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Abstract

Overfitting is a general and important issue in machine learning that has been addressed in
several ways through the progress of the field. We first illustrate the importance of such an
issue in a collaborative challenge that provided genotype and clinical data to assess response
of Rheumatoid Arthritis patients to anti-TNF treatments. We then re-formalise Input Noise
Injection (INI) as a set of increasingly popular regularisation methods. We provide a brief
taxonomy of its use in supervised learning, its intuitive and theoretical benefits in preventing
overfitting and how it can be incorporated in the learning problem. Focusing in this context on
the dropout trick, we review the related line of work around its understanding and adaptations
then provide a novel approximation that can be leveraged for general non-linear models, to
get more insight on how dropout works. We then present the DropLasso method, as both
a generalisation of dropout by incorporating a sparsity penalty, and apply it in the case of
single cell RNA-seq data where we show that it can improve accuracy of the known lasso
method while performing biologically meaningful feature selection. Finally we build another
generalisation of noise injection where the noise variable follows a structure that can be either
fixed, adapted or learnt during training. We present Adaptive Structured Noise Injection
(ASNI) as a regularisation method for shallow and deep networks, where the noise structure
applied on the input of a hidden layer follows the covariance of its activations. We provide a
fast algorithm for this particular adaptive scheme, study the regularisation properties of our
particular variant on linear and multilayer networks using a quadratic approximation, and
show improved results in generalisation performance and in representations disentanglement
in real dataset experiments.
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Résumé

Le sur-apprentissage est un problème général qui a↵ecte les algorithmes d’apprentissage statis-
tique de di↵érentes manières et qui a été approché de di↵érentes façons dans la littérature.
Nous illustrons dans un premier temps un cas réel de ce problème dans le cadre d’un travail
collaboratif visant à prédire la réponse de patients atteints d’arthrose rhumatöıde à des traite-
ment anti-inflammatoires. Nous nous intéressons ensuite à la méthode d’injection de bruit
dans les données dans sa généralité en tant que méthode de régularisation. Nous donnons
une vue d’ensemble de cette méthode, ses applications, intuitions, algorithmes et quelques
éléments théoriques dans le contexte de l’apprentissage supervisé. Nous nous concentrons
ensuite sur la méthode du dropout introduite dans le contexte d’apprentissage profond et
construisons une nouvelle approximation permettant une nouvelle interprétation de cette
méthode dans un cadre général. Nous complémentons cette étude par des expériences sur
des simulations et des données réelles. Par la suite, nous présentons une généralisation de la
méthode d’injection de bruit dans les données inspirée du bruit inhérent à certains types de
données permettant en outre une sélection de variables. Nous présentons un nouvel algorithme
stochastique pour cette méthode, étudions ses propriétés de régularisation et l’appliquons au
context de séquençage ARN de cellules uniques. Enfin, nous présentons une autre générali-
sation de la méthode d’Injection de bruit où le bruit introduit suit une structure déduite des
paramètres du modèle, en tant que la covariance des activations des unités auxquelles elle est
appliquée. Nous étudions les propriétés théoriques de cette nouvelle méthode qu’on nomme
ASNI pour des modèles linéaires et des réseaux de neurones multi-couches. Nous démontrons
enfin que ASNI permet d’améliorer la performance de généralisation des modèles prédictifs
tout en améliorant les représentations résultantes.
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sien. Sa contribution à ce travail est dans le reflet de chaque paragraphe de ce manuscript
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, Marine, Victor, Romain et Lotfi avec qui j’ai partagé bien plus que des repas à la cantine,
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pu être réalisées.

le CBIO, c’est aussi une partie de l’unité U900, a�lée à l’institut Curie en partenariat
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Chapter 1

Introduction

“ People worry that computers
will get too smart and take over
the world, but the real problem is
that they’re too stupid and
they’ve already taken over the
world.”

Pedro Domingos
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CHAPTER 1. INTRODUCTION

1.1 Machine learning: past and present

According to di↵erent dictionaries and to research in the field, machine learning is a branch of
artificial intelligence (AI) that employs a variety of statistical, probabilistic and optimisation
techniques that allows computers to learn from past examples and to detect hard-to-discern
patterns from large, noisy or complex data sets.

But what is really AI? One can trace already the idea of describing ”intelligence” and
the possibility to separate, study and even craft it, to the era of classical philosophers such
as Descartes, Leibniz and Blaise Pascal, who attempted to describe the process of human
thinking as the mechanical manipulation of symbols (Buchanan, 2005). This work found
practical sense in the invention of the programmable digital computer in the 1940’s 1, a
machine based on the abstract essence of mathematical reasoning. This device and the
ideas behind it inspired a handful of scientists to begin seriously discussing the possibility of
building an electronic brain. The earliest research into learning machines was inspired by a
confluence of ideas that became prevalent in the late 1940’s, and early 1950’s. At that time,
recent research in neurology had shown that the brain was an electrical network of neurons
that fired in all-or-nothing pulses. Claude Shannon’s information theory described digital
signals (i.e., all-or-nothing signals). Alan Turing’s theory of computation showed that any
form of computation could be described digitally. The close relationship between these ideas
suggested that it might be possible to recreate an electronic brain. In 1943, Walter Pitts and
Warren McCulloch analysed networks of idealised artificial neurons and showed how they
might perform simple logical functions (McCulloch and Pitts, 1943). They were the first to
describe what later researchers would call a neural network.

The term machine learning was first coined in 1959 by Samuel (1959) while constructing
programs learning to play checkers, who loosely defined it as a ”Field of study that gives com-
puters the ability to learn without being explicitly programmed”. However the term remained
unused as this aspect was implicitly considered a mere e↵ect of building ”machines that think”
to quote Alan Turing’s famous article (Turing, 1950). Eventually, it became obvious that the
dream of a general machine learning algorithm has been largely underestimated, even though
the field first witnessed many successes such as Newell and Simon’s General Problem Solver
(Newell et al., 1959) and Joseph Weizenbaum’s ELIZA (Weizenbaum, 1966) that showed
real progress towards the goals of machine based problem solving and the interpretation of
spoken language respectively. During mid to end of the 1970s, AI was subject to severe
criticism that was mainly due to the contrast between the strong initial optimism driving
the field, practical issues such as limited computing resources and theoretical issues such as
intractability of several essential problems (Karp, 1972). This has caused a certain public
disillusionment that led to a strong decrease in funding but has also urged the field to focus
on more applied and precise goals on one hand and to build, on the other hand, mathematical
formalisms that would allow collaboration with more established and successful fields. The
successful development of more focused programs applied in research, such as the DENDRAL
program which e↵ectively helped organic chemists in identifying unknown organic molecules,
by analysing their mass spectra and using prior knowledge of chemistry (Lederberg, 1987),
and in industry, such as the R1 ”expert system” which helped configure orders for new com-
puter systems at Digital Equipment Corporation and resulting in tremendous savings and
benefits by 1986 (McDermott, 1982). This led to the revival of funds for the field such as the
”Fifth Generation”project in Japan followed by public and private investments in Britain and
the United States (Russell and Norvig, 2016). Precise mathematical descriptions were also
developed for corresponding ”computational intelligence” methods like neural networks and
evolutionary algorithms. Simultaneously, new ways of learning for neural networks (Hopfield,
1982; Rumelhart et al., 1986), for which research has continued minimally and particularly in
physics, led to the revival and reunification of research around neural networks, marked for

1 https://en.wikipedia.org/wiki/Colossus_computer
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CHAPTER 1. INTRODUCTION

instance by the work of McClelland et al. (1986). Although the field still witnessed financial
and philosophical di�culties in the end of 1980’s and beginning of 1990’s due again to a
contrast of expectations and achievements, and a strong criticism of the symbol processing
model of the mind (Brooks, 1990), this eventually led to the development and use of more so-
phisticated mathematical tools and more rigorous frameworks influenced for instance by the
landmark work of Pearl (1988). Among the many new tools in use were Bayesian networks,
hidden Markov models, information theory, stochastic modelling and classical optimisation
(Russell and Norvig, 2016). AI was also present in di↵erent subfields focused on particular
problems or approaches, sometimes even under di↵erent terms that disguised the too ambi-
tious and ambiguous general term. This is where the term ”machine learning” gained more
popularity.

Retrospectively: focusing on isolated problems, the formalism of di↵erent mathematical
and algorithmic frameworks, but also the increase of computing power and the availability of
data, have all participated in forging the success of the field today, which resulted in appli-
cations beyond academic research, and led to the mainstreaming of terms such as machine
learning and deep learning. Deep learning is part of machine learning methods based on
the layers used in artificial neural networks (”deep” relates to the use of a relatively high
number of hidden layers). Its specificity is that it is related to the first models implemented
and defended by the fathers of AI and thus appears as one of the strongest signals of the
field’s come-back. Thanks to computational advances and various tricks (such as the use
of graphical processing units), deep learning has recently achieved remarkable success on a
wide range of tasks such as image classification (Krizhevsky et al., 2012), scene recognition
(Zhou et al., 2014), image captioning (Chen and Lawrence Zitnick, 2015; Vinyals et al., 2015),
speech recognition (Hinton et al., 2012a) and visual question answering (Antol et al., 2015)
among other applications. Deep Learning models are immensely successful in unsupervised,
hybrid and reinforcement learning as well (Mnih et al., 2015). However, only little is known
about the theory behind this successful paradigm, although many studies already emerged
(Schmidhuber, 2015; Lemberger, 2017). As an example of this success, figure 1.1 shows how
the approximate number of published papers related to deep learning is growing exponen-
tially over the previous years (until 2015), followed by the likewise evolution of one of the
applications which our lab focuses on, which is bioinformatics, and that will be described in
the next section.

Figure 1.1: Approximate number of published deep learning articles by year. The number of articles
is based on the search results on http://www.scopus.com with the two queries: ”Deep learning”, and
”Deep learning”+”Bioinformatics”. Figure from (Min et al., 2017).

1.2 Machine learning and bioinformatics

In all areas of biological and medical research, the role of the computer has been dramatically
enhanced in the last to decades. One particular area that can best reflect this influence is
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genome sequencing, which aims at mapping the base pairs of an organism’s DNA or genome
(≥ 3 billion pairs for the human genome). These base pairs, also called nucleotides, are of four
types, A, T, C and G, and are the building blocks of DNA. DNA sequencing methods used in
the 1970’s and 1980’s were mainly manual, for example the original Maxam-Gilbert sequenc-
ing (Maxam and Gilbert, 1977) and the original Sanger sequencing (Sanger and Coulson,
1975). The shift to more rapid, automated sequencing methods in the 1990’s finally allowed
for sequencing of whole genomes and as a result enhanced the generation of more reliable
and precise data (Smith et al., 1986; Hunkapiller et al., 1991). Sequencing of nearly an
entire human genome was first accomplished in 2000 partly through the use of simple or
hierarchical shotgun sequencing technologies (Consortium et al., 2001; Venter et al., 2001).
Since then, and thanks to advances both in computing power and biological research that
accelerated DNA sequencing, costs witnessed a fast decrease, which even surpassed largely
the Moore’s law by 2008 with the advent of what is termed as second generation sequencing
techniques, also known as the next-generation sequencing (NGS), which relies on massively
parallel sequencing of short DNA fragments. As shown by figure 1.2, this resulted in a dra-
matic increase in the number of genomes sequenced, further increasing the pressure towards
modelling, synthesis and interpretability of obtained data and its analysis.

Figure 1.2: The evolution of the cost of computing (blue line), the cost of sequencing (red line) and
the number of sequenced human genomes (black line), from 1999 to 2011, on a log scale (adapted from
The Economist).

The exponential growth of the amount of biological data available raises two important
technical issues: on one hand, e�cient information storage and management, and on the
other hand, the extraction of useful information from these data. These issues led to the de-
velopment to an important interdisciplinary field through the design of methods and software
tools for biological data: Bioinformatics (Hogeweg, 2011). The second issue of understanding
and transforming the data into insights is particularly one of the main challenges of machine
learning applied in bioinformatics and requires the development of adapted tools capable
of transforming all the available biological datasets into meaningful and statistically robust
knowledge about the mechanism, its biomarkers or its outcome. These tools and methods
should allow to go beyond a mere description of the data and provide knowledge in the form
of testable models. By this simplifying abstraction that constitutes a model, we will be able
to obtain predictions of the system.

In our Centre for Computational Biology CBIO at MINES ParisTech, we exactly focus on
developing and applying statistical methods and machine learning models on a wide variety
of biological data, such as biomedical images, genomic datasets (related to the structure,
function, evolution, mapping, and expression of genomes) or proteomic datasets (related to
the structure, function, and interactions of proteins), with a focus on medical applications,
in consideration with the Curie Institute partnership.
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Two main paradigms exist in the field of machine learning: supervised and unsupervised
learning. Both have potential applications in biological and medicine research.

• In supervised learning, objects in a given collection are classified using a set of attributes,
or features. The result of the classification process is a set of rules that prescribe as-
signments of objects to classes based solely on values of features.
In a biological context, examples of object-to-class mappings can be tissue gene expres-
sion profiles to disease group, and protein sequences to their secondary structures. The
features in these examples can be respectively the expression levels of individual genes
measured in the tissue samples and the presence/absence of a given amino acid symbol
at a given position in the protein sequence. The goal in supervised learning is to design
a system able to accurately predict the class membership of new objects based on the
available features. Besides predicting a categorical characteristic such as class label
(classification), supervised techniques can be applied as well to predict a continuous
characteristic of the objects (regression).

• In contrast to the supervised framework, in unsupervised learning, no predefined class
labels are available for the objects under study. In this case, the goal is to explore the
data and discover similarities between objects. Similarities are used to define groups
of objects, referred to as clusters. In other words, unsupervised learning is intended
to unveil natural groupings in the data. One example and now quite in the trend of
bioinformatics is the discovery of a disease or a tumour hidden subtypes thanks to
molecular biomarkers (van Rooden et al., 2010; Grün et al., 2015; Segerstolpe et al.,
2016; Li et al., 2017). Unsupervised learning can also be used in density estimation,
data compression or the extraction of new features (or representations) from the data
to perform other tasks (Samacoits et al., 2018).

Depending on the labels availability and the nature of data, other paradigms such as semi-
supervised learning, online and reinforcement learning exist.

In this manuscript we will focus on the supervised learning setting that we formalise in the
next section. As for the used biological data in this manuscript, and as part of the CBIO
team, we leverage di↵erent types of labeled databases to demonstrate the performance of
the studied or designed models throughout the manuscript. Biological datasets are therefore
here not thouroughly studied as not central to the thesis subject, although the models study
might reveal interesting remarks about the features selected or the biological signal to noise
in the data. The biological datasets studied include:

• A ”big” dataset that describes genotype and clinical information concerning thousands
of Rheumatoid Arthritis patients treated with di↵erent therapies. This data is used in
the RA challenge and will be described more precisely in the RA challenge chapter.

• Two popular gene expression microarray datasets used in breast cancer prognosis and
metastasis analysis. These datasets will be used to test the performance of Input Noise
Injection methods and will be more precisely described in the second chapter.

• A total of 4 single-cell RNA sequencing datasets describing gene expressions at the cell
level within di↵erent conditions of mice tissues. These datasets will be used to assess the
performance of our designed DropLasso method and will be more precisely described
and studied in chapter 3.

1.3 The supervised learning setting

Supervised learning is simply a formalisation of the idea of learning from known examples.
In supervised learning, the learner (typically, a computer program) is provided with to sets of

5



CHAPTER 1. INTRODUCTION

data, a training set and a test set. The idea is for the learner to ”learn” from a set of labeled
examples in the training set so that it can identify the labels of the examples in the test set
with the highest possible accuracy. That is, the goal of the learner is to develop a rule, a
program, or a procedure that classifies new examples (in the test set) by analysing examples
it has been given that already have a class label.

1.3.1 Setting and notations

More formally, let us denote X the set of examples or the inputs and Y the set of labels or
the outputs. In the supervised learning setting, we are given a series of n pairs of the form
(xi, yi)i=1,...,n that are assumed to be n realisations of independent and identically distributed
pairs of random variables from a joint distribution P on X ◊ Y , and the goal is to find or
construct a good mapping f : X ‘æ H that approximates the true labels. For example:

• X is a set of images that contains a handwritten number and Y is the set of associated
numbers. If a picture is coded through the grey level of its pixels, then X = [0, 1]d for
d pixels , Y = {0, ..., 9}

• X is a set of patients from which we have collected clinical measures (as age, blood
pressure) and Y is the strength of response to a certain treatment, or the probability
of success of the treatment. Depending on the clinical variables, we will generally see
X as Rd for d measures and Y = R or Y = [0, 1]

• X is a set of cell of which we have measured the gene expression levels, and Y is the state
of the cell (as the stage of development). Then X = R

d for d genes and Y = {0, ..., n}
here n is the number of possible states.

In order to assess how good a function f can be, we need to define a measure called in
this context the loss function L : Y ◊H ‘æ R+, which compares the model predictions to the
ground truth. Examples of classical loss functions that we will focus on in this manuscript
include:

• The square loss for regression, where Y = R and:

Lsquare(y, ŷ) = (y ≠ ŷ)2 .

• The logistic loss function for classification where Y = {≠1, 1} and:

Llogistic(y, ŷ) = log (1 + exp(≠y.ŷ)) .

• The cross-entropy loss function with softmax for classification where Y = {0, K ≠ 1},
K being the number of classes and y(k) the k-th component of the label’s hot-encoding
2, and:

Lcross-entropy(y, ŷ) = ≠
Kÿ

k=1

y(k) log

A
eŷ(k)

qK
i=1 eŷ(i)

B
.

We aim to construct a mapping that produces on average, a small error between the
output and the true labels. This average error cost is called the risk and defined as:

R(f) = E
(X,Y )≥P

[L (f(X), Y )] . (1.1)

Since we only have n realisations of labeled examples and that the joint distribution P is
usually unknown, one relies on what is called the empirical risk as an approximation, which

2the representation of categorical variables as K-dimensional binary vectors
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is defined as the average of the loss between the mapping output and the true labels over all
observed labeled data points:

Remp(f) =
1

n

nÿ

i=1

L (f(xi), yi) . (1.2)

Looking for a mapping f that minimises the empirical risk Remp(f) is known as the
Empirical Risk Minimisation (ERM) framework.

Very often, f will be a parametric model that depends on a vector of weights w, which
dimension will be related to the complexity of the model. For parametric models, we will
denote f as fw and the optimisation problem will become finding the minimum of Remp(w),
where:

Remp(w) =
1

n

nÿ

i=1

L (fw(xi), yi) . (1.3)

1.3.2 Gradient Descent

It has often been proposed (Rumelhart et al., 1986) to minimise the empirical risk Remp(w)
using gradient descent (GD). Each iteration updates the weights on the basis of the gradient
of Remp(w). At iteration t, the weights are indeed updated as follows:

w(t+1) = w(t) ≠ “OwRemp(fw(t))

= w(t) ≠ “

n

nÿ

i=1

OwL(fw(t)(xi), yi) ,

where “ is an adequately chosen learning rate and n is again the number of available
training samples.

Under su�cient regularity assumptions, when the initial estimate w(0) is close enough
to the optimum, and when the learning rate “ is su�ciently small, this algorithm achieves
linear convergence, that is, ≠log(fl) ≥ t , where fl represents the residual error (Dennis Jr and
Schnabel, 1996). GD is thus a simple and general optimisation algorithm that is suitable for
any parametric model, however it does su↵er certain limitations:

• It is only suited for di↵erentiable functions (which is the case for the mentioned loss
functions)

• It is not guaranteed to converge to the global minimum when it exists if the loss function
is not convex.

• It needs to compute all the gradients with respect to each data sample, which can make
an iteration very slow if the the gradient computation cost is high.

Other minimisation algorithms and variants of GD have been designed to circumvent theses
limitations when they occur. The goal here is not to review the associated optimisation
algorithms (see (Sra et al., 2012; Bach et al., 2012) for a complete survey), but rather to
justify our later extensive use of the stochastic gradient descent (SGD).

1.3.3 SGD

For our mentioned loss functions, disadvantage of GD is that sometimes it may be too ex-
pensive to compute the gradient of a function, especially in the case of a large number of
observations (referred to as large-scale optimisation). The basic idea of SGD is to instead
use an estimator for the empirical risk gradient at each iteration. An obvious estimate is
the gradient at one randomly chosen observation. SGD is therefore a randomised version of
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GD that requires in its classical form a single randomly picked example x(t) and updates the
weights at iteration t as follows:

w(t+1) = w(t) ≠ “tOwL(fw(t)(xt), yt) .

Under two conditions on the decreasing learning rates “t, the Robbin-Siegmund theorem
(Robbins and Siegmund, 1971) ensures convergence under surprisingly mild conditions, in-
cluding for loss functions that are not everywhere di↵erentiable. These conditions can be
ensured by the convergence of

q
t “2

t and the divergence of
q

t “t.

In cases where the model is complex or more generally when computing the gradient of
the loss with respect to the weights is costly, as in the case of deep neural networks, SGD is
widely used. Another case which we will see in this manuscript is when the empirical risk
does not have a closed-form gradient or when its gradient can not be directly evaluated, as
it can be expressed as the expectation of another random variable for instance. In this case
an estimate of the gradient at one sample can replace the whole expectation (examples will
be given in the next chapter).

Many improvements on the basic SGD algorithm have been proposed and used. A first
obvious extension to improve the gradient estimate and thus potentially accelerate the al-
gorithms is to take the gradient estimate over a small set of observations, which is termed
as mini-batch SGD. Making use of averaging and moments have also shown improvement in
speed of convergence of SGD (Ruder, 2016), which can be critical especially for multilayer
feed-forward networks. Thus, we make use in the last chapter the Adam (Adaptive Mo-
ment Estimation) which can basically be seen as SGD with an adaptive learning rate that is
estimated from the updated weights at each iteration (Kingma and Ba, 2014).

1.3.4 Linear models

The simplest form of parametric models (and neural networks) are linear models, with the
weight vector having the same dimension d as the observations, and:

fw(x) =
dÿ

j=1

wjxj + b = w · x + b .

where w · x is the scalar product between w and x, and b is called the bias term. One can
remove the bias term from the model’s expression thanks to the bias trick, which consists in
adding a bias dimension with a constant of 1 to x and thus also augmenting w dimension by
1. We will thus only consider the learning of the weights w and omit this addition for linear
models in the future. In the case of a linear model, the empirical risk to minimise becomes:

Remp(w) =
1

n

nÿ

i=1

L (w · xi, yi) .

1.3.5 Artificial neural networks

In this section, we describe a broader family of models that we already mentioned under
the name of neural networks. Neural networks terminology is inspired by the biological
operations of specialised cells called neurons. A neuron is an information-processing unit
that is fundamental to the operation of a neural network. The block diagram at figure 1.3
below shows the model of a neuron, which forms the basis for designing the larger family of
neural networks. Here, we identify three basic elements of the neural model:

1. A set of synapses, or connecting links, each of which is characterised by a weight or
strength of its own. Specifically, a feature xj at the input of synapse j connected to
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neuron is multiplied by the synaptic weight wj . Unlike the weight of a synapse in
the brain, the synaptic weight of an artificial neuron may lie in a range that includes
negative as well as positive values.

2. An adder for summing the input signals, weighted by the respective synaptic strengths
of the neuron; the operations described here constitute a linear combiner

3. An activation function ‡. There are several canonical functions that will be mentioned
in this manuscript, mainly the:

• Linear activation: ‡(z) = z .

• Sigmoid activation: ‡(z) = 1
1+exp(≠z) .

• RELU activation: ‡(z) = z · 1(z > 0) .

x2 w2 Σ ‡

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 1.3: Architectural graph of a neuron

A linear model is thus the simplest example of a network with one unit and a linear
activation.

In a multi-layer network, the neurons are organised in the form of layers. let us introduce
some useful notations here to construct a neural network with H hidden layers. Now for a
layer l œ [1, H] let us assume we have a number of dl units, and thus by concatenating the

weights we obtain a weight matrix W (l) œ R
d(l)◊d(l≠1)

and a bias term b(l) œ R
d(l)

, with the
convention d(0) = d. The network defines a function fw : Rd æ R

d(H)
given for any x œ R

d

by fw(x) = y(H), where y(l) is the layer’s l output, defined recursively for l = 0, . . . , H by
y(0) = x and, for l œ [1, H]: I

z(l) = W (l)y(l≠1) + b(l) ,

y(l) = ‡(l)(z(l)).

This hidden layer creates an intermediate representation of the input data. The essence of
deep learning is to model a hierarchy of multiple representations. Alternatively, one can see
a multilayer network as a complex function defined as compositions of activations functions
and bias additions:

f(x) = ‡(W (H)‡(W (H≠1)(· · · ‡(W (1)x + b(1)) · · · ) + b(H≠1)) + b(H)).

A simple example of a two hidden layers neural network architecture that we will later
use in the last chapter is given in figure 1.4.

Multi-layer neural networks have many desired properties. The first and foremost is that
multi-layer neural network are universal function approximaters. Indeed, the addition of
the hidden layers in multi-layer neural networks overcomes the limitations of linear models
that are only capable of learning linearly separable patterns as it has been pointed out in
(Minsky and Papert, 2017). It was first proved in (Cybenko, 1989) that every continuous
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Figure 1.4: Architecture of a 3 layers network with one input layer, two hidden layers and an output
unit.

function, mapping intervals of real numbers to another interval of output numbers can be
approximated with arbitrarily precision by using sigmoid activation function in a multi-layer
neural network. However, the universal approximation theorem does not answer how to adjust
the weights in neural networks to improve a given loss function. From a practical point of
view however, and for many years, it has always been a challenge to train neural networks that
have one or more hidden layers. It is until discovering error back-propagation (Rumelhart
et al., 1986) that learning by GD provided an e�cient algorithm to train the neural networks.
Back propagation is used to compute e�ciently the gradients at each iteration by exploiting
the chain rule to the graph structure of model. Although being extremely interesting, we
will bypass here the full description of the backpropagation trick and may refer the curious
readers to the original paper. A neural network may therefore be used for classification and
regression, the output passed through the least square error, previously defined, in the latter
case. Despite its complexity, and thanks to back-propagation and other recent tricks, this
model can be trained with standard GD or SGD techniques.

Convolutional Neural Networks (CNNs) will also be used in the last chapter of this
manuscript. CNNs are analogous to traditional dense multilayer neural networks in that they
are comprised of neurons that get their weights optimised through learning. Each neuron will
still receive an input and perform a operation (such as a scalar product followed by a non-
linear function), the basis of all neural networks. From the input raw image vectors to the final
output of the class score, the entire of the network will still express a single perceptive score
function (the weight). The last layer will be again confronted to loss functions associated with
the classes, and most of the regular tips and tricks developed for traditional neural networks
still apply. The only notable di↵erence between CNNs and traditional neural networks is that
CNNs are primarily used in the field of pattern recognition within images. This allows us
to encode image-specific features into the architecture, making the network more suited for
image-focused tasks - whilst further reducing the parameters required to set up the model.
CNNs are comprised of three types of layers. These are convolutional layers, pooling layers
and fully-connected layers. When these layers are stacked, a CNN architecture has been
formed. The basic functionality of the example CNN above can be broken down into four
key areas:

1. As found in other forms of multilayer networks, the input layer will hold the pixel values
of the image.
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2. The convolutional layer will determine the output of neurons of which are connected
to local regions of the input through the calculation of the scalar product between their
weights and the region connected to the input volume.

3. The pooling layer will then simply perform downsampling along the spatial dimen-
sionality of the given input, further reducing the number of parameters within that
activation

4. The fully-connected layers will then perform the same operations found in standard
multilayer networks and attempt to produce class scores from the activations, to be
used for classification or regression.

The building convolutional layer and pooling layer can be done in several ways de-
pending on the convolutional kernel and the pooling method (although we talk generally
about max-pooling) (Schmidhuber, 2015). Convolutional networks have some important de-
sirable properties as are known as shift invariant or space invariant artificial neural networks
(SIANN), based on their shared-weights architecture and translation invariance character-
istics. The first successful applications of Convolutional Networks were developed by Yann
LeCun in 1990’s (LeCun et al., 1995). Of these, the best known is the LeNet architecture
that was used to read zip codes, digits, etc... An example of the LeNet architecture with
chosen numbers of units we used in the last chapter is shown in figure A.1.
The first work that popularised Convolutional Networks in Computer Vision was the AlexNet,
developed by Krizhevsky, Sutskever and Hinton (Krizhevsky et al., 2014). The AlexNet was
submitted to the ImageNet ILSVRC challenge in 2012 and significantly outperformed the
second runner-up (top 5 error of 16% compared to runner-up with 26% error). The Network
had a very similar architecture to LeNet, but was deeper, bigger, and featured Convolutional
Layers stacked on top of each other.

1.4 The overfitting phenomenon

1.4.1 Optimisation versus generalisation

What makes machine learning, and more particularly supervised learning di↵erent from sim-
ple optimisation? Supervised learning, as we saw, shares a lot with the optimisation field,
in terms of framework, theory and algorithms. However, the main and most fundamental
di↵erence is that in supervised learning, the model needs to have a small prediction error
on unseen examples while it is trained on a di↵erent data set, whereas in optimisation one
is usually interested in the convergence to the minimum of the function minimised or to
minimising the approximate error to the minimum value. Here the function, as introduced
earlier, to be minimised is the empirical risk, but one is ultimately interested in minimising
the expected risk which is potentially unknown.

Maybe the most intuitive example illustrating this important remark, is the choice of the
mapping:

f(x) =

I
yi if x = xi

any value otherwise
,

such that the empirical risk is exactly equal to zero for any number of samples (the function
is fixed given the training set), while the true risk is nonzero and arbitrarily high. Such
functions only memorise the training points without learning anything about the underlying
distribution.
One can argue that choosing a family of functions that does not contain this extreme example
will solve the problem. But one can already observe the same problem when the models class
is for instance a family polynomial functions of degree M 6 10 trained on a simple simulation
setting (see figure 1.5). What is happening here is that the more flexible polynomials with
larger values of M are becoming increasingly tuned to the random noise on the target values.
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Figure 1.5: Plots of polynomials having various orders of M, shown as red curves, fitted to a simulated
data set, from (Bishop, 2006)

Therefore, and perhaps counter-intuitively, this expected risk is not minimised by learning
the training data as precisely as possible. The main reason behind is that an extremely close
fit to training data tends to generalise poorly to future data, because such a fit inevitably
entails fitting random aspects of the sample (i.e., noise) as well as regular components. Any
model that learns every quantitative detail of the training data inevitably including many
that will never be repeated misses the broader regularities in the data. Fitting training data
too closely in the sense of fitting noise as well as real trends is often referred to as overfitting,
while fitting it too loosely: missing real trends as well as noise is called underfitting. This
basic tradeo↵ arises in a wide variety of settings, and seems to be fundamental to the very
nature of generalisation. Every real data source involves a mixture of regular and stochastic
elements, and e↵ective generalisation requires finding the right balance between them so that
the regular (repeatable) components may be learned and the noise disregarded. One can
write this precisely in what is called the bias-variance tradeo↵.

1.4.2 The bias-variance tradeoff

The bias-variance tradeo↵ refers to a result illustrating the expected behaviour of a parameter
estimate, with respect to the ”true” parameters it approximates. Bias represents underfitting,
and variance represents overfitting. This tradeo↵ is reflected in the no free lunch theorems3.
This illustrates the power of the implicit assumptions we make when modelling data, for
example, that the ground truth function is smooth with Gaussian noise. If the data is
uniformly random, there will be no signal to learn.

Let Y = f(x) + ‘ be the ground truth value with f(x) the true signal for data point x,
and a random noise ‘ ≥ N (0, ‡2). Let our model estimate be denoted by f̂(x). Then, the
mean square error between an estimate and the true parameters, averaged over all possible
data,

3No free lunch in machine learning refers to the fact that, averaged over all possible ground truths, no
model is better than random guessing
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E[(Y ≠ f̂(x))2] = E[((f(x) + ‘ ≠ E[f̂(x)]) + (E[f̂(x)] ≠ f̂(x)))2]

= ‡2 + E[f(x) ≠ E[f̂(x)]]2 + E[(f̂(x) ≠ E[f̂(x)])2]

= noise + bias2 + variance

The discrepancy therefore depends both on the variance of the parameters around its on
mean, and the bias (the gap between this estimate mean and the true parameters4). An
unbiased estimate is a parameter model that converges (in probability) to a hypothetical true
parameter set as data increases, but it may entail a higher variance, making it more likely
to draw a bad estimate some of the time. Hence, if we wish to be more certain about the
optimality of our estimate, it may be prudent to allow some bias if it su�ciently reduces the
variance. In conclusion, the bias-variance tradeo↵ illustrates that on average it may benefit
to use simpler models, even though this invokes a small bias.
The bias variance tradeo↵ during training is illustrated in the figure 1.6 below.

Figure 1.6: The bias-variance tradeo↵ in learning, from (Friedman et al., 2001)

1.5 Assessing overfitting

As presented, overfitting may seem as a merely theoretical problem that can be easily avoided
by either getting more data or by reducing the complexity of the data. First, overfitting is
actually not an easy problem in general, because the potential for overfitting depends not
only on the number of parameters and data, but also the bias in the training data values or
distribution, the conformability of the model structure with the data shape. From a practi-
cal point of view, overfitting can lead to high-profile false discoveries dramatic consequences
that can go from the selection of spurious features that results in various additional costs
and a sometimes sensitive instability in feature selection such as that of biomarkers of com-
plex traits and disease (Haury and Vert, 2010) and therefore a poor academic reproducibility

4The flaw here is that we require the structural assumptions of the model to be correct before we can talk
about ”true” parameters, which is rarely the case. This discrepancy is known as ”structural error”. Even if the
model structure is correct, there is an inescapable error of noise that all models share called the noise floor.
The noise floor is the limit of the learning curve (the trend of improvement in generalisation error as data is
added) for an unbiased estimate.
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(Ruschhaupt et al., 2004), to failures in trend tracking systems such as the example Google
Flu trends (Lazer et al., 2014) or unethical learning algorithms in everyday use (Zou and
Schiebinger, 2018). This highlights the trickery of overfitting and press on the use of a prin-
cipled way to assess overfitting in most cases.
Looking again at the definition of overfitting, the most natural way to estimate the gener-
alisation performance of a learning algorithm is to simulate a setting of unseen dataset by
partitioning the given data into a training set and a validation set, to estimate the model
parameters on the training set and to test the model’s ability to predict on the initially hidden
validation set. This is called hold-out validation. This method is widely in the evalua-
tion of multilayer networks performance in the case of large datasets as a fast evaluation
procedure. The downside is that this procedure does not use all the available data and the
results are highly dependent on the choice for the training/test split. These problems can be
partially addressed by repeating hold-out validation multiple times and averaging the results,
but unless this repetition is performed in a systematic manner, some data may be included
in the test set multiple times while others are not included at all, or conversely some data
may always fall in the test set and never get a chance to contribute to the learning phase.
To deal with these challenges and utilise fully the available data, one can use k-fold cross-
validation. In k-fold cross-validation the data is first partitioned into k equally (or nearly
equally) sized segments or folds. Subsequently k iterations of training and validation are per-
formed such that within each iteration a di↵erent fold of the data is held-out for validation
while the remaining k ≠ 1 folds are used for learning. The cross-validation procedure can be
used for three possible reasons:

• To estimate the generalisation performance of the learned model from available data
using one algorithm.

• To compare the performance of two or more di↵erent algorithms and find out the best
algorithm for the available data.

• To compare the performance of two or more variants of a parameterised model, such as
the same model with di↵erent hyper-parameters tuning.

If the goals are both about model selection (for example selecting the best model hyper-
parameters) and its generalisation assessment, a k-fold cross-validation with both a validation
and test set can be used. Again, one by one, a set is selected as test set. Then, one by one,
one of the remaining sets is used as a validation sets and the other k-2 sets are used as training
sets until all possible combinations have been evaluated. The training set is used for model
fitting and the validation set is used for model evaluation for each of the hyper-parameter
sets. Finally, for the selected parameter set, the test set is used to evaluate the model with the
best parameter set. This procedure however requires additional computations and requires
a su�cient number of samples so that the learning algorithm does not underfit at training
(Arlot and Celisse, 2010).
All of these validation methods will be used across at the di↵erent experimental parts of
this manuscript for both model selection and performance evaluation. Figure 1.7 shows a
visualisation the di↵erent methods.

In order to assess the generalisation performance on a validation or a test set, several
performance measures can be computed depending on the the context (regression or classifi-
cation):

In the regression setting, given ŷi the value of the prediction for a sample xi and yi œ R the
true response , we will mostly use the Mean Squared Error 1

n

qn
i=1(ŷi ≠yi)

2 or Pearson’s
correlation between ŷi and yi.

