
HAL Id: tel-03404212
https://pastel.hal.science/tel-03404212

Submitted on 26 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conduction-radiation coupling at the nanoscale
Marta Reina

To cite this version:
Marta Reina. Conduction-radiation coupling at the nanoscale. Optics [physics.optics]. Université
Paris-Saclay, 2021. English. �NNT : 2021UPAST098�. �tel-03404212�

https://pastel.hal.science/tel-03404212
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
T
0
9
8

Conduction-radiation coupling
at the nanoscale

Couplage conduction-rayonnement à nano-échelle

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 575, Electrical, Optical, Bio:
Physics and Engineering (EOBE)

Spécialité de doctorat: Physique
Unité de recherche: Université Paris-Saclay, Institut d’Optique

Graduate School, CNRS, Laboratoire Charles Fabry,
91127, Palaiseau, France.

Référent: : Institut d’Optique

Thèse présentée et soutenue à Paris-Saclay,
le 12 octobre 2021, par

Marta REÌNA

Composition du jury

Olivier Bourgeois Rapporteur
Directeur de Rercherche CNRS,
Institut Néel (CNRS-Université Grenoble Alpes)
Karl Joulain Rapporteur
Professeur des Universités,
ENSIP, Université de Poitiers
Yann Chalopin Examinateur
Chargé de Recherche CNRS,
EM2C, CentraleSupelec, Université Paris Saclay
Samy Merabia Président du jury
Directeur de Recherche CNRS,
ILM,Université Claude Bernard Lyon I

Direction de la thèse

Philippe Ben-Abdallah Directeur de thèse
Directeur de Rercherche CNRS, Laboratoire Charles Fabry
(Institut d’Optique, Université Paris-Saclay)
Riccardo Messina Co-encadrant
Chargé de Rercherche CNRS, Laboratoire Charles Fabry
(Institut d’Optique, Université Paris-Saclay)





Deus sive natura.





Index

Acknowledgements iii

Résumé en français v

Introdution 1

1 Fluctuational electrodynamics and radiative heat transfer between two
solids 5
1.1 Poynting vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Radiative heat transfer between two planar interfaces . . . . . . . . . . 7
1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Bistable thermomechanical oscillator 23
2.1 Equilibrium temperatures and stability studies . . . . . . . . . . . . . . 24
2.2 Euler-Bernoulli beam theory . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Bimaterial cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Thermomechanical bilayer cantilever system . . . . . . . . . . . . . . . 28
2.5 Thermomechanical bistability . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Hysteretic behavior in the time evolution of temperature profiles . . . . 39
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Conduction-radiation coupling between two closely separated solids 45
3.1 Description of phononic heat transport: ballistic and diffusive regimes . 46
3.2 The Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . 47
3.3 Energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Phonon properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Equilibrium temperature profile . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Limitations of the PvH’s theory in extreme near-field regime . . . . . . 63
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Relaxation dynamics in the presence of conduction-radiation coupling 67
4.1 Physical system and boundary conditions . . . . . . . . . . . . . . . . 68

i



Contents

4.2 Relaxation in the Polder and van Hove case . . . . . . . . . . . . . . . 68
4.3 Relaxation in the presence of coupling . . . . . . . . . . . . . . . . . . 69
4.4 Relaxation dynamics in the presence of coupling. . . . . . . . . . . . . . 78
4.5 Conduction-radiation coupling between metals in the extreme near field 82
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Conclusions 85

Bibliography 89

ii



Acknowledgements

Palaiseau, October 21st, 2021

I would like to start this thesis by thanking all the people that in many different ways
helped me to achieve this goal.

I wish, first of all, to thank my supervisors, Philippe and Riccardo. They offered
me, in spite of the problems arising from the pandemic emergency, a constant support,
stimulating at the same time the development of my own research skills.

I want to thank all the people at LCF, Léo, Anton, Ilan, Cheng, Meiping, Anne, Élise,
Aurélian, BenJ and Jean-Jacques, with whom I shared many lunches, coffees and nice
moments. A special mention goes to Hector, who helped me to solve my administrative
problems, to learn French and to laugh in each day we spent together. I know now he
loves corgis too, even if he is not ready to admit that.

I want to thank my friends in Paris, or maybe I should say "my family in Paris". Me,
Valerio, Nadia, Margherita and Federico shared everything during these years, from
happiness to tears.
A special space must be reserved to my old and new friends in Italy, Antonello, Elidian,
Ruggero, Giorgia, Giulia, Gaia, Eleonora, Michelangelo, Stefania, Gabriele, Roberto,
Chiara, Irene, Angela and Serafina, who never stopped supporting me and sharing their
lives with me, despite the distance and the pandemic.

The largest place should be devoted to my family, especially to my father. I was
always in their thoughts and I was always their priority even if life these years was
particularly difficult and often bitter. I think it is impossible to let you know through
these words how much you all mean to me.

Last but not the least, Valerio, who shared and lived with me each second of this
adventure. I can affirm without any doubt that I would not be even close to the finish
line without him by my side.

iii





Résumé en français
Couplage conduction-rayonnement à
nano-échelle

L’étude du transfert radiatif de chaleur entre deux corps à des températures dif-
férentes est un problème très ancien en physique. Il a été d’abord étudié à grande dis-
tance de séparation où l’échange d’énergie résulte exclusivement des photons propagat-
ifs et où le transfert est bien décrit au moyen de la loi de Stefan-Boltzmann (indépen-
dante de la distance de séparation entre les corps). Cette loi établit une limite supérieure
théorique pour le flux échangé entre deux corps, appelée limite du corps noir et corre-
spond à l’échange de chaleur entre deux absorbeurs parfaits. Dans ce cas, la puissance
par unité de surface émise par un corps à température T vaut ϕBB = σT 4 où σ est la
constante de Stefan-Boltzmann. Néanmoins, le flux émis par un corps réel est toujours
inférieur et vaut ϕ = εσT 4 où ε est son émissivité (ε < 1). En conséquence, le flux
échangé entre deux corps à températures T1 et T2 ne peut excéder ϕ1→2 = σ(T 4

1 − T 4
2 ).

En revanche, pour des distances inférieures à la longueur d’onde thermique (∼10µm
à température ambiante), c’est-à-dire en champ proche, la situation change radicale-
ment. Une description mathématique détaillée reliant le rayonnement thermique aux
fluctuations aléatoires des courants à l’intérieur d’un corps a été faite dans les années 70
par Polder et van Hove (PvH) [1]. Cette description est basée sur la théorie de Rytov de
l’électrodynamique fluctuationnelle [2] et a conduit à la prédiction d’une augmentation
spectaculaire du flux radiatif de chaleur en champ proche bien au delà de la limite de
Stefan-Boltzmann. À ces distances de séparation un nouveau canal participe au transfert
de chaleur. Ce canal est associé aux photons non propagatifs qui peuvent transférer de
l’énergie par effet tunnel à travers le gap de séparation. Ces photons évanescents devien-
nent les principaux acteurs du transfert de chaleur à distances sub-longueur d’onde et le
flux de chaleur peut dépasser le flux observé en régime de champ lointain de plusieurs
ordres de grandeur [3]. Ceci est particulièrement vrai entre des matériaux support-
ant des modes résonants de surface dans l’infrarouge, tels que les phonons-polaritons
que l’on observe à la surface des matériaux polaires ou encore entre des matériaux
anisotropes supportant un continuum de modes hyperboliques [4]. Lorsque la distance
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Couplage radiation-rayonnement à nano-échelle

d entre deux solides (diélectriques polaires) diminue, le flux de chaleur échangé di-
verge comme d−2 [3]. Les prédictions théoriques de l’électrodynamique fluctuationnelle
ont été confirmées expérimentalement jusqu’à des distances de séparation de quelques
nanomètres [5–38].

De nombreuses applications ont exploité l’augmentation du flux de chaleur en champ
proche. La première est sans doute la conversion d’énergie thermophotovoltaïque de
champ proche [6,30] qui permet de convertir une partie importante de l’énergie électro-
magnétique confinée au voisinage de corps chauds. Une seconde application importante
est la gestion thermique à nanoéchelle [39–43]. Enfin le traitement de l’information
à l’aide de flux de chaleur échangés en champ proche est une application qui a vu
récemment le jour. Dans cette perspective, de nombreux systèmes ont été proposés,
tels que des mémoires thermiques [44, 45], des portes logiques [46], et des diodes ther-
miques [44, 47]. Certains ont d’ores et déjà été fabriqués et caractérisés expérimen-
talement [31, 48]. Ces travaux pionniers ont ouvert la voie à une nouvelle technologie
baptisée thermotronique [42] par analogie directe avec l’électronique.

Un aspect fondamental qui a été peu étudié jusqu’à présent est le couplage entre le
transfert de chaleur conductif et radiatif à échelle nanométrique et sub-nanométrique.
C’est précisement l’objet d’une partie de ce travail de thèse. Jusqu’à présent dans
presque tous les travaux théoriques sur les échanges radiatifs, la température à l’intérieur
des solides en interaction était supposée uniforme. Alors que dans la plupart des situ-
ations cette hypothèse est réaliste, elle devient discutable en régime de champ proche
extrême, aux distances de séparation où la transition vers la conduction a lieu. Dans
cette thèse, nous nous interrogeons précisément sur la validité de cette hypothèse et
analysons ainsi les limites de la théorie PvH [49]. Outre ce problème, nous étudions
ici le comportement thermomécanique d’un oscillateur couplé en champ proche avec
un substrat et nous montrons le potentiel de ce type de système pour le traitement de
l’information ou la conception de mémoires thermiques.

Oscillateur thermomécanique bistable
Dans la première partie de ce travail de thèse nous avons étudié la dynamique d’un

oscillateur thermomécanique bilame composé de matériaux à transition de phase et dé-
montré son comportement thermomécanique multistable et son potentiel pour le traite-
ment de l’information [50]. Le système étudié (Fig. 1) est composé d’un bilame dont la
couche supérieure est en VO2 et la couche inférieure en verre. Le bilame échange sur
une partie de sa surface inférieure de la chaleur en champ proche avec un substrat en
verre et il est libre de rayonner en champ lointain avec le milieu environnant (bain ther-
mique). Le long du bilame les flux radiatif et conductif sont couplés par l’intermédiaire
des propriétés physiques des matériaux. La variation locale du coefficient de dilatation
thermique avec le champ de température induit localement une contrainte mécanique
dans le bilame qui conduit à sa déflexion. Il en résulte une modification du flux de
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Résumé en français

chaleur qu’il échange avec son environnement. Dans ce travail nous avons analysé en
détail le comportement dynamique de ce système thermomécanique.

Nous avons tout d’abord mis en évidence la présence de deux profils d’équilibre à la
fois pour le déplacement et la température le long du bilame (Fig. 2), démontrant ainsi
la bistabilité de l’oscillateur thermomécanique. En étudiant les conditions d’existence
de cette bistabilité en fonction des différents paramètres géométriques, nous avons iden-
tifié les paramètres optimaux pour observer des solutions d’équilibre significativement
différentes. Nous avons finalement exploité ce comportement particulier pour concevoir
une mémoire thermique et une porte logique de type NOT.

Nous avons également mis en évidence le comportement hystérétique du système
(Fig. 3). Ainsi nous avons montré qu’en modulant en fonction du temps la température
Ts du substrat la température du système suit différentes trajectoires, comme l’illustre
le portrait de phase représenté sur la Fig. 3(a). En particulier, nous avons montré que
selon la rapidité de modulation de la tempéraure Ts, le système peut ou non passer
d’un état d’équilibre à l’autre (voir Fig. 3). En définissant des états “0" et “1" à partir
de valeurs seuils de la température de l’extrémité libre du bilame, nous avons montré
que ce comportement peut être exploité pour concevoir des mémoires thermiques et des
portes logiques élémentaires à une entrée.

Bien que préliminaire, ce travail ouvre la voie à l’étude plus générale du comporte-
ment thermomécanique d’oscillateurs couplés pilotés par des interactions en champ
proche. De nombreux problèmes restent à explorer. Tout d’abord, la préparation ther-
mique des oscillateurs, qui joue un rôle fondamental dans l’évolution dynamique du
système, devrait être étudiée plus en détail. De plus, l’étude du couplage d’au moins
deux oscillateurs devrait permettre de concevoir des portes logiques à deux entrées et

Figure 1: Représentation schéma-
tique d’un oscillateur termomécanique
bilame composé d’une couche de sil-
ice et d’une couche de matériau à tran-
sition de phase (VO2). Le bilame est
encastré à gauche dans un mur à tem-
pérature Tw, alors que son extrémité
de droite est laissée libre d’osciller. Il
échange de la chaleur en champ loin-
tain avec l’environnement à tempéra-
ture Te et en champ proche avec un
substrat à température Ts. Son dé-
placement vertical le long de l’axe x
est représenté par u(x, t), et son profil
de température par T (x, t).
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Figure 2: Évolution du déplacement (a) et de la température (b) en function du temps de
l’extrémité libre de la poutre placée dans le vide ou dans l’air. La courbe rouge pointillée et
la courbe bleue pleine représentent les solutions à partir de deux profils différents à l’instant
t = 0.

Figure 3: (a) Portrait de phase de la température T (L, t) de l’extrémité libre de la poutre en
fonction de la température du substrat Ts(t). Les trois courbes correspondent aux différents
profils de Ts(t). Les courbes bleue et orange correspondent aux solutions stationnaires pour
T (L) associées à chaque valeur de Ts. (b) Évolution temporelle imposée pour la température
du substrat Ts. L’intervalle en bleu indique la durée du temps de décroissance τc. (c) Évolution
temporelle de T (L) en fonction du temps [même convention qu’en (a)]. La courbe pointillée
horizontale en marron représente la température critique Tc du VO2.

également d’envisager un traitement plus élaboré de l’information.
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Figure 4: Schéma du système
étudié. Deux films solides
d’épaisseur L sont en contact
sur leur surface extérieure avec un
thermostat et sont libre d’échanger
de la chaleur au niveau de leur
surface interne à travers un gap
(vide) d’épaisseur d. À l’intérieur
des films la chaleur se propage
par conduction et un profil de
température généralement variable
s’établit.

Couplage conduction-rayonnement entre deux solides en champ
proche

Dans la deuxième partie de la thèse nous nous sommes intéréssés à un problème
plus fondamental, celui de la validité de la théorie standard de Polder et Van Hove
(PvH) pour décrire les échanges radiatifs entre les solides en régime de champ proche
extrême, c’est-à-dire dans la zone de transition entre le regime radiatif et le régime
conductif. Dans la théorie de PvH la température au sein des solides en interaction est
supposée uniforme. Autrement dit les solides sont supposés parfaitement conducteurs.
Nous avons ici relaxé cette contrainte et décrit l’évolution des profils de température à
travers le mécanisme de couplage entre la conduction et le transfert de chaleur à travers
le gap de séparation. Nous avons étudié le transfert entre deux films solides séparés par
un gap (vide) de l’ordre du nanomètre d’épaisseur (Fig. 4) proche du contact entre les
solides [51].

Dans la théorie que nous avons introduite dans ce travail, le transport de chaleur
au sein de chaque solide est décrit à l’aide de l’équation de transport de Boltzmann
(BTE) pour les phonons, de sorte que tous les régimes de transport, du régime balistique

Figure 5: Profil de température en régime
stationnaire dans un film de SiC en in-
teraction avec un autre film de SiC de
même épaisseur à travers un gap (vide) de
1 nm. Les profils correspondent au champ
de température dans le film de gauche en
contact avec un thermostat à température
T1 = 300 K, le film de droite étant en con-
tact avec un thermostat à T2 = 400 K.
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Figure 6: Flux de chaleur radiatif entre
deux couches de SiC en fonction de leur
épaisseur lorsque la distance de séparation
vaut d = 1 nm. Nous montrons ici le ré-
sultat exact (courbe noire), la prédiction de
PvH (courbe rouge pointillée) et le PvH
modifié (courbe bleue pointillée, obtenue
à l’aide des température d’équilibre à
l’interface entre les deux solides). Inset:
valeur absolue de l’erreur par rapport aux
approches PvH et PvH modifié. Les tem-
pératures des thermostats sont TL = 300 K
et TR = 400 K.

(solides plus petits que le libre parcours moyen des phonons) au régime diffusif (solides
épais par rapport au libre parcours moyen des phonons), peuvent être pris en compte
dans le mécanisme de couplage conduction-rayonnement.

En calculant les profils de température (Fig. 5) au sein de chaque corps et les flux
radiatifs échangés correspondant entre les deux dans le régime de champ proche ex-
trême, nous avons pu établir qu’une variation locale de température peut exister au sein
de films polaires en régime quasi-diffusif ou diffusif, autrement dit lorsque les films
sont suffisamment épais. En revanche aucune déviation par rapport aux prédictions de
la théorie de PvH n’est perceptible dans les films minces où le régime de transport des
phonons tend vers le régime ballistique.

Nous avons montré que l’erreur relative entre le flux de chaleur calculé à l’aide de la
théorie PvH et le flux exact peut atteindre des valeurs de l’ordre de 1000% dans le cas
de couches de matériaux polaires de 500µm à 1 nm de distance (Fig. 6). Nous avons
également démontré que le transfert de chaleur en champ proche entre deux solides est
essentiellement un phénomène surfacique. Ce résultat devrait permettre une description
simplifiée des échanges de chaleur en champ proche.

L’étude expérimentale du couplage entre la conduction et le rayonnement de champ
proche est à l’évidence une étape nécessaire. Néanmoins elle nécessite d’étendre nos
travaux théoriques préliminaires à des géométries plus complexes et plus conformes aux
dispositifs expérimentaux actuels. En particulier l’étude du couplage dans une configu-
ration sphère-plan permettrait de prendre en compte ce mécanisme dans l’interprétations
des résultats expérimentaux des dispositifs basés sur l’utilisation de sondes
microscopiques. Une réinterprétation de certains résultats expérimentaux actuels pour-
rait également être faite pour prendre en compte le couplage conduction-rayonnement.
Enfin, le rôle joué par la réponse optique non-locale des matériaux sur le mécanisme de
couplage devra aussi être exploré.
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Figure 7: Schéma du système utilisé pour
l’étude de la relaxation thermique. Le film
de droite (froid) est en contact avec un ther-
mostat à température T2 tandis que le film
de gauche (chaud) n’est pas thermostaté.
Les deux films relaxent vers la température
du réservoir en échangeant de la chaleur
par rayonnement de champ proche ou par
tunneling d’électron à travers un gap (vide)
d’épaisseur nano ou sub-nanométrique.

Dynamique de relaxation en présence de couplage
conduction-rayonnement

Enfin, nous avons étudié le problème de l’évolution dynamique (relaxation ther-
mique) d’un système de deux films couplés à travers un gap d’épaisseur nano ou sub-
nanométrique. La configuration géométrique étudiée est illustrée sur la Fig. 7. Tout
d’abord, nous avons considéré le cas des matériaux polaires (SiC et SiO2), séparées par
un intervalle de vide de l’ordre du nanomètre. À cette distance les deux films relax-
ent vers l’état d’équilibre à travers le flux de champ proche. Dans un second temps
nous avons étudié la relaxation thermique de films métalliques (Au) séparés par un
gap d’épaisseur sub-nanométrique. A cette distance de séparation c’est le transfert de
chaleur par tunneling d’électron qui domine devant le transfert radiatif [52].

La comparaison de nos résultats numériques avec les prédictions issues de la théorie
de PvH ont permis de mettre en évidence un fort ralentissement de la relaxation qui
est directement imputable au couplage entre la conduction et le transfert de chaleur à

Figure 8: Comparaison entre
l’évolution temporelle de la tem-
pérature moyenne dans la couche
de gauche et celle en présence d’un
échange purement radiatif dans
le cas de deux matériaux polaires
en interaction (PvH). La courbe
noire (rouge) représente le cas
du SiO2 (SiC) avec couplage, la
courbe noire (rouge) pointillée les
prédictions issues de la théorie PvH.
Les paramètres sont T2 = 300 K,
∆T = 100 K et d = 1 nm.
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travers le gap de séparation entre les deux solides (Fig. 8). Le temps de relaxation
associé atteint des valeurs jusqu’à trois ordres de grandeur plus grandes par rapport à
son homologue sans couplage. Nous avons montré que pour que ce ralentissement soit
significatif il est nécessaire que la conductance d’échange à travers le gap soit au moins
comparable à la conductance d’échange par conduction à travers le film.

Une étape supplémentaire dans l’étude du couplage conduction-rayonnement pour-
rait être d’étendre cette analyse au cas des matériaux dans lesquels la réponse optique
locale des matériaux n’est plus satisfaite, et d’étudier comment les effets non locaux
affectent le processus de refroidissement. Enfin, un traitement ab-initio complet des
échanges thermiques pourrait être utilisé pour prendre en compte tous les mécanismes
de couplage à l’échelle nanométrique et subnanométrique, notamment le tunneling des
phonons acoustiques entre des matériaux polaires ou des semiconducteurs.

xii



Introduction

The study of radiative heat transfer between two bodies at different temperatures
is a very old problem in physics. It has been firstly faced at long separation distance,
where energy exchange results exclusively from propagative photons and it is well de-
scribed by means of the Stefan-Boltzmann law (independent from the distance between
the bodies). This law stipulated a theoretical upper limit for the flux exchanged between
two bodies known as blackbody limit. This limit can be reached only in the purely the-
oretical case of an ideal surface that absorbs all incident heat radiation. In this limiting
case, the power per unit surface emitted by the body at temperature T corresponds to
ϕBB = σT 4 where σ is the Stefan-Boltzmann constant. Nevertheless, the flux emitted
by a real body is always smaller and reads ϕ = εσT 4 where ε is its emissivity (ε < 1).
As a consequence also the flux exchange between two bodies at temperatures T1 and T2

has an upper limit given by ϕ1→2 = σ(T 4
1 − T 4

2 ).

On the other hand, at distances smaller than the thermal wavelength (∼10µm at
ambient temperature), i.e. in the near-field regime, the situation radically changes. A
detailed mathematical description relating thermal radiation to the random fluctuations
of charges inside the body was carried out in the 70’s with the work of Polder and van
Hove (PvH) [1], based on Rytov’s theory of fluctuational electrodynamics [2]. This led
to the prediction of a dramatic enhancement of radiative heat flux in the near field with
respect to the Stefan-Boltzmann limit. Indeed, the near-field heat exchange can over-
come the blackbody theoretical limit by several orders of magnitude since at this scale
a new channel participates to the heat transfer. This channel is associated with non-
propagative photons which can transfer energy by tunneling through the vacuum gap.
These evanescent photons become the main contributors to the heat transfer at subwave-
length distances and the heat flux can become significantly larger than the flux observed
in far-field regime [3]. This is particularly true between materials supporting resonant
surface modes in the infrared, such as phonon-polaritons for polar materials (i.e. modes
due to the coupling between partial-charges oscillations and the electromagnetic field) or
between anisotropic materials supporting a continuum of hyperbolic modes [4]. Upon
reducing the gap size d the heat flux exchanged between polar dielectrics diverges as
d−2 [3]. The theoretical prediction of the fluctuational electrodynamics have been con-
firmed experimentally down to the nanometer range of distances [5–38].
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Introduction

Many applications exploited the near-field enhancement of heat flux. The first one
is the near-field thermophotovoltaic energy conversion [6,30]. Another is the manipula-
tion of heat flux at nanoscale in the field of thermal management [39–43] and to process
information through thermally-driven devices, using then photons instead of phonons
as carriers to overcome the inherent problems associated with the relatively small prop-
agation speed of acoustic phonons. To this aim, many systems exploiting the features
of radiative heat transfer in the near-field regime have been proposed, such as thermal
memories [44,45], logic gates [46], and thermal diodes [44,47] also recently experimen-
tally realized [31, 48]. These pioneer works paved the way to a technology also called
thermotronics [42]. In the design of all the mentioned devices a key role is played by the
presence of phase-change materials having strong thermal-dependent optical properties
around critical temperatures. So far, the study of near-field heat transfer in two- and
many-body systems has been limited to purely radiative exchanges.

