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Abstract

Magnetoencephalography (MEG) and electroencephalography (EEG) are non-in-
vasive techniques for investigating human brain activity. They allow the mea-
surement of ongoing brain activation on a millisecond-by-millisecond basis, which
makes them very attractive to study the brain dynamics. Since the neuronal ac-
tivity is measured at a sensor-level distributed over the head, the main question is
how can a brain region be identified as the one producing the measured activity
with reasonable accuracy? This is the so-called bio-electromagnetic inverse prob-
lem which is ill-posed, meaning there is not a unique solution to the problem. The
main goal of this thesis is the development of novel methods able to localize in
space and time the origin of the observed head surface signals.

To do so, very challenging mathematical and computational problems need
to be tackled. First of all, since the solution to the ill-posed inverse problem is
not unique, constraints need to be set in order to identify an appropriate solution
among the multiple possible candidates. The constraints are chosen depending on
the assumptions or a priori knowledge based on the characteristics of the source
distributions. Common priors are based on the Frobenius norm and lead to a fam-
ily of methods generally referred to as Minimum Norm Estimate (MNE). While
these methods have some benefits like simple implementation and robustness to
noise, they do not take into account the natural assumption that only a few brain
regions are typically active during a specific cognitive task. Interestingly, several
source reconstruction techniques have then been proposed, which are based on
the assumption to promote focal or sparse solutions. These techniques, which are
partly used in clinical routine, are suitable, e.g. for analyzing evoked responses or
epileptic spike activity.

This thesis focuses first on the development of source solvers in the time-
frequency domain to promote non-stationary focal source activation. It introduces
a novel method for improving the source estimation relying on a multi-scale dictio-
nary, i.e. multiple dictionaries with different scales concatenated to fit short tran-
sients and slow waves at the same time. We do not address the problem of learning
the dictionary as doing so would make the cost function non-convex, which would
deteriorate the speed of convergence, and also make the solver dependent on the
initialization.

The second part of this thesis investigates the challenge of estimating hyperpa-
rameters involved in the regularization of the inverse problem. In the MEG/EEG
community, the compromise between the data fit and the regularization controlled



by a hyperparameter is often tuned by hand, which is tedious and time consum-
ing, or it is simply hard coded. This thesis introduces a new way of estimating this
hyperparameter automatically when having a synthesis prior.

Since source estimates obtained with convex MEG/EEG sparse source imag-
ing are biased in amplitude and often suboptimal in terms of sparsity, iterative
reweighted mixed-norm solvers have been proposed in the literature. These solvers
make use of non-convex concave penalties in the time or the time-frequency do-
main. The framework of hierarchical Bayesian modeling (HBM) is a seemingly
unrelated approach to encode sparsity. Yet, the next contribution presented in this
thesis shows that for certain hierarchical models, a simple alternating scheme to
compute fully Bayesian Maximum-a-posteriori (MAP) estimates leads to the exact
same sequence of updates as a standard iterative reweighted strategy (a.k.a. the
Adaptive Least Absolute Shrinkage and Selection Operator (Lasso)).

Using simulation and various MEG/EEG datasets, this thesis provides empir-
ical evidence that the novel methods presented here offer promising models and al-
gorithms to improve the estimation of MEG/EEG source activations. A validation
of these methods and a comparison with the widely used solvers is also presented
using some phantom datasets (i.e. actual data recorded with known groundtruth).

keywords— Neuroimaging, magneto/electroencephalography (MEG/EEG),
inverse problem, convex/non-convex optimization, sparse regression, multi-scale
dictionaries, Gabor transform, hierarchical Bayesian models
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2 Chapter 1. Introduction

1.1 Context of the thesis

Understanding the full complexity of the brain has been a challenging research
project for decades, yet there are many mysteries that remain unsolved. Being able
to model how the brain represents, analyzes, processes, and transforms informa-
tion of millions of different tasks in a record time is primordial for both cognitive
and clinical studies. These tasks can go from language, perception, memory, atten-
tion, emotion, to reasoning and creativity. Studying the behavior of the brain at
each task and extracting information to define its involved network will result in
a better understanding of its functions. This has been widely used in other fields
such as Artificial Intelligence where scientists and engineers try to implement as-
pects they learned from the human brain in computers. Unlike the cognitive sci-
ence questions, in the clinical diagnostic, understanding how a pathology is affect-
ing the brain helps to find a cure or a way to improve patients’ life. For example,
being able to detect autism in early age of childhood helps the parents to provide
a specific education and a better future.

To make this brain scanning possible, several cutting-edge technologies are
used depending on the question one is asking. These techniques differ from their
degree of invasiveness, and their spatial and temporal resolutions as it can be seen
in Figure 1.1.1. For the different tasks I mentioned above, one very important as-
pect is time. The brain is able to process most of the tasks in a fraction of a second,
for example to recognize an emotion, to perceive a familiar face, etc. In this thesis,
to study this high temporal resolution of the brain, I was interested in two direct
brain imaging techniques MEG and EEG.

MEG and EEG are functional neuro-imaging techniques for mapping the brain
activity. They respectively record the magnetic fields and electric currents pro-
duced by electrical activity naturally occurring in the brain within the neurons.
They use an array of sensors positioned over the scalp that are extremely sensi-
tive to minuscule changes in the magnetic field (measured by MEG) produced by
small changes in the electrical activity (measured by EEG) within the brain. It is,
therefore, a direct measurement of neural activity. MEG/EEG as a technique for in-
vestigating the neural function in the brain is not new but was originally pioneered
in the late 1960s. However, it is only since the early 1990s, with the introduction of
high density detector grids covering the whole head, that the full potential of MEG
has begun to be realized. The biggest advantage of MEG and EEG, compared to
fMRI which is much more established in the neuroscience research, is the time res-
olution. In fMRI, the neuronal activation is indirectly measured via local changes
in the level of blood oxygenation, and a long time window is typically compressed
in one measured brain volume. The other techniques mentioned in Figure 1.1.1 are
also indirect functional brain imaging techniques.
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FIGURE 1.1.1: Overview of spatial and temporal resolutions of differ-
ent functional neuroimaging methods. Direct approaches (EEG, iEEG,
MEG) are indicated by solid boxes and indirect approaches (fMRI,
NIRS, PET, and SPECT) by dashed boxes. The colors of the boxes

indicate the degree of invasiveness.

Using very sensitive magnetometers/electrodes (sensors), MEG and EEG de-
liver insight into the brain activity with high temporal and good spatial resolution.
They allow the measurements of the ongoing activity which describe the active
brain sources’ state at each millisecond. This problem of computing the result of
the measurements is called forward problem. The bioelectromagnetic forward prob-
lem describes the relationship between a given neural activity in the brain and the
observable MEG and EEG signals. Its solution models mathematically the neural
activity, the volume conductor, and the measurement setup. It allows us to link
the scalp potentials and external fields given an internal current distribution by a
stable and unique solution, which is thus a well-posed problem.

Its counterpart, the bioelectromagnetic inverse problem, consists in using the
actual measurements to infer the parameters (locations, amplitude, orientations)
giving the distribution of the neural generators. It is an ill-posed problem in the
sense of Hadamard [Had02] due to its non-uniqueness and high sensitivity to
noise, which makes its solution unstable. The inverse problem is the so called
n � p problem in machine learning, where you have much more unknowns p to
be estimated than the number of observations or variables n. This problem has in-
finite solutions, mainly due to the small number of sensors (obervations n) present
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in the MEG and EEG. Actually, even if the MEG and EEG were measured simul-
taneously at infinitely many points over the head, the information would still be
insufficient to uniquely compute the brain source distribution that generated the
measured brain signals. This is due to the fact that there are different combinations
of sources able to cause exactly the same potential fields on the head. Thus, to infer
the neural activity generating the data at the sensor level, different source recon-
struction techniques can be applied, which typically employ a priori knowledge on
the state of the brain activity in order to reduce the set of solutions to a unique one.

In the past twenty years, several lines of research have emerged to tackle the
problem. The most common approach widely used in clinical application is the
Equivalent Current Dipole (ECD), which assumes the underlying neural sources
to be focal, as for epileptic study. The limitation of the dipole fitting technique is its
non-linearity, which makes the reconstruction challenging. Also, there are difficul-
ties to accurately estimate the correct number of dipoles in advance.

Unlike the dipole fitting method, distributed source models divide the source
space into a grid containing a large number of possible dipoles (ECDs). The recon-
struction of the source space is done simultaneously over all ECDs, which is less
challenging when having correlated sources. However due to the large number
of dipoles, the corresponding regression problem is undertermined, and then re-
quires regularization. The regularization will define the type of a priori one needs
to put on the solution, such as structural information, spatio-temporal characteris-
tics of the source estimate. The disadvantage of these models compared to dipole
fitting is that the solution is smeared, meaning it is not focal, so harder to interpret.

Nevertheless, the sparsity in the solution can be promoted with a specific type
of regularization in the regression model. Sparse models are actually the main in-
terest of this thesis. They have been proposed in other fields of research and are
widely used. In the signal processing literature, various signals can be defined
as the linear combination of basis vectors, called atoms. The technique of repre-
senting the signal using few atoms is also known as compressed sensing. These
atoms are defined in a fix overcomplete dictionary; the underlying motivation is
that even though the observed signal lies in a high-dimensional space, the actual
signal is organized in a lower-dimensional space. This property has been used in
the audio domain, specifically in the analysis of speech, sounds, and music, e.g. in
order to classify a sound sample. The idea of sparse decomposition is also behind
the JPEG2000 compression, which aims to keep only a few atoms best approxi-
mating the image. In the image processing literature, sparse models were used
for denoising and image reconstruction (Magnetic Resonance Imaging (MRI),...).
They are also linked to the dictionary learning literature, where one tries to learn
a redundant and overcomplete dictionary, which makes it possible to reconstruct a
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signal/image using a sparse setting.

1.2 Objective and scope

In this thesis, I have been interested in sparse models to reconstruct the source
estimate for MEG and EEG applications. Obtaining acceptable solutions, easy to
interpret, does not depend only on the a priori knownledge we impose, but several
questions might be asked:

• How do we best set the regularization to promote sparsity, in such a way to
obtain interpretable source estimates?

• How do we set the hyperparameters of the regression problem?

• How do we quantify the uncertainty of these models?

• How do we objectively compare the different state of the art solvers?

These points define the scope of this thesis. It tries to first tackle the problem of
non-stationary sources, i.e., how to estimate a source that has a neuroscientific ex-
planation as being active during a short time window only, when studying a longer
window. This involves the formulation of the problem in the time-frequency do-
main, which needs to explicit the dictionary of the decomposition. Secondly, this
thesis tries to find a way to automatically estimate the hyperparameter of the re-
gression model to make comparison between solvers easier. The next step was to
rewrite the problem as done by other communities in a Bayesian formulation. This
paved the way to bridge the gap between the variational and the Bayesian worlds
by writing down their equivalence under a specific parametrization of the same
problem. The advantage of the Bayesian formulation is the ability to investigate
the posterior distribution, making a study of the solution’s uncertainty possible.
This involves the presentation of Markov Chain Monte-Carlo (MCMC) algorithms
to sample from the posterior distribution. A third and last project of this thesis was
to put together all the actual knowledge on source localization in MEG/EEG and
have a complete study of their reconstruction on a phantom dataset.

1.3 Contributions of the author

This thesis presents novel approaches for source reconstruction in MEG/EEG. It
can be divided into four main projects:

• The implementation of a widely known algorithm for the MEG/EEG inverse
problem, called Recursively Applied and Projected (RAP) MUSIC [ML99a].
The aim was to have a comparison with a state of the art sparse solver based
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on a non-convex regularization which promotes more sparsity by getting rid
of all spurious sources. This work has been published in the IEEE Transac-
tions on Medical Imaging (TMI) [Str+16].

• The improvement of a previous work by Daniel Strohmeier on source recon-
struction in the time frequency domain, which resulted in the introduction
of the TF-MxNE (Time-Frequency mixed-norm) algorithm. The contribution
tackles the problem of choosing the dictionary used to decompose the data
when working in the time-frequency domain. This consists of enabling the
possibility to use combined dictionaries to make the algorithm able to find
both transient and longer waveforms present in the brain signal. This work
has been published in the IEEE workshop on Pattern Recognition in Neu-
roImaging (PRNI) [Bek+16].

• Different lines of research to solve the MEG/EEG inverse problem gave dif-
ferent formulations. The most frequently used formulation in this thesis is
a regularized regression model as done in most machine learning problems.
With these types of models, one needs to find a good compromise between
the term that tries to fit the data called the data fit, and the term regularizing
the problem which takes into account any assumption one has onto the prob-
lem. This compromise is controlled by an external parameter usually called
hyperparameter. For a practical example, when using sparse regularization,
if this hyperparameter is fixed to a small value, i.e. the regularization term is
not as important as the data fit, then the resulting solution will not be sparse
enough and vice versa. Thus, the second contribution of this thesis was then
to find an automated way to estimate this hypermarameter under some con-
ditions of the model. This work has been published in the European Signal
Processing Conference (EUSIPCO) [BBG17].

• The biggest drawback of the sparse solvers is the fact that they give one so-
lution without any estimation of variance or any kind of confidence interval.
Some other application areas make use of Bayesian inference, mainly because
it allows the estimation of uncertainty and its quantification is paramount.
Therefore, the third contribution of this thesis is to rewrite to problem as done
in a Bayesian world, and tries to bridge this formulation with what has been
presented so far. This project shows that under some conditions, the Bayesian
formulation and the variational one are equivalent. Then, it shows how we
can take advantage of the posterior distribution to extract uncertainty maps.
This work has been submitted and is under review in the Inverse Problems
journal [Bek+17].

• The final project of this thesis is to test and validate our solvers and several
other ones that are the mostly used at this day for neuroscience applications.
This is done on a phantom dataset which is a simulated dataset with a realistic
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environment similar to a real humain brain. This work should be submitted
soon to a journal paper.

• An extra project on brain decoding is presented at the end of this thesis. This
work presents a novel approach based on a ridge regression with a specific
metric that takes ordered target into account. The approach is novel in terms
of application to MEG data. This work has been submitted and is under re-
view in the journal Plos One [Bek+17].

• The implementation of some of the contributions is already on the MNE-
Python package [Gra+14; Gra+13b], the others should also be integrated soon.
Another contribution with a coworker’s project is published in both Pattern
Recognition in NeuroImaging [Jas+16] and Neuroimage [Jas+17a].

1.4 Structure of the thesis

• Chapter 2: Background and work related to the MEG/EEG inverse problem
This chapter defines the basics and the background needed for what will be
presented in the rest of this thesis. It starts by giving the origin of the MEG
and EEG recordings, i.e., what do the techniques really measure? It gives then
more insight on the forward operator and how it is computed efficiently. At
this stage, I present a full state of the art of inverse problems defining the
three main approaches: beamforming or scanning techniques, image-based
methods with distributed models, and sparse source models. Afterwards,
I present some basics of time-frequency decomposition, and compare sev-
eral dictionaries by giving their advantages. I finish this chapter by an opti-
mization section, defining different ways to regularize the ill-posed problem
and then how do we solve them. It also gives a comparison between several
solvers.

• Chapter 3: Source localization with multi-scale dictionaries
This chapter is dedicated to our first contribution, i.e. solving the inverse
problem in the time-frequency domain using a multi-scale dictionary. Source
localization in the time-frequency domain has already been investigated us-
ing a Gabor dictionary in a convex [Gra+13a] and a non-convex way [SGH15].
However, the choice of an optimal dictionary remains unsolved. Due to a
mixture of signals, i.e. short transient signals (right after the stimulus on-
set) and slower brain waves, the choice of a single dictionary simultaneously
explaining both signals types in a sparse way is difficult. This chapter in-
troduces a method to improve the source estimation relying on a multi-scale
dictionary, i.e. multiple dictionaries with different scales concatenated to fit
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short transients and slow waves at the same time. The benefits of this ap-
proach are shown in terms of reduced leakage (time courses mixture), tem-
poral smoothness and detection of both signals types.

• Chapter 4: Bridges between Bayesian models and sparsity inducing norms
This chapter gives the basic concepts of the Bayesian formulation of the MEG/
EEG inverse problem. It also aims to explain the different jargon to link the
variational and the Bayesian definitions. This ends up in defining an equiva-
lence between the two communities under some conditions, while taking ad-
vantage of the Bayesian formulation which enables us to study the multiple
modes of the posterior distribution. The modes of the posterior will define
several possible solutions to the inverse problem, allowing then the obtention
of uncertainty maps of the source estimates.

• Chapter 5: Benchmarking on phantom datasets
This chapter is a validation chapter on a phantom dataset. Phantom data is
a dataset obtained by measuring the MEG/EEG activity with a humain skull
phantom head. All real aspects of a head are simulated to generate the same
conductivity which is expected with a real skull. The dataset shown in this
chapter has four simulated dipoles at different depth. With the knowledge
of the groundtruth, this chapter investigates the efficiency of each solver in
terms of source localization, orientation and amplitude.

• Chapter 6: Decoding visual motion from MEG
This chapter illustrates an extra project outside of the inverse problem topic.
It is based on an application of machine learning to neuroscience. The aim
was to develop an efficient approach to decode brain activity recorded with
MEG while participants discriminated the coherence of two intermingled
clouds of dots.
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2.1 Signal sources of MEG and EEG recordings

At the cellular level of the brain, its nervous system is defined by the presence of a
special type of neural cells. Despite the apparent simplicity in the structure of the
neural cell, the biophysics of the neural current flow relies on a complex network
of billions of cells, neurons and glial cells [BML01; Hod64]. Neurons are nerve cells
that transmit nerve signals to and from the brain. They are about 100 billions neu-
rons. The neuron consists of a cell body (or soma) with branching dentrites (signal
receivers). They send these signals in the form of electrochemical waves traveling
along thin fibers called axons, which cause chemicals called neurotransmitters to
be released at junctions called synapses. A cell that receives a synaptic signal from
a neuron may be excited, inhibited, or otherwise modulated. At a synapse, the cell
that sends signals is called presynaptic, and the cell that receives signals is called
postsynaptic.

Every neuron maintains a voltage gradient across its membrane, due to metabol-
ically driven differences in ions of sodium, potassium, chloride and calcium within
the cell, each of which has a different charge. If the voltage changes significantly,
an electro-chemical pulse called an action potential (or nerve impulse) is gener-
ated. This electrical activity can be measured and displayed as a waveform called
brain wave or brain rhythm. This pulse travels rapidly along the cell’s axon, and is
transferred across a synapse to a neighbouring neuron, which receives it through
its feathery dendrites. Each individual neuron can form thousands of links with
other neurons in this way, giving a typical brain well over 100 trillion synapses (up
to 1,000 trillion, by some estimates).

[BML01] explains that roughly, when a neuron is excited by other —and pos-
sibly remotely located— neurons via an afferent volley of action potentials, Excita-
tory PostSynaptic Potentials (EPSP)s are generated at its apical dendritic tree. The
apical dendritic membrane becomes transiently depolarized and consequently ex-
tracellularly electronegative with respect to the cell soma and the basal dendrites.
This potential difference causes a current to flow through the volume conductor
from the nonexcited membrane of the soma and basal dendrites to the apical den-
dritic tree sustaining the EPSPs [Glo85]. Some of the current takes the shortest route
between the source and the sink by traveling within the dendritic trunk. Conser-
vation of electric charges imposes that the current loop be closed with extracellular
currents flowing even through the most distant part of the volume conductor. In-
tracellular currents are commonly called primary currents, while extracellular cur-
rents are known as secondary, return, or volume currents.

Both primary and secondary currents contribute to magnetic fields outside the
head and to electric scalp potentials, but spatially structured arrangements of cells
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FIGURE 2.1.1: Networks of cortical neural cell assemblies are the main
generators of MEG/EEG signals. Left: Excitatory postsynaptic po-
tentials (EPSPs) are generated at the apical dendritic tree of a corti-
cal pyramidal cell and trigger the generation of a current that flows
through the volume conductor from the non-excited membrane of the
soma and basal dendrites to the apical dendritic tree sustaining the
EPSPs. Center: Large cortical pyramidal nerve cells are organized in
macro-assemblies with their dendrites normally oriented to the local
cortical surface. This spatial arrangement and the simultaneous ac-
tivation of a large population of these cells contribute to the spatio-
temporal superposition of the elemental activity of every cell, result-
ing in a current flow that generates detectable EEG and MEG signals.
Right: Functional networks made of these cortical cell assemblies and
distributed at possibly mutliple brain locations are thus the putative
main generators of MEG and EEG signals. The origin of this image

is [BML01].

are of crucial importance to the superposition of neural currents such that they
produce measurable fields. Tens of thousands of synchronously activated large
pyramidal cortical neurons are thus believed to be the main MEG and EEG gen-
erators because of the coherent distribution of their large dendritic trunks locally
oriented in parallel, and pointing perpendicularly to the cortical surface [NS00].
The currents associated with the EPSPs generated among their dendrites are be-
lieved to be at the source of most of the signals detected in MEG and EEG because
they typically last longer than the rapidly firing action potentials traveling along
the axons of excited neurons [NS06].

MEG and EEG are non-invasive functional imaging techniques for analyzing
the neuronal activity on a macroscopic scale. In contrast to indirect neuroimaging
modalities, MEG and EEG signals derive from the net effect of ionic currents flow-
ing in the dendrites of neurons during synaptic transmission. In accordance with
Maxwell’s equations, any electrical current will produce a magnetic field, and it is
this field that is measured. The measurement principle of MEG and EEG is illus-
trated in Figure 2.1.2.
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FIGURE 2.1.2: Simplified model of the measuring principle of MEG
and EEG. The EEG measures the difference of the electric potential
between the EEG electrode and a reference due to volume currents
generated by primary currents in the brain. The MEG captures the

magnetic field generated by both primary and volume currents.

The neuronal activity captured by MEG is not, as perhaps expected, gener-
ated by the (too brief) axonal action potentials of pyramidal cells, but rather by
the net contributions of excitatory and inhibitory dendritic postsynaptic poten-
tials. This current flow through the apical dendrites (represented as a ‘dipole’)
generates a magnetic field that projects radially; thus, MEG excels at detecting
dipoles arranged in a tangential orientation to the skull. Fortunately, the exten-
sively folded sulci of the human cortex promote that orientation for the majority of
cortical microcolumns. However, MEG is less sensitive to deeper (including sub-
cortical) sources, as the magnetic field change decreases rapidly with distance.

In 1969, the journey to understand the electrical potentials of the brain took an
interesting and fruitful detour when David Cohen, a physicist working at MIT, be-
came the first to confidently measure the incredibly tiny magnetic fields produced
by the heart’s electrical signals. To do this, he constructed a shielded room, block-
ing interference from the overwhelming magnetic fields generated by earth itself
and by other electrical devices in the vicinity, effectively closing the door on a ca-
cophony of voices to carefully listen to a slight whisper. His shielding technique
became central to the advent of MEG, which measures the yet even quieter mag-
netic fields generated by the brain’s electrical activity.

This approach to record the brain’s magnetic fields, rather than the electrical
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potentials themselves, was advanced even further by James Zimmerman and oth-
ers working at the Ford Motor Company, where they developed the SQUID, a Su-
perconducting QUantum Interference Device. A SQUID is an extremely sensitive
magnetometer, operating on the principles of quantum physics, which is able to de-
tect precisely those very tiny magnetic fields produced by the brain. To appreciate
the contributions of magnetic shielding and SQUIDs to magnetoencephalography,
consider that the earth’s magnetic field, the one acting on your compass needle, is
at least 200 million times the strength of the fields generated by your brain trying
to read that very same compass.

On the other hand, the EEG measures the electric potential difference between
the EEG electrode and a reference on the scalp associated with primary currents in
the brain. These electric potential differences, which are in the range of a few mi-
crovolts, are recorded using amplifiers with high open-loop gain, common-mode
rejection ratio, and input impedance. The first human EEG recording was done by
Hans Berger in 1924.

MEG and EEG can be recorded simultaneously and reveal complementary
properties of the electrical fields. Although the signals of EEG and MEG are gener-
ated by the same sources (electrical currents in the brain), they are both sensitive to
different aspects of these sources. This could be compared to viewing the shadows
of the same object from two different angles; combining the two recordings usually
leads to better source estimation [Mal12; Sha+07; Ayd+15].

2.2 The forward model

The bioelectromagnetic forward problem describes the relationship between a given
neural activity in the brain and the observable MEG and EEG signals. We assume
the electric current (denoted by ~jt(~r)) at any position (denoted by ~r in the head is
known at arbitrary time t. The magnetic field or the scalp voltage detected by one
sensor can be modeled as an integration or a linearly weighted combination of the
currents at all positions, using Maxwell’s equations under a reasonable head model
that describes the shape, the electrical conductivity and the permeability of various
tissues [Häm+93; MLL99].

Maxwell’s equations

We consider the head as a finite three-dimensional volume conductor, non mag-
netic. The quasi-static approximation of Maxwell’s equations are a set of partial
differential equations forming the foundation of classical electromagnetism. We
denote by E the electric field, B the magnetic field, J the current density, and ρ the
charge density.
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For the biological signals of interest in MEG/EEG, the time-derivatives of
the associated electric and magnetic fields are sufficiently small to be ignored in
Maxwell’s equations. Recent discussions and details of this quasi-static approxi-
mation can be found in[Häm+93; Tri83; HH92].

The propagation of the electric potentials and magnetic field measured by
EEG and MEG suffers from no temporal delay, meaning that the recording is in-
stantaneous. Let us note M ∈ RN×T the measurement matrix of MEG/EEG, G ∈
RN×SO the design matrix (leadfield or gain matrix [HI94a]) with S source locations
in the brain and O number of orientations (1 or 3). One has:

M = GX + E (2.1)

From now on, E denotes an additive white Gaussian noise. Equation (2.2) is linear
not by assumption but by guarantee from Maxwell’s equations.

If the source orientation is set a priori, e.g., by using the cortical constraint
assuming sources to be oriented perpendicularly to the cortical surface [DS93] (O
= 1), a single dipole with unit norm per source location is used to compute the
gain matrix G ∈ RS×T . To allow for arbitrary dipole orientations, the dipole mo-
ment per location is represented by a linear combination of O perpendicular unit
dipoles. An orthogonal dipole triplet is commonly applied (O = 3). Due to the
low sensitivity of MEG to radial sources, the radial component per source loca-
tion is sometimes neglected (O = 2). The gain matrix G is generated by solving
the MEG/EEG forward problem for each dipole separately and by appending the
results column-wise. Hence, each column of the gain matrix provides information
on the topography in the sensor space generated by the activity of a specific unit
dipole, while each row reflects the sensitivity of a specific sensor to all unit dipoles
in the model.

Spherical head models

A very common approximation in the forward modeling consists in assuming that
the head is a set of nested concentric spheres, each corresponding to a layer with
homogeneous and isotropic conductivity (Figure 2.2.1). Typically, the head is rep-
resented by three to five regions, e.g., scalp, skull, cerebrospinal fluid, gray matter,
and white matter, and that the conductivity is constant and isotropic within these
regions. The gradient of the conductivity is therefore zero except at the surfaces
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FIGURE 2.2.1: The alignment of a spherical model with three layers
and the sensors. The spheres are shown in grey, the sensor space in
blue, and the dots to align in order to put the spheres modeling the

head and the sensors in a common coordinate system.

between regions. Computable analytic solutions exist for both MEG and EEG for-
ward problems.

A very practical formulation of the EEG and MEG field kernels has been pre-
sented by Mosher [MLL99], that only requires vectors expressed in their Cartesian
form. For MEG, since the magnetic permeability does not change across layers (and
does not change much from the vacuum) and no current exists outside the head
(where the sensors are located), the full magnetic field outside a set of concentric
spheres can be calculated without explicit consideration of the volume currents.
Therefore, the MEG spherical model does not require specifying (or assuming) the
number of and the radius ratios between the spherical layers.

For EEG, the number and radii of the spherical layers are to be specified.
Nonetheless, previous empirical work on closed-form approximations by Berg and
Scherg [BS94] and related theoretical studies by Zhang [Zha95] have gathered a
valid and convenient method for approximating an EEG field kernel from a multi-
layer spherical model as the weighted sum of three kernels from a single-layer
spherical model applied to a modified source configuration. The optimal values of
the "Berg parameters" (Eccentricity and Magnitude) in this approximation depend
on the layer radii and conductivities.
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FIGURE 2.2.2: The head model: the BEM surfaces containing the three
layers (inner skull, outer skull, and skin).

Realistic head models

A more realistic head model requires that the real geometry and conductivity of the
head layers be taken into account as much as possible (Figure 2.2.2). For real (non-
spherical) geometry and conductivity fields, numerical solutions for Maxwell’s
equations are to be computed.

Assuming a piecewise constant distribution of the conductivity field, approxi-
mate, yet efficient and accurate, numerical solutions can be obtained for a realis-
tically shaped head model using the so-called boundary element methods (BEM).
For BEM solutions, an MRI-based simplified description of the geometry is needed
for computing the lead fields, and this can be provided in terms of (strictly) nested
and closed surfaces corresponding to the boundaries separating the main tissue
compartments (also called layers). In practice, BEM solutions will only require to
set a few conductivity parameters (one per tissue), and to specify a few triangular
meshes, as can be obtained, e.g., with 3D volume segmentation tools from anatom-
ical MRI data, each representing a separate interface between layers.
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2.3 The MEG/EEG Inverse problem

An important question in the MEG/EEG community since the neuronal activity
is measured at a sensor-level distributed over the head, is "how to recover the
brain region(s) involved in producing the measured activity?". This is the so-called
bio-electromagnetic inverse problem which is ill-posed in contrast to the forward
problem. The uniqueness of the inverse problem solution is due to the fact that
MEG/EEG signals can be produced by an infinite number of source configurations.
Thus, to identify a stable and a unique solution among all of these infinite config-
urations, constraints need to be set. The constraints are chosen depending on the
assumptions or a priori knowledge based on the characteristics of the source dis-
tributions, e.g., spatial and/or temporal characteristics of the neural activity. The
source reconstruction techniques can be in general categorized as parametric (Sec-
tion 2.3.1), scanning (Section 2.3.2), and probabilistic methods (Section 2.3.3).

2.3.1 Parametric models: dipole fitting

Parametric methods model the problem as a small number of sources defined by
their location, orientation and the strengths of the current sources that generate the
MEG/EEG measurements.
The most common parametric method is the dipole fitting approaches [SVC85;
MLL92; Sch90]. It assumes that the measured data have been produced by a small
number of active brain regions that can each be modeled using an equivalent cur-
rent dipole (ECD). These algorithms minimize a data-fit cost function such as the
Frobenius norm of the residual, and they estimate five non-linear parameters per
dipole: the 3D (x, y, z) position, and the two angles to define the dipole orientation.
The main limitation of these methods is that they cannot be used when complex
cognitive tasks are performed. This is due to the fact that the optimization prob-
lem to be solved is non-convex and multimodal, which implies that it gets easily
trapped in local minima as soon as one tries to localize more than two dipoles. Fur-
thermore, the number of dipoles to be estimated is not known and then needs to
be set in advance.

2.3.2 Scanning methods: beamforming & MUSIC

Scanning methods, a.k.a. beamforming, use a discrete grid to search for optimal
dipole positions throughout the source space [Hil+05; MBL99; SVC85]. An esti-
mator of the contribution of each source location to the data can be derived either
via spatial filtering or signal classification settings. The simplest spatial filter is
a matched filter which uses the normalized columns of the gain matrix for spatial
filtering, but the most common one is the linearly constrained minimum variance
(LCMV) beamformer [VV+97].
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LCMV performs a spatial filtering on data to discriminate between signals origi-
nating from a location of interest and those coming from elsewhere, and limits the
influence of the noise. In practice, it implies that the measurement matrix is mul-
tiplied by a weighting matrix. The weighting matrix should let pass signals com-
ing from the location of interest, while attenuating signals from elsewhere [Was08].
LCMV determines the weighting matrix by minimizing the output power of a filter
under a constraint that its gain (forward operator) is unity at the location of inter-
est. An attractive feature of beamforming is that it does not require any assumption
on the number of the underlying sources. However it makes the strong assumption
that the activations of the different sources are uncorrelated, which is not necessar-
ily the case. An alternative to LCMV which integrates some information related
to the experimental paradigms is called Synthetic Aperture Magnetometry (SAM)
[VR01]. Beamforming can also be applied in the frequency domain using the Dy-
namic Imaging of Coherent Sources (DICS) [Gro+01].

Alternatives to beamformers are methods based on signal classification using
subspace decompositions. The MUltiple SIgnal Classification (MUSIC) is a widely
known signal processing technique that was first applied to EEG data by Mosher
[MLL92]. The primary assumptions for this method are that the dipolar time series
are mutually linearly independent [Was08]. MUSIC is based on a singular value
decomposition (SVD) of the measurement data, which results in orthogonal basis
vectors and singular values. Any true source localization will have a lead field
(forward) vector which lies in the signal subspace computed with the SVD. MUSIC
scans the brain space for source locations that satisfy this condition. The lead field
vector at every candidate dipole location is systematically projected onto the signal
subspace. The dipole source locations with the largest projections on the signal
subspace are the active sources [MLL92; ML99b]. However, MUSIC suffers from
some problems. Firstly, when the noise present in the data is correlated across
channels, MUSIC can produce larger errors in the dipole localization than would
have been observed with uncorrelated noise of the same power. Another problem
is the detection of multiple MUSIC peaks in a 3D space of the head, each of which
may correspond to a different ECD. A related problem is to determine which peaks
are truly indicative of a dipolar source rather than a local minimum in the error
function [ML99b].