In the classification setting, there are several measures at disposal. When yi œ {≠1, +1}
for instance, the prediction ŷi can be computed by thresholding the prediction f(xi) at
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Figure 1.7: Visual Representation of hold-out and cross-validation

◊, usually equal to 0. When f(xi) is greater than ◊, ŷi = +1 and ŷi = ≠1 otherwise.
Then one can use the classical quantities described in table 1.1 in order to define several
possible accuracy measures :

Table 1.1: Classification setting: Four necessary measures. TN : True Negatives; FN: False Nega-
tives; FP: False Positives; TP: True Positives.

y
-1 +1

ŷ
-1 TN FN n̂≠
+1 FP TP n̂+

n≠ n+ n

• classification accuracy: T P +T N
n

• Precision: T P
n̂+

• Sensitivity/True Positive Rate (TPR)/Recall: T P
n+

• Specificity/True Negative Rate (TNR): T P
n≠

• AUC/AUROC: Area Under the ROC (Receiver Operating Characteristic) Curve

• AUPR: Area Under the Precision/Recall Curve

The ROC (resp. PR) curve is drawn by successively recomputing TPR and FPR (resp.
Precision and Recall) for an increasing discrimination threshold ◊. AUC and AUPR are
then evaluated by computing the area under these curves. We will use more the AUC
and classification accuracy throughout this manuscript, and occasionally the AUPR.

Testing the accuracy of the model on an unseen dataset allows in principle to assess if the
model is overfitting, but does not correct for this problem. A central goal of reseach in
machine learning has been to design and develop methods to prevent overfitting and thus
improve generalisation, which is the essence of machine learning. These methods fall under
the hat of what is called regularisation.

1.6 Preventing overfitting

The phenomenon of overfitting through the previous examples illustrates why the complexity
of the space F of functions from which the model will be chosen needs to be controlled. The
choice of F will typically encode assumptions we are willing to make about the data or some
prior knowledge about the problem, target or features.
The most general assumption that the vast majority of learners rely on is smoothness, with
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the idea that small changes in the input should lead to small changes in the output. It is
also common to rely on di↵erent assumptions, such as enforcing sparsity, invariance, or just
directly constraining the search space F . Overall, it is not possible to build a successful
predictor without making any assumptions about the underlying data distribution P. This is
in essence the message conveyed by the no free lunch theorem (Wolpert, 2002; Wolpert and
Macready, 1997).
For parametric models which are considered in this manuscript, constraining the model
amounts to setting constraints on the value or structure of its parameters. The new con-
strained problem will hence be:

I
w = min

wœRD
Remp(w)

Ω(w) Æ C ,
(1.4)

where the function Ω(w) is a scalar model-dependent function usually called the penalty, and
C a scalar setting the intensity of such a penalty.

The process of introducing additional constraints as a technique to combat the overfitting
problem is known as penalisation or more often regularisation, which will be the mainly used
term in this manuscript. The choice of which constraints to add, how and when to introduce
these constraints in the optimisation problem has led to several families of regularisation
methods, going therefore beyond regularisation as first defined for general ill-posed problems
both in why and how it is used (Kukačka et al., 2017). Regularisation has been indeed a
central and active research topic in machine learning as it is a key component for ensuring
good generalisation (Girosi et al., 1995; Bishop, 2006) and has witnessed even more interest
with the recent popularisation of deep neural networks. In the latter case, complex networks
with several hidden layers tend to have several orders of magnitude more parameters than
training examples, statistical learning theory (Abu-Mostafa, 1989) indicates that regularisa-
tion becomes even more crucial.
Di↵erent taxonomies have been proposed to distinguish and classify di↵erent regularisation
techniques. Following the ERM framework and the new constrained problem 1.4, Kukačka
et al. (2017) distinguish 5 di↵erent aspects of the problem on which regularisation can act to
influence the values of the weights w:

• The training set: (xi, yi)i=1,...,n (such as data augmentation, normalisation, adversarial
training etc . . .).

• The selected model family: F (such as restraining the set F to linear models, convolu-
tion or pooling layers).

• The choice of the regularisation term Ω (such as ¸2-norm or ¸1-norm regularisation).

• The loss function for defining the risk Remp (such as the choice of a robust loss (Huber,
1992; Holland and Welsch, 1977)).

• The optimisation procedure itself (such as the choice of initialisation, update and ter-
mination rules).

We have used along this manuscript and will focus in this section on the first three mentioned
categories and mainly: adding a regularisation term, data augmentation and ensemble learn-
ing, as we mainly use and compare with these methods in the next chapters.
Although quite straightforward and easy to apply, this classification of regularisations meth-
ods maintains some ambiguity for many regularisation methods that can belong to di↵erent
categories or methods that do not clearly fit in one category as noticed already by the authors
in (Kukačka et al., 2017).
Another line of work distinguishes two main types of regularisation: explicit and implicit
regularisation (Neyshabur, 2017; Lemberger, 2017):
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• Explicit regularisation techniques are those specifically and solely designed to constrain
the e↵ective capacity of a given model in order to reduce overfitting. Furthermore,
explicit regularisers are not a structural or essential part of the network architecture,
the data or the learning algorithm and can typically be added or removed easily.

• Implicit regularisation is the reduction of the generalisation error or overfitting pro-
vided by characteristics of the network architecture, the training data or the learning
algorithm, which are not specifically designed to constrain the e↵ective capacity of the
given model.

Although it can be seen as rather a qualitative interpretation of regularisation mechanisms,
and even if it might bear similar ambiguities of methods related to both categories, this is
in our opinion an interesting classification that underlines a striking gap between these two
categories despite shared methods. As it will be later discussed. In the remaining of this
section, we describe some popular regularisation techniques which have proven to be very
e↵ective in practice and that we will be using or comparing novel methods with throughout
our work. Because of the importance of this topic, there is a huge amount of work that has
been done in this area and covering all the aspects of regularisation is beyond the scope of
this manuscript.
Coming back to the ERM setting, If Remp and Ω are both convex and under weak additional
assumptions (see, e.g., (Boyd and Vandenberghe, 2004) Section 5.2), equation 1.4 can be
written in its Lagrangian form:

min
wœRD

{Remp(w) + ⁄Ω(w)} . (1.5)

Ω is again the regulariser appearing in 1.4 as a constraint and now as a penalty term. The
parameter ⁄ œ R+ is called the regularisation parameter and controls the balance between
the empirical risk and the model complexity.

Di↵erent penalties encode implicitly for di↵erent assumptions or preferences about the
model. Many penalties have therefore been proposed over the last decades depending on
the model, goal and data at hand, creating a sometimes confusing diversity (Bishop, 2006;
Ma and Huang, 2008). We first briefly describe two main penalties for their wide use and
characteristic properties.

1.6.1 ¸2-norm regularisation

¸2-norm regularisation is a commonly used technique in machine learning, also sometimes re-
ferred to as ridge regression in the context of linear regression with least squares, as Tikhonov
regularisation in the optimisation context, and as weight decay in the artificial neural net-
works literature (Hoerl and Kennard, 1970; Krogh and Hertz, 1992). It works by adding a
quadratic term to the empirical risk, which results in the new objective to minimise :

Remp(w) + ⁄ ÎwÎ2
2 =

1

n

nÿ

i=1

L (fw(xi), yi) + ⁄
dÿ

j=1

w2
j , (1.6)

where ⁄ is again a hyperparameter which appropriate value needs to be chosen as part of
the training process (for example by using the validation data set as previously indicated). By
choosing a value for this parameter, we decide on the relative importance of the regularisation
term versus the data-dependent risk term. If the loss function is convex, then the resulting
modified empirical risk is again convex (and smooth if the loss function is smooth), allowing a
variety of methods to be used for solving (Boyd and Vandenberghe, 2004), the ridge penalty
being smooth and convex.

In order to gain an intuitive understanding of how ¸2 regularisation works against over-
fitting, one can consider the linear setting with least squares loss with a given dataset
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(xi, yi)i=1,...,n. In this case, and if the design matrix X = (xi,j)i=1...n;j=1...d (that is each
row is the observation xi) is such that X€X invertible, then the minimum of the empirical
risk, also called the Ordinary Least squares (OLS) solution is:

ŵOLS = arg min
wœRd

ÎY ≠ XwÎ2
2 = (X€X)≠1X€Y , (1.7)

where Y = (yi)i=1...n is the column vector embedding of the training labels. This solution
however, is not always possible to choose, in particular when the number of features d exceeds
the number of samples n, making the matrix X€X singular.

The solution to the ¸2-norm regularised problem 1.6 in the linear least squares case, termed
as ridge, however always exists:

ŵridge = arg min
wœRd

ÎY ≠ XwÎ2
2 + ⁄ ÎwÎ2

2 = (X€X + ⁄Id)≠1X€Y , (1.8)

where Id is the identity matrix. The addition of the ¸2-norm penalty first makes the problem
nonsingular, even if is not of full rank, and therefore improving the stability of the estimation
which was the main motivation for ridge regression when it was first introduced in statistics
(Hoerl and Kennard, 1970).
Another crucial and related property of the ¸2-norm regularisation that allows for a poten-
tial barrier to overfitting is the shrinkage in coe�cients resulting from 1.8. This monotone
decreasing function of ⁄ basically reduces the search space F and might therefore improve
performance in case of high dimensional data or in the case of overfitting more broadly. This
explains the related term of weight decay widely used for decades in the literature of neural
networks as a simple yet e↵ective technique in improving generalisation performance (Krogh
and Hertz, 1992).

An other interesting interpretation of ¸2-norm regularisation is provided by Bayesian
statistics, that consider the penalty as a prior distribution on w: assume that p(w) =
N (0, 1

λ
Id) and p(Y |X, w) = N (Xw, 1). Then minimising minus the log-likelihood, that is

looking for the most likely model given the training data, is equivalent to solving problem
1.8. Indeed, by definition of the conditional density, the posterior distribution of the model
is written as:

p(w|X, Y ) = exp

3
≠1

2
ÎY ≠ XwÎ2

2 ≠ ⁄

2
ÎwÎ2

2

4

= exp

;
1

2
(w ≠ ΓλX€Y )€

Γ
≠1
λ (w ≠ ΓλX€Y )

<
,

where Γλ = (X€X + ⁄Id). We thus recover the posterior distribution

p(w|X, Y ) = N (ΓλX€Y, Γλ)

The Maximum a posteriori (MAP) is therefore the mean ΓλX€Y , corresponding to the ridge
solution 1.8. We can see now how increasing will yield an estimator with both a smaller mean,
which justify the term shrinkage and might add bias the weights, and a smaller variance, which
can potentially reduce overfitting and improve stability (Vinod, 1978).

¸2-norm regularisation does however have a drawback of not being invariant to linear
scaling of the training data (Bishop, 2006). It also does not shrink potentially irrelevant
features coe�cients to zero, which plays against the portability of the method in the case of
a growing high dimension data in many fields and its usefulness in prediction problems where
feature selection is an important part, such in biomarker driven models (Ma and Huang,
2008). An alternative is the ¸1-norm regularisation.
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1.6.2 ¸1-norm regularisation

The ¸1-norm penalty is proposed by Tibshirani (1996), with inspiration from the work of
Breiman (1995) and others, and is defined as the minimisation of the following objective:

Remp(w) + ⁄ ÎwÎ1 =
1

n

nÿ

i=1

L (fw(xi), yi) + ⁄
dÿ

j=1

|wj | . (1.9)

In the signal processing literature, the lasso is also known as basis pursuit (Chen and Donoho,
1994). In fact, although this penalty based regularisation was originally introduced as a re-
gression method, regularisation by the ¸1-norm has drawn a lot of attention in many commu-
nities. Indeed, an important property of the ¸1-norm regularisation is that it can generate an
estimation of w with exact zero coe�cients, which denotes that the corresponding features are
eliminated during the classifier learning process. In other words, the ¸1-norm regularisation
encourages sparsity, making it an e�cient alternative to subset selection that can be used for
feature selection. Computing the optimum of 1.9 is a quadratic programming problem when
the risk is quadratic, but e�cient algorithms are available with the same computational cost
as for ridge regression (Efron et al., 2004). Other theoretical properties have been studied for
the regression (Osborne et al., 2000) and also the classification setting, including the logistic
loss (Lee et al., 2006). From a bayesian view, ¸1-norm regularisation can also be interpreted
as the introduction a prior, this time the Laplace distribution, which assigns more weight to
regions near zero than the normal prior.

Although the ¸1-norm regularisation has been very popular since its introduction among
applied statistical fields (Ma and Huang, 2008), the research around it and especially the
design of related variants is still an active research area (Zou and Hastie, 2005; Tibshirani
et al., 2015). One reason lies behind some pitfalls proper to this penalty, such as the limited
number of selected variables (at most n variables when d > n), and more importantly its
instability and potentially poorer performance when pairwise correlations between features
are very high (Zou and Hastie, 2005; Hansen, 2016). One way to improve the stability and
generalisation performance of this method is to use ensemble learning as in (Meinshausen
and Bühlmann, 2010), which we present in the sext section.

1.6.3 Ensemble learning

Ensemble learning is another way to perform explicit regularisation when the model is over-
fitting due to a high variance.
In general terms, Ensembles are sets of learning machines that combine in some way their
decisions, or their learning algorithms, or di↵erent views of data, or other specific character-
istics to obtain more reliable and more accurate predictions in supervised and unsupervised
learning problems (Dietterich, 2000; Kuncheva, 2004). A simple example is represented by
the majority vote ensemble, by which the decisions of di↵erent learning machines are com-
bined, and the class that receives the majority of ”votes” (that is, the class predicted by the
majority of the learning machines) is the class predicted by the overall ensemble.
Several theories have been proposed to explain the characteristics and the successful applica-
tion of ensembles to di↵erent application domains. For instance, Breiman (Breiman, 1996c)
and Friedman (Friedman and Hall, 2007) interpreted the improved generalisation perfor-
mance of ensembles of learning machines in the light of the bias-variance analysis, that will
be sketched briefly below.

In fact, an extension of decision trees, that we will mention again in the next chapter,
is the now popular technique of random forests (Breiman, 2001). Random forests construct
multiple decision trees from subsets of the training data. Prediction is then done in an
ensemble by aggregating the predictions of individual trees, as follows:

19



CHAPTER 1. INTRODUCTION

f(x) =
1

M

Mÿ

i=1

fi(x) ,

where the models fi are individual decision trees trained on random subsets of the data.
In such a scheme they are known as weak learners.

Now, recall that,

Var[X + Y ] = E[(X + Y )2] ≠ E[X + Y ]2

= E[X2 + 2XY + Y 2] ≠ EX2 ≠ 2E[X]E[Y ] ≠ E[Y ]2

= Var[X] + Var[Y ] + 2Cov[X, Y ]

It is easy to then show that:

Var
Ë ÿ

i

Xi

È
=

ÿ

i

Var[Xi] + 2
ÿ

i

ÿ

j ”=i

Cov(Xi, Xj).

Consider then that in our random forest, each learner has a variance of ‡2 and:

Cov(fi, fj) = fl ’ i, j; i ”= j .

Then:
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M
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M
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1 + fl(M ≠ 1)

M
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Thus, the ratio is reduced by, M/(1 + fl(M ≠ 1)). We therefore aim to de-correlate the
individual trees. In the Random Forest method, this is done in two ways: First, the training
set is sampled (with replacement) to create M bootstrapped training sets of size N . Secondly,
each learner (decision tree) is trained at each step on a random subset of the available features.
The size of the subset and the number of trees M are model hyper-parameters.

Ensemble learning is also a generic method that does have its own pitfalls. Indeed, in many
settings ensemble learning does not sensitively help generalisation performance (Kuncheva,
2004). It also increases linearly computation time if the procedure is not communicative nor
parallelised making its application for complex models such as deep neural networks very
rare. It also reduces interpretability especially in the case of a complicated aggregation step.

We finally present an implicit regularisation method which builds on the intuition of
improving generalisation by providing more training samples: data augmentation.

1.6.4 Data Augmentation

If the data set used for training is not large enough, which is often the case for many real life
test sets, then it can lead to overfitting. A simple technique to get around this problem is by
artificially expanding the training set.

In the case of image data, this fairly straightforward for example we should be able to
subject an image to the following transformation without changing its classification (see figure
1.8):

• Translation: moving the image by a few pixels in various directions

• Rotation

• Reflection

• Skewing
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Figure 1.8: Some examples of data augmentation for a particular image.

• Scaling: changing the size of the image while preserving its shape

• Changing contrast or brightness

Data augmentation is an almost ubiquitous technique in neural networks training for
instance, especially for computer vision tasks, which can be regarded as an implicit regulariser
because it improves regularisation without directly constraining the model. Introduced in
di↵erent forms and for di↵erent models and datasets in the late 80’s and early 90’s (Simard
et al., 1992; Sung and Poggio, 1994; Schölkopf et al., 1996), it has been identified as a
very important element until today (Wang and Perez, 2017) and in many modern successful
models, like AlexNet (Krizhevsky et al., 2014), All-CNN (Springenberg et al., 2014) or ResNet
(He et al., 2016), for instance. In domains other than computer vision, data augmentation
has also been proven e↵ective, for example in speech recognition (Jaitly and Hinton, 2013),
music source separation (Uhlich et al., 2017) or text classification (Xu et al., 2016).

In addition to the traditional data augmentations utilising a particular transformation to
directly synthesise derived images with the same label, a recent approach is to use genera-
tive models (such as Generative Adversarial Networks (Goodfellow et al., 2014)) in order to
artificially augment the data (Miko lajczyk and Grochowski, 2018). For both approaches, im-
plementations fall under two categories: data augmentation before training of the prediction
model, and data augmentation while training, mostly through Monte Carlo Markov Chains
(MCMC) and Expectation Maximisation (EM) methods (Van Dyk and Meng, 2001). All
these approaches can both be extremely slow to converge (Van Dyk and Meng, 2001) and
some schemes have already been developed for accelerating these implementations (Meng and
Van Dyk, 1999; Liu and Wu, 1999) but these are not always possible to apply. Besides, even
though some authors have reported the impact of data augmentation on the performance of
their models and, in some cases, a comparison of di↵erent amount of augmentation (Graham,
2014) and e↵ect, the literature lacks, to our knowledge, a systematic analysis of the impact
of data augmentation on generalisation. Last but not least, a pitfall of data augmentation is
that, as it is applied, seems to be an ad hoc procedure dependent on the data at hand and
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the task at hand, which in contrast with the previous regularisation methods, is flexible but
requires the expert prior knowledge about the problem and can be di�cult to select and to
reproduce (Ratner et al., 2017).

1.6.5 Bridging the gap: towards data-dependent regularisation

We presented through the last sections di↵erent regularisation methods, relying on di↵erent
assumptions, either explicitly or implicitly. Explicit regularisations such as adding a penalty
to the ERM problem are well studied and di↵erent e�cient implementations have been de-
veloped (Sra et al., 2012). Besides individual limitations, we have seen that these methods
enforce properties such that smoothness or sparsity that are often not coming from a prior
knowledge but rather generic assumptions that might be later useful such as feature selection
(Bishop, 2006). Many approaches have been designed to complement these methods with ex-
isting prior knowledge about the data, the model or the task at hand (Lauer and Bloch, 2008;
Huang et al., 2011b). Structured sparsity-enforcing regularisation methods, for instance, al-
low to additionally incorporate particular prior assumptions on the structure of the input
variables, such as overlapping groups, non-overlapping groups and acyclic graphs (Yuan and
Lin, 2006; Obozinski et al., 2011). Examples of uses of structured sparsity methods include
face recognition (Jia et al., 2012), magnetic resonance image (MRI) processing (Chen and
Huang, 2012), and analysis of genetic expression in breast cancer (Jacob et al., 2009) among
other applications.

Despite these several successful applications, and maybe also because of it, the prolifer-
ation and diversity of these particularly designed explicit regularisation methods, exploiting
a particular prior knowledge, can be sometimes confusing. Moreover, the e↵ect of the addi-
tion of the same prior knowledge in the learning problem depends drastically on the training
dataset and the particular regularisation method (Lavi et al., 2012).

On the other hand, considered implicit regularisation methods such as data augmenta-
tion has also, despite being a classical technique, witnessed a growing popularity in recent
years. As it was already described, in this case there is a clear lack of generic methods for
augmenting the data, although interesting research that aims to automatically learn useful
data transformations has been prublished very recently (Lemley et al., 2017; Cubuk et al.,
2018).

In all cases, bridging the gap between explicit generic and implicit data-dependent regu-
larisation appears to be a very promising direction both in methodology and in theoretical
understanding. In fact, recent and most popular regularisation methods in training of deep
neural networks such as dropout (Srivastava et al., 2014), batch normalisation (Io↵e and
Szegedy, 2015) or Cutout (DeVries and Taylor, 2017) provide state-of-the-art generalisation
results by applying particular deterministic or stochastic transformations to the data or the
hidden layers’ input (see (Kukačka et al., 2017) for a complete survey). Interestingly, the
analysis of these di↵erent methods, in spite of a lack of theoretical understanding of their
e�ciency (Baldi and Sadowski, 2013), have started still to reveal interesting dualities between
data transformation and model regularisation (Wager et al., 2013; Bouthillier et al., 2015),
that might lead to a better understanding of generalisation properties given some particular
data properties and lead to a much awaited unification in regularisation theory beyond the
Vapnik-Chervonenkis dimension theory (Abu-Mostafa, 1989).

1.7 Thesis and contributions

This thesis explores a family of regularisation methods in the context of supervised learning
that are based on Injecting Noise on the Input data that we denote by (INI). We will first give
an overview of a real supervised learning problem in the context of a competitive framework,
exhibiting the risks of learning from high-dimension bioinformatics data and corresponding
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vulnerabilities to overfitting. We then present, review and study (INI) theoretically and em-
pirically: its regularisation properties and e�ciency. We then describe novel generalisations
of (INI) methods and particularly the dropout termed as DropLasso, Structured Noise Injec-
tion (SNI) and Adaptive Structured Noise Injection (ASNI) that we design and study in the
last two chapters.

1.7.1 The Rheumatoid Arthritis challenge

As a first real-data application of supervised learning, I participated among the team Outliers
in the design of predictive models of the response to treatment of patients with Rheumatoid
Arthritis. Rheumatoid Arthritis is a chronic autoimmune disease that causes the inflamma-
tion of joints. The work described in this chapter was held in the context of the Rheumatoid
Arthritis Responder Challenge as a comparative evaluation framework. Our team obtained
the best performance results for the clinical and the genetic models, thanks to di↵erent strate-
gies to overcome overfitting. We were then invited to take part in the collaborative phase of
the challenge, where we focused on the following question: can the addition of genetic data
improve the prediction made based only on simple clinical covariates?

Part of the work presented in this chapter has been published in (Sieberts et al., 2016).

1.7.2 (INI) framework and a new approximation of dropout

The idea of noise injection in the data from which we want to learn seems at first sight quite
counterintuitive. However, the idea of adding randomness in algorithms has been present
for decades in the community of computer science and has started to emerge early in the
machine learning community with the development of optimisation algorithms for neural
networks three decades ago. This technique has recently recaptured the community interest
with the regain of popularity of multilayer neural networks and their increasing complexity
that emphasises the need of their regularisation. Despite this revival of research interest
around noise injection variants and applications, there is still a lack of clear definition for this
set of methods and their interpretations from di↵erent frameworks views. In this chapter:

1. We provide an overview of Noise Injection in supervised learning from the point of view
of di↵erent supervised learning settings.

2. We reformulate the Input Noise Injection framework in the supervised learning setting
with general distributions and noising functions.

3. We summarise intuitions, algorithms and a part of theoretical justifications (in linear
models) around the use of (INI).

4. We present a brief overview of the popular dropout method and related works.

5. We provide a novel approximation for dropout leading to new insights for linear and
non-linear models and with general (potentially non-smooth) loss functions.

6. We complement this chapter by a series of experiments about the e↵ectiveness of (INI)
in improving the generalisation performance of linear models in the supervised learning
setting. These experiments are performed on simulations and benchmark datasets in
vision recognition, document classification and cancer prognosis tasks.

1.7.3 DropLasso: a robust variant of Lasso for single cell RNA-seq data

During the last decade, high-throughput sequencing methods have revolutionised the entire
field of biology, as we have briefly noticed. Thanks to recent technical improvement, it
is possible today to obtain genome-wide transcriptome data from single cells using high-
throughput sequencing (scRNA-seq). The main advantage of scRNA-seq is that the cellular
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resolution and the genome wide scope makes it possible to address issues that are intractable
using other methods, e.g. bulk RNA-seq. However, to analyse and build models using single
cell RNA-seq data, novel methods are required as some of the underlying assumptions for
the methods developed for bulk RNA-seq experiments are no longer valid. The technology
su↵ers for instance from stochastic under-amplification of random regions which results in
what is called dropout errors (Kharchenko et al., 2014).

In this context, we propose a new method called DropLasso to classify, but also learn a
molecular signature from single cell RNA-seq data. DropLasso is an extension to the dropout
regularisation technique, popular in neural network training, that embeds feature selection
through its fusion with the ¸1-norm regularisation. We explain how it can be suited to the
particular setting of single cell RNA-seq data, and we theoretically provide insights about
its e↵ect and how it can be related to a data-dependent modified version of elastic net in
the least squares and in the general case. We provide comparative classification results on
simulated and real scRNA-seq data, suggesting that DropLasso may be better adapted than
standard regularisations for supervised learning from this type of data, and how it can lead
to the novel discovery of potentially interesting biomarkers.
DropLasso is freely available as an R package we developed, at https://github.com/jpvert/
droplasso.

1.7.4 Adaptive Structured Noise Injection (ASNI)

In recent years, deep learning has been tremendously successful in many important applica-
tions of machine learning, such as image classification and object recognition among other
applications (Krizhevsky et al., 2017). Bengio et al. (2013) argue that the success of deep
learning is in part due to the capability of neural networks to build incrementally better
representations that expose the relevant variability, while at the same time discarding nui-
sances. The interpretation of deep neural networks as a way of creating successively better
representations of the data has already been suggested and explored by many. Most recently
Tishby and Zaslavsky (2015) put forth an interpretation of deep neural networks as creating
su�cient representations of the data that are increasingly minimal.
During the last year of my thesis, an interesting related observation appeared when I was
experimenting with multilayer networks training with and without dropout or other regular-
isation schemes. Figure 1.9 illustrates this phenomenon, which mainly resides in the striking
synchronicity between the evolution of the test accuracy of the network and that of the cor-
relations strength between the units activations of the hidden layers (as evaluated by the
Frobenius norm of their correlation matrix as will be detailed later in the corresponding
chapter). This phenomenon was general in that it was happening in all networks I tried
(including or not convolutional layers), in most datasets and with or without dropout.

One may argue that this phenomenon is simply due to the fact that at the first stage, the
network is learning useful representations which results in an increase of accuracy, or maybe
that in the contrary learning useful information disentangles automatically the representations
and results in more useful ones. This interesting observation in all cases conveys a series of
questions and research directions: Can one improve accuracy by disentangling more the
hidden layer units, e.g. reducing the correlations between their activations? Does dropout
improve generalisation accuracy by actually reducing the correlations between units? Is
there a way to make a version of an aggressive or rather a selective form of dropout, or noise
injection in general, that selects somehow correlated units and prevents their co-adaptations?

In fact, this idea to enforce the choice a minimal set of representations is not new in
statistical learning and even prior to its development. The idea of diminishing redundancy in
representations can indeed be traced back to early investigations about learning in general.
For instance, in 1961 Barlow (1959) already emitted three hypotheses about the operational
reception and the response to stimuli information by the nervous system, the third of which
theorises that ”reduction of redundancy is an important principle guiding the organisation
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Figure 1.9: Evolution of test classification accuracy during the training of a 2 hidden layers feed
forward neural network (see figure 1.4) on MNIST, without any regularisation (red: Left scale), versus
the correlation matrix norm of the first and second hidden layer activations (blue and green: Right
scale)

of sensory messages and is carried out at relays in the sensory pathways”. Since then, this
idea has been carried out not only in the understanding of learning e�ciency, but also in the
design of popular methods in various areas of machine learning such as component analysis
like ICA (Hyvärinen, 2013) or feature selection (Peng et al., 2005). The idea of penalising
representations correlations while learning also naturally emerged as a way to avoid overfit-
ting and thus improving the performance of predictive models in supervised learning. In the
context of ensemble learning, diversity is a good feature that improves the ensemble perfor-
mance when traded with each model bias (Kuncheva and Whitaker, 2003; Dietterich, 2000).
In many deep neural network models parameters show a significant amount of redundancy
(Denil et al., 2013). Several strategies have been developed to implement this diversity in
the training of one or several neural networks such as pruning units or connections (Hassibi
and Stork, 1993; LeCun et al., 1990; Mariet and Sra, 2016). However these techniques have
mostly been concerned with networks memory footprints and speed, and less with their ac-
curacy and representations quality. Other techniques have recently used the same concept
in order to train the same network architecture while encouraging diversity between units
of each layer while learning in order to improve generalisation performance (Cogswell et al.,
2015; Desjardins et al., 2015; Luo, 2017).

In this chapter, we first show that dropout and its continuous multiplicative gaussian
noise do not necessarily reduce correlations between units, and we introduce a novel form
of Adaptive Structured Noise Injection (ASNI) as a generalisation of the independent noise
injection scheme, where the structure of the noise applied on one layer follows the covariance
of that layer units’ activations. We theoretically study the e↵ect of ASNI and empirically show
that (ASNI) is more e�cient than Independent noise injection such as dropout in preventing
overfitting in multilayer dense and convolutional neural networks, and that it succeeds to
disentangle hidden representations and improve their quality.
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Chapter 2

The RA responder challenge

“In theory, there is no difference
between theory and practice. In
practice, there is.”

Yogi Berra
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Abstract

Rheumatoid arthritis (RA) a↵ects millions world-wide. While anti-TNF treat-
ment is widely used to reduce disease progression, treatment fails in almost
one-third of patients. A rigorous community-based assessment of the utility of
SNP (single-nucleotide polymorphisms) data for predicting anti-TNF treatment
e�cacy in RA patients was performed in the context of a DREAM Challenge
http://www.synapse.org/RA_Challenge. An open challenge framework enabled
the comparative evaluation of predictions developed by di↵erent research groups
using the most comprehensive available data and covering a wide range of mod-
elling methodologies.

Among 73 teams, our team participation under the name of ”Outliers” was
rewarded with the best model prediction results. We do believe that our model
resisted best to overfitting thanks to a residual fitting strategy, a biologically
relevant feature selection and a careful cross-validation. Finally, the challenge
conclusion was that the teams models ”formally confirm the expectations of the
rheumatology community that SNP information does not significantly improve
predictive performance relative to standard clinical traits, thereby justifying a
refocusing of future e↵orts on collection of other data”.

This chapter is largely based on our team work from May 2014 to November
2014, and the challenge findings reported in Nature Communications in 2016
(Sieberts et al., 2016).

Résumé

La polyarthrite rhumatöıde (PR) touche des millions de personnes dans le monde.
Bien que le traitement anti-TNF soit largement utilisé pour réduire la progression
de la maladie, le traitement échoue chez près du tiers des patients. Une évaluation
rigoureuse de l’utilité des données de polymorphisme mono-nucléotidiques (SNP
pour prédire l’e�cacité du traitement anti-TNF chez les patients atteints de PR a
été réalisée par un ensemble d’équipes dans le contexte du RA DREAM Challenge
http://www.synapse.org/RA_Challenge auquel j’ai participé dans le sein de
l’équipe ”Outliers”.

Parmi les 73 équipes, notre participation a été récompensée par les meilleurs
résultats de prédiction finale. Nous pensons que notre modèle a mieux résisté au
sur-apprentissage grâce à une stratégie d’ajustement résiduel, à la sélection de
variables biologiquement pertinents et à une validation croisée minutieuse. Enfin,
une conclusion principale du Challenge était que les modèles dans l’ensemble
confirmaient formellement les attentes de la communauté des rhumatologues selon
lesquelles les informations du SNP n’amélioraient pas de manière significative la
performance prédictive par rapport aux traits cliniques standard, ce qui justifierait
un recentrage des e↵orts futurs sur la collecte d’autres données.

Ce chapitre repose sur les travaux de notre équipe de Mai 2014 à Novem-
bre 2014, et les résultats de la compétition peuvent être consultés depuis 2016
(Sieberts et al., 2016).
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2.1 Introduction

2.1.1 Rheumatoid Arthritis

The first recognised description of RA was made in 1800 by Dr. Augustin Jacob Landre-
Beauvais (1772 to 1840) in Paris. Rheumatoid Arthritis is now recognised as an autoimmune
disease that results in a chronic, systemic inflammatory disorder that may a↵ect many tissues
and organs, but principally attacks flexible synovial joints (Gibofsky, 2012). It can be a
disabling and painful condition, which can lead to substantial loss of functioning and mobility
if not adequately treated.

The process involves an inflammatory response of the capsule around the joints synovium
secondary to swelling of synovial cells, excess synovial fluid, and the development of fibrous
tissue in the synovium. The pathology of the disease process often leads to the destruction
of articular cartilage and fusion of the joints, as shown in figure 2.1. Rheumatoid Arthritis
can also produce di↵use inflammation in the lungs, the membrane around the heart, the
membranes of the lung, and white of the eye (sclera), and also nodular lesions, most common
in subcutaneous tissue.

About 0.6% of the United States adult population has RA, women two to three times
as often as men. Onset is most frequent during middle age, but people of any age can be
a↵ected.

Figure 2.1: Normal joint versus Rheumatoid Arthritis a↵ected joint.

Although the cause of RA is unknown, autoimmunity plays a big part, and RA is a
systemic autoimmune disease. It is a clinical diagnosis made on the basis of symptoms,
physical exam, radiographs (X-rays) and labs. Treatments are pharmacological and non-
pharmacological. Non-pharmacological treatment includes physical therapy, orthoses, occu-
pational therapy and nutritional therapy but these don’t stop the progression of joint de-
struction. Analgesics, suppress symptoms, but don’t stop the progression of joint destruction
either.

RA is treated in part with disease-modifying anti-rheumatic drugs, including those that
block the inflammatory cytokine, tumour necrosis factor-– (anti-TNF therapy). While anti-
TNF treatment is e↵ective in reducing disease progression, response is variable with nearly
one-third of RA patients failing to enter clinical remission (McInnes and Schett, 2011; Wi-
jbrandts et al., 2008). Given the expense of these drugs (around 5000 to 10,000 GBP per
patient per year in the UK) and the potential for detriment to non-responding patients, the
identification of predictors of response from pre-treatment (baseline) characteristics would be
of great clinical, societal and economic benefit. The importance of this question motivated the

29



CHAPTER 2. THE RA RESPONDER CHALLENGE

formation of the UK Maximising Therapeutic Utility in RA (MATURA) consortium (Barton
and Pitzalis, 2016), which has the wider remit of using blood-based biomarkers and synovial
pathobiology to inform the stratification of all stages of RA treatment. As for today, no sub-
stantive methodology exists that can be used to a priori identify anti-TNF non-responders
(Tak, 2011). In this context, this RA challenge 1 as part of DREAM challenges, was organised,
in order to provide a framework for evaluating di↵erent genetic and clinical models predictive
of the anti-TNF response and capable of identifying potential good and poor responders,
using the most comprehensive available data to date.

2.1.2 GWAS and RA

An important part of the collected data concerned patients genotypes and more precisely
particular biological individual features: called SNPs. A body of literature has already ex-
plored in fact the relationship between these features and the occurrence of RA. This was an
initial motivation for the overall project but also a way for our team to gather some prior
knowledge and potentially improve our models through the use of the existing literature.

Single nucleotide polymorphisms, frequently called SNPs (pronounced ”snips”), are the
most common type of genetic variation among people. Each SNP represents a di↵erence
in a single DNA building block, called a nucleotide. For example, a SNP may replace the
nucleotide cytosine (C) with the nucleotide thymine (T) in a certain stretch of DNA.

SNPs occur normally throughout a person’s DNA. They occur once in every 300 nu-
cleotides on average, which means there are roughly 10 million SNPs in the human genome.
Most commonly, these variations are found in the DNA between genes. They can act as
biological markers, helping scientists locate genes that are associated with disease. When
SNPs occur within a gene or in a regulatory region near a gene, they may play a more direct
role in disease by a↵ecting the gene’s function.

