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Préambule

Cette thèse se consacre à une analyse théorique puis numérique d’une certaine classe d’équations aux
dérivées partielles stochastiques (EDPS) : les lois de conservation scalaires avec viscosité et avec un
forçage aléatoire de type additif et bruit blanc en temps. Un exemple typique est l’équation de Burgers
stochastique, motivée par la théorie de la turbulence. On s’intéresse particulièrement au comportement
en temps long des solutions de ces équations à travers une étude des mesures invariantes.

La partie théorique de la thèse constitue le chapitre 2. Dans ce chapitre, on prouve l’existence
et l’unicité d’une solution au sens fort. Pour cela, des estimations sur les normes de Sobolev jusqu’à
l’ordre 2 sont établies. Dans la seconde partie du chapitre 2, on montre que la solution de l’EDPS
admet une unique mesure invariante.

On se propose dans le chapitre 3 d’approcher numériquement cette mesure invariante. À cette fin,
on introduit un schéma numérique dont la discrétisation spatiale est de type Volumes Finis et dont
la discrétisation temporelle est une méthode d’Euler à pas fractionnaire. Il est montré que ce type de
schéma respecte certaines propriétés fondamentales de l’EDPS telles que la dissipation d’énergie et la
contraction L1. Ces propriétés assurent l’existence et l’unicité d’une mesure invariante pour le schéma.
À l’aide d’un certain nombre d’estimations de régularité, on montre ensuite que cette mesure invariante
discrète converge, lorsque le pas de temps et le pas d’espace tendent vers zéro, vers l’unique mesure
invariante pour l’EDPS au sens de la distance de Wasserstein d’ordre 2.

Dans le chapitre 4, des expériences numériques sont effectuées sur l’équation de Burgers pour
illustrer cette convergence ainsi que des propriétés à petites échelles spatiales relatives à la turbulence.

Un appendice est consacré à l’étude de la stationnarité des schémas numériques introduits au
chapitre 3 dans le cas où la viscosité est nulle et où le domaine spatial est de dimension quelconque.
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Preamble

This thesis is devoted to the theoretical and numerical analysis of a certain class of stochastic partial
differential equations (SPDEs), namely scalar conservation laws with viscosity and with a stochastic
forcing which is an additive white noise in time. A particular case of interest is the stochastic Burgers
equation, which is motivated by turbulence theory. We focus on the long time behaviour of the solutions
of these equations through a study of the invariant measures.

The theoretical part of the thesis constitutes the second chapter. In this chapter, we prove the
existence and uniqueness of a solution in a strong sense. To this end, estimates on Sobolev norms up
to the second order are established. In the second part of Chapter 2, we show that the solution of the
SPDE admits a unique invariant measure.

In the third chapter, we aim to approximate numerically this invariant measure. For this purpose,
we introduce a numerical scheme whose spatial discretisation is of the finite volume type and whose
temporal discretisation is a split-step backward Euler method. It is shown that this kind of scheme
preserves some fundamental properties of the SPDE such as energy dissipation and L1-contraction.
Those properties ensure the existence and uniqueness of an invariant measure for the numerical scheme.
Thanks to a few regularity estimates, we show that this discrete invariant measure converges, as the
space and time steps tend to zero, towards the unique invariant measure for the SPDE in the sense of
the second order Wasserstein distance.

In Chapter 4, numerical experiments are performed on the Burgers equation in order to illustrate
this convergence as well as some small-scale properties related to turbulence.

An appendix is devoted to the study of the stationarity of the numerical schemes introduced in
Chapter 3, in the case where the viscosity coefficient is zero and the spatial domain is of arbitrary
dimension.
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Chapter 1

Introduction

1.1 Viscous scalar conservation laws

Conservation laws are among the most fundamental principles describing a physical process. They state
that a particular measurable quantity of an isolated physical system does not evolve over time. This
quantity may be a mass, an energy, a momentum, an electric charge, etc... When the physical system
consists of a continuous material, this conservation principle is appropriately complemented with the
statement that the conserved quantity is also locally conserved: the amount of the quantity in a given
volume of space varies only by the amount flowing in or out of the volume through its boundaries.
In more general words, the quantity moves in space as a continuous flow. This assumption, called
the continuum hypothesis, constitutes the core of continuum mechanics [37]. The physical system may
also create and destroy some of the conserved quantity by itself. We say that it contains a source at
the time and place where the conserved quantity is created, and a sink where it is destroyed. The
conservation law still holds as long as the sources and the sinks compensate each other.

Let u(t,x) denote the density per unit volume of the conserved quantity at a time t and at a point
x of the physical space. Similarly, let F(t,x) denote the flux of the conserved quantity, and S(t,x) the
generation of the conserved quantity per unit volume per unit time (it corresponds to a source when
S > 0 and a sink when S < 0). Let V be an arbitrary volume of space. The conservation law in the
volume V has the expression

d

dt

∫
V
udx = −

∫
∂V

F(t,x) · ndx +

∫
V
S(t,x)dx.

Indeed, the left-hand side expresses the variation per unit time of the amount of the conserved quantity
inside V . As n denotes the outward unit normal to V , the first term of the right-hand side expresses
the amount of the conserved quantity flowing into V through its boundary at time t, and the second
term expresses the amount of the conserved quantity generated inside V at time t. Using Green’s
formula, we can rewrite this equation in the following way:

d

dt

∫
V
udx = −

∫
V

div(F(t,x))dx +

∫
V
S(t,x)dx.

Since this equation must hold for any volume of space V , the integrals may vanish and we shall write

∂tu = −div(F(t,x)) + S(t,x). (1.1)

In most physical applications, the function F depends on t and x through the density u. When it
depends on u up to the first-order space differential, i.e. when

F(t,x) = F̃(t,x, u(t,x),∇u(t,x)),
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then Equation (1.1) defines a partial differential equation that we may call a second-order scalar
conservation law.

In the present work, we will restrict ourselves to second-order scalar conservation laws where the
flux is homogeneous in time and space and takes the form:

F̃ (t,x, u(t,x),∇u(t,x)) = A(u(t,x))− ν∇u(t,x),

whereA is a continuous function and ν is a positive constant. Furthermore, the time interval considered
will always be [0,+∞). Taking these assumptions into account, Equation (1.1) now writes

∂tu = −div(A(u)) + ν∆u+ S(t,x), t ≥ 0, x ∈ D, (1.2)

where D is the space domain. It could be either Rd, a subdomain1 of Rd, or even the d-dimensional
torus Td, where T := R/Z. Observe that the expression of the flux of the conserved quantity has been
split in two parts:

• The term −div(A(u)) accounts for the transport of the conserved quantity. Indeed, the equation
∂tu = −div(A(u)) which by differentiation can also be written ∂tu = −A′(u) ·∇u, is a transport
equation where the solution u is transported with a velocity A′(u). As it relates to the non-
diffusive part of the transport, we call A the flux function, and by extension, we call −div(A(u))
the flux term.

• The term ν∆u accounts for the spatial diffusion of the conserved quantity. Observe that when
A ≡ 0 and S ≡ 0, Equation (1.2) is merely the heat equation. By analogy with the hydrody-
namical context, the term ν∆u is called the viscous term and the constant ν is the viscosity
coefficient.

In this regard, Equation (1.2) is often called a viscous scalar conservation law. A notable non-linear
viscous conservation law is the viscous Burgers equation, namely Equation (1.2) in dimension d = 1
and with the flux function A(u) = u2/2. Particular physical motivations behind this equation will be
discussed in Section 1.4.

In the recent years, a great interest has been brought to hyperbolic (or inviscid, or first-order) scalar
conservation laws, i.e. to equations of the type (1.2) with ν = 0:

∂tu = −div(A(u)) + S(t,x), t ≥ 0, x ∈ D. (1.3)

When A is non-linear, solutions of (1.3) usually develop shocks in finite time, even when the initial
condition u0 is smooth. In general, formulating Equation (1.3) in the weak sense is not sufficient to
establish well-posedness as several weak solutions may co-exist after a shock has occured. The usual
approach thus consists in establishing a formulation of (1.3) that contains a criterion discriminating the
weak solution that has a proper physical meaning. In Kruzkov’s seminal paper [84], such a formulation
was introduced with the notion of entropic solution. Another notable formulation of (1.3) is the notion
of kinetic solution introduced by Lions, Perthame and Tadmor [89] as a generalisation of the entropic
one.

To establish a proper notion of solution for Equation (1.3), one usually first considers the solution
to Equation (1.2). Indeed, (1.2) is a second-order parabolic equation for which it is often possible
(depending on the choice of the different parameters) to find a unique solution in the classical sense [85].
In this regard, (1.2) is often presented as the parabolic approximation of (1.3). For instance, the entropic
(or the kinetic) solution of (1.3) is found by the so-called vanishing viscosity method : it is sought as
the limit of the solutions of (1.2) as ν tends to 0.

1in which case Equation (1.2) is usually complemented with boundary conditions, e.g. the Dirichlet condition u|∂D = 0.
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When the physical system described by the conservation law is subject to unpredictable external
disturbances, it can be relevant to consider the source term S to be random. According to the nature
of these disturbances, the term S may be chosen among a wide variety of random forcing terms. In this
respect, white noises are almost always successful candidates. Indeed, they express the chaotic nature
of the physical system at all scales of time and/or space and they offer mathematical convenience by
the use of familiar probabilistic tools provided by Gaussian processes. The noise is said to be

• white in time and in space when E[S(t,x)S(s,y)] = δt=sδx=y;

• white in time and spatially correlated when E[S(t,x)S(s,y)] = δt=sc(x,y), where c is a function
on D2 expressing the spatial correlations.

We will be interested in cases where the random source is written S(t,x) = Φ(t,x, u(t,x))Ẇ (t),
where (W (t))t≥0 is a cylindrical Brownian motion, which formally writes

W (t) =
∑
k≥1

W k(t)ek, t ≥ 0,

where (ek)k≥1 is a complete orthonormal basis of a Hilbert space H and (W k)k≥1 is a family of
independent real Brownian motions. The mapping Φ is the noise operator. For any (t,x, u) ∈ [0,+∞)×
D×R, Φ(t,x, u) is a linear form on H. When Φ does not depend on u, the noise is said to be additive,
otherwise it is multiplicative.

With such a source term, (1.2) falls into the realm of infinite dimensional stochastic differential
equations.

1.2 Viscous scalar conservation laws with stochastic forcing

1.2.1 Well-posedness

Brief survey

Stochastic calculus is certainly the most appropriate framework to study Equation (1.2) forced with
a white noise. Starting from the 1960’s, efforts have been made to interpret evolutionary PDEs with
random noise as generalised stochastic differential equations (SDEs) where the state space is Hilbert or
Banach. Extensive results have been obtained since then and the essence of the theory is contained in
Da Prato and Zabczyk’s reference book [35] in the domain of evolutionary stochastic partial differential
equations (SPDEs). In [35], the notion of infinite dimensional Wiener process is introduced together
with the associated Itô integral. The Itô formula (the most important tool) is established for Hilbert-
valued stochastic processes. Furthermore, well-posedness results are given for linear and semi-linear
SPDEs.

In this framework, Equation (1.2) shall be expressed under the formulation

du = (−div(A(u)) + ν∆u) dt+ Φ(t, ·, u)dW (t), t ≥ 0. (1.4)

The sought solution is a stochastic process (u(t))t≥0 taking values in a functional state space E, where
E is a Hilbert or a Banach space. Observe that the mapping u 7→ −div(A(u)) + ν∆u constitutes the
drift of the (generalised) SDE. There are several possible definitions for the solution of Equation (1.4).
Let us mention the three main ones.

• The most basic one is the strong solution, that is, a solution (u(t))t≥0 with an initial condition
u(0) = u0 and which satisfies the strong formulation

u(t) = u0 +

∫ t

0
(−div(A(u)) + ν∆u)ds+

∫ t

0
Φ(s,x, u)dW (s), t ≥ 0, almost surely,
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where the second term of the right-hand side is a Bochner integral and the third term is an
infinite dimensional Itô integral. Notice in particular that the solution u must have enough
spatial regularity for the Laplacian ∆u to have a classical meaning. Suitable state spaces for the
stochastic process (u(t))t≥0 are for instance the Sobolev space Wm,p(D), with m ≥ 2, p ≥ 1, or
the space Cm(D), m ≥ 2.

• A weaker definition of solution is given by the mild formulation

u(t) = Stu0 −
∫ t

0
St−sdiv(A(u))ds+

∫ t

0
St−sΦ(s,x, u)dW (s), t ≥ 0, almost surely,

where (St)t≥0 is the semigroup generated by the operator ν∆ (i.e. the heat semigroup). It can
be observed that in this formulation, the Laplacian need not exist as the spatial diffusion acts
on each term of the dynamics through the semigroup (St)t≥0. Therefore, a mild solution might
be defined on a larger class of state spaces than a strong solution, e.g. in Wm,p(D), m ≥ 1.

• Finally, the weak formulation generally writes: for all ϕ ∈ C2
c (D), for all t ≥ 0, almost surely,∫

D
u(t,x)ϕ(x)dx =

∫
D
u0(x)ϕ(x)dx + ν

∫ t

0

∫
D
u(s,x)∆ϕ(x)dxds

+

∫ t

0

∫
D
A(u(s,x)) · ∇ϕ(x)dxds+

∫ t

0

∫
D
ϕ(x)Φ(s,x, u(s,x))dxdW (s).

In the case where D has boundaries, the test function ϕ is usually needed to satisfy some Dirichlet
boundary conditions. Notice that the weak formulation asks no spatial regularity on u. The state
spaces for such solutions are often the spaces Lp(D), p ≥ 1.

A particular observation arising from the mild formulation is that it looks like a mollified ver-
sion of the hyperbolic counterpart. As in the deterministic case, weak, mild or strong solutions to
Equation (1.4) are used to approximate solutions of

du = −div(A(u))dt+ Φ(t,x, u)dW (t), t ≥ 0, x ∈ D, (1.5)

and the vanishing viscosity method is still a standard tool. Two main notions of solution are used in
practice to establish the well-posedness of (1.5). Those are the generalisations to the stochastic case
of the solutions in the entropic and kinetic sense. Let us give the formal definitions.

• To establish an entropic formulation of (1.5), one has first to define a set of entropy-entropy
flux functions. That is a family of couples (η,q) where η is a real convex function at least
twice differentiable, called entropy, and q is a continuously differentiable function from R to Rd
satisfying q′(v) = η′(v)A′(v), for all v ∈ R, and which represents the flux of the entropy η. An
entropic solution of (1.5) satisfies: for all entropy-entropy flux (η,q), and all non-negative test
functions ϕ ∈ C2

c (D), for all t ≥ 0, almost surely,

0 ≤
∫
D
η(u0(x))ϕ(x)dx−

∫
D
η(u(t,x))ϕ(x)dx +

∫ t

0

∫
D
q(u(s,x)) · ∇ϕ(x)dxds

+

∫ t

0

(∫
D
η′(u(s,x))Φ(s,x, u(s,x))ϕdx

)
dW (s)+

1

2

∫ t

0

∫
D
|Φ(s,x, u(s,x))|2 η′′(u(s,x))ϕdxds.

• The kinetic formulation is expressed through the characteristic function f(x, t, ξ) := 1u(x,t)>ξ.
More precisely, u is said to be a kinetic solution of (1.5) if for all T > 0, there exists a random



1.2. Viscous scalar conservation laws with stochastic forcing 13

positive measure m on D × [0, T ] × R, such that for all test functions ϕ ∈ C∞c ([0, T ] ×D × R),
the function f satisfies almost surely∫ T

0
〈f(t), ∂tϕ(t)〉dt+ 〈f0, ϕ(0)〉+

∫ t

0
〈f(t),A′ · ∇ϕ(t)〉dt

= −
∫ T

0

∫
D
ϕ(t,x, u(t,x))Φ(t,x, u(t,x))dxdW (t)

− 1

2

∫ T

0

∫
D
|Φ(t,x, u(t,x))|2 ∂ξϕ(t,x, u(t,x))dxdt+m(∂ξϕ).

where 〈·, ·〉 denotes the L2(D × R) scalar product.

In Figure 1.1, we recorded, in the chronological order, a list of well-posedness results for scalar
conservation laws with stochastic forcing where we give some details on the setting. Some precautions
must however be taken while examining this table:

• In some works, the equation considered is more general than a scalar conservation law. In these
cases, the assumptions we mention in Figure 1.1 are those that remain after restricting the general
equation to the particular case of a scalar conservation law. For instance, in [67, 68, 69], a non-
linear deterministic source term is added in the equation; in [69, 73], the viscous term consists
of a uniformly elliptic diffusion operator instead of a Laplacian; in [73], the non-linear term is
defined in a more general way than the ordinary flux term; in [74, 39, 63], a positive semi-definite
diffusion operator holds in place of the viscous term and thus, depending on the nature of this
operator, the equation may be of the first or of the second order (such equations are usually
called quasilinear degenerate parabolic-hyperbolic SPDEs).

• As much as it aims to be extensive, the list is still non-exhaustive.

• Only some particular assumptions are specified. For instance, we do not give details on the noise
coefficients. Furthermore, assumptions of polynomial growth on the flux usually concern the
derivatives of the flux function, we do not specify up to which order these derivatives are subject
to growth constraints.

• In the cited articles, the aspects of the results that may go beyond well-posedness are not men-
tioned (such aspects concern for instance the regularity of the solutions, the dependence on initial
conditions, the existence and uniqueness of an invariant measure, the Markov and/or Feller prop-
erties satisfied by the solution, etc...)

Another result of well-posedness

The work contained in [92] (see the last line of Table 1.1) consitutes the second chapter of this
manuscript. In the first part of this chapter, we are concerned with the well-posedness of Equa-
tion (1.4) in the following setting: the domain D is the one-dimensional torus T and the noise is
additive and white in time. More precisely, given a cylindrical Brownian motion (W (t))t≥0 in a Hilbert
space H with the expression W (t) =

∑
k≥1W

k(t)ek, our noise operator Φ is defined by the coefficients

gk(x) := Φ(x)ek, x ∈ T, k ≥ 1.

In short, the equation becomes

du = (−∂xA(u) + ν∂xxu) dt+
∑
k≥1

gkdW
k(t), t ≥ 0, x ∈ T. (1.6)

2depending on the chosen assumptions.
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Authors and
reference Flux Viscosity Noise Notion of

solution

Space domain,
boundary
conditions

Bertini,
Cancrini,

Jona-Lasinio [9]
Burgers’ ν > 0

Space-time
white noise Mild R

Da Prato,
Debussche,
Temam [34]

Burgers’ ν > 0
Space-time
white noise Mild [0, 1]

Dirichlet b.c.

Da Prato,
Gatarek [96] Burgers’ ν > 0

Multiplicative
space-time
white noise

Mild [0, 1]
Dirichlet b.c.

Da Prato, Zabczyk
[36, Chapter 14] Burgers’ ν > 0

Space-time
white noise Mild [0, 1]

Dirichlet b.c.

Gyöngy [67]
Non-homogeneous,
Locally Lipschitz,
quadratic growth

ν > 0
Multiplicative
space-time
white noise

Weak [0, 1]
Dirichlet b.c.

Gyöngy,
Nualart [68] Burgers’ ν > 0

Multiplicative
space-time
white noise

Weak R

Gyöngy,
Rovira [69]

Locally Lipschitz,
polynomial
growth

ν > 0
White-in-time

noise Weak
Smooth bounded
convex in Rd,
Dirichlet b.c.

E, Khanin,
Mazel,

Sinai [52]
Burgers’ ν = 0

White-in-time
noise Entropic T

Dong, Xu [44] Burgers’ ν > 0 Lévy process Mild, weak,
strong2

[0, 1]
Dirichlet b.c.

Feng,
Nualart [60]

C2,
polynomial growth ν = 0

Space-time
white noise Entropic R

Vallet,
Wittbold [100]

Lipschitz
continuous ν = 0

Space-time
white noise Entropic

Lipschitz, bounded
domain of Rd,
Dirichlet b.c.

Chen, Ding
Karlsen [27]

C2,
polynomial growth ν = 0

Multiplicative
white-in-time

noise
Entropic Rd

Boritchev
[15, Appendice A]

Strongly convex, C∞,
polynomial growth ν > 0

White-in-time
noise Strong T

Bauzet,
Vallet,

Wittbold [7]

Lipschitz
continuous ν = 0

Multiplicative
white-in-time

noise
Entropic Rd

Hausenblas,
Giri [72]

A(u) = up/p
p ∈ [2,+∞)

ν > 0 Lévy process Mild [0, 1]
Dirichlet b.c.

Hofmanová
[73]

Lipschitz
continuous ν > 0

White-in-time
noise Strong Td

Hofmanová
[74]

C1,
polynomial growth ν ≥ 0

Multiplicative
white-in-time

noise
Kinetic Td

Debussche,
Vovelle [40]

C2,
polynomial growth ν = 0

White-in-time
noise Kinetic Td

Debussche,
Hofmanová,
Vovelle [39]

C2,
polynomial growth ν ≥ 0

Multiplicative
white-in-time

noise
Kinetic Td

Lewis,
Nualart [87] Burgers’ ν > 0

Multiplicative
space-time
white noise

Mild R

Gess,
Hofmanová [63] Non-degenerate ν = 0

Multiplicative
white-in-time

noise
Kinetic Td

C2 ν > 0

Martel,
Reygner [92]

C2,
polynomial growth ν > 0

White-in-time
noise Strong T

Figure 1.1: Well-posedness results for scalar conservation laws
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For each k ≥ 1, gk is a continuous function from T to R such that
∫
T gk(x)dx = 0. This condition

implies in particular that any solution of (1.6) satisfies d
dt

∫
T u(t, x)dx = 0. Thus, we may restrict our

attention to solutions whose spatial average is zero. To this end, we will denote by Wm,p
0 (T) the space

of functions v ∈ Wm,p(T) satisfying
∫
T v(x)dx = 0, and we endow it with the norm ‖ · ‖Wm,p

0 (T) =

‖∂mx · ‖Lp(T). Incidentally, we will write Hm
0 (T) := Wm,2

0 (T). Note that the Poincaré inequality implies
that ‖ · ‖L2(T) ≤ ‖ · ‖H1

0 (T) ≤ ‖ · ‖H2
0 (T) ≤ · · · . Given this setting, we assume that∑

k≥1

‖gk‖2H2
0 (T) =: D0 < +∞.

Moreover, the function A is assumed to be of class C2, its first derivative A′ to have at most polynomial
growth, and its second derivative A′′ to be locally Lipschitz continuous. Under these assumptions, we
show the following

Theorem (Theorem 2.4). There exists a unique H2
0 (T)-valued stochastic process (u(t))t≥0 satisfying

Equation (1.4) in the strong sense.

The proof follows a standard approach (used for instance in [34] or [36, Section 14.2]) but is
driven by regularity issues required for establishing a strong solution (such issues are also addressed for
instance in [15, Appendice A] or [73]). Let us formally explain the overall approach of the proof. As
the non-linear term is locally Lipschitz and thanks to the regularising properties of the heat semigroup,
it is possible to establish, via a fixed point argument applied for each trajectory, the existence and
uniqueness of a local-in-time mild solution (u(t))t∈[0,τ ] ∈ C([0, τ ], H1

0 (T)) to (1.6), where τ is an almost
surely positive stopping time. The mild formulation is best suited to apply the fixed point theorem,
but is actually sufficient even if we ultimately seek well-posedness in the strong sense, as the following
property holds:

Proposition (Proposition 2.12). Any mild solution to (1.6) (local or global in time) with a regular
enough initial condition is a strong solution.

To extend the local solution to a global solution, one usually needs a priori estimates that prevent
any blow-up in finite time. Since the non-linearity is not globally Lipschitz, such estimates are not
forthright. However, the viscosity endows Equation (1.6) with a decisive property for the stability of
the solution.

Proposition (Dissipativity). The drift function in the SPDE (1.6) satisfies:

〈−∂xA(v) + ν∂xxv, v〉L2(T) = −ν‖v‖2H1
0 (T) ≤ 0, v ∈ H2

0 (T).

This property is actually quite standard for semi-linear equations and the proof follows from simple
computations. To see its significance, let us apply the Itô formula to (1.6) with the squared L2-norm.
We get

d ‖u‖2L2(T) = 2 〈−∂xA(u) + ν∂xxu, u〉L2(T) dt+ 2
∑
k≥1

〈gk, u〉L2(T) dW k(t) +
∑
k≥1

‖gk‖2L2(T) dt.

Taking the expectation and applying the dissipativity property, it appears that

d

dt
E
[
‖u(t)‖2L2(T)

]
≤ −2νE

[
‖u(t)‖2H1

0 (T)

]
+D0, (1.7)

meaning that the growth of the L2-norm of the solution is controlled. We should notice that, at this
point, we formally have the existence and uniqueness of an L2

0(T)-valued weak solution to (1.6). Indeed,
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our local mild solution (u(t))t∈[0,τ ] with values in H1
0 (T) is even more so a local weak solution with

values in L2
0(T). The L2 estimate arising from the growth control (1.7) ensures that this weak local

solution does not blow-up and is actually global. However, such estimates do not give information on
the behaviour of the H1

0 -norm, whose growth needs to be controlled in order to consider a global mild
solution. In this regard, the dissipativity property is not sufficient but it can be strengthened to the
following

Proposition (Generalised dissipativity). The drift function in the SPDE (1.6) satisfies for all positive
even number p:

〈−∂xA(v) + ν∂xxv, v
p−1〉L2(T) = −4ν(p− 1)

p2

∥∥∥vp/2∥∥∥
H1

0 (T)
≤ 0, v ∈ H2

0 (T).

When p = 2, this corresponds to the usual dissipativity property. This proposition is not plainly
stated in the content of Chapter 2 but appears covertly in the step 3 of the proof of Lemma 2.15. It
yields the a priori Lp bounds given in the statement of Lemma 2.15, which eventually leads, using the
polynomial growth of A′, to have a control over the H1

0 -norm, extending thereby the local solution to
a global one.

1.2.2 Invariant measure

After well-posedness, the most addressed topic regarding stochastic conservation laws is the existence
and uniqueness of an invariant measure.

Definition (Invariant measure). Let (Xt)t≥0 be a Markov process on a state space E. A probability
measure µ on E is said to be an invariant measure of (Xt)t≥0 if

X0 ∼ µ =⇒ ∀t ≥ 0, Xt ∼ µ.

The analysis of invariant measures sheds light on the long time behaviour of solutions, the ergodic
properties, and the statistical properties that are inherent to the system and do not depend on the
initial conditions. More details on this last point will be discussed in Subsection 1.4. We mention here
some of the previous works done in this direction but we refer the reader to [93, 28] for more detailed
reviews on the subject.

Some of the works mentioned in Table 1.1 contain results regarding the invariant measure. For the
stochastic Burgers equation, existence is proved by Da Prato, Debussche and Temam in [34], by Dong
and Xu in [44], by Hausenblas and Giri in [72]. Existence and uniqueness are proved by Da Prato
and Gatarek in [96], by Da Prato and Zabczyk in [36, Chapter 14], by E, Khanin, Mazel and Sinai
in [52]. For more general conservation laws, existence and uniqueness of an invariant measure have
been proved by Boritchev in [15, Chapter 4], by Debussche and Vovelle in [41] in a setting very close
to [40] but where the flux function satisfies a non-degeneracy condition. For stochastic anisotropic
parabolic-hyperbolic equations, existence and uniqueness of an invariant measure have been proved by
Chen and Pang in [28].

An invariant measure for (1.6)

The second main result of the second chapter is

Theorem (Theorem 2.7). The strong solution (u(t))t≥0 of Equation (1.6) admits a unique invariant
measure.

As for the well-posedness result presented in Subsection 1.2.1, the proof follows a standard approach
but has to deal with regularity concerns. The usual method to address existence of an invariant measure
is to use the Krylov-Bogoliubov theorem (see e.g. [36, Theorem 3.1.1]):
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Theorem (Krylov-Bogoliubov). A Feller process (Xt)t≥0 on a Polish space E admits at least one
invariant measure if for some initial condition X0, there exists an increasing sequence of positive
numbers (Tn)n≥1 tending to +∞ such that the family of probability measures {µTn : n ≥ 1} defined by

µTn : Γ ∈ B(E) 7−→ 1

Tn

∫ Tn

0
P (Xt ∈ Γ) dt ∈ [0, 1]

(where B(E) denotes the Borel σ-algebra on E) is tight.

The proof of the Krylov-Bogoliubov theorem is done in two steps. The first step is merely an
application of the Prokhorov theorem stating that the sequence (µTn)n≥1 admits a limit µ in the weak
sense. The second step consists in showing that the limit µ is invariant for the process (Xt)t≥0.

In our case, if we consider the strong solution (u(t))t≥0 as an L2
0(T)-valued process, the conditions

of the Krylov-Bogoliubov theorem are easily satisfied as the viscosity induces regularity in space and
thus compactness. Indeed, from Equation (1.7), taking the average in time, we get

1

T

∫ T

0
E
[
‖u(t)‖2H1

0 (T)

]
dt ≤ 1

2νT
E
[
‖u0‖2L2(T)

]
+D0.

It follows from the Markov inequality that for all ε > 0,

1

T

∫ T

0
P
(
‖u(t)‖2H1

0 (T) > ε
)

dt ≤ ε
(

1

2νT
E
[
‖u0‖2L2(T)

]
+D0

)
.

Hence, since the space H1
0 (T) is compactly embedded in L2

0(T), the requirements of the Krylov-
Bogoliubov theorem are met. However, (u(t))t≥0 is not stricto sensu a Markov process on L2

0(T)
but on H2

0 (T). The weak limit of the sequence (µTn)n∈N we obtain by this method do not qualify to
be an invariant measure as we do not know if it gives full weight to H2

0 (T). That is where higher
regularity estimates need to intervene and where the original proof of the Krylov-Bogoliubov theorem
needs to be adapted in order to conclude for the existence part of our proof (Lemma 2.23).

The proof of uniqueness relies on the following standard property for scalar conservation laws:

Proposition (L1-contraction, Proposition 2.21). Let (u(t))t≥0 and (v(t))t≥0 be two strong solutions
of Equation (1.6). Then, for all 0 ≤ s ≤ t, almost surely,

‖u(t)− v(t)‖L1(T) ≤ ‖u(s)− v(s)‖L1(T) .

That is to say, two solutions of (1.6) with possibly different initial conditions, but driven by the
same noise, get closer (or at least do not move away from each other) with respect to the L1 distance.
Recall however that the dissipativity property induces that each of these solutions drifts towards the
center of the space L2

0(T). This type of behaviour is the starting point for the following coupling
argument: the two solutions are attracted to the center of L2

0(T) and thus, they get closer to one
another for the L2 distance and even more so for the L1 distance, and each time they get closer, they
stay closer as the L1-contraction prevents them to move apart. Applying this argument leads to the
reinforced

Proposition (L1-confluence, Equation (2.56)). Let (u(t))t≥0 and (v(t))t≥0 be two strong solutions of
Equation (1.6). Then, almost surely,

lim
t→∞
‖u(t)− v(t)‖L1(T) = 0.

Assuming that there exist two different invariant measures µ1 and µ2 for (1.6), and choosing two
solutions (u(t))t≥0 and (v(t))t≥0 such that u0 ∼ µ1 and v0 ∼ µ2, the above proposition yields promptly
that µ1 = µ2.
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Authors and
reference Equation Space

discretisation
Time

discretisation

Bréhier [20] Semi-linear
parabolic SPDE

Galerkin
method

Semi-implicit3

Euler scheme
Bréhier,

Kopec [21]
Semi-linear

parabolic SPDE
Spectral Galerkin

method
Semi-implicit
Euler scheme

Chen, Hong,
Wang [26]

Damped stochastic
non-linear Schrödinger

equation

Spectral Galerkin
method

Modified implicit
Euler scheme

Chen, Gan,
Wang [29]

Semi-linear
parabolic SPDE

Spectral Galerkin
method

Exponential
Euler scheme

Cui, Hong,
Sun [33]

Semi-linear parabolic
SPDE with cubic

polynomial non-linearity

Spectral Galerkin
method

Implicit
Euler scheme

Boyaval, Martel,
Reygner [19]

Stochastic viscous scalar
conservation law

Finite Volume
method

Split-step
Euler scheme

Figure 1.2: Numerical approximation results for invariant measures of SPDEs

1.3 Numerical approximation

Most of the numerical schemes developed to approximate solutions of SPDEs in finite time are adapted
from the usual deterministic methods. For semi-linear SPDEs such as Equation (1.4), a common
approach is the finite element approximation and in particular the Spectral Galerkin method (see for
instance [90, 104, 4, 32, 3, 83]). This method is not suited for the inviscid equation (1.5). In this
hyperbolic case, the discontinuous Galerkin method may be considered [88], but the most common
approach is the finite volume method [5, 6, 47, 45]. A notable advantage of finite volumes is that they
are well suited for conservation laws in general, should they be parabolic or hyperbolic [57].

The numerical approximation results for the invariant measure of an SPDE are quite recent. In
Figure 1.2, we recorded, in the chronological order, a list of these results. As far as we are aware, the
list is exhaustive.

The last line of Figure 1.2 corresponds to the content of Chapter 3, which is devoted to the
approximation of the invariant measure of the solution of Equation (1.6) with a finite volume method for
the space discretisation and a split-step backward Euler method for the time discretisation. We should
point out that in all the other mentioned references of Figure 1.2, convergence rates are established for
the weak error of discretisation. In our case, the lack of such results is essentially due the non-globally
Lipschitz nature of the flux term, but we will get back to this point after introducing our numerical
scheme.

In order to discretise (1.6) with respect to the space variable, we first define the following regular
mesh on the torus: {(

i− 1

N
,
i

N

]
, i ∈ Z/NZ

}
.

Averaging in (1.6) over each cell of the mesh, we get

d

(
N

∫ i
N

i−1
N

u(t, x)dx

)
= −N

(
A

(
u

(
t,
i

N

))
−A

(
u

(
t,
i− 1

N

)))
dt

+ νN

(
∂xu

(
t,
i

N

)
− ∂xu

(
t,
i− 1

N

))
dt+

∑
k≥1

N

∫ i
N

i−1
N

gk(x)dxdW k(t), i ∈ Z/NZ. (1.8)

3For semi-linear equations, the semi-implicit scheme is implicit with respect to the linear term and explicit with
respect to the non-linear term.
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Finite-volume schemes aim to approximate the dynamics of the average value of the solution over each
cell of the mesh. This leads to the introduction of a numerical flux function A(u, v) approximating the
flux of the conserved quantity at the interface between two adjacent cells. As regards the viscous term
in (1.8), we replace the space derivatives by their finite difference approximations. As for the noise
coefficients, we introduce the shorthand notation

σki := N

∫ i
N

i−1
N

gk(x)dx, k ≥ 1, i ∈ Z/NZ,

and we write σk := (σk1 , . . . , σ
k
N ). In particular, σk belongs to the space

RN0 := {u = (u1, . . . , uN ) ∈ RN : u1 + · · ·+ uN = 0}.

These operations result in the following stochastic differential equation

dUi(t) = −N
(
A (Ui(t), Ui+1(t))−A (Ui−1(t), Ui(t))

)
dt

+ νN2 (Ui+1(t)− 2Ui(t) + Ui−1(t)) dt+
∑
k≥1

σki dW k(t), i ∈ Z/NZ, t ≥ 0, (1.9)

as a semi-discrete finite-volume approximation of (1.6) in the sense that Ui(t) is meant to be an

approximation of the spatial average N
∫ i

N
i−1
N

u(t, x)dx. In order to be consistent with Equation (1.6),

the numerical flux function has to satisfy A(v, v) = A(v) for all v ∈ R. Moreover, we make the
assumption of a monotone numerical flux, i.e. we assume that A is non-decreasing with respect to the
first variable and non-increasing with respect to the second.

Denoting by b = (b1, . . . , bN ) the function defined from RN0 to RN0 by

bi(v) := −N
(
A(vi, vi+1)−A(vi−1, vi)

)
+ νN2(vi+1 − 2vi + vi−1), i ∈ Z/NZ, v ∈ RN0 ,

we can express (1.9) in the vectorised form

dU(t) = b(U(t))dt+
∑
k≥1

σkdW k(t), t ≥ 0. (1.10)

Let us now discretise (1.10) with respect to the time variable. For this, we introduce a time step
∆t > 0, and we write ∆W k

n := W k(n∆t)−W k((n− 1)∆t) for all k, n ≥ 1. As it was already noticed
in [94], explicit numerical schemes for SDEs with non-globally Lipschitz continuous coefficients do not
preserve in general the large time stability, whereas implicit schemes are more robust. Therefore, since
our main focus in this thesis is to approximate invariant measures, we propose the following split-step
backward Euler method : 

Un+ 1
2

= Un + ∆tb
(
Un+ 1

2

)
,

Un+1 = Un+ 1
2

+
∑
k≥1

σk∆W k
n+1.

(1.11)

The first result of Chapter 3 is the following

Theorem (Proposition 3.15, Proposition 3.23 and Theorem 3.5). Let U0 be an RN0 -valued random
variable. Then,

(i) there exists a unique RN0 -valued stochastic process (U(t))t≥0 solution to (1.10) with initial con-
dition U0;
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(ii) there exists a unique RN0 -valued Markov chain (Un)n∈N solution to (1.11) with initial condition
U0.

Furthermore,

(iii) (U(t))t≥0 admits a unique invariant measure νN ;

(iv) (Un)n∈N admits a unique invariant measure νN,∆t.

The proof of this theorem relies on properties analogous to the SPDE. In particular, the mono-
tonicity of the numerical flux ensures the following

Proposition (Lemma 3.13). For any u,v ∈ RN0 , the function b satisfies∑
i∈Z/NZ

uibi(u) ≤ −νN2
∑

i∈Z/NZ

(ui+1 − ui)2 (dissipativity) (1.12)

and ∑
i∈Z/NZ

sign(ui − vi) (bi(u)− bi(v)) ≤ 0. (1.13)

The well-posedness of (1.10) is proved by use of Inequality (1.12) in a similar way as for the SPDE,
while (1.12) and (1.13) allow to prove respectively the existence and uniqueness of a solution (Un)n∈N
to (1.11) and more than that, to prove respectively the existence and uniqueness of an invariant measure
for both the processes (U(t))t≥0 and (Un)n∈N. In particular, thanks to (1.13), the L1-contraction has
been preserved by the dicretisation:

Proposition (Discrete L1-contraction, Proposition 3.17 and Lemma 3.24). Let (U(t))t≥0 and (V(t))t≥0

be two solutions of (1.10), with possibly different initial conditions, but perturbed by the same Wiener
process. Then, for all 0 ≤ s ≤ t, almost surely

‖U(t)−V(t)‖1 ≤ ‖U(s)−V(s)‖1 .

Similarly, two solutions (Un)n∈N and (Vn)n∈N to (1.11) satisfy for all n ∈ N, almost surely,

‖Un+1 −Vn+1‖1 ≤ ‖Un −Vn‖1 .

From the numerical scheme (1.11), we now reconstruct a piecewise constant approximation (uN (t))t≥0

to the solution (u(t))t≥0 of (1.6) by setting

uN (t, x) :=
∑

i∈Z/NZ

Ui(t)1( i−1
N
, i
N ](x). (1.14)

This way (uN (t))t≥0 is an L2
0(T)-valued process with an invariant probability measure µN on L2

0(T).
This measure µN is actually the embedding of νN in L2

0(T) via the reconstruction given by (1.14), and
in the same way, we can define the measure µN,∆t on L2

0(T) as the pushforward of the measure νN,∆t
via the same reconstruction.

It is now possible to compare µN,∆t, µN and µ as all of these measures belong to the space P(L2
0(T))

of probability measures over L2
0(T). Note that P(L2

0(T)) (resp. P(RN0 )) is naturally endowed with the
topology associated to the weak convergence. The subset of P(L2

0(T)) (resp. P(RN0 )) containing all
the measures with finite second order moment is denoted P2(L2

0(T)) (resp. P2(RN0 )). We may endow
this subspace with the topology associated to the following metric:
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Un νN,∆t
Invariant measure

U(t) νN
Invariant measure

∆t→ 0

u(t) µInvariant measure

N → +∞

Figure 1.3: Approximation of the invariant measure µ

Definition (Wasserstein distance, Definition 3.6). Let (E, ‖ · ‖E) be a normed vector space. Let α and
β be two probability measures on E with finite second order moment. The second order Wasserstein
distance between α and β is defined by

W2 (α, β) := inf
u∼α
v∼β

E
[
‖u− v‖2E

]1/2
.

Let us now state the second result of Chapter 3, and main result of this thesis:

Theorem (Convergence of invariant measures, Theorem 3.7). The following equality holds:

lim
N→∞

lim
∆t→0

W2 (µN,∆t, µ) = 0.

As illustrated by Figure 1.3, a specific order for the discretisation leads to the proof of the above
theorem. In particular, we show that:

A) µN converges towards µ as N → +∞;

B) for any integer N ≥ 1, νN,∆t (or µN,∆t) converges towards νN (or µN ) as ∆t→ 0.

The step A is the subject of Section 3.3 while the step B is addressed in Section 3.4. Each of these
steps is itself divided in two substeps as we will show that

A.1) the family (µN )N≥1 is relatively compact in P2(L2
0(T));

A.2) any subsequential µ∗ is invariant for the solution (u(t))t≥0 of (1.6), and thus µ∗ = µ;

B.1) the family (νN,∆t)∆t>0 is relatively compact in P2(RN0 );

B.2) any subsequential limit ν∗N (as ∆t→ 0) is invariant for the solution (U(t))t≥0 of (1.10), and thus
ν∗N = νN .

As the proofs of A.1 and A.2 are very much alike those of B.1 and B.2 respectively, let us give
only the intuition regarding the step A. The proof of relative compactness of the family (µN )N≥1

in P2(L2
0(T)) involves the Prokhorov theorem and the following uniform discrete H1

0 (T) estimate
(Lemma 3.31):

E

N ∑
i∈Z/NZ

(Ui+1 − Ui)2

 ≤ D0

2ν
, U ∼ νN .
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Now, let µ∗ be the limit in P2(L2
0(T)) of some subsequence (µNj )j∈N. By virtue of the Skorokhod

representation theorem, we choose random variables u(0) ∼ µ∗ and uNj (0) ∼ µNj such that uNj (0)
converges almost surely in L2

0(T) towards u(0) as j → +∞. Consequently, we can define on the same
probability space the processes (u(t))t≥0 and (uNj (t))t≥0 respectively as the solution of (1.6) with
initial condition u(0) and the reconstructed solution of (1.10) via (1.14) with initial condition uNj (0).
In this setting, we show the following finite time convergence result (Proposition 3.36):

∀t ≥ 0, lim
j→∞

E
[∥∥uNj (t)− u(t)

∥∥2

L2
0(T)

]
= 0. (1.15)

Since for all t ≥ 0, the law of uNj (t) is µNj , it follows immediately that W2(µNj ,L(u(t))) converges to
0 as j → +∞. Thus, W2(µ∗,L(u(t))) = 0 for all t ≥ 0, which means that µ∗ is actually invariant for
the process (u(t))t≥0.

In establishing the finite time approximation (1.15), we had to deal with a non-Lipschitz flux term.
Our control of the strong error relied on moment estimates, which themselves relied on the assumption
of polynomial growth of the flux function. The approximation in time is treated in the same way. A
drawback of this approach is that no convergence rate of the discretisation error can be derived. A
possible way to establish orders of convergence of the invariant measure for the W2-distance would be
to make the stronger assumption that A is globally Lipschitz and start from the convergence rates for
the strong error in finite time that would come up. One could also follow a more standard procedure,
and analyse the weak error, in particular when ∆t → 0, with the techniques that were pioneered by
Talay [98, 99].

1.4 Application to turbulence

The rigorous understanding of the turbulence phenomenon is one of the most important open problems
in mathematical physics. Among the extensive research efforts that have been made in this field,
stochastic scalar conservation laws, and more specifically the stochastic Burgers equation, were found to
play some role. To explain how these SPDEs were thrown under the light of such physical motivations,
some context ought to be introduced.

