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CHAPTER1

Introduction

This thesis deals with state estimation of vehicles or robots that navigate and which
are equipped with various sensors. The first practical digital state estimators appeared
in the 1960s, during the advent of the space age and digital computers. The Kalman
filter was introduced by Rudolph Emil Kalman in 1960 as a theoretical optimal state
estimator andwas immediately applied to navigation for the Apollo project, to estimate
the trajectories of the manned space capsule when going to the Moon and back. More
generally the Kalman filter is a tool to estimate the state of a dynamical system had
a huge impact on the engineering world, especially the aerospace community. This
is dramatically illustrated by awarding Kalman for the development of his optimal
digital technique for state estimation with the 2008 Draper Prize, which is one of three
prizes that constitute the “Nobel prizes of engineering".

Sixty years later, and though the field of Kalman filter based navigation may be
considered as mature, there is still ongoing research on the subject of digital state es-
timation to estimate the trajectories of vehicles in real time. There are various reasons
why.

From the theoretical point of view, researchers have long tried to overcome the
shortcomings of the Kalman filter when applied to nonlinear systems. Indeed, the
Kalman filter is optimal for state estimation of linear systems. However, systems are
hardly linear in practice, especially in the field of navigation, and the simple extension
of the Kalman filter, the Extended Kalman Filter (EKF), based on linearizations about
the estimated trajectory turns out to work well in many cases (e.g., to estimate the tra-
jectory of the space capsule) but may completely fail when confronted with challenging
problems. This has prompted other Kalman filter variants, like the unscented Kalman
filter, as well as different approaches such as particle filters that were very success-
ful in the signal processing community and the optimization-based methods known as
smoothing that is currently very successful in the robotics community.

Another reason why there is still research on the subject of state estimation for
navigation is the recent ubiquity of cameras (vision) as a low-cost and very informative
sensor. They return a high dimensional information that is not easily related to the
state, and pose quite a number of problems (both practical and theoretical) when one
wants to fuse vision with a more classical sensor suite, such as inertial sensors, wheel-
speed sensors, and Global Navigation Satellite Systems (GNSS). Navigating without
absolute measurements (as those provided by GNSS), but only with measurements that
are relative to an unknown environment is referred to as the problem of Simultaneous
Localization And Mapping (SLAM) in the robotics community, and has proved a very
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challenging application to the extended Kalman filter, even at a theoretical level.

Finally, (Kalman) filtering is based on physical models, for the trajectory followed
by the vehicle where a physical model of the state evolution is used, and to mathe-
matically relate the state to the sensors’ measurements. Filtering also relies on some
parameters that need to be tuned by the user. As can be expected, the models are
idealized and do not completely match physical reality. In the same way, tuning the
parameters is difficult as the parameters are supposed to represent the magnitude of
the uncertainty, but this uncertainty is largely unknown and relies on idealized statis-
tical models that do not match what is actually unknown in practice.

1 1 Contributions of the Thesis

The goal of this thesis is to contribute to the state-of-the-art regarding Kalman filtering
for navigation, by focusing on various challenging aspects. The contributions focus on
two different routes. The first route consists in building on the recent variant of the
Kalman filter called Invariant Extended Kalman Filter (IEKF) to address challenging
issues, namely the inconsistency of EKF for SLAM, navigation with vision sensors, and
the more general question of Kalman filtering in the case where the state space is not
an Euclidean space (filtering on manifolds). The second route consists in using recent
tools from the field of Artificial Intelligence (AI), namely (deep) neural networks, to
improve Kalman filters, notably to automatically relate sensors’ measurements to the
state, and to tune the filter “optimally”, that is, use machine learning techniques to
find a dynamical tuning strategy of the Kalman filter parameters that best matches the
data.

This goal is ambitious, and it leads to contributions that all revolve around the
Kalman filter but which intervene at various levels and which differ in nature at times.
As a result, the reading of the present manuscript might prove a little difficult, in the
sense that contributions are to some extent “scattered”. To help the reader better sit-
uate where the contributions lie, we have made a diagram, represented on Figure 1.1,
where the thesis contributions are depicted in the green rectangles. The goal of the
state estimator is to compute as best as possible accurate state estimate, and to convey
the extent of uncertainty about its own estimate, which is encoded in the state covari-
ance matrix as concerns the Kalman filter. The success in practice of a state estimator
relies on three main components: correct physical and uncertainty models, an efficient
estimator for the given models, and finely tuned uncertainty magnitude, and estimator
parameters. Those correspond to various blocks on the figure, with relations between
them that appear. Although it might be too early for the reader being unfamiliar with
filtering to look much into the diagram, the reader should bear in mind its existence
and refer to it throughout the manuscript when need be.

A last note regarding the present work. Our work is essentially concerned with
the production of novel algorithms in the field of navigation and state estimation for
robotics or aerospace. In many cases, our algorithms are tested and benchmarked on
publicly available datasets. In this spirit, we have strived for the production of open
source code, and most of our algorithms have been made publicly available.

2 2 Organization of the Manuscript

This thesis is divided into three parts. To some extent, the parts can be read indepen-
dently. Note, this comes at the price of several repetitions throughout the manuscript.
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12 Introduction

Part I: the first part is dedicated to theoretical contributions to the field of nonlinear
Kalman filtering, and their application to the context where one navigates with camera
and seeks to fuse inertial sensors with vision sensors. In Chapter 3, we focus on the
(abstract) theoretical problem of SLAM, that is, navigating with relative measurements
only in a totally unknown environment. For this problem, the EKF has been long
known as a debateable solution, owing to its inconsistency in this context. We revisit
the theoretical problem of EKF inconsistency for SLAM, and show how the use of the
recently introduced Kalman filter variant IEKF may resolve those issues.

Then, in Chapter 4, we study how the well established variant of EKF called Un-
scented Kalman Filter (UKF), may be adapted in the case where the state does not be-
long to a vector space, but to a more complicated space, namely a manifold. The most
basic example, and also a historical motivation, is attitude estimation, where the state
is a rotation matrix. Our method applies to all Lie groups, and in particular allows
to propose an unscented version of the IEKF. This is desirable as UKF readily allows
fast prototyping, in the sense that it spares the sometimes difficult computation of Ja-
cobians that must be performed in the EKF methodology. We have proposed a code
available online that allows devising and benchmarking algorithms quickly.

Finally, Chapters 5 and 6 are devoted to the problem of SLAM in the presence of vi-
sion sensors. We build on the state-of-the art Kalman filter based solution, namely the
Multi-State Constrained Kalman Filter (MSCKF), to attack the problem. Our contribu-
tions essentially consists in building an invariant version of this filter, that then comes
with consistency properties using the results of Chapter 3, and to propose a computa-
tionally efficient unscented version, building on our work described in Chapter 4.

Part II: the second part focuses on the assessment of uncertainty of sensors. Although
each sensor comes with specifications, some issues arise. For instance when a wheeled
vehicle navigates some assumptions may be made regarding the motion, such as the
fact the vertical velocity (in the vehicle’s frame) is negligible, and the lateral velocity is
small (wheeled vehicles tend to roll without slip although slip is inevitable). This infor-
mation may be used by the Kalman filter in the form of a pseudo-measurement. How-
ever, this information is uncertain: in turns the vehicle slips more than in straight lines.
As a result, a machine (deep) learning algorithm may “learn” the extent of uncertainty
that lies in the formulated assumption, and relate it to the inertial measurements. This
is the object of Chapter 8, where we show our method based only on inertial sensors
competes with state-of-the art methods that use inertial sensors plus vision.

Another type of uncertainty may stem from the nature of the observation. In-
deed mobile robotics systems are increasingly equipped with laser scanners that re-
turn depth images of the environment. An algorithm, called Iterative Closest Point
(ICP), allows estimating the displacement of the robot between two scans. It is then
important for the filter that estimates the robot’s trajectory based on various sensors
(including the scanners) to know the amount of uncertainty present in the ICP’s es-
timated displacement. Even if one knows the precision of the depth measurements
from the scanner, it is not easily related to the ICP’s estimate precision. In Chapter 9,
we propose a simple theoretical approach based on statistics and an algorithm for this
problem which goes beyond existing solutions, and overcomes their main drawbacks.

Part III: the third part is wholly focused on the use of deep learning, which is a subset
of modern Artificial Intelligence (AI), as a tool to extract pertinent information from
inertial measurements, and to use this information to navigate. In all cases, the method
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is supervised, and some ground truth information is necessary for the algorithms to
learn.

In Chapter 11, we build upon the Zero velocity UPdaTe (ZUPT), which is a way to
correct the estimates from the Inertial Navigation System (INS) when a wheeled vehicle
stops. Indeed, the INS cannot measure directly the vehicle has stopped, and hence
benefits from this side information (indeed, when a vehicle stops its trajectory is then in
part known and the corresponding estimatesmay be corrected). In commercial INS this
information when available always comes from additional wheel speed sensors, which
are connected to the INS. In our work, we leverage deep learning tomake the INS detect
stops based only on the inertial sensors, hence relaxing the need for additional sensors
besides inertial sensors. Evaluations on a publicly available car dataset demonstrates
indeed that the proposed schememay achieve a final precision of 20 m for a 21 km long
trajectory of a vehicle driving for over an hour, equipped with an IMU of moderate
precision (the gyro drift rate is 10 deg/h).

In Chapter 12 we focus on the estimation of the orientation of the vehicle only,
namely its attitude. We leverage deep learning to refine the modelling of the mea-
surements emanating from the inertial sensors, and to calibrate them. The algorithm
outperforms the state-of-the-art.

Chapter 13 presents a few additional results in the same vein. Finally, in Appendix,
we provide the reader with a few tips for Kalman filtering enhanced by deep learning.
This chapter is a feedback to the community of our experience with this subject, devel-
oped throughout this thesis.



14 Introduction



15

Part I

Unscented Kalman Filtering on
Manifold & Lie Groups





17

CHAPTER2

Introduction to Part I

This chapter introduces preliminary mathematical notions about Kalman filtering,
manifolds, Lie groups, along with the notation used throughout this thesis.

In this chapter, the mathematical problem is based on models (regarding state’s
dynamics, measurements, and uncertainty) that are considered as given and wholly
valid, and we discuss state estimation in this context1.

1 1 The Problem of Bayesian Filtering and the Kalman Filter

Consider a classical discrete linear system in R
p:

xn+1 = Fnxn +un +Gnwn, (2.1)

yn+1 =Hn+1xn+1 +nn+1, (2.2)

where xn 2 Rp is the state of the system at time n, un a given input vector, yn a measure-
ment observation, and wn ⇠N (0,Qn), nn ⇠N (0,Nn) are independent Gaussian noises
polluting the dynamics and the observation at step n. Fn, Gn and Hn are the matrices
defining the dynamics of the system and the function of the system observed through
yn.

Let x0 ⇠ N (x̂0,P0) be a Gaussian prior on the state at time n = 0. The problem of
Bayesian filtering we address is to find the best estimates x̂n conditionally to initial state
and past measurements y1, . . . ,yn, i.e. finding x̂n that minimizes E [kxn � x̂nk2|y1, . . . ,yn].

When the system is linear, the Kalman filter is the best Bayesian filter, as the distri-
bution of xn, given the propagation matrices Fn and the observations yn stays Gaussian,
thanks to the following two standard properties:

• if x ⇠ N (x̂,P), w ⇠ N (ŵ,Q), and F, G, u are given matrices and vector, then
Fx+u+Gw is a Gaussian, of mean Fx̂+u+Gŵ and covariance FPFT +GQGT ;

• if x ⇠N (x̂,P), n ⇠N (0,N), andH is a given matrix, then (x,Hx+n) forms a Gaus-
sian vector. In turn, E[x|Hx + n] is also a Gaussian, whose mean and covariance
are given by the conditioning formulas, which lead to the Kalman filter equa-
tions, defined thereafter.

1it is only in the second and third parts of this thesis that we will question the mathematical models
used for state estimation, and see how we can use machine learning to refine them in the face of collected
data.
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Thus, given a Gaussian prior, the Kalman filter defines an estimate x̂n at each step
n through the following initialization and two step sequence:

Initialization x̂0|0 ⇠N (x̂0,P0) (2.3)

Propagation

(

x̂n+1|n = Fnx̂n|n +un

Pn+1|n = FnPnF
T
n +GnQnG

T
n

(2.4)

Update

8

>

>

>

>

>

<

>

>

>

>

>

:

S =Hn+1Pn+1|nH
T
n+1 +Nn+1

K = Pn+1|nH
T
n+1S

�1

x̂n+1|n+1 = x̂n+1|n +K(yn+1 �Hn+1x̂n+1|n)
Pn+1|n+1 = (I�KHn+1)Pn+1|n

(2.5)

The linear Kalman filter exhibits several optimality properties, it is in particular
an unbiased estimator with minimum variance. These properties mostly come from
two of its features: the particular Kalman gain K used, and the fact that its error is
autonomous: it does not depend on the state estimates x̂n|n nor the observations yn.
Indeed, let the error of the system be

en = xn � x̂n. (2.6)

Then it satisfies

en+1|n = Fnen|n +Gnwn (2.7)

en+1|n+1 = en+1|n �KHn+1en+1|n. (2.8)

Therefore, the error evolves solely according to the noises and their statistical proper-
ties, which are supposed to be known in this context. In particular, this also holds for
its associated covariance Pn. This autonomy property is crucial, as will be pointed out
in invariant filtering in Section 7.

2 2 Nonlinear Filtering: the Extended Kalman Filter (EKF)

The original Kalman filter was designed for linear systems with linear observations.
To handle non-linear dynamics or observations, an extension of the algorithm was pro-
posed, called the Extended Kalman Filter (EKF). Consider the following non-linear
system

xn+1 = f (xn,un,wn), (2.9)

yn = h(xn) +nn. (2.10)

Then the EKF follows similar steps as the linear version, up to the following differences:

• the estimate is propagated as x̂n+1|n = f (x̂n|n,un,0);

• the update writes x̂n+1|n+1 = x̂n+1|n +K(yn+1 � h(x̂n+1|n));

• Fn, Gn, and Hn in (2.1) and (2.2) are replaced by F̂n, Ĝn and Ĥn, the Jacobians of
f (·) and h(·) computed at the estimates x̂n|n and x̂n+1|n respectively.

This last point is crucial, as it means that the estimated covariance depends on the cur-
rent estimate. That, in addition to the fact that the EKF outputs only an approximation
of the probability P (xn|x̂,y1, . . . ,yn) which is not a Gaussian anymore, is well-known to
make the EKF lose the optimality properties of the linear case.
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The EKF is an error state filter, where the covariance Pn represents the uncertainty
of the error (2.6), en ⇠N (0,Pn). By the way, one compute the Jacobian after first-order
approximation of the error, which is obtained for propagation, when noise is turned
off, as

en+1|n = xn+1 � x̂n+1|n (2.11)

= f (xn,un,0)� f (x̂n|n,un,0)

= f (x̂n|n + en|n,un,0)� f (x̂n|n,un,0)

=
⇠
⇠
⇠

⇠
⇠
⇠

f (x̂n|n,un,0) +
@f

@x
|x̂n|nen|n �⇠⇠

⇠
⇠

⇠
⇠

f (x̂n|n,un,0) + o(en|n)

=
@f

@x
|x̂n|nen|n + o(en|n), (2.12)

where f (x̂n|n + en|n,un,0) = f (x̂n|n,un,0) +
@f
@x
|x̂n|nen|n + o(en|n). Thus it appears that F̂n =

@f
@x
|x̂n|n albeit F̂n is not defined as the first-order Taylor expansion of f (·) and change if,

e.g., en =
p

kxn � x̂nk. The same holds for Ĝn and Ĥn.

3 3 Nonlinear Filtering: the Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (UKF) [1,2] is an alternative to the EKF for handling
non-linear dynamics or observations (2.9)-(2.10) that uses a deterministic sampling
technique known as the unscented transform to pick a minimal set of sample points
(called sigma points) around the mean. The sigma points are then propagated through
the nonlinear functions, from which a new state estimate and error state covariance
are inferred. UKF is arguably more accurate than EKF, and to some extent simpler to
implement for the practitioner not familiar with Kalman filter theory (no analytical
Jacobian are required for an UKF).

It exists several variant of UKFs [3] and we consider here the one that provides a di-
rect analogy with the EKF [4,5], where the unscented transform numerically computes
statistical Jacobians. Thus the UKF follows similar steps as the EKF version, up to the
following differences:

• Fn, Gn, and Hn in (2.1) and (2.2) are replaced by F̂n, Ĝn and Ĥn, which are the
statistical Jacobians of f (·) and h(·). As for the EKF, they are computed at the
estimates x̂n|n and x̂n+1|n respectively and depend on the state estimates.

Jacobians are inferred following Algorithm 1 and Algorithm 2, where sigma point pa-
rameters are computed in set_weights(·), see Algorithm 3, where the parameter ↵ is
chosen by the practitioner, typically ↵ = 10�3, and controls the spread of the sigma
points.

This technique has two main advantages over EKF and one caveat: it removes the
requirement to explicitly calculate Jacobians, performs generally better than the EKF,
but its computational complexity is cubic in the size of the state vector (the computa-
tional complexity of EKF is quadratic).

4 4 Introduction to Filtering on Manifolds

We now consider the situation where the state lives on a manifoldM, see [6] for a intro-
duction to manifold with optimization perspective, and [7] which is a reference from
the robotics perspective. We now provide a rather “loose” definition of a manifold.
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Algorithm 1: UKF computation of F̂n and Ĝn

Input: x̂n+1|n, x̂n|n,Pn|n,un,Gn,↵;
// Sigma-point parameters

1 �, {wj }j=0,...,2d = set_weights(dim(Pn|n),↵);

2 ξj = col(
p

(�+ d)Pn|n)j , j = 1, . . . ,d

ξj = �col(
p

(�+ d)Pn|n)j�d , j = d +1, . . . ,2d// sigma point errors

// add sigma points on state and propagate them

3 x̂
j
n = x̂n|n +ξj , j = 1, . . . ,2d;

4 x̂
j
n+1 = f (x̂

j
n,un,0), j = 1, . . . ,2d;

// Compute cross-covariance

5 Σ =
P2d

j=1wj (x̂n+1|n � x̂
j
n+1)(x̂n|n � x̂

j
n)

T ;

6 F̂n = ΣP�1n|n// Infer Jacobian

// Proceed similarly for noise

7 �, {wj }j=0,...,2d = set_weights(dim(Q),↵);

8 wj = col(
p

(�+ d)Q)j , j = 1, . . . ,d

wj = �col(
p

(�+ d)Q)j�d , j = d +1, . . . ,2d;

9 x̂
j
n+1 = f (x̂n|n,un,w

j ), j = 1, . . . ,2d;

10 Σ =
P2d

j=1wj (x̂n+1|n � x̂
j
n+1)(w

j )T ;

11 Ĝn = ΣQ�1// Infer Jacobian

Output: F̂n, Ĝn

Definition 1 (manifold). A manifoldM is a set whose subsets are identified through charts
(injective mappings) with subsets of Rn.

Consider a practical example where the state lives on the 2-sphere manifold, mod-
eling e.g., a spherical pendulum [8], see Figure 2.1 where

xn 2 S2 := {x 2 R3 | kxk = 1}. (2.13)

Assume we have an estimate x̂n+1|n 2 S2 of xn+1 whose covariance is Pn|n�1. Assume
now we have a linear observation of the state, e.g. by viewing the pendulum with a
monocular camera in a plan, i.e. yn+1 = Hxn+1 + n with n a Gaussian noise. Applying
Kalman filter update (2.5), we obtain

x̂n+1|n+1 = x̂n+1|n +K(yn+1 �Hx̂n+1|n) < S2 (2.14)

x

y

z

φ

θ
x

Figure 2.1: The example of a spherical pendulum, where x = [x,y,z]T 2 S2.
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Algorithm 2: UKF computation of Ĥn

Input: ŷn+1, x̂n+1|n,Pn+1|n,↵;
// Sigma-point parameters

1 �, {wj }j=0,...,2d = set_weights(dim(Pn+1|n),↵);

2 ξj = col(
p

(�+ d)Pn+1|n)j , j = 1, . . . ,d

ξj = �col(
p

(�+ d)Pn+1|n)j�d , j = d +1, . . . ,2d// sigma point errors

// add sigma points on state and propagate them

3 x̂
j
n+1 = x̂n+1|n +ξj , j = 1, . . . ,2d;

4 ŷ
j
n+1 = h(x̂

j
n+1), j = 1, . . . ,2d;

// Compute cross-covariance

5 Σ =
P2d

j=1wj (ŷn+1 � ŷ
j
n+1)(x̂n+1|n � x̂

j
n+1)

T ;

6 Ĥn = ΣP�1n+1|n// Infer Jacobian

Output: Ĥn

Algorithm 3: set_weights(·) function used for computing UKF parameters.

Input: d,↵;

1 � = (↵2 � 1)d ;

2 w0 = �/(�+ d) + 3�↵2;
3 wj = 1/(2(d +�)), j = 1, . . . ,2d;
Output: �, {wj }j=0,...,2d ;

such that the estimated state x̂n+1|n+1 as no reason to stay on the 2-sphere. The Kalman
filter indeed assumes xn+1 lives in a vector space R

p. However, it exists many prob-
lems in robotics involving rotation, pose and sphere which are not vector space but
manifold. Two problems directly appears here:

• the error-state covariance Pn has dimension three although the state has only two
degree of freedom. In addition, Pn is supposed to represent a statistical disper-
sion over the manifold, and this very concept is even not clear;

• one would hope that en and x̂n remains at all times in the manifold, however
adding elements of a manifold does not make sense as

x1,x2 2M; x1 + x2 2M. (2.15)

The addition operator + is just not defined on a manifold, and x̂n needs to be
constrained on the manifold.

An instinctive solution consists in changing the coordinate of the state space and writ-
ing the systems in term of spherical coordinates (�,✓), see Figure 2.1, as

� = arctan(y/x) (2.16)

✓ = arccos(z). (2.17)

This is especially cumbersome as one need to define a new filter where the observation
becomes nonlinear, while now state estimates have singularities at the north and south
poles (for x = 0).

This raises important questions when designing a filter on a manifoldM:

• How may we design an error en that handles the manifold constraints? Is it only
related to the coordinate system we used? How may we avoid singularity issues?
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• How may we perform state update and compute x̂n+1|n+1? How to compute Jaco-
bians?

• Solving those questions naturally leads to different ways to define a state error.
So, which error should be used for a given problem?

Manifolds are highly general objects, and one may search to answer these questions in
the more restrictive case when the manifold is a matrix Lie group (and hence comes
with additional structure).

5 5 Matrix Lie Groups

In this section we recall the definitions and basic properties of matrix Lie groups and
Lie algebra. A matrix Lie group G 2 Rn⇥n is a set of square invertible matrices that is a
group, i.e., the following properties hold:

In 2 G; 8χ 2 G,χ�1 2 G; 8χ1,χ2 2 G,χ1χ2 2 G. (2.18)

Matrix Lie groups are particular examples of Lie groups, which are sets being

• groups, i.e., have an inner product, an inverse function, and a neutral element
(e.g., matrix product, matrix inverse and identity for matrix Lie groups);

• differential manifolds, i.e., one can derive at each point on them;

• and such that the inner product and the inverse function are smooth for the man-
ifold structure.

Although Lie group theory can get quite involved, all the considered sets in this thesis
are matrix Lie groups, therefore we will restrict to them.

Locally about the identity matrix In, the group G can be identified with a vector
space Rd using the matrix exponential map expm(·), where d = dim(G). Indeed, to any
ξ 2 R

d one can associate a matrix ξ^ of the tangent space of G at In, called the Lie
algebra g, and we call (·)^ : Rd ! g the wedge operator. We then define the exponential
map exp : Rd ! G for Lie groups as

exp(ξ) = expm(ξ
^) (2.19)

Locally, around zero, it is a bijection, and one can define the Lie logarithm map log :
G! R

d as its inverse log(exp(ξ)) = ξ.

Two specific matrix Lie groups are heavily used in robotics: the special orthogonal
group, denoted SO(3), which can represent rotations, and the special Euclidean group,
SE(3), which can represent poses. Additionally, in [9,10], the author noticed there is
a natural Lie group structure underlying the 3D SLAM problem, called SEp(3), which
resolves some consistency issues of the conventional EKF based SLAM, see Chapter 5.

5.1 5.1 The Special Orthogonal Group SO(3)

The special orthogonal group, representing rotations, is the set of valid rotation matri-
ces

SO(3) =
n

R 2 R3⇥3|RRT = I,det(R) = 1
o

. (2.20)
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The RRT = I orthogonality condition impose six constraints on the nine-parameter
rotation matrix, thereby reducing the number of degrees of freedom to three. SO(3) is
clearly not a vector space: it is not closed under addition and the zero matrix does live
in SO(3).

The inverse, wedge operator and exponential maps are given as

R�1 = RT , (2.21)

ξ^ =

2

6

6

6

6

6

6

6

4

0 �⇠3 ⇠2
⇠3 0 �⇠1
�⇠ ⇠1 0

3

7

7

7

7

7

7

7

5

, (2.22)

exp(ξ) = I3 +
sin(kξk)
kξk ξ^ +2

sin(kξk/2)2
kξk2 (ξ^)2. (2.23)

We note here the wedge operator corresponds to the skew-symmetric operator (·)⇥. The
inverse log(·) is the vector associated to the skew-symmetric matrix defined as

log(R) =
✓

2sin(✓)
(R�RT ), (2.24)

where ✓ = arccos
⇣

trace(R)�1
2

⌘

.

5.2 5.2 The Special Euclidean Group SE(3)

The special Euclidean group, representing poses (i.e., translation and rotation), is the
set of valid transformation matrices

SE(3) :=

(

T =

"

R p
0 1

#

2 R4⇥4|R 2 SO(3),p 2 R3

)

, (2.25)

and are thus represented by a matrix T (a.k.a. homogeneous coordinates), where R
denotes a rotation matrix and p a translation.

The inverse, wedge operator and exponential maps are given as

T�1 =

"

RT �RTp
0 1

#

, (2.26)

ξ^ =

"

φ⇥ ρ

0 0

#

, (2.27)

exp(ξ) = I4 +ξ^ +
1� cos(✓)

✓2
(ξ^)2 +

✓ � sin(✓)
✓3

(ξ^)3, (2.28)

where ξ = [φT ,ρT ]T and ✓ = kφk. The inverse log(·) involves the logarithm of SO(3),
logSO(3)(·), and is defined as

log(T) =

"

logSO(3)(R)

(I3 � 1
2φ⇥ +

1
✓2 (1� A

2B )(φ⇥)
2)ρ

#

, (2.29)

where A = sin(✓)/✓ and B = (1� cos(✓))/✓2. For more information about SE(3) and its
use in state estimation for robotics see the recent monographs [11,12].
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5.3 5.3 The Group SEp(3)

The group SEp(3) is an extension of the group SE(3) introduced in [9,10] essentially
for SLAM, and is defined as follows

SEp(3) :=

(

T =

"

R p1 · · · pp

0 Ip

#

2 R3+p⇥3+p |R 2 SO(3),p1, . . . ,pp 2 R3

)

, (2.30)

and are thus represented by amatrixT, whereR denotes a rotationmatrix and p1, . . . ,pp

are translations. The dimension of the group, and thus of the Lie algebra, is 3 + 3p.
The inverse, wedge operator and exponential maps are given as

T�1 =

"

RT �RTp1 · · · �RTpp

0 Ip

#

, (2.31)

ξ^ =

"

φ⇥ ρ1 · · · ρp
0 0

#

, (2.32)

exp(ξ) = I3+p +ξ^ +
1� cos(✓)

✓2
(ξ^)2 +

✓ � sin(✓)
✓3

(ξ^)3, (2.33)

where ξ = [φT ,ρT
1 , · · · ,ρ

T
p ]

T and ✓ = kφk. The inverse log(·) is defined as

log(T) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

logSO(3)(R)

Jρ1
...

Jρp

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, (2.34)

where A = sin(✓)/✓, B = (1� cos(✓))/✓2, and J = (I3 � 1
2φ⇥ +

1
✓2 (1� A

2B )(φ⇥)
2).

We leverage this group in Chapter 5 and Chapter 6, where we embed the robot
orientation R 2 SO(3), velocity v 2 R3 and position p 2 R3 along with the position of
landmarks pi 2 R3 in a matrix χ 2 SEp(3) defined as

χ =

"

R v p p1 · · · pp�2
0 Ip

#

. (2.35)

6 6 Nonlinear & Invariant Observers on Lie Groups

There has been a huge body of research devoted to nonlinear and invariant observers
and filters on Lie groups over the past decade, especially for attitude estimation, where
invariant observers are deterministic observers meant to be appropriate to dynamical
systems possessing symmetries [13].

In the early 2000s, there were essentially two streams of research that bolstered the
development of observers on Lie groups. The first was initiated by [14] and seeks to de-
sign nonlinear observers that share the symmetries of the original system. The theory
was formalized and developed in [15] and applied to estimation on Lie groups in [16].
At the same time, the complementary filter on SO(3) for attitude estimation was intro-
duced in [17]. This filter makes extensive use of left-invariant errors on SO(3) and the
autonomy properties of the error equation. Owing to its simplicity and global conver-
gence guarantees, it has become a renowned attitude estimator and has proved useful
for micro aerial vehicle control. [18–24] study observers that are akin to the comple-
mentary filter on SO(3) for attitude estimation, and similar ideas have been applied
to pose estimation in [25] and homography in [26]. Invariant observer theory were
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then developed in e.g. [20,27–29] for attitude estimation, [30,31] for navigation, [32]
for gradient-like observers, and applied in [33] for the design of invariant controllers.

The idea to use similar techniques for noisy (instead of deterministic) systems on
Lie groups lead to the more recent theory of invariant Kalman filtering.

7 7 Invariant Extended Kalman Filter

The first introduction of invariant Kalman filtering is presented to our best knowledge
in [34] that was then applied for attitude estimation in [16]. These results showed that,
when considering distributions inspired from the Gaussian but specifically designed
to take symmetries into account, theoretical results similar to those of the linear case
could be derived, and have been applied in [35].

In turn, this showed that there was a kind of filters which could efficiently encode
the past of the system, and carry out reliable estimation of local navigation in the long
run [10,36]. This framework, based on the theory of Lie groups, is known as invariant
filtering, and especially the Invariant Extended Kalman Filter (IEKF). Its theoretical
and practical advantages were brought to light by the Ph.D. thesis of Axel Barrau [37],
in particular with high-grade IMUs. Its extension to H1 norm [38] and smoothing
has been recently proposed in [39,40]. Generally speaking, the IEKF is close to the ap-
proach of [18], however these did not leverage its links with group affine dynamics and
group actions, and therefore autonomous errors. The IEKF can be seen as an extension
of the Multiplicative EKF [41] for more general state spaces.

The IEKF [42,43] is a nonlinear Kalman filter variant devised to estimate systems
where the state live a on matrix Lie groups, e.g. SO(3) for attitude estimation, where
the state is a rotationmatrix. We note here the state χn 2 G to make clear the distinction
with a state living in Euclidean space.

Its goal is to track the mean and covariance of a distribution,

χ = ' (χ̂,ξ) , ξ ⇠N (0,P) , (2.36)

where ' : M ⇥ Rd ! M is a smooth function, which is defined Gaussian in the Lie
algebra g of the state space (see Chapter 4). The IEKF is designed to be applied to
specific systems: as the Kalman filter is adapted to linear systems, the IEKF is well-
suited for the so called linear observed systems on groups [44]. Thus, the IEKF make
advantages of:

• the state-space structure G. Notably, the estimated state χ̂n is guarantee to re-
main in the group without any ad hoc reproduction;

• the system equations f (·) and h(·), such that the dynamics of the error is au-
tonomous, i.e. the error does not depend on state estimate. This is due the com-
putation of the Jacobian, e.g. Fn, which does not depend on χ̂n and avoid thus
some linearization error.

7.1 7.1 Considered State-Space Systems

Let us define two types of discrete linear systems in a matrix Lie group G as:

Left invariant system

χn+1 = f (χn,un)exp(wn) (2.37)

yn+1 = χn+1d+nn (2.38)

Right invariant system

χn+1 = f (χn,un)exp(wn) (2.39)

yn+1 = χ�1
n+1d+nn (2.40)
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In these systems, wn and nn are noise similarly defined as in Section 2, the propa-
gation function f (·) respects the group affine dynamics property [44]

8u,a,b f (a,u)f (I,u)�1f (b,u), (2.41)

and with d a vector. The two observation models are respectively left and right equiv-
ariant, each associated to a variant of the IEKF: the left IEKF and the right IEKF.

7.2 7.2 Invariant Extended Kalman Filter Equations

The Left IEKF: the left IEKF estimates the state of the system through the same prop-
agation and update sequence scheme of the of Kalman filter, where the state error
relation is defined as

χn = χ̂n exp(ξn), (2.42)

where ξn ⇠ N (0,Pn) is the error and the exp(·) in (2.44) is the exponential map of G
that ensure χ̂n to stay in G. The vector error ξn 2 RdimG extend definition of the error
en defined in Section 2 for vector space, as the exponential map for R

p is the vector
addition. Note the name left or left-invariant IEKF takes its root in (2.42): multiplying
(2.42) by U 2 G let the error ξn unchanged.

The filter equations are given as

Propagation

(

χ̂n+1|n = f (χ̂n|n,un)
Pn+1|n = FnPnF

T
n +GnQnG

T
n

(2.43)

Update

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

S =Hn+1Pn+1|nH
T
n+1 +Nn+1

K = Pn+1|nH
T
n+1S

�1

χ̂n+1|n+1 = χ̂n+1|n exp
⇣

K(χ̂�1n+1 (yn+1 �d)
⌘

Pn+1|n+1 = (I�KHn+1)Pn+1|n

. (2.44)

Let us first focus on the propagation step. To compute the Jacobian Fn and Gn, the
key idea underlying the EKF is apply, see Section 2, and we linearize the error system
through a first-order Taylor expansion of the nonlinear functions f (·) at the estimated
state. To compute Fn (and similarly Gn), we write

exp(ξn+1|n) = f (χ̂n|n,un)
�1f (χn|n,un) (2.45)

= f (χ̂n|n,un)
�1f (χ̂n|n exp(ξn|n),un) (2.46)

= f (χ̂n|n,un)
�1f (χ̂n|n[I+ξ^n|n],un) + o(kξn|nk) (2.47)

=
⇠
⇠
⇠

⇠
⇠
⇠⇠

f (χ̂n|n,un)
�1
⇠
⇠
⇠
⇠
⇠⇠

f (χ̂n|n,un)[I+ (
@f

@χ
|χ̂n|n,un

ξn|n)
^] + o(kξn|nk) (2.48)

= I+ (
@f

@χ
|χ̂n|n,un

ξn|n)
^ + o(kξn|nk) (2.49)

I+ξ^n+1|n = I+ (
@f

@χ
|χ̂n|n,un

ξn|n)
^ + o(kξn+1|nk,kξn|nk) (2.50)

where the error definition is used in (2.45)-(2.46) and the first order Baker-Campbell-
Hausdorff (BCH) approximation exp(ξ) ' I+ξ^ is applied in (2.47) and (2.50). We thus

identify Fn =
@f
@χ |χ̂n|n,un

such that

ξn+1|n = Fnξn|n, (2.51)
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where
@f
@χ =

@f (χexp(ξ),u)
@ξ

is defined by small perturbation acting on right of the state.

When f (·) respects (2.41), Fn is independent of the state estimate.
The derivation of the update is simpler as we measure a vector y. First, the update

is based on the measurement rewritten as

zn+1 = χ̂�1n+1yn+1 (2.52)

= exp(ξn)d+ χ̂�1n+1nn. (2.53)

and thus contains a modified innovation step. The Jacobian Hn is obtained by the
following identification

z� ẑ = d� exp(ξn+1|n)d (2.54)

= d� [I+ξ^n+1|n]d+ o(kξn+1|nk) (2.55)

= ξ^n+1|nd+ o(kξn+1|nk) (2.56)

=Hnξn+1|n + o(kξn+1|n), (2.57)

and we see Hn is independent w.r.t. the state estimate.

The Right IEKF: the right IEKF differs from the left IEKF by defining the state error
as

χn = exp(ξn)χ̂n, (2.58)

and rewriting the measurement as

zn+1 = χ̂n+1yn+1 (2.59)

= exp(ξn)d+ χ̂n+1nn, (2.60)

where we have a different noise so now Nn+1 depends on the state estimate. This leads
to the right IEKF algorithm defined as

Propagation

(

χ̂n+1|n = f (χ̂n|n,un)
Pn+1|n = FnPnF

T
n +GnQnG

T
n

(2.61)

Update

8

>

>

>

>

>

<

>

>

>

>

>

:

S =Hn+1Pn+1|nH
T
n+1 +Nn+1

K = Pn+1|nH
T
n+1S

�1

χ̂n+1|n+1 = exp(K(χ̂n+1 (yn+1 �d)) χ̂n+1|n

Pn+1|n+1 = (I�KHn+1)Pn+1|n

(2.62)

The Jacobians are obtained similarly as for the left IEKF, and Hn is also independent
w.r.t. state estimates.
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CHAPTER3

Exploiting Symmetries to Design EKFs with Consistency
Properties for Navigation and SLAM

Part of the content of this chapter has been published in IEEE Sensors Journal.

Résumé

Le filtre de Kalman étendu peut s’avérer inconsistent en présence d’inobservabilité
sous un groupe de symétrie. Dans ce chapitre, nous construisons d’abord un EKF al-
ternatif basé sur une erreur d’état non linéaire alternative. Cet EKF est intimement lié
à la théorie de l’EKF invariant. Ensuite, sous une simple hypothèse de compatibilité
entre l’erreur et le groupe de symétrie, nous prouvons que le modèle linéarisé de l’EKF
alternatif capture automatiquement les directions non observables, et de nombreuses
propriétés souhaitables du cas linéaire suivent alors directement. Cela fournit un nou-
veau résultat fondamental dans la théorie du filtrage. Nous appliquons la théorie à la
fusionmulti-capteurs pour la navigation, lorsque tous les capteurs sont liés au véhicule
et n’ont pas accès à des mesures absolues, comme cela se produit généralement dans
des environnements privés de GPS. Dans le contexte du SLAM, des simulations Monte-
Carlo et des comparaisons avec l’OC-EKF, l’EKF et les algorithmes de lissage basés sur
l’optimisation (iSAM) illustrent les résultats.

Chapter abstract

The extended Kalman filter may prove inconsistent in the presence of unobservability
under a group of transformations. In this chapter we first build an alternative EKF
based on an alternative nonlinear state error. This EKF is intimately related to the the-
ory of the Invariant EKF. Then, under a simple compatibility assumption between the
error and the transformation group, we prove the linearized model of the alternative
EKF automatically captures the unobservable directions, and many desirable proper-
ties of the linear case then directly follow. This provides a novel fundamental result
in filtering theory. We apply the theory to multi-sensor fusion for navigation, when all
the sensors are attached to the vehicle and do not have access to absolute information,
as typically occurs in GPS-denied environments. In the context of SLAM, Monte-Carlo
runs and comparisons to OC-EKF, robocentric EKF, and optimization-based smoothing
algorithms (iSAM) illustrate the results.



30 Exploiting Symmetries to Design EKFs with Consistency Properties

m l0
yi

Figure 3.1: 1D toy SLAM problem. A robot at position m observes a landmark at
position l with a range measurement yi .

1 1 Introduction

We first start with a very basic example that explains the specificity of the theoretical
estimation problem posed by SLAM. Then we proceed with a brief literature review
about the subproblem we consider.

1.1 1.1 Introduction to SLAM Unobservability

As in SLAM we only have relative measurements between components of the state, the
Kalman filter tends to correlate those components after each measurement. This corre-
lation profoundly modifies the information that the filter possesses about the system,
although it does not necessarily improve the marginal knowledge about each compo-
nent (e.g., the localization of the robot which is what we are most interested in through-
out this thesis). This is why it is not obvious for the reader unfamiliar with this problem
to grasp what is at play in the theoretical SLAM problem and this is why we present
the following simple example.

Consider a linear one-dimensional mobile robot at position m that observes one
landmark, at position l, as represented in Figure 3.1. The robot is equipped with a
device (a telemeter) that allows to measure the distance to the landmark. The range
measurement of the landmark viewed from the robot writes

yn = ln �mn +wn, (3.1)

where wn is a Gaussian noise (the uncertainty associated with the telemeter’s measure-
ment). We search to estimate m and l with a Kalman filter with initial state estimation
error e0|0 = [m0 � m̂0|0, l0 � l̂0|0] whose initial covariance is P0|0 = diag([�m,�l ]

2), i.e. the
robot has a prior (uncertain) knowledge on the landmark and on its own position. As-
sume the robot now observes the landmark with a perfect telemeter (wn has standard
deviation equal to zero), which is an extreme yet illustrative case. The covariance ma-
trix of the state error, after this measurement has been incorporated writes according
to the Kalman filter’s equations

P1|1 =
�2
m�

2
l

�2
m +�2

l

"

1 1
1 1

#

, (3.2)

which has rank 1. In this limit of perfect measurement, the landmark and robot

estimates become fully correlated. As max(�2
m,�

2
l ) �

�2
m�

2
l

�2
m+�

2
l

� min(�2
m,�

2
l ), we see the

uncertainty on both the robot’s and landmark’s position has decreased, albeit not nec-
essarily much (typically a factor 2). However, full correlation implies that the instant
when the robot knows perfectly its position, it may infer the exact position of the land-
mark.

What we see is that the state remains uncertain after measurement has been per-
formed (and will always remain so if we don’t have access to absolute measurements),
but in a particular direction of the state space (that is, the Kernel of the covariance ma-
trix [1,�1]T ), much information has been gained: in this direction the filter has aquired
full certainty. This makes the SLAM problem quite specific.
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In more control theoretic terms, this is a matter of observability: the SLAM prob-
lem is unobservable, which is rather uncommon in state estimation for engineering
problems. Indeed, the robot obtains only relative information as shifting the system as
mn  mn + �d, ln  ln + �d lets the measurement yn unchanged. This hold even if the
robot is moving following

mn+1 =mn +un, (3.3)

with un a known input (e.g. stemming from odometers) and that multiple observations
are done, as shifting the robot lets the propagation function unchanged (if mn mn +
�d andmn+1 mn+1+�d, (3.3) still holds). We say d = [1,1]T is an observable direction,
or degree of freedom, of the system (3.1)-eq:robot1d. Indeed, we saw that [1,�1]T
is a vector along which there is no statistical dispersion (it lies in the Kernel of the
covariance matrix), and its orthocomplement is in fact a direction in which on the
contrary no informationmay be acquired. The intuitive explanation is clear [45]: “if the
robot and landmark positions are shifted equally, it will not be possible to distinguish
the shifted position from the original one through the measurements.”.

In terms of mathematics, the fact the Kalman filter may not acquire information in
this direction may be explained by resorting to the so-called information matrix, that
is, the inverse of the covariance matrix. We have indeed that at all times and no matter
the measurements dTP1

n|nd is non-increasing [10] as long as measurements are relative
to the robot’s frame. This holds for this toy example as

dTP0|0d = dTPn|nd = ��2r +��2l , (3.4)

However this consistency property w.r.t. unobservable directions is not guaranteed
when we move to nonlinear problems: when using an EKF Pn|n depend on state es-
timates through the computations of Jacobians about the estimated trajectory. If this
quantity is increasing, we say the filter acquires spurious information along the direc-
tion d and this is what is referred to as inconsistency in the present context of statistical
filtering.

We now provide the three main examples of unobservable directions for SLAM
systems.

Example 1 (2D SLAM). The state consists on the robot position, the robot heading, and
landmark positions [45]. There are three unobservable direction corresponding to the global
translation and rotation of the system.

Example 2 (3D monocular visual SLAM). The state consists on the robot position, the
robot heading, and landmark positions in 3Dwhere observation are provided with a monocu-
lar camera. There are seven unobservable directions: corresponding to the global translation,
global rotation and scale of the system [46].

Example 3 (3D stereo visual SLAM). The state is the same as in Example 2 where observa-
tion are provided with a stereo camera. There are six unobservable directions: corresponding
to the global translation and global rotation of the system.

Example 4 (3D visual inertial SLAM). The state is the same as in Example 2 enhanced
with robot velocity, where an IMU provides scale information and allow to recover roll and
pitch. There are thus four unobservable directions corresponding to the global translation
and the rotation around gravity (yaw) [47].
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1.2 1.2 EKF SLAM Inconsistency: Previous Literature

EKF inconsistency is defined as the fact that the filter returns a covariance matrix that
is too optimistic [48], leading to inaccurate estimates. EKF inconsistency in the con-
text of SLAM has been the object of many papers, see e.g. [46,47,49–56]. Theoretical
analysis [49,53,56] reveals inconsistency is caused by the inability of EKF to reflect the
unobservable degrees of freedom of SLAM raised in the above section. Indeed, the
filter tends to erroneously acquire information along the directions spanned by these
unobservable degrees of freedom. The Observability Constrained (OC)-EKF [52,56]
constitutes one of the most advanced solutions to remedy this problem and has been
fruitfully adapted, e.g. for VIO, cooperative localization, and unscented Kalman fil-
ter [5,45,46]. The idea is to pick a linearization point that is such that the unobservable
subspace “seen" by the filter is of appropriate dimension.

