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Chapter 1

Context

Abstract: This thesis treats the identification of the genetic factors
underlying complex diseases. Usually this is done via genome-wide
association studies (GWAS), when univariate association is studied,
and via genome-wide association interaction studies (GWAIS), when
interactions between genetic factors are considered. Both experi-
mental settings involve the genotyping of hundreds of thousands of
single-nucleotide polymorphism (SNPs) over thousands of individu-
als, both affected by the disease under study and unaffected. Despite
their success in identifying many variants behind common diseases,
GWA(I)S still present challenges, namely low statistical power, dif-
ficult interpretation, and arbitrary choices at multiple points of the
study. Approaching the problem from a network perspective might
help tackling these issues. In essence, this involves considering both
the individual association with the disease of each gene and their
biological context, modeled as a network built from known gene-gene
interactions. In this thesis I focus on how network-based methods can
boost biomarker discovery and interpretability on GWA(I)S. I apply
these methods to two complex diseases: familial breast cancer and
inflammatory bowel disease.

Résumé : Cette thèse porte sur l’identification des facteurs
génétiques qui sous-tendent des maladies complexes. Les études
d’association génome entier (GWAS), sont généralement utilisées
pour étudier des associations univariées, tandis que les études
d’association d’interactions génome entier (GWAIS) prennent
en considération des interactions entre facteurs génétiques (ou
épistasie). Ces deux approches nécessitent de génotyper des centaines
de milliers de polymorphismes d’un seul nucléotide (SNPs) pour des
milliers d’individus, affectés ou non par la maladie étudiée. Bien
qu’elles aient permis d’identifier de nombreux variants associés à des
maladies courantes, les GWA(I)S présentent toujours de nombreux
défis, parmi lesquels leur faible puissance statistique, la difficulté
de leur interprétation, ainsi que les choix arbitraires qui doivent
être faits à différentes étapes de ces études. Considérer ces études
sous l’angle des réseaux biologiques peut permettre de répondre à ces
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2 Chapter 1. Context

défis. Il s’agit de considérer à la fois l’association individuelle entre
chaque gène et la maladie, et le contexte biologique de ces gènes,
modélisé par un réseau contruit à partir d’interactions gène-gène
connues. Dans cette thèse, j’étudie comment l’utilisation de réseaux
biologiques facilite la découverte de nouveaux biomarqueurs ainsi
que l’interprétation des GWAS(I)S. J’applique ces méthodes à deux
maladies complexes : le cancer du sein familial, et les maladies
chroniques inflammatoires de l’intestin.

1.1 The common disease/common variant framework

Complex diseases are those caused by a mixture of genetic, environmental and
lifestyle factors. The object of study of this thesis are the methodologies to identify
such genetic factors. This is of paramount importance for disease prevention,
understanding the etiology of diseases, and providing better treatments.

The genetic architecture of a trait includes the variants that contribute to the risk,
as well as their allelic frequencies, effect sizes, and their genetic mode of action
(e.g. dominant or recessive). From this point of view, complex diseases are easier
to understand in contrast with Mendelian ones. The latter are caused by a single
locus with a strong effect, and hence follow the Mendelian rules of inheritance. In
essence, and barring considerations on reduced penetrance, whether an individual
will develop a Mendelian disease or not depends exclusively on the two alleles at
that particular locus, and their genetic mode of action. By contrast, the genetic
architecture of complex is modeled by the liability-threshold model, an extension to
binary traits of the infinitesimal model used to describe the genetics of continuous
phenotypes like height. Under the infinitesimal model, a continuous trait is shaped by
many Mendelian alleles, each of them with a small contribution to the trait (Barton,
Etheridge, and Véber 2017). Specifically, it computes a score for an individual
based on the contribution of each of the alleles in the genetic architecture, plus
the contribution of the environment. The liability-threshold model computes an
equivalent latent score and, if it takes a value above a given threshold, disease will
ensue.

Because the risk alleles have such small effect sizes, they are not under strong
purifying selection (Figure 1.1). This allows them to be common (>1-5% of the
population), unlike the mutations causing Mendelian diseases, which are rare, as they
strongly decrease the fitness of the individual (Manolio et al. 2009). In consequence,
the study of the genetics of complex diseases relies on the common disease, common
variant hypothesis: common diseases are partly attributable to allelic variants
present in more than 1-5% of the population, which cause, by themselves or in
combinations, small increments in risk (1.1 - 1.5-fold). However, another consequence
of this limited effect size is that only weak associations between causal variants and
phenotypes can be expected. Again, this notion is radically different from Mendelian
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Figure 1.1: Relationship between the minor allele frequency of an allele, and its
effect size. As a consequence of evolutionary forces, highly deleterious alleles which
cause Mendelian diseases are infrequent, while alleles with small effects that increase
slightly the susceptibility to a complex disease are more widespread. Figure adapted
from Bush and Moore (2012), licensed under CC BY.
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diseases, where every carrier of the risk allele develops the disease under complete
penetrance. Therefore, the study of the genetics of complex diseases requires the
identification of many risk variants among the 88 millions known ones (The 1000
Genomes Project Consortium et al. 2015).

The most common source of genetic variation in humans are single base-pair changes
in the DNA sequence, called single-nucleotide polymorphisms or SNPs (The 1000
Genomes Project Consortium et al. 2015). They usually involve two alleles, meaning
that in a population there are two possible base-pairs for a genetic position. SNPs
are characterized by their minor-allele frequency, that is, the frequency of the least
common allele in the population. Although in this thesis I focused my work on SNPs,
other forms of genetic variation exist. These are the structural variants, which involve
variation in the structure and the quantitative arrangement of the chromosomes
(Spielmann, Lupiáñez, and Mundlos 2018). Copy number variants (CNVs), a type of
structural variants, consist on a repeated segment of the genome, where the specific
number of repeats changes from person to person. CNVs are relevant for human
health. For instance a neurological disorder known as Huntington’s disease ensues
when a specific tri-nucleotide in the huntingtin gene is repeated more than 36 times
(Macdonald 1993).

1.2 Genome-wide association studies

Genome-wide association studies (GWAS) are experiments that explore large cohorts,
systematically surveying both a high number of genetic variants and the individuals’
phenotype(s) (Bush and Moore 2012). Their goal is to find associations between
genotypes and the studied phenotype. These associations might lead to earlier
diagnoses, choices of treatment appropriate for a patient’s genetic background,
and better understanding of the etiology of the disease. For that purpose, a
classical GWAS involves a statistical test of association between each variant and
the phenotype. Often that statistical test is a logistic regression, which allows using
additional variables that might act as confounders. For instance, for a SNP i:

logit (pi) = α+ βigi + γX (1.1)

where gi is the vector of genotypes at SNP i, βi is the coefficient, and X and γ are
respectively the matrix of covariates and the vector with the covariates’ coefficients.
A statistical test can be conducted on the value of β by transforming it into a Z-
score. In order to evaluate the significance of the associated P-value, an appropriate
threshold which accounts for multiple testing is needed. Often, that P-value is
chosen by setting the family-wise error rate to 0.05 i.e. 0.05/# SNPs (e.g. 10-7 if
500,000 SNPs are tested). Then, genome-wide significant SNPs undergo a follow-up
study on an independent cohort.

The 1000 Genome Projects catalogued 84.7 million SNPs across multiple human
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populations (The 1000 Genomes Project Consortium et al. 2015). However GWAS
do not need to survey all of them to obtain a representative view of the genome.
Instead, they exploit the correlations between the variants consequence of the genetic
history, a phenomenon known as linkage disequilibrium (LD). Thanks to LD, GWAS
survey the whole genome in an inexpensive fashion using SNP arrays that contain
only a small fraction of the known variants (Visscher et al. 2017). In consequence,
the SNPs associated with a disease are likely not the causal ones, but SNPs close to
the causal variants, and hence in LD with them.

Since the first GWAS in the late 2000s, more than 5,600 studies have shed light into
the genetics of complex traits, identifying more than 70,000 variant-trait associations
(Buniello et al. 2019). From this community effort we took a few lessons about the
architecture of complex traits. First, GWAS confirmed the infinitesimal model in all
studied complex traits, whose variance can only be explained but by many loci with
small effect sizes (Visscher et al. 2017). Such explanatory variants tend to be located
in chromatin that is open and expressed in the tissues relevant for the disease (Boyle,
Li, and Pritchard 2017). Also, even genes functionally implicated in the disease
explain a small fraction of the trait variance (Boyle, Li, and Pritchard 2017). In fact
GWAS has revealed widespread pleiotropy, as the same genomic regions are often
found in association to multiple traits (Visscher et al. 2017). This has profound
implications, showing how interrelated different biomolecules are. In fact, holistic
models that add nuances to the infinitesimal model have been suggested, like the
omnigenic model (Boyle, Li, and Pritchard 2017). This model postulates that only
a few core genes are directly implicated in the disease, and alterations on them have
a strong effect. But alterations in many other, unrelated, genes can also lead to
disease as they propagate through biological networks to affect the functionality
of those core genes. A more complete view of biological networks and disease is
available in Chapter 2.

1.2.1 Challenges

The discovery of the genetic basis of complex diseases is hindered by several intrin-
cacies in both the GWAS setting and the underlying biology. That is why, despite
its success in identifying associated variants, all of them together do not explain the
whole genetic variance of the disease. Possible explanations include the involvement
of a large number of common variants with small effects; of rare variants with large
effects not covered in GWAS; of epistasis; and of unaccounted gene-environment
interactions (Manolio et al. 2009). My thesis involved developing methodologies
that tackle these challenges, which I present below.

1.2.1.1 Low statistical power

Due to the low effects sizes implied by the common disease / common variant hypoth-
esis, GWAS would require very large sample sizes. Yet, for practical limitations, they
have traditionally remained in the thousands, with the latest studies raising them up
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to hundreds of thousands (Sudlow et al. 2015). However, the number of biomarkers
required to scan the whole genome is even larger, from hundreds of thousands to
millions. In consequence, GWAS is conducted in an ultradimensional setting which,
jointly with the small effect sizes, leads to low statistical power (Wray et al. 2013;
Visscher, Hill, and Wray 2008; Button et al. 2013). Statistical power also takes
a hit due to the partial correlations between the tests, as multiple test correction
procedures like Bonferroni consider the statistical tests independent, and hence
overcorrect (Wang, Cordell, and Van Steen 2018). Statistical power can be further
reduced when the causal SNPs are in weak LD with the closest genotyped variants,
for instance if they are rare, and when the phenotype is heterogeneous (Visscher
et al. 2017), as is common in complex diseases. This has several implications.
First, that by definition we have a small chance of discovering effects that are true.
Second, it raises the probability of a discovery to be a false positive. Third, when
an underpowered study discovers a true effect it is more likely to overestimate its
effect size. One practical consequence of this low power in GWAS is the difficulty to
reproduce results (Visscher, Hill, and Wray 2008).

1.2.1.2 Choice of encoding

The most commonly used association tests in GWAS require making assumptions on
the mode of action of the SNPs (dominance, codominance, etc.). For instance, the
logistic regression presented in Equation (1.1) needs a single number that represents
the two alleles of each individual. Converting the genotype into such a number is
known as encoding a genotype. There are several such encodings, and its choice have
implications on the study: choosing an encoding which diverges from how the SNP
truly acts will reduce the statistical power (Romagnoni et al. 2019). A common
one is the additive encoding, which assumes that the minor allele is responsible for
the phenotype, proportionally to the number of copies; hence, the major allele in
homozygosis is represented by a 0, the heterozygous genotype by a 1, and the minor
allele in homozygosis by a 2. In Appendix A we explore a feature selection algorithm
which, when applied to GWAS, makes no assumptions on the mode of action of the
SNP.

1.2.1.3 Estimating individual risk

Once the genetic architecture is fully understood, it will be possible to estimate the
full genetic component of a patient. This involves moving moving from population-
level associations, to an individual assessment (Wray et al. 2013). Conventionally
these are done through polygenic risk scores, which consist on a linear combination
of genotypes from the associated loci in a patient, weighted by their effect sizes.
However, their utility is far from clinical applications (Visscher et al. 2017). In this
thesis, I apply machine learning algorithms for sample classification in Chapter 2
(Section 2.3.3) and in Appendix A. Also, it is worth stressing that even when the
whole genetic architecture of a disease is uncovered, the R2 of a linear predictor
would be upper bounded by the heritability (h2). A complete prediction will require,
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in addition, fully understanding epistasis (Section 1.4), environmental effects, and
the interactions between environment and genetics.

1.2.1.4 Population structure

As explained before, the GWAS exploits LD to avoid genotyping all known variants.
However, these correlations between SNPs depend on the evolutionary history
of each sample, and hence are population specific. Therefore, GWAS designs
must account for samples with different ancestries or, in other words, capture the
population structure in the data. Failure to do so might lead to overestimating
allelic and genotypic frequencies, reducing statistical power and producing spurious
associations (Wang, Cordell, and Van Steen 2018). Population structure can be
captured by the principal components of the genotype matrix, and hence they are
often used to account for it (Price et al. 2006). For instance, a logistic regression
using the main principal components as covariates is often used to obtain measures
of association at the SNP level correcting by potentially confounding population
structure (Michailidou et al. 2015, 2017; Ellinghaus et al. 2016).

Another consideration is that most GWAS have been carried out on populations of
European ancestry, which have a reduced variability in comparison to other human
populations (Visscher, Hill, and Wray 2008). In fact, studies on non-European
populations have yielded a big number of new, intriguing variants.

1.2.1.5 Interpretability

By design, a genotyped SNP acts as a tag for the region in the genome in LD with
it. Hence, even if that “tag SNP” shows statistical association with a disease, fine-
mapping studies are needed to pinpoint the specific SNP that gives the susceptibility
to it. From a computational perspective, a frequent strategy to link tag SNPs to a
function is identifying the genes under the influence of their genomic region (Lehne,
Lewis, and Schlitt 2011; Jorgenson and S Witte 2006), as those are considered the
functional unit of inheritance. For instance, a SNP might affect a gene by provoking
an amino acid change in the protein product, or altering its gene expression or its
splicing. Yet, mapping genomic regions to the genes they might influence is not
trivial. In the literature, we find three ways of of doing so. The first one is the
physical mapping, which maps that region to the genes whose genomic coordinates
overlap with it. Often the gene boundaries are expanded by a fixed number of
kilobases, as SNPs in promoters or nearby enhancers can affect gene expression (Segrè
et al. 2010). Nonetheless, physical mapping can be ambiguous due to the overlap
between genes (as I illustrate in Section 2.3.5). The second SNP-gene mapping is
through gene expression regulation, when SNPs in the associated genomic region
are significantly associated to the expression of a gene. Such loci are known as
eQTL. In this regard, the GTEx project (GTEx Consortium 2017), a project that
genotypes multiple human subjects and extracts expression information from their
different tissues, is a useful source of tissue-specific eQTL. Gene expression mapping
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is not exempt of the overlap problem that occurs in the physical mapping. Solutions
which consider LD patterns and the association across the whole genomic region
have been proposed (Liu et al. 2019). The third SNP-gene mapping is based on
the 3D structure of the genome, which causes distant genomic regions to be close
in space (Spielmann, Lupiáñez, and Mundlos 2018). In this situation, SNPs in a
genomic region are associated to neighboring genes in the tridimensional space.

Once a set of SNPs is reliably mapped to a gene, multiple tests extist to aggregate
their results into a gene statistic and measure the association of the gene as a whole
with the disease. Aggregation of such SNP statistics into gene statistics is likely to
increase the statistical power when dealing with complex diseases (Wu et al. 2010).
Multiple approaches exist, like SKAT (Wu et al. 2011), VEGAS2 (Mishra and
Macgregor 2015), or COMBAT (Wang et al. 2017).

1.3 Epistasis

Epistasis is the phenomenon where the effect of one locus on the phenotype depends
on the state of one or more additional loci. It has two variants: biological and
statistical (Moore and Williams 2005). Biological epistasis refers to the physical
interaction occurring between the loci, for instance via their protein products. It is
partly a consequence of the redundancy of biological mechanisms, which requires
alterating multiple sites in order to alter their broader biological function (Niel et al.
2015). Multiple cases of biological epistasis contributing to phenotypes in model
organisms have been reported in the literature (Mackay 2014). Statistical epistasis,
by contrast, is the observation that the association between one locus and the
phenotype changes across the level of the other locus. In essence, statistical epistasis
refers to the biological epistasis detectable at the population level. In this regard,
links between epistasis and complex diseases like Alzheimer’s disease (Combarros et
al. 2009), inflammatory bowel disease (Cho et al. 1998) and hypertension (Kimura
et al. 2012) have been found. As in this thesis I worked exclusively in the detection
of the latter kind, for brevity’s sake I will refer to it simply as epistasis.

Despite the links between epistasis and complex disease mentioned above, estimating
the magnitude of its contribution to complex diseases in humans is hard (Gusareva
and Van Steen 2014). Nonetheless, Zuk et al. (2012) proposed that incorrectly
accounting for epistasis might be behind the so-called missing heritability of complex
traits. Additionally, studies of traits in model organisms suggest that epistasis
plays a key role of their genetic architecture (Mackay 2014). This motivates further
studying the involvement of epistasis in complex diseases.

1.4 Genome-wide association interaction studies

Genome-wide association interaction studies (GWAIS) share the experimental design
with GWAS, but focus on the detection of epistasic associations. The identification of
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gene-gene interactions is crucial to understand the functional basis of the association:
if two interacting SNPs alter the same gene, and both alterations are required to
modify its function, if they affect different genes from the same pathway, from
two different pathways that cross-talk, etc. As opposed to GWAS, no standard
GWAIS protocol exists yet, although some general recommendations have been
issued (Gusareva and Van Steen 2014; Ritchie and Van Steen 2018).

Due to their similar experimental design, GWAIS and GWAS share the challenges
outlined in Chapter 1.2.1. Nonetheless, such problems are often aggravated in
GWAIS. For instance, a larger number of tests implies a further reduction of the
statistical power. Interpretation is also more complicated, as two or more SNPs need
to be mapped to their respective genes (Gusareva and Van Steen 2014). However
it requires two additional considerations, related to the multiple genetic scenarios
in which epistasis can occur. As illustration, Li and Reich (2000) estimated that
there are 50 different fully penetrant disease models involving two loci in epistasis.
The first consideration is that a number of arbitrary choices must be made, like
the order of the explored interactions, whether to pre-filter the data according to
function or detectable main effects, or the genetic encoding (see Section 1.2.1.2)
(Romagnoni et al. 2019). For instance, fourth order epistasis involves four different
loci jointly contributing to a phenotype. Nonetheless, as the number of interactions
grows exponentially with the epistasis order, most methods and studies focus on
second order epistasis. The second consideration is that epistasis introduces the
challenge of quantifying and assessing the significance of an statistical interaction.
Multiple strategies to detect epistasis have been proposed, from logistic regression
with an interaction term to deep learning. (Niel et al. (2015) is a comprehensive
review of the main epistasis detection strategies.) In general, this diversity comes
from tackling different aspects of the computational and statistical issues that arise
from the large number of potential interactions. For instance, logistic regression
with an interaction term is an exhaustive method with a parallelized implementation
(Chang et al. 2015), but makes strong assumptions on the underlying relationship
between the genotype and the phenotype. Hence, statistical power is compromised
when that model is inaccurate. On the other hand, MDR (Moore et al. 2006) is
model-free and exhaustive, but is limited to case-control phenotypes and its inability
to compute P-values analytically makes it slower. In Chapter 5 we examine different
epistasis detection methods.

1.5 Diseases studied in this thesis

The bulk of my work in this thesis revolved around two complex diseases: familial
breast cancer and inflammatory bowel disease.
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1.5.1 Breast cancer

Cancer is the name of a collection of related diseases. Specifically, all cancers undergo
an uncontrolled proliferation of the patient cells, which spread into surrounding
tissues. In a normal organism, cells grow and divide to maintain the tissue. As cells
grow old, or accumulate too much damage, they undergo cell death and new cells
will take their place. However, in cancer, this orderly process breaks down. Cells
refuse to die when they get old, or accumulate damage. New cells are formed even if
they are not needed. In consequence they form purpose-less growths called tumors.

This abnormal behavior occurs as consequence of the alteration of crucial genes.
These alterations can be inherited from our parents, or acquired during our lifetime,
due to replication errors or exposure to DNA-damaging substances. As with any
other phenotypic trait, the likelihood of developing cancer is determined by the
interplay between the genetic background and the environment: genetic backgrounds
may favor or hinder the acquisition of mutations, and so do environmental factors.

Breast cancer occurs when breast cells undergo this uncontrolled proliferation. In
most of the cases they begin in the ducts that carry the milk to the nipple. However
the tumor can originate in other tissues, mainly the milk-producing gland.

Breast cancer is the second most commonly diagnosed cancer among women, after
non-melanoma skin cancer. It is also the second leading cause of cancer deaths
after lung cancer. It is mostly a women’s disease: only about 1% of the diagnosed
cases are in men. Among the most important risk factors for breast cancer we can
highlight age, family history, reproductive history, usage of oral contraceptives and
exposure to radiation. Most breast cancers occur after age 50.

Breast cancer is a very heterogeneous disease: while all the tumors appear in the
same organ, the tissue where they originate, the molecular mechanism involved, the
response to therapy, etc. vastly differ. In general, clinical decisions are based on
the expression of 3 molecular markers: the expression of the endocrine receptors for
estrogen and progesterone (ER and PgR, respectively) and the expression of the
HER2 gene. The proteins these three genes code for are targets for chemotherapy.
Based on the results, we distinguish three main breast cancer subtypes: hormone
receptor positive, HER2 positive and triple negative.

• Hormone receptor positive (HR+): HR+ tumors include the tumors expressing
ER and/or PR, which respectively depend on estrogen and/or progesterone
to grow. They happen mostly in postmenopausal women. HR+/HER2- also
known as LuminalA are the majority of breast cancers (60-75%) and they
present the best prognosis.

• HER2 positive (HER2+): HER2+ tumors depend on the protein HER2/neu
(human epidermal growth factor receptor 2) to proliferate, which they over-
express. HR+/HER2+ (also known as LuminalB) constitute 10% of the cases,
while HR-/HER2 (also known as HER2-enriched) involves 5% of them. There
are a couple of very effective drugs against it.
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• Triple-negative: Triple-negative tumors lack the expression of all three of ER,
PgR and HER2. These patients present a worse prognosis than the rest, due
to the aggressiveness of the tumor and the lack of a clear molecular target.
Still, the main treatment is chemotherapy.

In the mid-19th century a French medical doctor, Pierre Paul Broca, reported
for the first time a case of familial breast cancer (Nielsen, Overeem Hansen, and
Sørensen 2016). Indeed, his wife acquired breast cancer, as many women in her
family had for, at least, 4 generations. Cases of familiar breast cancer usually occur
in women younger than 50 years, and bilateral primary breast tumors are frequent.
Epidemiological studies later quantified the relative risk conferred by a the presence
of multiple breast cancers in the family at 2.7. Moreover, they exhibit a higher
likelihood of acquiring triple-negative breast cancer.

It was not until the late 20th century that two genes involved in DNA repair,
BRCA1 and BRCA2, were associated with hereditary breast and ovarian cancer
(HBOC). Some mutations in these genes increase the risk of developing breast cancer,
giving respectively a 57–65% or 45–55% risk of developing breast cancer by age 70
among women. For that reason, BRCA1 and BRCA2 mutations are rare in most
populations (1 of 400).

HBOC follows an autosomal dominant inheritance pattern. While approximately
5–10% of all patients with breast cancer exhibit a monogenic predisposition to breast
and ovarian cancer, only about 25% of them harbor BRCA1/2 mutations. An
additional 23 genes have been associated with familial breast and/or ovarian cancer
(Table D.1).

Nearly all known HBOC susceptibility genes encode tumor suppressors that partici-
pate in genome stability pathways (homologous recombination repair, replication
fork stability, transcription–replication collisions, mismatch repair, and DNA damage
signaling, checkpoints and cell death; see Appendix D for more information).

1.5.1.1 The GENESIS dataset

In Chapter 2, I search for risk factors for familial breast cancer in the French
population on the he GENE Sisters (GENESIS) study (Sinilnikova et al. 2016).
Index cases are patients with infiltrating mammary or ductal adenocarcinoma, who
had a sister with breast cancer, and who have been tested negative for BRCA1 and
BRCA2 pathogenic variants. Controls are unaffected colleagues and/or friends of
the cases, born around the year of birth of the corresponding case (±3 years). We
focused on the 2,577 samples of European ancestry, of which 1,279 are controls and
1,298 are cases. The genotyping was performed using the iCOGS array, a custom
Illumina array designed to study genetic susceptibility of hormone-related cancers
(Sakoda, Jorgenson, and Witte 2013). It contains 211,155 SNPs, including SNPs
putatively associated with breast, ovarian, and prostate cancers, SNPs associated
with survival after diagnosis, and SNPs associated to other cancer-related traits, as
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well as functional candidate variants in selected genes and pathways.

1.5.2 Inflammatory bowel disease

Inflammatory bowel disease (IBD) is a group of complex diseases that, as the name
indicates, share a common theme of inflammation of the intestines. The two main
subtypes are ulcerative colitis and Chron’s disease. Clinically, these two share a
lot of the symptoms, mainly intermittent abdominal pain and diarrhea (Liu and
Stappenbeck 2016). However, they differ in the specific regions of the digestive tract
that get affected, as well as the specific lesions. IBD’s incidence worldwide has been
continually growing, specially in newly industrialized countries, and after decades of
growth it has stabilized in North America, Oceania and Europe (Ng et al. 2017). In
these latter countries the prevalence is slightly above 0.3%.

The genetic component of IBD was recognized more than a century ago (Ek, D’Amato,
and Halfvarson 2014). However, it was not until 2001 that the first gene, NOD2, was
linked to IBD susceptibility. Ever since, hundreds of loci have been associated to
IBD as well, in positions related to immune system genes, both innate and adaptive
(Loddo and Romano 2015; Ellinghaus et al. 2016; Liu and Stappenbeck 2016). For
instance NOD2, and other susceptibility genes like IL23R, and PTPN2, are related
to cell signalling in immune cells. However, most of the loci associated to genes
are rare variants (< 0.5%) with large effect sizes. By contrast, several GWAS have
identified very common SNPs (20-50%) with small effect sizes (odds ratio < 1.1)
(Liu and Stappenbeck 2016), but which do not encode any coding change (Jostins et
al. 2012). This raises questions about the underlying biology (see Section 1.2.1.5).
For a comprehensive view of the genetics of IBD, interested readers can read Liu
and Stappenbeck (2016) and Loddo and Romano (2015).

1.5.2.1 The IIBDGC dataset

In Chapters 4 and 5, I search for epistatic interactions giving susceptibility to
IBD. Specifically, I examine the largest case-control GWAS on ulcerative colitis and
Chron’s disease to date (Jostins et al. 2012), produced by the International Inflam-
matory Bowel Disease Genetics Consortium (IIBDGC). The dataset contain 66,280
samples, out of which 32,622 are cases and 33,658 are controls. The Immunochip
SNP array was used for the genotyping (Cortes and Brown 2010), which contains
196,524 polymorphisms, with a special focus on immunogenetics.

1.6 Network view of complex diseases

Human biology is notoriously complicated, as sheer numbers demonstrate: to form
a 70 kg man, 3.0 ×1013 cells (Sender, Fuchs, and Milo 2016) assemble and interact
to produce and maintain 79 organs. To achieve that level of complexity, human cells
depend on their genetic material, carefully tuned by epigenetics and enabled by a
favorable environment. In terms of genetics, the object of my work, a human diploid
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genome is 6.4 billion base pairs long, and harbors 44,393 genes, of which 20,444
encode for a protein and 23,949 are RNA genes. DNA, proteins and RNA are in
constant interplay with each other, with the metabolites, and with the environment.
Proteins physically interact with each other in highly specific ways (protein-protein
interactions or PPIs). If such interactions are stable enough, proteins can assemble
into large complexes to carry out particular functions. But proteins also interact
with DNA to regulate gene expression (transcription factor - DNA interactions).
And so on: enzymes interact with their metabolites, hormones with their receptors,
the individual with their environment, etc. At a fundamental level, a person and
their traits are just the emerging pattern born from the interaction of all these
factors. Hence, biology, from ecosystems to molecular biology, cannot be understood
if not as an interplay. Mindful of this, and enabled by the omics technologies of the
21st century, researchers have striven to capture and understand these relationships.
The goal of systems biology is achieving a global understanding of the complex
interplay that drives biology. Among all the possible biological relationships, in
this thesis I focus on protein-protein interactions, including protein complexes, as
their coverage is larger and their properties better understood. Such interactions
are available in databases like HINT (Das and Yu 2012), The BioGRID (Oughtred
et al. 2019) or IntAct (Hermjakob 2004).

Relationships between pairs of entities can be mathematically formalized as a
network, which makes them analytically approachable. In such networks, often
proteins or genes are the nodes, which are connected by edges in a pairwise fashion
when they are functionally related. Although the edges might have directionality,
often PPIN are undirected, as the direction of the edges is often unknown (transitory
interactions), or inexistent (co-complexes) (Barabási, Gulbahce, and Loscalzo 2011).
The field of systems biology relies on the assumption that the network accurately
captures the context a biomolecule requires to carry out its biological function. We
can distinguish three levels of network properties: properties of individual nodes
(local), the joint properties of groups of nodes (mesoscale), and the properties
over the whole network (global). Indeed, at all three levels biological networks
are structured, very differently from random networks (Barabási, Gulbahce, and
Loscalzo 2011; Chaiboonchoe et al. 2013).

At the global level, for instance, the degree, which represents the number of edges
per node, follows a power-law distribution (Barabási, Gulbahce, and Loscalzo 2011).
This implies that, at the local level, a few genes participate in the majority of the
edges. Such nodes are called hubs. Importantly, this node property is informative of
the gene function: in utero essential genes, like knots preventing the network from
falling apart, tend to be hubs. An important consequence of the structured degree
distribution at the mesoscale level is the emergence of modules, subsets of nodes
densely interconnected to each other, and sparsely to the rest. A mesoscale property
of biological networks is that they have a modular structure i.e. a strong division
into modules. Such modules often constitute functional units within the network,
where the nodes jointly contribute to a specific function (Mitra et al. 2013).
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Another global property of a graph is the distribution of distances between pairs of
nodes, that is, how many edges must be passed to travel from one node to another.
Such is the notion of path between nodes. Often we are interested in the shortest
path, for they reveal the fastest way information can flow from one node to another.
An examination of the distribution of shortest paths in biological networks shows
that all nodes are close to each other (shortest paths are, in fact, pretty short on
average) (Barabási, Gulbahce, and Loscalzo 2011). Such networks are called small
world networks. This structure makes the flow of information resilient to the removal
of nodes or edges (Chaiboonchoe et al. 2013), a cause of biological epistasis (Niel et
al. 2015).

1.6.1 Networks in disease

Examining how biological networks relate to disease, and the topology around disease
genes produces a nuanced approach to disease: cut the knot in the center of the
web that keeps it all together, and it all will fall off; cut a bunch of peripheral, less
important nodes around it, the outcome might be the same. In other words, there
are many ways of producing the same disease (Leiserson et al. 2013).

The properties of biological networks enumerated above lay down the foundations
of the use of biological networks to study disease genes. For instance, they justify
the local hypothesis, which expects genes involved in a disease to interact with
each other (Barabási, Gulbahce, and Loscalzo 2011). They also justify the disease
module hypothesis, which expects genes involved in the same disease to share a
module. Experimentally, network propagation highlights the differential topological
properties of disease genes and biological networks. Network propagation refers
to methods that use all the possible paths in the network to re-rank the genes on
it (Cowen et al. 2017). They include heat diffusion, random walk, graph kernels,
and even Google’s search algorithm. In essence, for these methods, association
of a node with a phenotype can be thought of as a volume of water: the more
strongly associated, the more voluminous. Generically, each node starts with that
initial volume which, iteratively, gets distributed among its neighbors. Equivalently,
every node will receive a share from their neighbors’. The expectation is that truly
associated genes will be densely interconnected to each other, forming cycles and
modules that will keep the water from diffusing to other, uninvolved genes. After
a number of steps the volume of water in each node is re-evaluated, and used to
re-prioritize the genes. Using network propagation Huang et al. (2018) recently
showcased the differential topological properties of disease genes. Across different
biological networks, they were able to retrieve disease-related genes with varying
success using only a subset of them through a random walk with restart procedure.

Indeed, disease genes exhibit different properties than non-disease genes (Piñero
et al. 2016; Cai, Borenstein, and Petrov 2010; Furlong 2013; Barabási, Gulbahce,
and Loscalzo 2011). For starters, disease genes are not hubs (Cai, Borenstein, and
Petrov 2010; Das and Yu 2012), but tend to be non-essential genes located towards
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the periphery. This is coherent with an evolutionary framework, where mutations in
essential genes would be highly deleterious, even resulting in embryonic lethality.
However, this enrichment is driven mainly by cancer genes (Piñero et al. 2016).
Additionally, disease genes tend to be bottlenecks i.e. the sole link between many
peripheral genes and the rest of the network (Cai, Borenstein, and Petrov 2010),
suggesting that disease arises when these vulnerable regions of the network break
down.

These properties, however, do not affect equally all types of disease genes. Many
of the aforementioned properties do not extend to genes identified through GWAS
(Cai, Borenstein, and Petrov 2010). Differences arise even when comparing genes
involved in complex diseases with those involved in Mendelian ones.

1.6.2 Network-guided approaches to disease study

As exemplified in the previous section, networks can be leveraged on to gain insight
of the biology of the disease. Below I summarize several ways of doing that, on
which I have worked on during my PhD.

1.6.2.1 High-score subnetwork search

One of the focuses of my thesis was the study of networks where the nodes are scored
by their association to the disease. The scores might come from omics experiments,
or from a priori knowledge of disease genes. In essence, such methods look for
connected subnetworks made of nodes with high scores. Lacking a term broadly
agreed upon in the community, I refer to such algorithms as high-score subnetwork
search. Although heterogeneous, to some extent all existing approaches are based on
the guilt-by-association principle (Figure 1.2): nodes nearby other nodes associated
to the disease are suspect of being associated themselves, even if their association is
non-significant by conventional standards. However, taking only the genes associated
with those associated would be prone to false positives, as often networks include
edges that are not relevant for the biological problem at hand. Several high-score
subnetwork search methods are available in the literature. Essentially, they differ
in the considerations they make on what the solution looks like. In Chapter 2 we
describe a representative set of these methods, critically discuss their performance
at biomarker discovery on the GENESIS dataset, and compare their strengths and
weaknesses.

1.6.2.2 Module detection

In the context of disease, densely interconnected subnetworks (modules) of consis-
tently altered nodes might represent the mechanisms that lead to it. Hence, their
identification can provide insights into its etiology. In Appendix B we apply module
detection techniques to a subnetwork of genes with abnormal splicing in cancer.
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Figure 1.2: Overview of the high-score subnetwork search applied to GWAS. (A)
From a set of GWAS results, first (B) SNP P-values are assigned to genes (e.g. by
physical mapping). (C) The significance of the phenotype-association for each
gene is based on the assigned P-value, which is overlaid on a co-functional network.
(D) The significance of each gene is boosted by guilt-by-association, resulting in
additional candidate genes (e.g., Gene D) for the phenotype. Figure and caption
adapted from Lee and Lee (2018), licensed under CC BY 4.0.
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1.6.2.3 Aggregation of networks

During my research, often I obtained multiple high-scoring subnetworks using
different approaches, which provided complementary perspectives of the same disease.
In consequence, I was interested in integrating them into a single subnetwork, which I
would analyze. In Chapter 2 we discuss a naive way of aggregating subnetworks from
different high-score subnetwork search algorithms, were the edges are unweighted.
In Chapter 5 we create an epistasis network from interactions from several epistasis
detection methods, whose edges are weighed by the confidence they exist.