The most common model for describing the motion of an incompressible viscous fluid flow is given
by the Navier-Stokes equations. Derived from the fundamental principles of physics that are the
continuum hypothesis (see the beginning of Section 1.1) and Newton’s second law, and from taking
into account the internal friction (i.e. the viscosity), this system of equations is given by:{

∂tu + (u · ∇)u +∇p = ν∆u + f

div(u) = 0,
(1.16)

where the unkowns are the velocity field u(t,x) and the pressure p(t,x), x ∈ R3 (see for instance [86]
for the complete derivation of the system). The parameters include the kinematic viscosity coefficient
ν > 0 and the external forces f(t,x) acting on the fluid. To study the general features of the flow
that do not depend on the time and space scales, one may non-dimensionalise (1.16). In this regard,
a most notable indicator of the behaviour of the flow is the dimensionless Reynolds number Re = UL

ν ,
where U and L are respectively the typical velocity and length scales. When the Reynolds number is
low enough, the flow is characterised by an orderly and predictable motion. The fluid particles follow
smooth paths that do not cross each other. In this case, the flow is said to be laminar. Such a stable
behaviour contrasts drastically with high Reynolds number flows. Indeed, when Re is high enough
(usually around the order Re ≈ 103 and beyond), the flow follows a quite unsteady motion. Vortices
of many sizes appear in a disorganised manner. In particular, fluctuations in the fluid occur at a wide
range of space and time scales. A flow displaying such a chaotic behaviour is said to be turbulent.
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Motivated by industrial and theoretical issues, hydrodynamic turbulence constitutes an active field
of research. Numerous works testing numerical simulations against experimental results have attested
the relevance of the Navier-Stokes model (for turbulent flows as much as for laminar ones).

Groundbreaking advances in the understanding of turbulence came forth in 1941 with the works
of Kolmogorov [81, 80, 79] (see also [61]). Using scaling arguments, Kolmogorov postulated that the
(seemingly chaotic) turbulent flows actually display some universal behaviour, i.e. they show particular
features that depend only on Re4. His framework relies on several circumstantial assumptions. In
particular, the velocity u(t,x) is assumed to be a random field whose space and time increments
are pairwise independent and invariant with respect to rotations and reflections in some domain (the
turbulence is said locally homogeneous and isotropic). Let us give some physical insight as regards
these universality predictions. The external forces applied on the flow supply an amount of kinetic
energy which is described by large space scales (of an order L). Due to the convection happening
within the fluid, the energy is transported to smaller and smaller scales, down to a scale l, under which
the energy is dissipated by the effect of viscosity. Between the energy scale L and the dissipation scale
l, the transfer of kinetic energy does not depend on the forcing nor on the viscosity. Thus, in this
interpretation of turbulence as an energy cascade, the emergence of universal properties in a particular
scale range seems conceivable. The universality prediction is asserted via quantitative estimates such
as the following:〈∣∣∣∣(u(t,x + r)− u(t,x)) · r

‖r‖2

∣∣∣∣n〉 ∼ Cn ‖r‖n
3
2 , l� ‖r‖2 � L, n ≥ 0, (1.17)

where 〈·〉 denote the expectation of the underlying random variable, and where Cn is a universal
constant. When n = 2, (1.17) may be expressed in the Fourier space, which gives the following relation
for the space Fourier tranform û of u:〈 ∑

k<‖k‖2≤k+1

‖û(k)‖22

〉
∼ k−

5
3 , L−1 � k � l−1, (1.18)

which is the well-known Kolmogorov spectrum.
It should be noticed that (1.17), and thus (1.18), have been derived solely from scaling analysis and

physical arguments. In particular, they do not rely on the Navier-Stokes equations. By the way, their
mathematical status remains at the conjecture level. A rigorous analysis of the universal properties
of turbulence ought to be achieved through (1.16). For instance, one could consider the stochastic
process (u(t,x))t≥0 solution to (1.16) with a random initial condition. In this perspective, one could
furthermore study the invariant measures for (1.16) and compute the energy spectrum of stationary
solutions. However, the well-posedness of (1.16) remains a notorious open problem and despite many
efforts to overcome it, there are only very limited partial results on this topic [59].

Nonetheless, the concept of energy cascade may be addressed via simpler models. In this per-
spective, if we bring Equation (1.16) to one space dimension, thereby dropping the pressure term and
incompressibility condition which do not have a meaning in 1D, it boils down to

∂tu+ u∂xu = ν∂xxu+ f,

that is, the viscous Burgers equation. This equation was actually studied by J. M. Burgers as a toy
model for hydrodynamic turbulence [24]. Many works followed in this direction and some adjustments
were made to this initial equation, by considering for instance a random initial condition or a random
forcing. Indeed, the restriction from three to one space dimension induces the loss of the chaotic
behaviour in the model. The stochastic forcing allows to maintain a steady yet unpredictable supply
of energy in the system and thus to keep a cascade-like energy transfer.

4These properties constitute what is now called the K41 theory.
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More than that, what was originally meant to be a testing ground for the Navier-Stokes equations
(for theoretical as much as for numerical concerns) turned out to be a prototype for a wide range of
physical systems where the non-linear effects induce a non-trivial flux of energy across scales. Ap-
plications were found for instance in cosmology [105, 66, 101, 2], vehicle traffic models [31], vortices
in superconductors [13]... The stochastic Burgers equation has also close ties with the KPZ equa-
tion [10, 65] and in this respect, happened to be an appropriate model for growing interfaces and
directed polymers [77, 17, 78].

The mathematical questions raised by the randomly forced Burgers equation are the well-posedness,
the invariant measures and the regularity of solutions. These were discussed in Section 1.2. Questions of
a more physical nature concern the energy spectrum and the small-scale characteristics [25, 30, 76, 64]
as well as the asymptotic behaviour of probability distribution functions [53, 51, 55, 50]. For general
surveys, see [62, 8, 48, 49, 54].

Let us mention here an analogous result to the Kolmogorov spectrum (1.18) in the framework of
Equation (1.6):

Theorem (Boritchev, [15, Theorem 4.7.3]). Let µ be the invariant measure for (1.6) where the flux
function A is C∞ and strictly convex, and let u be a random variable with distribution µ. Then the
Fourier transform û of u satisfies for some M > 0

E

 ∑
kM−1≤n≤kM

|ûn|

 ∼ k−2.

In particular, the Burgers energy spectrum has a decay rate of order −2. In Chapter 4, numerical
experiments are realised on Burgers’ equation with the finite volume scheme introduced in Section 1.3.
After testing the stationarity of the scheme and establishing empirical convergence rates in space and
in time, we compute some small-scale characteristics regarding turbulence. Notably, the slope of the
energy spectrum is plotted and the result of the above theorem is recovered numerically.



Chapter 2

Viscous scalar conservation law with
stochastic forcing: strong solution and
invariant measure

Résumé. Ce chapitre correspond à la pré-publication [92], écrite en collaboration avec J. Reygner.
On s’intéresse aux lois de conservation scalaires avec de la viscosité et un bruit blanc en temps mais
spatialement correlé. Le domaine spatial considéré est de dimension 1 et périodique. La fonction de
flux est supposée localement lipschitzienne et à croissance polynomiale. Aucune hypothèse de non-
dégénerescence n’est imposée au flux ou au bruit. Dans un premier temps, on prouve l’existence et
l’unicité d’une solution globale au sens fort. Dans un second temps, on établit l’existence et l’unicité
d’une mesure invariante pour cette solution forte.

Abstract. This chapter corresponds to the preprint [92], written in collaboration with J. Reygner.
We are interested in viscous scalar conservation laws with a white-in-time but spatially correlated
stochastic forcing. The equation is assumed to be one-dimensional and periodic in the space variable,
and its flux function to be locally Lipschitz continuous and have at most polynomial growth. Neither
the flux nor the noise need to be non-degenerate. In a first part, we show the existence and uniqueness
of a global solution in a strong sense. In a second part, we establish the existence and uniqueness of
an invariant measure for this strong solution.

2.1 Introduction

2.1.1 Stochastic viscous scalar conservation law

We are interested in the existence, uniqueness, regularity and large time behaviour of solutions of the
following viscous scalar conservation law with additive and time-independent stochastic forcing

du = −∂xA(u)dt+ ν∂xxudt+
∑
k≥1

gkdW
k(t), x ∈ T, t ≥ 0, (2.1)

where (W k(t))t≥0, k ≥ 1, is a family of independent Brownian motions. Here, T denotes the one-
dimensional torus R/Z, meaning that the sought solution is periodic in space. The flux function A is
assumed to satisfy the following set of conditions.

Assumption 2.1 (on the flux function). The function A : R→ R is C2 on R, its first derivative has
at most polynomial growth:

∃C1 > 0, ∃pA ∈ N∗, ∀v ∈ R, |A′(v)| ≤ C1 (1 + |v|pA) , (2.2)
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and its second derivative A′′ is locally Lipschitz continuous on R.

The parameter ν > 0 is the viscosity coefficient. In order to present our assumptions on the family
of functions gk : T→ R, k ≥ 1, which describe the spatial correlation of the stochastic forcing of (2.1),
we first introduce some notation. For any p ∈ [1,+∞], we denote by Lp0(T) the subset of functions
v ∈ Lp(T) such that ∫

T
vdx = 0.

The Lp norm induced on Lp0(T) is denoted by ‖ · ‖Lp
0(T). For any integer m ≥ 0, we denote by Hm

0 (T)

the intersection of the Sobolev space Hm(T) with L2
0(T). Equipped with the norm

‖v‖Hm
0 (T) :=

(∫
T
|∂mx v|2dx

)1/2

,

and the associated scalar product 〈·, ·〉Hm
0 (T), it is a separable Hilbert space. On the one-dimensional

torus, the Poincaré inequality implies that Hm+1
0 (T) ⊂ Hm

0 (T) and ‖ · ‖Hm
0 (T) ≤ ‖ · ‖Hm+1

0 (T). Actually,
the following stronger inequality holds: if v ∈ H1

0 (T), then v ∈ L∞0 (T) and for all p ∈ [1,+∞),

‖v‖Lp
0(T) ≤ ‖v‖L∞0 (T) ≤ ‖v‖H1

0 (T). (2.3)

The spaces Hm
0 (T),m ≥ 0, generalise to the class of fractional Sobolev spaces Hs

0(T), where s ∈
[0,+∞), which will be defined in Section 2.2.1. We may now state:

Assumption 2.2 (on the noise functions). For all k ≥ 1, gk ∈ H2
0 (T) and

D0 :=
∑
k≥1

‖gk‖2H2
0 (T) < +∞. (2.4)

Let (Ω,F ,P) be a probability space, equipped with a normal filtration (Ft)t≥0 in the sense of [35,
Section 3.3], on which (W k)k≥1 is a family of independent Brownian motions. Under Assumption 2.2,
the series

∑
k gkW

k converges in L2(Ω, C([0, T ], H2
0 (T))), for any T > 0, towards an H2

0 (T)-valued
Wiener process (WQ(t))t∈[0,T ] with respect to the filtration (Ft)t≥0, defined in the sense of [35, Sec-
tion 4.2], with the trace class covariance operator Q : H2

0 (T)→ H2
0 (T) given by

∀u, v ∈ H2
0 (T), 〈u,Qv〉H2

0 (T) =
∑
k≥1

〈u, gk〉H2
0 (T)〈v, gk〉H2

0 (T). (2.5)

Thus, almost surely, t 7→WQ(t) is continuous inH2
0 (T) and for all u ∈ H2

0 (T), the process (〈WQ(t), u〉H2
0 (T))t≥0

is a real-valued Wiener process with variance

E
[〈
WQ(t), u

〉2

H2
0 (T)

]
= t

∑
k≥1

〈gk, u〉2H2
0 (T). (2.6)

2.1.2 Main results and previous works

First, we are interested in the well-posedness in the strong sense of Equation (2.1). In particular, we
look for solutions that admit at least a second spatial derivative in order to give a classical meaning
to the viscous term, in the sense of the following definition:

Definition 2.3 (Strong solution to (2.1)). Let u0 ∈ H2
0 (T). Under Assumptions 2.1 and 2.2, a strong

solution to Equation (2.1) with initial condition u0 is an (Ft)t≥0-adapted process (u(t))t≥0 with values
in H2

0 (T) such that, almost surely:
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1. the mapping t 7→ u(t) is continuous from [0,+∞) to H2
0 (T);

2. for all t ≥ 0, the following equality holds:

u(t) = u0 +

∫ t

0
(−∂xA (u(s)) + ν∂xxu(s)) ds+WQ(t). (2.7)

In the above definition, the first condition ensures that the time integral in Equation (2.7) is a
well-defined Bochner integral in L2

0(T). For a careful introduction of the general concepts of random
variables and stochastic processes in Hilbert spaces, the reader is referred to the third and fourth
chapters of the reference book [35].

Our first result is the following:

Theorem 2.4 (Well-posedness). Let u0 ∈ H2
0 (T). Under Assumptions 2.1 and 2.2, there exists a

unique strong solution (u(t))t≥0 to Equation (2.1) with initial condition u0. Moreover, the solution
depends continuously on initial data in the following sense: if (u

(j)
0 )j≥1 is a sequence of H2

0 (T) satisfying

lim
j→∞

∥∥∥u0 − u(j)
0

∥∥∥
H2

0 (T)
= 0,

then, denoting by (u(j)(t))t≥0,j≥1 the family of associated solutions, for any T ≥ 0, we have almost
surely

lim
j→∞

sup
t∈[0,T ]

∥∥∥u(t)− u(j)(t)
∥∥∥
H2

0 (T)
= 0.

Similar results have already been established: the case where the flux A is strictly convex is
treated in [15, Appendix A], and the case where A is globally Lipschitz continuous is treated in [73].
Furthermore, the case of mild solutions (in Lp spaces) has been looked at in [69]. Here, no global
Lipschitz continuity assumption nor restrictions on the convexity of the flux function are made. We
can also point out that the well-posedness of stochastically forced conservations laws in the inviscid case
(i.e. when ν = 0) has been under a great deal of investigation in the recent years. In this "hyperbolic"
framework, the appearance of shocks prevents the solutions to be smooth enough to be considered in a
strong sense as in our present work. Therefore, the study of entropic solutions [60] or kinetic solutions
[40] to the SPDE have been the two main approaches, both of which rely on a vanishing viscosity
argument: the entropic or kinetic solution is sought as the limit of its viscous approximation as the
viscosity coefficient tends to 0.

Let Cb(H2
0 (T)) denote the set of continuous and bounded functions from H2

0 (T) to R. As a conse-
quence of Theorem 2.4, we can define a family of functionals (Pt)t≥0 on Cb(H2

0 (T)) by writing

Ptϕ(u0) := Eu0 [ϕ(u(t))] , t ≥ 0, u0 ∈ H2
0 (T),

where the notation Eu0 indicates that the random variable u(t) is the solution to (2.1) at time t starting
from the initial condition u0.

Corollary 2.5. Under Assumptions 2.1 and 2.2, the family (Pt)t≥0 is a Feller semigroup and the
process (u(t))t≥0 is a strong Markov process in H2

0 (T) with semigroup (Pt)t≥0.

Proof. The uniqueness of a strong solution and the fact that, for all t ≥ 0, the processes (WQ(t +
s) −WQ(t))s≥0 and (WQ(s))s≥0 have the same distribution, ensure that (Pt)t≥0 is a semigroup, and
therefore that (u(t))t≥0 is a Markov process. The Feller property is a straightforward consequence of
the result of continuous dependence on initial conditions given in Theorem 2.4, whereas it is a classical
result that the strong Markov property of (u(t))t≥0 follows from the Feller property of (Pt)t≥0 (see for
instance the proof of [23, Theorem 16.21]).
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Let B(H2
0 (T)) denote the Borel σ-algebra of the metric space H2

0 (T), and P(H2
0 (T)) refer to the

set of Borel probability measures on H2
0 (T). The Markov property allows us to extend the notion of

strong solution to (2.1) by considering not only a deterministic initial condition but any F0-measurable
random variable u0 on H2

0 (T). In this perspective, we define the dual semigroup (P ∗t )t≥0 of (Pt)t≥0 by

P ∗t α(Γ) :=

∫
H2

0 (T)
Pu0 (u(t) ∈ Γ) dα(u0), t ≥ 0, α ∈ P

(
H2

0 (T)
)
, Γ ∈ B

(
H2

0 (T)
)
.

In particular, P ∗t α is the law of u(t) when u0 is distributed according to α.

Definition 2.6 (Invariant measure). We say that a probability measure µ ∈ P(H2
0 (T)) is an invariant

measure for the semigroup (Pt)t≥0 (or equivalently for the process (u(t))t≥0) if and only if

∀t ≥ 0, P ∗t µ = µ.

Theorem 2.7 (Existence, uniqueness and estimates on the invariant measure). Under Assumptions
2.1 and 2.2, the process (u(t))t≥0 solution to the SPDE (2.1) admits a unique invariant measure µ.
Besides, if u ∈ H2

0 (T) is distributed according to µ, then E[‖u‖2
H2

0 (T)
] < +∞ and, for all p ∈ [1,+∞),

E[‖u‖p
Lp

0(T)
] < +∞.

A few similar results exist in the literature. Da Prato, Debussche and Temam [34] have studied
the viscous Burgers equation (which corresponds to the flux function A(u) = u2/2) perturbed by an
additive space-time white noise whereas Da Prato and Gatarek [96] studied the same equation but with
a multiplicative white noise. Both showed the well-posedness of the equation as well as the existence of
an invariant measure. These results are moreover put in a much detailed context in the two reference
books [35, 36]. Boritchev [14, 15, 16] showed the existence and uniqueness of an invariant measure
for the viscous generalised Burgers equation (which corresponds to the case of strictly convex flux
function) perturbed by a white-in-time and spatially correlated noise. E, Khanin, Mazel and Sinai [52]
showed the existence and uniqueness of an invariant measure for the inviscid Burgers equation with a
white-in-time and spatially correlated noise. Debussche and Vovelle [41] generalised this last result by
extending it to non-degenerate flux functions (roughly speaking, there is no non-negligible subset of R
on which A is linear). Besides, the fact that these results from [52, 41] also hold when ν = 0 makes
them quite powerful: it shows indeed that the presence of a viscous term is not a necessary condition
for the solution to be stationary.

The stochastic Burgers equation is mainly studied as a one-dimensional model for turbulence. By
showing a stable behaviour at large times, this model manages, to some extent, to fit the predicitions
of Kolmogorov’s "K41" theory about the universal properties of a turbulent flow [81, 80]. Whether it
is modelled by the Burgers equation or a by more general process such as Equation (2.1), turbulence is
then described through the statistics of some particular small-scale quantities in the stationary state
[48, 49]. Sharp estimates were given by Boritchev for these small-scale quantities [15], which were
furthermore shown to be independent of the viscosity coefficient. One of the purposes of this chapter
is to lay the groundwork for the numerical analysis of Equation (2.1). In Chapter 3, we introduce a
finite-volume approximation of (2.1) which allows to approximate the invariant measure µ. Generating
random variables with distribution µ shall eventually lead us to compute said small-scale quantities
and analyse the development of turbulence in the model established by Equation (2.1).

2.1.3 Outline of the chapter

The proofs of Theorems 2.4 and 2.7 are respectively detailed in Sections 2.2 and 2.3.
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2.2 Well-posedness and regularity

This section is dedicated to the proof of Theorem 2.4. This proof is decomposed as follows. In
Subsection 2.2.1, we introduce a weaker formulation of Equation (2.1), the so-called mild formulation.
In Subsection 2.2.2, we show that Equation (2.1) is well-posed locally in time both in the mild and in
the strong sense. In Subsection 2.2.3, we give higher bounds for the Lebesgue and Sobolev norms of
this local solution. Eventually, these estimates allow us to extend the local solution to a global-in-time
solution, and thus to prove Theorem 2.4 in Subsection 2.2.4.

2.2.1 Mild formulation of (2.1)

In this subsection, we collect preliminary results which shall enable us to provide a mild formulation
of Equation (2.1), for which we prove the existence and uniqueness of a solution on a small interval.
The proofs of several results are postponed to Subsection 2.2.5.

Fractional Sobolev spaces

For all m′ ≥ 1, let us define λ2m′−1 = λ2m′ = −(2πm′)2, and e2m′−1(x) =
√

2 sin(2πm′x), e2m′(x) =√
2 cos(2πm′x). The family (em)m≥1 is a complete orthogonal basis of L2

0(T) such that, for all m ≥ 1,
em is C∞ on T and ∂xxem = λmem. With respect to this basis, we define the fractional Sobolev space
Hs

0(T), for any s ∈ [0,+∞), as the space of functions v ∈ L2
0(T) such that

‖v‖Hs
0(T) :=

∑
m≥1

(−λm)s〈v, em〉2L2
0(T)

1/2

< +∞. (2.8)

We take from [15, Appendice A] the following proposition and adapt it to our case of a flux function
satisfying Assumption 2.1:

Proposition 2.8. Under Assumption 2.1, for any s ∈ [1, 2], the mapping

v ∈ Hs
0(T) 7−→ ∂xA(v) ∈ Hs−1

0 (T)

is bounded on bounded subsets of Hs
0(T). Moreover, when s = 1 or s = 2, it is Lipschitz continuous on

bounded subsets of Hs
0(T).

The proof of Proposition 2.8 is postponed to Subsection 2.2.5.
By virtue of Proposition 2.8, for all m ≥ 1, we denote by C(m)

2 and C(m)
3 two finite constants such

that:

• for all v ∈ H1
0 (T) such that ‖v‖H1

0 (T) ≤ m, ‖∂xA(v)‖L2
0(T) ≤ C

(m)
2 ;

• for all v1, v2 ∈ H1
0 (T) such that ‖v1‖H1

0 (T)∨‖v2‖H1
0 (T) ≤ m, ‖∂xA(v1)−∂xA(v2)‖L2

0(T) ≤ C
(m)
3 ‖v1−

v2‖H1
0 (T).

Heat kernel

Let us denote by (St)t≥0 the semigroup generated by the operator ν∂xx:

Stv :=
∑
m≥1

eνλmt〈v, em〉L2
0(T)em, v ∈ L2

0(T), t ≥ 0. (2.9)

Some of its properties are gathered in the following proposition.
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Proposition 2.9 (Properties of the heat kernel). The semigroup (St)t≥0 satisfies the following prop-
erties.

1. For any s ≥ 0, for any v ∈ Hs
0(T), for any t ≥ 0, Stv ∈ Hs

0(T) and ‖Stv‖Hs
0(T) ≤ ‖v‖Hs

0(T);
besides, the mapping t 7→ Stv ∈ Hs

0(T) is continuous on [0,+∞).

2. For all 0 ≤ s1 ≤ s2, there exists a constant C4 = C4(s1, s2) > 0 such that

∀v ∈ Hs1
0 (T), ∀t ≥ 0, ‖Stv‖Hs2

0 (T) ≤ C4t
s1−s2

2 ‖v‖Hs1
0 (T).

3. For any s ∈ [0,+∞), T > 0 and (v(t))t∈[0,T ] ∈ C([0, T ], Hs
0(T)), the process (

∫ t
0 St−rv(r)dr)t∈[0,T ]

belongs to C([0, T ], H
s+3/2
0 (T)).

The proof of Proposition 2.9 is postponed to Subsection 2.2.5.

Stochastic convolution and mild formulation of (2.1)

Let (F t)t≥0 be a normal filtration on the probability space (Ω,F ,P) and (W
Q

(t))t≥0 be a Q-Wiener
process in H2

0 (T) with respect to this filtration. Given that the orthonormal basis (em)m≥1 of the space
L2

0(T) satisfies ∂xxem = λmem, the family (em/λm)m≥1 is an orthonormal basis of H2
0 (T). We set

Wm(t) :=

〈
W

Q
(t),

em
λm

〉
H2

0 (T)

, m ≥ 1, t ≥ 0,

so that by (2.6), (Wm(t))t≥0 is a real-valued Brownian motion with variance
∑

k≥1〈gk, em/λm〉2H2
0 (T)

.
Next, we write

wm(t) :=

∫ t

0
eνλm(t−s)dWm(s), m ≥ 1, t ≥ 0.

Proposition 2.10. Under Assumption 2.2, for all T > 0, the series∑
m≥1

em
λm

(wm(t))t∈[0,T ]

converges in L2(Ω, C([0, T ], H2
0 (T))), and its sum defines an (F t)t≥0-adapted, H2

0 (T)-valued process
(w(t))t≥0 almost surely continuous.

The proof of Proposition 2.10 is postponed to Subsection 2.2.5. The process (w(t))t≥0 is called the
stochastic convolution associated to the Q-Wiener process (W

Q
(t))t≥0.

In the sequel, we let τ be a (F t)t≥0-stopping time, almost surely finite. We shall say that a process
(u(t))t∈[0,τ ] is (F t)t≥0-adapted if for all t ≥ 0, the random variable u(t)1t≤τ is F t-measurable.

Definition 2.11 (Local mild solution). Let u0 be an F0-measurable, H1
0 (T)-valued random variable.

Under Assumptions 2.1 and 2.2, a (local) mild solution to the SPDE

du(t) = −∂xA(u(t))dt+ ν∂xxu(t)dt+ dW
Q

(t) (2.10)

on [0, τ ] is an H1
0 (T)-valued, (F t)t≥0-adapted process (u(t))t∈[0,τ ] such that, almost surely:

1. the mapping t 7→ u(t) ∈ H1
0 (T) is continuous on [0, τ ];

2. for all t ∈ [0, τ ],

u(t) = Stu0 −
∫ t

0
St−s∂xA(u(s))ds+ w(t). (2.11)
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The combination of Propositions 2.8 and 2.9 ensures that all terms of the identity (2.11) are well-
defined.

We now clarify the relationship between the notions of mild and strong solutions.

Proposition 2.12 (Mild and strong solutions). Under the assumptions of Definition 2.11, let (u(t))t∈[0,τ ]

be a mild solution to (2.10) on [0, τ ]. If u0 ∈ H2
0 (T), then:

1. for all t ∈ [0, τ ], u(t) ∈ H2
0 (T) and the mapping t 7→ u(t) ∈ H2

0 (T) is continuous on [0, τ ];

2. for all t ∈ [0, τ ],

u(t) = u0 +

∫ t

0
(−∂xA (u(s)) + ν∂xxu(s)) ds+W

Q
(t).

Conversely, any H2
0 (T)-valued, (F t)t≥0-adapted process (u(t))t∈[0,τ ] satisfying these two conditions al-

most surely is a mild solution to (2.10) on [0, τ ].

The proof of Proposition 2.12 is postponed to Subsection 2.2.5.

Existence and uniqueness of a mild solution on a small interval

For any integer m0 ≥ 0, let us define

τm0

(
W

Q
)

=
1

8
(
C1C

(m0+1)
3

)2 ∧ inf
{
t ≥ 0 : 2C4C

(m0+1)
2

√
t+ ‖w(t)‖H1

0 (T) ≥ 1
}
,

where we recall that the constant C4 is defined in Proposition 2.9, the constants C(m)
2 and C(m)

3 are
defined after Proposition 2.8, and the constant C1 is defined in (2.2).

Notice that τm0(W
Q

) ∈ (0,+∞), almost surely.
In the spirit of [34, 15], we obtain the existence and uniqueness of a mild solution to (2.10) on the

"small" interval [0, τm0(W
Q

)] by a fixed-point argument.

Lemma 2.13 (Local existence and uniqueness). Let u0 and m0 be two F0-measurable random variables
taking values respectively in H1

0 (T) and N such that ‖u0‖H1
0 (T) ≤ m0. Furthermore, let us set τ :=

τm0(W
Q

). Then, under Assumptions 2.1 and 2.2, there is a unique mild solution (u(t))t∈[0,τ ] to (2.10)
on [0, τ ].

Proof. Let us introduce the random set

Σ :=
{

(v(t))t∈[0,τ ] ∈ C
(
[0, τ ], H1

0 (T)
)

: ∀t ∈ [0, τ ], ‖v(t)‖H1
0 (T) ≤ m0 + 1

}
.

Thanks to Propositions 2.9 and 2.10, we may define the random operator G : C([0, τ ], H1
0 (T)) →

C([0, τ ], H1
0 (T)) by

(Gv)(t) = Stu0 −
∫ t

0
St−s∂xA(v(s))ds+ w(t), t ∈ [0, τ ],

and notice that any v ∈ C([0, τ ], H1
0 (T)) satisfies Equation (2.11) if and only if Gv = v.

We first write, for some v ∈ C([0, τ ], H1
0 (T)) and for any t ∈ [0, τ ],

‖(Gv)(t)‖H1
0 (T) ≤ ‖Stu0‖H1

0 (T) +

∫ t

0
‖St−s∂xA(v(s))‖H1

0 (T) ds+ ‖w(t)‖H1
0 (T). (2.12)
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On the one hand, by the first assertion of Proposition 2.9, ‖Stu0‖H1
0 (T) ≤ ‖u0‖H1

0 (T) ≤ m0; on the
other hand, we know thanks to the second assertion of Proposition 2.9 that

‖St−s∂xA(v(s))‖H1
0 (T) ≤

C4√
t− s

‖∂xA(v(s))‖L2
0(T), (2.13)

furthermore, thanks to Proposition 2.8, if v ∈ Σ, then ∂xA(v) is bounded in L2
0(T) uniformly in time,

i.e. for all s ∈ [0, τ ], ‖∂xA(v(s))‖L2
0(T) ≤ C

(m0+1)
2 . Thus,

‖(Gv)(t)‖H1
0 (T) ≤ m0 + 2C4C

(m0+1)
2

√
t+ ‖w(t)‖H1

0 (T), t ∈ [0, τ ]. (2.14)

By definition of τ , it follows that Gv ∈ Σ whenever v ∈ Σ.
We now take (v1(t))t∈[0,τ ], (v2(t))t∈[0,τ ] ∈ Σ. Then, for any t ∈ [0, τ ],

‖(Gv1)(t)− (Gv2)(t)‖H1
0 (T) =

∥∥∥∥∫ t

0
St−s (∂xA(v1(s))− ∂xA(v2(s))) ds

∥∥∥∥
H1

0 (T)

≤
∫ t

0

C4√
t− s

‖∂xA(v1(s))− ∂xA(v2(s))‖L2
0(T)ds,

(2.15)

where we have used the same arguments as above. Using now the Lipschitz continuity result in
Proposition 2.8 and the definition of τ , we get for all t ∈ [0, τ ],

‖(Gv1)(t)− (Gv2)(t)‖H1
0 (T) ≤ 2C1C

(m0+1)
3

√
t sup
s∈[0,t]

‖v1(s)− v2(s)‖H1
0 (T)

≤ 1

2
sup
s∈[0,τ ]

‖v1(s)− v2(s)‖H1
0 (T),

meaning that G is a contraction mapping on Σ, which is complete. Then, by the Banach fixed-point
theorem, G admits a unique fixed point (u(t))t∈[0,τ ] in Σ. To show that this solution to Equation
(2.11) is unique among all the H1

0 (T)-valued continuous processes, let us first notice that our choice of
τ implies

∀t < τ, ‖u(t)‖H1
0 (T) < m0 + 1.

Assume that there is another solution (ũ(t))t∈[0,τ ] of (2.11) not belonging almost surely to Σ. Then we
have with positive probability

∃τ̃ < τ , ‖ũ(τ̃)‖H1
0 (T) ≥ m0 + 1.

This means that the double inequality ‖u (τ̃) ‖H1
0 (T) < m0 + 1 ≤ ‖ũ (τ̃) ‖H1

0 (T) holds on some non-
negligible event. On this event, the fixed-point argument also holds in the set

Σ̃ :=
{

(v(t))t∈[0,τ̃ ] : ∀t ∈ [0, τ̃ ], ‖v(t)‖H1
0 (T) ≤ m0 + 1

}
which is formally a subset of Σ. Thus, by uniqueness of the fixed point, we have u|[0,τ̃ ] = ũ|[0,τ̃ ] and
in particular u (τ̃) = ũ (τ̃), which is absurd. As a consequence, (u(t))t∈[0,τ ] is the only H1

0 (T)-valued
process with continuous trajectories satisfying Equation (2.11) on [0, τ ].

Finally, let v(0) = 0 and define the sequence of processes v(j) ∈ C([0, τ ], H1
0 (T)), j ≥ 1 by

v(j) = Gv(j−1). It is clear from the definition of the operator G and from Proposition 2.10 that
each process (v(j)(t)1t≤τ )t≥0 is (F t)t≥0-adapted. On the other hand, the Banach fixed-point theorem
asserts that almost surely, the sequence (v(j)(t))t∈[0,τ ] converges to (u(t))t∈[0,τ ] in C([0, τ ], H1

0 (T)). As
a consequence, for any t ≥ 0, the sequence of F t-measurable random variables 1t≤τv

(j)(t) converges
almost surely to 1t≤τu(t), which makes this limit also F t-measurable. Thus, the process (1t≤τu(t))t≥0

is (F t)t≥0-adapted.



2.2. Well-posedness and regularity 33

2.2.2 Construction of a maximal solution to (2.1)

In this subsection, we use the notions introduced in Subsection 2.2.1 to prove the following existence
and uniqueness result for (2.1).

Lemma 2.14 (Existence and uniqueness result of a maximal solution to (2.1)). Under Assumptions
2.1 and 2.2, for any u0 ∈ H1

0 (T), there exists a pair (T ∗, (u(t))t∈[0,T ∗)) such that:

1. for any (Ft)t≥0-stopping time T such that almost surely, T < +∞ and T ≤ T ∗, (u(t))t∈[0,T ] is
the unique mild solution to (2.1) on [0, T ];

2. almost surely, T ∗ = +∞ or lim supt→T ∗ ‖u(t)‖H1
0 (T) = +∞.

The random time T ∗ is called the explosion time and the process (u(t))t∈[0,T ∗) is called the maximal
solution to (2.1).

Proof. Let u0 ∈ H1
0 (T). Let m(0)

0 = d‖u0‖H1
0 (T)e. By Lemma 2.13, Equation (2.1) possesses a unique

mild solution (u(t))t∈[0,τ (0)] on [0, τ (0)], where τ (0) = τ
m

(0)
0

. We now define the filtration (F (1)
t )t≥0 by

F (1)
t = Fτ (0)+t =

{
B ∈ F : ∀s ≥ 0, B ∩ {τ (0) + t ≤ s} ∈ Fs

}
,

and recall that the process WQ,(1) defined by WQ,(1)(t) = WQ(τ (0) + t) − WQ(t) is a Q-Wiener
process with respect to (F (1)

t )t≥0. Therefore, applying Lemma 2.13 again with this Q-Wiener process,
and initial condition u

(1)
0 = u(τ (0)) and m

(1)
0 = d‖u(τ (0))‖H1

0 (T)e ∨ m
(0)
0 , we obtain a mild solution

(u(1)(t))t∈[0,τ (1)] of du = −∂xA(u)dt+ ν∂xxudt+ dWQ,(1) on [0, τ (1)], where τ (1) = τ
m

(1)
0

(WQ,(1)). It is

then easily checked that defining T (1) = τ (0) + τ (1) and u(t + τ (0)) = u(1)(t) for any t ∈ (0, τ (1)], we
obtain a unique mild solution (u(t))t∈[0,T (1)] to Equation (2.1) on [0, T (1)].

We now proceed by induction and set for all n ≥ 1,

T (n) :=
n∑
i=0

τ (i),

m
(n+1)
0 :=

⌈∥∥∥u(T (n)
)∥∥∥

H1
0 (T)

⌉
∨m(n)

0 ,

τ (n+1) := τ
m

(n+1)
0

(
WQ

(
T (n) + ·

)
−WQ

(
T (n)

))
,

T ∗ := sup
n≥1

T (n),

where at each iteration we use Lemma 2.13 to extend the process (u(t))t∈[0,T (n)] to the unique mild

solution of Equation (2.1) on [0, T (n)]. It is then clear that (u(t))t∈[0,T ∗) satisfies the first assertion of
Lemma 2.14.

Since the sequence of integers (m
(n)
0 )n≥0 is nondecreasing, supn≥0m

(n)
0 < +∞ if and only if there

exists n0 ≥ 0 and m ≥ 0 such that, for all n ≥ n0, m
(n)
0 = m. Hence, we can write{

T ∗ < +∞, sup
n≥0

m
(n)
0 < +∞

}
=

⋃
n0≥0,m≥0

{ ∞∑
n=0

τ (n) < +∞,∀n ≥ n0,m
(n)
0 = m

}

=
⋃

n0≥0,m≥0

{ ∞∑
n=n0+1

τ (n) < +∞, ∀n ≥ n0,m
(n)
0 = m

}

⊂
⋃

n0≥0,m≥0

{ ∞∑
n=n0+1

τm

(
WQ

(
T (n) + ·

)
−WQ

(
T (n)

))
< +∞

}
.
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However, by the strong Markov property, for any m ≥ 0, the random variables τm(WQ(T (n) + ·) −
WQ(T (n))), n ≥ 1, are independent and identically distributed, and by the definition of τm(·), they
are almost surely positive. As a consequence, by Borel’s 0-1 law,

∀n0,m ≥ 0, P

( ∞∑
n=n0+1

τm

(
WQ

(
T (n) + ·

)
−WQ

(
T (n)

))
< +∞

)
= 0.

As the countable union of negligible events is still negligible, we get

P
(
T ∗ < +∞, sup

n≥0
m

(n)
0 < +∞

)
= 0.

This implies that almost surely, if T ∗ < +∞ then supn≥0m
(n)
0 = +∞, so that lim supn→∞ ‖u(T (n))‖H1

0 (T) =
+∞, which is the wanted result.

2.2.3 Estimates on the maximal solution

Let u0 ∈ H2
0 (T). Let (T ∗, (u(t))t∈[0,T ∗)) be the maximal solution to Equation (2.1) given by Lemma 2.14.

By Proposition 2.12, (u(t))t∈[0,T ∗) is a continuous H2
0 (T)-valued process. Besides, Lemma 2.14 allows

us to define, for any r ≥ 0, the stopping time

Tr := inf
{
t ∈ [0, T ∗) : ‖u(t)‖2H1

0 (T) ≥ r
}
, (2.16)

which always satisfies Tr ≤ T ∗. In the sequel, we shall prove that limr→∞ Tr = +∞, which shall imply
that T ∗ = +∞, almost surely.

Lemma 2.15. Under Assumptions 2.1 and 2.2, for any p ∈ 2N∗ and for all t ≥ 0, we have:

4ν

p
(p− 1)E

[∫ t∧Tr

0

∫
T

(
∂xu(s)p/2

)2
dxds

]
≤ ‖u0‖pLp

0(T)
+
p(p− 1)

2
D0E

[∫ t∧Tr

0
‖u(s)‖p−2

Lp−2
0 (T)

ds

]
.

(2.17)
Moreover, there exist two constants C(p)

5 , C
(p)
6 > 0 depending only on ν, p and D0 such that

E
[∫ t∧Tr

0
‖u(s)‖p

Lp
0(T)

ds

]
≤ C(p)

5

(
1 + ‖u0‖pLp

0(T)

)
+ C

(p)
6 t. (2.18)

Proof. Let p ∈ 2N∗. We want to apply Itô’s formula on [0, t ∧ Tr] to the H2
0 (T)-valued process

(u(t))t∈[0,T ∗) with the function Fp : u 7→ ‖u‖p
Lp

0(T)
. Since this process writes

u(t) = u0 +

∫ t

0
ϕ(s)ds+WQ(t)

with ϕ(t) = −∂xA(u(t)) + ν∂xxu(t) ∈ L2
0(T), the standard formulation of Itô’s formula in Hilbert

spaces [35, Theorem 4.32] requires at least Fp to be continuous on L2
0(T), which is not the case for

p > 2 here. Hence, we shall proceed to approximate Fp with a sequence of smooth functions FM,p,
M ≥ 1, apply Itô’s formula to the functions FM,p and then take the limit M → +∞.

Step 1. Approximation of the Lp0(T)-norm. Let ρ be a C∞ function from R to R+ such that∫
R ρ(u)du = 1 and whose support is contained in the interval (−1

2 ,
1
2). For any M ≥ 1, we set the

regularised Heaviside function ψM := 1(−∞,M+ 1
2 ] ∗ ρ and its antiderivative

φM : u ∈ R+ 7−→
∫ u

0
ψM (v)dv ∈ R+.



2.2. Well-posedness and regularity 35

We now define a truncated Lp0(T)-norm by setting

FM,p :

{
L2

0(T) −→ R+

v 7−→
∫
T φM (v(x)p) dx.

The first differential DFM,p and the second differential D2FM,p have the following expressions: ∀v, h ∈
L2

0(T),

〈DFM,p(v), h〉L2
0(T) = p

∫
T
h(x)v(x)p−1φ′M (v(x)p) dx,

〈D2FM,p(v) · h, h〉L2
0(T) = p(p− 1)

∫
T
h(x)2v(x)p−2φ′M (v(x)p) dx+ p2

∫
T
h(x)2v(x)2(p−1)φ′′M (v(x)p) dx.

Step 2. Itô’s formula. First, let us notice that the process (WQ(t))t≥0 can be seen as an
L2

0(T)-valued Q′-Wiener process where the operator Q′ : L2
0(T)→ L2

0(T) has covariance

〈u,Q′v〉L2
0(T) =

∑
k≥1

〈gk, u〉L2
0(T)〈gk, v〉L2

0(T).

Indeed, Assumption 2.2 ensures that Q′(L2
0(T)) ⊂ H2

0 (T) and Q′|H2
0 (T)

= Q. We now have

Tr
(
D2FM,p(v)Q′

)
=
∑
k≥1

〈D2FM,p(v)gk, gk〉L2
0(T),

so that we can apply Itô’s formula [35, Theorem 4.32] for the real-valued process (FM,p(u(t)))t∈[0,T ∗),
which leads to

FM,p (u(t)) =FM,p(u0) + p

∫ t

0

∫
T

(−∂xA(u(s)) + ν∂xxu(s))u(s)p−1φ′M (u(s)p) dxds

+

∫ t

0
〈DFM,p(u(s)),dWQ(s)〉L2

0(T)

+
1

2
p(p− 1)

∑
k≥1

∫ t

0

∫
T
g2
ku(s)p−2φ′M (u(s)p)dxds

+
1

2
p2
∑
k≥1

∫ t

0

∫
T
g2
ku(s)2(p−1)φ′′M (u(s)p)dxds.

Since the L2
0(T)-norm of DFM,p(u(s)) is bounded uniformly in time, the third term of the right-hand

side is a square integrable martingale [35, Theorem 4.27]. Thus, for t ≥ 0, integrating in time up to
t ∧ Tr and taking the expectation, we get

E [FM,p (u(t ∧ Tr))] =FM,p(u0)− pE
[∫ t∧Tr

0

∫
T
∂xA(u(s))u(s)p−1φ′M (u(s)p) dxds

]
(2.19)

+ pE
[∫ t∧Tr

0

∫
T
ν∂xxu(s)u(s)p−1φ′M (u(s)p) dxds

]
(2.20)

+
1

2
p(p− 1)E

∑
k≥1

∫ t∧Tr

0

∫
T
g2
ku(s)p−2φ′M (u(s)p)dxds

 (2.21)

+
1

2
p2E

∑
k≥1

∫ t∧Tr

0

∫
T
g2
ku(s)2(p−1)φ′′M (u(s)p)dxds

 . (2.22)
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Step 3. Passing M → +∞. We want now to pass to the limit M → +∞. Regarding the
left-hand side in the above equation, the family of functions φM is non-decreasing with respect to M ,
so that the monotone convergence theorem yields

lim
M→∞

E [FM,p (u(t ∧ Tr))] = E
[∫

T
lim
M→∞

φM (u(t ∧ Tr)p) dx

]
= E

[
‖u(t ∧ Tr)‖pLp

0(T)

]
.

For the flux term, we have almost surely, for all s ∈ [0, t∧Tr] and for allM ≥ 0, ∂xA(u(s))u(s)p−1φ′M (u(s)p) ≤
|∂xA(u(s))||u(s)|p−1. Furthermore,

E
[∫ t∧Tr

0

∫
T
|∂xA(u(s))| |u(s)|p−1dxds

]
≤ E

[
sup

s∈[0,t∧Tr]
‖u(s)‖p−1

L∞0 (T)

∫ t∧Tr

0

∫
T
|∂xA(u(s))| dxds

]

≤ r
p−1

2 E
[∫ t∧Tr

0
‖∂xA(u(s))‖L2

0(T) ds

]
(from (2.3) and (2.16))

≤ r
p−1

2 LrE
[∫ t∧Tr

0
‖u(s)‖L2

0(T) ds

]
(from Proposition 2.8)

≤ Lrr
p
2 t < +∞.

