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Résumé en francais

Modele mésoscopique rapide de croissance de grain par mise
a jour de tessellations orientées et homogénéisation proba-
biliste

La croissance de grain est un phénomene thermiquement activé qui se produit générale-
ment pendant les phases de recuit des métaux, ot le temps de maintien a une température
suffisante permet aux joints de grain de gagner en mobilité. Pendant la phase de crois-
sance, certains grains grossissent au détriment d’autres grains en fonction de leur taille
et de leur orientation cristalline, dont dépend 1'énergie de joint de grain. Les descrip-
teurs statistiques classiques du polycristal tels que la texture morphologique et cristallo-
graphique (taille des grains, distribution des orientations et des désorientations cristallines
etc.) évoluent pendant les procédés. Ainsi, pour différents procédés de fabrication ou de
mise en forme, les conditions de température pourraient étre optimisées pour viser des
microstructures, en particulier pour les procédés présentant des hétérogénéités spatiales.
On peut penser par exemple aux procédés de fabrication additive pour lesquels la forma-
tion et I'évolution des microstructures est un enjeu majeur pour garantir les caractéris-
tiques matériaux souhaitées, et dont le controle en cours de procédé serait une avancée
significative.

Cependant, contrdler les microstructures en optimisant les procédés de fabrication
est un défi de taille pour les industries des métaux. En effet, prédire I'évolution des mi-
crostructures implique de développer des modeles a I’échelle du polycrystal et notamment
des joints de grain, qui est ’échelle pertinente pour décrire correctement les phénomenes
mis en jeu. Cependant cette échelle est incompatible avec des simulations completes de
procédés qui nécessitent une description a large échelle.

Ces travaux de theése visent donc a développer une stratégie de changement d’échelle
pour établir les bases d'un modele macroscopique de croissance de grain qui repose en-
tierement sur une description du phénomene aux échelles inférieures et dont les variables
d’état contiennent les descripteurs statistiques du polycristal. Cette stratégie repose es-
sentiellement sur une description de la croissance de grain a différentes échelles : (i) a
I’échelle atomique (potentiel interatomique et arrangement cristallin), (ii) a 'échelle mi-
croscopique (joints de grain), (iii) a 'échelle mésoscopique (polycristal) et (iv) a I'échelle
macroscopique (descripteurs statistiques de la microstructure).

Puisque les concepts énergétiques existent a toutes les échelles et traversent tous les
champs de la physique, notre stratégie repose en substance sur différentes contributions
énergétiques apparaissant aux différentes échelles. Cette stratégie énergétique est dévelop-



pée dans le cadre des milieux standard généralisés qui sont caractérisés par leur énergie
libre et la puissance dissipée dans n'importe quelle évolution virtuelle. Ces deux poten-
tiels apparaissent dans la forme locale de 1'équation des bilans thermodynamiques qui
combine le premier et le second principe, et qui fait intervenir les variables d’état macro-
scopique qui doivent étre définies pour que I'état macroscopique du systeme représente
statistiquement le polycristal. La détermination de I’énergie libre macroscopique et du po-
tentiel de dissipation en fonction des variables d’état permet d’établir la loi d’évolution du
systeme. La stratégie développée dans ce travail de thése consiste a déterminer ces poten-
tiels thermodynamiques non pas de maniere axiomatique avec des fonctions paramétriques
et une nécessaire calibration expérimentale, mais de maniere plus physique et statistique
en s’appuyant sur la construction d'une importante base de données constituée de calculs
a I'échelle mésoscopique. Contrairement aux approches en champ moyen qui représen-
tent le polycristal de maniere simplifiée au moyen de classe de grains, on s’appuie ici sur
une description détaillée des polycristaux. Ainsi, I'idée majeure qui sous-tend ce travail est
que le modéle a I’échelle macroscopique émerge d'une description aux plus fines échelles.

Notre approche difféere de certaines stratégies multiéchelles pour lesquelles des sim-
ulations a I’échelle mésoscopique sont appelées pendant un calcul macroscopique. Au
contraire, dans ce travail, tous les calculs a ’échelle mésoscopique sont réalisés en avance
et stockés dans la base de données qui a vocation a sonder 'espace des structures poly-
cristallines. Sur cette base, nous pouvons identifier une énergie libre et un potentiel de dis-
sipation macroscopiques en fonction de variables d’état que nous définirons, pour obtenir
une loi d’évolution macroscopique qui porte sur les descripteurs statistiques de la mi-
crostructure.

La base données joue donc un role déterminant et nécessite pour étre suffisamment
riche d’utiliser intensivement un modele de croissance de grain a I'’échelle mésoscopique.
Le temps de calcul de ce modele est donc critique. Bon nombre d’approches existent : les
automates cellulaires et les méthodes de Monte Carlo, les éléments finis mobiles, les méth-
odes par fonction de niveau, les méthodes en champs de phase ou encore la dynamique
moléculaire. Ces approches permettent d’étudier en détails les phénomeénes de crois-
sance de grain et d'y inclure une physique détaillée qui permet éventuellement de capturer
d’autres phénomenes (recristallisation, transitions de phase etc.). Cependant, le poids cal-
culatoire est trop important pour que I'une de ces approches puisse étre raisonnablement
utilisée dans le cadre théorique que nous avons décrit.

Ainsi le premier axe de travail, guidant ce mémoire de thése, tient au développement
d’'un modele mésoscopique simple et suffisamment rapide pour créer la base de données
qui sous-tend notre stratégie de changement d’échelle. Ce modéle est formulé en deux
dimensions dans ce travail pour ne pas compliquer les aspects techniques, 1’'enjeu étant
principalement de valider notre approche. Nous nous appuyons sur les techniques de tes-
sellations de Voronoi-Laguerre qui sont habituellement utilisées pour approcher la mor-
phologie des polycristaux. Des algorithmes tres efficaces ont été développés et permettent
de générer trés rapidement des tessellations. De plus, on peut assigner a chaque grain une
orientation cristalline pour obtenir une tessellation orientée. L'idée de notre modéle mé-
soscopique rapide est donc d’approximer I’évolution d'un polycristal par une succession
des tessellations orientées, que 'on met a jour a chaque pas de temps. Ainsi, la méthode
repose sur une formulation d'une loi d’évolution formulée directement sur les parametres
qui pilotent la tessellation orientée. Cette loi d’évolution est obtenue dans un cadre ther-
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modynamique rigoureux en sommant les énergies anisotropes des joints de grain dans
le polycristal (force motrice) et les puissances dissipées dans n'importe quel mouvement
virtuel des joints (force résistive). Ainsi, un lien substantiel est fait entre les échelles atom-
ique, microscopique et mésoscopique.

Le second axe de travail tient quant a lui a I'exploitation de la base de données de
calculs a I’échelle mésoscopique pour identifier des variables d’état macroscopiques perti-
nentes ainsi que 1'énergie libre et le potentiel de dissipation macroscopique dans le cadre
théorique que nous avons décrit. Un aspect important est que la perte d'information en-
tre ’échelle mésoscopique (détaillée) et I’échelle macroscopique (statistique) introduit un
aléa épistémique dans le modele, car a un unique état macroscopique statistique, corre-
spond une multitude d’états mésoscopiques différents. Donc, a partir d'un modele méso-
scopique entierement déterministe, nous construisons un modeéle macroscopique proba-
biliste, qui peut étre utilisé pour des structures de grande échelle subissant des traitements
thermiques.






Chapter 1

General introduction

« We keep moving forward,
opening new doors, and doing
new things, because we're curious
and curiosity keeps leading us
down new paths. »

Walt Disney
Contents
1.1 Recrystallization and the related annealing phenomena ........... 10
1.2 Scientificprogram . ... ... ...ttt ittt 11
1.3 Outlineofthethesis ................. . ... 15




1.1 Recrystallization and the related annealing phenomena

In 1994, in the first edition of their book [2], John Humphreys and Max Hatherly wrote:
Recrystallization and the related annealing phenomena which occur during the thermome-
chanical processing of materials have long been recognized as being both of technological
importance and scientific interest. These phenomena are known to occur in all types of crys-
talline materials; they occur during the natural geological deformation of rocks and miner-
als, and during the processing of technical ceramics. More than 25 years later, these lines
remain accurate. Indeed, in spite of significant advances in the field of recrystallization
and related annealing phenomena, continuously renewed technological issues and scien-
tific questions arise.

One can summarize schematically the annealing processes as follows. After signifi-
cant deformation, materials are characterized by a high dislocation density, each of which
stores elastic energy. Thus, the bulk energy is significant, which acts as a driving force for
the polycrystalline structure to rearrange and annihilate dislocations. However, at room
temperature the dissipation cost for dislocations to move acts as a resistive force that hin-
ders annihilation and rearrangement of dislocations. On the contrary, when temperature is
maintained at an elevated value, the dissipation cost decreases and dislocations can move,
rearrange and annihilate. This process is called recovery as materials properties are par-
tially restored with respect to the deformed materials (hardening etc.). The changes occur-
ring during recovery are homogeneous and do not affect the already existing grain bound-
aries. The dislocation structure is not completely removed and a sub-grain structure takes
place, as shown in figure 1.1a. Then, new dislocation-free grains nucleate and grow within
this recovered structure (see. figure 1.1a). This phase is called recrystallization as the a new
grain structure is formed. It should be noted that in this new grain structure the disloca-
tion density is very low and therefore the bulk energy is negligible. The energy stored in the
structure is mainly carried by the grain boundaries. This energy acts as a driving force for
grains to grow in order to decrease the total grain boundary length in the structure. Thus,
grain growth is a thermally activated mechanism that usually occurs after recrystallization
during annealing. During grain growth some grains grow at the expense of other grains
depending of their respective sizes and crystallographic orientations, which leads to grain
coarsening (see. figure 1.1a).

Among countless interesting problems related to this field, we focus in this PhD thesis
on modeling strategies to simulate grain growth at different scales, which is relevant to var-
ious class of materials such as sintered, cast, vapor deposited materials or additively man-
ufactured. Thus, we do not deal with recovery and recrystallization mechanisms (static or
dynamic) and we limit our investigation to grain growth. Both normal and abnormal grain
growth!, are considered as a single phenomenon that mainly differ by local grain structure
and crystal orientation field. In addition, we consider in this PhD thesis fairly complex
polycrystalline structures as obtained by several fabrication processes as additive manu-
facturing processes. Indeed, the deposition of liquid metal on a recrystallized substrate
leads to a solidification process that favor columnar grains with specific crystal orienta-
tions, as shown in figure 1.1b. The fully crystallized structure often presents high morpho-
logical and crystallographic textures with very elongated grains and very small equiaxed
grains (see. 1.1b). Thus, the ideas presented in this work have been developed also with

lwhich corresponds to homogeneous growth, and selective growth of a few large grains respectively
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such processes in mind, which explains the large variety of polycrystalline structures that
have been considered.

In addition, even though the theoretical developments proposed in this work are not
limited to metals and may apply to grain growth in general, we refer in the text to metals,
and especially to pure iron for numerical results. This choice is consistent with current
researches on metallic additive manufacturing processes in Solid Mechanics Laboratory
(LMS) and enables the reader to follow the proposed strategy with a specific class of mate-
rial in mind and potential applications.

Deformed materials Recovery Recrystallization Fully recrystallized Grain growth
High dislocation density Subgrain sructure Formation of new grains Polycristal Polycristal

(a) Recovery, recrystallization and grain growth during annealing

Substrate Liquid metal addition Solidification Fully solidified Grain growth
Polycrystal Two phases mixture Formation of new grains Polycristal Polycristal

Substrate

(b) Solidification and grain growth during additive manufacturing process.

Figure 1.1: Schematic processes of annealing phenomena.

1.2 Scientific program

Classical statistical descriptors of the polycrystalline structure such as morphological and
crystallographic textures (e.g., grain size, shape and crystal orientation distributions) evolve
during the process. Thus, for different fabrication or forming processes, temperature con-
ditions could be optimized to obtain targeted microstructures, especially for large hetero-
geneous parts. For instance one can think of additive manufacturing processes for which
the formation and evolution of polycrystalline structure is a significant issue to target spe-
cific material properties, and whose control during the process would be a major advance.
However, mechanisms involved during grain growth arise at the scale of grain boundaries
(GB). Thus, numerical simulations of the evolution of morphological and crystallographic
textures may be difficult to perform for macroscopic parts, which hinders the development
of optimization loops to adjust process parameters.

Thus, this PhD thesis aims at developing an upscaling strategy to establish a macro-
scopic model of grain growth that fully relies on finer scales and whose state variables
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contain statistical descriptors of the grain structure. The proposed upscaling strategy in-
volves considering grain growth at various scales. As shown in figure 1.2, four typical scales
are distinguished in this work: (i) the atomic scale (e.g., crystal lattice and interatomic po-
tential), (ii) the microscopic scale (e.g., grain boundaries), (iii) the mesoscopic scale (e.g.,
polycrystalline structure) and (iv) the macroscopic scale (statistical descriptors of the grain
structure). As energetic concepts are valid at all scales, the upscaling strategy fundamen-
tally relies on various energetic contributions arising at different scales. This energetic up-
scaling strategy is developed within the framework of standard generalized media [4] that
are characterized by their free energy and dissipated power. These two potentials arise
in the energy balance equation combining the first and second laws of thermodynamics,
and they depend on macroscopic state variables that should be defined so that the macro-
scopic state statistically represents the grain structure. The determination of the macro-
scopic free energy and dissipation potentials as a function of the state variables enables
to establish the evolution law of the system at the macroscopic scale. The proposed up-
scaling strategy consists in determining these two potentials not axiomatically (with para-
metric functions and calibration with experiments), but on a more physical basis by using
a large database of computations carried out at the mesoscopic scale. Thus, the macro-
scopic model emerges from finer scales and is compatible with thermodynamics.

It should be noted that we do not propose a multiscale approach, for which simula-
tions at the mesoscopic scale are performed online during the macroscopic computation.
On the contrary, all the computations at the mesoscopic scale are performed in advance
and stored in the database probing the space of polycrystalline structures. On this ba-
sis, we can identify the macroscopic free energy and dissipated power as a function of the
macroscopic state variables in order to obtain an evolution law that accounts for statistical
descriptors of the grain structure.

Therefore, the database requires to use intensively a mesoscopic model of grain growth.
As a consequence, a sufficiently fast mesoscopic model should be established. In chap-
ter 3 we will specifically focus on this aspect, whereas the identification of the macroscopic
model will be broached in chapter 4. Many different approaches have been proposed to
model grain growth at the mesoscopic scale (e.g., see [2, 5] for reviews). Most of them rely
on the classical curvature driven GB motion evolution law:

Ucp=mcpYK (1.1)

where v¢p is the inward speed of the GB (where CD stands for curvature driven), mcp
is the mobility (m*.J"1.s71), y is the surface energy (J.m ?) and « is the grain curvature.
Since this evolution law holds at the scale of the GB, many numerical approaches enable
to refine the geometrical description of GBs in order to capture accurately GB motion. For
instance, models based on cellular automaton and Monte Carlo method [6-10], mobile fi-
nite element modeling [11, 12], level set functions [13-15], phase field [16-21] or molecular
dynamics [22-24] have been proposed. All these approaches produce very interesting re-
sults. However, the computational cost is usually incompatible with an intensive use as
suggested within the proposed framework.

Other approaches reaching shorter computation time have also been proposed. For
instance, vertex methods [25-28] consist in establishing the evolution law directly at the
triple junctions and are relatively simple in two dimensions. However, the extension in
three dimensions is difficult [2]. In this work (see. chapter 3), a fast mesoscopic model
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Continuum

Figure 1.2: Different scales involved in the upscaling strategy

called Orientated Tessellation Updating Method (OTUM) has been proposed, and fully re-
lies on Voronoi-Laguerre tessellation techniques that are usually used to approximate poly-
crystals at the mesoscopic scale. Very efficient algorithms have been developed with the
possibility of controlling statistical distributions of grain size and shape (e.g., using the free
software NEPER [29]). Crystal lattice orientation can also be specified for each grain, and
the tessellation equipped with such an orientation field is called an Orientated Tessellation
(OT). One can approximate the real evolution of the mesoscopic structure as a succession
of OT approximations. OTUM relies on the idea that the evolution law of the mesoscopic
structure can be formulated directly by modifying the parameters defining the OT.

To the best of our knowledge this idea of updating Voronoi-Laguerre tessellation pa-
rameters to model grain growth has been proposed for the first times in [30, 31]. However,
the evolution laws proposed in [30, 31] are questionable. Indeed, they are postulated to
directly mimic the curvature driven evolution law (1.1) despite the fact that GBs have no
curvature in a Voronoi-Laguerre tessellation. More importantly, the modification of a sin-
gle parameter of the OT affects several GBs according to the Voronoi-Laguerre definition,
which plays the role of a geometrical constraint on possible GB motions. Thus, the cur-
vature driven evolution law (1.1) is not appropriate within the framework of OTUM, as it
would necessitate to control GBs independently.

That is why in chapter 3, the evolution law is formulated at the mesoscopic scale (i.e.,
for the entire tessellation instead of each GB taken individually). Different energetic con-
tributions are considered so that the evolution law relies on a physically consistent basis.
More precisely, the evolution law is obtained through the energy balance equation at the
mesoscopic scale, by specifying mechanisms at the microscopic scale: (i) the anisotropic
GB energy and (ii) the dissipated power through any GB virtual motion. The proposed en-
ergetic framework enables to consider not only the driving force (associated to the GB en-
ergy) but also the dissipated power as a resistive mechanism. The GB energy is estimated
as a function of misorientation by molecular dynamics computations at the atomic scale.
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In addition, the dissipated power associated to GB motion is estimated by crystal plasticity
for very low angle boundaries and atomic jumps and atomic diffusion are considered for
high and intermediate angle boundaries respectively. Thus, a substantial link is made in
this work between atomic, microscopic and mesoscopic scales to derive the model.

From the macroscopic point of view, all the mesoscopic structures play the role of rep-
resentative volume elements (RVE). This implies that each mesoscopic structure is sup-
posed to be extracted from a much larger polycrystalline structure. As a result, boundary
conditions should be applied to the RVE to take into account interactions between the RVE
and the rest of the polycrystal. This is achieved by defining the RVE as a subset of grains
extracted from a larger OT, so that misorientations are affected to GBs at the edges of the
RVE.

In addition, the set of possible OTs is a high dimensional vector space. Thus, the
database should contain various RVEs sufficiently different from each other to probe ef-
ficiently the space of possible OTs. However, as detailed in chapter 3, if crystal orientations
are assigned purely randomly, then boundary misorientation distributions (BMD) are likely
to be very similar to each other instead of spreading in the entire space of possible distribu-
tions. To overcome this difficulty, crystal orientations are assigned according to a specific
procedure in order to match prescribed BMDs.

For the sake of simplicity, the proposed upscaling methodology is derived for plane
hexagonal polycrystals. In 3D, this would correspond to face-centered cubic (fcc) crys-
tals, and for each grain the direction [111] is assumed to be aligned with the out of plane
direction. Thus, there are three plastic slip systems in 2D, as shown in figure 1.3. Misori-
entation between two neighboring grains (characterized by five parameters in 3D) is char-
acterized only by two parameters in 2D: the misorientation angle (denoted by Af) and the
orientation of the grain boundary plane (denoted by ¢). Thus, the grain boundary energy
considered in this PhD thesis is computed from fcc crystals sharing the same orientation
(111) (tilt boundaries). The plane assumption enables to deal with thin structures such as
thin films. In addition, since there are 3 plastic slip systems in the plane, the proposed
approach also enables to reasonably approximate 3D structures.
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[100] [010]
Figure 1.3: FCC crystal and (111) plane with plastic slip directions

The final step enabling to extend this energetic upscaling to the macroscopic scale will
be broached in chapter 4. This step requires to reduce the amount of data to be processed
at each material point of the macroscopic domain. This is performed by considering sta-
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tistical estimators of the polycrystalline structure. In practice the successive statistical mo-
ments of the misorientations weighted by the GB lengths are introduced. Macroscopic
state variables are defined as the macroscopic counterparts of such a reduced mesoscopic
state. The key ingredient to obtain purely macroscopic state variables (i.e., that do not
rely on the mesoscopic state) is to determine macroscopic evolution laws, which enable
to determine the evolution of the macroscopic state variables considering only their initial
values. These evolution laws are rigorously determined in chapter 4 by using the using the
very definition of the reduced mesoscopic state and the mesoscopic evolution law iden-
tified in chapter 3. Several quantities arise in the obtained macroscopic evolution laws,
namely the total energy at the macroscopic scale and a macroscopic mobility tensor. These
quantities are identified based on the large database of mesoscopic computations. The
identification of the total energy is fairly simple, as an analytic computation provides (for
a simplified situation) an analytic interpolation function, which revealed to lead to an al-
most perfect fit between the interpolation model and the data. On the contrary, most of the
modeling efforts in chapter 4 are dedicated to the identification of the macroscopic mo-
bility tensor. Indeed, since most of the information carried by the comprehensive meso-
scopic state is lost in the macroscopic state, a single macroscopic state may correspond
to various different mesoscopic states. Thus, an epistemic uncertainty arises, which cor-
responds to the loss of information in the process of reducing the amount of data. This
epistemic uncertainty has been modeled with random variables, leading to a probabilistic
macroscopic model. Technically, the probabilistic identification of the macroscopic mo-
bility tensor involved in the macroscopic evolution law has been carried out by using clas-
sical Bayesian inference. Thus, the main output of the proposed macroscopic model is the
mean and point-wise standard deviation of the macroscopic variables. Somme compar-
isons with mesoscopic evolutions show that the macroscopic model is satisfying and can
be used for various applications such as forming and fabrication processes.