A fundamental aspect which has been scarcely investigated is the coupling between
conductive and radiative heat transfer at nanoscale. In fact, in almost all theoretical
works on radiative heat transfer, the temperature within each interacting body is as-
sumed uniform. While in most situations this assumption is realistic, it becomes ques-
tionable in extreme near-field regime at separation distances where the transition to
the conduction takes places. In this thesis we question in particular the validity of this
assumption and therefore wonder about the limitations of the PvH theory [49]. The cou-
pling between conduction and radiation is the main topic of this thesis. In particular, the
work described in this manuscript concerns different scenarios in which this coupling
could be relevant, both from a fundamental and an applicative point of view. More
specifically, we first investigate a themomechanical system driven by near-field heat ex-
changes which could be exploited for the design of innovative information-processing
devices or for the conception of thermal memories. In the next part of this work we
focus on the more fundamental problem of the near-field heat exchange between two
planar slabs close to the contact (extreme near-field regime) and show that some devi-
ation with respect to predictions of the classical theory could be relevant to interpret
some experimental results.

In Chap. 1 we introduce the theoretical framework needed to describe the radiative
heat exchange between two bodies. We remind the existence conditions for an interface
to support resonant surface-waves and we describe the main features of radiative heat
transfer between two slabs for polar materials, metals and phase-change materials.

In Chap. 2 we study the thermomechanical behavior of a phase-change bimaterial
cantilever driven by near-field heat exchanges in order to exploit its features to make
thermal information treatment. We first show that these systems can be bistable, i.e. they
admit two equilibrium solutions. In this case we consider the problem of the coupling
between the conduction within the beam, the near-field radiative heat exchange between
the substrate and the cantilever and finally its mechanical oscillation due to the mismatch
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between the thermal expansion coefficients of the two layers. We find out that at least
two equilibrium profiles both for the displacement and the temperature of the beam exist
and we finally exploit this behavior to create a thermal hysteresis and then to design a
thermal memory and a thermal NOT logic gate.

In Chap. 3 we question the validity of the standard Polder and Van Hove theory
in extreme near-field regime. To this aim, we release the usual assumption of per-
fectly conducting solid and we model the realistic conduction-radiation coupling in the
particular case of polar materials. Our goal is to quantify the deviation between the
predictions from the standard PvH theory and our approach which takes into account
the conduction radiation coupling. In our model the heat transport within the solid is
described by means of the Boltzmann Transport Equation (BTE) for phonons so that
all regimes of conduction can be taken into account from the ballistic to the diffusive
one. The conduction-radiation coupling is accounted for in the energy-balance equation,
where radiative power is locally dissipated through each solid. Studying the tempera-
ture profiles within each slab and the corresponding radiative heat flux between the two
in extreme near-field regime we show that a non uniform temperature profile within the
slabs can appear in the quasi-diffusive or diffusive heat-transport regime, implying a
strong difference between the heat flux calculated through the PvH theory and the one
obtained through our new theoretical framework.

In Chap. 4 we face the problem of the dynamical evolution (thermal relaxation) of
two slabs close to the contact when one of these slabs is in contact with a thermostat.
We successfully investigate the relaxation of polar slabs at nanometric distances and
the relaxation of metals at subnanometric distances. In the first case, the heat transfer
through the gap is mediated by photon tunneling, as investigated in Chap. 3, while in
the second case it is due to electron tunneling. By comparing our results in the presence
of coupling to the ones obtained through the simplified theoretical framework ignoring
conduction we demonstrate that the coupling leads to a strong slowdown in the temporal
evolution of the temperature profiles, the relaxation time reaching values several orders
of magnitude larger than in the scenario without coupling. We conclude this manuscript
by summarizing the main results and by giving some prospects for future research.
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Chapter 1

Fluctuational electrodynamics and
radiative heat transfer between two
solids

Thermal radiation can be associated with any object at non-zero absolute tempera-
ture. An electromagnetic radiative emission occurs in its surrounding due to the thermally-
driven random motions of electric charges inside the body. Efforts to understand this
phenomenon and the associated heat exchange between two macroscopic bodies at large
separation distance (far-field regime) culminated with the pioneer work of Max Planck
about the blackbody radiation at the beginning of the 20th century. Further steps to un-
derstand the radiative heat transfer in the Near-Field regime (i.e. that is for separation
distances smaller that the thermal wavelength λth = ~c/kBT ) were done with quantum-
mechanical derivation of the Fluctuation-Dissipation Theorem (FDT) and, more im-
portantly, with Rytov’s fluctuational electrodynamics theory introduced in 1953. This
approach allowed for the first time a detailed mathematical description relating thermal
radiation to its microscopic origin, i.e. the random fluctuations of charges inside the
body. At this scale, the contribution of evanescent waves to the heat transfer becomes
dominant compared to the one of the propagative waves. An important step forward
was done in 1971 by Polder and van Hove to describe heat transfer at subwavelength
distance between two planar solids. Their approach was based on Rytov’s work, but the
idea of Polder and van Hove was to use the FDT to relate fluctuating currents, random
source in the Maxwell equations, to the temperature.

In the last years, many works have been carried out, showing important deviations
from the blackbody law, in particular when considering materials supporting resonant
surface waves. More specifically, the possibility to get superplanckian heat exchanges,
i.e. exchanges which can go beyond the blackbody limit, has been demonstrated with
polar materials in interaction. Very recently, it has been predicted that a continuum of
evanescent modes such as hyperbolic modes is also sufficient to observe a superplanck-
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ian transfer.
In this chapter we introduce the main theoretical concepts that will be used in this

thesis to investigate the different systems consider in this work.

1.1 Poynting vector

We consider a non-magnetic body at T > 0 K, with permittivity ε(ω). As anticipated
in the introduction, because of thermal fluctuations, the charges inside the body fluctuate
giving rise to electric currents [2]. The statistical average of these fluctuating currents is
zero, i.e. 〈j〉 = 0, but the their correlations are not zero. The Poynting vector Π(r, ω),
which is a quadratic quantity, is then not zero either. The general expression of it in
terms of the electric E(r, ω) and magnetic H(r, ω) fields is the following

Π(r, ω) = E(r, ω)×H(r, ω), (1.1)

in which with r we denote the position vector and with ω the angular frequency. In order
to write the explicit dependence of the ensemble average of the Poynting vector on the
fluctuating currents, we write the well-known expressions of the electric and magnetic
fields in terms of the Green’s tensors

E(r, ω) = iµ0ω

∫
V

d3r′ ~GEE(r, r′, ω)j(r′, ω), (1.2)

H(r, ω) =

∫
V

d3r′ ~GHE(r, r′, ω)j(r′, ω), (1.3)

where i is the imaginary unit and we denote with V the volume of the body, with µ0

the vacuum permeability, and where GEE and GHE denote the electric and magnetic
Green’s tensors. Due to the linearity of Maxwell’s equations the response to any local
excitation for a given geometric configuration is given by the Green’s tensors. When
an ensemble average is taken on the Poynting vector, it is easy to see that an ensemble
average is taken on the spatial correlation function of the thermal current fluctuations,
as we can show using expressions (1.1) and (1.2)-(1.3) that the Poynting vector depends
on the random current correlation function, i.e.

〈Π(r, ω)〉 ∝ 〈j(r, ω)j∗(r′, ω′)〉. (1.4)

in which the symbol ∗ indicates the complex conjugate.
The correlations of the fluctuating currents can be obtained through the Fluctuation-

Dissipation Theorem, linking the correlation between random temperature-driven elec-
trical currents to the temperature and the dielectric properties of the medium. In order
to use the FDT to obtain the statistical properties of the fluctuating currents, we start
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1.2 Radiative heat transfer between two planar interfaces

supposing that the dielectric constant ε(ω) is a local quantity, and we also suppose that
the material is in Local Thermodynamic Equilibrium, which means that an equilibrium
temperature T can be defined at each moment and for each point of the system. By
considering two currents inside the body j(r, ω) and j(r′, ω′) at the points r and r′, with
angular frequency ω and ω′, we obtain, using the FDT, the following expression

〈jk(r, ω)j∗l (r
′, ω′)〉 = 2

ωε0
π

Im[ε(ω)]Θ(ω, T )δklδ(r− r′)δ(ω − ω′), (1.5)

where k, l = x, y, z represent the different components in Cartesian coordinates, ~ is the
reduced Planck’s constant, kB is the Boltzmann’s constant, ε0 is the vacuum dielectric
constant,

Θ(ω, T ) =
~ω

exp(~ω/kBT )− 1
, (1.6)

is the average energy of a harmonic oscillator, δkl is the Kronecker’s symbol and δ is the
Dirac distribution. The presence of the Dirac distribution δ(r − r′) is the consequence
of the optical locality, while δ(ω − ω′) is the results of the fact that we focus only on
stationary processes.

Notice that that the fluctuational-electrodynamics theory is conceptually really sim-
ilar to the famous Langevin theory to describe the Brownian motion of particles inside
a fluid under the colliding events between the particles and the fluid molecules. In
the fluctuational-electrodynamics theory the fluctuating currents play analogous role of
fluid molecules and Maxwell’s equations replace Langevin’s equation. This electromag-
netic problem that is apparently easy is actually really challenging and can be solved
analytically only in some particular situations. In the following we consider this prob-
lem of radiative heat transfer in simple geometric configurations which can be partially
solved analytically.

1.2 Radiative heat transfer between two planar
interfaces

For our scopes, we are going to consider the case of two semi-infinite planar bodies
separated by a vacuum gap d. This calculation has been performed for the first time by
Polder and van Hove and has become one of the most used geometries for Near-Field
Radiative Heat Transfer (NFRHT) [1]. We consider a system in which the space is
divided basically in three parts (see Fig.1.1): the first body, characterized by a dielectric
constant ε1(ω), fills the semi-infinite space−∞ < z < 0; the second one, with dielectric
constant ε2(ω) occupies the part d < z < +∞, whereas, in the middle of the two bodies,
i.e. 0 < z < d there is a vacuum gap. Moreover, we suppose that the two bodies have
uniform non-zero temperatures T1 and T2 respectively, implying the local equilibrium
temperature in the two materials. Since the two bodies have T > 0, they exchange

7



Fluctuational electrodynamics and radiative heat transfer between two solids

Figure 1.1: Geometry of the system. Two semi-infinite parallel slabs at temperatures T1 > T2.
When d > λth, the thermal wavelength, heat is exchanged with propagating photons (sinusoidal
arrows). On the other hand, when d < λth the transfer is also mediated by evanescent and
frustrated photons.

energy radiatively. From now on we label as ϕi→j the energy flux from the body i to
the body j. The vacuum, of course, does not radiate or absorb any energy. We can then
obtain the net flux exchanged between the two bodies as follows [38, 53]

Φ1,2 = ϕ1→2 − ϕ2→1. (1.7)

Also in this case, the fluctuating currents are the base of the radiative phenomenon. In
fact, thanks to these currents, the first body emits an electromagnetic field everywhere in
the environment and, in particular, also inside the second body, in which it is absorbed.
This energy is the contribution of the first body to the energy exchange between the two.
In order to obtain this quantity, we start by evaluation the average value of the Poynting
vector. For the case of a planar system, the Green’s function are known and they can be
easily expressed analytically [54]. The final result for the first body has the following
form

〈Πz(d
+, ω)〉 = πL0

ω(T1)

[∫ k0

0

K dK

k2
0

∑
α=s,p

(1− |rα31|)2(1− |rα31|)2

|1− rα31r
α
32e

2ikzd|2

+

∫ +∞

k0

K dK

k2
0

∑
α=s,p

4Im(rα31)Im(rα32)

|1− rα31r
α
32e
−2k′′z d|2

e−2k
′′
z d

]
,

(1.8)

where L0
ω(T1) is the blackbody radiance at temperature T1 and angular frequency ω,

k0 = ω/c with c the speed of light, rαij are the Fresnel reflection coefficients for the
interface between the part i and the part j of the system and kz =

√
k2

0 −K2 is the z-
component of the wavevector in vacuum. We can obtain the value of the Poynting vector
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1.2 Radiative heat transfer between two planar interfaces

〈Π(0−, ω)〉 following the same steps, and getting a similar expression with L0
ω(T2) in-

stead of L0
ω(T1). It follows that he net flux exchanged between the two bodies reads

Φ(T1, T2, d) =

∫ ∞
0

dω

4π2
[Θ(ω, T1)−Θ(ω, T2)]

∫ ∞
0

dK K
∑
α=s,p

T α(ω,K, d), (1.9)

where T α(ω,K, d) is the transmission probability of an electromagnetic mode (α, ω,K)
of polarization α, angular frequency ω and parallel wave vector K and which takes
values in the interval [0, 1]. Its expression in terms of the Fresnel coefficients is

T α(ω,K, d) =


(1− |rα31|2)(1− |rα32|2)

|Dα|2
, if K < k0

4Im(rα31)Im(rα32) exp(−2Im(kz)d)

|Dα|2
, if K > k0

(1.10)

where kzi =
√
εi(ω)k2

0 −K2 is the component of the wave vector perpendicular to the
plane in the medium i, Dα = 1 − rα31r

α
32e

2ikzd is the Fabry-Perot denominator and rαij
are the Fresnel reflection coefficients at the interfaces between the medium i and the
medium j for the polarization states α = (s, p), given by

rαij(ω, k) =


kzi − kzj
kzi + kzj

, α = s

εjkzi − εikzj
εjkzi + εikzj

α = p

. (1.11)

Basically, in Eq.(1.9) we expressed the radiative heat flux as a sum of the energy carried
by all modes of the electromagnetic field, in the Planck windows defined by the differ-
ence between the average energies of the Planck harmonic oscillator with the tempera-
ture of the two bodies T1 and T2 and multiplied by the energy transmission coefficient
T α which depends on the optical proprieties of the two bodies. This expression has a
strong correspondence with the Landauer-Büttiker formula used in solid-state physics
for the electron transport in mesoscopic systems. In the last years, it has become a
standard way to describe the radiative heat transfer [38, 55–57].

It is really important to notice that from the expression of the transmission coeffi-
cients in Eq.(1.10) two contributions immediately emerge. The first one, given by the
K-integration in the interval [0, k0], is due to propagative waves, while the second one is
the contribution of evanescent waves. The difference between these two types of waves
is based on the way they propagate from the substrate across the vacuum gap. In fact,
when K < k0 waves are propagative, which means that they propagate in vacuum with-
out attenuation. On the other hand, when K > k0 waves are evanescent which means
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they decrease exponentially through the gap. Mathematically, this behavior can be eas-
ily demonstrated from the expression of the perpendicular component of wavevector in
vacuum kz =

√
k2

0 −K2, since for K > k0, kz is a pure imaginary number so that the
exponential factor e2ikzd becomes e−2k′′z d. A detailed study of the transmission coeffi-
cient shows that it is negligible for the evanescent waves (K > k0) when d is larger
than the thermal wavelength, and it is always between 0 and 1. Moreover, when the
slab support surface waves the value of the transmission coefficient is almost negligi-
ble everywhere except for these resonant modes where it is close to 1, as we will show
in Sec. 1.2. As we are going to show in the following, at distances much larger than
the thermal wavelength λth, the classical radiative heat-transfer laws can be recovered.
Moreover, as we will see at smaller distance, due to the contribution of evanescent waves
that can be dominant with respect to the propagative waves, the radiative heat flux can
overcome the blackbody limit by several orders of magnitude. Generally speaking, even
if the expression (1.9) describes the simple case of two semi-infinite parallel planes it
can be easily extended to the case of finite or even multilayer slabs by replacing the
Fresnel coefficient rαij with Rα

i , which is the full reflection coefficient of the system.

Radiative thermal conductance
In order to study the radiative heat transfer between two solids, it is convenient to

introduce a quantity known as the linear thermal conductance, which is a heat current per
unit temperature difference. Its definition in terms of the zero limit of the temperature
difference ∆T between the two bodies is [38]

hR(T, d) = lim
∆T→0

∣∣∣∣∣Φ(T + ∆T, T, d)

∆T

∣∣∣∣∣ =

=

∫ ∞
0

dω

4π2

∂Θ(ω, T )

∂T

∫ ∞
0

dKK
∑
α=s,p

T α(ω,K, d) ≡
∫ ∞

0

dω hRω (T, d),

(1.12)

where we have also introduced the spectral heat transfer coefficient hRω . In this way, we
can calculate the net energy heat flux ∆Φ per unit surface exchanged by the two bodies,
separated by a distance d, as follows

∆Φ = hR(T, d)∆T. (1.13)

Also the spectral heat transfer coefficient can be separated in two different contributions
for the propagative and evanescent waves

hR,prop
ω (d, T ) = h0

ω(T )

∫ k0

0

K dK

k2
0

∑
α=s,p

T α(ω,K, d), (1.14)
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hR,evan
ω (d, T ) = h0

ω(T )

∫ +∞

k0

K dK

k2
0

∑
α=s,p

T α(ω,K, d), (1.15)

where h0
ω(T ) ≡ π∂L0

ω/∂T . It has been shown that the heat transfer can be almost
monochromatic around the resonant surface wave frequency. This evidence strongly
suggests that the additional evanescent heat transfer comes from the excitation of the
surface resonant modes, waves that propagate along the interface and decay exponen-
tially on both sides of the interface. In the next paragraph we are going to explain the
role of this kind of waves in the near-field radiative heat exchange.

Upper bound in far-field regime: the blackbody limit
In the far-field regime only the propagative waves play a role in radiative heat trans-

fer. The maximum value that the heat flux can reach can be obtained considering the
limiting case of a transmission coefficient T α = 1 for K < k0, which represents the
situation of a perfectly absorbing media, i.e. a blackbody. With semi-infinite bodies,
this case corresponds to the situation in which the Fresnel reflection coefficients rα31 and
rα32 are zero. In this case, the total net flux takes the form [56, 58]

ΦBB(T1, T2) =

∫ ∞
0

dω [Θ(ω, T1)−Θ(ω, T2)]
ω2

4c2π2
= σ(T 4

1 − T 4
2 ), (1.16)

which is the well-known Stefan-Boltzmann’s law (here σ = 2π5k4
B/15h3c2 = 5.67 ·

10−8 W·m−2·K−4 is the the Stefan-Boltzmann constant). By linearizing expression (1.16)
around T1, we obtain for a small temperature difference ∆T = T1 − T2

ΦBB = 4σT 3
1 ∆T, (1.17)

where we can identify the radiative thermal conductance for the blackbody case at tem-
perature T

hRBB(T ) = 4σT 3. (1.18)

Contribution of resonant surface waves
When a body supports a surface wave a huge energy density [53,59] is confined close

to its surface. This energy can be partially transferred by tunneling effect to another solid
lying close to it. Below we derive the existence conditions for these resonant modes.
First of all, a resonant surface wave is a wave that propagates along the interface and
that decays exponentially on both sides of the interface. This wave is an electromagnetic
mode of the interface and can be excited resonantly. These waves are polarized and can
exist only in p (TM) polarization. Let us consider the case of a plane interface separating
two linear, homogeneous and isotropic media with different dielectric constants. As in
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the previous paragraph and depicted in Fig. 1.1 the semi-infinite medium 1 fills the half-
space [z,+∞[, whereas medium 2 the lower half space starting from z = 0. Moreover
we assume that these media are dispersive and their the optical response is local, which
means that their dielectric permittivity and magnetic permeability only depend on the
angular frequency ω.

Existence conditions of a surface wave

As said in the previous section, the surface wave is a resonant-wave solution of
Maxwell’s equation, that propagates along the interface but decays exponentially in the
perpendicular directions. Defining k = (K, kz) and r = (R, z), we can express its
electric field in the two media, as follows [3, 53]as

E1(r, ω) =

E1,x

E1,y

E1,z

 exp [i(K ·R + kz1z)], (1.19)

E2(r, ω) =

E2,x

E2,y

E2,z

 exp [i(K ·R + kz2z)]. (1.20)

We first focus on the case of s-polarization. In this case the electric field is perpendicular
to the plane (y, z), then the electric field reads

E1(r, ω) = Ex,1x̂ exp [i(K ·R + kz1z)], (1.21)

E2(r, ω) = Ex,2x̂ exp [i(K ·R + kz2z)]. (1.22)

Using Maxwell’s equation to obtain the magnetic field and applying the continuity con-
ditions of the corresponding parallel components of the fields across the interface, we
get the following linear system to solve

Ex,1 − Ex,2 = 0, (1.23)

kz1Ex,1 + kz2Ex,2 = 0. (1.24)

In order to obtain a non trivial solution its determinant must vanish so that

kz1 + kz2 = 0. (1.25)

Since Im(kzi) > 0 this relation cannot be satisfied, which means that no surface waves
can exist in s-polarization (TE).
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1.2 Radiative heat transfer between two planar interfaces

We consider now the electric field in p−polarization lies on the (y, z)-plane. In this
case the fields on both sides of the interface can be written as:

E1(r, ω) =

 0
E1,y

E1,z

 exp [i(Kx+ kz1z)], (1.26)

E2(r, ω) =

 0
E2,y

E2,z

 exp [i(Kx+ kz2z)]. (1.27)

The continuity conditions for the tangential electric field implies

Ey,1 − Ey,2 = 0, (1.28)

so that Ey,1 = Ey,2 = Ey,0. By using ∇ · E = 0, we can deduce the z components of
the field

Ez,1 = − K
kz1

Ey,0, (1.29)

Ez,2 =
K

kz2
Ey,0. (1.30)

Moreover, imposing the continuity for the z−component of the field D, we have

ε1Ez,1 = ε2Ez,2 (1.31)

Combing the relations (1.28)-(1.31) and imposing the determinant to be equal to zero,
we get

ε1kz2 + ε2kz1 = 0, (1.32)

which can be recast as

K = k0

√
ε1(ω)ε2(ω)

ε1(ω) + ε2(ω)
. (1.33)

This relaxation is the dispersion relation of the surface wave. It implies that the fre-
quency of the surface wave is solution of the equation ε1(ω) = −ε2(ω). In the next to
section we are going to show two examples of surface resonances, first for a dielectric
polar material (SiC), and then for a metal (gold). In fact, two types of surface waves
exist. The first ones are surface phonon-polaritons, which exist in the infrared, at the in-
terface of polar materials such as silica (SiO2), silicon carbide (SiC), or II-VI and III-V
semiconductors. The second are surface plasmons which appear in the visible wave-
length and near-UV domain, on metals. Since phonon-polaritons exist in the IR-region,
they can be easily excited at ambient temperature.
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Figure 1.2: (a) Dispersion relation of surface phonon-polariton at the SiC/vacuum interface. (b)
Transmission coefficient in TM polarization for two SiC slabs separated by a distance d = 1 nm.

