the kinetic and potential energies of the drop. Next, we express the viscous energy dissipation. Finally, we apply the energy balance, which leads to a linear differential equation of the quantity ε n .

Inner flow modelling

Following the discussion in [START_REF] Joseph | Potential flow of viscous fluids: Historical notes[END_REF], the fluid motion can be approximated by an irrotational flow. The velocity field derives from a potential u l = ∇ ∇ ∇ϕ.

The velocity potential of the n t h mode can be formulated as:

ϕ(r, θ, t ) = β n (t )r n cos(nθ) for 2D (3.71a) ϕ(r, θ, t ) = β n (t )r n P n (cos(θ)) for 3D (3.71b)
The coefficient β n is obtained from the kinematic boundary condition at the free-surface

u l r (r = R) = ∂ϕ ∂r (r = R) = ∂R ∂t (3.72)
This condition leads to the following approximation which is the same for both 2D and 3D

analyses:

nβ n R n-2 0
≈ εn Hence, we can write the velocity potential as follows:

ϕ(r, θ, t ) = 1 n R 2 0 r R 0 n cos(nθ)ε n (t ) for 2D (3.73a) ϕ(r, θ, t ) = 1 n R 2 0 r R 0 n P n (cos(θ)) εn (t ) for 3D (3.73b)

The energy balance

The kinetic energy of the drop is given by

E l ki n = V 1 2 ρ l ∇ ∇ ∇ϕ 2 d V = S 1 2 ρ l ϕ∇ ∇ ∇ϕ.nd S - V 1 2 ρ l ϕ ∇ ∇ ∇ 2 ϕ =0 d V (3.74) E l ki n = 1 2 ρ l δz ˆ2π 0 ϕ ∂ϕ ∂r Rd θ ≈ 1 2n πρ l R 4 0 ε2 n δz for 2D (3.75a) E l ki n = πρ l ˆπ 0 ϕ ∂ϕ ∂r R 2 si n(θ)d θ ≈ 2πρ l R 5 0 1 n(2n + 1) ε2 n for 3D (3.75b) CHAPTER 3.
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Following the work of Rayleigh [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF], the potential energy is expressed as:

E l pot = γ (S -S 0 ) (3.76)
Where S denotes the area of the free-surface and S 0 the area of the equilibrium shape.

For the 2D case, the area S = δzP where P is the perimeter of the cross section of the cylinder and S 0 = 2πR 2 0 δz. The perimeter P is calculated through the following integral:

P = ˆ2π 0 R 2 + ∂R ∂θ 2 d θ for 2D (3.77)
Using the expression of the radius R given by the equation (3.70a) and Taylor expansions we obtain the following approximation

P ≈ 2πR 0 + 1 2 π(n 2 -1)R 0 ε 2 n (3.78)
For the 3D case, the area S of the drop is expressed as:

S = 2π ˆπ 0 R 2 + ∂R ∂θ 2 Rsi n(θ)d θ for 3D (3.79) 
After replacing R by the expression (3.70b), we use Taylor series and some known properties of Legendre polynomials. The area S of the 3D drop is approximated as follows

S ≈ S 0 + 2πR 2 0 n 2 + n -2 2n + 1 ε 2 n (3.80)
where S 0 = 4πR 2 0

Hence,

E l pot ≈ 1 2 π(n 2 -1)γR 0 δzε 2 n for 2D (3.81a) E l pot ≈ 2πγR 2 0 (n + 2)(n -1) 2n + 1 ε 2 n for 3D (3.81b)
Now we can write the rate of change of the total energy:

d E l t ot d t = π 1 n ρ l R 4 0 δz εn εn + n(n 2 -1) γ ρ l R 3 0 ε n for 2D (3.82a) d E l t ot d t = 4πρ l R 5 0 1 n(2n + 1) εn εn + n(n -1)(n + 2) γ ρ l R 3 0 ε n for 3D (3.82b)
If the fluid is inviscid (µ l = 0), the conservation of the total energy 

ω n,0 = n(n -1)(n + 1) γ ρ l R 3 0 for 2D (3.83a) ω n,0 = n(n -1)(n + 2) γ ρ l R 3 0 for 3D (3.83b)
as it was found by Rayleigh [START_REF] Rayleigh | On the capillary phenomena of jets[END_REF].

As an extension of the work of Rayleigh, we take into consideration, the energy dissipation due to the viscous force of the the bulk liquid. For that, we calculate the rate of the viscous dissipation energy:

Ẇl vi s = V 2µ l ˙ l : ˙ l d V (3.84)
Following the work of Lamb in [START_REF] Lamb | Hydrodynamics[END_REF] we can write the volume integral as a surface integral:

Ẇl vi s = S µ l ∂u l 2 ∂n d S (3.85)
The integral over the free surface is calculated as follows:

Ẇl vi s = µ l δz ˆ2π 0 ∂ ∇ ∇ ∇ϕ 2 ∂r Rd θ for 2D (3.86a) Ẇl vi s = µ l 2π ˆπ 0 ∂ ∇ ∇ ∇ϕ 2 ∂r R 2 si n(θ)d θ for 3D (3.86b)
Using Taylor expansions, the dissipation rate can be approximated as

Ẇl vi s ≈ 4πµ l R 2 0 δz (n -1) ε2 n for 2D (3.87a) Ẇl vi s ≈ 8πµ l R 3 0 n -1 n ε2 n for 3D (3.87b)
We can now write the energy balance given in (3.64). This leads to the following linear second order Ordinary Differential Equation (ODE):

εn + 2λ n εn + ω 2 n,0 ε n = 0 (3.88)
where

λ n = 2n(n -1) µ l ρ l R 2 0 for 2D (3.89a) λ n = (2n + 1)(n -1) µ l ρ l R 2 0 for 3D (3.89b) CHAPTER 3.
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The form of the solution of the ODE (3.88) depends on the sign of its reduced discriminant

∆ n = λ 2 n -ω 2 n,0 (3.90) 
When ∆ n > 0 the viscosity is dominant over the surface tension. The solution corresponds to decay to the equilibrium shape without oscillations. This behaviour is known as the over-damped regime. When ∆ n < 0, the surface tension is dominant over viscosity. The solution corresponds to oscillations about the equilibrium shape with a decreasing amplitude and a frequency lower than the frequency of an inviscid fluid. In this case, we talk about the under-damped regime. In the particular case, when ∆ n = 0, the solution is a rapid relaxation to the equilibrium form without any oscillation. This is known as the critically damped regime.

Without detailing the well-known procedure for solving a linear second-order ODE, we synthesise, in which follows, the 3 different solutions of the ODE (3.88)

• Case ∆ n > 0: overdamped regime

ε n (t ) = e -λ n t ε n (0) cosh( ∆ n t ) + εn (0) + λ n ε n (0) ∆ n sinh( ∆ n t ) (3.91) 
• Case ∆ n = 0: Critically damped regime

ε n (t ) = e -λ n t [(ε n (0) + λ n ε n (0)) t + ε n (0)] (3.92) 
• Case ∆ n < 0: underdamped regime

ε n (t ) = e -λ n t ε n,max cos (ω n t + ζ n ) (3.93)
where

                         ω n = ω 2 n,0 -λ 2 n ε 2 n,max = ε 2 n (0) + εn (0) + λ n ε n (0) -∆ n 2 tan ζ n = - εn (0) + λ n ε n (0) ε n (0) -∆ n cos(ζ n )ε n (0) ≥ 0 (3.94)

Numerical simulations

2D preliminary numerical tests

In the first section of this chapter, we presented two methods for transporting the Level-Set function as well as the VMS method to solve a flow including surface tension with different time discretisation schemes. The objective of this sub-section is to compare all these methods and schemes
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in order to find the numerical parameters giving the best results with respect to the derived theory. This parametric study is performed through 2D simulations. To do so, we consider a droplet of liquid iron suspended in the air in the absence of gravity. The surface of the droplet is πR 2 0 where R 0 = 3 × 10 -3 m is the radius of the equilibrium shape of the droplet. The material properties are taken at a temperature of 1800 K. The density of liquid iron is ρ l = 7040 kg .m -3 while the density of air is ρ g = 0.19 kg .m -3 . The dynamic viscosities are µ l = 5.85 10 -3 Pa.s and µ g = 5.82 10 -5 Pa.s for liquid iron and air respectively. The density and viscosity ratios are large enough to neglect the effects of air on droplet dynamics. This condition is essential to be in agreement with the previous theoretical analysis, which assumes that the droplet is free of force. The whole system is enclosed in a square cavity of size 9 × R 0 (see figure 3.6). The initial droplet shape is slightly deformed according to the 4 t h mode with a relative deformation of ε 4,0 = 2%. The initial radius of the droplet is written:

R(θ, t = 0) = R 0 1 + ε 4,0 cos(4θ) - 1 4 ε 2 4,0 (3.95) 
Following the previous theoretical analysis, λ 2 4 = 4.91s -2 and ω 2 4,0 = 7.08 × 10 5 r ad 2 .s -2 . The reduced discriminant is ∆ 4 = -7.08 × 10 5 ≈ -ω 2 4,0 . This means that the drop displays an underdamped regime. The droplet is released from a zero-velocity initial state. The analytical expression of the radius of oscillation reads: 

R(θ, t ) = R 0 1 + ε 4 (t )cos(4θ) - 1 4 ε 2 4 (t ) (3.96) 

Influence of the mass correction method

The goal here is first to evaluate the mass conservation of the standard numerical framework without mass correction, then to see either or not the mass correction method improves the mass conservation without altering the dynamics of the droplet. The classical numerical framework that we test is the standard CSF method introduced explicitly in Navier-Stokes equations with the Level-Set convection solver and the geometrical re-initialisation. Without mass correction, the spectrum shows a frequency slightly higher than the theoretical one, which is in agreement with the fact that the frequency is inversely related to the equilibrium radius (3.83a). As the mass correction method preserves the equilibrium radius, the frequency spectrum is therefore enhanced and seems to be in perfect agreement with the theory. Therefore, the mass correction improves the mass conservation but does not alter the dynamics of the oscillating drop.

However, one can observe from figure 3.7a that the amplitude of oscillations of the simulated signal is more damped than the theoretical one. This over-estimation of the damping rate is probably related to numerical diffusion. In the continuation of the current parametric study, we compare the numerical methods and schemes in terms of oscillation frequency together with the damping rate. 

Influence of the Level-Set transport methods

In this sub-section, we compare two methodologies of transporting the Level-Set function: the convection and the reinitialisation (Conv+DRT ) in two separate steps used in the previous test and the auto-reinitialised convected Level-Set method (Leveler). We first compare the mass conservation of the two methods. For that, simulations without mass correction are performed for both methods. Figure 3.9 shows the time-evolution of the surface of the 2D drop. We observe that the mass loss is much more reduced with Leveler method (only 0.86% per 100ms) than Conv+DRT method. When the mass correction method is applied for both methods, one can notice from figure 3.10 that the damping rate simulated with the Leveler method is closer to the theory than the Conv+DRT method. 

Influence of the surface tension formulations

In the continuation of this parametric study, we keep using only the Leveler method as it is more conservative than Conv+DRT method. In this sub-section, we compare the semi-implicit formulation of surface tension to the explicit formulation. As the semi-implicit formulation allows timesteps higher than the stability limit ∆t max , two simulations for the semi-implicit surface tension are performed, one with ∆t max and the second with 10 × ∆t max . The results are shown in figure For the same time step ∆t max the semi-implicit surface tension is more dissipative than the explicit formulation. For a higher time step, the numerical diffusion is even more important. In fact , the additional term given by the semi-implicit surface tension ∆t γ δ ∇ ∇ ∇u n+1 .P : ∇ ∇ ∇w Ω has the form of the work of a viscous dissipative force which increases when the time-step increases.

This additional term is responsible for the stabilisation of the calculation when the time-step condition is broken, but on the other hand, it involves additional numerical dissipation. As a conclusion of this test, the semi-implicit surface tension to go beyond the time step limit of stability which can reduce the computational time significantly. However, it adds an artificial diffusion and the higher the time step, the higher the added diffusion. In what follows, we keep using the explicit formulation, although the maximal time step allowed is very small.

Influence of the time-discretisation order

In all the latter tests, the transient terms either in the Level-Set convection equation or in Navier-Stokes equations are discretised using a 1 st order scheme. Now we test a second-order time scheme both for the Level-Set transport and Navier-Stokes. In figure 3.12, we can see that the second-order improves the prediction of the damping rate, especially when we decrease the time-step. This finding is consistent with the fact that a high discretisation order is known to reduce the discretisation errors and thus the numerical diffusion. 

Influence of the mesh resolution

So far, we use the same mesh grid for all the previous tests. In this sub-section, we compare different mesh resolutions in order to show the influence of the mesh size on the oscillation frequency and the damping rate of the oscillating drop. Meshes differ only in the characteristic mesh size within the region around the interface. We compare three meshes T h,0 , T h,c and T h, f whose the characteristic sizes are h mi n,0 = 3.10 -5 m , h mi n,c = 4.10 -5 m and h mi n, f = 2.10 -5 m respectively.

The mesh sizes in the bulk liquid and in the air are the same for the three meshes. Changing the mesh size also involves a change in the maximal time-step given by equation (3.32) and in the thickness of the interface taken as = 2.75h mi n . The simulations are performed using a secondorder time scheme for the Leveler method together with Navier-Stokes, including explicit surface tension. The time step for each simulation is half of the maximal time-step given by the condition (3.32). The results of the simulations are shown in figure 3.13. The comparison reveals that for T h,0 and T h, f , the temporal signals are perfectly synchronised with the theoretical signal. T h, f in a good agreement with the theory in terms of the damping behaviour. The amplitudes of the signal obtained with T h,0 slightly deviate from the theory. As for the coarsest mesh T h,c , the amplitudes are underestimated, and the two last oscillations are slightly shifted in time from the theory. 

Conclusion

To summarise this parametric study, we found that the mass correction method improves the mass conservation, thus the dynamics of the oscillating drop, in particular, the oscillation frequency. We showed that the Leveler method for the transport of the interface is more conservative, in terms of the mass and the mechanical energy than the convection solver with the direct geometrical reinitialisation. Next, we showed that the semi-implicit formulation of surface tension enables the use of time-steps higher than the maximal time-step related to the explicit surface tension.

However, the additional implicit term, responsible for stabilising the calculation for higher timesteps, involves more numerical diffusion, thus a poor prediction of the damping rate. The issue of numerical diffusion is enhanced by the use of high order discretisation scheme for the transient terms in the transport of the Level-Set and in the VMS Navier-Stokes equations. Finally, we showed the role of the mesh size around the interface in the prediction of the damping rate and found that the finer is the mesh, the more accurate is the prediction.

We learn from this parametric study that all the numerical methods presented in this chapter allow a correct prediction of the oscillation frequency. However, a good prediction of the damping behaviour requires the use of methods of low numerical diffusion with fine meshes and small time-steps. This makes simulations of high accuracy very time-consuming.

2D simulation of single oscillation modes

In this section, the results of simulations performed with the most accurate numerical framework found in the previous parametric study, are compared with the results of the analytical solution developed in section 3.5.3 for the 2D case. We consider a liquid iron droplet suspended in the air in the absence of gravity. The same physical properties as in the parametric study, are considered here. Calculations are performed with the finer mesh T h, f with the characteristic size h mi n, f = 2.10 -5 m.

Different modes of deformation (n from 2 to 7) are investigated. The initial shape of each mode
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is described by: R(θ,

t = 0) = R 0 1 + ε n,0 cos(nθ) - 1 4 ε 2 n,0 (3.98)
where ε n,0 = 0.02.

Following the previous theoretical analysis of the droplet dynamics, the behaviour of the freesurface depends on the balance of forces between surface tension and viscosity. This balance of forces can be determined from the sign of the reduced discriminant ∆ n = λ 2 n -ω 2 n,0 which has the same sign as 4n(n-1) n+1 -

ρ l R 0 γ µ l 2 . Here ρ l R 0 γ µ l 2 is
of the order of 10 6 . For the range of modes considered here it is obvious that 4n(n-1) n+1 is much lower than The droplet is released from a static state which means that u(r, θ, t = 0) = 0. This leads to εn (0) = 0 and ε n (0) = ε n,0 Following the values of the table 3.1, the observed oscillation frequency ∆ n , in this case, are approximately equal to the frequency of a non-viscous liquid ω n,0 . The solution given by the equation (3.93) can be approximated as:

ρ l R 0 γ µ l 2 . So ∆ n < 0. It
ε n (t ) ≈ ε n,0 e -λ n t cos ω n,0 t (3.99) We can clearly highlight the robustness of the proposed numerical framework to handle different shapes and their oscillations.

To assess the accuracy of these simulations, we extract from the simulation of each mode the time-evolution of the droplet radius in θ = 0 direction. Then, we compare the extracted temporal signals to the derived analytical solution given by equations (3.99), (3.83a), (3.89a) and (3.70a).

The numerical signals superimposed to the theoretical ones are shown in figure 3.15. A very good agreement is obtained for different modes, which confirms the accuracy and the robustness of the proposed numerical framework again.

The numerical oscillation frequency of each mode n is extracted from the frequency spectrum of the radius by means of the fft whereas the damping coefficient is obtained by fitting the envelope of the temporal signal to e -λ n t using the least-squares algorithm. 

2D simulation of an arbitrary initial form

In the previous section, the droplet is initially released from a deformed shape describing a specific single mode. Single-mode excitation could be constraining to be set up experimentally. What if the initial shape of the droplet is arbitrary? In this section, we try to investigate this question by proposing an initial shape described by equation (3.100). It describes the combination of several modes. Each mode is rotated from the position given by equation (3.98) with angle ψ n . Here, we fix the highest order mode to 7, and we generate randomly the values of ε n,0 between 1% and 2%

(small amplitudes condition) and ψ n between 0 and 2π. These values are reported in table 3 In this simulation, material properties are the same as in the previous section. Figure 3.17 displays the velocity field as well as the shape of the interface at different times.

.2. R(θ, t = 0) = R 0 1 + N n=2 ε n,0 cos(nθ + ψ n ) - 1 4 ε 2 n,0 (3.
We can show easily from the theoretical analysis detailed in section 3.5.3 that the analytical solution of this problem at each time t is expressed as: R(θ, t ) = R 0 1

+ 7 n=2 ε n cos(nθ + ψ n ) - 1 4 ε 2 n (3.101)
where

ε n (t ) ≈ ε n,0 e -λ n t cos ω n,0 t + ψ n (3.102)
The blue line in figure 3.18a corresponds to the simulated temporal variation of the radius of the interface in the direction θ = 0. The comparison with the theoretical solution (the red dashed line) shows a good agreement again. We compute the frequency spectrum of the numerical temporal signal via the fft . It is clear from figure 3.18b that the spectrum (blue line) displays only the peaks of the modes from 2 to 7 whose the frequencies are represented by the red dashed vertical lines.

The results of this investigation show that if an arbitrary initial shape, slightly deformed from the equilibrium shape, can be written as a combination of normal modes, the linear theory derived in this work can provide the analytical expression of the time-evolution of the radius of the droplet.
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3D simulation of the oscillation of a liquid iron drop

In this section, we perform 3D simulation of the oscillation of a liquid iron drop. The liquid iron droplet is suspended in the air in the absence of gravity and enclosed in a cavity of side size 6 × R 0 .

The values of densities and viscosities are the same as in the 2D case as well as surface tension value. The droplet is initially released from Rayleigh's mode (n = 2) described by the following equation:

R(θ, t = 0) = R 0 1 + εP 2 (cos(θ)) - 1 5 ε 2 (3.103)
where P 2 is the second degree Legendre polynomial and ε = 0.08. The 3D mesh used here is composed of 194981 nodes and 1159517 elements.