1.3 Outline of the thesis

A brief literature review is provided in chapter 2. The mesoscopic model (OTUM) is de-
tailed in chapter 3, and the probabilistic macroscopic model is developed in chapter 4. A
general conclusion is given in chapter 5. Appendices are also provided in Appendix A.
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Chapter 2

Literature review

« Change is the law of life. And
those who look only to the past or
present are certain to miss the

future. »
J. E Kennedy
Contents
2.1 Grainboundaryenergy .. .........ouiei ettt ttoeoeeeea 18
2.1.1 Analytic model based on dislocation theory . . . ... ... ... .... 19
2.1.2 Molecular dynamics . . ... ... ... ... ... 21
2.2 Curvaturedrivenevolution . .......... ... 22
23 Mobility. . o o v v i ittt e et e e e e e e 23
2.3.1 Verylow angle boundaries . .............. ... .. ..... 25
2.3.2 Highangleboundaries. . . . ... .. ... ... ... ... ... .. ... 26
2.3.3 Lowangleboundaries . .. ... ... ... ... ... .. ... .. ... 27
2.4 Numerical approaches at mesoscopicscale .. .........c00000.. 27
24.1 Meanfieldapproaches. . . ... ... ... ... . .. ... . ... 27
242 Vertexmodels . . . ... .. . 30
2.4.3 Tessellation updatingmethods . . . . .. ... ...... ... ..... 30
2.44 Monte Carlo simulations . . ... ............. .. .. ..... 31
245 Levelsetmethods . ........... ... .. .. .. .. . ... 32
24.6 Phasefieldapproach . .. ... ... ... ... ... . .. .. ... ... 33
2.4.7 Molecular dynamics . . . ... ... ... . e 34

17



In this chapter, a concise literature review is presented. The literature related to anneal-
ing process and related phenomena is particularly rich and cannot be exhaustively pre-
sented in this PhD thesis. The subject tackled in this brief review concerns grain growth,
more precisely the modeling aspects and the different numerical approaches used to pro-
duce realistic simulations. Phenomenological and experimental aspects of grain growth
are not covered in this chapter, as well as the complexity of multiphase materials. Never-
theless, the proposed review enables to contextualize our research project in the already
existing scientific field, and to enlighten our motivations as well as the advantages and the
limitations of the proposed work.

This review mostly relies on the book [2]. Therefore, this chapter does not contain
original results or concepts and can easily be skipped by a reader that is familiar with
grain growth and the associated numerical methods and the related challenges. Our aim is
purely educational so that the reader can compare the well known models and numerical
methods with the work developed in this PhD thesis.

2.1 Grain boundary energy

Since the framework of this PhD thesis is grain growth in polycrystals after recrystalliza-
tion, we do not consider the energy per unit volume carried by dislocations, whose density
is a driving force for recrystallization phenomena. Hence, we mainly focus on the grain
boundary energy, which leads to the main driving force during grain growth. In this sec-
tion, we present a description of GB energy, and models or numerical methods to compute
it.

In figure 2.1 a grain boundary between two crystals is presented. This GB is character-
ized by: (i) the GB plane characterized by a normal vector n with two degrees of freedom
(the normal unit vector is considered) and (ii) the misorientation between the two crystal
lattices (the minimal rotation to make correspond the two lattices) characterized by three
degrees of freedom: a unit vector for the rotation axis (2 degrees of freedom) and the ro-
tation angle A@ (1 degree of freedom). Therefore, GBs can be geometrically described us-
ing five parameters. Different and equally valid conventions (e.g., Euler angles, Rodrigues,
quaternions) can be used to describe a three-dimensional GBs depending on the applica-
tion. Since this PhD thesis deals with two-dimensional problems, the description of GBs
is fairly simple, and reduces to only two degrees of freedom. Indeed, in 2D since the rota-
tion axis is perpendicular to the plane, two angles are sufficient to describe the GB: (i) one
angle for the GB plane and (ii) the misorientation angle.
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Figure 2.1: Grain boundary

It is clear from figure 2.1 that the energetic content of a bicrystal with different orien-
tations is higher than the energetic content of a monocrystal. Indeed, the atomic arrange-
ment at the GB is disrupted on a few atomic planes in order to accommodate the fact that
the two disoriented lattices do not coincide. Thus, interatomic distances in this area are
different from the equilibrium positions of the monocrystal (corresponding to the mini-
mum of the interatomic potential) and therefore the bicrystal carries more energy. This
energy excess is interpreted at the scale of the polycrystal as an energy per unit area car-
ried by the GB. This GB energy is denoted by vy, and is essential to understand the driving
force exerted in the GBs. Different methods were developed to measure this energy [32].
Not only does it depend on the atomic nature of the crystal but also on the temperature
and the geometric nature of the GB (i.e., the GB plane and the crystal misorientation). For
the sake of simplicity, some dependencies are often neglected, especially the dependency
associated to the GB plane even though it is not always legitimate. Sometimes, the de-
pendency of the GB energy y on the misorientation between the two crystals is neglected,
which is called isotropic energy. In this work, the effect of the misorientation on the GB
energy is considered, which is usually refereed as anisotropic energy.

Numerical simulations of grain growth essentially rely on the knowledge of GB energy.
That is why different methods enabling to compute numerical approximations of the GB
energy have been developed. The main results of some of those approaches are presented
in the following, and will be used in this work (see chapter 3).

2.1.1 Analytic model based on dislocation theory

The most ancient approach, but also the most used is the one proposed by Read&Shockley
[1]. It consists of an analytical calculation based on a dislocation model of the grain bound-
ary as shown in figure 2.2. The misorientation of the grain boundary is considered to be
composed of two sets of equidistant edge dislocations ((010) and (100) planes edge dislo-
cation) located on the grain boundary.
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Figure 2.2: Dislocation model of a simple grain boundary [1]:(a) A symmetric tilt grain boundary
between two crystals with a misorientation angle 8 (A8 in this document) and an inclination angle
¢. (b) dislocation model.

The spacing between dislocations for the two sets is calculated from the dislocation
densities that can be deduced from a simple geometrical calculation (see figure 2.2). D,
(respectively D,) represents the spacing between two (010) (respectively (100)) dislocation
planes:

a

D. =

o Ocos¢ 2.1)
D - a

Y7 @sing

where a is the lattice constant, AO the misorientation angle and ¢ the inclination angle
fixing the orientation of the GB plane.

The elasticity theory within the framework of isotropic solids is then used to compute
the GB energy of the two arrays of dislocations. More specifically, the work done on the
slip plane of each dislocation is calculated. This work is due to the stress system caused by
each array of dislocations. The energy of the GB energy per unit area is simply the energy
per slip plane times the density of slip planes summed for the two types of dislocations.
The final form of this energy is as follows:

Y = EgAO[A—1InAf] (2.2)

where Ej only depends on the inclination angle ¢ and the macroscopic elastic constants

of the material. .
_ Gal(cos¢ +sing)

An(l—v)
where G is the shear modulus and v the Poisson’s ratio and a the lattice constant.
A on the other hand is more difficult to grasp, since it depends on the energy of the
atoms at the dislocation (energy of atomic misfit) and where Hooke’s law is no longer valid.

Ey (2.3)
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A also depends on the inclination angle ¢. However, for small values of ¢, A can be ap-
proximated by 0.23.

2.1.2 Molecular dynamics

The range of validity of the Read & Shockley formula is limited to small misorientation
angles and do not account for the energy cusps at certain misorientation angles. To over-
come this difficulty, molecular dynamic computations have been proposed to compute
GB energies as a function of the five parameters characterizing GBs. The principle of the
method is to consider that atoms behave as point objects, whose motion is dictated by
forces and the Newton’s law (i.e., F = ma with F the force, m the mass of the atom and
a its acceleration). The forces are derived from an interatomic potential (or pair poten-
tial), which determines the potential energy as a function of the distance between a pair of
atoms. Molecular dynamic computations basically consists in numerically solving the sys-
tem composed of forces, masses according to the Newton’s law to infer the atoms motion.
It is clear then that molecular dynamics do not involve solving the Schrédinger equation
or any aspects of quantum physics. The behavior of atoms is fully determined by the in-
teratomic potential, which enables to upscale the fundamental behavior of matter. The
main advantage is that relatively large simulations involving thousands of atoms can be
performed although simulations of the Shrodinger equation are limited to a few tens.

Within the context of GB energy, molecular dynamic computations consist in directly
minimizing the total energy composed of the interaction energy between atoms due to the
interatomic potential. Usually the numerical scheme is based on the conjugate-gradient
method as in the LAMMPS code [33] for instance. This minimization process gives only
access to the equilibrium configuration and not to the motion of atoms by integrating the
Newton’s law with respect to time as for usual molecular dynamics computations. This
methodology enables to save computation time and therefore to investigate a large num-
ber of different configurations. The GB energy is defined as the difference between the
total energy after minimization of a bicrystal with a certain misorientation and the default
stack energy of the corresponding monocrystal. The difficulty is that the total energy of
the bicrystal is very similar to the default stack energy, which implies high accuracy for the
subtraction to obtain reliable GB energy.

Among early works, Wolf [34-37] provided a systematic investigation of GB energy in
fcc metals. Many other molecular dynamic computations have been carried out to de-
termine GB energy (e.g., [38-40]). However, using molecular dynamics online during a
simulation of grain growth would be computationally costly. Thus, some approaches at-
tempt to establish simple models of GB energy based on multiscale strategies relying on
molecular dynamic computations (e.g., [41]), whereas other approaches simply rely on in-
terpolations of molecular dynamic computations (e.g., [42]). In this work such a strategy
is adopted, molecular dynamic computations are performed and then interpolated as a
function of misorientation.

There is a large variety of interatomic potentials. The simplest is the Lennard-Jones pair
potential but it is common to use more sophisticated potentials such as the embedded-
atom method (EAM) [43]. In this work, molecular dynamic computations to obtain GB
energy have been derived for pure iron by using the interatomic potential proposed in [44],
which presents the advantage to be stable at low temperature for fcc (although Fe presents
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a bece structure at low temperature). The approach is similar to [38, 39], using computation
cell with periodic boundary conditions.

2.2 Curvature driven evolution

In this section, we detail the curvature driven evolution law of GBs. Such a law is widely
used for grain growth models, and will be very useful in the scope of this work. In order to
establish this classic law, we will consider a simple approach.

The idea is to consider a spherical grain of radius R in an homogenous matrix. The
orientation of the two crystals (grain and matrix) creates a GB with a misorientation A@.
The GB energy per unit area is denoted by y and the mobility of the grain boundary is
denoted by mcp. If the main mechanism of thois system if the migration of the GB, the
total energetic state of the system can be can be written in the form of the GB energy per
unit area y multiplied by the sphere area S = 47 R?:

& =4nR%y (2.4)

Thus, R is the only state variable of the system and the driving force F can be computed
as follows:

F= 06 _ 87T R (2.5)
=35 =~ 87 RY .
The pressure P can also be defined by dividing the driving force by the GB area S:
F 2
p=—=°"Y 2.6)
S R

The grain growth is a viscous process that dissipates energy. In order to establish the evo-
lution law, the dissipated power is postulated for a given virtual velocity v* of the GB as
follows:
* S *12
QW) =—— ") 2.7
mcp

where mcp is a coefficient representing the grain boundary mobility (J-'.m*.s™!). The
dissipated power per unit area is (v*)2/mcp. The real velocity of the grain boundary in
this system is obtained by maximizing the dissipated power [45] under the constraint of
the energetic balance equation, which reads:

2+£=0 (2.8)
Thus, we need to solve:
argmax | —— w"?
~R=v={ Vv TP 2.9)
. 4n R %2 *
subjected to. —— (v")* =81 Rv Yy =0
mcp

The solution to this problem is elementary and reads:

ZmCDY
R

Vcp = (2.10)
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Where we defined v = —R the inward velocity corresponding to the reduction of the grain,
hence the change of sign in the previous equations. The equation (2.10) can be interpreted
as the local velocity of a portion of the GB, where R represents the local radius of curvature.
In general, this equation is generalized [46, 47] in the case of double-curved GBs, that have
in contrast with a sphere two principal radii of curvature R; and Ry;:

1 1

Ucp = McpY (—+—) (2.11)
Rr Ry

Within the two-dimensional framework considered in this work, the principal radii of cur-

vature of the GB are Ry = R and Rj; = +oo. Thus the evolution law (2.11) reads:

Ucp = McpYXK (2.12)

where x = 1/R is the GB curvature. The evolution law (2.11) that depends on the GB curva-
ture was experimentally validated on several occasions [48-51], and is used as the founda-
tion of most grain growth numerical simulations. The curvature driven evolution law (2.11)
is either used directly where the numerical simulation is developed as an approximation
of (2.11), or it is used a posteriori to check the soundness of the model. In this work, the
adopted approach does not relies on (2.11) directly. Indeed, there is no GB curvature in
Voronoi-Laguerre tessellations that are the basis of the proposed mesoscopic model de-
tailed in chapter 3.

2.3 Mobility

The main mechanism of grain growth comes from GB migration. GB mobility refers to the
ability boundaries to migrate under the effect of a driving force. The mobility is denoted
mcp and arises in equation (2.11). The evolution rate is then very dependent on the mo-
bility. This entity characterizes the power dissipated by a GB for every virtual velocity of
the latter, as shown in equation (2.7). This dissipation represents the resistive part of the
model, while the GB energy derived by the state variables represents the driving part.

At the scale of the polycrystal, the GB mobility mainly depends on temperature and
on the misorientation. In fact, the mobility is very likely depends on numerous other pa-
rameters arising at lower scales. However, these dependencies are usually not taken into
account in numerical simulations, because the detailed mechanisms responsible for grain
mobility at the scale of dislocations or the atomic scale are not perfectly known. In this
work, we limit ourselves to a simplified situation where the GB mobility only depends on
temperature and misorientation, which is in good agreement with experimental data.

Grain growth is a thermally activated process, and experimental results show that the
temperature dependance can be considered to follow an Arrhenius law :

)
mcp = Myexp | ——— (2.13)
CD 0 P( RT
where R is the ideal gas constant, Q is the activation energy that can depend on misorien-
tation and my  a mobility independent on temperature but dependent on misorientation.
The activation energy Q can be linked to atomic scale by considering the local thermally
activated mechanisms that control GB migration. In the case of grain growth, the mobility
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was successfully measured experimentally [50-53]. In figure 2.3 two examples extracted
from the literature are presented, and highlight the link between the activation energy and
the misorientation.
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(b) The effect of misorientation on the activation
0 10 20 30 energies for low angle boundary migration in Al-
Misorientation (°) 0.05%Si, measured from subgrain growth in single

crystals after [54].
(a) Activation energy of sodium chloride as a func-

tion of misorientation after [53].

Figure 2.3: Experimental evidence that activation energy depends on misorientation.

It should be mentioned that other models with a temperature dependance in 1/T were
proposed for instance in [55, 56] :

CDgsb
kg T

Mmcp = (2.14)

where C is a dimensionless constant, Dg the self-diffusion coefficient, b the Burger vector
norm and kg the Boltzmann constant. However, this model does not take into account the
misorientation dependance.

In addition, experimental results show a clear dependance of the mobility on the mis-
orientation. Historically, a distinction is made between low angle boundaries (<15°) and
high angle boundaries (<15°). The mobility values are very different for these two classes
of angles, as can be observed in figure 2.4 where experimental data are extracted from the
literature.
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Figure 2.4: Experimental measurements of mobility as a function of misorientation.

2.3.1 Very low angle boundaries

The detailed mechanisms leading to these results are not fully understood as explained
in [2]. However, some models are proposed to compute the mobility in the case of low
angle boundaries. Modeling mobility in the case of low angle boundaries mainly relies on
dislocation dynamics, and especially the fact that the motion of GBs implies the motion of
climb edge dislocations [2].

For very low angle boundaries, where Af < 1°, dislocations involved at the GB are as-
sumed to be independent of each other that is to say that they do not interact. It is there-
fore legitimate to consider that the motion of the GB is fully controlled by the mechanisms
governing dislocation dynamics. In this limiting case, by writing the force per unit length
applied to a curved dislocation, and by calculating the climb velocity of the latter, it is
shown in [2] that the mobility is proportional to the inverse of the misorientation angle

(2.15): .
mcp X E (2.15)

Thus, when A8 — 0, mcp — +oco0. Hence, according to (2.7) the dissipated power 2 — 0,
which corresponds to the intuitive idea that the lower a bicrystal misorientation is (i.e.,
close to a monocrystal) and the lower the dissipation cost (i.e., resistance to GB motion) is.

A similar result was obtained within the framework of crystal plasticity [59, 60]. In [59],
the dissipated power associated to the motion of a GB was estimated analytically for a
simple configuration, nammely: two-dimensional ideal bicrystal with a hexagonal atomic
structure. There are three plastic slips in hexagonal structures, and it is assumed that GB
motion is associated to the activation of plastic slips so that the crystal arrangement of one
crystal is transformed into the crystal arrangement of the second crystal. The flow rule is
assumed to follow a Schmid’s law. The link between the slip rates and the velocity of the
GB is given by:

-1,0,1

gradv* = Y 11,(0)5,(0) Rl-e-5,0)] —be 2.16)

n
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where v* is the local virtual velocity of the GB, i1, the slip rates associated with the crystal-
lographic slip directions s, 0 is the crystal orientation field and e the permutation tensor.
The dissipated power per unit area associated to any combination of slip rates reads:

. s+6 -1,0,1
D (11,(0),0) = 7, 5 Y lun@(x)ldx (2.17)
§— n

where 7. (MPa) is the critical shear stress, s the position of the GB and 6 the half thickness
of the GB where plastic slips are activated to transform one crystal arrangement into the
other. This dissipation is calculated over the GB and for all the slip directions. The right
combination of slip rates is determined by minimizing the dissipation (2.17) over the set of
slip rates, and by using (2.16). Indeed, since crystal plasticity is a rate independent process,
slip rates may be obtained by minimizing the total energy (stored elastic energy and dis-
sipated energy). The considered problem being purely dissipative (there is no variation of
stored energy) it is sufficient to minimize the dissipated power. The obtained dissipation,
which is characteristic of the bicrystal, can be reduced to:

D(AG,v*) =1.X(A0) |v*]| (2.18)

where A0 is the misorientation angle and X is the following function:
6 3
X(A0) = —(E +2\/§1n(£))min{A9,E—A9} (2.19)
nl\3 2 3

Since grain growth is viscous, the analytic computation proposed in [59, 60] can be simply
adapted for crystal visco-plasticity by considering that the critical shear stress 7. linearly
depends on ‘v;‘j‘, which reads:

1
~m(T)

where m(T) is homogenous to a grain mobility (m*J~!.s™!) that can be related to the cur-
vature driven mobility mcp. The mobility m(T) is calibrated so that the shrinkage of an
hexagonal grain evolves at the same speed as the shrinkage of a circular grain according to
the curvature driven evolution law. More precisely, it is shown in A.2 that:
m(T)
T,AQ) = ——— 2.21

mep( ) X20) (2.21)
Thus, as for the analysis with independent dislocations the mobility depends for very low
angle boundaries on misorientation in 1/A@. It should be mentioned that crystal plasticity
is a valid mechanism to explain GB mobility only for very low angle boundaries.

*

Vi (2.20)

Tc

2.3.2 High angle boundaries

For high angle boundaries (Af > 15°), dislocations are closer to each other and may in-
teract. The mechanisms associated to mobility can no longer be attributed to the motion
of dislocations. In that case, atomic jumps over the grain boundary are more suited to
explain the GB motion as explained in [2]. For high angle boundaries, experiments pro-
vide evidences that the mobility is independent on the misorientation angle as shown in
figure 2.4b.
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2.3.3 Low angle boundaries

For low angle boundaries (1° < A@ < 15°), the mechanism that is usually considered is sim-
ilar to the diffusion of atoms across a membrane with a given thickness [2], leading to a
mobility of the form:

mcp X AO (2.22)

which is approximately verified in figures 2.4a and 2.4b.
By associating considerations for low angle boundaries (1° < Af < 15°) and high an-
gle boundaries (A8 > 15°), a mobility function depending on the misorientation angle is

proposed in [61, 62]:
(5]
-K

mCD(T’Ae) = mmax(T) (l—exp m
1

) (2.23)

where a sigmoid function is introduced in (2.23) to make a smooth transition from one
regime to the other.

However, this function tends to 0 when A@ — 0. Thus, equation (2.7) leads to a di-
verging dissipated power & — +oo, which is inconsistent with the analysis presented in
section 2.3.1 for very low angle boundaries. In order to overcome this issue, we propose in
section 3.1 an improved version of the mobility function (2.23), which takes into account
considerations for very low angle boundaries Af < 1° (i.e., a mobility function that leads to
a zero dissipated power when A8 — 0).

Many other factors affect mobility. However, such factors will not be discussed in this
dissertation. Indeed, a modeling choice is made throughout this work to neglect the other
aspects besides misorientation and temperature. The reader can be referred to the chap-
ter 5 of the book [2] for a thorough literature review of the different factors affecting the
grain boundary mobility.

2.4 Numerical approaches at mesoscopic scale

In this section, the main approaches underlying numerical simulations of grain growth are
reviewed, with brief discussion on their advantages and limitations. The contribution of
the present work is positioned within the scope of this vast and rich field of study. Different
literature reviews are available on this subject [2, 25].

2.4.1 Mean field approaches

In the context of grain growth, mean field approaches consist in using idealized structures
usually with spherical grains representing different grain families in the polycrystalline
structure sharing the same properties such as size and crystal orientation. However, in
real polycrystalline structures, fundamental properties such as misorientation depend not
only on the intrinsic characteristics of the grains but also on their connection, that is to
say their relative positions. This aspect is neglected in mean field approaches, which are
based on simplified relationships between the different grain families, as the detailed grain
structure is not considered.

The early works [46, 47] deriving a growth law for the mean grain radius (R) can be
considered as one of the first mean field approaches. This model relies on the curvature
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driven evolution law (2.10). In addition, the GB energy per unit area y is assumed to be a
constant (i.e., independent on misorientation and GB plane), which simplifies the analysis
as the connectivity between grains is not taken into account. The radius R of each grain
family is proportional to the mean radius of the entire structure (R). Thus, by using (2.10)
one obtains:

% = % (2.24)
where Cj is a constant. Hence by integrating one obtains:
(R?=C+2Cyyt (2.25)
where C; = (R(¢ = 0))2, which is often written as follows:
(Ryox Ctn (2.26)

Where C is a constant, and n = 2 is called the growth exponent. In practice experiments
give evidences that the growth exponent may lie in the following interval [2,4] [63].