Most SNPs have no e↵ect on health or development. Some of these genetic di↵erences,
however, have proven to be very important in the study of human health (Visscher et al.,
2012). Researchers have found SNPs that may help predict an individual’s response to certain
drugs, susceptibility to environmental factors such as toxins, and risk of developing particular
diseases. SNPs can also be used to track the inheritance of disease genes within families.
Today, Genome-wide association studies (GWAS) are focusing on identifying SNPs associated
with complex diseases such as heart disease, diabetes, and cancer. In fact, the development
of relatively cheap SNPs arrays, which allow to genotype an individual for a predefined set of
loci, has been crucial to the onset of GWASs. These arrays, to date, typically contain from
200,000 to 2,000,000 SNPs. The first large GWAS, involving 14,000 individual with one of
seven common diseases such as type 1 and type 2 diabetes, as well as 3,000 control individuals,
dates back to 2007 (Burton et al., 2007). Since then, many studies have been conducted for
thousands of complex traits and over 10,000 associations have been reported (Welter et al.,
2013). The purposes of GWAS, beyond the search for associated loci, are multiple. Primarily,
these studies are aimed at facilitating the identification of the underpinnings of complex
diseases and ultimately driving translational advances. In the last decade, GWASs have
successfully facilitated the discovery of biological mechanisms involved in several diseases
(see (Visscher et al., 2017) for a review). One famous example is the discovery, through
GWAS, of a SNP within the Complement Factor H (CMH) gene that conveys a significant
increased risk in developing age-related macular degeneration (AMD) (Klein et al., 2005).
The biological insight gained through this discovery has fuelled the development of a number
of therapeutics that are today at preclinical or clinical stages (see (Black and Clark, 2016)
for a review). Nonetheless, GWAS are today facing criticisms regarding its primary purpose.
These criticisms notably point the di�culty to go from GWAS results to the identification
of causal SNPs, and the fact that the vast majority of the discovered associations have small

1 http://www.synapse.org/RA_Challenge
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e↵ects, i.e, correspond to small increased risk to develop a disease.

Following this trend, and due to the importance of research around Rheumatoid Arthritis
and the development of genomic techniques, the last 60 years have seen mounting evidence to
support the genetic basis of RA through the identification of genetic susceptibility variants.
Prior to the development of GWAS, RA susceptibility loci were in fact discovered through
candidate gene and linkage studies. Although these approaches led to the discovery of only a
small number of loci, they identified the two most significant RA risk loci that remain to date:
human leukocyte antigen (HLA- DRB1) and protein tyrosine phosphatase, non-receptor type
22 (PTPN22). Together HLA-DRB1 and PTP 22 are estimated to account for approximately
40% of the total genetic risk for RA (Orozco et al., 2006). One of the latest GWAS meta-
analysis association study has brought the total number of confirmed RA risk loci to 34 (Stahl
et al., 2010).

A comprehensive discussion of all the identified genetic loci is beyond the scope and the
aim of this introduction. However, and in the case of our team, studying and using the
biological literature about RA and including this prior knowledge in our model is in our mind
one important factor of preventing overfitting in our final model, as it will be later discussed.
Besides, these studies were an important part of the initial motivation of the challenge,
since the evidence from association analyses (Cui et al., 2013),(Stahl et al., 2010) and the
theoretical heritability estimates suggested that algorithms focusing on genetic variation may
be predictive of patients response to RA therapies. This could be extremely useful for further
medical research, as biomarkers provide a compelling opportunity to perform simple tests
with high-potential impact on clinical care.

2.2 The challenge

2.2.1 Challenge design

The challenge was held over two phases: A two-step competitive phase and a collaborative
phase. The training data for the first part of the competitive phase consisted of a previously
published collection of anti-TNF-treated patients (n = 2, 706) of European ancestry, compiled
from 13 collections (Cui et al., 2013), of which the response variables from 675 patients
were held-out as a leaderboard test set. All participants, including our team, were indeed
provided with a leaderboard with real-time feedback, which evaluated the performance of
their predictions in the remaining 675 individuals. To reduce the potential for overfitting or
reverse-engineering of treatment outcomes from the leaderboard, each team was limited to
100 leaderboard submissions.

Over the course of the 16-week training period, 73 teams submitted a total of 4,874
predictions for evaluation on the leaderboard data. Upon completion of the training period,
teams were allowed up to two final submissions per sub-challenge and final evaluation of
algorithms was performed relative to a separate test data set consisting of data collected from
591 RA patients in the Corrona certain study (Pappas et al., 2014). Comparison with an
independent, blinded test data set aimed at reducing the contribution to estimated accuracy
of overfitting to the training data set (an e↵ect that will be later investigated). The goal
of this competitive phase was primarily is to identify the best genetic and clinical models
accuracies in predicting patients response, and potential interesting biomarkers.

The 8 best-performing teams were invited to join the collaborative phase. In this phase, a
collectively designed experiment was developed, in which each team independently performed
analyses and challenge organisers performed a combined analysis. We will focus here on our
methodology for the competitive phase, although we will also report final findings that were
agreed on after the end of the collaborative phase. Figure 2.2 shows the mentioned details of
the two phases and data used for the competitive phase.

The challenge contained two sub-challenges:

31



CHAPTER 2. THE RA RESPONDER CHALLENGE

Figure 2.2: Challenge double-phase design (left figure) and corresponding data for the competitive
phase (right figure)

• Predict treatment response as measured by the change in disease activity score (DAS28)
in response to anti-TNF therapy

• Identify poor responders as defined by EULAR criteria for non-response (20% of the
study population).

Since an estimate response quality defined in the second sub-challenge can be immediately
deduced from the treatment response prediction of the first sub-challenge (see 2.2.2), we
therefore focus on our regression method, although we report both sub-challenge methods
and results. Interestingly, predicting independently the binary label: response/non-response
did not improve the classification results in our case.

2.2.2 Challenge data

As mentioned, two separate data sets were provided to participants to train and test the
predictive models at two phases of the challenge. Anti-TNF response di↵ered slightly between
the training and test data sets (21.7% and 35.7%, respectively), likely due to di↵erences in
inclusion criteria in the two cohorts, although demographic data were similar between the
two. All teams remained blinded to outcomes from both the leaderboard and test data sets
throughout the experiment. Harmonised data from all cohorts are now publicly available as
a resource for use by the research community (doi:10.7303/syn3280809).

Genetic variables

The genetic variables consisted of processed SNP measurements. Processing was performed
prior to the challenge, and consisted of quality control filtering and SNP imputation. The
training set, derived from a meta-analysis containing 13 collections, was measured in 11
batches which were processed separately. The validation set was also measured and processed
separately. Quality control filtering was performed within each batch. Individuals with > 5%
missing data and SNPs with > 1% missing data were removed. SNPs which did not satisfy
the Hardy-Weinberg equilibrium 2 or had a minor allele frequency (MAF) < 1% were also
removed. While related individuals in the training set were removed, the single pair of
related individuals found in the validation set was kept. Finally, while ethnicity outliers
of non-European descent were removed from the training set, the validation set contained
93 patients of non-European descent which were not removed, but were not used for model
scoring.

The measurement technology used within each batch was the same, but a variety of
di↵erent technologies were used across batches. Each technology measured a di↵erent set of
SNPs which resulted in only 20,000 SNPs which were measured across all patients. Since

2A principle stating that the genetic variation in a population will remain constant from one generation to
the next in the absence of disturbing factors
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the number of SNPs common to all technologies was small relative to the total number
of SNPs, the missing SNP values were imputed. Each batch was imputed separately to a
common European reference. Imputation resulted in estimates of ≥ 2.2 million SNPs for
all individuals. Since the training set contained 104 SNPs that were not contained in the
validation set, we did not use these SNPs to build models.

After imputation, two SNP representations were provided to challenge participants. The
first representation was the imputed dosage, which is the estimated counts of the reference
nucleotide. Since each individual has two copies of each DNA strand, the reference value could
appear 0, 1 or 2 times and the imputation estimates could range from 0 to 2. The second
representation was the genotype probabilities, which estimates the probability of having 0, 1
or 2 of the reference nucleotide. While the GWAS meta-analysis performed associations using
the imputed dosages under the assumption of an additive genetic model, we chose to use the
genotype probability representation because it would allow us to estimate genotype e↵ects
without requiring us to impose a functional relationship between each SNPs three genotype
e↵ects.

Clinical variables

The following clinical variables were collected and could be used to predict drug response:
age, sex, anti-TNF therapy, methotrexate use and baselineDAS. Patients in the training
set were treated with one of three anti-TNF drugs: adalimumab, etanercept or infliximab.
While most patients in the validation set were treated with the same drugs in the training
set, some patients were treated with either golimumab or certolizumab. When evaluating
the models on the validation set, the challenge organisers excluded the golimumab treated
patients because participants were unable to successfully predict their drug response and
included the certolizumab treated patients because certolizumab predictions had a similar
performance to the three drugs observed in the training set.

Clinical outcomes

The disease activity score DAS28 (which we will refer to as DAS) is a continuous measure
of disease severity in rheumatoid arthritis. It is a non-negative score, with a higher value
corresponding to a more severe disease status. The score is calculated using the number of
swollen and tender joints (out of the 28 joints which are examined), the amount of inflamma-
tion markers observed in a blood sample and a score of how well a patient feels. Each patient
had DAS measured before (baselineDAS) and after (endDAS) starting treatment. While all
patients in the training set had endDAS measured 3-12 months after starting treatment,
patients in the validation set all had endDAS measured 3 months after starting treatment.
The continuous outcome used to evaluate a patient’s response was the change in the disease
activity score: ∆DAS = baselineDAS ≠ endDAS.

The decrease in disease severity was chosen to reflect the change in disease activity so that
positive values of ∆DAS corresponded to an improvement in disease status, which was the
desired response for patients. A second drug response outcome was a binary responder status
determined by the European League Against Rheumatism (EULAR) response criteria. The
EULAR criteria uses di↵erent ∆DAS thresholds to define the type of response based on the
final disease activity of the patient, as shown in table 2.1. Since endDAS is a function of ∆DAS
and baselineDAS, the EULAR criteria can also be interpreted as selecting ∆DAS thresholds
as a function of initial disease activity. For the challenge, a responder was defined as a patient
that had either good or moderate response, while a non-responder had no response.

Other information

Two ancillary data sets were made also available for participant use. The first measured TNF-
– protein level in HapMap cell lines (Choy et al., 2008). The second included blood RNA-seq
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endDAS \∆DAS >1.2 1.2 >... >0.6 <0.6

<3.2 good response moderate response no response

3.2 <... <5.1 moderate response moderate response no response

>5.1 moderate response no response no response

Table 2.1: EULAR response criteria.

data and genotypes for 60 RA patients from the Arthritis Foundation-sponsored Arthritis
Internet Registry, 30 of whom displayed high inflammatory levels and 30 of whom displayed
low inflammatory levels. Inflammatory levels were assessed using blood concentrations of
C-reactive protein (CRP), and elevated disease was defined as CRP > 0.8mg dl≠1, while low
disease activity was defined as CRP< 0.1mg dl≠1. In addition to CRP levels, rheumatoid
factor antibody levels and cyclic citrullinated peptide levels were also assayed. Genotypes
were assayed on the Illumina HumanOmniExpressExome array. We didn’t make use of these
datasets for our best model. And at our knowledge, no team had.

2.3 Methods

2.3.1 Data processing

Feature selection

Since each patient had more than 2 million SNP measurements and the training set only
contained 2,031 patients, the set of SNPs had to be reduced to ensure that non-spurious
relationships between SNPs and drug response could be identified. We selected a subset of
160 SNPs from two sources:

1. First, we selected 105 SNPs previously associated with drug response in Rheumatoid
Arthritis from the Pharmacogenomics Knowledgebase (Whirl-Carrillo et al., 2012). In
PharmGKB. We found 110 SNPs associated with the following drugs: adalimumab,
etanercept, infliximab, methotrexate and Tumor Necrosis Factor – (TNF-–) inhibitors.
Since 14 of these SNPs were not available in the challenge data, we used the HaploReg
3 database to substitute each of these SNPs with the most highly correlated SNP that
was contained in the data set (Ward and Kellis, 2011). Of the 14 SNPs, we substituted
9 SNPs with their best replacement and removed 5 SNPs because 2 SNPs had replace-
ments that were already contained in our PharmGKB SNP list and 3 SNPs did not
have a replacement with a correlation of at least r2 > 0.5 in the HaploReg database.

2. Additionally, we selected 55 SNPs that were significantly correlated with TNF gene
expression in blood. These SNPs were collected by the Linked Open Data challenge
team from the Blood eQTL Browser (Westra et al., 2013) using a p-value threshold of
10≠10.

Remark 1. This feature selection might seem quite restrictive. We tried indeed several
strategies at the beginning with a gene-level models with thousands of features. These initial
models did overfit so severely that we rapidly decided to use biologically based feature selection,
also to enhance interpretability, central to the goals of challenge.

Imputation

For clinical variables, we imputed all missing values with their mean value across patients. Im-
putation was performed separately on the training and validation sets. Categorical variables
were transformed into indicator variables before being imputed. Patients in the validation

3https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
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set who were treated with golimumab or certolizumab were treated as if their drug value was
missing.

2.3.2 Pipeline

We chose to adjust the target variable ∆DAS using the clinical variable baselineDAS for
several reasons. Since ∆DAS was defined as a function of baselineDAS (∆DAS = baselineDAS
- endDAS), modeling the relationship between baselineDAS and endDAS would force the
model to explain the relationship between baselineDAS and ∆DAS which could not simply
be explained by ∆DAS’s definition. Modeling the relationship between baselineDAS and
endDAS also allows us to incorporate natural constraints on endDAS: First, endDAS is defined
to be non-negative. Second, the mean of endDAS increases as baselineDAS increases because
patients with more severe initial disease activity are more likely to have more severe final
disease activity. Third, the variance of endDAS increases as baselineDAS increases because
patients with more severe initial disease activity have a larger range of possible improvements
that they can achieve. Finally, endDAS is skewed towards 0 for fixed values of baselineDAS
because most patients respond positively to the drugs, resulting in a larger decrease in their
disease activities than the smaller proportion of patients who do not respond to the drugs.
Figure 2.3 partially shows these constraints.

Figure 2.3: Plot of baselineDAS versus endDAS on the challenge training data

Given these observations, it was not appropriate to use a simple linear regression to model
the relationship between baselineDAS and endDAS because the residuals would have been
bounded, skewed and heteroscedastic. Instead, we used a gamma distributed generalised
linear model (GLM) with log link (Nelder and Wedderburn, 1972), to represent endDAS’s
dependence on baselineDAS. Since the Gamma distribution is non-negative, able to represent
skewed distributions and its variance increases as its mean increases (Thom, 1958), it is a
much preferred tool here to respect the mentioned constraints.

After predicting the mean endDAS given baselineDAS, we observe that the residual errors
have an increasing variance (see left figure in 2.4 ) Since the Gamma distributions fit with
the model has a constant coe�cient of variation, the residuals of this model were divided
by their corresponding endDAS predictions so that their variances were no longer a function
of baselineDAS (see figure 2.4, right). After removing the dependence of the residuals on
the initial disease activity, we used an ¸1-norm regularised linear model of the SNPs and
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Figure 2.4: Plots of baselineDAS versus residuals (left figure) and scaled residuals (right figure)

the remaining clinical variables to predict the scaled residuals. We used a linear model to
predict the residuals because a linear model is interpretable and would allow us to identify
SNPs and clinical variables which were associated with the outcome. A single model was
used for all drugs because drug specific models would be fit with a third of the patient
samples and would not generalise to drugs not observed in the training set (certolizumab,
golimumab). Since all of the drugs target the same pathway, fitting a single model for all
drugs should improve our ability to identify SNPs which a↵ect drug response through this
common pathway. Regularisation penalties were only placed on the SNP coe�cients because
we expected only a small number of SNPs to be useful predictors based on the lack of
associations discovered in the GWAS meta-analysis. These penalties were selected using 5-
fold cross validation. The scaled residual predictions were converted to their original scale by
multiplying them with the GLM endDAS predictions. The rescaled predictions were added
to the GLM endDAS predictions to get the final endDAS predictions. Since endDAS must
be non-negative, all negative final endDAS predictions were set to 0. ∆DAS predictions were
calculated by subtracting the final endDAS predictions from the given baselineDAS values.

In the challenge, we were also given the opportunity to submit predictions from a clinical
model which did not incorporate any genetic data. Since we were allowed to use a clinical
model that di↵ered from our full model, we used a random forest of clinical variables to
predict the scaled residuals in the full model because we were no longer required to use an
interpretable model. This provided us the opportunity to evaluate if model interpretability
was limiting predictive performance.The overall pipeline is shown in figure 2.5
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Figure 2.5: Methodology pipeline

2.4 Results

2.4.1 Comparative results

Our (team Outliers) full model had the best validation set performance, for both tasks, out
of all of the teams participating in the final phase of the challenge (see also figures 2.6 and
2.7). Using bootstrap analysis of submission ranks, the organisers of the challenge concluded
that our two submissions performed robustly better than all remaining solutions (Wilcoxon
signed-rank test of bootstraps on the respectively first and second sub-challenge gave p-value
of 5 · 10≠34 and 10≠66).

The other teams used a variety of methods, including Gaussian process regression, gradient
boosted classifiers, kernel methods, tree-based regression, linear mixed e↵ect models, and
ensembles of machine learning methods (Sieberts et al., 2016). Our final model results on the
CORRONA validation set is shown in table 2.2.

Table 2.2: Final validation set results for our full and clinical models, evaluated as correlation for the
regression sub-challenge and AUPR or AUC for the classification sub-challenge.

Model ∆DAS correlation non-response AUPR non-response AUC

clinical + genetic 0.40201 0.516 0.6214
clinical 0.4044 0.5063 0.6018

Surprisingly, within the full model, cross validation of the ¸1-norm regularised sub-model
recommended that no SNPs be used to predict the scaled residuals. Since the full model’s
predictions did not utilise genetic information, the full model could be compared to the
clinical model to evaluate the cost of preferring interpretable models in favour of complex
models. The clinical model had comparable ∆DAS results to the full model, but had worse
non-response results.(Table 2) The ∆DAS results demonstrate that an increase in model
complexity did not correspond to an increase in performance. The fact that the full model
was not capturing any genetic e↵ect was at first disturbing, since finding genetic biomarkers
would have been very interesting. The collaborative phase however and the comparison with
other teams results have shown first that our simple full model without genetic contributions
performed best and also had the best robustness to overfitting.
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Figure 2.6: AUPR and AUC of each of the top 7 teams full model, containing SNP and clinical
predictors, versus their clinical model, which does not consider SNP predictors. The box plot distri-
butions represent the scores resulting from replacing the SNPs in each team’s full model with randomly
selected SNPs. Figure from (Sieberts et al., 2016)

Figure 2.7: Full model versus clinical model performance: score (correlation with true values) of
each of the top 7 teams full model (incorporating SNP and clinical data) versus their clinical model
excluding SNP information, for the quantitative prediction sub-challenge. Figure from (Sieberts et al.,
2016)
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2.4.2 Results analysis: overfitting and genetic contribution

A comparison between the first leaderboard validation phase and the final CORRONA vali-
dation phase results unveils some interesting insights about the models performance. Figure
2.8 shows the behaviour of this performance in terms of AUC for the non-response classifica-
tion task (left figure) and in terms of correlation for the ∆DAS regression task, for the best
performing teams and at the two phases evaluation. A first striking fact is that all teams,
including our team, observe an overfitting phenomenon in both tasks. While the two metrics
for the classification sub-challenge showed positive correlation (r= 0.71 and 0.60 for AUPR
and AUC, respectively) between the scores on the held-out leaderboard data and the scores
on the test data, the quantitative prediction sub-challenge showed a negative correlation (r=
-0.052) suggesting that overfitting was more severe in the case of the regression task, de-
spite the demographic and other characteristic similarities between the primary cohort and
the CERTAIN cohort used at the first and the second phase evaluations (see supplementary
table 1 in (Sieberts et al., 2016)). Our team results however were the most robust to over-
fitting. The simplicity of the approach, but also the absence of spurious features selection
such as genetic covariates in the full model, although indirectly through cross-validation, is
the ground for this robustness.

Other teams were able to have a better full model than their clinical model, as shown in
figure 2.7 (models above the diagonal). It is interesting to notice that the full models from
the same teams, such as ”Guanlab” who was ranked first at the first leaderboard phase, were
the ones that su↵ered most of overfitting, according to figure 2.8. This ultimately raises the
question of genetic contribution to the prediction problem of the given target: ∆DAS.

To explicitly test the ability of teams modelling techniques to detect weak genetic contri-
bution, the challenge organisers first examined the contribution of feature selection to model
performance. Most teams had used a combination of knowledge-based and data-driven evi-
dence to perform dimensionality reduction in their model development (which was also our
case, but the model selection step at cross-validation ruled out the presence of SNPs in our
final model). To approximate the null distribution of the genetic models, each of the 7 top
performing teams trained 100 models using an equivalent number of randomly sampled SNPs
relative to their best-performing model. The results are shown in figure 2.6. For 5 of 7 classi-
fication algorithms, models using knowledge-mined SNP selection significantly outperformed
models using random SNPs for AUPR, AUC or both at a nominal p-value < 0.05. However,
It is surprising to observe that in most cases (except for our team ”Outliers” and team ”Lu-
cia”), the only clinical variables model proved to be as good, and sometimes better than the
full model. Pairwise comparison between clinical and full models across teams demonstrated
no statistical di↵erence (paired t-test p-value=0.85 and 0.82, for classification AUPR and
AUC, respectively, and p-value0.65 concerning the continuous prediction task correlation)
indicating that the contribution of SNP data to the prediction of treatment e↵ect was not of
su�cient magnitude to provide a detectable contribution to overall predictive performance.
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Figure 2.8: First phase leaderboard score versus final submission score as AUC for the classification
sub-challenge, and correlation for the quantitative sub-challenge with linear regression fit and 95%
confidence region (shaded). Figure from (Sieberts et al., 2016)
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2.5 Conclusions and acknowledgements

As a first application of machine learning in bioinformatics, I had the chance to participated
with our highly motivated team ”Outliers” in the RA responder DREAM challenge. This
open challenge framework enabled the comparative evaluation of predictions developed by 73
research groups using the most comprehensive available genotype and clinical data of patients
and their response to Rheumatoid Arthritis anti-TNF drug therapies.

This project was a very nice opportunity to apply a variety of machine learning techniques
on a large exclusive dataset within the supervised learning framework (both classification and
regression tasks). It was also an appropriate introduction to research areas in the field and
particularly to my further thesis work, since it emphasised the problem of overfitting and
the di�culty of going around it in case of low signal to noise ratio or a weak contribution
of a part of the dataset in the prediction of the target variable. One of the main findings
of the challenge was indeed that SNPs did not meaningfully contribute to the prediction
of treatment response above the available clinical predictors. However, the di↵erent teams
were able to leverage the small set of available clinical features to develop predictions that
performed significantly better than random. These results suggest that future research e↵orts
might focus on the incorporation of a richer set of clinical information including seropositivity,
treatment compliance and disease duration.

Our team enjoyed the best results in both sub-challenges in the final test phase, with
an approximate correlation of 0.4 for the continuous response to treatment regression task,
and around 0.62 as AUC for the classification sub-challenge. We value our approach and its
relative robustness to overfitting for several reasons:

• The prior selection of SNPs based on biological and medical literature which allowed
to considerably reduce the dimension of the data.

• The simplicity of the models used that also permitted embedded feature selection
through the ¸1-norm and their interpretability. Our models did already show through
feature selection that genetic contributions to the predictions was weak, which was
confirmed by the challenge and the community assessments.

• The use of scaled residuals which allowed to implicitly account for some constraints of
the response variable.

• A careful 5-fold cross-validation before relying on the leaderboard feedback.

We think that all these steps are crucial in a such a challenge with millions of features from
di↵erent sources and only a few thousands patients. Finally this challenge helped bringing up
di↵erent research questions. For instance, how to robustly evaluate individual or collective
features contribution to a target prediction in a supervised learning task. How to evaluate
and potentially improve the stability of feature selection when the number of observations
is small with respect to the data dimension. And finally, how to deal with such overfitting
di�culties when little or no prior knowledge is at hand? Further investigations carried in the
next chapters will, we believe, partially address this last issue as it was briefly presented in
the manuscript Introduction.

I would like to thank all of the ”Outliers” team members: Daniel Hidru, Mohsen Hajiloo,
Bo Wang, Aziz Mezlini, Cheng Zhao, Rae Yeung for this collaborative work and especially
our team leader Anna Goldenberg for having worked hard to advice the team but also actively
participating in the model building, for her welcome in Toronto and her guidance throughout
the project. I also would like to thank Solveig K. Sieberts and Lara M. Mangravite for
their motivation and perseverance in the challenge organisation and the publishing of these
results.The data was collected and cured by the Rheumatoid Arthritis Challenge Consortium
and the CORRONA network.
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Chapter 3

Noise injection in the input data

“If you so choose, each day can
be filled with even more joy than
the one before. If you so choose,
even the most seemingly random
events can work in your favour.”

Ralph Marston
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CHAPTER 3. NOISE INJECTION IN THE INPUT DATA

Abstract

In this chapter we revisit the history of noise injection in machine learning, pro-
viding a taxonomy of the di↵erent forms that it has taken in the literature. We
then formally redefine in its generality input noise injection INI in the ERM set-
ting. We review the main methods solving the new INI optimisation problem.
We provide intuitions, theoretical and empirical studies about the regularisation
benefit of INI for general noising functions focusing on dropout for linear model
not only as the most popular and studied example of noise injection in the recent
machine learning literature but also as an inspiration for our future work in the
next chapters. We then provide a new approximation of the INI empirical risk in
the case of dropout and show how it provides new theoretical insights of dropout
for linear and non-linear models. We finally illustrate the e↵ects of INI in lin-
ear models by experiments from simulations and real data examples in order to
provide other empirical insights about INI in general and dropout in particular.

Résumé

Dans ce chapitre nous revenons sur l’histoire de l’injection de bruit dans le cadre
de l’apprentissage automatique en proposant une taxonomie des di↵érentes formes
que cette technique a prises dans la littérature. Nous redéfinissons ensuite formelle-
ment dans sa généralité l’injection de bruit dans les données INI dans le cadre de
la minimisation du risque empirique. Nous passons en revue les principales méth-
odes permettant de résoudre le nouveau problème d’optimisation résultant. Nous
fournissons ensuite des intuitions, une étude théorique et empirique sur les avan-
tages de cette méthode en tant que technique de régularisation en mettant l’accent
sur les modèles linéaires et le dropout, non seulement en tant que l’exemple le plus
populaire et étudié d’injection de bruit dans la littérature récente mais également
comme base et inspiration pour nos travaux dans les prochains chapitres. Finale-
ment, une nouvelle approximation du risque empirique est proposée dans le cas
du dropout fournissant une nouvelle interprétation qui s’étend au cas des modèles
non-linéaires et qui présente une implémentation alternative de la même méthode
avec certains avantages.
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3.1 Introduction

3.1.1 History and use

Noise is an all-encompassing term that usually describes undesirable disturbances or fluc-
tuations. In biology and other natural science fields, noise typically refers to variability in
measured data when identical experiments are repeated or when bio-signals cannot be mea-
sured without background fluctuations distorting the desired measurement (Tsimring, 2014;
Raser and O’shea, 2005). Noise has therefore been historically a fundamental enemy for com-
munications engineers whose main goal is known to ensure that messages can be transmitted
error-free and e�ciently from one place to another at the fastest possible rate (Kie↵er, 1994).
Random noise in the form of electronic fluctuations or electromagnetic interference corrupts
transmitted messages. This places limits on the rate at which error-free communication can
be achieved. In statistics, statistical noise means unexplained variability within a data sam-
ple (Davenport and Root, 1958). The term noise in this context came from signal processing
where it was used to refer to unwanted electrical or electromagnetic energy that degrades the
quality of signals and data. The presence of noise means that the results of sampling might
not be duplicated if the process were repeated. Therefore, the problem of separating out the
noise from the signal has long been a focus in statistics as well and is still now in many cases.

However, in 1981, an interesting new phenomenon involving the Brownian motion process
was analysed by Benzi et. al in the particular case of stochastic dynamical systems (Benzi
et al., 1981) and termed as stochastic resonance. It stated that the output signal-to-noise
ratio (SNR) can be greater when an appropriate amount of noise is added to weak periodic
input signals. This phenomenon can first be thought of as an exotic mathematical curiosity.
Stochastic resonance, however, has been observed since then in a large variety of systems
including: bistable ring lasers (Vemuri and Roy, 1989), semiconductor devices (Iannelli et al.,
1994), chemical reactions(Leonard and Reichl, 1994), human tactile sensing (Beceren et al.,
2012), neural networks of mammalian brains (Maass, 2014; McDonnell and Ward, 2011), the
blood pressure control system in the human brain (Hidaka et al., 2000) and more. It has
also been applied in many engineered systems such as bistable circuits (Harmer et al., 2002).
In his book: Noise (Kosko, 2006), Bart Kosko, a well-known electrical engineering professor
and an early populariser of fuzzy logic and neural networks, terms stochastic resonance as
noise benefit and introduces the concept of adaptive stochastic resonance in neural networks
learning algorithms to find the optimal level of noise to add to many nonlinear systems to
improve their performance. He also proves many versions of the so-called forbidden interval
theorem which guarantees that noise will benefit a system if the average level of noise does
not fall in an interval of values (Kosko et al., 2009). He also shows that noise can speed up
the convergence of Markov chains to equilibrium and even ventures to suggest that Stochastic
Resonance might be a triggering ingredient in the origins of life from inert matter to biological
entities.

Stochastic resonance can also occur in static threshold nonlinearities and is used in partic-
ular in a signal-processing technique known as dithering (Wannamaker et al., 2000). Dithering
involves deliberately adding a random or pseudorandom signal to another signal prior to its
digitisation (the process of converting information from a physical format into a digital one)
or quantisation (the process of mapping input values from a large set (often a continuous
set) to output values in a (countable) smaller set such as rounding and truncation). This
randomisation, although increasing the total power of the noise at the output, reduces un-
desirable harmonic distortion e↵ects introduced by quantisation (Schuchman, 1964). This
counterintuitive approach to enhance signal-to-noise ratio, although seemingly distant from
supervised machine learning, has been used recently in what is called neural network quan-
tisation (Jacob et al., 2017) where uniform noise is added to the activations of convolutional
networks with quantised weights in order to improve the test accuracy (Baskin et al., 2018).

Noise injection is also historically and conceptually related to randomised algorithms.
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Figure 3.1: Example of dithering.

Randomised algorithms have already been extensively used in programming and have nat-
urally also gained interest in machine learning. Either to design new learning algorithms
(Quinlan, 1986; Huang et al., 2011a), to derive faster algorithms (Osoba et al., 2011; Jordan
and Mitchell, 2015; Woodru↵, 2014), to ensure privacy (Geng and Viswanath, 2016) or to
improve performance results of the deterministic counterpart (Mitzenmacher and Upfal, 2005;
Gallicchio et al., 2017; Oneto et al., 2017). Even if these numerous benefits have been proven
empirically and even theoretically in many cases, we still do not know generally whether the
randomisation part truly helps: in the sense of whether P ”= BPP or not (that is if there
exists a deterministic counterpart to each randomised algorithm that does the same thing).

In all cases, randomised algorithms are nowadays embedded in many computational and
probabilistic methods including machine learning and its success raised the interest of research
and was the object of many conferences and machine learning workshops (see for instance
the NIPS 2013 workshop: Randomised Methods for Machine Learning). Noise injection has
today pervaded all the fields of machine learning: in reinforcement learning, research about
the benefits of noise in boosting the performance by extending the exploration through noise
injection in the action space or to the agent’s parameters space is still very active (Hutter and
Poland, 2004), encouraged by positive results in other related fields such as cognitive science
and deep learning. In unsupervised learning, the idea of training with noise is rooted in many
methods: denoising autoencoders (DAE) (Vincent et al., 2010) are trained to reconstruct their
clean inputs with noise injected at the input level, while variational auto-encoders (VAE)
(Doersch, 2016) are trained with noise injected in their stochastic hidden layer. This line
of work has been theoretically justified (Im et al., 2015; Vera et al., 2018) and empirically
successful in learning good representations.

As mentioned in the introduction, we will focus in this manuscript on noise injection
in supervised learning and its use as a regulariser, that is to prevent overfitting. We focus
therefore in the next section on the possible supervised learning frameworks where noise
injection can have a meaning and possibly help improve generalisation. Although we will
focus in this manuscript on the ERM framework where the aim as stated in the introduction
is to find a model that has a small average error over the data distribution, it is also possible
to use other di↵erent frameworks depending on the setting. These frameworks essentially
di↵er in the way they aggregate the noise being added. They convey as well a di↵erent
facet of noise injection as a regularisation that is not only important for a global overview
of noise injection regularisation in supervised learning but that will also be useful in guiding
the intuition, interpreting and expanding noise injection in the ERM framework itself.
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3.1.2 A taxonomy of noise injection in supervised learning

Di↵erent optimisation frameworks have considered the presence of uncertainties, by introduc-
ing this same uncertainty in the problem to be optimised, in a way that is in line with their
own mathematical frameworks. We can indeed distinguish, depending on the optimisation
framework used, clear di↵erences in:

• The mathematical representation of the noise injected

• The aggregation procedure of the injected noise in the optimisation problem

• The goal of the noise injection procedure

Figure 3.2: Noise injection in di↵erent supervised learning frameworks

Following these criteria, one can distinguish di↵erent concerned frameworks that have
been used in the literature of supervised learning and that have considered additional uncer-
tainties in the data by incorporating them in the optimisation process: Bayesian optimisation,
learning from distributions, robust optimisation, ensemble learning and the ERM framework
that was presented in the introduction and that will be the considered framework of this
manuscript. One main reason to focus on the ERM framework is that most of machine learn-
ing in the supervised setting and consequently most of the noise injection literature follow
this framework. Nevertheless we provide here, for completeness, a brief overview of how the
other frameworks do provide alternative ways to inject noise in the learning process and how
they deal and aggregate this added noise.

Bayesian strategies naturally treat optimisation objects and parameters as random vari-
ables to be inferred via a posterior distribution, for which we assign prior distributions
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(Chakraborty, 2005). These priors captures our beliefs about the model and the data. There-
fore, in Bayesian Optimisation (BO) it is straightforward to consider the added uncertainty
either as a new prior distribution over the desired object to be noised or as a new random
variable with its own prior distribution that can be plugged or learnt at the inference time
as a latent variable (Graves, 2011). The main di↵erence with the classical framework consid-
ered in most of the machine learning noise injection literature, that is the ERM framework
presented in the introduction, is that the marginalisation over the noise latent variable will
be in the Bayesian setting over the likelihood and not the risk (that is usually the nega-
tive log-likelihood). This marginalisation is usually computationally intractable (or with a
very high cost of computation) (Shahriari et al., 2016) and requires approximations such as
variational inference (Blei et al., 2017) or special algorithms such as Gibbs sampling or Ex-
pectation Maximisation (Casella and George, 1992; Moon, 1996) that we will not describe
here. Interestingly, a strong connection exists between these approximations and noise in-
jection in the classical framework of ERM, as it is the case between Bayesian optimisation
and regularisation. Bayesian interpretations of noise injection in the ERM framework has
also allowed to build adaptive forms of noise in a principled way (Maeda, 2014; Gal and
Ghahramani, 2016a), and apply the same noise injection techniques in other models such
as recurrent neural networks (Gal and Ghahramani, 2016b). This connection will be more
detailed later in this chapter.

Another framework that was only recently developed deserves mentioning, as it sets a
beautiful theory for introducing uncertainty in kernel methods in particular (a popular class
of methods for supervised and unsupervised learning) and that allows for introducing input
uncertainty in a principled way yet di↵erent from the Bayesian way, is called learning from
distributions (Muandet et al., 2012). This framework is relatively new and represents a con-
vergence of isolated e↵orts to adapt kernel methods to learning from distributional objects.
Learning from distributions is not be mixed with distribution learning which is concerned
with learning the probability distribution of a random variable given a set of its realisations.
This framework proposes to learn a mapping from distributions to labels given n pairs of
labeled distributions. This framework is mainly di↵erent from the ERM framework in that
fact that the risk functional to be minimised is expressed in terms of the loss of the expected
model parameters over the data distribution in contrast with the expected loss of the model
(Szabó et al., 2016). To see the link between learning from distributions and noise injection in
the ERM setting, noise injection can exactly be formalised by this setting as an uncertainty
around the observations’ values which transforms each of these values to a known distribution
with that realisation as a mean value. Therefore the noise injected can be considered as a
set of random variable of the size of the data samples, where each random variable a↵ects a
given realisation to a distribution. An equivalence is actually shown between the new opti-
misation problem over the resulting noisy distribution and learning with mean embeddings
(expectation of the original kernel taken over the introduced distributions) in the traditional
ERM framework, which first provides a keystone in the consistency of the new optimisation
problem and potential ways to solve it but also opens up for the theory of mean embeddings
over probability distributions (Muandet et al., 2017). Empirical studies show that this noise
injection can reduce overfitting in many cases, although a complete theoretical link between
regularisation and learning with mean embeddings for other kernels is still missing (Zhu et al.,
2017).