Following the theoretical analysis in section 3.5.3, the natural frequency and the damping rate of the 3D iron droplet are :

           ω 2,0 = 8γ ρ l R 3 0 λ 2 = 5µ l ρ l R 2 0 (3.104)
ω 2,0 = 280.54 r ad .s -1 and λ 2 = 0.46 s -1 . So ∆ 2 = -78696 r ad 2 .s -2 ≈ -ω 2 2,0 Therefore, the 3D iron droplet shows an underdamped regime. The analytical solution for this regime is: R(θ, t ) = R 0 1 + ε 2 (t )P 2 (cos(θ)) - One can notice that the numerical signal is synchronised with the theoretical variations. It means that free surface dynamics driven by surface tension is well predicted. However, the amplitudes are more damped in the numerical simulation. The origin of this over-estimation of damping behaviour is attributed to numerical diffusion around the interface due to its thickness. In fact, in this present 3D simulation, the mesh resolution is coarser than the resolution of the 2D mesh, which gave a very good estimation of the damping rate of the oscillations. Consequently, the thickness of the interface, which depends on the mesh size is greater in the present 3D simulation than it must be.

Overall, these results give confidence that the use of a convected Level-Set method combined with a VMS method to solve the unsteady Navier-Stokes equations works well and could play an essential role for modelling the behaviour of drops driven by surface tension. However, this numerical framework requires a high mesh resolution around the interface to reduce the numerical diffusion, which adds artificial damping to the simulated phenomenon. The use of a highresolution mesh in 3D is very time-consuming. A dynamic conservative mesh adaptation [START_REF] Bahbah | Conservative and adaptive level-set method for the simulation of two-fluid flows[END_REF] seems a very promising tool to add to the present numerical framework to increase the accuracy with a reasonable computational time.

Conclusion

In this chapter, we presented the numerical framework of an incompressible flow involving two fluids separated by an interface with surface tension. First, we showed the modelling of the interface by the Level-Set method, which represents the interface using a signed distance function at the interface. We showed two main numerical methodologies to track the dynamics of the interface: convection and reinitialisation in two separate steps and coupled convection-reinitialisation.

To address the problem of mass conservation from which the classical Level-Set method suffers, we proposed a simple mass correction method. In the second part, we presented the monolithic formulation of an incompressible two-fluid flow with surface tension. We presented the diffuse interface method, which consists in smoothing the transition from one fluid to the other over a zone of non-zero thickness centred around the interface. Based on the same principle, the CSF method transforms the surface integral of the surface tension force into a volume integral via the smooth Dirac function. Some numerical problems may be encountered when using these methods in a standard way. Spurious currents in the vicinity of the interface is a classical problem that pollutes the solution. The density scaled surface tension method has been proposed to reduce the intensity of these non-physical currents. The explicit use of surface tension imposes a condition of stability on the calculation time step which can considerably increase the computational time. To circumvent this stability restriction, a semi-implicit formulation of the surface tension has been proposed. Finally, a high order temporal discretisation scheme for the Navier-Stokes equations has been presented to reduce discretisation errors, a source of numerical diffusion.

To evaluate the performance of the numerical framework, we propose the quantitative benchmark called the oscillating drop problem for which we derive the analytical solution in both 2D and 3D. The derivation of the theoretical solution for small-amplitude oscillations is detailed. The The results obtained and comparisons show that the two-fluid flow solver based on the stabilised FE method is capable of exhibiting good stability and accuracy properties.

Introduction

Samples processed during parabolic flights and sounding rockets within the CCEMLCC project have shown that the contact surface of the sample with the chill plate is flat but not perfectly smooth as shown in figure 4.1. Due to the roughness of the contact surface, tiny pockets of gas trapped at the boundary between the cooling plate and the metal can form a resistance to heat transfer. This last observation raises the question of the influence of thermal contact resistance on the solidification front growth. To answer this question, we propose to model the thermal contact resistance in a multi-domain system involving a solidifying metal domain.

To introduce the modelling of heat transfer in the presence of solidification in the metallic domain and thermal contact resistance, we limit the modelling, in this chapter, to heat conduction .

Thermal contact resistance 4.2.1 State of the art

An interface between two adjacent bodies is perfect if the real contact occurs in every point of the contacting surfaces. In this ideal case, the temperature and the heat flux are continuous across the interface. In most practical situations, the contacting surfaces are rough and have microscopic asperities. As a result, the mechanical contact occurs only at several microscopic spots interspersed with gaps or gas cavities of poor heat transfer capability. Therefore, the heat flux from the hot body to the cold one is constrained to pass through the real contact spots, which represent only a small fraction of the total interface area. In this case, we say that the interface exhibits a Thermal Contact Resistance, also known as Kapitza resistance [START_REF] Kapitza | E10 -the study of heat transfer in helium ii -j[END_REF]. At the macroscopic scale, the existence of CHAPTER 4. NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCE a thermal contact resistance appears as a temperature jump across the interface. The Kapitza resistance can occur at solid-solid interfaces [START_REF] Swartz | Thermal boundary resistance[END_REF] but also liquid-solid interfaces [START_REF] Hamasaiid | A predictive model for the thermal contact resistance at liquid-solid interfaces: Analytical developments and validation[END_REF]. Many physical systems involve a mechanical combination of two or several materials. Therefore, thermal contact resistance can occur in a wide range of applications such as additive manufacturing [START_REF] Prajapati | Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (fdm)[END_REF], electronic packaging [START_REF] Grujicic | The effect of thermal contact resistance on heat management in the electronic packaging[END_REF], nuclear reactors [77], hypersonic flights [78], internal combustion engines [START_REF] Baker | A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine[END_REF], die casting [80] and injection moulding [START_REF] Bendada | Analysis of thermal contact resistance between polymer and mold in injection molding[END_REF].

The use of numerical simulation to predict different aspects of heat transfer in the industry is becoming a valuable tool to help to improve the performance and the efficiency of industrial processes. Numerical modelling of heat transfer in a multi-material domain, including interfaces, has long been addressed in the literature [39; 82-85]. However, accounting for the thermal contact resistance is still a numerically-challenging task due to the temperature discontinuity that it involves. Consequently, additional numerical efforts are needed to handle the discontinuities at the interfaces. For instance, in the classical FE method, the meshing of the interface is required and has to conform to the adjacent volume parts. Moreover, appropriate surface elements must be constructed. For complex geometries, this is challenging [86; 87]. To circumvent this challenge, some authors built their Kapitza resistance modelling on the Extended Finite Element Method (XFEM) [START_REF] Jain | Parabolic heat conduction specialized applications involving imperfect contact surfaces: Local discontinuous galerkin finite element method-part 2[END_REF][START_REF] Yvonnet | A general and efficient computational procedure for modelling the kapitza thermal resistance based on xfem[END_REF][START_REF] Liu | A versatile interface model for thermal conduction phenomena and its numerical implementation by xfem[END_REF]. Moreover, numerical models of thermal contact resistance available in the literature focus mostly on the steady state conduction [88; 90-93]. Only a few studies have addressed the Kapitza resistance in transient conduction [86].

In this work, we derive a simple and efficient numerical model from accounting for thermal contact resistance in time-dependent multi-material heat transfer problems for classical FE method. Our numerical framework is based on the diffuse-interface immersed-boundary approach. The interface is implicitly represented by the Level-Set function. The principle of this model is to represent the contact imperfections by a thin intermediate material between the contacting bodies. Consequently, appropriate mixing laws will consistently be derived to mix the properties of the two materials together with the intermediate material. Accordingly, new formulae for mixing heat capacities and thermal conductivities will be derived. The novelty of this work lies in the fact that the proposed model does not require any additional implementation compared to the solver of perfect contact thermal transfer. The change is only made in the mixing laws of thermal properties. Furthermore, no special treatment of temperature discontinuities is needed because the temperature jump is smoothed along the mixing zone.

This section starts from the weak formulation of heat conduction in a two-material domain.

The level set method is introduced. The mixing laws for perfect contact are recalled. The modelling of thermal contact resistance is presented. Then, the mixing laws for thermal conductivity and heat capacity are derived. The effectiveness and accuracy of the proposed model are assessed through different benchmarks for both steady-state and transient conduction. The numerical results are compared to analytical solutions and a reference case. Finally, some concluding remarks are drawn. 

Governing equations and modelling

This first subsection is devoted to the mathematical formulation of heat conduction involving two materials in contact and the resolution methodology based on the monolithic formulation of the energy conservation equation using the diffuse interface immersed boundary method. The thermal contact resistance modelling is illustrated via a one-dimensional case of two adjacent slabs. A general 3D unsteady heat conduction is formulated by the level-set function.

Problem formulation

Consider a computational domain Ω containing two materials indexed by 1 and 2

(Ω = Ω 1 ∪ Ω 2 )
separated by an interface Γ 12 . The heat transfer operated by conduction is described by the following set of equations:

C p1 ∂T 1 ∂t = ∇ ∇ ∇ • (k 1 ∇ ∇ ∇T 1 ), x ∈ Ω 1 (4.1a) C p2 ∂T 2 ∂t = ∇ ∇ ∇ • (k 2 ∇ ∇ ∇T 2 ), x ∈ Ω 2 (4.1b)
where C pi = ρ i c pi is the specific heat capacity, product of the density, ρ i , and the heat capacity per unit mass, c pi ; k i is the thermal conductivity and T i (x, t ) is the temperature field, respectively in (i=1) Ω 1 and (i=2) Ω 2 . At the interface Γ 12 , several boundary conditions can be described. At first, the continuity of the normal heat flux across Γ 12 writes:

q 12 = -k 1 ∇ ∇ ∇T 1 • n 12 = -k 2 ∇ ∇ ∇T 2 • n 12 , x ∈ Γ 12 (4.2)
where n 12 is the unit normal vector to Γ 12 pointing at Ω 2 . If the interface is thermally resistive, i.e. a thermal contact resistance R t h = 0 is posing a barrier to heat transfer at the interface Γ 12 , a macro-scale temperature jump occurs at the interface:

T = -R t h q 12 x ∈ Γ 12 (4.3)
where = ( ) 2 -( ) 1 means the jump across the interface Γ 12 .

We consider the Dirichlet and Neumann boundary conditions prescribed on the two complementary and disjoints portions of ∂Ω, denoted by ∂Ω Di r and ∂Ω Neu as follows:

   q.n = q B , x ∈ ∂Ω Neu T = T B , x ∈ ∂Ω Di r (4.4)
where n is the outward normal vector to ∂Ω Neu .

Two different resolution strategies could be adopted to deal with this multi-material heat transfer problem. The first, called partitioned resolution, consists of considering two different meshes for each domain and solve two equations with the associated boundary conditions separately. The global solution is then constructed by a suitable assembly method. However, during the assembly, To formulate the problem in a monolithic way, we write the weak formulation of each subdomain. Then, we construct a unified formulation for the global domain by summing the contribution of each subdomain. The weak formulation associated with equations (4.1) and boundary conditions (4.4) is given as follows:

ˆΩ1 C p1 ∂T 1 ∂t T 1 d V + ˆΩ1 k 1 ∇ ∇ ∇T 1 • ∇ ∇ ∇T 1 d V = ˆΓ12 k 1 ∇ ∇ ∇T 1 • n 12 T 1 d S + ˆ∂Ω Neu ∩∂Ω 1 q B T 1 d S (4.5a) ˆΩ2 C p2 ∂T 2 ∂t T 2 d V + ˆΩ2 k 2 ∇ ∇ ∇T 2 • ∇ ∇ ∇T 2 d V = ˆΓ12 -k 2 ∇ ∇ ∇T 2 • n 12 T 2 d S + ˆ∂Ω Neu ∩∂Ω 2 q B T 2 d S (4.5b)
where T 1 and T 2 are test functions for the subdomains Ω 1 and Ω 2 , respectively. Using the flux continuity condition (4.2) and considering the presence of a thermally resistive interface giving rise to a temperature jump at Γ 12 (equation (4.3)), the general formulation over domain Ω is obtained:

ˆΩ C p (x)
∂T ∂t

T d V + ˆΩ k(x)∇ ∇ ∇T • ∇ ∇ ∇T d V + ˆΓ12 T R t h T d S = ˆ∂Ω Neu q B T d S (4.6)
It is worth noting that for perfect contact at Γ 12 , the temperature jump T vanishes so the monolithic formulation simply becomes:

ˆΩ C p (x)
∂T ∂t

T d V + ˆΩ k(x)∇ ∇ ∇T • ∇ ∇ ∇T d V = ˆ∂Ω Neu q B T d S (4.7)
As we can observe from the latter two equations, the definition of variable properties C p (x)

and k(x) as well as the third term in the Right-Hand-Side (LHS) of the equation (4.6) requires a numerical method to localise the boundary between the two sub-domains. In the framework of this PhD, we use the Level-Set method for interface modelling as previously presented in Chapter 3. Hence, we consider the following signed distance function:

φ(x, t ) =          d (x, Γ 12 ) if x ∈ Ω 1 0 if x ∈ Γ 12 -d (x, Γ 12 ) if x ∈ Ω 2 (4.8)
where d (x, Γ 12 ) is the geometrical distance between x and Γ 12 .

Furthermore, the discontinuity of interface properties, as well as the temperature discontinuity resulting from thermal contact resistance, are numerically challenging. It is, therefore, necessary to have a robust numerical method capable of handling high property ratios and capturing the temperature jump across the interface accurately. For this reason, Yvonnet et. al. [START_REF] Yvonnet | A general and efficient computational procedure for modelling the kapitza thermal resistance based on xfem[END_REF] pro- In the present work, we make use of the diffuse-interface approach with the classical FE Method.

It is the same approach presented previously in Chapter 3 to model the interface in a two-fluid flow. We recall that the diffuse-interface approach consists in introducing an artificial region around the interface of fixed thickness 2ε comparable to the mesh size in the vicinity of the interface. In this region, the transition of properties from one domain to the other occurs continuously and smoothly. The way the transition occurs is described by the mixing law. The objective of this study is not solving the equation (4.6) for thermal contact resistance. Instead, we look for a simple and efficient solution so as to keep the equation (4.7) for both perfect and imperfect interfaces while finding mixing laws which account for the effect of thermal contact resistance.

Mixing laws for perfect contact

For a perfect contact, it is well-known in the literature [94] that a harmonic mixing law for thermal conductivity ensures the conservation of heat flux across the transition zone.

k(φ) = H(φ) k 1 + 1 -H(φ) k 2 -1 (4.9)
where H is a smooth Heaviside function which indicates the presence of domain Ω 1 . We choose here a sinusoidal smoothing function of the signed distance function φ (equation (4.8)):

H(φ) =              1 if φ > ε 0 if φ < -ε 1 2 1 + φ ε + 1 π sin πφ ε if φ ≤ ε (4.10)
Note that the harmonic mixing law of the thermal conductivity will be retrieved in the section dedicated to the mixing law for thermal contact resistance in the next section.

As for heat capacity, the arithmetic mixing law is used:

C p (φ) = C p1 H(φ) + C p2 1 -H(φ) (4.11)

Mixing laws for thermal contact resistance

The basic idea of the present modelling of thermal contact resistance is to consider that in a microscale the imperfections of contact can be modelled by a thin layer of thickness e separating Ω 1

and Ω 2 . This intermediate domain, denoted by Ω G (G for Gap), is considered as a third material of properties k G and C p,G as shown in figure 4.2. Following this representation, we intend to find physically-appropriate mixing laws for both k and C p inside the mixing zone, including the effect of the gap layer. For the sake of clarity, we derive the mixing law in 1D, and then we extend the formulation to higher dimensions using the level-set function. 

Thermal conductivity mixing law

For thermal conductivity, we limit our analysis to steady-state conduction in which the heat capacity of the materials does not play a role. Consider the steady-state temperature field T(x, t → ∞) = T s (x) in the contact region centred within x ∈ [-ε, ε] shown in figure 4.2. T s is piecewise linear such as:

T s (x) =          T 1 + a 1 (x + ε) if x ∈ [-ε, -e/2]
T w + a G (x + e/2) if x ∈ [-e/2, e/2]
T 2 + a 2 (x -ε) if x ∈ [e/2, ε] (4.12)
where

a 1 = 1 k 1 T 2 -T 1 ε-e/2 k 1 + e k G + ε-e/2 k 2 , a G = k 1 k G a 1 and a 2 = k 1 k 2 a 1 .
We suppose that the mixing zone of thickness 2ε has equivalent properties k eq and C p,eq . Therefore, the heat flux across the mixing zone is given by:

q s = k eq T 2 -T 1 2ε . ( 4 

.13)

On the other hand, the heat flux in domain Ω 1 is:

q s = k 1 a 1 = T 2 -T 1 ε-e/2 k 1 + e k G + ε-e/2 k 2 . (4.14)
Consequently, the heat flux conservation yields:

2ε

k eq = ε -e/2 k 1 + e k G + ε -e/2 k 2 . ( 4 

.15)

We assume that the thickness of the gap is much smaller than the one of the mixing zone, e ε, and that the thermal conductivity of the gap is negligible comparing to k 1 and k 2 , k G k i ∈{1,2} .
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Hence, the equivalent thermal conductivity reads:

1

k eq ≈ 1 2k 1 + 1 2k 2 + R t h 2ε (4.16)
where R t h = e k G is the thermal contact resistance with unit K.W -1 .m 2 . Using the level set function for generalisation, the idea now is to find a formula for the thermal conductivity k(φ) which links in a continuous way the region φ ≤ -ε where k = k 1 and the region φ ≥ ε where k = k 2 respecting that the harmonic mean of k in the transition zone is:

1 2ε ˆε -ε 1 k(φ) d φ = 1
k eq (4.17)

These conditions lead to the following mixing low for the thermal conductivity:

k(φ) = H(φ) k 1 + 1 -H(φ) k 2 + δ(φ)R t h -1 (4.18)
where δ is the smooth Dirac function derived from equation (4.10):

δ(φ) =      1 2ε 1 + cos πφ ε if φ ≤ ε 0 if φ > ε (4.19)
For R t h = 0, equation (4.18) gives the classical harmonic mixing law for perfect contact.

Heat capacity mixing law

Unlike thermal conductivity, heat capacity is an extensive property. Therefore, the equivalent heat capacity in the mixing zone can be obtained by the volume-average of the heat capacities over the mixing zone. This leads to the following equation:

C p,eq = ε -e/2 2ε C p1 + ε -e/2 2ε C p2 + e 2ε C p,G =C p 1 - e 2ε + e 2ε C p,G (4.20)
where Using a condition equivalent to equation (4.17) for the heat capacity, the mixing law using the level set reads: By considering the steady state in each domain, boundary conditions T(X = X 1 ) = T B1 and T(X = X 2 ) = T B2 , the continuity of normal flux q s across the interface located at X = ξ and the one-

C p = C p1 + C p2
C p (φ) = C p1 H(φ) + C p2 1 -H(φ) + e C p,G δ(φ) (4.
dimensional jump condition [[T(X = ξ)]] = -R t h q s (X = ξ)
, we obtain the following exact solution:

T(X) =        q s k 1 (X -X 1 ) + T B1 if X ∈ [X 1 , ξ] q s k 2 (X -X 2 ) + T B2 if x ∈ [ξ, X 2 ] (4.23)
where

q s = (T B2 -T B1 )/( ξ-X 1 k 1 + R t h + X 2 -ξ k 2 )
. The boundaries are positioned at X 1 = -1 m and X 2 = 1 m. The temperatures at these two boundaries are T B1 = 0 K and T B2 = 1 K. The other boundaries of the computational domain are adiabatic (q B = 0). The interface position is ξ = 0.09 m. The mesh is anisotropic in the mixture zone. The characteristic mesh sizes in this region are h ⊥ = 0.02m in the direction perpendicular to the interface (also the direction of the heat flux) and h ∥ = 0.2 m in the direction parallel to the interface. Outside the mixture zone, the mesh is isotropic of characteristic size h max = 0.2 m. In figure 4.5, the computed and the exact temperature fields are plotted versus the X coordinate. We can observe that the strong temperature jump occurring at high thermal contact resistance is well captured by the proposed numerical model. 

Spherical interface benchmark

In the present example schematised in figure 4.6, we consider a composite sphere composed of a coating of outer radius r 2 and a core of radius r 1 separated by an interface with thermal resistance.

