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9.9 Résumé substanciel de la thèse en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

9



10



11 
 

 

 

 

Chapter 1: 

Introduction 

  



12 
 

 



1.1 Microbial ecology as a discipline

The term “ecosystem” was coined in 1935 by the botanist Tansley; its most consensual acceptation designates

the set of all the individuals (also called community, or biocenosis) living in a delimited environment called

“biotope”. Microbial ecology is then the study of a microbial community, and the interactions between its70

members and with its biotope. The origin of this disciplin can be traced back to the work of the microbiologist

Winogradsky, starting in the late XIXth century. Indeed he formulated what is now envisioned as microbial ecology

problems, by emphasizing the in-situ study of microbes and their relationship with their geochemical environment

(Zavarzin, 2006). However, the development of this discipline was hindered by a technical deadlock until the end

of the XXth century; culture was the only way to study microorganisms. Although some coculture experiments run75

in this context led to insights regarding species interactions (such as the formulation of the competitive exclusion

principle (Gause, 1934)), microbiology mainly studied microbes under the perspective of pure culture.

The development of metagenomics approaches at the very end of the XXth century totally changed this

persective. It was observed that populations in microbial communities interacts in ways comparable as those

observed in macrobiology; competition for resources, predation, parasitism and mututalism occur (Little et al.,80

2008). Moreover, while unicellular organisms have initially been thought of as individualistic and disorganized, high

levels of self-organization have also been evidenced through inter and intra specie interactions. Indeed, multiple

observations shows that a microbe collective can self-organize, thus making large scale patterns to emerge to the

point their behavior have been compared to this of a multicellular organism (Velicer et al., 1998; Velicer, 2003;

Jacob et al., 2004; Gloag et al., 2015). To summarise, those observations suggest that microbes can assemble into85

complex communities harboring interactions already described in macrobial community ecology. Those similarities

foster the use of tools and concepts developed for macrobial ecology in microbial ecology.

However microbial communities also carry specificies which make it a field distinct from its macrobial coun-

terpart. A list of differences between microbes and macrobes which are expected to impact community assembly

is given by Nemergut and collaborators. This list includes the higher dispersal potential of microbes, the (poten-90

tially) vast genetic reservoir induced by their ability to stay dormant for long time periods, their important genetic

plasticity. This latter feature implies that microbes are able to share genetic material even with distantly related
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kins, and also to adapt their metabolism to adapt to their environment far more easily than most macrobes could

(Nemergut et al., 2013).

The study of microbial ecology is particularly relevant in multiple regards; the understanding of the behavior95

of biogeochemical fluxes in the environment, the understanding of the dynamics of human-associated microbiota

such as this of the intestinal tract, and the improvement of industrial processes based on microbial communities.

The work undertaken during this thesis particularly focuses on the latter.

1.2 The role of microbes in the geochemical fluxes

Microbial communities plays a crucial role in the regulation of biogeochemical processes, literally controlling100

the habitability conditions of the earth (Falkowski et al., 2008; Rousk and Bengtson, 2014; Treseder et al., 2012).

It has been estimated that the quantity of carbon stored in microorganisms correspond to 60-100% of this stored

in plant biomass, and prokaryotes are estimated to constitute by far the largest pool of nitrogen and phosphorus

of the biosphere (Whitman et al., 1998).

The fact that microorganisms modify their environment and that such phenomena is important at a global scale105

has also been intuited long before it could be measured, by microbiologists such as Winogradsky (Zavarzin, 2006)

or Baas Becking (De Wit and Bouvier, 2006). Most of microbes are growing by carrying out redox reactions. While

every living organisms community performs biochemical interactions with its environment, microbes are performing

chemical interactions in the most direct way (even sometimes interacting directly with electrons (Strycharz-Glaven

et al., 2011)). Therefore the functional and taxonomic structure of a microbial community is directly influenced,110

and directly influencing, the physicochemistry of its environment. Moreover, the microbes consitutes an important

part of the total biosphere.

The human population recently realized that its own influence on earth’s geochemical cycles may impede the

development of its future generations (Griggs et al., 2013). The study of the interactions between microbes and

their environment is then of paramount importance for the sustainable evolution of the biosphere.115
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1.3 The use of microbial ecosystems in bioprocesses

Microbial ecosystems being ubiquitous, they have been serendipituously used by humankind to perform bio-

chemical transformations since at least the neolithic. Indeed, the chemical analysis of potteries estimated to date

from 7000 years B.C. revealed they contained a mixed fermented beverage of rice, honey and fruit. (McGovern

et al., 2004). The first unicellular organisms have been described during the XVIIth century by van Leeuwenhoek120

and naturalists such as Swammerdam, however, the meaning to give to these observations, the notion of cell, and

the actual relevance of the study of biology at microscopic level was debatted until the XIXth century. At that

time, vitalism progressively became obsolete, industrial processes actually involving microbes gradually became

perceived as such, and the transformations carried out by microbes became perceived as chemical reactions. Some

important events marking this paradigm shift in biology are the synthesis of urea by Wöhler in 1828, the discovery125

of the first enzyme (diastase) by Payen and Perzoz in 1833, and the dispelling of spontaneous generation by

Pasteur’s swan-necked bottles experiment in 1859.

The main industrial bioprocesses relying on a community of microbes are wastewater treatment and anaerobic

digestion. Other examples of bioprocesses are related to food industry, such as the production of wine, beer,

cheese and vinegar, and the production of fodder through silaging. Another non-food related industrial use of130

fermentation is the exploitation of the acetone-butanol-ethanol metabolic pathway (Moon et al., 2016). This

specific fermentation has been used to produce acetone until world war II when petrochemistry-based acetone

production became cheaper. The possibilities offered by microbial ecosystems engineering also goes beyond the

improvement of the current bioprocesses; the use of this discipline is also envisioned as a mean to cure microbiota-

related diseases (Shen et al., 2015) or to depollute an environment (Crawford and Crawford, 1996).135

Many bioprocesses tend to use pure culture or low diversity cultures of microbes, because it makes the process

more controlable. However in some cases the sterility of the process cannot be assured at viable costs; mixed

culture then appears as an attractive solution despite its complexity (Kleerebezem and van Loosdrecht, 2007).

This is notably the case with wastewater treatment and anaerobic digestion, where the input is non-sterile. In this

case, diverse microbial ecosystems have to be used.140

15



1.4 Addressing the technical deadlock on microbial community engi-

neering

The development of novel technologies based on mixed microbial cultures, as well as the improvement of existing

bioprocesses, is currently uneasy because of the lack of a solid theoretical basis to understand and predict the

trajectories of microbial communities. All the models used to predict the behavior of a microbial community (such145

as ADM1 (Batstone, 2001)) are based on empirical equations calibrated after years of experiments. Moreover, those

models do not provide knowledges useful to the modelling of other bioprocesses. Consequently the development

of new bioprocesses, or the modification of existing ones, requires experimental work costly in time, money and

engineering effort.

On the other hand, products such as cheese or beer have been consistently reproduced from rudimentary and150

varied material, with few to none microbiological knowledge. This observation evidences that environmental factors

(such as temperature and concentrations) exert an important constraint on microbial communities’ structure.

Evidences of the deterministic effect of environmental factors, and more specifically physicochemical factors,

on the communities’ expressed functions, can also be found in natural environments. Indeed, remarkable spatial

structuration patterns of microbial communities have been explained by thermodynamics in the case of Winograd-155

sky columns (Zavarzin, 2006), aquifers (Chapelle and Lovley, 1992) and lake hypolimnia (Boehrer and Schultze,

2008; Müller et al., 2012). The aforementioned cases feature ecological successions reflecting a gradient of avail-

able energy in the environment, this is also called a “redox tower”. Even in the absence of an obvious gradient,

recent studies evidenced that physicochemical factors have a deterministic influence on the functional structure

(Louca et al., 2016b,a; Louca and Doebeli, 2017). Those results are in line with other results showing microbial160

communities’ functional stability over taxonomic unstability (Fernandez et al., 2000; Burke et al., 2011). These

results suggest that the functional structure of microbial communities is more sensitive to selection and less sensi-

tive to invasion processes when compared to the taxonomic structure. Those evidences lead some authors to argue

that functions may be a descriptive unit more relevant than taxon in the search for generic principles explaining

microbial community structuration (Burke et al., 2011; Louca et al., 2016b; Lemanceau et al., 2017).165

Thermochemistry, which is the study of energy transfers in chemical systems, then appears as a good starting
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point in the search for generic organisational principles in microbial functional communities’ structuration.

1.5 The emergence of microbial thermodynamics

In 1960, Bauchop and Elsden suggested that since microbial growth was constrained by thermodynamics, the

study of its energetics could lead to an effective method to predict growth yields (Bauchop and Elsden, 1960).170

This fostered two decades of attempts to empirically correlate growth yield with physicochemical parameters of

metabolisms (Mayberry et al., 1967, 1968; Prochazka et al., 1970; Minkevich and Eroshin, 1973; Stouthamer, 1973;

Linton and Stephenson, 1978). Those attempts later cristallized in models accounting for growth energetics in order

to predict growth yields and rates. This emerging field will later be referred to as “microbial thermodynamics”.

These are presented in the bibliography review of this thesis (chapter 2), in order to provide the reader with a firm175

grasp on the state of the art in microbial thermodynamics. This review is then concluded by a presentation of the

objectives of the thesis (last section of chapter 2).

1.6 Objectives and organization of this memoir

The work undertaken during this thesis is purposed at improving the current theoretical knowledge on microbial

ecosystem structuration. It is done by studying the capability of a model, the Microbial Transition State (MTS)180

model (Desmond-Le Quéméner and Bouchez, 2014; Wade et al., 2016).

This model has been used during this thesis to simulate the growth of multiple microbial populations catalyzing

different metabolisms to test to which extent the theory behind the MTS model is able to explain the functional

structuration of microbial communities.

The next chapter is the bibliography review of this memoir. It is followed by the materials and methods,185

which describe the implemention details of the MTS model. Then two articles based on predictions made with

the model are presented. The first article is a demonstration of trophic and ecological patterns predictable by

the MTS model through increasingly complex implementations. The second papers features an implementation

of a microbial community related to a bioprocess (activated sludge), along with the calibration of the model’s

parameters from experimental data. The third article leverages on a body of experimental data collected from190
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the literature to question the link between the growth yield and physicochemical properties of the metabolisms.

The final chapter is a general discussion which summarises what insight has been earned on the structuration

of microbial communities and which further developments are required to step forward in the development of

microbial community engineering.
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This chapter is the bibliography synthesis of the memoir. It corresponds to a bibliography review made at 

the invitation of the FEMS Microbiology Ecology journal. The purpose of this review is to introduce some 

of the models proposed to describe the role of energy in microbial growth. This review focuses on 

models predicting growth yields and dynamics at population scale. 

The review is split into two parts; the first part concerns the growth yield prediction models, which make 

predictions about the energy balance of microbial growth and do not provide a formulation for dynamic 

variables such as growth rate. The second part concerns population dynamics models, which express 

dynamic variables (such as the growth rate) from energy-based considerations on microbial growth. 

As a chapter of this memoir, this review presents the MTS model in the context of other microbial 

thermodynamics models. Firstly, this helps to understand the relevance of the contribution of the MTS 

theory to the field of microbial thermodynamics, as the properties of the MTS theory in terms of 

population dynamics prediction are studied in the chapter 4 and 5 of this memoir. Secondly, this 

emphasizes the contribution of previous models to the implementations of the MTS model used in this 

memoir. Indeed, since the MTS theory, in itself, does not define some variable (dissipated energy) 

required to close the energy balance of growth, it borrows an empirical expression allowing to compute 

this variable from a previous model (Heijnen’s energy dissipation model, introduced in this chapter). The 

calibration of a new empirical relationship to close the energy balance of microbial growth is attempted 

in chapter 6.  
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Abstract 

Energy plays a key role in microbial community dynamics and structure, as illustrated by the commonly 

called “redox towers” of microbial metabolism observed in numerous engineered or natural ecosystems 

such as aquifers. This article presents and discusses how the influence of chemical energy is captured in 

microbial growth models. On one hand, it is now firmly established from thermodynamic balance 

analysis of microbial growth that energy constraints largely determine microbial growth yields. Not 

surprisingly, microbes have to comply with physical rules, and we present methods that enable accurate 

prediction of the growth yields of microbial cultures solely based on the thermodynamic properties of 

redox reactions. On the other hand, flux-force relationships in microbial growth are still under debate. 

We review the different approaches currently available, including a recently proposed dynamic growth 

theory -the microbial transition state (MTS) theory- in which microbial dynamics and stoichiometry are 

intrinsically derived from the dissipation of energy gradients. The review ends by identifying prospects 

for the development of microbial thermodynamics. 
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Introduction 

Microbial communities are ubiquitous and play a crucial role in the regulation of biogeochemical 

processes, literally controlling habitability conditions on earth (Falkowski et al 2008). Moreover, they are 

used in many bioprocesses such as wastewater treatment and many food production processes. Despite 

their importance, studies on microbial growth communities only recently gained momentum, with the 

development of molecular microbial ecology methods in the late 1990s, which made possible to study 

microbial communities in situ. It was observed that the populations in microbial communities interact in 

ways that are comparable to those observed in macrobiology, including competition for resources, 

predation, mutualism (Little et al 2008). However microbial communities also have specificities that 

make the field distinct from its macrobial counterpart, including higher dispersal of individuals and 

important genetic plasticity (Nemergut et al 2013). 

Before the study of microbial communities took off, models were designed predicting their mass balance 

and kinetics, notably for the use of mixed culture waste management bioprocesses (Activated Sludge 

Model (Henze et al 1987, Henze et al 2000), Anaerobic Digester Model 1 (Batstone et al 2001)). They use 

an approach similar to the study of pure cultures, where the dependency between the system’s variables 

(biomass, growth rate as a function of substrate concentration etc.) is captured in the parameters of 

empirical equations calibrated from observations. However, a model designed using such an approach is 

only to a limited extend applicable if the culture conditions differ from those in which the model was 

calibrated. Moving outside the calibrated area of the model may result in a complete change in microbial 

community structure and corresponding stoichiometric and kinetic properties. Notably, the calibration of 

the biomass composition may be a key limitation.  Indeed, the ecological structure reproduced by such 

models is the consequence of expert knowledge implemented into it, but does not emerge from the 

model itself. In fact, the mechanistic approach to modelling microbial communities is not very advanced 
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as ecology in general did not yield many generic rules, to the point that its ability as a discipline to 

produce such rules has been called into question (Lawton 1999). 

These engineering models do not aim at providing a theory in which invariants of microbial community 

structure can be formulated. Consequently, such theory is still lacking. Meanwhile, the amount of data 

that can be collected from the study of microbial communities is increasing exponentially (Nature 

Methods Editorial 2009). To quote Henry Poincarré; “Science is built up with facts, as a house is with 

stones. But a collection of facts is no more a science than a heap of stones is a house”. Microbial ecology 

as a science has indeed reached a stage at which a firmer theoretical footing is needed to integrate its 

numerous observations into a coherent picture. 

One reason for the apparent lack of generic rules in microbial community structure is the use of taxon as 

the descriptive unit for microbial communities. Indeed, multiple experimental reports provide evidence 

that microbial communities have stable functions despite an unstable taxonomic profile (Burke et al 

2011, Fernández et al 1999, Huttenhower et al 2012). Moreover, experimental observations suggest that 

physicochemical factors (pH, temperature, salinity etc.) exert a determining influence on the functional 

structure of microbial communities (Louca et al 2016a, Louca et al 2016b, Raes et al 2011). According to 

those results, the functional structure is more sensitive to selection and less sensitive to invasion than 

the taxonomic structure.  

Thermochemistry appears to be a good starting point to build a theoretical framework to integrate 

generic assembly rules for microbial communities. Indeed, thermochemistry makes it possible to model 

the influence of physicochemical factors on growth. While the above-mentioned results were obtained 

using metagenomics, for decades, remarkable spatial patterns of microbial communities have been 

explained by thermodynamics (like Winogradsky columns (Zavarzin 2006) or aquifers (Chapelle and 

Lovley 1992)). From the 1960s on, the observation of invariants in the structure of microbial community 
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encouraged the development of models linking variables such as growth rate and yield to 

physicochemical factors (Bauchop and Elsden 1960, McCarty 1965). Since then, thermodynamic theories 

of microbial growth have been published in a somewhat disseminated fashion. The ensuing problems of 

redundancy, notation mismatch and internal inconsistency (Heijnen and Dijken 1991) make it hard to 

draw a clear map of the existing theories on the subject. 

The aim of this review is consequently to provide a clear map of the discipline, hereafter referred to as 

“microbial thermodynamics”. We focus on models intended to enable conclusions to be drawn at 

population scale, although models also exist at the intracellular scale (González-Cabaleiro et al. 2013), 

and also at the scale of whole ecosystems (Ludovisi 2009, Odum 1969, Svirezhev 2004). In next section, 

we present the classical differential equation framework to model microbial population growth, along 

with ideas concerning the formalization of microbial metabolism. In the following section, we review 

models intended to predict microbial growth yield by accounting for the energy and matter balance in 

growth. We then present models that apply thermodynamic considerations for the prediction of 

microbial population growth dynamics. 

1. The framework used to describe the model 

Each microbial thermodynamic model introduced its own semantics and concepts. In order link the 

models and hence to present the state of the art of this field in a unified overview, in this section, we 

introduce semantic and mathematic conventions used to present the models in the two following 

sections.  

Symbol Meaning 

𝑌𝑖/𝑗
𝑟  

Stoichiometric coefficient of reagent 𝑖 in reaction 𝑟, expressed as moli.molj
-1. “/j” is optional 

and denotes the normalization of the coefficient  



26 
 

𝑌𝑖/𝑗
𝑟 = 1 𝑌𝑗/𝑖

𝑟⁄ . For example, 𝑌𝑋/𝑆
𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚 is the stoichiometric coefficient of biomass X in the 

metabolic reaction, expressed per mole of substrate S, in other word, the growth yield on 

substrate S. 

𝑌𝑟 Vector of stoichiometric coefficients for all the reagents of reaction r 

Δ𝐺𝑟
0 

Gibbs energy change of reaction 𝑟 in standard conditions (temperature of 298 K, pressure of 1 

hPa and concentration of 1 M for all solute reagents and 1 bar for all gasses) 

Δ𝐺𝑟
0′ Gibbs energy change of reaction 𝑟 in standard conditions except that [H+] = 1e-7 M 

Δ𝐺𝑟 Gibbs energy change of reaction 𝑟 in non-standard conditions 

𝑚𝐺 Energy flow to fulfill the maintenance cost for growth (kJ.C-molbiomass.hour-1) 

𝑚𝑖 Flow of chemical species 𝑖 to fulfill the maintenance cost for growth (moli. biomass.hour-1)  

𝑞𝑖 Absorption rate of chemical species 𝑖 by a microbial population 

𝛾𝑖  Reduction degree of chemical species 𝑖 using CO2, NH4+1 and H2O as reference state for C, N, 

and O respectively (
4∙𝐶+1∙𝐻−2∙𝑂−3∙𝑁−𝑐ℎ𝑎𝑟𝑔𝑒

𝐶
) (mole.C-moli

-1). If the specie 𝑖 has no carbon, the 

denominator is 1 

𝜇 Specific growth rate of a population (time-1) 

 

As an illustration, we use an ‘aerobic glucosotroph population’, consuming glucose as its sole carboneous 

substrate. Such an idealized set of cells treated as a single population and identified by their catalytic 

activity is called a ‘guild’. Examples of such calculations are provided in indented, italicized paragraphs 

throughout the descriptions of the models. 

1.1. Stoichiometric formulation of the metabolism 

Most microbial growth models that account for thermodynamic effects require balancing energy and 

matter exchanges during metabolic reactions. It is usually assumed that cell activity can be reduced to 
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anabolism (biomass synthesis), maintenance and catabolism, whose purpose is to fulfill the energy 

requirement of the former two processes. Cells are then visualized as “energy converters”, capturing 

chemical energy from their environment and transforming it into biomass. The estimation of the energy 

involved in anabolism and catabolism is made possible by reducing them to chemical reactions with 

explicit stoichiometry, whereas maintenance generally does not require a specific chemical reaction, but 

is simply assumed to be fulfilled by some part of the catabolism’s energy. 

Basically any exergonic chemical reaction can be considered as a possible catabolic reaction. However, 

catabolic reactions of respiratory metabolisms are usually considered as electron transfer between a 

donor D and an acceptor A. Such reactions can then be built easily by combining pre-computed electron 

donation and acceptance reactions.  

For example, the catabolic reaction of the glucosotroph population can be devised by combining 

electron donation by glucose (-1 C6H12O6 -6 H2O +6 CO2 +24 H+ + 24 e-) with electron acceptance by 

oxygen (-4 e- -1 O2 -4 H+ + 2 H2O), which gives:  

-6 O2 -1 C6H12O6 +6 H+ +6 CO2
- (ΔG0’cat

 = -2917.8 kJ.molD
-1) 1 

The negative stoichiometric coefficients denote the species consumed while the positive ones denote 

the species produced. Here the reaction has been normalized per mole of donor; however the chemical 

species used for normalization is a convention specific to each model.  

In order to represent anabolism as a single reaction, most microbial thermodynamic models use a 

fictional generic “biomass molecule”, traditionally denoted “X”, as proxy for the variety of molecules of 

which the biomass is actually made. Examples of the biomass molecules used in the models described 

below are: 
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- C1H1.4O0.4N0.2 (C5H7O2N): mean composition of a mixed microbial culture growing on dairy waste 

(Hoover et al 1953). Widely used in bioprocess modeling (such as in ASM (Henze et al 1987)), and 

also in microbial thermodynamics models such as McCarty’s (McCarty 1965) (reviewed below). 

Its Gibbs energy of formation is estimated at 18.8 kJ.mol-1. 

- C1H1.8O0.5N0.2: mean composition of multiple biomass formulas compiled from the literature 

(Minkevich and Eroshin 1973). Used in Heijnen’s model (Heijnen et al 1992) (described below). 

Its Gibbs energy of formation is estimated at -67 kJ.mol-1. 

- C1H1.613O0.557N0.158: composition of a pure culture of Saccharomyces cerevisiae (Battley et al 

1997). Its Gibbs energy of formation was directly measured by calorimetry as -82.16 kJ.mol-1. 

The models described in detail below use different methods to build the anabolic reaction.  

As a simple example, if we consider C1H1.8O0.5N0.2 biomass, and that the glucosotroph population 

uses glucose as carbon source and ammonium as nitrogen source to synthesize biomass, its 

anabolic reaction can be devised as:  

-0.175 C6H12O6 -0.2 NH4
+ +0.05 CO2 +0.2 H+ + 0.45 H2O +1 C1H1.8O0.5N0.2 (ΔG0’an = 24.18 kJ.molX

-1) 2 

 

It is worth noting that a detailed model of anabolism was recently proposed (LaRowe and Amend 2016).  

Assuming that metabolism consists only in those two reactions, let us define the vector 𝑌𝑚𝑒𝑡 of the 

stoichiometric coefficients of the overall metabolic reaction, as being a linear combination of the vectors 

of catabolic and anabolic reaction; 𝑌𝑐𝑎𝑡 and 𝑌𝑎𝑛. The coefficients of this linear combination will be one 

crucial point of divergence between the models presented in the following subsection. 
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1.2. Conventions in microbial population kinetics 

Since the 1950s, microbial population dynamics has often been modeled as an ordinary differential 

equation (ODE) system formulated as: 

{

𝑋̇ = 𝑋 ⋅ 𝜇(⋅)

𝑆̇ = −
1

𝑌𝑋/𝑆
⋅ 𝑋 ⋅ 𝜇(⋅)

 3 

where 𝑋 is the biomass concentration, 𝑆 the substrate concentration, 𝜇(⋅) any biomass specific growth 

rate function and 𝑌𝑋/𝑆 the growth yield, expressed in units of X produced per unit of S consumed. In 

order to account for the concept of microbial maintenance (Herbert and Elsworth 1956); (Pirt 1965); (Pirt 

1982), the system known as the “Herbert-Pirt” growth model is expressed as: 

{
  
 

  
 𝑞𝑆 = 𝑞𝑆

𝑚𝑎𝑥
𝑆

𝐾𝑆 + 𝑆
=

1

𝑌𝑋/𝑆
⋅ 𝜇 + 𝑚𝑆

𝜇 = 𝑌𝑆/𝑋(𝑞𝑆 −𝑚𝑆)

𝑋̇ = 𝑋 ⋅ 𝜇

𝑆̇ = −
1

𝑌𝑋/𝑆
⋅ 𝑋 ⋅ 𝜇

 4 

where 𝑚𝑆 is the flow rate of S needed for maintenance (positive), 𝑞𝑆 the biomass specific absorption 

rate of S (positive) and 𝑌𝑋/𝑆
𝑚𝑎𝑥 the maximum growth yield, that is, the value of 𝑌𝑋/𝑆 if 𝑚𝑆 = 0. Here it is 

assumed that the relationship between 𝑆 and 𝑞𝑆 follows Monod’s law, but any other growth law could 

have been used. Interestingly, if the substrate concentration S is lower than 
𝑚𝑆⋅𝐾𝑆

𝑞𝑆
𝑚𝑎𝑥−𝑚𝑆

, the growth rate μ 

becomes negative, which  reverses the direction of the growth reaction. 

Microbial population growth models that account for thermodynamics often fall into this ODE 

framework and amount to providing an energy-dependent expression of 𝑌𝑆/𝑋, 𝑞𝑆 and/or 𝑚𝑆. 
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2. Thermodynamic prediction of microbial growth yield 

2.1. TEEM model 

The thermodynamic electron equivalent model (TEEM) developed by McCarty is the earliest model to 

link the yields of microbial populations to thermodynamic variables. Its first formulation (retrospectively 

called TEEM1) dates back to 1965 (McCarty 1965), while its most recent version (called TEEM2) dates 

from 2001 (McCarty 2007). This model was intended to be applied to microbial bioprocesses such as 

activated sludge. It has also been used in an individual-based model to study denitrifying pathways 

(Araujo et al 2015, Araujo et al 2016), and coupled with chemical speciation computations to predict 

equilibria in biogeochemical systems (Istok et al 2010). 

The TEEM model normalizes metabolic reactions per electron transferred; so they are said to be 

expressed in electron-equivalent (eeq), hence the name of the model. Reactions involved in the TEEM 

model are graphically illustrated in figure 1a.  

Using our previously defined glucosotroph population as an illustration, its catabolic reaction 

(called “R”) can be formulated by combining electron donation and acceptance “d” and “a”; 

d: - 1 4⁄  CO2- 1 H+ -1 e- +1 24⁄  C6H12O6 +1 4⁄  H2O
 (ΔG0’d = 38.83 kJ.eeq-1) 5 

 

a: -1 4⁄  O2 - 1 H+ - 1 e- +1 2⁄   H2O (ΔG0’a = -78.72 kJ.eeq-1) 6 

(Conventionally, both “d” and “a” are expressed as reduction reactions) 

R= a - d: -1 4⁄  O2 -1 24⁄   C6H12O6  +1 4⁄   CO2 (ΔG0’R = -117.55 kJ.eeq-1) 7 

The R reaction is assumed to provide energy to the anabolism with a constant “energy transfer 

efficiency” ϵ, which is the proportion of ΔGR used in anabolism, while the other portion is used for 
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maintenance or dissipated out of the biomass. By comparing the model with experimental yield 

measurements in both aerobic and anaerobic metabolisms, McCarty and collaborators estimated ϵ to lie 

between 0.37 and 0.39 for heterotroph metabolisms, and between 0.5 and 0.6 for autotrophs and 

anaerobic denitrifiers (McCarty 2007). Support for the value interval for heterotrophs was later provided 

by another study involving 123 experimental yield measurements on 38 different metabolisms (Roden 

and Jin 2011). 

In the TEEM model, the anabolic reaction (called “S”) is formulated as the sum of two sub-reactions; “S = 

IC + PC”. The “IC” reaction is the conversion of the carbon source into an intermediary component (IC), 

while the “PC” (pyruvate to cell) reaction is the conversion of the intermediary component into the 

biomass molecule. The IC reaction is formulated as “in – d” where “in” is the half-reaction of reduction of 

the intermediate compound. The intermediary molecule is chosen as a central molecule in any cell 

metabolic network; in the first version of the TEEM model, pyruvate (ΔG0’in = 35.09 kJ.eeq-1) was 

considered, later acetyl-coA (ΔG0’in = 30.9 kJ.eeq-1) was used instead, to increase theoretical accuracy 

rather than to improve prediction (McCarty 2007). 

Concerning the glucosotroph population, we then have ΔG0’IC = 30.9 -38.83 = -7.93 kJ.eeq-1. 

The ΔG0’PC only depends on the intermediary component and on the biomass molecule considered. 

Considering acetyl-coA as intermediary component and C5H7O2N as biomass, we have 

ΔG0’PC = 18.8 kJ.eeq-1(the reduction degree of the intermediary component must be the same as this of 

biomass for this relation to be valid) (McCarty 2007). 
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Figure 1: Graphical illustration of some concepts of the TEEM model. a) graphical description of reactions involved in 

McCarty’s model. “D” stands for electron donor, “A” for electron acceptor, “ic” for intermediary compound “pc” for 

“pyruvate to cell”, “ACo” for acetylCoA and “X” for biomass. Squares denote oxidized molecules while circles denote reduced 

molecules. b)  Illustration of the energy transfers from the catabolic reaction “R” to the anabolic reactions (“IC” and “PC”) in 

the two different anabolism configurations according to the TEEM model. If IC is endergonic, the R reaction fuels both IC and 

PC, and if IC is exergonic, both IC and R fuel the PC reaction. 

The point in calculating sub-reactions of S in the TEEM model is that the expression of ΔGS depends on 

the sign of the Gibbs energy change associated with the IC reaction, as illustrated by figure 1b; if it is 

positive (endergonic reaction) then the catabolic reaction (R) provides energy for both the IC and the PC 

reaction. However, if it is negative (exergonic reaction), it provides energy for the PC reaction, along with 

R, with an efficiency of ϵ. The Gibbs energy change of anabolism S is then expressed as: 

{
∆𝐺𝑆 =

∆𝐺𝐼𝐶 + ∆𝐺𝑃𝐶
𝜖

𝑖𝑓∆𝐺𝐼𝐶 > 0

∆𝐺𝑆 = 𝜖∆𝐺𝐼𝐶 +
∆𝐺𝑃𝐶
𝜖

𝑖𝑓∆𝐺𝐼𝐶 < 0

 8 
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Following this scheme, supplementary refinements of the TEEM2 broke the anabolic reaction down into 

sub-reactions for metabolisms involving oxygenase or single-carbon organic compounds in order to 

improve the predictive accuracy of the model. VanBriesen and Rittman developed another extension to 

take intermediate metabolites into account in the model (VanBriesen and Rittmann 2000). As the TEEM 

model uses electron transfer as a unit and improves its predictive power by further detailing the 

description of the metabolic pathways. It can be used to investigate the effect of the structure of 

metabolic pathways on microbial growth yield, but requires biochemical knowledge and therewith 

cannot be regarded as a black box model anymore. 

As our glucosotroph population is a simple use case, it does not need such refinements. Assuming 

an efficiency ϵ of 0.39, ΔG0’S is 45.11 kJ.eeq-1. 

Once ΔGR, ΔGS and ϵ are known, we can compute the number A of times the R reaction must be 

performed for S to run once: 

𝐴 = −
∆𝐺𝑆
𝜖 ⋅ ∆𝐺𝑅

 9 

 

This value is 0.98 for the glucosotroph population under standard conditions and a pH of 7. 

 𝐴 represents the ratio of the proportion 𝑓𝑒
0 of electron donor channeled into catabolism over the 

proportion 𝑓𝑠
0 of electron donor channeled into biomass synthesis: 

𝐴 =
𝑓𝑒
0

𝑓𝑠
0 , 𝑓𝑠

0 =
1

1 + 𝐴
, 𝑓𝑒

0 =
𝐴

1 + 𝐴
, 𝑓𝑒

0 + 𝑓𝑠
0 = 1 10 
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The proportions 𝑓𝑒
0 and 𝑓𝑠

0are both proportions of electron equivalent (eeq) of the electron donor. This 

ratio varies as the energy per eeq depends on the metabolism considered.  

For glucosotrophs it is then 0.50 for fs
0 and 0.50 for fe

0, which means approximately one electron is 

transferred in the anabolic pathway for each electron transferred in the catabolic pathway. 

The growth yield YX/S (in molX.molD
-1) can be computed from the fS

0 proportion by multiplying it by the 

ratio of the degree of reduction of the electron donor and the biomass: 

𝑌𝑋/𝑆 = 𝑓𝑠
0 ⋅
𝛾𝐷
𝛾𝑋

 11 

 

The growth yield predicted for the glucosotroph population is then 0.5 ∙
4

5
= 0.4 molX.molD

-1, or 2.0 

C-molX.molD
-1 as this biomass has 5 carbons. 

This method is the same for both autotroph and heterotroph populations. 

While this energy-based method is successful at predicting the yield of many metabolisms (Roden and Jin 

2011), and is still used today, it has some intrinsic limitations, such as the need for intracellular 

information to model some metabolisms. Moreover, while the efficiency parameter ϵ was initially 

assumed to have the same value for every metabolism, this was later disproved by experimental 

observations (McCarty 2007). The model introduced in the following subsection is an alternative to the 

TEEM model, for which only the input and outputs of the cell need to be known. In this model, the 

relationship between dissipated energy (and therefore, implicitly, energy transfer efficiency) is linked to 

physicochemical properties of the metabolism. 



35 
 

2.2. Gibbs energy dissipation method 

In the early 1990s, Heijnen and collaborators reviewed many previous methods used to predict microbial 

growth yield and found that they could not be applied to all metabolisms as they had internal 

inconsistencies, or required knowledge about the way metabolism occurs inside the cells, or could work 

only for a small subset of all possible chemotrophic metabolisms. By analyzing various growth data on 

chemotrophic microbial cultures collected from the literature, the authors came to the conclusion that 

the Gibbs energy dissipated by the biomass produced is the most appropriated thermodynamic quantity 

to use to predict the yield of a microbial population, compared with previous approaches (see (Heijnen 

and Dijken 1991)) for an in-depth comparative review between those methods and the method 

developed by Heijnen and collaborators). 

The dissipated energy is the Gibbs energy change of an overall growth reaction (including anabolism and 

catabolism). If all the energy of catabolism was invested into anabolism, the overall Gibbs energy change 

would be zero. However, such reaction would not be spontaneous, as the Gibbs energy change being 

negative is the thermodynamic criterion of feasibility for a reaction. Consequently, some of the 

catabolism’s energy must be dissipated by the cell, for example as heat. 

Heijnen and collaborators concluded that the Gibbs energy dissipated per biomass produced mostly 

depends on the number of carbons and on the degree of reduction of the carbon source. This discovery 

led to a formulation of the energy balance of microbial growth based solely on the chemical definition of 

the metabolism catalyzed (Heijnen and Dijken 1991, Heijnen et al 1992, Heijnen 2010). Later, Liu and 

collaborators calibrated a more accurate relationship on a larger experimental dataset, based solely on 

the reduction degree 𝛾𝐷 of the electron donor (mole.C-molD
-1), and applicable to aerobic metabolisms: 
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{
∆𝐺𝑑𝑖𝑠 =

−666.2

𝛾𝐷
− 243.1 𝑖𝑓 (𝛾𝐷 ≤ 4.67)

∆𝐺𝑑𝑖𝑠 = −157 ∙ 𝛾𝐷 + 339 𝑖𝑓 (𝛾𝐷 > 4.67)
 12 

∆𝐺𝑑𝑖𝑠 is a negative value expressed in in kJ.C-molX
-1. 

 

Figure 2: Relationship between ΔGdis (dissipated energy per biomass produced) and the degree of reduction of the electron 

donor 

When applying this relation to the glucosotroph population, considering glucose as its carbon 

source, its ∆𝐺𝑑𝑖𝑠 is -409.65 kJ.C-molX
-1. 

The 𝜆 factor representing the number of times the catabolic reaction must run per anabolic reaction in 

order to close the energy balance of growth is then expressed as: 
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𝜆 =
∆𝐺𝑑𝑖𝑠 − Δ𝐺𝑎𝑛

ΔG𝑐𝑎𝑡
 13 

𝜆 is similar to the “𝐴” variable of the TEEM model described above, but using a different normalization. It 

can be used to adjust the stoichiometry of the overall growth reaction to fit the energy balance: 

𝑌𝑖/𝑋
𝑚𝑎𝑥 = 𝑌𝑖/𝑋

𝑎𝑛 + 𝜆 ⋅ 𝑌𝑖/𝐷
𝑐𝑎𝑡 14 

where 𝑌𝑖
𝑚𝑎𝑥 is the stoichiometric coefficient of reagent 𝑖 in an energy-balanced metabolism with zero 

maintenance. This relation holds true for both reagents and Gibbs energy; ∆𝐺𝑑𝑖𝑠 = Δ𝐺𝑎𝑛 + 𝜆 ⋅ ΔG𝑐𝑎𝑡, 

hence 

As an example, the 𝜆 factor of the glucosotroph population in standard conditions accounting for a 

pH of 7 would then be 
−409.65+24.18

−2917.8
= 0.132 molD.molX

-1. Knowing the stoichiometric coefficients of 

catabolism and anabolism, the growth yield of the glucosotroph population on glucose can be 

computed (
1

0.132+0.175
= 3.26 molX.molD

-1), along with the yield on any consumed species, such as 

the yield on oxygen (
1

0.132∙6
= 1.26 molX.molO2

-1). 

Heijnen and collaborators noted that their ∆𝐺𝑑𝑖𝑠 expression does not hold for some categories of 

autotrophs. Instead, they explain that when the electron donor used in autotrophic metabolism is 

thermodynamically strongly unfavorable (which holds true for electron donors like Fe+2, NH4
+ and NO2

-), 

the cell must invest energy in a process called “reverse electron transfer”. The upkeep of this process 

sets ∆𝐺𝑑𝑖𝑠 to -3500 kJ.molX
-1. The ∆𝐺𝑑𝑖𝑠 of the other types of autotroph microorganisms is deemed to be 

-986 kJ.molX
-1. Liu and collaborator also apply the same exception when using their own formula 

(equation 12). 
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Later, the experimental data collected by Heijnen and collaborators to draw their relation between the 

dissipated Gibbs energy and the characteristics of the carbon source of the metabolism was enriched by 

other authors who came to the conclusion that considering a dissipated energy per biomass produced of 

500 kJ.molX
-1 explains experimental results almost as well as using the previously defined relation 

(equation 12) (Liu et al 2007). While the two methods are formally different, it has been demonstrated 

that they mathematically boils down to very comparable calculations, and thus that the yields predicted 

from the dissipated energy and the TEEM approach have been shown to fit equally well on the sets of 

experimental data for various metabolisms (Kleerebezem and Van Loosdrecht 2010). 

In the next section we present dynamic thermodynamic growth models, including the kinetic extension 

of Heijnen’s model, where the maintenance energy requirements are taken into account.  

3. Dynamic thermodynamic models of microbial growth 

3.1. Heijnen’s dynamic model 

This dynamic model was proposed by Heijnen and collaborators in association with their work on the 

energy balance of microbial growth (Heijnen 2010) described in subsection 2.2. This model consists in 

using the energy dissipation model to compute the values of maximum growth yield 𝑌𝑋/𝑆
𝑚𝑎𝑥 (molX.molS

-1) 

and the maintenance flux 𝑚𝑆 (molS.molX
-1.hour-1) in the Herbert-Pirt model (see equation 4) so the 

microbial dynamics account for the energy balance. 

The description of the energy dissipation model in the subsection 2.2. provided an empirical formulation 

for 𝑌𝑋/𝑆
𝑚𝑎𝑥 based on the dissipated energy. In this subsection, we detail the computation of the 

maintenance substrate consumption rate 𝑚𝑆 and how all the terms are included in the Herbert-Pirt 

framework. 
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Heijnen and collaborators’ energy balance model states that the Gibbs energy change associated with 

the overall growth reaction ∆𝐺𝑜𝑔𝑟 (in kJ.molX
-1) equals the dissipated Gibbs energy of growth ∆𝐺𝑑𝑖𝑠 plus 

the maintenance energy 
𝑚𝐺

𝜇
 that depends on the growth rate 𝜇 of the population: 

∆𝐺𝑜𝑔𝑟 = ∆𝐺𝑑𝑖𝑠 +
𝑚𝐺

𝜇
 15 

where 𝑚𝐺 is the Gibbs energy flow required for maintenance in kJ.molX
-1.hour-1, and 𝜇 is the  growth rate 

of the population in molX.molX
-1.hour-1. 

Having calibrated their parameters on experimental data, Heijnen and collaborators consider that 𝑚𝐺 

follows an Arrhenius law, which means it only dependent on temperature, and equals on average -

4.5 kJ.molX
-1.hour-1 at 298 K. The rate 𝑚𝐷 of electron donor absorption for the purpose of maintenance 

(in molD.molX
-1.hour-1) can then be expressed as: 

𝑚𝐷 =
𝑚𝐺

∆𝐺𝑐𝑎𝑡
 16 

With ∆𝐺𝑐𝑎𝑡 in kJ.molD
-1. Applying this formula to compute the glucosotroph population’s 𝑚𝐷, we 

find
−4.5

−2917.8
= 1.54𝑒 − 3 molD.molX.hour-1. 

The default Herbert-Pirt ODE framework uses the empirical Monod growth formula to describe the link 

between the substrate concentration and its absorption rate. In addition, it proposes a way to estimate 

the upper limit of the substrate absorption rate (𝑞𝐷
𝑚𝑎𝑥) and the maximum growth rate (𝜇𝑚𝑎𝑥) required 

by this mathematical description of growth. Indeed, based on prior observations (Andersen and Von 

Meyenburg 1980), Heijnen and collaborators suggest that a maximum electron absorption rate exists 

𝑞𝑒
𝑚𝑎𝑥 (in molelectron.molX

-1.hour-1), which follows an Arrhenius law (𝑞𝑒
𝑚𝑎𝑥 = −3 ∙ (

−69∙103

𝑅
∙ (
1

𝑇
−

1

298
))) 
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and equals -3 molelectron.molX
-1.hour-1 at 298 K. This sets the maximum Gibbs energy absorption rate 

𝑞𝐺
𝑚𝑎𝑥: 

𝑞𝐺
𝑚𝑎𝑥 = 𝑞𝑒

𝑚𝑎𝑥 ∙
−∆𝐺𝑐𝑎𝑡
𝛾𝐷
∗  17 

where 𝛾𝐷
∗  is the number of electrons transferred during the catabolic reaction (in molelectron.molD

-1). In the 

case of a respiration, 𝛾𝐷
∗  is the degree of reduction of the electron donor multiplied by its number of 

carbon (if any). In the case of a fermentation it depends on the degree of reduction of the products. This 

consequently sets 𝜇𝑚𝑎𝑥 as: 

𝜇𝑚𝑎𝑥 =
𝑞𝐺
𝑚𝑎𝑥

∆𝐺𝑑𝑖𝑠 − ∆𝐺𝑎𝑛
 18 

where ∆𝐺𝑑𝑖𝑠 is the dissipated energy computed in equation 12 and finally this sets the maximum donor 

absorption rate as: 

𝑞𝐷
𝑚𝑎𝑥 = 𝑌𝐷/𝑋

𝑚𝑎𝑥 ∙ 𝜇𝑚𝑎𝑥 +𝑚𝐷 19 

In the case of the glucosotroph population,  𝑞𝐺
𝑚𝑎𝑥 = −3 ∙

2917.8

24
= −364.72 molD.molX

-1.hour-1, 

then 𝜇𝑚𝑎𝑥 =
−364.72

−409.65+24.18
= 0.95 hour-1, and finally 𝑞𝐷

𝑚𝑎𝑥 =
1

3.26
∙ 0.95 + 1.54𝑒 − 3 =

0.29 molD.molX.hour-1. 

The ∆𝐺𝑑𝑖𝑠 and 𝑚𝐷 terms can be used in Herbert-Pirt’s ODE system (equation 4): 
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{
 
 
 

 
 
 𝑞𝐷 = 𝑞𝐷

𝑚𝑎𝑥
[𝐷]

𝐾𝐷 + [𝐷]
=

1

𝑌𝑋/𝐷
𝑚𝑎𝑥 ⋅ 𝜇 +𝑚𝐷

𝜇 = 𝑌𝑋/𝐷
𝑚𝑎𝑥(𝑞𝐷 −𝑚𝐷)

[𝑋]̇ = [𝑋] ⋅ 𝜇

[𝐷]̇ = −
1

𝑌𝑋/𝐷
⋅ [𝑋] ⋅ 𝜇

 20 

(∆𝐺𝑑𝑖𝑠 is not directly included in the equation, but is used to compute 𝑌𝑋/𝐷
𝑚𝑎𝑥) 

To summarize, in this model, the growth rate of a population is expressed provided an estimation of the 

power of the population maintenance (in kJ.molX
-1.hour-1) and dissipation (both based on empirical 

fittings on experimental data) are available, and assuming a Monod relationship between the 

population’s energy source 𝐷 present in the environment and its absorption rate by the population. 

One advantage of this approach is that it makes it possible to simulate the dynamics of any chemical 

species included in the metabolic equations. 

The model was implemented with some extensions by González-Cabaleiro and collaborators to support 

the energy-based explanation of patterns observed in wastewater microbial communities (Gonzalez-

Cabaleiro et al 2015). González-Cabaleiro and collaborators devised all possible anaerobic metabolic 

reactions in wastewater, and then computed the growth yield and rate associated with those 

metabolisms using the method of Heijnen and collaborators described above with some modifications. 

The modifications consisted in computing the absorption rate 𝑞𝑆 of every chemical species 𝑆 that can be 

consumed and using the lowest 𝑞𝑆 in the expression of 𝜇. The purpose is to apply Liebig’s rule of the 

single limiting substrate (which states that, at any given instant of time, population growth is limited by 

the scarcest available resource). 

The approach proposed by Heijnen and collaborators only requires a description of the inputs and 

outputs of metabolism to predict microbial growth yield and growth rate, which means it defines 
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parameters that only characterize the growth process in terms of input and output. Since then, 

alternative approaches have been developed to model the influence of thermodynamics on microbial 

population dynamics. 

3.2. Equilibrium-based model 

The model proposed by Hoh and Cord-Ruwisch, named “equilibrium-based model” by its authors, 

associates enzyme kinetics modeling and thermodynamic considerations (Hoh and Cord-Ruwisch 1996). 

It does not comply with the “cell-as-energy-converter” presented in subsection 1.1. In particular, it does 

not consider an anabolic reaction and thus focuses on modeling catabolism. 

The authors make the assumption that the growth rate of a microbial population mostly depends on the 

kinetics of an enzyme-catalyzed reaction. Their reference to enzymology is based on a theoretical 

consideration of microbial growth, as opposed to Monod’s growth law, whose resemblance to enzyme 

kinetics is purely coincidental (Monod 1949). The forward rate 𝜈 of a product-inhibited enzyme-catalyzed 

reaction is known in enzymology (Haldane 1930) as:  

𝜈 =
𝜈𝑚𝑎𝑥 ⋅ (𝑆 −

𝑃
𝐾
)

𝑘𝑚(𝑆) + 𝑆 +
𝑘𝑚(𝑆)
𝑘𝑚(𝑃)

 21 

𝜈𝑚𝑎𝑥 being the maximum growth rate, 𝑘𝑚(𝑆) the affinity constant of the enzyme for the substrate, 𝑘𝑚(𝑃) 

the affinity constant of the enzyme for the product (for the reverse-reaction) and 𝐾 the equilibrium 

constant of the reaction. 𝐾 allows for the inclusion of thermodynamic considerations in this model as it 

can be linked to the Gibbs energy differential of the reaction through the following relationship: 

∆𝐺′ = 𝑅𝑇𝑙𝑛
𝛤

𝐾
 22 
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where ∆𝐺′ is the Gibbs energy differential of the reaction corrected for non-standard concentrations, 

and 𝛤 is the mass action ratio of the reaction. Therefore 
𝛤

𝐾
 expresses the distance of the reaction from 

equilibrium. The authors reformulate the growth rate as: 

𝜈 =
𝜈𝑚𝑎𝑥 ⋅ (𝑆 −

𝑃
𝐾)

𝑘𝑚(𝑆) + (𝑆 +
𝑃
𝐾)

 23 

 

The advantage of this formulation is that it explains the 
𝑃

𝐾
 threshold for the substrate concentration 𝑆 

above which (𝑆 −
𝑃

𝐾
) = 0, i.e. growth is thermodynamically impossible. In this model, this impossibility is 

caused by product inhibition, itself caused by departure from thermodynamic equilibrium. The existence 

of this non-zero concentration threshold for growth, while not captured by Monod’s growth law, is more 

in agreement with experimental observations (Kovarova-Kovar and Egli 1998). 

This model was used by Großkopf and Soyer (Großkopf and Soyer 2016) to provide a thermodynamic 

refutation of the competitive exclusion principle (two species that compete for the same limiting 

resource cannot coexist) (Gause 1934, Hardin 1960). In their article, the authors demonstrate that a 

model taking the thermodynamic effect of inhibition on microbial growth rate into account allows for 

the coexistence of multiple guilds in competition for the same substrate but that break down it into 

different end products. 

As a side note, the hypothesis that microbial growth rate is regulated by a single enzyme-catalyzing 

reaction is also implemented by another microbial thermodynamic model by Corkrey and collaborators 

(Corkrey et al 2012, Corkrey et al 2016). This model makes it possible to predict the temperature-

dependence of the growth rate of microorganisms from each life domain. 
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3.3. Jin and Bethke’s model 

In the 2000s, Jin and Bethke proposed an expression of the rate of microbial reactions based on a model 

of the microbe’s respiratory chain and nonlinear nonequilibrium thermodynamics (Jin and Bethke 2002, 

Jin and Bethke 2003, Jin and Bethke 2005). An adaptation of the model to fermentative metabolisms 

exists (Liu et al 2007) but is not detailed here. Similar to the “equilibrium-based model” presented in 

subsection 3.2., this model does not consider the “cell-as-energy-converter” paradigm but only models 

the catabolic reaction. 

The catabolic reaction is modeled as a combination of multiple, reversible sub-reactions, each one being 

able to occur multiple times independently from the others. The overall electron transfer reaction can be 

written similarly to those in the other models presented in this review. Let ΔGcat be its Gibbs energy 

change and 𝑛 the number of electrons transferred during the reaction. The reaction is coupled to the 

reaction of phosphorylation of ADP into ATP. The Gibbs energy change ΔGP of this reaction is assumed to 

be 50 kJ.mol-1 (Jin and Bethke 2005). Let 𝑚 be the ratio of ATP molecules produced per electron 

transferred during the overall electron transfer, the overall catabolic reaction is then: 

𝜈𝐷𝐷 + 𝜈𝐴𝐴 +𝑚 𝐴𝐷𝑃 +𝑚𝑃𝑖 ⇌ 𝜈𝐷+𝐷
+ + 𝜈𝐴−𝐴

− +𝑚 𝐴𝑇𝑃 24 

where 𝜈𝐷, 𝜈𝐴, 𝜈𝐷+ and 𝜈𝐴−  are the stoichiometric coefficients of the electron donor D, acceptor A, and 

their oxidized and reduced forms respectively. When implementing their model for simulations, the 

authors consider constant, guild-specific, calibrated values for 𝑚 (ranging from 1 4⁄  to 5 4⁄  molATP.molD
-1 

(Jin, Bethke et al. 2011)). However they admit that microbes are able to adjust the value of 𝑚 to a 

certain extent, which would modify their growth yield/rate ratio (Jin and Bethke 2003). 

The authors consider the “thermodynamic drive” of this reaction to be: 

 𝑓 = −Δ𝐺𝑐𝑎𝑡 −𝑚 ΔG𝑃 25 



45 
 

which is the inverse of the Gibbs energy change of this reaction. They then express the “thermodynamic 

potential factor” 𝐹𝑇 of the reaction as; 

𝐹𝑇 = 1 − 𝑒𝑥𝑝 (−
𝑓

𝜒𝑅𝑇
) 

26 

where 𝜒 is the “average stoichiometric number”, a factor between 1 and +∞ accounting for the 

repetition of individual electron transfer steps during the overall electron transfer reaction. The 𝐹𝑇 factor 

takes a value between -∞ and 1 (between 0 and 1 as long as Δ𝐺𝑐𝑎𝑡 < 0). Its sign indicates whether the 

respiration reaction is forward (+) or backward (-).  