Electrostatic limit
In near-field regime, when K � k0 (electrostatic limit) the heat flux (1.8) can be

written in a simplified form. In this case, the Fresnel coefficients defined in (1.11) take
the simplified form

rα,el
ij (K, ω)→

0, α = s
εj − εi
εj + εi

, α = p
, (1.34)

since for large K values the perpendicular component kzi of the wave-vector tends to
iK. As explained previously we see from expression (1.34) that at the resonance fre-
quency of the surface wave where εj(ω) = −εi(ω) the reflection coefficient diverges.
It is worth noticing from expression (1.15), and performing a straightforward change
of variable, i.e. x = Kd, that hR,evan

ω (d, T ) ∝ 1/d2 the typical scaling of the near-field
radiative heat transfer between polar materials [55, 56, 60].

For the case of a finite system, in which the two slabs have thickness L, the general
expression for the reflection coefficient reads

Rp
ij = rpij(K, ω)

1− e2ikziL

1− [rp(K, ω)]2e2ikziL
. (1.35)

In the electrostatic limit we have

Rp,el
ij → rp,el

ij (K, ω)
1− e−2KL

1− [rp,el(K, ω)]2e−2KL
. (1.36)

In order to obtain the surface resonant modes for this system, we need to impose

(1− [rp,el
ij (K, ω)]2e−2KL) = 0, (1.37)
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which can be decomposed into

(1 + rp,el
ij (K, ω)e−KL)(1− rp,el

ij (K, ω)e−KL) = 0. (1.38)

This relation implies that for a finite-size system the surface wave splits into two distinct
waves: a symmetric and an anti-symmetric surfaces wave. This is the the so called
hybridization mechanism of surface waves.

Polar materials

Figure 1.3: (a) Real part of the dielectric permittivity of Silicon Carbon sample. The straight
dashed gray line represents the condition Re[ε(ω)] = −1 for which the resonance occurs. The
intersection between the two curves shows that the resonance frequency ω = 1.786 · 1014 rad/s
is in the infrared. (b) Total thermal conductance at 300 K between two semi-infinite slabs of SiC
as a function of the separation distance d, and its different wave and polarization contribution.

In the following three sections we are going to consider the cases of two semi-infinite
planar bodies made of the same material. We start with the case of a polar dielectric
material, silicon carbide that is widely used in the NFRHT; in the following section, the
case of a metal that supports surface plasmons in the UV region will be considered, and,
finally, the case of a Metal-Insulator Transition (MIT) material, vanadium dioxide.

From now on, we will label all dielectric constants ε(ω) and will investigate the heat
transfer between two SiC samples (i.e. polar material) and two gold sample (i.e. metal)
around the ambient temperature (T = 300 K). To this end we calculate the thermal ra-
diative conductance hR(d) and its spectrum. For the case of SiC, the dielectric constant
ε(ω) can be described using the Drude-Lorentz model

ε(ω) = ε∞
ω2
L − ω2

ω2
T − ω2 + iΓω

, (1.39)

with ε∞ = 6.7, ωL = 1.8253 · 1014 rad/s, ωT = 1.4937 · 1014 rad/s and Γ = 8.9662 ·
1011 rad/s [61]. The dispersion relation for the surface phonon-polariton at the interface
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Fluctuational electrodynamics and radiative heat transfer between two solids

Figure 1.4: (a) Thermal conductance spectra at T = 300 K for two semi-infinite slabs of SiC
separated by a vacuum gap of 1 nm for propagative (solid, red) and evanescent (blue, dashed)
waves. (b) Thermal conductance spectra for different separation distances.

SiC/vacuum is shown in Fig. 1.2(a) while in Fig. 1.2(b) is plotted the transmission coef-
ficient for a separation distance d = 1 nm. The comparison of these two figures reveals
that the transmission coefficients takes value close to 1 for the modes (ω,K) satisfying
the dispersion relation of the surface wave. Moreover, from expression (1.39) we can
deduce the value ωmax for which Re[ε(ωmax)] = −εvacuum = −1. The value we obtain is
ωmax = 1.786 · 1014 rad/s, as shown in Fig. 1.3(a), but it is clearly visible also in both
curves in Fig. 1.2.

In Fig. 1.3(b) we show the thermal conductance at 300 K with respect to the separa-
tion distance d between the slabs. On this curve we notice an increase of the radiative
heat transfer when d � 10µm, the distance where the transition between the far-field
regime and the near-field regime takes place. By inspecting the slope of the curve at
small distances, we see that the thermal conductance hR diverges as 1/d2 as expected.
On the other hand, for distances larger than 10µm (i.e. far-field regime), the conduc-
tance tends to a limiting value independent of the distance.

It is worth noticing that the predominant contribution to the radiative heat transfer at
sub-wavelength distances is the one of the evanescent waves with TM (p) polarization.
When d < 0.1µm the total conductance cannot be distinguished from the conductance
due to TM evanescent waves. We can already think that the enhancement observed at
short distances is due to the presence of surface polaritons. In order to confirm this
hypothesis, we show in Fig. 1.4(a) the spectrum of hR, for the case d = 1 nm. We
can immediately see the presence of a strong peak around ω = 1.786 · 1014 rad/s, a
frequency which precisely corresponds to the resonance angular frequency of the sur-
face phonon-polariton. Hence for SiC we can deduce that the enhancement of transfer
at short distances is due to the presence of the surface waves. This is confirmed by
the conductance spectrum plotted in Fig. 1.4(b) with respect to the separation distance
which show the decay of the conductance as the distance becomes larger.
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1.2 Radiative heat transfer between two planar interfaces

Figure 1.5: Real part of the dielectric permittivity of Gold sample. The straight dashed gray
line represents the condition Re[ε(ω)] = −1 for which the resonance occurs when the sample
is surrounded by vacuum. The intersection between the two curves shows that the resonance
frequency ω = 7.94 ·1015 rad/s is in the visible. (b) Transmission coefficient in polarization TM
(p) for two Au sample separated by a distance d = 1 nm.

Figure 1.6: (a) Thermal conductance at T = 300 K for two semi-infinite slabs of Au as a
function of the separation distance d, and its different contributions. (b) Thermal conductance
spectrum for two semi-infinite slab of Au at T = 300 K separated by a vacuum gap of 1 nm.

Metals
As we did in the previous paragraph for SiC, we study the NFRHT in the case of

two planar semi-infinite metallic bodies, that support surface waves in the UV region.
To model their dielectric constant we use the Drude model [62]

ε(ω) = 1− ω2
P

ω2 + iΓω
. (1.40)

In the case of gold (Au) samples the model parameters are ωp = 11.23 · 1015 rad/s and
Γ = 4.05 · 1013 rad/s. In a similar way to SiC discussed above we can deduce the value
ωmax for the resonance frequency of the surface wave supported by a semi-infinite gold
sample. In this case, the value is ωmax = ωp/

√
2 ' 7.94 · 1015 rad/s. As shown in
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Figure 1.7: Schematic representation of the crystal structures of VO2 at low temperature (mon-
oclinic M1 phase) and high temperature (tetragonal rutile R phase).

Fig. 1.5(a), this resonance frequency is at the limit of the visible range. In Fig. 1.5(b)
the transmission coefficient for a separation distance d = 1 nm is represented. In a
similar way to the case of SiC, the transmission coefficient in TM polarization takes
values close to 1 for the modes (ω,K) satisfying the dispersion relation of the surface
wave. In Fig. 1.6(a) we show the thermal radiative conductance and its propagative
and evanescent contributions as a function of the distance. We can see on these curves
that there is an increase of the radiative heat transfer when d < 0.3µm. Nevertheless,
the increase is one order of magnitude less that the one we observed for the SiC. In
Fig. 1.6(b) the thermal conductance spectrum show a behavior which is similar to the
blackbody spectrum. The absence of peaks in this spectrum comes from the fact that,
unlike SiC, gold does not support surface waves in the Planck window at T = 300 K,
since unlike polar materials the TM modes do not dominate in metal in the electrostatic
limit [3].

Phase-change materials: vanadium dioxide

Recently, phase-change materials have been considered in the study of NFRHT [14,
31, 45–47, 63–66]. They offer way to tune the radiative heat transfer, giving the pos-
sibility to significantly enhance or reduce the heat flux by changing the temperature
around a critical temperature Tc. Vanadium dioxide (VO2) is one of such materials for
many applications in optical, thermal and electrical systems. This material undergoes
an insulator-to-metal transition at Tc = 340 K, really close to ambient temperature, and,
more specifically, at lower temperatures, it behaves as an insulator and at higher tem-
peratures as a metal. This transition results from a change in its crystal structure from
a monoclinic (M1) structure below Tc to a tetragonal rutile-like structure (R), above
the transition temperature (see Fig. 1.7). As a consequence of this change, the optical
and electrical responses are deeply affected. The main interest in the use of VO2 is
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Figure 1.8: Real part of the dielectric permittivity of VO2. The blue and the red-dashed curves
represent the permittivity for the dielectric phase (T < Tc). In this phase (monoclinic) the
material is anisotropic (uniaxe). The blue curve represents the permittivity parallel to the optical
axis while the red curve corresponds to the permittivity orthogonal to this axis. The green-dot
dashed curve represents the real part of the dielectric permittivity of VO2 in the metallic case,
T > Tc (rutile phase).

Figure 1.9: (a) Thermal conductance at T = 300 K for two semi-infinite slabs of VO2 as a
function of the separation distance d, and its different wave contribution in the dielectric phase
(T < Tc). (b) Thermal conductance at T = 350 K for two semi-infinite slabs of VO2 as
a function of the separation distance d, and its different contributions in the metallic phase
(T > Tc).

the possibility to break the symmetry in the heat transfer in a 2-body system when the
sign of the temperature gradient is changed. This has allowed the design of radiative
thermal diode [31, 47]. Based on this asymmetry, using this material we can modu-
late by orders of magnitude the radiative heat transfer switching from the metallic to
the insulating phase. Using more elaborate systems it is also possible to amplify the
heat transfers [65], build volatile thermal memory [45] and make boolean treatment of
information [46] using logical circuits with VO2 based materials. We now describe the
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Figure 1.10: (a) Transmission coefficient in TM (p) polarization for VO2 in the dielectric phase
(T < Tc), as a function of the frequency and of the parallel wavevector. (b) Transmission
coefficient in polarization TM (p) for VO2 in the metallic phase (T > Tc), as a function of the
frequency and of the parallel wavevector.

Figure 1.11: (a) Thermal conductance spectrum for two semi-infinite slab of VO2 in the dielec-
tric phase, at T = 300 K, separated by a vacuum gap of 1 nm for the propagative (solid, red)
and evanescent (blue, dashed) waves. (b) Thermal conductance spectrum for two semi-infinite
slabs of VO2 in the metallic phase, for T = 350 K, separated by a vacuum gap of 1 nm for the
propagative (solid, red) and evanescent (blue, dashed) waves.

radiative heat exchange between two slabs of VO2. First of all, when the temperature of
VO2 is below Tc, its permittivity is not that one of an uniaxial anisotropic medium and
takes the form

ε =

ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

 , (1.41)

where ε‖ is the permittivity value along the optical axis and ε⊥ is the permittivity in
the plane orthogonal to this axis. The values for ε⊥ and ε‖ are obtained through optical
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1.2 Radiative heat transfer between two planar interfaces

data [64, 67], and fitted with the following model

ε‖ = ε∞,‖ +
8∑
i=1

s‖,i
1− (ω/ω‖,i)2 − i g‖,i ω/ω‖,i

,

ε⊥ = ε∞,⊥ +
8∑
i=1

s⊥,i
1− (ω/ω⊥,i)2 − i g⊥,i ω/ω⊥,i

,

(1.42)

where the fitting parameters are taken from [67]. On the contrary, for the metallic phase,
VO2 is isotropic and its permittivity can be modelized, taking into account the losses, as

ε(ω) = −ε∞
ω2
p

ω2i ω ωc
(1.43)

in which ωp = 15.0796 · 1014 rad/s, ε∞ = 9, ωc = 1.88496 · 1014 rad/s and i is the
imaginary unit. While for the metallic case the calculation for the RHT remains the
same as the one describe previously with gold, in the dielectric phase the expression of
kz depends on the polarization and the Fresnel’s coefficients change as follows

ksz =
√
ε⊥k2

0 −K2, kpz =

√
ε⊥k2

0 −
ε⊥
ε‖
K2, (1.44)

rsij =
kszi − kzj
kszi − kzj

, rpij =
εi,⊥kpzi − εjkzj
εi,⊥k

p
zi + εjkzj

, (1.45)

where the body i is composed of VO2, while the body j is a general isotropic material.
It is easy to see that in the case ε⊥ = ε‖ we re-obtain the well-known expression for the
reflections coefficients and ksz = kpz . In Fig. 1.8 we represent the real part of the dielec-
tric constants Re[ε(ω)] for the dielectric and the metallic phase. Since expression (1.9)
remains valid in the anisotropic case, the only difference in the calculation of the heat
flux is due to the new definition for the perpendicular wavevectors and for the Fresnel’s
reflection coefficients. In Fig. 1.9 (a) and (b) we show the thermal conductance and the
contributions of the propagative and evanescent waves as a function of the separation
distance d, for the dielectric and the metallic phase, respectively. Comparing the two
figures we can see that the enhancement in the near field is always more pronounced
in the dielectric phase with respect to the metallic phase. In the dielectric case a strong
enhancement in the radiative heat transfer in the near-field regime is enlighten while for
d > 10µm the value is almost independent on the distance d. A shown in Fig. 1.10 (a)
the enhancement in the near-field regime is clearly due to the presence of surface waves.
These waves correspond to the resonance of Fresnel coefficient rp defined in (1.45). In
Figs. 1.10 (b), we can see that the behavior dramatically changes at the transition. Be-
yond Tc the surface waves disappear and the transmission coefficient almost vanishes
forK > ω/c. The conductances plotted in Fig. 1.11 confirm this change.
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1.3 Conclusions
In this chapter we have introduced the theoretical framework for studying the radia-

tive heat transfer, both in the far- and in the near-field regime between two bodies. We
started by reminding the link existing between the Poynting vector and the fluctuating
currents inside a body with temperature T > 0 K. We then focused on the heat transfer
between two semi-infinite planar bodies composed of the same material and gived the
general expressions of heat flux both in far-field and in near-field regime. We then ex-
plained their role played by the evanescent and propagative waves on the radiative heat
transfer in these two regimes, paying a particular attention to the role of surface waves.
Moreover, we recovered the blackbody limit from the fluctuational electrodynamics and
highlighted the dependence of the radiative heat flux in the near field regime on d−2 for
polar materials. We have described through simple examples the main specificities of
radiative heat transfer in hear field regime between polar materials and between metals.
In particular, we have shown that the presence of surface waves in the Planck window
drastically magnifies heat exchanges in near-field regime. Finally, we have briefly dis-
cussed the radiative heat exchanges in a system made of metal-insulator phase change
material and shown that a drastic change of heat flux can occur around the critical tem-
perature of material.
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Chapter 2

Bistable thermomechanical oscillator

Processing information with heat rather than with electric currents to perform log-
ical operations is a challenging problem in modern physics [68]. Several directions
have been explored during the last decade to this end. In 2004 Li et al. [69] have
demonstrated the possibility to locally break the symmetry for the phonon propaga-
tion inside non-linear atomic lattices when the sign of temperature gradient is changed
(thermal analog of diodes). Later phononic transistors have been proposed [69] opening
so the door to the dynamical control and application of heat flow in solid-state ele-
ments and consequently to a possible logical treatment of information carried by ther-
mal phonons [68, 70, 71]. More recently, to overcome the inherent problems associated
with the relatively small propagation speed of acoustic phonons, photonics systems have
been proposed to achieve similar operations [31, 45, 46, 48, 65] in contactless two- and
many-body systems [42, 57, 72, 73]. Finally, heat transport mediated by spin waves has
also been considered [74] to rectify heat flux in many-body systems, paving thus the
way to handle heat flux in quantum devices and open prospects in the field of thermal
computing at cryogenic temperature.

In this chapter we explore the possibility to make information treatment using me-
chanical systems made with phase-change materials driven by radiative heat flux.These
systems have been used as sensors [75–79] since a long time in order to directly mea-
sure heat flux by measuring the displacement of cantilevers made with such materials
in a temperature range around their critical temperature. Here we introduce a bistable
mechanical system made with a bimaterial VO2-dielectric cantilever in which the si-
multaneous thermal interaction of the beam in near-field regime [14, 31, 63, 66] with a
substrate and in far field [47, 80] with a thermal bath is considered. In the first section
of this chapter we discuss how a many-body thermal system can admit more than one
equilibrium (steady-state) temperature distribution and how this feature has been and
can been exploited in order to process information. In Sec. 2.2 we discuss the equation
for the phonons governing the dynamics of a beam, focusing on the case of a cantilever
and obtaining its normal modes. In Sec. 2.3 we study more in detail the physics of a bi-
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Bistable thermomechanical oscillator

material cantilever, introducing its effective quantities and the bending thermal moment
due to the mismatch between the thermal expansion coefficients of its composing layers.
Introducing our system consisting of a phase-change bimaterial cantilever, in Sec. 2.4,
we numerically solve the coupled differential system composed of the Euler-Bernoulli
and energy-balance equations, highlighting a thermomechanical bistable behavior and
studying its existence as a function of the thermal and geometrical parameters of the
system. In the last section, we finally discuss the potential of these systems to make a
thermal memory and to perform basic logical operator.

2.1 Equilibrium temperatures and stability studies
Let us consider a many-body system composed of N objects assumed at uniform

temperatures {T} = {T1, . . . , TN} in mutual interaction. We can formally describe the
temporal evolution of their thermal state through the equation [57]

ρiCp,iVi
dTi
dt

= Pi({T}, t), (2.1)

where the Left Hand Side (LHS) represents the thermal inertia defined by the specific
heat capacity Cp,i, the volume Vi of the object and its density ρi. Pi is the net power
received by the body i through N -body interactions. It can be expressed as

Pi({T}, t) =
∑
j 6=i

Pi,j({T}, t) + Pi,b({T}, Tb, t), (2.2)

where Pi,j is the power exchanged between objects i and j, while Pi,b is the exchanged
power between i and the background. Close to thermal equilibrium the system of equa-
tion can be linearized by means of the pairwise conductances Gi,j ≡ ∂Pi,j/∂Ti and
Gi,b ≡ ∂Pi,b/∂Ti so that

Pi({T}, t) ≈
∑
j 6=i

Gi,j({T}, t)(Tj − Ti) +Gi,b({T}, Tb, t)(Tb − Ti). (2.3)

The thermal steady state {T} of Eq. (2.1) is obtained by solving the system of equation

Pi({T}) = 0, i = 1, . . . , N. (2.4)

Each of these equations gives rise to a hypersurface in the N -dimensional tempera-
ture space, and it corresponds to the partial equilibrium of body i. The intersection of
these hyperspaces represents the global steady-state for the system. When all Pi de-
pend linearly on the temperatures (i.e. Gi,j and Gi,b are temperature-independent), the
system (2.4) admits only one solution. On the other hand, when these conditions are
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2.2 Euler-Bernoulli beam theory

not met, the system of equations (2.4) can admit more than one solution, which can be
either stable or unstable [81].

The demonstration of multistable thermal behaviors in many-body systems paved
the way to the possibility of designing thermal analogs of electronic-based logic gate.
In these system we are considering that the temperature-dependent properties of a phase-
change material, as we will show, are a the origin of the multistability. These states can
naturally be identified to the "0" and "1" of one bit of information and can be used as
memory [45]. As long as these states are held constant, the system remains in a stable
thermal state but, when a perturbation is added to the system, it is possible to switch
from one thermal state to the other state.

In the following, we are going to show that the coupling between thermal and me-
chanical behavior of a bimaterial cantilever can be exploited to make thermal logical
operations. To start, we will describe the modeling of the mechanical dynamics of a
simple beam cantilever.

2.2 Euler-Bernoulli beam theory
For a beam of length L with its axis along the x-direction, we denote the deflection

of the beam in the y-direction from its axis as u(x, t). For sufficiently thin beams, we can
assume these systems as unidimensional objects extended only along the x-axis, with
mass per unit length µ, Young’s modulus E and second moment of area I . The product
EI , known as flexural rigidity, is supposed independent of x. In order to describe the
dynamic evolution of beam, we introduce the action [82]∫ t2

t1

∫ L

0

[
1

2
µ

(
∂u(x, t)

∂t

)2

− 1

2
EI

(
∂u2

∂x2

)2

+ q(x, t)u(x, t)

]
dxdt, (2.5)

where the first term represents the kinetic energy, the second one is the potential energy
due to internal forces while the third term indicates the potential energy due an the
external load q(x, t). The displacement u(x, t) can be obtained by minimizing this
action using the Euler-Lagrange equation. This leads to

EI
∂4u(x, t)

∂x4
= −µ∂

2u(x, t)

∂t2
+ q(x, t). (2.6)

We usually refer to this equation as the Euler-Bernoulli equation.

Free oscillations of a cantilever
The free vibration of a beam attached to a wall at one of its ends, can be obtained

by solving this equation in the case without external load q(x, t). In this case, the Euler-
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Bernoulli equation reduces to

EI
∂4u(x, t)

∂x4
= −µ∂

2u(x, t)

∂t2
. (2.7)

This equation can be solved by means of a Fourier decomposition of the displacement
into the sum of harmonic vibrations of the form u(x, t) = Re[û(x)e−iωt], where ω is
the oscillation frequency. Using this expression, we obtain the simplified differential
equation

EI
d4û(x)

∂x4
= µω2û(x), (2.8)

with the following general solution for û(x)

ûn(x) = A cosh(βnx) +B sinh(βnx) + C cos(βnx) +D sin(βnx), (2.9)

where βn = 4
√
µω2

n/EI . The ωn are the natural frequencies of the beam and each
displacement solution is a mode of the system. In the case of a beam attached to a
wall at its left end (x = 0) and free to oscillate at its right end (x = L), the boundary
conditions in the absence of external load, are

ûn(0) = 0,

∂ûn
∂x

(0) = 0,

∂2ûn
∂x2

(L) = 0,

∂3ûn
∂x3

(L) = 0.

