
THÈSE
PRÉSENTÉE POUR OBTENIR LE GRADE DE

DOCTEUR DE L’UNIVERSITÉ PARIS-EST

École doctorale MSTIC : mention Mathématiques Appliquées

par Riccardo Milani

Compatible Discrete Operator schemes for the
unsteady incompressible Navier–Stokes equations

Schémas Compatible Discrete Operator pour les
équations de Navier–Stokes d’un fluide
incompressible en régime instationnaire

Soutenue publiquement le 16 décembre 2020 devant le jury de thèse composé de :

Pr. Roland Becker Université de Pau et des Pays de l’Adour Examinateur
Dr. Jérôme Bonelle EDF R&D Encadrant industriel
Dr. Pierre Cantin INSA Toulouse Examinateur
Pr. Alexandre Ern ENPC - Université Paris Est Directeur de thèse
Pr. Raphaèle Herbin Université d’Aix-Marseille, I2M Rapporteur
Dr. Stella Krell Université de Nice - Sophia Antipolis Examinatrice
Pr. Peter D. Minev University of Alberta Rapporteur

Thèse préparée à :

CERMICS
École des Ponts ParisTech - INRIA Paris
6 et 8, Av. Blaise Pascal
77455 Marne-la-Vallée cedex 2, France

EDF R&D
6, Quai Watier
78400 Chatou, France

“Considerate la vostra semenza: 118

fatti non foste a viver come bruti, 119

ma per seguir virtute e canoscenza” 120

Divina Commedia, Inferno, canto XXVI,
Dante Alighieri

Did you exchange
A walk-on part in the war
For a lead role in a cage?

Wish you were here, Pink Floyd

Acknowledgments - Remerciements - Ringraziamenti

Je tiens à remercier tout d’abord mon directeur de thèse Alexandre Ern. Cela était
un honneur de pouvoir poursuivre ce projet sous sa direction. Je lui suis particulièrement
reconnaissant pour sa patience, que j’ai parfois mise à rude épreuve, sa bienveillance qui a
permis une bonne réussite de cette thèse, et ses explications, claires et pédagogiques, qui
m’ont beaucoup appris.

En deuxième lieu, j’exprime tous mes remerciements à Jérôme Bonelle, mon encadrant
industriel à EDF R&D. Je suis extrêmement reconnaissant pour son aide, pour le suivi qu’il
m’a accordé, même au détriment de son temps personnel. Sans son aide et son soutien cette
thèse n’aurais pas eu la même ampleur. J’espère que le projet CDO que Jérôme a monté et
auquel il se consacre depuis des années pourra continuer encore pour autant de temps, au
moins.

I would like to thank Raphaële Herbin and Peter Minev for reviewing my work. It is a
great honor. I’ve met Pr Minev on the second day of my PhD: I feel that him being part
of the final committee is the logical end of this project. I extend my thanks to Stella Krell,
Roland Becker, and Pierre Cantin for kindly accepting to be in the committee.

Ce projet de thèse a été supporté par EDF R&D que je remercie pour son soutien.
Je voudrais remercier les chefs de groupe de I8A, Marc Boucker, qui m’a fait confiance
en me choisissant pour ce projet, et Anthony Dyan, qui m’a toujours accordé une grande
confiance. Un remerciement spécial à toute l’équipe de Code_Saturne, et en particulier à
Martin Ferrand, Yvan Fournier, Erwan Le Coupanec et Mathieu Guingo qui ont toujours
suivi de près mes travaux et avec lesquels j’ai eu des discussions très enrichissantes. J’ajoute
à cette liste Jean-Marc Hérard qui a été bienveillant à mon égard ainsi qu’à celui des autres
doctorants.

Un remerciement particulier à tous les doctorants que j’ai rencontrés ces trois années,
pour les conseils qui m’ont donnés, pour les discussions, plus ou moins sérieuses, que l’on
a eues. Cela s’étend évidemment aux doctorants du CERMICS et INRIA, comme Nicolas,
Amina, Ani, Frédéric et Karol, tout comme à ceux d’EDF, Benjamin, Germain, Vladimir,
Lucie et Li. Une place spéciale méritent Gaëtan et Clément avec lesquels j’ai partagé un
bureau, des cafés, des blagues et, surtout, beaucoup de kilomètres avec des baskets aux
pieds.

J’adresse aussi une pensé aux anciens de la section Basket 2012 et en particulier à
François, Vincent, Lisa et Justine.

J’embrasse et remercie Ophélie qui a partagé ces derniers mois avec moi : ils n’étaient
pas des plus faciles, ton soutien inconditionnel m’a beaucoup aidé. Sois rassurée : la suite
sera sans doute plus sereine.

Venendo alla parte “Italia”, ringrazio tutta la compagnia del comune. Mi sorprendo ogni
volta che torno e ho l’impressione che nulla cambi, come se in realtà non fossero passati mesi
dall’ultima volta che ci siamo visti.

Dedico un pensiero speciale a mia sorella Gaia, costantemente presente quando avevo
bisogno farmi risollevare il morale. Credo che non siamo mai stati così vicini, nemmeno
quando abitavamo insieme (o forse è proprio quella la ragione). Le faccio un enorme “in
bocca al lupo” per la nuova fase della sua vita che comincerà tra qualche settimana.

Infine, un enorme ringraziamento a tutta la mia famiglia, soprattutto ai miei genitori,
Pinuccia e Fabio. Non è stato un periodo semplice per nessuno, ma il loro sostegno, pur-
troppo spesso solamente virtuale, non è mai mancato. Se sono qui oggi, lo devo tutto a loro.

Thanks! Merci ! Grazie!

Résumé
Nous développons des schémas dits face-based Compatible Discrete Operator (CDO-Fb)
pour les équations de Stokes et Navier–Stokes incompressibles en régime instationnaire. Des
opérateurs pour la reconstruction du gradient, de la divergence et un autre pour le terme
de convection sont proposés. On montre que l’opérateur de divergence discret permet de
satisfaire une condition inf-sup, tandis que l’opérateur de convection discret est dissipatif,
propriété cruciale pour le bilan d’énergie. Le schéma de discrétisation est d’abord testé dans
le cas stationnaire sur des maillages généraux mais aussi déformés, afin d’illustrer la flexi-
bilité et la robustesse de la discrétisation CDO-Fb. Dans un deuxième temps, l’attention
est placée sur les techniques de marche en temps. En particulier, nous étudions l’approche
monolithique traditionnelle qui consiste à résoudre directement le système de point-selle, et
la méthode de Compressibilité Artificielle (AC), qui permet de ne plus avoir un système de
point-selle à résoudre au prix d’une relaxation du bilan de masse. Trois stratégies classiques
pour le traitement du terme non linéaire dû à la convection sont examinées : l’algorithme
de Picard, la linéarisation et l’explicitation. Des résultats numériques utilisant des schémas
temporels du premier ordre d’abord, puis du deuxième ordre, montrent que la méthode AC
constitue une alternative précise et efficace à l’approche monolithique traditionnelle.

Mot-clés : schémas CDO, maillages polyédriques, Navier–Stokes, Compressibilité Artifi-
cielle, condition inf-sup, convection.

Abstract
We develop face-based Compatible Discrete Operator (CDO-Fb) schemes for the unsteady,
incompressible Stokes and Navier–Stokes equations. We introduce operators discretizing the
gradient, the divergence, and the convection term. It is proved that the discrete divergence
operator allows one to recover a discrete inf-sup condition. Moreover, the discrete convection
operator is dissipative, a paramount property for the energy balance. The scheme is first
tested in the steady case on general and deformed meshes in order to highlight the flexibility
and the robustness of the CDO-Fb discretization. The focus is then moved onto the time-
stepping techniques. In particular, we analyze the classical monolithic approach, consisting
in solving saddle-point problems, and the Artificial Compressibility (AC) method, which
allows one to avoid such saddle-point systems at the cost of relaxing the mass balance.
Three classic techniques for the treatment of the convection term are investigated: Picard
iterations, the linearized convection and the explicit convection. Numerical results stemming
from first-order and then from second-order time-schemes show that the AC method is an
accurate and efficient alternative to the classical monolithic approach.

Keywords: CDO schemes, polyhedral meshes, Navier–Stokes, Artificial Compressibility,
inf-sup condition, convection.

viii

Contents

Résumé de la Thèse 1

1 Introduction 11
1.1 Industrial context . 11
1.2 Compatible Discrete Operator schemes . 13
1.3 Numerical methods for the Navier–Stokes equations 17
1.4 Document overview . 34

2 Discrete face-based CDO setting 37
2.1 The mesh . 37
2.2 Functional discrete setting and degrees of freedom 40
2.3 Velocity gradient reconstruction . 43
2.4 Velocity-pressure coupling . 47
2.5 Scalar-valued advection and vector-valued convection 50
2.6 Source term . 60

3 The steady Navier–Stokes equations 61
3.1 Stokes equations with face-based CDO . 62
3.2 Navier–Stokes equations with face-based CDO 68
3.3 Preliminary numerical setting . 71
3.4 Numerical results: Stokes equations . 75
3.5 Numerical results: Navier–Stokes equations 80

4 First-order time-stepping for the Navier–Stokes equations 93
4.1 Preliminary notions . 94
4.2 Velocity-pressure couplings and time-stepping techniques 96
4.3 Convection treatments . 101
4.4 Numerical results: Stokes equations . 105
4.5 Numerical results: Navier–Stokes equations 113
4.6 Detailed results . 122

5 Extension to second-order time-stepping 131
5.1 Second-order time-schemes . 131
5.2 Numerical results: Stokes equations . 136
5.3 Numerical results: Navier–Stokes equations 141
5.4 Detailed results . 148

6 Conclusions and perspectives 155

x Contents

Acronyms 159

Bibliography 161

Résumé de la Thèse

Contexte industriel

Les applications de la mécanique des fluides dans un contexte industriel sont nombreuses
et concernent à la fois les échelles macroscopiques (e.g. la météorologie), moyennes (e.g. aé-
ronautique) et microscopiques (e.g. écoulements dans des fissures). Le département MFEE
(Mécanique des Fluides, Énergie et Environnement) fait partie de l’unité Recherche et Dé-
veloppement (R&D) de l’entreprise EDF. Les applications industrielles traitées au sein du
département MFEE sont nombreuses et peuvent être regroupées dans deux catégories prin-
cipales : l’optimisation de la production d’énergie et les études de sureté. Par exemple, des
études sur les écoulements atmosphériques sont menées pour prévoir le productible d’un
champ d’éoliennes, ou dans un autre contexte pour mieux évaluer et minimiser les consé-
quences de potentiels rejets industriels sur les zones limitrophes. Un autre exemple concerne
les études de sureté à long terme dans lesquelles on évalue les écoulements dans les couches
géologiques entourant un centre de stockage de déchets nucléaires. De plus, une grande
attention est dédiée à la compréhension des phénomènes physiques complexes qui se déve-
loppent dans un réacteur nucléaire. En particulier, les codes de calcul développés au sein du
département MFEE sont utilisés pour simuler la thermohydraulique des composants prin-
cipaux d’un réacteur, comme notamment les générateurs de vapeur, les pompes, la cuve et
les assemblages combustibles. Le but de ces simulations est d’optimiser l’efficacité de ces
composants tout en assurant un niveau de sureté maximum.

Afin de traiter ces applications, EDF R&D développe depuis 1998 Code_Saturne,1 un lo-
giciel libre (open-source) pour la simulation d’écoulements tridimensionnels monophasiques,
reposant sur une description eulérienne et/ou lagrangienne des écoulements. Code_Saturne
est un code efficace, flexible et bien adapté à la variété des besoins industriels rencontrés.
Il est également massivement parallèle, ce qui lui assure de bonnes performances sur des
études de grande taille. Dans une optique d’amélioration continue de Code_Saturne, deux
axes de travail sont privilégiés : l’amélioration (i) de la robustesse par rapport à la qualité
des maillages et (ii) de la représentativité physique de la solution. D’une part, les maillages
générés à partir de géométries complexes abordées dans les études d’ingénierie sont parfois
de mauvaise qualité ou avec des formes non triviales (des exemples sont reproduits dans la
Fig. 1). En effet, la génération de maillages suit souvent une stratégie de type divide-and-
conquer : les géométries sont d’abord coupées en plusieurs sous-domaines qui sont ensuite
maillés indépendamment avant d’être recollés pour obtenir le domaine de calcul global. Ceci
conduit parfois à la génération de mailles ayant un mauvais rapport d’aspect ou avec des
nœuds qui ne coïncident pas entre eux. Il est donc souhaitable de disposer d’une discrétisa-
tion spatiale pouvant traiter tout type de maille sans perte de précision. D’autre part, on
souhaite aussi améliorer la qualité des solutions générées. Pour ce faire, la conservation au

1https://github.com/code-saturne/code_saturne, http://code-saturne.org

https://github.com/code-saturne/code_saturne
http://code-saturne.org

2 Résumé de la Thèse

Figure 1 – Exemples de maillages avec recollement non conforme utilisés pour des applica-
tions industrielles. Haut : écoulement dans une cuve simplifiée de réacteur nucléaire. Bas :
partie d’un site de stockage souterrain.

niveau discret des propriétés valables dans le cas continu, comme les relations entre opéra-
teurs différentiels (∇ · (∇×) = 0 ou ∇ × (∇) = 0) et l’absence de modes parasites, serait
bénéfique.