The authors also define 𝐹𝐷 a kinetic factor accounting for the concentration of electron donors in their 

oxidized and reduced forms: 

𝐹𝐷 =
∏ [𝐷 𝐷]𝛽𝐷

∏ [𝐷 𝐷]𝛽𝐷 + 𝐾𝐷 ⋅ ∏ [𝐷𝑜 Do]𝛽Do
 27 

with 𝛽𝐷 and 𝛽𝐷+calibrated factors. They also define 𝐹𝐴, a kinetic factor accounting for the concentrations 

of electron acceptors, in the same way. 

The expression of the respiration rate 𝑟 of the microbial population is then ultimately linearly correlated 

with 𝐹𝑇 , 𝐹𝐴 and 𝐹𝐷; 

𝑟 = 𝑘 ∙ [𝑋] ∙ 𝐹𝐷 ∙ 𝐹𝐴 ∙ 𝐹𝑇  28 

where 𝑘 is a calibrated constant and [𝑋] is the biomass concentration.  

This model implies that some part of the energy produced by the electron transfer reaction is captured 

by the biomass as ATP (which covers cell synthesis and maintenance expenses), while the other part is 

(implicitly) dissipated and drives the catabolism. Interestingly, this model then implies a compromise 

between cell synthesis yield and rate, however the authors do not state whether metabolisms tend to 
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maximize growth yield, rate, or a compromise between both. Such tradeoff is also included in other 

models such as the one proposed by Kleerebezem and collaborators (cf box 1 of (Rodríguez et al 2008)). 

This model has notably been used to simulate the kinetics of catalytic activities and gene expression in 

denitrification by a mixed culture microbial community (Li et al 2017). 

The authors consider that the catabolism rate 𝑟 can be used to produce an expression of the growth rate 

of a population only when growth is “energy limited”. Indeed, this model does not provide an expression 

of the growth rate for a growth limited by a nutriment that is not related to catabolism (Jin and Bethke 

2003). The model presented in the following section results from a different approach and provides an 

expression of the growth rate encompassing energy-limitation and stoichiometric limitation. 

3.4. MTS theory 

In contrast to other kinetic models described in this review, the microbial transition state (MTS) model 

(Desmond-Le Quéméner and Bouchez 2014) derives a new growth rate formula as an alternative to the 

empirical Monod equation, from the “cell-as-energy-converter” hypothesis and a probabilistic reasoning 

about microbial division. This model is analogous to the classical transition state theory, hence its name 

(Eyring 1935) (Figure 3a). 

In this model, the cells are surrounded by a virtual “harvest volume” (𝑉𝐻, m3.molX
-1) in which the 

substrate is accessible to them. As pictured in figure 4a, the catabolic energy fuels the anabolic reaction 

and the dissipated energy (estimated using Heijnen’s model, see subsection 2.2.), so the stoichiometry of 

the metabolism is adjusted to close the energy balance using a 𝜆 factor, as in Heijnen’s model; 

𝑌𝑚𝑒𝑡 = 𝑌𝑎𝑛 + 𝜆 ∙ 𝑌𝑐𝑎𝑡 = 𝑌𝑎𝑛 +
∆𝐺𝑑𝑖𝑠−∆𝐺𝑎𝑛

∆𝐺𝑐𝑎𝑡
∙ 𝑌𝑐𝑎𝑡 (see subsection 2.2.).  

Considering a set (s1, s2, ... si) of substrates of known concentrations, cells and substrates as particles 

randomly positioned in the culture medium (Figure 3b), it is possible to compute the probability of 
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finding enough of each substrate in a harvest volume 𝑉𝐻. From this probability, the ratio 
𝑁‡

𝑁
 of cells that 

have enough of each substrate in their harvest volume to reach the "activated state", and thus to be able 

to divide, can be deduced and expressed as a function of the negative stoichiometric coefficient 𝑌𝑠𝑖
𝑚𝑒𝑡 of 

each substrate: 

𝑁‡

𝑁
=∏𝑒𝑥𝑝(

𝑌𝑆𝑖
𝑚𝑒𝑡

𝑉𝐻 ∙ [𝑆𝑖]
)

𝑖

 29 

where [𝑠] is the concentration of substrate s in mol.m-3. The growth rate of the biomass is deduced from 

this proportion of “activated” cells (i.e. ready for division): 

𝜇 = 𝜇𝑚𝑎𝑥 ⋅
𝑁‡

𝑁
= 𝜇𝑚𝑎𝑥 ⋅∏𝑒𝑥𝑝(

𝑌𝑆𝑖
𝑚𝑒𝑡

𝑉𝐻 ∙ [𝑆𝑖]
)

𝑖

 30 

where 𝜇𝑚𝑎𝑥 is a theoretical value in time-1, related to theoretical microscopic kinetics, and not related to 

Monod’s law as the latter aggregates many different phenomena to which a precise fundamental, 

physical meaning has not yet been attributed (Liu 2007). The growth rate generated by equation 30 

follows a response curve that differs slightly from that of Monod’s law, as shown in figure 4b. Indeed, its 

sinusoidal shape is more in line with experimental observations (Kovarova-Kovar and Egli 1998). 
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Figure 3 a) Graphical representation of microbial energy levels along division coordinates. Anabolic energy is augmented by 

the catabolic exergy within the harvesting volume symbolized as dots in a circle surrounding the microbe. When it reaches 

the threshold catabolic energy, the microbe is activated and an irreversible division process is triggered, associated with 

energy dissipation resulting in two microbes. b) Microbes in their culture environment, from the viewpoint of the MTS model. 

The different substrates are particles around the microbes and the microbes are surrounded by their harvesting volume, here 

symbolized as a black circle. 
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The λ factor (see equation 13) (and therefore the adjustment of the stoichiometry of the metabolism) 

varies dynamically. Thus the variations in concentrations during a dynamic simulation may affect the 

value of a guild’s yield (molX.molD-1) (though experimental investigations on Heijnen’s energy balance 

model suggest that this effect should be negligible (Kleerebezem and Van Loosdrecht 2008)), transcribing 

the thermodynamic effect of the rarefaction of substrate or the accumulation of product on the energy 

balance of growth. In the MTS approach, microbial dynamics are therefore intrinsically dependent and 

coupled to the elemental and energy balance of microbial growth (Figure 4a). 
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Figure 4: a) Visual representation of the cell-as-energy-converter model applied to the glucosotroph population. One portion 

of the energy ΔGcat generated by the catabolic reaction is fueled into the energy requirement of anabolism (ΔGan) while the 

remaining portion (ΔGdis) is dissipated. The stoichiometry of metabolism is adjusted using the λ factor resulting from this 

energy balance model. The adjusted stoichiometric factor of each consumed chemical species is then taken into account in 
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the growth function. b) Comparison between Monod’s growth rate function and the MTS growth rate function depending on 

the concentration of a single substrate. The Y axis represents the growth rate relative to the maximum growth rate (
𝝁

𝝁𝒎
) for 

both growth functions. (growth rate as a function of substrate concentration). 

Practical implementations of the MTS model show that while starting from a simple microscopic 

description of microbial division, this model qualitatively predicts phenomena observed at the scale of 

communities such as ecological successions in guild population densities and time (cf chapter 4). 

Conclusions and perspectives 

This bibliography review introduced some representative microbial population growth models based on 

thermodynamics. The models aim to capture the influence of energy on microbial growth. Figure 5 

shows the interconnection between the different aspects of microbial growth considered in the models 

presented. Multiple, possibly conflicting, explanations have been proposed for each relationship, as the 

actual mechanisms behind them are still not known. Investigation of the precise physical-chemical 

drivers of microbial growth will require careful experimentation. Hopefully, the comparison of 

thermodynamic growth models will produce precise hypotheses to guide such experiments. 

Figure 5 shows the remaining challenges to advancing our understanding of the energy dependency of 

microbial growth. They are detailed below. 
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Figure 5: Conceptual links between variables involved in the energy dependence of microbial growth. Each arrow denotes a 

relationship between two variables. Bibliographic references indicate models proposed to characterize the relationships. 

Concerning the relationship between the catabolic energy (ΔGcat) and the growth rate (µ), multiple 

models came with different explanations. Recent models generally consider that the relationship 

between ΔGcat and µ is non-linear. However they propose a variety of explanations to link those 

variables. For instance, the “equilibrium-based model” considers that the growth rate is limited by a 

single enzyme-catalyzed reaction, so the relationship ΔGcat and µ should depend on enzyme kinetics. As 

another instance, Jin and Bethke’s model describes a relationship between ΔGcat and µ from non-linear 

non-equilibrium thermodynamics applied to a description of the electron transport chain. All those 

models involve different aspects of microbial growth (enzymology and equilibria, non-equilibrium 

thermodynamics, statistical physics). They do not necessarily contradict each other as those phenomena 

may be simultaneously at play during growth. 

Regarding the relationship between growth yield and growth rate, many authors have reported that 

growth yield can vary and is often negatively correlated with growth rate (i.e. a high yield is generally 
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associated with a low growth rate, and vice versa). Many explanations have been proposed for this 

relationship (for a review see (Lele and G watve 2014)); one explanation is that microbial cells have some 

control over their metabolic efficiency. According to this explanation, dissipating more or less energy 

makes them adjust their yield/rate compromise. This allows them to develop strategies to adapt to their 

environment. The consequences of this hypothesis in terms of community structure were explored by 

Pfeiffer and collaborators (Pfeiffer et al 2001, Pfeiffer and Bonhoeffer 2002). According to this 

hypothesis, equilibria between multiple guilds can be expressed in terms of game theory, which adds 

subtleties to community structure. Comparatively, simulations of thermodynamic microbial growth 

models that do not allow such adaptation only reproduce competitive exclusion and the ensuing “redox 

tower”, and fail to capture mutualistic relationships (Bethke et al 2011). However, most thermodynamic 

models used to predict growth yield (such as the TEEM model and Heijnen’s dissipation model presented 

in this review) assume that the dissipated energy is determined only by the metabolism. For example, 

Heijnen’s model considers dissipated energy to be broken down into a minimum, constant part ∆𝐺𝑑𝑖𝑠, 

and a dynamic maintenance part, depending on the growth rate 𝜇 (see equation 15); in this proposed 

energy balance, there is no scope for adaptation to the environment. Nevertheless, microbial 

thermodynamic models able to reproduce this tradeoff do exist. Examples are Jin and Bethke’s model 

described in subsection 3.3. Another example is the model proposed by Kleerebezem and collaborators, 

which makes the dissipated energy a possibly adjustable variable, being positively correlated to the rate 

of the anabolism (Rodríguez et al 2008). Such models allow questioning whether the growth rate or the 

growth yield is the objective to be maximized by a microbial community. While there are many possible 

explanations for the yield rate tradeoff, satisfactory modeling of dissipated energy adjustment by 

microbial populations appears to be a necessary feature for microbial thermodynamic models to achieve 

a better representation of community assembly rules from population-scale principles. 
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To conclude, the way thermodynamics constrains microbial growth is complex and still under debate. 

The two above-mentioned challenges are focused on thermodynamic modeling of microbial growth at 

population scale, however, some rules at this scale have been shown to be able to reproduce community 

assembly patterns (Gonzalez-Cabaleiro et al 2015, Großkopf and Soyer 2016, Van de Leemput et al 2011) 

(also, see chapter 4). Moreover, the influence of thermodynamics on community structure can also be 

evidenced from experimental observations (Louca et al 2016a). While the lack of rules expressing 

invariants is a major problem in ecology (Lawton 1999), microbial thermodynamics as a discipline 

provides a generic framework for rules about growth and community structure to be proposed and 

carefully studied. 
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3.1 Nomenclature200

symbol meaning

[i] concentration of chemical specie i (mol ·m−3)

R ideal gas constant (8.314 459 8 J ·mol−1 · K−1)

T system’s temperature (K)

Y r
i/j stoichiometric coefficient of chemical specie i in reaction r. “/j” (optional) and denotes the chemical

specie by which the reaction r is normalized

ΔG0
r Gibbs energy change of reaction r under standard conditions (temperature is 298K and the concen-

tration of every involved chemical specie is 1mol · L−1

ΔG0�
r Gibbs energy change of reaction r in conditions equivalent to standard conviction except that the

concentration of protons is 1× 10−7 mol · L−1

ΔGr Gibbs energy change of reaction r in any condition

γi reduction degree of chemical specie i in mole · C−mol−1
i

3.2 Specifications of the MTS model

3.2.1 Units and dimensions

• Concentration in the model is expressed in mol ·m−3 for aqueous species and as atmosphere for gaseous

species. In articles, concentrations are nonetheless converted to mol · L−1 for the sake of practicality205

• Time is expressed in day

• Energy is expressed in Joules

• Stoichiometric coefficients are positive when the reagent is produced and negative when the reagent is

consumed
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3.2.2 Thermodynamic standard conditions210

The quantitative thermochemical values tabulated in this article are assumed to correspond to the following

conditions

• Pressure: 1.013 25× 105 Pa (1 atm)

• Temperature: 298.15K (25◦C)

Furthermore, variables assuming that the concentration of every chemical specie is 1M are denoted by a ”0”215

superscript. This specific setting will be referred to as ”standard conditions of concentrations”. In this setting,

the pH is 0.

3.2.3 Metabolic reactions computations

3.2.3.1 Anabolic reaction

The anabolic reaction of a guild G is a chemical reaction producing 1 molecule of C-normalized biomass per220

reaction. The biomass molecule considered is the one described by Battley (Battley et al., 1997). Its complete

formula is

C1H1.613O0.557N0.158P0.012S0.003K0.022Mg0.003Ca0.001

(26.20 g ·mol−1) however it is simplified to

C1H1.613O0.557N0.158

(24.76 g ·mol−1) in the simulations. The stoichiometric coefficients of this reaction are expressed as mol · C−mol−1
Biomass

and are adjusted so the reaction is balanced for elements and charge. The impact of using the complex formula225

is evalutated in appendix 9.1.

3.2.3.2 Catabolic reaction

The catabolic reaction of a guild G is a chemical reaction meant to fuel the guild’s energy expense. Most of

the time it involves an electron transfer between an electron donor D and an electron acceptor A molecules. The
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coefficients of this reaction and expressed as mol ·mol−1
D are adjusted so the reaction is balanced for elements and230

charge.

3.2.4 Microbial dynamics

Microbial dynamics for chemical specie C under the action of a guild G is;

˙[C] = Y met
C/G · µG · [G] (3.1)

With Y met
C/G being the metabolic stoichiometric coefficient (molC ·mol−1

biomass) of the guild G for the chemical

specie C, µG being the growth rate of the guild G (day−1) and [G] being the concentration (mol ·m−3) of guild235

G’s biomass in the reactor. We posit as an hypothesis that the concentration of water and protons is unaffected

by microbial dynamics. Y met
C/G is;

Y met
C/G = Y an

C/G + λG · Y cat
C/D (3.2)

With Y met
C/G being the stoichiometric coefficient (molC ·mol−1

biomass) of the guild G’s anabolic reaction for the

chemical specie C, Y cat
C/D the stoichiometric coefficient (molC ·mol−1

D , D being the guild’s electron donor) of

the guild G’s catabolic reaction for the chemical specie C and λG the lambda factor (molD ·mol−1
biomass) of the240

metabolism of guild G. The lambda factor of a guild G is;

λG =
−ΔGan +ΔGdis

ΔGcat
(3.3)

With ΔGan being the Gibbs energy change (J ·mol−1
biomass) of the anabolic reaction of guild G, ΔGcat the Gibbs

energy change (J ·mol−1
D ) of the catabolic reaction of guild G and ΔGdis the Gibbs energy change (J ·mol−1

biomass)

of one full metabolic reaction. If −ΔGan + ΔGdis or ΔGcat is positive, then it is set to 0 instead. The Gibbs

energy change ΔGdis of the whole reaction is computed according to the empirical formula devised by Heijnen245

and collaborators;

ΔGdis = −(200 + 18 · (6−NoCCS
)1.8 + exp(((3.8− γCS

)2)0.16 · (3.6 + 0.4 ·NoCCS
))) (3.4)
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With NoCCS
the number of carbons in the carbon source CS of the guild’s anabolic reaction, and γCS

the

degree of reduction of CS , divided by its number of carbons.

The reduction degree of a molecule reflects the amount of available electrons of the molecule upon electron

donation reaction, divided by its number of carbon (or 1 if there is no carbon in the molecule). It is identical to250

the opposite of oxydation degree. The reduction degree of a molecule is computed as a function of its elemental

composition:

C ∗ 4 +H ∗ 1 +O ∗ (−2) +N ∗ (−3) + P ∗ 5 + S ∗ 6 + Fe ∗ 3
C

(3.5)

Negative charges count as 1 and positive charges count as (-1). For example, the reduction degree of acetate

(C2H3O
−1
2 ) is 2 ∗ 4 + 3 ∗ 1 + 2 ∗ (−2) + 1 ∗ 1 = 8 electrons per acetate molecule.

Although seldomly encountered in such calculations, alkaline metals (Li, Na, K) counts as +1 and alkaline255

earth metals (Be, Ca, Mg) counts as +2 (Pidello, 2014).

The Gibbs energy change of a reaction r under standard conditions of temperature (298K) and concentrations

(1mol · L−1 for every chemical species, including H+) is

ΔG0
r =

�

i

Y r
i ·ΔG0

f,i (3.6)

Where ΔG0
f,i is the Gibbs energy change of formation of the ith chemical specie involved in the reaction r, as

recorded in table 3.1.260

The correction of the Gibbs energy change ΔG0
r of a chemical reaction r for non-standard concentrations is;

ΔGr = ΔG0
r +R · T · ln(Q) (3.7)

With ΔG0
r the Gibbs energy change of the reaction in standard conditions of temperature, pressure and

concentrations, R the ideal gas constant (8.314 459 8 J ·mol−1 · K−1), T the temperature (K) and Q the mass

action ratio (unitless) of the reaction.

Standard conditions of concentration are defined such that the concentration of every chemical specie is 1M.265

Those standard concentrations are sometimes modified to assume that the pH is 7 (that is, the concentration of

protons is 1× 10−7 M);
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ΔG0�
r = ΔG0

r +R · T · Y r
H+ · ln(1e− 7) (3.8)

With Y r
H+ the stoichiometric coefficient for protons in the reaction r.

The value of the Gibbs energy change ΔG0
r can be computed from the values of enthalpy and entropy changes

of the reaction, or by summing the Gibbs energies of formation of every chemical species, weighted by their270

stoichiometric coefficients;

ΔG0
r = ΔH0

r − T ·ΔS0
r =

�

i

Y r
i ·ΔG0

f,i (3.9)

With ΔH0
r and ΔS0

r respectively the enthalpy and the entropy change of the reaction r under standard

conditions of temperature and pressure, Y r
i the stoichiometric coefficient of the reaction for the ith chemical

specie involved in the reaction r, and ΔG0
f,i its Gibbs energy change of formation as recorded in table 3.1.

ΔG0
r is corrected for non-standard temperature conditions using the following relationship (Hanselman, 1991);275

ΔG0
r(T ) = ΔG0

r(TS) ·
T

TS
+ΔH0

r · TS − T

TS
(3.10)

With T being the system’s temperature (K), TS the standard temperature (298.15K) and ΔH0
reaction the

enthalpy of the reaction in standard conditions of temperature and concentrations (J ·mol−1), as it is assumed

that the reaction’s enthalpy do not vary much in the biological range of temperature and concentrations. The mass

action ratio Q of the reaction is the product of the concentration of each reagent of the reaction to the power

of its own stoichiometric coefficient. Concentrations in the mass action ratio are expressed in mol · L−1. The280

machine epsilon is added to the concentration of each reagent in order to avoid errors caused by the computation

of the logarithm of 0. Water and biomasses are excluded from the calculation of the mass action ratio as they are

not dilute chemical species.

The growth rate of a guild G is;

µG = µmax ·
�

i

exp(
Y met
Si/G

Vh · [Si]
) (3.11)

With µmax being the maximum growth rate (day−1), Y met
Si/G

the stoichiometric coefficient of consumed chemical285

specie Si molS ·mol−1
G−biomass, Vh the harvest volume (m3 ·mol−1

G−biomass) and [Si] the concentration (molSi ·m−3)
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of consumed chemical specie Si. Produced chemical species are not included in the exponential product.

The values of Gibbs change of formation for the chemical species used in the simulations conducted with the

MTS model are (in J ·mol−1)

The values of enthalpy change of formation for the chemical species used in the simulations conducted with290

the MTS model are (in J ·mol−1)

3.2.5 Additional dynamics

3.2.5.1 Aeration dynamics

Aeration dynamics for aerated chemical specie C is

˙[C] = kLa · ([C]sat − [C]) (3.12)

With kLa being the global exchange coefficient of C (m · day−1), a the specific exchange area of C (m2 ·m−3)295

and [C]sat being the saturation concentration of C (mol ·m−3). In most cases, the kLa a product (day−1) and

the [C]sat value are deemed to be constant during a simulation.

The [C]sat value is computed using the Henry law corrected for the temperature;

[C]sat = pC ·HC · exp(ΔHsol

R
(
1

T
− 1

TS
)) · 1e3 (3.13)

With pC being the partial pressure (in atm) of C in the gas bubbled into the reactor, HC being the Henry’s

constant of C (mol · L−1 · atm−1), ΔHsol being the enthalpy of solution of C (J ·mol−1), R the ideal gas constant300

(8.314 459 8 J ·mol−1 · K−1), T being the system’s temperature (K) and TS being the standard temperature

(298.15K). The 1e3 factor is here to perform the conversion to L ·m−3. The value of the partial pressures are

listed in table 3.3. The Henry constants HC are listed in table 3.4. The values of ΔHsol

R are listed in table 3.5.

3.2.6 Chemostat dynamics

Chemostat dynamics for solute chemical specie C is;305

˙[C] =
Q

V
([C]feed − [C]) (3.14)
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With Q being the overall flow of the chemostat (m3 · day−1), V the volume of the reactor (m3) and Cfeed the

concentration of C in the feed bottle of the chemostat (mol ·m−3). Biomass is considered to be a solute specie

in this setting and is therefore affected by this dynamics.

3.2.7 Point-settler dynamics

The ”point-settler” dynamics emulates the flow dynamics of a reactor equipped with a clarifier evacuating310

the soluble chemical species but recirculating a fraction of the biomass back into the reactor. The point-settler

dynamics for solute chemical specie C is

˙[C] =
Qi

V
([C]feed − [C]) (3.15)

While the point-settler dynamics for biomass (and eventual other non-solute chemical specie) is

˙[C] =
1

V
(Qr

Qi +Qr

Qe +Qr
−Qi −Qr) · [C] (3.16)

With Qi being the main inlet and outlet flow rate of the reactor (m3 · day−1), Qr being the the non-solute

chemical species recirculation flow rate of the clarifier, Qe being the extraction flow rate of the clarifier (the315

flow discarding non-solute matter from the recirculated flow), V the volume of the reactor (m3) and [C]feed the

concentration of C in the feed bottle (mol ·m−3).

3.3 Description of the MTS simulation framework

3.3.1 Notation

The following describes the program developped using the Matlab language in order to simulate the dynamics320

of the MTS model. The code was deposited at the Agence pour la Protection des Programmes, under the reference

number IDDN.FR.001.250026.000.S.C.2017.000.31500. It features some sample code and references to variables

of the program. For clarity, explicit references to variables, litteral values (such as dictionary keys) or file names of

the program will be written in Courier font. Code samples will be written in specific text boxes. Metasyntactic

variables inside names will be surrounded by < > symbols. As the program prominently relies on matrix data325
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structures, the shorthand notation NxM will be used to describe the matrix’ dimensions, where N is the matrix’

height and M is the matrix’ width. When a variable is described, its dimensions, class (according to the Matlab

language’s data model) and units are written between parentheses after the formal description of the variable. If

the dimensions of the variable are provided it is assumed that the variable’s class is double.

3.3.2 Files organisation330

The files of the program are dispatched among the following directories;

• src/: source files of the program

• hooks/: additional functions describing supplementary processes affecting the simulation

• usr/: user-defined simulation conditions

• out/: output of the program; logs and errors335

• doc/: documentation

• test/: functions used for unit testing of the program

3.3.3 Basic principle

The aim of the program is to simulate the evolution of the concentrations of a set of chemical species through

time, according to a system of Ordinary Differential Equations (ODE) describing the chemical processes happening340

in a reactor wherein a user-defined microbial community is growing. The chemical species are the ODE system’s

variables. The concentration of the chemical species along time are affected by the growth dynamics of the

defined microbial guilds according to the specifications of the MTS model. The concentrations can also optionally

be affected by other processes such as aeration or chemostat fluxes.

The code of the program is to be executed with the Matlab program. It has been written using the R2014a345

version of the Matlab language. The Matlab language is made mainly for matrix operations. Therefore, most

of the computations done inside the integrated function of the ODE system are formulated as such. As most

of the matrices used during the computations are derived from a small set of fundamental vectors, the following

constants will be further used for the sake of convenience;
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• let C be the total number of chemical species whose concentration is tracked during the simulation of the350

system

• let G be the number of guilds, that is, the number of simulated microbial populations of the system

• let P the number of implemented processes affecting the dynamics of the chemical species of the system

during the simulation

While the growth law of the MTS model itself requires two “parameters”, namely the maximum growth rate355

µm and the harvest volume Vh, the MTS simulation program require a greater number of informations also called

“parameters”. Those parameters will be further called “parameters” while the MTS parameters will be more

specifically refered to as “kinetic parameters of the MTS model”.

Among the set of all parameters required by the MTS simulation program to work, most of them can be

derived from a smaller set of fundamental informations. The program is designed so the user has to provide only360

this set of informations, without the possibility to input redundant informations or informations which could be

derived from computation.

All the computation needed to produce a functional set of parameters for the program in order to perform the

simulation of a specified system is done at the beginning of the execution of the program, before the integration

of the ODE system.365

Figure 3.1 is a sequence diagram illustrating the order into which scripts are called during the initialization of

a simulation.

The program can also log some temporary variables of the integration, such as the concentration of each

chemical species in the system or the lambda factor of each guild at a given time. This behavior can be enabled370

or disabled by the user. The generated data is written into a set of csv files stored into a specifically created

directory, named with a timestamp in order to avoid confusion between multiple simulation results, and containing

the metadata of the simulation. The action of writing the simulation’s data will further be refered to as “logging”.

The code is structured in order to limit as much as possible to keep unnecessary variables in the namespace

(called “workspace” in Matlab’s semantics). This is achieved through currying.375
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Figure 3.1: Sequence diagram of the initialization of the simulation program, upon call to simulate.m, until

integration. Read direction is top to bottom
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3.3.4 Parameters computation

The computation of the parameters from fundamental informations inputted by the user is done by the

getParameters.m function. This function is executed once before the integration of the system (cf figure

3.1). It takes a structure containing parameters values set by the user as argument, and returns the complete

parameters structure. This structure contains a field for each parameter of the system. To the contrary, the380

user do not have to provide a value for each parameter. The body of the getParameters.m function con-

sists in reviewing each user-definable parameter, setting it to the user-defined value if provided or otherwise to

its default value (pre-recorded in the function), then computing the value for each parameter depending on this

user-definable parameter. For example, the parameter T stands for the system’s temperature, it is used to compute

other parameters, and if the user do not provide a value for T, it is assumed to be standard temperature (298.15385

K).

The getParameters.m function returns a single structure containing the value of all the simulation’s

parameters. This structure is refered to in the code as p or parameters, and will here be refered to as p.

3.3.5 User-definable parameters

The user needs to input a few parameters to the program. The program’s parameters that the user can define390

before a simulation constitutes the fundamental information from which all the other parameters are computed. For

example, the user have to input concentrations and temperatures, while saturation concentrations are automatically

computed from the latter informations.

This subsection details those parameters, and gives more details for some of them in specific subsections.

• T: temperature during the simulation (1x1 K)395

• standardTemperature: temperature under standard conditions (for thermodynamic data) (1x1 K)

• guilds: description of each guilds to include into the simulation. Each guild is described into a struct

with fields ”donor”, ”acceptor” and ”anabolism”. The strings to put in those fields can be found in

buildGuild.m. (cell array of structs).

• trifle: computation epsilon (see the ”integration” subsection for more details) (1x1)400

67



• tankVolume: tank volume (1x1 m3)

• initialStateDictionary: concentration of chemical species in the reactor when the simulation starts.

A special value ’biomass’ can be used in this dictionary in order to set the concentration of each biomass at

once (Cx1 mol.m-3)

• computeLambda: function to use to compute lambda factors. The function must take Em, Ecat and Edis405

as arguments (1x1 function handle)

• mumaxharv: µm of each guilds (1xG day-1)

• vh: Vh of each substrate and each guild (CxG m3.Cmol-1)

• massActionRatioContributorsDictionary: mapping of component name to state in mass action

ratio contributors matrix (0: the component doesnt contribute, 1: the component does contribute, default410

is 1). A special value ’biomass’ can be used in this dictionary in order to set the concentration of each

biomass (containers.Map)

• metabolizableSpeciesDictionary: mapping of component name to state in metabolizable com-

ponents matrix (0: the component’s concentration isnt affected by biological reactions, 1: the contrary).

(containers.Map)415

• feedBottleDictionary: mapping of component name to concentration in feed bottle (containers.Map)

• bioticProcessMask: mask of biological reactions (=guilds) (1xG boolean)

• atmosphereDictionary: mappings of component name to partial pressure (atm) (cell array of contain-

ers.Map)

• supernumeraryComponents: list of components (cell array of str) to add to the system even though420

they aren’t involved in the metabolism. The supernumerary components are accounted for as non-living

components, and if they were are actually involved in the metabolism, not error is raised. The supernumerary

components need not to be recorded in buildGuild.m. If it doesnt; its dG and dH will be set to 0 and

its standard concentration will be set to 1e3 mol.m-3.
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• hooks: cell array of handles to additional differential functions425

• computeOxygenSaturationAsInWWTP: use a polynomial relationship to compute oxygen saturation

concentration instead of the Henry constant. The polynomial relationship used is (14.65−0.41·T+0.00799·T 2−7.78e−5·T 3)
32

with T being the system’s temperature in Celsius degrees (1x1 boolean)

• pH: initial concentration of protons in the simulation (default pH is 7) (1x1 double)

• MTSBioticProcessEnabled: boolean flag stating whether the MTS growth process derivative must be430

added to the ODE system’s derivative or ignored. Disabling MTS biotic processes is likely needed when an

alternative growth process is used in a hook (default is 1) (1x1 boolean)

3.3.5.1 Guilds

The guilds are the microbial populations of the simulated system. Each guild is associated with a specific

biomass concentration and a growth rate affecting this biomass variable. As the chemical reactions mainly intended435

to be simulated are microbial growth reactions, and that other implementable reaction concerns chemical species

with which microbes directly interact (such as oxygen for aeration), the list of all the tracked chemical species is

computed from the metabolic equations of the guilds.

Guilds are inputted as a cell array of structures, each structure defining a guild. The guild-defining structure

accepts the following fields;440

• donor: the name of the electron donation reaction (string). This field is mandatory.

• acceptor: the name of the electron acceptation reaction (string). This field is mandatory.

• anabolism: the name of the anabolic reaction (string). This field is mandatory.

• dGdis: the value of the dissipated energy of the guild (1x1 J). If this field is not set, considerations of

bioenergetics are used in order to infer this value (cf equation 3.4 in section 3.2).445

• name: the name of the guild in the program (string). This defines the name of the guild’s biomass in the

program’s internal variables, and sequently the name of the biomass in the result’s log. If this field is not set,

a name is automatically generated by combining the name of the acceptor, donor and anabolic reactions.
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Guilds in the MTS model are defined by an anabolic and a catabolic reaction. In order to prevent any

elemental balance error during the simulation of any microbial community by the program, the stoichiometry of450

those reactions are not inputted by the user. Instead, reactions and half-reactions’ stoichiometry are pre-recorded

in the program as dictionary-like data structures (Matlab’s containers.Map) and pointed at by their name during

guild definition by the user. As the stoichiometry of those reactions is fixed, their standard Gibbs energy and

enthalpy change is also automatically computed.

The stoichiometric coefficients of each reactions are computed by solving the following linear equation;455

�

i

νi · Ei = 0 (3.17)

for every element involved in the reaction, with νi the stoichiometric coefficient of the ith chemical specie

involved in the reaction and Ei the number of occurences of the element E in the ith chemical specie involved

in the reaction. Charge is also considered as an element for the purpose of this equation system. These linear

equation systems are not solved by hand but are solved automatically using mathematical programming tools such

as GNU MathProg.460

Whole anabolic reactions are thus pre-recorded. The stoichiometric coefficients of all anabolic reactions are

adjusted so that the stoichiometric coefficient of biomass is 1, so that the stoichiometric coefficients of the anabolic

reaction can be expressed as mol.molBiomass-1.

The pre-recorded anabolic reactions are;

• autotrophNitrite:465

1HCO−
3 + 0.82883NH+

4 −→ 0.67083NO−
2 + 1.1013H2O+ 0.49967H+ + 1C1H1.1613O0.557N0.158

• autotrophNitrate:

1HCO−
3 + 0.66113NO−

2 −→ 0.50313NO−
3 + 0.93363H2O+ 0.16425H+ + 1C1H1.1613O0.55N0.158
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• glucostroph:

−0.167C6H12O6 + 0.158NH+
4 −→ 0.43050H2O+ 0.00625HCO−

3 + 0.164H+ + 1C1H1.1613O0.55N0.158

470

• acetotroph:

0.50313C2H3O
−
2 + 0.158NH+

4 + 0.33887H+ −→ 0.4305H2O+ 0.00625HCO−
3 + 1C1H1.1613O0.55N0.158

• propionotroph:

0.2875C3H5O
−
2 + 0.158NH+

4 + 0.267H+ + 0.1375HCO−
3 −→ 0.4305H2O+ 1C1H1.1613O0.55N0.158

• butyrotroph:475

0.20125C4H7O
−
2 + 0.158NH+

4 + 0.23825H+ + 0.195HCO−
3 −→ +0.4305H2O+ 1C1H1.1613O0.55N0.158

• valerotroph:

0.15481C5H9O
−
2 + 0.158NH+

4 + 0.22277H+ + 0.22596HCO−
3 −→ 0.4305H2O+ 1C1H1.1613O0.55N0.158

In order to allow more flexibility, the catabolic reaction is created from the combination of the electron donor

and the electron acceptor reaction. Both half-reactions are pre-recorded with the number of electrons they480

respectively donate and accept, and their stoichiometry is factorized in order to close the charge balance of the

overall reaction, while giving a stoichiometric coefficient of 1 for the electron donor molecule. This way the

stoichiometric coefficients of the catabolic reaction can be expressed as mol.molElectronDonor-1.

The pre-recorded electron donation half-reactions are;
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• acetate-oxidizing:485

1C2H3O
−
2 + 4H2O −→ 2HCO−

3 + 9H+ + 8e−

• propionate-oxidizing:

1C3H5O
−
2 + 7H2O −→ 3HCO−

3 + 16H+ + 14e−

• butyrate-oxidizing:

1C4H7O
−
2 + 10H2O −→ +4HCO−

3 + 23H+ + 20e−

490

• valerate-oxidizing:

1C5H9O
−
2 + 13H2O+ −→ 5HCO−

3 + 30H+ + 26e−

• glucose-oxidizing:

1C6H12O6 + 12H2O −→ 6HCO−
3 + 30H+ + 24e−

• hydrogen-oxidizing:495

1H2 −→ 2H+ + 2e−

• glc2ace-oxidizing:

1C6H12O6 + 8H2O −→ 4HCO−
3 + 20H+ + 1C2H3O

−
2 + 16e−
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• glc2pro-oxidizing:

1C6H12O6 + 5H2O −→ 3HCO−
3 + 13H+ + 1C3H5O

−
2 + 10e−

500

• glc2but-oxidizing:

1C6H12O6 + 2H2O −→ 2HCO−
3 + 6H+ + 1C4H7O

−
2 + 4e−

• ammonium-oxidizing:

1NH+
4 + 2H2O −→ 8H+ + 1NO−

2 + 6e−

• nitrite-oxidizing:505

1NO−
2 + 1H2O −→ 2H+ + 1NO−

3 + 2e−

• iron-oxidizing:

1Fe+2 −→ 1Fe+3 + 1e−

The pre-recorded electron acceptation half-reactions are;

• nitrate-reducing:510

1e− + 0.2NO−
3 + 0.6H2O+ 1.2H+ −→ 0.1N2

• sulfate-reducing:

1e− + 0.125SO−2
4 + 0.5H2O+ 1.125H+ −→ 0.125HS−
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• iron3hydroxide-reducing:

1e− + 1Fe(OH)3 + 3H+ −→ 3H2O+ 1Fe+2

515

• iron-reducing:

1e− + 1Fe+3 −→ 1Fe+2

• methanogen:

1e− − 1.125H+ + 0.125HCO−
3 −→ 0.375H2O+ 0.125CH4

• aerobic:520

1e− − 1H+ + 0.25O2 −→ 0.5H2O

• manganese-reducing:

1e− + 0.5Mn+4 −→ 0.5Mn+2

• acetate-reducing:

1e− + 0.111C2H3O
−
2 + 1H+ −→ 0.222CH4 + 0.222H2O

525

• CO2-reducing:

1e− + 0.125CO2(g) + 1H+ −→ 0.125CH4 + 0.25H2O
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• CO2-acetogenesis:

1e− + 0.25CO2(g) + 0.875H+ −→ 0.125C2H3O
−
2 + 0.25H2O

The choice of the inorganic form of carbon is a still unresolved issue in metabolic modelling. In the simulation530

of the MTS model presented in this memoir, HCO−
3 has been considered as the inorganic form of carbon most of

the time. However, this working hypothesis is not constitutive of the MTS model. This is why some half-reactions

have a variant using CO2 as inorganic carbon form (for example CO2-reducing and CO2-acetogenesis).

3.3.5.2 Hooks

The only kind of process that is defined in the core sources of the program is the metabolic processes. They535

are defined in the src/ directory and they are the only process affecting the system’s dynamic during a simulation

unless specified otherwise by the user. All the other possible processes are specified in the hook/ directory. Defining

those supplementary processes outside of the main source code allow for the extension of the code with new process

without modifying the main source code. During a simulation, those processes are stored in a specific list and

executed one after another in a loop at the end of the derivative computation, thus adding their specific effect on540

the system’s variables derivative. As this system allow to modularily add arbitrary processes to the execution loop

of the program they correspond to the definition of “hook” in informatics semantics. Hence those processes will

further be refered as such.

Each hook is written in a specific directory in hook/. It contains two functions and a documentation of

the parameters of the hook. The function <hook> getSpecificParameters.m is executed during the545

parameters computation, before the integration. Its role is to compute the specific parameters of the process from

the user’s input, just as done by the getParameters.m function of the main source code (cf figure 3.1). All

the parameters computed from those hook-specific functions are stored in a specific structure in the hook field

of the main parameter structure. In addition to the parameters used during the integration of the process, this

structure also contains a field defining of the hook specific variables should be logged. The <hook> process.m550

function is the function executed during the integration of the system.
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3.3.6 Logging

Recording the variables of the system at each integration step is a behavior which can be enabled or disabled

by the user. It should be noted that when logging is enabled, all loggable variables will be logged; it is not possible

to log only a set of the loggable variables. The logging is performed by the logState.m function which is called555

at specific points of the integration (more informations about those specific times in the Integration subsection).

3.3.6.1 Logged data format

The logged data is dispatched in multiple csv (comma separated value) files all stored in a specific timestamped

directory. Each csv file tracks the value of a single variable over time. It should be emphasized that variable is

considered here in Matlab’s sense, which imply that the values of a single variable being a multidimensional array560

are logged in a single file. For example, the concentration of each chemical species in the system are grouped in

a single variable (a Cx1 vector), and consequently are logged in a single file.

The csv files’ format follows the “tidy” format defined by Hadley Wickham (Wickham, 2014). According to

the tidy convention, each line corresponds to a single observation. When logging the value of a multidimensional

variable, each individual value of the array corresponds to an observation. For example when logging the con-565

centrations variable, the concentration of each individual chemical specie consists in an observation and must be

logged in an individual line. The csv file containing the record of this variable would then have three columns;

namely time, chemical specie name and concentration value.

The benefit of the use of this special data format over the drawback of its verbosity is that the data files

can then be readily processed by a set of R packages called “tidyverse” used for data manipulation and display.570

The packages most prominently required for the manipulation and display of the output of the MTS simulation

program are ggplot2 and dplyr.

3.3.6.2 Parametrization of the logging function

The logState.m function needs some informations to work. For each variable to be logged, those informa-

tions are the filehandle to which data must be written, and the levels of each factors into which the data is splitted575

into. Those data are obtained before the integration of the system. The program performs a preliminary “blank”
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integration of the system over one timestep, which allows to obtain the bundle structure, which is a list of all

the loggable variables generated by the derivative function of the program (computeKsi.m) (more informations

on the bundle structure in the Integration subsection). This preliminary integration also allow to raise eventual

obvious errors in the code before to produce log files.580

The variables to log are a set of the variables contained in the fields of the bundle structure. This structure

is passed to the parametrizeLog.m function, into which the list of the variables to log and how to log them

(recorded informations are the name of the file under which to log the data, and the name of the levels of the

factors of the data) is pre-recorded. The parametrizeLog.m function creates the csv file and writes the header

for each logged variable and returns a structure associating to each logged variable name the file handle to its csv585

file and the list of the name of the levels of the factors or the variable. This structure is passed to logState.m

by currying.

3.3.7 Integration

3.3.7.1 Simulation time

Simulation time is recorded in days. The integration of the ODE system is not performed once from time 0590

to the defined end time of the simulation. The integration is rather performed through multiple adjoining time

chunks. The ODE solver function is called on each time chunks. The logState.m function records the logged

variables after each time chunks. The number of times the derivative function of the program (computeKsi.m)

is called depends on the integration algorithm and on the ODE system’s state. In contrast, the number of time

chunks is set by the user when parametrizing the simulation by defining the length of the time chunk in simulation595

time.

A supplementary subtlety in the way simulation time is divided into chunk is added by the existence of the user-

defined chunkEasingCoefficient parameter. During the integration, the end time of a chunk is given by the relation-

ship totalT ime ·advancechunkEasingCoefficient where totalT ime is the total time of the simulation in simulation

time (day), advance is a number between 0 and 1 indicating the end position of the chunk relative to the total time600

of the simulation. The total number of time chunks is independant of the chunkEasingCoefficient parameter. If

chunkEasingCoefficient is 1, all the chunks do have the same length. If chunkEasingCoefficient is between
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0 and 1, the chunks’ length will start big and decrease with time. On the contrary, if chunkEasingCoefficient

is superior to 1, the chunks’ length will start small and increase with time. This parameter allows to focus the

precision of the logging on the beginning or the end of the simulation, while eventually accelerating the integration605

of the other part by diminishing the number of time chunks.

3.3.7.2 Computation of the variables’ derivatives

The function integrated by the solver function and representing the ODE system in the program is computeKsi.m.

This function first call the MTSBioticProcess.m function, which computes the derivatives of the concentra-

tions of the system’s chemical species according to the growth processes of the simulated microbial community.610

Then the computeKsi.m function collects and sums all the derivatives resulting from the hooks. The sum of

all derivatives is then returned by the computeKsi.m function.

In the MTSBioticProcess.m function, the exergy of the anabolic and catabolic reactions are computed

and corrected for non-standard concentrations and temperature conditions. The lambda factor is computed from

those values and this of the dissipated energy associated with each metabolism. The stoichiometric coefficients615

of the metabolic reactions are then computed as a CxG matrix. The CxG matrix of the stoichiometric coefficients

for substrate is obtained by filtering the negative values from this matrix. The matrix of substrate stoichiometric

coefficients is then used to obtain the matrix of stoichiometriccoefficientofsubstrateS
Vh·(concentrationofsubstrateS) factors. Those factors are then

exponentiated and multiplied to the maximum growth rate of their respective guild in order to give the guild’s

specific growth rate value in day−1 ·mol−1
biomass. The specific growth rates are then multiplied to the biomass620

concentration of their guild to obtain the population growth rates, as a 1xG vector. This vector is then multiplied

to the previously computed metabolic stoichiometric coefficients matrix in order to get the derivatives of the ODE

system according to the growth reactions.

By definition, the exergy is the maximum usable work from a process. Practically speaking, if the Gibbs energy

change of a process is negative, its exergy is the absolute value of the Gibbs energy change. And when the Gibbs625

energy change of a process is positive, its exergy is null. Exergy is considered in the program instead of Gibbs energy

change. This implies when the catabolic reaction becomes endergonic, its exergy is forced to 0. Consequently,

the lambda value is infinite if the catabolic reaction is endergonic. The code of the function is organized in order

to accept this value from the lambda factor and to give a safe and meaningful value to subsequent variables by
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substituting the produced NaN values (Matlab’s special value denoting “Not A Number”). If the lambda factor is630

infinite, the growth rate of the guild is zero.

In addition with the computation of the derivative of the ODE system, the computeKsi.m function initializes

a structure called “bundle” in the program. Every function computing the ODE system’s derivatives (which means

MTSBioticProcess.m and the process function of each hook used in the simulation) receive this “bundle”

strucure as argument, enrich it with new fields and return it.635

Inside the process functions, the bundle structure is used to store some variables of interest, whose value can

then be passed outside of the function. This bundle structure is then returned by the computeKsi.m function,

along with the derivatives of the ODE system. The use of this function is to be passed to the logging function

(logState.m) in order to print the data it contains into specific log files. It should be emphasized that a variable

must be stored inside the bundle structure in order to be logged.640

3.3.7.3 Integration parameters

The parameters of the integration of the ODE system itself are defined by the user separately from the system’s

parameters. The integration’s parameters must all be defined by the user. The are namely;

• chunkSize: the size of an integration time chunk, assuming that chunkEasingCoefficient is 1. Whatever

the value of chunkEasingCoefficient, this parameter determines the number of time chunks of the integration.645

(1x1 day)

• totalTime: the total time of the integration in simulation time (1x1 day)

• chunkEasingCoefficient: a coefficient affecting the size of the time chunks over time (1x1 unitless)

• resultRoot: the directory into which the log directory of the simulation will be created, if required (str)

• errorDir: the directory into which the error log of the simulation will be written, if required (str)650

• solver: the solver function to use. Matlab natively propose multiple solver functions such as ode45,

ode113 or ode23 (Matlab function handle)

• solverOptions: Matlab’s ODE solvers are parametrized by a specific structure returned by Matlab’s
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function odeset. This function allow to define parameters such as the absolute error tolerance of the solver

(Matlab’s odeset structure)655

The variables in the ODE systems integrated by the MTS simulation framework are chemical species concen-

trations. This raises two issues regarding the integration of such ODE system.

First, concentration cannot meaningfully be negative. However, most ODE solvers assumes that the ODE

system’s variables value belongs to the set of real numbers. Consequently, the solver must be parametrized in

order to handle this concern. With Matlab’s solvers, it is done by using the NonNegative parameter of odeset.660

The NonNegative parameter is a vector specifying the index of each variable that cannot be negative during the

integration. This parameter must then include the index of all of the ODE system’s variables. Consequently, this

parameter can be set only after the system’s definition have been parsed by the program, as the total number of

variables of the system depends on the microbial community definition.

Second, concentration cannot be meaningfully null. If a concentration is exactly zero, mass action ratio is not665

meaningful anymore, and division by zero occurs in the MTS model growth rate formula if the chemical specie is

a substrate. In order to avoid this case, a very small quantity is added to the concentrations in every computation

where a zero value would yield irrelevant values (Matlab’s Inf or NaN special values). As this small quantity

is used during the computation of the derivatives and that the derivative functions do not have access to the

integration-specific parameters, this quantity is stored as a system’s parameter in the p structure as the field name670

trifle. The default value of trifle is Matlab’s realmin value, defined as the “Smallest positive normalized

floating-point number” in Matlab’s documentation (2.2251e-308).

3.3.7.4 Error logging

Errors raised during the integration of the ODE system are caught in order to save the last value of the bundle

structure in the directory specified by the errorDir parameter. This logging behavior is independent of the675

choice of the user to log or not the results of the simulation.
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3.3.8 Definition of simulations’s conditions

The specific system’s and integration’s parameters of a simulation are defined in a user-written function

whose name is mandatorily getExperimentalDesign.m. This function must have its own directory in

the usr/ directory, as this directory is purposed for user-generated content. The directory into which the680

getExperimentalDesign.m file is written will further be called ”simulation directory”.

The integration of a simulation is launched by the user by calling the simulate.m function, which takes the

path to the simulation directory as sole argument. The simulate.m function first clears the warnings, console,

namespace and the executable paths, leaving only src/ and the path to the simulation path as executable paths.

The getExperimentalDesign.m function is then executed by simulate.m. It returns two variables; a685

structure containing system’s and integration’s parameters, and a boolean flag stating whether the data resulting

from the simulation must be logged or not. The simulation’s parameters can either be a structure or a cell array

of structures. In the case of a cell array of structures, each structure is used for the integration of a simulation

(see ”integration of multiple simulations” below). In the structure defining a simulation, the integration-specific

parameters are stored directly as fields of the structure, while the system’s parameters are grouped into a specific690

structure stored in the field fixedParameters.

The definition of some parameters by the user constitutes a circular dependency problem. The most obvious

case is the dependency of some parameters to the C constant (number of tracked chemcial species in the simula-

tion); this constant is determined from the parsing of the metabolisms by the program (inside getParameters.m

function). The circular dependency problems are solved in getExperimentalDesign.m by defining the695

metabolisms definition parameter first, then calling the getParameters.m function on a mock parameter

set containing only the metabolisms definition in order to get the C and G constants.

Examples of getExperimentalDesign.m files are given in the annex 9.2.

3.3.9 Calibration of the parameters of the MTS model

The parameters of the program can be calibrated. As the simulate function calls Matlab’s clearvars700

function, the current state of the parameters calibration function have to be saved as a file, otherwise it will be

erased at the beginning of each simulation. The getExperimentalDesign.m function must then get part of
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its parameters from a text file.

The calibration functions of the MTS simulation program implements the following procedure;

get the values of the parameters to calibrate as argument705

write the values of the parameters to calibrate in a text file
perform the simulation
get the watched data from the simulation’s log
delete the simulation log
compare the simulation’s data with a reference710

returns a distance score

A function implementing such procedure can then be used for the calibration of the MTS model’s parameters

with Matlab’s fminsearch function.
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Chemical specie name ΔG0
f (kJ ·mol−1)

H2O -237.2

H+ 0

H2 0

CO2(gas) -394.4

C2H3O
−
2 -369.4

C3H5O
−
2 -361.4

C4H7O
−
2 -352.6

C5H9O
−
2 -344.3

HCO−
3 -586.9

CH4 -50.7

C6H12O6 -919.8

O2 0

NO3 -111.3

NO2 -32.2

N2(g) 0

NH+
4 -79.4

SO+2
4 -744.6

HS− 12.1

H2S -27.8

Fe+2 -78.9

Fe+3 -4.6

Mn+4 -85.4

Mn+2 -228.0

Biomass -82.16

Table 3.1: Gibbs energy of formation of the chemical species used in the MTS simulation program
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Chemical specie name ΔH0
f (kJ.mol-1)

H2O -285.8

H+ 0

H2 0

CO2(gas) -393.5

C2H3O
−
2 -485.8

C3H5O
−
2 -510.4

C4H7O
−
2 -535.0

C5H9O
−
2 -560.0

HCO−
3 -692.0

CH4 -74.8

C6H12O6 -1264.2

O2 0

NO−
3 -173.0

NO−
2 -107.0

N2 0

NH+
4 -133.3

SO+2
4 -909.6

HS− -17.6

H2S -20.5

Fe+2 -48.5

Fe+3 -89.1

Mn+4 -100.4

Mn+2 -220.7

Biomass -126.83

Table 3.2: Enthalpies of formation of the chemical species used in the MTS simulation program
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Chemical specie name partial pressure (atm)

O2 0.21

H2 5.5e-7

N2 0.78

CO2 4e-4

Table 3.3: Partial pressures of chemical species used in the MTS simulation program

Chemical specie name Henry constant (mol · L−1 · atm−1)

O2 1.3e-3

H2 7.8e-4

N2 6.1e-4

CO2 3.4e-2

Table 3.4: Partial pressures of chemical species used in the MTS simulation program

table:henry constants

Chemical specie name ΔHsol

R (K)

O2 1700

H2 500

N2 1300

CO2 2400

Table 3.5: Adjustment factor of Henry’s law for nonstandard temperature
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Chapter 4: 

Consistent microbial dynamics and functional 

community patterns derived from first principles 
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This chapter corresponds to an article accepted by The ISME journal. The aim of this article is to 

investigate the properties of the MTS model’s growth function. Simulations of incremental complexity 

are performed in order to assess the implications of this growth function, from the scale of a single 

population to this of a simplified community. 