(2.10)

The first two boundary conditions, i.e. zero displacement and zero derivative at the
fixed left end x = 0, describe the wall support (vanishing displacement and speed),
while the third and the forth impose a zero bending moment and shear force at x = L,
respectively. Applying these conditions we get the following linear system

A+ C = 0,

B +D = 0,

A cosh(βL) +B sinh(βL)− C cos(βL) +D sin(βL) = 0,

A sinh(βL) +B cos(βL) + C sin(βL) +D cos(βL) = 0,

(2.11)

which admits non-trivial solutions only for

cosh(βnL) cos(βnL) + 1 = 0. (2.12)

The first four roots of this transcendental equation are β1L = 1.875, β2L = 4.694,
β3L = 7.855 and β4L = 10.996. The corresponding natural frequency can be obtained
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Figure 2.1: Representation of the mode shapes for the first four modes of an oscillating can-
tilever beam.

as ωn = β2
n

√
EI/µ. Solving now system in Eq. (2.11) for the coefficients A, B, C and

D, we obtain the following displacement ûn(x)

ûn(x) = cosh(βnx)− cos(βnx) +
cos(βnL) + cosh(βnL)

sin(βnL) + sinh(βnL)
[sin(βnx)− sinh(βnx)],

(2.13)
where we have taken A = 1. The modes corresponding to the first four natural frequen-
cies of the cantilever are represented in Fig. 2.1.

2.3 Bimaterial cantilever
In the following, we will focus on the specific case of a bimaterial cantilever, i.e. a

beam composed of two layers of different materials. For this reason we first introduce
the main features of such system. They are usually of micrometer size in order to
be sensitive to the phase-change in one layer. This feature enables high responsivity,
and consequentially a strong sensitivity to external actuations. For example, bimaterial
microcantilevers have been used successfully for sensitive thermal measurements of
near-field radiative heat transfer [7].

For bimaterial cantilevers, the mass density ρ, specific heat capacity C, thermal
conductivity κ and flexural rigidity EI need to be replaced by effective quantities. Let
us assume that the two materials composing the beam have Young’s moduli E1 and E2,
densities ρ1 and ρ2, specific heat capacities C1 and C2, and thermal conductivities κ1

and κ2. We can obtain the effective quantities ρ, κ and C as weighted averages. More
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specifically, ρ and κ can be obtained using as weights the volumes of each layer V1 and
V2, i.e.

a =
a1V1 + a2V2

V1 + V2

, (2.14)

where a ∈ {ρ, κ}. For the specific heat capacity, instead, we use as weights the mass of
each layer m1 = ρ1V1 and m2 = ρ2V2, obtaining

C =
C1m1 + C2m2

m1 +m2

. (2.15)

Concerning the flexural rigidityEI , the effective one can be obtained as follows [83,84]

EI =
δh1h2

12

E1h1E2h2

E1h1 + E2h2

K, (2.16)

with

K = 6 + 4

(
h1

h2

+
h2

h1

)
+

(
E1h

2
1

E2h2
2

+
E2h

2
2

E1h2
1

)
. (2.17)

A bimaterial cantilever, because of the mismatch between the thermal expansion coef-
ficients of the two layers, α1 and α2, remains straight only when the temperature all
along the beam is equal to the building temperature T0. The different expansion of the
two parts causes a bending that can be expressed as a function of the beam construction
temperature T0, its temperature profile T (x, t) and the thermal expansion coefficients
α1 and α2 of the two materials, in the following way [85]

∂2u(x, t)

∂x2
= 6

(α2 − α1)

K

(
1

h1

+
1

h2

)
[T (x, t)− T0], (2.18)

the bending thermal moment associated with it

MT [T (x, t)] = EI
∂u2(x, t)

∂x2
. (2.19)

The second derivative of this thermal moment plays the role of the external load q(x, t)
in the Euler-Bernoulli equation (2.6).

2.4 Thermomechanical bilayer cantilever system
We now study the thermomechanical behavior of a bimaterial microcantilever com-

posed of SiO2 and a MIT material, in particular VO2. As explained in Sec. 1.2, VO2

is a phase-change material which undergoes a first-order transition from an insulating
to a metallic behavior when its temperature goes beyond Tc = 340 K [67]. We chose
this material as second component of the bimaterial cantilever in order to highlight a
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2.4 Thermomechanical bilayer cantilever system

Figure 2.2: Sketch of thermomechanical oscillator. A bilayer cantilever is recessed at its left end
by in a wall at temperature Tw and kept free at the other end. It interacts through radiative heat
transfer with an environment at temperatures Te and in near field with a substrate at temperature
Ts. Its vertical displacement is described by u(x, t), while T (x, t) represents its temperature
profile.

bistable behavior. The system is depicted in Fig. 2.2. The beam is recessed in a wall
maintained at temperature Tw by an external power source, whereas its right end is left
free to oscillate. This cantilever exchanges heat radiatively with an environment at tem-
perature Te and in near field with a substrate at temperature Ts. Moreover, the two
different layers have thicknesses (y axis in Fig. 2.2) h1 and h2 (h = h1 + h2). Its length
(x axis in Fig. 2.2) and width (z axis) are L and δ, respectively. The bottom layer of the
cantilever is made of SiO2 [61], while the upper one of VO2. The substrate has length l
and is made of SiO2 in order to maximize the near-field heat transfer with the cantilever
bottom layer.

The time evolution of the cantilever displacement u(x, t) and temperature profile
T (x, t) is governed by the coupled system of nonlinear differential equations

ρCph
∂T (x, t)

∂t
= hκ

∂2T (x, t)

∂x2
+ Φ

[
u(x, t), T (x, t)

]
,

EI
∂4u(x, t)

∂x2
= −µ ∂

2u(x, t)

∂t2
− γ ∂u(x, t)

∂t
− ∂2MT [T (x, t)]

∂x2
,

(2.20)

where the first one is the energy-balance equation of the beam, while the second is the
Euler-Bernoulli [83] or momentum-conservation equation discussed in Sec. 2.2. In the
Right Hand Side (RHS) of the latter equation we added the damping term γ∂u(x, t)/∂t,
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which allows an energy dissipation depending on the nature of the surrounding me-
dia through the damping factor γ, and a load term related to MT [T (x, t)], the thermal
bending moment expressed in Eq. (2.19). Here ρ, Cp and κ are the effective-beam mass
density, specific heat capacity and thermal conductivity, respectively, we have defined in
the previous section. Here Φ denotes the heat flux per unit surface between two parallel
planes, so that Φδdx is the net energy received per unit time by the infinitesimal ele-
ment of the beam between x and x+dx. The idea of calculating the interaction between
curved surfaces as a sum of plane-plane contributions closely follows the Proximity
Approximation (see e.g. Ref. [86]), typically used in the context of Casimir forces and
near-field radiative heat exchanges, valid when the curvature radii are much larger than
the distance, condition fully met for the cantilever displacements we obtain here.

In order to calculate the radiative term in Eq. (2.20), we use the radiative conduc-
tance hR(T, d) as introduced in Chap. 1 by assuming that the system works close to
a thermal equilibrium state. More specifically, we express this conductance through a
polynomial expansion with respect to the separation distance

hR(T, d) =
∞∑
n=0

And
−n. (2.21)

The calculation of radiative flux allowed us to show that

hR(T, d) = A0 + A2d
−2, (2.22)

where A0 = 10.9 W · m−2 · K−1 and A2 = 3.61 × 10−12 W · K−1 are the fitting pa-
rameters calculated by simultaneously accounting for the far-field exchanges with the
environment and the near-field exchanges with the substrate. We see that we recover the
typical d−2 behavior of hR between polar materials.

The initial and the boundary conditions we need to impose for the beam temperature
profile are the following 

∂T (L, t)

∂x
= 0,

T (0, t) = Tw,

T (x, 0) = f(x).

(2.23)

The first corresponds to the adiabatic conditions on its free end. The second condition
sets the beam temperature on its recessed end, while the third condition defines the
temperature profile at the initial moment. Concerning the displacement, we impose the
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2.4 Thermomechanical bilayer cantilever system

Figure 2.3: Graphical representation of the uniform spatial discretization of the cantilever. Each
slice has thickness dx.

following conditions 

u(0, t) = 0,

∂u(0, t)

∂x
= 0,

∂2u(L, t)

∂x2
= MT [T (L, t)],

∂3u(L, t)

∂x
= 0,

u(x, 0) = g(x),

∂u(x, 0)

∂t
= 0.

(2.24)

As for the free-oscillations case discussed in Sec. 2.2, we impose here
u(0, t) = ∂u(0, t)/∂x = ∂3u(0, t)/∂x3 = 0 [87], while for a bimaterial cantilever
the bending moment is not zero and is equal to the thermal moment of Eq. (2.19) [85].
With the last two conditions, we impose an initial displacement with shape g(x), and an
initial velocity of any element of the beam equal to zero.

Numerical method

The complexity of the coupled system (2.20) does not allow to solve it analyti-
cally. To solve this system of non-linear coupled differential equation we use a finite-
difference method [88,89], discretizing the beam in N−1 intervals as shown in Fig. 2.3
and substituting each derivative with the centered-discretized (backward-discretized)
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counterparts for the spatial (temporal) ones, rewriting Eq. (2.20) as follows

ρCph
Tmi − Tm−1

i

dt
= hκ

Tm−1
i+1 − 2Tm−1

i + Tm−1
i−1

dx2
+ Φ({um−1

i },{Tm−1
i }),

EI
um−1
i+2 − 4um−1

i+1 + 6um−1
i − 4um−1

i−1 + um−1
i−2

dx4
=−µu

m
i − 2um−1

i + um−2
i

dt2

−γu
m
i − um−1

i

dt
−
MT (Tm−1

i+1 )− 2MT (Tm−1
i ) +MT (Tm−1

i−1 )

dx2
.

(2.25)

in which {um−1
i } and {Tm−1

i } indicate the entire displacement and temperature profiles
at the instant m− 1, respectively. Solving for Tm+1

i and um+1
i , we obtain

Tmi =Tm−1
i +

dt

ρCph

[
hκ
Tm−1
i+1 − 2Tm−1

i + Tm−1
i−1

dx2
+Φ({um−1

i }, {Tm−1
i })

]
,

umi =
(2µ+ γdt)um−1

i − µum−2
i

µ+ dtγ
− dt2

µ+ dtγ

[
MT (Tm−1

i+1 )− 2MT (Tm−1
i ) +MT (Tm−1

i−1 )

dx2

+EI
um−1
i+2 − 4um−1

i+1 + 6um−1
i − 4um−1

i−1 + um−1
i−2

dx4

]
.

(2.26)
In order to impose the boundary and the initial conditions for the temperature expressed
in Eq. (2.23), as we have done discretizing the system, we use the finite differences at
first order of accuracy for the temporal derivation and at the second order for the spatial
one, obtaining 

TmN−1 =
4

3
TmN−2 − 3TmN−3,

Tm0 = Tw,

T 0
i = f(xi).

(2.27)

For the displacement u(x, t) the conditions in Eq. (2.24) are discretized as follows

um0 = 0,

um1 = 0,

umN−1 =
48umN−3 − 52umN−4 + 15umN−5 + 18MT (TmN−1)dx2

11
,

umN−2 =
28umN−3 − 23umN−4 + 6umN−5 + 4MT (TmN−1)dx2

11
,

u0
i = g(xi),

u1
i = u0

i ,

(2.28)

in which we have used as well the temporal derivatives with accuracy O(dt2), and all
the spatial derivatives except ∂u(0, t)/∂x with accuracy O(dx3). Indeed, while for the
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2.5 Thermomechanical bistability

Figure 2.4: Geometry of the beam: we label with δ its depth, L its length, h1 and h2 the
thickness of the first and second layer, respectively.

conditions on the right side of the slab (i = N − 1, N − 2) we were able to use a
second-order development, coherent with the finite-difference description employed in
Eq. (2.20), on the left side it was mandatory to use a first-order development of the con-
dition ∂u(0, t)/∂x in order to have a starting point to determine the entire displacement
profile at a given time.

2.5 Thermomechanical bistability

Now we can investigate the dynamical evolution of our system. In order to demon-
strate the existence of two equilibrium solutions we investigate the spatio-temporal evo-
lution of displacement and temperature profiles [50]. Since we are working with VO2, it
is clear that in order to get easily two equilibrium solutions for the beam, all the temper-
atures involved in the evolution must be close to the critical temperature Tc of the MIT
material. Moreover to get a transition of MIT material, the temperatures of substrate Ts,
wall Tw and thermal bath Te must not be all above or below Tc.

Concerning the geometric parameters for the beam, they are chosen to reduce as
much as possible the relaxation time of the system. In the following we use (see
Fig. 2.4): depth δ = 1µm, length L = 360µm, h1 = 90 nm for the VO2 layer,
h2 = 910 nm for the SiO2 layer. The length of the SiO2 substrate is l = 30µm,
and it is placed at distance d0 = 250 nm from the x-axis to ensure a relative balance
between the magnitude of heat flux exchanged in far and near field, as sketched in
Fig. 2.2. The parameters we use for SiO2 are E2 = 68 GPa, C2 = 730 J · K−1 · kg−1,
ρ2 = 2650 kg ·m−3, α2 = 8 ·10−6·K−1, and the optical data given in Ref. [61]. For VO2,
we take C1 = 344 J ·K−1 · kg−1, ρ1 = 4570 kg ·m−3 and E1 = 85 GPa since they do not
vary significantly with the phase [90]. In order to describe the temperature dependence
of the physical properties of VO2 around Tc we use the smoothing function

S(T, Tc, β) =
1

1− e−2β(T−Tc)
, (2.29)
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where β is a parameter allowing to adjust the smoothness in the transition region be-
tween the dielectric and the metallic phases. This smoothing function is consistent with
the percolation mechanism observed experimentally in VO2 [91]. In terms of this func-
tion, the physical quantity a1 around the critical temperature Tc is given by

a1(T ) = a1d + S(T, Tc, β)(a1m − a1d), (2.30)

where a1d and a1m are the properties in the dielectric and metallic phase, respectively.
We use this expression to model the thermal expansion coefficients α1, the thermal
conductivity κ1 and the emissivity ε1. For film thicknesses of few dozens of nm the
transition between the dielectric and the metallic regime generally occurs over a tem-
perature interval of few degrees. Indeed, we assume here a range of approximately 10
degrees which corresponds to the value β = 0.5 K−1. Concerning the physical quanti-
ties associated with VO2, we use the data from Refs. [67, 91]: α1d = 26.4 × 10−6 K−1,
κ1d = 3.6 W m−1 K−1, ε1d = 0.8 in the dielectric phase and α1m = 17.1 × 10−6 K−1,
κ1m = 3.6 W m−1 K−1, ε1m = 0.1 in the metallic phase.

Finally, the damping factor γ is defined in terms of the oscillator quality factor Q
as [92]

γ = 3.52Q−1L−2
√
EIµ. (2.31)

It depends on the surrounding environment and on the first natural frequency of the
cantilever. For a cantilever embedded in air and in vacuum the quality factors are Q ≈
100 and Q ≈ 50000 [92], respectively.

In Fig. 2.5 we show the time evolution of T (L, t) and u(L, t) for the temperature set
{Te, Tw, Ts} = {300, 356, 353}K, with the initial conditions

u(x, 0) = g(x) = 135 m−1x2, and T (x, 0) = f(x) = λx2 − 2λLx+ Tw, (2.32)

where λ is an adjustable parameter. Since the expansion coefficient of VO2 is always
larger than the SiO2 one, and all the temperatures we are considering are equal or larger
than the cantilever bulding temperature T0, the bending will be always toward the silica
substrate. As a consequence, the choice of the initial cantilever displacement u(x, 0) is
made to accelerate numerical convergence. Concerning the initial temperature profile,
it is worth noticing that f(x) satisfies the boundary conditions for any value of the
parameter λ.

In Fig. 2.5 we show, by choosing two different values of λ, the temporal evolution
in vacuum and air of displacement and temperature of the free end of the beam T (t, L).
Indeed, by choosing two different initial profiles with λ = −0.1 × 108 K ·m−2 (blue
curves) and λ = 3 × 108 K ·m−2 (red curves), respectively, the system evolves to two
distinct stable solutions both for displacement and temperature, thus demonstrating its
thermomechanical bistability in vacuum and in air [50].

Concerning the temperature, since the surrounding medium only affects the oscilla-
tor damping and does not modify its asymptotic behavior, the steady-state solutions are
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Figure 2.5: Time evolution of the (a)-(c) displacement and (b)-(d) temperature of the free end
of the cantilever in the case of vacuum and air as surrounding medium. The red-dashed curves
are the lower-temperature solutions obtained for λ = −0.1 · 108 K m−2, the blue-solid curves
the upper-temperature solutions obtained for λ = 3 · 108 K m−2.

the same in vacuum and in air. Moreover, we observe that the steady state is reached
after almost the same time interval (τ∞ ≈ 0.5 s) in both cases. This time is in agreement
with the decay timescale τc = ρCL2/κ ≈ 0.14 s which can be extracted from a simple
dimensional analysis of the energy-balance equation.

The behavior of the displacement u(L, t) [Fig. 2.5(a)-(c)] is more peculiar and, con-
trarily to the temperature evolution, it clearly depends on the surrounding medium.
Although the time needed both in air and in vacuum to reach the asymptotic regime
is still τ∞, the displacement oscillates differently in vacuum and in air. As shown
in Fig. 2.6(a) where a zoom of the first 3 · 10−4 s of the displacement time evolution
is shown, we clearly observe two distinct oscillation frequencies. We have numeri-
cally verified that these correspond to the first and third natural frequencies of the can-
tilever, ω1 = 3.52L−2

√
EI/µ and ω3 = 61.7L−2

√
EI/µ. Since the decay time τωi

of
these oscillations is proportional to the quality factor (τωi

= 2Q/ωi) the longest decay
timescales in air and vacuum are, respectively, τ air

ω1
= 5.1 · 10−3 s, and τ vacuum

ω1
= 2.5 s.

As expected, the damping of the oscillations is stronger in air than in vacuum.
We now investigate how the choice of the adjustable parameter λ influences the
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Figure 2.6: (a) Time evolution of u(L, t) in air over a shorter timescale. (b) Time evolution of
T (L, t) as a function of the parameter λ associated with the initial temperature profile, the black
dashed line corresponds to the threshold value λthr = 1.275 · 108 K·m−2.

equilibrium solution. To this aim, in Fig. 2.6(b) we explore a wide range for λ, obtaining
two stationary solutions for T (L, t) [then for u(L, t)] and deducing the threshold value
to switch from one stable solution to another, i.e. λthr = 1.275 ·108 K·m−2. Concerning

346 348 350 352 354 356 358
336

337

338

339

340

341

342

Figure 2.7: Equilibrium temperature as function of the substrate temperature Ts. The blue
(orange) branch represents the upper (lower) solution. The gray zone highlights the range where
Ts ∈ [346; 356.3] for which two equilibrium solutions exist.

the region of existence of the bistability, we identify the range of substrate temperatures
over which the bistability is present. To this aim, we perform numerical calculations
keeping all the parameters, except Ts, unchanged. The steady solutions for T (L) are
represented by the blue and orange solid lines in Fig. 2.7. We clearly see that, when Ts
lies in the range [349, 356.3] K [gray zone in Fig. 2.7], we observe a bistable behavior,
while for values of Ts outside this range we only get one stable solution.
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Figure 2.8: (a) Time evolution of T (L) for constant Ts equal to 353 K (black solid), 358 K
(red dashed) and 400 K (blue dot-dashed). (b) Decay timescale τc as a function of the substrate
temperature Ts outside of the bistable region. The curve in blue (orange) represents the decay
time of the upper (lower) solutions.

It is then interesting to study the behavior of T (L, t) when we are within, slightly
above and far beyond the bistability region. Indeed, in Fig. 2.8(a) we show the temporal
evolution of the dielectric (lower) starting temperature profile [λ = 3 × 108 K m−2]
for different substrate temperatures, i.e. Ts = 353, 358, 400 K. For Ts = 353 K (Ts =
400 K) we observe the expected convergence to the lower (upper) solution on a timescale
≈ τc. On the contrary, we demonstrate the presence of an unstable solution for T =
358 K, slightly larger than 356.3 K, the upper boundary of the bistability region. In this
scenario, an initial plateau (up to 1.5 s) with a temperature lower than 340 K is followed
by the convergence toward the final steady-state temperature above 340 K. This is a
signature of the fact that Ts is still close to the region where two solutions exist, and is
analogous to the saddle-point behavior already observed in Ref. [45].

To complete this analysis, it is useful to investigate how the decay time needed to
converge to the steady-state solution changes when we approach the bistable zone, both
from higher and lower temperatures. To this aim, in Fig. 2.8(b) we show the decay
time as a function of the substrate temperature Ts. For Ts > 356.3 K we plot only
the time scale associated with the lower solution: as a matter of fact, this solution will
behave as the red dashed curve in Fig. 2.8(a) (with an intermediate plateau and then a
larger τc), while we are sure that the upper (metallic) solution will directly converge to
a stable solution within the expected decay time of the order of 0.5 s. By approaching
Ts = 356.3 K from above, we observe in Fig. 2.8(b) a dramatic amplification (a vertical
asymptote) of τc, implying that, for these temperatures, the intermediate temperature
profile can be seen (depending on the timescale of interest) as a metastable solution.
The description is fully analogous for the region Ts < 349 K, with the same divergence
behavior of τc.
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Figure 2.9: (a) Dependence of the bistability on the temperatures Tw and Ts, of the wall and
substrate, respectively. The vertical dashed line corresponds to the transition temperature of
VO2. The red area denotes the region where bistability is present. (b) Dependence of the
bistability on the substrate temperature Ts and on the distance d between cantilever and substrate.
The red area denotes the region where bistability is present.

Bistability range as a function of the parameters
We now focus on the study of the existence of the thermomechanical bistability as

a function of the substrate temperature and the several geometric parameters involved,
namely the thicknesses h1 and h2 of the VO2 and SiO2 layers, respectively, the length L
of the cantilever, and the distance d between cantilever and the silica substrate.

To this aim we start from the configuration studied in the previous section, having
parameters {Te, Tw, Ts} = {300, 356, 353}K, L = 360µm, h1 = 90 nm for the VO2

layer, h2 = 910 nm for the SiO2 layer, and l = 30µm, placed at distance d0 = 250 nm
from the x axis, and let some of them vary from this reference configuration. In
Fig. 2.9(a) we show the dependence of the bistability effect on the two temperatures
Ts and Tw. The part of the plot highlighted in red represents the values of the param-
eters for which thermomechanical bistability exists. We immediately remark that the
existence of bistability is indeed very sensitive to the wall temperature Tw. This is not
surprising, since this temperature strongly influences, through conduction, the temper-
ature profile along the beam. Nevertheless, we observe that by varying the substrate
temperature Ts in the range studied here, we are always able to identify a range of Tw
where bistability is present. We also clearly remark that the values of Tw for which the
system is bistable have a dependence on Ts close to linear, with a slope which changes
around 340 K, namely the transition temperature of VO2.