La discrétisation actuelle de Code_Saturne repose sur une méthode de Volumes Finis (FV)
où les degrés de liberté (ddl) des variables vitesse et pression sont co-localisés aux mailles.
De plus, Code_Saturne traite les maillages polyédriques. Un algorithme de projection-correc-
tion est utilisé pour la marche en temps. Les objectifs ont conduit au développement des
schémas Compatible Discrete Operator (CDO, en français Opérateurs Compatibles Discrets)
depuis 2011. Des schémas faisant partie de la famille CDO sont actuellement disponibles
dans Code_Saturne comme alternative à la discrétisation FV. Les principaux domaines d’ap-
plication actuelle des schémas CDO sont les écoulements souterrains et les problèmes en
régime diffusif.

Dans cette Thèse, nous étendons les schémas CDO aux équations de Navier–Stokes
(NS) pour un fluide incompressible en régime stationnaire ou instationnaire. Ces équations
régissent la dynamique des fluides. Savoir les résoudre ouvre donc la porte à l’utilisation des
schémas CDO à un vaste domaine d’applications. Le deuxième axe de la Thèse se concentre
sur l’exploration de deux techniques de couplage vitesse-pression. Nous examinons l’utilisa-
tion d’un couplage traditionnel obtenu avec l’approche dite monolithique (totalement cou-
plée) et de la méthode de Compressibilité Artificielle (AC). Lorsqu’on traite un cas station-
naire ou lorsqu’une grande qualité d’approximation est demandée, on privilégie l’approche
monolithique. Néanmoins, cette approche peut nécessiter un important effort numérique

Les schémas Compatible Discrete Operator 3

(a) Ddl définis aux sommets. (b) Ddl définis aux arêtes.

(c) Ddl définis aux faces. (d) Ddl défini à la cellule.

Figure 2 – Positionnement possible des ddl dans une discrétisation CDO. Seuls les ddl
visibles sont montrés (à l’exception de ceux définis aux mailles qui sont toujours montrés).
Chaque symbole (sphère, flèche ou cercle) représente une valeur scalaire, même pour les
quantités vectorielles (comme la circulation d’un champ de vecteurs dans la discrétisation
définie aux arêtes).

pour la résolution des systèmes linéaires associés. Si, au contraire, l’efficacité (i.e. le temps
de résolution) est primordiale, la méthode AC est à privilégier. Ces deux stratégies ont été
retenues au vu de leurs propriétés complémentaires qui assurent une grande flexibilité aux
schémas CDO dans le cadre des équations de NS.

Les schémas Compatible Discrete Operator

Nous introduisons ici les schémas Compatible Discrete Operator (CDO). Après une revue
des principes de conception de CDO et des discrétisations possible, nous nous concentrons
sur les schémas CDO dits face-based (i.e. définis aux faces) que nous utilisons dans cette
Thèse.

Une introduction aux schémas CDO

Sous la dénomination CDO on retrouve des schémas d’ordre bas pouvant être utilisés sur des
maillages polyédriques. Selon les schémas CDO considérés, les reconstructions des champs
discrets sont soit conformes ou non-conformes. À la base des schémas CDO, on trouve une
structure flexible qui permet de choisir un type de discrétisation en fonction du problème
à traiter et des variables qui y sont associées. Les schémas CDO font partie de la famille
des schémas dits mimétiques. La construction de ces schémas repose sur des opérateurs
différentiels dont le noyau est préservé aussi au niveau discret.

4 Résumé de la Thèse

Figure 3 – Exemples d’une subdivision d’une cellule avec un hanging node en 2D (gauche) et
en 3D (droite). À cause du hanging node, le carré à gauche de la cellule en 2D est considéré
comme un pentagone avec deux faces coplanaires. Pour la même raison, la cellule en 3D
(droite) a 10 faces (au lieu de 7), dont 4 coplanaires. Un sous-triangle (gauche) et une sous-
pyramide (droite) obtenus en considérant une face de la cellule comme base et le barycentre
de la cellule comme sommet sont mis en évidence.

La première notion clé de la discrétisation CDO concerne la définition des ddl, choix qui
découle directement de la nature physique de la variable considérée. Prenons un maillage
3D et définissons les entités géométriques associées : cellules, faces, arêtes et sommets. Les
potentiels sont associés aux sommets, les circulations aux arêtes, les flux aux faces et, enfin,
les densités aux cellules. Les différents positionnements des ddl sont illustrés dans la Fig.2.
La compréhension des structures physique et différentielle sous-jacentes au problème traité
est aussi à la base des schémas CDO. L’outil principal pour mener une telle analyse est
la géométrie différentielle. Le lecteur peut se référer aux travaux précurseurs de Kron
(1945, 1953), Tonti (1975), Branin (1966) et Bossavit (1988) pour une présentation
des principes fondamentaux ou à Bonelle (2014, Section 2.1) pour une revue récente. En
particulier, on peut construire un ensemble d’opérateurs différentiels discrets qui satisfont
leurs contreparties continues respectives. Par exemple, la divergence d’un rotationnel et le
rotationnel d’un gradient sont identiquement nuls au niveau discret.

La deuxième notion clé des schémas CDO est l’utilisation d’un opérateur de Hodge à
chaque fois qu’une loi phénoménologique entre en jeu. Ce type d’opérateur met en relation les
ddl de natures différentes. Par exemple, il associe une circulation à un flux. Les schémas CDO
utilisent souvent une sous-partition du maillage (par exemple en considérant les pyramides
formées par les faces et les barycentres des cellules) pour construire ces opérateurs de Hodge.
Cette nouvelle partition est fictive : elle est cachée à l’utilisateur et n’a pas besoin d’être
construite explicitement. Les deux types d’éléments géométriques, les primaux (définis sur
le maillage originel) et duaux (sur la nouvelle subdivision), sont en relation : les sommets,
arêtes, faces et cellules primaux sont associés respectivement aux cellules, faces, arêtes et
sommets duaux. Les ddl et les opérateurs différentiels peuvent être définis à la fois sur le
maillage primal et dual. Dans le cadre CDO, les opérateurs différentiels discrets sont exacts
et n’introduisent pas d’erreur de consistance, au contraire des opérateurs de Hodge. De cette
façon l’erreur est portée par les opérateurs de Hodge et se positionne au même niveau que
l’erreur due au modèle physique, ce qui est l’une des caractéristiques des schémas CDO.

Le développement et l’analyse des schémas CDO ont été initiés au cours de deux Thèses.
La méthode a été introduite par Bonelle (2014) avec un intérêt particulier aux problèmes
elliptiques et de Stokes (voir également Bonelle et Ern (2014, 2015)). Les équations de
transport ont été abordées par Cantin (2016) (voir également Cantin et Ern (2016),
Cantin et al. (2016) et Cantin et Ern (2017)). Pour un problème donné, on choisit la
discrétisation CDO la plus adaptée parmi celles disponibles en fonction de la nature physique

Les schémas Compatible Discrete Operator 5

de la variable principale. Ainsi, on retrouve les situations suivantes :

• Pour un problème elliptique (voir Bonelle (2014) et Bonelle et Ern (2014)), la va-
riable principale est un potentiel. Ainsi, les ddl sont positionnés aux sommets, primaux
ou duaux. Quand les sommets primaux sont retenus, on dit que la discrétisation est
vertex-based (définie aux sommets) : une telle discrétisation est proche des méthodes
éléments finis conformes. Si les sommets duaux sont choisis (associés aux cellules pri-
males), la discrétisation est dite cell-based (définie aux cellules). Elle conduit à un
problème de type point-selle, une structure proche des méthodes éléments finis mixtes,
comme l’élément de Raviart-Thomas (à l’ordre bas). La discrétisation cell-based a été
étendue au moyen d’une procédure d’hybridation dans Bonelle (2014, Section 8.3)
en ajoutant des ddl additionnels aux faces. Ce nouveau type, dont on parlera plus bas,
est dit face-based (défini aux faces).

• Pour un problème de Stokes en formulation rotationnelle (Bonelle, 2014 ; Bonelle
et Ern, 2015), nous nous intéressons au potentiel dérivé de la pression (c’est-à-dire,
la pression divisée par la masse volumique). Dans ce cas, on peut considérer une
discrétisation soit vertex-based soit cell-based. Ainsi, la vitesse est vue comme une
circulation sur les arêtes primales dans la version vertex-based, ou comme un flux sur
les faces duales dans la version cell-based.

• Pour des problèmes scalaires d’advection-diffusion (Cantin, 2016 ; Cantin et Ern,
2016 ; Cantin et al., 2016), la variable est de nouveau un potentiel, conduisant à une
discrétisation vertex- ou cell-based. Pour un problème vectoriel, la variable est une
circulation, donc définie aux arêtes (Cantin et Ern, 2017).

Les positionnements possibles des ddl sont rappelés dans la Fig. 2. Parmi les applications
qui sont aujourd’hui traitées à l’aide des schémas CDO dans Code_Saturne, une discrétisation
aux sommets est choisie pour les écoulements souterrains (qui peuvent être considérés comme
des problèmes de transport scalaire). Tandis que dans le cadre de l’électromagnétisme, une
discrétisation aux arêtes est retenue. Enfin, pour des applications de dynamique des fluides,
la discrétisation aux faces est retenue : cela constitue une des contributions majeures de
cette Thèse.

La discrétisation face-based

Nous nous intéressons dans cette Thèse à la discrétisation face-based (CDO-Fb) présentée
brièvement ici. Pour plus de précisions, le lecteur peut se référer à Bonelle (2014, Section
8.3) pour la conception de ces schémas et l’application aux problèmes de diffusion scalaire.
Plus de détails sur le cadre discret seront donnés dans la Section 2.2. Pour les équations de
NS, la vitesse est hybride et considérée comme un potentiel vectoriel défini aux faces et aux
cellules (contrairement à la forme rotationnelle choisie dans Bonelle (2014) et Bonelle
et Ern (2015)).

La discrétisation aux faces est obtenue à partir d’une formulation mixte avec une clas-
sique procédure d’hybridation, comme décrit dans Boffi et al. (2013). En effet, on ajoute au
système cell-based des ddl aux faces. Un exemple est donné dans la Fig. 4. Il est important
de remarquer que le potentiel a une unique valeur sur une face interne : cette valeur est la
même pour les deux cellules partageant cette face. Pour un problème de diffusion scalaire,
l’hybridation permet d’éviter la résolution d’un système de type point-selle (à la différence
des éléments finis mixtes classiques). De plus, avec une procédure de condensation statique
(ou complément de Schur), les ddl définis aux cellules sont éliminés, réduisant la taille du
système final. Les ddl aux cellules peuvent être calculés après la résolution dans une phase

6 Résumé de la Thèse

Figure 4 – Cadre discret pour un problème scalaire traité avec les schémas CDO-Fb en 2D
(gauche) et 3D (droite). Les quantités définies aux faces sont dessinées en orange, celles aux
cellules en vert. Seuls les ddl visibles sont montrés.

de post-traitement. Par ailleurs, la discrétisation face-based s’appuie sur une reconstruction
non-conforme du potentiel.

L’étape suivante est l’écriture d’une formulation variationnelle. Comme c’est souvent le
cas pour les méthodes hybrides, la partie du problème discret associée aux fonctions test
définies aux cellules traduit la loi de conservation de l’équation considérée au niveau de la
cellule. Les fonctions test définies aux faces, quant à elles, sont associées à l’équilibre des
flux aux faces.

Au cœur de la méthode face-based correspond une reconstruction du gradient discret qui
utilise une subdivision pyramidal des cellules. Une première partie de la reconstruction prend
en compte les différences entre la valeur à la cellule et celles aux faces. Cette partie conduit à
un gradient constant sur la cellule et consistant, c’est-à-dire exact pour des fonctions affines.
À cela on ajoute une stabilisation dérivée d’une approximation de Taylor et constant par
morceaux sur les sous-pyramides (un exemple est donné dans la Fig. 4).