1.7 Contributions

The object of my thesis was the methodological study and application of network
methods to GWAS data. In essence, networks contain prior information, which
can be traded for statistical astringency in our analysis. In other words, if genes
strongly associated to a disease, albeit non-significantly so, are interconnected in
an underlying biological network, we are more likely to believe they represent a
consistently altered biological mechanism.

In collaboration with Nadine Andrieu and Fabienne Lesueur (Institut Curie), and
working closely with Christine Lonjou (Institut Curie), I applied six high-score
subnetwork search to the GENESIS dataset (Section 1.5.1.1). Our goal was to find
new biomarkers for breast cancer susceptibility. My work on GENESIS is explained
in Chapter 2. In summary, I applied six different network-based, biomarker discovery
methods to the GENESIS dataset. The methods provide a representative view of the
high-score subnetwork search field. We performed a methodological comparison and
a benchmark of the methods, highlighting their strengths and weaknesses. Finally,
we conclude that combining the methods provide a more complete answer than any
of the individual solutions. Our network analysis recovers both genes and genomic
regions previously found in association with breast cancer susceptibility, as well as
new genes. Importantly, all of those genes are tied in a subnetwork, providing a
rationale on how alterations on those genes might lead to disease.

My first approach to the problem involved working on SConES (Azencott et al.
2013), one of the high-score subnetwork search methods examined in Chapter 2. I
give a more detailed explanation of this algorithm, together with my work on it in
Chapter 3. In summary, I worked on applying SConES to case-control datasets, and
strategies to parametrize it. Additionally, in martini SConES can take user-provided
covariates. Regarding the former, as SConES implemened exclusively the regression
version of SKAT (Wu et al. 2011; Ionita-Laza et al. 2013), I implemented two ways
of measuring association between a SNP and a binary phenotype. Regarding the
latter, SConES has two parameters, η and λ, which control the sparsity and the
inter-connectedness of the selected SNPs, respectively. Originally the parameters
that produced the most stable solution were selected. I explored the impact of
penalized-likelihood measures like BIC, AIC, and AICc, which score a set of features
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based on both their sparsity and the accuracy of a linear classifier built on them.
The product of my work is published as martini (Climente-González and Azencott
2019), an R package published in the peer-reviewed R repository Bioconductor
(Huber et al. 2015).

In 2019, when I started working on epistasis detection, we established a collaboration
with Kristel Van Steen (University of Liège, Belgium). Specifically, I worked closely
with Diane Duroux, a PhD student in her research group. Our goal was to build
an epistasis gene network of inflammatory bowel disease. I discuss our efforts in
this regard in Chapter 5. For that purpose, we surveyed suitable epistasis detection
methods, applied them to the IIBDGC dataset (Section 1.5.2.1), and integrated the
solution. However, as a previous step we needed to appropriately map epistatic SNP
networks to epistatic gene networks. I describe this work in Chapter 4. In summary,
we examined and evaluated four different mappings (physical, eQTL, chromatin,
and the three together).

In collaboration with Makoto Yamada (RIKEN AIP, Japan) and Samuel Kaski
(Aalto University, Finland), I developed block HSIC Lasso, a general-purpose non-
linear feature selector. The work involved modifying an existing algorithm, HSIC
Lasso, to reduce its memory consumption. On top of that, we worked on both
improving its performance and solving numerical issues in edge cases. The algorithm
is implemented as the Python package pyHSICLasso, available on both PyPI and
GitHub. Then, I characterized the algorithm and applied it to several biological
datasets. Crucially, three of the datasets were GWAS, which was a milestone in
terms of the number of features block HSIC Lasso can handle. Thanks to this
work we analyzed the impact of considering non-redundancy and non-linear models
when selecting SNPs for patient classification. We describe the algorithm and our
conclusions in the article Block HSIC Lasso: model-free biomarker detection for
ultra-high dimensional data published in the proceedings of the ISMB/ECCB 2019
(Climente-González et al. 2019). The full manuscript is available in Appendix A.

Additionally, I worked on the involvement of alternative splicing in cancer with
Eduardo Eyras (Australian National University), a continuation of my previous
research. During 2016 and early 2017, we prepared the answer to reviewers for the
article The functional impact of alternative splicing in cancer, which was published
in Cell Reports in August 2017 (Climente-González et al. 2017). The full manuscript
is available in Appendix B. I also explored evidence of epistasis in cancer, looking for
mutual exclusivity between alterations in alternative splicing and somatic mutations.
We searched for evidence of mutual exclusivity at both the gene and the pathway
level. Among others, we found a compelling pattern in GATA3. This finding was
published in Cell Reports in March 2018, in the broader article Systematic analysis of
splice-site-creating mutations in cancer (Jayasinghe et al. 2018). The full manuscript
is available in Appendix C. In addition, I compiled the code required for the analyses
in Climente-González et al. (2017), and created a Python package with a clean
interface. The package, spada, is available in both PyPI and GitHub. This package
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searches alterations of alternative splicing in a user-provided dataset, and maps
them to functional consequences at the protein level. Specifically, such consequences
are the removal/addition of functional modules to the protein (e.g. domains) and the
loss or gain of protein-protein interactions. Lastly, I applied spada to two leukemia
datasets from TARGET, an NIH program that aims to understand the molecular
basis of several childhood cancers. This last analysis is still on-going.

Lastly, I carried out my research committed to open, reproducible science. As such,
all my projects have an associated, version-controlled, laboratory notebook, which
includes as much data as I am allowed to share. All such laboratory notebooks are
made out public when the paper is. All the scripts I developed are open source, under
permissive MIT license. Specifically, I made an effort to develop project-independent
tools, which are useful to anyone which needs similar to the ones I had. These tools
are available on GitHub (https://github.com/hclimente/gwas-tools).

https://github.com/hclimente/gwas-tools
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Chapter 2

Combining network-guided
GWAS to discover susceptibility

mechanisms for breast cancer

The contents of this chapter are based on Héctor Climente-González, Christine
Lonjou, Fabienne Lesueur, GENESIS investigators, Dominique Stoppa-Lyonnet,
Nadine Andrieu and Chloé-Agathe Azencott, Combining network-guided GWAS to
discover susceptibility mechanisms for breast cancer (manuscript in preparation).
Parts of this work were presented in ASHG 2018 in the poster Héctor Climente-
González, Christine Lonjou, Fabienne Lesueur, GENESIS investigators, Dominique
Stoppa-Lyonnet, Nadine Andrieu and Chloé-Agathe Azencott, Judging genetic loci by
the company they keep: comparing network-based methods for biomarker discovery
in familial breast cancer.

Abstract: Systems biology provides a comprehensive approach to
biomarker discovery and biological hypothesis building. It does so by
jointly considering the statistical association between a gene and a
phenotype, and the biological context of each gene, represented as
a network. In this chapter we study how six network methods can
be used to discover new biomarkers for breast cancer susceptibility
by searching subnetworks highly associated to this phenotype. We
interrogate a familial breast cancer genome-wide association study
(GWAS) focused on BRCA1/2 negative French women. By trading
statistical astringency for biological meaningfulness, most network
methods get more compelling results than standard SNP- and gene-
level analyses, recovering causal subnetworks tightly related to cancer
susceptibility. We perform an in-depth benchmarking of the meth-
ods with regards to size of the solution subnetwork, their utility as
biomarkers, and the stability and the runtime of the methods. Inter-
estingly, a combination of solution subnetworks provided a concise
subnetwork of 93 genes, enriched in known breast cancer susceptibility
genes (BABAM1, BLM, CASP8, FGFR2, and TOX3, Fisher’s exact
test P-value = 7.8× 10−5) and more central than average. Addition-
ally, it includes subnetworks of mechanisms related to cancer, like
protein folding (HSPA1A, HSPA1B, and HSPA1L) or mitochondrial
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ribosomes (MRPS30, MRPS31, MRPS18B). We also observed a gen-
eral dysregulation in the neighborhood of COPS5, a gene related to
multiple hallmarks of cancer.

Résumé : La biologie des systèmes permet de développer une
approche globale de la recherche de biomarqueur et de la construc-
tion d’hypothèses biologiques. Elle rend en effet possible de replacer
l’association statistique entre un gène et un phénotype dans le con-
texte biologique de ce gène, grâce à des réseaux biologiques. Dans ce
chapitre, nous étudions l’applicabilité de six méthodes basées sur des
réseaux pour la découverte de nouveaux biomarqueurs de susceptibilité
dans le cancer du sein, en cherchant des sous-réseaux fortement asso-
ciés à un phénotype. Nous étudions une GWAS sur le cancer du sein
familial, concernant des femmes françaises BRCA1/2 négatives. La
plupart de ces méthodes permettent d’obtenir des résultats plus con-
vaincants que des analyses standard, et retrouvent des sous-réseaux
fortement liés à la susceptibilité dans le cancer. Nous proposons une
comparaison détaillée des méthodes en terme de taille de la solu-
tion, de son utilisabilité comme biomarqueur, de stabilité ainsi que
de temps de calcul. Nous combinons les sous-réseaux retournés par
ces méthodes en un réseau restreint à 93 gènes, enrichi en gènes de
susceptibilité au cancer du sein connus, (BABAM1, BLM, CASP8,
FGFR2, and TOX3, p-valeur du test exact de Fisher = 7.8× 10−5),
et plus central que la moyenne. De plus, ce réseau contient des
sous-réseaux de mécanismes liés au cancer, tels que le repliement
des protéines (HSPA1A, HSPA1B, and HSPA1L) ou les ribosomoes
mitochondriaux (MRPS30, MRPS31, MRPS18B). Nous observons
aussi une dysrégulation généralisée au voisinage de COPS5, un gène
lié à plusieurs caractéristiques fondamentales du cancer.

2.1 Introduction

Network-based biomarker discovery methods provide a comprehensive statistical
framework which includes the structure of biological data tackle the the challenges in
the GWAS field (Section 1.2.1). In essence, each SNP has a measure of association
with the disease, given by the experiment, and functionally biological relationships,
given by a network built on prior knowledge. Then, the problem becomes finding
a functionally-related set of genes that is highly associated with the disease. Such
set is easier to interpret, as it is related to known biological mechanisms, and trade
statistical significance for biological relevance, potentially improving the power
of the study. This problem is addressed by the high-scoring subnetwork search
methods (Section 1.6.2.1) which use a guilt-by-association strategy to identify disease
susceptibility genes (Azencott 2016). Different solutions have been proposed, often
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stemming from divergent different mathematical frameworks and considerations of
what the optimal solution looks like. Some methods strongly constrain the problem
to certain kinds of subnetworks. Such is the extreme case of LEAN (Gwinner et al.
2016), which focuses on star subnetworks, i.e. instances were both a gene and its
direct interactors are associated with the disease. Other algorithms, like dmGWAS
(Jia et al. 2011) and heinz (M. Dittrich et al. 2008), focus on interconnected genes
with high association with the disease. However, they differ in their tolerance to
the inclusion of lowly associated nodes, and the possible number of disconnected
subnetworks in the solution. Lastly, other methods also consider the topology of
the network, favoring solutions that are densely interconnected; such is the case of
HotNet2 (Leiserson et al. 2015), SConES (Azencott et al. 2013), and SigMod (Liu
et al. 2017).

In this chapter, we analyze the effectiveness of these six methods to discover new
biomarkers on GWAS data. We focus on the GENESIS dataset (Sinilnikova et al.
2016), a study of familial breast cancer conducted in the French population (Section
1.5.1.1). After following a classical GWAS approach, we use these network-based
methods to recover additional familial breast cancer biomarkers. Some of them are
known, while others are specific to this dataset. Lastly, we carry out a comparison
of the solutions obtained by the different methods, and aggregate them to obtain a
consensus network of predisposition to familial breast cancer.

2.2 Methods

2.2.1 Data preprocessing and quality control

In this study we used the GENESIS dataset, described in Section 1.5.1.1. We
discarded SNPs with a minor allele frequency lower than 0.1%, those not in Hardy -
Weinberg equilibrium in controls (P-value <0.001), and those missing on more than
10% of the samples. A subset of 20 duplicated SNPs in FGFR2 were also removed.
In addition, we removed the samples with more than 10% missing genotypes. After
control for relatedness, 17 additional samples were removed (6 for sample identity
error, 6 false “friend/control” having family link with other samples, 3 “friend/control”
having a high relatedness score). Lastly, based on study selection criteria, 11 other
samples were removed (1 control having cancer, 4 index cases with no affected sister,
3 half-sisters, 1 sister with CLIS, 1 with BRCA mutation detected in the family, 1
with molecular diagnosis not received). The final dataset included 1,271 controls
and 1,280 cases, genotyped over 197,083 SNPs.

We looked for population structure that could create confounding associations
(Section 1.2.1.4). A PCA revealed no differential population structure between
cases and controls (Figure 2.1). Independently, we did not find evidence of genomic
inflation (λ = 1.05) either, further confirming the absence of confounding population
structure.
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Figure 2.1: GENESIS shows no differential population structure between cases and
controls. (A,B,C,D) Eight main principal components computed on the genotypes
of GENESIS. Cases are colored in green, controls in orange.
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2.2.2 High-score subnetwork search algorithms

2.2.2.1 SNP and gene association

To measure association between a genotype and the phenotype, we performed a
per-SNP 1 d.f. χ2 allelic test using PLINK v1.90 (Chang et al. 2015). Then, we
used VEGAS2v2 to compute the gene-level association score from the SNP P-values
(Mishra and Macgregor 2015). In order to map SNPs to genes we used their overlap
on the genome: all SNPs located within the boundaries of a gene, ±50 kb, were
mapped to that gene. To compute the gene association we used the 10% of SNPs
linked to the gene with lowest P-values. We used the 62,193 genes described in
GENCODE 31 (Frankish et al. 2019), although only 54,612 could be mapped to
at least one SNP. Out of those, we focused exclusively on the 32,767 that could be
mapped to an HGNC symbol. Out of the SNPs 197,083 remaining after quality
control, 164,037 mapped to at least one of these genes.

We use such mapping to compare the outputs of methods that produce SNP- to
those that produce gene-lists, and vice versa. In the former case, we consider any
gene that can be mapped to any of the selected SNPs as selected as well. In the
latter, we consider all the SNPs that can be mapped to that gene as selected by the
method.

2.2.2.2 Mathematical notation

In this chapter, we use undirected, vertex-weighted networks, or graphs, G =
(V,E,w). V = {v1, . . . , vn} refers to the vertices, with weights w : V → R. Equiv-
alently, E ⊆ {{x, y}|x, y ∈ V ∧ x 6= y} refers to the edges. When referring to a
subnetwork S, VS is the set of nodes in S and ES is the set of edges in S. A special
case of subgraphs are connected subgraphs, which occur when every node in the
subgraph can be reached from any other node.

On top of a weight, nodes have other properties provided by the topology of the
graph. In this chapter we focus on two: degree centrality, and betweenness centrality.
The degree centrality, or degree, is the number of edges that a node has. The
betweenness centrality, or betweenness, is the number of times a node participates
in the shortest paths between two other nodes.

In addition, we use several matrices that describe different properties of a graph.
The described matrices are square, and have as many rows and columns as nodes
are in the network. The element (i, j) represents a selected relationship between vi
and vj . The adjacency matrix WG contains a 1 when the corresponding nodes are
connected through an edge, and 0 otherwise; the diagonal is zero. The degree matrix
DG is a diagonal matrix which contains the degree of the different nodes. Lastly,
the Laplacian matrix LG is defined as LG = DG −WG.
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Table 2.1: Summary statistics on the results of multiple network methods on the
gene-gene interaction network. The first row contains the summary statistics on the
whole network.

Method Field Nodes Exhaustive Solution Components Input Scoring Reference
dmGWAS GWAS Genes No 1 Summary -log10(P) Jia et al. (2011)
heinz Omics Genes Yes 1 Summary BUM M. Dittrich et al. (2008)
HotNet2 Omics Genes Yes Modular > 1 Summary Local FDR Leiserson et al. (2015)
LEAN Omics Genes Yes Star > 1 Summary -log10(P) Gwinner et al. (2016)
SConES GWAS SNPs Yes Modular > 1 Genotypes χ2 Azencott et al. (2013)
SigMod GWAS Genes Yes Modular 1 Summary -log10(P) Liu et al. (2017)

Note:
Field: field in which the algorithm was developed. Nodes, the type of network, either gene (protein-protein interaction network
usually) or a SNP network. Exhaustive: whether all the possible solutions given the selected hyperparameters are explored. Solution:
additional properties are enforced on the solution subnetwork, other than being dense in high scores and connected. Components:
number of connected subnetworks in the solution. Input: genotype data or GWAS summary statistics. Scoring: how SNP/gene
P-values are transformed into node scores.

2.2.2.3 Methods used

Beyond the assumption that genes that contribute to the same function will be
nearby in the protein-protein interaction network (PPIN), they might be topologically
related to each other in diverse ways (densely interconnected modules, nodes around
a hub, a path, etc.). That is not the only choice to make: how to score the nodes,
whether the affected mechanisms form a single connected component or several,
how to frame the problem in a computationally efficient fashion, what is the best
network to use, etc. In consequence, multiple solutions have been proposed. In this
chapter, we examine six of them: five that explore the protein-protein interaction
network, and one which explores SNP networks. We selected methods that were
open source, had an implementation available, and an accessible documentation.
Their main differences are summarized in Table 2.1.

dmGWAS dmGWAS searches the subgraph with the highest local density in low
P-values (Jia et al. 2011). To that end it searches candidate subnetwork
solutions using a greedy, “seed and extend”, heuristic:

1. Select a seed node.

2. Compute Stouffer’s Z-score Zm for the current subgraph as

Zm =
∑
zi√
k

where k is the number of genes in the subgraph, zi = φ-1(1 - P-valuei),
and φ-1 is the inverse normal distribution function.

3. Identify neighboring nodes i.e. nodes at distance ≤ d. We set d = 2.

4. Add the neighboring nodes whose inclusion increases the Zm+1 more than
Zm (1 + r). In our experiments, we set r = 0.1.
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5. Repeat 2-4 until no increment Zm (1 + r) is possible.

Lastly, the module’s Z-score is normalized as

ZN = Zm −mean (Zm(π))
SD (Zm(π))

where Zm(π) represent a vector containing 100000 random subsets of the same
number of genes.

We used the implementation of dmGWAS in the dmGWAS 3.0 R package
(Wang and Jia 2014). We used the function simpleChoose to select the solution
subnetwork, which aggregates the top 1% modules into the solution subnetwork.

heinz The goal of heinz is to identify the highest-scored connected subgraph on
the network (M. Dittrich et al. 2008). The authors propose a transformation
of the genes’ P-value into a score that is negative under no association with
the phenotype, and positive value when there is. This transformation is
achieved by modelling the distribution of P-values by a beta-uniform model
(BUM) parameterized by the desired FDR. Thus formulated, the problem
is NP-complete. To solve it efficiently it is re-casted as the Prize-Collecting
Steiner Tree Problem (PCST), which seeks to select the connected subnetwork
S that maximizes the profit p(S):

p(S) =
∑
v∈VS

p(v)−
∑
e∈ES

c(e).

were p(v) = w(v) - w’ is the profit of adding a node, c(e) = w’ is the cost of
adding an edge, and w′ = minv∈VG

w(v). All three are positive quantities. heinz
implements the algorithm from Ljubić et al. (2006), which in practice is often
fast and optimal, neither is guaranteed. We used BioNet’s implementation of
heinz, available on Bioconductor (Beisser et al. 2010; M. Dittrich and Beisser
2008).

HotNet2 HotNet2 was developed to find connected subgraphs of genes frequently
mutated in cancer (Leiserson et al. 2015). To that end, it considers both
the local topology of the network and the scores of the nodes. The former is
captured by an insulated heat diffusion process: at the beginning, the score
of the node determines its initial heat; iteratively each node yields heat to
its “colder” neighbors, and receives heat from its “hotter” neighbors, while
retaining part of its own (hence, insulated). This process continues until
equilibrium is reached, and results in a similarity matrix F. F is used to
compute the similarity matrix E that accounts also for similarities in node
scores as
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E = F diag(w(V )),

where diag(w(V )) is a diagonal matrix with the node scores in its diagonal. We
scored the nodes as in Nakka, Raphael, and Ramachandran (2016), assigning
a score of 0 for the genes with low probability of being associated to the
disease, and -log10(P-value) to those likely to be. In this dataset, the threshold
separating both was a P-value of 0.125, which was obtained using a local FDR
approach (Scheid and Spang 2005). To obtain densely connected subnetworks,
HotNet2 prunes E, only preserving edges such that w(E) > δ. Lastly, HotNet2
evaluates the statistical significance of the subnetworks by comparing their
size to the size of networks obtained by permuting the node scores. HotNet2
has two parameters: the restart probability β, and the threshold heat δ. Both
parameters are set automatically by the algorithm, and are robust (Leiserson
et al. 2015). HotNet2 is implemented in Python (Leiserson et al. 2018).

LEAN LEAN searches disregulated “star” gene subnetworks, that is, subnetworks
composed by one central node and all its interactors (Gwinner et al. 2016).
By imposing this restriction, LEAN is able to exhaustively test all such
subnetworks (one per node). For a particular subnetwork of size m, the P-
values corresponding to the involved nodes are ranked as p1 ≤ . . . ≤ pm.
Then, k binomial tests are conducted, to compute the probability of having
k out of m P-values lower or equal to pk under the null hypothesis. The
minimum of these k P-values is the score of the subnetwork. This score is
transformed into a P-value through an empirical distribution obtained via a
subsampling scheme, where sets of m genes are selected randomly, and their
score computed. Lastly, P-values are corrected for multiple testing through a
Benjamini-Hochberg correction. We used the implementation of LEAN from
the LEANR R package (Gwinner 2016).

SConES SConES searches the minimal, modular, and maximally associated sub-
network in a SNP graph (Azencott et al. 2013). Specifically, it solves the
problem

arg max
S⊆G

∑
v∈VS

w(v)
︸ ︷︷ ︸
association

+λ
∑
v∈VS

∑
u6∈VS

Lvu︸ ︷︷ ︸
connectivity

− η|VS |︸ ︷︷ ︸
sparsity

(2.1)

where λ and η are hyperparameters that control the sparsity and the connec-
tivity of the model. Given two hyperparameters, the aforementioned problem
has a unique solution, that SConES finds using a graph min-cut procedure. We
used the version on SConES implemented in the R package martini (Climente-
González and Azencott 2019). As in Azencott et al. (2013), we selected λ

and η by cross-validation, choosing the values that produce the most stable
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solution across folds. Note that the solution to the above problem can consist
of several connected subnetworks which are disconnected from each other. In
this case, the selected hyperparameters were η = 3.51, λ = 210.29 for SConES
GS; η = 3.51, λ = 97.61 for SConES GM; and η = 3.51, λ = 45.31 for SConES
GI.

SigMod SigMod aims at identifying the most densely connected gene subnetwork
that is most strongly associated to the phenotype (Liu et al. 2017). It addresses
an optimization problem similar to that of SConES (Equation (2.1)), but using
the adjacency matrix rather than the Laplacian matrix (Section 2.2.2.2), to
quantify solutions containing many edges.

arg max
S∈G

∑
v∈VS

w(v)
︸ ︷︷ ︸
association

+λ
∑
v∈VS

∑
u∈VS

Wvu︸ ︷︷ ︸
connectivity

− η|VS |︸ ︷︷ ︸
sparsity

.

As SConES, this optimization problem can also be solved by a graph min-cut
approach.

SigMod presents three important differences with SConES. First it is designed
for gene-gene networks. Second, by replacing the adjacency by the Lapla-
cian matrix, it favors subnetworks containing many edges. SConES, instead,
penalizes connections between the selected and unselected nodes. Third, it
returns a single connected subnetwork, which it achieves by exploring a grid of
hyperparameters and processing their respective solutions. Specifically, for the
range of λ = λmin, . . . , λmax for the same η, it prioritizes the solution with the
largest change in size from λn to λn+1. Such a large change implies that the
network is strongly interconnected. This results in one candidate solution for
each η, which are processed by removing any node not connected to any other.
A score is assigned to each candidate solution by summing their node scores
and normalizing by size. The candidate solution with the highest standardized
score is the chosen solution. SigMod is implemented in an R package (Y. Liu
2018).

2.2.2.4 Gene-gene network

Out of the six methods tested, five use a gene-gene interaction network (Section
2.2.2.3). Although their respective statistical frameworks are compatible with
any type of network (protein interactions, gene coexpression, regulatory, etc.), for
practical reasons we focused on a PPIN, as they are interpretable, well characterized,
and most of the methods were designed to scale appropriately to it. We built our
PPIN from both binary and co-complex interactions stored in the HINT database
(release April 2019) (Das and Yu 2012). Unless specified otherwise, we used only
interactions coming from high-throughput experiments to avoid biasing the topology
of the network by well-studied genes with more known interactions on average. Out
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of the 146,722 interactions from high-throughput experiments that HINT stores, we
were able to map 142,541 to a pair of HGNC symbols. The scoring function for the
nodes changed from method to method (Section 2.2.2.3).

Additionally, we compared the results of the aforementioned PPIN with those
obtained on another PPIN built using interactions coming from both high-throughput
and targeted studies. In that case, out of the 179,332 interactions in HINT, we
mapped 173,797 to a pair of HGNC symbols.

2.2.2.5 SNP networks

SConES (Azencott et al. 2013) is the only of the studied methods designed to
handle SNP networks. As in gene networks, two SNPs are linked in a SNP network
when there is evidence of shared functionality between two SNPs. The authors
suggested three ways of building these networks: connecting the SNPs consecutive in
the genomic sequence (“GS network”); interconnecting all the SNPs mapped to the
same gene, on top of GS (“GM network”); and interconnecting all SNPs mapped to
two genes for which a protein-protein interaction exists (“GI network”). We focused
on the GI network, as it is the network that fits better the scope of this chapter.
However, at different stages of the chapter we also used GS and GM. For the GM
network, we used the mapping described in Section 2.2.2.1. For the GI network, we
used the PPI as described in Section 2.2.2.4. For all three networks the node score
used is the association of the individual SNPs with the phenotype; specifically, we
used the 1 d.f. χ2.

2.2.2.6 Consensus network

The different high-weight subnetwork discovery algorithms make different assump-
tions on the properties of the solutions, and employ different strategies to find them.
Hence, combining the outcome of the different approaches might provide a more
complete outlook on the specific alterations on the GENESIS dataset. We built
such consensus network by retaining the nodes that were selected by at least two of
the methods. We combined the results of 6 methods: dmGWAS, heinz, HotNet2,
LEAN, SConES GI, and SigMod.

2.2.3 Evaluation of methods

2.2.3.1 Classification accuracy of selected biomarkers

A desirable solution is one that is sparse, while offering a good predictive power on
unseen samples. We evaluated the predicting power of the SNPs selected by the
different methods through the performance of an L1-penalized logistic regression
trained exclusively on those SNPs to predict the outcome (case/control). The L1
penalty helps to account for LD to reduce the number of SNPs included in the model
(size of the active set), while improving the generalization of the classifier. The value
of the regularization parameter, which controls both the magnitude and the sparsity
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of the coefficients, was set by cross-validation. To that end, we used the different
network-methods on a random subset of 80% of the samples. On this same subset
we trained our classifier exclusively on the SNPs selected by a particular method.
When the method retrieved a list of genes (all of them except SConES), all the SNPs
mapped to any of those genes were used. Then we evaluated performance of the
classifier on the remaining 20% of the dataset. We repeated this procedure 5 times
to estimate the average and the deviation of the different performance measures.
The performance measures we used were: size of the solution, size of the active
set, specificity, and sensitivity. The size of the active set provides an estimate of a
plausible, more sparse solution with a comparable predictive power to the original
solution.

Additionally, for each of the methods, we evaluated their stability and their runtime.
The stability of an algorithm is its sensitivity to small changes of the input, and
is measured using the Pearson’s correlation between different runs as suggested in
Nogueira and Brown (2016). To obtain a baseline, we also performed the procedure
using all the SNPs. Lastly, another desirable property is that the method retrieves
a good candidate causal subnetwork. In consequence, we compared the outcome
of each of the methods to the consensus subnetwork of all the solutions (Section
2.2.2.6).

2.2.3.2 Biological relevance of the genes

An alternative way to validate the results is comparing our results to an external
dataset. For that purpose, we recovered a list of 153 genes associated to familial
breast cancer from DisGeNET (Piñero et al. 2017). Across this chapter we refer to
these genes as breast cancer susceptibility genes.

Additionally, we used the summary statistics from the Breast Cancer Association
Consortium (BCAC) (Michailidou et al. 2015). BCAC has conducted one of the
largest efforts in GWAS, involving over 120,000 women of European ancestry. As
opposed to GENESIS, samples were not selected based on family history, and hence
the study is enriched in sporadic breast cancers. Another difference is that BCAC is
a relatively heterogeneous study on a pan-European sample, while GENESIS is a
homogeneous dataset focused on the French population. Despite these differences,
there should be shared genetic architecture. On top of that, that overlap should
become larger when the results are aggregated at the gene level. For that purpose,
we computed the gene association as in Section 2.2.2.1. The iCOGS array was used
for genotyping in BCAC (Sakoda, Jorgenson, and Witte 2013), the same array as
for GENESIS (Sinilnikova et al. 2016). Although imputed data are available, we
used exclusively the SNPs available on GENESIS after quality control to make the
results comparable.



32
Chapter 2. Combining network-guided GWAS to discover

susceptibility mechanisms for breast cancer

2.2.4 Code availability

This work required developing computational pipelines for several GWAS analyses,
such physically mapping SNPs to genes, computing gene scores, and performing
six different network analyses. For each of those processes, a streamlined, project-
agnostic pipeline with a clear interface was created. They are compiled in the
following GitHub repository: https://github.com/hclimente/gwas-tools. The
code that applies these pipelines to the GENESIS project, as well as the code that
reproduces all the analyses in this chapter are available at https://github.com/h
climente/genewa. Although the GENESIS dataset is not publicly available, the
published code should work on any other GWAS dataset. All the produced gene
subnetworks were deposited on NDEx (http://www.ndexbio.org), under the UUID
e9b0e22a-e9b0-11e9-bb65-0ac135e8bacf.

2.3 Results

2.3.1 A conventional GWAS shows that FGFR2 is strongly asso-
ciated with familial breast cancer

We conducted association analyses in the GENESIS dataset at both the SNP and
the gene levels (Section 2.2.2.1). Two genomic regions have a P-value lower than
the Bonferroni threshold in chromosomes 10 and 16 (Figure 2.2 A). The former
overlaps with gene FGFR2 ; the latter with CASC16, and it is located near the
protein-coding gene TOX3. Variants in both FGFR2 and TOX3 were related to
breast cancer susceptibility in other cohorts negative for BRCA1/2 (Rinella et al.
2013). Only the peak in chromosome 10 replicated in the gene-level analysis, with
FGFR2 just above the threshold of significance (Figure 2.2B).

These results show the overlap in the genetic architecture of the disease between
the studied French population sample and other populations, especially at the gene
level. In addition, there are other SNPs whose P-values, although higher than
the conventional threshold of significance, show a strong association with familial
breast cancer. The most prominent of such regions are 3p24 and 8q24, both of
which have been associated to breast cancer susceptibility in the past (Brisbin et al.
2011; Ahmed et al. 2009). This motivates exploring network methods, which trade
statistical significance for biological relevance.

2.3.2 Network methods successfully identify genes associated with
breast cancer

We applied six network methods to the GENESIS dataset (Section 2.2.2.3), obtaining
six solutions (Figure 2.3): one for each of the five gene-based methods (Section
2.2.2.4), and one for SConES GI (Section 2.2.2.5). The solutions are very heteroge-
neous (Table 2.2 and Table 2.3): none of the subnetworks examined by LEAN are
significant (adjusted P-value < 0.05), while HotNet2 produced the largest solution

https://github.com/hclimente/gwas-tools
https://github.com/hclimente/genewa
https://github.com/hclimente/genewa
http://www.ndexbio.org
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Figure 2.2: Association in GENESIS. The red line represents the Bonferroni threshold.
(A) SNP association, measured from the outcome of a 1df χ2 allelic test. Significant
SNPs that are within a coding gene, or within 50 kilobases of its boundaries, are
annotated. The Bonferroni threshold is 2.54×10−7. (B) Gene association, measured
by P-value of VEGAS2v2 (Mishra and Macgregor 2015) using the 10% of SNPs with
the lowest P-values. The Bonferroni threshold is 1.53× 10−6.
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Table 2.2: Summary statistics on the results of multiple network methods on the
gene-gene interaction network. The first row contains the summary statistics on the
whole network.

Network Num genes Num edges Betweenness P̂gene ρconsensus

HINT HT 13619 142541 16706 0.46 0.066
Consensus 55 117 74062 0.0051 1
dmGWAS 194 450 49115 0.19 0.41
heinz 4 3 113633 0.0012 0.21
HotNet2 440 374 7739 0.048 0.31
LEAN 0 0 NA NA NA
SConES GI 0 (1) 0 NA NA NA
SigMod 142 249 92603 0.0083 0.73

Note:
Num genes: number of genes selected out of those that are part of the PPIN;
for SConES GI the total number of genes, including RNA genes, was added in
parentheses. Betweenness: mean betweenness of the selected genes in the PPIN.
P̂gene: median P-value of the selected genes. ρconsensus: Pearson\’s correlation
between the subnetwork and the consensus network.

Table 2.3: Summary statistics on the results of SConES on the three SNP-SNP
interaction networks. The first row within each block contains the summary statistics
on the whole network.

Network SNPs Edges Subnetworks Betweenness P̂SNP

GS 197083 1.97e+05 NA 2.03e+07 0.490
SConES GS 1590 1.58e+03 5 2.52e+07 0.023
GM 197083 6.44e+06 NA 3.99e+06 0.490
SConES GM 1692 1.78e+05 5 4.40e+06 0.055
GI 197083 2.87e+07 NA 1.46e+06 0.490
SConES GI 408 5.39e+02 5 9.33e+06 0.076

Note:
Betweenness: mean betweenness of the selected SNPs in the corresponding full
network; P̂SNP: median P-value of the selected SNPs.
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subnetwork with 440 genes. SConES GI failed to recover genes in the PPIN, but
it recovered one genomic region mapped to RNA gene RNU6-420P. All solution
subnetworks except LEAN’s are, on average, more strongly associated to breast
cancer than the whole PPIN (median P-values � 0.46), despite containing genes
with higher P-values (Figure 2.4). This exemplifies the trade-off between statistical
significance and biological relevance. However, there are nuances between solutions:
heinz strongly favored highly associated genes, while dmGWAS is less conservative
(median gene P-values 0.0012 and 0.19, respectively); SConES tended to select whole
LD-blocks; and HotNet2 and SigMod were less likely to select lowly associated genes.

Figure 2.3: Overview of the subnetworks produced by the different network methods.
(dmGWAS, heinz, HotNet2, LEAN, and SigMod) contain gene subnetworks;
(SConES GI), SNP subnetworks.