An other famous model called the von Neumann-Mullins (vINM) law [64, 65] relates
the number of sides and the area change rate of each grain family. The classical vNM law
is formulated within a fully isotropic framework (i.e., isotropic GB energy and isotropic
mobility), and relies on the curvature driven evolution law (2.12) and the assumption that
angles at triple junctions are 120°. The vINM reads:

dg =T (16 (2.27)
dt™" 3 '
where 7 is the number of sides of the grain family, dS,,/dt is the area change rate of n sided
grains, and m* =y mcp (m?.s™1) is the constant reduced mobility. Since S, oc R? where R,
is the radius of the n sided grain family, (2.27) reads:
d D
—R, = —

T R, (n—-6) (2.28)

where D is a constant. In addition, an extended vINM law (3.55) has also been proposed for
anisotropic grain growth and tested with a mesoscopic stochastic Monte-Carlo simulations
(66].

d
@ (Sny=(mp) (m—(Bn)) (n— (2.29)

2 )
T —{Pn)
where (m}) is the average reduced mobility, (f,) is the average triple junction angle, and
where averages are taken over the family of the n sided grains.

Among the early mean field theories, the statistical approaches are well known [67].
Considering a grain family of radius R the following relationship is found in [67]:

dr _ (i—l) (2.30)
a " ® R '

where m and y are respectively the constant mobility and GB energy per unit area of the
considered grain family, and (R) is the overall average grain radius, which is estimated from
(2.24). This relationship (2.30) has been obtained within the framework of a more general
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mean field approach in [61, 68]. The derivation of (2.30) is based on energetic considera-
tions during the growth of the grain family of radius R. Consider the GB boundary energy
&G = Sy, where S = 47 R? is the area of the spherical GB. In addition, when a grain family
of radius R grows, some GBs in the rest of the structure are annihilated and the energy de-
creases. The energy carried by the GBs in the rest of the structure is modeled by an energy
per unit volume Ey. Thus, the energy carried by the GBs in the rest of the structure reads
Evuk = (Vo — V) Ey where V, is the volume of the rest of the structure and V = 4/37 R3 is
the volume of the sphere of radius R. Thus, the total energy reads:

4
5’:471’}?205’}’—(‘/0—571'}?3) BEy (2.31)
where coefficients a, f are introduced to take into account the fact that an idealized struc-

ture is considered, and therefore approximate formulas are obtained. The driving force F
reads:

08 9
F:£:8nRay—4nR BEy 2.32)
The pressure P reads (where S = 47 R?):
F 2ay
P=—=—__8E 2.33
s- g PEv (2.33)

Since Ey represents the energy per unit volume carried by the GBs in the rest of the struc-
ture, one can relate Ey and the average GB energy (y) and the average grain radius (R):

3

VE30R (2.34)
Hence: 4R 3¢ )
_:_mp:m( _7>_ﬂ) (2.35)
dt 2(R) R

The classical relationship derived in [67] is obtained with f=2/3 and a = 1/2 and a con-
stant GB energy (i.e., (y) =Y.

By solving the coupled system (2.30) and (2.24) Hillert [67] found a steady state statis-
tical distribution of R/ (R):

(i)—zg’ex (2)£(2—i)_4ex __4 (2.36)
Pl )= P9 " m) P\ Tk '

Other well known distributions have been obtained in [69, 70], for instance the Rayleigh

distribution reads:
(i)_liex (_Z(i)z) 2.37)
Plw )~ 2@ P\ w) '

Of course more advanced mean field approaches have been developed to model grain
growth and static or dynamic recrystallization. In particular semi-topological approaches
have been developed [71]. In addition mean field approaches are usually used to repro-
duce full field computations (e.g., using level set method as detailed in section 2.4.5) to
save computation time for industrial processes such as rolling process for instance. A com-
mercial code DIGIMU [72] has been developed, and can perform both full field computa-
tions and calibrated mean field estimations. Of course, since mean field approaches are
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mostly based on mean grain size or grain size statistics, the information that is upscaled
at the macroscopic scale is not particularly rich. One of the main ambition of this PhD
thesis is to present an upscaling method, which enables (in the limited context of two-
dimensional grain growth) to deal with additional grain statistics at the macroscopic scale,
such as mean and standard deviation of misorientations or the GB lengths per unit area.

2.4.2 Vertex models

The vertex method consists in considering a network of grains, often constructed as a
Voronoi network. The idea is to control the motion of the boundaries by computing an
evolution of the vertices positions. The code should also take into account the limit cases
where two vertices are driven to meet or when a grain tends to shrink and disappears.

Two main vertex model can be identified depending on the dynamics used to govern
the motion: (i) boundary dynamics models and (ii) vertex dynamics models. On the one
hand, boundary dynamics models are based on equations governing the motion of the
grain boundaries, usually based on the curvature driven evolution law (2.12). These mod-
els necessitate to introduce a local GB curvature that does not explicitly exists in a vertex
network, thus a GB curvature is estimated by comparing positions of neighboring vertices.
Positions of the triple junctions (i.e., vertices) can therefore be updated so that the curva-
ture driven evolution law is satisfied. The aim of this approach is to mimic physical mecha-
nisms of boundary migration described in section 2.3. On the other hand, vertex dynamics
models rely on evolution laws applied to the vertices positions, leading to a much cost-
friendly model. The difficulty of such approaches is to determine the right evolution law
to affect to vertices so that the behavior of the system is satisfying. Indeed, the motion of
each vertex is dependent on both position and motion of the neighboring vertices, which
makes fairly complicated the search for a suitable evolution law. In [27], three-dimensional
vertex model is adopted and based on the minimization of the grain boundary energy. In
[28], a vertex model based on Read&Shockley GB energy is implemented and compared
phase-field simulation results.

2.4.3 Tessellation updating methods

In this PhD thesis, a mesoscopic model of grain growth is proposed and relies on ori-
entated tessellation updating method (OTUM), which consists in modeling the evolution
of the polycrystalline structures as a succession of orientated tessellations (OT) (Voronoi-
Laguerre tessellations equipped with an crystal orientation field). This approach presents
the advantage to rely on very efficient algorithm to produce Voronoi-Laguerre tessellations
in 2D or 3D such as NEPER [29]. The details of the methods are exposed in chapter 3. As
already mentioned, to the best of our knowledge this idea of updating Voronoi-Laguerre
tessellation parameters to model grain growth has been proposed for the first times in
[30, 31]. A Voronoi-Laguerre tessellation is composed of seeds and weights. Seeds are as-
sumed not to evolve and the weights (where 1 < j < N with N the number of grains) are
determined by the following evolution law in [31]:

w;j=4m(R) P; (2.38)
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where w; is the weight of grain j, m is the mobility, (R) the average grain size and P; the
pressure applied to grain j. Various models for P; are postulated in [31] such as:

p 1
i=TR
R

pPj= s} (2.39)
P] = —7
J

where R}, S;, V; are respectively the radius, area and volume of the grain j. However, the
evolution law (2.38) is questionable. Indeed, it is postulated to directly mimic the curvature
driven evolution law despite the fact that GBs have no curvature in a Voronoi-Laguerre tes-
sellation. More importantly, the weights are controlled independently, however the modi-
fication of a single weight affects several GBs according to the Voronoi-Laguerre definition,
which plays the role of a geometrical constraint on possible GB motions. Thus, the curva-
ture driven evolution law is not appropriate within the framework of OTUM, as it would
necessitate to control GBs independently. In contrast, we present in chapter 3 a tenso-
rial evolution law, which enables to update all the weights at the same time accounting
for the relationship between the grains as imposed by the Voronoi-Laguerre tessellation
definition.

2.4.4 Monte Carlo simulations

The Monte Carlo method is widely used to simulate grain growth in both two and three
dimensions [6-10], also called the Potts models or Q-state Ising models. The method con-
sists in discretizing the polycrystalline structure using pixels (in 2D) or voxels (in 3D). The
mesoscopic structure is then represented by a discrete grid of blocks. To each block are as-
signed different attributes like the crystal orientation. A grain is then an assembly of blocks
with the same orientation. To the blocks of the same grain are also attributed the same ID
number (see figure 2.5). A grain boundary is then defined implicitly between neighboring
blocks with different IDs (i.e., jumps in the ID field).

6 6 6~7.7 7 7 7 7 7°8 8 8

66667777?888

666337771_188
6 6.6-3 3 3 43751678 8 8
6333334“99988

-------------

551‘]166644222
5;11116677722

Figure 2.5: The basis of the Monte Carlo simulation method [2].
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The main idea of Monte Carlo simulations is make random attempts to replace the ID
of a voxel at a grain boundary by the ID of the neighboring grain as shown in figure 2.6.
This change is accepted according to a probability that depends on the energy change due
to the ID replacement. Of course this probability is designed so that the global behavior
of the system is satisfying with respect to the curvature driven evolution law. Thus, the
evolution of the system is governed by two key quantities: (i) the total energy of the system
& and (ii) the transition probability matrix P composed of the probability P;; of accepting
the ID change of the block i into the ID of the block j. The total energy of the system is
basically the sum of GB energies, as well as bulk energies. The transition probability P;;
reads:

Yij Mmij

AE =<0
o Y max Mmax
Pij=y vy mi AE (2.40)
exp|— AE >0
¥ max Mmax Ymaxk T

where y;; and m;; are respectively the energy and the mobility of the grain boundary
between two blocks i and j (if the blocks i and j belong to the same grain, y;; = 0),
Ymax, Mmax are the maximal values of y;j, m;j, and A& corresponds to the change of en-
ergy due to the transition.

@ese66666 Ps666666
6666666 6666666

6 6 6[5]6 66 6666666
5555555 5555555

ObHbbHES 9555585

Figure 2.6: Grain boundary migration in the Monte Carlo model [2].

Thus, in practice, blocks are selected at random and the ID change is attempted. The
new energy state is computed and compared to energy at the previous time step (i.e., A&
is computed). This change is accepted according to the transition probability P;; defined
in (2.40). Is clear that ID changes, which lead to a decrease of the total energy (i.e., A& <0)
are much more likely to be accepted than changes which lead to an increase of the energy
(i.e., A6 > 0). The probability of accepting the ID change decreases exponentially with
A& > 0, which indicates that the system statistically decrease in energy. In addition, for ID
changes such as A& < 0, the probability (2.40) tends to favor the changes corresponding
to the highest GB energy and mobility, which captures intuitively grain growth thermody-
namics.

The kinetics of the Potts model proves to be conform to the curvature driven grain
migration [2]. Potts model is quite easy to understand and to code. However, the compu-
tational cost can be very high for large mesoscopic structures.

2.4.5 Level set methods

The level set method is a general implicit description of boundaries by means of fields
defined on the entire body instead of a local description of the surface. Usually a level
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set function is defined as the signed distance between the surface to be described and a
point of the space, which implies that the surface corresponds to the points where the
level set function vanishes. This technique is suitable to numerically describe complex
surface topology with fast algorithms to update the level set function (i.e., a field defined
in the entire body), which lead to numerous applications (e.g., X-FEM within the context
of fracture mechanics). Level set functions were first used for grain growth in [73] and
adopted ever since [13-15, 74, 75]. The basic idea is to consider a continuous scalar field
(i.e., the level set function) defined on the domain of the mesoscopic structure. The grain
boundary location is given as the zero level set. The migration of the grain boundary can
then be captured through the evolution of the level set function via the transport equation:

+p-VO .
ot ( )

where @ s the level set function and v the velocity field.

For a polycrystal, a several level set functions are defined to account for all the grain
boundaries. The model relies the choice of the velocity field expression and the level set
function. In [15], the grain boundary velocity is given by:

v=m(Vy-n—-yx)n (2.42)

where m is the grain boundary mobility, y the GB energy, x the mean curvature of the
grain boundary and n the outside normal vector to the GB. It is common to consider the
level set functions as the distances from the grain boundary, where the function is positive
inside the grain, negative outside the grain and zero on the grain boundary. In that case,
the curvature x and the normal 7 can be easily deduced from the level set function, leading
to the following transport equation (see [15]):

oD
=+ mVy VO -yA®=0 (2.43)

Finite elements can be used in order to solve the transport equation (2.43).

2.4.6 Phase field approach

The phase-field method is also an important and versatile technique for simulating the
evolution of polycrystalline structures at the mesoscopic scale [3, 16-21, 76, 77]. Phase
field methods were first used for grain growth in [78]. The main idea is to represent each
phase (or crystal orientation in this context) by a scalar field continuous in space and time.
Different modeling approaches are possible, the most used is the diffuse-interface descrip-
tion where the phase field variables correspond to their values inside the grains, and vary
gradually in a narrow region between two neighboring grains representing the GB. In this
case, the evolution of the mesoscopic structure is implicitly given by the evolution in time
of the phase field variables, as shown in figure 2.7.
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Figure 2.7: Schematic representation of an interface in a diffuse-interface phase field model [3].

The time evolution of the phase field variables is described by a set of partial differen-
tial equations (that can be solved numerically by finite element techniques or fast Fourier
transform techniques if periodic configurations are studied). The main advantage of phase
field methods is the possibility to consider different physical aspects of the mesostructure
evolution by considering different energetic contributions. Indeed, the method is based on
general thermodynamic and kinetic principles, which requires to account for the energetic
state of the studied system.

The first step is the choice of the phase field variables depending on the modeled phys-
ical phenomenon (crystal orientation is typically used for grain growth). The second step
consists in defining a free energy function that depends on the phase field variable. In-
deed, the evolution is determined by reducing the free energy of the system. Different
energy contributions can be considered in (2.44).

F = Fint + Fpuik + Fel (2.44)

where %, is the interface energy (e.g. grain boundary energy), %, the bulk energy (e.g.
energy associated to the dislocation density), and %,; the elastic strain energy. Finally, the
principle of virtual power can be applied within a thermodynamic framework to derive the
evolution equations of the phase field variables.

For instance, this approach has been developed in [19, 20] with two separate phase
fields: the crystal orientation 8 and the crystallinity 1 (describing the local crystalline or-
der in the transition zone between two grains). More recently a unified formulation of
grain boundary motion phase field model and mechanics has been proposed in [76, 77]
within the framework of Cosserat theory to account for non-local effects such as the rota-
tion induced by crystal plasticity.

2.4.7 Molecular dynamics

As already mentioned in section 2.1.2, molecular dynamics consists in solving the dynamic
Newton’s system, whose applied forces are derived from an interatomic potential. This in-
teratomic potential determines in a simplified way all the properties of the atoms and es-
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pecially their interactions. Since rather large simulations can be performed and consider-
ing the fact that the atomic scale is well suited to simulate GB motion, molecular dynamics
is a very powerful tool to understand detailed mechanisms associated to the mobility of GB
[22-24, 79]. For instance the reduction of a channel in a matrix has been simulated in [22]
confirming that the GB velocity is associated with the curvature (i.e., no motion for the
flat part of the channel). However, the main difficulty with such methods is to adequately
chose the interatomic potential as a large variety of potentials have been established for
various chemical species. Indeed, the interatomic potential fully determine the behavior of
the simulation, and none of them fully characterize the atomic behavior (atomic potentials
being oversimplified with respect to fundamental laws of quantum physics). Thus, one
should consider an interatomic potential that is suited for solving the considered problem,
knowing that the same potential may not be suited for a different problem. An other draw-
back of such a detailed method is of course the computation time, which strongly limit the
applicability of molecular dynamics to significantly large problems.

Figure 2.8: Simulation of shrinkage of a channel.
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Chapter 3

Fast mesoscopic model based on
dissipation

« A great deal of my work is just
playing with equations and seeing
what they give. »

Paul A. M. Dirac
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3.1 Introduction

This chapter is adapted from a paper published in Acta Materialia [80], which was initi-
ated by a paper published in Mechanics & Industry [81]. In this chapter the mesoscopic
model of grain growth is detailed within the framework of the general energetic upscaling
method proposed in this thesis. General principles of Orientated Tessellation Updating
Method (OTUM) are presented in section 3.2. In section 3.3 we detail the procedure en-
abling to generate different Representative Volume Elements (RVE) to probe the space of
possible Orientated Tessellations (OT). Mass conservation issues and the minimum num-
ber of grains that should be considered for the RVEs is discussed in section 3.4. Mech-
anisms at the microscopic scale are broached in section 3.5. In particular molecular dy-
namics computations are performed to obtain the GB energy, and the mobility is derived
as function of misorientation. The mesoscopic evolution law, which constitutes the core
equation of the model is derived in section 3.6. Results and discussion are provided in
section 3.7. Classical models (Hillert distirbution [67, 82] and von Neumann-Mullins law
[64, 66]) are compared to the model to validate basic grain statistics. A comparison with an
experimental study conducted on pure iron [83] is also presented and good agreement is
observed. More detailed statistics are also analyzed to determine meaningful information
to be considered at the macroscopic scale. Conclusive remarks are given in section 3.8.

3.2 Orientated Tessellation Updating Method

In this section mathematical definition of the OT is provided as well as general principles
of the OTUM. A Voronoi-Laguerre tessellation is defined by N seeds whose dimensionless
Cartesian coordinates are denoted by (xj,y;) € [0,1]2 and N dimensionless weights de-
noted by w; € Ry (where 1 < j < N). The tessellation is completely determined by the
parameter vectors x = (x1,**,Xn), Y = (y1,~- ,yN), w = (wy,-+,wp). Each cell (or grain)
denoted by C; (where 1 < j < N) is defined as follows:

x—xj
Yy=JYj

X — Xk
Y=Yk

C]:{(;)ERZ, VkE{l,"',N}y J =

2
- wk} 3.1

It is clear from the definition (3.1) that weights are defined up to a constant. Thus, the
following constraint is added to obtain a univocal definition:

N
Y wi=1 (3.2)
j=1

Thus, weights w lie in an affine hyperplane of dimension N —1 and denoted by P{¥™V,
whose support is the hyperplane denoted by PN~ and:

P(N—l):{yewf,ﬂ_l:()} (3.3)
PV ={weRY, w.1=1}= PN+ w, '
where 1 = (1,---,1) € RN and wy € RY verifies wy.1 = 1. In addition, it should be noted

that a cell C; may be empty as shown in figure 3.1a. This property will be intensively used
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Figure 3.1: Orientated tessellation

as some grains should disappear during grain growth. In 2D, crystallographic orientations
are defined as N additional angles denoted by 6; (where 1 < j < N). In this chapter, 6;
represent the (111) tilt angles. Thus, the OT tessellation definition necessitates the addi-
tional vector 8 = (61,---,0N). Since the crystal lattice is plane hexagonal 0 € [0,7/3] (where
1 < j < N). Therefore, the parameter set 2ot defining OTs reads:

N
Por = {g= (xy,0,0) € (0,117 x 0,117 x PNV x o, %] } (3.4)

Grain boundaries are indexed by pairs (i, j) where i and j denote two neighboring grains
(where 1 <i < N and 1 < j < N). The set of pairs of neighboring grains defining grain
boundaries is denoted by Igp:

Igg ={(i, ) €{l,---,N¥*, j>i,C;nC; # &} (3.5)

The condition j > i is meant to count each grain boundary only once. Since the parame-
ters defining OTs are dimensionless, the physical size of the OT is given by L representing
the length of the box side in which the OT is contained, as shown in figure 3.1b. Moreover
for any grain boundary (i, j) € Igp (with i and j two neighboring grains) /;; € [0, 1] denotes
the dimensionless GB length and AQ;; = |6 i— 6,~| € [0,7/3] is the misorientation angle.

The general principle of the OTUM is to establish an evolution law directly on the pa-
rameter of the OT, that is to say that for @ € Zgr :

a=f(a) (3.6)

For the sake of simplicity we assume that only weights w can evolve. In particular, 0 is
fixed. This implies that we neglect crystallographic rotations (obtained by activation of
plastic slips systems in the bulk), which only affects the smallest grains [24]. Thus, the
general evolution law reads for a = (x, y, w,0) € Zor:

w=f(a) (3.7)

An explicit form of the evolution law (3.7) is derived in section 3.6.
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3.3 Probabilistic procedure for orientation assignment

As mentioned in the introduction, the proposed energetic upscaling strategy necessitates
to probe the space of possible OTs. Indeed, very different morphological and crystallo-
graphic textures may be observed [2] depending on fabrication and forming processes that
impose specific temperature paths and deformation mechanisms.

The morphological texture is controlled by seeds (x,y) and weights w, whereas the
crystallographic texture is controlled by the orientations 8. Morphology (e.g., shape and
size distributions) may be controlled by optimization techniques in the free software NEPER
[29]. In addition, one can generate tessellations by choosing x, y, w randomly (with vari-
ous probability density functions), which enables to produce a database of very different
tessellations with respect to sphericity and size distributions.

Since GB energy significantly depends on misorientation, the boundary misorientation
distribution (BMD) (i.e., misorientations between neighboring grains) is essential for pre-
dicting anisotropic grain growth. Misorientation angles are simply deduced from crystal
orientations but cannot be directly prescribed as a control parameter of the OT. Moreover,
one cannot probe the space of possible BMDs by assigning crystal orientations purely ran-
domly. Indeed, misorientations not only depend on crystal orientations but also on the
network connectivity formed by the grains. In other words, the way to assign an orienta-
tion to a grain should depend on the orientation of its neighbors. If crystal orientations
are assigned randomly in the OT (even considering various probability density functions)
a statistical effect arises: small misorientations are favored!. Thus, BMDs obtained with
this method are very likely to be similar. That is why we need a specific procedure as-
signing crystal orientations in order to obtain various prescribed BMDs so that the space
of possible BMDs can be explored efficiently. A Monte-Carlo optimization technique has
been proposed in [85] and a rank optimization has been developed in [86]. However, op-
timization necessitates to re-assign several times orientations until the BMD matches the
prescribed distribution, which is time consuming. As a large database is aimed, an alter-
native approach reaching very short computation time has been developed.

