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CHAPTER 1. GENERAL INTRODUCTION

Résumé

Cette thèse de doctorat s’inscrit dans le cadre des projets CCEMLCC et NEQUISOL de l’Agence

spatiale européenne (ESA) en collaboration avec plusieurs partenaires académiques et industriels.

L’objectif commun de ces deux projets est d’étudier la solidification d’alliages métalliques en lévi-

tation en microgravité. Deux approches sont adoptées pour répondre à cet objectif : une approche

expérimentale et une approche numérique. Cette thèse se focalise sur les aspects de modélisation

numérique. L’objectif étant de simuler numériquement les expériences de solidification en mi-

crogravité, il est essentiel d’identifier les phénomènes à modéliser qui régissent les échanges de

masse et de chaleur ainsi que la solidification et la ségrégation chimique. Dans ce chapitre, nous

présentons les principaux phénomènes physiques présents dans ces expériences. Nous résumons

les contributions précédentes du CEMEF à ces projets. Nous mettons l’accent sur la tension de

surface qui est absente dans les précédentes contributions et qui est l’un des phénomènes clés

régissant les expériences de solidification de gouttelettes d’alliage fondu. Enfin, nous présentons

les objectifs détaillés de ce travail et la structure de ce manuscrit.
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1.1 Context

Since its creation in 1975, the European Space Agency (ESA) has actively participated in scien-

tific research in various fields such as materials science. In addition to its financial support of

projects, ESA provides its scientific partners with facilities to carry out their microgravity exper-

iments. Microgravity allows researchers to decouple gravity-dependent phenomena from non-

gravity-dependent ones in order to better understand specific mechanisms such as solidification.

This can lead to the improvement of processes on Earth and the design of innovative materials

with particular properties to meet industrial needs. Despite the growing number of scientific

projects that express an interest in investigating under microgravity conditions, opportunities to

benefit from microgravity facilities such as parabolic flights with aircrafts, sounding rockets and

the International Space Station (ISS) are limited. In addition, few projects have been able to ben-

efit from a flight ticket to the ISS. Centre for Material Forming (CEMEF) is one of the French re-

search centres that participate in ESA research projects and have the privilege of operating their

experiments in the ISS. CEMEF contributes to these projects through several doctoral theses. The

present work is one of them. It is part of two ESA projects in the framework of the Microgravity

Applications Promotion (MAP) programme. The first project is entitled Non EQUIlibrium SOLid-

ification (NEQUISOL) and the second is entitled Chill Cooling for the Electromagnetic Levitator

in relation with Continuous Casting of steel (CCEMLCC). The main common objective of these

projects is to investigate the containerless solidification of levitated metallic alloys in microgravity

[1; 2] using an electromagnetic field. This latter provides a Lorentz force to keep the sample in a

stable position (Figure 1.1). The electromagnetic field is also used to heat the sample and melt it.

Figure 1.1: A liquid metallic drop of Ni-Cu alloy with a diameter of 7 mm, freely suspended within an elec-
tromagnetic levitation coil [3]

The NEQUISOL project focuses mainly on the dynamics of crystal growth in non-equilibrium

solidification of aluminium-based alloys. In this project, nucleation is naturally triggered from an

undercooled state.

In the CCEMLCC project, investigation focuses on "surface defects formed during the treat-

ment of steels in the liquid state". Solidification is triggered by contact with a ceramic substrate

(Si3N4) which extracts heat from the sample.

4



CHAPTER 1. GENERAL INTRODUCTION

The academic and industrial partners working in collaboration with CEMEF in the context of

NEQUISOL and CCEMLCC project are given in the following list:

Academic partners

− MINES ParisTech, PSL Research University, Center for Material Forming (CEMEF) UMR CNRS

7635, Sophia Antipolis, France (CCEMLCC & NEQUISOL projects)

− Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR), Institut für Materialphysik im Wel-

traum, Köln, Germany (CCEMLCC & NEQUISOL projects)

− University of Alberta, Department of Chemical and Materials Engineering, Advanced Mate-

rials and Processing Laboratory, Edmonton (CCEMLCC & NEQUISOL projects)

− Université de Lorraine, Institut Jean Lamour (IJL) UMR CNRS 7198, Nancy, France (CCEMLCC

project)

− National Center for Metallurgical Research CENIM-CSIC, Dept. Metalurgia Física, Madrid,

Spain (NEQUISOL project)

− Institute of Materials Research, University Leeds, Leeds, UK (NEQUISOL project)

− Otto-Schott-Institut für Materialforschung, Friedrich Schiller University, Jena, Germany (NEQUISOL

project)

Industrial partners

− ARCELORMITTAL Maizières Research, Maizières-lès-Metz, France (CCEMLCC project)

− TRANSVALOR, Biot, France (CCEMLCC project)

− INDUSTEEL FRANCE, Le Creusot, France (CCEMLCC project)

− ASCO INDUSTRIES, Hagondange, France (CCEMLCC project)

− APERAM ALLOYS IMPHY, Imphy, France (CCEMLCC project)

− EVRAZ, Regina, Canada (CCEMLCC project)

− HYDRO Aluminium Deutschland AG, Bonn, Germany (NEQUISOL project)

− RGS Development, Broek op Langedijk, The Netherlands (NEQUISOL project)

− Equispheres Inc., Ottawa, Canada (NEQUISOL project)

In these projects, both experimental and numerical approaches are used for investigation. Var-

ious facilities are provided for carrying out microgravity experiments: parabolic flights, sounding

rockets and the ISS. CEMEF contributes to research work by numerical modelling with the aim of

proposing a numerical tool capable of reproducing the experiments and helping to interpret their

results.

1.2 Physical phenomena during solidification of a levitated steel droplet

Before addressing numerical modelling aspects dealt with in this work, it is essential to identify

relevant physical phenomena involved in the solidification of a levitated droplet in microgravity.

Note that, hereafter, attention goes to solidification triggered by chill cooling.
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1.2.1 Heat transfer

Thermal or heat transfer is a fundamental concept in thermodynamics. Together with work, it

represents the modes of internal energy exchange between two systems. There are three types of

heat transfer which can operate simultaneously: conduction, convection and radiation. All these

heat transfer modes are involved in the chill cooling experiment as illustrated in Figure 1.2.

Figure 1.2: Illustration of heat transfer modes involved in chill cooling experiments in the context of the
CCEMLCC project

1.2.1.1 Conduction

Conduction is a mode of energy transfer that occurs on a macroscopic scale by the displacement

of heat from hot regions to cold regions of the same body or several bodies in contact. Conduction

is due to particle collisions at the microscopic scale. An atom (or molecule) in vibration releases

part of its kinetic energy to the neighbouring atoms. The transport of heat by conduction occurs

within and through the body itself without displacement of matter. Conduction is more important

in solids because the relatively dense crystal lattice helps to transfer energy between atoms by

vibration. It is heat conduction that is at the origin of triggering solidification in the CCEMLCC

project experiment.

1.2.1.2 Convection

Convection is the movement of particles within a fluid (gas or liquid) leading to the transport of

heat from one point to another. The movement of the fluid can be natural (natural convection)

or forced (forced convection). Natural convection occurs when a gradient induces movement in

the fluid. The gradient can concern different quantities such as temperature ("thermal convec-

tion"), the concentration of a solute ("solutal convection") or surface tension ("thermo-capillary

convection"). A temperature or concentration gradient leads to differences in density within the

fluid. Gravity drives the denser particles downwards and the less dense particles upwards, pro-

ducing a vertical flow. In the absence of gravity, convection due to the difference in density is no

longer possible because the driving force behind the movement of particles with different densi-

ties is the gravitational force. However, thermo-capillary convection can still exist in microgravity.

Indeed, a surface tension gradient caused by a temperature or concentration gradient at the in-

terface between two fluids induces a movement of particles along the interface towards regions
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of high surface tension. This effect, which is independent of the gravitational force, is called the

"Marangoni effect". For forced convection, the movement of the fluid is artificially caused by an

external mechanism such as a pump or turbine or by electromagnetic induction forced by a coil.

1.2.1.3 Radiation

Thermal radiation is the transfer of energy by emission of electromagnetic waves from any ma-

terial whose temperature is above absolute zero. Thermal radiation is the direct result of the mi-

croscopic agitation of atoms and molecules in matter. Since these atoms and molecules are com-

posed of charged particles (protons and electrons), their agitation causes the emission of electro-

magnetic waves, which carry the energy away from the body’s surface. The radiation can propa-

gate in a vacuum and does not require a physical medium.

1.2.2 Solidification

Solidification is the transformation of matter from a liquid-state to a solid-state. In the liquid

phase, the atoms are in permanent agitation and without a specific ordered structure. On the

contrary, in the solid phase, the atoms are "at rest" - or at least very slightly agitated - and above all

are organised in an ordered crystalline structure (compact hexagonal, face-centred cubic...). This

rearrangement of the matter is accompanied by the release of heat, known as latent heat of fusion,

which compensates for the heat lost by cooling. Thus, for a pure metal under thermodynamic

equilibrium, the phase transformation takes place at a constant temperature. In the case of a

multicomponent alloy, the temperature generally drops during solidification.

Solidification begins with the appearance of a solid germ in the liquid. This solid germ can be

created spontaneously (homogeneous nucleation) or from impurities in the liquid or by contact

with a substrate (heterogeneous nucleation). Once nucleated, the solid structure develops in a

particular form called dendrite. It can be columnar (Figure 1.3a) or equiaxed (Figure 1.3b). The

evolution of the solid germ into an equiaxed or a columnar dendrite depends on the local temper-

ature gradient. For columnar dendrite, the temperature gradient has a locally preferred direction,

whereas for equiaxed dendrite the gradient is negligible. The growth of these structures during

solidification gives rise to a zone where solid and liquid phases coexist. This is called the mushy

zone. The size of this zone depends on the alloy, the process and the cooling conditions and can

be several metres long, especially in continuous casting of steels. The dendritic microstructure is

characterised by the primary, λ1, and secondary, λ2, interdendritic spacing.

Solidification is a crucial step in steel production. It is one of the factors that determine the

future properties of the material. Defects occurring during this stage affect the quality of the solid-

ified metal. These defects are only reversible to a certain extent through mechanical deformation

and heat treatment. For this reason, it is important to better understand solidification in order to

avoid the defects produced during this stage and to achieve the expected properties.

On an industrial level, three main processes are used to solidify liquid steel: continuous cast-

ing, ingot casting and foundry casting.
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(a) (b)

Figure 1.3: (a) In situ observation of columnar microstructures for transparent alloy of succinoni-
trile–acetone (SCN–2wt% Ace) [4]. (b) A typical image of a settling equiaxed dendrite [5]

1.2.3 Chemical segregation

Segregation is the non-uniform distribution of chemical species within a material. When it takes

place at a microscopic scale (usually 10−6m-10−4m), it is called microsegregation. When seg-

regation takes place on a macroscopic scale (usually 10−4m-1m), it is called macrosegregation.

Micro-segregation results from the redistribution of chemical species between the solid and the

liquid phases. The formation of this heterogeneity is related to solubility. It often happens that the

chemical solute species are difficult to incorporate into one of the two phases (the solid phase in

general). Thus, during solidification, the solid "rejects" solute in front of the solidification front,

resulting in an increase in concentration of the liquid phase. This difference extends to the macro-

scopic scale due to mass transfer caused by the relative movements of the phases in relation to the

others.

It is easy to understand that segregation, as an intrinsic phenomenon of the solidification of

alloys, is a source of heterogeneities in composition. It leads to non-homogeneous properties of

the product, which can be disastrous for its lifetime or for its further processing. Usually, segrega-

tion cannot be corrected due to low diffusion in the solid metal. Limiting segregation as soon as it

occurs would save time and money for the steel industry. The study of segregation is, therefore, of

major interest.

1.2.4 Fluid flow

Convective fluid flow is an important factor in the solidification of alloys as it contributes to macro-

segregation by impacting heat transfer and distribution of species. In the context of containerless

solidification during Electromagnetic Levitation (EML), the convective flow in the liquid phase can

be driven by solidification shrinkage, residual gravitational force, electromagnetic stirring, capil-

lary forces at the liquid metal/gas interface (surface tension and Marangoni).

1.2.4.1 Solidification shrinkage

The transition from the liquid to the solid-state involves rearrangement of matter. This rearrange-

ment leads to a variation in density, independently of thermal contraction. In steels, this volume

change induces a convective motion of the liquid towards the denser solid phases to compensate
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for the volume difference. As solidification is at the origin of this volume difference, we talk about

solidification shrinkage.

1.2.4.2 Microgravity

The effect of gravity on an object can be completely cancelled out when it is in a "free fall". This

state is called weightlessness. The term "microgravity" refers to a condition in which weightless-

ness is not entirely achieved due to small residual forces. Microgravity is expressed as a fraction of

g, where g is the gravitational acceleration at the Earth’s surface, equal to 9.81 m.s−2.

Practically speaking, the best way to achieve microgravity is to place an object in orbit, such

as the ISS. This is because orbiting objects are theoretically subject only to the gravitational force,

allowing them to experience a constant free fall.

Simulations of Saad [6] showed that microgravity can significantly drive the flow of the liquid

in the absence of capillary forces.

1.2.4.3 Electromagnetic stirring

The particularity of the solidification experiments conducted in the context of these projects is the

use of an electromagnetic levitator. This levitation device is used both to melt the metal by Joule

effect and to maintain a stable position of the droplet by Lorentz force which counterbalances

the external forces to which the droplet is subjected. Furthermore, the electromagnetic field used

causes forced convection within the liquid with a velocity of up to 0.5 m.s−1 under terrestrial (1g)

conditions [7]. In microgravity, the electromagnetic field needed is 1000 times less intense than

on Earth. However, forced convection by the electromagnetic field is not completely eliminated.

Magneto-HydroDynamic (MHD) simulations carried out by Hyers [8] estimate a fluid flow speed

of around 0.05 m.s−1.

1.2.4.4 Surface tension

In two-fluid flows, the interface is defined as the transition zone, which separates two fluids of

different properties. The thickness of this zone is of the order of a few diameters of the molecule.

A molecule of the bulk is surrounded by molecules of the same type in all directions, and therefore

the net inter-molecular force is zero. A molecule at the interface has not the same neighbouring

molecules in all sides of it. It is consequently attracted more strongly in one side than the other.

The net inter-molecular force of the molecules at the interface is not zero. This implies that they

have higher free energy than bulk molecules. The natural tendency of the system to reach the

minimal free energy gives rise to the concept of surface tension. Surface tension is then that force

per unit length which makes a fluid minimise the area of its interface with the other fluid. The

surface tension is an important physical parameter that dominates deformable surfaces in many

industrial processes in metallurgy like casting, welding and quenching. For liquid metals, surface

tension is very high. For instance, for a pure liquid iron, it reaches 1.87 N.m−1 [9], i.e. more than

20 times surface tension of liquid water which is about 0.075 N.m−1.
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1.2.4.5 Marangoni effect

The surface tension can vary depending on the temperature and/or the composition of the fluid.

When a temperature or concentration gradient exists at the interface, this creates a gradient in

surface tension. This causes the fluid to move along the interface from areas of low surface tension

to areas of high surface tension. This movement of the liquid is known as Marangoni convection.

Marangoni convection can play an important role in heat and mass transport and can contribute

considerably to segregation during the solidification process by altering the distribution of species.

1.3 Previous contributions

The contribution of CEMEF in the NEQUISOL project was initiated by the PhD work of Salem

Mosbah [10]. In his work, a 2D axisymmetric Cellular Automata Finite Element (CAFE) numer-

ical model was proposed for the prediction of the segregation maps and the influence of non-

equilibrium solidification for samples with spontaneous and triggered nucleation. The numerical

model is based on coupling between the Finite Element (FE) method and Cellular Automata (CA)

method. The FE is used to solve the diffusive transport of energy and solute mass using the method

of volume averaging. The CA is used for modelling the grains structures accounting for the pri-

mary and the secondary dendrite arm spacing together with nucleation and growth undercooling

via the coupling with a microsegregation model. The CAFE model was applied for simulation of

solidification experiments of Al-Cu droplets processed by the EML technique in terrestrial condi-

tions [11]. Although the model allows coherent explanation of the measured temperature profiles,

it presents some limitations such as the absence of the convective transport of heat and mass.

As for the contribution of CEMEF in the first phase of the CCEMLCC project, modelling was

initiated by the PhD work of Benjamin Rivaux [12]. His work was based on a Lagrangian ap-

proach to consider both the steel sample and the ceramic chill using separate meshes for each

domain. The conservation equations of energy, mass of chemical species, momentum and total

mass were solved in the steel domain. In contrast, energy conservation was the only equation

solved in the chill domain. The thermal contact between the chill and the droplet was taken into

account by a Fourier boundary condition using a transfer coefficient calibrated on the experi-

ments. The conservation equations for the steel domain were solved by coupling two calculation

platforms: CimLib® for Navier-Stokes, energy and chemical species equations and TherCast® for

solid mechanics equations. Shrinkage was considered as part of solid mechanics where an aver-

age density is tabulated with temperature. The interface between the solid and liquid phases of

the metallic domain was implicitly represented by the volume average theory. The ALE (Arbitrary

Lagrangian-Eulerian) method was used to update the position of the deformable surface of the

droplet. However, the comparison (figure 1.4) with the experiments carried out on the sounding

rocket (TEXUS) shows that the simulation does not make it possible to predict the deformed shape

of the steel sample. In the simulation, the orientation of the gravity vector was arbitrarily set from

the droplet to the chill with a magnitude of 10−7 m.s−2.

In the second phase of the CCEMLCC project, modelling was improved by the PhD work of
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Figure 1.4: (a) Numerical simulation showing the velocity field of the solid phase (black arrows) and the
liquid phase (orange arrows) at t = 1.5 s during the solidification of a 3.3mm radius steel droplet. (b)
Droplet shape predicted by numerical simulation with macrosegregation (grey) and without macrosegrega-
tion (blue) in comparison with TEXUS experimental profile (red) at t = 4.5 s [12]. The top of the experimental
shape was not visible in the experiment.

Ali Saad [6]. In his work, he adopted an Eulerian approach. A single mesh was considered for

both metal and surrounding gas. The chill was not included in the computational domain, but the

thermal contact between the sample and the chill was implicitly taken into account via a Fourier

boundary condition. The volume average method was retained to represent the solid-liquid inter-

face within the metal. The energy solver was improved by achieving full coupling with thermody-

namic tabulations for multicomponent alloys. The Level-Set method was used to track the droplet

interface with the surrounding gas. A monolithic formulation of the conservation equations for

energy, chemical species, momentum and total mass allowed the resolution of a single system

of equations for the entire computational domain. The solid metal was assumed to be rigid and

fixed. A condition of liquid compressibility was introduced into the Navier-Stokes equations to

represent solidification shrinkage. Gravity was directed from the chill to the droplet. A parametric

study of the amplitude of the residual gravity and the heat transfer coefficient at the contact sur-

face between the sample and the substrate was carried out to find optimal values that approximate

the experimental shape of the droplet (figure 1.5). Simulations showed that the droplet could be

deformed by the liquid flow caused by residual gravity of the order of 10−5 m.s−2.
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Figure 1.5: (a) Numerical simulation of the fluid flow in the liquid metal and the surrounding gas during
solidification of a steel droplet. (b) Comparison of experimental (blue) and numerical (red) final droplet
profiles, compared to its initial shape (green) [6]

1.4 Objectives and outline

Despite the variety of applications made possible by the the previous contributions, there are nev-

ertheless some limitations to their model. The main limitation is the lack of a model for surface

tension, which is a very important physical phenomenon given the very high value of the surface

tension coefficient for liquid metals. In order to show the relevance of surface tension in compar-

ison to other phenomena that influence the fluid flow, we present in the following table the main

dimensionless numbers that express the ratios of forces involving surface tension. The values are

calculated for an iron droplet with radius R0 = 3 mm, dynamic viscosity µ = 10−3 Pa.s, density

ρ = 7000 kg.m−3, thermal diffusivity α = 8.6 × 10−6 m.s−2 and surface tension γ = 1.46 N.m−1,

placed in a residual gravity of g = 10−5 m.s−2 with a characteristic velocity of u0 = 0.05 m.s−1.

Table 1.1: Some dimensionless numbers involving surface tension

Dimensionless number Symbol Formula Forces ratio Value

Goucher Go R0

(
ρg
2γ

)0.5 (
Gravity force

Surface tension

)0.5
4.64×10−4 ¿ 1

Ohnesorge Oh µp
ργR0

viscous forcesp
Inertia . Surface tension

1.81×10−4 ¿ 1

Weber Go
ρu2

0R0

γ
Inertia

Surface tension 3.60×10−2 ¿ 1

Marangoni Ma ∂γ
∂T . R0∆T

µα
Marangoni convection

Heat diffusion 1.90×105 À 1

As can be seen from the values of dimensionless numbers, surface tension is a force that pre-
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dominates over inertia, viscous forces and gravity. Therefore, it is a parameter that cannot be

excluded from the study of the solidification of a levitated metal droplet. In addition to the surface

tension, the Marangoni force caused by the temperature gradient is an important factor for this

study as expressed by the Marangoni number calculated for a coefficient ∂γ∂T = 5.44× 10−4 N.m−1.K−1

and a temperature gradient of ∆T = 1000 K.

Taking capillary effects into account may clearly impact on the results of the numerical sim-

ulations performed in the PhD theses described earlier. The first objective of this PhD thesis is,

therefore, to enrich the previous simulations by modelling of the capillary forces (surface tension

and Marangoni) that govern the dynamics of the droplet free surface. Implementation of surface

tension has been initiated within CEMEF by Khalloufi [13] for water bubbles in the quenching pro-

cess and Chen [14] for ceramics in additive manufacturing. However, there are several numerical

difficulties related to surface tension, which are more pronounced and critical for high surface

tension values, in particular calculation stability, mass loss and spurious currents. In this work, we

propose some improvements in the modelling of surface tension in the context of the Level-Set

method. These improvements deal with the numerical problems of mass loss, parasitic currents,

stability and accuracy of the calculation. To evaluate the new contributions related to surface ten-

sion, we propose an analytical solution in both 2D and 3D of a benchmark based on the oscillating

drop method used in ESA projects to measure surface tension and viscosity of the studied alloys.

Note that this objective oriented towards the improvement of Fluid Mechanics modelling, brings

a new contribution for both CCEMLCC and NEQUISOL projects.

After the Fluid Mechanics aspect addressed in the first objective of the thesis, the second ob-

jective consists in improving the modelling of heat transfer in the presence of solidification. As

previously mentioned, the NEQUISOL project focuses on the investigation of microstructure de-

velopment in non-equilibrium solidification of Al-based alloys. Solidification is triggered sponta-

neously from an undercooling state which allows several modes of solidification, a wide range of

metastable microstructures and structurally different phases [15]. The CCEMLCC project focuses

on the study of surface defects formed during continuous casting of steels. The two solidification

conditions are different. Therefore, in the context of the CCEMLCC project, the volume averaging

method in FE framework is adequate to predict the formation of surface defects at the macro-

scopic scale. As for the NEQUISOL project, a CAFE model is required to account for the grains

structures. In this PhD, we confine our attention in solidification during chill cooling investigated

in the CCEMLCC project.

In the previous contributions of the CCEMLCC project, the condition of thermal contact be-

tween the droplet and the chill was approximated by a Fourier condition. This approximation

assumes that the temperature of the chill away from the contact surface is constant. This is equiv-

alent to considering the chill as an infinite heat source whose temperature does not vary. However,

the ceramic plate in contact with the sample has a finite volume and is heated by contact with

the molten metal and its thermal radiation. Therefore, we propose to incorporate the chill in the

calculation domain using the level-set method. Attention will be focused on the heat exchange

between two bodies in contact. For this purpose, a contact thermal resistance model will be pro-
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posed and validated by analytical test cases and then applied to the chill cooling and solidification

of the droplet. Thermal radiation will not be the subject of this work. However, this numerical

framework will be suitable for possible consideration of the radiative exchanges studied within

CEMEF by other work in progress.

The final objective will, therefore, be to couple these new models with previous contributions,

in particular those of Saad [6], in order to propose a simulation of a steel droplet solidification

experiment in microgravity. The comparisons will be based on the experiment recently carried

out on board the ISS. Before coming to this point, we first present in the next chapter the state

of the art of the solidification experiments performed in the framework of the CCEMLCC project,

with particular attention to the most recent of the experiments and the first one performed on

board the ISS.

Therefore, after the present introduction of the PhD thesis, the manuscript will be structured

as follows:

• Chapter 2 entitled "Chill cooling experiments in microgravity" is dedicated to the experi-

mental results of the CCEMLCC project.

• Chapter 3 entitled "Numerical modelling of multiphase flows including surface tension" is

devoted to surface tension implementation and validation via the oscillating drop method.

• Chapter 4 entitled "Numerical modelling of heat transfer with solidification and thermal

contact resistance" suggests a model for thermal contact resistance in the context of diffusive

interfaces with level-set method

• Chapter 5 entitled "Numerical simulation of chill cooling and solidification of a levitated

steel sample in microgravity" is dedicated to modelling and simulation of the coupling of

fluid mechanics including surface tension and Marangoni with heat transfer, solidification

and chemical segregation.

• Chapter 6 for general conclusions and perspectives

14
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Chill cooling experiments in

microgravity

15



CHAPTER 2. CHILL COOLING EXPERIMENTS IN MICROGRAVITY

Résumé

Dans ce chapitre, nous nous penchons sur les expériences réalisées dans le cadre du projet CCEMLCC.

Nous présentons le dispositif expérimental et les échantillons métalliques étudiés. Puis nous

présentons les résultats des expériences de solidification avec différentes plateformes d’expérimentation

en condition de microgravité: vols paraboliques, fusées sondes et Station Spatiale Internationale

(ISS). Une attention particulière sera accordée à la première expérience de ce projet réalisée avec

succès à bord de l’ISS. L’objectif est de tirer profit de ces expériences pour extraire des données qui

serviront de référence pour l’évaluation de notre outil de simulation numérique.
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2.1 Introduction

The main objective of the CCEMLCC project is to enhance our understanding of solidification of

steel products, in particular, the defects formed during casting processes of steels [1]. For this pur-

pose, the solidification of an initially freely suspended steel droplet in microgravity conditions is

investigated. The mould, in a real continuous casting process, is modelled by the use of a ceramic

chill plate which extracts the heat from the sample and thus triggers nucleation. The motivation

for conducting experiments in microgravity is to reduce the effects of gravity-related sources of

mass and heat transfers and to determine how gravity-independent phenomena can influence

the solidification process of steels. The ISS provides a platform for such research projects to carry

out experiments in ideal microgravity conditions. Despite the increasing number of scientific re-

search projects investigating microgravity conditions, the opportunities to send the experiments

into a spaceflight to the ISS are limited. Relatively few projects in material science have benefited

from a flight ticket to the ISS.

Two complementary approaches are used in the CCEMLCC project: experiments and numeri-

cal modelling. It is well known that numerical simulations provide a rich insight into what happens

in the experiments, and thus help to interpret the experimental results. With reliable numerical

models, numerical simulations allow exploring other situations not investigated by the experi-

ments. But before reaching this point of exploration, the numerical models must be validated.

Experimental data serve as a benchmark for numerical simulation to compare and validate.

The project being currently in its third phase, several campaigns of experiments have been

performed since 2007. In this chapter, we present the experiments and their findings with a focus

on the first successful experiment of this project recently performed on board the ISS. The objec-

tive is to take advantage of these experiments to extract data that will serve as a reference for the

evaluation of our numerical modelling.

2.1.1 The experimental set-up

The main idea of the experiments is to contact a levitated molten steel sample with a ceramic

Si3N4 chill plate which extracts heat from the sample and thus triggers solidification. The sample

is heated and positioned using an electromagnetic system consisting of two coils. One coil is used

for heating, the so-called heater coil. The second coil, called the positioner, is designed to use

Lorentz forces to counterbalance the external forces applied to the sample and hold it in a stable

position. A cage, called the sample holder, surrounds the droplet to force it to stay within a certain

area. A high-speed camera records the experiments from the side of the sample and monitors the

solidification of the droplet. Through a tiny hole in the plate, an axial pyrometer measures the

temperature of the metal at the contact interface with the chill plate (see Figure 2.1).

The experimental setup was designed by a team at the Institute for Materials Physics in Space

in the German Aerospace Centre, Cologne. It was first tested on Earth, where the electromagnetic

field required to levitate the drop against gravity is so large that it generates strong convection in

the bulk liquid and thus adds more complexity to the process. Under microgravity conditions, the

electromagnetic stirring vanishes because the intensity of the electromagnetic field is 1000 times
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lower [9]. The experimental device was then tested and validated in microgravity conditions by

parabolic flights and sounding rockets before being sent to a long-time microgravity environment

on the ISS.

In an ideal experiment cycle, the metallic droplet is heated and maintained in a stable floating

position. After the temperature of the metal is well above the liquidus temperature, the heater is

turned off. The sample holder moves towards the droplet so that the chill plate attached to the

holder touches it. As the sample is still liquid, a flat contact interface is formed, allowing heat

exchange between the metal and the chill plate. Chill cooling and complete solidification must

ideally occur during microgravity. Note that these ideal experimental conditions are not easily

respected when short-duration facilities are used (parabolic flight, sounding rocket). Several ex-

perimental cycles failed either because the chill-cooling had started before the heater was turned

off, or because the microgravity period had ended before a complete solidification was achieved,

or because other incidents like the sample stuck on the cage before chill cooling.

(a) (b)

Figure 2.1: (a) Schematics of the experimental set-up used in a TEXUS sounding rocket where a cage was
used to limit the sample displacement. (b) Schematics of the cup holder used for chill cooling of EML
samples on board the ISS [16].

2.1.2 Steel samples processed

In the CCEMLCC project, a variety of steel alloys are processed in microgravity using the EML

facility. The choice of the steel alloys compositions was motivated by the applications of the in-

dustrial partners joining the project. The list of steel samples and their compositions are given in

the following table 2.1. Note that, in this work, all the compositions are given in wt.%.

The steel alloys can be divided into 3 categories:

• Fe-C-Si steels (a1 , b1 and d1 ) which contain the same chemical elements but different con-

centrations in Carbon including austenitic steels b1 and d1 , and a ferritic steel a1 . Theses

samples were provided by ArcelorMittal.

• Fe-Cr-Ni steel which is a tool steel of type D2. It was provided by INDUSTEEL.
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Table 2.1: Composition in wt.% of the steel samples investigated in the CCEMLCC project

Sample No.
Composition in wt.%

C Si S Al Mn P
a1 0.05 0.26 0.009 0.002 0.6 0.018
b1 0.105 0.26 0.009 0.006 0.6 0.018
d1 0.9 0.26 0.009 0.11 0.54 0.011

Group 1: Fe-C-Si steels

Sample No.
Composition in wt.%

Cr Ni Mo N Cu Si
D2 19.70 17.92 6.246 0.204 0.685 0.203

Group 2: Fe-Cr-Ni steels

Sample No.
Composition in wt.%

C B Si Cr Cu Al Ti Mn
Steel A 0.0067 0.0003 0.0267 0.0191 0.0114 0.093 0.0439 0.0994
Steel B 0.0076 0.0007 0.027 0.0186 0.016 0.073 0.044 0.0986
Steel C 0.0076 0.0037 0.0331 0.0187 0.016 0.07 0.047 0.0973

Group 3: Fe-C-B steels

• Fe-C-B steels (A, B and C) which contain a small quantity of Boron (< ppm B) with a Carbon

concentration lower than 0.01 wt.%. They were also provided by ArcelorMittal.

Each of these samples was subjected to precursor chill cooling tests mostly during parabolic

flights with one test in a sounding rocket trip for b1 sample. However, only a1 and d1 samples have

been processed in the ISS so far, but processing of a1 failed as the sample stuck on the holder and

the activation of the high speed camera did not work. Therefore, our attention is confined only in

the Fe-C-Si category. It should be noted here that all microgravity tests are performed by the DLR

partner.