The solution subnetworks present other desirable properties. First, four of the
methods succeeded at recovering genes involved in the disease (Figure 2.5), as their
subnetworks were enriched in breast cancer susceptibility genes (dmGWAS, heinz,
HotNet2, and SigMod, Fisher’s exact test one-sided P-value < 0.03). We also
compared the outcome of the network methods to the association tests conducted on
the population of European ancestry from the Breast Cancer Association Consortium
(BCAC) (Michailidou et al. 2015) (Figure 2.6). Encouragingly, every solution
subnetwork is enriched in genes or SNPs that are Bonferroni-significant in BCAC.
This confirms the capability of network methods to find the same signal as in
more powered studies by leveraging on prior knowledge. Second, the genes in
four solution subnetworks display on average a higher betweenness centrality than
the rest of the genes, a difference that is significant in three solutions (dmGWAS,
and SigMod, Wilcoxon rank-sum test P-value < 1.4 10-21). This agrees with the
notion that disease genes are more central than other, non-essential genes (Piñero
et al. 2016). We observe that this conclusion holds in this disease, as known breast
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Figure 2.4: Manhattan plots showing the biomolecules selected by each method. In
(Consensus, dmGWAS, heinz, HotNet2, and SigMod) datapoints are genes;
in (SConES GS, GM, and GI), SNPs. LEAN was excluded, as it did not select
any gene.



2.3. Results 37

cancer susceptibility genes have higher betweenness centrality than others (one-tailed
Wilcoxon rank-sum test P-value = 2.64 10-5, Figure 2.7C). Interestingly, SConES’
selected SNPs are also more central than the average SNP (Table 2.3), suggesting
that causal SNPs are also more central than unrelated SNPs. However, very central
nodes are also more likely to be connecting a random pair of nodes, making then
more likely to be selected by the examined methods. Hence, further work is needed
draw conclusions.

As the solutions were quite different from each other it is hard to draw joint
conclusions. The 4-gene solution selected by heinz includes the breast cancer
susceptibility gene TOX3, in region 16q12. By dealing with SNP networks, SConES
studies the association of non-coding regions, as well as SNPs in any gene, coding or
not. In fact, SConES GI, which adds to GM the interactions between genes, retrieves
4 subnetworks in intergenic regions, and 1 overlapping an RNA gene (RNU6-420P).
SigMod, despite being related to SConES, produces a vastly different, large solution.
On top of recovering three breast cancer susceptibility genes, a keratin-based region
of its subnetwork affects the cytoskeleton (structural constituent of cytoskeleton,
GO enrichment’s adjusted P-value = 9.10 10-4), a potentially novel susceptibility
mechanism for cancer susceptibility. Interestingly, dmGWAS solution is also related
to cytoskeleton (tubulin binding, GO enrichment’s adjusted P-value = 0.031). But,
additionally, it includes a submodule of proteins related to unfolded protein binding
(GO enrichment’s adjusted P-value = 0.045), which has been previously related to
cancer susceptibility (Calderwood and Gong 2016). Lastly, HotNet2 produced 135
subnetworks, 115 of which have less than five genes. The second largest subnetwork
(13 nodes), contains the two breast cancer susceptibility genes CASP8 and BLM.

2.3.3 heinz retrieves a small, highly informative set of biomarkers
in a fast and stable fashion

As the employed methods produced such different results, we compared their solutions
in a 5-fold subsampling setting (Section 2.2.3.1). Specifically, we measured four
properties (Figure 2.8): size of the solution subnetwork, sensitivity and specificity of
an L1-penalized logistic regression on the selected SNPs, stability, and computational
runtime.

Both solution size and active set of SNPs selected by Lasso varies greatly between the
different methods (Figure 2.8A). heinz has the smallest solutions, with an average of
182 selected SNPs are selected by Lasso. The largest solutions come from SConES
GI (6256.6 SNPs), and dmGWAS (4255.0 SNPs). Interestingly, heinz has the highest
proportion of the selected SNPs that go into the active set (99.9%), although it is
high for all the methods (> 86%). This suggests methods are selecting informative
SNPs on average.

To determine whether the selected SNPs could be used for patient classification
we computed the sensitivity and the specificity of the classifier on the testing
data (Figure 2.8B). All classifiers’ sensitivities were in the 0.42 – 0.51 range; the
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Figure 2.5: Proportion of the selected genes by each of the methods on the GENESIS
data that is a known breast cancer susceptibility gene (Section 2.2.3.2). Only genes
present in the protein-protein interaction network were considered. LEAN is not
displayed as it did not select any gene. The presented network methods recover a
higher proportion of breast cancer susceptibility genes than of other genes, despite
their lack of significance in GENESIS.
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Figure 2.6: Proportion of the Bonferroni significant biomolecules (in either the
GENESIS or the BCAC datasets) selected by each of the methods on the GENESIS
data. (Consensus, dmGWAS, heinz, HotNet2, and SigMod) involve signif-
icant genes, only among those present in the protein-protein interaction network.
(SConES GS, GM and GI) involve significant SNPs. LEAN is not displayed
as it did not select any gene. The presented network methods recover a higher
proportion of significant genes than of non-significant genes in both datasets, despite
their lack of significance in GENESIS.



40
Chapter 2. Combining network-guided GWAS to discover

susceptibility mechanisms for breast cancer

HNF4A
FBH1

CLIC1
SNX3

ABHD16A
POLR2M
HSPA1A
HSPA1B
TUBA3C

PRG2
CFL1
VARS

TKT
HSPA1L

KRT9
RAP1GDS1

ZNF131
KRT17
AIMP1
NR1H3
CRMP1

TMEM132A
RRP12

FHL5
KHDRBS2

USHBP1
TCEANC

AEN
PRPF31
COPS5

SEC22A
RANBP9

CCT7
RNF5

EGFL8
DEF6

FAM124B
MRPL44
BABAM1

FKBPL
PRR5−ARHGAP8

MSH5
KRT16
GLDC

MRPL19
NUBP1

MRPS11
ARHGAP8

FOXI1
PDS5A
C2CD3
ABCF1

DAZAP1
MRPL48
DNAJC1

ATF6B
DDA1

MRPL46
MRPS30

PPT2
LSM2

PLEKHB1
IGF2BP2

SMYD5
AIP

MYZAP
FGFR2
GSK3A

ODF2
ZNF410

TOX3
GPSM2
PAAF1
OFD1

KRT19
TFPT

RAB6A
BLM

PRR3
CASP8

GPRASP1
FAHD1

ANKHD1
FRAT1

GPRASP2
AMD1

ACAA2
BZW1

MRPS31
VPS45

RCOR1
MRPS18B

SLC4A7

0 1 2 3

Number of methods

G
en

e

A

●

●

●

●

●

●

0

2

4

6

2 3

Number of methods

−
lo

g 1
0 

(P
−

va
lu

e)

B

0

25000

50000

75000

100000

No Yes

In consensus network

B
et

w
ee

ne
ss

 c
en

tr
al

ity

C

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●●

● ●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●

● ●

●●

●

●

●

●
●

●

●
●

●

●● ●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

0

2

4

6

2 4 6

log10 (Betweenness centrality)

−
lo

g 1
0 

(P
−

va
lu

e)

D

Familial BRCA gene No Yes

Figure 2.7: Genes on the consensus network. Breast cancer susceptibility genes
are colored in pink; the rest are colored in grey. (A) Number of methods selecting
every gene in the subnetwork. (B) VEGAS P-values of association of the genes,
with regards to the number of methods that selected them. (C) Comparison of
betweenness centrality of the genes in the consensus network and the other genes in
the PPIN and not in the consensus network. To improve visualization, we removed
outliers. (D) Relationship between the log10 of the betweenness centrality and the
-log10 of the VEGAS P-value of the genes in the consensus network. The blue line
represents a fitted generalized linear model.
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Figure 2.8: Comparison of network-based GWAS methods on GENESIS. Each
method was run 5 times of a random subset of the samples, and tested on the
remaining samples (Section 2.2.3.1). (A) Number of SNPs selected by each method
and number of SNPs on the active set used by the Lasso classifier. Points are the
average over the 5 runs; lines represent the standard error of the mean. A grey
diagonal line with slope 1 is added for comparison. For reference, the active set of
Lasso using all the SNPs included, on average, 154,117.4 SNPs. (B) Sensitivity and
specificity on test set of the L1-penalized logistic regression trained on the features
selected by each of the methods. In addition, the performance of the classifier
trained on all SNPs is displayed. Points are the average over the 5 runs; lines
represent the standard error of the mean. (C) Pairwise Pearson\’s correlations of
the solutions used by different methods. A Pearson’s correlation of 1 means the two
solutions are the same. A Pearson’s correlation of 0 means that there is no SNP
in common between the two solutions. (D) Runtime of the evaluated methods, by
type of network used (gene or SNP). For gene network-based methods, inverted
triangles represent the runtime of the algorithm itself, and circles the total time,
which includes the algorithm themselves and the additional 119,980 seconds (1 day
and 9.33 hours) which took VEGAS2v2 on average to compute the gene scores from
SNP summary statistics.
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specificities, between 0.54 and 0.62. On average, SigMod had the highest sensitivity
(0.51); dmGWAS, the highest specificity (0.52). Both heinz and SigMod had on
average better sensitivity than the classifier trained on all the SNPs, but none had
superior specificity. However, the differences are negligible, well within the 95%
confidence interval.

Another desirable quality of an algorithm is stability (Section 2.2.3.1). Both heinz
and LEAN displayed a high stability in our benchmark, consistently selecting
the same genes and no genes over the 5 subsamples, respectively (Figure 2.8C).
Conversely, the other methods displayed similarly low stabilities.

In terms of computational runtime, the fastest method was heinz (Figure 2.8D),
which leverages on its ability to find efficiently the solution in a few seconds. The
slowest method was dmGWAS (1 day and 17 hours on average) followed by SConES
GI (1 day and 4.32 hours on average). However, including the time required to
compute the gene scores slows down considerably gene-based methods; on this
benchmark, that step took on average 1 day and 9.33 hours. Considering that, it
took 3 days and 2.4 hours on average for dmGWAS’ to produce results.

2.3.4 No solution is perfect

In practice, and despite their similarities and their involvement in cancer mecha-
nisms, the solutions are remarkably different (Figure 2.10A). That is due to the
particularities of the methods which directly or indirectly provide information about
the dataset. For instance, the fact that LEAN did not provide any biomarkers
implies that there is no gene such that both itself and its environment are on average
strongly associated with the disease.

In this dataset, heinz’s solution is very conservative, providing a small solution with
the lowest median P-value for the subnetwork (Table 2.2). Due to this parsimonious
and highly associated solution, it was the best method to select a set of good
biomarkers for classification. (Figure 2.8B). Its conservativeness stems from its
preprocessing step, which models the gene P-values as a mixture model of a beta
and a uniform distribution, controlled by an FDR parameter. Due to the limited
signal at the gene level in this dataset (Figure 2.2B), only 36 of them are retain
a positive score after applying the BUM model (Section 2.2.2.3). Hence, heinz’s
solution subnetwork consists only of 4 genes, which does not provide much insight
of the biology of cancer. Importantly, it ignores genes that are strongly associated
to cancer in this dataset like FGFR2.

On the other end of the spectrum, we have large solutions provided by dmGWAS,
HotNet2, and SigMod. dmGWAS’ subnetwork is the least associated subnetwork
on average. This is due to the greedy framework it uses, which considers all nodes
at distance 2 of the examined, and accepts weakly associated genes if they are
linked to another, strongly associated one. This is exacerbated when the results
of successive greedy searches are aggregated, leading to a large, tightly connected
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Figure 2.9: Drawbacks confronted when using network guided methods. (A)
dmGWAS solution subnetwork. Genes with a P-value < 0.1 are highlighted in red.
(B) Centrality degree and -log10 of the VEGAS P-value for the nodes in SigMod
solution subnetwork. (C) Genomic regions where either SConES GS, GM or GI
select SNPs.
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Figure 2.10: Pearson’s correlation between the different solution subnetworks. (A)
Correlation between selected SNPs. (B) Correlation between selected genes. In
general, the solutions display a very low overlap.

cluster of unassociated genes (Figure 2.9A). SigMod displays the same tendency,
as the most central genes are the least associated to the disease (Figure 2.9B).
This relatively low signal-to-noise ratio combined with the large solution requires
additional analyses to draw conclusions, such as enrichment analyses. In the same
line, HotNet2’s subnetwork is even harder to interpret, being composed of 440 genes
divided into 135 subnetworks. Lastly, SigMod misses some of the most strongly
associated, breast cancer susceptibility genes in the dataset, like FGFR2 and TOX3.

By virtue of using a SNP subnetwork, SConES analyzes each SNP in their context.
It therefore selects SNPs in genes none of whose interactors are associated to the
disease, as well as SNPs in non-coding regions or in non-interacting genes. In fact,
due to linkage disequilibrium, such genes are favored by SConES, as selecting SNPs
in an LD block which overlaps with a gene favors selecting the rest of the gene.
This might explain why the GS and GM networks, heavily affected by linkage
disequilibrium, produce similar results (Figure 2.10B). On the other hand, SConES
penalizes selecting SNPs and not their neighbors. This makes it conservative
regarding SNPs with many interactions, for instance those mapped to hubs in the
PPIN. For this reason, SConES GI did not select any protein coding gene, despite
selecting similar regions as SConES GS (Figure 2.9C). In fact SConES GS and
SConES GM select regions related to breast cancer, like 16q12 (TOX3, Section
2.3.1), 3p24 (SLC4A7/NEK10, Ahmed et al. (2009)), 5p12 (FGF10, MRPS30,
Quigley et al. (2014)), and 10q26 (FGFR2, Section 2.3.1). On top of that only
SConES GS selects region 8q24 (POU5F1B, Breyer et al. (2014)). We hypothesize
that the lack of results on the PPIN network of SConES GI and LEAN due to the
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same cause: the absence of joint association of a module. Although in the case of
SConES other hyperparameters could lead to a more informative solution (e.g. lower
λ, Section2.2.2.3), it is unclear what is the best strategy to find them. In addition,
due to the iCOGS SNP array design, the genome of GENESIS participants has not
been unbiasedly surveyed: some regions are fine-mapped — which might distort
gene structure in GM and GI networks — while others are under studied — hurting
the accuracy with which the GS network captures the genome structure.

2.3.5 Aggregating solutions provides insights into the biology of
cancer

To leverage on the strengths of each of the methods and compensate their respective
weaknesses, we built a consensus subnetwork that captures the mechanisms most
shared among the solution subnetworks (Section 2.2.2.6). The consensus subnetwork
(Figure 2.11) contains 93 genes and is enriched in breast cancer susceptibility
genes (Fisher’s exact test P-value = 7.8 10-5). Due to the limited overlap between
methods, only 20 genes were common to more than two of them (Figure 2.7A).
Encouragingly, the more methods selected a gene, the higher its association was
(Figure 2.7B). Globally, a GO enrichment shows the involvement of two cellular
processes: unfolded protein binding, and structural constituent of cytoskeleton
(adjusted P-values of 0.001, 0.001, respectively), which were already observed in
different solutions (Section 2.3.2). Remarkably, many of the selected genes are
related to mitochondrial translation. For instance, MRPS30 (VEGAS P-value =
0.001), encodes a mitochondrial ribosomal protein and was also linked to breast
cancer susceptibility (Quigley et al. 2014). Albeit disconnected from MRPS30, the
consensus network includes a 2-node subnetwork composed of two mitochondrial
ribosomal protein (MRPS31 - VEGAS P-value = 7.67 10-3 - and MRPS18B - VEGAS
P-value = 7.92 10-3), which suggests an involvement of mitochondrial ribosomes in
carcinogenesis.

We also examined the topological properties of the nodes. The genes in the consensus
network have higher betweenness centrality than the rest of the genes (Wilcoxon
rank-sum test P-value = 4.29 10-18). Interestingly, within genes in the consensus
network, cancer genes are as central as non-cancer genes (Wilcoxon rank-sum test
P-value = 0.57). Centrality, however, is weakly anti-correlated with association to
the disease (Pearson correlation coefficient = -0.26, Figure 2.7D), which suggests
that some highly central genes were selected because they were on the shortest path
between two highly associated genes. In view of this, we hypothesize that highly
central genes might contribute to the heritability through consistent alterations of
their neighborhood, consistent with the omnigenic model of disease (Boyle, Li, and
Pritchard 2017). For instance, the most central node in the consensus network is
COPS5 (Figure 2.11), a gene related to multiple hallmarks of cancer and which is
overexpressed in multiple tumors, including breast and ovarian cancer (G. Liu et
al. 2018). Despite its lack of association in GENESIS (VEGAS P-value = 0.22),
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Figure 2.11: Consensus subnetwork on GENESIS (Section 2.2.2.6). (A) Each
node is represented by a pie chart, which shows the methods that selected it. The
labeled genes have a VEGAS2v2 P-value < 0.001 and/or are known breast cancer
susceptibility genes (colored in pink). (B) The name of every gene is indicated.
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its neighbors in the consensus subnetwork have consistently low P-values (median
VEGAS P-value = 0.006).

The consensus subnetwork is not completely connected: out of the 93 genes, the
largest connected subnetwork includes only 49. A GO enrichment analysis showed
that this component is related to three major cellular processes: unfolded protein
binding, structural constituent of cytoskeleton, and poly(U) RNA binding (adjusted
P-values of 0.01, 0.04, and 0.04, respectively). We found support in the literature
of the involvement of each of these functions in the development of cancer, as
discussed next. The consensus network also contains a protein directly involved in
caspase-mediated apoptosis, CASP8 (VEGAS P-value = 1.95 10-4). This is related
to the enriched activity, unfolded protein binding, which inhibits caspase-dependent
apoptosis, raising the chances of developing cancer (Calderwood and Gong 2016). It
involves three Hsp70 chaperones of the consensus subnetwork: HSPA1A, HSPA1B,
and HSPA1L. They genes encoding these proteins are all near each other at 6p21. In
fact, out of the 22 SNPs that map to any of these three genes, 9 map to all of them,
and 4 to two, making hard to disentangle their association. HSPA1A was the most
strongly associated one (VEGAS P-value = 8.37 10-4). Remarkably, 14 of the 93
genes are in subnetworks of size 1 (isolated) or 2, as they do not have a consistently
altered neighborhood. One of them is the well-known breast cancer susceptibility
gene FGFR2 (Section 2.3.1 ). Another one is the also well-known SLC4A7 gene
(VEGAS P-value = 2.70 105), which encodes a sodium bicarbonate cotransporter.
The genomic region containing both SLC4A7 and nearby gene NEK10 (VEGAS P-
value = 1.56 10-5) have been consistently associated with breast cancer susceptibility
(Ahmed et al. 2009). NEK10 is a gene that might be involved in cell-cycle control,
but it is absent from the PPIN and hence it could not be studied by gene methods.
Despite that, the fact that both dmGWAS, HotNet2 and SigMod link SLC4A7 in
their different subnetwork supports the notion that this gene is the responsible for
breast cancer susceptibility.

2.4 Discussion

In this chapter we evaluate the viability of systems biology approaches to GWAS,
and examine a GWAS dataset on familial breast cancer focused on BRCA1/2
negative French women. Systems biology addresses two of the largest GWAS
issues: interpretability and an overly conservative statistical framework that hinders
discovery. This is achieved by considering the biological context of each of the genes
and SNPs. Based on divergent considerations of what the desired set of biomarkers
is, several methods for network-guided biomarker discovery have been proposed. We
reviewed the performance of six of them on GWAS. Despite their differences, most
of them produced a relevant subset of biomarkers, recovering known familial breast
cancer genes. We also discuss the limitations of such analyses, related to the lack of
known interactions around some genes. A crucial step for the gene based methods is
the computation of the gene score. In this chapter we used VEGAS2v2 (Mishra and
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Macgregor 2015) due to the flexibility it offers to use user-specified gene annotations.
However, it presents known problems (selection of an appropriate percentage of top
SNPs, long runtimes and P-value precision limited to the number of permutations
(Nakka, Raphael, and Ramachandran 2016)), other algorithms might have more
statistical power.

The network methods we studied differ in what the optimal solution subnetwork
looks like. On the one hand, SConES and heinz prefer small highly associated
solutions. On the other hand, SigMod and dmGWAS gravitate towards larger, less
associated solutions which provide a wide overview of the biological context. While
the former provide a reduced set of biomarkers, the latter deepen our understanding
of the disease and provide biological hypotheses. Yet, they are not exempt of
limitations. dmGWAS and SigMod’s solution’s size require further analyses, which
risk oversimplifying their richness. Also, incautious practitioners might be misled
by some genes, which are very central in the solution subnetworks, while being
weakly associated. Nonetheless, they are pushed into the solution by their privileged
topological properties. On the other end, conservative solutions, like SConES GI
and heinz might not shed much light on the etiology of the disease.

To overcome the problems posed by the individual methods while exploiting their
strengths, we propose combining them into a consensus subnetwork. We use a
straightforward aggregation to generate it, including any node that was recovered by
at least two methods. The resulting network is a synthesis of the altered mechanism:
it is smaller than the largest solutions (SigMod and dmGWAS), which makes it more
manageable, and includes the majority of the strongly associated smaller solutions
(SConES and heinz). The consensus subnetwork captures mechanisms and genes
known to be related to cancer, recovering known breast cancer susceptibility genes
as well as genome regions associated to breast cancer susceptibility. However, thanks
to its smaller size and its network structure, it provides compelling hypotheses of
non-canonical mechanisms involved in carcinogenesis, like mitochondrial translation
and chaperone activity.

The strength of network-based analyses comes from leveraging prior knowledge
to boost discovery. In consequence, they show their shortcomings in front of
understudied genes, especially those not in the network. Out of the 32,767 genes
that we can map the genotyped SNPs to, 60.7% (19,887) are not in the protein-
protein interaction network. The majority of those (14,660) are non-coding genes,
mainly lncRNA, miRNA, and snRNA (Figure 2.12). The importance of these genes,
like CASC16, is highlighted in Section 2.3.1. Among the excluded protein-coding
genes we find genes like NEK10 (P-value 1.6 10-5) or POU5F1B, both linked to breast
cancer susceptibility (Ahmed et al. 2009). However, on average protein-coding genes
absent from the PPIN are less associated with this phenotype (Wilcoxon rank-sum
P-value = 2.79 10-8, median P-values of 0.43 and 0.47). As we are using interactions
from high-throughput experiments, such difference cannot be due to well-known
genes having more known interactions. As disease genes tend to be more central
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(Piñero et al. 2016), we hypothesize that it is due to interactions between central
genes being more likely. It is worth noting that network approaches that do not
use PPIs, like SConES GS and GM, did recover SNPs in NEK10 and CASC16.
Lastly, all the methods rely heavily on how SNPs are mapped to genes. In Section
2.3.1 we highlight ambiguities that appear when genes overlap or are in linkage
disequilibrium.
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Figure 2.12: Biotypes of genes from the annotation that are not present in the HINT
protein-protein interaction network.

As not all databases compile the same interactions, the choice of the PPIN determines
the final output. In this work we used exclusively interactions from HINT from high-
throughput experiments. This responds to concerns of some authors about biases
introduced by adding interactions coming from targeted studies in the literature
(Cai, Borenstein, and Petrov 2010; Das and Yu 2012) where a “rich getting richer”
phenomenon is observed: popular genes have a higher proportion of their interactions
described. On the other hand, Huang et al. (2018) found that the best predictor of
the performance of a network for disease gene discovery is the size of the network.
This also supports using the largest amount of interactions. To clarify their impact
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on this study, we compared the impact of using only physical interactions from
high-throughput experiment versus interactions from both high-throughput and
the literature (Section 2.2.2.4). We conclude that for most of the methods a
larger network did not greatly impact the size or the stability of the solution, the
classification accuracy, or the runtime (Figure 2.13).

In order to produce the consensus network, we had to face the different interfaces,
preprocessing steps, and unexpected behaviors of the various methods. To facilitate
that other authors apply them to new datasets and aggregate their solutions, we
built six nextflow pipelines (Di Tommaso et al. 2017) with a consistent interface
and, whenever possible, parallelized computation. They are available on GitHub:
https://github.com/hclimente/gwas-tools.

https://github.com/hclimente/gwas-tools
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Figure 2.13: Comparison of benchmark on high-throughput interactions to bench-
mark on both high-throughput and literature curated interactions. Grey lines
represent no change between the benchmarks (1 for ratios, 0 for differences). (A)
Ratios of the selected features between both benchmarks and of the active set.
(B) Shifts in sensitivity and specificity. (C) Shift in Pearson’s correlation between
benchmarks. (D) Ratio between the runtimes of the benchmarks. For gene network-
based methods, inverted triangles represent the ratio of runtimes of the algorithms
themselves, and circles the total time, which includes the algorithm themselves and
the additional 119,980 seconds (1 day and 9.33 hours) which took VEGAS2v2 on
average to compute the gene scores from SNP summary statistics. In general, adding
additional interactions slightly improves the stability of the solution, but increases
the solution size, has mixed effects on the sensitivity and specificity, and impacts
negatively the required runtime of the algorithms.
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Chapter 3

The martini R package

Parts of this work were presented in ISMB/ECCB 2017 in the poster Héctor Climente-
González and Chloé-Agathe Azencott, R package for network-guided Genome-Wide
Association Studies.

Abstract: In this chapter I introduce martini and scones.nf.
martini is an implementation of SConES in R with three improve-
ments over previous ones. First, it includes measures of association
for binary traits (χ2 and logistic regression). Second, it accepts
user-specified covariates, included as additional terms in the logistic
regression. Third, it includes four ways of scoring the cross-validation
folds: consistency (as other implementations), and three penalized
log-likelihood measures (BIC, AIC, and AICc). martini is available in
Bioconductor 3.7. scones.nf is a computational package that further
facilitates the usage of martini. It does so by accepting common file
formats for GWAS and networks, and by performing a two-staged
cross-validation that achieves better hyperparameters. scones.nf is
available on https://github.com/hclimente/gwas-tools.

Résumé : Dans ce chapitre, je présente martini et scones.nf.
martini est une implémentation en R de SConES, qui présente trois
améliorations sur les implémentations précédentes. Tout d’abord, mar-
tini inclut des mesures d’association pour des traits binaires (χ2 et
régression logistique). Deuxièmement, martini permet de spécifier des
covariables, incorporées comme des termes supplémentaires dans la
régression logistique. Troisièmement, martini inclut quatre façons de
mesurer la performance en validation croisée : la consistance (comme
précédemment), et trois mesures de log-vraisemblance pénalisée (BIC,
AIC and AICc). martini est disponible dans Bioconductor 3.7.
scones.nf est un paquet logiciel qui facilite encore plus l’utilisation de
martini, en acceptant des formats de fichiers usuels pour les données
GWAS ainsi que les réseaux, et grâce à une validation croisée en deux
étapes qui permet d’obtenir de meilleurs hyperparamètres. scones.nf
est disponible sur https://github.com/hclimente/gwas-tools.

53
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3.1 Introduction

In Chapter 2 I presented six high-score subnetwork search methods, and their
application to GWAS. In this chapter I focus on my work on one of them, SConES
(Azencott et al. 2013), which was presented with the other methods in Section
2.2.2.3. As a reminder, SConES finds a small set of highly interconnected SNPs
associated to the disease by solving the following problem:

arg max
S⊆G

∑
v∈VS

sv︸ ︷︷ ︸
association

−λ
∑
v∈VS

∑
u6∈VS

Wvu︸ ︷︷ ︸
connectivity

− η|VS |︸ ︷︷ ︸
sparsity

, (3.1)

where λ and η are hyperparameters, sv is the association score of node v, and W is
the Laplacian matrix of the network. The mathematical notation is described in
Section 2.2.2.2. SConES works on SNP networks in which the SNPs are linked to
each other if there is evidence of shared function, for instance, if they are mapped
to the same gene (Section 1.2.1.5).

With the goal of applying SConES to the GENESIS dataset (Section 1.5.1.1), I
developed a user-friendly version that solved some of SConES’ initial shortcomings
(detailed in Section 3.2). The result was an R package, martini (Climente-González
and Azencott 2019), which was published in Bioconductor 3.7 (Huber et al. 2015),
a peer-reviewed R repository. martini was the R version (“user friendly”) of gin
(GWAS Incorporating Networks), which is my C++ re-implementation of SConES
based, in turn, on EasyGWAS (Grimm et al. 2017). Hence, martini combines the
accessibility of R and of the Bioconductor environment with the computational
efficiency of C++.

3.2 Improvements over SConES

3.2.1 Covariates and additional measures of association

SConES scored the relevance of each SNP to the phenotype using the linear SKAT
test of association (Wu et al. 2011; Ionita-Laza et al. 2013). Yet, no version of
SConES implemented a way to measure association with a binary phenotype, like
logistic regression-based SKAT. Hence, we decided to implement two additional
measures of association in martini, χ2 and logistic regression, to apply SConES on
case-control studies. Additionally, the latter allowed martini to handle covariates
and hence correct for population structure (Section 1.2.1.4).

3.2.2 Hyperparameter optimization

By examining the results of other implementations of SConES on simulated examples,
we observed that it produced suboptimal solutions. Those (unshown) results were
either trivial ones (all SNPs or no SNP retrieved), or cases where SNPs strongly
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associated with a phenotype were not selected. To address those issues, I experi-
mented with altering how SConES chooses its hyperparameters (λ and η), in the
hope that other values would produce better solutions.

SConES chooses the best λ and η based on consistency across 10 cross-validation
folds. In other words, for each specific combination of λ and η to evaluate, the data
is divided into 10 equal parts, or folds, each containing 90% of the samples. In each
fold, a selection vector v is produced with the respective hyperparameters. The
length of v is equal to the number of SNPs N , and each element is set to 0, if the
corresponding SNP is not selected, and to 1, if it is. The consistency C between the
selection vectors vi and vj of two folds for the same λ and η can be calculated as

C = N‖vi · vj‖0 − ‖vi‖0‖vj‖0.

Then a normalized consistency C ′ is computed by dividing C by the maximum
possible consistency C∗:

C∗ = N min(‖vi‖0, ‖vj‖0)− ‖vi‖0‖vj‖0.

Each combination of λ and η is scored using the mean of all such pairwise normalized
consistencies. The hyperparameters that produce the most consistent result are
used on the whole dataset to produce the algorithm’s output. Consistency was the
metric of choice in the original SConES to favor stability in the solution (Azencott
et al. 2013).

We explored alternatives to consistency as selection criterion. Measures based on the
accuracy of a linear classifier trained on the selected SNPs had been tested before,
but exhibited proneness to overfitting. Hence we turned to penalized log-likelihood
measures (Dziak, Li, and Collins 2005), developed in the field of information theory.
These scoring functions had the potential to overcome the overfitting of a linear
classifier by adding a regularization term to improve generalization. They take the
form

L(X, y, θ̂)− c(θ̂),

where L(X, y, θ̂) is the log-likelihood of the model, which depends on the feature
matrix X, the outcome vector y, and the parameters θ̂; and c(θ̂) is a measurement
of the model’s complexity. Particularly, we explored three measures (Dziak, Li, and
Collins 2005): Akaike information criterion (AIC), Bayesian information criterion
(BIC), and corrected Akaike information criterion (AICc). All three take the form

L(X, y, θ̂)− λpin,
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where λ is a factor that controls the penalty for complexity; and pin is the number
of features included in the model. Specifically they are defined as:

AIC = 2L(X, y, θ̂)− 2pin,

BIC = −2L(X, y, θ̂)− ln(n)(pin + 2),

and

AICc = AIC + 2pin(pin + 1)
n− pin − 1 = −2L(X, y, θ̂) + 2

(
n

n− pin − 1

)
pin.

AICc is a modification of AIC that penalizes complex models (many features included)
in high dimensional settings, that is, where the number of features is much larger
than the number of samples, as in GWAS.

martini implements these three measures to score each combination of hyperparam-
eters. As with consistency, every considered λ and η is tested in a 10-fold split of
the data. Then, for each fold, a linear model is built, which aims to predict the
phenotype using the SNPs selected in that fold. These scores relate the likelihood
of these linear models to its complexity. Each combination of hyperparameters is
scored by averaging the 10 folds, and the one that produces the lowest score on
average is chosen. In some simulation studies (not shown), we observed that they
solved the problems of the consistency score outlined above.

3.2.3 Network-based simulations

We conjecture that SConES will detect biomarker with increased sensibility with
respect to non-network frameworks. In other words, it should be able to detect
causal SNPs for less heritable phenotypes. In order to test this hypothesis, martini
facilitates the simulation of phenotypes and interconnected causal networks on real
GWAS datasets. This simulation tool is broken down into two functions.

The first of them is simulate_causal_snps(), which takes a SNP network in
which each SNP is annotated with the genes it maps to (as can be obtained by
get_GI_network(), see Section 3.2.4). It takes two additional parameters: the
number of genes involved in the disease (n), and the proportion of the SNPs mapped
to a causal gene that are causal themselves (p). Then, it randomly scans the network
until it finds a maximum of two connected SNP subnetworks that are mapped to n
different genes. A fraction p of such subnetwork are selected as causal.

The second function is simulate_phenotype(), which re-implements the
--simu-cc phenotype simulation function of the GCTA suite (Yang et al.
2011). simulate_phenotype() requires an existing GWAS experiment (gwas),
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and a set of causal SNPs (snps). When the causal SNPs are the output of
simulate_causal_snps(), it inherits the additional constraint that the causal
SNPs are connected in an underlying network. It also accepts other optional
parameters which I describe below. Then, it simulates the quantitative phenotype
yj for patient j using the following additive model:

yj =
∑

i
wijui + ej ,

where the weight wij is the inclination of the genotype i of patient j over the
phenotype; the allelic effect of the i-th causal variant ui in arbitrary units; and the
residual effect ej is the the proportion of the trait not attributable to the genotype.
The vector of effect sizes u can be specified by the user via the effectSize parameter.
If it is not, by default it is sampled from a standard Normal distribution.

The weight wij is calculated as

wij = xij − 2pi√
2pi(1− pi)

where xij is the number of reference alleles for the i-th causal variant of the j-th
individual; and pi is the frequency of the i-th causal variant. wij follows a sigmoid
like behavior for different p (Figure 3.1): the rarer an allele is, the stronger its
impact on the phenotype.

Figure 3.1: Allelic effect i as function of causal allele frequency p for different counts
of causal allele in a patient (x = 0, 1, 2).

An interesting bit of this simulation is the residual effect ej . It depends directly on
the heritability of the trait, which must be given by the user via the h2 parameter.
Then ej is generated from a Normal distribution with mean of 0 and variance

1
h2 − 1var

(∑
i
wijui

)
,
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where w and u are the weight and effect sizes specified above. When all variance is
due to genetics (h2 = 1), ej = 0 for all the patients j.

Lastly, a user can request a binary phenotype setting the qualitative option to
TRUE. In this case, the user must also specify three additional parameters: the
number of cases (ncases), the number of controls (ncontrols), and the prevalence
of the trait (prevalence). With these parameters, simulate_phenotype() takes
the ncontrols samples with the lowest y as controls, and the ncases samples with
the highest y as cases. However, ncases needs to be lower or equal than prevalence
×|y|, where |y| is the total number of samples in the GWAS experiment. This ensures
that only the most extreme samples (as defined by the prevalence and the qualitative
simulation) are cases.

3.2.4 Interface, documentation and quality assurance

Last, but not least, martini includes the two main groups of functions required to
run SConES. The first group involves the creation of the SNP networks, which were
described in detail in Section 2.2.2.5. They are the get_GS_network(), to obtain a
network that relates the SNPs based on genomic structure; get_GM_network() for
a network that, on top of the previous one, relates SNPs mapped to the same gene;
and get_GI_network() which, on top of the latter, relates SNPs mapped to genes
that interact in a user provided list. The second important function is scones()
which takes a GWAS dataset and a SNP network and runs SConES.

All functions exported by martini have a man page, and hence information of the
functions arguments, behavior and return value can be obtained via help(fun).
Accompanying examples and toy datasets are provided. Additionally, I wrote two
vignettes to explain its basic behavior: one to run SConES (Running SConES), and
another to simulate network-based phenotypes (Simulating SConES-based pheno-
types).

martini was thoroughly subjected to unit tests via the testthat package (Wickham
2011). At the moment of writing this text, martini had a code coverage of 96%.