2 2 Contributions

In this chapter we propose a novel general theory. We first propose to build EKFs based
on an alternative error e = ⌘(χ, χ̂), generalizing the IEKF methodology [42], where we
opt for EKF to obtain theoretical guarantee which can not be demonstrated with UKF.
This means the covariance matrix P reflects the dispersion of e, and not of χ� χ̂. When
unobservability stems from symmetries, the technique may resolve the consistency is-
sues of the EKF. Indeed symmetries are encoded by the action �↵(χ) of a transforma-
tion group G [57], where ↵ 2 G denotes the corresponding infinitesimal unobservable
transformation. Under the simple condition that the image of matrix @

@↵
⌘(�↵(χ),χ) is

independent of χ, the EKF based on e is proved to possess the desirables properties of
the linear case regarding unobservability, and is thus consistent.

2.1 2.1 Specific Application to SLAM

The specific application to SLAM was released on Arxiv in 2015 [10] as part of Axel
Barrau’s PhD and encountered immediate successes reported in [43,58–62], although
the work was never published elsewhere.

More precisely, [9] notice back the SLAM problem bears a nontrivial Lie group
structure. [10] formalize the group introduced in [9] and call it SEl+1(3), and proved
that for odometry based SLAM, using the right invariant error of SEl+1(3) and devising
an EKF based on this error, i.e., a Right-Invariant EKF (RIEKF), the linearized system
possesses the desirable properties of the linear case, since it automatically correctly
captures unobservable directions for SLAM. Thus, virtually all properties of the linear
Kalman filter regarding unobservability may be directly transposed: the information
about unobservable directions is non-increasing (see Proposition 2), the dimension of
the unobservable subspace has appropriate dimension (this relates to the result of OC-
EKF [5,45,56]), the filter’s output is invariant to linear unobservable transformations,
even if they are stochastic and thus change the EKF’s covariance matrix along unob-
servable directions [58]. The right-invariant error for the proposed Lie group structure
was also recently shown to lead to deterministic observers having exponential conver-
gence properties in [63].

Along the same lines, using the right-invariant error of the group SE2(3), [42]
propose alternative consistent IEKF for visual inertial SLAM and VIO applications
[59–62,62]. In particular, [62] demonstrate that an alternative Invariant MSCKF based
on the right-invariant error of SE2(3) naturally enforces the state vector to remain in
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the unobservable subspace, a consistency property which is preserved when consider-
ing point and line features [62], or when a network of magnetometers is available [61].

2.2 2.2 Chapter’s Organization

Section 3 presents the general theory. Section 4 applies the theory to the general prob-
lem of navigation in the absence of absolute measurements, as typically occurs in GPS-
denied environments. Section 5 is dedicated to SLAM and compares the proposed EKF
to conventional EKF, OC-EKF [56], robocentric mapping filter [64] and iSAM [65,66].

Preliminary ideas and results can be found in the preprint [10] posted on Arxiv in
2015. Although the present chapter is a major rewrite, notably including a novel gen-
eral theory encompassing the particular application to SLAM of [10], [10] is a technical
report serving as preliminary material for the present chapter. Matlab codes used for
the chapter are available at https://github.com/CAOR-MINES-ParisTech/esde.

3 3 General Theory

Let us consider the following dynamical system in discrete time with state χn 2M and
observations yn 2 Rp:

χn = f (χn�1,un,wn) , (3.5)

yn = h (χn,vn) , (3.6)

where f (·) is the function encoding the evolution of the system, wn ⇠ N (0,Qn) is
the Gaussian process noise, un is the input, h(·) is the observation function and vn ⇠
N (0,Rn) a Gaussian measurement noise. This model is slightly more general than
(4.13)-(4.14).

We now define mathematical symmetries, see [15,57].

Definition 2. An action of a (Lie) group G onM is defined as a family of bijective maps
�↵ :M!M, ↵ 2 G satisfying

8χ 2M �Id(χ) = χ, (3.7)

8↵,� 2 G,χ 2M �↵
⇣

�� (χ)
⌘

= �↵� (χ) , (3.8)

where Id corresponds to the identity of the group G.

Definition 3. Let �·(·) be defined as in (3.7)-(3.8). We say that system (3.5)-(3.6) is totally
invariant under the action of �·(·) if

1. the dynamics are equivariant under �·(·), i.e.,

8↵,χ,u,w �↵ (f (χ,u,w)) = f (�↵(χ),u,w) , (3.9)

2. the observation map h(·) is invariant w.r.t. �·(·)

8↵,χ h(�↵(χ),v) = h(χ,v). (3.10)

“Symmetry" is defined as invariance to transformations �↵(·). Throughout the
chapter we will rather use the term invariant, along the lines of the preceding defi-
nition.
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As in this chapter we pursue the design of consistent EKFs, we will focus on the
system “seen" by an EKF: it consists of the linearization of system (3.5)-(3.6) about the
estimated trajectory (χ̂n)n�0 in the state space. Along the lines of [45,53] we use the
linearized system about a trajectory.

Let (χn)n�0 denote a solution of (3.5) with noise turned off. The local observability
matrix [67] at χn0 for the time interval between time-steps n0 and n0 +N is defined as

O(χn0) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Hn0
Hn0+1Fn0+1

...
Hn0+NFn0+N · · ·Fn0+1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, (3.11)

with the Jacobians Fn =
@f
@χ |χn�1,un,wn

, Hn =
@h
@χ |χn,vn .

First we show the directions spanned by the action of G are necessarily unobserv-
able directions of the linearized system, that is, they lie in the kernel of the observabil-
ity matrix.

Theorem 1. If system (3.5)-(3.6) is invariant in the sense of Definition 3, then the directions
@
@↵
�↵ |Id(χn0) infinitesimally spanned by �·(·) at any χn0 necessarily lie in KerO(χn0), with

O(χn0) defined by (3.11), and are thus unobservable.

Proof. Differentiating1 (3.9) and (3.10) w.r.t. ↵ at Id we obtain

@

@↵
�↵

�

�

�

↵=Id
(f (χ,u,w)) =

@f

@χ
|(χ,u,w)

@

@↵
�↵

�

�

�

↵=Id
(χ), (3.12)

@h

@χ
|(χ,v)

@

@↵
�↵

�

�

�

↵=Id
(χ) = 0 8χ 2M. (3.13)

Let (χn)n�0 denote a solution of (3.5) with noise turned off. (3.13) applied at χn0 yields

Hn0
@
@↵
�↵ |Id(χn0) = 0. Considering then (3.12) at χn0 leads to

@
@↵
�↵ |Id

⇣

f (χn0 ,un0+1,wn0+1)
⌘

= Fn0+1
@
@↵
�↵ |Id

⇣

χn0

⌘

. Applying (3.13) at

χn0+1 = f (χn0 ,un0+1,wn0+1) yields Hn0+1
@
@↵
�↵ |Id

⇣

χn0+1

⌘

= 0, and thus

Hn0+1Fn0+1
@
@↵
�↵ |Id

⇣

χn0

⌘

= 0. A simple recursion proves @
@↵
�↵ |Id

⇣

χn0

⌘

⇢ KerO(χn0).

Indeed, no matter the number of observations and moves, we are inherently unable
to detect an initial (infinitesimal) transformation �↵(·), the problem being invariant to
it.

3.1 3.1 Observability Issues of the Standard EKF

Let (χ̂n)n�0 be a sequence of state estimates given by an EKF. The linearized system
“seen" by the EKF involves the estimated observability matrix

Ô(χ̂n0) =

2
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Ĥn0
Ĥn0+1F̂n0+1

...

Ĥn0+N F̂n0+N · · · F̂n0+1
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7

7

5

, (3.14)

1On Lie groups differentiation can indeed be rigorously defined as @
@↵
�↵

�

�

�

↵=Id
(χ)�↵ :=

d
ds
�exp(s�↵)(χ)|s=0 with �↵ in the Lie algebra, which mean partial derivative of �↵ (χ) with respect to

↵ at ↵ = Id.
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where Jacobians are computed at the estimates. The directions spanned by �·(·) at χ̂n0
necessarily lie in KerO(χ̂n0), as proved by Proposition 1, but there is a null probabil-

ity that they lie in Ker Ô(χ̂n0), because of the noise and Kalman updates, see [45]. A
major consequence is that the EKF gains spurious information along the unobservable
directions.

In fact, this problem stems from the choice of estimation error χ � χ̂ that does not
match unobservability of system (3.5)-(3.6): changing the estimation error may resolve
the problem.

3.2 3.2 EKF Based on a Nonlinear Error

In this section, we define an EKF based on a nonlinear function ⌘(χ, χ̂) 2M that pro-
vides an alternative to the usual linear estimation error χ � χ̂. We prove consistency
under compatibility assumptions of the group action and ⌘(·).

The methodology builds upon the alternative errors

en�1|n�1 = ⌘
⇣

χn�1, χ̂n�1|n�1
⌘

, (3.15)

en|n�1 = ⌘
⇣

χn, χ̂n|n�1
⌘

. (3.16)

The filter is displayed in Algorithm 4. As the covariance matrix Pe is supposed to
reflect the dispersion of e, we need to define Jacobians w.r.t our alternative state error.
At line 2 F̂en, Ĝ

e
n are Jacobians of the error propagation function, and at line 3, Ĥe

n,
Ĵen are Jacobians of the error measurement defined through the following first order
approximations

en|n�1 ' F̂enen�1|n�1 + Ĝe
nwn, (3.17)

yn � h
⇣

χ̂n|n�1,0
⌘

' Ĥe
nen|n�1 + Ĵenvn. (3.18)

At line 4, e+n denotes the (best) error estimate according to the EKF. However, defin-
ing the (best) state corresponding to estimate χ̂n|n is not straightforward as in the lin-
ear case where χ̂n|n = χ̂n|n�1 + e+n . At line 5 we use a retraction ' : M ⇥ Rq ! M,
that is, any function ' (·) which is consistent with the error to the first order, i.e.,
e+n ⇡ ⌘(χ̂n|n, χ̂n|n�1). This will make the link between this chapter and Chapter 4, where
we first choose the retraction and then implicitly define the error.

Note that, we recover the conventional EKF if we let e = ⌘ (χ, χ̂) = χ� χ̂ be the usual
linear error.

3.3 3.3 Compatibility Assumptions and Main Consistency Result

The matrix2 @
@↵
|Id⌘(�↵(χ),χ) reflects how infinitesimal transformations of the state

produced by the action of G affect the error variable e = ⌘(·). In Assumption 1 below
this matrix is used to define a kind of “compatibility” between an invariance group G
and a nonlinear error function ⌘, which leads to the main result of this chapter (Theo-
rem 1).

Assumption 1. The image of the matrix @
@↵
|Id⌘(�↵(χ),χ) is a fixed subspace C that does

not depend on χ.

2i.e. ⌘(�↵(χ),χ) is a matrix-valued map g(χ,↵), differentiated w.r.t. ↵.
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Algorithm 4: EKF based on a non-linear state error

Input: Initial estimate χ̂0 and uncertainty matrix Pe
0

while filter is running do
Propagation

1 χ̂n|n�1 = f
⇣

χ̂n�1|n�1,un,0
⌘

;

2 Pe
n|n�1 = F̂enP

e
n�1|n�1(F̂

e
n)

T + Ĝe
nQn(Ĝ

e
n)

T ;

end
Update

3 Kn = Ĥe
nP

e
n|n�1/

⇣

Ĥe
nP

e
n|n�1(Ĥ

e
n)

T + ĴenRn(Ĵ
e
n)

T
⌘

;

4 e+n =Kn

⇣

yn � h
⇣

χ̂n|n�1,0
⌘⌘

;

5 χ̂n|n = '
⇣

χ̂n|n�1,e
+
n

⌘

; // state update

6 Pe
n|n =

⇣

I�KnĤ
e
n

⌘

Pe
n|n�1;

end

end

Proposition 1 proved that if the system (3.5)-(3.6) is totally invariant, then the di-
rections infinitesimally spanned by �·(·) at any point χn0 lie in KerO(χn0), with O(χn0)
defined by (3.11), and thus they are unobservable. We have also recalled this is not true
for the linearized system seen by the EKF, i.e. for Ô(χ̂n0) [45]. We have the following
powerful result:

Theorem 1. If the system (3.5)-(3.6) is invariant, and under Assumption 1, the unobserv-
able directions C spanned by �·(·) at any point χ̂n0 ,measured using error ⌘(·) necessary lie
in Ker Ôe(χ̂n0), with (F̂en,Ĥ

e
n)n�n0 defined by (3.17)-(3.18).

Proof. Let M̂n :=
@
@↵
|Id⌘(�↵(χ̂n), χ̂n). Recalling (3.18), we have

h(�↵(χ̂n))� h(χ̂n) ' Ĥe
n⌘(�↵(χ̂n), χ̂n) ' Ĥe

nM̂n�↵ with �↵ a linearized approximation to

↵ 2 G. But also h(�↵(χ̂n)) � h(χ̂n) ' @h
@χ |(χ̂n,0)

@
@↵
�|Id(χ̂n)�↵. From (3.13) the latter is 0.

Thus Ĥe
nu = 0 for any u 2 C, i.e. Ĥe

nC = 0.
Using (3.17), F̂e is defined as ⌘ (f (χ), f (χ̂)) ' F̂e⌘ (χ, χ̂), thus ⌘(f (�↵(χ̂n)), f (χ̂n)) '

F̂en+1⌘(�↵(χ̂n), χ̂n) ' F̂en+1M̂n�↵. Besides, using (3.9) yields

⌘(f (�↵(χ̂n)), f (χ̂n)) =⌘(�↵(f (χ̂n)), f (χ̂n)) ' @
@↵
|Id⌘(�↵(f (χ̂n)), f (χ̂n))�↵ 2 C applying As-

sumption 1 at f (χ̂n). Thus for any �↵ we have F̂en+1M̂n�↵ ⇢ C and thus F̂en+1C ⇢ C. We
have thus proved

Ĥe
nC = 0, F̂en+1C ⇢ C, for any n and χ̂n. (3.19)

This proves the result through an immediate recursion.

We obtain the consistency property we pursue: the linearized model has the de-
sirable property of the linear Kalman filter regarding the unobservabilities, when ex-
pressed in terms of error ⌘(·). As a byproduct, the unobservable subspace seen by the
filter is automatically of appropriate dimension.

3.4 3.4 Consequences in Terms of Information

In the linear Gaussian case, the inverse of the covariance matrix output by the Kalman
filter is the Fisher information available to the filter (as stated in [48] p. 304). Thus,
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the inverse of the covariance matrix P�1n|n output by any EKF should reflect an absence
of information gain along unobservable directions. Otherwise, the output covariance
matrix would be too optimistic, i.e., the filter inconsistent [48].

Note that, the covariance matrix Pe
n|n reflects the dispersion of the error e of (3.15)-

(3.16), as emphasized by the superscript e. We have the following consistency result:

Theorem 2. Let un0 2 Im @
@↵
|Id⌘(�↵(χ̂n0), χ̂n0) be an unobservable direction spanned by

�·(·) at the estimate χ̂n0 , measured using alternative error ⌘(·). Let (un)n�n0 with un =

F̂enun�1 be its propagation through the linearized model. Under Assumption 1 the Fisher
information according to the filter about (un)n�n0 is non-increasing , i.e.,

uT
n (P

e
n|n)
�1un  uT

n�1(P
e
n�1|n�1)

�1un�1. (3.20)

Proof. At propagation step we have uT
n (P

e
n|n�1)

�1un = uT
n�1(F̂

e
n)

T (F̂enP
e
n�1|n�1(F̂

e
n)

T +

Ĝe
nQn(Ĝ

e
n)

T )�1F̂enun�1 6 uT
n�1(F̂

e
n)

T
⇣

F̂enP
e
n�1|n�1(F̂

e
n)

T
⌘�1

F̂enun�1 sinceQ is positive semidef-

inite. As (F̂en)
�1F̂en = I we have just proved uT

n (P
e
n|n�1)

�1un 6 uT
n�1(P

e
n�1|n�1)

�1uT
n�1.

At update step (in information form) uT
n (P

e
n|n)
�1un = uT

n

⇣

(Pe
n|n�1)

�1 + (Ĥe
n)

T R̂�1n Ĥe
n

⌘

un.

But using (3.19) we see ui 2 C 8i � n0 and thusHe
nun = 0 so uT

n (P
e
n|n)
�1un = uT

n (P
e
n|n�1)

�1un
6 uT

n�1(P
e
n�1|n�1)

�1un�1.

The theorem essentially ensures the linearized model of the filter has a structure
which guarantees that the covariance matrix at all times reflects an absence of “spuri-
ous" (Bayesian Fisher) information gain over unobservable directions, ensuring strong
consistency properties of our alternative EKF.

4 4 Application to Multi-Sensor Fusion for Navigation

In this section, we consider a navigating vehicle or a robot equipped with sensors which
only measure quantities relative to the vehicle’s frame. Thus the vehicle cannot acquire
information about its absolute position and orientation, which results in inevitable
unobservability. The state space isM = SO(3)⇥R3l+3m+k and the state χ is defined as

χ = (R, p1, · · · , pl , v1, · · · , vm, b) 2M, (3.21)

where R 2 SO(3) represents the orientation of the vehicle, i.e., its columns are the axes
of the vehicle’s frame, and where

1. {pi 2 R3}i=1,...,l are vectors of the global frame, such as the vehicle’s position,

2. {vi 2 R3}i=1,...,m are velocities in the global frame, and higher order derivatives of
the pi ’s.

3. {b} 2 Rk , are quantities being invariant to global transformations, such as sensors’
biases or camera’s calibration parameters.

Without restriction, we consider in the following l =m = 1 for convenience of notation.

Definition 4. The Special Euclidean group SE(3) describes rigid motions in 3D and is de-
fined as SE(3) = {↵ = (R↵ ,p↵),R↵ 2 SO(3),p↵ 2 R3}. Given ↵,� 2 SE(3), the group op-
eration is ↵� = (R↵R� ,R↵p� + p↵) and the inverse ↵�1 = (RT

↵ ,�RT
↵p↵). We denote Id the

identity.
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Changes of global frame are encoded as the action �↵(χ) of an element ↵ 2 SE(3)
onM. Thus, quantities expressed in the global frame (such as the vehicle position) are
rotated and translated by the action �↵(·), whereas quantities expressed in the vehicle’s
frame, such as Inertial Measurement Unit (IMU) biases, are left unchanged. The action
then writes (with i = 1, . . . , l and j = 1, . . . ,m)

�↵(χ) =
⇣

R↵R, R↵pi +p↵ , R↵vj , b
⌘

. (3.22)

Assumption 2. The vehicle’s dynamic does not depend on the choice of global frame, and
the vehicle’s sensors only have access to relative observations, i.e. no absolute information is
available.

As a result, the equations write (3.5)-(3.6) and are invariant to the action of SE(3)
in the sense of Definition 3.

To differentiate w.r.t. elements of SE(3) we resort to its Lie algebra and do in detail
what is sketched in Footnote 1.

Definition 5. The Lie algebra se(3) of SE(3) encodes small rigid motions about the identity.
It is defined as {(�ω⇥,�p) ; �ω,�p 2 R3}, where ω⇥ is the skew symmetric matrix associated
with cross product with ω 2 R3. For any �↵ 2 se(3), we have ↵ := expSE(3)(�↵) 2 SE(3)
where expSE(3)(·) denotes the exponential map of SE(3) (for a definition see (3.34)-(3.36)
below with l = 1,m = 0, k = 0).

Writing (R↵ ,p↵) = expSE(3)[(�ω⇥,�p)] in (3.25) we see the directions infinitesimally
spanned by �·(·) at χ in the direction �↵ = (�ω⇥,�p) write for the state (3.21):

@

@↵
�↵ |Id(χ)�↵ =

⇣

�ω⇥R, �ω⇥pi + �p, �ω⇥vj , b
⌘

(3.23)

where i = 1, . . . , l and j = 1, . . . ,m.

Example 5. [SLAM] Consider a simple SLAM system with one robot and one landmark
[45]. Let pR be the position of the robot, R the orientation of the robot, and pL the landmark’s
position. The state is

χ = (R, pR, pL) 2M = SO(3)⇥R6. (3.24)

The dynamics write f (χ,u,w) = (RR̄,pR +RR̄p̄,pL) where R̄, p̄ denote orientation and po-
sition increments typically measured through odometry. The observation of the landmark in
the robot’s frame is of the form y = h̃(RT (pL �pR)). Translations and rotations of the global
frame correspond to actions of elements ↵ = (R↵ ,p↵) 2 SE(3) as

�↵(χ) = (R↵R, R↵pR +p↵ , R↵pL +p↵) . (3.25)

The system is obviously invariant.
Referring to (3.23), as l = 2,m = 0 and pR = p1,pL = p2, the directions spanned by �·(·)

at χ are as follows

(�ω⇥R, �ω⇥pR + �p, �ω⇥pL + �p) . (3.26)

with (�ω⇥,�p) 2 se(3). As a direct consequence of Prop. 1, those directions are unobservable.
The system continues to be invariant even if a sophisticated model is assumed: the motion
equations do not depend a choice of global frame.
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Example 6. [VIO, or Visual Inertial Navigation System (VINS)] Consider a vehicle equipped
with an IMU and a camera, as in [46]. Let v denote the vehicle velocity, b the IMU bias
and/or scale factors. The state is

χ = (R, pR, v, b) (3.27)

and observations correspond to landmarks’ bearings in the vehicle frame, whereas inputs
un 2 R6 are provided by an IMU. A change of global frame ↵ = (R↵ ,p↵) writes

�↵(χ) = (R↵R, R↵pR +p↵ , R↵v, b) , (3.28)

where we restrict R↵ to be around the gravity axis, i.e. with R↵g = g, since the vertical is
measured [46]. The action �·(·) is then also invariant.

4.1 4.1 EKF Based on a Nonlinear Error

For the general state χ of (3.21) consider the nonlinear error

⌘(χ, χ̂) =
⇣

RR̂T , p̂i � R̂RTpi , v̂j � R̂RTvj ,b� b̂
⌘

. (3.29)

where i = 1, . . . , l and j = 1, . . . ,m. We set l = m = 1 for simplicity. To linearize, we have
the following first order vector approximation of (3.29) that lives in R

3(1+l+m)+k

⌘̌(χ, χ̂) =
⇣

eR, p̂� (eR)⇥p, v̂� (eR)⇥v, b� b̂
⌘

, (3.30)

RR̂T = expSO(3)(eR) ' I+ (eR)⇥ + o(keRk2), (3.31)

where eR 2 R3.

Theorem 3. The error (3.29) is compatible with the action (3.22) of SE(3) in the sense of
Assumption 1.

Proof. For ↵ 2 SE(3), using (3.29) we obtain that

⌘(�↵(χ),χ) =
⇣

R↵RR
T , p�R(R↵R)T [R↵p+p↵],

v�R(R↵R)TR↵v, b�b
⌘

=
⇣

R↵ ,�RT
↵p↵ , 03, 0k

⌘

, (3.32)

such that ⌘(�↵(χ),χ) turns out to be independent of χ, and the result is readily obtained
by differentiation at ↵ = Id.

4.2 4.2 Choice of the Retraction

When the state space is a Lie group, and one uses errors that are invariant with respect
to right multiplication, the theory of IEKF [16,42] suggests to use ' (χ,e) = exp(e)χ

where exp(·) denotes the Lie group exponential. In [9], it was noticed a natural Lie
group structure underlies the (odometry based) SLAM problem. [10] formalize more
elegantly this group, and called it SEl+1(3). The current chapter is a generalization to
more complete state (3.21), which may be endowed with the group structure SEl+m(3)⇥
R
k (direct product of groups SEl+m(3) and R

k). For state (3.21) we thus suggest χ+ =
' (χ,e) := expSEl+m(3)⇥Rk (e)χ, i.e.

' (χ,e) =
⇣

�R+R,�R+pi + �p
+
i ,�R

+vj + �v
+
j ,b+ �b+

⌘

(3.33)
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Error EKF [56] proposed, see (3.29) Robocent. [64]

orientation ✓̂ �✓ ✓̂ �✓ ✓̂ �✓
position p̂R �pR p̂R �R(✓̂)R(✓)TpR R(✓̂)T p̂R �R(✓)TpR
landmark p̂L �pL p̂L �R(✓̂)R(✓)TpL R(✓̂)T (p̂L � p̂R)�R(✓)T (pL �pR)

Figure 3.2: Alternative state error definitions on the 2D SLAM problem for different
solutions (extension of the approach to 3D is immediate), with state χ = (✓,pR,pL) with
pR the position of the robot, ✓ its orientation, and pL a landmark position. R(✓) denotes
the planar rotation of angle ✓.

with i = 1, . . . , l, j = 1, . . . ,m, and where

"

�R+ �p+
1 · · · �p+

l �v+1 · · · �v+m
0 I3l+3m

#

(3.34)

:= I+S+
1� cos(keRk)
keRk2

S2 +
keRk � sin(keRk)

keRk3
S3, (3.35)

S :=

"

(eR)⇥ ep1
· · · epl

ev1 · · · evm
0 03l+3m

#

, (3.36)

�b+ = eb, 0 = 03+3m+3l⇥3 and I = I3+3m+3l⇥3.

4.3 4.3 Extension to Problems Involving Multiple Robots

Consider a problem consisting of M systems. We have M global orientations, one for
each system, that transform as the global frame’s orientation. For such problems, we
define a collection of χi of (3.21), and the alternative state error of the problem ⌘(·)
merely writes

⌘ (χ1, . . . ,χM ) = (⌘1 (χ1, χ̂1) , . . . ,⌘M (χM , χ̂M )) , (3.37)

where ⌘i (χi , χ̂i ) is the error (3.29) for the i-th system.

5 5 Simulation Results

This section considers the 2D wheeled-robot SLAM problem and illustrates the per-
formances of the proposed approach. We conduct similar numerical experiment as in
the sound work [45] dedicated to EKF inconsistency and benefits of the OC-EKF, i.e., a
robot makes 7 circular loops and 20 landmarks are disposed around the trajectory, see
Figure 3.3. We refer the interested reader to the available Matlab code for the parame-
ter setting and reproducing the present results.

We compare our approach to standard EKF which conveys an estimate of the linear
error; OC-EKF [45] which linearizes the model in a nontrivial way to enforce the unob-
servable subspace of Ô to have an appropriate dimension; robocentric EKF [64,68,69]
which express the state in the robot’s frame and then devise an EKF; and iSAM [65,66], a
popular optimization technique both for SLAM and odometry estimation which finds
the most likely state trajectory given all past measurements. The differences between
the estimation errors used by the various EKF variants are recapped in Figure 3.2.

The results confirm the consistency guarantees of Theorem 1 and Proposition 2 are
beneficial to the EKF in practice.
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Figure 3.3: Simulated trajectory : the displayed loop is driven by a robot able to mea-
sure the relative position of the landmarks lying in a range of 5m around it. Velocity
is constant as well as angular velocity.

5.1 5.1 Monte-Carlo Based Numerical Results

Figure 3.4 displays the Normalized Estimation Error Squared (NEES), RootMean Square
Error (RMSE) and distance to Maximum-Likelihood estimate, over 1000 Monte-Carlo
runs.

Consistency Evaluation: the NEES [48] provides information about the filter consis-
tency, such that NEES > 1 reveals an inconsistency issue: the actual uncertainty is
higher than the computed uncertainty. As expected, the NEES of the robot pose esti-
mates in Figure 3.4 indicates that the standard EKF is inconsistent, whereas the other
approaches are more consistent. The proposed EKF and iSAM obtain the best NEES,
whereas the NEES of OC-EKF and robocentric EKF slightly increase after the first turn,
i.e. at the first loop closure.

Accuracy Performances: we evaluate accuracy through RMSE of the robot position
error. This confirms that: “solving consistency issues improves the accuracy of the
estimate as a byproduct, as wrong covariances yield wrong gains" [48]. Numerical
results are displayed in Figure 3.1.

Distance to Maximum-Likelihood Estimate: we use as a third performance criterion
distance to the estimates returned by iSAM [65], which are optimal in the sense that
it returns the Maximum A Posteriori (MAP) estimate. To this respect, we see that the
proposed EKF is the closest to iSAM.

Execution Time: we provide the execution time of the filters for the 100 Monte-Carlo
runs in Table 3.1, which are implemented in Matlab and tested on Precision Tower
7910 armed with CPU E5-2630 v4 2.20 Hz. The iSAM’s execution time is not included
since it cannot be compared: it is implemented using C++ and an optimized code,
whereas we used Matlab based simulations. It is thus evidently lower. Regarding com-
putational complexity, our proposed filter has similar complexity as the standard EKF
and OC-EKF, since its EKF-based structure makes it quadratic in the state dimension,
i.e., number of landmarks. The use of a retraction at the update step instead of mere
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Figure 3.4: Average performances of the different methods over 1000 runs. NEES (for
the robot 3-DoF pose) is the consistency indicator, and full consistency corresponds to
NEES equal to 1. We see proposed EKF and iSAM are the more consistent, followed by
OC-EKF and robocentric EKF, whereas standard EKF is not consistent. The accuracy
is evaluated in terms of the robot position RMSE. Standard EKF shows degraded per-
formances as compared to others, which all achieve comparable performances. Finally,
filters are evaluated in terms of average proximity of robot’s estimated position with
iSAM’s, which computes the most likely state χn given all past measurements y1, . . . ,yn.
It is used as a reference of the best achievable estimate. We see that the proposed EKF
are the closest to iSAM. Dashed lines correspond to 3� confidence upper bounds, and
we see EKF is over-optimistic. Figures best seen in color.

addition may slightly increase the computational burden, but the impact in the exe-
cution time proves negligible. The robocentric filter is penalized because it moves the
landmarks during propagation, which in turn impacts the propagation of the covari-
ance matrix. In our solution landmarks remain fixed during propagation. Note that
the proposed solution can be implemented using recent techniques [70,71] to decrease
computational load. To implement the robocentric and OC-EKFwe report that we used
the code of [45], see Acknowledgments.

These simulations confirm that regarding SLAM, the proposed filter is an alterna-
tive to the OC-EKF. Contrarily to OC-EKF the model is linearized at the (best) estimate,
and is thus much closer to standard EKF methodology, and applies to a large class of
problems without explicit computation of the unobservable directions.



Conclusion 43

Filter EKF [56] [64] proposed

NEES 4.05 1.28 1.49 1.07
RMSE robot (m) 1.76 1.20 1.27 1.18

distance to iSAM (m) 0.45 0.36 0.41 0.30
Execution time (s) 275 290 414 278

Table 3.1: Average performances and computational time execution of the filters over
the 1000 Monte-Carlo runs.

6 6 Conclusion

This work evidences the EKF for robot navigation is not inherently inconsistent but
the choice of the estimation error for linearization is pivotal: properly defining the
error the EKF shall linearize yields consistency. For SLAM, Monte-Carlo simulations
and real experiments have evidenced our alternative EKF outperforms the EKF and
achieves similar performance as state-of-the art iSAM. It thus offers an alternative to
OC-EKF based on a sound mathematical theory anchored in geometry. Moreover the
general theory goes beyond basic SLAM.
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CHAPTER4

A New Approach to Unscented Kalman Filtering on Manifolds

Part of the content of this chapter has been presented in the International Conference
on Robotics and Automation (ICRA 2020).

Résumé

Le présent chapitre présente une nouvelle méthodologie pour le filtrage de Kalman
sans-parfum (UKF) sur les variétés et les groupes de Lie. Au-delà des performances
d’estimation, l’intérêt principal de l’approche est sa polyvalence, car notre méthode
s’applique à de nombreux problèmes d’estimation d’état, et dispose d’une simplicité
dans sa mise en œuvre pour ceux ne connaissant que partiellement les variétés et les
groupes de Lie. Nous avons développé la méthode sur deux frameworks open source
Python et Matlab indépendants, et qui permet d’implémenter et de tester rapidement
l’approche. Les codes en ligne contiennent des didacticiels, des documentations et
divers exemples que l’utilisateur peut facilement reproduire puis adapter pour un
prototypage et une analyse comparative rapides. Le code est disponible à l’adresse
https://github.com/CAOR-MINES-ParisTech/ukfm.

Chapter abstract

This chapter introduces a novel methodology for unscented Kalman filtering. Be-
yond filtering performances, the main interests of the approach are its versatility, as
the method applies to numerous state estimation problems, and its simplicity of im-
plementation for practitioners not being necessarily familiar with manifolds and Lie
groups. We have developed the method on two independent open-source Python and
Matlab frameworks we call UKF-M, for quickly implementing and testing the ap-
proach. The online repositories contain tutorials, documentations, and various rele-
vant robotics examples that the user can readily reproduce and then adapt, for fast
prototyping and benchmarking. The code is available at https://github.com/CAOR-
MINES-ParisTech/ukfm.

1 1 Introduction

The present chapter tackles the more general problem of what happens to the Kalman
filter when the state variable lives in a space which is not a vector space. Indeed, in
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this case the Kalman state error en = xn � x̂n introduced at Equation (2.6) does not even
make sense. This is a problem as the Kalman filter theory is based on it, and even in
the case where the equations are non-linear this error plays a key role to apply the
EKF methodology. In this thesis, we chose to focus on the unscented based variant
of the Kalman filter, namely the UKF, to study how it may be adapted to the context
where the state variable is not a vector. A similar work for the EKF could be carried
out, however it had been done already in part in the literature. Moreover, to treat this
subject thoroughly one needs to properly study the way the equations are linearized on
the manifold, and to derive a rigorous EKF on manifolds the notion of connection (in
the sense of differential geometry) arises and complicates the exposure. In our work
dedicated to UKF, we tried to keep things as simple as possible, and to excessively limit
the prerequisites. This way we hope our approach may prove useful to the practioner,
especially in the field of robotics.

1.1 1.1 Literature Review of Kalman Filtering on Manifolds

Filtering on manifolds is historically motivated by aerospace applications where one
seeks to estimate (besides other quantities) the orientation of a body in space. Much
work has been devoted to making the EKF work with orientations, namely quaternions
or rotation matrices. The idea is to make the EKF estimate an error instead of the state
directly, leading to error state EKFs [72–75] and their UKF counterparts [22,41,76].
The set of orientations of a body in space is the Lie group SO(3) and efforts devoted to
estimation on SO(3) have paved the way to EKF on Lie groups, see [18,34,42,43,77,78]
and unscented Kalman filtering on Lie groups, see [19,22,60,79–82].

Lie groups play a prominent role in robotics [83] and have drawn increasing atten-
tion for computer vision and robotics applications [42,84,85]. In the context of state es-
timation and localization, viewing poses as elements of the Lie group SE(3) has proved
relevant [7,86–91]. The use of the novel Lie group SE2(3) introduced in [42] has led
to drastic improvement of Kalman filters for robot state estimation [42,43,59,91–95].
Similarly, using group SEk(n) introduced for SLAM in [9,10] makes EKF consistent
or convergent [10,58,62,63,96,97]. Specifically for visual inertial odometry purpose,
in [80], the authors devise an UKF that takes advantage of the Lie group structure
of the robot’s (quadrotor) pose SE(3), and uses a probability distribution directly de-
fined on the group (the distributions in [12]) to generate the sigma points, which is
akin to the general unscented Kalman filtering on manifolds of [98]. Finally, there has
been attempts to devise UKFs respecting natural symmetries of the systems’ dynamics,
namely the invariant UKF, see [35,99].

We introduces a novel and general framework for UKF on manifolds that is simpler
than existing methods, and whose versatility allows direct application to all manifolds
encountered in practice. Indeed, [80,82] proposes UKF implementations based on the
Levi-Civita connection but mastering differential geometry is difficult. [19,22,79,80]
are reserved for SO(3) and SE(3), while [81] is reserved for Lie groups and requires
more knowledge of Lie theory than the present chapter.

1.2 1.2 Organization of the Chapter

In Section 2, we introduce a user-friendly approach to UKF on parallelizable mani-
folds. Section 3 applies the approach in the particular case where the manifold is a Lie
group and recovers [60], but without requiring much knowledge of Lie groups. Sec-
tion 4 describes the open sourced framework. We then show in Section 5 the method
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Figure 4.1: The cylinder is a parallelizable manifold. We can define vector fields V1,V2

that form a basis of the tangent space at any point.

may actually be extended to numerous manifolds encountered in robotics. The conclu-
sion section discusses theoretical issues and provides clarifications related to Kalman
filtering on manifolds.

2 2 Unscented Kalman Filtering on Parallelizable Manifolds

In this section we describe our simple methodology for UKF on parallelizable mani-
folds. We assume the reader to have approximate prior knowledge and intuition about
manifolds and tangent spaces.

2.1 2.1 Parallelizable Manifolds

In order to “write” the equations of the extended or the unscented Kalman filter on a
manifold, it may be advantageous to have global coordinates for tangent spaces that
extends Definition 1.

Definition 6 (smooth manifold). A smooth manifoldM of dimension d is said paralleliz-
able if there exists a set of smooth vector fields {V1,V2, · · · ,Vd} on the manifold such that for
any point χ 2M the tangent vectors {V1(χ),V2(χ), · · · ,Vd(χ)} form a basis of the tangent
space at χ.

Example 7 (Rp). For the vector space x 2 Rp one can choose as vector fields:

V1(x) = e1, . . . , Vp(x) = ep , (4.1)

where the vector ei has zero except 1 at the i-th position. A specificity of Rp is that the
tangent vectors are independent of the point x and its tangent space is naturally identify
with R

p.

Example 8 (cylinder). The cylinder {x = [x,y,z]T 2 R3 | x2+y2 = 1} is a basic example with
d = 2. V1(x) = [y,�x,0]T and V2 = [0,0,1]T are two tangent vectors that form a local basis
at x, see Figure 4.1. The cylinder is a simple case but the notion of parallelizable manifolds
is much broader. In particular, all Lie groups are parallelizable manifolds.

Example 9 (SO(3)). For the rotation matrices R 2 SO(3) one can choose as vector fields:

V1(R) = Re^1 , V2(R) = Re^2 , V3(R) = Re^3 , (4.2)

where e1 = [1,0,0]T , e2 = [0,1,0]T , and e3 = [0,0,1]T .
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Example 10 (SE(3)). Similarly as for rotation, one can choose as vector fields for pose T 2
SE(3):

V1(T) = Te^1 , V2(T) = Te^2 , V3(T) = Te^3 ,

V4(T) = Te^4 , V5(T) = Te^5 , V6(T) = Te^6 . (4.3)

It should be noted, though, that not all manifolds fall in this category. However, we
will see in Section 5 how this issue can be addressed over-parameterizing the state.

2.2 2.2 Uncertainty Representation on Parallelizable Manifolds

Our goal is to estimate the state χ 2M given all the sensor measurements. As sensors
are flawed, it is impossible to exactly reconstruct χ. Instead, a filter maintains a “belief"
about the state, that is, its statistical distribution given past sensors’ readings. The
Kalman filter in R

d typically maintains a Gaussian belief such that χ ⇠N (χ̂,P) , which
may be re-written in the form:

χ = χ̂+ξ, ξ ⇠N (0,P) . (4.4)

We see that the belief is encoded using only a mean estimate χ̂, and a covariance matrix
P that encodes the extent of dispersion of the belief around the estimate. The error is
defined as ξ = χ̂�χ which is coherent with (2.6).

Consider a parallelizable manifoldM, and let {V1,V2, · · · ,Vd} denote the associated
vector fields. To devise a similar belief onM, one needs of course local coordinates to
write the mean χ̂ 2M. This poses no problem, though. The harder part is to find a
way to encode dispersion around the estimate χ̂. It is now commonly admitted that
the tangent space at χ̂ should encode such dispersion, and that covariance P should
hence reflect dispersion in the tangent space. As additive noise (4.4) makes no sense
for χ 2M, we define a probability distribution χ ⇠ N'(χ̂,P), for the random variable
χ 2M as

χ = ' (χ̂,ξ) , ξ ⇠N (0,P) , (4.5)

where ' :M⇥Rd !M is a smooth function chosen by the user and satisfying ' (χ̂,0) =
χ̂. In (4.5), ξ 2 Rd is a random Gaussian vector that encodes directions of the tangent
space at χ̂,N (., .) is the classical Gaussian distribution in Euclidean space, and P 2 Rd⇥d

the associated covariance matrix; and we also impose the Jacobian of '(·) at (χ̂,0) w.r.t.
ξ to be Identity, see [6]. Using the parallelizable manifold property, we implicity use
coordinates in the tangent space, as ξ = (⇠ (1),⇠ (2), · · · ,⇠ (d))T 2 Rd encodes the tangent
vector ⇠ (1)V1(χ̂) + · · · + ⇠

(d)Vd(χ̂). Hence '(·) is called a “retraction”, see [6]. In (4.5),
the noise-free quantity χ̂ is viewed as the mean, and the dispersion arises through '(·).
We stress that the distribution defined at (4.5) is not Gaussian. It is “only" Gaussian in
coordinates related to map '(·).

Example 11 (Rp). Consider Example 7. We naturally recover the addition operator on
vector space, i.e. '(x,ξ) = x+ξ.

Example 12 (SO(3)). Consider Example 9. Recall tangent vectors at R indicate small mo-
tions around R 2 SO(3). Tangent vector Rω^ indeed writes !1V1(R) +!2V2(R) +!3V3(R),
see (4.2). We can then choose for '(·) the following '(R,ω) = Rexpm (ω^) = Rexp(ω), with
exp(·) the exponential map on SO(3), see (2.23).

Example 13 (SE(3)). Consider Example 10. Similary as for SO(3), we can then choose for
'(·) the following '(T,ξ) = Texp(ξ), with exp(·) the exponential map on SE(3), see (2.28).
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Finding an appropriate map '(·) is not always straightforward. However there
exists in theory some “canonical” '(·).

Proposition 1. One may define define '(χ̂,ξ) as the point ofM obtained by starting from
χ̂ and integrating the vector field

Pd
i=1ξ

(i)Vi during one unit of time. In that case we call
'(·) an “exponential map".

However, we sometimes have no closed form for the exponential map and one re-
sorts to simpler retractions '(·).

2.3 2.3 Bayesian Estimation Using the Unscented Transform

Consider a random variable χ 2M with prior probability distribution p (χ). Suppose
we obtain some additional information about χ through a measurement y. The goal is
to compute the posterior distribution p(χ|y). Let

y = h (χ) +n, (4.6)

be a measurement, where h(·) :M! R
p represents the observation function and n ⇠

N (0, ) is a white Gaussian noise in R
p with known characteristics. The problem of

Bayesian estimation we consider is as follows:

1. assume the prior distribution to follow (4.5) with known parameters χ̂ and P;

2. assume one measurement y of (4.6) is available;

3. approximate the posterior distribution as

p(χ|y) ⇡ '(χ̂+
,ξ+), (4.7)

where ξ+ ⇠N (0,P+), and find parameters χ̂+ and P+.

Letting χ = ' (χ̂,ξ) in (4.6), we see y provides an information about ξ ⇠ N (0,P) and
we may use the unscented transform of [1,2] to approximate the posterior p(ξ|y) for ξ
as follows, see Algorithm 5: we compute a finite number of samples ξj , j = 1, . . . ,2d,
and pass each of these so-called sigma points through the measurement function

yj = h
⇣

'(χ̂,
⇣

ξj
⌘⌘

, j = 1, . . . ,2d. (4.8)

By noting y0 = h('(χ̂,0)) we then compute successively the measurement mean ŷ =
wmy0 +

P2d
j=1wjyj , the measurement covariance Pyy =

P2d
j=0wj (yj � ŷ)(yj � ŷ)T +N and

the cross-covariance Pξy =
P2d

j=1wjξj
⇣

yj � ŷ
⌘T
, where wm and wj are weights defined in

Algorithm 3 of Chapter 2. We then derive the conditional distribution of ξ 2 Rd as

p(ξ|y) ⇠N
⇣

ξ̂,P+
⌘

, where (4.9)

K = PξyPyy, ξ̂ =K (y� ŷ) , P+ = P�KPyyK
T . (4.10)

This may be viewed as a Kalman update on the error ξ, in the vein of error state Kalman
filtering, see e.g. [75]. The problem is then to convert this into a distribution on the
manifold in the form (4.5). We first represent p(ξ|y) as ξ̂ + ξ+ with ξ+ ⇠N (0,P+) and
ξ̂ considered as a noise free mean. We suggest to define the posterior p(χ|y) as

χ ⇡ '(χ̂+
,ξ+), ξ+ ⇠N (0,P+) , (4.11)
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Algorithm 5: Bayesian updating on parallelizable manifolds with prior (4.5)
and observation (4.6)

Input: χ̂,P,y,N;
// set sigma points

1 ξj = col(
p

(�+ d)P)j , j = 1, . . . ,d,

ξj = �col(
p

(�+ d)P)j�d , j = d +1, . . . ,2d;

// compute measurement sigma points

2 y0 = h('(χ̂,0));
3 yj = h('(χ̂,ξj )), j = 1, . . . ,2d;

// infer covariance matrices

4 ŷ = wmy0 +
P2d

j=1wjyj ;

5 Pyy =
P2d

j=0wj (yj � ŷ)(yj � ŷ)T +N;

6 Pξy =
P2d

j=1wjξj
⇣

yj � ŷ
⌘T
;

// update state and covariance

7 K = PξyP
�1
yy ; // gain matrix

8 χ̂+
= '(χ̂,K(y� ŷ));

9 P+ = P�KPyyK
T ;

Output: χ̂+
,P+;

where we have let
χ̂+ = '

⇣

χ̂, ξ̂
⌘

. (4.12)

Note the approximation done in (4.11)-(4.12) actually consists in writing

'
⇣

χ̂, ξ̂ +ξ+
⌘

⇡ '
⇣

'
⇣

χ̂, ξ̂
⌘

,ξ+
⌘

.