2.2 Microgravity experiments: from precursor tests to experiment on

board the International Space Station

Three microgravity facilities are provided by ESA to perform experiments: parabolic flights, sound-

ing rockets and the ISS. Before sending the experiment to the ISS, precursor tests must be per-

formed in parabolic flights or sounding rockets to validate the experimental instruments and the

processing of the samples. In the following, we give an overview of the chill cooling experiments

performed in each of these microgravity facilities. As it was stated previously, only the experiments

concerning the Fe-C-Si alloys are shown.

2.2.1 Parabolic flights experiments

During a parabolic flight, a dedicated Airbus aircraft, called Zero-G, executes a series of around 30

parabolas. Around the apogee of each parabola, the aircraft and its contents experience a sensa-

tion of weightlessness period (10−2 g) that lasts about 25 seconds [17]. Despite the short duration
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of microgravity periods offered by parabolic flights, they are often used to prepare and validate

the experimental setups before sending them on a sounding rocket trip or further to the ISS. The

reasons why parabolic flights are useful for precursor research in preparation for long-duration

missions are their relatively low cost and the short waiting time between submission of a proposal

and flight execution. Besides, in a parabolic flight, researchers can join the trip to follow and con-

trol the experiments as they float. TEMPUS is the name given to the parabolic flight mission for

the containerless solidification using the EML device.

(a) (b)

Figure 2.2: (a) A parabolic flight profile [18]. (b) View inside the Zero-G Airbus aircraft during the 46th ESA
flight campaign [19].

Several TEMPUS parabolic flights campaigns have been conducted. Each campaign lasts 4

days. During each day, about 30 parabolas, named cycles, were performed. Some of these cy-

cles were dedicated to chill cooling experiments. The most recurrent problem is the fact that the

droplet stuck on the sample holder during melting. In the following table, we give only the refer-

ences to some experiments that could be considered successful.

Table 2.2: The references of TEMPUS successful experiments

Sample TEMPUS experiment
No. Composition [wt.%] Campaign Day Parabola
a1 Fe-0.05C-0.26Si September 2017 4 7
b1 Fe-0.105C-0.26Si September 2016 1 14
d1 Fe-0.9C-0.26Si October 2014 1 14

A temperature-time profile together with the heater control voltage and microgravity level of

a chill-cooling experiment on Fe-0.9C-0.2Si is shown in figure 2.3. Just before microgravity starts,

the sample was preheated to a temperature around 1000oC. Once the microgravity started, the

sample was quickly heated and melted until it reached a temperature of 1650oC, well above the

liquidus temperature TL = 1461oC of Fe-0.9C-0.2Si. The heater is then turned off. The contact

with the chill plate occurred a few seconds later. The steep drop in temperature profile reveals the

time of contact. Chill cooling started and solidification was triggered. The time evolution of the

front position as well as the sample shape are monitored by a side camera. As displayed in figure

2.4, only a part of the sample is visible. The invisible part was hidden by the sample holder. The

final and the whole sample after complete solidification can yet be monitored as reveales by Figure

2.5. It worth noting that the microgravity period in the parabolic flight ended about 4 s before the

solidification process was completed (see Figure 2.3).
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Figure 2.3: Time evolutions for a Fe-0.9C-0.2Si sample during a chill cooling cycle in TEMPUS parabolic
flight: (blue) temperature, (red) heater control voltage and (green) microgravity level. The time interval
between contact with the chill plate and completion of solidification is marked by the vertical dashed lines.

Figure 2.4: Image sequence given by a high-speed camera showing the solidification progress between 0
s (when contact with the chill is initiated) to 3.75 s in a Fe-0.9C-0.2Si steel droplet. The progress of the
solidification front is marked by the green dashed line. In some frames, the droplet is partially hidden by
the narrow opening of the sample holder facing the camera [6].

Figure 2.5: The final shape of the solidified sample [6].
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For the chill-cooling experiment on Fe-0.1C-0.2Si, the time evolutions of the temperature, the

heater control voltage and microgravity level are displayed in figure 2.6. The disturbances and

spikes on the temperature curve are due to translation motions of the sample, which changes the

pyrometer signal if the sample is not well-positioned in the centre of the levitation coil. Unstable

positioning often occurs when starting the levitation process and cannot be damped during the

short microgravity period of 20 s in most cases. At a temperature of about 50oC above the liq-

uidus temperature TL = 1493oC, the sample touched the chill plate and the cooling process sets

in, revealed by the steep drop of temperature with an initial cooling rate of about 500 K.s−1. We

can observe that the contact with the chill plate occurred slightly before the heater is turned off.

Solidification proceeds with a velocity of about 1 mm.s−1 and deformation of the droplet is moni-

tored by the radial video camera at rate of 500 fps enabling to analyse the evolution of the droplet

shape during solidification as illustrated in Figure 2.7. Once again, the microgravity period in the

parabolic flight ended before the completion of solidification process was achieved (see Figure

2.6).

Figure 2.6: Time evolutions for a Fe-0.1C-0.2Si sample during a chill cooling cycle in TEMPUS parabolic
flight: (blue) temperature, (red) heater control voltage and (green) microgravity level. The time interval
between contact with the chill plate and completion of solidification is marked by the vertical dashed lines.
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Figure 2.7: Sequence of video images for the Fe-0.1C-0.2Si experiment showing the sample shape time evo-
lution (from left to right). The time increment between images is 0.5 s starting at the time of contact with
the chill plate at 25.9 s. The chill plate (not visible) was located at the top and moved downwards. The red
line marks the position of the growth front. From the video taken at 500 fps growth velocity is determined
to approximately 1mm.s−1 [20].

Figure 2.8: Time evolutions for a Fe-0.05C-0.2Si sample during a chill cooling cycle in TEMPUS parabolic
flight: (blue) temperature, (red) heater control voltage and (green) microgravity level.

Figure 2.9: Sequence of video images for the Fe-0.05C-0.2Si experiment showing the sample shape time
evolution (from left to right). The time increment between images is 0.5 s starting at the time of contact with
the chill plate at 40.1 s. The chill plate moved downwards. The interface chill plate-metal is represented by
the dashed blue line. The position of the growth front is marked by the red line. From the video taken at 500
fps growth velocity is determined to approximately 1mm.s−1.
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2.2.2 Sounding rocket experiments

A sounding rocket (also called research rocket) carries experimental instruments in a parabolic

path, like a parabolic aircraft, but goes above the atmosphere of the Earth up to 750 km high. A

sounding rocket is divided into two parts: a solid-fuel rocket motor and a payload. The typical

trip profile of a sounding rocket trip, as shown in Figure 2.10a, starts from the launch of the rocket

(see Figure 2.10b). The rocket motor consumes its fuel for propulsion then separates from the

payload leaving it in a free-fall. After the separation, the payload continues upwards into space

where the experiments begin. After reaching the apogee of the parabolic arc, the payload goes

down, re-renters the atmosphere and returns gently back to Earth under a parachute. The payload

is then retrieved. During these flights, researchers can monitor the experiments and even modify

parameters as data from experiments are sent to control stations on the ground during the flights.

The sounding rocket flight facility offers a higher-quality microgravity condition that lasts for a

longer period than a parabolic flight. The residual gravity reaches around 10−5 g and lasts for about

13 minutes. TEXUS-46 is the name of the sounding rocket mission that carried the experimental

setup for CCEMLCC project. Note that the rocket used in TEXUS-46 mission reaches a height of

250 km above the Earth. For the sake of simplicity, we refer to the experiments conducted in this

mission as being the TEXUS experiments.

(a) (b)

Figure 2.10: (a) A parabolic flight profile [21]. (b) Successful launch of TEXUS-42 sounding rocket [22].

The TEXUS experiment, carried out during the flight of a sounding rocket for alloy b1 , allows

five heating-cooling cycles to be performed during the 180 seconds of microgravity. Of these five

cycles, the first three were reserved for another ESA project: the Thermolab project, aiming to mea-

sure surface tension and viscosity of the sample by the oscillating drop technique. These data are

crucial for numerical simulation of the chill cooling experiments. The last two cycles were devoted

to the CCEMLCC project. The time evolution of the temperature measured by the pyrometers dur-

ing the experiment is shown in Figure 2.11. Four temperature rises and falls corresponding to the

first four cycles are easily identifiable. At the beginning of the fifth cycle, the temperatures change

unexpectedly. This is because the drop has stuck to the chill plate. Due to this malfunction, the
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lateral pyrometer no longer pointed to the drop: the temperature dropped. In addition, the chill

was abnormally heated. The axial pyrometer pointed to the drop, and the chill was calibrated with

the emissivity of the metal. Since the emissivity of the ceramic is greater than that of the steel, the

measured temperature is much higher than the real temperature.

Of the last two cycles reserved for the CCEMLCC project, the fifth cycle is not usable, given

the problem that has arisen. No analysis of the drop recovered at the end of the experiment was

conducted. Therefore, the TEXUS experiment can only be exploited using the time-temperature

curve shown in Figure 2.11 and the camera to follow the solidification of the drop during the 4th.

Images from this video are shown in Figure 2.12.

Figure 2.11: Time evolutions during 5 cycles of processing Fe-0.1C-0.2Si sample on board TEXUS-46 sound-
ing rocket: (blue) temperature measured by the lateral pyrometer and (orange) temperature measured by
the axial pyrometer [23].

The time-evolutions of the droplet shape as well as the solidification front, are shown in Figure

2.12. As observed in parabolic flights, the sample showed an elongation in the vertical direction

that is also the direction of the thermal gradient.

Figure 2.12: Sequence of video images for the Fe-0.9C-0.2Si TEXUS experiment showing the sample shape
time evolution (from left to right). The time increment between images is 1 s starting at time of contact with
the chill plate. The position of the growth front is marked by the red line [12]
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2.2.3 International Space Station experiment

After preparation and validation of the experimental instruments onboard the parabolic flights or

sounding rockets, the experimental setup is then sent to the ISS for a long microgravity mission in

ESA’s Columbus laboratory.

Figure 2.13: The International Space Station [24].

The first chill cooling experiments carried out in the ISS on Fe-C-Si samples were programmed

during 2018 in batch #2.2. These experiments did not succeed because the droplet stuck to the

sample holder. A second attempt was carried out at the beginning of 2019 during batch #2.3, which

also failed due to a technical problem with the recording of the video sequence by the high-speed

camera. It was not until April 2019 that the first chill cooling experiment on board the ISS was suc-

cessful. This experiment, first of its kind, was performed on the austenitic steel d1 (Fe-0.9C-0.26Si).

The average diameter of the sample is d0 = 6mm and its mass is m = 0.89531g. The experiment has

been controlled and monitored by researchers from the control station at DLR in Cologne. Data

concerning the temporal signals of the temperature measured by the pyrometer, the control volt-

age of the heating and positioning coils were also sent to the control station (Figure 2.14). The

high-speed camera transmitted in real-time the video sequence of the process (Figure 2.15). How-

ever, at the time of writing this manuscript, the solidified sample has not yet landed and retrieved

for micro-analysis of segregation. The analyses of the current experiment are then based on the

results extracted from the video sequence and the measured temperature.

The long-duration microgravity environment on board the ISS is a unique opportunity to per-

form a complete solidification of the entire sample under ideal and controlled conditions with-

out external forces. The experiment proceeded as follows: the sample was initially levitated in

the solid-state at low temperatures. The sample started to exhibit some translational and rota-

tional movements, revealed by disturbances on the temperature signal at the beginning of the

heating phase. The sample movements were damped out by using the sample holder before fur-

ther heating and melting. This stabilisation is revealed by a smooth time-evolution of the tem-

perature profile. The phase transformation from solid to liquid started at the liquidus temper-

ature TL = 1466 oC. The energy provided by the heater is deployed to melt the structure of the

solid. Liquid state is reached without increasing the temperature of the material. A temperature

plateau expresses this isothermal phase transformation as shown in Figure 2.14. After that, the
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heating continued until reaching a maximal temperature of Tmax ≈ 1800 oC. The sample being

completely liquid, the heater is turned off. The sample holder is moved downwards to achieve

contact with the sample. The contact with the sample occurred at T = 1648 oC. It is revealed by a

steep drop of temperature, expressing the start of chill cooling. During the first 2 seconds of chill

cooling, the temperature profile shows a cooling rate around 200 K.s−1, then it stabilises around

25 K.s−1.

Figure 2.14: Temperature-time profile (blue) and heater control voltage (red) for Fe-0.9C-0.2Si during a chill
cooling cycle in ISS-EML (batch #2.3). The time interval between contact with the chill plate and completion
of solidification is marked by the vertical dashed lines.

Additional data can be extracted from the sequence of images (Figure 2.15) given by the video

recorded by the camera. First, we can observe that the solidifying droplet shows an elongation in

the direction of the temperature gradient (downward and perpendicular to the chill plate). The

same behaviour was also observed during the parabolic flight (figure 2.5). We can observe that

the chill plate (marked by the blue line in figure 2.15 ) did not stop moving exactly at the time of

contact with the sample. It was moved downwards until 2 seconds after the contact. Therefore,

the chill involves the droplet in a translational motion of a velocity correlated to the speed of the

chill plate. In addition to this downward translation, the sample elongates in the same direction.

This makes a part of the droplet go out of the camera’s vision area as can be observed from images

in the second and third rows of figure 2.15. Therefore, detection of the solidification front position

(marked by the red lines) is limited to the visible area.

A while after the end of the test, the chill plate, on which the sample is sticking, was moved

upwards to allow the entire solidified droplet to be in the camera’s field of vision. The final shape

of the droplet after complete solidification is shown in figure 2.16. The final height of the droplet

measured from this image is Zfinal = 7.32mm. The time evolution of the front position is reported

in figure 2.17. In the latter figure, the red squares mark the position from the chill of the solidi-

fication front obtained from image analysis of the snapshots of figure 2.15 up to 8 seconds. The

time evolution of the front growth is almost linear with an average speed of Vfront = 0.897mm.s−1
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Figure 2.15: Sequence of snapshots from the high-speed camera that recorded the Fe-0.9C-0.2Si experiment
onboard the ISS is showing the time evolution of the sample’s shape. The chill plate was moving downwards
during the first 2 seconds from the contact. The blue line represents the interface of the contact with the
chill plate. The red line marks the position of the growth front.

comparable to the growth value observed in parabolic flights. We can extrapolate the time evolu-

tion of the front growth by assuming that the front propagated with the average velocity of Vfront.

We obtain this extrapolated point (marked in figure 2.17 in blue) by computing the time t f i nal at

which the front reaches the lowest point of the droplet located at Zfinal from the chill as follows:

t f i nal =
Z f i nal

V f r ont
= 8.16s (2.1)

Figure 2.16: The final shape of the sample d1 after completion of solidification on board the ISS.

In figure 2.18, the contour of the sample after complete solidification (represented by the blue

dashed line) is superimposed to the shape of the sample at several times. The key idea is to show

that once the interface metal-gas is solidified, i.e. above the red line marking the front position, it

remains fixed. This is to say that the assumption of a solid phase that does not deform is correct.
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Figure 2.17: Time-evolution of the front position.

Another observation which can confirm this hypothesis is given in figure 2.19. This figure high-

lights the existence of some light spots in the solid phase that remain fixed and do not deform after

solidification.

One additional observation is the appearance of a singular point at the front position where the

slope of the sample shape changes from the solid to the liquid phase. This change in slope is very

pronounced during the first few seconds after contact with the chill. We can express this change

in slope in terms of the difference between the solid angle θs and the liquid angle θl . These two

angles are calculated from the horizontal plane, indicating the position of the front, as shown in

Figure 2.20. The time-evolution of θs , θl and their difference is shown in Figure 2.21. The angle gap

is very significant during the first 2 seconds and reaches up to 20° but vanishes within 4 seconds

from the contact with the chill.

The present observations with respect to the shape of the droplet, the front growth and the

time-temperature profile could be enriched by the chemical segregation profile of the solidified

droplet. This will only be possible when the solidified sample is brought back to Earth, which is

not the case so far. In the meantime, the present experiment can be supported by additional data

concerning the thermophysical properties of the liquid phase of the steel. Knowing the values of

the properties of the alloy is crucial for numerical simulation of the solidification process as they

serve as input parameters. The lack of values in the literature for the properties of the same alloy

created the need for experimental measurements to determine these properties. The properties

of interest are surface tension and viscosity of the liquid phase of the alloy. The measurements

have been carried out by the teams from ThermoLab/ThermoProp and ELFSTONE projects using

the oscillating drop technique. The same experimental device used for the chill cooling exper-

iment on board the ISS is usable for measurements of the surface tension and the viscosity. In

addition, the ideal conditions on board the ISS are favourable for the technique to obtain accurate

measurements of liquid alloy properties over a wide temperature range, including undercooling.
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Figure 2.18: Snapshots showing the shape of the droplet during solidification. The red lines mark the front
position. The contour of the final shape, marked by the blue dashed lines, is superimposed to the solidifying
droplet shape at different times.

Figure 2.19: Snapshots showing some light spots (encircled in red and yellow) located at the solid phase
at different times. The invisible part of the droplet is hidden by the holder. The red lines mark the front
position.
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Figure 2.20: Snapshots showing differences in solid and liquid angles at the solidification front position.
The liquid angle θl is marked in red and the solid angle θs is marked in blue.

Figure 2.21: Time-evolution of the solid and liquid angles at the front position.
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In the logic of deploying the experimental results in the service of numerical modelling, it is

relevant to present in this chapter the experiment that had led to the measurement of surface

tension and viscosity. In addition, the oscillating drop technique serves as a benchmark for the

evaluation of the numerical modelling of surface tension, as it is shown in the next chapter. Like

the chill cooling experiment, the oscillating drop technique follows the same steps of levitation,

positioning, heating and melting. Once the liquid droplet is put in a stable position, the liquid

droplet is excited by an electromagnetic pulse using the heating coil (see the peaks in Figure 2.22).

This pulse causes the free surface of the droplet to oscillate as shown in Figure 2.23. More details

about the experimental procedure can be found in [25] where Mohr finds that the oscillation fre-

quency is correlated with the value of the surface tension and the damping rate of the oscillation

amplitude is related to the viscosity. The formulae used in this technique are presented in details

in the following chapter.

Figure 2.22: Temperature-time profile (red) and heater control voltage (blue) for Fe-0.9C-0.2Si during prop-
erties measurement cycle in ISS-EML (batch #2.3). The two peaks in the heater signal represent the electro-
magnetic pulses to make the droplet oscillate [25].

The video sequence recorded by the high speed camera was analysed by the TEVI software,

developed by teams at DLR, in order to extract the radius of the droplet. Figure 2.23 shows the

extracted radius in the vertical direction, parallel to the axis of the sample holder. It shows the

response of the droplet to the two pulses. The response to the first pulse can not be analysed with

respect to the damping rate. The disturbances in the first response can be explained by the strong

oscillations that persisted from the heating phase. The response to the second pulse corresponds

to the profile of damped oscillation of Rayleigh’s mode which is suitable for the measurement of

surface tension and viscosity.

Figure 2.24 shows the variation of surface tension with respect to temperature. It can be ex-

pressed by a linear function:

γ= γ0 + ∂γ

∂T
(T−Tref) (2.2)
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where

γ0 = 1.439±0.002 N.m−1

γ̇= (5.44±0.28)×10−4 N.m−1.K−1

Tref = 1466 oC

Figure 2.23: The time evolution of the oscillation of the radius of the droplet [25].

Figure 2.24: Surface tension as function of temperature [25].

The Marangoni coefficient ∂γ
∂T is positive which is not usual for pure liquid metals measured in

[9]. A possible explanation to the positive sign is that adsorption or desorption of surface-active

species (typically oxygen) or segregated species of surface active elements from the melt might
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have taken place.

For viscosity, it was only possible to obtain the value at one temperature, namely for the second

pulse. The viscosity can hence be given for T = 1460oC as :

µ= (9.5±0.2)×10−3 Pa.s

2.3 Conclusion

This chapter is devoted to the experimental part of the CCEMLCC project. We first presented the

experimental setup with the compositions of the samples under investigation. Then, we presented

the results of experiments using three microgravity facilities: parabolic flights, sounding rockets

and the ISS. Parabolic flights and sounding rockets are limited by short microgravity duration, as

well as the non-negligible residual external forces that disturb the sample. However, they serve as

precursor tests to validate the experimental device before sending it to the ISS.

The preliminary results obtained during parabolic flights and sounding rockets were presented

for Fe-C-Si samples a1 , b1 and d1 . During these precursor chill cooling tests, the samples showed

shape elongation in the growth direction, perpendicular to the chill plate. To confirm or disprove

these observations and to draw reliable conclusions about the chill cooling experiments, the ex-

periments must be operated in higher quality conditions where the entire droplet can solidify

without external forces. Such ideal conditions were realised onboard the ISS, where the first chill

cooling experiment of a steel sample was successfully performed in 2019.

The time-evolution of the temperature measured at the interface of the sample with the chill

cooling was analysed. It showed a cooling rate of around 200 K.s−1 during the first 2 seconds start-

ing from the contact, then a rate of around 25 K.s−1. The temperature profile enables us also to

have a value of temperature for the initialisation of numerical simulations T0 = 1648oC.

Moreover, we analysed the digital images recordings of the experiment. We observed a final

elongation in the vertical direction of around 22% of the sample diameter before processing. The

average growth speed of the solidification front was estimated to 0.897 mm.s−1. The observations

of the solid phase during solidification allows us to consolidate the fixed-solid assumption, later

postulated in numerical modelling. The experimental data were enriched by surface tension and

viscosity of the liquid alloy, measured onboard the ISS with the oscillating drop technique.

Further analyses regarding the segregation profile can support the present observations. These

analyses could be possible only when the solidified sample is brought back to Earth, which is not

the case at the time of writing this manuscript. Accordingly, data are not yet available to compare

the chemical segregation predicted by numerical simulations.

35



CHAPTER 2. CHILL COOLING EXPERIMENTS IN MICROGRAVITY

36



Chapter 3

Numerical modelling of multiphase flows

including surface tension

37



CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE
TENSION

Résumé

Ce chapitre est consacré à la modélisation et à la simulation d’écoulements à deux fluides incluant

une interface mobile avec tension de surface. Le chapitre est présenté en deux parties. Dans la pre-

mière partie, nous abordons la modélisation numérique d’une interface mobile avec la méthode

level-set. Une formulation bi-fluide de Navier-Stokes est adoptée pour décrire l’écoulement en un

seul système d’équations. La méthode de l’interface diffuse est introduite. Dans ce cadre, la varia-

tion des propriétés à travers l’interface est lissée par des lois de mélange. La méthode Continuum

Surface Force permet d’exprimer la force de tension de surface comme une force de volume. Enfin,

une méthode VMS (Variational MultiScale) stabilisée pour le solveur Navier-Stokes est présentée.

Dans cette partie, nous présentons quelques améliorations numériques supplémentaires pour

mieux maîtriser la conservation de la masse, la stabilité des calculs et la précision du solveur. Dans

la deuxième partie, l’objectif est d’évaluer la performance de nos méthodes numériques. Dans ce

but, nous présenterons le benchmark de la goutte oscillante. Nous commencerons par dériver la

solution analytique en 2D et 3D. Ensuite, nous effectuerons des simulations numériques et mon-

trerons les comparaisons des résultats numériques avec la solution dérivée.
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3.1 Introduction

In fluid mechanics, multiphase flows refer to flows involving simultaneously two or several states

of matter (liquid, gas, or solid), such as the flow of boiling water including vapour bubbles or

the movement of a liquid drop on a solid substrate. This type of flows are characterised by the

presence of interfaces through which the thermomechanical properties change. These flows can

also involve surface forces at interfaces such as the surface tension and Marangoni forces. Mul-

tiphase flows cover a wide range of situations and applications including, for example, energy

[26], petroleum engineering [27], nuclear industry [28], biomedicine [29] and environment [30].

A recurring theme throughout the study of multiphase flows is the need to model and predict the

behaviour of these flows and the phenomena involved. Adopting a theoretical approach is a very

complex and challenging way to predict multiphase flows and may not be feasible when the flow

is coupled with other phenomena such as heat transfer or turbulence. The experimental approach

is limited to laboratory-scale prototypes. Besides, the experiments still require more sophisticated

instruments to provide more detailed flow data. Consequently, predictive capacity relies heav-

ily on numerical modelling. Computational algorithms for solving multiphase flows are widely

present in the literature [31]. Despite the maturity of numerical modelling for multiphase flows

, many numerical challenges persist, and the magnitude of the challenges depends on the com-

plexity of the phenomena involved. Moreover, further efforts are still needed to meet the growing

demand for reliable and accurate numerical tools.

In this chapter, we will present our numerical framework for solving incompressible flows in-

volving two fluids separated by an interface with surface tension force. The chapter is presented in

two parts: the first part is dedicated for numerical modelling and the second part is for assessment

and validation. In the first part, we will start with interface modelling. We will introduce the level-

set method and show how we use it to track the interface over time. A numerical issue related

to mass conservation is occurring when using level-method. A mass correction method will be

then presented. After that, we will write the governing equations of an incompressible two-fluid

flow starting from the strong formulation to the monolithic weak formulation, including surface

forces. The diffuse interface method will be introduced. In this framework, the mixing laws of the

properties will be given, and the Continuum Surface Force (CSF) method for surface tension will

be shown. Finally, the Stabilised Variational MultiScale (VMS) method for Navier-Stokes solver

will be presented. Through this part, we will present some additional numerical improvements

to deal with the stability and accuracy of the solver. In the second part, the goal is to assess the

performance of our numerical tools. For this purpose, we will present the oscillating drop bench-

mark. We will start by deriving the analytical solution both in 2D and 3D. Then, we will perform

numerical tests and show comparisons of the numerical results with the derived solution.

3.2 Interface modelling

In Computational Fluid Dynamics (CFD), one of the questions that arise when dealing with mul-

tiphase flows is how to model the interface. There are two main classes of methods to model an
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interface: Front tracking methods and Front capturing methods. The front tracking methods are

based on a Lagrangian description of the interface. These methods are characterised by the use

of markers located all over the volume of a chosen phase such as Marker and Cell Method [32], or

located only at the interface such as Surface tracking method [33]. As for front capturing meth-

ods, the interface is implicitly represented by a phase function that identifies the phase to which

a given element of the grid belongs. The interface is, thus, defined by the phase function. The

most famous methods of front capturing are the Volume-of-Fluid method [34] and the Level-Set

method [35].

In the context of the FE method with fixed Eulerian grids, we use in this work the Level-Set

method. It has attractive features as it handles a wide range of complex 3D geometries. In addition,

it provides direct access to the geometrical properties of the interface that are necessary for the

calculation of surface forces.

3.2.1 Level-Set function

Consider a computational domain Ω containing two sub-domains Ω1 and Ω2 separated by an

interface Γ. The Level-Set method relies on an implicit representation of Γ via a signed distance

function to the interface, defined at each position x , at any time t by:

φ(x , t ) =


d(x ,Γ) if x ∈Ω1

0 if x ∈ Γ
−d(x ,Γ) if x ∈Ω2

(3.1)

where d(x ,Γ) is the geometrical distance from the point x to the interface Γ. Here the positive

values are arbitrarily chosen in Ω1.

Figure 3.1: Illustration of the Level-Set function

3.2.2 Level-Set transport

To track the time-evolution of the interface position, we solve the following advection equation:

∂φ

∂t
+u.∇∇∇φ= 0 (3.2)
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where u denotes the flow velocity vector. The zero iso-value resulting from equation (3.2) rep-

resents the new position of the interface. However, the non-zero levels can be distorted by the

flow velocity, especially when the velocity field u is not uniform. Therefore, they are not guar-

anteed to represent the geometrical distance to the interface. Consequently, a regularisation or

re-initialisation of the Level-Set function is needed in order to recover the intrinsic property of the

distance function which writes
∥∥∇∇∇φ∥∥= 1 . Solving the Hamilton-Jacobi equation (3.3) is a classical

way for re-distancing.
∂φ

∂τ
+ s(φ)

(∥∥∇∇∇φ∥∥−1
)= 0 (3.3)

where τ is a pseudo-time and s(φ) is the sign of the Level-Set function φ.

There is another way of re-initialisation based on a direct geometrical computation of the dis-

tance function [36]. Once the transport equation (3.2) is solved, the interface is obtained from the

iso-value Φ(x , t ) = 0. Then, the smallest distance from each mesh node to the interface is com-

puted.

To circumvent the need of two different solvers for transport and re-initialisation, the coupled

convection-re-initialisation method formulated by equation (3.4) combines both equations (3.2)

and (3.3).
∂φ

∂t
+U.∇∇∇φ= ks(φ) (3.4)

where k is a numerical constant dimensionally homogeneous to a velocity and U writes:

U = u +ks(φ)
∇∇∇φ∥∥∇φ∥∥ (3.5)

It should be noted that the convection equation (3.2) as well as the auto-reinitialisation transport

equation (3.4) are solved in FE by means of Streamline Upwind Petrov–Galerkin (SUPG) method

known to mitigate the numerical instabilities. See [37] for more numerical details.

3.2.3 Mass correction

Despite its mathematical simplicity and attractive ability to deal with complex geometries, the

classical Level-Set method (distance function) suffers from mass conservation issues. In fact, after

the transport of Level-Set function, the volume (consequently the mass, for an incompressible

flow) of the object described by the Level-Set (Ω1) can be lost or gained due to numerical errors

within each time iteration. After several time increments, the accumulation of numerical errors

can lead to a significant mass gain/loss. In the present work, we use a simple correction method

to enforce the volume (thus the mass) to be constant. The principle of this correction method is

to shift the zero iso-value of the Level-Set function (distance function) by some signed distance cφ

such as:

φcor r (x , t ) =φ(x , t )+ cφ(t ) (3.6)

where φcor r is the corrected Level-Set function, and φ is the transported Level-Set resulting from

(3.4). The signed distance cφ(t ) is computed as the volume difference, taking as a reference the
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initial volume, over the surface AΓ such as:

cφ(t ) = V(t )−V(0)

AΓ(t )
(3.7)

It should be mentioned that this adjustment |cφ| should be small enough (not greater than O(h2)

for P1-elements where h is the mesh size according to [38]) to preserve the shape of the interface.

This means that the numerical discretisation errors within each time step must be minimised as

possible. For this purpose, we use a high order time-discretisation scheme (2nd order is sufficient)

for solving the transport equation (3.4). Note also that the correction method given by the equa-

tions (3.6) and (3.7) applies only for a single object with invariant volume. This method will be

extended in Chapter 5 to a shrinking-volume droplet during solidification.

3.3 Flow modelling

This section is devoted to the mathematical formulation of a flow involving two fluids separated

by a moving interface governed by surface tension force. The numerical framework is based on

solving the Navier-Stokes equations. The properties jump across the interface is smoothened via

the diffuse interface approach. The surface tension force is included into Navier-Stokes equations

as a volume force through the CSF method. The resolution strategy is based on stabilised FE VMS

method.

3.3.1 Governing equations

Let ρ1 and ρ2 be the densities of the fluids inΩ1 andΩ2 respectively and µ1 and µ2 their respective

dynamic viscosity. We consider in this chapter that the flow is incompressible, isothermal and that

no phase transformation occurs. The flow in each subdomain, indexed by i , is described by the

following Navier-Stokes equations:ρi

(
∂ui
∂t +ui ·∇∇∇ui

)
−∇∇∇·σi = f i

∇∇∇·ui = 0
(3.8)

where ui is the velocity vector of the fluid in the subdomain Ωi and f i is its volume external

force. σi is the stress tensor which is linked to the pressure of the fluid pi and the strain rate tensor

ε̇(ui ) by the following Newtonian-fluid constitutive law:

σi = 2µi ε̇(ui )−pi I (3.9)

with I the identity tensor. In order to close the problem, Equations (3.8) are subjected to boundary

and initial conditions.

At the interface Γ, the normal stress jump is given by the surface tension force such as:

JσK ·n = (σ2 −σ1) ·n =−γ κ n = f ST (3.10)
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where γ is the surface tension coefficient, κ is the mean curvature and n is a unit normal vector to

Γ oriented inwards Ω1.