3.3 The scones.nf pipeline

In addition to the changes implemented in martini, I developed a ready-to-use
computational pipeline that simplifies its usage: scones.nf. This pipeline just
requires genotype data in PLINK binary file format and, when needed for the
creation of a GM or GI network, a gene annotation file and a protein-protein
interaction file. scones.nf is available on GitHub (https://github.com/hclimen
te/gwas-tools). In terms of function, the difference with vanilla martini is that
it performs an exhaustive grid-search to optimize both λ and η, as opposed to
martini’s single grid search step. In the latter, both parameters explore the same
range of values, which is calculated from the association scores c (e.g. SKAT score).

https://www.bioconductor.org/packages/release/bioc/vignettes/martini/inst/doc/scones_usage.html
https://www.bioconductor.org/packages/release/bioc/vignettes/martini/inst/doc/simulate_phenotype.html
https://www.bioconductor.org/packages/release/bioc/vignettes/martini/inst/doc/simulate_phenotype.html
https://github.com/hclimente/gwas-tools
https://github.com/hclimente/gwas-tools
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Specifically, it creates a linearly spaced n-component vector (n = 10 by default)
between blog10 min(c)c and dlog10 max(c)e, then explores its powers of 10. On the
other hand scones.nf makes the grid search finer, because it explores the grid in
an iterative way. After the first exploration, identical to the one just described, the
best λ and η according to some selection criterion are picked. Then it creates a
new hyperparameter space, ranging from log10(best λ) −∆ to log10(best λ) + ∆,
where ∆ = 0.2(log10 max (explored λ)− log10 min (explored λ)). The final λ and η
are chosen using the same procedure on this new grid. Prior to these improvements,
scones.nf was not able, in some instances, to recover the best solution, returning a
trivial solution instead.

3.4 Conclusions

In this chapter I introduced martini and the scones.nf pipeline. Jointly, they make
SConES easily applicable to any GWAS dataset. Specially, they provide a wider
range of options to the user in terms of how to measure the association between the
genotypes and the phenotype, and how to select SConES hyper-parameters. Thanks
to these improvements, we were able to obtain the SConES results presented in
Chapter 2. Additionally, we provide a network-based phenotype simulation frame-
work. martini (Climente-González and Azencott 2019) is available in Bioconductor
(https://www.bioconductor.org/packages/martini); scones.nf is available on
GitHub (https://github.com/hclimente/gwas-tools).

However, martini and SConES still present shortcomings with regards to hyper-
parameter selection (Sections 2.3.3 and 2.3.4). As we note, SConES solutions
were unstable despite using consistency for model selection. This requires further
examination. Additionally, when applied to GENESIS the selected solutions did
not use the protein-protein interaction network, but other methods did. Although
this is, to some extent, expected in that dataset, it does not inform much about
the biology of the disease. In other words, in this case, SConES should be more
tolerant to including unassociated SNPs in order to interconnect subnetworks of
strongly associated SNPs. Hence, different parameters (lower values of λ) might
relax the connectivity constraints enough to capture biological mechanisms more
broadly. In this regard, it would be promising to use topological measures as scores
for hyperparameter selection, for instance favoring settings that lead to densely
interconnected networks. In this vein, it also is worth further exploring SigMod (Liu
et al. 2017) a modification of SConES described in Section 2.2.2.3. While SConES
penalizes selecting SNPs with many outbound edges and does not account for
inbound edges, SigMod favours SNPs with many inbound edges, while disregarding
outbound edges.

Lastly, I would like to explore SNP networks beyond the ones proposed in the original
manuscript (Section 2.2.2.5). As I described in Section 1.2.1.5, and will deepen in
Chapter 4, there are multiple ways of relating SNPs to a function, and hence to

https://www.bioconductor.org/packages/martini
https://github.com/hclimente/gwas-tools
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build SNP networks. One compelling idea is to build a SNP network that reflects
the 3D structure of the genome. Another opportunity for development involves
encoding the LD relationship between the SNPs in the network, by tuning the edge
weights. This would allow to either favor the selection of LD blocks (large LD implies
large edge weight), or favor the selection of independent, associated SNPs (large LD
implies small edge weight). These networks are very complex, involving hundreds
of thousands of nodes and tens of millions of edges. In this regard, the ability of
SConES to efficiently handle such networks enables this research and motivates
working on solving the aforementioned issues.



Chapter 4

Boosting interpretability and
statistical power in epistasis

detection by using prior
biological knowledge

The contents of this chapter are based on Diane Duroux, Héctor Climente-González,
Lars Wienbrandt, David Ellinghaus, Chloé-Agathe Azencott and Kristel Van Steen,
Boosting interpretability and statistical power in epistasis detection by using prior
biological knowledge (manuscript in preparation). Parts of this work were presented
in IGES 2019 in the poster Diane Duroux, Héctor Climente-González, Lars Wien-
brandt, David Ellinghaus, Chloé-Agathe Azencott and Kristel Van Steen, Improving
efficiency in epistasis detection with a gene-based analysis using functional filters.

Abstract: Detecting epistatic interactions at the gene level is essen-
tial to understanding the biological mechanisms of complex diseases.
Unfortunately, genome-wide interaction association studies (GWAIS)
involve many statistical challenges that make such detection hard.
This chapter considers three steps to analyze the conversion of SNP-
SNP interactions into a gene-gene network through the integration of
biological knowledge. First, we investigate the use of known gene-gene
interactions to focus on the most promising gene-pairs. Second, we ex-
plore several functional SNP-to-gene mappings to map SNPs to these
gene interactions, including expression quantitative trait loci (eQTL)
and chromatin-based, and filter the GWAIS data accordingly. Third,
we integrate SNP-pairs statistics into gene-pairs statistics using the
adaptive truncated product method (ATPM). ATPM does not require
parameters or a known null distribution, and it is fast to compute.
We apply different variants of these three steps to a GWAS inflamma-
tory bowel disease (IBD) dataset, and compare the results. Overall,
knowledge integration decreases the number of tests performed, reduc-
ing computational time and boosting statistical power, and provides
interpretability. We validate through a permutation analysis that type
I error is under control. The different protocols produce different
results, which highlight different mechanisms implicated in IBD while,
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at the same time, overlapping with the known biology of the disease.
Using eQTLs results in more interactions than the standard approach,
where all possible SNP pairs are investigated and SNPs are mapped
to genes based on their position on the genetic sequence, albeit fewer
significant gene-pairs. This pipeline not only detects interactions
at the gene level, but also gives a global visualization that identifies
neighbors, hubs and highly connected substructures.

Résumé : La détection d’interactions épistatiques entre gènes est
essentielle à la compréhension des mécanismes des maladies com-
plexes. Malheureusement, les études d’association d’interactions
génome entier (GWAIS) posent de nombreux défis statistiques qui
rendent cette détection difficile. Ce chapitre considère trois étapes
pour analyser la conversion d’interactions SNP-SNP en un réseaux
de gènes, à travers l’intégration de connaissances biologiques. Tout
d’abord, nous nous intéressons à l’utilisation d’interactions gène-gène
connues afin de nous limiter aux paires de gènes les plus prometteuses.
Deuxièmement, nous étudions plusieurs correspondances fonction-
nelles entre SNPs et gènes, basées entre autre sur les loci régulant
l’expression (eQTL) ou les contacts de chromatine, que nous utilisons
aussi pour filtrer les données. Troisièmement, nous proposons de
dériver, des statistiques obtenues pour des paires de SNPs, une statis-
tique pour une paire de gènes, par une méthode de produit tronqué
adaptative (ATPM). L’ATPM ne requiert ni de fixer des paramètres,
ni de connaître la distribution nulle, et peut être calculée efficacement.
Nous appliquons différentes variantes de ces trois étapes à un jeu de
données GWAS des maladies chroniques inflammatoires de l’intestin
(MICI), et comparons les résultats obtenus. L’intégration de connais-
sances extita priori permet de réduire le nombre de tests statistiques à
effectuer, ce qui réduit les temps de calculs et augmente la puissance
statistique. Elle facilite aussi l’interprétation des résultats. Une
analyse par permutations nous permet de valider que l’erreur de type
I est bien contrôlée. Différents protocoles produisent des résultats
différents, qui mettent en lumière différents mécanismes impliqués
dans les MICI, tout en coïncidant avec des mécanismes déjà connus
de ces maladies. L’utilisation de correspondances SNPs identifiés
dans des eQTLs permet d’obtenir plus d’interactions SNP-SNP que
l’approche standard, mais moins de paires de gènes significatives.
Notre pipeline permet non seulement de détecter des interactions
entre gènes, mais aussi de les visualiser dans un réseau global, et
d’identifier voisinages, hubs, et structures fortement interconnectées.
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4.1 Introduction

In this chapter we study the detection of gene-level epistasis from SNP-level epistasis
to improve the interpretability of GWAIS. Our analysis compares ways of converting
statistical epistasis at the SNP level into a gene-based statistical epistasis network.
First, we investigate different functional filters (Ma, Keinan, and Clark 2015) and
SNP-to-gene mapping functions. Second, as a bijectivity issue arises because a SNP
can be mapped on several genes, we investigate the use of current knowledge on
gene-gene interaction to focus on the most promising gene-pairs. We study whether
the epistatic interactions driving the phenotype are likely to be currently in existing
databases. Third, we used the adaptive truncated product method to estimate
gene-pairs significance.

4.2 Materials and methods

4.2.1 Dataset and initial quality control

We investigated the IIBDGC dataset, described in Section 1.5.2.1, whose large
sample size helps to overcome the issue of reduced statistical power common in
GWAIS. We performed a quality control as in Ellinghaus et al. (2016), reducing the
number of SNPs from 196,524 to 130,071.

The IIBDGC dataset aggregates different cohorts, and contains confounding popula-
tion structure (Section 1.2.1.4). PLINK (Purcell et al. 2007) cannot take covariates
in the logistic regression used to detect epistasis (Section 4.2.2.3). In consequence,
we adjusted phenotypes to account for population structure using the top 7 prin-
cipal components as in Ellinghaus et al. (2016). Essentially, we derive adjusted
phenotypes from the logistic regression model by subtracting model-fitted values
from observed phenotype values (i.e. response residuals).

4.2.2 Gene interaction detection procedure

As we describe below, we applied four different functional filters to the dataset.
The functional filter used known interactions between genes, and the three different
ways of mapping SNPs to genes described in Section 1.2.1.5, and hence, to these
interactions. In essence, in each of the filtered datasets we only tested the interactions
between SNPs which can be mapped in a particular way to a pair of interacting
genes. The resulting four datasets (including an unfiltered dataset) were analyzed
separately. For convenience, we will refer to their associated analyses using the
terms Standard, physical, eQTL and chromatin. For each dataset, the entire pipeline
described below is applied and the four obtained outputs are subsequently compared.
An overview of the whole pipeline is available in Figure 4.1.



64
Chapter 4. Boosting interpretability and statistical power in epistasis

detection by using prior biological knowledge

Figure 4.1: Overview of the gene-gene interaction detection procedure (from Duroux
et al. (2019)). The whole protocol is described in Section 4.2.2.

4.2.2.1 Functional SNP pre-filtering

The initial step of the protocol is a functional SNP pre-filtering, which has three
stages. First, we mapped the SNPs in the dataset to genes using FUMA (Watanabe
et al. 2017). FUMA is a post-GWAS annotation tool. Its SNP2GENE function
takes GWAS summary statistics and maps significant SNPs to genes according to
both physical and functional criteria specified by the user. We created an artificial
input where every SNP is significant in order to perform such mapping on all the
SNPs. We performed three SNP-gene mappings using SNP2GENE: physical, eQTL
and 3D chromatin interaction. In the physical mapping, we mapped a SNP to a
gene when the former was within the boundaries of the latter ± 10 kb. The eQTL
mapping uses eQTLs obtained from GTEx (GTEx Consortium 2017). We mapped
an eQTL SNP to its target gene when the association P-value was significant in
any tissue (FDR < 0.05). Lastly, in the 3D chromatin interaction mapping, we
mapped a SNP to a gene when a contact had been observed between the former and
the region around the latter’s promoter (250 bp upstream and 500 bp downstream
from the transcription start site) in any of the Hi-C datasets included in FUMA
(FDR < 10−6). The chromatin mapping might contain new, undiscovered, regulatory
variants which, as eQTL, regulate the expression of a gene.

Second, after obtaining the SNP-to-gene mappings, we used Biofilter 2.4 (Pendergrass
et al. 2013) to obtain the candidate gene-pairs subsequently investigated for epistasis
evidence. Biofilter generates pairs of genes with evidence of co-function across
multiple publicly available biological databases. It includes genomic locations of
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SNPs and genes, as well as known relationships among genes and proteins such
as interaction pairs, pathways and ontological categories. Notably, it does not use
trait information. Specifically, we considered only pairs of genes for which both
genes could be mapped, using any of the mappings, to a SNP in our GWAS dataset.
We used only gene pairs supported by evidence in at least 2 databases. When the
two SNPs of a pair were located in the HLA region, we removed the pair, as this
complex genomic region is currently not well understood. Additionally, we removed
self-interactions, as detection of within-gene epistasis requires special considerations
and is beyond the scope of this paper.

Lastly, we filtered the datasets again to explore exclusively interactions between
SNPs mapped to genes known to interact, according to Biofilter. For that purpose
we first converted the Biofilter gene-pair models into SNP-pair models separately
via each of the FUMA SNP-gene mappings described above. Then, from these SNP
pairs sets, we built the four datasets enumerated above: one without any filter
(Standard); and one for each SNP to gene mapping (Physical, eQTL, Chromatin). It
is worth pointing out that SNP-pair models were also built based exclusively on the
corresponding mapping e.g. physical contains exclusively pairs of SNPs which can
be associated to pairs of genes via a physical mapping. This helps interpretability
and keeps the number of tested interactions under control.

4.2.2.2 Post-filtering quality control

Additional quality controls were performed on each of the four generated datasets.
As motivated in Gusareva and Van Steen (2014), only common variants (MAF > 5%)
and in Hardy–Weinberg equilibrium (P-value > 0.001) are considered. Also, we
pruned SNPs that are in linkage equilibrium (R2 > 0.75). Lastly all risk SNP
described in Liu et al. (2015) were included.

4.2.2.3 SNP-level epistasis detection and multiple test correction

We used PLINK 1.9 to detect epistasis through a linear regression on the adjusted
phenotypes:

Y = β0 + β1gA + β2gB + β3gAgB,

where gA and gB are the genotypes under additive encoding for SNPs A and B
respectively; β0, β1, β2, β3, are the regression coefficients. PLINK performs a
statistical test to evaluate if β3 6= 0. Crucially, it only returns SNP-pairs with a
P-value lower than a specified threshold. We used the default 0.0001.

We only considered pairs of SNPs not in strong LD (R2 < 0.75) and that could be
mapped to the corresponding SNP-model obtained from Biofilter, with self-gene
interactions removed (Section 4.2.2.1). This impacted the total number of statistical
tests.
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To correctly account for multiple testing, the P-value threshold of significance had
to be dataset-dependent as the number of tested SNP pairs changed from dataset
to dataset (Section 4.2.2.1). We obtained the threshold through a permutation
analysis as in Hemani et al. (2014). In essence, for each dataset, we permuted
the phenotypes 400 times and measured SNP association as above. This produced
a null distribution of the extreme P-values for this number of tests given the LD
structure. For each dataset, we took the most extreme P-value from each of the 400
permutations and set the threshold for 5% family-wise error rate (FWER) to be the
95% percentile of these most extreme P-values.

4.2.2.4 From SNP-level to gene-level epistasis

Next we converted SNP pairs into gene-pairs using their respective FUMA and
Biofilter mappings (Section 4.2.2.1). The exception was the Standard dataset, where
SNPs are physically mapped to genes, and no Biofilter restriction on which pairs of
genes can interact was applied. Still, self-interactions were removed.

Then, we computed gene-level statistics from the respective SNP-level statistics of
the involved SNPs. In this regard, all N pairs of SNPs mapped to a gene pair are
taken as a set of tests on the same global null hypothesis H0i, where i = 1, 2, . . . , N .
Zaykin et al. (2002) developed the truncated product method (TPM) as a method to
combine P-values on a same global hypothesis. It does so by computing the statistic
W (τ) = ∏N

i=1 p
I(pi≤τ)
i where I(·) is the indicator function and τ is the truncation

point. A P-value ŝ(τ) can be the estimated for a given W (τ). TPM was interesting
since we did not not have P-values for every SNP pair but for the most strongly
associated ones only (Section 4.2.2.3). However, TPM requires setting the truncation
point τ , a parameter that is arbitrary and might be gene-pair specific. On top of
that, the null distribution of W (τ) is unknown when P-values are correlated, as is
the case. To solve these problems the adaptive truncated product method (ATPM)
was proposed (Sheng and Yang 2013). ATPM explores different τ , choosing the
one that produces the minimum P-value ŝ(τ). We estimated the distribution of the
ATPM using permutations as in Ge, Dudoit, and Speed (2003). Specifically, we
created B = 999 permuted datasets by permuting the phenotype vector. Based on
the bth permuted dataset, 1 ≤ b ≤ B, we perform the N individual tests. We used
three values for τ (0.001, 0.01, 0.05) and set the significance level α = 0.05. The
specific procedure goes as follows:

1. For each gene-pair in the output of the original data analysis, based on
p1

(b), ..., pN
(b), 1 ≤ b ≤ B, calculate the truncated product statistics for each

candidate truncation threshold for the original data and B permuted datasets.

2. Use Ge’s algorithm to obtain the estimated P-value ŝbk =
∑B

l=0 I(W (τk)b≥W (τk)l)
B+1 ,

1 ≤ k ≤ 3, 0 ≤ b ≤ B

3. Calculate M b = min1≤k≤3ŝ
b
k
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4. The adjusted P-value for the adaptive truncated product statistic M is esti-
mated as PminP (b) =

∑B

b=0 I(M≥Mb)
B+1 .

5. We reject the joint null hypothesis if the adjusted P-value is smaller than the
global significance level α.

4.3 Results

4.3.1 Type I error

The “multi-stage” nature of the protocol presented in Section 4.2.2 required control-
ling the type I error. For that purpose, we performed 1,000 permutation analyses
for each of the four datasets, permuting the phenotypes and running the entire
protocol to detect significant gene pairs. When at least one significant gene-pair is
observed in a permutation, that permutation is considered a false positive (FP). This
allowed to compute the type I error rate as # FP

1000 . We observed that the type I error
was under control for all four datasets (3.6%, 3.7%, 6.1%, and 3.9% for Standard,
Physical, Chromatin, and eQTL, respectively).

4.3.2 Chromatin contacts map more SNPs per gene than other
mappings

We considered three procedures to map SNPs to their gene, as a proxy for their link to
functionality (Section 4.2.2.1): physical, eQTL and chromatin. Chromatin produced
the largest number of mappings (2,394,589), an order of magnitude more than eQTL
(411,120) and physical (174,879) (Table 4.1). Similarly, chromatin has the largest
number of SNPs mapped to an individual gene, followed by eQTL and physical
(Figure 4.2A). Nonetheless, different genes had very unequal contributions from
each of the mappings (Figure 4.2B). This is consistent with the striking differences
between the ranking of genes according to the number of SNPs mapped on them
(Figures 4.2C, D and E): in general, the genes with the most SNPs mapped using
the eQTL mapping had relatively few SNPs mapped in the chromatin mapping, and
viceversa.

The number of mappings is directly linked the number of SNPs and interactions tested
per dataset (Table 4.1). As it can be observed, restricting our search exclusively to
Biofilter-plausible interactions leads to an increase in statistical power with respect
to the Standard protocol. Specifically, the number of tests are between 1 and 2
orders of magnitude smaller.

4.3.3 The Physical protocol does not recover any SNP interaction

We searched SNP epistasis in the four datasets (Section 4.2.2.3). The different
epistatic SNP-SNP networks are described on Table 4.2 and Figure 4.3. Strikingly,
while the Standard protocol generated the largest network (55 nodes), the eQTL
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Figure 4.2: (A) Number of SNPs per gene for each of the three mappings described in
Section 4.2.2.1. Outliers are not displayed to facilitate visualization. (B) Ranking of
genes with most SNPs mapped using any of the mappings, colored by mapping. Only
genes with more than 100 SNPs mapped to it are displayed. (C,D,E) Comparison
between the rank of each gene according to the number of SNPs mapped to it using
each mapping.

Table 4.1: Properties of the different SNP-gene mappings and the filtered datasets.

Standard Physical Chromatin eQTL
# SNPs 38225 16417 30146 16652
# SNP-gene mappings NA 1.7e+05 2.4e+06 4.1e+05
# tests 7.2e+08 4.6e+06 8.9e+07 2.2e+07
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Table 4.2: Properties of the SNP networks from the different datasets.

Standard Physical Chromatin eQTL
# significant pairs 57 0 19 64
# nodes 55 0 20 46
# connected components 12 NA 5 6
Size of the largest component 25 NA 11 17
Average degree 2.07 NA 1.9 2.78

one was the largest by number of interactions (64). The Physical protocol produced
no significant pairs.
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Figure 4.3: SNP-level epistasis networks for Standard (orange), eQTL (green), and
Chromatin (violet) (Sections 4.2.2.1 and 4.2.2.3). The Physical dataset is absent, as
no SNP pairs were significant.

4.3.4 Gene-level network

We converted the aforementioned SNP-pair networks into gene-pair epistasis net-
works, estimating their significance through ATPM (Section 4.2.2.4). Most of the
SNP-pairs mapped to exclusively one gene pair in eQTL and Standard, removing
possible sources of ambivalence (Figure 4.4A). That was not the case under the
chromatin mapping, where it was more common for the same SNP pair to map
to different gene pairs. We then compared the relationship between significant
gene-pairs and the number of significant SNP pairs that map to them (Figure 4.4B).
Interestingly, most significant gene pairs are supported by relatively small number
of SNPs: either few in number, or few with respect to the total number of SNP
pairs for that gene pair.

We built an epistatic gene network from the significant gene pairs (Methods 4.2.2.4),
shown in Figure 4.5 and Table 4.3. Overall, the Standard protocol still produces the
largest network, and contains more connected components and significant gene-pairs.
On the other hand, Chromatin and eQTL mappings produce similar networks in
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Figure 4.4: Relationship between the number of significant SNP pairs and of
significant gene pairs. (A) Histogram of the number of significant gene pairs
mapped to the same SNP pair. (B) Relationship between the total number of SNP
pairs mapped to the same gene pair (y-axis), and the percentage of all significant
SNP-pairs between all the SNP-pairs mapped to the same gene (x-axis). Data points
are semi-transparent, so multiple points stacked result in a darker shade.
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Table 4.3: Properties of the gene networks from the different datasets.

Standard Physical Chromatin eQTL
# significant pairs 26 0 5 7
# nodes 29 0 10 11
# connected components 8 NA 5 5
Size of the largest component 6 NA 2 3
Average degree 1.79 NA 1 1.27

terms of sizes, number of gene-pairs and connected components. However, both
Chromatin and eQTL’s networks are notably smaller than Standard’s (11 and 10
nodes versus 29, respectively).

Standard’s nodes are proportionally more clustered in connected components, while
most eQTL and Chromatin’s connected components are composed of only a pair of
genes. Although this might reveal the affection of a common mechanism, it is likely
a result of the overlap in the genome of multiple genes, which are mapped to highly
overlapping sets of SNP.
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Figure 4.5: Gene-level epistasis networks for Standard (orange), eQTL (green), and
Chromatin (violet) (Section 4.2.2.1).

A hub is node with a number of links that greatly exceeds the average. For this
application, we define a hub as a node having a degree strictly superior to three.
Only the Standard process contains such hubs: P4HA2, NKD1, RNU4ATAC4P,
C1orf141, IL12RB2, IL23R and USP4.

Jointly, 38 significant gene pairs are involved in at least one method, involving 46
unique genes. Seven chromosomes are involved in epistasis. Notably, 39% of the
epistatic genes are located in chromosome 3 and 22% in chromosome 10.
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4.3.5 Chromatin and Standard mappings partially replicate pre-
vious studies on IBD

Several genetic studies studying epistasis on IBD have been conducted (Lin et al.
2017, 2013; Vermeire et al. 2004; Pedros et al. 2015; McGovern et al. 2009; Glas et
al. 2009). We compared them to our results at the gene level, the minimal functional
unit at which we expect genetic studies on different populations to converge. For
instance several studies showed epistatic alterations involving interleukins, like IL-10
(Lin et al. 2017), IL-17 and IL-23 (McGovern et al. 2009), and IL-2/IL-21 and
IL-23R (Glas et al. 2009). Encouragingly, Standard’s results include interactions
involving both IL-10 and IL-23, although we do not find support for the specific
interactions described in the aforementioned studies. In fact, the Standard protocol
highlights the relevance of interleukins as hubs (Section 4.3.4). Out of the five
gene interactions retrieved in Chromatin pipeline, three of them involve at least
one interleukin. Lin et al. (2013) detected interactions involving NOD2, with both
IL-23R and other genes. Our Standard protocol also detects two potentially new
epistasis interactions involving NOD2.

4.4 Discussion

In this chapter we explore protocols for functional filtering for epistasis detection
on an IBD dataset (Section 4.2.2). This is expected to bring two advantages. The
first one is an increase in statistical power. The high dimensionality of GWAIS
data requires a conservative multiple testing correction and limits the detection
of epistasis with low effect sizes. The proposed protocol tackles this issue, while
controlling for type I error. It does so by limiting the number of tests by filtering
the dataset with functional filters. As we observe in Section 4.3.2, the reduction
is notable. The second advantage is an improvement of the interpretability of the
results, by examining only statistical interactions that map to a known biological
interaction. As shown in Section 4.3.5, the proposed eQTL and, specially, chromatin
mappings provide results which match the biology of IBD, while corresponding to
known interactions. On the other hand, the Standard protocol detects multiple
interactions that are hard to interpret. For instance, several interactions involve
RNA genes of unknown function (e.g. LOC101927272 or LINC02178 ). Hence, our
results stress the relevance of regulatory variants in susceptibility to IBD.

In this chapter, we aim at developing a set of guidelines for the detection of gene
epistasis, with an application to IBD. Nonetheless, epistasis detection at the gene
level still requires making many choices which were out of the scope of this work.
One instance is the choice of encoding for the genotypes. In this work we used
the additive encoding, which can lead to an increased false positive rate (Van
Steen and Moore 2019). Also we focused on linear regression as epistasis detection
algorithm, as it accepts a continuous outcome variable, corrects for main effects, and
is computationally efficient. However, other algorithms which share these properties
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but make different assumptions about epistasis (like the ones used in Chapter 5),
would have been suitable as well.

With regards to the aspects of GWAIS that are within the scope of this work, it
would interesting for the community for us to provide a set of recommendations
based on our experience, and the results justifying each of them. Before we reach
that point, a few extra experiments are required.

Our current protocol produces compelling hypotheses, and shows the benefits of
functional filtering with regards to statistical power and interpretability. However,
the multi-stage nature of the process makes it impossible to find out what each
of the step brings. For instance, if the detected interactions in any dataset are
just a subset of the interactions that could be found without filtering out the
interactions not in Biofilter; if they are a subset of the interactions that could be
found by a joint physical+chromatin+eQTL mapping; or how often are interactions
between genes mapped to SNPs through different mechanisms (e.g. a gene regulated
by eQTL and a gene physically mapped). The answers to such questions are
relevant to the community, and cannot be answered without isolating their effect
from the Biofilter interactions. In other words, it would be useful to just map
the results of a conventional GWAIS result, to observe how they differ from a
conventional mapping. Related to this point, risk SNPs from GWAS are often
located in chromatin that is active in the tissues involved in the disease (Boyle,
Li, and Pritchard 2017). Hence, the presented protocol might lead to the most
biologically plausible epistatic interactions while boosting the power if it focused
exclusively on eQTLs and chromatin mappings obtained in the tissues relevant to
IBD (intestines and leukocytes).

It would also be interesting to explore alternative sources of known interactions. In
this chapter we worked exclusively on interactions from Biofilter, which compiles
multiple databases. The database that Biofilter built contained 37,266 interactions.
This is notably smaller than other gene interaction databases, like HINT (Das and
Yu (2012), 173,797 interactions, used in Chapter 2), or STRING (Szklarczyk et al.
(2019), 11,759,455 interactions). Hence changing databases might result in more,
equally interpretable, detected interactions.

Pathway enrichment analyses can inform about the broader framework in which the
observed gene epistasis occurs. I would like to adapt the “network neighborhood
search” procedure from Yip et al. (2018) to build appropriate gene sets. In summary,
given reference biological network (e.g. the Biofilter network), a gene set for a given
pair of genes is obtained in three steps:

1. Remove the edge connecting the two genes in the reference network.
2. Find the shortest path between them in the reference network.
3. Create a gene set including the initial two genes and all the genes in the

shortest path that are part of the epistasis network as well.

Another important question is which null hypothesis to test in the pathway en-



74
Chapter 4. Boosting interpretability and statistical power in epistasis

detection by using prior biological knowledge

richment analyses. In this regard, the literature often distinguishes two kinds of
test: self-contained and competitive (Wang et al. 2011). As in our study we do not
have gene-wise statistics, we are restricted to the former. Those tests compare the
overlap between a pathway and the gene set to the expected overlap from taking
equally-sized random sets from the universe of genes. This is often tested using
a hypergeometric test. However, this approach requires deciding a priori what
that gene universe is. Selecting all the known genes is not an option, as a GWAIS
experiment surveys all the genome unbiasedly, but not necessarily so all the genes.
This is specially true in an array focused on immunogenomics. Indeed, we observe
this bias across all mappings in the genes mapped to the SNPs with main effects
(Figure 4.6).

Figure 4.6: Plaform bias in the genes hit by SNPs with significant main effects.
Every data point is a gene. The x-axis represents the number of significant SNPs
mapped to that gene. The y-axis represents the expected number, if a random set
of SNPs of the same size were selected

(
( significant SNPs)×( SNPs mapped to gene)

SNPS

)
. In

red, a line with a slope of 1 representing the case were SNPs are selected at random.

Hence, I propose computing the gene background in a dataset specific way. For
instance, the Chromatin results are analyzed in a gene universe where only the genes
with a chromatin mapping to the chip are used. However not all genes are surveyed
at the same resolution, as we observe in Figure 4.4. If two genes are equally involved
in a disease, we are more likely to find an association in the gene which we are
testing more often. Hence, I would like to weigh every gene by the number of SNPs
that map to it, which should provide a conservative null hypothesis.

Lastly, the protocol presented here is a complex, multi-stage approach which can be
useful to any researcher with any GWAIS dataset. In consequence, it would be useful
to provide a dataset-agnostic computational pipeline. The user would just need to
provide a gene-gene network, a SNP-gene mapping, and a GWAIS dataset, and would
be given two epistasic networks, SNP- and gene-based respectively. Generating such
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a pipeline would also allow us to answer the questions outlined above faster.
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Chapter 5

High-order epistasis detection
through fusion of epistasis

networks

The contents of this chapter are based on Héctor Climente-González, Diane Duroux,
Chloé-Agathe Azencott, Kristel Van Steen, High-order epistasis detection through
fusion of epistasis networks (manuscript in preparation).

Abstract: In this chapter we explore the detection of high-order
epistasis in inflammatory bowel disease (IBD). We model high-order
epistasis through a linear regression with interaction terms of orders
up to 4. The number of tests increases exponentially with the order of
the interactions, resulting in low statistical power and computational
challenges. To tackle this, we devised a two-step approach to restrict
the number of tests. In a first step, we apply a variety of second-
order epistasis detection methods, and build an epistasis network that
aggregates all the detected interactions. In a second step, we take all
star subnetworks composed of 3 and 4 nodes, and search for high-
order epistasis between them. The rationale is that SNPs involved in
high-order epistasis are more likely to display second-order as well.
The advantage of this approach is that we keep the number of tests
under control, performing 124 tests instead of the 5× 1017 required to
exhaustively search order 4 interactions. Indeed, we are able to detect
37 high-order interactions (FDR 10%). Mapping these SNP-SNP
interactions to gene-gene interactions suggests the involvement of the
complement system in susceptibility to IBD.

Résumé : Dans ce chapitre nous nous intéressons à la détec-
tion d’interactions épistatiques d’ordre supérieur dans les maladies
chroniques inflammatoires de l’intestin (MICI). Nous modélisions
ces interactions par une régression linéaire comportant des termes
d’interaction allant jusqu’à l’ordre 4. Le nombre de tests statistiques
augmentant de façon exponentielle avec l’ordre des interactions, cela
réduit fortement la puissance statistiques tout en créant des diffi-
cultés calculatoires. Pour résoudre ces problèmes, nous proposons

77
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une approche en deux étapes pour réduire le nombre de tests. Dans
la première étape, nous appliquons diverses méthodes de détection
d’épistasie d’ordre 2, et construisons un réseau d’épistasie qui agrège
toutes les interactions ainsi découvertes. Dans un second temps, nous
testons tous les sous-réseaux en étoiles de 3 ou 4 nœuds. Nous faisons
ici l’hypothèse que les SNPs impliqués dans des interactions d’ordre
3 ou 4 sont plus susceptibles d’apparaître aussi dans des interactions
d’ordre 2. L’avantage de notre approche est de contrôler fortement
le nombre de tests statistiques, ici 124 au lieu des 5 × 1017 requis
pour une recherche exhaustive. Cela nous permet de détecter 37
interaction d’ordre 3 ou 4 (FDR 10%). Traduire ces interactions
SNP-SNP en interactions gène-gène suggère l’implication du système
du complément dans la susceptibilité aux MICI.

5.1 Introduction

Although in the previous chapter we focused on interactions between two loci, some
studies suggest that high-order epistasis, interactions between more than two loci,
that is to say, strongly shapes complex traits (Taylor and Ehrenreich 2015). However,
exhaustively searching for high-order epistasis aggravates the challenges of GWAIS
(Section 1.4): a large number of statistical tests to consider, higher diversity of ways
an interaction can occur, and results harder to interpret. Under the rationale that
high-order interactions are likely to show also second-order effects, second-order
epistasis networks have been leveraged on in the past to detect high-order epistasis
(Hu et al. 2012). In this chapter we explore high-order epistasis interactions in IBD
using a similar approach. We do so in two steps. First, we apply a representative
variety of second-order epistasis detection methods, and construct an epistasis
network. Then we search for high-order epistasis between the SNPs in the network
and their neighbors. As in Chapter 2, the first step also allows us to compare the
different methods.

5.2 Materials and methods

5.2.1 Data, quality control and preprocessing

We studied genetic data from the IIBDGC (Section 1.5.2.1), and performed a quality
control and preprocessing as in Section 4.2.1. Lastly, we performed LD pruning
R2 > 0.75 to remove SNPs in strong LD, taking down the final number of SNPs to
38,225, which yields 7.3× 108 pairs to test. In this chapter we did not apply any
functional pre-filter to the data.
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5.2.2 Epistasis detection methods

We applied a selection of epistasis detection methods that can process continuous
phenotypes and that had a ready-to-use implementation.

5.2.2.1 Linear regression

As in Section 4.2.2.3, we explored two-way epistasis using a linear regression. In this
case, we accounted for multiple testing by setting the family-wise error rate to 0.05.

5.2.2.2 MB-MDR

MB-MDR (Lishout et al. 2013) is an extension of the classical MDR method
(Moore et al. 2006). For a pair of SNPs, MDR classifies every pair of alleles as
either high risk, or low risk, depending on whether for the examined combination,
the cases/controls ratio is positive or negative, respectively. In a cross-validation
setting, the SNP-pairs are ranked using the classification accuracy on unseen samples.
MB-MDR includes improvements over the MDR algorithm. First, it accounts for
ambiguous pairs of alleles where the number of cases and controls are similar,
boosting generalization. Second, MB-MDR extends MDR to continuous phenotypes.
This is done by performing a t-test that compares the continuous trait between the
samples with a specific a pair of alleles with that of the samples with any other
combination. If such difference is significant, the combination of alleles is classified
as high risk or low risk, depending on the directionality of the change; else, it is
considered ambiguous.