In Fig. 2.9(b) we investigate the dependence of the bistability on the substrate tem-
perature Ts and the distance d. We clearly see that the range of temperatures Ts over
which bistability exists can be tailored by modifying the distance d, even in the near-
field regime. As an example, we observe that, while the width of this interval of Ts is
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2.6 Hysteretic behavior in the time evolution of temperature profiles

Figure 2.10: (a) Dependence of the bistability effect on the thicknesses h1 and h2, of the VO2

and SiO2 layers, respectively. The red area denotes the region where bistability is present,
bounded by the black lines. (b) Dependence of the bistability effect on the length L of the can-
tilever and on the temperature Tw of the wall. The red area denotes the region where bistability
is present.

close to 7 K for the distance d = 250 nm used in the main part of the chapter, it goes up
to more than 30 K when d = 500 nm.

We now address the dependence of bistability on two relevant geometrical param-
eters, namely the thicknesses h1 and h2 of the VO2 and SiO2 layers, respectively. The
results, presented in Fig. 2.10(a), show that bistability does not exist below a given value
of h1, around 30 nm. Moreover, as the thickness h1 increases, the range of h2 over which
bistability is possible increases as well. These results are coherent with the fact that the
phase-change behavior of VO2 is crucial to obtain two stable solutions.

In Fig. 2.10(b) we finally show the dependence of bistability on the temperature of
the wall Tw and on the length L of the cantilever. We observe that is not possible to find
any value of Tw for which a bistability behavior exist below a value of L around 338µm.
Below this value, conduction works too well along the cantilever and then it does not
allow the presence of two stable temperature profiles crossing the critical temperature
Tc = 340 K of VO2.

2.6 Hysteretic behavior in the time evolution of
temperature profiles

We now explore the possibility to use bistability to produce a hysteretic behavior
with respect to an external control parameter. The natural parameters to be exploited to
this aim are the substrate temperature Ts or the wall temperature Tw, which can be tuned
using for instance Peltier elements or external laser sources. Here we consider only Ts
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Figure 2.11: Temporal modulation of the substrate temperature Ts. In blue we highlight the
time-scale τ1 in which Ts rises up (goes down) to the maximum (minimum) value of TM =
358 K (Tm = 347 K), while in red the time-scale τ2 in which Ts remains at the maximum
(minimum) value of TM = 358 K (Tm = 347 K).

Figure 2.12: (a) Phase diagram of the time-dependent temperature T (L, t) of the free end of
the cantilever as a function of the substrate temperature Ts(t). The three different curves corre-
spond to different profiles of Ts(t) (see legend). The blue and orange solid curves correspond
the steady-state solutions for T (L) associated with each value of Ts. (b) Imposed time depen-
dence of the substrate temperature Ts (see text for functional dependence). The blue segment
represents the decay timescale τc. (c) Time evolution of T (L) as a function of time [same color
scheme as in panel (a)]. The horizontal brown dashed line represents the critical temperature Tc.

as a control parameter.
As suggested by the curves plotted in Fig. 2.7, a time variation of Ts allows to switch

from one stable solution to the other one through a hysteresis loop. Of course, this
possibility strongly depends on the specific time dependence of Ts, and in particular on
the comparison between the typical timescale over which Ts is tuned and the relaxation
time τc of our system. To get a deeper insight into this aspect, we let Ts vary according
to the time-dependent function represented in Fig. 2.11. We start from a minimum
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2.6 Hysteretic behavior in the time evolution of temperature profiles

temperature Tm = 347 K and from t = 0 s to t = τ1 we increase the value of Ts up to
its maximum TM = 358 K through the growing branch of the function

F (t) = (TM − Tm)
1− cos(π t/τ1)

2
. (2.33)

We then keep Ts = TM during a time interval τ2 to finally go down to Tm over a time
interval τ1 through the descending branch of the function

G(t) = (TM − Tm)
1− cos[π(t− τ2)/τ1]

2
. (2.34)

In Fig. 2.12(c) we describe the evolution of T (L) as a function of Ts when this one is
modulated at different timescales. We perform the simulations for three different cou-
ples of timescales, namely {τ1, τ2} = {0.5 s, 1 s}, {0.5 s, 4 s}, {5 s, 4 s} [see Fig. 2.12(b)].
Let us start from the case with the smallest values for both the timescales, i.e. {τ1, τ2} =
{0.5 s, 1 s} [violet long-dot-dashed curves in Fig. 2.12]. Figure 2.12(a)-(c) clearly chows
that these values do not allow to perform the transition from the lower to the upper
branches of stable solutions. More specifically, τ2 is much smaller than the relaxation
time τc of the system, which means that when the period of modulation is smaller than
the time of thermal relaxation of the cantilever, the latter is not sufficiently heated up to
transit into its metallic phase. To confirm this interpretation, we observe that, follow-
ing the evolution of the red curve [{τ1, τ2} = {0.5 s, 4 s}] which has the same τ1 but
larger τ2 with respect to the previous, the system is able to switch from the dielectric to
the metallic solutions and viceversa, creating a hysteresis between the stable solutions.
Finally, we consider the last couple of timescales {τ1, τ2} = {5 s, 4 s}. Following the
dashed black curves in Fig. 2.12(a) we can see that with a larger τ1 the curve follows
adiabatically the solution branches.

It is worth noticing that, as shown in Fig. 2.12(c), the temperature of the free end
of the beam T (L, t) goes beyond the VO2 critical temperature only when the transition
between the lower states is effectively performed [red and black curves]. The two stable
solutions plotted in Fig. 2.12(a) correspond to a net heat flux which is locally convex in
the (Ts, T (L)) plane.

Cantilever as a thermal memory and a logic gate
A direct application of this thermomechanical bistability is the design of a thermal

memory or a logic gate. It is direct to see from a simple inspection of Fig. 2.11 that the
thermal state of cantilever can be associated with a “0" and “1" state, after appropriate
threshold temperatures have been defined. These states can be maintained as long as
no external perturbations induce a switch from one state to the other one. It is also
straightforward to see that such a system can be used to perform basic logic operations.
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Figure 2.13: (a) Graphical representation of the NOT logic gate exploiting the time modulation
of the substrate temperature Ts and the response of the free-end temperature of the cantilever
T (L, t). (b) Table of truth for a NOT logic gate for the bistable cantilever system.

More specifically, it can be exploited as a NOT gate identifying the control parameter Ts
as the input of the gate and T (L) as its boolean output. If we define the thermal states by
defining appropriate threshold temperatures we can label as thermal state ‘0’ the state
where Ts is close to Tm and as thermal state ‘1’ as the state where Ts is close to TM ,
analogously two states ‘1’ and ‘0’ when T (L) < Tc (larger bending) and T (L) > Tc
(smaller bending) can be defined [See Fig. 2.13(a)]. Comparing our system to the table
of truth in Fig. 2.13(b) we can deduce that the cantilever behaves like a NOT gate. In
fact, when Ts lies in its ‘0’ state, T (L) lies in its ‘1’, and viceversa [50]. The coupling of
such oscillators and their control with multiple input parameters could allow to define
more complex logical operations and thus to exploit potential waste heat generated in
macro or nano-size devices. With this respect, one should bear in mind that the main
factor limiting the use of this system is represented by its thermal inertia, indeed the
time needed to perform a logic operation by means of this cantilever is much larger that
the standard electronic counterpart.

2.7 Conclusions

In this chapter we have investigated the dynamical behavior of micro-sized phase-
transition cantilevers and demonstrated the possibility to perform information treatment
with these devices. In such a thermomechanical oscillator, we have demonstrated that,
out of thermal equilibrium, the temperature and the displacement associated with the
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beam may admit two stable solutions. We have shown that their profiles can be driven
by external heat flux and switched from one stable state to another. In the first sec-
tion of this chapter we reminded the general case of a many-body thermal system and
we discussed how such a system may admit more than one equilibrium (steady-state)
temperature distribution. Moreover, we discussed how this feature can be exploited in
order to process information. In Sec. 2.2 we introduced the Euler-Bernoulli momentum
conservation equation, governing the dynamics of a beam. We first focused on the case
of a cantilever and obtained its normal modes. In Sec. 2.3 we studied more in detail the
physics of a bimaterial cantilever, introducing its effective quantities and the bending
thermal moment due to the mismatch between the thermal expansion coefficients of its
two layers. In Sec. 2.4 we described our system consisting of a phase-change bima-
terial cantilever and we numerically solved the coupled differential system composed
of the Euler-Bernoulli and energy-balance equations, highlighting a thermomechanical
bistable behavior. In the last section, we finally discussed the potential of these systems
to make a basic logical operator, exploiting the bimaterial phase-change cantilever as a
thermal memory and a NOT logic gate.

Several questions remain open and will have to be explored at a fundamental level.
One of them is the thermal preparation of oscillators which plays a crucial role in the
dynamic evolution of the system. Another important perspective is the coupling of the
system with other oscillators in order to perform more complex logical operations.
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Chapter 3

Conduction-radiation coupling
between two closely separated solids

Usually, the net radiative power exchanged in near field between two solids, sep-
arated by a gap and held at uniform temperatures, is calculated using the PvH theory.
This theory neglects the coupling with other modes of transfer. Hence, it is assumed
that phonon transport is perfectly efficient within the two bodies, implying that they
uniformly thermalize at each time instant. In other words, no conduction-radiation cou-
pling between the solids is taken into account. Nevertheless, in reality, thermal pho-
tons are absorbed within the volume of each body and they dissipate their energy un-
evenly through them. As a consequence, the temperature profiles within each body are
generally not uniform and their spatio-temporal variation is driven by the conduction-
radiation coupling mechanism. A first attempt to describe this coupling has been pro-
posed in 2016 [49], but this phenomenological approach was limited to bodies of char-
acteristic length much larger than the mean free path of heat carriers, so that no ballistic
or partially ballistic transport could be taken into account. In this chapter we introduce
a general theoretical framework to describe the heat transfer between two slabs of arbi-
trary size, by taking into account the interplay between conduction and radiation. We
limit our study to systems in the thermodynamic limit where the temperature is uniquely
defined even at local scale and where the local thermal equilibrium is reached. More-
over, we consider only slabs with thicknesses much larger than unit cell of the crystalline
structure of materials, so that their dielectric permittivity [61] can be assumed to be size-
independent. The essence of this approach is based on the combination of Boltzmann’s
equation to deal with the heat carriers inside the solids for any heat-transport regime, and
fluctuational electrodynamics to calculate the radiative power that is locally dissipated
within each body.

In the first section of this chapter we identify the different heat-transport regimes
through the definition of an adimensional number, the Knudsen number, while in Sec. 2
we discuss the Boltzmann Transport equation and the fundamental relaxation time ap-
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Conduction-radiation coupling between two closely separated solids

proximation. In Sec. 3 we describe the physical system we will study and write the
equations which drive the steady-state temperature profile. Then we describe the nu-
merical method used to solve these equations. In Sec. 4 we introduce and describe the
conduction properties of 3C-SiC, in order to use this material as main component of our
slabs and we also introduce the Callaway method used to obtain the relaxation time of
this material. Finally, in Sec. 5 we analyze the equilibrium temperature profile obtained
through our numerical simulation and we compare the heat flux calculated using our
theoretical framework to the standard flux obtained using the PvH theory.

3.1 Description of phononic heat transport: ballistic
and diffusive regimes

In order to characterize the regime of conductive heat transport mediated by phonons
within a sample we introduce the Knudsen number, Kn, defined as follows

Kn =
Λ

L
=
vgτ

L
, (3.1)

where Λ denotes the mean free path of phonons, that is the average distance traveled by
a phonon between two successive scattering events, L the characteristic length of the
sample across which heat transport is considered, vg the modulus of the group veloc-
ity of phonons and τ the relaxation time, also known as scattering time scale. When
Λ � L the scattering events are rare and the phonons can travel between the sample
boundaries without scattering. This regime is the so-called "ballistic transport". In this
case Kn � 1. On the contrary, when Λ � L and therefore Kn � 1 the transport
regime is "diffusive". Indeed, in this case, the mean free path Λ is much smaller than
the characteristic length of the sample L and phonons scattering events are very frequent
along their trajectory. In this regime, the Fourier’s law describes the heat transport in-
side the sample. As a consequence of these two fundamentally different regimes, the
corresponding equilibrium temperature profiles present radically different features. To
illustrate this, we consider here the simple case of a single slab in perfect contact (i.e.
without thermal resistance) at both edges with two thermostats at temperatures T1 for
the left boundary and T2 for the right one. In the ballistic regime the temperature profile
is constant through the slab but undergoes two discontinuities at the boundaries. Ac-
tually, since no collision events take place between the boundaries, the energy density
remains roughly constant and the temperature as well. Its value can be derived from the
continuity of flux. In the blackbody limit, this temperature, also called the Casimir tem-
perature is 4

√
(T 4

1 + T 4
2 )/2 [93](see Fig. 3.1). In the diffusive regime the temperature

profiles becomes a straight line, solution of the Fourier’s law. Of course, between these
two regimes, a transition one (see Fig. 3.2) exists. In this case, the equilibrium temper-
ature profile is intermediate between the constant and the linear profile. It still presents
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.1: Equilibrium temperature profile for slabs of different thicknesses in perfect contact
with two thermostats at temperature T1 and T2.

Figure 3.2: Regimes of heat transport as a function of Knudsen Number.

the discontinuities at the interfaces but the jumps become less and less pronounced as
the size increases.

3.2 The Boltzmann Transport Equation

One of the methods to describe the non-equilibrium heat transport of heat carries
is based on the semiclassical Boltzmann Transport Equation (BTE). This equation can
be used to model conduction phenomenon by phonons in solids can be provided that
the quantum wave effects (coherence) can be neglected. In order to solve the BTE
associated with phonons we introduce the distribution function f(t, r,p), coming from
classical kinetic theory, such that f(t, r,p)d3rd3p is the number of phonons at time t
having coordinate in a volume of the (r,p) phase space d3rd3p around r and p. The
time evolution of this distribution function can be obtained by calculating its derivative
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df/dt. Using the decomposition in partial derivatives, we get

df

dt
≡ ∂f

∂t
+
dr

dt
·∇rf +

dp

dt
·∇pf (3.2)

where

∇rf =
∂f

∂x
x̂ +

∂f

∂y
ŷ +

∂f

∂z
ẑ, (3.3)

∇pf =
∂f

∂px
p̂x +

∂f

∂py
p̂y +

∂f

∂pz
p̂z. (3.4)

These changes along the phonons trajectory are due to all collision events they undergo.
Hence, we identify the time variation of the distribution function to changes due to these
scattering events. Then

∂f

∂t
+
dr

dt
·∇rf +

dp

dt
·∇pf =

(
∂f

∂t

)
c

(3.5)

where (∂f/∂t)c denotes the time variation of f in the phase space due to these scattering
events. Eq. (3.5) is known as Boltzmann Transport Equation. We can also rewrite the
BTE as a function of the phonon group velocity vg and in terms of wavevector k, using
the relations vg = dr/dt (for isotropic medium) and p = ~k, obtaining

∂f

∂t
+ vg ·∇rf +

F

~
·∇kf =

(
∂f

∂t

)
c

, (3.6)

where F = dp/dr is the external force acting on the particle. Since this equation is
generally complicated to solve, mainly because of the complexity of the collision term,
it has been shown [94] that to deal with conduction it is sufficient to limit to the well
known relaxation-time approximation. In this case the colliding term reduces to(

∂f

∂t

)
c

= − f − f0

τ(r,k)
, (3.7)

where τ(r,k) is the relaxation time, while f0 is the equilibrium distribution of the carri-
ers (Bose-Einstein in the case of phonons). This approximation is valid only in the case
of elastic scattering. Despite that, this approximation is widely used even in the case of
inelastic scattering [94]. In order to illustrate the physical meaning of relaxation time we
consider an example in which we neglect the spatial non-uniformity of the distribution
function. In this case, Eq. (3.7) becomes

∂f

∂t
= −f − f0

τ
, (3.8)
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3.2 The Boltzmann Transport Equation

Figure 3.3: Normal process (N-process) and Umklapp process (U-process). While the N-
process conserves the phonon momentum, the U-process changes phonon momentum.

whose solution is
f − f0 = Ce−t/τ . (3.9)

Hence, we see that the time τ is a measure of how long the phonon takes, from a non
equilibrium system, to relax back to equilibrium, thanks to colliding events. This time
τ can be calculated using the Matthiessen rule [94], i.e.

τ−1 =
∑
j

τ−1
j , (3.10)

where τj is the time associated with a specific scattering mechanism and the sum is
made over all of them. In order to use the Matthiessen’s rule we have to assume that
all these mechanisms are independent. In the relaxation time approximation, the BTE
reads

∂f

∂t
+ v ·∇rf +

F

~
·∇kf = −f − f0

τ
. (3.11)

Scattering mechanisms of phonons
A main part of the phonon scattering is generally due to the scattering of phonons

between themselves. Among the colliding events involving three phonons, these col-
lisions often cause a merging of two phonons into a third, or a splitting of a single
phonon into two phonons. The three phonons-scattering process can be either normal
(N-process) or Umklapp (U-process) as shown in Fig. 3.3. For the N-process the third
phonon generated by the collision conserves both the energy and the direction of the
two original phonons, which means

k1 + k2 − k3 = 0. (3.12)
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Hence, in the reciprocal lattice, the k3 wavevector lies in the first Brillouin zone. The
relaxation time due to N-process can be modelized as follows [95, 96]

τ−1
n = CωT 4, (3.13)

where C is a constant that depends on the material. In the umklapp process, thanks
to the presence of an extra reciprocal lattice wavevector, the net direction of phonon
propagation changes creating resistance to the heat flow, i.e.

k1 + k2 − k3 = G, with G 6= 0. (3.14)

As a consequence, in this latter case, the wavevector k3 points outside the first Brillouin
zone. Without the contribution of the umklapp process and anharmonics process, the
thermal conductivity of a crystal would remain infinite. An approximate expression of
the relaxation time, based on the umklapp process has been derived by Klemens [95]
and depends on the frequency ω as

τ−1
u = Be−TD/bTT 3ω2. (3.15)

Here B and b are constants which depend on the material, while TD is the Debye tem-
perature. In general, if resistive processes dominate, the normal relaxation time can be
disregarded [96]. Since the umklapp scattering is proportional to ω2 it thus dominates
over the normal processes, which depend linearly on frequency.

Another scattering mechanism for phonons is due to the presence of defects inside
crystal [95, 97]. The relaxation time related to this kind of scattering process obeys the
Rayleigh law

τ−1
I = Aω4, (3.16)

whereA is a constant depending on the material. The last process is the scattering on the
boundaries, which is sometimes included in the total relaxation time. This contribution
takes the form [95, 96]

τ−1
b =

bsvg
L
. (3.17)

where L is the characteristic length of the sample, while bs is a shape factor.

Recovering the Fourier regime
Here we study the heat transport in the limit of diffusive regime and we show that

we recover, starting from the BTE, the usual Fourier’s law which drives the spatial
evolution of the temperature inside a bulk material. We assume that that the system is
close to equilibrium and we introduce a deviation function g with respect to equilibrium
distribution f0, i.e.

g = f − f0. (3.18)
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3.2 The Boltzmann Transport Equation

Using this function g, in the case in which no external force F is present, the BTE reads

∂g

∂t
+
∂f0

∂t
+ vg ·∇rf + vg ·∇rg = −g

τ
. (3.19)

In steady-state regime the two first term vanish while close to equilibrium the gradient
of the deviation function is negligible (g is a smooth function of the position). In this
case, the distribution function reduces to

f = f0 − τ vg ·∇rf0. (3.20)

In order to deduce from the BTE the Fourier’s law, we recast this expression in term of
temperature gradient as follows

f(r,k) = f0 − τ
df0

dT
vg ·∇rT (t, r). (3.21)

Beside, we can calculate the net conductive heat flux at any point r as

Φcond(r) = (2π)3
∑

p={1,2}

[∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkzvg~ωf

]
, (3.22)

where the sum is over the polarizations. By transforming the integration over all wavevec-
tors into an integration over all frequencies and all solid angle and by using vg = ∇kω,
we can transform Eq. (3.22) using a spherical coordinate system, into

Φcond(r) =
∑

p={1,2}

∫ ωmax

0

dω

∫ 2π

0

dϕ

∫ 1

0

dµvg~ωf(r,k)
D(ω)

4π
, (3.23)

where

D(ω) =
1

2π2

( ω
vg

)2
∣∣∣∣dkdω

∣∣∣∣ =
ω2

2π2v3
g

(3.24)

is the density of states and ωmax is a cutoff frequency, and µ = cosθ. In the simple case
of one dimensional problem along the z-direction, the conductive flux takes the form

Φcond(z) =
∑

p={1,2}

∫ ωmax

0

dω

∫ 2π

0

dϕ

∫ 1

0

dµvgµ~ωf(r,k)
D(ω)

4π
. (3.25)

Substituting Eq. (3.21) in the last expression for the heat flux, we obtain (removing for
the sake of simplicity the explicit dependence of f on r and k)

Φcond(z)

=

∫ ωmax

0

dω

∫ 2π

0

dϕ

∫ 1

0

dµvgµ~ω
[
f0 − τ

df0

dT
vg ·∇rT (t, r)

]D(ω)

4π

= −1

2

dT

dz

∫ ωmax

0

dω

∫ 1

0

dµτv2
gµ

2~ωD(ω)
df0

dT
.

(3.26)
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This expression can be easily recast into a Fourier-like form

Φcond(z) = −κdT
dz

(3.27)

where the thermal conduction κ is given by

κ =
1

2

∫ ωmax

0

dω

∫ π

0

dθτv2
gCω sin θ cos2 θ, (3.28)

in which we have introduced the specific heat per unit frequency Cω = ~ωD(ω)df0/dT .
If we consider the case in which vg and τ are isotropic, Eq. (3.28) reduced to

κ =
1

3

∫
dωτv2

gCω. (3.29)

Specular and diffuse reflection

Figure 3.4: Graphical representation of the specular and the diffuse reflection.

In order to solve the BTE, we need to impose boundary conditions for each edge
of our sample. In fact, when a phonon hits a boundary in contact with vacuum, it
is reflected back into the sample. This reflection phenomenon can be classified into
three types: specular or mirror-like, partially specular and diffuse reflections. For our
scope, we focus only on the two limit cases (see Fig. 3.4). Specular reflection describes
a mirror-like reflection (only the component orthogonal to the boundary is inverted),
while the diffuse one allows us to describe the case in which phonons strike a surface
and are equally scattered in all direction. In our study we consider the two following
boundary situations:

• the sample is perfectly in contact with a thermostat;

• the edge of the sample is in front of a vacuum gap.
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Figure 3.5: Geometry of the system. The left (right) slab lies in the interval −L ≤ z ≤ 0
(d ≤ z ≤ L + d) and its temperature profile is T1(z) [T2(z)]. The left (right) slab is in contact
at the left (right) boundary z = −L (z = L+ d) with a thermostat at temperature T1 (T2).