The surface of the coating is submitted to a fixed temperature field given by a linear evolution The steady state solution of this configuration is written in the spherical coordinates system (r, θ, φ)

as:

(a) Geometry (b) Mesh According to the fact that the temperature at the centre must be finite, we necessarily have:

b 1 = 0 (4.26)
Similarly as in section 4.2.3.1, the boundary condition (4.24), the continuity of the heat flux across the interface at r = r 1 and the temperature jump condition are used to finally find:

a 1 = 3k 2 r 1 r 3 2 β + γ (4.27) a 2 = β β + γ (4.28) b 2 = r 3 2 γ β + γ (4.29) 
where Calculations are performed with the set of parameters given in Table 1 The simulated temperature field in the YZ-plane centred with the inner spherical domain is given in figure 4.8. Values of the thermal contact resistance are varied from 0 to 10 5 K.W -1 .m 2 . Figure 4.9 displays the comparison with the analytical solution of temperature profiles along the z-axis, with z ≥ 0. Note that the solution for R t h = 0 K.W -1 .m 2 is not shown in figure 4.9 as it superimposes with

β = [k 1 r 1 + 2k 2 (r 1 + k 1 R t h )] r 3 2 (4.30) and γ = [k 1 k 2 R t h + (k 2 -k 1 ) r 1 ] r 3 1 (4.31)
R t h = 1 K.W -1 .m 2 .
For such low values of the heat resistance, the temperature jump at the interface vanishes. This is also shown when comparing figures 4.7a with figures 4.7b. Another observation is that for large values of the heat resistance, the temperature in the spherical core is almost uniform. When increasing R t h from 10 3 to 10 5 K.W -1 .m 2 , the temperature variation at the interface does not vary much. Finally, one can observe that the temperature fields only differ in the inner spherical core due to the high ratio k 2 /k 1 , low ratio r 2 /r 1 and the Dirichlet boundary condition applied at the boundaries of the coating domain. The temperature profile in the core remains linear, which is also expected under a steady diffusion regime. Once again, the thermal contact resistance model presented in this work shows a good comparison with the analytical solution, demonstrating its use in a 3D heat flow configuration with an immersed boundary between domains with different thermal conductivity. The reference case is referred to as "Explicit" and the evaluated case is referred to as "Implicit".

Parameter e 0 r 1 r 2 k 1 k 2 R t h Value -1 1 3 0.01 1 [0, 10 5 ] Unit K.m -1 m m W.m -1 .K -1 W.m -1 .K -1 K.W -1 .m 2
(a) R t h = 0 K.W -1 .m 2 (b) R t h = 1 K.W -1 .m 2 (c) R t h = 10 K.W -1 .m 2 (d) R t h = 10 2 K.W -1 .m 2 (e) R t h = 10 3 K.W -1 .m 2 (f) R t h = 10 5 K.W -1 .m 2
The temperature at x = -1 and x = 1 are fixed to T 1 = 1K and T 2 = -1K respectively. The top and the bottom boundaries are adiabatic (q B = 0) so heat flux is only one-dimensional. The thermal conductivity of each material are

k 1 = 1 W.m -1 .K -1 , k 2 = 0.1 W.m -1 .K -1 and k G = 0.001 W.m -1 .K -1 .
The thickness of the gap is e = 0.002 m. So the thermal contact resistance value is

R t h = e/k G = 2 K.W -1 .m 2 .
The meshes of each case are shown in the vicinity of the interface in figure 4.11a and 4.11b. The mesh for the description of the explicit gap is much finer than that for the implicit gap. Inside the region of fine mesh, which covers the gap layer, the mesh size is 10 -4 m in the direction perpendicular to the interface. This is required to ensure enough mesh elements within the gap domain.

On the other hand, the thickness of the mixing zone for the implicit case is 2ε = 0.06 m so that ratio 2ε/e 1. The mesh size inside the mixing zone is 0.003 m in the direction perpendicular to the interface. The heat capacity of each material are

C p 1 = 1 J.K -1 .m -3 and C p 2 = 0.5 J.K -1 .m -3 . Three values of C p G are considered: C p G = 0.001 J.m -3 .K -1 , C p G = 1.3 J.m -3 .K -1 and C p,G = 50 J.m -3 .K -1 , corresponding to C p G C p , C p G = O (C p ) and C p G C p , respectively. For each value of C p G two
formulae of the heat capacity mixing law are tested, referred to as Formula 1 given by equation (4.22) and Formula 2 given by equation (4.11). Results are shown in figures 4.12, 4.13 and 4.14 as temperature profiles along the x-axis for both the (a) explicit and (b) implicit gap.

In figure 4.12, when C p G C p , the heat capacity mixing law for perfect contact, i.e. using Formula 1 with equation (4.11), is sufficient to describe the transient heat conduction, i.e. to retrieve the more exact numerical solution given by (plain curves) the explicit gap formulation. The same can be observed in figure 4.13 when C p G = O (C p ). No or very little difference is revealed between symbols and curves. However, when C p,G C p , figure 4.14 reveals differences between Formula 1 and the more precise Formula 2. This does not concern the steady behaviours when the time is large enough, and two linear temperature evolution have settled in the domains (time t = 7.9 s), but intermediate times for unsteady heat flows. For instance, at time t = 0.6 s, a clear difference appears in figure 4.14a between the explicit gap configuration, that corresponds to the reference situation, and the implicit configuration using Formula 1 with equation (4.11). While the deviation is not large, a gap with a high value of the heat capacity compared to the surrounding materials is thus better described with Formula 2 using the mixing law given by equation (4.22). Despite this observation that reveals the consequences of using the heat capacity mixing law for perfect contact, it is clear that using equation (4.22) does not require big additional efforts while reaching excellent agreement when dealing with the prediction of non-stationary heat conduction. 

Heat conduction with solidification 4.3.1 Introduction

In solidification of metals, a multi-phase system refers to a metal domain that undergoes phase transformations involving the liquid phase and the different solid phases that may exist depending on the temperature and the chemical composition. The distribution of phases in a metal as a function of temperature and chemical composition is described by the phase diagram. For example, for FeC steel several phases may exist simultaneously during solidification: liquid phase and solid phases with different crystalline structures α-Fe (ferrite), γ-Fe (austenite), δ-Fe, Cementite... We denote by ϕ a phase involved during solidification and solid-state transformations of a metal (M). For the sake of simplicity, ϕ is either (l ) for the liquid phase or (s) for all possible individual solid phases. In the microscopic scale, the energy conservation equation governed by heat conduction is written in each phase as follows:

∂ ρ ϕ h ϕ ∂t = ∇ ∇ ∇ • k ϕ ∇ ∇ ∇T ϕ , x ∈ ϕ (4.32)
In order to predict solidification while explicitly solving the boundaries of each phase, it is necessary to adopt a microscopic approach capable of solving dendritic microstructures. For a metricsized sample, it is not realistic to solve the equations at the microscopic scale. Instead, macroscopic models are used, which can be derived by averaging the microscopic equations over a finite volume that contains both solid and liquid phases. The liquid-solid interface is thus implicitly represented via the volume averaging method. The principle of this method as well as the steps for obtaining the averaged energy conservation equation are presented hereafter.

Volume averaging method

To obtain the macroscopic or averaged energy equation, we first need to define a finite-sized averaging volume. This volume is called Representative Elementary Volume (REV). As its name reveals, the REV must be representative of the phenomenon that we are trying to model. In the case of solidification-related phenomena, the size of the REV must be larger than the characteristic dimension of the microstructure [10 -6 m, 10 -4 m] and smaller than that of the system 

H 1 .
Although porosities may form during solidification, the study of porosities is out of the scope of our present study. Therefore, the metal is supposed to be saturated by both liquid and solid phases.

H 2 .
It is assumed that in the REV the temperature is uniform. This is justified by the fact that the thermal properties of the two phases are not too different, and that the thermal contact resistances between phases are negligible. THERMAL CONTACT RESISTANCE 

χ ϕ =    1 x ∈ ϕ 0 x ∉ ϕ (4.33) 
Let consider V E the volume of the REV and V ϕ the volume of the phase ϕ. For every physical quantity ψ, we define the following averaging operators:

Operator 1: The phase average 〈ψ ϕ 〉 :

〈ψ ϕ 〉 = 1 V E ˆVE ψ χ ϕ d V (4.34)
Operator 2: The phase intrinsic average 〈ψ〉 ϕ

〈ψ〉 ϕ = 1 V ϕ ˆVϕ ψ d V (4.35)
Operator 3: The fluctuation ψ ϕ of ψ with respect to 〈ψ〉 ϕ ψ ϕ = ψ -〈ψ〉 ϕ χ ϕ (4.36)

For ψ = 1, we obtain from equation (4.34) the volume fraction of the phase ϕ

1 V E ˆVE χ ϕ d V = V ϕ V E = g ϕ (4.37) CHAPTER 4.
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We deduce from equations (4.34) and (4.37) that:

〈ψ ϕ 〉 = V ϕ V E 1 V ϕ ˆVE ψ χ ϕ d V = V ϕ V E 1 V ϕ ˆVϕ ψ d V = g ϕ 〈ψ〉 ϕ (4.38) 
Following the assumption H 1 , the sum of all phase fractions is equal to 1.

ϕ∈M g ϕ = 1 (4.39)
Therefore, for a quantity ψ, the global volume average denoted by 〈ψ〉 writes:

〈ψ〉 = ϕ∈M 〈ψ ϕ 〉 = ϕ∈M g ϕ 〈ψ〉 ϕ (4.40) 
Following these definitions, we give hereafter some theorems and refer the reader to the work of [START_REF] Ganesan | Conservation of mass and momentum for the flow of interdendritic liquid during solidification[END_REF] for detailed demonstrations:

〈 ∂ψ ∂t ϕ 〉 = ∂ 〈ψ ϕ 〉 ∂t - 1 V E ˆΓϕβ ψ ϕ u Γ ϕβ • n ϕ d S (4.41) 
〈 ∇ ∇ ∇ψ ϕ 〉 = ∇ ∇ ∇ 〈ψ ϕ 〉 + 1 V E ˆΓϕβ ψ ϕ n ϕ d S (4.42) 〈(∇ ∇ ∇ • v ) ϕ 〉 = ∇ ∇ ∇ • 〈v ϕ 〉 + 1 V E ˆΓϕβ v ϕ • n ϕ d S (4.43)
where u Γ ϕβ is the velocity vector of the boundary Γ ϕβ separating the two phases ϕ and β, and n ϕ is the normal to Γ ϕβ directed outwards to the phase ϕ. v is an arbitrary vector.

Considering two variables ψ and ξ, the phase intrinsic average of their product is:

〈ψξ〉 ϕ = 〈ψ〉 ϕ 〈ξ〉 ϕ + 〈 ψ ϕ ξ ϕ 〉 ϕ (4.44)
Following the work of [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF], we neglect the fluctuation terms of the density with any mass quantity ψ. Hence, we write:

〈 ρψ 〉 ϕ = 〈ρ〉 ϕ 〈ψ〉 ϕ (4.45)

Averaged energy conservation equation

For simplicity, the intrinsic phase average 〈ψ〉 ϕ is denoted by ψ ϕ . By integrating the microscopic equation for each phase (4.32) over the volume of the REV and making use of the previous formulae, we obtain the macroscopic energy conservation for each phase: 

∂ g l ρ l h l ∂t = ∇ ∇ ∇ • 〈k l ∇ ∇ ∇T l 〉 + Q l /s (4.46) ∂ g s ρ s h s ∂t = ∇ ∇ ∇ • 〈k s ∇ ∇ ∇T s 〉 + Q s/l (4.47)
where Q l /s and Q s/l are the interfacial heat exchange terms at the liquid/solid interface for which we give the expressions hereinafter:

Q l /s = 1 V E ˆΓls (ρh) l u Γ l s • n l d S + 1 V E ˆΓls k l ∇ ∇ ∇T l • n l d S (4.48) Q s/l = 1 V E ˆΓls (ρh) s u Γ l s • n s d S + 1 V E ˆΓls k s ∇ ∇ ∇T s • n s d S (4.49)
Considering the hypothesis H 2 , we can write T l = T s = T. Hence, the phase averaged energy conservation equations read:

∂ g l ρ l h l ∂t = ∇ ∇ ∇ • g l k l ∇ ∇ ∇T + Q l /s (4.50) ∂ g s ρ s h s ∂t = ∇ ∇ ∇ • g s k s ∇ ∇ ∇T + Q s/l (4.51)
Assuming that the contact at the boundary between the liquid and the solid phases is perfect, the heat balance at the liquid/solid interface is zero.

Q l /s + Q s/l = 0 (4.52)
Therefore, the global volume averaged energy conservation in the single multiphase domain writes:

∂ 〈ρh〉 ∂t = ∇ ∇ ∇ • (〈k〉 ∇ ∇ ∇T) (4.53) 

Monolithic formulation of the energy conservation in a multi-domain system

Consider a computational domain Ω composed of N subdomains Ω i , i ∈ 1, ..., N. The averaged energy conservation equation in each domain Ω i writes:

∂ 〈ρh〉 Ω i ∂t = ∇ ∇ ∇ • 〈k〉 Ω i ∇ ∇ ∇T (4.54)
Following the previous work in section 4.2, we can generalise the monolithic formulation of the energy conservation equation for a multi-domain system as follows:

ˆΩ ∂ 〈ρh〉 ∂t T d V + ˆΩ 〈k〉∇ ∇ ∇T • ∇ ∇ ∇T d V = ˆ∂Ω Neu q B T d S (4.55)
where the mixed field of averaged volumetric enthapies can be expressed as: 

= i ∈1,...,N 〈ρh〉 Ω i H Ω i (4.56)
and the mixed thermal conductivity including thermal contact resistance is

〈k〉 = 1≤i ≤N H Ω i 〈k〉 Ω i + 1≤i < j ≤N δ Γ i j R t h i j -1 (4.57) 
The non-linear effect of (4.55) raises up due to the non-linear relationship between T and 〈ρh〉, especially with the latent heat during solid-liquid transformation. The numerical resolution of this non-linear equation is based on an energy solver coupled with tabulated thermodynamic properties. The details of this solver and its validation are shown in [START_REF] Saad | Temperature-based energy solver coupled with tabulated thermodynamic properties -application to the prediction of macrosegregation in multicomponent alloys[END_REF].

Application to chill cooling and solidification experiment on board the ISS

We only focus hereafter on solidification governed by heat conduction from the droplet to the chill plate without convective heat transport in the bulk liquid metal (no flow is considered). The monolithic formulation of the energy conservation equation in a computational domain Ω containing the metallic sample Ω M in contact with the chill plate Ω C together surrounded by Argon gas Ω A is given by equation (4.55).

Hereafter, the quantities defined in each of the sub-domains Ω M , Ω C and Ω A are indexed by M, C and A respectively. Since the sub-domains Ω C and Ω A do not undergo any phase transformation, the exponent ϕ will be used only for the quantities of the metallic sub-domain to denote the liquid (l) phase and the different solid (s) phases.

Accordingly, the mixed field 〈ρh〉 of the averaged volumetric enthalpies 〈ρh〉 M , 〈ρh〉 C and 〈ρh〉 A is expressed using the smooth Heaviside functions H M , H C and H A as follows:

〈ρh〉 = 〈ρh〉 M H M + 〈ρh〉 C H C + 〈ρh〉 A H A (4.58)
Considering a REV, the average volumetric enthalpy of the metal writes:

〈ρh〉 M = ϕ∈M g ϕ ρ ϕ M h ϕ M (4.59)
The volume fractions g ϕ , the densities ρ ϕ M and the enthalpies h ϕ M are tabulated with respect to temperature T for the Fe-0.9wt.%C-0.26wt.%Si alloy as shown in figure 4.16.

As for the chill plate, made only of a solid ceramic phase Si 3 N 4 , the average volumetric enthalpy is a linear function of the temperature

〈ρh〉 C = C p,C .T (4.60)
where C p,C = 2.303 × 10 6 J.K -1 .m -3 . The metal-gas interface Γ MA and chill-gas interface Γ CA are considered as perfect. A thermal contact resistance is only applied at the metal-chill interface Γ MC . Therefore, the mixed thermal conductivity in this multi-domain system writes:

〈k〉 = H M 〈k〉 M + H A 〈k〉 A + H C 〈k〉 C + δ MC R t h -1 (4.62) 
where R t h is the thermal contact resistance at Γ MA and δ MC is the smooth Dirac function associated to this interface. The average thermal conductivities are constant such as:

〈k〉 M = 42 W.m -1 .K -1
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〈k〉 C = 50 W.m -1 .K -1 〈k〉 A = 0.01 W.m -1 .K -1
In this problem, we need two level-set functions to compute the Heaviside and Dirac functions: one level set φ M to describe the boundary of the droplet and the second φ C for the chill plate boundary. The droplet shape is based on the final shape of the solidified sample on board the ISS shown in Figure 2.16 of chapter 2. It is approximated to an ellipsoid of minor horizontal axis 5.73 mm and major vertical axis 7.65 mm. This ellipsoid is truncated from the top so that the droplet is 7.31 mm high and the plane surface in contact with the chill is a disc 2.2 mm diameter.

Note that the final shape of the solidified sample processed on board a zero-g airplane has slightly different dimensions, particularly smaller contact area with the chill as observed in Figure 4.1. The chill plate is a cylinder of 16 mm diameter and 3 mm high as in the ISS experiment. The Heaviside functions H M and H C are determined by formula (4.10) using φ M and φ C respectively. The gas

Heaviside is then H

A = 1 -H M -H C .
The mixing half-thickness is fixed to 0.18 mm. The Dirac function δ MC is calculated as: adiabatic condition is considered at the boundaries of the computational domain q B = 0. Several simulations were performed for different values of thermal contact resistance 0, 10 -5 , 2.10 -5 , 5.10 -5 and 10 -4 (values in K.W -1 .m 2 ). The comparison with the experiment is based on the timeevolution of the solidification front position from the chill plate. The experimental curve was obtained from image processing of the video recorded with an embedded high-speed camera in the experimental device on board the ISS as shown in Figure 2.17 in Chapter 2. The solidification front was extracted from the recorded images using the colour contrast between the solid and liquid phases visible on the free surface of the sample. Theoretically, the solidification front is located at the boundary of the solid dendrites with the liquid phase. This interface forms at the liquidus temperature T L = 1739 K. The numerical results with different R t h values for T = T L are shown in figure 4.18a. With a perfect contact ( R t h = 0, i.e. no model for Kapitza resistance), it takes 4 seconds for the liquidus iso-value to reach the bottom of the sample. As it was shown in chapter 2, the front reaches the bottom of the droplet after approximately 8 seconds. When the thermal contact resistance is taken into account in the simulations, the solidification front growth slows down. A value of R t h = 5.10 -5 K.W -1 .m 2 allows getting closer to the experimental solidification duration.

δ MC =    δ M if H C > 0 0 if H C = 0
However, the experiment shows that the "contrast-based" front is propagating with a constant speed. The simulation shows a positive acceleration of the growth of the liquidus-based front.

Several parameters could be at the origin of the difference: the fluid flow, the deformation of the droplet but also the difference in the criterion for tracking the front. Indeed, the contrast between the liquid and solid phases on the images is only visible when the solid fraction g s is higher than a certain value. When we choose, as a criterion for front detection, the iso-value g s = 10% the timeevolution of the front position becomes slower than the liquidus-based front 4.18b. In this case, the value of R t h = 2.10 -5 K.W -1 .m 2 gives a good prediction of the experimental behaviour during the first 6 seconds but predicts a shorter solidification duration than observed experimentally. 

Conclusion

In this chapter, we presented the numerical framework for modelling heat transfer in a multidomain system involving solidification and thermal contact resistance. In the first part, we proposed a simple and efficient numerical model to account for thermal contact resistance at an arbitrarily-shaped interface while using a monolithic solution with a diffuse interface. This chapter is dedicated to the modelling of coupling heat transfer and fluid dynamics in the context of solidification and chemical segregation. First, we present the governing equations. Then, we apply the numerical framework to simulate the chill cooling of a steel sample in microgravity.

Preliminary numerical tests will be shown in 2D. Then, a 3D simulation will be presented. The numerical results will be compared to the experimental data issued from the ISS on the sample d1 (Fe-0.9wt.%C-0.26wt.%Si alloy).

Governing equations for conjugate heat transfer including solidification, chemical segregation and capillary forces

In this section, we start from the governing equations in each subdomain: the metal Ω M , the chill Ω C and the surrounding gas Ω A . Then, we derive the monolithic formulation of the conservation equations that allows prediction of fluid flow coupled with heat transfer including solidification, chemical segregation, thermocapillary forces and shrinkage in an Eulerian framework using a single mesh. Note that in this chapter, we use the same notations defined in the previous chapter.