A stochastic step by step procedure is proposed for the orientation assignment (see
figure 3.2). The target BMD is defined by a probability density function denoted by p(Af).
The procedure is as follows. An initial grain is selected randomly and the orientation is
arbitrarily set to 0y (in practice 6y = 0). Then, one neighbor is selected, and its orientation
0, is assigned randomly as a draw of p(Afy;). Indeed, 0y being already assigned, the prob-
ability of 0, is conditional to 6y, and reads as the probability of the misorientation angle
ABOy; =101 —0l. More formally, this reads:

p(010y) = p(Abo1) (3.8)

where p(06y) is the probability density for 8; under the condition that 8y has already
been assigned. This procedure is repeated to another neighbor etc. At some point, the
selected grain denoted by i have several already assigned neighbors denoted by ji,:--, j,
whose orientations are denoted by 6;,,---,0;, (see figure 3.2). Therefore, the orientation 6;

11n 3D, uniform random orientation distribution classically leads to the Mackenzie disorientation distri-
bution [84], which is not obtained in 2D. Indeed, plane hexagonal polycrystals correspond in 3D to fcc grains
with the (111) direction aligned with the out of plane direction, which is a strong non-random texture.
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is determined as a draw of the following conditional probability density function:
p@16;,---,0;)=p0;j,---,A0;,) 3.9)

where p(016;,,---,0;,) is the probability density for 6; under the condition that 6;,,---,60;,
have already been assigned, A6;j,,---,Af;;, are the misorientation angles between the grain
i and ji,---, ji respectively, and p(A0;j,,---,A0;j,) is the joint probability of misorienta-
tion. For the sake of simplicity, it is assumed that grain boundary misorientations are in-
dependent, hence:

k
p@16j,---,0;) =[] p16j,) (3.10)
m=1

This process is repeated until all grain orientations have been assigned, as shown in fig-
ure 3.2. This probabilistic procedure is very fast but not exact. However, the obtained

Figure 3.2: Principle of probabilistic orientation assignment

BMD is sufficiently close to the target BMD to enable an efficient exploration of possible
BMDs. For instance several orientations are assigned to the same Voronoi-Laguerre tes-
sellation in figure 3.3. The obtained BMD is presented with histograms and the targeted
BMD is presented in solid line. These examples have been generated with beta probability
density %(«, B) for the targeted BMD with parameters @ = 1,2 and 8 = 2,3,4.
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Figure 3.3: Examples of probabilistic orientation assignment. OTs with BMD histograms and tar-
geted probability density function (red line)

3.4 Representative volume element and mass conservation

The proposed mesoscopic model is meant to be used in an upscaling strategy. Thus, the
mesoscopic evolution law should not be derived for an entire polycrystalline structure con-
taining all the grains of the macroscopic object. Instead, the mesoscopic model should be
derived for RVEs supposed to be embedded in a much larger polycrystalline structure. As
a result, boundary conditions should be applied to the RVE to take into account interac-
tions with the rest of the polycrystal. Boundary conditions consist of misorientations at
the boundaries of the RVE. This section deals with the definition of RVEs and difficulties

related to mass conservation.
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3.4.1 Boundary conditions

A simple way to define the RVE is to generate an OT containing N grains and to consider
a subset of n connected grains (with n < N) among the N grains and not belonging to
the edges of the OT. Thus, all GBs in the RVE, including boundaries of the RVE, have a
misorientation angle (see figure 3.4). Hence, boundary conditions are naturally defined.
The evolution of the RVE is obtained by updating only the parameters of the n connected
grains, while the parameters of the other grains are fixed. Therefore, the set of parameters
describing the RVE is denoted by $zyg and reads:

T

Prve = {a =5y, w0 €10,1"x [0,11" «R"x [0,] '} (3.11)

It should be mentioned that the constraint (3.2) that applies to the entire OT, does not
apply to the RVE. Indeed, the constraint implies that there are N — 1 independent weights.
The n weights of the RVE are therefore independent. The set gy is a 4n dimensional
vector space. The evolution law for the RVE is similar to (3.7) and reads for ¢ = (x,y, w,0) €

Prve: W= f(@).

No misorientation Misorientation / Boundary condition

Orientated Tessellation Representative Volume Element

Figure 3.4: Definition of the RVE with boundary condition

As the weights of grains surrounding the RVE are fixed, if the evolution law is not con-
strained, then the RVE tends to shrink to minimize the GB energy similarly to a spherical
grain in an infinite matrix. This issue is overcome by imposing mass conservation for the
RVE as a constraint. This anomalous shrinkage is demonstrated as follows. A RVE is de-
fined from an OT. A reference computation is performed for the entire OT (all weights are
updated at each time step). In this case there is no constraint, as mass conservation is
automatically verified. Then, two computations (with and without mass conservation) are
performed for the RVE, and compared to the reference computation. The evolution law is
derived in section 3.6, the purpose in this section being only to present the effect of mass
conservation of the RVE. Results are presented in figure 3.5 (to facilitate the interpretation,
grains not belonging to the RVE are distinguished by a white solid line). The OT physical
size is Lo = 1 mm, and initially consists of 200 grains. The figure 3.5 clearly shows that
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ensuring mass conservation in the mesoscopic evolution law enables to overcome the dif-
ficulty, even though it does not enable to obtain exactly the same evolution as the entire
OT.

Orientated Tessellation
Reference computation

RVE, without mass
conservation

RVE, with mass
conservation

Figure 3.5: Comparison between OT and RVE respective evolutions (with or without mass conser-
vation)

3.4.2 Mass conservation

Mass conservation has been introduced as an ad hoc principle in order to avoid anoma-
lous shrinkage of RVEs. Mass is automatically conserved in OTs as they represent the en-
tire object (no surrounding grains). However, the RVE exchanges matter with the rest of
the OT (some grains grow at the expense of grains not belonging to the RVE) and mass
conservation is not guaranteed. Ultimately, if the RVE were constituted of a single grain,
then mass conservation principle would be obviously violated. Nevertheless, if a sufficient
number of grains are considered in the RVE, the growth of some grains compensates the
shrinkage of the others, and mass is statistically conserved (even though there are slight
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variations). This idea is demonstrated as follows. The evolution of an OT containing ini-
tially 5000 grains is computed (see figure 3.6). This OT represents a square sample with a
side Ly = 7 mm. The average grain size is around 100 pm. The total mass is conserved as
the OT does not exchange mass with the exterior. In contrast, several groups of connected
grains are randomly selected in the OT and their mass is computed as a function of time.
(In practice the surface is computed as the density is constant). For instance, the evolu-
tion of 9 groups is presented in figure 3.7. The positive relative mass variation is denoted
by Ae(t) and reads:

_ | MrvE(f) — Mgyg(0)]
MRgvg(0)

where Mgyg() is the mass of the group at time ¢. For each group, t}’{z% denotes the time
needed to decrease the initial number of grains ngyg by x%. The maximum relative mass

Ae(t) (3.12)

variation until £X%; is denoted by A&} and reads:
Ae¥® = max Ae(t) (3.13)
e[0, 657

For each group, the maximum relative mass variation until the initial number of grains de-
creases by 33% is presented in figure 3.8. For groups with more than 110 grains A&33% is
below 4%. Thus, even for significant evolution, mass conservation is approximately veri-
fied for sufficiently large groups of connected grains. For smaller groups Ae33” may reach
higher values, and the statistical mass conservation is not guaranteed. This analysis en-
ables to determine the minimal number of grains to obtain an approximate statistical mass

conservation.

Figure 3.6: Initial 5000 grains polycrystal
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Figure 3.7: Evolution of 9 groups of connected grains in a 5000 grains polycrystal
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Figure 3.8: Determination of the minimum size of the RVE

3.5 Microscale mechanisms

0(°)
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Before establishing the mesoscopic evolution law taking into account mass conservation
(see section 3.6), energetic mechanisms at the microscopic scale are introduced so that
the mesoscopic evolution law relies on a physically consistent basis. Indeed, different en-
ergetic contributions are considered at the microscopic scale, namely: (i) the anisotropic
GB energy (due to crystallographic misorientation) and (ii) the dissipated power due to
crystal plasticity for very low angle boundaries and atomic jumps and atomic diffusion for

high and intermediate angle boundaries respectively.
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3.5.1 Grain boundary energy

GBs are defects that have an excess free energy per unit area with respect to the default
stack energy. Indeed, the GB thickness is of a few atomic planes, where crystal lattices are
disturbed to accommodate geometrical incompatibilities due to misorientation. In addi-
tion to temperature, five independent parameters enables to classify GBs (three describe
the misorientation and two describe the orientation of the GB plane). In 2D, only two in-
dependent parameters are necessary (one describes the misorientation and one the GB
plane). Various methods have been developed to compute and measure GB energy as a
function of these five parameters (see [32] for a review of the literature). Thus, considering
two-dimensional setting, the energy per unit area y;; of the GB between grains i and j
(i.e., (i, ]) € Ixvg) reads:

yij =Y(T, A0}, 9ij) (3.14)

where y is a function to be determined, T is the temperature, A0;; is the crystal lattice
misorientation between grains i and j defined by:

AO;;=0;-0;] € [0,%] (3.15)

and where ¢;; is the angle of the GB plane. In 2D, one of the most popular approach is the
Read & Shockley [1] model relying on dislocation calculation within the framework of con-
tinuum mechanics. An explicit analytic GB energy as a function of misorientation and GB
plane orientation has been obtained. However, the range of validity of the Read & Shockley
formula is limited to small misorientation angles and do not account for the energy cusps
at certain misorientation angles. To overcome this difficulty, molecular dynamic compu-
tations have been proposed to compute GB energies as a function of the five parameters
characterizing GBs. Among early works, Wolf [34-37] provided a systematic investigation of
GB energy in fcc metals. Many other molecular dynamic computations have been carried
out to determine GB energy (e.g., [38-40]). However, using molecular dynamics online dur-
ing a simulation of grain growth would be computationally costly. Thus, some approaches
attempt to establish simple models of GB energy based on multiscale strategies relying
on molecular dynamic computations (e.g., [41]), whereas other approaches simply rely on
interpolations of molecular dynamic computations (e.g., [42]). In this contribution such
a strategy is adopted, molecular dynamic computations are performed and then interpo-
lated as a function of misorientation.

To reduce the number of computations, it is assumed that the dependence on ¢ is
negligible. Thus, the function y(T, A0, ¢) is approximated by a function y(7,A8). Thus,
(111) symmetric tilt boundaries have been simulated for various misorientation angles A6.
GB energies were computed by minimizing system energy using the conjugate-gradient
method in the LAMMPS code [33] at T = 0 K with embedded-atom method (EAM) in-
teratomic potentials. The chosen interatomic potential [44] is adapted for Fe (pure iron)
and presents the advantage to be stable at low temperature for fcc (although Fe presents
a bcce structure at low temperature). The interatomic distance for the fcc structure is a =
3.6057 A, and the default stack energy is E;; ~ 4.18127 eV (exact values can be found on the
OpenKIM project https://openkim.org [87]). The approach is similar to [38, 39], using
computation cell with periodic boundary conditions. The misorientation angle is defined
by two integers n, and n, as shown in figure 3.9. For instance, for (001) tilt in fcc struc-
tures, periodicity leads to consider square simulation cell with a side being a multiple of
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a\/nz+ nf, (see figure 3.9 left). However, for (111) tilt in fcc structures, periodicity leads to
consider prismatic simulation cell with a 7/3 skew angle as shown in figure 3.9 right, and

a side being a multiple of (a/v/2),/n% + n% + nyny,.
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Figure 3.9: Simulation cell for molecular dynamic computations

Similarly to [39], a rigid

body translation of one lattice with respect to the other is used

to sample different starting configurations. In addition, since atoms in the two lattices
are built up to the GB plane, an atom deletion criterion is used to remove atoms that may
physically lie too close to each other. For each misorientation angle A8, different rigid body
translations (0 a to 0.5 a with a step of 0.05a) and atom deletion criteria (0.3 a to 0.7 a with
a step of 0.05a), are tested, and only the minimum GB energy is stored for each tested
misorientation angle. Results are presented in figure 3.10 with a piecewise interpolation

function introduced in [88]

y(0,A0) =7, sin(
(0= A0 <A6y)

(Ael =AO < %)

where y; =0.95J.m ™2, y, =

AO—% A —E
7”(()’&9):7’2+(Y1—Y2)Sin(Z 3 )[l—agln(sin(z 3 ))]

ZA—H) [l—a ln(sin(zA—e))]
2 AO; ! 2 AO;

(3.16)

2M0,-%

I 200, - L

3

0.67J.m~2, a; =0.5, a, =0.1 and A8, = n/6.

The grain GB energy has been interpolated for 7 = 0 K (i.e., y(0,A8)). However, the
temperature dependence of GB energy is needed for simulating grain growth. In this con-
tribution, we assume that the temperature dependence is in G(7)/G(0) similarly to [89],
where G(T) is the shear coefficient:

Data for Fe extracted from

_G(D)
Y(T,40) = =57 (0,40) (3.17)

[90] are used to calibrate G(T):

G(T) = ag T + bg (3.18)

where bg = 88134 MPa and ag = —24 MPa.K™!.
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Figure 3.10: Grain boundary energy per unit area at T = 0 K for symmetric tilt (111)

3.5.2 Dissipated power through grain boundary motion

Grain boundary energy enables to compute the driving force that tends to make evolve
the system. Moreover, resistive mechanisms should be considered to control the speed at
which the system may evolve. Thus, the dissipated power through any virtual motion of
the GB is detailed in this section. For very low angle boundaries, the dissipative mecha-
nism during GB motion can be interpreted within the framework of crystal plasticity. In-
deed, slip systems are activated so that the crystal orientation of one grain can be trans-
formed into the crystal orientation of the other grain, as shown in figure 3.11a (where v*
is a virtual normal velocity of the GB).
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Figure 3.11: Dissipative mechanisms and mobility
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Consider vl’.“j a virtual velocity of the grain boundary (i, j). The dissipated power per
unit area reads:
Dj; = D(T,A6;j,v})) (3.19)

where D is a function to be determined. In [59, 60], D has been determined analytically
within the framework of crystal plasticity. The calculation relies on two plane hexago-
nal semi-infinite crystals with a moving GB. Thus, six slip systems may be activated to
transform the crystal orientation in the volume covered by the GB during motion (see.
figure 3.11a). For practical calculation, the plastic slip is assumed to obey Schmids law
without hardening, while elasticity is neglected. The following dissipated power per unit
area is obtained:

D(T, A6, v})) = 1. X(26;)) | v} (3.20)
where 7. is the critical shear stress and X is the following function:
6 3
X(A0) = —(E +2\/§1n(£))min{m9,f—m9} (3.21)
mT\3 2 3

Since grain growth is viscous, the analytic computation proposed in [59, 60] is simply
adapted for crystal visco-plasticity by considering that the critical shear stress 7. linearly
depends on ‘v;‘j‘, which reads:

1

~ m(T)

where m(T) is a grain mobility (m*.J~!.s™!) that can be related to the curvature driven mo-
bility mcp(T,Af) introduced in (1.1). The mobility m(T) is calibrated so that the shrink-
age of an hexagonal grain (computed according to the present model) evolves at the same
speed as the shrinkage of a circular grain according to the curvature driven evolution law
(1.1). More precisely, it is shown in A.2 that:

Tc

Vi (3.22)

mcp(T,A0) = md) (3.23)
X(AO)

Hence the dissipated power per unit area:

[”ff]z

_ .24
mcp(T,A0) 824

D(T, AH,-]-, U;kj) =
Thus, the dissipated power (3.24) corresponds to what is obtained for the curvature driven
growth.

For very low angle boundaries, mcp(T, AO) varies in 1/A0 (see (3.23)), which is consis-
tent with the expression obtained by considering the movement of boundaries in which
the dislocations are spaced far apart [2]. However, for high angle boundaries the disloca-
tion cores overlap, and the dissipative mechanism is more likely related to atom jumps,
and for intermediate angle boundaries, dissipation is attributed to diffusion of atoms over
a certain distance [2]. Since the mobility completely determines the dissipated power
through any virtual speed (see (3.24)), real dissipative mechanisms are indirectly taken into
account in the mobility function mcp(T,Af). There are significant evidences [2] that for
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intermediate and high angle boundaries the mobility can be approximated by the follow-
ing sigmoid function introduced in [61, 62]:
(5]
-K

mCD(T,A@) = mmax(T) (l—exp m
1

) (3.25)

where K is a positive coefficient, p is positive exponent, mpax is the maximum mobility
and A6 is a threshold. However, (3.25) should not be used for very low angle boundaries
because mcp(T, AO) would tend to 0 when A6 tends to zero which would lead to an infinite
dissipated power (see (3.24)). This difficulty is overcome in this work by introducing a
mixed mobility based on (3.23) for very low angle boundaries and (3.25) for higher angle
boundaries, which reads:

T
% if min{A0,Z - AQ} < AG,
mcp(T,A0) = AD \P (3.26)
Mmax(T) (1 —exp _K(E) ) if min{A6,% - A0} = Af,
1

where A6y is a threshold between very low angle boundaries and high and intermediate
angle boundaries. In addition, continuity reads:

ABy\P
m(T) = Mmax(T) (1 —exp —K(—)

A,

) X(ABy) (3.27)

In figure 3.11b the mobility (3.26) is presented with parameters listed in table 3.1.

3.6 Mesoscopic evolution law

In this section, the mesoscopic evolution law accounting for mass conservation is derived.
This evolution law is adapted for RVEs with boundary conditions (see section 3.4.1). The
total energy per unit depth (denoted by &) is considered in the RVE as well as the total
dissipated power per unit depth (denoted by &). For a € ZPryg:

ETa)=Lo Y lijyij

(i, )eIrve
* * 3.28
@(Trgvz ):LO Z ll]Dl] ( )

(i, ))EIrvE
where Ipyg € Igp is the set of GBs in the RVE. There are n grains in the RVE and ngg GBs
with ngp = card[Irvg]. In addition, [;; is the dimensionless joint length, and y;; and D;.“j
are computed from (3.17) and (3.24) respectively. Moreover, v* is the following vector:

v =(v, j)(iyj)dm (3.29)
By combining (3.24) and (3.29) one obtains:
2(T,a,v*)=Lov" . x(T,0).0" (3.30)

where y(a) is a diagonal second order tensor of size ngp x ngp whose diagonal reads:

V(i,j)€ gy, x(T,AQ;;))= ———— (3.31)
PEIE Y7 mep(T,A0;)
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As seeds and crystalline orientations are fixed (i.e., X = y = 0 and 0 = 0), and considering
any virtual variation of weights w*, it is straightforward to demonstrate that:

* l J
vi.=Ly—— 3.32
ij 0 Zdij ( )

where d;; is the dimensionless distance between seeds:

Xi Xi
di;= = Y )H 3.33
! H( Vi ) ( Vi ( )

It is clear in (3.32) that for each GB an arbitrary choice is made for the positive direction
of the normal velocity v;.“]., which has no consequence as the square of the virtual velocity
arises in the dissipated power. Hence:

v'=LoK(a).w" (3.34)

where K(a) is a second order tensor of size ngp x n, which can be evaluated analytically:

The tensor K(a) represents the link between the normal speed of the ngp GBs and the
n weights. However, only the weights are controlled in the evolution law. Thus, consider
R(a) the following second order tensor of size n x n:

R(T, @) =£(Q)T&(T,Q)£(@ (3.36)

As already mentioned, the constraint (3.2) does not apply for the RVE (only for the entire
OT), thus R(T,a) is invertible and symmetrical positive-definite. For any virtual weight
variation w*, the total dissipated power per unit depth reads:

2(T,a,w") =Ly w* -R(T,a) w* (3.37)

The energy balance equation obtained from the first and second laws of thermody-
namics holds for any possible state ¢ and any possible evolution w (real not virtual):

2(T,a, w)+&(T,a) =0 (3.38)
Hence:
. 08
Low-R(T0) w+——(T,@) =0 (3.39)

In addition, the mass balance equation reads (if density is assumed constant):

) 0S
S@)=— w=0 (3.40)
ow
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where S denotes the total area of the n grains in the RVE.

The maximum dissipation principle [45] under the constraint (3.39) and (3.40) is in-

voked to determine the evolution law:

argmax |[Liw - R(T, @) - w]
weR"

Qmeso =4

05 .,
oL

08
subjected to. L%QQ(T,Q) W+ ﬁ(T,g) -w=0

(3.41)

The maximization problem (3.41) is solved analytically by Lagrangian multiplier method.

Consider the following Lagrangian:

08
L, M, A) = [ w-R-w+ A, (L%Q-@-w—-w) Ty P

The optimality condition reads:

i 2L3(1+ )R- 1 Aag Aas 0
T R AR T
0L .. 0
G_M:Low-ﬁ-y+@-y:0
0« 0§ 0
M, 0w

Contracting (3.43a) with w, one obtains:
3 08 N
2L3(A+A)W-R- W+ A — W+ Aplv- —=0

ow ow

Considering (3.43b) and (3.43c¢), (3.44) reduces to:

Q+A)w-R-w=0

The tensor R being symmetric definite-positive, w-R- w > 0, thus:
A =-2
Plugging (3.46) into (3.43a) one obtains:

(i 2 g 2

w =—_— — R71.
~ZImeso L(3) 6! 2 £2 6&

The multiplier A, is obtained by contracting (3.47) by 0S/0w and using (3.43c):

ow =~ Ow
oS = 0S
ow = ow
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(68 65)
— Rl._—

Ap=2

(3.42)

(3.43a)

(3.43b)

(3.43¢)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)



By plugging (3.48) into (3.47) one obtains:

(as o ag)

) 1 _1 08 ow =~ ow 4 0S

ﬂmeso:_L_g R '@_(as o 68)(§ @) (3.49)
ow =~ ow

Thus, the mesoscopic evolution law reads:

Lg ow

(3.50)

Wmeso = —

where M is a second order tensor of size n x n homogenous to a mobility (m*J1.s7!) de-
fined as follows:

Rl N Rl N
— R - —_—
= ow) |\ oOw
M=R" (3.51)
0S » oS
ow = ow
By using (3.28) and (3.17) the mesoscopic evolution law reads:
. M(T.a) | olij
Wmeso = ~—> Z JY(T, A@ij) (3.52)
Ls |G )elpe OW

The viscous evolution law (3.52) presents a size effect through the scaling parameters L.
The tensor M(T,a) is completely determined by the actual state (a,T) of the RVE. The
gradients 0/;;/0w and 0S/0w are easily obtained by a geometrical analysis of the OT, which
is detailed in A.1.

For simulations of entire OTs in section 3.4 (i.e., all weights are updated and mass con-
servation is not imposed) the tensor M in (3.52) should be replaced by:

M=R' (3.53)

where R' is the Moore-Penrose pseudo-inverse of R that can be computed by singular value
decomposition techniques. Indeed, because of the constraint (3.2), there are only N —1
independent weights in the entire OT and R is not invertible (rank N —1). It is straight-
forward to show that the pseudo-inverse enables to obtain the N —1 independent weights
time derivatives.

3.7 Results

All Voronoi-Laguerre tessellations are produced by using the free software NEPER [29] and
the evolution law (3.52) is computed by using the free software SCILAB [91]. The dia-
logue between NEPER and SCILAB is done by writing and reading text files (e.g., Voronoi-
Laguerre tessellation files, list of updated weights etc.), which represents the most signifi-
cant part of the computation time. Despite this unoptimal implementation, computation
time is relatively short (e.g., a time increment for a 1000 grains OT is around 1 second on a
personal computer). Computation time could be fairly reduced though by implementing
the model in C++ language directly in NEPER.