Les schémas CDO-Fb ont des caractéristiques communes avec d’autres méthodes hy-
brides capables de traiter des maillages généraux. En particulier, dans Bonelle (2014,
Prop. 8.38) il est démontré que dans le cas d’un problème scalaire elliptique les schémas
CDO-Fb sont équivalents (à un coefficient de stabilisation près) à la méthode Hybrid Finite
Volume (Eymard et al., 2010). Les schémas Hybrid High-Order (HHO), introduits par Di
Pietro et al. (2014) et Di Pietro et Ern (2015), sont très proches des schémas CDO-Fb
lorsque l’on considère l’ordre le plus bas, k := 0. Prenons à nouveau un problème scalaire
elliptique. Les deux schémas, CDO-Fb et HHO(k = 0), considèrent un ddl par face et par
cellule,2 et utilisent un opérateur de reconstruction du gradient. La différence est que, d’une
part, le schéma CDO-Fb produit un gradient constant par morceaux sur une subdivision
de la cellule, tandis que le gradient reconstruit par HHO est constant sur une cellule (cela
correspond au gradient consistant mentionné ci-dessus) auquel est ajoutée une stabilisation.
Cette stabilisation est une pénalisation aux moindres-carrés sur la différence entre les valeurs
définies aux faces et aux cellules. Le principe est synthétisé dans la Fig. 5. Nous utilisons
souvent dans cette Thèse les similitudes entre HHO et CDO-Fb pour profiter des résultats
d’analyse démontrés dans le cadre HHO.

2Ces ddl sont vus par HHO(k = 0) comme des polynômes d’ordre zéro p ∈ P0, où, ayant fixé k ≥ 0, Pk
est l’espace vectoriel des polynômes d’ordre k au plus, définis aux faces et aux cellules

Principales contributions 7

DoFs Gradient constant
dans la cellule

CDO : stabilisation
sur une subdivision

+

+

HHO : stabilisation aux
moindres-carrés

Figure 5 – Comparaison entre la reconstruction du gradient d’une fonction scalaire en 2D
dans le cadre des schémas CDO-Fb et HHO(k = 0). Les quantités définies aux faces sont
dessinées en orange, celles aux cellules en vert. Les deux reconstructions ont en commun le
même gradient consistant (exact pour des fonctions affines). Le gradient CDO est enrichi par
une stabilisation constante par morceaux sur une subdivision de la cellule. Tandis que dans
le cadre HHO, le gradient constant dans la cellule est complété par un terme de pénalisation.

Principales contributions

Nous présentons ici les sujets développés dans les chapitres suivants de la Thèse. Une partie
de la présentation faite au Chapitre 2 et certains résultats du Chapitre 3 sont déjà parus
dans

• Bonelle, J., Ern, A. et Milani, R. (2020). “Compatible Discrete Operator schemes
for the steady incompressible Stokes and Navier–Stokes equations”. In : Finite Vol.
Complex Appl. IX ; Methods Theor. Aspects. Sous la dir. de R. Klöfkorn et al. T. 323.
Springer Proc. Math. Stat. Bergen : Springer International Publishing, p. 93–101.

Dans le Chapitre 2, le cadre discret des schémas numériques utilisés dans cette Thèse
est défini. Nous donnons les hypothèses de régularité du maillage attendues et nous intro-
duisons la discrétisation CDO-Fb et, en particulier, ses opérateurs différentiels discrets. La
reconstruction du gradient introduite par Bonelle (2014, Section 8.3) est étendue au cas
vectoriel. Nous prouvons qu’elle est stable et exacte pour des fonctions affines. Ensuite, nous
proposons un opérateur divergence qui assure le couplage vitesse-pression et satisfait une
condition inf-sup discrète. Enfin, en se basant sur des opérateurs déjà présents dans la littéra-
ture, nous introduisons un opérateur d’advection scalaire qui sert de base pour la définition
d’un opérateur de convection pour le traitement des équations de NS. Nous démontrons
que l’erreur de consistance de l’opérateur scalaire est bornée, que l’opérateur de convection
satisfait les équivalents discrets de certaines identités continues classiques d’intégration par
parties et que ce dernier est aussi dissipatif.

8 Résumé de la Thèse

Nous abordons dans le Chapitre 3 la discrétisation des problèmes de Stokes et NS en
régime incompressible et stationnaire. Tout d’abord, nous donnons leurs formulations varia-
tionnelles discrètes à l’aide de la méthode CDO-Fb et les comparons aux versions continues
classiques. Nous montrons ensuite comment les opérateurs intervenant dans ces formulations
discrètes sont construits algébriquement. Enfin, nous les testons sur des cas test bien connus
dans la littérature, comme le problème de Bercovier–Engelman (solution d’un problème de
Stokes en 2D) ou la cavité entraînée. Lorsqu’une solution analytique est connue, nous nous
intéressons aux ordres de convergence en espace pour la vitesse et la pression.

Le Chapitre 4 analyse la version instationnaire des problèmes de Stokes et NS. D’abord,
un schéma de discrétisation temporelle implicite à l’ordre un est introduit. Nous procédons
ensuite à la discussion de deux stratégies de couplage vitesse-pression courantes dans la
littérature : l’approche monolithique, retenue pour sa bonne qualité d’approximation de la
contrainte d’incompressibilité, et la méthode de la Compressibilité Artificielle (AC), retenue
pour son efficacité en termes de coût de calcul. Nous rappelons les avantages et inconvé-
nients des deux stratégies et établissons également un bilan d’énergie cinétique. Dans un
second temps, nous abordons les équations de NS et nous discutons en particulier trois tech-
niques classiques pour le traitement du terme convectif, à savoir, l’algorithme de Picard,
la linéarisation et l’explicitation de la convection. Enfin, des résultats numériques validant
le cadre introduit dans le chapitre sont présentés. Un problème instationnaire de Stokes
de grande taille nous permet de comparer la précision et l’efficacité des deux stratégies de
couplage. Avec le cas du vortex de Taylor–Green, nous analysons les conséquences du choix
du traitement de la convection.

Le cadre des équations de NS en régime instationnaires est étendu aux schémas temporels
de second ordre dans le Chapitre 5. La méthode dite Backward Differentiation Formula
à l’ordre deux est considérée pour le couplage monolithique. Quant au cadre AC, nous
considérons une procédure dite de bootstrapping introduite dans Guermond et Minev
(2015). Les deux stratégies sont considérées avec les traitements de la convection évoqués
plus haut. Les mêmes cas que ceux considérés au Chapitre 4 sont analysés ici pour valider
l’approche au second ordre. Les résultats sont ensuite mis en perspective avec ceux obtenus
à l’ordre un afin de mettre en évidence l’intérêt potentiel de l’ordre deux en temps.

Perspectives

Un premier axe d’amélioration identifié concerne la robustesse des schémas numériques vis-
à-vis du nombre de Reynolds. Tout d’abord, différentes techniques peuvent être considérées
pour rendre pressure-robust les schémas CDO-Fb, c’est-à-dire rendre l’erreur en vitesse in-
dépendante de celle en pression. En effet, on démontre (voir Lemme 3.3) que l’erreur en
vitesse dépend de la norme de la pression via un coefficient proportionnel à l’inverse de la
viscosité. Pour éviter cela, une possibilité serait d’adopter des reconstructions adaptées du
terme source du bilan de quantité de mouvement, comme proposé par Linke (2014), John
et al. (2017) et Lederer et al. (2017). Ces reconstructions ont été considérées dans le cadre
des schémas HHO. Ainsi, dans Di Pietro et al. (2016), les auteurs utilisent un opérateur
de reconstruction pour des maillages de simplexes en se basant sur les méthodes de Raviart–
Thomas.

Les difficultés rencontrées pour des nombres de Reynolds élevés s’appliquent également
au traitement de la non-linéarité. Nous avons choisi l’algorithme de Picard pour sa robus-
tesse, tout en connaissant ses limites en termes de performance. Le développement d’une
méthode alternative, basée sur la méthode de Newton ou l’accélération de Anderson, pourrait
être très bénéfique. De plus, contrairement au cas des équations de Stokes où l’algorithme
de Bidiagonalisation de Golub–Kahan couplé à un Gradient Conjugué préconditioonné par

Principales contributions 9

une approche multigrille forme une approche efficace, la performance globale de la présente
méthode peut sans doute profiter de solveurs linéaires plus adaptés au cadre des équations
de NS (pour l’instant nous utilisons seulement une simple factorisation LU). L’utilisation de
solveurs linéaires itératifs robustes (par exemple le flexible GMRES, voir par exemple Saad
(1996), ou ceux détaillés dans Benzi et al. (2005)) devra s’accompagner de précondition-
neurs efficaces (comme ceux proposés dans Benzi et Olshanskii (2006) et Olshanskii et
Benzi (2008)).

Les résultats numériques (voir par exemple la Section 4.4) confirment que la méthode
AC constitue une alternative fiable et efficace (en termes de coût de calcul) à l’approche
monolithique. L’influence du paramètre arbitraire intervenant dans AC pourrait faire l’ob-
jet d’analyses ultérieures plus approfondies. D’une part, ce paramètre peut améliorer la
précision de la méthode. D’autre part, il peut détériorer le conditionnement des systèmes
considérés et ainsi impacter les performances de la méthode. Il serait pertinent de pouvoir
identifier de façon automatique l’intervalle dans laquelle se trouve la valeur optimale de ce
paramètre. La perturbation de l’équation du bilan masse dans le cadre de la méthode AC
mérite également une étude plus approfondie. D’une part, dans le cadre des schémas CDO,
pour que l’opérateur de convection soit anti-symétrique, il est nécessaire que la vitesse dis-
crète soit à divergence nulle. Cela n’est pas vérifié en général dans AC. Une première parade
consisterait à considérer l’anti-symétrisation de Temam. En particulier, cela peut assurer la
conservation de l’énergie cinétique, propriété importante lorsque l’on traite des nombres de
Reynolds élevés. D’autres problématiques pourraient surgir lorsqu’un champ à divergence
non nulle transporte un soluté. Plusieurs auteurs mettent en garde contre ce non-respect
de l’incompressibilité (voir, par exemple, Chippada et al. (1997), Wheeler et al. (2002),
Olshanskii et Reusken (2004), Linke (2009) et Galvin et al. (2012)). Pour éviter cela,
on pourrait envisager d’introduire une étape de post-traitement dans laquelle un champ à
divergence nulle est reconstruit à partir de la solution donnée par la méthode AC.

Dans les cas test que nous considérons, seules les conditions aux limites de Dirichlet ont
été abordées. Pourtant, plusieurs types sont acceptables. Par exemple, les conditions aux
limites de type symétrie ou de Neumann homogènes nous permettraient d’étendre la portée
des schémas CDO-Fb, en particulier dans un but plus applicatif. Dans ce but, la prise en
compte de la turbulence via l’intégration de modèles sera un pré-requis.

Tous les développements illustrés dans cette Thèse ont été entièrement intégrés au logiciel
industriel de dynamique des fluides Code_Saturne. Ces développements sont librement dispo-
nibles. La discrétisation CDO-Fb pour des équation de NS (avec l’approche monolithique et
une convection implicite traitée à l’aide de l’algorithme de Picard) est actuellement testée à
EDF R&D dans le cadre de simulations de solidification, où les nombres de Reynolds restent
modérés (une approximation de Boussinesq, une équation d’énergie, ainsi qu’une équation de
transport de concentration de soluté sont également considérées). Les comparaisons faites
entre les schémas CDO-Fb et la méthode standard actuelle de Code_Saturne (une discré-
tisation spatiale basée sur une méthode de volumes finis co-localisés et une technique de
prédiction-correction) montrent un gain en robustesse et en précision en faveur des schémas
CDO-Fb. L’utilisateur peut en effet choisir des pas de temps plus grands et obtenir ainsi
des meilleures performances.

10 Résumé de la Thèse

Chapter 1

Introduction

1.1 Industrial context

The applications of fluid mechanics in an industrial context are numerous and span from
the macroscale, e.g. meteorology, through the midscale, e.g. aeronautics, to the microscale,
e.g. flows in fractures. The MFEE (Fluid Mechanics, Energy, and Environment) department
is part of EDF R&D, the research branch of the French electrical utility. The domains
of interest for this department within Computational Fluid Dynamics (CFD) are various.
Informally, they could be classed into two main categories: optimization of the energy
production and safety studies. For instance, atmospheric studies are performed in order
to foresee the production of a wind-turbine field, and also to better evaluate and minimize
the consequences of potential airborne industrial rejects of a power plant to its surrounding
area. Another example is long-term safety studies related to the disposal of nuclear wastes
implying groundwater flow simulations. Moreover, a great effort is deployed towards the
comprehension of the complex physical phenomena at stake in nuclear power plants. In
particular, thermohydraulic simulations are performed on the key components of a nuclear
power plant such as, among many others, steam-generators, pumps, the nuclear vessel and
fuel assemblies, in order to optimize their efficiency and their lifetime, while still maintaining
the highest safety standards.