WhenM = R
d the latter equality holds up to the first order in the dispersions ξ̂, ξ+,

both assumed small. In the case whereM is not a vector space, it may be geometrically
interpreted as saying that moving from χ̂ along the direction ξ̂ + ξ+ approximately
consists in moving from χ̂ along ξ̂ and then from the obtained point onM along ξ+.

2.4 2.4 Unscented Kalman Filtering on Parallelizable Manifolds

Consider the dynamics

χn = f (χn�1,ωn,wn) , (4.13)

where the state χn lives in a parallelizable manifoldM, ωn is a known input variable
and wn ⇠ N (0,Qn) is a white Gaussian noise in R

q. We consider observations of the
form

yn = h (χn) +nn, (4.14)

where nn ⇠ N (0,Nn) is a white Gaussian noise with known covariance that we as-
sume additive for clarity of the algorithm derivation only. Compared to (2.9)-(2.10),
the state now lives in a manifold. For system (4.13)-(4.14), we model the state poste-
rior conditioned on past measurements using the uncertainty representation (4.5). To
propagate the state, we start from the prior distribution p (χn�1) ⇠ '(χ̂n�1,ξn�1) with
ξn�1 ⇠N (0,Pn�1) and χ̂n�1, Pn�1 known, and we seek to compute the state propagated
distribution in the form

p (χn|χn�1) ⇠ '(χ̂n,ξn) with ξn ⇠N (0,Pn). (4.15)
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We define sigma points using (4.5) and the statistics of noise wn, and pass them
through (4.13). Then, to find χ̂n one is faced with the optimization problem of com-
puting a weighted mean onM. This route has already been advocated in [22,41,76,81].
However, to keep the implementation simple and analog to the EKF, we suggest to
merely propagate the mean using the unnoisy state model, leading to

χ̂n = f (χ̂n�1,ωn,0). (4.16)

To compute the covariance Pn from Pn�1 of ξn�1 we use the fact wn and ξn�1 are
uncorrelated and proceed in two steps.

1. we generate sigma points in R
d corresponding to Pn�1 and pass them through

the unnoisy model (4.16) for nonlinear propagation of Pn�1 through f . We ob-

tain points χj
n on the manifold M, and the distribution of propagated state is

described as ' (χ̂n,ξn), with χ̂n known from (4.16). We need to be able to locally
invert ξ 7! '(χ̂,ξ), i.e., to find a map denoted by '�1χ̂ (·) :M! R

d such that

'�1χ̂ ('(χ̂,ξ)) = ξ +O(||ξ||2), (4.17)

that is, a map that allows one to assess the discrepancy between χ̂ and '(χ̂,ξ) is

ξ indeed. Then we use '�1χ̂n

to map sigma points χ
j
n back into R

d and compute

their empirical covariance Σn.

2. we then generate sigma points for process noise wn similarly and obtain another
covariance matrix encoding dispersion in R

d owed to noise, that adds up to Σn

and thus clearly distinguish the contribution of the state error dispersion ξn from
noise wn. When a new measurement arrives, belief is updated via Algorithm 5.

Algorithm 6 summarizes both steps, where the weights defined through set_weights(d,↵)
depend on a scale parameter ↵ (generally set between 10�3 and 1), and sigma point di-
mension, see [1,60] and documentation in source code.

Using (4.16) to propagate themean while using sigma points to compute covariance
is also done in [90], in the particular case of pose compounding on SE(3), with '(·) the
SE(3) exponential map.

3 3 Application to UKF on Lie Groups

To apply the preceding methodology to any d-dimensional group G = M, one first
defines a basis of the Lie algebra. Then, to any vector ξ 2 Rd , recall one may associate
an element denoted by ξ^ of the Lie algebra g. Let the vee operator _ denote its inverse,
as in e.g., [90]. The Lie exponential map maps elements of the Lie algebra to the group.
In (4.5) we may choose '(χ̂,ξ) := χ̂expm(ξ

^) = χ̂exp(ξ), which corresponds to left
concentrated Gaussians on Lie groups [78]. Note that, in the Lie group case, choosing
left invariant vector fields for the Vi ’s and following Proposition 1 we exactly recover
the latter expression.

We may invert '(·) using the logarithm map exp�1(·) := log(·) of G, and we get

'(χ̂,ξ) := χ̂exp(ξ), '�1χ̂ (χ) := log
⇣

χ̂�1χ
⌘

. (4.18)

If we alternatively privilegiate right multiplications we have

'(χ̂,ξ) := exp(ξ)χ̂, '�1χ̂ (χ) := log
⇣

χχ̂�1
⌘

. (4.19)
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Algorithm 6: UKF on parallelizable manifolds

Input: χ̂n�1,Pn�1,ωn,Qn,yn,Nn,↵;
Propagation

// propagate mean state

1 χ̂n = f (χ̂n�1,ωn,0);
// propagate state error covariance

2 �,{wj }j=0,...,2d = set_weights(d,↵);

3 ξj = col(
p

(�+ d)Pn�1)j , j = 1, . . . ,d,

ξj = �col(
p

(�+ d)Pn�1)j�d , j = d +1, . . . ,2d;

// use retraction onto manifold

4 χj
n = f ('(χ̂n�1,ξj ),ωn,0), j = 1, . . . ,2d;

// inverse retract to go back in R
d

5 Σn =
P2d

j=1wj'
�1
χ̂n

(χ
j
n)

✓

'�1χ̂n
(χ

j
n)
◆T

;

// proceed similarly for noise

6 �, {wj }j=0,...,2q = set_weights(q,↵);

7 wj = col(
p

(�+ q)Qn)j , j = 1, . . . , q,

wj = �col(
p

(�+ q)Qn)j�d , j = q +1, . . . ,2q;

8 χ̃j
n = f (χ̂n�1,ωn,w

j ), j = 1, . . . ,2q;

9 Pn = Σn +
P2q

j=1wj'
�1
χ̂n

(χ̃
j
n)('

�1
χ̂n

(χ̃
j
n))

T ;

end
Update (when measurement yn arrives)

Compute χ̂
+
n ,P

+
n from Algorithm 5 with χ̂n,Pn;

end

Output: χ̂+
n ,P

+
n ;

3.1 3.1 Uncertainty on Lie Groups

Based on the above section and Section 2.2, it appears two natural manners to de-
fine random variables on Lie groups. We first define the probability distribution χ ⇠
NR(χ̂,P) for the random variable χ 2 G as [42,86]

χ = exp(ξ) χ̂, ξ ⇠N (0,P) , (4.20)

where P 2 R
d⇥d is a covariance matrix. In (4.20), the original Gaussian ξ of the Lie

algebra is moved over by right multiplication to be centered at χ̂ 2 G, hence the letter
R which stands for “right", this type of uncertainty being also referred to as right-
equivariant [60]. In (4.20), χ̂may represent a large, noise-free and deterministic value,
whereas P is the covariance of the small, noisy perturbation ξ. As (4.4), we have defined
this probability density function directly in the vector space R

d such that NR (·) is not
Gaussian distribution.

One can similarly define the distribution χ ⇠ NL(χ̂,P) for left multiplication of χ̂,
as

χ = χ̂exp(ξ) , ξ ⇠N (0,P) . (4.21)

The advantages of using (4.20) for SLAM, instead of (4.5) or a standard Euclidean error
can be found in [10,59].

3.2 3.2 Applications in Mobile Robotics: the Group SEk(d)

It is well known that orientations of body in spaces are described by elements of SO(3).
It is also well known that the use of SE(3) is advantageous to describe the position
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and the orientation of a robot (pose), especially for estimation, see [7,86–91]. In [37,
42] the group of double direct isometries SE2(3) was introduced to address estimation
problems for robot navigation when the motion equations are based on an IMU. In
[9,10] the group of multiple spatial isometries SEk(d) was introduced in the context
of SLAM. The group SEk(d), allows recovering SE(3) with k = 1,d = 3, SE(2) with k =
1,d = 2 and SO(3) with k = 0,d = 3. It seems to cover virtually all robotics applications
where the Lie group methodology has been so far useful (along with trivial extensions
to be mentioned in Section 3.3). Since it was introduced for navigation and SLAM, this
group has been successfully used in various contexts, see [10,42,43,58,59,62,63,91–97,
100].

3.3 3.3 The Mixed Case

We call mixed the case where M = G ⇥RN . This typically arises when one wants to
estimate some additional parameters besides the state assumed to live in the group
G, such as sensor biases, see Chapter 5, Chapter 6, Chapter 8 and Chapter 11. By
decomposing the state as χ̂ = (χ̂1, χ̂2) 2 G ⇥RN and letting ξ = (ξ1,ξ2), we typically
define '(·) through right multiplication as

' (χ̂,ξ) = (exp(ξ1) χ̂1, χ̂2 +ξ2) (4.22)

or if left multiplications are privilegiated ' (χ̂,ξ) = (χ̂1 exp(ξ1) , χ̂2 + ξ2). This way, as
many additional quantities as desired may be estimated along the same lines.

Remark 1. When G = SE(3) for example, it is tempting to let G0 = SO(3) and to treat
SE(3) as SO(3) ⇥ R3 along the lines of mixed systems. However, in robotics contexts, it
has been largely argued the Lie group structure of SE(3) to treat poses is more relevant
than SO(3) ⇥R3, as accounting for the coupling between orientation and position leads to
important properties, see [7,86–91]. In the same way, SEk(3) resembles SO(3)⇥R3k but has
a special noncommutative group structure having recently led to many successes in robotics,
see [10,42,43,58,59,62,63,91–97,100].

Example 14. The state χ for fusing IMU with GNSS may be divided into the vehicle state
χ1 2 SE2(3) (orientation, velocity and position of the vehicle) and IMU biases χ2 = b 2
R
6, see e.g. our example on the KITTI dataset [101]. Further augmenting χ2 with new

parameters, e.g. time synchronization and force variables [102], is straightforward.

4 4 UKF-M Implementation

We have released both open source Python package and Matlab toolbox UKF-M im-
plementations of our method at https://github.com/CAOR-MINES-ParisTech/ukfm.
Both implementations are wholly independent, and their design guidelines pursue
simplicity, intuitiveness and easy adaptation rather than optimization. We adapt the
code to the user preferences as follow: the Python code follows class-object paradigm
and is heavily documented through the Sphinx documentation generator, whereas the
Matlab toolbox contains equivalent functions without class as we believe choosing well
function names is best suited for the Matlab use as compared to class definition. The
following code snippets are based on the Python package that we recommend using.
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Snippet 1: how to devise an UKF on manifolds

ukf = ukfm.UKF(

f=model.f, # propagation model

h=model.h, # observation model

phi=user.phi, # retraction

phi_inv=user.phi_inv, # inverse retraction

Q=model.Q, # process cov.

R=model.R, # observation cov.

alpha=user.alpha # sigma point param.

state0=state0, # initial state

P0=P0) # initial covariance

Snippet 2: setting '(·), '�1(·) for χ := (Rot 2 SO(3),v,p)

def phi(state, xi):

return STATE(

Rot=state.Rot.dot(SO3.exp(xi[0:3])),

v=state.v + xi[3:6]

p=state.p + xi[6:9])

def phi_inv(state, hat_state):

return np.hstack([ # concatenate errors

SO3.log(hat_state.Rot.T.dot(state.Rot)),

state.v - hat_state.v,

state.p - hat_state.p])

4.1 4.1 Recipe for Designing a UKF on Manifolds

To devise an UKF for any fusion problem on a parrallelizable manifold (or Lie group)
M the ingredients required in terms of implementation are as follows, see Snippet 1.

1. A model that specifies the functions f and h used in the filter;

2. An uncertainty representation (4.5). This implies an expression for the function
'(·) and its inverse '�1(·), defined by the user;

3. Filter parameters, that define noise covariance matrices Qn, Nn and weights (�,
wm, and wj ) through ↵. Noise covariance values are commonly guided by the

model and tuned by the practitioner, whereas ↵ is generally set between 10�3

and 1 [1].

4. Initial state estimates χ̂0 and P0.

Example 15. Consider a 3D model whose state contains a rotation matrix Rot 2 SO(3),
the velocity v 2 R

3 and position p 2 R
3 of a moving vehicle. Defining '(·) and '�1(·)

allows computing (respectively) a new state and a state error. One possibility is given
in Snippet 2, where χ 2 SO(3) ⇥ R6, '(χ̂,ξ) =

⇣

ˆRotexp(ξ(0:3)), v̂+ξ(3:6), p̂+ξ(6:9)
⌘

and

'�1χ̂ (χ) = (log( ˆRot
T
Rot),v� v̂,p� p̂).

In the particular case where M is a Lie group we follow the rules above but we
simplify step 2) as follows: we pick an uncertainty representation, either (4.18) or
(4.19). This directly implies an expression for the map ^ and its inverse _, as well
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as for the exponential exp and its (local) inverse log. Applying the present general
methodology for the particular case of Lie groups, we recover the method of [60].

Example 16. We may modify the representation used in Example 15 by viewing the state
as an element χ 2 SE2(3) instead. This defines two alternative retractions. See e.g. imple-
mentation for corresponding '�1(·)’s in Snippet 3. A quick comparison displayed in Figure
4.2 indicates the SE2(3)-UKF with right multiplications (4.19) outperforms the other filters,
notably the one based on the naive structure of Example 15.

4.2 4.2 Unscented Kalman Filtering on Lie Groups

By representing the state error as a variable ξ of the Lie algebra, we can build two
alternative unscented filters for any state living in Lie groups following Section 3.1.

Right-UKF-LG: the state is modeled as χn ⇠NR(χ̂n,Pn), that is, using the representa-
tion (4.20) of the uncertainties. The mean state is thus encoded in χ̂n and dispersion in
ξ ⇠N (0,Pn). The sigma points are generated based on the ξ variables, and mapped to
the group through the model (4.20). Note that, this is in slight contrast with [80,103],
which generate sigma points through a distribution defined directly on the group. The
filter consists of two steps along the lines of the conventional UKF: propagation and
update, and compute estimates χ̂n and Pn at each n.

Left-UKF-LG: the state is alternatively modeled as χn ⇠NL(χ̂n,Pn), that is, using the
left-equivariant formulation (4.21) of the uncertainties.

4.3 4.3 Implemented Examples

In the code, we implement the frameworks on relevant vanilla robotics examples which
are listed as follows:

• 2D vanilla robot localization tutorial based on odometry and GNSS measure-
ments;

• 3D attitude estimation from an IMU equippedwith gyro, accelerometer andmag-
netometer;

• 3D inertial navigation on flat Earth where the vehicle obtains observations of
known landmarks;

• 2D SLAM where the UKFs follows [5] to limit computational complexity and
adding new observed landmarks in the state;

• IMU-GNSS fusion on the KITTI dataset [101];

• an example where the state lives on the 2-spheremanifold, modeling e.g., a spher-
ical pendulum [8].

We finally enhance code framework, documentation and examples with filter per-
formance comparisons: for each example we simulate Monte-Carlo data and bench-
mark UKFs and EKFs based on different choices of uncertainty representation (4.5)
through accuracy and consistency metrics.

Example 17. Figure 4.2 displays two EKFs and two UKFs for inertial navigation in the set-
ting of [42], where initial heading and position errors are large, respectively 45 degrees and 1
m. The second UKF, whose uncertainty representation (4.5) is based on SE2(3) exponential,
see Section 3.2, clearly outperforms the EKF, the first UKF, and improves the EKF of [42]
during the first 10 seconds of the trajectory.
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Snippet 3: defining '�1(·) via (4.18) or (4.19) for χ 2 SE2(3)

def phi_inv(state, hat_state):

chi = state2chi(state)

hat_chi = state2chi(hat_state)

# if left multiplication (3.18)

return SEK3.log(SEK3.inv(hat_hat).dot(chi))

# if right multiplication (3.19)

return SEK3.log(chi.dot(SEK3.inv(hat_hat)))
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Figure 4.2: Inertial navigation with heavy initial errors in the setting of [42]. SE2(3)-
UKF obtains the best results.

5 5 Extension to General Manifolds

The main problem when M is not parallelizable is that one cannot define a global
uncertainty representation through a map '(·) as in (4.5). Indeed ξ = (ξ(1), · · · ,ξ(d)) en-
codes at any χ 2M coordinates in the tangent space related to a basis (V1(χ), · · · ,Vd(χ))
of the tangent space. On general manifolds, though, it is always possible to cover the
manifold with “patches"M1, · · · ,MK , such that on each patch i we have a set of vec-

tor fields (V
(i)
1 , · · · ,V

(i)
d ) allowing one to apply our methodology. For instance on the

2-sphere one could choose a North-East frame in between the polar circles, and then
some other smooth set of frames beyond polar circles. However two main issues arise.
First, we feel such a procedure induces discontinuities at the polar circles that will
inevitably degrade the filter perfomances. Indeed by moving χ̂ slightly at the polar
circle, one may obtain a jump in the distribution N'(χ̂,P) with fixed covariance P, see
Figure 4.3. Then, we see the obtained filter wholly depends on the way patches are
chosen, which is undesirable.

5.1 5.1 The Lifting “Trick”

It turns out a number of manifolds of interest called homogeneous spaces may be
“lifted” to a Lie group, hence a parallelizable manifold. By simplicity1 we consider
as a tutorial example the 2-sphereM = S

2 = {x 2 R3 | ||x|| = 1} with state xn 2 S2. As
xn+1 and xn necessarily lie on the sphere, they are related by a rotation, that is,

xn+1 =Ωnxn (4.23)

1Generalizations to the Stiefel manifold St(p,n), that is, a set of p orthonormal vectors of Rn, and hence
to the set of p-dimensional subspaces of Rn called the Grassmann manifold are then straightforward.
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Figure 4.3: We see covering the 2-sphere with 3 parallelizable patches (in between
polar circles, and beyond each) inevitably induces discontinuities that may degrade
filtering performances. This is a consequence of the theorem that states it is not possi-
ble to “comb a hairy ball”, see [104].

with Ωn 2 SO(3) that may be written as expm(ω
^
n )expm(w

^
n ) where ωn is a known in-

put, and wn ⇠N (0,Qn) represents a noise, see (2.22) for the definition of wedge oper-
ator, and expm(·) is the usual matrix exponential of SO(3). We assume xn is measured
through a linear observation, that is,

yn =Hxn +nn 2 Rp . (4.24)

Example 18. We provide a (novel) script which simulates a point of a pendulum with stiff
wire living on a sphere, where two components are measured through e.g. a monocular
camera, i.e. H = [e1,e2]

T .

The dynamics can be lifted into SO(3) by writing xn via a rotation matrix Rn, that
is, we posit xn = RnL with L 2 R3. In terms of Rn, dynamics (4.23) may be lifted letting
Rn+1 = ΩnRn as then RnL satisfies (4.23) indeed. Similarly, the output in terms of Rn

writes yn =HRnL+nn = h̃(Rn) +nn. Having transposed the problem into estimation on
the parallelizable manifold SO(3), we can then apply the two UKFs by setting '(·) to
either (4.18) or (4.19).

5.2 5.2 Covariance Retrieval

The practitioner may wonder how to retrieve the covariance in the original variables.
Assume we have a Gaussian vector x ⇠ (µ,Σ), and we want to approximate g(x) as a
Gaussian. This might addressed resorting to the unscented transform but a more basic
and direct approach is as follows. ConsiderA a matrix and b a vector. Then it is known
from probability theory that

Ax+b ⇠ (Aµ+b,AΣAT ). (4.25)

Then, we can write x = µ + e with e ⇠ N (0,Σ) and linearizing we find g(x) ⇡ g(µ) +
@g
@x
(µ)e and applying linear Gaussian vectors transform yields approximately g(x) ⇠

(g(µ),AΣAT ), where we let A :=
@g
@x
(µ).

In the 2-sphere example of the present section, our uncertainty representation may
be taken as Rn = exp(ξ^)R̂n with ξ ⇠N (0,P), see (4.19). As a result it is rather easy to
compute the covariance matrix of RnL as follows. We may use linearizations to write
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that exp(ξ^) ⇡ I + ξ^ and thus RnL = exp(ξ^)R̂nL ⇡ R̂nL + ξ^R̂nL = R̂nL � (R̂nL)
^ξ =

R̂nL+Aξ with A = �(R̂nL)
^. As a result, the probability distribution of RnL is under a

linear approximationN (R̂nL,APA
T ).

6 6 Concluding Remarks

If we step back a little and look at the bigger picture, we see the main problem when
designing filters on a manifoldM is that we often lack coordinates to write down the
filter equations onM. Even if we do, e.g. longitude and latitude on the sphere, this
implicitly defines probability distributions on the manifold in a way that may not suit
the problem well, see Figure 4.3. Over the past decades, researchers have advocated
the intrinsic approach based on the tangent space [105]. This way the filter becomes
independent of a particular choice of coordinates on the manifold, but it depends on
the way tangent spaces at different locations correspond. Notably, we see at lines 5, 6,
7, 9 of Algorithm 5 the covariance matrix P+ is computed using local information at
χ̂, in total disregard of χ̂+, although P+ is supposed to encode dispersion at χ̂+! This
means it is up to the user to define the way “Gaussians" are transported overM from χ̂

to χ̂+, as early noticed in [80], see also [82]. The route we have followed herein consists
in focusing on parallelizable manifolds where a global coordinate system of tangent
spaces exists, and readily provides a transport operation overM.

However, there are multiple choices for the parallel transport operation. In [80,82]
the authors advocate using the Levi-Civita connection for parallel transport, which
depends on the chosen metric, and argue its virtue is that it is torsion free. In the
context of state estimation on Lie groups, though, the transport operations that lead to
the best performances are not torsion free, see [43]. In cases where it is unclear to the
user which transport operation (in our case parallelization+retraction) shall be best,
we suggest using our code for quick benchmarking, as done in Figure 4.2. Indeed, the
group structures SE2(3) versus SO(3) ⇥R6 actually boil down to particular choices of
parallelization (hence transport), and the filter based on SE2(3) outperforms the other.
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CHAPTER5

Invariant Kalman Filtering for Visual Inertial SLAM

Résumé

Dans ce chapitre, nous nous appuyons à la fois sur la théorie du filtrage de Kalman
sans-parfum sur les groupes de Lie dévelopée dans le Chapitre 4 et plus générale-
ment sur la théorie du filtrage de Kalman invariant, un UKF innovant est dérivé pour
le problème de la la localisation et cartographie simultanées basée inertie et vision
monoculaire. La position du véhicule, sa vitesse et les positions des points de repère
3D sont considérées comme un seul élément du groupe de Lie (de grande dimension)
SE2+p(3), qui constitue l’état, et où les biais des accéléromètres et des gyromètres sont
ajoutés à l’état et estimés également. L’efficacité de l’approche est validée à la fois sur
des simulations et sur cinq séquences provenant d’un jeu de données réelles.

Chapter abstract

In this chapter, building upon both the theory of Unscented Kalman Filtering on Lie
Groups developped in Chapter 4 and more generally the theory of invariant Kalman
filtering, an innovative UKF is derived for the monocular visual SLAM problem. The
body pose, velocity, and the 3D landmarks’ positions are viewed as a single element
of a (high dimensional) Lie group SE2+p(3), which constitutes the state, and where
the accelerometers’ and gyrometers’ biases are appended to the state and estimated as
well. The efficiency of the approach is validated both on simulations and on five real
datasets.

1 1 Introduction

In this chapter, we come back to the problem of SLAM, but from a more practical
viewpoint than in Chapter 3. Indeed, our main goal here is to deal with vision mea-
surements.

We consider a robot equipped with inertial sensors, namely an IMU , and a monoc-
ular vision for SLAM for Micro Aerial Vehicles (MAVs). We seek to “fuse” those mea-
surements in order to estimate the robot’s state. To this aim, we propose a novel UKF
thatmainly builds upon two components. First, the recent Lie group structure of SLAM
advocated in the field of invariant filtering, see [10,58,85] and the results of Chapter
3. Secondly, the UKF on Lie Groups (UKF-LG), whose general methodology has been
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recently introduced in Chapter 4. The effectiveness of our algorithm is tested both on
simulations and on real data [106]. The method, an UKF-LG visual SLAM, favorably
compares to state-of-the-art Kalman filter based solutions.

Note that, in the present chapter we do not specifically address Visual Inertial
Odometry (VIO) which is addressed in Chapter 6 and is a powerful technique where
the features (i.e., the map) are not included in the state, saving execution time. As in
SLAM, VIO estimates the sequential changes of the robot over time using an IMU and
cameras, but there is no attempt to build a map [46]. Here, by contrast, we explicitly
consider the probabilistic visual SLAM problem, where a consistent map of the en-
vironment is also pursued. Note that, even for navigation purposes only, building a
map allows loop closures (contrary to visual inertial odometry), a powerful method to
drastically reduce uncertainty on the state, when applicable.

1.1 1.1 Contributions and Links with Previous Literature

Over the last decades, tremendous progresses have been achieved in visual localiza-
tion frameworks, whose estimation and robustness can be improved by tightly cou-
pling visual and inertial informations, which is the major focus of this chapter. Most
approaches combine data using filtering based solutions [46,59,80,107–110], or opti-
mization/bundle adjustment techniques, e.g., [84,111,112]. Optimization based meth-
ods are more accurate but generally come with higher computational demands, and
filtering approaches are well suited to real time applications.

Additionally, it has been shown that, by expressing the EKF estimation error di-
rectly on the Lie group and leveraging an IEKF, consistency guarantees can be obtained
without ad hoc remedies both for wheel odometry SLAM [10,58] and VIO [59] filtering
algorithms. Very recently [62] proposed a multi-state constrained Right IEKF (RIEKF)
for 3D VINS. In Section 5 dedicated to experiments, we also apply the framework [10]
to the inertial and vision fusion, to implement a RIEKF where the landmarks are part
of the state. To our best knowledge this is the first published implementation of an
RIEKF for visual inertial SLAM.

Our main contribution is a Right-UKF-LG, which can be viewed as an unscented-
based transform alternative to the RIEKF, but which has the advantage of being much
more versatile than the RIEKF. Indeed, it spares the user the computation of Jacobians,
that can prove difficult, especially in the IEKF framework where Jacobians are defined
with respect to the Lie structure, see e.g., [85]. As a result,

• the practitioner can readily implement our algorithm when using, e.g., a differ-
ent camera model, or if one wants to add additional measurements such as GPS
measurements outdoors, or a complementary depth sensor;

• should additional parameters/variables be estimated, such as IMU’s scale factors
and/or harmonization angles, the algorithm is straightforward to adapt following
the state augmentation technique of Chapter 4.

Note that, the present chapter presents two new developments on the UKF-LG
methodology, that are as follows: a square-root form implementation detailed in Ap-
pendix A and a modification to deal with large updates described in Appendix B.

In [80], the authors consider the same visual inertial fusion problem, and devise an
UKF that takes advantage of the Lie group structure of the body pose SE(3). The main
differences are threefold. First, the Lie group we use SE2+p(3), introduced in [9,10], is
much bigger than SE(3), and includes the pose but also the velocity and the landmarks’
positions. Then, and more generally, the UKF-LG presented in Chapter 4 generates



Visual Inertial SLAM Problem Modeling 61

sigma points in the Lie algebra, and then uses concentrated Gaussian distributions (as
in e.g., [86]) to map them onto the group. In contrast, [80] uses a probability distribu-
tion directly defined on the group [12] to generate the sigma points, which is akin to
the general unscented Kalman filtering on manifolds of [98]. Moreover, while [80] uses
parallel transport operations based on left multiplications, we explore two variants
based both on left and right multiplications, and the right one proves to be actually
much better.

1.2 1.2 Chapter’s Organization

The chapter is organized as follows. Section 2 formulates the fusion problem. Section
2 contains mathematical preliminaries on unscented Kalman filtering on Lie groups.
Section 3 describes the two proposed UKFs for monocular visual and inertial SLAM.
Section 4 and 5 illustrate the performances of the proposed filters based both onMonte-
Carlo simulations and on real datasets.

2 2 Visual Inertial SLAM ProblemModeling

We recall in this section the standard dynamic model for flying devices equipped with
an IMU. We then detail the visual measurement model, and we finally pose the SLAM
problem.

2.1 2.1 Variables of Interest and Dynamical Model

Let us consider an aerial body equipped with an IMU whose biases are modeled as
random walks. Assume moreover that p fixed landmarks of the scene can be tracked
visually, and that they constitute the map. The state we want to estimate consists of the
position pimu 2 R3, velocity vimu 2 R3, orientation Rimu 2 SO(3) of the body, the IMU
biases bω 2 R3 and ba 2 R3, as well as the 3D positions p1, . . . ,pp 2 R3 of the landmarks
in the global frame. The dynamics of the system read:

body state dynamics

8

>

>

>

>

<

>

>

>

>

:

Ṙimu = Rimu (ω �bω +wω)⇥
v̇imu = Rimu (a�ba +wa) + g

ṗimu = vimu
,

IMU biases dynamics

8

>

>

<

>

>

:

ḃω =wbω

ḃa =wba ,

landmarks dynamics
n

ṗi = 0, i = 1, . . . ,p ,

(5.1)

(5.2)

(5.3)

where (ω)⇥ denotes the skew symmetric matrix associated with the cross product with
vector ω 2 R3. The various white Gaussian continuous time noises can be stacked as

w =
h

wωT waT wbωT wbaT
iT

, (5.4)

where w is centered with autocorrelation E[w(t)w(s)] = W�(t � s). These equations
correspond to the equations of navigation, provided the earth is considered as locally
flat. They model the dynamics of most of MAVs such as quadrotors where the IMU
measurementsω and a in (5.1) are considered as noisy and biased inputs of the system.
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2.2 2.2 Measurement Model

In addition to the IMU measurements used as input for the dynamics, the vehicle gets
visual information from a calibrated monocular camera. It observes and tracks the p
landmarks through a standard pinhole model [113]. Landmark pi is observed through
the camera as

yi =
1

yiw

"

yui
yvi

#

+ni , (5.5)

where yi is the measured normalized pixel location of the landmark in the camera
frame, that is,
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7

7

7

5

= (RC )T
⇣

(Rimu)T (pi �pimu)�pC
⌘

, (5.6)

where the right term corresponds to the distance from the landmark to the camera
expressed in the camera frame. RC and pC are the known rotation matrix and the
translation mapping from the body frame onto the camera frame. Finally, ni ⇠N (0,N)
represents the pixel image noise.

2.3 2.3 Estimation/Fusion Problem

Our goal is to compute the probability distribution of the high dimensional system’s
state (Rimu,pimu,vimu,bω,ba,p1, . . . ,pp) defined through an initial Gaussian prior and
the probabilistic dynamic model (5.1)-(5.3), conditionally on the visual landmarks mea-
surements of the form (5.5) for 1  i  p. This is the standard probabilistic formulation
of the visual 3D SLAM problem with an IMU.

3 3 Proposed Algorithms

To apply the methodology of UKF on Lie groups, the dynamics must first be dis-
cretized, and the state space must be (partly) embedded in a matrix Lie group.

3.1 3.1 Time Discretization

Equations (5.1) are standard navigation equations, and their discretization is well es-
tablished. In this chapter, we implemented the method of pre-integration onmanifolds
of [84].

3.2 3.2 Lie Group Embedding

The state space can be partially embedded into a Lie group, by letting χn be the matrix
of the group G = SE2+p(3) that represents the state variables (R,v,p,p1, · · · ,pp) at time
step n through representation (2.35). Using this embedding, the state at time n can

in turn be represented as (χn,bn), letting the bias vector be b =
h

bωT baT
iT 2 R6. The

dispersion on χn can be encoded using the left uncertainty or the right one, leading
to two alternative filters (see Section 4.2). In the following, we detail the Right-UKF-
LG which adopts the right-equivariant uncertainties of χn and conventional additive
uncertainties on the biases b. We leave to the reader the derivation of the Left-UKF-LG,
based upon left-equivariant uncertainties (4.5).
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Algorithm 7: Left and Right UKF on Lie groups

Input: χ̂, b̂,S = chol(P) ,u,Q,Y,N;

1 χ̂, b̂,S Propagation
⇣

χ̂, b̂,S,u,Q
⌘

;

if received measurement then
2 χ̂, b̂,S Update

⇣

χ̂, b̂,S,Y,N
⌘

;

end

Output: χ̂, b̂,S;

3.3 3.3 Final Retained Model and Filter Architecture

Defining the input vector u = [ωT ,aT ]T , and gathering the results of the two preced-
ing subsections, we obtain the following uncertainty representation and discrete time
model associated to the Right-UKF-LG:

uncertainty rep.

8

>

>

<

>

>

:

χn = exp(ξ) χ̂n

bn = b̂n + b̃
,

"

ξ

b̃

#

⇠N (0,Pn) , (5.7)

dynamics
n

χn,bn = f (χn�1,un �bn�1,wn) , (5.8)

observations

8

>

>

<

>

>

:

Yn =
h

yT1 · · · y
T
p

iT
:= Y (χn,nn)

yi given in (5.5), i = 1, . . . ,p
, (5.9)

such that
⇣

χ̂n, b̂n

⌘

2 R15+3p represents the mean (estimated) state at time n, Pn 2
R
(15+3p)⇥(15+3p) is the covariance matrix that defines the state uncertainties

⇣

ξ, b̃
⌘

, and
the vector Yn contains the observations of the p landmarks with associated discrete
Gaussian noisewn ⇠N (0,Q). The filter consists of two steps: propagation and update;
as shown in Algorithm 7. We detail these two main steps in the following with the for-
malism of square-root implementation [114] where S is the Cholesky decomposition of
the covariance, sparing the computation of covariance matrices and being numerically
more stable.

Remark 2. for the Left-UKF-LG, we define χn = χ̂n exp(ξ) and substitute it in (5.7). This
results in quite different filters, though. In particular, consistence properties for EKF SLAM
are characteristics of the right-invariant formalism, see [10] and also [58,59].

3.4 3.4 Propagation Step

The propagation step is described in Algorithm 8 and operates as follow. The filter first
computes the propagated mean state, and then the 2J sigma points obtained at line 5
are propagated at lines 6-7. It is then convenient to view the propagated Cholesky
factors S as an output of the function qr(·). Details are provided in Appendix A along
with the definitions of J and � . Although more details on the methodology can be
found in [60] (see also [86] regarding propagation), line 7 deserves a few explanations.
According to uncertainty model, dispersion around the mean is modeled as exp(ξ)χ,
so if χ̂ denotes the propagated mean, and χj denotes a propagated sigma point, then
the corresponding sigma point in the Lie algebra is defined through exp(ξj )χ̂ = χj , i.e.,

ξj = log
⇣

χj χ̂
�1⌘.



64 Invariant Kalman Filtering for Visual Inertial SLAM

Algorithm 8: Propagation function for Right-UKF-LG

Input: χ̂, b̂,S,u,Q;

1 u u� b̂ ; // unbiased input

2 Sa = blkdiag(S,chol(Q));
3 χ = χ̂ ; // save non propagated state

4 χ̂, b̂ = f (χ,u,0) ; // propagate mean

// step 5: sigma points generation

5
h

ξ⌥j b⌥j n⌥j
i

= ⌥� colj (Sa) , j = 1, . . . , J ;

// steps 6-7: sigma point propagation

6 χ⌥
j ,b
⌥
j  f

⇣

exp
⇣

ξ⌥j
⌘

χ,u�b⌥j ,n
⌥
j

⌘

, j = 1, . . . , J ;

7 ξ⌥j  log
⇣

χ⌥
j
χ̂�1

⌘

, j = 1, . . . , J ;

8 S qr
⇣

ξ⌥j ,b
⌥
j , j = 1, . . . , J ,Q

⌘

;

// see Appendix for definition of qr

// the notation p⌥ is used to denote the two variables +p and �p
Output: χ̂, b̂,S;

Algorithm 9: Update function for the Right-UKF-LG

Input: χ̂, b̂,S,Y,N;
1 Y0 = Y (χ̂,0); // see (5.9) and (5.5)-(5.6)

2
h

ξ⌥j b⌥j
i

= ⌥� colj (S) , j = 1, . . . , J 0;

3 χ⌥
j = exp

⇣

ξ⌥j
⌘

χ̂, j = 1, . . . , J 0;

4 Yj = Y
⇣

χ⌥
j ,w

⌥
j

⌘

, j = 1, . . . , J 0;

5 �ξ̄,�b̂,S qr’
⇣

Yn,Y0,Y
⌥
j ,ξ
⌥
j , j = 1, . . . , J 0 ,N

⌘

;

6 χ̂ exp
⇣

�ξ̄
⌘

χ̂, b̂ b̂+ �b̂ ; // update mean

// See Appendix for definition of qr’

Output: χ̂, b̂,S;

3.5 3.5 Update Step

The update step incorporates the observation of the p landmarks at time n and is de-
scribed in Algorithm 9. It operates as follow. The sigma points generated in the Lie
algebra at line 2 aremapped to the group at line 3, and used to compute 2J 0+1measure-
ment sigma points at line 4. The function qr0(·) then evaluates the updated Cholesky

factors and the correction term
⇣

�ξ̄,�b̂
⌘

used to update the mean state, along the lines
of the conventional UKF methodology, and it is detailed in the Appendix A. Line 6 is
the update of [60] as concerns the Lie group part of the state, and conventional update
as concerns the biases, see next subsection for more details.

Remark 3. following [115], the square-root implementation can add or remove landmarks,
initializing landmark position as inverse depth point and allows computationally efficient
propagation steps.

3.6 3.6 Discussion on the Final Update

Let χ̂ denote the propagatedmean, and P = SST the propagated covariance matrix of the
state error after the propagation step, i.e. the outputs of Algorithm 7. According to
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right uncertainty model (4.20), it means the propagated state is described by

χ ⇡ exp(ξ) χ̂, ξ ⇠N (0,P)

before measurement Yn. At the update step, the UKF methodology takes into account
the observation Yn to update the element ξ 2 R9+3p as ξ ⇠ N (�ξ̄,P+), i.e., ξ = �ξ̄ + ξ+

with ξ+ ⇠N (0,P+). Back to the Lie group this implies

χ ⇡ exp
⇣

ξ+ + �ξ̄
⌘

χ̂, where ξ+ ⇠N (0,P+) . (5.10)

Following [60], and assuming both correction �ξ̄ and uncertainty ξ+ in (5.10) are small,
we end up with the following posterior that matches with the uncertainty representa-
tion (4.20):

χ ' exp(ξ+) χ̂+
, where (5.11)

ξ+ ⇠N (0,P+) , (5.12)

χ̂+ = exp
⇣

�ξ̄
⌘

χ̂. (5.13)

This approximation is based indeed upon the Baker-Campbell-Hausdorff (BCH) for-

mula that states that exp
⇣

ξ+ + �ξ̄
⌘

= exp(ξ+)exp
⇣

�ξ̄
⌘

+O
⇣

�ξ̄+, (ξ+)2,ξ+�ξ̄
⌘

.

Remark 4. when the correction terms are large and the BCH based approximation does not
hold true, we propose an alternative method in Appendix B.

4 4 Simulation Results

Five different filters are compared on Monte-Carlo simulations:

• an UKF that considers the attitude as an element SO(3) and the remaining vari-
ables as a vector space;

• the SE(3)-based UKF recently introduced in [80]. This filter is an UKF which en-
codes body attitude and position in SE(3) and uses parallel transport associated
to left-invariant vector fields of SE(3);

• the Right-Invariant visual EKF SLAM (RIEKF) of [10,59] (where the biases are
appended to the state and treated as in the conventional EKF);

• the proposed Right-UKF-LG described in Section 3;

• the proposed Left-UKF-LG, as an alternative to Right-UKF-LG based on the left
uncertainty representation (4.5).

4.1 4.1 Simulation Setting

We generate a noise-free trajectory displayed on Figure 5.1. This trajectory is realistic
since it is inspired by true quadrotor trajectories from [106]. Noises and slowly drifting
small biases are added, and a standard deviation of 2 pixels is set for the observation
noise. We define the number of landmarks in the state as p = 60 and at each observa-
tion, we observe a subset of 10 of these landmarks. 100 Monte Carlo simulations are
then run.
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Figure 5.1: Simulation trajectory used in Section 4, and trajectories estimated by the
various filters.

p (cm) R (�)

Conventional UKF 9.3 1.3

SE(3)-UKF of [80] 7.8 1.2

Left-UKF-LG 7.5 1.2

RIEKF 6.8 1.1

Right-UKF-LG 6.7 1.1

Figure 5.2: Root Mean Squared Error averaged on 100 Monte Carlo simulations, on
the body position and attitude, for the various filters, as described in Section 4. The
proposed Right-UKF-LG and RIEKF achieve the best results.
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Figure 5.3: Landmark tracking in the experiment. Green crosses are the current pixel
locations of the landmarks and red circles are the pixel locations of the landmarks five
images (i.e., 1 s) earlier. Picture comes from the EuRoC dataset [106].

4.2 4.2 Results

The Root Mean Squared Error (RMSE) for the entire trajectory, averaged over 100
Monte Carlo runs, is displayed in Figure 5.2. From these results, we observe that:

• three groups appear: the RIEKF and Right-UKF-LG achieve the best results. This
confirms that the right-invariant errors on SE2+p(3) are best suited to SLAM, as
explained in [10,58]. Then, the Left-UKF-LG and the SE(3)-based UKF of [80]
run second, and the conventional UKF runs last;

• The discrepancy between RIEKF and Right-UKF-LG is low at this noise level.
Both algorithms are based on the right-invariant error on the Lie group SE2+p(3),
but the first one uses the EKF methodology and the second one the UKF method-
ology.

5 5 Experimental Results

To further validate then the two proposed filters (Right and Left UKF-LG) on real data,
we evaluate them on the EuRoC dataset [106]. The five compared filters are the same
as in the previous section. We selected five sequences in [106] in which landmarks can
be well tracked in order to minimize the influence of the frontend image processor.

5.1 5.1 Experimental Setting

Owing to the number of landmarks that keeps growing, the state may grow unbound-
edly and the filters become intractable for real time implementation. We thus propose
to marginalize out landmarks that are not seen anymore, and add new landmarks to
the state as they arrive, along the lines of [80]. This way, we conserve a constant num-
ber of 30 observed landmarks in the state, and the experimental results to come can be
viewed as preliminary regarding our visual SLAM algorithm.

In our implementation, the filter tracks features via the KLT tracker using mini-
mum eigenvalue feature detection [116] for its efficiency, and points are undistorted
with the furnished camera parameters. The different filters are configured with the
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Figure 5.4: Root Mean Squared Error on position with respect to ground truth, on five
different experiments.

same parameters, where we set 2 pixels standard deviation for the landmark observa-
tions and IMU noise provided by [106]. The initial state corresponds to the ground
truth.

5.2 5.2 Results

The different filters are thus launched on the real data and we plot the position er-
rors with respect to ground truth for five experiments in Figure 5.4. On this set of
experiments, we see that as for the previous section, two groups appear: the RIEKF
and Right-UKF-LG achieve the best results. However, the differences between the ap-
proaches are smaller than in the simulation section. This is mainly due to the small
time presence of each landmark in the state, such that the different error represen-
tations have less influence on the results. This preliminary experiment confirms the
potential of Right-UKF-LG and RIEKF over conventional UKF and SE(3)-UKF.

5.3 5.3 Comparison of Execution Times

We compare in this section the execution time of the filters, both for the propagation
and update steps. Figure 5.5 summarizes the results (frontend execution time is ex-
cluded). From this table, we observe that

• UKFs approaches require much more computational power than RIEKF during
the propagation step. This is reinforced by the computation of logarithm at line
7 of Algorithm 2;

• the propagation necessitates much more calculus than the update for each UKF
solutions, since the IMU (propagation) frequency (200Hz) is ten times the camera
(update) frequency (20Hz);

• the differences between UKF-based approaches and RIEKF solutions for the up-
date step appear as negligible compared to the propagation step.