54



3.7.1 Comparison with von Neumann-Mullins law

In this section, the mesoscopic model is compared to the von Neumann-Mullins (vVINM)
law [64-66]. The classical vNM law is formulated within a fully isotropic framework (i.e.,
isotropic GB energy and isotropic mobility), and relies on the curvature driving evolution
law (1.1) and the assumption that angles at triple junctions are 120°. Thus, the vINM reads:

d_ _»am*

-8, =
dt™" 3

(n—6) (3.54)

where n is the number of sides of the grains family, dS,/d¢ is the area change rate of n
sided grains, and m* = ymcp (m?.s7!) is the constant reduced mobility. The vNM law
(3.54) applies to individual 7 sided grains in 2D ideal grain growth [65]. In the following,
we determine whether the vNM law is verified in average, where m* is the average reduced
mobility in the entire RVE. In addition, an extended vINM law (3.55) has also been proposed
for anisotropic grain growth and tested with a mesoscopic stochastic Monte-Carlo simula-
tions [66].

% (Sn) = (my) (m—(Bn)) (n— n_z—ZB)) (3.55)
where (m}) is the average reduced mobility, (§,) is the average triple junction angle, and
where averages are taken over the family of the n sided grains. However, in Voronoi-
Laguerre tessellations each grain is polygonal and then (f,) = n(n—2)/n, and therefore
d(S,,)/dt=0in (3.55). Thus, the extended vNM law is of limited interest within the frame-
work of OTUM. But a simple extended vNM law can be simply derived from (3.54) to take
anisotropy into account:

m{m})
3
Three conditions are tested in the following and listed in table 3.1. A purely isotropic con-
dition is tested with constant GB energy y, and mobility m listed in table 3.1. A weakly
anisotropic condition is also considered with a constant reduced mobility m*(7) and an
anisotropic GB energy y(T, A8), hence mcp(T,A0) = m*(T)/y(T,AB), where m*(T) is given
in table 3.1. Despite the anisotropic GB energy and mobility, this condition is similar to the
isotropic condition with respect to the curvature driven relation (1.1), which only depends
on the reduced mobility. A fully anisotropic condition is also tested by considering (3.26)

whose parameters are listed in table 3.1.

A single 2500 grains tessellation is used, and the BMD is assigned as detailed in sec-
tion 3.3 by a beta probability density function %(a, ) with a = 2, f =3 (see figure 3.3).
Numerical values listed in table 3.1 have been chosen so that the average reduced mobility
over the entire RVE is the same for all conditions. For each number of sides, the corre-
sponding normalized area change rate distribution is computed. In figure 3.12a the mean
values with standard deviations are presented as a function of the number of sides. As ex-
pected, the isotropic condition fits well with the vNM law with small standard deviations
(excepted for grains with 3 sides). The same behavior is observed for condition 1 as the
reduced mobility is also constant. Larger standard deviations are obtained though, as the
VvNM law (3.54) relies on isotropic energy, which is not verified for condition 1. Results for
condition 2 fits better with the extended vINM law (3.56), which is due to the anisotropy.
This result is similar to what is obtained in [66] for the same condition.

d
(S = (n—6) (3.56)
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Table 3.1: Conditions related to GB energy, mobility and reduced mobility. For all conditions the
average reduced mobility over the entire tessellation is m* = 0.06 107'2 m?.s™! and T = 800° (the
symbol T is omitted).

Isotropic 0 Anisotropic 1 Anisotropic 2 (3.26)
GB energy (J.m™?) Yo = 0.535 Y(AB) (3.16) Y(AB) (3.16)
Mobility (m*.J71.s71) mo=111210"18 - Mmax = 0.291 10713
Reduced mobility (m?.s71) - m*=0.06 10712 -
Coefficient (-) - - K=5
Exponent (-) - - p=4
Misorientation angle (-) - - AOy=m/9
Misorientation angle (-) - - AOy=4.57/180

3.7.2 Comparison with Hillert and Rayleigh distributions

In this section, the equivalent grain size distribution R/(R) is analyzed (where R is the
grain equivalent radius and (R) its average over the RVE). The well known Hillert [67] and
Rayleigh distributions are compared to the model for all conditions listed in table 3.1. The
tested OT has initially 5000 grains with a misorientation distribution defined by a beta
probability density function %(«, ) with @ =2, f =3. The histograms of R/(R) are given
for different numbers of grains left in the tessellation after evolution. For all conditions,
results are similar to what is observed for purely isotropic grain growth in [82]. Histograms
for condition 2 are presented in figure 3.12b. The quasi steady-state distribution is in be-
tween Hillert and Rayleigh distributions, and can be fitted by a log-normal density func-
tion. In addition, the average grain size (R) is presented as a function of time in figure 3.13
for condition 2. The well-known grain growth power law (R) ~ t" (where n = 1/2 as for
isotropic grain growth) is rapidly reached by the proposed model.

3.7.3 Comparison with experiments

A recent experiment has been conducted on pure iron during annealing for 75 min at
800 °C [83]. The sample is initially fully recrystallized. Grain evolution has been deter-
mined in three dimensions using diffraction contrast tomography at a synchrotron source.
Since the present model has been derived in 2D, only a plane section of the sample is
compared to the model at three different time steps (0 min, 40 min and 75 min). Ap-
proximating a real grain structure with a Voronoi-Laguerre tessellation is usually done
by numerical optimization. However, as the proposed comparison is mostly qualitative,
a rough approximation of the initial grain structure is proposed and crystal orientations
have been assigned manually by following the misorientation estimation proposed in [83]
(i.e., black and white lines represent boundaries with misorientations above and below
15°, respectively). The specimen in [83] is around 500 pm in diameter, and the best fit be-
tween the model and experimental results is obtained for 480 um. The reduced mobility
has been estimated in [83], and linearly evolves during annealing from 0.12 107!2 m?.s7!
to 0.02 10712 m?.s™!. The mobility (3.26) is considered with parameters are listed in ta-
ble 3.1 excepted mpax that is set so that the average reduced mobility over the sample is
0.06 10712 m?.s!. The GB energy is obtained by molecular dynamics computations on
pure iron as shown in figure 3.10. The qualitative comparison is presented in figure 3.14
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Figure 3.12: Validation of basic grain statistics
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Figure 3.13: Validation of grain growth power law (R) ~ t"

where grains are colored as in [83] to facilitate the reading. It should also be noted that
several neighboring grains have the same crystal orientations to form larger grains. The
average equivalent grain radius (R) has been extracted from [83] and compared with the
model. Good agreement is observed in figure 3.15.

3.7.4 Discussion

In this section, grain statistics are analyzed in more details. The objective is to determine
meaningful statistical information that should be considered at the macroscopic scale. In-
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Figure 3.14: Comparison between the model (top) and experiment (bottom).
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Figure 3.15: Average equivalent radius (R), comparison between the proposed model and the ex-
periment.

deed, classical vNM law and Hillert distribution are based only on the average grain size,
which is very limited if a specific microstructure is targeted during fabrication or forming
processes. In addition, since anisotropic grain growth is considered, BMDs should be cap-
tured with sufficient details so that other distributions (e.g., grain size and shape) may be
estimated accurately. Four simulations have been performed, with the same initial 2500
grains Voronoi-Laguerre tessellation (see figure 3.16). Crystallographic orientations have
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been assigned so that different means and standard deviations of BMDs are obtained, as
listed in table 3.2. The evolution is computed according to condition 2 listed in table 3.1.
The evolution of mean and standard deviation of grain surface distribution (denoted by
(S) and o) and BMD (denoted by (Af) and og) are provided respectively in figures 3.17
and 3.18. Since anisotropic grain growth is considered, the initial mean misorientation af-
fects the growth rate (see figure 3.17a). In addition, the initial mean misorientation also
affects the standard deviation of size distribution (see figure 3.17b, comparison between
conditions BMD 2 and BMD 3). Thus, grains not only tends to grow in average at different
rates according to the mean misorientation, but the distribution also tends to spread at
different rates. The evolution of the grain surface distribution also depends on the initial
standard deviation of BMD (comparison between conditions BMD 3 and BMD 4). More-
over, significant variations of the mean of BMD are observed in figure 3.18a and strongly
depend on the initial standard deviation (see figure 3.18b).

Distributions characterizing microstructures (grain size, shape, orientation, misorien-
tation etc.) constitute a very rich information, which cannot be processed for each ma-
terial points at the macroscopic scale. However, these distributions may be characterized
in a simplified way by a measure of central tendency and statistical dispersion (e.g., mean
and standard deviation). Previous examples demonstrate that both mean and standard de-
viation significantly evolve during anisotropic grain growth. Moreover, couplings between
different distributions (e.g., size and misorientation) have been obtained. Thus, the macro-
scopic model that has to be developed in the subsequent chapter 4, should involve fully
coupled state variables characterizing means and standard deviations of different distribu-
tions.

Table 3.2: BMD: initial condition

Condition Mean Standard deviation
) )

BMD 1 =21 ~13.5
BMD 2 ~21 ~10
BMD 3 ~12.5 ~ 10
BMD 4 =~12.5 ~6.5

59



— con

= =

M m (%)
60
45
30

™~ <+ .

a a L

= =

m m

Figure 3.16: Initial OT and after 3 h evolution at T =800° for all conditions listed in table 3.2

6 2 R
<S> (10°m?) o, (10°m?)
001 7e-04
6.5e-04 -
0.0009- BMD 1
BMDZ 6e-04 -
0.0008{ ——— BMD3 5.50.04
BMD 4
5e-04
0.0007
4.5e-04
0.0006 4004 ]
0.0005- 3.5e-04
3e-04
0.0004
2.5e-04
t (hours) t (hours)
0.0003 T T T T T T T T T T T 2e-04 T T T T T T T T T T T
0 05 1 15 2 25 3 35 4 45 5 55 6 0 05 1 15 2 25 3 35 4 45 5 55 6
(a) Mean grain surface (S) (b) Standard deviation of grain surface og

Figure 3.17: Evolution of grain surface statistics

60



2<A(9> ) Ono (°)

15
144
BMD 1
131 —— BMD?2
L] — BMD3
—— BMD4
114
104
9
8
104 7
7 t (hours)
. t (hours) .
0 OI,5 1I 1I,5 2I 2I,5 3I 3I,5 4I1 4I,5 :': 5I_5 6 0 OI.S 1I 1I.5 2I ZI.S 3I 3I.5 All 4I.5 5I 5I.5 6

(a) Mean misorientation (A@)

Figure 3.18: Evolution of misorientation statistics

61

(b) Standard deviation of misorientation o g



3.8 Conclusion

An energetic upscaling strategy has been proposed to model grain growth by considering
energetic contributions and dissipated power at various scales. This strategy necessitates
to establish a large database of computations at the mesoscopic scale in order to feed a
macroscopic model whose state variables represent statistical descriptor of the polycrys-
tal. Thus, a fast mesoscopic model based on orientated tessellation updating method has
been proposed. The space of possible orientated tessellations can be probed by generating
a large number of tessellations with various grain statistics and boundary misorientation
distributions. To do so, a procedure to assign crystal orientations has been proposed, and
relies on a probabilistic approach enabling to approximately fit targeted boundary misori-
entation distributions. Representative volume elements have been defined so that bound-
ary conditions may be applied, and mass conservation has been verified to be statistically
valid if the number of grains is sufficient. The grain boundary energy has been evaluated
by molecular dynamics computations and the dissipated power associated to boundary
motion has been evaluated. Thus, the total grain boundary energy and total dissipation
in the representative volume element have been calculated as the sum of all grain bound-
ary contributions. The mesoscopic evolution law has been derived by maximizing the to-
tal dissipation under the constraint of the first and second laws of thermodynamics and
mass balance. The present mesoscopic model has been validated for several conditions
by comparing to von Neumann-Mullins law, and classical Hillert distribution. In addi-
tion, a good agreement is observed with an annealing experiment conducted on pure iron.
The model has been used to analyze the evolution of grain statistics during grain growth,
and couplings between means and standard deviations of various distributions (size, mis-
orientation etc.) have been found necessary to capture grain growth at the macroscopic
scale. Thus, the present fast mesoscopic model can be intensively used in chapter 4 within
framework of the proposed upscaling strategy, and therefore contributes to model detailed
grain statistics at very large scales, and tailor microstructures by optimizing fabrication or
forming processes.
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Chapter 4

Probabilistic macroscopic model
identified by Bayesian techniques.

« If people do not believe that
mathematics is simple, it is only
because they do not realize how
complicated life is. »

John von Neumann
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4.1 Introduction

This chapter is adapted from a paper that will be submitted to Acta Materialia [92]. We
develop the macroscopic model relying on the database of mesoscopic computations, as
detailed in chapter 3. The chapter is organized as follows. The reduction of the amount
of data for the construction the macroscopic state variables is broached in section 4.2.
Primary state variables are defined to explain the GB energy, and an additional state sec-
ondary variable is introduced to account for the sensitivity of the mobility tensor to small
grains. In section 4.3 the macroscopic evolution laws of the state variables are derived from
the mesoscopic model. These macroscopic evolution laws involve to identify several func-
tions that fully depend on the macroscopic state variables. The identification is performed
by using a large database of mesoscopic computations whose content is described in sec-
tion 4.4. The function involved in the energy is deterministic and identified in section 4.5
although the function involved in the mobility is identified in section 4.6, and is probabilis-
tic. Indeed the reduction of the amount of data leads to an epistemic uncertainty that is
modeled as a random variable. This epistemic uncertainty is identified by using Bayesian
techniques in section 4.7. Results are provided in section 4.8., and additional statistical
descriptors of the polycrystalline structure such as the average grain size are estimated as
a post-processing. Conclusive remarks are given in section 4.9.

4.2 Macroscopic state variables

4.2.1 Primary state variables

In this section, the macroscopic state variables considered in this work are introduced and
discussed. Since the model identification relies on a database that depends on the choice
of the macroscopic state variables, it is convenient to define dimensionless state variables
so that the database do not depend on the physical length of the tessellations. All phys-
ical quantities are explicitly written as a scaling factor in the dimensionless macroscopic
evolution law. This choice presents the advantage to obtain a dimensionless database (e.g,
the same tessellation is not computed several times depending on its physical length) and
to demonstrate analytically in the evolution law the influence of physical length, mobility
and surface energy. State variables are not defined arbitrarily as the macroscopic energy
should be a function of these variables. However, it is a difficult task to determine suitable
variables directly from raw data. Thus, we introduce intuitive state variables and then we
demonstrate that such variables are suitable to describe the macroscopic energy.

Each material point of the macroscopic model should represent a polycrystalline struc-
ture (RVE) whose energy is the sum of the surface energies carried by the GBs multiplied
by their respective length (see chapter 3). Since the surface energy depends on misorienta-
tion, we expect the total macroscopic energy at each material point to depend on the sta-
tistical distributions of GB lengths and misorientations. However, it is clear that complete
statistical distributions constitute a far too rich information to be reasonably processed at
each material point of the macroscopic domain. Thus, statistical descriptors (e.g., mean,
standard deviation etc.) of length and misorientation distributions should be considered
instead of the complete statistical distributions. The successive statistical moments of the
misorientation distribution weighted by the GB lengths are chosen. Since GB lengths con-
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tinuously tend to zero when a grain disappear, they are used as weights in the statistical
moments so that the statistical moments evolve continuously with respect to time. In-
deed, otherwise (i.e., without the GB lengths as weights) the statistical moments would be
piecewise constant with a discontinuity each time a grain disappear. Thus, the weighted
statistical moments obtained from the mesoscopic state read:

Ui = Z lijAQlI.Cj 4.1)

(i, ))EIRvE

where Iyg is the set of grain boundaries in the RVE, /;; the dimensionless length and A6, ;
the misorientation. In addition, k € {0,1,2}, indeed as demonstrated in section 4.5 it is
sufficient to consider only the three first statistical moments to accurately account for the
total energy.

To give a more intuitive interpretation of i (k € {0,1,2}), one can refer to Ly (m) the
physical side of the RVE. This parameter enables to determine the average grain size. Thus,
for instance py/ Ly is the GB length density (length per unit surface). In addition, the mean
of misorientations in the RVE denoted by i;, and the square of the relative standard devi-
ation! denoted by [i, read:

=2
1=—
zgﬂo (4.2)
ﬁz = 2 1
Hy

For the sake of clarity, following notations are considered. On the one hand, the statis-
tical moments pj (k € {0,1,2}) may be computed from the detailed mesoscopic structure
by using (4.1). In this case, these variables are denoted by pmeso = (Mo, 141, 2) and corre-
spond to a data reduction with respect to the complete information needed to characterize
the OT. Thus, pmeso is a function of a (where a = (x, y, w,0) is the mesoscopic state as in-
troduced in cHapter 3). The role of pmeso is twofold: (i) give an overview of mesoscopic
evolutions with a limited amount of data, and (ii) provide a tool to define macroscopic
state variables within the framework of the upscaling strategy from the mesoscopic scale
to the macroscopic scale, as shown in section 4.3.

On the other hand, the overall aim of this chapter is to derive a macroscopic evolution
law that do not rely on knowledge of the mesoscopic state. At each material point, only
the macroscopic state variables are known, without computing any mesoscopic evolution.
The upscaling strategy actually consists in establishing such a macroscopic evolution law.
These primary state variables are denoted by pmacro, and correspond to a macroscopic ver-
sion of pmeso, but exist and can be computed_independently from the mesoscopic model,
that is to say without using the very definition (4.1). Of course, the identification of the
macroscopic model relies on the database of mesoscopic computations, but as soon as
this identification is performed, both models are independent. Thus, pmacro does not refer
to a specific RVE, but should represent all possible RVEs sharing the same macroscopic
state Umacro-

The quality of the proposed upscaling strategy can be evaluated by comparing (i) the
overall behavior of detailed mesoscopic evolutions of specific RVEs, obtained by data re-
duction in (4.1), and (ii) the corresponding macroscopic evolutions obtained directly from

lratio of the standard deviation over the mean
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the macroscopic evolution law. Hence the requirement:

Mmacro (£) = Umeso (1)
B - (4.3)
Emacro(t) ~ Emeso(t)

As detailed in the following, the loss of information (due to the fact that several dif-
ferent mesoscopic states can share the same macroscopic state) require to consider the
macroscopic evolution law within a probabilistic framework. Thus, the latter condition for
the upscaling strategy to be reliable (4.3) should be understood in a probabilistic sense.
Intuitively, that is to say that the for a particular RVE, the mesoscopic evolution sum-
marized by Umeso(?) should lie in the zone defined by the point-wise dispersion around
the mean macroscopic evolution (Umacro(1)), where lmacro is @ random variable. Alterna-
tively, considering a large number of different RVEs initially sharing the same overall state
Umeso(f = 0), one can compute the empirical mean and standard deviation as a function of
time, and compare them to the mean and standard deviation as a function of time of the
macroscopic probabilistic evolution.

Consistently with previous notations, for any given quantity denoted by Q, Qmeso refers
to the quantity Q computed from the mesoscopic state a = (x,y, w,0), although Qmacro
refers to the quantity Q computed from the macroscopic evolution law, without knowledge
of the mesoscopic state, hence Qmacro only depends on ptmacro-

4.2.2 Secondary state variable

In addition, even though it is demonstrated in section 4.5 that the total energy of an RVE
is completely determined by pimeso, it is shown in section 4.6 that the dissipated power re-
quires a probabilistic framework and necessitates the introduction of an additional state
variable. Indeed, at the mesoscopic scale the dissipated power depends on a second order
mobility tensor Myeso defined in (3.51) in section 3.6. When a grain i tends to vanish i.e.,
S; — 0 (where S; is the dimensionless surface of the grain), the corresponding grain bound-
aries vanish, i.e., [;; — 0 (with j denoting the neighboring grains). Since the mobility ten-
sor Mmeso includes the inverse of a tensor that linearly depends on the GB lengths, when
a grain i tends to vanish the corresponding components in the mobility tensor Mpeso di-
verge. This could be interpreted as a numerical conditioning issue. However, this behav-
ior actually reflects an instability of small grains that can freely disappear with negligible
dissipation cost (i.e., very high mobility). This sensitivity of the mobility tensor to small
grains also arises at the macroscopic scale as discussed in section 4.6. Thus, an additional
variable should be added to capture this behavior. To that end, the following variable is
introduced:

T'meso = — Z log(sk) (4.4)
k=1

where Sy are the dimensionless surfaces in the RVE. At first glance this variable may seem
arbitrary. However it is clear that the more small grains the RVE contains and the higher
Tmeso Will be. Unlike pmeso, the variable nmego is not continuous with respect to time as
it diverges each time a grain disappear. This is illustrated in figure 4.1a, where 0.57meso
is presented as a function of time with a refined time discretization in order to detect dis-
continuities (the time step is 10 s). It is clear that 0.51meso is fairly well correlated with
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the evolution of the number of grain boundaries ngg. This aspect is demonstrated more
systematically in figure 4.1b where ngp is presented as a function of 0.57yeso for the tes-
sellations extracted from the database presented in section 4.4. As for the primary state
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Figure 4.1: Approximation of ngp by 0.5 meso-

variables pimacro, @ secondary state variable 7macro should be determined by establishing a
macroscopic evolution law that do not refer to the mesoscopic scale and such as:

Nmacro (£) = Nmeso () (4.5)

However, a difficulty arises with the fact that nyeso is discontinuous. Indeed, the time
derivative fjmeso is always positive although the overall variation with respect to time is
negative (see. figure 4.1a), which implies that:

fhnacro(t) £ ﬁmeso(t) (4.6)

To overcome this difficulty, a smooth approximation of 1 yeso(#) is sought by considering a
larger time scale avoiding the jumps of Nmeso () as shown in figure 4.1a. This continuous
approximation is obtained by considering the overall variation of ngp during a finite time
interval. More precisely the following idealized situation is considered. During a meso-
scopic evolution, consider an instant fy belonging to the macroscopic time scale (see fig-
ure 4.1a). In particular small grains sizes are not negligible as nmeso is stable. Consider
a grain i the next grain to disappear. This grain i is much smaller than the others, and
reduces in size. The time needed for the grain i to disappear is denoted by A¢ (see. fig-
ure 4.1a). A crude approximation of At is determined by considering a first order Taylor
expansion of the dimensionless grain radius v/S;//7, namely:

S; (to)
Si(fo + A1) =~ /S;(fg) + ———Ar=0 4.7
Vv Si(to+AD) \/l(o)+2 T (4.7)
Hence: S
At~ —p2i0) (4.8)
Si(tp)
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It should be noted that the choice of \/S; instead of S; to estimate the time needed for the
grain to disappear is not arbitrary: the equivalent radius evolves more linearly than the
grain surface.