In order to address CFD applications, EDF R&D has been developing since 1998 the
software Code_Saturne,1 which is an open-source, multi-purpose solver for single-phase flows.
Code_Saturne is an efficient and flexible solver, which is thus well adapted to the aforemen-
tioned industrial needs, and which enjoys a High-Performance-Computing–oriented par-
allelized implementation. In a process of continuous development and improvement of
Code_Saturne, two main axes have been identified: (i) increasing the robustness of the solver
with respect to poor quality meshes, and (ii) improving the physical fidelity of the numeri-
cal solutions. On the one hand, the complex geometries encountered in engineering studies
lead to meshes which sometimes have locally a poor quality and/or complex shapes, see
the examples given in Fig. 1.1. As a matter of fact, a divide-and-conquer strategy is often
used in order to ease and speed up the process of mesh generation. The geometries are cut
into simpler parts which are meshed separately and then joined together, thus generating
cells which have a strong aspect-ratio or hanging nodes, for instance. Using a discretiza-
tion which is able to deal with such kind of meshes without loosing in accuracy is then of
paramount importance. On the other hand, one aims at increasing the quality of the solu-
tion. An example of this requirement is to preserve at the discrete level the main features

1https://github.com/code-saturne/code_saturne, http://code-saturne.org

https://github.com/code-saturne/code_saturne
http://code-saturne.org

12 Ch. 1 Introduction

Figure 1.1 – Examples of meshes with nonconforming joining used for industrial applications.
Top: flow in a simplified nuclear vessel. Bottom: part of an underground storage facility.

of the continuum system, such as relations between differential operators or the absence of
unphysical spurious modes.

The underlying discretization of Code_Saturne hinges on a Finite Volume scheme handling
polyhedral meshes in which velocity and pressure Degrees of Freedom (DoFs) are colocated
at the cells. In Code_Saturne, the velocity-pressure coupling within time-marching schemes
relies on a projection algorithm (see Archambeau et al. (2004) for more details). In this
context and with the above goals in mind, the development (design, analysis and implemen-
tation) of Compatible Discrete Operator (CDO) schemes has been undertaken since 2011.
Some schemes belonging to the CDO family are currently available as an alternative dis-
cretization in Code_Saturne. Today, CDO schemes have become the standard discretization
in Code_Saturne for industrial applications such as groundwater flows or diffusion dominated-
problems.

In this Thesis, CDO schemes are extended to the unsteady, incompressible Navier–Stokes
equations (NSE). The ability to deal with such equations which are at the very core of fluid
dynamics will allow the CDO framework to extend its domain of application even further.
In addition to the development of CDO schemes for spatial discretization, the other main
axis of this Thesis is the exploration of two velocity-pressure coupling techniques in order to
provide some alternative strategies to the standard projection method of Code_Saturne. In
particular, we explore the use of the (fully coupled) monolithic approach and of the so-called
Artificial Compressibility (AC) approach within the CDO framework. On the one hand,
when accuracy is the paramount concern or a steady problem is addressed, one prefers the
monolithic approach, which however may need a significant computational effort to solve the

1.2 Compatible Discrete Operator schemes 13

(a) Vertex-based (b) Edge-based

(c) Face-based (d) Cell-based

Figure 1.2 – Possible DoFs for a CDO discretization. Only visible DoFs are shown (except
for the cell-based ones which are always shown). Every graphical element (ball, arrow or
circle) represents a scalar value, even for a vector-valued variable (e.g. the circulation of a
vector field in the edge-based discretization).

resulting linear systems. On the other hand, when efficiency is of order, the AC approach
is preferable. These two strategies have been identified because of their complementary
properties which ensure a great flexibility and versatility to the CDO approach within the
context of the NSE.

1.2 Compatible Discrete Operator schemes

Compatible Discrete Operator schemes (CDO) are introduced in this section. After an
overview of the driving design principles and the available discretizations within the CDO
framework, the face-based schemes, which are the ones considered in this Thesis, are detailed
and compared to other face-based methods available in the literature.

1.2.1 A brief introduction to CDO schemes
The CDO framework gathers low-order, conforming or nonconforming schemes for polyhe-
dral meshes. It consists in a flexible structure that allows one to choose a discretization
principle adapted to the problem at hand and its related variables. The CDO schemes
are part of the broad family of so-called mimetic (or structure-preserving) schemes. For
instance, their design enables them to preserve the kernel of differential operators at the
discrete level.

The first key step in the design of CDO schemes is the definition of the DoFs which stems
directly from the physical nature of the fields under investigation. Let us consider a three-
dimensional mesh and identify its geometric entities as cells, faces, edges, and vertices. Then,

14 Ch. 1 Introduction

Figure 1.3 – Examples of a face-based subdivision of a 2D (left) and 3D cell (right) with a
hanging node. Because of the hanging node, the leftmost square on the left panel is viewed
as a pentagon with two coplanar faces, and the pentagon-prismatic cell on the right panel
is considered to have 10 faces (instead of 7), among which 4 are coplanar. A subtriangle
and a subpyramid obtained by considering a face as basis and the cell barycenter as apex
are highlighted.

potentials are defined at vertices, circulations along edges, fluxes across faces, and finally
densities in cells. The different discretizations are illustrated in Fig. 1.2. The understanding
of how the underlying physical and differential structures of the problem are linked is at
the core of CDO schemes. The main tool for such an analysis is differential geometry.
The reader is referred to the works of Kron (1945, 1953), Tonti (1975), Branin (1966), and
Bossavit (1988) for a presentation of the founding principles of differential geometry and
to Bonelle (2014, Section 2.1) for a more recent overview. In particular, among desirable
properties, one is able to design a set of discrete differential operators which satisfy the same
key features as their continuous counterparts. For instance, the divergence of a curl or the
curl of a gradient is always identically zero at discrete level as well.

The second key notion in CDO schemes is the Hodge operator, used whenever a phe-
nomenological law is involved. Such an operator relates DoFs of different nature: for in-
stance, a circulation to a flux. The distinctive feature of CDO schemes is the usage of
a partitioning of the mesh in order to locally build the needed Hodge operators. Several
ways are available to build such a partitioning, for instance, by considering a face-based
subdivision of the cells, see Fig. 1.3. This additional geometric discretization is fictitious:
the end user does not see it and indeed he does not need to build it. The two kinds of
geometric entities, primal (of the original mesh) and dual (defined when considering the
additional subdivision), are in a one-to-one pairing: primal vertices, edges, faces, and cells
are associated with, respectively, dual cells, faces, edges and vertices. DoFs and discrete
differential operators can be defined on both the primal mesh and the dual mesh. If, on the
one hand, the discrete differential operators are exact and do not introduce any consistency
error, on the other hand, the Hodge operators do introduce such an error. In doing so, the
error occurs at the same level as the physical modeling error, which can be viewed as an
attractive feature of CDO schemes.

Two previous PhDs dealt with the development and analysis of CDO schemes: in Bonelle
(2014), the method has been deployed for elliptic and the Stokes equations (see also Bonelle
and Ern (2014, 2015)), whereas in Cantin (2016) scalar and vector transport equations have
been addressed (see also Cantin and Ern (2016), Cantin et al. (2016), and Cantin and Ern
(2017)). Broadly speaking, given a problem and the associated Partial Differential Equation
(PDE), the discretization is chosen depending on the physical nature of the main variable.
Let us give some details.

• In elliptic problems (see Bonelle (2014) and Bonelle and Ern (2014)), one seeks a po-

1.2 Compatible Discrete Operator schemes 15

tential: therefore, the DoFs are based on vertices, and either primal or dual entities
can be chosen. The former choice leads to the so-called CDO vertex-based discretiza-
tion which is similar in spirit to the conforming P1 (where P1 stands for the space of
affine functions) finite element methods on simplicial meshes. Concerning the latter
choice, since dual vertices are associated with primal cells, the name cell-based is em-
ployed, and the discretized problem has a saddle-point structure similar in spirit to the
lowest-order Raviart-Thomas mixed finite element method on simplicial meshes. Fur-
thermore, the cell-based discretization has been extended by means of a hybridization
procedure which introduces additional DoFs at the faces. This discretization, derived
in Bonelle (2014, Section 8.3) and about which more details are given in Section 1.2.2,
is called face-based.

• In the Stokes problem considered in Bonelle (2014) and Bonelle and Ern (2015), the
variable of interest is the pressure potential (the pressure divided by the mass den-
sity) and one can consider either vertex- or cell-based schemes. Moreover, the so-
called curl formulation of the Stokes problem (hinging on the differential identity
−∆ = ∇ × (∇×) − ∇ (∇·)) is considered, so that it is convenient to think of the
velocity as a circulation or a flux. Thus, in the vertex-based (respectively cell-based)
discretization, the velocity is considered as a circulation (resp. flux) located along pri-
mal edges (resp. across primal faces). It is interesting to observe that in the cell-based
discretization, a three-field formulation of the Stokes problem is obtained. The rea-
son is that the curl of the velocity has to be considered as an additional independent
unknown, so that the final linear system has a double saddle-point structure.

• In the scalar advection-reaction problem (Cantin, 2016; Cantin and Ern, 2016; Cantin
et al., 2016), the main variable is again a potential, leading to vertex-based discretiza-
tions. In the vector-valued advection-reaction problem, the main variable is a circula-
tion which is treated with edge-based schemes (Cantin and Ern, 2017).

The DoFs considered in the above-mentioned discretizations are shown in Fig. 1.2.
Among the applications currently addressed by means of a CDO scheme in Code_Saturne,
groundwater flows and thermal problems (which, loosely speaking, can be thought of as
scalar transport equations) have been treated with a vertex-based discretization, whereas
in the context of electromagnetism, the edge-based discretization is considered. For fluid
dynamics applications, the face-based version has been retained and constitutes one of the
major contributions of the Thesis.

1.2.2 The face-based CDO discretization
We now give some more details on the CDO face-based discretization (CDO-Fb for short),
since this is the discretization considered in this Thesis. Indeed, CDO-Fb naturally allows us
to address the Navier–Stokes problem by looking at the velocity as a vector-valued potential
defined at faces and cells (in contrast with the curl form of the Stokes problem of Bonelle
(2014) and Bonelle and Ern (2015)). Here we limit ourselves to recalling the main features
of the CDO-Fb method, and we give more details in Section 2.2. The reader is referred
to Bonelle (2014, Section 8.3) for the derivation and analysis of the scheme, and for error
results concerning scalar diffusion problems.

The CDO-Fb discretization stems from the cell-based discretization considered for scalar
diffusion problems to which a classical hybridization procedure is applied as described for
instance in Boffi et al. (2013). In addition to the cell-based potential DoFs, the CDO-Fb
discretization introduces a second set of potential DoFs attached to the faces. An example
of the resulting discretization is shown in Fig. 1.4. It is important to remark that these

16 Ch. 1 Introduction

Figure 1.4 – Discrete setting for a scalar problem with a face-based CDO discretization in
2D (left) and 3D (right). Face- and cell-based quantities are shown, respectively, in orange
and green. Only visible face-based DoFs are shown.

face-based DoFs are single-valued on internal faces: their value is the same irrespective of
the two adjacent cells. The hybridization allows one to avoid the saddle-point structure of
the final system resulting from the mixed form of the CDO cell-based discretization. Indeed,
owing to the static condensation (or Schur complement) technique, the cell-based DoFs are
eliminated from the linear system, thus significantly reducing its size: for a scalar elliptic
problem, the final size is equal to the number of (primal) faces (instead of faces and cells).
The cell-based DoFs are recovered afterwards, as a postprocessing step. Further details
are given later in Section 3.1.3. Incidentally, we notice that the CDO-Fb scheme does not
provide an H1-conforming potential reconstruction (but only a reconstruction with zero
mean-value jumps across internal faces). Thus, the CDO-Fb scheme is nonconforming.

A variational formulation is then built. As usual in a hybrid method, the part of the
discrete problem resulting from the test functions associated with the cell-based DoFs ex-
presses the conservation principle of the PDE at the cell level, whereas the part resulting
from the test functions associated with the faces expresses the equilibrium of the fluxes from
the two adjacent cells at the given face.

A key tool of the CDO-Fb method is a stabilized discrete gradient reconstruction which
takes advantage of the pyramidal subdivision of the cells. Consider, for instance, a face
as basis of the pyramid and the cell barycenter as the apex as shown in Fig. 1.3. The
key idea is to approximate the gradient of the variable at hand as piecewise constant on
this pyramidal subdivision. More precisely, a so-called consistent gradient is evaluated in
each cell by combining for all of its faces the difference of the face- and cell-based DoFs
normalized by an appropriate length scale and multiplied by the normal to the face. This
allows one to define a gradient reconstruction which is exact for affine functions. However,
the resulting gradient is not stable meaning that if the reconstructed gradient is zero, this
does not imply that all the underlying DoFs are constant. The gradient reconstruction
operator is then enriched by a piecewise constant stabilization term in each subpyramid
which is derived from a Taylor expansion and which does not affect the exactness for affine
functions. Further details about this gradient reconstruction are given in Section 2.3, and
more generally in Bonelle et al. (2015).