In the first case, in order to allow the thermalization of the sample, we need to impose
the diffuse reflection. More specifically, since the presence of a thermostat fixes the
temperature at the edge, this physically means that each time a phonon hits the boundary
surface the presence of the thermostat imposes the Bose-Einstein distribution function
corresponding to its temperature, i.e.

f(t, zb, µ) = f0(Tb), (3.30)

where zb and Tb denote the position and the temperature of the boundary. Imposing
this condition, after the collision the distribution is isotropic as expected by the diffuse
reflection. In the second case, considering the surface as perfectly reflecting (no rough-
ness), we can use the specular reflection in order to describe the mechanical action of
the edge. Mathematically, the specular reflection can be expressed as

f(t, zb, µ) = f(t, zb,−µ). (3.31)

3.3 Energy balance

The system we consider in this chapter is composed of two slabs of equal thickness
L, as sketched in Fig. 3.5, assumed to be perfectly in contact with two thermostats at
temperatures T1 and T2, respectively. These two slabs are separated by a subwavelength
vacuum gap of size d. We assume the thickness of this gap larger than the tunneling
distance of electrons and acoustic phonons [36,37,98–100], so that the slabs thermalize
only by exchanging heat by radiation in near-field regime. In these conditions, the first
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equation of the system concerns the internal energy density u within these bodies which
must obey to the energy conservation equation as follows [51]

∂u(z, t)

∂t
= Φrad(z, t) + Φcond(z, t), (3.32)

where Φrad denotes the radiative power locally dissipated per unit volume within a given
body and coming from the other one, while Φcond is the conductive power per unit vol-
ume around the point r, respectively. The latter can be calculated as the divergence of
conductive flux in Eq. (3.22). Concerning the calculation of the radiative power, we
start by neglecting the energy exchanged between parts of the same slab, assuming that
this contribution is negligible with respect to conduction. The power Φrad,1 (resp. Φrad,2)
dissipated in the left (resp. right) body and associated with the sources in the other body
can be calculated from the net radiative flux ϕrad,1 (resp. ϕrad,2) using the statistical av-
erage 〈S(r, ω)〉 = 2 Re〈E(r, ω)×H∗(r, ω)〉 of the Poynting vector spectrum at point r
as

Φrad,k(r) = −
∫
dω∇ ·ϕrad,k(r, ω). (3.33)

According to the fluctuational-electrodynamics theory [2], the contribution to the Poynt-
ing vector coming from the sources located in the left or right body reads

〈S1,2
m (r, ω)〉 = i

ω2

c2
ηmjl

∫
R,L

dr′ε′′(r′, ω)Θ[T (r′), ω] [GEEj,l G
EH∗
m,l −GEH∗j,l GEEm,l ], (3.34)

where r is the point where the Poynting vector is calculated, while r′ is evaluated in all
points inside the source (2 or 1). In Eq. (3.34), ηmjl are the components of Levi-Civita
tensor and m, j and l are referring to the three Cartesian coordinates, Θ(T, ω) is the
mean energy of a Planck oscillator at temperature T , ε′′ the imaginary part of the per-
mittivity in the emitting body while GEE = GEE(r, r′) and GHE = GHE(r, r′) are the
full electric-electric and electric-magnetic dyadic Green tensors at frequency ω [101],
taking into account all scattering events within the system between the emitter and the
point where energy is dissipated. When calculating the monochromatic net radiative
power (including both the power received by the other body and the one emitted by the
body itself) appearing in Φrad dissipated at position r, we use Eq. (3.33) [by taking the
divergence of Eq. (3.34)] and finally replace Θ[T (r′), ω] by Θ[T (r′), ω] − Θ[T (r), ω]
in order to take into account the power emitted by the element located at r and ensure
vanishing energy exchange at thermal equilibrium. By neglecting the contribution of
propagative photons we obtain

Φrad(z) =
2

π2

∑
p

∫ +∞

0

dω

∫ +∞

ω
c

dk k e−2Im(kz)dG(z, ω)

×
∫ δ

0

dz′
(
f0[ω, T (z′ + d)]− f0[ω, T (−z)]

)
H(z′, ω).

(3.35)
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G(z, ω) andH(z, ω) are functions which depend on the optical properties of slabs which
have the following expressions [49]

G(z, ω, k) = Im[ρ(z + L)]|u(1,23)u(3,2)τ(−z)|2,

H(z′, ω, k) = |τ(z′)u(z′, L− z′)|2
[
Re
[
ρ(L− z′)

]
Re
(
kzm

1 + r2

1− r2

)
−
(

1 + |ρ(L− z′)|2
)

Re
( kzmr

1− r2

)]
,

(3.36)

where

ρ(x) = r
1− e2ikzmx

1− r2e2ikzmx
, τ(x) =

(1− r2)eikzmx

1− r2e2ikzmx
, u(x, y) = [1− ρ(x)ρ(y)]−1,

u(3,2) =
[
1− ρ(−z)ρ(L)e2ikzd

]−1
,

u(1,23) =
{

1− ρ(z + L)
[
ρ(−z) + τ 2(−z)ρ(L)e2ikzdu(3,2)

]}−1

,

(3.37)

r being the ordinary Fresnel coefficients for the two polarization, and kzm the z-component
of the wavevector inside the medium.

To deal with the phonons heat transport inside the slab, we must also solve the BTE
for the distribution function fp of phonons under the usual relaxation time approxima-
tion introduced in Sec. 3.2,

∂fp(ω, µ, z, t)

∂t
+ vg,p ·∇fp(ω, µ, z, t) = −fp(ω, µ, z, t)− f0[ω, T (z, t)]

τp[ω, T (z, t)]
, (3.38)

for each polarization state p. It is worth noticing that the Eqs. (3.32) and (3.38) are cou-
pled because of the dependence of the conductive power Φcond on the non-equilibrium
distribution function at each moment t and each point z, and also because the radiative
power Φrad depends on the two temperature profiles T1(z, t) and T2(z, t).

Numerical method

In order to solve the system of Eqs. (3.32) and (3.38) and to obtain the equilibrium
temperature profiles within each slab, we use an iterative process, and the control angle
discrete ordinates method [102]. To this aim, we discretized all the variables of the
system, namely the spatial coordinate z, the angular frequency ω and the angle θ that
the group velocity creates with the z−axis (through the discretization of the variable µ).
It is convenient to chose a non-uniform spatial discretization in order to take into account
the almost surfacic dissipation of the radiative power in the case of polar materials, such
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as SiC. Moreover, we transform all the continuous functions to discretized ones, using
the following notation

fp(ω, µ, z, t)→ fp(ωi, µj, zl, tm)→ fmp,i,j,l,

T1(z, t), T2(z, t)→ Tml ,

vg,p(ω)→ vg,p(ωi)→ vp,i,

τp[ω, T (z, l)]→ τp(ωi, T
m
l )→ τmp,i,l,

f0[ωi, T (z, t)]→ fm0,i,l.

(3.39)

First of all we distinguish the case in which cos θ > 0, i.e. µ > 0, which means that
the phonons are propagating in the positive direction along the z-axis, from the case in
which, instead, µ < 0. In the first situation, since phonons are propagating from the
left to the right, we can only perform the spatial discretized derivations backward since
we can know only the distribution function at the previous point of phonon path. The
discretized system for µ > 0 readsf

m+1
p,i,j,l =

[
1 + dt

(
vp,iµj

zl − zl−1

+
1

τmp,i,l

)]−1[
fmp,i,j,l,m + dt

(
vp,iµj

fm+1
p,i,j,l−1

zl − zl−1

+
fm0,i,l
τmp,i,l

)]
,

u(Tm+1
l ) = u(Tml ) + dt[Φrad,l({Tml }) + Φcond,l({fmi,j,l})].

(3.40)
Instead, for µ < 0 we perform the discretized spatial derivation forward, obtainingf

m+1
p,i,j,l =

[
1 + dt

(
− vp,iµj
zl+1 − zl

+
1

τmp,i,l

)]−1[
fmp,i,j,l,m + dt

(
−vp,iµj

fm+1
p,i,j,l+1

zl+1 − zl
+
fm0,i,l
τmp,i,l

)]
,

u(Tm+1
l ) = u(Tml ) + dt[Φrad,l({Tml }) + Φcond,l({fmi,j,l})].

(3.41)
As initial condition for the temperature, we impose that the profiles within each slab
are linear and equivalent to the average temperature at the edge of each slab facing the
vacuum gap, i.e.

T1(0, z) =
T2 − T1

2L
z + Tavg and T2(0, z) =

T2 − T1

2L
(z − d) + Tavg (3.42)

where we introduced the average temperature Tavg = (T1 + T2)/2. These profiles corre-
spond to the temperature profiles driven by a purely diffusive process. We also impose
that the initial distribution function is the Bose-Einstein distribution [f(ω, µ, z, 0) =
f0(ω, Tk(0, z)) with k = 1, 2] both for the left and the right slab. Finally, we impose the
specular reflection in Eq. (3.31) for the edges in front of the vacuum gap and the diffuse
one in Eq. (3.30) for the boundaries in contact with the thermostats. At each step of
iterative process, we first update the distribution function fm+1

p,i,j,l and then, using the re-
sults, we calculate the radiative flux and the corresponding conductive power in order to
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Figure 3.6: (a) Phonon dispersion relation of 3C-SiC [103]. The dashed blue (red dot-dashed)
curve represents our fit for the longitudinal (transverse) acoustic branch. (b) Phonon group
velocity in 3C-SiC as a function of the frequency. The blue (red) curve corresponds to the
longitudinal (transverse) polarization of acoustic phonons.

use the internal energy conservation equation to obtain the new temperature profiles at
the new time step. Since we are looking for the steady-state solutions, our convergence
condition must be that the temporal derivative of the internal energy is almost zero, i.e.
∂u[T (z)]/∂t ≈ 0. For this reason, we continue the iterative process until the total flux
Φrad + Φcond is smaller than a prescribed value.

3.4 Phonon properties
To investigate the conduction-radiation coupling mechanism, we consider slabs made

of silicon carbide with a zincblende crystal structure (3C-SiC), by neglecting the
anisotropy of the crystal [104] and considering as phonon dispersion relation the one
in the direction [100], plotted in Fig. 3.6(a) [103]. Since the group velocity vg of the
optical modes is much smaller than the one of the acoustic modes [see Fig. 3.6(b)], we
assume that their contribution to heat transport can be neglected. In order to model the
acoustic modes, we perform two parabolic fits shown in Fig.3.6.

Callaway method for the relaxation time
In order to obtain the relaxation time for a material, we start from its bulk thermal

conductivity κ. Generally speaking, in fact, κ has the expression in Eq. (3.28) which
depends on the relaxation time τ . Performing a fit of the bulk experimental data of the
thermal conductivity, we can then deduce the expression of τ . In literature, two different
models to perform this fit for κ exist, the first one developed in 1959 is known as Call-
away method [106], while the second one of 1963 is due to Holland [107]. The main
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Figure 3.7: (a) Bulk thermal conductivity for 3C-SiC as a function of the temperature [105].
The black dots are the experimental points, the red curve is our fit. (b) Phonon relaxation time
in 3C-SiC as a function of the frequency at three different temperatures.

different between the two is that in Callaway model the relaxation time τ is supposed
independent on the polarization of the carriers, while this condition is removed in the
Holland method. In this sense, the Holland method corresponds to an improvement of
the first. For our purposes, we estimate that the simpler Callaway method is sufficient.
The expression that we use to fit κ is then the following

κ =
∑
p

∫ ωmax
p

0

~2ω2

6kBπ2T 2
kp(ω)2vg,p(ω)

e
~ω

kBT (e
~ω

kBT − 1)−2

τ−1(ω, T )
dω, (3.43)

and the expression for τ is

τ−1(ω, T ) = Aω4 +Bω2T 3 + C. (3.44)

where the term Aω4 represents the scattering by point impurities or isotopes, the term
Bω2T 3 includes the umklapp processes, and C represents the boundary scattering, as
introduced in the first section. The coefficientsA, B and C are then identified to recover
the correct dependence of κ with respect to the temperature, shown in Fig. 3.7(a) [105].
The optimal values obtained for these parameters are the following

A = 2.1237 · 10−6 s3,

B = 4.3970 · 10−12 s · K−3,

C = 1.3949 · 10−5 s−1.

(3.45)

The relaxation time τ as a function of the frequency ω for different temperatures is
plotted in Fig. 3.7(b), showing that the number of colliding events increases with the
temperature. Once we obtained the group velocity vg and the relaxation time τ , we
easily deduced the phonon mean free path Λ as

Λp(ω, T ) = vg,p(ω)τ(ω, T ). (3.46)
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3.5 Equilibrium temperature profile

In Fig. 3.8(a)-(b) we show the mean free path Λ of the longitudinal and transverse
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Figure 3.8: (a) Longitudinal phonon mean free path in SiC as a function of the frequency
for different temperatures. (b) Transverse phonon mean free path in SiC as a function of the
frequency for different temperatures.

phonons as a function of the frequency ω for different temperatures.
Using these functions to describe the 3C-SiC phononic properties, we can predict

the value of thermal conductivity κ as a function of thickness L and temperature T .
We first of all calculate the conductive heat flux ϕcond for the purely conductive case
of a single slab with a difference of temperature ∆T ≈ 1 K between the two edges.
Using the expression for the conductive heat flux in Eq. (3.25) and the Fourier’s law we
deduce the effective thermal conductivity κ. In Fig. 3.9(a) we plot κ as a function of
T for different thicknesses L showing that we are able to recover the bulk experimental
data shown with black point [105]. The strong dependence of the conductivity κ (and
thus in turn the relevance of radiative transfer with respect to conduction within each
slab) allows us to anticipate a strong dependence of coupling effects on this crucial
geometrical parameter.

3.5 Equilibrium temperature profile

In the previous paragraph we discussed the phonon properties in 3C-SiC, in partic-
ular its relaxation time τ and its dispersion relation. We can now use these quantities
to solve the discretized systems of coupled Eqs. (3.40)-(3.41). We first focus on the
derivation of temperature profiles in steady-state regime, whereas the dynamic process
(thermalization) will be discussed in the next chapter. In Fig. 3.10 we show the normal-
ized temperature

T1(z)− T1

T1(0)− T1

, (3.47)
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Figure 3.9: Thermal conductivity of SiC for different thicknesses as a function of temperature.
The black dots are the experimental points for bulk conductivity.

Figure 3.10: (a) Normalized temperature profile inside the left slab for different thicknesses and
a separation distance d = 1 nm. (b) Same as (a) for d = 5 nm.

as a function of the normalized coordinate z/L, being the ones in the right slab qualita-
tively similar. We perform the numerical simulation for separation distances d = 1 nm
and d = 5 nm and for different slab thicknesses L, in order to describe the thermal be-
havior for each conduction regime from the ballistic to the diffusive regime. From now
on, if not differently indicated, we chose T1 = 400 K and T2 = 300 K.

When the thickness is small (L = 10 nm) compared to the mean free path of phonons
(see Fig. 3.8) the regime of transport is ballistic. This is confirmed by the almost con-
stant temperature profiles, shown in Fig. 3.10 both for d = 1 nm and d = 5 nm. This
corresponds to the so-called Casimir regime for which the phonon do not undergo scat-
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3.5 Equilibrium temperature profile

Figure 3.11: (a) Radiative flux ϕrad within the left slab in a system of two 3C-SiC slabs of
thickness L = 10 nm and L = 5µm separated by a vacuum gap of thickness d = 1 nm and
thermostated on their back sides at T1 = 300 K and T2 = 400 K. Inset: ratio between ϕrad and
the conductive flux ϕcond. (b) Focus on the normalized temperature profile of the left slab in its
first 1.5 nm for 10 nm, 5µm and 100µm of thickness.

tering events inside the film. In this regime the continuity of heat flux at the interface
leads to a discontinuity of the temperature close to the boundaries (z = 0 for the left slab,
z = L + d for the right slab) where the slabs are put in contact with a thermostat. The
situation is different close to the internal interfaces facing the vacuum gap, where we
note a sharp but continuous temperature variation. In these regimes, phonons interact
with photons through the near field heat exchange. In this sense, we are not anymore in
a ballistic regime. As shown in Fig. 3.11(a) where the radiative heat flux as a function
of the coordinate z is represented, this sharp temperature variation corresponds to the
region where almost all the radiative energy carried by evanescent photons is dissipated.
This corresponds to the zone where the radiation-conduction coupling effectively takes
place. Moreover, as shown in the inset of Fig. 3.11(a) we see that in this region the radia-
tive flux surpasses the conductive flux by two orders of magnitude close to the interface.
Therefore, the phonons cannot cool down efficiently this region through their coupling
with the external reservoir. As a result, the slab is significantly heated up locally, close
to the exchange surfaces. On the other hand, beyond this region, the conductive flux
dominates the rapidly decaying radiative flux, so that the atomic lattice is thermalized
at the reservoir temperature thanks to the ballistic phonons.

For thick films of the order of the phonons mean free path (L > 5µm), the regime
of phonon transport is almost diffusive [see Fig. 3.14]. In this case, as in the ballistic
regime the radiative flux still dominates over the conductive one within a few nm from
the vacuum interface, as shown in the inset of Fig. 3.14(a). However, being this region
very small compared to the size of the sample, the temperature profiles is mainly linear
[see Fig. 3.14].

In Fig. 3.12 we show the absolute temperature profile in the left slab [T1(z)−T1] as a
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Figure 3.12: Steady-state temperature in the left slab for different thicknesses [10 nm (blue long-
dashed line), 5µm (red short-dashed line) and 100µm (black solid line)] at separation distance
d = 1 nm (a) and d = 5 nm (b), with T1 = 300 K and T2 = 400 K.

function of the normalized coordinate z/L. These figures allow first of all to understand
that the temperature gradient strongly depends on the thicknesses of the slabs. Indeed,
in the ballistic regime the maximum temperature gradient is much smaller with respect
to the diffusive case (L = 100µm), both for d = 1 nm and d = 5 nm. As a matter of
fact, in the diffusive case (L = 100µm) the maximum temperature gradient is around
40 K for d = 1 nm while its maximum value is around 8 K for d = 5 nm. While, in the
ballistic case, i.e. 10 nm, we get only ∼ 2 K for d = 1 nm and ∼ 0.5 K for d = 5 nm.
These results show that the the diffusive conduction regime allows a more efficient ther-
malization along the sample, creating a strong temperature profile. It is worth noting
that, comparing the profiles for d = 1 nm and d = 5 nm, while the qualitatively shape of
the profiles remains always similar, the overall temperature gradient decreases signifi-
cantly when increasing d, in accordance with the strong 1/d2 scaling of the near-field
radiative heat flux.

In order to distinguish more precisely the difference between two regimes, we focus
in Fig. 3.11(b) on the behavior of [T1(z)−T1]/[T1(0)−T1] really close to the left edge,
plotting this quantity in the first 1.5 nm from the contact point with the thermostat of the
first slab in the case of d = 1 nm. We see that the typical jump of the ballistic regime
is clearly visible for L = 10 nm and L = 5µm, but it completely disappears in the
diffusive regime (L = 100µm). Anyway, its amount becomes less and less relevant
compared to T1(0)− T1 when the thickness increases.

It is interesting also to study the behavior of the temperature maximum gradient
T1(0) − T1 as a function of the thicknesses L, which is shown in Fig. 3.13 for d =
1, 5, 10 nm. For d = 1 nm, at the beginning we have an increase of temperature at
the vacuum gap boundary which is almost linear, but, for L > 30µm the behavior
changes and the curve goes asymptotically to a saturation value close to 50 K coincid-
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Figure 3.13: Temperature variation T1(0)−T1 between the left slab and the thermostat temper-
ature of the left slab as a function of the slab thickness for several separation distances (blue for
d = 1 nm, red for d = 5 nm and black for d = 10 nm).

ing with half of the total temperature difference T2 − T1 between the two thermostats.
In simplified scenario of a purely surfacic radiative flux this saturation value corre-
sponds to the situation in which the radiative heat flux is minimized. For d = 5 nm and
d = 10 nm the increase in the temperature maximum gradient T1(0) − T1 is signifi-
cantly less pronounced, and for d = 10 nm a gradient is barely visible even for thickness
L = 500µm.

3.6 Limitations of the PvH’s theory in extreme
near-field regime

We now discuss how the main assumption of the PvH’s theory (perfectly conduc-
tive solids) fails to describe the heat exchange between two solids in extreme near-field
regime. To this aim, let us first discuss the impact of conduction/radiation coupling on
the value of radiative flux. We first focus on the spatial distribution of radiative flux
ϕrad within the left slab. The results predicted by the PvH theory for two slabs set at
uniform temperatures T1 = 300 K and T2 = 400 K are shown in Fig. 3.14(a) inside the
first 20 nm from the vacuum gap for L = 10 nm and L = 5µm for d = 1 nm. For
the considered thicknesses the flux is rapidly decaying and its value is almost the same
between the two thicknesses over the first 2 nm [108, 109]. In the inset we show the
ratio between the exact value of the flux (taking into account the radiation/conduction
coupling mechanism and then using the equilibrium temperature profile to perform the
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Figure 3.14: (a) Absolute value of the PvH flux within the left slab forL = 10 nm andL = 5µm
for a separation distance d = 1 nm. Inset: ratio between the exact radiative flux ϕrad and the
PvH prediction. (b - c) Radiative heat flux exchanged between two 3C-SiC slabs with respect
to their thickness for a separation distance of (a) d = 1 nm and (b) d = 5 nm. We show the
exact result (black line), the PvH one (red dashed line, uniform temperatures TL = 300 K and
TR = 400 K) and the modified PvH flux (blue long-dashed line, uniform temperatures equal
to the temperatures at the boundaries with the vacuum gap in the steady states resulting from
the coupling with conduction). Insets: absolute value of the error with respect to the PvH and
modified PvH approaches calculated as |ϕExact − ϕ|/ϕExact with ϕ = ϕPvH or ϕ = ϕMod. PvH.

calculation) and the PvH predictions. As expected from the study of the equilibrium
profiles, for L = 10 nm the PvH description is reliable (the increasing of temperature at
the vacuum gap boundary is almost negligible). On the contrary, in the case of higher
thicknesses, the radiative heat flux exchanged between the two solids is largely overes-
timated by using the PvH formalism, as a result of the conduction-induced temperature
profile.