The latter problem is solved in an extended version of MUSIC, Recursively
Applied and Projected (RAP)-MUSIC, by recursive estimation of multiple sources
[ML97; ML99b]. In other words, it consists in applying MUSIC successively after
removing the contribution of the previously identified sources. Such as match-
ing pursuit algorithms are used for sparse signal decomposition over dictionary of
atoms [MZ93], the RAP-MUSIC method adopts a greedy strategy to select the rel-
evant dipoles in a dictionary of sources. The implementation of RAP-MUSIC and
its comparison with another solver was the first contribution of this thesis [Str+16].
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2.3.3 Probabilistic modeling: distributed sources & Bayesian ap-
proaches

Distributed source localization estimates the amplitudes of a dense set of dipoles
distributed at fixed locations within the head surface or volume. These methods
are based on the reconstruction of the brain electric activity in each point of a 3D
grid of solution points, the number of points being much larger that the number
of electrodes on the scalp. Each solution point is considered as a possible location
of a current source, thus there is no a priori assumption on the number of dipoles
in the brain [Was08]. When orientations are fixed and only the amplitudes of the
sources are estimated, the forward problem results in a regression formulation.

The MEG/EEG inverse problem with distributed source models leads to a reg-
ularized regression problem. The widely known method Minimum Norm Estimate
(MNE) minimizes the `2-norm [HI94b]. MNE has been very attractive due to the
fact that the inverse solution is given by a simple matrix multiplication as `2-based
methods have closed-form solutions:

X? = arg min
X∈RSO×T

‖M−GX‖2
Fro + λ‖X‖2

2 with λ > 0 (2.2)

However, the choice of the λ parameter as the trade-off between data fit and
regularization is sometimes tricky, because it depends on the data since λ is re-
lated to the noise level present in the measurement. λ is most of the time chosen
with a cross-validation strategy to find the optimal value in the machine learning
community. While in the MEG/EEG world, it is mostly tuned by hand.

When applying a minimum-norm estimate as in Equation (2.2), all the sources
are penalized equivalently. This approach introduces bias over sources which are
far from the sensors. Indeed sources which are close to the sensors have a higher
forward field. Those sources are called superficial sources, and this bias is often
known as the depth bias [PM99]. This led to the introduction of the Weighted
Minimum Norm (WMN) estimate [Lin+06], which downweights the dipoles in the
head that are closer to the surface.

X? = arg min
X∈RSO×T

‖M−GX‖2
Fro + λ‖WX‖2

2 with λ > 0 (2.3)

W is a weighting matrix, which represents a priori knowledge on the source
covariance. Assigning a higher variance to a deep sources is a standard approach
to reduce the depth bias in MEG/EEG source imaging [Lin+06; Gra+13a; Hau+08;
Hau+11; Hua+14; PS+07]. A common practice is to normalize the columns of
Gs ∈ RS×O of the gain matrix corresponding to the sth source location using its
Frobenius norm ‖Gs‖δFro or spectral norm ‖Gs‖δ [Gra+14; Gra+13a; Koh+06]. The
hyperparameter δ is used to prevent a bias towards very deep sources (often fixed
to δ = 0.9).
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However, the current predicted inside the head with WMN as in Equation (2.3)
is very blurred. Therefore, an alternative method has been developed called FO-
CUSS (FOCal Underdetermined System Solution) [GGR95]. This method changes
the weights at each iteration to overcome the problem. The limitation of this method
is that it does not take any biophysiological information into account, and might
get stuck in local minima.

Another method for the MEG/EEG inverse problem is Low Resolution brain
Electromagnetic Tomography (LORETA) [PMML94]. This method applies W = L,
where L is the Laplacian operator. This choice of the weighting matrix imposes
neighboring sources to be correlated and thus tries to find the smoothest possible
solution, however it generally provides very blurred (over-smoothed) solutions.

The dSPM [Dal+00] and sLORETA [PM+02] are variants of weighted MNE
which apply noise-normalized methods based on an estimate of the variance of
the estimated current density. Those methods aim to represent on the cortex not
the activity itself, but a dimensionless statistical quantity depicting the significance
of each source activity. The reason why dSPM has been widely used in the MEG
community is the fact that using this statistical quantity reduces the bias towards
the superficial sources and makes all kinds of thresholding easy on the source esti-
mate.

MNE and its variants solve the MEG/EEG inverse problem for each time
point separately. They consider a spatial smoothness prior on the inverse prob-
lem, but they do not take the time dimension of the MEG/EEG data into account.
Moreover they are dense models, which do not fit the assumption that only a few
focal brain regions are involved in a specific cognitive task. MNE or dSPM for ex-
ample will both have nonzero sources for every time instant. For this aim, several
methods favoring sparse focal source configurations have been proposed based on
a relaxation of the `0-norm. A popular approximation is `p-norms with 0 < p ≤ 1:

‖X‖p =
( S∑

s=1

T∑

t=1

|X[s, t]|p
) 1
p

(2.4)

Assuming spatially whitened MEG/EEG data, a sparse source estimate can
be obtained by solving the regularized problem:

X? = arg min
X∈RSO×T

1

2
‖M−GX‖2

2 + λ‖X‖pp with λ > 0. (2.5)

The optimization problem is non-differentiable, and has no a closed-form so-
lution. Hence iterative approaches need to be applied to solve the problem in Equa-
tion (2.5). Fixing p = 1 in Equation (2.5), the problem is known as Lasso [Tib96a]
in statistics, Basis Pursuit Denoising (BPDN) [CDS98] in signal processing, and
Selective Minimum Norm (SMN) [MO95] in MEG/EEG. However applying the `1-
norm for the free or the loose orientation (O = 3) promotes sparsity even within
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the orientation at each source location. To overcome this issue, Minimum Current
Estimate (MCE) has been proposed by [UHS99] solving SMN by fixing the orien-
tation priori by computing first a MNE solution.

Several other approaches can be cited that investigate the same idea of having
focal source estimates. Sparse Bayesian Learning (SBL) [Wip06], Spatio-Temporal
TOmographic NonNegative Independent Component Analysis (STTONNICA)
[VS+09], mixed-norms [OHG09b], Champagne [Owe+12], hierarchical Bayesian in-
ference [Luc+12b], or the Mixed-Norm estimates (MxNE) [GKH12b]. Those meth-
ods are called spatio-temporal because they work in a predefined time window,
however they completely ignore the temporal correlation. This can be verified by
shifting the columns of the source estimate: it will have no effect on the source es-
timate itself.

To introduce a "true" spatio-temporal constraint in the model, [ZR11b; ZR11a]
incorporated the temporal correlation to improve the source estimates, the vector-
based spatio-temporal minimum `1-norm solver (VESTAL) [Hua+06] applies a tem-
poral projection to reduce the sensitivity to noise after using the `1-norm. The fast-
VESTAL [Hua+14] is a sort of postprocessing to the VESTAL method. The Fast-
VESTAL technique consists of two steps. First, `1-minimum-norm MEG source
images were obtained for the dominant spatial modes of sensor-waveform covari-
ance matrix. Next, accurate source time-courses with millisecond temporal resolu-
tion were obtained using an inverse operator constructed from the spatial source
images of the first step. However this postprocessing step implicitly assumes that
the source estimates are stationary. To overcome these issues, Ou et al. [OHG09a]
proposed an approach to reconstruct multiple time instants simultaneously by ap-
plying the `2,1-mixed-norm to impose group sparsity as a spatio-temporal regular-
ization [GKH12b; OHG09a].

The Time-Frequency Mixed-Norm Estimate (TF-MxNE) solver [Gra+13a] reused
the `2,1-mixed-norm (MxNE) in the time-frequency domain by adding a second
regularization over time (`2,1 + `1). It multiplies the gain matrix by a dictionary
of spatial basis functions. They obtain a modified gain matrix, which can be used
to estimate spatially extented sources with temporally smooth waveforms. This
approach was also investigated by [CC+15], calling the method Spatio-Temporal
Unifying Tomography (STOUT).

Although these spatio-temporal methods improve the MEG/EEG source re-
construction, they are based on convex penalties. This allows fast algorithms with
guaranteed global convergence. However, the resulting source estimates are biased
in amplitude and often suboptimal in terms of support recovery, i.e., active sources
[CWB08]. As shown e.g. in the field of compressed sensing, promoting sparsity by
applying non-convex penalties, such as logarithmic or `p-quasinorm penalties with
0 < p < 1, improves support reconstruction in terms of feature selection, amplitude
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bias, and stability [CWB08; Cha07; SCY08]. Several approaches for solving the re-
sulting non-convex optimization problem have been proposed, including iterative
reweighting `1 optimization [CWB08]. [SHG14] used an iterative reweighted ap-
proach to solve the composite non-convex penalty in the time-frequency domain.

2.3.4 Conclusion

This part has presented an overview on the state of the art of the MEG and EEG in-
verse solvers. Although multiple solvers have been provided, this list is definitely
not exhaustive. We have kept at the end the distributed solvers which are the main
interest of this thesis. Here, we will model the problem as a regularized regression
with sparse priors. In the next part of the chapter, we discuss all aspects of linear re-
gression, different penalization terms, especially the ones promoting sparsity, and
the algorithms for solving those optimization problems.

2.4 Time-Frequency representation

In signal processing, time-frequency analysis encompasses those techniques that
study a signal in both time and frequency domains simultaneously, using various
Time-Frequency Representations (TFR). During the last decades, the signal pro-
cessing community has provided many new techniques for expanding signals into
"elementary" waveforms, such as wavelet bases, Modified Discrete Cosine Trans-
form (MDCT), short time Fourier transform (STFT), Gabor wavelets (frames), etc.
More often, the key issue is to obtain a sparse representation of the signal, when
it is better defined in the frequency domain than the time domain. For example, a
sine wave is sparsely represented in the Fourier domain, not in the time domain.

A signal representation is sparse when most information is concentrated in a
small amount of data or coefficients. Several applications such as denoising make
use of the sparse TFR because the noise is not sparse: source separation, signal
modeling, etc. A key ingredient is to decompose a signal into a linear combination
of "elementary" waveforms φi:

x(t) =
∑

i

αiφi(t) (2.6)

with αi the coefficients, and φi the waveforms. See [Mal08; HBB92; Wic94] for de-
tailed examples of signal representations.
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2.4.1 Modified Discrete Cosine Transform: MDCT

The mathematically simplest tool for signal decomposition is based on orthonor-
mal bases. The waveform system W = {φi, i ∈ Λ} is an orthonormal basis of the
signal space (assumed to be a Hilbert space with an inner-product)H is:

• The atoms are mutually orthogonal and normalized: 〈φi, φj〉 = 0 and ‖φi‖ = 1

• They form a complete set of H: if the signal x ∈ H is such that 〈x, φi〉 = 0 for
all i ∈ Λ, then x = 0.

Then, any signal can be written in a unique way as in Equation (2.6) with αi =

〈x, φi〉.

MDCT basis vectors are shift variant and its coefficients are real valued. They
cannot be easily interpreted in terms of magnitude and phase.

2.4.2 Gabor dictionaries

Given a signal observed over a time interval, its conventional Fourier transform
computes the frequency content but loses the time information. To analyze the evo-
lution of the spectrum over time and hence the non-stationarity of the signal, Gabor
introduced windowed Fourier atoms which correspond to a Short Time Fourier
Transform (STFT) with a Gaussian window. In practice, for numerical computa-
tion, a challenge is to properly discretize the continuous STFT. The discrete STFT
with a Gaussian window is also known as the discrete Gabor Transform [Gab46].

The setting we consider is the finite-dimensional one. Let g ∈ RT be a "mother"
analysis window. Let f0 ∈ N and k0 ∈ N be the frequency and time sampling rates
in the time-frequency plane generated by the STFT, respectively. The family of the
translations and modulations of the mother window generates a family of Gabor
atoms (φmf )mf forming the dictionary Φ ∈ CT×C , where C denotes the number of
atoms. The atoms can be written as:

φmf [n] = g[n−mk0]e
i2πf0fn

T ,m ∈ {0, . . . , T
k0

− 1}, f ∈ {0, . . . , T
f0

− 1}. (2.7)

If the product f0k0 is small enough, i.e., the time-frequency plane is sufficiently
sampled, the family (φmf )mf is a frame of RT , i.e., one can recover any signal x ∈
RT from its Gabor coefficients (〈x, φmf〉) = ΦHx. More precisely, there exists two
constants A,B > 0 such that:

A‖x‖2
2 ≤

∑

m,f

|〈x, φmf〉|2 ≤ B‖x‖2
2 . (2.8)

When A = B, the frame is tight. When the vectors φmf are normalized, the frame
is an orthogonal basis if and only if A = B = 1. The Balian-Low theorem says
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FIGURE 2.4.1: a) STFT of a single channel MEG signal sampled at
1000Hz showing the sparse nature of the transformation (window size
64 time points and time shift k0 = 16 samples). b) STFT restricted
to the 50 largest coefficients. c) Original data and reconstructed data

using only the 50 largest coefficients.

that it is impossible to construct a Gabor frame which is a basis. Consequently, a
Gabor transform is redundant or overcomplete and there exists an infinite number
of ways to reconstruct x from a given family of Gabor atoms. In the following, the
considered Φ dictionaries are tight frames.

The canonical reconstruction of x from its Gabor coefficients requires a canon-
ical dual window, denoted by g̃. Following Equation (2.7) to define (φ̃mf )mf we
have:

x =
∑

m,f

〈x, φmf〉φ̃mf = ΦHxΦ̃ = Φ̃HxΦ, (2.9)

where Φ̃ is the Gabor dictionary formed with the dual windows. If the frame is
tight, then we have g̃ = g, and more particularly we have ΦΦH = ‖ΦΦH‖I. The
representation being redundant, for any x ∈ RT one can find a set of coefficients
zmf such that x =

∑
m,f zmfφmf , while the zmf verify some suitable properties dic-

tated by the application. For example, it is particularly interesting for MEG/EEG
to find a sparse representation of the signal. Indeed, a spectrogram, sometimes
simply called TF transform of the data in the MEG literature, generally exhibits a
few peaks localized in the time-frequency domain. In other words, MEG/EEG sig-
nals can be expressed as linear combinations of a few oscillatory atoms. In order to
demonstrate this, Fig. 2.4.1 shows the STFT of a single signal from a MEG channel
from a somatosensory experiment, the same STFT restricted to the 50 largest coef-
ficients (approximately only 10% of the coefficients), and the signal reconstructed
with only these coefficients compared to the original signal. We observe that the
original signal can be very well approximated by only a few coefficients, i.e., a few
Gabor atoms.

In practice, the Gabor coefficients are computed using the Fast Fourier Trans-
form (FFT) and not by a multiplication by a Φ matrix as suggested above. Such
operations can be efficiently implemented as in the LTFAT toolbox1 [STB12]. An-
other practical concern to keep in mind is the trade-off between the size of the

1http://ltfat.sourceforge.net
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window g and the time shift k0. A long window will have a good frequency res-
olution and a limited time resolution. The time precision can be improved with a
small time shift, leading however to a larger computational cost, both in time and
memory. Finally as any computation done with an FFT, the STFT implementations
assume circular boundary conditions for the signal. To take this into account and
avoid edge artifacts, the signal has to be windowed.

For more details about Gabor dictionaries, please refer to [Dau+92].

2.4.3 Conclusion

This last part briefly introduced some important properties of time-frequency rep-
resentations. It presented MDCT and Gabor dictionaries. It mainly explained the
advantage of using the tight Gabor frames concept. The STFT or Gabor frames are
time invariant, contrary to MDCT. Chapter 3 will model the inverse problem in the
Time-Frequency (TF) domain, which is based on the construction of Gabor frames.

2.5 Cost functions and optimization

Due to the fact that the MEG/EEG sensors are linear combinations of the electro-
magnetic fields produced by all current sources, the linear forward operator, called
gain matrix, or the mixing matrix, predicts the MEG/EEG measurements. Here we
introduce the linear regression on which the formulation of the MEG/EEG inverse
problem is based in this thesis.

2.5.1 Linear model and regression

In statistics, linear regression consists of modeling the linear relationship between
an observation y and some explanatory variables A = [A1, . . . , An]>. This relation-
ship involves the vector of coefficients x ∈ Rm such that:

y = Ax (2.10)

This linear model is verified for a set of observations coming from the same event,
i.e. the linear combination defined by x is the same for all (variable, observation)
couples originating from the same event: (Ai, yi) ∈ Rm × R with i ∈ [1, . . . , n].
We can note [y1, . . . , yn]> = y ∈ Rn and [A1, . . . ,An] ∈ Rm×n. If all couples
{(Ai, yi)}i∈[1,...,n] verify exactly a linear model, then there exists a vector x ∈ Rm

such that Ax = y.
In a MEG/EEG application, the equivalent of A is the forward operator G

which describes the linear relationship between the MEG/EEG measurements M ∈
RN×T (N number of sensors, T number of time instants) and the source activation
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X ∈ RS×T (S is the number of source locations). The linear model then reads:
M = GX where G ∈ RN×S is the gain or the lead-field matrix (forward operator),
a known instantaneous mixing matrix, which links source and sensor signals.

In practice, the linear model is never exactly verified due to external noise.
The aim of linear regression is to additionally assume that an unobserved random
variable, i.e. error term, is added to the linear relationship between the M/EEG
measurements M and the source activation X. The regression model can then be
written similarly to Equation (2.2):

M = GX + E (2.11)

with E is the measurement noise, which is assumed to be additive, white, and
Gaussian, E.,j ∼ N (0, I) for all j. This assumption is acceptable on the basis of
a proper spatial whitening of the data using an estimate of the noise covariance
[EG15].

Several methods exist to approximate the solution of the regression model.
The most widely used is the Ordinary Least Square (OLS) approach [Leg05], which
minimizes the sum of the squares of the errors or residuals as follows:

X? ∈ arg min
X∈RS×T

1

2
‖M−GX‖2

Fro (2.12)

There exist other types of approaches like the Least Absolute Deviations (LAD),
also known as least absolute errors. Instead of minimizing the squares of the er-
rors, LAD tries to minimize the sum of the absolute values of the errors/residuals.
Its advantage over OLS is that it is more robust to outliers in the data. However
the LAD is not stable, i.e., a small modification of the observation M may result in
a huge variation of the estimation of X. Moreover it can have multiple solutions,
because unlike OLS, it does not have an analytical expression but needs to be com-
puted iteratively. This explains why the OLS approach has been the standard one,
along with the fact that it has a closed-form solution.

2.5.2 Regularization

Regularization in general can be applied for different reasons. We have seen why
the least squares is the standard approach in linear regression. However this ap-
proach has some drawbacks: overfitting 2 and the fact that the closed-form solution
is computed using G>G, which might not be invertible, giving rise to infinitely
many solutions. This requires to set regularization.

2Overfitting: when the model fits the training data too well and has bad generalization
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In general, the penalization term will be marked P(X) as in Equation (2.13)
and it can take any dense or sparse form:

X? = arg min
X∈RS×T

1

2
‖M−GX‖2

Fro + λP(X) (2.13)

In the rest of this section, we list the different regularization terms P(X) as those
using: dense norms, convex sparse norms, non-convex sparse norms, and struc-
tured norms.

Non-sparsity promoting norms

Thikonov regularization [TA77] is the most commonly used penalty, also known
as rigde regression [HK70]. It is part of dense norms as the estimated X? is dense,
even if most of its values are almost zero. It reads:

X? = arg min
X∈RS×T

1

2
‖M−GX‖2

Fro + λ‖X‖2
2 (2.14)

The first term of the minimization is called the data fit, and the second term
penalizes the solution by keeping the values of X small. We always keep the same
data fit term 1

2
‖M −GX‖2

Fro and change the second penalization term depending
on our priori knowledge. The penalization is controlled by the λ parameter. The
higher it is, the more penalized the regression is. An explicit solution of Equa-
tion (2.14) is given by X? = (G>G + λI)−1G>M.

In this thesis, we are interested in sparsity promoting regularizations, which
are natural for the MEG/EEG inverse problem. Indeed, it is reasonable to assume
that only a few focal regions in the brain are active during a certain cognitive task.

Sparse norms: Convex norms

Let y ∈ Rn a vector. The support of y is defined by the set S(y) = {i = [1, . . . , n] s.t.

y[i] 6= 0}. A vector is sparse if its support is small, i.e. the cardinal #S(y) is small
compared to n. The cardinal of S(y) corresponds to the `0 pseudo-norm. The opti-
mization problem implies then to identify S(y).

Coming back to our application, we assume that the signals M obtained with
MEG/EEG are linear combinations of a small number of sources in the brain. This
implies that only few sources in X are active, i.e., X is sparse. However the min-
imization of Equation (2.13) with the `0-norm (P(X) = ‖X‖0) is unfortunately an
NP-hard combinatorial problem.

Due to the above undesired properties, we need to consider a convex relax-
ation of the `0-norm. The use of the least squares with the `1-norm (i.e. P(X) =

‖X‖1 in Equation (2.13)) is the natural approximation, since it is the closest convex
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FIGURE 2.5.1: Geometric interpretation of the different norms in 1D
space.

norm to the `0-norm. The `1-norm is known as Lasso in statistics [Tib96b], and as
Basis Pursuit Denoising [CDS01] in signal processing literature.

Lasso

X? = arg min
X∈RS×T

1

2
‖M−GX‖2

Fro + λ‖X‖1 (2.15)

The use of a convex approximation of the `0-norm is convenient, as the method
always converges to a globally optimal solution. There exist also very efficient
algorithms.

Sparser norms: Non-Convex norms

These convex approaches allow for fast algorithms with guaranteed global con-
vergence. However, the resulting source estimates are biased in amplitude and
often suboptimal in terms of support recovery [CWB08]. This is particularly due
to the high spatial correlation of the MEG/EEG forward model. As shown, e.g.
in the compressed sensing literature, promoting sparsity by applying non-convex
penalties, such as logarithmic or `p-quasinorm penalties with 0 < p < 1, can im-
prove support identification, as well as reduce amplitude bias [CWB08; Cha07;
SCY08]. Figure 2.5.1 shows the geometric interpretation of different norms in the
1-dimensional space. The smaller p, the closer is this approximation to the exact
definition of sparsity.

We investigated the `0.5-quasinorm as part of the regularization, written as:
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`0.5 − quasinorm

X? = arg min
X∈RS×T

1

2
‖M−GX‖2

Fro + λ‖X‖0.5 (2.16)

As the `0.5-quasinorm is non-convex, it cannot be solved in the same way and
with the same guarantees as the `1-norm. One algorithm for solving Equation (2.13)
using the `0.5 quasi-norm consists in applying an iterative reweighted approach,
where each iteration boils down to a convex problem with a weighted `1 regular-
ization.

Weighted Lasso

X? = arg min
X∈RS×T

1

2
‖M−GX‖2

Fro + λ‖X‖W;1 (2.17)

with
‖X‖W;1 =

∑

i

∑

j

W [i, j]|X[i, j]|

where W is the weight applied to matrix X aiming to regularize more the low
coefficients, resulting in a higher sparsity. The update of the weight W will be
presented in Chapter 3.

Structured Norms: non stationary sources in TF domain

In some applications, like for MEG/EEG, one is not only interested in sparsity, as
a-priori knowledge is available on the structure of the support of X. To go beyond
the sparsity with the `p-norms where 0 < p < 1, [YL06] introduced the Group Lasso
in order to take grouped structures in the data into account. It uses a mixed `2 and
`1-norm on X. The idea is to keep a small number of groups active (`1) but once a
group is active, then the coefficients of that group will be all nonzero (`2).

Group Lasso
X? = arg min

X∈RS×T

1

2
‖M−GX‖2

Fro + λ‖X‖2,1 (2.18)

where

‖X‖2,1 =
∑

i

(∑

j

|X[i, j]|2
)1/2

While the Group Lasso gives only a sparse set of groups, sometimes we would like
to obtain sparsity in groups and within each group. In our application, a group
is basically a source, i.e. a position in the brain. The Group Lasso is definitely
convenient to obtain sparse source estimates, however it is not efficient for sources
which are active only during small time windows. Toward this end, one can use
Sparse Group Lasso [Sim+13], which is a convex combination of the Lasso and the
Group Lasso penalties.
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Sparse Group Lasso

X? = arg min
X∈RS×T

1

2
‖M−GX‖2

Fro + λ1‖X‖2,1 + λ2‖X‖1 (2.19)

If λ1 = 0 then it would be equivalent to the Lasso penalty, and if λ2 = 0, it results
in the Group Lasso penalty.

2.5.3 Methods for solving sparse inverse problems

The previous section describes the MEG/EEG inverse problem as a penalized re-
gression model. This section enumerates some methods for solving this inverse
problem using sparse priors. The corresponding MEG/EEG inverse solver for
the `1-norm is the MCE solver (Minimum Current Estimate) introduced by Mat-
suura and Okabe [MO95]. One possible way to solve the `1 penalty is to use the
Iterative Least Squares (IRLS). IRLS consists in iteratively computing weighted
LS by setting appropriate weights. This is based on the fact that a weighted `2-
norm: ‖x‖w;2 =

∑
iw[i]k|x[i]|2 is equal to the `1-norm: ‖x‖1 =

∑
i |x[i]|, when

w[i]k = 1/|x[i]|, where k denotes the iteration index. This corresponds to WMN
in Section 2.3.3. Similar iterative weighted methods are used to solve the (Sparse)
Group Lasso corresponding to mixed-norms in both standard and time-frequency
domains presented in Section 2.3.3. Other methods based on the proximity opera-
tor are used to solve non-differentiable convex optimization problems. The idea is
to alternate the minimization over the smooth convex data fit using a small gradi-
ent step and the computation of the proximal operator associated with the penalty
which is non-smooth.

Indeed, the MEG/EEG inverse problem can be written as:

X̂ = arg min
X∈RSO×T

f(X) = arg min
X∈RSO×T

(g(X) + λP(X)) with λ > 0 . (2.20)

Here g(X) : CSO×T → R is a convex differentiable function with Lipschitz-continuous
gradient. The regularization function P(X) : CSO×T → R is a non-smooth function,
typically a combination of norms or quasi-norms, inducing sparsity in the time or
time-frequency domain.

Proximal operators

Let h : Rn → R be a convex, non differentiable function. The proximity operator
associated with h and λ ∈ R+ denoted by proxλh : Rn → Rn is given by:

proxλh(y) = arg min
x∈Rn

1

2
‖y − x‖2

2 + λh(x) (2.21)
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Algorithm 1: GROUP LASSO WITH FISTA
Input : M,G, λ > 0
Auxiliary variables: Y, X0 ∈ RS×T , τ0 ∈ R
1. Initialization: X ∈ RS×T , Y = X, τ = 1, and 0 < µ < L−1 = ‖G>G‖−1

2. repeat
3. X0 = X
4. τ0 = τ
5. X = proxµλ‖.‖2,1(Y − µ∇g(X)) with∇g(X) = −G>(M−GX)

6. τ =
1+
√

1+4τ20
2

7. Y = X + τ0−1
τ

(X−X0)
8. until convergence
return X

This corresponds to the inverse problem where G = I. To be able to solve the
problem with non-smooth penalties and G 6= I, one needs to introduce the iter-
ative forward-backward algorithm [Mor65]. Each iteration computes the proximity
operator of the penalty as:

X(k+1)[:, j] = proxµλP(X(k)[:, j] + µG>(M[:, j]−GX(k)[:, j]),∀j ∈ [1, . . . , T ] (2.22)

µ stands for the step size and has been proved to satisfy 0 < µ < ‖G>G‖−1
2 . In

practice, it is fixed to µ = 1
L = ‖G>G‖−1

2 , where L denotes the Lipschitz constant. k
represents the iteration index. For more details refer to [Mor65; CW05; DDDM04].

If the penalty is set to be the `2,1-norm as in Equation (2.18), the solution is ob-
tained by row-wise soft thresholding. These proximal gradient methods are known
as the forward-backward algorithm, thresholded Landweber iterations, or the It-
erative Soft Thresholding Algorithm (ISTA) or Fast Iterative Soft Thresholding Al-
gorithm (FISTA) [Bac+12; PB+14]. FISTA or any proximal gradient method can be
applied when the objective function is a sum of two terms, a convex smooth term
and non-smooth term for which the proximity operator is available. A detailed
algorithm of FISTA applied to Group Lasso can be found in Algorithm 1.

However, as seen before, the `1-norm is not very appropriate for M/EEG ap-
plications as it does not take the temporal correlation of the data into account. For
the spatio-temporal solvers such as TF-MxNE or irTF-MxNE presented in Chap-
ter 3, one needs to introduce the proximity operator for these composite penalties.
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Proximity operator of `2,1 + `1

Let Y ∈ RS×T ; X = proxλ1‖·‖1+λ2‖·‖2,1(Y) ∈ RS×T is given for each coordinate
(s, t) by:

X[s, t] =
Y [s, t]

|Y [s, t]|(|Y [s, t]| − λ1)+

(
1− λ2√∑

t(|Y [s, t]| − λ1)2
+

)

+

(2.23)

where for z ∈ R, (z)+ = max(0, z) and by convention 0
0

= 0.

Block Coordinate Descent: BCD

Other methods for solving the MEG/EEG inverse problem with non-smooth penal-
ties exist. We mention here the Block Coordinate Descent (BCD) scheme [Tse10].
BCD is an extension of the well known Coordinate Descent (CD) [LO09; Nes12].
CD is based on the idea of decomposing a large optimization problem into a se-
quence of one-dimensional optimization problems.

BCD was used to solve the Group Lasso in [Rak11b; QSG13], it is based on
the same idea of alternating between a gradient step and the computation of the
proximity operator of P(X) (for instance: `2,1 +`1). BCD is used on block-separable
schemes where a block is a set of coordinates and can be defined depending on the
data. Here a block maps a location in the brain, i.e., a block is one source. Simi-
larly to the CD method, the order in which the different blocks are processed can
be cyclic, random which improves theoretical performance [Tse01; WYL12].

As both BCD and FISTA are based on the same idea of alternating between the
gradient and the proximal operator, their difference is that BCD uses at each step
a subproblem specific to one block. The subproblem per block has a closed form
solution, which involves applying the group soft-thresholding operator, the prox-
imity operator associated to the P(X), for instance that defined in Equation 2.23
when using `2,1 + `1 (P(X) = ‖X‖2,1 + ‖X‖1. Accordingly, the closed form solution
for the BCD subproblems solving the Group Lasso problem can be derived as:

X̄(k)
s = X(k−1)

s + µsG
>
s (M−GX(k−1))

X̃(k)
s = X̃(k)

s max(1− µ[s]λ

max(‖X̄(k)
s ‖Fro, µ[s]λ)

, 0) (2.24)

The step length µ[s] for each BCD subproblem is determined by µ[s] = L−1
s with

Ls = ‖G>s Gs‖ being the Lipschitz constant of the data-fit restricted to the sth source
location. This step length is typically larger than the step length applicable in any
proximal gradient method, which is upper-bounded by the inverse of L = ‖G>G‖.
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Optimality conditions and stopping criterion

Stopping criterion: The standard way is to check if the solution at iteration k has
not been improved more than a fixed tolerance threshold ε, for either the objective
function |f(X(k−1))−f(X(k))| < ε, or the source estimate itself ‖X(k−1)−X(k)‖∞ < ε.
This is an acceptable strategy, although not the best one. A more rigorous criteria
would be based on the duality gap [BV04; Bac+12].

Duality gap: It is a way to check the optimality criterion when optimizing a
convex cost function f . For a subset of convex problems, the Slater’s conditions
apply, therefore the gap at the optimum is exactly zero [BV04]. Computing the
gap needs to derive first a dual formulation of the original problem, also called the
primal problem. For a general minimization problem, the minimum of the primal
objective function fp(X) is bounded below by the maximum of the dual objective
function fd(X). Then, the duality gap is defined as the difference between the
minimum of the primal cost function fp and the maximum of the dual cost fd. For
a value of of X(k) of the primal variable at iteration k, if one can exhibit a dual
variable Y(k), the duality gap η(k) is defined as:

η(k) = fp(X
(k))− fd(Y(k)) ≥ 0 (2.25)

At the optimum (corresponding to X̂), if the Y(k) is well chosen, η(k) is 0. By ex-
hibiting a pair (X(k),Y(k)), one can guarantee that ‖fp(X(k))− fp(X̂)‖ ≤ ‖fp(X(k))−
fd(Y

(k))‖. A good stopping criterion is therefore given by a duality gap η(k) < ε.
The solution meeting this condition is called ε-optimal. The challenge in practice
is to find an expression for fd and to be able to associate a good Y with a given X.
Experimental studies showed that for whitened data a duality gap lower than 10−6

does not produce distinguishable solutions [GKH12a]. For more details on how to
compute the duality gap in this kind of problems, see [Bac+12; GKH12a; Str+16]

Screening rules and active set

The regularization term P(X) used in this thesis promotes spatial sparsity, which
makes most of the blocks of X̂ equal to zero. We can thus reduce the computation
time by primarily updating blocks that are likely to be non-zero, while keeping
the remaining blocks at zero. For this purpose, data-dependent sweep patterns
(such as greedy approaches based on steepest descent [LO09; WYL12]) or active
set strategies can be applied [FHT10a; RF08a].

The active set strategy can be used for both Group Lasso and Sparse Group
Lasso based on [RF08b; WY14]. The main idea is to start with X = 0, which cor-
responds to an empty active set Γ = {}. We estimate an initial active set of sources Γ
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FIGURE 2.5.2: Computation time as a function of λ for group Lasso
on real MEG data using BCD and FISTA with (solid) and without
(dashed) active set strategy. The size of the data was: 306 sensors,

7498 cortical locations, and free orientation (O=3)

by evaluating the Karush-Kuhn-Tucker (KKT) optimality conditions [RF08b; WY14],
which states that X̂s = 0 under some conditions depending on the regulariza-
tion term. We select the N sources that violates the KKT conditions the most (e.g.
N = 10). Subsequently, we restrict the source space to the sources in Γ and es-
timate X̂Γ with convergence controlled by the duality gap. After convergence of
this restricted optimization problem, we check whether X̂Γ is an ε-optimal solution
for the original problem (without restricting the source space to Γ). If X̂Γ is not an
ε-optimal solution indicated by η ≤ ε, we re-evaluate the KKT optimality condi-
tions and update the active set Γ by adding the N sources that violate again these
optimality conditions. The same procedure is then repeated with warm start.