CDO-Fb schemes share some features with other polyhedral hybrid methods developed
in the last decade. In particular, it is shown in Bonelle (2014, Prop. 8.38) that, for a scalar
elliptic problem, the CDO-Fb scheme is equivalent (up to mesh regularity assumptions and
to a user-defined stabilization parameter) to the Hybrid Finite Volume scheme (Eymard
et al., 2010). The Hybrid High-Order (HHO) schemes introduced in Di Pietro et al. (2014)
and Di Pietro and Ern (2015), are very close to CDO-Fb schemes as well when considering
the lowest-order case k := 0. Taking again a scalar elliptic problem as example, both

1.3 Numerical methods for the Navier–Stokes equations 17

DoFs Cell-wise gradient

CDO: subgrid
stabilization

+

+

HHO: least-squares
stabilization

Figure 1.5 – Comparison between gradient reconstructions of a scalar function in 2D for
CDO and HHO(k = 0). Face- and cell-based quantities are shown, respectively, in orange
and green. The two reconstructions share a common consistent (exact for affine functions)
gradient. However, in CDO the gradient is enriched with a piecewise constant stabilization,
constant on a subdivision of the cell. In HHO(k = 0), the gradient is constant on the whole
cell and it is sought among the gradients of affine functions, and a penalty is added to the
bilinear formulation.

methods consider one DoF per face and per cell,2 and both methods hinge on a gradient
reconstruction operator. The difference is that, on the one hand, the CDO-Fb scheme
produces a piecewise constant gradient on a subdvision of the cell, whereas, on the other
hand, the gradient reconstructed in HHO is constant on the cell (it coincides with the above-
mentioned consistent gradient) and a stabilization is added as a least-squares penalty on
the difference between the cell- and the face-based values. The general idea is outlined in
Fig. 1.5. In this Thesis, we will often exploit the similarities between HHO and CDO-Fb to
benefit from the analysis results for HHO schemes. A further discussion on other schemes
similar to CDO-Fb is postponed to Section 1.3.3 with a focus on CFD applications.

1.3 Numerical methods for the Navier–Stokes equations

The main subject of this Thesis is the unsteady Navier–Stokes equations (NSE) for incom-
pressible Newtonian fluids. In this section, popular strategies used to address numerically
the NSE are presented. The first part deals with spatial discretizations. In particular, we
discuss schemes close to the CDO-Fb discretization. The second part discusses some time-
marching techniques. For the sake of completeness, we also provide a short overview on
linear and nonlinear solvers for the NSE.

2Viewed for HHO(k = 0) as lowest-order polynomials p ∈ P0, where, for k ≥ 0, Pk is the vector space of
polynomials of degree k at most on faces and cells

18 Ch. 1 Introduction

1.3.1 Model problem

Let u and p denote respectively the velocity and the pressure. The density of the fluid is
supposed to be uniform and equal to 1: it will not appear in our discussion. The viscosity
is denoted by ν > 0. Take Ω× [0, T], with Ω ⊂ Rd, d = 2, 3, and T > 0. Then the Dirichlet
initial-boundary value problem for the incompressible NSE, posed on the space-time cylinder
Ω× (0, T), reads: Find u : Ω× (0, T)→ Rd and p : Ω× (0, T)→ R such that

∂u

∂t
+ (u · ∇)u− ν∆u+∇ p = f in Ω× (0, T) ,

∇ · u = 0 in Ω× (0, T) ,
u = u∂ on ∂Ω× (0, T) ,

u|t=0 = u0 in Ω ,

(1.1a)

(1.1b)
(1.1c)
(1.1d)

with source term f : Ω × (0, T) → Rd, Dirichlet boundary datum u∂ : ∂Ω × [0, T] → Rd,
and initial datum u0 : Ω → Rd. Other Boundary Conditions (BCs) can be considered as
well (see, e.g., Becker et al. (2015)). Equation (1.1a) expresses the momentum balance, and
(1.1b) the mass balance. The steady version of (1.1) will be treated as well (see Chapter 3):
in this case, the time derivative ∂u

∂t is dropped. One of the key features of the NSE is the
convection term (u · ∇)u which is the source of the nonlinearity in the problem.

Sometimes, in order to focus on the incompressibility constraint, we will drop the con-
vection term in (1.1a). Then we recover the well-known unsteady Stokes problem: Find
u : Ω× (0, T)→ Rd and p : Ω× (0, T)→ R such that

∂u

∂t
− ν∆u+∇ p = f in Ω× (0, T) ,

∇ · u = 0 in Ω× (0, T) ,
u = u∂ on ∂Ω× (0, T) ,

u|t=0 = u0 in Ω .

(1.2a)

(1.2b)
(1.2c)
(1.2d)

Here, we kept the time dependency, but the steady version will be considered as well.

Remark 1.1 - Alternative forms of (1.1). Owing to classical differential identities,
alternative reformulations of the momentum equation (1.1a) can be found in the literature.
We have already mentioned in Section 1.2.1 that a curl operator can be recovered from
the vector Laplacian using −∆ = ∇ × (∇×) − ∇ (∇·) (the second term is zero if one
further considers the incompressibility constraint). On the other hand, one may address the
convection term (u·∇)u as it was done in Charnyi et al. (2017), where different formulations
are compared. Firstly, let us recall that (u · ∇)u = (∇u)u. A first possibility is to consider
the conservative term ∇ · (u ⊗ u), and observing that ∇ · (u ⊗ u) = (∇u)u + (∇ · u)u. A
second possibility is the so-called skew-symmetric form which writes the convection term as
(∇u)u+ 1

2(∇ · u)u. The equivalence with the classical form is evident after considering the
incompressibility constraint. The name comes from the fact that this latter writing leads to
a skew-symmetric trilinear form. Finally, another popular writing is the so-called rotational
form which hinges on the differential identity (∇u)u = ∇

(
|u|2

2

)
−u×(∇×u) (the first term

on the right-hand side is usually integrated to the pressure to form the so-called Bernoulli
pressure). �

Remark 1.2 - Oseen problem. We can keep the convection term but consider a known
convection field. A reaction term may also be added. This leads to the so-called Oseen

1.3 Numerical methods for the Navier–Stokes equations 19

problem, often treated in its steady form: Find u : Ω→ Rd and p : Ω→ R such that

−ν∆u+ (w · ∇)u+ µu+∇ p = f in Ω ,

∇ · u = 0 in Ω ,

u = u∂ on ∂Ω ,

(1.3a)
(1.3b)
(1.3c)

with µ ≥ 0 and w : Ω→ Rd (possibly such that ∇ · w = 0). �
Let us start by giving a minimal functional setting which will be useful in the discussion

that will follow. For the current goal, a steady Stokes problem suffices:

−ν∆u+∇ p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 on ∂Ω ,

(1.4a)
(1.4b)
(1.4c)

where we consider homogeneous Dirichlet BCs for the sake of simplicity. Usually, one seeks
the solution such that u ∈ H1

0(Ω) := {v ∈ H1(Ω) | v|∂Ω = 0} and p ∈ L2
∗(Ω) := {q ∈

L2(Ω) | ∫Ω q = 0}, where the underline notation indicates a vector-valued field or quantity
or a linear space composed of such objects, for instance, H1(Ω) := [H1(Ω)]d. Finally, the
body force is supposed to belong to L2(Ω). Notice that the BC (1.4c) is directly taken into
account in the velocity space. To derive the variational formulation of (1.4a), one multiplies
the equation by a test function v ∈ H1

0(Ω), and integrates by parts over Ω. The mass
balance (1.4b) receives a similar treatment after having chosen test functions in L2

∗(Ω), but
the integration by parts is not needed. One thus obtains the following problem: Find
(u, p) ∈ H1

0(Ω)× L2
∗(Ω) such that

ν

∫

Ω
∇u : ∇ v −

∫

Ω
p∇ · v =

∫

Ω
f · v ∀v ∈ H1

0(Ω) ,
∫

Ω
q∇ · u = 0 ∀q ∈ L2

∗(Ω) .

(1.5a)

(1.5b)

Defining the following bilinear and linear forms

a(·, ·) : H1
0(Ω)×H1

0(Ω)→ R a(u, v) :=
∫

Ω
∇u : ∇ v ,

b(·, ·) : H1
0(Ω)× L2

∗(Ω)→ R b(v, q) := −
∫

Ω
q∇ · v ,

l(·) : H1
0(Ω)→ R l(v) :=

∫

Ω
f · v ,

(1.6)

the variational formulation (1.5) can be recast as follows: Find (u, p) ∈ H1
0(Ω) × L2

∗(Ω)
such that {

νa(u, v) + b(v, p) = l(v) ∀v ∈ H1
0(Ω) ,

b(u, q) = 0 ∀q ∈ L2
∗(Ω) .

(1.7a)
(1.7b)

Notice that we have changed the sign in (1.5b) with respect to (1.4c).
A key feature of (1.5) is the so-called inf-sup condition which ensures the well-posedness

of the problem. It is often known under the name Ladyzhenskaya–Babuška–Brezzi (or
LBB) condition (Babuška, 1973; Brezzi, 1974). We quote the following results from Ern
and Guermond (2004).

Proposition 1.3 - Inf-sup condition. Problem (1.5) is well-posed if and only if

∃β > 0 such that inf
q∈L2∗(Ω)

sup
v∈H1

0(Ω)

b(v, q)
‖q‖L2∗(Ω) ‖v‖H1

0(Ω)
≥ β . (1.8)

20 Ch. 1 Introduction

Theorem 1.4 - de Rham. Assume that Ω is a Lipschitz domain. Then the inf-sup condi-
tion (1.8) holds true.

1.3.2 Review of classical spatial discretizations
In this section, we give a short overview on popular schemes used when dealing with the
Stokes problem.

Finite Element Methods (FEM) form a broad class of spatial discretization methods
commonly used when addressing a wide range of PDEs including the Stokes and NSE. We
give here a brief and non-exhaustive overview on the most common discretizations using
FEM for the Stokes and NSE. The reader can find a more in-depth analysis of FEM, for
instance, in Girault and Raviart (1986), Boffi et al. (2013), and Ern and Guermond (2004).
A simple way to discretize (1.7) is to use continuous finite elements for both the velocity
and the pressure. Let V h ⊂ H1

0(Ω) and Ph ⊂ L2
∗(Ω) be two finite-dimensional functional

spaces for the velocity and the pressure, respectively, equipped with the norms of H1
0(Ω)

and L2
∗(Ω). Then, the discrete version of (1.7) rewrites: Find (uh, ph) ∈ V h × Ph such that

{
νa(uh, vh) + b(vh, ph) = l(vh) ∀vh ∈ V h ,

b(uh, qh) = 0 ∀qh ∈ Ph .
(1.9)

However, not all the pairs V h/Ph lead to a stable discretization. The reason lies in the fact
that they do not satisfy the discrete version of the inf-sup condition (1.8). Indeed, since
V h ⊂ H1

0(Ω), (1.9) is well-posed if and only if there exists β∗ > 0 independent of the mesh
size such that

inf
q∈Ph

sup
v∈V h

b(vh, qh)
‖qh‖L2∗(Ω) ‖vh‖H1

0(Ω)
≥ β∗ . (1.10)

Note that, in general, β∗ ≤ β. Lacking property (1.10) means that there exist nonzero
pressure fields qh which satisfy b(vh, qh) = 0 for all vh ∈ V h. Such fields are often called
spurious modes, see Ern and Guermond (2004, Section 4.2.3) or Boffi et al. (2013, Section
VI.5) for further details.

In the so-called equal-order interpolation methods, the same polynomial approximation is
used both for the velocity and the pressure. Unfortunately the choices Pk/Pk (the notation
is such that the first space refers to the velocity, as in V h/Ph) and Qk/Qk (where Qk collects
the polynomials of degree up to k in each component) fail to satisfy (1.10). Reducing the
order of the pressure space usually enables one to recover (1.10): this is the case for the
well-known Taylor–Hood mixed finite element (Taylor and Hood, 1973), also denoted by
P2/P1, and which is one of the most popular techniques for the Stokes problem. Although
initially devised only on simplexes, it has been extended to quadrangular meshes using
Q2/Q1. Its higher-order generalizations to Pk/Pk−1 and Qk/Qk−1 with k ≥ 2 also satisfy
the LBB condition. Another strategy consists in enriching the velocity space by including
additional so-called bubble functions, as initially proposed in Crouzeix and Raviart (1973).
Choosing k = 1, for instance, one possibility is to consider the well-known mini element (or
P1-bubble/P1) (Arnold et al., 1984).