Thus, the dominated convergence theorem applies and yields

lim
M→∞

pE
[∫ t∧Tr

0

∫
T
∂xA(u(s))u(s)p−1φ′M (u(s)p) dxds

]
= pE

[∫ t∧Tr

0

∫
T
∂xA(u(s))u(s)p−1dxds

]
.

We now integrate by parts the viscous term:

pνE
[∫ t∧Tr

0

∫
T
∂xxu(s)u(s)p−1φ′M (u(s)p) dxds

]
= −pνE

[∫ t∧Tr

0

∫
T
∂xu(s)

(
∂x
(
u(s)p−1

)
φ′M (u(s)p) + u(s)p−1∂x

(
φ′M (u(s)p)

))
dxds

]
= −pνE

[∫ t∧Tr

0

∫
T
(∂xu(s))2

(
(p− 1)u(s)p−2φ′M (u(s)p) + pu(s)2(p−1)φ′′M (u(s)p)

)
dxds

]
,

and this last integrand is dominated uniformly in M by (∂xu(s))2
(
(p− 1)u(s)p−2 + κpu(s)2(p−1)

)
,

where κ = supR |ρ|. Furthermore, thanks to (2.16), we have

E
[∫ t∧Tr

0

∫
T

(∂xu(s))2
(

(p− 1)u(s)p−2 + κpu(s)2(p−1)
)

dxds

]
≤ E

[(
(p− 1) sup

s∈[0,t∧Tr]
‖u(s)‖p−2

L∞0 (T) + κp sup
s∈[0,t∧Tr]

‖u(s)‖2(p−1)
L∞0 (T)

)∫ t∧Tr

0
‖u(s)‖2H1

0 (T)ds

]
≤
(

(p− 1)r
p−2

2 + κprp−1
)
rt < +∞.

Thus, we get from the dominated convergence theorem,

lim
M→∞

pE
[∫ t∧Tr

0

∫
T
ν∂xxu(s)u(s)p−1φ′M (u(s)p) dxds

]
= −νp(p−1)E

[∫ t∧Tr

0

∫
T
(∂xu(s))2u(s)p−2dxds

]
.

With similar computations, for the noise term, we have

lim
M→∞

p(p− 1)E

∑
k≥1

∫ t∧Tr

0

∫
T
g2
ku(s)p−2φ′M (u(s)p)dxds

 = p(p− 1)E

∑
k≥1

∫ t∧Tr

0

∫
T
g2
ku(s)p−2dxds

 ,
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and

lim
M→∞

p2E

∑
k≥1

∫ t∧Tr

0

∫
T
g2
ku(s)2(p−1)φ′′M (u(s)p)dxds

 = 0.

Letting M go to +∞ in (2.19), (2.20), (2.21) and (2.22), we get

E
[
‖u(t ∧ Tr)‖pLp

0(T)

]
= ‖u0‖pLp

0(T)
− pE

[∫ t∧Tr

0

∫
T
∂xA(u(s))u(s)p−1dxds

]
− νp(p− 1)E

[∫ t∧Tr

0

∫
T
(∂xu(s))2u(s)p−2dxds

]
+

1

2
p(p− 1)

∑
k≥1

E
[∫ t∧Tr

0

∫
T
u(s)p−2g2

kdxds

]
. (2.23)

It turns out that the flux term disappears:∫
T
u(s)p−1∂xA(u(s))dx =

∫
T
u(s)p−1A′(u(s))∂xu(s)dx =

∫
T
∂x (Ap(u(s))) dx = 0, (2.24)

where Ap is an antiderivative of v 7→ vp−1A′(v). As regards the noise coefficients, we have∑
k≥1

gk(x)2 ≤
∑
k≥1

‖gk‖2L∞0 (T) ≤
∑
k≥1

‖gk‖2H1
0 (T) ≤ D0,

thanks to (2.3) and (2.4). As a consequence, we get from (2.23) the inequality

νp(p− 1)E
[∫ t∧Tr

0

∫
T

(
u(s)

p
2
−1∂xu(s)

)2
dxds

]
≤ ‖u0‖pLp

0(T)
+

1

2
p(p− 1)D0E

[∫ t∧Tr

0
‖u(s)‖p−2

Lp−2
0 (T)

ds

]
.

(2.25)
Rewriting the integrand in the left-hand side, we get

4ν

p
(p− 1)E

[∫ t∧Tr

0

∫
T

(
∂x

(
u(s)p/2

))2
dxds

]
≤ ‖u0‖pLp

0(T)
+
p(p− 1)

2
D0E

[∫ t∧Tr

0
‖u(s)‖p−2

Lp−2
0 (T)

ds

]
.

(2.26)
Since u(s) has a zero space average and is continuous in space (because it belongs to H1

0 (T)), almost
surely the function u(s)p/2 vanishes somewhere on the torus. Thus, we can apply the Poincaré inequality
on the left-hand side which leads, after multiplying by p/(4ν(p− 1)) on both sides, to the inequality

E
[∫ t∧Tr

0
‖u(s)‖p

Lp
0(T)

ds

]
≤ p

4ν(p− 1)
‖u0‖pLp

0(T)
+
p2D0

8ν
E
[∫ t∧Tr

0
‖u(s)‖p−2

Lp−2
0 (T)

ds

]
. (2.27)

For p = 2, we get

E
[∫ t∧Tr

0
‖u(s)‖2L2

0(T)ds

]
≤ 1

2ν
‖u0‖2L2

0(T) +
D0t

2ν
,

and the claimed result for arbitrary p ∈ 2N∗ follows by induction and from the inequalities ‖u0‖p−2r

Lp−2r
0 (T)

≤
1 + ‖u0‖pLp

0(T)
and E[t ∧ Tr] ≤ t.

Remark 2.16. By Jensen’s inequality, the bound (2.18) also holds for any real number p ≥ 2.

Lemma 2.17. Under Assumptions 2.1 and 2.2, there exist two constants C7, C8 > 0 depending only
on ν, pA, C1 and D0, such that for all t ≥ 0 and all r ≥ 0,

E
[
‖u(t ∧ Tr)‖2H1

0 (T)

]
+ νE

[∫ t∧Tr

0
‖u(s)‖2H2

0 (T)ds

]
≤ ‖u0‖2H1

0 (T) + C7

(
1 + ‖u0‖2pA+2

L
2pA+2
0 (T)

)
+ C8t.
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Proof. We want to apply Itô’s formula to the squared H1
0 (T)-norm of the process (u(t))t∈[0,T ∗). As for

the proof of Lemma 2.15, we proceed by truncation of this function.
Step 1. Approximation of the H1

0 (T)-norm. We set

GM :

{
L2

0(T) −→ R+

v 7−→
∑M

m=1(−λm)〈v, em〉2L2
0(T)

The first differential DGM and the second differential D2GM have the following expressions: ∀h ∈
L2

0(T),

〈DGM (v), h〉L2
0(T) = −2

M∑
m=1

λm〈v, em〉L2
0(T)〈h, em〉L2

0(T),

〈D2GM (v) · h, h〉L2
0(T) = −2

M∑
m=1

λm〈h, em〉2L2
0(T).

Step 2. Itô’s formula. Itô’s formula applied to GM yields almost surely and for all r ≥ 0,

GM (u(t ∧ Tr)) = GM (u0)− 2

∫ t∧Tr

0

M∑
m=1

λm〈u(s), em〉L2
0(T)〈−∂xA(u(s)) + ν∂xxu(s), em〉L2

0(T)ds

− 2

∫ t∧Tr

0
〈DGM (u(s)),dWQ(s)〉L2

0(T) − 2
∑
k≥1

∫ t∧Tr

0

M∑
m=1

λm〈gk, em〉2L2
0(T)ds. (2.28)

We first check that the third term of the right-hand side is a square-integrable martingale:

E
[∫ t∧Tr

0
‖DGM (u(s))‖2L2

0(T) ds

]
= 4

M∑
m=1

λ2
mE
[∫ t∧Tr

0
〈u(s), em〉2L2

0(T)ds

]

≤ 4

(
M∑
m=1

λ2
m

)
E
[∫ t∧Tr

0
‖u(s)‖2L2

0(T)ds

]
≤ 4

(
M∑
m=1

λ2
m

)
tr < +∞.

Thus, taking the expectation, the stochastic integral disappears and we get

E [GM (u(t ∧ Tr))] = GM (u0) + 2E

[∫ t∧Tr

0

M∑
m=1

λm〈u(s), em〉L2
0(T)〈∂xA(u(s)), em〉L2

0(T)ds

]

− 2E

[∫ t∧Tr

0

M∑
m=1

λm〈u(s), em〉L2
0(T)〈ν∂xxu(s), em〉L2

0(T)ds

]
− E

∑
k≥1

∫ t∧Tr

0

M∑
m=1

λm〈gk, em〉2L2
0(T)ds

 .
(2.29)

On one hand, we can rewrite the viscous term as follows:

M∑
m=1

λm〈u(s), em〉L2
0(T)〈ν∂xxu(s), em〉L2

0(T) =

M∑
m=1

λm〈u(s), em〉L2
0(T)〈νu(s), ∂xxem〉L2

0(T)

=
M∑
m=1

λm〈u(s), em〉L2
0(T)〈νu(s), λmem〉L2

0(T)

= ν
M∑
m=1

λ2
m〈u(s), em〉2L2

0(T). (2.30)
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On the other hand, applying Young’s inequality on the flux term, we get

2E

[∫ t∧Tr

0

M∑
m=1

λm〈u(s), em〉L2
0(T)〈∂xA(u(s)), em〉L2

0(T)ds

]

≤ 2νE

[∫ t∧Tr

0

M∑
m=1

λ2
m〈u(s), em〉2L2

0(T)ds

]
+

1

2ν
E

[∫ t∧Tr

0

M∑
m=1

〈∂xA(u(s)), em〉2L2
0(T)ds

]
. (2.31)

Injecting (2.30) and (2.31) into (2.29), we get the inequality

E [GM (u(t ∧ Tr))] ≤ GM (u0)+
1

2ν
E

[∫ t∧Tr

0

M∑
m=1

〈∂xA(u(s)), em〉2L2
0(T)ds

]
−E[t∧Tr]

∑
k≥1

M∑
m=1

λm〈gk, em〉2L2
0(T).

(2.32)
Step 3. Passing M → +∞. From Proposition 2.8, for any r ≥ 0, there is a constant Lr such

that for all M ≥ 1, we have

M∑
m=1

〈∂xA(u(s)), em〉2L2
0(T) ≤ ‖∂xA(u(s))‖2L2

0(T) ≤ Lr‖u(s)‖2H1
0 (T) ≤ rLr.

Thus, we can use the dominated convergence theorem to let M go to infinity in (2.32) and we get

E
[
‖u(t ∧ Tr)‖2H1

0 (T)

]
≤ ‖u0‖2H1

0 (T) +
1

2ν
E
[∫ t∧Tr

0
‖∂xA(u(s))‖2L2

0(T)ds

]
+E[t∧Tr]

∑
k≥1

‖gk‖2H1
0 (T). (2.33)

Since from Assumption 2.1, A′ has polynomial growth, we can bound the second term of the
right-hand side: using (2.2) and (2.17) with p = 2 and p = 2pA + 2, we get

E
[∫ t∧Tr

0
‖∂xA(u(s))‖2L2

0(T)ds

]
= E

[∫ t∧Tr

0

∫
T
(∂xu(s))2A′(u(s))2dxds

]
≤ 2C2

1E
[∫ t∧Tr

0

∫
T
(∂xu(s))2

(
1 + |u(s)|2pA

)
dxds

]
= 2C2

1

(
E
[∫ t∧Tr

0
‖u(s)‖2H1

0 (T)ds

]
+ E

[∫ t∧Tr

0

∫
T
(∂xu(s))2u(s)2pAdxds

])
≤ C2

1

ν

(
‖u0‖2L2

0(T) +D0E[t ∧ Tr]

+
2

(2pA + 2)(2pA + 1)
‖u0‖2pA+2

L
2pA+2
0 (T)

+D0E
[∫ t∧Tr

0
‖u(s)‖2pA

L
2pA
0 (T)

ds

])
.

Applying now Lemma 2.15, we get

E
[∫ t∧Tr

0
‖∂xA(u(s))‖2L2

0(T)ds

]
≤ C2

1

ν

(
2

(
1 + ‖u0‖2pA+2

L
2pA+2
0 (T)

)
+D0t

+D0C
(2pA)
5

(
1 + ‖u0‖2pA

L
2pA
0 (T)

)
+ C

(2pA)
6 t

)
.

Injecting this last bound in (2.33), we get the wanted result.

Corollary 2.18 (Limit of Tr). Under Assumptions 2.1 and 2.2, Tr → +∞ almost surely, and thus
T ∗ = +∞ almost surely.
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Proof. Let t ≥ 0. Writing
P (Tr < t) = P

(
‖u(t ∧ Tr)‖2H1

0 (T) ≥ r
)
,

we get from Markov’s inequality,

P (Tr < t) ≤ 1

r
E
[
‖u(t ∧ Tr)‖2H1

0 (T)

]
.

We apply now Lemma 2.17 to get

P (Tr < t) ≤ 1

r

(
‖u0‖2H1

0 (T) + C7

(
1 + ‖u0‖2pA+2

L
2pA+2
0 (T)

)
+ C8t

)
−→
r→∞

0.

Since t has been chosen arbitrarily, it follows that almost surely, Tr tends to +∞ as r → +∞. Then,
since Tr ≤ T ∗, we have T ∗ = +∞ almost surely.

2.2.4 Proof of Theorem 2.4

Under Assumptions 2.1 and 2.2, let u0 ∈ H2
0 (T), and (T ∗, (u(t))t∈[0,T ∗)) be the maximal solution to

Equation (2.1) given by Lemma 2.14. By Corollary 2.18, T ∗ = +∞ almost surely. Therefore, (u(t))t≥0

is the unique (global) mild solution to Equation (2.1), and by Proposition 2.12, it is also the unique
(global) strong solution to this equation. It remains to check that this solution depends continuously
on u0.

Lemma 2.19 (Continuous dependence on initial conditions). If (u
(j)
0 )j≥1 is a sequence of H2

0 (T)
satisfying

lim
j→∞

∥∥∥u0 − u(j)
0

∥∥∥
H2

0 (T)
= 0,

then, denoting by (u(j)(t))t≥0,j≥1 the family of associated solutions, for any T ≥ 0, we have almost
surely

lim
j→∞

sup
t∈[0,T ]

∥∥∥u(t)− u(j)(t)
∥∥∥
H2

0 (T)
= 0.

Proof. Let us fix a time horizon T > 0. Subtracting the mild formulations of (u(t))t≥0 and (u(j)(t))t≥0

given by Proposition 2.12 and taking theH2
0 (T)-norm, we get by the triangle inequality and Proposition

2.9, for all t ∈ [0, T ],∥∥∥u(t)− u(j)(t)
∥∥∥
H2

0 (T)
≤
∥∥∥St (u0 − u(j)

0

)∥∥∥
H2

0 (T)
+

∫ t

0

∥∥∥St−s∂x (A(u(s))−A
(
u(j)(s)

))∥∥∥
H2

0 (T)

≤
∥∥∥u0 − u(j)

0

∥∥∥
H2

0 (T)
+

∫ t

0

C4√
t− s

∥∥∥∂xA(u(s))− ∂xA
(
u(j)(s)

)∥∥∥
H1

0 (T)
ds. (2.34)

Now, for any M > 0, we define the stopping times

τM := inf
{
t ≥ 0 : ‖u(t)‖H2

0 (T) ≥M
}
, τ

(j)
M := inf

{
t ≥ 0 : ‖u(j)(t)‖H2

0 (T) ≥M
}
, j ∈ N,

and we denote by LM , according to Proposition 2.8, the Lipschitz constant of the mapping v ∈ H2
0 (T) 7→

∂xA(v) ∈ H1
0 (T) over the centered ball in H2

0 (T) of radius M . For an arbitrarily fixed t ∈ [0, T ], the
inequality (2.34) implies∥∥∥u(t ∧ τM ∧ τ (j)

M

)
− u(j)

(
t ∧ τM ∧ τ (j)

M

)∥∥∥
H2

0 (T)
≤
∥∥∥u0 − u(j)

0

∥∥∥
H2

0 (T)

+

∫ t∧τM∧τ
(j)
M

0

C4LM√
t ∧ τM ∧ τ (j)

M − s

∥∥∥u(s)− u(j)(s)
∥∥∥
H2

0 (T)
ds.
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In the next step, we iterate this last inequality and apply the Fubini theorem on the double time
integral:∥∥∥u(t ∧ τM ∧ τ (j)

M

)
− u(j)

(
t ∧ τM ∧ τ (j)

M

)∥∥∥
H2

0 (T)

≤
∥∥∥u0 − u(j)

0

∥∥∥
H2

0 (T)

(
1 + 2

√
t ∧ τM ∧ τ (j)

M C4LM

)
+ C2

4L
2
M

∫ t∧τM∧τ
(j)
M

0

∫ s

0

1√
(t ∧ τM ∧ τ (j)

M − s)(s− r)

∥∥∥u(r)− u(j)(r)
∥∥∥
H2

0 (T)
drds

≤
∥∥∥u0 − u(j)

0

∥∥∥
H2

0 (T)

(
1 + 2

√
TC4LM

)
+ C2

4L
2
M

∫ t∧τM∧τ
(j)
M

0

∫ t∧τM∧τ
(j)
M

r

1√
(t ∧ τM ∧ τ (j)

M − s)(s− r)
ds

∥∥∥u(r)− u(j)(r)
∥∥∥
H2

0 (T)
dr.

However, by a change of variable, we have∫ t∧τM∧τ
(j)
M

s

1√
(t ∧ τM ∧ τ (j)

M − r)(r − s)
dr =

∫ 1

−1

1√
1− y2

dy = π.

Hence, Grönwall’s lemma yields the following control∥∥∥u(t ∧ τM ∧ τ (j)
M

)
− u(j)

(
t ∧ τM ∧ τ (j)

M

)∥∥∥
H2

0 (T)
≤
∥∥∥u0 − u(j)

0

∥∥∥
H2

0 (T)

(
1 + 2

√
TC4LM

)
eC

2
4L

2
Mπt∧τM∧τ

(j)
M .

It follows from this inequality that lim infj→∞ τ
(j)
M ≥ τM ∧T . Indeed, assuming the opposite, we would

have (along a subsequence)∥∥∥u(τ (j)
M

)
− u(j)

(
τ

(j)
M

)∥∥∥
H2

0 (T)
≤
∥∥∥u0 − u(j)

0

∥∥∥
H2

0 (T)

(
1 + 2

√
TC4LM

)
eC

2
4L

2
MT −→

j→∞
0,

which would imply

M ≤ lim
j→∞

∥∥∥u(j)
(
τ

(j)
M

)∥∥∥
H2

0 (T)
= lim

j→∞

∥∥∥u(τ (j)
M

)∥∥∥
H2

0 (T)
< M.

Hence, necessarily, beyond a certain rank j, we have∥∥∥u(t ∧ τM )− u(j)(t ∧ τM )
∥∥∥
H2

0 (T)
≤
∥∥∥u0 − u(j)

0

∥∥∥
H2

0 (T)

(
1 + 2

√
TC4LM

)
eC

2
4L

2
M t∧τM .

Since the solutions of (2.7) do not explode, the stopping time τM tends almost surely to +∞ as M
tends to +∞. As a consequence, there exists MT > 0 such that T < τMT

almost surely, so that for all
t ∈ [0, T ], ∥∥∥u(t)− u(j)(t)

∥∥∥
H2

0 (T)
≤
∥∥∥u0 − u(j)

0

∥∥∥
H2

0 (T)

(
1 + 2

√
TC4LMT

)
e
C2

4L
2
MT

T
.

Hence the result.

2.2.5 Proofs of preliminary results

In this subsection, we detail the proofs of the preliminary results from Subsection 2.2.1, namely Propo-
sitions 2.8, 2.9, 2.10 and 2.12.
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Proof of Proposition 2.8. We shall prove only the second claim when s = 2. For the first claim, we
refer the reader to [15, Lemma A.0.5]. The second claim with s = 1 is proved in the same way as the
case s = 2, but more easily.

Let M > 0 and let u, v ∈ H2
0 (T) such that ‖u‖H2

0 (T) ≤ M and ‖v‖H2
0 (T) ≤ M . Note in particular

that using (2.3), all quantities ‖u‖L∞0 (T), ‖v‖L∞0 (T), ‖∂xu‖L∞0 (T), ‖∂xv‖L∞0 (T) are bounded from above
by M . We write

‖∂xA(u)− ∂xA(v)‖2H1
0 (T) =

∫
T

(
∂x
(
∂xuA

′(u)− ∂xvA′(v)
))2

dx

=

∫
T

(
∂xxuA

′(u) + (∂xu)2A′′(u)− ∂xxvA′(v)− (∂xv)2A′′(v)
)2

dx

≤ 2

∫
T

(
∂xxuA

′(u)− ∂xxvA′(v)
)2

dx+ 2

∫
T

(
(∂xu)2A′′(u)− (∂xv)2A′′(v)

)2
dx

≤ 4

∫
T
(∂xxu)2

(
A′(u)−A′(v)

)2
dx+ 4

∫
T
(∂xxu− ∂xxv)2A′(v)2dx

+ 4

∫
T
(∂xu)4

(
A′′(u)−A′′(v)

)2
dx+ 4

∫
T
(∂xu− ∂xv)2(∂xu+ ∂xv)2A′′(v)2dx

≤ 4‖u‖2H2
0 (T) ess sup

T

∣∣A′(u)−A′(v)
∣∣2 + 4‖u− v‖2H2

0 (T) sup
[−M,M ]

∣∣A′∣∣2
+ 4

(∫
T
(∂xu)4dx

)
ess sup

T

∣∣A′′(u)−A′′(v)
∣∣2

+ 4 ess sup
T
|∂xu+ ∂xv|2 sup

[−M,M ]
|A′′|2‖u− v‖2H1

0 (T)

By Assumption 2.1, A′ and A′′ are locally Lipschitz continuous on R (and thus locally bounded).
Hence, there exist constants CM and LM such that

‖∂xA(u)− ∂xA(v)‖2H1
0 (T) ≤ 4M2LM‖u− v‖2L∞0 (T) + 4CM‖u− v‖2H2

0 (T)

+ 4M4LM‖u− v‖2L∞0 (T) + 16CMM
4‖u− v‖2H1

0 (T)

≤
(
4M2LM + 4CM + 4M4LM + 16CMM

4
)
‖u− v‖2H2

0 (T),

where we used (2.3) thrice in the last line.

Proof of Proposition 2.9. The equations (2.8) and (2.9) yield the immediate estimate

‖Stv‖2Hs
0(T) =

∑
m≥1

(−λm)se2νλmt〈v, em〉2L2
0(T) ≤

∑
m≥1

(−λm)s〈v, em〉2L2
0(T) = ‖v‖2Hs

0(T),

which ensures that Stv ∈ Hs
0(T) and then implies the first assertion of Proposition 2.9 thanks to the

dominated convergence theorem.
The second assertion is proved in [15, 97, 34].
We now detail the proof of the third assertion, part of which can also be found in [15, Lemma

A.0.6]. Let s ∈ [0,+∞), T > 0 and (v(t))t∈[0,T ] ∈ C ([0, T ], Hs
0(T)). For any 0 ≤ t1 ≤ t2 ≤ T , we have

∥∥∥∥∫ t1

0
St1−rv(r)dr −

∫ t2

0
St2−rv(r)dr

∥∥∥∥
H

s+3/2
0 (T)

≤
∫ t1

0
‖St1−rv(r)− St2−rv(r)‖

H
s+3/2
0 (T)

dr +

∫ t2

t1

‖St2−rv(r)‖
H

s+3/2
0 (T)

dr. (2.35)
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Thanks to the second assertion of Proposition 2.9, we get a bound over the second term of the right-
hand side:∫ t2

t1

‖St2−rv(r)‖
H

s+3/2
0 (T)

dr ≤
∫ t2

t1

C4(t2 − r)−3/4‖v(r)‖Hs
0(T)dr ≤ 4C4(t2 − t1)1/4 sup

r∈[0,T ]
‖v(r)‖Hs

0(T),

(2.36)
as well as for the first term:∫ t1

0
‖St1−rv(r)− St2−rv(r)dr‖

H
s+3/2
0 (T)

=

∫ t1

0
‖St1−r (Id− St2−t1) v(r)‖

H
s+3/2
0 (T)

dr

≤
∫ t1

0
C4(t1 − r)−3/4 ‖(Id− St2−t1)v(r)‖Hs

0(T) dr. (2.37)

Using (2.8) and (2.9), we write for all r ∈ [0, T ],

‖(Id− St2−t1)v(r)‖Hs
0(T) =

∑
m≥1

(−λm)s
(

1− eνλm(t2−t1)
)2
〈v(r), em〉2L2

0(T)

1/2

.

≤

∑
m≥1

(−λm)s〈v(r), em〉2L2
0(T)

1/2

= ‖v(r)‖Hs
0(T) < +∞,

and thus, we can apply the dominated convergence theorem which yields

lim
t2−t1→0

‖(Id− St2−t1)v(r)‖Hs
0(T) ≤

∑
m≥1

(−λm)s lim
t2−t1→0

(
1− eνλm(t2−t1)

)2
〈v(r), em〉2L2

0(T)

1/2

= 0.

To pass to the limit t2 − t1 → 0 in (2.35), we use the dominated convergence theorem once again:
injecting (2.36) and (2.37) into (2.35), we get

lim
t2−t1→0

∥∥∥∥∫ t1

0
St1−rv(r)dr −

∫ t2

0
St2−rv(r)dr

∥∥∥∥
H

s+3/2
0 (T)

≤
∫ t1

0
C4(t1−r)−3/4 lim

t2−t1→0
‖(Id− St2−t1)v(r)‖Hs

0(T) dr+4C4 sup
r∈[0,T ]

‖v(r)‖Hs
0(T) lim

t2−t1→0
(t2−t1)1/4 = 0,

from which we derive the wanted result.

Proof of Proposition 2.10. For any m ≥ 1, the process (wm(t))t≥0 is an Ornstein-Uhlenbeck process.
In particular, it is the solution of the stochastic differential equation:

wm(t) = νλm

∫ t

0
wm(s)ds+Wm(t), t ≥ 0. (2.38)

As such, it satisfies the inequality

wm(t)− νλm
∫ t

0
wm(s)ds ≤ sup

s∈[0,T ]
Wm(s), t ∈ [0, T ],
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where we fixed a time horizon T > 0. Thus, for all t ∈ [0, T ], we get

d

dt

(
e−νλmt

∫ t

0
wm(s)ds

)
= e−νλmt

(
−νλm

∫ t

0
wm(s)ds+ wm(t)

)
≤ e−νλmt sup

s∈[0,T ]
Wm(s),

which leads, after integrating in time and dividing by e−νλmt on each side, to the inequality∫ t

0
wm(s)ds ≤ 1− eνλmt

−νλm
sup
s∈[0,T ]

Wm(s), t ∈ [0, T ]. (2.39)

In a similar way, from the inequality

wm(t)− νλm
∫ t

0
wm(s)ds ≥ inf

s∈[0,T ]
Wm(s), t ∈ [0, T ],

we deduce that ∫ t

0
wm(s)ds ≥ 1− eνλmt

−νλm
inf

s∈[0,T ]
Wm(s), t ∈ [0, T ]. (2.40)

Combining (2.39) and (2.40), we get∣∣∣∣∫ t

0
wm(s)ds

∣∣∣∣ ≤ 1

−νλm
sup
s∈[0,T ]

|Wm(s)|, t ∈ [0, T ].

Taking the supremum in time, the expectation and applying Doob’s inequality, recalling (2.6), we have

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
wm(s)ds

∣∣∣∣2
]
≤ 1

(νλm)2
E

[
sup
t∈[0,T ]

|Wm(t)|2
]

(2.41)

≤ 4

(νλm)2
E

[〈
W

Q
(T ),

em
λm

〉2

H2
0 (T)

]
(2.42)

=
4T

(νλm)2

∑
k≥1

〈
gk,

em
λm

〉2

H2
0 (T)

. (2.43)

We deduce from (2.38) that

sup
t∈[0,T ]

wm(t)2 ≤ 2

(
(νλm)2 sup

t∈[0,T ]

∣∣∣∣∫ t

0
wm(s)ds

∣∣∣∣2 + sup
t∈[0,T ]

|Wm(t)|2
)
,

and therefore it follows from (2.41), (2.42), (2.43) that

E

[
sup
t∈[0,T ]

wm(t)2

]
≤ 16T

∑
k≥1

〈
gk,

em
λm

〉2

H2
0 (T)

< +∞. (2.44)

As a consequence, for any M ≥ 1, we have

M∑
m=1

wm
em
λm
∈ L2

(
Ω, C

(
[0, T ], H2

0 (T)
))
.

By completeness of L2(Ω, C([0, T ], H2
0 (T))), to prove the statement, it suffices to show that the sequence

(
∑M

m=1wmem/λm)M≥1 is Cauchy in this space. That is,

lim
M,N→∞

E

 sup
t∈[0,T ]

∥∥∥∥∥
M+N∑
m=M

wm(t)
em
λm

∥∥∥∥∥
2

H2
0 (T)

 = 0. (2.45)
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We prove this last equality using (2.44):

E

 sup
t∈[0,T ]

∥∥∥∥∥
M+N∑
m=M

wm(t)
em
λm

∥∥∥∥∥
2

H2
0 (T)

 = E

[
sup
t∈[0,T ]

M+N∑
m=M

wm(t)2

]

≤
M+N∑
m=M

E

[
sup
t∈[0,T ]

wm(t)2

]

≤ 16T
M+N∑
m=M

∑
k≥1

〈
gk,

em
λm

〉2

H2
0 (T)

.

Recall that thanks to Assumption 2.2 combined with the fact that the family (em/λm)m≥1 is an
orthonormal basis of H2

0 (T),∑
k≥1

∑
m≥1

〈
gk,

em
λm

〉2

H2
0 (T)

=
∑
k≥1

‖gk‖2H2
0 (T) < +∞.

Hence, (2.45) is proved. Moreover, (w(t))t≥0 is (Ft)t≥0-adapted as the limit of the sequence of (Ft)t≥0-
adapted processes

∑
m≥1wmem/λm.

Proof of Proposition 2.12. We first show that the assumption that u0 ∈ H2
0 (T) ensures that t 7→

u(t) is a continuous, H2
0 (T)-valued mapping. The proof consists in the two first iterations of the

bootstrap argument that was used in [15, Theorem A.0.7]: since the mild solution (u(t))t∈[0,τ ] belongs to
C([0, τ ], H1

0 (T)) almost surely, then from Proposition 2.8, for all s ∈ [0, τ ], we have ∂xA(u(s)) ∈ L2
0(T).

As a consequence of the third assertion of Proposition 2.9, the mapping t 7→
∫ t

0 St−s∂xA(u(s))ds is
continuous from [0, τ ] to H3/2

0 (T), and by the first assertion of Proposition 2.9 as well as Proposition
2.10, so are the mappings t 7→ Stu0 and t 7→ w(t). Therefore, (2.11) shows that (u(t))t∈[0,τ ] ∈
C([0, τ ], H

3/2
0 (T)). Iterating this argument, we get (u(t))t∈[0,τ ] ∈ C([0, τ ], H2

0 (T)).
We now show that (u(t))t∈[0,τ ] satisfies the strong formulation of (2.10) on [0, τ ]. Along each

coordinate of the basis (em)m≥1, the mild formulation (2.11) writes for all t ∈ [0, τ ]

〈u(t), em〉L2
0(T) = eνλmt〈u0, em〉L2

0(T) −
∫ t

0
eνλm(t−s)〈∂xA(u(s)), em〉L2

0(T)ds+
1

λm
wm(t).

Multiplying on each side by e−νλmt, we get the decomposition:

e−νλmt〈u(t), em〉L2
0(T) = 〈u0, em〉L2

0(T) −
∫ t

0
e−νλms〈∂xA(u(s)), em〉L2

0(T)ds+
1

λm

∫ t

0
e−νλmsdWm(s).

Then, the Itô formula yields

〈u(t), em〉L2
0(T) = 〈u0, em〉L2

0(T) + νλm

∫ t

0
〈u(s), em〉L2

0(T)ds−
∫ t

0
〈∂xA(u(s)), em〉L2

0(T)ds+
1

λm
Wm(t).

(2.46)
Since for all s ∈ [0, t], u(s) belongs to H2

0 (T), it is possible to perform an integration by parts on the
viscous term in the following way:

νλm

∫ t

0
〈u(s), em〉L2

0(T)ds = ν

∫ t

0
〈u(s), ∂xxem〉L2

0(T)ds = ν

∫ t

0
〈∂xxu(s), em〉L2

0(T)ds.

Equation (2.46), after being injected with the above equality, multiplied by em and summed over m,
becomes the strong formulation of (2.10).

The converse statement follows from the same computations.
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2.3 Invariant measure

This section is dedicated to the proof of Theorem 2.7. The existence of an invariant measure is proved
in Subsection 2.3.2 using the Krylov-Bogoliubov theorem, whereas the uniqueness is addressed through
a coupling argument relying on the L1

0(T)-contraction property established in Proposition 2.21.
The proof of existence of an invariant measure we provide in the next subsection relies plainly on the

presence of viscosity. Indeed, the viscous term provides the process u(t) with a dissipative – and thus a
more stable – behaviour. Still, it has to be borne in mind that when the flux term is nonlinear enough,
the presence of a viscous term is not a necessary condition for the stability of the underlying stochastic
process. On the physical side, in his theory of turbulent flows [81, 80], Kolmogorov already predicted
this idea: the statistical distribution of scales of intermediate size in turbulence are not determined by
the viscosity coefficient. On the theoretical side, the same idea was validated theoretically by powerful
results on the invariant measure for the inviscid stochastic Burgers’ equation [52] and, quite a few
years later, for inviscid stochastic conservation laws with "non-degenerate" flux [41]. However, our
framework differs substantially from the inviscid case in the sense that our stability results are driven
by regularity issues which cannot be tackled without viscosity.

2.3.1 Preliminary results

By Definition 2.6, an invariant measure for Equation (2.1) is a Borel probability measure on H2
0 (T).

Our proofs of existence and uniqueness however involve estimates in various spaces, namely L1
0(T),

L2
0(T) and H1

0 (T). In particular, we shall manipulate and identify Borel probability measures on these
spaces. We first clarify the relation between the associated Borel σ-fields thanks to the following result.
For any metric space E, we respectively denote by B(E) and P(E) the Borel σ-field and the set of
Borel probability measures on E.

Lemma 2.20 (Borel probability measures on Lq0(T) and Hs
0(T)). For all q ∈ [1, 2] and s ≥ 1,

B(Hs
0(T)) = {B ∩Hs

0(T) : B ∈ B(Lq0(T))}. As a consequence:

(1) for any µ ∈ P(Hs
0(T)), the mapping µ̃(·) = µ(· ∩Hs

0(T)) defines a Borel probability measure on
Lq0(T);

(2) conversely, for any µ̃ ∈ P(Lq0(T)) which gives full weight to Hs
0(T), there exists a unique µ ∈

P(Hs
0(T)) such that µ̃(B) = µ(B ∩Hs

0(T)) for any B ∈ B(Lq0(T)).

Proof. Let q ∈ [1, 2] and s ≥ 1. The set T defined by

T = {B ∩Hs
0(T) : B ∈ B (Lq0(T))} .

is a σ-field on Hs
0(T), called the trace σ-field of Hs

0(T) in B(Lq0(T)).
(1) We denote by I the injection Hs

0(T)→ Lq0(T), so that T = {I−1(B) : B ∈ B(Lq0(T))}. Since I
is continuous, and therefore Borel measurable, we have T ⊂ B(Hs

0(T)). Thus, for any µ ∈ P(Hs
0(T)),

the pushforward measure µ̃ defined by

µ̃(B) := µ ◦ I−1(B) = µ (B ∩Hs
0(T)) , B ∈ B (Lq0(T)) ,

is a Borel probability measure on Lq0(T).
(2) Let us first notice that since Hs

0(T) is separable, the Borel σ-field B(Hs
0(T)) is the smallest

σ-field on Hs
0(T) containing all closed balls. Let A ⊂ Hs

0(T) be such a ball. Since the Hs
0(T)-norm

is lower semi-continuous on Lq0(T), then A is closed in Lq0(T) as a level set of a lower semi-continuous
function, and thus A ∈ B(Lq0(T)). It is then clear that A ∈ T , which by the minimality property of
B(Hs

0(T)) entails B(Hs
0(T)) ⊂ T , and thus B(Hs

0(T)) = T .
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Now let µ̃ be a Borel probability measure on Lq0(T) which gives full weight to Hs
0(T), that is to

say such that there exists B̃ ∈ B(Lq0(T)) such that B̃ ⊂ Hs
0(T) and µ̃(B̃) = 1. Let us define the Borel

probability measure µ on Hs
0(T) by

µ(B ∩Hs
0(T)) := µ̃(B), B ∈ B (Lq0(T)) .

Notice that this definition is not ambiguous, because the identity T = B(Hs
0(T)) ensures that any

element of B(Hs
0(T)) writes under the form B ∩ Hs

0(T) for some B ∈ B(Lq0(T)); besides, if B1, B2 ∈
B(Lq0(T)) are such that B1 ∩ Hs

0(T) = B2 ∩ Hs
0(T), then µ̃(B1) = µ̃(B1 ∩ B̃) = µ̃(B2 ∩ B̃) = µ̃(B2)

because the identity B1 ∩Hs
0(T) = B2 ∩Hs

0(T) implies that B1 ∩ B̃ = B2 ∩ B̃. Finally, the fact that
any ν ∈ P(Hs

0(T)) such that µ̃(B) = ν(B ∩ Hs
0(T)) for any B ∈ B(Lq0(T)) needs to coincide with µ

follows again from the identity B(Hs
0(T)) = T .

To prove Theorem 2.7, we will need a standard property of scalar conservation laws, namely the
L1

0(T)-contraction. In the stochastic setting, we mention that a similar proof of the following proposi-
tion is done in [16, Theorem 6.1], but in the case where the flux function is C∞.

Proposition 2.21 (L1
0(T)-contraction). Under Assumptions 2.1 and 2.2, let (u(t))t≥0 and (v(t))t≥0 be

two strong solutions of (2.1) starting from different initial conditions u0 and v0. Then, almost surely
and for every 0 ≤ s ≤ t, we have

‖u(t)− v(t)‖L1
0(T) ≤ ‖u(s)− v(s)‖L1

0(T).

Proof. We define a continuous approximation of the sign function by setting for all η > 0,

signη(u) :=


u
η , u ∈ [−η, η],

1, u ≥ η,
−1, u ≤ η,

which gives rise to the following continuously differentiable approximation of the absolute value func-
tion:

|v|η :=

∫ v

0
signη(u)du, v ∈ R.

Let 0 ≤ s ≤ t. We have∫
T
|u(t)− v(t)|η dx−

∫
T
|u(s)− v(s)|ηdx =

∫
T

∫ t

s

d

dr
|u(r)− v(r)|η drdx (2.47)

=

∫
T

∫ t

s

d

dr
(u(r)− v(r)) signη(u(r)− v(r))drdx

=

∫ t

s

∫
T

(A(u(r))−A(v(r))− ν∂x (u(r)− v(r))) ∂x
(
signη(u(r)− v(r))

)
dxdr

(where we used the Fubini theorem and an integration by parts)

=

∫ t

s

∫
T

(A(u(r))−A(v(r))− ν∂x (u(r)− v(r))) ∂x (u(r)− v(r))
1

η
1|u(r)−v(r)|≤ηdxdr

≤
∫ t

s

∫
T
(A(u(r))−A(v(r)))∂x(u(r)− v(r))

1

η
1|u(r)−v(r)|≤ηdxdr

We fix
M := sup

r∈[s,t]
‖u(r)‖L∞0 (T) ∨ sup

r∈[s,t]
‖v(r)‖L∞0 (T),
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and we denote by LM a Lipschitz constant of A over the interval [−M,M ]. Since (u(r))r∈[s,t] and
(v(r))r∈[s,t] belong to C([s, t], H2

0 (T)) almost surely, then M is finite almost surely and for all r ∈ [s, t]

|A(u(r))−A(v(r))||∂x(u(r)− v(r))|1
η
1|u(r)−v(r)|≤η ≤ LM |∂x(u(r)− v(r))| ,

with ∫ t

s

∫
T
LM |∂x(u(r)− v(r))|dxdr < +∞.

Thus, we get from the dominated convergence theorem:

lim
η→0

∫ t

s

∫
T
(A(u(r))−A(v(r)))∂x(u(r)− v(r))

1

η
1|u(r)−v(r)|≤ηdxdr

=

∫ t

s

∫
T

lim
η→0

(A(u(r))−A(v(r)))∂x(u(r)− v(r))
1

η
1|u(r)−v(r)|≤ηdxdr = 0. (2.48)

As for the left-hand side of (2.47), noticing that | · |η increases to | · | as η decreases, we have from the
monotone convergence theorem

lim
η→0

∫
T
|u(t)− v(t)|η dx = ‖u(t)− v(t)‖L1

0(T) , lim
η→0

∫
T
|u(s)− v(s)|ηdx = ‖u(s)− v(s)‖L1

0(T).

Hence, (2.47) yields the wanted result.

2.3.2 Existence

From the semigroup (Pt)t≥0 introduced in Subsection 2.1.2, we define its time-averaged semigroup
(RT )T≥0 by R0 = Id, and for all T > 0,

RTϕ(u0) =
1

T

∫ T

0
Ptϕ(u0)dt, ϕ ∈ Cb(H2

0 (T)), u0 ∈ H2
0 (T),

R∗Tα(Γ) =
1

T

∫ T

0
P ∗t α(Γ)dt, α ∈ P(H2

0 (T)), Γ ∈ B(H2
0 (T)).

Following the first part of Lemma 2.20, for any α ∈ P(H2
0 (T)) and T ≥ 0, we denote by R̃∗Tα the

Borel probability measure on L1
0(T) defined by R̃∗Tα(·) = R∗Tα(· ∩H2

0 (T)).

Lemma 2.22. Under Assumptions 2.1 and 2.2, for any u0 ∈ H2
0 (T), there exists an increasing sequence

Tn
n→∞−→ +∞ and a probability measure µ̃ ∈ P(L1

0(T)), such that the sequence of measures (R̃∗Tnδu0)n≥1

converges weakly to µ̃ in P(L1
0(T)).

Proof. Let u0 ∈ H2
0 (T). From the inequality (2.17) with p = 2, we can pass to the limit r → +∞

(which we recall implies that Tr → +∞ almost surely), and we get for all T ≥ 0,

E
[∫ T

0
‖u(t)‖2H1

0 (T)dt

]
≤ 1

2ν
‖u0‖2L2

0(T) +
D0T

2ν
.

Applying now the Markov inequality when T ≥ 1, we have for all ε > 0,

1

T

∫ T

0
P
(
‖u(t)‖2H1

0 (T) >
1

ε

)
dt ≤ ε

2ν

(
‖u0‖2L2

0(T) +D0

)
. (2.49)
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Setting

Kε :=

{
v ∈ H1

0 (T) : ‖v‖2H1
0 (T) ≤

1

ε

}
,

we know from the compact embedding H1
0 (T) ⊂⊂ L1

0(T) that the set Kε is compact in L1
0(T). Thus,

rewriting (2.49) as
R̃∗T δu0

(
L1

0(T) \Kε

)
≤ ε

2ν

(
‖u0‖2L2

0(T) +D0

)
,

we deduce that the family of measures {R̃∗T δu0 : T ≥ 1} is tight in the space P(L1
0(T)). The result is

then a consequence of Prokhorov’s theorem [12, Theorem 5.1].

Lemma 2.23. Under the assumptions of Lemma 2.22, for all p ≥ 1, if v is a random variable in L1
0(T)

distributed according to µ̃, then

E
[
‖v‖p

Lp
0(T)

]
< +∞ and E

[
‖v‖2H2

0 (T)

]
< +∞.

