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Résumé

Dynamique des interfaces molles, des sillages hydrodynamiques aux anomalies de

transitions vitreuses

Cette these se divise en deux parties, la premiere partie aborde la physique
des sillages. Lorsqu’ un objet se déplace a la surface d’un liquide des ondes
sont générées et rayonnées. Lorsque 1’objet se déplace a vitesse constante
il résulte le fameux sillage en V de Kelvin qu’on peut observer derriere
un bateau. Le rayonnement de ces ondes crée une force s’opposant au
mouvement appelée resistance de vague. On établit ici la formule de Have-
lock de la résistance de vague pour un mouvement quelconque. Le sillage
et la résistance de vague sont également étudiés en présence da un cou-
plage élastohydrodynamique a I’interface. Enfin on termine avec 1 étude

des vagues générées par une araignée d’ eau lors de sa phase de propulsion.

Dans la seconde partie, on propose un modele de chaines cooperatives en
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s’inspirant de la loi empirique d’Adam et Gibbs pour la transition vitreuse.
Ce modele nous permet d’étudier des anomalies de transition vitreuse en
milieu confiné notamment la réduction de temperature de transition vit-
reuse dans les nano-films et nanoparticules de polystyrene. Enfin on aborde
des calculs de statistiques de chaines polymeriques en milieux confinés et

leurs dépendances exactes dans le poids moléculaire.

Le premier chapitre est un chapitre introductif, on présente des pro-
priétés élémentaires des vagues en eaux profondes. Apres avoir établi la
relation de dispersion des vagues w = \ﬂgk) on en discute ses propriétés
essentielles. Cela permet ensuite de dériver les équations dynamiques de
I’interface libre. On va s’intéresser plus loin au déplacement d’objet a la
surface, ces objets seront modélisés par des champs de pression qui peuvent
étre mis en mouvement, en utilisant I’équation dynamique de I'interface li-
bre, on peut determiner I’expression intégrale du déplacement de la surface
du liquide dii au déplacement d’'un champ de pression a sa surface. Cette
équation est fondamentale dans 1’étude des sillages et de la résistance de
vague. On présente également la solution élémentaire de Cauchy-Poisson
pour la surface, solution qui a permis historiquement a Kelvin de déter-
miner la forme mathématique du sillage. Ce chapitre permet également
d’introduire le concept de résistance de vague : la perte d’énergie subit par
un objet en déplacement a cause du rayonnement du sillage, en d’autres
termes le cotit en terme de force que va ressentir I’objet en déplacement
a cause de la déformation qu’il crée a la surface. Havelock a établi une
formule pour calculer cette force dans le cas du mouvement rectiligne, on
établit ici que la formule de Havelock peut étre généralisée a tout type de
mouvement a la surface d’un fluide. On aborde aussi dans ce chapitre 'effet

de la capillarité sur la relation de dispersion, et notamment 1’existence
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d’une vitesse de groupe minimale 23 cm.s™! en deca de laquelle une source
ne rayonnerait pas d’énergie a la surface du liquide. Le mouvement circu-

laire d’une perturbation a la surface est également évoqué dans ce chapitre.

Le second chapitre étudie un type de sillage elasto-hydrodynamique,
lorsqu’un fin film visqueux est couplé a une feuille élastique, plusieurs
phénomeénes intéressants peuvent apparaitre, on observe notamment a la
surface la génération d’ondes de surface. Historiquement 1’étude des on-
des elasto-hydrodynamique a été initié par ’étude des ondes générées par
les avions atterrissant sur l'antarctique. Dans ce régime les ondes l'inertie
du fluide domine. De nombreux résultats en mécanique des fluides peu-
vent étre revisités, la montée capillaire, l'instabilité de Saffman-Taylor
pour laquelle la présence d’une feuille élastique peut prévenir 'instabilité.
Dans le domaine de la physique de la peinture, la propagation du front
de pelage d’une feuille de plastique posée au-dessus d’une couche de gly-
cérine. De plus, une force de portance agissant sur un objet en mou-
vement et interagissant via des forces hydrodynamiques a été prédite et
confirmée expérimentalement. Des motifs rappelant le démouillage peu-
vent étre observés lorsqu’une feuille élastique humide est en contact avec
un substrat solide. Dans ce chapitre nous combinons physique du sil-
lage et élasto-hydrodynamique, cette nouvelle classe de problémes trouve
des applications en géophysique, biophysique, propagation des ondes et en
particulier pour la mesure a 1’échelle nanométrique : la déformation des
substrats modifie ’observation et la précision de ces expériences. Apres
avoir rappelé la théorie de la lubrification, nous établissons 1’équation de
la couche mince élasto-hydrodynamique, puis nous étudions le déplacement
d’un champ de pression externe sur une feuille élastique mince recouvrant

une couche mince visqueuse. Dans I’approximation de la lubrification, nous
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calculons les ondes élasto-hydrodynamiques et le sillage, ainsi que la résis-
tance aux ondes. Un équivalent du nombre de Bond ou 1’élasticité remplace
la capillarité semble étre un parametre central sans dimension du probléme
et nous 'appelons le nombre de Bond élastique dans la suite. Le sillage
élasto-hydrodynamique est tracé pour une large gamme de vitesses et de
nombres de Bond élastiques. Nous fournissons des résultats analytiques
asymptotiques pour la résistance aux ondes a basse et haute vitesse. Fi-
nalement, nous montrons que 1’énergie transférée par la perturbation du

fluide est entierement dissipée par la viscosité.

Dans le dernier chapitre de la premiere partie, nous étudions a la fois
théoriquement et expérimentalement le modele de vague généré par les
coups de patte de 'araignée d’eau. Nous verrons d’abord que le cycle de
propulsion est divisé en trois phases. Ensuite, nous nous concentrons sur la
premiere phase, I'impulsion, avec un modele théorique et nous comparons
notre prédiction a des mesures expérimentales. Grace a I’'utilisation de la
méthode synthétique de Schlieren, nous pouvons mesurer avec précision
la réponse dynamique de la surface libre. Plusieurs especes d’insectes et
d’arachnides exploitent les déformations statiques et dynamiques de 'eau
pour vivre a l'interface air-eau. Les marcheurs d’eau sont parmi les insectes
les plus connus existant a 1’interface air-eau. Ce sont les insectes les plus
étudiés en matiere de locomotion dans un tel habitat, et notamment en rai-
son de leur capacité a sauter en I’air en utilisant la surface de '’eau comme
trampoline. Ils sont également de plus en plus utilisés comme modele pour
les micro-robots. On sait que le déplacement d’une perturbation a la sur-
face crée un motif d’onde complexe. Les vagues et les tourbillons créés par
les araignées d’eau sont la signature de I'impulsion appliquée a 1’eau. Les
études théoriques sur les vagues et les tourbillons ont fait de grands progres

pour les araignées d’eau. Cependant, il n’est toujours pas tranché si les
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ondes de surface sont plus importantes que les vortex dans le transfert de
I’impulsion donnée par la patte de I'insecte a ’eau. Le c6té expérimental
s’appuie principalement sur des mesures PIV (Vélocimétrie par imagerie de
particules) de la surface de ’eau. Nous avons également filmé I’animal de
cOté, obtenant ainsi une estimation approximative du creux du ménisque.
Ce chapitre quantifie avec une précision inégalée (résolution de 5um) les
déformations de la surface de ’eau lors du choc de la patte de I'araignée
d’eau afin de comprendre I'importance de rendre compte des détails de
I’interaction fluide-structure au cours de l'impulsion. Une étape supplé-
mentaire au modele de forgage impulsif proposé Biihler, ou I'impulsion est
localisée dans le temps et dans 1’espace. Nous étendons aussi la théorie
de Biihler aux eaux peu profondes et a un forgage continu (non impulsif).
Ces travaux permettent une meilleure compréhension de la locomotion a
I’interface air-eau, des trains d’ondes de faible amplitude sont utilisés par

de nombreux insectes vivant a la surface de 'eau.

La seconde partie de la these, divisé également en trois chapitres, traite
de la transition vitreuse et en particulier aux effets observés de la transition
vitreuse dans des verres de polymeres en milieux confinées. Pour décrire ces
effets expérimentaux, un modele de chaine coopérative a été étudié dans le
détail. Les verriers ont longtemps su que lors du refroidissement de liquides
a base d’oxydes, la viscosité évolue pour faire un verre. Une convention
permettant la distinction entre un liquide et un solide amorphe vitreux a
été adopté, Tammann a appelé cette température de transition Tg la tem-
pérature de transition vitreuse et correspondent a un liquide de viscosité
1012 Pa.s. Il est maintenant bien établi que, autour de Tg, de nombreux
produits chimiques en phase condensée comme le glycérol, les polymeres,

les oxydes ou encore les métaux ont la méme augmentation spectaculaire
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de viscosité mais aussi des modifications physiques similaires spécifique a
I’état vitreux. Bien que ’obtention d’un verre par refroidissement rapide
soit assez simple, il a été jusqu’a présent impossible de comprendre pleine-
ment la transition vitreuse d’un point de vue théorique. Les principales
raisons sont que les propriétés dépendent de la facon dont le verre a été
fabriqué, et ces propriétés évoluent avec le temps. C’est le phénomene de

vieillissement.

Dans le premier chapitre de cette partie, nous rappelons les propriétés
physiques des liquides et des verres surfondus. Ensuite nous introduisons
des lois phénoménologiques telles que les lois d’Adam et Gibbs ou Vogel-
Fulcher-Tammann exprimant le temps de relaxation en fonction de la tem-
pérature, ainsi que des théories comme la théorie des volumes libres. Ces
théories proposent une forme mathématique empirique au temps de relax-
ation ou a la viscosité d’'un liquide surfondu. On observe notamment qu’a
la différence de la loi d’Arrhenius qui prédit une divergence de la viscosité
a température nulle, ces lois empiriques diverges a une température finie
supérieure a 0K, a une température appelée la température de Vogel du
verre, cette température est typiquement 50 degrés en dessous de la tem-
pérature de transition vitreuse définie plus tot. Le modele simplifié de
chaines coopératives permet de retrouver ces lois expérimentales. De nom-
breuses simulations numériques ainsi que des observations sur les matériaux
granulaires suggerent que dans un liquide surfondu les molécules sont dans
un milieu encombré et que les déplacements se font par des mouvements
collectifs. Ces mouvements collectifs peuvent notamment prendre la forme
de chaines coopératives aléatoires ou plusieurs molécules se déplacent si-
multanément le long d’une trajectoire libérant ainsi de I’espace permettant
la relaxation au sein du liquide surfondu. Le nombre de molécule néces-

saire a la relaxation dépend de la densité du milieu, au plus le milieu est
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dense au plus les chaines coopératives devront étre longues. On peut relier
la densité a la température dans un liquide surfondu grace au coefficient
de dilatation du milieu obtenant ainsi la taille des chaines coopératives
nécessaire a la relaxation en fonction de la température du milieu. Enfin
en invoquant l'ergodicité on peut obtenir le temps nécessaire pour for-
mer une chaine coopérative relaxante et finalement le temps de relaxation
moyen de ces chaines coopératives, qui est une fonction de la température.
Avec ce modele on retrouve les temps de relaxation phénoménologiques
d’Adam et Gibbs et de Vogel-Fulcher-Tammann. Dans le second chapitre
de cette partie on utilise ce modele au cas des verres en milieu confiné, no-
tamment les films minces et les nano-sphéres de polystyrene. L’existence
de chalnes coopératives d’'une certaine longueur nécessaire a la relaxation
pose naturellement la question suivante : Qu’observe-t-on lorsque le sys-
teme étudié a une taille identique ou inférieure a la taille de ces chaines
de relaxation ? De nombreuses expériences notamment utilisant des nano-
films de polystyréne ont montré qu’a partir d’'une certaine taille, on ob-
servait une forte chute de la température de transition vitreuse. Cette
température de transition étant constante dans un matériau de taille in-
finie, elle dépend fortement de la taille de ’objet lorsque celui-ci est proche
ou inférieure a celle des chaines coopératives impliquée dans le processus
de relaxation. Pour comprendre ce phénomene prenons le cas d’un film
mince, une molécule proche de la surface libre, elle peut se déplacer soit
via une chaine coopérative de la taille précédemment évoquée, ou bien
faire partie d’'une chaine coopérative tronquée par la présence de la sur-
face libre, ces chaines tronquées permettent une relaxation plus rapide du
liquide surfondu et par conséquent au plus le film est mince au plus il y a
de chaines coopératives tronquées et au plus la relaxation dans le film est
rapide. On obtient donc une viscosité ou un temps de relaxation dépendant

de la taille de 1’échantillon étudié. Ce modele simple permet avec un bon
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accord les résultats expérimentaux observées dans les nano-films. Le cas
des nano-sphéres présentent des résultats expérimentaux plus disparates,
probablement dus a la fabrication difficilement controlable de ces objets a
la différence des nano films dont la préparation est plus simple. Cependant
on observe un certain accord entre les prédictions de notre modele et les

résultats expérimentaux.

Des expériences ont été menées sur les films minces suspendus (avec donc
deux interfaces libres) de polystyrenes en faisant varier le poids molécu-
laire de ce dernier. Il a été observé que pour des petits poids moléculaire la
température de transition vitreuse était indépendante du poids moléculaire
et vérifier donc une dépendance en la taille de 'objet comme étudié dans
le chapitre précédent en revanche au dela d’'un certain poids moléculaire
(514K) on observe une forte dépendance dans le poids moléculaire. Dans ce
régime, la dépendance en h la taille du film devient linéaire avec une pente
proportionnelle au logarithme du poids moléculaire. Ces observations sug-
gere qu’a haut poids moléculaire un autre processus de relaxation est a
I'ceuvre et qu’il est d’origine polymérique. Autre observation frappante de
ces expériences est que si I'on trace plusieurs courbes de température de
transition vitreuse en fonction de la hauteur du film, pour plusieurs poids
moléculaire les droites obtenues se croisent toute en un point faisant ap-
paraitre une hauteur et un poids moléculaire caractéristiques. Par ailleurs
il faut rappeler que ces expériences ont été réalisé sur des films auto sup-
portés avec donc deux surfaces libres, lorsque le film est sur un substrat
solide, et qu’il n’y a plus qu’une seule surface libre, nous n’observons plus
ce comportement pour la température de transition vitreuse. Toutes ces
remarques suggerent donc un processus de relaxation d’origine polymérique
connectant deux interfaces libres. De Gennes a proposé un modele simplifié

pour expliquer ces observations. Le processus de relaxation proposé repose
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sur la diffusion du volume libre le long d’'une méme chaine polymérique
reliant les deux interfaces, ce modele fait intervenir a la fois un temps de
relaxation élémentaire ici celui de Vogel-Fulcher-Tammann, ainsi que la
statistique des chaines reliant les deux interfaces. En supposant une répar-
tition gaussienne du volume libre le long de la chaine, on obtient ainsi un
temps moyen de relaxation dépendant a la fois de la taille du substrat et du
poids moléculaire. De Gennes avait d’abord proposé un « scaling », a haut
poids moléculaire on retrouvait bien une dépendance linéaire en h toutefois
le « scaling » ne permettait pas de trouver une dépendance dans le poids
moléculaire. Nous avons donc calculé de maniere précise les statistiques des
chemins a l'intérieur d’'un méme polymere reliant les deux surfaces libres
donnant ainsi la probabilité de trouver des segments de tailles L reliant
les deux interfaces distantes d’une longueur h, permettant de donner ainsi
une forme analytique au temps de relaxation moyen de ce processus. On
observe cependant que pour un tres fort confinement (h — 0) ou un poids
moléculaire tendant vers ’infini, la taille de ces ponts reliant la surface tend
vers h?, perdant ainsi la dépendance dans le poids moléculaire, ce qui est
en désaccord avec les observations expérimentales. Ceci suggere donc que
si le mécanisme proposé par De Gennes est le bon, il manque un ingrédient
physique fortement dépendant du poids moléculaire a introduire dans ce
modele et qu’il ne vient pas des statistiques des ponts polymériques. Enfin
il faut aussi mentionner ici que ces expériences faites avec des hauts poids
moléculaires ont soulevé plusieurs controverses dues a la préparation des
films réalisés a 1’aide de solvant et utilisant la méthode de « spin-coating
», il se pose naturellement la question de I’équilibre thermodynamique des

chaines de polymere apres une telle préparation.

Mots-clés Films minces, transition vitreuse, vagues, résistance de vague.
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Abstract

Dynamics of soft interfaces, from hydrodynamics wakes to glass transition anomalies

This thesis is divided into two parts. In the first part, we study several
properties of waves at the surface of a liquid ; in particular the wake gen-
erated at the interface by an object modelled by a pressure field. When
an object with constant speed moves atop the surface, it generates a wake.
The radiation of these waves results in a loss of energy for the operator
putting the object in motion, which results in a resultant force opposite to
the motion called the wave resistance, calculated by the Havelock formula.
In the stationary regime, we propose here a demonstration of the Havelock
formula for any movement on the surface. The wake and wave resistance
are also studied using elastohydrodynamic coupling at the surface. We
then model the waves generated by a water strider during its propulsion

phase.



14 ABSTRACT

In the second part, we propose a model of cooperative strings inspired
by the empirical law of Adam and Gibbs for the glass transition. This
model allows us to study glass transition anomalies in a confined environ-
ment, in particular the reduction of glass transition temperature in thin
films and nanoparticles of polystyrenes. Finally, we consider calculations
of chain statistics in confined environments and their exact dependencies

on molecular weight.

Keywords Thin films , glass transition, water waves, wave resistance.
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Introduction

The chapters of this manuscript are provided with specific introductions, we here present
a very general introduction to soft matter, water waves, polymers and diffusion.

1 Soft Matter

P.-G. de Gennes is considered the inventor of the science baptised soft matter. After a
start in solid physics (magnetism, superconductivity), his career in theoretical physics
of condensed matter have led way to a very wide spectrum of subjects: liquid crystals,
polymers, colloids, wetting and adhesion, biophysics and neuroscience that make up soft
matter physics today. Although the list of his works is very wide, the importance of his
work rests especially on his research style, in constant contact with experience and the
industrial world, and based on the idea that all physical phenomena can be explained in
simple terms. His work was awarded by the Nobel Prize in Physics in 1991.

Soft materials are also called complex fluids, coming from the study of liquids made
of simple atoms or molecules, these studies include polymers, surfactants, liquid crystals
as well as colloidal dispersions. These materials have a certain flexibility or even fluidity.
In polymer physics, if we go to the microscopic scale, we see a system of long, flexible and
independent polymer chains. The oxygen in the air creates bridges between the chains,
inducing a dramatic change of state, where we go from a liquid to a cross-linked network
that resists stress: a rubber. A simple chemical operation brought a radical change
in mechanical properties, and this is a characteristic feature of soft matter. Disorder
characterises soft matter. Let’s illustrate this property with two examples: First, liquid
crystals have, just like crystals, an orientation order. On the other hand, the centres of
gravity of the molecules which constitute them present a disorder of position and they
flow like liquids. Then the polymers are often compared to an entangled spaghetti dish
subjected to thermal agitation, the long chains sneaking by, crawling among the others.
The common point to all systems of soft matter, which can serve as a definition, is that
the interaction energies involved between objects (H bonds, Van der Waals interactions,
etc ...) are comparable to the heat energy kT at room temperature. As the enthalpic
effects are of the same order of magnitude as the entropic effects, the systems are likely to
reorganise strongly under the effect of weak variations of the environment (temperature,
pressure, concentration) or of weak external stresses (mechanical stress, electromagnetic
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Figure 1 Old glass making technics: glass blowing.

field, etc.). Because of the large number of scales involved (energetic, spatial, temporal),
the physics of soft matter is therefore intermediate between the physics of liquids and the
physics of solids. Because of the complexity of the systems, the exploration of the phase
space is often done in several distinct stages and can vary very strongly between two
systems that are very similar from the point of view of composition. The equilibrium of
the systems then has several characteristic times and can vary over several time decades
to reach extremely slow times, greater than the second, in some cases. Since the enthalpic
effects are of the same order as the entropic effects, it also happens that the systems remain
kinetically trapped in minima during the exploration of the phase space and remain out of
equilibrium. This is the case of colloidal suspensions, which vitrify at high concentration
and serve as model systems for understanding the mechanisms of the glass transition.

2 Waves

The first part of this thesis deals with the disturbance created at a liquid interface, the
locomotion of water strider due to the surface tension as well as elasto-hydrodynamic
coupling at interface. This part is linked to the theory of water waves, which has been
a source of inspiration for physicists and mathematicians for almost two centuries. The
first to have derived the equation of water waves is Joseph-Louis Lagrange. Since then,
countless situations have been studied, such as finite depth, uneven bottom or tidal waves.
Advances in the field followed the development of mathematical tools such as Fourier anal-
ysis. Other physicists and mathematicians who contributed to the physics of water waves
are Laplace, Airy, Stokes, Rayleigh, Boussinesq, Saint-Venant or Kelvin. By looking at
a duck swimming in a lake or a ship moving on a sea, one can clearly say that there is
something similar about their wake. They both show a familiar V-shaped pattern. Lord
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Kelvin was able to provide a theory to explain the ship-wave pattern. One of his popular
achievement was to show that the wake created by a disturbance moving at a uniform
pace is always delimited by a straight wedge with half-angle ¢x = arcsin1/3 ~ 19.5°,
independent of the velocity of the disturbance. In order to explain the complex wave
pattern within the wake, Kelvin developed the stationary phase method. Havelock [1]
exploited Kelvin’s idea that the disturbance may be replaced by a succession of impulses
along the trajectory.

Figure 2 Water strider staying above water surface due to surface tension.

3 Polymers

The second part deals with the modified dynamic at interfaces for polymer supercooled
liquids and glasses, as well as polymer conformation in confined geometries. A polymer is
a long chain constructed by the repetition of smaller units - monomers - through covalent
bounds. The repetition number is up to 10° for synthetic polymers and up to 108 for DNA
in nature. Natural polymers such as wood, cotton (cellulose) have been used by human
for millenaries. The first industrial process using synthetic polymers is the invention of
the caoutchouc by Goodyear in 1839. Material composed of these long molecules can
show completely different behaviour from material with only the monomer unit ; often
these materials are flexible like rubber and can easily form thin films or fibres. From
a theoretical point of view, de Gennes and Edwards have made many advances in the
modelling of polymers and polymer materials, from static description to dynamic models.
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Chapter abstract

A moving disturbance at the surface of water generates a complex wave pattern due to the
dispersive property of the medium. Within linear wave theory, we derive the dispersion
relations for pure gravity and capillary-gravity waves, then we solve this equation for
several trajectories. We discuss Kelvin’s theory of wave patterns, focusing notably on the
so-called Kelvin wedge, as well as the stationary phase method to obtain the wave crests.
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Finally we define the concept of wave resistance, the force acting against the motion of a
boat due to wave radiation, and we detail its expression for multiple trajectories.

1.1 Introduction

A boat moving at the surface of the sea generates water waves. These waves can be very
complex and irregular at first sight, however the most common type of motion describing
the propagation of waves at the water surface are sinusoidal waves. On average, the
water surface is plane, however there are waves moving at the surface. If we consider a
given point, the water is alternately at the top or the bottom of the waves. As a first
approximation, the water is considered incompressible and by the conservation of matter
we conclude that a particle at the surface cannot move up and down without violating
these assumptions. In fact, at the surface the particle moves in approximate circles. This
is also the case deeper, although with radius decreasing with depth.

wave propagation

Figure 1.1 Circular motion of the particles at the water surface.

Water waves in infinite depth cannot depend on any depth length, therefore the phase
velocity of a wave only depends on gravity:

Vp = % s (11)
it is notable that long waves go faster than short ones. Therefore if a boat makes waves of
various wavelengths, as time goes, the waves observed at a point will become shorter and
shorter. In fact to arrive to this conclusion, we should look at the group velocity and we
can show for water waves that it is half of the phase velocity, therefore it too will behave
as the square root of the wave length. It means that the interior of a wave packet moves
at ve but the enveloppe containing said waves moves at half this speed.

To understand the meaning of phase velocity and group velocity, we will consider a
harmonic plane wave. Such a wave can be described mathematically by a cosine:

01(z,t) = 0gcos(wit — kix) | (1.2)

this signal has no physical reality since it has a infinite spatial extent and infinite lifetime.
However a real wave can be expressed as a superposition of these harmonic waves. Let’s
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consider a sum of two harmonic plane waves with a different pulsation. The resultant

waves read:
A
O(x,t) = 260pcos Ak ((dw t—x | | cos(wot — kox) , (1.3)
2 dk /.

this wave is modulated in amplitude, cos (wot — koz) is a wave varying rapidly in space and

time and its velocity is the phase velocity vy; cos (M ((3—“,:)% t— :c)) is a wave varying

2
slowly in space and time and its velocity is the group velocity v, = (d—“’) ko If we consider

%
a more complex wave packet:

Ak
0(z,t) = z—(;{ / N dkelwk)t=ka) (1.4)
T2

one can develop the dispersion relation:

1 [/d?
wik) = wo+ vk + 3 (d—]:;) Sk? (1.5)
therefore the wave-packet takes the following form:
) % 1 (a2
. . . w 2
O(z,t) = A_(;{;eZ(WOth)/Ak dkezak(”gt*m)e@(W)‘Sk t ’ (1.6)

we observe that if the group velocity were independent of k, the enveloppe of the waves
would be stationary. However in the complex case of surface waves, the wave packet is
deformed. If a wave packet has a size of Azg at t = 0, it will have at time ¢ a size

Ax(t) = Axo + <ch§> Akt. Water waves have all these characteristics.

It is fundamental to understand the water wave pattern. Since the group and phase
velocities are no longer the same, the waves produced are no longer a cone, as in the case
of sound waves in the air or light in the vacuum. The wave pattern created is much more
complex. Everyone recognizes the specific V-shape of a moving disturbance at a constant
speed over the water. For a duck swimming or a cargo moving in the ocean, we observe
the same pattern with a constant angle. This entire pattern of waves can be analyzed
knowing that the phase velocity goes like v/A. And instead of having wavefronts along a
cone, we obtain this beautiful pattern, with fronts moving parallel to the motion of the
boat, as well as wave fronts on either side at other angles.
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Figure 1.2 The universal V-shape pattern of a moving disturbance at the water
surface.

1.2 Waves equation

In this section we establish the dynamical equation for water waves with infinite depth
within the framework of linear wave theory, we discuss the effect of capillarity and even-
tually we give the surface displacement solution in presence of a moving disturbance at
the surface. These basic concepts are widely discussed in many references [2, 3, 4, 5, 6].