The vanishing grain i is very likely to be triangular, therefore three GBs disappear. In
addition, since ngp and 0.51meso Share the same overall evolution, we impose that the time
derivative of 0.57)macro i €equal to the overall variation of ngg over At. However, it can be
observed in figure 4.1a that when a grain i disappears at #, + At, several other grains may
disappear almost immediately after that. This shorter time scale cannot be considered
at the macroscopic scale as a smooth representation of ngp is sought. To overcome this
difficulty, consider Bgis the average number of grains that almost immediately disappear
after the grain i, hence:

ngg(fo + At) —ngp(to) _ 3 Pdis

4.9
At At (4.9)

0.5 ﬁmacro =

Since at time f, the only grain that is much smaller than the other is the grain i (i.e.,
1/S;(ty) > Si(ty) for k # i), the time derivative of npeso defined in (4.4) can be approxi-

mated as follows: L )
) Sk(t) Si (%)
=-Y ~ — Bgis 2 4.10
nmeso( 0) = Sk(to) IBdls Si(to) ( )

Thus, by using (4.8), (4.9) and (4.10) one obtains:

Nmacro = —3 ﬁdis Nmeso (£0) (4.11)

Since the previous analysis is very simplified, the factor —3 f4is in (4.11) is not fully de-
termined as fgis is unknown. A specific analysis could be carried out to identify fgis as
a function of npeso (and potentially additional morphological variables). However, this
aspect has not been broached in this work. Instead fqis is approximated in a phenomeno-
logical way, that is to say without rigorous derivation from the mesoscopic scale, as for
the rest of the model. The very definition of Npeso (4.4) shows that Bgjs is an increasing
function of Nmego. Moreover, Bgis = 1 when nmeqo is under a certain threshold. Indeed,
when a grain i is disappearing, the minimum number of grains that can disappear is one.
These remarks lead to consider a power law with a threshold, and by replacing 1meso by its
macroscopic counterpart fmacro:

0.5 macro 0
Bais = ( Bo ) 0-5Tmacro = Po (4.12)
1 0.5 TImacro = ,60

where 6 =3 and By = 1000 are identified from numerical results presented in section 4.8
so that ngp is well captured by 0.57macro- It should be noted that the other quantities
arising in the macroscopic evolution laws derived in section 4.3 are not identified in phe-
nomenological way as for f4is, but in a more theoretical and systematic way as detailed in
sections 4.5 and 4.6. The simplified phenomenological identification of fg;s is an excep-
tion that is proposed to avoid technicalities. The choice of fg;s has a significant impact on
T'macro, however since Umacro Only slightly depends on nmacro, the choice of Bgis has lim-
ited impact on pmacro- Thus, this phenomenological identification seems sufficient as the
whole model is not conditioned to it.
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In addition, the latter relation (4.11) shows that to overcome the difficulty due to the
discontinuity of nmeso, the database should avoid tessellations with very small grains, whose
sizes are negligible. Indeed, a smooth macroscopic secondary state variable is derived by
using fmeso (fo), which should be finite (i.e., without grains such as S; = 0).

4.3 Macroscopic evolution laws

4.3.1 Primary state variables evolution law

In this section the macroscopic evolution law is derived. Some results related to the database
of mesoscopic computations and presented in following sections are required in this sec-
tion. Nevertheless, the derivation of the macroscopic evolution law is derived first as it
enables us to introduce the mathematical quantities to compute in the database.

The mesoscopic evolution law (3.52), has been derived in chapter 3 from thermody-
namical principles. For the sake of clarity, this law is recalled here by using the previously
discussed notations. Thus, considering a mesoscopic structure the following evolution law
holds:

m(T) 08 meso
Lg Mmeso - —aw (4.13)

Wmeso = —

where weso are the weights of the OT, &pyes0 is the total energy per unit depth in the RVE,
m(T) is a scalar mobility that depends on temperature, and Mpeso is the dimensionless
mobility second order tensor of size n x n depending on the mesoscopic state a. It should
be noted that Meso depends on the choice of the mobility as a function of misorientation
at the scale of GBs. In the following the database and then the macroscopic model are
based on the mobility function (3.26) introduced in chapter 3.

Since pmeso depends on the mesoscopic state the following derivation rule holds:

. _ aEmeso . (4.14)
Hmeso = O Wmeso .

where Ouimeso/0Ww is a dimensionless second order tensor of size 3 x n, which can be com-
puted analytically (see. A). Hence from (4.13) and (4.14):

m(T) aEmeso M 08 meso (4.15)
—Lg —ay Mmeso —6w .

HMmeso = —

In addition, in section 4.5 the analysis of the database of mesoscopic computations
shows that the total mesoscopic energy per unit depth denoted by &neso can be very accu-
rately approximated by a deterministic function f(tmeso):

G(T)
é'ameso(TyQ) = Loysmf(llmeso) (4.16)

where ys =1 J.m 2, G(T) is the temperature dependent shear modulus that captures the
temperature dependance of the GB energy (see. chapter 3), and f is an analytic function
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determined in (4.39) in section 4.5. Hence, from (3.52), (4.15) and (4.16) one obtains the
overall mesoscopic evolution law:

ysm(T) G(T))

T
ou ou 0 f (lmeso)
L(Z) G(O) ( _meso) .Mmeso . ( _meso) ] . _meso (4.17)

ow ow ou

Emeso == (

On the basis of (4.17) the following dimensionless second order tensor of size 3 x 3 (called
mobility tensor) is introduced:

T
ou ou
1 meso = 0__ Mmeso (__) (4.18)

Since the upscaling strategy relies on the objective that the macroscopic state variables
Umacro provide a good approximation of the mesoscopic overall state pmeso (see. (4.3)),
the macroscopic energy is defined as the same deterministic function f but evaluated in
Imacro, that is to say:

G(T)
Emacro (T, Emacro) = Loysmf(llmacro) = Emeso (T, ) (4.19)
For the energy, the upscaling strategy reduces to the identification of ys and the deter-
ministic dimensionless function f. In addition, the upscaling strategy also consists in ap-
proximating the dimensionless mesoscopic mobility tensor [jes0 by @ macroscopic tensor
Tmacro defined in (4.72) that only depends on the macroscopic state without any knowl-
edge of the detailed mesoscopic state:

Lmacro = Lmeso (4.20)

In addition, it is shown in section 4.6 that I'neso depends on the secondary variable 7pego
defined in (4.4) and [macro requires a probabilistic framework and depends on the sec-
ondary state variable nmacro. Thus, by using (4.3), (4.19), (4.20) and (4.5) into (4.17), the
macroscopic evolution law of the primary state variables is obtained:

0 f (Emacro)

6g (4.21)

llmacro =Inacro (HmaCI’Or nmacro) .

__[xsm G(1)
2 GO)

where 0 f (Umacro) /Ot can be interpreted as the dimensionless macroscopic driving force.

4.3.2 Secondary state variable evolution law

Of course, the secondary state variable n,; also needs a macroscopic evolution law in or-
der to update Lnacro (,umacm,nmacm) at each time step. Since surfaces S; depend on the
mesoscopic state the following derivation rule holds:

noS
ﬁmeso = - 2k (4.22)
i=1 Sk
where: 35
Sk = _k * Wmeso (4.23)
ow
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And by using (4.13) one obtains:

(4.24)

Tmeso =

m(T) [ & 1 0Sk 0&meso
L \&Skow) =" ow

Hence, from (3.52), (4.24) and (4.16) one obtains the overall mesoscopic evolution law:

T
. Ysm(T) G(T) n 1 08k aI-tmeso af(llmeso)
=|—— —— |- M, = —_— 4.25
MNmeso ( Lé GO) k;l S ow Mmeso ow aﬁ ( )
On the basis of (4.25) the following dimensionless vector of size 3 is introduced:
T
A [sh10Sk) L, Otmeso (4.26)
£imeso — = Sk- aﬂ 2=IMeso ay .

With the same reasoning as before, the upscaling strategy consists in approximating the
dimensionless mesoscopic vector Ameso by @ macroscopic vector Amacro defined in (4.72)
that only depends on the macroscopic state without any knowledge of the detailed meso-
scopic state:

Amacro ® Ameso (4.27)

Thus, thus macroscopic evolution law of the secondary state variable is obtained:

0 f (Emacro)
o

ysm(T) G(T)

(4.28)
12 G

ﬁmacro =-3 ﬁdis (T]macro) ( fimacro (Emacro; T]macro) :
where the factor —3 fg;s is due to (4.11).

All terms involved in (4.21) and (4.28) are defined from the macroscopic state, and do
not refer to the RVE. However, Ly explicitly arises in (4.21) and (4.28), which shows the
influence of the physical grain size on grain growth as already discussed in chapter 3. Of
course, it seems that Ly refers to the RVE in (4.21) and (4.28) and that state variables could
have been defined as densities per unit area instead of being defined as dimensionless
quantities in order to discard Ly from (4.21) and (4.28). Nevertheless, Ly can be seen as
a scaling parameter fixing the average grain size, which is a macroscopic quantity. In ad-
dition to the primary state variables pmacro Several other interesting macroscopic quanti-
ties such as the average grain size or the average GB length can be computed as a post-
processing of the macroscopic evolution law, as shown in section 4.8.3.

4.4 Database content

In this section the database of mesoscopic computations is presented. As discussed in
chapter 1, the mesoscopic model based on OTUM has mainly been developed to be in-
tensively used in order to construct a large database that probes the space of OTs. The
database is analyzed to identify the energy &meso in (4.16), the mobility tensor [peso in
(4.18), and the vector Amacro in (4.26).

The free software NEPER [29] is used to generate Voronoi-Laguerre tessellations with
various morphological statistics. In addition, the probabilistic procedure described in sec-
tion 3.3 enables us to obtain various OTs with morphological and crystallographic textures.
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Figure 4.2: Three different examples of OTs considered for the database, with histograms of grain
size, grain circularity, and BMD.

In figure 4.2 three examples of RVEs are presented with grain size and circularity distribu-
tion as well as boundary misorientation distribution (BMD).

The database that has been used in this work does not include results from meso-
scopic evolutions, which would provide successions of OTs that could be included in the
database. Instead a more static approach has been chosen, the database is constructed
from Niegs = 121 different tessellations, each of which is assigned with N,;; = 162 differ-
ent crystal orientation fields, leading to a total of Ngata = 19.602 OTs. Crystal orientation
fields are generated as follows. First, a beta probability density Z(a, f) has been used
with (a,p) € {1,--- ,912 (i.e., 81 crystal orientation fields), then a normal probability den-
sity A4 (u,0) has been used with y and o describing a homogeneous discretization (with
9 steps) of intervals [15,45] and [5,30] respectively (i.e., 81 crystal orientation fields). Of
course, several draws of each probability density function involved in the orientation field
assignment procedure could be generated instead of only one to enrich the database.

This static approach has been chosen to optimize the computation time, as the succes-
sion of OTs obtained during a mesoscopic evolution provides rather similar OTs, although
the proposed static approach enables to probe more efficiently the large space of OTs by
selecting very different OTs. But of course, a more dynamic approach can also be used to
complete the database. When running the mesoscopic code for a given RVE, the interme-
diate states at each time step can be stored along with the different elements needed for
the database, making easy to enrich the database automatically each time the mesoscopic
code is used.

The database is constructed on the basis of RVEs obtained from the OTs. Indeed, as
discussed in chapter 3, boundary conditions in the mesoscopic model are defined by con-
sidering a group of connected grains in the OT that do not belong to the edge of the OT.

Even though the database is dimensionless and do not depend for instance on Ly, it
should be noted that the database obviously depends on the choice of the local GB energy
(3.16) and mobility (3.26) as a function of misorientation at the scale of the grain boundary.
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This choice has been discussed in section 3.5 in chapter 3.

An extract of the database is given in table 4.1 where iz (with 1 < i; < Niegs) is the index
of the Voronoi-Laguerre tessellation, k (with 1 < k < Nyata) is the index of each entry in the
database, and Epes, is the dimensionless GB energy at 0 K:

& T=0
Emeso = meso—( ) 4.29)
Loys
The complete database for pure iron that has been constructed in this work is available as
a supplement to this PhD thesis at the following link: http://site.

Table 4.1: Extract of the database of mesoscopic computations for pure iron.

k ig|n NGB Hmeso Emeso Lmeso Ameso T'meso
Ho M1 e Iy Ty T'ss T Thg Toz | A A2 A3
1 1 [397 1268 |39 8.7 2.4 |26.3 1593 387 77 475 153 166 | 37961 10592 3269 | 2505
2 1 [397 1268 | 39 8.9 2.7 | 26.0 1903 521 133 410 116 251 48056 11834 3819 | 2505
3 1 (3971268 |39 9.4 3.1 |26.1 1892 550 151 554 190 269 | 47833 13775 4376 | 2505
4 1 |[397 1268 | 39 10.2 3.8 | 26.6 1951 969 387 662 312 587 | 50740 12303 4950 | 2505
5 1 (3971268 |39 9.9 3.7|26.1 1947 1017 349 823 355 561 47579 17698 7287 | 2505
6 1 [397 1268 | 39 11.1 4.6 | 27.1 1919 949 420 711 324 595 | 46292 15144 5529 | 2505
7 1 [397 1268 | 39 115 49 | 274 2436 1230 633 996 463 826 | 60631 20881 8602 | 2505
8 1 [397 1268 | 39 114 5.0 | 26.9 2445 1371 699 974 427 911 63145 22542 7226 | 2505
9 1 |[397 1268 | 39 11.7 5.3 | 26.8 2300 1600 911 991 504 1150 | 66895 36583 20213 | 2505
10| 1 | 397 | 1268 | 39 10.5 3.5 | 28.7 2686 850 264 806 291 456 | 66612 19521 6991 2505
11 |1 | 3971268 | 39 10.6 3.7 | 28.1 2198 751 264 585 200 422 55423 14248 4402 | 2505
12 |1 | 397 | 1268 | 39 10.8 4.0 | 27.8 2430 1104 406 910 381 633 62014 19663 8526 | 2505
131 |[397 1268 | 39 11.0 4.4 | 273 2414 1035 445 883 383 640 | 61547 22430 9771 2505

4.5 Identification of the macroscopic free energy

In this section, the macroscopic GB energy per unit depth &nacro is identified on the basis
of &meso computed for all the OTs listed in the database. The upscaling strategy is con-
ducted in two steps. (i) The first step consists in determining an analytic expression for
Emeso as a function of pmeso by considering small angle misorientations, which enables to
use the analytical local GB energy function proposed by Read & Shockley [1] and a Taylor
expansion of the total energy per unit depth in the RVE. (ii) The second step consists in
identifying the unknown coefficients involved in the analytic expression exhibited for small
angle misorientations (step (i)) by a simple minimization process (least-squares method)
between the energy stored in the database and predictions of the analytic expression. This
identification procedure leads to a macroscopic energy function that fit the data almost
perfectly, which strongly supports the idea of modeling the macroscopic energy &macro as
a deterministic function of ymacro-

4.5.1 Analytic expression for the grain boundary energy

The total mesoscopic GB energy defined in chapter 3 is recalled here for the sake of clarity:

G(T
b Y 1ijy(0,A6;)) (4.30)

é'ameso(T;Q) =Lo——
GO, j)eTnee
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where y(0,A6;;) is the local anisotropic GB energy per unit area at 0 K. If small angle mis-
orientations are considered the Read & Shockley formula [1] is accurate, and presents the
advantage to deal with simple analytic expressions, and then:

¥(0,A0) =ysx1 Af (k2 —log(AB)) (4.31)

where ys=1 J.m~2, k1, K- are dimensionless parameters. Hence:

G(T)
Emeso(T, @) = Lo——=vsx1 Y. 1ijA0;j(x2—log(Ab;)) (4.32)
G(0) (i, /)€ Trve

Moreover, €;; denotes the deviation of the misorientation Af;; from the mean misorienta-
tion fi; defined in (4.2), hence:
AH,']’ :ﬁl"‘eij (4.33)

Thus, combining (4.32) and (4.33) one obtains:

Emeso(T, @) = Lo——ysx1 Y Lij(f +€ij) (Kz —log(fi;) —log (1 + #)) (4.34)
G(0) e t

By considering that the deviations ¢;; are small compared to i, (i.e., €;;/f; < 1), the Taylor
expansion at the second order in ¢;; reads:

2

G(T) - _\ €ij € )
&, (T,a) =L K ;i +€;i)|x2—1o - —+—+o0|€7; (4.35)
mesot\{, & 0 G(0) Ys l(i,j)%‘}RVE 1] (IJ1 l])( 2 g(:ul) i 2#% ( l])

Moreover, using the definition (4.33), the following equations can be easily verified:

>, lijeij=0

(i,j)€IrVE
, 12 (4.36)
Y ljeh=pp -t
(i,/)€ Inve Ho

Hence:
G(T)

G(0)

(4.37)

Emeso (T, Q) ~ Lo ﬂzﬂo)

YsK1 ot |x2 —log(fi) -
( 24
By using the definition of the relative standard deviation introduced in (4.2), the total GB

energy for small angle misorientations can approximated as follows:

G(T)
Emeso (T, @) = Lo m)ﬁs f(Emeso) (4.38)
where the dimensionless function f reads:
- ~y 1
f(po, p1, p2) = %1 o fir | k2 —log (1) — > (B2 +1) (4.39)

The simple analytic expression (4.38) is used to fit the energy stored in the database as a
function of pmeso. The two coefficients x; and k2 need to be identified.
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4.5.2 Identification of the unknown coefficients

As introduced in chapter 3, the local GB energy used in the model is not the Read & Shock-
ley formula [1] but an analytic function (3.16) proposed by Wolf [88], which enables to in-
terpolated molecular dynamics computations. However, for low angle misorientations the
interpolation function matches the Read & Shockley formula and the analysis presented in
section 4.5.1 remains valid. In addition, even though the analysis has been conducted for
very small angle misorientations, the obtained analytic function f in (4.39) is used as an
educated guess to interpolate the energy in the database even for large angle misorienta-
tions.

In the following, a minimization is performed to identify x; and x», in order to fully
determine the function f defined in (4.39). This function is essential to defined the macro-
scopic energy &macro as detailed in (4.19). The data set used for the minimization is com-
posed of the following components of the database:

U= {(ug’”, uo, u;’“,Eﬁr’fgso) l<ks< Ndata} (4.40)

where Epnego is the dimensionless GB energy at 0 K defined in (4.29), and the exponent (k)
stands for the k-th entry in the database (i.e., a particular RVE). The least-squares method
is used to carry out the minimization procedure. More precisely, the natural Euclidean
distance between the dimensionless GB energy Epeso in the database and predictions of
the analytical function f in (4.39) is minimized. Thus the minimization problem reads:

Ndata 2
(k1,k2) = argmin = )_ (Eé’féso F® [KT,K;]) (4.41)
(k%,x5) € R? k=1

where:

k * k k k k
F® [} i3] =« g @ ( ~log (¥ - (ué '+ )) (4.42)
~(k) ~(k) (k) , (k) , (k)

where {7, i, are computed from p,”, 4y, i, accordingly to (4.2).
The linear minimization problem (4.41) is fairly simple and is equivalent to solve:

K1 K
e :Emeso (4.43)

K1

where Emeso = (Er(llféso)lskS Nyaia 1S @ vector of size Ngara, and X is a second order tensor of
size Ngata x 2 defined by:

k) ~(k
Xi1 = gy iy
(4.44)
k) ~(k k k
X2 = —pi® g (log(uﬁ )+ (ué) ))
Thus, the solution of the minimization problem (4.41) reads:
K1K _
A = (X7 X)X Emeso (4.45)
K1
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Table 4.2: Dimensionless coefficients involved in the energy.

K1 1.7
K2 0.9

And results are listed in table 4.2.

The coefficient of determination r? quantifies the part of the variance of the data (i.e.,
Enmeso) that is explained by the model (i.e., the f function). This coefficient of determi-
nation has been computed, and r?2 =0.998. Thus, the dimensionless analytic function f
almost perfectly captures the GB energy at the macroscopic scale, which can be consid-
ered as deterministic function. A comparison between data and the model is presented in
figure 4.3, and a perfect fit is observed.

Emeso Emeso
MO

08

[
084--"1"
07 ---""""

h
08—~
054 --"

04~

Hitalyesds

I TN
i T

U

32T

.
e

034~

Figure 4.3: Dimensionless GB energy Emeso/ o and analytic function f/ug as a function of 7; and
2 computed from pimego-

The main result of this section is that the upscaling of the total GB energy leads to a
deterministic function of the macroscopic state. Therefore, the choice of considering the
successive statistical moments in (4.1) as a basis to construct the primary state variables
Imacro 1S validated.