Besides, the probability measure µ ∈ P(H2
0 (T)) associated with µ̃ by the second part of Lemma 2.20 is

invariant for the semigroup (Pt)t≥0.

Proof. We start to show that the measure µ̃ ∈ P(L1
0(T)) gives full weight to H2

0 (T). Thanks to
Lemma 2.17, since Tr −→

r→∞
+∞ almost surely, we have:

∀T > 0,
1

T

∫ T

0
E
[
‖u(s)‖2H2

0 (T)

]
ds ≤ 1

Tν

(
‖u0‖2H1

0 (T) + C7

(
1 + ‖u0‖2pA+2

L
2pA+2
0 (T)

))
+
C8

ν
. (2.50)

Let (vn)n≥1 be a sequence of H2
0 (T)-valued random variables such that vn ∼ R∗Tnδu0 and vn converges

in distribution in L1
0(T) towards a random variable v ∼ µ̃. From (2.50) and the definition of (RT )T≥0,

we have

lim sup
n→∞

E
[
‖vn‖2H2

0 (T)

]
= lim sup

n→∞

1

Tn

∫ Tn

0
Eu0

[
‖u(s)‖2H2

0 (T)

]
ds ≤ C8

ν
.

Now, since ‖ · ‖2
H2

0 (T)
is lower semi-continuous on L1

0(T), we get from Portemanteau’s theorem:

E
[
‖v‖2H2

0 (T)

]
≤ lim inf

n→∞
E
[
‖vn‖2H2

0 (T)

]
≤ C8

ν
.

In particular, v ∈ H2
0 (T) almost surely, and thus µ̃ gives full weight to H2

0 (T).
We now show that for any p ≥ 1, E[‖v‖p

Lp
0(T)

] < +∞. Let p ≥ 1. From Lemma 2.15, we have for
all T > 0,

1

T

∫ T

0
Eu0

[
‖u(s)‖p

Lp
0(T)

]
ds ≤ C

(p)
5

T

(
1 + ‖u0‖pLp

0(T)

)
+ C

(p)
6 .

Once again, we use Portemanteau’s theorem and the lower semi-continuity, this time of ‖ · ‖p
Lp

0(T)
, on

L1
0(T):

E
[
‖v‖p

Lp
0(T)

]
≤ lim inf

n→∞
E
[
‖vn‖pLp

0(T)

]
= lim inf

n→∞

1

Tn

∫ Tn

0
Eu0

[
‖u(s)‖p

Lp
0(T)

]
ds ≤ C(p)

6 ,

and the wanted result follows.
To prove the invariance of the measure µ with respect to (Pt)t≥0, we wish to apply the Krylov-

Bogoliubov theorem [36, Theorem 3.1.1]. However, (Pt)t≥0 is a Feller semigroup on the space H2
0 (T)

(Corollary 2.5) whereas our tightness result (Lemma 2.22) holds in P(L1
0(T)). To overcome this incon-

venience, we use Lemma 2.20 and we place ourselves at the level of the embedded probability measures
in P(L1

0(T)), where we can adapt, thanks to Proposition 2.21, the proof of [36, Theorem 3.1.1].
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Let µ ∈ P(H2
0 (T)) be associated with µ̃ by the second part of Lemma 2.20, and let ϕ ∈ Cb(L1

0(T)).
In particular, the restriction ϕ|H2

0 (T) is bounded and continuous on H2
0 (T) and we can write∫

H2
0 (T)

ϕdP ∗t µ =

∫
H2

0 (T)
Ptϕdµ. (2.51)

It follows from the L1
0(T)-contraction property that the map Ptϕ : H2

0 (T) → R is continuous with
respect to the L1

0(T)-norm. To prove this fact, let v0 ∈ H2
0 (T) and let (v

(j)
0 )j≥1 be a sequence of H2

0 (T)

such that ‖v(j)
0 − v0‖L1

0(T) → 0, j → +∞. Let (v(t))t≥0 and (v(j)(t))t≥0, j ≥ 1, be the strong solutions

of (2.1) respectively with initial conditions v0 and v(j)
0 , j ≥ 1. From Proposition 2.21, we get almost

surely and for all t ≥ 0,
lim
j→∞

∥∥∥v(j)(t)− v(t)
∥∥∥
L1

0(T)
= 0.

Since ϕ is bounded and continuous with respect to the L1
0(T)-norm, we have

lim
j→∞

∣∣∣Ptϕ(v(j)
0

)
− Ptϕ(v0)

∣∣∣ ≤ lim
j→∞

E
[∣∣∣ϕ(v(j)(t)

)
− ϕ(v(t))

∣∣∣] = 0,

so that Ptϕ is continuous with respect to the L1
0(T)-norm.

As a consequence, from Lemma 2.22, we have for all t ≥ 0∫
H2

0 (T)
Ptϕdµ =

∫
L1

0(T)
Ptϕdµ̃

= lim
n→∞

∫
L1

0(T)
PtϕdR̃∗Tnδu0

= lim
n→∞

∫
H2

0 (T)
PtϕdR∗Tnδu0

= lim
n→∞

1

Tn

∫ Tn

0

∫
H2

0 (T)
ϕdP ∗s+tδu0ds

= lim
n→∞

1

Tn

∫ Tn+t

t

∫
H2

0 (T)
ϕdP ∗s δu0ds

= lim
n→∞

(
1

Tn

∫ Tn

0

∫
H2

0 (T)
ϕdP ∗s δu0ds+

1

Tn

∫ Tn+t

Tn

∫
H2

0 (T)
ϕdP ∗s δu0ds− 1

Tn

∫ t

0

∫
H2

0 (T)
ϕdP ∗s δu0ds

)

= lim
n→∞

∫
H2

0 (T)
ϕdR∗Tnδu0

= lim
n→∞

∫
L1

0(T)
ϕdR̃∗Tnδu0 =

∫
L1

0(T)
ϕdµ̃.

For any t ≥ 0, P ∗t µ gives full weight to H2
0 (T) and therefore, following the first part of Lemma 2.20,

we can define the associated Borel probability measure on L1
0(T) by P̃ ∗t µ = P ∗t µ(· ∩ H2

0 (T)). From
Equation (2.51) and the above sequence of computations, it follows that for all t ≥ 0,∫

L1
0(T)

ϕdP̃ ∗t µ =

∫
L1

0(T)
ϕdµ̃,

Given that ϕ has been chosen arbitrarily in Cb(L
1
0(T)), this last equality says that P̃ ∗t µ = µ̃. The

second part of Lemma 2.20 now ensures that P ∗t µ = µ.
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2.3.3 Uniqueness

The proof of the uniqueness part of Theorem 2.7 follows the ideas of the "small-noise" coupling ar-
gument from Dirr and Souganidis [43]. On one hand, due to the dissipative nature of the drift, two
solutions of (2.1) perturbed by the same noise and starting from different initial conditions are driven
to balls of L2

0(T) with small radius whenever this noise is small over sufficiently long time intervals.
On the other hand, the L1

0(T)-contraction property ensures that when these two solutions get close to
one another they stay close forever. Hence, each time the noise gets small enough, the two solutions
get closer and closer and eventually, they show the same asymptotical behaviour. This idea allows to
show that the law of two solutions have the same limit as the time goes to infinity. Therefore, starting
from two invariant measures leads to the equality of these measures. The same kind of argument was
used in [41] for the invariant measure of kinetic solutions of inviscid scalar conservation laws and in
[38] for the stochastic Navier-Stokes equations.

Let (u(t))t≥0 and (v(t))t≥0 be two solutions of (2.1) driven by the sameQ-Wiener process (WQ(t))t≥0.
For all R > 0, we define the stopping time:

τR := inf
{
t ≥ 0 : ‖u(t)‖2H1

0 (T) + ‖v(t)‖2H1
0 (T) ≤ R

}
.

Lemma 2.24. Under Assumptions 2.1 and 2.2, there exists R > 0 such that for any u0 and v0 in
H2

0 (T), the stopping time τR is finite almost surely.

Proof. We can use here, from the statement of Lemma 2.15, the inequality (2.17) with p = 2. In this
case, we get

2νE
[∫ t∧τR

0

(
‖u(s)‖2H1

0 (T) + ‖v(s)‖2H1
0 (T)

)
ds

]
≤ ‖u0‖2L2

0(T) + ‖v0‖2L2
0(T) + 2D0E[t ∧ τR],

from which we deduce, by definition of the stopping time τR, that

2νRE[t ∧ τR] ≤ ‖u0‖2L2
0(T) + ‖v0‖2L2

0(T) + 2D0E[t ∧ τR].

Taking R > D0/ν yields

E[τR] = lim
t→∞

E[τR ∧ t] ≤
‖u0‖2L2

0(T)
+ ‖v0‖2L2

0(T)

2(νR−D0)
< +∞,

from which we derive the wanted result.

The following result asserts that when the coupled processes (u(t))t≥0 and (v(t))t≥0 start from
deterministic initial conditions inside some ball of L2

0(T), then they both attain in finite time any
neighbourhood of 0 with positive probability:

Lemma 2.25. Under Assumptions 2.1 and 2.2, for any M > 0 and any ε > 0, there exist a time
tε,M > 0 and a value pε,M ∈ (0, 1) such that for all u0, v0 ∈ H2

0 (T) satisfying ‖u0‖2H1
0 (T)

+ ‖v0‖2H1
0 (T)
≤

M ,
P
(
‖u(tε,M )‖2L2

0(T) + ‖v(tε,M )‖2L2
0(T) ≤ ε

)
≥ pε,M .

Proof. Let u0, v0 ∈ H2
0 (T) be such that ‖u0‖H1

0 (T) + ‖v0‖H1
0 (T) ≤M , and let us define

tε,M = − 1

2ν
log
( ε

4M

)
.
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To prove the lemma, we are going to compare the trajectories of (u(t))t≥0 and (v(t))t≥0 with the
trajectories of their noiseless counterparts (u(t))t≥0 and (v(t))t≥0, defined by{

∂tu(t) = −∂xA (u(t)) + ν∂xxu(t)

u(0) = u0

{
∂tv(t) = −∂xA (v(t)) + ν∂xxv(t)

v(0) = v0.

Recall that the viscosity yields energy dissipation:

d

dt

(
‖u(t)‖2L2

0(T) + ‖v(t)‖2L2
0(T)

)
= −2ν

(
‖u(t)‖2H1

0 (T) + ‖v(t)‖2H1
0 (T)

)
.

Applying (2.3) on the right-hand side, we get

d

dt

(
‖u(t)‖2L2

0(T) + ‖v(t)‖2L2
0(T)

)
≤ −2ν

(
‖u(t)‖2L2

0(T) + ‖v(t)‖2L2
0(T)

)
,

and we can now apply Grönwall’s lemma:

‖u(t)‖2L2
0(T) + ‖v(t)‖2L2

0(T) ≤
(
‖u0‖2L2

0(T) + ‖v0‖2L2
0(T)

)
e−2νt ≤Me−2νt.

With our choice of tε,M , the above inequality means that as soon as t ≥ tε,M , we have ‖u(t)‖2
L2

0(T)
+

‖v(t)‖2
L2

0(T)
≤ ε/4.

Furthermore, it is a consequence of Lemma 2.17 that (u(t))t≥0 satisfies

‖u(t)‖2H1
0 (T) ≤ ‖u0‖2H1

0 (T) + C7

(
1 + ‖u0‖2pA+2

L
2pA+2
0 (T)

)
, t ≥ 0.

Indeed, when all the noise coefficients gk are equal to zero, the constant C8 in the statement of Lemma
2.17 can also be taken equal to zero. Since the same inequality also applies to (v(t))t≥0, we have

‖u(t)‖2H1
0 (T) + ‖v(t)‖2H1

0 (T) ≤M + 2C7

(
1 +MpA+1

)
=: C

(M)
9 .

We focus now on the trajectories of the random processes (u(t))t≥0 and (v(t))t≥0. We introduce
the stopping time

τ̃M := inf

{
t ≥ 0 : ‖u(t)‖H1

0 (T) ∨ ‖v(t)‖H1
0 (T) ≥

1

2
+

√
C

(M)
9

}
.

Following Proposition 2.12, we may use the expressions of (u(t))t≥0 and (u(t))t≥0 in the mild sense.
From these mild formulations, we write

‖u(t)− u(t)‖H1
0 (T) ≤

∫ t

0
‖St−s∂x (A(u(s))−A(u(s)))‖H1

0 (T) ds+ ‖w(t)‖H1
0 (T), (2.52)

where (w(t))t≥0 is the stochastic convolution associated with the Q-Wiener process (WQ(t))t≥0. Ac-
cording to Proposition 2.8, we call LM a local Lipschitz constant of the map z ∈ H1

0 (T) 7→ ∂xA(z) ∈

L2
0(T) over the ball {z ∈ H1

0 (T) : ‖z‖2
H1

0 (T)
≤ 1

2 +

√
C

(M)
9 } , and we place ourselves in the event

{
sup

t∈[0,tε,M ]
‖w(t)‖H1

0 (T) ≤ δε,M

}
, where δε,M :=

√
ε

2
√

2

1

1 + 2
√
tε,MC4LM

e−C
2
4L

2
M tε,M ,
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where C4 has been defined at Proposition 2.8. Taking t ≤ τ̃M ∧ tε,M , applying the second part of
Proposition 2.9 and Proposition 2.8 to (2.52), we get

‖u(t)− u(t)‖H1
0 (T) ≤

∫ t

0

C4√
t− s

‖∂x(A(u(s))−A(u(s)))‖L2
0(T) ds+ δε,M

≤
∫ t

0

C4LM√
t− s

‖u(s)− u(s)‖H1
0 (T)ds+ δε,M .

Iterating this inequality and using the same arguments as in the proof of Lemma 2.19, we get for all
t ≤ tε,M ∧ τ̃M ,

‖u(t)− u(t)‖H1
0 (T) ≤ δε,M

(
1 + 2

√
tε,M ∧ τ̃MC4LM

)
+ C2

4L
2
Mπ

∫ t

0
‖u(s)− u(s)‖H1

0 (T)ds.

Using now Grönwall’s lemma, we deduce

‖u(t)− u(t)‖H1
0 (T) ≤ δε,M

(
1 + 2

√
tε,M ∧ τ̃MC4LM

)
eC

2
4L

2
Mπt ≤

√
ε

2
√

2
.

Since the same arguments apply for the processes (v(t))t≥0 and (v(t))t≥0, and given Equation (2.3),
we have shown that for all t ≤ τ̃M ∧ tε,M ,

‖u(t)‖2L2
0(T) + ‖v(t)‖2L2

0(T) ≤ 2
(
‖u(t)‖2L2

0(T) + ‖v(t)‖2L2
0(T)

)
+ 2

(
‖u(t)− u(t)‖2L2

0(T) + ‖v(t)− v(t)‖2L2
0(T)

)
≤ ε

2
+
ε

2
= ε.

We shall prove now that the event τ̃M < tε,M is impossible. Indeed, assume for instance that

‖u (τ̃M )‖H1
0 (T) ≥

1
2 +

√
C

(M)
9 , then we would have

‖u (τ̃M )− u (τ̃M )‖H1
0 (T) ≤

√
ε

2
and ‖u (τ̃M )‖2H1

0 (T) ≤ C
(M)
9 ,

and thus,
√
ε

2
≥ ‖u (τ̃M )− u (τ̃M )‖H1

0 (T) ≥
∣∣∣‖u (τ̃M )‖H1

0 (T) − ‖u (τ̃M )‖H1
0 (T)

∣∣∣ ≥ (1

2
+

√
C

(M)
9

)
−
√
C

(M)
9 =

1

2
,

which is false for too small values of ε.
We just have proved that for M > 0 arbitrarily chosen and for all u0, v0 ∈ H2

0 (T) such that
‖u0‖2H1

0 (T)
+ ‖v0‖2H1

0 (T)
≤M , we have

P
(
‖u(tε,M )‖2L2

0(T) + ‖v(tε,M )‖2L2
0(T) ≤ ε

)
≥ P

(
sup

t∈[0,tε,M ]
‖w(t)‖H1

0 (T) ≤ δε,M

)
.

To conclude the proof, it remains to check that

pε,M := P

(
sup

t∈[0,tε,M ]
‖w(t)‖H1

0 (T) ≤ δε,M

)
> 0. (2.53)

We can write {supt∈[0,tε,M ] ‖w(t)‖H1
0 (T) ≤ δε,M} = {(w(t))t∈[0,tε,M ] ∈ B} where B is the closed ball

of C([0, tε,M ], H1
0 (T)) with radius δε,M . Since the process (w(t))t∈[0,tε,M ] is the mild solution to the

stochastic heat equation (i.e. Equation (2.7) with initial condition w(0) ≡ 0 and flux A ≡ 0), we can
apply the support theorem from [95, Theorem 1.1] which implies P((w(t))t∈[0,tε,M ] ∈ B) > 0, so that
(2.53) is satisfied.
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Lemma 2.26. Under Assumptions 2.1 and 2.2, any invariant measure µ for the process (u(t))t≥0

solution to (2.1) is unique.

Proof. Step 1. Almost sure confluence. We start by fixing ε > 0 small to which we associate the
value tε,R defined at Lemma 2.25, where R has been defined at Lemma 2.24. We define the increasing
stopping time sequence

T1 := τR

T2 := inf
{
t ≥ T1 + tε,R : ‖u(t)‖2H1

0 (T) + ‖v(t)‖2H1
0 (T) ≤ R

}
T3 := inf

{
t ≥ T2 + tε,R : ‖u(t)‖2H1

0 (T) + ‖v(t)‖2H1
0 (T) ≤ R

}
...

Lemma 2.24 and the strong Markov property (Corollary 2.5) ensure that every Tj is finite almost
surely. We claim that

∀J ∈ N∗, P
(
∀j = 1, . . . , J, ‖u(Tj + tε,R)‖2L2

0(T) + ‖v(Tj + tε,R)‖2L2
0(T) > ε

)
≤ (1− pε,R)J .

(2.54)
Indeed, it is true for J = 1 thanks to the strong Markov property and Lemma 2.25:

P(u0,v0)

(
‖u(τR + tε,R)‖2L2

0(T) + ‖v(τR + tε,R)‖2L2
0(T) > ε

)
= E(u0,v0)

[
P(u0,v0)

(
‖u(τR + tε,R)‖2L2

0(T) + ‖v(τR + tε,R)‖2L2
0(T) > ε|FτR

)]
= E(u0,v0)

[
P(u(τR),v(τR))

(
‖u(tε,R)‖2L2

0(T) + ‖v(tε,R)‖2L2
0(T) > ε

)]
≤ 1− pε,R,

and the general case follows by induction: assuming that inequality (2.54) is true for some J ∈ N∗, we
have

P(u0,v0)

(
∀j = 1, . . . , J + 1, ‖u(Tj + tε,R)‖2L2

0(T) + ‖v(Tj + tε,R)‖2L2
0(T) > ε

)
= E(u0,v0)

[
P(u0,v0)

(
∀j = 1, . . . , J + 1, ‖u(Tj + tε,R)‖2L2

0(T) + ‖v(Tj + tε,R)‖2L2
0(T) > ε|FTJ+1

)]
= E(u0,v0)

 J∏
j=1

1‖u(Tj+tε,R)‖2
L2

0(T)
+‖v(Tj+tε,R)‖2

L2
0(T)

>ε

P(u(TJ+1),v(TJ+1))

(
‖u(tε,R)‖2L2

0(T) + ‖v(tε,R)‖2L2
0(T) > ε

)
≤ (1− pε,R)J × (1− pε,R) = (1− pε,R)J+1.

Taking the limit when J goes to infinity, we get

P
(
∀j ∈ N∗, ‖u(Tj + tε,R)‖2L2

0(T) + ‖v(Tj + tε,R)‖2L2
0(T) > ε

)
= lim

J→∞
P
(
∀j = 1, . . . , J, ‖u(Tj + tε,R)‖2L2

0(T) + ‖v(Tj + tε,R)‖2L2
0(T) > ε

)
≤ lim

J→∞
(1− pε,R)J = 0,

and consequently,

P
(
∃t ≥ 0, ‖u(t)‖2L2

0(T) + ‖v(t)‖2L2
0(T) ≤ ε

)
= 1. (2.55)
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Since ‖u(t) − v(t)‖2
L1

0(T)
≤ ‖u(t) − v(t)‖2

L2
0(T)
≤ 2(‖u(t)‖2

L2
0(T)

+ ‖v(t)‖2
L2

0(T)
) and since the value ε > 0

has been chosen arbitrarily at the beginning of this proof, then Equality (2.55) means that almost
surely,

∀ε > 0, ∃t ≥ 0, ‖u(t)− v(t)‖2L1
0(T) ≤ 2ε.

Recall however that Proposition 2.21 states that almost surely, the mapping t 7→ ‖u(t)− v(t)‖L1
0(T) is

non-decreasing. It follows that almost surely,

lim
t→∞
‖u(t)− v(t)‖L1

0(T) = 0. (2.56)

Step 2. Uniqueness. Let us now assume that there exist two invariant measures µ1, µ2 for the
solution of (2.1), and let us take initial conditions u0 and v0 with distributions µ1 and µ2 respectively.
For any test function φ : L1

0(T)→ R bounded and Lipschitz continuous, we have for all t ≥ 0,

|E [φ(u0)]− E [φ(v0)]| = |E [φ(u(t))]− E [φ(v(t))]| ≤ E [|φ(u(t))− φ(v(t))|] .

Since φ is Lipschitz continuous, from (2.56), we have almost surely

lim
t→∞
|φ(u(t))− φ(v(t))| = 0.

Moreover, for any t ≥ 0, we have almost surely |φ(u(t))−φ(v(t))| ≤ 2 sup |φ|. Thus, we may apply the
dominated convergence theorem, which yields

|E [φ(u0)]− E [φ(v0)]| ≤ lim
t→∞

E [|φ(u(t))− φ(v(t))|] = 0,

so that E[φ(u0)] = E[φ(v0)], or in other words,∫
H2

0 (T)
φdµ1 =

∫
H2

0 (T)
φdµ2. (2.57)

According to Lemma 2.20, let µ̃1 and µ̃2 be the probability measures on P(L1
0(T)) associated to µ1

and µ2 respectively. Equation (2.57) rewrites∫
L1

0(T)
φdµ̃1 =

∫
L1

0(T)
φdµ̃2, ∀φ ∈ Cb

(
L1

0(T)
)
,

so that µ̃1 = µ̃2 and thus, by Lemma 2.20, µ1 = µ2.

Proof of Theorem 2.7. It follows from Lemmas 2.23 and 2.26.





Chapter 3

Finite-volume approximation of the
invariant measure of a viscous stochastic
scalar conservation law

Résumé. Ce chapitre correspond aux quatre premières sections de la pré-publication [19], écrite en
collaboration avec S. Boyaval et J. Reygner. On se propose d’établir une approximation numérique de
la mesure invariante de la solution de l’équation étudiée dans le chapitre 2, c’est-à-dire d’une loi de
conservation scalaire avec viscosité, uni-dimensionnelle et périodique en espace, et forcée aléatoirement
avec un bruit blanc en temps mais spatialement correlé. La fonction de flux est supposée localement
lipschitzienne et à croissance polynomiale. Le schéma numérique utilisé discrétise l’EDPS en espace
selon la méthode des volumes finis, et en temps selon une méthode d’Euler à pas fractionné. En premier
lieu, pour la semi-discrétisation spatiale puis pour le schéma totalement discrétisé, on prouve l’existence
et l’unicité d’une solution puis d’une mesure invariante pour cette solution. Le résultat principal est
alors la convergence des mesures invariantes de ces approximations, lorsque les pas de temps et d’espace
tendent vers zéro, vers l’unique mesure invariante de l’EDPS par rapport à la distance de Wasserstein
d’ordre deux.

Abstract. This chapter corresponds to the first four sections of the preprint [19], written in collab-
oration with S. Boyaval and J. Reygner. We aim to give a numerical approximation of the invariant
measure of the solution of the equation studied in Chapter 2, that is, a viscous scalar conservation
law, one-dimensional and periodic in the space variable, and stochastically forced with a white-in-time
but spatially correlated noise. The flux function is assumed to be locally Lipschitz and to have at
most polynomial growth. The numerical scheme we employ discretises the SPDE according to a finite
volume method in space, and a split-step backward Euler method in time. As a first result, we prove
the well-posedness as well as the existence and uniqueness of an invariant measure for both the spa-
tial semi-discretisation and the fully discrete scheme. Our main result is then the convergence of the
invariant measures of the discrete approximations, as the space and time steps go to zero, towards the
invariant measure of the SPDE, with respect to the second-order Wasserstein distance.

3.1 Introduction

3.1.1 Viscous scalar conservation law with random forcing

We consider the following viscous scalar conservation law with stochastic forcing

du = −∂xA(u)dt+ ν∂xxudt+
∑
k≥1

gkdW
k(t), x ∈ T, t ≥ 0. (3.1)
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Periodic boundary conditions are assigned over the space variable x as T = R/Z denotes the
one-dimensional torus, and (W k)k≥1 is a family of independent real Brownian motions. The viscosity
coefficient ν is assumed to be positive. In Chapter 2, we have shown the well-posedness in a strong sense
of Equation (3.1), as well as the existence and uniqueness of an invariant measure for its solution. These
results are recalled in Proposition 3.2 below. In this work, we aim to provide a numerical scheme, based
on the finite-volume method, that allows to approximate this invariant measure. In this perspective,
we place ourselves in the setting of Chapter 2 and recall our main notations and assumptions.
Notations. For all p ∈ [1,+∞], we denote by Lp0(T) the set of functions f ∈ Lp(T) such that∫
T f(x)dx = 0. We write ‖ · ‖Lp

0(T) the Lp-norm induced on Lp0(T) and 〈·, ·〉L2
0(T) the L2-scalar product

induced on L2
0(T). In a similar manner, for any integer m ≥ 0 and any p ∈ [1,+∞], we introduce the

Sobolev space Wm,p
0 (T) := Lp0(T)∩Wm,p(T) which we equip with the norm ‖ · ‖Wm,p

0 (T) := ‖∂mx ·‖Lp
0(T).

Incidentally, we will denote by Hm
0 (T) the space Wm,2

0 (T), which we recall is separable and Hilbert
when endowed with the norm ‖ · ‖Hm

0 (T) := ‖ · ‖
Wm,2

0 (T)
and the associated scalar product 〈·, ·〉Hm

0 (T).
We recall the following inequalities: for all 1 ≤ p ≤ q ≤ +∞,

‖u‖Lp
0(T) ≤ ‖u‖Lq

0(T), ∀u ∈ Lq0(T), (3.2)

and
‖u‖L∞0 (T) ≤ ‖u‖W 1,1

0 (T)
, ∀u ∈W 1,1

0 (T). (3.3)

In the sequel, we denote by N the set of non-negative integers, and by N∗ the set of positive integers.

Assumption 3.1. The function A : R→ R is of class C2, its first derivative has at most polynomial
growth:

∃CA > 0, ∃pA ∈ N∗, ∀v ∈ R, |A′(v)| ≤ CA (1 + |v|pA) , (3.4)

and its second derivative A′′ is locally Lipschitz continuous on R. Furthermore, for all k ≥ 1, gk ∈
H2

0 (T) and
D0 :=

∑
k≥1

‖gk‖2H2
0 (T) < +∞. (3.5)

The assumptions (3.4) and (3.5) will be needed in the arguments contained in this chapter while
the local Lipschitz continuity of A′′ is only necessary for Proposition 3.2.

Let (Ω,F ,P) be a probability space, equipped with a normal filtration (Ft)t≥0 in the sense of [35,
Section 3.3], on which (W k)k≥1 is a family of independent Brownian motions. Under Assumption 3.1,
the series

∑
k gkW

k converges in L2(Ω, C([0, T ], H2
0 (T))), for any T > 0, towards an H2

0 (T)-valued
Wiener process (WQ(t))t∈[0,T ] with respect to the filtration (Ft)t≥0, defined in the sense of [35, Sec-
tion 4.2], with the trace class covariance operator Q defined by

Q :

{
H2

0 (T) −→ H2
0 (T)

v 7−→
∑

k≥1 gk〈v, gk〉H2
0 (T).

Given a normed vector space E, B(E) denotes the Borel sets of E, P(E) denotes the set of Borel
probability measures over E, and for p ∈ [1,+∞), Pp(E) denotes the subset of P(E) of probability
measures with finite p-th order moment. The well-posedness of (3.1) as well as the existence and
uniqueness of an invariant measure for its solution is proved in Chapter 2 (Theorems 2.4 and 2.7):

Proposition 3.2. Let u0 ∈ H2
0 (T). Under Assumption 3.1, there exists a unique strong solution

(u(t))t≥0 to Equation (3.1) with initial condition u0. That is, an (Ft)t≥0-adapted process (u(t))t≥0

with values in H2
0 (T) such that, almost surely:

1. the mapping t 7→ u(t) is continuous from [0,+∞) to H2
0 (T);
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2. for all t ≥ 0, the following equality holds:

u(t) = u0 +

∫ t

0
(−∂xA (u(s)) + ν∂xxu(s)) ds+WQ(t). (3.6)

Furthermore, the process (u(t))t≥0 admits a unique invariant measure µ ∈ P(H2
0 (T)). Besides, if v is

a random variable with distribution µ, then E[‖v‖2
H2

0 (T)
] < +∞ and for all p ∈ [1,+∞), E[‖v‖p

Lp
0(T)

] <
+∞.

Let us precise that for any t ≥ 0, u(t) will always refer to an element of the space H2
0 (T). The

scalar values taken by this function are denoted by u(t, x), for x ∈ T.

3.1.2 Space discretisation

In order to discretise (3.1) with respect to the space variable, we first define a regular mesh T on the
torus:

T :=

{(
i− 1

N
,
i

N

]
, i ∈ Z/NZ

}
.

Averaging in (3.1) over each cell of T , we get

d

(
N

∫ i
N

i−1
N

u(t, x)dx

)
= −N

(
A

(
u

(
t,
i

N

))
−A

(
u

(
t,
i− 1

N

)))
dt

+ νN

(
∂xu

(
t,
i

N

)
− ∂xu

(
t,
i− 1

N

))
dt+

∑
k≥1

N

∫ i
N

i−1
N

gk(x)dxdW k(t), i ∈ Z/NZ. (3.7)

Finite-volume schemes aim to approximate the dynamics of the average value of the solution over each
cell of the mesh. This leads to the introduction of a numerical flux function A(u, v) approximating the
flux of the conserved quantity at the interface between two adjacent cells. As regards the viscous term
in (3.7), we replace the space derivatives by their finite difference approximations. As for the noise
coefficients, we introduce the shorthand notation

σki := N

∫ i
N

i−1
N

gk(x)dx, k ≥ 1, i ∈ Z/NZ.

These operations result in the following stochastic differential equation

dUi(t) = −N
(
A (Ui(t), Ui+1(t))−A (Ui−1(t), Ui(t))

)
dt

+ νN2 (Ui+1(t)− 2Ui(t) + Ui−1(t)) dt+
∑
k≥1

σki dW k(t), i ∈ Z/NZ, t ≥ 0, (3.8)

as a semi-discrete finite-volume approximation of (3.1) in the sense that Ui(t) is meant to be an

approximation of the spatial average N
∫ i

N
i−1
N

u(t, x)dx. We may interpret the noise term (i.e. the last

term in (3.8)) as a discrete version of the Q-Wiener process (WQ(t))t≥0 introduced in Section 3.1.1.
Let us notice that the RN -valued stochastic process (WQ,N (t))t≥0 whose components are defined by

WQ,N
i (t) :=

∑
k≥1

σkiW
k(t), i ∈ Z/NZ, t ≥ 0,

is a Wiener process with the covariance

E
[
WQ,N
i (t)WQ,N

j (t)
]

= t
∑
k≥1

σki σ
k
j ,
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which is finite as the Jensen inequality, Assumption 3.1 and (3.3) ensure that for all i ∈ Z/NZ,

∑
k≥1

∣∣∣σki ∣∣∣2
2

=
∑
k≥1

∣∣∣∣∣N
∫ i

N

i−1
N

gk(x)dx

∣∣∣∣∣
2

≤
∑
k≥1

N

∫ i
N

i−1
N

‖gk‖2L∞0 (T) dx ≤
∑
k≥1

‖gk‖2H2
0 (T) ≤ D0. (3.9)

Furthermore, each vector σk = (σk1 , . . . , σ
k
N ) satisfies a discrete cancellation condition:

N∑
i=1

σki = N

∫
T
gk(x)dx = 0.

Thus, denoting
RN0 := {u = (u1, . . . , uN ) ∈ RN : u1 + · · ·+ uN = 0},

we get that (WQ,N (t))t≥0 is an RN0 -valued process. We equip the space RN0 with the renormalised Lp

norm ‖ · ‖p and scalar product 〈·, ·〉: for any u,v ∈ RN0 and any p ∈ [1,+∞),

‖u‖pp :=
1

N

N∑
i=1

|ui|p , 〈u,v〉 :=
1

N

N∑
i=1

uivi.

Furthermore, for any u ∈ RN0 , we set by convention ‖u‖00 = 1. Besides, notice that for any 1 ≤ p ≤
q < +∞, we have

‖u‖p ≤ ‖u‖q, ∀u ∈ RN0 . (3.10)

The drift function in (3.8) is the function b defined on RN0 by the components

bi(v) := −N
(
A(vi, vi+1)−A(vi−1, vi)

)
+ νN2(vi+1 − 2vi + vi−1), i ∈ Z/NZ.

These notations being set, we can write the SDE (3.8) in the vectorised form

dU(t) = b(U(t))dt+ dWQ,N (t), t ≥ 0. (3.11)

It appears that b takes values in RN0 . As a consequence, Equation (3.11) is conservative in the following
sense: if U0 ∈ RN0 , then for all t ≥ 0, U(t) ∈ RN0 .

We may now state our assumptions on the numerical flux:

Assumption 3.3. The function A belongs to C1(R2,R), its first derivatives ∂1A and ∂2A are locally
Lipschitz continuous on R2, and it satisfies the following properties:

(i) Consistency:
∀u ∈ R, A(u, u) = A(u); (3.12)

(ii) Monotonicity:
∀u, v ∈ R, ∂1A(u, v) ≥ 0, ∂2A(u, v) ≤ 0; (3.13)

(iii) Polynomial growth:

∃CA > 0, ∃pA ∈ N∗, ∀u, v ∈ R, |∂1A(u, v)| ≤ CA(1 + |u|pA), |∂2A(u, v)| ≤ CA(1 + |v|pA).
(3.14)

Note in particular that the flux function, and therefore the non-linearity of Equation (3.1), is not
subject to a global Lipschitz continuity assumption. Nevertheless, we will prove in Proposition 3.15
below that (3.11) is well-posed under Assumption 3.3.

Remark 3.4 (Engquist-Osher numerical flux). A notable class of numerical fluxes satisfying the mono-
tonicity and polynomial growth conditions (under Assumption 3.1) are the flux-splitting schemes [57,
Example 5.2], among which a commonly employed example is the Engquist-Osher flux [56] defined by

AEO(u, v) :=
A(u) +A(v)

2
− 1

2

∫ v

u
|A′(z)|dz.
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3.1.3 Space and time discretisation

The second stage in constructing a numerical scheme for (3.1) is the time discretisation of the SDE (3.11).
Considering a time step ∆t > 0 and a positive integer n, we introduce the notation ∆WQ,N

n :=
WQ,N (n∆t)−WQ,N ((n− 1)∆t).

As it was already noticed in [94], explicit numerical schemes for SDEs with non-globally Lipschitz
continuous coefficients do not preserve in general the large time stability, whereas implicit schemes are
more robust. Therefore, since our main focus in this chapter is to approximate invariant measures, we
propose the following split-step stochastic backward Euler method :Un+ 1

2
= Un + ∆tb

(
Un+ 1

2

)
,

Un+1 = Un+ 1
2

+ ∆WQ,N
n+1 .

(3.15)

The well-posedness of the scheme, i.e. the existence and uniqueness of the value Un+ 1
2
in the first

line of (3.15), is ensured by Proposition 3.23.

3.1.4 Main results

Our first focus is on the large-time behaviour of the processes (U(t))t≥0 and (Un)n∈N. In this context,
we state our first result:

Theorem 3.5. Under Assumptions 3.1 and 3.3, the following two statements hold:

(i) for any N ≥ 1, the process (U(t))t≥0 solution of the SDE (3.11) admits a unique invariant
measure νN ∈ P(RN0 );

(ii) for any N ≥ 1 and any ∆t > 0, the process (Un)n∈N defined by (3.15) admits a unique invariant
measure νN,∆t ∈ P(RN0 ).

Moreover, for any N ≥ 1 and any ∆t > 0, the measures νN and νN,∆t belong to P2(RN0 ).

The proofs for these two statements are given separately in Section 3.2. The structure of the proof
is the same as for Theorem 2.7 where we derived the existence and uniqueness of an invariant measure
for the solution of (3.1) from two important properties: respectively the dissipativity of the solution
and an L1-contraction property. In Lemma 3.13 below, we show that both of these properties are
preserved at the discrete level. Therefore, we will address the existence part with a tightness argument
(the Krylov-Bogoliubov theorem) and the uniqueness with a coupling argument. To compare two
different probability measures, we will make use of the following metric:

Definition 3.6 (Wasserstein distance). Let (E, ‖ · ‖E) be a normed vector space and let α, β ∈ P2(E).
The second order Wasserstein distance between α and β is defined by

W2(α, β) := inf
π∈Π(α,β)

(∫
E×E

‖u− v‖2E dπ(u, v)

)1/2

,

where Π(α, β) is the set of probability measures on E × E with marginals α and β:

Π(α, β) := {π ∈ P2 (E × E) : ∀B ∈ B (E) , π(B × E) = α(B) and π(E ×B) = β(B)} .

The reader is referred to [102, Chapter 6] for further details on the Wasserstein distance, and in
particular for the proof that it actually defines a distance on P2(E). From now on, the space P2(E)
will be endowed with the distance W2: convergence of elements of P2(E) will always be meant in the
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sense of the Wasserstein distance. The only cases we will address in this chapter are E = L2
0(T) and

E = RN0 .
As a first step to approximate numerically the measure µ, we start to embed the measures νN and

νN,∆t into P(L2
0(T)). For m = 0, 1, 2, let Ψ

(m)
N : RN0 → Hm

0 (T) denote embedding functions in such
a way that for any u ∈ RN0 , Ψ

(0)
N u, Ψ

(1)
N u and Ψ

(2)
N u correspond respectively to piecewise constant,

piecewise affine, and piecewise quadratic interpolations of the vector u on the mesh T . The functions
Ψ

(m)
N will be precisely defined at the beginning of Section 3.3.
For m = 0, 1, 2, we define the pushforward measures µ(m)

N := νN ◦ (Ψ
(m)
N )−1, and µ(m)

N,∆t := νN,∆t ◦
(Ψ

(m)
N )−1. In particular, the measures µ(m)

N and µ(m)
N,∆t give full weight to Hm

0 (T). Sections 3.3 and 3.4
are devoted to the proof of our main result:

Theorem 3.7. Under Assumptions 3.1 and 3.3, we have for all m = 0, 1, 2,

lim
N→∞

µ
(m)
N = µ in P2(L2

0(T)), (3.16)

and moreover, for any N ≥ 1,
lim

∆t→0
νN,∆t = νN in P2(RN0 ). (3.17)

In short, we have the following approximation result for all m = 0, 1, 2:

lim
N→∞

lim
∆t→0

µ
(m)
N,∆t = µ in P2(L2

0(T)).

Remark 3.8. In Theorem 3.7, µ is seen as a probability measure of P2(L2
0(T)) giving full weight to

H2
0 (T), as opposed to Proposition 3.2 where µ was directly seen as a measure of the space P2(H2

0 (T)).

Remark 3.9 (Ergodicity). As the invariant measure µ of the process (u(t))t≥0 is unique from Proposi-
tion 3.2, it is ergodic. In particular, a consequence of Birkhoff’s ergodic theorem (see for instance [35,
Theorem 1.2.3]) is that for any ϕ ∈ L1(µ) and for µ-almost every initial condition u0 ∈ H2

0 (T), almost
surely,

lim
t→∞

1

t

∫ t

0
ϕ(u(s))ds = E [ϕ(v)] , where v ∼ µ.

By virtue of Theorem 3.5, this property also holds at the discrete level: the process (Un)n∈N satisfies
for any ϕ ∈ L1(νN,∆t) and for νN,∆t-almost every initial condition U0 ∈ RN0 , almost surely,

lim
n→∞

1

n

n−1∑
l=0

ϕ(Ul) = E [ϕ(V)] , where V ∼ νN,∆t.

Thanks to this property, it is possible to approximate numerically expectations of functionals under the
invariant measure by averaging in time the simulated process. We used this method to perform the
numerical experiments presented in Chapter 4.

3.1.5 Review of literature

Many results are found concerning the numerical approximation in finite time of stochastic conservation
laws. A particular case of interest is the stochastic Burgers equation which corresponds to the case of
the flux function A(u) = u2/2. Finite difference schemes are presented in [1, 71] to approximate its
solution. When the viscosity coefficient is equal to zero, the SPDE falls into a different framework.
Convergence of finite-volume schemes in this hyperbolic case have been established both under the
kinetic [46, 47, 45] and the entropic formulations [5, 6].
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As regards the numerical approximation of the invariant measure of an SPDE, we may start by
mentioning [26] concerning the damped stochastic non-linear Schrödinger equation, where a spectral
Galerkin method is used for the space discretisation and a modified implicit Euler scheme for the
temporal discretisation. Several works of Bréhier are devoted to the numerical approximation of the
invariant measures of semi-linear SPDEs in Hilbert spaces perturbed with white noise [20, 21, 22],
where spectral Galerkin and semi-implicit Euler methods are used. Those results hold under a global
Lipschitz assumption on the nonlinearity. In the more recent works [29, 33], non-Lipschitz nonlinearities
are considered, but they still need to satisfy a one-sided Lipschitz condition.

In the present work, our assumptions on the flux function do not imply that the non-linear term
is globally Lipschitz in L2

0(T) nor even one-sided Lipschitz. In particular, the case of the Burgers’
equation is covered. However, Equation (3.1) satisfies an L1-contraction property (Proposition 2.21)
which may be viewed as a one-sided Lipschitz condition in the Banach space L1

0(T).

3.1.6 Outline of the chapter

The existence and uniqueness of an invariant measure for the solution of (3.11), i.e. the first part of
Theorem 3.5, is proved in Section 3.2.2, and for the split-step scheme (3.15), i.e. the second part of
Theorem 3.5, it is proved in Section 3.2.3.

The proof of Theorem 3.7 is also split in two separate parts. The convergence in space (3.16) is
proved in Section 3.3 and then, in Section 3.4, we prove the convergence with respect to the time step,
i.e. Equation (3.17).

We performed numerical experiments to test the stationarity and convergence results in the Burgers
case. The results of these experiments are exposed in the next chapter, where we furthermore illustrate
some properties regarding the turbulent behaviour of the process in its stationary regime.

3.2 Semi-discrete and split-step schemes: well-posedness and invari-
ant measure

Preliminary results are given in Subsection 3.2.1. In Subsection 3.2.2, we prove the well-posedness
of (3.11), and after establishing some properties for the solution, we prove the existence of an invariant
measure at Proposition 3.19. Then, Lemmas 3.21 and 3.22 lead to the proof of uniqueness of this
invariant measure, i.e. to the proof of the first assertion of Theorem 3.5.

3.2.1 Notations and properties

All the lemmas stated in this section will be proved in the appendix. We define the discrete differential
operators D(m)

N : RN → RN , m = 0, 1, 2, by(
D

(0)
N u

)
i

:= ui,
(
D

(1)
N u

)
i

:= N(ui+1 − ui),
(
D

(2)
N u

)
i

:= N2(ui+1 − 2ui + ui−1), i ∈ Z/NZ.