Comparison of the different solvers

In Strohmeier et al. [Str+16], the BCD scheme was used for solving the MEG/EEG
inverse problem. For the problem at hand, BCD outperforms FISTA proposed in
a former work in [GKH12b]. BCD converges faster due to the reasons discussed
in the BCD subsection 2.5.3. Taking bigger step depending on the current block
makes the algorithm go faster to the optimal solution.

Combining the BCD and the active set strategy reduces the computation time
by a factor of 100 and allows us to compute the group Lasso on real MEG/EEG
data in a few seconds. All the experimental results shown in the rest of this thesis
will be obtained by using BCD with active set strategy.



36 Chapter 2. Background and work related to the M/EEG inverse problem

2.5.4 Conclusion

This chapter gives all the needed background which has been used to develop
and demonstrate the upcoming results. It demonstrated how to model the inverse
problem as a regularized regression problem. It defined the multiple priors that
have been used in the literature including the sparse approaches that are of interest
in this thesis. Then it introduced some of the methods for solving the different
convex optimization problems. This is again not an exhaustive list and not all
details have been presented here.

This chapter also defined the state of the art of the MEG/EEG inverse problem
and how research in this field have been evolving. From the penalized regression
formulation to the hierarchical Bayesian formulation, I will show in the next chap-
ters how this thesis tries to bridge the gap between those two communities. Espe-
cially, the aim is to take advantage of each part, the computationally fast solvers
developed so far by one community and the ability to quantify uncertainties of the
solution in the second community.
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FIGURE 3.1.1: Sparsity patterns promoted by the different regular-
izations: `2 all non-zero, `1 scattered and unstructured non-zero, `21

block row structure, and `21+`1 (TF domain) block row structure with
intra-row sparsity. The yellow color indicates non-zero coefficients.

3.1 Introduction

In Chapter 2, we have seen all the background of the inverse problem in the MEG
and EEG field. We justified the motivation for having sparse priors as regulariza-
tion for the regression problem. Sparse priors were presented under different ap-
proaches. This chapter considers the variational problem in the time-frequency do-
main by fixing the penalization term as a Sparse Group Lasso as in Equation (2.19)
(page 31), with λ1 a hyperparmeter over space, and λ2, a second hyperparameter
over time. Figure 3.1.1 justifies this choice. It shows how `21 + `1 allows for model-
ing non-stationary sources which cannot be estimated with the `2 or the `21 due to
the non-sparsity promoting `2-norm over time, while the `1 estimate is completely
scattered and unstructured.

This chapter describes the source localization in the TF domain. We have
showed in Chapter 2-Section 2.4 (page 23) why localizing the source in the TF do-
main was a "true" spatio-temporal approach taking the time correlation into ac-
count. The Time-Frequency Mixed Norm Estimate (TF-MxNE) [Gra+13a], Spatio-
Temporal Unifying Tomography (STOUT) [CC+15] and the iterative reweighted
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TF-MxNE (irTF-MxNE) [SGH15] improve the reconstruction of transient and non-
stationary sources by promoting structured sparsity in the TF domain. Those meth-
ods apply a Sparse Group Lasso on the TF coefficients. TF-MxNE and STOUT ap-
ply a composite convex penalty, the sum of an `2,1-mixed-norm and an `1-norm
penalty, on the Gabor transform of the source time courses. On the other hand,
irTF-MxNE applies a composite non-convex penalty, the sum of an `2,0.5-quasinorm
and an `0.5-quasinorm penalty on the TF coefficients. The non-convex penalties
have been shown to outperform convex approaches both in terms of source recov-
ery and amplitude bias [CWB08; al.10], as explained in Chapter 2. However, the
choice of an optimal Gabor dictionary for decomposing the data remains difficult.

This issue of the choice of the dictionary is specially encountered when a mix-
ture of signals is available in the data, e.g. a short transient signal right after the
onset of a stimuli, and slower brain waves afterward. The choice of a unique dic-
tionary describing both signals in a sparse way is hard. We show in this chapter
how to incorporate a multi-scale dictionary in the iterative reweighted optimiza-
tion algorithm, i.e. multiple dictionaries with different scales concatenated to fit
short transients and slow waves at the same time, while keeping computational
efficiency. The optimization problem is solved in the same way as irTF-MxNE
[SGH15], i.e. each iteration is a weighted TF-MxNE, which we solve using BCD
(Section 2.5.3) and an active set strategy (Section 2.5.3) [FHT10b]. We demon-
strate the benefit of the multi-scale dictionary in terms of reconstructed source time
courses and temporal unmixing of activations.

3.2 Inverse problem in the Time-Frequency domain

Using a dictionary of TF atoms, such as a tight Gabor frame (cf. Section 2.4.2 -
page 24), Φ ∈ CT×C (T samples, C atoms), the neuronal activation X ∈ RSO×T

(S sources, O orientations) can be modeled as a linear combination of atoms, X =

ZΦH, where Z ∈ CSO×C is the TF coefficients matrix. A Gabor frame Φ is tight
(see Section 2.4) when the Euclidean norm of the input signal and the vector of TF
coefficients are proportional (‖Z‖2

2 = AΦ‖X‖2
2 where AΦ > 0). When AΦ = 1 the

frame is said to be normalized. We will use tight frames in the following.
The MEG/EEG measurements matrixM ∈ RN×T (N sensors) follows the for-

ward model equivalent to Equation (2.2) (page 15):

M = GX + E = GZΦH + E (3.1)

where G ∈ RN×SO stands for the forward operator. E ∈ RN×T is the measurement
noise, which can be assumed to be additive white noise: E[:, j] ∼ N (0, I) for all j
after spatial whitening [Eng+15]. Estimating the coefficients Z given the measure-
ment M is an ill-posed problem and constraints have to be imposed on Z to obtain
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a unique source estimate, as described for X in the last chapter. For analyzing
evoked responses, we assume that the neuronal activation is spatially sparse and
temporally smooth. This corresponds to a row sparsity [Gra+13a], which we pro-
mote by applying a composite non-convex regularization P(Z) (see Figure 3.1.1).
The associated regularized regression problem equivalent to Equation (2.13) is:

Z? = arg min
Z

1

2
‖M−GZΦH‖2

Fro + P(Z) (3.2)

with
P(Z) = λspace‖Z‖2,0.5 + λtime‖Z‖0.5 (3.3)

where λspace > 0, λtime > 0. A large regularization parameter λspace will lead to
a spatially very sparse solution or even an empty solution, while a large λtime will
promote sources with smooth time series and might loose sharp aspects of the neu-
ral activity.

3.3 Fast iterative reweighted TF-MxNE with tight frames

Given a dictionary Φ, the optimization problem in Equation (3.2) can be solved
by iteratively minimizing convex surrogate problems [SGH15]. The regularization
term at each iteration k is a weighted convex mixed norm that can be written as:

P(Z) = λspace‖Z‖W(k)
1 ;2,1

+ λtime‖Z‖W(k)
2 ;1

(3.4)

with ∀s, c,
W

(k)
1 [s, c] =

(
2

√
‖Ẑ(k−1)[s, :]‖2 + ε(k−1)

)−2

W
(k)
2 [s, c] =

(
2

√
|Ẑ(k−1)[s, c]|+ ε(k−1)

)−1
,

where W1 and W2 are the weights applied to the TF coefficients, and Ẑ(k−1) are the
estimated coefficients at iteration (k − 1). ε(k−1) ∈ R+ is used to prevent infinite
weights. To have an intuition about the update rule for the weights, one can prove
that updating the weights with wi=|xi|p−2 leads to a solution of the `p-norm penal-
ized problem.

For solving Equation (3.2), we use BCD [Tse10]. The algorithm boils down to
sequentially computing a gradient step and the proximity operator of the `2,1 + `1

norm for each block s of coefficients (see Section 2.5.3-page 33). Here a block maps
to a location in the brain. One update of a block of coefficients is given by a first
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gradient step:

R = M−GX̂ (3.5)

X̄[s, :] = X̂[s, :] + µ[s]G[:, s]>R (3.6)

Z̄[s, :] = X̄[s, :]Φ (3.7)

followed by the computation of the proximity operator of the weighted `2,1 + `1

described in Chapter 2-Equation (2.23):

Z̃[s, c] = Z̄[s, c]

(
1− µ[s]λtimeW

(k)
2 [s, c]

|Z̄[s, c]|

)

+

(3.8)

Ẑ[s, c] = Z̃[s, c]


1−

µ[s]λspace

√
W

(k)
1 [s, c]

‖Z̃[s, :]‖2




+

(3.9)

When Φ is a tight frame, µ[s] is the step length for each BCD subproblem and
it is given by µ[s] =

√
AΦ(‖G[:, s]TG[:, s]‖)−1. This step length, i.e. the inverse

of the Lipschitz constant restricted to source s, is typically larger than the step
length applicable in iterative proximal gradient methods, which is upper bounded
by ‖GTG‖−1. This implies a bigger step to speed up the convergence. Finally:

X̂[s, :] = Ẑ[s, :]ΦH. (3.10)

Equations (3.8) and (3.9) are respectively solutions of the proximity operator
for the weighted `1-norm and for the weighted `2,1-norm. As the `1 proximity op-
erator shrinks coefficients towards zero, if a block of coefficients were set to zero
by the `2,1 proximity operator, it would also be set to zero after the application of
the `1 proximity operator. As a consequence, it is possible to know just by apply-
ing the `2,1 proximity operator to X̄[s, :] if the set of coefficients Z̃[s, :] will be set to
zero. Note that this is just a sufficient condition and that we may have to compute
all steps to know if the block is set to zero. This is summarized in the following
lemma.

Lemma 1 Let Φ be a frame with constantAΦ; if ‖X̄[s, :]‖2≤ µ[s]λspace

√
W

(k)
1 [s, c]/

√
AΦ,

then Ẑ[s, c] = 0, ∀c.

Computing the TF decomposition at each iteration can be costly. The conse-
quence of the lemma is that for a lot of source locations one can avoid computing
their TF decomposition during the optimization, just by computing the `2-norm
of the time courses after the gradient step. In order to speed up the computation
even more, we combine the BCD scheme with an active set strategy (Section 2.5.3
- page 34) [FHT10b], which primarily updates sources that are likely to be active,
while keeping the remaining sources inactive.
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Orientation constraints

Let Zs ∈ C3×C be the block of the Z ∈ C3S×C (O = 3) corresponding to the sth

source, Z[1, :] be the activity of the dipole oriented normal to the cortical surface,
and Z[2, :] and Z[3, :] be the two other orientations tangent to the surface. We mod-
ify the `1-norm and the `2,1-norm for the free orientation constraints (O = 3) as
follows:

‖Z‖1 =
∑

s,c

√
|Zs[1, c]|2 +

1

κ2
|Zs[2, c]|2 +

1

κ2
Zs[3, c]|2

‖Z‖2,1 =
∑

s

√∑

c

|Zs[1, c]|2 +
1

κ2
|Zs[2, c]|2 +

1

κ2
Zs[3, c]|2

where s indexes the source location and c the TF coefficient. When κ = 1, no
orientation contraint is applied and the modified penalties amount to grouping the
orientation in a common `2-norm. In practice κ is fixed to 0.2.

3.4 Inverse problem with multi-scale tight Gabor frames

As shown in Section 2.4.2 (page 24), a tight Gabor frame is computed by setting
two parameters: the length of the window (window size), and an overlap param-
eter (time shift). The window size defines the time/frequency resolution. If its
length is short, it would be more focused on time than frequency, and vice versa.
If it is long, it will be more focused on frequency than in time. The time resolution
also depends on the time shift parameter. The time shift parameter defines the time
step from one window to another (cf. Section 2.4). This affects the redundancy of
the dictionary. A dense sampling of the TF space, however, increases the computa-
tional complexity on both time and memory.

Each source waveform is a sparse linear combination of atoms from this dic-
tionary. Fixing those parameters is then critical for having an optimal dictionary.
Learning the dictionary might be a solution to avoid fixing the parameters, or the
need to have an overcomplete dictionary covering a broad range of scales. How-
ever, learning both Z and Φ simultaneously is a non-convex optimization problem,
for which one needs to alternate between a convex optimization for the two vari-
ables [MM+14].

Let us define a multi-scale TF dictionary, where we concatenate Q tight Gabor
frames Φq, 1 ≤ q ≤ Q, with different resolutions. One can realize that this union of
tight frames Φ = [Φ1, . . . ,ΦQ] is also a tight frame with AΦ =

∑
q AΦq . The strat-

egy presented in the previous section 3.2 is therefore still relevant for a multi-scale
dictionary, where the activation Z is a concatenation of Z1,Z2, ...,ZQ. Algorithm 2



3.5. Experiments with different dictionaries 43

Algorithm 2: MULTI-SCALE TF-MXNE WITH ACTIVE SET STRATEGY

input : M,G,Φ = [Φ1, . . . ,ΦQ], λspace > 0, λtime, and ε > 0
init : Z ∈ RSO×C , Γ = {}, η = fp(Z)− fd(Y), µ with µ[s] = L−1

s = ‖G>s Gs‖−1

while η ≥ ε do
Γ? = {s | ‖proxλtime‖.‖1(G

>
s (M−GZΦH)Φ)‖Fro > λspace}

Γ = Γ ∪ Γ? (Update of the active set)
Z?

Γ ← output of Algorithm 3 with µ and Γ
Z[Γ, :] = Z?

Γ

η = fp(Z)− fd(Y)

Algorithm 3: MULTI-SCALE TF-MXNE WITH BCD
input : M,G,Φ, µ, λspace > 0, λtime > 0, ε > 0, and Γ
init : η = fp(X)− fd(Y)
while η ≥ ε do

for s ∈ Γ do
Zs = proxµ[s](λspace‖.‖2,1+λtime‖.‖1)(Zs + µ[s]G>s (M−GZΦH)Φ)

η = fp(X)− fd(Y)

describes how to solve the inverse problem in the TF domain with a multi-scale
dictionary.

3.5 Experiments with different dictionaries

We first evaluate the accuracy of irTF-MxNE with and without multi-scale on real-
istic simulations. We then apply our new solver on MEG somatosensory data.

3.5.1 Simulation

We generated a realistic simulation dataset based on a fixed-orientation source
model with 7549 cortical locations and 102 magnetometers. Two of these locations
were selected to be active in the primary and secondary somatosensory cortex (S1
and S2). The corresponding time courses are shown in Figure 3.5.1-a in blue (S1)
and green (S2). We have both a transient source around 40 ms and slow waves
afterwards around 70, 100 and 150 ms. The irTF-MxNE solver improves the source
recovery [SGH15]. Therefore, we do not compare the solvers presented here over
the active set size or an F1 measure 1, as both solvers are already able to recover
all the sources. We evaluate our approach by computing the explained variance
between simulated source courses and the source estimation from each solver as
follows:

θ = 1− ‖GXsim −GXest‖2
Fro

‖GXsim‖2
Fro

(3.11)

1The F1 score is the harmonic mean of precision and recall: F1 = 2. precision.recallprecision+recall
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FIGURE 3.5.1: (a) Simulated source time courses in S1 (blue) and S2
(green). (b) The explained variance for irTF-MxNE using two different
dictionaries: long window size (ws) 64 with time shift (s) 4 (green), and
small window size 16 with time shift 2 (red). The combination of the
two dictionaries is shown in blue. This shows how the multi-scale

dictionary (MSD) improves the explained variance.

Fig. 3.5.1-b shows the explained variance for the irTF-MxNE with different
dictionaries over a logarithmic grid of λspace. The first Gabor dictionary is con-
structed with a 64-sample-long window and a 4 samples time shift (green), the sec-
ond Gabor dictionary is constructed with a 16 sample-long window and 2 samples
time shift (red) and the third one is the combination of the two dictionaries (blue).
We observe that the irTF-MxNE solver using the combination of two dictionaries
outperforms the solver with each dictionary separately in terms of explained vari-
ance measure over all parameter range. Higher values of log(λspace) > 1.2 impose
high penalization on the active set size, resulting in a too sparse source estimate,
where the solution does not explain the measurement anymore. The results show
a source reconstruction improvement, which leads to a larger explained variance.

3.5.2 Experimental results with MEG somatosensory data

In order to demonstrate the advantage of irTF-MxNE with a multi-scale dictionary
over the basic irTF-MxNE, we tested different parameters for different solvers on a
MEG dataset: somatosensory study of the MIND dataset (see details in [Wei+07]).
The evoked response is shown in Figure 3.5.2. One can already notice this mixture
of brain waves in the evoked. Sharper waves right after the onset are due to a
nice alignment of the trials whose information is not lost after averaging. This is
mainly known as a response of the primary somatosensory area (S1) which answers
quickly after a painless electrical stimulation of the median nerve. A longer wave
which comes later around 70ms is clearly seen from the evoked too. This is what
makes this data a challenging dataset and a very good one for testing the multi-
scale solver.

Source estimation was first performed using several solvers: irTF-MxNE, ir-
MxNE [SHG14] and dSPM [Dal+00]. Regarding irTF-MxNE, two dictionaries were
tested (both STFT dictionaries). A dictionary with a 64 sample-long window and a
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FIGURE 3.5.2: Somatosensory evoked response after preprocessing
and averaging (gradiometers and magnetometers data). The top left
circle gives the position of the sensors over the head which are color-

coded

4 samples time shift, which leads to smooth source courses; and a dictionary with
a 16 sample-long window and a 2 samples time shift, which helps capture short
transient sources. After inspection of the residual in Figure 3.5.3, results show that
at least four sources are necessary to capture all evoked components.

We have therefore fixed the parameters of the irTF-MxNE solvers as to obtain
only four sources while explaining as much variance as possible. After that, we ex-
perimented with a set of different parameters and we show two of them, λtime = 1.5

and λtime = 2.5, to demonstrate their impact on the smoothness of the different
time sources obtained. The parameters were chosen in such a way to reduce the
residual i.e. to maximize the explained data by having at least four sources. Fig-
ures 3.5.5 (a-b) represent the four time courses obtained with irTF-MxNE using the
short window dictionary for the selected values of λtime.

We show that for high values of λtime (b), the solver is not able to capture
the short transient component around 30 ms. While for a small value (a), the un-
mixing is not reliable since the light blue and the green source estimates catch the
activity from the red source. Additionally, the time courses are not smooth. On
the other hand, Figures 3.5.5 (c-d) represent the four time courses obtained with
irTF-MxNE using the long window dictionary for the selected λtime. The figure
confirms that both parameters are not able to capture the transient effect after the
stimulus, although the time courses are smooth. These four sub-figures reveal that
one needs a short window to capture the transient effect of the brain signal (see
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FIGURE 3.5.3: Residual of the somatosensory data after applying the
multi-scale irTF-MxNE. The top left circle gives the position of the

sensors over the head which are color-coded

Figure 3.5.4), while it needs to have a long window to capture the long waves and
to have smooth source estimates. This result demonstrates how a combination of
the two dictionaries is critical to acquire source estimates with high precision, but
the hyperparameters need to be tuned as well, as shown in this Figure 3.5.5 that
their values drastically change the results.

Moreover, Figure 3.5.5 (e) displays the amplitudes obtained with MxNE for
five sources. As for MxNE, one is not able to obtain the four relevant sources un-
mixed (see for more demonstrative figures [GKH12b]). We notice that the light blue
source in Figures 3.5.5 (a) to (d) appears as two separate sources in (e): light blue
and purple. If we increase the λ parameter, we increase the amplitude bias due to
the l1 norm of the solver. If we set it too high (λ = 50) we obtain four sources, but
the blue source which is relevant to the study would be removed and the dupli-
cated purple source is kept. The last panel Figure 3.5.5 (f) displays the source esti-
mates for dSPM values corresponding to the four locations of the sources obtained
with irTF-MxNE. These sub-figures show that none of MxNE or dSPM solvers is
able to obtain smooth sources without any leakage between the time courses.

Source estimation was then achieved using irTF-MxNE with the combination
of the two dictionaries. Figure 3.5.6 shows source reconstruction using the multi-
scale irTF-MxNE for the regularization parameters λspace = 28.5 and λtime = 1.5.
Each source’s location is marked by a sphere in Figure 3.5.6-left, and its amplitude
over time is color-coded in the right panel. The results show a suitable succes-
sion of the sources. The transient source (red) is the only source explaining the
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FIGURE 3.5.4: Residual of the somatosensory data after applying
irTF-MxNE with a long window dictionary (window size = 64, time
shift = 4). The transient part of the brain signal is left in the residual

as it cannot be modeled by the long dictionary.
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FIGURE 3.5.5: Source reconstruction using somatosensory data with
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activation for the four activated sources.
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FIGURE 3.5.6: Source reconstruction using somatosensory data with a
multi-scale irTF-MxNE. The solver estimates four sources for λspace =
28.5 and λtime = 1.3. The source locations marked with spheres in
right (rh) and left (lh) hemisphere, and their corresponding activation
are color-coded. The colorbar is over dSPM values which has no units

as they are statistical values.

event related field until 48 ms. This red source corresponds to the contralateral
primary somatosensory cortex (cS1) located in the postcentral gyrus of the pari-
etal lobe (right hemisphere (rh)). The red sphere on the lateral view coincides with
the smeared dSPM activation around 40 ms. The second source (light blue) corre-
sponds to the secondary somatosensory cortex (cS2), and also occurs with dSPM
activation around 80 ms. About 100 ms after stimulus, additional cortical sources
are activated, such as ipsilateral secondary somatosensory cortex (iS2) (blue-lh),
and contralateral medial wall (green-rh).

The multi-scale version of the MEG/EEG inverse problem in the TF domain
does not only allow the capture of mixture of brain signals. An interesting point
is the non-stationary aspect of the sources, which can be activated only for a short
time window within a longer one. This multi-scale solver then allows us to ana-
lyze and reconstruct signals with variable characteristics over time. So far, all the
results presented have used a Gabor transform by fixing its window length and the
time shift. The Gabor transform is a special case of STFT (the discrete case), and the
question is what if this dictionary is not the best choice for decomposing the data.
The choice of the STFT was driven mostly by its flexibility of the choice of the dic-
tionary being redundant or overcomplete. Moreover, its efficient implementation
using FFT makes the STFT/iSTFT computation possible even with very redundant
dictionaries.

We investigated a second choice: MDCT (cf. Section 2.4.1 - page 24). The
problem found with the MDCT is the fact that it is critically sampled. The sliding
time windows are overlapping, so that the second half of one block coincides with
the first half of the next block, i.e. the time shift is equal to half the window’s
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(A) MDCT: window size = 64-16,
time shift = 32-8
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(B) STFT: window size = 64-16,
time shift = 32-8
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(C) MDCT: window size = 128-16,
time shift = 64-8
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(D) STFT: window size = 128-16,
time shift = 64-8
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(E) MDCT: window size = 128-64-16-8,
time shift = 64-32-8-4

25 50 75 100 125 150 175 200
Time (ms)

0

20

40

60

80

So
ur

ce
 a

m
pl

itu
de

 (n
Am

)

(F) STFT: window size = 128-64-16-8,
time shift = 64-32-8-4

FIGURE 3.5.7: Comparison between MDCT and STFT using So-
matosensory of the MIND dataset. MDCT is shown in the left column

and STFT in the right column.
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length. Figure 3.5.7 shows several mixtures of dictionaries for MDCT, but also
for STFT if we set the time shift at half the window size. One can directly notice
that it is harder to obtain both transient and smooth signals without any leakage
between the time sources. MDCT is more sensitive to all the hyperparameters: the
dictionary window length and the λspace/λtime. Even if we leave aside the trade-off
that one needs to keep in mind between the size of the multi-scale dictionary and
the computation time, by having multiple dictionaries concatenated together as in
Figures 3.5.7-3.5.7e, MDCT is still not able to compete with STFT as in Figure 3.5.6.

3.6 Conclusion & Perspectives

In this chapter, we motivated the use of multi-scale dictionaries for the M/EEG
inverse problem and presented our first contribution. The irTF-MxNE solver using
a multi-scale dictionary allows to better capture the mixture of the MEG/EEG data.
The non-convex optimization problem is solved by iteratively solving the convex
weighted TF-MxNE problem using block coordinate descent combined with active
set strategy to speed up the convergence.

The benefits of the multi-scale irTF-MxNE have been shown on simulated and
MEG somatosensory data. Both experiments confirm that multi-scale irTF-MxNE
improves the source estimates, in terms of reduced mixing of the time courses,
smoothness and detection of both short transients and slower waves. The improve-
ment regarding the active set size and amplitude bias is due to the non-convexity of
the regularization methods. Hence, the multi-scale irTF-MxNE should be applied
to data involving a mixture of signals, and when the aim is to acquire focal sources
with non-stationary and smooth time courses.

Further work related to this chapter may address different points:

• The source localization in general is computed over an evoked response, i.e.
in the MEG/EEG field, the evoked is the mean of several trials of the same
experiment. The main purpose is to reduce the noise, i.e. increase the SNR
of the signal. At a trial level, i.e. for a lower SNR, how can we improve the
source localization?

• Optimization direction: the idea of incorporating screening techniques pre-
sented in a huge amount of papers can help to speed up the convergence, and
so the reconstruction time [MGS17; MSG; FGS15; Ndi+15; Ndi+16; Ndi+17].

• Multi-scale irTF-MxNE improvement in terms of hyperparameter learning,
i.e. estimation of the best parameters λspace and λtime. In the standard cases,
these parameters are selected by cross-validation or sometimes by using the
discrepancy principle. A key contribution in this direction would be to use
Bayesian inference techniques to estimate those regularization parameters in
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a composite norms setting. This problem is addressed in the following chap-
ter but not in the TF domain.
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Parts of this chapter have been published in the following:

• Y. Bekhti, R. Badeau, and A. Gramfort, "Hyperparameter estimation in maxi-
mum a posteriori regression using group sparsity with an application to brain
imaging," Signal Processing Conference (EUSIPCO), pp. 246-250, 2017.

• Y. Bekhti, F. Lucka, J. Salmon, and A. Gramfort, "A hierarchical Bayesian
perspective on majorization-minimization for non-convex sparse regression:
application to M/EEG source imaging," ArXiv preprint, (submitted).

4.1 Introduction - General concepts

This chapter presents a different perspective on the MEG/EEG inverse problem. It
tries to bridge the gap between two communities both interested in sparse mod-
els for solving inverse problems. As mentioned several times so far in this the-
sis, sparsity has emerged as a key concept to solve inverse problems, not only the
MEG/EEG inverse problem, but also tomographic image reconstruction, deconvo-
lution, or inpainting. The idea is also well established to regularize high dimen-
sional regression problems in the field of machine learning. There are mainly two
routes to introduce sparsity to such problems.

The first route, embraced by the optimization community and frequentist statis-
ticians, is to promote sparsity using convex optimization theory. This line of work
has led to now mature theoretical guarantees [FR13] when using regularization
functions based on `1 norm and other convex variants [Tib96a]. In particular, it
has been popularized in the signal processing community under the name of com-
pressed sensing [CW08] when combined with incoherent measurements.

There are however some limitations of sparsity promoting convex penalties
based on the `1 norm. All the features (also called regressors, atoms or sources
depending on the terminology of the community) involved in the solution form
what is called the support of the solution. Convex penalties can fail to identify the
correct support in the presence of highly noisy data, but also in low noise setups
if the forward operator (referred to as design matrix in statistics) is poorly condi-
tioned. Convex regularizations also lead to a systematic underestimation bias in
the amplitude of the coefficients [Osh+06; CWB08; Cha07; SCY08; CHS17].

To address these limitations of `1-type models, reweighted schemes have been
proposed [CWB08; GRC09; Rak11a; ZR11b; Str+16], of which the Adaptive Lasso
[Zou06] is the most commonly used in the statistics community: Starting from the
Lasso estimator, which amounts to regressing with a standard `1-norm as a regu-
larizer (this estimator is sometimes referred to as Basis Pursuit Denoising (BPDN)
[CDS98] in signal processing), the Adaptive Lasso solves a sequence of weighted
Lasso problems, where at each iteration the weights are chosen such that the strongest
coefficients are less and less penalized. From the optimization point of view, such
an iterative scheme can be derived from so-called Majorization-Minimization (MM)
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strategies [LHY00; SSW+10]. The idea behind MM is to minimize the objective
function by successively minimizing upper bounds that are easier to optimize.
Many well-known optimization approaches can be interpreted as instances of MM,
e.g., simple gradient descent or proximal algorithms [CP11], expectation-maximization
(EM) [DLR77], and difference-of-convex (DC) programming techniques [HT99].
More recently, re-weighted `1-norm schemes based on MM principle have been
particularly popular to handle concave, hence non-convex regularizations such as
`0.5-quasi-norms or logarithmic functions. As such, these schemes are prone to con-
verging to a local minimum determined by the initial, uniformly weighted `1-norm
solution (i.e., the Lasso estimator) that constitutes the first iterate. This first route
has been defined in more details in Chapter 2 and Chapter 3.

The second route to introduce sparsity formulates the regression problem in
a Bayesian framework and uses Hierarchical Bayesian Modeling (HBM) [Mac03]
for the inference. The common way to formulate HBMs is to consider the vari-
ance parameters of Gaussian prior models as additional random variables which
have to be estimated from the data as well. Their prior distributions are referred
to as hyper-priors. Plausible solutions to the regression problem that both fit data
and the a priori assumption of sparsity are explicitly characterized as multiple dis-
tinct modes of the posterior distribution. This characterization is the Bayesian ana-
logue to local minima in variational regression approaches when working with
non-convex functionals. Different strategies to infer a point estimate for the pa-
rameters of interest from the a posteriori distribution then lead to different algo-
rithmic frameworks, for instance Variational Bayesian approaches [Mac03; Jor+99;
Sat+04; Fri+08; SB15], Sparse Bayesian Learning (SBL) approaches (also referred to
as type-I or type-II maximum likelihood estimates) [Tip01; WR04; WN09a; ZR11b]
and fully-Bayesian strategies [Cal+09; Luc+12a].

This chapter focuses on the later one for a non-standard type of HBM exam-
ined in [Luc14] that combines a non-Gaussian prior with an `1-type energy function
with a specific Gamma hyper-prior. For this HBM, a simple alternating scheme to
compute full maximum a posteriori (MAP) estimates leads to exactly the same se-
quence of problems solved by MM applied to `1/2-type regularizations. With this
observation made, it is natural to revisit and improve these MM schemes by lever-
aging the ability of the Bayesian framework to explore the modes of the posterior
distribution by MCMC schemes [RC05; KS05]. This does not only mitigate the
aforementioned initialization-dependence of MM, but more importantly, it offers
insights into the structure and importance of potentially multiple plausible sparse
solutions. Yet, the benefit comes at the cost of additional computational efforts.

This chapter is organized as follows: First, it presents in a unified perspective
both routes to sparsity, i.e., reweighted `1 MM schemes and specific HBMs. We
show that a particular optimization-based inference strategy recovers the MM al-
gorithm. It then describes an HBM inference strategy based upon an MCMC sam-
pling and shows on simulated and experimental MEG/EEG datasets how these
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stochastic MCMC-based techniques do not only help to improve upon determin-
istic approaches but also help to reveal multiple plausible solutions to the inverse
problem. This analysis leads to an Uncertainty Quantification (UQ) of the sup-
port recovery of non-convex sparse regression problems that provides very use-
ful complementary information, in particular for very ill-conditioned and under-
determined applications like MEG/EEG source localization.

4.2 Lp hyper-models

In Bayesian statistics, a hyperprior is a prior distribution on a hyperparameter, that
is, on a parameter of a prior distribution. Firstly, the use of a hyperprior allows
one to express uncertainty in a hyperparameter: taking a fixed prior is an assump-
tion, varying a hyperparameter of the prior allows one to do sensitivity analysis on
this assumption, and taking a distribution on this hyperparameter allows one to
express uncertainty in this assumption: "assume that the prior is of this form (this
parametric family), but that we are uncertain as to precisely what the values of the
parameters should be" [BS01].

A popular choice of hyperprior is the gamma distribution with α and β its
corresponding parameters:

p(λ) =
βα

Γ(α)
λα−1 exp(−βλ)1R+(λ), λ ∈ R (4.1)

where Γ is the gamma function. In the following of this chapter, the hyperprior is
always a gamma distribution.

4.3 Hyperparameter estimation in the variational for-
mulation

This section investigates the estimation of the hyperparamter λ in the variational
formulation. One can notice that hyperparameter setting is a classical statistics
problem for which a number of solutions have been proposed. In signal processing,
the Akaike information criterion (AIC) and Bayesian information criterion (BIC)
criteria are quite popular techniques historically [Sch+78]. The SURE-based tech-
niques [Ste81] have also been quite popular and recently explored for denoising
and compressed sensing applications [LBU07; GD15]. In a standard supervised
machine learning setup with independent and identically distributed (i.i.d.) ob-
servations, Cross-Validation (CV) is the reference approach. Also, the Bayesian
approach suited for probabilistic models offers a principled way to estimate hy-
perparameters using hyperpriors that introduce softer constraints than solutions
with fixed parameter values. This benefit yet usually comes at a price in terms of
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computational cost. Finally, in a number of real scenarios, humans end up setting
hyperparameters, as they can have some expert knowledge that can correct model
mismatch.

In statistical machine learning, a hyperparameter typically aims at limiting
overfitting by controlling the model complexity. In the particular case of regular-
ized regression, classically a scalar parameter balances between the data fit and the
penalty term. When using sparse regression, this parameter affects the sparsity of
the solution, i.e. how many covariates or regressors are used.

With CV, some independent observations are left out of the inference and the
hyperparameter values that yield the best prediction performance on this data are
selected. A search for the best parameter can be done with a time consuming ex-
haustive grid-search, smooth optimization (see [Ped16] and references therein), se-
quential or even random search [Ber+11; BB12]. The CV approach however needs
the i.i.d. assumption to be fulfilled, which is not always the case in practice, e.g.
when working with signals or arrays of sensors as in the case of our application to
brain imaging.

To keep it as a hierarchical Bayesian model problem and following a recent pa-
per of Pereyra [PBDF15], we consider a HBM and propose to use a MAP estimation
for the hyperparameters.