Robust Optimisation (RO) is another framework developed among others by Soyster (1973)
as a paradigm solving convex problems with hard constraints created by bounded uncer-
tainty in the parameters. Instead of being interested in expectation, mean or mode such as
in stochastic optimisation, in RO one is interested in the worst case analysis and thus the
extrema of the risk under given constraints. For a detailed overview of the RO framework,
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we refer the reader to (Gorissen et al., 2015; Norton et al., 2017a; Ben-Tal and Nemirovski,
2000; Ben-Tal et al., 2009). Robust optimisation has naturally found applications in machine
learning and will probably witness more interest with fields such as adversarial machine learn-
ing, which aims to immunise machine decisions against potential malicious attacks (Shaham
et al., 2015). A considerable amount of theoretical work has been developed to support the
framework such as properties of robust solutions and many connections have already been
studied between existing machine learning algorithms and RO. Support Vector Machines
(SVMs) for example, a supervised learning algorithm that builds a hyperplanes maximising
distances between data points of di↵erent classes (Hearst et al., 1998), naturally corresponds
to a robust optimisation problem (Xu et al., 2009b), and popular regularisations such as
Tikhonov regularisation and the LASSO (presented in the introduction) are shown also to
correspond to robust formulations (Xu et al., 2009a). These formulations allowed on one
hand to understand better the generalisations, consistency and structural properties of the
corresponding models and on the other hand to generalise these families of regularisers to
more broad methods (Xu and Mannor, 2012). Although the view of robust optimisation
can be found overly pessimistic from a statistical view and lacking assumptions about the
distribution or the nature of the noise introduced (which is not the case for a user-added
noise that we explore in this manuscript), more recent variations explore more optimistic
versions of RO (Norton et al., 2017b) or by bridging it with stochastic optimisation such as
distributionally-robust stochastic optimisation (Goh and Sim, 2010) and is likely to find more
interest and development in the future.

Ensemble methods are learning algorithms that use a set of models that are learnt using
the data and one or di↵erent optimisation problems in order to construct a final model
which will be used to classify the new data (see introduction for a brief description). In
ensemble learning, the second step which is an aggregation procedure of the sub-models in a
final model takes di↵erent forms in the literature such as averaging, weighted averaging and
majority voting (Dietterich, 2002; Zhang and Ma, 2012). The first step of training individual
learners has as a role to construct di↵erent models that are at the same time accurate (that
is better than random) and diverse (that is having di↵erent errors on new data points) also
takes di↵erent forms and can be briefly classified as:

• Using di↵erent learning algorithms

• Injecting randomness in the learning algorithm,e.g. random initialisation

• Manipulating the training examples, e.g. the bootstrap.

We can therefore see that injecting noise in the data is embedded in many ensemble
methods as a part of the training process. Adding even more noise when manipulating the
examples is shown also to be more e↵ective in terms of performance of the final model (Raviv
and Intrator, 1996). It is indeed obvious to see that adding noise to the data is the main cause
of diversity when using the learning algorithm especially if there is no randomness involved
during training and in the absence of other randomness such as random initialisations. As
shown in the introduction, such diversity can reduce the variance of the ensemble method and
improve its generalisation performance (Kuncheva and Whitaker, 2003). However, mixture of
experts methods requires reasonable time for training data for classifiers that is proportional
to the number of individual classifiers and their individual computational complexity, hence
resulting in high computational cost (Dietterich, 2000).

The term noise Injection has been first used in an explicit way in supervised learning in
the case of neural networks in the late 80’s under the stochastic optimisation scheme which
falls under the ERM framework (Plaut et al., 1986; Alspector et al., 1988). Other terms
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such as training with noise, adding noise and jitter were also used (Matsuoka, 1992). Indeed,
inspired by the robustness of biological neural networks to noisy environment and/or the loss
of neurons, a large body of work has tried to study and emulate this property for artificial
neural networks that was termed as fault tolerance, although also the terms robustness and
reliability were equally used. In (Chiu et al., 1994), the authors list di↵erent ways that
have been used to introduce uncertainties during training, such as flipping the labels, adding
Gaussian noise to the the input data or in the synaptic weights.

It is hard to assess which machine learning method came first with the idea of training
with noise but the idea already appeared in the late 80’s, interestingly in one of the works of
G.E.Hinton among others Plaut et al. (1986), who was also the one suggesting the dropout
method that recently revived interest in noise injection techniques in deep learning and that
we will describe later. Other papers appeared indeed in the same period and seem to suggest
independently training neural networks while adding noise in the data such as in (Gardner
et al., 1989; Peeling et al., 1986). All these experimental studies used the same trick of
stochastically adding samples of noise from the same distribution to either weights or the input
of the neural network layers. In terms of the used noise distribution, most of the methods
focus on Gaussian noise addition in the input of the neural network, known as jitter which
have then received a lot of attention in those years (Holmstrom and Koistinen, 1992). Noise
injection in neural networks was then clearly inspired from biological systems, and statistical
studies about benefits of noise injection in terms of generalisation have already started to be
empirically analysed such as in (Sietsma and Dow, 1988, 1991; Edwards and Murray, 1996;
Murray and Edwards, 1994; An, 1996). Convergence and consistency properties of noise
injection in the ERM setting were studied such as links between noise injection and learning
invariances (Leen, 1995) or regularisation properties such as connection with weight decay
that were revealed for instance in (Bishop, 1995a; Matsuoka, 1992). Three decades before
the re-emergence of deep learning, regularisation by noise was already known as a common
technique to improve generalisation performance of neural networks but that witnessed a
decline in use with the decrease of popularity of neural networks methods, even though it has
been adapted by kernel methods (Decoste and Schölkopf, 2002) and ensemble learning cited
previously. With the emergence of complex deep networks, regularisation with noise injection
regained attention and led to the development of successful techniques, most notably dropout,
which received lately a lot of attention in the machine learning and deep learning literature
and that we will detail in the next sections and further develop in the other chapters.

Let us recall that in the ERM framework, we usually have three objects that one uses for
the optimisation problem: a loss function, the model (usually represented by a set of weights
if it is parametric) and the data (observations and labels if it is supervised, observations
without labels if it is unsupervised, both if it is semi-supervised). Sometimes the model or
the optimisation problem have hyper-parameters that are not included in the optimisation
problem. Such hyper-parameters include for instance regularisation trade-o↵s or the number
of the layers and the number of units per layer for neural network architectures. These can
be fixed by cross-validation or a set of heuristics.

Following the three objects mentioned, we can distinguish three instances or families of
noise injection:

• Adding noise to the loss or its gradient such as in (Raginsky et al., 2017; Welling and
Teh, 2011)

• Adding noise to the model parameters such as (Murray, 1992; Murray and Edwards,
1994; Wan et al., 2013) for noise injection in the weights of multilayer neural networks
and (Srivastava et al., 2014) for noise injection in the activations

• Adding noise to the input data such as (Rifai et al., 2011)

This separation is first conceptual and does not mean that these categories are indepen-
dent. Even if studying these di↵erent schemes and the relationship between them is beyond
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the scope of this manuscript, we will still hint to obvious links between these schemes. We
will notice for instance in the case of linear models, which we will focus on in a large part
of this manuscript, that these schemes are closely related and sometimes result in the same
procedure (this will be developed in the next section about dropout). In this manuscript we
will be focusing on noise injection in the input data which we will define in the next section.

Literature comparison of the different frameworks: It is of course hard to assess
a whole framework as better methods can appear, leveraging newer and more e�cient al-
gorithms and sets of tricks. However, one can make a relative, modest and up-to-present
literature comparison of noise injection development between the di↵erent frameworks ac-
cording to several criteria.

• Flexibility: in terms of diversity of forms that the noise can take as a mathematical
object and if the framework can be applied on the variety of real world examples.

• Understandability: in terms of consistency of the theory and how much we understand
of the e↵ects of noise injection in the corresponding framework

• E�ciency: in terms of computational cost

• E�cacy: in terms of generalisation results, as relative improvement with noise injection
as opposed to without.

Qualitative assessment of noise injection techniques under the di↵erent presented frame-
works and following these criteria is summarised in 3.1.

Table 3.1: Literature comparison of noise Injection under di↵erent supervised learning optimisation
frameworks

Framework / Criterion Flexibility Understandability Efficiency Efficacy

Learning from distributions Medium Medium Medium Low

Robust optimisation Low High Medium Low

Ensemble learning High Low Low High

Bayesian optimisation High Medium Low Medium

ERM High Medium High Medium

3.2 Formulation

In the supervised learning setting, we are given a series of n pairs of the form (xi, yi)i=1,...,n

that are assumed to be n realisations of independent and identically distributed pairs of
random variables (X1, Y1), .., (Xn, Yn) from a joint distribution P on X ◊ Y, and one primary
goal is to find or construct a mapping f : X ‘æ Y that minimises the empirical risk

Remp(f) =
nÿ

i=1

[L (f(xi), yi)] .

We formulate noise injection in the input as a transformation of the input parametrised
by a random variable with a known distribution.

More precisely, noise injection consists in learning the same problem but with data drawn
from new noisy random variables (ÊXi, Yi) i = 1, . . . , n, following a new distribution ÂP. The
new random variables ÊXi are defined as a transformation of the variables Xi, i = 1, . . . , n
using the noise variable ” from a known distribution ∆.

ÊXi = ‹(Xi, ”), i = 1, . . . , n .
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where ‹ is a deterministic noising function. We require the noise injection to be unbiasing,
i.e. :

E
δ≥∆

(‹(X, ”)) = X .

In this manuscript we will focus on two important noising functions:

• Additive noise We take the noising function as a simple addition

‹(X, ”) = X + ” .

In this case, the unbiasing condition becomes

E
∆

(”) = 0X .

• Multiplicative noise We will also consider the noising function as component-wise
multiplication:

‹(X, ”) = ” § X .

Where § is the element-wise multiplication of the two vectors. In this case, the unbi-
asing condition becomes

E
∆

(”) = 1X .

Remark 2. Here we have considered to focus on adding noise only to the variables Xi. One
can imagine applying noise on both the data and the labels, either by considering another label
noise variable and another noising function for the label, or by considering the same noise
and function over the whole space. This generalisation of the proposed noising scheme can
be particularly impactful in domains where labeled data is scarce or inherently noisy (Thiel,
2008). We do not develop here this direction as it requires alone another line of research
(which noising function to choose and what effect on the learning problem). One intuition
following data augmentation that we we presented in introduction and will link later with INI
indicates possible positive results on generalisation performance, as also indicated by (Thiel,
2008). Research in noising both labels and observations simultaneously is however almost
inexistant (if we exclude noise label modelling) although it has been shown lately to be useful
for studying learning methods properties such as multilayer neural networks (Zhang et al.,
2016).

Remark 3. It is possible to parametrise the distribution ∆ as a function of the input data
distribution P (or if P is unknown on the n observations). Related work will be presented in
Adaptive Structured Noise Injection.

Remark 4. Since the definition here does not include injecting noise in the labels, the same
formulation can in fact be used in unsupervised learning. The authors of the original study
on dropout, a recent and popular noise injection in the input layers of neural networks, apply
for example this noise scheme in a type of unsupervised models called Botlzmann Machines
and even show improvement in some aspects (Srivastava et al., 2014).

The risk to be minimised is now :

ÂR(f) = E

(X,Y )≥ÂP
[L (f(X), Y )] = E

(X,Y )≥P
E

δ≥∆

[L (f(‹(X, ”)), Y )] . (3.1)

Using the data observations as an approximation, the INI empirical risk that will be
minimised is :

ÂRemp(f) =
1

n

nÿ

i=1

E
δ≥∆

[L (f(‹(xi, ”)), yi)] . (3.2)
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3.3 INI as a regulariser

As detailed in the introduction, the ultimate aim of a supervised learning model is to have
a null or at least a very small error on unseen data given training data, that is, to minimise
the expected risk given its empirical estimate. Since its introduction in the machine learning
literature, input noise injection methods have been motivated by this aim and more precisely
by helping to prevent overfitting. As hinted in our brief history of noise injection, this mo-
tivation might seem counterintuitive at first. Several intuitions however can justify the use
of such a technique. We briefly review and discuss these intuitions, then present some of the
regularisation properties of INI in inear models.

3.3.1 Intuitions

Several intuitions have justified the empirical e↵ectiveness of Noise Injection.

• Data Augmentation intuition: Maybe one of the most intuitive ways to see why
INI can be related to regularisation techniques, is to interpret noise injection as implicit
data augmentation. Indeed, if we consider a finite sample estimation of the new INI
empirical risk defined in 3.2, by considering a set of noise samples ”k, k = 1, . . . , m drawn
randomly from ∆ and defining an empirical discrete distribution ∆m, the empirical risk
to minimise becomes:

\ÂRemp,∆m
(f) =

1

m.n

mÿ

k=1

nÿ

i=1

[L (f(‹(xi, ”k)), yi)] . (3.3)

It is straightforward to notice, first that

E

5
\ÂRemp,∆m

(f)

6
= ÂRemp(f) .

In other terms, the finite sample estimate of the noise injection empirical risk is unbi-
ased, and second that :

lim
mæŒ

5
\ÂRemp,∆m

(f)

6
= ÂRemp(f) , (by the law of large numbers) .

Therefore, INI can be seen as a way to train models on an infinitely augmented training
set.

As presented in the introduction, data augmentation is an intuitive regularisation tech-
nique that has shown to be e↵ective from its beginnings to the present day (Witten
et al., 2016). Indeed, since the generalisation ability of the model depends on the num-
ber of samples at hand, the intuition of creating new samples to enlarge the training
set seems natural. However data augmentation has almost always been performed with
a highly structured corruption process based on much prior knowledge (Van Dyk and
Meng, 2001). Besides the di↵erent forms of data augmentation that were discussed
previously, a close idea that gave significant improvement in the accuracy in bench-
mark vision recognition tasks is considering elastic distortions as transformations that
use random displacement fields, which can be seen as closely linked to the framework
of noise injection. In (Simard et al., 2003), authors use random scaling and elasticity
parameters introduced in the transformations along with convolutional neural networks
and define the elasticity exactly as the variance of the Gaussian noise convolved with
input values. In (Konda et al., 2015), authors show that noise injection at di↵erent
layers of a neural network can also be viewed approximately as augmenting the training
data but in a particular way that depends on the network parameters and chosen level
of representation.
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• Robustness intuition: Another intuition that has been mentioned as one of the
main motivations for noise injection is that the resulting trained model would be robust
to the addition of such noise, that is that its performance will not drastically degrade
if the model is trained again on a noisy version of the same dataset. Interestingly, one
of the inspirations of the modern reuse of noise injection in deep neural networks that
comes from the family of denoising auto-encoders, a type of artificial neural network
used to learn e�cient data codings in an unsupervised manner, is also one of the main
carriers of this intuition. In (Vincent et al., 2008), the authors consider that a good
model and representation should be robust under corruptions of the input which follows
the set of intuitions of artificial neural networks emulating biological neural networks.
These auto-encoders take as input a noisy version of the training data whilst training to
recover the original undistorted input and have empirically shown significant improve-
ment on benchmark datasets (Vincent et al., 2010). (van der Maaten et al., 2013) also
interestingly show empirically that the use of dropout improves generalisation perfor-
mance of the resulting linear model in the case of what is called nightmare at test time
(Globerson and Roweis, 2006) in which some of the features are deleted during testing
(due to sensor failures or because the feature computation exceeds a time budget) and
outperforms models trained with the robust optimisation view of the worst-case sce-
nario. It is remarkable however that little work has focused on theoretically proving
or analysing this intuition in spite of its appearant simplicity. One of the main reasons
is of course the di�culty in analysing the stochastic noise injection scheme which we
will hint to later in this chapter, but also the fact that often the use of terms such
as robustness and stability is too wide and is not backed up by a proper definition.
One can mention the work of (Hardt et al., 2016) which show that noise injection can
improve stochastic approximation bounds on models stability in the case of Lipschitz
loss. The work around stochastic robustness has only started to flourish lately with the
discovery of the sensitivity of neural networks to chosen noise (Szegedy et al., 2013)
and the emergence of the field of adversarial machine learning.

• Invariance intuition: Another intuition that is relevant in the case where the noise
a↵ects the observation but not its label (as in our formulation) is that for each example
of the training dataset, we are constructing a set of pseudo-examples (generated by
the noising function), that do share the same label. We are thus encouraging label-
invariance through the noise injection. For many datasets indeed, this intuition makes
sense : Images that have a certain label do usually have the same label after some pixels
removal, as it is the case for documents where some words are deleted or changed. (Leen,
1995) list di↵erent methods for encouraging invariance in machine learning and lists data
augmentation with examples transformed under the desired invariance property while
maintaining the label as one method to achieve the invariance. Note that the particular
noise injection strategy is not forcing the model to be invariant but rather encouraging
the invariance through the error function. Lately, some connections between the dropout
noise injection scheme and learning invariant representations have been theoretically
and empirically drawn in (Achille and Soatto, 2018b) for instance. There seems however
to be much more room for further work around the subject which is gaining popularity
in the special case of deep learning (Achille and Soatto, 2018a).

3.3.2 General properties for linear models

We start with simple and general properties about the new INI empirical risk :

Property 1. For linear models and convex loss functions with respect to the weights (respec-
tively strictly convex), ÂRemp is convex (respectively strictly convex).
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Proof The original empirical risk is convex as the average of convex function. The convex-
ity of the INI empirical risk follows directly from the linearity of the expectation .
Therefore, and for convex loss functions, convergence to a global minimum is assured, even
though this minimum is not necessarily unique.

Property 2. For linear models and convex loss functions (with respect to the weights), the
INI empirical risk can be written as:

ÂRemp = Remp + Ων,∆(D, w) .

where Ων,∆(D, w) is a non-negative term that potentially depends on the data and the weights.

Proof Let us denote :

Ων,∆(D, w) =
1

n

nÿ

i=1

5
E

δ≥∆

(L (w · (‹(xi, ”)), yi)) ≠ L (w · xi, yi)

6
.

By substracting and adding the original empirical risk, we have

ÂRemp = Remp +
1

n

nÿ

i=1

5
E

δ≥∆

(L (w · (‹(xi, ”)), yi)) ≠ L (w · xi, yi)

6

= Remp + Ων,∆(D, w) .

(3.4)

Ων,∆(D, w) is non-negative by Jensen inequality since the loss function is convex .
For linear models and convex loss functions, input noise injection acts indeed as a regu-
larisation where the regulariser is data-dependent. The last property shows therefore how
minimising the new INI empirical risk introduces a tradeo↵ between the original empirical
risk and what can be seen as a bias introduced by noise injection or a regularisation penalty,
that is a non-negative function of the model weights, just like ¸1 or ¸2 penalties that were
presented in the introduction. Here however, the penalty depends also on the data and the
loss function which makes it potentially interesting but harder to analyse.

3.3.3 Exact marginalisation

Another way to minimise the noise injection objective would be to directly compute the
expectation of the empirical risk over the noise variable. In some cases, as for instance when
the model f is linear and the loss is quadratic, we can perform a full marginalisation on the
noise:

ÂRemp =
1

n

nÿ

i=1

E
δ≥∆

L(w · ‹(xi, ”), yi)

=
1

n

nÿ

i=1

E
δ≥∆

(yi ≠ w · ‹(xi, ”))2

=
1

N

A
nÿ

i=1

(yi ≠ w · xi,)
2 + E

Ë
(w · ‹(xi, ”))2 ≠ (w · xi)

2
ÈB

=Remp +
1

n

nÿ

i=1

Var
δ≥∆

[w · ‹(xi, ”)]

=Remp +
1

n

nÿ

i=1

w€Var
δ≥∆

[‹(xi, ”)] w .

This decomposition of the new empirical risk in two terms, where the first is the empirical
risk on the original observations and the second is a quadratic term in w, has in fact already
been written in (Richard and Lippmann, 1991; Haykin, 1994; Bishop, 1995a) for the case
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of additive noise and then later by (Wager et al., 2013; van der Maaten et al., 2013) in the
case of multiplicative noising function, and we rewrite it here for general noising functions.
This particular analysis is indeed an important tool, not only as a way to minimise the
new empirical risk without having to explicitly add noisy observations before or during the
training, but it will also be a way to understand the e↵ect of noise injection on the optimisation
problem and thus of its solution and the statistical properties of this solution.

One can see indeed that for the two examples of additive and multiplicative noise we can
easily compute the variance over the noise:

• For additive noise with variance ⁄: Var [‹(xi, ”)] = ⁄ and thus the INI empirical risk
can be rewritten as :

ÂRemp = Remp + ⁄ ÎwÎ2
2 . (3.5)

One can see that in this case INI is exactly equivalent to ¸2-norm regularisation. This
type of regularisation and its benefits on generalisation have been extensively studied
in inverse problems optimisation, statistics and machine learning literature (see intro-
duction). This marginalisation is therefore the first simple yet rigorous proof of why
INI can prevent overfitting.

• For multiplicative noise with induced variance Var [‹(xi, ”)] = ⁄ ÎxiÎ2
2 and in this case

the INI empirical risk can be rewritten as :

ÂRemp = Remp + ⁄

qn
i=1 ÎxiÎ2

2

n
ÎwÎ2

2 . (3.6)

One can see that in this case INI is again exactly equivalent to an ¸2-norm regularisation.
The regularisation hyper-parameter here is data-dependent but since cross-validation
is usually used to find an optimal value for ⁄, there is in the case of quadratic loss and
linear models virtually no di↵erence between additive and multiplicative INI.

3.3.4 Approximated marginalisation

It is interesting to look at what happens when the loss is non-quadratic but still smooth (such
as the usual logistic or cross-entropy loss functions used for classification). For a general form
of smooth loss and in the linear model setting, we can write the Taylor approximation of the
loss up to the second order with respect to w · xi :

L(w · ‹(xi, ”), yi) ƒ L(w · xi,, yi)

+
ˆL(w · xi, y)

ˆw.xi
[w · (‹(xi, ”) ≠ xi)]

+
1

2

ˆ2L(w.xi, y)

ˆ2w.xi
[w · (‹(xi, ”) ≠ xi)]

2 .

Taking the expectation with respect to the noise ”, the first order term cancels out since

E
δ≥∆

(‹(xi, ”)) = xi .

We get:

ÂRemp =
1

n

nÿ

i=1

E
δ≥∆

L(w · ‹(xi, ”), yi)

ƒ Remp +
1

2

nÿ

i=1

ˆ2L(w · xi, y)

w.xi
(Var [w · ‹(xi, ”)]) .

(3.7)

We still find the second order term with respect to the noising function, because we
locally perform a quadratic approximation of the loss function and which will lead again to
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an ¸2-norm regularisation. However, a set of new terms appear which represent the second
derivative of the loss with respect to the model parameters at the training samples, or in
other terms the Hessian of the loss. The Hessian plays an important role in many aspects of
optimisation and learning as in for instance:

• Several nonlinear optimisation algorithms used for training neural networks are based on
considerations of the second-order properties of the error surface, which are controlled by
the Hessian matrix (Battiti, 1992). These algorithms are known for faster convergence
and stability properties (Meyer, 1970; Ruder, 2016)

• The inverse of the Hessian has been used to identify the least significant weights in a
network as part of network ”pruning” algorithms (Hassibi and Stork, 1993)

• The Hessian plays a central role in the Laplace approximation for a Bayesian neural
network. Its inverse is used to determine the predictive distribution for a trained net-
work, its eigenvalues determine the values of hyper-parameters, and its determinant is
used to evaluate the model evidence (Nasrabadi, 2007).

Again, the second term in the marginalisation is a quadratic term in the model weights.
For the particular case of the logistic regression one obtain:

• For additive noise with variance ⁄

ÂRemp ƒ Remp +
⁄

2

dÿ

j=1

C
nÿ

i=1

P (Y = 1 | X = xi, w)P (Y = 0 | X = xi, w)

D
w2

j

= Remp +
⁄

2

C
nÿ

i=1

–i

D
ÎwÎ2

2 .

(3.8)

where –i = P (Y = 1 | X = xi, w)P (Y = 0 | X = xi, w) is the derived term from
the loss second order derivative following equation 3.7. It is worth noticing that –i is
maximal if P (Y = 1 | X = xi, w) = P (Y = 0 | X = xi, w) = 1/2 , that is if the model
does not give confident predictions for the given observation xi.

• For multiplicative noise with variance ⁄:

ÂRemp ƒ Remp +
⁄

2

dÿ

j=1

nÿ

i=1

Ë
P (Y = 1 | X = xi, w)P (Y = 0 | X = xi, w)x2

i,j

È
w2

j

= Remp +
⁄

2

dÿ

j=1

nÿ

i=1

–ix
2
i,jw2

j .

(3.9)

One can see that because of the new presence of x2
i,j , each feature weight is now penalised

individually for the first time. This also couples a penalisation by the feature norm and
by the confidence of the model (translated by the presence of the –i )

Table 3.2 summarises the previously derived regulariser forms (that is the additional
term appearing in the new INI empirical risk) for the square and logistic loss functions (as an
example of non quadratic loss) respectively for additive and multiplicative INI in the in the
case of a linear model. One can see from 3.2 that if the normalisation factor of the regulariser
that trades o↵ the empirical risk objective and the regularisation objective (usually chosen by
cross validation, see introduction) is not taken in account, then the only case corresponding to
an interesting data dependent regularisation that di↵ers from the ¸2-norm regularisation is the
case of multiplicative INI for non quadratic loss (such as the case of dropout or multiplicative
Gaussian INI for logistic regression). This is one of the main reasons we later focus on such
a scheme for this chapter and the following ones.
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Remark 5. These two particular instances of the INI approximation are not new. It has
has been first derived over three decades ago in the context of additive Gaussian INI (Bishop,
1995a; Reed et al., 1995). It was however recently revisited in the case of multiplicative noise
by several authors and leveraged to develop more understanding in particular of the dropout
algorithm and its application in semi-supervised learning (Wager et al., 2013; van der Maaten
et al., 2013).

Remark 6. However, this Taylor approximation has a few limitations on the theoretical level
that are important to notice:

• This approximation is only valid when the quantity w.(‹(xi, ”) ≠ xi) is small. Even
though this quantity is smaller when the noise variance is small, and even for a lin-
ear noising function such as additive or multiplicative noise, this quantity depends on
the data and on the model weights w that are not bound in principle. Helmbold and
Long (2015)show for instance that for multiplicative INI, in particular dropout, and
for logistic regression, the true regulariser can remain bounded when the weights go to
infinity, and that it can be non-monotonic as individual weights increase from 0. We
clearly do not have these properties with the Taylor approximation regulariser.

• Even if the approximation can be close to the expected INI risk, the structure of the
function can change drastically for non-quadratic losses which makes the minimum of
the true INI risk and the minimum of the Taylor approximation risk far from each oth-
ers. We will see in the experiments that this gap will translate in a gap in generalisation
performance between the Taylor and the stochastic approximation.

• This approximation will be the same for different multiplicative noise injection schemes
with the same variance induced by the noising function, since it only depends on the
second moment of the noisy data with respect to the noise variable. It will not there-
fore show some special properties, for example for dropout over other multiplicative
noise schemes. It has been empirically shown indeed that multiplicative noise injection
schemes do not result in the same accuracy (Srivastava et al., 2014; van der Maaten
et al., 2013).

These reasons lead to the importance of searching for other approximations in the case of
a particular INI such as dropout. We build and analyse a novel approximation in the section
about dropout.

Table 3.2: Form of di↵erent regularisers resulting from di↵erent loss functions and two instances of
noising (additive and multiplicative) using previous notations. The particular and most interesting
data-dependent regularisation is highlighted with a blue colour.

Loss Additive INI Multiplicative INI

Square loss ⁄ ÎwÎ2
2 ⁄

Ëqn
i=1 ÎxiÎ2

2 /n
È

ÎwÎ2
2

Logistic loss λ
2 [

qn
i=1 –i] ÎwÎ2

2
λ
2

qd
j=1

qn
i=1 –ix

2
i,jw2

j

3.4 Algorithms

In this section we will review proposed methods to minimise the noise injection empirical risk.
The first method relies on a finite sampling of noisy examples (that is of the noise random
variable), the second on a stochastic sampling of the noise during the gradient descent and
the last method on the marginalisation derived in the previous section.
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3.4.1 Finite sample approximation

As previously stated, if we consider a finite sample estimation of the new INI empirical risk
defined in 3.2, by considering a set of noise samples ”k, k = 1, . . . , m drawn randomly from ∆

and defining an empirical discrete distribution ∆m, the empirical risk to minimise becomes:

\ÂRemp,∆m
(f) =

1

m.n

mÿ

k=1

nÿ

i=1

[L (f(‹(xi, ”k)), yi)] . (3.10)

This approximation also can be seen as sampling observations from ÂP. Indeed, we can
apply the weak law of large numbers to see that the new INI empirical risk converges to
the expected INI risk just as the empirical risk converges to the expected risk. One can also
leverage knowledge about the loss function (such as its bounds) and the noise distributions to
study more precisely the gap between the empirical and the expected INI risks. Grandvalet
et al. (1997) for instance propose a point-wise and a global control of the empirical INI risk
fluctuations in many cases with assumptions on the loss function and the hypothesis search
space. If one uses gradient descent for the minimisation of the empirical risk, the algorithm
1 below describes the finite sample approximation of the INI objective.

Algorithm 1 INI Finite sample approximation

Require: Training set (xi, yi)i=1,...,n, initialisation w0 œ R
d, learning rate “ > 0, number of

passes npasses œ N, noising function ‹, noise distribution ∆, finite noise sample size m.
1: procedure Build augmented dataset

2: for k = 1 to m do
3: Sample ” ≥ ∆

4: for i = 1 to n do
5: Âxi

(k) Ω ‹(xi, ”)
6: Âyi

(k) Ω yi

7: end for
8: end for
9: return ( Âxi

(k), Âyi
(k))i=1,...,n;k=1,...,m,

10: end procedure
11: procedure GD on the new data

12: w0 Ω w0

13: for t = 1 to npasses do

14: w Ω w ≠ 1
m.n“

qn
i=1

qm
k=1 OwL(w. Âxi

(k), Âyi
(k))

15: end for
16: return w
17: end procedure

Although approaches that explicitly corrupt the training data are simple (in that they just
replace training on the original dataset by training on an augmented dataset) and e↵ective
(in that control guarantees exist as m grows), they lack elegance and the resulting model
can show some instability for the same noise distribution ∆ when its discrete equivalent
∆m varies. One can indeed use di↵erent discrete estimates for the same noise distribution
and Grandvalet et al. (1997) for instance shows that one can have a uniform control (with
respect to the model and discrete distribution) over the di↵erence between the empirical and
the expected INI risks in very simple settings but that it does not seems to be obvious for
larger model families (such as neural networks for instance). More importantly, this method
comes with high computational and memory costs since the minimisation of the new empirical
risk (the evaluation of the risk values and of its gradients) scales linearly in the number of
corrupted observations, i.e. it scales as O(n.m). Moreover, data storage will be problematic
for large values of m which is the regime one is interested in, especially for large datasets which
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are becoming more ubiquitous in machine learning. This makes stochastic approximation a
more interesting and practical approach.

3.4.2 Stochastic approximation

We have seen in the introduction that stochastic approximation and in particular the stochas-
tic gradient descent can be used in the case when computing the full gradient is computation-
ally expensive (in the case of complex loss functions, complex models or a very large dataset).
One can make again use of the stochastic gradient descent since we have again a stochastic
estimate of the loss gradient and that we are interested in minimising the expectation of this
loss. Since we know the distribution of noise to be injected, it is su�cient, in addition to
picking an input sample xt with label yt from the training set, to sample a noise example ”(t)

from the chosen distribution ∆ and take a gradient step. We will then have for each step t :

w(t+1) = w(t) ≠ “tOwL(fw(t)(‹(xt, ”(t))), yt) .

Under the same conditions mentioned by Bottou (2010) for instance, and that mainly
depend on the regularity of the loss function and the growth learning rates “t, the Robbin-
Siegmund theorem (Robbins and Siegmund, 1971) again, ensures convergence towards ÂRemp.
Algorithm 2 below shows the exact procedure when using stochastic gradient descent along
with INI along with a shu✏ing step for the training dataset (introducing the permutation fi,
see (Bottou, 2010)).

Algorithm 2 INI stochastic approximation algorithm

Require: Training set (xi, yi)i=1,...,n, initialisation w0 œ R
d, initial learning rate “0 > 0,

learning rate decay — > 0, number of passes npasses œ N, noise distribution ∆.
1: procedure INI SGD

2: w Ω w0

3: t Ω 0
4: for iter = 1 to npasses do
5: fi Ω random permutation of [1, n] Û Shu✏e training set
6: for i = 1 to n do Û (Mini-)batch also possible
7: “t Ω “0/(1 + —t)
8: Sample ” ≥ ∆

9: Áxπ(i) Ω ‹(xπ(i), ”)
10: Áyπ(i) Ω yπ(i)

11: w Ω w ≠ γt

n OwL(w.]xπ(i), ]yπ(i))
12: t Ω t + 1
13: end for
14: end for
15: return w
16: end procedure

3.4.3 Marginalisation for quadratic loss

Another way to minimise the noise injection objective would be to directly compute the
expectation of the empirical risk over the noise variable. In some cases, as for instance when
the model f is linear, we can perform a full marginalisation on the noise and thus directly
minimise through algorithms such as gradient descent without having to sample from the
noise distributions. We saw that this is possible for the quadratic loss :

60



CHAPTER 3. NOISE INJECTION IN THE INPUT DATA

Recall that for quadratic loss and linear models with weights w, noise ” ≥ ∆ and noising
function ‹ :

ÂRemp = Remp +
1

n

nÿ

i=1

w€Var
δ≥∆

[‹(xi, ”)] w .

The first term does not depend on the noise variable. So if one can marginalise the second
term, the new empirical risk can be expressed deterministically and can thus be minimised
by classical (or stochastic) gradient methods or directly solved if an analytical solution is
known. Algorithm 3 shows a gradient descent approach of the obtained marginalised loss
when the loss is quadratic. When the loss is not quadratic either one can rely on the Taylor
approximation, as shown in 3.3.4, or the other minimisation approaches.

Algorithm 3 INI with marginalised square loss for linear models

Require: Training set (xi, yi)i=1,...,n, initialisation w0 œ R
d, learning rate “ > 0, number of

passes npasses œ N, noising function ‹, noise distribution ∆, finite noise sample size m.
1: procedure GD on the marginalised loss

2: w0 Ω w0

3: Ω Ω qn
i=1

qn
i=1 Var∆ [‹(xi, ”)] Û or estimate if not directly computable

4: for t = 1 to npasses do
5: w Ω w ≠ γ

n

qn
i=1 OwLsquare(w.xi, yi) ≠ 2 γ

nΩw
6: end for
7: return w
8: end procedure

Remark 7. For noising functions such as polynomial functions with degree n, the noise
variance term can be easily expressed in terms of moments of the distribution ∆ up to order
2n. For more complicated functions one can perform a Taylor approximation on ‹ around
the mean of ”.

3.5 The special case of dropout

In 2012, the ImageNet Large Scale Visual Recognition challenge was won by the University
of Toronto team by a surprisingly large margin. In an invited talk at NIPS, Hinton (2012)
credited the dropout training technique for much of their success. In this section, we review
the dropout algorithm that was proposed by Hinton and Srivastava (Hinton et al., 2012b;
Srivastava et al., 2014) as one of the most popular noise injection technique in deep learning
today. Even though dropout was proposed as a noise injection method for all layers of a
neural network, we justify why dropout for linear networks is a form of multiplicative Input
Noise Injection. We then briefly review the literature related to the method and discuss its
implications. More details about the special cases of dropout in linear models and multilayer
neural networks will follow in the two following chapters.

3.5.1 The dropout algorithm

Consider a neural network with L hidden layers. Let l œ {1, . . . , L} index the hidden layers of
the network. Let z(l) denote the vector of inputs into layer l, y(l) denote the vector of outputs
from layer l (y(0) = x is the input). W (l) and b(l) are the weights and biases at layer l. The
feed-forward operation of a standard neural network can be described as (for l œ {1, . . . , L}
and any hidden unit i, and f being any activation function) as,

z
(l+1)
i = w

(l+1)
i y(l) + b

(l+1)
i

y
(l+1)
i = f(z

(l+1)
i ) .