These geometrical properties of the interface are directly computed thanks to the Level-Set

function using the following expressions:

n = ∇∇∇φ∥∥∇∇∇φ∥∥ (3.11)

κ=−∇∇∇.n (3.12)

Following these considerations, the surface tension force is calculated from the Level-Set function

as:

f ST = γ∇∇∇.

( ∇∇∇φ∥∥∇∇∇φ∥∥
) ∇∇∇φ∥∥∇∇∇φ∥∥ (3.13)

3.3.2 Two-fluid flow formulation

First, we write the weak form of the set of equations (3.8) for each fluid. It can be obtained by

multiplication with test functions and integration over each subdomain then integrating by part

the term with the stress tensor. In this work, we denote by (a,b)D the integral of the product a ·b

over the domain D, i.e. (a,b)D = ´D a ·b dD.

Let consider the interpolation functions Ui and P i defined in the subdomainΩi , i ∈ {1,2}. The

weak formulation of the problem (3.8) with the constitutive law (3.9) reads:



(
ρ1

∂u1
∂t ,U1

)
Ω1

+ (
ρ1u1 ·∇∇∇u1,U1

)
Ω1

+ (
2µ1ε̇(u1) : ε̇(U1)

)
Ω1

− (
p1,∇∇∇·U1

)
Ω1

= (
f 1,U1

)
Ω1

+ (σ1 ·n1,U1)∂Ω1

(∇∇∇·u1,P1)Ω1
= 0

(3.14)



(
ρ2

∂u2
∂t ,U2

)
Ω2

+ (
ρ2u2 ·∇∇∇u2,U2

)
Ω2

+ (
2µ2ε̇(u2) : ε̇(U2)

)
Ω2

− (
p2,∇∇∇·U2

)
Ω2

= (
f 2,U2

)
Ω2

+ (σ2 ·n2,U2)∂Ω2

(∇∇∇·u2,P2)Ω2
= 0

(3.15)

where n2 =−n1 = n.

The monolithic formulation of a two-fluid flow consists in writing one set of equations to be

solved in the whole computational domain. This approach involves considering the computa-

tional domain filled with a single fluid but with variable properties. For this reason, we define the

global velocity vector u and the global pressure p such as:

u(x) =
u1 if x ∈Ω1

u2 if x ∈Ω2

(3.16)
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and

p(x) =
p1 if x ∈Ω1

p2 if x ∈Ω2

(3.17)

In the same way, we define the global variable properties ρ and µ such as:

ρ(x) =
ρ1 if x ∈Ω1

ρ2 if x ∈Ω2

(3.18)

and

µ(x) =
µ1 if x ∈Ω1

µ2 if x ∈Ω2

(3.19)

By summing equations (3.14) and (3.15) and applying the boundary condition (3.10), the for-

mulation of the two-fluid flow with surface tension reads:

(
ρ∂u
∂t ,U

)
Ω
+ (
ρu ·∇∇∇u,U

)
Ω+ (

2µε̇(u) : ε̇(U )
)
Ω− (

p,∇∇∇·U )
Ω

= (
f ,U

)
Ω+ (

f ST,U
)
Γ

(∇∇∇·u,P )Ω = 0

(3.20)

Note that in equation (3.20), we consider a zero Neumann boundary condition on ∂Omeg a, i.e.

(
σi ·ni ,Ui

)
∂Ωi∩∂Ω

= 0 (3.21)

At this stage, the two-fluid flow formulation (3.20) together with the variable properties as

given by (3.18) and (3.19) are the basis of the sharp interface approach which requires appropriate

methods able to handle the discontinuity of properties across the interface as well as a surface in-

tegral method to compute the surface tension force. To avoid dealing with discontinuities which

can be source of calculation instabilities, we use in this work a different numerical approach, called

the diffuse interface method.

3.3.3 Diffuse interface approach and mixing laws

Unlike the sharp interface approach, the diffuse interface method considers the interface as a non-

zero thickness layer. The interface is then a region of thickness 2ε centred around the zero iso-

value of the Level-Set function (−ε ≤ Φ ≤ +ε) in which the transition from one fluid to the other

occurs continuously and smoothly (see Figure 3.2). We use for that a smooth Heaviside function

H(φ) which allows computation of the smooth variable properties ρ and µ. There is a variety of
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smooth Heaviside functions. In this work, we choose a sinusoidal smoothing function such as:

H(φ) =


1 if φ> ε
0 if φ<−ε
1

2

[
1+ φ

ε
+ 1

π
sin

(
πφ

ε

)]
if

∣∣φ∣∣≤ ε
(3.22)

Note that the half-thickness ε should be smaller than the smallest length scale of the problem.

On the other hand, the transition zone should contain enough mesh elements to ensure smooth

variations across the interface.

The way the transition of fluid properties across the interface is given by mixing laws. For the

density and the viscosity, the common way to define the transition across the transition zone is

the arithmetic mixing law [39], described as follows:

ρ= ρ1H+ρ2 (1−H) (3.23)

µ=µ1H+µ2 (1−H) (3.24)

Figure 3.2: The diffuse interface approach illustrated via the density profile across the interface

3.3.4 Surface tension modelling

3.3.4.1 Continuum Surface Force method

In the context of the diffuse interface method, the surface tension force, defined originally as a

surface integral, is approached by a volume integral via a smoothed Dirac function δ(φ) centred

at the interface. This method is called the CSF [40]. Accordingly, the surface tension force term is

expressed as follows:

(
f ST,U

)
Γ =

(
δ f ST,U

)
Ω (3.25)

where the Dirac function δ is derived from the smooth Heaviside function and given as follows:
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δ(φ) =


1

2ε

[
1+cos

(
πφ

ε

)]
if

∣∣φ∣∣≤ ε
0 if

∣∣φ∣∣> ε (3.26)

For the sake of simplicity, the expression of the surface tension force henceforth will include

the Dirac function δ:

f ST =−δ γ κ n (3.27)

Therefore, the two-fluid formulation (3.20) becomes:

(
ρ∂u
∂t ,U

)
Ω
+ (
ρu ·∇∇∇u,U

)
Ω+ (

2µε̇(u) : ε̇(U )
)
Ω− (

p,∇∇∇·U )
Ω

= (
f ,U

)
Ω+ (

f ST,U
)
Ω

(∇∇∇·u,P )Ω = 0

(3.28)

Density-scaled CSF method

The main numerical issue when using the standard CSF method for surface tension is the spurious

oscillations around the interface. They are caused by high accelerations in the region of small

density due to the symmetrical distribution of the surface tension force around the interface. The

use of a centred Dirac function δ gives the same weight to the region of small density as the region

of higher density. One way to minimise these spurious oscillations is to use a density-scaled force

[41]. The principle of this method is to shift the peak of the Dirac function to give more weight

to the higher density region as shown in Figure 3.3. It consists of multiplying the centred Dirac

function δ by ρ/ρwhereρ is the mean density ρ1+ρ2

2 . The density-scaled CSF method writes thus:

f scaled
ST =−ρ

ρ
δ γ κ n (3.29)

Figure 3.3: Illustration of the centred Dirac function and the density-scaled Dirac function

Another equivalent way to use the Density-scaled force is to substitute the centred Dirac func-

tion by the following scaled Dirac:

δscaled = 2×H(φ)×δ(φ). (3.30)
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Hence,

δscaled =


1

2ε

[
1+cos

(
πφ

ε

)][
1+ φ

ε
+ 1

π
sin

(
πφ

ε

)]
if

∣∣φ∣∣≤ ε
0 if

∣∣φ∣∣> ε (3.31)

To illustrate the issue of the spurious currents, we apply the framework to a simple bench-

mark called the equilibrium drop problem. In this benchmark a circular water drop of density

ρ1 = 1000 kg.m−3 and viscosityµ1 = 10−3 Pa.s surrounded by air of density ρ2 = 1 kg.m−3 and viscos-

ity µ2 = 10−5 Pa.s is released from an equilibrium circular shape. Surface tension is γ = 0.07 N.m−1.

Physically, the velocity field must be zero as the drop is at equilibrium. But numerically, the so-

lution is polluted by the numerical spurious current in the vicinity of the interface. Figure 3.4

shows that the density-scaled method enables a significant reduction of the intensity of these non-

physical currents comparing to the standard CSF method with a centred Dirac function.

(a) (b)

Figure 3.4: Illustration of the simulated velocity field (depicted by black arrows) of a circular drop with (a)
the standard CSF method and (b) the density-scaled CSF method

3.3.4.2 Semi-implicit surface tension

The explicit formulation of the surface tension force evaluates the Right-Hand-Side (RHS) term of

the equation (3.28) at the previous time step. The calculation stability with explicit surface tension

is limited to time steps ∆t up to the maximum value [42]

∆tmax =
√
ρ̄h3

2πγ
(3.32)

where h is the grid size andρ is the average density at the interface. This stability condition could

be very penalising for computational time. For instance, in this thesis, we are dealing with liquid

metals with surface tension coefficient of the order of 1.8 N.m−1 and density around 7000 kg.m−1.

With a minimum mesh size of 10−5 m, the maximum time step allowed by the use of explicit sur-

face tension is ∆tmax = 5.56 × 10−7 s. It means that for a simulation of a process that physically

lasts 1 s we need about 106 time-increments. Using an implicit time scheme for surface tension

enables to circumvent this time step restriction. In this work, we adopt a semi-implicit formula-
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tion of surface tension. Such formulation has been implemented in Cimlib at CEMEF by Khalloufi

[43] and Qiang [44]. In this work, we express the implicit term of surface tension differently so that

the implementation in FE is straightforward. For this purpose, we introduce another approach to

express the weak form of surface tension, following the work of [45]. First, we rewrite the surface

tension force integral such as:

ˆ
Γ

−γκn ·U dΓ =
ˆ
Γ

(−γκn +���∇∇∇Γγ) ·U dΓ (3.33)

=
ˆ
Γ

∇∇∇· [γ(I−n ⊗n)
] ·U dΓ (3.34)

= −
ˆ
Γ

γ(I−n ⊗n) : ∇∇∇U dΓ (3.35)

We denote by P the projection tensor I−n ⊗n on the interface Γ. We consider the identity

function χ on Γ. According to [42], we have the following properties:

∇∇∇Γχ= I−−−n ⊗⊗⊗n =P (3.36)

∆Γχ=∇∇∇Γ ·∇∇∇Γχ=−κn (3.37)

where ∇∇∇Γ is the surface gradient on Γ and ∆Γ is the surface Laplacian, also known as the Laplace-

Beltrami operator.

The derivation of the semi-implicit formulation of surface tension arises from the following

approximation:

χn+1 ≈ χn +un+1∆t (3.38)

The exponent (∗)n+1 denotes the value of the quantity (∗) at the current time step and (∗)n its

value at the previous time step.

ˆ
Γ

γPn+1 : ∇∇∇U dΓ =
ˆ
Γ

γ∇∇∇Γχn+1 : ∇∇∇U dΓ (3.39)

≈
ˆ
Γ

γ∇∇∇Γ
(
χn +un+1∆t

)
: ∇∇∇U dΓ (3.40)

=
ˆ
Γ

γPn : ∇∇∇U dΓ+∆t

ˆ
Γ

γ∇∇∇Γun+1 : ∇∇∇U dΓ (3.41)

=
ˆ
Γ

γPn : ∇∇∇U dΓ+∆t

ˆ
Γ

γ
(∇∇∇un+1.P

)
: ∇∇∇U dΓ (3.42)

Note that this latter semi-implicit formulation also accounts for the Marangoni effect, which is

accounted for in Chapter 5. In the present chapter, we work in the framework of isothermal flows

and constant surface tension coefficient.

Using the CSF method and the equation (3.35), the equation (3.42) becomes:

(
f n+1

ST ,U
)
Ω
= (

f ST,U
)
Ω− (

∆t γ δ
(∇∇∇un+1.P

)
: ∇∇∇U

)
Ω (3.43)
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3.3.5 Semi-implicit BDF time discretisation of Navier-Stokes equations

For low discretisation errors, we approximate the time derivative of the transient term in Navier-

Stokes equations (3.54) using high order Backward Differentiation Formulas (BDF) schemes [46;

47]

If we denote by tn = n∆t the discrete times and σ the order of the discretisation, the BDF

approximation of the time derivative of the velocity field is given by:

∂uh

∂t
≈
ασun+1

h −uBDF,σ
h

∆t
(3.44)

where

uBDF,σ
h =


un

h if σ= 1

2un
h − 1

2
un−1

h if σ= 2

3un
h − 3

2
un−1

h + 1

3
un−2

h if σ= 3

(3.45)

and

ασ =


1 if σ= 1

3

2
if σ= 2

11

6
if σ= 3

(3.46)

In this work, the nonlinear convection terms appearing in Navier-Stokes equations are approx-

imated by a high order semi-implicit scheme based on Newton-Gregory backward polynomials:

∇∇∇uh .uh ≈∇∇∇un+1
h .uBNG,σ

h (3.47)

where

uBNG,σ
h =


un

h if σ= 1

2un
h − un−1

h if σ= 2

3un
h − 3un−1

h + un−2
h if σ= 3

(3.48)

This leads to solve one linear system in each time step in stead of solving a nonlinear system which

requires an iterative algorithm within each time step to converge to the solution.

3.3.6 Stabilised Variational MultiScale method

Let discretise the computational domain Ω into a FE mesh grid Th made of Nel t elements K.

We approximate the functional spaces V for the velocity and Q for the pressure by the finite-

dimensional spaces Vh and Qh respectively. In FE method, the stability of resolution of the mixed

velocity-pressure formulation is restricted by the Babuska-Brezzi condition [48]. This condition

prescribes that the dimension of the functional space for the velocity Vh must be richer than that
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for the pressure Qh . The classical Galerkin method with equal order linear interpolation P1/P1

is thus not stable and ends up with spurious oscillations which disturb the solution. There are

two main methods to cope with this stability condition: (a) the stable mixed FE (b) the stabilised

Variational MultiScale method (VMS). The stable mixed FE [49] is based on the use of P1+/P1 for-

mulation, i.e. the velocity field is discretised with continuous piecewise linear functions enriched

by bubble functions, and the pressure by piecewise linear functions. The second method (VMS)

is designed to circumvent the stability condition while allowing the use of equal order linear in-

terpolation P1/P1. The key idea of VMS method is to split the velocity and the pressure into two

resolution scales, a coarse scale and a fine one. The fine scales are approximated and re-injected

in the large-scale problem. The explicit presence of the fine-scale thus disappears, but its effect is

accounted for in the resolvable equations. Here we present briefly the outlines of the method. For

further details, the readers are referred to [50; 51].

Let us split the velocity and the pressure fields into resolvable coarse-scale (uh , ph) and unre-

solved fine-scale (u′, p ′) such as u = uh +u′ and p = ph +p ′. We apply the same decomposition

to the interpolation functions such as U = Uh +U ′ and P = Ph +P ′. The functional spaces are

defined as V = Vh ⊕V′, V0 = Vh,0 ⊕V′
0 and Q = Qh ⊕Q′. The discretised, FE approximation for the

time-dependent Navier-Stokes problem therefore reads:

Find(u, p) ∈ V ×Q such that:

ρ
(
∂(uh+u′)

∂t , (Uh +U ′)
)
Ω
+ (
ρ(uh +u′) ·∇∇∇(uh +u′), (Uh +U ′)

)
Ω

+(
2µε̇(uh +u′) : ε̇(Uh +U ′)

)
Ω− (

(ph +p ′),∇∇∇· (Uh +U ′)
)
Ω

+(
∆t γ δ

(∇∇∇(uh +u′).P
)

: ∇∇∇(Uh +U ′)
)
Ω = (

f+ fST, (Uh +U ′)
)
Ω , ∀U ∈ V0(∇∇∇· (uh +u′), (Ph +P ′)

)
Ω = 0, ∀P ∈ Q.

(3.49)

In order to derive the stabilised formulation, we split Equation (3.49) into a large-scale and

a fine-scale problem. The fine-scale problem is defined on element interiors. Under several as-

sumptions regarding the time-dependency and the non-linearity of the momentum equation of

the sub-scale system detailed in [51], the fine-scale solutions u′ and p ′ are written in terms of

the time-dependent large-scale variables using consistently derived residual-based terms. Con-

sequently, we can use static condensation, that consists in substituting directly u′ and p ′ into the

large-scale problem, which gives rise to additional terms in the FE formulation, tuned by a local

stabilising parameter. These terms are responsible for the enhanced stability compared to the

standard Galerkin formulation. The large-scale system finally reads:

(
ρ∂uh
∂t ,Uh

)
Ω
+ (
ρuh ·∇∇∇uh ,Uh

)
Ω+ (

2µε̇(uh) : ε̇(Uh)
)
Ω

−(
ph ,∇∇∇·Uh

)
Ω+ (

∆t γ δ (∇∇∇uh .P) : ∇∇∇Uh
)
Ω

−∑
K∈Th

(
τ1RM,ρuh∇∇∇Uh

)
K −∑

K∈Th
(τ2RC,∇∇∇·Uh)K = (

f + f ST,Uh
)
Ω , ∀Uh ∈ Vh,0

(∇∇∇·uh ,Ph)Ω−∑
K∈Th

(τ1RM,∇∇∇Ph)K = 0, ∀Ph ∈ Qh

(3.50)
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where RM and RC are momentum and continuity residual expressed as

RM = f + f ST −ρ∂t uh −ρuh ·∇∇∇uh −∇∇∇ph

RC =−∇∇∇·uh

(3.51)

and τ1 and τ2 are stabilization parameters for which we adopt the definition proposed in [52]:

τ1 =
[(

2ρ‖uh‖K

hK

)2

+
(

4µ

h2
K

)2]− 1
2

, (3.52)

τ2 =
[(
µ

ρ

)2

+
(

c2‖uh‖K

c1hK

)2] 1
2

(3.53)

where hK is the characteristic length of the element and c1 and c2 are algorithmic constants. We

take them as c1 = 4 and c2 = 2 for linear elements [52]. Compared to the standard Galerkin method,

the proposed stabilised formulation involves additional integrals that are evaluated element-wise.

These additional terms represent the stabilising effect of the sub-grid scales and are introduced

consistently in the Galerkin formulation. They allow avoiding instabilities caused by both domi-

nant convection terms and incompatible approximation spaces.

The final resolvable set of equations of Navier-Stokes including the implicit term of surface

tension and the semi-implicit BDF time discretisation reads:



(
ρασuh

∆t ,U SUPG
h

)
K
+

(
ρuBNG,σ

h .∇∇∇uh ,U SUPG
h

)
K
+ (

2µε̇(uh) : ε̇(Uh)
)

K +
(
∇∇∇ph ,U SUPG

h

)
K

+ (τ2∇∇∇.uh ,∇∇∇.Uh)K + (
∆t γ δ (∇∇∇uh .P) : ∇∇∇Uh

)
K =

(
f + f ST +ρuBDF,σ

h
∆t ,U SUPG

h

)
K(

ρασuh
∆t ,τ1∇∇∇Ph

)
K +

(
ρuBNG,σ

h .∇∇∇uh ,τ1∇∇∇Ph

)
K
+ (∇∇∇ph ,τ1∇∇∇Ph

)
K

+ (∇∇∇.uh ,Ph)K =
(

f + f ST +ρuBDF,σ
h
∆t ,τ1∇∇∇Ph

)
K

(3.54)

where

U SUPG
h =Uh +τ1ρuh∇∇∇Uh (3.55)

The term coloured in red expresses the contribution of semi-implicit surface tension. As for

the terms coloured in blue, they are showing the contribution of the semi-implicit BDF time dis-

cretisation of the transient and advection terms in Navier Stokes. More details about this method-

ology are available in [51].

3.4 Partial conclusion

Let us summarise what we have done so far in this chapter. We have presented our numerical

framework for modelling a two-fluid incompressible flow, including a moving interface governed

by surface tension. The current numerical framework is based on the use of a global computa-
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tional domain with a single Eulerian mesh for both fluids. The interface is implicitly represented

by the Level-Set function. The time-evolution of the interface is monitored by solving a transport

equation of the Level-Set function. The flow dynamics is described by conservation equations

given by Navier-Stokes. A monolithic formulation of mass conservation and momentum enables

the resolution of a single set of equations over the entire computational domain. These equations

are enriched by the contribution of surface tension as a volume force via the CSF method. The

Navier-Stokes resolution is based on the stabilised FE VMS method. We have also suggested some

numerical improvements to address numerical issues such as mass loss, spurious currents, pe-

nalising stability condition and numerically-added diffusion. Now we move on to the assessment

step of our numerical modelling. For this purpose, our evaluation must be based on the criteria

of mass conservation described by the Level-Set function and of mechanical energy conservation

given by the flow velocity field governed by surface tension and the mechanical properties of the

fluids.

The test case of the oscillating drop is a perfect candidate for the evaluation of current numeri-

cal modelling on the previously-mentioned criteria. This test case consists in studying the oscilla-

tions of a liquid drop surrounded by gas in weightlessness. The drop is released from a deformed

shape. The surface tension at the liquid-gas interface causes the drop to oscillate around its equi-

librium shape. The frequency of the oscillations is correlated with the value of the surface tension.

The amplitude of the oscillations is damped due to the viscous friction forces of the bulk liquid,

thus related to the viscosity. In this test case, the system is considered to be isothermal. The vol-

ume of the drop must, therefore, be constant to preserve the mass. Accordingly, the time-evolution

of the volume described by the Level-Set function will allow us to evaluate the mass conservation.

Knowing the analytical expression of the frequency of the oscillations and their damping rate as a

function of the properties of the fluid, we will be able to compare the numerical results with the

theory. Before being a numerical test case, the oscillating drop was first an experimental technique

used to measure the surface tension and viscosity of liquids. The measurements are based on the

use of some existing theories. Rayleigh [53] and Lamb [54] are pioneers in the development of such

analytical solutions. Their theories are the most widely used in experiments. However, all these

theories are developed in 3D. For the evaluation of our numerical modelling, we have to perform

several simulations with different parameters and numerical methods. The execution of several

simulations in 3D is obviously time-consuming for such a parametric study. Hence, we suggest in

this section to develop the theory of damped oscillations of a viscous liquid drop in 2D.

3.5 The oscillating drop method : analytical solution

3.5.1 State of the art

One of the main physical phenomena behind the oscillation of fluid drops is surface tension. It is

well-known that when a liquid drop is sustained in a gas under microgravity, the surface tension

makes the drop minimise the area of its interface with the surrounding gas. The equilibrium shape

that corresponds to the minimal surface area is a sphere. When the drop is distorted from its equi-
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librium shape, it displays oscillations with a frequency correlated to surface tension. If the liquid

is viscous, the oscillations are damped with a decay rate linked to viscosity. The knowledge of how

the observed frequency and the damping rate are related to surface tension and viscosity, yields

access to the values of these properties. This is the principle of the oscillating drop technique used

for the measurement of surface tension and viscosity [55].

Shape oscillation of drops driven by surface tension has been addressed theoretically by sev-

eral authors over more than a century. The earliest theoretical investigation started with Rayleigh

who derived, under the irrotational flow assumption, the frequency spectrum of small-amplitude

axisymmetrical oscillations of non-viscous drops in a vacuum with zero gravity [53]. This analysis

was extended by Lamb to inviscid drops immersed in an inviscid medium [56]. Lamb also showed

that for weakly viscous liquids, the frequency spectrum is identical to that found by Rayleigh and

the assumption of the irrotational flow can be used to determine the damping rate [54]. Valentine

et al. used the same approximation to derive the frequency and the damping rate of oscillating

drops in liquid-liquid systems [57]. Miller and Scriven established that the irrotational approx-

imation does not account for the dissipation in the boundary layer near the interface which is

predominant for liquid-liquid systems even though the viscosities are very low unless the droplet

size is very small [58]. They proposed a general solution for the linear oscillations of liquid droplets

hosted in another fluid medium for arbitrary viscosities including the interfacial viscoelastic prop-

erties. However, their solution is limited to free non-extensible interfaces. Prosperetti derived a

more general solution [59] and showed that for the limiting case of low viscosities, the drop be-

haves as a damped harmonic oscillator [60]. Further studies of this problem analysed the non-

linear oscillations starting from moderate-amplitudes by Tsamopoulos and Brown [61] to large-

amplitudes with Lundgreen and Mansour [62], Trinh and Wang [63], and Foote [64]. Correction of

the Rayleigh theory that includes the effect of both temperature variations and large-amplitudes

was also proposed by Xiao et al. [65].

Many other investigations have been dedicated to the oscillations of a drop sustained against

gravity by a levitation technique. The use of a strong levitator field can make the equilibrium shape

of the levitated drop aspherical. Thus, the presence of the levitator field affects the dynamics of

the drop interface and the theories cited above must be revisited. For this purpose, Cummings

and Blackburn proposed an approximated solution for a non-viscous drop in an electromagnetic

levitator [66]. Later on, their work was extended by Bratz and Egry to account for the viscous

dissipation effect for the same levitation technique [67]. However, their theories cannot take into

consideration the electromagnetic stirring, which leads to turbulent flow in the bulk liquid. In the

presence of turbulence, the observed damping rate includes the effect of the turbulent viscosity,

which is not modelled in the available theories.

For the sake of more accuracy, measurements under microgravity are carried out, preferen-

tially within the limit of maximum 1% small-amplitude axisymmetrical oscillations with mode

n = 2 [68]. The objective is to approach at best the approximations of the Rayleigh and Lamb the-

ories. Despite these efforts, it does not remain straightforward to tailor experimental conditions.

The thorough interpretations of raw data are indeed challenging due to various deleterious effects:
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oscillation amplitude, sample rotation and procession, temperature variation, mixture of oscilla-

tion modes [61]-[65]. Only very recently and based on careful analyses of selected experimental

data conducted in the ISS, Wunderlich and Mohr concluded that non-linear effects are not present

even when reaching up to 10% deformation in liquid metallic drops [69].

Most of these theoretical analyses confine the attention to three-dimensional (3D) cases re-

garding their relevance for experiments and real applications, whereas the two-dimensional (2D)

cases have been marginally addressed. The 2D oscillations of a free-surface around a circular

shape correspond to the oscillations occurring in a transverse section of a liquid jet injected from

a non-circular orifice and showing no longitudinal variations. This configuration has been stud-

ied by Rayleigh for an inviscid liquid [53]. For the best of our knowledge, no analytical solution for

damped oscillations of this 2D configuration has been explicitly derived. This configuration will

be referred to as the "2D drop" case.

The present work is an extension of Rayleigh’s theory by adding the viscous effect of the inner

flow. Lamb addressed the damped oscillations for small viscosities assuming a priori that the os-

cillation frequency found by Rayleigh is not altered by viscosity. Unlike Lamb, the solution derived

hereafter applies for whatever value of the viscosity, i.e. for finite viscous and potential forces. Fur-

thermore, it will be shown that three possible regimes of an initially-distorted drop can describe

its behaviour: aperiodic regime, critically-damped regime and oscillatory regime. In the latter

regime, the oscillation frequency results from the interaction between surface tension and viscos-

ity. Although the effect of the non-negligible viscosity has been studied by Prosperetti in more

comprehensive and sophisticated cases[59]-[60], the present work re-derives the 3D solution in

a rather simple way through the energy balance. The novelty also lies in the 2D solution, which

can provide a quantitative benchmark for testing the accuracy and the robustness of numerical

modelling of multiphase flows.

3.5.2 The free-oscillating viscous drop problem

Hereafter we first present the set of equations to describe the oscillation of a free-surface around

a (2D) circular and (3D) spherical shape while considering possible interactions between finite

viscous and potential forces. The analytical solution will be derived for the time-evolution of the

radius of the free-surface as well as the spatial-temporal variation of the velocity field in the bulk

liquid.

3.5.2.1 Governing equations

Consider the motion of a Newtonian liquid of density ρl and viscosity µl . Let Ωl be the time-

dependent domain occupied by the liquid and Γ its interface with a surrounding low-density gas

phase or, more simply, with a vacuum. The liquid is assumed incompressible with a constant

density of ρl , isothermal, and no phase transformation is considered. We also neglect all external

forces (gravity, magnetic field, forced gas flow, etc.) applied to the liquid. In this framework, the
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flow is governed by the following Navier-Stokes equations:


ρl

(
∂ul

∂t
+∇ul ·ul

)
−∇∇∇·σl = 0

∇∇∇·ul = 0

(3.56)

ul is the liquid velocity vector and σl is the liquid stress tensor given by the incompressible New-

tonian constitutive law:

σl = 2µl ε̇l −p l I (3.57)

where ε̇l = 1
2

[∇∇∇ul + (∇∇∇ul )T
]

is the strain-rate tensor, p l is the pressure field in the liquid and I is

the identity tensor.

At the time t = 0s, we assume that we know the initial shape of the liquid domain and its

velocity field such as:

Ωl (0) =Ωl
0, ul (x,0) = ul

0(x), ∇∇∇.ul
0 = 0 (3.58)

Since no mass exchange occurs throughΓ, the local mass flux leaving the liquid domain ρl (ul .n−
vΓ) is zero, where n is the unit external normal vector on Γ and vΓ is its normal velocity. This leads

to writing the kinematic interface condition as:

ul ·n = vΓ (3.59)

The second interface condition, named the dynamic condition, arises from the force balance at

the interface Γ:

σl ·n =−γκn −pext n (3.60)

where γ is surface tension coefficient, κ is the curvature of the interface and pext is the pressure

in the surrounding gas phase. Further assuming that the liquid is placed in vacuum, Γ is a free

surface and pext = 0.

3.5.2.2 Energy balance

To obtain the energy balance of the drop, we integrate the scalar product of the second equation

of (3.56) with the velocity vector over Ωl as follows:

Ñ
Ωl

[
ρl

(
∂ul

∂t
+∇ul ·ul

)
−∇∇∇·σl

]
·ul dV = 0 (3.61)

After integrating by part the stress tensor term, we can write:

Ñ
Ωl

1

2
ρl

(
∂ul 2

∂t
+ul ·∇∇∇ul 2

)
dV −

Ï
Γ

σl ·n ·ul dS +
Ñ
Ωl

σl : ∇∇∇ul dV = 0 (3.62)
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The development of this equation (details are given in the appendix) leads to the following equa-

tion:

d

d t

Ñ
Ωl

1

2
ρl ul 2

dV


︸ ︷︷ ︸

El
ki n : kinetic energy

+ d

d t

Ï
Γ

γ dS


︸ ︷︷ ︸

El
pot : potential energy

+
Ñ
Ωl

2µl ε̇l : ε̇l dV

︸ ︷︷ ︸
Ẇl

vi s : work of viscous force

= 0 (3.63)

This equation expresses the energy balance:

d

d t

(
El

ki n +El
pot

)
=−Ẇl

vi s (3.64)

3.5.3 Analytical solutions in the framework of the linear theory

3.5.3.1 Drop shape description

The physics of oscillation refers to the time and space evolution of the surface at the liquid-gas

interface Γ. As shown in figure 3.5a, we look for the solution of R(θ,φ, t ) for the interface position

of a perturbed spherical droplet in 3D assuming axisymmetric variations with respect to z-axis (no

dependence on φ). In 2D, the solution R(θ, t ) is the interface position of a perturbed cross section

through an infinite cylinder as shown in figure 3.5b. In the latter case, denoting z the longitudinal

axis of the cylinder, the analysis is focused on a cross section of infinitely small portion δz defining

the liquid domain of surface Ωl and contour Γ. We consider that the liquid is Newtonian and the

flow is incompressible.

R(θ,φ, t )

θ

φ

x

y

z

(a) Schematic of 3D axisymetric oscillations oc-
curring in a spherical droplet

x

y

z

R(θ, t )

θ

(b) Schematic of 2D oscillations occurring in a
cross section of an infinite cylinder

Figure 3.5: Schematics of the framework of 3D and 2D oscillations

The radius of the free surface at each section of the cylinder can be expressed as the sum of a

constant part represented by the equilibrium radius R0 and a variable part f (θ, t ) which describes

the spatial-temporal variations of the free-surface from its equilibrium shape:

R(θ, t ) = R0 + f (θ, t ) (3.65)

As there is no dependency on φ angle in 3D axisymmetric configuration, formulation (3.65) is

valid also for the 3D case.