As the focus of this article is the properties of the growth function itself, the effect of the value of its 

kinetic parameters (the maximum growth rate µmax and the harvest volume Vh) on the MTS model’s 

predictions have not been tested in this article. Instead, propositional values are affected to them. 

Indeed, the calibration of the value of those kinetic parameters on experimental data, as well as the 

study the MTS model’s predictions’ sensitivity to the value of the kinetic parameters, is treated as a 

separate subject, addressed in the article presented as the next chapter of this memoir. 

In a nutshell, the results presented in the current chapter show that the MTS model is able to account for 

the limitation of growth by multiple resources at once, and to generate consistent growth patterns from 

these limitations.  
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Abstract 

Microbial communities are key engines that drive earth’s biogeochemical cycles. However, existing 

ecosystem models have only limited ability to predict microbial dynamics and require the calibration of 

multiple population specific empirical equations. In contrast, we build on a new kinetic "Microbial 

Transition State" (MTS) theory of growth derived from first principles. We show how the theory coupled 

to simple mass and energy balance calculations provides a framework with intrinsically important 

qualitative properties to model microbial community dynamics. We first show how the theory can 

simultaneously account for the influence of all the resources needed for growth (electron donor, 

acceptor and nutrients) while still producing consistent dynamics that fulfill the Liebig rule of a single 

limiting substrate. We also show consistent patterns of energy dependent microbial successions in mixed 

culture without the need for calibration of population specific parameters. We then show how this 

approach can be used to model a simplified activated sludge community. To this end, we compare MTS 

derived dynamics with those of a widely used activated sludge model and show that similar growth 

yields and overall dynamics can be obtained using two parameters instead of twelve. This new kinetic 

theory of growth grounded by a set of generic physical principles parsimoniously gives rise to consistent 

microbial population and community dynamics, thereby paving the way for the development of a new 

class of more predictive microbial ecosystem models.  
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Introduction 

Microbes are the most abundant living things on earth (Whitman et al 1998) and are the key engines 

that drive earth's biogeochemical cycles (Falkowski et al 2008). Developing models able to capture and 

predict their dynamics and community assembly patterns is therefore of the outmost importance for the 

study of global earth ecological equilibria and the development of innovative microbial biotechnology 

processes (Rodríguez et al 2008, Verstraete 2007, Widder et al 2016). However, current microbial growth 

models are based on empirical equations, such as those from Monod (Monod, 1949), Contois (Contois, 

1959) or Haldane-Andrews (Andrews, 1968), and require extensive parameter calibration based on 

experimental data. Calibrated models are bound to specific experimental conditions, thus limiting their 

predictive abilities to a narrow domain. In order to build more generic models, there is a need to more 

thoroughly capture the fundamental drivers of microbial growth and to mathematically express how 

they contribute to the emergence of the many community assembly patterns observed in nature.  

An increasing number of observations show that environmental physical-chemical factors shape the 

metabolic niches within a given biotope, resulting in stable functional microbial community structures 

despite random invasions (Louca et al 2016a). This “functional convergence” phenomenon, i.e. the 

tendency of microbial functional groups  to converge towards  defined patterns in specific biotopes, has 

been observed in systems as diverse as sea water (Louca et al 2016b, Raes et al 2011), soil (Kaiser et al 

2016, Nelson et al 2016), activated sludge (Ju et al 2014), plant foliage (Louca et al 2016a), cheese (De 

Filippis 2016) and numerous human body biomes (Huttenhower et al 2012). These observations suggest 

that mechanistic processes may largely determine the functional patterns of microbial communities. Up 

to now, the search for mechanistic physics based models of microbial community structure has been 

somewhat overlooked, as the very existence of general principles governing the structuring of 

ecosystems is still the subject of debate (Hansson 2003, Lawton 1999, McGill et al 2006, Simberloff 

2004). As complex as community dynamics can be, it is nevertheless recognized that an ecosystem 
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complies with general laws such as those of thermodynamics, and the rule of stoichiometry (Lawton, 

1999), and that these laws play a role in ecosystem structure (Odum, 1969). Whether achievable or not, 

trying to build on these laws to create a general framework that could result in ecologically consistent 

population and community patterns is a highly desirable research target (Widder et al 2016).  

The seeds for such a general framework were sown by the pioneering work of McCarty (McCarty 1965), 

followed by several other highly detailed studies (Heijnen and Dijken 1991, Heijnen 2010, McCarty 2007, 

Roels 1980, von Stockar and Liu 1999) of the thermodynamic balance of microbial growth. This 

framework relies on thermodynamic and stoichiometric rules to describe the yield and output of 

microbial metabolism in terms of chemical species, heat and entropy. These contributions led to the 

development of generic methods to predict the stoichiometry and the energetic balance of microbial 

growth (for a review see (Kleerebezem and Van Loosdrecht 2010) and (von Stockar et al 2008)).  

Several attempts have also been made to link thermodynamic balance calculations to the computation 

of microbial growth rates (reviewed in (Rodríguez et al 2008) and (Kleerebezem and Van Loosdrecht 

2010)). For that purpose, some approaches combined balance calculations with heuristic Monod-like 

relationships between the concentration of the substrate and the absorption rate (Heijnen and 

Kleerebezem 1999) and were used to simulate virtual microbial ecosystem dynamics (Gonzalez-Cabaleiro 

et al 2015). Some authors made assumptions about the structure of the metabolic network, the electron 

transport chain or the organization of the pathway to establish a link between energy balances and rates 

(González-Cabaleiro et al 2013, González-Cabaleiro et al 2015a, Jin and Bethke 2003, Noguera et al 

1998). It was also suggested to rely on the fact that the rate of microbial reactions is governed by 

enzyme kinetics in order to use the Michaelis-Menten theory and derive microbial rate equations 

encompassing thermodynamic constraints (Hoh and Cord-Ruwisch 1996). A collision frequency theory 

for microbial growth was also proposed (Button 1998) and coupled to thermodynamic considerations 
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(Liu 2006), which was the first attempt to conceptualize the growth phenomena on a physical basis. 

Recently, a more fundamental kinetic theory of microbial growth grounded by statistical physics 

principles was introduced (Desmond-Le Quéméner and Bouchez 2014). For the sake of brevity, this 

theory is hereafter called “Microbial Transition State” (MTS) theory. 

Here we investigate using the MTS approach for the modeling of microbial ecosystems. The theory 

underlying this approach analyzes an elementary microbial division event using first principles. The 

probability of a single cell to be surrounded by a sufficient amount of resources (electron donors, 

acceptors and nutrients) to allow division is expressed, considering their microscopic distribution in the 

culture medium. Thence, a growth rate formula is derived at the population level, as the statistical 

outcome of the probability of division computed at the level of each individual. This ab initio analysis is 

sufficiently fundamental to be independent of the microbial species and growth conditions. This implies 

that the growth of any chemotrophic microbial population catalyzing a defined metabolic reaction can 

be readily implemented with the MTS model.  In cases where the model parameters are not calibrated, 

what is predicted is the dynamics of functional microbial populations as directly derived from the first 

principles grounding the MTS theory. The resulting equations of growth are seen here as the first 

fundamental layer determining microbial dynamics, as a result of physical laws, on top of which 

parametric equations can be added in the future to account for the complexity of biological or ecological 

phenomena that are beyond the scope of the current analysis. The approaches developed in this work 

represent an opposite take on modelling compared to many models in biology that are bound to a 

specific system, and that calibrate the parameters of an empirical expression in order to quantitatively 

reproduce the behaviors of the experimental system under study. In contrast, the objective of this 

contribution is to evaluate the qualitative properties of MTS dynamical models as derived solely from the 

set of fundamental hypotheses grounding the theory. To this end, we focus on generic and idealized 

situations starting from the simplest one, i.e. a pure culture grown on a minimal medium, and 
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progressively add more complexity to the simulations, in order to analyze and to question the 

consistency of the population and community dynamics that arise directly (without parameter 

adjustment) from microbial transition state theory. 
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Methods 

Modeling ecosystem reaction stoichiometry 

The ecosystem includes a biotic and an abiotic component. The abiotic component comprises all 

chemical reagents, products and spectator species. The biotic component consists of the whole microbial 

community. In our approach, the microbial community is subdivided into guilds. A guild is defined by the 

metabolism it catalyzes (aerobic acetotrophs, denitrifying acetotrophs etc., see list below). The 

population density of each guild is represented by the molar concentration of a generic, C-normalized 

biomass molecule. The biomass molecule used in the simulations is C1H1.613O0.557N0.158 (Battley 1998). Its 

enthalpy of formation is -126.83 kJ.mol-1 and its Gibbs energy of formation is -82.16 kJ.mol-1. The 

molecular weight of this molecule is 24.76 g.C-mol-Biomass-1. Assuming a cell volume of 1e-18m3.cell-1 

and a cell density of 1.09e6 g.m-3 (Milo and Phillips 2015), a factor of 22.7e12 cell.C-mol-Biomass-1 will be 

used for the purpose of illustration in the results. The choice of this molecule does not constitute the 

MTS model and theoretically, any other biomass formula could be used.  

The system stoichiometry is formulated using a vectorial approach as proposed by Roels (Roels 1980), 

thereby enabling a compact formulation. The generic formulation is described in this section. The reader 

should refer to the results section for specific examples of implementation. In all the following formulas, 

the ∗ symbol denotes matrix product. Let 𝑟 be the number of reagents involved in the system and C be a 

𝑟 × 1 vector storing the concentration of all reagents of the system, including biomasses, in mM at a 

given time. Let 𝑝 be the number of processes affecting the concentrations of the reagents; the derivative 

of C over time is expressed from the balance equation of C as 

 𝐶̇ = 𝐴 ∗ 𝑅 

 

(1) 
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where 𝐴 is a 𝑟 × 𝑝 matrix storing the (unitless) stoichiometric coefficients of every process for every 

reagent, and 𝑅 is the 𝑝 × 1 vector of the rate (in time-1) of every process. By convention, the 

stoichiometric coefficients are either positive or negative depending on the production or consumption 

of the corresponding chemical species, respectively. The processes described by the MTS model are 

metabolic reactions. Let 𝑔 be the number of guilds, 𝐴𝑚𝑒𝑡 the matrix of dimension 𝑟 × 𝑔 storing the 

stoichiometric coefficients of the metabolism of every guild, and 𝑅𝑚𝑒𝑡 the 𝑔 × 1 vector of the rate of 

each guild reaction. Eventual stoichiometric matrices describing other processes are horizontally 

concatenated to 𝐴𝑚𝑒𝑡, and their rates are vertically concatenated to 𝑅𝑚𝑒𝑡. The  𝐴𝑚𝑒𝑡 matrix is a linear 

combination of two matrices 𝐴𝑎𝑛 and 𝐴𝑐𝑎𝑡, both of dimensions 𝑟 × 𝑔, respectively storing the 

coefficients of the anabolic and catabolic reactions, and adjusted to close the elemental balance in each 

reaction separately. The stoichiometric coefficients of a catabolic reaction are set so that exactly one 

electron donor molecule is consumed (unitless stoichiometric coefficients are actually mol/molDonor 

ratios). The stoichiometric coefficients of an anabolic reaction are set so that exactly one biomass 

molecule is produced (unitless stoichiometric coefficients are actually mol/C-mol-Biomass ratios) as the 

production of one unit of biomass is considered as the elementary event in the MTS model. 

For the anabolic reaction, we use the convention proposed by Heijnen: the C-source for anabolism is 

either the electron donor when it is organic or HCO3
-. We posit here that the reduced and oxidized forms 

of the catabolism’s electron donor should be included in the anabolism. Our working hypothesis is that 

the nitrogen source used for anabolism is ammonium (no organic sources of nitrogen are present in the 

simulated culture media), because it is available in every culture medium simulated in this article. 

Another choice would have been nitrate, but its possible role as an electron acceptor would have made 

the interactions between guilds more complex and complicated the message of the simulations.  
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The Gibbs free energy of formation of every chemical species used in the simulations is taken from 

Kleerebezem and collaborators (Kleerebezem and Van Loosdrecht 2010). 

Linking growth stoichiometry to energy balance 

The overall metabolism of the whole microbial community can thus be expressed as:  

 𝐴𝑚𝑒𝑡 = 𝐴𝑎𝑛 + 𝜆 ∗ 𝐴𝑐𝑎𝑡 

 

(2) 

where 𝜆 is the number of times the catabolic reaction of a guild has to be performed for the total 

produced energy to equal the energy barrier of growth (therefore expressed as molDonor.molBiomass
-1). 𝜆 is 

then a diagonal matrix of guild specific scalar factors (denoted 𝜆𝑔) that ensures the coupling of energy 

and stoichiometric balances, as explained by Kleerebezem (Kleerebezem and Van Loosdrecht 2010), a 

factor also sometimes denoted 𝑓𝑐𝑎𝑡 (Heijnen and Kleerebezem 2010): 

 
𝜆𝑔 = −

∆𝐺𝑎𝑛 + ∆𝐺𝑑𝑖𝑠
∆𝐺𝑐𝑎𝑡

 

 

(3) 

 

where ∆𝐺𝑎𝑛 is the Gibbs free energy change for the anabolic reaction, ∆𝐺𝑐𝑎𝑡 is the Gibbs free energy 

change for the catabolic reaction and ∆𝐺𝑑𝑖𝑠 is the dissipated free energy of growth (Heijnen and 

Kleerebezem 2010). The dissipated free energy is the Gibbs free energy change in the overall growth 

reaction (anabolism and catabolism). This energy dissipation makes the overall Gibbs free energy change 

of growth negative, so the reaction is spontaneous. ∆𝐺𝑎𝑛 and ∆𝐺𝑐𝑎𝑡 are computed from the Gibbs free 

energy change for anabolic and catabolic reactions, corrected for non-standard temperature and 

concentrations. We posit that only exergonic catabolic reactions can lead to growth. Therefore, if 
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∆𝐺𝑐𝑎𝑡happens to be positive during the computations, it is set to zero, resulting in insignificant growth. 

The 𝜆𝑔 factors are computed at each time step of system integration.  

Water and biomass activities are not included in the mass action ratio. ∆𝐺𝑎𝑛,  ∆𝐺𝑐𝑎𝑡 and ∆𝐺𝑑𝑖𝑠 values are 

expressed in kJ.C-molBiomass-1. The value of each 𝜆𝑔 is such that the Gibbs energy variation of the 

metabolic reaction is equal to the dissipated energy, which in this article, is assumed to be identifiable 

with the variable −𝑌𝐺𝑋
𝑚𝑎𝑥, empirically defined by Heijnen  as 

 ∆𝐺𝑑𝑖𝑠 ≈ −𝑌𝐺𝑋
𝑚𝑎𝑥

= 200 + 18 ∙ (6 − 𝑁𝑜𝐶𝐶𝑠)
1.8

+ 𝑒𝑥𝑝 (((3.8 − 𝛾𝐶𝑆)
2
)
0.16

∙ (3.6 + 0.4 ∙ 𝑁𝑜𝐶𝐶𝑠)) 

 

(4) 

where the chain length of the carbon source is denoted (𝑁𝑜𝐶𝐶𝑠) and and (𝛾𝐶𝑆 ) is the degree of reduction 

of the carbon source required for heterotrophic growth. The degree of reduction of a carbon source is 

computed as in the original publication by Heijnen and collaborators (Heijnen and Dijken 1991). That is, 

by summing 4 electron.carbon-1, 1 electron.hydrogen-1, -2 electron.oxygen-1 -3 electron.nitrogen-1 and +/- 

1 electron.charge-1. For example, the reduction degree 𝛾𝐶𝑆  of the carbon source acetate (C2H3O2
-) is 

4 × 2 + 3 − 2 × 2 + 1 = 8 electron.acetate-1.  

Coupling stoichiometry, energy balance and microbial dynamics 

The growth rate function used in the simulations is the multi-substrate growth rate function described in 

the supplementary materials of Desmond-Le Quéméner and Bouchez (Desmond-Le Quéméner and 

Bouchez 2014). This formula arises from simple hypotheses concerning microbial growth at microscopic 

scale. These principles can be summarized as: 

- a microbial cell needs to overcome a fixed energy barrier in order to divide 
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- this energy barrier can be broken down into anabolic energy ΔGan and dissipated energy ΔGdis  

- the energy available to overcome the energy barrier is the catabolic energy ΔGcat  obtained from 

the catabolism of substrate molecules 

- substrate molecules are considered as particles randomly distributed around the cells 

- if a fictional, fixed volume VH (“harvest volume”) around the cell contains enough substrate to 

overcome the energy barrier, the cell is said to be in an “activated” state 

- only an activated cell is able to divide  

Considering these hypotheses, the proportion of activated cells in the culture medium at a given time 

can be expressed using a probabilistic reasoning (detailed in (Desmond-Le Quéméner and Bouchez 

2014)). Hence, for a given guild, the formula of the microbial growth rate is  

 
𝜇 = 𝜇𝑚𝑎𝑥∏𝑒

𝐴𝑚𝑒𝑡,𝑖
𝑉ℎ[𝑆𝑖]

𝑖=0

 

 

(5) 

where 𝜇 is the growth rate (time-1), 𝐴𝑚𝑒𝑡,𝑖  the stoichiometric coefficient of substrate 𝑖 (mol.C-mol-

Biomass-1) computed in equation 2, and [𝑆𝑖] the concentration of substrate 𝑖 (mol.volume-1). Although 

visually different, this formula is consistent with the one presented in the introductory article of the MTS 

model (Desmond-Le Quéméner and Bouchez 2014) (see supplementary materials 1). This formula 

encompasses two parameters: 𝜇𝑚𝑎𝑥, which represents the maximum growth rate (time-1) and 𝑉ℎ, which 

represents the harvest volume (m3.C-mol-Biomass-1). These parameters both aggregate generic physical 

phenomena and particular biological characteristics that would be very difficult to assess accurately for 

each specific guild considered. As the purpose of this article is to document generic growth patterns as 

derived from MTS theory, we intentionally made simple generic choices for the value of these 

parameters. The value of 𝜇𝑚𝑎𝑥 for every guild was set to 
𝑘𝐵𝑇

ℎ
 where 𝑘𝐵 is the Boltzmann constant 

(m2.kg.s-2.K-1), 𝑇 the temperature of the system (K) and ℎ Planck’s constant (m2.kg.s-1); the result is close 
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to 2.23e16 hour-1 at 298.15 K. This term comes from Eyring’s transition state theory (Eyring 1935), on 

which the MTS theory is based. The value of the Vh parameter was set to 1 m3.C-mol-Biomass-1 for all the 

guilds, except in the final simulation where its value was set to 10 m3.C-mol-Biomass-1 as a working 

hypothesis because, given the low yields of the autotrophs, a value of 1 m3.C-mol-Biomass-1 proved to be 

insufficient  (see supplementary materials 2). Considering the previously estimated ratio of 

22.7e12 cell.C-mol-Biomass-1, the individual cell harvest volume for a Vh of 1 m3.C-mol-1 would be 

4.40e-14 m3.C-mol-1. A sphere of this volume would have a radius of approximately 14 µm (see 

supplementary materials 3). The Vh parameter modulates the probability for a cell to be surrounded by 

sufficient substrate to be activated.  From a biological standpoint, Vh results from all adaptations 

implemented by the cells to increase their ability to collect chemical resources in the culture medium 

(such as specific membrane transporters or chemotaxis), but also may vary according to the physical 

characteristics of the biotope such as the diffusivity of the substrates or agitation.  

While pH can have many different impacts on the regulation of microbial growth, here only its influence 

on reaction equilibrium is taken into account through the mass action ratio. Other types of pH effects are 

beyond the scope of the current MTS model. 

The 𝑔 × 1 𝑅𝑚𝑒𝑡 vector storing the rate of each metabolic reaction is 

 𝑅𝑚𝑒𝑡 = 𝑑𝑖𝑎𝑔(Μ) ∗ [𝑋] 

 

(6) 

 

where Μ is the 𝑔 × 1 vector of the microbial growth rate of each guild and [𝑋] the 𝑔 × 1 vector of the 

biomass concentration of each guild. 
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This ordinary differential equation system is implemented and solved using Matlab (MATLAB Release 

2014a, The MathWorks, Inc., Natick, Massachusetts, United States.). Code files are available as 

supplementary materials 2. 

Microbial guilds considered 

- Glucosotroph: 

o Catabolism: C6H12O6 + 6 O2 → 6 HCO3
- + 6 H+ (ΔG0’ = -2841.3 kJ.molDonor-1) 

o Anabolism: 0.167 C6H12O6 + 0.158 NH4
+ → 0.430 H2O + 0.164 H+ + 0.00625 HCO3

- +  

C1H1.613O0.557N0.158 (ΔG0’ = -28.3 kJ.C-mol-Biomass-1) 

o Dissipated energy: 236.05 kJ.C-mol-Biomass-1 

- Aerobic acetotroph (Ordinary Heterotrophic Organisms): 

o Catabolism: C2H3O2
- + 2 O2 → + 2 HCO3

-  + 1 H+ ( ΔG0’ = -844.4 kJ.molDonor-1) 

o Anabolism: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-Biomass-1) 

o Dissipated energy: 432.12 kJ.C-mol-Biomass-1 

- Sulfate reducing acetotroph: 

o Catabolism: 1 C2H3O2
- + 1 SO4

-2 → 2 HCO3
- + 1 HS- (ΔG0’ = -47.7 kJ.molDonor-1) 

o Anabolism: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-Biomass-1) 

o Dissipated energy: 432.12 kJ.C-mol-Biomass-1 

- Denitrifying acetotroph: 

o Catabolism: C2H3O2
- + 1.6 NO3

- + 0.6 H+
 → 0.8 N2 + 2 HCO3

- + 0.8 H2O (ΔG0’ = -792.1 

kJ.molDonor-1) 

o Anabolism: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-Biomass-1) 

o Dissipated energy: 432.12 kJ.C-mol-Biomass-1 
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- Iron reducing acetotroph: 

o Catabolism: C2H3O2
- + 4 H2O + 8 Fe+3 → 9 H+ + 2 HCO3

- + 8 Fe+2 (ΔG0’ = -809.6 

kJ.molDonor-1) 

o Anabolism: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-Biomass-1) 

o Dissipated energy: 432.12 kJ.C-mol-Biomass-1 

- Ammonium oxidizing bacteria (AOB): 

o Catabolism:  NH4
+ + 1.5 O2 → 1 NO2

- + 1 H2O + 2 H+ (ΔG0’ = -269.9 kJ.molDonor-1) 

o Anabolism: HCO3
- + 0.828 NH4

+ → 1.101 H2O + 0.670 NO2
- + 0.499 H+ + C1H1.613O0.557N0.158 

(ΔG0’ = 267.7 kJ.C-mol-Biomass-1) 

o Dissipated energy: 3500 kJ.C-mol-Biomass-1 

- Nitrite oxidizing bacteria (NOB); 

o Catabolism: NO2- + 0.5 O2 → 1 NO3
- (ΔG0’ = -79.1 kJ.molDonor-1) 

o Anabolism: HCO3
- + 2.64 NO2

- + 1.16 H+ → 0.27 H2O + 2.49 NO3
- + C1H1.613O0.557N0.158 (ΔG0’ 

= 241.3 kJ.C-mol-Biomass-1) 

o Dissipated energy: 3500 kJ.C-mol-Biomass-1 

The ΔG0’ values indicated here correspond to standard Gibbs free energy changes corrected for a 

realistic H+ concentration of 1e-7 mol.L-1 at pH = 7. In the simulations, Gibbs free energy calculations are 

refined to account for concentrations of all chemical species. For each metabolism, the linear 

combination of the catabolic and the anabolic reaction gives what is assumed to be the overall growth 

reaction of the population considered. 

Virtual culture conditions 

The temperature is set to 298.15 K and the pH is assumed to be 7 in every system, unless specified 

otherwise. 
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Aerated batch cultures in minimal M9 medium 

The culture medium used in the simulations is a minimal medium homologous to the M9 minimal 

medium. The concentrations of chemical species used for model initialization are glucose: 17.05 mM, 

proton: 3.98e-5 mM (pH=7.40), ammonium: 18.69 mM, bicarbonate: 0 mM. When using an alternative 

carbon source, the same quantity of molC is used to enable yield comparison. Thus the concentration of 

acetate is 51.15 mM. Initial microbial inoculation was set to 1 mM (22.7 cell.mL-1). 

The only abiotic process implemented in aerated batch systems is aeration. Its rate is 𝑘𝐿𝑎 ∗

([𝑂2]𝑠𝑎𝑡 − [𝑂2]) where [𝑂2] is the current oxygen concentration, [𝑂2]𝑠𝑎𝑡 the saturation concentration 

of oxygen in water (0.273 mM at the temperature of the system according to the Henry law) and 𝑘𝐿𝑎 the 

oxygen transfer coefficient (time-1), set to 100 day-1 for the simulations.  The stoichiometric coefficients 

of the aeration process consist in a 𝑟 × 1 𝐴𝑎𝑒𝑟𝑎𝑡𝑖𝑜𝑛 matrix. The coefficient of 𝐴𝑎𝑒𝑟𝑎𝑡𝑖𝑜𝑛 for O2 is 1, and 0 

for every other reagent. 

Chemostat culture system 

The system is submitted to chemostat dynamics; the rate of matter transfer in a chemostat system is 

𝑑 ∗ (𝐶𝑠𝑎𝑡 − 𝐶) (Monod 1949) where 𝐶𝑠𝑎𝑡 is the 𝑟 × 1 matrix of the concentration of the concentration in 

the input of the chemostat and 𝑑 is the dilution rate of the chemostat (input and output flow rate 

divided by the tank volume) in time-1. The stoichiometric coefficient of matter transfer on the reagent 

concerned is 1. The chemostat culture system is modeled as a 1 m3 perfectly mixed single compartment. 

It is subjected to chemostat dynamics with a flow rate of 1 m3.day-1. No aeration process is implemented 

in this system. Oxygen is fed to the culture medium through the chemostat inflow; its influent 

concentration is 2.73e-1 mM (8.73 g.m-3
, which is its saturation concentration). Input concentrations 

used for this system are meant to emulate a likely groundwater: ammonium 1 mM (18.04 g.m-3), 

bicarbonate 1 mM (61.02 g.m-3), nitrate 1.93e-1 mM (12 g.m-3), sulfate 6.24e-1 mM (60 g.m-3), Fe+3 
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5.37e-1 mM (30 g.m-3). Multiple simulations were ru using acetate concentrations ranging from 0 to 1.5 

mM (88.56 g.m-3). The initial microbial inoculation was set to 1 mM (22.7e6 cell.mL-1) for each microbial 

guild. The simulation was run until biomass stabilized. 

Activated sludge system 

The activated sludge system is modeled as an aerated batch. Aeration conditions are identical to those 

used for aerated batch cultures in M9 medium, except that the oxygen saturation concentration is set to 

0.2556 mol.m-3, according to an empirical relationship used for wastewater modeling (Hiatt and Grady 

2008). The composition of the medium is set to simulate a simplified filtered urban wastewater 

containing 1.76 mM acetate (103.9 g.m-3) and 3.78 mM ammonium (68.19 g.m-3). The initial microbial 

inoculation was set to 1 mM (22.7e6 cell.mL-1) for each microbial guild. Values of Vh were common to all 

guilds and set to 10 m3.C-mol-Biomass-1. For the sake of simplicity, the influent was considered to be free 

of particles and only aerobic growth of microbial populations was modeled. 

  



105 
 

Results  

Modeling a pure culture growing in a minimal medium containing multiple elemental resources 

To show how energy balance, stoichiometry and microbial dynamics are inherently coupled in our 

modeling framework, here we present model implementation in the simplest case of a single population 

growing in a minimal medium. The results enable analysis of the model's dynamic properties.  

We consider the growth of an axenic culture in a minimal M9 medium, in an aerated batch inoculated 

with 1 mM biomass (22.7e6 cell.mL-1). A single glucosotroph guild (see Material and Methods) is 

simulated.  

 The metabolism of the population consists in the combination of an anabolic and a catabolic reaction 

and can be expressed as a function of λ; 

-0.167 C6H12O6 -0.158 NH4
+ + 0.430 H2O + 0.164 H+ + 0.00625 HCO3

- + 1 C1H1.613O0.557N0.158  

+ λ (- 1 C6H12O6 - 6 O2 + 6 HCO3
- + 6 H+) = 0 

where λ can be calculated at each time step according to anabolic, catabolic and dissipated Gibbs free 

energy variations is 

𝜆 = −
∆𝐺𝑎𝑛+∆𝐺𝑑𝑖𝑠

∆𝐺𝑐𝑎𝑡
 (see equation 3 in material and methods for details) 

The growth rate 𝜇 of the population is then expressed as a function of its substrates (namely 

chemical species having a negative stoichiometric coefficient): 𝜇 = 𝜇𝑚𝑎𝑥∏ 𝑒

𝐴𝑚𝑒𝑡,𝑖
𝑉ℎ[𝑆𝑖]𝑖=0  

where 𝜇𝑚𝑎𝑥 is a constant that is independent of the microbial population considered (see Material and 

Methods), 𝐴𝑚𝑒𝑡,𝑖  is the stoichiometric coefficient of the substrate 𝑆𝑖, 𝑉ℎ is the harvest volume 

(independent of substrate and population, see Material and Methods) and [𝑆𝑖] is the concentration of 
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the substrate.  In the following description of the MTS model predictions, each term 𝑒

𝐴𝑚𝑒𝑡,𝑖
𝑉ℎ[𝑆𝑖]  of equation 5 

for each substrate will be called “tuning factor of substrate i”. For each substrate, this tuning factor 

corresponds to the inhibition it exerts on the growth rate depending on the ratio of its demand to its 

supply in the culture medium. During the course of the simulation, the Gibbs free energy changes in the 

anabolic and catabolic reactions vary according to the changes in temperature and in the concentration 

of the reagents over time. The λ factor preserves the energy balance of the metabolism as a whole and is 

consequently dynamically adjusted. This process ensures the dynamic coupling of microbial growth 

rates, stoichiometry and energy balance at each time step of the simulation, according to changes in the 

concentration of the reagents  over time. 

Figure 1a tracks the concentrations in the system during the dynamic simulation. The simulated 

population grows linearly until it reaches a plateau at 74.47 mM (1.69e9 cell.mL-1) in 30 hours (1.25 

days). Figure 1a also shows the tuning factors of the population, which help understand population 

dynamics in the MTS model; in the current simulation, they indeed reveal a dynamic, two-step growth 

limitation phenomenon. In the beginning, as glucose is abundant in the culture medium, the growth rate 

is mostly limited by oxygen, the electron acceptor. As the aeration rate is constant, the population grows 

according to this linear aeration rate and depletes glucose and ammonium. At the 30th hour of the 

simulation, the concentration of glucose reaches a level at which it becomes significantly limiting; its 

tuning factor plummets from 0.98 to 8e-23 in less than 5 hours (0.2 day). As glucose becomes scarce, the 

growth rate of the population decreases exponentially as a result of the limitation of the electron donor, 

to reach 3.3e-6 day-1 at the end of the simulation. With such a low metabolic rate, aeration replenishes 

the oxygen concentration in the batch culture almost to saturation. Consequently, the tuning factor of 

oxygen (electron acceptor) increases during the glucose-limited phase of growth, and glucose (electron 

donor) becomes the main limiting substrate. Conversely, simulations were performed using exactly the 
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same model structure and only changing the initial nitrogen concentration to represent growth in a 

nitrogen-poor M9 medium. In that case, the growth rate appears to be limited by oxygen in the first 

phase, after which growth virtually ceases due to ammonia exhaustion (Fig 1c). These simulations reveal 

that the MTS model can jointly capture the influence of all resources on growth dynamics, whether these 

resources contribute to the energy supply of the cell (electron donors or acceptors) directly or not 

(nutrients such as ammonia).  

Modeling two competing populations: emergence of an energy-driven ecological succession 

One of the factors that influence community structure is the outcome of competition between 

populations. The MTS model's ability to predict the outcome of competition between multiple 

populations in the sense of functional guilds has been questioned. 

To answer this question, we implemented the minimalist case of two heterotrophic populations growing 

together in an aerated batch, modeled as a glucose oxidizing guild and an aerobic acetate oxidizing guild. 

Both guilds have the same absolute 𝜇𝑚𝑎𝑥  value, and the same 𝑉ℎ value. The difference between the 

dynamics of the two guilds only resulting from thermodynamic constraints was then studied.  

The two guilds differ in the energy they dissipate during their respective metabolic reaction according to 

Heijnen’s formula (Heijnen and Kleerebezem 2010); -432.12 kJ.C-mol-Biomass-1 for acetate oxidizers vs. -

236.05 kJ.C-mol-Biomass-1 for glucose oxidizers. However, the number of electrons donated per carbon 

atom of electron donor is the same (4 electrons per carbon atom of electron donor). The initial quantity 

of each electron donor is 17.05 mM of glucose and 51.15 mM of acetate. These quantities were adjusted 

in this simulation so that they represented the same quantity of carbon (and consequently the same 

quantity of electrons) in the raw element count. 

Figure 1d tracks the system’s variables over the course of the simulation. The model predicts that the 

glucose oxidizer guild grows first. Their population is predicted to stabilize at 74.47 mM (1.69e9 cell.mL-1) 
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after 31 hours (1.29 days). The population of acetate oxidizers is predicted to grow from the 31st to the 

84th hour (1.3 – 3.5 days) and to stabilize at 50.19 mM (1.14e9 cell.mL-1). The growth of the glucose 

oxidizer guild follows the same kinetics and the same sequential inhibition as in the previous, mono-guild 

simulation (Fig 1b). The growth of the acetate oxidizer guild is also sequentially inhibited by its electron 

acceptor (oxygen) then by its electron donor (acetate). 

As the two guilds have a different electron donor (glucose and acetate) but the same electron acceptor 

(oxygen), they compete for the electron acceptor. The results shows that the guild of glucose oxidizers 

grows first and also develops a higher stabilized population density than the acetate oxidizers guild (Fig 

1d). In presence of the glucose oxidizer guild, the growth of the acetate oxidizer guild is delayed 

compared to its growth in the absence of the glucose oxidizer guild (Fig 1a). This outcome arises from the 

thermodynamic properties of the metabolisms involved. The same amount of oxygen per carbon is 

needed to oxidize glucose or acetate, in order to preserve the elemental balance, and the batch 

simulation is initialized with the same quantity of carbon for both substrates. However, in the simulation 

conditions, glucose oxidation is more exergonic than acetate oxidation when normalized by carbon 

atom. The guild growing on glucose does not need to dissipate as much energy. These two properties are 

aggregated and related to the growth yields by the λ factor, more acetate than glucose must be oxidized 

in order to produce the energy required for growth (approximately 0.503 + 1 × 0.6 = 1.1 mol-

Acetate.mol-Biomass-1 versus approximately 0.167 + 1 × 0.09 = 0.25 mol-Glucose.mol-Biomass-1). 

Consequently, the tuning factor associated with oxygen is lower for acetate oxidizers than for glucose 

oxidizers (Fig 1d). Both guilds reduce the oxygen concentration while growing, but the thermodynamic 

considerations implemented by the MTS model give a better yield to the glucose oxidizers. Hence they 

can draw down O2 to lower levels (compared with acetate oxidizers). Consequently the growth of 

glucose oxidizers brings the oxygen concentration to a level at which the growth rate of acetate oxidizers 

is insignificant and in practice prevents their growth during the first 30 hours (1.25 days) of the 
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simulation. Interestingly, the possibility to obtain such a pattern could be experimentally tested in a 

system where the oxygen supply rate would less than the oxygen uptake rate of the glucosotrophic guild.  

It should be noted that the two populations have exactly the same growth parameter values 

implemented in the MTS model. Despite similar kinetic parameters for the two populations, a microbial 

succession emerges from the model. Therefore, simple mass and energy balance calculations coupled to 

the flux-force relationship between energy and rate determine the outcome of competition and an 

ecological succession emerges. Our model thus appears to inherently exhibit an original property: the 

ability to account for microbial successions as a result of competition for available resources and energy. 

In view of this result, the possibility to directly account for community assembly patterns observed in 

nature was further questioned.  
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Figure 1 : Aerobic microbial cultures growing in different conditions. Graphs on left column are concentrations over time; 

acetate concentration in dark green, glucose concentration in light green, ammonium concentration in dark blue, oxygen 

concentration in light blue, acetotroph biomass concentration in plain black, glucosotroph biomass concentration in dashed 

black. Graphs on right column are natural logarithm of the tuning factors over time; tuning factors follow the same color 

scheme as in the left column; tuning factors for acetotroph guild are represented by plain lines, tuning factors for 

glucosotroph guild are represented by dashed lines. The lower a tuning factor is, the more significant is the limitation exerted 

by the substrate on the microbial population’s growth rate. Time is in hour, concentration is in mM, secondary concentration 

axis (right side) on the left column is for oxygen. Biomass is quantified as mM of carbon-normalized biomass. (a) Acetotroph 

guild monoculture. (b) Glucosotroph guild monoculture. (c) ammonium-limited glucosotroph guild monoculture. (d) 

Acetotroph and glucosotroph co-culture. 

Modeling competition between multiple populations: emergence of a community structured according 

to a "redox tower" of microbial metabolism 

Natural systems in which electron donors are available in excess and electron acceptors are limited 

exhibit typical compartmentalization of microbial activities. This occurs particularly during hypolymnia of 

eutrophic freshwater lakes, when oxygen depletion results  in anoxic zones (Müller et al 2012). This 

phenomenon has been studied for decades (Boehrer and Schultze 2008, Hutchinson 1957). It leads to 

sequential vertically stratified consumption of available electron acceptors according to the hierarchy of 

Gibbs free energy changes of half reduction reactions, leading to "redox towers of microbial 

metabolisms". To assess the ability of our approach to account for such compartmentalization patterns, 

we simulated competition between multiple populations for a single electron donor (acetate) and in the 

presence of various electron acceptors. The competition was analyzed in a chemostat. In these systems, 

microbial populations are subjected to a continuous flow of substrate and an output rate for biomass. 

Each population then has two possible stationary states: either its growth rate negates the dilution rate 

or the population is washed out. We implemented a microbial community channeling electrons from 

acetate to oxygen, nitrate, sulfate and iron, and we simulated its dynamics according to the MTS model. 
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The implemented guilds are aerobic acetotroph, denitrifying acetotroph, sulphate reducing and iron 

reducing guilds (see Material and Methods). 

The culture medium is modeled as a perfectly mixed 1 m3 single compartment subjected to chemostat 

dynamics with a flow rate of 1 m3.day-1, corresponding to a dilution rate of 1 day-1.  

Figure 2 shows the concentration of each guild during the stationary phase, as a function of the influent 

acetate concentration. The concentration of all populations as a function of time for an input acetate 

concentration of 1.76 mM is shown as supplementary material 4. As previously shown, the growth of the 

most thermodynamically advantaged guild delays the growth of competing guilds. The population able 

to adjust its growth rate to the dilution rate with the minimal amount of acetate is the aerobes guild. 

This is explained by the superior exergonicity of their metabolism as discussed in connection with the 

competition between two species above. With increasing acetate concentrations, aerobes coexist with 

nitrate reducers, then iron reducers, then sulfate reducers. Indeed, when the quantity of electrons 

provided in the form of acetate exceeds the quantity of electrons acceptable by a given acceptor (i.e. 

oxygen, nitrate, iron or sulfate), some unoxidized acetate molecules remain in the culture medium. 

These acetate molecules are available for a guild catalyzing a less exergonic reaction. Therefore the 

complexity of the community increases with an increase in the incoming electron donor molecules in the 

system, as the possible electron acceptors are saturated one by one. A community structure pattern 

compliant with the typical redox tower pattern is thus parsimoniously predicted by the MTS model. 
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Figure 2 : Competition outcome in a chemostat fed with acetate in the presence of various electron acceptors as predicted by 

the MTS model. The proportion of each guild at stationary state is depicted as a function of the acetate input concentration 

(mM). Simulation results predict patterns ranging from competitive exclusion at low acetate concentration to full coexistence 

at non limiting acetate concentrations. 

Towards more predictive models for environmental biotechnology applications: microbial dynamics in 

a simplified activated sludge community 

To illustrate the use of the MTS model in the practical case of environmental bioprocess modeling, we 

implemented a simplified model of the community found in the aerated tanks of wastewater treatment 

plants (WWTPs). A set of engineering models called “Activated Sludge Model” (ASM) is commonly used 

for the operation, design and optimization of WWTPs (Hauduc et al 2009).  These models focus on the 

accuracy of the system state variables. This accuracy depends on how closely the simulated system 

resembles the reference system from which a priori knowledge is inputted through calibration. The 

calibrated parameters are thus bound to a range of experimental conditions. On the contrary, the MTS-

based approach we present here does not rely on calibration based on experimental data: we derived 
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kinetics and yields directly i.e.: without calibration, from fundamental generic assumptions, mass and 

energy balance calculations.  

An aerated batch incubation containing wastewater and a simplified activated sludge inoculum was then 

simulated using the MTS and ASMN models. The ASMN model is a modified version of the ASM no. 1 

model (Henze et al 1987), with nitrification split into two steps between two guilds(Hiatt and Grady 

2008). This model thus splits the microbial community into three functional guilds: 

- Ordinary heterotrophic organisms (OHO): heterotrophs consuming an unspecified carbonaceous 

substrate 

- Ammonium oxidizing bacteria (AOB): autotrophs oxidizing ammonium to nitrite 

- Nitrite oxidizing bacteria (NOB): autotrophs oxidizing nitrite to nitrate 

The model was implemented with default parameters (for more details, see supplementary material 5). 

The MTS model was implemented with the same three guilds and the two generic parameters 𝜇𝑚𝑎𝑥 and 

Vh described in Material and Methods. As a working hypothesis, we assumed that the electron donor of 

the OHO guild is acetate, as it appears to be the most abundant volatile fatty acid in wastewater (Rössle 

and Pretorius 2001). Simulation results are shown in figure 3, where the predictions of the MTS model 

are put into perspective by comparing them with simulation results obtained with a default calibration of 

parameters for the ASMN model (see supplementary material 5). Despite overall similarity, the two 

simulations exhibit some differences. The main difference is that the three guilds grow simultaneously in 

the ASMN simulation and sequentially in the MTS model. This difference is linked to the structure of 

each model. In the ASMN model, growth depends on the combination of Monod-type affinity functions 

so that a population can grow as soon as its substrates are present in the medium. In the MTS model, the 

growth of heterotrophs leads to oxygen limitations that virtually prevent the growth of the two 

autotrophic guilds AOB and NOB in a similar way to that described in previous simulations. Moreover, 
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the low exergonicity of the nitrite oxidation reaction requires that a sufficient amount of nitrite 

accumulates in the batch before NOB can compete with AOB for oxygen, leading to a sequential growth 

pattern and transient nitrite accumulation. This pattern has already been documented in piggery 

wastewater treatment (Rajagopal et al 2011)), and also in soils, where a Monod-law based model was 

calibrated to reproduce it (Venterea and Rolston 2002). This sequential growth phenomenon is also 

apparent in the oxygen concentration profiles, where the three stage consumption pattern is most 

apparent in the MTS simulation. Despite these differences, the simulations exhibit remarkable 

similarities. At the end of the simulation, the yield of each guild is similar in the two models: the final 

quantities of biomass in the batch according to ASMN are 108.4 gCOD.m-3 OHO, 50.63 gCOD AOB and 

45.07 gCOD NOB, while the MTS model predicts 114.8 gCOD.m-3 OHO, 52.4 gCOD.m-3 AOB and 45.1 

gCOD.m-3 NOB (Fig 3). These results show that the abundances of each guild as predicted by 

thermodynamic rules are consistent with the growth yields measured in activated sludge and used for 

calibration in the ASMN model. The yields predicted by the MTS model depend on the energy dissipated 

by the metabolisms, which was computed using the empirical formula that Heijnen and collaborators 

(Heijnen and Kleerebezem 1999) calibrated on experimental culture data. This is why the yields 

predicted by the MTS model match those of the ASMN model. In particular, the calibration process used 

to produce the empirical yield parameter of the ASMN model’s heterotrophic population captures the 

average yield of many thermodynamically constrained populations growing on diverse substrates. The 

average yield resulting from all these metabolisms is close to the yield of growth on acetate, which is one 

of the most abundant sources of carbon in such systems.  
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Figure 3 : Concentration of main chemical species and biomass over time for a simplified activated sludge community in an 

aerated batch reactor. Left column shows the prediction from the MTS model; right column shows the predictions from ASM. 

The units used to express the concentration of the chemical species are the same as in the ASM models. 

Discussion 

In this article, we present the dynamics of single and multiple microbial populations arising directly from 

the MTS theory (Desmond-Le Quéméner and Bouchez 2014) coupled to a thermodynamic and 

stoichiometric balance calculation framework developed in previous papers (reviewed in (Kleerebezem 

and Van Loosdrecht 2010)). While several approaches have been proposed in the past to link 
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thermodynamic balance calculations and kinetics (Heijnen and Kleerebezem 1999, Hoh and Cord-

Ruwisch 1996, Jin and Bethke 2003, Noguera et al 1998, Roels 1980, Westerhoff et al 1983), the MTS 

theory differs fundamentally from all these previous approaches. What is completely novel is that it 

makes population dynamics emerge as the statistical outcome of all the individual division events 

described at the microscopic level, from fundamental and generic principles. Strikingly, despite the 

simplicity of the theory's core principles, consistent microbial dynamics, successions and functional 

community assembly patterns were simulated without population specific parameter calibration, for 

systems ranging from pure to mixed cultures. In this article, we therefore document that the kinetic 

equations arising from MTS theory intrinsically include many important generic properties to adequately 

model microbial population and community dynamics. 

First, using a stoichiometric approach, we show how the model jointly captures the influence of all 

substrates simultaneously (see equation 5). However, the simulation results also illustrate how growth 

dynamics actually appear to be limited by one substrate at a given time. This emerging property of the 

model recalls Liebig’s law of the minimum, which states that the growth rate of an organism requiring 

multiple different resources is controlled by the scarcest resource only. This situation indeed 

corresponds to the widely accepted intuitive understanding of the way microbial cultures behave in the 

laboratory, and has often been investigated, tested and confirmed (Kovarova-Kovar and Egli 1998). 

Liebig's hypothesis is thus widely used to model microbial dynamics, sometimes implicitly, as in the most 

simple, mono-substrate expression of Monod's equation, sometimes explicitly, as in multi-substrate 

implementations of the Monod model where the limiting substrate has to be selected at each time step 

by computing the minimum of all resource dependent growth factors to tune down the maximum 

growth rate (Droop 1974). Without introducing the Liebig hypothesis, considering the growth 

dependence of multiple substrates in Monod based models often leads to inconsistent growth patterns 

that require extensive adaptation of model structure (Bajpai-Dikshit et al 2003, Bapat et al 2006, 
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Nikolajsen et al 1991). In our case, the MTS model can produce sequential growth limitation either by 

electron donor, acceptor or by nutrient. The exponential nature of the relationship makes tuning factors 

“rise” from insignificant to significant in a narrow concentration range (as seen in fig 1), thus allowing 

pronounced limitation switches. Under the simple conditions simulated, virtual cultures thus exhibit 

“Liebig like behavior” that is obtained parsimoniously, as an emerging property of the model. The 

modeling framework we propose is therefore a simple and elegant way to jointly capture the effect of 

electron donor, acceptor and nutrient concentrations on microbial dynamics, without infringing Liebig's 

hypothesis.  

Second, the simulations involving several populations in competition either for electron donor or 

acceptor result in community assembly patterns structured like microbial redox towers (see Fig 2), as 

observed in many natural habitats such as the anoxic hypolymnia of eutrophic lakes (Boehrer and 

Schultze 2008). These types of patterns have already been generated using Monod based kinetic models 

(Bethke et al 2011, Gonzalez-Cabaleiro et al 2015). However, our contribution differs significantly from 

previous works regarding the scientific conclusions that can be drawn from the simulations.  

Gonzalez-Cabaleiro’s model (González-Cabaleiro et al 2015b) uses a modified Herbert-Pirt equation in 

which the growth yield is a function of thermodynamic variables. The kinetic equation used to describe 

substrate consumption rate is a Monod-like function. This model is therefore a juxtaposition of a 

framework for the calculation of the thermodynamic balance and a phenomenological description of the 

dynamic growth process that results in ecological successions. Since kinetic parameters were not 

calibrated in Gonzalez-Cabaleiro’s article, their simulations indeed show the phenomenological 

dependence of ecological successions on thermodynamic variables. However their simulations provide 

no support for using Monod’s law itself as a way to reproduce this pattern. Indeed, since Monod’s law is 

an empirical equation, it carries no hypotheses per se; any similarly shaped curve would have provided 
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the same simulation results. In contrast, in the case of the MTS model, the thermodynamic variables are 

used to compute the division probability at the level of each individual. The MTS theory then provides a 

mechanistic explanation of the influence of energy on microbial division. The sum of all individual 

division events then propagates at the scale of the population, resulting in the MTS growth equation. 

Therefore, both the role of thermodynamic variables and the hypotheses on how they are 

mechanistically linked to the growth rate receive support from the simulation.  Our simulations therefore 

show that the mechanistic explanation of the influence of energy on microbial division at the heart of the 

MTS theory is sufficient to explain ecological successions. 

An interesting parallel can then be drawn with Jin and Bethke’s work (Jin and Bethke, 2007), since both 

their model and the MTS model propose a linkage between microbial kinetics and thermodynamic 

variables, based on two totally different theories (a probabilistic reasoning for the MTS model, non-

equilibrium thermodynamics for Jin and Bethke’s model). Both models are fundamentally different since 

Jin and Bethke’s model expresses the rate of catabolism, while the MTS model expresses the rate of 

biomass synthesis. Jin and Bethke’s model therefore cannot account for the limitation of growth by 

nutrients as the MTS model does (Fig 1c). However, the fact that two theory-based kinetic models 

provide alternative formulations of microbial growth is interesting, and the careful comparison of the 

models may provide fruitful insights into microbial growth kinetics. 

Regarding the simulation of a simplified activated sludge ecosystem, the MTS model was shown to make 

predictions qualitatively similar to those of an engineering model (namely, implementation of the ASM). 

To implement the system whose simulation is depicted in Fig 3, the ASM model requires identification of 

nine kinetic parameters along with three growth yield parameters, whose values have been carefully 

adjusted during decades of experimentation (Gujer et al 2000). In contrast, the kinetics obtained in the 

MTS approach emerges from a theoretical construct in which the only two parameters (µmax and Vh) 
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common to all guilds were considered. While allowing  population specific values for Vh could indeed 

improve the quantitative accuracy of MTS simulations (for an illustration see Supplementary material 6), 

we considered default parameters values in the simulations displayed in Figure 3to show that our model 

is able to generate consistent dynamics with a remarkably small number of parameters, suggesting that 

the energy/rate dynamic equation resulting from the MTS theory already has interesting predictive 

abilities in the absence of parameter fitting. 

Clearly, the community dynamics obtained by simulation corresponds to those of an idealized functional 

partitioning of the community resulting from a first layer of energetic and stoichiometric drivers. As 

implemented in this article, the MTS model obviously does not account for the whole range of 

phenomena that influence microbial community dynamics and community structure in real complex 

environmental or engineered settings like those encountered in activated sludge plants. Other processes 

such as inhibition due to compound toxicity, indirect pH and temperature adaptation effects (Shammas 

1986), non-metabolic inter-species interactions, spatial organization (Meister et al 2017), etc. need to be 

added to obtain a more realistic picture of genuine complex microbial community dynamics. However, 

including such phenomena in the model was beyond the scope of the present study. The microbial 

dynamics simulated in this article were indeed not the result of an effort to reproduce specific 

experimental patterns through the calibration of empirical equations. Rather, the most salient message 

is to document and analyze the consistency of generic growth dynamics and community assembly 

patterns as emerging directly from a new kinetic theory of microbial growth relying on first principles 

coupled with thermodynamic and stoichiometric calculations. 