One may choose to relax the global regularity properties (i.e. continuity) for the pressure
approximation space only, or for both velocity and pressure approximation spaces. Of the
latter kind is the popular (nonconforming) Crouzeix–Raviart mixed finite element (CR)
(Crouzeix and Raviart, 1973). Since the velocity lacks continuity at the mesh interfaces
(only the mean-value of the velocity is continuous), one should slightly modify the bilinear
forms in (1.6). In particular, one sets

ah(uh, vh) :=
∑

c∈C

∫

c
∇uh : ∇ vh , bh(vh, qh) := −

∑

c∈C

∫

c
qh∇ · vh , (1.11)

1.3 Numerical methods for the Navier–Stokes equations 21

where C is the set of the cells of the mesh and a generic cell is denoted by c. The CR mixed
finite element has been initially developed for simplices, but an extension to quadrangular
meshes has been proposed in Rannacher and Turek (1992) and Turek (1999). Insights about
the generalization to polyhedral meshes are given in Section 1.3.3.

The inf-sup condition may be traded against an additional stabilization to be considered
in the incompressibility constraint. This is for instance the case with the equal-order discon-
tinuous Galerkin (dG) methods where the discrete velocity does not satisfy global continuity
properties, i.e. it is not H1-conforming. Then, considering piecewise polynomial spaces of
the same order for the velocity and the pressure is possible if a least-squares penalty on the
pressure jumps is added to the discrete problem. Introduced in the early seventies (Reed
and Hill, 1973; Lesaint and Raviart, 1974) for transport problems, dG methods gained pop-
ularity in diffusion-related PDEs when interior penalty techniques were developed, see for
instance Arnold (1982). Another important step in the development of dG methods is the
reformulation via numerical fluxes, applied to the NSE in Bassi and Rebay (1997), see also
the unified treatment of elliptic PDEs in Arnold et al. (2001). A unified approach to the
wide class of Friedrichs’ systems is presented in Ern and Guermond (2006a,b, 2008), whereas
a general presentation of dG methods for several problems is given in Di Pietro and Ern
(2011), see in particular Ch. 6 therein for a discussion on incompressible flows.

We close this review by considering the Finite Volume (FV) schemes (see, for instance,
Eymard et al. (2000) for a detailed review), which hinge on a different approach than the
one used in FEM. As a matter of fact, in FV schemes, the PDE is usually cast into a
conservative form involving the divergence operator. The PDE is then integrated over so-
called control volumes (polygonal shapes are admissible for many FV methods) which pave
the geometrical domain. The Gauss theorem is then invoked, making normal fluxes to the
interfaces of the control volumes appear. How to compute these numerical fluxes is the
central step in the design of a FV scheme. In classical FV schemes, one associates each
control volume with a DoF, so that the underlying discretization can be viewed as piecewise
constant. For flow problems, one can choose to define both velocity and pressure on the
same control volumes, and this leads to so-called colocated schemes. Due to this ease of
implementation, FV methods are popular in industrial codes, and indeed Code_Saturne uses
this discretization. The inf-sup condition is not satisfied, so that a stabilization of the
pressure is necessary in order to avoid spurious pressure modes, see Eymard et al. (2006)
for an analysis of one of such schemes for the Stokes problem, extended in Eymard et al.
(2007) to the NSE (with a Crank–Nicholson time scheme). Associating velocity and pressure
with different control volumes (for instance, on a typical 3D mesh, velocity with faces and
pressure with cells) leads to so-called staggered schemes. These schemes have been widely
employed in the engineering literature, see Patankar (1980, Ch. 6) for an introduction.

The well-knownMarker and Cell scheme (MAC), introduced in Harlow andWelch (1965)
for Cartesian meshes, hinges on staggered grids. The pressure is defined on the cells, whereas
the velocity at the edges (in 2D), and only the normal component is retained (so that on
a edge parallel to the x-axis, only the y-component of the velocity is used, and vice versa).
The MAC scheme enjoyed a great popularity and was first analyzed in Nicolaides (1992)
and Nicolaides and Wu (1996); it was generalized to Delaunay meshes by means of the
covolume technique in Nicolaides (1989). In the context of the Stokes problem, the inf-sup
condition for the classical Cartesian scheme has been proved in Shin and Strikwerda (1997)
and extended to non-uniform Cartesian meshes in Blanc (1999). Recently, a generalization
of the MAC scheme to grids with hanging nodes has been proposed and analyzed to the
context of NSE, see Chénier et al. (2015), while Gallouët et al. (2016) extends the analysis
on non-uniform Cartesian meshes with a more general functional setting (with respect to
the work of Nicolaides).

22 Ch. 1 Introduction

1.3.3 Review of face-based spatial discretizations
We focus here on discretization methods which share some features with CDO-Fb schemes
and that have been deployed for the (Navier–)Stokes problem as well. With face-based we
refer to spatial discretizations which, loosely speaking, involve DoFs defined at the faces.
Hence, with an abuse of notation, we will consider both so-called hybrid methods and
schemes developed for the mixed formulation of the problem at hand.

Lowest-order methods

The Crouzeix–Raviart (Crouzeix and Raviart, 1973) mixed finite element has already been
mentioned. Among the most well-known mixed FEM for diffusion PDEs stands the Raviart–
Thomas (Raviart and Thomas, 1977) mixed finite element. Raviart–Thomas finite elements
can be used to approximate the velocity in fluid dynamics applications but the velocity is
not H1-conforming. In the lowest-order case, the Raviart–Thomas element uses as Degrees
of Freedom (DoFs) the mean-value of the normal component on the face.3

The Mimetic Finite Difference (MFD) methods (see Beirão da Veiga et al. (2014b) for a
thorough review on elliptic problems and Beirão da Veiga et al. (2009b) for the application
to the Stokes problem) have been among the first structure-preserving methods to address
the Stokes equations on polyhedral meshes. MFD is a low-order discretization stemming
from the Support Operator method (Shashkov and Steinberg, 1995; Hyman and Shashkov,
1997), initially devised for simplicial and quadrangular meshes (Hyman et al., 2002), and
later extended to general meshes (Brezzi et al., 2005a,b; Kuznetsov et al., 2004). Although
nodal discretizations are possible (see Brezzi et al. (2009)), the first polyhedral MFD method
considered face-based DoFs, and indeed such MFD schemes are related to the lowest-order
Raviart–Thomas FEM when applied to simplicial meshes. A link between MFD methods
and (cell-based) CDO schemes has been established in Bonelle (2014, Section 8.2.3) and
Bonelle and Ern (2014).

Several low-order schemes have been derived in the Finite Volume (FV) literature. A
class of methods, called Hybrid Mixed Mimetic family (HMM) was identified in Droniou
et al. (2010) (see, for instance, Cheng and Droniou (2019) for an application to Darcy flows).
Two previously developed methods belong to this class: the Mixed Finite Volume (MFV)
schemes (see Droniou and Eymard (2006)) and the Hybrid Finite Volume (HFV) (see Ey-
mard et al. (2010)) schemes. It is worth mentioning that the alternative formulation of HFV
schemes called SUSHI has been proved to be equivalent to CDO-Fb for diffusion problems,
up to the scaling of the stabilization part of the gradient reconstruction, see Bonelle (2014,
Prop. 8.38). MFV has been successfully applied to the NSE (Droniou and Eymard, 2009).
Moving from the HFV, a Generalized CR (lowest-order) scheme for polyhedral meshes has
been designed and applied to diffusion and Stokes problems, see Di Pietro and Lemaire
(2015). Gradient schemes (also known as Gradient Discretization Methods) provides a
framework which encompasses HMM, MFD, the MAC scheme and some high-order meth-
ods discussed below, devised in Droniou et al. (2013) (see also Droniou et al. (2018) for an
extensive analysis). These schemes are applied, for instance, to nonlinear problems such as
the NSE in Feron (2016), Droniou et al. (2015), and Eymard et al. (2018).

The Discrete Duality Finite Volume (DDFV) schemes stem from the work of Hermeline
(1998, 2000) and have been introduced in Domelevo and Omnes (2005) (see also Andreianov
et al. (2012, 2013) for a recent overview). DDFV schemes are of lowest-order and can handle
polyhedral meshes. They take advantage of a dual mesh like CDO, but also of a third mesh,
called diamond mesh, obtained in 2D by considering the two subtriangles related to the same
internal face on the two adjacent cell (extend the highlighted triangle in the left panel of

3This is in the same spirit as CDO when one is dealing with fluxes

1.3 Numerical methods for the Navier–Stokes equations 23

Fig. 1.3). In the Stokes problems, the discretization is staggered with velocity DoFs defined
at the centers of primal and dual cells and pressure DoFs at the centers of the diamond
cells (see Delcourte (2007)). However, a stabilization is needed in order to ensure the well-
posedness of the problem on any type of mesh (see Krell (2011a), Krell and Manzini (2012),
and Boyer et al. (2015) and also Krell (2011b) and Goudon et al. (2019) for the NSE).

High-order methods

Taking inspiration from the mixed FEM, the hybridization of discontinuous Galerkin meth-
ods led to the design of the so-called Hybridizable Discontinuous Galerkin methods (HDG)
(Cockburn et al., 2009b). In HDG methods, the DoFs are polynomials defined both on cells
and faces and the dual variable is part of the discretization as well. A static condensa-
tion technique allows one to reduce the global size of the problem to a global transmission
problem involving only the face unknowns. HDG methods were extended to convection-
diffusion-reaction (Cockburn et al., 2009a; Nguyen et al., 2009), Stokes (Cockburn et al.,
2010) and Navier–Stokes (Nguyen et al., 2011) problems. In these cases, one usually chooses
to hybridize the velocity only, whereas the pressure stays cell-based.

Combining the MFD framework with tools typical of classical FEM (for instance, con-
sidering variational formulations instead of a fully discrete setting) led to the development
of several high-order methods. As a matter of fact, the MFD framework itself has been ex-
tended to higher orders, see Gyrya and Lipnikov (2008) and Beirão da Veiga et al. (2009a).
A salient example of such an approach are the Virtual Element Methods (VEM). Initially
devised for 2D diffusion-like problems (Beirão da Veiga et al., 2013a,b), the framework has
been extended to 3D (Beirão da Veiga et al., 2014a) and many other applications, for in-
stance, the Stokes (Antonietti et al., 2014; Beirão da Veiga et al., 2017) and NSE (Beirão da
Veiga et al., 2018), see also Beirão da Veiga et al. (2016a) for an H (div)-conforming version.
The original setting used spaces which ensured the conformity of the method and whose ba-
sis functions are non-polynomial. However, the analytical form of the basis functions does
not need to be known (whence the name virtual) and this lack of knowledge is traded against
a stabilization. The usual discretization of the VEM is nodal-based with DoFs attached to
edges, faces, and cells as well in high-order discretizations. A face-based VEM has also been
proposed, leading to the so-called nonconforming VEM (VEMnc), see, for instance Ayuso de
Dios et al. (2016) for elliptic problems and Cangiani et al. (2016) for the Stokes equations.
Similar to the nonconforming VEM are the High-Order Mimetic methods (Lipnikov and
Manzini, 2014) which use a hybrid (face and cell) discretization. A similar approach owing
this time to mixed FEM is the mixed VEM, see Brezzi et al. (2014) and Beirão da Veiga
et al. (2016b) for an introduction and Gatica et al. (2018) for the application to NSE.

The extension of the Raviart–Thomas element to higher orders and general meshes led to
the Mixed High-Order methods (Di Pietro and Ern, 2017), later developed for Stokes (Aghili
et al., 2015) and Oseen (Aghili and Di Pietro, 2018) problems as well. Taking inspiration
this time from the CR element, Di Pietro et al. (2014) and Di Pietro and Ern (2015)
devised the Hybrid High-Order (HHO) schemes. As the name suggests, the HHO method
consists in a hybrid (face and cell) nonconforming discretization which ensures arbitrary
order of convergence on general meshes. Based on a reconstruction of the gradient and a
stabilization operator, the HHO framework shares many features with HDG, from which,
as a matter of fact, it differs essentially in the devising of the stabilization and the adoption
of a primal formulation right from the start (no mixed formulation is considered and the
variable of interest is directly hybridized), see Cockburn et al. (2016) for further details.
In HHO methods, the DoFs are polynomials attached to the cells and the faces: letting
k (respectively l) be the degree of the face (resp. cell) polynomials, then the cell degree
may be chosen as l ∈ {k − 1, k, k + 1}, with l ≥ 0. For a diffusion problem, all the three

24 Ch. 1 Introduction

Table 1.1 – Summary of hybrid discretizations available for the Stokes and NSE. The rows
give insights on the discrete setting and the techniques used in the discretization.

CR CDO HMM VEMnc HDG HHO
Order Lowest Lowest Lowest High High High
Mesh Simplex/Tensor General General General General General

Stability Stable Sub-grid Sub-grid Penalty Penalty Penalty

choices ensure a (k+ 1)-th order of convergence in the energy norm of the error for smooth
solutions (Cockburn et al., 2016). Initially devised for diffusion problems (Di Pietro et al.,
2014) and linear elasticity (Di Pietro and Ern, 2015), HHO methods have been extended to
numerous applications, such as advection-reaction (Di Pietro et al., 2015), Stokes (Di Pietro
et al., 2016), and Navier–Stokes (Di Pietro and Krell, 2018; Botti et al., 2019) equations.
Following Di Pietro et al. (2016), the velocity has hybrid (face- and cell-based) DoFs, whereas
the pressure is cell-based only. The velocity and pressure polynomial spaces are typically of
equal order. A static condensation is available and all but one pressure DoFs per cell can
be eliminated as well.