Note that, the various UKFs’ propagation step seems particularly long, owing in part
to the non-optimal use of Matlab. However, an alternative solution we advocate for
low powerful devices is merely to implement an hybrid R-UKF-LG that combines the
RIEKF propagation and the R-UKF-LG update, in which we preserve the versatility
(and fast prototyping benefits) of the Unscented approach with respect to the addition
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propagation (s) update (s)

Conventional UKF 28 2.5

SE(3)-UKF of [80] 33 4.2

Left-UKF-LG 35 3.4

RIEKF 2.1 2.2

Right-UKF-LG 36 3.4

Figure 5.5: Execution times of the different filters, both for the propagation and the
update step. The indicated times correspond to the time execution of all sequences
averaged for 10 s of flight.

of other sensors’ measurements (such as GPS) and/or variations in the measurement
camera model. We implemented this solution, and we obtained similar results as the
(full) R-UKF-LG on those datasets. Finally, in practice, we note that the front image
processing is anyway generally much higher than the execution time of the filter.

6 6 Conclusion

Two novel UKFs for data fusion of inertial sensors and monocular vision in the context
of visual SLAM have been proposed. They build upon the very recent theory of UKF
on Lie groups of [60], and have the merit of exploiting the full Lie group structure un-
derlying the SLAM problem introduced in [9,10]. Another advantage is that the UKF
approach spares the user the computation of Jacobians inherent to EKF implementa-
tion, and thus the proposed filters can be readily adapted to small modifications in the
model, estimation of additional parameters, and/or addition of one or several sensors.
Results from simulations and real experimental data have shown the relevance of the
approach based on invariance, and notably the Right-UKF-LG.

Appendix A

We give here the details of parameters and functions used for L-UKF-LG and R-UKF-
LG. We set the scale parameters � and � 0 with the scaled unscented transform [117],
such that they depend on the augmented covariance size J = 27+3p, J 0 = 15+3p and

� =
p

J/(1�W0),W0 = 1� J/3,Wj =
1�W0

2J
, (5.14)

� 0 =
q

J 0/(1�W 00),W 00 = 1� J 0/3,W 0j =
1�W 00
2J 0

. (5.15)

The function qr(·) operates as taking the QR decomposition of

QR 
p

W1

2

6

6

6

6

6

6

6

4

ξ+
1 · · · ξ+

J ξ�1 · · · ξ�J
b+
1 · · · b+

J b�1 · · · b�J
0 chol(Q) 0 �chol(Q)

3

7

7

7

7

7

7

7

5

, (5.16)

from which we can extract the Cholesky factor as

R =

"

S
0

#

. (5.17)
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The function qr0(·) operates as follow: first, compute the mean measurement and
weighted deviation

Ȳ =W 00Y0 +

J 0
X

j=1

W 0i
⇣

Y+
j +Y�j

⌘

, (5.18)

e0 =
q

|W 00|
⇣

Y0 � Ȳ
⌘

, (5.19)

e⌥j =
q

W 0j
⇣

Y⌥j � Ȳ
⌘

, j = 1, . . . , J 0 , (5.20)

and compute the Cholesky factors of the measurement covariance and the cross covari-
ance as

QR 
h

e+1 · · · e+J 0 e�1 · · · e�J 0 R0
i

, (5.21)

R =

"

S0

0

#

, (5.22)

S0 CholUpdate (S0 ,sign(W 00) ,e0) , (5.23)

P0 =
J 0

X

j=1

q

W 0j

0

B

B

B

B

B

@

"

ξ+
j

b+
j

#T

e+j +

"

ξ�j
b�j

#T

e�j

1

C

C

C

C

C

A

, (5.24)

R0 is a block diagonal matrix containing p times the matrix chol(N) along its diagonal,
and then compute gain, innovation and covariance as

K = P0
⇣

S
0TS0

⌘�1
(5.25)

= P0S0�1S0�T (5.26)
"

�ξ̄

�b̂

#

=K
⇣

Y� Ȳ
⌘

, (5.27)

S SeqCholUpdate
⇣

S,�1,KS
0T
⌘

, (5.28)

where SeqCholUpdate denotes repeated Cholesky updating CholUpdate using succes-
sive columns of KS

0T as the updating vector [114]. To finally consider the Jacobian (see
Section 3.6), we compute

S SJT , (5.29)

letting S no longer triangular, but S keeps a valid matrix square root which could be
used to define the next set of sigma points [115].

Remark 5. since we consider observation Y that lives in vector space, (5.27) is always valid
and we do not have to compute any logarithm operation.

Appendix B

As concerns the update step, when the innovation �ξ̄ is important, we propose to pos-
sibly use the more accurate approximation of [11,12]

exp
⇣

ξ+ + �ξ̄
⌘

= exp(Jξ+)exp
⇣

�ξ̄
⌘

+ o (ξ+) , (5.30)
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where J is the left Jacobian. In this case we compute the updated parameters as

χ̂+ = exp
⇣

�ξ̄
⌘

χ̂, (5.31)

P+ JP+JT , (5.32)

When �ξ̄ remains small, J ⇡ I such that we can discard J in (5.32) for computational
efficiency, recovering the update [60].
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CHAPTER6

Unscented Kalman Filter on Lie Groups for Visual Inertial
Odometry

Résumé

Dans ce chapitre, nous présentons un filtre innovant pour l’odométrie basée inertie et
vision stéréo en s’appuyant sur: i) le filtre de Kalman à contraintes multi-états stéréo
récemment introduit; ii) la théorie du filtrage invariant; et iii) le filtre de Kalman sans-
parfum sur les variétés parallélisables (plus précisément les groupes de Lie). Notre
solution allie précision, robustesse et polyvalence de l’UKF. Nous comparons ensuite
notre approche des solutions de pointe en termes de précision, de robustesse et de
complexité de calcul sur le jeu de données EuRoC et ainsi que sur un jeu de donnée
acquis en extérieur difficile.

Chapter abstract

In this chapter, we present an innovative filter for stereo visual inertial odometry build-
ing on: i) the recently introduced stereo multi-state constraint Kalman filter; ii) the
invariant filtering theory; and iii) the UKF on parallelizable manifolds (more precisely
Lie groups). Our solution combines accuracy, robustness and versatility of the UKF.We
then compare our approach to state-of-art solutions in terms of accuracy, robustness
and computational complexity on the EuRoC dataset and a challenging MAV outdoor
dataset.

1 1 Introduction

In this chapter, we tackle the problem of fusing IMU signals with stereo vision. To
this respect the problem is similar to the previous chapter. However, there are two
main differences. First, we use stereo vision. Indeed, adopting a stereo configuration
provides higher robustness compared to the popular monocular configuration (but it
comes at the cost of an additional sensor and the need for further calibration). Then,
we adopt the VIO framework, where landmarks are not kept in the state. This is de-
sirable indeed as keeping all the landmarks in the state makes the state variable grow
indefinitely and sooner or later leads to an intractable problem. Because of this, VIO
allows for efficient real-time implementation over arbitrary long time periods.
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More precisely, we propose a novel algorithm whose implementation mainly builds
on the very recent Stereo Multi-State Constraint Kalman Filter (S-MSCKF) [108]. In
this chapter:

1. We benefit from the UKF methodology as compared to the standard EKF. Since
the unscented transform spares the computation of Jacobians, the algorithm is
versatile and allows fast prototyping in the presence variations in the model (e.g.,
the camera model).

2. We build upon the theory of the UKF on Lie Groups [60], and leverage the Lie
group structure of the SLAM problem introduced in [10].

We demonstrate that the proposed stereo VIO filter is able to achieve similar or even
higher accuracy than state-of-art solutions on two distinct datasets with high efficiency.

1.1 1.1 Contributions

Among popular visual inertial navigation solutions, theMSCKF developed byMourikis
and Roumeliotis [109] and its state-of-the-art variants, notably [46], offer an efficient
compromise between accuracy and computational complexity, which was applied e.g.
to the application of spacecraft descent and landing [118] and fast UAV autonomous
flight [108].

In this chapter, we propose an UKF-based stereo VIO solution that leverages the
MSCKF methodology and the Lie group structure of the state space SE(3)2+p. Our
main contributions are:

• an embedding of the state and the uncertainties into a matrix Lie group which
additionally considers the unknown IMU to camera transformation;

• the derivation of a Kalman filter that combines an IEKF propagation for compu-
tational efficiency and an UKF-LG update, in which our choice is motivated by
the UKF superiority performance compared with the EKF for many non-linear
problems, and its ease of implementation for the practitioner, allowing him to
readily handle additional measurements (such as GPS measurements) or varia-
tions in the output model (the camera model) since the update is derivative free;

• since the computational demands of a standard UKF update is generally greater
than those of the EKF, we provide: i) a computationally efficient strategy for
computing our UKF-LG update in the formalism of an IEKF update, inspired
by [4,5]; and ii) a closed-form expression for alternatively performing the update
in a full IEKF manner;

• the publicly available C++/ROS source code used for this chapter, available at
https://github.com/mbrossar/msckf_vio.git. It uses building blocks from
the code of [108].

Finally, the accuracy and computational complexity of the proposed filter is validated
and compared with state-of-the-art VIO solutions on two challenging real-world MAV
datasets [106,108].

1.2 1.2 Chapter’s Organization

Section 2 formulates the filtering problem. Section 3 contains mathematical prelimi-
naries for unscented Kalman filtering on Lie groups. Section 4 describes the proposed
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Figure 6.1: The coordinate systems that are used in the chapter. The IMU pose (R,p)
maps vectors expressed in the IMU frame to the global frame (G). The transformations
TIC and TLR pass, respectively, from the IMU frame to the left camera (CL) frame, and
from the left camera frame to the right camera (CR) frame. The pose TC

i consists of the
position of CL in the global frame and the rotation mapping vectors expressed in the
CL frame to vectors expressed in the global frame. Unknown 3D features pj (expressed
in the global frame) are tracked across a stereo camera system.

filter for stereo VIO. Section 5 illustrates the performances of the proposed filter based
on two publicly available datasets.

2 2 ProblemModeling

We define in this section the kinematic model for flying devices equipped with an
IMU where N past cloned camera poses make up the state [109]. We then detail the
stereo visual measurement model, and we finally pose the filtering problem we seek to
address.

2.1 2.1 Variables of Interest and Dynamical Model

Let us consider an aerial body navigating on flat earth equipped with an IMU. The
dynamics of the system read

IMU-related state

8
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>

>

>

>

>

>

>
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>
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>

>

>

>

>

>

>

>

>

>

:

Ṙimu = Rimu (ω �bω +nω)⇥
v̇imu = Rimu (a�ba +na) + g

ṗimu = vimu

ḃω = nbω

ḃa = nba

(6.1)

camera-related state

8

>

>

<

>

>

:

ṪIC = 0

ṪC
i = 0, i = 1, . . . ,N

(6.2)

where the state we want to estimate consists of the current orientation Rimu 2 SO(3) of
the body frame (referred to as the IMU frame), that is, the rotation matrix that maps
the IMU frame to the global frame, velocity vimu 2 R

3, position p 2 R
3, IMU biases

bω 2 R3 and ba 2 R3, as well as the relative transformation between the IMU frame and
the left camera frame TIC 2 SE(3) and an arbitrary number of N recorded left camera
poses TC

i 2 SE(3), i = 1, . . . ,N , see Figure 6.1. Finally, (ω)⇥ denotes the skew symmetric
matrix associated with the cross product with vector ω 2 R

3, and the various white
Gaussian noises can be stacked as

w =
h

wωT waT wbωT wbaT
iT ⇠N (0,Q) . (6.3)
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These equations model the dynamics of small MAVs such as quadrotors where the IMU
measurementsω and a in (6.1) are considered as noisy and biased inputs of the system.

2.2 2.2 Measurement Model

In addition to the IMU measurements used as inputs for the dynamics, the vehicle ob-
serves and tracks static landmarks in the global frame from a calibrated stereo camera.
A landmark pj 2 R3 is observed through both the left and right cameras corresponding
to the recorded i-th pose as

y
j
i = h

⇣

TC
i ,p

j
⌘

+ny 2 R4, (6.4)

where the non-linear stereo measurement model h(·) is given as [108]
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in which pl = [xl yl zl ]T and pr = [xr yr zr ]T refer to the landmark coordinates expressed
in the left and in the right camera frames (i.e., [pT

l 1 ]T = T�1[pimuT 1 ]T and [pT
r 1 ]T =

⇣

TTLR
⌘�1

[pimuT 1 ]T ). Note that the stereo cameras have different poses at the same time

instance, represented as TC
i for the left camera and TC

i T
LR for the right camera, al-

though the state only contains the pose of the left camera, since using the assumed
known extrinsic parameters TLR 2 SE(3) leads to an expression for the pose of the right
camera, see Figure 6.1.

2.3 2.3 Estimation/Fusion Problem

We would like to compute the probability distribution of the system’s state (Rimu,pimu,
vimu,bω,ba,TIC ,TC

1 , . . . ,T
C
N ) defined through an initial Gaussian prior and the proba-

bilistic evolutionmodel (6.1)-(6.2), conditionally on themeasurements of the form (6.4).
This is the standard probabilistic formulation of the (Stereo-)MSCKF [109].

3 3 Unscented Based Inferred Jacobian for UKF-LG Update

In [4], the authors interpret the conventional UKF as a linear regression Kalman filter
and show how the propagation and update steps in UKF can be performed in a similar
fashion as an EKF, which can save execution time [5]. The method is here straightfor-
wardly adapted for the case of the Right-UKF-LG update. Within this interpretation,
the filter seeks to find the optimal linear approximation to the nonlinear function

y = h
⇣

expG(ξ)χ̂
⌘

= g(ξ) (6.6)

'Hξ + ŷ (6.7)

given a weighted discrete representation (the so-called sigma-points) of the distribu-
tion ξ ⇠N (0,P). The objective is thus to find the regression matrixH and vector ŷ that
minimize the linearization error e = y� (Hξ + ŷ). The optimal linear regression matrix
is given as [4]

H = PyξP
�1, (6.8)
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where Pyξ is the cross-correlation between y and ξ, and ŷ is the estimated mean of y,
both computed from the unscented transform of the UKF-LG. The numerically inferred
Jacobian H serves as a linear approximation to y� ŷ = g(ξ)� ŷ and can then be used for
the Right-EKF-LG update.

4 4 Proposed Filters

In this section, we propose the Stereo-UKF-LG (S-UKF-LG), a VIO filtering solution
which embeds the state in a specially defined and high dimensional Lie group. Our
solution operates in two steps, as for any Kalman filter-based algorithm:

• a propagation step that propagates both the mean state and the error covariance,
where the matrix covariance is computed with IEKF linearization [42] for com-
putational efficiency.

• an update step that considers the visual information obtained from the feature
tracking, in which we used as a basis the UKF-LG [60]. We additionally provide
Jacobian expressions to alternatively perform IEKF update.

4.1 4.1 State and Error Embedding on Lie Groups

Based on Chapter 4, we embed the state into a high dimensional Lie group, by letting
χ 2 G be the matrix that represents:

• the IMU variables Rimu, vimu and pimu through χI 2 SE2(3), a group obtained by
letting p = 0 in (2.35);

• the IMU bias χb = [bωT baT ] 2 R6;

• the IMU to left camera transformation TIC 2 SE(3);

• the N left camera poses TC
i 2 SE(3), i = 1, . . . ,N .

The dispersion on the state

χI ,χb,TIC ,TC
1 , . . . ,T

C
N , χ ⇠NR (χ̂,ξ) , (6.9)

where , stands for “identifiable to" and (̄·) for estimated mean value, is partitioned
into

ξ =
h

ξT
R ξT

v ξT
p ξT

ω ξT
a ξT

IC ξT
C1
· · · ξT

CN

iT
(6.10)

and encoded using the right uncertainty (4.20), i.e., the uncertainty representation
is defined as

exp(ξ) χ̂,
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(6.11)

and we define for convenience the IMU error as ξI = [ξT
R ξT

v ξT
p ξT

ω ξT
a ]

T . Any unknown
feature pj , albeit not explicitly considered in the state, appear in the measurement
(6.4) and consequently we have to define an error on this feature. In the following we

propose to identify each
⇣

TC
1 ,p

j
⌘

as a element of the Lie group SE2(3) [10]. Note that,
error ξpj on landmark j then differs from the standard Euclidean error.
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Remark 6. Using another camera pose than TC
1 does not influence the performances of the

filter in our experiments.

4.2 4.2 Propagation Step

Let us now present the proposed filter’s mechanics. To deal with discrete time mea-
surement from the IMU, we essentially proceed along the lines of [109]. We apply a
4-th order Runge-Kutta numerical integration of the model dynamic (6.1) to propagate
the estimated state χ̂. To propagate the uncertainty of the state, let us consider the
dynamic of the IMU linearized error as

ξ̇I = FξI +Gn, (6.12)

where
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and first compute the discrete time state transition matrix

Φn =Φ (tn+1, tn) = expm

 Z tn+1

tn

F(⌧)d⌧

!

(6.15)

and discrete time noise covariance matrix

Qn =

Z tn+1

tn

Φ (tn+1,⌧)GQGT
Φ (tn+1,⌧)

T d⌧. (6.16)

The covariance matrix from tn to tn+1 is propagated as the combination of partitioned
covariance matrix as follows. The propagated covariance of the IMU state becomes

PII
n+1 =ΦnP

II
n Φn +Qn, (6.17)

and the full uncertainty propagation can be computed as

Pn+1 =

"

PII
n+1 ΦnP

IC
n

PCI
n Φ

T
n PCC

n

#

. (6.18)

When new images are received, the state should be augmented with the new camera
state. The new augmented covariance matrix becomes

Pn+1 =

"

I
J

#

Pn+1

"

I
J

#T

. (6.19)
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To obtain the expression of J in (6.19), let us denote T 2 SE(3) as the sub-matrix of χI

that contain only the IMUpose (R,p) with ξT = [ξT
R ξT

p ]
T its corresponding uncertainties

and thus write the current camera pose as

TC = TTIC

= expSE(3) (ξT) T̄expSE(3) (ξIC ) T̄
IC

= expSE(3) (ξT)expSE(3) (AdT̄ξIC ) T̄T̄
IC

' expSE(3) (ξC ) T̄
C , (6.20)

in which T̄C = T̄T̄IC and ξC ' ξT+AdT̄ξIC after using a first order BCH approximation,
and where AdT̄ is the adjoint notation of SE(3), which finally leads to

J =

"

I 0 0 03⇥6 Rimu 0 0 03⇥6N
0 0 I 03⇥6 p⇥R

imu 0 Rimu 03⇥6N

#

. (6.21)

4.3 4.3 Update Step in the MSCKF Methodology

Let us first consider the observation of a single feature pj , in which the estimated un-
biased feature position LSpj is computed using least squares estimate based on the
current estimated camera poses [109]. Linearizing the measurement model at the ob-
tained estimates χ̂, LSpj , the residual of the measurement is approximated as

r
j
i = y

j
i �

UKFy
j
i =

UKFH
j
iξ +Hi

pjξpj +n
j
i , (6.22)

where UKFH
j
i ,H

i
pj and

UKFy
j
i are computed in Section 4.4 and are not the usual Jacobians

appearing in [109] (beyond the fact they are computed using the unscented transform)
since we use here alternative state errors ξ, ξpj related to the Lie group structure we
have endowed the state space with. By stacking multiple observations of the same
feature pj , we then dispose of

rj = yj � UKFyj = UKFHjξ +Hpjξpj +nj . (6.23)

Then, along the lines of [109], to eliminate the landmark errors from the residual,
measurements are projected onto the null space V of Hi

pj , i.e.,

r
j
o =VT rj =VT UKFHjξ +VTnj =H

j
oξ +n

j
o. (6.24)

Based on (6.24) and after stacking residual and Jacobians for multiple landmarks in,
respectively, ro and Ho, the update step is carried out by first computing S = Rimu +
HoPnH

T
o and the gain matrix K = PnH

T
o /S. We then compute the innovation to update

the mean state as [42,60]

χ̂+ = exp(Kro) χ̂, (6.25)

which is an update that is consistent with our uncertainties (6.11) defined using the
right multiplication based representation (4.20). The associated covariance matrix
writes

P+
n = Pn (I�KHo) . (6.26)

The filter concludes the update step with a marginalization of the last camera pose.
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4.4 4.4 Proposed Lie Group Based Update

In this section, we describe the computation of UKFH
j
i ,H

i
pj and

UKFy
j
i in (6.22) following

Section 3.

Computation of Hi
pj : since the covariance of ξ

j
p is unknown, we can not apply UKF-

LG update and consequently we compute Hi
pj in closed-form, as H1

pj = 0, and for i > 1,
as
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where R̄L
i and R̄R

i are the orientations of the i-th left and right cameras, and where
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(6.28)

is the intermediate Jacobian after applying the chain rule in (6.4). We stress that even
if (6.27) is the same expression as the Jacobians appearing in [109], they are associated
to the alternative state errors ξpj .

Computation of UKFH
j
i and

UKFy
j
i : we apply the UKF-LG [60] to numerically infer the

Jacobian UKFH
j
i and estimated measurement UKFy

j
i (see Section 3). This computation al-

lows us to then project the residual in (6.24) and can be computed efficiently as follow.
First, the filter stacks multiple observations w.r.t. the same camera pose in a vector

yi that can be written in the form yi = gi
⇣

ξC1
,ξCi

⌘

, when noise and landmark errors

are marginalized, as follow. Since yi is the concatenation of (6.4) for multiple land-

marks, it is sufficient to write y
j
i as a function of ξC1

and ξCi
only. Let us first write our

alternative state error as

expSO(3)(ξRCi
) = RCi

R̄T
Ci
, (6.29)

ξpCi
= RCi

R̄T
Ci
pCi
� x̄Ci

, (6.30)

ξpj = RC1
R̄T
C1
pj � LSpj , (6.31)

and consider the measurement function of the stereo camera such that

y
j
i = l

⇣

RT
Ci

⇣

pj �pCi

⌘⌘

, (6.32)

where l(·) is the projection function. After inserting the uncertainties (6.29)-(6.31) in
(6.32), we obtain

y
j
i = l(R̄T

Ci
(expSO(3)(ξRCi

)expSO(3)(�ξRC1
)LSpj

�R̄T
Ci
(pCi

+ξpCi
)),

(6.33)

which depends on ξRC1
and ξCi

= [ξRCi ξpCi ] only, such that we can write yij and by

extension yi as function of ξRC1
and ξCi

only. Following then [5], we sample only
sigma-points from variables the observations depend on, i.e., from the rotational part
of ξC1

and ξCi
, such that the complexity remains dominated by (6.26) and comparable

to the S-MSCKF, which is illustrated in Section 5.
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Figure 6.2: Root Mean Square Error of the proposed S-UKF-LG and S-IEKF compared
to various methods on the EuRoC dataset [106]. Statistics are averaged over ten runs
on each sequence.

4.5 4.5 Alternative IEKF Update

Albeit the UKF-LG update is computed efficiently, an IEKF update remains slightly
more computationally efficient and can be adopted for computationally restricted plat-
forms. Thus, as an alternative, we provide the closed-form expression for an IEKF
update, yielding a stereo extension of [59], and where moreover the IMU to camera

transformation is also estimated. The mean y
j
i =

⇣

T̄C
i , p̄

j
⌘

is alternatively computed

with estimated state, Hi
pj in (6.27) and H

j
i as

H
j
i = J

j
i

h

0 H
j
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0 H
j
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0
i

, (6.34)

where J
j
i is computed in (6.28), for i > 1,
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and, for i = 1,
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The rest of the update follows Section 4.3.

4.6 4.6 Filter Update Mechanism and Image Processing Frontend

Our implementation builds upon [108], and preserves its original methodology both
for the filter update mechanism, marginalization of camera poses, outlier removal and
the image processing frontend.

5 5 Experimental Results

In this section, we compare the performances of the proposed S-UKF-LG and its full
IEKF variant, that we call S-IEKF, with state-of-the-art VIO algorithms including S-
MSCKF [108], OKVIS (stereo-optimization) [111] and VINS-MONO (monocular-optimization)
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Figure 6.3: Average CPU load of the proposed S-UKF-LG and S-IEKF compared to
various methods on the EuRoC dataset [106].

[112], i.e., with different combinations ofmonocular, stereo, filter-based and optimization-
based solutions. We first evaluate the algorithms on the EuRoC dataset [106], and then
on a runway environment [108] with high speed flights. In both of the experiments,
VINS-MONO considers only the images from the left camera and has its loop closure
functionality disabled. The three filters (S-MSCKF, S-UKF-LG and S-IEKF) use the
same frontend and the same parameters provided from the S-MSCKF github reposi-
tory, with N = 20 camera poses. Finally, we provide to each algorithms the off-line
estimating extrinsic parameters between the IMU and camera frames.

Summary of the results can be found in Figure 6.2 and Figure 6.4. They reveal
good performances of our proposed S-UKF-LG, which favorably compares to its con-
ventional Stereo-MSCKF counterpart in terms of RMSE both on position and orienta-
tion. Note that, optimization based OKVIS achieves best estimation accuracy, but at
the cost of extended CPU load.

5.1 5.1 EuRoC Dataset

The EuRoC [106] dataset includes synchronized 20Hz stereo images and 200Hz IMU
messages collected on a MAV. The dataset contains sequences of flights with different
level of flight dynamics. Figure 6.2 shows the Root Mean Square Error (RMSE) and Fig-
ure 6.3 the average CPU load of the different algorithms. As in [108], the filter-based
methods do not work properly on V2_03_difficult due to their same KLT optical flow
algorithm. In terms of accuracy, the filters compete with the stereo-optimization ap-
proach OKVIS, whereas the results of VINS-MONO are affected by its monocular cam-
era frontend. The S-UKF-LG and S-IEKF compare favorably to the recent S-MSCKF.
Since filters use the same frontend, differences come from the filters’ backends. In
terms of computational complexity, filter-based solutions reclaims clearly less compu-
tational resources than optimization-basedmethods, in which 80% of the computation
is caused by the frontend including feature detection, tracking and matching, on Pre-
cision Tower 7910 with CPU E5-2630 v4 2.20Hz. The filters themselves take about 10
% of one core when the camera rate is set at 20Hz.

5.2 5.2 Fast Flight Dataset

To further test the accuracy and the robustness of the proposed S-UKF-LG, the algo-
rithms are evaluated on four outdoor flight datasets with different top speeds of 5,
10, 15 5m/s, 10m/s, 15m/s, and 17.5m/s [108]. During each sequence, the quadro-
tor goes 300m straight and returns to the starting point. The configuration includes
two cameras running at 40Hz and one IMU running at 200Hz. Figure 6.4 compares
the accuracy of the different VIO solutions on the fast flight datasets. The accuracy
is evaluated by computing the RMSE of estimates w.r.t. GPS positions only in the xy
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Figure 6.4: Root Mean Square Error of the proposed S-UKF-LG and S-IEKF compared
to various methods on the dataset [108]. Statistics are averaged over ten runs on each
dataset.
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Figure 6.5: Average CPU load of the proposed S-UKF-LG and S-IEKF compared to
various methods on the dataset [108].

directions after making corrections on both time and yaw offsets. In this experiment,
OKVIS obtains the best results in terms of accuracy, while VINS-MONO generally ob-
tains an accurate estimation with higher variance than than the other methods which
increase its RMSE. The S-UKF-LG appears to be slightly more robust than S-MSCKF
and S-IEKF. From both experiments, it can be observed that the three filters achieve
the lowest CPU usage while maintaining comparable accuracy regarding optimization
solutions. However, compared to the experiments with the EuRoC dataset, the image
processing frontend spends more computational effort, since the image frequency and
resolution are higher, and the fast flight requires more detections of new features.

6 6 Conclusion

In this chapter, we introduced a novel filter-based stereo visual inertial state estima-
tion algorithm that is a stereo multi-state constraint Kalman filter variant. It has the
merit of using the UKF approach while achieving execution times that are akin to the
standard EKF-based solution, namely S-MSCKF. The UKF approach is generally more
robust to non-linearities, and allows fast prototyping since Jacobian explicit compu-
tation is not required (and thus readily adapts to model modifications, estimation of
additional parameters, and fusion with other sensors). We exploited an efficient in-
ference of the Jacobian that leads to similar computational complexity between our
S-UKF-LG solution and the S-MSCKF. We also provided the closed-forms for the mea-
surement Jacobian that lead to an alternative S-IEKF, that can be considered as a stereo
version of [59] extending it also with an on-line estimation of the extrinsic parame-
ters, resulting in a consistent filter with high level of accuracy and robustness. Accu-
racy, efficiency, and robustness of our filters are demonstrated using two challenging
datasets.
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Part II

Measurement Noise Estimation for
Kalman Filter Tuning
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CHAPTER7

Introduction to Part II

The Kalman filter and more generally virtually all state estimation algorithms (particle
filter, smoothers) must be tuned: given the state transition function f (·) that encodes
the dynamical model at play, and observation function h(·) (see Chapter 2), the extent
of uncertainty that corrupts both the dynamical model and the observations must be
assessed. In the Kalman filter-like approach, uncertainties are modelled as Gaussian
(centered) noises with covariance matrices Q and N that encode the magnitude of the
noises (and their inner correlations). Those matrices appear as tuning parameters of
the filter: their value is based on the knowledge one has of the statistics of the noise
when available. Wether noise statistics be available or not, their fine tuning often re-
quires a deal of manual “tweaking” from the engineers.

The noise terms encoded inmatricesQ andN capture what the deterministic model
fails to [119], i.e. unmodeled perturbations on the system, which is usually the result
of various effects:

• mis-modeled dynamics, e.g. an unfixed level arm between IMU and camera;

• the existence of unmodelled hidden state in the environment, e.g. temperature
and its effect on inertial sensors;

• the integration scheme, as time discretization, which introduces additional error;

• and the algorithmic approximations itself, such as the Taylor approximation com-
monly used for linearization in EKF.

All these effects are commonly characterized as noise. Furthermore, the noise is as-
sumed to be Gaussian and independent over time whereas the phenomena described
above cause highly correlated noises. The magnitude of the noise in an EKF is there-
fore extremely difficult to estimate. This difficulty was yet early noticed in the seminal
paper [120], where Kalman himself commented on the difficulty of identifying such
parameters:

“In real life, however, the situation is usually reversed. One is given the covariance
matrix and the problem is to get the statistical properties [of the perturbation]. This is a
subtle and presently largely unsolved problem in experimentation and data reduction."

As a result, many have proposed methods for tuning the parameters in Kalman
filters. One of the first methods proposed was to jointly learn the parameters and
state/output sequence using expectation-maximization [121]. More recent approaches
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employ different optimization approaches, including the simplex algorithm [122], co-
ordinate descent [119], genetic algorithms [123], Bayesian optimization [124], and least
squares [125].

1 1 Illustrative Example

To illustrate the importance and difficulties of optimizing the Kalman filter parame-
ters (either by machine learning or manual tuning), consider the practical problem of
estimating the variance parameter for a GNSS unit that is being used to estimate the
position xn of a robot or more generally a vehicle. A standard Kalman filter approach
models the GPS readings measured as the true position plus noise as

yn = xn +nn (7.1)

where nn is a zero mean noise term with variance σ2I. The manufacturer specifications
of the sensor generally give σ2 for the unit; otherwise, one can also straightforwardly
estimate σ2 by placing the vehicle at a fixed position and measuring the variability of
the GNSS readings. However, in practice either of these choices work very poorly if
it is the parameter used in the Kalman filter. This is because GNSS errors are often
correlated over time, whereas the straightforward implementation of the Kalman fil-
ter assumes that the errors are independent. Thus, if the vehicle is stationary and we
average k GNSS readings, the filter assumes that the variance of the resulting estimate
is σ2/kI (obviously this estimate may drop below the actual limit on the sensor’s pre-
cision). However, if the errors are correlated over time, then the true variance of the
resulting position state estimate can be significantly larger. The extreme of this case
would be full correlation: if the errors were perfectly correlated so that all k readings
are identical, then the variance of the average would be σ2I instead of σ2/kI. Addition-
ally, if σ2I is the parameter used in the filter, it tends to make the filter inconsistent.
Consequently, in practice, significant human time was expended to try to “tweak" the
variance parameter to what they guessed [126].

2 2 Content of Part II

In this part we focus on the problem of assessing noise parameters of the state estimator
in the context of navigation. This route is explored in two quite different directions.

In Chapter 9, we focus on a very specific problem. Some recent sensors may gen-
erate scans of the environment in the form of clouds of points, and by matching scans
one may find the rigid body transformation (translation+rotation) that aligns them
best. This may be used to evaluate relative displacements of any vehicle equipped
with such sensors between different instants (as long as there is sufficient overlap be-
tween the scans). In turn, this information may be used to navigate, either as a means
for pure odometry, or to fuse it with other sensors such as inertial sensors. The scan
matching algorithm that is used the most is called Iterative Closest Point (ICP). Even if
one knows well the precision of the scanner, that is, the uncertainty associated with the
depth of each point in the cloud, it is not obvious to deduce the associated uncertainty
on the relative displacement. But the knowledge of this extent of uncertainty the ICP
estimate bears is paramount to use ICP/scan matching for navigation. Although there
has been a number of papers devoted to the subject, we believe our approach clarifies
a number of important points, and yields a novel efficient algorithm for assessment of
the covariance of the ICP estimate.
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In chapter 8, we pursue a different approach to a different problem. Indeed, we
consider a wheeled vehicle that navigates with an IMU. Wheeled vehicles have a spe-
cific way of moving as they are linked to a surface, and their velocity is approximately
aligned with the body frame. This side information about the motion may be used by
the Inertial Navigation System (INS) to improve the accuracy of localization. To do so,
one may use the standard IMU equations as a dynamical model (exactly as what would
be done in an aerial or underwater vehicle), and incorporate the side information in
the form of pseudo-measurements, that is, “tell” the Kalman filter it measures a null
lateral velocity for instance. However, the lateral velocity is not null, as the vehicle
slips. It is thus important to “let the filter know” this information is approximate. The
measurement noise matrix N encodes the magnitude of the uncertainty, that is, essen-
tially the “extent of slip” in the present case. Thus it should be larger when maneuvers
are performed, and smaller when the vehicle is moving at constant speed in straight
line. The interesting point is that the IMU does measure information related to the
vehicle’s motion, and notably the gyroscopes detect turns. Our idea is thus to use the
IMU measurements to assess in real time an appropriate value for N. However, the
precise relation between the most appropriate N and the inertial sensors, is far from
obvious, either it be theoretically or experimentally. Hence we propose to rely on ma-
chine (deep) learning to automatically identify a function that relates both in a relevant
way.
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CHAPTER8

AI-IMU Dead-Reckoning

The present chapter has been published in IEEE Transactions on Intelligent Vehicles.

Résumé

Dans ce chapitre, nous proposons une nouvelle méthode précise pour la navigation
des véhicules roulant basée uniquement sur une centrake inertielle. Dans le contexte
des véhicules autonomes et intelligents, un calcul à la fois robuste et précis basé sur
la centrale inertielle peut s’avérer utile pour corréler les flux provenant des capteurs
d’imagerie, pour naviguer en toute sécurité à travers lesdifférents obstacles ou pour
des arrêts d’urgence sûrs dans le cas extrême de défaillance des capteurs extérocep-
tifs. Les composants clés de la méthode sont le filtre de Kalman et l’utilisation de
réseaux de neurones profonds pour adapter dynamiquement les paramètres de bruit
du filtre. La méthode est testée sur le jeu de données KITTI, et notre méthode iner-
tielle d’estimation basée uniquement sur l’IMU estime avec précision la position 3D, la
vitesse, l’orientation du véhicule et calibre automatiquement les biais de la centrale in-
ertielle. Nous obtenons en moyenne une erreur de translation de 1,10 % et l’algorithme
rivalise avec les méthodes les mieux classées qui, en revanche, utilisent un LiDAR ou
de la vision stéréo. Nous mettons notre implémentation open source à l’adresse:

https://github.com/mbrossar/ai-imu-dr

Chapter abstract

In this chapter we propose a novel accurate method for dead-reckoning of wheeled ve-
hicles based only on an IMU. In the context of intelligent vehicles, robust and accurate
dead-reckoning based on the IMU may prove useful to correlate feeds from imaging
sensors, to safely navigate through obstructions, or for safe emergency stops in the ex-
treme case of exteroceptive sensors failure. The key components of the method are
the Kalman filter and the use of deep neural networks to dynamically adapt the noise
parameters of the filter. The method is tested on the KITTI odometry dataset, and our
dead-reckoning inertial method based only on the IMU accurately estimates 3D posi-
tion, velocity, orientation of the vehicle and self-calibrates the IMU biases. We achieve
on average a 1.10% translational error and the algorithm competes with top-ranked
methods which, by contrast, use LiDAR or stereo vision. We make our implementation
open-source at:

https://github.com/mbrossar/ai-imu-dr
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Figure 8.1: Trajectory results on seq. 08 (drive #28, 2011/09/30) [101] of the KITTI
dataset. The proposed method (green) accurately follows the benchmark trajectory for
the entire sequence (4.2 km, 9min), whereas the pure integration of (calibrated) IMU
signals (cyan) quickly diverges. Both methods use only IMU signals and are initialized
with the benchmark pose and velocity. We see during the GPS outage which occurs in
this sequence that our solution keeps estimating accurately the trajectory.

1 1 Introduction

Intelligent vehicles need to know where they are located in the environment, and how
they are moving through it. An accurate estimate of vehicle dynamics allows vali-
dating information from imaging sensors such as lasers, ultrasonic systems and video
cameras, correlating the feeds, and also ensuring safe motion throughout whatever
may be seen along the road [127]. Moreover, in the extreme case where an emergency
stop must be performed owing to severe occlusions, lack of texture, or more gener-
ally imaging system failure, the vehicle must be able to assess accurately its dynamical
motion. For all those reasons, the IMU appears as a key component of intelligent ve-
hicles [128]. Note that Global Navigation Satellite System (GNSS) allows for global
position estimation but it suffers from phase tracking loss in densely built-up areas or
through tunnels, is sensitive to jamming, and may not be used to provide continuous
accurate and robust localization information, as exemplified by a GPS outage in the
well known KITTI dataset [101], see Figure 8.1.

Kalman filters are routinely used to integrate the outputs of IMUs. When the
IMU is mounted on a car, it is common practice to make the Kalman filter incor-
porate side information about the specificity of wheeled vehicle dynamics, such as
approximately null lateral and upward velocity assumption in the form of pseudo-
measurements [129–134]. However, the degree of confidence the filter should have in
this side information is encoded in a covariance noise parameter which is difficult to
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set manually, and moreover which should dynamically adapt to the motion, e.g., lat-
eral slip is larger in bends than in straight lines. Using the recent tools from the field
of Artificial Intelligence (AI), namely deep neural networks, we propose a method to
automatically learn those parameters and their dynamic adaptation for IMU only dead-
reckoning. Our contributions, and the chapter’s organization, are as follows:

• we introduce a state-space model for wheeled vehicles as well as simple assump-
tions about the motion of the car;

• we implement a state-of-the-art Kalman filter [42,43] that exploits the kinematic
assumptions and combines themwith the IMU outputs in a statistical way in Sec-
tion 4.3. It yields accurate estimates of position, orientation and velocity of the
car, as well as IMU biases, along with associated uncertainty (covariance matri-
ces);

• we exploit deep learning for dynamic adaptation of covariance noise parameters
of the Kalman filter in Section 5.1. This module greatly improves filter’s robust-
ness and accuracy, see Section 6.4;

• we demonstrate the performances of the approach on the KITTI dataset [101] in
Section 6. Our approach solely based on the IMU produces accurate estimates
and competes with top-ranked LiDAR and stereo camera methods [135,136]; and
we do not know of IMU based dead-reckoning methods capable to compete with
such results;

• the approach is not restricted to inertial only dead-reckoning of wheeled vehicles.
Thanks to the versatility of the Kalman filter, it can easily be coupled with GNSS
which is the backbone for IMU self-calibration, applied for railway vehicles [137],
or for using IMU as a speedometer in path-reconstruction and map-matching
methods [138–141].

2 2 Relation to Previous Literature

Autonomous vehiclemust robustly self-localize with their embarked sensor suite which
generally consists of odometers, IMUs, radars or LiDARs, and cameras [127,128,141].
SLAM based on inertial sensors, cameras, and/or LiDARs have enabled robust real-
time localization systems, see e.g., [135,136]. Although these highly accurate solutions
based on those sensors have recently emerged, they may drift when the imaging system
encounters troubles.

As concerns wheeled vehicles, taking into account vehicle constraints and odome-
ter measurements are known to increase the robustness of localization systems [130,
131,142,143]. Although quite successful, such systems continuously process a large
amount of data which is computationally demanding and energy consuming. More-
over, an autonomous vehicle should run in parallel its own robust IMU-based localiza-
tion algorithm to perform maneuvers such as emergency stops in case of other sensors
failures, or as an aid for correlation and interpretation of image feeds [128].

High precision aerial or military inertial navigation systems achieve very small
localization errors but are too costly for consumer vehicles. By contrast, low and
medium-cost IMUs suffer from errors such as scale factor, axis misalignment and ran-
dom walk noise, resulting in rapid localization drift [144]. This makes the IMU-based
positioning unsuitable, even during short periods.
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Inertial navigation systems have long leveraged virtual and pseudo-measurements
from IMU signals, e.g. the widespread Zero velocity UPdaTe (ZUPT) [132,145,146],
and covariance adaptation [147]. In parallel, deep learning (more generally machine
learning) are gaining much interest for inertial navigation [148,149]. In [148] velocity
is estimated using support vector regression whereas [149] use recurrent neural net-
works for end-to-end inertial navigation (this means the entire traditional pipeline is
replaced with a single learning algorithm that learns the whole input to output process
from examples). This is promising but restricted to pedestrian dead-reckoning since
they generally assume slow horizontal planar motion, and must infer velocity directly
from a small sequence of IMU measurements, whereas we can afford using larger se-
quences.

General “deep" Kalman filter theories [150–153] consist in learning a full state-
space model from inputs, measurements, and ground-truth: learning the state space
structure, learning the propagation function, and learning the observation function,
from scratch. Our method is quite different as it builds upon well established dynam-
ical and measurements equations, and achieves better performances. In particular,
the end-to-end learning approach [153], albeit promising, obtain large translational
error > 30% in their stereo odometry experiment. [154] combines IMU and GNSS for
learning a specific propagation model of IMU errors. In contrast, our method, once
parameters are optimized (learned), does not require any GNSS signal. Finally, [155]
uses deep learning for estimating covariance of a local odometry algorithm that is fed
into a global optimization procedure, and in [156] we used Gaussian processes to learn
a wheel encoders error.

Dynamic adaptation of noise parameters in the Kalman filter is standard in the
tracking literature [126] and generally based on Auto covariance Least Squares (ALS)
[157] and adaptive Kalman filter methods [147,158,159], where adaptation rules are
application dependent and are generally the result of manual “tweaking" by engineers.
Our approach is wholly different. In the above covariance adaptation is based on sta-
tistical tests about measurement error residuals (simply put, a large discrepancy be-
tween estimates and actual measurements indicates the parameters are not optimal
and prompts the filter to adapt the covariance), whereas in our framework it is solely
based on raw IMU data: it is independent of the current state estimates and the ob-
served measurement errors (see Figure 8.8).

Finally, in [119] the authors propose to use classical machine learning techniques
to learn static noise parameters (without adaptation) of the Kalman filter, and apply it
to the problem of IMU-GNSS fusion.

3 3 IMU and ProblemModelling

An inertial navigation system uses accelerometers and gyrometers provided by the
IMU to track the orientation Rimu

n , velocity vimun 2 R3 and position pimu

n 2 R3 of a mov-
ing platform relative to a starting configuration (Rimu

0 ,vimu0 ,pimu

0 ). The orientation is
encoded in a rotation matrix Rimu

n 2 SO(3) whose columns are the axes of a frame at-
tached to the vehicle.
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Figure 8.2: The coordinate systems that are used in the chapter. The IMU pose
(Rimu

n ,pimu

n ) maps vectors expressed in the IMU frame i (red) to the world frame w

(black). The IMU frame is attached to the vehicle and misaligned with the car frame c
(blue). The pose between the car and inertial frames (Rc

n,p
c
n) is unknown. IMU velocity

vimun and car velocity vcn are respectively expressed in the world frame and in the car
frame.

3.1 3.1 IMUModelling

The IMU provides noisy and biased measurements of the instantaneous angular veloc-
ity vector ωn and specific forces an as follows [144]

ωimu

n =ωn +bω
n +wω

n , (8.1)

aimun = an +ba
n +wa

n, (8.2)

where bω
n , b

a
n are quasi-constant biases and wω

n , w
a
n are zero-mean Gaussian noises.