To that extent, the simulations reported here illustrate a set of key properties of MTS dynamic models. 

To our knowledge, a microbial population dynamics model per se has never before exhibited all these 

properties, that is, without the need for additional hypotheses or specific parameter calibration. What is 
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of the utmost importance and constitutes the novelty of our contribution, is the fact that these 

properties are obtained parsimoniously through the combination of fundamental and generic principles 

translated into mathematical equations, and not from the calibration of population specific parameters. 

More generally, we advocate the need in microbial ecology to propose new theoretical abstractions to 

grasp a whole category of phenomena in an inclusive picture. We believe that such approaches pave the 

way for a new class of microbial ecology and engineering models, built on more robust theoretical 

foundations and exhibiting enhanced predictive abilities.  
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ecosystem obtained by the calibration of a 

parameter-parsimonious thermodynamic model 
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This chapter corresponds to an article draft not yet submitted. 

While the previous article was aimed at studying the intrinsic properties of the MTS model’s growth 

function, independently from its parameters’ value, the current article investigates the effect of the 

model’s parameters on its predictions. In order to do so, two questions need to be addressed. 

Firstly, the model’s parameters, namely, the maximum growth rate µmax and the harvest volume Vh, are 

calibrated in order to have an idea of their value according to experimental data. This is done using 

respirometry data, and considering a simplified version of the activated sludge microbial community 

striving in activated sludge. As a result, a preliminary estimation of the MTS model’s parameters value is 

presented in this article. However, further calibration with more complete experimental data should be 

performed before to have a more accurate picture of the value of the MTS model’s parameters. 

Secondly, the effect of the value of those parameters on the MTS model’s predictions of a simplified 

activated sludge community is evaluated. The predictions by the MTS model are then compared with 

those of a modified ASMN model in order to provide a reference. 

This article reveals that the qualitative predictions of the activated sludge microbial community dynamics 

made by the MTS model heavily depends on the thermodynamic constraints that the model implements, 

and not on the precise value of the parameters. The results presented in this chapter then support the 

ability of the MTS model to account for dynamics of microbial communities in mixed culture 

bioprocesses while involving less parameter calibration than engineering models.  
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Abstract 

The development of predictive models plays a crucial role in bioprocess engineering. The most 

commonly used approach is to capture all the experimentally observed dynamics of the bioprocess into 

the calibrated parameters of an empirical engineering model. However, this solution is a double-edged 

sword since dynamics are reproduced while their causes are not elucidated. To address this issue, we 

developed the Microbial Transition State (MTS) theory, a theoretical model of microbial growth making 

the link between metabolic energy, growth yield and rate explicit. This model was shown in a previous 

study to make encouraging predictions of the dynamics of a simplified activated sludge community in a 

batch. In the present study we calibrate the kinetic parameters of this model on experimental data in 

order to evaluate the improvement it brings to the predictions. It is shown that the model then provide 

better predictions of the dynamics of the same microbial community in a batch and a continuous 

reactor, while keeping a low number of free parameters (4) and implementing a theoretical growth 

description only based on mass and energy balance constraints. 
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Introduction 

The basic principle behind all mixed culture bioprocesses is that the upkeep of precise culture conditions, 

which can often be described in physical terms such as temperature and concentrations, will shape the 

microbial community so as to perform a set of targeted metabolic functions. Those culture conditions 

are known from empirical engineering rules. Models have been developed for the management and 

design of widely used mixed culture bioprocesses such as biological carbon and nitrogen removal (Gujer 

et al 2000) or anaerobic digestion (Batstone et al 2001), relying on an empirical expert knowledge of 

those processes. Although being able to quantitatively reproduce behaviors observed in the nominal 

conditions of the bioprocess, they are based on a partial understanding of the forces at play in the 

community’s metabolic structuration. The adaptation of an existing mixed culture bioprocess model to 

different conditions (Ciggin et al 2013), or even the development of a model for a new bioprocess from 

metabolic specifications, require experimentations costly in time and money to calibrate the engineering 

model.  

Generic models explaining microbial communities’ metabolic structuration would be useful in those 

situations. Reciprocally, environmental bioprocesses, and especially activated sludge processes, 

constitute good model ecosystems for microbial ecology as their allow to study communities in well-

defined and controllable culture conditions (Daims et al 2006). Attempts to derive generic relationships 

between physicochemical conditions (temperature and concentrations) and microbial growth yields have 

been proposed using thermodynamic calculations. Interestingly, the first thermodynamic model of 

microbial growth was developed in the context of activated sludge processes (McCarty 1965). This model 

and others since then have shown that there is a relationship between the thermodynamic properties of 

metabolisms and the abundance of microbes catalyzing it in a given culture medium (Heijnen and Dijken 

1991, Roden and Jin 2011, Roels 1980, von Stockar et al 2008). While some methods implies to set some 

hypotheses about the electron transport chains of the modelled metabolisms to predict their yield and 
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rate (Jin and Bethke 2003, McCarty 1965, Noguera et al 1998), others are said to be “black box” and 

focus on the input and outputs of matter, entropy and energy (Heijnen and Dijken 1991, von Stockar and 

Liu 1999). Those methods have recently been applied to sets of metabolisms to predict the functional 

structuration of microbial communities in various chemical conditions (González-Cabaleiro et al 2015b, 

Van de Leemput et al 2011). However, while making the role of some physical factors explicit in the 

prediction of metabolic yields, for the modelling of growth rates, most of these approaches consist in 

binding energy-related terms (such as Gibbs energy differentials of reactions) into empirical equations. 

For example, the independent approaches developed by Heijnen and collaborators (Heijnen and 

Kleerebezem 1999), and Hoh and Cord-Ruwish (Hoh and Cord-Ruwisch 1996), to predict the growth rate 

associated to a metabolism in defined chemical conditions end up adding an energy-related term to a 

Monod growth rate equation. Thus, while empirical relationships between thermodynamic parameters 

and microbial growth are documented by the existing models, no underlying theory does satisfyingly 

explain this influence. 

The Microbial Transition State (MTS) model is a microbial population dynamics model linking energetic 

gradients to population growth kinetics (Desmond-Le Quéméner and Bouchez 2014, Wade et al 2016). 

This model is aimed at describing generic mechanisms at play in the functional structuration of a 

microbial community so it can predict biomass and reagents concentration variation over time for a wide 

range of chemical settings. As the MTS model is built upon a statistical thermodynamic description of 

microbial growth, the comparison of its predictions with actual microbial growth outcomes provides 

feedback on the theory it implements. A previous article illustrated the ability of the MTS model to 

reproduce microbial community assembly patterns. For those predictions to be the result of the model’s 

construction, parsimony has been assumed as a working hypothesis as the number of population-specific 

parameters was kept to a minimum, and the model’s parameters were given default values. This first 

implementation of the MTS model was used to predict the growth dynamics of a microbial community 
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emulating this of activated sludge in a batch. The prediction was quite close to a reference simulation of 

the same system by the ASMN model, considering that this implementation of MTS had only 3 

(uncalibrated) free parameters while the ASMN model had 12 parameters, each one calibrated on 

decades of measurements. However, predictions of the dynamics of an activated sludge community in a 

continuous reactor by this same implementation of MTS were nowhere close to those of ASMN. This is a 

concern for the use of the MTS model for bioprocess modelling as activated sludge is mainly cultivated in 

continuous culture. To be able to make accurate predictions of the dynamics of activated sludge in a 

continuous reactor is important for the use of the MTS model as it is the most common culture condition 

for this bioprocess. In order to make the MTS model predictions closer to the reference, knowledge 

about the value range of its kinetic parameters, and the sensibility of the model to them, needs to be 

gathered. In this article, we investigate the sensibility of the MTS model to its parameters value, and by 

extension, how the chosen level of parsimony (the number of different kinetic parameters) affects the 

predictive ability of the MTS model. This is done by calibrating the parameters of the model on 

experimental data, and then comparing results with the prediction of an uncalibrated MTS model (ref 

article 1), and with these of an engineering model (ASMN (Hiatt and Grady 2008)). The calibration 

process also greatly change the value of the MTS model’s parameters from the values used in the 

previous article, so the results presented here also allow for an evaluation of the model’s sensitivity to its 

parameters. The cases simulated are: (1) the competition for oxygen in a batch and (2) the washout by 

the reduction of sludge retention time and the competition for oxygen in a perfectly mixed continuous 

reactor with sludge recirculation.  
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Material and methods 

Activated sludge metabolic model 

The microbial community considered in this article is the main functional community of activated sludge, 

and is modelled as being divided into 3 microbial guilds: Ordinary Heterotrophic Organisms (OHO), 

Ammonium Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB), as in the ASMN model (Hiatt 

and Grady 2008). A guild is a microbial population characterized by an explicitly defined catabolic and 

anabolic reaction, a dissipated energy (Gibbs free energy differential of the overall metabolism, 

expressed in kJ per mol of biomass produced) and a biomass concentration. The dissipated energy of 

each guild’s growth is a guild-specific value, computed according to the principles defined by Heijnen and 

collaborators (Heijnen and Dijken 1991). Biomass is modelled as a single, carbon-normalized molecule 

whose formula is as defined by Battley: C1H1.613O0.557N0.158, of molecular weight 24.76 g.mol-1, of Chemical 

Oxygen Demand (COD) 1.708 gDCO.g-1 and of Gibbs free energy differential of formation in standard 

conditions of -82.16 kJ.mol-1 (Battley 1998). The anabolic and catabolic reactions defining each guild are; 

- OHO: 

o Catabolism: 1 C2H3O2
- + 2 O2 → + 2 HCO3

-  + 1 H+ (dG0’ = -844.4 kJ.mol-1) 

o Anabolism: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 1 

C1H1.613O0.557N0.158  (dG0’ = 23.9 kJ.mol-1) 

o Dissipation: 432.12 kJ.C-molBiomass-1 

- AOB: 

o Catabolism: 1 NH4
+ + 1.5 O2 → 1 NO2

- + 1 H2O + 2 H+ (dG0’ = -269.9 kJ.mol-1) 

o Anabolism: 1 HCO3
- + 0.828 NH4

+ → 1.101 H2O + 0.670 NO2
- + 0.499 H+ + 1 

C1H1.613O0.557N0.158 (dG0’ = 267.7 kJ.mol-1) 

o Dissipation: 3500 kJ.C-molBiomass-1 
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- NOB: 

o Catabolism: 1 NO2- + 0.5 O2 → 1 NO3
- (dG0’ = -79.1 kJ.mol-1) 

o Anabolism: 1 HCO3
- + 2.64 NO2

- + 1.16 H+ → 0.27 H2O + 2.49 NO3
- + 1 C1H1.613O0.557N0.158 

(dG0’ = 241.3 kJ.mol-1) 

o Dissipation: 3500 kJ.C-molBiomass-1 

Where “dG0’” denotes of the Gibbs energy differential of a reaction in standard conditions of 

temperature (298 K) and concentrations, corrected for a pH of 7 (the concentration of every chemical 

specie is assumed to be 1 M, except for H+ which is at 1e-7 M). 

MTS model 

The MTS model is implemented as defined in chapter 4. Its growth rate formula is 

µ = µ𝑚 ∙∏𝑒
𝜐𝑎𝑛+𝜆∙𝜐𝑐𝑎𝑡
[𝑆𝑖]∙𝑉ℎ

𝑖

 (1) 

Where µ is the growth rate of a guild (in day-1), µ𝑚 is the maximum growth rate of the guild (in day-1), 𝑉ℎ 

is the harvest volume of the guild (the fictional volume into which substrate particles are accessible for a 

cell to metabolize them, in m3.molBiomass
-1), [𝑆𝑖] is the concentration of a substrate 𝑆𝑖 (in mol.m-3) (a 

“substrate” being any chemical specie consumed according to the metabolism’s stoichiometry), 𝜐𝑎𝑛 is 

the stoichiometric coefficient for the substrate 𝑆𝑖 in the guild’s anabolic reaction (in molSi.molBiomass
-1), 

𝜐𝑐𝑎𝑡 the stoichiometric coefficient for the substrate 𝑆𝑖 in the guild’s catabolic reaction (in 

molSi.molElectronDonor
-1) and 𝜆 being the number of times the catabolic reaction is performed per anabolic 

reaction in order to close the energy balance of the metabolism, considering its Gibbs energy differential 

must equal the dissipated energy defined above for the guild (in molElectronDonor.molBiomass
-1). 𝑉ℎ derives 

from the MTS theory. It represents the physical volume in which a cell can harvest molecular resources 

used for growth and might thus also be influenced by phenomena such as cell motility and substrate 
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diffusion. Though this article is the first attempt so far in the literature to calibrate the µ𝑚 and 𝑉ℎ 

parameters of the MTS model, it is expected that those parameters are sensible to temperature. The 𝜆 

factor is updated at each simulation time steps in order to account for the modification of the Gibbs 

energy differentials of anabolism and catabolism depending on the mass action ratio. The overall 

stoichiometric coefficient of each chemical specie Si involved in the metabolism is then expressed as 

𝜐𝑎𝑛 + 𝜆 ∙ 𝜐𝑐𝑎𝑡 (in molSi.molBiomass
-1), and the growth rate of each guild is then limited by a product of 

exponentials of the form 𝑒
𝜐𝑎𝑛+𝜆∙𝜐𝑐𝑎𝑡
[𝑆𝑖]∙𝑉ℎ , taking the limitation by the concentration of each chemical specie 

required by the metabolism into account in the calculation of the guild’s growth rate. 

Activated sludge respirometric tests 

Two respirometric tests conducted on activated sludge sampled from the aeration tank of a full-scale 

wastewater treatment plant (south of France), were used to calibrate the MTS model (µmax and Vh). 

Before starting the tests, the activated sludge was maintained under endogenous conditions until the 

Oxygen Uptake Rate (OUR) reached a nearly stable signal. In the first experiment (further referred to as 

experiment 1), AllylThioUrea (ATU) was used (20 mg/L) to stop the nitrifying activity before injecting 25 

mg/L of acetate.  In the second experiment (further referred to as experiment 2), 5 mgN.L-1 of 

ammonium was injected into the activated sludge mixed liquor. During both experiments, the pH was 

regulated at 7.3±0.3 and the temperature was maintained at 20 ±0.5°C. 

Calibration process 

MTS model parameters calibration for OHO guild is performed using the OUR curve of experiment 1 as a 

reference. AOB and NOB guilds are calibrated using the OUR curves of experiment 2. It is assumed that 

the observed oxygen consumption during the experiments happens because of two processes; 

exogenous and endogenous respiration. Exogenous respiration is the oxygen demand caused by the 
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catabolism of the added substrate and other processes such as its storage as polymers. It is considered 

that most of the exogenous oxygen demand is caused by catabolism, so the other processes are ignored.  

To do so, the stoichiometry of the metabolisms is set so that their energy balance is closed, using the 

method defined by Heijnen and collaborators (Heijnen and Dijken 1991). It has been documented that it 

provides a reasonable estimation of the microbial growth yields without making assumptions based on 

experimental observations (von Stockar et al 2008). This method is also the one used by the MTS model 

to dynamically adjust stoichiometry. The total amount of oxygen needed for the catabolism of the 

introduced amounts of electron donors were deduced; the remaining amount of oxygen consumed in 

experiments was considered as endogenous respiration and removed from the curves on which the MTS 

model’s parameters were calibrated. See sup mat for the experimental data, and its transformation as a 

R script (ref sup mat). 

The calibration process consists in the heuristic search for the kinetic parameters of the MTS model (µmax 

and Vh) for the simulation to fit the experimentally observed exogenous OUR curve. The parameters are 

calibrated using a MTS simulation program (ref article 1) written using the Matlab programming 

language (MATLAB Release 2014a, The MathWorks, Inc., Natick, Massachusetts, United States). The kLa 

of the calibration simulations has been set to 2000 day-1, so oxygen is not limiting during the simulations 

as it is the case during the experiments. The distance between the MTS simulation and the reference is 

computed as the sum of the squares of the point-by-point differences between the two OUR curves 

(being expressed in mgO2.L
-1.min-1). The µmax parameter’s initial value for the OHO population was 

33.1 day-1, and its value is constrained to lie between 0.8 and 144 day-1. 0.8 day-1 is the maximum growth 

rate usually considered for autotroph populations at 20°C in the ASM1 models (Henze et al 1987). While 

both the MTS and the Monod model do have a parameter named µm, it is not expected to have similar 

values since MTS’s µmax is subjected to much stronger limiting factors than this of Monod’s model. 
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Consequently the calibrated value of µmax should not be expected to go below this calibrated for the ASM 

models. 144 day-1 corresponds to the doubling time observed for vibrio natriegens, the fastest-

replicating microbe according to current knowledge (Weinstock et al 2016). The initial Vh parameter’s 

initial value for the OHO population was 2.5 m3.mol-1, Its value has not been constrained during the 

calibration as there exist no previous reference for the value of this parameter. The initial values have 

been chosen based on those assumed in the introductory paper of the model (Desmond-Le Quéméner 

and Bouchez 2014). The initial value of the µmax and Vh parameters for the calibration of the AOB and 

NOB guild are the values calibrated for the OHO guild and the boundary values considered are the same. 

The initial OHO and total autotrophic biomass (AOB + NOB) concentrations were set to 1.89 mM 

(80 gCOD.m-3) and 1.11 mM (47 gCOD.m-3), respectively. The later were estimated based on the 

maximum value of the exogenous OUR recorded at the beginning of each test and considering µmax and Y 

of each biomass (default values of ASMN were used).  The respective proportion of AOB and NOB guilds 

biomass density is a supplementary calibrated parameter in the calibration of autotrophs parameters, 

constrained so that the AOB initial biomass cannot be higher than this of OHO and the NOB initial 

biomass cannot be higher than this of AOB. The initial assumed proportion is 50% / 50%. The ASM 

parameters for the estimation of initial biomass are taken from the ASMN model. 

In order to provide a comparison with the previous article, simulations of the uncalibrated MTS model 

have been performed alongside with those of the calibrated model. The set of parameters of this model 

corresponds to this used in the previous article (cf chapter 4); 

{

𝜇𝑚𝑎𝑥
𝑂𝐻𝑂 = 𝜇𝑚𝑎𝑥

𝐴𝑂𝐵 = 𝜇𝑚𝑎𝑥
𝑁𝑂𝐵 = 5.35𝑒17 𝑑𝑎𝑦−1

𝑉ℎ
𝑂𝐻𝑂 = 1 𝑚3.𝑚𝑜𝑙−1

𝑉ℎ
𝐴𝑂𝐵 = 𝑉ℎ

𝑁𝑂𝐵 = 10 𝑚3.𝑚𝑜𝑙−1
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Simulation conditions 

The effects of the calibration on the predictions by the MTS model are evaluated by performing a 

simulation of the dynamics of the calibrated guilds in two different culture conditions. One culture 

condition simulated in this article corresponds to an aerated batch, at pH 7, a temperature of 20°C, a 

volumetric mass transfer coefficient kLa of 100 day-1 (line with the order of magnitude of values of kLa 

experimentally estimated in wastewater treatment plants (Capela et al 2004)) and the following initial 

concentrations; 

- Acetate: 1.76 mol.m-3 (110 gCOD.m-3) 

- Ammonium : 3.78 mol.m-3 (53 gN.m-3) 

- Bicarbonate: 4.91e-1 mol.m-3 (30 g.m-3) 

- OHO biomass: 11 mol.m-3 (42.29 gCOD.m-3) 

- AOB biomass: 1 mol.m-3 (42.29 gCOD.m-3) 

- NOB biomass: 1 mol.m-3 (42.29 gCOD.m-3) 

The second growth condition corresponds to a continuous reactor with a volume of 1000 m-3 connected 

to a point settler. Influent flow rate was set to 1000 m3.day-1; whereas, waste flow rate was varied from 

10 to 999 m3.day-1 to simulate a sludge retention time ranging from 1 to 60 days. To assess the effect of 

oxygen concentration on microbial dynamics, two values of the volumetric mass transfer coefficient 

were used (kLa: 45 d-1 and 100 d-1). Finally, simulations were performed considering a temperature of 

20°C, a pH 7 and the following input concentrations; 

- Acetate: 4.75 mol.m-3 (300 gCOD.m-3) 

- Ammonium : 3.57 mol.m-3 (50 gN.m-3) 

- Bicarbonate: 4.91e-1 mol.m-3 (30 g.m-3) 

- OHO biomass: 3.90 mol.m-3 (165 gCOD.m-3) 
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- AOB biomass: 3.08 mol.m-3 (131 gCOD.m-3) 

- NOB biomass: 0.99 mol.m-3 (42 gCOD.m-3) 

The initial biomass concentrations are the stabilized biomass concentrations obtained with the 

maximum SRT. It has been done so in order to speed up time required by the system to stabilize. 

ASMN model 

A mathematical model modified from the well-established Activated Sludge Model no. 1 (Henze et al 

1987) was used for modelling the batch and continuous simulation conditions with a simplified activated 

sludge community. The original model was extended with a two-step nitrification and simplified so as to 

describe only the aerobic growth of heterotrophs (𝑋𝐵𝐻), ammonia-oxidizing bacteria (𝑋𝐴𝑂𝐵) and the nitrite-

oxidizing bacteria (𝑋𝑁𝑂𝐵). The parameters of the model are detailed as supplementary material 1. The 

simulation software used is WEST (MIKEbyDHI.com).  

Results 

The uncalibrated MTS model (UMM) simulated in this article have been used in a previous 

implementation of the model (cf chapter 4). A microbial community emulating this of an activated sludge 

in a batch reactor was simulated and it appeared that the yields from the UMM were close to those of a 

parallel implementation of the ASMN model. However, the UMM’s prediction of the dynamics of the 

same microbial community in a continuous reactor were very different from the simulation by the ASMN 

model. The results below show the result of the calibration process of the MTS model, giving rise to the 

Calibrated MTS Model (CMM), and then compared simulations of the aforementioned activated sludge 

community by the CMM, UMM and ASMN, in a batch then in a continuous reactor, in order to document 

how the calibration of the kinetic parameters of the MTS model change its predictions of the yields and 

dynamics of a microbial community. 
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Calibration of the MTS model on an experimental record of activated sludge respiration of acetate 

A respirometric experiment was performed using acetate as electron donor. Oxygen concentration was 

continuously monitored and corresponding data were used to calibrate a MTS model representing the 

growth of OHO populations. The calibration of the parameters of the OHO population on the OUR of 

experiment 1 yielded the following heuristically optimal parameter set; 

{
µ𝑚𝑎𝑥 = 3.75 𝑑𝑎𝑦

−1

𝑉ℎ = 147 𝑚
3. 𝑚𝑜𝑙−1

 

The calibrated OHO parameter set was then used as a starting point to calibrate the AOB and NOB guilds. 

As a working hypothesis for the purpose of parsimony, it was assumed that the two autotrophic guilds 

AOB and NOB do have the same µmax and Vh, while the initial biomass concentration was deemed to be 

guild-specific. The parameter set thus obtained by calibration on the OUR curve of respirometric 

experiment 2, performed using ammonia as electron donor:  

{
 
 

 
 µ𝑚𝑎𝑥 = 2.08 𝑑𝑎𝑦

−1

𝑉ℎ = 296 𝑚
3.𝑚𝑜𝑙−1

𝑋0
𝐴𝑂𝐵 = 6.52𝑒 − 1 𝑚𝑜𝑙.𝑚−3(27.57 𝑔𝐶𝑂𝐷.𝑚−3)

𝑋0
𝑁𝑂𝐵 = 4.59𝑒 − 1 𝑚𝑜𝑙.𝑚−3(19.41 𝑔𝐶𝑂𝐷.𝑚−3)
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Figure 4 : Left: OUR curve of the raw experimental data, with injections in the culture medium specified. Right: 
Superimposition of the experimentally observed OUR curve (circles) with the prediction by the MTS model with parameters 
minimizing the summed square distance to the observed data (crosses). X axis is time in min, Y axis is oxygen consumption in 
mgO2.L

-1
.min

-1
.a) experiment 1; respirogram following the injection of acetate, b) experiment 2; respirogram following 

injection of ammonium. Timescale in left and right column does not start at the same point. 

Sensitivity of the simulations to the parameters 

In order to evaluate the sensitivity of the MTS model’s simulation to the value of its parameters µmax and 

Vh, and also the identifiability of the parameters, the distance of simulations by the MTS model to the 

experimental references used to calibrate it have been computed using sets of value for µmax and Vh 

varying around their optimized value. The kLa has been set to 2000 day-1 for those simulations, so the 

populations are not limited by oxygen. The results for the three references are displayed on Figure 2. It 

appears that there exists a single optimal point regarding each reference data in the 𝜇𝑚𝑎𝑥 × 𝑉ℎ 

parameter space. Consequently the kinetic parameters of the MTS model can then be considered as 

formally identifiable. However, as the optimum (µmax, Vh) couple lies in a shallow “valley” inside surface’s 

topology, it should be outlined that the accuracy of the MTS model simulations is not very sensitive to 
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the value of the parameters (±25% variations of both parameters stays inside the valley, for both 

experiments).  

 

Figure 2 : Distance of the MTS OUR prediction from the experimental reference, depending on the couple of µmax and Vh 
values. The value of µmax varies along the X axis, the value of Vh varies along the Y axis. The optimum, calibrated (µm; Vh) 
couple lies in the center of each subfigure (white frame). The distance is expressed as the sum of squared difference between 
points, normalized by the number of points in the measurement. (a) distance to experiment 1 (b) distance to experiment 2 
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Simulation of the population dynamics of the guilds in a batch 

The simulation of the OHO, AOB and NOB guilds is performed in batch culture conditions by the CMM, 

the UMM and an equivalent implementation of the ASMN model. The prediction by the CMM is 

compared to this of the UMM to evaluate the effect of the calibration on the MTS model, to this of the 

ASMN simulation which is here considered as a reference for the dynamics of this system (Figure 3).  
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Figure 3: Concentration of the metabolites and biomasses over time in a batch setting, as predicted by an uncalibrated MTS 
model (●), a calibrated MTS model (○) and a modified ASMN model (*). Time is in hour, concentrations are expressed in ASM 
units (gCOD, gN, gO2 per m

3
). 
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The UMM predicts that the OHO population grows immediately, and the AOB and NOB populations start 

to grow significantly later at respectively 1.83 h and 7.2 h. This growth lag is linked with a predicted 

nitrite accumulation (up to 2.66 mol.m-3, i.e. 37.26 gN.m-3) before the NOB population growth. In 

contrast, the CMM predicts the immediate growth of the AOB and NOB populations. The OHO guild 

reaches its stationary state 3 hours later than the UMM, and the final OHO biomass density predicted by 

the CMM is also 2.60 mol.m-3 (1.10 gCOD.m-3) higher than this predicted by the UMM. Minor differences 

are also observed in the dynamics of AOB and NOB guilds. Reciprocally to the different growth dynamics 

of AOB and NOB, nitrite accumulation in the culture medium is far less important according to the CMM 

model than as by the UMM (up to 2.5e-1 mol.m-3, i.e. 3.58 gN.m-3), so the CMM predicts nitrite dynamics 

far closer to those obtained with the ASMN model than to those of the UMM.  

Simulation of the population dynamics of the guilds in a continuous reactor 

In the context of wastewater treatment, activated sludge develops in continuous reactors. The dynamics 

of chemical species in this environment are mediated by microbial guilds, whose competition give rise to 

dynamic patterns known as for now as engineering rules. In order to evaluate whether the calibration of 

the MTS kinetic parameters allows for more “realistic” predictions of population dynamics in a 

continuous reactor, simulations by the CMM, UMM and the ASMN model have been performed, with 

different values of SRT and kLa (Figure 4). Again, the ASMN model’s simulation has been considered as a 

reference for the dynamics in such system. The data used to generate the figure consists in the stable 

state of systems characterized by different conditions of kLa and SRT. Two values of kLa have been 

tested; 45 day-1 and 100 day-1, and values of SRT ranging from 60 to 1 day have been tested on each. An 

additional set of simulations has been implemented at kLa 45 day-1, corresponding to the simulation of 
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the CMM except that the AOB and NOB are given the same parameters as the OHO guild (visible on 

Figure 4). The data is available as supplementary material.  

While the growth yield on the electron donor (acetate, ammonium or nitrite) is similar in both models, 

the rest of the stoichiometry is different and this causes some discrepancies between the stationary 

states predicted by the two models. Indeed, the effluent total free nitrogen mass (ammonium, nitrite 

and nitrate altogether) is higher according to the MTS model (40 mgN.L-1) than according to the ASMN 

model (approximately 35 mgN.L-1), and the OUR predicted by the MTS model (339 mgO2.L
-1 at 60 days 

SRT, 45 day-1 kLa) is higher than this predicted by the ASMN model (266 mgO2.L
-1 at 60 days SRT, 45 day-1 

kLa). Moreover, the OUR normalized by the concentration of stabilized biomass is higher for every guilds 

at every SRT according to MTS prediction when compared with ASMN simulation. 

The loss of the nitrifying activity along with the diminution of the SRT is visible, in all simulation records 

of the ASMN and CMM, as the change of the concentrations of the free nitrogen forms (ammonium, 

nitrite and nitrate). Indeed, when the nitrifying activity is fully catalyzed (both AOB and NOB guilds being 

active) the effluent nitrogen is mostly in the nitrate form, while when the NOB guild get washed out, the 

effluent nitrate concentration decreases and gives way to nitrite. In turn, when the AOB guild’s activity 

decreases, ammonium is not metabolized and becomes the main free nitrogen form in the effluent. The 

loss of the nitrifying activity occurs in two stages (loss of NOB activity then loss of AOB activity) according 

to both ASMN’s and CMM’s simulations. Interestingly, it is predicted by the CMM whether heterotroph 

and autotrophs guilds are given specific parameters or not. In the ASMN simulation for kLa 45 day-1 and 

kLa 100 day-1, and in the MTS simulation at kLa 45 day-1, the decrease of the NOB guild’s activity happens 

at a SRT of approximately 6 days. The decrease of the NOB guild’s activity is followed by the decrease of 

AOB guild’s activity. While the ASMN model predicts the AOB activity to totally disappear for a SRT of 1.3 

day, the MTS model also predicts that the nitrifying activity decreases with SRT, but far more gradually, 



144 
 

to the point the nitrifying guilds are still not washed out when the minimum SRT (1.0 day) is reached. The 

loss of the nitrifying activity only starts and is too progressive to actually happen before the minimum 

SRT is reached in the simulation of the MTS model at kLa 100 day-1. The loss of the nitrifying activity along 

with the decrease of the SRT is predicted by the CMM, but is not by its uncalibrated counterpart in the 

tested SRT range (Figure 4). 

Discussion 

Sensitivity analysis 

The evaluation of the sensitivity of the kinetic parameters of the MTS model displayed on Figure 2 shows 

that the calibrated Vh and µmax parameters are formally identifiable, that is, for a given reference dataset 

there exist a single (µmax, Vh) couple minimizing the distance between the model’s prediction and the 

reference data. 

The approach of the ASM models toward real systems is to indiscriminately capture all the phenomena 

influencing the microbial growth yield and dynamics in their parameters. The characteristic of this 

approach is the quantitative accuracy of the predictions without the need to characterize those 

phenomena individually, which is a double-edged sword. The MTS approach is to have the influence of 

stoichiometry and thermodynamics directly accounted for by the construction of the model. The kinetic 

parameters, once calibrated, represent a residual of yet uncharacterized phenomena influencing growth 

dynamics. This residual is shown in the simulations results to have less influence on the dynamics than 

stoichiometry and thermodynamics, since the predictions made by the MTS model are not very sensitive 

to the value of those parameters, as pictured by the sensitivity graphs (Figure 2). This low sensitivity of 

the MTS model’s predictions to its parameters’ value is also explained by the fact that since the 

populations’ growth is not limited by oxygen, the Vh parameter has not much influence on the dynamics. 
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It should be noted that experimental respirometry measurement, on which calibration is based, is 

performed in a culture medium where oxygen is not a limiting resource. 

Moreover, as shown by the batch predictions (Figure 2), if a substrate is limiting for growth, the 

influence exerted by the concentration of this substrate on growth dynamics cannot be cancelled by 

kinetic parameters as the limiting factor of a substrate is a negative exponential function of its 

concentration (cf equation 1). 

Batch results 

The calibrated and uncalibrated MTS models are compared in this section. A simulation by the ASMN 

model is also juxtaposed to the data as a reference. However, comparison with it should be qualitative 

and not quantitative, since the CMM has been calibrated in conditions which may have implied different 

parameters for the ASMN model (as respirometry experiments constitute growth conditions different 

from the nominal conditions of municipal wastewater). 

The calibration of the kinetic parameters does not affect heterotroph and autotroph guilds’ dynamics the 

same way. Indeed, it can be seen on Figure 2 that the calibration makes the OHO guild’s growth slower 

while the growth of the autotroph guilds is quicker and starts earlier (UMM predicts a lag phase before 

AOB and NOB growth, while this lag phase is absent in CMM’s prediction). 

To correlate those observations to the growth formula of the MTS model, let’s consider a single limiting 

substrate S and neglect its contribution to anabolism for the sake of simplicity. Its limiting factor applied 

to µm is then 𝑒
−

𝜆

𝑉ℎ∙[𝑆], that is 𝑒
−
𝑑𝐺𝑑𝑖𝑠+𝑑𝐺𝑎𝑛
𝑉ℎ∙𝑑𝐺𝑐𝑎𝑡∙[𝑆]  (Desmond-Le Quéméner and Bouchez 2014). The 𝑑𝐺𝑑𝑖𝑠 + 𝑑𝐺𝑎𝑛 

term is the energy barrier of microbial growth (kJ.C-molBiomass
-1) and 𝑉ℎ ∙ 𝑑𝐺𝑐𝑎𝑡 ∙ [𝑆] the catabolic energy 

inside the harvest volume (kJ.CmolBiomass
-1). Generally speaking, the higher the catabolic energy is 

compared to the energy barrier, the closer the limitation factor applied to µmax is to 1. When the 
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limitation factor is close to 1, the growth rate µ is close to its maximum µmax, so the µmax parameter has a 

great influence on the simulation of the population’s dynamics. On the contrary, when the available 

catabolic energy 𝑑𝐺𝑐𝑎𝑡 ∙ [𝑆] is low, the influence of µmax on the dynamics fades and Vh becomes the most 

influent parameter, simply because µmax has a linear influence on µ while Vh is exponentiated. 

 As the OHO guild catalyzes the most exergonic electron transfer to oxygen, the limitation exerted by its 

substrates at the beginning of the simulation is not very important, consequently its growth rate is 

conditioned by the value of its µmax, this is why its growth is slower according to CMM. On the other 

hand, the electron transfer catalyzed by the autotroph guilds AOB and NOB is less exergonic than this of 

OHO; the limiting substrate’s concentration becomes the main factor influencing the population’s 

growth dynamics. In this situation, the Vh parameter becomes of importance as it modulates the 

sensitivity of the growth rate function to the substrate’s concentration.  

While the increase of Vh through calibration was of little effect on the OHO guild’s dynamics, it has a 

visible effect on the autotroph guilds’ growth dynamics as they are limited by their substrate (may it be 

oxygen for AOB or both oxygen and nitrite for NOB). The most visible effect of the increase of Vh for the 

autotroph populations is the disappearance of the nitrite peak in CMM’s prediction. The low value of Vh 

for autotroph populations in UMM makes the NOB population very sensitive to nitrite concentrations so 

they require nitrite to accumulate up to a high value (33 gN.m-3) before they start to significantly grow. 

This nitrite accumulation phenomenon has been reported in some instances (Rajagopal et al 2011); 

however, it contradicts the simulation by ASMN for this setting (as the nitrite half saturation coefficient 

is low; KNO2 = 0.5 gN.m-3). The increase of Vh value for autotroph populations in CMM allows the NOB 

population to significantly grow at a lower concentration of nitrite, thus making CMM’s prediction 

qualitatively closer to this of ASMN. Considering all substrates, an increase of the value of Vh makes a 

population able to grow significantly with a lower concentration of substrate. Reflecting this, it is visible 
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in the results shown on Figure 2 that the final concentration of acetate, ammonium and nitrite is lower 

as predicted by CMM (where Vh is higher for all guilds), and the total amount of produced biomass is 

respectively higher. It can then be interpreted that the Vh parameter, although being a kinetic 

parameter, have an influence on growth activation, as it is involved in the ratio of energy barrier over 

available catabolic energy (
𝑑𝐺𝑑𝑖𝑠+𝑑𝐺𝑎𝑛

𝑉ℎ∙𝑑𝐺𝑐𝑎𝑡∙[𝑆]
) for biomass production. However this effect is rather small 

considering that multiplying Vh by more than 100 increases the total amount of biomass produced from 

substrate by less than 1% in the timeframe of the simulation. 

From these observations it can be said that the µmax parameter has more influence on populations not 

very limited by their substrate while the Vh parameter has more influence on populations facing 

important limitation by their substrate. 

Continuous reactor results 

Before discussing the characteristics of the models in terms of dynamics, we must address a number of 

quantitative differences between the stationary states predicted by the MTS and ASMN models, as put 

into light by the results (Figure 4 and 5). Those differences result from stoichiometric differences 

between the models.  
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Figure 4: Concentrations of biomass of OHO, AOB and NOB guild (first row), ammonium, nitrite and nitrate (second row) and 
Oxygen Uptake Rate (third row) as predicted by the ASM (first column), calibrated MTS (second row), uncalibrated MTS 
model (third row) and a calibrated MTS model where all guilds have the same parameters, which are the parameters 
calibrated for the OHO guild in this contribution (µmax = 3.75 day 1 and Vh = 147 m3.mol 1). The culture medium in each case 
is a continuous reactor with variable Sludge Retention Time (abcisses) and kLa = 45 day 1  
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Figure 5: Concentrations of biomass of OHO, AOB and NOB guild (first row), ammonium, nitrite and nitrate (second row) and 
Oxygen Uptake Rate (third row) as predicted by the ASM (first column), calibrated MTS (second row) and uncalibrated MTS 
(third row) in a continuous reactor with variable Sludge Retention Time (abscises) and kLa = 100 day

-1
 

The difference between the amounts of effluent free nitrogen in both models can be explained by the 

fact that they do not rely on the same biomass composition. Indeed the MTS model explicitly considers 

Battley’s biomass, of formula C1H1.613O0.557N0.158 measured from a Saccharomyces cerevisiae pure culture 

(Battley 1998) implying a nitrogen requirement of 5.23e-2 gN.gCOD-biomass-1, while the ASM model 

implicitly considers Hoover and Porges’ biomass C5H7O2N (C1H1.4O0.4N0.2) measured from a mixed culture 

growing on dairy waste (Hoover et al 1953), implying a nitrogen requirement of 8.76e-2 gN.gCOD-

biomass-1. The higher quantity of fixed nitrogen in Hoover and Porges’ biomass explains the lower 

effluent concentration of free nitrogen in the ASMN simulations.  

On the other hand the higher OUR per unit biomass predicted by the MTS model can be attributed to 

neither anabolism nor catabolism as the growth yield on the electron donor is close in both models, and 

it is assumed that anabolism does not involve oxygen. However, the values used by ASMN should not be 

considered as an absolute reference to this regard as the parameters of the MTS model have been 

calibrated in conditions into which the parameters of the ASMN model would have been different, as 

respirometry experiments are performed in culture conditions different from those of municipal 

wastewater in an aeration tank. Nevertheless, oxygen is predicted in the results to be a far more limiting 

resource according to the MTS model than to the ASMN model since the stabilized oxygen 

concentrations are always higher when predicted by the ASMN model than by the MTS model. The 

crossed effect of kLa and SRT on nitrification loss is much more important according to MTS than to 

ASMN. 

Now regarding the dynamics of the system, the constraint on growth is twofold in this simulated 

environment; first the SRT sets the growth rate the guilds must reach in order to stabilize, second the 

oxygen concentration limits the growth rate of each implemented guild. Schematically speaking, the 
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equilibrium state in this system depends on three interacting variable; the substrate concentration, the 

growth rate of the considered population and the biomass concentration of the population. The 

substrate concentration increases the growth rate; the growth rate increases the biomass concentration 

and the biomass concentration decreases the substrate concentration. There is then a negative feedback 

loop between the biomass and the substrate concentration. Specifically considering dissolved oxygen as 

the substrate, two parameters come into play; the kLa increases the dissolved oxygen concentration, and 

the SRT increases the biomass concentration and decreases the oxygen concentration. This scheme 

results from the system’s structure and does not depends on the growth model considered, so it is true 

for both MTS and ASMN. 

A consequence of this scheme is that the SRT defines the growth rate µ∗ that a guild has to reach in 

order for its biomass concentration to be stabilized in the reactor. To reach a higher µ∗, the stabilized 

biomass concentrations 𝑋∗ of each guild  decreases so as to reduce their resource consumption and then 

increase the concentration of available resources in the culture medium. The more a population’s 

growth is limited by its resources in a given environment, the lower its 𝑋∗ (and consequently its catalytic 

activity) has to be low in order to be stabilized at a given SRT.  

Both ASMN and MTS models predict that stabilized biomass decreases with the SRT. Both models predict 

a two-stage loss of the nitrifying activity, as the concentration of the free forms of nitrogen in the culture 

medium depends on the SRT, from almost only nitrate to a mix between ammonium, and nitrite to 

almost only ammonium at low SRT. This pattern, which is critical for the management of wastewater 

(Van Dongen et al 2001), was captured as an empirical engineering rule by the calibration of the ASMN 

model, notably by attributing different affinity for oxygen to the AOB and NOB guilds. On its part, the 

MTS model reproduces this pattern as a consequence of the difference of exergy (and thus resources 

requirement) between the two metabolisms. Indeed, the phenomenon occurs in the MTS simulations 
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while both the AOB and the NOB guilds are given the same kinetic parameters. Moreover, it is also 

reproduced by the MTS model when all guilds have the same parameters (Figure 4). This kinetic 

difference between the AOB and NOB guild, which is enforced in the ASMN model through the 

calibration of the kinetic parameters on experimental data, then appears to arise from the 

physicochemical variables accounted for by the MTS model. Though the two-stage loss of nitrification 

prediction by the UMM is hardly observable from the graphical results, the evolution of concentrations 

and limitations along the SRT suggests that it happens at an unrealistically low range of SRT (below 1 day, 

which cannot be achieved in this setting). Indeed, the prediction of the two stage loss of nitrification 

arises from the MTS model’s non calibrated parameters, such as the yields. The effect of the calibration 

of µm and Vh on respirometric data only change the range of SRT at which the phenomenon occurs to a 

range close to the one practically observed. 

As the limiting factor applied to the µm parameter is inversely correlated with the value of the SRT in 

both model, the higher the SRT the more the guilds are limited by their substrate (limitation data are 

provided as supplementary material). According to the role of the µm and Vh parameters as it has been 

described in the batch section, the Vh parameter has more influence at high SRT while the µm value has 

more influence at low SRT. Also, the observation of the limitations shows that the most limiting 

substrate of the AOB and NOB guilds as simulated by the MTS model switches from their electron donor 

(respectively ammonium and nitrite) as high SRT to their electron acceptor (oxygen) at low SRT. 

To summarize, both the ASMN and the MTS model predict the two stage loss of nitrification, however 

the MTS model predicts it as arising from physicochemical parameters, that which are not calibrated but 

inferred from an accurate description of the growth environment. The differences between the two 

models lay in the sensibility of the response of the variables, thus influencing the range of SRT at which 



154 
 

the phenomenon occurs. Those differences depend on the kinetic parameters, and stoichiometric 

differences between the two models.   

Conclusion 

The result we present indicates the MTS model is able to reproduce behaviors (such as the nitrate shunt) 

previously modelled as empirical engineering rules solely based on a microscopic description of microbial 

growth and the thermodynamic properties of the involved chemical species. The fact that the MTS 

model’s predictions are not very sensitive to the value of its kinetic parameters indicates that the model 

is able to produce consistent predictions from matter and energy conservation constraints alone in this 

kind of system. The calibration of the kinetic parameters of the model on respirogram experiments 

improved the MTS model’s prediction of phenomena different from respiration, as seen in the sections 

on batch and continuous reactor simulation. Moreover, the results presented in this contribution provide 

an evaluation of the ability of the MTS to predict chemical dynamics in an environmental bioprocess, 

how it is affected by the level of parsimony considered and gives a first empirical estimate of the values 

of the parameters. Notably, the weak sensibility of the MTS model’s predictions to its kinetic parameters 

suggests that energy and matter flows as described by the model are a major factor driving microbial 

community dynamics, so the MTS model could be applied to other bioprocesses as a generic microbial 

community structuration model. 

 

 

 



Chapter 6:
Predicting microbial growth yield from the nature
of metabolic reactions
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This chapter corresponds to an article draft not submitted yet. This article investigates the relationship between

physicochemical characteristics of metabolisms and the associated growth yield.

Investigating this relationship equates to investigating the relationship between the physicochemical character-

istics of metabolisms and the energy balance of microbial growth. While the two previous chapters investigated

the kinetic aspects of the MTS model, the dynamics predicted by the model depends on the energy balance of the

modelled metabolisms. However the MTS model itself does not propose a theory to equilibrate the energy balance

of microbial growth. Instead, it has to borrow an empirical relationship from the literature. In the two previous

chapters, the assumed relationship was the one defined by Heijnen and collaborators and described in chapter 3

of this memoir. However, more recent attempts have been made to calibrate more accurate relationships, using

wider datasets.

The current chapter then presents an effort to qualify more robustly the relationship between metabolisms’

physicochemical parameters (catabolic energy, number of carbons of the carbon source...) and the metabolisms’

growth yield. This is then an attempt to improve the current knowledge on metabolism energy balance, which is

the “static” part of microbial thermodynamics, and on whose dynamics predictions relies.
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Introduction

An accurate method to estimate the growth yield of a microbial population is critical for the modelling of equilibria

and dynamics of microbial populations and communities. Both the modelling of natural ecosystems and the

engineering of bioprocesses benefit from the improvement of such methods.

Since the 1960s, many attempts have been made to correlate physicochemical properties of the metabolisms

to their growth yield (Bauchop and Elsden, 1960; Mayberry et al., 1968; Minkevich and Eroshin, 1973; Roels,

1983). However most of these attempts produced yield predictors plagued by interal inconsistencies and/or valid

only for a certain category of metabolisms (Heijnen and Dijken, 1991).

The most accurate growth yield predictions methods nowaday are based on expert knowledge about microbial

thermodynamics (McCarty, 2007; Heijnen et al., 1992; Liu et al., 2007). Those models boil down to considering

microbial growth as an energy transfer phenomenon between catabolism and anabolism. Some of the Gibbs

energy generated by catabolism is conserved in anabolism, while another part is “dissipated”. Dissipated energy

is the part of catabolic energy which is not converted into biomass. It may be either invested in maintenance or

expelled out of the cell as heat or molar entropy ((von Stockar and Liu, 1999) for a detailed description of this

phenomenon). For instance, Heijnen and collaborators developed in the 1990s a formula linking the dissipated

energy per amount of biomass synthetized to the number of carbons and reduction degree of the carbon source

of the metabolism (Heijnen et al., 1992). Another more accurate formula based solely on the electron donor’s

reduction degree was later proposed by Liu and collaborators (Liu et al., 2007). This suggests that the prediction of

microbial growth yield based on physicochemical parameters can still be improved by the enlargement of data sets.

Another example of growth yield predictor from thermodynamic variables is the model developped by McCarty

and collaborators since the 1960s estimates by assuming an “energy transfer efficiency” between catabolism and

anabolism (McCarty, 1965). While this parameter was initially assumed to be the same for all metabolism, the

authors later noted that its value is likely to depend on the metabolism (McCarty, 2007). Finally, as there is no

widely accepted theory explaining the values taken by metabolic efficiency up to now, the expert models predicting

it are empirical models calibrated on experimental data, and are likely to be improved.

A relatively recent attempt to directly predict the microbial growth yield from the Gibbs energy change of

catabolism led to encouraging growth yields predictions (Roden and Jin, 2011). This result opens the door to
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yield prediction models requiring less theoretical knowledge to be used.

This contribution examines new growth yields prediction formulas based on a more comprehensive set of

thermodynamic variables and more robust than those previously proposed in the literature. For that, the largest

literature collection to date was gathered in order to infer and calibrate the statistical models. This dataset,

available as a supplementary material, connects experimental microbial growth yield data to thermodynamic

information about their metabolisms. It leverages on multiple previous data collections ((Roden and Jin, 2011; Liu

et al., 2007; Batstone, 2001)). While two of those data collections allowed to propose new growth yield correlation

formulas or to validate previous estimations ((Roden and Jin, 2011; Liu et al., 2007)), the other was purposed at

the calibration of an engineering model (ADM1). At the end, the exploration of this substantial dataset not only

allows for the calibration of robust microbial growth yield predictors, but also gives pointers to efforts to be made

for the improvement of such predictors.

Material and methods

Collection and computation of experimental data

The data consist in a set of experimental yield measurements, to which physicochemical characteristics (catabolic

and anabolic stoichiometric formulas etc), as well as metadata (organism, bibliographical reference etc) are asso-

ciated. It is available as a supplementary material in the form of a table (ref sup mat 1).

The data were collected from three previous data collections, respectively indicated by the “collector” column

of the table as “Liu” (Liu et al., 2007), “Roden” (Roden and Jin, 2011) and “Batstone” (Batstone, 2001),

plus a few other references indicated as “Delattre”. Furthermore, the literature source of the collected data is

indicated by the “reference” column. Duplicates between the collections were manually checked and deleted.

The original yield value and its units as reported in the literature source are present in the table as the “Y” and

“Units” columns. The “observed yield” column of the table contains the yields converted to gram of biomass

produced per mol of electron donor consumed. The conversion is done assuming the biomass formula is C5H7O2N

(113.11 g · mol−1, 18.8 kJ · mol-1 (Roden and Jin, 2011)) which was obtained experimentally from an activated

sludge culture (Hoover and Porges, 1952), and the yields are normalized per C-mol of biomass. In order to have
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more easily interpretable variables, the yield in data analysis is converted to molX · mol-1D . For every experimental

yield record, a catabolic and anabolic reaction has been associated, and the respective Gibbs energy differential

have been computed considering standard temperature (298 K) and a set of non-standard concentrations. The set

of non-standard concentrations has been determined individually for each metabolism according to a set of rules

based on those used by Roden (Roden and Jin, 2011). They can be summed up as follow;

• The activity of H2O and chemical species in solid state is 1 M

• The concentration of HCO−
3 is 1 × 10−2 M

• The concentration of H+ is 1 × 10−7 M (pH 7)

• The concentration of O2 is 2.5 × 10−4 M (which is close to saturation at 298 K)

• The concentration of H2 is 6.4 × 10−4 M if consumed, or 1 × 10−8 M if produced

• The concentration of any other consumed chemical specie is 1 × 10−2 M

• The concentration of any other produced chemical specie is 1 × 10−3 M

The O2, H2 and N2 chemical species are considered to be in aqueous state in the metabolic reactions (which

affects their Gibbs energy differential of formation). The stoichiometry of the catabolic and anabolic reactions, as

well as the specific set of concentration and their Gibbs energy differential, has been automatically computed using

specifically developed python code available as supplementary material (ref sup mat 2). The catabolism associated

to very few (2) data records were endergonic (aerobic metabolism on gluconate, from (Liu et al., 2007)) and were

deleted from the table presented in the supplementary material.

Analysis of experimental data

The statistical analysis of the data set was performed with R (R Development Core Team, 2008) using a R-

markdown file. The report file of the analysis, from which all the figures of this article are generated, is available

as a supplementary material (ref sup mat).
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Result

Data distribution

The data consists in 341 experimental measurement of the yield of 101 different metabolisms, from 89 different

bibliography references. Those measurements have been done on cultures of approximately 100 different organisms.