4.6 Identification of the macroscopic mobility tensor

In this section, the mobility tensor L[jeso arising in(4.18) and the vector Apeso arising in
(4.26) are analyzed. There is no available analytical computation such as presented in sec-
tion 4.5.1 to guide the development of a macroscopic model. Thus, the identification is
carried out only with statistical treatments of the data. In addition, as already mentioned
in section 4.2.2, a secondary state variable 1yacro is necessary to deal with the sensitivity
of Lmeso and Apeso to the presence of very small grains. The secondary state variable is in-
troduced to explain a new quantity that will be called the tessellation amplification factor,
which is a scaling factor so that all tessellations are comparable.
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4.6.1 Raw data

In figure 4.4, raw data of the dimensionless mobility tensor [eso and the vector Ameso
are presented as a function of pi; (computed from pmeso according to (4.2)). Colors cor-
respond to the tessellation index. More precisely, each point in figure 4.4 correspond to a
specific OT indexed by k (with 1 < k < Ng4ata) and all points sharing the same color corre-
spond to a single tessellations indexed by i; (where 1 < i < Niegs) With different BMDs. It
should be noted that the variable i, that has been used for the energy (see. figure 4.3) does
not explain the variance of the raw data for [es0 and Ameso, and is not used to interpret
these results. In addition, it is clear from figure 4.4 that the dispersion of the raw data is

Fmeso

1) _ I's3

10000 -

12000
2000

Ameso

200000

150000

= M1

Figure 4.4: Raw data of the dimensionless mobility tensor [eso and the vector Apyeso as a function
of [i; computed from piyeso. Colors correspond to the tessellation index iy (1 < iy < Niegg)-

very significant, which would hinders the development of the macroscopic mobility tensor
Tmacro and the vector Apacro involved in the macroscopic evolution laws (4.21) and (4.28)
respectively. However, it seems that the tessellation index i; explains a significant part of
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the variance of the raw data, thus there is a quantity that only depends on the tessellation
(and does not depends on BMD) that explains a large part of the dispersion observed in
figure 4.4, this quantity is introduced as a scaling factor in the following. This aspect is
evidences in logarithmic scales as shown in figure 4.5. Indeed, for each component the
behavior corresponding the different tessellations i, is very similar for all tessellations up
to an offset in logarithmic scales, which shows that a tessellation amplification factor can
be introduced in the usual scales in order to reduce data dispersion.

log (Fmeso)
log (T'11) log (T'22) log (I's3)

log (111)

3 28 28 24 22 2 18 A8 A4 2 08 08 4 28 26 24 22 2 48 48 -4 42 1 08 08 3 28 28 24 22 2 48 8 44 42 4 08 08

log (Ameso)
log (A1) log (A2)

. log (11)

3 28 28 24 22 2 48 18 A4 42 1 08 08 4 28 26 24 22 2 8 48 -4 08 00

log (f11)

Figure 4.5: Raw data of the dimensionless mobility tensor ['ieso and the vector Apego as a function
of [I; computed from pmeso in logarithmic scales. Colors correspond to the tessellation index iy
(1= id = Ntess)-

4.6.2 Interpolation in logarithmic scales and amplification factor

The raw data in logarithmic scales are almost linear as a function of loguy, as shown in
figure 4.5. More precisely, it is convenient to interpolate these data with two linear func-
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tions that smoothly merge at log (ﬁl) = Xcut Where Xx¢y = —0.82. Thus, sigmoid functions
are considered for the interpolation to carry out the smooth connection between the two
linear functions. Thus the interpolation function in logarithmic scales, for each tessellation
ig, and each component reads:

(iq) (i) (iq) (iq)
. A'Yx+B C*“x+D
Rl . 0 0 N 0 0 (4.46)
¢ 1+exp(a(x—xcu)) 1+exp(—a(x—xcu))

where the symbol (.) stands for the index of the component (i.e., 11,22, etc. for [jeso and
1,2,3 for Ameso), and a is a parameter that determines the behavior of the connection be-
tween the two linear functions x — A(’d)x+B(’d) and x — C(’d)x+D(’d) In the following this

parameters has been set to a = 10. Coefﬁments AEl)d),B((l)d) : C(ld) i are not independent

as the linear functions should connect in x = xcy. Thus the followmg relation holds:
D(ld) (A(ld) C((.l;d)) xcut"‘B(ld) (4.47)

Thus, coefficients AE’)”’), B((’)d), C(’d) should be determined by minimizing a distance between
the data the predictions of the interpolation functions F(('l)d) defined in (4.46). The least-

squares method is used to carry out the minimization, thus:

B I N e LG I

where T'! )) is the component (.) of Ljyeso for the k-th OT in the database, and where £ (i)
is the set of OTs sharing the tessellation i;. Thus, card [ £ (ig)] = Ny, where Ny is the
number of crystallographic orientation fields for each tessellation i;. Of course the same
minimization problem holds for the components of Apeso. The minimization problem
(4.48) is linear and is equivalent to solve:

(a) | _ (i)
X-|B _1og(£m) (4.49)

where F(ld) (F(k))
O ke iy

size Ny x 3 defined by:

. The vector EES‘” is of size Ny, and X is a second order tensor of

. log(ﬁgk)) N Xcut
o (1 + exp (a (log(ugk)) xcut))) (1 + exp (—a (log (ugk)) cut)))
3 1 1
Vke £ (ia) 3 e = (1 + exp (a (log (ﬁgk)) - xcut))) ’ (1 + exp (—a (log (/Jgk)) cut)))
)l
ke (1 + exp (—a (log (ugk)) xcut)))

(4.50)
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Thus, the solution of the minimization problem reads:
A(id)

BU | = (xT-x)""- X"l (4.51)

Of course the same minimization procedure holds for the components of Apeso. For in-
stance, the interpolation is demonstrated for some tessellations for the 11 component of
Tmeso in figure 4.6a. It is clear that all tessellations have similar interpolation up to an off-
set. Thus in classic scales there is a tessellation amplification factor denoted by {(,, which
leads in logarithmic scales to an additive offset log({()). This quantity is specific to each
tessellation and does not depend on the crystal orientation distribution in the RVE. Thus,
in the following the notation { Ef)d) refers to the specific value of () for the tessellation iy
where 1 < i; < Niegs. For the first tessellation (i.e., iz = 1) the offset is arbitrarily set to:

log(¢()) = F) (eud (452

For the other tessellations (i.e., iz = 2), the offset log(( (ia) ) is determined by solving the
following least-squares minimization problem:

oall) - s 5[4 ) €)1 o) sl
4,
The minimization problem (4.53) is linear, and the solution reads for iz = 2: )

g ) IR ) L

Of course (4.54) also holds for the components of Apeso. For instance the interpolation
corrected with the tessellation amplification factor is demonstrated for the 11 component
of Lieso in figure 4.6b.

4.6.3 Interpolation of rescaled data
The rescaled data are by definition:
(k) (k) (k) (k) (k) (k) () A A ()
B Iy T,y Ty Ty Ty T A A7 Ag
((ld) ((ld) ((ld) ((ld) ((ld) ((ld) ((ld) ((id) ((ld)

Vke £ (ig),Vige{l,- Ntess}}

(4.55)
Since the rescaled data coincide on a common trend (see. figure 4.6b), it is possible to
propose a single interpolation function in logarithmic scales for all the tessellations:

sc A(,)x + B(_) C(,)x + D(_)
F(_) TX— + (4.56)
l1+exp(a(x—xcu)) 1+exp(—a(x—xcur))

where the exponent sc stands for re-scaled, and the symbol (.) stands for 11, 22, etc. for the
components of [yeso and for 1,2,3 for the components of Apeso and where:

D)= (A - C)) Xeur + By 4.57)
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Figure 4.6: Comparison between data and interpolation for some tessellations.

Coefficients A, B(), C) are determined in a very similar way as in section 4.6.2. The first
difference is that the rescaled data (4.55) are considered instead of the raw data. The sec-
ond difference is that for each component of I'ieso and Apeso instead of identifying an in-
terpolation for each tessellation, a single interpolation is identified for all the tessellations
considered as a whole. The rescaled data (4.55) are presented along with the interpolation
(4.56) in logarithmic scales in figure 4.7 and in classic scales in figure 4.8. The identified
coefficients are listed in table 4.3.

Table 4.3: Coefficients for the interpolation of rescaled data.

Component | A B, Co
11 1.238 1.031 -0.926
22 2.585 2.245 1.129
33 3.991 3.534 3.459
12 1.925 1.609 -0.402
13 2.506 2.086 0.238
23 3.296 2.898 2.332
1 1.244 1.043 -0.986
2 1.944 1.643 -0.58
3 2554 2.174 -0.239

Moreover, it should be noted that the different components of {() are strongly corre-
lated. In figure 4.9 linear relationships are exhibited. Thus, in order to simplify the anal-
ysis, only (33 is analyzed in the following, as the other components can be inferred with
reasonable accuracy from (33. Proportionality coefficient are listed in table 4.4. Of course
this analysis is simplified and a multivariate model with a covariance could have been used
instead, nevertheless the correlation between the different components of the tessellation
amplification factor ) is sufficient to enable such an assumption.
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Figure 4.7: Rescaled data corresponding to Limeso and Apeso as a function of f; computed from
Umeso in logarithmic scales. Colors correspond to the tessellation index iz (1 < ij < Niesg)-

Table 4.4: Proportionality coefficients for {,.

Component | Coefficient

11 2.189
22 1.431
33 1.000

12 1.019

13 0.543
23 1.137

1 61.980

2 28.428

3 14.450
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Figure 4.8: Raw data corresponding to I'imeso and Ameso as a function of fi; computed from pipeso.
Colors correspond to the tessellation index iy (1 < ig < Niess)-

4.6.4 Macroscopic amplification factor

At this stage, the interpolation (4.56) can be used at the macroscopic scale. However, the
tessellation amplification factor () obtained in (4.54) highly depends on the detailed ar-
rangement of the tessellation. An interpolation function that can be used at the macro-
scopic scale is derived in this section. This interpolation relies on the variable npego in-
troduced in (4.4). In figure 4.10 the values of {33 obtained for all tessellations in (4.54) are
presented as a function of yeso. A correlation can be observed and a linear interpolation
function is proposed:

G:x— Ax+B (4.58)

It should be mentioned that the proposed linear model explains a large part of the variance
observed in the data (i.e., 7> = 0.79), however the linear relationship between the different
components of {(, is imperfect (see. figure 4.9). Therefore, further work should focus on
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Figure 4.9: Correlation between the different components of {(,

improving this particular aspect of the model.

A simple linear regression can be performed by minimizing with the least-squares method.
However since the are a limited amount of data with non negligible statistical dispersion,
it is preferable to identify the linear model within the framework of Bayesian inference as
detailed in section 4.7. Since nmeso has @ macroscopic counterpart macro defined in sec-
tion 4.2.2, whose evolution has been obtained in (4.28), a macroscopic amplification factor
can be defined on the basis of the interpolation function G, (nmacro).
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6 000 .
5 500 - Interpolation
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5 000 A 33
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4 000 A
3 500 A
3 000 A
2 500
2 000
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500 A
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Figure 4.10: Amplification factor {33 as a function of fmeso
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4.7 Epistemic uncertainty and Bayesian identification

4.7.1 Model for the tessellation amplification factor

In figures 4.8 and 4.10, it is clear that data are affected by a non negligible statistical disper-
sion around the interpolation models (4.56) and (4.58) respectively. Since the mesoscopic
model introduced in chapter 3 is fully deterministic, this statistical dispersion arises from
the reduction of the amount of data introduced in section 4.2. Indeed, to a single overall
state Umeso, MTmeso correspond several different detailed mesoscopic states a = (x, y, w). The
statistical dispersion evidenced in figure 4.8 and 4.10 shows that these different detailed
mesoscopic states are not equivalent with respect to the mobility tensor ['ieq0, the vector
Ameso and the amplification factor (). In other words, different RVEs sharing the same ini-
tial overall state fmeso,MTmeso d0 Not have the same evolution paths. Thus, the dispersion
around the interpolation models (4.56) and (4.58) can be understood as the evidence of an
epistemic uncertainty due to the loss of information in the process of reducing the amount
of data by introducing the overall state pmeso, Mmeso- This epistemic uncertainty is not due
to the rescaling process detailed in section 4.6.2. Indeed, the statistical dispersion can be
observed for each tessellation individually as shown in figure 4.6. Thus, even for the same
tessellation, the detailed arrangement of crystal orientations is lost in the overall state, and
the epistemic uncertainty arises.

As mentioned in section 4.6.4, parameters A, B involved in the interpolation model
(4.58) are identified by using Bayesian techniques. It consists in considering a prior prob-
ability density for the model parameters A, B, and the likelihood, which is the conditional
probability density of the data {33 with respect to the model parameter A, B. Then, by
using the Bayes theorem, the posterior probability density is obtained as the conditional
probability of the model parameters with respect to the observed data. A normal model is
considered, so the likelihood reads:

(A, B, ~ N (Af)macro + B, %) (4.59)

where A (ﬁnmacm +B, 62) is the normal distribution of mean ﬁnmacm + B, and G is the
standard deviation, which characterizes the dispersion around the mean. In addition,
Bayesian techniques rely on prior distributions for the unknown parameters. An informa-
tive normal distribution is chosen for A the slope can be clearly identified in figure 4.10,
and a non-informative uniform distribution is chosen for B. Classically conjugate standard
deviation prior follows a inverted chi-squared probability density. Hence:

A~ (1757)
B ~ % (Buin, Buna) (4.60)
& ~ Inv—y* (3%,7)

where parameters p g,Sg,Emin,Emax, 5,V are chosen so that the priors are consistent with
figure 4.10:

Hi=1.5
§37=0.3

Bmin = —1300
Bmax = 300
$=400
v=20

(4.61)
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Bayesian inference consists in computing the posterior probability density by using the
Bayes theorem, hence:

p(A,B,61{33)  p(s3|A B,0)p(A)p(B)p(0) (4.62)

Statistics of posterior probability density function (4.62) are explored by Markov-Chain
Monte Carlo (MCMC) sampling techniques. In practice, a No U-Turn Sampler (NUTS) de-
veloped by [93] is used within the framework of the PYMC3 package developed by [94] in
PYTHON ([95]). The posterior densities are presented in figure 4.11 as well as a pairplot
showing a strong correlation between A and B. In addition, maximum a posteriori esti-
mates are computed and listed in table 4.5, and have been used in figure 4.10.
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B
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Figure 4.11: Posterior densities and pairplot

Table 4.5: Maximum a posteriori estimates.

~

Component | A B o
33 1.451 -802 512

Thus, one can define a macroscopic deviation with respect to the interpolation model
(4.58) denoted by €macro, Whose probability density function reads:

€macro ~ N (0; 52) (4.63)

4.7.2 Uncertainty associated to the macroscopic mobility

For each entry k in the rescaled database (4.55), the deviation with respect to the interpo-

lation model (4.56) is denoted by egf) and reads:

I{k)
Vig€{l, -, Niess), Yk € H (ig), ¥ = ﬁ —exp [F(S_)C (1og (ggk)))] (4.64)

()
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Of course, replacing FE_’;) by AE_’? in (4.64), the same definition applies for the deviation
with respect to the interpolation model of Apeso. For instance egg is presented as a func-
tion of ﬁgk) for 1 < k < Nyata in figure 4.12a. It is clear the the deviation depends on fi;,

2
and egé)/ (ﬁgk)) is presented in figure 4.12b. The corresponding histogram is presented in

figure 4.14 showing that a Gaussian model is acceptable.

(a) €33 vs [i1. (b) €33/ {12 vs 1.

Figure 4.12: Statistical dispersion around the interpolation function.

0.351
1 Frequency
0.3 1
0.25
0.2 1
0.15
0.1
6323
H1
T

— T T T L L L L L
-1 -08-06-04-02 0 02 04 06 08 1 1.2 14 1.6

0.05

0

Figure 4.13: Histogram of statistical dispersion around the interpolation function for the 33 com-
ponent of [iego-

Figure 4.14: Statistical dispersion around the interpolation function.

Since the different components of the deviation (4.64) are correlated, a multivariate
Gaussian distribution is chosen. Thus, one can define the macroscopic deviation as a ran-
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dom variable vector denoted by €macro/ ﬁ% whose probability density function is a multi-
variate Gaussian distribution of zero mean and covariance matrix C of size 9 x 9. Alter-
natively one can estimate the probability density function of C within the framework of
Bayesian inference. Since a Gaussian model has been chosen, the likelihood is the follow-
ing conditional probability density function:

€

221C ~ A (0,0) (4.65)
1

The inverse-Wishart distribution is the conjugate prior for the covariance matrix of a mul-

tivariate normal distribution. However, such a distribution is not implemented in usual

Bayesian computational packages. Thus, we use the LKJ-Cholesky covariance prior, which

is well-suited to computational Bayesian methods:
L~1KJ-6(9,v,0) (4.66)
where L is a lower triangular matrix arising in the Cholesky decomposition of C, namely:

c=L-LT (4.67)

and where LKJ-% (9,v, 0) the the LKJ-Cholesky distribution of size 9 x 9, v is a parameter,
which controls the amount of correlation between components of €macro/ ,u%, and o con-
trols the distribution of standard deviation.

og~&)
1=1 (4.68)
v=2

where & (1) is the exponential density function of parameter A. The posterior density func-
tion reads:

p(élgmjzcro) x p(gm:izcro |g) P(1=4) (4.69)
Hy Hy

Statistics of posterior probability density function (4.69) are explored by Markov-Chain
Monte Carlo (MCMC) sampling techniques. In practice, a No U-Turn Sampler (NUTS) de-
veloped by [93] is used within the framework of the PYMC3 package developed by [94] in
Python ([95]).

4.7.3 Time dependance and numerical implementation

The fundamental nature of the epistemic uncertainty can be understood as follows. Con-
sider random variables denoted by (), each of which corresponds to a component (.) of
Tmeso and Apeso. The random variable vector Q = (Qy1,...,Q23,Q1 ---,Q3) of size 9 cap-
tures the uncertainty due to the random “selection” of a virtual mesoscopic state know-
ing the macroscopic state. Ideally, a single scalar random variable Q* could account for
this random “selection”. However, the link between the different components of ['yeso and
Ameso, Which would enable from a single draw of Q* to compute the deviations associated
to the different components, is unknown at the macroscopic scale and fully depends on
the mesoscopic scale. That is why at the macroscopic scale the uncertainty is modeled by
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a random variable vector Q. It should be noted that the covariance matrix C represents
the macroscopic link between the different components. The deviation with respect to the
interpolation model reads:
~2
{ Emacto = 1 L 4] (4.70)
€macro = 0 {2
where L is defined in (4.67). In addition, Q) are independent and identically distributed
standard normal distributions as well as Q:
Quy~AH0,1)
{ Q~H(01) @47
The macroscopic model is therefore probabilistic. However, since the mesoscopic model is
fully deterministic, there is no fundamental indeterminacy, only an epistemic uncertainty
within the upscaling process due to the loss of information.
At this stage the macroscopic counterparts Limacro and Amacro Of Lmeso and Apeso can
be stated: R .
Lmacro = ((=; (nmacro) +Qmacro) (eXp [£ (Emacro)] +Qmacro)
(4.72)
Amacro = (Q (nmacro) +Qmacro) (eXp [E 5¢ (Emacro)] +ymacro)

where F*¢ and F*° are the tensor and vector interpolation functions defined from (4.56),
G and G are the tensor and vector interpolation functions defined from (4.58). In addi-
tion Ymacro and Umacro are the tensors and vectors derived form €macro defined in (4.70).
Second order tensors are symmetric of size 3 x 3 composed of the 11, 22, 33, 12, 13 and
23 components, and vectors are composed of the 1,2,3 components. Similarly Upmacro and
Umacro are obtained from €macro defined in (4.63) and the proportionality coefficients listed
in table 4.4.

With the macroscopic definition (4.72), the evolution law (4.21) for pmacro and the evo-
lution law (4.28) for Nmacro can be computed numerically. The main cTifﬁculty lies in the
fact that the random vector Q correspond to the random “selection” of a virtual meso-
scopic state for a known macroscopic state. However, the mesoscopic state slowly evolves
during grain growth. Thus, this “selection” of a virtual mesoscopic state should be up-
dated at each time step. If new draws of the random vector Q were computed at each
time step, a completely new virtual mesoscopic state would be “selected” leading to Brow-
nian motion. Of course, this does not correspond to the epistemic uncertainty that has
been introduced. Ideally, at each time step new draws of Q, which strongly depend of
the draws at the previous time step, would be computed. However, this would need to
identify an autocovariance matrix, which is the function of the covariance with respect to
pairs of different time steps. In this work, the identification of the macroscopic model has
been done according to a static approach, as mentioned in section 4.4. Thus, the identi-
fication of such an autocovariance matrix is not possible. To overcome this difficulty, we
assume that the virtual mesoscopic state, which has been “selected” by the initial draw
of the random vector Q, evolves sufficiently slowly so that there is no need to “re-select”
a new virtual mesoscopic state for further time steps. That is to say that Q does not de-
pend on time, and draws of Q are computed only at £ = 0 and remain constant during
the evolution. However, since €macro in (4.70) explicitly depends on fi; (#) (computed from
Imacro), the overall epistemic uncertainty is nevertheless adjusted during the evolution, but
in a simplified way. This leads to consider the evolution laws (4.21) and (4.28) as simple
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stochastic processes. The evolutions of means (tmacro) (), {Nmacro) (£) and point-wise stan-
dard deviations o ,,,.., (£), 0y (£) Can be computed easily by simulating a large number
of evolutions with various draws of Q, €macro. One could significantly reduce the number of
evolutions to accurately estimate (tmacro) (£), (Mmacro) (£) and oy, ... (1,0, (1) by using
spectral approaches [96], but this has not been done in this study as computation time is
already reduced.

4.8 Results

In this section, the macroscopic model is implemented numerically and applied to various
conditions. More precisely the evolution laws (4.21) and (4.28) are discretized with a simple
explicit scheme. It should be mentioned that the temperature T in (4.21) and (4.28) is an
external quantity, which of course can depend on time if temperature cycles are considered
for instance. To take into account time dependent temperature it is sufficient to update the
temperature at each time step in the explicit scheme. However, in the following constant
temperature is considered.

Comparisons with the evolution of the overall mesoscopic state are provided to eval-
uate the model quality. Several tessellations included in the data base iz € . where .# =
{1,80,100} have been considered as initial states for mesoscopic evolutions with crystal ori-
entations assigned with a beta probability density %(a, B) where («, ) = (1,1) and (a, f) =
(5,9). These tessellations have been selected so that very different morphological textures
can be tested. In addition, four tessellations that do not belong to the database have also
been considered with very similar initial overall mesoscopic state (these four tessellations
are referred in the following as iz = 0). All mesoscopic evolutions have been computed
according to the mesoscopic model detailed in chapter 3, and parameters are listed in ta-
ble 4.6. Some examples of OTs at different times during grain growth are presented in
figures 4.15, 4.16 and 4.17.

Table 4.6: Simulation parameters used for both the mesoscopic evolutions.

Temperature (°C) T 800
Mobility m*J s m(T) 0.146x10713
Physical size (mm) Ly 1

Duration (hours) d 10

4.8.1 First validation and numerical implementation

Since the macroscopic model is probabilistic, typical results are the means {tmacro) (1), {Mmacro) ()
and point-wise standard deviations o, (), 0y, (£). However, a simplified condition is
considered in this section, and consists in neglecting the epistemic uncertainty, that is to
say neglecting Umacro» Umacro» Umacro» ad Umacro in (4.72). Thus, a single particular macro-
scopic evolution is compared to the evolution of the overall mesoscopic state tmeso, Nmeso
in order to determine how both models behave with respect to smoothness.