We ran MB-MDR with 999 permutations, and a codominant encoding. We kept
interactions with a P-value < 0.05 as in Lishout et al. (2013).

5.2.2.3 EpiHSIC

EpiHSIC (T. Kam-Thong et al. 2011) is a generalization to continuous phenotypes of
EPIBLASTER (Tony Kam-Thong et al. 2011), which works on case-control studies.
EPIBLASTER detects epistasis in a two stage approach. First all SNP pairs are
screened using the difference in Pearson’s correlation between two SNPs between
cases and controls. Then, a logistic regression is used to detect epistasis among the
candidate SNP pairs, similar to our what we do in Section 4.2.2.3. T. Kam-Thong
et al. (2011) show that the difference in correlation coefficients is an instance of
the Hilbert–Schmidt Independence Criterion (HSIC) which a particular choice of
kernels. In EpiHSIC they propose a different selection of kernels that extends the
screening step to continuous phenotypes. We used gpuEpiScan’s R implementation
of this algorithm (Jiang 2019).
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5.2.3 High-order epistasis detection

We built a SNP-SNP epistasis network using all the significant interactions from
the presented methods. On this network, we selected star networks (one central
node connected to all the others) as candidate sets for high-order epistasis detection.
For each candidate set we built a linear model that included all possible interaction
terms. For instance, for a network with three SNPs, A, B and C, we built the
following model:

Y = β0 + β1gA + β2gB + β3gAgB + β4gAgC + β5gBgC + β6gAgBgC ,

where the coefficients are the β terms, and gA, gB and gC are the genotypes under
additive encoding for SNPs A, B and C respectively. We consider that there is a
3-way epistatic interaction between these three genes if β6 is significantly different
from 0. As under the null hypothesis the β coefficients follow a standard Normal
distribution, we evaluated a departure from it using a t-test. We restricted the sets
to star subnetworks of size 3 and 4, as the number of tests grows exponentially
with the number of SNPs. We accounted for multiple testing by setting the false
discovery rate to 10%. For this purpose, the total number of tests was the number
of β for terms of order 3 and 4 for which a β was obtained.

5.2.4 Code availability

The different epistasis detection methods are implemented in pipelines with a similar
interface, available on GitHub (https://github.com/hclimente/gwas-tools). The
code necessary to reproduce this chapter’s results, altogether with the corresponding
analyses, are available on GitHub as well (https://github.com/hclimente/waffles).

5.3 Results

5.3.1 Epistasis detection methods produce relatively similar re-
sults

We applied different methods to search for epistatic interactions in the IIBDGC
dataset (Section 5.2.2). From these interactions, we built an epistasis network that
included all significant pairs from any of the methods. In total they retrieved 823
epistatic interactions involving 459 SNPs (Figure 5.1). MB-MDR is the method that
detects the largest number of interactions (741), followed by logistic regression (68)
and EpiHSIC (14). This is not surprising, since we did not apply any multiple testing
correction to MB-MDR’s output. Despite difference in size, MB-MDR’s solutions
greatly overlap with logistic regression’s (37, 54.4%) and EpiHSIC (3, 21.4%) (Figure
5.2). In the same vein, 110 of the 459 SNPs in epistasis have significant main effects
themselves (Fisher’s Exact Test P-value < 2.2× 10−16 on the overlap), despite both
MB-MDR and logistic regression accounting for main effects. This large overlap

https://github.com/hclimente/gwas-tools
https://github.com/hclimente/waffles
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points to a large agreement on the biological mechanisms of the disease. It also
motivates searching for high-order epistasis preferentially among the subset of SNPs
involved in second order interactions.

Figure 5.1: Overview of the SNP epistasis networks produced by different epistasis
detection (Section 5.2.2). The network is split into several panels to depict the
source of each interaction.
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Figure 5.2: Overlap between the solutions from the different epistasis detection
methods. Note that the y-axis is in logarithmic scale.

5.3.2 High-order epistasis interactions in IBD

We searched for 3rd and 4th order epistasis in 124 star subnetworks from the
aggregated network (Section 5.2.3). Out of them 37 are significant at FDR 10%
(Figure 5.4). The high proportion of the tested interactions that are significant
(29.8%) supports the pertinence of our approach. Only three of the tested star
subnetworks involved edges from different sources, probably due to the difference in
solution size between MB-MDR and the other methods.
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Figure 5.3: Main effects on IBD, measured using a logistic regression on the case-
control phenotype. The 7 largest principal components are included in the model as
covariates. SNPs involved in an epistasis interaction are colored in dark grey.
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Figure 5.4: Overview of the detected high-order epistasis interactions, shown on the
binary epistasis network. The edges involved in the 124 tested 3rd and 4th order
interactions are highlighted in blue; the 37 among those that were significant, in red.
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5.3.3 Mapping SNP to genes involves the complement system

We mapped the 823 SNP-SNP interactions to gene-gene interactions. We used any
of the maps described in Section 4.2.2.1, using exclusively genes with a HUGO
symbol. As in Chapter 4, we removed genes in the HLA regions and self-interactions.
But, in contrast with that chapter, we make use of all three mappings at once, and
hence expect gene-gene interactions where the genes were mapped via two different
mappings. This resulted in 1,113 different genes and 20,826 different gene-gene
interactions. When we restricted ourselves only to those binary interactions involved
in one of the 37 significant high-order interactions, we obtained 162 genes and 5,273
candidate gene-pairs. This one-to-many mapping illustrates well the problem of
linking SNP-SNP interactions to their functional consequences. Restricting the
5,273 interactions only to those that exist on STRING (Szklarczyk et al. 2019), we
reduced the number to 892 interactions involving 94 genes. We decided to focus
on this latter set of interactions. Although it is doubtful that all these gene-gene
interactions are truly linked to the disease, we conjecture that it will be enriched
in relationships truly associated to the disease. The high interconnectedness of
the network (Figure 5.1) gives support to this idea, seeming to capture a reduced
number of susceptibility mechanisms.

We first studied how many SNP-SNP interactions supported every gene-gene inter-
action. The gene-gene interactions with higher support involve immunity-related
genes. More specifically, they involve multiple genes from the complement system
(C4A, C4B and, to a lesser extent, C2 ). This set of genes is part of the innate
system, and is part of the organism’s reaction to pathogens. The involvement of
the complement system in IBD has received some attention lately (Jain et al. 2014;
Heybeli 2016; Sina, Kemper, and Derer 2018), as mice lacking complement proteins
suffer intestinal infammation similar to IBD. In our results, we observe an interaction
between the three aforementioned genes of the complement, and in greater numbers
with other genes, the one supported by most SNP-SNP interactions being NOTCH4.

5.4 Discussion

In this chapter I apply three methods for second order epistasis detection to the
IIBDGC dataset. Most of the detected interactions came from the same method,
MB-MDR, which exhibited a high sensitivity. Consistent with the observation that
SNPs with main effects are involved in such epistatic interactions, we detected 3rd
and 4th order interactions between the many SNPs with two-way epistasis. When
we mapped the SNP pairs to candidate gene pairs, we observed that many gene-gene
interactions involved genes involved in the complement system. This gives a genetic
rationale to the recent observations of the involvement of the complement system in
the etiology of IBD.

However, our approach has some shortcomings. First, searching for high-order
epistasis in hubs from the epistatis network is not possible under the current
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approach. For instance, the node with the highest degree has 39 neighbors, which
implies building a model which includes interaction terms up to order 39. In this
regard, a possible way forward would be dividing such star subnetworks into sets of
3 and 4 nodes, and looking exclusively for 3rd and 4th order interactions respectively
within them. Another issue is the mapping of SNPs pairs to gene pairs. In this
regard, our work in Chapter 4 is promising, and answering the questions remaining
in that project will pave the way to this one. Some of these questions are whether
it is beneficial to use tissue-specific SNP-gene mappings, when should a gene-gene
filter be used, or how to appropriately carry out a pathway enrichment analysis on
epistasis results. However, this chapter presents new challenges in these fronts as well,
like how to use binary interactions when we work on ternary interactions. Although
here I decomposed them into binary interactions, it is worth considering higher
order gene-interactions obtained from databases, namely co-complexes. Another
open question is how the results of the presented approach compare to the results
of existing methods to detect high-order interactions (Llinares-López et al. 2018;
Suzumura et al., n.d.; Terada et al. 2016).

Additionally, in this study we faced a scarcity of methods that work on continu-
ous phenotypes or accept covariates. Such methods are necessary to account for
population structure in epistasis detection. In this chapter I have presented three
such methods, and we have located a few more: GenEpi (Chang et al. 2018), and
several approaches based on random forest-based approaches (Yoshida and Koike
2011; Li et al. 2016) or mutual information (Pensar et al. 2019). Adding some of
these methods to protocol is likely to increase the number of detected high-order
interactions. Additionally, I see this as a good opportunity to compare the methods,
as has been done already on methods that work on case-control phenotypes (Shang
et al. 2011; Chatelain et al. 2018).
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Conclusions

In the last 10 years great progress has been made in the understanding of the genetic
architecture of complex diseases through GWA(I)S. That success would not have
been possible without the effort of multiple national and international consortia who
coordinated research groups to tackle specific diseases. Nonetheless, the GWA(I)S
experimental settings present challenges that hinder the discovery of susceptibility
mechanisms, our understanding of biology and, ultimately, improving diagnosis and
clinical care. Some of these challenges are low statistical power, the difficulty to
link associated genotypes to functional changes, the multiplicity of ways to detect
epistasis, and properly accounting for LD in the statistical treatment of the data.
During my PhD I have explored how network methods can be used to tackle these
challenges.

In Chapter 2 we applied and critically evaluated different high-score subnetwork
search methods to the GENESIS breast cancer GWAS dataset. Such methods
are particularly relevant in GWAS, as they address some of the drawbacks of the
experimental setting: low statistical power and interpretability. Most network
methods produced a biologically plausible answer, which by itself deepens our
understanding of the susceptibility mechanisms acting out in this specific trait.
However, this methodological comparison also highlights how radically different the
solutions are from each other. This is the product of different ways of modeling
the informal concept of high-score subnetwork mathematically. We combined the
different solutions into a consensus network, which was simpler than the largest
individual solutions, but preserved their most important topological and biological
properties. Network aggregation is a promising approach to the multiplicity of
network methods.

In Chapter 3 I presented martini, an R implementation of SConES, one of the
methods I used in Chapter 2, that addresses some of its initial shortcomings,
extending it to case-control phenotypes, and adding hyperparameter selection options
and support for covariates. As I show Chapter 2, and expand in this chapter, SConES
is a particularly flexible algorithm among high-score subnetwork search methods.
Specifically, it has two hyperparameters that allow to fine-tune the topology and
the sparsity of the selected subnetwork. Unfortunately, this flexibility comes at
the price of appropriately tuning these parameters, an issue that is exacerbated
by the instability of the solutions. In this regard, the feature selection scores I
implemented helped finding more realistic solutions in some simulations, although

85



86 Chapter 6. Conclusions

one could still improve upon this proposition. One possibility would be to score
the solution using the topology (edge density, centrality betweenness, number of
connected components).

In Chapter 4 we propose a protocol to improve both the statistical power and the
interpretability of GWAIS, and apply it to the IIBDGC dataset. In essence, we
employ three different ways of mapping SNPs to known gene interactions (physical,
eQTL, and chromatin), and only test the corresponding pairs of SNPs. Indeed,
we observe that the proposed protocols reduce the number of tests, and detect
interpretable interactions which are not found using a conventional approach. For
instance, the eQTL filter produces more SNP interactions than any other mapping,
while the chromatin filter detected gene interactions that are strongly related to
interleukins, a immune system family of molecules involved in IBD. Despite the
promising results, there are two aspects of the protocol that need to be refined:
decoupling SNP-gene mapping from known gene interactions, to study the contribu-
tion of each to the positive results; and topping the protocol with an approach to
map the detected interactions to affected pathways.

In Chapter 5 I apply a strategy for high-order epistasis detection to IBD. In essence,
it consists of two steps. The first step involves building a SNP-SNP epistasis network
using multiple epistasis detection tools. The second one consists on searching
high-order epistasis between specific nodes of the network and their neighbors.
Indeed, this approach boosts the statistical power of high-order epistasis detection
by reducing the number of tests by 15 orders of magnitude, and allows us to detect
37 high-order interactions. In an exercise similar in its spirit to that of Chapter 4, we
map these interactions to known gene-gene interactions using functional SNP-gene
mappings. In this way we link the detected interactions to the complement system,
an emergent candidate susceptibility mechanism to IBD.

In this thesis I illustrated several hurdles in our way to identifying and understanding
the genetics of complex diseases. I now conclude with a look into the state of the
field, and future research directions related to my contribution.

The future of network methods for GWAS. The network methods I worked
with during my PhD are notably heterogeneous. Although that heterogeneity stems
from divergences in what different researchers aim to find, being able to obtain
different points of view from a disease is a strength. However, clearer language
and more exhaustive comparisons to other methods would be well-received in the
methods’ publications. With the exception of SConES, all high-score subnetwork
search methods I tested work on gene-gene interaction networks. SConES on the
other hand uses SNP-SNP networks. The latter kind of networks operate at a lower
level than the gene and, hence, potentially can handle more information. For instance,
it could contain information about the specific protein residues that participate in
a protein-protein interface. It could also encode LD blocks, by weighing the edges
of the network proportionally to the correlation between SNPs. The benefits from
using SNP-SNP networks are highlighted by the the biologically relevant results
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obtained with SConES even when no protein-protein information was added to the
SNP network. On the other hand, the SNP networks that I handled in this thesis
were orders of magnitude more complex than the corresponding protein-protein
interaction networks for the same dataset. This increases runtime prohibitively, and
new methods, or faster versions of the current ones, are required to explore the
potential of such, more informative, SNP networks.

The role of network methods in bioinformatics. My experience with network
methods sometimes clashed with other people’s impressions of the field during
informal exchanges. In particular, some researchers receive network results and
methods with a mix of puzzlement in the face of the overwhelming amount of
information they represent, and a subsequent skepticism. In my opinion, this
anecdotal evidence speaks to the state of network biology as a field, which lacks
clear, agreed on, protocols and goals. Hence, I believe a multi-front effort must be
made to close this gap. A first line of attack involves more accessible tools, with
similar interfaces and proper documentation. One of my goals in Chapter 2 was
to create such an interface for the tools I used. Another subject to tackle is the
development of better tools to visualize and manipulate network results. Innovative
visualizations like hive plots (Krzywinski et al. 2012), and the package tidygraph to
manipulate networks (Pedersen 2019) are moves in the right direction. Interaction
databases are also part of the inaccessibility issue: Huang et al. (2018) evaluated 21
such databases, often collecting overlapping information, and with unclear definitions
of what interaction means. Efforts must be unified towards a single database, with
a user-friendly interface and clarity about its contents – with the caveat that such
efforts may simply result in yet another database that will be used in parallel with
the others1. In this regard, I believe HINT (Das and Yu 2012), which aggregates
multiple databases, is a step in the right direction. This relates to the issue, also
discussed in Chapter 2, of the different types of biological interactions: despite the
preponderance of protein-protein interactions, other types of interactions (like RNA
– RNA or transcription factor – DNA) need to be better compiled and characterized.

The future of GWAS. Despite the issues I discussed, GWAS have had a sound
success in identifying genetic associations with complex traits, therefore helping
understanding their genetic basis. Many past and present initiatives are leveraging
on more data to solve some of these issues: massive prospective cohort studies like
UK Biobank (Sudlow et al. 2015), more GWAS on understudied populations, and
initiatives in functional genomics like ENCODE (The ENCODE Project Consortium
2012). However, many statistical questions remain to be solved. Despite some efforts
to unify practices (Wang, Cordell, and Van Steen 2018), the field is dominated by
laboratory- and method-specific practices, which are rarely justified in published
articles. For instance, whether to LD prune or not; map SNPs to the exact coor-
dinates of a gene, or include some kilobases upstream and downstream; or what
is the minimum MAF of SNPs to analyze. An open conversation is needed which

1https://xkcd.com/927/

https://xkcd.com/927/
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confronts different protocols, and reaches consensuses where possible, and justified
guidelines when it is not. On this front, network methods can be powerful allies, as
shown in Chapter 2, but work in other fields, both experimental and in silico, is also
required. For instance a proper incorporation of LD patterns to processing analysis
might lead to both an increase in statistical power (by reducing the number of tests
to one per independent test) and interpretability (by considering the true unit of
variation), while accounting for population structure by default (as it is caused by
LD). Also, the technology of choice for GWAS is slowly shifting from SNP arrays
to the increasingly affordable whole genome-sequencing. This in itself is bringing
a substantial change to the GWAS scene, by providing a deeper coverage which
includes more rare variants. Nonetheless, this increase in the number of variants
studied only increases our need for appropriately treating LD.

The future of GWAIS. Epistasis detection is an open and promising field. As in
high-score subnetwork search, and as I describe in Chapter 5, epistasis detection can
be achieved through a multiplicity of tools that model it in different ways. As with
the aforementioned network methods, we can exploit that multiplicity by collapsing
the results into a unified view of disease. Yet, a few challenges remain ahead. The
first one, developed above, is the lack of general guidelines for GWA(I)S. The second
one, is the inability of most methods to account for population structure, either
by accepting covariates, or by accepting an adjusted, continuous phenotype. This
last problem also comes up in the study of continuous phenotypes, which were
beyond the scope of this thesis. In Chapter 4 I explored the possible contribution
of functional pre-filtering to epistasis detection. In this regard, and encouraged
by my experiences described in Chapters 2 and 3, I believe in the potential of
epistasis-detection methods that exploit prior knowledge in the form of a network.

Open science with sensitive data. I would like to finish reflecting about my
experience on open science as a GWAS researcher. Understandably, GWAS data
from human samples requires a careful treatment, as it contains very sensitive
information about both the participants and their families. For that reason, working
on GWAS data requires compromising on open data, one of the pillars of open
science. Hence, at the moment, work on genetic data requires trust from all the
other researchers who do not have access to a particular dataset. This might change
in the future, when data obfuscation solutions that allow to operate on a dataset
while hiding the identifiable information (Azencott 2018) are fully developed. Yet,
for the moment, the lack of open data should lead to a stronger commitment to open
algorithms and results, to facilitate as much as possible the application of published
tools to other datasets and study if the conclusions hold.
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Samuel Kaski5 and Makoto Yamada4,6,*

1Institut Curie, PSL Research University, Paris F-75005, France, 2INSERM, U900, Paris F-75005, France, 3MINES

ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris F-75006, France, 4RIKEN AIP,

Tokyo 103-0027, Japan, 5Department of Computer Science, Aalto University, Espoo, Finland and 6Department of in-

telligence science and technology, Kyoto University, Kyoto 606-8501, Japan

*To whom correspondence should be addressed.

Abstract

Motivation: Finding non-linear relationships between biomolecules and a biological outcome is

computationally expensive and statistically challenging. Existing methods have important draw-

backs, including among others lack of parsimony, non-convexity and computational overhead.

Here we propose block HSIC Lasso, a non-linear feature selector that does not present the previous

drawbacks.

Results: We compare block HSIC Lasso to other state-of-the-art feature selection techniques in

both synthetic and real data, including experiments over three common types of genomic data:

gene-expression microarrays, single-cell RNA sequencing and genome-wide association studies.

In all cases, we observe that features selected by block HSIC Lasso retain more information about

the underlying biology than those selected by other techniques. As a proof of concept, we applied

block HSIC Lasso to a single-cell RNA sequencing experiment on mouse hippocampus. We discov-

ered that many genes linked in the past to brain development and function are involved in the bio-

logical differences between the types of neurons.

Availability and implementation: Block HSIC Lasso is implemented in the Python 2/3 package

pyHSICLasso, available on PyPI. Source code is available on GitHub (https://github.com/riken-aip/

pyHSICLasso).

Contact: myamada@i.kyoto-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomarker discovery, the goal of many bioinformatics experiments,

aims at identifying a few key biomolecules that explain most of an

observed phenotype. Without a strong prior hypothesis, these mo-

lecular markers have to be identified from data generated by high-

throughput technologies. Unfortunately, finding relevant molecules

is a combinatorial problem: for d features, 2d binary choices must

be considered. As the number of features vastly exceeds the number

of samples, biomarker discovery is a high-dimensional problem. The

statistical challenges posed by such high-dimensional spaces have

been thoroughly reviewed elsewhere (Clarke et al., 2008; Johnstone

and Titterington, 2009). In general, due to the curse of dimensional-

ity, fitting models in many dimensions and on a small number of

samples is extremely hard. Moreover, since biology is complex, a

simple statistical model such as a linear regression might not be able

to find important biomarkers. Those that are found in such experi-

ments are often hard to reproduce, suggesting overfitting. Exploring

the solution space and finding true biomarkers are not only statistic-

ally challenging, but also computationally expensive.

In machine learning terms, biomarker discovery can be formu-

lated as a problem of feature selection: identifying the best subset of

features to separate between categories, or to predict a continuous

response. In the past decades, many feature selection algorithms that

deal with high-dimensional datasets have been proposed. Due to the

difficulties posed by high-dimensionality, linear methods tend to be

the feature selector of choice in bioinformatics. A widely used linear

feature selector is the Least Absolute Shrinkage and Selection

Operator, or Lasso (Tibshirani, 1996). Lasso fits a linear model be-

tween the input features and phenotype by minimizing the sum

of the least square loss and an ‘1 penalty term. The balance between

the least square loss and the penalty ensures that the model explains
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the linear combination of features, while keeping the number of fea-

tures in the model small. However, in many instances biological

phenomena do not behave linearly. In such cases, there is no guaran-

tee that Lasso can capture those non-linear relationships or an ap-

propriate effect size to represent them.

In the past decade, several non-linear feature selection algo-

rithms for high-dimensional datasets have been proposed. One of

the most widely used, called Sparse Additive Model, or SpAM

(Ravikumar et al., 2009), models the outcome as a sparse linear

combination of non-linear functions based on kernels. However,

since SpAM assumes an additive model over the selected features, it

cannot select important features if the phenotype cannot be repre-

sented by the additive functions of input features—for example, if

there exist a multiplicative relationship between features (Yamada

et al., 2014).

Another family of non-linear feature selectors are association-

based: they compute the statistical association score between each in-

put feature and the outcome, and rank features accordingly. Since

these approaches do not assume any model about the output, they can

detect important features as long as an association exists. When using

a non-linear association measure, such as the mutual information

(Cover and Thomas, 2006) or the Hilbert–Schmidt Independence

Criterion (HSIC) (Gretton et al., 2005), they select the features with

the strongest dependence with the phenotype. However, association-

based methods do not account for the redundancy between the fea-

tures, which is frequent in biological datasets, since they do not model

relationships between features. Hence, many redundant features are

typically selected, hindering interpretability. This is important in appli-

cations like drug target discovery, where only a small number of tar-

gets can be validated, and it is crucial to discriminate the most

important target out of many other top-ranked targets.

To deal with the problem of redundant features, Peng et al.

(2005) proposed the minimum redundancy maximum relevance

(mRMR) algorithm. mRMR can select a set of non-redundant fea-

tures that have high association to the phenotype, while penalizing

the selection of mutually dependent features. Ding and Peng (2005)

used mRMR to extract biomarkers from microarray data, finding

that the selected genes captured better the variability in the pheno-

types than those identified by state-of-the-art approaches. However,

mRMR has three main drawbacks: the optimization problem is dis-

crete; it must be solved by a greedy approach and the mutual infor-

mation estimation is difficult (Walters-Williams and Li, 2009).

Moreover, it is unknown whether the objective function of mRMR

has good theoretical properties such as submodularity (Fujishige,

2005), which would guarantee the optimality of the solution.

Recently, Yamada et al. (2014) proposed a kernel-based mRMR

algorithm called HSIC Lasso. Instead of mutual information, HSIC

Lasso employs the HSIC (Gretton et al., 2005) to measure depend-

ency between variables. In addition, it uses an ‘1 penalty term to se-

lect a small number of features. This results in a convex

optimization problem, for which one can therefore find a globally

optimal solution. In practice, HSIC Lasso has been found to outper-

form mRMR in several experimental settings (Yamada et al., 2014).

However, HSIC Lasso is memory intensive: its memory complexity

is Oðdn2Þ, where d is the number of features and n is the number of

samples. Hence, HSIC Lasso cannot be applied to datasets with

thousands of samples, nowadays widespread in biology. A

MapReduce version of HSIC Lasso has been proposed to address

this drawback, and it is able to select features in ultra-high dimen-

sional settings (106 features, 104 samples) in a matter of hours

(Yamada et al., 2018). However, it requires a large number of com-

puting nodes, inaccessible to common laboratories. Since it relies on

the Nyström approximation of Gram matrices (Schölkopf and Smola,

2002), the final optimization problem is no longer convex, and hence

finding a globally optimal solution cannot be easily guaranteed.

In this article, we propose block HSIC Lasso: a simple yet effect-

ive non-linear feature selection algorithm based on HSIC Lasso. The

key idea is to use the recently proposed block HSIC estimator

(Zhang et al., 2018) to estimate the HSIC terms. By splitting the

data in blocks of size B� n, the memory complexity of HSIC Lasso

goes from Oðdn2Þ down to OðdnBÞ. Moreover the optimization

problem of the block HSIC Lasso remains convex. Through its ap-

plication to synthetic data and biological datasets, we show that

block HSIC Lasso can be applied to a variety of settings and com-

pares favorably with the vanilla HSIC Lasso algorithm and other

feature selection approaches, linear and non-linear, as it selects fea-

tures more informative of the biological outcome. Further consider-

ations on the state of the art and the relevance of block HSIC Lasso

can be found in Supplementary File 1.

2 Materials and methods

2.1 Problem formulation
Assume a dataset with n samples described by d real-valued features,

each corresponding to a biomolecule (e.g. the expression of one

transcript, or the number of major alleles observed at a given SNP),

and a label, continuous or binary, describing the outcome of interest

(e.g. the abundance of a target protein, or disease status). We denote

the ith sample by xi ¼ ½xð1Þi ; x
ð2Þ
i ; . . . ;x

ðdÞ
i �
> 2 R

d, where > denotes

transpose; and its label by yi 2 Y, where Y ¼ f0; 1g for a binary out-

come, corresponding to a classification problem, and Y ¼ R for a

continuous outcome, corresponding to a regression problem. In add-

ition, we denote by f k ¼ ½x
ðkÞ
1 ; x

ðkÞ
2 ; . . . ; x

ðkÞ
n �> 2 R

n the kth feature in

the data.

The goal of supervised feature selection is to find m features

(m� d) that are the most relevant for predicting the output y for a

sample x.

2.2 HSIC Lasso
Measuring the dependence between two random variables X and Y

can be achieved by the HSIC (Gretton et al., 2005):

HSICðX;YÞ ¼ Ex;x0 ;y;y0 ½Kðx; x0ÞLðy; y0Þ�

þEx;x0 ½Kðx;x0Þ�Ey;y0 ½Lðy; y0Þ�
�2Ex;y½Ex0 ½Kðx;x0Þ�Ey0 ½Lðy; y0Þ��;

(1)

where K : Rd � R
d ! R and L : Y � Y ! R are positive definite

kernels, and Ex;x0 ;y;y0 denotes the expectation over independent pairs

(x, y) and ðx0; y0Þ drawn from p(x, y). HSICðX;YÞ is equal to 0 if X

and Y are independent, and is non-negative otherwise.

In practice, for a given Gram matrix Kk 2 R
n�n, computed from

the kth feature, and a given output Gram matrix L 2 R
n�n, the nor-

malized variant of HSIC is computed using its V-statistic estimator

as (Yamada et al., 2018)

HSICvðf k; yÞ ¼ trðKk LÞ; (2)

where for a Gram matrix K 2 R
n�n; K is defined as K ¼

HKH=jjHKHjjF with H 2 R
n�n a centering matrix defined by

Hij ¼ dij � 1
n. Here dij is equal to 1 if i¼ j and 0 otherwise, and tr

denotes the trace. Note that we employ the normalized variant of

the original empirical HSIC.

The largest the value of HSICvðf k; yÞ, and the more dependent

the kth feature and the outcome are. Song et al. (2012) therefore
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proposed to perform feature selection by ranking the features by

descending value of HSICvðf k; yÞ.
With HSIC Lasso, Yamada et al. (2014) extend the work of Song

et al. (2012) so as to avoid selecting multiple redundant features.

For this purpose, they introduce a vector a ¼ ½a1; . . . ; ad�> of feature

weights and solve the following optimization problem:

max
a�0

Xd

k¼1

akHSICvðf k; yÞ �
1

2

Xd

k;k0¼1

akak0HSICvðf k; f k0 Þ � kjjajj1: (3)

The first term enforces selected features that are highly depend-

ent on the phenotype; the second term penalizes selecting mutually

dependent features and the third term enforces selecting a small

number of features. The selected features are those that have a non-

zero coefficient ak. Here k > 0 is a regularization parameter that

controls the sparsity of the solution: the larger k, the fewer features

have a non-zero coefficient.

The HSIC Lasso optimization problem can be rewritten as

min
a�0
jjvecðLÞ � ½vecðK1Þ; . . . ; vecðKdÞ�ajj22 þ kjjajj1;

where vec : Rn�n ! R
n2

;K 7!½K11; . . . ;K1n;K21; . . . ;Knn� is the vec-

torization operator. Using this formulation, we can solve the prob-

lem using an off-the-shelf non-negative Lasso solver.

HSIC Lasso performs well for high-dimensional data. However,

it requires a large memory space (Oðdn2Þ), since it stores d Gram

matrices. To handle this issue, two approximation methods have

been proposed. The first approach uses a memory lookup to dramat-

ically reduce the memory space (Yamada et al., 2014). However,

since this method needs to perform a large number of memory look-

ups, it is computationally expensive. Another approach (Yamada

et al., 2018) is to rewrite the problem using the Nyström approxima-

tion (Schölkopf and Smola, 2002) and solve the problem using a

cluster. However using the Nyström approximation makes the prob-

lem non-convex.

2.3 Block HSIC Lasso
In this article, we propose an alternative HSIC Lasso method for

large-scale problems, the block HSIC Lasso, which is convex and

can be efficiently solved on a reasonably sized server.

Block HSIC Lasso employs the block HSIC estimator (Zhang

et al., 2018) instead of the V-statistics estimator of Equation (2).

More specifically, to compute the block HSIC, we first partition the

training dataset into n=B partitions ffðx‘i ; y‘i Þg
B
i¼1g

n=B
‘¼1, where B is the

number of samples in each block. Note that the block size B is set to

a relatively small number such as 10 or 20 (B� n). Then, the block

HSIC estimator can be written as

HSICbðf k; yÞ ¼
B

n

Xn=B
‘¼1

HSICvðf ð‘Þk ; yð‘ÞÞ;

where f
ð‘Þ
k 2 R

B represents the kth feature vector of the ‘th partition.

Note that the computation of HSICvðf ð‘Þk ; yð‘ÞÞ requires OðB2Þ mem-

ory space. Therefore, the required memory for the block HSIC esti-

mator is OðnB2Þ, where nB� n2.

If we denote by K
ð‘Þ
k 2 R

B�B the restriction of Kk to the ‘th parti-

tion, and by L
ð‘Þ 2 R

B�B the restriction of L to the ‘th partition, then

HSICv

�
f
ð‘Þ
k ; yð‘Þ

�
¼ tr

�
K
ð‘Þ
k L

ð‘Þ� ¼ vec
�

K
ð‘Þ
k

�>
vec
�

L
ð‘Þ�

:

Block HSIC Lasso is obtained by replacing the HSIC estimator

HSICv with the block HSIC estimator HSICb in Equation (3):

max
a�0

Xd

k¼1

akHSICbðf k; yÞ �
1

2

Xd

k;k0¼1

akak0HSICbðf k; f k0 Þ � kjjajj1:

Using the vectorization operator, the block estimator is written as

HSICbðf k; f k0 Þ ¼ u>k uk0 ; HSICbðf k; yÞ ¼ u>k v;

where

uk ¼
ffiffiffiffi
B

n

r
vec
�

K
ð1Þ
k

�>
; . . . ; vec

�
K
ðn=BÞ
k

�>� �>
2 R

nB;

v ¼
ffiffiffiffi
B

n

r
vec
�

L
ð1Þ�>

; . . . ; vec
�

L
ðn=BÞ�>� �>

2 R
nB:

Hence, block HSIC Lasso can also be written as

min
a�0
jjv� U>ajj22 þ kjjajj1;

where U ¼ ½u1; . . . ;ud� 2 R
nB�d.

Since the objective function of block HSIC Lasso is convex, we

can obtain a globally optimal solution. As with HSIC Lasso, we can

solve block HSIC Lasso using an off-the-shelf Lasso solver. Here, we

use the non-negative least angle regression-LASSO, or LARS-

LASSO (Efron et al., 2004), to solve the problem in a greedy man-

ner. Rather than setting the hyperparameter k, for example by cross-

validation, which would be computationally intensive, this allows us

to use a predefined number of features to select.

The required memory space for block HSIC Lasso is O(dnB),

which compares favorably to vanilla HSIC Lasso’s Oðdn2Þ; as the

block size B� n, the memory space is dramatically reduced.

However, the computational cost of the proposed method is still

large when both d and n are large. Thus, we implemented the pro-

posed algorithm using multiprocessing by parallelizing the computa-

tion of K
ð‘Þ
k . Thanks to the combination of block HSIC Lasso and

the multiprocessing implementation, we can efficiently find solu-

tions on large datasets with a reasonably sized server.

2.4 Improving selection stability using bagging
Since we need to compute block HSIC of the paired data

ffðx‘i ; y‘i Þg
B
i¼1g

n=B
‘¼1 with a fixed partition, the performance can be

highly affected by the partition. Thus, we propose to use a bagging

version of the block HSIC estimator. Given M random permutations

of the n samples, we define bagging block HSIC as

HSICbbðf k; yÞ ¼
1

M

XM
m¼1

B

n

Xn=B
‘¼1

HSICv

�
f
ð‘;mÞ
k ; yð‘;mÞ

�
¼ u>k v;

where f
ð‘;mÞ
k is the kth feature vector restricted to the ‘th block as

defined by the mth permutation,

uk ¼
ffiffiffiffiffi
1

M

r
u
ð1Þ>
k ; . . . ;u

ðMÞ>
k

h i>
2 R

nBM;

v ¼
ffiffiffiffiffi
1

M

r
vð1Þ

>
; . . . ; vðMÞ

>
h i>

2 R
nBM;

and u
ðmÞ
k 2 R

nB and v
ðmÞ
k 2 R

nB are the vectors of the mth block

HSIC Lasso, respectively.

Hence, bagging block HSIC Lasso can be written as

min
a�0
jjv� U

>
ajj22 þ kjjajj1;

where U ¼ ½u1; . . . ;ud� 2 R
nBM�d.
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We consider the bagging part to be an integral part of the block

HSIC Lasso algorithm. That is why, in this text, every time we men-

tion ‘block HSIC Lasso’, we refer to bagging block HSIC Lasso.

Note that the memory space O(dnBM) required for B¼60 and

M¼1 is equivalent to B¼30 and M¼2. Empirically, we found that

they were providing equivalent feature selection accuracy (Section

4.4).