1.2.1 Deep water gravity waves

The free surface of a liquid in equilibrium under the action of gravity is a plane. If a
boat disturbs the surface, it moves from equilibrium and motion will appear in the liquid.
This perturbation will be propagated at the surface as waves, the gravity waves. We
consider an incompressible, inviscid and infinite deep water volume, delimited by a free
surface in the plane z = 0. We define (7, ) to be the displacement from the equilibrium
position (i.e. the plane z = 0). We take the z—axis vertically upwards. The assumption
of irrotational flow results in a number of simplifications of great utility. The fact that
V A v = 0 ensures the existence of a volocity potential (7, z,t) such as:

v = Vo, (1.7)

where v(r, z,t) is the velocity field in the liquid. Incompressibility ensures that the
continuity equation is reduced to:

Vv = 0, (1.8)

combining incompressibility with Eq. (1.7), the differential equation to be satisfied by the
velocity potential is of course the Laplace equation:
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where A is the Laplace operator. We shall consider waves on an unlimited water surface
and we suppose that the wavelength is small in comparison with the depth of the liquid.
The boundary condition at the sides and the bottom shall be omitted. Since the wave
amplitude is assumed to be small, the displacement of the surface ( is small. Under the
same approximation we shall say that the vertical component of the velocity of the surface
points is the time derivative of (:

W = 0.0]__, . (1.10)

this equation is known as the kinematic condition on the free surface. If we consider that
the amplitude of the oscillations in the waves is small compared to the wavelength, the
term (v - V)v may be neglected: considering a harmonic mode with amplitude a gives
that the ratio of the two terms in the material derivative of the Euler equation reads:
|(v - V)v|/|0w]| ~ [(aw)?/N]/(aw?) = a/\ < 1. Together with another consequence of
the irrotational character of the flow, it leads to the important dynamical equation called
Bernoulli’s law for points located at the free surface:

1
6tg0+§|v\2+1—;+gC = 0, (1.11)

where p is the pressure field at the surface, g the gravity. In the linear theory of waves,
since the surface displacement is small, we can neglect as well the term in |v|?. Com-
bining the kinematic boundary condition and Bernoulli’s law one gets an equation on
the potential at the free surface. Thus we have the following system of equations that
determine the motion of the fluid inside the gravitational field:

Ay = 0, (1.12)

(P07 + pgdap)._, = 0. (1.13)

To illustrate the properties of the water waves, let us consider gravity waves propagating

in the x direction and uniform in the y axis. With these assumptions one can easily gets
the following solution which decreases inside the liquid z — —oc:

o(x,z,t) = A" cos (kx —wt) | (1.14)

where w is called the circular frequency and k is the wave number. And satisfying the
boundary condition Eq. (1.13) we obtain the dispersion relation for the gravity waves:

w? = kg. (1.15)

Therefore in the case of pure gravity waves the phase velocity is :

vy = /% (1.16)
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and the group velocity is:

1 /g
= —4/=. 1.1
Ug 2 k ( 7)

We observe that the group velocity is exactly half the group velocity. Let us mention
here that the case of finite depth h will be treated in a further chapter on biolocomotion.
It is interesting to see from Eq. (1.14) that the velocity of the particle inside the fluid
decreases as we go deeper in the liquid. From the velocity potential one gets the trajectory
of particles inside the fluid:

k
r— 29 = —A—e" cos(kxzy — wt) | (1.18)
w

k
2 — 2y = — A= sin(kxy — wt) . (1.19)
w

as mentioned in the introduction, the fluid particles move in a circle with raidus decreasing
exponentially with depth after a surface perturbation.

1.2.2 Capillary-gravity waves

Fluid surfaces tend to have an equilibrium shape, under the gravitational field as well as
the surface tension force when the wavelength of the perturbation reaches a size similar

to the capillary length k = , /;—g. In the presence of gravity and capillarity, and assuming

that the curvature of the interface remains small, the pressure at the interface reads:

p = po+pgC—yAC, (1.20)

where pg is the atmospheric pressure, p is the density of the liquid, g is the acceleration
of gravity, and v is the surface tension of the interface. Bernoulli’s law combined with
the kinematic boundary condition Eq. (1.11) leads to:

(07 + pgdop —70:09) _, = 0, (1.21)

where A = 07 + 0;, and where we have used the kinematic boundary condition of
Eq. (1.10). Eventually, letting Eq. (1.14) into Eq. (1.21), one obtains the dispersion
relation for capillary-gravity waves with infinite depth:

w(k) = \/gk+771f3, (1.22)
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Vg

: Phase velocity
Cmin

8t v .
............. —2_ . Group velocity
Cmin

Figure 1.3 Dispersion relation for capillary gravity waves, we plotted the phase and
the group velocity. At large wave number it is capillary branch whereas at small wave
number it is the gravity branch. The most striking effect of the capillarity is the
existence of a minimum in the dispersion relation.

where vy, = w/k is the phase velocity. Surprisingly, the phase velocity for capillary-gravity
waves has a minimum value:

4 1/4
Comin = (ﬂ) ~0.23 cm.s™t (1.23)
p
reached at k = r, where k! = \/v/(pg) is the capillary length (see Fig. 1.3). This

indicates that there are two possible values of k for any prescribed value of the phase
velocity above ¢pin.

1.3 Wake solution

In this section our aim is to provide the well known wake solution for a linear trajectory at
constant speed the straight uniform wake, then the interesting case of the circular uniform
wake which explains the spiral wake of the whirling beetles, and eventually the general
wake solution for any trajectories.

1.3.1 Straight uniform wake

One of the most beautiful phenomena observed at the water surface is the pattern pro-
duced by a boat or any moving object at constant speed at the surface. Surprisingly
the wave pattern is always the same, at least far away from the disturbance. The first
explanation for this pattern was given by Lord Kelvin. But before going back to Kelvin’s
explanation, we are going to establish here the general form of the surface displacement.
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In this part we theoretically investigate the wave pattern created by a ship moving at
the surface of an inviscid and irrotational fluid, of constant and uniform density p, ex-
tending infinitely in the x and y directions. We also suppose the fluid to be infinitely
deep, a very common assumption. In fact, assuming that the depth is much greater than
the horizontal dimensions of the boat or the wavelengths involved in the wake pattern is
sufficient. We model the presence of the ship by a supplementary pressure field Py (7, )
applied on the fluid from above, in addition to the atmospheric pressure Fy. The results
presented hold in a linearized theory: the waves are supposed to be of small amplitude on
a fluid initially at rest, so that every second-order term involving the velocity field v or
the surface elevation ( can be neglected. This enables us to make an extensive use of the
Fourier transform. We then parametrize the ship’s motion by a function ro(t) = Vie,.
We denote by V' the velocity of the ship at the surface of the fluid. Since the ship is
moving, the pressure field at time ¢ can be described simply:

Poi(7r,t) = Po(r — Viey), (1.24)

where Py (') is the pressure field in the comoving frame of the boat. By the properties
of the Fourier transform under variable translation, we deduce:

A ~

Poi(k,t) = Puy(k)e *=VE, (1.25)

With the 2D Fourier transform defined as:

+o00o
f ke k,) = f(z,y)e " Ferthu) qudy | 1.26
y
1 (s
Fay) = g [ ke ke ko, | (1.27)

Using the Fourier transform on Eq. (1.21) and Eq. (1.10) we obtain a differential equation
on the Fourier transform of the surface displacement:

2C(k,t) + w(k)?C(k,t) = —%kﬁext(/@)e—ikw”. (1.28)

Its worth noticing that the dispersion relation w(k) can be for gravity or capillary-gravity
waves. In the comoving frame, the wake is stationary. Therefore the Eq. (1.28) is simply
reduced to:

. B kP (k)

(k) = — (1.29)
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therefore inverting the Fourier transform in the frame of reference of the moving boat,
the stationary surface displacement reads:

B _H e pwPeXt l:\:Q (1.50)

This integral is ill-defined, the poles of the integrand are on the domain of integration.
This ambiguity can be removed by imposing a radiation condition that there are no
waves coming from infinity. A both mathematical and numerical method equivalent to
this procedure is to consider that the amplitude of the disturbance has increased slowly
for t € [—o0,0]:

Pext(r7t) - GEtPext(’r) 5 (131)

the amplitude of the pressure disturbance in the moving frame, where ¢ — 0. This
procedure will shift the poles as in the presence of viscosity. The surface displacement is
therefore completely defined by the following integral:

42k kﬁe(k) ek
= —1l . 1.32
<) 50 jf dn2p w(k)? — V2k2 4 2ieVk, (1.32)

This procedure is very important to numerically plot the wake, and will be applied in the
following chapters.

1.3.2 Circular uniform motion

In this section, we derive the wave pattern created by a disturbance that has been moving
for an infinitely long time at constant speed V' = Rf) along a circle centered on 0 and of

radius R therefore: (
B cos(§2t)
ro(t) =R (sin(Qt)) ) (1.33)

Using Eq. (1.28) which involves the Fourier transform of (. The pressure field is supposed
axisymmetric. Under this hypothesis, one gets:

D (e, £) + w(k)2 (I, ) = —%kﬁ’m(ls)e“ﬂ"o(t’. (1.34)

The right-hand side of this equation displays a periodicity with circular frequency (2.
Therefore in order to solve this equation, we will expand in Fourier series both the right-
hand side and the solution. We set for a given wave vector k, the angle # between k and
(Ox). Since k - ro(t) = kr cos(6 — ), it yields:

e—zk ro(t) _ Z em (Qt—0) / m(O—d))e—ikr COS(@ _ ¢) d¢ ’

nEZ
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(1.36)

after integration one gets:

_zk ot Z ezn(Qt 9 jn(k,R) (137)

neL

where 7, is the Bessel function of the first kind and of order n, using this result in
Eq. (1.34) yields:

02 (K, 1) + (k)2 (e, 1) — WZMW O(—iygu(kR).  (1.38)

neL

(¢ is expanded into a Fourier series:

=> ", (k). (1.39)

nel

The linearity of the differential equation permit to treat each harmonic separately, there-

fore Eq. (1.38) yields:

ke_me( )njn(kR) ext(k)
o —w(k)?)

Inverting the Fourier transform of the surface displacement, one gets the solution of the

cn(k) = (1.40)

uniform circular wake:

noan [T K2 Py (k)T (kr) Tn(kR)
_ __1\nin(¢—Nt)
C(r,t)—nEGZ( 1)@ /0 R — ) dk. (1.41)

This equation has permitted to model the wake of a whirling beetle, see [7].

1.3.3 Unsteady wake solution

We now parametrize the ship’s motion by a function () that is not necessarily linear
in time or collinear to a straight line. The pressure field can be written as following:

Poi(r,t) = Poy(r —ro(t)), (1.42)
By the properties of the Fourier transform under variable translation, we deduce:

pext(ka t) = pext(k)e_ik.ro(t)- (143)
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Using the Fourier transform on Eq. (1.21) and Eq. (1.10), we solve the differential equation
on the surface displacement, using the following initial conditions:

{(k,t=0) = 0, (1.44)

9 C(k,t=0) = 0. (1.45)

These conditions will be useful at the end of the differential equation’s resolution for
identifying the constants involved. One readily notices that we have an explicit basis of
the solution space at our disposal:

n(t) = e~ (1.46)
ya(t) = e Wkl (1.47)

What we know of second-order differential equations tells us that we can look for solutions
of the form:

~

(K, t) = AMt)ya () + p(t)ya(t), (1.48)

A and g being two smooth functions which depend on k. We can find the exact solution
under the prescribed initial conditions by solving the system involving the fundamental
matrix of the basis of solutions:

n yz) (X> _ ( . 0 ) >
/ ’ 1] = kPea(k)e”iRTo® | (149)
<3/1 Ya iz - 5
Therefore:

N 1 [—iw(k)e Wt ikt 0
@JZ_%MM(—M%WW“ gt ) | _kPus(e=k o | - (1.50)
p

After integration, one gets:

k e
_ B 7@W(I€)TP 1.51
)\(f) C(k) 22w(l€)p/0 (& ext(k:77-> dTa ( 5 )
k Lt .
t) = d(k whrp i (k, ) d 1.52
:U“< ) ( )+ 2zw(k:)p/0 € t( 77—) T, ( i) )

and accordingly:

(k) = (el g [ Pl 7y ar) 0

e P (k,T) dT) e~ (1.53)
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The initial conditions yield:

c(k)+d(k) = 0, (1.54)
iw(k)e(k) —iw(k)d(k) = 0, (1.55)

and therefore c(k) = d(k) = 0. Then:

kP (K, )

f(k:,t):—/o sin(w(k)(t — 7)) ol

dr. (1.56)

This is the solution of the surface displacement for any given trajectory in Fourier space.
If at some time the trajectory r( start to be linear on time and collinear to a straight line
one can show using the dominated convergence theorem that the inverse Fourier transform
Eq. (1.56) converges to Eq. (1.30) by taking the limit ¢ — oc.

1.4 Ship wave pattern

As mentioned earlier, the pattern surprisingly is the same for a duck swimming in a lake
or for a cargo in the ocean. Our aim here is to explain and describe this pattern. In 1887,
Lord Kelvin presented a first solution for this problem. He realised that the essential
feature of the pattern could be extracted from a suitable limit of the intractable integral
Eq. (1.30). For that purpose he developed the stationary phase method (see A.1).

1.4.1 Kelvin angle

Before we describe the detailed solution proposed by Kelvin, we can first demonstrate with
simple arguments the region occupied by the wave pattern and delimited by a constant
angle ¢x. To do so, we consider a boat moving at a constant velocity V' in a straight
line. If we observe the wake from the boat, the wake appears to be stationary. Let be

Figure 1.4 Schematic illustrating the construction of the Kelvin angle. The boat is
at B, and was at B’ at a time ¢ earlier. The wavefront has reached the point F.
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the boat at B (see Fig. (1.4)), with the water flowing at speed V from left to right. At
a time t earlier, waves were generated at point B’. The distance BB’ = Vt. The wave
front travels at a constant speed vy away from B’ in the direction determine by the angle
g. This wave has a wave number k so that v, = vg(k). In the reference frame of the boat,
the stationarity of the waves implies that the shifted pulsation due to a Doppler effect is
zero w — k -V =0 and thus we have:

vg(k) =V cos(8) , (1.57)

therefore all the wavefront coming from B’ lies on the dashed circle of diameterV't. The
final ingredient is the property of the dispersion relation. The group velocity, which
characterizes the velocity of the enveloppe and the energy is half the phase velocity.
Therefore the wavefront of the enveloppe is smaller, the radius of its wavefront is divided

by two. We see on Fig. (1.5) that the wedge has a constant angle sin(¢k) = g—gz. It

Figure 1.5 Due to the dispersion relation the waves are restricted by a wedge of
angle ¢g.

is therefore straightforward from the geometrical construction that ¢x = arcsin (%) ~

19.7°. This simple analysis cannot predict more than the angle of the wake. Kelvin’s

calculation used a famous result by Cauchy and Poisson, the surface elevation of the
point impulse problem. Knowing the solution of this problem 7(r,t), Kelvin’s idea was to
superimpose this elementary solution along the trajectory of the boat. To model the boat
by a point implicitly supposes that we are looking at the wake far away from the boat,
this assumption being justified by the observation that, indeed, far from the disturbance
the wake is identical for a duck or a cargo. Assuming that the boat has been in motion
for all previous time, the Kelvin formulation of the problem can be written as:

C(r,t):/t ds n(r. s) . (1.58)

—00
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1.4.2 Cauchy-Poisson solution

We present here a derivation of the Cauchy-Poisson problem. We wish to determine the
surface elevation of a localized impulse in (r = 0) at ¢ = 0. As in the section 1.2, the
velocity potential ¢(r,t) must be a solution of the Laplace equation:

Ap = 0, (1.59)
and the boundary condition at the free surface:
(@ +90:0).=0 = 0. (1.60)

The external pressure field is zero for ¢ > 0 and we consider a unitary pressure impulse
at t = 0. Using the Fourier transform of the velocity potential, we have the result:

Sk, 1) — —%ekz cos(w(k)t) . (1.61)

The Fourier transform of the kinematic boundary condition given by Eq. (1.10) is k p(k, z =
0,t) = Oyn(k,t). The Fourier transform of the surface is therefore:

nk,t) = — sin(w(k)t) (1.62)

One can notice the radial symmetry of the solution of Cauchy-Poisson. By inverting the
Fourier transform we obtain after computing the radial integral the result for the velocity
potential and the surface elevation:

olr, 2, 1) = —%p Ooodk; et o (kr) cos(w(k)t): (1.63)
n(rt) — —% Ooodk jg(kr)%. (1.64)

An approximation of this integral can be obtained from Kelvin’s method (see Appendix A.1).
Since Jy(x) is a fluctuating function which tends as z increases to have the same period
as sin(z), therefore the integrals above will for the most part cancel except for stationary
phase:

d

tﬁ = r, or (1.65)
t2

kr = gt . (1.66)
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When kr is large we use the asymptotic development of the Bessel function (it can be as
well demonstrated by the stationary phase method):

Jo(kr) ~ \/%sin <k7“ + %) . (1.67)

At the surface, the velocity potential can therefore be written as:

Vi [* "
(,0(7", t)|z:0 ~ —W ; dk cos <wt —kr — Z) . (168)
Using the stationary phase method explained in Appendix (A) we find:

V9

p(r =0 ~ —————
27/ 1t G5 |

Eventually when % is sufficiently large, we have the surface elevation asymptotic form
that reads:

sin (wt — kr) . (1.69)

n(r,t) ~ ~Sr/zya St (Z) : (1.70)

This solution was first found by Cauchy-Poisson using other analytical techniques [6, 3, 5].

1.4.3 Kelvin’s theory

In the preceding section, we obtained an approximation of the surface displacement for a
point impulse at the water surface, using the stationary phase method repeatedly. These
approximations are valid at all points far from the boat. In this section we carry out
the solution of the ship wave problem using Kelvin’s proof. Kelvin did this proof for a
boat moving on a straight line at constant speed, in fact using his method more complex
trajectories can be determined, especially for a circular course. More details can be found
in the very detailed book of Stoker on water waves [5].

The boat is now modeled by a point impulse along a path C' = (X, Y};) over the surface
for t € [0,7] in order to avoid the divergence of the integral in Eq. (1.58). On Fig. (1.6)
the parameter t represents the time required for the boat to go from any point B(X;,Y})
to the origin. But for simplicity, we assume that the boat is at the origin at time ¢ = 0
and therefore the point B moves backwards along the boat trajectory as t increases. The
vector t is tangent to the path C at the point B and is opposite the direction of the boat:

t — (Xt,Yt) , (1.71)
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B(X:, 1) i

P(z,y)

Figure 1.6 Path of the boat on the water surface.

The speed of the boat is therefore simply given by:

V() = \/X24+Y2. (1.72)

The point P(zx,y) is the point where we compute the surface elevation. This point can
be defined from the boat by the vector:

r= (r-Xny-Y). (1.73)
We also define on the figure the angle 6 between r and t. The effect of an impulse

is determined by the solution of Cauchy-Poisson stated in Eq. (1.70). Therefore the
integration of all the point impulse effects over time, gives the ship wave pattern:

t 3 2
C(rt) = go/o s sin (%) , (1.74)

with zetag a constant. In order to apply the stationary phase method, we write Eq.(1.74)
in the form:

C(r,t) = Im [/tds f(s)eig(s)] , (1.75)

0

where the two functions are defined as follows:

f(t) = Cﬁ—f (1.76)
g(t) = g_t2 (1.77)
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The stationary points are given by ¢'(f) = 0. This derivatives leads to an important
relation that holds for any kind of trajectory:

dr 2r
dt t ( 78)

The time derivative of the distance r = |r| is computed using Eq. (1.73). One easily finds:

dr

— = —r-t. 1.79
Thus

d

d_:; = Vcos(0) , (1.80)

combining Eq. (1.78) coming from the stationary phase computation and Eq. (1.80), that
is the time derivative of the distance from the boat, we obtain the stationary phase
condition in the following form:

1
ro= §Vtcos(9) : (1.81)
This relation gives the points that are influenced by a given point on the boat’s trajectory.
The points P that are influenced by the emission of water wave at the point B (see Fig. 1.6)

lies on a circle of diameter % with the diameter of the circle following the tangent at the
trajectory in B as shown on the figure: To calculate the curves of constant phase it is

C

Figure 1.7 Wave front emitted by the boat in B.

convenient to express the stationary phase condition using the following parameter:

v

A :
2r

(1.82)
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where \ has the dimension of a length. Using this parameter the stationary phase condi-
tions are thus:

Vit = Acos(6), (1.83)
o= %)\0082(0). (1.84)

It is important to note that this relation holds for all kind of trajectories of the boat as
long as we can use the stationary phase approximation.

Straight motion

If the boat has uniform straight motion, its trajectory is simply C' = (V'¢,0), therefore the
point P on the Fig. (1.7) is simply P = (Vt—r cos(f), —rsin(f)). Using the reformulation
of the stationary phase conditions Eq. (1.84) we obtain directly a parametric equation for
the wave crests and troughs:

r=A (COS(G) - %cosg’(e)) , Y= —%)\ cos?(0) sin(#) . (1.85)

0.2

0.0

-0.2

-0.4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.8 Plot of the ship wave pattern for the following set of parameters \ =
{0.5,1,1.5,2}. Each curve represents a pattern of constant phase in the water waves.

We observe on Fig. (1.8) both diverging and transverse waves. The cusps can be easily
computed from the parametric equations given above in Eq. (1.85).

Circular motion

We can carry out the calculation of the curve of constant phase for circular motion. The
path of the boat in this case is simply C' = (Rsin(f), R(1—cos(3))) with the angle § = ‘.
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R is the radius of the boat’s circle trajectory. Thus the coordinates of point P are given
by:

r=X,—rcos(B+0) , y=Y,—rsin(f+90). (1.86)

Eventually using the dimensionless parameter v = A/R, one finds that the angle is given
by:

B = ~cos(0) . (1.87)

Yielding the parametric equation for the constant phase:

z/R = sin(Bcos(d)) — g cos®(6) cos( + Bcos(d)) , (1.88)
y/R = 1—cos(Bcos(f)) — 20052(6) sin(f + [ cos(h)) . (1.89)
’ 20f T T T ]
05[ ]
0o} ]

Figure 1.9 Plot of the ship wave pattern for the following set of parameter 5 =
{0.5,1,1.5,2,2.5,3}. Each curve represents a pattern of constant phase in the water
waves, for a trajectory C' of the boat on a unitary circle.

1.5 Wave resistance

The most common manifestation of wave resistance is for submarines ; close to the sur-
face, the maximal velocity of a submarine is around 20 knots whereas deep under water,
it can reach 30 knots. This dramatic effect is only explained by wave resistance. We also
have in mind the American swimmer who won the 50 meters free-still by staying under
water and thus generated less wave resistance. Another famous manifestation of wave
resistance has been reported in the nineteenth century by a navigator in an expedition at
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Pext do

VRN : ;

Figure 1.10 Havelock method to compute wave resistance.

the North Pole. When they approached the ice field, the boat experienced a considerable
slowdown. This effect was known as the dead water effect, it was in fact an important
wave resistance due to the creation of surface waves at the interface of fresh water and
salty water, this layer of fresh water coming from the melting of the ice.

1.5.1 Havelock formula

When a boat travels at the free surface of water, it generates waves carrying energy
to infinity. This loss of energy by radiation opposes a resistance to the boat’s motion.
The wave resistance R, is the force associated to the loss of energy due to radiation of
water waves. According to Havelock [1], we may imagine a rigid cover fitting the surface
everywhere. The pressure P (z) is applied to the liquid surface by means of this cover;
hence the wave resistance is simply the total resolved pressure in the x direction. Using
the notation introduced in Fig.1.10, one has

Pyido - u = — Py sin(a). (1.90)
In the approximation of small amplitudes and slopes, one gets the Havelock’s formula:
Ry = — U Po(u- V)¢ do u (1.91)
u being a unitary vector collinear to the velocity.

The second definition is given by the radiated energy, when a disturbance moves at
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a constant velocity, it generates waves at the surface that are radiated to infinity. The
power dissipated can be assimilated to the power of a force acting against the disturbance’s
motion. The power dissipated is given by [§]:

P, = H PoiVé do | (1.92)

where V,, denotes the derivative along the vector normal to the surface. In a steady
regime, the kinetic boundary condition reads:

V.o =v- V(. (1.93)

Therefore, if we assume that this power is the power of a force acting against the distur-
bance’s motion, we are left with

R, -v=-P,, (1.94)
which leads as well to Havelock’s formula:

Ry = [ Poa(u- V) dou. (1.95)

The solution of the surface displacement is much simpler in Fourier space, therefore
it is useful to express the wave resistance as an integral in the Fourier space:
i

R, = [ d?k (- k)C O, ) P, ) (1.96)

4n?

1.5.2 General regime

For an arbitrarily moving object, the water surface is in general time-dependent. There-
fore, the moving disturbance will experience a force with a non-zero vertical component.
Using Havelock’s approach, one can compute the power of the force acting on the mov-
ing disturbance. First, we compute the power of the horizontal force. This is exactly
the power computed in the previous section; following the exact same reasoning, Eq.1.91
gives:

Py =~ || Paa(v - V)¢do . (1.97)

One may next compute the power of the vertical force. For an unsteady regime, the
surface deformation is time-dependent in the presence of the pressure field. We compute
the vertical work of the pressure field on the surface. Between ¢ and ¢t + d¢, the surface
moves vertically of 9,((r, t)dt under the action of the pressure field. Therefore, the vertical
work of the pressure field acting on the surface is:

SW, = —j Po 0,C(r,t) dt do, (1.98)
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and the power reads:

— | Ptz y) 0¢(r,1)) do (1.99)

This power is zero in the ship’s frame of reference if we consider a steady regime in this
frame (i.e. 0;((x,y,t) = 0). Now that we have the power of the vertical and horizontal
force acting on the moving disturbance, we check that its corresponds to the opposite of
the power dissipated in the water waves. The kinematic condition at the free surface is :

d¢

= =0+ (v V)= 0.0. (1.100)

Therefore, it is straightforward to obtain:
P(t)=—(P,+ PB,) , (1.101)

with P(t), the power given by the boat to the fluid, defined in [8] (Eq.1.92). To conclude,
one may notice that with an arbitrarily moving disturbance, the power radiated in the
water waves results in two acting forces on the object: a vertical and a horizontal force.
The horizontal one is called wave resistance. One can notice that at a standstill, the
moving disturbance does not experience wave resistance, but only vertical oscillations
([9]. Therefore Eq. (1.95), Havelock’s formula is the effective wave resistance while the
speed is non-zero.

1.5.3 Wave resistance of an uniform straight motion

If we consider a disturbance moving at a constant velocity V' = Ve,, therefore using
Eq. (1.29) we find the general formula for the wave resistance of a boat moving at a
constant velocity:

. 2

Zk ext(kxak )

- [ d, dk, 1 L (1.102)
Ar2p k vg (k) — V2(k,/k)?

In order to plot the wave resistance, we use the dimensionless gaussian pressure field:

A fo 2
P (k) = = 1.103
t( ) ng3€ 4 ( )

we note F'r = % the Froude number of our system and we use r = R,273/fZ the
dimensionless wave resistance.

12

2 cos(f)e 2
= 1.104
"= jj dkdel — Fr2k cos(0)? (1.104)
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Figure 1.11 Dimensionless wave resistance as a function of the Froude number for
gravity waves.

after integration one gets:

1 d9 e_QTr;;’t!'IC(gg(9>2 (1105)
o cos(6)°

1.5.4 Wave resistance of an uniform circular motion

Now if we consider a disturbance moving at constant speed V' = R{2 along a circle centered
on 0 and of radius R, using Eq. (1.41) we have:

(1.106)

R 2
knTn(knR)P(ky)
m;%( @Q )’
" dk kn

where k,, is the unique solution of the equation w(k,) = nfl.
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1.5.5 Free deceleration

Within the framework of this generalized Havelock formula, we can now theoretically
solve the problem of the free deceleration of a moving body at the water surface. One can
consider for example the deceleration of a nitrogen droplet over water ([10]). Following
the Havelock formula, the experienced wave resistance is given by:

) Hko C(ko, t) Py (. ). (1.107)

Therefore for a decelerated motion at the free surface using Eq. (1.56) for an axisymmetric
pressure field one gets:

/ / dkk3|PeXt (K)|” sin(w(®)(t — 7)) T (k(ro(t) — ro())ate.  (1.108)

o pw(k)
Using Newton’s law on the nitrogen droplet, the trajectory of the droplet verifies:

d2T0

Ma~—y = ~Ru({ro(t)}). (1.109)

By solving this integro-differential equation, one could get the exact trajectory of an object
decelerating at a fluid interface by radiating waves.

1.6 Conclusion

In this introductive chapter we have presented elementary properties of water waves in
deep water. We have derived and discussed the fundamental properties of the dispersion
relation and derived from the dynamical equation the integral expression of the surface
displacement resulting from a boat at constant speed. Following the historical demon-
stration, we have presented the elementary solution of a point impulse known as the
Cauchy-Poisson problem, and used it to derive the wake pattern as Kelvin first did his-
torically. Eventually we presented the main results of this chapter, we established that
the Havelock formula for the wave resistance is still valid for any kind of motion or trajec-
tories at the surface, the usual demonstration in the literature assume a steady straight
motion.
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Chapter 2

Elasto-hydrodynamic wake and wave
resistance
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Chapter abstract

We study theoretically the effects of an external pressure disturbance moving at a constant
speed along a thin lubricated elastic sheet. In the comoving frame, the imposed pressure
field creates a stationary deformation of the free interface that spatially disappears in the
far-field region. The shape of the wake and the way in which it decays depend on the
speed and size of the external pressure field, as well as the rheological properties of the
elastic and liquid layers. The wave resistance and the viscous dissipation are analyzed in
detail.