This thesis is particularly interested in the high-dimensional regression set-
ting using Group-Lasso-like structured sparsity as seen so far. In the literature a
number of approaches have been proposed and MAP estimates that boil down
to penalized regression with smooth or non-smooth penalties are the standard
approaches employed by neuroscientists [Hau+08; OHG09b; BVVN09; WN09b;
GKH12b; Luc+12b; VS+09].

In a variational formulation, the value of the hyperparameter λ depends on
the problem at hand, the noise level, and on the choice of regularization P(X).
Finding a way to estimate the hyperparameter with minimal user intervention is
therefore particularly important, as it makes a comparison between different mod-
els and regularization easier.

Recently Pereyra et al. [PBDF15] proposed a strategy for hyperparameter es-
timation in the context of MAP inference when the prior or the regularizer is a
k-homogeneous function. The regularizer P is a k-homogeneous function if there
exists k ∈ R+ such that:

P(ηX) = ηkP(X), ∀X ∈ RS×T and ∀η > 0.

The k-homogeneous condition is satisfied for all `p,q mixed norms. We focus
on the estimation of the hyperparameters for hierarchical Bayesian models yielding
convex `2,1 (P(X) = ‖X‖2,1) or non-convex `2,0.5 penalties, which are respectively 1-
homogeneous and 0.5-homogeneous. The non-convex penalization is solved using
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iterative re-weighted convex optimization schemes, i.e. each iteration is a weighted
`2,1-norm as described in Section 4.4.1.

In [PBDF15], the fixed point strategy proposed is validated on an image de-
noising problem using an analysis prior, i.e. where the solution is not sparse but has
a sparse representation in some transformed domain. This section illustrates and
explains why the method from [PBDF15] cannot be used out-of-the-box when us-
ing a synthesis prior for an under-determined problem. A synthesis prior is when
the solution itself is sparse.

4.3.1 Hierarchical Bayesian modeling and reformulation

The result shown in [PBDF15] and adapted to our problem and the notations used
in this manuscript is the following. Using a joint MAP estimator of λ and X, it
states that λ̂ should satisfy:

λ̂ =
ST/k + α− 1

P(X̂λ̂) + β
, (4.2)

where X̂λ̂ is the solution of Equation (2.13) (page 28) for λ = λ̂. In [PBDF15], it is
further suggested to set α and β to 1.

Looking at Equation (4.2), one can observe that if ST is big, which is the
case for high dimensional problems, the numerator can significantly dominate
the denominator, especially if the estimate X̂ is very sparse. In practice using
Equation (4.2) in this scenario results rapidly in huge values of λ and empty sup-
ports. This issue is much less critical when using an analysis prior for denoising
as in [PBDF15], as the size of the unknown coefficients is in this case NT , where
NT � ST .

As reported earlier, the update of the regularization parameter λ as in (Equa-
tion (4.2)) is not suitable for the synthesis prior P(X). The issue is due to the over-
scaled numerator compared to the denominator. When the problem is important
(as in [PBDF15]) - ST is big, whereas the support in X? is small - the estimated
parameter λ then explodes, resulting in an empty support.

To overcome this problem, we propose to rewrite the objective function in
such a way that we obtain the same solution X but with a multiplicative factor λ

ST
.

The new equivalent formulation can be written as:

X̂ = arg min
X

ST

2
‖M−GX‖2

Fro + λP(X) (4.3)

Note that this is just a reparametrization of Equation (2.13). In practice, this
boils down to multiplying M and G by

√
ST . However this only solves one diffi-

culty in the parameter’s update. Another disadvantage is that none of the param-
eters in Equation (4.2) takes into account the scale of G. The next section explains
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how to use results from convex optimization to properly calibrate the hyperprior
parameters α and β given M, G and P .

4.3.2 Setting hyperpriors with a single hyperparameter

As in [PBDF15], Gamma hyperpriors are used to derive two iterative algorithms
that simultaneously estimate a single hyperparameter λ and the entries of X, yet
the values of α and β are still to be defined. In [PBDF15], it is suggested to set α
and β to 1, which turns out to be inappropriate for underdetermined inverse (de-
convolution) problems as our MEG/EEG brain imaging problem of interest.

A first observation is that α and β should default to reasonable values and be
insensitive to trivial changes in matrix G such as scaling, i.e. multiplying G by a
scalar. This is the problem we investigate now.

In Equation (4.2), the numerator would not be affected by a rescaling of G.
However, the denominator that contains P(Xλ?) would. To make the estimation
robust to changes of G such as scaling, one therefore needs to modify the numera-
tor, hence make α a function of G. Setting α to 1 independently of the problem, as
in [PBDF15], is certainly inadequate.

In order to set the value of α, we propose to take advantage of the fact that if
P(X) = ‖X‖2,1, one can analytically compute λmax, which is defined as the smallest
regularization parameter for which the solution is zero [Bac+12]. It is given by:

λmax = ‖G>M‖2,∞ = max
i
‖(G>M)[i, :]‖2. (4.4)

Parameter λ can therefore be parametrized as a fraction, or a percentage, of λmax.
This allows us to have a good a priori guess on the peak of the gamma distribution.
We set the peak, a.k.a. the mode, to mode = τ × λmax, with τ ∈ [0, 1].

Once the mode is known, it is straightforward to fix the value of α: mode = α−1
β

for α ≥ 1. From now on we fix α as:

α = mode× β + 1 = τ × λmax × β + 1 . (4.5)

Concerning the parameter β, for our specific MEG/EEG problem of interest
we fix it so that 99% of the probability density of the gamma distribution is between
20% and 70% of λmax. This is motivated by the fact that in our case solutions are
expected to be extremely sparse, with only a handful of active brain regions. This
is of course application specific.
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4.3.3 Estimation of a vector of hyperparameters

The penalizations of the form P(X) = ‖X‖2,· are separable in S groups of coeffi-
cients. As only a few groups are expected to be active, a natural idea is to penalize
less the important groups. To do this, we propose to estimate one parameter per
group of coefficients or row of X using the convex `2,1 penalization. Let us now
derive a result similar to Equation (4.2) but in the more general case of one λ per
group.

Rewriting Equation (2.13) in the MAP framework leads to:

X? = arg max
X

p(X,M|λ) = arg max
X

p(M|X)p(X|λ) (4.6)

where p(M|X) is the likelihood function corresponding to the first term in Equa-
tion (2.13) and p(X|λ) is the regularization corresponding to the second term in
Equation (2.13). This Bayesian formulation requires to compute the normalization
factor C(λ) in p(X|λ) = exp(−λP(X))/C(λ). Computing this constant C(λ) in gen-
eral is intractable as it involves an integration. Yet [PBDF15] showed that it admits
an exact closed-form when the penalization is k-homogeneous as C(λ) = Dλ−ST/k

where D = C(1) is a constant independent of λ [PBDF15].

We now propose a joint-MAP estimation with λ ∈ RS . We look for (X?, λ?) ∈
R(S×T ) × RS which maximizes p(X, λ|M). A sufficient condition of optimality is
given by:

(0(S×T ), 0S) ∈ −∂X,λ log p(X?, λ?|M) (4.7)

i.e.
0S×T ∈ −∂X log p(X?, λ?|M),

0 ∈ −∂λi log p(X?, λ?|M) ∀i,
(4.8)

where ∂X,λ is the set of subgradients (the subdifferential).

The optimization over X at iteration k satisfies Equation (4.3):

X(k) = arg min
X∈RS×T

ST

2
‖M−GX‖2

Fro +
∑

i

λ[i](k−1)‖X[i, :]‖.

The next step is to optimize over λi,∀i. Equation (4.8) leads to:

0 ∈ −∂λ[i] log p(X(k),M|λ)− ∂λ[i] log p(λ). (4.9)

Using p(X(k),M|λ) = p(M|X(k))p(X(k)|λ), one has that:

−∂λ[i] log p(X(k),M|λ) = −∂λ[i] log p(X(k)|λ). (4.10)
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FIGURE 4.3.1: (a) Source identification results for different numbers
of sources measured with F1 score using α = 1 and β = 1. The higher
the number of regressors, the worse the performance is. (b) Estimated
λ as a function of λinit for different values of a and b. The red curve for
β = 0.33 gives the best plateau, which demonstrates that (a, b) shall

be carefully adjusted.

We then use the normalization factor C(λ) which gives:

−∂λ[i] log p(X(k),M|λ) = ‖X[i, :]‖+ ∂λ[i] logC(λ) (4.11)

and
∂λ[i] logC(λ) =

−ST
kλ[i]

. (4.12)

Regarding the second term in Equation (4.9), Equation (4.1) yields −∂λi log p(λ) =

−α−1
λi

+ β. Completing the derivations, the equation for each λi, i ∈ [1 . . . S], reads:

λ?i =
ST/k + α− 1

‖Xλ? [i, :]‖+ β
. (4.13)

4.3.4 Experiments

Simulation study

We generated a simulation dataset with N = 302 sensors, T = 190 time samples
and S = 1500 sources. Four sources were randomly selected to be active with
realistic waveforms obtained from the MIND dataset [Wei+07]. The linear forward
operator G was a random matrix, whose columns were normalized to 1. Two levels
of white noise were added to the simulation. We always used τ = 0.5.

In order to illustrate the issue when using a synthesis prior for large problems,
we run the estimation of the hyperparameter λ as suggested in [PBDF15] using
the 0.5-homogeneous non-convex prior. Figure 4.3.1-(a) shows the F1 score 1 of

1The F1 score is the harmonic mean of precision and recall: F1 = 2. precision.recallprecision+recall
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the source reconstruction (1 for good reconstruction and 0 for bad). The source
estimation is failing for almost all the range of data size. Figure 4.3.1-(b) shows
the results after reformulating the problem with different settings of α and β. One
can notice that a setting as in [PBDF15] with α = 1 and β = 1 always gives an
estimated λ around 1% of λmax, which is not promoting the sparsity we are looking
for in this kind of setting. For this aim, we varied the values of β and computed α

as defined before. Figure 4.3.1-(b) shows that for most values of β we have rather a
too low estimation of λ ≈ 1% or a too high λ ≥ 100% resulting in zero source found
active. Interestingly, setting β = 1/3 gives a plateau at λ̂ close to 0.3λmax. This is
an evidence of a clear fixed point for the iterative process λ(t+1) = f(λ(t)), where
f is the update rule of λ in Equation (4.2). We use β = 1/3 from now on and its
corresponding α.
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FIGURE 4.3.2: Source reconstruction on simulated data. (a): Source
estimates obtained using `2,1 with one λ. The solution is not sparse
enough (zero sources in light green) and there is an amplitude bias be-
tween the exact amplitudes (stars) and the estimated ones (raw lines).
(b): Good reconstruction of the four sources using `2,0.5 and one λ,
which is equivalent to the reconstruction using the `2,1 norm with
λ ∈ RS (c). Each of the four sources is encoded with a different color.

Figure 4.3.2 represents the simulated sources with stars and the estimated ones
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with plain lines. Figure 4.3.2-(a)-(b) display results with the `2,1 and `2,0.5 norms re-
spectively, using one hyperparameter initialized to λ = 0.5λmax. One can see that in
Figure 4.3.2-(a), the `2,1 norm recovers the four sources with an amplitude bias (the
estimated amplitude is lower than the exact one), and that several sources shown
in light green are almost flat around zero but still found as active sources. There is
no way to reduce the support without losing one of the four simulated sources, i.e.
the `2,1 norm with one hyperparameter fails to recover the exact simulated sources.
The `2,0.5 norm in (b) estimates the exact four source amplitudes without ampli-
tude bias thanks to the non-convexity [Str+16]. On the other hand, Figure 4.3.2-(c)
shows the results for the convex penalty using one hyperparameter per source. It
can be seen that it is qualitatively equivalent to the non-convex penalty.

The advantage of having one hyperparameter per source is to pick up only the
sources involved in the measurement M and drop the extra almost-zero sources
visible in Figure 4.3.2-(a) (light green). This extension produces sparser results and
less amplitude bias without casting the problem as non-convex. This figure also
suggests a link between the non-convex prior and one hyperparameter per source.
As the non-convex prior is an iterative procedure estimating an internal weight to
produce a better solution, the fact to have one hyperparameter per source can also
be seen as a weight to define better source estimates. A more accurate study of this
can be found in the next section 4.4.

Experimental results with MEG auditory data

We applied the estimation of a single hyperparameter and a hyperparameter per
source using the convex `2,1 penalty on a real open dataset (MNE sample dataset
[Gra+14]). It corresponds to a dataset with N = 305 sensors, T = 55 time sam-
ples and S = 7498 sources. Figure 4.3.3 shows the source amplitudes of the two
auditory sources and their positions in the brain when estimating a hyperparam-
eter per source. When using a single hyperparameter on the convex norm `2,1,
multiple spurious sources are found as active which replicates the simulation on
Figure 4.3.2-(a). These source estimates in Figure 4.3.3 correspond to the M100 peak
(peak around 100 ms) generated in the vicinity of the bilateral auditory cortices in
superior temporal gyri (the relevant auditory area).

4.4 Link between MM and special case of HBM

We start this section by recalling how majorization-minimization works when ad-
dressing variational formulations with concave, hence non-convex, regularization.
It is followed by an introduction to hierarchical Bayesian models with Gamma
hyper-priors. Then, we explain how these seemingly different approaches can
lead to the exact same regression algorithm. From this, we detail how different
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FIGURE 4.3.3: Source reconstruction on MEG auditory data (sample
dataset [Gra+14]). Source amplitude of two sources (blue and green)
in the right panel and their corresponding positions in the brain on

the left.

Bayesian inference strategies using MCMC sampling can more precisely explore
the landscape of the posterior distribution of the HBM model and provide multi-
ple possible solutions to the sparse regression problem compared to MM.

4.4.1 Majorization-Minimization: MM

Majorization-Minimization (MM) strategies consist in replacing a difficult opti-
mization problem with a series of easier ones that are obtained by upper bound-
ing the objective function, often by a convex majorant. In the context of inverse
problems or high-dimensional statistics using sparsity constraints, MM has been
successfully applied to address non-convex regularization terms. An example is
the regression model with `2,p-quasi-norms regularization over the groups when
0 < p < 1: the desired estimate X̂ is defined as one of potentially multiple mini-
mizers of:

X̂ ∈ arg min
X∈RSO×T

1

2
‖M−GX‖2

Fro + λ
S∑

i=1

‖X[i]‖pFro , (4.14)

similarly to Equation (2.13) (page 28), where λ > 0 is the regularization parameter
balancing the data fit and the penalty term, and X[i] defines the block of source i
(RT if O = 1 or R3×T if O = 3). One possible MM approach to solve Equation (4.14)
with p = 0.5 would consist of minimizing a sequence of non-smooth convex sur-
rogate functions where the non-convex regularization (irMXNE solver) is replaced
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by a weighted `2,1 norm similar to MxNE solver [Str+16]. In each iteration, the
weights are derived from the current estimate of X.

Due to the concavity of the non-decreasing function X 7→
√
‖X‖Fro, it is upper

bounded by its tangent and a first order Taylor expansion at the current estimate
X[i] provides an upper bound that can be used to construct the non-smooth convex
surrogate problem. By solving this sequence of surrogate problems, the value of
the non-convex objective function is guaranteed to decrease. However, due to the
non-convexity, only convergence towards a local minimum can be guaranteed.

For the problem in Equation (4.14) with p = 0.5, the kth iteration of the MM
scheme reads:

X(k) ∈ arg min
X∈RSO×T

1

2
‖M−GX‖2

Fro + λ
S∑

i=1

‖X[i]‖Fro

w(k−1)[i]
, (4.15)

with:
w(k−1)[i] = 2

√
‖X(k−1)[i]‖Fro .

As each weight w(k)[i] is a non-decreasing function of ‖X(k)[i]‖Fro, sources with high
amplitudes in one iteration will be less penalized in the next iteration and can bet-
ter explain the data M. Sources for which ‖X(k)[i]‖Fro = 0 at a certain iteration k are
effectively pruned from the model for all following iterations. Using MM therefore
leads to a solution that explains the data with fewer active locations i compared to
a standard `2,1 norm regularized solution.
Note that a default initialization consists in setting w(0)[i] = 1,∀i ∈ [1, · · · , S] [Str+16].

To exploit existing fast solvers for the `2,1 regularized problems [Str+16; Ndi+15],
we reformulate the weighted subproblem and apply the weights by scaling the ma-
trix G with a diagonal matrix W(k) ∈ RSO×SO given by:

W(k) = diag(w(k) ⊗ 1O) , (4.16)

where w(k) ∈ RS , 1O ∈ RO is a vector of ones and ⊗ is the Kronecker product.
Defining G̃(k) = GW(k−1), the reformulated problem reads:

X̃(k) ∈ arg min
X∈RSO×T

1

2
‖M− G̃(k)X‖2

Fro + λ

S∑

i=1

‖X[i]‖Fro . (4.17)

The convergence of each weighted `2,1 (MxNE) is controlled by monitoring
the duality gap (see Section 2.5.3). For more details about convex duality of opti-
mization with sparsity-inducing penalties, refer to [Bac+12].
As mentioned in Section 2.5.3, the minimum of the primal objective function fp(X)

is bounded below by the maximum of the dual objective function fd(Y), i.e.
fd(Y

?) ≤ fp(X
?) where X? and Y? are the optimal solutions of the primal and the

dual objective functions respectively. If strong duality holds, the duality gap de-
fined as η = fp(X)− fd(Y) would be zero at the optimum.



66 Chapter 4. Bridges between Bayesian models and sparsity inducing norms

Algorithm 4: `2,p MM ALGORITHM WITH p = 0.5 (ADAPTIVE LASSO) - ITER-
ATIVE REWEIGHTED MXNE

input : M,G, λ > 0,W(0) > 0, ε > 0, τ > 0 and K
for k = 1 to K do

G̃(k) = GW(k−1)

Get X̃(k) by solving Equation (4.17) at ε-precision as done in Algorithm 5.
Update X̂(k) = W(k−1)X̃(k)

Update W(k) = diag(w(k) ⊗ 1O) where w(k)[i] = 2

√
‖X̂(k)[i]‖Fro

∀i ∈ [1, · · · , S]
if ‖X̂(k) − X̂(k−1)‖∞ ≤ τ then

Break

Due to Slater’s conditions [BV04], the strong duality holds for the MxNE subprob-
lem and the gap can be used to check the convergence of Equation (4.15). Based
on Fenchel-Rockafellar duality theorem [Roc97], one dual objective function asso-
ciated with the primal objective function:

fp(X) =
1

2
‖M−GX‖2

Fro + λP(X)

=
1

2
‖M−GX‖2

Fro + λ
S∑

i=1

‖X[i]‖Fro
(4.18)

is given by:

fd(Y) = −1

2
‖Y‖2

Fro + Tr(Y>M)− λP?(G>Y/λ) (4.19)

where P? is the Fenchel conjugate of P , which is the indicator function of the as-
sociated dual form. For a full derivation, see [GKH12a]. Moreover, the Karush-
Khun-Tucker (KKT) conditions of the Fenchel-Rockafellar duality theorem give a
natural mapping from the primal to the dual space, which is given by a scaling of
the residual Ỹ = M−GX, as shown in [GKH12a].
In practice, we terminate the optimization scheme for solving MxNE when the es-
timate at the kth iteration is ε-optimal with ε = 10−6 [Str+16].

For solving the weighted MxNE subproblems, the BCD scheme was used [Tse10],
which for the problem at hand converges faster than FISTA (See Section 2.5.3).
The subproblem per block has a closed-form solution, which involves applying
the group soft-thresholding operator, the proximity operator associated to the `2,1-
mixed-norm [GKH12b; Str+16].

After convergence, we re-apply the scaling to X̃ to obtain X̂:

X?(k) = W(k−1)X̃(k) . (4.20)

The reformulation through Equation (4.17) and Equation (4.20) avoids any division
by zero when X(k−1) = 0. The above procedure, which matches the strategy of the
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Algorithm 5: MXNE WITH BCD AND ACTIVE SET STRATEGY

input : M,G, λ > 0, ε > 0, and S
init : X = 0, Γ = {}, η = fp(X)− fd(Y)
for i = 1 to S do

µ[i] = ‖G>i Gi‖−1

while η ≥ ε do
Γ? = {i | ‖G>i (M−GX)‖Fro > λ}
Γ = Γ ∪ Γ?

Define GΓ and XΓ by restricting G and X to Γ
X?

Γ ← Output of Algorithm 6 with µ,GΓ, and X0 = XΓ

X[Γ, :] = X?
Γ

η = fp(X)− fd(Y)

Algorithm 6: MXNE WITH BCD
input : M,G,X, µ, λ > 0, ε > 0, and S
init : η = fp(X)− fd(Y)
while η ≥ ε do

for i = 1 ∈ S do
X[i]← Solve Equation (2.5.3) with X, µ, and M

η = fp(X)− fd(Y)

Adaptive Lasso estimator [Zou06], is expressed as pseudo-code in Algorithm 4.

4.4.2 Hierarchical Bayesian Modeling

In this section, we formulate the inference problem defined by Equation (2.11)
(page 27) and the regularization strategy with `2,p-quasinorm from a Bayesian per-
spective [KS05; Luc14]: the Bayesian approach incorporates prior beliefs about the
model parameters in terms of probability distributions. Under the Additive, White
Gaussian Noise (AWGN) assumption, the likelihood of the model is given by:

plike(M|X) ∝ exp
(
−1

2
‖M−GX‖2

Fro

)
. (4.21)

From Equation (4.14) we can construct the `2,p group prior as:

pprior(X) ∝ exp

(
−λ

S∑

i=1

‖X[i]‖pFro

)
=

S∏

i=1

exp (−λ‖X[i]‖pFro) , (4.22)

which leads to the following posterior probability density using the Bayes rule:

ppost(X|M) ∝ exp

(
−1

2
‖M−GX‖2

Fro − λ
S∑

i=1

‖X[i]‖pFro

)
. (4.23)

To extend Equation (4.22) to a hierarchical prior model [Mac03], the scalar λ
has been replaced by a vector of hyperparameters γ ∈ RS

+ and for any p ≥ 1 we



68 Chapter 4. Bridges between Bayesian models and sparsity inducing norms

write the conditional `2,p prior as:

pprior(X|γ) = exp

(
−

S∑

i=1

(‖X[i]‖pFro

γ[i]
+
OT

p
log(γ[i])

))
, (4.24)

where the logarithmic term accounts for the terms of the normalization that depend
on γ [Luc14]. A common choice for a hyper-prior on each γ[i] is given by a Gamma
distribution [Mac03; KS05; Cal+09; Luc+12a] with shape and scale parameters α and
β:

phyper(γ) ∝
S∏

i=1

γ[i]α−1 exp

(
−γ[i]

β

)
(4.25)

= exp

(
−

S∑

i=1

(
−γ[i]

β
+ (α− 1) log(γ[i])

))
. (4.26)

Then, the full posterior over both X and γ becomes:

ppost(X, γ|M) ∝

exp

(
−1

2
‖M−GX‖2

Fro −
S∑

i=1

(‖X[i]‖pFro

γ[i]
+
γ[i]

β
− (α− 1− OT

p
) log(γ[i])

))
. (4.27)

The question of how to best derive parameter estimates, in particular how to treat
the two different types of parameters X and γ, distinguishes different HBM-based
inference strategies. Variational Bayesian approaches [Mac03; Jor+99; Sat+04; Fri+08;
SB15] and Sparse Bayesian Learning [Tip01; WR04; WN09a; ZR11b] approaches
rely on approximating or marginalizing the full, joint posterior distribution (Equa-
tion (4.27)). In contrast, fully-Bayesian strategies [Cal+09; Luc+12a] work with it
directly. The most popular one is the full maximum-a-posteriori (full-MAP) esti-
mate which is defined as:

(X̂MAP, γ̂MAP) ∈ arg max(X,γ)∈RSO×T×Rn+ {ppost(X, γ|M)} . (4.28)

A common strategy to compute it is to minimize the negative log posterior− log ppost(X, γ|M)

by alternating minimization over X and γ (block coordinate descent in optimization):

X(k) ∈ arg min
X∈RSO×T

{
1

2
‖M−GX‖2

Fro +
S∑

i=1

‖X[i]‖pFro

γ(k−1)[i]

}
, (4.29)
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γ(k)[i] ∈ arg min
γ[i]∈R+

{‖X(k)[i]‖pFro

γ[i]
+
γ[i]

β
− (α− 1− OT

p
) log(γ[i])

}
,

∀i ∈ [1, · · · , S] .

(4.30)

Other fully-Bayesian estimates are defined as integrals of functions of X and γ with
respect to the posterior distribution, e.g. first or second moment estimates. To com-
pute these high dimensional integrals efficiently, only MCMC methods that draw
correlated samples from the posterior distribution can be used [RC05; KS05]. A
commonly used MCMC scheme for HBM is given by blocked Gibbs sampling, which
alternates as:

X(k) ∼ ppost(X, γ
(k−1)|M) ∝ ppost(X|M, γ(k−1)) , (4.31)

γ(k) ∼ ppost(X
(k), γ|M) ∝ ppost(γ|M,X(k)) . (4.32)

Depending on the purpose of the study, here the main interest is not sampling the
posterior distribution for computing the integral-based estimators, but we rather
want to explore the different modes of this multi-modal distribution, each of which
corresponds to parameters that are both sparse and likely to explain the data.
One can notice similar structures in Equations (4.29)-(4.30) and Equations (4.31)-
(4.32): in each step, we make use of the conditional structure of the posterior: for
γ fixed, we have to solve one SOT -dimensional `2,p optimization/sampling prob-
lems, while for X fixed, we have to solve S 1-dimensional optimization/sampling
problems. These two steps will be described in more detail in the sections 4.5
and 4.6.

4.5 HBM optimization in the Bayesian formulation

The optimization problem defined in Equation (4.29) reduces to an `2,p-norm reg-
ularized regression problem that can be solved as described in Section 4.4.1. For
solving Equation (4.30), we compute the first order optimality condition for each i:

−‖X
(k)[i]‖pFro

γ[i]2
+

1

β
−

(α− 1− OT
p

)

γ[i]
= 0 , (4.33)

For α > OT/p + 1, the problem in Equation (4.30) is convex, and the positive
root of Equation (4.33) is given by:

γ[i] = β


ν +

√
ν2 +

‖X(k)[i]‖pFro

β


 , ν :=

α− 1−OT/p
2

. (4.34)
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Note that similar rules to update the noise level were considered in the Bayesian
Lasso [PC08; Kyu+10] and the Scaled Lasso (see for instance [SBv10; Dal12]). A dif-
ference though is that the update we perform here is on the penalty term, whereas
in the mentioned references, it was rather performed on the data-fitting term.

If we furthermore choose α = OT/p+1, then ν = 0 and most terms disappear;
Equation (4.29) and (4.30) hence read:

X(k) = arg minX∈RSO×T

{
1
2
‖M−GX‖2

Fro +
∑S

i=1

‖X[i]‖pFro
γ(k−1)[i]

}
, (4.35)

γ(k)[i] =
√
β
√
‖X(k)[i]‖pFro , ∀i = 1, . . . , S , (4.36)

which can be combined into the fixed point iteration:

X(k) = arg min
X∈RSO×T

{
1

2
‖M−GX‖2

Fro +
2√
β

S∑

i=1

‖X[i]‖pFro

2
√
‖X(k−1)[i]‖pFro

}
. (4.37)

If we compare Equation (4.37) with Equation (4.15), we see that we re-derived the
MM algorithm for p = 1 as an alternating optimization scheme to compute the full-
MAP estimate for a specific HBM, namely using a conditional `2,1 group prior and
a Gamma hyper-prior with α = OT + 1 and β = 4/λ2. Using w(0)[i] := 1 in the MM
scheme corresponds to starting with γ[i](0) := 1/λ = 2/

√
β.

From previous work [Str+16] we know that due to the non-convexity, a good
initialization of the weights w(0)[i] in the MM algorithm is crucial for its perfor-
mance, but aside uniform initialization, only heuristic initialization strategies were
used, e.g. using the same re-weighting as in the sLORETA method [PM02]. In this
thesis, we leverage the re-interpretation of the MM algorithm through the HBM
framework to obtain multiple initializations in a systematic fashion, namely as
samples drawn from the full posterior. In this way, we can not only reach bet-
ter local minima, but more importantly, we can identify and characterize multiple
possible sparse solutions. Such plausible solutions to the sparse regression prob-
lem in Equation (2.11) are the modes of the posterior distribution (Equation (4.27))
with different relative probability masses.

4.6 Posterior Sampling

As outlined in Equations (4.31) and (4.32) in Section 4.4.2, we sample the full poste-
rior ppost(X, γ|M) by blocked Gibbs sampling, i.e., we alternate between sampling
the conditional distributions ppost(X|M, γ(k−1)) and ppost(γ|M,X(k)). The condi-
tional ppost(X|M, γ(k−1)) is a high dimensional distribution composed of a Gaus-
sian likelihood and an `2,p prior, where our main interest here is p = 1. It was
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Algorithm 7: BLOCK GIBBS SAMPLING SCHEME

input : M,G, X(−K0), γ(−K0), K0, K, KSC , KSS , α, β
for k = −K0 + 1 to K do

Set X(k) = X(k−1).
for kSC = 1 to KSC do

Draw a random permutation P of {1, . . . , S}
for l ∈ P do

Sample X(k)[i, j] ∼ ppost(X[i, j]|X(k−1)[−(i, j)],M, γ(k)), ∀(i, j) ∈ [l] -
via KSS steps of Slice Sampling Algorithm 8.

Sample γ(k)
i ∼ ppost(γi|M,X(k)), ∀i = 1, . . . , n via Accept-Reject

Algorithm 9.
return {X(k), γ(k)}Kk=1

demonstrated in [Luc12] that single component Gibbs sampling (SC Gibbs) is an ef-
ficient MCMC technique to sample such distributions. For the specific `2,p priors
used here, slice sampling can be used to perform the sub-steps in SC Gibbs sam-
pling, namely the sampling of the one-dimensional single-component conditional
densities. The resulting Slice-Within-Gibbs sampler was examined in [Luc16]. For
completeness, the details of the implementation are given in Section 4.6.1.

Following Equation (4.27), the conditional ppost(γ|M,X(k)) factorizes over groups
i:

ppost(γ[i]|M,X(k)) ∝ exp

(
−‖X

(k)[i]‖pFro

γ[i]
− γ[i]

β
+ (α− 1−OT/p) log(γ[i])

)
. (4.38)

For the case of α = OT/p + 1, which is our main interest due to its connection to
MM revealed in the previous section, Equation (4.38) reduces to:

ppost(γ[i]|M,X(k)) ∝ exp

(
−‖X

(k)[i]‖pFro

γ[i]

)
exp

(
−γ[i]

β

)
, (4.39)

which can be sampled with a simple accept-reject algorithm as described in Sec-
tion 4.6.1. The complete procedure is described in Algorithm 7. Therein, K0 refers
to the burn-in size, i.e. the initial samples that are discarded, K to the sample size
of the blocked Gibbs sampler andKSC , KSS to the sample sizes of the SC Gibbs and
the slice sampler that carries out the sampling in the sub-steps.