The biases follow a random walk

bω
n+1 = bω

n +w
b!
n , (8.3)

ba
n+1 = ba

n +w
ba
n , (8.4)

where w
bω
n , w

ba
n are zero-mean Gaussian noises.

The kinematic model is governed by the following equations

Rimu

n+1 = Rimu

n exp(ωndt) , (8.5)

vimun+1 = vimun + (Rimu

n an + g)dt, (8.6)

pimu

n+1 = pimu

n + vimun dt, (8.7)

between two discrete time instants sampling at dt, where we let the IMU velocity be
vimun 2 R

3 and its position pimu

n 2 R
3 in the world frame. Rimu

n 2 SO(3) is the 3 ⇥ 3
rotation matrix that represents the IMU orientation, i.e. that maps the IMU frame to
the world frame, see Figure 8.2. Finally exp(·) denotes the SO(3) exponential map. The
true angular velocity ωn 2 R3 and the true specific acceleration an 2 R3 are the inputs
of the system (8.5)-(8.7). In our application scenarios, the effects of earth rotation and
Coriolis acceleration are ignored, Earth is considered flat, and the gravity vector g 2 R3

is a known constant.
All sources of error displayed in (8.1) and (8.2) are harmful since a simple imple-

mentation of (8.5)-(8.7) leads to a triple integration of raw data, which is much more
harmful than the unique integration of differential wheel speeds [141]. Indeed, a bias
of order ✏ on the accelerometer measurements has an impact of order ✏t2/2 on the
position after t seconds, potentially leading to a huge drift.
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3.2 3.2 ProblemModelling

We distinguish between three different frames, see Figure 8.2: i) the static world frame,
w; ii) the IMU frame, i, where (8.1)-(8.2) are measured; and iii) the car frame, c. The
car frame is an ideal frame attached to the car, that will be estimated online and plays
a key role in our approach. Its orientation w.r.t. i is denoted Rc

n 2 SO(3) and its origin
denoted pc

n 2 R3 is the car to IMU level arm. In the rest of the chapter, we tackle the
following problem:

IMU Dead-Reckoning Problem. Given an initial known configuration
⇣

Rimu

0 ,vimu0 ,pimu

0

⌘

,
perform in real-time IMU dead-reckoning, i.e. estimate the IMU and car variables

χn := (Rimu
n , vimun , pimu

n , bω
n , b

a
n, R

c

n, p
c

n) (8.8)

using only the inertial measurements ωimu
n and aimun .

4 4 Kalman Filtering with Pseudo-Measurements

The EKF presented in Chapter 3 starts from a dynamical discrete-time non-linear law
of the form

χn+1 = f (χn, un, wn) (8.9)

where χn denotes the state to be estimated, un is a general input, and wn is the process
noise which is assumed Gaussian with zero mean and covariance matrix Qn. Assume
side information is in the form of loose equality constraints h(χn) ⇡ 0 is available. It is
then customary to generate a fictitious observation from the constraint function:

yn = h(χn) +nn, (8.10)

and to feed the filter with the information that yn = 0 (pseudo-measurement) as first
advocated by [160], see also [133,142] for application to visual inertial localization and
general considerations. The noise is assumed to be a centered Gaussian nn ⇠N (0,Nn)
where the covariance matrix Nn is set by the user and reflects the degree of validity of
the information: the larger Nn the less confidence is put in the information.

Starting from an initial Gaussian belief about the state, χ0 ⇠ N (χ̂0,P0) where χ̂0

represents the initial estimate and the covariance matrix P0 the uncertainty associated
to it, the EKF alternates between two steps. At the propagation step, the estimate χ̂n

is propagated through model (8.9) with noise turned off, wn = 0, and the covariance
matrix is updated through

Pn+1 = FnPnF
T
n +GnQnG

T
n , (8.11)

where Fn, Gn are Jacobian matrices of f (·) at current estimate w.r.t. χn and un. At the
update step, pseudo-measurement is taken into account, and Kalman equations allow
updating the estimate χ̂n+1 and its covariance matrix Pn+1 accordingly.

To implement an EKF, the engineer needs to determine the functions f (·) and h(·),
and the associated noise matrices Qn and Nn. In this chapter, noise parameters Qn and
Nn will be wholly learned by a neural network.
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4.1 4.1 Defining the Dynamical Model f (·)

We now need to assess the evolution of state variables (8.8). The evolution ofRimu

n , pimu

n ,
vimun , bω

n and ba
n is already given by the standard equations (8.3)-(8.7), leading to the

input un =
h

ωT
n ,a

T
n

iT
. The additional variables Rc

n and pc
n represent the car frame with

respect to the IMU. This car frame is rigidly attached to the car and encodes an un-
known point where the pseudo-measurements of Section 4.2 are most advantageously
made. In [134] this point is located in the rear wheel, but in our approach we let the
algorithm find its location to enhance performances. As IMU is also rigidly attached
to the car, and Rc

n, p
c
n represent misalignment between IMU and car frame, they are

approximately constant:

Rc

n+1 = Rc

n exp(w
Rc

n ), (8.12)

pc

n+1 = pc

n +w
pc

n . (8.13)

where we let wRc

n , w
pc

n be centered Gaussian noises with small covariance matrices
�Rc

I, �pc

I that will be learned during training. Although those variables are bounded
in practice, we model them as random walks to ensure good tracking by the Kalman
filter, as is usually done in the navigation literature regarding IMU biases (see (8.3)-

(8.4), that are also bounded in practice). Noises wRc

n and w
pc

n encode possible small
variations through time of level arm due to the lack of rigidity stemming from dampers
and shock absorbers.

4.2 4.2 Defining the Pseudo-Measurements h(·)

Consider the different frames depicted on Figure 8.2. The velocity of the origin point
of the car frame, expressed in the car frame, writes

vcn =

2

6

6

6

6

6

6

6

4

vforn

vlatn

v
up
n

3

7

7

7

7

7

7

7

5

= (Rc

n)
T
⇣

(Rimu

n )Tvimun + (ωn)⇥p
c

n

⌘

, (8.14)

from basic screw theory. In the car frame, we consider that the car lateral and vertical
velocities are roughly null, that is, we generate two scalar pseudo observations of the
form (8.10)

yn =

"

ylatn

y
up
n

#

=

"

hlat(χn) + nlatn

hup(χn) + n
up
n

#

=

"

vlatn

v
up
n

#

+nn, (8.15)

where the noises nn =
h

nlatn ,n
up
n

iT
are assumed centered and Gaussian with covariance

matrix Nn 2 R2⇥2. The filter is then fed with the pseudo-measurement that ylatn = y
up
n =

0.
Assumptions that vlatn and v

up
n are roughly null are common for cars moving for-

ward on human made roads or wheeled robots moving indoor. Treating them as loose
constraints, i.e., allowing the uncertainty encoded in Nn to be non strictly null, leads
to much better estimates than treating them as hard constraints, that is, Nn = 0 [142].
These assumptions are statistically true but does not hold for a given instant.

It should be duly noted the vertical velocity v
up
n is expressed in the car frame, and

thus the assumption it is roughly null generally holds for a car moving on a road even if
the motion is 3D. It is quite different from assuming null vertical velocity in the world
frame, which then boils down to planar horizontal motion.
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Figure 8.3: Structure of the IEKF. The filter uses the noise parameter Nn+1 of pseudo-
measurements (8.15) to yield a real time estimate of the state χ̂n+1 along with covari-
ance Pn+1, identically to the conventional EKF.

Figure 8.4: Structure of the proposed system for inertial dead-reckoning. The mea-
surement noise adapter feeds the filter with noise parameter Nn computed from raw
IMU signals only.

Themain point of the present work is that the validity of the null lateral and vertical
velocity assumptions widely vary depending on what maneuver is being performed:
for instance, vlatn is much larger in turns than in straight lines. The role of the noise
parameter adapter of Section 5.1, based on AI techniques, will be to dynamically assess
the parameter Nn that reflects confidence in the assumptions, as a function of past and
present IMU measurements.

4.3 4.3 The Invariant Extended Kalman Filter

For inertial navigation, we advocate the use of the IEKF, see [42,43], that has recently
given raise to a commercial aeronautics product [43,85] and to various successes in the
field of visual inertial odometry [62,91,95].

We opt for an IEKF to perform the fusion between the IMU measurements (8.1)-
(8.2) and (8.15) treated as pseudo-measurements we advocate IEKF for inertial navi-
gation, see Chapter 2. Its architecture, which is identical to the conventional EKF’s, is
recapped in Figure 8.3. The interested reader is referred to the Appendix where the
exact equations of the filter are provided.

5 5 Proposed AI-IMU Dead-Reckoning

This section describes our system for recovering all the variables of interest from IMU
signals only. Figure 8.4 illustrates the approach which consists of two main blocks
summarized as follows:

• the filter integrates the inertial measurements (8.1)-(8.2) with dynamical model
f (·) given by (8.3)-(8.7) and (8.12)-(8.13), and exploits (8.15) as measurements
h(·) with covariance matrix Nn to refine its estimates;

• the noise parameter adapter determines in real-time the most suitable covariance
noise matrix Nn. This deep learning based adapter converts directly raw IMU
signals (8.1)-(8.2) into covariance matrices Nn without requiring knowledge of
any state estimate nor any other quantity.

The amplitude of process noise parameters Qn are considered fixed by the algorithm,
and are learned during training.
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Note that the adapter computes covariances meant to improve localization accu-
racy, and thus the computed values may broadly differ from the actual statistical co-
variance of yn (8.15), see Section 6.4 for more details. In this respect, our approach is
related to [153] but the considered problem is more challenging: our state-space is of
dimension 21 whereas [153] has a state-space of dimension only 3. Moreover, we com-
pare our results in the sequel to state-of-the-art methods based on stereo cameras and
LiDARs, and we show we may achieve similar results based on the moderately precise
IMU only.

5.1 5.1 AI-based Measurement Noise Parameter Adapter

The measurement noise parameter adapter computes at each instant n the covariance
Nn+1 used in the filter update, see Figure 8.3. The base core of the adapter is a Con-
volutional Neural Network (CNN) [161]. The networks takes as input a window of N
inertial measurements and computes

Nn+1 = CNN
⇣n

ωimu

i , aimui

on

i=n�N

⌘

. (8.16)

Our motivations for the above simple CNN-like architecture are threefold:

i) avoiding over-fitting by using a relatively small number of parameters in the net-
work and also by making its outputs independent of state estimates;

ii) obtaining an interpretable adapter from which one can infer general and safe
rules using reverse engineering, e.g. to which extent must one inflate the covari-
ance during turns, for e.g., generalization to all sorts of wheeled and commercial
vehicles, see Section 6.4;

iii) letting the network be trainable. Indeed, as reported in [153], training is quite
difficult and slow. Setting the adapter with a recurrent architecture [161] would
make the training even much harder.

The complete architecture of the adapter consists of CNN layers (we use 2 layers,

see Section 5.2) followed by a full layer outputting a vector zn =
h

zlatn , z
up
n

iT 2 R2. Based

on the latter, the covariance Nn+1 2 R2⇥2 is then computed as

Nn+1 = diag
✓

�2
lat10

� tanh(zlatn ), �2
up10

� tanh(z
up
n )

◆

, (8.17)

with � 2 R>0, and where �lat and �up correspond to our initial guess for the noise pa-

rameters. The network thus may inflate covariance up to a factor 10� and squeeze it up
to a factor 10�� with respect to its original values. Additionally, as long as the network
is disabled or barely reactive (e.g. when starting training), we get zn ⇡ 0 and recover

the initial covariance diag
⇣

�lat, �up
⌘2
. We manually remove the part of the sequences

where outlier are present. Handling outlier with robust uncertainty estimation [11] is
set for future work.

Regarding process noise parameterQn, we choose to fix it to a valueQ and leave its
dynamic adaptation for future work. However its entries are optimized during train-
ing, see Section 5.3.



100 AI-IMU Dead-Reckoning

5.2 5.2 Implementation Details

We provide in this section the setting and the implementation details of our method.
We implement the full approach in Python with the PyTorch1 library for the noise
parameter adapter part. We set as initial values before training

P0 = diag
⇣

�R
0 I2,0,�

v
0 I2,04,�

bω

0 I,�ba

0 I,�Rc

0 I,�
pc

0 I
⌘2
, (8.18)

Q = diag
⇣

�ωI, �aI, �bωI, �baI, �RcI, �pcI
⌘2
, (8.19)

Nn = diag
⇣

�lat, �up
⌘2
, (8.20)

where I = I3, �
R
0 = 10�3 rad, �v

0 = 0.3m/s, �bω

0 = 10�4 rad/s, �ba

0 = 3.10�2m/s2, �Rc

0 =

3.10�3 rad, �
pc

0 = 10�1m in the initial error covariance P0, �ω = 1.4.10�2 rad/s, �a =
3.10�2m/s2, �bω = 10�4 rad/s, �ba = 10�3m/s2, �Rc = 10�4 rad, �pc = 10�4m for the noise
propagation covariance matrix Q, �lat = 1m/s, and �up = 3m/s for the measurement
covariance matrix. The zero values in the diagonal of P0 in (8.18) corresponds to a
perfect prior of the initial yaw, position and zero vertical speed, as (IMU-based) dead
reckoning methods can only estimate a trajectory and a yaw relative to the starting
point.

The adapter is a 1D temporal convolutional neural network with 2 layers. The
first layer has kernel size 5, output dimension 32, and dilatation parameter 1. The
second has kernel size 5, output dimension 32 and dilatation parameter 3, thus it set
the window size equal to N = 15. The CNN is followed by a fully connected layer that
output the scalars zlat and zup. Each activation function between two layers is a ReLU
unit [161]. We define � = 3 in the right part of (8.17) which allows for each covariance
element to be 103 higher or smaller than its original values.

5.3 5.3 Training

We seek to optimize the relative translation error trel computed from the filter es-
timates χ̂n, which is the averaged increment error for all possible sub-sequences of
length 100m to 800m.

Toward this aim, we first define the learnable parameters. It consists of the 6210
parameters of the adapter, along with the parameter elements of P0 and Q in (8.18)-
(8.19), which add 12 parameters to learn. We then choose an Adam optimizer [162]
with learning rate 10�4 that updates the trainable parameters. Training consists of
repeating for a chosen number of epochs the following iterations:

i) sample a part of the dataset;

ii) get the filter estimates for then computing loss and gradient w.r.t. the learnable
parameters;

ii) update the learnable parameters with gradient and optimizer.

We train the networks for 400 epochs and then applying continual training strate-
gies [163]. This makes sense for online training in a context where the vehicle gathers
accurate ground-truth poses from e.g. its LiDAR system or precise GNSS. It requires
careful procedures for avoiding over-fitting, such that we use dropout and data aug-
mentation [161]. Dropout refers to ignoring units of the adapter during training, and
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test
seq.

dura IMLS ORB-SLAM2 IMU proposed
length -tion trel rrel trel rrel trel rrel trel rrel
(km) (s) (%) (deg/km) (%) (deg/km) (%) (deg/km) (%) (deg/km)

01 2.6 110 0.82 1.0 1.41 1.9 5.35 1.2 1.56 1.2
03 - 80 - - - - - - - -
04 0.4 27 0.33 1.2 0.47 2.2 0.97 1.0 1.22 0.4
06 1.2 110 0.33 0.8 0.73 2.2 5.78 1.9 1.57 1.9
07 0.7 110 0.33 1.5 0.91 4.9 12.6 3.0 1.32 3.0
08 3.2 407 0.80 1.8 1.03 3.0 549 5.6 1.08 3.2
09 1.7 159 0.55 1.2 0.81 2.3 23.4 3.5 0.82 2.2
10 0.9 120 0.53 1.7 0.66 3.1 4.58 2.5 1.05 2.5

average scores 0.64 1.2 0.99 2.6 171 3.1 0.97 2.3

Table 8.1: Results on [101]. IMU integration tends to drift or diverge, whereas the pro-
posed method may be used as an alternative to LiDAR based (IMLS [135]) and stereo
vision based (ORB-SLAM2 [136]) methods, using only IMU information. Indeed, on
average, our dead-reckoning solution performs better than ORB-SLAM2 and achieves
a translational error being close to that of the LiDAR based method IMLS, which is
ranked 3rd on the KITTI online benchmarking system. Data from seq. 03 was unavail-
able for testing algorithms, and sequences 00, 02 and 05 are discussed separately in
Section 6.3. It should be duly noted, though, that IMLS, ORB-SLAM2, and the pro-
posed AI-IMU algorithm all use different sensors. The interest of ranking algorithms
based on different information is debatable. Our goal here is rather to evidence that
using data from amoderately precise IMU only, one can achieve similar results as state-
of-the art systems based on imaging sensors, which is a rather surprising feature.

we set the probability p = 0.5 of any CNN element to be ignored (set to zero) during a
sequence iteration.

Regarding i), we sample a batch of nine 1min sequences, where each sequence
starts at a random arbitrary time. We add to data a small Gaussian noise with standard
deviation 10�4, a.k.a. data augmentation technique. We compute ii) with standard
backpropagation, and we finally clip the gradient norm to a maximal value of 1 to
avoid gradient explosion at step iii).

We stress the loss function consists of the relative translation error trel , i.e. we
optimize parameters for improving the filter accuracy, disregarding the values actually
taken by Nn, in the spirit of [153].

6 6 Experimental Results

We evaluate the proposed method on the KITTI dataset [101], which contains data
recorded from LiDAR, cameras and IMU, along with centimeter accurate ground-truth
pose from different environments (e.g., urban, highways, and streets). The dataset con-
tains 22 sequences for benchmarking odometry algorithms, 11 of them contain pub-
licly available ground-truth trajectory, raw and synchronized IMU data. We download
the raw data with IMU signals sampled at 100Hz (dt = 10�2 s) rather than the synchro-
nized data sampled at 10Hz, and discard seq. 03 since we did not find raw data for
this sequence. The RT30032 IMU has announced gyro and accelerometer bias stabil-

1https://pytorch.org/
2https://www.oxts.com/
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ity of respectively 36deg /h and 1mg. The KITTI dataset has an online benchmarking
system that ranks algorithms. However we could not submit our algorithm for online
ranking since sequences used for ranking do not contain IMU data, which is reserved
for training only. Our implementation is made open-source at:

https://github.com/mbrossar/ai-imu-dr.

6.1 6.1 Evaluation Metrics and Compared Methods

To assess performances we consider the two error metrics proposed in [101]:

Relative Translation Error (trel): which is the averaged relative translation increment
error for all possible sub-sequences of length 100m, . . . , 800m, in percent of the trav-
eled distance;

Relative Rotational Error (rrel): that is the relative rotational increment error for all
possible sub-sequences of length 100m, . . . , 800m, in degree per kilometer.

We compare four methods which alternatively use LiDAR, stereo vision, and IMU-
based estimations:

• IMLS [135]: a recent state-of-the-art LiDAR-based approach ranked 3rd in the
KITTI benchmark. The author provided us with the code after disabling the loop-
closure module;

• ORB-SLAM2 [136]: a popular and versatile library for monocular, stereo and
RGB-D cameras that computes a sparse reconstruction of the map. We got the
open-source code, disabled loop-closure and we then evaluate the stereo algo-
rithm without modifying any parameter;

• IMU: the direct integration of the IMU measurements based on (8.4)-(8.5), that
is, pure inertial navigation;

• proposed: the proposed approach, that uses only the IMU signals and involves
no other sensor.

6.2 6.2 Trajectory Results

We follow the same protocol for evaluating each sequence: i) we initialize the filter
with parameters described in Section 5.2; ii) we train then the noise parameter adapter
following Section 5.3 for 400 epochs without the evaluated sequence (e.g. for testing
seq. 10, we train on seq. 00-09) so that the noise parameter has never been confronted
with the evaluated sequence; iii) we run the IMU-based methods on the full raw se-
quence with ground-truth initial configuration (Rimu

0 ,vimu0 ,pimu

0 ), whereas we initialize
remaining variables at zero (bω

0 = ba
0 = pc

0 = 0, Rc

0 = I); and iv) we get the estimates
only on time corresponding to the odometry benchmark sequence. LiDAR and visual
methods are directly evaluated on the odometry sequences.

Results are averaged in Table 8.1 and illustrated in Figures 8.1, 8.5 and 8.6, where
we exclude sequences 00, 02 and 05 which contain problems with the data, and will be
discussed separately in Section 6.3. From these results, we see that:

• LiDAR and visual methods perform generally well in all sequences, and the Li-
DAR method achieves slightly better results than its visual counterpart;
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Figure 8.5: Results on seq. 07 (drive #27, 2011/09/30) [101]. The proposed method
competes with LiDAR and visual odometry methods, whereas the IMU integration
broadly drifts after the car’s stop.

• our method competes on average with the latter imaging based methods, see Ta-
ble 8.1;

• directly integrating the IMU signals leads to rapid drift of the estimates, espe-
cially for the longest sequences but even for short periods;

• Our method looks unaffected by stops of the car, as in seq. 07, see Figure 8.5.

The results are remarkable as we use none of the vision sensors, nor wheel odometry.
We only use the IMU, which moreover has moderate precision.

We also sought to compare our method to visual inertial odometry algorithms.
However, we could not find open-source code for such methods that perform well
on the full KITTI dataset. We tested [164] but the code in still under development
(results sometimes diverge), and the authors in [165] evaluate their not open-source
method for short sequences ( 30 s). The chapter [62,166] evaluate their visual inertial
odometry methods on seq. 08, both get a final error around 20m, which is four times
what our method achieves (final distance to ground-truth is as low as 5m). This clearly
evidences that methods taylored for ground vehicles [130,142] may achieve higher ac-
curacy and robustness than general methods designed for smartphones, drones and
aerial vehicles.

6.3 6.3 Results on Sequences 00, 02 and 05

Following the procedure described in Section 6.2, the proposed method seems to have
degraded performances on seq. 00, 02 and 05, see Figure 8.9. However, the behavior is
wholly explainable: data are missing for a couple of seconds due to logging problems
which appear both for IMU and ground-truth. This is illustrated in Figure 8.10 for seq.
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Figure 8.6: Results on seq. 09 (drive #33, 2011/09/30) [101]. The proposed method
competes with LiDAR and visual odometry methods, whereas the IMU integration
drifts quickly after the first turn.

02 where we plot available data over time. We observe a jump in the IMU and ground-
truth signals, evidencing that data are missing between t = 1 and t = 3. The problem
was corrected manually when using those sequences in the training phase described in
Section 5.3.

Although those sequences could have been discarded due to logging problems, we
used them for testing without correcting their problems. This naturally results in de-
graded performance, but also evidences ourmethod is remarkably robust to such errors
in spite of their inherent harmfulness. For instance, the 2 s time jump of seq. 02 results
in estimate shift, but no divergence occurs for all that, see Figure 8.9.

6.4 6.4 Further Results

The performances may be explained by: i) the use of a recent IEKF that has been proved
to be well suited for IMU based localization; ii) incorporation of side information in
the form of pseudo-measurements with dynamic noise parameter adaptation learned
by a neural network; and iii) accounting for a “loose" misalignment between the IMU
and the car.

As concerns i), it should be stressed the method is perfectly suited to the use of a
conventional EKF and is easily adapted if need be. However we advocate the use of an
IEKF owing to its accuracy and convergence properties [42].

To illustrate the benefits of points ii) and iii), we consider two sub-versions of the
proposed algorithm. One without alignment, i.e. where Rc

n and pc
n are not included

in the state and fixed at their initial values Rc
n = I, pc

n = 0, and a second one that
uses the static filter parameters (8.18)-(8.20). End trajectory results for the highway
seq. 01 are plotted in Figure 8.7, where we see that the two sub-version methods have
trouble when the car is turning. Therefore their respective translational errors trel are
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Figure 8.7: End trajectory results on the highway seq. 01 (drive #42, 2011/10/30) [101].
Dynamically adapting the measurement covariance and considering misalignment be-
tween car and inertial frames makes the translational error drop from 1.94% to 1.11%,
see Section 6.4.

higher than the full version of the proposed method: the proposed method achieves
1.11%, the method without alignment level arm achieves 1.65%, and the absence of
covariance adaptation yields 1.94% error. All methods have the same rotational error
rrel = 0.12deg /m. This could be anticipated for the considered sequence since the full
method has the same rotational error than standard IMU integration method.

6.5 6.5 Limitations and Discussion

Limitations regarding the approach revolve around the following points: 1) one may
not want to depend on AI; 2) generalization; and 3) computational complexity and
real-time embedded applications. Regarding the first point, it may be objected AI is
only as good as the data available and hence has weaknesses. Moreover, when vision
sensors fail, IMU is critical to provide a refuge trajectory but in case of emergency
one might want to depend on more classical and robust IMU algorithms, s AI is still
difficult to certify [167]. To this respect, note that our deep network only affects the
Kalman filter tuning parameters. If one wants to remove AI while achieving good
performances, it is possible to infer some adaptation rules from the obtained results.
To this end, we plot the covariances computed by the adapter for seq. 01 in Figure 8.8.
The adapter clearly increases the covariances during the bend, i.e. when the gyro yaw
rate is important. This is especially the case for the zero velocity measurement (8.15):
its associated covariance is inflated by a factor of 102 between t = 90s and t = 110s.
This illustrates the kind of information the adapter has learned and how this behavior
may be emulated in a more traditional pipeline.

6.6 6.6 Discussion

As our deep network only affects the Kalman filter tuning parameters, it is possible
to infer some adaptation rules from the obtained results. These rules may substitute
the deep network while achieving good performances, if one wants to remove AI for
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Figure 8.8: Covariance values computed by the adapter on the highway seq. 01 (drive
#42, 2011/10/30) [101]. We clearly observe a large increase in the covariance values
when the car is turning between t = 90s and t = 110s.

safety and commercial purposes (as AI is still difficult to certify [167]), or simply due to
hardware limitations. To this end, we plot the covariances computed by the adapter for
seq. 01 in Figure 8.8. The adapter clearly increases the covariances during the bend, i.e.
when the gyrometer’s yaw rate is larger. This is especially the case for the zero velocity
measurement (8.15): its associated covariance is inflated by a factor of 102 between
t = 90s and t = 110s. Indeed, such a large noise parameter inflation indicates the
AI-based part of the algorithm has learned and recognizes that pseudo-measurements
have no value for localization at those precise moments, so the filter should barely
consider them. This illustrates the kind of information the adapter has learned and
how this behavior may be emulated in a more traditional pipeline. An alternative
consists in using these pseudo-measurement with robust cost [11], e.g. Huber loss in
the filter update or in the loss for training neural networks. Learning to adapt with
robust (non Gaussian) uncertainty is a promishing perspectives of future works.

Figure 8.8 gives also a striking illustration of the role of observation noise auto-
correlation in Kalman filter tuning. We lack space to get into the theory of effective
sample size [168] but intuitively, with a minimal time ⌧ between 2 independent ob-
servations of 1 s, measurements at 100Hz do not bring much more information than
at 1Hz. As a consequence, if the frequency fs of the Kalman updates (100Hz here)
is high, i.e., fs⌧ � 1 , then the instant statistical uncertainty of the observation is not
the optimal value for the matrix Nn and a good rule of thumb is multiplying it by fs⌧.
These theoretical considerations become very concrete on Figure 8.8: we see the op-
timal value of the “covariance” of observation y

up
n to be given to the Kalman filter is

100m2/s2, which models for instance a noise of instant covariance 1m2/s2 with auto-
correlation time 1 s, which is coherent for vertical variations of velocity. However if
for some reason the practitioner wants to keep the noise covariance parameter Nn at
bounded values at all times, it is always possible to turn off pseudo-measurements or
enforce a predefined upper bound on Nn that feeds the Kalman filter when the AI-
based adapter goes above the predefined bound.

Interestingly, we see large statistical uncertainty (which should clearly be below
100m2/s2) and the inflated covariances whose values are computed for the sole pur-
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test
seq.

dura IMLS ORB-SLAM2 IMU proposed
length -tion trel rrel trel rrel trel rrel trel rrel
(km) (s) (%) (deg/km) (%) (deg/km) (%) (deg/km) (%) (deg/km)

00 3.7 454 0.50 1.8 0.84 2.9 426 46.8 6.81 24.8
02 5.1 466 0.53 1.4 0.79 2.7 346 8.7 3.37 3.8
05 2.2 278 0.32 1.4 0.55 2.2 189 5.2 3.05 8.7

Table 8.2: Results on [101] on seq. 00, 02 and 05. The degraded results of the proposed
method are wholly explained by a problem of missing data, see Section 6.3 and Figure
8.10.

pose of filter’s performance enhancement. Indeed, such a large noise parameter in-
flation indicates the AI-based part of the algorithm has learned and recognizes that
pseudo-measurements have no value for localization at those precise moments, so the
filter should barely consider them. Note that, if for some reason the practitioner wants
to keep the noise covariance parameter Nn at more realistic values at all times, for
instance in the context of fusion with other sensors, it is always possible to turn-
off pseudo-measurements or enforce a predefined upper bound on Nn that feeds the
Kalman filter when the AI-based adapter goes above the predefined bound.

Finally, in terms of execution time in view of real time applications, once the net-
work is trained, using the network is very cheap computationally speaking. Indeed the
network takes the raw IMU data and outputs a covariance for the Kalman filter. This
process takes 15% only of the overall algorithm time execution, while the Kalman filter
takes 85%. As Kalman filter routinely run on embedded code in inertial navigation in
aerospace engineering, and the method is marginally more computationally demand-
ing than a Kalman filter there shall be no problem. Note that, however, training the
network may take much time but of course this should be done once beforehand.

7 7 Conclusion

This chapter proposes a novel approach for inertial only dead-reckoning for wheeled
vehicles which builds upon deep neural networks to dynamically adapt the parameters
of a Kalman filter. We have shown the following facts. 1) It is possible to obtain surpris-
ingly accurate results using only a moderate cost IMU, thanks to the use of a Kalman
filter that combines standard IMU equations with side information about dynamics of
wheeled vehicles. The algorithm competes with vision based methods, although only
the IMU is used (and not a single other sensor, such as GNSS). 2) Deep neural networks
are a powerful tool for dynamic adaptation of Kalman filter tuning parameters (noise
covariance matrices). 3) Beyond deep neural nets, correctly assessing measurement co-
variance dynamically allows Kalman filters to achieve much better performance, and
this opens avenues for fusion with other sensors. The subject of generalization, and
notably how the network architecture may be reused in similar applications, is left for
future research, as tuning CNNs represents in itself a current research field. That said,
the code we made publicly available may be used as is, and adapted to other vehicles.
Moreover, as mentioned in Section 6.6, the chapter proves that dynamic covariance
adaptation plays a huge role for accurate localization, and simple practical engineered
adaptation rules might be pursued instead of AI-based ones. Futures works would
adress learning to adapt uncertainties in a robust (non-Gaussian) context and the ques-
tion of generalization, i.e. how a neural network trained on a platform may be used in
another platform.
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Figure 8.9: Results on seq. 02 (drive #34, 2011/09/30) [101]. The proposed method
competes with LiDAR and visual odometry methods until a problem in data occurs
(2 seconds are missing). It is remarkable that the proposed method be robust to such
trouble causing a shift estimates but no divergence.

3.36 3.37 3.38 3.39

·104

−2

0

2

4

n (timestamp)

t
(s
),
p
n
(0
.1

m
),
ω
n
(1
0
ra
d
/s
)

t pxn p
y
n ω

x
n ω

y
n ω

z
n

Figure 8.10: Data on seq. 02 (drive #34, 2011/09/30) [101], as function of timestamps
number n. A 2 s time jump happen around n = 33750, i.e. data have not been recorded
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Appendix A

The IEKF [42,43] is an EKF based on an alternative state error, see Chapter 2. One must
define a linearized error, an underlying group to derive the exponential map, and then
the methodology is akin to the EKF’s, see Chapter 2.

Linearized Error: the filter state χn is given by (8.8). The state evolution is given
by the dynamics (8.5)-(8.7) and (8.12)-(8.13), see Section 3. Along the lines of [42],
variables χimu

n := (Rimu

n ,vimun ,pimu

n ) are embedded in the Lie group SE2(3). Then biases
vector bn = [bωT

n ,baT
n ]T 2 R6 is merely treated as a vector, that is, as an element of R6

viewed as a Lie group endowed with standard addition, Rc
n is treated as element of Lie

group SO(3), and pc
n 2 R3 as a vector. Once the state is broken into several Lie groups,

the linearized error writes as the concatenation of corresponding linearized errors, that
is,

en =
h

ξimuT
n ebTn ξRcT

n e
pcT
n

iT ⇠N (0,Pn) , (8.21)

where state uncertainty en 2 R
21 is a zero-mean Gaussian variable with covariance

Pn 2 R
21⇥21. As (8.15) are measurements expressed in the robot’s frame, they lend

themselves to the Right IEKFmethodology. This means each linearized error is mapped
to the state using the corresponding Lie group exponential map, and multiplying it on
the right by elements of the state space. This yields:

χimu

n = expSE2(3)
(ξimu

n ) χ̂imu

n , (8.22)

bn = b̂n + ebn , (8.23)

Rc

n = expSO(3)

⇣

ξRc

n

⌘

R̂c

n, (8.24)

pc

n = p̂c

n + e
pc

n , (8.25)

where (̂·) denotes estimated state variables.

Propagation Step: we apply (8.5)-(8.7) and (8.12)-(8.13) to propagate the state and
obtain χ̂n+1 and associated covariance through the Riccati equation (8.11) where the
Jacobians Fn, Gn are related to the evolution of error (8.21) and write:

Fn = I21+
2
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(8.26)

Gn =
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with Rn = Rimu

n , 0 = 03⇥3, and Qn denotes the classical covariance matrix of the process
noise as in Section 5.2.
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Update Step: the measurement vector yn+1 is computed by stacking the motion infor-
mation

yn+1 =

"

vlatn+1

v
up
n+1

#

= 0, (8.28)

with assessed uncertainty a zero-meanGaussian variable with covarianceNn+1 = cov(yn+1).
We then compute an updated state χ̂+

n+1 and updated covariance P+
n+1 following the

IEKF methodology, i.e. we compute

S =
⇣

Hn+1Pn+1H
T
n+1 +Nn+1

⌘

, (8.29)

K = Pn+1H
T
n+1/S, (8.30)

e+ =K (yn+1 � ŷn+1) , (8.31)

χ̂imu+
n+1 = expSE2(3)

(ξimu+) χ̂imu

n+1, (8.32)

b+
n+1 = bn+1 + eb+ (8.33)

R̂c+
n+1 = expSO(3)

⇣

ξRc+
⌘

R̂c

n+1, (8.34)

p̂c+
n+1 = p̂c

n+1 + ep
c+, (8.35)

P+
n+1 = (I21 �KHn+1)Pn+1, (8.36)

summarized as Kalman gain (8.30), state innovation (8.31), state update (8.32)-(8.35)
and covariance update (8.36), where Hn+1 is the measurement Jacobian matrix with
respect to linearized error (8.21) and thus given as:

Hn =A
h

0 RimuT
n 0 �(pc

n)⇥ 0 B C
i

, (8.37)

where A = [I2 02]R
cT
n selects the two first row of the right part of (8.37),

B = RimuT
n (vimun + (ωimu

n �bω
n )p

c
n)⇥ and C = �(ωimu

n �bω
n )⇥.
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CHAPTER9

A New Approach to 3D ICP Covariance Estimation

The present chapter has been published in IEEE Robotics and Automation Letters.

Résumé

Dans ce chapitre, nous adressons le problème d’estimer la covariance de l’algorithme
ICP, covariance qui peut ensuite être donnée comme covariance de l’observation à un
filtre de Kalman où un algorithme d’optimisation pour la fusion de données En effet,
en robotique mobile, la recherche de correspondance entre des nuages de points en
utilisant l’algorithme itératif ICP permet d’estimer les déplacements succesifs du cap-
teur, et il peut s’avérer important d’évaluer l’incertitude associée à la transformation
obtenue, notamment à des fins de fusion de capteurs. Dans ce chapitre, nous proposons
une nouvelle approche de l’estimation de l’incertitude 3D de l’ICP qui tient compte
de toutes les sources d’erreur énumérées dans les travaux pionniers de Censi [169],
à savoir une convergence vers un minimum local, des situations sous faibles con-
traintes, et le bruit du capteur. Notre approche repose sur deux faits. Premièrement,
l’incertitude de l’ICP dépend entièrement de l’incertitude sur la transformation ini-
tiale. Ainsi parler de la covariance de l’ICP n’a de sens que par rapport à l’incertitude
d’initialisation, qui découle généralement des erreurs d’odométrie. Nous capturons
cela en utilisant la transformation sans-parfum, qui reflète également la corrélation
entre les incertitudes initiales et finales. Ensuite, le bruit supossé blanc du capteur
conduit à une incertitude car l’ICP est biaisé en raison par exemple du biais du cap-
teur que nous expliquons. Notre solution est testée sur des données réelles accessible
mellant des environnements structurés et non structurés, où notre algorithme prédit
des résultats cohérents avec une incertitude réelle et se compare favorablement aux
méthodes précédentes.

Chapter abstract

In the present chapter we address the problem of estimating the covariance of the
Iterative Closest Point (ICP) algorithm, which can be fed in a Kalman filter or an
optimization-based sensor-fusion algorithm as the measurement covariance. Indeed,
in mobile robotics, scan matching of point clouds using ICP allows estimating sen-
sor displacements, and it may prove important to assess the associated uncertainty
about the obtained rigid transformation, especially for sensor fusion purposes. In this
chapter we propose a novel approach to 3D uncertainty of ICP that accounts for all
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the sources of error as listed in Censi’s pioneering work [169], namely wrong conver-
gence, underconstrained situations, and sensor noise. Our approach builds on two
facts. First, the uncertainty about the ICP’s output fully depends on the initializa-
tion accuracy. Thus speaking of the covariance of ICP makes sense only in relation to
the initialization uncertainty, which generally stems from odometry errors. We capture
this using the unscented transform, which also reflects correlations between initial and
final uncertainties. Then, assuming white sensor noise leads to overoptimism as ICP
is biased owing to e.g. calibration biases, which we account for. Our solution is tested
on publicly available real data ranging from structured to unstructured environments,
where our algorithm predicts consistent results with actual uncertainty, and compares
favorably to previous methods.

1 1 Introduction

Point clouds and the Iterative Closest Point (ICP) algorithm play a crucial role for lo-
calization and mapping in modern mobile robotics [170,171]. ICP computes an esti-
mate of the 3D rigid transformation that aligns a reading point cloud to a reference
point cloud (or more generally a model or a surface). The algorithm starts with a first
transformation estimate, and repeats - until convergence - point association and least-
square minimization, where initialization is naturally provided in mobile robotics by
odometry [172,173] based on wheel speeds, inertial sensors, or vision. The point as-
sociation matches points between the two clouds by generally associating each point
of the second cloud to its closest point in the first one. Then, the algorithm minimizes
a user-chosen metric between the matched points that provides an update of the cur-
rent estimate. In spite of robust filtering that are broadly used during the alignment of
point clouds, a.k.a. registration, ICP is subject to errors stemming from sensor noises,
underconstrained environments that result in unobservable directions, and local min-
ima [169,174,175].

1.1 1.1 Sources of ICP Uncertainty

The pioneering work of Censi [169] identifies the following sources of error for ICP
registration: wrong convergence (not handled by Censi’s formula), underconstrained
situations, and sensor noise. As indicated by preliminary remarks in [178,179] we
believe a fourth important source is missing: the one that stems from sensor biases. In
the present chapter we consider indeed the following sources of error:

Initial Transformation: ICP is subject to error due to wrong initialization that makes
the algorithm converge to a local minimum out of the attraction basin of the true so-
lution, as largely observed in practice, see e.g. [175,180] and Figure 9.1. In practice it
often proves to be the dominant error, where very recent works adress this problem
for obtaining “certifiable” solvers, such as TEASER [181], which claims to be able to
either find the global optimum alignment between two pointclouds or report an error
if it fails to do so, even with a very high rate of outlier measurements.

Sensor White Noise: each point measured in a point cloud is affected by an indepen-
dent random sensor noise of centimetric magnitude which is a function of point depth
and beam angle [174,182].
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Figure 9.1: Horizontal translation estimates according to ICP (T̂icp, red dots) for vari-
ous initial estimates (Tini, black dots) and ground-truth (Ttrue, square) for registering
two scans of the sequence Stairs of [176], where we sample 1000 initial estimates from
two distributions reflecting accurate (a) and dispersed (b) ICP initialization and that
respectively correspond to the easy and medium scenarios of [177]. We see the un-
certainty on the ICP estimate, that is, dispersion of red points, wholly depends on the
accuracy of initialization. There is no “uncertainty of ICP” per se.

Sensor Bias Noise: the observed points share common errors that stem from: tem-
perature drift effect, i.e. stability of the laser [182]; observed material [174]; incidence
and beam angles resulting in large bias [183]; or wrong calibration, e.g. [135] found
a distortion of 0.22deg of the scan point clouds due to intrinsic calibration process.
This correlated noise, a.k.a. bias, strictly limits the confidence we may have in the ICP
estimate. To our best knowledge this is often omitted with a few exceptions: e.g., [183]
removes bias on point measurements due to sensor beam angle, and preliminary ideas
may be found in [178,179].

Randomness Inherent to the ICP Algorithm: ICP is generally configured with ran-
dom filtering processes [170], e.g. sub-sampling, such that two solutions with exactly
the same inputs would differ.

In the following we address uncertainty coming from 1), 2) and 3) and do not con-
sider 4), which should be marginal.

1.2 1.2 Brief Literature Review

Various approaches exist for estimating the covariance of the ICP algorithm, each
of which being a trade-off between accuracy and execution time. Monte-Carlo algo-
rithms, e.g. [180,184], sample noisy scans (from a reference scan) and ICP initializa-
tions to compute a large number of ICP registration results, define the covariance of
the sampled results as the covariance estimation, and use the estimated covariance for
all future registration with the reference scan, thus getting a covariance function of
the reference scan only. Another category of covariance estimation methods relies on
closed-form expressions [169,185–187], whose underlying assumption consists in lin-
earizing the objective function used in ICP around the convergence point, ruling out
the possibility for wrong convergence and the uncertainty that stems from it. Albeit
still used in practice, Censi’s pioneering formula [169] is widely considered as overop-
timistic, see e.g. [188]. Recently, [175] leveraged learning based approaches to estimate
ICP uncertainty stemming from inaccurate ICP initialization.
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1.3 1.3 Contributions and Chapter’s Organization

Our approach introduced in Section 2 extends existing works in three ways: 1) we
consider ICP uncertainty coming both from sensor errors and ICP initialization. 2) we
raise an important point which is that ICP uncertainty in itself is meaningless as it
is inherently related to uncertainty in the initialization pose (unless there is a global
minimum). This is supported by experiments displayed in Figure 9.1. We address this
problem by outputting a covariance matrix of larger dimension that also reflects the
correlation between ICP final and initial estimates. And 3) we estimate in Section 3 the
ICP uncertainty combining a closed-form expression using [169,186] accounting for
sensor biases, and derivative-free methods using the unscented transform of [60,189],
which comes at a lower computational cost than Monte-Carlo runs.

Besides, we evaluate, compare and discuss our approach on the dataset of [176] in
Sections 4 and 5, where our approach obtains consistent estimates and achieves better
results than existing methods. The code to reproduce the results of the chapter is made
publicly available at: https://github.com/CAOR-MINES-ParisTech/3d-icp-cov.

Throughout the chapter, we configurate the ICP as suggested in [177] with a point-
to-plane error metric.

2 2 Proposed Approach

2.1 2.1 Pose Representation and Pose Uncertainty Representation

The true transformation between two point clouds and its ICP-based estimate both live
in the set of 3D rigid transformations SE(3), see Chapter 2. Note that, it is consistent
with matrix multiplication: if T1 transforms a first point cloud into a second one, and
then T2 transforms the latter into a third cloud, then the matrix T2T1 2 SE(3) encodes
the transformation between the first and the third clouds.

We use the uncertainty representation for poses as

T̂ = Texp(ξ), where ξ ⇠N (0,Q) ,ξ 2 R6, (9.1)

with ξ a zero-mean Gaussian variable of covariance Q and where exp(·) denotes the
exponential map of SE(3), which maps elements ξ to poses. For uncertainty represen-
tation (9.1), we adopt the notation T̂ ⇠ NL(T,Q). Note that, in (9.1), the vector ξ 2 R6

may be viewed as the error between T and T̂. Indeed the relative transformation be-
tween poses T and T̂ is encoded in ξ as T�1T̂ = exp(ξ).