The number of records per metabolism has been represented for each acceptor/donor couple in the data

(figure 1). For aerobic metabolisms, which use dioxygen as their electron acceptors, yields have been measured

for numerous electron donors, and eventually multiple times each. For other inorganic electron acceptors such

as nitrate or sulfate, the diversity of tested electron donor is lower by far, and so tends to be the number of

observations per individual metabolisms. An exception is the methanogenic metabolism, which is deemed to use

bicarbonate as acceptor and dihydrogen as donor. Quantitatively speaking, the maximum number of literature

report per acceptor/donor couple is 34 (dihydrogen with bicarbonate) while the median is 2. As multiple different

catabolisms can correspond to a single acceptor/donor couple (for example, hydrogenotrophic methanogenesis

and homoacetogenesis), the distribution of the reports per type of catabolic reaction is also of interest. Indeed,

considering specific catabolisms, the maximum number of observations is 31 (hydrogenotrophic methanogenesis)

while the median is 1.
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Figure 1: number of growth yield measurements found in the literature, depending on the electron donor and

acceptor. Bicarbonate as electron acceptor corresponds to hydrogenotrophic methanogenesis, while “none” as

electron acceptor corresponds to fermentation metabolisms.

The distribution of the reported growth yields depending on the metabolism is displayed on a box plot (Figure

2). The collected data displays measures of observed growth yields continuously spreading between 0 and approx-
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imately 9 molX · molDonor-1 (80 gBiomass · molDonor-1). There are also two outliers; respectively the yield of the

metabolism of hexadecane and lactose, whose yield is very high compared to the rest of the dataset. This is no

surprise since their number of carbon is far higher than those of the other donors of the dataset (respectively 16

and 12). Interestingly, the variance of the measured yield value of a metabolism seems not to be correlated to the

number of observations collected for this metabolism.

Figure 2: dispersion of the microbial growth yield per metabolism (log10 scale), sorted by average yield. Color

indicates the number of experimental observations collected for each yields
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Assessment of the goodness of fit of previous models on the dataset

Three previously proposed growth yield prediction models are implemented; two expert models by Heijnen (Heijnen

et al., 1992), Liu and collaborators (Liu et al., 2007) and one direct yield predictor by Roden and collaborators

(Roden and Jin, 2011). The TEEM model developed by McCarty and collaborators (McCarty, 1965) is not

included in this comparison because its modern implementation implies to make hypotheses on the metabolisms

which would have greatly complexified the comparison.

The goodness of fit of those models is assessed by measuring their ability to predict the maximum observed

yield of each metabolisms, so as to provide a reference to the new models that this contribution intends to propose.

Indeed, instead of considering all the yields of the dataset, we make the choice to consider only the maximum

yield for each metabolism as the response variable to predict. This reduces the number of observations from 341

to 101. The reason behind this choice is that according to the energy balance model proposed by Heijnen and

collaborators (Heijnen et al., 1992), the dissipated energy can be decomposed into two parts. The first part is

the energy that is actually dissipated as a driven force for growth, the second part is the energy dissipated in

maintenance. Heijnen and collaborators consider that the first part is predicted from thermodynamic constraints,

while the second part depends on the growth rate of the population. The maintenance then lessens the observed

growth yield and depends on the culture conditions. As the data aggregated in the current dataset contains

measurements from cells in various and unknown culture conditions, only the maximum yield is likely to correspond

to the part of dissipated energy which can be estimated from physicochemical characteristics of the metabolisms.

This is why the maximum yield is considered as the response variable.

The performance of each model is measured as Mean Squared Error (mean(observation − prediction)2).

This measurement for all models is shown in the recapitulative MSE table (Table 1).

164



model formula MSE

(Heijnen et al., 1992) ∆Gdis = −(200 + 18 · (6 −NoCCs)
1.8

+ exp(((3.8 − γCs)
2)0.16 · (3.6 + 0.4

·NoCCs)))

0.18

(Liu et al., 2007) ∆Gdis =


− 666.2

γD
− 243.1 γD ≤ 4.67

−157 · γD + 339 γD > 4.67

0.15

(Roden and Jin, 2011) YX/S = 2.08 + 0.0211 · ∆Gcat 0.41

Table 1: Performance of multiple previous growth yield prediction models, evaluated by predicting the maximum

observed yield of each metabolisms on the current dataset. The performance is expressed as Mean Squared Error.

NoCCs is the number of carbon per molecule of carbon source of the anabolism and γCs is the reduction degree

of the carbon source of the anabolism (mole · C − mol−1
Cs ). The yield YX/S (C − molX · mol−1

D ) can be computed

from ∆Gdis as YX/D = 1
∆Gdis−∆Gan

∆Gcat
−νan

D

, with ∆Gcat and ∆Gan respectively the catabolic and anabolic energy

of growth, in kJ · mol−1, νanD the stoichiometric coefficient for the electron donor in the anabolic reaction, and

assuming that the catabolic equation is normalized per electron donor and the anabolic reaction is normalized per

C-mol of biomss

Selection of the variables to build a new growth yield predictor

In order to build a new growth yield prediction model, two aspects have to be considered; the response variable

and the explanatory variable.

The choice of the response variable, the maximum yield per metabolism, has been addressed in the previous

section. Regarding the explanatory variables, the following variables are known for each metabolism in the dataset;

• ne: the number of electrons transfered between the electron donor D and the electron acceptor A during

the catabolic reaction (mole · mol−1
D )

• ∆Gcat: the Gibbs energy change of the catabolic reaction (kJ · mol−1
D )
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• NoCD: the number of carbon in the electron donor (C − molD · mol−1
D )

• γD: the reduction degree of the electron donor (mole · mol−1
D )

• NoCCs: the number of carbon in the carbon source of the anabolism (C − molCs · mol−1
Cs )

• γCs: the reduction degree of the carbon source (mole · mol−1
Cs )

Informations about the anabolism cannot be used since modelling the anabolic reaction of a population imply

to make many simplifying hypotheses, which would make a yield prediction model less robust.

A Principal Component Analysis (PCA) is performed on the candidate explanatory variables in order to see the

correlations between them (3)
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Figure 3: PCA plot of the candidate explanatory variables ∆Gcat, ne., γD, gammaCs, NoCD and NoCCs. The

upper panel shows PCA axis one (59% of the variance) vs PCA axis two (25% of the variance), and the lower

panel shows PCA axis two vs PCA axis three (8% of the variance). The colour of the points indicates the value

of the maximum observed yield per metabolism
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It can be observed from this PCA plot that the candidate explanatory variables are highly correlated in the

current dataset. Indeed, ∆Gcat and ne. are colinear on the three first components. This means that both variables

explains the same part of the variance of the explanatory variables. Consequently it is not useful to include both

of them in a regression model.

Measuring the correlation coefficient between each candidate explanatory variable and the maximum yields

shows that numbers of carbon NoCD and NoCCs are sensibly more correlated to maximum yields than the

reduction degrees γD and γCs, as seen in the following table;

variable coefficient of correlation to the maximum growth yield

∆Gcat -0.91

ne 0.84

γD 0.19

NoCD 0.76

γCs 0.20

NoCCs 0.78

The variables from which a new regression model shall be built are then ∆Gcat, NoCD, NoCCs. While Liu

and collaborators ditched the NoCCs used by Heijnen and collaborators in their own predictor (Liu et al., 2007),

the numbers of carbon seems to be more predictive the reduction degrees in the light of the current analysis.

Alternative models, using different combinations of NoCD, NoCCs, γD and γCs have been tested and indeed

exhibit high MSE (cf supplementary material).

Definition of new regression models

Generic predictors of maximum growth yield

A new generic regression model (lets call it “model A”) is calibrated, considering the variables ∆Gcat, NoCD,

NoCCs and their interactions up to order two (one variable multiplied by another). The MSE of this model is

0.15, which means its goodness of fit on the current dataset are equivalent to this of Liu’s model (cf table 1).

Figure 4 shows a Bland-Altman plot of model A.
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Figure 4: Bland-Altman plot of the new maximum yield prediction model A. Numbers displayed on the plot are

the index of the experimental observations collected in the spreadsheet given as supplementary material. This

predictor relies on the Gibbs energy change of the catabolism and the number of carbons of the carbon source

and the electron donor of the metabolism

As this model takes variables interactions into account, its formulation is rather lengthy (it can be seen in the

supplementary material), which defeats the purpose of practicality behind the direct prediction of the maximum

yield.

The model A is then simplified by keeping only the variables of its most significant terms, that is ∆Gcat,

∆Gcat ·NoCD and ∆Gcat ·NoCCs.

The MSE of the resulting model (lets call it “model B”) is 0.23, which means its goodness of fit on the current

dataset is not as good as those of the expert models, but better than this of Roden’s model. Figure 5 shows a
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Bland-Altman plot of model B.

Figure 5: Bland-Altman plot of the new maximum yield prediction model B. Numbers displayed on the plot are

the index of the experimental observations collected in the spreadsheet given as supplementary material. This

predictor consists in a simplified version of model A

Partitioned predictors of maximum growth yields

According to the results of the previous subsection, it seems it is not possible to calibrate a yield predictor better

than those already existing in the literature using the selected variables. Liu’s model partition the metabolisms

into two categories, depending on the value of γD, and calibrate a specific model for each partition. Partitioning

the dataset is a way to develop a better regression model to predict maximum growth yields. However, the number

of carbons NoCCs and NoCD were observed in the previous subsection to be better predictors of the maximum

growth yields than the reduction degrees γD and γCs for the overall dataset.
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number of observations fermentation respiration total

γD ≤ 4.67 27 47 74

γD > 4.67 11 16 27

total 38 63 101

Table 2: Number of metabolisms recorded in the dataset depending on the fermentation vs respiration and

γD ≤ 4.67 vs γD > 4.67 partitions

On the other hand, partitioning metabolisms between respirations and fermentations seems a sensible choice

a prior for two reasons;

• Respiration and fermentation are two fundamentally different metabolic mechanisms. By definition, respi-

rations are metabolisms upkeeping a membrane gradient as a mean to store energy, while fermentations do

not.

• Respirating and fermentating microbes are usually studied by different communities of microbiologists. Cal-

ibrating specific maximum yield prediction models for both partitions would then increase the practicality of

the outcome of this contribution

Partitioning the metabolisms using the two proposed partitions (fermentation/respiration and γD ≤ 4.67 vs

γD > 4.67) at the same time would lead to partitions too small to consider the regression model of some partitions

as robust (cf table 2). Consequently only one partition will be used.

In order to choose the right partition, and the right explanatory variables, the correlation between all explanatory

variables and all partitions is measured in the current dataset (Table 3). Three important observations can be

drawn from these measurements.

Firstly, the reduction degrees γD and γCs are poorly correlated to the maximum yields of all partitions.

Secondly, ne, NoCCs and NoCD are highly correlated to the maximum yields of respiration, but poorly

correlated to those of fermentation.

Thirdly, none of the explanatory variables is highly correlated to the maximum yields of fermentation metabolisms

whose γD is below 4.67. This set of 27 observations designates fermentations on acetate, citrate, dihydrogen,
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variable metabolism γD ≤ 4.67? correlation

∆Gcat fermentation False -0.94

∆Gcat fermentation True -0.37

∆Gcat respiration False -0.97

∆Gcat respiration True -0.92

ne fermentation False -0.12

ne fermentation True -0.28

ne respiration False -0.98

ne respiration True -0.93

γCs fermentation False -0.31

γCs fermentation True 0.13

γCs respiration False -0.07

γCs respiration True -0.46

γD fermentation False -0.31

γD fermentation True 0.26

γD respiration False -0.15

γD respiration True 0.43

NoCCs fermentation False 0.19

NoCCs fermentation True 0.64

NoCCs respiration False 0.97

NoCCs respiration True 0.94

NoCD fermentation False 0.19

NoCD fermentation True 0.45

NoCD respiration False 0.97

NoCD respiration True 0.88

Table 3: Pearson correlation coefficient measured between each explanatory variable and the maximum growth

yields of the dataset, depending on the fermentation vs respiration and γD ≤ 4.67 vs γD > 4.67 partitions
172



dihydroxy-acetone, formate, fructose, glucose, glycerol, lactate, mannitol, propionate, pyruvate and xylose. What-

ever, NoCD and NoCCs still are the variable being the highly correlated to their maximum yields.

The choice is then made to partition the model between respiration and fermentation, because the maximum

yields exhibit better correlations to the explanatory variables this way, because the two partitions are more equitably

populated (cf table 2) so the individual regression models will be more robust, and because of the a priori reasons

mentioned earlier. Moreover, it seems that ∆Gcat, NoCCs a,d NoCD are the best variable choice for both

respiration and fermentation.

Specific models are then calibrated for respiration and fermentation maximum growth yields. Lets call the

resulting conditional model “model C”. Its formula is

Y maxX/S =


8.39e− 2 − ∆Gcat · (1.14e− 4 + 1.91e− 4 ·NoCD + 2.73e− 4 ·NoCCs) iffermentation

2.96e− 2 − ∆Gcat · (1.15e− 3 − 3.36e− 4 ·NoCD + 3.24e− 4 ·NoCCs) ifrespiration

(1)

With Y maxX/S the maximum yield of the metabolism (C − molX · mol−1
D ), ∆Gcat the Gibbs energy change of

catabolism (kJ · mol−1
D ), NoCCs the number of carbon per carbon source molecule and NoCD the number of

carbon per electron donor molecule.

A Bland-Altman of the model C is shown as Figure 6. The MSE of this model is 0.14 on the current dataset,

which means it is slightly better than this of the previous approaches.
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Figure 6: Bland-Altman plot of the new maximum yield prediction model C. Numbers displayed on the plot are the

index of the experimental observations collected in the spreadsheet given as supplementary material. This predictor

consists in a conditional regression model with different coefficients depending on whether the metabolism is a

respiration or a fermentation

Discussion

Biases in the current knowledge about metabolisms’ yields

Since the dataset collected for the need of this contribution is the largest of its kind, it can be thought of as an

overview of the state of experimental knowledge regarding microbial growth yield. The display of its distribution

(subsection ) revealed two important biases in the reported data. One bias affect the response variable (the

maximum growth yield) and the other affects the explanatory variables.
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The first bias is that the dataset contains only one yield measurement for most of the metabolisms, while some

other metabolisms are documented with up to 31 yield reports. In the numerous cases where only one yield was

reported for a metabolism, this yield measurement was assumed to be the maximum yield of the metabolism. This

leads to the underestimation of the maximum growth yield in most cases. Hopefully, this bias is not sensible on

the Bland-Altman plots of the models proposed in this contribution (no visible bias on the residuals distribution

along the vertical axis of the plots).

The second bias in the dataset is that some metabolisms are well studied (for example, aerobic metabolisms and

methanogenesis) while others are sparsely documented. Indeed, if an empirical relationship linking physicochemical

variables to maximum growth yield is to be calibrated from experimental data, physicochemical variable should

ideally be uniformly distributed in experimental data. However, this is not the case in the data collected from the

literature.

Those biases may be detrimental to any attempt to build a empirical growth yield predictor from literature

data. A possible reason for those biases are that the measurement of the yield of some metabolisms requires more

complex experimental settings than others. Another reason is that experiments on specific metabolisms are often

engaged because of industrial interest. Bridging the gaps of experimental data would then likely need dedicated

experimental efforts. To summarise, this study revealed biases in microbial growth yield reports in the literature

which may lessen the robustness of any growth yield predictor calibrated on physicochemical variables. Hopefully,

this claim can be mitigated by the fact that the existing data reveals strong correlations between the maximum

yield of most metabolisms and some physicochemical variables (as observed in table 3).

Explanations to the poor performances of Roden’s model on the current dataset

As the performance of previously published yield prediction models has been tested on the current dataset, the

simple regression model proposed by Roden and collaborators performs rather poorly when compared to the two

expert models (Table 1). The data collected by Roden and collaborators to calibrate their model is included as

an important part of the current dataset (123 observations over 341), so this lack of fit is surprizing at first sight.

However, two possible explanations can be raised. Firstly, Roden’s model was calibrated in order to predict all

yields, and not only maximum yields, so it may put a first bias on the evaluation of its goodness of fit on the current
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dataset. In addition, this model is based on the Gibbs energy change of catabolism ∆Gcat. This quantity was

adjusted to non-standard concentrations by Roden and collaborators. The authors gave some rules they used to

decide which concentrations to assume for each yield observation; those rules were applied to the current dataset

however the Gibbs energies are sometimes different from those computed by Roden (the difference is displayed on

the “catabolisms” sheet of the data’s spreadsheet, in supplementary material). While Roden and collaborators only

gave a set of rules and the final ∆Gcat they associate to each metabolisms, the ∆Gcat calculations for the current

dataset have been performed in an explicit and reproducible way (cf python scripts provided as supplementary

material). Those two reasons are then possible explanations as to why the goodness of fit of Roden’s model is

less good than this of the expert models by Heijnen and Liu.

Delineation of a subset of poorly predicted maximum yields

The measurement of the correlation coefficient between all explanatory variables and all subparts of the dataset

(considering respiration/fermentation and γD ≤ 6.67/γD > 4.67 as the two partitions) in table 3, reveals that

one precise subpart of the dataset is notably less correlated to the explanatory variables than the others. This

subset is fermentation the metabolisms whose electron donor’s reduction degree is below 4.67 mole · C − mol−1
D .

This is the only segment of the dataset for which some explanatory variable seems to be lacking. Since many of

the carbonaceous substrates in this subset can give multiple different degradation products, it is possible that the

accumulation of some products in the culture medium may influence the yield of the reaction. Moreover, other

metabolisms are likely to be catalyzed in parallel (degradation of the same carbonaceous substrate into a different

set of product, or degradation of the products), and this possibly interfere with the estimation of the maximum

yield of a precise metabolic pathway.

Another explanation is that it is sometimes hard to determine the “electron donor” and the “electron acceptor”

in fermentation metabolisms, as different parts of a single molecule can act as donor and acceptor. For example

in acetoclastic methanogenesis, the “COO−” part of acetate (CH3COO
−) gives an electron to the CH3 part.

Both parts respectively become CO2 and CH4, thus this reaction consists in an electron transfer inside a single

molecule. It is possible that a new convention to determine variables such as γD or NoCD in such conditions is

needed to draw better correlations between them and the growth yield. Those explanations, through being mere
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suggestions, are the most likely to the authors of this contribution at this stage.

Conclusion

The accurate prediction of microbial yields is of paramount importance for the modelling of microbial communities,

both for mixed culture bioprocesses and environmental studies.

Two kinds of approaches have been developed to address this issue. The first consists in expert models

relying on a semi-empirical description of the energy balance of microbial growth. The second consists in a more

purely statistical approach, proposing a direct expression of the growth yield as a function of physicochemical

parameters. The current contribution chose the practicality of the second approach. Nevertheless, it also pays

heed to theoretical notions introduced by the expert models in order to provide a growth yield predictor as robust

as possible.

First and foremost, the main result of the contribution is its dataset. It is indeed the largest collection of

experimental yield measurements from the literature up to now, and it is provided as a supplementary material

along with this article, in order to make further statistical investigations possible. The second result of this

contribution is a new maximum growth yield predictor (equation 1), which is simpler to use and slightly more

accurate than the previously proposed expert models.

Last but not least, this study allows to point at the limits of growth yield prediction by calibration of an empirical

model from experimental data. Particularly, it reveal a subset of metabolisms (fermentation metabolisms whose

electron donor’s reduction degree is below 4.67 mole · C − mol−1
D ) whose maximum yield is less correlated to the

explanatory physicochemical variables than the other metabolisms. Further investigations are needed in order to

find more relevant variables to predict those metabolisms’ yields.
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7.1 Discussion

7.1.1 Prediction of the “redox tower” by the MTS model730

One of the most important results of the study of the MTS model is the demonstration of its ability to predict

a growth pattern known as “redox tower” (cf chapter 4 for demonstration by simulation).

The redox tower is the accepted name given to an ecological succession reflecting the thermodynamics potential

of the substrates in the culture medium. A “redox potential” can be associated to all catabolic reaction, and thus

ordered on this single axis. The redox tower is then said to occur when the ecological succession observed in a735

microbial community reflects this deterministic axis. A sine qua non condition for a redox tower to occur is that

the affected guilds must be in competition for a resource. Indeed, the ecological succession happens because the

guild catalyzing the most exergonic catabolism prevents the implantation of the other guilds through competitive

exclusion (they have a better yield so they develop a more important population so they consume more substrate

and finally take a kind of monopoly on the resource).740

While the concept of redox potential was not used in this memoir, it is a transformation of the Gibbs energy

change of reaction; this phenomenon can then also be formulated in terms of Gibbs energy.

For example, let us consider the aquifer simulation of chapter 4 (third part of the results). Here, the culture

medium contains acetate as only electron donor, and oxygen, nitrate, sulfate and iron as electron acceptors.

In terms of Gibbs energy change of catabolism; oxygen comes first, then nitrate, then sulfate, then iron. The745

succession observed in the simulations complies to this ordering. Indeed, the simulated culture medium has the

dynamics of a chemostat, so a constant amount of acetate (i.e. a constant amount of electrons) is inputed into

the culture medium. Multiple simulations have been performed to test the effect of different concentrations of

acetate on the communities structure (once stabilization is reached). The concentration of electron acceptors

remained constant. It appears that the electrons available in the culture medium as acetate are transfered to750

oxygen first, so the aerobic guild is the only one to stabilize in the chemostat at low acetate concentrations. Once

the electron well that oxygen represents is saturated (all oxygen is reduced) the remaining acetate reacts with

nitrate. As acetate starts to be available for the denitrifier guild, this guild is then able to remain in the chemostat

at steady state, along with the aerobic guild. Again, once all nitrate is reduced, the remaining acetate is consumed
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by sulfate-reducers etc.755

The redox tower is also experimentally shown to occur in environmental communities. It gives rise to a

structuration of the microbial community. Indeed it is observed in ecosystems such as aquifers (Chapelle and

Lovley, 1992) and lake hypolimnia (Müller et al., 2012). Moreover, the spatial structuration induced in the

classical Winogradsky column experiment (Zavarzin, 2006) is notably explained by the occurence of a redox tower.

Since the redox tower has been known for a long time, and since other microbial thermodynamics models have760

been demonstrated to be able to simulate this phenomenon (González-cabaleiro et al., 2015; Bethke et al., 2011),

some could argue that its prediction by the MTS model is trivial and brings no novelty. However this is not true

since the MTS model makes this prediction without the need to calibrate parameters or to modulate empirical

kinetic equations with additional thermodynamic factors. This model implements, by construction, a mechanism

giving rise to the redox tower. On the other hand, the two other models cited earlier do not have the same765

approach.

The approach behind the model designed by Jin and Bethke (reviewed in the bibliography of this memoir,

chapter 2) can be said to be close to this of the MTS model. Indeed, Jin and Bethke derive their growth rate

function from theoretical considerations applied to microbial catabolism’s electron transfer chain (Jin and Bethke,

2002). The approach of Jin and Bethke and this of the MTS model are both based on theory (two totally different770

theories) and both of them provide a new growth rate expression which allows to simulate redox tower phenomena.

Nevertheless, the MTS model has the advantage to be able to simulate growth limitation by nutrient, that which is

not included in Jin and Bethke’s theory. More details about this feature are provided in the next section (subsection

7.1.2.2).

Regarding the model used by González-Cabaleiro and collaborators, it is based on the one defined by Heijnen775

and collaborators ((Heijnen and Kleerebezem, 1999)), itself based on an empirical model (the Herbert-Pirt model,

described in chapter 2). The growth dynamics of this model relies on Monod’s law; such dynamics does not induce

redox towers by construction. The approach behind this model is to introduce energy constraint by calibration of

the dissipated energy and of the maintenance energy cost. On the other hand, the MTS model relies on the same

calibration-based method to estimate dissipated energy, but it includes it into a novel growth kinetics formula780

which comes from a theory explaining the redox tower.
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In other words, the important difference between predicting a redox tower pattern using Monod’s kinetics and

using MTS’s kinetics lays in the conclusions that can be drawn from the simulation results. Predicting a redox

tower using Monod’s law calibrated according to thermodynamic variables evidences that the used thermodynamic

variables are sufficient to explain the redox tower pattern. However, any other curve whose shape is similar to this785

of Monod’s law could have been used, so this result does not evidence anything regarding Monod’s law in itself.

Contrarily, reproducing a redox tower pattern using the MTS model not only evidence that thermodynamic variables

are sufficient to explain the phenomenon, but this result also provides support for the theoretical explanation

proposed by the MTS model on how these thermodynamic variables influences growth dynamics.

Consequently, the MTS model provides a more parcimonious explanation to the redox tower phenomenon than790

González-Cabaleiro’s model, since it does not need to make the hypothesis of an external kinetic model as its

growth kinetics ensues from its theory. While it is certain that biological systems cannot be reduced to simple

hypotheses, the theory behind the MTS model constitutes an attempt to understand the basal drivers on top

of which the complexity of biology adds up. On the other hand, González-Cabaleiro’s model do not offers this

possibility.795

7.1.2 Consequences of the growth rate function of the model

The growth rate function of the MTS model arises from simple hypotheses about microbial growth at micro-

scopic scale. These hypotheses can be summarized as;

• a microbial cell needs to overcome a fixed energy barrier in order to divide

• this energy barrier can be decomposed into the anabolic energy ΔGan and the dissipated energy ΔGdis800

• the energy to overcome the energy barrier is the catabolic energy ΔGcat, which is obtained by catalyzing

substrate oxidation

• substrate exists in the form of particles uniformly distributed around the cells

• if a fictional, fixed volume VH (“harvest volume”) around the cell contains enough substrate to overcome

the energy barrier, the cell is said to be in “activated” state805

• only an activated cell is able to divide
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Considering those hypothesis, statistical physics allows to formulate the proportion of the N‡ activated cells

over the N total number of cells;

N‡

N
=

�

i=0

exp(
Y met
Si

VH · [Si]
) (7.1)

with Si the ith consumed chemical specie, Y met
Si

its stoichiometric coefficient (molSi ·mol−1
X , negative), and

[Si] its concentration (in mol · volume−1). VH , the harvest volume, is then expressed in volume ·mol−1
X .810

The value of Y met
Si

is dynamically computed as;

Y met
Si

= Y an
Si

+ Y cat
Si

· −ΔGan +ΔGdis

ΔGcat
(7.2)

So the stoichiometric coefficients of metabolism are adjusted such that catabolism is run enough times to allow

to overcome the energy barrier.

The ratio N‡

N of “activated” cells can translate into an expression of the growth rate µ of a population;

µ = µmax ·
�

i=0

exp(
Y met
Si

VH · [Si]
) (7.3)

with µmax the maximum growth rate (time−1).815

This growth rate function is specific to the MTS model as it is a direct consequence of its hypotheses on

microbial growth. The specificities of this function, and their consequences in microbial populations’ dynamics

modelling, have been highlighted during this thesis. They are discussed in this section.

7.1.2.1 MTS’s growth function is natively multi-substrate and provides a possible explanation for

Liebig’s law820

The MTS model expresses the growth rate of a population as a function of the concentrations of all the

chemical species required by the growth reaction. Comparatively, most of the other microbial growth models are

based on empirical growth laws (such as Monod’s), which assume the growth rate depends on the concentration of

a single limiting substrate. Many different propositions have been made to modify empirical growth rate functions

so they can take multiple substrates into account. However, none of those propositions has reached consensus825

(Bungay, 1994).
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Indeed, Monod’s growth law (and others such as Contois’) implicitely assumes Liebig’s law of the minimum.

This empirical law, which has initially been formulated for the growth of plants, states that the growth of organisms

is limited only by the scarcest resource at a given time. This principle is widely used in ecology and has been

applied at the scale of organisms, populations and communities.830

As an example, this law has been implicitely assumed by Gonzalez-Cabaleiro and collaborators when simulating

the dynamics of a microbial community (González-cabaleiro et al., 2015) using the energy-based model defined by

Heijnen and collaborators (Heijnen and Kleerebezem, 1999) (presented in the bibliography review of this memoir).

The dynamic model described by Heijnen and collaborators do not provide a novel expression for the relationship

between substate concentration and substrate consumption rate. Instead, they consider it follows Monod’s law.835

This relationship then accounts for the limitation of growth by a single substrate. However this is not satisfying

when attempting to describe the dynamics of a community, where populations can possibly be limited by multiple

substrates. The solution considered by Gonzalez-Cabaleiro and collaborators was then to compute the value the

growth rate would take for each substrate separately, and then to keep the minimum among those values. This is

then an example of how Liebig’s law is sometimes implicitely assumed in a microbial growth model.840

However, while Liebig’s law is often assumed while modelling populations’ and communities’ dynamics (some-

times implicitely as show by the previous example), it does not always reflects the observed behavior of microbial

populations and communities (Danger et al., 2008).

The growth rate function of the MTS model provides an interesting contribution on this issue. Indeed, Liebig’s

law is not enforced as an hypothesis in the MTS model. According to it’s growth function, it is a priori possible that845

a population can be limited by two substrate at a given time. Indeed, supplementary material 9.4 illustrates that

it is possible for a population simulated by the MTS model to be limited by both its electron donor and acceptor

at the same time. As shown in the supplementary material, this situation depends on the stoichiometric demand

and offer for both chemical species. Since the MTS model adjusts stoichiometry (and therefore the “demand”

for a given chemical specie) depending on energy balance, the concentration of a resource is then not the only850

factor defining its “scarcity”. Such “colimitation” situation cannot be simulated by a model enforcing Liebig’s

law. Conservatively, other populations simulated using the MTS model have been observed to comply to Liebig’s

law (cf chapter 4).
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Liebig’s law is not enforced as an hypothesis in the MTS model. According to it’s growth function, it is a

priori possible that a population can be limited by two substrate at a given time. However, in practice, it has855

been observed that the populations simulated using the MTS model complied to Liebig’s law in some situations

(cf chapter 4). Indeed, the growth rate of a population simulated using the MTS model is multiplied by a specific

factor (between 0 and 1) for each of its substrates, called “tuning factor”, hence a possible limitation by multiple

substrates at once. However it has been observed in multiple situations that for a simulated population, one tuning

factor was significantly lower than all the others, to the point that all tuning factors could have been neglected860

except the one of the most limiting substrate. This situation makes the population apparently comply to Liebig’s

law. It happens because the tuning factors are expressed as exponentials of ratios of a stoichiometric coefficient

over a substrate concentration (which can be pictured as a “demand over offer” ratio). Therefore, tuning factors

are very sensitive to the changes in substrate concentrations. To illustrate this statement, supplementary material

9.3 (section 9.3) shows the effect of the same concentration change on [S]
KS+[S] and exp

Y met
S

VH ·[S] . The sensibility865

of the tuning factors of the MTS model induce “toppling” behaviors; the influence of a substrate on growth can

switch from “negligible” to “limiting” over a very narrow range of concentration (as observed in chapter 4). When

this phenomenon occurs while simulating growth kinetics, it makes the simulated populations apparently comply

to Liebig’s principle as the limiting resource quickly “switches”. However, as can be deduced from equation 7.3,

a low value of VH can alleviate the steepness of the switch between two limiting substrates.870

As a conclusion, the MTS model then provides a possible, theoretical explanation to the apparent compliance

of some experimental growth observations to Liebig’s law. At the same time, the MTS model is also able to

simulate situations into which multiple substrates exerts a significant limitation on growth at the same time. It is

then intrinsically more flexible than a model enforcing Liebig’s law as an hypothese.

7.1.2.2 MTS’s growth function accounts for growth limitation by both energy and nutrients875

According to the MTS model’s energy balance, the growth reaction is a combination of the catabolic reaction

and the anabolic reaction. Consequently a chemical specie is consummed for growth because it is required either

by the catabolism for energy-generation purpose or by anabolism for biomass synthesis, or both. Chemical species

required by anabolism only are called “nutrients”. The MTS model translates these two different needs into

stoichiometric coefficients, which in turn become tuning factors (cf previous subsection). As an illustration, the880
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growth limitation exerted by an extended set of nutrients in a M9 medium according to the MTS model has been

computed (cf supplementary material 9.1). In a nutshell, the MTS model’s growth rate function formulates the

limitation of growth by energy source and nutrients into a unified framework.

This feature is an advantage when compared to other models, particularly the one proposed by Jin and Bethke

(introduced in the bibliography review, chapter 2) (Jin and Bethke, 2002). This model derives an expression of885

the rate of the catabolic reaction based on nonlinear nonequilibrium thermodynamics. The authors state that

the growth rate of a population simulated using their model can be expressed as a function of the rate of the

catabolism in cases when the growth is “energy-limited”. An energy-limited growth means that the consummed

chemical specie being the most limiting for growth is required by the catabolism (likely an electron acceptor or

donor). Consequently, the theory behind Jin and Bethke’s model cannot represent the limitation exerted by a890

nutrient on the growth of a microbial population. On the other hand, the MTS model is able to model this

limitation indistinctly from the energy limitations.

7.1.2.3 MTS’s functional response is more compliant to some experimental observations than Monod’s

The relationship between the growth rate and the concentration of a substrate has a different “shape” depending

on whether it is simulated by the MTS model or a Monod law. Such shape, as visible on the graphs of supplementary895

material 9.3 (section 9.3), is called the “functional response” of the model.

The notion of functional response was proposed in ecology in the 1950s; the idea was to study the consequences

of the “shape” of a growth rate function regarding population dynamics, independently from its formula (Denny,

2014). For instance, the shape of the functional response of the MTS model corresponds to a “type III” functional

response, while Monod’s law induce a “type II” functional response.900

The type III functional response is characterized by a sigmoid curve. In practice, it means that growth is

unsignificant if substrate concentration is too low, until a threshold susbtrate concentration is reached. It then

increase exponentially and stabilizes to a plateau (defined by the model’s maximum growth rate µmax). The fact

that the growth rate does not increase with substrate concentration until a threshold value is reached has been

observed in some experiments (Kovarova-Kovar and Egli, 1998).905

A consequence of the MTS model inducing a type III response was commented in the results from chapter 4.

In one of the simulations of this publication, a simplified activated sludge microbial community has been simulated.
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In particular, a nitrite-oxidizing autotroph population (“NOB”) is in competition with others. At the beginning

of the simulation, there is no nitrite in the culture medium, as it is being produced by another population. In

a first time, the NOB population does not grow as the concentration of nitrite, its electron-donor, is too low.910

Once the nitrite concentration accumulates enough to pass a certain threshold value, the NOB population starts

to grow and to consume nitrite. As a consequence the nitrite concentration in the culture medium is predicted

to rise then fall. As shown in the article (chapter 4), this “nitrite peak” is not predicted using Monod law as its

type II functional response implies that populations starts to grow once the first molecule of substrate enters the

culture medium. While this prediction is not in adequation with what is usually observed in the modeled system,915

experimental observations of such nitrite peaks have been reported (Rajagopal et al., 2011).

Some models using Monod’s law perform transformations on the equations making the functional response

of the model closer to this of a type III functional response. For example, the microbial population dynamics

model described by Heijnen and collaborators (Heijnen and Kleerebezem, 1999) is an energy-based growth model

which consider that if the substrate is not concentrated enough to meet the maintenance’s energy requirement,920

the growth rate becomes negative. This consideration induces the existence of a minimal substrate concentration

allowing growth, hence a functional response resembling a type III. This model is described in more details in the

bibliography chapter of this memoir (chapter 2).

The MTS model also has a type III functional response, however it derives it from totally different considerations

(summarized earlier in this chapter in section 7.1.2). It can then be considered as an alternative explanation to925

the existence of a threshold substrate concentration for microbial growth, which is sometimes observed.

While the relationship between microbial growth rate is sometimes observed to correspond to a type III func-

tional response, Monod’s growth law (a type II functional response) is massively used in microbiology, which

suggests that this functional response is more often encountered experimentally than the type III response. It can

be seen on supplementary material 9.3 (section 9.3) that the functional response of the MTS model tends toward930

a type II response when its VH parameter is sufficiently high.
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7.1.3 Sensitivity of the MTS model’s predictions to the value of its parameters

The sensitivity of the MTS model’s prediction to the value of the µmax and VH parameters, as well as

the identifiability of those two parameters, have been studied during this thesis (cf chapter 5). To do so, the

parameters of microbial populations simulated by the MTS model were calibrated in order to fit experimental935

Oxygen Uptake Rate (OUR) curves. The populations were an aerobic acetrotroph guild (OHO, heterotroph), an

ammonium oxidizer guild (AOB, autotroph) and a nitrite oxidizer guild (NOB, autotroph). It must be emphasized

that those results, and in particular the values obtained through calibration, are only preliminary explorations.

Indeed, obtaining robust estimation of the the value of the kinetic parameters µmax and VH of the MTS model

would require much more experimental data and repetition that was was used in this article. This specific issue is940

discussed in subsection 7.1.3.2.

7.1.3.1 Predictions of the MTS model are formostly influenced by energy and stoichiometry constraints

Independently from the correctness of the estimation of the MTS model’s parameters, an interesting conclusion

can be drawn from this study. Indeed, the predictions of the MTS model have been found not to be very sensitive

to the value of its kinetic parameters. The fact that the kinetic parameters have few influence on the behavior945

of the MTS model’s simulations. Indeed, the kinetic parameters, once calibrated, represent a residual of yet

uncharacterized phenomena influencing growth dynamics. This residual is then shown in the simulations results to

have less influence on the dynamics than stoichiometry and thermodynamics. Consequently, the most important

part of its explanatory power comes from the energy and matter balance constraints it implements, which are not

calibrated but knowable a priori.950

Two evidences of the weakness of the sensibility of the MTS to its parameters can be found in the article

corresponding to the chapter 5 of this memoir.

Firstly, a sensitivity study has been made, measuring the distance (as sum of squared difference) between the

experimental OUR curves and their prediction by simulation of the MTS model as a function of the value of the

two kinetic parameters VH and µmax. When the distance between the MTS model prediction and the experimental955

reference OUR is drawn as a surface with µmax and VH as coordinates, it reveals a shallow “basin” encompassing

the optimal (µmax, VH) couple. The same topology was observed for the two tested guilds (a hetetrotroph guild
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and two autotroph guilds). The existence of a single (µmax, VH) couple minimizing the distance with the observed

data also indicates that those parameters are identifiable from experimental data.

Another evidence of the weakness of the sensibility of the MTS model to the value of these parameters is that960

two sets of drastically different kinetic parameters values led to comparatively small differences in the dynamics of

the MTS model simulation.

Indeed in chapter 5, the growth of the three guilds (OHO, AOB, NOB) in a batch is simulated using two different

sets of kinetic parameters. In one set (called the “uncalibrated” set), the value of µmax is 5.35× 1017 day−1 and

the value of VH is 1m3 ·mol−1 for every guild, while in the second set (called the “calibrated” set), the value965

of µmax is around 3 day−1 and VH is around 200m3 ·mol−1 (approximations are given here because the exact

value depends on the guild). While the kinetic parameters are totally different between the two simulations, the

ensuing differences in between the simulated dynamics were relatively small. Indeed, in the simulation with the

“uncalibrated” parameters, the growth of the OHO population (the only heterotroph population) takes 2 hours,

while in the simulation using the “calibrated” parameters, it takes 7.5 hours. As a whole, the other dynamic970

phenomena of the simulation were also elongated by 5 hours at most. This difference is significant when trying to

build a predictive model, however they are remarkably small considering that the maximum growth rate differs by

a factor 1e17 between the two simulations.

Those two observations evidence that the mechanics of matter and energy balance implemented in the MTS

model by construction contains the major part of its explanatory power.975

7.1.3.2 Call for further experimentations to estimate the value of the kinetic parameters of the MTS

model

The attempt made in the chapter 5 to calibrate the kinetic parameters of the MTS model were made using

only two OUR curves. This work was preliminary and it is certain that many additional experimental data would

be required to provide a robust estimation of the kinetic parameters of a guild.980

Moreover, the experimental data used to calibrate the MTS model were oxygen uptake rate, in other words; the

part of the derivative of oxygen concentration caused by the growth of biomass. This data shows a partial view of

the dynamics of the observed experimental system. Concretely, if it had been possible to calibrate the MTS model

on another type of data from the same experiment, for example, substrate concentrations through time, the value
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of the calibrated parameters may have been different. Indeed, by calibrating the MTS model on OUR curves, a set985

of parameters making the model reproduce quite well the experimental OUR curve was obtained. However, this

does not provide any garantee that other dynamics of the same experiment (such as substrate consumption) are

accurately reproduced by the calibrated MTS model. Unfortunately such data was not available for this experiment

to directly challenge this claim. However, two arguments can be raised to support it.

Firstly, the comparison between simulations made using the ASMN model ((Hiatt and Grady, 2008)) and990

the MTS model in chapter 5 strongly suggested stoichiometric differences between the two models. The ASM

models family are calibrated engineering models used to simulate activated sludge systems. Their focus is on

the accuracy and the practical usability of their predictions. The concentrations and dynamics they predict

can then be considered to be close to what can be found in a real activated sludge system. They were therefore

considered as a reference to compare with predictions by the MTS model. Both ASMN and MTS models predicted995

similar yields for guilds OHO, AOB and NOB on their respective electron donor (acetate, ammonium, nitrite,

respectively); this result has been observed in multiple compared simulations undertaken in chapter 4 and 5.

However, other yields, such as the yield on ammonium (molbiomass ·mol−1
ammonium) (for OHO guild) or the yield

on oxygen (molbiomass ·mol−1
oxygen), were different between ASMN and MTS. The difference between the yields

on ammonium can be explained by the fact that both models use a different biomass formula, with a different1000

proportion of nitrogen. No definitive explanation was proposed for the difference between the yields on oxygen.

However it was suggested that the difference between the conditions into which the ASMN model and the MTS

model were calibrated could explain this stoichiometry difference. Indeed, while the MTS model assume that the

stoichiometry of growth is adjusted to respect the balance of every element, the ASM models’ stoichiometry does

not (balance is closed on Chemical Oxygen Demand instead), and may be affected by its calibration conditions.1005

Secondly, the VH parameter calibrated on the OUR curves in chapter 5 makes the functional response of the

MTS model very different from this of the ASMN model. This result is shown in supplementary material 9.3

section 9.3. Those results reveal it is true at least for the functional response of the MTS model on acetate

and on oxygen. In this supplementary material section, the functional response of the calibrated MTS model is

superimposed to this of the ASMN model (to be more precise; the implementation of the ASMN model used in1010

chapter 5). It is also shown that the value range of VH which makes the functional responses of MTS closer to
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this of the ASMN model are orders of magnitude below the one calibrated on the OUR curve. This suggests that

if the parameters of the MTS had been calibrated on other data, such as the electron donor absorption curves

instead of oxygen uptake curve, the calibrated parameters could have been different.

These two arguments give strong evidence that calibrating the parameters of the MTS model on a single1015

experimental variable cannot lead to a robust estimation of those parameters. Neither does the comparison of

simulations by the MTS model with calibrated engineering models. On one hand this comparison allows to highlight

some variables as “well explained”. On the other hand the observed discrepancies between the two models are

hard to explain.

This reflection allows to draw some requirements for experimental data results usable to calibrate the value1020

of the parameters of the MTS model. Indeed, such experimental results would necessarily include the dynamic

tracking of the extracellular concentration of all chemical species involved with the growth process, including

biomass. It would also be necessary to have a good estimation of the mean elemental composition of biomass, in

order to limit the stoichiometric bias caused by the use of a generic biomass molecule by the MTS model. Moreover,

it would also require to make sure that the metabolic reactions simulated by the MTS model accurately represents1025

the reactions performed in the physical experiment. As an exemple, if a population produces a significant amount

of extracellular polymers, this reaction, which is not represented by the MTS model, consummes substrate and

then may skew the estimation of the parameters. Obtaining experimental data compliant to these requirements

from the literature is very hard. Therefore, the robust estimation of the value of the parameters of the MTS model

will probably imply careful, dedicated experiments.1030

As a conclusion, the calibration of the MTS model using experimental data requires to dynamically monitor a

lot of parameters which are usually hard to track in an experimental setting (such as biomass). These data will

be required in order to provide robust estimations of the kinetic parameters of the MTS model. However, a side

effect to the preliminary attempts to estimate those parameters revealed that whatever the value of the kinetic

parameters, the most important part of the dynamics simulated by the MTS parameters depends on stoichiometric1035

and energetic factors which are not calibrated because they depends on physicochemical variables.
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7.1.4 Use of the MTS model for simulating mixed culture bioprocesses

During this thesis, the MTS model has been used multiple times (cf chapters 4 and 5) to model the dynamics of

microbial communities involved in a bioprocess (wastewater treatment through activated sludge). The modelling

of mixed culture bioprocesses is largely dominated by engineering models calibrated on experimental data. Those1040

models are based on expert knowledge of their system. They are not intended to provide a representation of

the actual drivers behind the system’s dynamics. Instead, they are designed to give accurate predictions of

the variables of interest (Chemical Oxygen Demand, nitrogen effluent concentration etc), as long as the system

stays in its nominal conditions. On the other hand, MTS model expresses a totally different take on microbial

communities modelling, not focusing on the quantitative accuracy of its predictions. How can this model contribute1045

to bioprocesses modelling?

The purpose of the MTS model is not to supersede the engineering models. Rather, it can give a valuable

contribution to bioprocess modelling by allowing to model bioprocesses for which the amount of experimental

data is insufficient to build an engineering model. Indeed, while community dynamics phenomena are predicted

by engineering models because of their calibration, the MTS model is able to make some of this dynamics arise1050

from the physicochemical parameters of the system. The second article (chapter 5) contains a result supporting

this claim. Indeed, the MTS model was shown to be able to reproduce the sequencial loss of the nitrifying activity

of activated sludge in a continuous reactor with the decrease of the sludge retention time. In a first time, the

conversion of nitrite to nitrate is lost, then the conversion of ammonium to nitrite is lost for lower sludge retention

times. While this phenomenon is reproduced by engineering models of this kind of system (ASMN (Hiatt and1055

Grady, 2008)), it is done through parameter calibration. Indeed, the two nitrifying guilds of the community are

given different values for their affinity for oxygen. The fact that both guild are given different kinetic parameters

is necessary for the two-stage loss of nitrification to be reproduced by an engineering model. This difference

of affinity for oxygen is found through calibration on experimental data. In the MTS model, this behavior is

reproduced because of the difference of yield of the two guilds. While affinity for substrate in Monod’s law is a1060

calibrated parameter with no fully accepted fundamental meaning (Liu, 2007), the yields of the MTS models are

computed from the exergy of their metabolic reactions. The yield difference between two guilds in MTS are thus

the result of the matter and energy balance constraints of the two metabolisms. The calibration of the kinetic
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parameters of the model in the article does not affect the behavior itself but rather the sludge retention time at

which it happens. Indeed, this behavior is predicted by the MTS model while both the ammonium-oxidizing and1065

the nitrite-oxidizing guild are given the same kinetic parameters.

This result suggests that the MTS model has a potential use in the modelling of novel bioprocesses for which

calibrated models do not yet exist since it features enhanced abilities in predicting behaviors not known from

experimental data. The MTS model, could then be envisioned as a possible candidate to perform exploratory

simulations of mixed culture bioprocess settings not existing yet.1070

Moreover, the MTS model can also contribute to the development of mixed culture bioprocesses for which an

engineering model already exist. The MTS model can help improving of the understanding of the physicochemical

drivers behind the community dynamics simulated by engineering models. Indeed, the MTS model predicts

populations dynamics based on a set of hypotheses on microbial growth. The fact that a specific pattern is

predicted both by the MTS and an engineering model (as it can be seen in chapter 5) gives support to the1075

hypotheses on which the MTS model is based.

Expliciting the physicochemical drivers behind observed population dynamics patterns is beneficial to the

engineering models of microbial communities. Indeed, departure of the simulated system from the conditions into

which the engineering model was calibrated require extensive measurements in order to adapt the engineering

model. On the other hand, the explicitation generic physical principles behind some dynamics lessen this work of1080

adaptation of the models.

7.1.5 The estimation of dissipated energy to predict microbial growth yield

7.1.5.1 The method used to estimate dissipated energy in the MTS model’s simulation

The MTS model’s innovation lays in its formula expliciting the relationship between Gibbs energies and the

biomass synthesis rate for a given metabolism. This model also borrows prior concepts from Heijnen and col-1085

laborators about metabolism energy balance. According to those concepts, the metabolism’s energy balance is

solved by setting the proportion of dissipated energy per quantity of biomass produced. This value has been shown

to be correlated to metabolisms’ characteristics such as their carbon source (Heijnen et al., 1992). However, to

this day, there exist no theory explaining the observed correlations. Consequently the MTS model has to rely
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on an empirical relationship to set this value and solve the balance of the simulated metabolisms. The choice1090

has been made to stick with the formula originally proposed by Heijnen and collaborators for dissipated energy.

Other attempts to calibrate empirical expressions of the dissipated energy have been published since and provided

some improvement in the accuracy of the yield predictions ((Liu et al., 2007)). This dissipated energy calculation

method was not implemented in the MTS simulations done during this thesis as it was acknowledged while many

results based on Heijnen’s method were already produced and exploited. Moreover, the yields predicted using1095

Heijnen’s relationship were shown to be very close to those predicted using the ASMN model (cf chapter 4, last

result section). Therefore, yields predictions using Heijnen’s method were already deemed as satisfying. To sum

up, the use of Heijnen’s dissipated energy formula is not constitutive of the MTS model. It could thus be changed

if a more satisfying model of the energy balance of a metabolism could be proposed.

It is worth mentioning that the MTS model omits maintenance in its implementation of Heijnen’s energy1100

balance model. In the material and methods (chapter 3), the λ factor, expressing the number of catabolic reaction

per anabolic reaction (molelectron−donor · C−mol−1
biomass) is formulated as

λ =
−ΔGan +ΔGdis

ΔGcat
(7.4)

(cf equation 3.3). It implies that the overall Gibbs energy differential of microbial growth is ΔGdis; that is, the

dissipated energy, in joule per C-mole of biomass produced. However, Heijnen and collaborators consider that the

energy dissipated for maintenance also adds up to the overall Gibbs energy differential of growth, as mG

µ (Heijnen1105

and Kleerebezem, 1999), where mG is an energy flux dedicated to maintenance (joule ·mol−1
biomass · time−1) and µ

the population’s growth rate.

This specificity of implementation in the MTS model is justified. Indeed, this concept of maintenance is part of

the classical Herbert-Pirt growth model (described in the bibliography review of this memoir, chapter 2). Including

this maintenance term in the MTS model would had implied to include hypotheses of the Herbert-Pirt model into1110

the MTS model. For example, it would have implied to consider that the maintenance energy cost is linked to the

growth rate of the population, and that biomass decay happens when the concentration of substrate is insufficient

to supply the maintenance requirements (cf bibliography review, chapter 2, for a description of Heijnen’s dynamic

model based on Herbert-Pirt’s model). However, the purpose of this thesis is to test the effect of the hypotheses
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specific to the MTS model on simulations. Not implementing it was a better choice in the process of investigating1115

the MTS model’s intrinsic properties, as it would have meddled with multiple features of the model

7.1.5.2 Toward a better knowledge of dissipated energy per unit of biomass synthetized

Predicting the dissipated energy of a metabolism is a method to predict the growth yield (whose specific

advantages are discussed in (Heijnen and Dijken, 1991)). An example of an other method to predict microbial

growth yield is the TEEM model, described in the bibliography of this memoir (chapter 2).1120

While models such as the MTS model or Jin and Bethke’s model (Jin and Bethke, 2002) provide a theory for

the link between physicochemical variables (concentrations, temperature...) and the microbial growth rate, there

is no theory expliciting the link between physicochemical variables and microbial growth yield up to now. The

only way to propose a new formula to predict microbial growth yield more accurately is to calibrate an empirical

model based on experimental observations.1125

This have been done through multiple studies in the past. An example is Heijnen’s dissipated energy method,

based on the number of carbons and the reduction degree per carbon of the carbon source of the metabolism.

Another example is the TEEM model, whose energy transfer coefficient � have been calibrated on experimental

yield measurements too (McCarty, 2007).