We give in Table 1.1 a one-glance overview of the salient features of a few selected
(nonconforming) discretizations mentioned above and available for the Stokes and NSE.
Usually, lowest-order methods such as CDO or HMM hinge on a stabilized reconstruction of
the gradient and this additional stabilization is not needed on simple meshes (cf. CR FEM
on simplicial meshes). A setting defining a stabilized gradient in the context of higher-
order methods is proposed in Di Pietro et al. (2018) (see also Abbas et al. (2018) for an
application to hyperelasticity). However, higher-order schemes often consider a bilinear
formulation based on a gradient reconstruction and an additional stabilization penalizing
the gap in the hybrid DoFs.

1.3.4 Linear and nonlinear solvers for the Navier–Stokes equations

The model problems for this section are the steady Stokes or NSE. We also suppose that a
spatial discretization has been chosen so that the next step is the numerical resolution of
the discrete problem.

The two key features of the NSE, namely, the incompressibility constraint and the con-
vection term, lead, respectively, to the saddle-point structure and the nonlinearity. In this
section, procedures commonly used to tackle saddle-point and nonlinear problems are pre-
sented. In a nutshell:

• In order to deal with saddle-point problems, Augmented-Lagrangian techniques (see
Hestenes (1969) and Fortin and Glowinski (1983)) combined with an Uzawa (Arrow
et al., 1958) or a Golub–Kahan Bidiagonalization technique (Arioli, 2013), will be
mainly considered. Direct solvers, in particular an LU decomposition, will be used as
well, whenever the size of the problem makes it possible.

• In order to deal with the nonlinear convection term, Picard iterations will be per-
formed. We chose this algorithm for its simplicity in implementation and its robust-
ness, which, although not optimal, lead to fairly good results most of the times.

The strategies presented here are classical and they are given for the sake of completeness.
The reader familiar with the subject may skip this section. Additional details specific to
CDO schemes will be given in Section 3.1.3 as well.

1.3 Numerical methods for the Navier–Stokes equations 25

Linear solvers for saddle-point problems

Let us write the algebraic system resulting from the discretization of Stokes or NSE as
follows: [

A BT

B 0

] [
u
p

]
=
[
f
0

]
, (1.12)

One may recognize in (1.12) the same structure as in (1.9). The matrix A is sometimes
defined as the velocity-velocity block, whereas the matrix B corresponds to the (negative)
divergence operator. We have supposed here that the spatial discretization enables one to
write the gradient of the pressure as the transpose of the (negative) divergence (it is indeed
the case for CDO-Fb, see Section 2.4). For the Stokes problem, A contains the diffusion
term and it is symmetric definite positive. For the NSE, A contains the diffusion and the
convection terms, it is still positive but it is not symmetric anymore.

A thorough review on solvers for saddle-point problems is given in Turek (1999) and
Benzi et al. (2005). Let us briefly address below some common procedures to treat a saddle-
point problem like (1.12) by means of iterative solvers. The reader is referred to Saad (1996)
for an in-depth general discussion on linear solvers and to Elman et al. (2014) for an analysis
focused on flow problems.

Uzawa algorithm The central principle of the well-known Uzawa algorithm (Arrow et
al., 1958) is to break the saddle-point structure by considering an iterative procedure where
at each step a known approximation of the pressure is used so that its gradient becomes
explicit. Thus, at each step, one solves a linear system involving the velocity only and then
the pressure is updated using the new velocity. The procedure is stopped once a prescribed
tolerance is reached, for instance on the pressure increment or on the divergence of the
velocity. The simplest version of the Uzawa algorithm reads as follows: Given p0, iterate
on k ≥ 1 until convergence

Auk + BTpk−1 = f
Mpk = Mpk−1 − ωBuk

(1.13)

where ω > 0 is an arbitrary parameter. M is the mass matrix associated with the pressure
discretization. Most of the times, this matrix is diagonal and, even more, proportional
to the identity matrix, I: thus, without loss of generality, we consider M = I and omit
it. For the Uzawa algorithm to be stable, an upper bound is available on ω (Glowinski
and Le Tallec, 1989; Benzi et al., 2005): supposing A is symmetric, one needs to enforce
0 < ω < 2

ρM(BA−1BT) where ρM(·) denotes the spectral radius of a matrix. We stress that, at
each iteration, one has to invert A, which can be achieved with standard iterative solvers.

Augmented Lagrangian The main drawback of the procedure (1.13) is that usually it
takes many iterations to reach the solution, or indeed, the prescribed tolerance. In order to
speed up the convergence, an Augmented Lagrangian technique (Hestenes, 1969; Glowinski
and Le Tallec, 1989; Benzi et al., 2005, 2011) can be deployed. Equation (1.12) then becomes

[
A + λBTB BT

B 0

] [
u
p

]
=
[
f
0

]
, (1.14)

where λ ≥ 0 is a user-defined parameter. Let us set Aλ := A + λBTB.
By applying the iterative procedure (1.13) to (1.14), one obtains the so-called Augmented

Lagrangian-Uzawa algorithm (ALU), which reads

Aλuk + BTpk−1 = f ,
pk = pk−1 − ωBuk ,

(1.15)

26 Ch. 1 Introduction

where, in order to ensure stability, the parameter ω must satisfy 0 < ω < 2
ρM(BA−1

λ
BT) .

The interval becomes larger and larger for λ→∞. However, the conditioning of Aλ grows
linearly with λ (Fortin and Glowinski, 1983; Glowinski and Le Tallec, 1989; Benzi et al.,
2005), hence making the inversion of Aλ by means of linear solvers harder. It is often
suggested to use ω = λ (see for instance Glowinski and Le Tallec (1989, Section 2.3.6)): this
is the choice considered in this Thesis. The resulting problem then reads: Given p0, iterate
on k ≥ 1 until convergence

Aλuk + BTpk−1 = f ,
pk = pk−1 − λBuk .

(1.16)

Notice that the continuous counterpart to the additional block BTB is the grad-div operator
(under appropriate boundary conditions).

Golub–Kahan Bidiagonalization In Arioli (2013) and Arioli et al. (2018) a change of
variables is proposed leading to a matrix to which a Golub–Kahan Bidiagonalization (Golub
and Kahan, 1965) (GKB) procedure can be efficiently applied. The procedure can be applied
to either (1.12) or (1.14). However, the GKB procedure requires A to be symmetric, and
as such cannot be applied to NSE. The GKB is an iterative procedure which consists in
factorizing matrix into a bidiagonal one. It requires an inversion of Aλ or A at each
iteration (standard iterative solvers may be deployed to achieve this). The efficiency of the
GKB procedure depends on the augmentation parameter λ (which we shall rename γ for
convenience), although it is not as sensitive as in the ALU algorithm. We are sometimes
going to denote this procedure by GKB(γ). Choosing the optimal stopping criterion may
not be trivial (see, for instance, Arioli (2013)); in practice we are going to keep track of the
divergence and of the residual at the current velocity.

Preconditioning A key element of the iterative resolution of any linear system is to
find an appropriate preconditioner. This is investigated in Benzi and Olshanskii (2006),
Olshanskii and Benzi (2008), and Benzi et al. (2011), which focus on preconditioners for
the Augmented Lagrangian systems resulting from the Oseen and NSE. Once the system
has been preconditioned, standard linear solvers, such as Algebraic Multi-Grid or iterative
Krylov-based solvers, can be deployed efficiently (in Benzi and Olshanskii (2006), Olshanskii
and Benzi (2008), and Benzi et al. (2011), GMRES solvers are considered). For further
details, the reader is referred to Benzi et al. (2005, Section 10), Benzi et al. (2011), and the
references therein.

Summary: Stokes equations Due to its favorable performance, the GKB algorithm is
preferred to the ALU method. When the GKB algorithm is chosen, the standard formula-
tion (1.12) seems to lead to a better performance than the augmented one, (1.14), see for
instance the efficiency results in Section 4.4 (although, they have been observed for unsteady
problems). At each iteration of the procedures, the internal linear systems are solved with,
typically, a Conjugate Gradient method. We consider rather simple preconditioners: only
standard Jacobi or Algebraic Multi-Grid techniques are applied to the internal (decoupled)
systems. However, we will also use direct solvers (mainly the sparse ones available through
MUMPS (Amestoy et al., 2001) if the size of the problem allows it.

Summary: Navier–Stokes equations As mentioned above, the matrix A is nonsym-
metric for the NSE, thus the GKB procedure cannot be used anymore. It is replaced by
the ALU algorithm. Since we lack of efficient and reliable iterative solvers for nonsymmet-
ric matrices, we consider direct solvers. In order to temper the memory consumption of

1.3 Numerical methods for the Navier–Stokes equations 27

such methods, we still consider the iterative ALU algorithm, instead of solving directly the
saddle-point problem (task that a direct solver should be able to perform).

Nonlinear solvers for the convection term

The Picard algorithm is a classical, iterative, fixed-point algorithm used to tackle nonlinear
problems in general. It is sometimes called successive substitutions. The principle on which
it hinges is to approximate the solution to the nonlinear problem with a sequence of solutions
to linearized auxiliary problems. The iterate computed at each step is used to build the
problem to be solved at the next step. Let the superscript k denote a given iteration: for
any k ≥ 0, uk is the velocity approximation obtained at the k-th iteration of the algorithm,
u0 being the initial guess. Typically, for the NSE, one chooses (u · ∇)u ≈ (uk−1 · ∇)uk.
Hence, the procedure applied to the steady version of (1.1) reads: Given an initial guess u0,
iterate on k ≥ 1 until convergence: Find (uk, pk) such that:

{
−ν∆uk + (uk−1 · ∇)uk +∇ pk = f ,

∇ · uk = 0 ,
(1.17)

where for the sake of brevity, we have dropped the boundary conditions as well as the
domains. Notice that, at each time step, one has to solve an Oseen-like problem: compare
(1.17) with (1.3) taking µ = 0. A stopping criterion should also be chosen. In this Thesis
we will consider an approximation of the L2-norm of the increment on the velocity.

Remark 1.5 - Newton method. Another common technique for solving the discrete
NSE is the Newton method, which is a well-known iterative root-finding strategy involving
the Jacobian matrix of the considered nonlinear functional. The Newton method usually
exhibits a better rate of convergence than the Picard iterations: theoretically, the former
converges quadratically and the latter linearly. A drawback of the Newton method is that
its radius of convergence (actually, the set in which the initial guess can be chosen for the
method to converge) might be quite small. The Picard algorithm is, in general, more robust
with respect to the initialization: in fact, it is usually advised to initialize the Newton
method with some Picard steps and then possibly switch to the Newton method.

A variant of the Newton method is to keep the Jacobian computed at the first iteration.
Moreover, if available, a factorization of the matrix might be performed only once and then
stored to be used at all the following iterations, resulting in significant computational savings
at the price of extra memory storage. This technique is well-known and sometimes called
the secant method, or modified Newton. However, the secant method is often less efficient
and robust than the original Newton method. Another variant consists in updating the
inverse of the Jacobian at each step by using known quantities: this leads to the so-called
quasi-Newton methods. The reader is referred to Engelman et al. (1981) for a more detailed
discussion on nonlinear methods for the NSE and an introduction to the quasi-Newton
methods. �

1.3.5 Time-stepping and velocity-pressure coupling

In this section, for the sake of simplicity, we consider (i) the Stokes equations, (ii) homoge-
neous Dirichlet boundary conditions, (iii) first-order implicit time discretizations (Backward
Euler), (iv) whereas the spatial variable is not discretized. The resulting semi-discrete prob-

28 Ch. 1 Introduction

lem then reads:

un − un−1

∆t − ν∆un +∇ pn = fn , in Ω ,

∇ · un = 0 , in Ω ,

u0 = u0 , in Ω ,

un = 0 , on ∂Ω ,

(1.18)

where ∆t > 0 is the time-step, taken constant for simplicity. Popular time-stepping tech-
niques addressing the velocity-pressure coupling for problem (1.18) are now reviewed.

Monolithic approach

The monolithic approach consists in addressing directly the saddle-point problem (1.18).
No further approximation is considered. The solution hence satisfies many interesting prop-
erties: it is divergence-free and verifies the correct BCs. However, solving the saddle-point
problem may be demanding as mentioned above. In particular, the conditioning of the
pressure Schur complement matrix associated with (1.18) degrades with the time step (see,
e.g. Ern and Guermond (2004)).