We will often make use, in this chapter, of the summation by parts identity〈
D

(1)
N u,D

(1)
N v

〉
= −

〈
D

(2)
N u,v

〉
, u,v ∈ RN0 . (3.18)

These operators satisfy furthermore the following properties:

Lemma 3.10 (Discrete Poincaré inequality). Let u ∈ RN . If there exist i−, i+ ∈ Z/NZ such that
ui− ≤ 0 ≤ ui+, then for any m = 0, 1, any p ∈ [1,+∞),∥∥∥D(m)

N u
∥∥∥
p
≤
∥∥∥D(m+1)

N u
∥∥∥
p
.
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It should be noted that this discrete Poincaré inequality holds in particular for u ∈ RN0 .
Several times in this chapter, we will establish estimates uniformly in N (resp. in ∆t) over the

moment of the discrete Sobolev norm E[‖D(m)
N V‖pp] where V is an invariant measure for the semi-

discrete scheme (resp. the fully discrete scheme). Whenever this situation appears, we will denote by
Cm,p (resp. Cm,p) the uniform upper bound.

Lemma 3.11. For any u ∈ RN0 and p ∈ 2N∗, we have〈
D

(1)
N

(
up−1

)
,D

(1)
N u

〉
≥ 4(p− 1)

p2
‖u‖pp,

where up−1 := (up−1
1 , . . . , up−1

N ).

Lemma 3.12. Under Assumption 3.3, for any u ∈ RN0 and any q ∈ 2N∗, we have

N∑
i=1

uq−1
i

(
A(ui, ui+1)−A(ui−1, ui)

)
≥ 0.

For any z ∈ R, we write sign(z) := 1z≥0 − 1z<0. By extension, for u ∈ RN0 , sign(u) denotes the
vector of {−1,+1}N defined by (sign(u))i = sign(ui).

The discretised drift b preserves some nice properties of Equation (3.1) that we will use repeatedly
throughout this chapter:

Lemma 3.13. Under Assumption 3.3, for all u,v ∈ RN0 , the function b satisfies

(i) 〈sign(u− v),b(u)− b(v)〉 ≤ 0 (L1-contraction);

(ii) 〈u,b(u)〉 ≤ −ν‖D(1)
N u‖22 (dissipativity).

Remark 3.14. The dissipativity property actually holds for the family of E-fluxes [91], a larger family
than the class of monotone numerical fluxes. The monotonicity assumption (3.13) seems however
necessary as regards the L1-contraction property.

3.2.2 The semi-discrete scheme

Before addressing the invariant measure of the solution of (3.11), we first ensure the existence and
uniqueness of this solution:

Proposition 3.15. Let U0 be an RN0 -valued, F0-measurable random variable. Under Assumptions 3.1
and 3.3, the stochastic differential equation (3.11) admits a unique strong solution (U(t))t≥0 taking
values in RN0 and with initial condition U0.

Proof. Let u0 ∈ RN0 . Since the function b is locally Lipschitz continuous, there exists a unique strong
solution (U(t))t∈[0,T ∗) to Equation (3.11) with initial condition u0 defined up to an explosion time T ∗,
i.e. a stopping time taking values in (0,+∞] such that almost surely, if T ∗ < +∞, then

lim
t→T ∗

‖U(t)‖2 = +∞

(see for instance [75, Theorem 2.3, Lemma 2.1, Theorem 3.1]). In particular, if we define the stopping
times

τM := inf
{
t ≥ 0 : ‖U(t)‖22 ≥M

}
, (3.19)

then for all M ≥ 0, we have τM ≤ T ∗ almost surely.
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From Dynkin’s formula applied to Equation (3.11), we get for all t ≥ 0,

E
[
‖U(t ∧ τM )‖22

]
= ‖u0‖22 + 2E

[∫ t∧τM

0
〈U(s),b(U(s))〉ds

]
+ E[t ∧ τM ]

∑
k≥1

‖σk‖22

≤ ‖u0‖22 − 2νE
[∫ t∧τM

0

∥∥∥D(1)
N U(s)

∥∥∥2

2
ds

]
+ E[t ∧ τM ]

∑
k≥1

‖σk‖22,

where the inequality comes from Lemma 3.13.(ii). As a consequence, using (3.9),

E
[
‖U(t ∧ τM )‖22

]
≤ ‖u0‖22 + tD0.

From Markov’s inequality, we now derive

P(τM ≤ t) = P
(
‖U(t ∧ τM )‖22 ≥M

)
≤

E
[
‖U(t ∧ τM )‖22

]
M

≤ ‖u0‖22 + tD0

M
−→
M→∞

0.

As the random variable 1τM≤t is almost surely non-decreasing asM increases, it admits an almost sure
limit as M → +∞. From the dominated convergence theorem, this limit is actually zero:

E
[

lim
M→∞

1τM≤t

]
= lim

M→∞
P(τM ≤ t) = 0.

As a consequence, almost surely, limM→∞ τM = +∞, and then T ∗ = +∞ almost surely, meaning that
(U(t))t≥0 is a global solution of (3.11).

Now, if the initial condition of (U(t))t≥0 is an F0-measurable random variable U0 distributed under
some probability measure α on RN0 , then we have

P(T ∗ = +∞) =

∫
RN

0

Pu0(T ∗ = +∞)dα(u0) = 1, (3.20)

where Pu0 is the conditional probability given the event U(0) = u0.

We now turn to the proof of existence of an invariant measure. The following lemma, Proposi-
tion 3.17, and Corollary 3.18 are preliminary results.

Lemma 3.16 (Moment estimates on the semi-discrete approximation). Let p ∈ 2N∗ and let U0 be an
F0-measurable random variable such that E[‖U0‖pp] < +∞. Then, under Assumptions 3.1 and 3.3, the
strong solution (U(t))t≥0 of (3.11) with initial condition U0 satisfies:

(i) For all t ≥ 0,

E
[
‖U(t)‖pp

]
+ νpE

[∫ t

0

〈
D

(1)
N

(
U(s)p−1

)
,D

(1)
N U(s)

〉
ds

]
≤ E

[
‖U0‖pp

]
+D0

p(p− 1)

2
E
[∫ t

0
‖U(s)‖p−2

p−2 ds

]
(3.21)

where U(s)p denotes the vector (U1(s)p, . . . , UN (s)p) and when p = 2, we recall the convention
‖ · ‖p−2

p−2 = 1.

(ii) There exist six positive constants c(p)
0 , c(p)

1 , c(p)
2 , θ(p)

0 , θ(p)
1 and θ(p)

2 depending only on D0, ν and
p such that we have

∀t > 0, E
[∫ t

0
‖U(s)‖pp ds

]
≤ θ(p)

0 + θ
(p)
1 E

[
‖U0‖pp

]
+ θ

(p)
2 t, (3.22)

and
∀T > 0, sup

t∈[0,T ]
E
[
‖U(t)‖pp

]
≤ c(p)

0 + c
(p)
1 E

[
‖U0‖pp

]
+ c

(p)
2 T. (3.23)
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Proof. Let τM be the stopping time defined at (3.19). Applying Dynkin’s formula to Equation (3.11),
we get the following dynamics for the p-th order moment: for all t ≥ 0 and all M ≥ 0,

E
[
‖U(t ∧ τM )‖pp

]
= E

[
‖U0‖pp

]
−pE

[∫ t∧τM

0

N∑
i=1

Ui(s)
p−1

(
A (Ui(s), Ui+1(s))−A (Ui−1(s), Ui(s))

)
ds

]

+ νNpE
[∫ t∧τM

0

〈
U(s)p−1,D

(2)
N U(s)

〉
ds

]
+
p(p− 1)

2N
E

∫ t∧τM

0

N∑
i=1

Ui(s)
p−2

∑
k≥1

(
σki

)2
ds

 . (3.24)

From (3.9), we have for all i = 1, . . . , N ,

∑
k≥1

(
σki

)2
≤ D0.

On the other hand, the second term of the right-hand side in (3.24) is non-positive thanks to Lemma 3.12.
Hence, using (3.18) in the viscous term, we get

E
[
‖U(t ∧ τM )‖pp

]
≤ E

[
‖U0‖pp

]
− νNpE

[∫ t∧τM

0

〈
D

(1)
N

(
U(s)p−1

)
,D

(1)
N U(s)

〉
ds

]
+
p(p− 1)

2
D0E

[∫ t∧τM

0
‖U(s)‖p−2

p−2 ds

]
. (3.25)

Letting M go to +∞, applying the monotone convergence theorem on the right-hand side and Fatou’s
lemma on the left-hand side yields the first assertion of the lemma.

From the first assertion and Lemma 3.11, we have

4ν(p− 1)

p
E
[∫ t

0
‖U(s)‖pp ds

]
≤ E

[
‖U0‖pp

]
+
D0p(p− 1)

2
E
[∫ t

0
‖U(s)‖p−2

p−2 ds

]
. (3.26)

Noticing that ‖ · ‖p−2
p−2 ≤ 1 + ‖ · ‖pp, by (3.26) and an induction argument, we can show that for all

p ∈ 2N∗, (3.22) holds. Now, from the first assertion once again and (3.22), we have for all p ∈ 2N∗ and
all 0 ≤ t ≤ T ,

E
[
‖U(t)‖pp

]
≤ E

[
‖U0‖pp

]
+
D0p(p− 1)

2
E
[∫ T

0
‖U(s)‖p−2

p−2 ds

]
≤ E

[
‖U0‖pp

]
+
D0p(p− 1)

2

(
θ

(p−2)
0 + θ

(p−2)
1 E

[
‖U0‖p−2

p−2

]
+ θ

(p−2)
2 T

)
≤ E

[
‖U0‖pp

]
+
D0p(p− 1)

2

(
θ

(p−2)
0 + θ

(p−2)
1

(
1 + E

[
‖U0‖pp

])
+ θ

(p−2)
2 T

)
=: c

(p)
0 + c

(p)
1 E

[
‖U0‖pp

]
+ c

(p)
2 T.

Since the right-hand side does not depend on t, we get (3.23).

Proposition 3.17 (L1-contraction). Under Assumptions 3.1 and 3.3, two strong solutions (U(t))t≥0

and (V(t))t≥0 of (3.11) (driven by the same Wiener process WQ,N ) with possibly different initial
conditions satisfy almost surely:

‖U(t)−V(t)‖1 ≤ ‖U(s)−V(s)‖1 , 0 ≤ s ≤ t.
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Proof. Since (U(t))t≥0 and (V(t))t≥0 are driven by the same Wiener process, then (U(t) −V(t))t≥0

is an absolutely continuous process:

d(U(t)−V(t)) = (b(U(t))− b(V(t))) dt.

In particular, we can write for all t ≥ 0,

d

dt
‖U(t)−V(t)‖1 = 〈sign (U(t)−V(t)) ,b(U(t))− b(V(t))〉 ≤ 0,

where the inequality comes from Lemma 3.13.(i), and the result follows by integrating in time.

This last property ensures the following result which we state without a proof:

Corollary 3.18 (Feller property). Under Assumption 3.3, the strong solution (U(t))t≥0 of Equa-
tion (3.11) satisfies the Feller property, i.e. for any continuous and bounded function ϕ : RN0 → R and
any t ≥ 0, the mapping

u0 ∈ RN0 7−→ Eu0 [ϕ(U(t))] ∈ R

is continuous and bounded, where Eu0 is the conditional expectation given the event U(0) = u0.

Proposition 3.19 (Existence of an invariant measure for the semi-discrete scheme). Under Assump-
tions 3.1 and 3.3, the strong solution (U(t))t≥0 of (3.11) admits an invariant measure νN ∈ P(RN0 ).
Moreover, for all p ∈ [1,+∞), there exists a constant C0,p not depending on N such that if V is a
random variable with distribution νN , then

E
[
‖V‖pp

]
≤ C0,p.

Proof. Let (U(t))t≥0 be the solution of (3.11) with a deterministic initial condition u0 ∈ RN0 . From
Lemma 3.16.(ii), we have for all t > 0 and all p ∈ 2N∗,

1

t

∫ t

0
Eu0

[
‖U(s)‖pp

]
ds ≤ 1

t
θ

(p)
0 +

1

t
θ

(p)
1 ‖u0‖22 + θ

(p)
2 . (3.27)

Let us take p = 2. Applying the Markov inequality and taking the limit superior in t, we get for all
ε > 0,

lim sup
t→∞

1

t

∫ t

0
Pu0

(
‖U(s)‖22 >

1

ε

)
ds ≤ εθ(2)

2 .

Since from Corollary 3.18, (U(t))t≥0 is Feller, the existence of an invariant measure νN ∈ P(RN0 ) for
(U(t))t≥0 is now a consequence of the Krylov-Bogoliubov theorem [36, Corollary 3.1.2].

Let V be a random variable with distribution νN . We will derive now from Equation (3.27) that
V has finite moments. A computation of the same kind as the one below is found for instance in the
proof of [70, Proposition 4.24]. For any M > 0 and any p ∈ 2N∗,

E
[
‖V‖pp ∧M

]
=

1

t

∫ t

0

∫
RN

0

Eu0

[
‖U(s)‖pp ∧M

]
dνN (u0)ds

=

∫
RN

0

1

t

∫ t

0
Eu0

[
‖U(s)‖pp ∧M

]
dsdνN (u0)

≤
∫
RN

0

(
1

t

∫ t

0
Eu0

[
‖U(s)‖pp

]
ds

)
∧MdνN (u0)

≤
∫
RN

0

(
1

t
θ

(p)
0 + θ

(p)
1

‖u0‖pp
t

+ θ
(p)
2

)
∧MdνN (u0).



68
Chapter 3. Finite-volume approximation of the invariant measure of a viscous

stochastic scalar conservation law

Now, letting t→ +∞, we get from the dominated convergence theorem,

E
[
‖V‖pp ∧M

]
≤
∫
RN

0

lim
t→∞

(
1

t
θ

(p)
0 + θ

(p)
1

‖u0‖pp
t

+ θ
(p)
2

)
∧MdνN (u0) = θ

(p)
2 ∧M ≤ θ

(p)
2 ,

and the result for p ∈ 2N∗ follows by letting M → +∞ and using the monotone convergence theorem.
This result extends readily to the general case p ∈ [1,+∞) by using for instance the Jensen inequality.

Corollary 3.20. Under Assumptions 3.1 and 3.3, let νN be an invariant measure for the solution
(U(t))t≥0 of (3.11) and let V be a random variable with distribution νN . Then, for all p ∈ 2N∗, V
satisfies

E
[〈

D
(1)
N

(
Vp−1

)
,D

(1)
N V

〉]
≤ D0(p− 1)

2ν
C0,p−2,

where we set C0,0 = 1.

Proof. Let (U(t))t≥0 be a solution of (3.11) whose initial condition U0 has distribution νN . According
to Proposition 3.19, one has E[‖U0‖pp] < +∞. Thus, one can apply Lemma 3.16.(i) which in the
stationary case, writes

νpE
[〈

D
(1)
N

(
Vp−1

)
,D

(1)
N V

〉]
≤ D0

p(p− 1)

2
E
[
‖V‖p−2

p−2

]
,

and it remains to apply Proposition 3.19 to conclude.

We now turn to the proof of uniqueness of the invariant measure νN . We will first need some
preliminary results:

Lemma 3.21. Let Assumptions 3.1 and 3.3 hold and let (U(t))t≥0 and (V(t))t≥0 be two strong solu-
tions of (3.11) driven by the same Wiener process. Then, for all M > 0 and all ε > 0, there exists
tε,M > 0 such that

pε,M := inf
‖u0‖2∨‖v0‖2≤M

P(u0,v0)

(
‖U(tε,M )‖1 + ‖V(tε,M )‖1 ≤ ε

)
> 0.

Proof. We recall that b : RN0 → RN0 is locally Lipschitz continuous (for every norm over RN0 ). Let
M > 0 and ε > 0. Let us also fix the deterministic values u0,v0 ∈ RN0 satisfying ‖u0‖2 ∨ ‖v0‖2 ≤M ,
along with the following constants:

tε,M := − 1

2ν
log

ε2

16M2
;

LM+ε := Lipschitz constant of b over the ball
{
u ∈ RN0 : ‖u‖1 ≤M + ε

}
;

δε :=
ε

4
e−LM+εtε,M .

Let (U(t))t≥0 and (V(t))t≥0 denote two solutions of (3.11) with the initial conditions u0 and v0. We
introduce the stopping times

τ̃U := inf {t ≥ 0 : ‖U(t)‖1 ≥M + ε} ;

τ̃V := inf {t ≥ 0 : ‖V(t)‖1 ≥M + ε} .

Furthermore, we denote by (u(t))t≥0 and (v(t))t≥0 the noiseless counterparts of (U(t))t≥0 and (V(t))t≥0:

d

dt
u(t) = b (u(t)) ,

d

dt
v(t) = b (v(t)) ,
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with respective initial conditions u0 and v0.
By the dissipativity property (Lemma 3.13.(ii)) and Lemma 3.10, we have

d

dt

(
‖u(t)‖22 + ‖v(t)‖22

)
= 2 (〈u(t),b (u(t))〉+ 〈v(t),b (v(t))〉)

≤ −2ν

(∥∥∥D(1)
N u(t)

∥∥∥2

2
+
∥∥∥D(1)

N v(t)
∥∥∥2

2

)
≤ −2ν

(
‖u(t)‖22 + ‖v(t)‖22

)
,

so that Grönwall’s lemma yields the upper bound

‖u(t)‖22 + ‖v(t)‖22 ≤
(
‖u0‖22 + ‖v0‖22

)
e−2νt,

meaning that for t ≥ tε,M , we have

‖u(t)‖22 + ‖v(t)‖22 ≤
ε2

8
,

and consequently, by (3.10),

‖u(t)‖1 + ‖v(t)‖1 ≤ ‖u(t)‖2 + ‖v(t)‖2 ≤
ε

2
.

We now restrict ourselves to the situation where

ω ∈

{
sup

t∈[0,tε,M ]

∥∥WQ,N (t)
∥∥

1
≤ δε

}
.

For any t ≤ τ̃U∧τ̃V∧tε,M , the four vectorsU(t), V(t), u(t) and v(t) stay in the ball {‖·‖1 ≤M+ε},
and thanks to the local Lipschitz continuity assumption on b we have

‖U(t)− u(t)‖1 + ‖V(t)− v(t)‖1 =

∥∥∥∥∫ t

0
(b (U(s))− b (u(s))) ds+ WQ,N (t)

∥∥∥∥
1

+

∥∥∥∥∫ t

0
(b (V(s))− b (v(s))) ds+ WQ,N (t)

∥∥∥∥
1

≤
∫ t

0
(‖b (U(s))− b (u(s))‖1 + ‖b (V(s))− b (v(s))‖1) ds+ 2

∥∥WQ,N (t)
∥∥

1

≤ LM+ε

∫ t

0
(‖U(s)− u(s)‖1 + ‖V(s)− v(s)‖1) ds+ 2δε,

so by Grönwall’s lemma, we have

‖U(t)− u(t)‖1 + ‖V(t)− v(t)‖1 ≤ 2δεe
LM+εt ≤ 2δεe

LM+εtε,M =
ε

2
, (3.28)

for every t ∈ [0, τ̃U ∧ τ̃V ∧ tε,M ]. But it appears that the case τ̃U ∧ τ̃V < tε,M is impossible for small
values of ε. Indeed, it would either imply ‖(U − u)(τ̃U)‖1 ≤ ε/2 or ‖(V − v)(τ̃V)‖1 ≤ ε/2 which is
impossible because we have on the one hand∥∥U (τ̃U)∥∥

1
≥M + ε

(
or
∥∥V (τ̃V)∥∥

1
≥M + ε

)
,

and on the other hand∥∥u (τ̃U)∥∥
1
≤
∥∥u (τ̃U)∥∥

2
≤ ‖u0‖2 ≤M

(
or
∥∥v (τ̃V)∥∥

1
≤M

)
.
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Therefore, Inequality (3.28) holds for all t ∈ [0, tε,M ]. Thus,

‖U(tε,M )‖1+‖V(tε,M )‖1 ≤ ‖U(tε,M )− u(tε,M )‖1+‖V(tε,M )− v(tε,M )‖1+‖u(tε,M )‖1+‖v(tε,M )‖1 ≤ ε,

and we have just shown that{
sup

t∈[0,tε,M ]

∥∥WQ,N (t)
∥∥

1
≤ δε

}
⊂
{
‖U(tε,M )‖1 + ‖V(tε,M )‖1 ≤ ε

}
.

and therefore,

P(u0,v0)

(
‖U(tε,M )‖1 + ‖V(tε,M )‖1 ≤ ε

)
≥ P

(
sup

t∈[0,tε,M ]

∥∥WQ,N (t)
∥∥

1
≤ δε

)
.

Notice that the right-hand side does not depend on u0 nor v0. Furthermore, it is positive since WQ,N

is an RN -valued Wiener process. Hence, taking the infimum over u0 and v0 on the left-hand side yields
the wanted result.

For two solutions (U(t))t≥0 and (V(t))t≥0 of (3.11) driven by the same Wiener process WQ,N , we
define the following entrance time for all M ≥ 0:

τM := inf {t ≥ 0 : ‖U(t)‖2 ∨ ‖V(t)‖2 ≤M} . (3.29)

Lemma 3.22. Under Assumptions 3.1 and 3.3, there exists M > 0 such that for any deterministic
initial conditions u0, v0 ∈ RN0 , τM < +∞ almost surely.

Proof. From Itô’s formula, we have for all t ≥ 0,

‖U(τM ∧ t)‖22+‖V(τM ∧ t)‖22 = ‖U0‖22+‖V0‖22+

∫ τM∧t

0
〈b(U(s)),U(s)〉ds+

∫ τM∧t

0
〈b(V(s)),V(s)〉 ds

+
∑
k≥1

∫ τM∧t

0

〈
U(s) + V(s),σk

〉
dW k(s) + 2

∑
k≥1

∫ τM∧t

0

∥∥∥σk∥∥∥2

2
ds. (3.30)

The fifth term of the right-hand side is a martingale. Indeed, by the Cauchy-Schwarz inequality,
Inequality (3.9), and the bound (3.22), we have

E

∑
k≥1

∫ τM∧t

0

∣∣∣〈U(s) + V(s),σk
〉∣∣∣2 ds

 ≤
∑
k≥1

∥∥∥σk∥∥∥2

2

E
[∫ t

0
‖U(s) + V(s)‖22 ds

]

≤ 2D0

(
E
[∫ t

0
‖U(s)‖22 ds

]
+ E

[∫ t

0
‖V(s)‖22 ds

])
≤ 2D0

(
2θ

(2)
0 + θ

(2)
1

(
‖u0‖22 + ‖v0‖22

)
+ 2θ

(2)
2 t
)

< +∞.

Thus, taking the expectation in (3.30), applying Lemma 3.13.(ii), Inequality (3.9), Lemma 3.10
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and (3.29), we get

E
[
‖U(τM ∧ t)‖22 + ‖V(τM ∧ t)‖22

]
= ‖u0‖22 + ‖v0‖22 + 2E

[∫ τM∧t

0
(〈b (U(s)) ,U(s)〉+ 〈b (V(s)) ,V(s)〉) ds

]
+ 2E

∫ τM∧t

0

∑
k≥1

∥∥∥σk∥∥∥2

2
ds


≤ ‖u0‖22 + ‖v0‖22 − 2νE

[∫ τM∧t

0

(∥∥∥D(1)
N U(s)

∥∥∥2

2
+
∥∥∥D(1)

N U(s)
∥∥∥2

2

)
ds

]
+ 2E [τM ∧ t]D0

≤ ‖u0‖22 + ‖v0‖22 − 2νE
[∫ τM∧t

0

(
‖U(s)‖22 + ‖V(s)‖22

)
ds

]
+ 2E [τM ∧ t]D0

≤ ‖u0‖22 + ‖v0‖22 + 2
(
D0 − νM2

)
E [τM ∧ t]

So if we choose M >
√
D0/ν, we get

E[τM ∧ t] ≤
‖u0‖22 + ‖v0‖22
2 (νM2 −D0)

,

so that we can apply the monotone convergence theorem:

E[τM ] = lim
t→∞

E[τM ∧ t] < +∞,

which concludes the proof.

Proof of Theorem 3.5, Assertion (i). We start to fix ε > 0 to which we associate the quantities
tε,M and pε,M defined at Lemma 3.21, where M has been defined at Lemma 3.22. Let (U(t))t≥0 and
(V(t))t≥0 start respectively from arbitrary deterministic initial conditions u0 and v0 and be driven by
the same Wiener process. We define the increasing stopping time sequence

T1 := τM

T2 := inf {t ≥ T1 + tε,M : ‖U(t)‖2 ∨ ‖V(t)‖2 ≤M}

T3 := inf {t ≥ T2 + tε,M : ‖U(t)‖2 ∨ ‖V(t)‖2 ≤M}
...

By the strong Markov property and Lemma 3.22, each term of this sequence is finite almost surely.
We claim that

∀J ∈ N∗, P
(
∀j = 1, . . . , J, ‖U(Tj + tε,M )‖1 + ‖V(Tj + tε,M )‖1 > ε

)
≤ (1− pε,M )J . (3.31)

Indeed, it is true for J = 1 thanks to the strong Markov property and Lemma 3.21:

P
(
‖U(τM + tε,M )‖1 + ‖V(τM + tε,M )‖1 > ε

)
= E

[
P
(
‖U(τM + tε,M )‖1 + ‖V(τM + tε,M )‖1 > ε|FτM

)]
≤ 1−pε,M ,

and the general case follows by induction: assuming that Inequality (3.31) is true for some J ∈ N∗, we
have

P
(
∀j = 1, . . . , J + 1, ‖U(Tj + tε,M )‖1 + ‖V(Tj + tε,M )‖1 > ε

)
= E

[
P
(
∀j = 1, . . . , J + 1, ‖U(Tj + tε,M )‖1 + ‖V(Tj + tε,M )‖1 > ε|FTJ+1

)]
= E

 J∏
j=1

1‖U(Tj+tε,M )‖
1
+‖V(Tj+tε,M )‖

1
>ε

P
(
‖U(TJ+1 + tε,M )‖1 + ‖V(TJ+1 + tε,M )‖1 > ε|FTJ+1

)
≤ (1− pε,M )J × (1− pε,M ) = (1− pε,M )J+1.
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Letting J → +∞, we get

P
(
∀j ∈ N∗, ‖U(Tj + tε,M )‖1 + ‖V(Tj + tε,M )‖1 > ε

)
= lim

J→∞
P
(
∀j = 1, . . . , J, ‖U(Tj + tε,M )‖1 + ‖V(Tj + tε,M )‖1 > ε

)
≤ lim

J→∞
(1− pε,M )J = 0,

and consequently,
P (∃t ≥ 0, ‖U(t)‖1 + ‖V(t)‖1 ≤ ε) = 1,

meaning that almost surely,
∃t ≥ 0, ‖U(t)−V(t)‖1 ≤ ε.

Now recall that thanks to Proposition 3.17, ‖U(t)−V(t)‖1 is non-increasing in time almost surely.
Since ε has been chosen arbitrarily, the above inequality actually indicates that ‖U(t) −V(t)‖1 con-
verges almost surely to 0 as t → +∞ when the initial conditions are deterministic. However, this
almost sure consergence extends naturally to random and F0-measurable initial conditions using the
same argument as for (3.20). Let φ : RN0 → R be a Lipschitz continuous and bounded test function,
with Lipschitz constant Lφ. We have in particular, almost surely,

lim
t→∞
|φ(U(t))− φ(V(t))| ≤ Lφ lim

t→∞
‖U(t)−V(t)‖1 = 0. (3.32)

To conclude the proof, assume that there exist two invariant measures ν(1)
N and ν(2)

N for the solution
of (3.11), and take random initial conditions U0 and V0 with distributions ν(1)

N and ν(2)
N respectively.

We have for all t ≥ 0,

|E [φ (U0)]− E [φ (V0)]| = |E [φ (U(t))]− E [φ (V(t))]| ≤ E [|φ (U(t))− φ (V(t))|] .

Letting t go to +∞, by (3.32) and the dominated convergence theorem, we have

|E [φ (U0)]− E [φ (V0)]| ≤ lim
t→∞

E [|φ (U(t))− φ (V(t))|] = 0.

As a consequence, U0 and V0 have the same distribution, meaning that ν(1)
N = ν

(2)
N .

3.2.3 Invariant measure for the split-step scheme

In this subsection, we aim to prove the existence and uniqueness of an invariant measure for the
discrete time process (Un)n∈N defined by (3.15). The general argument is the same as the one used in
Subsection 3.2.2 for the semi-discrete case and the intermediary results are stated in the same order.
Therefore, the proofs which are not affected by the time discretisation are omitted.

As the time step ∆t is meant to converge towards 0, we may consider that it will always lie in an
interval (0,∆tmax] for some arbitrarily chosen ∆tmax > 0.

The following preliminary result ensures that the scheme (3.15) is well-posed.

Proposition 3.23. Under Assumption 3.3, given ∆t > 0 and v ∈ RN0 , there exists a unique w ∈ RN0
such that w = v + ∆tb(w).

Proof. Uniqueness. It is a straightforward consequence of Lemma 3.13.(i): if w1 and w2 are two
solutions, then

‖w1 −w2‖1 = 〈sign(w1 −w2),w1 −w2〉
= ∆t〈sign(w1 −w2),b(w1)− b(w2)〉 ≤ 0.



3.2. Semi-discrete and split-step schemes: well-posedness and invariant measure 73

Existence. The mapping Id−∆tb : RN0 → RN0 is continuous. Furthermore, by Lemmas 3.13.(ii)
and 3.10, we have for all w ∈ RN0 ,

〈(Id−∆tb)(w),w〉
‖w‖2

= ‖w‖2 −∆t
〈b(w),w〉
‖w‖2

≥ ‖w‖2 + ν∆t

∥∥∥D(1)
N w

∥∥∥2

2

‖w‖2
≥ (1 + ν∆t)‖w‖2.

Thus, as a consequence of [42, Theorem 3.3], Id−∆tb is surjective in RN0 and, for any v ∈ RN0 , there
exists w ∈ RN0 such that w = v + ∆tb(w).

Lemma 3.24 (L1-contraction). Let Assumptions 3.1 and 3.3 hold and let (Un)n∈N and (Vn)n∈N be
two solutions of (3.15) (driven by the same Wiener process WQ,N ). Then, almost surely and for any
n ∈ N,

‖Un+1 −Vn+1‖1 ≤ ‖Un −Vn‖1 .

Proof. From Equations (3.15) and Lemma 3.13.(ii), we write

‖Un+1 −Vn+1‖1 =
∥∥∥Un+ 1

2
−Vn+ 1

2

∥∥∥
1

=
〈
sign

(
Un+ 1

2
−Vn+ 1

2

)
,Un+ 1

2
−Vn+ 1

2

〉
=
〈
sign

(
Un+ 1

2
−Vn+ 1

2

)
,Un −Vn

〉
+ ∆t

〈
sign

(
Un+ 1

2
−Vn+ 1

2

)
,b
(
Un+ 1

2

)
− b

(
Vn+ 1

2

)〉
≤
〈
sign

(
Un+ 1

2
−Vn+ 1

2

)
,Un −Vn

〉
≤ ‖Un −Vn‖1 .

Remark 3.25. Note that the choice of the split-step backward Euler scheme is essential for the L1-
contraction property to hold. Indeed, consider for instance two processes (Ũn)n∈N and (Ṽn)n∈N built
via a explicit Euler method, that is,

Ũn+1 = Ũn + ∆tb
(
Ũn

)
+ ∆WQ,N

n+1

(and naturally, the same construction for (Ṽn)n∈N), then the expansion of the L1 distance gives∥∥∥Ũn+1 − Ṽn+1

∥∥∥
1

= sign
〈(

Ũn+1 − Ṽn+1

)
, Ũn − Ṽn

〉
+∆t

〈
sign

(
Ũn+1 − Ṽn+1

)
,b
(
Ũn

)
− b

(
Ṽn

)〉
.

Thus, we would need to control the second term of the right-hand side in the above equation, which is
delicate given that b is not globally Lipschitz.

As for the semi-discrete scheme, Lemma 3.24 induce the following property:

Corollary 3.26. Under Assumptions 3.1 and 3.3, the solution (Un)n∈N of (3.15) is a Feller process.

Proposition 3.27. Under Assumptions 3.1 and 3.3, for any time step ∆t > 0, the process (Un)n∈N
solution of the split-step backward Euler method (3.15) admits an invariant measure νN,∆t. Moreover,
if V is a random variable with distribution νN,∆t, then

E
[∥∥∥D(1)

N V
∥∥∥2

2

]
≤ D0

(
1

2ν
+ ∆tmax

)
=: C

1,2 (3.33)
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and
E
[∥∥∥D(1)

N V 1
2

∥∥∥2

2

]
≤ D0

2ν
, (3.34)

where V 1
2
denotes the solution of V 1

2
= V + ∆tb(V 1

2
).

Proof. Let u0 ∈ RN0 be the deterministic initial condition of the process (Un)n∈N. Starting from the
first equation in (3.15), we have ∥∥∥Un+ 1

2
−∆tb

(
Un+ 1

2

)∥∥∥2

2
= ‖Un‖22 ,

by expanding the left-hand side, we derive the inequality∥∥∥Un+ 1
2

∥∥∥2

2
≤ ‖Un‖22 + 2∆t

〈
b
(
Un+ 1

2

)
,Un+ 1

2

〉
.

Using the dissipativity inequality (Lemma 3.13.(ii)), we get∥∥∥Un+ 1
2

∥∥∥2

2
≤ ‖Un‖22 − 2ν∆t

∥∥∥D(1)
N Un+ 1

2

∥∥∥2

2
. (3.35)

Now, from the second equation in (3.15), we have

‖Un+1‖22 =
∥∥∥Un+ 1

2

∥∥∥2

2
+ 2

〈
Un+ 1

2
,∆WQ,N

n+1

〉
+
∥∥∥∆WQ,N

n+1

∥∥∥2

2
. (3.36)

Injecting Inequality (3.35) into Equation (3.36), we get

‖Un+1‖22 − ‖Un‖22 ≤ −2ν∆t
∥∥∥D(1)

N Un+ 1
2

∥∥∥2

2
+ 2

〈
Un+ 1

2
,∆WQ,N

n+1

〉
+
∥∥∥∆WQ,N

n+1

∥∥∥2

2
. (3.37)

By definition of WQ,N and from (3.9), we have

E
[∥∥∥∆WQ,N

n+1

∥∥∥2

2

]
=

1

N
∆t

N∑
i=1

∑
k≥1

(
σki

)2
≤ D0∆t. (3.38)

On the other hand, the variables Un+ 1
2
and ∆WQ,N

n+1 are independent, so that taking the expectation
in (3.37) yields

E
[
‖Un+1‖22

]
− E

[
‖Un‖22

]
≤ −2ν∆tE

[∥∥∥D(1)
N Un+ 1

2

∥∥∥2

2

]
+D0∆t,

which is valid for any n ∈ N, so that we can get a telescopic sum:

E
[
‖Un‖22

]
− ‖u0‖22 =

n−1∑
l=0

(
E
[
‖Ul+1‖22

]
− E

[
‖Ul‖22

])
≤ −2ν∆t

n−1∑
l=0

E
[∥∥∥D(1)

N Ul+ 1
2

∥∥∥2

2

]
+ n∆tD0. (3.39)

Hence,

2ν∆t

n−1∑
l=0

E
[∥∥∥D(1)

N Ul+ 1
2

∥∥∥2

2

]
≤ ‖u0‖22 + n∆tD0. (3.40)



3.2. Semi-discrete and split-step schemes: well-posedness and invariant measure 75

Besides,

E
[∥∥∥D(1)

N Ul+1

∥∥∥2

2

]
= E

[∥∥∥D(1)
N Ul+ 1

2

∥∥∥2

2

]
+ E

[∥∥∥D(1)
N ∆WQ,N

l+1

∥∥∥2

2

]
, (3.41)

and

E
[∥∥∥D(1)

N ∆WQ,N
l+1

∥∥∥2

2

]
= NE

 N∑
i=1

∑
k≥1

(
σki+1 − σki

)(
W k((l + 1)∆t)−W k(l∆t)

)2
= N

N∑
i=1

∑
k≥1

(
σki+1 − σki

)2
E
[(
W k((l + 1)∆t)−W k(l∆t)

)2
]

= ∆t
∑
k≥1

∥∥∥D(1)
N σk

∥∥∥2

2
.

Now, from the definition of σk, the Jensen inequality and (3.5), we have

∥∥∥D(1)
N σk

∥∥∥2

2
= N

N∑
i=1

∑
k≥1

(
N

∫ i
N

i−1
N

(
gk

(
x+

1

N

)
− gk(x)

)
dx

)2

≤ N2
N∑
i=1

∑
k≥1

∫ i
N

i−1
N

(
gk

(
x+

1

N

)
− gk(x)

)2

dx

= N2
N∑
i=1

∑
k≥1

∫ i
N

i−1
N

(∫ x+ 1
N

x
∂xgk(y)dy

)2

dx

≤ N2
N∑
i=1

∫ i
N

i−1
N

1

N

∫ x+ 1
N

x

∑
k≥1

∂xgk(y)2dydx

≤ D0. (3.42)

Thus, we have

E
[∥∥∥D(1)

N ∆WQ,N
l+1

∥∥∥2

2

]
≤ ∆tD0. (3.43)

Injecting (3.43) into (3.41), and (3.41) into (3.40), we get

1

n

n−1∑
l=0

E
[∥∥∥D(1)

N Ul+1

∥∥∥2

2

]
≤ 1

2nν∆t
‖u0‖22 +

D0

2ν
+ ∆tD0. (3.44)

Since ‖D(1)
N · ‖2 defines a norm on RN0 and since from Corollary 3.26, the process (Un)n∈N is Feller,

the result follows from Markov’s inequality and the Krylov-Bogoliubov theorem [36, Theorem 3.1.1].
Using the same arguments as for the end of the proof of Proposition 3.19, Inequalities (3.44)

and (3.40) yield respectively (3.33) and (3.34).

We now proceed to the proof of uniqueness of the invariant measure νN,∆t.

Lemma 3.28 (Hitting any neighbourhood of 0 with positive probability). Let Assumptions 3.1 and 3.3
hold. Let (Un)n∈N and (Vn)n∈N be two solutions of (3.15) driven by the same Wiener process WQ,N .
For any ε > 0 and any M > 0, there exists nε,M ∈ N such that

pε,M := inf
‖u0‖2∨‖v0‖2≤M

P(u0,v0)

(∥∥Unε,M

∥∥
1

+
∥∥Vnε,M

∥∥
1
≤ ε
)
> 0.
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Proof. First, let ε > 0 and let us fix u0,v0 ∈ RN0 such that ‖u0‖2 ≤M and ‖v0‖2 ≤M .
Let (un)n∈N and (vn)n∈N denote the noiseless counterparts of the processes (Un)n∈N and (Vn)n∈N,

i.e. {
un+1 = un + ∆tb (un+1)

vn+1 = vn + ∆tb (vn+1) ,
(3.45)

with initial conditions u0 and v0. Then (un)n∈N and (vn)n∈N are subject to non-perturbed dissipativity,
and consequently the sum of their energies decreases to 0 over time. Indeed, we have

‖un‖22 + ‖vn‖22 = ‖un+1 −∆tb (un+1)‖22 + ‖vn+1 −∆tb (vn+1)‖22
= ‖un+1‖22 + ‖vn+1‖22 + (∆t)2

(
‖b (un+1)‖22 + ‖b (vn+1)‖22

)
− 2∆t (〈un+1,b (un+1)〉+ 〈vn+1,b (vn+1)〉)

therefore, using successively Lemma 3.13.(ii) and Lemma 3.10,

‖un+1‖22 + ‖vn+1‖22 −
(
‖un‖22 + ‖vn‖22

)
≤ 2∆t (〈un+1,b (un+1)〉+ 〈vn+1,b (vn+1)〉)

≤ −2∆tν

(∥∥∥D(1)
N un+1

∥∥∥2

2
+
∥∥∥D(1)

N vn+1

∥∥∥2

2

)
≤ −2∆tν

(
‖un+1‖22 + ‖vn+1‖22

)
so that

‖un+1‖22 + ‖vn+1‖22 ≤
1

1 + 2∆tν

(
‖un‖22 + ‖vn‖22

)
,

by induction, we get for all n ∈ N,

‖un‖22 + ‖vn‖22 ≤
(

1

1 + 2∆tν

)n (
‖u0‖22 + ‖v0‖22

)
.

It appears now that if we fix the value

nε,M :=

⌈
−1

log(1 + 2∆tν)
log

(
ε2

16M2

)⌉
,

we get for all n ≥ nε,M ,
‖un‖1 + ‖vn‖1 ≤ ‖un‖2 + ‖vn‖2 ≤

ε

2
.

Now, we fix δε := ε/(4nε,M ) and we restrict ourselves to the event{
sup

n=1,...,nε,M

∥∥∆WQ,N
n

∥∥
1
≤ δε

}
. (3.46)

Let (Un)n∈N and (Vn)n∈N be two solutions of (3.15) with the deterministic initial conditions u0 and
v0 respectively. With similar arguments as for the proof of Proposition 3.17, we get from (3.15), (3.45)
and Lemma 3.13.(ii), for all n ∈ N,

‖Un+1 − un+1‖1 + ‖Vn+1 − vn+1‖1 ≤
∥∥∥Un+ 1

2
− un+1

∥∥∥
1

+
∥∥∥Vn+ 1

2
− vn+1

∥∥∥
1

+ 2
∥∥∥∆WQ,N

n+1

∥∥∥
1

=
〈
sign

(
Un+ 1

2
− un+1

)
,Un − un

〉
+ ∆t

〈
sign

(
Un+ 1

2
− un+1

)
,b
(
Un+ 1

2

)
− b (un+1)

〉
+
〈
sign

(
Vn+ 1

2
− vn+1

)
,Vn − vn

〉
+ ∆t

〈
sign

(
Vn+ 1

2
− vn+1

)
,b
(
Vn+ 1

2

)
− b (vn+1)

〉
+ 2

∥∥∥∆WQ,N
n+1

∥∥∥
1

≤ ‖Un − un‖1 + ‖Vn − vn‖1 + 2
∥∥∥∆WQ,N

n+1

∥∥∥
1
.
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On the event (3.46), we have for all n = 1, . . . , nε,M ,

‖Un+1 − un+1‖1 + ‖Vn+1 − vn+1‖1 ≤ ‖Un − un‖1 + ‖Vn − vn‖1 + 2δε.

In particular, by induction, we have∥∥Unε,M − unε,M

∥∥
1

+
∥∥Vnε,M − vnε,M

∥∥
1
≤ 2nε,Mδε =

ε

2
.

Thus, ∥∥Unε,M

∥∥
1

+
∥∥Vnε,M

∥∥
1
≤
∥∥Unε,M − unε,M

∥∥
1

+
∥∥Vnε,M − vnε,M

∥∥
1

+
∥∥unε,M

∥∥
1

+
∥∥vnε,M

∥∥
1

≤ ε

2
+
ε

2
= ε.

We just have shown that

P(u0,v0)

(∥∥Unε,M

∥∥
1

+
∥∥Vnε,M

∥∥
1
≤ ε
)
≥ P

(
sup

n=1,...,nε,M

∥∥∆WQ,N
n

∥∥
1
≤ δε

)
> 0.

Since the event (3.46) does not depend on u0 nor v0, we get the result.

For two solutions (Un)n∈N and (Vn)n∈N of (3.15) driven by the same Wiener process WQ,N , we
define the entrance time

ηM := inf {n ∈ N : ‖Un+1‖2 ∨ ‖Vn+1‖2 ≤M} .

The following lemma is the time-discrete version of Lemma 3.22. The proof is omitted as it is very
similar to its time-continuous counterpart.

Lemma 3.29 (Almost sure entrance in some ball). Under Assumptions 3.1 and 3.3, there existsM > 0
such that for any initial conditions u0, v0 ∈ RN0 for the processes (Un)n∈N and (Vn)n∈N, ηM < +∞
almost surely.

Proof of Theorem 1, Assertion (ii). Given Lemmas 3.24, 3.28 and 3.29, the proof is done in
exactly the same way as for Assertion (i).

Finally, the fact that νN and νN,∆t belong to P2(RN0 ) come from Propositions 3.19 and 3.27
respectively (for νN,∆t, we use in particular the fact that ‖D(1)

N · ‖2 defines a norm on RN0 ).