2.2 2.2 The Role of ICP Initialization

The ICP procedure seeks to estimate the transformation Ttrue 2 SE(3) that maps a first
cloud of points P to a second cloud (or a model) Q as follows [170,171]:

i) we have a first “guess" for the transformation we call Tini, a.k.a. initial or coarse
alignment [171];

ii) then we initialize the ICP algorithm by applying a transformation T�1ini to the
cloud Q. This way the transformation the ICP seeks to estimate become the rela-

tive pose Trel := T�1iniTtrue. We thus get an estimate T̂rel = icp
⇣

P ,T�1iniQ
⌘

for Trel;

iii) finally the estimate of Ttrue that the algorithm outputs is T̂icp := TiniT̂rel =

Tiniicp
⇣

P ,T�1iniQ
⌘

.
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i) ICP initialization: tini = ttrue + ξini

ii) ICP relative pose estimate: t̂rel = f (ttrue � tini,w)

iii) ICP final pose estimate: t̂icp = tini + t̂rel

Id

Id

Id

tini

tini

ttrue

ttrue

ttrue

t̂icp

t̂icp

ξini

trel = �ξini

t̂rel ' Id + J(ttrue � tini) +Gw

' Id � Jξini +Gw

ξicp = t̂icp � ttrue
' (I� J)ξini +Gw

Figure 9.2: Schematic illustration of the ICP procedure, error definitions and lineariza-
tions in the case of 1D translation t 2 R (Id = 0).

Note that if Trel is perfectly estimated we recover Ttrue as then T̂icp = TiniTrel =

TiniT
�1
iniTtrue = Ttrue no matter how far the initial guess Tini is from Ttrue.

Let us introduce the various errors at play in ICP. In robotics, the initial guess in i)
is typically provided through inertial sensors or wheeled odometry [172,173]. We have
thus an initialization error that stems from sensor imperfections, encoded by a vector
ξini, and one may write

Tini = Ttrue exp(ξini), ξini ⇠N (0,Qini), (9.2)

which is advocated in [90,190] to suit particularly well represent odometry errors in
terms of pose. Then, ICP estimates the relative transformation between Ttrue and Tini,
that is, outputs an estimate T̂rel of the actual initial error Trel which writes

Trel = T�1iniTtrue = exp(�ξini)T�1trueTtrue

= exp(�ξini) ' I4 �ξ^ini. (9.3)

2.3 2.3 ICP Estimate T̂rel of Relative Pose Trel

At step ii) above, that is, once initialization is done, see [170], ICP provides an estimate
T̂rel of the relative transformation Trel of (9.3) as a function

T̂rel := icp
⇣

P ,T�1iniQ
⌘

(9.4)

of the point clouds P and Q. Thus T̂rel appears as a function f (Trel) 2 SE(3) of the
true relative transformation Trel, typically affected by the phenomena of wrong conver-
gence. Moreover, sensor (scanner) noise induces small fluctuations in the point clouds
that affects this estimation. This yields:

T̂rel = f (Trel)exp(Gw) = f
⇣

exp(�ξini)
⌘

exp(Gw), (9.5)

where w 2 R6K encodes errors due to sensor noise on each of the K pairs of points in
the clouds, and Gw 2 R6 the resulting 6 degrees of freedom error made on Trel. Sensor
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noise stems from unknown parameters that depend upon the calibration process and
drift with temperature [182]. If the ICP is initialized on the true pose Ttrue then there
is no wrong convergence and the only error stems from noise, i.e., f (exp(0) = f (I4) = I4.
Thus f (·) 2 SE(3) is close to I4, and the model may be linearized around ξini = 0, w = 0
as

f
⇣

exp(�ξini)
⌘

exp(Gw) ' f (I4 �ξ^ini)exp(Gw)

' I4 + (�Jξini +Gw)^, (9.6)

where matrix J encodes the linear approximation of f (·).

2.4 2.4 ICP Final Pose Error

Let us now consider step iii) of the ICP algorithm, i.e., the final estimate

T̂icp = TiniT̂rel (9.7)

= Ttrue exp(ξini)f
⇣

exp(�ξini)
⌘

exp(Gw). (9.8)

(9.8) was obtained substituting (9.2) and (9.5) in (9.7). Linearizing (9.8) by recall-
ing (9.6) and keeping only the first order in the small errors ξini and w yields T̂icp '
Ttrue

⇥

I4 + (ξini)
^⇤

h

I4 + (�Jξini +Gw))^
i

' Ttrue

⇣

I4 + (ξini � Jξini +Gw)^
⌘

and thus in terms

of uncertainty representation (9.1) we approximately find:

T̂icp ' Ttrue exp((I6 � J)ξini +Gw) . (9.9)

Figure 9.2 recaps the computations for 1D translations. There are a couple of situa-
tions of interest. Let us momentarily assume sensor noise to be turned off, w = 0, for
simplicity.

• If there is one global minimum, then the ICP systematically recovers the relative
transformation (9.3) at step ii) of the algorithm, i.e. T̂rel = Trel and thus f (Trel) =
Trel. So f (exp(�ξini)) ' I4 �ξ^ini and we identify J = I6 in this case. As a result the
final estimate (9.9) is Ttrue exp(0) = Ttrue indeed.

• On the other hand, in the directions where we have no information, e.g. along
hallways or in underconstrained environment [169], the relative transformation
will not be affected in the corresponding directions meaning that (along those di-
rections) J = 0 and the final error then has the formT�1trueT̂icp = T�1trueTtrue exp(ξini) =
exp(ξini), that is, the initialization error fully remains.

In intermediate cases (when there are local minima) the remaining error is a fraction
Jξini of the initialization error.

2.5 2.5 Corresponding ICP Error Covariance

If we represent ICP uncertainties resorting to concentrated Gaussian (9.1) as T̂icp ⇠
NL

⇣

Ttrue,Qicp

⌘

, i.e., we posit T�1trueT̂icp = exp(ξicp), then the covariance matrix Qicp

of ξicp describes dispersion (hence uncertainty) of the ICP error. Plugging the lat-
ter representation into (9.9), we have ξicp = (I6 � J)ξini + Gw. As the initialization
error is assumed to have covariance matrix Qini typically inferred though an odom-
etry error model [90,190] and by denoting Qsensor the covariance of scan sensor noise
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w, the covariances add up owing to independence of sensor noises, and by squaring
ξicp = (I6 � J)ξini +Gw we find

Qicp = (I6 � J)Qini(I6 � J)T +GQsensorG
T . (9.10)

This is our first result about ICP covariance. The first term related to the initialization
uncertainty and that accounts for wrong convergence, lack of constraints in the clouds
and unobservable directions, and the second one related to scan noise and that may be
computed through “Censi-like" [169] formulas as we will show in section 3.

2.6 2.6 Discussion

Albeit not obvious, J actually heavily depends on Qini. This is an insight of the present
chapter: uncertainty of ICP does not exist in itself. Assume indeed there are various
local minima. If Qini is very small, then all initializations Tini fall within the attraction
basin of Ttrue and thus f (Trel) = Trel and we identify J = I6. But if Qini is large enough
only a fraction of initializations Tini lead to f (Trel) = Trel, the ones that get trapped in
other local minimas do not lead to correct estimate of Trel and J , I6. Thus J is not the
analytical Jacobian of function f (·), and may be viewed as its “statistical linearization”
[191]. This prompts the use of an unscented transform [189] to compute it, see Section
3.2.

2.7 2.7 Maximum Likelihood Fusion of Initial and ICP Estimates

Tini and T̂icp may be viewed as two estimates of Ttrue associated with uncertainty re-
spectively Qini = cov(ξini) and Qicp = cov(ξicp) where ξicp = (I � J)ξini +Gw. The cor-
responding pose fusion problem of finding the Maximum Likelihood (ML) of a pose
Ttrue given two uncertain pose estimates was considered in [90], with the important
difference that herein ξini and ξicp are not independent, they are correlated, with joint
matrix of initialization and ICP errors

Q := cov
⇣

"

ξini
ξicp

#

⌘

=

"

Qini Qini(I� J)T
(I� J)Qini Qicp

#

. (9.11)

Using linearization as previously and following first-order computations in [90,192],
themaximum likelihood estimate ofTtrue may be approximated as T̂ML = Ttrue exp(ξML)
with cov(ξML) =QML, with QML defined through its inverse:

Q�1ML =

"

I
I

#T "

Qini Qini(I� J)T
(I� J)Qini Qicp

#�1 "
I
I

#

. (9.12)

The latter stems from classical linear estimation theory and may be proved using the
Kalman information filter: to the first order T̂ini and T̂icp are considered as two noisy
measurements of Ttrue with joint covariance (9.11), the measurement matrix is thus

H :=
h

I I
iT

and as Ttrue is initially totally unknown the prior covariance satisfies P�1 =
0. The covariance of the Kalman estimate in the light of measurements is thus updated
in information form as P�1 0+HTQ�1H.

3 3 Practical Covariance Computation

This section describes our algorithm for estimating the 3D ICP uncertainty covariance
(9.10) leveraging findings of Section 2. We propose to first compute the rightmost term
of (9.10) which is due to sensor noise.



118 A New Approach to 3D ICP Covariance Estimation

3.1 3.1 Computation of Dispersion Owing to Sensor Noise

We now focus on the computation of GQsensorG
T . The cost function of point-to-plane

ICP after initialization writes JT̂rel

⇣

P ,T�1iniQ
⌘

=
PK

k=1 k
⇣

T̂relpk � q̃k
⌘

· nkk2, where the q̃k ’s

denote the points of T�1iniQ and K is the number of pairs of matched points. Linearizing

on SE(3), we may linearize the cost JT̂rel exp(ξ)

⇣

P ,T�1iniQ
⌘

=
PK

k=1 k
⇣

T̂rel exp(ξ)pk�q̃k
⌘

·nkk2

w.r.t. estimate T̂rel at T̂rel = Trel as

JT̂rel exp(ξ)

⇣

P ,T�1iniQ
⌘

'
K

X

k=1

kBkξ � dkk2, (9.13)

with dk a scalar being function of differences between pairs of points and point nor-
mals. Least squares formulas yield an optimal value ξ⇤ = A�1

PK
k=1B

T
k dk , where we let

A =
PK

k=1B
T
k Bk . Each dk is affected by k-th component wi of previously introduced

sensor noisew, and this induces fluctuations in ξ⇤ over various experiments. Let’s pos-
tulate wi = b+ ⌫i with ⌫i a white noise of variance �2, and b and unknown calibration
bias that is identical for all points but varies from one experiment to the next. Follow-
ing least squares covariance, see [169,186], we end up with:

GQsensorG
T = �2A�1 +A�1Bcov(b)BTA�1, (9.14)

where A =
PK

k=1B
T
k Bk , and B =

PK
k=1B

T
k . We recover the covariance �2A�1 of [169,

186] w.r.t. sensor white noise, and a new term, A�1Bcov(b)BTA�1, that represents the
covariance w.r.t. the unknown bias b, that is, correlated noise. This new additional
term is paramount as A has magnitude proportional to K , hence A�1 is very small,
explaining that Censi’s formula (based on A�1 only) seems overoptimistic [188]. For
example A�1 has trace 0.2 cm for the registration displayed in Figure 9.1 whereas the
covariance w.r.t. the unknown bias has trace 2.6 cm. In practice b arises from sensor
calibration, laser stability [182], observed material [174], and incidence of beams [183].
In the remainder we assume bias standard deviation to be approximately 5 cm as in
[174].

Note that (9.14) captures the effect of underconstrained situations like hallways.
Indeed in unobservable directions the cost JT̂rel

(·) is constant, yielding small eigenvalues
for A and hence large covariance (9.14). Derivation of Bk and extraction of G in (9.14)
are available with chapter code.

3.2 3.2 Computation of Dispersion owing to ICP Initialization

Computation of (I6 � J)Qini(I6 � J)T in (9.10) is of greater importance as in practice it
largely dominatesGQsensorG

T . We propose to compute it in a deterministic derivative-
free method, in which we adapt the unscented transform [189] (see e.g. Algorithm 1)
pose by following [60,90]. The advantages of using our unscented based method rather
than Monte-Carlo sampling are fourfold: 1) it is deterministic; 2) it remains computa-
tionally reasonable by adding only 12 ICP registrations; 3) it explicitly computes the
cross-covariance matrix between T̂icp and Tini as a by-product without extra computa-
tional operations; and 4) it scales with Qini, i.e. our approach naturally self-adapts to
the confidence we have in initialization without extra parameter tuning.

We compute the covariance as follows, see Algorithm 10:

• we consider the prior distribution Tprior ⇠ NL(Tini,Qini), which is approximated

by a set of so-called sigma-points ξ
j
ini, see step 1);
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Algorithm 10: Computation of matrix J in (9.10)

Input: P ,Q,Tini,Qini, T̂icp = Tiniicp
⇣

P ,T�1iniQ
⌘

;

// set sigma points

1 ξ
j
ini = col

⇣p
6Qini

⌘

j
, j = 1, . . . ,6,

ξ
j
ini = �col

⇣p
6Qini

⌘

j�6 , j = 7, . . . ,12;

// propagate sigma points through (7)

2 T
j
ini = Tini exp

✓

ξ
j
ini

◆

, j = 1, . . . ,12;

T̂
j
icp = T

j
iniicp

✓

P , (T
j
ini)
�1Q

◆

, j = 1, . . . ,12;

3 ξ̂
j
icp = exp�1

✓

T̂�1icpT̂
j
icp

◆

, j = 1, . . . ,12;

// compute covariance and infer J

4 (I6 � J)Qini(I6 � J)T =
P12

j=1
1
12 ξ̂

j
icpξ̂

jT
icp;

5 ξ̂icp =
P12

j=1
1
12 ξ̂

j
icp;

6 J = �
✓

P12
j=1

1
12

✓

ξ̂
j
icp � ξ̂icp

◆

ξ
jT
ini

◆

Q�1ini + I6;

Output: J, (I6 � J)Qini(I6 � J)T ;

metric
NNE KL div. NNE* KL div.*

trans. rot. trans. rot. trans. rot. trans. rot.

Q̂censi 103 103 104 105 38 102 103 105

Q̂monte
carlo 103 102 104 104 22 20 103 103

proposed 4.2 34 102 102 0.8 3.8 31 98

Table 9.1: Results of ICP uncertainty estimation in term of Normalized Norm Error
(NNE) and Kullbach-Leibler divergence (KL div.) divided into translation and rota-
tion parts. As the ICP error distributions are not Gaussian [177], we provide robust
statistics (starred, *) by removing both the more and less accurate quantiles of each
registration. The proposed method outperforms the two others.

• we approximate the propagated distribution Tprop = Tprioricp(P ,T
�1
priorQ) as

Tprop =NL (Tini,Qini) icp
⇣

P ,NL (Tini,Qini)
�1Q

⌘

⇠NL

⇣

T̂icp, (I6 � J)Qini(I6 � J)T
⌘

, (9.15)

after propagating each sigma-point in steps 2) and 3), where T̂icp is the given ICP
pose estimate. We compute the covariance and infer the matrix J as a by-product
in respectively steps 4) and 6).

We derive the algorithm by following [60] for pose measurement, zero-mean prior
distribution, and where we set ↵ = 1.
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4 4 Experimental Results

4.1 4.1 Dataset Description & ICP Algorithm Setting

This section evaluates the ability of the approach to estimate ICP uncertainty on the
Challenging data sets for point cloud registration algorithms [176]. It comprises eight
sequences where point clouds are taken in environments ranging from structured to
unstructured, and indoor to outdoor. Each sequence contains between 31 and 45 point
cloud scans along with ground-truth pose for each scan, that provides a total of 268
scans and 1020 different registrations as we align each scan with the three scans the
following.

We configure the ICP as in [177] with 95% random sub-sampling, kd-tree for data
association, and point-to-plane error metric where we keep the 70% closest point asso-
ciations for rejecting outliers.

4.2 4.2 Compared Methods and Evaluation Metrics

This section evaluates the following methods:

Q̂censi : the close-form method of [169] adapted for the ICP setting defined above;

Q̂monte
carlo : the covariance computed after sampling of 65 Monte-Carlo ICP estimates;

Q̂icp : our proposed approach detailed in Section 3.

Each method assumes depth sensor white noise and bias with 5 cm standard deviation,
which is the mean value found in [174] for the Hokuyo sensor used for these experi-
ments, and all methods know the initial uncertainty Qini, whose magnitude 0.1m and
10deg corresponds to the easy scenario of [177].

We compare the above methods using two metrics:

Normalized Norm Error (NNE): that evaluates the historically challenging [169,184]
prediction of the covariance scale, and is computed as

NNE =
⇣ 1

N

N
X

n=1

kξnk22/ trace(Q̂n)
⌘1/2

, (9.16)

where ξn = exp�1(T�1trueT̂n) with is the transformation error and Q̂n the estimated uncer-
tainty covariance matrix, and averaged over N samples. This metric characterizes the
uncertainty as only the true registration is known (the exact distribution of the point
cloud is unknown). The target value is one, below one the estimation is pessimistic,
whereas a value over one indicates an overoptimistic estimation.

Kullback-Leibler Divergence (KL div.): which is computed between a pseudo-true
distribution and the estimated distribution. The pseudo-true distribution is computed
after sampling 1000 ICP estimates of the evaluated registration over the initial po-
sition. As sensor noise is fixed in the point clouds, this distribution represents the
uncertainty stemming from initialization errors.
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Figure 9.3: Results on real data of [176] projected onto the ground plane for visual-
ization. Ellipses represent the 95% (3�) confidence sets for each uncertainty estima-
tion method. (a): “true convergence situation", the errors are mainly caused by sensor
noises and Censi’s formula should apply. (b): however we see the Censi ellipse seems
optimistic as ground truth is almost outside it whereas it falls well within our ellipse
(green). (c, d): “wrong convergence", the large errors are due ICP initialization. Only
our approach is consistent with ICP uncertainty in each environment and does not
suffer from overoptimism.

sequence Apartment Hauptgebaude Stairs Mountain Gazebo summer

Mah. dist. trans. rot. trans. rot. trans. rot. trans. rot. trans. rot. .

CELLO-3D 0.2 0.1 0.3 0.2 0.1 0.2 - - 0.2 0.2
ini.+ICP 3.5 15 1.9 3.2 1.1 4.2 1.5 1.2 1.1 2.1
proposed 2.3 9.8 1.8 2.9 1.1 4.2 1.2 1.2 1.0 2.3

sequence Gazebo winter Wood summer Wood winter

Mah. dist. trans. rot. trans. rot. trans. rot.

CELLO-3D 0.1 0.2 0.1 0.3 0.1 0.3
ini.+ICP 1.9 3.7 1.5 4.6 1.2 4.8
proposed 1.8 3.7 1.5 4.7 1.2 4.2

Table 9.2: Trajectory consistency results in term of Mahalanobis distance (bold in-
dicates best performance) split into translation and rotation parts for the sequences
of [176], where Mountain is not considered in [175]. Our method obtains on average
the best uncertainty assessment, albeit slightly optimistic.
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4.3 4.3 Results

Results are averaged over 1000 initializations for each of the 1020 considered pairs of
point clouds, representing a total of more than one million registrations, where the
ICP is initialized with a different estimate Tini sampled from NL(Ttrue,Qini). Table 9.1
provides average results over the eight sequences, and Figure 9.3 illustrates typical
registrations from structured to unstructured environments. We observe:

• Q̂censi is far too optimistic and unreliable for sensor-fusion, as noted in [188]. Its
centimetric confidence interval makes sense only when ICP is very accurate;

• Q̂monte
carlo is overoptimistic when the discrepancy arising from ICP initialization re-

mains negligible, see Figure 9.3 (b), for which the method predicts a confidence
interval with millimetric size. This is naturally explained as the method assumes
no error caused by sensor noises;

• the proposed method obtains the best results for both metrics as displayed in Ta-
ble 9.1. It notably outperforms Q̂monte

carlo while deterministic hence more reliable,
and computationallymuch cheaper. The dominant term is generally due to initial
uncertainty. However in “global minimum" cases the sensor bias used for com-
puting Q̂icp slightly inflates the covariance of [169], and more closely captures
actual uncertainty, see Figure 9.3 (a,b).

Besides outperforming the other methods, our method provides simple parameter tun-
ing: we set the bias noise standard deviation as having samemagnitude as sensor white
noise, and the error stemming from ICP initialization does not need to be tuned when
Qini is an output of inertial, visual, or wheeled odometry system [172,173].

Regarding computational complexity and execution time, step 2) of the algorithm
requires 12 registrations which take 6 s when registrations are computed parallely,
whereas the remaining part of the algorithm takes less than 0.1 s. The 65 Monte-Carlo
runs are more than five times more demanding than the the proposed method.

5 5 Complementary Experimental Results

This section provides an in-depth analysis of the method in term of trajectory consis-
tency, robustness to high and misknown initial uncertainty, and discusses the advan-
tages and the validity of the approach.

5.1 5.1 Application to Trajectory Consistency

We asses the quality of the covariance estimation in Section 3 over trajectories as fol-
lows. For each sequence of [176], we compute the global pose estimate at scan l by
compounding transformations such that T̂l = T̂0,1 . . . T̂l�1,l , whose covariance is com-
puted with the closed-form expressions of [90] which are valid up to 4-th order ap-
proximation. We compare three methods defined as:

CELLO-3D : reproduced results of [175], that proposes a learning based method for estimat-
ing the ICP covariance, which is trained on environments similar to the tested
sequence. The results are indicative as the ICP setting of [175] slightly differs
from the setting of [177] we use;

ini.+ICP : combines initialization and ICP measurements with the covariance estimate
(9.12) without considering cross-covariance terms, i.e., applying formulas of [90]
;
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Figure 9.4: Results projected onto the ground plane for visualization in the Stairs
sequence of [176], where the “ellipses" (lines) represent the 95% (3�) final confidence
sets.

proposed : based on the full proposed covariance of the maximum-likelihood estimate
(9.12).

We set initial errors as in Section 4 and evaluate the above methods using the Maha-
lanobis Distance proposed in [175] between final trajectory estimates and ground truth

Mah. dist. =
✓ N
X

n=0

ξT
n Q̂
�1
n ξn

dim(ξn)N

◆1/2

, (9.17)

where ξn = exp�1(T�1trueT̂n) is the transformation error and Q̂n the estimated covariance
matrix, averaged over N samples. The target value is one, below one the estimation is
pessimistic, and above one the estimates are optimistic.

We average results over 40 different initial trajectories for each sequence, which are
numerically displayed in Table 9.2 and illustrated in Figure 9.4. We observe:

• CELLO-3D is the only pessimistic method, which estimates uncertainty ranging
from 3 to 10 times higher than actual uncertainty. It evidences how difficult it is
to asses ICP uncertainty in practice;

• the proposed approach obtains on average the best results. It obtains similar
estimates than ini.+ICP when the ICP algorithm is accurate (Gazebo and Wood).
In more difficult environments, e.g. Stairs, it better incorporates initialization
than ini.+ICP thanks to it accounting for measurement correlation encoded in
(9.11), see Figure 9.4.

These results confirm the ability of the method to compute covariance estimates
over trajectories also and the relevance of correlation terms between ICP and initial
estimates.

5.2 5.2 Role of Initial Uncertainties in Covariance Estimation

We evaluate the influence ofQini on the covariance estimation in challenging situations
where Qini is high, inaccurately known (the estimation of Qini is in itself challenging),
and sensor noise is inflated. For each environment of [176], we evaluate the method in
9 situations where initial uncertainty is easy, medium and difficult with respectively
0.1, 0.5, 1m and 10, 20, 50 deg standard deviation, see [177]. In each situation we eval-
uate the algorithm with different magnitudes for Qini, hence assessing its robustness
to pessimistic and optimisitic parametrization. We finally add white and depth bias
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Figure 9.5: ICP results (dots) and 95% (3�) confidence sets (lines) following our
method for three levels of initial uncertainty. We see the latter highly influences the
ICP registrations and ICP covariance estimations accordingly.

noises on already noisy point clouds with 5 cm standard deviation. Results are given
in Table 9.3, and illustrated in Figure 9.5.

• The ICP algorithm obtains unreliable results for large initial uncertainty, see Fig-
ure 9.5, whereas it obtains centimetric errors for low levels of initial uncertainty.
As anticipated in Section 2.2, significant ICP errors are caused by inaccurate ini-
tialization;

• ICP final outputs are agnostic to initialization when a global minimum exists,
see e.g. the Gazebo and Wood environments in Table 9.3 for levels of Qini corre-
sponding to easy and medium scenario. The method obtains correct estimates
where the sensor noise terms numerically dominate the estimated covariances,
and J ⇡ I, see Section 2.4;

• another environments contain local minima, e.g. Hauptgebaude. Then the algo-
rithm outputs reflect the pessimistic or optimistic belief about the initial uncer-
tainty. We recommend in these situations to set Qini sufficiently high to favour
conservatism;

• our method is able to detect inaccurate ICP registrations by providing very high
covariance estimates, although it cannot accurately describe non Gaussian distri-
butions, see Figure 9.5 (a,b).
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Qini(true) easy medium difficult

Q̂ini(algo) easy med. diff. easy med. diff. easy med. diff.

Appart. 1.6 1.5 10-6 1.8 1.7 10-6 105 105 0.6
Haupt. 1.8 0.3 10-3 3.6 0.7 10-3 103 103 0.3
Stairs 0.7 0.2 10-3 1.9 0.8 10-3 103 103 0.7

Montain 2.1 1.1 10-3 3.3 1.8 10-3 103 103 4.0
Gazebo 1.1 1.0 10-5 1.3 1.2 10-5 104 104 0.8
Wood 2.1 2.1 10-3 2.2 2.2 10-3 103 103 0.3

Table 9.3: NNE, see (9.16), for different levels of true and supposed initial uncertainty.
Difficult initial uncertainty leads to highly erroneous ICP outputs that the proposed
method detects if correctly parametrized.

5.3 5.3 Discussion about the Proposed Approach

We finally examine the pros, cons, and fundamental assumptions of the method. The
main advantages are: it being anchored in a mathematical theory, its efficiency to as-
sess uncertainty for acceptable levels of initial uncertainties, its simplicity, while being
computationally reasonable, see Algorithm 1. The cross-covariance term in (9.12) may
be fruitful for increasing robustness of back-end systems, e.g. pose-graph [188], as
it correlates two previously supposed independent measurements. Comparisons be-
tween diagonal terms in (9.12) finally provides a way for trading-off between initial
odometry guesses and ICP estimates, see [193].

The Gaussian error assumption of the ICP estimates is the core hypothesis of the
method. We required this assumption to obtain a tractable method able to provide a
covariance for a state estimator, e.g. a Kalman filter. However, if one pursues a more
accurate estimation of the ICP distribution, we suggest massive sampling methods as
an expansive alternative, although our method largely proves sufficient to detect prob-
lematic situations.

The method finally requires the covariance of the initial uncertainty as an input.
If the provided initialization confidence is inexact, the method outputs may reflect
the initial optimism or pessimism in general situations. Nonetheless an insight of the
present chapter, see Section 2 and e.g. Figure 9.5, is that ICP errors intrinsically depend
on the initial accuracy so that a coarse idea of initial uncertainty is essential, whatever
the method one desires to use.

Finally, [18,90,190] show that concentrated Gaussian distribution (9.1) faithfully
describe robot odometry models, such that methods like the Kalman filter are able to
provide an accurate (concentrated) Gaussian approximation to the true initial uncer-
tainty for which our approach has been designed.

6 6 Conclusion

This chapter presents a novel method for real time estimation of 3D uncertainty co-
variance matrix of the ICP algorithm. The method relies on a careful study of the
influence of both sensor noises and algorithm initialization on the ICP estimates, that
we leverage in a deterministic scheme which remains very simple in terms of parame-
ter tuning. The core of our approach is versatile as one can apply it to various choices
of error metrics. However with point-to-point ICP the closed form part of the covari-
ance is not valid, see [186]. The approach is successfully validated on individual pairs
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of point clouds and over trajectories on challenging real datasets, where it obtains con-
sistent results.
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Part III

Using Deep Learning to Extract
Information from an IMU
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CHAPTER10

Introduction to Part III

Deep neural networks allows building data-driven models that learn features for re-
alizing a given task, e.g. image classification. Especially since 2014 and its success
in computer vision, deep learning [161] spread among all the subjects of computer
sciences, robotics, natural language programming, and others. This fast development
comes from 3 enablers:

1. New theories for training and applying deep learning in a wide range of topics;

2. Powerful hardware like graphic card with mass parallelization;

3. Lots of data, with the development of big data and publicly available datasets.

This part of the thesis leverages deep learning for inertial navigation and enhancing of
more “traditional” state-estimation methods such as the Kalman filter.

1 1 Relations betweenNeural Networks and the Kalman Filter

Both neural networks and Kalman filters may estimate parameters from a stream of
data/measurements, see Figure 10.1, and have non-linear transformation that are local
linearization of the measurements and propagation error models in the EKF, while
neural networks use linear operations between consecutive layers.

In a Kalman filter, the researcher applies a specific domain knowledge, e.g. physics
equations, and noise models to estimate the parameters in a way which is optimal as
it minimizes the mean squared error under certain assumptions (zero-mean Gaussian
noise). Indeed, the Kalman filter computes the posterior of the state given observa-
tions through the prediction step and update step. So the propagation f (·) and the
observation h(·) functions should be explicit and tractable, which requires great efforts
on designing an approximation.

In a neural network the model is not explicitly written, but learned from the mea-
surements, by looking at many examples and by using an appropriate optimization
scheme. Indeed, vanilla neural networks ignore whatever happens in the middle and
directly compute the mapping between input and output, with a massive parameter-
ized differentiable function. The a priori absence of expert knowledge makes neural
networks appears as a dream tool for complex cross-domain tasks.

However, in practice, applying neural networks requires some kind of expertise,
see e.g. the success of [194] for point cloud classification and segmentation. Regarding
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measurements
Kalman
filter

estimates

domain expertise (f (·), h(·))

measurements
Neural
network

estimates

data

Figure 10.1: Overview of Kalman filter (left) and neural networks for state estimation
(right). Both approaches share same inputs and outputs but differ in their design.
A Kalman filter is generally built with domain expertise while neural networks are
trained with data.

state estimation, many works combine neural networks and Kalman filters which can
be classified in two manners. The first is to use neural networks to learn the model
of the Kalman filters, where the neural network optimizes directly the filter estimates,
see [150,153,195] and Chapter 8. The other method is to train a neural network for an
auxillary and decoupled task. The network outputs are feed, once training is over, to
the Kalman filter.

2 2 Tightly Coupled Approach: Designed “Deep” Kalman Fil-
ter with Neural Networks

Recent works such as [150,153] propose two methods to learn Kalman filters using
neural networks, where the authors search to learn respectively a generative temporal
model f (·) and an observation model h(·) from high-dimensional data, using deep neu-
ral networks as a building block, see also [196] that performs preliminary researches
to design model for UKFs. One main advantage is that the Kalman filter pipeline is
yet given, and only the models (or parts of these model such as noise covariance ma-
trices) have to be learn. Thus the neural network is trained for directly improving state
estimates.

Albeit the authors get promising results and that training is that way seem optimal,
see also [152] for pedestrian navigation, this type of methods is still limited by accu-
racy, generalization, robustness, data, and computational requirement. This holds for
Chapter 8, where adding a new sensor would require to completely relearn the neural
networks.

3 3 Loosely CoupledApproach: Adding Information toKalman
Filter with Neural Networks

Let us consider the safety features of an autonomous car which is an example to observe
how neural networks and Kalman filters are related in practical scenario.

For the autonomous pilot feature to function seamlessly, the vehicle needs to know
the type of objects on the road (car, truck or motor cycle) and also it needs to know the
distance to the object, its velocity and heading, in order to predict the trajectory of the
object and make decisions on how the vehicle should function.

Consider now a simple case of how does an autonomous vehicle detect a car in the
surroundings and estimate its position, velocity and heading. The front camera cap-
tures the images and sends it to an embedded platform that runs the software to detect
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what kind of an object are present in the image. This image classifier is a trained neu-
ral network that has been trained with thousands of images to classify various objects.
i.e. the input to the neural network is an image and output is a classified object such
as a car or a truck or a pedestrian. Furthermore, from a series of images it is possible
to estimate the distance of the car and its velocity as well, but the estimated distance
and velocity are not accurate. In order to get a better accuracy of the estimations, the
information from the front looking radar is used, that can estimate the distance to the
car, its velocity and its heading as well.

Now here comes the Kalman filter, where the filter fuses the information (such as
the type of the object, its distance, velocity and heading) from both the camera and the
radar in a prediction and update step, to get an accurate estimation of the state of the
object, which will then be fed into the decision making unit of the autonomous pilot to
make maneuvers accordingly.

In these paradigm, neural networks are trained for another purpose, e.g. modelling
f (·) or h(·), but independently from the filter, and then used in the filter. We illustrate
this point here with two examples:

• Learning relative displacement from IMU and use them in a MSCKF like filter
based on a IMU only [197];

• Learning depth from convolutional neural networks that provides initial depth
estimates of a semi-direct visual odometry system [198].

Both examples successfully train the neural networks, and require manual tweaking to
adapt the network output to the filter, e.g. by inflating network output uncertainty. We
choose to perform research in this direction, that is, leveraging our expert knowledge
in inertial navigation problem to design deep neural network for specific tasks thar
are measurement detection in Chapter 11, and measurement denoising in Chapter 12.
Chapter 13 presents a few additional results as the combination of the methods of
Chapter 8 and Chapter 11. Finally, we provide in Appendix few tips to practitioners
regarding Kalman filtering enhanced by deep learning.
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CHAPTER11

RINS-W: Robust Inertial Navigation System onWheels

The present chapter has been published in the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Résumé

Ce chapitre propose une approche en temps réel pour la navigation inertielle à long
terme basée uniquement sur une centrale inertielle pour les robots à roues se local-
isant de manière autonome. L’approche repose sur deux composantes: 1) un détecteur
robuste qui utilise des réseaux de neurones profonds récurrents pour détecter dy-
namiquement une variété de situations d’intérêt, telles qu’une vitesse nulle ou aucun
glissement latéral; et 2) un filtre de Kalman qui incorpore ces connaissances en tant
que pseudo-mesures pour la localisation. Les évaluations faites sur un jeu de données
provenant d’une voiture et publiquement accessible démontrent que le schéma pro-
posé peut atteindre une précision finale de 20 m pour une trajectoire de 21 km de long
d’un véhicule roulant pendant plus d’une heure, équipé d’une centrale inertielle de
précision modérée (le taux de dérive du gyroscope est de 10 degrés par heure). Ce
chapitre combine des techniques d’apprentissage approfondies sophistiquées avec des
méthodes de filtrage de pointe pour la navigation inertielle pure sur véhicules à roues
et, à ce titre, ouvre la voie à de nouvelles techniques de navigation inertielle basées sur
les approaches d’apprentissage.

Chapter abstract

This chapter proposes a real-time approach for odometry inertial navigation based
only on an IMU for self-localizing wheeled robots. The approach builds upon two
components: 1) a robust detector that uses recurrent deep neural networks to dynam-
ically detect a variety of situations of interest, such as zero velocity or no lateral slip;
and 2) a state-of-the-art Kalman filter which incorporates this knowledge as pseudo-
measurements for localization. Evaluations on a publicly available car dataset demon-
strates that the proposed scheme may achieve a final precision of 20 m for a 21 km
long trajectory of a vehicle driving for over an hour, equipped with an IMU of moder-
ate precision (the gyro drift rate is 10 deg/h). This chapter combines sophisticated deep
learning techniques with state-of-the-art filtering methods for pure inertial navigation
on wheeled vehicles and as such opens up for novel data-driven inertial navigation
techniques.
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1 1 Introduction

In this chapter, we provide a method for odometry localization for wheeled robots only
using an IMU. Our contributions, and the chapter’s organization, are as follows:

• we introduce specific motion profiles frequently encountered by a wheeled ve-
hicle which bring information about the motion when correctly identified, along
with their mathematical description in Section 3;

• we design an algorithm which automatically detects in real time if any of those
assumptions about the motion holds in Section 4.1, based only on the IMU mea-
surements. The detector builds upon recurrent deep neural networks [161] and
is trained using IMU and ground truth data;

• we implement a state-of-the-art invariant extended Kalman filter [42,43] that ex-
ploits the detector’s outputs as pseudo-measurements to combine them with the
IMU outputs in a statistical way, in Section 4.2. It yields accurate estimates of
pose, velocity and sensor biases, along with associated uncertainty (covariance);

• we demonstrate the performances of the approach on a publicly available car
dataset [199] in Section 5. Our approach solely based on the IMU produces accu-
rate estimates with a final distance w.r.t. ground truth of 20m on the 73 minutes
test sequence urban16, see Figure 11.1. In particular, our approach outperforms
differential wheel odometry, as well as wheel odometry aided by an expensive
fiber optics gyro whose drift is 200 times smaller than the one of the IMU we use;

• this evidences that accurately detecting some specific patterns in the IMU data
and incorporating this information in a filter may prove very fruitful for localiza-
tion;

• the method is not restricted to IMU only based navigation. It is possible to feed
the Kalman filter with other sensors’ measurements. Besides, once trained the
detector may be used as a building block in any localization algorithm.

2 2 Inertial Navigation System & Sensor Model

Denoting the IMU orientation by Rn 2 SO(3), i.e. the rotation matrix that maps the
body frame to the world frame w, its velocity in w by vimun 2 R3 and its position in w by
pimu

n 2 R3, the dynamics are as follows

Rimu

n+1 = Rimu

n expSO(3) (ωndt) , (11.1)

vimun+1 = vimun + (Rnan + g)dt, (11.2)

pimu

n+1 = pimu

n + vimun dt, (11.3)

between two discrete times, with sampling time dt, and where
⇣

Rimu

0 ,vimu0 ,pimu

0

⌘

is the

initial configuration. The true angular velocity ωn 2 R3 and the true specific accelera-
tion an 2 R3 are the inputs of the system (11.1)-(11.3). In our application scenarios, the
effects of earth rotation and Coriolis acceleration are ignored, and earth is considered
flat.
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Figure 11.1: Trajectory ground truth and estimates obtained by various methods: inte-
gration of IMU signals; odometry based on a differential wheel encoder system; odom-
etry combined with an highly accurate and expensive Fiber optics Gyro (FoG) that pro-
vides orientation estimates; and the proposed RINS-W approach which considers only
the IMU sensor embarked in the vehicle, and which outperforms the other schemes.
The final distance error for this long-term sequence urban16 (73 minutes) of the car
dataset [199] is 20m for the RINS-W solution. The deep learning based detector (see
Section 4.1) has of course not been trained or cross-validated on this sequence.
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2.1 2.1 Inertial Measurement Unit (IMU) Model

The IMU provides noisy and biased measurements of ωn 2 R3 and an 2 R3 as follows

ωimu

n =ωn +bω
n +wω

n , (11.4)

aimun = an +ba
n +wa

n, (11.5)

where bω
n , b

a
n are quasi-constant biases and wω

n , w
a
n are zero-mean Gaussian noises.

The biases follow a random-walk

bω
n+1 = bω

n +w
b!
n , (11.6)

ba
n+1 = ba

n +w
ba
n , (11.7)

where w
bω
n , w

ba
n are zero-mean Gaussian noises.

All sources of error - particularly biases - are yet undesirable since a simple imple-
mentation of (11.1)-(11.3) leads to a triple integration of raw data, which is much more
harmful that the unique integration of differential wheel speeds. Even a small error
may thus cause the position estimate to be way off the true position, within seconds.

3 3 Specific Motion Profiles for Wheeled Systems

We describe in this section characteristic motions frequently encountered by a wheeled
robot, that provide useful complementary information to the IMU when correctly de-
tected.

3.1 3.1 Considered Motion Profiles

We consider 4 distinct specific motion profiles, whose validity is encoded in the fol-
lowing binary vector:

zn = (zveln , zangn , zlatn , zupn ) 2 {0,1}4. (11.8)

• Zero velocity: the velocity of the platform is null. As a consequence so is the
linear acceleration, yielding:

zveln = 1)
(

vimun = 0
Rimu

n an + g = 0
. (11.9)

Such profiles frequently occur for vehicles moving in urban environments, and
are leveraged in the well known Zero velocity UPdaTe (ZUPT), see e.g. [145,200].

• Zero angular velocity: the heading is constant:

zangn = 1)ωn = 0. (11.10)

• Zero lateral velocity1: the lateral velocity is considered roughly null (which is
not always true)

zlatn = 1) vlatn ' 0, (11.11)

where we obtain the lateral velocity vlatn after expressing the velocity in the body
frame b as

vbn = (Rimu

n )Tvimun =

2

6

6

6

6

6

6

6

4

vforn

vlatn

vupn

3

7

7

7

7

7

7

7

5

. (11.12)

1Without loss of generality, we assume that the body frame is aligned with the IMU frame.
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Figure 11.2: Real IMU data of a car stopping from sequence urban06 of [199]. We see
(11.9) holds and thus zveln = 1 at t = 5.8s while (11.10) does not hold yet.

• Zero vertical velocity: the vertical velocity is considered roughly null

zupn = 1) vupn ' 0. (11.13)

The two latter are common assumptions for wheeled robots or cars moving forward on
human made roads.

3.2 3.2 Discussion on the Choice of Profiles

The motion profiles were carefully chosen in order to match the specificity of wheeled
robots equipped with shock absorbers. Indeed, as illustrated on Figure 11.2, when the
wheels of a car actually stop, the car undergoes a rotational motion forward and then
backward. As a result, null velocity (11.9) does not imply null angular velocity (11.10).
For the level of precision we pursue in the present chapter, distinguishing between
(11.9) and (11.10) is pivotal since it allows us to: i) properly label motion profiles
before training (see Section 5.2, where we have different thresholds on position and on
angular velocity); and: ii) improve detection accuracy since only one motion pattern
can be identified as valid.

(11.11) and (11.13) generally hold for robots moving indoors or cars on roads. Note
that (11.13) is expressed in the body frame, and thus generally holds for a car moving
on a road even if the road is not level. As such (11.13) is more refined that just assuming
the car is moving in a 2D horizontal plane. And it is actually quite a challenge for an
IMU-based detector to identify when (11.11) and (11.13) are not valid.

3.3 3.3 Expected Impacts on Robot Localization

The motion profiles fall into two categories in terms of the information they bring:

1. Zero velocity constraints: the profiles (11.9)-(11.10), when correctly detected
may allow to correct the IMU biases, the pitch and the roll.

2. Vehiclemotion constraints: the profiles (11.11) and (11.13) are useful constraints
for the estimates accuracy over the long term. In particular, Section 5.5 will ex-
perimentally demonstrate the benefits of accounting for (11.11) and (11.13).
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Figure 11.3: Structure of the proposed RINS-W system for inertial navigation. The
detector identifies specific motion profiles (11.8) from raw IMU signals only.

4 4 Proposed RINS-W Algorithm

This section describes our system for recovering trajectory and sensor bias estimates
from an IMU. Figure 11.3 illustrates the approach which consists of two main blocks
summarized as follow:

• the detector estimates the binary vector zn from raw IMU signals, and consists of
recurrent neural networks;

• the filter integrates the IMU measurements in its dynamic model and exploits
the detected motion profiles as pseudo-measurements to refine its estimates, as
customary in inertial navigation, see e.g. [145].

The detector does not use the filter’s output and is based only on IMU measurements.
Thus the detector operates autonomously and is trained independently, see Section
5.2. Note that our approach is different from more tightly coupled approaches such
as [153]. We now describe each block.

4.1 4.1 The Specific Motion Profile Detector

The detector determines at each instant n which ones of the specific motion profiles
(11.8) are valid, see Figure 11.4. The base core of the detector is a recurrent neural
network, namely a Long-Short Term Memory (LSTM) [161]. The LSTMs take as input
the IMU measurements and compute:

ûn+1, hn+1 = LSTM
⇣n

ωimu

i , aimui

on

i=0

⌘

(11.14)

= LSTM(ωimu

n , aimun , hn) , (11.15)

where ûn+1 2 R
4 contains probability scores for each motion profiles and hn is the

hidden state of the neural network. Probability scores are then converted to a binary
vector ẑn = Threshold(ûn+1) with a threshold for each motion profile.

The thresholds must be set with care, and the procedure will be described in Section
5.1. Indeed, false alarms lead to degraded performance, since a zero velocity assump-
tion is incompatible with an actual motion. On the other hand, a missed profile is not
harmful since it results in standard IMU based dead reckoning using (11.1)-(11.3).
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Figure 11.4: Structure of the detector, which consists for each motion pattern of a
recurrent neural network (LSTM) followed by a threshold to obtain an output vector
ẑn that consists of binary components. The hidden state hn of the neural network
allows the full structure to be recursive.
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Figure 11.5: Structure of the IEKF. The filter leverages motion profile information ẑn
both for the propagation and the update of the state χ̂n+1.

4.2 4.2 The Invariant Extended Kalman Filter

We opt for an IEKF, see Chapter 2, to perform the fusion between the IMU measure-
ments and the detected specific motion profiles. The IEKF outputs the state χ̂n that
consists of pose and velocity of the IMU, the IMU biases, along with their covariance.
We now describe the filter more in detail, whose architecture is displayed on Figure
11.5.