As discussed in the previous subsection, the microbial growth yield estimation method is not part of the1130

novel aspects of the MTS model, and it relies on previous methods to estimate dissipated energy. Since the

stoichiometric coefficients plays an important role in the formula of the growth rate (cf equation 7.3), the accuracy

of the empiricial estimation of microbial growth yield is of paramount importance for the prediction of microbial

community dynamics by the MTS model. New empirical relationships to predict microbial growth yield have

then been investigated. To do so, databases of experimental growth yields measurements collected by previous1135

studies ((Batstone, 2001; Liu et al., 2007; Roden and Jin, 2011)) were combined. This resulted in the largest,

most comprehensive yield database to date. The stoichiometry and Gibbs energy change of the anabolism and

catabolism attached to each yield measurement was then estimated. This dataset was then exploited using data

analysis methods. The article describing this endeavor and its results is the chapter 6 of this memoir.

The first result revealed by the analysis of the dataset is that while this dataset is currently the most com-1140

prehensive, the knowledge it contains on experimental yields measurements is biased. Indeed, some metabolisms
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have been the subject of a lot of studies (for example, hydrogenotrophic methanogenesis) while only one or two

yield measurements were found for most of the other metabolisms taken individually. As an example, while the

yield of aerobic guilds on many different electron donors have been recorded, the yield of denitrifier guilds have

been tested with far less different electron donor. This dataset being larger than the one used in previous studies,1145

all the previous studies also suffer from this lack of experimental data. This bias is an important issue since yield

prediction models are calibrated on this kind of data. If the distribution of the physicochemical parameters of the

metabolisms is too skewed, no robust relationship between those parameters and growth yield can be drawn from

the data. Consequently, no totally satisfying empirical predictor of microbial growth yield can be devised as long

as this bias is not addressed. Doing so would probably involve performing specific experiments, to ensure an equal1150

representation for a large panel of metabolisms and to ensure that the culture conditions are the comparable for

each yield measurement.

Maximum growth yield per metabolism has been chosen as the variable to predict, instead of simply any

observed growth yield. Indeed, the yield measurements were collected from various experimental sources, implying

diverse growth conditions. In those conditions, the measured experimental growth yield is expected to be mitigated1155

by the maintenance cost, which is unknown and not expected to depend on the intrinsic characteristics of the

metabolisms. This motivated the choice of maximum growth yield as the variable to predict

However, despite this bias on the initial data, yield predictions methods based on physicochemical parameters

have already provided estimations sufficiently consistent to be used to model microbial communities (González-

cabaleiro et al., 2015). The yields estimated using Heijnen’s method also have been found to be conform to1160

expectations in the simulations of the MTS model done during this thesis (cf last result section of chapter 4).

This justifies the relevance of the attempt of calibrating a yield prediction model from this dataset.

Using linear regression on the dataset to determine the best predictor led to the calibration of new regression

models. Those regression models proposed in the article chapter 6, have had their goodness of fit computed on the

current dataset and compared with the goodness of fit of models previously proposed in the literature (Heijnen’s1165

(Heijnen et al., 1992), Liu’s (Liu et al., 2007) and Roden’s (Roden and Jin, 2011)). It appeared that the number

of carbon of the electron donor and carbon source were better correlated to the yield of the metabolisms in the

dataset than their degrees of reduction, contrarily to what was assumed by Liu and collaborators (among others).
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A regression model based on catabolic Gibbs energy change and the number of carbons of the carbon source and

electron donor of the metabolism was built to predict the maximum yield of the metabolisms of the dataset. While1170

has not been possible to make it more performant (in terms of Mean Squared Error) than the previously proposed

models, the choice of the variables used in the predictor (number of carbons) can be thought to be more judicious

than this made by Liu and collaborators, when considering the dataset.

The model proposed by Liu and collaborators is the previously proposed model whose Mean Squared Error

was found to be the lowest on the dataset. This model separates metabolisms into two categories depending on1175

the degree of reduction of their electron donor, and then consists in two distinct calibrated formulas. In order

to provide a yield prediction method with a lower Mean Squared Error than this of Liu and collaborator on the

dataset, calibrating a conditional model was attempted. It appeared that partitioning the metabolisms between

respirations and fermentations led to a Mean Squared Error slightly lower than this of Liu and collaborators’ model

on the dataset.1180

At first sight, the approach used by this article is not novel when compared to previously proposed yield

prediction methods based on physicochemical parameters. However, this article has the merit of justify the formula

of the new models it proposes by measuring the correlation between observed yields and multiple physicochemical

variables. To this regard, it intends to propose a selection of variables and a partitioning of the metabolisms more

robust than this of previous models. Moreover, it precisely points at the limitations of such approach by exposing1185

the bias in the current knowledge of microbial growth yield in the literature.

7.2 Perspectives and conclusion

The fundamental properties and some applications of the MTS model were explored during this thesis. However

the version of the MTS model considered during this thesis should not be considered as definitive. Indeed, the

model, in its current implementation, contains some inconsistencies and limitations that are still to be overcome.1190

These aspects are brought to light in this section in the form of development perspectives for the model. All of

these perspectives point at issues in need for investigation in order to increase the ability of the MTS model to

capture the drivers of microbial communities. This section ends with the general conclusion of this memoir.

Three different perspectives are discussed in this section; (1) the spatialization of the model, (2) the accounting
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for the metabolic versatility of the populations and (3) the clarification of the link between growth yield and growth1195

rate. Those three perspective address rather independent issues, respectively concerning (1) the relationship

between a community, and its environment, (2) the plasticity of the notion of population in a community, and (3)

individual populations and their relationship between eachother.

7.3 Spatialization of the MTS model

All the simulations performed during this thesis assumed that microbial growth took place in a perfectly mixed1200

culture medium. Since the aim of this thesis was to investigate the fundamental properties of the MTS model,

considering culture media of more than zero dimensions would have blured the intended message. However, the

spatialization of the simulations of the MTS model constitutes a possible way to enhance its application scope.

Indeed, aside from lab reactors, very few environments can be reasonably considered as “perfectly mixed”.

Indeed it omits the ability of microbes to structurate their environment and create microenvironments (biofilms1205

and bioflocs are illustrations of this phenomenon). Moreover, the structuration of the environment through the

action of microbes is thought to play an important role in the development of their social interactions (Velicer et al.,

1998). Considering for example the context of fermented food bioprocesses, microbial communities can be spatially

structured as biofilms associated with surfaces, suspended biofilm, dispersed growth in semi-solid substrate; all

of which eludes the conception of freely swimming microbes in a perfectly mixed culture medium. As said by1210

Dykhuizen, “Originally an environment is undivided, but as species develop, they divide the environment into

separate niches. Species create niches. Different niches have different amounts of resource and are differentially

stable” (Dykhuizen, 1998).

In itself, the spatialization of the MTS model will probably be non-trivial and require some work over its

underlying theory. Indeed, the MTS model is based on hypotheses about the microscopic environment of the cells.1215

For example, the growth rate formula (equation 7.3) holds true as long as the substrate is uniformly distributed in

the cells’ microscopic environment, and as long the harvest volumes around the cells do not significantly overlap

with eachother. In the case of spatialization through finite element analysis, the meshing will likely be large enough

for those considerations not to be raised. However it may be an issue in the case of individual-centric simulations.
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7.4 Accounting for the metabolic versatility of microbial populations1220

Another possible perspective for the improvement of the MTS model is to account for the metabolic versatility

of the microbial populations. Indeed, the MTS model, in its current implementation, assigns a “population” to

each simulated metabolism. A microbial population is characterized by a biomass concentration, indicating its

population density in the culture medium. A population of microbes always catalyzes the same metabolism, and

its biomass concentration depends on its anabolic reaction.1225

This way to represent a microbial community provides coherent results when simulating communities relying

on far-from-equilibrium catabolisms. However it is a far less good approximation of the reality of communities cat-

alyzing close-to-equilibrium catabolisms (Rodŕıguez et al., 2008). The explanation to this statement by Rodriguez

an collaborators is detailed in the next paragraph.

Changing its catalyzed metabolism is presumably costly for a cell. Indeed it has been observed in some1230

experimental settings that the redox tower did not apply because some microbial populations favored keeping

catalyzing suboptimal metabolisms over switching it (Venturelli et al., 2015; Chen et al., 2017). Contrarily, in

culture mediums such as non-methanogenic anaerobic mixed cultures, all metabolisms are close-to-equilibrium, and

a slight change in the physicochemical conditions of the culture medium can suddenly turn an exergonic catabolism

endergonic, and vice versa. In this kind of setting, the cells are more keen to change their metabolic pathways in1235

order to adapt to their environment. This metabolic versatility is proposed as a reason why the empirical modelling

of the population dynamics in anaerobic digesters is less successful than this of activated sludge (Rodŕıguez et al.,

2008).

Moreover, this metabolic versatility phenomenon is not restricted to some specific anaerobic communities.

Indeed, it has been experimentally demonstrated that a clonal E. coli population is able to differentiate into two1240

functional guild in the presence of two electron donors (Friesen, 2004).

The ability to account for metabolic versatility is then an interesting development perspective to improve the

ability of the MTS model to simulate the dynamics of microbial communities. Interestingly, an adaptation of Jin

and Bethke’s model accounting for the dynamics of pools of enzymes instead of biomasses have already been

proposed in the literature (Li et al., 2017). The reasoning of Li and collaborators may be easier to apply to Jin and1245
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Bethke model than to the MTS model since what Jin and Bethke’s model fundamentally describe is the rate of

ATP production by catabolism, while the MTS model describes the rate of cell division. However this contribution

could constitute a possible starting point in the accounting for metabolic versatility in the MTS model.

7.4.1 Investigation the link between dissipated energy and growth rate

A significant issue regarding the MTS model is that it implies a positive relationship between the microbial1250

growth yield and rate. The justification of this relationship, as well as the highlight of the position of other microbial

thermodynamic models on this subject, is detailed in supplementary material 9.5. This positive relationship clashes

with the common assumption in microbial population dynamics that the relationship between yield and rate is

negative (Lele and G watve, 2014). This subsection discusses the implications of this clash and what it implies on

the future development of the MTS model.1255

The MTS model is not the only microbial thermodynamics model to imply a positive relationship between yield

and rate. For example, Heijnen’s dynamic model also implies the positivity of this relationship, although with a

different justification. Nevertheless, the fact that a thermodynamic model implies a positive relationship between

yield and rate is not a sufficient argument to ditch it. Indeed, though most experimental observations support

a negative relationship between yield and rate, counterexamples exist in the literature, so it is still not known1260

whether this relationship is negative under any circumstance or not. Moreover, a lot of different theories have

been proposed to explain the negativity of this relationship; thermodynamics is just one source of explanations

among other (the reader is advised to refer to (Lele and G watve, 2014) for a thorough review covering the

arguments put forward in the last two sentences).

Nevertheless, a negative relationship between growth yield and rate could possibly capture more of the mecha-1265

nisms behind microbial communities structure than a positive relationship. Indeed, in an evolutionary perspective,

if the relationship between yield and rate is positive, all the microbial populations of a community have one

objective under any circumstance; maximizing those variables. The competition between different populations

then settles on an unidimensional axis (yield and rate being the same objective). Consequently, this hypothesis

implies that the population catalyzing the most thermodynamically favorable metabolism (with minimum energy1270

dissipation) inevitably dominates the ecological succession, as the competitive exclusion principle applies. This
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principle corresponds to the commonly accepted “redox tower” phenomenon, that can be simulated by models

implying a positive relationship between yield and rate (cf subsection 7.1.1).

However, this pattern is not observed in every microbial communities; far from it. Mutualistic relationships,

such as syntrophy, are commonly experimentally observed in microbial communities while the competition between1275

all populations on a single objective would preclude this. In fact, mutualistic relationships contradicting the redox

tower principle are observed to happen even in systems were the redox tower is known to be observable, such as

in sediments (Chen et al., 2017) or aquifers (Bethke et al., 2011).

The ecological consequences of the negativity of the relationship between yield and rate have already been

explored, notably by Pfeiffer and collaborators (Pfeiffer and Bonhoeffer, 2002; Kreft and Bonhoeffer, 2005).1280

According to this hypothesis, equilibria between multiple guilds can be expressed in terms of game theory, which

brings subtleties to community structuration. For example, Pfeiffer and collaborators considered a metabolism with

a high yield and a low growth rate they called “respiration” and a metabolism with a low yield and a high growth

rate they called “fermentation”. They demonstrated that the “respiration” metabolism allows for the coexistence

of multiple populations exploiting the same substrate, and constitutes a preferable strategy in a structured growth1285

medium, were the dilution rate is low, while the “fermentation” strategy induces a tough competition between the

populations and is an advantageous strategy when the dilution rate is high.

Interestingly, while the model of Jin and Bethke implies a negative relationship between yield and rate, they

implemented a version of it to reproduce a redox tower. They succesfully simulated this phenomenon, however

they failed to reproduce contradictions with the redox tower principle they observed in the culture experiments1290

they conducted in parallel of their simulations. The probable cause to this prediction failure is that then assigned

fixed positions on the yield/rate axis of each implemented metabolisms in their simulation (Bethke et al., 2011).

As a conclusion, while it is not known for certain whether thermodynamic microbial kinetics models should

assume a positive or negative relationship between the growth yield and the growth rate, a negative relationship

could help to capture more of the complexity of microbial communities structuration. By assuming a positive1295

relationship between the growth yield and rate, the MTS model clashes with the current microbial growth kinetics

model based on nonequilibrium thermodynamics (Jin and Bethke’s model). The fact that two different theoretical

approaches on microbial growth can lead to a totally opposed conclusion on a matter as fundamental as the
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relationship between yield and rate is a rather remarkable paradox. As explained in the previous paragraph, the

position of the MTS model on this paradox precludes it from capturing some mutualistic relationships. Conse-1300

quently, the theory of the MTS model will have to be reexaminated in the future in the light of this paradox before

it is possible to go further with the simulation of community structuration from first principles.

7.5 Conclusion

Experimental evidences suggest that the functional organization of a microbial community is structured by

deterministic processes, and is then predictable (up to some point) by a theoretical model. Energy flows have1305

been observed to play an important role in shaping the functional organization of microbial communities and many

population models have included it in various ways in order to predict microbial populations growth yields and

rates.

Those different models convey different approaches about the study of microbial populations dynamics. In all

cases, the design of such model starts with the identification of invariants in experimental observations. Some1310

then calibrate empirical models on experimental data, in order to characterize the link between physicochemical

parameters and variables. Most yield prediction models ((Heijnen et al., 1992; Liu et al., 2007; Roden and Jin,

2011)) are an example of this approach. Those models can make accurate quantitative predictions and consequently

give direct benefits to the study of microbial communities. Some models also propose a theoretical explanation to

the observed invariants. Those models are less predictive, since they are purposed to describe a process happening1315

simultaneously with many non-modelled processes. Examples of models conveying this approach are the one by Jin

and Bethke, Hoh and Cord-Ruwisch’s “equilibrium-based model”, and the MTS model (all introduced in chapter

2). The investigation of the hypotheses behind those models are hard, because of the multitude of unknown

processes occuring at the same time in microbial growth. However, earned support for a theoretical model is

rewarding, as it allows to make predictions about microbial communities never observed before. Ultimately, both1320

approaches are legitimate and complementary. In fact, most models pertain to both, to some extent, for example,

the TEEM model (introduced in chapter 2) predicts growth yield based on parameters calibrated on experimental

data, however it also involve theoretical hypotheses about the intracellular details of metabolisms. As regards the

MTS model, though it relies of empirical prediction of dissipated energy and has some kinetic parameters, it is
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rather strongly inclined toward the second approach.1325

The MTS model was shown during this thesis to be able to reproduce microbial growth patterns, both at

the scale of individual populations (Liebig’s rule, minimal substrate requirement for growth...) and communities

(ecological successions along time and concentration gradients). Its specificity, and novelty, is to make those results

arise from a theoretical representation of microbial growth, a microscopic model pertaining to statistical physics.

The parcimony in the implementation of the model allows to conclude that the patterns and behaviors predicted by1330

the MTS model are the result of the theoretical hypotheses behind it. Altogether, very few models have attempted

to propose a microscopic-scale energy-based theory to explain patterns in microbial growth dynamics. Jin and

Bethke’s model is a possible example, however its application-scope is more limited than this of the MTS model

(as discussed in section 7.1.2.2 ealier in this chapter). Therefore, no model have conveyed this approach this far

before the MTS model.1335

While energy-based models (let alone theory-inclined ones) have not been the most favored approach toward

microbial community modelling up to now, the abilities of the MTS model, as revealed during this thesis, constitutes

an positive signal toward this direction. This contribution advocates for the development of a new class of microbial

ecology and engineering models, built on more robust theoretical grounds. Such models are indeed needed to predict

the behavior of microbial communities in situations not encountered yet, and thus address biotechnological and1340

environmental challenges in the near future.
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9.1 Growth limitations by nutrients predicted by the MTS model

The MTS model considers that every chemical species required by the growth process of a microbial guild exerts

a limitation on its growth rate. This limitation takes the form of what is called a “tuning factor” in the model’s

semantics. This factor taking value between 0 and 1 can be high or low depending on the demand over availability

ratio of the chemical species in the culture medium. The MTS model also implies to consider a model, generic1350

biomass formula. While many biomass formulas have been defined and can be used interchangeably without

affecting the construction of the model itself, the biomass formula proposed by Battley (Battley et al., 1997) have

been used during this thesis. This biomass formula have been obtained from experimental measurements on a

culture of Saccharomyces cerervisiae; its full formula is C1H1.613O0.557N0.158P0.012S0.003K0.022Mg0.003Ca0.001,

however it was generally assumed that the simpler formula C1H1.613O0.557N0.158 can be used interchangeably for1355

the sake of simplicity. This chapter raises the question of the impact of this simplifying assumption.

The more complex formula involves some supplementary elements (P, K, Mg, Ca) in biomass composition,

which are thought to be provided to the cell by respectively PO−2
4 , SO−2

4 , K+, Mg+2 and Ca+2. As those nutrients

are unlikely to be required by the catabolic reaction, it can be assumed that their corresponding stoichiometric

coefficient in the energy-balanced metabolic reaction of any microbial guild equals their stoichiometric number in1360

biomass composition, that is, 0.012PO−2
4 , 0.003SO−2

4 , 0.022K+, 0.003Mg+2 and 0.001Ca+2.

The tuning factor of each of those chemical species on the growth rate of any guild can then be computed

while assuming their concentration from this of a minimal M9 medium (Harwood and Cutting, 1990) and that the

Vh parameter is 1m3 ·mol−1
X ;

chemical species concentration in M9 medium (M) tuning factor

PO−2
4 3.48e-1 0.96

SO−2
4 9.97e-2 0.97

K+ 1.10e-1 0.81

Mg+2 7.8e-4 0.02

Ca+2 9.99e-3 0.90
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The observation which can be made from table 9.1 is that considering the composition of a M9 medium, the1365

limitation exerted by a nutrient on growth greatly depends on the nutrient (the overall limitation for all chemical

species in 9.1) is 1.36e-2). However, the importance of this limitation also greatly depends on the values of the

kinetic parameters of the MTS model. In the first article (chapter 4), the Vh parameter is 1m3 ·mol−1 for most

simulated guilds, however the µmax parameter is so high (of order of magnitude 1e17) that even the tuning factor

of magnesium has no significant impact on the simulation kinetics. In the second article, a µmax of order of1370

magnitude 1 was set, but the value of the Vh parameter was of order of magnitude 100, which would have led to

different tuning factor values (for example, with a Vh of 100m3 ·mol−1
X ) the tuning factor of Mg+2 is 0.99.

As a conclusion, the tuning factors of nutrients ordinarily considered as neglectible in mass balance (K, S, P,

Na...) can possibly be significant in some cases, but the two different takes on the MTS model parametrization

tested during this thesis implied kinetic parameters values which made those tuning factors actually neglectible.1375

Nevertheless, limitations of microbial growth by nutrients such as magnesium do exist (Lusk et al., 1968), and

the possibility offered by the MTS model to account for the impact of any nutrient on the growth rate of a

microbial population is an asset when compared to growth models not based on an explicit description of growth

stoichiometry.
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9.2 Example of getExperimentalDesign files1380

The getExperimentalDesign.m function is expected by simulate.m to return either a single simulation

structure or a cell array of simulation structures. If a cell array of simulation structures is returned by the

getExperimentalDesign.m function, each thus-defined system s integrated one after another by the program.

This functionality is intended to allow for successive simulations with automatically generated parameters values,

such as in parametric sweeps.1385

In order to help with the exploitation of the results, the program creates a file called “experimetalDesignLog.csv”

in the simulation directory. This file is a csv file linking the simulations’ indexes and names to the path to their

result file. This file is created whatever the number of simulations performed.

An example of the definition of the structure for a single simulation is the following;

e xpe r imen t = s t r u c t ( ’ name ’ , ’ e xpe r imen t 1 ’ , . . .1390

’ chunkSize ’ , 1 , . . .

’ to ta lT ime ’ , 5 , . . .

’ r e s u l tRoo t ’ , ’ . . / out / r e s u l t s / ’ , . . .

’ e r r o rD i r ’ , ’ . . / out / e r r o r s / ’ , . . .

’ s o l v e r ’ , @ode113 , . . .1395

’ c h unkS i z eEa s i n gCoe f f i e n t ’ , 1 , . . .

’ s o l v e rOp t i o n s ’ , od e s e t ( ’ NonNegative ’ , 1 : p . C , ’ AbsTol ’ , 1e−9) , . . .

’ f i x edPa r ame t e r s ’ , f i x e dPa r ame t e r ) ;

e x p e r imen t a lDe s i g n = expe r imen t ;

An example of the definition of the structure for a list of simulations is the following;1400

mumaxSize = 3 ;

VhSize = 5 ;

mumaxValues = l i n s p a c e (5 , 12 , mumaxSize ) ;

VhValues = l i n s p a c e (1 , 50 , VhSize ) ;
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1405

f u n c t i o n expe r imen t = getExpe r iment ( x )

mumax = mumaxValues (mod( x , mumaxSize ) + 1 ) ;

vh = c e i l ( x / VhSize ) ;

e xpe r imen t = s t r u c t ( ’ name ’ , s p r i n t f ( ’ e xpe r imen t %d ’ , x ) , . . .

’ chunkSize ’ , 1 , . . .1410

’ to ta lT ime ’ , 5 , . . .

’ r e s u l tRoo t ’ , ’ . . / out / r e s u l t s / ’ , . . .

’ e r r o rD i r ’ , ’ . . / out / e r r o r s / ’ , . . .

’ s o l v e r ’ , @ode113 , . . .

’ c h unkS i z eEa s i n gCoe f f i e n t ’ , 1 , . . .1415

’ s o l v e rOp t i o n s ’ , od e s e t ( ’ NonNegative ’ , 1 : p . C , ’ AbsTol ’ , 1e−9) , . . .

’ f i x edPa r ame t e r s ’ , s t r u c t ( ’ i n i t i a l S t a t e D i c t i o n a r y ’ , i n i t i a l S t a t e D i c t i o n a r y , . . .

’ vh ’ , ones ( p .C , p .G) ∗ vh , . . .

’mumaxharv ’ , ones (1 , p .G) ∗ mumax , . . .

’ hooks ’ , {hooks } , . . .1420

’ g u i l d s ’ , { g u i l d s } ) ) ;

end

e xp e r imen t a lDe s i g n = a r r a y f u n (@( x ) ge tExpe r iment ( x ) , 1 : ( mumaxSize ∗ VhSize ) ) ;

In this example, a parametric sweep is performed through the multiple simulations. 3 values of the mumaxharv

parameter are tested in combination with 5 values of the vh parameter. The simulation structures are produced1425

as a list using Matlab’s arrayfun function along a simple integer sequence.
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9.3 Specificities of the MTS model’s growth function

In this supplementary material, the growth function of the MTS model is compared to this of Monod’s law.

Monod’s law can natively account for the influence of only one limiting substrate, so it will be compared to a

single-substrate form of the MTS growth function.1430

Moreover, both growth functions express growth limitation as a factor (ranging from 0 to 1) applied to a

“maximum growth rate” constant µmax. This constant has a theoretical meaning in the context of the MTS

construction (cf first section of chapter 7), while many attempts have been made to attach a theoretical meaning

to Monod’s law µmax and none of them reached consensus (Liu, 2007). While the maximum growth rate constant

of the MTS model and Monod’s law usually take value in different ranges, the purpose of this appendix is to1435

compare the shape of the growth functions qualitatively, so those constants will be excluded from the comparison.

The functions being compared in this document are then;

µ([S]) = e
− 1

VH ·[S] (9.1)

for the MTS model, and

µ([S]) =
[S]

KS + [S]
(9.2)

for Monod’s law.

The only parameters in those functions is then the Harvest Volume VH for the MTS model growth function and1440

the substrate affinity coefficient KS for Monod’s law. As the issue in this document is to compare the response

curve of the two aforementioned simplified functions (equation 9.1 and 9.2), a value of 1 will be considered for

both parameters.

Superimposition of Monod’s and MTS’s growth curves

The superimposition of both functions and reveal that their characteristic shapes are fundamentally different.1445

Indeed, using the MTS growth mode, growth does not start until a critical substrate concentration is reached.
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The consequences of this are evoked in the discussion of this memoir (chapter 7).

Figure 9.1: comparison between the growth rate function of the MTS model and of Monod’s law. The two plotted

functions are actually [S]
1+[S] for Monod’s law and exp−

1
1·[S] for the MTS model
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Effect of the value of KS and VH on the shape of Monod’s and MTS’s growth curve

respectively1450

Monod’s law and MTS model’s growth function are plotted for various values of VH and KS . It can be seen

that while the MTS growth function’s shape differs from this of Monod’s law, it’s shape changes and it seems to

converge toward this of Monod’s law as VH gets higher.
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Figure 9.2: Influence of the KS and VH parameters, respectively on Monod’s growth law and the MTS growth

function. The two plotted functions are actually [S]
1/p+[S] for Monod’s law and exp−

1
p·[S] for the MTS model, with

p taking the following values: 1, 2, 4, 8, 16, 32
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Difference between Monod’s and MTS’s growth curves1455

The substraction of Monod’s growth function and the MTS model’s growth function shows that both functions

converge toward the same value (1) when [S] gets large enough. The difference between the two functions lies at

low [S] values.
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Figure 9.3: difference between the growth function of Monod’s growth law and the MTS growth function, de-

pending on substrate concentration. The plotted function is actually [S]
1+[S] − exp−

1
1·[S]
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Comparison between Monod’s and MTS’s growth curves considering their usual pa-1460

rameters value range

It should be noted that the two parameters KS and VH usually do not have the same units, and then not

the same values in the respective implementations of the growth law. Indeed, the concentration unit is usually

mol · L−1 when using Monod’s law, while it is mol ·m−3 (1000mol · L−1) when using the MTS model in this

memoir.1465

The comparison of Monod’s and MTS’s growth function in the previous section were performed without µmax

and without considering the usual value range of KS and VH . In this section, the usual value ranges of the

parameters in the comparison between the two growth functions is taken into consideration. To do so, the growth

functions of an aerobic acetotroph population simulated using Monod’s law and the MTS model are compared.

The specifications of the ASM model (Henze et al., 1987) gives different values for the affinity coefficient on1470

oxygen (KOH) and carbonaceous substrate (KS). it is said that the value of KOH is 0.1 gCOD ·m−3 and the

value of KS is 20 gCOD ·m−2 for heterotroph populations striving in activated sludge. Considering that acetate

is the most abundant volatile fatty acid in activated sludge (Rössle and Pretorius, 2001), the KS value is assumed

to corresponds to 0.31molacetate ·m−3. It is also said that the value of µmax for this population is 6 day−1.

The calibration of the MTS model’s parameters VH and µmax on Oxygen Uptake Rate (OUR) curves from a1475

sample of activated sludge (done in chapter 5 of this memoir) gave the value 147m3 ·mol−1 for VH and 3.75 day−1

for µmax.

In order to properly reproduce the growth function of this population according to the MTS model, it is also

necessary to account for the effect of the variation of the concentration of acetate and oxygen on the MTS model’s

stoichiometry. As the stoichiometry of the growth reaction depends on the Gibbs energy change of the anabolic1480

reaction, the catabolic reaction and dissipation, the following statements are assumed;

• the conditions are standard (temperature is 298K and the concentrations are 1M), with exceptions

• the concentration of protons is 1× 10−4 mol ·m−3 (pH 7)

• ΔG0�
an = 23.9e3J.mol−1

biomass
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• ΔG0�
cat = −844.4e3J.mol−1

acetate1485

• the dissipated energy is −432.12× 103 J ·mol−1
biomass

The λ factor of the metabolism can then be expressed as

λ =
−432.12e3− (23.9e3− 0.5 ·RTln[acetate])

−844.4e3−RT (ln[acetate] + 2ln[O2])
(9.3)

When the functional response on acetate is tested, the oxygen concentration is assumed to be the saturation

concentration at 298K (0.275mol ·m−3).

The stoichiometric coefficienf for acetate is -1 in the catabolic reaction and -0.5 in the anabolic reaction.The1490

relationship between the growth rate predicted by the MTS model and the acetate concentration then becomes;

µ([acetate]) = µmax · exp−
−1·λ−0.5

VH ·[acetate] (9.4)

When the functional response on oxygen is tested, the acetate concentration is assumed to be 1mol ·m−3.

The stoichiometric coefficienf for oxygen is -2 in the catabolic reaction and 0 in the anabolic reaction. The

relationship between the growth rate predicted by the MTS model and the oxygen concentration is then;

µ([O2]) = µmax · exp−
−2·λ

VH ·[O2] (9.5)

Using the values of VH and µmax calibrated on OUR curves in chapter 5, the comparison of MTS’s and1495

Monod’s growth curves gives the following graph for the functional responses of MTS and ASM on acetate;
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Figure 9.4: superimposition of the Monod’s law growth function of the ASM1 model and the calibrated MTS’s

growth function for an aerobic acetotroph guild, depending on the concentration of acetate

The functional responses between the two models are totally different. A couple of µmax and VH values

making the functional response of the MTS model closer to this of the calibrated Monod’s law is µmax = 6day−1

and VH = 4m3.mol−1;1500
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Figure 9.5: superimposition of the Monod’s law growth function of the ASM1 model and the MTS’s growth

function with alternative parameters for an aerobic acetotroph guild, depending on the concentration of acetate

The same way, using the values of VH and µmax calibrated on OUR curves in chapter 5, the comparison of

MTS’s and Monod’s growth curves gives the following graph for the functional responses of MTS and ASM on

oxygen;
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Figure 9.6: superimposition of the Monod’s law growth function of the ASM1 model and the calibrated MTS’s

growth function for an aerobic acetotroph guild, depending on the concentration of oxygen

1505

A couple of µmax and VH values making the functional response of the MTS model closer to this of the

calibrated Monod’s law is µmax = 6day−1 and VH = 400m3.mol−1;
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Figure 9.7: superimposition of the Monod’s law growth function of the ASM1 model and the MTS’s growth

function with alternative parameters for an aerobic acetotroph guild, depending on the concentration of oxygen
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9.4 Compliance of a population simulated by MTS to Liebig’s law

The growth of a denitrifying acetotroph population in a batch has been simulated using the MTS model.1510

Different initial nitrate concentrations have been considered. Depending on the nitrate concentration, the popula-

tion’s growth stops either because of lack of acetate or nitrate. At a narrow range of initial nitrate concentrations,

the limitation of growth by both acetate and nitrate has a simular value. In this specific case, the MTS model’s

predictions does not comply to Liebig’s law.

The tuning factors are displayed in each situations. The tuning factor of a chemcial specie is the natural1515

logarithm of the factor applied to the growth rate because of the limitation exerted by the chemical specie on

growth.

The initial concentrations are;

• acetate: 1mM

• biomass: 1mM1520

When the initial concentration of nitrate is 0.85mM the growth is nitrate-limited. When the initial concentra-

tion of nitrate is 0.862mM the growth is limited by both acetate and nitrate. When the initial concentration of

nitrate is 0.88mM the growth is limited by acetate.

1525
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Figure 9.8: Concentrations of acetate, nitrate and biomass (X) (mM) along simulation time (hour) when initial

nitrate is 0.85mM
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Figure 9.9: tuning factors of acetate and nitrate (unitless) along simulation time (hour) when initial nitrate is

0.85mM
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Figure 9.10: Concentrations of acetate, nitrate and biomass (X) (mM) along simulation time (hour) when initial

nitrate is 0.862mM
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Figure 9.11: tuning factors of acetate and nitrate (unitless) along simulation time (hour) when initial nitrate is

0.862mM
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Figure 9.12: Concentrations of acetate, nitrate and biomass (X) (mM) along simulation time (hour) when initial

nitrate is 0.88mM
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Figure 9.13: tuning factors of acetate and nitrate (unitless) along simulation time (hour) when initial nitrate is

0.88mM
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9.5 Relationship between growth yield and rate in some microbial ther-1530

modynamics models

Different microbial thermodynamics models have different, contradictory consequences on the relationship

between the microbial growth yield and rate. While all the considered models are reviewed in the bibliography of

this memoir (chapter 3), the purpose of this appendix is to precisely point at the relationship between yield and

rate implied by each model.1535

Heijnen’s dynamic model

This model was proposed by Heijnen and collaborators as a population growth dynamics model associated to

their previously defined metabolism energy balance model (Heijnen et al., 1992) (Heijnen and Kleerebezem, 1999).

The relationship between the growth yield and the growth rate implied by this kinetic model is highlighted by

this expression from the model;1540

µ = Y max
X/S · (qS −mS) (9.6)

where µ is the growth rate of the population (hour−1), Y max
X/S is the maximum growth yield on the substrate

S (the yield in the absence of maintenance) (molX ·mol−1
S ), qS is the consumption rate of the substrate S

(molS · hour−1) and mS the substrate S absorption specifically required by maintenance (molS · hour−1).

From 9.6, the growth rate µ is positively correlated to the maximum growth rate Y max
X/S .

The maximum growth rate is computed as a function of the Gibbs energy change of catabolism ΔGcat,1545

anabolism ΔGan and dissipation ΔGdis;

Y max
X/S = − 1

ΔGdis−ΔGan

ΔGcat
· Y cat

S − Y an
S

(9.7)

where Y cat
S is the stoichiometric coefficient of S in the catabolic reaction and Y an

S the stoichiometric coefficient

of S in the anabolic reaction. Both coefficients are positive if S is a reagent and negative if S is a product.
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From 9.7 it can be seen that Y max
X/S is negatively correlated to ΔGdis. Consequently, according to this model,

µ is positively correlated to Y max
X/S and negatively correlated to ΔGdis.1550

MTS model

The MTS model (Desmond-Le Quéméner and Bouchez, 2014) is built on top of the metabolic energy bal-

ance model defined by Heijnen and collaborators (Heijnen et al., 1992). Consequently, it assumes the negative

relationship between Y max
X/S and ΔGdis shown by equation 9.7.

However, the MTS model does not take up the kinetic model proposed by Heijnen and collaborators to1555

complement their energy balance model. Instead it proposes its own growth kinetics formula, derived from a

theoretical reasoning. A formulation of this growth kinetics formula expliciting the link between Y max
X/S and µ is:

µ = µmax · e
− 1

Y max
X/S

·VH ·[S]
(9.8)

where µmax is the maximum growth rate of the population (time−1), VH a kinetic parameter specific to the

MTS model and [S] the concentration of the substrate S. This formulation of µ assume that S is the only

substrate accounted for, that its stoichiometric coefficients are -1 in the catabolic reaction and 0 in the anabolic1560

reaction. Though other cases can be handled by the MTS model without modifying the relationship between

Y max
X/S and µ, those hypotheses have been followed in order to simplify the expression.

The relationship described by equation 9.8 implies a positive relationship between Y max
X/S and µ, like equation

9.6 but with totally different justifications.

Consequently it can be said that according to the MTS model, µ is positively correlated to Y max
X/S and negatively1565

correlated to ΔGdis, like in Heijnen’s kinetic model.

Jin and Bethke’s model

Jin and Bethke’s model does not consider the energy balance of microbial growth as defined by Heijnen and

collaborators. It does not give a description of anabolism. Instead, it focus on the rate of the catabolic reaction,

and gives it a theoretical expression relying on nonlinear nonequilibrium thermodynamics (Jin and Bethke, 2002).1570

The authors assume that some of the energy ΔGcat (kJ ·mol−1
e ) produced by the catabolic reaction is stored as
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ATP. The remaining part then constitutes the “drive” f of the catabolic reaction:

f = −ΔGcat −m ·ΔGP (9.9)

where ΔGP (kJ ·mol−1
ATP) is the phosphorylation energy of ATP and m is the ratio of the number of ATP

molecules produced per electrons transfered in the catabolic reaction (molATP ·mol−1
e ).

Assuming that ATP is expended to cover the energy requirements of anabolism and maintenance, the drive f1575

can be seen as the value −ΔGdis from previously introduced models, normalized per electron transfered.

To make a long story short, nonequilibrium thermodynamics implies that the rate of the catabolic reaction is

positively correlated to its overall Gibbs energy change, which can be expressed as ΔGdis.

From equation 9.9, it can then be said that the relationship between Y max
X/S and µ is negative (assuming that S

is the electron donor of the catabolism) since the energy of catabolism is either invested in ATP (then anabolism)1580

or in f .

To summarise, while the model defined by Jin and Bethke does not address yield and dissipated energy as

Heijnen’s model does, it can be said that it implies a negative relationship between µ and Y max
X/S , and a positive

relationship between µ and ΔGdis, which is the opposite of what Heijnen’s model and the MTS model assume.
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Supplementary materials of chapter 4 

Supplementary material 1: coherence between the notation of MTS’s introductory 

article and the current article 

The introductory article of the MTS model (Desmond-Le Quéméner and Bouchez 2014) makes use of 

units to describe the parameters of the MTS model which differs from those used in the current 

article. This leads to two apparently different formulations of the growth rate function of the model. 

This supplementary material explains why those two formulations are consistent. 

In the introductory article, the theory was implemented for the analysis of an elementary microbial 

division event in the simplest case, namely in the case for which the stoichiometric growth equation 

corresponds to: 

M+ S -> 2M + P 

M being the microbe, S the substrate, P the metabolic product 

Using the multi-substrate formalism detailed in the current article, the catabolic stoichiometric 

coefficient Acat for S is -1 while the anabolic stoichiometric coefficient Aan for S is 0. This lead to the 

following growth formula; 

µ = µ𝑚𝑎𝑥𝑒
−

𝜆
[𝑆] 𝑉ℎ 

which is the growth formula presented in the introductory article. 

Supplementary material 2: effect of the value of Vh on the growth of the AOB guild 

The Ammonium Oxydizer Bacteria (AOB) guild and the Nitrite Oxidizer Bacteria (NOB) guild are very 

sensitive to the oxygen concentration. For this reason, the value of their Vh parameter was set to 10 

m3.molbiomass
-1 in the article instead of 1 m3.molbiomass

-1 as with other guilds simulated in the article. 

This change modifies the point at which the growth rate of the guild, as a function of oxygen 

concentration, starts. This is illustration by the following figure; 
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Figure 1 : ratio of growth rate over maximum growth rate for the AOB guild, as a function of oxygen concentration in the 
culture medium. The plain line represents the case where Vh = 10 m3.mol-1, the dashed line represents the case where 
Vh = 1 m3.mol-1. The solid vertical line represents oxygen’s saturation concentration at 298 K. 

Supplementary material 3: estimation of the harvest volume as a sphere around 

microbial cells 

The Harvest Volume (Vh) parameter of the MTS model is expressed in m3.molBiomass
-1, however in the 

MTS theory it corresponds to a fictional volume surrounding each microbial cells. This supplementary 

material shows estimation of the radius of the harvest volume around each cell from its value in 

m3.molBiomass
-1. 

This conversion compels us to make some hypotheses; 

- All the cells of the population have a volume of 1 µm3 (1e-18 m3) 

- This volume contains 141e-15 g carbon (geometric mean of the interval 100-200 fg given by 

Milo and Philips for a cell volume of 1 µm3 (Milo and Phillips 2015) 

- The cells are exclusively made of Battley’s biomass molecules, whose molecular weight is 

24.68 g.mol-1 and whose carbon proportion is 0.48 gC.gBiomass-1 

- Consequently there is 141e-15 / 0.48 / 24.68 = 1.19e-14 mol of biomass per cell 

- Vh * 1.19e-14 then is the harvest volume in m3 per cell. 

The value of 1 m3.molbiomass
-1 used in the article then corresponds to 1.19e-14 m3.cell-1 = 1.19e4 

µm3.cell-1. Considering that the harvest volume is a sphere, its radius is then 𝑟 = √
3 𝑉ℎ

4𝜋

3
=
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14.16 µ𝑚. 𝑐𝑒𝑙𝑙−1. Using the same calculation, a Vh of 10 m3.molbiomass
-1 corresponds to a radius of 

approximately 30 µm3.cell-1. 

Supplementary material 4: growth kinetics of competing guilds in a chemostat 

The figure below represents the growth kinetics of four competing guilds in a chemostat. The setting 

is the same as for the figure 2 of the article. The four guilds use acetate as electron donor; the input 

concentration of acetate is 1.76 mM. 

 

Figure 2: growth kinetics of four guilds in a chemostat, in the simulation setting defined for the figure 2 of the article, 
with an input acetate concentration of 1.76 mM. 

Supplementary material 5: comparison of results obtained with the Activated 

Sludge Model and the MTS Model 

  Xbh Xaob Xnob 

ASM Time before stationary 
state is reached (h) 

0.2 0.2 0.2 

Biomass concentration 
at stationary state (mM) 

2.67 1.19 1.06 
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Harvesting Time before stationary 
state is reached (h)  

2 15 24 

Biomass concentration 
at stationary state (mM) 

3.57 1.64 1.18 

 

A modified version of the Activated Sludge Model 1 (ASM1) has been implemented (see below) and 

its predictions in terms of biomass yields and kinetics has been compared with those of the MTS 

model presented in the fourth part of the results. Hydrolysis and decay reactions normally included 

in ASM1 have been removed in this implementation as they represent phenomena different from 

growth and modify the nature of the stationary state (the existence of a decay reaction implies that 

there is no more biomass when the system reaches its stationary state). 

This comparison shows that the biomass yields predicted by the MTS model without parameter 

calibration are close to those predicted by the ASM, which are the result of years of measurements 

on real life systems. The difference between the two predictions lays in the kinetics; while every guild 

in the ASM grows simultaneously, the growth predicted by the Harvesting model is slower and 

sequential, showing a temporal ecological succession which is not predicted by the ASM. 

Description of the modified ASM1 model  

A mathematical model modified from the well-established Activated Sludge Model no. 1 (Henze et al 

2000) was used for modelling the batch experiment with a simplified activated sludge community.  

The original model was extended with a two-step nitrification and simplified so as to describe only 

the aerobic growth of heterotrophs (𝑋𝐵𝐻), ammonia-oxidizing bacteria (𝑋𝐴𝑂𝐵) and the nitrite-oxidizing 

bacteria (𝑋𝑁𝑂𝐵).  

The description of processes and the basic stoichiometry between model components of the 

modified ASM 1 model are presented in Table S1 in the usual matrix format. Tables S2 and S3 present 

the kinetic rate expression and the parameters value of the model, respectively. The simulation 

software used is WEST (MIKEbyDHI.com).  

Table S1. Matrix representation of the modified ASM1 model 

Process 𝑆𝑆 𝑋𝑆 𝑋𝐵𝐻  𝑋𝐴𝑂𝐵  𝑋𝑁𝑂𝐵  𝑋𝑃 𝑆𝑂 𝑆𝑁𝑂2
 𝑆𝑁𝑂3

 𝑆𝑁𝐻 𝑆𝑁𝐷  𝑋𝑁𝐷  𝑆𝐴𝐿𝐾 

1 
Aerobic growth of 
heterotrophs 

−
1

Y𝐻

 

 
1 

   
− (

1 − 𝑌𝐻

Y𝐻

) 

  
-iXB 

  
−

iXB

14
 

2 Aerobic growth of AOB 

   
1 

  
− (

3.43 − 𝑌𝐴𝑂𝐵

𝑌𝐴𝑂𝐵

) 
1

𝑌𝐴𝑂𝐵

 

 
−i𝑋𝐵 −

1

𝑌𝐴𝑂𝐵

 

  
−

i𝑋𝐵

14
−

2

14 × 𝑌𝐴𝑂𝐵

 

3 Aerobic growth of NOB 

    
1 

 
− (

1.14 − 𝑌𝑁𝑂𝐵

𝑌𝑁𝑂𝐵

) −
1

𝑌𝑁𝑂𝐵

 
1

𝑌𝑁𝑂𝐵

 -iXB 

  
−

i𝑋𝐵

14
 

 

Table S2. Kinetics of the modified ASM1 model 

Process Kinetic rate expression  

1 𝜇̂H ×
𝑆𝑆

𝐾𝑆 + 𝑆𝑆
×

𝑆𝑂

𝐾𝑂,𝐻 + 𝑆𝑂
×

𝑆𝑁𝐻

𝐾𝑁𝐻,𝐻 + 𝑆𝑁𝐻
× 𝑋𝐵𝐻  

2 𝜇̂AOB ×
𝑆𝑁𝐻

𝐾𝑁𝐻 + 𝑆𝑁𝐻
×

𝑆𝑂

𝐾𝑂,𝐴𝑂𝐵 + 𝑆𝑂
× 𝑋𝐴𝑂𝐵  

3 𝜇̂NOB ×
𝑆𝑁𝑂2

𝐾𝑁𝑂2
+ 𝑆𝑁𝑂2

×
𝑆𝑂

𝐾𝑂,𝑁𝑂𝐵 + 𝑆𝑂
× 𝑋𝑁𝑂𝐵 
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Table S3. Parameters value of the modified ASM1  

Name Description Unit Value Source 

𝜇̂H Maximum specific growth rate, heterotrophs  day
-1

 6.25
*
 (θ =  1.072) ASMN (Hiatt and Grady 2008) 

𝑌𝐻 Heterotrophic  yield gCOD g-1 COD 0.6 ASMN 

𝐾𝑆 Half-saturation coefficient for 𝑆𝑆 , heterotrophs gCOD m-3 20 ASMN 

𝐾𝑂,𝐻 Half-saturation coefficient for 𝑆𝑂 , heterotrophs gCOD m-3 0.1 ASMN 

𝐾𝑁𝐻,𝐻 Half-saturation coefficient for 𝑆𝑁𝐻, heterotrophs gN m-3 0.05 (Hauduc et al 2010) 

𝜇̂AOB Maximum specific growth rate, AOB day-1 0.78* (θ = 1.103) ASMN 

𝑌𝐴𝑂𝐵 Autotrophic yield, AOB gCOD g-1 COD 0.18 ASMN 

𝐾𝑁𝐻 Half-saturation coefficient for 𝑆𝑁𝐻, AOB gCOD m-3 1.31** ASMN 

𝐾𝑂,𝐴𝑂𝐵 Half-saturation coefficient for 𝑆𝑂 , AOB gCOD m-3 0.6 ASMN 

𝜇̂NOB Maximum specific growth rate, NOB  day
-1

 0.78* (θ = 1.103) ASMN  

𝑌NOB Autotrophic yield, NOB gCOD g-1 COD 0.06 ASMN  

𝐾𝑁𝑂2
 Half-saturation coefficient for 𝑆𝑁𝑂2

, NOB gCOD m-3 0.45*** ASMN 

𝐾𝑂,𝑁𝑂𝐵 Half saturation parameter for 𝑆𝑂 , NOB gCOD m-3 1.2 ASMN 

* Value at 20°C, considering Arrhenius equation with the corresponding 𝛉 value 
**Estimated based on half-saturation coefficient for free ammonia considering a temperature of 25°C and a pH of 7 
*** Estimated based on half-saturation coefficient for free nitrous acid considering a temperature of 25°C and a pH of 7 

Supplementary material 6: Activated sludge simulation with alternative parameters 

The MTS model has been used in this article to simulate a simplified activated sludge microbial 

community. The following values have been used for the parameters of the guilds implemented in 

the MTS model; 

- the µmax of every guild was set to 2.23e16 hour-1 

- the Vh of every guild was set to 10 m3.C-molbiomass
-1 

The simulation’s results showed qualitative similarities with a simulation of the same microbial guilds 

using calibrated growth equations from the ASMN model. This raises questions about the possibility 

to adjust the kinetic parameters of the MTS model in order to make it more quantitatively predictive.  

While the calibration of the MTS model’s kinetic parameters on experimental data is obviously out of 

the scope of this article, this supplementary material illustrates the possibility to make the model’s 

prediction closer to observations by adjusting the value of its kinetic parameters. 

In the example presented here, another MTS simulation of the simplified activated sludge system is 

presented with alternative parameters; 

- the µmax of every guild was kept 2.23e16 hour-1 

- the Vh of OHO guild was set to 1 m3.C-molbiomass
-1 

- the Vh of AOB guild was set to 10 m3.C-molbiomass
-1 

- the Vh of NOB guild was set to 50 m3.C-molbiomass
-1 

The results of the simulation are displayed on figure 3 and 4. 
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Figure 3: concentration (mM) of different forms of nitrogen along simulation time (day) 
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Figure 4: concentration (mM) of the simulated guilds along simulation time (day) 

An important observation that can be drawn from figure 3 is that the transient high nitrite peak 

observed in the simulation performed in the main article has such low amplitude here that it can be 

considered as not being reproduced in the current simulation. This difference is caused by the larger 

harvest volume of the NOB guild. While the NOB guild suffers the most severe energy and substrate 

limitation (compared to the OHO and AOB guilds), here their large Vh partly compensate for this 

disadvantage. Consequently, the NOB guild does not have to wait nitrite to accumulate in the culture 

medium before it starts to significantly grow. Instead, the NOB guild’s growth follows the AOB guild’s 

growth, by consuming the nitrite once it is produced. Consequently, as seen on figure 4, the growth 

of the AOB and NOB guilds is almost simultaneous. 

As argued in the body of the article, while experimental reports of transient nitrite accumulation in 

activated sludge systems exist (Rajagopal et al 2011), it does not correspond to the expected 

behavior of a nominal activated sludge system. The alternative parameters proposed in this 

supplementary material section make this behavior disappear; therefore it suggests that the 

predictive accuracy of the MTS model can be improved by adjusting the values of its kinetic 

parameters. 
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Supplementary materials of chapter 5 

Parameters of the ASMN model 

The description of processes and the basic stoichiometry between model components of the 

modified ASM 1 model are presented in Table S1 in the usual matrix format. Tables S2 and S3 present 

the kinetic rate expression and the parameters value of the model, respectively. 