2.1 Introduction

When a thin viscous film is coupled to an elastic layer, several interesting phenomena
occur, and particularly at an interface where we observe a different behavior than that
observed in the bulk material, and in particular the generation of surface waves. We shall
highlight here that the seminal studies on elastohydrodynamic wakes were motivated by
the waves generated by the Antarctic landing planes [11, 12], in this observations the
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observed regime is dominated by the fluid inertia.

Many hydrodynamic results can be revisited introducing an elasto-hydrodynamic in-
teraction. For example the capillary rise [13], or the viscous Saffman-Taylor fingering
[14, 15, 16], for which the presence of an elastic sheet can prevent instability. In the
domain of the physics of painting, the propagation of the peel front in a plastic sheet
placed on top of a layer of glycerin or the flexible scraping of viscous fluids were studied
[17]. Also a lift force acting on an object moving and interacting via hydrodynamic forces
[18, 19, 20, 21, 22] was predicted and confirmed experimentally [23]. Reminiscent patterns
of dewetting can be observed when a wet elastic sheet is in contact with a solid substrate
(24, 25].

In this chapter we combine wake physics and elastohydrodynamics [26, 27], this new
class of problems has applications in geophysics, biophysics, wave propagation and partic-
ularly for the measurement at nano-scale: the deformation of the substrates [28] modify
the observation and the accuracy of these experiments. After recalling lubrication theory,
we establish the equation of the elastohydrodynamic thin film, then we study the displace-
ment of an external pressure field over a thin elastic sheet covering a thin viscous film.
In the approximation of lubrication, we calculate the elastohydrodynamic waves and the
wake, as well as the wave resistance. An equivalent of the Bond number where elasticity
replaces capillarity seems to be a dimensionless central parameter of the problem and we
call it the elastic Bond number in the following. The elastohydrodynamic wake is plotted
for a wide range of speeds and elastic Bond numbers. We provide asymptotic analytical
results for wave resistance for both low and high speed. Eventually, we show that the
energy transferred by the perturbation of the fluid is entirely dissipated by the viscosity.

2.2 Elastohydrodynamic thin film equation

In numerous flows like painting, lubrication of pieces or between bones for exemple, the
streamlines are parallel. An important result of such flows is that the friction force
between two bodies can be reduced dramatically. Leonardo da Vinci noticed 400 years
ago that ”All things and anything whatsoever, however thin it be, which is interposed
in the middle between objects that rub together lighten the difficulty of this friction.”
Under some hypotheses on the velocity fields, we can neglect non-linear terms: this is the
approximation of lubrication. We establish the elastohydrodynamic thin film equation
with a thin elastic sheet atop the fluid: a thin viscous film of thickness hq placed over a
flat horizontal substrate, and covered by a thin elastic sheet of constant thickness d < hyg.

2.2.1 Thin film problem

Before deriving the elastohydrodynamic thin film equation, we specify the model and its
assumptions in the lubrication approximation. Our stating point is a liquid film of height
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z = h(r,t) deposited on a flat surface and covered by a thin elastic sheet of constant
thickness d.

2.2.2 Lubrication approximation

The film has a typical height Ay much smaller than the horizontal extent of the film [
therefore one can introduce a dimensionless parameter:

Ezh()/lo . (21)

Then we define the space and time dimensionless variables through h = hoh and:

r = T (2.2a)
y = by (2:2b)
t = tot, (2.2d)

where t( is a typical time scale yet to be determined. A 3D incompressible fluid verifies:
Vv = 0,u,+0u,+0v, = 0, (2.3)

which, together with Eqgs. (2.1) and (2.2a), notably implies that the dimensionless veloc-
ities are introduced as:

Uy = UgUy (2.4a)
v, = vod, (2.4b)
v, = €UV, (2.4¢)

where vy = ly/ty is a typical velocity scale yet to be determined. If we consider the
Navier-Stokes equation:

1
ov+wv-Vou= —;Vp +nAv (2.5)

where 7 is the cinematic viscosity. At the leading order in € one gets the two following
equations:

Vp = udv .
op = 0, (2.6b)

where g is the dynamic viscosity, V is now the gradient in the plane zy and v(r, z,t)
the horizontal velocity field. We assume no slip at both the substrate-liquid and the
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liquid-elastic interfaces, so that the boundary conditions read:

v).g = O (2.7a)
'v|z:h 0. (27b

Integrating Eq. (2.6a) together with Eqgs. (2.6b) and (2.7) leads to a Poiseuille flow of the
form:

v(r,z,t) = i (22 — hz)Vp . (2.8)

Furthermore, conservation of volume can be expressed as:
oh = -V-Q, (2.9)

where Q = foh dz v is the horizontal flux. Combining Eqgs. (2.8) and (2.9) finally leads to
the general thin-film equation:

1 ; B
ath_@v(h Vp) = 0. (2.10)

2.2.3 Linear elastohydrodynamic thin film equation

The pressure field is given by the addition of the bending stress and the hydrostatic
pressure and thus reads:

Pt = BV*h + pgh , (2.11)

with B = FEd?/[12(1 — v?)] the bending stiffness, E and v are respectively the Young’s
modulus and Poisson’s ratio [29], g is the acceleration of gravity, and p is the density of
the liquid. In this model we neglect the stretching of the thin elastic sheet. By replacing
Eq. (2.11) in Eq. (2.10) one obtains the elastohydrodynamic thin film equation:

B oy P9 o (3 -
Oih 12MV (h* V°h) 12Mv (PVh) = 0. (2.12)

The characteristic length are hy for the vertical z-direction and the gravito-elastic
length s ' = (B/ pg)l/ % for the zy plane. The natural time scale of this problem reads:

12p
P 9213
" (ogrihd) (213)

therefore we construct the characteristic velocity scale vy = /@17_1. We introduce dimen-
sionless variables in order to re-express Eq. (2.14): & = Koz, § = KaV, h = h/ho, t =t/T.
Considering small deformations ¢ = h — 1 < 1, Egs. (2.14) and (2.11) are linearized and
we obtain the dimensionless elastohydrodynamic thin-film equation [30] on the surface



58 CHAPTER 2 : ELASTO-HYDRODYNAMIC WAKE AND WAVE RESISTANCE

displacement ((Z,7,t)
9i¢ = A+ A, (2.14)

where A denotes the dimensionless Laplacian operator in 2D Cartesian coordinates. In
the rest of this chapter, we will omit the symbol ~ for dimensionless quantities.

2.3 Elastohydrodynamic wake

thin elastic sheet

} thin viscous film

substrate

]

Figure 2.1 Plot of the elastohydrodynamic wake. The elastic film reacts to an
external pressure field ey (z — vt,y) moving at constant speed v > 0 along the x
direction.

A thin viscous film of thickness hq is over a flat solid substrate, and covered by a thin
elastic sheet of constant thickness d < hy. As depicted in Fig. 2.1, an external pressure
field texi (x — vt, y) moves along the horizontal axis x at constant velocity. As a result, we
observe the displacement h (z,y, t) of the liquid-elastic interface. We are interested here to
stationary surface profiles in the comoving frame, the disturbance is static in this reference
frame, and we define the surface displacement in this frame f(z,y,t) = ((u,y) where
u = x — vt. The dimensionless external pressure U = 1), with Po = £3 [[ do dy thexs as
the characteristic pressure scale and the dimensionless number 'y = P/ (pgho) appear
naturally. Therefore the total hydrostatic pressure field in presence of the external load
reads:

Piot = BV*h + pgh + eyt - (2.15)

In this context, eq. (2.14) becomes:

A3C+ AC+ v(%g = T AV | (2.16)

where A is the dimensionless Laplacian operator in 2D Cartesian coordinates and in the
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comoving frame. Finally, let us introduce the two relevant dimensionless parameters of
the problem: the elastic Bond number B, = (a 561)2, and a denotes the characteristic
horizontal size of the external pressure field. By definition, the wake is the solution
¢ (u,y) of eq. (2.16), for a given disturbance field I'q ¥ and reduced speed v. Invoking the
two-dimensional Fourier transforms, defined as:

Flko k) = ﬂ Fu, y)e~E=uthn) dydy | (2.17)
fwy) = H (kg k) Erthm) dk d, (2.18)

and applying them to the dimensionless profile and the external pressure field, E(km, ky)
and ¥ (k;, ky), eq. (2.16) becomes:

[ikwv — (B2 + k2)* = (K2 + k2)] € (kar by) = Ta(k2 + k) W (ks k) - (2.19)

Consequently, the solution reads:

dhydk, | (2.20)

(k2 + k2)ei vt (k, k)
47r2 jj 1k, + (k2

v— k:2+k2)[ + k2)?]

In order to plot the wake produced by the displacement of the pressure field, we choose
two pressure fields, first a Dirac pressure field:

U (u,y)
U (kg ky) =

d(u,v) , (2.21a)
1, (2.21b)

and an axisymmetric Lorentzian pressure field:

Bel
U (u,y) = , 2.22a
(wy) 27 (u? + y% + Bel>3/2 ( )
U (ky, ky) = exp [— Ba (k2 + k;)} . (2.22b)

The combination of Egs. (2.20), (2.22) and (2.21) leads to the surface pattern. A para-
metric study has been performed, scanning a wide range of values for the reduced speed v
and elastic Bond number By, as summarized in Fig. 2.2. This is analogous to the visco-
capillary study presented in this article about wake and wave resistance on a viscous film.
We recover the setup studied in this article [31] by removing the elastic sheet atop the
fluid. In this condition the total pressure field is the combination of the external pressure
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field, the hydrostatic pressure due to gravity and the capillary pressure:
Pt = =YV2h + pgh + tex - (2.23)

therefore the wake without elastic sheet reads:

jj k’2 + /{52 kqurkyy (k‘x,k‘ )

dk,dk, . 2.24
ikzv — ( k:2+k‘2)[1+/£§ k2] Y (2.24)

47T2

The three main differences between the two cases are the order of the partial dif-
ferential equation (2.16), and the two dimensionless parameters: the reduced speed v
normalized by the elastic speed v, = /4;,;1 77! and the elastic Bond number B, = (a 561)2,
here replacing the capillary speed ¢ = £~ 77! and the Bond number B, = (ak)? = pga?/7,
respectively, of the study on viscous wake and wave resistance [31].

Fig 2.2 shows the wake created by the disturbance for several regimes. We observe
at low velocity an almost symmetric deformation corresponding to the static deformation
of the surface by the pressure field. When the velocity reaches the elastic speed v, we
observe a bump ahead of the pressure field and a stretched cavity behind. Eventually, at
high velocity, the wake is surrounded by oscillations. The elastic Bond number plays a
role on the surrounding oscillations, the smaller the disturbance (i.e. smaller elastic Bond
numbers or higher rigidity), the more oscillations we observe.
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Figure 2.2 Normalized wake view from atop created by a Lorentzian pressure field.
Computed from Eqgs. (2.20) and (2.22), for different values of the elastic Bond number
B and the reduced speed v. In the comoving-frame, variables, the pressure field is
centered at u = 0. In this reference frame, the film travels from right to left at constant
speed v.
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2.4 Wave resistance

As the pressure disturbance moves atop the elastic sheet, it generates the previously-
discussed surface deformation which is intimately coupled to the motion of the underlying
liquid. As discussed previously, the moving disturbance creates a displacement of the
elastic sheet coupled to the fluid underneath. To maintain a constant speed, the operator
needs to provide the energy lost by deforming the surface, as there is a force opposing to
the motion of the moving disturbance as defined in section 1.5. The wave resistance is set
to be r and is given by Havelock’s formula, usually used in the inviscid theory of waves
[32, 33], but still valid for a viscous fluid [8]:

r= ] wext%dx dy . (2.25)

The power vr must be furnished by the operator in order to maintain a constant dis-
turbance speed v [31]. With the notations introduced above, the dimensionless wave

resistance R reads:
T'Rel

pghs
Then, the substitution of Eq. (2.20) within Eq. (2.26) yields:

R= =Ty H U (u, )8, dudy . (2.26)

—~ 2
K2(k2 + k2) [T (ks by)
4772 H k202 + (k2 + k2)2 (1+ (k2 + k2)2)”

dk, dk, . (2.27)

Using polar coordinates k, = kcosf and k, = ksinf, and assuming an axisymmetric
pressure field ¥(p), after integration over 6 we retrieve the following expression:

U (k) SRSk (2.28)
o)

T e - k(k*+1)
- 2w

\/v2 +k2(k4 T 1)2

We numerically compute the wave resistance using Eqgs. (2.22) and (2.28). The results
are presented in Fig. 2.3.

As expected, the wider the pressure field (small elastic Bond number), the lower the
wave resistance. Therefore the wave resistance has an upper bound given by the Dirac
pressure field, indeed a Dirac pressure field excites all the wave length whereas a larger
one will cut the large wavelength [33].

For the Lorentzian pressure field we observe at low speed a linear increase of the wave
resistance with v. Then the wave resistance reaches a maximal value and eventually at
high speed it decreases in v=!. The Dirac case shows the same behavior at low velocity,
but after reaching its maximal value, the wave resistance decreases with a more gentle

slope of v=1/5.
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Figure 2.3 Normalized wave resistance R/T'%, as given by egs. (2.22) and (2.28), as
a function of the reduced speed V, for various elastic Bond numbers B,. The Dirac
limit (Be — 0) is indicated. The vertical dashed lines indicate the position of maximal
wave resistance (see eq. (2.37)) for each value of By.

2.4.1 Asymptotic regime

In order to have the asymptotic regime at low speed, we do a series development of
Eq. (2.28) around v = 0, one gets:

_ Dow (™ KY(R)P
R = 47r/0 (k4+1)2dk:—|—o(v) (2.29)

Using the Dirac pressure field, we get the following asymptotic expression from Eq. (2.29)
as v — 0:

2o
R~ - 2.30
32 ( )
Using the Lorentzian pressure field of Eq. (2.22), the wave resistance reads:
2o
R~ —LF(B, 2.31
L F(Ba). (2.31)
where: .
>k —2v/Bak
F(Ba) = / exp ( ! ) ak (2.32)
0 (k*+1)

Therefore we recover the linear dependence in v at low speed for both Lorentzian and
Dirac pressure field.
In the limit of a large pressure field with respect to the gravito-elastic length, By > 1,
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one obtains:

1

F(Ba) ~ 15

(2.33)

In the high-speed regime of Fig. 2.3, one has two distinct scaling behaviors with v. Indeed,
for the Dirac case, using the asymptotic development of eq. (2.28) as v — oo, one gets:

20 (—2/5)T(9/10) 1

R~ — 5052 v (2.34)
where I'(2) is the Gamma function:
+o0
[(z) = / t*~letdt . (2.35)
0
For the Lorentzian pressure field of eq. (2.22), one obtains:
33 1
~ e —. 2.36
167 B4 v ( )

Egs. (2.34) and (2.36) show that the wave resistance for a finite-size pressure field (which
is more realistic) decays much faster than for the Dirac pressure field.

2.4.2 Maximal wave resistance

All the wave resistance curves in Fig. 2.3 show a maximum. We set v*(B,) the speed at
which this maximum is reached. By balancing the two asymptotic regimes we obtain a
scaling for this maximal velocity and the corresponding wave resistance. First we consider
the Lorentzian pressure field, that yields:

3
SV S 9.
v 1F(Ba) B2 (2.37)

el
Therefore at high elastic Bond numbers, corresponding to a wide pressure field, one finds:

3
¥~ 2.38
! Bel ’ ( )

thus the amplitude of the wave resistance at this particular point is:

V3T

R(v*) ~ Y20l
167 B3/

(2.39)
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The maximal wave resistance for B,y — 0, corresponding to a Dirac pressure field, is
obtained by balancing the low-speed and high-speed asymptotic expressions of the wave
resistance of the Dirac pressure field:

. 8T (—2/5)T'(9/10)\
Vo~ (— 57T3/2 R (240)
the corresponding wave resistance is:
(o) T2 [ 8[(—2/5)(9/10)\"° (2.41)
R B2 ‘ ‘

The asymptotic behaviors for low and high elastic Bond number, given by Egs. (2.38)
and (2.40) for v*, and Egs. (2.39) and (2.41) for R(v*), are represented in Figure. 2.4.
These results are summarized in Fig. 2.4. We predict that the maximal wave resistance
decreases as B;l?’/ ? for wide pressure field, and saturates to a finite value in the Dirac
limit. The corresponding speed v* decreases as B Y2 at large B, and saturates as well
in the Dirac limit. This maximum could be important in the designing of nano-rehological
experiments.

1.5

O =R(V*)/T}

-4 -2 0 2 4
logyo (Bel)
Figure 2.4 Normalized maximal wave resistance R(v*)/I'% (blue) and its corre-

sponding speed v* (red), as functions of the elastic Bond number B see Egs. (2.32)
and (2.37). The dashed lines represent the Dirac limits given by Egs. (2.40) and (2.41).

2.4.3 Viscous dissipation

The product vr is the required power to displace the surface profile at constant speed, we
can show that it also corresponds to the power dissipated within the viscous thin film.
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The power dissipated in the fluid reads:

P, = fjf d*r pv - Av (2.42)
Using Eq. (2.8), the power is thus:

P, = [[[d*r v-vp, (2.43)
then we integrate over z the velocity field:

P, = ﬂ 20 Q- -Vp, (2.44)
_ —jfdzapV-Q. (2.45)

We now use the volume conservation defined by Eq. (2.9),

P, = jfdQU poh | (2.46)

in presence of an external pressure field we thus have:

P, = [[d% (BV'h+ pgh+ Weu) Ok, (2.47)
- vﬁd% Voo Oph (2.48)
= v (2.49)

indeed one can check through integration by parts that:

Hd% Viho,h = 0, (2.50)
ffd%hc%h - 0. (2.51)

Therefore the power dissipated by viscosity is equal to the power of the wave resistance.
We can conclude that the energy transferred to the fluid by the external pressure field is
completely dissipated by viscosity.

2.5 Conclusion

We presented a theoretical investigation of the effects of a moving pressure disturbance
above a thin elastic sheet placed atop a narrow viscous film. From the elastohydrody-
namic lubrication model, we computed both the wake and the associated wave resistance
experienced by the operator. A central dimensionless parameter of this study appeared
to be the elastic Bond number. Then we have performed the asymptotic analysis of the
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low-speed and high-speed regimes and find a scaling for the maximum of the wave re-
sistance, a reference point that could be important for designing nano-rheological setup.
Eventually we shown that the energy transfer to the fluid by deforming the interface is
fully dissipated by viscous damping.
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Chapter abstract

In this chapter, we study both theoretically and experimentally the wave pattern gener-
ated by the leg strokes of the water strider. First we will see that the propulsion cycle is
divided into three phases. Then we focus on the first phase, the leg stroke, with a the-
oretical model and we compare our prediction to experimental measurements. Through
the use of the synthetic Schlieren method we are able to accurately measure the dynamic
response of the free surface.

3.1 Introduction

Several insect and arachnid species exploit water’s static and dynamic deformations [34]
to live at the air-water interface. Water striders are among the best known insects existing
at the air-water interface. They are the most studied insects regarding locomotion in such
a habitat [35, 36, 37], and notably due to their ability to jump in the air using the water
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surface as a trampoline [38, 39]. They have also been increasingly used as a template for
microbots [40, 41, 42, 43].

We know that the displacement of a disturbance at the surface creates a complex wave
pattern [44]. The waves and vortices created by the water striders are the signature of
the momentum applied to the water. Theoretical studies on waves and vortices has made
great advances for water striders [45, 46, 35, 47, 48]. However it is still unclear as to

International weekly journal of science
A

Walking
on water

The physicsof
water strider
motion

Early Solar Syste!
Comets change the

Figure 3.1 Cover page of Nature representing the Bush experiments [45] on water
strider propulsion (2003).

whether surface waves are more important than vortices in transferring the momentum
imparted by the leg to the water. The experimental side principally relies on the works of
[45, 49] and [50] who made PIV (particle imaging velocimetry) measurements of the water
surface. They also filmed the animal from the side, thereby obtaining a rough estimate
of the dip of the meniscus. However, none of them recorded the surface wave signature
in detail nor made PIV records from the side. As for vortices, the computations of [47]
predict that the vortices are detaching from the water surface under given conditions, in
conflict with the experiments of [50] showing that vortices do not detach. Unfortunately,
these experiments were carried out in very shallow water (with 1.2 mm depth and a 0.3
mm ink layer at the bottom) making difficult the reconciliation of the experiments with
the infinite depth assumption of the available theoretical work.

The present chapter quantifies with unmatched precision (5 pum resolution) the water sur-
face deformations during the water-strider leg strike in order to understand the importance
of accounting for the details of the fluid-structure interaction, as opposed to the impulsive
forcing model by Biihler, where the strike is localised in time and space. We furthermore
extend Biihler’s theory to shallow water and to a continuous non-impulsive forcing. Our
work has implications beyond the locomotion at the air-water interface, as small amplitude
wave-trains are used by many insects living at the water surface [51, 52, 53].
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3.2 Denny’s paradox

The mechanism by which the water strider stands on the water surface is classically
explained as a result of surface tension. When a water strider puts one of its legs on
the water surface, it creates a dimple. The vertical component of the resulting capillary
force resists to the mass of the insect, and the water strider is supported. The capillary
force that supports the water strider is proportional the the surface of the legs and scales
roughly linearly with the size of the animal, whereas the mass will scale as the volume of
the animal. As a consequence, standing on water is limited to small organisms. When
the insect moves across the water surface, the legs transfer momentum to the water. M.
Denny thought that the momentum associated with the waves created by the gerris could
be the transferred momentum. However we know from Fig. (1.3) and Eq. (1.23) that for
capillary-gravity waves, their is a minimum wave speed cpi, = 23 cm.s~! for a water-air
interface. For Denny, this minimum of speed of surface waves sets a minimum speed at
which the leg must move in order to make waves. From this statement Denny thought
they were a paradox since such insects have leg speeds below cpiy.

Obviously this paradox does not hold for several reasons. The first one is that we can
transfer energy with legs moving below ¢, the previous statement only holds for a
stationary regime, and a leg stroke is not a stationary regime. However this paradox has
triggered a lot of interest in the study of water strider locomotion. Particularly in a study
by Bush [45], a series of experiments reveals that the strider transfers momentum to the
water via water waves but also through hemispherical vortices shed by its driving legs. In
the study, they show that the momentum carried by the vortices is around 1075 kg.m.s™!,
the same order of magnitude than the gerris’ momentum. So even if some small insects
are not able to produce water waves, they still could produce vortices to transfer energy
to the fluid.

3.3 Gerris trajectories

Using a camera, we can record the trajectory and speed of a water strider. It appears from
the experiments that the locomotion phase can be divided into three phases. First we
have the propulsion phase lasting around 15 ms, which will be detailed extensively later.
Secondly, we observe a plateau of constant speed during approximately 15 ms, during
which the water strider almost doesn’t touch the interface, and this time corresponds to
a free fall of 1 mm high, and eventually when all the legs of the gerris reach the water
surface again, they are decelerated at a rate of around 7m.s~2. This corresponds to a
typical wave resistance deceleration. Indeed, following [33], we can show that the wave

resistance of a very small (compared to the capillary length) pressure field scales like:

Mg
R = 3.1
e (3.1)
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Figure 3.2 Body velocity of a water strider during its propultion phase above the
water.

this is the typical amplitude of the wave resistance for a Dirac pressure field [33]. For a
water-air interface, and the typical size and weight of a gerris [54] we find R* ~ 7.14m.s™2,
the deceleration phase seems to be completely due to wave resistance. If one wanted
to determine the exact time dependence for the speed or position of the gerris during
this phase, they would have to solve Eq. (1.109) giving the exact trajectory of a free
decelerating body via water wave radiation.

3.4 Surface response to an impulsive pressure field

In this section, we recall and extend to finite depth Biihler’s calculation for the fluid
interface response to an impulsive leg stroke (given by a delta function in time) of the water
strider. In particular we provide an analytical expression for the surface displacement
and generalize Biihler’s results to finite depth in order to match typical experimental
conditions. In addition, we extend Biihler’s impulsive approach to a rapid leg stroke
(finite time Tiyp). In the following, we denote r = (z,y, 2) and & = (z,y).
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3.4.1 Infinite depth

Consider an incompressible, inviscid, infinitely deep liquid whose free surface at rest is
located at z = 0. As mentioned earlier, the original model by Biihler is based on the
assumption that the stroke can be considered impulsive and localized. Furthermore, we
assume that the impulsive force is horizontal, aligned with the x axis. The impulsive force
field applied to the fluid is taken to be of the form:

F(r,t) = f(r)t), (3.2)

where the spatial part f reads:

f(r) = fod(2)o(y)o(z + h)e. , (3-3)

and where h typically corresponds to the depth of the meniscus created by the water
strider at rest. Note however that in the present model the free surface is taken to be flat
at t = 0, by that neglecting the static deformation of the interface. The resulting pressure
field p can be computed from the Poisson equation:

Ap = V- f, (3.4)

subject to the boundary conditions p(z,y,z = 0) = 0 and Vp|, .o — 0, where r = |r|.
Equation (3.4) results from taking the divergence of the linearized Euler equation together
with the incompressibility condition. We know that the Green function of the Poisson
equation in an unbounded 3D domain is:

1

Golr. ™) = ~ e o]

(3.5)

The Green’s function G(r, ') of the problem is solution of Eq. (3.4) with right hand-side
equal to §(r — r’). It can be computed using the method of images to ensure a vanishing
solution at the interface, thus it is equal to the unbounded Green function given by
Eq. (3.5) minus the equal and opposite image source at the mirror location with respect
to the interface to ensure a vanishing solution at the interface (see [46]). Therefore it
yields:

G(’l", 7'/) = GO(T7 Q?l, y/7 Z/) - GO(Tu xlu yl7 _Z/> (36)

Convolving the obtained Green’s function with the right hand side of Eq. (3.4), one
obtains the impulsive pressure field p:

= / Glr, )R- V'6(2)5(y)3(+ + h)dadydz = R- V'C(r,0,0,—h) . (3.7)



3.4 Surface response to an impulsive pressure field 75

therefore the horizontal pressure field, in which we are interested, corresponds at first
order in h:

3foxz 9
= —h——+4+0(h"). 3.8
p(r) 022 o) (38)
The knowledge of p allows one to compute the resulting free surface displacement. In
the following, we establish the free surface displacement in response to a given surface
pressure field. The velocity potential ¢(r,t) is determined by solving the Laplace equation
A¢ = 0 together with the boundary conditions:

1
V |:at2¢ + gaz¢ - ’YazAz,y¢ + ;atp - 0 (39&)

z=0

d.6|., . =0, (3.9b)

where g denotes the acceleration of gravity, v the surface tension, and P(r,t) the imposed
pressure field. The general solution reads ([44]):

2
o(r,t) = / (‘;Tk)QA(k,oe“mvwekZ, (3.10)

where k = (u,v). Projecting Eq. (3.9a) along the vertical axis e, and injecting Eq. (3.10)
leads to:

k[0fA+w(k)?A] = —%atf [0.P|__,] (3.11)

where w? = vk3/p + gk denotes the dispersion relation for capillary-gravity waves, and
where F denotes the spatial two-dimensional Fourier transform operator. The kinematic
boundary condition 0, = 9,¢|.—¢ can be written in Fourier space as:

0¢ = kA, (3.12)

where ((k,t) = F[¢]. Injecting Eq. (3.12) into Eq. (3.11) and integrating over time yields:

o+l = —F (0Pl (3.13)

Equation (3.13) is key in the sense that it allows us to compute the surface displacement
C(z,t) = F (] for any given pressure distribution P(r,t) and for any given set of
initial conditions. The general solution can be written as the sum of the solution to the
homogenous equation and a particular solution to the nonhomogeneous equation, namely
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(K, t) = Cu(k,t) + fp(k, t) where:

Calk,t) = é(k,@)cos(w(k)t)+até(k,0)—smfu“(’/i’;)t) (3.14a)
. B _1 t Tsin(w(k)(t—T))
(k1) = P/o d (k) Flo.P| ), (3.14b)

and where the particular solution was determined from the method of variation of con-
stants, explained in section 1.3.3. The homogeneous solution is precisely the well-known
Cauchy-Poisson solution [55] also called free-wave solution exposed in section 1.4.2. We
here assume that the free surface is initially considered at rest, which is ¢ (k,0) =0 and
0,¢ (k,0) = 0 such that ¢ (k,t) = CAp(k, t). The impulsive pressure distribution is of form
P(r,t) = p(r)i(t) where p(r) is given by Eq. (3.8). Injecting P(r,t) into Eq. (3.14b)
yields:

. 1 sin(w(k)t)
_ _ = ") 1
C(k7t> p W(k> 'F [azp’z:[)} 9 (3 5)
where at first order in h:
. 3f0 hx
F [azp‘zzo} = —F [g (:EQ N y2 T h2)5/2] . (316)

Recalling the results of [46], we here compute the response of the free surface to the
impulsive pressure field in infinite depth. Taking the pressure field given by Eq. (3.16) and
computing the Fourier transform with polar coordinates (r, #), we use k-r = kr cos(0 — ¢),
with 6 the polar coordinates in the real space and ¢ the polar coordinates in the Fourier
space, one obtains after some calculations:

8pimp o 3f0 z —i(kgx+kyy)
F[ e |Z=°} = o JJ e (% + 2 + W21

3f0 T COS 9) —zkrcos 0—¢
— Hd O oyt 0=9)

3f0 7”2 " —ikr cos(6—¢)
= - or ; dT m COS(9)€ . (317)

After integrating over theta one easily gets:

/ g—ecos(H)e_ikrcos(e_¢) = —icos(¢)Jy(kr) . (3.18)
g 2m
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Thus

8pimp . kx oo 7,2
F|: 82 ‘z=0:| 32f0h?/0‘ dr —(r2+h2)%J1(k7°)

= ifoksexp(—hk) . (3.19)

From this distribution, we compute the evolution of the free surface after an oriented
impulsion:

Jo
(2m)%p

sin(w(k)t)
w(k)

“+oo
Gimp (@, 1) = —i / dk,dkyk, exp(—hk) exp(i(k.x + kyy)) . (3.20)
0

After a polar transformation in Fourier space we obtain an expression for the evolution
of the free surface after an impulsive strike:

Ji x > _ sin(w(k)t)
Gimp (T, 1) = ﬁ\/ﬁ ; dk k2e " (k\/x2 + y2) W . (3.21)

Eq. (3.21) gives the evolution of the free surface after an impulsion.