4.6.1 Slice-Within-Gibbs Sampler for Parameter Update

Within the Algorithm 7, to update a group X[l], we need to sample from all the
one-dimensional SC densities:

ppost(X[i, j]|X(k−1)[−(i, j)],M, γ(k)), (i, j) ∈ [l] , (4.40)

where X[−(i, j)] refers to all the coefficients of matrix X except the term (i, j).
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In order to implement this efficiently, we can precompute several terms and
make use of the specific spatio-temporal group structure of the posterior. We first
derive the part of the likelihood as in Equation (4.21) that depends on a given index
pair (i, j) ∈ [l]:

1

2
‖M−GX‖2

Fro =
T∑

j′

1

2
‖M[:, j′]−GX[:, j′]‖2

2

j∝
1

2
‖M[:, j]−GX[:, j]‖2

2 =
1

2
‖M[:, j]− (G[:,−i]X[−i, j] + G[:, i]X[i, j])‖2

2

i∝
1

2
‖G[:, i]‖2

2 X[i, j]2 + G[:, i]> (M[:, j]−G[:,−i]X[−i, j]) X[i, j]

=
1

2
‖G[:, i]‖2

2 X[i, j]2

+
((

G>M
)

[i, j]−
(
G[:, i]>G

)
X[:, j]− ‖G[:, i]‖2

2

)
X[i, j]

:= az2 + bz , with z := X[i, j] , a :=
1

2
‖G[:, i]‖2

2 ,

b :=
(
G>M

)
[i, j]−

(
G[:, i]>G

)
X[:, j]− ‖G[:, i]‖2

2

where
j∝ means propotional for each j, and := assign the equation to a specific

reformulation.
Note that ‖G[:, i]‖2

2 and G>M can be precomputed. The challenging part in
the computation of b is to compute G[:, i]>G, as one typically does not want to pre-
compute the SO × SO matrix G>G and hold it in memory. However, to update
all the TO components of the lth group (e.g. in the visual evoked fields example,
T = 211, O = 3) one only needs the O × SO matrix G[:, [l]]>G. Thus, we compute
G[:, [l]]>G at the start of updating group X[l] and hold it in memory throughout the
bloc update. Besides this, the most costly operation to compute b is a dot product
of vectors of size SO. Next, we derive the part of the prior (4.24) that depends on
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Algorithm 8: SLICE SAMPLING

input : p(z) ∝ p1(z)p2(z), z,K(SS)

for k = 1 to KSS do
Draw y uniformly from [0, p2(z)] (vertical move).
Determine Sy2 := {z | p2(z) > y}
Draw z from p1(z)1Sy2 (z) (weighted horizontal move).

return z as a sample of p(z)

X[i, j], (i, j) ∈ [l]:

S∑

l=1

(‖X[l]‖pFro

γl
+
OT

p
log(γ[l])

)

X[i,j],(i,j)∈[l]∝ γ[l]−1‖X[l]‖pFro = γ[l]−1


 ∑

(i′,j′)∈[l]

X[i′, j′]2



p/2

= γ[l]−1


X[i, j]2 +

∑

(i′,j′)∈[l]
(i′,j′)6=(i,j)

X[i′, j′]2




p/2

:= c
(
z2 + d

)p/2
,

with c and d defined and computed in an obvious way. Taken together, to update
X[i, j], we have to sample from the one-dimensional density:

p(z) ∝ exp
(
−az2 − bz

)
exp

(
−c
(
z2 + d

)p/2)
=: p1(z)p2(z) . (4.41)

We take advantage of the fact that (4.41) factorizes in a Gaussian likelihood part
p1(z) and a symmetric, log-concave prior part p2(z), and use a generalized form of
slice sampling [Nea03; RC05] as described in more detail in [Luc16] and summa-
rized in Algorithm 8. Determining Sy2 in our case is trivial:

p2(z) > y ⇔ c
(
z2 + d

)p/2
6 − log(y) (4.42)

⇔ |x| 6
((− log(y)

c

)2/p

− d
)1/2

(4.43)

Then, we use a slightly modified, more robust version of the fast table-based al-
gorithm described in [Cho11] to sample from the truncated Gaussian distribution
p1(z)1Sy2 (z). As initialization for z, we always choose the current value of X[i, j].
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4.6.2 Accept-Reject Sampler for Hyperparameter Update

The conditional density (4.39) is of the type

p(x) ∝ exp
(
− c
x

)
exp

(
−x
β

)
, c, β > 0. (4.44)

Note that the first factor is monotonically increasing with limit 0 for x ↘ 0 and
limit 1 for x → ∞, while the second factor is proportional to a simple exponential
distribution (cf. Figure 4.6.1). We can therefore easily construct a dominating den-
sity g(x) > p(x) to carry out accept-reject sampling [RC05, Section 2.3.2] to generate
a sample z ∼ p: we generate y ∼ g, u ∼ U[0,1] and accept z = y if u 6 p(y)/g(y)

and repeat otherwise. Choosing g(x) = exp (−x/β) would yield a valid sampling
density but this choice becomes inefficient with increasing c. Therefore, we split
the sampling density into two parts:

g(x) =




p̂ if x < x̃

exp
(
−x
β

)
otherwise ,

(4.45)

where p̂ = maxx p(x) is the maximal probability attained at x̂ = arg maxx p(x) =√
βc and x̃ = βc/x̂+ x̂ is the solution to exp (−x/β) = p̂ (cf. Figure 4.6.1). Sampling

from (4.45) is then straightforward using v, w ∼ U[0,1]: if one computes

Gx>x̃ =

∫ ∞

x̃

g(x) dx = β exp(−x̃/β), Gx<x̃ =

∫ x̃

0

g(x) dx = p̂x̃ , (4.46)

then v < Gx>x̃/(Gx>x̃ + Gx<x̃) determines that we are in the tail, x > x̃, where we
can use a simple inverse cumulative distribution method to draw a proposal from
g(x) using w. If v determines x 6 x̃, then x = wx̃ is the proposal. For numerical
precision, we only compute logarithms of probabilities and use that for a > 0, b> 0:

log (a+ b) = log a+ log (1 + exp (b− a)) . (4.47)

The whole sampling scheme is shown in Algorithm 9. We found the scheme to be
efficient enough for all of our computations, i.e. the chosen g(x) is close enough
to p(x) to result in an accepted sample after a few trials. If this had to become a
problem, it would be easy to adaptively improve the dominating density.
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Algorithm 9: ACCEPT-REJECT ALGORITHM FOR HYPERPARAMETER UPDATE

input : c > 0, β > 0
Set x̂ =

√
βc.

Set log p̂ = −c/x̂− x̂/β.
Set x̃ = βc/x̂+ x̂.
Set logGx>x̃ = log β − x̃/β.
Set logGx<x̃ = log p̂+ log x̃.
Set logGtot = logGx>x̃ + log (1 + exp (Gx<x̃ −Gx>x̃)).
while true do

Draw u, v, w uniformly from (0, 1).
if log v + logGtot < logGx>x̃ then

Set W = logw − x̃/β.
Propose x = −βW :
if β log(u) < c/W then

return x (acceptance)
else

Propose x = wx̃:
if log u+ log p̂ < −c/x− x/β then

return x (acceptance)

4.7 Experiments

4.7.1 Study of the different modes defining uncertainty maps of
the MEG/EEG inverse problem

We now examine the benefits of our re-interpretation of the MM algorithm de-
scribed in Section 4.4.1 as a specific way to compute a full-MAP estimate for a spe-
cific HBM as described in Sections 4.4.2 and 4.4.1. In particular, we investigate how
using MCMC sampling of the posterior distribution as described in Section 4.6 can
help getting better initializations for the optimization algorithm. We first present
results for a simulated MEG dataset and then for two experimental MEG/EEG
datasets.

Simulation study

We generated a realistic simulation based on a free-orientation (d = 3) source model
with n = 7498 cortical locations and m = 306 MEG sensors. Two of these locations
were selected to be active, one in each hemisphere. One of the sources had a deep
ventral location in the inferior occipital gyrus (Figure 4.7.1-c), and the second one
had a more superficial location in the motor cortex (Figure 4.7.1-a). Their corre-
sponding waveforms are shown in Figure 4.7.1-b. When passed to the solvers,
they are cropped between 40 to 180 ms to keep only the two peaks. This leads to
t = 43 time samples.

The aim of the simulation is to answer two separate questions. First, we want
to know whether we are able to find better source estimates using MCMC-derived
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FIGURE 4.6.1: Sketch of the quantities used in the accept-reject sam-
pling Algorithm 9.
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FIGURE 4.7.1: Simulated MEG dataset. a) and c) show superficial and
deep sources (hidden in the medial view) locations, respectively. b)

gives their corresponding waveforms color-coded by location.

initializations than with the uniformly initialized MM Algorithm 4. For this, we
first run the MM Algorithm 4 using a uniform initialization, i.e., w

(0)
i = 1,∀i = 1 ∈

[1, · · · , S], with λ = 0.05λmax where λmax = max1≤i≤S ‖(G>M)[i]‖2
Fro is the smallest

regularization value for which no source is found as active using an `2,1 regulariza-
tion [Ndi+15; Str+16]. As described above, this corresponds to computing a full-
MAP estimate for the HBM with p = 1, α = OT + 1, β = 4/λ2 using the alternation
scheme (4.35) initialized with γ(0)[i] = 1/λ,∀i = 1 ∈ [1, · · · , S].

Then, we sampled the corresponding posterior distribution given in Equa-
tion (4.27) using Algorithm 7 with K0 = 300, K = 900, KSC = KSS = 1. From each
γ(k) of the K = 900 obtained γ samples, we construct an initialization W(0) for the
MM Algorithm 4 by setting w(0)[i] = λγ(k)[i], ∀i = [1, . . . , S]. Figure 4.7.2-c shows
the histogram of the objective function values (computed with Equation (4.17)) ob-
tained in this way. The vertical black bar shows the value of the objective function
of the uniformly initialized MM solver and we can see that some initializations
indeed lead to source estimates with a lower objective value. Figure 4.7.2-a and
Figure 4.7.2-b show the locations of the estimated sources resulting from uniform
and best MCMC-based initialization. For the artificial source in Fig. 4.7.2-a, both
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results find the exact location, so they are superimposed. For the deeper source in
Figure 4.7.2-b, neither result finds the exact position, but the MCMC-based initial-
ization is closer. This means that the result did not only improve from an optimiza-
tion point of view, but also judged by the quality criteria of the given application.
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FIGURE 4.7.2: Location of simulated and estimated sources using the
uniformly initialized MM solver (denoted as “MM”) and best MCMC-
based initialization in terms of objective function value. Left: estima-
tion of the artificial source on the left hemisphere. Middle: estimation
of the deep source on the right hemisphere. Right: histogram of the
objective function value for 900 MCMC initializations. The uniform
initialization used for the MM (black vertical line) is not very bad,
meaning that the basic MM is able to recover a good source estimate
for some configurations. See Figure 4.7.5 for a case where the basic

MM fails.

Finding the correct support in a sparse under-determined regression prob-
lem like Equation (2.11) is inherently of combinatorial complexity. In our two
approaches, this is reflected in the non-convexity of the objective function (Equa-
tion (4.14)) and the multi-modality of the joint posterior distribution (Equation (4.27)),
respectively. The second question we want to investigate is whether the methods
we developed here can reveal or quantify some of the ambiguity and uncertainty
of this sparse support identification problem. Traditional uncertainty quantifica-
tion (UQ) measures such as variance estimates of X or γ fail to do so as they cannot
capture the multi-modality of the posterior in a satisfactory way. In addition, no
sample X(k) is exactly sparse: as the posterior distribution is a continuous proba-
bility density, the probability of the event {X(k)[i] = 0} is zero, which means that
the whole support of X(k) is active with probability 1. Even a thresholded average
of the support of X(k) will only reveal the average probability of a location being
part of the support. In source analysis, it is arguably more interesting to estimate
which networks of sources from different brain areas have most likely produced a
given data set, a question left open by these measures. Here, we propose to tackle
this question in a different way.

Our procedure of initializing an MM iteration with a sample from the poste-
rior distribution yields different local minima of Equation (4.14), i.e., approximate
solutions to Equation (2.11) that fulfill our a priori knowledge of a sparse support,
but it also yields the relative frequencies with which these minima are found by the
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all 306 MEG 204 gradiometers 102 gradiometers

FIGURE 4.7.3: Source network analysis for simulated data: for a
clearer presentation, the set of 900 initializations was thinned to the
100 that gave the lowest objective function (Equation (4.14)). The first
row of sub-figures displays the support of these best local minima in
the following way: each position in the circle represents a source loca-
tion that was part of the support of at least one minimum for one sen-
sor configuration. The black bar attached to each position corresponds
to the relative frequency with which this source location appeared as
part of the support. Two positions are connected by a line if they were
simultaneously part of the support, and the color of this line corre-
sponds to the relative frequency with which this happened. Note that
the background of the circle is white, but densely covered by purple
lines indicating rare connections. The positions are placed left or right,
depending on which hemisphere they belong to. For symmetry, for
each active source location, its counterpart on the other hemisphere
was included in the graphic as well. In addition, the positions are
grouped and colored based on a parcellation of the brain into anatom-
ical regions (taken from an atlas). The second row of subfigures shows

these regions in the brain and the simulated sources.

MM algorithm. If we assume that the division of RSO×T into attractors of the MM
algorithm roughly overlaps with the division of RSO×T into modes of the marginal-
ized posterior over X within the HBM framework, this relative frequency corre-
sponds to the relative volume of the local minima of Equation (4.14). The latter is
a better measure to compare different local minima than their depth (a local min-
imum that is deep but thin corresponds to an unstable source estimate). While a
mathematically more profound and detailed analysis of this heuristic is left for fu-
ture work, we examine here if this approach reacts to changes in the measurement
design in the way we would expect. To do so, we switch from using all 306 MEG
sensors to using only 204 gradiometers or one over two gradiometers (102 sen-
sors). By reducing the number of sensors we increase the under-determinedness
of the problem and the intuition is that it should lead to more variability among
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the plausible sparse solutions. The graphical analysis presented and described in
Figure 4.7.3 and Figure 4.7.4 confirms this. A first observation is that the superfi-
cial source in the premotor cortex was correctly identified as part of the support of
every local minima when using the full 306 MEG sensors. It was however some-
times miss-localized when reducing the number of sensors (Figure 4.7.3). A second
observation is that the spatial spread of these miss-localizations is smaller for this
superficial source than it is for the deep source. This deep source in the ventral
cortex is more difficult to find even with all sensors. Indeed, none of the 100 best
initializations perfectly localized the deep simulated source. In general, we can
clearly see how the ambiguity increases when decreasing the number of sensors,
and how the distribution of source networks gets more fuzzy. However, our anal-
ysis also provides useful local measures of these phenomena.

all 306 MEG 204 gradiometers 102 gradiometers

1e-1

5e-2

1e-4

FIGURE 4.7.4: The support of the MM results based upon 900 MCMC-
based initializations was extracted to build an uncertainty map. The
relative frequencies with which each source location was part of the
support was computed and plotted on the brain surface together with
the two simulated sources (green dots). Each column corresponds to
the results for each of the three sensor setups examined. The less the
number of sensors and/or the deeper the source is, more uncertain

the brain map is.
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Experimental results with MEG auditory and visual data

We now repeat our analysis with two experimental open datasets. The first one is a
recording of auditory evoked fields (MNE sample dataset [Gra+13b]). The second
one contains visual evoked fields (visual condition of MNE sample dataset) for
which source localization is a more difficult task due to the proximity between
neural sources. The true nature of the underlying source network is also less clear
for this second dataset.

Figure 4.7.5 shows the equivalent of Figure 4.7.2 for both datasets. Again,
we see that a lower objective function value can be obtained using MCMC-based
initializations. The auditory sample dataset is commonly assumed to be generated
by two bilateral focal sources around the auditory cortices in the superior temporal
gyrus of the temporal lobe. Due to the superficial nature of these sources and their
large distance, the estimation of their position is regarded as a relatively simple
task. Indeed, the histogram shows that using MCMC-based initializations does
not help a lot to reduce the objective function compared to a uniformly initialized
MM solution. In the case of the visual dataset, where several closed-by sources are
active, the difference is however quite drastic. The majority of the MCMC-based
initializations lead to lower values of the objective function. Looking at the source
distribution plots on the brain for both datasets, one can also observe more complex
source configurations for the visual data.

Next, we repeat the graphical source network analysis from Figure 4.7.3 for
the two datasets. Figure 4.7.6 shows the results for the auditory dataset and three
sensor configurations: all 364 EEG + MEG sensors, all 306 MEG sensors or one over
two sensors resulting in 182 EEG + MEG sensors. One can see how adding EEG
to MEG sensors reduces the ambiguity of the regression problem. The plots show
fewer but more prominent modes, i.e. the posterior mass is concentrated on fewer
stable source configurations. We also see that the locations of the most prominent
modes shift. This is consistent with results of other studies on EEG-MEG combi-
nation [Mol+08; Luc14; Ayd+14] as EEG is sensitive to some sources that MEG is
almost blind to, e.g. sources with a strong radial component. If we subsample the
EEG+MEG sensors by only using every other location, the ambiguity and spatial
spread of the recovered support increases. One can see that there is more activity in
the dark green label, which corresponds to a brain area commonly not associated
with auditory responses.The connections between source locations show that none
of the found modes really stands out, i.e. is found much more often compared to
the others. Most of the connections do not occur more than 200 times within the
900 samples, so they are part of the purple background of low frequency connec-
tions in the plots.
Figure 4.7.7 shows the same results for the more complex visual dataset. Compared
to the auditory dataset, we see that even with all sensors, the ambiguity of the re-
gression problem seems to be a lot higher compared to the auditory dataset: we see
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that the posterior mass is distributed among many more source configurations. For
the other two sensor configurations, we see similar effects as in the auditory data
set. Nevertheless, it can be noticed that the large majority of identified sources with
all MCMC initializations are on the right hemisphere. This is consistent with the
known functional organisation of the visual cortex. Indeed, in this experimental
condition the subject was presented with checker board flashes on the left visual
hemifield which is known to primarily project onto the right hemisphere of the
cortex.
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FIGURE 4.7.5: Histograms of the objective function value for 900
MCMC initializations for auditory and visual datasets (306 MEG sen-
sors). The histogram for the visual dataset shows more MCMC initial-
izations that outperform the uniform one in the MM solution. Under
each histogram, these source configurations are shown on the left and

right hemisphere.

4.8 Conclusion & Perspectives

Scientific literature relying either on frequentist or on Bayesian statistical infer-
ence often coexist in many fields ranging from machine learning, inverse prob-
lems, signal processing or computational biology. In this work, we started from an
under-determined, ill-conditioned MMV / multi-task regression problem and ex-
amined two seemingly unrelated approaches - MM as an optimization technique
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all 364 EEG+MEG all 306 MEG 182 MEG+EEG 

FIGURE 4.7.6: Source network analysis for auditory data. The figures
are constructed in the same way as described in Figure 4.7.3 except

that all 900 MCMC initializations are displayed.

all 364 EEG+MEG all 306 MEG 182 MEG+EEG 

FIGURE 4.7.7: Source network analysis for visual data. The figures
are constructed in the same way as described in Fig. 4.7.3 except that

all 900 MCMC initializations are displayed.
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for tackling non-convex optimization problems arising in frequentist regression,
and HBM as a Bayesian prior modeling framework. We showed that one obtains
the same algorithms, and therefore the same solutions, when considering some
specific choices of models, parameters and inference strategies. In particular the
parallel was done between the `2,1/2-norm regularized regression by MM and the
full-MAP estimation for `2,1 hierarchical priors with specific Gamma hyper-priors.
We further showed that this conceptual parallel can be exploited to improve the
MM solution by providing well-informed algorithmic initializations.

For this, we first constructed a multi-layered Gibbs sampler for the joint pos-
terior density of our HBM. Each sample is then used to initialize the MM step done
with a state-of-the-art convex solver using block coordinate descent techniques and
acceleration strategies based on active sets. The sampler used has also an efficient
sub-sampler for `2,1 priors at its core. Despite the multi-modality of the posterior,
the MCMC scheme is able to jump rapidely between the different attractors of the
MM scheme. Indeed, using each sample as an initialization to the MM computa-
tion, one ends up in many different local minima (cf. Figure 4.7.5, Figure 4.7.7).
Therefore, this procedure allows us to reveal and explore different plausible source
configurations in more details.

Based on this observation, we showcased how one can use the chain of local
minima found by MCMC-initialized MM to analyze the variability of the different
sparse solutions. Note that this is different from traditional and generic Bayesian
uncertainty quantification techniques that use for example covariance estimates or
credible sets derived from posterior samples [SVZ+15]. It is also different from
methods developed specifically for parametric M/EEG source localization based
on dipole fitting [FWK04; Dar+05]. These latter approaches cannot easily be trans-
ferred to sparse, non-parametric approaches. Using our developed techniques on
simulations and actual data, one could observe that uncertainty in MEG/EEG is lo-
cation specific and also source configuration specific. This is of course well-known
by experts in this field, but here we provide a computational approach to visualize
it and quantify it. This is an important incentive to develop such automated, data-
dependent methods to quantify uncertainties in the context of MEG/EEG source
imaging. In more conventional imaging methods such as Computer Tomography
(CT) or MRI, the signal originates from weak tissue interaction with strong exter-
nal fields and the forward operator G depends almost exclusively on the physical
properties of the scanner. In this situation, uncertainty is usually distributed in a
smooth, well-known way over the image domain. Artifacts as well as real anatom-
ical features are also easy to distinguish for a trained radiologist. The situation for
M/EEG is very different. The weak signals originate from endogenous activity,
and they are very dependent on dataset specific factors such as source orientation,
location and attenuation which all depend on the geometry of the head of the an-
alyzed subject. That is also why the forward matrix G needs to be constructed
for each individual patient, after fixing the electrical properties of the head issues,
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which if wrong, increases the uncertainties.
When considering real data, the source to recover is often poorly understood,

especially when it comes to pathological brain activity such as ictal or inter-ictal
epileptic activity. In such a situation, providing a single source configuration as a
result, together with an ad-hoc uncertainty quantification based on previous stud-
ies or acquired expertise, might not be an optimal use of the M/EEG data. Instead,
providing multiple hypotheses together, along with a quantification of their uncer-
tainty, can be more useful. Indeed for applications such as pre-surgical epilepsy
diagnosis, where M/EEG recordings are one of several diagnostic modalities, each
candidate source configuration can provide some evidence for or against a di-
agnostic hypothesis that could lead to a surgery decision. We therefore believe
that extending the first steps we took here towards developing a consistent frame-
work for interpreting and quantifying the multitude of potential results of sparse
MEG/EEG source reconstruction approaches can have a significant impact on clin-
ical settings.
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5.1 Introduction

The previous chapters define various ways to solve the inverse problem of MEG/EEG
brain imaging techniques. The evaluation of these solvers remain difficult due
to the completely unknown ground-truth of the exact localization of the involved
sources in each specific task. This limitation is primarily coming from the fact that
the recording is done over the scalp and that multiple source configurations can
lead to exactly the same measurements over the sensors. So the question is whether
all these existing source localization techniques are able to accurately locate the po-
sitions and the orientations of current sources in the brain in a real acquisition
scenario.

The typical way to answer this question is to perform simulations [LDB02;
Mos+93; LBD98]. It consists in fixing the number and the location, orientation and
amplitude of several dipoles in the brain, generate some simulated data corrupted
by some additive noise [LDB02; Mos+93; LBD98; DM+02; Wol+06]. These simula-
tions are unfortunately rarely realistic: they do not take into account the non-ideal
nature of the sensors and the errors in the forward model, and they do not take
into account the complex noise structure of real measurements. Inaccuracies in
the computation of the forward operator are mainly due to approximations in the
conductivity values in the head and/or the numerical errors associated with either
spherical head approximations or BEM based on more realistic head geometries.

More sophisticated simulations might be investigated to overcome these is-
sues, yet we propose here to use data collected from an artificial physical object in
a real MEG machine. This has the advantage that the results can more closely re-
flect in vivo performance since they include factors that cannot readily be included
in simulations, such as environmental noise.

In order to calibrate each MEG device, artificial objects that mimic the brain
activity called "phantoms" are constructed by the manufacturers of MEG systems.
They are based on the theoretical description in [Ilm85] producing realistic data
corresponding to complex spatio-temporal current sources including realistic head
geometries. In a typical phantom, from 4 to 32 independent current dipoles are
present and MEG data are collected separately for each dipole. The true dipole
locations and orientations, and the morphology of the brain, skull layers can be
extracted from X-ray CT data [Lea+98]. One limitation is that such phantoms are
not unsuitable for EEG, yet there exists some work on making EEG phantom de-
vices [HSY16].

This chapter presents a new study to validate localization techniques using
different publicly available phantom datasets. Other works have been done by [Haz+15;
Lea+98; Bai+01] using also real-skull phantoms to investigate the performance of
representative methods considering various head models.

The approaches considered in this chapter are mainly those described be-
fore in this thesis (see Chapter 2), namely: Dipole fitting (Section 2.3.1-page 18),
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Gamma-Map, RAP-MUSIC, MxNE, irMxNE, TF-MxNE, irTF-MxNE. The methods
not defined so far, will be briefly described in the next section.

5.2 Phantom datasets

5.2.1 Brainstorm-Elekta dataset

The description below was taken from the Brainstorm tutorial about the MEG
phantom [Tad+11].

A current phantom is provided with Elekta for checking the system perfor-
mance and can then be used for evaluation of the source localization (Figures 5.2.1
and 5.2.2). It contains 32 artificial dipoles and four fixed head-position indicator
coils. The phantom is based on the mathematical fact that an equilateral triangular
line current produces a magnetic field distribution equivalent to that of a tangen-
tial current dipole in a spherical conductor, provided that the vertex of the triangle
and the origin of the conducting sphere coincide. For a detailed description of how
the phantom works, see [Ilm85].

The phantom dipoles are energized using an internal signal generator which
also feeds the HPI coils. An external multiplexer box is used to connect the signal
to the individual dipoles. Only one dipole can be activated at a time. The location
of the dipole is recorded relatively to the center of the sphere (0,0,0), where X is
positive toward the nasion, Y is positive toward the left ear and Z is positive to-
ward the top of the head.

The dataset has 32 dipoles, and is sorted into 3 different amplitude levels:

• Source with 2000 nAm. This corresponds to an unrealistically strong 1000
nAm (2000 nAm peak-to-peak) dipole that gives the highest SNR of the ex-
perimental source.

• Source with 200 nAm. This is a weaker dipole, closer to the range of ampli-
tudes we can expect in raw data.

• Source with 20 nAm. This represents some of the weakest sources we ex-
pect in evoked studies, which require averaging in order to be detected and
estimated (i.e. generally cannot be seen in single trial analysis).
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FIGURE 5.2.1: Reference phantom (RefPhantom) NM24058N (Serial
number: 101861) provided by Elekta Oy, Helsinki Finland. 32 built-
in simulated dipoles and four presetting head position indicator coils

(HPI) (Figure taken from [Haz+15]).

5.2.2 MNE-Elekta dataset

The dataset has four dipoles named from 5 to 8, each with a different depth in
the phantom head. The dataset contains dipoles with four different amplitudes:
2000 nAm, 200 nAm, 100 nAm and 20 nAm.

5.3 Methodology

5.3.1 Sphere models

The most commonly used head model assumes that it is made up of a set of nested
concentric spheres, each with homogeneous and isotropic conductivity. Under this
assumption, both the EEG and MEG problems have well-known closed form solu-
tions [MLL99].

5.3.2 Preprocessing

The two Elekta phantom datasets have had a specific and identical preprocessing.
First, we computed the forward operator with a single-shell sphere with origin (0.,
0., 0.) and a head radius of 0.08, resulting in a discrete source space with 13782
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FIGURE 5.2.2: The phantom is carefully set into the sensor helmet of
the probe unit and pushed against the helmet. HPI coil is fitted into
outlet under the right gantry side cover (Figure taken from [Haz+15]).

location and free orientation (O = 3 orientations). Then we marked some channels
as bad for each dataset:

• For Brainstorm-Elekta dataset, one channel has been marked as bad: "MEG2421".

• For MNE-Elekta dataset, three channels have been marked as bad:
"MEG2233", "MEG2422", "MEG0111".

Second, Maxwell filtering was used to clean the data to to compensate for external
magnetic interferences. The data was then low-pass filtered below 40Hz as we are
interested only in frequencies around the simulated burst, which is at 25Hz. Once
the filtering is done, we can construct the epochs and the evoked response from the
filtered data from -100 ms to 100 ms. The covariance was computed on the baseline
from -100 ms to 0. The sampling frequency for both datasets is of 1000Hz. The
MNE-Elekta dataset resulted in 33 epochs before averaging, while the Brainstorm-
Elekta dataset resulted in 20 epochs.

5.3.3 The selected solvers

Dipole fitting

Dipole fitting assumes that a small number of point-like ECDs can describe the
measured topography. It optimises the location, the orientation and the amplitude
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of the model dipoles in order to minimise the difference between the model and the
measured topography. A good introduction to dipole fitting is provided by [Sch90].
A full description is done in Chapter 2-Section 2.3.1 (page 18).

γ-Map

γ-map offers a unifying view using a Bayesian perspective on some of the solvers
presented here. As it was shown in Chapter 4, the Bayesian formulation of the
MEG/EEG source localization consists in choosing priors/hyperpriors, estimation
and inference procedure where often it boils down to alternating between the esti-
mation of the source estimate and the estimation of the hyperparameter. The hy-
perparameter in this method is γ which represents covariance components. More
details are in [WN09a].

RAP-MUSIC

Recursively Applied and Projected MUltiple SIgnal Classification (RAP-MUSIC) is
an extension to MUltiple SIgnal Classification (MUSIC) by recursively estimating
multiple sources [ML97; ML99b]. In other words, it consists in applying MUSIC
successively after removing the contribution of the previously identified sources.
In the same way matching pursuit algorithms are used for sparse signal decompo-
sition over dictionary of atoms, the RAP-MUSIC method adopts a greedy strategy
to select the relevant dipoles in a dictionary of sources.

MxNE | irMxNE

Mixed-Norm Estimates (MxNE) and Iterative Mixed-Norm Estimates (irMxNE)
are the convex and the non-convex version of mixed-norms solvers using `2,1-
norm and `2,0.5-quasinorm as regularizations. For more details, see Chapter 2-
Section 2.5.2 (page 30) and [GKH12b; Str+16].

TF-MxNE | irTF-MxNE

Time-Frequency Mixed-Norm Estimates (TF-MxNE) and Iterative Time-Frequency
Mixed-Norm Estimates (irTFMxNE) are the convex and the non-convex versions
of the Time-Frequency mixed-norms using `2,1 +`1-norm and `2,0.5 +`0.5-quasinorm
as regularizations. For more details, see Chapter 2-Section 2.5.2 and [Gra+13a;
Bek+16].

All solvers except the irTF-MxNE are implemented in the MNE-python pack-
age [Gra+14; Gra+13b]. The dipole fitting, MUSIC, dSPM, MNE, sLORETA, γ-map
have used the by default version. The regularization parameter of LCMV was set
to reg = 1. The different hyperparameters of (ir)TF-MxNE were tuned on a grid
search. The results below are shown after setting the window size to wsize = 64,
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time shift to ts = 4, αspace = 40., and αtime = 1.. While for the (ir)MxNE regulariza-
tion hyperparameter was set to αspace = 40..

5.4 Experimental results

Three types of errors have been investigated for the different solvers, namely: the
position or location error, the orientation error, and the amplitude error. All the
solvers investigated here are implemented in the MNE-python package [Gra+13b;
Gra+14].

The position error errpos is represented in millimeters (mm), defining the dis-
tance between the exact location (possimulated ∈ R3) of the simulated dipole in the
phantom head and the estimated location (posestimated ∈ R3) as in Equation (5.1).
When the estimated source space contains multiple dipoles, the one having the
biggest peak of amplitude is kept and compared to the exact dipole.

errpos = 103‖posestimated − possimulated‖2 (5.1)

The orientation error errori is represented in Radians (Rad), defining the angle
between the exact orientation (orisimulated ∈ R3) of the simulated dipole and the
estimated one (oriestimated ∈ R3) as in Equation (5.2). Same for the position error,
the best dipole is kept when multiple ones are estimated.

errori = arccos(|〈oriestimated, orisimulated〉|) (5.2)

Finally, the amplitude error erramp is represented in penrcentage error (%), ex-
cept for some solvers which give source estimates with statistical values and not
electrical current values (example: dSPM). This error defines the relative differ-
ence between the peak of amplitude (max(ampestimated) with ampestimated ∈ RT ) of
the estimated dipole and the peak of simulated dipole ampsimulated ∈ R (example
1000nAm, 200nAm, ... 20nAm) as in Equation (5.3).

erramp =
|max(ampestimated)− ampsimulated|

ampsimulated
∗ 100 (5.3)

5.4.1 Critical comparison of these MEG/EEG source localization

Figure 5.4.1 shows position errors obtained with most of the solvers for the four
simulated dipoles (5 to 8) (see dataset 5.2.2) and for the different amplitude levels
(20, 100, 200, 2000nAm). It shows less than 1mm error for the unrealistic high
Signal to Noise Ratio (SNR) (peak-to-peak amplitude equal to 1000nAm), but also
for 200nAM, and 100nAm. The location error gets worse with the very low SNR
(20nAm).
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FIGURE 5.4.1: Comparison of the position error between most of the
solvers for four different dipoles.

The dipole fitting approach is very suitable for localizing the neuronal activity
when a small number of ECDs can describe the data. In this dataset 5.2.2, each
dipole is recorded alone. The errors in orientations are displayed in Figures 5.4.2.

RAP-MUSIC is an approach based on the MUSIC technique which also per-
forms very well when few ECDs are involved, especially when it is a dataset record-
ing only one dipole at a time. It can be seen as very competitive, w.r.t. dipole fitting
in Figures 5.4.1-5.4.2, showing the errors in position, and orientation respectively.
However, for a deep source (dipole 8) combined with a very low SNR (20nAm), the
red curve is outside of the box, meaning a location error bigger than 20mm. This is
an issue with the signal subspace estimation, where the rank of the data covariance
is not well estimated.

The γ-map which is a Bayesian formulation of the MEG/EEG inverse prob-
lem, performs worse than dipole fitting or RAP-MUSIC for very high and very low
SNR. For SNRs in range of realistic data, its location error is upper bounded by
5mm depending on the depth of the studied dipole. The γ-map is doing worse for
amplitude of 1000nAm compared to 100nAm or 200nAm, because it overestimates
the noise when estimating the hyperparameter γ.

For MxNE and TF-MxNE, the errors shown in Figure 5.4.1 respectively demon-
strate an equivalence or a slight improvement when using TF-MxNE compared to
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MxNE, except for the deepest dipole 8 in red. This is explained by the fact that
TF-MxNE is sensitive to the hyperparameters (λspace, λtime, window size, and time
shift) depending on the SNR and the depth of the dipole. Here we tuned the hy-
perparameters on a grid search similar for all dipoles, although one might think
that the hyperparameters depend on the easiness of the data (so on the SNR, and
the depth of each dipole).

The same Figures 5.4.1- 5.4.2 also show an improvement when using the non-
convex version in both irMxNE and irTF-MxNE compared to MxNE and TF-MxNE
in localization and orientation, but the biggest difference is mostly seen in ampli-
tude gain (e.g. Figure 5.4.6a for Brainstorm-Elekta dataset).
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FIGURE 5.4.2: Comparison of the orientation errors for four different
dipoles.

On the other hand, MNE and dSPM are surprisingly the methods giving the
worst results for this dataset. One important argument is the fact that the study is
biased as we know that the simulated phantom data is focal/sparse, while MNE
and dSPM are not sparse methods. We always take the peak of amplitude and
displays the best dipole for each method. sLORETA on the other hand is not a
sparse method either, however, it performs much better than MNE and dSPM. The
"center" of the pattern estimated with sLORETA is then closer to the exact dipole
location compared to the center of dSPM or MNE.
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The orientation error is comparable to the location error, where dipole fitting,
MUSIC, γ-map, (ir)MxNE and (ir)TF-MxNE keep being the best performing meth-
ods. Dipole fitting is the best when simulating with only one dipole. Note however
that dipole fitting does not suffer from the fixed grid resolution of 3.5 mm used by
the other solvers. Figure 5.4.2 does not show orientation for LCMV, MNE, dSPM,
and sLORETA as the orientation is not computed for source estimate. This is due to
a current limitation of MNE-Python that only returns the magnitude of the sources
when working with free orientation source spaces.

To make the source configurations harder, we considered doing linear combi-
nations of the data produced by different dipoles. However, the locations of the
dipoles are nearly the same except that the depth is different. When adding up this
type of dipoles, they still have the same pattern in the sensor space, which makes
it impossible to disentangle them.

To investigate further the impact of each solver and the impact of a dataset
with a high or a low SNR, we show in Figures 5.4.3a- 5.4.4a the results for the
same solvers when we do not take all the epochs but only half of them. Those
figures show a deterioration of dipole fitting when using the 20nAm, especially for
the case where we keep only one epoch over four (Figure 5.4.4a). For 100nAm,
200nAm, and 1000nAm, the difference is small as the data corresponds already to
very strong sources.