3.3 Convergence of invariant measures: semi-discrete scheme towards
SPDE

The purpose of this section is to prove that W2(µ
(m)
N , µ) −→ 0, N → +∞, m = 0, 1, 2, which will be

the first part of the proof of Theorem 3.7. In Subsection 3.3.1, we provide a result ensuring that it is
sufficient that the convergence holds for only one m ∈ {0, 1, 2}, in which case it will hold for the three
of them. Then, we show that (µ

(m)
N )N≥1 is relatively compact in P2(L2

0(T)), and in Subsection 3.3.2,
we present a procedure to identify any subsequential limit of (µ

(m)
N )N≥1 as the invariant measure µ

for the solution of (3.1), which leads to the proof the first assertion of Theorem 3.7. Subsection 3.3.3
contain the proofs of the lemmas from Subsections 3.3.1 and 3.3.2.



78
Chapter 3. Finite-volume approximation of the invariant measure of a viscous

stochastic scalar conservation law

3.3.1 Notations and preliminary results

For m = 0, 1, 2, we define the interpolation operators Ψ
(m)
N : RN0 →Wm,∞

0 (T) by

Ψ
(m)
N v(x) =

N∑
i=1

viφ
(m)
N

(
x− i

N

)
, v = (v1, . . . , vN ) ∈ RN0 ,

where
φ

(0)
N (x) = 1(− 1

N
,0](x),

φ
(1)
N (x) = N

(
x+

1

N

)
1(− 1

N
,0](x) +N

(
1

N
− x
)
1(0, 1

N ](x),

φ
(2)
N (x) =

N2

2

(
x+

1

N

)(
x+

2

N

)
1(− 2

N
,− 1

N ](x)−N2

(
x+

1

N

)(
x− 1

N

)
1(− 1

N
,0](x)

+
N2

2

(
x− 1

N

)(
x− 2

N

)
1(0, 1

N ](x),

so that Ψ
(0)
N v, Ψ

(1)
N v and Ψ

(2)
N v are the respectively piecewise constant, linear and quadratic inter-

polations of the values vi at the points i/N . In this regard, note that for v ∈ RN0 , i ∈ Z/NZ and
m = 0, 1, 2, we have Ψ

(m)
N v( i

N ) = vi.
We recall that these operators allowed to define the sequences of embedded invariant measures

µ
(m)
N = νN ◦ (Ψ

(m)
N )−1, where µ(m)

N is here considered as an element of P(L2
0(T)).

We prove the following lemma in the appendix:

Lemma 3.30. The following properties hold:

(i) for v ∈ RN0 , any p ∈ [1,+∞] and any m = 0, 1, 2,∥∥∥Ψ
(m)
N v

∥∥∥
Wm,p

0 (T)
=
∥∥∥D(m)

N v
∥∥∥
p
,

(ii) for any v ∈ RN0 , ∥∥∥Ψ
(1)
N v −Ψ

(0)
N v

∥∥∥2

L2
0(T)

=
1

3N2

∥∥∥D(1)
N v

∥∥∥2

2

and ∥∥∥Ψ
(2)
N v −Ψ

(0)
N v

∥∥∥2

L2
0(T)
≤ 3

20N4

∥∥∥D(2)
N v

∥∥∥2

2
+

1

2N2

∥∥∥D(1)
N v

∥∥∥2

2
.

The proof of the following Lemma is given below in Subsection 3.3.3.

Lemma 3.31 (Discrete H1
0 and H2

0 bounds). Let Assumptions 3.1 and 3.3 hold and let V be a random
variable in RN0 with distribution νN , then V satisfies

E
[∥∥∥D(1)

N V
∥∥∥2

2

]
≤ D0

2ν
=: C1,2. (3.47)

Furthermore, there exists a positive constant C2,2 not depending on N such that,

E
[∥∥∥D(2)

N V
∥∥∥2

2

]
≤ C2,2. (3.48)
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The following result ensures in particular that the estimates obtained at Lemma 3.31 and Propo-
sition 3.19 remain true when passing to the limit N → +∞.

Lemma 3.32 (Relative compactness). Under Assumptions 3.1 and 3.3, the three families of probability
measures (µ

(m)
N )N≥1, m = 0, 1, 2, are relatively compact in the space P2(L2

0(T)). Moreover, for any
m = 0, 1, 2 and for any subsequential limit µ∗ ∈ P2(L2

0(T)) of (µ
(m)
N )N≥1, a random variable v ∼ µ∗

satisfies

E
[
‖v‖2H1

0 (T)

]
≤ C1,2, E

[
‖v‖2H2

0 (T)

]
≤ C2,2 and E

[
‖v‖p

Lp
0(T)

]
≤ C0,p, p ∈ [1,+∞). (3.49)

Proof. Step 1. Relative compactness of (µ
(1)
N )N≥1 in P(L2

0(T)). Let V be an RN0 -valued random
variable with distribution νN . Then, Ψ

(1)
N V has distribution µ(1)

N . Thanks to Lemmas 3.30 and 3.31,
we have

E
[∥∥∥Ψ

(1)
N V

∥∥∥2

H1
0 (T)

]
= E

[∥∥∥D(1)
N V

∥∥∥2

2

]
≤ C1,2.

Thus, Markov’s inequality implies

∀ε > 0, P
(∥∥∥Ψ

(1)
N V

∥∥∥2

H1
0 (T)

>
1

ε

)
≤ εC1,2.

The space H1
0 (T) is compactly embedded in L2

0(T), so this last inequality means that the sequence
(µ

(1)
N )N∈N∗ is tight in the space P(L2

0(T)). As a consequence of Prokhorov’s theorem [12, Theorem 5.1],
any subsequence of (µ

(1)
N )N≥1 admits itself a weakly converging subsequence in P(L2

0(T)). In this
respect, let µ∗ ∈ P(L2

0(T)) be a subsequential limit of (µ
(1)
N )N≥1 and let (µ

(1)
Nj

)j∈N be the associated
subsequence.

Step 2. Relative compactness of (µ
(0)
N )N≥1 in P2(L2

0(T)). Let v be a random variable with dis-
tribution µ∗. On the one hand, the sequence of random variables (Ψ

(1)
Nj

V)j∈N converges in distribution
towards v. On the other hand, by Lemmas 3.30.(ii) and 3.31, we have

E
[∥∥∥Ψ

(0)
Nj

V −Ψ
(1)
Nj

V
∥∥∥2

L2
0(T)

]
≤ 1

3N2
j

E
[∥∥∥D(1)

Nj
V
∥∥∥2

2

]
≤ C1,2

3N2
j

−→
j→∞

0,

so that Ψ
(0)
Nj

V−Ψ
(1)
Nj

V converges in probability towards 0 as j → +∞. As a consequence, by Slutsky’s

theorem [12, Theorem 3.9], the couple (Ψ
(1)
Nj

V,Ψ
(0)
Nj

V−Ψ
(1)
Nj

V) converges in distribution towards (v, 0)

as j → +∞. In particular, Ψ
(0)
Nj

V converges in distribution towards v, which means that µ(0)
Nj

converges

weakly in P(L2
0(T)) towards µ∗. Moreover, µ(0)

Nj
has uniform moment bounds with respect to j thanks

to (3.2), Lemma 3.30.(i) and Proposition 3.19:

E
[∥∥∥Ψ

(0)
Nj

V
∥∥∥p
L2

0(T)

]
≤ E

[∥∥∥Ψ
(0)
Nj

V
∥∥∥p
Lp

0(T)

]
= E

[
‖V‖pp

]
≤ C0,p, ∀p ≥ 2. (3.50)

As a consequence, (µ
(0)
Nj

)j∈N satisfies a uniform integrability condition in the sense of [102, Definition
6.8.(iii)] and thus, is converging for the Wasserstein distance in P2(L2

0(T)) towards µ∗.
Step 3. Relative compactness of (µ

(1)
Nj

)j∈N and (µ
(2)
Nj

)j∈N in P2(L2
0(T)). The sequences

(µ
(1)
Nj

)j∈N and (µ
(2)
Nj

)j∈N also converge towards µ∗ in P2(L2
0(T)) by Lemmas 3.30 and 3.31. Indeed, we

have

W2

(
µ

(1)
Nj
, µ

(0)
Nj

)2
≤ E

[∥∥∥Ψ
(1)
Nj

V −Ψ
(0)
Nj

V
∥∥∥2

L2
0(T)

]
≤ C1,2

3N2
j

, (3.51)
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and

W2

(
µ

(2)
Nj
, µ

(0)
Nj

)2
≤ E

[∥∥∥Ψ
(2)
Nj

V −Ψ
(0)
Nj

V
∥∥∥2

L2
0(T)

]
≤ E

[
3

20N4
j

∥∥∥D(2)
Nj

V
∥∥∥2

2
+

1

2N2
j

∥∥∥D(1)
Nj

V
∥∥∥2

2

]

≤ 3C2,2

20N4
j

+
C1,2

2N2
j

· (3.52)

Step 4. Moment estimates. Finally, the estimates (3.49) follow from Portemanteau’s theorem:
since ‖ · ‖2

H1
0 (T)

is lower semi-continuous on the space L2
0(T), we have

E
[
‖v‖2H1

0 (T)

]
≤ lim inf

j→∞
E
[∥∥∥Ψ

(1)
Nj

V
∥∥∥2

H1
0 (T)

]
≤ C1,2,

and the same argument applies for ‖ · ‖2
H2

0 (T)
and ‖ · ‖p

Lp
0(T)

using respectively the sequences of random

variables (Ψ
(2)
Nj

V)j∈N and (Ψ
(0)
Nj

V)j∈N.

The three following lemmas will be useful for the proof of finite time convergence stated in the next
subsection, namely Proposition 3.36. The proofs are given in Subsection 3.3.3.

Lemma 3.33 (Discrete W 1,3
0 bound). Let Assumptions 3.1 and 3.3 hold and let V be an RN0 -valued

random variable distributed according to νN . Then, there exists a constant C1,3 depending only on ν,
pA and D0 such that

E
[∥∥∥D(1)

N V
∥∥∥3

3

]
≤ C1,3.

Lemma 3.34 (Discrete H1
0 bound in finite time). Let Assumptions 3.1 and 3.3 hold and let (U(t))t≥0

be the solution of (3.11) with an initial condition U0 ∼ νN . For every T > 0, there exists a constant
C1,2
T not depending on N such that

E

[
sup
t∈[0,T ]

∥∥∥D(1)
N U(t)

∥∥∥2

2

]
≤ C1,2

T .

Lemma 3.35 (Moments on the solution of (3.1)). Under Assumption 3.1, for all p ∈ [2,+∞) and
T > 0, there are constants C̃0,p

T and C̃1,2
T such that the solution (u(t))t≥0 of (3.1) with initial condition

u0 ∼ µ∗ satisfies for all t ∈ [0, T ]:

sup
t∈[0,T ]

E
[
‖u(t)‖p

Lp
0(T)

]
≤ C̃0,p

T and sup
t∈[0,T ]

E
[
‖u(t)‖2H1

0 (T)

]
≤ C̃1,2

T .

3.3.2 Characterisation of the limit

In Lemma 3.32 we proved the existence of subsequential limits µ∗ for the sequences of embedded
invariant measures (µ

(m)
N )N≥1. Our convergence argument now consists in identifying any such limit

µ∗ with the unique invariant measure µ of the solution (u(t))t≥0 of (3.1) (see Proposition 3.2). We
proved in Lemma 3.32 that µ∗ gives full weight to H2

0 (T). As a consequence of this result, the
measure µ∗ can be considered as an initial distribution for (u(t))t≥0. The weak convergence of the
subsequence µ(1)

Nj
towards µ∗ can be represented, by virtue of the Skorokhod theorem, by the almost

sure L2
0(T)-convergence, on some particular probability space, of a sequence of random variables u(1)

j,0
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towards u0, where u
(1)
j,0 ∼ µ

(1)
Nj

, ∀j ∈ N, and u0 ∼ µ∗. We may define on this probability space, up
to enlarging it, a Q-Wiener process (WQ(t))t≥0 defined as in Section 3.1.1, independent of u0 and
u

(1)
j,0 , along with a normal filtration. In such a way, we may consider u0 and u(1)

j,0 as initial conditions
for the solution of (3.1) and the embedded solutions of (3.11) respectively. More precisely, if we
denote by U0 = (U1,0, . . . , UNj ,0) the RNj

0 -valued random variable such that Ui,0 = uj,0(i/N), and if
we define (U(t))t≥0 the solution of (3.11) starting at U0, then we define the process (u

(1)
Nj

(t))t≥0 by

u
(1)
Nj

(t) = Ψ
(1)
Nj

U(t), for all t ≥ 0.

Given that (u
(1)
Nj

(t))t≥0 is a numerical approximation of (u(t))t≥0, convergence at time 0 shall lead
to convergence at every finite time t:

Proposition 3.36. Under Assumptions 3.1 and 3.3, for every t ≥ 0, we have

lim
j→∞

E
[∥∥∥u(1)

Nj
(t)− u(t)

∥∥∥2

L2
0(T)

]
= 0.

This result is proved in Section 3.3.3 below. Let us explain how this finite time result leads to the
convergence of (µ

(m)
N )N≥1 towards µ in P2(L2

0(T)).

Proof of Theorem 3.7: part 1/2. The measure µ(1)
Nj

is invariant for the process (u
(1)
Nj

(t))t≥0.
For all t ≥ 0, let µ∗t ∈ P(L2

0(T)) denote the probability distribution of u(t). By Definition 3.6 and
Proposition 3.36, we have

∀t ≥ 0, lim
j→∞

W2

(
µ

(1)
Nj
, µ∗t

)
= 0.

By continuity of the Wasserstein distance [102, Corollary 6.11] and Lemma 3.32, this leads to

∀t ≥ 0, W2 (µ∗, µ∗t ) = 0. (3.53)

From Lemma 2.20, there exists a unique probability measure in P(H2
0 (T)) coinciding with µ∗ on the

Borel sets of H2
0 (T) (for convenience, we still call this measure µ∗). The meaning of (3.53) is that this

measure µ∗ ∈ P(H2
0 (T)) is invariant for the process (u(t))t≥0. However, this process already has a

unique invariant measure µ ∈ P(H2
0 (T)), so that necessarily µ∗ = µ. As a consequence, µ is the only

subsequential limit in P2(L2
0(T)) of the sequence (µ

(1)
N )N≥1, and since from Lemma 3.32, (µ

(1)
N )N≥1 is

relatively compact in P2(L2
0(T)), we just proved (3.16) (see for instance [12, Theorem 2.6]) in the case

m = 1. The cases m = 0 and m = 2 follow from the bounds (3.51) and (3.52).

Remark 3.37. This last proof shows in particular that µ∗ is invariant for (u(t))t≥0. Therefore it
provides a second proof for the existence part in Theorem 2.7.

3.3.3 Proofs

Proof of Lemma 3.31. Let us decompose the function b as the sum of b1 and b2, defined by

∀v ∈ RN0 , b1i (v) := −N
(
A(vi, vi+1)−A(vi−1, vi)

)
and b2 := νD

(2)
N . (3.54)

To prove the first inequality of the lemma, apply Corollary 3.20 with p = 2 and recall that we may
take C0,0 = 1.

We focus now on the discrete H2
0 estimate. Let V ∼ νN and let (U(t))t≥0 be the solution of (3.11)

with initial distribution νN . We may compute the dynamics of the discrete H1
0 -norm of (U(t))t≥0 by
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using Itô’s formula: for all t ≥ 0,

∥∥∥D(1)
N U(t)

∥∥∥2

2
=
∥∥∥D(1)

N U0

∥∥∥2

2
+ 2

∫ t

0

〈
D

(1)
N b(U(s)),D

(1)
N U(s)

〉
ds

+ 2

∫ t

0

〈
D

(1)
N U(s), d

(
D

(1)
N WQ,N

)
(s)
〉

+ t
∑
k≥1

∥∥∥D(1)
N σk

∥∥∥2

2
. (3.55)

It appears that the third term of the right-hand side is a martingale since

∑
k≥1

E
[∫ t

0

〈
D

(1)
N U(s),D

(1)
N σk

〉2
ds

]
≤ t

∑
k≥1

∥∥∥D(1)
N σk

∥∥∥2

2

E
[∥∥∥D(1)

N V
∥∥∥2

2

]
≤ tD0C

1,2 < +∞, (3.56)

where we used the stationarity of (U(t))t≥0, Inequality (3.42), and the first inequality from this lemma.
Thus, taking the expectation and expanding the drift term, we get

E
[∥∥∥D(1)

N U(t)
∥∥∥2

2

]
= E

[∥∥∥D(1)
N U0

∥∥∥2

2

]
+ 2

∫ t

0
E
[〈

D
(1)
N U(s),D

(1)
N b(U(s))

〉]
ds+ t

∑
k≥1

∥∥∥D(1)
N σk

∥∥∥2

2
.

Since the process starts from its invariant measure, the left-hand side cancels with the first term of the
right-hand side. Besides, we may drop the time index. Using the decomposition b = b1 + b2, we may
sum by parts both the viscous and the flux term, and after dividing by t, it remains

2νE
[∥∥∥D(2)

N V
∥∥∥2

2

]
= −2E

[〈
D

(2)
N V,b1(V)

〉]
+
∑
k≥1

∥∥∥D(1)
N σk

∥∥∥2

2
≤ 2

√
E
[∥∥∥D(2)

N V
∥∥∥2

2

]√
E
[
‖b1(V)‖22

]
+D0,

(3.57)
where we used in particular the Cauchy-Schwarz inequality. We can bound the term in the second
square root thanks to Assumption 3.3:

E
[∥∥b1(V)

∥∥2

2

]
= E

[
N

N∑
i=1

(
A(Vi, Vi+1)−A(Vi−1, Vi)

)2]

= E

N N∑
i=1

(∫ Vi+1

Vi

∂2A(Vi, z)dz +

∫ Vi

Vi−1

∂1A(z, Vi)dz

)2
 (by (3.13))

≤ 2E

[
N

N∑
i=1

(Vi+1 − Vi)
∫ Vi+1

Vi

∂2A(Vi, z)
2dz

]
+ 2E

[
N

N∑
i=1

(Vi − Vi−1)

∫ Vi

Vi−1

∂1A(z, Vi)
2dz

]
(by Jensen)

≤ 4C2
A
E

[
N

N∑
i=1

(Vi − Vi−1)

∫ Vi

Vi−1

(1 + |z|pA)2 dz

]
(by (3.14))

≤ 8C2
A

(
E

[
N

N∑
i=1

(Vi − Vi−1)2

]
+ E

[
N

N∑
i=1

(Vi − Vi−1)

∫ Vi

Vi−1

|z|2pAdz

])

= 8C2
A

(
E
[∥∥∥D(1)

N V
∥∥∥2

2

]
+

1

2pA + 1
E
[〈

D
(1)
N

(
V2pA+1

)
,D

(1)
N V

〉])
≤ 8C2

A

(
C1,2 +

D0

2ν
C0,2pA

)
, (3.58)
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where we used Lemma 3.31 and Corollary 3.20 with p = 2pA + 2 at the last line.
Injecting (3.58) into (3.57), we get

2νE
[∥∥∥D(2)

N U
∥∥∥2

2

]
≤ 2

√
E
[∥∥∥D(2)

N U
∥∥∥2

2

]√
4C2

A

D0

ν

(
1 + C0,2pA

)
+D0.

Applying Young’s inequality on the right-hand side, we get

2νE
[∥∥∥D(2)

N U
∥∥∥2

2

]
≤ νE

[∥∥∥D(2)
N U

∥∥∥2

2

]
+ 4C2

A

D0

ν2

(
1 + C0,2pA

)
+D0,

which rewrites

E
[∥∥∥D(2)

N U
∥∥∥2

2

]
≤ 4C2

A

D0

ν3

(
1 + C0,2pA

)
+
D0

ν
.

Since the right-hand side does not depend on N , we get the result.

Proof of Lemma 3.33. From summations by parts and Hölder’s inequality, we establish a discrete
Gagliardo-Nirenberg inequality in the following way (similar inequalities in the multi-dimensional case
are given for instance in [18, Lemma 6] or [11, Theorem 4]):

E

[
N∑
i=1

|Vi+1 − Vi|3
]

= E

[
N∑
i=1

(Vi+1 − Vi)2|Vi+1 − Vi|

]

= −E

[
N∑
i=1

Vi ((Vi+1 − Vi)|Vi+1 − Vi| − (Vi − Vi−1)|Vi − Vi−1|)

]

= −E

[
N∑
i=1

Vi ((Vi+1 − 2Vi + Vi−1)|Vi+1 − Vi|+ (Vi − Vi−1) (|Vi+1 − Vi| − |Vi − Vi−1|))

]

≤ E

[
N∑
i=1

|Vi||Vi+1 − Vi||Vi+1 − 2Vi + Vi−1|

]
+ E

[
N∑
i=1

|Vi||Vi − Vi−1||Vi+1 − 2Vi + Vi−1|

]

≤ 2E

[
N∑
i=1

|Vi|6
] 1

6

E

[
N∑
i=1

|Vi+1 − Vi|3
] 1

3

E

[
N∑
i=1

|Vi+1 − 2Vi + Vi−1|2
] 1

2

.

Dividing on both sides by E[
∑

i |Vi+1 − Vi|3]1/3 and then passing to the power 3/2, we obtain

E

[
N∑
i=1

|Vi+1 − Vi|3
]
≤ 23/2E

[
N∑
i=1

|Vi|6
] 1

4

E

[
N∑
i=1

|Vi+1 − 2Vi + Vi−1|2
] 3

4

.

Multiplying on both sides by N2, we derive the inequality

E
[∥∥∥D(1)

N V
∥∥∥3

3

]
≤ 2
√

2E
[
‖V‖66

]1/4
E
[∥∥∥D(2)

N V
∥∥∥2

2

]3/4

,

and we conclude thanks to Proposition 3.19 and Lemma 3.31:

E
[∥∥∥D(1)

N V
∥∥∥3

3

]
≤ 2
√

2
(
C0,6

)1/4 (
C2,2

)3/4
=: C1,3.
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Proof of Lemma 3.34. Let U0 ∼ νN . Using the decomposition b = b1 + b2 introduced at (3.54),
we may expand Equation (3.55):

∥∥∥D(1)
N U(t)

∥∥∥2

2
=
∥∥∥D(1)

N U0

∥∥∥2

2
+2

∫ t

0

〈
D

(1)
N b1(U(s)),D

(1)
N U(s)

〉
ds+2ν

∫ t

0

〈
D

(1)
N D

(2)
N U(s),D

(1)
N U(s)

〉
ds

+ 2

∫ t

0

〈
D

(1)
N U(s),d

(
D

(1)
N WQ,N

)
(s)
〉

+ t
∥∥∥D(1)

N σk
∥∥∥2

2
. (3.59)

We shall address the second term of the right-hand side by applying (3.18) and Young’s inequality:

2

∫ t

0

〈
D

(1)
N b1(U(s)),D

(1)
N U(s)

〉
ds = −2

∫ t

0

〈
b1(U(s)),D

(2)
N U(s)

〉
ds

≤ 1

2ν

∫ t

0

∥∥b1(U(s))
∥∥2

2
ds+ 2ν

∫ t

0

∥∥∥D(2)
N U(s)

∥∥∥2

2
ds. (3.60)

As for the viscous term in (3.59), Equation (3.18) leads to

2ν

∫ t

0

〈
D

(1)
N D

(2)
N U(s),D

(1)
N U(s)

〉
ds = −2ν

∫ t

0

∥∥∥D(2)
N U(s)

∥∥∥2

2
ds. (3.61)

Thus, injecting (3.61) and (3.60) into (3.59) and using the bound (3.42) results in:

∥∥∥D(1)
N U(t)

∥∥∥2

2
≤
∥∥∥D(1)

N U0

∥∥∥2

2
+

1

2ν

∫ t

0

∥∥b1(U(s))
∥∥2

2
ds+ 2

∫ t

0

〈
D

(1)
N U(s), d

(
D

(1)
N WQ,N

)
(s)
〉

+ tD0.

(3.62)
Taking the supremum in time and the expectation over the second term of the right-hand side, by
stationarity of (U(t))t≥0, we get the bound

E

[
sup
t∈[0,T ]

1

2ν

∫ t

0

∥∥b1(U(s))
∥∥2

2
ds

]
≤ 1

2ν
E
[∫ T

0

∥∥b1(U(s))
∥∥2

2
ds

]
=

1

2ν

∫ T

0
E
[∥∥b1(U(s))

∥∥2

2

]
ds =

T

2ν
E
[∥∥b1(U0)

∥∥2

2

]
.

Applying now inequality (3.58), we get

E

[
sup
t∈[0,T ]

1

2ν

∫ t

0

∥∥b1(U(s))
∥∥2

2
ds

]
≤

2C2
A
TD0

ν2

(
1 + C0,2pA

)
. (3.63)

We now turn our attention to the third term of the right-hand side in (3.62). Recall that by (3.56),
the process (

∫ t
0 〈D

(1)
N U(s),d

(
D

(1)
N WQ,N

)
(s)〉)t≥0 is a martingale. Therefore, applying successively the

Jensen and the Doob inequalities, the Itô isometry, the Cauchy-Schwarz inequality and Lemma 3.31,
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we get

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
D

(1)
N U(s),d

(
D

(1)
N WQ,N

)
(s)
〉∣∣∣∣
]
≤ E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈
D

(1)
N U(s), d

(
D

(1)
N WQ,N

)
(s)
〉∣∣∣∣2
]1/2

≤ 2E

[∣∣∣∣∫ T

0

〈
D

(1)
N U(s),d

(
D

(1)
N WQ,N

)
(s)
〉∣∣∣∣2
]1/2

= 2E

∑
k≥1

∫ T

0

〈
D

(1)
N U(s),D

(1)
N σk

〉2
ds

1/2

≤ 2
√
TE
[∥∥∥D(1)

N U0

∥∥∥2

2

]1/2
∑
k≥1

∥∥∥D(1)
N σk

∥∥∥2

2

1/2

≤ 2
√
TC1,2D0 = D0

√
2T

ν
. (3.64)

Now, taking the supremum in time and the expectation in (3.62) and injecting (3.47), (3.63)
and (3.64), we end up with

E

[
sup
t∈[0,T ]

∥∥∥D(1)
N U(t)

∥∥∥2

2

]
≤ C1,2 +

2C2
A
TD0

ν2

(
1 + C0,2pA

)
+D0

√
2T

ν
+ TD0.

Since the right-hand side of the above inequality does not depend on N , the result follows.
Proof of Lemma 3.35. Let p ∈ 2N∗ and let us repeat the proof of Lemma 2.15 up to (2.23). When
the initial condition u0 is random and has distribution µ∗, this equation writes

E
[
‖u (t ∧ Tr)‖pLp

0(T)

]
= E

[
‖u0‖pLp

0(T)

]
− pE

[∫ t∧Tr

0

∫
T
∂xA(u(s))u(s)p−1dxds

]
− νp(p− 1)E

[∫ t∧Tr

0

∫
T
∂xu(s)2u(s)p−2dxds

]
+
p(p− 1)

2

∑
k≥1

E
[∫ t∧Tr

0

∫
T
u(s)p−2g2

kdxds

]
,

for all t ∈ [0, T ] and r ≥ 0, where Tr is a stopping time converging almost surely towards +∞ as
r → +∞ (by Corollary 2.18). Using (2.24), the non-positivity of the third term of the right-hand side,
and bounding the gk’s by their supremum, we get the inequality

E
[
‖u (t ∧ Tr)‖pLp

0(T)

]
≤ E

[
‖u0‖pLp

0(T)

]
+
p(p− 1)

2

∑
k≥1

‖gk‖2L∞0 (T)

E
[∫ t∧Tr

0
‖u(s)‖p−2

Lp−2
0 (T)

ds

]
.

Using now Lemma 3.32, (3.3), (3.5), and Inequality (2.18), we get

E
[
‖u (t ∧ Tr)‖pLp

0(T)

]
≤ C0,p +

p(p− 1)

2
D0

(
C

(p−2)
5

(
1 + E

[
‖u0‖p−2

Lp−2
0 (T)

])
+ C

(p−2)
6 t

)
,

where the constants C(p−2)
5 and C(p−2)

6 , defined in Chapter 2, depend only on ν, p and D0. Using once
again Lemma 3.32, letting r → +∞ and bouding t by T , we obtain

lim sup
r→∞

E
[
‖u (t ∧ Tr)‖pLp

0(T)

]
≤ C0,p +

p(p− 1)

2
D0

(
C

(p−2)
5

(
1 + C0,p−2

)
+ C

(p−2)
6 T

)
=: C̃0,p

T .



86
Chapter 3. Finite-volume approximation of the invariant measure of a viscous

stochastic scalar conservation law

Applying Fatou’s lemma on the left-hand side, we get

E
[
‖u(t)‖p

Lp
0(T)

]
≤ C̃0,p

T ,

and since the right-hand side does not depend on t, we get the first wanted inequality in the case
p ∈ 2N∗. The general case p ∈ [2,+∞) then follows from the Jensen inequality.

To prove the second inequality, we start from Lemma 2.17 which, when u0 is random, gives the
estimate

E
[
‖u(t ∧ Tr)‖2H1

0 (T)

]
≤ E

[
‖u0‖2H1

0 (T)

]
+ C7

(
1 + E

[
‖u0‖2pA+2

L
2pA+2
0 (T)

])
+ C8t,

from which we deduce, by applying Fatou’s lemma on the left-hand side and Lemma 3.32 on the
right-hand side:

E
[
‖u(t)‖2H1

0 (T)

]
≤ C1,2 + C7

(
1 + C0,2pA+2

)
+ C8T =: C̃1,2

T .

We now turn to the proof of the main lemma in this section:

Proof of Proposition 3.36. In all this proof, for notational convenience, the subsequence (u
(1)
Nj

)j∈N

will be denoted by (u
(1)
N )N≥1.

Step 0. Decomposition of the error. Let us fix a time horizon T > 0. We introduce the
stopping time

τM,N := inf

{
t ≥ 0 : ‖u(t)‖H1

0 (T) ∨
∥∥∥u(1)

N (t)
∥∥∥
H1

0 (T)
≥M

}
,

and we split the expectation in two parts: for all t ∈ [0, T ],

E
[∥∥∥u(1)

N (t)− u(t)
∥∥∥2

L2
0(T)

]
= E

[∥∥∥u(1)
N (t)− u(t)

∥∥∥2

L2
0(T)

1t≤τM,N

]
+ E

[∥∥∥u(1)
N (t)− u(t)

∥∥∥2

L2
0(T)

1t>τM,N

]
.

(3.65)
We will address the first term of the RHS in the steps 1 to 6, and the second one in the step 7.

We have

E
[∥∥∥u(1)

N (t)− u(t)
∥∥∥2

L2
0(T)

1t≤τM,N

]
≤ E

[∥∥∥u(1)
N (τM,N ∧ t)− u(τM,N ∧ t)

∥∥∥2

L2
0(T)

]
, (3.66)

and we will use this localization argument to take benefit from the local Lipschitz continuity of the
non-linear term which, by use of the Grönwall lemma, will lead us to show that for any fixed M > 0,

E
[∥∥∥u(1)

N (t)− u(t)
∥∥∥2

L2
0(T)

1t≤τM,N

]
−→
N→∞

0.
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Applying Itô’s formula [35, Theorem 4.32] and taking the expectation, we have

E
[∥∥∥u(1)

N (τM,N ∧ t)− u(τM,N ∧ t)
∥∥∥2

L2
0(T)

]
= E

[∥∥∥u(1)
N (0)− u(0)

∥∥∥2

L2
0(T)

]
− 2E

[∫ τM,N∧t

0

∫
T

(
u

(1)
N (s, x)− u(s, x)

)
(

N∑
i=1

N
(
A (Ui(s), Ui+1(s))−A (Ui−1(s), Ui(s))

)
φ

(1)
N

(
x− i

N

)
− ∂xA

(
u

(1)
N (s, x)

))
dxds

]

− 2E
[∫ τM,N∧t

0

∫
T

(
u

(1)
N (s, x)− u(s, x)

)(
∂xA

(
u

(1)
N (s, x)

)
− ∂xA(u(s, x))

)
dxds

]
+ 2νE

[∫ τM,N∧t

0

∫
T

(
u

(1)
N (s, x)− u(s, x)

)
(
N2

N∑
i=1

(Ui+1(s)− 2Ui(s) + Ui−1(s))φ
(1)
N

(
x− i

N

)
− ∂xxu(s, x)

)
dxds

]

+
∑
k≥1

E

∫ τM,N∧t

0

∫
T

(
N∑
i=1

σki φ
(1)
N

(
x− i

N

)
− gk(x)

)2

dxds


=: IN1 + IN2 (t) + IN3 (t) + IN4 (t) + IN5 (t),

where the local martingale term vanished thanks to the localisation. From Step 1 to Step 5, we will
get an upper bound over each of the terms INl , l = 1, . . . , 5. More precisely, for all l = 1, 2, 4, 5, we will
show that there exists a sequence (εNl )N∈N of non-negative real numbers not depending on t such that
limN→∞ ε

N
l = 0 and such that the following inequalities are satisfied for all N ∈ N and all t ∈ [0, T ]:

IN1 ≤ εN1 , (3.67)

IN2 (t) ≤ E
[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

L2
0(T)

ds

]
+ εN2 , (3.68)

IN4 (t) ≤ −2νE
[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

H1
0 (T)

ds

]
+ εN4 , (3.69)

IN5 (t) ≤ εN5 . (3.70)

In the case l = 3, we will show that there exists a constant γM > 0 not depending on N nor t such
that

IN3 (t) ≤ 2νE
[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

H1
0 (T)

ds

]
+ γME

[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

L2
0(T)

ds

]
.

Step 1. The initial condition. By the construction of the sequence (u
(1)
N )N≥1 in Section 3.3.2,

we have almost surely

lim
N→∞

∥∥∥u(1)
N (0)− u(0)

∥∥∥
L2

0(T)
= 0. (3.71)

Moreover, Proposition 3.19 and Lemma 3.32 ensure the uniform bound with respect to N over the
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following fourth order moment:

E
[∥∥∥u(1)

N (0)− u(0)
∥∥∥4

L2
0(T)

]
≤ 8E

[∥∥∥u(1)
N (0)

∥∥∥4

L2
0(T)

]
+ 8E

[
‖u(0)‖4L2

0(T)

]
≤ 8E

[∥∥∥u(1)
N (0)

∥∥∥4

L4
0(T)

]
+ 8E

[
‖u(0)‖4L4

0(T)

]
(by (3.2))

≤ 16C0,4 (by Proposition 3.19 and Lemma 3.32), (3.72)

and the convergence of IN1 towards 0 follows (see for instance [12, Theorem 3.5]). Thus, since IN1 does
not depend on t, we may take εN1 := IN1 .

Step 2. The flux-numerical flux approximation. Using Young’s inequality, we have

IN2 (t) ≤ E
[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

L2
0(T)

ds

]

+E

∫ τM,N∧t

0

∫
T

(
N∑
i=1

N
(
A (Ui(s), Ui+1(s))−A (Ui−1(s), Ui(s))

)
φ

(1)
N

(
x− i

N

)
− ∂xA

(
u

(1)
N (s, x)

))2

dxds

 .
(3.73)

We focus on the second term of the right-hand side which we can rewrite by

E

[∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

((
N
(
A(Ui−1(s), Ui(s))−A(Ui−2(s), Ui−1(s))

)
− ∂xA

(
u

(1)
N (s, x)

))
φ

(1)
N

(
x− i− 1

N

)

+
(
N
(
A (Ui(s), Ui+1(s))−A (Ui−1(s), Ui(s))

)
− ∂xA

(
u

(1)
N (s, x)

))
φ

(1)
N

(
x− i

N

))2

dxds

]
,

which we control by the following upper bound

2E

[∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

(
N
(
A(Ui−1(s), Ui(s))−A(Ui−2(s), Ui−1(s))

)
− ∂xA

(
u

(1)
N (s, x)

))2

+
(
N
(
A(Ui(s), Ui+1(s))−A(Ui−1(s), Ui(s))

)
− ∂xA

(
u

(1)
N (s, x)

))2
dxds

]
.

By definition of u(1)
N , we have for all s ≥ 0 and all x ∈ ( i−1

N , iN ], ∂xu
(1)
N (s, x) = N(Ui(s)−Ui−1(s)). Let

us now focus on the second term of the above integrand and observe that by symmetry, the left one
may be treated in exactly the same way. We have thanks to (3.12):(

N
(
A(Ui(s), Ui+1(s))−A(Ui−1(s), Ui(s))

)
−N(Ui(s)− Ui−1(s))A′

(
u

(1)
N (s, x)

))2

=
(
N
(
A(Ui(s), Ui+1(s))−A(Ui−1(s), Ui(s))

)
−N(Ui(s)− Ui−1(s))

(
∂1A

(
u

(1)
N (s, x), u

(1)
N (s, x)

)
+ ∂2A

(
u

(1)
N (s, x), u

(1)
N (s, x)

)))2

≤ 2

(
N

∫ Ui(s)

Ui−1(s)

(
∂1A(z, Ui(s))− ∂1A

(
u

(1)
N (s, x), u

(1)
N (s, x)

))
dz

)2

+ 2N2

(∫ Ui+1(s)

Ui(s)
∂2A(Ui(s), z)dz − (Ui(s)− Ui−1(s)) ∂2A

(
u

(1)
N (s, x), u

(1)
N (s, x)

))2

.
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In the following computations, we will get upper bounds on the terms

IN2.1(t) := E

∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

(
N

∫ Ui(s)

Ui−1(s)

(
∂1A(z, Ui(s))− ∂1A

(
u

(1)
N (s, x), u

(1)
N (s, x)

))
dz

)2

dxds

 ,

IN2.2(t) := E

[∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

N2

(∫ Ui+1(s)

Ui(s)
∂2A(Ui(s), z)dz

− (Ui(s)− Ui−1(s)) ∂2A
(
u

(1)
N (s, x), u

(1)
N (s, x)

))2

dxds

]
.

We first look at the term IN2.1(t). The function ∂1A is uniformly continuous on [−M,M ]2. In
particular,

∀ε > 0,∃δM,ε > 0,max (|w − x|, |y − z|) ≤ δM,ε,max {|w|, |x|, |y|, |z|} ≤M ⇒ |∂1A(w, y)−∂1A(x, z)| ≤ ε.

Furthermore, for every s ≤ τM,N , by Lemma 3.30 and (3.3), we have supi=1,...,N |Ui(s)| = ‖u
(1)
N (s)‖L∞0 (T) ≤

‖u(1)
N (s)‖H1

0 (T) ≤M . Let C(M)
∂ be a local bound of ∂1A and ∂2A over the square [−M,M ]2.

Let ε > 0. We have

IN2.1(t)

= E

[∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

(
N

∫ Ui(s)

Ui−1(s)

(
∂1A(z, Ui(s))− ∂1A

(
u

(1)
N (s, x), u

(1)
N (s, x)

))
dz1|Ui(s)−Ui−1(s)|≤δM,ε

)2

dxds

]

+ E

∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

(
N

∫ Ui(s)

Ui−1(s)

(
∂1A(z, Ui(s))− ∂1A

(
u

(1)
N (s, x), u

(1)
N (s, x)

))
dz1|Ui(s)−Ui−1(s)|>δM,ε

)2

dxds


≤ E

∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

(
N

∫ Ui(s)

Ui−1(s)
εdz1|Ui(s)−Ui−1(s)|≤δM,ε

)2

dxds


+ E

∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

N ∫ Ui(s)

Ui−1(s)
2C

(M)
∂ dz

|Ui(s)− Ui−1(s)|1/2

δ
1/2
M,ε

2

dxds


≤ ε2E

[∫ t

0
N

N∑
i=1

|Ui(s)− Ui−1(s)|2ds

]
+

4
(
C

(M)
∂

)2

δM,ε

∫ t

0
E

[
N

N∑
i=1

|Ui(s)− Ui−1(s)|3
]

ds

= ε2tE
[∥∥∥D(1)

N U0

∥∥∥2

2

]
+

4
(
C

(M)
∂

)2

δM,εN
tE
[∥∥∥D(1)

N U0

∥∥∥3

3

]

≤ ε2TC1,2 +
4
(
C

(M)
∂

)2
TC1,3

δM,εN
(by Lemmas 3.31 and 3.33).

Since ε was chosen arbitrarily, it follows that εN2.1 := supt∈[0,T ] I
N
2.1(t) satisfies limN→∞ ε

N
2.1 = 0.
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As for the term IN2.2(t) we have

IN2.2(t) = E

[∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

N2

(∫ Ui+1(s)

Ui(s)

(
∂2A(Ui(s), z)− ∂2A

(
u

(1)
N (s, x), u

(1)
N (s, x)

))
dz

+ (Ui+1(s)− 2Ui(s) + Ui−1(s))∂2A
(
u

(1)
N (s, x), u

(1)
N (s, x)

))2

dxds

]

≤ 2E

∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

N2

(∫ Ui+1(s)

Ui(s)

(
∂2A(Ui(s), z)− ∂2A

(
u

(1)
N (s, x), u

(1)
N (s, x)

))
dz

)2

dxds


+ 2E

[∫ τM,N∧t

0

N∑
i=1

∫ i
N

i−1
N

N2(Ui+1(s)− 2Ui(s) + Ui−1(s))2∂2A
(
u

(1)
N (s, x), u

(1)
N (s, x)

)2
dxds

]
=: IN2.2.1(t) + IN2.2.2(t)

Now, the term IN2.2.1(t) can be treated the same way as IN2.1(t). In particular, εN2.2.1 := supt∈[0,T ] I
N
2.2.1(t)

satisfies limN→∞ ε
N
2.2.1 = 0. As for IN2.2.2(t), we have

IN2.2.2(t) ≤
(
C

(M)
∂

)2
E

[∫ τM,N∧t

0
N

N∑
i=1

(Ui+1(s)− 2Ui(s) + Ui−1(s))2ds

]

≤ 2
(
C

(M)
∂

)2
∫ t

0
E

[
N

N∑
i=1

(Ui+1(s)− 2Ui(s) + Ui−1(s))2

]
ds

= 2
(
C

(M)
∂

)2 t

N2
E
[∥∥∥D(2)

N U0

∥∥∥2

2

]
≤ 2

(
C

(M)
∂

)2
T
C2,2

N2
(by Lemma 3.31)

=: εN2.2.2.

At last, the sum of all these error terms amounts to an error term εN2 satisfying the requirements of
Step 0, so that the inequality (3.73) reduces to (3.68).

Step 3. The flux term. Integrating by parts and applying Young’s inequality, we get

IN3 (t) = 2E
[∫ τM,N∧t

0

∫
T
∂x

(
u

(1)
N (s, x)− u(s, x)

)(
A
(
u

(1)
N (s, x)

)
−A(u(s, x))

)
dxds

]
≤ 2νE

[∫ τM,N∧t

0

∫
T

(
∂xu

(1)
N (s, x)− ∂xu(s, x)

)2
dxds

]
+

1

2ν
E
[∫ τM,N∧t

0

∫
T

(
A
(
u

(1)
N (s, x)

)
−A(u(s, x))

)2
dxds

]
.

Denoting by LM a local Lipschitz constant of A over the interval [−M,M ], we get

IN3 (t) ≤ 2νE
[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

H1
0 (T)

ds

]
+
L2
M

2ν
E
[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

L2
0(T)

ds

]
,

and we set therefore γM := L2
M/(2ν).

Step 4. The viscous term. We shall compare the term

JN (s) =

∫
T

(
u

(1)
N (s, x)− u(s, x)

)( N∑
i=1

N2(Ui+1(s)− 2Ui(s) + Ui−1(s))φ
(1)
N

(
x− i

N

)
− ∂xxu(s, x)

)
dx,



3.3. Convergence of invariant measures: semi-discrete scheme towards SPDE 91

with
J̃N (s) := −

∫
T
(∂xu

(1)
N (s, x)− ∂xu(s, x))2dx ≤ 0.