We showed in chapter 2 through analyses of the ISS experiment that we can assume rigid solid phase. Hence, the conservation equations are built on the assumption that displacement of the solid phase of the metal subdomain u s M is zero. This means that the metal average velocity 〈u〉 M is reduced to its liquid phase averaged velocity 〈u l 〉 M and that heat and mass transfers are purely diffusive in the solid phase.

〈u〉 M = 〈u l 〉 M +$ $ $ 〈u s 〉 M = g l u l M + g s & & u s M (5.1)
where u l M is the liquid intrinsic velocity vector. Hereafter, we give only the final averaged conservation equations in each phase of the metallic subdomain and we refer the reader to the following references [6; 12; 96] for details about the passage from the microscopic to the macroscopic equations.

Mass conservation

In the metal subdomain

The averaged mass conservation equations in the metallic subdomain for the liquid and the solid phases are respectively: where J l /s and J s/l represent the mass fluxes at the liquid-solid interface such as:

∂ g l ρ l M ∂t + ∇ ∇ ∇ • g l ρ l M u l M = J l /s in the liquid phase (5.2) ∂ g s ρ s M ∂t + ∇ ∇ ∇ • g s ρ s M& & u s M = J s/l in
J l /s = - 1 V E ˆΓls ρ l M u l M -u Γ l s • n l d S (5.4) J s/l = - 1 V E ˆΓls ρ s M & & u s M -u Γ l s • n s d S (5.5)
We recall that u Γ l s is the velocity of the liquid-solid interface Γ l s . n l and n s are the normal vectors to Γ l s directed outwards to the liquid phase and the solid phase respectively.

Since there is no accumulation or loss of mass at the interface, the mass flux leaving the liquid phase is the same as the flux entering the solid phase through the interface Γ l s . Hence, J l /s + J s/l = 0 (5.6)

By writing the total average density of the metal as 〈ρ〉 M = g l ρ l M + g s ρ s M , the averaged mass conservation equation in the metal subdomain writes:

∂ 〈ρ〉 M ∂t + ∇ ∇ ∇ • ρ l M 〈u l 〉 M = 0 (5.7)
We consider that the intrinsic average density of liquid metal is constant ρ l M = ρ l M,0 . Hence, the gradient of the liquid density ∇ ∇ ∇ρ l M = 0. Accordingly, the mass conservation equation in the metal yields the following relationship:

∇ ∇ ∇ • 〈u l 〉 M = - 1 ρ l M,0 ∂ 〈ρ〉 M ∂t = θM (5.8)
This latter relationship expresses the compressibility of the metal due to solidification shrinkage. This term will be present in the following conservation equations which govern the metal subdomain to account for shrinkage.

Note that in this work the compressiblity term θM is explicitly discretized in time such as:

θM = - 1 ρ l M,0 〈ρ〉 M -〈ρ〉 - M ∆t (5.9)
where 〈ρ〉 - M is the metal density evaluated at the previous time step.

In the surrounding gas subdomain

The density of the surrounding gas in the subdomain Ω A , indexed by a capital A (for Argon), is considered uniform and constant 〈ρ〉 A = ρ A = C st . Therefore, the mass conservation in the gas subdomain is expressed by the following equation: 

∇ ∇ ∇ • 〈u〉 A = 0 = θA (5.
∂ ρ l M 〈u l 〉 M ∂t + ∇ ∇ ∇ • ρ l M g l 〈u l 〉 M × 〈u l 〉 M -∇ ∇ ∇ • 2µ l M 〈˙ l 〉 M + g l ∇ ∇ ∇p l M + 2 3 µ l M ∇ ∇ ∇ θM + g l µ l M K 〈u l 〉 M = g l ρ l M g (5.16)
We rewrite the first and the second LHS terms considering that the liquid density is constant

ρ l M = ρ l M,0 : ∂ ρ l M 〈u l 〉 M ∂t +∇ ∇ ∇• ρ l M g l 〈u l 〉 M × 〈u l 〉 M = ρ l M,0 ∂ 〈u l 〉 M ∂t + ρ l M,0 g l ∇ ∇ ∇ 〈u l 〉 M •〈u l 〉 M +ρ l M,0 〈u l 〉 M ∇ ∇ ∇•u l M (5.17)
We assume that the intrinsic velocity vector of the liquid phase is free-divergence ∇ ∇ ∇ • u l M = 0. Hence,

∇ ∇ ∇ • 〈u l 〉 M = g l ¨¨∇ ∇ ∇ • u l M + u l M • ∇ ∇ ∇g l (5.18)
This assumption means that the compressibility condition of the metal (equation (5.8)) derives from the gradient of the liquid volume fraction. This is consistent with the fact that the shrinkage is due to solidification in the mushy zone, and not to the compressibility of the liquid.

Hence, the final average momentum equation in the liquid phase writes:

ρ l M,0 ∂ 〈u l 〉 M ∂t + 1 g l ∇ ∇ ∇ 〈u l 〉 M • 〈u l 〉 M -∇ ∇ ∇ • 2µ l M 〈˙ l 〉 M + g l ∇ ∇ ∇p l M + 2 3 µ l M ∇ ∇ ∇ θM + g l µ l M K 〈u l 〉 M = g l ρ l M,0 g (5.19)
One can notice that when g l = 0 (fully-solid region), the permeability coefficient K given by equation (5.15) is zero and g l µ l M K → ∞. This means that Darcy term introduces infinite dissipation forcing the flow velocity to be zero. Therefore, the solution of the equation (5.19) is also valid for the fully-solid region. Consequently, we extend the average momentum conservation equation (5.19) to the whole metallic subdomain by replacing the unknowns 〈u l 〉 M , p l M by 〈u〉 M , p M such as:

ρ l M,0 ∂ 〈u〉 M ∂t + 1 g l ∇ ∇ ∇ 〈u〉 M • 〈u〉 M -∇ ∇ ∇ • 2µ l M 〈˙ 〉 M + g l ∇ ∇ ∇p M + 2 3 µ l M ∇ ∇ ∇ θM + g l µ l M K 〈u〉 M = g l ρ l M,0 g (5.20)

In the surrounding gas subdomain

Considering that the flow of the surrounding gas is incompressible, the averaged momentum equation is: 

ρ A ∂ 〈u〉 A ∂t + ∇ ∇ ∇ 〈u〉 A • 〈u〉 A -∇ ∇ ∇ • 2µ A 〈˙ 〉 A + ∇ ∇ ∇p A = ρ A g (5.21)

In the chill subdomain

The chill plate is considered rigid and at rest. Therefore, 〈u〉 C = 0. This condition is directly imposed in the solution of Navier-Stokes solver via a Dirichlet condition.

Monolithic weak formulation

To obtain the monolithic formulation that we need to solve with finite element method, we multiply each of the equations (5.20) and (5.21) by a test function and we integer them over the corresponding subdomain. Then we sum the integrated equations, including the appropriate boundary condition at the boundaries separating the subdomains.

So, let us consider a test function U . The weak formulation for the momentum equation in the metal subdomain is:

ρ l M,0 ∂ 〈u〉 M ∂t + ρ l M,0 g l ∇ ∇ ∇ 〈u〉 M • 〈u〉 M , U Ω M + 2µ l M 〈˙ 〉 M : ˙ (U ) Ω M -g l p M , ∇ ∇ ∇ • • • U Ω M - 2 3 µ l M θM , ∇ ∇ ∇ • • • U Ω M + g l µ l M K 〈u〉 M , U Ω M = g l ρ l M,0 g , U Ω M + 〈σ〉 M • n M , U ∂Ω M (5.22)
where n M is the outward normal vector to the metal boundary ∂Ω M .

For the gas subdomain, the weak formulation for the momentum equation writes:

ρ A ∂ 〈u〉 A ∂t + ρ A ∇ ∇ ∇ 〈u〉 A • 〈u〉 A , U Ω A + 2µ A 〈˙ 〉 A : ˙ (U ) Ω A -p A , ∇ ∇ ∇ • • • U Ω A = ρ A g , U Ω A + (〈σ〉 A • n A , U ) ∂Ω A (5.23)
where n A is the outward normal vector to the gas boundary ∂Ω A .

In order to reach a unified equation that governs the fluid subdomains Ω M , Ω A , we define the global unknowns: u the velocity vector and p the pressure field defined on the entire computational domain Ω as follows: 

u =          〈u〉 M if x ∈ Ω M 〈u〉 A if x ∈ Ω A 〈u〉 C = 0 if x ∈ Ω C ( 5 
=          p M if x ∈ Ω M p A if x ∈ Ω A p C = 0 if x ∈ Ω C (5.25)
Considering the smooth Heaviside functions H M , H A and H C of Ω M , Ω A and Ω C respectively, we introduce the following mixed properties:

• g F the fluid volume fraction:

g F = g l H M + H A (5.26)
• ρ F the fluid density:

ρ F = ρ l M,0 H M + ρ A H A (5.27)
• µ F the fluid dynamic viscosity: 

µ F = µ l M H M + µ A H A ( 5 
K F = λ 2 2 g F 3 180 1 -g F 2
(5.30) 

ρ F ∂u ∂t + ρ F g F ∇ ∇ ∇u • u, U Ω + 2µ F ˙ (u) : ˙ (U ) Ω -p, ∇ ∇ ∇ • • • U Ω + g F µ F K F u, U Ω = 2 3 µ F θF , ∇ ∇ ∇ • • • U Ω + g F ρ F g , U Ω + 〈σ〉 M • n M , U ∂Ω M + 〈σ〉 A • n A , U ∂Ω A (5.31)
The last two surface integrals of the RHS of the equation (5.31) can be split into interfacial terms such as:

〈σ〉 M •n M , U ∂Ω M + 〈σ〉 A •n A , U ∂Ω A = 〈σ l 〉 M -〈σ〉 A •n M , U Γ l MA + ($ $ $ 〈σ s 〉 M -〈σ〉 A )•n M , U Γ s MA + 〈σ l 〉 M • n M , U Γ l MC + $ $ $ $ $ $ $ $ $ 〈σ s 〉 M • n M , U Γ s MC + 〈σ〉 A • n A , U Γ AC (5.32)
We neglect the viscous friction force at the chill/gas Γ AC and the solid/gas Γ s MC interfaces. Thus,

〈σ〉 A • n A , U Γ AC = 0 -〈σ〉 A • n M , U Γ s MA = 0 
The interfacial term 〈σ l 〉 M • n M , U Γ l MC at Γ l MC the liquid/chill interface expresses the wetting force between the liquid metal and the chill. Accounting for such capillary force was proposed by [START_REF] Julien | Finite element setting for fluid flow simulations with natural enforcement of the triple junction equilibrium[END_REF] in level-set based FE method. In the present work, we consider that the simulations start just after a thin layer of solid metal forms on contact with the chill, thus freezing the interface

Γ MC = Γ s MC .
Consequently, the liquid/chill interface Γ l MC is not present in the simulations. Thus, we omit the interfacial term

〈σ l 〉 M • n M , U Γ l MC .
Following these considerations, the dynamic boundary condition at the liquid-gas interface Γ l MA writes:

〈σ l 〉 M -〈σ〉 A • n M , U Γ l MA = f ST + f Mar , U Γ l MA (5.33)
where f ST is the surface tension force vector and f Mar is the Marangoni force vector.

f ST = -γ l g κ l g n l g (5.34)

f Mar = ∇ ∇ ∇γ l g • I -n l g ⊗ n l g (5.35)
γ l g is the surface tension coefficient of the liquid metal. κ l g is the curvature of the liquid/gas interface and n l g is its unit normal vector oriented inwards the metal domain.

As we previously showed in chapter 3, we can transform the surface integral of capillary forces into volume integral using the CSF method via the Dirac function δ l g located at the liquid metalgas interface Γ l MA . The final monolithic formulation of Navier-Stokes equations including the mass and the momentum conservation equations becomes therefore as follows: The volume enthalpy of the liquid phase, ρ l M h l M , is not the main unknown of the energy conservation equation. For simplification, we assume that the enthalpy of the liquid is a linear function of temperature. Thus,

ρ l M h l M = C l p,M T (5.44)
where C l p,M is the heat capacity per unit volume in the liquid metal. Hence, the averaged energy equation over the metal subdomain writes:

∂ 〈ρh〉 M ∂t + C l p,M 〈u l 〉 M • ∇ ∇ ∇T -∇ ∇ ∇ • (〈k〉 M ∇ ∇ ∇T) = -ρ l M h l M θM (5.45)
The term in the RHS of equation (5.45) expresses the heat supplied by the liquid phase in the mushy zone because of solidification shrinkage. It is evaluated at the previous time step.

In the chill subdomain

The heat transfer in the chill plate is governed by heat conduction. The energy conservation equation in the chill subdomain writes:

∂ 〈ρh〉 C ∂t -∇ ∇ ∇ • (〈k〉 C ∇ ∇ ∇T) = 0 (5.46)
Note that the evolution of the enthalpy in the chill plate made of ceramic is linear with temperature so we can write

∂〈ρh〉 C ∂t = C p,C
∂T ∂t . However, we retain the transient term with the enthalpy to conform with the equation set for the metal subdomain. The same remark is valid for the following paragraph dedicated to the gas subdomain.

In the surrounding gas subdomain

The heat transfer in the chill plate is operated by both convection and conduction. The energy conservation equation in the gas subdomain writes:

∂ 〈ρh〉 A ∂t + ∇ ∇ ∇ • ρ A h A u A -∇ ∇ ∇ • (〈k〉 A ∇ ∇ ∇T) = 0 (5.47)
Considering that the flow of the gas is incompressible ∇ ∇ ∇•u A = 0, the energy conservation equation in the gas subdomain becomes:

∂ 〈ρh〉 A ∂t + C p,A u A • ∇ ∇ ∇T -∇ ∇ ∇ • (〈k〉 A ∇ ∇ ∇T) = 0 (5.48)

Monolithic weak formulation

In the same way as the momentum equation, we write the weak formulation for each subdomain using a test function T for the temperature field.

For the metal subdomain, the weak formulation of the energy conservation equation writes: 

∂ 〈ρh〉 M ∂t , T Ω M + C l p,M 〈u l 〉 M • ∇ ∇ ∇T, T Ω M + (〈k〉 M ∇ ∇ ∇T, ∇ ∇ ∇T ) Ω M = (〈k〉 M ∇ ∇ ∇T • n M , T ) ∂Ω M -ρ l M h l M θM , T Ω M (5.49)
For the gas subdomain:

∂ 〈ρh〉 A ∂t , T Ω A + C p,A 〈u〉 A • ∇ ∇ ∇T, T Ω A + (〈k〉 A ∇ ∇ ∇T, ∇ ∇ ∇T ) Ω A = (〈k〉 A ∇ ∇ ∇T • n A , T ) ∂Ω A (5.50)
For the chill plate subdomain:

∂ 〈ρh〉 C ∂t , T Ω C + (〈k〉 C ∇ ∇ ∇T, ∇ ∇ ∇T ) Ω C = (〈k〉 C ∇ ∇ ∇T • n C , T ) ∂Ω C (5.51)
Following the work in Chapter 4, we sum up the weak formulations of all the subdomains and drop all the interfacial terms of heat exchanges between the subdomains, considering that any contact thermal resistance can be taken into account through the mixing law of the thermal conductivity and the heat capacity.

Consequently, the monolithic weak formulation of energy conservation for the whole computational domain Ω is :

∂ 〈ρh〉 ∂t , T Ω + C F p u • ∇ ∇ ∇T , T Ω + 〈k〉∇ ∇ ∇T , ∇ ∇ ∇T Ω = -ρ l M h l M θF , T Ω (5.52) 
where

〈ρh〉 = H M 〈ρh〉 M + H A 〈ρh〉 A + H C 〈ρh〉 C (5.53) C F p = H M C l p,M + H A C p,A (5.54) 〈k〉 = H M 〈k〉 M + H C 〈k〉 C + H A 〈k〉 A + δ MC R t h -1 (5.55)
where δ MC is the Dirac function of the metal/chill interface Γ MC and R t h is the value of the thermal contact resistance. Note that in this work, the thermal contact resistance only occurs at the metal/chill interface Γ MC .

Any micro-cavities (gap) that may exist between the metal and the chill are probably filled with gas (or vacuum). Therefore, the heat capacity of the gap C p,G at the contact surface Γ MC is negligible compared to the mean thermal capacity of the metal and the ceramic C p . According to the model proposed in Chapter 4, only the mixing law of the thermal conductivity is concerned by the consideration of the thermal resistance when C p,G C p . Γ MA and Γ CA interfaces involve a full contact with the gas, so the thermal contact is assumed to be perfect at these latter boundaries. 

Chemical species conservation equation

In the metal subdomain

For a multi-component alloy, the thermophysical properties depend on the composition of the alloy. Hence, the distribution of the chemical species in the metal can affect the heat transfer, which is coupled with fluid flow. On the other hand, the fluid flow is affecting the distribution of the chemical species in the liquid phase. Therefore it is of significant importance to take into account the mass transfer of the chemical species. Let us index by i a solute of the alloy. The chemical composition in %w t will denoted w i . For the sake of simplification, w i l M will be denoted w i l .

The averaged species mass conservation equations in each phase are:

∂ g l ρ l M w i l ∂t + ∇ ∇ ∇ • g l ρ l M w i l u l M + ∇ ∇ ∇ • 〈 j l i 〉 M = Φ i l /s
(5.56)

∂ g s ρ s M w i s ∂t + ∇ ∇ ∇ • g s ρ s M w i s & & u s M + ∇ ∇ ∇ • ¨¨〈 j s i 〉 M = Φ i s/l
(5.57)

In the solid phase, we also neglect the diffusion transfer of solutes 〈 j s i 〉 M , considering that, at the macroscopic scale, the composition of the alloy is more influenced by convection and diffusion in the liquid phase.

As no accumulation of mass occurs at the interface, the mass of the solute i entering the liquid phase Φ i l /s is the same leaving the solid phase Φ i s/l at the liquid/solid boundary. Therefore,

Φ i l /s + Φ i s/l = 0 (5.58)
.

After summing the phase averaged equations we obtain:

∂ 〈ρw i 〉 M ∂t + ∇ ∇ ∇ • ρ l M w i l 〈u l 〉 M + ∇ ∇ ∇ • 〈 j l i 〉 M = 0 (5.59) 〈ρ〉 M ∂ 〈w i 〉 M ∂t + 〈w i 〉 M ∂ 〈ρ〉 M ∂t + ∇ ∇ ∇ • ρ l M w i l 〈u l 〉 M + ∇ ∇ ∇ • 〈 j l i 〉 M = 0 (5.60) 〈ρ〉 M ∂ 〈w i 〉 M ∂t + 〈w i 〉 M ∂ 〈ρ〉 M ∂t + 〈u l 〉 M • ∇ ∇ ∇ ρ l M w i l + ρ l M w i l θM + ∇ ∇ ∇ • 〈 j l i 〉 M = 0 (5.61)
The average mass flux of the solute i in the liquid phase is given by Fick's law:

〈 j l i 〉 M = -g l D l M ∇ ρ l M w i l (5.62) Hence 〈ρ〉 M ∂ 〈w i 〉 M ∂t + 〈w i 〉 M ∂ 〈ρ〉 M ∂t + 〈u l 〉 M • ∇ ∇ ∇ ρ l M w i l + ρ l M w i l θM -∇ ∇ ∇ • g l D l M ∇ ρ l M w i l = 0 (5.63)
The mass conservation equation gives: As we assume that the liquid density ρ l M = ρ l M,0 is constant, the chemical species conservation equation becomes:

〈ρ〉 M ∂ 〈w i 〉 M ∂t + ρ l M,0 θM w l i -〈w i 〉 M + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇w i l -∇ ∇ ∇ • g l ρ l M,0 D l M ∇w i l = 0 (5.65)
Now we have two unknown variables: the global averaged composition 〈w i 〉 M and the intrinsic averaged liquid composition w i l . We apply Voller-Prakash variable splitting approximation which consists of writing:

w i l = 〈w i 〉 M -w * i (5.66)
where

w * i = 〈w i 〉 M --w i l - (5.67) 
and (.) -means the value of the variable at the previous time step.