This analysis has been performed also on two other datasets which lead to
the same conclusions (see Figures). The Brainstorm-Elekta dataset had 32 different
dipoles, from which we take only four to display in Figure 5.4.5 for both amplitude
and orientation errors.

Figure 5.4.6a shows the errors in amplitude for Brainstorm-Elekta dataset. The
most important point in this figure is to see the difference between the convex
MxNE|TF-MxNE and the non-convex irMxNE|irTF-MxNE in terms of amplitude
bias. All dipoles basically improve their amplitude estimate when using the non-
convex method (irMxNE|irTF-MxNE). For some cases, the irMxNE amplitude es-
timate is even better than the dipole fitting one and γ-map. Figure 5.4.6b shows the
same effect of amplitude bias improvement even when we subsample the epochs,
and take only one epoch over two.

The same analysis has been performed on the brainstorm CTF phantom dataset,
which contains only one dipole with two different amplitude levels. The take home
message remains the same, i.e., dipole fitting is the most suitable solver when no
more than one dipole is recorded at a time, however it performs very bad for low
SNR. γ-map has been a very competitive solver compared to (ir)MxNE and (ir)TF-
MxNE, but the iterative reweighted solvers remain the best for reducing the ampli-
tude bias, and recovering almost the exact estimated amplitude (around 1% ampli-
tude error).

This study demonstrates the effectiveness of each method depending on the
type of the dipole, i.e., its depth, the level of its amplitude, and the SNR based on
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FIGURE 5.4.3: Comparison of the position and the orientation error
between the solvers when taking only one over two epochs to reduce

the SNR.
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FIGURE 5.4.4: Comparison of the position and the orientation error
between the solvers when taking only one over four epochs to reduce

the SNR.
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FIGURE 5.4.5: Comparison of the position and the orientation errors
between the solvers for Brainstom-Elekta dataset. It shows 4 dipoles
among the 32 for a good visibility. Nonetheless, it shows both the

dipoles on the surface and the deepest ones.
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the number of epochs. It specifically shows that there is no one best method for all
use cases, but rather that the methods are complementary and that some of them
works better with some specific conditions. Knowing the type of dataset one has
in hand, is then primordial for a good source estimate recovery.

5.5 Conclusion & Perspectives

In this chapter, the main motivation was to present some results on various source
localization techniques applied to phantom data. Being able to investigate "real"
datasets with ground-truth is a big privilege to test the large list of existing methods
for solving the MEG/EEG inverse problem.

Here we presented some of them, focusing on the approaches defined in this
thesis. The conclusion would be that the dipole fitting is the most competitive
and best method when having a focal dataset with only one dipole. Unfortunately
here, we could not present a phantom dataset with two or more dipoles in the same
recording, which would make the source localization more challenging.

A further work would be to investigate this aspect of multiple dipoles. The
idea would be to confirm a better performance of convex and non-convex solvers
(Variational or Bayesian formulation) compared to dipole fitting or MUSIC.

This chapter also did not show any hyperparameter tuning, or an automatic
estimation as shown in Chapter 4, due to the "easiness" of the dataset when having
only one dipole simulated. Indeed the location of the strongest dipole as extracted
here for evaluation is barely affected by the choice of hyperparameters (provided
they stay in reasonable ranges). This would not have been possible if we had two
or more simulated dipoles, in which case hyperparameter setting would have been
crucial. In this chapter, the hyperparameters to be selected were not having a big
impact on the resulted source estimate, except for the TF-MxNE where several ones
needed to be fixed. The size of the window size and the time shift of the dictionary
were chosen as the best ones from a grid search.

In the near future, we plan to release all the code necessary to replicate these
figures (data are already public). And we hope that this will foster new collabora-
tions between researchers working on the MEG/EEG inverse problem. At least it
should allow mathematicians and computer scientists working on this problem to
more easily compare their methods to the state-of-the-art in the field.
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FIGURE 5.4.6: Comparison of amplitude error between most of the
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6.1 Introduction - Context

In natural environments, coherent motion is a vital sensory cue that helps the brain
individuate objects in the world. Seminal neurophysiological work has described
neurons in the middle temporal (MT) lobe of monkeys that were selective to the
direction of motion and scaled to the coherence level of visual motion [Bri+92] .
During a perceptual classification task, direction-selectivity can readily be decoded
from the activity of neural populations in MT [JM06; Rus+06]. As visual motion
processing relies on neural population codes, it is amenable to non-invasive func-
tional human brain imaging such as fMRI or magnetoencephalography (MEG). Su-
pervised learning techniques such as Multivariate Pattern Analysis (MVPA) are
increasingly successful at characterizing where and when the neural analysis of
stimuli such as visual orientation, motion direction or object classification is be-
ing realized [KT05; Wes+00; HR06; Pol11; CPO14; Hor+13; Hay15; War+16; RC16;
Nak+03; Han+08; Ama+06].

In one of the earliest fMRI studies using MVPA, the direction of motion was
successfully decoded from hMT+ (human analog of MT or V5) activity [BCD97])
but also, and surprisingly, from visual cortices V1, V2, V3 and V4 [KT06]. The
successful decoding of visual motion in V1, V3 and hMT+ has since been reported
several times [KT05; KT06; SB07; HV13; Kem+14]. In addition to the typical feed-
forward processing of visual information excepted in early visual cortices, the abil-
ity to decode visual motion from lower visual areas was interpreted as a marker
of feature-based attention when required by the task [KT06] and an effect of top-
down modulation of early feedforward processing for conscious perception [SB07].
However, whether brain decoding using MVPA captures the selectivity of neural
populations or not has been a subject of debate on the interpretational weight given
to decoding [Hay15; CW15; MKL15; PMH12]. Relevant to the current study, recent
fMRI work has suggested that the sources of decoding in early visual areas may
reflect the perceptual priors and biases of motion direction computation [VG14].

To disambiguate the functional role of different brain regions in motion se-
lectivity, characterizing the temporal unfolding of pattern classification within and
across visual regions could be helpful. Here, we exploited the temporal sensitiv-
ity of MEG to find the latency at which sufficient information had been integrated
to reach a stable classification boundary [Mit+08; Ram+13; KD14]. 36 participants
were recorded with MEG while performing a visual motion coherence discrimina-
tion task in which two intermingled clouds of visual dots (red and green random-
dot-kinematograms) moved randomly on the screen until one of the clouds moved
more coherently than the other one [Zil+14] (Figure 6.1.1A). Participants were
asked to report which of the two populations became most coherent over time.
Seven motion coherence levels were tested and a novel multivariate decoding ap-
proach combining ridge regression and a ranking metric was developed. Contrary
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FIGURE 6.1.1: Categorization Decoding. A) One experimental trial in
which participants discriminated which of the red or green cloud of
moving dots was most coherent. B) Left: simulated data (gray) were
best modeled by ordinal (red) than by a linear (green) fit. Right: sim-
ilarity matrix providing a score of the decoding performance for each
pairwise comparisons. C) Significant time-resolved decoding of vi-
sual motion coherence levels were found at 100 to 600 ms (green) post-
stimulus onset. D) Grand-average (n=36) similarity matrices in sen-
sors (top), hMT+ (middle) and frontal-pole (bottom) for the selected
time window. Distributions of behavioral perceptual thresholds (gray
histogram) and the mean (dashed line). E) Correlation scores between
each template and similarity matrix (black histograms), and likeliest

boundary decoded from MEG data (dashed red line).

to classical decoding approaches based on binary classifiers such as Support Vec-
tor Machines (SVM), a single decoder was estimated for all coherence levels, al-
lowing robust parameter estimation despite high dimensional data. The ranking
metric allowed taking into account the fact that visual motion coherence was an
ordered variable [HGO00; Joa02]. This novel decoder was applied to brain ac-
tivity recorded at the sensor level and to cortically-constrained source estimates.
Using this decoding technique, we report the categorization of two separate brain
states as a function of the degree of visual motion coherence. The categorization
boundary matched participants’ behavioral outcomes. Our results suggest that in-
corporating such decoding methods may be suitable to address questions relevant
to predictive coding and perceptual decision-making.
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6.2 Experimental design & Participants

Participants

Thirty-six participants took part in the study (16 females, mean 22.1 +/- 2.2 y.o.).
All were right-handed, had normal hearing and normal or corrected-to-normal vi-
sion. Prior to the experiment, all participants gave a written informed consent. All
methods were carried out in accordance with relevant guidelines and regulations
and by NeuroSpin (Gif-sur-Yvette, France). The study was conducted in agreement
with the Declaration of Helsinki (2008) and was approved by the Ethics Committee
on Human Research at Neurospin (Gif-sur-Yvette, France).

Experimental design

The MEG session consisted of twelve experimental blocks alternating between rest
and task [Zil+14]. Here, we solely focused on the main experimental task blocks
in which participants’ performance on a visual motion coherence task was being
assessed. During the task, one trial started with the presentation of a fixation cross
followed by two intermixed clouds of dots or Random Dot Kinematograms (RDKs)
(red and green), whose motion was fully incoherent. After a variable interval of
0.3 to 0.6 s, one of the two RDKs became more coherent than the other one (Fig-
ure 6.1.1A). The participant had to determine by button press which of the red or
green RDKs became more coherent. Seven possible levels of visual motion coher-
ence were tested (15%, 25%, 35%, 45%, 55%, 75%, or 95%), randomly assigned to
a colour and to a direction. Each participant was tested with 28 trials per visual
coherence level.

Visual stimuli

The red and green RDKs were individually calibrated to isoluminance. In order to
prevent local tracking of dots, a white fixation cross was located at the center of
a 4◦ gray disk mask. RDKs were presented within an annulus of 4◦-15◦ of visual
angle. Dots had a radius of 0.2◦. The flow of RDKs was 16.7 dots per deg2× sec
with a speed of 10◦/s. During the first 0.3 to 0.6 s of a given trial, both RDKs
were incoherent (0% of coherent motion). The duration of the incoherent phase
was pseudo-randomized across each trial in order to increase the difficulty of the
task by preventing participants’ expectation of the temporal onset coherent motion.
After the incoherent phase, one RDK became more coherent than the other one for
one second in one specific direction. The direction of coherent dots was comprised
within an angle of 45◦-90◦ around the azimuth. At each frame, 5% of all dots were
randomly reassigned to new positions and incoherent dots to a new direction of
motion. Dots going into collision in the next frame were also reassigned a new
direction of motion (more details in [Zil+14]).
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Psychophysical analysis

The performance of each individual was averaged as a function of the seven de-
grees of visual motion coherence of the stimuli, irrespectively to the colour or direc-
tion of motion. The coherence discrimination threshold was set to 75% of correct-
ness for each individual’s data, as typically used in a two-alternative forced choice
(2-AFC) paradigm, forcing participants to adopt the same decision criterion for
all stimuli [GS66]. Here, the 75% detection threshold corresponds to chance level.
They were then separately fitted to psychometric functions with the maximum-
likelihood methodology (Psignifit [WH01]) which provided valid estimates of per-
ceptual thresholds on a per individual basis (more details in [Zil+14]).

6.3 MEG pre-processing & source localization

All data pre-processing and source-imaging were done according to well accepted
MEG guidelines [Gro+13]. Signal-Space-Separation (SSS) was performed on raw
data using Maxfilter (Elekta-Neuromag [TS06]) to compensate for external mag-
netic interferences. MEG data were band-pass filtered (2 to 45 Hz), down-sampled
to 250 Hz and epoched from -100 ms to 1000 ms relatively to the onset of RDK
coherence. Trials that were contaminated by artifacts were rejected (e.g. peak-
to-peak amplitude difference above 150 microvolts in EOG data) leaving 89% of
trials considered to have an appropriate signal-to-noise ratio. The cortically con-
strained source reconstruction was done using the dSPM method following the
guidelines of the MNE software [Gra+14]. The entire pre-processing was done us-
ing MNE [Gra+13c].

6.4 MEG decoding

Decoding generally consists in predicting a target variable y from one pattern of
brain activity x ∈ Rp among all possible patterns or brain states. When the tar-
get can take a finite number K of possible values, like a multi-class classification
problem, we have that y ∈ {1, . . . , K}. Here, when x were MEG signals, p was
the number of channels and time points used for the prediction. When x was the
amplitude of cortical sources, p corresponded to the number of source locations.
The first goal of this study was to estimate how well each pair of visual motion
coherence level could be discriminated against each other. Considering that multi-
class classification approaches do not take into account the ordinal nature of the
target to predict, indeed predicting 1 instead of 7 is as bad as predicting 1 instead
of 2 although the mistake is obviously smaller in the second case, we instead built
a decoder which could yield a high pattern classification accuracy for distinguish-
able coherence levels, and a low pattern classification accuracy for nearby levels
of visual motion coherence which were perceptually hard to differentiate (cf. next
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two sections about the method).
The second goal of the study was to find whether separate categorical brain states
(two or more) emerged following the presentation of the stimuli as a function of the
seven levels of visual motion coherence. Specifically, the task of participants con-
sisted in deciding whether the red or the green cloud of dots was most coherent as
a function of coherence level. One working hypothesis was thus that at least one
boundary delimiting a possible threshold between the neural activations induced
by low vs. high coherent motion would be found during decoding.

To address this question, we opted out of a regression model estimated jointly
for all levels of coherence, and combined it with a ranking metric adapted to dis-
crete and ordered targets. Although an alternative approach could have consisted
in testing the incoherent portion of the stimuli against each level of visual coher-
ence, this would have lead to a strongly imbalanced training dataset (i.e. 196 inco-
herence trials for 28 trials per level of coherence) which is heavily problematic for
MVPA classification approaches [HG09]. Specifically, with this formulation of the
decoding, an inaccurate model which always predicts incoherence instead of co-
herence would have 85% of accuracy due to the imbalanced dataset. The ranking
technique proposed here does not suffer from such class imbalance, considering
that a single regression model was learnt for all coherence levels, and the ranking
metric employed yielded 50% accuracy levels in spite of the low number of trials.

We now describe in detail the regression model employed.

Regression model

Due to the limited number of data points available for learning, and to the high
dimensional nature of the neuroimaging data, we used a linear model following
the standard approach in MVPA studies [KT05; Mit+08; Hay15]. The target val-
ues y ∈ Rn, here provided for the n data points available for statistical inference,
were derived from a linear combination of data, y = Xω, where ω ∈ Rp was a
weight vector and X was a n-by-p data matrix. The value n here corresponded
to the number of stimuli presentations, a.k.a. single trials or epochs. For each ith

observation, the target yi ∈ {1, . . . , K} could take K different values: in this study,
K = 7 corresponded to the seven levels of visual motion coherence defining the
number of classes. Again, a multi-class classification approach could have been
adopted, yet this strategy would have ignored that target values were ordered. For
instance, decoding the 5th instead of the 2nd level of motion coherence is worse
than predicting the 3rd level of motion coherence instead of the 2nd one. This is an
information that a multi-class linear SVM model could not exploit. An SVM would
also estimate p ×K parameters instead of p, which would have naturally increase
the risk of overfitting and reduced the interpretability of the results.
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Instead, we chose a ridge regression method, and evaluated the predictive perfor-
mance with a metric tailored for ordinal problems. The ridge regression model was
defined as the solution to the convex optimization problem:

ω̂ = arg min
ω∈Rp

‖y −Xω‖2
2 + λ‖ω‖2

2. (6.1)

The ridge regression model is a popular approach, whose practical success is due
to fast estimation, robustness to noise and limited sensitivity to rough tuning of
the parameter λ. Indeed, results obtained by ridge regression are known to be far
less sensitive to the choice of λ parameter, compared to sparse estimators such as
Lasso. In our experiments, λ was the same for all subjects [Var+17].

Decoding was performed on a per individual basis using all epochs. The 204
gradiometers and different time windows were tested: for example, for the time
window ranging from 100 to 600 ms, the dimensions of the data were the number
of samples n = 196 (at most 28 trials x 7 coherence levels) depending on the number
of dropped epochs times the number of features p = 204×126 ∼ 2.5×104, where the
temporal window ranging from 100 ms to 600 ms contained up to 126 samples. The
performance of the method was evaluated with a 10-fold stratified cross-validation
which preserved the percentage of samples for each class or motion coherence level
in each fold.

Decoding was also performed on source-reconstructed data in bilateral re-
gions of interest (ROI), previously reported as being implicated in the task [Zil+14].
In source-space, the dimensions of the data were n = 196 at most and, for instance,
p = 126×117 ∼ 106 depending on the size of the ROI (here, 117 dipoles in the ROI).

Following the estimation of the ridge regression model, a ranking metric was
then employed to quantify the model performance while taking into account that
the targets have a natural order.

Assessing decoding performance with pairwise ranking metric

Although ridge regression preserves the order of the target variables, it does not
provide a relevant metric for the evaluation of the success rate of the decoder with
an ordered set of categories. When using a linear regression model, the mean
square error (MSE) is the natural performance metric. Yet, in high dimensional
settings with a limited number of samples (n � p), as we are dealing with here,
MSE is a poor metric. In order to reduce the variance of the estimated coefficients,
high values of λ were used, causing a strong amplitude bias on the coefficients and
a poor performance when measured using MSE. Performance evaluated with MSE
was also affected in the presence of a bimodal state as illustrated in Figure 6.1.1B.
Note that this strong bias problem is what motivates certain authors to use a Pear-
son correlation as a measure of performance rather than the MSE, although MSE is
natural when using ridge regression [Kay+08].
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In order to leverage the ordinal nature of the target values y, we quantified
the performance in terms of ranking, where we tested the ability of the decoder
to properly order pairs of samples, trials, based on the target to predict [HGO00;
Joa02]. The ranking metric consisted in comparing the real values of y and the
predicted ones. Let us consider two trials from the validation dataset with yi 6= yj
and where (yi, yj) denote their associated labels.

Let P = {(i, j) s.t. yi 6= yj} be the set of pairs with different labels. One quan-
tifies the prediction accuracy Acc with the percentage of correct orderings for pairs
of trials:

Acc = #{(i, j) ∈ P s.t. (yi − yj)(ypredi − ypredj ) > 0} (6.2)

For each pair of trials, there were two possible options and the chance level was
therefore 50%. This quantity is related to Kendall’s rank correlation metric [Kru58]
which can be seen as a non-parametric correlation measure. To go beyond aver-
age accuracy, a key insight of this work was to inspect for which pair of trials the
decoder made a mistake. For this, we thus defined a 7-by-7 similarity matrix M :

Myi,yj =
#{(i, j) ∈ P s.t. (yi − yj)(ypredi − ypredj ) > 0}

#{(m,n) ∈ P , (ym, yn) = (yi, yj)}
(6.3)

Each Mi,j was a value between 0 and 1 that told us how well we could distinguish
the level i from the level j, 1 being the best; inversely, if the level i was similar or
close to the level j, this decoding value would be close to chance level 0.5. The
matrix was symmetric since comparing the levels i and j or j and i provides the
same score. Such matrices, that can be seen as confusion matrices adapted for our
pairwise ranking metric, are presented in Figure 6.1.1D.

Criteria for decoding categorization

Template matrices were defined for the discrete values of theoretically possible cat-
egorization into two brain states driven by the motion coherence levels, namely:
15%, 25%, 35%, 45%, 55%, 75%, or 95%. Each matrix had an on/off pattern at a
given threshold (e.g. 55%) with values of 0.5 (off) or 0.65 (on) in order to make it
comparable to decoding scores obtained in similarity matrices. An example is pro-
vided in the black matrices of Figure 6.1.1E. The correlation between the empirical
matrices (fully based on MEG data) and all the possible template matrices, as de-
fined above, provided the selection criterion to decode a categorization pattern at
a specific threshold. Specifically, for each empirical similarity matrix, the template
matrix yielding the highest correlation score was considered as a good predictor of
the participants’ motion coherence thresholds, eliciting the choice boundary from
MEG data indicated as a dashed vertical line in Figure 6.1.1D.
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6.5 Results & Discussion

Modeling of simulated data as a proof of concept

First, we modeled typical behavioral profiles observed during a perceptual dis-
crimination task by using simulated data (e.g. ranging from 7% to 92% of coher-
ence). The modeling allowed validating the use of an ordinal model which better
fitted the data than a linear model (Figure 6.1.1B, left panel). As detailed above,
the simulated trials were decoded using cross-validation by fitting a ridge regres-
sion to the training data and evaluating the performance of the model on all possi-
ble pairwise combinations of test trials. The similarity matrix (Figure 6.1.1B, right
panel), which represents the predictive power in distinguishing two coherence lev-
els, was evaluated with a 10-fold stratified cross-validation method. Each entry in
the similarity matrix shows how similar each coherence level is to another one;
alternatively, each entry can also be interpreted as how well one coherence level
can be distinguished from another using a linear multivariate statistical model. All
pairwise comparisons given in the similarity matrix built an anti-diagonal pattern:
the lighter blocks in the similarity matrix were coherence levels for which no dif-
ferences in brain responses could be captured, yielding a decoding score at chance
level. Conversely, the darker blocks (red) captured high decoding accuracy scores
for which brain responses highly differed between two coherent motion e.g., brain
responses to 7% coherent motion were highly distinguishable from those obtained
during the presentation of 92% coherent motion. When comparing the neighbor-
ing levels 64% and 78% in Figure 6.1.1B-right panel, the high accuracy of decoding
demonstrated a difference in brain activity patterns, reflecting a discontinuity in
the activation profiles despite a progressive change in the visual motion coherence
levels. The observed discontinuity or edge located between 50% and 64% of visual
motion coherence revealed the presence of a categorical boundary.

Spatial selectivity of decoding categorization

The appropriate time window for best decoding performance was established us-
ing time-resolved cross-validation techniques [Ram+13]. The overall best decoding
performance was obtained for latencies ranging from 100 ms to 600 ms post-motion
coherence onset as illustrated in Figure 6.1.1C. The decoder was applied to MEG
data in this time window on a per individual basis. Similarity matrices scored how
well pairs of visual motion coherence could be distinguished, and then ordered, on
the basis of brain activity. Figure 6.1.1D reports the similarity matrices computed
on grand-average MEG data (n = 36 participants). Similarity matrices obtained for
the MEG sensors (gradiometers) are reported in the top panel. Similarity matri-
ces obtained for source-reconstructed estimates in the ROI hMT+ and in a control
region “frontal pole” are provided in the middle and bottom panels, respectively.
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The similarity matrices obtained in sensor and hMT+ data showed two dis-
tinct categories as an anti-block-diagonal pattern: two light blocks of decoding
score at chance level (∼50%) for close coherence levels (low levels: 15%-45% against
themselves, high levels: 55%-95% against themselves), and two dark blocks of de-
coding score nearing ∼65% for coherence levels that were apart, namely 15%-45%
against 55%-95%. These results conform with the notion of perceptual categories,
namely: visual motion coherence levels 45% and 55% were close from the point of
view of the coherence level in visual stimulation, but distant in perceptual space
with the former most likely classified as incoherent and the latter as coherent. The
two brain states thus defined by the similarity matrix are compatible with categor-
ical classification of the stimuli in this task. Specifically, visual motion coherence
stimuli could either elicit a pattern consistent with not detecting the coherent sig-
nal in the display and not discriminating within the ensemble of stimuli whose
coherence could not be detected (below the boundary) and detecting the coherent
signal in the display but not discriminating within the ensemble of stimuli whose
coherence could be detected (above the boundary).

To further investigate the link between brain activity at the single trial level
and behavioral outcomes, we systematically compared the boundary delimited by
the decoding approach with the perceptual threshold obtained from psychometric
fits. The mean perceptual threshold was obtained in the task from the previous
study [Zil+14] and shown here in the histogram over the 36 subjects (Figure 6.1.1D,
bottom panel). The emerging categorical boundary at 45-55% of visual motion
coherence in both sensors and hMT+ (but not frontal pole) matched well the mean
perceptual threshold observed behaviorally (black dotted line; Figure 6.1.1D).

In order to establish a quantitative criterion for this observation, template ma-
trices were constructed to model each theoretically possible perceptual threshold.
Each template matrix was then correlated with each of the decoding similarity
matrices obtained from empirical measurements (Figure 6.1.1E). The aim was to
find the peak of the correlation between the template threshold and the emerg-
ing boundary. This procedure, which is similar in spirit to the Representational
Similarity Analysis (RSA) approach [KMB08; CPO14], insured that the decoding
similarity matrix was not forced to look like any specific template matrix. The
quantitative metric confirmed our qualitative assessment (Figure 6.1.1D). Specifi-
cally, the peaks of the correlations were found for template matrices correspond-
ing to a mean perceptual threshold of 55% in both MEG sensors and in source-
reconstructed hMT+; the control ROI showed no selectivity.

Temporal accumulation selectivity of categorization decoding

The spatiotemporal sensitivity of source-reconstructed MEG data was exploited to
test at which latency sufficient information had been integrated to reach a reliable
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and stable classification pattern. To explicit the choice of the cumulative time win-
dow range, Figure 6.5.1A shows the grand average time course in response to the
seven motion coherence levels over the 36 subjects in hMT+. As can be seen (Fig-
ure 6.5.1A) and as previously reported [Zil+14], main differences were located at
these latencies although no clear categorization were visible in the time response.
For this, scoring was established in a temporally cumulative manner from 100 ms
post-motion coherence onset by adding the consecutive 50 ms time window to each
previous one (Figure 6.5.1B) until 450 ms. The decoder was applied to sensors and
to source estimates in the regions of interest as well as additional cortical sources
known to be involved in the task [Zil+14], namely: hMT+ and the control region
frontal pole but also the medial primary and secondary visual cortices (V1/V2), the
intraparietal sulcus (IPS) and ventrolateral prefrontal region (VLPFC) (Figure 6.5.1,
bottom left). In Figure 6.5.1B, in which all similarity matrices are reported, two
brain categories of coherence levels seemed to emerge. As one of the focuses was
to link the decoding to the behavioral data, the black dotted lines illustrated the
known average perceptual threshold to find how well it fitted with the boundary
found in the similarity matrices.

Using reverse-inference, we selected the template matrix which corresponded
to the known mean perceptual thresholds of the 36 participants. We then computed
the correlations in specific cortical regions to capture an anatomic and temporal
discrimination. The correlation scores between the perceptual templates and the
similarity matrices in the different cortical regions are provided in Figure 6.5.1C.
The stability of the similarity matrices (Figure 6.5.1B) and the plateau of correla-
tions between the template and the similarity matrices (Figure 6.5.1C) were first
reached in hMT+ followed by V1/V2 in occipital regions, IPS and VLPFC. The la-
tency of optimal decoding was consistent with seminal neurophysiology work sug-
gesting functional selectivity of motion computation in hMT+ which may also be
indicative of behavioral choice boundary [JM06; Rus+06; SB07; Bri+96]. Perceptual
boundaries for motion coherence discrimination could also be decoded later on in
regions implicated in the task (V1/V2, IPS and much later in VlPFC) but not in the
control region. These observations suggest that the decoder was anatomically and
temporally selective. Specifically, the sequence of decoding latencies suggests that
the outcome of categorization computed in hMT+ may be forwarded downstream
to V1/V2 – as a possible general mechanism contributing to plasticity - as well as
VLPFC, as a likely consequence of perceptual decisions required by the task. The
decision-related aspect was likely not encoded in low-level sensory areas, however
the categorization pattern was still visible in hMT+ when appearing in VLPFC due
to accumulation of evidence over the whole time range. Although one could ar-
gue that the emergence of these patterns over time are essentially due to longer
integration windows for decoding, using sensors or hMT+ label yields a visible
categorization pattern as early as 100ms.



6.5. Results & Discussion 111

FIGURE 6.5.1: Temporal-accumulation decoding. A) Grand average
hMT+ time courses in response to the seven motion coherence levels.
B) Grand average similarity matrices (n = 36) in sensors, MT, V1/V2,
IPS, VLPFC and frontal pole (top to bottom rows, respectively). In-
cremental decoding of the similarity matrices within the selected time
window could be seen. Colored frames indicate the earliest decoding
pattern capturing the perceptual thresholds (dashed lines) e.g. 250 ms
for MT. C) Each similarity matrix was correlated with the template
matrix optimally capturing perceptual thresholds. Correlations were
cumulatively performed over the full time course of brain responses.
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6.6 Conclusion

In this study, we showed that brain decoding could classify brain states as a func-
tion of visual motion coherence during a discrimination task. The categorical bound-
ary partitioning two brain states was consistent with the participants’ discrimina-
tion performance as indexed by their perceptual thresholds. Specifically, while the
decoder was at chance level in discriminating between two motion coherence lev-
els within the same perceptual category (within perceived or within non-perceived
levels of visual motion coherence), the decoder performed well in discriminating
brain activity in response to motion coherence levels across different categories
(across perceived and non-perceived levels of visual motion coherence). We dis-
cuss below the implications and limitations of our findings.

In the visual motion coherence discrimination task used here, the intermixed
clouds of dots (or RDKs) were identifiable by two distinct parameters: their color
(red or green) and the increased degree of motion coherence in one cloud as com-
pared with the other one. The task required participants to identify the colour
of the coherent cloud of dots. Although the employed stimuli were quite typi-
cal for visual motion tasks, a couple requirements set this task apart. Firstly, the
selective feature in the display was the coherence of motion irrespectively of the
direction of motion. This differed from feature-based attention tasks in which the
relevant feature is the direction of coherent motion [TT99; SS14]. Secondly, the task
required the discrimination of two clouds of dots simultaneously presented and
spatially intermingled; this was distinct from a previous decoding study in which
the two populations were spatially segregated [SB07]. Nevertheless, and consis-
tently with prior decoding work on visual motion processing [KT05; KT06; SB07;
HV13; Kem+14] the earliest robust decoding of motion coherence was found in
hMT+, as well as V1/V2. Thirdly, the color of the most coherent cloud of dots was
randomized on every trial; as such, the color feature was orthogonal to the task
requirement although the participants effectively classified their responses as "red"
or "green". Accordingly, the successful decoding for any given pair of RDK coher-
ence levels reported here (cf. cells in the decoding matrix being > 50%) captured
information about motion coherence per se, not its color or its direction.

The behavioral discrimination of continuous sensory information, such as co-
herent motion, requires the setting up of an internal criterion classifying sensory
information into two or more categories [JM06; Bri+96]. Seminal work has shown
that visual motion coherence at which neural activity reaches 50% of its maximum
value can be estimated by means of a neurometric threshold [Bri+92]. A similar
approach has been used on MEG source estimates in this task, revealing the ex-
tent to which the neurometric thresholds computed in the local brain area hMT+
could effectively reflect the participants’ discrimination of visual motion coherence
[Zil+14]. While perceptual thresholds can be derived using several analytical steps
and fitting procedures, we have shown that a multivariate decoder can directly
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capture the partitioning of brain activity as a function of the participants’ perfor-
mance by using a dedicated ranking metric associated with a template matrix cor-
related with the errors of the decoder when evaluated on left out test data. Our
approach also showed that the partitioning of brain states fitting the perceptual
thresholds at the population level could be found at different timings and at dif-
ferent cortical locations. Future ad-hoc investigations will focus on correlating in-
dividual perceptual thresholds and similarity matrices. Here, the individual simi-
larity matrices were noisier, making it harder to interpret the outcomes. Hence, we
compared conditions by taking the average over 36 participants, which still pro-
vided distinct categorization patterns.

Additionally, we found that the more sensory evidence accumulated over
time, the more stable and robust the average similarity matrices became both in
sensors and in brain regions. The first stable decoding pattern emerged in hMT+
(∼250 ms), consistently with the known likelihood estimations and evidence ac-
cumulation of visual motion in this region and at this latency [Bri+92; JM06]. By
300 ms, a comparable decoding pattern was found in V1/V2, followed by IPS and
by 450 ms by VLPFC. The early decoding latencies found in posterior regions and
the later latencies found in frontal regions were overall consistent with decoding
accuracies reported in perceptual decoding studies. Visual awareness can typically
be decoded early in occipital regions and lately in frontal areas [And+16; MKL15;
DGCK11; Sal+15; KPD16] . While the late decoding component is related to percep-
tual awareness, it can also reflect expectation, task requirements, and attentional
selection [And+16; MKL15].

The observed spatiotemporal sequencing and stabilization of peak decoding
in regions implicated in the task (but not others, i.e. control area frontal pole) sug-
gest that the motion selectivity and choice probability computed in hMT+ could
be passed on downstream to early visual cortices as well as to decision-related ar-
eas (IPS). Recent models of visual motion processing [Rus+06] and recent fMRI
data [VG14] have suggested that perceptual priors in early visual cortices may be
shaped on the basis of higher-levels computations. Both seminal and recent find-
ings have suggested that attention and feature-selectivity may be crucial in the
modulation of early sensory cortices [KT05; SB07; SS14]. Our MEG decoding re-
sults add to this literature by suggesting that selectivity to higher-order features
computed in hMT+, such as motion coherence irrespective of direction or color
may feedback to early visual cortices. These and other [HV13; Kem+14] results
also suggest that the classification boundaries computed in hMT+ may have last-
ing effects for the analysis of visual motion. In particular, and consistently with
previous literature [KT05; KT06; SB07; HV13; Kem+14], the latency of the catego-
rization pattern across brain regions suggests the possibility that information rel-
evant to perceptual boundaries from hMT+ feedbacks to V1/V2 consistently with



114 Chapter 6. Decoding visual motion from MEG

predictive coding models of visual processing [Rus+06; RB99] and learning theo-
ries [AH04; GLP09; SNW10; ROW10].