In this paper, we work in the context of small-amplitude variations. Therefore, we can write
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f (θ, t ) as a linear combination of normal modes denoted by the integer n as follows:

f (θ, t ) =
∞∑

n=0
αn(t )cos(nθ) for 2D (3.66a)

f (θ, t ) =
∞∑

n=0
αn(t )Pn (cos(θ)) for 3D (3.66b)

where

• αn (t )
R0

¿ 1.

• Pn are Legendre polynomials.

• Mode n = 0 is related to the volume oscillation. We denote by b0(t ) the sum R0 +α0(t ). Thus

b0 will be determined hereafter by the condition that the volume must remain constant.

• Mode n = 1 describes the translational oscillations of the mass centre. We consider that the

mass centre is fix (zero translational velocity). Consequently α1(t ) = 0.

• Modes n ≥ 2 describe the shape oscillations around the equilibrium. In the linear theory we

can consider that these modes are independent each other and can be treated separately.

Following these considerations, the radius reads:

R(θ, t ) = b0(t )+αn(t )cos(nθ) for 2D (3.67a)

R(θ, t ) = b0(t )+αn(t )Pn (cos(θ)) for 3D (3.67b)

Note that in the latter equation and in the following n ≥ 2.

Assuming that the flow is incompressible, the volume of the oscillating drop is the same as the

volume at the equilibrium. Thus:

V = δz

ˆ 2π

θ=0

ˆ R(θ,t )

r=0
r dr dθ= δz(πb2

0 +
1

2
πα2

n) = δzπR2
0 for 2D (3.68a)

V = 2π

ˆ π

θ=0

ˆ R(θ,t )

r=0
r 2dr si n(θ)dθ= 4π

3
b3

0

(
1+ 3

2n +1

(
αn

b0

)2)
= 4π

3
R3

0 for 3D (3.68b)

Hence,

b0 = R0

√
1− 1

2
(
αn

R0
)2 ≈ R0

(
1− 1

4

(
αn

R0

)2)
for 2D (3.69a)

b0 = R0

(
1+ 3

2n +1

(
αn

b0

)2)− 1
3

≈ R0

(
1− 1

2n +1

(
αn

R0

)2)
for 3D (3.69b)

Then the radius can be approximated as

R(θ, t ) = R0

(
1+εncos(nθ)− 1

4
ε2

n

)
for 2D (3.70a)

R(θ, t ) = R0

(
1+εnPn (cos(θ))− 1

2n +1
ε2

n

)
for 3D (3.70b)
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where εn = αn
R0

¿ 1. It is worth noting that for small-amplitude oscillations, the term ε2
n is

negligible. However, it will be shown in section 3.5.3.3 that potential energy is of the same order as

ε2
n . Consequently, its presence in equation (3.70) is crucial for the approximation of the potential

energy

The objective now is to find the time-variation of εn . The outlines of our demonstration are

the following: we assume that the flow is irrotational, and we find the velocity potential, then

we compute the kinetic and potential energies of the drop. Next, we express the viscous energy

dissipation. Finally, we apply the energy balance, which leads to a linear differential equation of

the quantity εn .

3.5.3.2 Inner flow modelling

Following the discussion in [70], the fluid motion can be approximated by an irrotational flow. The

velocity field derives from a potential ul =∇∇∇ϕ.

The velocity potential of the nth mode can be formulated as:

ϕ(r,θ, t ) = βn(t )r ncos(nθ) for 2D (3.71a)

ϕ(r,θ, t ) = βn(t )r nPn (cos(θ)) for 3D (3.71b)

The coefficient βn is obtained from the kinematic boundary condition at the free-surface

ul
r (r = R) = ∂ϕ

∂r
(r = R) = ∂R

∂t
(3.72)

This condition leads to the following approximation which is the same for both 2D and 3D

analyses: nβnRn−2
0 ≈ ε̇n Hence, we can write the velocity potential as follows:

ϕ(r,θ, t ) = 1

n
R2

0

(
r

R0

)n

cos(nθ)ε̇n(t ) for 2D (3.73a)

ϕ(r,θ, t ) = 1

n
R2

0

(
r

R0

)n

Pn (cos(θ)) ε̇n(t ) for 3D (3.73b)

3.5.3.3 The energy balance

The kinetic energy of the drop is given by

El
ki n =

Ñ
V

1

2
ρl

∥∥∇∇∇ϕ∥∥2 dV =
Ï
S

1

2
ρlϕ∇∇∇ϕ.ndS −

Ñ
V

1

2
ρlϕ∇∇∇2ϕ︸︷︷︸

=0

dV (3.74)

El
ki n = 1

2
ρlδz

ˆ 2π

0
ϕ
∂ϕ

∂r
Rdθ≈ 1

2n
πρl R4

0ε̇
2
nδz for 2D (3.75a)

El
ki n =πρl

ˆ π

0
ϕ
∂ϕ

∂r
R2si n(θ)dθ≈ 2πρl R5

0
1

n(2n +1)
ε̇2

n for 3D (3.75b)
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Following the work of Rayleigh [53], the potential energy is expressed as:

El
pot = γ (S −S0) (3.76)

Where S denotes the area of the free-surface and S0 the area of the equilibrium shape.

For the 2D case, the area S = δzP where P is the perimeter of the cross section of the cylinder

and S0 = 2πR2
0δz. The perimeter P is calculated through the following integral:

P =
ˆ 2π

0

√
R2 +

(
∂R

∂θ

)2

dθ for 2D (3.77)

Using the expression of the radius R given by the equation (3.70a) and Taylor expansions we obtain

the following approximation

P ≈ 2πR0 + 1

2
π(n2 −1)R0ε

2
n (3.78)

For the 3D case, the area S of the drop is expressed as:

S = 2π

ˆ π

0

√
R2 +

(
∂R

∂θ

)2

Rsi n(θ)dθ for 3D (3.79)

After replacing R by the expression (3.70b), we use Taylor series and some known properties of

Legendre polynomials. The area S of the 3D drop is approximated as follows

S ≈ S0 +2πR2
0

n2 +n −2

2n +1
ε2

n (3.80)

where S0 = 4πR2
0

Hence,

El
pot ≈

1

2
π(n2 −1)γR0δzε2

n for 2D (3.81a)

El
pot ≈ 2πγR2

0
(n +2)(n −1)

2n +1
ε2

n for 3D (3.81b)

Now we can write the rate of change of the total energy:

dEl
tot

d t
=π 1

n
ρl R4

0δzε̇n

[
ε̈n +n(n2 −1)

γ

ρl R3
0

εn

]
for 2D (3.82a)

dEl
tot

d t
= 4πρl R5

0
1

n(2n +1)
ε̇n

[
ε̈n +n(n −1)(n +2)

γ

ρl R3
0

εn

]
for 3D (3.82b)

If the fluid is inviscid (µl = 0), the conservation of the total energy
dEl

tot
d t = 0 leads to the solution
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of a perpetual oscillator of the form εn(t ) = Acos(ωn,0t +B) where the angular frequency is

ωn,0 =
√

n(n −1)(n +1)
γ

ρl R3
0

for 2D (3.83a)

ωn,0 =
√

n(n −1)(n +2)
γ

ρl R3
0

for 3D (3.83b)

as it was found by Rayleigh [53].

As an extension of the work of Rayleigh, we take into consideration, the energy dissipation due

to the viscous force of the the bulk liquid. For that, we calculate the rate of the viscous dissipation

energy:

Ẇl
vi s =

Ñ
V

2µl
(
ε̇l : ε̇l

)
dV (3.84)

Following the work of Lamb in [56] we can write the volume integral as a surface integral:

Ẇl
vi s =

Ï
S

µl ∂ul 2

∂n
dS (3.85)

The integral over the free surface is calculated as follows:

Ẇl
vi s =µlδz

ˆ 2π

0

∂‖∇∇∇ϕ‖2

∂r
Rdθ for 2D (3.86a)

Ẇl
vi s =µl 2π

ˆ π

0

∂‖∇∇∇ϕ‖2

∂r
R2si n(θ)dθ for 3D (3.86b)

Using Taylor expansions, the dissipation rate can be approximated as

Ẇl
vi s ≈ 4πµl R2

0δz (n −1) ε̇2
n for 2D (3.87a)

Ẇl
vi s ≈ 8πµl R3

0
n −1

n
ε̇2

n for 3D (3.87b)

We can now write the energy balance given in (3.64). This leads to the following linear second

order Ordinary Differential Equation (ODE):

ε̈n +2λn ε̇n +ω2
n,0εn = 0 (3.88)

where

λn = 2n(n −1)
µl

ρl R2
0

for 2D (3.89a)

λn = (2n +1)(n −1)
µl

ρl R2
0

for 3D (3.89b)
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The form of the solution of the ODE (3.88) depends on the sign of its reduced discriminant

∆′
n = λ2

n −ω2
n,0 (3.90)

When ∆′
n > 0 the viscosity is dominant over the surface tension. The solution corresponds to

decay to the equilibrium shape without oscillations. This behaviour is known as the over-damped

regime. When ∆′
n < 0, the surface tension is dominant over viscosity. The solution corresponds to

oscillations about the equilibrium shape with a decreasing amplitude and a frequency lower than

the frequency of an inviscid fluid. In this case, we talk about the under-damped regime. In the

particular case, when ∆′
n = 0, the solution is a rapid relaxation to the equilibrium form without

any oscillation. This is known as the critically damped regime.

Without detailing the well-known procedure for solving a linear second-order ODE, we synthe-

sise, in which follows, the 3 different solutions of the ODE (3.88)

• Case ∆′
n > 0: overdamped regime

εn(t ) = e−λn t

[
εn(0)cosh(

√
∆′

n t )+ ε̇n(0)+λnεn(0)√
∆′

n

sinh(
√
∆′

n t )

]
(3.91)

• Case ∆′
n = 0: Critically damped regime

εn(t ) = e−λn t [(ε̇n(0)+λnεn(0)) t +εn(0)] (3.92)

• Case ∆′
n < 0: underdamped regime

εn(t ) = e−λn tεn,max cos(ωn t +ζn) (3.93)

where 

ωn =
√
ω2

n,0 −λ2
n

ε2
n,max = ε2

n(0)+
(
ε̇n(0)+λnεn(0)√

−∆′
n

)2

tanζn =− ε̇n(0)+λnεn(0)

εn(0)
√

−∆′
n

cos(ζn)εn(0) ≥ 0

(3.94)

3.6 Numerical simulations

3.6.1 2D preliminary numerical tests

In the first section of this chapter, we presented two methods for transporting the Level-Set func-

tion as well as the VMS method to solve a flow including surface tension with different time dis-

cretisation schemes. The objective of this sub-section is to compare all these methods and schemes
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in order to find the numerical parameters giving the best results with respect to the derived the-

ory. This parametric study is performed through 2D simulations. To do so, we consider a droplet

of liquid iron suspended in the air in the absence of gravity. The surface of the droplet is πR2
0 where

R0 = 3×10−3 m is the radius of the equilibrium shape of the droplet. The material properties are

taken at a temperature of 1800K. The density of liquid iron is ρl = 7040 kg .m−3 while the density

of air is ρg = 0.19 kg .m−3. The dynamic viscosities are µl = 5.85 10−3 Pa.s and µg = 5.82 10−5 Pa.s

for liquid iron and air respectively. The density and viscosity ratios are large enough to neglect the

effects of air on droplet dynamics. This condition is essential to be in agreement with the previous

theoretical analysis, which assumes that the droplet is free of force. The whole system is enclosed

in a square cavity of size 9×R0 (see figure 3.6). The initial droplet shape is slightly deformed ac-

cording to the 4th mode with a relative deformation of ε4,0 = 2%. The initial radius of the droplet

is written:

R(θ, t = 0) = R0

(
1+ε4,0cos(4θ)− 1

4
ε2

4,0

)
(3.95)

Following the previous theoretical analysis, λ2
4 = 4.91s−2 and ω2

4,0 = 7.08× 105r ad 2.s−2. The re-

duced discriminant is ∆′
4 = −7.08 × 105 ≈ −ω2

4,0. This means that the drop displays an under-

damped regime. The droplet is released from a zero-velocity initial state. The analytical expression

of the radius of oscillation reads:

R(θ, t ) = R0

(
1+ε4(t )cos(4θ)− 1

4
ε2

4(t )

)
(3.96)

where

ε4(t ) ≈ ε4,0e−λ4t cos(ω4,0t ) (3.97)

Taking this analytical solution as a reference, in this parametric study, we first show the effect of

the mass correction method on oscillation physics. Then, we compare two methods of transport-

ing the Level-Set function: (i) solving the convection equation (3.2) + geometrical reinitialisation,

here referred to as Conv+DRT (ii) solving the auto-reinitialisation convection equation (3.4), de-

noted by Leveler. Next, we will study the influence of the time discretisation scheme for the formu-

lation of the surface tension: (i) explicit surface tension, denoted by Explicit and (ii) semi-implicit

surface tension, denoted by Implicit. Next, we compare the results of temporal discretisation of

the Navier-Stokes equations at order 1st and those of a second-order discretisation. For all these

latter tests, we use the same unstructured mesh, which consists of a square domain, containing

about 59100 of triangular elements and 29559 of nodes. The mesh is refined within a circular band

that covers the region likely to contain the interface during motion (see figure 3.6). Inside this re-

gion, the characteristic mesh size h = 3×10−5 m. With this mesh resolution, the maximal time step

allowed by the use of the explicit formulation of surface tension is ∆tmax = 2.3×10−6s. Finally, in

the last paragraph, we compare two different mesh resolutions.
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Figure 3.6: Mesh grid for the parametric study

3.6.1.1 Influence of the mass correction method

The goal here is first to evaluate the mass conservation of the standard numerical framework with-

out mass correction, then to see either or not the mass correction method improves the mass con-

servation without altering the dynamics of the droplet. The classical numerical framework that we

test is the standard CSF method introduced explicitly in Navier-Stokes equations with the Level-

Set convection solver and the geometrical re-initialisation.

Figure 3.7a shows the time-evolution of the droplet radius in θ = 0 direction for two simula-

tions: without correction (black line) and with correction (blue line). Both signals are compared to

the derived analytical solution (red line) given by equations (3.96) and (3.97). One can notice that

the temporal signal extracted from the simulation without mass correction is oscillating around a

decreasing equilibrium radius. This is nothing else than mass loss. Indeed, the temporal variation

of the surface of the 2D drop, displayed in figure 3.7b, is decreasing linearly with a rate of 38% of the

initial surface per 100 millisecond. With mass correction, the radius is oscillating around a con-

stant equilibrium radius. We extract the oscillation frequency from the temporal signals via the fft

(Figure 3.8). The peak of the spectrum indicates the oscillation frequency of the temporal signal.

Without mass correction, the spectrum shows a frequency slightly higher than the theoretical one,

which is in agreement with the fact that the frequency is inversely related to the equilibrium radius

(3.83a). As the mass correction method preserves the equilibrium radius, the frequency spectrum

is therefore enhanced and seems to be in perfect agreement with the theory. Therefore, the mass

correction improves the mass conservation but does not alter the dynamics of the oscillating drop.

However, one can observe from figure 3.7a that the amplitude of oscillations of the simulated sig-

nal is more damped than the theoretical one. This over-estimation of the damping rate is probably

related to numerical diffusion. In the continuation of the current parametric study, we compare

the numerical methods and schemes in terms of oscillation frequency together with the damping

rate.
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(a) (b)

Figure 3.7: (a) Comparison of the time-evolutions of the radius of the drop without mass correction (black
line), the radius with mass correction (blue line) and the theoretical solution (red line)
(b) The temporal variation of the surface of the 2D drop without and with mass correction method

Figure 3.8: Comparison of the frequency spectrum of the radius of the drop without mass correction (black
dashed line) and the spectrum with mass correction (blue line). The theoretical position of the peak is
marked by the red dashed line
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3.6.1.2 Influence of the Level-Set transport methods

In this sub-section, we compare two methodologies of transporting the Level-Set function: the

convection and the reinitialisation (Conv+DRT) in two separate steps used in the previous test

and the auto-reinitialised convected Level-Set method (Leveler). We first compare the mass con-

servation of the two methods. For that, simulations without mass correction are performed for

both methods. Figure 3.9 shows the time-evolution of the surface of the 2D drop. We observe that

the mass loss is much more reduced with Leveler method (only 0.86% per 100ms) than Conv+DRT

method. When the mass correction method is applied for both methods, one can notice from fig-

ure 3.10 that the damping rate simulated with the Leveler method is closer to the theory than the

Conv+DRT method.

Figure 3.9: Comparison of the temporal variation of the surface of the 2D drop between the Conv+DRT
method and Leveler method

Figure 3.10: Comparison of the oscillation radius simulated with the Conv+DRT method (green line) and
the radius simulated with the Leveler method (blue line)

3.6.1.3 Influence of the surface tension formulations

In the continuation of this parametric study, we keep using only the Leveler method as it is more

conservative than Conv+DRT method. In this sub-section, we compare the semi-implicit formu-

lation of surface tension to the explicit formulation. As the semi-implicit formulation allows time-

steps higher than the stability limit ∆tmax , two simulations for the semi-implicit surface tension

are performed, one with ∆tmax and the second with 10×∆tmax . The results are shown in figure
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3.11. For the same time step ∆tmax the semi-implicit surface tension is more dissipative than the

explicit formulation. For a higher time step, the numerical diffusion is even more important. In

fact , the additional term given by the semi-implicit surface tension
(
∆t γ δ

(∇∇∇un+1.P
)

: ∇∇∇w
)
Ω has

the form of the work of a viscous dissipative force which increases when the time-step increases.

This additional term is responsible for the stabilisation of the calculation when the time-step con-

dition is broken, but on the other hand, it involves additional numerical dissipation.

Figure 3.11: Comparison of the oscillation radius simulated with the explicit surface tension and the radius
simulated with the semi-implicit surface tension with different time steps

As a conclusion of this test, the semi-implicit surface tension to go beyond the time step limit

of stability which can reduce the computational time significantly. However, it adds an artificial

diffusion and the higher the time step, the higher the added diffusion. In what follows, we keep

using the explicit formulation, although the maximal time step allowed is very small.

3.6.1.4 Influence of the time-discretisation order

In all the latter tests, the transient terms either in the Level-Set convection equation or in Navier-

Stokes equations are discretised using a 1st order scheme. Now we test a second-order time scheme

both for the Level-Set transport and Navier-Stokes. In figure 3.12, we can see that the second-order

improves the prediction of the damping rate, especially when we decrease the time-step. This find-

ing is consistent with the fact that a high discretisation order is known to reduce the discretisation

errors and thus the numerical diffusion.
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Figure 3.12: Comparison of the oscillation radius simulated with the 1st order of discretisation of Navier-
Stokes and the radius simulated with 2nd order with different time steps

3.6.1.5 Influence of the mesh resolution

So far, we use the same mesh grid for all the previous tests. In this sub-section, we compare differ-

ent mesh resolutions in order to show the influence of the mesh size on the oscillation frequency

and the damping rate of the oscillating drop. Meshes differ only in the characteristic mesh size

within the region around the interface. We compare three meshes Th,0, Th,c and Th, f whose the

characteristic sizes are hmi n,0 = 3.10−5m , hmi n,c = 4.10−5m and hmi n, f = 2.10−5m respectively.

The mesh sizes in the bulk liquid and in the air are the same for the three meshes. Changing the

mesh size also involves a change in the maximal time-step given by equation (3.32) and in the

thickness of the interface taken as ε = 2.75hmi n . The simulations are performed using a second-

order time scheme for the Leveler method together with Navier-Stokes, including explicit surface

tension. The time step for each simulation is half of the maximal time-step given by the condition

(3.32). The results of the simulations are shown in figure 3.13. The comparison reveals that for

Th,0 and Th, f , the temporal signals are perfectly synchronised with the theoretical signal. Th, f in

a good agreement with the theory in terms of the damping behaviour. The amplitudes of the signal

obtained with Th,0 slightly deviate from the theory. As for the coarsest mesh Th,c , the amplitudes

are underestimated, and the two last oscillations are slightly shifted in time from the theory.
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Figure 3.13: Time-evolutions of the normalized radius R(θ = 0, t )/R0 − 1 obtained from simulations with
different mesh resolutions

3.6.1.6 Conclusion

To summarise this parametric study, we found that the mass correction method improves the mass

conservation, thus the dynamics of the oscillating drop, in particular, the oscillation frequency. We

showed that the Leveler method for the transport of the interface is more conservative, in terms

of the mass and the mechanical energy than the convection solver with the direct geometrical

reinitialisation. Next, we showed that the semi-implicit formulation of surface tension enables

the use of time-steps higher than the maximal time-step related to the explicit surface tension.

However, the additional implicit term, responsible for stabilising the calculation for higher time-

steps, involves more numerical diffusion, thus a poor prediction of the damping rate. The issue of

numerical diffusion is enhanced by the use of high order discretisation scheme for the transient

terms in the transport of the Level-Set and in the VMS Navier-Stokes equations. Finally, we showed

the role of the mesh size around the interface in the prediction of the damping rate and found that

the finer is the mesh, the more accurate is the prediction.

We learn from this parametric study that all the numerical methods presented in this chapter

allow a correct prediction of the oscillation frequency. However, a good prediction of the damping

behaviour requires the use of methods of low numerical diffusion with fine meshes and small

time-steps. This makes simulations of high accuracy very time-consuming.

3.6.2 2D simulation of single oscillation modes

In this section, the results of simulations performed with the most accurate numerical framework

found in the previous parametric study, are compared with the results of the analytical solution

developed in section 3.5.3 for the 2D case. We consider a liquid iron droplet suspended in the air

in the absence of gravity. The same physical properties as in the parametric study, are considered

here. Calculations are performed with the finer mesh Th, f with the characteristic size hmi n, f =
2.10−5m.

Different modes of deformation (n from 2 to 7) are investigated. The initial shape of each mode

69



CHAPTER 3. NUMERICAL MODELLING OF MULTIPHASE FLOWS INCLUDING SURFACE
TENSION

is described by:

R(θ, t = 0) = R0

(
1+εn,0cos(nθ)− 1

4
ε2

n,0

)
(3.98)

where εn,0 = 0.02.

Following the previous theoretical analysis of the droplet dynamics, the behaviour of the free-

surface depends on the balance of forces between surface tension and viscosity. This balance of

forces can be determined from the sign of the reduced discriminant ∆′
n = λ2

n −ω2
n,0 which has the

same sign as 4n(n−1)
n+1 − ρl R0γ

µl 2 .

Here ρl R0γ

µl 2 is of the order of 106. For the range of modes considered here it is obvious that

4n(n−1)
n+1 is much lower than ρl R0γ

µl 2 . So ∆′
n < 0. It means that surface tension is dominant over vis-

cosity; thus, the behaviour of the iron droplet, in the current range of modes, corresponds to the

under-damped regime. This qualitative analysis of the balance of forces is confirmed by the fol-

lowing table, which gives the values of λ2
n , ω2

n,0 and ∆′
n for each mode.

Mode 2 3 4 5 6 7
λ2

n 0.14 1.23 4.91 13.64 30.69 60.15
ω2

n,0 7.87 104 2.95 105 7.08 105 1.37 106 2.36 106 3.71 106

∆′
n −7.87 104 −2.95 105 −7.08 105 −1.37 106 −2.36 106 −3.71 106

Table 3.1: The values of λ2
n , ω2

n,0 and ∆′
n for each oscillation mode

The droplet is released from a static state which means that u(r,θ, t = 0) = 0. This leads to

ε̇n(0) = 0 and εn(0) = εn,0 Following the values of the table 3.1, the observed oscillation frequency√
∆′

n , in this case, are approximately equal to the frequency of a non-viscous liquid ωn,0. The

solution given by the equation (3.93) can be approximated as:

εn(t ) ≈ εn,0e−λn t cos
(
ωn,0t

)
(3.99)

Figure 3.14 presents the time-evolution of the liquid domain (red region) depicted by positive-

Level-Set function (φ≥ 0) for different modes. The black arrows represent the inner velocity field.

We can clearly highlight the robustness of the proposed numerical framework to handle different

shapes and their oscillations.

To assess the accuracy of these simulations, we extract from the simulation of each mode the

time-evolution of the droplet radius in θ= 0 direction. Then, we compare the extracted temporal

signals to the derived analytical solution given by equations (3.99), (3.83a), (3.89a) and (3.70a).

The numerical signals superimposed to the theoretical ones are shown in figure 3.15. A very good

agreement is obtained for different modes, which confirms the accuracy and the robustness of the

proposed numerical framework again.

The numerical oscillation frequency of each mode n is extracted from the frequency spectrum

of the radius by means of the fft whereas the damping coefficient is obtained by fitting the en-

velope of the temporal signal to e−λn t using the least-squares algorithm. Figure 3.16 reports the

variation of the oscillation frequency and the damping rate with respect to the oscillation mode
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n. The numerical results are again in a good quantitative agreement with the analytical formulae

(3.89a) and (3.83a).

Figure 3.14: The time-evolution of the droplet shape over the first oscillation period for modes from n = 2
(upper row) to n = 7 (lower row). From the left column to the right, time corresponds to t=0, Tn

4 , Tn
2 , 3Tn

4 and
Tn respectively
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(a) Mode 2 (b) Mode 3

(c) Mode 4 (d) Mode 5

(e) Mode 6 (f) Mode 7

Figure 3.15: The temporal signals of the droplet’s radius in direction θ= 0 for modes n ∈ J2,7K

(a) (b)

Figure 3.16: The variation of (a) the oscillation frequency and (b) the damping rate with respect to the
oscillation mode
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3.6.3 2D simulation of an arbitrary initial form

In the previous section, the droplet is initially released from a deformed shape describing a specific

single mode. Single-mode excitation could be constraining to be set up experimentally. What if

the initial shape of the droplet is arbitrary? In this section, we try to investigate this question by

proposing an initial shape described by equation (3.100). It describes the combination of several

modes. Each mode is rotated from the position given by equation (3.98) with angle ψn . Here, we

fix the highest order mode to 7, and we generate randomly the values of εn,0 between 1% and 2%

(small amplitudes condition) and ψn between 0 and 2π. These values are reported in table 3.2.

R(θ, t = 0) = R0

[
1+

N∑
n=2

(
εn,0cos(nθ+ψn)− 1

4
ε2

n,0

)]
(3.100)

Mode 2 3 4 5 6 7
εn,0 1.815% 1.906% 1.127% 1.913% 1.632% 1.098%
ψn[r ad ] 1.750 3.436 6.016 6.063 0.990 6.098

Table 3.2: Random values of εn,0 and ψn for each normal mode

In this simulation, material properties are the same as in the previous section. Figure 3.17

displays the velocity field as well as the shape of the interface at different times.

We can show easily from the theoretical analysis detailed in section 3.5.3 that the analytical

solution of this problem at each time t is expressed as:

R(θ, t ) = R0

[
1+

7∑
n=2

(
εncos(nθ+ψn)− 1

4
ε2

n

)]
(3.101)

where

εn(t ) ≈ εn,0e−λn t cos
(
ωn,0t +ψn

)
(3.102)

The blue line in figure 3.18a corresponds to the simulated temporal variation of the radius of

the interface in the direction θ= 0. The comparison with the theoretical solution (the red dashed

line) shows a good agreement again. We compute the frequency spectrum of the numerical tem-

poral signal via the fft . It is clear from figure 3.18b that the spectrum (blue line) displays only the

peaks of the modes from 2 to 7 whose the frequencies are represented by the red dashed vertical

lines.

The results of this investigation show that if an arbitrary initial shape, slightly deformed from

the equilibrium shape, can be written as a combination of normal modes, the linear theory derived

in this work can provide the analytical expression of the time-evolution of the radius of the droplet.
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Figure 3.17: Snapshots of the droplet shape and velocity field at various times
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(a) Time evolution of the radius R(θ, t )

(b) The frequency spectrum of the signal R(θ, t ) given by the FFT

Figure 3.18: Comparison of simulation results and the analytical solution
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3.6.4 3D simulation of the oscillation of a liquid iron drop

In this section, we perform 3D simulation of the oscillation of a liquid iron drop. The liquid iron

droplet is suspended in the air in the absence of gravity and enclosed in a cavity of side size 6×R0.

The values of densities and viscosities are the same as in the 2D case as well as surface tension

value. The droplet is initially released from Rayleigh’s mode (n = 2) described by the following

equation:

R(θ, t = 0) = R0

(
1+εP2 (cos(θ))− 1

5
ε2

)
(3.103)

where P2 is the second degree Legendre polynomial and ε= 0.08. The 3D mesh used here is com-

posed of 194981 nodes and 1159517 elements.

Following the theoretical analysis in section 3.5.3, the natural frequency and the damping rate

of the 3D iron droplet are :


ω2,0 =

√
8γ

ρl R3
0

λ2 = 5µl

ρl R2
0

(3.104)

ω2,0 = 280.54 r ad .s−1 and λ2 = 0.46 s−1. So ∆′
2 = −78696 r ad 2.s−2 ≈ −ω2

2,0 Therefore, the 3D

iron droplet shows an underdamped regime. The analytical solution for this regime is:

R(θ, t ) = R0

(
1+ε2(t )P2 (cos(θ))− 1

5
ε2

2(t )

)
(3.105)

where

ε2(t ) ≈ εe−λ2t cos
(
ω2,0t

)
(3.106)

As in the previous sections, we assess the accuracy of the numerical solution by comparing it

to the derived analytic solution. We extract from the simulation the time-evolution of the displace-

ment of the upper point of intersection of the interface with the z-axis (θ= 0). The comparison is

shown in figure 3.19.

Figure 3.19: The time evolution of the displacement of the upper point of intersection of the interface with
the z-axis
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One can notice that the numerical signal is synchronised with the theoretical variations. It

means that free surface dynamics driven by surface tension is well predicted. However, the ampli-

tudes are more damped in the numerical simulation. The origin of this over-estimation of damp-

ing behaviour is attributed to numerical diffusion around the interface due to its thickness. In fact,

in this present 3D simulation, the mesh resolution is coarser than the resolution of the 2D mesh,

which gave a very good estimation of the damping rate of the oscillations. Consequently, the thick-

ness of the interface, which depends on the mesh size is greater in the present 3D simulation than

it must be.

Overall, these results give confidence that the use of a convected Level-Set method combined

with a VMS method to solve the unsteady Navier-Stokes equations works well and could play an

essential role for modelling the behaviour of drops driven by surface tension. However, this nu-

merical framework requires a high mesh resolution around the interface to reduce the numeri-

cal diffusion, which adds artificial damping to the simulated phenomenon. The use of a high-

resolution mesh in 3D is very time-consuming. A dynamic conservative mesh adaptation [71]

seems a very promising tool to add to the present numerical framework to increase the accuracy

with a reasonable computational time.

3.7 Conclusion

In this chapter, we presented the numerical framework of an incompressible flow involving two

fluids separated by an interface with surface tension. First, we showed the modelling of the inter-

face by the Level-Set method, which represents the interface using a signed distance function at

the interface. We showed two main numerical methodologies to track the dynamics of the inter-

face: convection and reinitialisation in two separate steps and coupled convection-reinitialisation.

To address the problem of mass conservation from which the classical Level-Set method suffers,

we proposed a simple mass correction method. In the second part, we presented the monolithic

formulation of an incompressible two-fluid flow with surface tension. We presented the diffuse

interface method, which consists in smoothing the transition from one fluid to the other over a

zone of non-zero thickness centred around the interface. Based on the same principle, the CSF

method transforms the surface integral of the surface tension force into a volume integral via the

smooth Dirac function. Some numerical problems may be encountered when using these meth-

ods in a standard way. Spurious currents in the vicinity of the interface is a classical problem that

pollutes the solution. The density scaled surface tension method has been proposed to reduce the

intensity of these non-physical currents. The explicit use of surface tension imposes a condition of

stability on the calculation time step which can considerably increase the computational time. To

circumvent this stability restriction, a semi-implicit formulation of the surface tension has been

proposed. Finally, a high order temporal discretisation scheme for the Navier-Stokes equations

has been presented to reduce discretisation errors, a source of numerical diffusion.