Table S1. Matrix representation of the modified ASM1 model 

Process 𝑆𝑆 𝑋𝑆 𝑋𝐵𝐻  𝑋𝐴𝑂𝐵  𝑋𝑁𝑂𝐵  𝑋𝑃 𝑆𝑂 𝑆𝑁𝑂2
 𝑆𝑁𝑂3

 𝑆𝑁𝐻 𝑆𝑁𝐷  𝑋𝑁𝐷  𝑆𝐴𝐿𝐾 

1 
Aerobic growth of 
heterotrophs 

−
1

Y𝐻

 

 
1 

   
− (

1 − 𝑌𝐻

Y𝐻

) 

  
-iXB 

  
−

iXB

14
 

2 Aerobic growth of AOB 

   
1 

  
− (

3.43 − 𝑌𝐴𝑂𝐵

𝑌𝐴𝑂𝐵

) 
1

𝑌𝐴𝑂𝐵

 

 
−i𝑋𝐵 −

1

𝑌𝐴𝑂𝐵

 

  
−

i𝑋𝐵

14
−

2

14 × 𝑌𝐴𝑂𝐵

 

3 Aerobic growth of NOB 

    
1 

 
− (

1.14 − 𝑌𝑁𝑂𝐵

𝑌𝑁𝑂𝐵

) −
1

𝑌𝑁𝑂𝐵

 
1

𝑌𝑁𝑂𝐵

 -iXB 

  
−

i𝑋𝐵

14
 

 

Table S2. Kinetics of the modified ASM1 model 

Process Kinetic rate expression  

1 𝜇̂H ×
𝑆𝑆

𝐾𝑆 + 𝑆𝑆
×

𝑆𝑂

𝐾𝑂,𝐻 + 𝑆𝑂
×

𝑆𝑁𝐻

𝐾𝑁𝐻,𝐻 + 𝑆𝑁𝐻
× 𝑋𝐵𝐻  

2 𝜇̂AOB ×
𝑆𝑁𝐻

𝐾𝑁𝐻 + 𝑆𝑁𝐻
×

𝑆𝑂

𝐾𝑂,𝐴𝑂𝐵 + 𝑆𝑂
× 𝑋𝐴𝑂𝐵  

3 𝜇̂NOB ×
𝑆𝑁𝑂2

𝐾𝑁𝑂2
+ 𝑆𝑁𝑂2

×
𝑆𝑂

𝐾𝑂,𝑁𝑂𝐵 + 𝑆𝑂
× 𝑋𝑁𝑂𝐵 

  

Table S3. Parameters value of the modified ASM1  

Name Description Unit Value Source 

𝜇̂H Maximum specific growth rate, heterotrophs  day-1 6.25* (θ =  1.072) ASMN (Hiatt and Grady 2008) 

𝑌𝐻 Heterotrophic  yield gCOD g-1 COD 0.6 ASMN 

𝐾𝑆 Half-saturation coefficient for 𝑆𝑆 , heterotrophs gCOD m-3 20 ASMN 

𝐾𝑂,𝐻 Half-saturation coefficient for 𝑆𝑂 , heterotrophs gCOD m-3 0.1 ASMN 

𝐾𝑁𝐻,𝐻 Half-saturation coefficient for 𝑆𝑁𝐻, heterotrophs gN m-3 0.05 (Hauduc et al. 2010) 

𝜇̂AOB Maximum specific growth rate, AOB day
-1

 0.78* (θ = 1.103) ASMN 

𝑌𝐴𝑂𝐵 Autotrophic yield, AOB gCOD g-1 COD 0.18 ASMN 

𝐾𝑁𝐻 Half-saturation coefficient for 𝑆𝑁𝐻, AOB gCOD m-3 1.31** ASMN 

𝐾𝑂,𝐴𝑂𝐵 Half-saturation coefficient for 𝑆𝑂 , AOB gCOD m-3 0.6 ASMN 

𝜇̂NOB Maximum specific growth rate, NOB  day-1 0.78* (θ = 1.103) ASMN  

𝑌NOB Autotrophic yield, NOB gCOD g-1 COD 0.06 ASMN  

𝐾𝑁𝑂2
 Half-saturation coefficient for 𝑆𝑁𝑂2

, NOB gCOD m-3 0.45*** ASMN 

𝐾𝑂,𝑁𝑂𝐵 Half saturation parameter for 𝑆𝑂 , NOB gCOD m-3 1.2 ASMN 

* Value at 20°C, considering Arrhenius equation with the corresponding 𝛉 value 
**Estimated based on half-saturation coefficient for free ammonia considering a temperature of 25°C and a pH of 7 
*** Estimated based on half-saturation coefficient for free nitrous acid considering a temperature of 25°C and a pH of 7 

 

Constancy of the yield on oxygen 
The kinetic parameters of the MTS model are calibrated using data assuming a constant yield. 

However the yield is dynamic in the MTS model. Does this difference disqualifies the reference data?  

file:///C:/Users/hadrien.delattre/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/R7HYIHC8/Annexe%20modèle%20ASM1modified.docx%23_ENREF_3
file:///C:/Users/hadrien.delattre/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/R7HYIHC8/Annexe%20modèle%20ASM1modified.docx%23_ENREF_2
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First, it does not disqualifies the reference data by lack of realism (argument A1), in the sense that 

the reference data comes from experimental data, transformed according to the hypothesis of a 

constant growth yield which is a commonly used simplifying hypothesis in population microbiology, 

and the method used to estimate this constant yield has been itself obtained by calibration on 

experimental data and has been shown by separate authors to provide satisfying predictive results 

on aerobic metabolisms. 

Another argument (argument A2) against the use of this reference data would be that the 

assumption of a constant yield is a simplifying hypothesis anyway, and it may consequently put a bias 

on the estimation of the kinetic parameters of a model with dynamic yield. To state the problem 

more clearly; static and dynamic yields represent two different ideas of the microbial growth yield. A 

static yield is derived from considering the initial and final state of a growth event, while a dynamic 

yield has a meaning also between those two states. If an “overall yield” was to be computed from the 

initial and final state of the simulation of a model considering dynamic yields, maybe this overall yield 

would depend on the kinetic parameters of the model. In the context of a parameter calibration, 

multiple values of parameters are tested in order to find an optimum. The parameters values giving 

rise to the “overall yield” corresponding to the constant yield used to transform the reference data 

may be favored as optimum in the calibration process, above other criteria. Indeed, the constant 

yield, and its dynamic counterpart the overall yield, affects the area under the fitted curve, however, 

the “shape” of the curve is another fitting criterion. 

In order to address argument A2 with tangible counter-arguments, some additional information is 

given on the calibration simulations. 

The tracking of the lambda factor of the OHO population in the OHO population’s calibration 

simulation with optimum parameters is given as fig a. It shows that the lambda factor’s variation 

along simulation time is very small (approximately 3% of its mean value). Consequently the lambda 

factor can be considered as a constant in the case of the OHO population. The yield in the MTS model 

being a linear transformation of the lambda factor, this observation effectively counters argument A2 

in the case of the OHO population. Moreover, the tracking of the value of the overall OUR (indicative 

of the overall yield) predicted by the MTS model for the OHO population for various values of the 

kinetic parameters shows that the yield of the OHO population is independent of the value of the 

kinetic parameters (different values of OUR recorded for very low parameters are caused by the 

truncation of the OUR record). 

On the other hand, the tracking of the lambda factor for the AOB and NOB populations (fig b) shows 

that it varies greatly along simulation time. Unlike with the OHO population, the yield of the AOB and 

NOB populations cannot be considered as constant during the calibration simulation. However the 

calibration process of AOB and NOB populations is not disqualified by argument A2. Indeed, the 

measurement of the overall OUR of the AOB and NOB populations for various kinetic parameters 

values shows that the yield of the AOB and NOB populations depends on the value of the kinetic 

parameters. The OUR of the reference data is 0.67 mM (21.64 mgO2.L
-1); this value lays at the far 

right of the graph. The parameters values selected as optimum by the calibration process are at the 

center of the graph. Consequently it appears that the overall yield displayed by the reference data 

did not act as an objective for the calibration process, which counters argument A2 in the case of the 

AOB and NOB populations.  
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Figure a : lambda factor of the OHO population along simulation time, during the calibration simulation of the 
parameters of the OHO population, with optimum parameters (µmax = 3.75 day

-1
, Vh = 147 m

3
.mol

-1
) 
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Figure b : lambda factor of the AOB and NOB populations along simulation time, during the calibration simulation of the 
parameters of the AOB and NOB populations, with optimum parameters (µmax = 2.08 day

-1
, Vh = 296 m

3
.mol

-1
, initial AOB 

population = 6.52e-1 mM, initial NOB population = 4.59e-1 mM) 

 

Figure c: total amount of oxygen (in mol) consumed by the OHO population as predicted by the MTS model for the 
calibration simulation of the OHO population 
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Figure d : total amount of oxygen (in mol) consumed by the AOB and NOB populations as predicted by the MTS model for 
the calibration simulation of the AOB and NOB populations 
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Supplementary material of chapter 6  
Data collected from the literature and used in chapter 6 to investigate the link between growth yield 

and metabolic properties. In the “growth” column, “A” means “aerobic” and “N” means “anaerobic”. 

In the “trophism” column, “H” means “heterotroph” and “A” means “autotroph”. In the “metabolism 

type” column, “R” means “respiration” and “F” means “fermentation”. 
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se O2 

2
4 

-
2873 59.7 A 24 6 24 6 H R 

27.1
2507 

1
1
0 

gluco
se O2 

2
4 

-
2873 65.36 A 24 6 24 6 H R 

27.1
2507 

1
1
1 

gluco
se O2 

2
4 

-
2873 90.85 A 24 6 24 6 H R 

27.1
2507 

1
1
2 

gluco
se O2 

2
4 

-
2873 80.68 A 24 6 24 6 H R 

27.1
2507 

1
1
3 

gluco
se O2 

2
4 

-
2873 63.73 A 24 6 24 6 H R 

27.1
2507 

1
1
4 

gluco
se O2 

2
4 

-
2873 81.36 A 24 6 24 6 H R 

27.1
2507 

1
1
5 

gluco
se 

N
O3
- 

2
4 

-
2683 43.39 N 24 6 24 6 H R 

27.1
2507 
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1
1
6 

gluco
se O2 

2
4 

-
2873 80 A 24 6 24 6 H R 

27.1
2507 

1
1
7 

gluco
se O2 

2
4 

-
2873 62.38 A 24 6 24 6 H R 

27.1
2507 

1
1
8 

gluco
se O2 

2
4 

-
2873 81.7 A 24 6 24 6 H R 

27.1
2507 

1
1
9 

gluco
se O2 

2
4 

-
2873 63.73 A 24 6 24 6 H R 

27.1
2507 

1
2
0 

gluco
se 

N
O3
- 

2
4 

-
2683 60 N 24 6 24 6 H R 

27.1
2507 

1
2
1 

gluco
se 

no
ne 

2
4 -338 14.32 N 24 6 24 6 H F 

27.1
2507 

1
2
2 

gluco
se 

no
ne 

2
4 -338 16.83 N 24 6 24 6 H F 

27.1
2507 

1
2
3 

gluco
se 

no
ne 

2
4 -294 15.28 N 24 6 24 6 H F 

27.1
2507 

1
2
4 

oxala
te O2 2 -271 

3.89098
4 A 2 2 2 2 H R 

-
38.1

48 

1
2
5 

oxala
te O2 2 -271 3.16708 A 2 2 2 2 H R 

-
38.1

48 

1
2
7 

glyox
ylate O2 4 -497 9.95368 A 4 2 4 2 H R 

8.51
1992 

1
2
8 

form
ate O2 2 -233 2.71464 A 2 1 2 1 H R 

38.0
8406 

1
2
9 

form
ate O2 2 -233 2.2622 A 2 1 2 1 H R 

38.0
8406 

1
3
0 

form
ate O2 2 -233 4.07196 A 2 1 2 1 H R 

38.0
8406 

1
3
1 

tartra
te O2 

1
0 

-
1204 

25.3366
4 A 10 4 10 4 H R 

24.0
6 

1
3
2 

malo
nate O2 8 -877 

16.1521
1 A 8 3 8 3 H R 

66.7
4002 

1
3
3 

citrat
e O2 

1
8 

-
2036 51.3067 A 18 6 18 6 H R 

52.8
9188 

1
3
4 

citrat
e O2 

1
8 

-
2036 

52.9354
8 A 18 6 18 6 H R 

52.8
9188 

1
3
5 

citrat
e O2 

1
8 

-
2036 

55.7858
5 A 18 6 18 6 H R 

52.8
9188 

1
3
6 

malat
e O2 

1
2 

-
1367 

38.0049
6 A 12 4 12 4 H R 

49.8
5226 

1
3
7 

malat
e O2 

1
2 

-
1367 22.622 A 12 4 12 4 H R 

49.8
5226 

1
3
8 

malat
e O2 

1
2 

-
1367 33.933 A 12 4 12 4 H R 

49.8
5226 

1
3
9 

citrat
e O2 

1
8 

-
2036 

49.5421
8 A 18 6 18 6 H R 

52.8
9188 

1
4
0 

pyruv
ate O2 

1
0 

-
1141 

29.4538
4 A 10 3 10 3 H R 

49.2
2641 

1
4
1 

pyruv
ate O2 

1
0 

-
1141 

21.7171
2 A 10 3 10 3 H R 

49.2
2641 

1
4
2 

succi
nate O2 

1
4 

-
1519 

37.3715
4 A 14 4 14 4 H R 

71.6
9533 

1
4

succi
nate O2 

1
4 1519 

34.8378
8 A 14 4 14 4 H R 

71.6
9533 
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3 

1
4
4 

succi
nate O2 

1
4 

-
1519 

43.4342
4 A 14 4 14 4 H R 

71.6
9533 

1
4
5 

succi
nate O2 

1
4 

-
1519 36.1952 A 14 4 14 4 H R 

71.6
9533 

1
4
6 

gluco
nate O2 

3
2 

-
2590 

69.2233
2 A 32 6 32 6 H R 

181.
8515 

1
4
7 

gluco
nate O2 

3
2 

-
2590 

69.2233
2 A 32 6 32 6 H R 

181.
8515 

1
4
8 

gluco
nate O2 

3
2 

-
2590 

75.8741
9 A 32 6 32 6 H R 

181.
8515 

1
4
9 

gluco
se O2 

2
4 

-
2873 78.4531 A 24 6 24 6 H R 

27.1
2507 

1
5
0 

gluco
se O2 

2
4 

-
2873 

73.2952
8 A 24 6 24 6 H R 

27.1
2507 

1
5
1 

gluco
se O2 

2
4 

-
2873 

61.2151
3 A 24 6 24 6 H R 

27.1
2507 

1
5
2 

galac
tose O2 

2
4 

-
2884 

81.9821
3 A 24 6 24 6 H R 

25.3
0477 

1
5
3 

lacto
se O2 

4
8 

-
5793 

149.033
7 A 48 12 48 12 H R 

22.3
3302 

1
5
4 

gluco
se O2 

2
4 

-
2873 

79.6746
8 A 24 6 24 6 H R 

27.1
2507 

1
5
5 

aceta
te O2 8 -847 

26.5582
3 A 8 2 8 2 H R 

81.9
9803 

1
5
6 

gluco
se O2 

2
4 

-
2873 

75.6027
2 A 24 6 24 6 H R 

27.1
2507 

1
5
7 

gluco
se O2 

2
4 

-
2873 

80.7605
4 A 24 6 24 6 H R 

27.1
2507 

1
5
8 

aceta
te O2 8 -847 

16.6497
9 A 8 2 8 2 H R 

81.9
9803 

1
5
9 

gluco
se O2 

2
4 

-
2873 

65.4228
2 A 24 6 24 6 H R 

27.1
2507 

1
6
0 

gluco
se O2 

2
4 

-
2873 

54.1570
7 A 24 6 24 6 H R 

27.1
2507 

1
6
2 

fruct
ose O2 

2
4 

-
2877 

68.5446
6 A 24 6 24 6 H R 

26.4
0697 

1
6
3 

gluco
se O2 

2
4 

-
2873 

80.7605
4 A 24 6 24 6 H R 

27.1
2507 

1
6
4 

xylos
e O2 

2
0 

-
2408 55.4239 A 20 5 20 5 H R 

23.9
952 

1
6
5 

aceta
te O2 8 -847 

20.5860
2 A 8 2 8 2 H R 

81.9
9803 

1
6
6 

gluco
se O2 

2
4 

-
2873 54.2928 A 24 6 24 6 H R 

27.1
2507 

1
6
7 

aceta
te O2 8 -847 

18.5500
4 A 8 2 8 2 H R 

81.9
9803 

1
6
8 

form
aldeh
yde O2 4 -492 

10.6323
4 A 4 1 4 1 H R 

13.5
2801 

1
6
9 

gluco
se O2 

2
4 

-
2873 

82.7965
2 A 24 6 24 6 H R 

27.1
2507 

1
7
0 

lactat
e O2 

1
2 

-
1333 

34.6116
6 A 12 3 12 3 H R 

60.9
1319 
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1
7
1 

mann
itol O2 

2
8 

-
3085 

84.1538
4 A 26 6 26 6 H R 

31.1
4861 

1
7
2 

mann
itol O2 

2
8 

-
3085 

76.0099
2 A 26 6 26 6 H R 

31.1
4861 

1
7
3 

sorbit
ol O2 

2
8 

-
3081 

84.1538
4 A 26 6 26 6 H R 

31.7
3381 

1
7
4 

glyce
rol O2 

1
4 

-
1637 

38.6157
5 A 14 3 14 3 H R 

38.0
2168 

1
7
5 

glyce
rol O2 

1
4 

-
1637 

46.9632
7 A 14 3 14 3 H R 

38.0
2168 

1
7
6 

glyce
rol O2 

1
4 

-
1637 37.3263 A 14 3 14 3 H R 

38.0
2168 

1
7
8 

glyce
rol O2 

1
4 

-
1637 

45.4702
2 A 14 3 14 3 H R 

38.0
2168 

1
7
9 

glyce
rol O2 

1
4 

-
1637 

47.5740
7 A 14 3 14 3 H R 

38.0
2168 

1
8
0 

glyce
rol O2 

1
4 

-
1637 

43.4342
4 A 14 3 14 3 H R 

38.0
2168 

1
8
1 

aceto
in O2 

2
0 

-
2240 

38.3669
1 A 20 4 20 4 H R 

57.5
4961 

1
8
2 

aceto
ne O2 

1
6 

-
1726 

30.2003
7 A 16 3 16 3 H R 

73.9
8401 

1
8
3 

2.3-
buta
nedio
l O2 

2
2 

-
2433 

40.3576
5 A 22 4 22 4 H R 

63.3
7158 

1
8
4 

xylos
e O2 

2
0 

-
2408 

59.0434
2 A 26 5 20 5 H R 

79.9
8634 

1
8
5 

xylos
e O2 

2
0 

-
2408 83.7014 A 26 5 20 5 H R 

79.9
8634 

1
8
6 

meth
anol O2 6 -682 

11.8086
8 A 6 1 6 1 H R 

50.5
5047 

1
8
7 

ethan
ol O2 

1
2 

-
1308 

27.0106
7 A 12 2 12 2 H R 

69.5
0992 

1
8
9 

ethan
ol O2 

1
2 

-
1308 

27.9155
5 A 12 2 12 2 H R 

69.5
0992 

1
9
0 

meth
anol O2 6 -682 

12.2158
8 A 6 1 6 1 H R 

50.5
5047 

1
9
1 

ethan
ol O2 

1
2 

-
1308 

23.9793
2 A 12 2 12 2 H R 

69.5
0992 

1
9
2 

prop
anol O2 

1
8 

-
1946 

39.0229
5 A 18 3 18 3 H R 

73.0
6015 

1
9
3 

meth
anol O2 6 -682 

12.2158
8 A 6 1 6 1 H R 

50.5
5047 

1
9
4 

meth
anol O2 6 -682 

10.6323
4 A 6 1 6 1 H R 

50.5
5047 

1
9
5 

hexa
deca
ne O2 

9
4 

-
1006

0 
205.226

8 A 94 16 94 16 H R 
77.5

3487 

1
9
6 

buta
ne O2 

2
8 

-
2751 

40.2671
6 A 26 4 26 4 H R 

82.6
0681 

1
9
7 

meth
ane O2 8 -821 12.4421 A 6 1 8 1 H R 

50.5
5047 

1
9
8 H2 

HC
O3
- 2 -30 

0.42981
8 N 0 1 2 0 A R 

36.7
4476 
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1
9
9 

form
ate 

no
ne 2 -26 

0.95012
4 N 2 1 2 1 H F 

38.0
8406 

2
0
0 

form
ate 

no
ne 2 -26 

1.22158
8 N 2 1 2 1 H F 

38.0
8406 

2
0
1 

form
ate 

no
ne 2 -26 

0.72390
4 N 2 1 2 1 H F 

38.0
8406 

2
0
2 

form
ate 

no
ne 2 -26 

4.34342
4 N 2 1 2 1 H F 

38.0
8406 

2
0
4 H2 

HC
O3
- 2 -30 

0.36195
2 N 0 1 2 0 A R 

36.7
4476 

2
0
5 H2 

HC
O3
- 2 -30 

1.26683
2 N 0 1 2 0 A R 

36.7
4476 

2
0
6 H2 

HC
O3
- 2 -30 

2.23957
8 N 0 1 2 0 A R 

36.7
4476 

2
0
7 H2 

HC
O3
- 2 -30 

0.29408
6 N 0 1 2 0 A R 

36.7
4476 

2
0
8 H2 

HC
O3
- 2 -30 

0.31670
8 N 0 1 2 0 A R 

36.7
4476 

2
0
9 H2 

HC
O3
- 2 -30 0.33933 N 0 1 2 0 A R 

36.7
4476 

2
1
0 H2 

HC
O3
- 2 -30 

0.36195
2 N 0 1 2 0 A R 

36.7
4476 

2
1
1 H2 

HC
O3
- 2 -30 

0.38457
4 N 0 1 2 0 A R 

36.7
4476 

2
1
2 H2 

HC
O3
- 2 -30 

0.31670
8 N 0 1 2 0 A R 

36.7
4476 

2
1
3 H2 

HC
O3
- 2 -30 0.11311 N 0 1 2 0 A R 

36.7
4476 

2
1
4 H2 

HC
O3
- 2 -30 

0.31670
8 N 0 1 2 0 A R 

36.7
4476 

2
1
5 H2 

HC
O3
- 2 -30 

0.52030
6 N 0 1 2 0 A R 

36.7
4476 

2
1
6 H2 

HC
O3
- 2 -30 

0.47506
2 N 0 1 2 0 A R 

36.7
4476 

2
1
7 H2 

HC
O3
- 2 -30 0.67866 N 0 1 2 0 A R 

36.7
4476 

2
1
8 H2 

HC
O3
- 2 -30 

1.15372
2 N 0 1 2 0 A R 

36.7
4476 

2
1
9 H2 

HC
O3
- 2 -30 

1.51567
4 N 0 1 2 0 A R 

36.7
4476 

2
2
0 

citrat
e 

no
ne 

1
8 -173 

9.90843
6 N 18 6 18 6 H F 

52.8
9188 

2
2
1 H2 

cit
rat
e 6 -215 4.07196 N 18 6 2 0 H F 

52.8
9188 

2
2
2 

pyruv
ate 

no
ne 

1
0 -105 

5.63287
8 N 10 3 10 3 H F 

49.2
2641 

2
2
5 

fruct
ose 

no
ne 

2
4 -393 

23.4816
4 N 24 6 24 6 H F 

26.4
0697 

2
2
6 

gluco
se 

no
ne 

2
4 -388 

23.8888
3 N 24 6 24 6 H F 

27.1
2507 

2
2
7 

dihyd
roxy-
aceto
ne 

no
ne 

1
2 -203 3.3933 N 0 1 12 3 A F 

36.7
4476 
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2
2
8 

gluco
se 

no
ne 

2
4 -388 

23.8888
3 N 24 6 24 6 H F 

27.1
2507 

2
2
9 H2 

gl
uc
os
e 

2
4 -793 33.933 N 24 6 2 0 H F 

27.1
2507 

2
3
0 H2 

lac
tat
e 1 -78 

5.63287
8 N 12 3 2 0 H F 

60.9
1319 

2
3
1 

fruct
ose 

no
ne 1 -352 

42.4841
2 N 24 6 24 6 H F 

26.4
0697 

2
3
2 

gluco
se 

no
ne 1 -348 

43.5699
7 N 24 6 24 6 H F 

27.1
2507 

2
3
3 

xylos
e 

no
ne 1 -304 

31.8970
2 N 26 5 20 5 H F 

79.9
8634 

2
3
4 H2 

gl
uc
os
e 

1
2 -373 

19.0024
8 N 24 6 2 0 H F 

27.1
2507 

2
3
5 H2 

gl
uc
os
e 

1
2 -373 16.5593 N 24 6 2 0 H F 

27.1
2507 

2
3
6 H2 

m
alt
os
e 

2
4 

-
2358 

22.2600
5 N 0 1 2 0 H F 

-
82.7
085 

2
3
7 

gluco
se 

no
ne 1 -217 

14.9305
2 N 24 6 24 6 H F 

27.1
2507 

2
3
8 H2 

ac
et
at
e 8 -154 

1.08585
6 N 8 2 2 0 H F 

81.9
9803 

2
3
9 H2 

ac
et
at
e 8 -154 

2.44317
6 N 8 2 2 0 H F 

81.9
9803 

2
4
0 H2 

ac
et
at
e 8 -154 

2.17171
2 N 8 2 2 0 H F 

81.9
9803 

2
4
1 H2 

ac
et
at
e 8 -154 1.1311 N 8 2 2 0 H F 

81.9
9803 

2
4
2 H2 

ac
et
at
e 8 -154 

1.04061
2 N 8 2 2 0 H F 

81.9
9803 

2
4
3 H2 

ac
et
at
e 8 -154 

0.99536
8 N 8 2 2 0 H F 

81.9
9803 

2
4
4 H2 

ac
et
at
e 8 -154 

1.94549
2 N 8 2 2 0 H F 

81.9
9803 

2
4
5 H2 

ac
et
at
e 8 -154 

1.85500
4 N 8 2 2 0 H F 

81.9
9803 

2
4
6 H2 

ac
et
at
e 8 -154 2.03598 N 8 2 2 0 H F 

81.9
9803 

2
4
7 H2 

ac
et
at
e 8 -154 

1.94549
2 N 8 2 2 0 H F 

81.9
9803 

2
4
8 H2 

ac
et
at
e 8 -154 2.03598 N 8 2 2 0 H F 

81.9
9803 

2
4 H2 

ac
et 8 -154 

2.53366
4 N 8 2 2 0 H F 

81.9
9803 
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9 at
e 

2
5
0 H2 

ac
et
at
e 8 -154 

3.80049
6 N 8 2 2 0 H F 

81.9
9803 

2
5
1 H2 

ac
et
at
e 8 -154 

1.62878
4 N 8 2 2 0 H F 

81.9
9803 

2
5
2 H2 

ac
et
at
e 8 -154 

2.44317
6 N 8 2 2 0 H F 

81.9
9803 

2
5
3 H2 

ac
et
at
e 8 -154 

2.62415
2 N 8 2 2 0 H F 

81.9
9803 

2
5
4 H2 

ac
et
at
e 8 -154 

1.40256
4 N 8 2 2 0 H F 

81.9
9803 

2
5
5 H2 

gl
uc
os
e 

1
2 -373 

18.7310
2 N 24 6 2 0 H F 

27.1
2507 

2
5
6 H2 

gl
uc
os
e 

1
2 -373 

15.7449
1 N 24 6 2 0 H F 

27.1
2507 

2
5
7 H2 

gl
uc
os
e 

1
2 -373 

15.2019
8 N 24 6 2 0 H F 

27.1
2507 

2
5
8 

mann
itol 

no
ne 

2
6 -394 

41.8054
6 N 48 12 26 6 H F 

-
107.
622 

2
5
9 

mann
itol 

no
ne 

2
6 -394 

40.9910
6 N 48 12 26 6 H F 

-
107.
622 

2
6
0 

glyce
rol 

no
ne 

1
4 -188 

6.31153
8 N 14 3 14 3 H F 

38.0
2168 

2
6
1 H2 

ac
et
oi
n 1 -98 6.33416 N 20 4 2 0 H F 

57.5
4961 

2
6
2 

ethyl
enegl
ycol 

no
ne 1 -89 

3.25756
8 N 10 2 10 2 H F 

41.1
5281 

2
6
3 

aceto
in 

no
ne 1 -125 

7.14855
2 N 20 4 20 4 H F 

57.5
4961 

2
6
4 

aceto
in 

no
ne 1 -137 

7.14855
2 N 20 4 20 4 H F 

57.5
4961 

2
6
5 

2.3-
buta
nedio
l 

no
ne 1 -59 

3.25756
8 N 22 4 22 4 H F 

63.3
7158 

2
6
6 

2.3-
buta
nedio
l 

no
ne 1 -107 

5.70074
4 N 22 4 22 4 H F 

63.3
7158 

2
6
7 

2.3-
buta
nedio
l 

no
ne 1 -119 

6.42464
8 N 22 4 22 4 H F 

63.3
7158 

2
6
8 H2 

m
et
ha
no
l 2 -101 

3.03134
8 N 8 1 2 0 H F 

95.0
5603 

2
6
9 H2 

m
et
ha
no
l 2 -101 6.7866 N 8 1 2 0 H F 

95.0
5603 

2
7 H2 

m
et 2 -101 

3.86836
2 N 8 1 2 0 H F 

95.0
5603 
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0 ha
no
l 

2
7
1 H2 

m
et
ha
no
l 2 -101 

2.85037
2 N 8 1 2 0 H F 

95.0
5603 

2
7
2 H2 

m
et
ha
no
l 2 -101 

2.53366
4 N 8 1 2 0 H F 

95.0
5603 

2
7
3 

ethan
ol 

no
ne 1 -38 

1.26683
2 N 12 2 12 2 H F 

69.5
0992 

2
7
4 

prop
anol 

no
ne 1 -42 

1.28945
4 N 18 3 18 3 H F 

73.0
6015 

2
7
5 H2 

m
et
ha
no
l 2 -101 

3.25756
8 N 8 1 2 0 H F 

95.0
5603 

2
7
6 

form
ate 

N
O3
- 2 -150 

3.75525
2 N 2 1 2 1 H R 

38.0
8406 

2
7
7 

succi
nate 

N
O3
- 

1
4 -933 

24.7937
1 N 14 4 14 4 H R 

71.6
9533 

2
7
8 

gluco
nate 

N
O3
- 

3
2 

-
1251 

52.5282
8 N 32 6 32 6 H R 

181.
8515 

2
7
9 

lactat
e 

N
O3
- 

1
2 -831 

34.2723
3 N 12 3 12 3 H R 

60.9
1319 

2
8
0 

mann
itol 

N
O3
- 

2
6 

-
1997 

137.360
8 N 48 12 26 6 H R 

-
107.
622 

2
8
1 

propi
onate 

no
ne 6 -24 

1.40935
1 N 14 3 14 3 H F 

80.8
5191 

2
8
2 

propi
onate 

no
ne 6 -24 0.79177 N 14 3 14 3 H F 

80.8
5191 

2
8
3 

propi
onate 

no
ne 6 -24 

0.39588
5 N 14 3 14 3 H F 

80.8
5191 

2
8
4 

propi
onate 

no
ne 6 -24 

0.87094
7 N 14 3 14 3 H F 

80.8
5191 

2
8
5 

propi
onate 

no
ne 6 -24 

0.87094
7 N 14 3 14 3 H F 

80.8
5191 

2
8
6 

propi
onate 

no
ne 6 -24 0.79177 N 14 3 14 3 H F 

80.8
5191 

2
8
7 

propi
onate 

no
ne 6 -24 0.79177 N 14 3 14 3 H F 

80.8
5191 

2
8
8 

propi
onate 

no
ne 6 -24 

0.30087
3 N 14 3 14 3 H F 

80.8
5191 

2
8
9 

propi
onate 

no
ne 6 -24 

0.30087
3 N 14 3 14 3 H F 

80.8
5191 

2
9
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suppressMessages(library(dplyr))
suppressMessages(library(magrittr))
suppressMessages(library(tidyr))
suppressWarnings(library(xlsx))

## Loading required package: rJava

## Loading required package: methods

## Loading required package: xlsxjars

suppressWarnings(library(knitr))
library(ggplot2)
library(ggfortify)

"yields_v7.xlsx" %>% 
 read.xlsx("data") %>% 
 na.omit() %>%
 tbl_df() -> mt.data

# biomass molecular weight in g.C-mol-1
# assuming C5H7O2N biomass (Hoover and Porges, 1952)
carbon.per.biomass <- 5
mwx <- 113.11 / carbon.per.biomass

# convert observed yield from gX.molS-1 to molX.molS-1
mt.data %<>% mutate(observed.yield = observed.yield / mwx)

# convert reduction degrees in mole.C-mol-1
mt.data %<>% mutate(gammaCs = gammaCs / ifelse(NoCCs == 0, 1, NoCCs))
mt.data %<>% mutate(gammaD = gammaD / ifelse(NoCD == 0, 1, NoCD))

# compute the dataset of the maximum yield per metabolism
mt.data %>%
 na.omit() %>%
 group_by(catabolism.index, e.donor, e.acceptor) %>%
 mutate(observations = n()) %>%
 filter(observed.yield == max(observed.yield)) %>%
 filter(row_number() == 1) %>%
 mutate(donor.reduction = ifelse(gammaD <= 4.67, "low", "high")) %>%
 ungroup() -> mt.data.max
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data distribution
The data collected from the litterature encompasses a wide variety of metabolisms defined by their

electron acceptor/donor couple. However, not all couples are documented with the same number of

observations; some metabolisms have their growth yield well documented by a great number of

experimental observations while other metabolisms have been seldomly documented. Lets plot a matrix

of the number of observations we have per acceptor/donor couple to illustrate those discrepancies.

# count the number of literature report per catabolism
mt.data %>%
    group_by(catabolism.index) %>%
    summarise(observations = n()) %$%
    summary(observations)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   1.000   3.376   3.000  31.000

# count the number of literature report of growth yield per acceptor/donor pair
mt.data %>%
 group_by(e.donor, e.acceptor) %>%
 summarise(observations = n()) -> observations.per.metabolism

# display the distribution of the number of observations per metabolism
observations.per.metabolism %$% 
    observations %>% 
    summary() -> metabolism.count.summary

print(metabolism.count.summary)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   4.159   4.000  34.000
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# number of observations per metabolism as a matrix
(observations.per.metabolism %>%
 group_by(e.donor) %>%
 mutate(observation.per.donor = n()) %>%
 group_by(e.acceptor) %>%
# keep only inorganic electron acceptors as organic electron acceptors are
# defined to include fermentation reactions in a consistent notation with othe

r
# metabolisms while their electron donor is always dihydrogen

 filter(e.acceptor %in% c("dioxygen", "nitrate", "sulfate", "sulfur", "Fe(OH)3"
, "bicarbonate", "manganese dioxyde", "none")) %>%
 mutate(observation.per.acceptor = n()) %>%
 {(ggplot(., aes(x=reorder(e.donor, -observation.per.donor), y=reorder(e.accept
or, -observation.per.acceptor)))
       + geom_raster(aes(fill=observations))
       + ggtitle("number of observations by donor/acceptor couple")
       + xlab("electron donor")
       + ylab("electron acceptor")
       + theme(panel.grid.major = element_blank(),
               axis.text.x=element_text(angle = 90))
 )}
)

report_for_draft.utf8 file:///home/hadrien/Dropbox/irstea/these/articles/...

3 sur 38 09/05/2018 à 23:57



The experimental observations collected from the litterature cover a wide range of values of growth

yield. The following figure illustrates the values of observed yields and their dispersion depending on the

considered metabolism.
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# dispersion of observed yields per metabolism
mt.data %>%
 unite("e.donor", "e.acceptor", col="metabolism", sep=" -> ") %>%
 group_by(metabolism) %>%
 mutate(avg.yield = mean(observed.yield)) %>%
 mutate(count = n()) %>%
 {(ggplot(., aes(reorder(metabolism, avg.yield), log10(observed.yield)))
       + geom_boxplot(aes(color=count))
       + coord_flip()
       + xlab("donor -> acceptor couples")
       + ylab("log10 observed yields (molX.molD-1)")
)}
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Here are the data classified into the autotroph/heterotroph and aerobic/anaerobic categories;

mt.data %>%
    group_by(growth, trophism) %>%
    summarise(count = n(), avg.yield = mean(observed.yield)) %T>%

# number of observations in each categories
    { xtabs(count ~ growth + trophism, data=.) %>% print() } %>%

# average observed yield for each categories
    xtabs(avg.yield ~ growth + trophism, data=.)
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##            trophism
## growth      autotroph heterotroph
##   aerobic           9         119
##   anaerobic        47         166

##            trophism
## growth       autotroph heterotroph
##   aerobic   0.08758987  1.82152737
##   anaerobic 0.06763830  0.37015275

previous prediction models
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# compute goodness of fit criteria on a prediction
# SSR: Sum of Squared Residuals
# MSE: Mean Squared Error

# arguments;
# data: a data frame like mt.data or mt.data.max, with also a `predicted.yield` 
column
# partition: a string designating the column to use as a partition
# if partition is null, goodness of fit criteria wont be applied on any partiti
on
goodness.of.fit <- function(data, partition=NULL) {
    data %<>% mutate(residuals = observed.yield - predicted.yield)
    

# overall goodness of fit
    data %>%
    group_by("partition" = "overall") %>%
    summarise(SSR = sum(residuals ** 2),
              MSE = SSR / n()) -> overall.goodness.of.fit
    

# goodness of fit per partition
if (is.null(partition)) {

return (overall.goodness.of.fit)
    } else {
        data %>%
        group_by("partition" = get(partition)) %>%
        summarise(SSR = sum(residuals ** 2),
                  MSE = SSR / n()) -> partitioned.goodness.of.fit

return (rbind(partitioned.goodness.of.fit, overall.goodness.of.fit))
    }
}

bland.altman.plot <- function(data) {
    data %<>%
        ungroup() %>% 
        mutate(difference = observed.yield - predicted.yield) %>%
        mutate(mean = (observed.yield + predicted.yield) / 2)
    
    mean.difference <- mean(data$difference)
    sd.difference <- sd(data$difference)

    data %>%
        {( ggplot(., aes(x=mean, y=difference))
           + geom_abline(intercept = mean.difference, slope = 0, size = 1.5, co
lor = "gray")
           + geom_abline(intercept = mean.difference + 1.96 * sd.difference, sl
ope = 0, linetype = 2)
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           + geom_abline(intercept = mean.difference - 1.96 * sd.difference, sl
ope = 0, linetype = 2)

#+ geom_point(shape=1)
           + geom_text(aes(label=index))
           + xlab("mean of observed and prediction (molX.molD-1)")
           + ylab("difference between observed and prediction (molX.molD-1)")
        )}
}

Heijnen’s model

# dissipated energy computed from Heijnen's predictor
YGmax <- function(NoCCs, gammaCs) { -(200 + 18 * (6 - NoCCs) ** 1.8 + exp(((3.8
- gammaCs)**2)**0.16 * (3.6 + 0.4 * NoCCs))) }

mt.data.max %>%
    mutate(dGdis = YGmax(NoCCs, gammaCs)) %>%
    mutate(dGdis = ifelse(e.donor %in% c("ammonium", "nitrite"), 3500, dGdis)) 
%>% # reverse electron transfer
    mutate(lambda = (dGdis - dGan) / dGcat) %>%
    mutate(predicted.yield = 1 / (lambda - nuDan)) %>%
    na.omit() -> mt.data.max.heijnen

# goodness of fit of the model
mt.data.max.heijnen %>%
    goodness.of.fit() %>%
    print()

## # A tibble: 1 x 3
##   partition      SSR       MSE
##       <chr>    <dbl>     <dbl>
## 1   overall 17.87086 0.1842357

mt.data.max.heijnen %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.heijnen

# draw a plot of predicted vs observed yields
mt.data.max.heijnen %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of Heijnen's model")
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Liu’s model

mt.data.max %>%
    mutate(dGdis = ifelse(gammaD <= 4.67,
                          -666.2 / (gammaD) - 243.1,
                          -157 * gammaD + 339)) %>%
    mutate(dGdis = ifelse(e.donor %in% c("ammonium", "nitrite"), -3500, dGdis)) 
%>% # reverse electron transfer
    mutate(lambda = (-dGdis + dGan) / -dGcat) %>%
    mutate(predicted.yield = 1 / (lambda - nuDan)) -> mt.data.max.liu

# goodness of fit of the model
mt.data.max.liu %>%
    goodness.of.fit() %>%
    print()
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## # A tibble: 1 x 3
##   partition      SSR       MSE
##       <chr>    <dbl>     <dbl>
## 1   overall 15.22632 0.1507557

mt.data.max.liu %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.liu

# draw a plot of predicted vs observed yields
mt.data.max.liu %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of Liu's model")

Roden’s model
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mt.data.max %>%
    mutate(predicted.yield = (2.08 + 0.0211 * -dGcat) / mwx) -> mt.data.max.rod
en

# goodness of fit of the model
mt.data.max.roden %>%
    goodness.of.fit() %>%
    print()

## # A tibble: 1 x 3
##   partition      SSR       MSE
##       <chr>    <dbl>     <dbl>
## 1   overall 41.07026 0.4066362

mt.data.max.roden %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.roden

# draw a plot of predicted vs observed yields
mt.data.max.roden %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of Roden's model")
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correlations between the explanatory
variables

mt.data.max %>%
 select(ne., dGcat, gammaCs, NoCCs, gammaD, NoCD) %>%
 prcomp(scale.=T, center=T) %T>%
 { autoplot(., data = ungroup(mt.data.max),
            colour = "observed.yield",
            loadings = TRUE,
            loadings.label = TRUE,
            loadings.label.size = 5) %>% print() } %T>%
 { autoplot(., data = ungroup(mt.data.max),
            colour = "observed.yield",
            x = 2,
            y = 3,
            loadings = TRUE,
            loadings.label = TRUE,
            loadings.label.size = 5) %>% print() } -> pca.result
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# plot the explained variance per principal component
plot(pca.result, type="l")
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# print the principal components
print(pca.result)

## Standard deviations (1, .., p=6):
## [1] 1.8841418 1.2214990 0.6876278 0.5150678 0.3715558 0.2859533
## 
## Rotation (n x k) = (6 x 6):
##                PC1         PC2        PC3        PC4        PC5        PC6
## ne.     -0.4725236  0.22763845 -0.3567543  0.1173889 -0.5728495  0.5056598
## dGcat    0.4469454 -0.24533135  0.5664200 -0.1300413 -0.4611115  0.4355297
## gammaCs -0.2597615 -0.65203598  0.0914658  0.6575424  0.1885743  0.1763089
## NoCCs   -0.4550714  0.18899482  0.5950297  0.1595864 -0.3395378 -0.5122274
## gammaD  -0.2644323 -0.64884515 -0.2120819 -0.5751945 -0.2555727 -0.2606352
## NoCD    -0.4821522  0.07825131  0.3801179 -0.4250066  0.4930072  0.4395789

Correlation of the explanatory variables between eachother
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mt.data.max %>% 
    ungroup() %>% 
    select(dGcat, gammaCs, NoCCs, ne., gammaD, NoCD) %>%

# spearman correlation coefficient is used because we do not assume the
# relation between the variables to be linear

    cor(method="spearman")

##               dGcat     gammaCs      NoCCs        ne.     gammaD
## dGcat    1.00000000 -0.04340505 -0.4208124 -0.7132874 -0.1000734
## gammaCs -0.04340505  1.00000000  0.2359981  0.1164430  0.8565269
## NoCCs   -0.42081244  0.23599812  1.0000000  0.4877175  0.2143523
## ne.     -0.71328735  0.11644304  0.4877175  1.0000000  0.2158116
## gammaD  -0.10007343  0.85652687  0.2143523  0.2158116  1.0000000
## NoCD    -0.43796939  0.25954054  0.8336416  0.4836768  0.3967044
##               NoCD
## dGcat   -0.4379694
## gammaCs  0.2595405
## NoCCs    0.8336416
## ne.      0.4836768
## gammaD   0.3967044
## NoCD     1.0000000

Correlation of the explanatory variable with the maximum yield, for the overall dataset and for specific

partitions

grouped.mt.data.max <- group_by(mt.data.max, metabolism.type, donor.reduction)
for (variable in c("dGcat", "ne.", "gammaCs", "gammaD", "NoCCs", "NoCD")) {
    paste("correlation between subpartitions and", variable) %>%
        print()
    grouped.mt.data.max %>%
        summarise(cor(get(variable), observed.yield)) %>%
        print()
}
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## [1] "correlation between subpartitions and dGcat"
## # A tibble: 4 x 3
## # Groups:   metabolism.type [?]
##   metabolism.type donor.reduction `cor(get(variable), observed.yield)`
##            <fctr>           <chr>                                <dbl>
## 1    fermentation            high                           -0.9449024
## 2    fermentation             low                           -0.3723215
## 3     respiration            high                           -0.9736257
## 4     respiration             low                           -0.9242158
## [1] "correlation between subpartitions and ne."
## # A tibble: 4 x 3
## # Groups:   metabolism.type [?]
##   metabolism.type donor.reduction `cor(get(variable), observed.yield)`
##            <fctr>           <chr>                                <dbl>
## 1    fermentation            high                           -0.1192747
## 2    fermentation             low                            0.2842146
## 3     respiration            high                            0.9813195
## 4     respiration             low                            0.9357717
## [1] "correlation between subpartitions and gammaCs"
## # A tibble: 4 x 3
## # Groups:   metabolism.type [?]
##   metabolism.type donor.reduction `cor(get(variable), observed.yield)`
##            <fctr>           <chr>                                <dbl>
## 1    fermentation            high                           -0.3084685
## 2    fermentation             low                            0.1354055
## 3     respiration            high                           -0.0682507
## 4     respiration             low                            0.4591582
## [1] "correlation between subpartitions and gammaD"
## # A tibble: 4 x 3
## # Groups:   metabolism.type [?]
##   metabolism.type donor.reduction `cor(get(variable), observed.yield)`
##            <fctr>           <chr>                                <dbl>
## 1    fermentation            high                           -0.3084685
## 2    fermentation             low                            0.2568150
## 3     respiration            high                           -0.1480200
## 4     respiration             low                            0.4318263
## [1] "correlation between subpartitions and NoCCs"
## # A tibble: 4 x 3
## # Groups:   metabolism.type [?]
##   metabolism.type donor.reduction `cor(get(variable), observed.yield)`
##            <fctr>           <chr>                                <dbl>
## 1    fermentation            high                            0.1916450
## 2    fermentation             low                            0.6398154
## 3     respiration            high                            0.9730822
## 4     respiration             low                            0.9403043
## [1] "correlation between subpartitions and NoCD"
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## # A tibble: 4 x 3
## # Groups:   metabolism.type [?]
##   metabolism.type donor.reduction `cor(get(variable), observed.yield)`
##            <fctr>           <chr>                                <dbl>
## 1    fermentation            high                            0.1916450
## 2    fermentation             low                            0.4521973
## 3     respiration            high                            0.9730822
## 4     respiration             low                            0.8866956

new generic predictor

selection of the variables
Generic predictor based on catabolic energy and reduction degrees

generic.model.gamma <- lm(observed.yield ~ (dGcat + gammaD + gammaCs)^2, data=m
t.data.max)
generic.model.gamma %>%
    summary() %>%
    print()
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## 
## Call:
## lm(formula = observed.yield ~ (dGcat + gammaD + gammaCs)^2, data = mt.data.m
ax)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8048 -0.2066 -0.0682  0.1172  3.8422 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.7556569  0.3471233  -2.177  0.03199 *  
## dGcat          -0.0014835  0.0002030  -7.308  8.8e-11 ***
## gammaD          0.3489203  0.1368328   2.550  0.01239 *  
## gammaCs         0.1423772  0.0888758   1.602  0.11252    
## dGcat:gammaD    0.0004081  0.0001222   3.339  0.00121 ** 
## dGcat:gammaCs  -0.0003082  0.0001063  -2.900  0.00464 ** 
## gammaD:gammaCs -0.0570701  0.0249965  -2.283  0.02468 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5529 on 94 degrees of freedom
## Multiple R-squared:  0.8678, Adjusted R-squared:  0.8594 
## F-statistic: 102.9 on 6 and 94 DF,  p-value: < 2.2e-16

mt.data.max %>% 
    mutate(predicted.yield = predict(generic.model.gamma)) -> mt.data.max.gener
ic.gamma

# goodness of fit of the model
mt.data.max.generic.gamma %>%
    goodness.of.fit("metabolism.type") %>%
    print()

## # A tibble: 3 x 3
##      partition       SSR       MSE
##         <fctr>     <dbl>     <dbl>
## 1 fermentation  6.397067 0.1683439
## 2  respiration 22.338703 0.3545826
## 3      overall 28.735771 0.2845126

mt.data.max.generic.gamma %>%
    goodness.of.fit("donor.reduction") %>%
    print()
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## # A tibble: 3 x 3
##   partition       SSR       MSE
##       <chr>     <dbl>     <dbl>
## 1      high  3.446129 0.1276344
## 2       low 25.289642 0.3417519
## 3   overall 28.735771 0.2845126

mt.data.max.generic.gamma %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.generic.gamma

# draw a plot of predicted vs observed yields
mt.data.max.generic.gamma %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of the new generic model b
ased on reduction degree")

Generic predictor based on catabolic energy and numbers of carbons
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generic.carbon.model <- lm(observed.yield ~ (dGcat + NoCD + NoCCs)^2, data=mt.d
ata.max)
generic.carbon.model %>%
    summary() %>%
    print()

## 
## Call:
## lm(formula = observed.yield ~ (dGcat + NoCD + NoCCs)^2, data = mt.data.max)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.46578 -0.23370  0.00158  0.21104  1.10453 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.495e-01  1.088e-01  -2.293   0.0241 *  
## dGcat       -8.846e-04  8.878e-05  -9.964  < 2e-16 ***
## NoCD         1.271e-01  5.601e-02   2.270   0.0255 *  
## NoCCs        4.200e-02  4.869e-02   0.863   0.3906    
## dGcat:NoCD   2.551e-04  4.327e-05   5.897 5.79e-08 ***
## dGcat:NoCCs -2.419e-04  4.708e-05  -5.138 1.50e-06 ***
## NoCD:NoCCs   1.134e-03  9.429e-03   0.120   0.9045    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4018 on 94 degrees of freedom
## Multiple R-squared:  0.9302, Adjusted R-squared:  0.9257 
## F-statistic: 208.8 on 6 and 94 DF,  p-value: < 2.2e-16

mt.data.max %>% 
    mutate(predicted.yield = predict(generic.carbon.model)) -> mt.data.max.gene
ric.carbon

# goodness of fit of the model
mt.data.max.generic.carbon %>%
    goodness.of.fit("metabolism.type") %>%
    print()
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## # A tibble: 3 x 3
##      partition       SSR       MSE
##         <fctr>     <dbl>     <dbl>
## 1 fermentation  6.998443 0.1841696
## 2  respiration  8.178914 0.1298240
## 3      overall 15.177357 0.1502709

mt.data.max.generic.carbon %>%
    goodness.of.fit("donor.reduction") %>%
    print()

## # A tibble: 3 x 3
##   partition       SSR       MSE
##       <chr>     <dbl>     <dbl>
## 1      high  3.665413 0.1357560
## 2       low 11.511944 0.1555668
## 3   overall 15.177357 0.1502709

mt.data.max.generic.carbon %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.generic.carbon

# draw a plot of predicted vs observed yields
mt.data.max.generic.carbon %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of the new generic model b
ased on number of carbon")
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generic model based on the reduction degree of the electron donor and the number of carbons of the

carbon source

generic.gammaDNoCCs.model <- lm(observed.yield ~ (dGcat + gammaD + NoCCs)^2, da
ta=mt.data.max)
generic.gammaDNoCCs.model %>%
    summary() %>%
    print()
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## 
## Call:
## lm(formula = observed.yield ~ (dGcat + gammaD + NoCCs)^2, data = mt.data.max
)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3881 -0.2761  0.0155  0.2003  2.4028 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.617e-01  2.265e-01  -1.155   0.2509    
## dGcat        -1.247e-03  1.835e-04  -6.799 9.61e-10 ***
## gammaD       -2.698e-02  6.075e-02  -0.444   0.6580    
## NoCCs         1.242e-01  8.534e-02   1.455   0.1491    
## dGcat:gammaD  8.385e-05  4.291e-05   1.954   0.0536 .  
## dGcat:NoCCs   9.618e-06  8.752e-06   1.099   0.2746    
## gammaD:NoCCs  1.967e-02  2.161e-02   0.910   0.3650    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4604 on 94 degrees of freedom
## Multiple R-squared:  0.9083, Adjusted R-squared:  0.9025 
## F-statistic: 155.3 on 6 and 94 DF,  p-value: < 2.2e-16

mt.data.max %>% 
    mutate(predicted.yield = predict(generic.gammaDNoCCs.model)) -> mt.data.max
.generic.gammaDNoCCs

# goodness of fit of the model
mt.data.max.generic.gammaDNoCCs %>%
    goodness.of.fit("metabolism.type") %>%
    print()

## # A tibble: 3 x 3
##      partition       SSR       MSE
##         <fctr>     <dbl>     <dbl>
## 1 fermentation  7.711462 0.2029332
## 2  respiration 12.217329 0.1939259
## 3      overall 19.928792 0.1973148

mt.data.max.generic.gammaDNoCCs %>%
    goodness.of.fit("donor.reduction") %>%
    print()
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## # A tibble: 3 x 3
##   partition       SSR       MSE
##       <chr>     <dbl>     <dbl>
## 1      high  3.295153 0.1220427
## 2       low 16.633639 0.2247789
## 3   overall 19.928792 0.1973148

mt.data.max.generic.gammaDNoCCs %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.generic.gammaDNoCCs

# draw a plot of predicted vs observed yields
mt.data.max.generic.gammaDNoCCs %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of the new generic model b
ased on\nthe reduction degree of the electron donor\nand the number of carbons 
of the carbon source")

generic model based on the number of carbons of the electron donor and the reduction degree of the

carbon source
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generic.gammaCsNoCD.model <- lm(observed.yield ~ (dGcat + gammaCs + NoCD)^2, da
ta=mt.data.max)
generic.gammaCsNoCD.model %>%
    summary() %>%
    print()