Therefore the species conservation equation writes:

〈ρ〉 M ∂ 〈w i 〉 M ∂t + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇ 〈w i 〉 M + ∇ ∇ ∇ • g l ρ l M,0 D l M ∇ ∇ ∇ 〈w i 〉 M = ρ l M,0 θM w * i + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇w * i -∇ ∇ ∇ • g l ρ l M,0 D l M ∇ ∇ ∇w * i (5.68)

In the surrounding media

The transport of the chemical species concerns only the metal subdomain. However, as we adopt an Eulerian monolithic approach for conservation equations, we need to extend the definition of the solute composition to the materials surrounding the metal subdomain, namely the gas and the chill plate subdomains. Intuitively, we can think to cancel the value of the chemical composition of each solute outside the metallic subdomain. However, the gradient of composition in the vicinity of the interface leads to strong artificial fluxes of the species outwards the metallic subdomain. For this reason, we consider that the composition outside the metallic subdomain is equal to the nominal composition w i ,0 and that the mass density of each solute is equal to that of the liquid metal ρ l M,0 w i ,0 . Then we ensure that during the calculation, this composition remains constant and uniform outside the metallic subdomain to verify the following conservation equations: 

ρ l M,0 ∂ 〈w i 〉 A ∂t = 0 (5.69) ρ l M,0 ∂ 〈w i 〉 C ∂t = 0 ( 5 

Monolithic weak formulation

Let consider W the test function for the composition field. First, we write the weak formulation of the species conservation equation in the metal.

〈ρ〉 M ∂ 〈w i 〉 M ∂t , W Ω M + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇ 〈w i 〉 M , W Ω M -g l ρ l M,0 D l M ∇ ∇ ∇ 〈w i 〉 M , ∇ ∇ ∇W Ω M = ρ l M,0 θM w * i , W Ω M + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇w * i , W Ω M -g l ρ l M,0 D l M ∇ ∇ ∇w * i , ∇ ∇ ∇W Ω M + g l ρ l M,0 D l M ∇ ∇ ∇w l i • n M , W ∂Ω M (5.71)
No species mass flux is entering nor leaving the metallic subdomain. Hence:

g l ρ l M,0 D l M ∇ ∇ ∇w l i • n M = 0 (5.72)
Therefore, the weak formulation of the species conservation equation becomes:

〈ρ〉 M ∂ 〈w i 〉 M ∂t , W Ω M + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇ 〈w i 〉 M , W Ω M -g l ρ l M,0 D l M ∇ ∇ ∇ 〈w i 〉 M , ∇ ∇ ∇W Ω M = ρ l M,0 θM w * i , W Ω M + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇w * i , W Ω M -g l ρ l M,0 D l M ∇ ∇ ∇w * i , ∇ ∇ ∇W Ω M (5.73)
The weak formulations of the species conservation equations in the surrounding gas and the chill plate are:

ρ l M,0 ∂ 〈w i 〉 A ∂t , W Ω A = 0 (5.74) ρ l M,0 ∂ 〈w i 〉 C ∂t , W Ω C = 0 (5.75)
For an unified resolution of the species conservation equation, we define a global unknown w i for the composition defined all over the computational domain such as:

w i =          〈w i 〉 M if x ∈ Ω M 〈w i 〉 A if x ∈ Ω A 〈w i 〉 C if x ∈ Ω C (5.76)
The objective is to write the finite element equation that governs w i over the whole domain.

For this purpose, we sum the weak formulations of all the subdomains. 

〈ρ〉 M ∂w i ∂t , W Ω M + ρ l M,0 ∂w i ∂t , W Ω A ∪Ω C + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇w i , W Ω M -g l ρ l M,0 D l M ∇ ∇ ∇w i , ∇ ∇ ∇W Ω M = ρ l M,0 θM w * i , W Ω M + ρ l M,0 〈u l 〉 M • ∇ ∇ ∇w * i , W Ω M -g l ρ l M,0 D l M ∇ ∇ ∇w * i , ∇ ∇ ∇W Ω M ( 5 

Coupling resolution strategy

In the previous section, we set the system of equations that governs the physics of coupling fluid mechanics with heat transfer in the context of solidification of multi-component alloys. In this section, we present the strategy of solving this coupled multi-physics problem.

The unknowns of this problem are u the velocity vector, p the pressure, T the temperature, w i the composition of the solute i and the level set function φ M . All these variables are coupled with each other. Indeed, the velocity of the fluid influences the transport of energy and chemical species. In addition, energy and chemical species are linked via the microsegregation model. In return, the thermophysical properties of the fluid, conditioned by the temperature and the composition, influence on the velocity field via solidification shrinkage and capillary forces. For each time increment, the calculation starts with the resolution of the conservation of energy and then the transport of chemical species. These resolutions will give direct access to temperature T and chemical composition w i . Next, the Navier-Stokes equations describing the conservation of mass and momentum are solved. Finally, the new position of the metal/gas interface is determined by solving the transport equation of the level set and its adjustment behind by mass correction method. Thus, for each time increment, the equations are solved only once. This solving scheme, therefore, corresponds to a weak coupling of the equations. Note that the most recent value of the variables will be used during the calculation. The steps of the resolution strategy are given in Figure 5.2.

Energy conservation solver

〈ρh〉 ∆t , T Ω + C F p u -• ∇ ∇ ∇T, T Ω + 〈k〉∇ ∇ ∇T, ∇ ∇ ∇T Ω = 〈ρh〉 - ∆t -ρ l M h l M θF - , T Ω
After resolution, we obtain T(t )

Microsegregation model solver

With T(t ) and w - i as inputs, we obtain from thermodynamic tabulations g ϕ (t ), h ϕ M (t ), w ϕ i (t ) where ϕ denotes the liquid and the different solid phases

Chemical species conservation solver

ρ M w i ∆t , W Ω + ρ l M,0 H M u -• ∇ ∇ ∇w i , W Ω -g l H M ρ l M,0 D l M ∇ ∇ ∇w i , ∇ ∇ ∇W Ω = ρ M w - i ∆t + ρ l M,0 θF w * i , W Ω + ρ l M,0 H M u • ∇ ∇ ∇w * i , W Ω -g l H M ρ l M,0 D l M ∇ ∇ ∇w * i , ∇ ∇ ∇W Ω
After resolution, we obtain w i (t )

Navier-Stokes solver

                       ρ F u -u - ∆t + ρ F g F ∇ ∇ ∇u • u, U Ω + 2µ F ˙ (u) : ˙ (U ) Ω -g F p, ∇ ∇ ∇ • • • U Ω + g F µ F K F u, U Ω ∆t γ l g δ l g (∇ ∇ ∇u.P) : ∇ ∇ ∇U Ω = 2 3 µ F θF , ∇ ∇ ∇ • • • U Ω + g F ρ F g , U Ω + δ l g f ST + f Mar , U Ω (∇ ∇ ∇ • u, P ) Ω = θF , P Ω
After resolution, We obtain u(t ) and p(t )

Level set solver

φ M ∆t , F Ω + u • ∇ ∇ ∇φ M , F Ω = φ - M ∆t , F Ω
We obtain φ M (t )

Mass correction

φ cor r M = φ M + χ l c φ
We obtain the corrected φ M (t ) 

Application to chill cooling and solidification experiment on board the ISS

We have proposed coupling of fluid mechanics, heat transfer and microsegregation in the context of solidification of multi-component alloys. Now, we will apply this numerical framework to the ISS experiment that we simulate in the previous chapter with only heat conduction. But before reaching a 3D complete simulation, we perform a preliminary study in order to evaluate the influence of some numerical and physical parameters. For this parametric study, we opt for 2D simulations, given their relatively short computation time compared to 3D simulations. A 3D simulation will be presented at the end of this chapter.

Preliminary results and numerical investigations

Computational configuration

Geometries and mesh

In the ISS experiment, the chill plate is a cylinder with a radius of 8 mm and a thickness of 3 mm. The initial shape of the metal droplet is estimated from experimental observations 2.15. It is a sphere of 3.14 mm radius truncated at the top so that its total height is 6.08 mm. The surface of contact with the chill is then a disc of 1 mm radius. Let us take the Z-axis as the axis of the symmetry of the problem. We place the Z = 0 plane at the plane of the contact between the chill and the droplet. The 2D simulations are performed in the XZ plane. The 2D computational domain Ω is a rectangular box with a side length of 20 mm in the X direction and 17 mm in the Z direction, as illustrated in Figure 5.3a.

The mesh used in the calculations, as shown in Figure 5.3b, is static, more or less refined in regions of interest. The interfaces where the gradients are the strongest must be fine-meshed. Let us note h 0 the minimum characteristic size of the mesh and fix it at a value of 60 µm. In a 1 mm wide band centred around the boundary of the chill, the mesh size is h 0 in the normal direction and 5h 0 in the tangential direction. Inside the chill, the mesh is isotropic with a characteristic size of 5h 0 . Since the mesh is static, we have meshed with isotropic elements of a characteristic size of h 0 a region that covers the space where the droplet could elongate. We define this region as part of an ellipse with a major axis of 1 cm and a minor axis of 8 mm.

The half-thickness of the mixture zones ε is fixed to 4h 0 . .

Initial and boundary conditions

The initial temperature of the metallic droplet is T M,0 = 1648 o C. The surrounded gas is considered at the same initial temperature as the metal. As for the chill plate, its initial temperature is fixed to T C,0 = 25 o C. The system is initially in a steady-state with a zero velocity. The initial composition of the system is the nominal composition of the metallic alloy.

The level set functions φ M and φ C are initialised with the geometrical distance from the initial boundary position of the droplet and the chill respectively.

The boundaries of the computational domain are considered adiabatic. For the Navier-Stokes solver, the pressure and the velocity are free at the boundary. A Dirichlet condition of zero-velocity is imposed in the chill subdomain (φ C ≥ 0).

Physical properties

In the present work, we focus on d1 sample proceeded on board the ISS and whose composition is given in Chapter 2. This steel will first be approximated by a binary alloy Fe-0.9wt.%C by considering only the Carbon solute. Thus the index i is only i = 1. In a later step, we consider a ternary alloy Fe-0.9wt.%C-0.2wt.%Si which means i = 1 corresponds to Carbon solute and i = 2 corresponds to Silicon solute.

The energy conservation equation is written with both enthalpy and temperature variables.

The relationship between these two variables is not linear for alloys. It is defined by the following relations:

〈ρh〉 M = ϕ∈M g ϕ ρ ϕ M h ϕ M
(5.98) 

g ϕ = g ϕ T, 〈w i 〉 M ( 5 
w ϕ i = w ϕ i T, 〈w i 〉 M (5.102)
The thermodynamic properties g ϕ , ρ ϕ M , h ϕ M and w ϕ i are tabulated as a function of temperature and chemical composition. These tables are needed to convert temperature into enthalpy during non-linear iterations of the energy solver. Detailed information on this resolution step can be found in [START_REF] Saad | Temperature-based energy solver coupled with tabulated thermodynamic properties -application to the prediction of macrosegregation in multicomponent alloys[END_REF]. These same tabulations are also used in the rest of the calculation to compute the volume fractions, densities, enthalpies and compositions of each phase from the resulting temperature of the energy solver.

For the chill plate, made of ceramic Si 3 N 4 , the enthalpy is linearly linked to the temperature such as 〈ρh〉 C = ρ C h C = ρ C c p,C T. Therefore, the tabulations for the chill subdomain are built from this latter relation. By using the monolithic approach for energy conservation, any displacement of the metal/gas interface is energetically converted into a phase change between the gas subdomain on one side and the metal phases on the other. To avoid this purely numerical issue, we use the same tabulated phase enthalpy properties of the liquid metal for the gas subdomain. This assumption applies only to the energy solver.

The physical properties of the materials involved in this problem are given by the table 5.1.

The gravity vector is set to zero g = 0. The thermal contact resistance R t h is, initially, fixed to zero (perfect contact) and, in a further step, calibrated according to the experiment via a parametric study. The threshold g l c needed for the definition of the liquid/gas interface where surface tension and Marangoni are applied is fixed to 30%. 

CHAPTER 5. NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY

Numerical considerations

The semi-implicit formulation of surface tension allows time-step values higher than the limit imposed by the stability condition of an explicit surface tension. Therefore, we set the value of the time-step to approximately 50 times the limit of the stability.

∆t ≈ 50 × h 3 0 ρ l M,0 + ρ A 4πγ 0 (5.

103)

For h 0 = 60 µm, we fix the time step to ∆t = 5 × 10 -4 s.

In a preliminary simulation, we encountered a problem of calculation divergence when a small quantity of the liquid metal remains not yet solidified. We attribute this numerical problem to the spurious currents due to capillary forces applied in the small remaining liquid metal surface. Indeed, at the end of the solidification, the temperature gradient becomes weak and consequently Marangoni too. The small volume of the liquid is essentially governed by the solidification shrinkage. When the volume of the liquid phase (g l = 100%) becomes of the same order of magnitude as a few elements, spurious currents become preponderant and destabilise the movement in the small liquid volume. To avoid this problem, we cancel the capillary forces and allow only the solidification shrinkage when the volume of the liquid phase reaches a percentage of the total volume of the metal set at 3%. The mass correction, on the other hand, is applied even after the disappearance of the fully-liquid metal until the volume of the fully solid metal reaches a limit of 90% of the total volume of the metal.

Numerical results and discussion

With the previously defined parameters, a simulation of 7 seconds of solidification time is sufficient to obtain a fully solidified droplet, as shown in Figure 5.4. Indeed, in addition to the twodimensional effect of the simulation, the contact between the droplet and the cooler is assumed to be perfect. The cooling rate is thus faster than in the experiment. Before proceeding to the configuration of the contact thermal resistance and other possible parameters that would influence the cooling rate, it is interesting first to analyse the behaviour of the droplet predicted by the present simulation. Figure 5.4 represents a sequence of images showing the field of the liquid metal velocity superimposed on the temperature field of the whole system. Note that the gas flow is also taken into account in the simulation, but in this analysis, we only show the liquid flow in the droplet. To display the progress of solidification, the iso-values g s = 1% and g s = 99% are plotted in red and blue respectively.

The cooling and solidification of the droplet are characterised by two stages: the first stage is marked by a strong temperature gradient. Marangoni currents strongly govern the flow of the liquid phase at this stage. In fact, at the beginning the initial temperatures of the chill and the droplet are very different, creating a strong temperature gradient which triggers and drives heat diffusion in the opposite direction of the gradient (towards the chill, according to Fourier's law). In the metal, this strong heat extraction leads to rapid propagation of the solidification front in the direction of the gradient (downwards). Since the Marangoni coefficient is positive, the Marangoni force applied at the liquid/gas interface is downward. The Marangoni current, therefore, pulls cold liquid at the interface downwards with a velocity of magnitude up to 0.09 m/s. By mass conservation, the hot liquid at the bottom is pushed upwards in the droplet axis. Thus, the solidification front, which is initially convex, flattens out due to the heat supplied at the droplet axis. As the solidification progresses, the gradient dissipates and becomes weaker and weaker. This is illustrated by the increasing distance between the red and blue lines that delimit the mushy zone. As a consequence, the convection by Marangoni is attenuated, giving way to the solidification shrinkage which therefore characterises the second stage. Shrinkage velocities are of a magnitude of the order of 10 -5 m.s -1 , very low compared to the Marangoni velocities.

It can be seen from Figure 5.5b that the final shape of the droplet is slightly elongated in the direction of the temperature gradient. Although this deformation is consistent with the experiment, it is still less pronounced than in the experiment.

Concerning the time-evolution of the front position, as shown in Figure 5.5a, the propagation of the front is much faster than the experiment. This is probably because the contact is not perfect in the experiment. It can also be observed that a simulation with pure conduction provides a prediction of the cooling rate close to the present simulation with the resolution of the fluid flow and segregation. Therefore, the 3D pure conduction calculations, presented in the previous chapter, However, the chemical composition on the snapshots shows more positive segregation regions than negative segregation ones. Therefore, it is worth checking whether the mass of the solute is well conserved or not. Figure 5.7 shows the temporal evolution of the total mass of metal and the mass of carbon. Contrary to the total mass, which remains constant over time, it can be seen that the mass of carbon actually increases over time up to 4%. Although this mass gain is small, it is still not negligible. In the following paragraph, we will study the influence of the chemical composition on the shape deformation of the droplet and the cooling rate. 

Influence of the chemical composition

In this paragraph, we study the influence of chemical segregation on the behaviour of the droplet during solidification. To do so, we perform a simulation without solving the solute transport equation. It means therefore assuming a uniform and constant composition equal to the nominal composition w i = w C,0 = 0.9%w t . We then consider a case where the alloy is ternary, i.e.

Fe-0.9wt.%C-0.26wt.%Si, for which we solve two conservation equations of the chemical species:

Carbon and Silicon. Therefore, new thermodynamic tabulations are used specifically for this new approximation of the steel under study.

Figure 5.8 shows the final Carbon and Silicon composition for the ternary alloy. As we transport both compositions with the same convection velocity and diffusion coefficient, the segregation maps for carbon and silicon are similar and reflect the significant influence of the Marangoni currents as already described above for the binary alloy. The difference between these three cases can be seen in the solid fraction field shown in Figure 5.9. Indeed, the phase fractions depend on temperature and chemical composition following a solidification path defined by thermodynamic equilibrium. In cases where segregation has been taken into account, the chemical composition is strongly influenced by convective transport. Regions of positive segregation are created along regions of high liquid velocity, especially at the interface. The solidification front is consequently slowed down in these regions and thus accelerated in regions of negative segregation. This explains, firstly, the irregularities of the front observed for segregated cases, unlike the case of a simulation without segregation where the front is smooth and follows the isotherms. Secondly, as the concentration of solutes is high at the interface for cases with segregation, the liquid/gas surface is greater. This results in higher Marangoni velocities compared to the case without segregation.

The final shape of the solidified droplet is slightly more elongated for cases with segregation, as shown in Figure 5.10. There is a difference of 0.1 mm more than in the case without segregation.

As for the position of the solidification front, the temporal evolution is almost the same for all cases with a very slight acceleration of the case without segregation at the end of the solidification. It is important to note here that the position of the front is extracted from the simulations by averaging 

Influence of Marangoni coefficient

As reported earlier in Chapter 2, measurement of the surface tension on board the ISS using the oscillation method revealed an increasing linear variation of the surface tension with temperature.

The Marangoni coefficient is, therefore, positive. This is in contrast to several liquid metals whose Marangoni coefficient is rather negative [START_REF] Egry | Surface tension of liquid metals and alloys -recent developments[END_REF]. The presence of segregated surface-active elements on the surface of the alloy may be the cause of this positive coefficient. We, therefore, wonder what the behaviour of the droplet would be during solidification if the Marangoni coefficient were negative. To answer this question, we carried out a simulation with a Marangoni coefficient equal to the opposite of the measured one, i.e. ∂γ ∂t = -5.44 . 10 -4 N.m -1 .K -1 . The results of the simulation in comparison with the case of a positive coefficient can be discussed based on Figures 5.12 and 5.13. Figure 5.12 shows snapshots of the velocity field of the liquid metal superimposed on the temperature field, for the positive coefficient in the left column and the negative coefficient in the right column. The figure also shows the iso-values of g s = 1% and g s = 99%. In the case of decreasing temperature dependence (right), the colder regions correspond to higher surface tension. As a result, the Marangoni force pulls hot liquid from the bottom of the drop towards the solidification front, and by conservation of the mass, the liquid at the front is pushed down along the axis of the drop. In this way, the propagation of the front at the interface is slowed down by the heat brought in from the bottom. It follows that the convexity of the front is emphasised in the case of a negative Marangoni, unlike a positive Marangoni which tends to flatten the front. It can also be seen that the velocity values for a negative Marangoni are lower than those of a case with a positive Marangoni due to the fact that the liquid pulled by the Marangoni force impinges on the mushy zone contrary to the case of a positive Marangoni where the liquid is pushed away from the mushy zone. The difference is also visible in terms of the final deformation shown in Figure 5.13. The drop with a negative Marangoni coefficient shows no elongation compared to the initial shape. 

Influence of the thermal contact resistance

The cooling rate predicted by the previous simulations is significantly higher than that observed in the experiment. In addition to the two-dimensional nature of the simulations, the contact between the chill and the metal is assumed to be perfect. The objective is now to study the influence of the contact thermal resistance on the cooling rate and the final shape of the droplet.