2.5 Adjusting for covariates
Data analysis tasks in bioinformatics can often be confounded by

technical (e.g. batch) or biological variables (e.g. age), which might

mask the relevant variables. To adjust for their effect, we consider

the following variant of the block HSIC Lasso:

min
a�0
jjv�U>a� bzjj22 þ kjjajj1;

where b � 0 is a tuning parameter and

z ¼
ffiffiffiffi
B

n

r
vec
�

K
ð1Þ
cov

�>
; . . . ; vec

�
K
ðn=BÞ
cov

�>� �>
2 R

nB

contains the covariate information. Kcov is the Gram matrix com-

puted from the covariate input matrix Xcov. Since for most purposes

in bioinformatics we want to remove all information from the cova-

riates, we set b to

b̂ ¼ HSICbðy;XcovÞ
HSICbðXcov;XcovÞ

¼ HSICbðy;XcovÞ;

which is the solution of minbjjv� bzjj22. Here, we used the property

HSICbðXcov;XcovÞ ¼ 1.

3 Experimental setup

3.1 Feature selection methods
HSIC Lasso and block HSIC Lasso: We used HSIC Lasso and block

HSIC Lasso implemented in the Python 2/3 package pyHSICLasso.

In block HSIC Lasso, M was set to 3 in all experimental settings; the

block size B was set on an experiment-dependent fashion. In all the

experiments, when we wanted to select k features, HSIC Lasso ver-

sions were required to first retrieve 50 features, and then the top k

features were selected as the solution.

In this article, we use the following kernels:

• The RBF Gaussian kernel for pairs of continuous variables, of

continuous outcomes, or one of each, and for pairs of a continu-

ous variable and categorical outcome:

K : x
ðkÞ
i ;x

ðkÞ
j 7! exp �

jjxðkÞi � x
ðkÞ
j jj

2
2

2r2

 !
;

where r2 > 0 is the bandwidth of the kernel;
• The normalized Delta kernel for categorical variables (or

outcomes):

L : yi; yj 7!
1

nc
if yi ¼ yj ¼ c

0 otherwise;

8<
:

where nc is the number of samples in class c.

mRMR: mRMR selects features that are highly associated with the

outcome and are non-redundant (Peng et al., 2005). To that end, it

uses mutual information between different variables and between

the outcome and the variables.

We used a Cþþ implementation of mRMR (Peng, 2005). The

maximum number of samples and the maximum number of features

were set to the actual number of samples and features in the data. In

regression problems, discretization was set to binarization.

LARS: LARS is a forward stage-wise feature selector (Efron

et al., 2004). It is an efficient way of solving the same problem as

Lasso. We used the SPAMS implementation of LARS (Mairal et al.,

2010), with the default parameters. Note that this is not the imple-

mentation of LARS that we use in (block) HSIC Lasso, which is the

non-negative LARS solver implemented in pyHSICLasso.

3.2 Evaluation of the selected features
Selection accuracy on simulated data: We simulated high-

dimensional data where only a few variables were truly related to

the outcome. We used these datasets to evaluate the ability of the

tested algorithms to find the true causal variables, instead of others,

likely spuriously correlated to the outcome. To that end, we

requested each algorithm to retrieve the known number of causal

features. Then, we studied how many of them were actually causal.

Classification with a random forest: In classification datasets, we

evaluated the amount of information retained in the features

selected by a given method by evaluating the performance of a ran-

dom forest classifier based only on those features. We used random

forests because of their ability to handle non-linearities. We split the

data between a training and a test set, and selected features on the

training set only. We estimated the best parameters by cross-

validation on the training set: the number of trees (200, 500), the

maximum depth of the threes (4, 6, 8), the number of features to

consider (
ffiffiffi
d
p

; log 2d), and the criterion to measure the quality of

the chosen features (Gini impurity, information gain). Then, we

trained a model with those parameters on the training set and made

predictions on a separate testing set to estimate prediction accuracy.

3.3 Datasets
We evaluated the performance of the different algorithms on syn-

thetic data and four types of real-world high-dimensional datasets

(Table 1). In our experiments on real-world datasets, we restricted

ourselves to classification problems. All discussed methods can how-

ever handle regression problems (continuous-valued outcomes) as

well, as we show on synthetic data.

Synthetic data: We simulated random matrices of features

X � Nð0; 1Þ. A number of variables were selected as related to the

phenotype, and functions that are non-linear in the data range were

selected (cosine, sine and square) and combined additively to create

the outcome vector y.

Images: Facial recognition is a classification problem classically

used to evaluate non-linear feature selection methods, as only a few

of all features are expected to be relevant for the outcome, in a non-

linear fashion. We used four face image datasets from the Arizona

State University feature selection repository (Li et al., 2018)):

pixraw10P, warpAR10P, orlraws10P and warpPIE10P.

Gene expression microarrays: We analyzed four gene expression

microarray datasets from Arizona State University feature selection

repository (Li et al., 2018). The phenotypes were subtypes of B-cell

chronic lymphocytic leukemia (CLL-SUB-111), hepatocyte pheno-

types under different diets (TOX-171), glioma (GLIOMA) and

smoking-driven carcinogenesis (SMK-CAN-187).

Single-cell RNA-seq: Single-cell RNA-seq (scRNA-seq) measures

gene expression at cell resolution, allowing to characterize the diver-

sity in a tissue. We performed feature selection on the three most

popular datasets in the Broad Institute’s Single Cell Portal, related to
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mouse small intestinal epithelium (Haber et al., 2017), mouse hippo-

campus (Habib et al., 2016) and human blood cells (Villani et al.,

2017). Missing gene expressions were imputed with MAGIC (van

Dijk et al., 2018).

GWA datasets: We studied the WTCCC1 datasets (Burton et al.,

2007) for rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2

diabetes (T2D) (2000 samples each), using the 1958BC cohort as con-

trol (1504 samples). Affymetrix 500K was used for genotyping. We

removed the samples and the SNPs that did not pass WTCCC’s quality

controls, as well as SNPs in sex chromosomes and those that were not

genotyped in both cases and controls. Missing genotypes were

imputed with CHIAMO. Lastly, individuals with >10% genotype

missing rate, and SNPs with >10% genotype missing rate, MAF <

5% or not in HWE (P-value < 0.001) were removed. The remaining

missing genotypes were replaced by the major allele in homozygosis.

Preprocessing: Images, microarrays and scRNA-seq data were

normalized feature-wise by subtracting the mean and dividing by

the standard deviation. GWAS data did not undergo any

normalization.

3.4 Computational resources
We ran the experiments on synthetic data, images, microarrays and

scRNA-seq on CentOS 7 machines with Intel Xeon 2.6 GHz and 50

GB RAM memory. For the GWA datasets experiments, we used a

CentOS 7 server with 96 core Intel Xeon 2.2 GHz and 1 TB RAM

memory.

3.5 Software availability and reproducibility
Block HSIC Lasso was implemented in the Python 2/3 package

pyHSICLasso. The source code is available on GitHub (https://

github.com/riken-aip/pyHSICLasso), and the package can be

installed from PyPI (https://pypi.org/project/pyHSICLasso). All anal-

yses in this article and the scripts needed to reproduce them are also

available on GitHub (https://github.com/hclimente/nori).

4 Results

4.1 Block HSIC Lasso performance is comparable to

state of the art
At first, we worked on synthetic, non-linear data (Section 3.2). We

generated synthetic data with combinations of the following experi-

mental parameters: n ¼ f100;1000;10 000g samples; d ¼
f100;2500;5000;10 000g features; and 5, 10 and 20 causal features,

that is, features truly related to the outcome. We evaluated the per-

formance of different feature selectors at retrieving the causal features.

These conditions range from an ideal setting, where the number of fea-

tures is smaller than the number of samples, to an ultra-high dimen-

sional scenario, where spurious dependencies among variables, and

between those and the outcome are bound to occur.

Each of the methods was required to select as many features as the

number of true causal features. In Figure 1, we show the proportion of

the causal features retrieved by each method. The different versions of

HSIC Lasso outperform the other approaches in virtually all settings.

Block HSIC Lasso with decreasing block sizes results in worse per-

formances. As expected, vanilla HSIC Lasso outperforms the block

versions in accuracy, but increases memory use. Crucially, block HSIC

Lasso on a larger number of samples performs better than vanilla

HSIC Lasso on fewer samples. Hence, when the number of samples is

in the thousands, it is better to apply block HSIC Lasso on the whole

dataset, than to apply vanilla HSIC Lasso on a subsample.

We wanted to test these conclusions using a non-linear, real-world

dataset. We selected four image-based face recognition tasks (Section

3.3). In this case, we selected different numbers of features (10, 20, 30,

40 and 50). Then, we trained random forest classifiers on these subsets

of the features, and compared the accuracy of the different classifiers

on a test set (Supplementary Fig. S1). Block HSIC Lasso displayed a

performance comparable to vanilla HSIC Lasso, and comparable or

superior to the other methods. This is remarkable, since it shows that,

in many practical cases, block HSIC Lasso does not need more sam-

ples to achieve vanilla HSIC Lasso performance.

4.2 Adjusting by covariates improves feature selection
To evaluate the impact of covariate adjustment, we worked on a

synthetic dataset (Section 3.2) with the following experimental

Table 1. Summary description of benchmark datasets

Type Dataset Features (d) Samples (n) Classes

Image AR10P 2400 130 10

PIE10P 2400 210 10

PIX10P 10 000 100 10

ORL10P 10 000 100 10

Microarray CLL-SUB-111 11 340 111 3

GLIOMA 4434 50 4

SMK-CAN-187 19 993 187 2

TOX-171 5748 171 4

Haber et al. (2017) 15 972 7216 19

scRNA-seq Habib et al. (2016) 25 393 13 302 8

Villani et al. (2017) 23 395 1140 10

GWA data RA versus controls 352 773 3451 2

T1D versus controls 352 853 3443 2

T2D versus controls 353 046 3456 2
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mRMR Block HSIC Lasso, B = 10
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Fig. 1. Percentage of true causal features extracted by different feature selec-

tors. Each data point represents the mean over 10 replicates, and the error

bars represent the standard error of the mean. Lines are discontinued when

the algorithm required more memory than the provided (50 GB). Note that in

some conditions mRMR’s line cannot be seen due to the overlap with LARS
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parameters: n ¼ 1 000; d ¼ f100;2500;5000; 10 000g features;

seven causal features. Two covariates were generated by taking two

causal features and adding Gaussian noise (mean ¼ 0; standard devi-

ation ¼ 0.5). In the experiment shown in Supplementary Figure S2,

we tested the ability of (block) HSIC Lasso to retrieve exclusively

the remaining five causal features adjusting for the covariates. We

observe that block HSIC Lasso is able to find more relevant features

when it adjusts for known covariates.

4.3 Block HSIC Lasso is computationally efficient
In our experiments on synthetic data, vanilla HSIC Lasso runs into

memory issues already with 1000 samples (Fig. 1). This experiment

shows how block HSIC Lasso keeps the good properties of HSIC

Lasso, while extending it to more experimental settings. Block HSIC

Lasso with B¼20 reaches the memory limit only at 10 000 samples,

which is already sufficient for most common bioinformatics applica-

tions. If larger datasets need to be handled, it can be done by using

smaller block sizes or a larger computer cluster.

We next quantified the computational efficiency improvement

the block HSIC estimator brings. We compared the runtime and the

peak memory usage in the highest dimensional setting where all

methods could run (n ¼ 1000; d ¼ 2500, 20 causal features)

(Fig. 2). We observe how, as expected, block HSIC Lasso requires

an order of magnitude less memory than vanilla HSIC Lasso. Block

versions also run notoriously faster, thanks to the lower number of

operations and the parallelization. mRMR is 10 times faster than

block HSIC Lasso, at the expense of a clearly lower accuracy.

However, a fraction of this gap is likely due to mRMR having been

implemented in Cþþ, while HSIC Lasso is written in Python. In this

regard, there is potential for other faster implementations of (block)

HSIC Lasso.

4.4 Block HSIC Lasso improves with more permutations
We were interested in the trade-off between the block size and the

number of permutations, which affect both the computation time

and accuracy of the result. We tested the performance of block

HSIC Lasso with B ¼ f5; 10; 15; 30; 60g and M ¼ f1; 2; 3; 5g in

datasets of n ¼ 1000; d ¼ 2500 and 20 causal features. As expected,

causal feature recovery increases with M and B (Fig. 2C), as the

HSIC estimator approaches its true value.

The memory usage OðdnBMÞ of several of the conditions was

the same, e.g. B¼10, M¼3 and B¼30, M¼1. Such conditions are

indistinct from the points of view of both accuracy, and memory

requirements. In practice, we found no major differences in runtime

between different combinations of B and M. Hence, a reasonable

strategy is to fix B to a given size, and tune the M to the available

memory/desired amount of information. This strategy, however,

should be adapted to fit properties of the data. More specifically,

GWAS data are notably sparse, and as result a small block size

would result in many blocks consisting entirely of zeros, which

would hence be uninformative. In such cases, it might be interesting

to prioritize larger block sizes, and fewer permutations.

4.5 Block HSIC Lasso finds more relevant features
We tested the dimensionality reduction potential of different feature

selectors. We selected a variable number of features from different

multi-class biological datasets, then used a random forest classifier

to retrieve the original classes (Section 3.2). The underlying assump-

tion is that only selected features which are biologically relevant will

be useful to classify unseen data. To that end, we evaluated the clas-

sification ability of the biomarkers selected in four gene expression

microarrays (Fig. 3) and three scRNA-seq experiments

(Supplementary Fig. S3). Unsurprisingly, we observe that non-linear

feature selectors perform notably better than linear selectors. Of the

non-linear methods, in virtually all cases block HSIC Lasso showed

similar or superior performance to mRMR. Interestingly, as little as

20 selected genes retain enough information to achieve a plateau ac-

curacy in most experiments.

Surveying 105 � 106 SNPs in 103 � 104 patients, genome-wide

association (GWA) datasets are among the most high dimensional in

biology, an unbalance which worsens the statistical and computa-

tional challenges. We performed the same evaluation on three

WTCCC1 phenotypes (Section 3.3). As a baseline, we also com-

puted the accuracy of a classifier trained on all the SNPs

(Supplementary Table S1). We observe that a feature selection prior

step is not always favorable: LARS worsens the classification accur-

acy by 5–10%. On top of that, LARS could not select any SNP in 2
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(n ¼ 1000; d ¼ 2500, 20 causal features) by block HSIC Lasso at different

block sizes B and number of permutations M
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out of the 15 experimental settings. On the other hand, non-linear

methods improve the classification accuracy by 10%, with mRMR

and block HSIC Lasso achieving similar accuracies. In fact, those

two selected the same 14 out of 30 SNPs when we selected 10 SNPs

in each the three datasets with each method (Supplementary Fig. 5).

4.6 Block HSIC Lasso is robust to ill-conditioned

problems
Single-cell RNA-seq datasets differ from microarray datasets in two

ways. First, the number of features is larger, equaling the number of

genes in the annotation (> 20 000). Second, the expression matrices

are very sparse, due to biological variability (genes actually not

expressed in a particular cell) and dropouts (genes whose expression

levels have not been measured, usually because they are low, i.e.

technical zeroes). In summary, the problem is severely ill condi-

tioned, and the feature selectors need to deal with this issue. We

observed that block HSIC Lasso runs reliably when faced with varia-

tions in the data, even on ill-conditioned problems like scRNA-seq.

In the different scRNA-seq datasets, LARS was unable to select the

requested number of biomarkers in any of the cases, returning al-

ways a lower number (Supplementary Fig. S4). mRMR did in all

cases. However, the implementation of mRMR that we used crashed

while selecting features on the full Villani et al. (2017) dataset.

4.7 Block HSIC Lasso for biomarker discovery
4.7.1 New biomarkers in mouse hippocampus scRNA-seq

To study the potential of block HSIC lasso for biomarker discovery in

scRNA-seq data, we focused on the mouse hippocampus dataset from

Habib et al. (2016), as a list of 1669 known biomarkers for the differ-

ent cell types is also provided by the authors. We requested block

HSIC Lasso, mRMR and LARS to select the best 20 genes for classifi-

cation of 8 cell types (Supplementary Table S2). The cell types were

four different hippocampal anatomical subregions (DG, CA1, CA2

and CA3), glial cells, ependymal, GABAergic and unidentified cells.

The overlap between the genes selected by different algorithms

was empty. We compared the selected genes to the known bio-

markers. Out of the 20 genes selected by mRMR, 14 are known bio-

markers, a number that goes down to 0 in the case of block HSIC

Lasso (Supplementary Fig. S4A). Hence, these 20 genes, which are

sufficient for accurately separating the cell types, are potential novel

biomarkers. However, we have no reason to believe that HSIC

Lasso generally has a higher tendency to return novel genes than

other approaches; we merely emphasize that it suggests alternative,

statistically plausible biological hypotheses that can be worth

investigating.

We therefore evaluated whether the novel genes found by block

HSIC Lasso participate in biological functions known to be different

between the cell classes. To obtain the biological processes respon-

sible for the differences between classes, we mapped the known bio-

markers to GO Biological process categories using the GO2MSIG

database (Powell, 2014). Then we repeated the process using the

genes selected by the different feature selectors, and compared the

overlap between them. The overlap between the different techniques

increases when we consider the biological process instead of specific

genes (Supplementary Fig. S4B). Specifically, one biological process

term that is shared between mRMR and block HSIC Lasso, ‘Adult

behavior’ (associated to Sez6 and Klhl1, respectively), is clearly

related to hippocampus function. This reinforces the notion that the

selected genes are relevant for the studied phenotypes.

Then we focused on potential biomarkers and biologically inter-

esting molecules among those genes selected by block HSIC Lasso.

As it is designed specifically to select non-redundant features, often-

used GO enrichment analyses are not meaningful: we expect genes

belonging to the same GO annotation to be correlated, and HSIC

lasso should not accumulate them. Among the top five genes, two

mapped to a biological processes known to be involved: the afore-

mentioned Klhl1 and Pou3f1 (related to Schwann cell development).

Klhl1 is a gene expressed in seven of the studied cell types and which

has been related to neuron development in the past (He et al., 2006).

Pouf1 is a transcription factor which in the past has been linked to

myelination, and neurological damage in its absence (Jaegle et al.,

1996). The only gene among the top five that was expressed exclu-

sively in one of the clusters is the micro RNA Mir670, expressed ex-

clusively in CA1. According to miRDB (Wong and Wang, 2015),

Mir670 top predicted target of its 3’ arm is Pcnt, which is involved

in neocortex development.

4.7.2 GWAS without assumptions on genetic architecture

We applied block HSIC Lasso (B¼60, M¼1) to three GWA data-

sets (Section 3.3). It is typical in GWAS to assume a genetic model

before performing statistical testing of associations between SNPs

and the phenotype. Two common, well-known models are the addi-

tive model—the minor allele in homozygosity has twice the effect as

the minor allele in heterozygosity—and the dominant model—any

number of copies of the minor allele have a phenotypic outcome.

Using non-linear models such as block HSIC Lasso to explore the re-

lationship between SNPs and outcome is attractive since no assump-

tions are needed on how individual SNPs affect the trait. The only

assumption is that the phenotype can be explained by a combination

of main effects, as block HSIC Lasso does not account for epistasis.

On top of that, by penalizing the selection of redundant features,

block HSIC Lasso avoids selecting multiple SNPs in high linkage

disequilibrium.

In our experiments, we selected 10 SNPs with block HSIC Lasso

for each of the three phenotypes. These are the SNPs that best bal-

ance high relatedness to the phenotype and not giving redundant in-

formation, be it through linkage disequilibrium or through an

underlying shared biological mechanism. We compared these SNPs

to those selected by the univariate statistical tests implemented in

PLINK 1.9 (Chang et al., 2015). Some of them explicitly account for

non-linearity by considering dominant and recessive models of in-

heritance. The number of SNPs that were positive in at least one test

were disparate between the studied phenotypes: all 10 in T1D, 5 in

RA, and only 2 in T2D.

Specifically, we compared the genome-wide genotypic P-values

to the SNPs selected by block HSIC Lasso (Fig. 4). In T1D, block

HSIC Lasso selected SNPs among those with the most extreme

p-values. However, not being constrained by a conservative P-value

threshold, block HSIC Lasso selects five and eight SNPs in RA and

T2D, respectively, with non-Bonferroni significant P-values when

they improve classification accuracy Interestingly, one of these SNPs

can be physically mapped to PFKM (Keildson et al., 2014), a gene

previously identified in genome-wide studies of T2D. The selected

SNPs are scattered all across the genome, displaying the lack of re-

dundancy between them. This strategy gives a more representative

set of SNPs than other approaches common in bioinformatics, like

selecting the smallest 10 P-values.

5 Discussion

In this work, we presented block HSIC Lasso, a non-linear feature

selector. Block HSIC Lasso retains the properties of HSIC Lasso
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while extending its applicability to larger datasets. Among the at-

tractive properties of block HSIC Lasso we find, first, its ability to

handle both linear and non-linear relationships between the varia-

bles and the outcome. Second, block HSIC Lasso has a convex for-

mulation, ensuring that a global solution exists, and that it is

accessible. Third, the HSIC score can be accurately estimated, as

opposed to other measures of non-linearity like mutual information.

Fourth, block HSIC Lasso’s memory consumption scales linearly

with respect to both the number of features and the number of sam-

ples. In addition, block HSIC Lasso can be easily adapted to differ-

ent problems via different kernel functions that better capture

similarities in new datasets. Lastly, block HSIC Lasso can be

adjusted for covariates known to affect the outcome, which helps

removing confounding effects from the analysis. Due to all these

properties, we show how block HSIC Lasso outperforms all other

algorithms in the tested conditions.

Block HSIC Lasso can be applied to different kinds of datasets.

As other non-linear methods, block HSIC Lasso is particularly use-

ful when we do not want to make strong assumptions about how

the causal variables relate to the outcome. Thanks to the advantages

mentioned above, HSIC Lasso and block HSIC Lasso tend to out-

perform other state-of-the-art approaches in terms of both causal

features retrieval in simulated data, and classification accuracy on

real-world datasets.

Whereas the Lasso is limited to selecting at most as many fea-

tures as there are available samples (n), for block HSIC Lasso the

limitation is nBM. Hence, even if the number of samples is small,

block HSIC Lasso can be used to select a larger number of features.

If nBM is still limiting, one could replace the ‘1 regularization with

an elastic-net regularization. However, in most cases, we expect

block HSIC Lasso to be used to select a small number of features.

Regarding its potential in bioinformatics, we applied block HSIC

Lasso to images, microarrays, single-cell RNA-seq and GWAS. The

two latter involve thousands of samples, making it unfeasible to run

vanilla HSIC Lasso on a regular server because of its memory require-

ments. The selected biomarkers are biologically plausible, agree with

the outcome of other methods and provide a good classification accur-

acy when used to train a classifier. Such a ranking is useful, for in-

stance, when selecting SNPs or genes to assay in in vitro experiments.

Block HSIC Lasso’s main drawback is the memory complexity,

markedly lower than in vanilla HSIC Lasso but still OðdnBÞ.
Memory issues might appear in low-memory servers in cases with a

large number of samples n, of features d, or both. However, through

our work on GWA datasets, the largest type of dataset in bioinfor-

matics, we show that working on these datasets is feasible. Another

drawback, which block HSIC Lasso shares with the other non-linear

methods, is their black box nature. Block HSIC Lasso looks for bio-

markers which, after an unknown, non-linear transformation,

would allow a linear separation between the samples.

Unfortunately, we cannot access this transformed space and explore

it, which makes the results hard to interpret.
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Héctor Climente-González,1,2,3,4 Eduard Porta-Pardo,5,6 Adam Godzik,5 and Eduardo Eyras1,7,8,*
1Computational RNA Biology Group, Pompeu Fabra University (UPF), 08003 Barcelona, Spain
2MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, France
3Institut Curie, 75248 Paris Cedex, France
4INSERM U900, 75248 Paris Cedex, France
5Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
6Barcelona Supercomputing Centre (BSC), 08034 Barcelona, Spain
7Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
8Lead Contact
*Correspondence: eduardo.eyras@upf.edu

http://dx.doi.org/10.1016/j.celrep.2017.08.012

SUMMARY

Alternative splicing changes are frequently observed
in cancer and are starting to be recognized as
important signatures for tumor progression and
therapy. However, their functional impact and rele-
vance to tumorigenesis remain mostly unknown.
We carried out a systematic analysis to characterize
the potential functional consequences of alternative
splicing changes in thousands of tumor samples.
This analysis revealed that a subset of alternative
splicing changes affect protein domain families
that are frequently mutated in tumors and poten-
tially disrupt protein-protein interactions in cancer-
related pathways. Moreover, there was a negative
correlation between the number of these alternative
splicing changes in a sample and the number of
somatic mutations in drivers. We propose that a
subset of the alternative splicing changes observed
in tumors may represent independent oncogenic
processes that could be relevant to explain the func-
tional transformations in cancer, and some of them
could potentially be considered alternative splicing
drivers (AS drivers).

INTRODUCTION

Alternative splicing provides the potential to generate diversity

at RNA and protein levels from an apparently limited number of

loci in the genome (Yang et al., 2016). Besides being a critical

mechanism during development, cell differentiation, and regula-

tion of cell-type-specific functions (Norris and Calarco, 2012),

alternative splicing is also involved in multiple pathologies,

including cancer (Chabot and Shkreta, 2016). Many alternative

splicing changes recapitulate cancer-associated phenotypes

by promoting angiogenesis (Vorlová et al., 2011), inducing cell

proliferation (Yanagisawa et al., 2008), or avoiding apoptosis

(Karni et al., 2007). Alternative splicing changes may originate

from somatic mutations that disrupt splicing regulatory motifs

in exons and introns (Jung et al., 2015; Supek et al., 2014), as

well as through mutations or expression changes in core and

auxiliary splicing factors, which impact the splicing of cancer-

related genes (Bechara et al., 2013; Darman et al., 2015; Madan

et al., 2015; Zong et al., 2014). Alterations in alternative splicing

are also emerging as relevant targets of therapy (Lee and Abdel-

Wahab, 2016). For instance, lung tumors with an exon skipping in

the proto-oncogene MET respond to MET-targeted therapies

despite not having any other activating alteration in this gene

(Frampton et al., 2015; Paik et al., 2015). Alternative splicing is

also important in drug resistance. For example, a proportion

of non-responders to BRAF-targeted therapy express a BRAF

isoform lacking exons 4–8, which encompass the RAS binding

domain (Poulikakos et al., 2011). Similarly, alternative splicing

of CD19 in relation to the aberrant activity of the splicing fac-

tor SRSF3 impairs immunotherapy in leukemia (Sotillo et al.,

2015). Thus, specific alterations in splicing induce functional

impacts that provide a selective advantage to tumor cells and

could represent targets of therapy.

Despite the prevalence of alternative splicing in tumors and its

relation to therapy, tumor progression, and metastasis (Lee and

Abdel-Wahab, 2016; Lu et al., 2015; Trincado et al., 2016), its

functional impacts have not been exhaustively described. Alter-

native splicing changes can confer radical functional changes

(Wang et al., 2005), remodel the network of protein-protein inter-

actions in a tissue-specific manner (Buljan et al., 2012; Ellis et al.,

2012), and expand the protein interaction capabilities of genes

(Yang et al., 2016). Here, we present a systematic evaluation of

the potential functional impacts of alternative splicing changes

in cancer samples. We described splicing changes in terms

of transcript isoforms switches per tumor sample and deter-

mined the protein features and protein-protein interactions they

affected. Our analysis revealed a set of isoform switches that

affectproteindomains fromfamilies frequentlymutated in tumors,

remodel the protein interaction network of cancer drivers, and

tend to occur in patients with low number of mutations in cancer

drivers. Furthermore, a subset of them has driver-like properties

and, hence, could play a role in the neoplastic process indepen-

dently of or in conjunction with mutations in cancer drivers.

Cell Reports 20, 2215–2226, August 29, 2017 ª 2017 The Author(s). 2215
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RESULTS

Patient-Specific Definition of Isoform Switches across
Multiple Cancer Types
To determine the potential functional impacts of alternative

splicing in cancer, we analyzed the expression of human tran-

script isoforms in 4,542 samples from 11 cancer types from

The Cancer Genome Atlas (TCGA) (Supplemental Experimental

Procedures). We described splicing changes using transcript

isoforms, as they represent the endpoint of transcription and

splicing, and ultimately determine the functional capacity of

cells. For each gene and each patient sample, we calculated

the differential transcript isoform usage between the tumor and

normal samples. An isoform switch was defined as a pair of

transcripts, the tumor and the normal isoforms, such that the

change in relative abundance in a single patient in both isoforms

was higher than the observed variability across normal samples.

Moreover, the involved gene must not show differential expres-

sion between tumor and normal. Additionally, we discarded

switches with a significant association with stromal or immune

cell content (Supplemental Experimental Procedures). The

final set of switches identified and that we kept for further anal-

ysis had a mean change in relative abundance of 54% and a

SD of 7%.

In all patients, we found a total of 8,122 different isoform

switches in 6,442 genes that described consistent changes in

the transcriptome of the tumor samples and that would not be

observable by simply measuring gene expression changes (Fig-

ure 1A; Table S1). These switches occurred in 4,443 patients:

each switch in 5 or more patients, with the majority (75%) occur-

ring in 10 or more patients (Table S1). Using SUPPA (Alamancos

et al., 2015), we calculated the relation with local alternative

splicing events (Supplemental Experimental Procedures). From

the 8,122 switches, 5,667 (69.7%) were mapped to one or

more local alternative splicing events. Compared with the ex-

pected proportion of event types, we observed an enrichment

of alternative 50ss, alternative first exon and retained intron,

and a depletion of alternative 30ss, alternative last exon, mutually

exclusive exons, and exon cassette (Figure S1A). Mapping the

tumor isoform to either form of the event, we observed that re-

tained intron events are predominantly retained, in agreement

with previous observations (Dvinge and Bradley, 2015), whereas

exon-cassette events were predominantly skipped (Figure S1B).

Interestingly, 30.3% of the switches were not mapped to any

event, indicating that transcripts provide a wider spectrum of

RNA variation compared to local alternative splicing events.

Isoform Switches in Cancer Are Frequently Associated
with Protein Feature Losses
We next studied the proteins encoded by the transcripts

involved in switches. Interestingly, annotated proteins in tumor

isoforms tended to be shorter than proteins in normal isoforms

(Figure S1C). Moreover, whereas for most switches—6,937

(85.41%)—both transcript isoforms coded for protein, the rest

had a significantly higher proportion of cases with only the

normal isoform as protein-coding, 732 (9.01%) versus 231

(2.8%; binomial test p value < 2.2e�16, using 0.5 as expected

frequency; Table S1), suggesting that isoform switches in tumors

are associated with the loss of protein coding capacity. To deter-

mine the potential functional impact of the isoform switches, we

calculated the protein features they affected. Out of the 6,937

switches with both isoforms coding for protein, 5,047 (72.7%)

involved a change in at least one of the following features:

Pfam domains; Prosite patterns; general disordered regions;

and disordered regions with potential to mediate protein-protein

interactions (Figure S1D). Interestingly, there was a significant

enrichment in protein features losses when compared with a

set of 100 sets of simulated switches, controlling for isoform

expression (Figure 1B). This enrichment was observed despite

the fact that, for simulated switches, the normal protein isoform

also tended to be longer than the tumor protein isoform (Fig-

ure S1E). This indicates that isoform switches in cancer are

strongly associated with the loss of protein function capabilities.

We focused on the 6,004 (73.9%) isoform switches that had a

gain or loss in at least one protein feature, which we named

‘‘functional switches,’’ as they were likely to impact gene activity

(Table S1). These functional switches included 729 (8.9%) and

228 (2.8%) cases, for which only the normal or the tumor iso-

form, respectively, coded for a protein with one or more protein

features. Interestingly, cancer drivers were enriched in functional

switches (Fisher’s exact test p value = 2.0e�05; odds ratio

[OR] = 1.9; Figure S1F). Among the top switches in cancer

drivers, we identified one in RAC1, which was linked before to

tumor initiation and progression (Zhou et al., 2013) and which

we predicted to gain an extra Ras family domain, and one

in TP53, which we predicted to change to a non-coding isoform

(Figure 1C).

To characterize how functional switches affected protein func-

tion, we calculated the enrichment in gains or losses of specific

domain families with respect to their proportions in a reference

proteome. To ensure that this was attributed to a switch and

not to the co-occurrence of two domains, we requested a mini-

mum of two switches in different genes affecting the domain.

We detected 220 and 41 domain families exclusively lost or

gained, respectively, and 13 that were both gained and lost,

more frequently than expected by chance (Table S2). Domain

families that were significantly lost included those involved in

regulation of protein activity (Figure 1D), suggesting effects on

protein-protein interactions. To further characterize these

functional switches, we calculated the proportion of oncogenes

or tumor suppressors that contained domain families enriched

in gains or losses, compared with the reference proteome.

From the 69 cancer drivers with domains enriched in gains,

58 (84%) corresponded to oncogenes (Fisher’s exact test

p value = 0.0066; OR = 0.4). Although tumor suppressors were

not enriched in domain losses, domain families enriched in gains

occurred more frequently in oncogenes than in tumor suppres-

sors (Wilcoxon test p value = 9e�04). These results suggest a

similarity between our functional isoform switches and onco-

genic mechanisms in cancer.

Isoform Switches and Somatic Mutations Affect Similar
Domain Families
We conducted various comparisons using our switches and

cis-occurring mutations from whole-exome sequencing (WES)

and whole-genome sequencing (WGS) data (Supplemental

2216 Cell Reports 20, 2215–2226, August 29, 2017



Experimental Procedures). The frequencies of genes or samples

with functional switches were similar to those with protein-

affecting mutations (PAMs) but smaller than the frequencies for

all mutations from WGS data (Figures S2A and S2B), indicating

a similar prevalence of switches and PAMs, but not for switches

and WGS mutations. Because we calculated switches per pa-

tient, we were able to study how these distributed across

patients (Supplemental Experimental Procedures). The top

cases according to the co-occurrence of WGS somatic muta-

tions with switches across patients included a switch in the

cancer driver CUX1, although only in 7 patients (Figures S2C

and S2D), whereas the top cases according to the number of

patients with mutations and switches included TP53 as well as

FAM19A5, DST, and FBLN2, which we already described as

isoform switches before (Sebestyén et al., 2015; Figures S2E

and S2F). In agreement with the observed low association of mu-

tations and switches (Figure S2G), the number of genes with

PAMs and functional switches tended to be inversely correlated
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Figure 1. Patient-Specific Definition of Isoform Switches across Multiple Cancer Types

(A) Number of isoform switches (y axis) calculated in each tumor type, separated according to whether the switches affected an annotated protein feature

(functional) or not (non-functional) and whether they occurred in cancer gene drivers (driver) or not (non-driver).

(B) Number of different protein feature gains and losses in functional switches for each of the protein features considered, which showed significant enrichment

in losses compared to random switches: Pfam (Fisher’s exact test p value = 4.4e�23; odds ratio [OR] = 1.5); Prosite (p value = 1.4e�08; OR = 1.3); IUPRED

(p value = 1.1e�127; OR = 1.3); and ANCHOR (p value = 7.5e�139; OR = 1.5).

(C) Top 20 functional switches in cancer drivers (x axis) according to patient count (y axis). Tumor types are indicated by color: breast carcinoma (BRCA); colon

adenocarcinoma (COAD); head and neck squamous cell carcinoma (HNSC); kidney chromophobe (KICH); kidney renal clear-cell carcinoma (KIRC); kidney

papillary cell carcinoma (KIRP); liver hepatocellular carcinoma (LIHC); lung adenocarcinoma (LUAD); lung squamous cell carcinoma (LUSC); prostate adeno-

carcinoma (PRAD); and thyroid carcinoma (THCA).