61



CHAPTER 3. NOISE INJECTION IN THE INPUT DATA

With classical dropout, the feed-forward operation becomes

r
(l)
j ≥ Bernoulli(p)

Ây(l+1) = rl § y(l)

z
(l+1)
i = w

(l+1)
i Ây(l+1) + b

(l+1)
i

y
(l+1)
i = f(z

(l+1)
i ) .

Here § denotes an element-wise product. For classical dropout, r is a vector of indepen-
dent Bernoulli random variables, each of which has probability p of being 1. This process is
applied at each layer. For learning, the derivatives of the loss function are back-propagated

through the sub-network. At test time, the weights are scaled as W
(l)
test = pW (l) and no

dropout is applied.

Figure 3.3: Dropout Neural Net Model: a standard neural net with 2 hidden layers (left figure) and an
example of a thinned net produced by applying dropout to the original network (right figure). Figure
from (Srivastava et al., 2014)

Figure 3.4: Dropout at the unit level: a unit at training time that is present with probability p and
is connected to units in the next layer with weights w (right figure). At test time, the unit is always
present and the weights are multiplied by p (right figure). Figure from (Srivastava et al., 2014).

Property 3. For linear models, dropout with probability p is equivalent to multiplicative INI

where the noise ” is such that : ” =

I
1/p with probability p

0 otherwise

Proof For a linear network, dropout is applied on the linear activation w.x through the
stochastic gradient descent, and thus by the Stochastic approximation theorem (Robbins and
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Siegmund, 1971), solves:

min
w

1

n

nÿ

i=1

E
δ≥Bernoulli(p)d

[L(” § (w · xi)), yi]

=min
w

1

n

nÿ

i=1

E
δ≥Bernoulli(p)d

[L(w · (” § xi)), yi] .

By setting Âw = pw as the estimated used in the dropout trick at the test time, and absorbing
the scaling factor in the Bernoulli variable, dropout solves:

min
Âw

1

n

nÿ

i=1

E
δ≥Bernoulli(p)d

5
L( Âw.(

”

p
§ xi)), yi

6
.

This property allows to see apply the regularisation intuitions and marginalisation techniques
previously present for INI on dropout performed that is performed on activations in the case
of linear models.

3.5.2 Related work

As presented previously, dropout follows the stream of ideas that appeared already three
decades ago in the literature of neural networks, and that consists in adding noise in the
input or the weights of multilayer networks (see introduction). The main novelties that
dropout presents are that :

• The noise is injected at the unit activations, that is on the input of each layer of the
network, instead of only the input layer or the weights.

• The noise takes the form of a multiplicative Bernoulli random variable instead of addi-
tive Gaussian noise.

• Instead of having a non biased noising procedure (as defined in the first section of this
chapter), weights are instead multiplied by the Bernoulli distribution parameter at test
time (presented in (Srivastava et al., 2014) as an approximate averaging procedure).

Since its introduction by Hinton et al. (2012b) and Srivastava et al. (2014), dropout has
raised a lot of attention in the machine learning and especially deep learning community.
The two original publications have been cited more than 10, 000 times and dropout became
a classical technique in deep neural networks to improve their generalisation performance.
One of the main reasons for this success is the set of extensive experiments in the original
publications showing that dropout can help obtain the state-of-the-art performance on a range
of benchmark data sets. Another reason is the simplicity of the trick that does not require
changing the loss function, to add external prior knowledge nor to constrain the weights in
a user dependent way. We can argue that a third reason is the mystery that surrounded and
still partially surrounds dropout despite its practical simplicity and the many intuitions it
has been justified with.

One can classify the literature around dropout into three categories :

• Theoretical understanding of the dropout properties.

• Design of variants of dropout.

• Applications of dropout or its variants to new problems or new models.

Although dropout has been introduced as an e↵ective technique to prevent overfitting,
Hinton et al. (2012b) only presented empirical results for this e↵ectiveness, supplemented by
two main intuitions. The first is that dropout can prevent complex co-adaptations on the
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training data. The authors did not define the term co-adaptations and only argue that by the
stochastic absence of other units, each hidden unit in the multilayer network will rely less on
the other hidden units. The second intuition is that dropout is an e�cient way of performing
model averaging with neural networks, by stochastically sampling a thinned network at each
weight update and then approximating the average prediction produced by all these networks
(by scaling the weights at test time). In the second and more complete publication, these
intuitions remain without theoretical justifications, the authors even venture to a comparative
intuition that comes from the role of sex in evolution, mainly comparing units to genes that
co-adapt less with sexual reproduction. This argument can be seen to be a particular case of
encouraging diversity in ensemble learning, but was not backed up by theory or related work
in the original publications.

This e↵ectiveness of dropout in reducing overfitting raised many questions about the
dynamics of its training, convergence and averaging properties at test time, that have been
for instance listed by Baldi and Sadowski (2014) and that the community tried to answer in
the following years. Baldi and Sadowski (2014) confirm for instance the ensemble averaging
intuition in linear networks, and show how dropout can be approximated by normalised
geometric means of subnetworks in the nonlinear case.

A lot of work has then focused on dropout for linear models, trying to understand dropout
as noise injection in a simple case: van der Maaten et al. (2013) and Wager et al. (2013) use
the second order Taylor approximation, that has been used previously in the case of Gaus-
sian additive noise (Bishop, 1995a), in order to marginalise the loss over the multiplicative
Bernoulli noise and conclude that dropout performs a kind of data-dependent regularisation.
Wager et al. (2014) also show improved results when training with dropout in the case of
document classification and later provides statistical learning bounds favouring dropout reg-
ularisation over ¸2-norm regularisation for generative Poisson topic linear models. This finds
generalisation by the same authors (Wager et al., 2016) to a particular noise injection where
data is generatively drawn from Levy processes and noise from a conjugate distribution.

However, Helmbold and Long (2015) shows that the adaptive ¸2-norm approximation of
dropout for linear models is fundamentally false, and that for the logistic loss and linear
models for instance, the dropout induced penalty can remain bounded even when a subset of
the weight norms goes to infinity, that it can be non-monotonic as individual weights increase
from 0, and that the penalty may not be convex. When extending their study for multilayer
networks, the same authors surprisingly show that dropout training can lead to negative
weights even when the output is a positive multiple of the inputs(Helmbold and Long, 2017).
They also show that unlike weight decay and other Lp-norm regularisers, dropout training is
insensitive to the rescaling of input features, and largely insensitive to rescaling of the outputs.
It is also shown in the same paper that in the case of multilayer networks the dropout penalty
can be negative, and that it depends on the labels, in contrast with the generalised linear
model setting studied in (Wager et al., 2013). Other facets concerning the e↵ect of dropout on
the generalisation performance have been explored: McAllester (2013) present generalisation
bounds of models trained with dropout using PAC-Bayesian theory. Gao and Zhou (2015)
use the Rademacher complexity, a measure of the richness of the models class with respect
to a probability distribution, in order to show that dropout can improve generalisation by an
exponential reduction of this complexity (in terms of the number of layers) in contrast with
the polynomial reduction of dropout in linear models or ¸2 regularisation. Another line of
work has focused on the interpretation of dropout as a Bayesian approximation, by seeing the
multiplicative Bernoulli or Gaussian noise injected as a measure of the weight’s uncertainty,
which allowed to view another facet of dropout as a regularisation, but also to provide new
principled variants and applications of the dropout method (Gal and Ghahramani, 2016a;
Maeda, 2014).
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The empirical success of dropout and the emergence of some answers about its properties
has led to the development of many variants that try to boost the e↵ect of dropout or improve
some of its regularising aspects. The first variant termed Dropconnect appeared in (Wan et al.,
2013), and proposed to apply dropout, that is multiplication by Bernoulli variables on the
weights in contrast with the activations for the original method. The method was backed
by a theoretical analysis of the Rademacher Complexity and showed improved results on
benchmark vision recognition tasks. Another aspect of dropout that has been questioned
was the choice the probability distribution of the Bernoulli variables, called dropout rate,
empirically chosen to be around 0.5 for hidden layers in the original publications. A first set
of methods propose theoretical heuristics to choose a nearly-optimal rate such as in (Zhai
and Wang, 2018) which use the Rademacher complexity bounds to adaptively optimise the
dropout rate during training or which introduce a binary belief network which is overlaid on a
neural network to optimise the rate for each hidden unit through a similar back-propagation
(Ba and Frey, 2013). Another line of work relies on the Bayesian interpretations of dropout
in order to propose EM-like algorithms where dropout rates are optimised along with the
model weights in alternate fashion (Kingma et al., 2015; Maeda, 2014).

Dropout was proposed in multilayer networks but its success have encouraged its adaptation
to other types of models and in other settings. In (Chen et al., 2015), the authors adapt the
dropout method the non-smooth hinge loss used in SVM methods. Gal and Ghahramani
(2016b) use their Bayesian interpretation of dropout to provide a justified straightforward
application in the case of recurrent neural networks. Variants for convolutional networks
recently appeared and obtained improved results (Tompson et al., 2015; DeVries and Taylor,
2017). Another line of work tried to make sparse versions of dropout in order to perform
simultaneously desirable feature selection (Li and Liu, 2016; Molchanov et al., 2017; Kang
et al., 2018)

Of course, it is hard to keep pace of all the work that is related to dropout and that
was applied in many subfields of machine learning. One can notice interestingly that a lot
of mystery is still underlying the exact e↵ect of the noise injection regularisation in neural
networks in particular and machine learning methods in general (Rudi and Rosasco, 2017).
Even with the emergence of other simple and e↵ective regularisation methods that empirically
reduced the need for dropout such as maxout networks (Goodfellow et al., 2013) and batch
normalisation (Io↵e and Szegedy, 2015), dropout did not lose interest and is still widely used
and inspiring competitive variants, and even inspiring more understanding of regularisation
(Elissee↵ et al., 2005) and deep learning optimisation (Hardt et al., 2016; Scardapane and
Wang, 2017), which are two areas that lack a complete theory and are still full of open
questions.

In the remainder of this chapter, we try to provide additional theoretical and empirical
understanding of dropout: in the next section we indeed develop a simple yet insightful
novel approximation of dropout, for general models, in order to illustrate original intuitions
of the dropout method and motivate other variants and a generalisation of dropout. In
the final section we provide experimental results, focusing on linear models (complementary
experiments will follow in next chapters for multilayer and convolutional networks).

3.6 Another approximation for Dropout

We have seen that dropout, just as other multiplicative INI schemes, can be approximated
in the case of linear models as an adaptive ¸2-norm regularisation, that has its limitations.
Recall that with dropout, we minimise:

ÂRemp =
1

n

nÿ

i=1

E
δ≥Bernoulli(p)d

5
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p
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For simplicity of notations and of analysis, we will omit the scaling (one can just consider
scaling the weights by p as mentioned earlier). We can rewrite the empirical risk as:
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When p is close to 1, and if we approximate the loss up to order 1 around (1 ≠ p), only
the two first terms of the marginalisation remain. With the fact that pα ƒ 1 ≠ –(1 ≠ p), we
obtain

Remp =
1

n
(1 ≠ p)
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(1 ≠ d(1 ≠ p))L(f(xi), yi) + o(1 ≠ p) .

(3.11)

We have therefore obtained a new empirical risk ÂRemp, that we can rewrite di↵erently,
replacing by the empirical risk:

ÂRemp ƒ (1 ≠ d · (1 ≠ p))Remp + d · (1 ≠ p)

Cqd
j=1 Remp\j

d

D
= ÂR approx

emp , (3.12)

where

Remp\j =
1

n

nÿ

i=1

[L (f(xi,1, .., xi,j≠1, 0, xi,j+1, . . . , xi,d), yi)] .

Interestingly, Remp\j appears as a new cost, representing the error made by the same
model but with the deletion of one feature.

This approximation gives a new insight on the e↵ect of dropout for general loss functions
and models, as the new derived risk establishes a tradeo↵ between :

• The empirical risk on the original dataset

• The average of empirical risks on the dataset with the deletion of one feature (and all
the others untouched)

The new empirical risk encourages therefore the model not to rely only on one feature for
prediction. We can recover the intuition of the first paper about dropout as preventing feature
co-adaptations (Hinton et al., 2012b). Even if there was no definition of co-adaptations in the
original paper, one can define two features to be co-adapted if their mutual presence produces
a small risk but the presence of one of them for the same model can incur a high risk. In other
terms, one can understand dropout at the input level through this approximation as making
the model accurate with respect to the original risk while being more robust to individual
input feature deletions (with respect to the risk as well).

It is interesting to bound the di↵erence between the new approximative risk and the original
risk. In contrast with the quadratic approximation, the bound will be of first order in terms
of the units activations:
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Property 4. With the previous notations and if the loss function is Lipschitz with constant
l, the following inequality holds in the case of linear models: f(x) = w · x :

---Remp ≠ ÂR approx
emp

--- Æ l.(1 ≠ p)
1

n

nÿ
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dÿ

j=1

|wjxi,j | . (3.13)

Proof From equation 3.12, we get:
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(3.14)

Remark 8. As for the quadratic Taylor approximation, this new approximation provides
another approach to minimise the expected INI risk using for example gradient descent on the
approximated risk. One should keep in mind however that even the first approximation requires
computing d + 1 gradients computations at each iteration for each example, and thus might
become prohibitive in high dimension. The bound in the last property also becomes weaker
as the dimension grows. This approximation is in fact more a way to justify the use and
understand dropout in a more general setting as an alternative to the Taylor approximation.
However and as it will be shown in the simulation experiments, it may be a more promising
approach also as a practical regulariser when compared to the Taylor approximation.

Remark 9. One can pursue the development of higher order terms in the expected dropout
empirical risk which will actually contain terms of multiple features subsets. The next higher
order term around (1 ≠ p) of the expected loss function with respect to the i-th observation
will indeed contain the terms :

ÿ

j,kœ{1,..,d}

L (f(xi,1, .., xi,j≠1, 0, xi,j+1, . . . , xi,k≠1, 0, xi,k+1, .., xi,d), yi) .

This means that the new approximation of the dropout expected risk at the second order will
take into account not only the contribution of individual features as the cost of removing
each from the model, but also the cost of removing pairs of these features, in a new three-part
tradeoff. If the presence of both features is much more important for the classification than the
presence of each, as some synergy in the model between two features can take place, this second
order approximation will better take in account this effect. We can see that dropout actually
accounts for an exponential number of these interactions. And even if the way it accounts
for these interactions through the loss function is somehow complex (depending heavily on the
loss function, the model and the data structure), this sheds light to one of the reasons why
dropout might be an important and popular trick in the recent literature.

Remark 10. When p is close to 0, that is in the case of aggressive dropout, a new tradeoff
will take place, between the risks of the model with one feature active only:
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It seems that dropout will have again also a preference for models where all the features
are important for the prediction, but now in a more direct way. That is not that the absence
feature will incur an increase in the error, but that the presence of the feature will incur a
decrease in the error.

To understand more what happens in this case case, one can look at the least squares with
linear models after scaling the weights:
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For sufficiently small p, the matrix diag(XtX) ≠ 2pXtX will be positive semi-definite (by
continuity of the eigenvalues), we find the same kind of quadratic approximation in terms of
the weights as in the Taylor approximation previously presented. However here if two features
are correlated negatively, the weights are encouraged to be closer and if two features are
correlated positively, the weights are encouraged to be different. This follows the intuition of
making the model robust to feature deletion since it diversifies the weights if we have redundant
features.

3.7 Experiments and empirical insights

We focus on linear models. We perform a series of experiments on simulated and real data in
order to assess the ability of noise injection in preventing overfitting as opposed to without
noise injection or to other regularisations (such as ¸2-norm regularisation).

3.7.1 Data with rare and useful features benefits from dropout

In order to test the intuition given by the second order Taylor approximation given in equation
3.9, that is that dropout logistic regression should perform well with rare but useful features,
we build on the simulation setting by Wager et al. (2013), who however only compared
the quadratic Taylor approximation of dropout and ¸2-norm regularisation. In this study,
we will also add to the comparison the stochastic approximation of dropout, the stochastic
approximation of multiplicative noise injection and our new approximation to dropout. Wager
et al. (2013) leverage the same quadratic approximation of multiplicative noise injection with
logistic function in 3.9 to design a simulation where this penalty is small for the model weights
that generated the data (see (Wager et al., 2013) for more details).

Setting: the simulation has 1050 features. The first 50 discriminative features form 5
groups of 10. The last 1000 features are purely noisy variable. Each example (xi, yi) is
independently generated as follows :

• Pick a group number g œ 1, . . . , 25, and a sign: sgn = ±1.

• If g 6 5, draw the entries of xi with index between 10(g ≠ 1) + 1 and 10(g ≠ 1) + 10
uniformly from sgn ◊ eC , where C is selected such that E[(x,j)2] = 1 for all j, that is
the features are scaled in terms of variance. Set all the other discriminative features to
0. If g > 5, set all the discriminative features to 0.

• Draw the last 1000 entries of xi independently from N (0, 1)
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• Generate yi from the Bernoulli distribution with parameter 1
1+e≠xiw , where the first 50

coordinates of w are 0.057 and the remaining 1000 coordinates are 0. The value 0.057
was selected to make the average value of |xi.w| in the presence of signal be 2.

Training and evaluation: For each simulation run, a training set of size n=75 is gener-
ated (cycling over the group number g deterministically). We train the di↵erent methods on
100 training datasets and test them on one test dataset with 10,000 examples (drawn using
the same setting). As in the original simulation training, the penalisation parameters were
set to roughly optimal values. For dropout, we used p = 0.1 while for ¸2-norm regularisation
we used ⁄ = 32. After each training run of each method, we report the test classification
performance on the test set as a measure of the AUC, that is the Area Under the ROC
(Receiver Operating Characteristic) curve.

Figure 3.5: Box plots of test AUC on Wager simulation, with ridge (red), with dropout (green),
multiplicative Gaussian (light blue) and the quadratic approximation of dropout (purple), over the
100 runs on the folds, taken with the best regularisation parameter.

The results are illustrated by figure 3.5 in terms of box plots of the test performance on the
same test dataset of the 100 runs on each training set, for each linear model trained without
noise injection, with ridge regularisation or with input noise injection. The figure first shows
that for this setting quadratic approximation of dropout and the stochastic approximation
of dropout are more e↵ective than ¸2 regularisation in the classification performance. We
therefore verify these findings.

However, we can also see that multiplicative Gaussian noise provides the same improve-
ment, which can be explained by the fact that the quadratic approximation for which this
setting is favorable (Wager et al., 2013) leads to the same loss for all multiplicative INI
methods as previously remarked.

Interestingly, the argument behind the success of dropout (and multiplicative Gaussian)
in this simulation setting is that the regulariser will have small values for the best model.
However, when we compare the quadratic approximation of dropout to stochastic dropout we
see an additional gap in terms of accuracy. One reason for this di↵erence could be the fact that
the optimal dropout probability used is not close to 1 as required in the approximation, but
this does not explain the better performance of the stochastic approximation. Another reason
for this di↵erence (and that was also previously hinted to) is that the quadratic approximation
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for logistic loss is not faithful to the true dynamics of dropout even when the dropout rate is
close to 1.

3.7.2 Our derived approximation is more effective than Taylor approxima-
tion

Figure 3.6: Box plots of test AUC on Wager simulation, with ridge (red), with dropout (yellow), multi-
plicative Gaussian (green), the quadratic approximation of dropout (blue) and our new approximation
(purple), over the 100 runs on the folds, taken with the best regularisation parameter.

We repeat the same simulation experiments but adding now our new and simple approxi-
mation of dropout, in order to compare it with the stochastic and the Taylor approximations
of dropout on a setting where these are e↵ective. Figure 3.6 shows the test accuracy in terms
of AUC evaluated on the same generated test set across the di↵erent methods. First, we can
notice that our novel approximation performs better than the quadratic approximation for
logistic loss and the same optimal parameter. Second, that it therefore leads to a smaller
gap with respect to the stochastic approximation in terms of test classification, which can be
explained in particular by the fact that it does preserve the dynamics of the loss function.

3.7.3 Data with redundant features benefits from dropout

Our approximation of dropout in the general setting shows that dropout prefers models that
diversify their weights in the case of redundant features. We use the classical simulation
setting proposed by Guyon et al. (2007) for the MADELON dataset to study the e↵ect of
feature redundancy on di↵erent INI schemes and also compare additive and multiplicative
noise injection on a basic level. The simulation is built as follow

• Each one of the 2 classes to be predicted is composed of two Gaussian clusters. N (0, 1)
is used to draw for each cluster useful examples of independent features.

• Some covariance is added by multiplying by a random matrix A, with uniformly dis-
tributed random numbers between -1 and 1.

• The two clusters are then placed at random on the vertices of a hypercube in a duse

useful features dimensional space.
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• nred redundant features are added by multiplying the useful features by a random matrix
B, with uniformly distributed random numbers between ≠1 and 1.

• Useless features (random probes) are added using N (0, 1).

• All features are then shifted and rescaled randomly to span 3 orders of magnitude.

• Random noise is then added to the features according to N (0, 0.1)

• A fraction flip y of labels are randomly exchanged.

As for the training we generate, for each run, 100 samples for each run of training and
10,000 validation samples with balanced labels. We train a linear model using the logistic loss
on the same training set again using (1) without INI, (2) additive Gaussian INI with di↵erent
values of ⁄, (3) Multiplicative Gaussian INI with di↵erent values of ⁄ (10 values regularly
spaced after log transform between ⁄min = 10≠8 and ⁄max = 1) and (4) dropout INI with
di↵erent values of p that corresponds to λ

λ+1 , in order to make the comparison fair, since with
the quadratic loss this corresponds to the same regularisation intensity (since it corresponds
to the same noise variance) . We fix the total number features to 1, 000 and useful features
to 100. We vary the number of redundant features nred, in order to study the performance
of the di↵erent INI methods with respect to this parameter.

Table 3.3: Average classification accuracy of linear models without noise injection without INI and with
di↵erent INI schemes (with the best regularisation hyper-parameter) on the MADELON simulation
with 10% useful features, varying the number of redundant features:

MADELON Without INI Additive Gaussian Multiplicative Gaussian Dropout

nred = 0 80.2 ±1.7 % 80.9 ±1.9 % 77.5 ±4.1 % 77.55 ±4.2 %

nred = 400 79.4 ±1.3 % 80.3 ±1.5 % 81.0 ±1.4 % 80.2 ±1.4 %

nred = 800 80.2 ±3.7 % 80.5 ±3.0 % 81.7 ±3.2 % 82.2 ±3.3 %

Table 3.3 shows classification accuracy averaged over 10 training runs. The test accuracies
for the INI regularised methods are compared for the best regularisation parameter. A first
observation that comes from 3.3 is that in the setting without redundant features, additive
Gaussian performs best. In this setting, adding even a small amount of multiplicative noise
hurts the performance and thus the best multiplicative INI would be with ⁄ = 0. When
adding redundant features however, the performance of a linear model without regularisation
and with additive Gaussian INI is approximately the same but the performance of a linear
model with multiplicative INI increases which can be justified by the intuition of dropout
reducing co-adaptations between the features, and thus probably succeeding in extracting
more information from the added redundant features.

3.7.4 Dropout is not always an effective regularisation

With most of dropout and noise injection experiments being shown in the deep learning
setting, we want to see if INI is already e�cient in simpler settings as for linear models.

Document classification tasks

We also study the performance of linear models with additive and multiplicative INI on
document classification tasks. In this case, we use 2 datasets publicly available: IMDB and
Reuters reviews (see supplementary table A.1). The labeled and already processed IMDB
Movie Reviews dataset consists of 50,000 IMDBmovie reviews, specially selected for sentiment
analysis. The sentiment of the reviews is binary, meaning an IMDB rating less than 5 results
in a sentiment score of 0, and a rating greater than 7 has a sentiment score of 1. No individual
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movie has more than 30 reviews (Maas et al., 2011). The data is equally partitioned in a
training and a test dataset. The Reuters newswire topics dataset consists of 11,228 newswires
from Reuters, labeled over 46 topics. As with the IMDB dataset, the data is processed such
that each wire is encoded as a sequence of word indexes (same conventions as Reuters). The
data is partitioned into 8,982 training samples and 2,246 test samples. As for the MADELON
simulation, we train a linear model using the logistic loss on the same training set, either (1)
without INI, or (2) additive Gaussian INI with di↵erent values of ⁄, or (3) multiplicative
Gaussian INI with di↵erent values of ⁄.

Figure 3.7: Test document classification accuracy on Reuters (left) and IMDB (right) during training,
without INI and with di↵erent INI schemes (with the best regularisation hyper-parameter)

Table 3.4: Test accuracy on document classification, without INI and with di↵erent INI schemes (with
the best regularisation hyper-parameter)

Dataset without INI Additive Gaussian Multiplicative Gaussian Dropout

IMDB 81.1 ± 0.5 % 82.2 ± 0.8 % 81.2± 0.5 % 81.7± 0.5 %

Reuters 31.9 ± 1.0% 32.1 ± 1.5 % 37.5± 1.0% 37.6 ± 1.0 %

Table 3.4 and figure 3.7 show the evolution and final value of test accuracy results of linear
models with multiplicative, additive and without INI in IMDB and Reuters datasets. For the
IMDB dataset, it is interesting to see that additive gaussian INI has the best test accuracy
which first emphasises that there is some overfitting even in the case of a linear model, and
that additive INI is in this case more e↵ective than multiplicative INI, although we didn’t try
di↵erent distributions of noise. For Reuters however, it is clear that multiplicative INI has an
advantage and this improvement is seen both for Gaussian and Bernoulli distributions again,
which might hint to the fact that in most settings, the noising function is more important
than the distribution of the noise in terms of generalisation performance. We leave this for
further investigations.

Although both datasets were processed and indexed in a similar manner (encoded as
a sequence of word indexes), INI e↵ectiveness varies considerably between these 2 datasets
which indicate empirically that the regularisation properties are more intricate than the
nature of the task or loss function, even for a linear model. In fact, previous work on
dropout and document classification (Wager et al., 2013; van der Maaten et al., 2013) only
compared the addition of dropout versus no INI showing that dropout in linear models was
more performant in most cases than no regularisation. It is not clear however if multiplicative
noise injection is the best noising scheme for document classification.
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Image classification

We now turn to experiments on three main image classification benchmark datasets (Krizhevsky,
2009):

• MNIST handwritten digits dataset, which consists of 28 ◊ 28 tiny grey digit images
from 10 classes. It has a training set of 60, 000 examples, and a test set of 10, 000
example with balanced classes.

• CIFAR-10: consists of 32 ◊ 32 tiny colour images from 10 classes . The dataset
is divided into 60, 000 training samples with 6, 000 images per class and 10, 000 test
samples. The test dataset contains exactly 1, 000 randomly-selected images from each
class. Data is flattened such that the dimension of a sample is 32 ◊ 32 ◊ 3 = 3072

• CIFAR-100: this dataset is just like the CIFAR-10, except it has 100 classes containing
600 images each. There are 500 training images and 100 testing images per class.

Although dropout has been studied in the linear model regime, studies have focused
on document classification. van der Maaten et al. (2013) perform experiments with linear
models on CIFAR10, however the data is transformed using bag-of-visual-words features
(that is basically treating image features as words by creating a vector of occurrence counts
of a vocabulary of local image features) following (Coates et al., 2011). We use here the
classical pixels format of the image datasets (Krizhevsky, 2009). We perform the same testing
experiment with the di↵erent already mentioned methods.

Table 3.5: Test accuracy on document classification, without INI and with di↵erent INI schemes (with
the best regularisation hyper-parameter)

Dataset without INI Additive Gaussian Multiplicative Gaussian Dropout

MNIST 92.7 ± 0.1 % 92.7± 0.1 % 92.8 ± 0.1 % 92.7 ± 0.1 %

CIFAR10 40.0± 0.1 % 39.9 ± 0.1 % 40.3 ± 0.1 % 40.3 ± 0.1 %

CIFAR100 16.11 ± 0.1 % 16.1 ± 0.5 % 16.0 ± 0.2 % 15.9 ± 0.2 %

Table 3.5 and figure 3.8 show the evolution and final value of test accuracy results of
linear models with multiplicative, additive and without INI on the di↵erent datasets. The
main observation that seems at first surprising is that INI here doest not seem to improve
generalisation performance in the case of these benchmark image datasets, where dropout
and multiplicative gaussian noise have showed better results than without regularisation in
the case of multilayer networks (Srivastava et al., 2014).

To investigate more why input noise injection does not help generalisation in the case of
image classification with linear models, that is if INI methods are not e↵ective here or that
regularisation is not needed here in the case of linear models, one can both either include
other regularisations methods (which might be ine↵ective too), or subsample the training
data. We do both by retraining a randomly subsampled training set from MNIST with 100
and 1, 000 observations and comparing the average performance of di↵erent INI schemes with
no INI and with ¸2 regularisation. We perform 100 runs over randomly subsampled MNIST
with balanced labels. The di↵erent methods are then evaluated on the same test dataset of
10, 000 images.

The average classification accuracy results are reported in table 3.6. Figure 3.9 shows the
evolution of the same classification accuracy through the training iterations for the di↵erent
methods, taken with the best regularisation parameter.

The first observation that stems from table 3.6 is that classification accuracy decreases for
all methods as the number of training samples decreases. As previously noticed, the training
accuracy for the di↵erent methods, including ¸2-norm regularisation are not significantly
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Figure 3.8: Test accuracy on CIFAR10 (top) and CIFAR100 (bottom) during training, without INI
and with di↵erent INI schemes (with the best regularisation hyper-parameter).

Table 3.6: Best average test classification score for a linear model without any regularisation, with
¸2 regularisation, additive Gaussian INI, multiplicative Gaussian INI and dropout (with the best
regularisation parameters) on MNIST original and subsampled dataset.

Dataset without INI ¸2-norm (ridge) Add. Gauss. Mult. Gauss. Dropout

MNIST: all samples 92.72 ± 0.05 % 92.75 ± 0.06 % 92.74± 0.10 % 92.75 ± 0.06 % 92.74 ± 0.06 %

MNIST: 1,000 samples 86.99 ± 0.50 % 86.89 ± 0.30 % 87.02± 0.08 % 87.14 ± 0.09 % 87.37 ± 0.09 %

MNIST: 100 samples 68.67 ± 0.10 % 68.75 ± 0.50 % 69.02± 0.50 % 70.92 ± 0.52 % 70.93 ± 0.65 %
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better than the linear model without regularisation. This strongly hints that the linear
model does not overfit on the MNIST dataset. Indeed the number of parameters, equal to
the data dimension: 28 ◊ 28 = 784 is 2 orders smaller than the number of samples: 50, 000.

As the number of samples is reduced, multiplicative Gaussian and Bernoulli INI start to
perform better than additive Gaussian INI, ¸2-norm regularisation and the linear model with-
out regularisation, in terms of classification accuracy. This di↵erence of performance grows
as the number of training samples decreases, which indicates that the linear model already
overfits with 1, 000 samples and this overfitting is more e↵ectively prevented by multiplica-
tive INI schemes. This is confirmed by figure 3.9 as we see, for the last figure corresponding
to training on 100 samples of the dataset, that the test accuracy of multiplicative INI still
growing slightly whereas it reaches a top and decreases for additive INI, ¸2-norm and no INI
models.

Cancer prognosis

Dropout and other INI variants have been used and empirically studied mainly on docu-
ment classification tasks. We further study here the performance of dropout on a type of
bioinformatics data, namely gene microarrays.

Microarray technology has become one of the indispensable tools that many biologists
use to monitor genome wide expression levels of genes in a given organism. A microarray
is typically a glass slide on to which DNA molecules are fixed in an orderly manner at
specific locations called spots (or features). Microarrays are used to measure gene expression
in patients or cell DNA. We use here tumour gene microarrays in order to evaluate the
predictive performance of linear models, without or with INI or other regularisation methods
as ¸2-norm and ¸1-norm regularisation, in classifying patients with and without metastasis.

We use the Van’t Veer breast cancer (VANT) data set from (Van De Vijver et al., 2002),
and on theWANG dataset from (Wang et al., 2005), both restricted to 8, 141 genes, by Chuang
et al. (2007). The Van’t Veer set contains 295 tumors, split into 78 metastatic and 217 non-
metastatic ones, while the Wang dataset contains 286 tumors among which 106 are metastatic
(see supplementary table A.1 for details). The observations (or data rows) are the patient
samples and the covariates (or data columns) will be the selected genes. For both datasets,
we perform a 5-fold cross-validation and average the results of the test set partition over the
10 runs for each method. Figure 3.10 shows the cross-validation classification performance in
terms of AUC box plots of the di↵erent models on each of the datasets.

We first see that ¸2-norm, ¸1-norm regularisations and INI perform better than the linear
model without regularisation for both datasets, which means that even a linear model is
overfitting in this case, which is understandable given the ratio between the dimension and
the number of samples for these datasets (¥ 30). We can see that for VANT dataset, ¸2-
norm regularisation (ridge) performs best. In WANG dataset, dropout, ¸2-norm and ¸1-norm
regularisation perform equally well, with a slight advantage for the ¸2-norm regularisation.
Notice the higher variance of the ¸1-norm regularisation (LASSO) as a consequence for the
model instability, leading also to unstable feature selection, has been already identified for
instance in (Haury and Vert, 2010).

One intuition why dropout is not more e↵ective than ¸2 regularisation here, if one relies
on the data augmentation intuition previously discussed, might be the complexity of the
hybridisation noise associated with gene expression microarrays data (Tu et al., 2002). From
an invariance point of view, if a subset of gene expression values are set to 0 with other genes
having the same expression this might change the phenotype or the class of the observation
(here metastatic or not) as the deregulation and mutations in only some driver genes are
already known to present genetic risk factors and facilitate metastasis (Minn et al., 2005; Bos
et al., 2009).

In the next chapter, we develop a predictive and variable selection model for another more
recent type gene expression analysis data, where an inherent sequencing noise can justify a
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Figure 3.9: Average test accuracy on the originall (top) and subsampled MNIST dataset (middle:
to 1,000 samples and bottom: to 100 samples) during training, without INI and with di↵erent INI
schemes (shown for the best regularisation hyper-parameter)

76



CHAPTER 3. NOISE INJECTION IN THE INPUT DATA

Figure 3.10: Cross-validation AUC box plots without INI and with di↵erent INI schemes with the
best regularisation hyper-parameters, on WANG (above) and VANT (below) datasets.
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data augmentation with multiplicative Bernoulli noise.

3.7.5 Dropout does not produce sparse models

As presented in the introduction, producing a sparse model such as ¸1 regularisation is a nice
feature since it allows for feature selection along with generalisation improvement. Dropout
has been reported to sparsify the activations of units in case of nonlinear activations (Srivas-
tava et al., 2014), as we will also confirm in the last chapter of this thesis.

Here, we want to know if a linear model regularised with additive or multiplicative INI can
provide feature selection in the case of a classification task where the true underlying model
is sparse. Indeed, we know that for a regression task with least squares at least following
equations 3.5 and 3.6, INI can be exactly translated to an ¸2-norm regularisation which, as
previously presented in the introduction, does not perform feature selection in general. We
look back here at the MADELON simulation experiments, with the particular case where we
have 10% informative features and 40% redundant features, and thus half of the features are
nuisance. As the experiments of training the di↵erent INI schemes was already performed,
we visualise the distribution of the average weights at the end of training with or without INI
in figure 3.11. For additive and multiplicative INI the distribution is visualised for di↵erent
regularisation parameters ⁄ œ

)
10≠2, 10≠1, 1

*

No method provided sparse weights. On the contrary, a first observation that stems from
figure 3.11 is that the distributions of weights resulting from the training of a linear model
with multiplicative INI have a higher variance than the distribution of the weights without INI
for all visualised values of noise variance ⁄. This comes to contradict the logistic regression
and general loss INI approximations 3.8 and 3.9 that hint to a weight shrinkage in the case of
a small noise variance and linear model. Interestingly, the distribution has a higher variance
for multiplicative INI as the noise variance increases. For additive Gaussian INI however, the
distribution of the weights is relatively stable and quite close to that without INI. We have
seen that in this setting through table 3.3, multiplicative INI methods perform slightly better
than additive Gaussian INI, which indicates that multiplicative INI does not work better by
shrinking the weights (or at least not only), which was also shown in (Helmbold and Long,
2015).