Nevertheless, it is noteworthy that in the context of perceptual categorization
tasks such as the one employed here, the dissociation between the perceptual and
the decisional components are difficult to disentangle [MKL15; KO13; HMU08].
Several studies have discussed the dissociation between perceptual processing and
decision-making [PS06; PRS06; RPS09; ODK12; Wya+12; Lan+13; KO13; PMH12;
MKL15]. For instance, a temporal dissociation between early sensory processing in
occipital areas and decision-related processing in parieto-frontal regions have been
shown to be increasingly pronounced over time [MKL15]. The perceptual thresh-
olds used here to model the best fitting category do not readily dissociate between
these two possibilities. Although the present study suggests that multivariate de-
coding can successfully retrieve perceptual thresholds, it is important to remain
skeptical about the link between the information allowing decoding neural activ-
ity and its relationship to the computations effectively used to perform the task.
For instance, brain activity categorized early on in hMT+ may contain top-down
information feedback from decisional brain regions that may have helped the de-
coded categorization boundaries. However, three main aspects suggest that the
decisional component may not be implicated here: firstly, the decision was made
on the orthogonal feature color which was not used in the classifier as reported
above. Secondly, the decoding in parietal cortices occurred much later than the
stabilization observed in hMT+. Although response-locked analyses [KO13] could
be used to disentangle the perceptual and decisional component, one limitation of
the current decoder is that it is sensitive to any statistical differences in amplitude
or in latency. Hence, analyzing the same time window sorted on the basis of the
stimulus onset or of the response would not allow to draw stronger conclusions
regarding the (perceptual or decisional) nature of the cortical representations en-
abling the categorization of brain states. Thirdly, recent evidence suggests that the
inactivation of parietal regions are not decisive for motion categorization in mon-
keys [Kat+16].

To sum up, we presented a new MEG decoding technique that can capture
the perceived categorization of continuous sensory information at the population
level. Our results showed a sustainable pattern over time that correlated with the
mean perceptual threshold and which successively implicated hMT+, V1/V2, IPS
and VLPFC, consistently with general models of decision-making in motion cate-
gorization tasks [Maz+03]. Future work will aim at disentangling the perceptual
analysis and the decisional components of perceptual decision-making tasks, as
well as refining our approach to individual-level decoding.



115

Chapter 7

Conclusion & Perspectives

This thesis demonstrated various ways to solve the MEG/EEG source localization
problem. It tackles specific challenges faced by current state-of-the-art techniques,
and tries to improve them point by point:

• Promoting structured sparsity in the TF domain has proved useful for recon-
structing non-stationary sources, although it needs to fix some parameters
related to the Gabor transform, which are involved in the TF resolution. The
first improvement proposed in this thesis was to tackle the choice of these pa-
rameters, which can be very detrimental for the analysis of brain waves with
variable TF characteristics. It provides a new technique based on a multi-scale
TF mixed norm allowing us to more accurately localize the source estimated
in space and time (see Chapter 3).

• The formulation of the MEG/EEG inverse problem has been mostly writ-
ten as a penalized regression, meaning that it needs to introduce a prior
knowledge as a regularization term into the objective function. This results in
adding a hyperparameter to the model which needs to be tuned. This thesis
tackles this second challenge in two ways, both reformulating the problem as
done in the Bayesian community. The Bayesian formulation allows to hierar-
chically add hyperparameters that are alternatively estimated with the main
parameters of the model (the sources). The two main advantages are: the
direct estimation of the hyperparameters, and the ability to use sampling in
order to investigate the uncertainty of these solvers. These two points were
presented in Chapter 4.

• An important step after developing any new technique is to validate it with
a comparison with the other existing methods. This has for a long been a
hard step as it is always hard to develop good and realistic simulations. For
this aim, several studies have been investigating phantom datasets, which
consists of real data recorded with a device mimicing a human head with
focal sourdes. Chapter 5 shows a comparison of the solvers presented in this
thesis on multiple phantom datasets.

This thesis was based on a long line of research started by my supervisor
Alexandre Gramfort, and then his former PhD student Daniel Strohmeier, and was
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meant to address several issues they encountered in the context of the MEG/EEG
source localization problem. The points cited before were mainly the ones devel-
oped in this thesis, however several non-trivial ones remain in order to make best
use of the available neuroimaging data:

• Although we found a way to solve the problem of source localization in the
TF domain when having a mixture of brain signals in the data, it is still a
non-trivial task to set the parameters of the multi-scale dictionary. As pre-
sented before, another possible way is to learn models that are good enough
to capture the rich frequency content, and the morphology of the brain sig-
nal. The dictionary learning research line has given pretty nice results so far
on electrophisiological signals [Jas+17b; Jos+06; BP16; Hit+17], which makes
the technique completely autonomous and data-driven.

• The spatio-temporal techniques presented in this thesis are designed for the
analysis of averaged evoked responses to ensure a descent SNR. Future work
can be directed on how to make these techniques applicable on single trial
data. A possible idea is to localize each trial separately by imposing an addi-
tional constraint onto the model, such as that the active set must be consistent
over all trials [Str+12b; Str+12a].

• While invoking new constraints onto the model, another line of future work
can be on the optimization side for solving the MEG/EEG inverse problem.
In machine learning, various papers have been investigating mathematical
and computational challenges to better tackle the inverse problem in general.
One possible direction for the MEG/EEG inverse problem is to improve the
computational complexity, because the proposed approaches need to be com-
petitive in terms of running time. This results in research contributions that
aim to accelerate the optimization algorithms; a practical example which was
used in this thesis is the use of an active set. A more sophisticated approach
would be to apply screening rules, i.e. find in advance the involved sources
in order to compute the solution only for them, and avoid spending time on
computing sources which will be inactive at the end [FGS15; MGS17; MSG;
Ndi+16; Ndi+17].

• The proposed method in the TF domain still lacks an automatic model selec-
tion criterion to set the two regularization hyperparameters (one over space,
the second over time). Chapter 4 presented a way to automatically set the
hyperparameter for the mixed norm (MxNE) approach, which has only one
regularization parameter over space. A future work could be to rewrite the
problem for TF-MxNE, or investigate other model selection criteria.

• The novel methods and some of state-of-the-art approaches have been tested
using three phantom datasets. A future work would be to investigate more
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in depth this validation to compare their capabilities with a more sophisti-
cated data, i.e., two or more dipoles at a time, instead of only one dipole as
presented here.
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Abstract

Cette thèse a développé des méthodes parcimonieuses pour la localisation de sources en
magnétoencéphalographie (MEG) et l’électroencéphalographie (EEG).

Pour un champ électromagnétique donné, il y a un nombre infini de sources réparties à
l’intérieur du cerveau qui aurait pu le créer. Cela signifie que le problème inverse est mal-posé,
ayant de nombreuses possibles solutions. Cela nous contraint à faire des hypothèses ou des
apriori sur le problème.

Cette thèse a étudié les méthodes parcimonieuses, i.e., seulement quelques sources focales
sont activées lors d’une tâche précise. La première contribution est de modéliser le problème
comme une régression pénalisée dans le domaine temps-fréquence avec un dictionnaire multi-
échelle pour prendre en compte tous les aspects d’un signal cérébral. En ajoutant le terme
de régularisation spatio-temporel, le modèle ajoute un hyperparamètre qui reste à optimiser.
Ceci a constitué la seconde contribution de cette thèse où une estimation automatique des
hyperparamètres a été mise en oeuvre.

La troisième contribution est de réduire l’écart entre les deux communautés qui formulent le
problème inverse comme étant une régression pénalisée ou comme un modèle Bayésien. Cette
thèse montre sous quelles hypothèses et sous quelle paramétrisation, on obtient une équivalence
des deux formulations et comment profiter de cette nouvelle formulation Bayésienne pour
quantifier l’incertitude de nos solutions.

La dernière contribution a eu pour but de valider les solveurs sur des données fantôme,
c’est à dire des vraies données avec une réalité terrain pour pouvoir quantifier l’erreur de
localisation en position, orientation, et amplitude.
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Figure 1: Vue d’ensemble des résolutions spatiales et temporelles de différentes méthodes de neu-
roimagerie fonctionnelle. Les approches directes (EEG, iEEG, MEG) sont indiquées par des boîtes
pleines et des approches indirectes (IRMf, NIRS, PET et SPECT) par des tirets. Les couleurs des
boîtes indiquent le degré d’invasivité.

1 Introduction
Un des plus grands défis du 20ème siècle est la compréhension du cerveau humain. Être capable de
modéliser la façon dont le cerveau représente, analyse, traite et transforme l’information de millions
de tâches différentes en un temps record est primordial pour les études cognitives et cliniques. Ces
tâches peuvent aller du langage, de la perception, de la mémoire, de l’attention, de l’émotion, au
raisonnement et à la créativité. Étudier le comportement du cerveau en chaque tâche et extraire
des informations pour définir le réseau qui en est impliqué entraînera une meilleure compréhen-
sion de ses fonctions. Cela a été largement utilisé dans d’autres domaines tels que l’intelligence
artificielle où les scientifiques et les ingénieurs essaient de mettre en œuvre les aspects qu’ils ont ap-
pris du cerveau humain dans les ordinateurs. Contrairement aux questions de sciences cognitives,
dans le diagnostic clinique, comprendre comment une pathologie affecte le cerveau aide à trouver
un remède ou un moyen d’améliorer la vie des patients. Par exemple, être capable de détecter
l’autisme en bas âge de l’enfance aide les parents à fournir une éducation spécifique et un meilleur
avenir.

Pour rendre ce balayage du cerveau possible, plusieurs technologies de pointe sont utilisées
en fonction de la question que l’on se pose. Ces techniques diffèrent de leur degré d’invasivité
et de leurs résolutions spatiales et temporelles, comme on peut le voir sur la Figure 1. Pour les
différentes tâches que j’ai mentionnées ci-dessus, un aspect très important est le temps. Le cerveau
est capable de traiter la plupart des tâches en une fraction de seconde, par exemple, de reconnaître
une émotion, de percevoir un visage familier, etc. Dans cette thèse, pour étudier cette haute
résolution temporelle du cerveau, j’ai été intéressée dans deux techniques d’imagerie cérébrale
directe MEG et EEG.

MEG et EEG sont des techniques de neuroimagerie fonctionnelle pour cartographier l’activité
cérébrale. Ils enregistrent respectivement les champs magnétiques et les courants électriques pro-
duits par l’activité électrique naturelle dans le cerveau au sein des neurones. Ils utilisent un en-
semble de capteurs positionnés sur le cuir chevelu qui sont extrêmement sensibles à de minuscules
changements dans le champ magnétique (mesurés par MEG) produits par de petits changements
dans l’activité électrique (mesurée par EEG) dans le cerveau. C’est donc une mesure directe de
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l’activité neurale. Ces techniques de mesure de l’activité cérébrales (MEG / EEG) ne sont pas
nouvelles, mais ont été lancé à la fin des années 1960. Cependant, ce n’est que depuis le début des
années 1990, avec l’introduction de grilles de détection haute densité couvrant toute la tête, que
tout le potentiel de MEG a commencé à se réaliser. Le plus grand avantage du MEG et de l’EEG,
comparé à l’IRMf, qui est beaucoup plus établi dans la recherche en neurosciences, est la résolution
temporelle. Dans IRMf, l’activation neuronale est indirectement mesurée par des changements lo-
caux dans le niveau d’oxygénation du sang, et une fenêtre de temps est généralement compressée
dans un volume cérébral mesuré. Les autres techniques mentionnées dans la Figure 1 sont égale-
ment des techniques d’imagerie cérébrale fonctionnelle indirectes.

En utilisant des magnétomètres / électrodes (capteurs) très sensibles, MEG et EEG fournissent
un aperçu de l’activité cérébrale avec une haute résolution temporelle et spatiale. Ils permettent
les mesures de l’activité en cours qui décrivent l’état des sources actives du cerveau à chaque
milliseconde. Ce problème de calcul du résultat des mesures est appelé problème direct (forward
problem). Le problème direct bioélectromagnétique décrit la relation entre une activité neuronale
donnée dans le cerveau et les signaux MEG et EEG observables. Sa solution modélise mathé-
matiquement l’activité neurale, la conductivité du volume et la configuration du modèle. Il nous
permet de relier les potentiels et les champs externes à une distribution de courant interne par une
solution stable et unique, ce qui est donc un problème bien posé.

Sa contrepartie, le problème inverse bioélectromagnétique, consiste à utiliser les mesures réelles
pour déduire les paramètres (emplacements, amplitude, orientations) donnant la distribution des
générateurs neuronaux. C’est un problème mal posé dans le sens de Hadamard [Had02] en raison
de sa non-unicité et de sa grande sensibilité au bruit, ce qui rend sa solution instable. Le problème
inverse est ce qu’on appelle le problème n � p en apprentissage automatique, où on a beaucoup
plus d’inconnues p à estimer que le nombre d’observations ou de variables n. Ce problème a des
solutions infinies, principalement dues au petit nombre de capteurs (obervations n) présents en
MEG et en EEG. Pa contre, même si MEG et EEG étaient mesurés simultanément avec un nom-
bre infini de points au-dessus de la tête, l’information serait encore insuffisante pour calculer de
façon unique la distribution de la source cérébrale qui a généré les signaux cérébraux mesurés. Ceci
est dû au fait qu’il existe différentes combinaisons de sources capables de provoquer exactement
les mêmes champs potentiels sur la tête. Ainsi, pour inférer l’activité neurale générant les données
au niveau du capteur, différentes techniques de reconstruction de source peuvent être appliquées,
qui utilisent typiquement des connaissances a priori sur l’état de l’activité cérébrale afin de réduire
l’ensemble des solutions à une solution unique.

Dans cette thèse, je me suis intéressé aux modèles parcimonieux pour reconstruire et localiser
les sources en MEG et EEG. Dans le but d’obtenir des solutions acceptables, faciles à interpréter,
il ne suffit pas d’avoir un bon apriori sur les données, mais plusieurs questions doivent être posées:

1. Quelle est la meilleure façon de fixer la régularisation pour obtenir des solutions parci-
monieuses facile à interpréter?

2. Comment peut-on estimer les hyperparamètres du modèle?

3. Comment quantifions-nous l’incertitude de ces modèles?

4. Comment comparer objectivement les différents solveurs de l’état de l’art?

Ces points définissent l’étendue de cette thèse. Elle tente d’aborder d’abord le problème des
sources non stationnaires, c’est-à-dire, comment estimer une source qui a une explication neuro-
scientifique comme étant actif pendant une courte fenêtre de temps seulement, en étudiant une
fenêtre plus longue. Cela implique la formulation du problème dans le domaine temps-fréquence,
qui doit expliciter le dictionnaire de la décomposition. Deuxièmement, cette thèse tente de trouver
un moyen d’estimer automatiquement l’hyperparamètre du modèle de régression pour faciliter la
comparaison entre les solveurs. L’étape suivante consistait à réécrire le problème comme cela a
été fait par d’autres communautés dans une formulation bayésienne. Ceci a ouvert la voie pour
combler le fossé entre les mondes variationnel et Bayésien en écrivant leur équivalence sous une
paramétrisation spécifique du même problème. L’avantage de la formulation bayésienne est la
possibilité d’étudier la distribution postérieure, rendant possible une étude de l’incertitude de la
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solution.

Cette thèse présente de nouvelles approches pour la reconstruction de sources en MEG / EEG.
Elle peut être divisée en quatre projets principaux:

1. L’implémentation d’un algorithme largement connu pour le problème inverse MEG / EEG
appelé "Recursively Applied and Projected" (RAP) MUSIC [ML99]. Le but étant d’avoir une
comparaison avec un solveur de l’état de l’art basé sur une régularisation non-convexe qui
favorise une plus grande parcimonie en se débarrassant de toutes les sources parasites. Ce
travail a été publié dans le journal IEEE Transactions on Medical Imaging (TMI) [SBHG16].

2. L’amélioration d’un travail antérieur de Daniel Strohmeier sur la reconstruction de sources
dans le domaine temps-fréquence, qui a abouti à l’introduction de l’algorithme TF-MxNE
(Time-Frequency mixed-norm). La contribution aborde le problème du choix du dictionnaire
utilisé pour décomposer les données lorsque l’on travaille dans le domaine temps-fréquence.
Ceci consiste à permettre la possibilité d’utiliser des dictionnaires combinés pour rendre
l’algorithme capable de trouver à la fois des formes d’onde transitoires et des ondes plus
longues présentes dans le signal cérébral. Ce travail a été publié dans IEEE workshop on
Pattern Recognition in NeuroImaging (PRNI) [BSJ+16].

3. Différentes lignes de recherche pour résoudre le problème inverse MEG / EEG ont donné
différentes formulations. La formulation la plus fréquemment utilisée dans cette thèse est
sous la forme d’un modèle de régression régularisé comme dans la plupart des problèmes
d’apprentissage automatique. Avec ce genre de modèles, il faut trouver un bon compromis
entre l’attache aux données, et le terme qui régularise le problème qui prend en compte toute
hypothèse que l’on a sur le problème. Ce compromis est contrôlé par un paramètre externe
généralement appelé hyperparamètre. Pour un exemple pratique, lorsque l’on utilise une
régularisation parcimonieuse, si cet hyperparamètre est fixé à une petite valeur, la solution
résultante ne sera pas suffisamment parcimonieuse et vice versa. Ainsi, la deuxième contribu-
tion de cette thèse a été alors de trouver un moyen automatisé d’estimer cet hypermaramètre
sous certaines conditions du modèle. Ce travail a été publié dans la conférence européenne
de traitement du signal (EUSIPCO) [BBG17].

4. Le plus grand inconvénient des solveurs parcimonieux réside dans le fait qu’ils donnent une so-
lution sans aucune estimation de la variance ni aucun type d’intervalle de confiance. D’autres
domaines d’application utilisent l’inférence bayésienne, principalement parce qu’elle permet
d’estimer l’incertitude et que sa quantification est primordiale. Par conséquent, la troisième
contribution de cette thèse est de réécrire le problème comme dans un monde bayésien, et
tente de rapprocher cette formulation de ce qui a été présenté jusqu’à présent. Ce projet mon-
tre que sous certaines conditions, la formulation bayésienne et la formulation variationnelle
sont équivalentes. Ensuite, il montre comment nous pouvons tirer parti de la distribution
a posteriori pour extraire des cartes d’incertitude. Ce travail a été publié dans le journal
Inverse Problems [BLSG18].

5. Le dernier projet de cette thèse était de tester et de valider nos solveurs et plusieurs autres
qui sont les plus utilisés à ce jour pour les applications en neurosciences. Ceci est fait sur
un jeu de données fantômes qui est un jeu de données simulé avec un environnement réaliste
similaire à un vrai cerveau humain. Ce travail devrait être soumis bientôt à un journal.

6. Un projet supplémentaire sur le décodage cérébral est présenté à la fin de cette thèse. Ce
travail présente une nouvelle approche basée sur une régression ridge avec une métrique
spécifique prenant en compte le fait que la cible est ordonnée. L’approche est nouvelle en
termes d’application aux données MEG. Ce travail a été soumis et est en cours de révision
dans la revue Plos One [BGZvW17].

7. L’implémentation de certaines contributions est déjà sur le package MNE-Python [GLL+14,
GLL+13], les autres devraient également être intégrés prochainement. Une autre contribution
avec le projet d’un collègue est publiée dans Pattern Recognition in NeuroImaging [JER+16]
et Neuroimage [JEB+17].
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1.1 La structure de cette thèse
Se reférer à ma thèse écrite en anglais pour plus de détails.

1. Chapitre 2: Contexte et travaux liés au problème inverse MEG / EEG
Ce chapitre définit les bases et le contexte nécessaires pour ce qui sera présenté dans le reste de
cette thèse. Il commence par donner l’origine des enregistrements MEG et EEG, c’est-à-dire,
que mesurent réellement ces techniques? Il donne ensuite plus d’informations sur l’opérateur
direct et comment il est calculé efficacement. À ce stade, je présente un état de l’art des
problèmes inverses définissant les trois principales approches: les techniques de formation de
faisceau ou de balayage, les méthodes basées sur l’image avec des modèles distribués, et les
modèles de source parcimonieux. Ensuite, je présente quelques bases de la décomposition
temps-fréquence, et compare plusieurs dictionnaires en donnant leurs avantages. Je termine
ce chapitre par une section d’optimisation, en définissant différentes façons de régulariser le
problème mal posé et ensuite comment les résoudre. Il donne également une comparaison
entre plusieurs solveurs.

2. Chapitre 3: Localisation de sources avec des dictionnaires multi-échelles
Ce chapitre est dédié à notre première contribution, à savoir la résolution du problème inverse
dans le domaine temps-fréquence à l’aide d’un dictionnaire multi-échelle. La localisation
de source dans le domaine temps-fréquence a déjà été étudiée en utilisant un dictionnaire
de Gabor de façon convexe [GSH+13] et non convexe [SGH15]. Cependant, le choix d’un
dictionnaire optimal reste non résolu. En raison d’un mélange de signaux, c’est-à-dire des
signaux transitoires courts (juste après le début du stimulus) et des ondes cérébrales plus
lentes, le choix d’un dictionnaire unique expliquant les deux types de signaux de manière
parcimonieuse est difficile. Ce chapitre présente une méthode pour améliorer l’estimation de
source en se basant sur un dictionnaire à plusieurs échelles, c’est-à-dire plusieurs dictionnaires
avec différentes échelles concaténées pour s’adapter aux transitoires courts et aux ondes lentes
en même temps. Les avantages de cette approche sont présentés en termes de détection des
deux types de signaux, de lissage temporel, et non mixture entre les sources.

3. Chapitre 4: Le lien entre les modèles bayésiens et les normes induisant la parci-
monie
Ce chapitre présente les concepts de base de la formulation bayésienne du problème inverse
MEG / EEG. Il vise également à expliquer le différent jargon pour lier les définitions vari-
ationnelles et bayésiennes. Ceci résulte dans la définition d’une équivalence entre les deux
communautés sous certaines conditions en profitant de la formulation bayésienne qui per-
met d’étudier les multiples modes de la distribution postérieur. Les modes du postérieur
définiront plusieurs solutions possibles au problème inverse, permettant alors l’obtention de
cartes d’incertitude des estimations sources.

4. Chapitre 5: Benchmarking sur des données fantômes
Ce chapitre est un chapitre de validation sur un jeu de données fantôme. Les données
fantômes sont un ensemble de données obtenu en mesurant l’activité MEG / EEG avec
une tête fantôme de crâne humain. Tous les aspects réels d’une tête sont simulés pour
générer la même conductivité que celle attendue avec un vrai crâne. L’ensemble de données
présenté dans ce chapitre comporte quatre dipôles simulés à différentes profondeurs. Avec la
connaissance de la vérité terrain, ce chapitre étudie l’efficacité de chaque solveur en termes
de localisation de source, d’orientation et d’amplitude.

5. Chapitre 6: Décodage du mouvement visuel de MEG
Ce chapitre illustre un projet supplémentaire en dehors du sujet de problème inverse. Il est
basé sur une application de l’apprentissage automatique aux neurosciences. L’objectif était
de développer une approche efficace pour décoder l’activité cérébrale enregistrée avec MEG
pendant que les participants discriminaient la cohérence de deux nuages de points entremêlés.

1.2 Publications durant cette thèse
Revue | Journal :

• Y. bekhti, and A. Gramfort, "Validation of dipole localization using phantom data in MEG
source imaging," in preparation.
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• Y. Bekhti, F. Lucka, J. Salmon, and A. Gramfort, "A hierarchical Bayesian perspective on
majorization-minimization for non-convex sparse regression: application to M/EEG source
imaging," Inverse Problems, 2018

• Y. Bekhti, A. Gramfort, N. Zilber, and V. van Wassenhove, "Decoding the categorization
of visual motion with magnetoencephalography," Plos One, (submitted).

• D. Strohmeier, Y. Bekhti, J. Haueisen, and A. Gramfort, "The iterative reweighted Mixed-
Norm Estimate for spatio-temporal MEG/EEG source reconstruction," IEEE Transactions
on Medical Imaging, vol. 35, no. 10, pp. 2218-2228, 2016.

• M. Jas, D.A. Engemann, Y. Bekhti, F. Raimondo, and A. Gramfort, "Autoreject: Au-
tomated artifact rejection for MEG and EEG data," NeuroImage, vol. 159, pp. 417-429,
2016.

Conférence :

• Y. Bekhti, R. Badeau, and A. Gramfort, "Hyperparameter estimation in maximum a poste-
riori regression using group sparsity with an application to brain imaging," Signal Processing
Conference (EUSIPCO), pp. 246-250, 2017.

• Y. Bekhti, D. Strohmeier, M. Jas, R. Badeau, and A. Gramfort, "M/EEG source localization
with multi-scale time-frequency dictionaries," International workshop on Pattern Recognition
in NeuroImaging (PRNI), pp. 1-4, 2016.

• M. Jas, D.A. Engemann, F. Raimondo, Y. Bekhti, and A Gramfort, "Automated rejection
and repair of bad trials in MEG/EEG", International workshop on Pattern Recognition in
NeuroImaging (PRNI), pp. 1-4, 2016.

2 Modélisation du problème
Notation
Dans une application MEG / EEG, l’opérateur direct G qui décrit la relation linéaire entre les
mesures MEG / EEG M ∈ <N×T (N nombre de capteurs, T nombre d’instants temporels) et
l’activation de source X ∈ <S×T (S est le nombre des emplacements possibles de sources). Le
modèle linéaire lit alors: M =GX oùG ∈ <N×T est le gain ou la matrice de l’opérateur direct,
une matrice de mélange instantanée connue, qui relie les signaux de source et de capteur.

Parmis toutes les formulation de l’état de l’art, on s’intéresse aux méthodes distribuées pour
la localisation de sources. Ces méthodes permettent d’estimer les amplitudes d’un ensemble dense
de dipôles distribués à des endroits fixes dans la surface ou le volume de la tête. Ces méthodes
sont basées sur la reconstruction de l’activité électrique cérébrale au niveau chaque point d’une
grille 3D de points de la solution, le nombre de points étant beaucoup plus grand que le nombre
d’électrodes sur le cuir chevelu. Chaque point de la solution est considéré comme un emplacement
possible d’une source de courant, il n’y a donc pas d’hypothèse a priori sur le nombre de dipôles
dans le cerveau [Was08].

MNE (Minimum norm estimate) [HI94] et ses variantes [LWA+06, PMML94, DLF+00, PM+02b]
résolvent le problème inverse MEG / EEG pour chaque point de temps séparément. Ils considèrent
une régularité spatiale, mais ils ne prennent pas en compte la dimension temporelle des données
MEG / EEG. De plus, ce sont des modèles denses, qui ne correspondent pas à l’hypothèse à laquelle
on s’intéresse qui est la parcimonie. En soit, on cherche que quelques régions cérébrales focales
qui sont impliquées dans une tâche cognitive spécifique. MNE ou dSPM [DLF+00], par exemple,
auront tous les deux des sources différentes de zéro à chaque instant. Pour ce faire, plusieurs
méthodes favorisant des configurations de sources focales parcimonieuses ont été proposées sur la
base d’un relâchement de la norme 0. Une approximation populaire est `p-normes avec 0 < p ≤ 1:

‖X‖p =
( S∑

s=1

T∑

t=1

|X[s, t]|p
) 1

p

(1)
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En supposant des données MEG / EEG blanchies spatialement, une estimation de source
parcimonieuse peut être obtenue en résolvant le problème régularisé:

X? = argmin
X∈<SO×T

1

2
‖M−GX‖22 + λ‖X‖p with λ > 0. (2)

Le problème d’optimisation est non différentiable et n’a pas de solution directe. Par conséquent,
des approches itératives doivent être appliquées pour résoudre le problème dans l’équation (2).
Fixant p = 1 dans l’équation (2), le problème est connu sous le nom de Lasso [Tib96] dans les
statistiques, Basis Pursuit Denoising (BPDN) [CDS98] en traitement du signal, et Norme minimale
sélective (SMN) [MO95] en MEG / EEG. Cependant, l’application de la norme `1 pour l’orientation
libre (O = 3) favorise la parcimonie même dans l’orientation à chaque emplacement source. Pour
surmonter ce problème, MCE (Minimum Current Estimate) a été proposée par [UHS99] résolvant
SMN en fixant l’orientation a priori en calculant d’abord une solution MNE.

Plusieurs autres approches peuvent être citées qui étudient la même idée d’avoir des estima-
tions de sources focales. Sparse Bayesian Learning (SBL) (SBL) [Wip06], Spatio-Temporal TO-
mographic NonNegative Independent Component Analysis (STTONNICA) [VSVHSB+09], Normes
Mixtes [OHG09], Champagne [OWA+12], Inférence Bayésienne Hiérarchique [LPBW12], ou les
estimations de la norme mixte (MxNE) [GKH12]. Ces méthodes sont appelées spatio-temporelles
car elles fonctionnent dans une fenêtre temporelle prédéfinie, mais elles ignorent complètement la
corrélation temporelle. Cela peut être vérifié en déplaçant les colonnes de l’estimation de source:
cela n’aura aucun effet sur l’estimation de la source elle-même.

Pour introduire une "vraie" contrainte spatio-temporelle dans le modèle, [ZR11b, ZR11a] a
incorporé la corrélation temporelle pour améliorer les estimations de sources, vector-based spa-
tiotemporal minimum `1-norme (VESTAL) [HDS+06] applique une projection temporelle pour
réduire la sensibilité au bruit après l’utilisation de la norme `1. Le Fast-VESTAL [HHR+14] est
une sorte de post-traitement à la méthode VESTAL. Cependant, cette étape de post-traitement
suppose implicitement que les estimations de la source sont stationnaires. Pour surmonter ces
problèmes, Ou et al. [OHG09] a proposé une approche pour reconstruire simultanément plusieurs
instants temporels en appliquant la norme mixte `2,1 pour imposer la régularité spatio-temporelle
de groupe en tant que régularisation [GKH12, OHG09].

Time-Frequency Mixed-Norm Estimate (TF-MxNE) [GSH+13] a réutilisé la norme mixed `2,1
(MxNE [GKH12]) dans le domaine temps-fréquence en ajoutant une seconde régularisation sur le
temps `2,1+`1. Il multiplie la matrice de gain par un dictionnaire de fonctions de base spatiales. Ils
obtiennent une matrice de gain modifiée, qui peut être utilisée pour estimer des sources spatialement
étendues avec des formes d’onde temporellement lisses. Cette approche a également été étudiée
par [CCHMV+15], en appelant la méthode Spatio-Temporary Unifying Tomography (STOUT).

Bien que ces méthodes spatiotemporelles améliorent la reconstruction de sources MEG / EEG,
elles sont basées sur des pénalités convexes. Cela permet des algorithmes rapides avec une con-
vergence globale garantie. Cependant, les estimations de source résultantes sont biaisées en am-
plitude et souvent sous-optimales en termes de récupération de support, c’est-à-dire de sources ac-
tives [CWB08]. Comme montré par example dans le domaine de compressed sensing, la promotion
de la parcimonie en appliquant des pénalités non convexes, telles que des pénalités logarithmiques
ou `p-quasi-normes avec 0 < p < 1, améliore la reconstruction du support en termes de sélec-
tion, biais d’amplitude et stabilité [CWB08, Cha07, SCY08]. Plusieurs approches pour résoudre
le problème d’optimisation non-convexe ont été proposées, y compris l’optimisation itérative `1-
norm [CWB08]. [SHG14] a utilisé une approche itérative repondérée pour résoudre la pénalité
composite non-convexe dans le domaine temps-fréquence.

3 Localisation de sources avec des dictionnaires multi-échelles
Cette section considère le problème variationnel dans le domaine temps-fréquence en fixant le terme
de pénalisation comme un Sparse group lasso comme suit:
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Figure 2: Modèles de parcimonie selon les différentes régularisations: `2 tous non-zéro, `1 dispersés
et non structurés valeurs de non-zéro, `2,1 structure de rangée de bloc, et `2,1 + `1 (domaine
TF) structure de rangée de bloc avec une parcimonie intra-rangée. La couleur jaune indique des
coefficients non nuls.

Sparse Group lasso

X? = argmin
X∈<S×T

1

2
‖M−GX‖2Fro + λ1‖X‖2,1 + λ2‖X‖1 (3)

Si λ1 = 0, c’est alors égal à la pénalité de lasso, et si λ2 = 0, ça résulte en une pénalité de Group
lasso.
λ1 est un hyperparamètre sur l’espace et λ2, un second hyperparamètre sur le temps. La figure 2

justifie ce choix. Elle montre comment `2,1 + `1 permet de modéliser des sources non stationnaires
qui ne peuvent pas être estimées avec `2 ou `2,1 en raison de la norme non-parcimonieuse `2
favorisant le temps, tandis que l’estimation `1 est complètement dispersée et non structurée.

Cette section décrit la localisation de sources dans le domaine TF. Nous avons montré que la
localisation de sources dans le domaine TF était une «vraie» approche spatio-temporelle prenant en
compte la corrélation temporelle. Ces méthodes améliorent la reconstruction de sources transitoires
et non stationnaires en promouvant la parcimonie structurée dans le domaine TF. Ces méthodes
appliquent un Sparse Group lasso 3 sur les coefficients TF. TF-MxNE et STOUT appliquent une
pénalité composite convexe, la somme d’une pénalité `2,1 et d’une pénalité `1, sur la transformée
de Gabor des séries temporelles. D’autre part, irTF-MxNE applique une pénalité composite non-
convexe, la somme d’une pénalité de `2;0.5-quasinorme et d’une pénalité de `0.5-quasinorme sur les
coefficients TF. Il a été démontré que les pénalités non convexes surpassent les approches convexes
en termes de récupération de source et de biais d’amplitude [CWB08, Dea10]. Cependant, le choix
d’un dictionnaire Gabor optimal pour décomposer les données reste difficile.

Le problème du choix du dictionnaire est spécialement rencontrée quand un mélange de signaux
est disponible dans les données, par example, un court signal transitoire juste après le stimulus, et
des ondes cérébrales plus lentes par la suite. Le choix d’un dictionnaire unique décrivant les deux
signaux de manière parcimonieuse est difficile. Cette section montre les résultats obtenus après
avoir incorporer un dictionnaire multi-échelle dans l’algorithme d’optimisation itératif repondéré,
c’est-à-dire plusieurs dictionnaires avec différentes échelles concaténées pour s’adapter à des tran-
sitoires courts et des ondes lentes en même temps, tout en gardant une efficacité computationnelle.
Le problème d’optimisation est résolu de la même façon que irTF-MxNE [SGH15], c’est-à-dire
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Figure 3: Réponse évoquée somatosensorielle après prétraitement et moyennage (données des gra-
diomètres et des magnétomètres). Le cercle en haut à gauche donne la position des capteurs sur
la tête qui sont codés par couleur.

que chaque itération est une TF-MxNE pondérée, que nous résolvons en utilisant Block coordi-
nate descent (BCD) [Tse10] et une stratégie d’ensemble actif [FHT10]. Nous démontrons l’intérêt
du dictionnaire multi-échelle en termes de reconstruction de séries temporelles des sources et de
démixage temporel des activations.