To evaluate the performance of the numerical framework, we propose the quantitative bench-

mark called the oscillating drop problem for which we derive the analytical solution in both 2D

and 3D. The derivation of the theoretical solution for small-amplitude oscillations is detailed. The
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accuracy and robustness of the proposed Eulerian framework is discussed through 2D and 3D sim-

ulations of different oscillation modes for a liquid iron droplet immersed in a very low density gas.

The results obtained and comparisons show that the two-fluid flow solver based on the stabilised

FE method is capable of exhibiting good stability and accuracy properties.
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CHAPTER 4. NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND
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Résumé

En raison de la rugosité, de minuscules poches de gaz peuvent être piégées au niveau de la sur-

face de contact entre le refroidisseur et l’échantillon métallique. Ceci peut former une résistance à

l’échange thermique entre les deux corps à travers l’interface de contact. Cette dernière observa-

tion soulève la question de l’influence de la résistance thermique de contact sur la croissance du

front de solidification. Pour répondre à cette question, nous proposons de modéliser la résistance

thermique de contact dans un système multi-domaines impliquant un domaine métallique en so-

lidification. Pour introduire la modélisation de la résistance thermique de contact, nous limitons

le cadre, dans ce chapitre, à la conduction thermique sans prendre en compte la convection et

le rayonnement. Tout d’abord, nous présentons un nouveau modèle pour prendre en compte la

résistance thermique de contact entre deux matériaux et nous le validons avec différents cas test,

en régime stationnaire et instationnaire. Ensuite, nous présentons le cadre numérique pour la

modélisation du transfert de chaleur (par conduction) en présence de solidification. Enfin, nous

présentons des simulations de refroidissement et de solidification d’une gouttelette d’acier pour

différentes valeurs de résistance thermique de contact.
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4.1 Introduction

Samples processed during parabolic flights and sounding rockets within the CCEMLCC project

have shown that the contact surface of the sample with the chill plate is flat but not perfectly

smooth as shown in figure 4.1. Due to the roughness of the contact surface, tiny pockets of gas

trapped at the boundary between the cooling plate and the metal can form a resistance to heat

transfer. This last observation raises the question of the influence of thermal contact resistance on

the solidification front growth. To answer this question, we propose to model the thermal contact

resistance in a multi-domain system involving a solidifying metal domain.

To introduce the modelling of heat transfer in the presence of solidification in the metallic

domain and thermal contact resistance, we limit the modelling, in this chapter, to heat conduction

without taking into account convection and radiation. First of all, we present a new model for

accounting for the thermal contact resistance between two materials and validate it with different

analytical test cases. Next, we present the numerical framework for modelling heat transfer in the

presence of solidification. Finally, simulations of chill cooling and solidification of a steel droplet

will be presented for different values of thermal contact resistance.

Figure 4.1: Scanning Electron Microscopy imaging of the contact area of the solidified sample processed
during a parabolic flight on board a zero-g airplane [1]

.

4.2 Thermal contact resistance

4.2.1 State of the art

An interface between two adjacent bodies is perfect if the real contact occurs in every point of the

contacting surfaces. In this ideal case, the temperature and the heat flux are continuous across the

interface. In most practical situations, the contacting surfaces are rough and have microscopic as-

perities. As a result, the mechanical contact occurs only at several microscopic spots interspersed

with gaps or gas cavities of poor heat transfer capability. Therefore, the heat flux from the hot body

to the cold one is constrained to pass through the real contact spots, which represent only a small

fraction of the total interface area. In this case, we say that the interface exhibits a Thermal Con-

tact Resistance, also known as Kapitza resistance [72]. At the macroscopic scale, the existence of
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a thermal contact resistance appears as a temperature jump across the interface. The Kapitza re-

sistance can occur at solid-solid interfaces [73] but also liquid-solid interfaces [74]. Many physical

systems involve a mechanical combination of two or several materials. Therefore, thermal contact

resistance can occur in a wide range of applications such as additive manufacturing [75], elec-

tronic packaging [76], nuclear reactors [77], hypersonic flights [78], internal combustion engines

[79], die casting [80] and injection moulding [81].

The use of numerical simulation to predict different aspects of heat transfer in the industry

is becoming a valuable tool to help to improve the performance and the efficiency of industrial

processes. Numerical modelling of heat transfer in a multi-material domain, including interfaces,

has long been addressed in the literature [39; 82–85]. However, accounting for the thermal con-

tact resistance is still a numerically-challenging task due to the temperature discontinuity that it

involves. Consequently, additional numerical efforts are needed to handle the discontinuities at

the interfaces. For instance, in the classical FE method, the meshing of the interface is required

and has to conform to the adjacent volume parts. Moreover, appropriate surface elements must be

constructed. For complex geometries, this is challenging [86; 87]. To circumvent this challenge,

some authors built their Kapitza resistance modelling on the Extended Finite Element Method

(XFEM) [87–89]. Moreover, numerical models of thermal contact resistance available in the liter-

ature focus mostly on the steady state conduction [88; 90–93]. Only a few studies have addressed

the Kapitza resistance in transient conduction [86].

In this work, we derive a simple and efficient numerical model from accounting for ther-

mal contact resistance in time-dependent multi-material heat transfer problems for classical FE

method. Our numerical framework is based on the diffuse-interface immersed-boundary ap-

proach. The interface is implicitly represented by the Level-Set function. The principle of this

model is to represent the contact imperfections by a thin intermediate material between the con-

tacting bodies. Consequently, appropriate mixing laws will consistently be derived to mix the

properties of the two materials together with the intermediate material. Accordingly, new for-

mulae for mixing heat capacities and thermal conductivities will be derived. The novelty of this

work lies in the fact that the proposed model does not require any additional implementation

compared to the solver of perfect contact thermal transfer. The change is only made in the mixing

laws of thermal properties. Furthermore, no special treatment of temperature discontinuities is

needed because the temperature jump is smoothed along the mixing zone.

This section starts from the weak formulation of heat conduction in a two-material domain.

The level set method is introduced. The mixing laws for perfect contact are recalled. The mod-

elling of thermal contact resistance is presented. Then, the mixing laws for thermal conductivity

and heat capacity are derived. The effectiveness and accuracy of the proposed model are assessed

through different benchmarks for both steady-state and transient conduction. The numerical re-

sults are compared to analytical solutions and a reference case. Finally, some concluding remarks

are drawn.
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4.2.2 Governing equations and modelling

This first subsection is devoted to the mathematical formulation of heat conduction involving two

materials in contact and the resolution methodology based on the monolithic formulation of the

energy conservation equation using the diffuse interface immersed boundary method. The ther-

mal contact resistance modelling is illustrated via a one-dimensional case of two adjacent slabs. A

general 3D unsteady heat conduction is formulated by the level-set function.

4.2.2.1 Problem formulation

Consider a computational domain Ω containing two materials indexed by 1 and 2 (Ω =Ω1 ∪Ω2)

separated by an interface Γ12. The heat transfer operated by conduction is described by the fol-

lowing set of equations:

Cp1
∂T1

∂t
=∇∇∇· (k1∇∇∇T1), x ∈Ω1 (4.1a)

Cp2
∂T2

∂t
=∇∇∇· (k2∇∇∇T2), x ∈Ω2 (4.1b)

where Cpi = ρi cpi is the specific heat capacity, product of the density, ρi , and the heat capacity

per unit mass, cpi ; ki is the thermal conductivity and Ti (x, t ) is the temperature field, respectively

in (i=1) Ω1 and (i=2) Ω2. At the interface Γ12, several boundary conditions can be described. At

first, the continuity of the normal heat flux across Γ12 writes:

q12 =−k1∇∇∇T1 ·n12 =−k2∇∇∇T2 ·n12, x ∈ Γ12 (4.2)

where n12 is the unit normal vector to Γ12 pointing at Ω2. If the interface is thermally resistive,

i.e. a thermal contact resistance Rth 6= 0 is posing a barrier to heat transfer at the interface Γ12, a

macro-scale temperature jump occurs at the interface:

JTK=−Rth q12 x ∈ Γ12 (4.3)

where J?K= (?)2 − (?)1 means the jump across the interface Γ12.

We consider the Dirichlet and Neumann boundary conditions prescribed on the two comple-

mentary and disjoints portions of ∂Ω, denoted by ∂ΩDi r and ∂ΩNeu as follows:q .n = qB, x ∈ ∂ΩNeu

T = TB, x ∈ ∂ΩDi r

(4.4)

where n is the outward normal vector to ∂ΩNeu .

Two different resolution strategies could be adopted to deal with this multi-material heat trans-

fer problem. The first, called partitioned resolution, consists of considering two different meshes

for each domain and solve two equations with the associated boundary conditions separately. The

global solution is then constructed by a suitable assembly method. However, during the assembly,
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the coordination between the meshes can become complicated or even sometimes infeasible. The

second strategy, which we use in this work, is called monolithic resolution. It consists of solving

one equation over the whole computational domain in a single global mesh. The principle of the

monolithic formulation is to treat the two sub-domains as one with variable properties k(x) and

Cp (x).

To formulate the problem in a monolithic way, we write the weak formulation of each subdo-

main. Then, we construct a unified formulation for the global domain by summing the contri-

bution of each subdomain. The weak formulation associated with equations (4.1) and boundary

conditions (4.4) is given as follows:

ˆ
Ω1

Cp1
∂T1

∂t
T1dV +

ˆ
Ω1

k1∇∇∇T1 ·∇∇∇T1dV =
ˆ
Γ12

k1∇∇∇T1 ·n12T1dS +
ˆ
∂ΩNeu∩∂Ω1

qBT1dS (4.5a)

ˆ
Ω2

Cp2
∂T2

∂t
T2dV +

ˆ
Ω2

k2∇∇∇T2 ·∇∇∇T2dV =
ˆ
Γ12

−k2∇∇∇T2 ·n12T2dS +
ˆ
∂ΩNeu∩∂Ω2

qBT2dS (4.5b)

where T1 and T2 are test functions for the subdomains Ω1 and Ω2, respectively. Using the

flux continuity condition (4.2) and considering the presence of a thermally resistive interface giv-

ing rise to a temperature jump at Γ12 (equation (4.3)), the general formulation over domain Ω is

obtained:

ˆ
Ω

Cp (x)
∂T

∂t
T dV +

ˆ
Ω

k(x)∇∇∇T ·∇∇∇T dV +
ˆ
Γ12

JTK
Rth

JT KdS =
ˆ
∂ΩNeu

qBT dS (4.6)

It is worth noting that for perfect contact at Γ12, the temperature jump JTK vanishes so the

monolithic formulation simply becomes:

ˆ
Ω

Cp (x)
∂T

∂t
T dV +

ˆ
Ω

k(x)∇∇∇T ·∇∇∇T dV =
ˆ
∂ΩNeu

qBT dS (4.7)

As we can observe from the latter two equations, the definition of variable properties Cp (x)

and k(x) as well as the third term in the Right-Hand-Side (LHS) of the equation (4.6) requires a

numerical method to localise the boundary between the two sub-domains. In the framework of

this PhD, we use the Level-Set method for interface modelling as previously presented in Chapter

3. Hence, we consider the following signed distance function:

φ(x , t ) =


d(x ,Γ12) if x ∈Ω1

0 if x ∈ Γ12

−d(x ,Γ12) if x ∈Ω2

(4.8)

where d(x ,Γ12) is the geometrical distance between x and Γ12.

Furthermore, the discontinuity of interface properties, as well as the temperature discontinu-

ity resulting from thermal contact resistance, are numerically challenging. It is, therefore, neces-

sary to have a robust numerical method capable of handling high property ratios and capturing

the temperature jump across the interface accurately. For this reason, Yvonnet et. al. [88] pro-
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posed a numerical procedure for Kapitza resistance at sharp interfaces, based on XFEM and the

level set method.

In the present work, we make use of the diffuse-interface approach with the classical FE Method.

It is the same approach presented previously in Chapter 3 to model the interface in a two-fluid

flow. We recall that the diffuse-interface approach consists in introducing an artificial region

around the interface of fixed thickness 2ε comparable to the mesh size in the vicinity of the inter-

face. In this region, the transition of properties from one domain to the other occurs continuously

and smoothly. The way the transition occurs is described by the mixing law. The objective of this

study is not solving the equation (4.6) for thermal contact resistance. Instead, we look for a simple

and efficient solution so as to keep the equation (4.7) for both perfect and imperfect interfaces

while finding mixing laws which account for the effect of thermal contact resistance.

4.2.2.2 Mixing laws for perfect contact

For a perfect contact, it is well-known in the literature [94] that a harmonic mixing law for thermal

conductivity ensures the conservation of heat flux across the transition zone.

k(φ) =
(

H(φ)

k1
+ 1−H(φ)

k2

)−1

(4.9)

where H is a smooth Heaviside function which indicates the presence of domain Ω1. We choose

here a sinusoidal smoothing function of the signed distance function φ (equation (4.8)):

H(φ) =


1 if φ> ε
0 if φ<−ε
1

2

[
1+ φ

ε
+ 1

π
sin

(
πφ

ε

)]
if

∣∣φ∣∣≤ ε
(4.10)

Note that the harmonic mixing law of the thermal conductivity will be retrieved in the section

dedicated to the mixing law for thermal contact resistance in the next section.

As for heat capacity, the arithmetic mixing law is used:

Cp (φ) = Cp1H(φ)+Cp2
(
1−H(φ)

)
(4.11)

4.2.2.3 Mixing laws for thermal contact resistance

The basic idea of the present modelling of thermal contact resistance is to consider that in a micro-

scale the imperfections of contact can be modelled by a thin layer of thickness e separating Ω1

and Ω2. This intermediate domain, denoted by ΩG (G for Gap), is considered as a third material

of properties kG and Cp,G as shown in figure 4.2. Following this representation, we intend to find

physically-appropriate mixing laws for both k and Cp inside the mixing zone, including the effect

of the gap layer. For the sake of clarity, we derive the mixing law in 1D, and then we extend the

formulation to higher dimensions using the level-set function.
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Figure 4.2: Schematic of two materials in contact, Ω1 and Ω2, forming a thermally resistant interface Γ12

due to the presence of a gap layer, ΩG, with thickness e.

Thermal conductivity mixing law

For thermal conductivity, we limit our analysis to steady-state conduction in which the heat ca-

pacity of the materials does not play a role. Consider the steady-state temperature field T(x, t →
∞) = Ts(x) in the contact region centred within x ∈ [−ε,ε] shown in figure 4.2. Ts is piecewise

linear such as:

Ts(x) =


T1 +a1(x +ε) if x ∈ [−ε,−e/2]

Tw +aG(x +e/2) if x ∈ [−e/2,e/2]

T2 +a2(x −ε) if x ∈ [e/2,ε]

(4.12)

where a1 = 1
k1

(
T2−T1

ε−e/2
k1

+ e
kG

+ ε−e/2
k2

)
, aG = k1

kG
a1 and a2 = k1

k2
a1. We suppose that the mixing zone of thick-

ness 2ε has equivalent properties keq and Cp,eq . Therefore, the heat flux across the mixing zone is

given by:

qs = keq
T2 −T1

2ε
. (4.13)

On the other hand, the heat flux in domain Ω1 is:

qs = k1a1 = T2 −T1
ε−e/2

k1
+ e

kG
+ ε−e/2

k2

. (4.14)

Consequently, the heat flux conservation yields:

2ε

keq
= ε−e/2

k1
+ e

kG
+ ε−e/2

k2
. (4.15)

We assume that the thickness of the gap is much smaller than the one of the mixing zone, e ¿ ε,

and that the thermal conductivity of the gap is negligible comparing to k1 and k2, kG ¿ ki∈{1,2}.
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Hence, the equivalent thermal conductivity reads:

1

keq
≈ 1

2k1
+ 1

2k2
+ Rth

2ε
(4.16)

where Rth = e
kG

is the thermal contact resistance with unit K.W−1.m2.

Using the level set function for generalisation, the idea now is to find a formula for the thermal

conductivity k(φ) which links in a continuous way the region φ≤−ε where k = k1 and the region

φ≥ ε where k = k2 respecting that the harmonic mean of k in the transition zone is:

1

2ε

ˆ ε

−ε
1

k(φ)
dφ= 1

keq
(4.17)

These conditions lead to the following mixing low for the thermal conductivity:

k(φ) =
(

H(φ)

k1
+ 1−H(φ)

k2
+δ(φ)Rth

)−1

(4.18)

where δ is the smooth Dirac function derived from equation (4.10):

δ(φ) =


1

2ε

[
1+cos

(
πφ

ε

)]
if

∣∣φ∣∣≤ ε
0 if

∣∣φ∣∣> ε (4.19)

For Rth = 0, equation (4.18) gives the classical harmonic mixing law for perfect contact.

Heat capacity mixing law

Unlike thermal conductivity, heat capacity is an extensive property. Therefore, the equivalent heat

capacity in the mixing zone can be obtained by the volume-average of the heat capacities over the

mixing zone. This leads to the following equation:

Cp,eq = ε−e/2

2ε
Cp1 + ε−e/2

2ε
Cp2 + e

2ε
Cp,G

=Cp

(
1− e

2ε

)
+ e

2ε
Cp,G

(4.20)

where

Cp =
Cp1 +Cp2

2

With the assumption that e ¿ 2ε

Cp,eq ≈Cp+ e

2ε
Cp,G. (4.21)

Using a condition equivalent to equation (4.17) for the heat capacity, the mixing law using the

level set reads:

Cp (φ) = Cp1H(φ)+Cp2
(
1−H(φ)

)+e Cp,G δ(φ) (4.22)
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Heat capacity mixing law (4.22) requires the knowledge of the values of the thickness and the

heat capacity of the gap. In some problems, these values may be unknown. For this reason, we

will show, through numerical simulations of unsteady conduction, cases in which the additional

term with gap properties is not required. Three different cases exist, Cp,G ¿Cp, Cp,G = O (Cp) and

Cp,G ÀCp. In each case, equations (4.11) and (4.22) will be tested and compared to a reference

case.

4.2.3 Results and discussion

4.2.3.1 Steady conduction

Planar interface benchmark

In this example, we propose a benchmark with a planar and resistive interface. The problem ge-

ometry and mesh are illustrated in figure 4.3.

(a) Geometry (b) Mesh

Figure 4.3: Setup for numerical simulations using a 1D heat flow configuration between the two materials
in contacts, as defined in figure 4.2.

By considering the steady state in each domain, boundary conditions T(X = X1) = TB1 and

T(X = X2) = TB2, the continuity of normal flux qs across the interface located at X = ξ and the one-

dimensional jump condition [[T(X = ξ)]] =−Rth qs(X = ξ), we obtain the following exact solution:

T(X) =


qs

k1
(X−X1)+TB1 if X ∈ [X1,ξ]

qs

k2
(X−X2)+TB2 if x ∈ [ξ,X2]

(4.23)

where qs = (TB2 −TB1)/( ξ−X1
k1

+Rth + X2−ξ
k2

).

The boundaries are positioned at X1 = −1 m and X2 = 1 m. The temperatures at these two

boundaries are TB1 = 0 K and TB2 = 1 K. The other boundaries of the computational domain are

adiabatic (qB = 0). The interface position is ξ = 0.09 m. The mesh is anisotropic in the mixture

zone. The characteristic mesh sizes in this region are h⊥ = 0.02m in the direction perpendicular

to the interface (also the direction of the heat flux) and h∥ = 0.2 m in the direction parallel to the

interface. Outside the mixture zone, the mesh is isotropic of characteristic size hmax = 0.2 m.
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Different computations are performed for different values of the resistance Rth ranging from 10−5

(nearly perfect interface) to 105 K.W−1.m2 (nearly insulating interface). Thermal conductivity of

materials is k1 = 0.1 W.m−1.K−1, k2 = 10×k1. The half-thickness of the mixture zone is taken as

ε= 0.06 m. The mixed conductivity profile along the x-axis using equation (4.18) is given in figure

4.4 for different thermal contact resistance values.

Figure 4.4: Conductivity profile for different thermal contact resistance values.

In figure 4.5, the computed and the exact temperature fields are plotted versus the X coordi-

nate. We can observe that the strong temperature jump occurring at high thermal contact resis-

tance is well captured by the proposed numerical model.

Figure 4.5: Steady temperature showing the jump at the interface for different thermal contact resistance
values

Spherical interface benchmark

In the present example schematised in figure 4.6, we consider a composite sphere composed of a

coating of outer radius r2 and a core of radius r1 separated by an interface with thermal resistance.

The surface of the coating is submitted to a fixed temperature field given by a linear evolution
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along the z-axis, with temperature gradient G = (0,0,e0):

T = G · x = e0 × z (4.24)

The steady state solution of this configuration is written in the spherical coordinates system (r,θ,φ)

as:

(a) Geometry (b) Mesh

Figure 4.6: Setup of the numerical simulation for a 3D heat flow configuration.

T(r,θ) =


(

a1r + b1

r 2

)
e0 cos(θ) r < r1(

a2r + b2

r 2

)
e0 cos(θ) r > r1

(4.25)

According to the fact that the temperature at the centre must be finite, we necessarily have:

b1 = 0 (4.26)

Similarly as in section 4.2.3.1, the boundary condition (4.24), the continuity of the heat flux across

the interface at r = r1 and the temperature jump condition are used to finally find:

a1 =
3k2r1r 3

2

β+γ (4.27)

a2 = β

β+γ (4.28)

b2 =
r 3

2γ

β+γ (4.29)

where

β= [k1r1 +2k2 (r1 +k1Rth)]r 3
2 (4.30)

and

γ= [k1k2Rth + (k2 −k1)r1]r 3
1 (4.31)
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Equation (4.25) together with (4.27)-(4.29) is the analytical solution which will be compared

to the numerical solution given by the present model. For that, we consider a cubic computa-

tional domain Ω of a side length size L = 4r1 centred with the spheres as shown in figure 4.6a. At

the boundary of the cube, ∂Ω, we impose the analytical solution as a Dirichlet condition. In the

present test, only the material domain corresponding to the coating of outer radius r2 is concerned

by the boundary condition as the core of radius r1 is fully embedded in the coating.

Calculations are performed with the set of parameters given in Table 1 The simulated temper-

ature field in the YZ-plane centred with the inner spherical domain is given in figure 4.8. Values of

the thermal contact resistance are varied from 0 to 105 K.W−1.m2. Figure 4.9 displays the compar-

ison with the analytical solution of temperature profiles along the z-axis, with z ≥ 0. Note that the

solution for Rth = 0 K.W−1.m2 is not shown in figure 4.9 as it superimposes with Rth = 1 K.W−1.m2.

For such low values of the heat resistance, the temperature jump at the interface vanishes. This is

also shown when comparing figures 4.7a with figures 4.7b. Another observation is that for large

values of the heat resistance, the temperature in the spherical core is almost uniform. When in-

creasing Rth from 103 to 105 K.W−1.m2, the temperature variation at the interface does not vary

much. Finally, one can observe that the temperature fields only differ in the inner spherical core

due to the high ratio k2/k1, low ratio r2/r1 and the Dirichlet boundary condition applied at the

boundaries of the coating domain. The temperature profile in the core remains linear, which is

also expected under a steady diffusion regime. Once again, the thermal contact resistance model

presented in this work shows a good comparison with the analytical solution, demonstrating its

use in a 3D heat flow configuration with an immersed boundary between domains with different

thermal conductivity.

Parameter e0 r1 r2 k1 k2 Rth

Value −1 1 3 0.01 1 [0,105]
Unit K.m−1 m m W.m−1.K−1 W.m−1.K−1 K.W−1.m2

Table 4.1: Values of the simulation parameters for results presented in figures 4.8 and 4.9.
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(a) Rth = 0 K.W−1.m2 (b) Rth = 1 K.W−1.m2 (c) Rth = 10 K.W−1.m2

(d) Rth = 102 K.W−1.m2 (e) Rth = 103 K.W−1.m2 (f) Rth = 105 K.W−1.m2

Figure 4.7: Temperature field in YZ plane through the centre of the simulation domain.

Figure 4.8: Mesh

Figure 4.9: Steady temperature profiles showing the jump at the interface for different thermal contact re-
sistance values.
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4.2.3.2 Unsteady conduction

In order to evaluate the ability of the new model to handle unsteady heat transfer between two

materials including a thermal contact resistance at the interface, we compare the results of the

new model (referred to as implicit gap) to the results of a direct numerical simulation of an explicit

gap between the two materials (referred to as explicit gap). The geometry of these two cases are

shown in figure 4.10.

Figure 4.10: Setup for the unsteady conduction validation test. The reference case is referred to as "Explicit"
and the evaluated case is referred to as "Implicit".

The temperature at x = −1 and x = 1 are fixed to T1 = 1K and T2 = −1K respectively. The top

and the bottom boundaries are adiabatic (qB = 0) so heat flux is only one-dimensional. The ther-

mal conductivity of each material are k1 = 1 W.m−1.K−1, k2 = 0.1 W.m−1.K−1 and kG = 0.001 W.m−1.K−1.

The thickness of the gap is e = 0.002 m. So the thermal contact resistance value is Rth = e/kG =
2 K.W−1.m2.

The meshes of each case are shown in the vicinity of the interface in figure 4.11a and 4.11b. The

mesh for the description of the explicit gap is much finer than that for the implicit gap. Inside the

region of fine mesh, which covers the gap layer, the mesh size is 10−4 m in the direction perpen-

dicular to the interface. This is required to ensure enough mesh elements within the gap domain.

On the other hand, the thickness of the mixing zone for the implicit case is 2ε= 0.06 m so that ratio

2ε/e À 1. The mesh size inside the mixing zone is 0.003 m in the direction perpendicular to the

interface. The heat capacity of each material are Cp1 = 1 J.K−1.m−3 and Cp2 = 0.5 J.K−1.m−3. Three

values of CpG are considered: CpG = 0.001 J.m−3.K−1, CpG = 1.3 J.m−3.K−1 and Cp,G = 50 J.m−3.K−1,

corresponding to CpG ¿Cp, CpG = O (Cp) and CpG ÀCp, respectively. For each value of CpG two

formulae of the heat capacity mixing law are tested, referred to as Formula 1 given by equation

(4.22) and Formula 2 given by equation (4.11). Results are shown in figures 4.12, 4.13 and 4.14 as

temperature profiles along the x-axis for both the (a) explicit and (b) implicit gap.

In figure 4.12, when CpG ¿Cp, the heat capacity mixing law for perfect contact, i.e. using For-

mula 1 with equation (4.11), is sufficient to describe the transient heat conduction, i.e. to retrieve

the more exact numerical solution given by (plain curves) the explicit gap formulation. The same

can be observed in figure 4.13 when CpG = O (Cp). No or very little difference is revealed between

symbols and curves. However, when Cp,G ÀCp, figure 4.14 reveals differences between Formula

1 and the more precise Formula 2. This does not concern the steady behaviours when the time is

large enough, and two linear temperature evolution have settled in the domains (time t = 7.9 s),
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(a) Explicit gap (b) Implicit gap

Figure 4.11: Mesh size and distribution of the heat conductivity for the (a) explicit and (b) implicit gap
configurations.

but intermediate times for unsteady heat flows. For instance, at time t = 0.6 s, a clear difference

appears in figure 4.14a between the explicit gap configuration, that corresponds to the reference

situation, and the implicit configuration using Formula 1 with equation (4.11). While the deviation

is not large, a gap with a high value of the heat capacity compared to the surrounding materials

is thus better described with Formula 2 using the mixing law given by equation (4.22). Despite

this observation that reveals the consequences of using the heat capacity mixing law for perfect

contact, it is clear that using equation (4.22) does not require big additional efforts while reaching

excellent agreement when dealing with the prediction of non-stationary heat conduction.

(a) Formula 1: equation (4.11) (b) Formula 2: equation (4.22)

Figure 4.12: Time-evolution of the temperature jump across the interface for Cp,G ¿Cp

.
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(a) Formula 1: equation (4.11) (b) Formula 2: equation (4.22)

Figure 4.13: Time-evolution of the temperature jump across the interface for Cp,G =O (Cp)

.

(a) Formula 1: equation (4.11) (b) Formula 2: equation (4.22)

Figure 4.14: Time-evolution of the temperature jump across the interface for Cp,G ÀCp

.
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4.3 Heat conduction with solidification

4.3.1 Introduction

In solidification of metals, a multi-phase system refers to a metal domain that undergoes phase

transformations involving the liquid phase and the different solid phases that may exist depend-

ing on the temperature and the chemical composition. The distribution of phases in a metal as

a function of temperature and chemical composition is described by the phase diagram. For ex-

ample, for FeC steel several phases may exist simultaneously during solidification: liquid phase

and solid phases with different crystalline structures α-Fe (ferrite), γ-Fe (austenite), δ-Fe, Cemen-

tite... We denote by ϕ a phase involved during solidification and solid-state transformations of a

metal (M). For the sake of simplicity, ϕ is either (l ) for the liquid phase or (s) for all possible indi-

vidual solid phases. In the microscopic scale, the energy conservation equation governed by heat

conduction is written in each phase as follows:

∂
(
ρϕhϕ

)
∂t

=∇∇∇· (kϕ∇∇∇Tϕ
)

, x ∈ϕ (4.32)

In order to predict solidification while explicitly solving the boundaries of each phase, it is neces-

sary to adopt a microscopic approach capable of solving dendritic microstructures. For a metric-

sized sample, it is not realistic to solve the equations at the microscopic scale. Instead, macro-

scopic models are used, which can be derived by averaging the microscopic equations over a fi-

nite volume that contains both solid and liquid phases. The liquid-solid interface is thus implicitly

represented via the volume averaging method. The principle of this method as well as the steps

for obtaining the averaged energy conservation equation are presented hereafter.

4.3.2 Volume averaging method

To obtain the macroscopic or averaged energy equation, we first need to define a finite-sized av-

eraging volume. This volume is called Representative Elementary Volume (REV). As its name re-

veals, the REV must be representative of the phenomenon that we are trying to model. In the

case of solidification-related phenomena, the size of the REV must be larger than the charac-

teristic dimension of the microstructure [10−6 m, 10−4 m] and smaller than that of the system

[10−3 m, 100 m]. The size of the REV can vary between 10−4 m and 10−3 m. It thus includes some

columnar and/or equiaxed dendrites, as shown in figure 4.15. Two assumptions are also made for

this REV:

H1. Although porosities may form during solidification, the study of porosities is out of the scope

of our present study. Therefore, the metal is supposed to be saturated by both liquid and

solid phases.

H2. It is assumed that in the REV the temperature is uniform. This is justified by the fact that

the thermal properties of the two phases are not too different, and that the thermal contact

resistances between phases are negligible.

97



CHAPTER 4. NUMERICAL MODELLING OF HEAT TRANSFER WITH SOLIDIFICATION AND
THERMAL CONTACT RESISTANCE

Figure 4.15: Schematic representation of the REV

Considering a REV, the volume averaging method introduces a phase indicator function:

χϕ =
1 x ∈ϕ

0 x ∉ϕ
(4.33)

Let consider VE the volume of the REV and Vϕ the volume of the phase ϕ. For every physical

quantity ψ, we define the following averaging operators:

Operator 1: The phase average 〈ψϕ〉 :

〈ψϕ〉 = 1

VE

ˆ
VE

ψ χϕ dV (4.34)

Operator 2: The phase intrinsic average 〈ψ〉ϕ

〈ψ〉ϕ = 1

Vϕ

ˆ
Vϕ

ψ dV (4.35)

Operator 3: The fluctuation ψ̃ϕ of ψ with respect to 〈ψ〉ϕ

ψ̃ϕ = (
ψ−〈ψ〉ϕ)

χϕ (4.36)

For ψ= 1, we obtain from equation (4.34) the volume fraction of the phase ϕ

1

VE

ˆ
VE

χϕ dV = Vϕ
VE

= gϕ (4.37)
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We deduce from equations (4.34) and (4.37) that:

〈ψϕ〉 = Vϕ
VE

(
1

Vϕ

ˆ
VE

ψ χϕ dV

)
= Vϕ

VE

(
1

Vϕ

ˆ
Vϕ

ψ dV

)
= gϕ 〈ψ〉ϕ

(4.38)

Following the assumption H1, the sum of all phase fractions is equal to 1.