We finally focus on the net radiative flux exchanged between the two slabs and
compare it to the flux predicted by the PvH theory when the two bodies are held at uni-
form temperature. More specifically, we compare the exact flux to the PvH one with
T1 = 300 K and T2 = 400 K, and to the PvH result using as slab temperatures the
values of the temperatures at the boundaries with the vacuum gap in the steady states
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derived from our approach [T1(0) for the left slab and T2(d) for the right one]. For the
latter we use the label modified PvH, since we are exploiting the PvH framework but
using the temperature obtained through our new approach. At 1 nm separation distance
[Fig.3.14(b)], we see that for slab thicknesses larger than about 1µm the discrepancy
between the PvH prediction and our theory increases dramatically. The relative error is
close to 5% when L = 1µm and scales as L2 beyond this thickness. In slabs of such
thicknesses the regime of heat transport becomes almost diffusive and the difference
with the PvH theory comes from the linear variation of temperature profile which sig-
nificantly reduces the temperature difference between the slabs. With thinner slabs the
difference between the exact and the PvH theory becomes less pronounced, despite the
temperature drop close to the internal interfaces highlighted previously. This is due to
the fact that the temperature within the slabs remains almost unchanged with respect
to the thermostat one. Nevertheless in these cases a relative error of about 2% per-
sists. Focusing on the modified PvH result, we note that it pretty well reproduces the
exact results for any slab thickness. This demonstrates that the heat transfer between
two solids in the extreme near field is indeed mainly a surface-interaction mechanism.
Nevertheless, while this is interesting from a fundamental point of view, we stress that
the modified PvH calculation cannot be obtained without a full solution of the problem
including the coupling mechanism. In Fig. 3.14(c) the case d = 5 nm is shown: with the
increasing of the vacuum gap, we see that for thin slabs (i.e. ballistic regime) the pre-
dictions of the PvH theory match perfectly well the exact calculation. As highlighted in
the previous section, in this case the radiative coupling between the two slabs is signifi-
cantly smaller than d = 1 nm so that the induced temperature gradient is much smaller
[see Fig. 3.12(b)]. In this scenario, we only see a discrepancy with respect to the PvH
results for large thicknesses, whereas the agreement with the modified PvH results is
almost perfect. It is also interesting to note that from large thicknesses the percentage of
error [Inset of Fig. 3.14(b)] for the PvH case has an asymptotic behavior due to the sat-
uration of absolute temperature already shown in Fig. 3.13. Moreover the comparison
of results plotted in Figs. 3.14(b) and (c) shows that for thins films the radiative flux fits
perfectly well the usual 1/d2 scaling law as predicted by the PvH theory. On the other
hand, for thicker films (i.e. when the deviation with the PvH becomes more significant)
this flux increases slower when the separation distance is reduced. This “saturation or
attenuation effect" induced by the radiation-conduction coupling is consistent with the
previous calculations [49].

3.7 Conclusions

In this chapter we introduced a general theory to describe heat exchanges between
two closely-spaced solids of arbitrary size taking into account the conduction-radiation
coupling between the two bodies, which is not included in PvH theory. We started by
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introducing in Sec. 1 and 2 the different heat-transport regimes through the definition of
a dimensionless number, the Knudsen number, and we discussed the Boltzmann trans-
port equation and the fundamental relaxation time approximation. We then wrote the
equations governing the system of two parallel planar slabs made of 3C-SiC showing
that the coupling produces an inhomogeneous temperature profile within each body, re-
sulting in a radiative flux which can differ significantly from the one predicted by the
PvH theory. Finally, we analyzed the equilibrium temperature profile obtained through
the numerical simulations and we compared the heat flux calculated using the new the-
oretical framework to the standard flux obtained using the PvH theory.

As a matter of fact, it has been shown that, for the case of a polar material such
as 3C-SiC, the deviation considering conduction-radiation coupling with respect to the
PvH theory is significant in the diffusive regime. Instead, concerning the case of met-
als, the deviation with respect to the predictions coming from the PvH theory is much
less significant. Indeed, in this case, the power exchanged by radiation in near-field
regime between the two solids is orders of magnitude smaller than between polar ma-
terials. Therefore, the coupling mechanism between conduction and radiation becomes
negligible and the temperature profile inside each solid is only driven by conduction.

This new theory can be relevant in order to model experiments exploring heat trans-
fer in the extreme near-field regime. In fact, it allows a better temperature and heat-flux
description at nanoscale and could find applications in the fields of nanoscale thermal
management, heat-assisted data recording (local heating) and nanoscale energy conver-
sion. On a theoretical level, the study of the conduction-radiation coupling in non-planar
geometry is an interesting prospect because it should make it possible to evaluate the
importance of this effect in experimental setups like microscope probes. The role played
by non-local electromagnetic effects also remains to be explored. Finally, ab-initio cal-
culations could be used to investigate the coupling mechanism in the crossover regime
between conduction and radiation.
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Chapter 4

Relaxation dynamics in the presence of
conduction-radiation coupling

The scope of this chapter is to study the relaxation dynamics in the presence of
conduction-radiation coupling and to compare this relaxation process to the reference
evolution coupling to the Polder and van Hove approximation (i.e. purely radiative heat
exchange). In fact, the cooling dynamics in the PvH case does not take into account the
transport of heat due to conduction within each slab. In this purely radiative case, the
slabs are assumed perfectly conducting so that at each instant the temperature profile in
each body remains uniform. In the first section we describe the physical system and the
boundary conditions, while in the second section we study the relaxation dynamics in
the reference case of the PvH approximation. In Sec. 3 we study the relaxation process
in the conduction-radiation coupling case. As a first approximation, we start by con-

Figure 4.1: Geometry of the system. The left and right slab lie in the interval −L ≤ z ≤ 0
and d ≤ z ≤ L + d, respectively, and interact through radiative exchange. Inside each slab,
heat spreads through conduction and the temperature profiles T1(z, t) and T2(z, t) are spatially
dependent. The second slab is assumed to be in contact at the right boundary at z = L+ d with
a thermostat at temperature T2.
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sidering the radiative heat flux as a purely surfacic term, focusing on the cases of two
polar slabs made of SiC or SiO2. We then study the relaxation process going beyond
the approximation of surfacic radiative flux, in the same configurations, considering the
establishment of a temperature profile within both slabs. Next we compare the numer-
ical results obtained for this last case to the analytical and PvH relaxation processes.
Finally, in the last part, we investigate the relaxation of two metallic slabs interacting
in the extreme near-field regime at distances where heat is mainly carried by means of
electron tunneling.

4.1 Physical system and boundary conditions

We study the relaxation dynamics of micron-sized objects separated by a vacuum
gap in the nanometer range, interacting by radiation in the near-field regime. We restrict
here, for the sake of clarity, to a system made of two slabs (Fig. 4.1) of the same mate-
rial and of same thickness L, which are separated by a distance d � λth, λth being the
thermal wavelength. At the beginning of the relaxation process both slabs have uniform
temperature profiles, T1(z, 0) = T2 + ∆T and T2(z, 0) = T2, respectively. The tem-
perature T2(L + d, t) at the right end of the second slab is held at value T2 through a
perfect contact with a thermostat while the left slab is free to interact in far field with an
external bath. However, since the two slabs are kept at subwavelength distance, the heat
exchanged with this bath can be neglected. From now on, if not differently specified, the
parameters that we consider are the following: T2 = 300 K, ∆T = 100 K, L = 100µm
and d = 1 nm [52].

Since no other thermostat is present in this system, it is clear that each part of it
will relax toward temperature T2. In the following we show that the relaxation time τ
needed to reach this equilibrium state can dramatically change when heat is carried by
conduction inside the slab, in comparison with the situation where each slab is assumed
to have an infinite thermal conductivity and heat exchange within the system is thus
purely radiative. This situation corresponds to a system where the usual assumptions of
the PvH theory are fulfilled. This situation actually does not allow the establishment of
a temperature profile within the slabs. As a first step in this study, in the next section
we will derive and describe the temporal evolution of temperatures in this reference
configuration.

4.2 Relaxation in the Polder and van Hove case

When the conductive transport within each slab is assumed to be perfectly efficient
(infinite conductivity), the temperature profile is uniform at any time t during the whole
relaxation process and the temperature evolution is only driven by radiative exchanges.
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4.3 Relaxation in the presence of coupling

Since the right slab is in contact with a thermostat, its temperature does not evolve. As
far as the temperature of the left slab is concerned, its evolution is described by the
following differential equationLρCp

dT1

dt
= −hR [T1(t)− T2],

T1(0) = T2 + ∆T,
(4.1)

in which ρ is the density of the material and Cp its specific heat capacity. Here we have
assumed that the initial temperature bias ∆T is sufficiently small so that the slab stays
close to thermal equilibrium during the entire relaxation process. Hence the radiative
heat exchanges can be linearized around the equilibrium temperature and we can use
a simple heat transfer coefficient hR to describe the radiative flux. It follows that the
solution of Eq. (4.1) reads

T1(t) = T2 + ∆T exp

[
− hR

LρCp
t

]
. (4.2)

Hence we see that the temperature decays exponentially with respect to time and the
relaxation time is τPvH = LρCp/h

R.

4.3 Relaxation in the presence of coupling
We now release some assumptions from the PvH theory by assuming that each slab

is not perfectly conducting anymore. As shown in Chap. 3, in this case we can limit
our investigation to systems with slab thicknesses much larger than the mean free path
of phonons (i.e. diffusive regime). Indeed, for thinner slabs the conduction regime
becomes quasi ballistic and we recover the results predicted by the PvH theory. In the
Fourier regime the temperature evolution inside each slab can be obtained by solving
the conduction-radiation coupled system

ρCp
∂Tk(z, t)

∂t
= −κ∇2Tk(z, t) + Φrad,k(z, t), k = 1, 2 (4.3)

in which Φrad,k is the radiative heat flux received by the elementary volume of slab k
at point z and coming from the other slab. This flux has been defined in Eq. (3.35).
The first term of RHS corresponds to the heat flux carried by conduction through the
slab. We show in Fig. 4.2 the normal component of Poynting vector as a function of the
penetration depth. We can clearly see that after 1 nm for SiC and after 10 nm for SiO2

the value is already reduced by an order of magnitude, as discussed in Chap. 3, showing
that the radiative transfer is manly surfacic. Thus a first approximation for the solution
of system in Eq. (4.3) can be obtained by considering the radiative heat transfer as a
surface term.
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Figure 4.2: The z-component of the Poynting vector as a function of the penetration depth
for the left slab, for SiO2 (purple), ZnS (blue) and SiC (black) for the case of T2 = 300 K,
∆T = 100 K and d = 1 nm.

Analytical method

In the approximation of surfacic radiative heat exchange the dynamical evolution
of the temperature profile can be solved analytically. In agreement with previous stud-
ies [49], we will assume that conductive channel is the dominant mode inside the slab
and thus neglect radiative heat exchange between portions of the same slab. More-
over, close to thermal equilibrium the flux exchanged between the two slabs can be lin-
earized and described by a radiative conductance hR, depending only on the right (left)
boundary temperature of the first (second) slab. By introducing the auxiliary functions
Fi(z, t) = Ti(z, t)− T2, the differential equations governing the temperature profiles in
both slabs read [52]



ρCp
∂F1(z, t)

∂t
= κ

∂2F1(z, t)

∂z2
,

ρCp
∂F2(z, t)

∂t
= κ

∂2F2(z, t)

∂z2
,

F1(z, 0) = ∆T, −L < z < 0,

F2(z, 0) = 0, d < z < L+ d,

F2(L+ d, t) = 0,

∂F1(−L, t)
∂z

= 0,

∂F1(0, t)

∂z
= −h

R

κ
[F1(0, t)− F2(d, t)],

∂F2(d, t)

∂z
= −h

R

κ
[F1(0, t)− F2(d, t)].

(4.4)
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In Eq. (4.4) the two initial conditions F1(z, 0) = ∆T and F2(z, 0) = 0 correspond to
the fact that the initial temperature profiles in the two slabs are uniform [T1(z, 0) =
T2 + ∆T and T2(z, 0) = T2]. The boundary condition F2(L + d, t) = 0 fixes the
temperature at T2 for the edge of the right slab in contact with the thermostat, while
∂zF1(−L, t) = 0 imposes a vanishing flux at each instant at the left end of the first slab
(adiabatic boundary condition). Notice that this condition is based on the fact that the
interactions in the far-field regime with the bath are negligible. The last two boundary
conditions at the slab interfaces in z = 0 and z = d ensure the flux continuity between
the two slabs. Using the separation of variables Fi(t, z) = Ai(z)Bi(t) we get

B′i(t)

αBi(t)
=
A′′i (z)

Ai(z)
= −γi, (4.5)

where we have introduced the diffusivity α = κ/(ρCp), and γi is a constant. By solving
these two ordinary differential equations, we get

Bi(t) = B0ie
−γiαt, (4.6)

and
Ai(z) = Ai1 cos(

√
γiz) + A2i sin(

√
γiz). (4.7)

The integration constants can be readily obtained by using the boundary conditions.
Notice first that, since these conditions must be verified at any time t, we must have

γ1 = γ2 = γ. (4.8)

From ∂zF1(−L, t) = 0 and F2(L+ d, t) = 0 we obtain, after renaming the constants

A1(z) = A cos[
√
γ(z + L)], A2(z) = B sin[

√
γ(z − L− d)], (4.9)

and 
−A√γ sin(

√
γL) = −h

R

κ
[A cos(

√
γL) +B sin(

√
γL)],

B
√
γ cos(

√
γL) = −h

R

κ
[A cos(

√
γL) +B sin(

√
γL)].

(4.10)

Thus 
[
hR

κ
cos(
√
γL)−√γ sin(

√
γL)

]
A+

hR

κ
sin(
√
γL)B = 0, ,

hR

κ
cos(
√
γL)A+

[
hR

κ
sin(
√
γL) +

√
γ cos(

√
γL)

]
B = 0.

(4.11)

Keeping the non-trivial solution of this system, we get

√
γL tan(2

√
γL) = 2

hRL

κ
. (4.12)
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Figure 4.3: Graphical solution of Eq. (4.12) for different materials whenL = 100µm, d = 1 nm
and ∆T = 300 K and T2 = 300 K.

Material hR (106 W ·m−2 · K−1) κ(W ·m−1 · K−1) hRL/κ

SiC 1.32 120 1.1
ZnS 1.99 16.7 11.9
SiO2 3.75 1.2 312.5

Table 4.1: Radiative conductance, thermal conductivity and the ratio hRL/κ for different mate-
rials. The parameters chosen are L = 100µm, d = 1 nm, and T = 300 K.

The resolution of this transcendental equation with respect to γ (graphically shown in
Fig. 4.3) results in an infinite set of solutions {γn} (n = 1, 2, . . . ) and allows to get the
temperature profiles in both slabs

T1(z, t) = T2 +
∞∑
n=1

Dn cos
[xn(z + L)

L

]
exp
[
−x

2
nα

L2
t
]
,

T2(z, t) = T2 −
∞∑
n=1

Dn tanxn sin
(xnz
L

)
exp
[
−x

2
nα

L2
t
]
,

(4.13)

in which we introduced the quantity xn =
√
γnL. In this equation appears the ratio

hRL/κ [through the solution of transcendental Eq. (4.12)] which represents a relative
measure of the efficiency of the radiative heat transfer with respect to the conduction. In
Tab. 4.1 we give this ratio for various materials supporting surface phonon-polaritons in
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4.3 Relaxation in the presence of coupling

the mid-infrared. These data indicate that SiO2 is probably the best material to observe
a deviation with respect to the PvH theory.

Finally, using the initial conditions, i.e. the third and the forth relations in the system
in Eq. (4.4), we get the system

∞∑
n=1

Dn cos
[xn(z + L)

L

]
= ∆T,

−
∞∑
n=1

Dn tanxn sin
[xn(z − L− d)

L

]
= 0,

(4.14)

along with the normalization relation

1

L

{∫ 0

−L
dz cos

[xn(z + L)

L

]
cos
[xm(z + L)

L

]
+

∫ L+d

d

dz tan(xn) tan(xm) sin
[xn(z − L− d)

L

]
sin
[xm(z − L− d)

L

]}
= δnm

4xn + sin(4xn)

8xn cos2(xn)
.

(4.15)

Its resolution gives

Dn =
8xn cos2(xn)

4xn + sin(4xn)

∆T

L

∫ 0

−L
dz cos

[xn(z + L)

L

]
, (4.16)

so that the temperature profiles read

T1(z, t) = T2 + 8∆T
∞∑
n=1

sinxn cos2 xn
4xn + sin(4xn)

cos
[xn(z + L)

L

]
exp
[
−x

2
nα

L2
t
]
,

T2(z, t) = T2 − 8∆T
∞∑
n=1

sin2 xn cosxn
4xn + sin(4xn)

sin
(xnz
L

)
exp
[
−x

2
nα

L2
t
]
.

(4.17)

To compare the relaxation dynamics in the presence of coupling to the predictions com-
ing from the PvH theory, we also calculate the spacial averaging of the temperature
profiles. From the analytical solutions (4.17) we straightforwardly obtain the average
temperature profiles

〈T1〉(t) = T2 + 8∆T
∞∑
n=1

sin2 xn cos2 xn
4xn + sin(4xn)

exp
[
−x

2
nα

L2
t
]
,

〈T2〉(t) = T2 + 8∆T
∞∑
n=1

sin2 xn cosxn(cosxn − 1)

4xn + sin(4xn)
exp
[
−x

2
nα

L2
t
]
.

(4.18)
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Relaxation dynamics in the presence of conduction-radiation coupling

The temperature profiles and their average values are given by the series expansions,
where a partial relaxation time τn = L2/(x2

nα) can be associated with each term. In
order to compare the global relaxation time in the radiation-coupling and the PvH cases,
we focus on the first term of the series: as a matter of fact, since x1 < xn and thus
τ1 > τn for all n ≥ 2, it is the dominant term of the series. For x < π/4 the following
relation is always satisfied

2x tan(2x) < 4x2. (4.19)

Considering the following equations

2x tan(2x) =
4hRL

κ
, (4.20)

and

4x′2 =
4hRL

κ
, (4.21)

we can deduce, using the inequality in Eq. (4.19), that the solution x1 of Eq. (4.20) is
always smaller than the solution x′ of Eq. (4.21), i.e.

x1 <

√
hRL

κ
. (4.22)

We can rewrite the relaxation time τn using the explicit form for the diffusivity α

τn =
L2ρCp
x2
nκ

. (4.23)

Using Eq. (4.22) we obtain

τ1 >
L2

x′2α
=
LρCp
hR

= τPvH, (4.24)

which means that the relaxation due to the first term of the series in Eqs. (4.17) is
slower than the relaxation for the PvH solution. Of course, this does not exclude that
the relaxation times due to the other terms of the series could be smaller with respect
to the PvH case and then that the conduction-radiation coupling could be faster than
the PvH evolution at the very beginning. Nevertheless, since the first term in any case
become dominant, the total conduction-coupling evolution is always slower that the
PvH one.

Numerical method
In the analytical approach we have assumed that the radiative exchanges were sur-

facic. To verify the validity of this approximation we solve here the problem by re-
leasing this constraint. To this aim we spatially discretize both slabs in N intervals, in
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4.3 Relaxation in the presence of coupling

Figure 4.4: Example of discretization for two the slabs. We choose a denser discretization close
to the boundaries with the vacuum gap in order to better describe the variation of the Poynting
vector. Each elementary slab exchanges heat conductively with the elementary slabs around it,
and radiatively with each elementary part of the other slab.

Figure 4.5: Discretization for temperatures in the first slab.

general not uniform (see Fig. 4.4). Each interval has thickness δi = zi+1 − zi, and the
temperature associated with this interval is Ti as shown in Fig. 4.5. In order to have more
points close to the boundaries, we decided to use a logarithmic point distribution. The
discretized differential equation for the temperature Ti of the first slab read (i ≤ 1 ≤ N
and j ≤ 1 ≤ N )

ρCp
dTi
dt
δi = −κ∇2Tiδi +

N∑
j

Φi,j, (4.25)

where Φi,j is the radiative heat exchanged between the element i of the left slab and the
element j of the right slab. An analogous equation is valid for the second slab.

In order to linearize the radiative heat flux, we work near to equilibrium, obtaining
the following expression

Φi,j ≈ −hRi,j(Ti − Tj). (4.26)

Once chosen the discretization shown in Fig. 4.5, we can use the approximation ∇2Ti =
∇2T [(zi + zi+1)/2] obtaining

∇2Ti ≈
1

zi+1 − zi

[
dT (zi+1)

dz
− dT (zi)

dz

]
, (4.27)
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where
dT (zi)

dz
≈ 2

Ti − Ti−1

zi+1 − zi−1

and
dT (zi+1)

dz
≈ 2

Ti+1 − Ti
zi+2 − zi

, (4.28)

which gives

∇2Ti ≈ 2
Ti+1(zi+1 − zi−1)− Ti(zi+2 + zi+1 − zi − zi−1) + Ti−1(zi+2 − zi)

(zi+1 − zi−1)(zi+2 − zi)(zi+1 − zi)
. (4.29)

Using this scheme the energy balance equation can be recast in the discrete form for
both slabs:

d

dt
T =

1

ρCδk
AT, (4.30)

where T is the vector containing the 2N temperatures and A is the matrix which cor-
responds to the discrete form of transport operators. The thickness of each discretized
interval has now the following form

δk = zk+1 − zk, 1 ≤ k ≤ N,

δk = zk+2 − zk+1, N + 1 ≤ k ≤ 2N.
(4.31)

Concerning the temperature vector T, the elements Tk with 1 ≤ k ≤ N are the tem-
peratures of the first slab while the remaining elements for N + 1 ≤ k ≤ 2N are
the temperatures of the second slab. We now build the expression for the coefficients’
matrix A, which can be easily described as block matrix

A =


A11 A12

A21 A22

 . (4.32)

The diagonal blocks are tridiagonal matrices, where the diagonal accounts for both ra-
diative exchange with the other slab and conductive flux within each slab, whereas the
remaining terms only describe the conductive exchange within each slab (each elemen-
tary portion of slab interacts by conduction with its closest neighbors). On the contrary,
the non-diagonal blocks describe the radiative flux from each element of a slab to a
given element of the other one. The explicit expression of the matrix coefficients can be
directly deduced from Eqs. (4.26) and (4.29). They read

A1,1 = −
N∑
j

hR1,j
δ1

+
2κ

z3 − z1

, AN+1,N+1 = −
N∑
i

hRi,1
δN+1

+
2κ

zN+4 − zN+2

, (4.33)
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Figure 4.6: (a) Comparison of the numerical (cyan dashed) and the analytical (black) average
temperature differences for two slabs of SiC, when T2 = 300 K and ∆T = 100 K for a sep-
aration distance d = 1 nm. The red dot-dashed line corresponds to the first term only of the
analytical solution. The green curve shows the exact time evolution which has been calculated
numerically. (b) Same representation for two SiO2 slabs.