For this purpose, we have carried out a parametric study in 2D pure conduction similar to the one carried out in 3D at the end of the previous chapter. The results of this study are shown in Figure 5.14. This study suggests two interesting values for the thermal resistance R t h = 10 -4 W -1 .m 2 .K and R t h = 2 .10 -4 W -1 .m 2 .K. We have therefore carried out two simulations with these values of R t h . The temporal evolution of the front position is shown in Figure 5.15a. We notice that the front propagates in two stages: the first stage of acceleration governed by a strong temperature gradient and thus by strong Marangoni convection, and the second stage of deceleration with a weak temperature gradient where the shrinkage at solidification brings heat upwards. During the first acceleration stage, the simulation with the value 10 -4 W -1 .m 2 .K follows well the experimental evolution during the first 2.5 seconds. During the second phase, the simulation with the contact thermal resistance value of 2 .10 -4 W -1 .m 2 .K follows the experimental evolution. This result leaves the door open to more sophisticated work on the dependence of the contact thermal resistance on other space-time variables, such as contact pressure, temperature, etc. However, in this work, we only consider a constant and uniform value of the thermal resistance. In Figure 5.15b, the final shape of the droplet is displayed for one case with perfect contact and both cases with thermal resistance. It can be seen that the elongation of the droplet becomes greater when cooling is slower.

Figure 5.16 shows the velocity field of the liquid metal superimposed to the solid fraction field of the droplet with a contact resistance equal to R t h = 10 -4 W -1 .m 2 .K. We notice that the velocity 

3D simulation

For 3D simulations, we define the calculation domain as a cylinder obtained by revolution symmetry around the Z-axis of the 2D domain. In a similar way to 2D simulations, we consider a fixed mesh with the same characteristic sizes of the 2D mesh, as shown in figure 5.17 separates the shape predicted by the simulation from that found by the experiment. Nevertheless, the elongation predicted by the 3D simulation is greater than that simulated in 2D. The temporal variation of the front position is given in Figure 5.19a. Note that here the front is defined by the iso-value g s = 1% at the interface of the droplet with the gas. Indeed, the front is extracted from the experiment from the processing of the images showing the free surface of the droplet. The growth of the front is more rapid than that observed in the experiment because the contact between the sample and the chill is supposed to be perfect (R t h =0 W -1 .m 2 .K). Another simulation with appropriate thermal contact resistance may bring us closer to reproducing the experimental behaviour, as shown in 2D.

Figure 5.17: The static 3D mesh in a cross section of the computational domain showing the characteristics of the mesh size in each subdomain.

The 3D simulation presented here ran for 50 days on 128 processors. This is due to the very large number of elements contained in the mesh because of the area covering the metal domain, which requires a very small mesh size. Indeed, the number of elements in this area represents more than 85% of the total number of elements. An optimisation of this mesh size is necessary for the following calculations.

In this type of experiment, we are dealing with very high temperature gradients of the order of 1300K, very large density ratio between the metal and the gas of the order of 7000 and a very high surface tension coefficient (compared to that of fluids such as water). Faced with these challenges, we are constrained to use a very high-resolution mesh with the present numerical framework both at the interfaces where the jump in properties is very large and within the metallic domain where

Marangoni convection is present with the propagation of the solidification front. We have proposed a semi-implicit formulation that allows to gain up to 50 times in time increments. But the number of elements required for a mesh that allows both stable calculation and good physics capturing is still very huge and becomes colossal in 3D.

We estimate that an adequate number of elements for a reasonable computation time would be of the order of 2M to 3M elements. To reduce the current 17M element mesh, very sophisticated optimisation work is required. The point to start with is the fact that static mesh makes us refine a region that satisfies a good capture of the physics at all stages of the simulation. This region has been defined by an 8mm major axis ellipsoid to cover the final elongation of the drop. This region has been defined by an 8mm major axis ellipsoid to cover the final elongation of the drop.

This region covers more than what is necessary for certain stages of the simulation, especially during the first 2 seconds of the simulation where the shape of the drop is almost spherical. An adaptive meshing method is, therefore, necessary to update the mesh according to the evolution of the droplet shape. We used an adaptation method based on the distance function (level-set) [START_REF] Resk | Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations[END_REF]. This method allows the construction of anisotropic mesh elements within a given thickness band around the domain boundaries and isotropic elements outside. This method allowed us to refine the mesh around the chill in the previous simulation (see figure 5.17). Keeping the same mesh around the chill, we tried to build anisotropic mesh around the metal/gas interface with an element size of 2h 0 in the tangential direction and isotropic mesh inside the metal of size 2h 0 . The resulting mesh is shown in figure 5.20 , and contains 8M elements . Unfortunately, the calculation did not converge. This is because the temperature gradient is parallel to the metal/gas interface, so the mesh should not be coarse in this direction. Marangoni currents are also important inside the droplet and require refinement within the metal domain. We believe that a mesh adaptation based on physical criteria is more suitable in this case. Such a method already exists in CimLib [START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF]. Its use is not simple and requires configuration work in order to find the best parameters to achieve an optimal mesh capturing at the same time interfaces, fluid dynamics and heat transfer, and allowing a reasonable calculation time. 549V and the properties of the sample: ρ l M , the density, µ l M , the viscosity and σ l M , the electrical conductivity. As we do not have reliable data about the electrical conductivity of Fe-0.9wt.%C-0.26wt.%Si alloy, we estimate σ l M using the Wiedemann-Franz-Lorentz law:

k l M σ l M T = L 0 (5.104)
where L 0 = 2.45×10 -8 W.Ω.K -1 is Lorentz number. With T = T M,0 , k l M = 〈k〉 M , the electrical conductivity of Fe-0.9wt.%C-0.26wt.%Si is estimated to σ l M = 9.85 × 10 5 S.m -1 . Following the work of Xiao et. al. [START_REF] Xiao | Surrogate model for convective flow inside electromagnetically levitated molten droplet using magnetohydrodynamic simulation and feature analysis[END_REF], the maximum velocity of the positioner-induced flow for the sample d1 under the operating conditions during the ISS chill cooling experiment is estimated to u max = 3.9 ×10 -2 m.s -1 which is of the same order of magnitude as the Marangoni-induced flow velocity. Therefore, it would be useful to account for the electromagnetic field as a further improvement of the present modelling

Conclusion

In this chapter, we have presented a general numerical framework for modelling macrosegregation in the presence of thermocapillary convection in a multi-domain context. The proposed numerical framework is based on a so-called "weak coupling" between energy conservation, conservation of chemical species and conservation of momentum and total mass. Energy transfer by diffusion and convection is provided by a thermal solver coupled with thermodynamic tabulations containing the solidification paths for multi-component alloys. The solver is enriched by the thermal contact resistance model developed in chapter 4. The transport of chemical species is achieved by a monolithic solver allowing the resolution of the solute concentration in a multi-domain context.

The Navier-Stokes solver allows the resolution of the flow in the presence of capillary forces (surface tension and Marangoni), mushy zone and solidification shrinkage. All this is formulated in an Eulerian monolithic approach using the level set method. The mass correction method proposed in Chapter 3 has been extended for the case of solidification with shrinking volume. This numerical framework was applied for the simulation of the chill cooling experiment of a steel droplet microgravity. The simulations showed the dominance of Marangoni currents over the liquid flow. They also allowed finding the deformation of the solidifying droplet and its elongation in the direction parallel to the thermal gradient. The same behaviour was observed in the experiment. Through 2D parametric studies, we have shown that by adjusting the value of the thermal resistance we can get closer to the experimental cooling rate. Finally, we showed a 3D simulation assuming perfect contact. The simulation showed the same trend concerning elonga- tion and Marangoni convection. However, the cooling rate is more important than the experiment because the thermal contact is not perfect in the experiment. The 3D simulation, whose results

were presented was very time-consuming due to the huge number of elements contained in the mesh. For this reason, unfortunately, we could not perform another calculation with a non-zero thermal resistance in order to compare with the experimental cooling rate.

Chapter 6

Conclusions and Perspectives

This thesis is part of the two ESA projects entitled CCEMLCC and NEQUISOL which use electromagnetic levitation to study the solidification of alloys in microgravity. The common objective of these two projects being to reach a better understanding of containerless solidification, our contribution in these projects focuses on numerical modelling in order to provide a tool for the simulation of the experiments. The work achieved in this thesis deals with aspects related to fluid mechanics and others related to heat transfer. The developments carried out for fluid mechanics bring a contribution to both projects CCEMLCC and NEQUISOL, while the work on the thermal part is oriented towards applications of CCEMLCC project. The coupling is finally applied to the first and unprecedented chill cooling experiment performed on board the ISS. In order to have reference data for the comparison and validation of the simulations, we proposed at the beginning of this manuscript a post-processing of the ISS experiment. We extracted data by image processing from the recordings of the experiment by fast camera.

Fluid Mechanics For the part dealing with fluid mechanics, the main added value of this work is the taking into account of capillary forces that were absent in the previous contributions. This part of the thesis includes two types of contributions: numerical and theoretical.

Concerning the numerical part, the capillary forces are modelled by the CSF (Continuum Surface Force) method which introduces theses forces into Navier-Stokes equations as volume forces.

The conversion from surface forces to volume forces is performed by the Dirac function which is calculated from the level-set function. However, we encountered several numerical difficulties related to surface tension and the level-set method.

• Firstly, we noticed that the conservation of mass is not ensured by classical numerical methods and even worse when the value of the surface tension is very high. We therefore proposed a mass correction method first for a constant volume and later for a shrinking volume due to solidification.

• We then tackled the classical problem of spurious currents artificially introduced by the CSF method. We proposed a method of scaling the Dirac function to reduce spurious currents around the interface.

• Numerical diffusion was also one of the numerical problems encountered. On this issue, we proposed a high order temporal discretization in order to reduce discretization errors and consequently numerical diffusion.

• The explicit discretization of surface tension force constrains the stability of the computation by a limit time step beyond which the computation becomes unstable. This limitation can be circumvented by a semi-implicit discretization using an implicit term depending on the fluid velocity. This formulation thus allows to save calculation time, on the other hand its use is associated with an added numerical diffusion.

The present numerical framework dealing with multi-fluid flows with surface tension shows a great capacity to handle high density ratios and very large surface tension values. However, it has some limitations:

• The spurious currents are reduced compared to classical methods, but are not completely eliminated. One way to improve this is to find an alternative method for calculating the interface curvature. Indeed, the curvature as defined in chapter 3 is written as the divergence of the gradient of the level set. The level set field being a P1 (linear) field, its gradient is therefore a P0 field (constant per element) and its divergence is therefore zero. In order not to fall in this case, we build a P1 gradient in each node by interpolation of the P0 gradient from the neighbouring elements. This P1 gradient is then used to calculate a P0 divergence which is then also interpolated to obtain a P1 divergence which finally gives the P1 curvature. This succession of interpolation introduces a loss of information and oscillations in the profile of the curvature.

• In order to use the diffuse interface approach, the thickness of the transition zone must be small compared to a characteristic length of the problem under study. At the same time, a number of elements in the transition zone must be provided, especially to properly describe the Dirac function. This requires the use of a high-resolution mesh around the interface.

This can be very time-consuming in 3D. A conservative mesh adaptation method is necessary to update the mesh according to the position of the interface without losing information when transporting fields from one mesh to another.

This thesis also includes a theoretical part proposing an analytical solution of a benchmark inspired from the zero gravity oscillating drop method. This benchmark allows to quantitatively assess the accuracy of numerical methods according to three criteria: mass conservation, oscillation frequency correlated to surface tension and damping rate related to viscosity. For each of these criteria the theory developed provides an analytical solution in both 2D and 3D.

Heat transfer Concerning the part dealing with thermal, we proposed an Eulerian numerical framework to model heat conduction in a multi-domain context. The novelty lies in the development of a model allowing to take into account the thermal contact resistance in the stationary and unsteady regime. The results of the model were confronted with analytical test cases and showed
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 11 Figure 1.1: A liquid metallic drop of Ni-Cu alloy with a diameter of 7 mm, freely suspended within an electromagnetic levitation coil [3]

CHAPTER 1 .

 1 GENERAL INTRODUCTION The academic and industrial partners working in collaboration with CEMEF in the context of NEQUISOL and CCEMLCC project are given in the following list: Academic partners -MINES ParisTech, PSL Research University, Center for Material Forming (CEMEF) UMR CNRS 7635, Sophia Antipolis, France (CCEMLCC & NEQUISOL projects) -Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR), Institut für Materialphysik im Weltraum, Köln, Germany (CCEMLCC & NEQUISOL projects) -University of Alberta, Department of Chemical and Materials Engineering, Advanced Materials and Processing Laboratory, Edmonton (CCEMLCC & NEQUISOL projects) -Université de Lorraine, Institut Jean Lamour (IJL) UMR CNRS 7198, Nancy, France (CCEMLCC project) -National Center for Metallurgical Research CENIM-CSIC, Dept. Metalurgia Física, Madrid, Spain (NEQUISOL project) -Institute of Materials Research, University Leeds, Leeds, UK (NEQUISOL project) -Otto-Schott-Institut für Materialforschung, Friedrich Schiller University, Jena, Germany (NEQUISOL project) Industrial partners -ARCELORMITTAL Maizières Research, Maizières-lès-Metz, France (CCEMLCC project) -TRANSVALOR, Biot, France (CCEMLCC project) -INDUSTEEL FRANCE, Le Creusot, France (CCEMLCC project) -ASCO INDUSTRIES, Hagondange, France (CCEMLCC project) -APERAM ALLOYS IMPHY, Imphy, France (CCEMLCC project) -EVRAZ, Regina, Canada (CCEMLCC project) -HYDRO Aluminium Deutschland AG, Bonn, Germany (NEQUISOL project) -RGS Development, Broek op Langedijk, The Netherlands (NEQUISOL project) -Equispheres Inc., Ottawa, Canada (NEQUISOL project) In these projects, both experimental and numerical approaches are used for investigation. Various facilities are provided for carrying out microgravity experiments: parabolic flights, sounding rockets and the ISS. CEMEF contributes to research work by numerical modelling with the aim of proposing a numerical tool capable of reproducing the experiments and helping to interpret their results.

  Thermal or heat transfer is a fundamental concept in thermodynamics. Together with work, it represents the modes of internal energy exchange between two systems. There are three types of heat transfer which can operate simultaneously: conduction, convection and radiation. All these heat transfer modes are involved in the chill cooling experiment as illustrated in Figure1.2.

Figure 1 . 2 :

 12 Figure 1.2: Illustration of heat transfer modes involved in chill cooling experiments in the context of the CCEMLCC project

Figure 1 . 3 :

 13 Figure 1.3: (a) In situ observation of columnar microstructures for transparent alloy of succinonitrile-acetone (SCN-2wt% Ace) [4]. (b) A typical image of a settling equiaxed dendrite[5] 

Figure 1 . 4 :

 14 Figure 1.4: (a) Numerical simulation showing the velocity field of the solid phase (black arrows) and the liquid phase (orange arrows) at t = 1.5 s during the solidification of a 3.3mm radius steel droplet. (b) Droplet shape predicted by numerical simulation with macrosegregation (grey) and without macrosegregation (blue) in comparison with TEXUS experimental profile (red) at t = 4.5 s [12]. The top of the experimental shape was not visible in the experiment.
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 1514 Figure 1.5: (a) Numerical simulation of the fluid flow in the liquid metal and the surrounding gas during solidification of a steel droplet. (b) Comparison of experimental (blue) and numerical (red) final dropletprofiles, compared to its initial shape (green)[START_REF] Saad | Numerical Modelling of Macrosegregation Formed During Solidification With Shrinkage Using a Level Set Approach[END_REF] 

Figure 2 . 1 :

 21 Figure 2.1: (a) Schematics of the experimental set-up used in a TEXUS sounding rocket where a cage was used to limit the sample displacement. (b) Schematics of the cup holder used for chill cooling of EML samples on board the ISS [16].

CHAPTER 2 .

 2 CHILL COOLING EXPERIMENTS IN MICROGRAVITY of microgravity periods offered by parabolic flights, they are often used to prepare and validate the experimental setups before sending them on a sounding rocket trip or further to the ISS. The reasons why parabolic flights are useful for precursor research in preparation for long-duration missions are their relatively low cost and the short waiting time between submission of a proposal and flight execution. Besides, in a parabolic flight, researchers can join the trip to follow and control the experiments as they float. TEMPUS is the name given to the parabolic flight mission for the containerless solidification using the EML device.

Figure 2 . 2 :

 22 Figure 2.2: (a) A parabolic flight profile [18]. (b) View inside the Zero-G Airbus aircraft during the 46 t h ESA flight campaign [19].

Figure 2 . 3 :

 23 Figure 2.3: Time evolutions for a Fe-0.9C-0.2Si sample during a chill cooling cycle in TEMPUS parabolic flight: (blue) temperature, (red) heater control voltage and (green) microgravity level. The time interval between contact with the chill plate and completion of solidification is marked by the vertical dashed lines.

Figure 2 . 4 :

 24 Figure2.4: Image sequence given by a high-speed camera showing the solidification progress between 0 s (when contact with the chill is initiated) to 3.75 s in a Fe-0.9C-0.2Si steel droplet. The progress of the solidification front is marked by the green dashed line. In some frames, the droplet is partially hidden by the narrow opening of the sample holder facing the camera[START_REF] Saad | Numerical Modelling of Macrosegregation Formed During Solidification With Shrinkage Using a Level Set Approach[END_REF].
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 25 Figure 2.5: The final shape of the solidified sample [6].

Figure 2 . 6 :

 26 Figure 2.6: Time evolutions for a Fe-0.1C-0.2Si sample during a chill cooling cycle in TEMPUS parabolic flight: (blue) temperature, (red) heater control voltage and (green) microgravity level. The time interval between contact with the chill plate and completion of solidification is marked by the vertical dashed lines.

Figure 2 . 7 :

 27 Figure 2.7: Sequence of video images for the Fe-0.1C-0.2Si experiment showing the sample shape time evolution (from left to right). The time increment between images is 0.5 s starting at the time of contact with the chill plate at 25.9 s. The chill plate (not visible) was located at the top and moved downwards. The red line marks the position of the growth front. From the video taken at 500 fps growth velocity is determined to approximately 1mm.s -1 [20].

Figure 2 . 8 :

 28 Figure 2.8: Time evolutions for a Fe-0.05C-0.2Si sample during a chill cooling cycle in TEMPUS parabolic flight: (blue) temperature, (red) heater control voltage and (green) microgravity level.

Figure 2 . 9 :

 29 Figure 2.9: Sequence of video images for the Fe-0.05C-0.2Si experiment showing the sample shape time evolution (from left to right). The time increment between images is 0.5 s starting at the time of contact with the chill plate at 40.1 s. The chill plate moved downwards. The interface chill plate-metal is represented by the dashed blue line. The position of the growth front is marked by the red line. From the video taken at 500 fps growth velocity is determined to approximately 1mm.s -1 .

  13 minutes. TEXUS-46 is the name of the sounding rocket mission that carried the experimental setup for CCEMLCC project. Note that the rocket used in TEXUS-46 mission reaches a height of 250 km above the Earth. For the sake of simplicity, we refer to the experiments conducted in this mission as being the TEXUS experiments.

Figure 2 .

 2 Figure 2.10: (a) A parabolic flight profile [21]. (b) Successful launch of TEXUS-42 sounding rocket [22].

Figure 2 . 11 :

 211 Figure 2.11: Time evolutions during 5 cycles of processing Fe-0.1C-0.2Si sample on board TEXUS-46 sounding rocket: (blue) temperature measured by the lateral pyrometer and (orange) temperature measured by the axial pyrometer [23].

Figure 2 . 13 :

 213 Figure 2.13: The International Space Station [24].
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 21412 Figure 2.14: Temperature-time profile (blue) and heater control voltage (red) for Fe-0.9C-0.2Si during a chill cooling cycle in ISS-EML (batch #2.3). The time interval between contact with the chill plate and completion of solidification is marked by the vertical dashed lines.