∑
ϕ∈M

gϕ = 1 (4.39)

Therefore, for a quantity ψ, the global volume average denoted by 〈ψ〉 writes:

〈ψ〉 = ∑
ϕ∈M

〈ψϕ〉 = ∑
ϕ∈M

gϕ 〈ψ〉ϕ (4.40)

Following these definitions, we give hereafter some theorems and refer the reader to the work

of [95] for detailed demonstrations:

〈
(
∂ψ

∂t

)ϕ
〉 = ∂〈ψϕ〉

∂t
− 1

VE

ˆ
Γϕβ

ψϕuΓϕβ ·nϕ dS (4.41)

〈(∇∇∇ψ)ϕ〉 =∇∇∇〈ψϕ〉+ 1

VE

ˆ
Γϕβ

ψϕnϕ dS (4.42)

〈(∇∇∇·v )ϕ〉 =∇∇∇· 〈vϕ〉+ 1

VE

ˆ
Γϕβ

vϕ ·nϕ dS (4.43)

where uΓϕβ is the velocity vector of the boundary Γϕβ separating the two phasesϕ and β, and nϕ is

the normal to Γϕβ directed outwards to the phase ϕ. v is an arbitrary vector.

Considering two variables ψ and ξ, the phase intrinsic average of their product is:

〈ψξ〉ϕ = 〈ψ〉ϕ 〈ξ〉ϕ + 〈ψ̃ϕ ξ̃ϕ〉ϕ (4.44)

Following the work of [96], we neglect the fluctuation terms of the density with any mass quantity

ψ. Hence, we write:

〈(ρψ)〉ϕ = 〈ρ〉ϕ 〈ψ〉ϕ (4.45)

4.3.3 Averaged energy conservation equation

For simplicity, the intrinsic phase average 〈ψ〉ϕ is denoted by ψϕ. By integrating the microscopic

equation for each phase (4.32) over the volume of the REV and making use of the previous formu-

lae, we obtain the macroscopic energy conservation for each phase:
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∂
(
g lρl hl

)
∂t

=∇∇∇· 〈k l∇∇∇Tl 〉+Ql /s (4.46)

∂
(
g sρshs

)
∂t

=∇∇∇· 〈k s∇∇∇Ts〉+Qs/l (4.47)

where Ql /s and Qs/l are the interfacial heat exchange terms at the liquid/solid interface for

which we give the expressions hereinafter:

Ql/s = 1

VE

ˆ
Γl s

(ρh)l uΓl s ·nl dS + 1

VE

ˆ
Γl s

k l∇∇∇Tl ·nl dS (4.48)

Qs/l = 1

VE

ˆ
Γl s

(ρh)s uΓl s ·ns dS + 1

VE

ˆ
Γl s

k s∇∇∇Ts ·ns dS (4.49)

Considering the hypothesis H2, we can write Tl = Ts = T. Hence, the phase averaged energy

conservation equations read:

∂
(
g lρl hl

)
∂t

=∇∇∇·
(
g l k l∇∇∇T

)
+Ql /s (4.50)

∂
(
g sρshs

)
∂t

=∇∇∇· (g sk s∇∇∇T
)+Qs/l (4.51)

Assuming that the contact at the boundary between the liquid and the solid phases is perfect,

the heat balance at the liquid/solid interface is zero.

Ql /s +Qs/l = 0 (4.52)

Therefore, the global volume averaged energy conservation in the single multiphase domain

writes:

∂〈ρh〉
∂t

=∇∇∇· (〈k〉∇∇∇T) (4.53)

4.3.4 Monolithic formulation of the energy conservation in a multi-domain system

Consider a computational domain Ω composed of N subdomains Ωi , i ∈ 1, ...,N. The averaged

energy conservation equation in each domain Ωi writes:

∂〈ρh〉Ωi

∂t
=∇∇∇· (〈k〉Ωi ∇∇∇T

)
(4.54)

Following the previous work in section 4.2, we can generalise the monolithic formulation of

the energy conservation equation for a multi-domain system as follows:

ˆ
Ω

∂�〈ρh〉
∂t

T dV +
ˆ
Ω

〈̂k〉∇∇∇T ·∇∇∇T dV =
ˆ
∂ΩNeu

qBT dS (4.55)

where the mixed field of averaged volumetric enthapies can be expressed as:
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�〈ρh〉 = ∑
i∈1,...,N

〈ρh〉Ωi
HΩi (4.56)

and the mixed thermal conductivity including thermal contact resistance is

〈̂k〉 =
( ∑

1≤i≤N

HΩi

〈k〉Ωi

+ ∑
1≤i< j≤N

δΓi j Rthi j

)−1

(4.57)

The non-linear effect of (4.55) raises up due to the non-linear relationship between T and 〈ρh〉,
especially with the latent heat during solid-liquid transformation. The numerical resolution of this

non-linear equation is based on an energy solver coupled with tabulated thermodynamic proper-

ties. The details of this solver and its validation are shown in [97].

4.4 Application to chill cooling and solidification experiment on board

the ISS

We only focus hereafter on solidification governed by heat conduction from the droplet to the

chill plate without convective heat transport in the bulk liquid metal (no flow is considered). The

monolithic formulation of the energy conservation equation in a computational domain Ω con-

taining the metallic sample ΩM in contact with the chill plate ΩC together surrounded by Argon

gas ΩA is given by equation (4.55).

Hereafter, the quantities defined in each of the sub-domainsΩM,ΩC andΩA are indexed by M,

C and A respectively. Since the sub-domainsΩC andΩA do not undergo any phase transformation,

the exponentϕwill be used only for the quantities of the metallic sub-domain to denote the liquid

(l) phase and the different solid (s) phases.

Accordingly, the mixed field �〈ρh〉 of the averaged volumetric enthalpies 〈ρh〉M, 〈ρh〉C and 〈ρh〉A

is expressed using the smooth Heaviside functions HM, HC and HA as follows:

�〈ρh〉 = 〈ρh〉M HM +〈ρh〉C HC +〈ρh〉A HA (4.58)

Considering a REV, the average volumetric enthalpy of the metal writes:

〈ρh〉M = ∑
ϕ∈M

gϕρϕMhϕM (4.59)

The volume fractions gϕ, the densities ρϕM and the enthalpies hϕM are tabulated with respect to

temperature T for the Fe-0.9wt.%C-0.26wt.%Si alloy as shown in figure 4.16.

As for the chill plate, made only of a solid ceramic phase Si3N4, the average volumetric enthalpy

is a linear function of the temperature

〈ρh〉C = Cp,C.T (4.60)

where Cp,C = 2.303×106 J.K−1.m−3.
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The same principle applies to the Argon gas enthalpy

〈ρh〉A = Cp,A.T (4.61)

with Cp,A = 1300 J.K−1.m−3.

(a) phase volume fractions

(b) phase intrinsic average enthapies (c) phase intrinsic average densities

Figure 4.16: Tabulated thermodynamic properties for the Fe-0.9wt.%C-0.26wt.%Si alloy at nominal compo-
sition.

The metal-gas interface ΓMA and chill-gas interface ΓCA are considered as perfect. A thermal

contact resistance is only applied at the metal-chill interface ΓMC. Therefore, the mixed thermal

conductivity in this multi-domain system writes:

〈̂k〉 =
(

HM

〈k〉M
+ HA

〈k〉A
+ HC

〈k〉C
+δMCRth

)−1

(4.62)

where Rth is the thermal contact resistance at ΓMA and δMC is the smooth Dirac function associ-

ated to this interface. The average thermal conductivities are constant such as:

〈k〉M = 42 W.m−1.K−1
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〈k〉C = 50 W.m−1.K−1

〈k〉A = 0.01 W.m−1.K−1

In this problem, we need two level-set functions to compute the Heaviside and Dirac func-

tions: one level set φM to describe the boundary of the droplet and the second φC for the chill

plate boundary. The droplet shape is based on the final shape of the solidified sample on board

the ISS shown in Figure 2.16 of chapter 2. It is approximated to an ellipsoid of minor horizontal

axis 5.73 mm and major vertical axis 7.65 mm. This ellipsoid is truncated from the top so that the

droplet is 7.31 mm high and the plane surface in contact with the chill is a disc 2.2 mm diameter.

Note that the final shape of the solidified sample processed on board a zero-g airplane has slightly

different dimensions, particularly smaller contact area with the chill as observed in Figure 4.1. The

chill plate is a cylinder of 16 mm diameter and 3 mm high as in the ISS experiment. The Heaviside

functions HM and HC are determined by formula (4.10) using φM and φC respectively. The gas

Heaviside is then HA = 1−HM −HC. The mixing half-thickness ε is fixed to 0.18 mm. The Dirac

function δMC is calculated as:

δMC =
δM if HC > 0

0 if HC = 0
(4.63)

where δM is the metal Dirac function defined by equation (3.26) using φM.

The computational domain is a box of a side length of 20 mm in the vertical Z-direction and 28

mm in the X- and Y-directions (Figure 4.17a). The mesh size around the interfaces is 0.06 mm in

the direction of the normal to the interface. Inside each domain, the mesh size is 0.2 mm for the

metal, 0.3 mm for the chill and 0.6 mm for the gas (Figure 4.17b).

(a) Geometries (b) Mesh (cross section)

Figure 4.17: The setup of the simulation for chill cooling and solidification of a deformed steel droplet
showing (a) the geometries of the droplet and chill plate inside the computational domain and (b) a cross
section through the 3D finite element mesh

.

The initial temperature is 1921 K for the metal and the gas and 300 K for the chill plate. The
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adiabatic condition is considered at the boundaries of the computational domain qB = 0. Sev-

eral simulations were performed for different values of thermal contact resistance 0, 10−5, 2.10−5,

5.10−5 and 10−4 (values in K.W−1.m2). The comparison with the experiment is based on the time-

evolution of the solidification front position from the chill plate. The experimental curve was ob-

tained from image processing of the video recorded with an embedded high-speed camera in the

experimental device on board the ISS as shown in Figure 2.17 in Chapter 2. The solidification

front was extracted from the recorded images using the colour contrast between the solid and liq-

uid phases visible on the free surface of the sample. Theoretically, the solidification front is located

at the boundary of the solid dendrites with the liquid phase. This interface forms at the liquidus

temperature TL = 1739 K. The numerical results with different Rth values for T = TL are shown in

figure 4.18a. With a perfect contact ( Rth = 0, i.e. no model for Kapitza resistance), it takes 4 sec-

onds for the liquidus iso-value to reach the bottom of the sample. As it was shown in chapter 2, the

front reaches the bottom of the droplet after approximately 8 seconds. When the thermal contact

resistance is taken into account in the simulations, the solidification front growth slows down. A

value of Rth = 5.10−5 K.W−1.m2 allows getting closer to the experimental solidification duration.

However, the experiment shows that the "contrast-based" front is propagating with a constant

speed. The simulation shows a positive acceleration of the growth of the liquidus-based front.

Several parameters could be at the origin of the difference: the fluid flow, the deformation of the

droplet but also the difference in the criterion for tracking the front. Indeed, the contrast between

the liquid and solid phases on the images is only visible when the solid fraction g s is higher than a

certain value. When we choose, as a criterion for front detection, the iso-value g s = 10% the time-

evolution of the front position becomes slower than the liquidus-based front 4.18b. In this case,

the value of Rth = 2.10−5 K.W−1.m2 gives a good prediction of the experimental behaviour during

the first 6 seconds but predicts a shorter solidification duration than observed experimentally.

(a) T = TL (b) g s = 10%

Figure 4.18: The time-evolutions of the front position for different thermal contact resistance compared to
the experiment (the yellow square is extrapolated)

.
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4.5 Conclusion

In this chapter, we presented the numerical framework for modelling heat transfer in a multi-

domain system involving solidification and thermal contact resistance. In the first part, we pro-

posed a simple and efficient numerical model to account for thermal contact resistance at an

arbitrarily-shaped interface while using a monolithic solution with a diffuse interface. The model

describes the interface by starting from the level-set method and smoothing the transition from

one material to the other by a smoothed Heaviside function, hence defining a diffuse interface.

The accuracy and robustness of the model are assessed through benchmarks for both steady and

transient diffusion regimes. The results and comparisons with the references show that the model

can produce a good prediction of the temperature jump across the interface. The second part

of this chapter was dedicated to solidification modelling based on the volume average method

and the temperature-based energy solver coupled with thermodynamics tabulations. Finally, the

numerical framework was applied to simulate the chill cooling experiments of the steel sample

conducted in the context of the CCEMLCC project on board the ISS. These simulations clearly

show the influence of the thermal contact resistance on the cooling rate, as well as it gives a first

estimation of the order of magnitude of the real resistance value. However, the simulation of solid-

ification by pure conduction in a static drop is far from being sufficient to reproduce what occurs

in the experiment, in particular, because of the absence of the convective heat and mass transfers.

Simulation of chill cooling and solidification, including convective heat transfer induced by solid-

ification shrinkage and capillary forces present at the metal-gas interface, will be the topic of the

next chapter.
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Numerical simulation of chill cooling and

solidification of a levitated steel sample

in microgravity
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Résumé

Ce chapitre est consacré à la modélisation du couplage de l’écoulement fluide et du transfert de

chaleur dans le contexte de la solidification et de la ségrégation chimique. Tout d’abord, nous

présentons les équations de conservation de l’énergie, de la masse totale, de la quantité de mou-

vement et de la masse des espèces chimiques d’un système multi-domaines impliquant un alliage

métallique multi-composants. Une formulation monolithique permet la résolution d’un seul sys-

tème d’équations sur un seul maillage eulérien. La description de l’écoulement fluide est enrichie

par la prise en compte du retrait de solidification, de la tension de surface et de l’effet Marangoni

agissant à l’interface liquide-gaz. Ensuite, nous appliquons le cadre numérique pour simuler

le refroidissement et la solidification d’un échantillon d’acier en microgravité. Des simulations

numériques préliminaires sont montrées en 2D. Ensuite, une simulation en 3D est présentée. Les

résultats numériques sont comparés aux résultats de l’expérience ISS sur l’alliage Fe-0.9wt.%C-

0.26wt.%Si.
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5.1 Introduction

This chapter is dedicated to the modelling of coupling heat transfer and fluid dynamics in the con-

text of solidification and chemical segregation. First, we present the governing equations. Then,

we apply the numerical framework to simulate the chill cooling of a steel sample in microgravity.

Preliminary numerical tests will be shown in 2D. Then, a 3D simulation will be presented. The

numerical results will be compared to the experimental data issued from the ISS on the sample d1

(Fe-0.9wt.%C-0.26wt.%Si alloy).

5.2 Governing equations for conjugate heat transfer including solidifi-

cation, chemical segregation and capillary forces

In this section, we start from the governing equations in each subdomain: the metal ΩM, the chill

ΩC and the surrounding gas ΩA. Then, we derive the monolithic formulation of the conservation

equations that allows prediction of fluid flow coupled with heat transfer including solidification,

chemical segregation, thermocapillary forces and shrinkage in an Eulerian framework using a sin-

gle mesh. Note that in this chapter, we use the same notations defined in the previous chapter.

We showed in chapter 2 through analyses of the ISS experiment that we can assume rigid solid

phase. Hence, the conservation equations are built on the assumption that displacement of the

solid phase of the metal subdomain us
M is zero. This means that the metal average velocity 〈u〉M

is reduced to its liquid phase averaged velocity 〈ul 〉M and that heat and mass transfers are purely

diffusive in the solid phase.

〈u〉M = 〈ul 〉M +���〈us〉M = g l ul
M + g s

�
�us
M (5.1)

where ul
M is the liquid intrinsic velocity vector.

Hereafter, we give only the final averaged conservation equations in each phase of the metallic

subdomain and we refer the reader to the following references [6; 12; 96] for details about the

passage from the microscopic to the macroscopic equations.

5.2.1 Mass conservation

In the metal subdomain

The averaged mass conservation equations in the metallic subdomain for the liquid and the

solid phases are respectively:

∂
(
g lρl

M

)
∂t

+∇∇∇·
(
g lρl

Mul
M

)
= Jl /s in the liquid phase (5.2)

∂
(
g sρs

M

)
∂t

+∇∇∇· (g sρs
M�

�us
M

)= Js/l in the solid phase (5.3)
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where Jl/s and Js/l represent the mass fluxes at the liquid-solid interface such as:

Jl /s =− 1

VE

ˆ
Γl s

ρl
M

(
ul

M −uΓl s

)
·nl dS (5.4)

Js/l =− 1

VE

ˆ
Γl s

ρs
M

(
�
�us
M −uΓl s

) ·nsdS (5.5)

We recall that uΓl s is the velocity of the liquid-solid interface Γl s . nl and ns are the normal vectors

to Γl s directed outwards to the liquid phase and the solid phase respectively.

Since there is no accumulation or loss of mass at the interface, the mass flux leaving the liquid

phase is the same as the flux entering the solid phase through the interface Γl s . Hence,

Jl /s + Js/l = 0 (5.6)

By writing the total average density of the metal as 〈ρ〉M = g lρl
M + g sρs

M, the averaged mass

conservation equation in the metal subdomain writes:

∂〈ρ〉M

∂t
+∇∇∇·

(
ρl

M 〈ul 〉M

)
= 0 (5.7)

We consider that the intrinsic average density of liquid metal is constant ρl
M = ρl

M,0. Hence, the

gradient of the liquid density ∇∇∇ρl
M = 0. Accordingly, the mass conservation equation in the metal

yields the following relationship:

∇∇∇· 〈ul 〉M =− 1

ρl
M,0

∂〈ρ〉M

∂t
= θ̇M (5.8)

This latter relationship expresses the compressibility of the metal due to solidification shrinkage.

This term will be present in the following conservation equations which govern the metal subdo-

main to account for shrinkage.

Note that in this work the compressiblity term θ̇M is explicitly discretized in time such as:

θ̇M =− 1

ρl
M,0

〈ρ〉M −〈ρ〉−M
∆t

(5.9)

where 〈ρ〉−M is the metal density evaluated at the previous time step.

In the surrounding gas subdomain

The density of the surrounding gas in the subdomain ΩA, indexed by a capital A (for Argon),

is considered uniform and constant 〈ρ〉A = ρA = Cst . Therefore, the mass conservation in the gas

subdomain is expressed by the following equation:

∇∇∇· 〈u〉A = 0 = θ̇A (5.10)
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In the chill subdomain

The density of the chill plate is considered constant. Thus, the mass conservation inΩC writes:

∇∇∇· 〈u〉C = 0 = θ̇C (5.11)

5.2.2 Momentum conservation

In the metal subdomain

The incompressible Navier-Stokes equations, as presented in chapter 3, are not applicable for

a solidifying liquid metal. The reasons are: (i) the shrinkage of the solid phase which includes a

non-zero-divergence velocity field in the liquid and (ii) the presence of the mushy zone where the

liquid flow is impacted by the interaction with the solid dendrites. In this context, we should re-

derive the momentum equation which describes the liquid metal flow. For this purpose, we start

from the averaged momentum equation for the liquid phase:

∂
(
g l

Mρ
l
Mul

M

)
∂t

+∇∇∇·
(
g lρl

Mul
M ×ul

M

)
−∇∇∇·

(
g lσl

M

)
= g lρl

Mg +Ml/s (5.12)

where 〈σl 〉M = g lσl
M is the liquid average stress tensor. For a Newtonian fluid, the stress tensor

can be modelled as follows:

〈σl 〉M = 2µl
M 〈ε̇l 〉M + 2

3
µl

Mθ̇MI−〈p l 〉M I (5.13)

where µl
M is the dynamic viscosity of the liquid metal and 〈ε̇l 〉M = 1

2

(∇∇∇〈ul 〉M +T ∇∇∇〈ul 〉M
)

is the

strain rate tensor.

The interfacial momentum transfer Ml /s due to phase change at the liquid solid interface can

be split into a spherical part Ml /s
S

and a deviatoric part Ml
d . The spherical part Ml/s

S
= p̄ l∇∇∇g l can

be interpreted as a buoyant force due to the average interfacial pressure pl . This latter can be

considered to be equal to the liquid pressure p l
M (pl ≈ p l

M). The deviatoric part expresses the

dissipative force in the liquid due the contact with the solid crystals. It can be modelled by analogy

with Darcy flow in a porous medium such as:

Ml/s
d =−

(
g l

)2
µl

MK
−1

(
ul

M −�
�us
M

)
(5.14)

where K is the permeability of the mushy zone. We consider in the present work that the perme-

ability is isotropic and we use the model of Carman-Kozeny based on the secondary dendrite arm

spacing λ2 such as:

K= λ2
2g l 3

180
(
1− g l

)2 (5.15)

Following these considerations, the average momentum equation in the liquid phase becomes:
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∂
(
ρl

M 〈ul 〉M
)

∂t
+∇∇∇·

(
ρl

M

g l
〈ul 〉M ×〈ul 〉M

)
−∇∇∇·

(
2µl

M 〈ε̇l 〉M

)
+ g l∇∇∇p l

M

+ 2

3
µl

M∇∇∇θ̇M + g l µ
l
M

K
〈ul 〉M = g lρl

Mg (5.16)

We rewrite the first and the second LHS terms considering that the liquid density is constant

ρl
M = ρl

M,0:

∂
(
ρl

M 〈ul 〉M
)

∂t
+∇∇∇·

(
ρl

M

g l
〈ul 〉M ×〈ul 〉M

)
= ρl

M,0
∂〈ul 〉M

∂t
+
ρl

M,0

g l
∇∇∇〈ul 〉M·〈ul 〉M+ρl

M,0 〈ul 〉M∇∇∇·ul
M (5.17)

We assume that the intrinsic velocity vector of the liquid phase is free-divergence ∇∇∇ ·ul
M = 0.

Hence,

∇∇∇· 〈ul 〉M = g l
�
��∇∇∇·ul

M +ul
M ·∇∇∇g l (5.18)

This assumption means that the compressibility condition of the metal (equation (5.8)) derives

from the gradient of the liquid volume fraction. This is consistent with the fact that the shrinkage

is due to solidification in the mushy zone, and not to the compressibility of the liquid.

Hence, the final average momentum equation in the liquid phase writes:

ρl
M,0

(
∂〈ul 〉M

∂t
+ 1

g l
∇∇∇〈ul 〉M · 〈ul 〉M

)
−∇∇∇·

(
2µl

M 〈ε̇l 〉M

)
+ g l∇∇∇p l

M

+ 2

3
µl

M∇∇∇θ̇M + g l µ
l
M

K
〈ul 〉M = g lρl

M,0g (5.19)

One can notice that when g l = 0 (fully-solid region), the permeability coefficient K given by

equation (5.15) is zero and g l µ
l
M
K

→∞. This means that Darcy term introduces infinite dissipation

forcing the flow velocity to be zero. Therefore, the solution of the equation (5.19) is also valid for

the fully-solid region. Consequently, we extend the average momentum conservation equation

(5.19) to the whole metallic subdomain by replacing the unknowns
(〈ul 〉M , p l

M

)
by

(〈u〉M , pM
)

such as:

ρl
M,0

(
∂〈u〉M

∂t
+ 1

g l
∇∇∇〈u〉M · 〈u〉M

)
−∇∇∇·

(
2µl

M 〈ε̇〉M

)
+ g l∇∇∇pM

+ 2

3
µl

M∇∇∇θ̇M + g l µ
l
M

K
〈u〉M = g lρl

M,0g (5.20)

In the surrounding gas subdomain

Considering that the flow of the surrounding gas is incompressible, the averaged momentum

equation is:
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ρA

(
∂〈u〉A

∂t
+∇∇∇〈u〉A · 〈u〉A

)
−∇∇∇· (2µA 〈ε̇〉A

)+∇∇∇pA = ρAg (5.21)

In the chill subdomain

The chill plate is considered rigid and at rest. Therefore, 〈u〉C = 0. This condition is directly

imposed in the solution of Navier-Stokes solver via a Dirichlet condition.

Monolithic weak formulation

To obtain the monolithic formulation that we need to solve with finite element method, we

multiply each of the equations (5.20) and (5.21) by a test function and we integer them over the

corresponding subdomain. Then we sum the integrated equations, including the appropriate

boundary condition at the boundaries separating the subdomains.

So, let us consider a test function U . The weak formulation for the momentum equation in

the metal subdomain is:

(
ρl

M,0
∂〈u〉M

∂t
+
ρl

M,0

g l
∇∇∇〈u〉M · 〈u〉M ,U

)
ΩM

+
(
2µl

M 〈ε̇〉M : ε̇(U )
)
ΩM

−
(
g l pM,∇∇∇···U

)
ΩM

−
(

2

3
µl

Mθ̇M,∇∇∇···U
)
ΩM

+
(

g l µ
l
M

K
〈u〉M ,U

)
ΩM

=
(
g lρl

M,0g ,U
)
ΩM

+
(
〈σ〉M ·nM,U

)
∂ΩM

(5.22)

where nM is the outward normal vector to the metal boundary ∂ΩM.

For the gas subdomain, the weak formulation for the momentum equation writes:

(
ρA
∂〈u〉A

∂t
+ρA∇∇∇〈u〉A · 〈u〉A ,U

)
ΩA

+ (
2µA 〈ε̇〉A : ε̇(U )

)
ΩA

−
(
pA,∇∇∇···U

)
ΩA

= (
ρAg ,U

)
ΩA

+ (〈σ〉A ·nA,U )∂ΩA
(5.23)

where nA is the outward normal vector to the gas boundary ∂ΩA.

In order to reach a unified equation that governs the fluid subdomains ΩM, ΩA, we define the

global unknowns: u the velocity vector and p the pressure field defined on the entire computa-

tional domain Ω as follows:

u =


〈u〉M if x ∈ΩM

〈u〉A if x ∈ΩA

〈u〉C = 0 if x ∈ΩC

(5.24)
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p =


pM if x ∈ΩM

pA if x ∈ΩA

pC = 0 if x ∈ΩC

(5.25)

Considering the smooth Heaviside functions HM, HA and HC of ΩM, ΩA and ΩC respectively, we

introduce the following mixed properties:

• g F the fluid volume fraction:

g F = g l HM +HA (5.26)

• ρF the fluid density:

ρF = ρl
M,0HM +ρAHA (5.27)

• µF the fluid dynamic viscosity:

µF =µl
MHM +µAHA (5.28)

• θ̇F the fluid compressiblity condition:

θ̇F = θ̇MHM + θ̇AHA = θ̇MHM (5.29)

Moreover, we extend the definition of the permeability, previously defined for the metallic sub-

domain, to the rest of the computational domain to use a monolithic Darcy term. The idea is to

keep the dissipative Darcy term present in the whole domain but to activate it where it is needed

as illustrated in Figure 5.1. The extended permeabilityKF depends on the fluid volume fraction as

follows:

KF = λ2
2g F3

180
(
1− g F

)2 (5.30)

Figure 5.1: Schematic of a multidomain system involving a solidifying metallic subdomain
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By summing equations (5.22) and (5.23), we obtain:

(
ρF ∂u

∂t
+ ρF

g F
∇∇∇u ·u,U

)
Ω

+ (
2µFε̇(u) : ε̇(U )

)
Ω− (

p,∇∇∇···U )
Ω+

(
g F µ

F

KF
u,U

)
Ω

=
(

2

3
µFθ̇F,∇∇∇···U

)
Ω

+ (
g FρFg ,U

)
Ω+

(
〈σ〉M ·nM,U

)
∂ΩM

+
(
〈σ〉A ·nA,U

)
∂ΩA

(5.31)

The last two surface integrals of the RHS of the equation (5.31) can be split into interfacial

terms such as:

(
〈σ〉M ·nM,U

)
∂ΩM

+
(
〈σ〉A ·nA,U

)
∂ΩA

=
((
〈σl 〉M −〈σ〉A

)
·nM,U

)
Γl

MA

+
(

(���〈σs〉M −〈σ〉A)·nM,U
)
Γs

MA

+
(
〈σl 〉M ·nM,U

)
Γl

MC

+
���������(
〈σs〉M ·nM,U

)
Γs

MC

+
(
〈σ〉A ·nA,U

)
ΓAC

(5.32)

We neglect the viscous friction force at the chill/gasΓAC and the solid/gasΓs
MC interfaces. Thus,

(
〈σ〉A ·nA,U

)
ΓAC

= 0(
−〈σ〉A ·nM,U

)
Γs

MA

= 0

The interfacial term
(〈σl 〉M ·nM,U

)
Γl

MC
at Γl

MC the liquid/chill interface expresses the wetting

force between the liquid metal and the chill. Accounting for such capillary force was proposed

by [98] in level-set based FE method. In the present work, we consider that the simulations start

just after a thin layer of solid metal forms on contact with the chill, thus freezing the interface

ΓMC = Γs
MC. Consequently, the liquid/chill interface Γl

MC is not present in the simulations. Thus,

we omit the interfacial term
(〈σl 〉M ·nM,U

)
Γl

MC
.

Following these considerations, the dynamic boundary condition at the liquid-gas interface

Γl
MA writes: ((

〈σl 〉M −〈σ〉A

)
·nM,U

)
Γl

MA

= (
f ST + f Mar ,U

)
Γl

MA
(5.33)

where f ST is the surface tension force vector and f Mar is the Marangoni force vector.

f ST =−γl g κl g nl g (5.34)

f Mar =∇∇∇γl g ·
(
I−nl g ⊗nl g

)
(5.35)

γl g is the surface tension coefficient of the liquid metal. κl g is the curvature of the liquid/gas

interface and nl g is its unit normal vector oriented inwards the metal domain.

As we previously showed in chapter 3, we can transform the surface integral of capillary forces

into volume integral using the CSF method via the Dirac function δl g located at the liquid metal-

gas interface Γl
MA.

The final monolithic formulation of Navier-Stokes equations including the mass and the mo-

mentum conservation equations becomes therefore as follows:
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

(
ρF ∂u

∂t
+ ρF

g F
∇∇∇u ·u,U

)
Ω

+ (
2µFε̇(u) : ε̇(U )

)
Ω− (

g Fp,∇∇∇···U )
Ω+

(
g F µ

F

KF
u,U

)
Ω

=
(

2

3
µFθ̇F,∇∇∇···U

)
Ω

+ (
g FρFg ,U

)
Ω+ (

δl g
(

f ST + f Mar

)
,U

)
Ω

(∇∇∇·u,P )Ω = (
θ̇F,P

)
Ω

(5.36)

5.2.3 Energy conservation equation

In the metal subdomain

The averaged energy conservation equations in each phase of the metallic subdomain write:

∂
(
g lρl

Mhl
M

)
∂t

+∇∇∇·
(
g lρl

Mhl
Mul

M

)
−∇∇∇·

(
g l k l

M∇∇∇T
)
= Ql /s (5.37)

∂
(
g sρs

Mhs
M

)
∂t

+∇∇∇· (g sρs
Mhs

M�
�us
M

)−∇∇∇· (g sk s
M∇∇∇T

)= Qs/l (5.38)

We recall that hϕM and kϕM stand for the intrinsic averaged mass enthalpy and the intrinsic av-

eraged thermal conductivity respectively, with ϕ ∈ {l , s}. Ql /s and Qs/l are the interfacial heat ex-

changes at the liquid/solid interface which write as follows:

Ql/s =− 1

VE

ˆ
Γl s

ρl hl
(
ul −uΓl s

)
·nl dS + 1

VE

ˆ
Γl s

q l ·nl dS (5.39)

Qs/l =− 1

VE

ˆ
Γl s

ρshs (
��us −uΓl s

) ·ns dS + 1

VE

ˆ
Γl s

q s ·ns dS (5.40)

where qϕ =−kϕ∇∇∇T is the local heat flux density of the phase ϕ ∈ {l , s}.

We assume a perfect contact at the liquid/solid interface Γl s . Consequently, the heat flux en-

tering the liquid phase at Γl s is equal to the heat flux leaving the solid phase at the interface. There-

fore:

Ql /s +Qs/l = 0 (5.41)

Hence the averaged energy conservation equation over the metal subdomain is:

∂〈ρh〉M

∂t
+∇∇∇·

(
g lρl

Mhl
Mul

M

)
−∇∇∇· (〈k〉M∇∇∇T) = 0 (5.42)

where 〈k〉M = g l k l
M + g sk s

M is the averaged thermal conductivity of the metal.