This study also confirms the di↵erence between the dropout mechanism and its Taylor
approximation version as already noticed since multiplicative INI does not generally reduce
the weights intensity, but also confirms that the stochastic version of dropout does not gen-
erally perform variable selection. The result shown in (Srivastava et al., 2014) where dropout
led to sparser activations was actually reported for ReLU activations of hidden units, which
become zero as the scalar product between the weights and activations of the previous hid-
den layer units is negative. The fact that no similar results are shown for linear or sigmoid
functions, and having in the mind the equivalence between ridge and multiplicative INI the
least squares setting, might hint to the fact that our observation about absence of variable
selection for multiplicative INI is more general. This will be a motivation for next chapters
and will be looked at in these.
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Figure 3.11: Histogram of the linear model weights learnt on MADELON after convergence (last
training iteration) without INI and with di↵erent INI schemes for di↵erent values of ⁄.
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3.8 Discussion and remarks

Adding stochastic noise to the input data, the model or the optimisation problem in the
case of supervised learning has been widely used in di↵erent forms to improve generalisa-
tion performance, and has been adapted and interpreted in di↵erent frameworks in the last
decades. With the growing complexity of datasets dimension and models complexity such as
the number of parameters of neural networks, it led to a variety of ubiquitous tools that are
constantly used in the field and even re-emerged as an active field of research through new
variants of noise injection depending on di↵erent models and applications. However, a lack
of a unified view and a clear comparison of the di↵erent proliferating techniques might be
confusing and could even hinder understanding and development of the field. This chapter
is only the beginning of an e↵ort in this sense of a general theoretical and empirical study
of Input noise injection INI as a general regularisation technique. After a brief overview on
the subject, we have focused here on the ERM framework where we re-formalise INI as the
minimisation of the expectation over the added noise of the empirical risk over the noisy
samples. Although the framework covers general noise distributions and noising functions,
we focused on additive and multiplicative Gaussian and Bernoulli INI. The exact and app-
proximate second order marginalisation of the new empirical risk revealed important insights
about regularisation properties of INI, but also some theoretical di↵erences between additive
and multiplicative INI. The studied second order approximation for general loss functions is
a classical result - in the case of additive noise injection and Input dropout (that we briefly
re-describe in this chapter)- that is however limited to a narrow setting (linear models) and
can be sometimes even fundamentally misleading and does not lead to the same e�ciency,
especially for multiplicative INI. We derived another simple deterministic approximation for
dropout that does not assume local quadrature of the loss and that is not limited only to
linear models. Finally, we perform a set of simulations and real data experiments which have
mainly indicated that :

• Multiplicative noise injection can be beneficial in the setting of rare and useful features
and in the setting of many redundant features.

• Our novel approximation improves on the second order Taylor approximation in the
case of linear logistic loss in terms of test accuracy in the previous setting.

• Dropout and multiplicative Gaussian INI are equally e↵ective in improving the gener-
alisation performance, in nearly all simulation and real data experiments

• INI is not always more e↵ective than ¸2-norm regularisation for preventing overfitting,
and multiplicative INI is not always more e↵ective than additive INI.

• No INI scheme provides sparse models even in a linear model setting where the true
model is sparse.

An interesting direction for future work is first of all to understand new properties of the
INI from a regularisation point of view and more broadly from a statistical point of view.
Computational complexity and the design of faster methods have received some attention but
deserves more analysis (Wang and Manning, 2013).

One way to strengthen our understanding of this inherently stochastic INI trick is to de-
velop and study deterministic counterparts. An important future work will be to investigate
more theoretically and empirically our proposed approximation to dropout as a deterministic
alternative to the quadratic approximation. It will be first important to fully compare the
theoretical properties of the di↵erent INI estimators from the di↵erent approximations in dif-
ferent special cases if the general case is quite complicated. In particular it will be interesting
to see if our novel approximation inherits some of the main properties of dropout in linear and
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multilayer networks such as non-convexity of the induced bias (Helmbold and Long, 2015,
2017).

Another direction opened by our approximation is the generalisation of the idea of robust-
ness by modification of the loss function. Our approximation interprets dropout as emphasis-
ing robustness to feature deletion, but other cases can be considered such as the robustness by
any kind of transformation of the model. This can contribute to design new generic risks that
are tailored to specific datasets, as an alternative to data augmentation. An interesting re-
cent work in this direction in the semi-supervised setting is proposed in (Sajjadi et al., 2016).
The corresponding experimental datasets used in this chapter are listed in table A.1, and the
corresponding code is available via https://github.com/BeyremKh/INI-Experiments.
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CHAPTER 4. DROPLASSO: A ROBUST VARIANT OF LASSO FOR SINGLE CELL

RNA-SEQ DATA

Abstract

Single-cell RNA sequencing is a fast growing approach to measure the genome-
wide transcriptome of many individual cells in parallel, but results in noisy data
with many dropout events. Existing methods to learn molecular signatures from
bulk transcriptomic data may therefore not be adapted to scRNA-seq data, in
order to automatically classify individual cells into predefined classes.

In this chapter, we propose a new method called DropLasso to learn a molecu-
lar signature from scRNA-seq data. DropLasso extends the dropout regularisation
technique, popular in neural network training, to estimate sparse linear models.
It is well adapted to data corrupted by dropout noise, such as scRNA-seq data,
and we clarify how it relates to elastic net regularisation. We provide promising
results on simulated and real scRNA-seq data, suggesting that DropLasso may be
better adapted than standard regularisations to infer molecular signatures from
scRNA-seq data.
DropLasso is freely available as an R package at https://github.com/jpvert/
droplasso

Résumé

Le séquençage d’ARN monocellulaire est une approche d’une popularité gran-
dissante permettant de mesurer le transcriptome du génome de nombreuses cel-
lules en parallèle, mais qui aboutit à des données très bruitées avec de nombreux
”dropout” ou expressions non détectées. Les méthodes existantes pour apprendre
les signatures moléculaires à partir de données transcriptomiques plus classiques
risquent donc de ne pas être adaptées aux données scRNA-seq, afin de classer
automatiquement les cellules individuelles dans des classes prédéfinies.

Dans ce chapitre, une nouvelle méthode appelée DropLasso pour apprendre
une signature moléculaire à partir de données scRNA-seq. DropLasso est une
généralisation de Dropout, une technique de régularisation très utilisée dans les
réseaux de neurones, dans le cadre de modèles linéaires parcimonieux. Nous jus-
tifions que cette régularisation est bien adaptée aux données corrompues par le
bruit ”dropout”, telles que les données scRNA-seq, et nous clarifions son lien avec
la régularisation elastic net. . Nous fournissons des résultats prometteurs sur
des données scRNA-seq simulées et réelles, suggérant que DropLasso serait peut-
être mieux adapté que les régularisations standard pour déduire des signatures
moléculaires à partir de données scRNA-seq.
DropLasso est disponible ouvertement en tant que package R ici: https://

github.com/jpvert/droplasso
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4.1 Introduction

4.1.1 Single cell RNA-seq

In 1977 Frederick Sanger invented Sanger sequencing, a DNA-sequencing method that uses
modified dideoxynucleotides to cause chain-termination (for which he was awarded his sec-
ond Nobel prize in 1980). For the first time, we could read our genetic code. This method is
however expensive and labor-intensive. Thus, it took 13 years and cost three billion dollars
to complete the ”Human Genome Project” in which essentially the entire human genome was
sequenced by 2003 (filling in the gaps of the first draft that was published in 2001) 1. Sequenc-
ing for an individual research project was not economically practical (microarrays were the
choice of method) until next generation sequencing (NGS) methods were marketed in 2005,
as it was mentioned in the introduction of this manuscript. NGS enables high-throughput
sequencing by synthesis (SBS), reduces cost and increases feasibility. The recently marketed
Nanopore device, the third generation of sequencers, will further push this limit. With se-
quencing costs continuing to drop, the first single-cell RNA sequencing method (scRNA-seq)
was developed in 2009 (Tang et al., 2009). Single-cell RNA sequencing (scRNA-seq) is now a
fast growing approach to measure the genome-wide transcriptome of many individual cells in
parallel. Single cell sequencing allows to examine the sequence information from individual
cells with optimised NGS technologies and have stood out in the last years as a promising
source of biological discoveries (Kolodziejczyk et al., 2015).

Individual cells are the basic building blocks of organisms and each cell is unique. Per-
forming bulk RNA sequencing often masks such uniqueness and fails to reveal latent changes.
The fast paced development of massively parallel sequencing technologies and protocols has
made it possible to measure gene expression with more precision and less cost in recent
years.SscRNA-seq, in particular, is a fast growing approach to measure the genome-wide
transcriptome of many individual cells in parallel (Kolodziejczyk et al., 2015). By giving
access to cell-to-cell variability, it represents a major advance compared to standard ”bulk”
RNA sequencing to investigate complex heterogeneous tissues and reveal new cell types (Ma-
cosko et al., 2015; Tasic et al., 2016; Zeisel et al., 2015; Villani et al., 2017), study dynamic
biological processes such as embryo development (Deng et al., 2014) and cancer (Patel et al.,
2014), identify gene regulatory mechanisms (Jaitin et al., 2016; Xue et al., 2013) and reveal
random patterns in allelic gene expression (Chen et al., 2016; Deng et al., 2014).

4.1.2 Motivation

Besides exploratory analysis and gene-per-gene di↵erential analysis, a promising use of scRNA-
seq technology is to automatically classify individual cells into pre-specified classes. In fact,
as of today, the computational analysis of scRNA-seq data is dominated by unsupervised
approaches in order to identify and molecularly profile hitherto unknown cell types. On the
other hand, supervised approaches are likely to become more and more important, too, as
they allow for a comparison of tissue compositions in terms of a priori known cell types.
With more and more cell types being discovered and more and more tissues being profiled,
this setting, where we aim at classifying a cell into one out of several known classes given its
expression profile, is likely to become more and more relevant, in particular for small-scale
studies. such as particular cell types in a cancer tissue. This can also allow to establish
cell type specific ”molecular signatures” that could be shared and used consistently across
laboratories, just like standard molecular signatures are commonly used to classify tumour
samples into subtypes from bulk transcriptomic data (Ramaswamy et al., 2001; Sørlie et al.,
2001). From a methodological point of view, molecular signatures are based on a supervised
analysis, where a model is trained to associate each genome-wide transcriptomic profile to a
particular class, using a set of profiles with class annotation to select the genes in the signa-

1 https://www.genome.gov/human-genome-project
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Figure 4.1: single cell RNA-seq workflow.

ture and fit the parameters of the models. While the classes themselves may be the result of
an unsupervised analysis, just like breast cancer subtypes which were initially defined from
a first unsupervised clustering analysis of a set of tumours (Perou et al., 2000), the develop-
ment of a signature to classify any new sample into one of the classes is generally based on a
method for supervised classification or regression.

The analysis of scRNA-seq data is however challenging and raises a number of specific
modelling and computational issues (Ozsolak and Milos, 2011; Bacher and Kendziorski, 2016).
In particular, since a tiny amount of RNA is present in each cell, a large fraction of polyadeny-
lated RNA can be stochastically lost during sample preparation steps including cell lysis,
reverse transcription or amplification (see figure 4.1 for the experimental workflow) . As a
result, many genes fail to be detected even though they are expressed, a type of errors usually
referred to as dropouts. In a standard scRNA-seq experiment it is common to observe more
than 80% of genes with no apparent expression in each single cell (see figure 4.2 which repre-
sents the histogram of 3 gene expressions across sample cells in a later described real dataset),
an important proportion of which are in fact dropout errors (Kharchenko et al., 2014). The
presence of so many zeros in the raw data can have significant impact on the downstream
analysis and biological conclusions, and has given rise to new statistical models for data nor-
malisation and visualisation (Pierson and Yau, 2015; Risso et al., 2018) or gene di↵erential
analysis (Kharchenko et al., 2014). Imputation methods developed for bulk RNA-seq data
may not be directly applicable to scRNA-seq data. First, much larger cell-level variability
exists in scRNA-seq, because scRNA-seq has cell-level records for gene expression; on the
other hand, bulk RNA-seq data have the averaged gene expression of the population of cells.
Second, dropout events in scRNA-seq are not exactly missing values; dropout events have
zero expression, and they are mixed with real zeros. In addition, the proportion of missing
values in bulk RNA-seq data is much smaller.

Interestingly and independently, the term ”dropout” has also gained popularity in the
machine learning community in recent years, as a powerful technique to regularise deep neu-
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Figure 4.2: Histogram of 3 randomly sampled gene expressions in read counts across all cells (gene
names in the legend) from a typical scRNA-seq dataset (GSE45719).

ral networks (Srivastava et al., 2014). Dropout regularisation works by randomly removing
connexions or nodes during parameter optimisation of a neural network. On a simple lin-
ear model (a.k.a. single-layer neural network), this is equivalent to randomly creating some
dropout noise to the training examples, i.e., to randomly set some features to zeros in the
training examples (Wager et al., 2013; Baldi and Sadowski, 2013). Several explanations have
been proposed for the empirical success of dropout regularisation. Srivastava et al. (2014) mo-
tivated the technique as a way to perform an ensemble average of many neural networks, likely
to reduce the generalisation error by reducing the variance of the estimator, similar to other
ensemble averaging techniques like bagging (Breiman, 1996a) or random forests (Breiman,
2001). Another justification for the relevance of dropout regularisation, particularly in the
linear model case, is that it performs an intrinsic data-dependent regularisation of the esti-
mator (Wager et al., 2013; Baldi and Sadowski, 2013) which is particularly interesting in the
presence of rare but important features. Yet another justification for dropout regularisation,
particularly relevant for us, is that it can be interpreted as a data augmentation technique,
a general method that amounts to adding virtual training examples by applying some trans-
formation to the actual training examples, such as rotations of images or corruption by some
Gaussian noise; the hypothesis being that the class should not change after transformation.
Data augmentation has a long history in machine learning (e.g., Schölkopf et al., 1996), and
is a key ingredient of many modern successful applications of machine learning such as image
classification (Krizhevsky et al., 2012). As shown by van der Maaten et al. (2013), dropout
regularisation in the linear model case can be interpreted as a data augmentation technique,
where corruption by dropout noise enforces the model to be robust to dropout events in the
test data, e.g., to blanking of some pixels on images or to removal of some words in a docu-
ment. Wager et al. (2014) show that in some cases, data augmentation with dropout noise
allows to train model that should be insensitive to such noise more e�ciently than without.

Since scRNA-seq data are inherently corrupted by dropout noise, we therefore propose
that dropout regularisation may be a sound approach to make the predictive model robust
to this form of noise, and consequently to improve their feature selection performance in
scRNA-seq supervised classification for instance. Since plain dropout regularisation does
not lead to feature selection and to the identification of a limited number of genes to form a
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molecular signature, we furthermore propose an extension of dropout regularisation, which we
call DropLasso regularisation, obtained by adding a sparsity-inducing l1 regularisation to the
objective function of the dropout regularisation, just like lasso regression adds an ¸1 penalty
to a mean squared error criterion in order to estimate a sparse model (Tibshirani, 1996).
We show that the l1 penalty can be integrated in the standard stochastic gradient algorithm
used to implement dropout regularisation, resulting in a scalable stochastic proximal gradient
descent formulation of DropLasso. We also clarify the regularisation property of DropLasso,
and show that it is to elastic net regularisation what plain dropout regularisation is to the
plain ridge regularisation. Finally, we provide promising results on simulated and real scRNA-
seq data, suggesting that specific regularisations like DropLasso may be better adapted than
standard regularisations to infer molecular signatures from scRNA-seq data.

R code for reproducing the experiments in this chapter can be found in https://github.

com/BeyremKh/Droplasso-experiments.

4.2 Methods

4.2.1 Setting and notations

We consider the supervised machine learning setting, where we observe a series of n pairs of
the form (xi, yi)i=1,...,n. For each i œ [1, n], xi œ R

d represents the gene expression levels for
d genes measured in the i-th cell by scRNA-seq, and yi œ R or {≠1, 1} is a label to represent
a discrete category or a real number associated to the i-th cell, e.g., a phenotype of interest
such as normal vs tumour cell, or an index of progression in the cell cycle. For i œ [1, n] and
j œ [1, d], we denote by xi,j œ R the expression level of gene j in cell i. From this training set
of n annotated cells, the goal of supervised learning is to estimate a function to predict the
label of any new, unseen cell from its transcriptomic profile. We restrict ourselves to linear
models fw : Rd æ R, for any w œ R

d, of the form

’u œ R
d , fw(u) =

dÿ

i=1

wiui .

To estimate a model on the training set, a popular approach is to follow a penalised maximum
likelihood or empirical risk minimisation principle and to solve an objective function of the
form

min
wœRd

I
1

n

nÿ

i=1

L(w, xi, yi) + ⁄Ω(w)

J
, (4.1)

where L(w, xi, yi) is a loss function to assess how well fw predicts yi from xi, Ω is an (optional)
penalty to control overfitting in high dimensions, and ⁄ > 0 is a regularisation parameter
to control the balance between under- and overfitting. Examples of classical loss functions
include the square loss:

Lsquare(w, xi, yi) =

Q
ayi ≠

dÿ

j=1

wjxi,j

R
b

2

,

and the logistic loss:

Llogistic(w, xi, yi) = log

Q
a1 + exp(≠yi

dÿ

j=1

wjxi,j)

R
b ,

which are popular losses when yi is respectively a continuous (yi œ R) or discrete (yi œ
{≠1, 1}) label. As for the regularisation term Ω(w) in (4.1), popular choices include the ridge
penalty (Hoerl and Kennard, 1970):

Ωridge(w) = ÎwÎ2
2 =

dÿ

i=1

w2
i ,
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and the lasso penalty (Tibshirani, 1996):

Ωlasso(w) = ÎwÎ1 =
dÿ

i=1

|wi| .

The properties, advantages and drawbacks of ridge and lasso penalties have been theoreti-
cally studied under di↵erent assumptions and regimes. The lasso penalty additionally allows
feature selection by producing sparse solutions, i.e., vectors w with many zeros; this is useful
to in many bioinformatics applications to select “molecular signatures”, i.e., predictive models
based on the expression of a limited number of genes only. It is known however that lasso
can be unstable in particular when there are several highly correlated features in the data.
It also cannot select more features than the number of observations and its accuracy is often
dominated by that of ridge. For these reasons, another popular penalty is elastic net, which
encompasses the advantages of both penalties Zou and Hastie (2005) :

Ωelastic net(w) = – ÎwÎ2
2 + (1 ≠ –)ÎwÎ1 ,

where – œ [0, 1] allows to interpolate between the lasso (– = 0) and the ridge (– = 1)
penalties.

4.2.2 DropLasso

For scRNA-seq data subject to dropout noise, we propose a new model to train a sparse
linear model robust to the noise by artificially augmenting the training set with new examples
corrupted by dropout. Formally, given a vector u œ R

d and a dropout mask ” œ {0, 1}d, we
consider the corrupted pattern ” § u œ R

d obtained by entry-wise multiplication (” § u)i =
”iui. In order to consider all possible dropout masks, we make ” a random variable with
independent entries following a Bernoulli distribution of parameter p œ [0, 1], i.e., P (”i =
1) = p, and consider the following DropLasso regularisation for any ⁄ > 0, p œ [0, 1] and loss
function L:

min
wœRd

A
1

n

nÿ

i=1

E
δi≥B(p)d

L(w, ”i § xi,

p
, yi) + ⁄ ÎwÎ1

B
. (4.2)

In this equation, the expectation over the dropout mask corresponds to an average of 2d

terms. The division by p in the term xi/p is here to ensure that, on average, the inner
product between w and ”i § xi,

p is independent of p, because:

E
δi≥B(p)d

dÿ

j=1

wj

3
”i § xi,

p

4

j

=
dÿ

j=1

E
δi,j≥B(p)

wj”i,j
xi,j

p

=
dÿ

j=1

wjxi,j .

When p = 1 and ⁄ > 0, the only mask with positive probability is the constant mask with
all entries equal to 1, which performs no dropout corruption. In that case, DropLasso (4.2)
therefore boils down to standard lasso. When ⁄ = 0 and p < 1, on the other hand, DropLasso
boils down to the standard dropout regularisation proposed by Srivastava et al. (2014) and
studied, among others, by Wager et al. (2013); Baldi and Sadowski (2013); van der Maaten
et al. (2013). In general, DropLasso interpolates between lasso and dropout. For ⁄ > 0, it
inherits from lasso regularisation the ability to select features associated with ¸1 regularisation
(Bach et al., 2011). We therefore propose DropLasso as a good candidate to select molecular
signatures (thanks to the sparsity-inducing ¸1 regularisation) for data corrupted with dropout
noise, in particular scRNA-seq data (thanks to the dropout data augmentation).
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4.2.3 Algorithm

For any convex loss function L such as the square or logistic losses, DropLasso (4.2) is a
non-smooth convex optimisation problem whose global minimum can be found by generic
solvers for convex programs. Due to the dropout corruption, the total number of terms in
the sum in (4.2) is n ◊ 2d. This is usually prohibitive as soon as d is more than a few, e.g.,
in practical applications when d is easily of order 104 (number of genes). Hence the objective
function (4.2) can simply not be computed exactly for a single candidate model w, and even
less optimised by methods like gradient descent.

To solve (4.2), we instead propose to follow a stochastic gradient approach to exploit the
particular structure of the model, in particular the fact that it is fast and easy to generate
a sample randomly corrupted by dropout noise. A similar approach is used for standard
dropout regularisation when L is di↵erentiable w.r.t. w (Srivastava et al., 2014), however
in our case we additionally need to take care of the non-di↵erentiable ¸1 norm; this can be
handled by a forward-backward algorithm which, plugged in the stochastic gradient loop,
leads to the proximal stochastic gradient descent algorithm presented in Algorithm 4. The
fact that Algorithm 4 is correct, i.e., converges to the solution of (4.2), follows under weak
conditions from general results on stochastic approximations and proximal stochastic gradient
descent algorithms (Robbins and Siegmund, 1971; Atchadé et al., 2017).

Algorithm 4 Solving DropLasso

Require: Training set (xi, yi)i=1,...,n, initialisation w0 œ R
d, initial learning rate “0 > 0,

learning rate decay — > 0, number of passes npasses œ N, ⁄ Ø 0, p œ [0, 1]
1: procedure DropLasso

2: w0 Ω w0

3: t Ω 0
4: for iter = 1 to npasses do
5: fi Ω random permutation of [1, n] Û Shu✏e training set
6: for i = 1 to n do Û (Mini-)batch also possible
7: “t Ω “0/(1 + —t)
8: Sample ” ≥ Bernoulli(p)d

9: z Ω ” § xπ(i)/p
10: wt+1 Ω Sγtλ(wt ≠ “tOwL(wt, z, yπ(i))) Û Sγtλis the soft-thresholding operator
11: t Ω t + 1
12: end for
13: end for
14: return wt

15: end procedure

We can easily see that for p = 1 , our algorithm becomes a classical stochastic proximal
descent algorithm. On the other hand when ⁄ = 0, the soft threshholding operator becomes
the identity and we turn back to the stochastic gradient descent with the dropout trick.

When p = 1 (no dropout), it is known that the solution of (eq:droplasso) is sparse, and is
even 0 when ⁄ is larger than a value ⁄max than can be used as initial value when one wants to
compute the set of solutions over a decreasing grid of values for ⁄. Interestingly, this property
also holds when p < 1, with the same ⁄max value which therefore does not depend on p:

Theorem 1. For a loss function of the form L(w, x, y) = ¸y(w€x) where ¸y is convex and
differentiable at 0 for all y, w = 0 is solution of (4.2) if and only if ⁄ Ø ⁄max with

⁄max =

.....
1

n

nÿ

i=1

¸Õ
yi

(0)xi

.....
Œ

. (4.3)
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Proof. Under the assumptions of the theorem, the function w æ F (w) with

F (w) =
1

n

nÿ

i=1

E
δi≥B(p)d

L(w, ”i § xi,

p
, yi) =

1

n

nÿ

i=1

E
δi≥B(p)d

¸yi

3
w€(”i § xi,

p
)

4

is convex and its subdi↵erential is

ˆF (w) =
1

n

nÿ

i=1

E
δi≥B(p)d

ˆ¸yi

3
w€(”i § xi,

p
)

4
”i § xi,

p
. (4.4)

At w = 0, this simplifies to

ˆF (0) =
1

n

nÿ

i=1

E
δi≥B(p)d

¸Õ
yi

(0) ”i § xi,

p
=

1

n

nÿ

i=1

¸Õ
yi

(0) xi .

Besides, the subdi↵erential of w æ ÎwÎ1 at w = 0 is ˆÎ · Î1(0) = {u : ÎuÎŒ Æ 1}. Using the
standard characterization that w is solution of the convex problem (4.2) if and only if 0 œ
ˆ (F + ⁄Î · Î1) (w), we get that w = 0 is a solution of (4.2) if and only if ≠ˆF (0) œ ⁄ˆÎ ·Î1(0),
or equivalently ÎˆF (0)ÎŒ Æ ⁄. The theorem follows by using (4.4).

In practice, for the square loss ¸y(u) = (u ≠ y)2, we get ¸Õ
y(0) = ≠2y; and for the logistic

loss ¸y(u) = ln(1 + e≠yu), we get ¸Õ
y(0) = ≠y/2. Taking

S =
1

n

nÿ

i=1

yixi ,

we therefore have the following ⁄max values for respectively the square and logistic losses:

⁄square
max = 2ÎSÎŒ , ⁄logistic

max =
ÎSÎŒ

2
.

In order to get the regularization path of DropLasso, i.e., the set solutions (4.2) when ⁄ varies
for a fixed p, we therefore first fix a grid of values to test for ⁄ in an interval [⁄min, ⁄max]
where ⁄max is given by (4.3) and, for example ⁄min = ⁄max/100. We then iteratively solve
(4.2) using Algorithm 4 for decreasing values of ⁄ using warm restart, i.e., taking the solution
for the previous ⁄ as initialization for the next ⁄. Since 0 is the solution for ⁄ = ⁄max, we
initialize the first optimization with w0 = 0.

4.2.4 DropLasso and elastic net

As we already mentioned, DropLasso interpolates between lasso (p = 1, ⁄ > 0) and dropout
(p œ [0, 1], ⁄ = 0). On the other hand, dropout regularisation is known to be related to ridge
regularisation (Wager et al., 2013; Baldi and Sadowski, 2013); in particular, for the square
loss, dropout regularisation boils down to ridge regression after proper normalisation of the
data, while for more general losses it can be approximated by reweighted version of ridge
regression. Here we show that DropLasso largely inherits these properties, and in a sense is
to elastic net what dropout is to ridge.

Let us start with the square loss. In that case we have the following:

Theorem 2. If the data are scaled so that

’j œ [1, d] ,
1

n

nÿ

i=1

x2
i,j = 1 ,

then solving the DropLasso problem (4.2) with parameters ⁄ and p and the square loss Lsquare

is equivalent to solving the elastic net problem

min
wœRd

1

n

nÿ

i=1

Lsquare(w, xi, yi) + ⁄enet

1
–enetÎwÎ2

2 + (1 ≠ –enet)ÎwÎ1

2
,
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with

⁄enet = ⁄ +
1 ≠ p

p
and –enet =

1 ≠ p

1 ≠ p + ⁄p
.

Proof. By developing the error function and marginalising over the Bernoulli variables, we
can rewrite the objective function of (4.2) as follows:

1

n

nÿ

i=1

E
δi≥B(p)d

Lsquare(w, ”i § xi,

p
, yi) + ⁄ ÎwÎ1

=
1

n

nÿ

i=1

E
δi≥B(p)d

Q
ayi ≠

dÿ

j=1

wj”i,j
xi,j

p

R
b

2

+ ⁄ ÎwÎ1

=
1

n

nÿ

i=1

Q
ayi ≠

dÿ

j=1

wjxi,j

R
b

2

+
1

n

nÿ

i=1

dÿ

j=1

w2
j x2

i,jVar

3
”i,j

p

4
+ ⁄ ÎwÎ1

=
1

n

nÿ

i=1

Lsquare(w, xi, yi) +
1 ≠ p

p

dÿ

j=1

A
1

n

nÿ

i=1

x2
i,j

B
w2

j + ⁄ ÎwÎ1

=
1

n

nÿ

i=1

Lsquare(w, xi, yi) +
1 ≠ p

p
ÎwÎ2

2 + ⁄ ÎwÎ1 ,

and Theorem 2 easily follows by identifying ⁄enet and –enet from this equation.

We note that conversely, in order to solve an elastic net problem with parameters ⁄enet

and –enet, one can equivalently solve a DropLasso problem with parameters

⁄ = ⁄enet (1 ≠ –enet) and p =
1

1 + ⁄enet–enet

.

When the data are not scaled as in Theorem 2, then instead of a standard elastic net penalty
the DropLasso problem with square loss is equivalent to a modified elastic net problem where
the ¸2 norm is weighted by the vector of mean squared norm of each column in the data
matrix.

In the case of the logistic loss, we can also adapt a result of Wager et al. (2013) which
relates dropout to an adaptive version of ridge regression:

Property 5. : For the logistic loss, DropLasso can be approximated when the dropout prob-
ability p is close to 1 by an adaptive version of elastic net that automatically scales the data
but also that encourages more confident predictions.

Proof. Writing the Taylor expansion for the logistic loss up to the second order when the
dropout is small (p close to 1), we obtain the following quadratic approximation to the
dropout loss on a point:

L(w, ”i § xi,

p
, yi) ƒ L(w, xi,, yi)

+
dÿ

j=1

ˆL(w, xi,, y)

ˆxi,j

3
”i,j

p
≠ 1

4
xi,j

+
1

2

dÿ

j=1

dÿ

k=1

ˆ2L(w, xi,, y)

ˆxi,jˆxi,k

3
”i,j

p
≠ 1

4 3
”i,k

p
≠ 1

4
xi,jxi,k .

Taking the expectation with respect to ”i ≥ B(p)d, the first order term cancels out since
E”i,j = p for all j œ [1, d]. The o↵-diagonal second-order term also disappear because ”i,j and
”i,k are independent for j ”= k. Noting that for ” ≥ B(p) it holds that

E

3
”

p
≠ 1

42

=
1 ≠ p

p
,
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and that for the logistic loss,

ˆ2Llogistic(w, xi,, y)

ˆx2
i,j

= fii(1 ≠ fii)w
2
j ,

where fi = ew€xi/
1
1 + ew€xi

2
= Pw(Y = 1 | X = xi) under the logistic model parametrized

by w, we finally get the following quadratic approximation:

Llogistic(w, ”i § xi,

p
, yi) ƒ Llogistic(w, xi,, yi) +

1 ≠ p

2p

dÿ

j=1

fii(1 ≠ fii)w
2
j x2

i,j .

We finally get the following approximation to the DropLasso objective function:

1

n

nÿ

i=1

E
δi≥B(p)d

Llogistic(w, ”i § xi,

p
, yi) + ⁄ ÎwÎ1

ƒ 1

n

nÿ

i=1

Llogistic(w, xi,, yi) +
1 ≠ p

2p
ï£·

dÿ

j=1

“jw2
j + ⁄ ÎwÎ1 ,

where for j œ [1, d],

“j =
nÿ

i=1

ˆ2L(w, xi,, y)

ˆ2w€xi,j
.xi,j =

nÿ

i=1

fii(1 ≠ fii)x
2
i,j .

This shows that with the logistic loss, that the ridge penalty corresponding to the ap-
proximation of the Droplasso is controlled both by the size of the features x2

i,j , but also by
the fact that the prediction for each sample is confident or not. In fact “j is maximal when
fii = 0.5 for all i œ [1, n], which means that the model is not confident about the examples it
is learnt with.

4.3 Results

4.3.1 Simulation results

We first investigate the performance of DropLasso on simulated data, and compare it to
standard dropout and elastic net regularisation. We design a toy simulation to illustrate
in particular how corruption by dropout noise impacts the performances of the di↵erent
methods. The simulation goes as follow :

• We set the dimension to d = 20.

• Each sample is a random vector z œ N
d with entries following a Poisson distribution

with parameter fi = 1. The data variables are independent.

• The ”true” model is a logistic model with sparse weight vector w œ R
d satisfying wi =

+10, i = 1 . . . d1, wi = ≠10, i = (d1 + 1) . . . 2d1, and wi = 0 for i = (2d1 + 1), . . . , d.
d1 here is fixed to 2 and thus we have 4 active predictors (with signal) in this simulation.

• Using w as the true underlying model and z as the true observations, we simulate a
label y ≥ Bernoulli(1/(1 + exp(≠ qd

j=1 wjzj)))

• We introduce corruption by dropout events by multiplying entry-wise z with an i.i.d
Bernoulli variables ” with probability q.
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We simulate n = 100 samples to train elastic net and DropLasso models, and evaluate
their performance in terms of area under the receiving operator curve (AUC) on 10, 000
independent samples. Both models have two parameters, ⁄ and – for elastic net, ⁄ and
p for DropLasso. We vary each parameter over a grid: – over 11 regularly spaced values
between 0 and 1, p over the grid 0.6n for n = 0, . . . , 10, and ⁄ over a regular grid of 10
values between ⁄max and ⁄max/100, where ⁄max is the smallest value such that the solution
of the optimization problem is the null model (see Theorem 1). All model are trained on
the training set, and the best parameter set is chosen as the one that maximizes the AUC
on an independent validation set of 10,000 samples; only the AUC of the best model is then
reported on the test set. We repeat the whole procedure 1,000 times in order to estimate the
variability of the performance of each method.

Table 4.1: Test AUC of elastic net and DropLasso regression on simulations with di↵erent amount of
dropout noise on the training data. The ú indicates that a method significantly outperforms the other
(i.e., P < 0.05 according to a paired t-test comparing the AUC over 1,000 repeats).

Noise rate Elastic net DropLasso

q=1 0.974 ± 0.006ú 0.954 ± 0.012

q=0.4 0.641 ± 0.043 0.639 ± 0.027

q=0.2 0.554 ± 0.031 0.561 ± 0.021ú

Table 4.1 shows the classification performance in terms of test AUC of elastic net and
DropLasso, when we vary the amount of dropout noise in the training data. We first observe
that, for both methods, the performance drastically decreases when dropout noise increases,
confirming the di�culty induced by dropout events to learn predictive models. Second, we
note that in the absence of noise, elastic net significantly outperforms DropLasso. However,
when the amount of noise increases, both methods perform similarly (for q = 0.4), and
ultimately DropLasso outperforms elastic net in the configuration with large dropout noise
(q = 0.2). This confirms that DropLasso provides potential benefits in situations where data
are corrupted by dropout noise.

4.3.2 Classification on Single Cell RNA-seq

We now turn on to real scRNA-seq data. To evaluate the performance of methods for su-
pervised classification, we collected 4 publicly available scRNA-seq datasets amenable to this
setting, as summarised in Table 4.2. These datasets were pre-processed by Soneson and
Robinson (2017), and we downloaded them from the conquer website2, a collection of consis-
tently processed, analysis-ready and well documented publicly available scRNA-seq data sets.
We used the preprocessed length-scaled transcripts per million mapped reads (see Soneson
and Robinson, 2017, for details about data processing). These datasets were used by Sone-
son and Robinson (2017) to assess the performance of methods for gene di↵erential analysis
between classes of cells, and we follow the same splits of cells into classes for our experiments
of supervised classification.We used the available sample annotations to create binary clas-
sification problems, as described in Table 4.2. Note that some datasets have more than two
classes, in which case we created several binary classification problems.

On each of the 10 resulting binary classification problems, we compare the performance
of 5 regularisation methods for logistic regression: lasso, ridge, elastic net, dropout and
DropLasso. We train the di↵erent models on 20% of the data chosen in such way that labels
are balanced, choose the best hyper-parameter(s) for each on a 20% validation set, and finally
evaluate the performance of the resulting models on the 60% remaining data. We search the

2http://imlspenticton.uzh.ch:3838/conquer/
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best parameters for each method over the same grid as described for the simulation study
above (except that lasso, ridge and dropout have a single parameter to tune).

Table 4.2: Description of the scRNA-seq data and the corresponding (binary) classification tasks.

Dataset Classification task Variables Samples

EMTAB2805 Cell cycle phase: G1 vs G2M 18,979 96 ; 96
EMTAB2805 Cell cycle phase: S vs G1 18,740 96 ; 96
EMTAB2805 Cell cycle phase: S vs G2 18,873 96 ; 96
GSE45719 mid blastocyst vs 16-cell stage blastomere 22,059 50 ; 60
GSE45719 8-cell stage blastomere vs 16-cell stage blastomere 21,590 50 ; 60
GSE48968 BMDC 1h LPS vs 4h LPS Stimulation 16,439 95 ; 96
GSE48968 BMDC 4h LPS vs 6h LPS Stimulation 15,719 95 ; 96
GSE74596 NKT0 vs NKT17 15,642 45 ; 44
GSE74596 NKT0 vs NKT1 14,962 45 ; 46
GSE74596 NKT1 vs NKT2 16,135 46 ; 48

Table 4.3: Mean test AUC score for di↵erent regularizations schemes, on di↵erent binary classification
problems.)