IMU state: we define the IMU state as

χn = (Rimu

n , vimun , pimu

n , bω
n , b

a
n) , (11.16)

which contains robot pose, velocity, and the IMU biases. The state evolution is given
by the dynamics (11.1)-(11.7), see Section 2. As (11.9)-(11.13) are all measurements
expressed in the robot’s frame, they lend themselves to the Right IEKF methodology,
see [42]. Applying it, we define the linearized state error as

en =

"

ξn
ebn

#

⇠N (0,Pn) , (11.17)

where uncertainty is based on the use of the Lie exponential as advocated in [90] in a
wheel odometry context, and mapped to the state as

χn = expSE2(3)
(ξn) χ̂n, (11.18)

bn = b̂n + ebn , (11.19)

where χn 2 SE2(3) is a matrix that lives is the Lie group SE2(3) and represents the vehi-
cle state Rn, v

imu

n , pimu

n , Pn 2 R15⇥15 is the error state covariance matrix, bn = (bω
n ,b

a
n) 2

R
6 , b̂n =

⇣

b̂ω
n , b̂

a
n

⌘

2 R6, and (̂·) denote estimated variables.
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Propagation Step: if no specific motion is detected, i.e. ẑveln+1 = 0, ẑangn+1 = 0, we apply
(11.1)-(11.7) to propagate the state and obtain χ̂n+1 and associated covariance through
the Riccati equation

Pn+1 = FnPnF
T
n +GnQnG

T
n , (11.20)

where the Jacobians Fn, Gn are given in Appendix 6, and where Qn denotes the covari-

ance matrix of the noise wn =
⇣

wω
n ,w

a
n,w

bω

n ,wba

n

⌘

⇠ N (0,Qn). By contrast, if a specific

motion profile is detected, we modify model (11.1)-(11.7) as follows:

ẑveln+1 = 1)
(

vimun+1 = vimun

pimu

n+1 = pimu

n
, (11.21)

ẑangn+1 = 1) Rimu

n+1 = Rimu

n , (11.22)

and the estimated state χ̂n+1 and covariance Pn+1 are modified accordingly.

Update: each motion profile yields one of the following pseudo-measurements:

yveln+1 =

"

(Rimu

n+1)
Tvimun+1

ba
n+1 � (Rimu

n+1)
Tg

#

=

"

0
aimun

#

, (11.23)

yangn+1 = bω
n+1 =ωimu

n , (11.24)

ylatn+1 = vlatn+1 = 0, (11.25)

yupn+1 = vupn+1 = 0. (11.26)

A vector yn+1 is computed by stacking the pseudo-measurements of the detected mo-
tion profiles. Note that, if ẑveln+1 = 1 we do not consider (11.25)-(11.26) since (11.23)
implies (11.25)-(11.26). If no specific motion is detected, the update step is skipped,
otherwise we follow the IEKF methodology [42] and compute

K = Pn+1H
T
n+1/

⇣

Hn+1Pn+1H
T
n+1 +Nn+1

⌘

, (11.27)

e+ =K (yn+1 � ŷn+1) =
"

ξ+

eb+

#

, (11.28)

χ̂+
n+1 = exp(ξ+) χ̂n+1, b

+
n+1 = bn+1 + eb+, (11.29)

P+
n+1 = (I�KHn+1)Pn+1, (11.30)

summarized as Kalman gain (11.27), state innovation (11.28), state update (11.29) and
covariance update (11.30), where Hn+1 is the measurement Jacobian matrix given in
Appendix 6 and Nn+1 the noise measurement covariance.

Initialization: launching the system when the platform is moving without estimating
biases and orientation can induce drift at the beginning which then is impossible to
compensate. As the filter is able to correctly self-initialize the biases, pitch, roll and
its covariance matrix when the trajectory is first stationary, we enforce each sequence
in Section 5 to start by a minimum of 1 s stop. Admittedly restrictive, the required
stop is of extremely short duration, especially as compared to standard calibration
techniques [201].
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Figure 11.6: The considered dataset [199] contains data logs of a Xsens MTi-
3002 (right) recorded at 100Hz along with the ground truth pose.

5 5 Results on Car Dataset

The following results are obtained on the complex urban LiDAR dataset [199], that con-
sists of data recorded on a consumer car moving in complex urban environments, e.g.
metropolitan areas, large building complexes and underground parking lots, see Fig-
ure 11.6. Our goal is to show that using an IMU of moderate cost, one manages to
obtain surprisingly accurate dead reckoning by using state-of-the-art machine learn-
ing techniques to detect relevant assumptions that can be fed into a state-of-the-art
Kalman filter. The detector is trained on a series of sequences and tested on another
sequences, but all sequences involve the same car and inertial sensors.

5.1 5.1 Implementation Details

We provide in this section the detector and filter setting of the RINS-W system. The
detector disposes of four LSTMs, one for each motion profile. Each LSTM consists of 2
layers of 250 hidden units and its hidden state is mapped to a score probability by a 2
layers multi-perceptron network with a ReLU activation function and is followed by a
sigmoid function [161] that outputs a scalar value in the range [0, 1]. We implement
the detector on PyTorch3 and set the threshold values to 0.95 for (zveln , zangn ), and 0.5
for (zlatn , zupn ). The filter operates at the 100Hz IMU rate (dt = 10�2 s) and its noise
covariance matrices are parameterized as

Qn = diag
⇣

�2
ωI, �

2
a I, �

2
bω
I, �2

ba
I
⌘

, (11.31)

Nn = diag
⇣

�2
vel,vI, �

2
vel,aI, �

2
ang

I, �2
lat

, �2
up

⌘

, (11.32)

where we set �ω = 0.01rad/s, �a = 0.2m/s2, �bω
= 0.001rad/s, �ba

= 0.02m/s2 for the
noise propagation covariance matrix Qn, and �vel,v = 1m/s, �

vel,a = 0.4m/s2, �
ang

=
0.04rad/s, �

lat
= 3m/s, and �

up
= 3m/s for the noise measurement covariance matrix

Nn.

5.2 5.2 Detector Training

The detector is trained with the sequences urban06 to urban14, that represents 100 km
of training data (sequences urban00 to urban05 does not have acceleration data). For
each sequence, we compute ground truth position velocity vimun and angular velocity
ωn after differentiating the ground pose and applying smoothing. We then compute
the ground-truth zn by applying a small threshold on the ground truth velocities, e.g.
we consider zveln = 1 if kvimun k < 0.01m/s. We set similarly the other motion profiles and

2https://www.xsens.com/
3https://pytorch.org/
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test seq. wheels odo. odo. + FoG RINS-W

15: 16min 19 / 5 / 36 7 / 2 / 7 7 / 5 / 12

16: 73min 140 / 127 / 1166 34 / 20 / 164 27 / 11 / 20

17: 19min 96 / 64 / 427 58 / 51 / 166 13 / 11 / 13

15-17: 108min 114 / 98 / 677 34 / 30 / 152 22 / 10 / 18

Table 11.1: Results obtained by the 3 methods on urban test sequences 15, 16, 17 in
terms of: m-ATE /aligned m-ATE / final distance error to ground truth, in m. Last line
is the concatenation of the three sequences. Direct IMU integration always diverges.
The proposed RINS-W outperforms differential wheel speeds based odometry and out-
performs on average (see last line) the expensive combination of odometry + FoG. In-
deed, RINS-W uses an IMU with gyro stability of 10deg /h, whereas FoG stability is
0.05deg /h.

use a threshold of 0.005 rad/s for the angular velocity, and a threshold of 0.1m/s for
the lateral and upward velocities.

The detector is trained during 500 epochs with the ADAM optimizer [162], whose
learning rate is initializing at 10�3 and managed by a learning rate scheduler. Regular-
ization is enforced with dropout layer, where p = 0.4 is the probability of any element
to be zero. We use the binary cross entropy loss since we have four binary classification
problems. For each epoch, we organize data as a batch of 2min sequences, where we
randomly set the start instant of each sequence, and constraints each starting sequence
to be a stop of at minimum 1 s. Training the full detector takes less than one day with
a GTX 1080 GPU.

5.3 5.3 Evaluation Metrics

To assess performances we consider three error metrics:

Mean Absolute Trajectory Error (m-ATE): which averages the planar translation er-
ror of estimated poses with respect to a ground truth trajectory and is less sensitive to
single poor estimates than root mean square error;

Mean Absolute Aligned Trajectory Error (aligned m-ATE): that first aligns the esti-
mated trajectory with the ground truth and then computes the mean absolute trajec-
tory error. This metric evaluates the consistency of the trajectory estimates;

Final distance error: which is the final distance between the un-aligned estimates and
the ground truth.

5.4 5.4 Trajectory Results

After training the detector on sequences urban06 to urban14, we evaluate the approach
on test sequences urban15 to urban17, that represent 40 km of evaluation data. We
compare 4 methods:

• IMU: the direct integration of the IMUmeasurements based on (11.1)-(11.7), that
is, pure inertial navigation;
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Figure 11.7: Ground truth and trajectory estimates for the test sequence urban15 of
the car dataset [199]. RINS-W obtains results comparable with FoG-based odometry.

• Odometry: the integration of a differential wheel encoder which computes linear
and angular velocities;

• RINS-W (ours): the proposed approach, that uses only the IMU signals and in-
volves no other sensor.

• Odometry + FoG: the integration of a differential wheel encoder which computes
only linear velocity. The angular velocity is obtained after integrating the incre-
ments of an highly accurate and costly KVH DSP-17604 Fiber optics Gyro (FoG).
The FoG gyro bias stability (0.05deg /h) is 200 times smaller than the gyro stabil-
ity of the IMU used by RINS-W;

We delay each sequence such that the trajectory starts with a 1 s stop to initialize
the orientation and the biases, see Section 4.2. Bias initialization is also performed for
IMU pure integration and the FoG. Optimized parameters for wheel speeds sensors
calibration are provided by the dataset.

Experimental results in terms of error with respect to ground truth are displayed
in Table 11.1, and illustrated on Figures 11.1, 11.7, and 11.8. Results demonstrate that:

• directly integrating IMU leads to divergence at the first turn, even after a careful
calibration procedure;

• wheel-based differential odometry accurately estimates the linear velocity but
has troubles estimating the yaw during sharp bends, even if the dataset has been
obtained in an urban environment and the odometry parameters are calibrated.
This drawback may be remedied at the expense of using an additional high-cost
gyroscope;

4https://www.kvh.com
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Figure 11.8: Ground truth and trajectory estimates for the test sequence urban17 of the
car dataset [199]. RINS-W clearly outperforms the odometry and even the odometry +
FoG solution. We note that RINS-W accurately follows the interchange road located at
(x = 2, y = 1).

• the proposed scheme completely outperforms wheel encoders, albeit in urban
environment. More surprisingly, our approach competes with the combination
of wheel speed sensors + (200 hundred times more accurate) Fyber optics Gyro,
and even outperforms it on average.

Furthermore, although comparisons were performed in 2D environments our method
yields the full 3D pose of the robot, and as such is compatible with non planar envi-
ronments.

5.5 5.5 Discussion

The performances of RINS-W can be explained by: i) a false-alarm free detector; ii)
the fact incorporating side information into IMU integration obviously yields better
results; and iii) the use of IEKF that has been proved to be well suited for localization
tasks.

We also emphasize the importance of (11.11) and (11.13) in the procedure, i.e. ap-
plying (11.25)-(11.26). For illustration, we consider sequence urban07 of [199], where
the vehicle moves during 7 minutes without stop so that ZUPT may not be used. We
implement the detector trained on the first 6 sequences, and compare the proposed
RINS-W to a RINS-W which does not use updates (11.25)-(11.26) when detected, see
Figure 11.9. Clearly, the reduced RINS-W diverges at the first turn whereas the full
RINS-W is accurate along all the trajectory and obtains a final distance w.r.t. ground
truth of 5m. In contrast, odometry + FoG achieves 16m.
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Figure 11.9: Comparison on the sequence urban07 between proposed RINS-W, usual
integration that only integrates the IMU measurements without applying pseudo-
measurement update. The final distance between ground truth and RINS-W estimates
is as small as 5m, whereas ignoring (11.25)-(11.26) yields divergence.

5.6 5.6 Detector Evaluation

In Section 5.5 we mentioned three possible reasons explaining the performances of
RINS-W, but could not assess what is owed to each. To assess the detector’s perfor-
mance, and to demonstrate the interest of our powerful deep neural network based
approach (see Section 4.1) we focus on the zero velocity detection (11.9), and compare
the detector with the Acceleration-Moving Variance Detector (AMVD) [200] on the test
sequences urban15-17, which represent 64.104 measurements. The AMVD computes
the accelerometer variance over a sample window W = 102 and assumes the vehicle
is stationary if the variance falls below a threshold � = 10�3. To make sure AMVD
performs at its best, the parameters W and � are optimized by grid search on the test
sequences. Results are shown in Table 11.2 and demonstrate the detector is more accu-
rate than this “ideal” AMVD.

6 6 Conclusion

This chapter proposes a novel approach for robust inertial navigation for wheeled
robots. Our approach exploits deep neural networks to identify specific patterns in
wheeled vehicle motions and incorporates this knowledge in IMU integration for local-
ization. The entire algorithm is fed with IMU signals only, and requires no other sen-
sor. The method leads to surprisingly accurate results, and opens new perspectives for
combination of data-driven methods with well established methods for autonomous
systems.
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zveln detection ideal AMVD our detector

true positive / false pos. 47.104 / 4.103 48.104 / 7.102

true negative / false neg. 16.104 / 1.104 16.104 / 9.103

precision / recall 0.974 / 0.940 0.996 / 0.940

Table 11.2: Results on zero velocity (11.9) detection obtained by an ideal AMVD [200]
and the proposed detector on test sequences urban15-17. The proposed detector sys-
tematically obtains better results and precision. This is remarkable because the detec-
tor is not trained on those sequences, whereas AMVD parameters were optimized on
the considered test sequences.

Appendix

Following the Right IEKF of [42], the Jacobians required for the computation of the
filter propagation (11.20) are given as

Fn = I+
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when ẑveln = 0 and ẑangn = 0. Otherwise, we set the appropriate rows to zero in Fn and
Gn, i.e.:

• if ẑveln = 1 we set the 4 to 9 rows of the right part of Fn in (11.33) and of Gn to
zero.

• if ẑangn = 1 we set the 3 first rows of the right part of Fn in (11.33) and of Gn to
zero.

Once again following [42], the measurement Jacobians used in the filter update
(11.27)-(11.30) are given as

Hvel

n =

"

0 (Rimu

n )T 0 0 0
(Rimu

n )Tg⇥ 0 0 0 �I

#

, (11.35)

Hang

n =
h

0 0 0 �I 0
i

, (11.36)

and we obtains Hlat

n and Hup

n as respectively the second and third row of Hvel

n .
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CHAPTER12

Denoising IMU Gyroscopes with Deep Learning for
Open-Loop Attitude Estimation

The present chapter has been accepted in IEEE Robotics and Automation Letters.

Résumé

Ce chapitre propose une méthode d’apprentissage pour le débruitage des gyroscopes
des centrales inertielles pour estimer en temps réel l’orientation d’un robot à l’estime.
L’algorithme obtenu surpasse l’état de l’art sur les séquences de test. Les performances
sont obtenues grâce à un modèle bien choisi, une fonction de coût appropriée pour
des incréments d’orientation, et grâce à l’identification de points clés lors de la formu-
lation du problème avec des données inertielles à haute fréquence. Notre approche
s’appuie sur un réseau de neurones basé sur des convolutions dilatées, sans nécessiter
de réseau récurrent. Nous démontrons l’efficacité de notre stratégie pour l’ estimation
d’orientation 3D sur les jeux de données EuRoC et TUM-VI. Fait intéressant, nous ob-
servons que notre algorithme réussit à rivaliser avec le meilleurs systèmes d’odométrie
visuel-inertiel en termes d’estimation d’attitude bien qu’il n’utilise pas de capteurs de
vision. Notre implémentation open-source est disponible à l’:

https://github.com/mbrossar/denoise-imu-gyro.

Chapter abstract

This chapter proposes a learningmethod for denoising gyroscopes of IMUs using ground
truth data, to estimate in real time the orientation (attitude) of a robot in dead reck-
oning. The obtained algorithm outperforms the state-of-the-art on the (unseen) test
sequences. The obtained performances are achieved thanks to a well chosen model, a
proper loss function for orientation increments, and through the identification of key
points when training with high-frequency inertial data. Our approach builds upon a
neural network based on dilated convolutions, without requiring any recurrent neural
network. We demonstrate how efficient our strategy is for 3D attitude estimation on the
EuRoC and TUM-VI datasets. Interestingly, we observe our dead reckoning algorithm
manages to beat top-ranked visual-inertial odometry systems in terms of attitude es-
timation although it does not use vision sensors. Our open-source implementation is
available at:

https://github.com/mbrossar/denoise-imu-gyro.
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Figure 12.1: Schematic illustration of the proposed method. The convolutional neural
network computes gyro corrections (based on past IMU measurements) that filters un-
desirable errors in the raw IMU signals. We then perform open-loop time integration
on the noise-free measurements for regressing low frequency errors between ground
truth and estimated orientation increments.

1 1 Introduction

IMUs allow estimating a robot’s trajectory relative to its starting position, a task called
odometry [202]. Small and cheap IMUs are ubiquitous in smartphones, industrial and
robotics applications, but suffer from difficulties to estimate sources of error, such as
axis-misalignment, scale factors and time-varying offsets [203,204]. Hence, IMU sig-
nals are not only noisy, but they are biased. In the present chapter, we propose to
leverage deep learning for denoising the gyroscopes (gyros) of an IMU, that is, reduce
noise and biases. As a byproduct, we obtain accurate attitude (i.e. orientation) esti-
mates simply by open-loop integration of the obtained noise-free gyro measurements.

1.1 1.1 Links and Differences with Existing Literature

IMUs are generally coupled with complementary sensors to obtain robust pose es-
timates in sensor-fusion systems. To obtain accurate pose estimates, a proper IMU
calibration is required, see e.g. the widely used Kalibr library [203,205], which com-
putes offline the underlying IMU intrinsic and extrinsic calibration parameters. Our
approach, which is recapped in Figure 12.1, is applicable to any system equipped with
an IMU. It estimates offline the IMU calibration parameters and extends methods such
as [203,205] to time-varying and difficult to model signal corrections.

Machine learning (more specifically deep learning) has been recently leveraged to
perform LiDAR, visual-inertial, and purely inertial localization, where methods are
divided into supervised [148,149,206,207] and unsupervised [208]. Most works ex-
tract relevant features in the sensors’ signals which are propagated in time through
recurrent neural networks, whereas [209] proposes convolutional neural networks for
pedestrian inertial navigation. A related approach [210] applies reinforcement learn-
ing for guiding the user to properly calibrate visual-inertial rigs. Our method is super-
vised (we require ground truth poses for training), leverages convolutions rather than
recurrent architectures, and outperforms the latter approach. We obtain significantly
better results while requiring considerably less data and less time. Finally, the refer-
ence [207] estimates orientation with an IMU and recurrent neural networks, but our
approach proves simpler.

1.2 1.2 Contributions

Our main contributions are as follows:
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• detailed modelling of the problem of learning orientation increments from low-
cost IMUs;

• the convolutional neural network which regresses gyro corrections and whose
features are carefully selected;

• the training procedure which involves a trackable loss function for estimating
relative orientation increments;

• the approach evaluation on datasets acquired by a drone and a hand-held device
[106,211], where our method outperforms [207] and competes with VIOmethods
[112,212] although it does not use vision;

• perspectives towards more efficient VIO and IMU based learning methods;

• a publicly available open-sourced code, where training is done in 5 minutes per
dataset.

2 2 Kinematic & Low-Cost IMUModels

We detail in this section our model.

2.1 2.1 Kinematic Model based on Orientation Increments

The 3D orientation of a rigid platform is obtained by integrating orientation incre-
ments, that is, gyro outputs of an IMU, through

Rn = Rn�1 exp(ωndt) , (12.1)

where the rotation matrix Rn 2 SO(3) at timestamp nmaps the IMU frame to the global
frame, the angular velocity ωn 2 R3 is averaged during dt, and with exp(·) the SO(3)
exponential map. The model (12.1) successively integrates in open-loop ωn and propa-
gates estimation errors. Indeed, let R̂n denotes an estimate of Rn. The error present in
R̂n�1 is propagated in R̂n through (12.1).

2.2 2.2 Low-Cost Inertial Measurement Unit (IMU) Sensor Model

The IMU provides noisy and biased measurements of angular rate ωn and specific ac-
celeration an at high frequency (200Hz in our experiments) as, see [203,204],

uimu

n =

"

ωimu

n

aimun

#

= C

"

ωn

an

#

+bn +wn, (12.2)

where bn 2 R6 are quasi-constant biases, wn 2 R6 are commonly assumed zero-mean
white Gaussian noises, and

an = RT
n�1 ((vn � vn�1) /dt � g) 2 R3 (12.3)

is the acceleration in the IMU frame without the effects of gravity g, with vn 2 R3 the
IMU velocity expressed in the global frame. The intrinsic calibration matrix

C =

"

SωMω A
03⇥3 SaMa

#

⇡ I6 (12.4)
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contains the information for correcting signals: axis misalignments (matrices Mω ⇡ I3,
Ma ⇡ I3); scale factors (diagonal matrices Sω ⇡ I3, Sa ⇡ I3); and linear accelerations
on gyro measurements, a.k.a. g-sensitivity (matrix A ⇡ 03⇥3). Remaining intrinsic
parameters, e.g. level-arm between gyro and accelerometer, can be found in [203,204].

We now make three remarks regarding (12.1)-(12.4):

1. equations (12.2)-(12.4) represent a model that approximates reality. Indeed, cali-
bration parametersC and biases bn should both depend on time as they vary with
temperature and stress [144,204], but are difficult to estimate in real-time. Then,
vibrations and platform excitations due to, e.g., rotors make Gaussian noise wn

colored in practice [213], albeit commonly assumed white;

2. substituting actual measurements ωimu

n in place of true value ωn in (12.1) leads
generally to quick drift (in a few seconds) and poor orientation estimates;

3. in terms of method evaluation, one should always compare the learning method
with respect to results obtained with a properly calibrated IMU as a proper esti-
mation of the parameters C and bn in (12.2) actually leads to surprisingly precise
results, see Section 4.

3 3 Learning Method for Denoising the IMU

We describe in this section our approach for regression of noise-free gyro increments
ω̂n in (12.2) in order to obtain accurate orientation estimates by integration of ω̂n in
(12.1). Our goal thus boils down to estimating bn, wn, and correcting the misknown C.

3.1 3.1 Proposed Gyro Correction Model

Leveraging the analysis of Section 2, we compute the noise-free increments as

ω̂n = Ĉωω
imu

n + ω̃n, (12.5)

with Ĉω = ŜωM̂ω 2 R3⇥3 the intrinsic parameters that account for gyro axis-misalignment
and scale factors, and where the gyro bias is included in the gyro correction ω̃n. Explic-
itly considering the small accelerometer influence A, see (12.2)-(12.4), does not affect
the results so it is ignored.

We now search to compute ω̃n and Ĉω. The neural network described in Section
3.2 computes ω̃n by leveraging information present in a past local window of size N
aroundωimu

n . In contrast, we let Ĉω be static parameters initialized at I3 and optimized
during training since each considered dataset uses one IMU. The learning problem in-
volving a time varying Ĉω and/or multiple IMUs is let for future works.

The consequences of opting for the simple model (12.5) and the proposed network
structure are as follows. First, the corrected gyro may be initialized on the original
gyro, i.e. ω̂n ⇡ ωimu

n with Ĉω = I3 and ω̃n ⇡ 03 before training. This way, the method
improves the estimates as soon as the first training epoch. Then, our method is in-
trinsically robust to overfitting as measurements outside the local windows, i.e. whose
timestamps are less than n �N or greater than n, see Figure 12.2, do not participate
in infering ω̃n. This allows us to train the method with 8 or less minutes of data, see
Section 4.1.
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Figure 12.2: Proposed neural network structure which computes gyro correction ω̃n

in (12.5) from the N past IMU measurements. We set the Convolutional Neural Net-
works (CNNs) as indicated in the table, and define between two convolutional layers a
batchnorm layer [214] and a smooth GELU activation function [215] (magenta arrows).
The adopted structure defines the window size N = max(kernel dim.⇥dilation gap) =
7 ⇥ 64 = 448, corresponding to 2.24 s of past information, and has been found after
trial-and-error on datasets [106,211].

3.2 3.2 Dilated Convolutional Neural Network Structure

We define here the neural network structure which infers the gyro correction as

ω̃n = f (uimu

n�N , . . . ,u
imu

n ), (12.6)

where f (·) is the function defined by the neural network. The network should extract
information at temporal multi-scales and compute smooth corrections. Note that, the
input of the network consists of IMU data, that is, gyros naturally, but also accelerom-
eters signals. Indeed, from (12.3), if the velocity varies slowly between successive in-
crements we have

an+1 � an ⇡ �(Rn �Rn�1)
Tg

⇡ �(exp(�ωndt)� I3)RT
n�1g, (12.7)

which also provides information about angular velocity.

We leverage dilated convolutions that infer a correction based on a local window of
N = 448 previous measurements, which represents 2.24 s of information before times-
tamp n in our experiments. Dilated convolutions are a method based on convolutions
applied to input with defined dilatation gap, see [216], which: i) supports exponen-
tial expansion of the receptive field, i.e., N , without loss of resolution or coverage;
ii) is computationally efficient with few memory consumption; and iii) maintains the
temporal ordering of data. We thus expect the network to detect and correct various
features such as rotor vibrations that are not modeled in (12.2). Our configuration
given in Figure 12.2 requires learning 77052 parameters, which is extremely low and
contrasts with recent (visual-)inertial learning methods, see e.g. [208] Figure 2, where
IMU processing only requires more than 2600000 parameters.

3.3 3.3 Loss Function based on Integrated Gyro Increments

Defining a loss function directly based on errorsωn�ω̂n requires having a ground truth
ωn at IMU frequency (200Hz), which is not feasible in practice as the best tracking
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Figure 12.3: Time efficient computation of the loss (12.9) by viewing the orientation
integration (12.8) as a tree of matrix multiplications. Computation for length j requires
log2(j) “batch” operations as denoted by the blue vertical arrow on the left. We see we
need 3 batches of parallel operations for j = 8 on the chart above. In the same way, we
only need 5 operations for j = 32.

systems are accurate at 20-120Hz. In place, we suggest defining a loss based on the
following integrated increments

�Ri,i+j = RT
i Ri+j =

i+j�1
Y

k=i

exp(ωk) , (12.8)

i.e., where the IMU frequency is reduced by a factor j . We then compute the loss for a
given j as

Lj =
X

i

⇢
⇣

log
⇣

�Ri,i+j�R̂
T
i,i+j

⌘⌘

, (12.9)

where log(·) is the SO(3) logarithm map, and ⇢(·) is the Huber loss function. We set in
our experiments the Huber loss parameter to 0.005, and define our loss function as

L = L16 +L32. (12.10)

The motivations for (12.9)-(12.10) are as follows:

• the choice of Huber loss ⇢(·) yields robustness to ground truth outliers;

• (12.8) is invariant to rotations which suits well IMUs, whose gyro and accelerom-
eter measurements are respectively invariant to rotations and yaw changes [202,
217], i.e., left shifting Rn �RRn and R̂n �RR̂n with �Rn 2 SO(3) leaves (12.9)
unchanged;

• the choice of (12.10) corresponds to error increments at 200/16 ⇡ 12Hz and
200/32 ⇡ 6Hz, which is barely slower than ground truth. Setting too high a j ,
or in the extreme case using a loss based on the overall orientation error RT

n R̂n,
would make the algorithm prone to overfitting, and hence makes the method too
sensitive to specific trajectory patterns of training data.

3.4 3.4 Efficient Computation of (12.8)-(12.10)

First, note that thanks to parallelization applying e.g., exp(·), to one or parallelly to
many ω̂n takes similar execution time on a GPU (we found experimentally that one op-
eration takes 5ms whereas 10million operations in parallel take 70ms, that is, the time
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Figure 12.4: Horizontal ground truth trajectory for the sequence room 1 of [211].
Ground truth is periodically absent due to occlusions of the hand-held device from
the motion capture system, see the color lines on the right of the figure.

per operation drops to 7 ns). We call an operation that is parallelly applied to many
instances a batch operation. That said, an apparent drawback of (12.8) is to require
j matrix multiplications, i.e. j operations. However, first, we may compute ground
truth �Ri,i+j only once, store it, and then we only need to compute �R̂i,i+j multiple
times. Second, by viewing (12.8) as a tree of matrix multiplications, see Figure 12.3,
we reduce the computation to log2(j) batch GPU operations only. We finally apply sub-
sampling and take one i every j timestamps to avoid counting multiple times the same
increment. Training speed is thus increased by a factor 32/ log2(32) ⇡ 6.

3.5 3.5 Training with Data Augmentation

Data augmentation is a way to significantly increase the diversity of data available for
training without actually collecting new data, to avoid overfitting. This may be done
for the IMU model of Section 2 by adding Gaussian noise wn, adding static bias bn,
uncalibrating the IMU, and shifting the orientation of the IMU in the accelerometer
measurement. The two first points were noted in [207], whereas the two latter are to
the best of our knowledge novel.

Although each point may increase the diversity of data, we found they do not nec-
essarily improve the results. We opted for addition of a Gaussian noise (only), during
each training epoch, whose standard deviation is the half the standard deviation that
the dataset provides (0.01deg/s).

4 4 Experiments

We evaluate the method in term of 3D orientation and yaw estimates, as the latter are
more critical regarding long-term odometry estimation [202,218].

4.1 4.1 Dataset Descriptions

We divide data into training, validation, and test sets, defined as follows, see Chap-
ter I.5.3 of [161]. We optimize the neural network and calibration parameters on the
training set. Validation set intervenes when training is over, and provides a biased eval-
uation, as the validation set is used for training (data are seen, although never used for
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dataset sequence
VINS- VINS-Mono Open- Open-VINS

Mono [112] (loop-closure) VINS [212] (proposed)

MH 02 easy 1.34/1.32 0.57/0.50 1.11/1.05 1.21/1.12

MH 04 difficult 1.44/1.40 1.06/1.00 1.60/1.16 1.40/0.89

EuRoC V1 01 easy 0.97/0.90 0.57/0.44 0.80/0.67 0.80/0.67

[106] V1 03 difficult 4.72/4.68 4.06/4.00 2.32/2.27 2.25/2.20

V2 02 medium 2.58/2.41 1.83/1.61 1.85/1.61 1.81/1.57

average 2.21/2.14 1.62/1.52 1.55/1.37 1.50/1.30

room 2 0.60/0.45 0.69/0.50 2.47/2.36 1.95/1.84

TUM-VI room 4 0.76/0.63 0.66/0.51 0.97/0.88 0.93/0.83

[211] room 6 0.58/0.38 0.54/0.33 0.63/0.51 0.60/0.51

average 0.66/0.49 0.63/0.45 1.33/1.25 1.12/1.05

dataset sequence
zero raw OriNet* calibrated IMU proposed

motion IMU [207] (proposed) IMU

MH 02 44.4/43.7 146/130 5.12/– 7.09/1.49 1.39/0.85

MH 04 42.3/41.9 130/77.9 7.77/– 5.64/2.53 1.40/0.25

EuRoC V1 01 114/76 71.3/71.2 5.01/– 6.65/3.95 1.13/0.49

[106] V1 03 119/84.9 120/74.5 13.2/– 3.56/2.04 2.70/0.96

V2 02 93.9/93.5 117/86 9.59/– 4.63/2.30 3.85/2.25

average 125/89.0 7.70/– 5.51/2.46 2.10/0.96

room 2 91.8/90.4 118/88.1 –/– 10.6/10.5 1.31/1.18

TUM-VI room 4 107/103 74.1/48.2 –/– 2.43/2.30 1.48/0.85

[211] room 6 138/131 94.0/76.1 –/– 4.39/4.31 1.04/0.57

average 112/108 95.7/70.8 –/– 5.82/5.72 1.28/0.82

Table 12.1: Absolute Orientation Error (AOE) in terms of 3D orientation/yaw, in de-
gree, on the test sequences. We see our approach competes with VIO (while entirely
based on IMU signals) and outperforms other inertial methods. (*) Note that, results
from OriNet correspond instead to the mean orientation error

PM
n=1 k log(RT

n R̂n)k2/M
which is by definition always less than AOE criterion, and are unavailable on the TUM-
VI dataset.
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“learning"). The test set is the gold standard to provide an unbiased evaluation. It
is only used once training (using the training and validation sets) is terminated. The
datasets we use are as follows.

EuRoC: the dataset [106] contains image and inertial data at 200Hz from a micro
aerial vehicle divided into 11 flight trajectories of 2-3 minutes in two environments.
The ADIS16448 IMU is uncalibrated and we note ground truth from laser tracker and
motion capture system is accurately time-synchronized with the IMU, although dy-
namic motions deteriorate the measurement accuracy. As yet noticed in [212], ground
truth for the sequence V1 01 easy needs to be recomputed.

We define the train set as the first 50 s of the six sequences MH{01,03,05}, V1{02},
V2{01,03}, the validation set as the remaining ending parts of these sequences, and
we constitute the test set as the five remaining sequences. We show in Section 4.5 that
using only 8 minutes of accurate data for training - the beginning and end of each
trajectory are the most accurately measured - is sufficient to obtain relevant results.

TUM-VI: the recent dataset [211] consists of visual-inertial sequences in different
scenes from an hand-held device. The cheap BMI160 IMU logs data at 200Hz and
was properly calibrated. Ground truth is accurately time-synchronized with the IMU,
although each sequence contains periodic instants of duration 0.2 s where ground truth
is unavailable as the acquisition platform was hidden from the motion capture system,
see Figure 12.4. We take the 6 room sequences, which are the sequences having longest
ground truth (2-3 minutes each).

We define the train set as the first 50 s of the sequences room 1, room 3, and room 5,
the validation set as the remaining ending parts of these sequences, and we set the test
set as the 3 other room sequences. This slipt corresponds to 45000 training data points
(90000 for EuRoC) which is in the same order as the number of optimized parame-
ters, 77052, and requires regularization techniques such as weight decay and dropout
during training.

4.2 4.2 Method Implementation & Training

Our open-sourcemethod is implemented on PyTorch 1.5, where we configure the train-
ing hyperparameters as follows. We set weight decay with parameter 0.1, and dropout
with 0.1 the probability of an element to be set equal to zero. Both techniques reduce
overfitting.

We choose the ADAM optimizer [162] with cosines warning restart scheduler [219]
where learning rate is initialized at 0.01. We train for 1800 epochs, which is is very fast
as it takes less than 5 minutes for each dataset with a GTX 1080 GPU device.

4.3 4.3 Compared Methods

We compare a set of methods based on camera and/or IMU.

Methods Based on the IMU Only: we compare the following approaches:

• raw IMU, that is an uncalibrated IMU. It refers also to the proposed method once
initialized but not trained;

• OriNet [207], which is based on recurrent neural networks, and whose validation
set corresponds to the test set (our training setting is thus more challenging);
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Figure 12.5: Relative Orientation Error (ROE) in terms of 3D orientation and yaw er-
rors on the test sequences. Our method outperforms calibrated IMU and competes
with VIO methods albeit based only on IMU signals. Raw IMU and zero motion are
way off. Results from OriNet are unavailable.
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Figure 12.6: Orientation estimates on the test sequence MH 04 difficult of [106]
(left), and room 4 of [211] (right). Our method removes errors of the calibrated IMU
and competes with VIO algorithms.
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• calibrated IMU, that is, our method where the 12 parameters Ĉω and ω̃n are
constant, nonzero, and optimized;

• proposed IMU, which is our learning based method described in Section 3.

Methods Based on Camera and the IMU: we run each of the following method with
the same setting, ten times to then average results, and on a Dell Precision Tower 7910
workstation desktop, i.e., without deterioration due to computational limitations [218].
We compare:

• VINS-Mono [112], a monocular VIO framework with notable performances on
the EuRoC benchmark [218];

• VINS-Mono (loop closure), which is the original VINS-Mono [112] reinforced
with loop-closure ability;

• Open-VINS [212], a versatile filter-based visual-inertial estimator for which we
choose the stereo configuration, and that is top-ranked on the drone dataset of
[220];

• Open-VINS (proposed), which is Open-VINS of [212] but where gyro inputs are
the proposed corrected gyro measurements (12.5) output by our method (trained
on sequences that are of course different from those used for evaluation).

Remaining Methods: we finally add a basic zero motion, that is ωn = 03 considered
as the standard prior in visual odometry when IMU is not available.

4.4 4.4 Evaluation Metrics

We evaluate the above methods using the following metrics that we compute with the
toolbox of [212].

Absolute Orientation Error (AOE): which computes the mean square error between
the ground truth and estimates for a given sequence as

AOE =

v

u

t

M
X

n=1

1

M
k log

⇣

RT
n R̂n

⌘

k22, (12.11)

with M the sequence length, log(·) the SO(3) logarithm map, and where the estimated
trajectory has been aligned on the ground truth at the first instant n = 0.

Relative Orientation Error (ROE): which is computed as [217]

ROE = k log
⇣

�RT
n,g(n)�R̂n,g(n)

⌘

k2, (12.12)

for each pair of timestamps (n,g(n)) representing an IMU displacement of 7, 21 or
35 meters. Collecting the error (12.12) for all the pairs of sub-trajectories generates
a collection of errors where informative statistics such as the median and percentiles
are calculated. As [212,217,218], we strongly recommend ROE for comparing odome-
try estimation methods since AOE is highly sensitive to the time when the estimation
error occurs. We finally consider slight variants of (12.11)-(12.12) when considering
yaw (only) errors, and note that errors of visual methods generally scale with distance
travelled whereas errors of inertial only methods scales with time. We provide in the
present chapter errors w.r.t. distance travelled to favor comparison with benchmarks
such as [218], and same conclusions hold when computing ROE as function of different
times.
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4.5 4.5 Results

Results are given in term of AOE and ROE respectively in Table 12.1 and Figure 12.5.
Figure 12.6 illustrates roll, pitch and yaw estimates for a test sequence of each dataset,
and Figure 12.7 shows orientation errors. We note that:

Uncalibrated IMU is Unreliable: raw IMU estimates deviate from ground truth in as
low as 10 s, see Figure 12.6, and are barely more reliable than null rotation assumption.

Calibrated IMU Outperforms OriNet: only calibrating an IMU (via our optimization
method) leads to surprisingly accurate results, see e.g., Figure 12.6 (right) where it is
difficult to distinguish it from ground truth. This evidences cheap sensors can provide
very accurate information once they are correctly calibrated.

The ProposedMethodOutperforms InertialMethods: OriNet [207] is outperformed.
Moreover, our method improves accurate calibrated IMU by a factor 2 to 4. Our ap-
proach notably obtains as low as a median error of 1.34deg /min and 0.68deg /min on
respectively EuRoC and TUM-VI datasets.

The Proposed Method Competes with VIO: our IMU only method is accurate even
on the high motion dynamics present in both datasets, see Figure 12.6, and competes
with VINS-Mono and Open-VINS, although trained with only a few minutes of data.

Finally, as the performance of each method depends on the dataset and the algo-
rithm setting, see Figure 12.5, it is difficult to conclude which VIO algorithm is the
best.

4.6 4.6 Further Results and Comments

We provide a few more comments, supported by further experimental results.

Small Corrections Might Lead to Large Improvement: the calibrated and corrected
gyro signals are visually undistinguishable: differences between them rely in correc-
tions ω̃n of few deg/s, as shown in Figure 12.8. However, they bring drastic improve-
ment in the estimates. This confirms the interest of leveraging neural networks for
model correction (12.2)-(12.4).

The Proposed Method is Well Suited to Yaw Estimation: according to Table 12.1
and Figure 12.5, we see yaw estimates are particularly accurate. Indeed, VIO methods
are able to recover at any time roll and pitch thanks to accelerometers, but the yaw
estimates drift with time. In contrast our dead-reckoning method never has access
to information allowing to recover roll and pitch during testing, and nor does it use
“future” information such as VINS-Mono with loop-closure ability. We finally note
that accurate yaw estimates could be fruitful for yaw-independent VIO methods such
as [82].

CorrectingGyro Slightly Improves Open-VINS [212]: bothmethods based on Open-
VINS perform similarly, which is not surprising as camera alone already provides ac-
curate orientation estimates and the gyro assists stereo cameras.
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Figure 12.7: Orientation errors on the sequence room 4 of [211]. Our method removes
errors of the calibrated IMU and competes with VIO algorithms.

Our Method Requires few Computational Ressources: each VIO method performs
here at its best while resorting to high computational requirements, and we expect
our method - once trained - is very attractive when running onboard with limited re-
sources. Note that, the proposed method performs e.g. 3 times better in terms of yaw
estimates than a slightly restricted VINS-Mono, see Figure 3 of [218].

5 5 Discussion

We now provide the community with feedback regarding the method and its imple-
mentation. Notably, we emphasize a few points that seem key to a successful imple-
mentation when working with a low-cost high frequency IMU.

5.1 5.1 Key Points Regarding the Dataset

One should be careful regarding the quality of data, especially when IMU is sampled
at high-frequency. This concerns:

IMU Signal: the IMU signal acquisition should be correct with constant sampling
time.

Ground Truth Pose Accuracy: we note that the EuRoC ground truth accuracy is better
at the beginning of the trajectory. As such, training with only this part of data (the first
50 s of the training sequences) is sufficient (and best) to succeed.

Ground Truth Time-Alignement: the time alignment between ground truth and IMU
is significant for success, otherwise the method is prone to learn a time delay.

We admit that our approach requires a proper dataset, which is what constitutes its
main limitation.

5.2 5.2 Key Points Regarding the Neural Network

Our conclusions about the neural network are as follows.

Activation Function: the GELU and other smooth activation functions [215], such as
ELU, perform well, whereas ReLU based network is more prone to overfit. We believe
ReLU activation function favors sharp corrections which does not make sense when
dealing with physical signals.

Neural NetworkHyperparameters: increasing the depth, channel and/or kernel sizes
of the network, see Figure 12.2, does not systematically lead to better results. We
tuned these hyperparameters with random search, although more sophisticated meth-
ods such as [221] exist.

Normalization Layer: batchnorm layer improves both training speed and accuracy
[214], and is highly recommended.
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Figure 12.8: Gyro correction ω̃n on the sequence room 4 of [211]. We see we manage to
divide orientation errors by a factor at least 2 w.r.t. calibrated IMU applying corrections
whose amplitude is as low as 1 deg/s (max).

5.3 5.3 Key Points Regarding Training

As in any machine learning application, the neural network architecture is a key com-
ponent among others [161]. Our comments regarding training are as follows:

Optimizer: the ADAM optimizer [162] performs well.

LearningRate Scheduler: adopting a learning rate policy with cosinus warning restart
[219] leads to substantial improvement and helps to find a correct learning rate.

Regularization: dropout and weight decay hyperparameters are crucial to avoid over-
fitting. Each has a range of ideal values which is quickly tuned with basic grid-search.

5.4 5.4 Remaining Key Points

We finally outline two points that we consider useful to the practitioner:

Orientation Implementation: we did not find any difference between rotation ma-
trix or quaternion loss function implementation once numerical issues are solved, e.g.,
by enforcing quaternion unit norm. Both implementations result in similar accuracy
performance and execution time.

Generalization and Transfert Learning: it may prove useful to assess to what extent a
learning method is generalizable. The extension of the method, trained on one dataset,
to another device or to the same device on another platform is considered as challeng-
ing, though, and left for future work.

6 6 Conclusion

This chapter proposes a deep-learning method for denoising IMU gyroscopes and ob-
tains remarkable accurate attitude estimates with only a low-cost IMU, that outper-
forms state-of-the-art [207]. The core of the approach is based on a careful design and
feature selection of a dilated convolutional network, and an appropriate loss function
leveraged for training on orientation increment at the ground truth frequency. This
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leads to a method robust to overfitting, efficient and fast to train, which serves as of-
fline IMU calibration and may enhance it. As a remarkable byproduct, the method
competes with state-of-the-art visual-inertial methods in term of attitude estimates on
a drone and hand-held device datasets, where we simply integrate noise-free gyro mea-
surements.
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CHAPTER13

Additional Results for Inertial Navigation of Cars

In this Chapter, we show unpublished additional results for inertial navigation of car.
The approach is a direct extension of the Chapter 11 where the noise covariance matrix
of the filter is adapted by the method described in Chapter 8.

1 1 Introduction

We show here a modular method for odometry localization of ground vehicles, whose
overview is depicted in Figure 13.1, that requires only an IMU. The approach identi-
fies instants where the vehicle is stopping from raw sensor signals and leverages them
through an invariant Kalman filter for robust state estimation of vehicle pose, vehicle
velocity and IMU biases.