Expanding the product in the definition of JN , we first write

JN (s) = JN1 (s) + JN2 (s) + JN3 (s) + JN4 (s),

where

JN1 (s) :=

∫
T
u

(1)
N (s, x)

N∑
i=1

N2(Ui+1(s)− 2Ui(s) + Ui−1(s))φ
(1)
N

(
x− i

N

)
dx,

JN2 (s) := −
∫
T
u

(1)
N (s, x)∂xxu(s, x)dx,

JN3 (s) := −
∫
T
u(s, x)

N∑
i=1

N2(Ui+1(s)− 2Ui(s) + Ui−1(s))φ
(1)
N

(
x− i

N

)
dx,

JN4 (s) :=

∫
T
u(s, x)∂xxu(s, x)dx;

likewise,
J̃N (s) = J̃N1 (s) + J̃N2 (s) + J̃N3 (s) + J̃N4 (s),

where

J̃N1 (s) := −
∫
T
∂xu

(1)
N (s, x)∂xu

(1)
N (s, x)dx,

J̃N2 (s) :=

∫
T
∂xu

(1)
N (s, x)∂xu(s, x)dx,

J̃N3 (s) :=

∫
T
∂xu(s, x)∂xu

(1)
N (s, x)dx,

J̃N4 (s) := −
∫
T
∂xu(s, x)∂xu(s, x)dx.

Integration by parts shows that JN2 (s) = J̃N2 (s) and JN4 (s) = J̃N4 (s). We now focus on the computation
of JN1 (s)− J̃N1 (s) and JN3 (s)− J̃N3 (s).

Using the definition of u(1)
N , we get

JN1 (s)− J̃N1 (s) =

N∑
i,k=1

N2(Ui+1(s)− 2Ui(s) + Ui−1(s))Uk(s)

∫
T
φ

(1)
N

(
x− i

N

)
φ

(1)
N

(
x− k

N

)
dx

+
N∑

i,k=1

Ui(s)Uk(s)

∫
T
∂xφ

(1)
N

(
x− i

N

)
∂xφ

(1)
N

(
x− k

N

)
dx.

Direct computation yields

∫
T
φ

(1)
N

(
x− i

N

)
φ

(1)
N

(
x− k

N

)
dx =


2

3N if k = i,
1

6N if k = i± 1,
0 otherwise,

and ∫
T
∂xφ

(1)
N

(
x− i

N

)
∂xφ

(1)
N

(
x− k

N

)
dx =


2N if k = i,
−N if k = i± 1,
0 otherwise.
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As a consequence,

JN1 (s)− J̃N1 (s) =
N∑
i=1

N2(Ui+1(s)− 2Ui(s) + Ui−1(s))

(
1

6N
Ui−1(s) +

2

3N
Ui(s) +

1

6N
Ui+1(s)

)

+

N∑
i=1

Ui(s) (−NUi−1(s) + 2NUi(s)−NUi+1(s))

=
N

6

N∑
i=1

(Ui+1(s)− 2Ui(s) + Ui−1(s))2 =
1

6N2

∥∥∥D(2)
N U(s)

∥∥∥2

2
.

By Lemma 3.31, we deduce that

E
[∣∣∣JN1 (s)− J̃N1 (s)

∣∣∣] ≤ C2,2

6N2
.

In order to compute JN3 (s)− J̃N3 (s), we first rewrite

J̃N3 (s) =

∫
T
∂xu(s, x)∂xu

(1)
N (s, x)dx

=

N∑
i=1

Ui(s)

∫
T
∂xu(s, x)∂xφ

(1)
N

(
x− i

N

)
dx

=
N∑
i=1

NUi(s)

(∫ i
N

i−1
N

∂xu(s, x)dx−
∫ i+1

N

i
N

∂xu(s, x)dx

)

= −
N∑
i=1

NUi(s)

(
u

(
s,
i+ 1

N

)
− 2u

(
s,

i

N

)
+ u

(
s,
i− 1

N

))

= −
N∑
i=1

Nu

(
s,

i

N

)
(Ui+1(s)− 2Ui(s) + Ui−1(s)) .

As a consequence,

JN3 (s)− J̃N3 (s) = −
N∑
i=1

N(Ui+1(s)− 2Ui(s) + Ui−1(s))

(
N

∫
T
u(s, x)φ

(1)
N

(
x− i

N

)
dx− u

(
s,

i

N

))

= −
N∑
i=1

N2(Ui+1(s)− 2Ui(s) + Ui−1(s))

∫
T

(
u(s, x)− u

(
s,

i

N

))
φ

(1)
N

(
x− i

N

)
dx

= −
N∑
i=1

N2(Ui+1(s)− 2Ui(s) + Ui−1(s))

∫
T

∫ x

i
N

∂xu(s, y)dyφ
(1)
N

(
x− i

N

)
dx.

Using the rough bound
|φ(1)
N (x)| ≤ 1{− 1

N
≤x≤ 1

N },

we write ∣∣∣∣∣
∫
T

∫ x

i
N

∂xu(s, y)dyφ
(1)
N

(
x− i

N

)
dx

∣∣∣∣∣ ≤ 2

N

∫ i+1
N

i−1
N

|∂xu(s, y)| dy,

whence ∣∣∣JN3 (s)− J̃N3 (s)
∣∣∣ ≤ 2

N∑
i=1

N |Ui+1(s)− 2Ui(s) + Ui−1(s)|
∫ i+1

N

i−1
N

|∂xu(s, y)|dy.
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By the Cauchy-Schwarz inequality,

E
[∣∣∣JN3 (s)− J̃N3 (s)

∣∣∣] ≤ 2N

√√√√E

[
N∑
i=1

|Ui+1(s)− 2Ui(s) + Ui−1(s)|2
]√√√√√E

 N∑
i=1

(∫ i+1
N

i−1
N

|∂xu(s, y)| dy

)2
.

By Jensen’s inequality and Lemma 3.35,

E

 N∑
i=1

(∫ i+1
N

i−1
N

|∂xu(s, y)| dy

)2
 ≤ 4

N
E
[
‖u(s)‖2H1

0 (T)

]
≤

4C̃1,2
T

N
.

As a conclusion,

E
[∣∣∣JN3 (s)− J̃N3 (s)

∣∣∣] ≤ 4
√
C2,2C̃1,2

T

N
.

Coming back to the expression of IN4 (t), we have

IN4 (t) ≤ 2νE
[∫ τM,N∧t

0
JN (s)ds

]
≤ 2νE

[∫ τM,N∧t

0
J̃N (s)ds

]
+ 2ν

∫ t

0
E
[∣∣∣JN1 (s)− J̃N1 (s)

∣∣∣] ds+ 2ν

∫ t

0
E
[∣∣∣JN3 (s)− J̃N3 (s)

∣∣∣] ds

≤ −2νE
[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

H1
0 (T)

ds

]
+
TC2,2ν

3N2
+

8Tν
√
C2,2C̃1,2

T

N

=: −2νE
[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

H1
0 (T)

ds

]
+ εN4 .

Step 5. The noise term. We have

IN5 (t) = E

∫ τM,N∧t

0

∫
T

∑
k≥1

(
N∑
i=1

σki φ
(1)
N

(
x− i

N

)
− gk(x)

)2

dxds


≤ t
∫
T

∑
k≥1

(
N∑
i=1

σki φ
(1)
N

(
x− i

N

)
− gk(x)

)2

dx.

Using the fact that φ(1)
N

(
x− i−1

N

)
+ φ

(1)
N

(
x− i

N

)
= 1, for all x ∈ [(i− 1)/N, i/N ], we get

IN5 (t) ≤ t
N∑
i=1

∫ i
N

i−1
N

∑
k≥1

((
σki−1 − gk(x)

)
φ

(1)
N

(
x− i− 1

N

)
+
(
σki − gk(x)

)
φ

(1)
N

(
x− i

N

))2

dx,

and by periodicity of the indexes, we can say that

IN5 (t) ≤ 2t

N∑
i=1

∫ i
N

i−1
N

∑
k≥1

(
N

∫ i
N

i−1
N

gk(y)dy − gk(x)

)2

φ
(1)
N

(
x− i

N

)2

dx

≤ 2t
N∑
i=1

∫ i
N

i−1
N

∑
k≥1

(
N

∫ i
N

i−1
N

(gk(y)− gk(x))dy

)2

φ
(1)
N

(
x− i

N

)2

dx

≤ 2t

N∑
i=1

∫ i
N

i−1
N

N

∫ i
N

i−1
N

∑
k≥1

(gk(y)− gk(x))2dydx (since |φ(1)
N | ≤ 1 and by Jensen)

≤ 2tN
N∑
i=1

∫ i
N

i−1
N

∫ i
N

i−1
N

D0

N2
dydx =

2tD0

N2
≤ 2TD0

N2
=: εN5 .
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Step 6. Conclusion for the “bounded” event. Summing all the INi terms, we get for all
t ∈ [0, T ]

E
[∥∥∥u(1)

N (τM,N ∧ t)− u(τM,N ∧ t)
∥∥∥2

L2
0(T)

]
≤ (1 + γM )E

[∫ τM,N∧t

0

∥∥∥u(1)
N (s)− u(s)

∥∥∥2

L2
0(T)

ds

]
+εN1 +εN2 +εN4 +εN5 .

We set εN := εN1 + εN2 + εN4 + εN5 . By (3.66), we have

E
[∥∥∥u(1)

N (t)− u(t)
∥∥∥2

L2
0(T)

1t≤τM,N

]
≤ (1 + γM )

∫ t

0
E
[∥∥∥u(1)

N (s)− u(s)
∥∥∥2

L2
0(T)

1s≤τM,N

]
ds+ εN .

Thus, Grönwall’s lemma applies and gives

E
[∥∥∥u(1)

N (t)− u(t)
∥∥∥2

L2
0(T)

1t≤τM,N

]
≤ εNe(1+γM )t.

Step 7. Conclusion of the proof. We want now to take care of the second term of the right-
hand side in (3.65). Using in particular the Cauchy-Schwarz inequality, Proposition 3.19, the Markov
inequality, Lemma 3.35 and Lemma 3.34, we have

E
[∥∥∥u(1)

N (t)− u(t)
∥∥∥2

L2
0(T)

1t>τM,N

]
= E

[∥∥∥u(1)
N (t)− u(t)

∥∥∥2

L2
0(T)

1
sups∈[0,t] ‖u(s)‖

H1
0(T)
∨sups∈[0,t]

∥∥∥u(1)
N (s)

∥∥∥
H1

0(T)
>M

]

≤ E
[∥∥∥u(1)

N (t)− u(t)
∥∥∥4

L2
0(T)

]1/2

P

(
sup
s∈[0,t]

‖u(s)‖H1
0 (T) ∨ sup

s∈[0,t]

∥∥∥u(1)
N (s)

∥∥∥
H1

0 (T)
> M

)1/2

≤
√

8
(
E
[
‖u(1)

N (t)‖4L4
0(T)

]
+ E

[
‖u(t)‖4L4

0(T)

])1/2

×

(
P

(
sup
s∈[0,t]

‖u(s)‖H1
0 (T) > M

)
+ P

(
sup
s∈[0,t]

∥∥∥u(1)
N (s)

∥∥∥
H1

0 (T)
> M

))1/2

≤
√

8
(
C0,4 + C̃0,4

T

)1/2
(
P

(
sup
s∈[0,t]

‖u(s)‖H1
0 (T) > M

)
+

1

M
E

[
sup
s∈[0,t]

∥∥∥u(1)
N (s)

∥∥∥
H1

0 (T)

])1/2

≤
√

8
(
C0,4 + C̃0,4

T

)1/2
(
P

(
sup
s∈[0,t]

‖u(s)‖H1
0 (T) > M

)
+

1

M
C1,2
T

)1/2

Furthermore, as (u(t))t≥0 is continuous from [0,+∞) to H1
0 (T) (see Proposition 3.2), the random

variable sups∈[0,t] ‖u(s)‖H1
0 (T) is finite almost surely. As a consequence,

lim
M→∞

lim sup
N→∞

E
[
‖u(1)

N (t)− u(t)‖2L2
0(T)1t>τM,N

]
= 0.

Combining this inequality with the conclusion of the step 6 yields the wanted result.

3.4 Convergence of invariant measures: split-step scheme towards
semi-discrete scheme

In this section, we aim to prove the second part of Theorem 3.7, namely Equation (3.17). The structure
of the proof is the same as for the first part of Theorem 3.7. In Subsection 3.4.1, we show that the
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family of probability measures {νN,∆t : ∆t ∈ (0,∆tmax]} is tight in P(RN0 ) and then relatively compact
in P2(RN0 ). In Subsection 3.4.2, in a similar manner as in Subsection 3.3.2 for the semi-discrete case,
we identify each subsequential limit of the family {νN,∆t : ∆t ∈ (0,∆tmax]}, when ∆t → 0, as the
invariant measure of the process (Un)n∈N, which leads to the final part of the proof of Theorem 3.7.
Subsection 3.4.3 contain the proofs of the lemmas stated in Subsections 3.4.1 and 3.4.2.

3.4.1 Tightness, relative compactness and some estimates

Lemma 3.38 (Tightness). Under Assumptions 3.1 and 3.3, for any N ≥ 1, the family of probability
measures {νN,∆t : ∆t ∈ (0,∆tmax]} is tight in the space P(RN0 ).

Proof. We established at Proposition 3.27 that a random variable V ∼ νN,∆t satisfies the discrete H1
0

estimate:
E
[∥∥∥D(1)

N V
∥∥∥2

2

]
≤ C1,2

.

Since ‖D(1)
N · ‖2 defines a norm on RN0 , the result follows from the Markov inequality.

Lemma 3.39 (Fourth-order moment). Under Assumptions 3.1 and 3.3, there exists a constant C0,4
>

0, depending only on D0, ν and ∆tmax, such that for any time step ∆t ∈ (0,∆tmax] and any random
variable V ∼ νN,∆t, we have

E
[
‖V‖44

]
≤ C0,4

.

Corollary 3.40 (Relative compactness). Let N ≥ 1. Under Assumptions 3.1 and 3.3, the family
{νN,∆t : ∆t ∈ (0,∆tmax]} is relatively compact in P2(RN0 ).

Proof. By virtue of the Prokhorov theorem [12, Theorem 5.1] and Lemma 3.38, any sequence extracted
from {νN,∆t : ∆t ∈ (0,∆tmax]} admits a weakly converging subsequence in P(RN0 ). Let ν∗ be a
subsequential weak limit and let (νN,∆tj )j∈N be a sequence weakly converging towards ν∗. Let (Vj)j∈N
be a sequence of RN0 -valued random variables such that Vj ∼ νN,∆tj . By virtue of the Portemanteau
theorem, since ‖ · ‖44 is continuous (and thus lower semi-continuous) on RN0 , we have

E
[
‖V‖44

]
≤ lim inf

j→∞
E
[
‖Vj‖44

]
≤ C0,4

,

so that ν∗ admits a fourth-order moment and thus belongs to P4(RN0 ). Moreover, it follows also
from Lemma 3.38 that the sequence (νN,∆tj )j∈N satisfies a uniform integrability condition in the sense
of [102, Definition 6.8], and the result is now a consequence of [102, Theorem 6.9].

Lemma 3.41 (Finite time bound). Let Assumptions 3.1 and 3.3 hold, let T > 0 be a time horizon
and let (Un)n∈N be a solution of (3.15) with an initial condition U0 ∼ νN,∆t. There exists a constant
C

0,2
T depending only on D0, T , ν and ∆tmax, such that for any time step ∆t ∈ (0,∆tmax], we have

E

 sup
n=0,1,...,b T

∆tc
‖Un‖22

 ≤ C0,2
T .

3.4.2 Characterisation of the limit

As in Subsection 3.3.2 for the semi-discrete scheme, we want to use a result of convergence in finite
time of the numerical scheme (3.15) in order to identify each subsequential limit of the family {νN,∆t :
∆t ∈ (0,∆tmax]}, when ∆t → 0, as the invariant measure νN for the solution of Equation (3.11). By
virtue of Corollary 3.40, let ν∗ ∈ P2(RN0 ) and let (∆tj)j∈N be a sequence of time steps decreasing to
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zero such thatW2(νN,∆tj , ν
∗) converges to zero as j → +∞. By virtue of the Skorokhod representation

theorem, let (U
(j)
0 )j∈N be a sequence of RN0 -valued random variables converging almost surely to U0

such that
U

(j)
0 ∼ νN,∆tj , ∀j ∈ N and U0 ∼ ν∗.

As we described in Subsection 3.3.2, up to an extension of the probability space, these random variables
may be considered as initial conditions for the equations (3.11) and (3.15) (driven by the same Wiener
process).

Lemma 3.42 (Finite time convergence). Let Assumptions 3.1 and 3.3 hold. Let (U(t))t≥0 be the
solution of (3.11) with initial condition U0 and for all j ∈ N, let (U

(j)
n )n∈N be the solution of (3.15)

with initial condition U
(j)
0 . For any j ∈ N, we define the piecewise constant approximation (U

(j)
(t))t≥0

of U(j)
n by U

(j)
(t) = U

(j)
n if t ∈ [n∆tj , (n+ 1)∆tj). Then, for all T > 0,

lim
j→∞

sup
t∈[0,T ]

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2

]
= 0.

Proof of Theorem 3.7: Part 2/2. The arguments are identical to the proof of the first part.

3.4.3 Proofs

Proof of Lemma 3.39. Let (Un)n∈N = (U1,n, . . . , UN,n)n∈N be a solution of (3.15) with a de-
terministic initial condition u0. By convexity of the function v 7→ v4, for any α, β ∈ R, we have
(α − β)4 ≥ α4 − 4α3β. In particular, for any i ∈ Z/NZ, taking α = Ui,n+ 1

2
and β = ∆tbi(Un+ 1

2
), we

have
U4
i,n =

(
Ui,n+ 1

2
−∆tbi

(
Un+ 1

2

))4
≥ U4

i,n+ 1
2

− 4U3
i,n+ 1

2

∆tbi

(
Un+ 1

2

)
.

Hence, expanding the drift function and summing over i, we get

‖Un‖44 ≥
∥∥∥Un+ 1

2

∥∥∥4

4
+

N∑
i=1

4∆tU3
i,n+ 1

2

(
A
(
Ui,n+ 1

2
, Ui+1,n+ 1

2

)
−A

(
Ui−1,n+ 1

2
, Ui,n+ 1

2

))
− 4ν∆t

〈
U3
n+ 1

2

,D
(2)
N Un+ 1

2

〉
.

We know thanks to Lemma 3.12 that the second term of the right-hand side is non-negative. Summing
by parts the third term, we get

‖Un‖44 ≥
∥∥∥Un+ 1

2

∥∥∥4

4
+ 4ν∆t

〈
D

(1)
N U3

n+ 1
2

,D
(1)
N Un+ 1

2

〉
.

From Lemma 3.11, we get

‖Un‖44 ≥
∥∥∥Un+ 1

2

∥∥∥4

4
+ 3ν∆t

∥∥∥Un+ 1
2

∥∥∥4

4
. (3.74)

On the other hand, let us look at the second step of the scheme (3.15). By the construction of
the split-step scheme, the random variables Ui,n+ 1

2
and ∆WQ,N

i,n+1 are independent. Since ∆WQ,N
i,n+1 ∼

N (0,∆t
∑

k≥1(σki )2) and
∑

k≥1(σki )2 ≤ D0 (by (3.9)), we write

E
[
‖Un+1‖44

]
= E

[∥∥∥Un+ 1
2

+ ∆WQ,N
n+1

∥∥∥4

4

]
= E

[∥∥∥Un+ 1
2

∥∥∥4

4

]
+

6

N
E

[
N∑
i=1

U2
i,n+ 1

2

(
∆WQ,N

i,n+1

)2
]

+ E
[∥∥∥∆WQ,N

n+1

∥∥∥4

4

]
≤ E

[∥∥∥Un+ 1
2

∥∥∥4

4

]
+ 6D0∆tE

[∥∥∥Un+ 1
2

∥∥∥2

2

]
+ 3D2

0∆t2 (3.75)
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Combining Inequalities (3.74) and (3.75), we get

E
[
‖Un‖44

]
≥ E

[
‖Un+1‖44

]
− 6D0∆tE

[∥∥∥Un+ 1
2

∥∥∥2

2

]
− 3D2

0∆t2 + 3ν∆tE
[∥∥∥Un+ 1

2

∥∥∥4

4

]
from which we get a telescopic sum:

3ν∆t

n−1∑
l=0

E
[∥∥∥Ul+ 1

2

∥∥∥4

4

]
≤ ‖u0‖44 − E

[
‖Un‖44

]
+ 6D0∆t

n−1∑
l=0

E
[∥∥∥Ul+ 1

2

∥∥∥2

2

]
+ 3nD2

0∆t2.

Thus,
1

n

n−1∑
l=0

E
[∥∥∥Ul+ 1

2

∥∥∥4

4

]
≤ 1

3ν∆tn
‖u0‖44 +

2D0

νn

n−1∑
l=0

E
[∥∥∥Ul+ 1

2

∥∥∥2

2

]
+
D2

0∆t

ν
. (3.76)

Recall that from Lemma 3.10 and Equation (3.40), we have

1

n

n−1∑
l=0

E
[∥∥∥Ul+ 1

2

∥∥∥2

2

]
≤ 1

n

n−1∑
l=0

E
[∥∥∥D(1)

N Ul+ 1
2

∥∥∥2

2

]
≤ ‖u0‖22

2νn∆t
+
D0

2ν
. (3.77)

Injecting (3.77) into (3.76), we get

1

n

n−1∑
l=0

E
[∥∥∥Ul+ 1

2

∥∥∥4

4

]
≤ 1

3ν∆tn
‖u0‖44 +

2D0

ν

(
‖u0‖22
2νn∆t

+
D0

2ν

)
+
D2

0∆t

ν
.

Using now the same arguments as for the end of the proof of Proposition 3.19, letting V ∼ νN,∆t, we
get

E
[∥∥∥V 1

2

∥∥∥4

4

]
≤ D2

0

ν2
+
D2

0∆t

ν
=
D2

0

ν

(
1

ν
+ ∆t

)
.

To conclude, we use Inequality (3.75) once again:

E
[
‖V‖44

]
≤ E

[∥∥∥V 1
2

∥∥∥4

4

]
+ 6D0∆tE

[∥∥∥V 1
2

∥∥∥2

2

]
+ 3D2

0∆t2

≤ D2
0

ν

(
1

ν
+ ∆t

)
+

3D2
0∆t

ν
+ 3D2

0∆t2

≤ D2
0

(
1

ν
+ 3∆tmax

)(
1

ν
+ ∆tmax

)
.

Proof of Lemma 3.41. Let us repeat the proof of Proposition 3.27 up to Equation (3.37). For all
n = 0, 1, . . . ,

⌊
T
∆t

⌋
, we write

‖Un‖22 = ‖U0‖22 +
n−1∑
l=0

(
‖Ul+1‖22 − ‖Ul‖22

)
≤ ‖U0‖22 − 2ν∆t

n−1∑
l=0

∥∥∥D(1)
N Ul+ 1

2

∥∥∥2

2
+ 2

n−1∑
l=0

〈
Ul+ 1

2
,∆WQ,N

l+1

〉
+

n−1∑
l=0

∥∥∥∆WQ,N
l+1

∥∥∥2

2
.

The viscous term may be removed from the inequality. Taking the supremum in time and the expec-
tation, we get

E

 sup
n=0,1,...,b T

∆tc
‖Un‖22

 ≤ E
[
‖U0‖22

]
+2E

 sup
n=0,1,...,b T

∆tc

∣∣∣∣∣
n−1∑
l=0

〈
Ul+ 1

2
,∆WQ,N

l+1

〉∣∣∣∣∣
+E

bT/∆tc−1∑
l=0

∥∥∥∆WQ,N
l+1

∥∥∥2

2

 .
(3.78)
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First, by Lemma 3.10 and Proposition 3.27, we have

E
[
‖U0‖22

]
≤ E

[∥∥∥D(1)
N U0

∥∥∥2

2

]
≤ C1,2

.

Noticing that the process (
∑n−1

l=0 〈Ul+ 1
2
,∆WQ,N

l+1 〉)n≥1 is a martingale, we get by applying successively
Jensen’s and Doob’s inequalities to the second term of the right-hand side,

E

 sup
n=0,1,...,b T

∆tc

∣∣∣∣∣
n−1∑
l=0

〈
Ul+ 1

2
,∆WQ,N

l+1

〉∣∣∣∣∣
 ≤ E

 sup
n=0,1,...,b T

∆tc

∣∣∣∣∣
n−1∑
l=0

〈
Ul+ 1

2
,∆WQ,N

l+1

〉∣∣∣∣∣
2
1/2

≤ 2E

∣∣∣∣∣∣
bT/∆tc−1∑

l=0

〈
Ul+ 1

2
,∆WQ,N

l+1

〉∣∣∣∣∣∣
21/2

.

From (3.15), we may observe that each increment ∆WQ,N
l+1 is independent of the family (Um+ 1

2
,∆WQ,N

m )m=0,...,l.
Therefore, letting V ∼ νN,∆t and letting V 1

2
be the random variable satisfying V 1

2
= V + b(V 1

2
), we

have

E

 sup
n=0,1,...,b T

∆tc

∣∣∣∣∣
n−1∑
l=0

〈
Ul+ 1

2
,∆WQ,N

l+1

〉∣∣∣∣∣
 ≤ 2E

bT/∆tc−1∑
l=0

∣∣∣〈Ul+ 1
2
,∆WQ,N

l+1

〉∣∣∣2
1/2

≤ 2

bT/∆tc−1∑
l=0

E
[∥∥∥Ul+ 1

2

∥∥∥2

2

]
E
[∥∥∥∆WQ,N

l+1

∥∥∥2

2

]1/2

≤ 2
√
D0∆t

(⌊
T

∆t

⌋
E
[∥∥∥V 1

2

∥∥∥2

2

])1/2

(by (3.38))

≤ D0

√
2T

ν
(by Lemma 3.10 and (3.34)).

Injecting this bound into (3.78), we get

E

 sup
n=0,1,...,b T

∆tc
‖Un‖22

 ≤ C1,2
+ 2D0

√
2T

ν
+ TD0.

Proof of Lemma 3.42. Step 0. Decomposition of the error in two events. Let T > 0.
We start by introducing the exit time of some ball for the time-continuous and the time-discretised
processes:

ρ
(j)
M := inf

{
t ≥ 0 : ‖U(t)‖22 ∨

∥∥∥U(j)
(t)
∥∥∥2

2
≥M

}
.

Then, we decompose the approximation error according to whether or not the discrete and continuous
processes stay in the ball of radius M : for all t ∈ [0, T ],

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2

]
= E

[∥∥∥U(j)
(t)−U(t)

∥∥∥2

2
1
t<ρ

(j)
M

]
+ E

[∥∥∥U(j)
(t)−U(t)

∥∥∥2

2
1
ρ

(j)
M ≤t

]
. (3.79)
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Step 1. Decomposition of the error for the bounded trajectories. For any t ∈ [0, T ] and

any j ∈ N, let n[t,M,j] :=

⌊
t∧ρ(j)

M
∆tj

⌋
. From (3.15) and (3.11), we write

U
(j)
(
t ∧ ρ(j)

M

)
−U

(
t ∧ ρ(j)

M

)
= U

(j)
0 −U0 +

n[t,M,j]−1∑
l=0

(
∆tjb

(
U

(j)

l+ 1
2

)
−
∫ (l+1)∆tj

l∆tj

b(U(s))ds

)

+
(
t ∧ ρ(j)

M − n[t,M,j]∆tj

)
b

(
U

(j)

n[t,M,j]+
1
2

)
−
∫ t∧ρ(j)

M

n[t,M,j]∆tj

b (U(s)) ds. (3.80)

From this dynamics, we can decompose then again the first term of the right-hand side in (3.79) in
three terms:

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2
1
t<ρ

(j)
M

]
≤ E

[∥∥∥U(j)
(
t ∧ ρ(j)

M

)
−U

(
t ∧ ρ(j)

M

)∥∥∥2

2

]
≤ 2E

[∥∥∥U(j)
0 −U0

∥∥∥2

2

]

+ 2E

∥∥∥∥∥∥
n[t,M,j]−1∑

l=0

(
∆tjb

(
U

(j)

l+ 1
2

)
−
∫ (l+1)∆tj

l∆tj

b(U(s))ds

)

+
(
t ∧ ρ(j)

M − n[t,M,j]∆tj

)
b

(
U

(j)

n[t,M,j]+
1
2

)
−
∫ t∧ρ(j)

M

n[t,M,j]∆tj

b (U(s)) ds

∥∥∥∥∥
2

2


≤ 2E

[∥∥∥U(j)
0 −U0

∥∥∥2

2

]
(3.81)

+ 4E

∥∥∥∥∥∥
n[t,M,j]−1∑

l=0

∆tj

(
b

(
U

(j)

l+ 1
2

)
− b(U

(j)
l )

)
+ (t ∧ ρ(j)

M − n[t,M,j])

(
b

(
U

(j)

n[t,M,j]+
1
2

)
− b

(
U(j)
n[t,M,j]

))∥∥∥∥∥∥
2

2


(3.82)

+ 4E

∥∥∥∥∥∥
n[t,M,j]−1∑

l=0

∫ (l+1)∆tj

l∆tj

(
b
(
U

(j)
l

)
− b(U(s))

)
ds+

∫ t∧ρ(j)
M

n[t,M,j]∆tj

(
b
(
U(j)
n[t,M,j]

)
− b(U(s))

)
ds

∥∥∥∥∥∥
2

2

 .
(3.83)

Step 2. Bound over the term (3.83). Let LM be a Lipschitz constant of b over the ball
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{‖ · ‖22 ≤M}. From Jensen’s inequality, we have

4E

∥∥∥∥∥∥
n[t,M,j]−1∑

l=0

∫ (l+1)∆tj

l∆tj

(
b
(
U

(j)
l

)
− b(U(s))

)
ds+

∫ t∧ρ(j)
M

n[t,M,j]∆tj

(
b
(
U(j)
n[t,M,j]

)
− b(U(s))

)
ds

∥∥∥∥∥∥
2

2


≤ 4TE

n[t,M,j]−1∑
l=0

∫ (l+1)∆tj

l∆tj

∥∥∥b(U(j)
l

)
− b(U(s))

∥∥∥2

2
ds+

∫ t∧ρ(j)
M

n[t,M,j]∆tj

∥∥∥b(U(j)
n[t,M,j]

)
− b(U(s))

∥∥∥2

2
ds


≤ 4TL2

ME

n[t,M,j]−1∑
l=0

∫ (l+1)∆tj

l∆tj

∥∥∥U(j)
l −U(s)

∥∥∥2

2
ds+

∫ t∧ρ(j)
M

n[t,M,j]∆tj

∥∥∥U(j)
n[t,M,j]

−U(s)
∥∥∥2

2
ds


= 4TL2

ME

[∫ t∧ρ(j)
M

0

∥∥∥U(j)
(s)−U(s)

∥∥∥2

2
ds

]

= 4TL2
M

∫ t

0
E
[∥∥∥U(j)

(s)−U(s)
∥∥∥2

2
1
s<ρ

(j)
M

]
ds.

Step 3. Decomposition of the term (3.82). Let CM be a supremum of ‖b‖22 over the ball
{‖ · ‖22 ≤M}. Using the Jensen inequality and the locally Lipschitz continuity of b, we write

4E

∥∥∥∥∥∥
n[t,M,j]−1∑

l=0

∆tj

(
b

(
U

(j)

l+ 1
2

)
− b(U

(j)
l )

)
+ (t ∧ ρ(j)

M − n[t,M,j])

(
b

(
U

(j)

n[t,M,j]+
1
2

)
− b

(
U(j)
n[t,M,j]

))∥∥∥∥∥∥
2

2


≤ 4TL2

M∆tjE

[n[t,M,j]∑
l=0

∥∥∥∥U(j)

l+ 1
2

−U
(j)
l

∥∥∥∥2

2

]

= 4T∆t3jL
2
ME

[n[t,M,j]∑
l=0

∥∥∥∥b(U(j)

l+ 1
2

)∥∥∥∥2

2

]
≤ 4T (T + ∆tj) ∆t2jL

2
MCM ,

where at the last line, we have used the fact that for any l = 0, . . . , n[t,M,j], by (3.35), we have
‖Ul+ 1

2
‖22 ≤ ‖Ul‖22 ≤M .

Step 4. Conclusion for the bounded event. Summing the estimates obtained from Step 1 to
Step 3, we get

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2
1
t<ρ

(j)
M

]
≤ 2E

[∥∥∥U(j)
0 −U0

∥∥∥2

2

]
+ 4TL2

M

∫ t

0
E
[∥∥∥U(j)

(s)−U(s)
∥∥∥2

2
1
s<ρ

(j)
M

]
ds

+ 4T (T + ∆tj) ∆t2jL
2
MCM .

By construction, the random variable ‖U(j)
0 −U0‖2 tends to 0 almost surely as j → +∞. Furthermore,

it has a fourth order moment uniform in j thanks to Lemma 3.39 and the Portemanteau theorem:

E
[∥∥∥U(j)

0 −U0

∥∥∥4

2

]
≤ 8E

[∥∥∥U(j)
0

∥∥∥4

4

]
+ 8E

[
‖U0‖44

]
≤ 8C

0,4
+ 8 lim inf

j→∞
E
[∥∥∥U(j)

0

∥∥∥4

4

]
≤ 16C

0,4
.
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Thus, E[‖U(j)
0 −U0‖22] tends to 0 as j → +∞. Now, by Grönwall’s lemma, we have

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2
1
t<ρ

(j)
M

]
≤
(

2E
[∥∥∥U(j)

0 −U0

∥∥∥2

2

]
+ 4T (T + ∆tj) ∆t2jL

2
MCM

)
e4T 2L2

M .

As a consequence,

lim
j→∞

sup
t∈[0,T ]

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2
1
t<ρ

(j)
M

]
= 0. (3.84)

Step 5. The exiting trajectories. We want to bound the second term of the RHS in (3.79)
uniformly in j. Observing that

{
ρ

(j)
M ≤ t

}
=

{
sup
s∈[0,t]

‖U(s)‖22 ∨ sup
s∈[0,t]

∥∥∥U(j)
(s)
∥∥∥2

2
≥M

}
,

we get from the Cauchy-Schwarz inequality, Lemma 3.39 and Lemma 3.16.(ii):

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2
1
ρ

(j)
M ≤t

]
≤ E

[∥∥∥U(j)
(t)−U(t)

∥∥∥4

2

]1/2

P

(
sup
s∈[0,t]

‖U(s)‖22 ∨ sup
s∈[0,t]

∥∥∥U(j)
(s)
∥∥∥2

2
≥M

)1/2

≤ 2
(
C

0,4
+ c

(4)
0 + c

(4)
1 C0,4 + c

(4)
2 T

)1/2
P

(
sup
s∈[0,T ]

‖U(s)‖22 ∨ sup
s∈[0,T ]

∥∥∥U(j)
(s)
∥∥∥2

2
≥M

)1/2

.

As for the second term, we have thanks to the Markov inequality and Lemma 3.41,

P

(
sup
s∈[0,T ]

∥∥∥U(j)
(s)
∥∥∥2

2
∨ sup
s∈[0,T ]

‖U(s)‖22 ≥M

)
≤ P

(
sup
s∈[0,T ]

∥∥∥U(j)
(s)
∥∥∥2

2
≥M

)
+ P

(
sup
s∈[0,T ]

‖U(s)‖22 ≥M

)

≤ 1

M
E

[
sup
s∈[0,T ]

∥∥∥U(j)
(s)
∥∥∥2

2

]
+ P

(
sup
s∈[0,T ]

‖U(s)‖22 ≥M

)

≤ C
0,2
T

M
+ P

(
sup
s∈[0,T ]

‖U(s)‖22 ≥M

)
−→
M→∞

0.

As a consequence,

lim
M→∞

lim sup
j→∞

sup
t∈[0,T ]

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2
1
ρ

(j)
M ≤t

]
= 0. (3.85)

Step 6. Conclusion. In the end, from (3.79) and (3.84), we have for every M > 0,

lim sup
j→∞

sup
t∈[0,T ]

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2

]
≤ lim sup

j→∞
sup
t∈[0,T ]

E
[∥∥∥U(j)

(t)−U(t)
∥∥∥2

2
1
ρ

(j)
M ≤t

]
.

Thus, letting M → +∞ and applying (3.85) yields the wanted result.



102
Chapter 3. Finite-volume approximation of the invariant measure of a viscous

stochastic scalar conservation law

3.A Proofs

Proof of Lemma 3.10. Let m = 0. Let p ∈ [1,+∞) and let u ∈ RN be as in the statement. We
have

∥∥∥D(0)
N u

∥∥∥p
p

=
1

N

∑
ui≥0

|ui|p +
1

N

∑
ui<0

|ui|p

≤ 1

N

∑
ui≥0

|ui − ui− |p +
1

N

∑
ui<0

|ui − ui+ |p

≤ 1

N

∑
ui≥0

Np−1
N∑
j=1

|uj+1 − uj |p +
1

N

∑
ui<0

Np−1
N∑
j=1

|uj+1 − uj |p

=
1

N

N∑
j=1

|N(uj+1 − uj)|p =
∥∥∥D(1)

N u
∥∥∥p
p
,

where we used the Jensen inequality passing from the third to the fourth line. We just have proved
the wanted inequality when m = 0 but the case m = 1 is proved in the same way.

Proof of Lemma 3.11. For u ∈ RN0 and p ∈ 2N∗, we have

〈
D

(1)
N (up−1),D

(1)
N u

〉
= N

N∑
i=1

(
up−1
i+1 − u

p−1
i

)
(ui+1 − ui)

= N(p− 1)
N∑
i=1

(ui+1 − ui)
∫ ui+1

ui

|z|p−2dz

= N(p− 1)
N∑
i=1

(ui+1 − ui)
∫ ui+1

ui

(
|z|p/2−1

)2
dz

≥ N(p− 1)

N∑
i=1

(∫ ui+1

ui

|z|p/2−1dz

)2

(by Jensen’s inequality)

=
4N(p− 1)

p2

N∑
i=1

(∫ ui+1

ui

d

dz

(
sign(z)|z|p/2

)
dz

)2

=
4N(p− 1)

p2

N∑
i=1

(
sign (ui+1) |ui+1|p/2 − sign (ui) |ui|p/2

)2
.

We can now apply Lemma 3.10 to the vector (sign (ui) |ui|p/2)Ni=1 and eventually, we obtain

〈
D

(1)
N (up−1),D

(1)
N u

〉
≥ 4(p− 1)

Np2

N∑
i=1

(
sign (ui) |ui|p/2

)2
=

4(p− 1)

p2
‖u‖pp.

Proof of Lemma 3.12. Let u ∈ RN0 and q ∈ 2N∗. Summing by parts and using (3.12) and (3.13),
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we have

N∑
i=1

uq−1
i

(
A(ui, ui+1)−A(ui−1, ui)

)
= −

N∑
i=1

(
uq−1
i+1 − u

q−1
i

)
A(ui, ui+1)

= −
N∑
i=1

∫ uq−1
i+1

uq−1
i

A(ui, ui+1)dz

≥ −
N∑
i=1

∫ uq−1
i+1

uq−1
i

A
(
z1/(q−1), z1/(q−1)

)
dz

= −
N∑
i=1

∫ uq−1
i+1

uq−1
i

A
(
z1/(q−1)

)
dz

= −
N∑
i=1

∫ uq−1
i+1

uq−1
i

d

dz
(Aq(z)) dz = 0,

where Aq denotes a function defined on R such that A′q(z) = A(z1/(q−1)).

Proof of Lemma 3.13. (i) Let u,v ∈ RN0 . From the definition of b, we write

〈sign(u− v),b(u)− b(v)〉 =−
N∑
i=1

sign(ui − vi)
(
A(ui, ui+1)−A(ui−1, ui)−A(vi, vi+1) +A(vi−1, vi)

)
+ νN

N∑
i=1

sign(ui − vi)(ui+1 − 2ui + ui−1 − vi+1 + 2vi − vi−1).

By periodicity, both terms of the right-hand side can be summed by parts, which leads to

〈sign(u− v),b(u)− b(v)〉 =

N∑
i=1

(sign(ui+1 − vi+1)− sign(ui − vi))
(
A(ui, ui+1)−A(vi, vi+1)

)
− νN

N∑
i=1

(sign(ui+1 − vi+1)− sign(ui − vi)) ((ui+1 − vi+1)− (ui − vi)) .

Observe that since the function sign : R → R is non-decreasing, each term of the second sum is
non-negative. As for the first sum, it follows from the monotonicity property of A that each term is
non-positive. Let us address for instance the case where ui+1 ≥ vi+1 and ui ≤ vi. Then, on the one
hand, we have sign(ui+1 − vi+1)− sign(ui − vi) = 2. On the other hand, we have

A(ui, ui+1)−A(vi, vi+1) =
(
A(ui, ui+1)−A(ui, vi+1)

)
+
(
A(ui, vi+1)−A(vi, vi+1)

)
=

∫ ui+1

vi+1

∂2A(ui, z)dz −
∫ vi

ui

∂1A(z, vi+1)dz ≤ 0.

The case where ui+1 ≤ vi+1 and ui ≥ vi is treated symmetrically.
(ii) Let u ∈ RN0 . We have

〈u,b(u)〉 = −
N∑
i=1

ui
(
A(ui, ui+1)−A(ui−1, ui)

)
+ νN

N∑
i=1

ui(ui+1 − 2ui + ui−1).

Lemma 3.12 with q = 2 shows that the first term of the above decomposition is non-positive. Summing
by parts the second term yields the result.
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Proof of Lemma 3.30. (i) The wanted equality follows from standard computations.
(ii) Let us start with the first inequality. We have

∥∥∥Ψ
(1)
N v −Ψ

(0)
N v

∥∥∥2

L2
0(T)

=

∫
T

(
N∑
i=1

viN

(
x− i− 1

N

)
1( i−1

N
, i
N ](x) +

N∑
i=1

viN

(
i+ 1

N
− x
)
1( i

N
, i+1

N ](x)

−
N∑
i=1

vi1( i−1
N
, i
N ](x)

)2

dx

=

N∑
i=1

∫ i
N

i−1
N

(
viN

(
x− i− 1

N

)
+ vi−1N

(
i

N
− x
)
− vi

)2

dx

=
N∑
i=1

(vi − vi−1)2

∫ i
N

i−1
N

(Nx− i)2dx

=
1

3N

N∑
i=1

(vi − vi−1)2 =
1

3N2

∥∥∥D(1)
N v

∥∥∥2

2
.

As for the second inequality, we have∥∥∥Ψ
(2)
N v −Ψ

(0)
N v

∥∥∥2

L2
0(T)

=

N∑
i=1

∫ i
N

i−1
N

(
1

2
vi+1(Nx− i)(Nx− (i− 1))− vi(Nx− (i− 1))(Nx− (i+ 1))

+
1

2
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)2

dx

=
N∑
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∫ i
N

i−1
N

(
1

2
vi+1(Nx− i)2 +

1

2
vi+1(Nx− i)− vi(Nx− i)2 +

1

2
vi−1(Nx− i)2 − 1

2
vi−1(Nx− i)

)2

≤ 3

N∑
i=1

∫ i
N

i−1
N

((
1

2
vi+1 − vi +

1

2
vi−1

)
(Nx− i)2

)2

dx

+ 3

N∑
i=1

∫ i
N

i−1
N

((
1

2
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1

2
vi

)
(Nx− i)

)2

dx

+ 3
N∑
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∫ i
N

i−1
N

((
1

2
vi −

1

2
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)
(Nx− i)

)2

dx

=
3

4

N∑
i=1

(vi+1 − 2vi + vi−1)2

∫ i
N

i−1
N

(Nx− i)4dx+
3

2

N∑
i=1

(vi+1 − vi)2

∫ i
N

i−1
N

(Nx− i)2dx

=
3

20N4

∥∥∥D(2)
N v

∥∥∥2

2
+

1

2N2

∥∥∥D(1)
N v

∥∥∥2

2
.



Chapter 4

Numerical experiments

Résumé. Ce chapitre correspond à la section 5 de [19]. On présente des tests numériques illustrant
les théorèmes 3.5 et 3.7 dans le cas de l’équation de Burgers. La stationnarité du schéma totalement
discrétisé est observée via un calcul de la moyenne ergodique. Des bornes supérieures sur les taux
de convergence en temps et en espace, pour l’approximation en distance de Wasserstein de la mesure
invariante, sont calculées empiriquement. Enfin, des simulations du spectre d’énergie et du facteur
d’aplatissement (flatness) de la solution stationnaire sont comparées à des résultats théoriques relatifs
à la théorie de la turbulence.