A1,2 = − 2κ

z3 − z1

, AN+1,N+2 = − 2κ

zN+4 − zN+2

, (4.34)

AN,N = −
N∑
j

hRN,j
δ1

− 2κ

zN+1 − zN−1

, A2N,2N = −
N∑
i

hRi,N
δ2N

− 2κ

z2N+2 − z2N

, (4.35)

AN,N−1 =
2κ

zN+1 − zN−1

, A2N,2N−1 =
2κ

z2N+2 − z2N

, (4.36)

Ak,k = −
N∑
j

hRk,j
δk
− 2κ

zk+2 + zk+1 − zk − zk−1

(zk+1 − zk−1)(zk+2 − zk)(zk+1 − zk)
, for 2 ≤ k ≤ N − 1,

(4.37)

Ak,k = −
N∑
i

hRi,k−N
δk

− 2κ
zk+3 + zk+2 − zk+1 − zk

(zk+2 − zk)(zk+3 − zk+1)(zk+2 − zk+1)
,

for N + 2 ≤ k ≤ 2N − 1,

(4.38)

Ak,k+1 =
2κ

(zk+2 − zk)(zk+1 − zk)
, for 2 ≤ k ≤ N − 1, (4.39)

Ak,k+1 =
2κ

(zk+3 − zk+1)(zk+2 − zk+1)
, for N + 2 ≤ k ≤ 2N − 1, (4.40)

Ak,k−1 =
2κ

(zk+1 − zk−1)(zk+1 − zk)
, for 2 ≤ k ≤ N − 1, (4.41)

Ak,k−1 =
2κ

(zk+2 − zk)(zk+2 − zk+1)
, for N + 2 ≤ k ≤ 2N − 1, (4.42)
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Figure 4.7: Comparison between the time evolution of the average temperature in the left slab
and the time evolution of this temperature for a purely radiative (PvH) process. The black (red)
solid curve represents the SiO2 (SiC) coupled case, the black (red) dashed curve the PvH case.
The parameters are T2 = 300 K, ∆T = 100 K and d = 1 nm.

Ak,k′ =
hRk,k′−N
δk

, for 1 ≤ k ≤ N and N + 1 ≤ k′ ≤ 2N, (4.43)

Ak,k′ =
hRk′,k−N
δk

, for N + 1 ≤ k ≤ 2N and 1 ≤ k′ ≤ N. (4.44)

With the aim of verifying the surface approximation, in Fig. 4.6 we show the com-
parison between the average temperature, obtained from the analytical method and using
the exact numerical approach in the case of SiC and SiO2, performing the numerical sim-
ulation and the analytical calculation with the following parameters:
ρSiC = 3200 kg·m−3, Cp,SiC = 600 J·kg−1·K−1 while, for SiO2, ρSiO2 = 2650 kg·m−3,
Cp,SiO2 = 680 J·kg−1·K−1. For both materials, the approximation works pretty well
confirming that the radiative heat exchange can be seen as a surfacic phenomenon for
these choices materials. It is worth noticing also that after ∼ 2 ms the first term of
the series of the analytical solution becomes dominant and describes alone quite well
the temporal evolution. In the following we make a detailed comparison between the
relaxation process in the framework of the PvH theory and and the case in which the
conduction-radiation coupling is taken into account.

4.4 Relaxation dynamics in the presence of coupling:
comparison with a purely radiative process

In Fig. 4.7 we compare the temporal evolution of the average temperature 〈T1〉 for
the left slab obtained through the numerical method to the PvH evolution, both for SiC
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4.4 Relaxation dynamics in the presence of coupling. . .

and for SiO2 samples [52]. It can be noticed that the difference between the temper-
atures in a relaxation mechanism driven by a purely radiative (PvH) process and the
situation where conduction and radiation are coupled, is more pronounced for two in-
teracting SiO2 slabs compared to SiC slabs. As anticipated previously, this is due to the
fact that the thermal conductivities of SiC and SiO2 samples are strongly different. The
relatively small conductivity of SiO2 leads to a strong deviation from the PvH predic-
tions. Moreover, as shown in the inset of Fig. 4.7, we notice that the time evolution of
〈T1〉 − T2 follows an exponential behavior. However, the characteristic relaxation time
in the presence of coupling is significantly larger than for a purely radiative (PvH) relax-
ation. Unlike SiC, for SiO2 samples the temperature evolution (black solid curve) does
not follow an exponential decay at the beginning of relaxation process. Nevertheless,
after ∼ 2 ms the curve clearly becomes straight. the mathematical explanation for this
behavior can be given considering the analytical model introduced in Sec. 4.3. Actually,
after this preliminary time interval, the first term in the series (4.17) becomes dominant
with respect to all the others and then the temporal evolution follows an exponential
behavior. This is true of course also for the SiC case, but the first term becomes so
quickly dominant that we are not able to see at the millisecond scale a deviation from
the exponential decay. As shown in the inset of Fig. 4.7, the relaxation dynamics is
more than one order of magnitude slower in the presence of coupling. In conclusion, it
turns out that the coupling always acts as a thermal inertial mechanism.

Temperature profiles and ∆Tmax

In Fig. 4.8 (a)-(b) we show the temperatures profiles for the left and the right slabs,
respectively, for the case of SiC at different moments. As we can see, a non-negligible
temperature profile appears through the slabs because of the diffusion process. In
Fig. 4.8 (a) we also show for comparison the value of TPvH in the left slab at the same
moment (the temperature profiles in the right slab are not represented since they remain
constant at T2). In Fig. 4.8 (c)-(d) we show the same curves for the SiO2 samples. It can
be noticed that, also for this material a strong temperature profile is established within
each slab. Unlike SiC, in this case we do not represent the temperature T1,PvH for the
same instants since the decay of the temperature is dramatically faster in this case with-
out coupling. Indeed, in the absence of coupling the characteristic decay time would be
τPvH ' 0.05 ms. On the contrary, in the presence of coupling and taking x1 = π/4 (see
Fig. 4.3) as an approximation of the first solution of the transcendental Eq. (4.12), we
obtain a decay time τ1 ' 24 ms, 500 times larger than τPvH.

It is worth noticing that the temperature profiles of the second slab, both in the SiC
and in the SiO2 cases evolve in a non-monotonic way. Indeed, at the beginning of
the relaxation process the second slab at temperature T2 = 300 K receives heat from
the first, which is hotter. Then, after some time, since the first slab loses energy and

79



Relaxation dynamics in the presence of conduction-radiation coupling

-100 -80 -60 -40 -20 0
300

320

340

360

380

400

0 20 40 60 80 100
300

320

340

360

380

400

-100 -80 -60 -40 -20 0
300

320

340

360

380

400

0 20 40 60 80 100
300

320

340

360

380

400

Figure 4.8: (a) Temperature profile of the first slab for the SiC case for several instants. The
dashed lines correspond to the temperature in the PvH approximation. (b) Temperature profile
of the second slab for the SiC case for several instants. (c) Temperature profile of the first slab
for the SiO2 case for several instants. (d) Temperature profile of the second slab for the SiO2

case for several instants.

becomes colder, the second slab start to cool down toward the equilibrium temperature
T2.

In order to quantify the difference between the two relaxation processes, we intro-
duce the quantity

∆Tmax = max[〈T 〉(t)− TPvH(t)], (4.45)

which allows to quantify the deviation of temperature profiles in the presence of cou-
pling with the one we get in the case of a purely radiative thermalization process. Since
at the initial time and at the end of relaxation process the temperature profiles are iden-
tical, ∆Tmax(0) = ∆Tmax(t→∞) = 0. In Fig. 4.9(a)-(b) we represent ∆Tmax in the fist
slab for both SiC and SiO2 samples as a function of the distance d between the two slabs
for several thicknesses L. As expected, the discrepancy between the coupling and the
PvH case is less remarkable when the distance is larger, no matter the thickness. This is
due to the d−2 dependence of the near-field radiative heat flux. It is worth noticing that
for SiO2 samples we explored a range of distances larger with respect to the SiC case:
indeed, for the SiO2 case, we are able to notice a significant discrepancy between the
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Figure 4.9: (a) Maximum temperature difference between the average temperature in the cou-
pling case and the PvH case, as a function of the separation distance between the two SiC slabs
for several thicknesses. (b) Same as (a) for two SiO2 slabs. (c) Maximum temperature differ-
ence between the average temperature in the coupling case and the PvH case, as a function of
the separation distance between the two SiC slabs. (d) Same as (c) for two SiO2 slabs.

PvH and the coupling case for L = 500µm even for distances of the order of 100 nm
whereas for SiC samples we have almost the same ∆Tmax for d ' 10 nm. This is due
not only to the fact that, for the same temperature gradient and distance, the radiative
heat flux between the slabs is stronger for SiO2 with respect to SiC, but above all to a
lower efficiency of the conduction for glass compared to SiC (κSiO2 ≈ 0.01κSiC).

We now investigate the variation of ∆Tmax as a function of the thicknesses. In
Fig. 4.9(c)-(d) we show its behavior for several separation distances for SiC and SiO2.
Clearly, an increase of the thickness is related to an increase of ∆Tmax and then also of
the relaxation time of the system. It is important to stress that ∆Tmax cannot diverge,
and that its asymptotic value is ∆T , that in our specific configuration is 100 K. In or-
der to obtain a ∆Tmax ' ∆T for example for d = 1 nm we would need a sample with
L ≈ 1 mm and L ≈ 500µm for SiC and SiO2, respectively.
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Material hel (106 W ·m−2 · K−1) κ(W ·m−1 · K−1) helL/κ

Au (d ∼0.5 nm) 6.4 310 2.1
Au (d ∼0.2 nm) 9.5·102 310 306.5
Au (d ∼0.1 nm) 2.7·103 310 871

Table 4.2: Radiative conductance, thermal conductivity and their ratio helL/κ for Gold at dif-
ferent distances. The parameters chosen are L = 100µm and T = 120 K.
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Figure 4.10: Comparison between the time evolution of the average temperature in the left slab
in the presence of coupling between heat transport by electron tunneling and conduction inside
the slab and the time evolution of this temperature for process without coupling for gold. The
black (red, blue) solid curve represents the gold case for d = 0.1 nm (d = 0.2 nm, d = 0.5 nm)
coupled case, the black (red, blue) dashed curve the case without coupling. The parameters are
T2 = 120 K and ∆T = 160 K.

4.5 Conduction-radiation coupling between metals in
the extreme near field

Until now, we studied the relaxation process of polar materials interacting in near-
field regime. In this section we discuss the case of metals interacting in the extreme near-
field regime. Close to the contact (i.e. at subnanometric distance) heat is transmitted
mainly by electron tunneling [110]. Although the near-field radiative heat transfer still
exists at these separation distances, as shown in [110] this channel of heat transfer is
negligible with respect to the electronic channel. The tunneling of electrons can be
easily calculated using a simple approximation based on rectangular potential barrier.
Following Ref. [111] the potential takes the form V (d) = VeV(d) + EF , EF being the
Fermi energy level of the metal, and VeV(d) = V0 ln (1 + d/1Å) where V0 depends on
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the metal we consider [112]. It is worth noticing that the barrier becomes higher as the
distance d increases, as expected since the larger is the gap the weaker is the electron
tunneling. The transmission probability of T (Ez, d) through this bar reads [113]

T (Ez, d) =
4Ez(Ez − V )

4Ez(Ez − V ) + V 2 sin2[k2z(Ez, V )d]
(4.46)

where Ez = 1
2
mev

2
z is the kinetic energy due to the motion of electrons along the direc-

tion perpendicular to the slabs, k2z(Ez, V ) =
√

2me(Ez − V )/~ is the normal compo-
nent of the wavevector inside the vacuum gap and me is the electron mass. We stress
that the transmission coefficient depends on the size of the vacuum gap d and on the
height of the potential barrier V . Summing over all energies Ez direction normal to the
surface, the net electronic heat flux reads [111]

Φel(T1, T2, d) =

∫ ∞
0

dEzEz[N1(Ez, T1)−N2(Ez, T2)]T (Ez, d), (4.47)

where

Ni(Ez, Ti) =
mekBTi
2π2~3

ln

[
1 + exp

(
−Ez − EF

kBTi

)]
with i = 1, 2, (4.48)

indicates the number of electrons with energy between Ez and Ez + dEz across a unit
area per unit time. By calculating the heat flux using this formalism and getting the
correspondent thermal conductance hel which reads

hel(T, d) = lim
∆T→0

∣∣∣∣∣Φel(T + ∆T, T, d)

∆T

∣∣∣∣∣ =

∫ ∞
0

dEzEz
∂N(Ez, T )

∂T
T (Ez, d), (4.49)

we study as for the other materials the ratio helL/κ for three subnanometric values of
distances, d = 0.1 nm, d = 0.2 nm and d = 0.5 nm. We perform this simulation in
the case of gold, choosing, in agreement with [110], the parameters T2 = 120 K and
∆T = 160 K, and taking EF = 5.53 eV and V0 = 1.25 eV. The results are summarized
in Tab. 4.2. Comparing these values to the ones obtained for SiC, ZnS and SiO2 in
Tab. 4.1, it can be deduced that the comparison between the temporal evolution of the
temperature using the analytical model and the scenario ignoring coupling (the analo-
gous of PvH regime for electrons) should be equally or more interesting. In Fig. 4.10
we compare in the gold case the temperature evolution using the analytical method de-
veloped in Sec. 4.3 to the one obtained without coupling. The first thing to notice is that
the time-scale is much smaller with respect to the polar materials cases (at least a differ-
ence of one order of magnitude): this is due above all to a larger thermal conductance
and density for gold (ρAu = 19300 kg·m−3, Cp,Au = 128 J·kg−1·K−1). Concerning the
comparison between the cases with or without coupling, as expected, the difference in
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relaxation time is modest for d = 0.5 nm while it is strongly remarkable for d = 0.1 nm
and d = 0.2 nm (τ1/τnc ∼ 1415.7 in both cases), τ1 being larger than τnc of around
three orders of magnitude. Indeed, the analytical curves for these distances and then the
temporal evolution in the coupling case are almost indistinguishable since the solutions
for xn of Eq. (4.12) are really close to asymptotic values as in the case of SiO2.

4.6 Conclusions
In this chapter we studied the relaxation dynamics of a system of two micron-sized

slabs in the presence of conduction-radiation coupling, and we compared our results
to the case without coupling, in which the establishment of a non-uniform temperature
profile within each slab is prevented (perfect heat-conductor approximation). First we
considered the radiative heat transfer as a purely surface phenomenon and we have
performed an analytical description of heat transfer between two slabs of polar material.
This preliminary study has revealed that the conduction-radiation coupling slows down
the thermal relaxation of slabs. Then we considered the general case where the radiative
energy emitted by each slab is dissipated in the heart of the other slab so that a non-
uniform temperature profile can be established in both slabs. The numerical resolution
of relaxation process in this case showed a good agreement with the analytical model,
above all at the first instants of relaxation process, demonstrating in this time interval the
surfacic nature of radiative heat exchanges. Moreover, it confirmed that the conduction-
radiation coupling slows down the thermalization of slabs in near-field regime. The
relaxation time can be more than one order of magnitude larger than the relaxation time
predicted by the PvH theory.

These results show that it is necessary to take into account the role of conduction,
since it strongly impacts the evolution process. This is true both in scenarios including
very common polar materials for near-field heat transfer studies, such as SiC and SiO2,
and for metals for subnanometric distances where electrons are mainly at the origin of
heat flux. A further step in the study of conductive-radiation coupling could be to extend
this analysis to the case of materials in which the approximation of surfacic radiative flux
is no longer satisfied, in order to understand if also in this situation the cooling process
can be affected by taking into account the conduction process.
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Conclusions

In this thesis we faced the problem of the coupling of radiative heat transfer in near-
field regime with other heat-transfer mechanisms, such as conduction, and we studied
the dynamics of mechanical oscillators driven by radiative heat transfer in the near-
fled regime. We showed that these couplings are at the origin of non-trivial physical
effects, such as a strong reduction of flux exchanged between two solids in the crossover
regime between conduction and radiation, or a thermomechanical bistable behavior in
oscillators based on phase-change materials.

In Chap. 1 we reminded the main results predicted by fluctuational-electrodynamics
theory to describe the radiative heat exchange between two bodies. Next, we gave the
existence conditions of surface waves for planar surfaces. Finally, we described the main
features of radiative heat transfer between polar materials, metals and phase-change ma-
terials, such as Vanadium Dioxide (VO2), a material which undergoes a first-order tran-
sition, having dielectric properties for temperatures lower than its critical temperature
and metallic ones beyond this critical value.

In Chap. 2 we studied the dynamics of a thermomechanical oscillator made of a
phase-change bimaterial cantilever, in order to exploit its features to perform thermal
information treatment. To this aim, we considered a micrometric beam, with an up-
per layer of VO2 and a bottom layer of SiO2, exchanging heat radiatively in near field
with a silica substrate and in far field with an external bath. We addressed the problem
of the coupling between the conduction within the beam, the near-field radiative heat
exchange between the substrate and the cantilever, and finally its mechanical oscilla-
tions due to the mismatch between the thermal expansion coefficients of the two layers.
We highlighted the presence of two equilibrium profiles both for the displacement and
the temperature of the beam, demonstrating so the bistability of thermomechanical os-
cillators. Investigating the existence conditions of this bistability as a function of the
different geometrical parameters, we identified the optimal parameters to observe sig-
nificantly different equilibrium solutions. We finally exploited this peculiar behavior to
design either a thermal memory or a thermal NOT logic gate. Although preliminary,
this study should pave the way to more general investigations of coupled oscillators
driven by near-field interactions. Many problems remain to be explored. First the ther-
mal preparation of oscillators, playing a fundamental role in the dynamical evolution of
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the system should be investigated in more details. Moreover, the potential of multiple
coupled oscillators in order to perform more complex logical operations would be an
important further step for the thermal information treatment.

In Chap. 3 we considered the fundamental problem of the validity of the standard
Polder and Van Hove (PvH) theory to describe radiative heat exchanges in extreme near-
field regime where the transition to heat conduction should take place. We investigated
the transfer between two planar materials by taking into account the heat transfer me-
diated by conduction inside the interacting samples. In the standard PvH theory, these
two bodies are assumed to be perfectly conductive, implying that the temperature within
each sample is uniform and equal to the one of the possible thermostats they are in con-
tact with. In the theory we introduced in this work, the heat transport within each solid
is studied with the Boltzmann transport equation for phonons, so that all regimes of
transport from the ballistic regime (solids smaller than the mean free path of phonons)
to the diffusive regime (thick solids with respect to phonon mean free path) can be
considered in the conduction-radiation coupling mechanism. Studying the temperature
profiles within each slab and the corresponding radiative heat flux between the two in
the extreme-near field regime, we showed that a non-negligible temperature variation
exists only in the quasi-diffusive or diffusive heat-transport regime cases. This implies
a strong deviation with respect to the PvH theory predictions. We showed a relative
error between the heat flux calculated by means of the PvH theory and the exact flux
which can reach values of the order of 1000% for the configuration of two slabs of
500µm at 1 nm of distance. We also demonstrated that the near-field heat transfer be-
tween two solids is essentially a surfacic phenomenon. This allowed us to anticipate a
simplified approach to deal with heat exchanges at subwavelength scale. From an ex-
perimental point of view the study of the conduction-radiation coupling in the case of
non-planar geometries would be an interesting prospect since it should allow to evaluate
the importance of this effect in experimental setups like microscope probes. Finally, a
reinterpretation of some experimental results could be made to take into account the
conduction-radiation coupling.

In Chap. 4 we addressed the problem of the dynamical evolution of a system of two
slabs, one of which is in contact with a thermostat, separated by a vacuum gap in the
extreme near-field regime. First, we studied the case in which the slabs are made of
SiC or SiO2 separated by a vacuum gap in the nanometer range and finally considered
the relaxation of metallic (Au) samples mediated by electron tunneling at subnanomet-
ric distances. Once again, we compared our results to the ones obtained through the
simplified theoretical framework ignoring conduction, both through an approximate an-
alytical approach considering the heat exchange through the vacuum gap as a purely
surfacic phenomenon and by means of numerical simulations. We demonstrated that,
counterintuitively, the presence of conduction within the samples always causes a strong
slowdown in the temporal evolution of the temperature profile. The associated relax-
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ation time reaches values up to three orders of magnitude larger with respect to its no-
coupling counterpart. A further step in the study of conduction-radiation coupling could
be to extend this analysis to the case of materials in which the local optical response is
no longer satisfied, and investigate how non-local effects affect the cooling process. Fi-
nally, a full ab-initio treatment of heat exchanges could be employed to encompass all
coupling mechanisms at nanometric and subnanometric scale.
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Titre: Couplage conduction-rayonnement à nano-échelle

Mots clés: équation de Boltzmann, champ proche, électrodynamique fluctuationnelle

Résumé: Deux corps à températures dif-
férentes échangent toujours un flux de chaleur
grâce aux photons même lorsqu’ils sont séparés
par du vide. Ce flux radiatif qui est borné par
la loi de Stefan-Boltzmann en champ lointain,
peut dépasser cette limite de plusieurs ordres de
grandeur en champ proche. De manière sur-
prenante, très peu de travaux ont été consacrés
jusqu’à présent à l’étude du couplage du trans-
fert radiatif en champ proche et de la conduc-
tion dans un solide. C’est l’objet principal de
cette thèse. Dans un premier temps nous étu-
dions l’évolution temporelle d’un oscillateur mé-
canique à base de matériaux à transition de phase
couplé en champ proche avec un substrat et nous
démontrons son comportement bistable autour de

la température critique des matériaux. Le po-
tentiel de ces systèmes pour le traitement ther-
mique de l’information à échelle microscopique
est ensuite discuté. Nous développons ensuite
une théorie pour décrire le couplage conducto-
radiatif entre des solides de taille arbitraire en
régime de champ proche extrême. Nous montrons
que le couplage entre la conduction et le rayon-
nement peut induire une variation spatiale im-
portante de la température dans les solides à des
distances de séparation de l’ordre du nanomètre.
Enfin nous étudions la relaxation thermique de
solides séparés par un gap d’épaisseur nano et
sub-nanométrique et montrons qu’à ces distances
de séparation le temps de relaxation thermique
du système est significativement rallongé.

Title: Conduction-radiation coupling at the nanoscale

Keywords: Boltzmann equation, near field, fluctuational electrodynamics

Abstract: Two bodies at different temper-
atures experience a photon-mediated heat ex-
change, even when separated by vacuum.
This radiative heat flux, limited by Stefan-
Boltzmann’s law in the far-field regime can ex-
ceed this limit even by orders of magnitude for
shorter distances, in the near-field regime. Sur-
prisingly, few works have been devoted so far to
the study of coupling mechanism between the
near-field radiative heat transfer and the conduc-
tion inside a solid. This is the main goal of this
thesis. First, we study the time evolution of a
mechanical oscillator based on phase-transition
materials coupled in the near-field regime with a
substrate and we demonstrate its bistable behav-

ior around the critical temperature of materials.
The potential of these systems for thermal in-
formation processing at microscopic scale is then
discussed. Next we develop a theory to describe
the conducto-radiative coupling between solids of
arbitrary size in extreme near-field regime. We
show that the coupling between conduction and
radiation can induce a large spatial variation in
the temperature profile within the solids at nano-
metric separation distances. Finally, we study
the thermal relaxation of solids separated by a
gap of nano and sub-nanometric thickness and
show that at these separation distances the ther-
mal relaxation time of the system is significantly
lengthened.
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