Figure 2 . 15 :

 215 Figure 2.15: Sequence of snapshots from the high-speed camera that recorded the Fe-0.9C-0.2Si experiment onboard the ISS is showing the time evolution of the sample's shape. The chill plate was moving downwards during the first 2 seconds from the contact. The blue line represents the interface of the contact with the chill plate. The red line marks the position of the growth front.

Figure 2 . 16 :

 216 Figure 2.16: The final shape of the sample d1 after completion of solidification on board the ISS.

Figure 2 .

 2 Figure 2.17: Time-evolution of the front position.

Figure 2 . 20 .

 220 Figure 2.20. The time-evolution of θ s , θ l and their difference is shown in Figure 2.21. The angle gap is very significant during the first 2 seconds and reaches up to 20°but vanishes within 4 seconds from the contact with the chill.

Figure 2 . 18 :

 218 Figure 2.18: Snapshots showing the shape of the droplet during solidification. The red lines mark the front position. The contour of the final shape, marked by the blue dashed lines, is superimposed to the solidifying droplet shape at different times.

Figure 2 . 19 :

 219 Figure 2.19: Snapshots showing some light spots (encircled in red and yellow) located at the solid phase at different times. The invisible part of the droplet is hidden by the holder. The red lines mark the front position.

Figure 2 . 20 :

 220 Figure 2.20: Snapshots showing differences in solid and liquid angles at the solidification front position. The liquid angle θ l is marked in red and the solid angle θ s is marked in blue.

Figure 2 .

 2 Figure 2.21: Time-evolution of the solid and liquid angles at the front position.

Figure 2 .

 2 Figure 2.22: Temperature-time profile (red) and heater control voltage (blue) for Fe-0.9C-0.2Si during properties measurement cycle in ISS-EML (batch #2.3). The two peaks in the heater signal represent the electromagnetic pulses to make the droplet oscillate[START_REF] Mohr | Surface tension and viscosity for sample #20, fec0.9si0.2[END_REF].

Figure 2 .

 2 [START_REF] Volkmann | Chill cooling for the electromagnetic levitator in relation with continuous casting of steel[END_REF] shows the extracted radius in the vertical direction, parallel to the axis of the sample holder. It shows the response of the droplet to the two pulses. The response to the first pulse can not be analysed with respect to the damping rate. The disturbances in the first response can be explained by the strong oscillations that persisted from the heating phase. The response to the second pulse corresponds to the profile of damped oscillation of Rayleigh's mode which is suitable for the measurement of surface tension and viscosity.

Figure 2 .

 2 Figure 2.24 shows the variation of surface tension with respect to temperature. It can be expressed by a linear function:
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 223 Figure 2.23: The time evolution of the oscillation of the radius of the droplet [25].

Figure 2 . 24 :

 224 Figure 2.24: Surface tension as function of temperature [25].
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 3 NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSION interface: Front tracking methods and Front capturing methods. The front tracking methods are based on a Lagrangian description of the interface. These methods are characterised by the use

  1) where d (x, Γ) is the geometrical distance from the point x to the interface Γ. Here the positive values are arbitrarily chosen in Ω 1 .

Figure 3 . 1 :

 31 Figure 3.1: Illustration of the Level-Set function
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 3 NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSIONinitial volume, over the surface A Γ such as:

  First, we write the weak form of the set of equations (3.8) for each fluid. It can be obtained by multiplication with test functions and integration over each subdomain then integrating by part the term with the stress tensor. In this work, we denote by (a, b) D the integral of the product a • b over the domain D, i.e. (a, b) D = ´D a • b d D.

3 .Figure 3 . 3 :

 333 Figure 3.3: Illustration of the centred Dirac function and the density-scaled Dirac function

Figure 3 . 4 :

 34 Figure 3.4: Illustration of the simulated velocity field (depicted by black arrows) of a circular drop with (a) the standard CSF method and (b) the density-scaled CSF method

  framework for modelling a two-fluid incompressible flow, including a moving interface governed by surface tension. The current numerical framework is based on the use of a global computa-CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSION tional domain with a single Eulerian mesh for both fluids. The interface is implicitly represented by the Level-Set function. The time-evolution of the interface is monitored by solving a transport equation of the Level-Set function. The flow dynamics is described by conservation equationsgiven by Navier-Stokes. A monolithic formulation of mass conservation and momentum enables the resolution of a single set of equations over the entire computational domain. These equations are enriched by the contribution of surface tension as a volume force via the CSF method. The Navier-Stokes resolution is based on the stabilised FE VMS method. We have also suggested some numerical improvements to address numerical issues such as mass loss, spurious currents, penalising stability condition and numerically-added diffusion. Now we move on to the assessment step of our numerical modelling. For this purpose, our evaluation must be based on the criteria of mass conservation described by the Level-Set function and of mechanical energy conservation given by the flow velocity field governed by surface tension and the mechanical properties of the fluids.

RFigure 3 . 5 :

 35 Figure 3.5: Schematics of the framework of 3D and 2D oscillations

where ε 4 Figure 3 . 6 :

 436 Figure 3.6: Mesh grid for the parametric study

Figure 3 .

 3 Figure 3.7a shows the time-evolution of the droplet radius in θ = 0 direction for two simulations: without correction (black line) and with correction (blue line). Both signals are compared to the derived analytical solution (red line) given by equations (3.96) and(3.97). One can notice that the temporal signal extracted from the simulation without mass correction is oscillating around a decreasing equilibrium radius. This is nothing else than mass loss. Indeed, the temporal variation of the surface of the 2D drop, displayed in figure3.7b, is decreasing linearly with a rate of 38% of the initial surface per 100 millisecond. With mass correction, the radius is oscillating around a constant equilibrium radius. We extract the oscillation frequency from the temporal signals via the fft (Figure3.8). The peak of the spectrum indicates the oscillation frequency of the temporal signal.

Figure 3 . 7 :Figure 3 . 8 :

 3738 Figure 3.7: (a) Comparison of the time-evolutions of the radius of the drop without mass correction (black line), the radius with mass correction (blue line) and the theoretical solution (red line) (b) The temporal variation of the surface of the 2D drop without and with mass correction method

Figure 3 . 9 :Figure 3 . 10 :

 39310 Figure 3.9: Comparison of the temporal variation of the surface of the 2D drop between the Conv+DRT method and Leveler method
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Figure 3 . 11 :

 311 Figure 3.11: Comparison of the oscillation radius simulated with the explicit surface tension and the radius simulated with the semi-implicit surface tension with different time steps

Figure 3 . 12 :

 312 Figure 3.12: Comparison of the oscillation radius simulated with the 1 st order of discretisation of Navier-Stokes and the radius simulated with 2 nd order with different time steps

Figure 3 .

 3 Figure 3.13: Time-evolutions of the normalized radius R(θ = 0, t )/R 0 -1 obtained from simulations with different mesh resolutions

Figure 3 .

 3 Figure 3.14 presents the time-evolution of the liquid domain (red region) depicted by positive-Level-Set function (φ ≥ 0) for different modes. The black arrows represent the inner velocity field.

Figure 3 .Figure 3 . 15 :Figure 3 . 16 :

 3315316 Figure 3.15: The temporal signals of the droplet's radius in direction θ = 0 for modes n ∈ 2, 7

  t ) ≈ εe -λ 2 t cos ω 2,0 t (3.106) As in the previous sections, we assess the accuracy of the numerical solution by comparing it to the derived analytic solution. We extract from the simulation the time-evolution of the displacement of the upper point of intersection of the interface with the z-axis (θ = 0). The comparison is shown in figure 3.19.

Figure 3 . 19 :

 319 Figure 3.19: The time evolution of the displacement of the upper point of intersection of the interface with the z-axis
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 3 NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSIONaccuracy and robustness of the proposed Eulerian framework is discussed through 2D and 3D simulations of different oscillation modes for a liquid iron droplet immersed in a very low density gas.

  without taking into account convection and radiation. First of all, we present a new model for accounting for the thermal contact resistance between two materials and validate it with different analytical test cases. Next, we present the numerical framework for modelling heat transfer in the presence of solidification. Finally, simulations of chill cooling and solidification of a steel droplet will be presented for different values of thermal contact resistance.

Figure 4 . 1 :

 41 Figure 4.1: Scanning Electron Microscopy imaging of the contact area of the solidified sample processed during a parabolic flight on board a zero-g airplane [1]
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 4 NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCEthe coordination between the meshes can become complicated or even sometimes infeasible. The second strategy, which we use in this work, is called monolithic resolution. It consists of solving one equation over the whole computational domain in a single global mesh. The principle of the monolithic formulation is to treat the two sub-domains as one with variable properties k(x) and C p (x).
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 4 NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCE posed a numerical procedure for Kapitza resistance at sharp interfaces, based on XFEM and the level set method.

Figure 4 . 2 :

 42 Figure 4.2: Schematic of two materials in contact, Ω 1 and Ω 2 , forming a thermally resistant interface Γ 12 due to the presence of a gap layer, Ω G , with thickness e.

  In this example, we propose a benchmark with a planar and resistive interface. The problem geometry and mesh are illustrated in figure4.3.

Figure 4 . 3 :

 43 Figure 4.3: Setup for numerical simulations using a 1D heat flow configuration between the two materials in contacts, as defined in figure 4.2.

CHAPTER 4 . 5 (

 45 NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCE Different computations are performed for different values of the resistance R t h ranging from 10 -nearly perfect interface) to 10 5 K.W -1 .m 2 (nearly insulating interface). Thermal conductivity of materials is k 1 = 0.1 W.m -1 .K -1 , k 2 = 10 × k 1 . The half-thickness of the mixture zone is taken as ε = 0.06 m. The mixed conductivity profile along the x-axis using equation (4.18) is given in figure 4.4 for different thermal contact resistance values.

Figure 4 . 4 :

 44 Figure 4.4: Conductivity profile for different thermal contact resistance values.

Figure 4 . 5 :

 45 Figure 4.5: Steady temperature showing the jump at the interface for different thermal contact resistance values
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 4 NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCE along the z-axis, with temperature gradient G = (0, 0, e 0 ): T = G • x = e 0 × z (4.24)
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 4621214 Figure 4.6: Setup of the numerical simulation for a 3D heat flow configuration.
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 4 NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCE Equation (4.25) together with (4.27)-(4.29) is the analytical solution which will be compared to the numerical solution given by the present model. For that, we consider a cubic computational domain Ω of a side length size L = 4r 1 centred with the spheres as shown in figure 4.6a. At the boundary of the cube, ∂Ω, we impose the analytical solution as a Dirichlet condition. In the present test, only the material domain corresponding to the coating of outer radius r 2 is concerned by the boundary condition as the core of radius r 1 is fully embedded in the coating.

Figure 4 . 7 :

 47 Figure 4.7: Temperature field in YZ plane through the centre of the simulation domain.

Figure 4 . 8 :Figure 4 . 9 :

 4849 Figure 4.8: Mesh
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 44232 NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCE Unsteady conductionIn order to evaluate the ability of the new model to handle unsteady heat transfer between two materials including a thermal contact resistance at the interface, we compare the results of the new model (referred to as implicit gap) to the results of a direct numerical simulation of an explicit gap between the two materials (referred to as explicit gap). The geometry of these two cases are shown in figure4.10.

Figure 4 . 10 :

 410 Figure 4.10: Setup for the unsteady conduction validation test. The reference case is referred to as "Explicit" and the evaluated case is referred to as "Implicit".
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Figure 4 . 11 :

 411 Figure 4.11: Mesh size and distribution of the heat conductivity for the (a) explicit and (b) implicit gap configurations.

Figure 4 . 12 :Figure 4 . 14 :

 412414 Figure 4.12: Time-evolution of the temperature jump across the interface for C p,G C p .

[ 10 -

 10 3 m, 10 0 m]. The size of the REV can vary between 10 -4 m and 10 -3 m. It thus includes some columnar and/or equiaxed dendrites, as shown in figure 4.15. Two assumptions are also made for this REV:

Figure 4 . 15 :

 415 Figure 4.15: Schematic representation of the REV
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 4 NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCE The same principle applies to the Argon gas enthalpy 〈ρh〉 A = C p,A .T (4.61) with C p,A = 1300 J.K -1 .m -3 . (a) phase volume fractions (b) phase intrinsic average enthapies (c) phase intrinsic average densities

Figure 4 . 16 :

 416 Figure 4.16: Tabulated thermodynamic properties for the Fe-0.9wt.%C-0.26wt.%Si alloy at nominal composition.

(4. 63 )

 63 where δ M is the metal Dirac function defined by equation (3.26) using φ M . The computational domain is a box of a side length of 20 mm in the vertical Z-direction and 28 mm in the X-and Y-directions (Figure4.17a). The mesh size around the interfaces is 0.06 mm in the direction of the normal to the interface. Inside each domain, the mesh size is 0.2 mm for the metal, 0.3 mm for the chill and 0.6 mm for the gas (Figure4.17b).

  (a) Geometries (b) Mesh (cross section)

Figure 4 . 17 :

 417 Figure 4.17: The setup of the simulation for chill cooling and solidification of a deformed steel droplet showing (a) the geometries of the droplet and chill plate inside the computational domain and (b) a cross section through the 3D finite element mesh .

Figure 4 . 18 :

 418 Figure 4.18: The time-evolutions of the front position for different thermal contact resistance compared to the experiment (the yellow square is extrapolated).

  The model describes the interface by starting from the level-set method and smoothing the transition from one material to the other by a smoothed Heaviside function, hence defining a diffuse interface.The accuracy and robustness of the model are assessed through benchmarks for both steady and transient diffusion regimes. The results and comparisons with the references show that the model can produce a good prediction of the temperature jump across the interface. The second part of this chapter was dedicated to solidification modelling based on the volume average method and the temperature-based energy solver coupled with thermodynamics tabulations. Finally, the numerical framework was applied to simulate the chill cooling experiments of the steel sample conducted in the context of the CCEMLCC project on board the ISS. These simulations clearly show the influence of the thermal contact resistance on the cooling rate, as well as it gives a first estimation of the order of magnitude of the real resistance value. However, the simulation of solidification by pure conduction in a static drop is far from being sufficient to reproduce what occurs in the experiment, in particular, because of the absence of the convective heat and mass transfers.Simulation of chill cooling and solidification, including convective heat transfer induced by solidification shrinkage and capillary forces present at the metal-gas interface, will be the topic of the next chapter.
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  .28) • θF the fluid compressiblity condition: θF = θM H M + θA H A = θM H M (5.29) Moreover, we extend the definition of the permeability, previously defined for the metallic subdomain, to the rest of the computational domain to use a monolithic Darcy term. The idea is to keep the dissipative Darcy term present in the whole domain but to activate it where it is needed as illustrated in Figure 5.1. The extended permeability K F depends on the fluid volume fraction as follows:

Figure 5 . 1 :

 51 Figure 5.1: Schematic of a multidomain system involving a solidifying metallic subdomain

CHAPTER 5 .

 5 NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY

CHAPTER 5 .

 5 NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY

CHAPTER 5 .

 5 NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY

CHAPTER 5 .

 5 NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY

. 70 )

 70 CHAPTER 5. NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY

Figure 5 . 2 :

 52 Figure 5.2: The order of the resolution of conservation equations during a time increment

Figure 5 . 3 :

 53 Figure 5.3: The setup of the 2D simulation for chill cooling and solidification of a steel droplet showing: (a) the geometries of the droplet, chill plate and the computational domain, (b) the 2D mesh used for calculations.
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 5 NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITYrepresent a reliable basis for estimating the thermal resistance value for a complete 3D calculation.The evolution of the solute composition, shown in Figure5.6, is very marked by Marangoni convection. Indeed, the Marangoni force at the interface attracts the liquid enriched in solute in the mushy zone towards the interface. Thus, one can notice areas of positive segregation at the interface in the upper part of the droplet and in the vicinity of these areas of positive segregation adjacent areas of negative segregation from which the solute has been subtracted. The solute-enriched liquid is then injected into the completely liquid phase and redistributed through Marangoni induced recirculation currents. Thus, the axis of the droplet fed with the solute is characterised by positive segregation. This redistribution of the solute makes the composition nonhomogeneous at the front. This influences the progress of the front, which slows down in areas with positive segregation.

Figure 5 . 5 :

 55 Figure 5.5: (a) Temporal signals of the front position for 2D simulation with only heat conduction (dashed black line), 2D simulation with both conduction and convection (black continuous line) and for the experiment on board the ISS (red squares: measured; yellow square: extrapolated). (b) The comparison of the initial shape and the final shape predicted by the 2D simulation showing a slightly-elongated droplet.

Figure 5 . 6 :Figure 5 . 7 :

 5657 Figure 5.6: Snapshots of the solidifying droplet showing the composition field within the metal domain at different times.
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 55859 Figure 5.8: Simulation of solidification of a ternary alloy showing the final composition in (a) Carbon and (b) Silicon.

Figure 5 . 11 :

 511 Figure 5.11: Comparison of time-evolution of the position of solidification front for simulations with a binary alloy Fe-0.9wt.%C, with and without segregation, and a ternary alloy Fe-0.9wt.%C-0.26wt.%Si.
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Figure 5 . 12 :

 512 Figure 5.12: Comparison of the flow pattern in the liquid metal for (left) a positive Marangoni and (right) a negative Marangoni. The velocity vectors are superimposed to temperature field at different times. The red and blue lines mark the position of the iso-values g s = 1% and g s = 99% respectively

Figure 5 . 14 :

 514 Figure 5.14: Parametric study in 2D pure conduction in which the thermal contact resistance is varying from 0 to 3. 10 -4 W -1 .m 2 .K. The numerical results are plotted in dashed lines. The measured front position is marked by red squares. The yellow square is the final front position extrapolated form measurements.

Figure 5 . 15 :

 515 Figure 5.15: Comparison of 2D simulations with R t h =0 W -1 .m 2 .K, R t h = 10 -4 W -1 .m 2 .K and R t h =2. 10 -4 W -1 .m 2 .K for (a) time evolution of the solidification front position and (b) the final droplet shapes

Figure 5 . 16 :

 516 Figure 5.16: Snapshots of the solidifying droplet showing temperature field superimposed to the velocity of the metal at different times. The red and blue lines mark the position of g s = 1% and g s = 99% respectively

  . The mesh thus generated contains a number of elements equal to 17M, which is requiring very long calculation time. We ran a 3D simulation assuming perfect contact between the drop and the chill. The results of the simulation in the XZ plane are shown in figure 5.18 for different times. Marangoni currents CHAPTER 5. NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY are predominant in the first phase of large temperature gradient which decreases over time. The flow velocity induced by Marangoni reaches a maximal value of 5.2 ×10 -2 m.s -1 . The final shape is shown in figure 5.19b in comparison with the experimental shape. A difference of 0.45 mm less

Figure 5 . 18 :Figure 5 . 19 :

 518519 Figure 5.18: Snapshots of the solidifying 3D droplet in perfect contact with the chill. The images show the velocity of the liquid metal and the temperature of the whole domain. The red and the blue lines mark the position of g s = 1% and g s = 99% respectively.
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Figure 5 .

 5 Figure 5.20: A clip of the 3D mesh showing mesh adaptation around the interfaces of the steel droplet and the chill plate. Calculations failed with this mesh.
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Table 1 .

 1 

		1: Some dimensionless numbers involving surface tension	
	Dimensionless number	Symbol	Formula	Forces ratio	Value
	Goucher	Go	R 0	ρg 2γ	0.5	Gravity force Surface tension	0.5	4.64 × 10 -4 1
	Ohnesorge	Oh		µ ργR 0	viscous forces Inertia . Surface tension	1.81 × 10 -4 1
	Weber	Go		ρu 2 0 R 0 γ		Inertia Surface tension		3.60 × 10 -2 1
	Marangoni	Ma	∂γ ∂T . R 0 ∆T µα	Marangoni convection Heat diffusion	1.90 × 10 5 1

• Chapter 6 for general conclusions and perspectives Chapter 2 Chill cooling experiments in microgravity

  

	CHAPTER 2. CHILL COOLING EXPERIMENTS IN MICROGRAVITY CHAPTER 2. CHILL COOLING EXPERIMENTS IN MICROGRAVITY
	Résumé
	Dans ce chapitre, nous nous penchons sur les expériences réalisées dans le cadre du projet CCEMLCC.
	Nous présentons le dispositif expérimental et les échantillons métalliques étudiés. Puis nous
	présentons les résultats des expériences de solidification avec différentes plateformes d'expérimentation
	en condition de microgravité: vols paraboliques, fusées sondes et Station Spatiale Internationale
	(ISS). Une attention particulière sera accordée à la première expérience de ce projet réalisée avec
	succès à bord de l'ISS. L'objectif est de tirer profit de ces expériences pour extraire des données qui
	serviront de référence pour l'évaluation de notre outil de simulation numérique.
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Table 2 .