Abstract. This chapter corresponds to the fifth section of [19]. We provide numerical experiments
to illustrate Theorems 3.5 and 3.7 in the case of the Burgers equation. The stationarity of the fully
discrete scheme is observed through the computation of the ergodic mean. Upper bounds on the
convergence rates in space and in time, for the approximation of the invariant measure with respect to
the Wasserstein distance, are derived empirically. Finally, numerical simulations of the energy spectrum
and of the flatness of the stationary solution are compared to theoretical results in turbulence theory.

All the experiments in this section are performed on the Burgers equation, i.e. the flux function is
set to be A(u) = u2/2. Moreover, we will also fix the following set of parameters: ν = 10−5, u0 ≡ 0,
gk(x) = cos(2πkx) for k = 1, . . . , 4 and gk ≡ 0 for k ≥ 5. The implicit equation in (3.15) is solved
numerically by use of the Newton-Raphson method.

4.1 Stationarity

We seek here to give a numerical illustration of the stationarity of the Markov chain (UN,∆t
n )n∈N defined

by (3.15) (in all this section, the number of cells and the time step will always appear as a superscript
in the solutions). As already mentioned in Remark 3.9, by virtue of Birkhoff’s ergodic theorem, for any
test function ϕ : RN0 → R such that ϕ ∈ L1(νN,∆t) and any random variable V ∼ νN,∆t, the process
(UN,∆t

n )n∈N shall satisfy

Yn :=
1

n

n−1∑
l=0

ϕ
(
UN,∆t
l

)
a.s.−→
n→∞

E [ϕ (V)] .

In Figure 4.1, we record the values of the sequence (Yn)n≥1 up to the iteration n = 104, with the
following set of parameters: ∆t = 10−3, N = 512, ϕ = cos(‖ · ‖2). In particular, the time interval
considered here is the interval [0, 10].

The stationary state seems to be reached approximately at time t = 3.



106 Chapter 4. Numerical experiments

Figure 4.1: Ergodic mean of the process
(
ϕ
(
UN,∆t
n

))
n∈N

.

4.2 Convergence in space

In the following experiment, we aim to retrieve numerically the convergence result of Theorem 3.7 as
N tends to infinity and for a fixed time step. Instead of computing directly the Wasserstein distance,
we compute the strong L2 error with respect to a reference solution computed with Nref = 211. More
precisely, we record in Figure 4.2 the values of

 1

n

n−1∑
n=0

1

Nref

Nref∑
i=1

(
UN,∆t⌈

Nref (i−1)

N

⌉
+1,n
− UNref ,∆t

i,n

)2
1/2

(4.1)

as N takes values in {23, 24, . . . , 210}. For n sufficiently large, the discrete processes aim to be close
to their stationary state and thus, the value (4.1) is meant to be an upper bound of the Wasserstein
error approximation of the invariant measure µ:

 1

n

n−1∑
n=0

1

Nref

Nref∑
i=1

(
UN,∆t⌈

Nref (i−1)

N

⌉
+1,n
− UNref ,∆t

i,n

)2
1/2

≈ E
[∥∥∥u(0)

N (n∆t)− u (n∆t)
∥∥∥2

L2
0(T)

]1/2

≥W2

(
L
(
u

(0)
N (n∆t)

)
,L (u (n∆t))

)
≈W2

(
µ

(0)
N , µ

)
.

Here, the other parameters are set to: ∆t = 10−3, n = 104.
The result shows that the convergence in space happens at an order of at least 1/2.
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Figure 4.2: Strong error convergence at a large time with respect to N

4.3 Convergence in time

We apply the same procedure to study the convergence with respect to the time step ∆t. A reference
solution is computed for the time step ∆tref = 2−11, and for a number n = 10 × 211 of iterations, we
compute the following L2 error(

1

n

n−1∑
n=0

∥∥∥UN,∆t
bn∆tref∆t−1c −UN,∆tref

n

∥∥∥2

2

)1/2

,

which is supposed to be an upper bound of the Wasserstein distance error between the respective
invariant measures for (3.11) and for (3.15):(

1

n

n∑
n=1

∥∥∥UN,∆t
bn∆tref∆t−1c −UN,∆tref

n

∥∥∥2

2

)1/2

≈ E
[∥∥∥UN,∆t

bn∆tref∆t−1c −UN,∆tref
n

∥∥∥2

2

]1/2

≥W2

(
L
(
UN,∆t
bn∆tref∆t−1c

)
,L
(
UN,∆tref
n

))
≈W2 (νN,∆t, νN ) .

This error is evaluated when ∆t takes values in {2−4, 2−5, . . . , 2−10} and for N = 256.
A rate of convergence of 1/2 also stems from this experiment.

4.4 Burgulence estimates

Endowed with the Burgers flux function, Equation (3.1) may be interpreted as a one-dimensional and
simplified version of the Navier-Stokes system, and as such, it is considered a toy model for turbulence
(the so-called burgulence, see for instance [15, Chapter 1] or [48, 49] in this prospect). According to the
turbulence theory dating back to Kolmogorov, universal properties emerge as a turbulent dynamical
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Figure 4.3: Strong error convergence at a large time with respect to ∆t

system approaches its stationary state. Here, we will try to recover numerically two of these properties
which, in a framework close to Equation (3.1), have been proved rigorously in Boritchev’s work [15].
The first one concerns the decay rate of the energy spectrum. Let u be an L2

0(T)-valued random
variable whose distribution is the invariant measure µ of the process associated to (3.1), and let ûk
denote, for any k ≥ 1, the k-th Fourier coefficient of u:

ûk :=

∫
T
u(x)e−2iπkxdx.

Here, we call energy spectrum the function E defined for all k ≥ 1 by E(k) := E[|ûk|2]. This function
satisfies a specific decay rate [15, Theorem 4.7.3] up to some averaging around the neighbour coefficients
of k. For any k ≥ 1 and any M > 1, we set Sk,M := [M−1k,Mk]∩N which defines a set of neighbours
of k. We now state the result contained in [15, Theorem 4.7.3]:

Proposition 4.1. There exists an interval I ⊂ [0, 1], called the inertial range, such that

1

|Sk,M |
∑

j∈Sk,M

E(j) ∼ k−2, k−1 ∈ I.

Here, x ∼ y means that there exists a constant C > 0 such that C−1y ≤ x ≤ Cy. The inertial
range I is defined with more details in [15, Section 4.6]. To give a physical interpretation of this
interval, it corresponds to the range of scales in which the energy of the system is transported from
large scales to smaller ones. If we write I = [α, β], the inertial range is positioned between the energy
range [β, 1] containing the large scales, which in our case are generated by the stochastic forcing, and
the dissipation range [0, α] containing the small scales dissipated by the viscous term. In particular, α
depends linearly on ν.

The second universal property of interest concerns the flatness, that is the function F defined by

F (l) :=
E
[∫

T |u(x+ l)− u(x)|4dx
]

E
[∫

T |u(x+ l)− u(x)|2dx
]2 , l ∈ T,
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where u is a random variable with distribution µ. The flatness aims to be an indicator of the spatial
intermittency in the turbulent system described by (3.1). A decay rate for F in the inertial range is
provided in [15, Corollary 4.6.9]:

Proposition 4.2. Let I be the inertial range from Proposition 4.1. Then,

F (l) ∼ l−1, l ∈ I.

From (3.15), we computed the numerical approximations of the energy spectrum and the flat-
ness. These computations are plotted in Figure 4.4. More precisely, we used the following respective
approximations:

E(k) ≈ 1

n

n−1∑
n=0

∣∣∣ÛN,∆tk,n

∣∣∣2 , k = 1, . . . ,

⌈
N

2

⌉
;

F

(
j

N

)
≈

1
n

∑n−1
n=0

1
N

∑N
i=1

∣∣∣UN,∆ti+j,n − U
N,∆t
i,n

∣∣∣4(
1
n

∑n−1
n=0

1
N

∑N
i=1

∣∣∣UN,∆ti+j,n − U
N,∆t
i,n

∣∣∣2)2 , j ∈ Z/NZ.

Here, ÛN,∆t
n is the discrete Fourier transform ofUN,∆t

n , which we computed using an FFT algorithm
from the Python library numpy.fft (v1.17). In both experiments, we have taken N = 256, ∆t = 10−3,
and n = 10000.

The result of Proposition 4.1 seems recovered as the slope of the energy spectrum tends to behave
like k−2 in some sub-interval of [0, 1]. As regards the flatness, for intermediate scales, a decay rate
varying from the order −3/2 to the order −1 is observed.
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Figure 4.4: Decay rates for the energy spectrum and for the flatness.



Appendix A

Invariant measures for the numerical
schemes in the inviscid multi-dimensional
case

Résumé. On se propose dans cette partie d’étudier la stationnarité des schémas semi-discret et com-
plètement discret introduits au chapitre 3 lorsque la viscosité est nulle. Il s’agit de généraliser le résultat
du théorème 3.5 au cas non-visqueux. Dans la première section, on expose comment les schémas à flux
strictement monotone ont un caractère diffusif exploitable pour assurer l’existence et l’unicité d’une
mesure invariante. Dans la seconde section, ce résultat est généralisé à un domaine spatial périodique
de dimension quelconque.
Abstract. In this part, we study the stationarity of the semi and fully discrete schemes introduced
in Chapter 3 when the viscosity coefficient is equal to zero. We aim to generalise Theorem 3.5 to the
inviscid case. In the first section, we expose how strongly monotone schemes have a diffusive nature
that can be exploited to ensure the existence and uniqueness of an invariant measure. In the second
section, this result is generalised to a periodic spatial domain of arbitrary dimension.

A.1 A remark on strongly monotone numerical fluxes

Let us place ourselves in the setting of Chapter 3 and let us complement Assumption 3.3 with the fact
that the numerical flux A is strongly monotone, that is, there exist λ > 0 and a numerical flux function
Ã satisfying Assumption 3.3 such that

A(u, v) = Ã(u, v) + λ(u− v), ∀u, v ∈ R. (A.1)

This notion was used for instance in [82, Definition 5]. We may notice that it is possible to construct
a strongly monotone numerical flux from any numerical flux function satisfying Assumption 3.3 just
by adding a term λ(u − v). In particular, there is no restriction on the class of flux functions A
that are covered here. We consider here the function b used to establish the semi and fully discrete
approximations, respectively (3.11) and (3.15), to Equation (2.1) with such a numerical flux. Recall
that this function is defined from RN0 to RN0 by its components

bi(v) := −N
(
A(vi, vi+1)−A(vi−1, vi)

)
+ νN2(vi+1 − 2vi + vi−1), i ∈ Z/NZ, v ∈ RN0 .

Using (A.1), we may write

bi(v) = −N
(
Ã(vi, vi+1)− Ã(vi−1, vi)

)
+N(λ+ νN)(vi+1 − 2vi + vi−1), i ∈ Z/NZ.
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multi-dimensional case

Observe that the numerical scheme we obtain here is the one we would get with the numerical flux Ã,
but with some additional amount of viscosity (actually, with the new viscosity coefficient ν+ λ

N ). In this
respect, strongly monotone numerical fluxes provide a good example of schemes inducing numerical
diffusion.

In this context, if we take ν = 0, the function b still satisfies the L1-contraction property (Lemma 3.13.(i)),
whereas the dissipativity property also holds but with a dependence on N which is not of the same
order as Lemma 3.13.(ii) as we have

〈v,b(v)〉 ≤ − λ
N

∥∥∥D(1)
N v

∥∥∥2

2
, v ∈ RN0 .

As a consequence, all the qualitative properties of the processes (U(t))t≥0 and (Un)n∈N obtained in
Chapter 3 hold, and we have notably

Proposition A.1. With a numerical flux of the form (A.1) and a viscosity coefficient ν ≥ 0, the
respective solutions (U(t))t≥0 and (Un)n∈N to (3.11) and (3.15) both admit a unique invariant measure
in P(RN0 ), denoted respectively νN and νN,∆t.

However, in the quantitative estimates, all of the upper bounds that relied on the viscosity have
been multiplied by N . For instance, Inequality (3.47) has been replaced by

E
[∥∥∥D(1)

N V
∥∥∥2

2

]
≤ ND0

2λ
, V ∼ νN ,

from which we cannot derive directly the tightness of the family (µN )N≥1, which is the first step of
our proof of convergence with respect to N .

A.2 Inviscid and multi-dimensional version of Theorem 3.5

The purpose of this section is to generalise, in the inviscid case, Proposition A.1 to the case where the
space variable is multi-dimensional. That is, we prove uniqueness and existence of invariant measures
for semi-discrete and fully discrete numerical schemes that aim to approximate conservation laws of
the form

du = −div (A(u)) dt+
∑
k≥1

gkdW
k(t), t ≥ 0, x ∈ Td, (A.2)

where

• A ∈ C2(R,Rd);

• for all k ≥ 1, gk ∈ C(Td) and ∫
Td

gk(x)dx = 0;

• (W k)k≥1 is a family of independent real Brownian motions.

We consider a mesh T on Td constructed as in [47], i.e. T is a finite family of disjoint open
connected sets which form a partition of Td up to a negligible set. For all distinct K,L ∈ T , the
intersection of closures K ∩ L is assumed to be contained in a hyperplane. For all K ∈ T ,

N (K) :=
{
L ∈ T : L 6= K,K ∩ L 6= ∅

}
defines the set of neighbours of K.

To discretise the flux in Equation (A.2), we will not use an single function A as in the one-
dimensional case, but a family of functions (AK→L)K∈T ,L∈N (K), where each function AK→L : R2 → R
represents the flux of the conserved quantity at the interface K ∩ L.
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Definition A.2 (Monotone family of numerical fluxes). A family of continuous functions (ÃK→L)K∈T ,L∈N (K)

from R2 to R is said to be a monotone family of numerical fluxes if for all K ∈ T and all L ∈ N (K),
it satisfies the following conditions :

• monotonicity: for all v ∈ R, ÃK→L(·, v) is non-decreasing and for all u ∈ R, ÃK→L(u, ·) is
non-increasing;

• consistency:
∀u ∈ R, ÃK→L(u, u) =

∣∣K ∩ L∣∣A(u) · nK,L,
where |K ∩ L| denotes the (d − 1)-dimensional Hausdorff measure of K ∩ L and nK,L is the
outward unit normal to K on K ∩ L;

• symmetry:
∀u, v ∈ R, ÃK→L(u, v) = −ÃL→K(v, u).

In this section, our family (AK→L)K∈T ,L∈N (K) is assumed to be monotone and, as in Section A.1
for the numerical flux A, we make furthermore the following

Assumption A.3 (Strong monotonicity). There exist λ > 0 and a monotone family of numerical
fluxes (ÃK→L)K∈T ,L∈N (K) such that for all K ∈ T and all L ∈ N (K),

∀u, v ∈ R, AK→L(u, v) = ÃK→L(u, v) + λ(u− v).

In order to dicretise the noise coefficients, we define for any K ∈ T and any k ≥ 1,

σkK :=
1

|K|

∫
K
gk(x)dx,

where |K| is the Lebesgue measure of K. We can now define our semi-discrete approximation of (A.2)
as the following SDE:

dUK(t) =

 1

|K|
∑

L∈N (K)

AL→K (UL(t), UK(t))

 dt+
∑
k≥1

σkKdW k(t), t ≥ 0, K ∈ T . (A.3)

Setting N := #T , Equation (A.3) turns out to be an SDE on the state space

RN0 :=

{
u = (uK)K∈T ∈ RN :

∑
K∈T

|K|uK = 0

}
.

Its drift function b : RN0 → RN0 is defined by the components

bK(u) :=
1

|K|
∑

L∈N (K)

AL→K(uL, uK), K ∈ T .

Denoting σk := (σkK)K∈T for all k ≥ 1, the vectorised form of (A.3) writes

dU(t) = b(U(t))dt+
∑
k≥1

σkdW k(t), t ≥ 0. (A.4)

We now introduce the split-step time discretisation of (A.4) in exactly the same way as in Chapter 3.
Given a time step ∆t > 0, and using the notation ∆W k

n = W k(n∆t)−W k((n− 1)∆t), we write
Un+ 1

2
= Un + ∆tb

(
Un+ 1

2

)
,

Un+1 = Un+ 1
2

+
∑
k≥1

σk∆W k
n+1.

(A.5)
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multi-dimensional case

Let us now endow the space RN0 with the renormalised Lp norms and L2 scalar product: for all
u = (uK)K∈T and v = (vK)K∈T in RN0 , we define

‖u‖p :=

(∑
K∈T

|K| |uK |p
)1/p

, p ∈ [1,∞);

〈u,v〉 :=
∑
K∈T

|K|uKvK .

In this setting, we have

Proposition A.4. Under Assumption A.3, for all u,v ∈ RN0 , we have

〈sign(u− v),b(u)− b(v)〉 ≤ 0, (A.6)

and
〈b(u),u〉 ≤ −λ

∑
K∼L

(uL − uK)2, (A.7)

where
∑

K∼L means the sum over each pair of neighbouring cells K and L.

Before proceeding to the proof of Proposition A.4, we will first establish a preliminary result:

Lemma A.5. For any u ∈ RN0 , we have

∑
K∼L

∫ uK

uL

ÃL→K(z, z)dz = 0.

Proof. First of all, we have thanks to the Green formula:

∀z ∈ R, ∀K ∈ T ,
∑

L∈N (K)

ÃL→K(z, z) = 0 (A.8)

(see [103, Equation (22)]).
Let m ∈ Rd such that for all neighbouring cells K and L of T , we have nK,L ·m 6= 0. Since the

union of all the orthogonal hyperplanes of the normal units nK,L cannot cover Rd, existence of such a
vector m is forthright.

For every cell K ∈ T , we split its family of neighbours N (K) in the two subsets

JK := {L ∈ N (K) : nK,L ·m > 0} and JcK := N (K) \ JK .

Splitting the sum in (A.8), we have by symmetry of the numerical fluxes: for all K ∈ T and all z ∈ R,∑
L∈JK

ÃL→K(z, z) =
∑
L∈Jc

K

ÃK→L(z, z). (A.9)

Let ψL→K denote an antiderivative of z 7→ ÃL→K(z, z). Integrating in (A.9) up to uK and summing
over K ∈ T , we get ∑

K∈T

∑
L∈JK

ψL→K(uK) =
∑
K∈T

∑
L∈Jc

K

ψK→L(uK). (A.10)
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Observe by the way that each of the double sums in (A.10) amounts to a sum over exactly all the
interfaces. Let us now rewrite the left-hand side in (A.10):∑

K∈T

∑
L∈JK

ψL→K(uK) =
∑
K∼L

nK,L·m>0

ψL→K(uK)

=
∑
K∼L

nL,K ·m>0

ψK→L(uL)

=
∑
K∼L

nK,L·m<0

ψK→L(uL)

=
∑
K∈T

∑
L∈Jc

K

ψK→L(uL).

Replacing this last term back in (A.10), we obtain∑
K∈T

∑
L∈Jc

K

ψK→L(uL) =
∑
K∈T

∑
L∈Jc

K

ψK→L(uK).

Thus, ∑
K∈T

∑
L∈Jc

K

(ψK→L(uK)− ψK→L(uL)) = 0,

that is, ∑
K∼L

(ψK→L(uK)− ψK→L(uL)) = 0,

whence ∑
K∼L

∫ uK

uL

Ã(z, z)dz = 0.

Proof of Proposition A.4 Notice first that for a mapping a : T 2 → R, we have∑
K∈T

∑
L∈N (K)

aK,L =
∑
K∼L

(aK,L + aL,K), (A.11)

(see for instance [103, Equation (31)]). Let us start by proving (A.6). From (A.11) and the symmetry
property of the numerical fluxes, we have∑

K∈T
|K|sign(uK − vK)(bK(u)− bK(v))

=
∑
K∈T

∑
L∈N (K)

sign(uK − vK) (AL→K(uL, uK)−AL→K(vL, vK))

=
∑
K∼L

(sign(uK − vK)− sign(uL − vL)) (AL→K(uL, uK)−AL→K(vL, vK)) .

By monotonicity of AL→K , each term of this sum is non-positive (see the proof of Lemma 3.13).
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multi-dimensional case

Let us now prove (A.7). Using Assumption A.3, we write

〈b(u),u〉 =
∑
K∈T

|K|bK(u)uK

=
∑
K∈T

∑
L∈N (K)

AL→K(uL, uK)uK

=
∑
K∈T

∑
L∈N (K)

ÃL→K(uL, uK)uK + λ
∑
K∈T

∑
L∈N (K)

(uL − uK)uK

=: S1 + S2.

Let us show that S1 ≤ 0.

S1 =
∑
K∼L

(
ÃL→K(uL, uK)uK + ÃK→L(uK , uL)uL

)
(by (A.11))

=
∑
K∼L

ÃL→K(uL, uK)(uK − uL) (by symmetry)

=
∑
K∼L

∫ uK

uL

ÃL→K(uL, uK)dz −
∑
K∼L

∫ uK

uL

Ã(z, z)dz (by Lemma (A.5))

=
∑
K∼L

∫ uK

uL

(
ÃL→K(uL, uK)− Ã(z, z)

)
dz

≤ 0 (by monotonicity).

To finish the proof, we will show that S2 = −λ
∑

K∼L(uL − uK)2.

S2 = λ
∑
K∈T

∑
L∈N (K)

(uL − uK)uK

= λ
∑
K∼L

((uL − uK)uK + (uK − uL)uL) (by (A.11))

= λ
∑
K∼L

(uL − uK)(uK − uL)

= −λ
∑
K∼L

(uL − uK)2.

As in the one-dimensional case, the existence and uniqueness of a solution (U(t))t≥0 to (A.4) is
ensured by (A.7), while the existence and uniqueness of a solution (Un)n∈N to (A.4) is ensured by (A.7)
and (A.6) respectively. Furthermore, the uniqueness of an invariant measure is proved exactly the same
way as the one-dimensional case by the use of the L1-contraction property for the processes (U(t))t≥0

and (Un)n∈N, which follows itself from (A.6). The existence is not as straightforward though. Indeed,
Inequality (A.7) leads, in the semi-discrete case, to an estimate of the form

1

T

∫ T

0
E

[
λ
∑
K∼L

(UK(t)− UL(t))2

]
dt ≤ C.

In order for the Krylov-Bogoliubov theorem to apply, one needs the level sets of the mapping u ∈
RN0 7→ λ

∑
K∼L(uK − uL)2 to be compact, which is actually the case as we have

Lemma A.6 (Coercivity of the discrete gradient). For every u ∈ RN0 , we have∑
K∼L

(uK − uL)2 ≥ 1

N − 1
max
K∈T

|uK |2.
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Proof. First of all, the result is obvious when u = 0. We shall therefore consider the case u 6= 0. Let
Kmax be a cell of T such that |uKmax | = maxK∈T |uK |. Without loss of generality, we assume that
uKmax > 0. Since u ∈ RN0 , there exists K− ∈ T such that uK− ≤ 0. Now, let (K1, . . . ,Kl) ∈ T l be
such that:

• l ≤ N ;

• K1 = K− and Kl = Kmax;

• Ki ∈ N (Ki+1), for all i ∈ {1, . . . , l − 1};

• Ki 6= Kj , for all i 6= j.

In other words, (K1, . . . ,Kl) is a simple path of length l between K− and Kmax. Since there are no
repeating cells in this path, we have

∑
K∼L

(uK − uL)2 ≥
l−1∑
i=1

(
uKi+1 − uKi

)2
=

1

l − 1

(
l−1∑
i=1

(
uKi+1 − uKi

))2

(by Cauchy-Schwarz)

≥ 1

N − 1
(uKl

− uK1)2

=
1

N − 1

(
uKmax − uK−

)2
≥ 1

N − 1
max
K∈T

|uK |2.

We can now state:

Theorem A.7. Under Assumption A.3, the following two statements hold:

(i) for any N ≥ 1, the process (U(t))t≥0 solution of the SDE (A.4) admits a unique invariant
measure νN ∈ P(RN0 );

(ii) for any N ≥ 1 and any ∆t > 0, the process (Un)n∈N defined by (A.5) admits a unique invariant
measure νN,∆t ∈ P(RN0 ).





Bibliography

[1] Aureli Alabert and István Gyongy. On Numerical Approximation of Stochastic Burgers’ Equation,
pages 1–15. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[2] Sergio Albeverio, Stanislav A. Molchanov, and Donatas Surgailis. Stratified structure of the
Universe and Burgers’ equation—a probabilistic approach. Probability Theory and Related Fields,
100(4):457–484, Dec 1994.

[3] Adam Andersson, Raphael Kruse, and Stig Larsson. Duality in refined Sobolev–Malliavin spaces
and weak approximation of SPDE. Stochastics and Partial Differential Equations Analysis and
Computations, 4(1):113–149, Mar 2016.

[4] Adam Andersson and Stig Larsson. Weak convergence for a spatial approximation of the nonlinear
stochastic heat equation. Math. Comput., 85:1335–1358, 2015.

[5] Caroline Bauzet, Julia Charrier, and Thierry Gallouët. Convergence of flux-splitting finite volume
schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation.
Mathematics of Computation, 85:2777–2813, November 2016.

[6] Caroline Bauzet, Julia Charrier, and Thierry Gallouët. Convergence of monotone finite volume
schemes for hyperbolic scalar conservation laws with multiplicative noise. Stochastics and Partial
Differential Equations Analysis and Computations, 4(1):150–223, 2016.

[7] Caroline Bauzet, Guy Vallet, and Petra Wittbold. The Cauchy problem for conservation laws
with a multiplicative stochastic perturbation. Journal of Hyperbolic Differential Equations, De-
cember 2012.

[8] Jérémie Bec and Konstantin Khanin. Burgers turbulence. Physics Reports, 447:1–2, 2007. Physics
Reports, 447, pp. 1-2, http://dx.doi.org./10.1016/j.physrep..04.002.

[9] Lorenzo Bertini, Nicoletta Cancrini, and Giovanni Jona-Lasinio. The stochastic Burgers equation.
Comm. Math. Phys., 165(2):211–232, 1994.

[10] Lorenzo Bertini and Giambattista Giacomin. Stochastic Burgers and KPZ equations from particle
systems. Comm. Math. Phys., 183(3):571–607, 02 1997.

[11] Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, and Francis Filbet. On discrete func-
tional inequalities for some finite volume schemes. IMA Journal of Numerical Analysis, pages
10–32, July 2014.

[12] Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statis-
tics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A
Wiley-Interscience Publication.



120 Bibliography

[13] Gianni Blatter, Mikhail V. Feigel’man, Vadim B. Geshkenbein, Anatoly I. Larkin, and Valerii M.
Vinokur. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66:1125–1388, Oct
1994.

[14] Alexandre Boritchev. Turbulence de Burgers en 1D : un cas modèle pour la théorie de Kol-
mogorov. Séminaire Laurent Schwartz — EDP et applications, pages 1–13, 2011-2012.

[15] Alexandre Boritchev. Generalised Burgers equation with random force and small viscosity. Theses,
Ecole Polytechnique X, October 2012.

[16] Alexandre Boritchev. Sharp Estimates for Turbulence in White-Forced Generalised Burgers
Equation. Geometric and Functional Analysis, 23(6):1730–1771, 2013.

[17] Jean-Philippe Bouchaud, Marc Mézard, and Giorgio Parisi. Scaling and intermittency in Burgers
turbulence. Phys. Rev. E, 52:3656–3674, Oct 1995.

[18] François Bouchut, Robert Eymard, and Alain Prignet. Finite volume schemes for the approxima-
tion via characteristics of linear convection equations with irregular data. Journal of Evolution
Equations, 11(3):687–724, Sep 2011.

[19] Sébastien Boyaval, Sofiane Martel, and Julien Reygner. Finite-volume approximation of the
invariant measure of a viscous stochastic scalar conservation law. Preprint, arXiv:1909.08899,
2019.

[20] Charles-Édouard Bréhier. Approximation of the invariant measure with an Euler scheme for
Stochastic PDE’s driven by Space-Time White Noise. Potential Analysis, 1(40):1–40, January
2014.

[21] Charles-Édouard Bréhier and Marie Kopec. Approximation of the invariant law of SPDEs: error
analysis using a Poisson equation for a full-discretization scheme. IMA Journal of Numerical
Analysis, 2016.

[22] Charles-Édouard Bréhier and Gilles Vilmart. High order integrator for sampling the invariant
distribution of a class of parabolic stochastic PDEs with additive space-time noise. SIAM Journal
on Scientific Computing, 38(4):A2283–A2306, 2016.

[23] Leo Breiman. Probability. Addison-Wesley series in statistics. Addison-Wesley Publishing Com-
pany, 1968.

[24] Johannes M. Burgers. Hydrodynamics. — Application of a model system to illustrate some points
of the statistical theory of free turbulence, pages 390–400. Springer Netherlands, Dordrecht, 1995.

[25] David H. Chambers, Ronald J. Adrian, Parviz Moin, D. Scott Stewart, and Hyung Jin Sung.
Karhunen-Loève expansion of Burgers’ model of turbulence. The Physics of Fluids, 31(9):2573–
2582, 1988.

[26] Chuchu Chen, Jialin Hong, and Xu Wang. Approximation of invariant measure for damped
stochastic nonlinear Schrödinger equation via an ergodic numerical scheme. Potential Analysis,
46(2):323–367, Feb 2017.

[27] Gui-Qiang Chen, Qian Ding, and Kenneth H. Karlsen. On nonlinear stochastic balance laws.
Archive for Rational Mechanics and Analysis, 204(3):707–743, Jun 2012.

[28] Gui-Qiang G. Chen and Peter H. C. Pang. Invariant Measures for Nonlinear Conservation Laws
Driven by Stochastic Forcing. arXiv e-prints, August 2019.



Bibliography 121

[29] Ziheng Chen, Siqing Gan, and Xiaojie Wang. A full-discrete exponential Euler approximation of
the invariant measure for parabolic stochastic partial differential equations. November 2018.

[30] Haecheon Choi, Roger Temam, Parviz Moin, and John Kim. Feedback control for unsteady flow
and its application to the stochastic Burgers equation. Journal of Fluid Mechanics, 253:509–543,
1993.

[31] Debashish Chowdhury, Ludger Santen, and Andreas Schadschneider. Statistical physics of ve-
hicular traffic and some related systems. 2000.

[32] Daniel Conus, Arnulf Jentzen, and Ryan Kurniawan. Weak convergence rates of spectral Galerkin
approximations for SPDEs with nonlinear diffusion coefficients. Ann. Appl. Probab., 29(2):653–
716, 04 2019.

[33] Jianbo Cui, Jialin Hong, and Liying Sun. Weak convergence and invariant measure of a full
discretization for non-globally Lipschitz parabolic SPDE. arXiv:1811.04075, 2018.

[34] Giuseppe Da Prato, Arnaud Debussche, and Roger Temam. Stochastic Burgers’ equation. Non-
linear Differential Equations and Applications NoDEA, 1(4):389–402, Dec 1994.

[35] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press, 1992.

[36] Giuseppe Da Prato and Jerzy Zabczyk. Ergodicity for Infinite Dimensional Systems. Cambridge
Monographs on Partic. Cambridge University Press, 1996.

[37] Constantine M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics; 3rd ed.
Grundlehren der mathematischen Wissenschaften. Springer, Dordrecht, 2010.

[38] Arnaud Debussche. Ergodicity Results for the Stochastic Navier–Stokes Equations: An Introduc-
tion, pages 23–108. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[39] Arnaud Debussche, Martina Hofmanová, and Julien Vovelle. Degenerate parabolic stochastic
partial differential equations: Quasilinear case. Ann. Probab., 44(3):1916–1955, 05 2016.

[40] Arnaud Debussche and Julien Vovelle. Scalar conservation laws with stochastic forcing. Revised
version, February 2014.

[41] Arnaud Debussche and Julien Vovelle. Invariant measure of scalar first-order conservation laws
with stochastic forcing. Probability Theory and Related Fields, 163(3):575–611, 2015.

[42] Klaus Deimling. Nonlinear functional analysis. Springer-Verlag, 1985.

[43] Nicolas Dirr and Panagiotis E. Souganidis. Large-Time Behavior for Viscous and Nonviscous
Hamilton–Jacobi Equations Forced by Additive Noise. SIAM Journal on Mathematical Analysis,
37(3):777–796, 2005.

[44] Zhao Dong and Tiange Xu. One-dimensional stochastic Burgers equation driven by Lévy pro-
cesses. Journal of Functional Analysis, 243(2):631 – 678, 2007.

[45] Sylvain Dotti. Numerical approximation of hyperbolic stochastic scalar conservation laws. Theses,
Aix-Marseille Université (AMU), December 2017.

[46] Sylvain Dotti and Julien Vovelle. Convergence of approximations to stochastic scalar conservation
laws. Archive for Rational Mechanics and Analysis, 230(2):539–591, Nov 2018.



122 Bibliography

[47] Sylvain Dotti and Julien Vovelle. Convergence of the Finite Volume method for scalar conserva-
tion laws with multiplicative noise: an approach by kinetic formulation. Stochastics and Partial
Differential Equations: Analysis and Computations, Jul 2019.

[48] Weinan E. Stochastic hydrodynamics. In A. J. de Jong, David Jerison, George Lusztig, Barry
Mazur, Wilfried Schmid, and Shing-Tung Yau, editors, Current Devlopments in Mathematics
2000, pages 109 – 147. International Press of Boston, Inc., 2000.

[49] Weinan E. Stochastic PDEs in turbulence theory. In Lo Yang and Shing-Tung Yau, editors,
First International Congress of Chinese Mathematicians, pages 27–46. American Mathematical
Society / International Press, 2001.

[50] Weinan E and Eric Vanden Eijnden. Asymptotic theory for the probability density functions in
Burgers turbulence. Physical Review Letters, 83(13):2572–2575, 9 1999.

[51] Weinan E and Eric Vanden Eijnden. On the statistical solution of the Riemann equation and its
implications for Burgers turbulence. Physics of Fluids, 11(8):2149–2153, 8 1999.

[52] Weinan E, Konstantin Khanin, Alexander Mazel, and Yakov Sinai. Invariant Measures for Burg-
ers Equation with Stochastic Forcing. Annals of Mathematics, 151(3):877–960, 2000.

[53] Weinan E, Konstantin Khanin, Alexandre Mazel, and Yakov Sinai. Probability Distribution
Functions for the Random Forced Burgers Equation. Phys. Rev. Lett., 78:1904–1907, Mar 1997.

[54] Weinan E and Yakov G Sinai. Recent results on mathematical and statistical hydrodynamics.
Russian Mathematical Surveys, 55(4):635–666, aug 2000.

[55] Weinan E and Eric Vanden Eijnden. Statistical theory for the stochastic Burgers equation in the
inviscid limit. Communications on Pure and Applied Mathematics, 53(7):852–901, 2000.

[56] Björn Engquist and Stanley Osher. Stable and entropy satisfying approximations for transonic
flow calculations. Mathematics of Computation, 34(149):45–75, 1980.

[57] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume methods. In Solution of
Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3), volume 7 of Handbook of
Numerical Analysis, pages 713 – 1018. Elsevier, 2000.

[58] Benoît Fabrèges, Hélène Hivert, Kevin Le Balc’h, Sofiane Martel, François Delarue, Frédéric
Lagoutière, and Nicolas Vauchelet. Numerical schemes for the aggregation equation with pointy
potentials. ESAIM: ProcS, 65:384–400, 2019.

[59] Charles Fefferman. Existence and smoothness of the Navier-Stokes equation. The Millennium
Prize Problems, 01 2006.

[60] Jin Feng and David Nualart. Stochastic scalar conservation laws. Journal of Functional Analysis,
255(2):313 – 373, 2008.

[61] Uriel Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 1995.

[62] Uriel Frisch and Jérémie Bec. Burgulence, pages 341–383. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[63] Benjamin Gess and Martina Hofmanová. Well-posedness and regularity for quasilinear degenerate
parabolic-hyperbolic SPDE. Ann. Probab., 46(5):2495–2544, 09 2018.



Bibliography 123

[64] Toshiyuki Gotoh and Robert H. Kraichnan. Statistics of decaying Burgers turbulence. Physics
of Fluids A: Fluid Dynamics, 5(2):445–457, 1993.

[65] Massimiliano Gubinelli and Nicolas Perkowski. KPZ Reloaded. Communications in Mathematical
Physics, 349(1):165–269, Jan 2017.

[66] Sergei N. Gurbatov and Alexander I. Saichev. Probability distributions and spectra of potential
hydrodynamic turbulence. Radiofizika, 27:456–468, 1984.

[67] István Gyöngy. Existence and uniqueness results for semilinear stochastic partial differential
equations. Stochastic Processes and their Applications, 73(2):271–299, 1998.

[68] István Gyöngy and David Nualart. On the Stochastic Burgers’ Equation in the Real Line. Ann.
Probab., 27(2):782–802, 04 1999.

[69] István Gyöngy and Carles Rovira. On Lp-solutions of semilinear stochastic partial differential
equations. Stochastic Processes and their Applications, 90(1):83 – 108, 2000.

[70] Martin Hairer. Ergodic Properties of Markov Processes, 2006.

[71] Martin Hairer and Jochen Voss. Approximations to the stochastic Burgers equation. Journal of
Nonlinear Science, 21(6):897–920, Dec 2011.

[72] Erika Hausenblas and Ankik Giri. Stochastic Burger’s equation with polynomial nonlinearity
driven by Lévy process. Communications on Stochastic Analysis, 7:91–112, 03 2013.

[73] Martina Hofmanová. Strong solutions of semilinear stochastic partial differential equations.
Nonlinear Differential Equations and Applications NoDEA, 20(3):757–778, 2013.

[74] Martina Hofmanová. Degenerate parabolic stochastic partial differential equations. Stochastic
Processes and their Applications, 123(12):4294 – 4336, 2013.

[75] Noboyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion processes.
Kodansha scientific books. North-Holland, 1989.

[76] Dah-Teng Jeng. Forced Model Equation for Turbulence. The Physics of Fluids, 12(10):2006–2010,
1969.

[77] Mehran Kardar and Yi-Cheng Zhang. Scaling of directed polymers in random media. Phys. Rev.
Lett., 58:2087–2090, May 1987.

[78] Yuri Kifer. The Burgers equation with a random force and a general model for directed polymers
in random environments. Probability Theory and Related Fields, 108(1):29–65, May 1997.

[79] Andreï N. Kolmogorov. Dissipation of Energy in Locally Isotropic Turbulence. Akademiia Nauk
SSSR Doklady, 32:16, April 1941.

[80] Andreï N. Kolmogorov. On degeneration of isotropic turbulence in an incompressible viscous
liquid. In Dokl. Akad. Nauk SSSR, volume 31, pages 538–540, 1941.

[81] Andreï N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for
very large Reynolds numbers. Proceedings: Mathematical and Physical Sciences, 434(1890):9–13,
1991.

[82] Ilja Kroeker and Christian Rohde. Finite volume schemes for hyperbolic balance laws with
multiplicative noise. Applied Numerical Mathematics, 62(4):441–456, 2012.



124 Bibliography

[83] Raphael Kruse. Strong and Weak Approximation of Semilinear Stochastic Evolution Equations,
volume 2093 of Lecture Notes in Mathematics -Springer-Verlag-. 01 2014.

[84] Stanislav N. Kruzhkov. First order quasilinear equations in several independent variables. Math.
USSR-Sb., 10(2):217–243, 1970.

[85] Olga A. Ladyženskaja, Vsevolod A. Solonnikov, and Nina N. Ural’ceva. Linear and quasi-linear
equations of parabolic type. Translations of mathematical monographs. American Mathematical
Society, Providence, RI, 1968.

[86] Lev D. Landau and Evgeny M. Lifshitz. Fluid Mechanics (Second Edition). Pergamon, second
edition, 1987.

[87] Peter Lewis and David Nualart. Stochastic Burgers’ equation on the real line: regularity and
moment estimates. Stochastics, 90(7):1053–1086, 2018.

[88] Yunzhang Li, Chi-Wang Shu, and Shanjian Tang. A Discontinuous Galerkin Method for Stochas-
tic Conservation Laws. 2019.

[89] Pierre-Louis Lions, Benoît Perthame, and Eitan Tadmor. A Kinetic Formulation of Multidimen-
sional Scalar Conservation Laws. Journal of the American Mathematical Society, 7(1):169–191,
January 1994.

[90] Gabriel J. Lord, Catherine E. Powell, and Tony Shardlow. An Introduction to Computational
Stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2014.

[91] Charalambos Makridakis and Benoît Perthame. Sharp CFL, discrete kinetic formulation, and
entropic schemes for scalar conservation laws. SIAM J. Numer. Anal., 41(3):1032–1051, 2003.

[92] Sofiane Martel and Julien Reygner. Viscous scalar conservation law: strong solution and invariant
measure. Preprint, arXiv:1905.07908, 2019.

[93] Bohdan Maslowski and Jan Seidler. Invariant measures for nonlinear SPDE’s: uniqueness and
stability. 1998.

[94] Jonathan C. Mattingly, Andrew M. Stuart, and Desmond J. Higham. Ergodicity for SDEs and
approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Processes and
their Applications, 101(2):185 – 232, 2002.

[95] Toshiyuki Nakayama. Support Theorem for Mild Solutions of SDE’s in Hilbert spaces. J. Math.
Sci. Univ. Tokyo, pages 245–311, 2004.

[96] Giuseppe Da Prato and Dariusz Gatarek. Stochastic Burgers equation with correlated noise.
Stochastics and Stochastic Reports, 52(1-2):29–41, 1995.

[97] Franz Rothe. Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics.
Springer, 1984.

[98] Denis Talay. Second order discretization schemes of stochastic differential systems for the com-
putation of the invariant law. Research Report RR-0753, INRIA, 1987.

[99] Denis Talay and Luciano Tubaro. Expansion of the global error for numerical schemes solving
stochastic differential equations. Research Report RR-1069, INRIA, 1989.



Bibliography 125

[100] Guy Vallet and Petra Wittbold. On a stochastic first-order hyperbolic equation in a bounded
domain. Infinite Dimensional Analysis Quantum Probability and Related Topics - IDAGP, 12,
12 2009.

[101] Massimo Vergassola, Bérengère Dubrulle, Uriel Frisch, and Alain Noullez. Burgers’ equation,
devil’s staircases and the mass distribution for large-scale structures. 1994.

[102] Cédric Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg, 2008.

[103] Julien Vovelle. La méthode des volumes finis appliquée aux lois de conservation d’ordre un. Notes
de cours, December 2011-2012.

[104] Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs
without Malliavin calculus. Discrete & Continuous Dynamical Systems - A, 36(1078-0947 2016
1 481):481, 2016.

[105] Ya. B. Zeldovich. Gravitational instability: An Approximate theory for large density perturba-
tions. Astron. Astrophys., 5:84–89, 1970.


	Coverpage
	Introduction
	Viscous scalar conservation laws
	Viscous scalar conservation laws with stochastic forcing
	Well-posedness
	Invariant measure

	Numerical approximation
	Application to turbulence

	Viscous scalar conservation law with stochastic forcing: strong solution and invariant measure
	Introduction
	Stochastic viscous scalar conservation law
	Main results and previous works
	Outline of the chapter

	Well-posedness and regularity
	Mild formulation of (2.1)
	Construction of a maximal solution to (2.1)
	Estimates on the maximal solution
	Proof of Theorem 2.4
	Proofs of preliminary results

	Invariant measure
	Preliminary results
	Existence
	Uniqueness


	Finite-volume approximation of the invariant measure of a viscous stochastic scalar conservation law
	Introduction
	Viscous scalar conservation law with random forcing
	Space discretisation
	Space and time discretisation
	Main results
	Review of literature
	Outline of the chapter

	Semi-discrete and split-step schemes: well-posedness and invariant measure
	Notations and properties
	The semi-discrete scheme
	Invariant measure for the split-step scheme

	Convergence of invariant measures: semi-discrete scheme towards SPDE
	Notations and preliminary results
	Characterisation of the limit
	Proofs

	Convergence of invariant measures: split-step scheme towards semi-discrete scheme
	Tightness, relative compactness and some estimates
	Characterisation of the limit
	Proofs

	Proofs

	Numerical experiments
	Stationarity
	Convergence in space
	Convergence in time
	Burgulence estimates

	Invariant measures for the numerical schemes in the inviscid multi-dimensional case
	A remark on strongly monotone numerical fluxes
	Inviscid and multi-dimensional version of Theorem 3.5