Comparisons for i; = 1 are presented in figure 4.18. These results show that the general
behavior of the macroscopic model is satisfying, but as expected it is smoother than the
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Figure 4.15: OTs at different times for two different BMDs obtained with a beta density % («, §) for
(a,)=(1,1) and (a, B) = (5,9), ig=1.

Figure 4.16: OTs at different times for two different BMDs obtained with a beta density % (a, f) for
(a,f)=(1,1) and (a, B) = (5,9), iz = 80.
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Figure 4.17: OTs at different times for two different BMDs obtained with a beta density % («, §) for
(a,f) = (1,1) and (a, B) = (5,9), iz = 100.

overall mesoscopic evolution. At the beginning of the evolution the macroscopic model
is rather accurate even though it may significantly diverge from the overall mesoscopic
behavior after the first few hours. A perfect match is of course not expected as the macro-
scopic evolution is a particular draw of a stochastic process. Nevertheless, the proposed
comparisons show that the macroscopic model is unable to capture sudden slope changes
for long duration simulations. These slope changes correspond to local events that have
significant overall effect. However, ['macro depends on tmacro, Mmacro in @ smooth manner,
which explains the regularity of the macroscopic evolutions. This observation shows that
the proposed static approach, which leads to set the epistemic uncertainty at a constant
value during the evolution, contributes to the smoothness of the obtained solution. To
take into account sudden slope changes at the macroscopic scale one can propose a dy-
namic approach with a probability of local “events” increasing with time, and leading to
sudden changes of ['nacro. However, such an approach seems difficult to develop as the
identification of the probability density of local “events” would necessitate to analyze in
details a large number of mesoscopic evolutions, although the database used in this study
is only composed of various and disconnected mesoscopic states.

4.8.2 Probabilistic results

In this section, the epistemic uncertainty is not neglected in (4.72), thus the probabilistic
nature of the macroscopic model is evidenced. Draws of the various model parameters
involved in the Bayesian identification are obtained as detailed detailed in section 4.7 and
used to generate Ny = 500 macroscopic evolutions whose means, medians and point-
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Figure 4.18: Comparison between the overall mesoscopic state and one particular macroscopic
state obtained by neglecting the epistemic uncertainty, iz = 1.
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wise standard deviations are computed. The comparisons between the overall mesoscopic
state Umeso, Mmeso and the mean macroscopic state {Umacro) (£), {NMmacro’ () With point-wise
standard deviations oy, (£),0n,....., (f) are presented for the different tested conditions in
figures 4.19, 4.20 and 4.21 for i, € {1,80,100} and in figure 4.22 for the 4 tessellations, which
do not belong to the database (i.e., iy = 0). The zone defined by more or less one standard
deviation is centered on the median and not the mean in case the distribution is not sym-
metrical (e.g., t2). Results show that the macroscopic model is satisfying, as mesoscopic
evolutions lie for the most part in the zone defined by more or less one standard deviation
around the median.

It should be noted that the mesoscopic “events”, which are not easily captured by the
macroscopic model are more likely for tessellations whose morphological textures are very
pronounced (i.e., iy = 80 or iy = 100). This is a general trend that has been checked for
many other tessellations. Nevertheless, the macroscopic model proposed in this study
seems sufficiently accurate to carry on macroscopic simulation of annealing processes or
large fabrication or forming processes with heterogeneous and unsteady temperature.

In figure 4.22 all the four mesoscopic evolutions are stacked in one half of the zone
defined by the point-wise standard deviation for u;, us. This observation could rise the
idea that there is a bias, that is to say a systematic error in the estimation of the mean
evolution. However, this is likely due to the fact that all the four evolutions have been ob-
tained from similar tessellations to facilitate the search of almost identical initial overall
mesoscopic states fmeso(f = 0),Mmeso (£ = 0). Since the macroscopic model has been iden-
tified by using very different tessellations, the epistemic uncertainty reflects this diversity,
and the macroscopic results spread on a larger zone than if similar tessellations were used
for the identification. Thus, for some applications, if equiaxed grains are the most likely
mesoscopic structure, the macroscopic model could be identified with a specific database,
which only involves such tessellations, and therefore the epistemic uncertainty could be
reduced.

4.8.3 Average grain size

Results obtained in section 4.8.2 provide interesting information such as the GB length
density per unit area py/ Lo, the average misorientation p; (rad), the square of the relative
standard deviation pi,, and the standard deviation that can be obtained from fi, i>. In
addition to these statistical descriptors of the polycrystalline structure, a morphological
quantity is also known nmacro- Furthermore, the following analysis enables to identify the
average grain size evolution. The dimensionless average grain size reads:

1 n
Smeso = - Z Slc 4.73)
nj=1

where n is the number of grains in the RVE and Sy are the dimensionless grain surfaces.
A macroscopic estimation of the number of grains nmacr0 is obtained from 1macro. Indeed,
since for each grain that disappears 0.57macro = 7igp and each grain which disappears is
likely to be triangular:

flGB - ﬁmacro

n R—r— 4.74
macro 3 6 ( )
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In addition the surface of the RVE denoted by S =3}, Si is constant as detailed in chap-
ter 3, that is to say S = 0, thus:

Smeso = _I’l_S (4.75)

Hence the evolution law of the macroscopic average grain size Smacro iS Obtained by re-
placing in (4.75) the constant surface of the RVE S by Smacro (£ = 0) macro (£ = 0):

Nmacro

Smacro = _2—(Smacro(t = 0) Nimacro (£ = 0)) (4.76)

macro

where nmacro i computed from (4.74). In figure 4.23 we present the comparison between
dimensionless mesoscopic and macroscopic average grain sizes obtained from (4.73) and
(4.76) respectively. As for the other statistical estimators of the polycrystalline structure,
the average size is satisfying as it lies for the most part in the zone defined by more or less
one standard deviation.
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Figure 4.23: Comparison between dimensionless mesoscopic and macroscopic average grain size
with point-wise standard deviation +o.
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4.9 Conclusion

In this chapter the macroscopic model has been derived as the final step of the proposed
upscaling method. The chosen macroscopic variables fully account for the total energy in
a deterministic way, which is essential to compute the macroscopic driving force. In addi-
tion, the evolution laws of these macroscopic variables have been established in a rigorous
way from the mesoscopic evolution law derived in chapter 3. In the macroscopic evolution
laws, a mobility tensor and a vector arise, and have been identified in a static approach
by using a large database of different and unrelated mesoscopic states in opposition to a
dynamic approach that would have included mesoscopic evolutions (i.e., successive meso-
scopic states). The analysis has shown that an epistemic uncertainty arises from the loss of
information due to the reduction of the amount of data encapsulated in the macroscopic
state variables in comparison to the mesoscopic state variables. This epistemic uncertainty
has been modeled by random variables, whose probability density functions have been es-
timated by standard Bayesian inference. The macroscopic model is therefore probabilistic
and the main result is the mean evolution of the state variables along with point-wise stan-
dard deviation.

Results show that the macroscopic model is satisfying as good agreement is observed in
the comparisons with particular overall states arising from mesoscopic evolutions. Indeed,
the mesoscopic evolutions lie for the most part in the zone defined between more or less
one standard deviation. In addition, the computation time is fairly reduced as a few sec-
onds are necessary to compute the entire probabilistic macroscopic evolution, which in-
volves the computation of Ny = 500 particular evolutions. Thus, the proposed approach
can be used to carry out simulations of large processes with heterogeneous temperature
fields.

The macroscopic model enables to quantify the grain boundary length per unit area
o/ Ly and other statistical descriptors of the polycrystalline structure such as the mean
misorientation, its standard deviation or the average grain size. Additional morphological
descriptors such as grain circularity have not been included in this study, but there is no
fundamental difficulties to adapt the proposed work and include such details.
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Chapter 5

General conclusion

« You cannot swim for new
horizons until you have courage
to lose sight of the shore. »

William Faulkner
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This PhD thesis enabled to establish an original energetic upscaling strategy for grain
growth during annealing processes. Indeed, this strategy is based on a thermodynamic
framework and accounts for energies and dissipated powers. Such quantities have the
same interpretation at all scales and can be summed in order to derive a macroscopic ver-
sion of the problem. Very different tools were used in order to successfully carry out the
different tasks of the project. First and foremost, the use of Voronoi-Laguerre tessellations
and associated tensor calculus, along with the thermodynamic analysis that constitutes
the bases of this work and differential calculus leading to the evolution law. Moreover, we
used various tools associated to the construction of the database and the corresponding
statistical treatments, the probabilistic interpolation using classic Bayesian inference and
finally the numerical simulation of stochastic differential equations.

We are very well aware of the limitations within which this work has been developed.
Indeed, the ambition to have macroscopic state variables that statistically represent the
polycrystal and its anisotropies during grain growth is to the best of our knowledge an
original contribution, thus no existing and well established methods were found in the lit-
erature to rely on. Therefore, to avoid the risk of achieving nothing, our choice was to limit
the number of physical phenomena to be considered at the different scales, and to work
with a simple model as a proof of concept. Thus, we didn’t try to model recrystallization,
since the consideration of dislocation density would have led to much more complexity.
An other example is phase changes due to crystal rearrangement. Furthermore, we con-
sidered simplifying assumptions, the most severe of which is to work in 2D. Even though
the obtained model can be applied for plane polycrystals like crystal films, this assump-
tion is a limitation for the applications that we had in mind, namely the classical forming
and fabrication processes or more recent processes such as additive manufacturing. How-
ever, the considered assumptions enabled us to avoid beig lost in complexity and enabled
to focus on theoretical aspects and on the development of a methodology. Nonetheless,
a comparison with experimental observations was proposed to make sure that the devel-
oped model was sufficiently realistic.

If the extension to 3D does not rise theoretical difficulties in the scope of the proposed
approach, the difficulty lies in the search for an analytical grain boundary energy that is
function of the five parameters of the 3D grain boundary. Such an interpolation using
molecular dynamic computations can be very costly and requires going through the dif-
ferent configurations of the grain boundary. Moreover, the present work raises other re-
search questions. For example, the mesoscopic model developed in this work limited the
grain growth kinetics to only the grain weights, although seeds evolution would make the
model more versatile as the number of degrees of freedom would be significantly higher.
It could also be possible to associate an energy to the triple junctions, since the atomic ar-
rangement at the triple junctions can be even more disrupted than in the grain boundary.
The effect of the local inclination angle can also be investigated, due to the dependance
of the local grain boundary energy. Major developments can also be considered by using
generalized tessellations that are not subjected to the same constraint as Voronoi-Laguerre
tessellations, and enable to better account for real polycrystalline structures. The more sig-
nificant improvement yet would be to include the volume energy density associated with
the dislocation density in the grains and the dissipated power associated to their virtual
motion. Such considerations would enable us to model nucleation and growth of new
grains with no dislocations (i.e., recrystallization). Similarly, we could model phase tran-
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sitions by considering the default stack energy and by enabling the system to create new
grains (i.e., nucleation) with a different crystal lattice in order to decrease in energy. Of
course, nucleation challenges raise several questions in the scope of the OTUM approach,
none of which have been developed in this PhD thesis, and are left for future work.

Regarding the macroscopic model, several questions are also left open. Aside from the
upscaling of a more complex mesoscopic model (as discussed above), some changes can
be adopted directly on the macroscopic model as established in this thesis. For example,
we opted for a static approach for the database. In other words, the database in composed
of different mesoscopic states that are not related to each other, although an other ap-
proach could have been to consider mesoscopic structures representing different steps of
mesoscopic evolutions. Thus, we were not able to fully understand the evolution in time
of the epistemic uncertainty (related to the loss of information due to the reduction of
the amount of data in the upscaling strategy). Therefore, we did not update the epistemic
uncertainty during the evolution, although its corresponds to the random selection of a
virtual mesoscopic state among all the states corresponding to a given macroscopic state,
which of course evolves in time. Moreover, some of the morphological indicators of the
polycrystal were not taken into account in the macroscopic model (e.g. circularity).

These few perspectives show the amount of work that is still needed so that the up-
scaling strategy that has been initiated in this PhD thesis can be used by at a larger scale
including real applications. However, in spite of all the described limitations, we hope that
we contributed with this work to initiate a long-term research topic.
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Appendix A

Calculations related to Voronoi-Laguerre
tessellation

A.1 Geometrical relationships

The gradient d/;;/0w is obtained by considering the set of triple junctions:
L={Gj,kefl,-,n’ CinC;nCy # 2} (A.1)

and the angles at the triple junctions denoted by §; jx, where (i, j, k) € I3 and where the fol-
lowing symmetry rule holds §;jr = ;. Triple junctions and the effect of weight variation
on the length of the GB is presented figure A.1a. From simple geometrical consideration
one obtains:

tan (Biji— 3) +tan (Bijm—3) . tan(Bjix—F) +tan(Bjim—3)

lij:

- w; — w
2djcos (Bijk— %) k 2djmcos(Bijm—3%) "
Moreover:
. alij\ .,
= (5g) 2 a9
Hence:
0lij _ ¢~ (tan(ijp-3) tan(Bjip—3) Opg "
ow,~ 200\ " 2a, 0t T 2 1 24, -2 Ad
Wq  p=1 ij ij 2djpcos (Bijp—3)
where §;; is th Kronecker symbol and:
~ 1 if (jkel
‘5’1’“_{ 0 if (i,j,k ¢l (A.5)

The gradient 0S/0w is obtained by calculating the dimensionless area S; of a grain i as a
function of the heights h;; of the triangles joining the seed i and the grain boundaries /;;
(where j denotes the neighboring grains), as shown in figure A.1b.

1N .
Si:_zéijlijhij (A-G)

I



(b) Surface of grains

(a) Angles at the triple junctions

Figure A.1: Geometrical relationship

where §; j=1if i and j are neighbors (i.e., (i, j) € Irvg) and 5; j = 0 otherwise, and the
sum is taken over all the grains in the OT because GBs at the edges of the RVE connect
grains not belonging to the RVE. The height h;; is obtained by using the definition of the
Voronoi-Laguerre tessellation:

wi—wj+ dizj

hij = g (A.7)
ij
Hence: _
. 1 N ij[; 2 . .
SiZZZi—ij[li]‘(wi—w]'+dij)+lij(wi—w]')] (A-8)
]:
Moreover:
. 0S; .
Si = % ﬂ (A.9)
Hence: _
0S; 1 ij 0l;;
m=zzl—lj (wi—wj+di2j)m+(5iq_5jq) Lij (A.10)
]:
Hence: _
0S 1 N 6 ol;j
m—z;zl—ij (wi—Wj+d§j)m+(5iq_5jq)lij (A.11)
1= =

QO o~

where the sum on i is taken over grains belonging to the RVE.

A.2 Calibration with respect to curvature driven evolution
law

The shrinkage of a circular grain in an infinite matrix with a misorientation A0 is modeled
according to according to the curvature driven evolution law (1.1). To calibrate the mobil-
ity m(T) introduced in (3.22), the shrinkage of an hexagonal grain is modeled by OTUM as
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shown in figure A.2. From (A.4) one obtains for the situation defined in figure A.2:

611] 611] 611] 611] 1
Vjieli2,---,7}, = =- =— = (A.12)
J ow; Ow; ow;j_1 0wjs1  2v3R
Figure A.2: Circular grain shrinkage in an infinite matrix
The second order tensor y introduced in (3.31) reads:
_ 2R X(A0) (A.13)
=B * '

Thus, the second order tensor R introduced in (3.36) and it pseudo-inverse M introduced
in (3.53) are computed. Hence the evolution law (3.52) for the hexagonal situation can be
used to obtain Wmeso, and by using (3.32) one obtains the inward normal speed according
to the proposed model:

~ m(T) y(T,A0)
Vcp = R X0 (A.14)
Combining (1.1) and (A.14) one obtains:
m(T) = mcp(T,A0) X(AO) (A.15)
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et homogénéisation probabiliste

Résumé: 1a croissance de grain est un phénomeéne thermique-
ment activé qui se produit généralement pendant les phases de recuit
des métaux. Pendant la phase de croissance, certains grains grossissent
au détriment dautres grains en fonction de leur taille et de leur orien-
tation cristalline. Les descripteurs statistiques classiques du polycristal
tels que la texture morphologique et cristallographique (taille des grains,
distribution des orientations et des désorientations cristalline) évoluent
pendant les procédés. Ainsi, pour différents procédés (ex. fabrication
additive), les conditions de température pourraient étre optimisées pour
cibler des microstructures spécifiques. Cependant, prédire lévolution des
microstructures implique de développer des modeéles a léchelle du poly-
cristal (joints de grain). Mais cette échelle est incompatible avec des sim-
ulations compleétes de procédés qui nécessitent une description a large
échelle. Le but de ce travail est donc de développer une stratégie de
changement déchelle pour établir les bases dun modéle macroscopique
de croissance de grain qui repose entierement sur une description du
phénomene aux échelles inférieures et dont les variables détat conti-
ennent les descripteurs statistiques du polycristal. Cette stratégie re-
pose sur une description de la croissance de grain a différentes échelles

(i) atomique (potentiel interatomique et arrangement cristallin), (ii)
microscopique (joints de grain), (iii) mésoscopique (polycristal) et (iv)
macroscopique (descripteurs statistiques). Puisque les concepts énergé-
tiques existent a toutes les échelles et traversent tous les champs de la
physique, notre démarche repose en substance sur différentes contribu-
tions énergétiques apparaissant aux différentes échelles. Cette stratégie
énergétique est développée dans le cadre des milieux standards général-
isés qui sont caractérisés par leur énergie libre et la puissance dissipée
dans nimporte quelle évolution virtuelle. Cela consiste donc a déter-
miner ces potentiels thermodynamiques non pas de maniére axioma-
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tique avec des fonctions paramétriques, et une nécessaire calibration ex-
périmentale, mais de maniére plus physique et statistique en sappuyant
sur la construction dune importante base de données constituée de cal-
culs a léchelle mésoscopique. Sur cette base, nous pouvons identifier
une énergie libre et un potentiel de dissipation macroscopiques en fonc-
tion de variables détat que nous définirons, pour obtenir une loi dévolu-
tion macroscopique qui porte sur les descripteurs statistiques de la mi-
crostructure. La base de donnée joue donc un role déterminant et né-
cessite pour étre suffisamment riche dutiliser intensivement un modele
de croissance de grain a 1échelle mésoscopique. Le temps de calcul de ce
modele est donc critique. Bon nombre dapproches existent, cependant
le poids calculatoire est trop important. Un premier travail consiste au
développement dun modele mésoscopique simple et rapide pour créer
la base de donnée. Ce modeéle est formulé en deux dimensions pour
ne pas compliquer les aspects techniques, lenjeu étant principalement
de valider notre approche. Nous nous appuyons sur les techniques de
tessellation de Voronoi-Laguerre. Des algorithmes trés efficaces ont été
développés et permettent de générer tres rapidement des tessellations
avec les orientations cristallines souhaitées. Lidee de notre modéle mé-
soscopique rapide est donc dapproximer lévolution dun polycristal par
une succession de tessellations orientées, que lon met a jour a chaque
pas de temps. Lexploitation de la base de donnée révele un aspect im-
portant : la perte dinformation entre 1échelle mésoscopique (détaillée) et
léchelle macroscopique (statistique) introduit un alea épistémique dans
le modeéle. Donc, a partir dun modéle mésoscopique entierement déter-
ministe, nous construisons un modeéle macroscopique probabiliste, qui
peut étre utilisé pour des structures de grande échelle subissant des
traitements thermiques.

Abstract: Grain growth is a thermally activated phenomenon that
generally occurs during annealing processes. During grain growth, some
grains grow while others disappear. This coalescence is a function of the
grain size and crystal orientation. Classical statistical descriptors of the
polycrystalline structure such as morphological and crystallographic tex-
tures (e.g., grain size, shape and crystal orientation distributions) evolve
during the process. Thus, for different fabrication or forming processes
(e.g., additive manufacturing), temperature conditions could be opti-
mized to obtain targeted microstructures, especially for large heteroge-
neous parts. However, mechanisms involved during grain growth arise
at the scale of grain boundaries (GB). Thus, numerical simulations of the
evolution of morphological and crystallographic textures may be difficult
to perform for macroscopic parts, which hinders the development of op-
timization loops to adjust process parameters. Therefore, this PhD the-
sis aims at developing an upscaling strategy to establish a macroscopic
model of grain growth that fully relies on finer scales and whose state
variables contain statistical descriptors of the grain structure. The pro-
posed upscaling strategy involves considering grain growth at various
scales: (i) the atomic scale (e.g., crystal lattice and interatomic potential),
(i) the microscopic scale (e.g., grain boundaries), (iii) the mesoscopic
scale (e.g., polycrystalline structure) and (iv) the macroscopic scale (sta-
tistical descriptors of the grain structure). As energetic concepts are valid
at all scales, the upscaling strategy fundamentally relies on various en-
ergetic contributions arising at different scales. This energetic upscaling
strategy is developed within the framework of standard generalized me-
dia that are caracterized by their free energy and dissipated power. The
proposed upscaling strategy consists in determining these two potentials
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not axiomatically (with parametric functions and experimental calibra-
tion), but on a more physical basis by using a large database of results
from computations carried out at the mesoscopic scale. On this basis,
we can identify the macroscopic free energy and dissipated power as a
function of the macroscopic state variables in order to obtain an evolu-
tion law that accounts for statistical descriptors of the grain structure.
Therefore, the database requires to intensively use a mesoscopic model
of grain growth. As a consequence, a sufficiently fast mesoscopic model
should be established. Many different approaches have been proposed to
model grain growth at the mesoscopic scale. However, the computational
cost is usually incompatible with an intensive use as suggested within
the proposed framework. In this work, a fast mesoscopic model called
Orientated Tessellation Updating Method (OTUM) has been proposed. It
fully relies on Voronoi-Laguerre tessellation to approximate polycrystals
at the mesoscopic scale. For the sake of simplicity, the proposed upscal-
ing methodology is established for plane hexagonal polycrystals. Very ef-
ficient algorithms have been developed with the possibility of controlling
statistical distributions of grain size and shape and GB misorientation.
OTUM relies on the idea that the evolution law of the mesoscopic struc-
ture can be formulated directly by modifying the parameters defining the
OT. Exploring and analyzing the database raises an epistemic uncertainty,
which corresponds to the loss of information in the process of reducing
the amount of data. This epistemic uncertainty has been modeled with
random variables, leading to a probabilistic macroscopic model, even
though the mesoscopic model is completely deterministic. Such a model
can be directly used for structures at large scales subjected to thermal
treatments.
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