(D) Cellular component (red) and molecular function (green) ontologies associated with protein domain families that are significantly lost in functional isoform

switches (binomial test; BH-adjusted p value < 0.05). For each functional category, we give the number of switches in which a domain family from this category is

lost, which is also indicated by the color shade.
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(Figure 2A), suggesting a complementarity between PAMs and

switches affecting protein domains.

We explored this complementarity by checking whether

mutations and switches affected the same molecular mecha-

nisms. First, we calculated domain families enriched in PAMs

and found 76 domain families across 11 tumor types enriched

in mutations (Table S2), which were more frequent in cancer

drivers compared to non-drivers (Wilcoxon test p value <

2.2e�16), in agreement with recent reports (Yang et al., 2015).

Then, we compared the domain families enriched in mutations

with those enriched in gains or losses through switches; we

found an overlap of 15 domain families, which was higher than

expected by chance given the domains affected by the 6,004

functional switches and the 5,307 domain families observed
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Figure 2. Comparison of Isoform Switches and Somatic Mutations

(A) For each patient sample, color coded according to the tumor type, we indicate the proportion of all genes with protein-affecting mutations (PAMs) (y axis) and

the proportion of genes with multiple transcript isoforms that presented a functional isoform switch in the same sample (x axis).

(B) Domain families that were significantly lost or gained in functional isoform switches that are also significantly enriched in protein-affectingmutations in tumors.

For each domain class, we indicate the number of different switches in which they occurred. We include here the loss of the P53 DNA-binding and P53 tetra-

merization domains, which only occurred in TP53.

(C) Agreement between protein-affecting mutations and functional switches (y axis) measured in terms of the functional categories of the protein domains they

affected (x axis), using two gene ontologies (GOs) at three different GO Slim levels, from most specific (+++) to least specific (+). Random occurrences (plotted in

light color) were calculated by sampling 100 times the same number of GO terms from the reference proteome as those enriched in domain families affected by

functional switches and in domains families affected by PAMs. Agreement was calculated as the percentage of the union of functional categories from both sets

that were common to both. The error bars correspond to the SD calculated from the 100 random samples.

(D) Pairs formed by a cancer driver (in parentheses) and a functional switch from the same pathway and showed significant mutual exclusion (before multiple test

correction) between PAMs and switches across patients in at least one tumor type—color-coded by tumor type. The y axis indicates the percentage of samples

where the switch occurred, and x axis indicates the percentage of samples where the driver was mutated in the same tumor type.
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in the reference proteome (Fisher’s test p value = 5.6e�06; OR =

4.7). From the domain families enriched in mutations, 7 showed

enrichment in losses, 6 showed enrichment in gains, and

2 showed enrichment in both (Figure 2B; Table S2). The

gains included cadherin domains related to switches in CHD8,

CDH26, FAT1, FAT2, and FAT3, whereas the losses included

the calcium-binding epidermal growth factor (EGF) domain,

which is affected by various switches, including one inNOTCH4.

A notable case was the loss of the TP53 DNA-binding domain

and the tetramerization motif. Although it occurred in a single

switch, its recurrence in 123 patients highlights the relevance

of TP53 alternative splicing (Bourdon, 2007).

We questioned whether the similarity was beyond the coin-

cidence of single-domain families and could affectmore generally

the function associated to domains. Hence, we calculated the

enriched Gene Ontology (GO) terms associated to the domains

enriched in mutations and switches separately and then calcu-

lated the overlap between both sets. This overlap was compared

to the overlapobtainedby randomly samplinghundred times from

the reference proteome the same number of GO terms found for

domains inenrichedswitchesormutations.Notably, theobserved

overlap was higher than expected for each GO term and at

different GO slim levels (Figure 2C), and the shared functional cat-

egories included receptor activity and protein binding. A total of

754 (12.5%) functional switches in 634 genes (47 of them in 37

cancer drivers) affected domain families that were also enriched

inmutations, supporting the notion that isoformswitches andmu-

tations may impact similar functions in tumors.

If switches and mutations have similar functional impacts,

we would expect a tendency toward mutual exclusion of some

switches with mutations in cancer drivers. In fact, we identified

292 functional switches that were mutually exclusive with so-

matic PAMs in three or more cancer drivers (Fisher’s test

p value < 0.05; Supplemental Experimental Procedures), and

16 of them showed mutual exclusion with at least one cancer

genedriver from the samepathway (TableS3). These16 switches

included one in COL9A3, which had mutual exclusion with MET

mutations in kidney renal papillary cell carcinoma (KIRP), and

one in PRDM1, which showed mutual exclusion with mutations

in TP53 in lung adenocarcinoma (LUAD) (Figure 2D) as well as

in PTEN In lung squamous cell carcinoma (LUSC) (Figure S2H;

Table S3). Despite the observed mutual exclusion, none of the

cases was significant after multiple test correction, indicating

that the described switches may not provide strong signatures

for pan-negative tumors (Saito et al., 2015).

Isoform Switches Affect Protein Interactions with
Cancer Drivers
Many of the frequently lost and gained domain families in

functional switches were involved in protein-binding activities,

indicating a potential impact on protein-protein interactions

(PPIs) in cancer. To study this, we used data from five different

sources to build a consensus PPI network with 8,142 nodes,

each node representing a gene (Figure S3). Then, to determine

the effect of switches on the PPI network, we mapped PPIs

from this network to domain-domain interactions (DDIs). Do-

mains involved in DDIs were mapped to the specific protein

isoforms using their encoded protein sequence. For genes with

switches, we then considered those PPIs that could be mapped

to DDIs involving domains mapped on either the normal or the

tumor isoforms (Figure S4). From the 8,142 genes in the PPI

network, 3,243 had at least one isoform switch, and for 1,688

isoform switches (in 1,355 genes), we were able to map at least

one PPI to a specific DDIwith domains on either the normal or the

tumor isoform. A total of 162 of these switches were located in

123 cancer drivers, with the remaining 1,526 in non-driver genes.

For each isoform switch, using the DDI information, we evalu-

ated whether the change between the normal and tumor iso-

forms would affect a PPI from the network by matching the

domains affected by the switch to the domains mediating the

interaction, controlling for the expression of the isoforms pre-

dicted to be interaction partners. We found that 477 switches

(28.3%) in 423 different genes affected domains that mediated

protein interactions and thus likely impacted such interactions.

Most of these interaction-altering switches (n = 414; 86.8%)

caused the loss of the domain that mediated the interaction,

whereas a minority (n = 64; 13.2%) led to a gain of the interacting

domain. Only a switch in TAF9 led to gains and losses of interac-

tions with different partners, mediated by the loss of a TIFIID

domain and a gain of an AAA domain (Table S4).

Notably, switches in driver genes tended to lose PPIs more

frequently than those in non-drivers (Figure 3A). From the 162

switches in drivers, 41 (25.3%) of them altered at least one inter-

action, either causing loss (33 switches) or gain (8 switches).

Moreover, switches that affected domains from families en-

riched in mutations or that showed frequent mutual exclusion

Figure 3. Potential Impact of Isoform Switches in Protein Interactions with Cancer Drivers
(A) Functional switches were divided according to whether they occurred in tumor-specific drivers (yes) or not (no). For each tumor type, we plot the proportion of

PPIs (y axis) that were gained (green), lost (red), or remained unaffected (gray). All comparisons except for KIRC and LUAD were significant (Supplemental

Experimental Procedures). Samples from KIRP and LIHC had no PPI-affecting switches in drivers.

(B) Functional switchesmapped to PPIs were divided according to whether they affected a PPI (yes) or not (no). For each tumor type, we plotted the proportion of

functional switches (y axis) that occurred in cancer drivers (black), in interactors of drivers (dark gray), or in other genes (light gray). All tests for the enrichment of

PPIs affected by switches in driver interactors were significant except for KIRC, LUAD, and LUSC (Supplemental Experimental Procedures).

(C) Network for module 11 (Table S6) with PPIs predicted to be lost (red). Cancer drivers are indicated in black or gray if they had a functional switch or not,

respectively. Other genes are indicated in dark blue or light blue if they had a functional switch or not, respectively. We do not show unaffected interactions.

(D) OncoPrint for the samples that present protein-affecting mutations (PAMs) in drivers or switches from (C). Mutations are indicated in black, and PPI-affecting

switches are indicated in red (loss in this case). Other switches with no predicted effect on the PPI are depicted in gray. The top panel indicates the tumor type of

each sample by color (same color code as in previous figures). The second top panel indicates whether the sample harbors a PAM in a tumor-specific driver

(black) or not (gray) or whether no mutation data are available for that sample (white).

(E) As in (C) for module 28 (Table S6).

(F) OncoPrint for the switches and drivers from (E). Colors are as in (D).
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with mutational drivers also affected PPIs significantly more

frequently than other functional switches (Chi-square test

p value < 2.2e�16 and p value = 6.8e�08, respectively; Fig-

ure S5). Looking at genes annotated as direct interactors of

drivers, they tended to affect PPIs more frequently than the

rest of functional switches mapped to PPIs (Figure 3B). Addition-

ally, all functional pathways found enriched in PPI-affecting

switches were related to cancer (adjusted Fisher’s exact test

p value < 0.05 and odds ratio > 2; Table S5), reinforcing the func-

tional relevance of these 477 PPI-affecting isoform switches in

cancer.

Isoform Switches Remodel Protein Interaction
Networks in Cancer
To further characterize the role of switches, we calculated mod-

ules in the PPI network (Blondel et al., 2008) using only interac-

tion edges affected by switches (Supplemental Experimental

Procedures). This produced 179 modules involving 1,405 genes

(Table S6). From these, 52modules included a cancer driver, and

47 of them included also switches that involved two protein-cod-

ing isoforms. We tested for the enrichment of genes belonging to

specific protein complexes (Ruepp et al., 2010), complexes

related to RNA processing and splicing (Akerman et al., 2015),

and cancer-related pathways (Liberzon et al., 2015; Table S6;

Supplemental Experimental Procedures). From the 47 mod-

ules described above, 8 showed enrichment in pathways and

complexes: apoptosis-related pathways (module 109 in Table

S6); ubiquitin-mediated proteolysis pathway (module 26); and

ERBB-signaling pathway (module 169), as well as spliceosomal

(module 11); ribosomal (module 170); SMN (module 28); PA700

(module 58); and TFIID (module 66) complexes (Table S6).

In particular, module 11 was enriched in splicing factors and

RNA-binding proteins and included the cancer drivers SF3B1,

FUS, SYNCRIP, EEF1A1, and YBX1 (Figure 3C; Table S6). The

module contained a switch in RBMX involving the skipping

of two exons and the elimination of an RNA recognition motif

(RRM) that would impact interactions with SF3B1, EEF1A1,

and multiple RNA binding protein (RBP) genes (Figure 3C) and

a switch in TRA2B that yielded a non-coding transcript previ-

ously described (Stoilov et al., 2004) and would eliminate an

interaction with SF3B1 and other splicing factors. We also

found a switch in HNRNPC, TRA2A, NXF1, and RBMS2 that

lost interactions with various serine/arginine-rich (SR)-protein-

coding genes. Consistent with a potential functional impact,

the PPI-affecting switches showed mutual exclusion with the

mutational cancer drivers (Figure 3D). Interestingly, this mod-

ule also contained switches in the Importin genes IPO11 and

IPO13, which affected interactions with ubiquitin-conjugating

enzymes UBE2E1, UBE2E3, and UBE2I and which showed

mutual exclusion across different tumor types (Figure 3D). These

results indicate that the activity of RNA-processing factors may

be altered in cancer through the disruption of their PPIs by alter-

native splicing.

Another interesting case was module 28 (Table S6), with

switches in the regulators of translation, EIF4B, EIF3B, and

EIF4E, which affected interactions with the drivers EIF4G1,

EIF4A2, and PABPC1 (Figure 3E). The switch in EIF4B caused

the skipping of one exon, which we predicted to eliminate an

RRM domain and lose interactions with drivers EIF4G1 and

PABPC1. The switch in EIF3B yielded a non-coding transcript

that would losemultiple interactions. Although we did not predict

any PPI change for EIF4E, this switch lost eight predicted

ANCHOR regions (Table S4), suggesting a possible effect on

yet to be described interactions. Besides frequent PAMs,

PABPC1 also presented a functional switch that affected 2

disordered regions but did not affect any of the RRMs. In this

case, we did not predict any change in PPI, and the possible

functional impact remains to be discovered. Moreover, the iden-

tified PPI-affecting switches showed mutual exclusion with

PAMs in EIF4G1 and PABPC1 (Figure 3F). These results sug-

gest that isoform switches may impact translational regulation

in tumors through the alteration of PPIs of the corresponding

regulators.

Isoform Switches as Potential Drivers of Cancer
Our results provide evidence that a subset of the alternative

splicing switches (1) induced a gain or loss of a protein domain

from a family frequently mutated in cancer, (2) affected one or

more PPIs, (3) displayed some mutual exclusion with drivers, or

(4) displayed recurrence across patients. One or more of these

properties were fulfilled by 1,662 functional switches, which we

hypothesized could define potential alternative splicing drivers

(potential AS drivers; Figure 4A; Table S1), with the majority of

them (1,080; 65%) affecting mutated domain families and/or

PPIs (Figure 4B). To test possible driver-like properties in these

switches, we calculated their centrality and distance to muta-

tional drivers in thePPI network,whichare considered asdefining

properties for cancer-relevant genes (Jonsson and Bates, 2006).

Potential AS drivers showed greater centrality (Mann-Whitney

test p value < 2.2e�16; Figure S6A) and closer distances to tu-

mor-specific drivers (Fisher’s exact test p value < 2.2e�16;

OR = 1.5; Figure S6B) compared to the rest of switches.

The prevalence of these potential AS drivers varied across

samples and tumor types. Considering tumor-specific muta-

tional drivers (Mut drivers) and our set of potential AS drivers,

we labeled each patient as AS driver enriched or Mut driver en-

riched according to whether the proportion of switched potential

AS drivers or mutated Mut drivers was higher, respectively. This

partition of the samples indicated that, although Mut drivers

were predominant in patients for most tumor types, potential

AS drivers were predominant for a considerable number of

patients across several tumor types and particularly for kidney

and prostate tumors (Figure 4C). Additionally, regardless of the

tumor type, patients with many mutations in Mut drivers tended

to show a low number of switched potential AS drivers and vice

versa (Figure 4D). The occurrence of copy number alteration

(CNA) drivers also showed a pattern of anti-correlation with

our potential AS drivers similar to the one we found between

Mut drivers and potential AS drivers (Figure S6C). The patient

distribution patterns of candidate AS drivers compared with

mutational or CNA drivers bear resemblance with the proposed

cancer genome hyperbola between mutations and CNAs (Fig-

ure S6D; Ciriello et al., 2013), which supports the notion that

a subset of isoform changes represents alternative, yet-unex-

plored relevant mechanisms that could provide a complemen-

tary route to induce similar effects as genetic mutations.
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DISCUSSION

We have identified consistent and recurrent transcript isoform

switches that impact the function of affected proteins by adding

or removing protein domains that were frequently mutated in

cancer or by disrupting or gaining PPIs—possibly also altering

the formation of protein complexes—with cancer drivers or in

cancer-related pathways. Moreover, we observed that patients

with some of these isoform switches tended not to harbor muta-

tions in cancer drivers and the other way around. Recently, an

alternative splicing change in NFE2L2 has been described to

lead to the loss of a protein domain and the interaction with

its negative regulator KEAP1, thereby providing an alternative

mechanism for the activation of an oncogenic pathway (Gold-

stein et al., 2016). Similarly, an isoform change in the gene

ATF2 has been shown to drive melanomagenesis (Claps et al.,

2016). These examples, together with the analyses presented

here, support a model by which functions and pathways often

A B

C D

Figure 4. Isoform Switches as Potential Drivers of Cancer

(A) Number of functional isoform switches and potential AS drivers detected in each tumor type.

(B) Candidate potential AS drivers grouped according to their properties: disruption of PPIs; significant recurrence across patients (recurrence); gain or loss of a

protein feature that was frequently mutated in tumors (affects M_feature); mutual exclusion; and sharing pathway with cancer drivers (pannegative). Horizontal

bars indicate the number of switches for each property. The vertical bars show those in each of the intersections indicated by connected bullet points (Conway

et al., 2017).

(C) Classification of samples according to the relevance of potential AS drivers or Mut drivers in each tumor type. For each tumor type (x axis), the positive y axis

shows the percentage of samples that had a proportion of switched potential AS drivers higher than the proportion of mutated Mut drivers. The negative y axis

shows the percentage of samples in which the proportion of mutated Mut drivers was higher than the proportion of switched potential AS drivers. Only patients

with mutation and transcriptome data are shown.

(D) Each of the patients from (C) is represented according to the percentage of mutated Mut drivers (y axis) and the percentage of switched potential AS drivers

(x axis).

2222 Cell Reports 20, 2215–2226, August 29, 2017



altered in cancer through somatic mutationsmay be affected in a

similar way by isoform changes in some patients and therefore

contribute to the tumor phenotype. Importantly, these isoform

changes could occur without gene expression changes in the

host gene and thus provide an independent catalog of functional

alterations in cancer.

Functional domains and interactions might not always be

entirely lost through a switch, as normal isoforms generally retain

some expression in tumors. This could be partly due to the

uncertainty in the estimate of transcript abundance from RNA

sequencing or to the heterogeneity in the transcriptomes of

tumor cells. Still, a relatively small change in transcript abun-

dance has been shown to be sufficient to trigger an oncogenic

effect in cells (Anczuków et al., 2015; Bechara et al., 2013;

Sebestyén et al., 2016). Additionally, we observed that a number

of isoform changes defined a switch from a protein-coding

transcript to a non-coding one, possibly undergoing non-

sense-mediated decay, which is a widespread mechanism of

alternative-splicing-mediated gene expression regulation (Han-

sen et al., 2009), and could potentially alter function in a way

similar to other isoform changes between protein-coding iso-

forms. The predicted impact on domains and interactions could

therefore be indicative of alterations on regulatory networks with

variable functional effects.

Our description in terms of transcript isoform switches allowed

us to describe more variations in the transcriptome than using

local alternative splicing events and to determine the protein

features potentially gained or lost through splicing changes.

However, this approach has some potential limitations. Accurate

determination of differential transcript usage in genes with many

isoforms requires high coverage and sufficient samples per con-

dition (Sebestyén et al., 2015), which we expect was mitigated

by our use of the variability across normal samples to determine

significance. Additionally, because we used annotated transcript

isoforms, we may have missed tumor-specific transcripts not

present in the annotation. We also only recovered a small frac-

tion of the entire set of PPIs taking place in the cell. For instance,

we did not characterize those interactions mediated through

low-complexity regions (Buljan et al., 2012; Ellis et al., 2012);

hence, many more interactions and protein complexes may be

affected in tumors.

The origin of the observed splicing changes remains to be

elucidated. We did not find a general association with somatic

mutations in cis. It is possible that small copy number alter-

ations or indels are responsible for these switches but are still

hard to detect with WES and WGS data, and more targeted

searches or deeper sequencing are necessary. An alternative

explanation is that the majority of the switches described occur

through trans-acting alterations, such as the expression change

in splicing factors (Sebestyén et al., 2016). For instance, muta-

tions in RBM10 or downregulation of QKI lead to the same

splicing change in NUMB that promotes cell proliferation (Be-

chara et al., 2013; Zong et al., 2014), and the oncogenic switch

in RAC1 (Zhou et al., 2013) is regulated by expression changes

in various splicing factors (Gonçalves et al., 2009; Pelisch

et al., 2012), which are controlled by pathways often altered in

tumors (Fu and Ares, 2014). Another possibility is that these

switches describe signatures of non-genetic variability (Brock

et al., 2009). The intra-tumor heterogeneity could allow recapitu-

lating similar transcriptome phenotypes, which would determine

the fitness of cells and the progression of tumors independently

of somatic mutations. Because natural selection acts on the

phenotype rather than on the genotype, an interesting hypothe-

sis is that specific transcript isoform expression patterns could

define particular tumor phenotypes that would be closely related

to those determined by somatic mutations in drivers, thereby

defining an advantageous phenotype such that the selective

pressure to develop equivalent adaptations is relaxed. Accord-

ingly, our identified isoform switches could play an important

role in the neoplastic process independently of or in conjunction

with the already characterized genetic alterations.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in

Supplemental Experimental Procedures.

Calculation of Significant Isoform Switches per Patient

We modeled splicing alterations in a gene as a switch between two transcript

isoforms: one normal and one tumoral. For each transcript, the relative abun-

dance per sample, which we called proportion spliced-in (PSI), was calculated

by normalizing its abundance in transcripts per million (TPM) units by the sum

of abundances of all transcripts in the same gene. Then, for each transcript and

sample, we calculated the change in relative abundance as DPSI = PSItumor �
PSIref, where PSItumor is the relative abundance in the tumor sample and PSIref
is the normal reference value, which is the value of the paired normal sample,

when available, or the median of PSIs in the normal samples for the same tis-

sue type otherwise. We considered significant those changes with jDPSIj >
0.05 andwith empirical p < 0.01 in the comparison of the observed jDPSIj value
with the distribution of jDPSIj values obtained by comparing the normal sam-

ples pairwise without repetition. We only kept those cases for which the tumor

isoform PSI was higher than the normal isoform in the tumor sample and

the normal isoform PSI in the normal sample was higher than the value for

the tumor isoform. Moreover, we discarded genes that either had an outlier

expression in the tumor sample compared to normal tissues—had expression

below the bottom 2.5% or above the 97.5% of the values of normal expres-

sion—or showed differential expression between the tumor and the normal

samples (Wilcoxon test p value < 0.01 using the gene TPM values).

Candidate switches were defined per patient and per gene, and in some

samples, the same gene could have different switches. We discarded those

switches that contradicted a more frequent switch in the same gene and the

same tumor type. Moreover, we discarded any switch that affected a number

of patients below the top 99% of the distribution of patient frequency of these

contradictory switches in each tumor type. Lastly, we filtered out switches

that were significantly lowly recurrent, i.e., they occurred in fewer patients

than expected by chance (binomial test; adjusted p value < 0.05, using all tu-

mor types). As a consequence, none of the reported switches occurred in less

than 5 samples. Thus, a switch in a patient sample was defined as a pair of

transcripts in a gene with no expression change and with significant changes

in opposite directions that showed consistency across a minimum number of

patients. We aggregated the switches from the different tumor types to get the

final list (Table S1).

Simulated Switches

To simulate switches between normal and tumor tissues, we used genes

withmore than one expressed isoform. For each gene, we selected the isoform

with the highest median expression across the normal samples as the normal

isoform and an arbitrary different transcript expressed in the tumor samples

as the tumor isoform. For each gene, we generated a maximum of five such

simulated switches.

Functional Switches

A switch was defined as functional if both isoforms overlapped in genomic

extent and there was a change in the encoded protein, including cases where
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only one of the isoforms was coding and, moreover, there was a gain or loss of

a protein feature: Pfam domains (Finn et al., 2016) mapped with InterProScan

(Jones et al., 2014); ProSite patterns (Gattiker et al., 2002); disordered regions

from IUPred (Dosztányi et al., 2005); and disordered regions potentially

involved in PPIs from ANCHOR (Dosztányi et al., 2009). For IUPred and

ANCHOR, we only considered changes involving at least 5 amino acids.

Switches without any mapped protein features were not considered.

Significance on the enrichment of protein features losses versus gains

was calculated by comparing the number of gains and losses in switches

with the same numbers in simulated switches (Supplemental Experimental

Procedures).

Enrichment of Domain Families in Switches and Mutations

To find protein domain families significantly affected by switches, we first calcu-

lated a reference proteome for each tumor type. Using geneswith multiple tran-

scripts, we selected those that had at least one isoformwith TPM> 0.1 and only

kept the isoformwith the highestmedian expression across the normal samples

in the same tissue type. Proteins encoded by these isoforms were considered

the reference proteome in each tumor type. We aggregated the reference pro-

teomes from all tumor types to form a pan-cancer reference proteome. The ex-

pected frequency of a protein feature was then measured as the proportion of

this feature in the reference proteome. This expected frequency was then

used to calculate the probability of a feature to be affected by a switch using

a binomial test with the number of times the feature was gained or lost in

switches and the total number of feature gains or losses due to switches (Sup-

plemental Experimental Procedures). We selected cases with Benjamini-Hoch-

berg (BH)-adjusted p value < 0.05. Additionally, to ensure the specificity of the

enrichment for each domain class, we considered only domain families affected

in at least two switches. To calculate domain families enriched in mutations, we

considered again the reference proteome in each tumor type. The expectedmu-

tation rate of a domain family was considered to be the proportion of the length

of domains in the proteome covered by this domain family. We aggregated all

observed mutations falling within each family and calculated the probability of

the observed mutations using a binomial test using the mutation count for a

domain family and the total mutations in all domain families (Supplemental

Experimental Procedures). After correcting for multiple testing, we kept those

cases with a BH-adjusted p value < 0.05. GO analysis was performed using

DcGO (Fang and Gough, 2013). For the enrichment test, we considered signif-

icant those cases with FDR < 0.01 (hypergeometric test).

Protein Interaction Analysis

We created a consensus PPI network using data from PSICQUIC (del-Toro

et al., 2013), BIOGRID (Chatr-Aryamontri et al., 2015), HumNet (Lee et al.,

2011), STRING (Szklarczyk et al., 2011), and from Rolland et al. (2014). The

consensus network was built with interactions appearing in at least four of

these five sources, yielding a total of 8,142 nodes with 29,991 interactions.

To find PPIs likely altered by isoform switches, we first mapped each PPI in

a gene to a specific DDI, using information on DDIs from iPfam (Finn et al.,

2014), DOMINE (Raghavachari et al., 2008), and 3did (Mosca et al., 2014). Do-

mains involved in DDIs were then mapped to specific protein isoforms. For the

genes with switches, we then considered those PPIs that could be mapped to

DDIs involving domains mapped to either the normal or the tumor isoforms. In

total, 3,242 genes with 4,219 switches mapped to one or more interactions in

the consensus network and 1,688 isoform switches (in 1,355 genes) were

mapped to at least one specific DDI. We defined a PPI as lost if it was mapped

to one ormore DDIs in the isoform expressed in the normal tissue, but not in the

isoform expressed in the tumor sample. If multiple domains mediated the

same interaction, it was considered lost if at least one of these domains was

lost in the switch. We defined a PPI as gained if it was mapped to a DDI only

in the tumor isoform, but not in the normal isoform.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and six tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2017.08.012.
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SUMMARY

For the past decade, cancer genomic studies have
focused on mutations leading to splice-site disrup-
tion, overlooking those having splice-creating poten-
tial. Here, we applied a bioinformatic tool, MiSplice,
for the large-scale discovery of splice-site-creating
mutations (SCMs) across 8,656 TCGA tumors. We
report 1,964 originally mis-annotated mutations
having clear evidence of creating alternative splice
junctions. TP53 and GATA3 have 26 and 18 SCMs,
respectively, and ATRX has 5 from lower-grade
gliomas. Mutations in 11 genes, including PARP1,
BRCA1, and BAP1, were experimentally validated
for splice-site-creating function. Notably, we found
that neoantigens induced by SCMs are likely several
folds more immunogenic compared tomissensemu-
tations, exemplified by the recurrent GATA3 SCM.
Further, high expression of PD-1 and PD-L1 was
observed in tumors with SCMs, suggesting candi-
dates for immune blockade therapy. Our work high-
lights the importance of integrating DNA and RNA

data for understanding the functional and the clinical
implications of mutations in human diseases.

INTRODUCTION

Large-scale sequencing studies, such as The Cancer Genome

Atlas (TCGA) project, haveworked to address the functional con-

sequences of genomic mutations in tumors (Dees et al., 2012;

Kandoth et al., 2013; Lawrence et al., 2013; Niu et al., 2016),

with the larger goal of determining the underlying mechanisms

of cancer initiation and progression. Many studies have focused

on characterizing (1) non-synonymous somatic mutations that

alter amino acid sequence and (2) splice-disrupting mutations

at splice donors and acceptors (Jung et al., 2015). Current anno-

tation methods typically classify mutations as disruptors of

splicing if they fall on either the consensus intronic dinucleotide

splice donor, GT, or the splice acceptor, AG. As a group, splice

site mutations have been presumed to be invariably deleterious

because of their disruption of the conserved sequences that are

used to identify exon-intron boundaries.

While this classification method has been useful, increasing

evidence suggests that splice site mutations can lead to tran-

scriptional changes beyond disruption of the canonical junction

270 Cell Reports 23, 270–281, April 3, 2018 ª 2018 The Authors.
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(Lim and Fairbrother, 2012; Mort et al., 2014; Rivas et al., 2015;

Sauna and Kimchi-Sarfaty, 2011; Steffensen et al., 2014). One

such example is the c.190 mutation in BRCA1. Conventional

annotation had predicted a missense mutation, p.C64G, but

our analysis of RNA sequencing (RNA-seq) data in ovarian

tumors harboring p.C64G and a published mouse model (Yang

et al., 2003) suggested the germline c.190 mutation leads to

the creation of an alternative splice junction, resulting in a trun-

cated null protein. Several case studies have reported observa-

tions of missense and silent mutations activating cryptic splice

sites in MLH1 (Nyström-Lahti et al., 1999), LMNA (Woolfe

et al., 2010), RB1 (Zhang et al., 2008), RNASEH2A (Rice et al.,

2013), MECP2 (Sheikh et al., 2013), BAP1 (Wadt et al., 2012),

and KIT (Chen et al., 2005), and other studies relate missense

and silent mutations to splicing changes (Jung et al., 2015;

Kahles et al., 2016; Soemedi et al., 2017; Supek et al., 2014).

Despite the broad clinical ramifications of mutation-induced

altered splicing, a systematic evaluation of their occurrence

and the resultant effects in cancer has yet to be undertaken,

and there have not been significant bioinformatics platforms

for doing so.

We developed a bioinformatic tool called MiSplice (mutation-

induced splicing) that integrates DNA and RNA-seq data

across thousands of samples to discover mutations that induce

splice site creation. In our large-scale analysis across 8,656

tumor samples, we report 1,964 such somatic mutations that

had originally been mis-annotated. Splice-site-creating muta-

tions (SCMs) are enriched in the new introns, with the highest

rate at the �3 nt position of acceptors with two-thirds of

such events at aGag and agGag repeats by creating an alterna-

tive junction 2 nt away. Partial and full splice creation capabil-

ities across these 1,964 sites were evaluated by measuring the

fraction of reads supporting the alternative junction, which we

termed the ‘‘junction allele fraction’’ (JAF) and which is found

to be negatively correlated with distance to the new splice

site. In total, 1,607 genes harbor SCMs, with 248 of them

having more than one mutation, including TP53, GATA3,

ATRX, and NF1. Recurrent SCMs were found in TP53,

GATA3, DDX5, KDM6A, PTEN, SETD2, SMAD4, BCOR,

SPOP, and BAP1, suggesting an association with cancer

development. Broadly speaking, integrated DNA and RNA

data can furnish a sound basis for discovering SCMs and for

accurately understanding functional consequences of muta-

tions in cancer and in other human diseases.

RESULTS

Splice-Site-Creating Mutation Discovery
We collected high-quality mutation calls from 8,656 tumors

across 33 cancer types derived from The Cancer Genome Atlas

having available TCGA RNA-seq data (STAR Methods). For

every mutation, we defined a set of control samples in the

same cancer cohort that lacked the same mutation in the gene

of interest. We sought to assess the landscape of SCMs across

cancer genomes by evaluating all mutations already having con-

ventional annotations and their potential splice-site-creating

effects (Figure 1A). To achieve this goal, we conducted analysis

using a bioinformatic tool, MiSplice (mutation-induced splicing),

that systematically evaluates mutations in a splicing context

using RNA-seq data (Figure 1B).

MiSplice manages large analyses using parallel computation

to search for alternative splice junctions within windows of

±20 bp from the mutation of interest. For example, of the

1,416,566 candidate mutations examined here, 4,448 had five

ormore unique RNA-seq reads supporting the predicted alterna-

tive junction in proximity to themutation. MiSplice then conducts

a series of further evaluations, including Ensembl-based filtering

of canonical junctions, establishing observational significance

by case comparison to a matched set of controls, and assessing

score and depth of each cryptic site usingMaxEntScan (Yeo and

Burge, 2004) and SamTools (Li et al., 2009). From the resultant

subset, MiSplice filters out human leukocyte antigen (HLA)

genes and sites whose junctions have insufficient difference

of expression, as judged from the case-control assessment.

Here, we evaluated promising alternative junctions with at least

5% of paired-end RNA-seq reads at the genomic location sup-

porting the alternative junction of interest.

MiSplice processing revealed 2,056 mutations (Table S1) that

potentially create an alternative splice site. Manual review indi-

cated a 2.09% false-positive rate, suggesting high specificity

of the MiSplice algorithm for discovering these types of muta-

tion-induced splicing events. Of these putative splice events,

1.90% and 0.47% are considered complex and are in highly

homologous gene regions, respectively, so they were excluded

from further analyses (STAR Methods).

Of the final 1,964 SCMs passing manual review (Table S1),

52% (1,016) are in annotated splice sites, suggesting disruption

of the canonical splice site and selection of a the alternative

splice site nearby (Figure 1C). Importantly, 26% (513) and 11%

(208) of the SCMs had previously been mis-annotated as

missense and silent mutations, respectively. In addition, we

found 58 insertions or deletions, 46 nonsense, and 123 non-cod-

ing region mutations that likewise create cryptic splicing sites.

Molecular and Biological Patterns of SCMs
Next, we characterized the sequence context for the 1,790

SCMs corresponding to single nucleotide mutations. The

sequences of each 9-mer (donor) and 23-mer (acceptor)

covering the mutation position were extracted for both the

mutant and the reference sequences. Their splice scores as

potential donor or acceptor sites were then estimated using

MaxEntScan (Table S1).

Mutations near the alternative splice junctions show higher

mutation rates in the introns for both 50 (p < 1 3 10�5, binomial

test) and 30 splice site (p < 1 3 10�6) (Figure 2A). More interest-

ingly, we found an enrichment of mutations at the third nucleo-

tide position in the intron, but depletion at the first and second

positions (especially for 30 splice site) (Figure 2A). Comparison

of splicing scores between splice-site-creating mutants and

reference forms shows that most mutants have stronger splice

signals than the reference (Figure 2B). Mutations that create

a G or T to produce an alternative 50 splice site dramatically

increase splice site strength. For 30 splice sites, mutations en-

riched on the third nucleotide of the newly created intron showed

the largest increase of splicing score (Figure 2B). Further exam-

ination of the sequence context around mutations at the third
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nucleotide of 30 splice sites shows that 53% have a mutation on

aGag repeats and another 16% are mutated on agGag repeats,

all creating alternative junctions 2 nt away from the annotated

ones (Figure 2C). Mutations at the �3 position of the alternative

acceptor site would potentially enhance U2AF1 recognition of

the acceptor splice site. Previous studies have reported S34F

U2AF1 mutants preferentially skip exons that contain a T nucle-

otide at the �3 position (Okeyo-Owuor et al., 2015). Of the 192

mutations located at the�3 position from the alternative junction

and that contain an AG in the�2 and�1 positions, 56% undergo

aG>C transversion (21%G>A, 18%G>T, 3%C>T, 2%A>C,

1% A > T), with C being the preferred base at the �3 position for

U2AF1 binding (Figure 2D).