Dataset dropout DropLasso elastic net ridge lasso

EMTAB2805, G1 vs G2M 0.96 0.97 0.98 0.97 0.94

EMTAB2805, G1 vs S 0.98 0.97 0.98 0.98 0.91

EMTAB2805, S vs G2M 0.99 0.98 0.99 0.99 0.95

GSE45719, 16-cell vs Mid blast. 1.00 0.99 1.00 1.00 0.99

GSE45719, 16-cell vs 8-cell 0.98 0.95 0.97 0.98 0.72

GSE48968, 1h vs 4h 1.00 1.00 1.00 1.00 1.00

GSE48968, 4h vs 6h 0.84 0.84 0.86 0.85 0.79

GSE74596, NKT0 vs NKT17 1.00 1.00 0.99 0.99 1.00

GSE74596, NKT0 vs NKT1 1.00 1.00 1.00 1.00 0.99

GSE74596, NKT1 vs NKT2 0.98 0.98 0.99 0.99 0.98

The first observation is that the performances reached by all methods on all datasets are
generally high, and can reach a perfect AUC score of 1 on some of the datasets. This suggests
that the labels chosen in these datasets are su�ciently di↵erent in terms of transcriptomic
profiles that they can be easily recognised most of the time. We still notice some di↵erences in
performance between datasets, with GSE48968 with 1h-4h stimulation labels being the easiest
dataset to classify while GSE48968 with 6h-4h stimulation labels is the most challenging,
for all methods. This contrast of performance for the same dataset confirms that supervised
learning on single cell data can be challenging when the labels are biologically close regardless
of the preprocessing step. Soneson and Robinson (2017) also noticed a di↵erence in signal-
to-noise ratio between these datasets, in the context of gene di↵erential analysis. Second, we
observe that the lasso is clearly the worst performing method in terms of accuracy, while all
other methods tend to have similar accuracies. To further analyze the relative performance of
di↵erent methods, we perform statistical tests for each pair of methods on each dataset, and
call a method a ”winner” if it is statistically more accurate than the other method (P < 0.05
for a t-test on the test AUC). Figure 4.3 reports, for each method, the number of times it is a
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winner. The plot first confirms that lasso is the least performing method in terms of accuracy,
and that elastic net and dropout are the methods that have the largest number of wins.
Although it was expected that elastic net improves over the lasso in this high-dimensional data
setting, where many genes are correlated through several regulatory networks (Abdelmoez
et al., 2018), it is also interesting to see that elastic net slightly outperforms ridge indicating
that at least some of these biological labels can be explained by a sparse model. Dropout
outperforming ridge indicates that the adaptive regularisation that dropout introduces is
relevant to this type of data. Finally, DropLasso only outperforms the lasso method, but
in contrast with dropout (and ridge) does allow for feature selection and the discovery of
potential biomarkers, which we study next.

Figure 4.3: P-value wins by method: Number of significant wins (best accuracy among all methods
with a P-value < 0.005) for each method over all datasets.

dropout

droplasso

elasticnet

ridge

lasso

Number of wins

0 2 4 6 8

Table 4.4 shows the average number of selected features for each method on each clas-
sification problem. Selected features are defined by having nonzero coe�cients in the cor-
responding model after fixing its parameters. We use a sensitivity threshold ‘ = 10≠8 to
account for potential convergence issues (coe�cients below this threshold are considered as
null). According to Table 4.4, lasso is the method with the highest values of sparsity (that is
selecting the most compact sets of features for the classification task) with an average selected
set size of 6.63, coming before DropLasso with an average of 676. It is interesting that elastic
net does perform feature selection but with a much bigger average selected size of 11, 869.
Ridge and dropout do not perform feature selection if we do not account for coe�cients below
the threshold.

Providing a compact set of features that can discriminate the task labels with high ac-
curacy is important not only for computational time and memory footprint but more im-
portantly for the interpretability of the model and the identification of a minimal set of
features or a molecular signature of the observed phenotype. Using the reported results in
the previous tables, we compare in Figure 4.4 the trade o↵ presented by the di↵erent methods
between accuracy, as evaluated by mean AUC for each dataset, and model sparsity that can
be defined by the proportion of features not selected for each dataset, where each point is
the best validated model for one method on one dataset. Figure 4.4 confirms the fact that
most accurate models are not sparse, and presents DropLasso as the method that trades o↵

best sparsity and accuracy, presenting a more sparse alternative to elastic net, and a more
accurate alternative to lasso.

Biological significance of the selected features:

To conclude this section, we now evaluate the biological relevance of the gene lists or the
molecular signatures estimated by the two methods that consistently provided sparse models,
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Table 4.4: Average number of selected variables for the di↵erent models

Dataset Variables dropout DropLasso elastic net ridge lasso

EMTAB2805, G1 vs G2M 18,979 18,973 274 13,117 14,597 7

EMTAB2805, G1 vs S 18,740 18,733 291 13,089 14,606 7

EMTAB2805, S vs G2M 18,979 18,867 41 8,193 13,088 6

GSE45719, 16-cell vs Mid blast. 22,059 21,965 4 19,747 19,747 3

GSE45719, 16-cell vs 8-cell 21,590 21,413 4,892 17,133 21,393 7

GSE48968, 1h vs 4h 16,439 16,431 18 7,071 10,139 7

GSE48968, 4h vs 6h 15,719 15,711 594 8,994 12,998 14

GSE74596, NKT0 vs NKT17 15,642 15,416 60 7,000 8,758 5

GSE74596, NKT0 vs NKT1 14,962 14,806 33 6,364 6,364 5

GSE74596, NKT1 vs NKT2 16,135 16,020 55 7,368 9,148 5

that is the lasso and DropLasso regularisation. We first illustrate this comparison on the first
dataset, EMTAB2805, where the goal is to discriminate mice cells at the G1 from the G2M cell
cycle stages. To this end, we retrain the di↵erent methods with the parameters corresponding
to the best accuracy but this time on all the samples, and then we perform a Gene Ontology
enrichment analysis using DAVID (Huang et al., 2009) on the subset of genes with non-zero
coe�cients for each method.

For this dataset and the best tuning parameters, DAVID identifies 24 genes selected
by DropLasso and 5 genes selected by lasso. While the analysis of the genes selected by
DropLasso shows enrichment in the functional term ”positive regulation of mitotic cell cycle”,
the genes selected by the lasso method do not include the terms ”cell division”, ”cell cycle”
or ”mitosis”. Among the genes selected by DropLasso, 5 genes were related to the functional
term ”cell cycle” and 2 genes were related to the term ”cell division”. It is interesting to notice
first that 4 out of 5 genes selected by lasso were related to ATP synthesis which underlies
the potential importance of the relationship between energy and the cell cycle, as reviewed
in (Salazar-Roa and Malumbres, 2017), and second that all the genes selected by lasso were
also selected by DropLasso, which shows that DropLasso potentially allows for the discovery
of novel biomarkers.

The enrichment analysis on the GSE48968 dataset, where the goal is to discriminate be-
tween primary mice dendritic cells exposed to 1 hour LPS stimulation and 4 hours stimulation,
identifies 8 genes selected by DropLasso and 4 genes selected by lasso. Although both sets
were enriched with the term ”response to virus”, DropLasso set shows enrichment for ”immune
response”, ”inflammatory response” and ”cellular response to lipopolysaccharide”, as it also
interestingly shows enrichment for the terms ”defense response to Gram-negative bacterium”
and ” cellular response to tumor necrosis factor” , as it is known that lipopolysaccharide stim-
ulates the production of tumor necrosis factor (TNF)-– (Barsig et al., 1995; Ogikubo et al.,
2004). While the analysis of lasso selected genes does not reveal any enriched functional an-
notation cluster, one cluster is enriched in the DropLasso genes set and appears to be mainly
related to cytokines and chemokine which were previously shown to have very altered profiles
by LPS stimulation (Medvedev et al., 2000; Kopydlowski et al., 1999; Johnston et al., 1998).
Interestingly, here again all the genes selected by lasso are also selected by DropLasso.

Finally, the enrichment analysis on the GSE74596 with the classification task between
natural killer T cell subsets (NKT0 vs NKT1) shows some di↵erences in the selected genes
by DropLasso and lasso, where some genes selected by lasso are not selected by DropLasso
(3 out of 6 identified genes by lasso). While both methods are mostly enriched with the
same terms: ”CTL mediated immune response against target cells” and ”Ras-Independent
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Figure 4.4: Accuracy-sparsity tradeo↵ for the di↵erent methods:Average AUC against average model
sparsity of models with best validation parameters across the di↵erent methods and datasets. Each
point represents the result of one method (see legend) on one dataset.

pathway in NK cell-mediated cytotoxicity”, DropLasso set additionally shows enrichment for
two terms including the term ”Immunoglobulin” and three terms including the term ”major
histocompatibility complex (MHC) ”molecules, that are both related by definition to T-cells.

Overall, this short analysis of the molecular signatures estimated by lasso and DropLasso
confirms that a small number of relevant genes tend to be selected by both methods, and the
fact that DropLasso significantly outperforms lasso in AUC on most datasets confirms that
its list of genes is likely to be more complete than that selected by lasso.

4.4 Discussion

ScRNA-seq is changing the way we study cellular heterogeneity and investigate a number
of biological process such as di↵erentiation or tumourigenesis. Yet, as the throughput of
scRNA-seq technologies increases and allows to process more and more cells simultaneously,
it is likely that the amount of information captured in each individual cell will remain limited
in the future and that dropout noise will continue to a↵ect scRNA-seq (and other single-cell
technologies).

Several techniques have been proposed to handle dropout noise in the context of data
normalisation or gene di↵erential expression analysis, and shown to outperform standard
techniques widely used for bulk RNA-seq data analysis. In this paper we investigate a new
setting which, we believe, will play an important role in the future: supervised classification
of cell populations into pre-specified classes, and selection of molecular signatures for that
purpose. Molecular signatures for the classification of tissues from bulk RNA-seq data has
already had a tremendous impact in cancer research, and as more and more cell types are
investigated and discovered with scRNA-seq it is likely that specific molecular signatures will
be useful in the future to automatically sort cells into their classes.

DropLasso, the new technique we propose, borrows the recent idea of dropout regularisa-
tion from machine learning, and extends it to allow feature selection. While a parallel between
dropout regularisation and (data-dependent) ridge regression has already been shown by Wa-
ger et al. (2013) and Baldi and Sadowski (2013), it is reassuring that we are able to extend
this parallel to DropLasso and elastic net regularisation.

More interesting is the fact that, on both simulated and real data, we obtained promising
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results with DropLasso in terms of trade-o↵ between accuracy and feature selection. They
suggest that, again, specific models tailored to the data and noise can give an edge over
generic models developed under di↵erent assumptions.

The intuition behind why dropout (and DropLasso) perform well on scRNA-seq data,
however, remains a bit unclear. Our main motivation to use them in this context was to
see them as data augmentation techniques, where training data are corrupted according to
the noise we assume in the data. While we believe this is fundamentally the reason why
we obtained promising results, alternative explanations for the success of dropout have been
proposed, and may also play a role in the context of scRNA-seq. They include for example
the interpretation of dropout as a regulariser similar to a data-dependent weighted version of
ridge regularisation, which works well in the presence of rare but important features (Wager
et al., 2013); it would be interesting to clarify if the regularisation induced by DropLasso on
scRNA-seq data exploits some fundamental property of these data, and may be replaced by
a more direct approach to model this.

Finally, this first study of dropout and DropLasso regularisation on biological data paves
the way to many future direction. For example, it is known that the probability of dropout
in scRNA-seq data depends on the gene expression level (Kharchenko et al., 2014; Risso
et al., 2018). It would therefore be interesting to study both theoretically and empirically if
a dropout regularisation following a similar pattern may be useful. Second, instead of inde-
pendently perturbing the di↵erent features one may create a correlation between the dropout
events in di↵erent genes. Creating a correlation may be a way to create new regularisation by
generating a structured dropout noise. It may for example be possible to derive a correlation
structure for dropout noise from prior knowledge about gene annotations or gene networks
in order to enforce a structure in the molecular signature, just like structured ridge and lasso
penalties have been used to promote structure molecular signatures with bulk transcriptomes
(Rapaport et al., 2007; Jacob et al., 2009).
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Chapter 5

ASNI: Adaptive Structured Noise
Injection for shallow and deep
neural networks

“ Structure is not just a means
to a solution.It is also a
principle and a passion”

Marcel Breuer
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Abstract

Dropout is a regularisation technique in neural network training where unit acti-
vations are randomly set to zero with a given probability independently. In this
work, we propose a generalisation of dropout and other multiplicative noise in-
jection schemes for shallow and deep neural networks, where the random noise
applied to di↵erent units is not independent but follows a joint distribution that
is either fixed or estimated during training. We provide theoretical insights on
why such an adaptive structured noise injection scheme may be relevant, and
empirically confirm that it helps boost the accuracy of simple feedforward and
convolutional neural networks, disentangles the hidden layer representations, and
leads to sparser representations. Our proposed method is a straightforward mod-
ification of the classical dropout and does not require additional computational
overhead.
Availability: All code concerning the real data experiments is available at
https://github.com/BeyremKh/ASNI

Abstract

Dropout est une technique de régularisation dans l’entrâınement des réseau de
neurones artificiels où les activations d’unités sont fixées aléatoirement à zéro in-
dépendamment avec une probabilité donnée. Dans ce chapitre, nous proposons
une généralisation du ”dropout” classique et d’autres schémas d’injection de bruit
multiplicatif pour les réseaux de neurones, où le bruit appliqué à di↵érentes unités
n’est pas indépendant mais suit une distribution jointe qui est soit fixe, soit estimée
au cours de l’entrainement. Nous fournissons des éclaircissements théoriques sur
les raisons pour lesquelles une telle injection de bruit structurée adaptative peut
être pertinente, et nous confirmons empiriquement qu’elle contribue à améliorer
les performances en généralisation de réseaux de neurones denses et convolution-
nels, à dissocier les représentations des couches intermédiaires et à améliorer leur
parcimonie. La méthode que nous proposons est une simple modification du
”dropout” classique et le temps de calcul supplémentaire en est négligeable.
Availability: All code concerning the real data experiments is available at
https://github.com/BeyremKh/ASNI
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5.1 Introduction

The tremendous empirical success of deep neural networks for many machine learning tasks
such as image classification and object recognition (Krizhevsky et al., 2017) contrasts with
their relatively poor theoretical understanding. One feature commonly attributed to DNN to
explain their performance is their ability to build hierarchical representations of the data, able
to capture relevant information in the data at di↵erent scales (Bengio et al., 2013; Tishby and
Zaslavsky, 2015; Mallat, 2012). An important idea to create good sets of representations is
to reduce redundancy and increase diversity in the representation, an idea that can be traced
back to early investigations about learning (Barlow, 1959) and that has been implemented in
a variety of methods such as independent component analysis (Hyvärinen, 2013) or feature
selection (Peng et al., 2005). Explicitly encouraging diversity has been shown to improve
the performance of ensemble learning models (Kuncheva and Whitaker, 2003; Dietterich,
2000), and techniques have been proposed to limit redundancy in DNN by pruning units
or connections (Hassibi and Stork, 1993; LeCun et al., 1990; Mariet and Sra, 2016) or by
explicitly encouraging diversity between units of each layer during training (Cogswell et al.,
2015; Desjardins et al., 2015; Rodŕıguez et al., 2016; Luo, 2017).

Dropout (Hinton et al., 2012b; Srivastava et al., 2014) is a recent and popular regulari-
sation techniques in deep learning that exploits the idea of creating diversity stochastically
while training, by randomly setting some units or connections to zero during stochastic gra-
dient optimisation. Proposed by Hinton et al. (2012b) as a way to prevent co-adaptation
of units and to approximately combine exponentially many di↵erent DNN architectures e�-
ciently, it has improved DNN performance in many benchmark datasets. Dropout can also
be interpreted as a regularisation technique (Baldi and Sadowski, 2013; Wager et al., 2013;
Maeda, 2014; Helmbold and Long, 2017), however its impact on learning a good representa-
tion of the data remains elusive. Several variants of the original dropout model have been
proposed to adapt the algorithm to other models (e.g., Gal and Ghahramani, 2016b), or to
modify the distribution of the stochastic noise. Ba and Frey (2013) propose that the dropout
rate of a unit should depend on its magnitude and dynamically adapt the dropout rate of
each unit activation during training. Another variant is to group units together because of
their proximity in a map (Tompson et al., 2014; DeVries and Taylor, 2017) of because they
are strongly correlated (Aydore et al., 2019), before applying dropout jointly on the units in
a group. This can equivalently be interpreted as applying dropout to individual units, but
constraining the stochastic dropout noise in units within a group to be perfectly correlated.

In this work, we extend and generalise the idea to modify the noise distribution, and
analyse both theoretically and empirically the e↵ect of di↵erent choices. In particular, we
study the impact of creating correlations among noise in the units of a given layer, generalising
the ideas of Tompson et al. (2014); DeVries and Taylor (2017); Aydore et al. (2019) to a general
covariance structure. We depart from binary dropout noise to the more flexible multiplicative
Gaussian noise model, which allows to specify any covariance structure without the need to
explicitly cluster units into groups, and highlight the role of the noise correlation matrix in
the regularisation e↵ect of this structured noise injection procedure. We show in particular
that borrowing the covariance of the units to create the covariance of the noise can decrease
redundancy among the units, a phenomenon we confirm empirically that leads to better
representations and classification accuracy.

5.2 Dropout and multiplicative noise

Let us first set notations to describe a standard neural network for inputs in R
d with H

layers of respective dimensions d1, . . . , dH . For any layer l œ [1, H] let W (l) œ R
d(l)◊d(l≠1)

and b(l) œ R
d(l)

denote respectively the matrix of weights and the vector of biases at layer
l, with the convention d(0) = d, and let ◊ = (Wl, bl)l=1,...,H denote the set of parameters
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of the network. The network defines a function fθ : Rd æ R
d(H)

given for any x œ R
d by

fθ(x) = y(H), where y(l) is defined recursively for l = 0, . . . , H by y(0) = x and, for l œ [1, H]:

I
z(l) = W (l)y(l≠1) + b(l) ,

y(l) = ‡(l)(z(l)) ,

where ‡(l) is an activation function at the l-th layer, such as the RELU function ‡(t) = t1(t >
0) for t œ R, applied entrywise if its input is a vector.

Given a training set D of N labelled inputs (x1, y1), . . . , (xN , yN ) œ R
d ◊ R

p, and a loss

function L : Rd(H) ◊ R
p æ R, training the neural network amounts to fitting the parameters

◊ by trying to minimise the average loss over the training set:

min
θ

1

N

Nÿ

i=1

L (fθ (xi) , yi) , (5.1)

usually by some form of stochastic gradient descent (SGD) using backpropagation to compute
gradients. For example, when the label is a scalar (p = 1), then one can use d(H) = 1 and
the squared error L(u, v) = (u ≠ v)2 for u, v œ R.

A popular way to improve the training of neural networks is to use dropout regularisation,
where the units of the input and hidden layers are stochastically omitted during training
(Srivastava et al., 2014). Dropout is a particular case of multiplicative noise, which we can

formalise as follows. Given a sequence of vectors r =
1
r(0), . . . , r(H≠1)

2
œ R

d(0) ◊. . .◊R
d(H≠1)

,

of total dimensions D = d(0) + . . . + d(H≠1), we create the modified function fθ(x, r) = y(H)

where y(0) = x and, for l œ [1, H]:

Y
__]
__[

Ây(l≠1) = r(l≠1) § y(l≠1) ,

z(l) = W (l)Ây(l≠1) + b(l) ,

y(l) = ‡(l)(z(l)) ,

where § denotes the Hadamard or element-wise product. We then define a set of indepen-
dent and identically distributed (i.i.d.) random variables (Ri)i=1,...,N with values in R

D (the
“noise”) and train the network by solving

min
θ

1

N

Nÿ

i=1

EL (fθ (xi, Ri) , yi) . (5.2)

With these notations, the standard dropout approach of (Srivastava et al., 2014) with pa-
rameter p œ [0, 1] is obtained by taking a noise distribution with i.i.d. entries across the
dimensions taking the value 1/p with probability p, and 0 with probability 1 ≠ p.

5.3 Structured noise injection (SNI)

We propose to create new learning schemes by learning with multiplicative noise, as described
above, where the noise distribution of R is not i.i.d across the units (while we keep the noise
samples R1, . . . , RN i.i.d. according to the noise distribution). For simplicity, we focus only
on Gaussian noise:

R ≥ N (1D, ⁄Σ) , (5.3)

where 1D is the constant D-dimensional vector with all entries equal to 1, ⁄ Ø 0 is a regu-
larisation parameter and Σ œ R

D◊D is a symmetric positive semidefinite covariance matrix.
When ⁄ = 0, R is almost surely constant equal to 1, and we recover the standard learning
without noise injection (5.1). When ⁄ > 0 and Σ = I we learn from i.i.d. multiplicative
Gaussian noise, a variant of dropout that was proposed by Srivastava et al. (2014) and shown
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to perform very similarly to dropout. When Σ is diagonal but not necessarily constant on
the diagonal, the amount of noise can vary among units, but the noise is still independent
across units.

Our focus in this paper is on non-diagonal covariance matrices Σ, which create correlations
between the noise at di↵erent units. We call this setting structured noise injection (SNI). In
the case of multilayer neural network, it is natural to create correlations within layers, and
not between layers, which translates to a block-diagonal structure for Σ, where each block
corresponds to the units of a given layer. We further consider two flavors of SNI.

5.3.1 SNI with fixed noise covariance

The basic flavor of SNI is when we fix the noise covariance Σ a priori and independently from
the data, using for example the structure of the network as prior knowledge. This is a way
to input prior knowledge about the problem in the learning algorithm, and has already been
proposed as a promising technique in di↵erent settings, particularly with binary noise. For
example, Tompson et al. (2014) proposed the SpatialDropout method, where entire feature
maps corresponding to adjacent pixels are randomly discarded together instead of individual
pixels, corresponding to binary SNI with a block-diagonal covariance matrix with constant
blocks equal to 1 for each set of pixels in a feature map. Similarly, DeVries and Taylor (2017)
applies binary SNI at the input layer of a convolutional network by masking contiguous
sections of inputs rather than individual pixels, yielding new state-of-the-art results in image
classification. Implementing a SNI strategy with fixed, block-diagonal covariance matrix at
the layer level, is only a slight generalisation of standard parameter inference with SGD and
backpropagation. For example, Algorithm 5 illustrates the forward pass between layers l ≠ 1
and l with SNI regularisation, where Σ

(l≠1) is the block of Σ corresponding to layer l ≠ 1.

Algorithm 5 Feed-forward pass with SNI at layer l

Require: Mini-batch of outputs from the previous (l≠1)-th layer y
(l≠1)
1 , . . . , y

(l≠1)
n œ R

d(l≠1)
,

regularisation parameter ⁄ œ R+, covariance matrix of the noise Σ
(l≠1) OUTPUT: The

mini-batch of outputs from the l-th layer
1: for i = 1 to n do
2: Sample r

(l≠1)
i ≥ N (1d(l≠1) , ⁄Σ

(l≠1))

3: Ây(l≠1)
i Ω r

(l≠1)
i § y

(l≠1)
i

4: z
(l)
i Ω W (l)Ây(l≠1)

i + b(l)

5: y
(l)
i Ω ‡(z

(l)
i )

6: end for
7: return y

(l)
1 , . . . , y

(l)
n œ R

d(l)

5.3.2 Adaptive SNI

Another SNI approach is to define a noise structure with covariance Σ(D, ◊) which may
depend on the data and on the model parameters. We refer to this situation as Adaptive
Structured Noise Injection (ASNI). An example of ASNI approach, where Σ depends on the
data D but not on the model parameters ◊, was recently proposed by Aydore et al. (2019):
they first use the data D to identify groups of correlated features, and then perform dropout
at the group level, reporting promising empirical results. In other words, they impose a
block diagonal correlation structure on the noise, where each block corresponds to a group
of correlated features, and the correlation of the noise within a group is 1. While grouping
is needed when one wants to perform dropout by group, more general correlation matrices
are possible when the noise in Gaussian. An obvious extension of the work of Aydore et al.
(2019) is to impose over the noise the same covariance structure as observed in the data.
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When a single-layer linear model is considered, as in Aydore et al. (2019), then Σ depends
only on the data D, but not on the model parameters ◊. In the case of multi-layer networks,
the covariance of the units at a given internal layer not only depends on the data distribution,
but also on the parameters ◊ of the models; as a result, the covariance of the noise to be
injected in internal layers depends on both D and ◊ in this case.

To solve (5.2) with ASNI, we can still follow a SGD approach where at each step a
minibatch of examples is randomly chosen, and a realisation of the noise on these examples is
sampled. One di�culty in ASNI is that the statistics of the noise to be injected depends on
the data themselves, and on the parameters of the DNN which evolve during optimisation.
Similarly to the procedure used in batch normalisation (Io↵e and Szegedy, 2015), we propose
to re-estimate the covariance of the noise at each SGD iteration from the mini-batch itself,
before sampling the noise on the mini-batch using this structure. Algorithm 6 details the
feed-forward pass for one layer, in the case where Σ is block diagonal with a block for each
layer equal to the covariance of the units in that layer.

We note that in order to sample the noise with a given covariance matrix Σ, one typically
needs to factorise Σ = UU€ by spectral decomposition or Cholesky decomposition (Gentle,
2009), and then get the samples as U‘ where ‘ ≥ N (1, I). This can create significant com-
putational burden, since this must be performed at each SGD iteration, and is one of the
reasons why, for example, batch normalisation only scales each feature but does not perform
whitening (Io↵e and Szegedy, 2015). In the particular case of ASNI where Σ is the covariance
of the data, we can get an important speed-up since the estimate of Σ on a mini-batch is
already factorised as Σ̂ = Ỹ €Ỹ , where Ỹ is the n ◊ d(l≠1) matrix of mini-batch outputs,
centered and divided by

Ô
n. In other words, the estimation of Σ

(l≠1) in line 1 of Algorithm 6
can be completely bypassed, and the matrix U in line 4 replaced by Ỹ . We note that this
is particularly e�cient when the mini-batch size n is not larger than the number of units.
Finally, a further important speed-up is possible by sampling a single noise vector for each
sample in a mini-batch, instead of sampling a di↵erent vector for each sample. This results
in algorithm 7.

Algorithm 6 Feed-forward pass with ASNI at layer l

Require: Mini-batch of outputs from the previous layer y
(l≠1)
1 , . . . , y

(l≠1)
n œ R

d(l≠1)
, regular-

isation parameter ⁄ œ R+

1: OUTPUT: The mini-batch of outputs from the l-th layer
2: Estimate Σ

(l≠1) = UU€ with U œ R
d(l≠1)◊dU from the batch

3: for i = 1 to n do
4: Sample ‘i ≥ N (1du

, I)

5: r
(l≠1)
i Ω

Ô
⁄U‘i

6: Ây(l≠1)
i Ω r

(l≠1)
i § y

(l≠1)
i

7: z
(l)
i Ω W (l)Ây(l≠1)

i + b(l)

8: y
(l)
i Ω ‡(z

(l)
i )

9: end for
10: return y

(l)
1 , . . . , y

(l)
n œ R

d(l)
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Algorithm 7 Fast Feed-forward pass with ASNI at layer (l)

Require: Mini-batch of outputs from the previous layer y
(l≠1)
1 , . . . , y

(l≠1)
n œ R

d(l≠1)
, regular-

isation parameter ⁄ œ R+

1: OUTPUT: The mini-batch of outputs from the l-th layer

2: m(l≠1) Ω 1
n

qn
i=1 y

(l≠1)
i

3: Sample r(l≠1) ≥ N (1n, ⁄I)

4: r(l≠1) Ω 1Ô
n

Q
ca

y
(l≠1)
1 ≠ m(l≠1)

. . .

y
(l≠1)
n ≠ m(l≠1)

R
db

€

r(l≠1)

5: for i = 1 to n do
6: Ây(l≠1)

i Ω r(l≠1) § y
(l≠1)
i

7: z
(l)
i Ω W (l)Ây(l≠1)

i + b(l)

8: y
(l)
i Ω ‡(z

(l)
i )

9: end for
10: return y

(l)
1 , . . . , y

(l)
n œ R

d(l)

5.4 regularisation effect

It is well known that learning with noisy data can be related to regularisation. For example,
adding uncorrelated Gaussian noise to data in ordinary least squares regression is equivalent,
in the case of squared error, to ridge regression on the original data Bishop (1995b). The
following result clarifies how correlations in the noise impacts this regularisation. We consider
a setting with no hidden layer and no bias term, i.e., a simple linear model of the form
f(x) = w€x where w œ R

d is the vector of weights of the model.

Lemma 1. Given a training set (x1, y1), . . . , (xn, yn) œ R
d◊R with centred inputs (

qn
i=1 xi =

0), and given R1, . . . , RN i.i.d. random variables following N (µ, ⁄Σ) for some ⁄ Ø 0 and
covariance matrix Σ, the following holds for any w œ R

d:

1

N

Nÿ

i=1

E

1
w€(Ri § xi) ≠ yi

22

=
1

N

Nÿ

i=1

1
w€xi ≠ yi

22
+ ⁄w€ (C § Σ) w ,

where C = 1
n

qN
i=1 xix

€
i is the covariance matrix of the data. Furthermore, if L : R2 æ R

is a general loss function and for any y œ R, the function u œ R ‘æ ¸y(u) = L(u, y) twice-
differentiable, then the following holds:

1

N

Nÿ

i=1

EL
1
w€(Ri § xi), yi

2

=
1

N

Nÿ

i=1

L
1
w€xi, yi

2
+

⁄

2
w€ (J(w) § Σ) w + o(⁄) ,

where

J(w) =
1

N

Nÿ

i=1

¸ÕÕ
yi

1
w€xi

2
xix

€
i .

The proof of these results follows the same marginalisation argument in chapter 2, equa-
tion 3.6. Depending on the noise covariance Σ, we derive several interesting situations:

• In the case of standard dropout regularisation with i.i.d. nodes (Σ = I), we recover
known results of Wager et al. (2013); Baldi and Sadowski (2013).
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• When Σ = 1d1
€
d , i.e., when the noise is the same for all units, then Σ is the neutral

multiplication of the Hadamard product. This implies that the regularisation boils
down to ⁄w€Cw in the least squares regression case, and to ⁄w€J(x)w/2 in the more
general case. Interestingly, in the least squares regression with centered data, we have
the following:

Lemma 2. Given a training set (x1, y1), . . . , (xn, yn) œ R
d ◊ R with centred inputs

(
qn

i=1 xi = 0), and given R1, . . . , RN i.i.d. random variables following N (µ, ⁄1d1
€
d ) for

some ⁄ Ø 0, the following holds for any w œ R
d:

1

N

Nÿ

i=1

E

1
w€(Ri § xi) ≠ yi

22

=
1

N

Nÿ

i=1

1
w̃€x̃i ≠ yi

22
+ ⁄w̃€w̃ ,

where C = 1
n

qN
i=1 xix

€
i is the covariance matrix of the data, x̃i is a whitened version

of xi for i = 1, . . . , n, and w̃ is the whitened version of w.

In other words, SNI on centered data is equivalent in the case of squared error to
standard ridge regression on the whitened data. Remember that whitening data is
obtained by multiplying each vector by a whitening matrix Z œ R

d◊d that satisfy
Z€Z = C≠1. There exist an infinite number of possible whitening matrix, a standard
choice being Z = C≠1/2 for ZCA whitening. Hence, in Lemma 2, x̃i = Zxi and w̃ = Zw,
and the proof of Lemma 2 results from simple algebric manipulations of the results of
Lemma 1. Interestingly, when noise injection is done per layer, then Lemma 2 shows
that injecting the same noise to all units of a given layer is equivalent to data whitening
at the layer input, combined with ¸2 regularisation (a.k.a. weight decay in the neural
network terminology). Data whitening is usually associated with high computational
cost due to diagonalisation of the covariance matrix, and is replaced in practice by batch
normalisation which only normalises the variance of each unit; our analysis suggests that
SNI with strong noise correlation within a layer provides a computationally e�cient
approach to obtain the same result as complete data whitening.

• Finally, we propose Σ = C as another interesting structure for ASNI, which generalises
the idea of Aydore et al. (2019) to creating noise correlation on correlated units and in
case of non-linear models. In the case of least square regression, this is equivalent by
Lemma 1 to a regularisation by w€C§2w, where C§2 denotes the Hadamard g of the
covariance matrix C. While detailed analysis of this choice is complicated by the fact
that the eigenstructure of C§2 is not easily related to the one of C, we show empirically
below that it leads to promising results.

5.5 Effect on learned representation

While Lemma 1 interprets SNI as regularisation in the one-layer, linear model case, the same
analysis can be done at each layer of a multi-layer network and even for non-linear activations.
In this case, though, both the inputs of the layer (i.e., the xi’s in Lemma 1) and the weights
w are jointly optimised, since the inputs depend on the parameters of the previous layers.
Hence SNI may a↵ect the representation learned by a multi-layer network.
Let us take the case of least squares regression as an example, where SNI is equivalent to
a regularisation by ⁄w€ (C § Σ) w according to Lemma 1. When Σ = 1d1

€
d , we have seen

that SNI is equivalent to ridge regression on the whitened data. Hence, any rotation of the
inputs has no impact on the model learned, since both the whitening of the xi’s and the ridge
penalty on w are invariant to rotation. As a consequence, SNI in that case does not promote
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independence of the units in a layer, since any rotation of the units can change the correlation
between units without a↵ecting the objective function of SNI regression.

The situation is di↵erent for the standard dropout (Σ = I) and ASNI with Σ = C, as
the penalty w€ (C § Σ) w is not invariant to rotation anymore. Interestingly, the following
holds:

Lemma 3. For Σ = I or Σ = C, where C is the covariance matrix of a set of points
x1, . . . , xn œ R

d, it holds that:

1. ’i, j œ [1, d] , (C § Σ)ij Ø 0,

2.
qd

i,j=1 (C § Σ)ij is invariant to rotation of the points.

Proof. For the first point, just notice that for Σ = I, the entries of C § Σ are Cii Ø 0 on
the diagonal, and 0 elsewhere; for Σ = C, the entries of C § Σ are C2

ij Ø 0. For the second
point, note that for Σ = I, the sum considered is just the trace of the covariance matrix
C, which is invariant to rotation (sum of eigenvalues); for Σ = C, the sum considered it
the squared Frobenius norm of C, which is also invariant to rotation (sum of the squares of
eigenvalues).

As the penalty induced by SNI is

⁄w€ (C § Σ) w = ⁄
dÿ

i,j=1

(C § Σ)ij wiwj , (5.4)

Lemma 3 suggests an interplay between the optimisation of the inputs (which impact C § Σ)
and the optimisation of w. If we fix w and just optimise over a rotation of the inputs, then
the penalty (5.4) is just a linear function in C § Σ, which according to Lemma 3 stays in
a linear polyhedron defined by linear equalities and inequalities, and one might expect the
best rotation to push C § Σ near the boundary of that polyhedron, where some entries are
0. Of course a more careful analysis is needed to make this reasoning rigorous (in particular,
w should also be rotated, and C § Σ can not span the whole polyhedron), but it may hints
that both dropout and ASNI with Σ = C tend to create representations with small values in
C § Σ. While this only concerns variance terms for usual dropout, a possible benefit of ASNI
with Σ = C is that it involves all o↵-diagonal terms C2

ij as well, suggesting that ASNI may
create less correlated representations by penalising the correlation among units of a given
layer. We study this e↵ect more precisely in the experiments below.

5.6 Experiments

5.6.1 Simulation

In order to study the performance of ASNI on a toy dataset and a simple model, we use the
classical simulation setting proposed by Guyon et al. (2007) for the MADELON dataset. In
short, we generate 100 samples for training and 10 000 test samples from 2 balanced classes,
and train a linear model on the same training set using (1) no dropout, (2) i.i.d Gaussian
dropout with di↵erent values of ⁄, and (3) ASNI using Σ = C with di↵erent values of ⁄.
The MADELON procedure allows to vary total number of features, as well as the number
of redundant features. We report in Tables 5.1 and 5.2 the test accuracies of the di↵erent
models, when we vary the total number of features on the one hand, and when we vary
the number of redundant features on the other hand. For the regularised methods, the test
accuracy is taken over the best regularisation parameter ⁄ (same for the shown figures).