## 
## Call:
## lm(formula = observed.yield ~ (dGcat + gammaCs + NoCD)^2, data = mt.data.max
)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0896 -0.2438 -0.0794  0.2212  3.5210 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -1.988e-01  1.653e-01  -1.203   0.2321    
## dGcat         -9.633e-04  1.881e-04  -5.120 1.62e-06 ***
## gammaCs        1.521e-02  4.562e-02   0.333   0.7396    
## NoCD           2.486e-01  8.912e-02   2.789   0.0064 ** 
## dGcat:gammaCs  5.678e-06  4.394e-05   0.129   0.8975    
## dGcat:NoCD     1.021e-05  9.546e-06   1.069   0.2877    
## gammaCs:NoCD  -2.327e-02  2.227e-02  -1.045   0.2986    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5479 on 94 degrees of freedom
## Multiple R-squared:  0.8702, Adjusted R-squared:  0.8619 
## F-statistic: 105.1 on 6 and 94 DF,  p-value: < 2.2e-16

mt.data.max %>% 
    mutate(predicted.yield = predict(generic.gammaCsNoCD.model)) -> mt.data.max
.generic.gammaCsNoCD

# goodness of fit of the model
mt.data.max.generic.gammaCsNoCD %>%
    goodness.of.fit("metabolism.type") %>%
    print()
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## # A tibble: 3 x 3
##      partition       SSR       MSE
##         <fctr>     <dbl>     <dbl>
## 1 fermentation  7.793888 0.2051023
## 2  respiration 20.421295 0.3241475
## 3      overall 28.215184 0.2793583

mt.data.max.generic.gammaCsNoCD %>%
    goodness.of.fit("donor.reduction") %>%
    print()

## # A tibble: 3 x 3
##   partition      SSR       MSE
##       <chr>    <dbl>     <dbl>
## 1      high  3.74592 0.1387378
## 2       low 24.46926 0.3306657
## 3   overall 28.21518 0.2793583

mt.data.max.generic.gammaCsNoCD %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.generic.gammaCsNoCD

# draw a plot of predicted vs observed yields
mt.data.max.generic.gammaCsNoCD %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of the new generic model b
ased on\nthe number of carbons of the electron donor\nand the reduction degree 
of the carbon source")
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simplification of the best generic model
simplify the generic model based on number of carbons by considering only the most significant terms

simplified.generic.model <- lm(observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCC
s, data=mt.data.max)
simplified.generic.model %>%
    summary() %>%
    print()
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## 
## Call:
## lm(formula = observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, 
##     data = mt.data.max)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1017 -0.1875 -0.0829  0.1809  1.4059 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.851e-01  6.727e-02   2.752  0.00707 ** 
## dGcat       -9.594e-04  8.248e-05 -11.632  < 2e-16 ***
## dGcat:NoCD   2.698e-04  3.748e-05   7.198 1.30e-10 ***
## dGcat:NoCCs -2.702e-04  3.772e-05  -7.164 1.53e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 97 degrees of freedom
## Multiple R-squared:  0.8893, Adjusted R-squared:  0.8859 
## F-statistic: 259.8 on 3 and 97 DF,  p-value: < 2.2e-16

mt.data.max %>% 
    mutate(predicted.yield = predict(simplified.generic.model)) -> mt.data.max.
simplified.generic

# goodness of fit of the model
mt.data.max.simplified.generic %>%
    goodness.of.fit() %>%
    print()

## # A tibble: 1 x 3
##   partition      SSR       MSE
##       <chr>    <dbl>     <dbl>
## 1   overall 24.06099 0.2382276
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mt.data.max.simplified.generic %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.simplified.generic

# draw a plot of predicted vs observed yields
mt.data.max.simplified.generic %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of the simplified generic 
model")

respiration/fermentation partitioned
predictor
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# respiration-specific model
mt.data.max.respiration <- filter(mt.data.max, metabolism.type == "respiration"
) 
respiration.model <- lm(observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, data
=mt.data.max.respiration)
respiration.model %>%
    summary() %>%
    print()

## 
## Call:
## lm(formula = observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, 
##     data = mt.data.max.respiration)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.27317 -0.22724 -0.00283  0.20386  1.05373 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.964e-02  8.743e-02   0.339    0.736    
## dGcat       -1.149e-03  8.750e-05 -13.127  < 2e-16 ***
## dGcat:NoCD   3.365e-04  3.681e-05   9.140 6.68e-13 ***
## dGcat:NoCCs -3.240e-04  3.670e-05  -8.829 2.21e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4344 on 59 degrees of freedom
## Multiple R-squared:   0.94,  Adjusted R-squared:  0.9369 
## F-statistic:   308 on 3 and 59 DF,  p-value: < 2.2e-16

mt.data.max.respiration %>% 
    mutate(predicted.yield = predict(respiration.model)) -> mt.data.max.respira
tion.prediction

# fermentation-specific model
mt.data.max.fermentation <- filter(mt.data.max, metabolism.type == "fermentatio
n") 
fermentation.model <- lm(observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, dat
a=mt.data.max.fermentation)
fermentation.model %>%
    summary() %>%
    print()
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## 
## Call:
## lm(formula = observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, 
##     data = mt.data.max.fermentation)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.88683 -0.08938 -0.03398  0.05031  0.83271 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.397e-02  6.794e-02   1.236   0.2250    
## dGcat       -1.139e-04  1.577e-04  -0.722   0.4751    
## dGcat:NoCD  -1.906e-04  7.514e-05  -2.537   0.0159 *  
## dGcat:NoCCs -2.735e-04  6.200e-05  -4.411 9.82e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2967 on 34 degrees of freedom
## Multiple R-squared:  0.7313, Adjusted R-squared:  0.7076 
## F-statistic: 30.84 on 3 and 34 DF,  p-value: 8.166e-10

mt.data.max.fermentation %>% 
    mutate(predicted.yield = predict(fermentation.model)) -> mt.data.max.fermen
tation.prediction

# combine both predicted partitions
mt.data.max.partitioned.prediction <- rbind(mt.data.max.respiration.prediction, 
mt.data.max.fermentation.prediction)

# goodness of fit of the model
mt.data.max.partitioned.prediction %>%
    goodness.of.fit("metabolism.type") %>%
    print()

## # A tibble: 3 x 3
##      partition       SSR        MSE
##         <fctr>     <dbl>      <dbl>
## 1 fermentation  2.993704 0.07878167
## 2  respiration 11.132951 0.17671351
## 3      overall 14.126655 0.13986787
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mt.data.max.partitioned.prediction %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.partitioned

# draw a plot of predicted vs observed yields
mt.data.max.partitioned.prediction %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of the partitioned model")

# oxidized-specific model
mt.data.max.oxidized <- filter(mt.data.max, donor.reduction == "low") 
oxidized.model <- lm(observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, data=mt
.data.max.oxidized)
oxidized.model %>%
    summary() %>%
    print()
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## 
## Call:
## lm(formula = observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, 
##     data = mt.data.max.oxidized)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7964 -0.2010 -0.1011  0.1912  1.3491 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.166e-01  7.567e-02   2.862  0.00555 ** 
## dGcat       -8.230e-04  1.167e-04  -7.052 1.01e-09 ***
## dGcat:NoCD   2.285e-04  3.683e-05   6.203 3.42e-08 ***
## dGcat:NoCCs -2.638e-04  3.632e-05  -7.264 4.11e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4724 on 70 degrees of freedom
## Multiple R-squared:  0.8827, Adjusted R-squared:  0.8777 
## F-statistic: 175.7 on 3 and 70 DF,  p-value: < 2.2e-16

mt.data.max.oxidized %>% 
    mutate(predicted.yield = predict(oxidized.model)) -> mt.data.max.oxidized.p
rediction

# reduced-specific model
mt.data.max.reduced <- filter(mt.data.max, donor.reduction == "high") 
reduced.model <- lm(observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, data=mt.
data.max.reduced)
reduced.model %>%
    summary() %>%
    print()
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## 
## Call:
## lm(formula = observed.yield ~ dGcat + dGcat:NoCD + dGcat:NoCCs, 
##     data = mt.data.max.reduced)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.56744 -0.16578 -0.05904  0.02161  1.12817 
## 
## Coefficients: (1 not defined because of singularities)
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.911e-01  9.730e-02   1.964   0.0612 .  
## dGcat       -7.480e-04  1.055e-04  -7.091 2.49e-07 ***
## dGcat:NoCD  -8.919e-06  6.905e-06  -1.292   0.2088    
## dGcat:NoCCs         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.374 on 24 degrees of freedom
## Multiple R-squared:  0.9601, Adjusted R-squared:  0.9568 
## F-statistic: 289.1 on 2 and 24 DF,  p-value: < 2.2e-16

mt.data.max.reduced %>% 
    mutate(predicted.yield = predict(reduced.model)) -> mt.data.max.reduced.pre
diction

# combine both predicted partitions
mt.data.max.partitioned.prediction.2 <- rbind(mt.data.max.oxidized.prediction, 
mt.data.max.reduced.prediction)

# goodness of fit of the model
mt.data.max.partitioned.prediction.2 %>%
    goodness.of.fit("donor.reduction") %>%
    print()

## # A tibble: 3 x 3
##   partition       SSR       MSE
##       <chr>     <dbl>     <dbl>
## 1      high  3.356612 0.1243190
## 2       low 15.619812 0.2110785
## 3   overall 18.976424 0.1878854
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mt.data.max.partitioned.prediction.2 %>% 
    goodness.of.fit() %>% 
    select(MSE) %>% 
    as.numeric() -> MSE.partitioned.2

# draw a plot of predicted vs observed yields
mt.data.max.partitioned.prediction %>%
    bland.altman.plot() + ggtitle("Bland-Altman plot of the partitioned model")

models performances summary
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data.frame(model=c("Heijnen",
"Liu",
"Roden",
"generic using reduction degrees",
"generic using number of carbons",
"simplified generic",
"respiration/fermentation partitioned model",
"donor reduction partitioned model"

                   ),
           MSE=c(MSE.heijnen,
                 MSE.liu,
                 MSE.roden,
                 MSE.generic.gamma,
                 MSE.generic.carbon,
                 MSE.simplified.generic,
                 MSE.partitioned,
                 MSE.partitioned.2
                 )) %>% kable()

model MSE

Heijnen 0.1842357

Liu 0.1507557

Roden 0.4066362

generic using reduction degrees 0.2845126

generic using number of carbons 0.1502709

simplified generic 0.2382276

respiration/fermentation partitioned model 0.1398679

donor reduction partitioned model 0.1878854
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Résumé substantiel de la thèse 

Introduction 
L'objectif de cette thèse est d'étudier le modèle MTS (Microbial Transition State), un modèle destiné 

à prédire les dynamiques de croissance de populations microbiennes à partir de principes premiers. 

Dans un premier temps, les caractéristiques découlant de l'équation du modèle furent étudiées. Dans 

un deuxième temps, des motifs de croissance et de structuration d'écosystèmes microbiens pour 

lesquels le modèle MTS constitue une explication suffisante ont été recherchés. 

Ce modèle est pensé comme un outil permettant l'étude du lien théorique existant entre la cinétique 

de la production de biomasse par une population de microbes et les gradients d'énergie présents 

dans le milieu. 

Le modèle MTS est basé sur une description microscopique de la croissance microbienne. Il suppose 

que les cellules d'une population microbienne, ainsi que les réactifs impliqués dans leur réaction de 

croissance, peuvent être pensées comme des points uniformément répartis dans leur milieu de 

culture. L'utilisation d'un modèle de bilan d'énergie, tel que celui développé par Heijnen et 

collaborateurs (Heijnen et al., 1991) permet d'estimer combien de particules de substrat sont 

nécessaires pour subvenir aux besoins en énergie et en nutriments pour répliquer la biomasse. Il est 

considéré qu'une population de microbe catalyse deux réactions ; une réaction catabolique et une 

réaction anabolique. La réaction catabolique est un transfert d'électron entre un donneur d'électrons 

D et un accepteur d'électrons A. La réaction anabolique consiste en la synthèse d'une molécule de 

biomasse générique. On considère en effet une molécule de biomasse fictive, normalisée par atome 

de carbone et reflétant la composition moyenne d'une cellule, afin de pouvoir écrire la réaction 

anabolique de façon stoechiométriquement explicite, et pouvoir exprimer le taux de croissance de la 

population en carbone de biomasse produite par unité de temps. Le modèle de bilan d'énergie de la 

croissance introduit par Heijnen et collaborateurs suppose que la réaction catabolique produit de 

l'énergie, dont une partie est utilisée pour rendre la réaction anabolique thermodynamiquement 

spontanée, et une autre partie est dissipée. La dissipation désigne l'énergie capturée par la cellule 

(par le catabolisme) qui n'est pas stockée sous forme de biomasse. Heijnen et collaborateurs 

proposent une formule empirique pour estimer la quantité d'énergie dissipée par unité de biomasse 

produite. Le bilan d'énergie de la croissance cellulaire est alors fermé en calculant le nombre de fois λ 

(en molD.molX
-1) que la réaction catabolique se produit par réaction anabolique. Ce nombre de fois 

s'exprime 

𝜆 =
ΔG𝑑𝑖𝑠 − ΔG𝑎𝑛

ΔG𝑐𝑎𝑡
 

1 

 

avec ΔGcat et ΔGan les différentiels d'énergies de Gibbs de la réaction catabolique et anabolique en 

J.molD
-1 et J.molX

-1 respectivement, et ΔGdis l'énergie dissipée en J.molX
-1 telle que prédite par la 

formule proposée par Heijnen et collaborateurs. 

Le coefficient stœchiométrique de chaque espèce chimique impliquée dans la réaction de croissance 

devient alors  
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𝑌𝑆𝑖
𝑚𝑒𝑡 = 𝑌𝑆𝑖

𝑎𝑛 + 𝜆 ∙ 𝑌𝑆𝑖
𝑐𝑎𝑡 2 

 

Avec 𝑌𝑆𝑖
𝑎𝑛 le coefficient stœchiométrique de l’espèce chimique Si dans l’anabolisme (en mol.molX

-1), 

𝑌𝑆𝑖
𝑐𝑎𝑡 le coefficient stœchiométrique de l’espèce chimique Si dans le catabolisme (en mol.molD

-1) et 

𝑌𝑆𝑖
𝑚𝑒𝑡 le coefficient stœchiométrique de l’espece chimique Si dans la réaction de croissance (en 

mol.molX
-1) équilibrée de sorte à ce que son différentiel d’énergie de Gibbs soit égal à la valeur ΔGdis 

issue de la formule de Heijnen de prédiction de l’énergie dissipée. 

Le fondement de l'approche du modèle MTS consiste à considérer que les cellules sont entourées 

d'un volume de récolte fictif appelé Vh (Harvest Volume) dans lequel les particules de substrat sont 

accessibles à la cellule. Un raisonnement purement probabiliste permet alors d'exprimer 

mathématiquement la proportion de cellules ayant suffisamment de substrat dans leur volume de 

récolte pour pouvoir se répliquer. De cette formule peut être dérivé le taux de croissance de la 

population de microbes. 

𝜇 = 𝜇𝑚𝑎𝑥 ∙ ∏ 𝑒
𝑌𝑆𝑖

𝑚𝑒𝑡

𝑉ℎ∙[𝑆𝑖]

𝑖

 
3 

 

avec µ le taux de croissance en jour-1, µmax le taux de croissance maximal en jour-1, Vh le volume de 

récolte en m3.molX-1, Ymet
Si le coefficient stœchiométrique de la ressource Si en molS.molX

-1 (négatif) 

et [Si] la concentration de la ressource dans le milieu de culture en molS.m
-3. 

Cette fonction de croissance donne lieu à une courbe de croissance en fonction du substrat 

différente de celle qui peut être obtenue avec la fonction de croissance de Monod (figure 1). On 

observe en effet sur la figure 1 que la fonction de croissance du modèle MTS a une forme sigmoïde, 

ce qui n’est pas le cas de celle du modèle de Monod. On note également que le « pied » de la 

sigmoïde du modèle MTS tend à devenir négligeable lorsque la valeur du paramètre Vh est grande 

(autour de 10 m3.mol-1). 
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Figure 1 : relation entre la concentration de substrat [S] et la valeur de l’exponentielle négative associée dans le modèle 

MTS (𝒆
−

𝟏

[𝑺]) (courbes bleues et rouges), et comparaison avec la relation équivalente dans la fonction de croissance de 

Monod (
[𝑺]

𝑲𝑺+[𝑺]
) (courbe noire). L’axe Y peut être interprété comme µ/µmax pour une fonction de croissance 

monosubstrat. 

Résultats et discussion 

Reproduction de la loi de Liebig 

Le modèle MTS exprime le taux de croissance d'une population microbienne comme étant fonction 

de la concentration de chaque molécule consommée dans la réaction de croissance. Au contraire, la 

plupart des autres modèles de croissance microbienne basés sur des formules de taux de croissance 

empiriques (telle que celle de Monod) considère que la croissance n'est limitée que par une seule 

molécule (le substrat limitant). De nombreuses propositions ont été faites pour modéliser la 

limitation de la croissance par plusieurs substrats, néanmoins aucune d'entre elles n'a atteint le 

consensus (Bungay et al., 1994). 

La fonction de croissance de Monod (de même que d’autres telles que celle de Contois (Contois, 

1959)) supposent implicitement que la loi de Liebig s'applique. Cette loi empirique, initialement 

formulée pour la croissance des plantes, suppose que la croissance d'un organisme n'est limitée, à un 

instant donné, que par la ressource la plus rare. Ce principe est très souvent considéré en écologie, à 

la fois à l'échelle de l'organisme, de la population ou de la communauté. Il a néanmoins récemment 

été montré que cette loi ne s'applique pas toujours à l'échelle des populations et des communautés 

(Danger et al., 2008). 

La fonction de croissance du modèle MTS apporte une contribution intéressante sur ce sujet. En 

effet, la loi de Liebig n'est pas présupposée par le modèle MTS. D'après la fonction de croissance 

propre au modèle MTS, il est mathématiquement possible que deux ressources exercent, à un 

instant donné, le même niveau de limitation sur la croissance d'une population. 

Cependant il est observé dans les simulations du modèle que les niveaux de limitation exercés par les 

ressources sur le taux de croissance d'une population sont très différents. À un instant donné, une 
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ressource est beaucoup plus limitante que les autres. Cela est dû au fait que la limitation exercée par 

une ressource est de nature exponentielle ; ainsi un faible changement de concentration peut 

donner lieu à un changement important de la limitation exercé par la ressource. 

Un tel phénomène est illustré par une simulation au cours de laquelle une population glucosotrophe 

aérobie est simulée dans un batch aéré. Les équations de croissance de la population sont; 

o Catabolisme: C6H12O6 + 6 O2 → 6 HCO3
- + 6 H+ (ΔG0’ = -2841.3 kJ.molD

-1) 

o Anabolisme: 0.167 C6H12O6 + 0.158 NH4
+ → 0.430 H2O + 0.164 H+ + 0.00625 HCO3

- +  

C1H1.613O0.557N0.158 (ΔG0’ = -28.3 kJ.C-mol-X-1) 

o Energie dissipée: 236.05 kJ.C-mol-X-1 

Les dynamiques des concentrations sont montrés par les figures 2 et 3. 

 

Figure 2 : Concentration d’espèces chimiques au cours de la simulation de la croissance d’une population glucosotrophe 
par le modèle MTS. La courbe rose représente la concentration en glucose, la courbe verte représente la concentration 
en ammonium et la courbe noire représente la concentration en biomasse de la population. Les concentrations sont 
exprimées en mM et le temps en jour. 
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Figure 3 : Concentration d’oxygène au cours de la simulation de la croissance d’une population glucosotrophe par le 
modèle MTS. La concentration est exprimée en mM et le temps en jour. 

Les limitations associées à chaque ressource consommée par la population au cours du temps sont 

montrées dans la figure 4.  
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Figure 4 : valeur des exponentielles négatives associées à chaque molécule requise par la croissance de la population 
glucosotrophe telle que simulée avec le modèle MTS. La courbe verte représente l’ammonium, la courbe rose représente 
le glucose et la courbe bleue représente l’oxygène. L’axe des Y est en log. Le temps est exprimé en jours. 

On peut voir dans ce résultat que la croissance se produit en deux phases distinctes, une première 

limitée par l'oxygène et une seconde limitée par le glucose. 

Le fait que la fonction de croissance du modèle MTS donne lieu à des motifs de croissance évoquant 

la loi de Liebig suggère que les principes premiers du modèle MTS sont une possible explication à 

l'observation de la loi de Liebig dans les motifs de croissance des populations microbiennes. En 

même temps, le modèle MTS n'est pas strictement tenu à la reproduction de la loi de Liebig et est 

également capable de produire des résultats plus nuancés montrant des colimitations de la 

croissance par plusieurs ressources. 

Reproduction d'une redox tower 

Un des résultats les plus importants obtenus avec le modèle MTS durant cette thèse est la 

reproduction d'une "redox tower".  

Une redox tower est le nom consacré d'une succession écologique déterminée par le potentiel redox 

des substrats dans le milieu de culture. La redox tower se produit lorsque toutes les guildes sont en 

compétition pour une ressource, telle qu'un donneur d'électron. La population qui catalyse la 
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réaction ayant le potentiel redox le plus élevé en valeur absolu exclue alors compétitivement les 

autres populations, ce qui donne lieu à la succession écologique.  

Un résultat exposé dans le chapitre 4 de cette thèse reproduit une redox tower. Dans ce résultat, une 

série de simulations de culture en chemostat est effectuée. Un seul donneur d'électron (l'acétate) est 

présent et quatre populations microbiennes sont simulées, catalysant le transfert des électrons de 

l'acétate vers l'oxygène, le nitrate, le fer et le sulfate, respectivement. 

Les équations métaboliques de chaque population sont les suivantes ; 

 Population aérobie 

o Catabolism: C2H3O2
- + 2 O2 → + 2 HCO3

-  + 1 H+ ( ΔG0’ = -844.4 kJ.molD
-1) 

o Anabolisme: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-X-1) 

o Energie dissipée: 432.12 kJ.C-mol-X-1 

 Population dénitrifiante 

o Catabolisme: C2H3O2
- + 1.6 NO3

- + 0.6 H+
 → 0.8 N2 + 2 HCO3

- + 0.8 H2O (ΔG0’ = -792.1 

kJ.molD
-1) 

o Anabolisme: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-X-1) 

o Energie dissipée: 432.12 kJ.C-mol-X-1 

 Population ferroreductrice 

o Catabolisme: C2H3O2
- + 4 H2O + 8 Fe+3 → 9 H+ + 2 HCO3

- + 8 Fe+2 (ΔG0’ = -809.6 

kJ.molD
-1) 

o Anabolisme: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-X-1) 

o Energie dissipée: 432.12 kJ.C-mol-X-1 

 Population sulfatoreductrice 

o Catabolisme: 1 C2H3O2
- + 1 SO4

-2 → 2 HCO3
- + 1 HS- (ΔG0’ = -47.7 kJ.molD

-1) 

o Anabolisme: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-X-1) 

o Energie dissipée: 432.12 kJ.C-mol-X-1 
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 Dans chaque simulation, la concentration des accepteurs d'électron est toujours la même, seul la 

concentration du donneur d'électron (acétate) change. La proportion de chaque population (en 

terme de concentration de biomasse) présente lors de l'état stable du système est alors mesurée, et 

mise en relation avec la concentration de donneur d'électron en entrée du chemostat (voir figure 5). 

 

Figure 5 : concentration relative de biomasse de chaque population à l’état stable du chémostat, tel que prédite par le 
modèle MTS, en fonction de la concentration d’acétate en entrée (en mM). L’aire rose représente la population aérobie, 
l’aire verte représente la population dénitrifiante, l’aire violette représente la population ferroreductrice, et l’aire bleue 
représente la population sulfatoreductrice. 

Il apparait alors que l'ordre dans lequel les populations microbiennes arrivent à se stabiliser dans le 

chémostat correspond à l'ordre qui pouvait déjà être prédit d'après le différentiel d'énergie de Gibbs 

de chaque catabolisme. Aux plus faibles concentrations de donneur d'électron, la population aerobie, 

qui catalyse le différentiel d'énergie de Gibbs le plus important en valeur absolue, exclue 

compétitivement toutes les autres populations. Lorsqu'il commence à y avoir trop de donneur 

d'électron en entrée pour que tous les molécules soient oxydées par les aerobies, la population ayant 

le deuxième métabolisme le plus avantageux thermodynamiquement ; les dénitrifiantes ; arrive à se 

stabiliser en consommant les molécules de donneur d'électron restantes. Ainsi de suite, les 

différentes populations parviennent à se stabiliser dans le chémostat. Ce résultat montre donc que 

l'issue des competitions entre les populations, telle que prédite par le modèle MTS, reflete une 

succession écologique connue et prédictible par la thermodynamique. 

Ce redox tower phenomenon est une phénomène connu et observé depuis une cinquantaine 

d'années. D'autres modèles ont déjà montré qu'il était possible de le reproduire à l'aide 

d'expressions phénoménologiques du taux de croissance microbien couplé à des expressions du 

rendement de croissance calculé à partir du modèle thermodynamique de Heijnen et collaborateurs 
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(Gonzalez-Cabaleiro et al., 2015). L'intérêt du résultat de reproduction d'une redox tower par le 

modèle MTS, tel que présenté dans ce mémoire, n'est donc pas de montrer que de telles successions 

écologiques s'expliquent à partir de grandeurs thermodynamiques. En effet, cela a déjà été montré 

par des approches précédentes. L'intérêt du résultat présenté dans ce mémoire est de montrer que 

l'équation de croissance propre au modèle MTS est à même de produire de telles successions 

écologiques. Cette équation de croissance se démarque en effet des équations phénoménologiques 

dans la mesure où elle se déduit d'hypothèses fondamentales sur la division cellulaire, à l'échelle 

microscopique. Un tel résultat donne donc du support aux principes premiers sur lesquels est fondée 

l'approche MTS. 

Première estimation de la valeur des paramètres du modèle MTS 

Durant la première partie de la thèse, le modèle MTS a été simulé en considérant des valeurs de 

paramètres cinétiques µmax et Vh par défaut, issues de considérations théoriques. Ces valeurs sont les 

suivantes ; 

{
µ𝑚𝑎𝑥 =

𝑘𝐵𝑇

ℎ
= 5.35𝑒17 𝑑𝑎𝑦−1

𝑉ℎ = 1 𝑚3. 𝑚𝑜𝑙−1
 

Avec 
𝑘𝐵𝑇

ℎ
 la constant de Boltzman multipliée par la temperature divisée par la constant de Planck, par 

analogie avec la fréquence maximum de réaction du modèle des états de transition définition par 

Eyring (Eyring, 1935), sur lequel est basé le modèle MTS. 

De telles valeurs ont été choisies car il n’existait pas, à ce moment, de référence quant à la valeur 

que doivent prendre ces paramètres. De plus, il a dabord été considéré que toutes les populations 

avaient les mêmes valeurs de µmax et Vh pour des raisons de parcimonie. Afin d’obtenir une première 

estimation de l’ordre de grandeur de ces paramètres, les paramètres du modèle MTS ont été calibrés 

sur des données expérimentales. 

Les données expérimentales sur lesquelles les paramètres du modèle MTS a été calibré sont des 

données de respirométrie de boue activée. Une expérience de respirométrie consiste à introduire un 

donneur d’électron dans une culture microbienne, et à mesurer la consommation d’oxygène au cours 

du temps, occasionnée par la consommation du substrat par les populations microbiennes. Des 

populations microbiennes de boue activée ont donc été formalisées de façon à ce que leur croissance 

puisse être modélisée par le modèle MTS ; 

 Ordinary Heterotroph Bacteria (OHO) 

o Catabolism: C2H3O2
- + 2 O2 → + 2 HCO3

-  + 1 H+ ( ΔG0’ = -844.4 kJ.molD
-1) 

o Anabolisme: 0.503 C2H3O2
-
 + 0.158 NH4

+ + 0.338 H+ → 0.4305 H2O + 0.0063 HCO3
- + 

C1H1.613O0.557N0.158  (ΔG0’ = 23.9 kJ.C-mol-X-1) 

o Energie dissipée: 432.12 kJ.C-mol-X-1 

 Ammonium Oxidizing Bacteria (AOB): 

o Catabolisme:  NH4
+ + 1.5 O2 → 1 NO2

- + 1 H2O + 2 H+ (ΔG0’ = -269.9 kJ.molD
-1) 
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o Anabolisme: HCO3
- + 0.828 NH4

+ → 1.101 H2O + 0.670 NO2
- + 0.499 H+ + 

C1H1.613O0.557N0.158 (ΔG0’ = 267.7 kJ.C-mol-X-1) 

o Energie dissipée: 3500 kJ.C-mol-X-1 

 Nitrite Oxidizing Bacteria (NOB); 

o Catabolisme: NO2- + 0.5 O2 → 1 NO3
- (ΔG0’ = -79.1 kJ.molD

-1) 

o Anabolisme: HCO3
- + 2.64 NO2

- + 1.16 H+ → 0.27 H2O + 2.49 NO3
- + C1H1.613O0.557N0.158 

(ΔG0’ = 241.3 kJ.C-mol-X-1) 

o Energie dissipée: 3500 kJ.C-mol-X-1 

Deux expériences de respirométrie ont été effectuées. Dans une première expérience, de l’acétate 

est ajouté à l’échantillon de boue activée. De l’AllylThioUrée est préalablement ajouté au milieu de 

culture, de façon à empêcher la croissance des populations autotrophes (AOB et NOB), de façon à ce 

que la consommation d’oxygène soit le seul fait de la population hétérotrophe (OHO). Dans la 

deuxième expérience, de l’ammonium est ajouté à l’échantillon de boue activée ; la consommation 

d’oxygène est alors le fait des populations autotrophes (AOB et NOB). Toutes les expériences ont été 

réalisées par E. Paul et ses étudiants, de LISBP Toulouse. 

Le calage des paramètres cinétiques du modèle MTS sur ces données expérimentales permet alors 

de définir une valeur de µmax et de Vh d’une part pour les OHO et d’autre part pour les AOB et les 

NOB. Le calage consiste à déterminer le couple de valeurs de µmax et Vh qui minimise la somme du 

carré des différences entre la consommation d’oxygène au cours du temps prédite par MTS et celle 

expérimentalement mesurée. Il est à noter qu’il s’agit d’un calage partiel dans la mesure où les 

populations AOB et NOB se voient attribuer la même valeur pour chaque paramètre cinétique, et une 

seule valeur de Vh est considérée pour tous les substrats d’une population. La calibration du plus 

petit nombre possible de paramètres a été choisie pour conserver la parcimonie du modèle.  

Les valeurs suivantes de paramètre ont alors été déterminées par calage pour la population OHO ; 

{
µ𝑚𝑎𝑥 = 3.75 𝑑𝑎𝑦−1

𝑉ℎ = 147 𝑚3. 𝑚𝑜𝑙−1 

Et les valeurs suivantes ont été déterminées pour les populations autotrophes ; 

{
µ𝑚𝑎𝑥 = 2.08 𝑑𝑎𝑦−1

𝑉ℎ = 296 𝑚3. 𝑚𝑜𝑙−1 

Afin d’évaluer la sensibilité des prédictions du modèle MTS a la valeur de ses paramètres, la somme 

des carrés des écarts entre la prédiction MTS et les données respirométriques a été calculé en 

fonction des valeurs de µmax et Vh (figure 6). 
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Figure 6 : Somme des carrés des écarts entre les données respirométriques et les prédictions du modèle MTS en fonction 
de la valeur de µmax et Vh considérée pour le modèle MTS. L’axe des abscisses correspond au paramètre µmax et l’axe 
des ordonnées correspond au paramètre Vh. Le centre de chaque graph correspond au couple de paramètres calibrés. a) 
Données respirométriques après ajout d’acétate. b) Données respirométriques après ajout d’ammonium. 

Pour chaque cas de figure, il est visible sur la figure 6 que le couple (µmax ; Vh) minimisant les carrés 

des écarts entre la prédiction faite par le modèle MTS et les données respirométriques se trouve 

dans une « vallée » de très faible déclivité. Pour chaque population ou groupe de populations testé, 

un couple (µmax ; Vh) optimal existe bel et bien, cependant il existe une incertitude sur la valeur 

exacte de ces paramètres. 

Cette incertitude qui existe sur la valeur des paramètres du modèle MTS indique que le modèle est 

peu sensible à la valeur de ses paramètres cinétiques. Dans le modèle MTS, le rendement de 

croissance des populations est déterminé par la thermodynamique (via la méthode de Heijnen et 

collaborateurs), et la relation liant le taux de croissance aux gradients d’énergie présents dans le 
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milieu de culture dépend des principes premiers sur lesquels est définit le modèle MTS. Ces deux 

éléments représentent l’influence des gradients d’énergie sur les dynamiques de croissance ; ils ne 

peuvent pas faire l’objet d’une calibration. Bien que les paramètres cinétiques µmax et Vh sont 

supposés avoir un sens physique, celui-ci n’est pas encore suffisamment bien définit pour que la 

valeur de ces paramètres puisse être déterminé a priori, en amont de toute expérience. Par 

conséquent, ils représentent la part « calibrable » du modèle MTS, et donc la part des dynamiques 

qui n’est pas directement imputable à la thermodynamique. Le constat de la faible sensibilité des 

prédictions du modèle MTS à la valeur des paramètres µmax et Vh indique alors que la « résiduelle » 

qu’ils représentent (par rapport à l’explication thermodynamique apportée par la partie non-

calibrable du modèle) a peu d’influence sur les dynamiques du système simulé. 

Afin d’estimer l’impact de la valeur des paramètres cinétiques sur les prédictions du modèle MTS 

pour un cas concret ; une simulation de croissance des populations d’une boue activée en batch aéré 

a été effectuée avec le modèle MTS en considérant le jeu de paramètres par défaut puis le jeu de 

paramètres partiellement calibrés sur les données respirométriques. Ces deux simulations ont été 

comparées avec le même système simulé à partir des équations de croissance du modèle ASMN 

(Hiatt and Grady, 2008). 

Le modèle ASMN est une version modifiée du modèle ASM pour la simulation des dynamiques de 

population d’une boue activée en incluant les deux populations AOB et NOB distinctes (elles ne sont 

pas distinctes dans le modèle ASM classique). Il est à noter que le modèle ASMN (de même que les 

autres itérations du modèle ASM) comportent normalement des dynamiques additionnelles 

décrivant des phénomènes d’hydrolyse et de mortalité cellulaires, qui sont exclues de la simulation 

effectuée ici. Il s’agit donc de comparer les simulations du modèle MTS avec une version dégradée du 

modèle ASMN, ne comprenant que ses formules de croissance, afin de constituer un modèle de 

référence. Les résultats sont visibles sur la figure 7. 
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Figure 7 : comparaison entre la concentration de plusieurs espèces chimiques au cours du temps, telle que simulée par 
différents modèles. « uncalibrated MTS » est le modèle MTS avec µmax = 5.35e17 jour-1 et Vh = 10 m3.molX-1 pour 
chaque populations, tandis que “calibrated MTS” représente le modèle MTS avec µmax = 3.75 jour-1 pour la population 
OHO et 2.08 jour-1 pour les populations AOB et NOB, et Vh = 147 m3.molX-1 pour la population OHO et Vh = 296 
m3.molX-1 pour les populations AOB and NOB. 

Il est visible sur la figure 7 que des différences qualitatives existent entre les prédictions du modèle 

MTS et ASMN, et ce même après calibration partielle du modèle MTS sur des données 

respirométriques. Il est tout de même à noter que les tendances générales prédites par le modèle 

ASMN sont reproduites par le modèle MTS. Tout l’intérêt scientifique de cette simulation comparée 

est de montrer que le modèle MTS est capable de capturer une partie des dynamiques de population 

ayant lieu dans le contexte des boues activées. En effet, il est remarquable que le modèle MTS soit 

capable de reproduire les grandes tendances des dynamiques de population avec seulement 2 à 4 

paramètres calibrés, alors que le modèle ASMN les génère à grâce à 12 paramètres calibrés. 



330 
 

Avec ses 12 paramètres calibrés, le modèle ASMN dégradé tel qu’utilisé ici prend en compte la 

totalité des phénomènes affectant les dynamiques de croissance des populations OHO, AOB et NOB. 

En proposant une description théorique de l’influence de la stœchiométrie et des gradients d’énergie 

sur les dynamiques de croissance, le modèle MTS permet visiblement de capturer une part 

importante de ces dynamiques. Ce modèle n’a pas été conçu pour - et ne prétend pas – prendre en 

compte la totalité des phénomènes affectant les dynamiques de croissance microbienne, mais il 

apparait qu’une bonne part de celles-ci est déterminée par la fermeture des bilans de matière et 

d’énergie dans le système, couplée aux principes premiers introduits par le modèle MTS. La 

théorisation de la relation entre les gradients d’énergie du milieu de culture et ses dynamiques de 

population, telle que proposée par le modèle MTS, semble alors pouvoir permettre une réduction du 

nombre de paramètres calibrés nécessaires dans l’ingénierie des bioprocédés. 

Nouvelle estimation de la relation entre l’énergie dissipée et les caractéristiques 

des métabolismes microbiens 

Durant cette thèse, un travail a été effectué sur l’énergie dissipée par un métabolisme par unité de 

biomasse produite. Contrairement aux autres travaux effectués durant cette thèse, il ne porte pas 

directement sur l’implémentation et la simulation du modèle MTS. Pour comprendre son lien avec le 

modèle MTS, il est nécessaire de bien comprendre la façon dont le taux de croissance du modèle 

MTS est exprimé. 

Le modèle MTS exprime le lien entre les gradients d’énergie présents dans le milieu de culture et le 

taux de croissance d’une population microbienne. Il présuppose que le bilan d’énergie de la 

croissance de la population modélisée est fermé. La méthode employée pour fermer le bilan 

d’énergie de la croissance consiste à calculer le facteur λ. Dans l’implémentation du modèle MTS 

effectuée durant cette thèse, le calcul du facteur λ se fait grâce à l’estimation de l’énergie dissipée 

par unité de biomasse produite par la croissance (cf equation 1). Cette estimation est faite par le 

biais d’une formule empirique proposée par Heijnen et collaborateurs (Heijnen et al., 1991). Cette 

formule a été calibrée sur un certain nombre d’observations expérimentales de rendement de 

croissance, de manière à produire des prédictions de rendement satisfaisantes. Il n’existe alors pas, à 

l’heure actuelle, de théorie permettant d’expliquer pourquoi un métabolisme donné dissipe une 

certaine quantité d’énergie par unité de biomasse produite plutôt qu’une autre. Des lacunes existent 

donc dans la compréhension de l’énergie dissipée par un métabolisme. 

Afin d’améliorer cette connaissance, un travail effectué durant cette thèse a consisté à calibrer une 

nouvelle formule de prédiction de l’énergie dissipée d’un métabolisme à partir de ses propriétés 

(degré de réduction du donneur d’électron, énergie catabolique…). Alors que les formules déjà 

proposées dans la littérature donnent des prédictions plutôt satisfaisantes du point de vue de la 

prédiction de rendement (Kleerebezem et Van Loosdrecht, 2010), l’objectif de la démarche 

entreprise ici est de déterminer si l’énergie dissipée de tous types de métabolismes semble obéir à 

une unique relation, ou si l’énergie dissipée semble suivre des lois distinctes pour plusieurs sous-

groupes de métabolismes. Sans proposer de théorisation de l’énergie dissipée (ce qui est totalement 

hors de portée de cette thèse), l’approche pragmatique consistant à calibrer une relation statistique 

liant des rendements métaboliques observés à des propriétés des métabolismes tente donc de 

répondre à une question scientifique fondamentale. 
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Afin de réaliser ce projet, les bases de données d’observations expérimentales de rendement 

métaboliques de plusieurs  publications précédentes (Batstone et al., 2001 ; Liu et al., 2007 ; Roden 

et al., 2011) ainsi que d’autres observations issues de la littérature ont été combinées. Il est à noter 

que l’important travail d’homogénisation ayant mené à cette nouvelle base de données, la plus 

importante de ce type à ce jour, fait de cette base de données un résultat en lui-même. 

A la suite de l’analyse de cette base de données, il apparait que les critères testés comme étant les 

plus pertinents pour prédire le rendement de croissance d’un métabolisme microbien sont l’énergie 

catabolique et le nombre de carbones du donneur d’électron et de la source de carbone du 

métabolisme. Les figures 8, 9 et 10 montrent respectivement les performances de prédiction de 

rendement du prédicteur proposé par Heijnen et collaborateurs (Heijnen et al., 1991), celles d’un 

prédicteur générique (même formule pour tous les métabolismes) calibré sur la base de données, et 

un prédicteur partitionné (mêmes variables explicatives, mais des coefficients différents en fonction 

de si le métabolisme est une respiration ou une fermentation). 

 

Figure 8 : figure de Bland-Altman montrant les prédictions de rendement du modèle de Heijnen sur le jeu de données 
collecté pour ce projet. L’axe des abscisses représente la moyenne entre chaque valeur de rendement observée et sa 
prédiction, et l’axe des ordonnées montre la différence entre chaque valeur de rendement observé et sa prédiction. 
Chaque chiffre correspond à l’identifiant de l’observation considérée dans la base de données. 
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Figure 9 : figure de Bland-Altman montrant les prédictions de rendement du modèle générique déterminé sur le jeu de 
données collecté pour ce projet pour prédire le rendement de chaque métabolisme en fonction du nombre de carbone 
de sa source de carbone, du nombre de carbones de son donneur d’électron et de son énergie catabolique. L’axe des 
abscisses représente la moyenne entre chaque valeur de rendement observée et sa prédiction, et l’axe des ordonnées 
montre la différence entre chaque valeur de rendement observé et sa prédiction. Chaque chiffre correspond à 
l’identifiant de l’observation considérée dans la base de données. 
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Figure 10 : figure de Bland-Altman montrant les prédictions de rendement du modèle partitionné déterminé sur le jeu de 
données collecté pour ce projet pour prédire le rendement de chaque métabolisme en fonction du nombre de carbone 
de sa source de carbone, du nombre de carbones de son donneur d’électron et de son énergie catabolique. Ce modèle 
utilise des coefficients différents en fonction de si le métabolisme est une respiration ou une fermentation. L’axe des 
abscisses représente la moyenne entre chaque valeur de rendement observée et sa prédiction, et l’axe des ordonnées 
montre la différence entre chaque valeur de rendement observé et sa prédiction. Chaque chiffre correspond à 
l’identifiant de l’observation considérée dans la base de données. 

De plus, l’analyse statistique de cette base de données permet d’isoler un sous-groupe de 

métabolismes dont les rendements sont sensiblement moins bien prédits que les autres, et ce même 

avec une formule spécifique. Il s’agit des métabolismes fermentaires dont le degré de réduction du 

donneur d’électron est inférieur à 4.67 mole.C-molD
-1. La distinction ici faite entre respiration et 

fermentation est que les métabolismes respiratoires sont ceux qui reposent sur l’entretien d’un 

gradient membranaire, alors que les métabolismes fermentaires ne le font pas. Alors que le travail 

mené ici ne permet pas de donner une explication théorique à cette observation, elle ouvre 

néanmoins des pistes de réflexion intéressantes. Il est par exemple possible d’avancer deux 

explications à ce phénomène. D’une part les métabolismes fermentaires  donnent lieu à une certaine 

diversité de sous-produit ; il est possible que les rendements de croissance dépendent de 

l’accumulation de ces sous-produits. D’autre part, les variables prédictives considérées lors de cette 

étude reposent sur une certaine façon de définir les métabolismes, avec un accepteur et un donneur 

d’électron clairement identifié. Cette façon de décrire les métabolismes convient particulièrement 

aux métabolismes respiratoires, mais est moins adaptée aux métabolismes fermentaires, où la 

distinction entre accepteur et donneur d’électron est plus complexe. Dans les deux cas, il est possible 

que le choix de nouvelles variables pour décrire les métabolismes, plus adaptées aux fermentations, 

permettent de donner lieu à des prédicteurs plus efficaces. 
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Dans tous les cas, l’étude statistique de la base de données a révélé des biais de représentation 

importants pour les métabolismes. Le nombre de mesures de rendement est inégale en fonction des 

métabolismes. En effet, certains métabolismes d’intérêt industriel ont fait l’objet d’un important 

effort de recherche  et leur rendement est donc documenté par de nombreuses mesures (par 

exemple, la méthanogénèse hydrogénotrophe ; 31 mesures), alors que la plupart des autres sont très 

peu documentés (la médiane du nombre de mesures par métabolisme est de 1). Cette base de 

données étant la plus grande collection de données de ce type dans la littérature il est raisonnable de 

penser que le biais observé ici reflète un biais présent dans l’ensemble de la littérature scientifique. 

Ce biais affecte la portée des résultats statistiques qui peuvent être obtenus de ce type d’étude. Un 

des messages qui émerge est donc que les recherches portant sur l’énergie dissipée des 

métabolismes et sa prédiction  verraient leur fiabilité et leur portée scientifique grandement 

améliorée si ils se basaient sur des expériences dédiées (couvrant l’étendu des métabolismes 

possibles dans les conditions les plus homogènes et contrôlées possibles) plutôt que sur des données 

agrégées à partir de la littérature. 

Conclusions et perspectives 
Le modèle MTS propose une formulation du lien entre le taux de croissance d’une population de 

microbes et les gradients d’énergie présents dans le milieu de culture à partir de principes premiers. 

Ces principes premiers consistent en une description probabiliste de la croissance microbienne à 

l’échelle de la cellule. L’aspect fondamental du raisonnement dont dérive l’expression du taux de 

croissance proposé par le modèle MTS constitue une nouveauté apportée par rapport aux autres 

modèles existants. Le modèle MTS tel qu’implémenté durant cette thèse ne prétend pas reproduire 

de façon quantitative les dynamiques de croissance. Il se présente davantage comme un outil 

permettant d’étudier le lien entre le taux de croissance et les gradients d’énergie en fournissant une 

équation de croissance incarnant une explication fondamentale à ce lien. 

Dans un premier temps, le travail effectué durant cette thèse a permis de caractériser les propriétés 

de la version multi-substrat de la fonction de croissance du modèle MTS. En effet, lors de son 

introduction en 2014, peu de temps le début de la thèse, le modèle MTS avait été présenté dans une 

forme mono-substrat, et sans simulation dynamique. L’implémentation du modèle MTS multi-

substrat durant cette thèse a permis de constater qu’il reproduit, sans que cela ait été initialement 

prévu, la loi de Liebig dans la plupart des conditions de culture. Ce résultat est scientifiquement 

intéressant dans la mesure où ce comportement est la conséquence directe des principes premiers 

sur lesquels est fondé le modèle, c’est-à-dire le raisonnement statistique décrivant la probabilité de 

capture de substrat par une cellule. Le modèle MTS fournit donc une explication parcimonieuse à la 

survenue de la loi de Liebig dans le contexte des dynamiques de croissance des populations 

microbiennes. 

De plus, les simulations dynamiques du modèle MTS effectué durant cette thèse ont montré que la 

nouvelle fonction de croissance introduite par le modèle MTS était à même de reproduire les 

dynamiques de croissance à l’œuvre dans des successions écologiques que l’on sait déterminées par 

les gradients d’énergie (redox tower). Alors que de telles successions ont déjà été reproduites par 

des modèles basés sur la fonction de croissance de Monod (Gonzalez-Cabaleiro et al., 2015), qui 

présuppose une relation entre la concentration de substrat et le taux de croissance dont la dérivée 

est monotone décroissante, il était nécessaire de montrer que la nouvelle fonction de croissance 
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introduite par le modèle MTS, de forme différente (sigmoïde) est également à même de décrire ces 

dynamiques. 

En ce qui concerne la calibration des paramètres µmax et Vh du modèle à partir de données 

expérimentales, il a déjà été remarqué plus haut qu’une incertitude subsiste quant à la valeur précise 

des paramètres cinétiques µmax et Vh estimés à partir de données expérimentales. Cette incertitude 

existe à la fois du fait de la faible sensibilité des prédictions du modèle MTS à la valeur de ces 

paramètres (du moins, dans les conditions testées dans le cadre de cette étude), et du fait que la 

calibration des paramètres a été faite uniquement à partir de deux résultats expérimentaux. A ce 

stade, l’exploitation de ces résultats permet d’obtenir une première estimation de l’ordre de 

grandeur des paramètres µmax et Vh, mais ils ne permettent pas de répondre à d’autres questions qui 

pourraient se poser. Par exemple, il serait scientifiquement intéressant d’estimer les paramètres 

cinétiques du modèle MTS avec d’avantage de précision de manière à pouvoir déterminer si la valeur 

de ces paramètres dépend de la population microbienne considérée, ou bien des conditions de 

culture. Puisque le modèle MTS est bâti sur une description microscopique de la  croissance 

microbienne, il est possible d’attribuer à terme un sens physique à ces paramètres cinétiques. Il est 

par exemple attendu que le paramètre Vh agrège tous les phénomènes qui modifient la probabilité 

de rencontre d’une cellule avec une particule de substrat. De tels phénomènes regroupent par 

exemple la diffusivité, qui dépend du substrat, l’agitation, qui dépend des conditions de culture, et 

les stratégies spécifiques des microbes pour améliorer leur capture du substrat, telles que le 

chimiotactisme. De même, il est attendu que le taux de croissance maximum dépende de contraintes 

métaboliques, telles qu’un flux d’électron maximum, comme cela a déjà été avancé dans la 

littérature (Andersen and Von Meyenburg, 1980). Seule une calibration plus précise de ces 

paramètres cinétiques sur davantage de données expérimentales pourra permettre à l’avenir de 

donner un sens physique plus précis à ces paramètres. 

Pour ce qui est de l’étude du lien entre l’énergie dissipée des métabolismes et leurs propriétés 

physicochimiques, l’analyse statistique effectuée durant cette thèse ne donne pas lieu à une formule 

de prédiction de rendement sensiblement meilleure que celles proposées dans la littérature, ce qui 

est rassurant quant à la fiabilité de celles-ci. L’objectif de ce travail était autre, dans la mesure où il a 

permis de souligner les limites de ce type d’approche et de mettre en évidence une observation 

intéressante d’un point de vue fondamentale ; il existe un groupe de métabolismes fermentaires 

dont les rendements ne sont pas prédits de façon satisfaisante à partir des variables explicatives 

considérées (énergie catabolique, degrés de réduction et nombre de carbone des substrats). Le choix 

de ces variables provient de la façon usuelle de décrire les métabolismes microbiens du point de vue 

de la thermodynamique microbienne « boite noire » (c’est-à-dire que les métabolismes sont décrits 

uniquement en fonction de ce qui entre et sort de la cellule, voir Kleerebezem et Van Loosdrecht, 

2010). Il est alors possible qu’une meilleure prédiction des rendements de croissances de ces 

métabolismes passe par une description théorique différente de ce type de métabolismes.  

En conclusion, cette thèse a permis de mettre en évidence que le modèle MTS est capable de 

reproduire des motifs de croissance à l’échelle des populations individuelles (loi de Liebig) et des 

communautés (redox tower, dynamiques des populations de boue activée). Son caractère innovant 

vient du fait qu’il produit ces résultats à partir d’une description de la croissance microbienne à 

l’échelle des cellules, en utilisant des principes premiers. Alors que les modèles de croissance 

microbienne basés sur la thermodynamique (sans même parler des modèles proposant une 
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théorisation) ne constituent pas l’approche la plus développée à présent pour représenter les 

dynamiques de communautés microbiennes, les capacités du modèle MTS, révélées au cours de 

cette thèse, constituent un signal positif dans cette direction. Les résultats de cette thèse 

encouragent le développement d’une nouvelle génération de modèles en écologie et en ingénierie 

des populations microbiennes, bâtis sur  un socle théorique plus robuste. L’avantage de tels modèles 

est de pouvoir prédire le comportement de communautés microbiennes dans des situations qui 

n’ont pas encore été expérimentalement testées ; de tels modèles seront alors un atout pour 

résoudre les défis environnementaux et biotechnologiques qui vont se poser dans les décennies à 

venir.  