3.4.2 Finite depth

The measurements were performed in shallow water due to optical resolution. Therefore,
we extend the theory to the case of shallow water. With the same assumptions than
in the previous section, we consider an impulsive force field localized at + = y = 0
and depth z = —h where h > 0 in a shallow water of depth H > h. The force field
is given by Eqgs. (3.2) and (3.3), and the resulting pressure field is found by solving
the Poisson equation (see Eq. (3.4)) but with a different set of boundary conditions:
p(z =0) =0, 0.p(x = H) = 0 and Vp|,,.c — 0. In the finite depth case, one must
first compute the pressure field resulting from an impulsive force in finite depth and
the resulting surface response. Let GG be the Green’s function of the problem given by
Eq (3.4) subject to p(z = 0) =0, O.p(z = —H) = 0 and Vp — 0 as /22 +y?> — oc.
The function G solves: AG = §(x — '), with the same boundary conditions, which leads
to: p = —f00,G(x,0,0, —h). Using the eigen-decomposition of the Laplacian with these
boundaries:

V2/H |
U, (ky, ky) = 27{ e® T sin (Ap2) | (3.22)

where A, = (2n+ 1)7/(2H), together with the spectral formula of Green’s function (see
Appendice A.2.1), one obtains:

1 . ik-(r—r’)
Glror') = oo D sin(Az)sin (A2 [[ by P
n=0 '

_ % S sin (An2) sin (A=) Ko (Jr — 1'|A,) (3.23)
n=0
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The horizontal impulsive pressure field thus reads:

P = _j_}} cos(4) iAn sin (A 2) sin (Anh) K1 (rAn) - (3.24)

n=0

Then, in order to compute the deformation of the free surface, we need to compute the
Fourier transform of d,p,(z = 0). Computing the derivative with respect to z yields:

dph o fO - 2 .
E'ZZO = onH COS(@) ngzo An S11 (Anh) K1 (T’An) s (325)
x d
with r = /22 + y%2. We set f(k,, k,) the Fourier transform of %(z =0):

~ | :
fkas ky) = ff dady e_’(’“wx+kyy)%|zzo

fO 5 . /+oo /27r ik .
= ———= ) Alsin(A,h dr rK; (rA, df cos(f)ekrecos6-9)
=D )| (o) | )
o 22f0 A2 . e
= 5 Z 2 sin (Aph) cos(¢) K (rA,) Ji(kr)rdr
n>0 0
22f0 . An
— ?k’w;sm (Anh) 7 TR (3.26)
The sum above can be computed from:
= n . msinh(y(m — x))
; y? + n? sin(na) 2 sinh(my) (3:27)
Therefore one gets:
f(ke ky) = ifoks (cosh(kh) — sinh(kh)tanh(kH)) . (3.28)

The case of an impulsion in an infinitely deep water is a limiting case of this expression,

we easily see that: )
lim  f(ky, ky) = ifokee ™" (3.29)

H—+400

which is exactly Eq. (3.19). The displacement of the free surface then reads:

iﬁp(m,t) _ foz /Oo dk k? (cosh(kh) — sinh(kh) tanh(kH)) J; (kr) sin(w(k)t)

-~ 2mpr Jo w(k) (3:30)

with w? = (k + k) tanh(kHk) and £~ the capillary length. Note that one easily recovers
Biihler’s result in deep water by letting H — +oc.
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3.5 Experimental results

In this section we present the experimental setup used by our collaborators in Tours to
record the surface deformation both at rest when the water strider stand on the water
surface and during the dynamic phase of propulsion.

3.5.1 Synthetic Schlieren method

Several profilometry techniques have been developed in the past for the measurement of
the local topography of the air-water interface. Our collaborators in Tours, Jerome Casas
and Thibaud Steinman have used the synthetic Schlieren method initially developed by
Marc Rabaud and Frédéric Moisy [56]. The main feature of this innovative method con-
sists in capturing from above, by means of a high speed video camera, images of a random
dot pattern at the bottom of the basin transmitted through the liquid interface. Changes
in the liquid-air interface topography result in a modification of the refracted dot pattern
images.

If (=, y) is the free surface displacement with respect to its equilibrium position, then
dd(z, y) is the resulting modification of the refracted dot pattern. In this study [56],
they demonstrated that the distortion field dd is simply proportional to the free surface
gradient in the limit of small deformations.

Using Particle Image Velocimetry (PIV) techniques, digital image correlation algo-
rithms are used to determine the apparent displacement field between the refracted image
and the reference image obtained when the surface is flat. Eventually, a numerical integra-
tion of this displacement field, based on a least-square inversion of the gradient operator,
reconstructs the instantaneous surface height.

3.5.2 Static measurement

As given by the vertical force balance of a water strider in a static situation see [49]
and [57], the mass of the volume displaced by the insect at the free surface is equal to
the mass of the insect. Indeed, given the free surface displacement ((x,y) resulting from
an external pressure field pey(2,7), and denoting (k) and p(k) their respective Fourier
transform, the volume of the displaced fluid Vg can be directly linked to ((z,y) through:

Vi= fj dedy ((z,y) = —limé(k) . (3.31)

k—0

In addition, ¢ (k) being proportional to p(k) see [44], and given that p(0) = Mg, one can
eventually show that:

‘/Cl:

M
P
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where M is the mass of the insect and p denotes the water density. We predict that
Archimedes’ law is not modified by capillarity see Eq. (3.32). To determine the weight
of individuals independently, insects were frozen and weighed just after defrosting with a
microbalance. They were placed on absorbing paper during defrosting to remove water
in excess. The weight of 70 individuals (from first instars to adults) measured with
the microbalance was compared to the one predicted with the Schlieren technique. In
the Fig. 3.3 we obtained an excellent agreement for all insects weights and validate the
prediction of Eq. (3.32). The Schlieren technique can be considered as an accurate and
non-intrusive technique that is appropriate for our task.

Adult

5thinstar Q a l 50
2

N L 100
0 ‘\\ i -150

5t instar Adults

2nd instar

(wrl) uoljeas|d aoejins I8l

mass of the fluid in the menisci (mg)

0 5 10 15 20 25 30 35 40 45
individual mass (mg)

Figure 3.3 a. Static water surface deformation around non-moving Gerris paludum
of 3 different instars. The color scale corresponds to the water surface elevation. The
scale is given by the black line (5mm). b. Mass of displaced fluid as function of insect
mass from first instars to adults.

3.5.3 Qualitative comparison, from impulsive to continuous forcing

The experimental observations of the surface displacement to the theoretical predictions
developed in the previous section. We fit the theoretical surface of the continuous forc-
ing to the experimental one which outputs the amplitude of the propulsive force fy see
Eq. (3.3). Figure 3.5 (left column) shows the time resolved surface displacement around
a water strider, during the stroke. The central column shows the theoretical prediction
of the surface displacement following Biihler’s theory for an impulsive forcing. We clearly
see a poor qualitative agreement between experiments and the theoretical impulsive wave
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Figure 3.4 Body and leg kinetics during a stroke. a. Definition of the morphology
of an insect leg. b. The water strider body is oriented along x axis. At rest, the 3.75
mm long median leg makes a m/4 angle with the x axis. During the 10 ms stroke,
the leg rotates by approximately 7/4 rad. c. Dimensionless velocity of the body for
10 strokes. The small sketch superimposed illustrates the movement of an individual,
lasting 10 ms.

pattern. During the propulsion phase, we see a circular elongated wave, this shape results
from the circular displacement of the leg during the stroke.

During a leg stroke, the leg is not localised in space as an impulsive forcing, but is
following a circular trajectory. In order to account for the temporal extension of the rowing
period, and consistent with the linearity of the governing equation, we now superimpose
the impulsive solutions along the real leg’s trajectory captured by the camera. Denoting
Tieg(t) = (T1eg(t), Yieg(t)) for t € [0, Timp| the trajectory of a leg during the stroke phase,
one obtains:

t
d
Ccont(mvt) = / T ° @(8 < Timp) Cllrip(m - wleg<5)7t - 8) ) (333>
0 imp

where © denotes the Heaviside step function, and where i{{np is given by Eq. (3.30). The
time dependent positions of the tip of the left and right legs were obtained by fitting
two parametric equations @jeg(£)=(Z1eg(t), Yieg(t)) of the real legs trajectories recorded by
camera. The Fig. 3.5 displays the result of the continuous forcing in the right forcing.
The typical circular elongated wave produced by the legs is now very well reproduced by
the theory with a continuous forcing in shallow water.

As mentioned above, fitting the theoretical surface to the experimental data by minimisa-
tion of the mean square difference allows us to obtain the total amplitude of the impulsive

forcing f, as a fitting parameter. One obtains fy = 1.3 x 1071 kg.m*.s71.
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Figure 3.5 Comparison of the experimental surface elevation with theoretical predic-
tions. The 15! column represents the experimental surface elevation generated during
the propulsion of a water strider (mgemis = 0.348 mg, Vgerris = 0.38 m.s~!). The ond
column represents the theoretical surface elevation produced by a single impulse in
the direction of motion using (imp as expressed in equation (3.21). The 3¢ column
represents the results for a continuous forcing in shallow water along the trajectory of
the water strider legs.

3.6 Conclusion

This study is a new step in the quantitative understanding of the water strider’s locomo-
tion mechanism. We have presented experiments and theory on the surface displacement
generated by the water strider’s leg strokes. Using the synthetic Schlieren method, we
were able to dynamically measure the topography of the air-water interface during the
water strider’s leg strokes with unprecedented accuracy. We extended Biihler’s study to
account for finite depth consistent with the experimental conditions. We showed that ac-
counting for the continuous forcing along the leg’s trajectories was essential to reproduce
the experimental wave patterns. This suggests that in the real conditions of the Gerris’
natural habitat (including infinite depth: H > \), Biihler’s approach is very satisfactory
by superimposing the impulsive solution along the leg’s trajectories.
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Chapter abstract

In this chapter we recall physical properties of supercooled liquids and glasses. Then we
introduce phenomenological laws such as the Adam and Gibbs laws, as well as theories
such as the free volume theory [58]. We also propose a cooperative string model [59, 60]
that will be used later on to understand the glass transition in confined samples of polymer
glasses.

4.1 Introduction

For a long time glassmakers knew that during the cooling down of liquids made of oxydes,
viscosity evolved to make a glass. A convention allowing the distinction between a liquid
and a glassy amorphous solid was adopted, Tammann called this transition temperature 7,
the glass transition temperature and correspond to a liquid with a viscosity of 10!? Pa.s™.
It is now well established that around 7} a lot of different condensed phase chemicals such
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as glycerol, polymers, oxydes, metals have the same dramatic increase of viscosity but also
similar physical modification specific to the glassy state. Although obtaining a glass by
cooling down rapidly is fairly simple, it has been so far impossible to fully understand the
glass transition from a theoretical point of view. The main reasons are that the properties
depends on how the glass was made, and these properties evolve with time. This is called
the phenomenon of ageing.

4.2 Observation of the bulk glass transition

The most numerous data concerned enthalpy (via calorimetry) and volume (via dilatome-
try). Therefore in order to explain the experiments, we need to recall the basics properties
of the thermodynamics of liquids.

4.2.1 Thermodynamical aspect of the glass transition

Through basics thermodynamics, we will highlight the relaxational signature of the glass
transition temperature. When crossing the domain close to 7, during the cooling down
process, we loose the possibility of finding the minimum of free-enthalpy, this is charac-
teristic of the supercool liquid in a metastable state see Fig. 4.1. Therefore the system
is macroscopically out of equilibrium but locally atoms or molecules could be in a lo-
cal minimum of energy. On Fig. 4.2 | we observe that the first derivatives seems to be
continuous but the second derivatives tends to have a brutal variation around 7y, the
variation on the second order derivatives of the free-enthalpy experimentally defines the
glass transition temperature. This observation could suggest that the glass transition is
a second order phase transition, however we can check experimentally that it is not the
case. For example we have for a second order transition:

dT Ay
il = 4.1
( dpP > transition AOZU ( )

where «, is the coefficient of volume dilatation and y is the coefficient of compressibility.

In fact when we form a glass we usually have % < AA—QX. Experimentally we observe that

the value of T}, obtained depends linearly on the cooling rate. This obviously highlights
the relaxational character of the glass transition.

When a liquid is at high temperature, the system reacts rapidly to the imposed variation
of temperature and easily finds a new equilibrium point. If we consider a variation of
volume with the temperature, it can be divided in two terms:

dVv oV oV
DA - 4.2
dT <5T ) vib ’ (5T ) conf ( )

the variation due to the vibrational degree of liberty and the one due to the configura-
tional degree of freedom. In a reasonable range of temperature, the vibrational terms are
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Figure 4.1 Free enthalpy as a function of the temperature, it decreases continuously
with the temperature, the slope of the curve is the heat capacity which changes from
liquid-like to solid-like values in the transition region. By cooling down the system
rapidly, one can avoid the melting transition and reach a glassy regime, the property
of the glassy regime depends on the cooling history.

Supercool liquid

Glass

. »
T »

T, T

Figure 4.2 Heat capacity as a function of the temperature, heat capacity of glasses
arises mostly from vibrational contributions, rotational and translational degrees of
freedom have been frozen out.
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Figure 4.3 Excess of entropy of the supercool liquid as a function of the temperature,
above the melting point, there is no excess of entropy. Supercooled liquid have excess
of entropy because they have not lost all the entropy of melting given to the liquid on
melting. At Tk, the supercool liquid has lost all of this excess entropy.

equal for the liquid, the crystal and the glass. Therefore the configurational term is the
important value to understand the difference between a liquid and a solid. Indeed when
we cool down a liquid its viscosity rises, the configurational changes are more and more
difficult. The characteristic time of this re-arranging region increases particularly in the
region of T,. We can use the temperature dependence of the specific heat in order to
calculate the entropy in a liquid or a solid phase :

S{T) = Si(Th) — /T " %dT | (4.3)

Using this relation in both phase i, we can compute the difference of entropy between the
two phases. The order of magnitude of Sgjags is of the order of 5 J Kt mol™! for metallic
glass to 50 J.K~*.mol ™ for organic polymer glass.This value represents the configurational
disorder which is only conceptual and has a real sense only if the time of the experiment
is similar to the equilibrium time which is quasi infinite for a glass. Although we see
on Fig. 4.3 with an extrapolation that Kauzmann define a temperature 7}, where the
"disorder” tends to 0 see Fig. 4.3. If a liquid could be supercooled below its Kauzmann
temperature, therefore the displayed entropy would be lower than that of the crystal
phase. This is known as the Kauzmann paradox. Physicists have proposed three possible
argument to solve that paradox. First the heat capacity of the supercool liquid near Tx
could be lower. Or a first order phase transition to another liquid state could occur before
Tk with a smaller heat capacity for this phase. Or the supercool liquid should crystallize
before reaching Txk.
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Figure 4.4 Log-viscosity as a function of the inverse of the temperature, Angell plot
extracted from [61].

4.2.2 Dynamical aspect of the glass transition.

We want to present here some fundamental observations in glass-forming systems. At
sufficiently high temperature, the typical relaxation time of a liquid is of the order of
1 picosecond. This time scale reflects the fact that in a liquid the particles can move
easily and their trajectories looks like brownian motion. If we look at the temperature
dependence of the relaxation time, we observe that an decrease in the temperature will
change 7 by order of magnitude. Understanding the microscopic mechanism responsible
for this dramatic slowing down of the relaxation time is one of the main challenges.
Although this slowing down can be easily explained there is no theory that describes
all the glassy dynamics. Now if we plot In(n) on an Angell plot, it shows that certain
liquids follow Arrhenius law such as SiO, whereas others show an important deviation
from Arrhenius. A popular way to describe the data is called the Vogel-Fulcher-Tammann
law.

A
T-1T,

), (4.4)

n(T') = no exp(

this formula predicts the divergence at a finite temperature of the viscosity, called the
Vogel temperature T,,. We present in the following a toy model that recovers this phe-
nomenology based on Adam and Gibbs picture. In order to obtain a good understanding
of the relaxation dynamics, it is useful to probe it at a microscopic level. We plot in
Fig. 4.5 the time correlation function of a liquid at high temperature (dashed line) and
the relaxation dynamics in a supercooled liquid (plain line). At short times we observe a
ballistic dynamics, then at some point the particles will collide with their neighbours and
therefore the correlation function decays exponentially. In the case of low temperature
the pattern of the correlation function is more complex. At short time we still observe
this ballistic behaviour then we reach a plateau corresponding to the behaviour found in
a crystal, the reason of this reminiscent behaviour is due to a caging effect, in order to
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Figure 4.5 Time dependence of a correlation function. In dashed line a liquid, and
in plain line a supercool liquid, graph extracted from [58].

make a large displacement in a supercool liquid, the particle has to escape the cage made
of its neighbours. And then for longer time, the correlation function start to decay again,

the particles have succeed to escape their cage. This final decay is well described by the
stretched exponential known as the Kohlraush-Williams-Watts function [58]:

(1) = Aexp (- (;>ﬂ> . (4.5)

Historically, the relaxation process corresponding to the leaving of the cage is called the
a— process and the plateau is called the f—process.

4.3 Theories of glass transition

From the observations we can draw the fundamental basis of every theory on glass tran-
sition.

o The glass transition is a universal manifestation for all liquids forming glasses.

o Even if there is a modification of thermodynamic quantities, it is not a phase tran-
sition but the disappear of configuration modes.

» The variation of the properties around 7}, is still dramatic.

o This transition is mainly described by kinetic aspect.
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e During the cooling down of a liquid, it doesn’t reach a glassy state because some
kinetic or topological barrier increases dramatically close to 7.

o The relevant parameter is the molecular mobility 7y, corresponding to the time of
an elementary unit to move comparably to its size. The relaxation time depends
on the temperature with a VFT phenomenology for 7" > T, and an Arrhenius
phenomenology above T, but with very high energy barrier.

In the following we are presenting some of the theories proposed to understand the glass
transition. Obviously we cannot present all, in the New York Times David Weitz said:
There are more theories of glass transition than there are theorists who propose them. We
mention here the most successful theory known as the mode-coupling theory, however its
complexity prevents us to use it to understand the confinement and polymeric effect that
we are interested in later.

4.3.1 Theory of Adam and Gibbs

Adam and Gibbs in their seminal article [62], had the physical idea that in a glass-
forming liquid, at low temperature, the relaxation process is the result of a sequence of
individual events resulting in the re-arrangement of a subregion. This relaxation occurs
due to local fluctuation of the enthalpy allowing collective motion. They consider an
equilibrium isobar and isotherm of these small subsystems. The transition probability
between two configurations is function of the size of the smallest possible region that can
host such a rearrangement. In such a region we set z to be the number of structural
units inside this region. There are two classes of subsystems n allowing rearrangement
and N — n that don’t. Z(z, P,T) is the partition function isothermal and isobaric of all
the N subsystems and G the free enthalpy corresponding. Z’ and G’ correspond to the n
rearranging subsystems.

R G' -G\ 2Ap
7o <_ kT )_eXp< ka> ' 0

By introducing Ay = (G' — ) /z the enthalpic barrier per structural unit or particle, and
using the fact that the probability that a system of size z makes a rearrangement W (z, T')
is proportional to n/N, therefore:

=] =

W(z,T) = Aexp(—fzAu) . (4.7)
From that we obtain the average transition probability per structural unit:

(W(T)) = % S su(s YW (s, T) | (4.8)

with w(z,T) the number of subsystem of size z € [1,N]. In fact this sum will start
at z* the cooperative onset or the smallest clusters of structural unit able to rearrange.
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Assuming that u(z,t) do not depends a lot on z therefore we have:
(W(T)) = Bexp(—Bz"Ap) . (4.9)

Thus the relaxation dynamics is dominated by the smallest possible cluster of structural
unit rearranging. The cooperative onset z* determines how many structural units partic-
ipate in a typical relaxation event. This value corresponds to an entropy S* = k;In(2)
and we have 2*S.,r = N*S*.
(W(T)) = Bexp (—M) | (4.10)
TSCOnf

Invoking ergodicity, we directly obtain the results of Adam and Gibbs:

7(T) o exp ( Tsomf) (4.11)

A simple thermodynamic calculus allows us to compute the configurational entropy by
integrating the enthalpy:

Sconf == NACP IH(T/Tk) s (412)

with AC), the difference of specific heat between the liquid and the glassy state. Eventually
one gets:

7(T) o exp (ﬁ) . (4.13)

4.3.2 Free volume theory

Cohen and Turnbull [63] had made the hypothesis that the molecular transport is due
to the motion of molecules in holes which size should be superior to a critical size. We
consider here a material composed of spheres with a hard or a Lennard-Jones potential.
If we consider two particles A and B as in Fig. 4.6 we see that the particle A is not able
to make a relaxation corresponding to leave its cage, but the particle B has enough place
to relax. The free volume theory attemps to relate the diffusivity of the particle to the
distribution of free space in the material. The free volume per particle is defined has
following;:

VF =0 — 1, (4.14)

with vy the excluded volume per particle and v the volume per particle. The aim is to
determine the probability distribution of v. By decomposing the system in smaller region
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Figure 4.6 In white the accessible volume for the particles A and B. The particule
in A is caged by its neighbours and cannot relaxes however the particle B is able to
move a relaxation motion.

J, with n; structural units with an average free volume vy;:
Canvfj = Nvgy, , (4.15)
J

> =N, (4.16)

where C' € [0.5, 1] is an overlap factor that accounts for free volume that might be shared
by adjacent cells in the lattice. The number of configuration rearranging the space reads:

N!
0= 4.17

We seek to maximise for entropic reasons the number €2 of distinguishable ways that
free volume vy; per subsystem can be redistributed among n; subsystems, subject to the
previous two constraints. Using Stirling formula one gets:

In(Q2) = 1ln(27r) + N+ ! In(N) — Z 1 In(27) + ( n; + ! In(n;) (4.18)
2 2 — 2 2

In order to verify the two constraints we use two Lagrange multipliers A; and Ay, thus we
have to maximise F:

F=In(Q)+ X\ (N - an> + A2 (Nvfm - C’Zm) (4.19)
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therefore we have:

O, F' = —In(n;)) — A — XCvyp =0, (4.20)

oF = N=) nj=0, (4.21)
J

(%QF = N’Ufm - C’anvfj =0. (422)

J

Using a continuous description one easily gets the distribution of free volume:

() = < exp (—@) | (4.23)

Vfm Vfm
In condensed matter, a relaxation process needs two conditions:
» enough space next to the test particle
o enough energy for the test particle

within the framework of the free volume theory, in order to have enough space, we should
have an entropic coalescence of small free volume up to reach the critical space needed to
relax. In this condition we can state that if the free volume available is below a structural
unit size vg, the diffusion constant is D = 0, if v > vy therefore D ~ Dy under the
assumption that the diffusivity weakly depends on the free volume available above vy.
Therefore the effective diffusivity reads:

D* = Dyexp <—%> , (4.24)

Ufm

where Dy = vpA?, vp is the Debye frequency and A a molecular distance. The timescale
associated to this diffusion constant is simply the mean time for a structural unit to travel
a molecular distance A:

2
T = % = Tp exp (%) : (4.25)

The free volume distribution varies with the temperature, and we can link them with
the linear expansivity. We assume the existence of free volume only above a certain
temperature T, therefore we have for T > T:

Vpm = Vol —ay) (T —T,,) . (4.26)

From this results the Vogel-Fulcher-Tammann phenomenology:

-1
T = Tpexp <TA1¥T) (4.27)
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4.3.3 Cooperative string theory

In a supercooled liquid, due to crowding and caging [64], local rearrangements seem to
require the cooperative participation of a growing number of molecules as the temperature
T is decreased. This was related through phenomenological arguments to the vanishing
of the free volume needed for relaxation, and could lead to the tremendous slowing down
of glassy dynamics described by the empirical time-temperature superposition. This re-
laxation process defines a temperature-dependent length scale (T") for the cooperatively
rearranging regions, and thus for glassy dynamics in the bulk. Furthermore, within some
degree of poly-dispersity in size, numerical simulations, and experiments, suggested that
those regions might take the form of unidimensional chains — the so-called cooperative
strings [65, 66, 67, 68]. We developed a minimal kinetic model based on those ideas, that
is successful in reproducing bulk phenomenology and will be useful to understand confined
phenomenology [59]. For the sake of simplicity, we map the real liquid state to a simple
hard-sphere liquid and thus fully neglect the enthalpic contributions in the activation
barriers for relaxation. Stated differently, we assume that entropic effects are dominant
in the critical slowing down of supercooled liquids. This is also what the Gibbs-DiMarzio
approach to glass formation in polymers would suggest, with the underlying transition
essentially determined by a vanishing of the configurational entropy.

Let us consider a dense assembly of small molecules with size Ay and average intermolec-

o ) )
esvats s sedattfs oodettss
% ::.‘E.’.‘ i ::o. so..° % ::o. so.o.