We perform substantial evaluations on three vehicle datasets, which represent a to-
tal amount of 366 km of data acquired during 15 hours in diverse environments such
as cities, highway and countries, where the vehicle moves up to 25 m/s during three se-
quences of minimum 70 minutes long on our own specifically dedicated experiments.

Themethod obtain impressively accurate results that exhibit how sufficient amedium-
cost IMU contains information for odometry localization.

2 2 Experimental Results

We evaluate the performances of the proposed approach on three datasets. Our pri-
mary goal in this section is to show that using an IMU of moderate cost, one manages
to obtain surprisingly accurate dead-reckoning by combining machine learning tech-
niques with a state-of-the-art Kalman filter.

2.1 2.1 Dataset Descriptions

The three datasets have been acquired on distinct vehicles, each of them being equipped
with its proper sensor suite, see Figure 13.2. We dispose of a total amount of 366 km
high-quality experimental data acquired during more than 15h with a great diversity
in terms of vehicle dynamics, sensors, and external environments, see Table 13.1. We
gives in the following a brief description of each dataset.
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Figure 13.1: Structure of the proposed approach for inertial based navigation, which
requires only an IMU. The detector (blue) feeds zero-motion information to the mea-
surement adapter and the filter from raw sensor data. The adapter (green) outputs a
vector of observations yn along with its uncertainty covariance matrix cov(yn), both are
inputs of the filter (red) that is in charge of state estimation.

Figure 13.2: The approach is evaluated on three distinct datasets: from left to right,
images of the vehicle in the publicly available KAIST dataset [199,222], the Lille dataset
which is publicly available for point cloud classification, see [223,224], and ourMagny-
Les-Hameaux (MLH) dataset. Each dataset disposes among other of IMU data, ground-
truth poses and refers to diverse vehicle dynamics and environments.

dataset
length duration

environment
(km) (min)

KAIST 235 518 urban, highway

Lille 28 132 urban

MLH (ours) 103 242 country

total 366 892 (⇠15h)

Table 13.1: Description of the considered datasets. They dispose all of IMU, centimeter
position ground-truth, represent various vehicle dynamics, sensors, and consist of a
tremendous amount of data targeting diverse environments.
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dataset
odo. IMU

ATE a-ATE AVE ATE a-ATE AVE
(m) (m) (m/s) (m) (m) (m/s

KAIST 363 145 1.98 61 25 0.55

Lille - - - 7.1 4.2 0.12

MLH 3.103 831 20 117 45 0.33

Table 13.5: Results on different datasets in terms of mean-Absolute Trajectory Error
(ATE), aligned mean-Absolute Trajectory Error (a-ATE) and mean-Absolute Velocity
Error (AVE), where we discard INS results since purely inertial integration often di-
verges. IMU performs particularly well in cities on the KAIST and Lille datasets, keep
robust on our challenging MLH dataset, and never diverge. They completely outper-
form standard wheel odometry (odo.).

KAIST Dataset [199,222]: The KAIST Urban Data Set is a publicly available dataset
that provides IMU, fiber optic gyro, vision, radar, encoder and altimeter data targeting
the highly complex urban environment around Daejong, Korea. The Xsens MTi-300
IMU logs data at 100Hz and has a 10deg /h gyro bias stability. We download 32 se-
quences urban06 to urban37 and exclude the remaining sequences that are provided
without accelerometer measurements.

Lille Dataset: The Paris-Lille-3D dataset [223,224] is a publicly available urban point
cloud dataset for automatic segmentation from which we recover IMU data along with
centimeter accurate ground-truth pose for trajectories located in the city of Lille, France.
The vehicle is a Citroën Jumper van equipped with a precise Novatel FlexPak 6 dual-
phase RTK-GPS and an Ixsea LANDINS IMU whose signal is sampled at 100Hz. The
dataset contains 28 km of experiments divided into 8 sequences up to 20min long.

Magny-Les-Hameaux Dataset (MLH): We obtain experiments from the Safran1 com-
pany, its R&T center “SafranTech" located at Magny-Les-Hameaux, France, and its
laboratory specifically dedicated for autonomous vehicles. We collect IMU, GPS, and
wheel encoder data from a Citroën Picasso in the countryside environment around the
R&T center. The Epsilon10 IMU2 is a medium-cost device specifically dedicated for
hybrid land navigation and orientation systems, and the Geoflex RTK-GPS provides
ground-truth poses. Three sequences of minimum 70min long have been recorded,
representing a total of 105 km data with relatively high vehicle velocity (25m/s), speed
bumps and speed reducers.

2.2 2.2 Evaluation

This section evaluates the dead-reckoningmethod on the KAIST, Lille andMLHdatasets.
We benchmark our method in this section considering only IMU signals.

Evaluation Metrics and Compared Methods: To assess performances we consider
three error metrics:

1https://www.safran-group.com
2https://www.safran-electronics-defense.com/security/navigation-systems
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test seq.

odo. IMU
length duration ATE a-ATE AVE ATE a-ATE AVE

(km) (min) (m) (m) (m/s) (m) (m) (m/s)

06 19 30 3.103 794 11.8 126 38 0.40

07 2 9 10 9 0.64 3 1 0.06

09 15 56 274 107 2.18 35 12 0.35

10 14 40 77 76 1.40 43 35 0.43

11 7 7 158 62 1.46 42 12 0.52

12 8 34 214 144 0.96 123 52 0.38

13 2 23 10 6 0.25 2 2 0.06

14 7 28 219 137 1.41 27 15 0.17

15 5 16 27 12 0.56 10 10 0.17

16 21 73 140 83 1.71 13 7 0.15

17 10 19 78 30 0.82 10 8 0.23

26 4 9 58 25 0.72 9 7 0.20

27 5 19 73 59 1.02 110 59 0.38

28 11 32 445 231 4.42 33 20 0.33

29 3 7 123 15 0.69 9 7 0.20

30 5 19 112 126 0.94 31 30 0.49

31 11 15 512 275 3.01 50 26 0.77

32 6 17 66 32 0.82 7 7 0.19

33 7 21 71 57 0.92 17 13 0.17

34 5 4 50 13 0.86 13 8 0.25

average 185 478 345 138 1.52 40 20 0.29

Table 13.6: Results on the KAIST dataset, where we discard INS results since purely
inertial integration often diverges. IMU outperforms odometry based on wheels. The
vehicle starts by a minimum of 5 s stop in all these sequences that is sufficient for the
proposed method to self-initialize orientation and sensor biases.
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test seq.

odo. IMU
length tion ATE a-ATE AVE ATE a-ATE AVE

(km) (min) (m) (m) (m/s) (m) (m) (m/s)

08 2 5 16 7 0.69 4 3 0.35

18 4 3 212 12 3.20 50 30 1.80

19 3 2 127 22 3.11 88 36 1.72

20 3 2 299 94 9.32 99 58 2.52

21 4 2 103 322 31 177 85 3.95

22 3 2 103 175 26 207 126 5.80

23 3 2 310 90 10 85 30 3.30

24 4 2 103 211 20 206 93 3.94

25 2 2 145 9 3.41 90 41 3.56

35 3 3 57 4 0.81 139 38 2.63

36 9 6 943 678 12.6 148 40 1.97

37 11 9 103 344 8.05 103 242 8.07

average 50 40 583 227 7.5 309 89 3.7

Table 13.7: Results on the KAIST dataset. We discard INS results since purely inertial
integration often diverges. The proposed IMU outperforms the odometry. The vehicle
is always moving in these sequences and the proposed method manage to early initial-
ize sensor biases and state error covariance which constitutes itself a notable feature.

test seq.
INS IMU

length duration ATE a-ATE AVE ATE a-ATE AVE
(km) (min) (m) (m) (m/s) (m) (m) (m/s)

00 6 23 10.103 7.103 22 8 4 0.12

01 2 10 6.103 5.103 33 4 1 0.07

02 1 6 103 103 6 2 2 0.13

03 4 21 18.103 13.103 66 14 12 0.14

04 4 23 25.103 22.103 74 42 25 0.09

05 4 22 23.103 23.103 105 8 5 0.10

06 1 6 103 103 8 2 1 0.07

07 6 21 32.103 24.103 103 16 12 0.16

average 28 132 18.103 15.103 64 7.1 4.2 0.12

Table 13.8: Results on the Lille dataset. Purely inertial integration (INS) tends to di-
verge, whereas the proposed IMU keep accurate for the longest 20min long sequences.
Both methods uses only the IMU. The proposed method particularly well estimates
curved bends and roundabouts, see Figure 13.18.
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test seq.
odo. IMU

length duration ATE a-ATE AVE ATE a-ATE AVE

(km) (min) (m) (m) (m/s) (m) (m) (m/s)

00 38 70 5700 300 10 151 49 0.48
01 27 71 2100 1400 50 106 42 0.34
02 38 101 2000 800 7 102 44 0.21

average 103 242 3100 831 20 117 45 0.33

Table 13.9: Results on our specifically dedicated Magny-Les-Hameaux (MLH) dataset.
We discard INS results since purely inertial integration often diverges. The proposed
IMU outperforms the odometry. Such results are impression on this countryside
dataset which contains many speed bump and wheel slip in long sequences at rela-
tively high speed (25m/s).
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Figure 13.15: Trajectory estimates on the sequence 01 on the MLH dataset (27 km,
71min). IMU follows ground-truth for this particularly long experiment.
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ATE: mean-Absolute Trajectory Error, which averages the translation error of esti-
mated poses w.r.t. a ground-truth trajectory,

ATE =
1

N

N
X

n=0

�

�

�pimu

n � p̂imu

n

�

�

�

1
; (13.1)

a-ATE: aligned mean-Absolute Trajectory Error, that first aligns the estimated tra-
jectory with the ground-truth and then computes the mean-absolute trajectory
error,

a-ATE =
1

N

N
X

n=0

kpimu

n �Rp̂imu

n �pk1, (13.2)

whereR,p = argminR,p
⇣

PN
n=0 kpimu

n �Rp̂imu

n �pk1
⌘

is computed by Umeyama align-
ment. This metric evaluates the full consistency of the trajectory estimates and is
less affected than ATE by precocious yaw misalignment;

AVE: mean-Absolute Velocity Error, which averages the estimated speedw.r.t. a ground-
truth velocity,

AVE =
1

N

N
X

n=0

kvimun � v̂imun k1, (13.3)

and indicates the ability of a method for regressing velocity in the world frame.

The three above l1 metrics are less sensitive to poor estimates than root mean square
error and allow correcting position when zero-motion is detected. We compare on the
aforementioned metrics three methods:

INS: the direct integration of the inertial measurements;

odo.: the integration of a differential wheel encoder which computes linear and angu-
lar velocities, a.k.a. wheel-based odometry;

IMU (ours): the proposed approach, that uses only the IMU signals and involves no
other sensor, that is our purely inertial navigation system.

2.3 2.3 Results

Results are averaged in Table 13.5 and detailed for each dataset in Tables 13.6, 13.7,
13.8 and 13.9. Figures 13.15, 13.16, 13.17, and 13.18 illustrate diverse trajectory re-
sults. From these results, we see that:

• directly integrating the IMU signals leads to rapid drift of the estimates;

• wheel-based differential odometry accurately estimates the linear velocity but en-
counters troubles estimating the yaw, even in Figure 13.17 whose data has been
obtained in an urban environment and provided with calibrated odometry in-
trinsics;

• the proposed schemes completely outperforms wheel based odometry in urban,
countryside and highway environments.
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Figure 13.16: Trajectory estimates on the sequence urban10 of the KAIST dataset
(14 km, 40min). IMU keeps accurate methods and follows many corner bends.

The results are remarkable as we use for each dataset an IMU which has moderate pre-
cision and is targeted for hybridation with GPS. Beyond these unexpected long-term
accurate position estimations, one may benefit from the method for promptly cali-
brating inherent and strong IMU biases whose magnitude is greater than 10�3 rad/s
and 10�2m/s2 on the KAIST dataset. This hold when the car is first stopping and the
first motions contain sufficiently turns and accelerations that render IMU bias observ-
able. However, when both the car starts by moving and follows a straight highway, one
can not identify IMU bias and the estimation drifts, which is similarly encountered in
visual-inertial odometry when degenerate motions occur, see [225]. This explains the
results obtained in Table 13.7. Finally, the AVE metrics confirms us that the method is
a particularly precise speedometer.

3 3 Further Experimental Results

We provide in this section experimental results that completes the dead-reckoning
evaluation performed in Section 2. We analyze the zero-motion detector, and inspects
the computational execution times of the method. All the results are based on the three
datasets described in Section 2.1.

3.1 3.1 Detector Results

To assess the performances of our learning based detection approach (see Section 4.1),
we focus on the zero velocity detection (11.9), and compare the proposed detectors
with two popular detectors [200,226]. To make sure such traditional detectors per-
form at their best, their parameters are optimized by grid search on each full dataset,
i.e. with test sequences, whereas our detectors still learn only on training data. Since
generalization to new type of data is a cumbersome task for deep learning based algo-
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Figure 13.17: Trajectory estimates on the sequence urban07 of the KAIST dataset (2 km,
9min). IMU is especially accurate on smooth trajectories like in this apartment com-
plex area.
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Figure 13.18: Trajectory estimates for the sequence 07 on the Lille dataset (6 km,
23min). IMU keeps accurate after parking slot.
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Figure 13.19: Trajectory results on the sequence urban31 of the KAIST dataset (11 km,
15min). IMU’ results are already impressive on this fast highway sequence, see the
slight differences between the proposed methods and the ground-truth at the end of
the trajectory.
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Figure 13.20: Trajectory estimates for the sequence 00 on the Lille dataset (6 km,
23min). The proposed IMU follows ground-truth and keep accurate for the all tra-
jectory whereas standard inertial integration (INS) diverges quickly.
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dataset ideal AMVD ideal ARED IMU

KAIST 0.943 0.986 0.993

Lille 0.715 0.950 0.957

Magny-Les-Hameaux 0.935 0.974 0.995

average score 0.907 0.977 0.988

Table 13.10: Results of various classifiers for detecting zero velocity zveln in term of
standardized partial Area Under Curve (AUC) with maximal false positive rate 0.1.
More the AUC is, better is the detector. The proposed detectors outperforms their
conventional counterparts. All methods excepted used only IMU signal.
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Figure 13.23: Detector results in term of ROC curve for classifying non zero-motion
(zveln = 1) from zero-motion (zveln = 0). More the curve approaches the point (0,1), better
is the classifier. The proposed detectors outperform the conventional classifiers and
provide high true positive rate at very low false positive rate.

dataset detector adapter
Kalman filter

total
propagation update

KAIST 11 (14%) 12 (15%) 14 (18%) 41 (53%) 78

Lille 11 (14%) 12 (15%) 13 (17%) 42 (54%) 78

MLH 11 (14%) 12 (16%) 15 (19%) 39 (52%) 77

average 11 (14%) 12 (16%) 12 (18%) 14 (52%) 77

Table 13.11: Execution times of the approach averaged for 1 s of data, in ms and per-
centage of the total execution time of the approach. Time execution slightly depends
on the ratio of the number of non zero-motion detections over the number of zero-
motion detections. The approach is more than 10 times faster than real-time execution
with Python implementation.
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rithms [161], we provide in this section preliminary results toward the generalization
of the method to a new vehicle, by training the method on a platform and then validat-
ing it on another platform.

We compare three zero-motion detectors:

ideal ARED: the Angular Rate Energy Detector computes a measure of the gyro vari-
ance over a sample window. If the variance measure falls below a threshold, the
vehicle is assumed to be stationary;

ideal AMVD: the Acceleration-Moving Variance Detector computes a measure of the
accelerometer variance over a sample window. If the variance measure falls be-
low a threshold, the vehicle is assumed to be stationary;

IMU-only (ours): the proposed detector with IMU only, and trained with training se-
quences of the evaluated dataset.

We plot the partial Receiver Operating Characteristic (ROC) curve in Figure 13.23,
which illustrates the ability of a classifier as its threshold is varying [227,228]. The
curve displays the true positive rate (i.e. where ẑveln = zveln = 1 occurs) against the false
positive rate for a total of 109 evaluated points. The best possible detector would yield
a point in the upper left corner of coordinate (0,1), representing 100% sensitivity (no
false negatives) and 100% specificity (no false positives). Figure 13.23 zooms at a spe-
cific region of the whole curve since detectors get no false negatives once a sufficiently
high false negative rate is crossed.

We numerically compare the classifiers in term of Area Under Curve (AUC) in Table
13.10, which is the area under the ROC curve, where we adjust the maximal false
positive rate to 0.1 for highlighting discrepancies between methods. It measures the
performance of a classifier as representing the probability that the classifier ranks a
randomly drawn positive example higher than a randomly drawn negative example,
and is independent from amanually defined threshold. From these results, we observe:

• the conventional albeit ideal AMVD and ARED can not detect zero-motion with-
out avoiding false detection;

• the proposed IMU-only detector identifies zero-motion with a particularly low
level of false detections, a.k.a. false alarms. We set the detector with a threshold
of 0.95 and thus respect the filter constraint for almost never encountering false-
alarm.

3.2 3.2 Computational Execution Times

The computational execution times of the method is provided in Table 13.11, where
we divide time statistics into datasets. We run the method on a Dell Precision Tower
7910machine which accelerates the detector and adapter computations through a GTX
1080 GPU, and we establish time statistic with the Python profiler. The filter operates
on the CPU since computing on GPU is slower in our case and generally unefficient for
computations effected in double precision with many back-and-forth transfers of data.

We observe in Table 13.11 small variations of execution times across the datasets,
which is due to different ratios of the number of non zero-motion detections over the
number of zero-motion detections. Indeed, detecting a zero-motion modifies the prop-
agation step of the filter and the dimension of the observation vector yn. The compu-
tational requirements are reasonable as the methods keeps 10 times faster than real
execution times, and we finally note our Python implementation can be drastically
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accelerated both for the filter and deep neural networks blocks with the recent devel-
opment of the PyTorch C++ API3.

4 4 Conclusion

This chapter extends the approach for inertial based navigation of ground vehicles.
Our approach exploits deep neural networks to identify zero-motion information from
raw sensor signals which is then leveraged in an invariant extended Kalman filter that
performs localization, velocity and sensor bias estimation. We additionally design deep
learning based blocks that feed to the filter measurements along with time-varying
measurement uncertainties which alleviate the practitioner for cumbersome param-
eter tuning. The entire pipeline requires only IMU data, and can incorporate GPS,
wheel encoders and altimeter. The method leads to surprisingly accurate results on
four datasets, and open new perspectives for combination of data-driven methods with
well established methods for autonomous systems. Future works are an ablation study
to precisely asses the advantages and limitations of each pseudo-measurement we use.

3https://pytorch.org/cppdocs/
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CHAPTER14

Conclusion of the Thesis

This thesis investigates various challenging aspects regarding Kalman filtering for lo-
calization and navigation for vehicles equipped with sensors such as cameras and iner-
tial measurement units. It brings several contributions divided in two categories.

The first category of contributions is for enhancing and applying Kalman filter the-
ory. It consists in building on the recent IEKF theory to address the inconsistency
of EKF for SLAM, navigation with vision sensors, and the more general question of
Kalman filtering on manifolds. The thesis starts by revisiting the theoretical problem
of EKF inconsistency for SLAM, and shows how the use of the IEKF may resolve those
issues. It is then studied and shown how the well established unscented Kalman filter
may be adapted in the case where the state does not belong to a vector space, but to
a more complicated space, namely a manifold. The proposed method applies to all
Lie groups, and in particular allows to propose an unscented version of the IEKF. This
allows fast prototyping, in the sense that it spares the sometimes difficult computation
of Jacobians that must be performed in the extended Kalman filter methodology. The
practical problem of SLAM and odometry in the presence of vision and inertial sen-
sors is then addressed. The thesis builds on the state-of-the art multi-state constrained
Kalman filter to attack the problem, and the contribution essentially consists in build-
ing an invariant version of this filter, which then comes with consistency properties,
and to propose a computationally efficient unscented version.

The second category of contributions of the thesis explores how recent tools from
the field of deep learning can be used to improve Kalman filters. The thesis notably
focuses on the assessment of uncertainty of sensors or pseudo-measurements, and de-
signs an approach to automatically relate sensors’ measurements to the state, and to
tune the filter, that is, using machine learning techniques to find a dynamical tun-
ing strategy of the Kalman filter parameters that best matches the data. As a result,
a machine learning algorithm may learn the extent of uncertainty that lies in the for-
mulated assumptions of zero lateral and vertical velocities for inertial navigation of
ground vehicles, where the proposed method based only on inertial sensors competes
with state-of-the art methods that use inertial sensors plus vision. Another type of un-
certainty may stem from the nature of the observation, as pose estimates from laser
scanners and the ICP algorithm. As it is important for the filter that estimates the
robot’s trajectory to “know” the amount of uncertainty present in the ICP’s estimated
displacement, the thesis proposes a simple theoretical approach based on statistics and
an algorithm for this problem which goes beyond existing solutions, and overcomes
their main drawbacks. The thesis then wholly focuses on the use of deep learning as
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a tool to extract pertinent information from inertial measurements, and to use this in-
formation to navigate. In all cases, the method is supervised, and some ground truth
information is necessary for the algorithms to learn. The thesis builds upon the zero ve-
locity update which is a way to correct the estimates when a wheeled vehicle stops, and
leverages deep learning to make the estimator system detect stops based only on the
inertial sensors, hence relaxing the need for additional sensors besides inertial sensors.
Evaluations on a publicly available car dataset demonstrates indeed that the proposed
scheme may achieve a final precision of 20 m for a 21 km long trajectory of a vehicle
driving for over an hour, equipped with an IMU of moderate precision. The thesis then
focuses on the estimation of the orientation of the vehicle only, namely its attitude, and
leverage deep learning to refine the modelling of the measurements emanating from
the inertial sensors, and to calibrate them.

Along the thesis, several questions about filtering on manifolds and deep learning
for Kalman filtering were raised. First, theoretical questions arise regarding filtering
on manifold. The thesis has followed in focusing on parallelizable manifolds where a
global coordinate system of tangent spaces exists, and readily provides a transport op-
eration over the manifold. However, there are multiple choices for the parallel trans-
port operation, e.g. Levi-Civita connection for parallel transport, which depends on
the chosen metric.

Second this thesis addresses filtering methods for SLAM and visual-inertial odom-
etry. While current systems provide accurate motion tracking in small-scale “friendly”
environments, they are not robust enough for long-term, large-scale and safety-critical
deployments for e.g. autonomous driving. More than accurate, these methods should
be robust. These algorithms are thus subject to both theoretical and practical chal-
lenges: how a VIO system equipped with biased IMU is able to estimate scale, and to
correctly perform state initialization are unclear, especially for degenerated motions.
Other sources of inconsistencymay come from the visual feature tracking which is sub-
ject to outliers. The tuning of MSCKF measurement update is a computer vision and
filtering challenging question. The strategy to choose which camera pose to marginal-
ize has a large impact on performances, if well done, one could expect accuracy with
low computational requirement, but this problem has hardly been addressed, see [229].

Regarding deep learning, the thesis opens new perspectives for combination of
data-drivenmethods with well establishedmethods for autonomous systems, and opens
up for exciting avenues. As a MSCKF is complex, using deep learning to improve it in
a coupled-manner is debatable and we suggest to first attack specific challenge as the
marginalization strategy mentionned above. Secondly, we managed to train neural
networks by using accurate datasets ( [106,211] have less than centimeter accuracy). If
one searches to enhance a yet accurate system or sensors, it seems natural to first dis-
pose of a sufficiently accurate ground-truth. A typical solution would consist in first
computing a time expansive solution based on smoothing or optimization algorithms
with various sensors. An other way is to leverage unsupervised learning, see e.g. [208]
for visual-inertial odometry. Finally, the question of transfer learning, i.e. how using
a neural network trained on one device for another device, which is decisive for in-
dustrial application, is left for future research works. These questions, along with the
crucial issue of dealing with safety, computational and economical trade-offs, are fun-
damental if one wants to provide autonomous systems with reliable information in an
industrial context.
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CHAPTER15

Appendix: Enhancing Kalman Filter with Deep Learning in
Practice (Experience Feedback)

1 1 Introduction

This chapter presents a step-by-step guide for adding or improving an observation of
a Kalman filter with deep learning. This part is build on the accumulation of acquired
experiences in the previous chapters of Part II and Part III. We write this chapter in
a tutorial and easy-to-follow form for the one that searches to improve its estimation
algorithm with deep learning on the real but simple attitude estimation problem on
the EuRoC dataset [106].

1.1 1.1 Retrospective Analysis

The results that we acquired in this thesis are demonstrative research works and there
are still a gap between these algorithms, and a robust industrial solution.

It appears retrospectively that the zero velocity detector (see Chapter 11) and a
neural network for denoising gyro (see Chapter 12) are closer to a concrete application
than the works we presented in Chapter 8 and in [156]. Indeed, the first ones:

• are efficient to train and fine-tune, e.g. Chapter 12 trains neural networks in less
than five minutes, and scales well with large amount data;

• are analyzable as we can compare the network outputs and the expected results,
and see where results may be improved;

• and constitutes in itself a standalone block. Chapter 11 proposes a neural net-
work to detect a car stop, that is invariant w.r.t. ad hoc filter modifications.

In contrast, the second part of works, albeit promising, are much difficult to gen-
eralize and optimize to large experiments, see similar works in [230,231]. Chapter 8
designs a neural network that must be adapted each time the filter changes, and [156]
uses heavy and cumbersome deep Gaussian processes which are difficult to train.

1.2 1.2 Goals and Organization of the Chapter

In the following, we present an approach that should be used for enhancing a Kalman
filter with deep neural networks. We consider the problem of attitude estimation from



196

neural network

Kalman filter
state estimates

observations
loss function

ground truth

inputs

Figure 15.1: Overview of the proposed approach in a general situation. A neural
network learns to regress observations from sensor inputs, which generally requires
ground truth during training. A Kalman filter leverages learned observation to obtain
reliable state estimates.

an IMU where we yet dispose of a (invariant) Kalman filter. We then apply a step-by-
step recipe that search to obtain more reliable and efficient Kalman filter estimates,
where the learning block provides to the filter observations and observation uncer-
tainty, see Figure 15.1.

This chapter is organized as follow. Section 2 presents the problem of attitude esti-
mation from an IMU and the related invariant Kalman filter that we search to improve.
Section 3 describes the method for learning accurate gravity observations that are then
feed to the filter. Section 4 evaluates and shows how the patient approach outperforms
the fast-and-furious ones. Finally, Section 5 concludes the chapter.

2 2 ProblemModelling

This section briefly describes the model used in this chapter. The 3D orientation of a
rigid platform is obtained by integrating gyro outputs of an IMU through

Rn = Rn�1 exp(ωndt) , (15.1)

where the rotation matrix Rn 2 SO(3) at timestamp nmaps the IMU frame to the global
frame, the angular velocity ωn 2 R3 is averaged during dt, and with exp(·) the SO(3)
exponential map, see Chapter 12.

The IMU is assumed unbiased and measurements are given as
"

ωimu

n

aimun

#

=

"

ωn

an

#

+wn, (15.2)

where wn ⇠ N (0,Qn) is Gaussian noise. The model (15.2) assumes the sensor is cali-
brated and does contain the remaining parameters of Chapter 12.

Problem Statement: given an initial attitude R0, performs in real time IMU attitude
estimation.

2.1 2.1 The Invariant Kalman Filter for Attitude Estimation

To obtain reliable estimates, we design an invariant Kalman filter based on the propa-
gation model (15.1) and observation of gravity direction. Indeed, if velocity variation
is negligible w.r.t. gravity, the accelerometer measures

aimun ⇡ RT
n g, (15.3)
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and we choose to consider the normalized acceleration measurement

yn =
aimun

kaimun k
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which contains orientation information around the gravity g. Building on the right-
invariant error

Rn =  (R̂n,ξn) (15.5)

= exp(ξn)R̂n, (15.6)

see Section 2 of Chapter 2, we obtain a filter whose equation are recapped in Algorithm
11, where

H =
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Algorithm 11: invariant Kalman filtering for attitude estimation

// State and covariance propagation

1 R̂n|n�1 = R̂n�1|n�1 exp(ω
imu

n );
2 Pn|n�1 = Pn�1|n�1 +Qn;
// Measurement update

3 K = Pn|n�1H
T
⇣

HPn|n�1H+ cov(yn)
⌘�1

; // Kain

4 R̂n|n = exp
⇣

R̂n|n�1yn � g0
⌘

R̂n|n�1;

5 Pn|n = (I�KH)Pn|n�1 (I�KH)T +Kcov(yn)K
T ; // Joseph form

This invariant Kalman filter mimics the complementary filter [17] with the advan-
tage here that the gain K is optimal given Qn and cov(yn) while Jacobian matrices are
constant. The measurement (15.4) provides information around the gravity direction,
such that the roll and the pitch of the sensor are observable, while the yaw keeps non
observable and its estimates drifts along time.

3 3 Enhancing the Kalman Filter with Deep Learning

We describe in this section how improving the Kalman filter observation with deep
learning, as measurements (15.4) are noisy and setting its uncertainty require appar-
ently manual tweaking. We first design a neural network and a training scheme to
obtain reliable observations of the gravity orientation yn along with the observation
uncertainty cov(yn), see Figure 15.2.

We first recalls two main features of deep learning that any user should be con-
scious:

• Neural Network Training is a Leaky Abstraction: it is allegedly easy to get
started with training neural networks. Popular machine learning frameworks
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Figure 15.2: Overview of the proposed approach applied to the considered attitude
estimation problem. A convolutional neural network learns to regress the gravity di-
rection from inertial signals, which requires ground truth orientation during training.
An invariant filter leverages estimated gravity direction with dead-reckoning orienta-
tion from gyro to obtain accurate estimates.

such as PyTorch proposes less than hour tutorial where less than 30 lines of mir-
acle snippets solve an image classification problem, giving the (false) impression
that deep learning is plug and play.

Unfortunately, neural networks are nothing like that. They are not “off-the-shelf"
technology or theory the second one deviate slightly from training a vanilla neu-
ral network classifier. ADAM [162] does not magically make the network trains,
batch normalization [214] does not magically make it converge faster, . . .Using
the technology and theory without understanding how it works are prone to fail.

• Neural Network Training Fails Silently: when the implementation of a filter
contains mistakes, the filter often crash or gets definitely bad results. The situa-
tion where the filters “surprisingly” works whereas it should not (a misconfigu-
ration or an incorrect propagation matrix for example) barely appears compared
to deep learning.

Indeed, when it comes to training neural networks, everything could be correct
syntactically, but the whole thing can not be arranged properly, and it is really
hard to tell. The possible error are large, logical (as opposed to syntactic), and
very tricky to test. Therefore, a misconfigured neural network will most of the
time train but silently work a bit worse.

In light of the above points, one should be highly defensive and obsessed with visu-
alizations of basically every possible thing. The qualities that correlate most strongly
to success are patience and attention to detail.

We now details chronologically the steps to successively obtain a neural network
able to improve the estimates of the filter. This starts by being an expert of the full non-
learning problem, i.e. the Kalman filter and data, that lead to appropriately defining
what one can expect from the neural networks. Then, we follow all the gold standard
of deep learning. In particular, we build from simple to complex and at every step of
the way we make concrete hypotheses about what will happen and then either validate
them with an experiment or investigate until we find some issue. Finally, we combine
then the deep learning block and the Kalman filter, and evaluate the results of the
enhanced filter.
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3.1 3.1 Before Training: Visualizing the Non-Learning Problem

What we remark about leaky abstractions for neural networks also hold for any tradi-
tional problem. One must mastering its subject, possibly explains any strange behavior
regarding data and the filter outputs, and thoroughly inspect data. This step is critical.

For our problem, we used the EuRoC dataset [106], that contains sequences of IMU
data along with ground-truth. We search to understand the data, especially through
visualization tools. Plotting inputs versus ground-truth or dead-reckoning estimates is
essentials to perform basic checks: is the IMU vector contains first the gyro or the ac-
celerometer, what are units, how is synchronization between ground-truth and inputs.
This process is essential to detect fails and outliers in data. Concretely, it leads here to
plot curves similar to the ones in Figure 15.3, and detect that the IMU is uncalibrated
(see also Chapter 12), and break the model assumption (15.2). We use Chapter 12 to
first calibrate the IMU sensor.

The same checking must be done for the Kalman filter. One must observe state
estimates, state uncertainty (Pn|n), residual, . . . The filter itself must be clean: if its esti-
mations are surprisingly bad after one minutes, it could be to Pn|n being non symmet-
ric; or if Pn|n is too high, it is probably due to a misconfiguration of model parameters.
Deep learning will not magically solve that.

At the middle of this step, both the dataset and the filter work as expected. Ones
can then get a first idea of what to learn. This should be useful for the filter (improv-
ing something that works optimally is both difficult and inefficient) and possible. For
the given problem, it is clear that the main limitation of the filter is the assumption
done in (15.3), see Figure 15.4. We thus hope to learn (or correct) this observation. At
least, we expect estimating its uncertainty, possibly better than a manual tweak on the
accelerometer norm. Of course, this idea evolve along time. Learning uncertainty may
just be to difficult if ground truth is insufficiently accurate.

3.2 3.2 Set Up the Training & Getting Baselines

Our next step is to set up a full training and evaluation skeleton and gain trust in its
correctness via a series of experiments. At this stage it is best to pick some simple
model as a very tiny CNN. We want to train it, visualize the losses, any other metrics
(e.g. accuracy), model predictions, and perform a series of ablation experiments with
explicit hypotheses along the way.

We follow the convolutional neural network structure of Chapter 12 that computes
accelerometer correction ãn and uncertainty σn 2 R from N past IMU measurements,
where we first restrict it to one layer.

We now define the corrected and corrected measurement as

ân = aimun + ãn (15.8)

ŷn =
ân
kânk

, (15.9)

where as in Chapter 12 the neural network is guided and initialized properly at aimun .
This thus provides us with the following simple baseline: the measurement where
ãn = 0.

We now define the loss function that must ensures measurement and uncertainty
estimations as

L =
X

n

 

yn � ŷn
σn

!2

+ log
⇣

2⇡σ2
n

⌘

, (15.10)
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Figure 15.3: IMU measurements and dead-reckoning estimations. The IMU behavior
is strange. Indeed, the IMU is is uncalibrated, and should be calibrated to correspond
to the filter assumption.
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Figure 15.4: Accelerometer measurements nd true gravity direction along time on the
sequence V1 01 easy of [106], where the acceleration assumption (15.3) is visibly bro-
ken. We observe that accelerometer is highly noisy to estimation gravity direction, even
when the drone is static at the first secondes of the trajectory.
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which is the negative log likelihood. At this stage, we are not certain that (15.10) is the
best metric. Perhaps a robust l1 metric is better, but this is fine-tunning question, see
Section 3.3.

Now, we have a small network, a loss and a baseline. We train the network with
vanilla optimizer and perform check. For instance, we verify loss at init and that it
starts at the correct loss value, i.e. the one where ãn = 0. Indeed, if the loss is very
high, it just indicate we did not initialize the final layer weights correctly. Setting these
correctly will speed up convergence and eliminate the first few iteration the network
is basically just learning a bias.

We then monitor metrics other than loss that are human interpretable and check-
able. The loss in (15.10) is difficult to understand, but we can compute and plot RMSE
loss based on yn � ŷn and see how it evolves along training. We can also compare this
metrics to the baseline.

Then we overfit a small batch. Overfit a single batch of only a few examples. To do
so we increase the capacity of our model (here the kernel size) and verify that we can
reach the lowest achievable loss (here minus infinity).

3.3 3.3 Training Fine-Tuning

Overfit & Regularize: At this stage we have a good understanding of the dataset and
we have the full training and evaluation pipeline working. For any given model we
reproducibly compute a metric that we trust. We are also armed with our performance
for a baseline (that we should beat). The stage is now set for iterating on a good model.

The approach generally adopted to a good neural network model has two stages:
first, we get amodel large enough that it can overfit (i.e. focus on training loss) and then
we regularize it appropriately (that increases the training but improves the validation
loss). The advocated reason is that if we are not able to reach a low error rate with any
model at all that may again indicate some issues, bugs, or misconfiguration. Then, we
are at a place where we have a large model that is fitting at least the training set. We
now regularize it and gain some validation accuracy by giving up some of the training
accuracy.

We have two main advices:

• To reach a good training loss we choose an appropriate architecture for the data.
We now do not search to be a hero. We were the first to be eager to get crazy
and creative in stacking up the blocks of the neural net toolbox in various exotic
architectures that make sense to us, but this was inefficient.

• ADAM is the safest optimized, which gas a large good learning rate region com-
pared to other optimizers. We do not trust learning rate decay defaults, especially
when we are re-purposing code from some other domain (mainly computer vi-
sion).

Network and Training hyperparameters Fine-Tunning: We are now “in the loop"
with the dataset and explore a wide model space for architectures that achieve low
validation loss. For simultaneously tuning multiple hyperparameters it may sound
tempting to use grid search to ensure coverage of all settings, but it is best to use
random search instead. Intuitively, this is because neural nets are often much more
sensitive to some parameters than others. Indeed, there is a large number of fancy
bayesian hyper-parameter optimization toolboxes around and our personal experience
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Figure 15.5: Accelerometer measurements nd true gravity direction along time on the
sequence V1 01 easy of [106]. The neural network (blue) correctly estimates gravity
direction.

is that the state-of-the art approach to exploring a nice and wide space of models and
hyperparameters is to use trial-and-error.

Once you find the best types of architectures and hyper-parameters we now feed
the filter with the networks. We then still massively visualizing the filter behavior and
verify if measurements are correct and uncertainty relevant. For example, we found it
is sufficient to learn the same parameters for each measurement σn = �n13. This has a
spin-off advantage to make the Kalman filter really cheap in term of covariance matrix
computation. All the gain can be parametrized with a scalar, see Appendix.

4 4 Results

We now dispose of a finely tunned neural network. We choose to evaluate the filter
performances as evaluating the network alone is here difficult to properly correlate
with the filter performance, and we show an example of network estimates in Figure
15.5. It visibly reduces the noise on the raw measurements.

4.1 4.1 Compared Methods & Metric

We compare the filter results with different configuration and learning methods, a.k.a.
ablation study (in the context of deep learning, an ablation study refers to removing
some feature of the training pipeline, and seeing how that affects performance.).

• w/o calibration, the proposed method without calibrating data;



204

• w/o initialization, the proposed method without properly initialing the network
output in (15.9), i.e. ân = ãn;

• w l2 loss, the proposed method where we adopt the l2 loss
P

i kyi � ŷik2 during
training instead of (15.10);

• baseline, the Kalman filter used without neural networks but calibrated data;

• proposed, the proposed method described in Section 3.

Each filter is parametrized as follow: P0 = 0, i.e. the state is initialized at ground truth,
Qn = q2I3 with q = 1.10�5 rad/s and cov(yn) is given by the neural network.

We evaluate the above methods on the Absolute Orientation Error (AOE), which
computes the mean square error between the ground truth and estimates for a given
sequence as

AOE =

v

u

t

M
X

n=1

1

M
k log

⇣

RT
n R̂n

⌘

k22, (15.11)

with M the sequence length, log(·) the SO(3) logarithm map, and where the estimated
trajectory has been aligned on the ground truth at the first instant n = 0. In contrast to
Chapter 12, AOE error makes more sense as the filter is here able to recover roll and
pitch.

4.2 4.2 Results

We provide to the filter the IMU input where the sensor is calibrated and the calibrated
IMU of Chapter 12. Results are given in Figure 15.6. We observe

• The most important improvement occurs when we calibrate data, see difference
between w/o calibration and baseline. It evidences that careful data analysis is
required to provide yet accurate baseline;

• The assumption of constant speed in the measurement update indeed degrades
performances for these small sequences if we compare baseline with results of
Chapter 12. The assumption (15.3) is not really valid;

• Properly initializing the correction helps to improve results, as the network out-
puts weak values and we can thus regularize the neural network more efficiently;

• There are no importance of optimal loss here. Correctly fixed the measurement
noise R is sufficient.

5 5 Conclusion

This chapter shows a general approach for safely improving a Kalman filter with deep
learning, where a deep learning block is designed and provides the filter with valuable
observations. This lead to a method that leads practically to improve the filter (in
contrast to method that starts a deep neural network from scratch) and where multiple
well trained learning blocks can be stacked. On the attitude estimation problems from
an IMU, it leads to improve the estimation of the gravity measurements that can be
used to obtain accurate attitude results with minimal computational requirement.
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sequence w/o calibration w/o initializing w l2 loss baseline proposed

MH 02 15.4 1.36 1.31 7.69 1.30
MH 04 14.6 1.35 1.27 5.24 1.25
V1 01 10.9 1.14 1.14 2.13 1.15
V1 03 8.9 2.70 2.60 3.96 2.54
V2 02 7.7 3.65 3.30 4.85 3.35

average 11.5 2.04 2.10 4.76 1.91

Figure 15.6: Results in term AOE when filter inputs are provided by calibrated IMU.
The improvement between the baseline and the proposed approach is noticeable.

Appendix: Efficient Kalman Filtering

In the particular case where the propagation noise covariance matrix Qn = Q is static
and that the measurement noise covariance matrix cov(yn) = �

2
n I is time-varying but

isotropic, the Kalman filter only requires one parameter to compute the gain, which is
computationally really efficient.

We assume the filter is initialized with P0 = 0, and that Q = qI3, and cov(yn) = �
2
n I.

Proposition: only a scalar pn is required to compute the Kalman gain.

Proof: the proof is shown by induction. The proposition hold for n = 0. We assume
that if it hold for n� 1, i.e.

Pn�1 =

2

6

6

6

6

6

6

6

4

pn�1 0 0
0 pn�1 0
0 0 p̃n�1

3

7

7

7

7

7

7

7

5

(15.12)

, where p̃n�1 is any scalar, then the proposition hold for n. After propagation, we obtain

Pn = Pn�1 +Q) pn = pn�1 + q, p̃n = p̃n�1 + q. (15.13)

And at update, we compute

S =HPnH
T + cov(yn)) S = (pn +�

2
n )I2 (15.14)

K = PnH
TS�1)K =

pn

pn +�
2
n

HT (15.15)

P+
n = (I�KH)Pn) p+n = pn(1� pn/(pn + rn)) (15.16)

p+n =
pnrn

pn +�
2
n

, (15.17)

which conclude the proof.







MOTS CLÉS

fusion de capteurs, filtre de Kalman, SLAM, navigation, centrale inertielle, apprentissage profond

RÉSUMÉ

Cette thèse aborde les méthodes d’estimation d’état pour les véhicules équipés de divers capteurs tels que des caméras
et des centrales inertielles. Le filtre de Kalman est un outil largement utilisé pour estimer l’état d’un système dynamique,
qui soulève des questions théoriques pour les systèmes non linéaires présents dans la navigation, et qui repose sur des
modèles physiques et des paramètres qui doivent être optimisés efficacement par l’utilisateur. La thèse contribue au
filtrage de Kalman pour la navigation, où les contributions se divisent en deux contributions majeures.
La première contribution consiste à s’appuyer sur le récent filtre de Kalman étendu invariant pour résoudre les problèmes
difficiles que sont l’inconsistence du filtre de Kalman étendu pour le problème de la localisation et de la cartographie
simultanées, de la navigation avec des capteurs visuels, et la question plus générale du filtrage de Kalman sur les
variétés. La deuxième contribution consiste à utiliser des outils récents du domaine de l’intelligence artificielle, à savoir
l’apprentissage profond, pour améliorer les filtres de Kalman, notamment pour relier les mesures des capteurs à l’état
du système, et pour régler le filtre efficacement, c’est-à-dire utiliser des techniques d’apprentissage automatique pour
trouver une stratégie de réglage dynamique des paramètres du filtre de Kalman qui correspond aux données et qui est
également capable de fournir de nouvelles informations au filtre.
La thèse introduit ainsi différents algorithmes de filtrage et réseaux de neurones profonds dont l’implémentation est
rendue open-source.

ABSTRACT

This thesis deals with state estimation for vehicles that are equipped with various sensors such as cameras and iner-
tial measurement units. The Kalman filter is a widely used tool that estimates the state of a dynamical system, which
raises theoritical questions for the nonlinear systems present in navigation, and that relies on physical models and pa-
rameters that need to be efficient tuned by the user. This thesis contributes to Kalman filtering for navigation, where the
contributions focus on two different manners.
The first manner consists in building on the recent invariant extended Kalman filter to address challenging issues, namely
the inconsistency of extended Kalman filter for the problem of simultaneous localization and mapping, navigation with
vision sensors, and the more general question of Kalman filtering on manifolds. The second manner consists in using
recent tools from the field of artificial intelligence, namely deep learining, to improve Kalman filters, notably to relate
sensors’ measurements to the state, and to tune the filter efficiently, that is, using machine learning techniques to find a
dynamical tuning strategy of the Kalman filter parameters that best matches the data and that is also able to provide new
information to the filter.
The thesis thus introduces differents filtering algorithms and deep neural networks whose implementation are made
open-source.
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