 2 1: Composition in wt.% of the steel samples investigated in the CCEMLCC project

	Sample No.	Composition in wt.% C Si	S	Al		Mn	P
	a1	0.05	0.26	0.009	0.002		0.6	0.018
	b1	0.105	0.26	0.009	0.006		0.6	0.018
	d1	0.9	0.26	0.009	0.11		0.54	0.011
				Group 1: Fe-C-Si steels				
	Sample No.	Composition in wt.% Cr Ni	Mo	N		Cu	Si
	D2	19.70	17.92	6.246	0.204		0.685	0.203
				Group 2: Fe-Cr-Ni steels			
	Sample No.	Composition in wt.% C B	Si	Cr	Cu	Al	Ti	Mn
	Steel A	0.0067	0.0003	0.0267	0.0191	0.0114	0.093	0.0439	0.0994
	Steel B	0.0076	0.0007	0.027	0.0186	0.016	0.073	0.044	0.0986
	Steel C	0.0076	0.0037	0.0331	0.0187	0.016	0.07	0.047	0.0973
				Group 3: Fe-C-B steels				

Table 2 .

 2 

		2: The references of TEMPUS successful experiments	
		Sample	TEMPUS experiment	
	No.	Composition [wt.%]	Campaign	Day	Parabola
	a1	Fe-0.05C-0.26Si	September 2017	4	7
	b1	Fe-0.105C-0.26Si	September 2016	1	14
	d1	Fe-0.9C-0.26Si	October 2014	1	14
	A temperature-time profile together with the heater control voltage and microgravity level of
	a chill-cooling experiment on Fe-0.9C-0.2Si is shown in figure 2.3. Just before microgravity starts,
	the sample was preheated to a temperature around 1000 o C. Once the microgravity started, the
	sample was quickly heated and melted until it reached a temperature of 1650 o C, well above the
	liquidus temperature T L = 1461 o C of Fe-0.9C-0.2Si. The heater is then turned off. The contact
	with the chill plate occurred a few seconds later. The steep drop in temperature profile reveals the
	time of contact. Chill cooling started and solidification was triggered. The time evolution of the
	front position as well as the sample shape are monitored by a side camera. As displayed in figure
	2.4, only a part of the sample is visible. The invisible part was hidden by the sample holder. The
	final and the whole sample after complete solidification can yet be monitored as reveales by Figure
	2.5. It worth noting that the microgravity period in the parabolic flight ended about 4 s before the
	solidification process was completed (see Figure 2.3).		
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Ce chapitre est consacré à la modélisation et à la simulation d'écoulements à deux fluides incluant une interface mobile avec tension de surface. Le chapitre est présenté en deux parties. Dans la première partie, nous abordons la modélisation numérique d'une interface mobile avec la méthode level-set. Une formulation bi-fluide de Navier-Stokes est adoptée pour décrire l'écoulement en un seul système d'équations. La méthode de l'interface diffuse est introduite. Dans ce cadre, la variation des propriétés à travers l'interface est lissée par des lois de mélange. La méthode Continuum Surface Force permet d'exprimer la force de tension de surface comme une force de volume. Enfin, une méthode VMS (Variational MultiScale) stabilisée pour le solveur Navier-Stokes est présentée. Dans cette partie, nous présentons quelques améliorations numériques supplémentaires pour mieux maîtriser la conservation de la masse, la stabilité des calculs et la précision du solveur. Dans la deuxième partie, l'objectif est d'évaluer la performance de nos méthodes numériques. Dans ce but, nous présenterons le benchmark de la goutte oscillante. Nous commencerons par dériver la solution analytique en 2D et 3D. Ensuite, nous effectuerons des simulations numériques et montrerons les comparaisons des résultats numériques avec la solution dérivée. CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSION Contents 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Interface modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Level-Set function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Level-Set transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Mass correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Flow modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 3.3.4 Surface tension modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.4.1 Continuum Surface Force method . . . . . . . . . . . . . . . . . . . . 3.3.4.2 Semi-implicit surface tension . . . . . . . . . . . . . . . . . . . . . . 3.3.5 Semi-implicit BDF time discretisation of Navier-Stokes equations . . . . . . 3.3.6 Stabilised Variational MultiScale method . . . . . . . . . . . . . . . . . . . . .

  CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE TENSIONof a perpetual oscillator of the form ε n (t ) = A cos(ω n,0 t + B) where the angular frequency is

d E l t ot d t = 0 leads to the solution

  means that surface tension is dominant over viscosity; thus, the behaviour of the iron droplet, in the current range of modes, corresponds to the under-damped regime. This qualitative analysis of the balance of forces is confirmed by the following table, which gives the values of λ 2 n , ω 2 n,0 and ∆ n for each mode.

	Mode	2	3	4	5	6	7
	λ 2 n	0.14	1.23	4.91	13.64	30.69	60.15
	ω 2 n,0	7.87 10 4	2.95 10 5	7.08 10 5	1.37 10 6	2.36 10 6	3.71 10 6
	∆						

n -7.87 10 4 -2.95 10 5 -7.08 10 5 -1.37 10 6 -2.36 10 6 -3.71 10 6

Table 3.1: The values of λ 2 n , ω 2 n,0 and ∆ n for each oscillation mode

Table 3 . 2
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	100)

: Random values of ε n,0 and ψ n for each normal mode

22 )

 22 CHAPTER 4. NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND THERMAL CONTACT RESISTANCE Heat capacity mixing law (4.22) requires the knowledge of the values of the thickness and the heat capacity of the gap. In some problems, these values may be unknown. For this reason, we will show, through numerical simulations of unsteady conduction, cases in which the additional term with gap properties is not required. Three different cases exist, C p,G C p , C p,G = O (C p ) and

	C p,G	C p . In each case, equations (4.11) and (4.22) will be tested and compared to a reference
	case.	

Table 4 .

 4 1: Values of the simulation parameters for results presented in figures 4.8 and 4.9.

Table 5 .

 5 1: Physical properties of materials

	Physical parameter	Symbol	Value	Unit
	Metal thermal conductivity	〈k〉 M	42	W.m -1 .K -1
	Liquid heat capacity (per unit volume)	C l p,M	4.88 × 10 6	J.K -1 .m -3
	Liquid density (reference value)	ρ l M,0	6939	kg.m -3
	Solid density (reference value)	ρ s M,0	7355	kg.m -3
	Liquid dynamic viscosity	µ l M	9.5 × 10 -3	Pa.s
	Surface tension of the liquid	γ 0	1.439	N.m -1
	Marangoni coefficient	∂γ ∂T	5.44 × 10 -4	N.m -1 .K -1
	Secondary dendrite arm spacing	λ 2	90 × 10 -6	m
	Solute diffusion in the liquid	D l M	1.525 × 10 -9	m 2 .s -1
	Gas thermal conductivity	〈k〉 A	0.016	W.m -1 .K -1
	Gas heat capacity (per volume unit)	C p,A	1300	J.K -1 .m -3
	Gas density	ρ A	1.6	kg.m -3
	Gas dynamic viscosity	µ A	2.26 × 10 -5	Pa.s
	Chill thermal conductivity	〈k〉 C	50	W.m -1 .K -1
	Chill heat capacity (per mass unit)	c p,C	700	J.K -1 .kg -1
	Chill density	ρ A	3290	kg.m -3

(a) (b)

Figure 3.17: Snapshots of the droplet shape and velocity field at various times

(a) Time evolution of the radius R(θ, t ) (b) The frequency spectrum of the signal R(θ, t ) given by the FFT Figure 3.18: Comparison of simulation results and the analytical solution

RésuméEn raison de la rugosité, de minuscules poches de gaz peuvent être piégées au niveau de la surface de contact entre le refroidisseur et l'échantillon métallique. Ceci peut former une résistance à l'échange thermique entre les deux corps à travers l'interface de contact. Cette dernière observation soulève la question de l'influence de la résistance thermique de contact sur la croissance du front de solidification. Pour répondre à cette question, nous proposons de modéliser la résistance thermique de contact dans un système multi-domaines impliquant un domaine métallique en solidification. Pour introduire la modélisation de la résistance thermique de contact, nous limitons le cadre, dans ce chapitre, à la conduction thermique sans prendre en compte la convection et le rayonnement. Tout d'abord, nous présentons un nouveau modèle pour prendre en compte la résistance thermique de contact entre deux matériaux et nous le validons avec différents cas test, en régime stationnaire et instationnaire. Ensuite, nous présentons le cadre numérique pour la modélisation du transfert de chaleur (par conduction) en présence de solidification. Enfin, nous présentons des simulations de refroidissement et de solidification d'une gouttelette d'acier pour différentes valeurs de résistance thermique de contact.

Figure 5.4: Snapshots of the solidifying droplet showing temperature field superimposed to the velocity in the metal at different times.
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In the chill subdomain

The density of the chill plate is considered constant. Thus, the mass conservation in Ω C writes:

Momentum conservation

In the metal subdomain

The incompressible Navier-Stokes equations, as presented in chapter 3, are not applicable for a solidifying liquid metal. The reasons are: (i) the shrinkage of the solid phase which includes a non-zero-divergence velocity field in the liquid and (ii) the presence of the mushy zone where the liquid flow is impacted by the interaction with the solid dendrites. In this context, we should rederive the momentum equation which describes the liquid metal flow. For this purpose, we start from the averaged momentum equation for the liquid phase:

where 〈σ l 〉 M = g l σ l M is the liquid average stress tensor. For a Newtonian fluid, the stress tensor can be modelled as follows:

where µ l M is the dynamic viscosity of the liquid metal and

The interfacial momentum transfer M l /s due to phase change at the liquid solid interface can be split into a spherical part M l /s S and a deviatoric part M l d . The spherical part M l /s S = pl ∇ ∇ ∇g l can be interpreted as a buoyant force due to the average interfacial pressure p l . This latter can be considered to be equal to the liquid pressure p l M (p l ≈ p l M ). The deviatoric part expresses the dissipative force in the liquid due the contact with the solid crystals. It can be modelled by analogy with Darcy flow in a porous medium such as:

where K is the permeability of the mushy zone. We consider in the present work that the permeability is isotropic and we use the model of Carman-Kozeny based on the secondary dendrite arm spacing λ 2 such as:

(5.15) Following these considerations, the average momentum equation in the liquid phase becomes: 

(5.36)

Energy conservation equation

In the metal subdomain

The averaged energy conservation equations in each phase of the metallic subdomain write:

We recall that h ϕ M and k ϕ M stand for the intrinsic averaged mass enthalpy and the intrinsic averaged thermal conductivity respectively, with ϕ ∈ {l , s}. Q l /s and Q s/l are the interfacial heat exchanges at the liquid/solid interface which write as follows:

where q ϕ = -k ϕ ∇ ∇ ∇T is the local heat flux density of the phase ϕ ∈ {l , s}.

We assume a perfect contact at the liquid/solid interface Γ l s . Consequently, the heat flux entering the liquid phase at Γ l s is equal to the heat flux leaving the solid phase at the interface. Therefore:

Hence the averaged energy conservation equation over the metal subdomain is:

where 〈k〉 M = g l k l M + g s k s M is the averaged thermal conductivity of the metal. We can develop the convection term as follows:

NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY

We can transform the integrals over subdomains into integrals over the whole computational domain using Heaviside functions as follows:

where

Modelling of interfaces

In the previous conservation equations, we expressed the mixed properties using the Heaviside functions H M , H A and H C as well as the Dirac function δ MC of the metal/chill boundary Γ MC .

Moreover, the expression of the capillary forces that act at the liquid-metal/gas interface Γ l MA requires the Dirac function δ l g , the curvature κ l g and the normal vector n l g . All these variables depend on the position of the interfaces that we model here in this work by means of the level set method. In this context, we define two level-set functions: φ M which describes the boundary ∂Ω M of the metal subdomain, and φ C which gives the position of the chill plate boundary ∂Ω C .

From φ M and φ C we determine smooth Heaviside functions H M and H C for the metal and the chill subdomains respectively: 

Consequently, we deduce the Heaviside of the surrounding gas H A such as:

Note that here we fix a common value of the mixing zone width ε for all the subdomains and that the Heavisides are centred around the boundaries.

From the Heaviside functions we derive two Dirac function δ M and δ C such as:

The metal subdomain Ω M is in contact with the chill plate Ω C and the surrounding gas Ω A .

Therefore, the metal boundary ∂Ω M is composed of two interfaces: the metal-chill interface Γ MC = ∂Ω M ∪ ∂Ω C and the metal-gas interface

We recall the definition of the Dirac function δ MC needed for modelling the thermal contact resistance at the metal/chill interface:

In the same way we define the Dirac function δ MA of the metal/gas interface

During the phase transformation of the metal, the metal/gas interface Γ MA can be composed of a liquid/gas interface Γ l MA and a solid/gas interface Γ s MA . Therefore, Γ l MA where capillary forces are applied, is governed by fluid dynamics as well as phase transformation. However, with the volume averaging method the liquid-solid interface is not explicitly modelled. Hence, we can not clearly separate Γ l MA from Γ s MA in the mushy zone. In this work, we propose to set a threshold g l c for the liquid volume fraction beyond which the metal boundary can be considered predominantly liquid. For this purpose, we define the liquid phase indicator χ l such as:

(5.89)

CHAPTER 5. NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A LEVITATED STEEL SAMPLE IN MICROGRAVITY

Consequently, the Dirac function δ l g , the normal vector n l g and the curvature κ l g needed for capillary forces modelling, write:

)

As we showed in Chapter 3, it is recommended to use a density-scaled Dirac function for surface tension in order to reduce the spurious current around the interface. Accordingly, the scaled Dirac function δ sc al ed l g is defined by the following equation:

The motion of the liquid/gas interface is tracked by the resolution of the transport equation of φ M such as: As previously shown, the mass of the object transported with the level set method is not guaranteed to be conserved. So a mass correction method was proposed for constant volume objects.

For metals, the difference of densities between the liquid phase and the solid phase makes the volume shrink during solidification. So, a mass correction of a varying volume is required in this context. To correct the mass lost/gained during solidification of the metal subdomain, we use the principle of a redistribution of the mass lost/gained over the metal surface but only at the liquid part Γ l MA such as:

where c φ is a distance given by:

m(t ) is the mass of the metal subdomain Ω M at the time t and m 0 is its initial value such as:

Finally, as we assume that the chill plate is fixed, the level set function φ C is constant over time.

No transport equation neither mass correction is applied for it.

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

the performance of the model in capturing temperature jumps between two bodies in contact.

We then applied the model to simulate the solidification of a steel droplet in contact with a chill.

Only conduction was considered in this first application to the CCEMLCC project. The simulations showed that the cooling rate of the metal can be controlled by the value of the thermal resistance.

In the simulations of the CCEMLCC experiment, we used the energy solver developed in Saad's thesis [START_REF] Saad | Numerical Modelling of Macrosegregation Formed During Solidification With Shrinkage Using a Level Set Approach[END_REF], which allows coupling with thermodynamic tables containing the solidification paths of a multicomponent alloy. One of the improvements that can be made to this solver is the numerical treatment of thermal shocks when it comes to contact between two bodies at widely separated temperatures. We therefore recommend enriching the solver with a stabilisation method to manage thermal shocks. Such a method has been proposed by [START_REF] Hachem | Stabilized finite element method for incompressible flows with high reynolds number[END_REF]. The initial temperature of the chill in this work was fixed at the ambient temperature set to 25°C . Considering the heat radiation to which the chill is exposed during heating and melting of the metallic sample, it can be suspected that the chill, or at least its contact surface, does not remain at ambient temperature. It would be useful to examine the relevance of thermal radiation and its influence on the cooling kinetics in future work. Modelling of thermal radiation with Level-set method in a stabilized FE framework has been proposed by Schmid et. al. [START_REF] Schmid | Stabilized mixed finite element method for the m 1 radiation model[END_REF]. The ability of their model to deal with multi-domain problems has been demonstrated. It would be a promising model for enriching the present work by accounting for thermal radiation.

Segregation We pointed out in chapters 3 and 5 that the total mass of the object described by the level-set function is not guaranteed to be conserved during transport of the interface and we proposed a mass correction method based on a uniform redistribution of the lost/gained mass.

For the mass of the chemical species we can first imagine a similar method of global and uniform redistribution of the mass difference of the chemical species. However, it would be more judicious to identify the regions where the resolution of the transport equation leads to mass loss/gain and correct the composition locally so that the mass is globally conserved. Since the resolution of segregation is not the focus of this thesis, we have given little time to this numerical problem and therefore leave the door open for future improvements following this thesis.

Electromagnetic coupling

Although the electromagnetic field needed for positioning the sample is much lower in microgravity than in 1g, the flow induced by the positioner during EML testing exists in reduced gravity. As highlighted in chapter 5, the maximum velocity of the positionerinduced flow is estimated to u max = 3.9 ×10 -2 m.s -1 which is of the same order of magnitude as the maximum velocity of Marangoni-induced flow 5.2 ×10 -2 m.s -1 , predicted by the 3D simulation (figure 5.18). It would thus be of great interest to account for the electromagnetic field as a further improvement of the present numerical framework. In this direction, an Electromagnetic-CFD coupling has been already implemented in CEMEF in TherCast® by the PhD work of Luca Marioni [START_REF] Marioni | Computational Modelling and Electromagnetic-CFD Coupling inCasting Processes[END_REF]. Combining the current modelling of surface tension with Marioni's work will enable simulation of the oscillating droplet in electromagnetic levitation and provide a more realistic comparison with the ISS experiment for measuring surface tension and viscosity. Such comparison has been performed recently by Budenkova et. al. [START_REF] Budenkova | Numerical simulations of turbulent flow in an electromagnetically levitated metallic droplet using k-ω SST and reynolds stress models[END_REF].

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

This work is a step towards a comprehensive modelling of the physics studied in these projects.

We are aware that there is still room for further improvement, but we are confident that the proposed numerical framework is compatible with future contributions which may have as an objective the reproduction of the experiment with its smallest details. Before getting there we must first address the improvement of the computational time which has been the major difficulty encountered in this work. Such an improvement would open the way to quantitative comparison with expected experimental characterisations of the droplet when it will be back from the ISS. 

MOTS CLÉS

ABSTRACT

The study of solidification in microgravity allows researchers to dissociate gravity-independent phenomena from gravitydependent ones. The objective is to reach a better understanding of solidification allowing the metallurgical industry to meet the expected properties of their metal products and to avoid the defects that appear during their elaboration. In this context, the NEQUISOL and CCEMLCC projects of the European Space Agency are taking place. As part of these two projects, we propose a numerical framework to simulate the solidification experiments of metallic samples in electromagnetic levitation in the International Space Station. Our numerical tool is based on the finite element resolution of the conservation equations of energy, total mass, momentum and mass of the chemical species of a multi-domain system involving a multicomponent metal alloy. A monolithic formulation allows the resolution of one set of equations on a single Eulerian mesh. A stabilised VMS Finite Elements formulation is proposed to solve the Navier-Stokes equations. The modelling is enriched by taking into account solidification shrinkage, surface tension and the Marangoni effect acting at the liquid-gas interface. A contact thermal resistance model is developed and validated enabling the consideration of thermal contact imperfections between the different materials. The Level Set method is used to model the interfaces between the sub-domains. The liquid-solid interface within the metal sub-domain is implicitly represented by the volume average methodology. In a first step, we propose simulations of measurement experiments of surface tension and viscosity of liquid metals using the oscillating drop technique in microgravity. This benchmark offers a quantitative comparison between the numerical results and an analytical solution that we derived in both 2D and 3D. Once we have validated our numerical modelling of the dynamics of the liquid-gas interface, we perform simulations of the solidification of a steel droplet and compare it with data from the first and unique experiment performed on board the International Space Station in the framework of the CCEMLCC project.
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