3.1 Résultats
Afin de démontrer l’intérêt de irTF-MxNE avec un dictionnaire multi-échelle comparé à irTF-
MxNE de base, nous avons testé différents paramètres pour les différents solveurs sur un ensemble
de données MEG: étude somatosensorielle du jeu de données MIND (voir détails dans [WHM+07]).
La réponse évoquée est illustrée dans la Figure 3. On peut déjà remarquer ce mélange d’ondes
cérébrales dans l’évoqué. Les vagues plus nettes juste après le début sont dues à un bon alignement
des essais dont les informations ne sont pas perdues en prenant la moyenne. Ceci est principalement
connu comme une réponse de la zone somatosensorielle primaire (S1) qui répond rapidement après
une stimulation électrique indolore du nerf médian. Une vague plus longue qui vient plus tard
autour de 70ms est clairement vue dans l’évoqué aussi. C’est ce qui fait de ces données un jeu de
données difficile mais très bien pour tester le solveur multi-échelle.

L’estimation de la source a d’abord été réalisée en utilisant plusieurs solveurs: irTF-MxNE,
ir-MxNE [SHG14] et dSPM [DLF+00]. En ce qui concerne irTF-MxNE, deux dictionnaires ont
été testés (les deux dictionnaires STFT). Un dictionnaire avec une fenêtre de 64 échantillons et un
décalage temporel de 4 échantillons, ce qui conduit à des séries temporelles lisses; et un dictionnaire
avec une fenêtre de 16 échantillons et un décalage temporel de 2 échantillons, ce qui permet de
capturer des sources transitoires courtes. Après l’inspection du résidu Dans la Figure 4, les résultats
montrent qu’au moins quatre sources sont nécessaires pour capturer tous les composants évoqués.

Nous avons donc fixé les paramètres des solveurs irTF-MxNE pour obtenir seulement quatre
sources tout en expliquant autant de variance que possible. Après cela, nous avons expérimenté
avec un ensemble de paramètres différents et nous montrons deux d’entre eux, λtime = λ2 = 1.5 et
λtime = λ2 = 2.5, pour démontrer leur impact sur la smoothness des différentes sources obtenues.
Les paramètres ont été choisis de manière à réduire le résidu, c’est-à-dire à maximiser les données
expliquées en ayant au moins quatre sources. Les figures 5 (a-b) représentent les quatre séries
temporels obtenus avec irTF-MxNE en utilisant le dictionnaire de fenêtre courte pour les valeurs
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Figure 4: Résiduelle des données somatosensorielles après application de irTF-MxNE multi-échelle.
Le cercle en haut à gauche donne la position des capteurs sur la tête qui sont codés par couleur

de λtime sélectionnées.
Nous montrons que pour des valeurs élevées de λtime(b), le solveur n’est pas capable de capturer

la composante transitoire courte autour de 30 ms. Alors que pour une petite valeur de λtime

(a), le démixage n’est pas fiable puisque les estimations de la source bleue et de la source verte
captent l’activité de la source rouge. De plus, les séries temporelles ne sont pas lisses. D’autre
part, les figures 5 (c-d) représentent les quatre séries temporelles obtenues avec irTF-MxNE en
utilisant le dictionnaire de fenêtre longue. La figure confirme que les deux paramètres ne sont pas
capables de capturer l’effet transitoire après le stimulus, bien que les trajectoires temporelles soient
lisses. Ces quatre sous-figures révèlent qu’il faut une courte fenêtre pour capturer l’effet transitoire
du signal cérébral, alors qu’il doit avoir une longue fenêtre pour capturer les ondes longues et
avoir des estimations de sources lisses. Ce résultat démontre comment une combinaison des deux
dictionnaires est essentielle pour acquérir des estimations de sources avec une grande précision,
mais les hyperparamètres doivent également être ajustés, comme le montre la figure 5, que leurs
valeurs changent radicalement les résultats.

De plus, la Figure 5 (e) montre les amplitudes obtenues avec MxNE pour cinq sources. Quant
à MxNE, il n’est pas possible d’obtenir les quatre sources pertinentes non mélangées (voir pour
d’autres figures démonstratives [GKH12]). Nous remarquons que la source bleue clair des figures 5
(a) à (d) apparaît comme deux sources distinctes en (e): bleu clair et violet. Si nous augmentons
le paramètre λ, nous augmentons le biais d’amplitude dû à la norme `1 du solveur. Si nous le
fixons trop haut (λ = 50) nous obtenons quatre sources, mais la source bleue qui est pertinente
pour l’étude serait supprimée et la source violette dupliquée serait conservée. Le dernier panneau
Figure 5 (f) affiche les estimations de la source pour les valeurs dSPM correspondant aux quatre
emplacements des sources obtenues avec irTF-MxNE. Ces sous-figures montrent qu’aucun des
solveurs MxNE ou dSPM n’est capable d’obtenir des sources lisses sans aucune fuite entre les
séries temporelles.

L’estimation de source a ensuite été obtenue en utilisant irTF-MxNE avec la combinaison des
deux dictionnaires. La figure 6 montre la reconstruction de sources en utilisant le multi-échelle
irTF-MxNE pour les paramètres de régularisation λspace = 28.5 et λtime = 1.5. L’emplacement de
chaque source est marqué par une sphère dans la figure 6-gauche, et son amplitude dans le temps
est codée en couleur dans le panneau de droite. Les résultats montrent une succession appropriée
des sources. La source transitoire (rouge) est la seule source expliquant le champ lié à l’événement
jusqu’à 48 ms. Cette source rouge correspond au cortex somatosensoriel primaire controlatéral
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Figure 5: Reconstruction de source en utilisant des données somatosensorielles avec différents
solveurs. (a) - (b) irTF-MxNE sur un dictionnaire de petite fenêtre avec λtime = 1.5 et λtime = 2.5
respectivement. (c) - (d) irTF-MxNE avec un dictionnaire de longue fenêtre avec λtime = 1.5
et λtime = 2.5 respectivement. De (a) à (d) λspace = λ1 = 28.5 (e) MxNE pour λ = 40 et (f)
activation dSPM pour les quatre sources activées.
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Figure 6: Reconstruction de sources en utilisant des données somatosensorielles avec irTF-MxNE
multi-échelle. Le solveur estime quatre sources pour λspace = 28.5 et λtemps = 1.5. Les emplace-
ments sources marqués avec des sphères dans l’hémisphère droit (droite) et gauche (gauche) et leur
activation correspondante sont codés par couleur. La barre de couleurs est sur les valeurs dSPM
qui n’a pas d’unités car ce sont des valeurs statistiques.

(cS1) situé dans le gyrus postcentral du lobe pariétal (hémisphère droit (rh)). La sphère rouge
sur la vue latérale coïncide avec l’activation dSPM étalée autour de 40 ms. La deuxième source
(bleu clair) correspond au cortex somatosensoriel secondaire (cS2), et se produit également avec
l’activation dSPM autour de 80 ms. Environ 100 ms après le stimulus, des sources corticales
supplémentaires sont activées, comme le cortex somatosensoriel secondaire ipsilatéral (iS2) (bleu-
lh) et la paroi médiane controlatérale (vert-rh).

Les avantages de l’irTF-MxNE multi-échelle ont été démontrés sur des données somatosen-
sorielles. Ces expériences confirment que l’irTF-MxNE multi-échelles améliore les estimations de
sources, en termes de réduction de mélange, de régularité et de détection des ondes transitoires
courtes et des ondes plus lentes. L’amélioration de la taille de l’ensemble actif et de l’amplitude
est due à la non-convexité des méthodes de régularisation. Par conséquent, l’irTF-MxNE multi-
échelles devrait être appliqué aux données impliquant un mélange de signaux, et lorsque le but est
d’acquérir des sources focales avec des trajectoires temporelles non stationnaires et lisses.

4 Lien entre les approches déterministe et bayésienne
Cette section vise à établir un lien entre les approches déterministe et bayésienne exploitant un a pri-
ori parcimonieux dans le but de proposer une méthode hybride plus performante. Plus particulière-
ment, ça montre comment un modèle bayésien hiérarchique utilisant un échantillonneur MCMC
peut reproduire à l’identique la solution d’un lasso adaptatif utilisant le principe de Maximisation-
Minimisation (MM). Cette équivalence établie montre l’apport des approches stochastiques qui au
prix d’un coût de calcul plus conséquent permettent d’estimer non seulement les hyperparamètres
mais de mesurer également le degré d’incertitude des solutions calculées. Ceci consiste à initialiser
l’approche déterministe MM à l’aide d’un échantillonneur MCMC de la distribution a posteri-
ori. Une carte d’incertitude des différentes solutions obtenues est alors dérivée. Cette section
décrit une des contributions méthodologiques majeures de cette thèse. Une estimation bayésienne
de l’hyperparamètre d’un group-lasso, exploitant comme modèle la loi Gamma, est par ailleurs
revisitée montrant l’intérêt d’estimer automatiquement l’hyperparamètre.

4.1 Estimation automatique de l’hyperparamètre
Cette section étudie l’estimation de l’hyperparamètre dans la formulation variationnelle. On
peut remarquer que le réglage de l’hyperparamètre est un problème de statistique classique pour
lequel un certain nombre de solutions ont été proposées. Dans le traitement du signal, le critère
d’information Akaike (AIC) et le critère d’information bayésien (BIC) sont des techniques assez
populaires historiquement [S+78]. Les techniques basées sur SURE [Ste81] ont également été très
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populaires et explorées récemment pour les applications de débruitage et des applications de com-
pressed sensing [LBU07, GD15]. Dans une configuration d’apprentissage automatique supervisée
standard avec des observations indépendantes et identiquement distribuées (i.i.d.), la validation
croisée (CV) est l’approche de référence. De plus, l’approche bayésienne adaptée aux modèles
probabilistes offre une méthode raisonnée pour estimer les hyperparamètres utilisant des hyperpri-
ors qui introduisent des contraintes plus faibles que les solutions avec des valeurs de paramètres
fixes. Cet avantage a généralement un prix en termes de coût de calcul. Enfin, dans un certain
nombre de scénarios réels, les humains finissent par définir des hyperparamètres, car ils peuvent
avoir des connaissances d’experts qui peuvent corriger le décalge du modèle.

Dans l’apprentissage automatique, un hyperparamètre vise généralement à limiter le surajuste-
ment en contrôlant la complexité du modèle. Dans le cas particulier de la régression régularisée,
classiquement un paramètre scalaire équilibre l’ajustement des données et le terme de la pénal-
ité. Lorsque vous utilisez une régression parcimonieuse, ce paramètre affecte la parcimonie de la
solution, c’est-à-dire le nombre de covariables ou de régresseurs utilisés.

Cette thèse est particulièrement intéressée par le paramètre de régression de haute dimension
en utilisant la parcimonie structurée de type Group-Lasso comme vu jusqu’ici. Dans la littérature,
un certain nombre d’approches ont été proposées et les estimations du MAP qui se résument à
une régression pénalisée sont les approches standard utilisées par les neuroscientifiques [HNZ+08,
OHG09, BVVN09, WN09, GKH12, LPBW12, VSVHSB+09].

Dans une formulation variationnelle, la valeur de l’hyperparamètre dépend du problème posé, du
niveau de bruit et du choix de la régularisation P(X). Trouver un moyen d’estimer l’hyperparamètre
avec une intervention minimale de l’utilisateur est donc particulièrement important, car cela facilite
la comparaison entre différents modèles et régularisation.

Récemment, Pereyra et al. [PBDF15] a proposé une stratégie pour l’estimation de l’hyperparamètre
dans le contexte de l’inférence MAP lorsque le prior ou la régularisation est une fonction k-
homogène. La régularisation P est une fonction k-homogène s’il existe k ∈ <+ tel que:

P(ηX) = ηkP(X), ∀X ∈ <S×T and ∀η > 0.

La condition k-homogène est satisfaite pour toutes les normes mixtes `p,q. Nous nous concen-
trons sur l’estimation des hyperparamètres pour les modèles bayésiens hiérarchiques produisant
des pénalités convexes `2,1 (P(X) = ‖X‖2,1) ou non convexes `2,0.5, qui sont respectivement 1-
homogène et 0.5-homogène. La pénalisation non-convexe est résolue en utilisant des schémas
d’optimisation convexes re-pondérés itératifs, c’est-à-dire que chaque itération est une norme `2,1
pondérée.

Dans [PBDF15], la stratégie de point fixe proposée est validée sur un problème de débruitage
d’image en utilisant un prior d’analyse, c’est-à-dire où la solution n’est pas parcimonieuse mais
a une représentation parcimonieuse dans un domaine transformé. Cette section montre les ré-
sultats obtenus après adaptation de la méthode ayant un prior de synthèse pour un problème
sous-déterminé. Un prior de synthèse est lorsque la solution elle-même est parcimonieuse.

4.1.1 Résultats

Nous avons généré un jeu de données pour simulation avec N = 302 capteurs, T = 190 échantillons
de temps et S = 1500 sources. Quatre sources ont été sélectionnées au hasard pour être actives
avec des formes d’onde réalistes obtenues à partir de l’ensemble de données MIND [WHM+07].
L’opérateur direct G était une matrice aléatoire, dont les colonnes ont été normalisées à 1. Deux
niveaux de bruit blanc ont été ajoutés à la simulation.

La figure 7 représente les sources simulées avec des étoiles et les sources estimées avec des lignes
simples. La figure 7- (a) - (b) affiche les résultats avec les normes `2,1 et `2,0.5 respectivement, en
utilisant un hyperparamètre initialisé à λ = 0.5λmax. On peut voir que dans la figure 7- (a), la
norme `2,1 récupère les quatre sources avec un biais d’amplitude (l’amplitude estimée est inférieure
à l’amplitude exacte), et que plusieurs sources montrées en vert clair sont presque plat autour de
zéro mais toujours trouvé en tant que sources actives. Il n’y a aucun moyen de réduire le support
sans perdre l’une des quatre sources simulées, c’est-à-dire que la norme `2,1 avec un hyperparamètre
ne parvient pas à récupérer les sources simulées exactes. La norme `2,0.5 de (b) estime les quatre
amplitudes de source sans biais d’amplitude grâce à la non-convexité [SBHG16]. D’autre part, la
figure 7 (c) montre les résultats de la pénalité convexe en utilisant un hyperparamètre par source.
On peut voir qu’il est qualitativement équivalent à la pénalité non-convexe.
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Figure 7: Reconstruction de sources sur des données simulées. (a): Estimations de sources obtenues
en utilisant `2,1 avec un λ. La solution n’est pas assez parcimonieuse (sources nulles en vert clair) et
il existe un biais d’amplitude entre les amplitudes exactes (étoiles) et les estimations (lignes brutes).
(b): Bonne reconstruction des quatre sources en utilisant `2,0.5 et un λ, ce qui est équivalent à la
reconstruction utilisant la norme `2,1 avec λ ∈ <S (c). Chacune des quatre sources est codée avec
une couleur différente.

L’avantage d’avoir un hyperparamètre par source est de ne prélever que les sources impliquées
dans les données M et de laisser tomber les sources quasi-nulles supplémentaires visibles sur la
figure 7- (a) (vert clair). Cette extension produit des résultats plus parximonieux et moins de
biais d’amplitude sans que le problème soit non-convexe. Cette figure suggère également un lien
entre le prior non-convexe et un hyperparamètre par source. Comme le prior non convexe est
une procédure itérative estimant un poids interne pour produire une meilleure solution, le fait
d’avoir un hyperparamètre par source peut également être considéré comme un poids pour définir
de meilleures estimations de sources. Une étude plus précise de ceci est donnée dans la prochaine
section.

4.2 Lien entre MM et HBM
Cette section dans la version longue de ma thèse montre comment dériver une paramétrisation
du MM et HBM pour que les deux techniques soient totalement équivalentes. Ceci nouts aide à
prendre avantages de chaque technique: l’optimisation du MM, et la connaissance de la distribution
posterieur dans une formulation Bayésienne.

Du travail précédent [SBHG16], nous savons qu’en raison de la non-convexité, une bonne ini-
tialisation des poids W[0] dans l’algorithme MM est cruciale pour sa performance, mais mis à part
une initialisation uniforme, seulement des stratégies heuristiques d’initialisation ont été utilisées,
par exemple en utilisant la même repondération comme dans la méthode sLORETA [PM02a]. Dans
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cette thèse, nous tirons parti de la réinterprétation de l’algorithme MM à travers le cadre HBM
pour obtenir des initialisations multiples de manière systématique, à savoir des échantillons tirés
du postérieur complet. De cette façon, nous pouvons non seulement atteindre de meilleurs min-
ima locaux, mais plus important encore, nous pouvons identifier et caractériser plusieurs solutions
parcimonieuses possibles. De telles solutions plausibles au problème de régression sparse sont les
modes de la distribution a posteriori avec différentes masses de probabilité relative.

4.2.1 Résultats

Nous avons généré une simulation réaliste basée sur un modèle de source d’orientation libre (O =
3) avec S = 7498 emplacements corticaux et m = 306 capteurs MEG. Deux de ces endroits
ont été sélectionnés pour être actifs, un dans chaque hémisphère. L’une des sources avait une
localisation ventrale profonde dans le gyrus occipital inférieur (figure 4.7.1-c), et la seconde avait
une localisation plus superficielle dans le cortex moteur (figure 4.7.1-a). Leurs formes d’onde
correspondantes sont illustrées à la Figure 4.7.1-b. Lorsqu’ils sont passés aux solveurs, ils sont
recadrés entre 40 et 180 ms pour ne conserver que les deux pics. Cela conduit à T = 43 échantillons
de temps.
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Figure 8: Jeu de données MEG simulé. a) et c) montrent des sources superficielle et profonde
(cachées dans la vue médiane), respectivement. b) donne leurs formes d’onde correspondantes
codées par couleur par emplacement.

Trouver le bon support dans un problème de régression sous-déterminé parcimonieuse est d’une
complexité combinatoire. Dans nos deux approches, cela se reflète dans la non-convexité de la fonc-
tion objective et dans la multi-modalité de la distribution postérieure conjointe, respectivement.
La deuxième question que nous voulons étudier est de savoir si les méthodes que nous avons
développées ici peuvent révéler ou quantifier une partie de l’ambiguïté et de l’incertitude de ce
problème d’identification de support parcimonieux. Les mesures traditionnelles de quantification
de l’incertitude telles que les estimations de la variance de X ne parviennent pas à le faire, car elles
ne peuvent pas capturer de manière satisfaisante la multimodalité du postérieur. De plus, aucun
échantillon X(k) n’est exactement parcimonieux: la distribution postérieure étant une densité de
probabilité continue, la probabilité de l’événement X(k)[i] = 0 est nulle, ce qui signifie que tout le
support de X(k) est active avec la probabilité 1. Même une moyenne seuillée du support de X(k) ne
révélera que la probabilité moyenne d’un emplacement faisant partie du support. Dans l’analyse
des sources, il est sans doute plus intéressant d’estimer quels réseaux de sources provenant de
différentes régions du cerveau ont probablement produit un ensemble de données, question laissée
ouverte par ces mesures. Ici, nous proposons d’aborder cette question d’une manière différente.

Notre procédure d’initialisation d’une itération MM avec un échantillon de la distribution
postérieure donne différents minima locaux, c’est-à-dire des solutions approximatives au prob-
lème qui satisfont notre connaissance a priori d’un support parcimonieux. Si nous supposons que
la division de <SO×T en attracteurs de l’algorithme MM chevauche grossièrement à la division de
<SO×T en modes du postérieure marginalisée sur X dans le cadre HBM, cette fréquence relative
correspond au volume relatif des minima locaux. Ce dernier est une meilleure mesure pour com-
parer différents minima locaux que leur profondeur (un minimum local qui est profond mais mince
correspond à une estimation de source instable). Alors qu’une analyse mathématique plus profonde
et plus détaillée de cette heuristique est laissée pour un travail futur, nous examinons ici si cette
approche réagit aux changements dans le plan de mesure de la manière que nous attendrions. Pour
ce faire, nous passons de l’utilisation de tous les 306 capteurs MEG à l’utilisation de seulement
204 gradiomètres ou un gradiomètre de plus de deux (102 capteurs). En réduisant le nombre de
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all 306 MEG 204 gradiometers 102 gradiometers

Figure 9: Analyse du réseau source pour les données simulées. La première rangée de sous-figures
montre les 900 minima locaux de la manière suivante: chaque position dans le cercle représente un
emplacement source qui faisait partie du support d’au moins un minimum pour une configuration
de capteur. La barre noire attachée à chaque position correspond à la fréquence relative avec
laquelle cet emplacement source est apparu comme faisant partie du support. Deux positions sont
reliées par une ligne si elles faisaient simultanément partie du support, et la couleur de cette ligne
correspond à la fréquence relative avec laquelle cela s’est produit. Notez que l’arrière-plan du
cercle est blanc, mais densément couvert par des lignes violettes indiquant des connexions rares.
Les positions sont placées à gauche ou à droite selon l’hémisphère auquel elles appartiennent. Pour
la symétrie, pour chaque source actif, sa contrepartie sur l’autre hémisphère était également incluse
dans le graphique. De plus, les positions sont regroupées et colorées en fonction d’une parcellisation
du cerveau en régions anatomiques (issues d’un atlas). La deuxième rangée de sous-figures montre
ces régions dans le cerveau et les sources simulées.

capteurs, nous augmentons la sous-détermination du problème et l’intuition est que cela devrait
conduire à plus de variabilité parmi les solutions plausibles et parcimonieuses.

L’analyse graphique présentée et décrite dans la figure 9 et dans la figure 10 le confirme. Une
première observation est que la source superficielle dans le cortex prémoteur a été correctement
identifiée comme faisant partie du support de tous les minima locaux lors de l’utilisation des 306
capteurs MEG complets. Il était cependant parfois mal localisé lorsqu’il réduisait le nombre de
capteurs (Figure 9). Une deuxième observation est que la propagation spatiale de ces localisa-
tions manquantes est plus petite pour cette source superficielle que pour la source profonde. Cette
source profonde dans le cortex ventrale est plus difficile à trouver même avec tous les capteurs.
En effet, aucune des 900 initialisations n’a parfaitement localisé la source profonde simulée. En
général, nous pouvons clairement voir comment l’ambiguïté augmente quand on diminue le nombre
de capteurs, et comment la distribution des réseaux devient plus floue.

Lorsque l’on considère des données réelles, la source à récupérer est souvent mal comprise, en
particulier lorsqu’il s’agit d’une activité cérébrale pathologique telle qu’une activité épileptique
ictale ou inter-ictale. Dans une telle situation, fournir une configuration de source unique en
conséquence, avec une quantification d’incertitude ad hoc basée sur des études antérieures ou une
expertise acquise, pourrait ne pas être une utilisation optimale des données MEG / EEG. Au lieu
de cela, fournir plusieurs hypothèses ensemble, avec une quantification de leur incertitude, peut
être plus utile. En effet, pour des applications telles que le diagnostic d’épilepsie pré-chirurgicale,
où les enregistrements MEG / EEG sont l’une des modalités diagnostiques, chaque configuration
de source candidate peut fournir des preuves pour ou contre une hypothèse diagnostique pouvant
mener à une décision chirurgicale. Nous croyons donc que l’extension des premières étapes que
nous avons prises ici pour développer un cadre cohérent pour interpréter et quantifier la multitude
de résultats potentiels des approches de reconstruction de sources MEG / EEG parcimonieuses
peut avoir un impact significatif sur les applications cliniques.
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Figure 10: Le support des résultats MM basé sur 900 initialisations venant du MCMC a été
extrait pour construire une carte d’incertitude. Les fréquences relatives avec lesquelles chaque
source faisait partie du support ont été calculées et tracées sur la surface du cerveau avec les deux
sources simulées (points verts). Chaque colonne correspond aux résultats de chacune des trois
configurations de capteurs examinées. Moins le nombre de capteurs et / ou plus la source est
profonde, plus la carte du cerveau est incertaine.
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5 Benchmarking
Les précédentes sections définissent différentes façons de résoudre le problème inverse des tech-
niques d’imagerie cérébrale MEG / EEG. L’évaluation de ces solveurs reste difficile en raison de
la vérité terrain de la localisation exacte des sources impliquées dans chaque tâche spécifique est
complètement inconnue. Cette limitation vient principalement du fait que l’enregistrement est
effectué sur le cuir chevelu et que plusieurs configurations de sources peuvent conduire exacte-
ment aux mêmes mesures sur les capteurs. La question est donc de savoir si toutes ces techniques
de localisation de sources existantes sont capables de localiser avec précision les positions et les
orientations des sources actuelles dans le cerveau dans un scénario d’acquisition réelle.

La façon typique de répondre cette question est d’effectuer des simulations [LDB02, MSLL93,
LBD98]. Il consiste à fixer le nombre et l’emplacement, l’orientation et l’amplitude de plusieurs
dipôles dans le cerveau, générer des données simulées corrompues par un bruit additif [LDB02,
MSLL93, LBD98, DMHWH02, WAT+06]. Ces simulations sont malheureusement rarement réal-
istes: elles ne prennent pas en compte la nature non idéale des capteurs et les erreurs du modèle
direct, et elles ne prennent pas en compte la structure de bruit complexe des mesures réelles. Les
imprécisions dans le calcul de l’opérateur direct sont principalement dues à des approximations des
valeurs de conductivité dans la tête et / ou des erreurs numériques associées aux approximations
de têtes sphériques ou BEM basées sur des géométries de tête plus réalistes.

Des simulations plus sophistiquées pourraient être étudiées pour surmonter ces problèmes, mais
nous proposons ici d’utiliser des données collectées à partir d’un objet physique artificiel dans une
véritable machine MEG. Ceci a l’avantage que les résultats peuvent refléter plus étroitement la
performance in vivo puisqu’ils incluent des facteurs qui ne peuvent pas être facilement inclus dans
des simulations, telles que le bruit environnemental.

Afin de calibrer chaque dispositif MEG, des objets artificiels imitant l’activité cérébrale appelés
«fantômes» sont construits par les fabricants de systèmes MEG. Ils sont basés sur la description
théorique de [Ilm85] produisant des données réalistes correspondant à des sources de courant spatio-
temporelles complexes incluant des géométries de tête réalistes. Dans un fantôme typique, de 4 à
32 dipôles de courant indépendants sont présents et les données MEG sont collectées séparément
pour chaque dipôle. Les vraies positions et orientations dipolaires, et la morphologie du cerveau,
les couches de crâne peuvent être extraites des données CT de rayons X [LMS+98]. Une limitation
est que ces fantômes ne sont pas inappropriés pour l’EEG, mais il existe un certain travail sur la
fabrication de dispositifs fantômes EEG [HSY16].

Cette section présente une nouvelle étude visant à valider les techniques de localisation à l’aide
de différents jeux de données fantômes accessibles au public. D’autres travaux ont été réalisés
par [HAH+15, LMS+98, BRM+01] en utilisant également des fantômes de vrais crânes pour étudier
la performance des méthodes représentatives en considérant divers modèles de tête.

Les approches considérées dans cette section sont principalement celles toutes décrites dans
la version longue de ma thèse. Ici on va comparer: Dipole fitting, Gamma-Map, RAP-MUSIC,
MxNE, irMxNE, TF-MxNE, irTF-MxNE.

5.1 Results
Trois types d’erreurs ont été étudiés pour les différents solveurs, à savoir: l’erreur de position ou de
localisation en millimètre, l’erreur d’orientation en Radian et l’erreur d’amplitude en pourcentage.
Tous les solveurs étudiés ici sont implémentés dans le paquetage MNE-python [GLL+13, GLL+14].

La figure 11 montre les erreurs en position obtenues avec la plupart des solveurs pour les quatre
dipôles simulés (5 à 8) (voir l’ensemble de données dans ma thèse) et pour les différents niveaux
d’amplitude (20, 100, 200, 2000nAm). Il montre une erreur inférieure à 1 mm pour le rapport
signal / bruit (SNR) élevé irréaliste (amplitude peak-to-peak égale à 1000nAm), mais également
pour 200nAM et 100nAm. L’erreur de localisation s’aggrave avec le très faible SNR (20nAm).

L’approche de dipole fitting est très appropriée pour localiser l’activité neuronale lorsqu’un
petit nombre d’ECD (Equivalent Current Dipole) peut décrire les données. Dans cet ensemble
de données, chaque dipôle est enregistré seul. Les erreurs d’orientation sont affichées dans les
figures 12.

RAP-MUSIC est une approche basée sur la technique MUSIC qui fonctionne aussi très bien
quand peu d’ECD sont impliqués, particulièrement quand c’est un ensemble de données enregistrant
seulement un dipôle à la fois. Il peut être vu comme très compétitif comparé à dipole fitting dans
les figures 11- 12, montrant les erreurs en position et en orientation respectivement. Cependant,
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Figure 11: Comparaison de l’erreur en position entre la plupart des solveurs pour quatre dipôles
différents. Le titre de chaque sous-figure donne le niveau du SNR (20nAm, 100nAm, 200nAm, ou
1000nAm).

pour une source profonde (dipôle 8) combinée à un très faible SNR (20nAm), la courbe rouge est en
dehors de la boîte, ce qui signifie une erreur de localisation supérieure à 20mm. C’est un problème
avec l’estimation du sous-espace de signal, où le rang de la covariance de données n’est pas bien
estimé.

γ-map qui est une formulation bayésienne du problème inverse MEG / EEG, est moins perfor-
mante que dipole fitting ou RAP-MUSIC pour un SNR très haut ou très bas. Pour les SNR dans
une plage de données réalistes, son erreur de localisation est supérieure de 5 mm en fonction de
la profondeur du dipôle étudié. gamma-map est pire pour l’amplitude de 1000nAm par rapport à
100nAm ou 200nAm, car elle surestime le bruit lors de l’estimation de l’hyperparamètre.

Pour MxNE et TF-MxNE, les erreurs illustrées dans la figure 11 démontrent respectivement
une équivalence ou une légère amélioration lors de l’utilisation de TF-MxNE par rapport à MxNE,
à l’exception du dipôle 8 le plus profond en rouge. Ceci s’explique par le fait que TF-MxNE est
sensible aux hyperparamètres (λspace, λtime, taille de fenêtre et décalage temporel - time shift)
en fonction du SNR et de la profondeur du dipôle. Ici, nous avons réglé les hyperparamètres en
cherchant sur de grille (grid-search) similaire pour tous les dipôles, bien que l’on puisse penser que
les hyperparamètres dépendent de la facilité des données (donc du SNR et de la profondeur de
chaque dipôle).

D’autre part, MNE et dSPM sont étonnamment les méthodes donnant les pires résultats pour
cet ensemble de données. Un argument important est le fait que l’étude est biaisée car nous savons
que les données fantômes simulées sont focales / parcimonieux, alors que les méthodes type MNE
et dSPM ne sont pas des méthodes focales. Nous prenons toujours le maximum d’amplitude et
affichons le meilleur dipôle pour chaque méthode. En revanche, sLORETA n’est pas une méthode
parcimonieuse, mais elle fonctionne beaucoup mieux que MNE et dSPM. Le «centre» de gravité
estimé avec sLORETA est alors plus proche de l’emplacement exact du dipôle comparé au centre
de dSPM ou de MNE.
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Figure 12: Comparaison des erreurs en orientation pour quatre dipôles différents.

6 Conclusion
Cette thèse a démontré différentes façons de résoudre le problème de localisation de source MEG
/ EEG. Il aborde les défis spécifiques rencontrés par les techniques de l’état de l’art, et tente de
les améliorer point par point:

1. La promotion de la parcimonie structurée dans le domaine TF s’est avérée utile pour la
reconstruction de sources non stationnaires, bien qu’elle doive fixer certains paramètres liés
à la transformation de Gabor, qui sont impliqués dans la résolution de TF. La première
amélioration proposée dans cette thèse a été d’aborder le choix de ces paramètres, ce qui
peut être très préjudiciable pour l’analyse des ondes cérébrales avec des caractéristiques de
TF variables. Il fournit une nouvelle technique basée sur une norme mixte TF multi-échelle
permettant de localiser plus précisément la source estimée dans l’espace et le temps (voir
chapitre 3 de la version longue de ma thèse).

2. La formulation du problème inverse MEG / EEG a été principalement écrite comme une ré-
gression pénalisée, ce qui signifie qu’elle doit introduire une connaissance antérieure comme un
terme de régularisation dans la fonction objective. Cela entraîne l’ajout d’un hyperparamètre
au modèle qui doit être réglé. Cette thèse aborde ce deuxième défi de deux façons, en refor-
mulant le problème comme fait dans la communauté bayésienne. La formulation bayésienne
permet d’ajouter de manière hiérarchique des hyperparamètres qui sont alternativement es-
timés avec les paramètres principaux du modèle (les sources). Les deux principaux avantages
sont l’estimation directe des hyperparamètres et la possibilité d’utiliser l’échantillonnage pour
étudier l’incertitude de ces solveurs. Ces deux points ont été présentés au chapitre 4.

3. Une étape importante après le développement de toute nouvelle technique est de la valider
par une comparaison avec les autres méthodes existantes. Cela a longtemps été une étape
difficile car il est toujours difficile de développer de bonnes simulations réalistes. Dans ce
but, plusieurs études ont étudié des jeux de données fantômes, qui consistent en des données
réelles enregistrées avec un appareil imitant une tête humaine avec des sources focales. Le
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chapitre 5 présente une comparaison des solveurs présentés dans cette thèse sur plusieurs
jeux de données fantômes.

4. Une liste de perspective et de futurs travaux est publiée à la fin de ma thèse.
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