Figure 4.7 Model of cooperative string relaxation, the test particle in green needs
cooperative rearrangement from its neighborhood in order to relax.

ular distance A. The volume fraction is thus ¢ oc (Ay/A)3. A test molecule sits in a cage
of volume ~ A3, with gates of length L ~ A — \y. We set that a typical non-cooperative
liquid-like local relaxation requires L > L. = A — Ay, or equivalently A to be larger than
Ae — the so-called onset of cooperativity, with volume fraction ¢. (see Fig. 4.7). Also,
when A ~ Ay, the gates are completely closed (L ~ 0) and the system is at kinetic arrest,
with volume fraction ¢y. For Ay < A < A, the relaxation is possible but necessarily
collective. It requires a random string-like cooperative motion involving at least N* — 1
neighbours of the test molecule, that provide a total space (N* — 1)L ~ L. — L by getting
in close contact with each other. The test molecule thus sees a temporary larger gate, of
length L., and can exit the cage. Therefore, one gets the scaling expression of the minimal
number of molecules needed for a local relaxation, i.e. the so-called cooperativity (see
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Figure 4.8 Bulk cooperativity as a function of the inverse of the density for the
polystyrene.
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¢
As expected, this expression reaches 1 at the cooperative onset ¢., where solitary
rearrangements are allowed, and diverges at the kinetic arrest point ¢y. Note that the
bulk glass-transition point ¢p"* lies somewhere in between those two extreme values. By
introducing the necessity of coherence between molecular motions within a cooperative
rearrangement, the probability for the motion of N — 1 consecutive particles coherently
with the motion of the first test particle scale like ~ ¢V~1(1 — ¢), € is an elementary

coherence probability and the factor 1 — e expresses the incoherence of the N + 1th
particle. Finally we can express the probability of a cooperative relaxation involving N

N*(¢) =

particles:

Pn(¢) = 71A3(1 — )V lO (N - N¥) (4.29)

where O is the Heaviside function. Summing over all possible chains lengths N, we obtain
the probability of relaxation:

P(¢) ~ P! (4.30)

the relaxation is entirely determined by the cooperativity N* and is exponentially decay-
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ing with increasing N* (¢ << 1). Introducing an ergodic correspondence between bulk
relaxation time 7 and the probability of relaxation through 7PA\3 ~ 1

To To ’
— = — 4.31
T (TC) ’ ( )

where 7, ~ 1 ps is a typical liquid-like relaxation time at the cooperative onset, and
To ~ 10 fs is a molecular time scale. Our description thus naturally leads to the Adam-
Gibbs phenomenology. While the proposed approach does globally use free volume to
correlate to dynamics, it does not necessarily mean that local regions with higher free
volume are always faster in a real material, despite indications that this might be true.
In fact, the effect of coherence of molecular motion is at least as important as the free
volume itself. If parts of the sample had a higher density, but also a higher coherence
factor 7y/7, then those parts may relax faster. All of this is not considered in the context
of the current mean-field approach, but it does mean that we do not necessarily have to
assume a strict correlation between local density and local mobility.

Since, in the temperature range considered, the thermal expansion coefficient o =
—(1/¢)d¢/dT of the supercooled liquid is almost constant, one has:

O(T) = ov[l —a(T —1Tv)] (4.32)
where ¢(Ty) = ¢v defines the Vogel temperature Ty,. Therefore, our description naturally

leads to the Vogel-Fulcher-Tammann time-temperature superposition without incorpora-
tion of any enthalpic contribution, through the use of Eqs. (4.28), (4.31) and (4.32):

T(T):ToeXp( 4 ) , (4.33)

T—Ty

where A = (T, —Tv) In(7./70), and with ¢(T.) = ¢. by definition of the onset temperature
T.. As a first remark, 7./7 should be a constant only for hard spheres. For a real
liquid, the latter dimensionless relaxation time is rather expected to follow an Arrhenius
law 7./79 = exp(T,/T), where kg7, is an activation energy barrier proportional to the
cohesive interaction strength, and kg is the Boltzmann constant. In that case, Eq. (4.33)
would be replaced by the leading-order expression near the kinetic-arrest point:

C
T ~ BT1exp (T T ) : (4.34)
— 1y

where C' = T,(T.—Ty)/Ty and In B = —C'/Ty are two constants. Thus, the Vogel-Fulcher-
Tammann form is still recovered asymptotically, which means, in this type of description,
that the details of the enthalpic contributions are not essential to capture the critical
slowing down in an ideal supercooled liquid. As a second remark, the Vogel-Fulcher-
Tammann law is only valid over some temperature range, and in reality we do not expect
the relaxation times to actually diverge. This approach should rather be considered as
a high-temperature approximation. The low-temperature behavior lies beyond the scope
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of the present minimal description, as it might involve the fine details of the real energy
landscape. As the bulk relaxation process presented here consists of random cooperative
strings involving N* molecules, one can minimally describe them through ideal random
walks. The length scale £ of the cooperatively rearranging regions is thus of the form
¢ ~ A\/N*, near the kinetic arrest point. Invoking Eqs. (4.28) and (4.32), one obtains the
temperature-dependent expression of the cooperativity:

_TC_TV

(4.35)

and thus an asymptotic expression for the associated length scale:

E(T) = Avy/ ?:—;;V : (4.36)

As a consequence of this description, the cooperative length diverges at the Vogel tem-
perature with a —1/2 power law, and is comparable to the molecular diameter at the
cooperative onset.

4.4 Glass transition temperature measurement

4.4.1 Calorimetric measures

The most common method to obtain the glass transition temperature of an amorphous
polymer is using calorimetric measurement. If we consider a graph of the calorific capacity
as a function of the temperature, there are four ways to determine the glass transition
temperature. Therefore the glass transition temperature depends on the used convention.
T} corresponds to the beginning of the structural evolution of the system, 75 corresponds
to the temperature at which C, is equal to the average of C,(liquid) and Cj(glass), T3
corresponds to the point of maximal speed of structural relaxation, and 7,4 when the
system first reach the metastable state. Considering the kinetic aspect of the glass tran-
sition, we expect that the glass transition temperature vary with the cooling rate k. The
energy barrier AH, ~ 430 kJ.mol™!. The very high energy barrier corresponds to the
collective character of the glass transition.

4.4.2 Ellipsometric measures

Ellipsometry is an optical technique of characterization and surface analysis, based on the
change of state of polarization of light, by reflection of light on the flat surface of a sample
A collimated light beam is polarized linearly through a polarizer. The beam is reflected on
the sample, which modifies its state of polarization. It then passes into an analyzer before
arriving in a mirror extending the beam in an optical fiber connected to the spectrometer.
It is from this principle that the very high sensitivity of the measurement and its wide
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range of use result. Thus, an ellipsometer physically measures only two parameters: the
state of polarization of the light and the intensity of the reflected radiation. The physical
parameters of the analyzed sample come from models of wave-matter interactions. This
technique is very accurate for thin polymer films, where glass transition dependence with
the film thickness have been reported. The index of refraction can be characterized
by ellipsometry. It measures the reflection coefficient and the ratio of phase shift of
the parallel and perpendicular components of elliptically polarized light reflected from a
surface. Glass transition temperature can be determined from the thickness and index of
refraction due to the difference in thermal expansion coefficient.

4.5 Conclusion

In this section we have presented some theories of glass transition and particularly our
cooperative string model. This model captures basic features of the glass transition such
as the Vogel-Fulcher-Tamman phenomenology and has the advantage of capturing the
physics of glass transition shift in confined geometry presented in the next chapter.



Chapter 5

Glass transition in confinement
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Chapter abstract

Understanding the nature of the glass transition and its physical properties remains a huge
challenge in solid state physics. The observed dynamics of a glass forming liquid close
to the glass transition temperature follows the Vogel-Fulcher-Tamman phenomenology,
the viscosity diverges at a finite temperature[69, 70, 71]. This phenomenology can be ex-
plained by the Adam-Gibbs description[62] of cooperative rearrangement in supercool lig-
uids. The length scale of these cooperative regions has raised an important interest|72, 73].
The study of glassy polymer films is probably the most prominent physical measurement
of this characteristic length £. In polystyrene thin films, it is now well established that the
measured glass transition temperature decreases as the film thickness is reduced. Simi-
larly, the same behavior has been observed in nano-sphere[74, 75, 76], nano-pores[73] and
other geometries.
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In the previous chapter, we developed a bulk toy model for the relaxation of supercooled
liquids, here we model the interfacial effects to recover the observed phenomenology of
thin films[59] and nano-spheres[60]. We also discuss the influence of various boundaries.
Eventually we provide a model of attractive interface and study extensively the case of
the supported film.

5.1 Cooperative strings model

5.1.1 Effects of confinement

Experiments have shown that at a free interface we observe an higher surface mobility[77,
78, 79, 80, 81]. The effect of the free interface is introduced in our model by truncating
the cooperative strings at the boundary, leading to a smaller average local cooperativity
NX(r,T), where r is the position of the test particle (see Fig.5.1). When the distance of the

. 0.: AR oD

~

4

-
-
..---’

Figure 5.1 Two string like cooperative strings inside a glassy material of volume
V. The material belongs to the domain D and is delimited by its boundary 0D. The
relaxation of the test particle in green close to the interface can occur trough either
a bulk cooperative string of size £ in blue or a truncated strings by a shorter path
touching the free interface in red.

test particle is large in comparison to &(T), the free interface is not reached with smaller
paths than N*, therefore N ~ N*. By contrast, when the distance to the interface goes
to 0, the cooperativity goes to 0 as well due to the absence of caging at the free boundary.
Therefore the local cooperativity in presence of a free interface reads:

N*(r,T) = (min (N*,1)) = N*(T) f(r,T) , (5.1)
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with [ the path length of the first passage to the interface, the probability distribution of
[ depends on the boundary shape. The relaxation time in presence of a free interface is
obtained by replacing N* by N (r,T)[59] and one gets the local relaxation time:

@ T) (l)f(r’T) 7 (5.2)

To To

the function f measures how the free interface enhanced the glassy dynamics inside the
material. Using experimental criteria on the relaxation time (7, ~ 100 s) and on "aver-
aging” the local relaxation time (for example in a thin polymer film, we consider that the
glass transition occurs when half of the volume is liquid) we can relate T} to the studied
object’s scale.

5.1.2 Diffusion modeling

From experimental[67] and numerical[65, 66, 82] insights, a cooperative region is modeled
here by brownian motion, thus its path statistics verifiy the diffusion equation. This
approximation is especially good near the kinetic arrest point. The cooperative process
described in the previous chapter 4.3.3 involves random strings of particles . The advantage
of working near the kinetic-arrest point is to get a Brownian description, and thus tractable
analytical results using first-passage probability densities. First-passage densities are
determined using the path density P(ry,(|r) of dimensionless length [ inside the domain
D delimited by the free interface dD. This dpath density solves the following diffusion
equation:

opP = %AP , (5.3)
P(rq,0lr) =6(r —rq) , (5.4)
P(ry,llr) =0, Vry € 0D . (5.5)

For the classical diffusion equation, by deriving the Fokker-Planck equation, one can show
that the diffusion coefficient is g with 7 the elementary time step and a the elementary
spatial step. The analogous length in our model is the trajectory length L of a cooperative
string. The elementary step for this length is a which is the elementary spatial step.
Therefore the diffusion coefficient of our equation is §. In our model the elementary
spatial step is a = \, defined in 4.3.3 as the inter-particular distance at the kinetic arrest

point. Our diffusion equation then reads:

Ay %

oLP = ?AP , (5.6)
with A the laplacian with respect to the spatial coordinates. Therefore, using the di-
mensionless variables | = L/\, , z = Z/\,, one gets the dimensionless diffusion equation
defined in Eq. 5.3. In the rest of the thesis all the lengths, constants or variables will be
dimensionless unless otherwise stated.
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The previous equation is a diffusion equation in a bounded euclidean domain with Dirich-
let boundary condition. ! The spectrum of the Laplace operator is known to be discrete.
Among the important properties on this spectrum we have[83, 84, 85]:

¢ The eigenvalue A, are positive and increasing with n € N7
o The corresponding eigenfunctions w,(r) form a complete basis on Ly(D)

o The completeness of the eigenfunctions can be expressed as:
Zun r)=4(r—1'). (5.7)
e The eigenfunction are normalized with the L, norm :
/ dr|u,(r)* =1 . (5.8)
D
o Therefore the heat kernel of Eqs[5.3-5.5] reads:

G(r,r')1) Zun el (5.9)

Therefore with the initial condition, one can get for any bounded domains D, the density
of path:

P(ry,lr) Z U (T el (5.10)

From the path density, one can get the survival probability of a path of length [ inside
the domain D (i.e. a path of length [ that hasn’t touch yet the absorbing boundary)
and eventually the first passage distribution g(r,l). The survival probability inside the

domain D reads: .
= Zun(r)/ dryu’ (rq)e ™. (5.11)
n=1 D

using the mean value theorem one easily gets that:

=V anun(r)e ™. (5.12)
n=1

with [, dryul(ry) = Va,, where V = Vol(D) (dimensionless volume) and |a,| < 1. By
taking the opposite of the derivatives of the survival probability, one gets the first passage

ITo take into account a supported interface that is not a free volume reservoir, we should introduce a
reflecting boundary condition known as a Neumann boundary condition (9, P(r1,lr) =0, Vry € 9D,
where 9,, is the normal derivatives pointed outwards the domain). This won’t modify the discussion.
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distribution:

g(r,l) =V Z Ay, (1)~ (5.13)

The local cooperativity in presence of a free interface is computed using the first passage
distribution langle min(N*(T"),1)), it reads:

Ni(r,T) VZ anun )1 — e N, (5.14)

5.2 Exact results for simple domains

We now list the examples of simple domains, in which symmetries allows for variable
separation and thus explicit representations of eigenfunctions.

5.2.1 Free standing film

A free standing film is a volume delimited by two free interface in z = 0 and z = h, the
natural variable separation yields:

un(2) = \/%sin (Wnz) (5.15)

Ap = 2 = Vn>1. (5.16)

and,

The local cooperativity reads:

SN* & in(w, W2 o
Ni(=T) === Y SIHEULBZ) (1 — e FN ) (5.17)
n>0,n odd n

5.2.2 Supported film

A supported film is delimited by a reflecting interface in z = 0 and a free interface
(absorbing boundary) in z = h, the decomposition of the laplacian leads to:

un(2) = \/%sin (Wn2) (5.18)

71_2 2
Ap=-2=22"T" yp>0. (5.19)

and,
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The local cooperativity reads:

. sin wn W AT
N*(z,T) h Z (1—e 2 ) (5.20)

We see that the cooperativity is equal to the cooperativity of a free standing film of
thickness 2h. This illustrates the property of reflection of the brownian motion and is in
agreement with the experimental observations. Therefore, the mobile layer will have the
same size, and the glass transition as a function of the thickness is obtained using the
transformation h — 2h.

5.2.3 Cylinder
We consider a cylinder of radius R with absorbing condition at its boundary P(r = R) = 0.
The decomposition of the laplacian leads to:

Jo (wnr) (5.21)

with w, solving:
Jo(w,R) =0, (5.22)
and,

2
W,
"= (5.23)

Thus the cooperativity reads:

i} AN* S T (war) @2
NI(r,T) = I E ; (1 —e 2 : (5.24)
5.2.4 Sphere

We consider a sphere of radius R with absorbing boundary condition. The Eigenfunction

Un(r) = \/%M , (5.25)

2 2,2
oTn

A= Gt = oy Y21 (5.26)

of the Laplacian reads:

with,

Thus the cooperativity reads:

Ny = 4 i(_l)n—lw (1 — exp <—%’2‘N>> . (5.27)

3
T w
n=1 n
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5.3 Theoretical results

5.3.1 Reduction of the glass transition temperature

We can now determine the effective glass transition temperature as a function of the size of
the glassy material. We use the following experimental criterium: half of the volume of the
glassy sample must relax to a liquid-like state [86, 87] . Using this criterium together with
Eq. (5.2) that links implicitly the system size to the effective glass transition temperature,
we obtain the expected result. First it has been compared to thin film experiments [59],
the theory was compared to dilatometric measurements on polystyrene supported thin
film, the results of the theory is plotted in the Fig. 5.2, this graph is extracted from the
following article [59]. The theory as two adjustable parameters, the critical interparticular
distance \, ~ 3.7 nm which is comparable to the persistent length of the polystyrene, and
the Vogel temperature T, ~ 322 K which is close to the reported value 327 K. On the

380 T T T

370

360

350

340

330

320 | ) ) 1
0 50 100 150

h [nm)]

Figure 5.2 Glass transition temperature as a function of the supported film thickness
for polystyrene, comparison with dilatometric experimental data for the filled symbol
[88], the theory in blue line and open symbol represents other literature data [89].
The fixed parameters are the bulk glass transition temperature T;‘“lk = 371 K and
the onset temperature T, = 463 K, and the fitting parameters are A\, = 3.7 nm and
T,=322 K

Fig 5.2 we observe a very good agreement of the theory with the filled data point, which are
considered well controlled because of the annealing condition and atmosphere [88]. The
same work can be done on nano-sphere Fig 5.3, using the theoretical results for the sphere
and the experimental criterium saying that at the glass transition temperature half of the
volume has a liquid-like behavior. It is clear that the experimental scatter is not satisfying
to conclude on our model here. However, we know that the preparation of polystyrene
nano-spheres is not as well controlled as thin polymer films, for instance the presence
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of surfactant which are often used in preparation technique can affect significantly the
free interface properties. We now compare on the Fig. 5.4, the theoretical results of the

T L] L]
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A A
360
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m) o - =
O
350 O
— o
k 340
4, O
E‘m 330
320
310 F A
A 1 L L L
50 100 150 200
R [nm]

Figure 5.3 Glass transition temperature as a function of the sphere radius, in blue
line the theoretical results for polystyrene using the same fitting parameter as for the
supported film. The blue dots are data from this reference [75] , the green square
from [74] for an anionic surfactant , the red triangle from [74] for surfactant free
nanoparticles and the empty orange square from [76] .

reduction of glass transition temperature results for the studied geometries for polystyrene.
The greater the exposition of the sample to the free surface, the greater the effect on the
glass transition. It is clear that the nano-sphere will experience a greater effect than a
supported film.
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Figure 5.4 Glass transition temperature as a function of the film thickness or the
sphere or cylinder radius in presence of a purely free interface.

5.3.2 Mobile layer at the free surface

From our model we can also predict the size of the mobile layer (i.e. the size of the sample
that relaxes liquid-like).  Therefore for finite size system we always predict a minimal

Tm [nm]

350 3;10 SéO 3é0 3%0
T [K]

Figure 5.5 Mobile layer thickness as a function of the temperature for several cylin-
der radius.

size for the sample below which there are no possibility to reach a glassy state. For the
sphere one can show that it corresponds to a radius of 10 nm which corresponds to the
cooperative length at the bulk glass transition temperature.
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Figure 5.6 Mobile layer thickness as a function of the temperature for several sphere
radius.
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Figure 5.7 Mobile layer thickness as a function of the temperature for several film
thickness.

5.4 Attractive boundary

In the previous section we have studied the effect of a free interface on cooperativeness
and thus on the decrease of the glass transition temperature. However, it has been
experimentally observed that certain substrates interacting with the polymers can on the
contrary increase the glass transition temperature. In this section, we propose a model
that could explain the rising effect of some interfaces on the glass transition temperature
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Figure 5.8 Glass transition temperature as a function of the film thickness or the
sphere or cylinder radius in presence of a purely attractive interface.

and this for several possible geometries.

5.4.1 Purely attractive boundary

If one considers an attractive interface, we assume that a walk that reaches this interface
with a number of steps below N*, will not relax. Therefore if we consider a test particle,
this particle can relax either bulk-like with a probability 1 — p = S (S the survival
probability) or if it touches the interface, we have to make another try, with known
probability of success p(1 — p) ; succeeding to relax bulk-like at the nth trial therefore is
associated with a probability p"~1(1 — p). The effective cooperativity thus reads:

o= Y _p"(L—p) (n{l) + N¥) (5.28)
_ N*+%<z> , (5.29)

with (l) the average length of the first passage to the interface. At the glass transtion
temperature we have:

wn(Ty) = N*(T,M) (5.30)

The survival probability and average first passage length have been computed for four
geometries in the previous section. In Fig. 5.8 we plot our results for four geometries.



5.4 Attractive boundary 113

5.4.2 Partially attractive boundary

In this section we study a supported film, with an attractive boundary at the bottom and
a free surface at the top. Both of the effect of this boundary can be modified through
partially reflective condition at the interface, the effect of the interface will get stronger
as k; increases (when k; = 0, the walks are always reflected, whereas k; — ).

A
h
<l>free .. Tt o
pg(Z,T) ° R e °,
21 ®: e . .
. . S T)
pa(2,T) .°, Teeiee Nouk
<l>attractive N °
0

Figure 5.9 A walk of length [ starting in z as a probability p;i(z,1) to stay in the
film, a probability pa(z,1) to reach the attractive interface, and a probability ps(z,1)
to reach the free interface. Therefore at a given temperature the average length for a
walk inside the film is N*(T'), for a walk touching the free interface (l) fyee and (I), for
a walk touching the attractive interface.

The effective cooperativity in presence of these two interfaces at position z inside the
film is therefore:

Ni(T k1 ko by z) = )P (ps (n(Da + Divee) + p1 (n{l)a + N¥)) (5.31)

1
= 1 D [plN* + D2 <l>a + p3<l>free] (532)
- P2

In order to compute all these statistics, we need the probability density of a walk of
length [, starting in z and ending in 2z’ without being absorbed by any interface. This
density verifies the diffusion equation with the following boundary conditions as depicted
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in Fig. 5.10:
apP = JAP. (5.33)
0.P(z,2 ).z, = —ra2P(h,7,1), (5.34)
0,P(z,2'l)].—0 = r1P(0,2,1), (5.35)
P(z,2,0) = 0(z—2). (5.36)

Therefore the eigenfunction reads:

A
L 0. P (2,2 t)]s=h = —KaP(h, 7', 1)
P(z,2,t)
z @®---
2 .
0 / ’
0, P(z,2',t)] =0 = k1 P(0, 2, t)

Figure 5.10 At the interfaces, we can tune the effect of the free interface or the
attractive interface by modyfing x;, when k; = 0, the walks are always reflected,
whereas k; — oo all the walks are truncated at the interface. This boundary condition
are known in heat transfer as radiative boundary conditions [90].

on(2) = a, (cos (ﬁn%) + % sin (ﬁn%)> , (5.37)
a, is determined by the normalisation of the eigenfunction, it yields:
Koh ~1/2
2 2.2
a, = |:(5n + h Kul) (1 + m) + hli1:| (538)

this eigenfunction is associated with the eigenvalue [, that verifies:

+h
tmwgzﬂé;ﬁggﬁ. (5.39)
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Enventually one gets the density P(z,2’,1):

P(z,7,1) Zgbn Yon(2)e 2h21, (5.40)

from which we can compute p; ,ps , p3 and (), , ({)free- First we compute p; which is
simply the survival probability at a given temperature inside the film:

(2, T) = /0 d2' P (2, N*(T)) . (5.41)

We compute the probability of being absorbed at the bottom boundary ps(z,T'), this
probability is simply the flux of walks at this boundary ps(2,7) = %@P(z, 2!, N*(T))|.=o,
therefore this probability reads:

—”12% Yo (0)e HE N ) (5.42)

the length distribution of the first passage is simply po(z,T), therefore the average length
of the truncated walks smaller than the bulk walk reads (the average length varies with
z the position in the film where we look at this average length):

o= S g e1on0) (a4 et ) (A VDY s
n=0 n n

With the flux of walks at the upper interface we get:

Zebn o (h)e SN (D) (5.44)

and

<l>free = /{22\[* Z¢n(2)¢n(h> (2h2 e 2h2N (T)) (46—h44 + w> . (545)
n=0 n n

We now have an analytical expression of the effective cooperativity Eq. (5.32) using
Eq. (5.45) and Eq. (5.44).  This local cooperativity depends on the property of each
interface. The eigenvalue that verifies Eq. (5.39) are computed using a third order New-
ton method [90, 91]. We also predict with this model the mobile layer as a function of the
temperature for different film thickness and interfaces. We observe that the presence of
attractive boundaries creates jumps in the graphs of the mobile layer as a function of the
temperature.
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Figure 5.11 Glass transition temperature for a supported thin film as a function of
the film thickness. By modifying x; we predict several behavior, the k; are dimension-
less and there values are chosen to exhibit different behavior. In red dot the attractive
interface is stronger than the free interface, in green triangle both interfaces have the
same strength and in blue square the free interface has a stronger effect. We observe
increases of the glass transition temperature for strongly attractive interface and re-
duction of Ty for strongly free surface as expected. We also observe an intermediate
curve with an increase of the glass transition temperature then a decrease when we
reduce the size of the film, it corresponds to equivalent strength of both interfaces.
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Figure 5.12 Mobile layer as a function of the temperature for several film thickness,
the supported film as a free surface at the top and an inert substrate at the bottom.
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Figure 5.13 Mobile layer as a function of the temperature for several film thickness,
the supported film as a free surface at the top and an attractive substrate at the

bottom.
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Figure 5.14 Mobile layer as a function of the temperature for several film thickness,
the supported film as an inert substrate at the top and an attractive substrate at the

bottom.

5.5 Conclusion

In this chapter we have investigated the effect of confinement for both free interfaces
and attractive interfaces, the geometry has no big influence, it is rather the ratio of
volume to free surface that drives the enhanced dynamic. We have modelled the enhanced
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dynamic due to the presence of a free surface by truncating the cooperative strings and
also modelled a slower dynamic due to attractive interfaces by a process of additive
cooperative strings in order to find a relaxation path and predict non monotonic decrease
or increase of the glass transition temperature tuning the free interface and the attractive
interface in terme of reflectivity for the cooperative strings.



Chapter 6

Polymeric effect on the glass transition
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Chapter abstract

The motivation of this chapter is the anomalous glass transition temperature in thin
polymer films of polystyrene at high molecular weight and theoretical approaches to ex-
plain this phenomenology[92, 93, 94]. We provide statistics of particular paths inside the
polymer configuration in confinement. These paths are called bridge, loop or link (see
Fig.6.1). We compute the length probability density of these structures in the gaussian
chain model framework. The molecular weight dependency of these statistics is closely
studied.

6.1 Introduction

Synthesized by chemical —polystyrene— or biological -DNA— means, polymers are ubiqui-
tous and, in science, at the frontier of physics, chemistry, biology and mathematics. A
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polymer is the repetition of a monomer unit. Sir Edwards|[95] pointed out the analogy
between the path of a quantum particle and the configuration of a polymer chain. This
description has been successful and prolific from a microscopic (chain configuration, repta-
tion time) to macroscopic scale (stress relaxation of a complex fluid). Usually, theoretical
problems in polymer physics have been considered via the analysis of the chain config-
uration statistics[96, 97]. Polymer chains are successfully described by random walks or

h

0

Figure 6.1 The monomer at the position M, in red belongs to a polymer chain. We
are interested in the probability of the monomer to be part a bridge in blue or a loop
in green and the dependence of the probability density with the length of the bridge
or the loop. A link is a bridge or a loop indifferently.

brownian motion in the gaussian chain model[98]. Within this framework our aim is to
compute the length probability density of bridge, loop and link inside a film of thick-
ness h and for a polymer of molecular weight L (Fig.6.1). This work is motivated by
previous studies on the delayed glass transition temperature in thin polymer films and
its dependency on molecular weight[99, 94, 93|. In previous works, the length probability
distribution of link has been established for infinite molecular weight[92, 94]. In our study
we distinguish loops and bridges. We give in the following the exact dependency between
the length density of bridge, loop, and link and the molecular weight. We believe that
these results might be important towards the understanding of phenomena in confined
polymer physics such as the glass transition temperature dependency on molecular weight
in a confined geometry[99].

6.2 Glass transition temperature in polymer thin film

Anomalous behavior of the glass transition temperature 7, is observed in thin polymer
films. For a free standing film, a significant drop in the glass transition occurs around a
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Figure 6.2 Plot of the glass transition temperature as a function of the film thickness
and for high molecular weight from[99]. All the curve seems to intersect in a unique
point (h*,T).

thickness of 40 nm.[100] These observations suggest that the free surface region enhances
glassy dynamics[77]. This hypothesis has been widely studied from a theoretical point of
view.[101, 102, 103, 104, 105, 106, 94, 86, 107, 87, 108, 109, 59] An other set of experiments,
with free standing polystyrene films, shows that below M,, ~ 378 x 103, T, does not exhibit
dependency on M,,, but that above this limit it shows a strong dependency on the T,
curves with molecular weight M,,. At high M,,, when the thickness is below a certain
value ho(M,), T, increases linearly with h:

T, = T,"™ — f (My) (ho — h) , (6.1)

both f and hq increase with M, and for h > hy, T, = T;’“lk.[92, 99] The behavior of
the glass transition temperature at low molecular weight has been successfully explained
by the cooperative string model in confinement in the previous chapter.[59, 60] How-
ever there is a dramatic change in behavior from low to high molecular weight. Indeed,
at low molecular weight, the T, reduction curve is smooth whereas at high molecular
weight the transition point is sharp. Therefore it suggests that two modes of melting
are competing.[92] We have to highlight that the glass transition temperature depends
on the molecular weight only for free standing films. This observation suggests that
bridges—which only exist in free standing films-might play a particular role.