We notice that in most settings ASNI performs best, particularly when the total number
of features grows. This suggests that ASNI acts as an e↵ective regulariser even for linear
models. It also significantly stands out in the presence of redundant features. An intuition is
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Table 5.1: Best 10 runs average test classification score (± standard deviation) of a linear model
without noise injection, with i.i.d Gaussian dropout, and with ASNI on the MADELON simulation
with 10% useful features and no redundant features: varying the total number of features.

Total features No drop. i.i.d Gauss. ASNI

102 66.6 ±2.6 68.3 ±2.0 68.0 ±2.0

103 68.1 ±2.3 68.6 ±2.0 68.9 ±2.2

104 55.6 ±2.5 54.9 ±2.8 56.2 ±2.6

Table 5.2: Best 10 runs average test classification score (± standard deviation) of a linear model with-
out noise injection, with i.i.d Gaussian dropout, and Structured dropout (ASNI) on the MADELON
simulation with 1000 features and 100 useful : varying the number of redundant features

Redundant features No drop. i.i.d Gauss. ASNI

0 66.6 ±2.3 68.3 ±2, 0 68.0 ±2.0

100 65.8 ±1.6 67.6 ±1.3 68.2 ±1.3

800 68.9 ±1.6 69.1 ±1.6 71.6 ±1.6

that ASNI allows us to use the weights of the redundant features in accordance to the useful
features they are created from and minimises prediction disagreement among single weights
(since it ties weights in the regularisation).

5.6.2 MNIST

We now assess the performance of ASNI on image classification, using the classical MNIST
benchmark. For simplicity, we train a network with only 2 dense ReLU-activations hidden
layers. We do not expect to obtain state-of-the-art results as we do not perform any data
augmentation or other regularisation. The goal of this set of experiments is mainly to study
the di↵erence of performance and the e↵ect of ASNI on a hidden layer activations compared
with independent noise injection. The number of the second hidden layer units d(2) is fixed
to the number of classes (10 here), and we vary the number of units in the first hidden layer
d(1).

Table 5.3: Best 5 runs average classification score (± standard deviation) on the MNIST dataset of
a 2 hidden layer without noise injection, with i.i.d noise injection (Gaussian and Bernoulli dropout),
and with ASNI, as one varies the number of units in the first hidden layer.

d(1) No drop. iid Gauss. iid Bern. ASNI

32 93.7 ± 0.2 94.2 ± 0.8 94.4 ± 0.9 95.8 ± 0.4

64 95.8 ± 0.6 95.4 ± 0.7 95.9 ± 0.6 96.6 ± 0.7

256 96.1 ± 0.6 97.0 ± 0.7 97.4 ± 0.7 97.8 ± 0.7

512 96.5 ± 0.1 97.5 ± 0.1 97.6 ± 0.1 98.1 ± 0.1

1,024 96.2 ± 0.1 97.6 ± 0.1 97.6 ± 0.2 98.1 ± 0.3

We summarise in Table 5.3 the test accuracy defined as the proportion of well classified
examples from the test set, after training the 2 hidden layer network with varying number of
units. Figure 5.1 shows the evolution of this test accuracy during the training process of the
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model with 256 units in the hidden layer, as a function of the number of SGD iterations.
We see from Table 5.3 that all methods involving noise injection tend to outperform the

baseline approach without no regularisation, which confirms the benefits of noise injection for
performance. Second, we notice that among the three methods that perform noise injection,
ASNI constantly outperforms both Gaussian and Bernoulli i.i.d dropout for small and large
number of units. The 2 hidden layers, that seems to overfit even for a small number of
units in both hidden layers, has however a better accuracy with larger number of units,
which indicates that there is still information to be gained from the data. The network with
64 units however, with ASNI regularisation, seems to capture more information than the
network without dropout with 1024 units, which can be largely explained by the quality of
representation learnt by structured dropout, as we will show below. Figure 5.1 also shows
that ASNI leads to faster convergence, an e↵ect observed as well in batch normalisation (Io↵e
and Szegedy, 2015).

Figure 5.1: Test classification during training for a 2-hidden layers MLP, with 256 units in the first
hidden layer, trained without noise injection, with i.i.d. noise injection or with ASNI (with the best
regularisation hyper-parameter ⁄).

To see the e↵ects of ASNI on units co-adaptation we measure the total correlation of the
units’ activations at a layer l as the Frobenius norm of the activations correlations matrix T
defined as:

Tij
Σi,j

Σi,iΣj,j
,

where Σ is the covariance of the unit activations introduced in methods description. The
evolution of this quantity is shown in Figure 5.2, for the network with 1,024 units in the
hidden layer. We see that for all methods, correlations among units tends to decrease during
optimisation, which confirms that better performance is obtained when units are less redun-
dant. We also see that adding noise has a dramatic e↵ect on the decrease of correlation, as
all three methods regularised by noise injection see their units’ correlations decrease much
faster and much lower than the un-regularised baseline. Gaussian and Bernoulli i.i.d. noise
injection lead to a very similar curve, confirming that both methods behave very similarly.
Finally, we observe that ASNI lead s to faster decrease of the correlation matrix norm, and
that it reaches after 104 iterations a lower value than all other methods. This empirically
confirms the active role played by non-i.i.d. noise injection, in particular ASNI, in promoting
non-redundant representations.

To further study the quality of the representations learned by di↵erent methods, we
visualise the vectors of hidden layer activations on the test set using t-SNE in order to
assess how well the di↵erent classes are separated. Figure 5.3 shows the 2-component t-SNE
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Figure 5.2: Correlation matrix norm of the first hidden layer activations during training for a 2-hidden
layers MLP trained without noise injection, with i.i.d. noise injection or with ASNI (with the best
regularisation hyper-parameter), with 1,024 units in the first hidden layer.

embeddings of the second hidden layer activations (32 in this case) applied on a sample of 1,000
test samples, trained respectively without noise injection, with i.i.d. Bernoulli dropout, and
with ASNI. Visually, we see that the class are better separated in the representation learned

Figure 5.3: t-SNE visualisation of the second hidden layer activations for 1,000 MNIST test images,
for a 2 hidden layers MLP with 32 units on the 1st layer. We compare a network trained without
noise injection (upper left), with i.i.d Bernoulli dropout (upper right), and with ASNI (bottom). The
points are colored according to the class of the images.

by ASNI than by the other methods. To quantify this visual impression, we measure the
quality of the representation by computing the Silhouette coe�cient of each t-SNE embedding
(Rousseeuw, 1987). A larger Silhouette value indicates that the representation is better at
recovering the known classes of images (Chen et al., 2002). We report in Table 5.4 the
mean silhouette coe�cients over all test samples for 10 clusters with respectively 32, 256 and
1,024 units in the first hidden layer. These results confirm what we qualitatively observed in
Figure 5.3, namely, that noise injection improves the quality of the representations compared
to the non-regularised version, and more importantly that ASNI clearly outperforms i.i.d.
noise injection in all settings. An example of the Silhouette analysis on MNIST with the 2
hidden layers MLP with 32 units on the 1st layer is visualised in figure A.2.

In order to see which layers are decorrelated by (ASNI), we train the same 2 hidden layers
architecture trained on MNIST, but we apply independent noise injection or ASNI only on
one layer for each experiment. The layer can be :

• The input layer
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Table 5.4: Average Silhouette coe�cient scores of the last hidden layer t-SNE embeddings on MNIST
test dataset, without noise injection, with i.i.d Gaussian and Bernoulli dropout, and structured dropout
(ASNI). .

d(1) No drop. iid Gauss. iid Bern. ASNI

32 0.60 0.57 0.53 0.69

256 0.58 0.63 0.63 0.72

1024 0.58 0.73 0.74 0.80

• The first hidden layer

• The second hidden layer

The evolution of the first and second hidden layer’s correlations during training (represented
again by the Frobenius norm of the activations correlation matrix at iteration t) for each
experiment is shown in figure A.3.
A first important observation is that i.i.d. Bernoulli and gaussian dropout do not necessarily
reduce the correlations between units, and thus in this sense do not always prevent co-
adaptations in terms of activations correlations. ASNI on the other hand forces units to be
more independent when it is applied on that layer, but does not reduce cross-correlations
completely to 0 since the norm of the correlation matrix continues to decrease during the
training. In this sense, ASNI is di↵erent from the whitening techniques mentioned in the
introduction in that it does not explicitly change the input and does not force units to be
independent such as batch normalisation and its decorrelated variants, but rather encourages
units through the structure of dropout to be more independent. Interestingly, figure A.3
also shows that in the case of dense multilayer networks, applying (ASNI) on one layer does
decorrelate the activations of that layer but not the next layers, as it can be hinted by the
studied property of ASNI in hidden layer network in the previous section. However, applying
ASNI on the second hidden layer decorrelates its activations but also the first hidden layer
activations.

Our experiments also show that ASNI leads to a higher level of sparsity than independent
noise injection as shown by the figure A.4, that reports the histogram of the obtained ac-
tivation after the training the same 2 Re-LU hidden layers network without dropout, with
i.i.d. gaussian or Bernoulli dropout, or with ASNI. The visualised histogram distributions
confirm findings in (Srivastava et al., 2014) that dropout may lead to sparser representations.
However, we can see that ASNI provides a sparser activations distribution, while improving
on accuracy as previously shown in table 5.3. One might expect even a link between sparsity
of the activations, the accuracy of the network and particularly the representation quality of
the hidden layers, that might be worth further investigation. We also notice that Bernoulli
dropout and its gaussian variant result in a similar level of sparsity, in this experiment at least,
which leads to think that this e↵ect is independent from the sparsity of the multiplicative
noise itself.

5.6.3 CIFAR10 and CIFAR100

Finally, we compare ASNI to i.i.d. noise injection on a more realistic setting, namely, a LeNet
convolutional network architecture (LeCun et al., 1998) with 4 convolutional layers followed by
2 dense layers tested on the CIFAR10 and CIFAR100 datasets. We again compare the di↵erent
noise injection schemes applied on the 2 dense hidden layers, without data augmentation or
additional regularisation.
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Table 5.5 summarises the test accuracy reached by the di↵erent training procedures. We
again observe that all noise injection methods outperform the baseline, that Gaussian and
Bernoulli i.i.d. dropout behave very similarly, and that ASNI has the best performance for
these datasets. We also notice that ASNI has less variance in performance compared to
all other methods, which might be explained by the faster convergence observed already in
MNIST experiments.

Table 5.5: Best 5 runs average test classification score (± standard deviation) of LeNet without noise
injection, with i.i.d. noise injection (Gaussian and Bernoulli dropout), and with ASNI on CIFAR10
and CIFAR100 benchmarks. .

Data No drop. iid Gauss. iid Bern. ASNI

CIFAR10 66.5 ± 0.1 67.9 ± 0.3 67.7 ± 0.4 68.3 ± 0.2

CIFAR100 32.9 ± 0.2 33.8 ± 0.5 33.8 ± 0.5 34.4 ± 0.3

Figure 5.4: Test classification during training for LeNet on CIFAR10 (left) and CIFAR100 (right),
trained without noise injection, with i.i.d. noise injection or with ASNI (with the best regularisation
hyper-parameter ⁄), .

As for the MNIST experiments, we also measure the amount of correlations between
unit activations, evaluated by the Frobenius norm of the correlation matrix, and show how
it evolves over training for the di↵erent methods in Figure 5.5. We notice that standard
Bernoulli dropout has a weaker e↵ect on reducing correlations than other methods on CI-
FAR10, but that overall all methods significantly reduce correlation during training. After
convergence, ASNI keeps a small advantage on both datasets in terms of correlation level
reached. As shown in Table 5.6, the representation learned by ASNI has also a larger Silhou-
ette than other methods on the test sets.

Table 5.6: Average Silhouette coe�cient of LeNet’s last hidden layer t-SNE embeddings on CIFAR
test datasets, without noise injection, with i.i.d Gaussian and Bernoulli dropout, and with ASNI. .

Data No drop. iid Gauss. iid Bern. ASNI

CIFAR10 0.38 0.43 0.42 0.48

CIFAR100 0.35 0.37 0.36 0.38
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Figure 5.5: Correlation matrix norm of the first dense hidden layer activations with LeNet, with either
no noise injection, iid noise injection or ASNI, during training on CIFAR10 (left) and CIFAR100
(right).

5.7 Discussion

We proposed new regularisation schemes that generalise dropout, by creating correlations
between the noise components. We focused particularly on ASNI, an adaptive approach
that replicates the structure of the data correlation in the noise correlation. We showed
both theoretical and empirical results suggesting that ASNI improves the representation and
performance of shallow and deep neural network, while maintaining computation e�ciency.
The ASNI framework opens new research directions. First, one might consider di↵erent ways
to create the noise correlation structure, using for example the structure of the network, or
may even think about learning it. Second, while Gaussian noise is convenient to impose a
particular correlation structure, discrete noises such as binary noise can be computationally
advantageous; sampling binary random variables with a given covariance matrix is however
not an easy task (Leisch et al., 1998; Preisser and Qaqish, 2014), and progress in that direction
may be directly useful for DNN regularisation.

5.8 Availability

All code concerning the real data experiments is available at https://github.com/BeyremKh/
ASNI
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Chapter 6

Conclusion

Despite its late emergence since only a few decades, machine learning, as an interdisciplinary
applied scientific field that stemmed from artificial intelligence as the product of a marriage
between statistics, optimisation and computer science, witnesses at the present day a large
and growing interest not only from the di↵erent scientific communities, but also from the
engineering and business world, and most importantly from young students, such as myself
(if I might use this relative term). This interest, I believe, has multiple roots: first, I do think
that the recent success of the field, namely in tasks that were thought to be only achievable
by human minds (Mnih et al., 2015; He et al., 2015) is the most important reason, especially
that these successes have multiplied in the last years. As mentioned in the introduction, part
of this success is due to the development of more complex models such as multilayer neural
networks, but also to technology development resulting in a decrease in memory and storage
prices allowing for increase in volume of data and the increase in computational power 1.
This brings to the second reason for the rise of interest in the domain in my mind, that
we have briefly discussed in the context of bioinformatics in the introduction, which is the
proliferation of datasets provided by the increasing availability of precise measurement and
of high-throughput technologies (Reuter et al., 2015). These datasets are typically high-
dimensional and might su↵er from a high noise-to-signal ratio (Donoho, 2000). This brings
us to the third motivation and interest of research in the field, which is finding innovative
ways to dig into the signal to provide meaningful insights and develop predictive models that
are capable of being accurate without being fooled by the amount of present noise, in order to
be useful on unseen data, which we have summarised in the introduction of this manuscript.

This was at least the beginning of my thesis story, while being confronted to a real
prediction problem and facing the problem of overfitting, as described in the first chapter,
through the Rheumatoid Arthritis challenge. I was convinced after this interesting experience,
that I want to work on new ways to perform regularisation which can be at the same time
generic and fit di↵erent datasets without being ad hoc tricks, and at the same time that
respect the specificity of these datasets and the prior expert knowledge one has about these
datasets and the corresponding prediction targets.

This led me to dig into the old technique of noise injection, which has witnessed a re-
emergence, in the context of deep learning for instance, in the years just preceding the start of
my thesis (Vincent et al., 2010; Hinton et al., 2012b). The regularising e↵ect of adding noise
stochastically to the input or the learning algorithm fascinated me, as it seemed to inherit the
beauty and the mystery of randomisation in mathematics and computer science (Gallicchio
et al., 2017). I found randomised algorithms to be indeed well-suited in probabilistic problems
much more than in computational number theory, and it was very interesting to discover that
randomisation was not only a mere speed-up or a tool to derive simpler algorithm but rather
maybe an important step towards building intelligent machines. I have in particular read and
used with great interest the work of Leo Breiman that made extensive use of randomness and

1https://hblok.net/blog/posts/2015/12/27/historical-cost-of-computer-memory-and-storage-3/
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data perturbations to design novel, e�cient and popular algorithms (Breiman, 2001, 1996b).
I started not only to be charmed by the idea of noise injection in the input , but convinced
by its e�ciency as one of the very important ideas to study and expand at the present day in
machine learning, both supervised and unsupervised. However, at the start, I found myself
dismayed on one hand by the lack of theoretical ground that probably nourished the magical
mystery around the use of randomness but that showed me how hard is analyse an algorithmic
model, a feeling that was at least shared among some colleagues that worked for instance
on the analysis of the Random Forest model (Breiman, 2001; Scornet et al., 2015). One the
other hand, as it is often the case in applied research, the success of randomised models led
to a spread of related variants that claim to be more e�cient than one other, which I spent
some, sometimes fruitless, e↵orts trying to study and implement. Focusing on the particular
study of input noise injection as a regulariser in the case of supervised learning and linear
models, and the comparaison between additive and multiplicative cases with the landmark
paper of Wager et al. (2013) guided my progress and provided me with su�cient insights,
that have been mainly described in chapter 3, to build interesting and theoretically grounded
generalisations and subsequent variants of INI methods, in the case of linear models with the
particular application of single-cell RNA sequencing classification and biomarkers discovery
in chapter 4, and in the case of multilayer dense and convolutional neural networks in general
in chapter 4.

In the remainder of this chapter, we summarise our contributions in each chapter, state
some corresponding general insights gained from these investigations and interesting future
directions that would be worth pursuing.

The RA challenge and how to avoid overfitting:

In chapter 2, we summarised the experience of our team ”Outliers” in the Rheumatoid Arthri-
tis DREAM challenge which consisted in designing predictive models from genotype and
clinical data of Rheumatoid Arthritis patients in order to predict their response to anti-TNF
treatment (as a continuous or a categorical variable). Among the 73 participating teams,
we succeeded to build the best performing final models in terms of accuracy on the unseen
CORRONA test set, with an AUC of 0.62 for the classification task and a correlation of 0.4
for the regression task. Our best full model did not include the genotype SNP information,
which was later found by a comparative analysis all teams results to not to convey any im-
provement, despite a significant genetic heritability estimate of treatment non-response trait
(Wray et al., 2007). More details and comparative results can be found at chapter 2 and in
our published paper (Sieberts et al., 2016).

These results show that even with thousands of samples, available biological prior knowl-
edge and literature and di↵erent sources of data, predicting a continuous or a categorical
related target is not an easy task. We believe indeed that one of the most important condi-
tions to the success of a prediction task are the quality of the data and its relatedness to the
problem at hand. The quality of the data is a broad term that can include many features,
as for instance: Power of the data in terms of signal, but also quality of preprocessing such
as normalisation, batch e↵ects (or any additional sources of variation) and their e↵ect on
the outcome, relatedness of the data to the problem, objectivity of the measured variables,
among other features.

Indeed, although SNP data here were found to be robustly correlated with Rheumatoid
Arthritis (see introduction of chapter 2 and (Sieberts et al., 2016)), this does not induce an
immediate relationship between SNP data and RA patients’ response to treatment. Another
pitfall of the data is the very measure of the treatment outcome, which we didn’t discuss in
depth in chapter 2. If we actually look at the DAS28 : It is a composite score derived from
4 measures, which are then integrated following some mathematical formula:

1. Count the number of swollen joints (out of the 28).
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2. Count the number of tender joints (out of the 28).

3. Take blood to measure the erythrocyte sedimentation rate (ESR) or C reactive protein
(CRP).

4. Ask the patient to make a ”global assessment of health” (indicated by marking a 10 cm
line between very good and very bad).

These measures, as we see, include for instance a qualitative and subjective measure about
pain and asking the patient for a global assessment of health, they also require the doctor to
look at 28 joints and decide whether the joint is swollon or tender (see figure 2.1 in chapter
2). the DAS28 score has not been adopted in day-to-day (non anti-TNF) practice by all
rheumatologists in the UK for example. This is in part because there are some pitfalls in
the interpretation of the score. For instance if you never have a very high ESR blood result
even momentarily, or if your RA particularly a↵ects the feet (these are not included in the 28
joint count) the score may be misleadingly low. It can also be di�cult to decide whether an
individual joint is swollen or tender, and this uncertainty may lead to misleading variability
in the score. Studies have already showed that DAS28 ”may not be an optimal tool for
assessment of remission in RA” (Mäkinen et al., 2005). Such issue may actually also arise
in other fields such as clinical psychology or text-based emotion prediction for instance (Alm
et al., 2005). One suggestion that did not appear in (Sieberts et al., 2016) would be to use
multiple indicators in order to account for the variability of the outcome, such as physical
function and structural joint damage in the case of RA remission (Paulus, 2004), could make
the task itself easier and thus the predictions more robust, by using frameworks such as
multitask learning (Yuan et al., 2016). Another strategy would be to consider ranking-based
machine learning approaches, where patients can be ranked via the relative severity of the
disease or the relative response to treatment and then predict the ranking for the unseen test
dataset, which might be a more objective approach (Liu, 2009).

Facing a problem of this sort, practitioners might be tempted by building more complex
models to capture eventual variabilities of the target measure and build more precise pre-
dictors. Eventually, and in an ironic way, this might end up overfitting on the training set,
which was the case of many teams in the RA challenge, as exhibited in chapter 2. We found
that overall, some best practices that we advice in complex prediction problems include:

• The use of simple models permits a more straightforward evaluation of the dataset and
a higher interpretability of the selected features by the model. In the case of strong
overfitting, a regularised linear model is also more robust.

• The use of prior knowledge based on biological literature can tremendously improve the
model accuracy and reduce computational overhead (e.g. feature selection).

• A careful pipeline including cross-validation at each model-building step is mandatory.

Finally, we believe that the organisation of these crowdsourced evaluations and modelling
challenges provide some real additional benefits to research, such as assembling the most
comprehensive datasets, comparing a wide variety of state-of-the-art models that can not
be implement by an individual or a handful of individuals in such a short time, as well as
assessing with more confidence the outcome and the power of the particular study and the
possibility of improving over the individual proposed models by building an ensemble model
that might provide better accuracy (see introduction and (Sieberts et al., 2016)). Beyond
immediate benefits, insightful discussions between teams might shed light on subsidiary and
unseen questions that might be important, and encourage future international collaborations.
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Input Noise Injection as a regulariser:

In chapter 3, we focused on a particular regularisation technique in the context of supervised
learning, namely Input Noise Injection (INI). We provided a brief overview of the di↵erent
forms under which INI can be performed, following di↵erent frameworks. These frameworks
include the Bayesian setting, robust optimisation, learning from distributions, ensemble learn-
ing and the expected risk minimisation framework on which we focus as the main framework
in which this regularisation has most been developed. This brief review already revealed
interesting directions that may be explored to complement the INI picture and left me with
some questions. In the distributions learning framework for instance, is there a link or a
certain equivalence between the use of mean embedding, the main tool to convey INI into
the learning problem, and a certain class of regularisers? One particular case hints that the
answer to this question can be positive, since it can be shown, via the convolution theorem
of Gaussian distributions, that the mean embedding of a Gaussian RBF kernel corresponds
to a Gaussian RBF kernel with a larger data-dependent bandwidth (Muandet et al., 2012).

In the ERM framework, we re-formulate the INI procedure in its generality (which has
been described in the case of linear models and general noising functions in (van der Maaten
et al., 2013; Wager et al., 2013) , and in the case of neural netowrks and particular addi-
tive or multiplicative in the remaining literature (Bishop, 1995b; Baldi and Sadowski, 2014;
Noh et al., 2017)) and describe the di↵erent implementations of gradient descent with INI.
In particular, exact and approximate marginalisation, not only provide a deterministic al-
ternative to minimise the INI empirical risk, but also shed light on the e↵ect of INI as a
data-dependent regulariser, in particular for non-quadratic loss and multiplicative noise. Al-
though very interesting, this second order Taylor approximation has been shown to provide
some wrong insights about multiplicative noise both in linear models (Helmbold and Long,
2015) and multilayer neural networks (Helmbold and Long, 2017). This led us to the design of
another simple approximation of the particular case of dropout, which is equivalent to scaled
multiplicative Bernoulli noise when it is only applied on the input layer. This approximation
provides another deterministic alternative to the stochastic approximation of INI and reveals
interesting insights on the e↵ect of INI as emphasising the robustness of the model to deletion
of subsets of features at training. We then presented several experiments on simulated and
real datasets that have shown that:

• As hinted by our approximation, dropout can be beneficial in the setting of rare and
useful features and in the setting of many redundant features.

• Our novel approximation improves on the second order Taylor approximation in the case
of linear logistic loss in terms of test accuracy in the case of rare and useful features.

• We didn’t observe a significative di↵erence between dropout and multiplicative Gaussian
INI in terms of e�ciency in preventing overfitting.

• Depending on the dataset, INI is not always more e↵ective than ¸2-norm regularisation
for preventing overfitting, and multiplicative INI is not always more e↵ective than
additive INI. This was not related to the task but rather to the data structure.

• No INI scheme provided sparse models even in a setting where the true model is sparse.

These first insights are only the beginning of research directions paved with interesting
questions. Indeed, although research in noise injection in either the input data or the models
has been active again in the last years and has led to several new variants as previously
discussed, many intuitions such as the stability and invariance intuitions around INI are still
not understood and remain at the intuition level (e.g. not backed neither by theory, nor by
strong empirical evidence). Some of these questions, from the simplest to the most intricate
in our opinion, are:
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• How does dropout and other INI methods behave on biological datasets other than gene
expression microarrays?

• Does our approximation enjoy some of the properties of the dropout regulariser?

• When does INI result in feature selection? Or alternatively how to make embed feature
selection in INI?

• Which noise distribution and which noise function is most suitable to a given dataset,
data distribution and a loss function?

We partially address some of these questions in the following chapters, by showing how
dropout might suit some particular kind of data, and how changing the distribution of the
injected noise might improve accuracy results and have an e↵ect on the model extracted
features.
We end the conclusion concerning this chapter by this quote in (Baldi and Sadowski, 2014),
who was a pioneer in studying dropout as described in section 3.5: ”at first sight dropout
seems like another clever hack. More careful analysis, however reveals an underlying web of
elegant mathematical properties. This mathematical structure is unlikely to be the result of
chance alone and leads one to suspect that dropout is more than a clever hack and that over
time it may become an important concept for AI and machine learning.”

DropLasso as a robust variant of Lasso for single cell RNA-seq data

In chapter 4, we further focused on dropout as an INI regularisation technique, by designing
and applying a generalisation of dropout it in the context of linear models on a recent and
increasingly popular type of biological datasets provided by the technology of single cell RNA
sequencing.

From a bioinformatics point of view, we developed in this chapter a novel method that
is useful not only to classify cells into predefined classes, but also to learn identify potential
biomarkers of this classification, that is a molecular signature of the particular studied pheno-
type. From a machine learning point of view, this method, that we term DropLasso, is on one
hand a generalisation of the dropout regularisation technique in linear model that allows for
embedded feature selection, and on the other hand a generalisation of the ¸1-norm regulari-
sation (Lasso) by blending it with INI. In order to solve the DropLasso objective e�ciently,
we designed a novel proximal stochastic gradient descent and an e�cient implementation for
the regularisation path for di↵erent values of the regularisation parameters.

We study DropLasso and relate it to the elastic net regularisation which was shown
to improve the stability and generalisation performance of ¸1-norm regularisation (Zou and
Hastie, 2005). Results on single cell RNA-seq datasets experiment we performed showed that
DropLasso outperform Lasso in terms of accuracy, and although it usually does not have
a better accuracy than dropout and elastic net regularisations, it performs a more e�cient
feature selection and leads to the discovery of potentially interesting biomarkers related to
the studied problem.

This work was first guided by the invariance and the data augmentation intuitions men-
tioned in the previous chapter, in which dropout simulates pseudo-examples that could have
been the result of the same experiment with additional dropout events and that share there-
fore the same class to be predicted. The success of such these intuitions in this case is
rather encouraging and paves the way for other applications to other supervised learning
tasks on biological datasets. The main challenge remains to characterise the noise by which
the outcome to be predicted is invariant. Another interesting direction is to make use of prior
knowledge about gene networks in order to improve our method as promoted by structured
sparse regularisation methods on standard RNA-seq (Rapaport et al., 2007). This can be
done for instance by proposing another generalisation of INI where the injected noise follows
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a predefined structure that can be related to the graph Laplacian of gene regulatory network,
as it has been shown that such a Laplacian regularisation can improve the classification per-
formance and feature selection (Rapaport et al., 2007), although it is not yet clear if this
method does always improve the model (Lavi et al., 2012). This idea will be explored and
applied in a particular case where structure will be learnt from the data in the next chapter.

Adaptive structured noise injection for shallow and deep neural networks

In chapter 5, we proposed a generalisation of dropout and other noise injection schemes for
shallow and deep neural networks, where the noise is not necessarily drawn from an indepen-
dent identical distribution but follows a structure that can be fixed or learnt automatically
during training. We call this generalisation Structured Noise Injection (SNI). When the
structure is learnt during training we term it as Adaptive Structured Noise Injection (ASNI).
We theoretically justified the use of such a structure, and show on several benchmark image
datasets that:

1. It can better prevent overfitting than Independent Noise Injection strategies.

2. It can better disentangle the hidden layer representations without hurting their quality.

3. It can lead to sparser hidden layer representations.

Our aim here was mainly to show that it is possible to generalise stochastic regularisation
by noise injection, and that the use of structured noise injection can open new interesting
directions such as building better features. It will now be interesting to apply (ASNI) to
state-of-the-art networks, and also adapt it and apply it to Recurrent Neural Networks and
auto-encoders for instance (for which the application is straightforward). Another application
of ASNI to be explored is network compression after training, since it seems that our method
is able to sparsify the unit activations and compress information in the hidden layers. Finally,
Structured Noise Injection opens the way for experimenting with other structures that might
be of interest in other applications. It seems indeed that creating a duality between noise
structure and model information can be very interesting. An example that can be explored
in future work is when we want a certain structure for hidden layer units that is either known
or imposed by the problem context and invariances.

A final note

Allowing myself to end on a subjective note, I see today the field of machine learning as a
successful, if not one of the most successful field, in bringing scientific disciplines together for
building elaborate tools to automate learning on one hand, and enhancing human knowledge
on the other. My work however did not only shed light the bright side, as to say, fortunately.
It also revealed to me several paradoxes that the field is witnessing, from its growing pop-
ularity and number of research papers to the lack, until today, of solid theoretical work in
sensitive areas. Talking to known researchers, I recall the confidence of Yann Le Cun and Jür-
gen Schmidhuber saying ”supervised learning is over”, probably due the the recent practical
successes that were mentioned also in this manuscript, and the growing number of datasets
that would allow better accuracy. Fundamental questions are however for me still open and
maybe their di�culty lies in their simplicity, as it is often the case in mathematics and more
generally in science. These questions do not only have in mind the practical implications of
machine learning models, but also the modelling and understanding of computational learning
in general. Some of these questions are:

• Given a dataset and a model that is overfitting, what is the best regularisation (in terms
of generalisation performance) that should be applied?

• Given a labeled dataset, what is the best accuracy that one can ever achieve?

122



CHAPTER 6. CONCLUSION

• Why do correlations of one layer units decrease in the manner we have seen while
training a multilayer neural networks?

• How much is our understanding of simple models such as linear models transferrable to
more complex multilayer neural networks? Is there a new learning theory for multilayer
neural networks?

Ultimately, an interesting progress of the field will be a progress of its foundations, such as the
integration of more developed mathematical tools either to understand the current framework
(for instance the ERM framework), or to build new frameworks. One of the basic tools that
were needed in this thesis was the understanding of the expectation of a non linear function
of a simple random variable. We have seen for instance how a second Taylor approximation
can be misleading in this case.

We hope that the works in this thesis will inspire new fruitful ideas. We suggest, if
ever supervised learning really vanished, that another interesting direction to be explored
is the application of INI methods and our variants in new unsupervised learning tasks. An
additional direction that particularly stems from structured noise injection is the impact of
INI on feature learning and interpretation, which is as important as generalisation accuracy
for several fields such as bioinformatics. We think that INI will still be an active field in the
next decade, as our guess is that there should be more intimate links between randomness,
statistical learning and automatisation.
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Supplementaries

A.1 Supplementary tables

Table A.1: A summary of the real-word sc-RNA seq datasets used for DropLasso.

Real Data Nb. train samples Nb. test samples Nb. classes Dimension Source

IMDB 25,000 25,000 1,000 2 https://keras.io/datasets/

Reuters 8,982 2,246 19,449 46 https://keras.io/datasets/

MNIST 60,000 10,000 784 10 https://keras.io/datasets/

CIFAR10 50,000 10,000 3072 10 https://keras.io/datasets/

CIFAR100 50,000 10,000 3072 100 https://keras.io/datasets/

WANG 286 - 7,910 2 (Wang et al., 2005)

VANT 295 - 7,910 2 (Van De Vijver et al., 2002)

A.2 Supplementary figures

Figure A.1: LeNet architecture for CIFAR10 and CIFAR100.
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Figure A.2: Silhouette plots for the t-SNE embeddings of the first hidden layer activations on the test
data (2 hidden layers MLP with 32 units on the 1st layer). From above to below respectively: without
noise injection, with i.i.d gaussian dropout, with Bernoulli dropout, and structured dropout (ASNI)
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Figure A.3: Correlation matrix norm of the first (left figures) and second (right figures) hidden layer
activations during training for a 2-hidden layers MLP with no noise injection, with iid noise injection
and ASNI, applied on the first hidden layer only (above), on the the second hidden layer only (middle)
or on the input layer only (below).
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Figure A.4: First layer activations after training our 2 hidden layers Network on MNIST, without
dropout, with i.i.d. gaussian dropout, i.i.d. Bernoulli dropout or structured dropout (ASNI). With
256 units (above) and 1024 units (below).
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ABSTRACT 

Overfitting is a general and important issue in machine learning that has been addressed in several ways 
through the progress of the field. We first illustrate the importance of such an issue in a collaborative 
challenge that provided genotype and clinical data to assess response of Rheumatoid Arthritis patients to 
anti-TNF treatments. We then re-formalise Input Noise Injection (INI) as a set of increasingly popular 
regularisation methods. We provide a brief taxonomy of its use in supervised learning, its intuitive and 
theoretical benefits in preventing overfitting and how it can be incorporated in the learning problem. We 
focus in this context on the dropout trick, review related lines of work of its understanding and adaptations 
and provide a novel approximation that can be leveraged for general non-linear models, to understand how 
dropout works. We then present the DropLasso method, as both a generalisation of dropout by 
incorporating a sparsity penalty, and apply it in the case of single cell RNA-seq data where we show that it 
can improve accuracy of both Lasso and dropout while performing biologically meaningful feature selection. 
Finally we build another generalisation of Noise Injection where the noise variable follows a structure that 
can be either fixed, adapted or learnt during training. We present Adaptive Structured Noise Injection as a 
regularisation method for shallow and deep networks, where the noise structure applied on the input of a 
hidden layer follows the covariance of its activations. We provide a fast algorithm for this particular adaptive 
scheme, study the regularisation properties of our method on linear and multilayer networks using a 
quadratic approximation, and show improved results in generalisation performance and in representations 
disentanglement in real dataset experiments.
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RÉSUMÉ 

Le sur-apprentissage est un problème général qui affecte les algorithmes d'apprentissage statistique de 
différentes manières et qui a été approché de différentes façons dans la littérature. Nous illustrons dans un 
premier temps un cas réel de ce problème dans le cadre d'un travail collaboratif visant à prédire la réponse 
de patients atteints d'arthrose rhumatoïde à des traitement anti-inflammatoires. Nous nous intéressons 
ensuite à la méthode d'Injection de bruit dans les données dans sa généralité en tant que méthode de 
régularisation. Nous donnons une vue d'ensemble de cette méthode, ses applications, intuitions, 
algorithmes et quelques éléments théoriques dans le contexte de l'apprentissage supervisé. Nous nous 
concentrons ensuite sur la méthode du dropout introduite dans le contexte d'apprentissage profond et 
construisons une nouvelle approximation permettant une nouvelle interprétation de cette méthode dans un 
cadre général. Nous complémentons cette étude par des expériences sur des simulations et des données 
réelles. Par la suite, nous présentons une généralisation de la méthode d'injection de bruit dans les 
données inspirée du bruit inhérent à certains types de données permettant en outre une sélection de 
variables. Nous présentons un nouvel algorithme stochastique pour cette méthode, étudions ses propriétés 
de régularisation et l'appliquons au context de séquençage ARN de cellules uniques. Enfin, nous 
présentons une autre généralisation de la méthode d'Injection de bruit où le bruit introduit suit une structure 
qui est déduite d'une façon adaptative des paramètres du modèle, en tant que la covariance des activations 
des unités auxquelles elle est appliquée. Nous étudions les propriétés théoriques de cette nouvelle 
méthode qu'on nomme ASNI pour des modèles linéaires et des réseaux de neurones multi-couches. Nous 
démontrons enfin que ASNI permet d'améliorer la performance de généralisation des modèles prédictifs 
tout en améliorant les représentations résultantes.
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