We can develop the convection term as follows:

∇∇∇·
(
g lρl

Mhl
Mul

M

)
= 〈ul 〉M ·∇∇∇

(
ρl

Mhl
M

)
+ρl

Mhl
M∇∇∇· 〈ul 〉M (5.43)
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The volume enthalpy of the liquid phase, ρl
Mhl

M, is not the main unknown of the energy conser-

vation equation. For simplification, we assume that the enthalpy of the liquid is a linear function

of temperature. Thus,

ρl
Mhl

M = Cl
p,MT (5.44)

where Cl
p,M is the heat capacity per unit volume in the liquid metal.

Hence, the averaged energy equation over the metal subdomain writes:

∂〈ρh〉M

∂t
+Cl

p,M 〈ul 〉M ·∇∇∇T−∇∇∇· (〈k〉M∇∇∇T) =−ρl
Mhl

Mθ̇M (5.45)

The term in the RHS of equation (5.45) expresses the heat supplied by the liquid phase in the

mushy zone because of solidification shrinkage. It is evaluated at the previous time step.

In the chill subdomain

The heat transfer in the chill plate is governed by heat conduction. The energy conservation

equation in the chill subdomain writes:

∂〈ρh〉C

∂t
−∇∇∇· (〈k〉C ∇∇∇T) = 0 (5.46)

Note that the evolution of the enthalpy in the chill plate made of ceramic is linear with temper-

ature so we can write
∂〈ρh〉C
∂t = Cp,C

∂T
∂t . However, we retain the transient term with the enthalpy to

conform with the equation set for the metal subdomain. The same remark is valid for the following

paragraph dedicated to the gas subdomain.

In the surrounding gas subdomain

The heat transfer in the chill plate is operated by both convection and conduction. The energy

conservation equation in the gas subdomain writes:

∂〈ρh〉A

∂t
+∇∇∇· (ρAhAuA

)−∇∇∇· (〈k〉A∇∇∇T) = 0 (5.47)

Considering that the flow of the gas is incompressible ∇∇∇·uA = 0, the energy conservation equa-

tion in the gas subdomain becomes:

∂〈ρh〉A

∂t
+Cp,AuA ·∇∇∇T−∇∇∇· (〈k〉A∇∇∇T) = 0 (5.48)

Monolithic weak formulation

In the same way as the momentum equation, we write the weak formulation for each subdo-

main using a test function T for the temperature field.

For the metal subdomain, the weak formulation of the energy conservation equation writes:
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(
∂〈ρh〉M

∂t
,T

)
ΩM

+
(
Cl

p,M 〈ul 〉M ·∇∇∇T,T
)
ΩM

+ (〈k〉M∇∇∇T,∇∇∇T )ΩM

= (〈k〉M∇∇∇T ·nM,T )∂ΩM
−

(
ρl

Mhl
Mθ̇M,T

)
ΩM

(5.49)

For the gas subdomain:(
∂〈ρh〉A

∂t
,T

)
ΩA

+ (
Cp,A 〈u〉A ·∇∇∇T,T

)
ΩA

+ (〈k〉A∇∇∇T,∇∇∇T )ΩA
= (〈k〉A∇∇∇T ·nA,T )∂ΩA

(5.50)

For the chill plate subdomain:(
∂〈ρh〉C

∂t
,T

)
ΩC

+ (〈k〉C ∇∇∇T,∇∇∇T )ΩC
= (〈k〉C ∇∇∇T ·nC,T )∂ΩC

(5.51)

Following the work in Chapter 4, we sum up the weak formulations of all the subdomains

and drop all the interfacial terms of heat exchanges between the subdomains, considering that

any contact thermal resistance can be taken into account through the mixing law of the thermal

conductivity and the heat capacity.

Consequently, the monolithic weak formulation of energy conservation for the whole compu-

tational domain Ω is :

(
∂�〈ρh〉
∂t

, T

)
Ω

+
(
CF

p u ·∇∇∇T , T
)
Ω
+

(
〈̂k〉∇∇∇T , ∇∇∇T

)
Ω
=−

(
ρl

Mhl
Mθ̇

F , T
)
Ω

(5.52)

where �〈ρh〉 = HM 〈ρh〉M +HA 〈ρh〉A +HC 〈ρh〉C (5.53)

CF
p = HMCl

p,M +HACp,A (5.54)

〈̂k〉 =
(

HM

〈k〉M
+ HC

〈k〉C
+ HA

〈k〉A
+δMCRth

)−1

(5.55)

where δMC is the Dirac function of the metal/chill interface ΓMC and Rth is the value of the ther-

mal contact resistance. Note that in this work, the thermal contact resistance only occurs at the

metal/chill interface ΓMC.

Any micro-cavities (gap) that may exist between the metal and the chill are probably filled

with gas (or vacuum). Therefore, the heat capacity of the gap Cp,G at the contact surface ΓMC is

negligible compared to the mean thermal capacity of the metal and the ceramic Cp. According to

the model proposed in Chapter 4, only the mixing law of the thermal conductivity is concerned by

the consideration of the thermal resistance when Cp,G ¿ Cp . ΓMA and ΓCA interfaces involve a full

contact with the gas, so the thermal contact is assumed to be perfect at these latter boundaries.
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5.2.4 Chemical species conservation equation

In the metal subdomain

For a multi-component alloy, the thermophysical properties depend on the composition of

the alloy. Hence, the distribution of the chemical species in the metal can affect the heat transfer,

which is coupled with fluid flow. On the other hand, the fluid flow is affecting the distribution

of the chemical species in the liquid phase. Therefore it is of significant importance to take into

account the mass transfer of the chemical species. Let us index by i a solute of the alloy. The

chemical composition in %w t will denoted wi . For the sake of simplification, wi
l
M will be denoted

wi
l .

The averaged species mass conservation equations in each phase are:

∂
(
g lρl

Mwi
l
)

∂t
+∇∇∇·

(
g lρl

Mwi
l ul

M

)
+∇∇∇· 〈 j l

i 〉M =Φi
l /s (5.56)

∂
(
g sρs

Mwi
s
)

∂t
+∇∇∇· (g sρs

Mwi
s
�
�us
M

)+∇∇∇·���〈 j s
i 〉M =Φi

s/l (5.57)

In the solid phase, we also neglect the diffusion transfer of solutes 〈 j s
i 〉M

, considering that, at

the macroscopic scale, the composition of the alloy is more influenced by convection and diffusion

in the liquid phase.

As no accumulation of mass occurs at the interface, the mass of the solute i entering the liquid

phase Φi
l/s is the same leaving the solid phase Φi

s/l at the liquid/solid boundary. Therefore,

Φi
l /s +Φi

s/l = 0 (5.58)

.

After summing the phase averaged equations we obtain:

∂〈ρwi 〉M

∂t
+∇∇∇·

(
ρl

Mwi
l 〈ul 〉M

)
+∇∇∇· 〈 j l

i 〉M = 0 (5.59)

〈ρ〉M
∂〈wi 〉M

∂t
+〈wi 〉M

∂〈ρ〉M

∂t
+∇∇∇·

(
ρl

Mwi
l 〈ul 〉M

)
+∇∇∇· 〈 j l

i 〉M = 0 (5.60)

〈ρ〉M
∂〈wi 〉M

∂t
+〈wi 〉M

∂〈ρ〉M

∂t
+〈ul 〉M ·∇∇∇

(
ρl

Mwi
l
)
+ρl

Mwi
l θ̇M +∇∇∇· 〈 j l

i 〉M = 0 (5.61)

The average mass flux of the solute i in the liquid phase is given by Fick’s law:

〈 j l
i 〉M =−g l Dl

M∇
(
ρl

Mwi
l
)

(5.62)

Hence

〈ρ〉M
∂〈wi 〉M

∂t
+〈wi 〉M

∂〈ρ〉M

∂t
+〈ul 〉M ·∇∇∇

(
ρl

Mwi
l
)
+ρl

Mwi
l θ̇M −∇∇∇·

[
g l Dl

M∇
(
ρl

Mwi
l
)]

= 0 (5.63)

The mass conservation equation gives:
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θ̇M =− 1

ρl
M

∂〈ρ〉M

∂t
(5.64)

As we assume that the liquid density ρl
M = ρl

M,0 is constant, the chemical species conservation

equation becomes:

〈ρ〉M
∂〈wi 〉M

∂t
+ρl

M,0θ̇M

(
w l

i −〈wi 〉M

)
+ρl

M,0 〈ul 〉M ·∇∇∇wi
l −∇∇∇·

(
g lρl

M,0Dl
M∇wi

l
)
= 0 (5.65)

Now we have two unknown variables: the global averaged composition 〈wi 〉M and the intrinsic

averaged liquid composition wi
l . We apply Voller-Prakash variable splitting approximation which

consists of writing:

wi
l = 〈wi 〉M −w∗

i (5.66)

where

w∗
i = (〈wi 〉M

)−−
(
wi

l
)−

(5.67)

and (.)− means the value of the variable at the previous time step.

Therefore the species conservation equation writes:

〈ρ〉M
∂〈wi 〉M

∂t
+ρl

M,0 〈ul 〉M ·∇∇∇〈wi 〉M +∇∇∇·
(
g lρl

M,0Dl
M∇∇∇〈wi 〉M

)
= ρl

M,0θ̇Mw∗
i +ρl

M,0 〈ul 〉M ·∇∇∇w∗
i

−∇∇∇·
(
g lρl

M,0Dl
M∇∇∇w∗

i

)
(5.68)

In the surrounding media

The transport of the chemical species concerns only the metal subdomain. However, as we

adopt an Eulerian monolithic approach for conservation equations, we need to extend the defi-

nition of the solute composition to the materials surrounding the metal subdomain, namely the

gas and the chill plate subdomains. Intuitively, we can think to cancel the value of the chemical

composition of each solute outside the metallic subdomain. However, the gradient of composition

in the vicinity of the interface leads to strong artificial fluxes of the species outwards the metallic

subdomain. For this reason, we consider that the composition outside the metallic subdomain is

equal to the nominal composition wi ,0 and that the mass density of each solute is equal to that of

the liquid metal ρl
M,0wi ,0. Then we ensure that during the calculation, this composition remains

constant and uniform outside the metallic subdomain to verify the following conservation equa-

tions:

ρl
M,0

∂〈wi 〉A

∂t
= 0 (5.69)

ρl
M,0

∂〈wi 〉C

∂t
= 0 (5.70)
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Monolithic weak formulation

Let consider W the test function for the composition field. First, we write the weak formulation

of the species conservation equation in the metal.

(
〈ρ〉M

∂〈wi 〉M

∂t
,W

)
ΩM

+
(
ρl

M,0 〈ul 〉M ·∇∇∇〈wi 〉M ,W
)
ΩM

−
(
g lρl

M,0Dl
M∇∇∇〈wi 〉M ,∇∇∇W

)
ΩM

=
(
ρl

M,0θ̇Mw∗
i ,W

)
ΩM

+
(
ρl

M,0 〈ul 〉M ·∇∇∇w∗
i ,W

)
ΩM

−
(
g lρl

M,0Dl
M∇∇∇w∗

i ,∇∇∇W
)
ΩM

+
(
g lρl

M,0Dl
M∇∇∇w l

i ·nM,W
)
∂ΩM

(5.71)

No species mass flux is entering nor leaving the metallic subdomain. Hence:

g lρl
M,0Dl

M∇∇∇w l
i ·nM = 0 (5.72)

Therefore, the weak formulation of the species conservation equation becomes:

(
〈ρ〉M

∂〈wi 〉M

∂t
,W

)
ΩM

+
(
ρl

M,0 〈ul 〉M ·∇∇∇〈wi 〉M ,W
)
ΩM

−
(
g lρl

M,0Dl
M∇∇∇〈wi 〉M ,∇∇∇W

)
ΩM

=
(
ρl

M,0θ̇Mw∗
i ,W

)
ΩM

+
(
ρl

M,0 〈ul 〉M ·∇∇∇w∗
i ,W

)
ΩM

−
(
g lρl

M,0Dl
M∇∇∇w∗

i ,∇∇∇W
)
ΩM

(5.73)

The weak formulations of the species conservation equations in the surrounding gas and the

chill plate are:

(
ρl

M,0
∂〈wi 〉A

∂t
,W

)
ΩA

= 0 (5.74)

(
ρl

M,0
∂〈wi 〉C

∂t
,W

)
ΩC

= 0 (5.75)

For an unified resolution of the species conservation equation, we define a global unknown wi

for the composition defined all over the computational domain such as:

wi =


〈wi 〉M if x ∈ΩM

〈wi 〉A if x ∈ΩA

〈wi 〉C if x ∈ΩC

(5.76)

The objective is to write the finite element equation that governs wi over the whole domain.

For this purpose, we sum the weak formulations of all the subdomains.

(
〈ρ〉M

∂wi

∂t
,W

)
ΩM

+
(
ρl

M,0
∂wi

∂t
,W

)
ΩA∪ΩC

+
(
ρl

M,0 〈ul 〉M ·∇∇∇wi ,W
)
ΩM

−
(
g lρl

M,0Dl
M∇∇∇wi ,∇∇∇W

)
ΩM

=
(
ρl

M,0θ̇Mw∗
i ,W

)
ΩM

+
(
ρl

M,0 〈ul 〉M ·∇∇∇w∗
i ,W

)
ΩM

−
(
g lρl

M,0Dl
M∇∇∇w∗

i ,∇∇∇W
)
ΩM

(5.77)

122



CHAPTER 5. NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A
LEVITATED STEEL SAMPLE IN MICROGRAVITY

We can transform the integrals over subdomains into integrals over the whole computational

domain using Heaviside functions as follows:

(
ρ̃M

∂wi

∂t
,W

)
Ω

+
(
ρl

M,0HMu ·∇∇∇wi ,W
)
Ω
−

(
g l HMρ

l
M,0Dl

M∇∇∇wi ,∇∇∇W
)
Ω

=
(
ρl

M,0θ̇
Fw∗

i ,W
)
Ω
+

(
ρl

M,0HMu ·∇∇∇w∗
i ,W

)
Ω
−

(
g l HMρ

l
M,0Dl

M∇∇∇w∗
i ,∇∇∇W

)
Ω

(5.78)

where

ρ̃M = 〈ρ〉M HM +ρl
M,0 (1−HM) (5.79)

5.2.5 Modelling of interfaces

In the previous conservation equations, we expressed the mixed properties using the Heaviside

functions HM, HA and HC as well as the Dirac function δMC of the metal/chill boundary ΓMC .

Moreover, the expression of the capillary forces that act at the liquid-metal/gas interface Γl
MA re-

quires the Dirac function δl g , the curvature κl g and the normal vector nl g . All these variables

depend on the position of the interfaces that we model here in this work by means of the level set

method. In this context, we define two level-set functions: φM which describes the boundary ∂ΩM

of the metal subdomain, and φC which gives the position of the chill plate boundary ∂ΩC.

φM =


d(x ,∂ΩM) if x ∈ΩM

0 if x ∈ ∂ΩM

−d(x ,∂ΩM) if x 6∈ΩM

(5.80)

φC =


d(x ,∂ΩC) if x ∈ΩC

0 if x ∈ ∂ΩC

−d(x ,∂ΩC) if x 6∈ΩC

(5.81)

From φM and φC we determine smooth Heaviside functions HM and HC for the metal and the

chill subdomains respectively:

HM =


1 if φM > ε
1

2

[
1+ φM

ε
+ 1

π
sin

(
πφM

ε

)]
if

∣∣φM
∣∣≤ ε

0 if φM <−ε

(5.82)
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HC =


1 if φC > ε
1

2

[
1+ φC

ε
+ 1

π
sin

(
πφC

ε

)]
if

∣∣φC
∣∣≤ ε

0 if φC <−ε

(5.83)

Consequently, we deduce the Heaviside of the surrounding gas HA such as:

HA = 1−HM −HC (5.84)

Note that here we fix a common value of the mixing zone width ε for all the subdomains and

that the Heavisides are centred around the boundaries.

From the Heaviside functions we derive two Dirac function δM and δC such as:

δM = H′
M (5.85)

δC = H′
C (5.86)

The metal subdomain ΩM is in contact with the chill plate ΩC and the surrounding gas ΩA.

Therefore, the metal boundary ∂ΩM is composed of two interfaces: the metal-chill interface ΓMC =
∂ΩM ∪∂ΩC and the metal-gas interface ΓMA = ∂ΩM ∪∂ΩA.

We recall the definition of the Dirac function δMC needed for modelling the thermal contact

resistance at the metal/chill interface:

δMC =
δC if HM > 0

0 if HM = 0
(5.87)

In the same way we define the Dirac function δMA of the metal/gas interface ΓMA

δMA =
δM if HA > 0

0 if HA = 0
(5.88)

During the phase transformation of the metal, the metal/gas interface ΓMA can be composed

of a liquid/gas interface Γl
MA and a solid/gas interface Γs

MA. Therefore, Γl
MA where capillary forces

are applied, is governed by fluid dynamics as well as phase transformation. However, with the

volume averaging method the liquid-solid interface is not explicitly modelled. Hence, we can not

clearly separate Γl
MA from Γs

MA in the mushy zone. In this work, we propose to set a threshold g l
c

for the liquid volume fraction beyond which the metal boundary can be considered predominantly

liquid. For this purpose, we define the liquid phase indicator χl such as:

χl =
1 if g l ≥ g l

c

0 if g l < g l
c

(5.89)
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Consequently, the Dirac function δl g , the normal vector nl g and the curvature κl g needed for

capillary forces modelling, write:

δl g = χl δMA (5.90)

nl g = χl ∇∇∇φM (5.91)

κl g = χl ∇∇∇2φM (5.92)

As we showed in Chapter 3, it is recommended to use a density-scaled Dirac function for sur-

face tension in order to reduce the spurious current around the interface. Accordingly, the scaled

Dirac function δscaled
l g is defined by the following equation:

δscaled
l g = 2 HM δl g (5.93)

The motion of the liquid/gas interface is tracked by the resolution of the transport equation of

φM such as:
∂φM

∂t
+u ·∇∇∇φM = 0 (5.94)

u being the velocity vector resulting from solving the monolithic Navier-Stokes equations, by

construction, its value at the solid-metal/gas interface is zero. So the equation ensures the trans-

port of only the liquid part of the boundary ∂ΩM.

As previously shown, the mass of the object transported with the level set method is not guar-

anteed to be conserved. So a mass correction method was proposed for constant volume objects.

For metals, the difference of densities between the liquid phase and the solid phase makes the

volume shrink during solidification. So, a mass correction of a varying volume is required in this

context. To correct the mass lost/gained during solidification of the metal subdomain, we use the

principle of a redistribution of the mass lost/gained over the metal surface but only at the liquid

part Γl
MA such as:

φcor r
M =φM +χl cφ (5.95)

where cφ is a distance given by:

cφ = m(t )−m0´
∂ΩM

χl 〈ρ〉M dS
(5.96)

m(t ) is the mass of the metal subdomain ΩM at the time t and m0 is its initial value such as:

m(t ) =
ˆ
Ω

HM 〈ρ〉M dV (5.97)

Finally, as we assume that the chill plate is fixed, the level set functionφC is constant over time.

No transport equation neither mass correction is applied for it.
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5.3 Coupling resolution strategy

In the previous section, we set the system of equations that governs the physics of coupling fluid

mechanics with heat transfer in the context of solidification of multi-component alloys. In this

section, we present the strategy of solving this coupled multi-physics problem.

The unknowns of this problem are u the velocity vector, p the pressure, T the temperature,

wi the composition of the solute i and the level set function φM. All these variables are coupled

with each other. Indeed, the velocity of the fluid influences the transport of energy and chemical

species. In addition, energy and chemical species are linked via the microsegregation model. In

return, the thermophysical properties of the fluid, conditioned by the temperature and the com-

position, influence on the velocity field via solidification shrinkage and capillary forces. For each

time increment, the calculation starts with the resolution of the conservation of energy and then

the transport of chemical species. These resolutions will give direct access to temperature T and

chemical composition wi . Next, the Navier-Stokes equations describing the conservation of mass

and momentum are solved. Finally, the new position of the metal/gas interface is determined

by solving the transport equation of the level set and its adjustment behind by mass correction

method. Thus, for each time increment, the equations are solved only once. This solving scheme,

therefore, corresponds to a weak coupling of the equations. Note that the most recent value of

the variables will be used during the calculation. The steps of the resolution strategy are given in

Figure 5.2.
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1. Energy conservation solver( �〈ρh〉
∆t

,T

)
Ω

+
(
CF

p u− ·∇∇∇T,T
)
Ω
+

(
〈̂k〉∇∇∇T,∇∇∇T

)
Ω
=

( �〈ρh〉−
∆t

−
(
ρl

Mhl
Mθ̇

F
)−

,T

)
Ω

After resolution, we obtain T(t )

2. Microsegregation model solver
With T(t ) and w−

i as inputs, we obtain from thermodynamic tabulations gϕ(t ), hϕM(t ),
wϕ

i (t ) where ϕ denotes the liquid and the different solid phases

3. Chemical species conservation solver

(
ρ̃M

wi

∆t
,W

)
Ω
+

(
ρl

M,0HMu− ·∇∇∇wi ,W
)
Ω
−

(
g l HMρ

l
M,0Dl

M∇∇∇wi ,∇∇∇W
)
Ω

=
(
ρ̃M

w−
i

∆t
+ρl

M,0θ̇
Fw∗

i ,W

)
Ω

+
(
ρl

M,0HMu ·∇∇∇w∗
i ,W

)
Ω
−

(
g l HMρ

l
M,0Dl

M∇∇∇w∗
i ,∇∇∇W

)
Ω

After resolution, we obtain wi (t )

4. Navier-Stokes solver



(
ρF u −u−

∆t
+ ρF

g F
∇∇∇u ·u,U

)
Ω

+ (
2µFε̇(u) : ε̇(U )

)
Ω− (

g Fp,∇∇∇···U )
Ω+

(
g F µ

F

KF
u,U

)
Ω

(
∆t γl g δl g (∇∇∇u.P) : ∇∇∇U

)
Ω
=

(
2

3
µFθ̇F,∇∇∇···U

)
Ω

+ (
g FρFg ,U

)
Ω+ (

δl g
(

f ST + f Mar

)
,U

)
Ω

(∇∇∇·u,P )Ω = (
θ̇F,P

)
Ω

After resolution, We obtain u(t ) and p(t )

5. Level set solver (
φM

∆t
,F

)
Ω

+ (
u ·∇∇∇φM,F

)
Ω =

(
φ−

M

∆t
,F

)
Ω

We obtain φM(t )

6. Mass correction

φcor r
M =φM +χl cφ

We obtain the corrected φM(t )

Figure 5.2: The order of the resolution of conservation equations during a time increment
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5.4 Application to chill cooling and solidification experiment on board

the ISS

We have proposed coupling of fluid mechanics, heat transfer and microsegregation in the con-

text of solidification of multi-component alloys. Now, we will apply this numerical framework

to the ISS experiment that we simulate in the previous chapter with only heat conduction. But

before reaching a 3D complete simulation, we perform a preliminary study in order to evaluate

the influence of some numerical and physical parameters. For this parametric study, we opt for

2D simulations, given their relatively short computation time compared to 3D simulations. A 3D

simulation will be presented at the end of this chapter.

5.4.1 Preliminary results and numerical investigations

5.4.1.1 Computational configuration

Geometries and mesh

In the ISS experiment, the chill plate is a cylinder with a radius of 8 mm and a thickness of 3

mm. The initial shape of the metal droplet is estimated from experimental observations 2.15. It is

a sphere of 3.14 mm radius truncated at the top so that its total height is 6.08 mm. The surface of

contact with the chill is then a disc of 1 mm radius. Let us take the Z-axis as the axis of the symme-

try of the problem. We place the Z = 0 plane at the plane of the contact between the chill and the

droplet. The 2D simulations are performed in the XZ plane. The 2D computational domain Ω is

a rectangular box with a side length of 20 mm in the X direction and 17 mm in the Z direction, as

illustrated in Figure 5.3a.

The mesh used in the calculations, as shown in Figure 5.3b, is static, more or less refined in

regions of interest. The interfaces where the gradients are the strongest must be fine-meshed. Let

us note h0 the minimum characteristic size of the mesh and fix it at a value of 60 µm. In a 1 mm

wide band centred around the boundary of the chill, the mesh size is h0 in the normal direction

and 5h0 in the tangential direction. Inside the chill, the mesh is isotropic with a characteristic size

of 5h0. Since the mesh is static, we have meshed with isotropic elements of a characteristic size of

h0 a region that covers the space where the droplet could elongate. We define this region as part

of an ellipse with a major axis of 1 cm and a minor axis of 8 mm.

The half-thickness of the mixture zones ε is fixed to 4h0.
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16
3 2

3.14

20

17

X

Z

(a) The geometries of the problem (dimensions are
given in mm)

(b) 2D mesh

Figure 5.3: The setup of the 2D simulation for chill cooling and solidification of a steel droplet showing: (a)
the geometries of the droplet, chill plate and the computational domain, (b) the 2D mesh used for calcula-
tions.

.

Initial and boundary conditions

The initial temperature of the metallic droplet is TM,0 = 1648 oC. The surrounded gas is con-

sidered at the same initial temperature as the metal. As for the chill plate, its initial temperature

is fixed to TC,0 = 25 oC. The system is initially in a steady-state with a zero velocity. The initial

composition of the system is the nominal composition of the metallic alloy.

The level set functions φM and φC are initialised with the geometrical distance from the initial

boundary position of the droplet and the chill respectively.

The boundaries of the computational domain are considered adiabatic. For the Navier-Stokes

solver, the pressure and the velocity are free at the boundary. A Dirichlet condition of zero-velocity

is imposed in the chill subdomain (φC ≥ 0).

Physical properties

In the present work, we focus on d1 sample proceeded on board the ISS and whose composi-

tion is given in Chapter 2. This steel will first be approximated by a binary alloy Fe-0.9wt.%C by

considering only the Carbon solute. Thus the index i is only i = 1. In a later step, we consider a

ternary alloy Fe-0.9wt.%C- 0.2wt.%Si which means i = 1 corresponds to Carbon solute and i = 2

corresponds to Silicon solute.

The energy conservation equation is written with both enthalpy and temperature variables.

The relationship between these two variables is not linear for alloys. It is defined by the following

relations:

〈ρh〉M = ∑
ϕ∈M

gϕρϕMhϕM (5.98)

gϕ = gϕ
(
T,〈wi 〉M

)
(5.99)
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ρ
ϕ
M = ρϕM

(
T, wϕ

i

)
(5.100)

hϕM = hϕM
(
T, wϕ

i

)
(5.101)

wϕ

i = wϕ

i

(
T,〈wi 〉M

)
(5.102)

The thermodynamic properties gϕ, ρϕM, hϕM and wϕ

i are tabulated as a function of temperature

and chemical composition. These tables are needed to convert temperature into enthalpy dur-

ing non-linear iterations of the energy solver. Detailed information on this resolution step can be

found in [97]. These same tabulations are also used in the rest of the calculation to compute the

volume fractions, densities, enthalpies and compositions of each phase from the resulting tem-

perature of the energy solver.

For the chill plate, made of ceramic Si3N4, the enthalpy is linearly linked to the temperature

such as 〈ρh〉C = ρChC = ρCcp,CT. Therefore, the tabulations for the chill subdomain are built from

this latter relation.

By using the monolithic approach for energy conservation, any displacement of the metal/gas

interface is energetically converted into a phase change between the gas subdomain on one side

and the metal phases on the other. To avoid this purely numerical issue, we use the same tabulated

phase enthalpy properties of the liquid metal for the gas subdomain. This assumption applies only

to the energy solver.

The physical properties of the materials involved in this problem are given by the table 5.1.

The gravity vector is set to zero g = 0. The thermal contact resistance Rth is, initially, fixed to zero

(perfect contact) and, in a further step, calibrated according to the experiment via a parametric

study. The threshold g l
c needed for the definition of the liquid/gas interface where surface tension

and Marangoni are applied is fixed to 30%.
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Table 5.1: Physical properties of materials

Physical parameter Symbol Value Unit

Metal thermal conductivity 〈k〉M 42 W.m−1.K−1

Liquid heat capacity (per unit volume) Cl
p,M 4.88×106 J.K−1.m−3

Liquid density (reference value) ρl
M,0 6939 kg.m−3

Solid density (reference value) ρs
M,0 7355 kg.m−3

Liquid dynamic viscosity µl
M 9.5×10−3 Pa.s

Surface tension of the liquid γ0 1.439 N.m−1

Marangoni coefficient ∂γ
∂T 5.44×10−4 N.m−1.K−1

Secondary dendrite arm spacing λ2 90×10−6 m

Solute diffusion in the liquid Dl
M 1.525×10−9 m2.s−1

Gas thermal conductivity 〈k〉A 0.016 W.m−1.K−1

Gas heat capacity (per volume unit) Cp,A 1300 J.K−1.m−3

Gas density ρA 1.6 kg.m−3

Gas dynamic viscosity µA 2.26×10−5 Pa.s

Chill thermal conductivity 〈k〉C 50 W.m−1.K−1

Chill heat capacity (per mass unit) cp,C 700 J.K−1.kg−1

Chill density ρA 3290 kg.m−3

Numerical considerations

The semi-implicit formulation of surface tension allows time-step values higher than the limit

imposed by the stability condition of an explicit surface tension. Therefore, we set the value of the

time-step to approximately 50 times the limit of the stability.

∆t ≈ 50×

√√√√h3
0

(
ρl

M,0 +ρA

)
4πγ0

(5.103)

For h0 = 60 µm, we fix the time step to ∆t = 5×10−4 s.

In a preliminary simulation, we encountered a problem of calculation divergence when a small

quantity of the liquid metal remains not yet solidified. We attribute this numerical problem to the

spurious currents due to capillary forces applied in the small remaining liquid metal surface. In-

deed, at the end of the solidification, the temperature gradient becomes weak and consequently

Marangoni too. The small volume of the liquid is essentially governed by the solidification shrink-

age. When the volume of the liquid phase (g l = 100%) becomes of the same order of magnitude

as a few elements, spurious currents become preponderant and destabilise the movement in the

small liquid volume. To avoid this problem, we cancel the capillary forces and allow only the solid-

ification shrinkage when the volume of the liquid phase reaches a percentage of the total volume
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of the metal set at 3%. The mass correction, on the other hand, is applied even after the disappear-

ance of the fully-liquid metal until the volume of the fully solid metal reaches a limit of 90% of the

total volume of the metal.

5.4.1.2 Numerical results and discussion

With the previously defined parameters, a simulation of 7 seconds of solidification time is suf-

ficient to obtain a fully solidified droplet, as shown in Figure 5.4. Indeed, in addition to the two-

dimensional effect of the simulation, the contact between the droplet and the cooler is assumed to

be perfect. The cooling rate is thus faster than in the experiment. Before proceeding to the config-

uration of the contact thermal resistance and other possible parameters that would influence the

cooling rate, it is interesting first to analyse the behaviour of the droplet predicted by the present

simulation. Figure 5.4 represents a sequence of images showing the field of the liquid metal veloc-

ity superimposed on the temperature field of the whole system. Note that the gas flow is also taken

into account in the simulation, but in this analysis, we only show the liquid flow in the droplet. To

display the progress of solidification, the iso-values g s = 1% and g s = 99% are plotted in red and

blue respectively.

The cooling and solidification of the droplet are characterised by two stages: the first stage

is marked by a strong temperature gradient. Marangoni currents strongly govern the flow of the

liquid phase at this stage. In fact, at the beginning the initial temperatures of the chill and the

droplet are very different, creating a strong temperature gradient which triggers and drives heat

diffusion in the opposite direction of the gradient (towards the chill, according to Fourier’s law). In

the metal, this strong heat extraction leads to rapid propagation of the solidification front in the

direction of the gradient (downwards). Since the Marangoni coefficient is positive, the Marangoni

force applied at the liquid/gas interface is downward. The Marangoni current, therefore, pulls cold

liquid at the interface downwards with a velocity of magnitude up to 0.09 m/s. By mass conserva-

tion, the hot liquid at the bottom is pushed upwards in the droplet axis. Thus, the solidification

front, which is initially convex, flattens out due to the heat supplied at the droplet axis. As the

solidification progresses, the gradient dissipates and becomes weaker and weaker. This is illus-

trated by the increasing distance between the red and blue lines that delimit the mushy zone. As a

consequence, the convection by Marangoni is attenuated, giving way to the solidification shrink-

age which therefore characterises the second stage. Shrinkage velocities are of a magnitude of the

order of 10−5 m.s−1, very low compared to the Marangoni velocities.