6.2.1 Kink diffusion model

A general model of diffusion from one end to the other along a bridge or a loop have been
proposed by Lipson and Milner[93]. The local diffusivity varies along each monomer with
a value 7; for the relaxation time with a certain distribution p(7;). They showed that the
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distribution of the total relaxation time reads (see [93]):

P(r) = / drdmp(n).. o)1 Y7~ 7) (6.2)

If we call 7, ~ 100 s the experimental time at which we consider to be at the glass
transition temperature. The probability that a loop or a bridge of length [ is fast (i.e. its
typical relaxation time is smaller than 7,) is therefore:

F) = /0 " arp(r) (6.3)

The distribution of local relaxation time drives all these quantities, but for local re-
laxation time with finite first and second moment, one can show that at large [, the
probability of being on a fast loop is approximated by the Heaviside function:

F(l) ~ O(1,(T) ) (6.4)

If we assume that the local relaxation time follows the Vogel-Fulcher-Tamman phe-
nomenology [69, 70, 71], the characteristic fast loop length reads:

L,(T) = \/:ii exp (—ﬁ) (6.5)

with 7 a typical molecular time scale, T, the Vogel temperature, A = (T.—T1) In(7. /7).
7. being a liquid-like relaxation time and T, the temperature at the cooperative onset[59].

6.2.2 Sliding motion

De Gennes proposed a simpler kink diffusion model[92], where the relaxation time 7 is
essentially the average time required for a kink to go through the polymer chain via
the bridges or loops that connect the free interfaces. During this motion, the kink goes
through | monomers. And this requires successive free volumes (w;); that are identically
distributed with a gaussian distribution:

2
T i
v 0

The width wp is small (wp/a® = n << 1) in comparison with the monomer size. The
relaxation time of this sequential motion reads:

1
T = To(exp <m ;0%')) (6.7)
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with tauy a molecular timescale, after integration one gets:

r= e (5 (63)

with €(T) = a(T — T,). [ is the size of the trajectory involved in the relaxation process.
In this model, bridges and loops are contributing equally to the relaxation process. In
De Gennes article, it is assumed that [ ~ h? which is true in very confined regime, and
therefore one can recover the linear dependence between the glass transition temperature
and the size of the polymer film using Eq.6.8. However there is no more molecular weight
dependency on this scaling. The aim of our work is precisely to provide the density of [
and its exact dependency on the molecular weight.

6.3 Bridge and loops statistics

6.3.1 Gaussian chain

A polymer chain is the repetition of a sequence of monomers, therefore the positions of
the monomers can be computed with a random walk on a lattice. The molecular weight
is given by the number of monomers N,, inside a polymer chain, the distance between
the vertex of the lattice a is the size of a monomer. Therefore, the length of the polymer
chain is L = Nya (in the continuous description used in the following, the length are
dimensionless, therefore L and the number of monomers are the same quantity). We
know that at large N,,, the polymer chain conformation will be described by a gaussian
distribution[97]. At large N,,, or high molecular weight, one can switch to a continuous
description using Brownian motion. In the continuous limit we assume that ¢ — 0 and
N, — oo with L = N,a finite [58]. In that limit, the length probability distributions of
bridges, loops or links are successfully described by the paths of the brownian motion.

End-to-end distance

We define the end-to-end distance of an ideal polymer chain by:

Ny
i=1

since the trajectory corresponds to a random walk (a;) = 0 and (R) = 0 the mean value
of the end-to-end distance is zero. However the mean square value reads:

(R?) = (a,a;) = Na* | (6.10)
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therefore the size of the polymer coil is Ry = ay/N,,. The probability P(R) that a chain
starts in 0 and ends in R is given by:

Py~ Al

(6.11)
where Ay, (R) corresponds to the number of paths starting in 0 and ending in R, and
(2d)Y the total number of paths in dimension d. Since R is the sum of a large number
of independent random variables, one can use the central limit theorem, and we find a
gaussian probability for the end-to-end distribution:

3 3R?
P(R) = (W)S/Q exXp (-2Na2> . (612)

This is a well known property of random walks. In fact a chain is not gaussian because
we should take into account short range interactions between segments which are close
to each other in the coil, this is called the excluded volume effect. One can model the
polymer by a path on a lattice with the condition that a path cannot go twice on a same
node of the lattice. This kind of random walks are called self avoiding random walks.

6.3.2 Definition

A bridge is a segment of a polymer that connects the two free interfaces of a thin film,
a loop connects the same interface of a thin film and a link is indifferently a bridge or a
loop (see Fig.6.1). Our aim is to provide at a certain position z inside the film, the length
probability density of bridge, loop and link.

At a distance z from the lower interface, we pick a monomer M, that belongs to a polymer
chain, therefore from that point M., one can observe two branches of the polymer chain,
these two branches are described by two brownian motions. This polymer chain has a
finite length L, thus the monomer is at a distance P from one end of the polymer chain
and L — P from the other. With P distributed uniformly P ~ U ([0, L]). Therefore the
length [; of the first branch has to be smaller than L — P and the length I, has to be
smaller than P (see Fig.6.3). We set L,(z,1) to be the length probability density of bridge
at a distance z from the lower interface.

L
P
Eb(z, l) = / dT,CbJ(P,Z,l) s (613)
0

with L,(P, z,1) the probability density of bridge of length [ at a distance z from the
interface and P the position of the monomer fixed inside the polymer chain. The density
for a bridge starting at the interface i; and ending at the interface i reads:

P L—-P
,Cb(P, z, l) - / dll/ dlgd(ll + lQ — l)fh(Z, ll)fiQ(Z, lg) N (614)
0 0
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0

Figure 6.3 The position P of the monomer M, follows a uniform distribution. The
length of the first branch I; < L — P and the length of the other one Iy < P.

with f;, the probability density of first passage at the interface i; after a trajectory of
length [, starting at a distance z from the lower interface. After integration, one gets:

min(l,L—P)

Ly(P.2]) = / Ao fi (2, 10) fon (2,1 — ) - (6.15)

max(0,l—P)

The length probability density of loop or link are set to be respectively £;(P, z,[) and
Lygi(P, z,1). The link probability density depends on the first passage density in z = 0
or z = [ indifferently, noted f(z,1).

6.3.3 First passage densities

The density of trajectories of length [, starting in z and reaching an interface at z = 0,
or at z = h or at z = 0 or z = h indifferently, for the first time are called first passage
densities[110, 111, 112]. These random processes are well known and have been studied
extensively[112]. The first passage densities are computed directly from the density of
paths of length [ going from z to z; without touching the interfaces. This density is noted
P.(z1,1]z,0) and verifies the diffusion equation with absorbing boundary conditions in
z=0and z = h:

8,P. = DAP, |, (6.16)
P(z=0)=0, (6.17)
Pz=h)=0. (6.18)
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The diffusion coefficient depends on the dimension of the space, therefore without loss of
generality we set D = d, with d the dimension of the space (here d = 3). The solution
of this partial differential equation is:

+o00
P.(z1,1]2,0) Zsm (Anz)sin (A\y21) exp (=DAZL) (6.19)

n=1

with A, = 5*. The density of paths of length [ reaching the interface z = 0 for the first
time, is the density of paths of length [ reaching the interface z = 0 in the small volume
d7 just below the interface, therefore if dr — 0:

1
fo(z,1) = D (P.(0,1|2,0) — P.(0 +dr,1|2,0)) e (6.20)

T

~ 1dP.(u,l|z,0)
ol ) = gD (621)
eventually one gets:
1 +o00 )\2

fo(z,0) m Z)\ sin (A, 2) exp< 6"l> , (6.22)

similarly the first passage density in z = h reads:

)\2
(z,1) th 1)" A, sin (Ap2) exp (—E”) : (6.23)

The first passage density to z = 0 or z = h, also called the first exit time from the interval
[0,h], f(z,1) is linked to the survival probability S(z,1). Indeed the probability that a
path of length [ has already reached either z = 0 or z = h is given by 1 — S(z,[) and
consequently its density reads:

f(z1) = (25(,2 l) . (6.24)

The survival probability is the integral of the density P.(z1,(|z,0) over all the ending
points z; inside the film:

h
S(z,1) :/ dz1 P.(z1,1|2,0) , (6.25)
0

after integration one gets the survival probability in a film of thickness h:

S(, 1)_% 3 %:\lnz)exp (-%z) | (6.26)

n>0,n odd
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The first exit time density from the film of thickness h is therefore:

f(z,0) = 3% Z A sin (A, 2) exp (—% ) : (6.27)

n>0,n odd

Note that f(z,1) = fo(z,0) + fa(z,1).

6.3.4 Bridge, loop and link distribution

Using the Eqgs.[6.15,6.22,6.23], it is straightforward to get the probability density of bridge,
loop or link as a function of the length of the path [ and the position inside the film z.

Loop

Consider a loop that connects the same interface in z = 0, therefore the density reads:

1 UL —1) = A2
L(z,1) =on ( 7 ) Z)\i sin® (A, 2) exp (—E" ) (6.28)
n=1
2 (L—1 A . .
W( 7 ) Z ———sin (Anz)sin (Ap2) (1 —exp (—anml)) (6.29)
n>m oM
with a, ., = A%EA%. The loop density that connects the interface in z = h is obtained

doing the transformation z — h — z.

Bridge

A bridge is a path that connects the two opposite interfaces. The Eq.6.13 is multiplied
by 2, since the path can indifferently go from 2z = 0 to 2z = hor 2 = h to z = 0 and
consequently the density reads:

_ oo 2
T Z(—l) m sin (A, 2) sin (Ap2) (1 —exp (—anml)) . (6.31)

n>m
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Link

Eventually consider a link, which is indifferently a bridge or a loop, its length probability
density reads:

4 I(L—1) s . o A2
Lygi(2,1) = =0 I Z Ay sin® (A, z) exp _fl (6.32)
n>0,nodd
L 2 asinOnz)sinOne) (L= exp(—annd)) - (6.33)

n>m,odd

In this section we have given the length probability density for a monomer to belong to a
link (or loop, or bridge), with the exact dependency on the molecular weight and on the
position of the monomer z inside the film. These densities can be used to compute all
kind of statistics involving link, bridge or loop paths.

6.4 Discussion

6.4.1 Links density inside the film

By integrating the densities over the film thickness and over its length one can compute
the total density of bridges, loops or links inside the polymer film. The density of links
of length [ inside a film of thickness h reads:

cDb&l / _»Cb&l Z l (634)
after integration one gets:
Dy (1) = S Cnd) > A A (6.35)
" - d*h? L n>0,n odd 2 o 2d . '

Therefore the percentage of links inside a film reads:

bna(h L) = /0 A1) (6.36)

and the average length of a link is:

[Dpe(1)

ona (. 1) (6.57)

o (h, L) = / dl

Similarly one can get these quantities for bridge and loop. We can notice that a self

;;,ZLQ Using this variable and setting u = %, the density

similar variable appears: L =
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reads (with d=3):

8 72 2 —n2lu
Da(D)dl = — L > nPe (1 — u)du (6.38)

n>0,nodd

After integration the density of link reads in term of the self similar variable:

o) =1- 1 4 8 3 e (1+ 2 > (6.39)
bl =l-—=+ = 3 =] .
6L T n>0,nodd n Ln2
for the bridges it reads:
-1 T 4 e~Ln? 2
D= 4 2N (1) —— (14 = 6.40
) =3 - g1 "2 M( S ( * Ln2) ’ (6.:40)

and to obtain the loop density, we have to multiply by 2 the Eq.6.29, to take into account
also the loops of the other interface:

472 e

¢,(L):§——+iz - <1+;LQ> . (6.41)

451, w2 n?

n>0

One can easily check that ¢pei(L) = ¢u(L) 4+ ¢y(L). We observe that in a very con-
fined regime (L — +00), there is a partition of the paths between bridge and loop. 1/3 of
bridges and 2/3 of loops, all the monomers belong to links with probability 1 in this regime.

6.4.2 Links average length

The link length is normalized by L the molecular weight. After integration the link average
length reads:

{ 1 2 4 8
B = - =+ = ba |, 6.42
<L>b&l Do (L) <6L 20L2 w2 Z ) (6.42)

n>0,n odd

P2
with b, = % (1 + iivﬁ + L26n4>‘ Similarly one can gets the bridge average length:

2N, — _ _ —
(T 90, 126012

) 1 T2 317t 4
ou(L)

(—1)n+1bn> , (6.43)
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Figure 6.4 The density of bridges (blue), loops (green) or links (red) as a function
of the auto-similar variable L. We observe that at high molecular weight and /or small
film (ie. L — oco0) all the monomers are part of links, with a partition 1/3 in the
bridge and 2/3 in the loops. We also notice that the proportion of loops inside a
film decreases much slowly in a large film (or at small molecular weight) than the
proportion of bridge, indeed in a large film, bridge are very unlikely, however close to
the interface even in a large film there will be numerous loops.

and the loop average length:

) 1 472 8t 4
—N = et = by . 6.44
(zh &(L) (45/; 315L2 WQ; ) (644

The typical length of a link, a bridge or a loop in confinement is (I) oc h?. Tt is
independent of the molecular weight. The effects of molecular weight are less and less
important as the system is confined (h — 0 and/or L — o). In confinement it is striking
that the average bridge length is almost twice as big than the average loop length (see
Fig.6.7).
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Figure 6.5 The opposite of the density of monomers belonging to a bridge for several
molecular weight, the spectrum of molecular weight plotted here corresponds to the
spectrum of the experiments in thin polymer films of polystyrene[99] (the molecular
weight L is given in number of monomers). The grey dots are the numerical results of a
random walk simulation of the same problem. We observe a very good correspondance
between the numerical simulations with a discrete random walk on lattice and the
analytical formula with Brownian motion, even with a small number of steps the
approximation of the random walk by the continuous process is accurate.
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Figure 6.6 In this figure we plot the average length of bridge (blue), loop (green) or
link (red) divided by the molecular weight L as a function of the auto-similar variable
L. In large film or at small molecular weight, the average size of a loop tends to a
plateau, indeed even if the film is large in the vicinity of the interface we will observe
loops and their typical size will be 20 percent of the molecular weight. However the
size of the bridge will tend to L while the film size is smaller than the molecular weight,
indeed in a large film, the only possible bridges are stretched polymer chains from one
interface to the other. Eventually in the confined regime (L — o00) all these lengths

scale like h2.
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bridge average length divided by the loop average length as a func-

tion of the auto-similar variable L. In confinement (L — oo) this ratio tends to exactly

7/4.
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6.4.3 Conclusion

In this chapter we have computed the length probability density of bridge, loop and link
inside free standing films and their exact dependency on the molecular weight. We have
also discussed their proportion and average length inside the film, especially in the confined
regime. The auto-similar nature of these statistics, the fact that the proportion of link and
the link average length are independent of the molecular weight in very confined regime
are in disagreement with the glass transition temperature observation. As h decreases,
the observed glass transition temperature for different molecular weight tends to be more
and more outspread [99]. This suggest that even if the relaxation process could occur via
the bridge or loop, a physical ingredient must be strongly dependent on the molecular
weight even in confinement, and this cannot be the bridge or loop statistics.
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Conclusion

In this thesis we explored various aspects of interfaces and thin film physics.

In chapter 1, we begin by summarizing elementary properties of waves in deep water.
We derive and discuss the fundamental properties of the dispersion relation of waves in
water and by studying the dynamical equations of motion we are able to arrive at the
integral expression of the surface displacement resulting from a boat moving at constant
speed. This is more famously known as the Havelock equation. We further investigate
an elementary solution to the point impulse Cauchy-Poisson problem and use it to derive
the wake pattern following the historical work of Kelvin. The novel result in this chapter
corresponds to our generalization of the Havelock formula for the wave resistance to any
kind of motion or trajectory at the surface. The usual proof in literature is restrictive
in that it assumes a steady state straight motion. We then use this generalisation of
the Havelock formula to analytically compute the free deceleration of a particle at the
surface of a fluid due to radiation. This provides theoretical validation to an experiment
conducted by Marie Le Merrer [10].

In chapter 2, we begin with a theoretical investigation of the effects of a moving
pressure disturbance above a thin elastic sheet which has been placed on top of a narrow
viscous film. From the elastohydrodynamic lubrication model, we compute the wake
and the associated wave resistance experienced by the operator. A central dimensionless
parameter for this study appears to be the elastic Bond number. We then perform an
asymptotic analysis of the low and high speed regimes and find a scaling for the maximum
of the wave resistance, a reference point that could be important for designing nano-
rheological setups. We conclude this chapter by demonstrating that the energy transfer
to the fluid by deforming the interface is fully dissipated by viscous damping.

Chapter 3 presents an important novel study aimed at achieving a quantitative un-
derstanding of a water strider insect’s locomotive mechanism. We begin by presenting a
series of experimental and theoretical results on the surface displacement generated by
the water strider’s leg strokes. Using the synthetic Schlieren method, we are able to dy-
namically measure the topography of the air-water interface during a water strider’s leg
strokes with unprecedented accuracy. We extend Biihler’s study to account for the finite
depth of water, consistent with most experimental setups. We further demonstrate that
accounting for the continuous forcing along the strider’s leg trajectories is essential to re-
produce the experimental wave patterns. This suggests that in the real conditions of the
Gerris” natural habitat (including infinite depth: H >> \), Biihler’s approach produces
satisfactory results by superimposing the impulsive solution along the entire trajectories.

In Chapter 4 we shift our focus slightly and begin by reviewing some traditional
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theories of glass transition including the cooperative string model first proposed by [59].
This model is our preferred one for further investigation because it captures the basic
features of glass transition such as the Vogel-Fulcher-Tamman phenomenology and has
the advantage of being able to theoretical model the physics of the glass transition shift
in confined geometry. This is studied further in the following chapters.

We continue our investigations into the cooperative string model for glass transition
by studying the effect of confinement for both free and attractive interfaces. Our studies
reveal that the enhanced dynamics are primarily driven by the ratio of volume to free
surface, rather than the geometry, as might be naively expected. We model this enhanced
dynamic as due to the presence of a free surface by truncating the cooperative strings.
This is followed by modelling a slower dynamic due to attractive interfaces by a process of
additive cooperative strings. The aim of this study is to find a relaxation path and predict
non monotonic decreases or increases of the glass transition temperature tuning both the
free and the attractive interfaces in terms of reflectivity for the cooperative strings.

The final chapter of this thesis is devoted to computing the length probability density
of bridges, loops and links inside free standing films and their exact dependency on the
molecular weight of constituent particles. We discuss their proportion and average length
inside the film, particularly in the confined regime. We demonstrate that these statistics
are self-similar and that in the very confined regime, both the proportion of links and the
average link length are independent from the molecular weight of the constituents. This
is in disagreement with the glass transition temperature observation. As h decreases, the
observed glass transition temperature for different molecular weights tends to be more
outspread [99]. This suggests that even if the relaxation process could occur via bridges
or loops, a physical component must be strongly dependent on the molecular weight even
in confinement, and this cannot be the bridge or loop statistics.
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Appendix

Mathematical tools

A.1 Principle of stationary phase

The method was shown by Kelvin in 1887 when he first explained the ship wave pattern.
This method depends on the approximation if integrals of type:

I = /0+00 dz f(z)e 9@ (A.1)

It is assumed that the circular function goes trough a large number of period within
the interval of integration, whilst f(x) changes much slowly comparatively to the phase
argument. Under these assumptions, we understand that most part of the integral will be
cancelled du to the phase oscillation except for the value inside the range of integration
where the phase is stationary:

g(e) = 0. (A.2)
We assume here that we have only one stationary point, but the method is easily gener-

alizable to multiple stationary points. One can approximate the integral using the Taylor
expansion of g(z) = g(o) + ¢” (a)% around this stationary point:

—+o00
I ~ f(o) / dz e'29" 17" (A.3)
0

hence it becomes after integration:

VTI(9) _itg(o)+sients” (@) (A.4)
2|g"(0)]
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A.2 Green function

We consider a system inside a domaine D, r represents a point inside this domain. We
suppose that the field u(r) verifies:

Lu(r) = p(r) (A.5)

with £ a spatial linear operator. This equation can be solve for given boundary conditions
(i.e. u(r) fixed for » € D). We can decomposed the function in an infinite number of
source point:

p(r) = /Ddr’p(r')(5(r —r—7). (A.6)

Each elementary source produce an elementary field called the Green function of the
operator L, the Green function verifies:

LG(r,r)=66(r—71"), (A7)

with the same boundary conditions on the Green function. Finding the Green function
of the problem, the solution of Eq. (A.5) reads:

u(r) = /Ddr’G(r,r’)p(r’) : (A.8)

A.2.1 Spectral formula

If we now suppose that the operator £ dispose of a complete basis of orthonormal eigen-
functions ¢, verifying the same boundary conditions. If we set A, has the eigenvalue
associated to ¢,,, therefore:

The completeness of the eigenfunction basis imply that:
Y balr)(r) = b(r — ') . (A.10)

One can verify that the inverse of the operator £ has the same eigenfunctions associated
with the eigenvalues A 1. If we invert Eq. (A.7) and insert Eq. (A.10) then we obtain the
spectral representation of the Green function:

Glr, ) = 3 2elmylr) (A11)

n
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Note that if we have a continuous spectrum of eigenvalues, the sum is replace by an
integral.

A.2.2 Method of images

In electrostatics, it is common to encounter a situation where a plane infinite, taken for
example in x = 0, is the wall of a conductor maintained at a zero potential. The conductor
fills the half-space x < 0, the other half-space x > 0 being empty. If we want to calculate
the electrostatic potential created by an external load distribution to the conductor, the
most appropriate Green function is defined by:

—AG(r;r') =6(r—1'), (A.12)

in the half-space defined by x > 0, with homogeneous Dirichlet boundary conditions,
G(r;r’) = 0, on the conductive wall at z = 0 on the one hand, and infinitely in the
empty half-space on the other hand. One can determine G(r;r’) by using the spectral
formula used previously. It is easy to compute the basis of eigenfunction associated to
the Laplacian with the homogeneous Dirichlet boundary condition in x = 0:

2

i(kyy+k=z) o
—(27r)3€ sin(k,x) (A.13)

Py oy k. (T) =

with k, > 0 form an orthonormal basis in the half-space x > 0 canceling at = 0. These
functions check the relationship of completeness:

/ dk’x/ dky/ dkz¢km,ky7kz (r)¢zm,ky7kz (I‘,) = 5(1‘ — I'/) (A14)
0 —00 —00

By introducing the eigenfunctions into the spectral formula Eq. (A.11), we find:

oo o0 o'¢) T * I'/
Gr;r') = / dk, / dk, / dkf’““’“””d i{f’“”( ) (A.15)
0 —00 —0o0

After integration one finds:
G(r;r') = Go(r — r') — Go(r — rlp,) , (A.16)

with r{,, = (—2/,v/, 2') and Gj the Green function of the Laplacian without boundary. In
3D it reads:

B 1
CAdrnlr -

Go(r —1') (A.17)
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A thin liquid film with nonzero curvature at its free surface spontaneously flows to reach
a flat configuration, a process driven by Laplace pressure gradients and resisted by the
liquid’s viscosity. Inspired by recent progresses on the dynamics of liquid droplets on soft
substrates, we here study the relaxation of a viscous film supported by an elastic foundation.
Experiments involve thin polymer films on elastomeric substrates, where the dynamics of
the liquid-air interface is monitored using atomic force microscopy. A theoretical model
that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also
provided. In this soft-levelling configuration, Laplace pressure gradients not only drive
the flow, but they also induce elastic deformations on the substrate that affect the flow
and the shape of the liquid-air interface itself. This process represents an original example
of elastocapillarity that is not mediated by the presence of a contact line. We discuss
the impact of the elastic contribution on the levelling dynamics and show the departure
from the classical self-similarities and power laws observed for capillary levelling on rigid
substrates.

DOI: 10.1103/PhysRevFluids.2.094001

I. INTRODUCTION

Interactions of solids and fluids are often pictured by the flapping of a flag in the wind, the
oscillating motion of an open hosepipe, or that of a fish fin in water, a set of examples in which
the inertia of the fluid plays an essential role. In contrast, at small scales, and more generally for
low-Reynolds-number (Re) flows, fluid-solid interactions involve viscous forces rather than inertia.
Of particular interest are the configurations where a liquid flows along a soft wall, i.e., an elastic
layer that can deform under the action of pressure and viscous stresses. For instance, when a solid
object moves in a viscous liquid close to an elastic wall, the intrinsic symmetry of the Stokes
equations that govern low-Re flows breaks down. This gives rise to a qualitatively different—
elastohydrodynamical—behavior of the system in which the moving object may experience lift or
oscillating motion [1-3], and a swimmer can produce a net thrust even by applying a time-reversible
stroke [4], in apparent violation of the so-called scallop theorem [5]. This coupling of viscous
dynamics and elastic deformations is particularly significant in lubrication problems, such as the
aging of mammalian joints and their soft cartilaginous layers [6], or roll-coating processes involving
rubber-covered rolls [7], among others.

When adding a liquid-vapor interface, capillary forces may come into play, thus allowing for
elastocapillary interactions. The latter have attracted a lot of interest in the past decade [8—10]. In
order to enhance the effect of capillary forces, the elastic object has to be either slender or soft. The
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first case, in which the elastic structure is mainly bent by surface tension, has been explored to explain
and predict features like deformation and folding of plates, wrapping of plates (capillary origami) or
fibers around droplets, and liquid imbibition between fibers [11-18]. The second case involves rather
thick substrates, where capillary forces are opposed by bulk elasticity. A common example is that of
a small droplet sitting on a soft solid. Lester [19] has been the first to recognize that the three-phase
contact line can deform the substrate by creating a ridge. Despite the apparent simplicity of this
configuration, the substrate deformation close to the contact line represents a challenging problem
because of the violation of the classical Young’s construction for the contact angle, the singularity of
the displacement field at the contact line, and the difficulty to predict the exact shape of the capillary
ridge. In the last few years, several theoretical and experimental works have contributed to a better
fundamental understanding of this static problem [20-25], recently extended by the dynamical case
of droplets moving along a soft substrate [26-28].

Besides, another class of problems—the capillary levelling of thin liquid films on rigid substrates,
or in freestanding configurations—has been studied in the last few years using thin polymer films
featuring different initial profiles, such as steps, trenches, and holes [29-34]. From the experimental
point of view, this has been proven to be a reliable system due to systematic reproducibility of
the results and the possibility to extract rheological properties of the liquid [35,36]. A theoretical
framework, based on Stokes flow and the lubrication approximation, results in the so-called thin-film
equation [37], which describes the temporal evolution of the thickness profile. From this model,
characteristic self-similarities of the levelling profiles, as well as numerical [38] and analytical
[39,40] solutions have been derived, which were found in excellent agreement with the experimental
results. Furthermore, coarse-grained molecular dynamics models allowed us to extend the framework
of capillary levelling by offering local dynamical insights and probing viscoelasticity [41].

In this article, by combining the two classes of problems above—elastocapillarity and capillary
levelling—we design a dynamical elastocapillary situation free of any three-phase contact line.
Specifically, we consider a setting in which a thin layer of viscous liquid with a nonflat thickness
profile is supported onto a soft foundation. The liquid-air interface has a spatially varying curvature
that leads to gradients in Laplace pressure, which drive flow coupled to substrate deformation.
The resulting elastocapillary levelling might have practical implications in biological settings and
nanotechnology.