We also explored the relationship between the alternative and

canonical splice junctions. As expected,mutations at splice sites

dramatically reduced splice scores of the canonical splice junc-

tions, while strengthening those at the alternative splice junc-

tions in most cases. In contrast, a subset of missense and silent

mutations did not drastically alter the canonical junction, but

instead preferentially strengthened a nearby alternative splice

site (Figure 2E). When analyzing the raw splicing scores (canon-

ical and alternative site before and after mutation), we found that

1,089 out of 1,790 (61%) events showed higher splice score for

the alternative splice site than the canonical site, indicating incli-

nation for the alternative sites. Further, while 485 (27%) events

saw lower post-mutation alternative splice score, differences

between alternative and canonical scores had decreased, sug-

gesting that these mutations are still likely enhancing the prefer-

ence for the alternative site. Only 214 (12%) events did not show

evidence, suggesting increased post-mutational preference for

using the alternative site. These cases are a good illustration of

the fact that many other genomic splicing features are also rele-

vant, including exonic splicing enhancers (ESE), polypyrimidine

tract, branch point, and RNA-binding proteins. They are also

consistent with the general view that splice score is not definitive

(Jian et al., 2014). We emphasize that all 1,790 alternative splice

sites demonstrated usage based on patient RNA-seq data and

that 10 out of 11 (>90%) identified SCMs were validated exper-

imentally (see below).

Expressivity and Penetrance of SCMs
In the presence of the mutation, alternative splice junctions

exhibited a wide range of expression. To quantify this effect,

we measured alternative junction expression as the fraction of

alternatively spliced junction spanning reads over the total num-

ber of reads at the genomic location, what we refer to as the JAF.

A B

C

Figure 1. Splice-Site-Creating Mutation Discovery

(A) Examples of splice-site-creating mutations for different conventionally annotated mutation types. Splice-in is defined as mutations contained within the newly

created exons, and splice-out is when the mutation is present in the newly created intron.

(B) TheMiSplice workflow consists of three steps: alternative junction discovery, filtering, andmanual review. First, the user inputs the locations of RNA-seq BAM

files along with a mutation file. MiSplice searches the BAM file to identify any alternative splice junctions near the mutation of interest, while filtering out known

splice junctions and calculating the number of alternative junction-supporting reads for case and control samples. For the filtering step, the following sites are

removed:mutations in HLA genes, a low fraction of reads supporting the alternative splice junction, and sites expressed in controls. Finally, wemanually reviewed

all sites to validate the in silico predictions.

(C) Breakdown of 2,056 manually validated splice-site-creating mutations by conventional annotation.
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Figure 3A shows the distribution of JAF’s for all high confidence

MiSplice predicted alternative junctions, separated by conven-

tional mutation annotations (Figure 3A). Currently, we use a

JAF cutoff of 5% for reporting the final high-confidence sites.

However, there are some potential alternative sites excluded

by this cutoff. Our analysis revealed alternative junction expres-

sion varies widely. As expected, DNA variant allele fraction (VAF)

and JAF have a generally positive correlation (Figure 3B), with

SCMs in KDM6A and FGFR2 having >75% DNA VAF and JAF.

However, a SCM in ARID1A has a DNA VAF of 23% and JAF

of 67%. Such large ranges have been noted for mutations

outside of the splice site (Broeks et al., 2003; Clarke et al.,

A

B

C

E

D

Figure 2. Sequence Contexts and Characteristics of Splice-Site-Creating Mutations

(A) Frequency distribution of splice-site-creating mutations relative to the newly created splice junction, with high frequency shown at the third nucleotide position

in the newly created intron.

(B) Comparison of splicing scores for the newly created splice site, before (reference) and after the mutation (mutant). A larger effect of mutations at the third

nucleotide position in the intron (especially for the 30 splice sites) is shown.

(C) Dominant nucleotide sequence context for splice-site-creating mutations at�3 position of the 30 splice site. Mutation position (red dot) is present 3 base pairs

away from the newly created exon.

(D) Transition and transversion rate at the�3 position of the 30 splice site. Most mutations are G > C transversions, strengthening the consensus sequence of the

splicing factor U2AF1.

(E) Comparison of splicing scores between the nearest canonical splice junction with and without a mutation compared to the newly created splice junction with

and without a mutation. Most mutations strengthen the alternative splice junction relative to the canonical splice junction.
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2000; Venables, 2004). Both the truncated and normal spliced

products can be observed for many variants, due to either the

wild-type allele or leaky splicing, for example, as observed in

RNASEH2A, NFU1, SMN1, CFTR, and NF2 (Boerkoel et al.,

1995; Caminsky et al., 2014; Ferrer-Cortès et al., 2016; Lohmann

and Gallie, 2004; Mautner et al., 1996; Pagani et al., 2003; Rice

et al., 2013; Svenson et al., 2001; Vezain et al., 2011).

Next, we considered the expression of mutations that are

spliced-in, i.e., mutations located within the exon of the alterna-

tively spliced product. To this end, we determined the ratio of the

number of alternative junction reads containing the mutation

versus total number of reads supporting the alternative junction

(Figure 3C; Table S1). Overall, most of the reads supporting the

alternative junction also support the mutation, a finding that sug-

gests a strong association between the mutation and alternative

splice junction. Regarding the 50 splice site, mutations within the

first 6 bp of the new exon junction have a much higher fraction

of alternative junction reads supporting them; and we see an

A

B

C

Figure 3. Junction Allele Fraction of Splice-Site-Creating Mutations

(A) The junction allele fraction (JAF) is defined as the number of reads supporting the alternative spliced junction relative to total junction spanning reads. Dis-

tribution of JAF values separated by conventional annotation type.

(B) JAF versus DNA variant allele fraction (VAF) comparison by conventional annotation type. Most mutation types show a generally positive correlation between

JAF and VAF values.

(C) Splice-site-creating mutations expressed in the newly created exon of the alternative splice junction. Comparison of mutation position relative to the percent

of reads supporting the alternative junction and mutation (spliced-in JAF). The mean of each position is highlighted by the black point. For all positions, there is a

strong correlation between the presence of the splice-site-creating mutation and the alternative splice junction.
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inverse correlation between the mutation and the junction as the

distance between them increases. For the 30 splice site, we

observe a similar trend, although with a higher variability as a

function of the distance from the alternative junction.

SCMs across Genes and Cancer Types
A total of 1,607 unique genes harbored SCMs, with 85% (1,359)

having one mutation and 15% (248) having two or more. TP53

contained the greatest number (26), followed by GATA3 (18).

While most SCMs were found outside the current cancer gene

compendium (Table S1), Figure 4A shows that a remarkable

number of cancer genes harbor splice altering variants, a phe-

nomenon supported in the literature (Sebestyén et al., 2016).

A pan-cancer view reveals that TP53 was the most mutated

across cancer types, while 18GATA3mutations and 6ATRXmu-

tations were specific to breast cancer (BRCA) and lower-grade

glioma (LGG), respectively.

We observed 137 mutations nearby to one another (±5 bp)

which lead to the creation of the same recurrent splice-site-

creating events, not only in TP53 but also in GATA3, DDX5,

KDM6A, SETD2, PTEN, SPOP, and BAP1. While somemutations

didnotoccurat thesameposition, 14mutationscreating thesame

alternative splice junction were found in the same exon, including

2 mutations in the third exon of BAK1. While most mutations in

close proximity created the same alternative splice junction, two

adjacent SCMs in CTNND1 and 2 nearby exonic mutations in

ACP2 and GMPPB created different alternative junctions.

SCMs can impact protein structure and have potential thera-

peutic implications. Poly ADP-ribose polymerase 1 (PARP1) is

an enzyme involved in recruiting protein members of DNA repair

pathways including Timeless PAB (PARP1 binding domain) (Fig-

ure 4C) (Xie et al., 2015). Since PARP1 is essential to many

cellular processes, including DNA repair, it is commonly tar-

geted by antitumor agents (Malyuchenko et al., 2015). PARP1

inhibitors targeting the catalytic domain disrupt DNA repair

mechanisms thereby increasing the effectiveness of chemo-

therapeutic agents (Figure 4D). Identifying mutations that

disrupt inhibitor binding are essential to properly evaluate treat-

ment options. MiSplice identified a conventionally annotated

silent PARP1 mutation (p.S939S) in a lung squamous cell carci-

noma (LUSC) patient that acts as a splice-site-creating variant

by creating a de novo donor site (Figure 5A). 82 reads sup-

ported the de novo donor site, which results in a 10 amino

acid deletion (p.940-p.950) that falls within the catalytic domain

(Figure 4D). Out of 173 LUSC control samples, none contained

reads supporting the alternative junction, providing strong evi-

dence that the annotated ‘‘silent’’ mutation is actually a SCM.

Previous reports of missense mutations at p.940 are predicted

to reduce PARP1 enzymatic activity by disrupting the binding

affinity of PARP1 to its substrate NAD+ (Alshammari et al.,

2014). The in-frame SCM likely disturbs the local structure of

PARP1 and thereby disrupts the interactions between PARP1,

its protein binding partners, and drugs binding within the pocket

(Figures 4C and 4D).

A B C

D

Figure 4. Splice-Site-Creating Mutations across Genes and Cancer Types

(A) Distribution of splice-site-creating mutations in each gene separated by the total number of mutations in each gene. TP53 has the largest number of splice-

site-creating mutations, followed by GATA3 and ATRX.

(B) Genes with the highest number of pancancer splice-site-creating mutations. Circle size correlates with the total number of mutations for each gene (labeled

inside circle) and colored by cancer type. Splice-site-creating mutations in TP53 are present in many cancer types, while mutations in ATRX and GATA3 are

specific to LGG and BRCA, respectively.

(C) Proteins Timeless (PAB domain) and PARP1 (chain A) are colored green and pink, respectively. Originally annotated p.S939S mutation (red) and spliced-out

sequence (blue) are highlighted on PARP1 (chain A).

(D) 3D protein structure of PARP1 in complex with an inhibitor (PDB ID: 5WRQ). Drug inhibitor and PARP1 (chain A) are indicated in green and pink, respectively.
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We identified twokidney renal clear cell carcinoma (KIRC) sam-

ples having the same conventionally annotated missense muta-

tion (c.233A > G, p.N78S) in BAP1, a nuclear deubiquitinase,

that created the same spliced-out alternative splicing product

(Figure 5B). Inactivation of BAP1 is prevalent among renal cell

carcinomas (Peña-Llopis et al., 2012) andan annotatedmissense

mutation (p.L570V) has been reported to create a cryptic splice

site in melanoma (Wadt et al., 2012). At the transcriptional level,

the expressions of the case and control samples are relatively

comparable, but at the translational level, one casewith available

protein data (RPPA) showed significantly lower expression

(p = 0.044, permutation test) relative to the controls (Figure S1;

Table S2). This result suggests the conventionally annotated

missensemutations in BAP1 likely create an alternatively spliced

transcript that is not readily expressed at the protein level.

We used a pCAS2.1 splicing reporter mini-gene functional

assay that was adapted from previous publications (Bonnet

et al., 2008; Gaildrat et al., 2010; Malone et al., 2016; Tournier

et al., 2008; Vreeswijk and van der Klift, 2012), to validate

SCMs in 11 cancer genes, including two originally annotated

silent mutations in PARP1, RAD51C, two splice site mutations

in TP53 and BRCA1, and several missense mutations in

ARID2, BAP1, BCOR, CDH1, KMT2A, PTEN, and TSC2. Wild-

type and mutant exons were cloned into a pCAS2.1 vector (Gail-

drat et al., 2010) and transiently transfected into HEK293T cells.

Total RNA was extracted to evaluate alternatively spliced prod-

ucts by RT-PCR. Examining the change in the MaxEntScan

score for the 11 genes revealed mutations in ARID2, BAP1,

BCOR, CDH1, PARP1, RAD51C, PTEN, and TSC2 having

dramatically stronger splice scores in the presence of the muta-

tion, while mutations in BRCA1, KMT2A, and TP53 did not (Fig-

ure 5D). Except for PTEN, variants with stronger splice scores

showed higher levels of the alternatively spliced product in the

mini-gene assay when compared to the wild-type. Variants

A B C

D

E

Figure 5. Minigene Functional Assay of Splice-Site-Creating Mutations

(A) Integrative genomics viewer (IGV) screenshot of the conventionally annotated synonymous mutation in PARP1 in exon 21. RNA-seq reads of the candidate

splice-site-creating mutation reveal the creation of an alternative splice site (red reads) created by the conventionally annotated synonymous mutation.

(B) Candidate recurrent splice-site-creating mutations inBAP1. Conventionally annotated as synonymous variants, theBAP1-mutated region shows alternatively

spliced reads (red reads) in the IGV screenshot for each sample with the splice-site-creating mutation.

(C) IGV screenshot of a conventionally annotated synonymous mutation in RAD51C in exon 2.

(D) Maximum entropy score of the splice-site-creating variant before (purple) and after (red) the introduced mutation for each variant functionally validated in the

mini-gene splicing assay. In silico predictions suggest all mutations strengthen the alternative splice site.

(E) Candidate splice-site-creating mutations validated by the mini-gene splicing assay. Exons of interest were cloned into the pCAS2.1 vector and mutant (red);

wild-type (purple) plasmids were transfected into 293T cells; and total RNA was extracted to identify mutation-induced alternatively spliced products.
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with moderate changes in splice score still showed evidence of

alternatively spliced transcripts, revealing the importance of uti-

lizing functional assays to evaluate the effect of mutations in a

splicing context in addition to in silico predictions. The mini-

gene assay confirmed 91% (10/11 genes) splicing alterations

in all tested genes and sequencing confirmed the alternatively

spliced products (Figure 5E; STAR Methods), suggesting a

strong concordance between MiSplice predicted SCMs and

the functional assay.

Neoantigens Introduced by SCMs
Wehave further investigated neoantigensproducedbySCMs.By

using the RefSeq transcript database, a total of 2,993 protein

sequences were translated for transcripts containing mutation-

induced alternative splice forms (Table S3). In the translation,

we allowed for different transcripts from each SCM. The HLA

types for each sample were adopted from the TCGA pancan

immune working group (Synapse ID: syn5974636). NetMHC4

and NetMHCpan-3.0 (Andreatta and Nielsen, 2016) were used

topredict thebinding affinity betweenepitopes and themajor his-

tocompatibility complex (MHC) and showed a high concordance

in total predicted neoantigens (Pearson = 0.94; Figure S2). We

found that alternative splice forms for some important genes

related to tumorigenesis, including SMARC1, KDM6A, and

NOTCH1, are highly immunogenic and can contain 40 or more

unique neoantigens (Figure 6A) (Dalgliesh et al., 2010; Papadakis

et al., 2015). In addition, themean number of neoantigens across

SCMs from NetMHCpan-4.0 and NetMHCpan-3.0 are 2.0 and

2.5, respectively, which are both higher than the average number

of around 1 for non-synonymous mutations. Furthermore, 28

genes contain recurrent neoantigen events (R3) across samples

(Figure 6B). In particular, GATA3 has the highest recurrence and

GATA3 SCMs were mutually exclusive with other mutation types

(Figure 6C). TheCA deletion at chr8:8111433 disrupts the canon-

ical splice site andanalternative splice site is used for creating the

alternative splice form, which results in a frame shifted protein

product spanning the Zinc-finger domain (Figures 6D and 6E).

19 unique neoantigen peptide sequences were mapped to the

frameshifted protein product for the 16 samples (Figure 6F). We

were further able to validate one alternative peptide sequence

using mass spectrometry data from a recent proteogenomics

study on 77 TCGA breast cancer patients (Mertins et al., 2016).

For one sample with the highly recurrent and expressed GATA3

SCM, we used MSGF+ to search publicly available mass spec-

trometry data for evidence of alternative GATA3 peptides. Fig-

ure6Gshowsone identifiedmass spectrumsupporting one alter-

nativeGATA3 peptide, which covers two immunogenic peptides

(KPKRRLPG and LIKPKRRLPG) predicted in TCGA-AR-A1AP.

High neoantigen burden is associated with an elevated

immune response (Turajlic et al., 2017). To test whether SCMs

affect immune response, we compared the expression of T cell

markers PD-1, CD8A and CD8B and PD1 immune checkpoint

blockades PD-L1 and PD-L2 (Figure 7). We selected six cancer

types (BRCA, BLCA, HNSC, LUAD, LUSC, and SKCM) with suf-

ficient samples containing SCMs for adequate statistical power.

Both T cell markers (PD-1, CD8A, and CD8B) and immune

checkpoint blockade PD-L1 show increased expression in sam-

ples with SCMs compared to samples without SCMs (Figure 7),

indicating alternative splice forms induced by SCMs increase the

overall immunogenicity of these cancers. The highly expressed

PD-L1 suggests PD-L1 immunotherapy as potential treatments

for samples containing SCMs.

DISCUSSION

In this study, we applied our newly developed bioinformatics tool

called MiSplice (mutation-induced splicing) to systematically

analyze splice-site-creating events that arise from somatic mu-

tations. Our analysis shows MiSplice reliably identifies SCMs

across multiple cancer types. Existing studies have largely

focused on splice-disrupting events in known splice sites, but

the current study substantially extends our knowledge into the

realm of SCMs in human cancer. For instance, we found 1,016

splice site mutations not only disrupt the canonical splice site

but also create an alternative splice site. We also found that

hundreds of mutations that would traditionally be classified as

missense, silent, indel, and nonsense are really acting as

SCMs. Many important cancer-related genes harbor these mu-

tations, such as TP53, ATRX, BAP1, CTNNB1, RB1, etc. It is

noteworthy that we found five SCMs in ATRX among 288 LGG

cases, likely leading to the disruption of ATRX function. A previ-

ous study has shown that loss of wild-type ATRX is associated

with tumor growth in glioma (Koschmann et al., 2016).

Characterization of these alternative splice events show that

most SCMs have a higher splice score, as measured by

MaxEntScan, in the post-mutation alternative splice site as

compared to the reference. These results are consistent with

the preferential selection of these alternative sites as new splicing

forms. For the splice-site mutation, the splice score associated

with the canonical junction is coincidently decreased after muta-

tion. However, while there is no difference in splice scores of

canonical junctions before and after missense and silent muta-

tions, the alternative splice site was often strengthened after

mutation. This suggests silent and missense mutations instead

act as modifiers of splicing by creating or strengthening cryptic

siteswithin theexonasopposed todisrupting thecanonical splice

site. In addition, we found a significant enrichment ofmutations at

the �3 position in the 30 splice site, the two dominant sequence

contexts being aGag and agGag, where G is at the �3 position.

In cases in which the mutation is retained in the alternative

splice junction, we distinguish mutations with two further cate-

gories, splice-in and splice-out. For splice-in mutations, we

can characterize the association between mutations and cryptic

splicing forms. For example, we found high concordance for

RNA-seq reads supporting alternatively spliced junctions and

mutations, suggesting the association between mutations and

cryptic splicing forms.

The current study has greatly extended insights into the tran-

scriptional ramifications of genomic alterations by identifying

nearly 1,964 alternative splice sites introduced by somatic muta-

tions and functionally validating 10 of 11 variants in a mini-gene

splicing assay. These events were conventionally annotated

as missense, silent, splice site, nonsense, or other mutations

when, in fact, we have shown that they often create cryptic splice

sites. This relative abundance of the alternative and wild-type

product suggests varying levels of junction usage, depending
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Figure 6. Schematic of GATA3 Splice-Site-Creating Mutations and Neoantigen Predictions

(A) Distribution of neoantigens predicted by NetMHCpan and NetMHC4. Genes with the highest number of neoantigens labeled. Mean value for each tool

indicated by X and labeled.

(B) Genes with the largest recurrence of predicted neoantigens across the dataset. GATA3 shows the highest recurrence.

(C) Mutual exclusivity of protein-affecting mutation (PAM), frameshifting indel (FS), in-frame indel (IF), and splice-site-creating mutations (SCM) inGATA3. (D) IGV

screenshot of GATA3 splice-site-creating mutation, which disrupts the canonical splice site and utilizes a cryptic splice site 7 bp downstream. Mutant reads

highlighted in red, and normal reads are in purple. CA deletion indicated in the figure.

(E) Predicted functional domains disrupted because of the recurrent splice-site-creating mutation in GATA3.

(F) Predicted neoantigen peptide sequences mapped to the frameshifted protein product for samples with GATA3 SCMs.

(G) Mass spectrum of GATA3 peptide in TCGA-AR-A1AP.
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on the context of the mutation, and emphasizes the importance

of validating predictions using a functional assay to understand

the full biological consequence. The alternative products may

be therapeutically targetable in some cancer patients. For

example, targeting neoantigens shows promising results in treat-

ing melanoma patients (Carreno et al., 2015). By further evalu-

ating human leukocyte antigen (HLA) genotypes and binding

affinities to theMHC, it is likely that new neoantigens from cryptic

splice sites may be discovered. The current study reveals that

alternative splice forms induced by SCMs are highly immuno-

genic and correlated with a high T cell immune response and

an elevated PD-L1 expression, suggesting the potential for

immunotherapy in these samples. Further investigation of the

cryptic splice sites by mass spectra or target assay are needed

to prioritize therapeutic targets in clinical trials.
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Sebestyén, E., Singh, B., Miñana, B., Pagès, A., Mateo, F., Pujana, M.A., Val-
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Li Ding

(lding@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Cancer Genome Atlas (TCGA) collected both tumor and non-tumor biospecimens from 10,224 human samples (https://

cancergenome.nih.gov/abouttcga/policies/informedconsent). Here, we use variants from a publicly available mutation annotation

file (MAF) complied by the MC3 working group (syn7824274).

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

Human: HEK293T cells ATCC https://www.atcc.org/products/all/

CRL-3216.aspx

Oligonucleotides

Primers for cDNA amplification pCAS-KO1-

(50-TGACGTCGCCGCCCATCAC-30) pCAS-R
(50-ATTGGTTGTTGAGTTGGTTGTC-30)

This paper N/A

Primers for Q5 mutagenesis and restriction

enzyme primers for amplifying exons of

interest see Table S6

This paper N/A

Recombinant DNA

Plasmid: pCAS2 Inserm Laboratory N/A

Software and Algorithms

MaxEntScan Yeo and Burge, 2004 http://genes.mit.edu/burgelab/maxent/

Xmaxentscan_scoreseq.html

Samtools Li et al., 2009 http://samtools.sourceforge.net/

MiSplice In preparation https://github.com/ding-lab/misplice

Integrative Genomics Viewer Robinson et al., 2011 http://software.broadinstitute.org/software/igv/

Chemicals, Peptides, and Recombinant Proteins

Nucleospin PCR Cleanup Macherey-Nagel 740609.10

DNA Clean and Concentrator-5 Kit Zymo Research D4003

BamHI New England Biomedicine R0136S

MluI New England Biomedicine R0198S

T4 DNA Ligase New England Biomedicine M0202S

Q5 Site Directed Mutagenesis New England Biomedicine E0554S

Lipofectamine 2000 Thermofisher Scientific 12566014

Superscript III First-Strand Synthesis System Thermofisher Scientific 18080051

Qiaquick Gel Extraction Kit QIAGEN 28704

Other

Public MC3 MAF In preparation https://gdc.cancer.gov

MSGF+ N/A https://www.ncbi.nlm.nih.gov/pubmed/

?term=25358478

Mass Spectra Data from 77 TCGA Breast

Cancer Patients

N/A https://cptac-data-portal.georgetown.edu/

cptac/s/S029
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METHOD DETAILS

Dataset Description
Aligned RNA-seq bam files were analyzed using the ISB google. These cancer types are Acute Myeloid Leukemia [LAML], Adreno-

cortical carcinoma [ACC], Bladder Urothelial Carcinoma [BLCA], Brain Lower Grade Glioma [LGG], Breast invasive carcinoma

[BRCA], Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC], Cholangiocarcinoma [CHOL], Colon adeno-

carcinoma [COAD], Esophageal carcinoma [ESCA], Glioblastoma multiforme [GBM], Head and Neck squamous cell carcinoma

[HNSC], Kidney Chromophobe [KICH], Kidney renal clear cell carcinoma [KIRC], Kidney renal papillary cell carcinoma [KIRP], Liver

hepatocellular carcinoma [LIHC], Lung adenocarcinoma [LUAD], Lung squamous cell carcinoma [LUSC], Lymphoid Neoplasm

Diffuse Large B cell Lymphoma [DLBC], Mesothelioma [MESO], Ovarian serous cystadenocarcinoma [OV], Pancreatic adenocarci-

noma [PAAD], Pheochromocytoma and Paraganglioma [PCPG], Prostate adenocarcinoma [PRAD], Rectum adenocarcinoma

[READ], Sarcoma [SARC], Skin Cutaneous Melanoma [SKCM], Stomach adenocarcinoma [STAD], Testicular Germ Cell Tumors

[TGCT], Thymoma [THYM], Thyroid carcinoma [THCA], Uterine Carcinosarcoma [UCS], Uterine Corpus Endometrial Carcinoma

[UCEC], Uveal Melanoma [UVM]

MiSplice Pipeline
The MiSplice pipeline was developed to detect mutation-induced splicing events from RNA-seq data. It is written in Perl and

incorporates two standard tools, samtools and MaxEntScan. The pipeline is fully automated and can run multiple jobs in parallel

on LSF cluster. It executes the following steps:

1) Splitting large maf file into multiple smaller files with less mutations (currently, the default setting is 200).

2) Discovering splicing junctions within 20bps of the mutation with at least 5 supporting reads with mapping quality Q20 and then

filtering canonical junctions by using the Ensembl 37.75 database. We selected 20bp as a cut-off since it is the farthest

distance from the splice junction in a splice region.

3) Computing the number of supporting reads of above cryptic splice sites for control samples without mutations (Table S1).

4) Calculating the splicing scores for the cryptic splice sites via MaxEntScan.

5) Reporting the depth of each cryptic splice site via Samtools.

6) Filtering cryptic sites which fall in HLA loci or less than 5% of reads at the genomic location supporting the alternative junction

of interest.

7) Further filtering cryptic sites by comparing the supporting reads in control samples. The final reported cryptic sites must stand

as top 5% for the number of supporting reads in the case (with mutation).

Splice Site Score Estimation
For each cryptic splice site and nearby canonical splice site, the corresponding nucleotide sequences were first extracted for both

the mutant and reference sequences (9-mer and 23-mer for donor and acceptor, respectively). Their splice scores as potential donor

or acceptor sites were then estimated using MaxEntScan.

Neoantigen Prediction
For each predicted SCM, we use a curated RefSeq transcript database (version 20130722) to obtain the translated protein

sequences for transcript containing alternative splice forms induced by SCMs. Different length of epitopes (8-mer, 9-mer, 10-mer

and 11-mer) are constructed from the translated protein sequence. We use NetMHC3pan (Nielsen and Andreatta, 2016) and

NetMHC4 (Andreatta and Nielsen, 2016) to predict the binding affinity between epitopes and MHC. Epitopes with binding

affinity % 500nM which are also not present in the wild-type transcript are extracted from the following neoantigen analysis.

Manual Review
All splice-site-creating mutations were manually reviewed using the integrative genomics viewer (http://software.broadinstitute.org/

software/igv/). Mutations were placed into one of three categories: Pass, Complex, and No Support. Mutations were classified as

complex if more than one alternatively spliced product was observed for the mutated sample.

Code Availability
MiSplice is written in Perl and is freely available from GitHub at https://github.com/ding-lab/misplice under the GNU general public

license. MiSplice uses several independent tools and packages, including SamTools andMaxEntScan, all of which are likewise freely

available, but which must be obtained from their respective developers. TheMiSplice documentation contains complete instructions

for obtaining and linking these applications into MiSplice.

Mini-gene Splicing Assay
Exons of interest and approximately 150 bp of their flanking intron sequenceswere PCR amplified fromHEK293T genomic DNA using

primers carrying restriction enzyme sites for BamH1 and MluI. PCR products were cleaned up using NucleoSpin PCR Cleanup
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(Macherey-Nagel) or DNA Clean and Concentrator-5 Kit (Zymo Research) and digested with BamHI andMluI. The digested pCAS2.1

vector and PCR products were ligated using T4 DNA Ligase (NEB). Mutations were introduced via Q5 Site-Directed Mutagenesis

(NEB). WT and MUT constructs were confirmed by sequencing of the insert region. The plasmids were transiently transfected into

HEK293T cells using Lipofectamine 2000 (ThermoFisher Scientific). 24 hr post transfection, cDNA was synthesized using 2 to 3

ug of total RNA with the Superscript III First-Strand Synthesis System (ThermoFisher Scientific) and priming with Oligo(dT)20. Finally,

cDNA was amplified using pCAS-KO1-(50-TGACGTCGCCGCCCATCAC-30) and pCAS-R (50-ATTGGTTGTTGAGTTGGTTGTC-30)
and the alternative splicing patterns were evaluated on a 2.5% agarose gel with ethidium bromide. Qiaquick Gel Extraction Kit

(QIAGEN) was used to purify bands for sequencing (Figures S3, S4, S5, and S6; Tables S5, S6, and S7).

Cell Culture
HEK293T cells were cultured in Dulbecco’smodified Eagle’s medium (DMEM) supplemented with fetal bovine serum (FBS) and peni-

cillin streptomycin.

QUANTIFICATION AND STATISTICAL ANALYSES

MiSplice assesses the significance of the number of reads supporting the predicted alternative splice junction by comparing to read

counts from a control cohort. Specifically, a frequency distribution is constructed from the control cohort, from which threshold

values for 5% and 95% tails on the left and right, respectively, are determined. A series of logic tests is then conducted to discern

the best explanation of the data. Possible verdicts are low or high expression if the datum is outside the 5% or 95% thresholds,

respectively, average expression if no thresholds are exceeded, or no expression in this tissue if the thresholds are zero.
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Appendix D

Susceptibility genes to breast
cancer

Nearly all known HBOC susceptibility genes encode tumor suppressors that partici-
pate in genome stability pathways (homologous recombination repair, replication
fork stability, transcription-replication collisions, mismatch repair, and DNA damage
signaling, checkpoints and cell death).

D.1 Homologous recombination repair

The homologous recombination repair pathway (HRR) deals with double strand
DNA breaks by using the undamaged chromosome as template for error-free repair.
After a DSB occurs, the MRN complex (MRE11, RAD50 and NDN) detects and
binds the free DNA ends. Then, it promotes DNA damage checkpoint signaling.

HRR involves BRCA1, BRCA2 and, actually, most of the HBOC genes. Because
of its ability to interact with a wide range of proteins, BRCA1 is hypothetized to
act as a recruitment scaffold. A deficiency of BRCA1 is linked to the inability to
trigger HRR. Mutations in the MRN complex have also been clinically associated to
breast cancer, although dubiously so in the case of RAD50 variants. Reassuringly,
some other HBOC genes are interactors of the MRN complex and BRCA1/2.

D.2 Replication fork stability

BRCA1 and BRCA2 protect newly synthesized DNA and promote the restart of
stalled forks in an HRR-independent manner. In the absence of these proteins, newly
synthesized DNA in a stalled fork would get degraded, leading to genome instability
and increasing the risk of cancer.

D.3 Transcription-replication collisions

Collisions between transcription and replication are emerging as a source of genome
instability. In particular, RNA-DNA hybrids called R-loops can form between the
nascent transcript and the DNA template. They can lead to double-strand breaks
and mutations. Both BRCA1 and BRCA2 participate in the resolution of R-loops,
preventing their accumulation. In consequence, BRCA-deficient cells tend to suffer
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transcriptional stress that leads to genome instability. Nonetheless the relationship
between this mechanism and proneness to HBOC is yet to be proven, and the genes
involved further investigated.

D.4 Mismatch repair

DNA mismatch repair (MMR) corrects base-base mispairs. When MMR is faulty,
accumulations point mutations and genetic changes in repeated nucleotide sequences
(microsatellite instability) occur. MMR also plays a role in error-free HRR.

D.5 DNA damage signaling, checkpoints and cell death

Pathways involved in genome maintenance, cell cycle checkpoints and cell death
usually eliminate cells with damaged DNA. When proteins involved in them are
not active, some processes such as cell cycle arrest, apoptosis and senescence will
not occur. In consequence, cells that undergo genomic alterations are allowed
to proliferate. The most famous case of HBOC in this pathway is TP53, which
coordinates the transcriptional induction of many genome stability factors.
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Table D.1: Overview of HBOC genes: estimated lifetime risk of breast cancer (age in years) and tumorogenic molecular mechanisms
that involves them: homologous recombination repair (HRR), replication fork stability, transcription-replication collisions, mismatch
repair (MMR), DNA damage signaling, checkpoints and cell death, and/or others. Adapted from Nielsen, Overeem Hansen, and
Sørensen (2016).

Gene Lifetime.risk HRR Rep..fork.stab. Tr..rep..clash MMR DNA.Damage..apoptosis Other
ATM 60% by age 80 X X
BARD1 Unknown X
BLM Unknown X
BRCA1 57-65% by age 70 X X X X
BRCA2 45-55% by age 70 X X X X

BRIP1 OR: < 2.0
CDH1 42% by age 80 X
CHEK2 37% by age 70 X
FAM175A Unknown X
FANCC Unknown X

FANCM Unknown X
MLH1 ~19% by age 70 X X
MRE11 Unknown X
MSH2 ~11% by age 70 X
NBN OR: 3.0 X

NF1 6.5-fold up ages 30-39 X
PALB2 35% by age 70 X X
PMS2 SIR: 3.8 X
PTEN 85% by age 70 X
RAD51B Unknown X

RAD51C Unknown X
RAD51D Unknown X
RECQL Unknown X
RINT1 Unknown X
STK11 32% by age 60 X

TP53 25% by age 70 X
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RÉSUMÉ

Cette thèse s’intéresse à un ensemble de méthodes utilisées pour identifier les causes génétiques de maladies com-
plexes. Les méthodes d’association génome entier (GWAS), sont généralement utilisées pour étudier des associations
univariées, tandis que les méthodes d’association d’interactions génome entier (GWAIS) prennent en considération des
interactions entre facteurs génétiques (ou épistasie). Cependant, ces deux approches présentent plusieurs défis, parmi
lesquels leur faible puissance statistique, la difficulté de leur interprétation, ainsi que les choix arbitraires qui doivent être
faits à différentes étapes de ces études. Dans cette thèse, j’étudie comment l’utilisation de réseaux biologiques permet
de répondre à ces défis et faciliter la découverte de nouveaux biomarqueurs. Les réseaux biologiques permettent en ef-
fet d’incorporer des connaissances a priori aux analyses statistiques, et de considérer chaque polymorphisme d’un seul
nucléotide (SNP) et chaque gène dans leur contexte biologique. En analysant deux jeux de données, un sur le cancer
du sein et l’autre sur les maladies chroniques inflammatoires de l’intestin, je montre comment l’utilisation de réseaux bi-
ologiques permet de mettre à jour de nouveaux mécanismes de susceptibilité. Ceux-ci impliquent des SNPs individuels,
ainsi que des groupes de SNPs en épistasie d’ordre deux ou plus. Je montre aussi comment l’incorporation de réseaux
biologique dans les GWAS et GWAIS permet d’améliorer l’interprétabilité des résultats et de produire des hypothèses
biologiques convaincantes.

ABSTRACT

This thesis tackles methodologies to identify the genetic causes of complex diseases. This is usually done via genome-
wide association studies (GWAS), when univariate association is studied, and genome-wide association interaction stud-
ies, when interactions between genetic factors (or epistasis) are considered (GWAIS). However, both settings present
some challenges, namely low statistical power, difficult interpretation, and arbitrary choices at multiple points of the study.
In this thesis I study how a framework that uses biological networks can help overcome these issues and boost biomarker
discovery. This is done by incorporating prior knowledge into the statistical analysis and putting every single nucleotide
polymorphism (SNP) and gene in relation to their biological context. By analyzing two datasets, on breast cancer and
inflammatory bowel disease, I demonstrate the utility of networks to discover new mechanisms of susceptibility. These
involve individual SNPs, as well as groups of SNPs in epistasis, two-way and higher. I also show how including networks
in GWAS and GWAIS boosts the interpretability of the results and produces compelling biological hypotheses.
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