It can be seen from Figure 5.5b that the final shape of the droplet is slightly elongated in the di-

rection of the temperature gradient. Although this deformation is consistent with the experiment,

it is still less pronounced than in the experiment.

Concerning the time-evolution of the front position, as shown in Figure 5.5a, the propagation

of the front is much faster than the experiment. This is probably because the contact is not perfect

in the experiment. It can also be observed that a simulation with pure conduction provides a pre-

diction of the cooling rate close to the present simulation with the resolution of the fluid flow and

segregation. Therefore, the 3D pure conduction calculations, presented in the previous chapter,
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represent a reliable basis for estimating the thermal resistance value for a complete 3D calculation.

The evolution of the solute composition, shown in Figure 5.6, is very marked by Marangoni

convection. Indeed, the Marangoni force at the interface attracts the liquid enriched in solute

in the mushy zone towards the interface. Thus, one can notice areas of positive segregation at

the interface in the upper part of the droplet and in the vicinity of these areas of positive seg-

regation adjacent areas of negative segregation from which the solute has been subtracted. The

solute-enriched liquid is then injected into the completely liquid phase and redistributed through

Marangoni induced recirculation currents. Thus, the axis of the droplet fed with the solute is char-

acterised by positive segregation. This redistribution of the solute makes the composition non-

homogeneous at the front. This influences the progress of the front, which slows down in areas

with positive segregation.

However, the chemical composition on the snapshots shows more positive segregation regions

than negative segregation ones. Therefore, it is worth checking whether the mass of the solute is

well conserved or not. Figure 5.7 shows the temporal evolution of the total mass of metal and the

mass of carbon. Contrary to the total mass, which remains constant over time, it can be seen that

the mass of carbon actually increases over time up to 4%. Although this mass gain is small, it is still

not negligible. In the following paragraph, we will study the influence of the chemical composition

on the shape deformation of the droplet and the cooling rate.
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Figure 5.4: Snapshots of the solidifying droplet showing temperature field superimposed to the velocity in
the metal at different times.

134



CHAPTER 5. NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A
LEVITATED STEEL SAMPLE IN MICROGRAVITY

(a) (b)

Figure 5.5: (a) Temporal signals of the front position for 2D simulation with only heat conduction (dashed
black line), 2D simulation with both conduction and convection (black continuous line) and for the exper-
iment on board the ISS (red squares: measured; yellow square: extrapolated). (b) The comparison of the
initial shape and the final shape predicted by the 2D simulation showing a slightly-elongated droplet.

Figure 5.6: Snapshots of the solidifying droplet showing the composition field within the metal domain at
different times.
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Figure 5.7: Time-evolution of the mass of the droplet and the mass of Carbon

Influence of the chemical composition

In this paragraph, we study the influence of chemical segregation on the behaviour of the

droplet during solidification. To do so, we perform a simulation without solving the solute trans-

port equation. It means therefore assuming a uniform and constant composition equal to the

nominal composition wi = wC,0 = 0.9%w t . We then consider a case where the alloy is ternary, i.e.

Fe-0.9wt.%C-0.26wt.%Si, for which we solve two conservation equations of the chemical species:

Carbon and Silicon. Therefore, new thermodynamic tabulations are used specifically for this new

approximation of the steel under study.

Figure 5.8 shows the final Carbon and Silicon composition for the ternary alloy. As we trans-

port both compositions with the same convection velocity and diffusion coefficient, the segrega-

tion maps for carbon and silicon are similar and reflect the significant influence of the Marangoni

currents as already described above for the binary alloy. The difference between these three cases

can be seen in the solid fraction field shown in Figure 5.9. Indeed, the phase fractions depend on

temperature and chemical composition following a solidification path defined by thermodynamic

equilibrium. In cases where segregation has been taken into account, the chemical composition

is strongly influenced by convective transport. Regions of positive segregation are created along

regions of high liquid velocity, especially at the interface. The solidification front is consequently

slowed down in these regions and thus accelerated in regions of negative segregation. This ex-

plains, firstly, the irregularities of the front observed for segregated cases, unlike the case of a sim-

ulation without segregation where the front is smooth and follows the isotherms. Secondly, as the

concentration of solutes is high at the interface for cases with segregation, the liquid/gas surface

is greater. This results in higher Marangoni velocities compared to the case without segregation.

The final shape of the solidified droplet is slightly more elongated for cases with segregation,

as shown in Figure 5.10. There is a difference of 0.1 mm more than in the case without segregation.

As for the position of the solidification front, the temporal evolution is almost the same for all cases

with a very slight acceleration of the case without segregation at the end of the solidification. It is

important to note here that the position of the front is extracted from the simulations by averaging
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the positions of the iso-values g s = 1%. Given the irregularities of the front in the segregated cases,

the curves in Figure 5.11 may be different if other criteria for locating the front are chosen, such as

the position of the front at the interface with the gas.

Since we do not yet have the chemical segregation analysis of the solidified droplet on board

the ISS, we cannot evaluate the segregation predicted by the present simulations, especially since

we are facing a numerical problem of mass conservation. But given the comparisons and anal-

yses made here, the differences in final deformation and front propagation are not prominent

between the cases with segregation and the case where the chemical species transport equation

is not solved. In order not to base the rest of the analysis on a segregation model that should be

improved, we will continue the simulations in the following, with a binary alloy assuming that the

composition remains constant and uniform.

(a) (b)

Figure 5.8: Simulation of solidification of a ternary alloy showing the final composition in (a) Carbon and
(b) Silicon.

(a) (b) (c)

Figure 5.9: Comparison of the solid fraction field at the time t = 2s for (a) a binary alloy with a constant and
uniform Carbon composition, (b) a binary alloy with Carbon transport and (c) a ternary alloy with Carbon
and Silicon transport. The red and blue lines mark the position of the iso-values g s = 1% and g s = 99%
respectively

137



CHAPTER 5. NUMERICAL SIMULATION OF CHILL COOLING AND SOLIDIFICATION OF A
LEVITATED STEEL SAMPLE IN MICROGRAVITY

Figure 5.10: Comparison of the final shape of solidified droplet resulting from simulations with a binary
alloy Fe-0.9wt.%C, with and without segregation, and a ternary alloy Fe-0.9wt.%C-0.26wt.%Si.

Figure 5.11: Comparison of time-evolution of the position of solidification front for simulations with a bi-
nary alloy Fe-0.9wt.%C, with and without segregation, and a ternary alloy Fe-0.9wt.%C-0.26wt.%Si.
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Influence of Marangoni coefficient

As reported earlier in Chapter 2, measurement of the surface tension on board the ISS using the

oscillation method revealed an increasing linear variation of the surface tension with temperature.

The Marangoni coefficient is, therefore, positive. This is in contrast to several liquid metals whose

Marangoni coefficient is rather negative [9]. The presence of segregated surface-active elements

on the surface of the alloy may be the cause of this positive coefficient. We, therefore, wonder

what the behaviour of the droplet would be during solidification if the Marangoni coefficient were

negative. To answer this question, we carried out a simulation with a Marangoni coefficient equal

to the opposite of the measured one, i.e. ∂γ∂t = -5.44 . 10−4 N.m−1.K−1. The results of the simulation

in comparison with the case of a positive coefficient can be discussed based on Figures 5.12 and

5.13. Figure 5.12 shows snapshots of the velocity field of the liquid metal superimposed on the

temperature field, for the positive coefficient in the left column and the negative coefficient in

the right column. The figure also shows the iso-values of g s = 1% and g s = 99%. In the case

of decreasing temperature dependence (right), the colder regions correspond to higher surface

tension. As a result, the Marangoni force pulls hot liquid from the bottom of the drop towards the

solidification front, and by conservation of the mass, the liquid at the front is pushed down along

the axis of the drop. In this way, the propagation of the front at the interface is slowed down by

the heat brought in from the bottom. It follows that the convexity of the front is emphasised in the

case of a negative Marangoni, unlike a positive Marangoni which tends to flatten the front. It can

also be seen that the velocity values for a negative Marangoni are lower than those of a case with a

positive Marangoni due to the fact that the liquid pulled by the Marangoni force impinges on the

mushy zone contrary to the case of a positive Marangoni where the liquid is pushed away from

the mushy zone. The difference is also visible in terms of the final deformation shown in Figure

5.13. The drop with a negative Marangoni coefficient shows no elongation compared to the initial

shape.
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Figure 5.12: Comparison of the flow pattern in the liquid metal for (left) a positive Marangoni and (right) a
negative Marangoni. The velocity vectors are superimposed to temperature field at different times. The red
and blue lines mark the position of the iso-values g s = 1% and g s = 99% respectively
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Figure 5.13: Comparison of the final shape predicted by a positive Marangoni coefficient (red) and a nega-
tive coefficient (blue). The initial shape is plotted in dashed black line.

Influence of the thermal contact resistance

The cooling rate predicted by the previous simulations is significantly higher than that ob-

served in the experiment. In addition to the two-dimensional nature of the simulations, the con-

tact between the chill and the metal is assumed to be perfect. The objective is now to study the

influence of the contact thermal resistance on the cooling rate and the final shape of the droplet.

For this purpose, we have carried out a parametric study in 2D pure conduction similar to the one

carried out in 3D at the end of the previous chapter. The results of this study are shown in Figure

5.14. This study suggests two interesting values for the thermal resistance Rth = 10−4 W−1.m2.K

and Rth = 2 .10−4 W−1.m2.K. We have therefore carried out two simulations with these values of

Rth . The temporal evolution of the front position is shown in Figure 5.15a. We notice that the

front propagates in two stages: the first stage of acceleration governed by a strong temperature

gradient and thus by strong Marangoni convection, and the second stage of deceleration with a

weak temperature gradient where the shrinkage at solidification brings heat upwards. During the

first acceleration stage, the simulation with the value 10−4 W−1.m2.K follows well the experimental

evolution during the first 2.5 seconds. During the second phase, the simulation with the contact

thermal resistance value of 2 .10−4 W−1.m2.K follows the experimental evolution. This result leaves

the door open to more sophisticated work on the dependence of the contact thermal resistance on

other space-time variables, such as contact pressure, temperature, etc. However, in this work, we

only consider a constant and uniform value of the thermal resistance. In Figure 5.15b, the final

shape of the droplet is displayed for one case with perfect contact and both cases with thermal re-

sistance. It can be seen that the elongation of the droplet becomes greater when cooling is slower.

Figure 5.16 shows the velocity field of the liquid metal superimposed to the solid fraction field

of the droplet with a contact resistance equal to Rth = 10−4 W−1.m2.K. We notice that the velocity
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Figure 5.14: Parametric study in 2D pure conduction in which the thermal contact resistance is varying
from 0 to 3. 10−4 W−1.m2.K. The numerical results are plotted in dashed lines. The measured front position
is marked by red squares. The yellow square is the final front position extrapolated form measurements.

(a) (b)

Figure 5.15: Comparison of 2D simulations with Rth=0 W−1.m2.K, Rth = 10−4 W−1.m2.K and
Rth =2. 10−4 W−1.m2.K for (a) time evolution of the solidification front position and (b) the final droplet
shapes
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of the liquid reaches, in this case, a maximum value of 0.06 m.s−1 less than that reached in a case

of perfect contact (Figure 5.4). The thermal resistance, therefore, reduces the temperature gradi-

ent by introducing a temperature jump at the interface between the cooler and the metal. During

the first 2 seconds, the temperature gradient is high. The mushy zone is narrow. Marangoni cur-

rents dominate the behaviour of the liquid. The deformation of the droplet is very slight during

this time. As the front moves forward, the gradient decreases, and the mushy zone grows. The

deformation of the droplet is more remarkable than before. The deformation can be explained by

the double action of Marangoni and solidification shrinkage. The Marangoni force pulls the liquid

from the mushy zone near the interface with the gas and injects it downwards into the completely

liquid metal. At the same time, the solidification shrinkage attracts the liquid in the mushy zone

towards the fully solidified phase.

Figure 5.16: Snapshots of the solidifying droplet showing temperature field superimposed to the velocity of
the metal at different times. The red and blue lines mark the position of g s = 1% and g s = 99% respectively

5.4.2 3D simulation

For 3D simulations, we define the calculation domain as a cylinder obtained by revolution sym-

metry around the Z-axis of the 2D domain. In a similar way to 2D simulations, we consider a fixed

mesh with the same characteristic sizes of the 2D mesh, as shown in figure 5.17. The mesh thus

generated contains a number of elements equal to 17M, which is requiring very long calculation

time. We ran a 3D simulation assuming perfect contact between the drop and the chill. The results

of the simulation in the XZ plane are shown in figure 5.18 for different times. Marangoni currents
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are predominant in the first phase of large temperature gradient which decreases over time. The

flow velocity induced by Marangoni reaches a maximal value of 5.2 ×10−2m.s−1. The final shape

is shown in figure 5.19b in comparison with the experimental shape. A difference of 0.45 mm less

separates the shape predicted by the simulation from that found by the experiment. Nevertheless,

the elongation predicted by the 3D simulation is greater than that simulated in 2D. The temporal

variation of the front position is given in Figure 5.19a. Note that here the front is defined by the

iso-value g s = 1% at the interface of the droplet with the gas. Indeed, the front is extracted from

the experiment from the processing of the images showing the free surface of the droplet. The

growth of the front is more rapid than that observed in the experiment because the contact be-

tween the sample and the chill is supposed to be perfect (Rth =0 W−1.m2.K). Another simulation

with appropriate thermal contact resistance may bring us closer to reproducing the experimental

behaviour, as shown in 2D.

Figure 5.17: The static 3D mesh in a cross section of the computational domain showing the characteristics
of the mesh size in each subdomain.

The 3D simulation presented here ran for 50 days on 128 processors. This is due to the very

large number of elements contained in the mesh because of the area covering the metal domain,

which requires a very small mesh size. Indeed, the number of elements in this area represents

more than 85% of the total number of elements. An optimisation of this mesh size is necessary for

the following calculations.

In this type of experiment, we are dealing with very high temperature gradients of the order of

1300K, very large density ratio between the metal and the gas of the order of 7000 and a very high

surface tension coefficient (compared to that of fluids such as water). Faced with these challenges,

we are constrained to use a very high-resolution mesh with the present numerical framework both

at the interfaces where the jump in properties is very large and within the metallic domain where

Marangoni convection is present with the propagation of the solidification front. We have pro-

posed a semi-implicit formulation that allows to gain up to 50 times in time increments. But the
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Figure 5.18: Snapshots of the solidifying 3D droplet in perfect contact with the chill. The images show the
velocity of the liquid metal and the temperature of the whole domain. The red and the blue lines mark the
position of g s = 1% and g s = 99% respectively.

(a) (b)

Figure 5.19: Comparison of a 3D simulation with perfect contact with the ISS experiment for (a) the time-
evolution of the front position (b) the final shape of the solidified droplet.
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number of elements required for a mesh that allows both stable calculation and good physics cap-

turing is still very huge and becomes colossal in 3D.

We estimate that an adequate number of elements for a reasonable computation time would

be of the order of 2M to 3M elements. To reduce the current 17M element mesh, very sophisticated

optimisation work is required. The point to start with is the fact that static mesh makes us refine

a region that satisfies a good capture of the physics at all stages of the simulation. This region

has been defined by an 8mm major axis ellipsoid to cover the final elongation of the drop. This

region has been defined by an 8mm major axis ellipsoid to cover the final elongation of the drop.

This region covers more than what is necessary for certain stages of the simulation, especially

during the first 2 seconds of the simulation where the shape of the drop is almost spherical. An

adaptive meshing method is, therefore, necessary to update the mesh according to the evolution

of the droplet shape. We used an adaptation method based on the distance function (level-set)

[99]. This method allows the construction of anisotropic mesh elements within a given thickness

band around the domain boundaries and isotropic elements outside. This method allowed us to

refine the mesh around the chill in the previous simulation (see figure 5.17). Keeping the same

mesh around the chill, we tried to build anisotropic mesh around the metal/gas interface with an

element size of 2h0 in the tangential direction and isotropic mesh inside the metal of size 2h0. The

resulting mesh is shown in figure 5.20 , and contains 8M elements . Unfortunately, the calculation

did not converge. This is because the temperature gradient is parallel to the metal/gas interface,

so the mesh should not be coarse in this direction. Marangoni currents are also important inside

the droplet and require refinement within the metal domain. We believe that a mesh adaptation

based on physical criteria is more suitable in this case. Such a method already exists in CimLib

[100]. Its use is not simple and requires configuration work in order to find the best parameters to

achieve an optimal mesh capturing at the same time interfaces, fluid dynamics and heat transfer,

and allowing a reasonable calculation time.

Figure 5.20: A clip of the 3D mesh showing mesh adaptation around the interfaces of the steel droplet and
the chill plate. Calculations failed with this mesh.

As mentioned earlier, the 3D simulation predicted that the maximum magnitude of the Marangoni

flow is about 5.2 ×10−2m.s−1. During the EML experiment, the positioner is always active. Hence,
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it is worth examining the magnitude of the positioner-induced flow and comparing it with the

predicted Marangoni flow in order to assess the relevance of taking the electromagnetic field into

account in further studies. Xiao et. al. [101] proposed a surrogate model based on parametric nu-

merical experiments of MHD simulations for the ISS-EML facility. Their model enables the estima-

tion of the maximum convective flow velocity due to the positioner as a function of the positioner

control voltage UP
ctr = 7.549V and the properties of the sample: ρl

M, the density, µl
M, the viscosity

and σl
M, the electrical conductivity. As we do not have reliable data about the electrical conductiv-

ity of Fe-0.9wt.%C-0.26wt.%Si alloy, we estimate σl
M using the Wiedemann–Franz–Lorentz law:

k l
M

σl
MT

= L0 (5.104)

where L0 = 2.45×10−8W.Ω.K−1 is Lorentz number. With T = TM,0, k l
M = 〈k〉M, the electrical conduc-

tivity of Fe-0.9wt.%C-0.26wt.%Si is estimated to σl
M = 9.85×105S.m−1. Following the work of Xiao

et. al. [101], the maximum velocity of the positioner-induced flow for the sample d1 under the op-

erating conditions during the ISS chill cooling experiment is estimated to umax = 3.9 ×10−2m.s−1

which is of the same order of magnitude as the Marangoni-induced flow velocity. Therefore, it

would be useful to account for the electromagnetic field as a further improvement of the present

modelling

5.5 Conclusion

In this chapter, we have presented a general numerical framework for modelling macrosegregation

in the presence of thermocapillary convection in a multi-domain context. The proposed numeri-

cal framework is based on a so-called "weak coupling" between energy conservation, conservation

of chemical species and conservation of momentum and total mass. Energy transfer by diffusion

and convection is provided by a thermal solver coupled with thermodynamic tabulations con-

taining the solidification paths for multi-component alloys. The solver is enriched by the thermal

contact resistance model developed in chapter 4. The transport of chemical species is achieved by

a monolithic solver allowing the resolution of the solute concentration in a multi-domain context.

The Navier-Stokes solver allows the resolution of the flow in the presence of capillary forces (sur-

face tension and Marangoni), mushy zone and solidification shrinkage. All this is formulated in an

Eulerian monolithic approach using the level set method. The mass correction method proposed

in Chapter 3 has been extended for the case of solidification with shrinking volume.

This numerical framework was applied for the simulation of the chill cooling experiment of

a steel droplet microgravity. The simulations showed the dominance of Marangoni currents over

the liquid flow. They also allowed finding the deformation of the solidifying droplet and its elon-

gation in the direction parallel to the thermal gradient. The same behaviour was observed in the

experiment. Through 2D parametric studies, we have shown that by adjusting the value of the

thermal resistance we can get closer to the experimental cooling rate. Finally, we showed a 3D

simulation assuming perfect contact. The simulation showed the same trend concerning elonga-
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tion and Marangoni convection. However, the cooling rate is more important than the experiment

because the thermal contact is not perfect in the experiment. The 3D simulation, whose results

were presented was very time-consuming due to the huge number of elements contained in the

mesh. For this reason, unfortunately, we could not perform another calculation with a non-zero

thermal resistance in order to compare with the experimental cooling rate.
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Conclusions and Perspectives

This thesis is part of the two ESA projects entitled CCEMLCC and NEQUISOL which use electro-

magnetic levitation to study the solidification of alloys in microgravity. The common objective

of these two projects being to reach a better understanding of containerless solidification, our

contribution in these projects focuses on numerical modelling in order to provide a tool for the

simulation of the experiments. The work achieved in this thesis deals with aspects related to fluid

mechanics and others related to heat transfer. The developments carried out for fluid mechanics

bring a contribution to both projects CCEMLCC and NEQUISOL, while the work on the thermal

part is oriented towards applications of CCEMLCC project. The coupling is finally applied to the

first and unprecedented chill cooling experiment performed on board the ISS. In order to have ref-

erence data for the comparison and validation of the simulations, we proposed at the beginning of

this manuscript a post-processing of the ISS experiment. We extracted data by image processing

from the recordings of the experiment by fast camera.

Fluid Mechanics For the part dealing with fluid mechanics, the main added value of this work

is the taking into account of capillary forces that were absent in the previous contributions. This

part of the thesis includes two types of contributions: numerical and theoretical.

Concerning the numerical part, the capillary forces are modelled by the CSF (Continuum Sur-

face Force) method which introduces theses forces into Navier-Stokes equations as volume forces.

The conversion from surface forces to volume forces is performed by the Dirac function which

is calculated from the level-set function. However, we encountered several numerical difficulties

related to surface tension and the level-set method.

• Firstly, we noticed that the conservation of mass is not ensured by classical numerical meth-

ods and even worse when the value of the surface tension is very high. We therefore pro-

posed a mass correction method first for a constant volume and later for a shrinking volume

due to solidification.

• We then tackled the classical problem of spurious currents artificially introduced by the CSF

method. We proposed a method of scaling the Dirac function to reduce spurious currents

around the interface.
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• Numerical diffusion was also one of the numerical problems encountered. On this issue, we

proposed a high order temporal discretization in order to reduce discretization errors and

consequently numerical diffusion.

• The explicit discretization of surface tension force constrains the stability of the computa-

tion by a limit time step beyond which the computation becomes unstable. This limitation

can be circumvented by a semi-implicit discretization using an implicit term depending on

the fluid velocity. This formulation thus allows to save calculation time, on the other hand

its use is associated with an added numerical diffusion.

The present numerical framework dealing with multi-fluid flows with surface tension shows a

great capacity to handle high density ratios and very large surface tension values. However, it has

some limitations:

• The spurious currents are reduced compared to classical methods, but are not completely

eliminated. One way to improve this is to find an alternative method for calculating the in-

terface curvature. Indeed, the curvature as defined in chapter 3 is written as the divergence

of the gradient of the level set. The level set field being a P1 (linear) field, its gradient is there-

fore a P0 field (constant per element) and its divergence is therefore zero. In order not to fall

in this case, we build a P1 gradient in each node by interpolation of the P0 gradient from the

neighbouring elements. This P1 gradient is then used to calculate a P0 divergence which is

then also interpolated to obtain a P1 divergence which finally gives the P1 curvature. This

succession of interpolation introduces a loss of information and oscillations in the profile of

the curvature.

• In order to use the diffuse interface approach, the thickness of the transition zone must be

small compared to a characteristic length of the problem under study. At the same time, a

number of elements in the transition zone must be provided, especially to properly describe

the Dirac function. This requires the use of a high-resolution mesh around the interface.

This can be very time-consuming in 3D. A conservative mesh adaptation method is neces-

sary to update the mesh according to the position of the interface without losing information

when transporting fields from one mesh to another.

This thesis also includes a theoretical part proposing an analytical solution of a benchmark

inspired from the zero gravity oscillating drop method. This benchmark allows to quantitatively

assess the accuracy of numerical methods according to three criteria: mass conservation, oscil-

lation frequency correlated to surface tension and damping rate related to viscosity. For each of

these criteria the theory developed provides an analytical solution in both 2D and 3D.

Heat transfer Concerning the part dealing with thermal, we proposed an Eulerian numerical

framework to model heat conduction in a multi-domain context. The novelty lies in the develop-

ment of a model allowing to take into account the thermal contact resistance in the stationary and

unsteady regime. The results of the model were confronted with analytical test cases and showed
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the performance of the model in capturing temperature jumps between two bodies in contact.

We then applied the model to simulate the solidification of a steel droplet in contact with a chill.

Only conduction was considered in this first application to the CCEMLCC project. The simulations

showed that the cooling rate of the metal can be controlled by the value of the thermal resistance.

In the simulations of the CCEMLCC experiment, we used the energy solver developed in Saad’s

thesis [6], which allows coupling with thermodynamic tables containing the solidification paths

of a multicomponent alloy. One of the improvements that can be made to this solver is the numer-

ical treatment of thermal shocks when it comes to contact between two bodies at widely separated

temperatures. We therefore recommend enriching the solver with a stabilisation method to man-

age thermal shocks. Such a method has been proposed by [51]. The initial temperature of the chill

in this work was fixed at the ambient temperature set to 25°C . Considering the heat radiation to

which the chill is exposed during heating and melting of the metallic sample, it can be suspected

that the chill, or at least its contact surface, does not remain at ambient temperature. It would be

useful to examine the relevance of thermal radiation and its influence on the cooling kinetics in

future work. Modelling of thermal radiation with Level-set method in a stabilized FE framework

has been proposed by Schmid et. al. [102]. The ability of their model to deal with multi-domain

problems has been demonstrated. It would be a promising model for enriching the present work

by accounting for thermal radiation.

Segregation We pointed out in chapters 3 and 5 that the total mass of the object described by

the level-set function is not guaranteed to be conserved during transport of the interface and we

proposed a mass correction method based on a uniform redistribution of the lost/gained mass.

For the mass of the chemical species we can first imagine a similar method of global and uniform

redistribution of the mass difference of the chemical species. However, it would be more judicious

to identify the regions where the resolution of the transport equation leads to mass loss/gain and

correct the composition locally so that the mass is globally conserved. Since the resolution of

segregation is not the focus of this thesis, we have given little time to this numerical problem and

therefore leave the door open for future improvements following this thesis.

Electromagnetic coupling Although the electromagnetic field needed for positioning the sam-

ple is much lower in microgravity than in 1g, the flow induced by the positioner during EML testing

exists in reduced gravity. As highlighted in chapter 5, the maximum velocity of the positioner-

induced flow is estimated to umax = 3.9 ×10−2m.s−1 which is of the same order of magnitude as

the maximum velocity of Marangoni-induced flow 5.2 ×10−2m.s−1, predicted by the 3D simula-

tion (figure 5.18). It would thus be of great interest to account for the electromagnetic field as a

further improvement of the present numerical framework. In this direction, an Electromagnetic-

CFD coupling has been already implemented in CEMEF in TherCast® by the PhD work of Luca

Marioni [103]. Combining the current modelling of surface tension with Marioni’s work will en-

able simulation of the oscillating droplet in electromagnetic levitation and provide a more realistic

comparison with the ISS experiment for measuring surface tension and viscosity. Such compari-

son has been performed recently by Budenkova et. al. [104].
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This work is a step towards a comprehensive modelling of the physics studied in these projects.

We are aware that there is still room for further improvement, but we are confident that the pro-

posed numerical framework is compatible with future contributions which may have as an objec-

tive the reproduction of the experiment with its smallest details. Before getting there we must first

address the improvement of the computational time which has been the major difficulty encoun-

tered in this work. Such an improvement would open the way to quantitative comparison with

expected experimental characterisations of the droplet when it will be back from the ISS.
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MOTS CLÉS

Simulation numérique; Éléments Finis; Level Set; Tension de Surface; Marangoni; Résistance thermique de
contact; Goutte oscillante; Solidification; Microgravité

RÉSUMÉ

L’étude de la solidification en microgravité permet aux chercheurs de dissocier les phénomènes indépendants de la grav-
ité de ceux qui en dépendent. L’objectif est de parvenir à une meilleure compréhension de la solidification permettant à
l’industrie métallurgique d’atteindre les propriétés recherchées pour les produits métalliques et d’éviter les défauts qui
apparaissent lors de leur élaboration. C’est dans ce contexte que les projets NEQUISOL et CCEMLCC de l’Agence
spatiale européenne sont définis. Dans le cadre de ces deux projets, nous proposons une modélisation numérique pour
simuler les expériences de solidification d’échantillons métalliques en lévitation électromagnétique dans la Station Spa-
tiale Internationale. Notre outil numérique est basé sur la résolution par éléments finis des équations de conservation
de l’énergie, de la masse totale, de la quantité de mouvement et de la masse des espèces chimiques d’un système multi-
domaine impliquant un alliage métallique multicomposant. Une formulation monolithique permet la résolution d’un seul
système d’équations sur un seul maillage eulérien. Une formulation éléments finis VMS stabilisée est proposée pour
résoudre les équations de Navier-Stokes. La modélisation est enrichie par la prise en compte du retrait de solidification,
de la tension de surface et de l’effet Marangoni agissant à l’interface liquide-gaz. Un modèle de résistance thermique
de contact est développé et validé, permettant de prendre en compte les imperfections de contact thermique entre les
différents matériaux. La méthode Level Set est utilisée pour modéliser les interfaces entre les sous-domaines. L’interface
liquide-solide dans le sous-domaine métallique est implicitement représentée par la méthode de la moyenne volumique.
Dans un premier temps, nous proposons des simulations d’expériences de mesure de la tension de surface et de la vis-
cosité des métaux liquides en utilisant la technique de la goutte oscillante en microgravité. Ce benchmark offre une
comparaison quantitative entre les résultats numériques et une solution analytique que nous avons dérivée en 2D et 3D.
Une fois que nous avons validé notre modélisation numérique de la dynamique de l’interface liquide-gaz, nous effec-
tuons des simulations de solidification d’une gouttelette d’acier et la comparons aux données de la première et unique
expérience réalisée dans la Station Spatiale Internationale dans le cadre du projet CCEMLCC.

ABSTRACT

The study of solidification in microgravity allows researchers to dissociate gravity-independent phenomena from gravity-
dependent ones. The objective is to reach a better understanding of solidification allowing the metallurgical industry to
meet the expected properties of their metal products and to avoid the defects that appear during their elaboration. In
this context, the NEQUISOL and CCEMLCC projects of the European Space Agency are taking place. As part of
these two projects, we propose a numerical framework to simulate the solidification experiments of metallic samples in
electromagnetic levitation in the International Space Station. Our numerical tool is based on the finite element resolution
of the conservation equations of energy, total mass, momentum and mass of the chemical species of a multi-domain
system involving a multicomponent metal alloy. Amonolithic formulation allows the resolution of one set of equations on
a single Eulerian mesh. A stabilised VMS Finite Elements formulation is proposed to solve the Navier-Stokes equations.
The modelling is enriched by taking into account solidification shrinkage, surface tension and theMarangoni effect acting
at the liquid-gas interface. A contact thermal resistance model is developed and validated enabling the consideration of
thermal contact imperfections between the different materials. The Level Set method is used to model the interfaces
between the sub-domains. The liquid-solid interface within the metal sub-domain is implicitly represented by the volume
average methodology. In a first step, we propose simulations of measurement experiments of surface tension and viscosity
of liquid metals using the oscillating drop technique in microgravity. This benchmark offers a quantitative comparison
between the numerical results and an analytical solution that we derived in both 2D and 3D. Once we have validated our
numerical modelling of the dynamics of the liquid-gas interface, we perform simulations of the solidification of a steel
droplet and compare it with data from the first and unique experiment performed on board the International Space Station
in the framework of the CCEMLCC project.

KEYWORDS

Numerical simulation; Finite Element; Level Set; Surface tension; Marangoni; Thermal contact resistance;
Oscillating drop; Solidification; Microgravity
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