II. EXPERIMENTAL SETUP

First, polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) is mixed with its curing agent in
ratios varying from 10:1 to 40:1. In order to decrease its viscosity, liquid PDMS is diluted in toluene
(Sigma-Aldrich, Chromasolv, purity >99.9%) to obtain a 1:1 solution in weight. The solution is
then poured on a 15 x 15 mm Si wafer (Si-Mat, Germany) and spin-coated for 45 s at 12.000 RPM.
The sample is then immediately transferred to an oven and kept at 75 °C for 2 h. The resulting
elastic layer has a thickness sp = 1.5 & 0.2 um, as obtained from atomic force microscopy (AFM,
Multimode, Bruker) data. The Young’s modulus of PDMS strongly depends on the ratio of base to
cross linker, with typical values of E = 1.7 &£ 0.2 MPa for 10:1 ratio, £ = 600 =£ 100 kPa for 20:1,
and E = 50 % 20 kPa for 40:1 [42,43].

In order to prepare polystyrene (PS) films exhibiting nonconstant curvatures, we employ a
technique similar to that described in [29]. Solutions of 34 kg/mol PS (PSS, Germany, polydispersity
<1.05) in toluene with typical concentrations varying between 2% and 6% are made. A solution
is then spin-cast on a freshly cleaved mica sheet (Ted Pella, USA) for about 10 s, with typical
spinning velocities on the order of a few thousands RPM. After the rapid evaporation of the solvent
during the spin-coating process, a thin (glassy) film of PS is obtained, with a typical thickness of
200—400 nm.

To create the geometry required for the levelling experiment, a first PS film is floated onto a
bath of ultrapure (MilliQ) water. Due to the relatively low molecular weight of the PS employed
here, the glassy film spontaneously ruptures into several pieces. A second (uniform) PS film on
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FIG. 1. (a) Schematics of the initial geometry: a stepped liquid polystyrene (PS) film is supported by an
elastic layer of polydimethylsiloxane (PDMS). (b) Schematics of the levelling dynamics: the liquid height A
depends on the horizontal position x and the time #. The elastic layer deforms due to the interaction with the
liquid. (c) Experimental profiles of the liquid-air interface during levelling at 7, = 140°C on 10:1 PDMS. The
initial step has i; = h; = 395 nm. The inset shows a closeup of the dip region. (d) Experimental profiles during
levelling at 7, = 140 °C on the softer 40:1 PDMS. The initial step has #; = h, = 200 nm. The inset shows a
magnification of the bump region. Dashed lines in (c) and (d) indicate the initial condition.

mica is approached to the surface of water, put into contact with the floating PS pieces and rapidly
released as soon as the mica touches the water. That way a collection of PS pieces is transferred
onto the second PS film, forming a discontinuous double layer that is then floated again onto a
clean water surface. At this stage, a sample with the elastic layer of PDMS is put into the water and
gently approached to the floating PS from underneath. As soon as contact between the PS film and
the PDMS substrate is established, the sample is slowly released from the bath. Finally, the initial
configuration depicted in Fig. 1(a) is obtained. For a direct comparison with capillary levelling on
rigid substrates, we also prepared stepped PS films of the same molecular weight on freshly cleaned
Si wafers (Si-Mat, Germany) using the same transfer procedure.

Using an optical microscope we identify spots where isolated pieces of PS on the uniform PS
layer display a clean and straight interfacial front. A vertical cross section of these spots corresponds
to a stepped PS-air interface, which is invariant in the y dimension [see Fig. 1(a) for a sketch of this
geometry]. Using AFM, the 3D shape of the interface is scanned and a 2D profile is obtained by
averaging along y. From this profile the initial height of the step 4, is measured. The sample is then
annealed at an elevated temperature 7, = 120-160 °C (above the glass-transition temperature of PS)
using a high-precision heating stage (Linkam, UK). During this annealing period the liquid PS flows.
Note that on the experimental time scales and for the typical flow velocities studied here the PS is
well described by a Newtonian viscous fluid [29,31-34] (viscoelastic and non-Newtonian effects
are absent since the Weissenberg number Wi « 1 and the Deborah number De « 1). After a given
annealing time 7, the sample is removed from the heating stage and quenched at room temperature
(below the glass-transition temperature of PS). The three-dimensional (3D) PS-air interface in the
zone of interest is scanned with the AFM and a 2D profile is again obtained by averaging along y.
This procedure is repeated several times in order to monitor the temporal evolution of the height
h(x,t) of the PS-air interface [defined with respect to the undeformed elastic-liquid interface; see
Fig. 1(b)]. At the end of each experiment, the thickness 4, of the uniform PS layer is measured
by AFM.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Profile evolution

The temporal evolutions of two typical profiles are reported in Figs. 1(c) and 1(d), corresponding
to films that are supported by elastic foundations made of 10:1 PDMS and 40:1 PDMS, respectively.
As expected, the levelling process manifests itself in a broadening of the initial step over time.

094001-3



149

MARCO RIVETTI et al.

In all profiles, three main regions can be identified (from left to right): a region with positive
curvature (negative Laplace pressure in the liquid), an almost linear region around x = 0 (zero
Laplace pressure), and a region of negative curvature (positive Laplace pressure in the liquid). These
regions are surrounded by two unperturbed flat interfaces exhibiting & = hy and h = hy + h;. In
analogy with earlier works on rigid substrates [31], we refer to the positive-curvature region of the
profile as the dip, and the negative-curvature region as the bump. Close-up views of those are given
in the insets of Figs. 1(c) and 1(d).

The decrease of the slope of the linear region is a direct consequence of levelling. A less intuitive
evolution is observed in the bump and dip regions. For instance, in the first profile of Fig. 1(c),
recorded after 10 min of annealing, a bump has already emerged while a signature of a dip cannot
be identified yet. As the interface evolves in time, a dip appears and both the bump and the dip
grow substantially. At a later stage of the evolution, the height of the bump and the depth of the dip
eventually saturate. This vertical evolution of the bump and the dip is at variance with what has been
observed in the rigid-substrate case [29,31], where the values of the maximum and the minimum
are purely dictated by h; and A, and stay fixed during the experimentally accessible evolution.
That specific signature of the soft foundation is even amplified for PS levelling on the softer (40:1
PDMS) foundation; see Fig. 1(d). The evolution of the bump and dip results from the interaction
between the liquid and the soft foundation. Indeed, the curvature gradients of the liquid-air interface
give rise to Laplace pressure gradients that drive the flow. The pressure and flow fields both induce
elastic deformations in the substrate. Intuitively, the negative Laplace pressure below the dip results
in a traction that pulls upwards on the PDMS substrate, while the positive Laplace pressure below
the bump induces a displacement in the opposite direction. In addition, a no-slip condition at the
solid-liquid interface coupled to the flow induces an horizontal displacement field in the PDMS
substrate. These displacements of the foundation act back on the liquid-air interface by volume
conservation. According to this picture, the displacement of the solid-liquid interface is expected to
tend to zero over time, since the curvature gradients of the liquid-air interface and the associated
flow decrease.

B. Temporal evolution of the profile width

The capillary levelling on a rigid substrate possesses an exact self-similar behavior in the variable
x/t'/%, leading to a perfect collapse of the rescaled height profiles of a given evolution [31].
In contrast, for a soft foundation, no collapse of the profiles is observed (not shown) when the
horizontal axis x is divided by 7'/4.

To determine whether another self-similarity exists or not, we first quantify the horizontal
evolution of the profile by introducing a definition of its width [see Fig. 2(a), inset]: w(t) = x(h =
hy 4+ 0.6 hy) — x(h = hy 4 0.4 hy). With this definition, only the linear region of the profile matters
and the peculiar shapes of the dip and bump do not affect the value of w. The temporal evolution
of w was measured in several experiments, featuring different values of 4, h, as well as three
stiffnesses of the soft foundation. First, the absolute value of w at a given time is larger for thicker
liquid films, as expected since more liquid can flow. Second, the data plotted in Fig. 2(a) clearly show
that in all these experiments the width increases as w ~ ¢'/6, Equivalently, dividing the horizontal
axis x by ¢!/ leads to a collapse of all the linear regions of the profiles, as shown in Figs. 2(b)
and 2(c). However, while allowing for the appreciation of the vertical evolution of the bump and
dip, the noncollapse of the full profiles indicates the absence of true self-similarity in the problem.
Nevertheless, we retain that for practical purposes associated with elastocapillary levelling, the
w ~ /% scaling encompasses most of the evolution in terms of flowing material.

C. Role of viscosity

The impact of the soft foundation on the levelling dynamics depends on two essential aspects:
the stiffness of the foundation and how strongly the liquid acts on it. The first aspect is constant, and
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FIG. 2. (a) Experimental evolution of the profile width w (proportional to the lateral extent of the linear
region as displayed in the inset) as a function of time ¢, in log-log scale, for samples involving different
liquid-film thicknesses and substrate elasticities. All datasets seem to exhibit a ¢'/% power law. The slope
corresponding to a t'/* evolution (rigid-substrate case) is displayed for comparison. (b) Experimental levelling
profiles on 10:1 PDMS from Fig. 1(c) with the horizontal axis rescaled by t~!/6. (¢) Same rescaling applied for
the levelling profiles on 40:1 PDMS shown in Fig. 1(d).

controlled by both the Young’s modulus E and the thickness s of the (incompressible) PDMS layer,
the former being fixed by the base-to-cross-linker ratio. The second aspect is ultimately controlled
by the Laplace pressure, which is directly related to the curvature of the liquid-air interface. Even
for a single experiment, the amplitude of the curvature field associated with the profile evolves along
time, from large values at early times, to small ones at long times when the profile becomes almost
flat. Thus, we expect the relative impact of the soft foundation to change over time.

This time dependence can be explored by adjusting the PS viscosity. Indeed, the latter strongly
decreases for increasing annealing temperature, while the other quantities remain mostly unaffected
by this change. Hence, the levelling dynamics can be slowed down by performing experiments at
lower annealing temperature, in order to investigate the dynamics close to the initial condition, and
accelerated at higher annealing temperature in order to access the late-stage dynamics. Here, we
report on experiments at 120 °C (high viscosity) and 160 °C (low viscosity) and compare the results
to our previous experiments at 140 °C.

Following lubrication theory [37], the typical time scale of a levelling experiment is directly fixed
by the capillary velocity y/n, where y denotes the PS-air surface tension and n the PS viscosity,
as well as the thickness g = h; + h,/2 of the PS film. In Fig. 3, the experimental profile width is
plotted as a function of yho’t/n [31], for experiments involving different liquid film thicknesses,
substrate elasticities, and annealing temperatures. Samples with PS stepped films on bare (rigid) Si
wafers were used to measure the capillary velocity y/n at different annealing temperatures [36].
In these calibration measurements, the profile width follows a ¢!/ power law, as expected [31]. In
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FIG. 3. Experimental profile width w [see Fig. 2(a), inset] as a function of yh03t /n (see definitions in text),
in log-log scale, for all the different samples and temperatures. Experiments for 10:1 (red), 20:1 (green), and
40:1 (blue) PDMS substrates, as well as annealing temperatures 7, = 120 °C (down triangle), 140 °C (circle),
160°C (up triangle) are displayed. Most of the data collapses on a single curve of slope 1/6 (dashed line).
The data for capillary levelling on rigid substrates (black symbols) are shown for comparison and collapse
on a single curve of slope 1/4 (solid line). The inset displays a closeup of the early-time regime in linear
representation.

contrast, for the experiments on elastic foundations, two different regimes might be distinguished:
for yho’t /n larger than ~5 um®, the width follows a ¢'/% power law and all datasets collapse onto
a single master curve over three to four orders of magnitude on the horizontal scale; for values of
yhot /n smaller than ~5 wm®*, the evolution depends on the elastic modulus and it appears that the
softer the foundation the faster the evolution (see inset of Fig. 3).

D. Vertical evolution of the dip and bump

Guided by the previous discussion, we now divide the horizontal axis x of all the height profiles
in different experiments by the quantity (yh¢>t/n)'/°. As shown in Fig. 4, this rescaling leads to a
collapse in the linear region of the profiles, while the dip and the bump regions display significant
deviations from a universal collapse.

In order to characterize these deviations, we introduce the Maxwell-like viscoelastic time 1/ E
and define the dimensionless time v = Et/n. This dimensionless parameter quantifies the role of
the deformable substrate: experiments on softer foundations (lower E) or evolving slower (larger
n) correspond to smaller values of t, and are therefore expected to show more pronounced elastic
behaviors. As seen in Fig. 4, we find a systematic trend when plotting the experimental levelling
profiles using the parameter 7. Profiles with large t (dark green and black) display clear bumps and
dips, comparable in their vertical extents to the corresponding features observed on rigid substrates
(not shown). In contrast, profiles with small t (yellow and bright green) feature large deviations
with respect to this limit.

The previous observation can be quantified by tracking the temporal evolution of the height of the
liquid-air interface hq(t) = h(xq,t) at the dip position x4, which we define as the (time-independent)
position at which the global minimum is located at the latest time of the levelling dynamics (see arrow
in Fig. 4). The inset of Fig. 4 displays the normalized difference between h4 and the corresponding
value for a rigid substrate Aq g, plotted as a function of . We find that the parameter 7 allows
for a reasonable rescaling of the data. As anticipated, the difference between levelling on rigid and
soft substrates decreases monotonically as a function of this dimensionless time. For small t, the
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FIG. 4. Rescaled experimental profiles for all data displayed in Fig. 3, color coded according to the
dimensionless time 7 = ¢ E /7. Inset: Evolution with 7 of the normalized distance between the height &4 of the
liquid-air interface at the dip position x4 and the corresponding value A, for the rigid case. Note that in all
the experiments #; = h,. Symbols are chosen to be consistent with Fig. 3.

difference can be larger than 20% of the liquid film thickness, while for large 7 it drops to less than
1%, which corresponds to the vertical resolution of the AFM.

IV. THEORETICAL MODELLING

A. Model and solutions

We consider an incompressible elastic slab atop which a viscous liquid film with an initial stepped
liquid-air interface profile is placed. The following hypotheses are retained: (i) the height i, of the
step is small as compared to the thickness hg = h; + hy/2 of the (flat) equilibrium liquid profile;
(i) the slopes at the liquid-air interface are small, such that the curvature of the interface can be
approximated by d2/; (iii) the lubrication approximation applies in the liquid, i.e., typical vertical
length scales are much smaller than horizontal ones; (iv) the components of the displacement field in
the elastic material are small compared to the thickness of the elastic layer (linear elastic behavior);
(v) the elastic layer is incompressible (valid assumption for PDMS). Note that the hypotheses (i)—(iii)
have been successfully applied in previous work on the levelling dynamics of a stepped perturbation
of a liquid film placed on a rigid substrate [39].

Below, we summarize the model, the complete details of which are provided in the Supplemental
Material [44]. The main difference with previous work [39] is the coupling of fluid flow and
pressure to elastic deformations of the substrate. The Laplace pressure is transmitted by the fluid
and gives rise to a vertical displacement §(x,?) of the solid-liquid interface, and thus a horizontal
displacement u(x,t) of the latter by incompressibility. Consequently, the no-slip condition at the
solid-liquid interface implies that a fluid element in contact with the elastic surface will have a
nonzero horizontal velocity d,u. In addition, we assume no shear at the liquid-air interface. After
linearization, the modified thin-film equation reads

D

A  a [ h2o 9
Y
Jat ox

ax| 3nox Vot

where A(x,t) = h(x,t) — 8(x,t) — hg is the excess thickness of the liquid layer with respect to the
equilibrium value /(. The excess pressure p(x,?) in the film, with respect to the atmospheric value,
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is given by the (small-slope) Laplace pressure:

(A +9)
~—y—. 2
p Y " ox2 2
Furthermore, the surface elastic displacements are related to the pressure field through
1 o0
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where u = E /3 is the shear modulus of the incompressible substrate, and where k(x) and k(x) are
the Green’s functions (see Supplemental Material [44]) for the vertical and horizontal surface
displacements, i.e., the fundamental responses due to a linelike pressure source of magnitude
—+/27 11 acting on the surface of the infinitely long elastic layer.

Equations (1)—(4) can be solved analytically using Fourier transforms (see Supplemental Material
[44]), and we obtain

A(}\. 1) = _Q\/z |:_<y)\,4h8> 1t ] )
D=0V 7 P 3 )1+ a2/ + irhoky) |

5o —k yAZA

w14 (A2 /wkl’
vzherffdenotes the Fourier transform of a function and X is the conjugated Fourier variable, i.e.,
foy = \/% J°2, f(x)e™ dx. The vertical displacement h(x,t) — hy of the liquid-air interface with

(6)

respect to its final state is then determined by summing the inverse Fourier transforms of Egs. (5)
and (6).

Figure 5(a) displays the theoretical profiles of both the liquid-air interface z = h(x,t) and the
solid-liquid interface z = §(x,t), for a stepped liquid film with thicknesses h; = hy = 2ho/3 =
120 nm, supported by a substrate of stiffness = 25 kPa and thickness so = 2 wm. The viscosity
n =2.5x 10° Pa s is adapted to the PS viscosity at the annealing temperature 7, = 120°C in
the experiment. The PS-air surface tension is fixed to y = 30 mN/m [45]. We find that the profiles
predicted by this model reproduce some of the key features observed in our experiments. In particular,
the evolutions of the bump and dip regions in the theoretical profiles (see Fig. 5 inset) qualitatively
capture the characteristic behaviors recorded in the experiment [see Fig. 1(c) inset].

An advantage of this theoretical approach is the possibility to extract information about the
deformation of the solid-liquid interface. As shown in Fig. 5, the substrate deforms mainly in the bump
and dip regions, as a result of their large curvatures. The maximal vertical displacement of the
solid-liquid interface in this example is ~25 nm, and it reduces over time, due to the levelling of the
profile and the associated lower curvatures.

B. Evolution of the profile width

The temporal evolution of the width w [see Fig. 2(a), inset] of the profiles was extracted from our
theoretical model for a series of different parameters. Figure 6 shows the theoretical width w as a
function of the quantity y >t /1 for all cases studied. With this rescaling, it is evident that the width
of the theoretical profile depends strongly on elasticity at early times, while all datasets collapse onto
a single curve at long times. Moreover, this master curve exhibits a slope of 1/4, and thus inherits
a characteristic signature of capillary levelling on a rigid substrate. The early-time data show that
the width is larger than on a rigid substrate, but with a slower evolution and thus a lower effective
exponent. These observations are in qualitative agreement with our experimental data. However,
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FIG. 5. (a) Theoretical profiles for the liquid-air interface z = h(x,t) and the solid-liquid interface z =
8(x,t), both shifted vertically by —h,. Here, we employ so = 2 um, hy = hy = 2h¢/3 = 120 nm, p = 25
kPa, ¥ = 30 mN/m, n = 2.5 x 10° Pa s. The inset displays a close-up of the dip region. (b) Finite-element
simulation (COMSOL) of the solid’s total displacement (black arrows) and its vertical component § (color
code). The result has been obtained by imposing the Laplace pressure field corresponding to the first profile
in (a) to a slab of elastic material exhibiting comparable geometrical and mechanical properties as in (a). The
maximal displacement of 22 nm is in good agreement with the theoretical prediction shown in (a).
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3
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FIG. 6. Temporal evolution of the profile width [see definition in Fig. 2(a), inset], in log-log scale, as

predicted by the theoretical model, for different shear moduli, viscosities, and liquid-film thicknesses. The 1/4
power law corresponding to a rigid substrate is indicated.
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interestingly, we do not recover in the experiments the predicted transition to a long-term rigidlike
1/4 exponent, but instead keep a 1/6 exponent (see Fig. 3).

It thus appears that we do not achieve a full quantitative agreement between the theoretical
and experimental profiles. The initially sharp stepped profile could possibly introduce an important
limitation on the validity of the lubrication hypothesis. Indeed, while this is not a problem for the
rigid case since the initial condition is rapidly forgotten [40], it is not a priori clear if and how
elasticity affects this statement. We thus checked (see Supplemental Material [44]) that replacing the
lubrication approximation by the full Stokes equations for the liquid part does not change notably
the theoretical results. We also checked that the linearization of the thin-film equation is not the
origin of the aforementioned discrepancy: in a test experiment with 4, < /1 on a soft substrate we
observed the same characteristic features—and especially the 1/6 temporal exponent absent of the
theoretical solutions—as the ones reported for the &; ~ h, geometry (see Supplemental Material
[44]). Besides, we note that while the vertical deformations of the elastic material (see Fig. 5) are
small compared to the thickness sy of the elastic layer in the experimentally accessible temporal
range, the assumption of small deformations could be violated at earlier times without affecting the
long-term behavior at stake.

Finally, we propose a simplified argument to qualitatively explain the smaller transient exponent in
Fig. 6. We assume that the vertical displacement 8(x,7) of the solid-liquid interface mostly translates
the liquid above, such that the liquid-air interface displaces vertically by the same amount, following

h(x,t) = h(x,t) + 8(x,1), 7

where /£, is the profile of the liquid-air interface that would be observed on a rigid substrate. Note that
this simplified mechanism does not violate conservation of volume in the liquid layer. By deriving
the previous equation with respect to x, and evaluating it at the center of the profile (x = 0), we
obtain an expression for the central slope of the interface:

0,h(0,1) = 0, (0,1) + 0,8(0,1). ()

Due to the positive (negative) displacement of the solid-liquid interface in the region x < 0 (x > 0),
0,6(0,¢) is always negative, as seen in Fig. 5. Therefore, we expect a reduced slope of the liquid-air
interface in the linear region, which is in agreement with the increased width observed on soft
substrates. Moreover, taking the second derivative of Eq. (7) with respect to x leads to

d2h(x,t) = 3 2ho(x,t) + 3 28(x,1). )

In the dip region, h.(x,t) is convex in space (positive second derivative with respect to x), while
8(x,t) is assumed to be concave in space (negative second derivative with respect to x) up to some
distance from the center (see Fig. 5). Therefore, the resulting curvature is expected to be reduced.
A similar argument leads to the same conclusion in the bump region. This effect corresponds to
a reduction of the Laplace pressure and, hence, of the driving force for the levelling process: the
evolution is slower which translates into a smaller effective exponent.

C. Finite-element simulations

To check the validity of the predicted shape of the solid-liquid interface, we performed finite-
element simulations using COMSOL Multiphysics. Starting from an experimental profile of the
liquid-air interface at a given time ¢, the curvature and the resulting pressure field p(x,r) were
extracted. This pressure field was used as a top boundary condition for the stress in a 2D slab
of an incompressible elastic material exhibiting a comparable thickness and stiffness as in the
corresponding experiment. The slab size in the x direction was chosen to be 20 wm, which is large
enough compared to the typical horizontal extent of the elastic deformation [see Fig. 5(a)]. The
bottom boundary of the slab was fixed (zero displacement), while the left and right boundaries were
let free (zero stress). The deformation field predicted by these finite-element simulations is shown
in Fig. 5(b) and found to be in quantitative agreement with our theoretical prediction.
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V. CONCLUSION

We report on the elastocapillary levelling of a thin viscous film flowing above a soft foundation.
The experiments involve different liquid film thicknesses, viscosities, and substrate elasticities. We
observe that the levelling dynamics on a soft substrate is qualitatively and quantitatively different
with respect to that on a rigid substrate. At the earliest times, the lateral evolution of the profiles
is faster on soft substrates than on rigid ones, as a possible result of the “instantaneous” substrate
deformation caused by the capillary pressure in the liquid. Immediately after, this trend reverses:
the lateral evolution of the profiles on soft substrates becomes slower than on rigid ones, which
might be related to a reduction of the capillary driving force associated with the elastic deformation.
Interestingly, we find that the width of the liquid-air interface follows a t'/6 power law over several
orders of magnitude on the relevant scale, in sharp contrast with the classical 7'/% law observed on
rigid substrates.

To the best of our knowledge, this system is a unique example of dynamical elastocapillarity
that is not mediated by the presence of a contact line, but only by the Laplace pressure inside the
liquid. Notwithstanding, this process is not trivial, since the coupled evolutions of both the liquid-air
and solid-liquid interfaces lead to an intricate dynamics. Our theoretical approach, based on linear
elasticity and lubrication approximation, is able to reproduce some observations, such as the typical
shapes of the height profiles and the dynamics at short times.

While some characteristic experimental features are captured by the model, a full quantitative
agreement is still lacking to date. Given the careful validation of all the basic assumptions underlying
our theoretical approach (i.e., lubrication approximation, linearization of the thin-film equation, and
linear elasticity), we hypothesize that additional effects are present in the materials or experiments.
For instance, it remains unclear whether the physicochemical and rheological properties at the
surface of PDMS films, which were prepared using conventional recipes, are correctly described by
bulk-measured quantities [9]. We believe that further investigations of the elastocapillary levelling
on soft foundations, using different elastic materials and preparation schemes, could significantly
advance the understanding of such effects and dynamic elastocapillarity in general.

Finally, we would like to stress that the signatures of elasticity in the elastocapillary levelling
dynamics are prominent even on substrates that are not very soft (bulk Young’s moduli of the PDMS
in the ~MPa range) and for small Laplace pressures. In light of applications such as traction-force mi-
croscopy, where localized displacements of a soft surface are translated into the corresponding forces
acting on the material, the elastocapillary levelling on soft substrates might be an ideal model system
to quantitatively study surface deformations in soft materials with precisely controlled pressure fields.
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Appendix

Fractional brownian motion

This worked has been done in collaboration with Kay J. Wiese.

C.1 Introduction

The fractional brownian motion generalises standard brownian motion, it is a gaussian
stationary process. This process, unlike standard brownian motion, is non-Markovian,
self-similar with respect to a parameter H € [0, 1], the value H = 1/2 corresponds to the
Markovian case of the standard brownian motion. In this study, we will compute the first
passage time of a drifted fractional brownian motion. In order to compute its first passage
time, we will use perturbation theory for the fractional brownian motion[113, 114]. But
first, let us motivate the reason for investigating the properties of this process. The log-
Brownian model for the movement of share price is widely used in mathematical finance
but empirically this model is incorrect in many ways. Various alternative have been pro-
posed to capture differences, for example the Lévy flight to capture price jumps or the
fractional Brownian motion which displays time dependence between returns. The pres-
ence of autocorrelation and memory in financial stock returns has been a long discussed
subject, at least as soon as 1963 (10 years before the Black & Scholes formula) by Man-
delbrot [115], wherein the property of long memory of volatility is observed: large changes
tend to be followed by large changes, of either sign, and small changes tend to be followed
by small changes. While returns r; themselves tend to be uncorrelated, squared returns
ri show a positive and slowly decaying autocorrelation function: corr(r7,r7,.) > 0 for 7
ranging from a few minutes to a several weeks [116]. This is a well known fact both in
academic research as well as on trading floors, that lead to the adoption of auto-regressive
models for predicting volatility, and the manifestation of this phenomenon is often priced
in the market, e.g. in the volatility futures products. The Fractional Brownian Motion
(fBM) was introduced in 1968 by Mandelbrot and van Ness [117], as a generalization
of the classical Brownian Motion, whereby the increments of the process can be serially
correlated. What initially motivated the creation of such a process was the property of
stationarity and self affinity of increments of a random function, as described by Man-
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delbrot [115], as well as self-similarity. In such a process, which is also almost surely
continuous and non differentiable [117, 115], the arrival of information has a lasting effect
on the series, the process is non Markovian, and the whole trajectory impacts the forecast
of the evolution. We place ourselves in a continuous market [118], where the evolution of
a stock is simulated by a process of a similar form to the classical Geometric Brownian
Motion. Let’s suppose furthermore that rates, dividends and funding spreads are set to
zero. In such a market, the stock can be described by the following SDE:

corresponding to a solution of the form:
Sy = Syett—zo" o Bl (C.2)

where p is the historical equity premium associated to the stock, o is the constant volatil-
ity of the asset returns, Bf is a fBM with a Hurst coefficient of H. The fBM not being a
semi-martingale [119] (except for H = 0.5), Ito calculus cannot be used, this SDE requires
a choice for the stochastic integration calculus, which are historically either Wick-based
integration (denoted here by <), or Stratonovitch (path-wise) integration described in
details in [120], which have very different properties. Furthermore, Wick’s approach can
only be used in the persistant case (H > 0.5), whereas for anti-persistant cases, the S-
transform method [121], can be used as an extension. The usage of such a model has
long been criticized in financial mathematics, as arbitrage strategies can be found in most
parameterisations (see [122, 123] for the definition or such arbitrages in fractional Bache-
lier and fractional Black & Scholes models), therefore leading to market incompleteness.
It has been also found [119, 120] that straightforward application of these integration
theories on self-financed portfolio equations led to inconsistencies in results. Indeed,
Stratonovitch integration implies clairvoyance of the investors when constructing their
portfolios (by evaluating the integrand midpoint on every infinitesimal interval), leading
to a degenerated form of the option price, without any random character - the option is
equal to its discounted intrinsic value. This fact is well known in Physics, where on some
applications (e.g. financial mathematics), the choice of integration is more than a simple
calculus convention, but needs to match economical meaning. Later on, it was proven
by Cheridito [123] that the existence of a minimal period of time - be it arbitrarily small
- between two consecutive transactions (which theoretically ensures that there are other
transactions in between) excludes the feasibility of such strategies, as they relied on con-
tinuously adjusted replicating portfolio. In other words, this assumption states that no
investors can trade continuously as fast as the market. However, this restriction - which
can be considered realistic - still implies the non-uniqueness of a risk neutral measure, as
the dynamic hedging argument breaks down, and a discretionary choice would have to be
made, for example based on an risk utility based approach [120]. The approach we are
going to use here, is the one described by Rostek [120]. We will remind the framework
below.
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C.2 Equilibrium based approach for valuation with expectation

Giving up on continuous tradability, and unicity of Risk Neutral measure, the most natural
approach is using risk preferences, wherein the market has to satisfy some equilibrium
conditions. Assuming risk-neutral investors, taking advantage of all the information of
the past, will lead to an expression of the price under the form of a certain conditional
expectation, allowing to deal with path-dependent payoffs as well. The main object of
interest will be the fBM conditioned on all or partial information of the past:

Bl =E [BY|F/] (C.3)

where FH = (B s < t) is the o-field generated by all paths terminating at time ¢. Is
is a random variable itself, the projection of BH on the space described above. Nuzman
and Poor expressed the conditional fBM in a convenient form [124]:

t
Bl —E[B|F) = B+ (T -y [ g(T.t.5)ds (C.4)

—0o0
where
sin(m(H — 3))(BS — BfY)
7t — s)Ht2 (T — s)
This representation proves that the conditional fBM remains normal, and consists in two
parts, the first being the current value of the process, and the second being an (random)

adjustment accounting for the historical evolution of the process. It leads them to compute
the present value of a contingent claim (here, a call option) in the form:

g(T't,s) = (C.5)

Cu(t,T,K) = E[(Sr — K)" |F/] (C.6)

where the expectation has to be taken under a measure of our choice, which leads to forced
assumptions on the risk preferences of the investors. In (see [120]), a certain (intuitive)
assumption on the pricing measure leads to a Black & Scholes type formula for the price
of a Call (and similarly for a Put) under this setting:

con = Sep(dip) — Ke " Tp(do ) (C.7)

with, . 2
dyyo = In () + Tf/p:hf)Ti_?)fh(T — t)2h C8)
and sin(7(h — 1/2))T(3/2 — h)? o)

P T a(h— 1/2)0(2 — 2h)
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whereas as mentioned above, careless application of a delta hedging led to a similarly
appealing closed form for the option price (see [125]):

Cth = St(b(di\jhEC) - Ke”"(T’t%(dé\jfc) (C.10)

with,
In(5) + (T — t) £ 2 (T — 2h)

diy2 = on/T2H —_ 12k

which looses the property of being stationary: for everything else equal, two options of the
same maturity, struck at two different times, will have two different prices, forcing the user
to model the line of time in absolute rather than relative values. While this assumption
of non-continuous trading strategies does not seem to be too restrictive when thinking
of real financial markets, it entails one problem: Though having excluded arbitrage, the

(C.11)

traditional no arbitrage option pricing approaches continue to fail, as now the possibility
of a continuous adjustment of the replicating portfolio is no longer given. Dynamical
hedging and replication methods are no longer available to derive prices of derivative
assets. The consequence to which one may come, is to abstain from this kind of setting
[126].

C.3 One-touch call option pricing

A One-touch call option is an option paying 1to the buyer, when the stock price reaches a
certain barrier K (lower than the spot for a binary put, higher than the spot for a binary
call):

(K, T) = E[e""9F1] (C.12)
T = argmin,q{S > K} (C.13)

These contracts fall into the class of once exotic now vanilla, due to their popularity. They
are particularly useful for hedging other contracts that also have a payoff that depends
on whether or not the specified level is reached. Since they are American-style options
we must decide as part of the solution when to exercise optimally. They would clearly
be exercised as soon as the level is reached. This makes an otherwise complicated free
boundary problem into a rather simple fixed boundary problem. For a one-touch call,
we compute the previous expectancy using the first passage time distribution of a drifted
brownian motion or fractional brownian motion.
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C.3.1 Brownian environment

The first passage time distribution of a drifted Brownian motion ut + oB; starting in 0
and reaching a barrier m reads:

G(m,t) = ————¢ 20% (C.14)

the solution of this problem is:

Q‘N

¢ = %N(dl) + (g) N(dy) (C.15)

where K is the strike price, S; the price at time ¢, T" the maturity, u the risk-free rate, o
w2
the volatility and N(x) = \/%7 J7_ e T du. With:

2

() + (n+5) (@1

dl == o T — 5 (016)
In (8t) — o —
dy — (K) (M;_Qt) (T'—1) . (17)

C.3.2 Fractional Brownian environment

Using the distribution Gp,(m,t), one can say that:

T S.
¢ = / e MG, (ln (—t) ,7') dr (C.18)
t K

We use below a perturbative approach on the path integral of fBm to provide a per-
turbative closed formula for the first passage time distribution for the drifted process Gy,
C.93 and the price of an American digital option of a fBm underlying. But first let recall
the basics of a first passage time distribution.

C.3.3 Diffusion and first passage time of a standard brownian motion

The random walk and its continuum limit of diffusion called the Brownian motion is very
important in statistical physics. The Brownian motion of a particle immersed in a liquid
is the motion resulting on the multiple collision of small particles on the tracked particle.

Discrete case

We start by considering the random walk case on a 1D lattice. At each step the particle
can moves of a fixed distance to the left with the probability p and to the right with the
probability 1 — p. Consider a sequence of independent random variables ¢; that assume
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values +1 and —1 with probability % In a random walk model, the particle takes unit
step up or down at regular intervals, and the position of the particle at the nth step is
given by:

Sn:€1+...+6n, S():O (019)

We set IV, ,, to be the number of path starting from the origin to z after n steps. We
note p the number of positive occurence in the random walk and ¢ the negative ones.
Therefore n = p + q and z = p — ¢. The number of path is simply the combination of
positive occurence within n random draw.[127]

e ()-(3).

The probability for the particle of being at z after n step is then:

P(S,=z)=2"" (é) . (C.21)

One can check that for z — oo, by using the De Moivre-Laplace Theorem, we obtain the
gaussian approximation of the random walk:

P(S, = 2) ~ \/% exp (-%) . (C.22)

The probability to return at the origin after 2n steps (this probability is zero for an odd
number of steps) is simply:

ton = P(S, = 0) = 2" (3:’) N \/Qlﬁ_n | (C.23)

Among all the returns to the origin, the first return time has a specific behaviour. A first
return at the origin occurs after 2n steps, if S1 # 0...52,-1 # 0 ,S3, = 0. The probability
of this event is by,. The probability as, and by, are linked. Indeed, the visit at the origin
after 2n step can be either the first one or the first one occurs earlier after 2k < 2n steps
with the probability vgr and therefore it returns to the origin after 2(n — k) steps with
the probability as(,—x) and this Vk € [1,n]. Eventually we obtain the following relation:

n
a9y — Zbgkag(n_k) . (C24)
k=1
We define the moment generating function of a sequence {as,} and compute it in this

case:
A(t) =1 + 2 agnt = (—1) ( n t" = 1—_t2 s (025)

n=0
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Applying this transformation to the equation Eq.[C.24], one gets:

B(t)—l—ﬁ—l—\/l—ﬁ, (C.26)

from this relation one can compute the 2nth moment:

1 2 (on 1
by, — L= ~ C.27
CU I 2n—1<n> N (C.27)

The law of the n; for i > 1 is given by the sequence {bs,}. The probability ¢, for the
random walk of reaching for the first time z of its path after n steps starting from the
origin is called a first passage time, the sequence {g¢,} gives the distribution of ny. By the
reflection principle we know that:

P(S,=z+4+k)=P(S,=z+klni <n)=P(S,=z—kln, <n), (C.28)
therefore:
+o0o
P(ny<n)= > P(S,=z+kln <n)=P(S,=2)+2P(S, > 2) . (C.29)
k=—00

Eventually one gets :

Gn(2) = = (P(Sp1=2—1) = P(S,_.1=2+1)) , (C.30)

DO | —

or,

g(2) =272 (&) , (C.31)

n\—

with ¢, = 0 if 222 is odd. At large z, we recover the distribution of first passage time for

2 22
G~ | —szexp(=o ) . (C.32)

The moment generating function also reads:

(=)

t

the brownian motion:

Ni(t) = (C.33)

Continuous limit
In the continuous limit of diffusion, the first passage density is computed directly from

the probability of going from z to z; during a time ¢ without touching the interfaces. This
density is noted P, (z1,t|z,0) and verifies the diffusion equation with absorbing boundary
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conditions at z =0 :

8P, = DAP, | (C.34)
P(z=0)=0 (C.35)

if we integrate P.(z1,t|z,0) from its starting position in z = h to z = 0 where it is
absorbed one gets the survival probability S(t) to the boundary z = 0 . The first passage
time distribution is simply:

ft) = ———= (C.36)

One can solve the diffusion equation and gets:

f(t) = i exp(—hQ) (C.37)

273 2

This expression is similar to the discrete case (C.32).

C.3.4 Fractional brownian motion

In the following the fractional brownian motion—fBm-is considered with a linear and non
linear drift:
2 = my + pt + vt*H, (C.38)

where z; is the standard fBm, with a mean value:
(z¢) =0, (C.39)
and a two-time correlation:
(T, 70) = [t1[*7 + [t — [t — to*" . (C.40)

The process x; is a gaussian process for all values of H, and only markovian for H = 1/2.
Therefore one can expand the action of this gaussian process around H = 1/2. The
statistical weight of a path z; is proportional to exp (—S[z]) where S[z] is the action
given by:

S[a] = /0 Lty /O t dtQ%x(tl)G(tl,tQ)x(tQ) | (C.41)

the kernel of the action G(t1,1,) is related to the autocorrelation function via:

Gt 1) = (x(t)a(ts)). (C.42)
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In order to have the perturbative action of the fractional brownian motion we have first
to expand the autocorrelation function (Eq.C.40) around H = 1/2.

Gil(tl, tg) = [G(O)]il + GK(tl, tg) + 0(6) y (043)

with
[GO]™ = 2min(ty, t,) | (C.44)

and
K(tl,tg) =2 (tlln(tl) + tghl(tg) — |t1 — t2|1H|t1 — t2|) . (045)

Inverting Eq.C.43, one gets:

G =G94+ 4 oe) (C.46)
That leads directly to:
G' = -GOO1GqO | (C.47)
where -
/ AtGO (1, ) [GO) Lt ty) = 6ty — ta) | (C.48)
0
therefore one can check that:
(0) _ 1 "
GV (ty,ty) = —55 (t; —ta) , (C.49)
and
1/t t 1
Gt 1) = _5/ dt// dt"o"(ty — 1) |t/ t//|5,<t2 — ") = 2(1 + In(7))[G] " (t1, 1) |
0 0 -
(C.50)

with 7 considered as the time discretization limit of the path integral.
The action of the standard fBm is therefore:

Sla] = /OToujc(lt)2 _ 5/0 Ht)E) g ap, (C.51)

4D€ 2 <t1<to<T ‘tl - Z€2|

There is a short time cutoff in the last integral |t; — t3| > 7, this cutoff appear in the

diffusion coefficient.
D.=2H7*H1, (C.52)
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C.4 Path integral of the drifted fBm

The path integral formulation for the first passage time is:

z(T)=z¢
G(m,T) = mligoi/ D [z]exp (=S [7]) . (C.53)
0 Lo z(0)=m
Replacing 2(t) by :
(t) = 2(t) —p—v —2ev(1 +1n(t)) , (C.54)

A short-distance cutoff |t; —t5| > 7 in the last integral is implicit, reflected in the diffusion
constant. Inserting the definition of the action, we arrive at:

T2 e t(T —t) e [T A
Slz] = /d ¢ = { —|—Vln( )—21/11&25]——/ dt dt, =t
g o 4D, 2 (et v) T2 @ - o -t

2
1t v 29] T+ 9 + ST (2 = 12) W(T) + O(@) . (C55

Zr — 20

2D,

2

Let us do some checks. In absence of boundaries, we know the exact free propagator,

1 (s—pT—vT2H)2 2 2H

1 z z

P T - o 2H = — _ =

0.27) =57 7 o/mTH P (4T2H 2
(C.56)

Now since the above formalism has variables # only, the term ~ 22 is given by the drift-
free perturbation theory. We can further check that if we replace in the action Z(t) by its
“classical trajectory”, i.e. 2(t) — [2(T) — 2(0)]/T, then both the normalisation and the
drift term agree with the exact propagator. Let us specify to the two cases of interest:
For a fBm with linear drift as given in Eq. (C.38) with v = 0, we have

O A Rt R < JCED

<t1<to<T ’tl - t2|

—/ dt 2(t ( t]t) (C.58)

For a fBm with non-linear drift as given in Eq. (C.38) with p = 0, we have

T o2 T+ € 2(t)2(t2)
Sy / gV, 2 _ _/ A)eta) - 5
o 0 4D, 2 br = 20) + 4 ’ 2 Jocti<to<T |t — o] ( )

+%/0 dt,é(t)ln<[T_

t]) (C.60)

T
st T

).
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Note the appearance of the diffusion constant in the “bias” (Girsanov) term zp — z, for a
linear drift, and its absence for a non-linear drift. In the following we define

a=p—U, Bi=pu+v (C.61)

This comes with the last terms grouped as

S = ea/Tdtz'()l (;) (C.62)

Sz = eﬁ/ dt 2(t ( ) (C.63)

C.5 First passage time distribution

C.5.1 General formulas and order O

At the first order in € for G,

> \ D,
x {Go(m, T) + QE[Gl(m, T) — & Gaa(m, T) — BGas(m, T)] } (C.64)

G(m,T) = exp<—m (ﬁ + I/> — % (PT2 + V2T26)>

The order-0 contribution is

m?

~ - me 4t
Go(m,s)=e ™, Go(m,t) = SN (C.65)

C.5.2 Order ¢, first diagram

The first diagram in Laplace is obtained from the one without drift.

. 1
Gi(m,s) = — dy/ 0/ Py (m, x1,5)04, Py (21, T2, 5 + )0y Py (2, 20, 5)
x> 2>0
_ / VS (€75 (my — 24/5 F ) + 24/ + ye V)
2y?

= [ ™S (my/s + 1) Ei (—2my/s) +my/se ™V? [ln<;n—j> - 1} (C.66)

2
e [m (2_) - 4]
Lo

—eTmVE (my/s + 1) In (my/s) ] (C.67)
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For the inverse Laplace transform we find

2
m2

me’%I(%) me— i

Gi(m,t) = + [ (m* — 4t) In (Am®) + (295 — 1)m* + 2t In(At) — 2(1 + 3g)t

4y/Tt3/? 8y/mt5/?

1 m m? )
51' (E) —|- (E — 1) ln (Am )
(2vg — 1)m?* +2(3 =Tyt 1 t
* m +a (3 g)

= GO (m, t)

The special function Z appearing in this expression is

I(Z) = : Fol1.1 > 3 22 + 7 (]. 2) € f : 322 —+ vV 27 z22 -+ 2 (C 10)
6 202 ’ ,27 ’ 2 \/§

Using A = e "® /7, Eq. (C.68) can be rewritten as

Gi(z) = %Go(z){l(z)+(z2—1) [m <;)—1]+ln (%24) (C.71)

+22 [ln (2,22) + VE} —4vg + 2} (C.72)
z = NGTi (C.73)

If we take the limit of x¢ — 0 first, then the result changes:
G2, 5) = Gy (m, s) + e*mﬁ[ln (Az2) + 2(vg — 1)} (C.74)

This change is proportional to the order-0 contribution, thus should disappear in a change
of normalisation.

C.5.3 Order ¢, diagram GG,

We use that

In (;) _ /0 m% [ — ] (.75)

(C.68)

(C.69)



C.5 First passage time distribution 171

This gives
By dy N N
Gaa(m,s) = lim — P+ m,xy,s)e Y — P+(m,x1,s—i—y)]@zlﬂr(m,xo,s)
zo—0 X 210
/A/s |: Vs —m\f\/yT me -m S—STy:|
-~ Jo Vsy? Vsy? 2y
1 - Ym/E s 4572 -
= me 2¢*™°Ei (—2my/s) + In s +2| +0O(A™) (C.76)

We checked that the y integrand is convergent, at least as 1/y* for large y, and finite for
y — 0, thus z( is not necessary as an UV cutoff, and the y-integral is finite.

e*§22 [Z(2) — 2] zerfc(\/ii) _ 6_ [ln<2tz ) e 1]

Caalm, 8] = o0/l —22)  V3E(:2—1) o\/ml

(C.77)

C.5.4 Order ¢, diagram Gag

~ d ~
GQ,B(m7 8) = lim _/ y/ 0P+ m,x1,S )axl[P+(x17x07s)eiTy_PJr(xlaxO?S_'—y)]
xr1>

/‘X’ duy | VY Tle ™5  fyF le ™Vl mem SS“J]
= y — -

2
0 )

V/sy? NG

_ e~ mVs ( m4/sIn (45 ) + lz\(/T;L $) + 2m/s + 2y + 1n(4)> 78

Vs (my/s + 1) Ei (—2m+/s)
2V/s

(C.79)

We checked that the y integrand is convergent, at least as 1/y*? for large y, and finite
for y — 0, thus xy or A are not necessary as an UV cutoff, and the y-integral is finite.
Doing the inverse Laplace transform, we get with z defined in Eq. (C.73)

e [T(2) — 2] . zerfc(\%) N e‘§z2 [1 — hl(f)}
2Wrt(1—22)  V2i(* - 1) 2v/t

GQB(m,t> = (C80)

C.5.5 Results

In this part we resume all the results computed above.
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Go(m,t) = 32_—7; (C.81)
Ci(m,t) = 26\_/2_; I(z) + (2 —1) (m (;) - 1) +1n <ﬁgz4) (C.82)
+2% (In (22%) +y5) — 496 + 2 (C.83)
G2u<m7 t) = % |:G2a(m7 t) + GQﬁ(mv t)i| = _B_Qif/ﬂ%— (12)2[{(’3 - 2] <084>

. zerfc(\/ii) - % 22 [1H<2tf§2> +E — 2]

V2t(22 — 1) 4/t

(C.85)
Galim,t) = 5[Gastm.t) = Ganfim, )] = D=2 (.50
LT In22) + ) (C.87)

They group together as

X {Go(m, T) + 2€|:G1 (m,T) — pGaop(m,T) — vGay(m, T)} } (C.88)

It should be extrapolated as

G(m,T) = exp (—% <Di + 1/) — % (12T + u2T26)) Go(m,T)
X exp (26 Gilm, T) = 1 if:(%%) = vGa(m, T)) (C.89)

This expression is

C.6 History dependence

In this part we will compute the first passage time distribution conditional to the knowl-
edge of a part of the previous trajectory, the fact that fBm is non-Markovian, the memory
of the past trajectory will modify the distribution.
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C.6.1 Additional terms in the action

Suppose that we know the trajectory from time ¢t = —h to t = 0. This adds an additional
term dSy, (h for “history”) to the action

68z :——/ dt/ de T |t_t, +O(e?) . (C.90)

We did not write the term where both times are smaller than 0, since this term will
drop with the normalisation: After all, the propagator for T — 0 must reduce to a
0-distribution. It yields to

5Sh[x]zg(,ujtu)/idt’ln(l——) / dt/ ar L) ’t_t, +O() . (C.o1)

C.6.2 Translation into perturbative expansion
The last term in (C.91) leads to the following additional terms, as compared to (C.64):
€ 0 T
Gh(m,T) = G(m,T) X exp <—§(,u + V)/ dt’ 1n<1 — ?> :i:(t’)) (C.92)
—h
X exp (e 0GL(m,T)/Go(m, T)> (C.93)

The first term changes the normalisation. The second term is a diagram similar to Gs,
and ngi

A
dGh(m,s) = / dy §(y) Pr(m, 1, s + y) Op, Py (21, 20, 5) (C.94)
0
0
g(y) = / dt'e’" (1) (C.95)
—h
We have introduced an UV cutoff A out of precaution. Some examples for g(y)
o - 1—e M
wt)=1 & gy = — (C.96)
€ 0 T
exp <—§(u + V)/ dt/ ln(l — ?) i(t’)) (C.97)
~h

~ exp (—%e(u +1) [h In (%) +(h+T)n <IHTT>D (C.98)
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We find

As
A d
5Gh<m; 5) = \/g/ —‘;J efm\/g*hy _ efm\/ﬂfhy . e,m\/g n 67m\/ﬂ

As
= \/E/ d—‘g [e’m S“’—e’m\/g} [1—e™] (C.99)
o Y

We can compute this integral as follows:

1 > 1 1
— = dte™™——= =LT,,,—— C.100
\/5 /0 Vim = Vit ( )

As

d

i, [ Y [ e
0

% (1 _ efhy) 6—%2 (1—e)
_ _me % [h ln(h—i-t) + tln(m—tﬂ (C.102)
2¢/Tt3/2

t 1 me~ = [h ln(h+t,) +t ln(hH,)]

tl
N N

0Gh(m,t) = (C.103)
This can be rewritten as

_m? s m’a
e 4 e

8nt3 J, \/_
—m?*t(z + 1) + 2t2> In (

5Gh(m, t) =

[ ( (z +1) (6t — m*(z + 1)) (C.104)

hx+h+t)
t

+hm(z + 1) (m?(z + 1) — 6t) In (M) } (C.105)

Using that In(x) = 0,2%|a=o, this integral can indeed be done. In a first step, one obtains
1 hypergeometric functions. They are derived w.r.t. their first and second argument.
Studying their defining series expansion, taking their derivative, and resuming, we finally
obtain:
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N

e 3 22
0Gh(m. 1) = X (3—2%) 2% Fy (1, L 5,2 —) (C.106)
2v/mt SR
(X + 122 (=3x+ (x + 1)2% = 1) 2 [} (17 1; %7 2. z2(§<;r1)>
+
X
1 22 1 ZZ(X+ 1)
+X 2F2 (1’ 1’ _5, 2’ 5) B (X + 1) 2F2 <1a ]-a _57 2) T)
1 2
X(E=22) . F (1’ hg® %) (C.107)
(x + 1) ((2x + 1)z — 3x) o5 <1’ 1; %7 2: 22(;<;-1)>
X
/1
=+ 1z
“ X
+ay (2 —=Derfi| == ] -7 +1)2% — x)erfi | ———
x( ) <\/§) ((x+ 12 = x) 7

22 22 222
—V2me= z < X(x + 1)ex — X) +2%In <i) + yg2? — 2] (C.108)
X
The variables are

(C.109)
(C.110)

ol
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22

e 2z

Go(m,t) = Nor? (C.111)
Gy (m,t) t o\ 9 3 22
— = = — 3— F{1,1,-,2,— C.112
Go(m,t) mX( Z)Z22 772772 ( )
+(x F1)22 (=3 + (0 + )22 - 1) 5B (1,1:3,2 240)
X
1 22 1. 22(x+1)
1L, —=2,— | — DoFy (1,1, —=,2, ——=
+X2 2(77 2772> (X+ )2 2(77 277 2X )
.1 9. 22 (x+1)
oy e D@ D2 -3 5B (114,225
—x (83=22%) oF5 [ 1,1;=,2; =) —
X( Z)22(7727a2) X
e ,/%—klz
tax (2 —Defi| = | +7 +1)2% — x)erfi | Y———
22 2 9 222 9
—V2meT 2 X(x+1Dex —x | +2°In| — | +yp2°—2 (C.113)
X
For xy — oo, this gives
Gy (m,t) t 9 1 22 4 9 3, 22
——— = — | =z 1,1;2,2; — — Fp(1,1;=,2,—
Go(TTL,t) m 2 ol'y g%y +(2 2)22 1T 91T g
9 z 222 2
+2° | —merfi 7 +1In - +9e— 1] +V2mezz| +0O(1/x)
m 1 22 3 22
= —|—R(1,1;-,2,= Po1) oy 1,15,2; =
9 22(772772)+(2 )2 2(772772)
222 V21 22
—werﬁ(%) +1n(%) e — 1+ 6T |+ O(1/x) (C114)
Now suppose we had a sharp up- or down-rise at time ¢ = —h. Then (up to the amplitude)
@(t) = 6(t + h) & gly) =eM (C.115)
We find

As
6Gy(m,s) = \/5/ % [e‘m St _ o | omhy (C.116)
0
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This integral being nasty, we can also take the h derivative of our former result. We can
take one more derivative, to obtain

i(t) =08 (t+h) & gly) = —ye ™ (C.117)
This yields
B As
dGh(m,s) = —\/E/ dy [e‘m oty —e_m\/g] e M (C.118)
0
—2 ze% erfe( YL,
3Gn(m,t) = € 2z (3) (C.119)

2/t 2x(x + 1) N 23/265/2y3/2(y + 1)3/2
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Résumé

Cette thése se divise en deux parties, la
premiéere partie aborde la physique des
sillages.

Lorsqu’un objet se déplace a la surface d’un
liquide des ondes sont générées et rayonnées.
Lorsque I'objet se déplace a vitesse constante
il résulte le fameux sillage en V de

Kelvin qu’on peut observer derriere un bateau.
Le rayonnement de ces ondes crée une

force s’opposant au mouvement appelée
resistance de vague. On établit ici la formule
de Havelock de la résistance de vague pour un
mouvement quelconque. Le sillage et la
résistance de vague sont également étudiés en
présence d’un couplage élastohydrodydamique
a l'interface. Enfin on termine avec I'étude des
vagues générées par une araignée d’eau

lors de sa phase de propulsion.

Dans la seconde partie, on propose un modéle
de chaines cooperatives en s’inspirant de

la loi empirique d’Adam et Gibbs pour la
transition vitreuse. Ce modéle nous permet
d’étudier des anomalies de transition vitreuse
en milieu confiné notamment la réduction de
temperature de transition vitreuse dans les
nano-films et nanoparticules de polystyrene.
Enfin on aborde des calculs de statistiques de
chaines polymeriques en milieux confinés

et leurs dépendances exactes dans le poids
moléculaire.

Mots Clés

Films minces, transition vitreuse, vagues,
résistance de vague.

Abstract

This thesis is divided into two parts. In the first
part, we study several properties of

waves at the surface of a liquid ; in particular
the wake generated at the interface by an
object modelled by a pressure field. When an
object with constant speed moves atop the
surface, it generates a wake. The radiation of
these waves results in a loss of energy for the
operator putting the object in motion, which
results in a resultant force opposite to the
motion called the wave resistance, calculated
by the Havelock formula. In the stationary
regime, we propose here a demonstration of
the Havelock formula for any movement on
the surface. The wake and wave resistance are
also studied using elastohydrodynamic
coupling at the surface. We then model the
waves generated by a water strider during its
propulsion phase.

In the second part, we propose a model of
cooperative strings inspired by the empirical
law of Adam and Gibbs for the glass transition.
This model allows us to study glass

transition anomalies in a confined environment,
in particular the reduction of glass transition
temperature in thin films and nanoparticles of
polystyrenes. Finally, we consider

calculations of chain statistics in confined
environments and their exact dependencies on
molecular weight.

Keywords

Thin films , glass transition, water waves, wave
resistance.
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