Projection method

The projection method is undoubtedly one of the most used strategies to avoid having to
deal with a strong velocity-pressure coupling and, consequently, a saddle-point problem. The
reader is referred to Guermond et al. (2006) for a more detailed overview of the projection
method, so that we only give here a brief introduction.

The projection method is sometimes regarded as a fractional-step method since (at least)
two problems are solved per time step, leading to two approximations of the velocity. The
projection method is based on the well-known Helmholtz–Hodge decomposition: the (first)
velocity, solution to a relaxed momentum equation, is projected onto a convenient space
by ensuring that the final result is divergence-free. This explains why the method is also
known as prediction-correction. Several possibilities have been developed to perform the
relaxation. In the first and simplest version, the one derived in the late sixties in Chorin
(1968, 1969) and Temam (1969b), one simply drops the pressure in the momentum equation
and solves sequentially the following problems:

ũn − un−1

∆t − ν∆ ũn = fn in Ω ,

ũn = 0 on ∂Ω ,

(1.19a)

un − ũn
∆t +∇ pn = 0 in Ω ,

∇ · un = 0 in Ω ,

un · n∂Ω = 0 on ∂Ω .

(1.19b)

Thus instead of a saddle-point problem, one solves a vector-valued diffusion-reaction prob-
lem, and then a scalar Poisson problem with Neumann BCs for the pressure (obtained by
taking the divergence of the first equation in (1.19b) and owing to the incompressibility
constraint). Notice that both approximations of the velocity, ũn or un, present a drawback:
only the latter is divergence-free, whereas only the former fully satisfies the BCs.

Remark 1.6 - Continuous counterpart. It was mentioned that the method hinges on a
Helmholtz–Hodge decomposition. We follow Chorin (1968) (see also Gresho (1990)). One
rewrites (1.2a) as ∂u

∂t +∇ p = F (t, u) := f + ν∆u and observes that, on the left-hand side,

1.3 Numerical methods for the Navier–Stokes equations 29

∇ · (∂u∂t) = 0 and ∇ × ∇ p = 0. Hence, the left-hand side constitutes a Helmholtz–Hodge
decomposition of the right-hand side. On this basis, one drops the pressure and seeks the
approximation ũ such that ∂ũ

∂t = F (t, u) and then one solves ∂u
∂t +∇ p = ∂ũ

∂t = F (t, u) with
∇ · u = 0. Once a time discretization is applied, the two systems in (1.19) are recovered �

It has been shown that, under appropriate regularity assumptions, the solution of (1.19)
satisfies (see Shen (1992a, Thm. 1) or Guermond et al. (2006, Thm. 3.1)):

N∑

n=0
∆t
(
‖u(tn)− un‖2L2(Ω) + ‖u(tn)− ũn‖2L2(Ω)

)
≤ C∆t2 ,

N∑

n=0
∆t ‖p(tn)− pn‖2L2(Ω) +

N∑

n=0
∆t ‖u(tn)− ũn‖2H1(Ω) ≤ C∆t ,

(1.20)

where C > 0 is a constant which depends on suitable norms of u and p and the final time
T , but not on ∆t.

The projection method suffers from some well-known drawbacks. First of all, it has an
intrinsic error due to the velocity-pressure splitting that limits the accuracy in time; see, for
instance, Shen (1992b, 1993), Actually, the stability of some high-order time discretization
scheme has not been verified yet, see Guermond et al. (2006, Section 11.1). A weak point of
the projection method is the boundary conditions. For one, the final velocity, the one ob-
tained in (1.19b), does not satisfy the tangential Dirichlet BCs. Furthermore, a consequence
of (1.19b) is an unphysical boundary condition. This is partly overcome by considering the
rotational formulation, in Remark 1.7, see Guermond et al. (2006, Remark 3.2 and Section
3.3). Despite these drawbacks, projection methods still remain among the most popular
strategies to deal with the NSE owing to their efficiency
Remark 1.7 - Alternative formulations. The formulation (1.19), and (1.19a) in par-
ticular, can be improved in several ways. We briefly address two of the most common
alternatives. First, instead of neglecting the pressure, a known approximation of the pres-
sure can be included in (1.19a) for better accuracy. For instance, it has been proposed in
Goda (1979)4 to subtract ∇ pn−1 on the left-hand side of (1.19a), thus making ∇ (pn−pn−1)
appear in (1.19b), whence the name incremental formulation. Another common formulation
has been introduced in Timmermans et al. (1996) and is often called the rotational formu-
lation, since it takes advantage of the differential identity −∆ = ∇ × (∇×) − ∇ (∇·) to
improve the order of convergence in time. Less commonly, the roles of velocity and pressure
can be exchanged, so that the velocity is first dropped and then corrected: this leads to the
so-called velocity-correction methods, see Guermond and Shen (2003) or Guermond et al.
(2006, Section 4). Finally, for the applications to the NSE, see, for instance, Kim and Moin
(1985) and Shen (1992b). �
Remark 1.8 - Single-velocity version. As shown in Guermond et al. (2006, Section 3.5),
the field u in (1.19) can be eliminated, leaving ũ only. As a matter of fact, one recovers ũ
from the first equation in (1.19b) and use it in (1.19a). Then, writing (1.19b) as a Poisson
problem in primal form as usual, one obtains

ũn − ũn−1

∆t − ν∆ ũn +∇ pn−1 = fn in Ω ,

ũn = 0 on ∂Ω ,

(1.21a)

∆pn = 1
∆t∇ · ũ

n in Ω ,

∇ p · n∂Ω = 0 on ∂Ω .
(1.21b)

4The projection method used in Code_Saturne is inspired by the one proposed in Goda (1979)

30 Ch. 1 Introduction

Finally, notice from (1.20) that both u and ũ satisfy the same error estimate, hence there is
no loss in considering the latter instead of the former. Recall that ũ is not divergence-free,
so that one can look at (1.21) as a problem where the incompressibility constraint has been
relaxed in order to break the velocity-pressure coupling. For this reason, (1.21) shares some
similarities with schemes presented below. �

Penalty method

The penalty method has been introduced in Temam (1968) and hinges on a perturbation of
the incompressibility constraint with which one manages to decouple velocity and pressure.
The resulting semi-discrete system reads

un − un−1

∆t − ν
(

∆un + 1
ε
∇∇ · un

)
= fn ,

pn = − ν

ε
∇ · un ,

(1.22)

where ε > 0 is a nondimensional user-defined parameter. Notice that the pressure does not
appear in the relaxed momentum equation. Actually, it can be eliminated from the system
if one is not interested in it.

Remark 1.9 - Continuous counterpart. Equation (1.22) is obtained by adding at the
time-continuous level a perturbation proportional to the pressure in the mass balance equa-
tion (1.4b) as follows:

∂u

∂t
− ν∆u+∇ p = f ,

∇ · u+ ε

ν
p = 0 .

(1.23)

It has been proved in Temam (1968) that the solution of (1.23) converges to the solution of
the unperturbed problem (1.4) for ε→ 0. �

It has been shown that (adapt from Thm. 5.1 and Remark 5.1 of Shen (1995) where the
NSE are considered; notice also that no spatial discretization has been considered), under
appropriate regularity assumptions (see hypotheses therein), one has

√
tn ‖u(tn)− un‖L2(Ω) + tn ‖u(tn)− un‖H1(Ω) ≤C(∆t+ ε) , ∀n = 1, . . . , N ,

∆t
N∑

n=0
(tn)2 ‖p(tn)− pn‖2L2(Ω) ≤C(∆t2 + ε2) ,

(1.24)

where C > 0 is a constant which depends on u, p, and the final time T but not on ∆t and
tn := n∆t.

Remark 1.10 - Choice of ε. The decoupling of velocity and pressure makes the additional
term −1

ε∇∇·u appear in the momentum equation. Owing to what was stated in Remark 1.9,
one tends to choose small values for ε in order for the solution of the penalized system to
be as close as possible to the one of the unperturbed system (furthermore, owing to (1.24),
one is led to choose ε = O (∆t)). However, this will make the conditioning of the related
system increase, thus leading to stiffer matrices and harder inversions. Attention must be
paid when choosing ε, so that a fair trade-off between accuracy and efficiency is found. �

1.3 Numerical methods for the Navier–Stokes equations 31

Artificial Compressibility

The Artificial Compressibility (AC) method first appeared in the Western literature in
Chorin (1967) and Temam (1969a), but it can be traced independently in the Russian
scientific community, see for instance Vladimirova et al. (1966), Yanenko (1971), and La-
dyzhenskaya (1969). AC stems from principles similar to those at the origin of the Penalty
method (Section 1.3.5). As a matter of fact, both schemes consider a relaxed version of the
mass balance equation. The semi-discretized in time problem reads:

un − un−1

∆t − ν (∆un + η∇∇ · un) = fn −∇ pn−1

pn = pn−1 − νη∇ · un ,
(1.25)

where η > 0 is a nondimensional arbitrary parameter.

Remark 1.11 - Continuous counterpart. If in the Penalty method one considers a
relaxation of the mass balance equation with a perturbation proportional to the pressure,
in the AC method the relaxation is proportional to the time-derivative of the pressure:

∂u

∂t
− ν∆u+∇ p = f ,

τ

νη

∂p

∂t
+∇ · u = 0 ,

(1.26)

where τ is a time scale. For instance, considering a first-order time discretization and
setting τ := ∆t, one recovers (1.25). The system (1.26) highlights where the name Artificial
Compressibility comes from: the incompressibility assumption is traded for a low-Mach
number assumption (cf. Guermond and Minev (2015, Section 2.2)). �

The AC method was classically used for approximating steady problems (for instance
this was the principal goal of Chorin (1967)). But it can be applied to unsteady problem
as well. In this case, error estimates for (1.25) (notice that no spatial discretization has
been considered), under appropriate regularity assumptions, are as follows (see Shen (1995,
Prop. 5.1), see also Ern and Guermond (2020, Prop. 75.3)):

∥∥∥u(tN)− uN
∥∥∥

2

L2(Ω)
+

N∑

n=0
∆t ‖u(tn)− un‖2H1(Ω) ≤C

(
∆t2 +

(1
η

)2
)
,

N∑

n=0
∆t ‖p(tn)− pn‖2L2(Ω) ≤C

(
∆t+ 1

η

)
,

(1.27)

where C > 0 depends on u, p, and the final time T , but not on ∆t.
The main difference behavior of the AC method in (1.25) and the Penalty method

in (1.22) is that in the AC method the pressure (at the previous time step) is taken into
account in the momentum equation, while one can drop the pressure in the Penalty method.
However, the most flagrant similarity between the two methods is the usage of the grad-div
operator (compare also the role of η in (1.25) and 1

ε in (1.22)). The remarks about the
grad-div operator made in (1.10) are valid in this case as well. In particular, if one chooses
high values of η in order to be accurate, one will ends up with an ill-conditioned linear
system.

Remark 1.12 - Vector Penalty Projection method. A strategy to temper the numer-
ical difficulties which may come from considering a strong grad-div term in the momentum
balance could be the Vector Penalty Projection (VPP) method. It consists in a splitting

32 Ch. 1 Introduction

technique initially devised for general saddle-point problems (Angot et al., 2012). When
applied to Stokes or NSE (see Angot et al. (2008), Angot and Fabrie (2012) and Angot
et al. (2011) for the Darcy problem) it becomes:

ũn − un−1

∆t − ν∆ ũn = fn −∇ pn−1 ,

ŭn

∆t − ν
(

∆ ŭn + 1
ε̃
∇∇ · ŭn

)
= ν

ε̃
∇∇ · ũn ,

un = ũn + ŭn ,

pn = pn−1 − ν

ε̃
∇ · un .

(1.28)

System (1.28) is equivalent to the AC method (see Angot and Fabrie (2012) or Guermond
and Minev (2015, Section 2.4)). Indeed, set η := 1

ε̃
and sum the first two equations of

(1.28) to recover the first line in (1.25). From an algorithmic standpoint, in VPP one solves
two vector-valued systems per time step (with respect to only one in AC). However, the
grad-div operator appears only in the second equation of (1.28) and, most importantly both
at left- and right-hand side. In doing so, the right-hand side should lie closer to the range
of the operator on the left-hand side. Thus one expects iterative solvers to have better
performances than in the standard case. The version of the VPP method outlined in (1.28)
is often denoted by VPPε̃, to distinguish it from a variant where two user-defined parameters
are considered and which involves a grad-div operator in the first equation as well. This
latter variant is denoted by VPPr,̃ε, and it is not equivalent to the AC method. In fact, it is
inspired by the Augmented Lagrangian technique combined with a splitting which borrows
some similarities to the Penalty method, see Angot et al. (2012) for more details about the
derivation of both VPPε̃ and VPPr,̃ε. �

Remark 1.13 - Higher order. It is shown in Guermond and Minev (2015) that arbitrary
orders of convergence in time can be attained in the context of the AC method by means
of a bootstrapping or defect correction technique. In particular, if one wants to achieve
k-th-order of accuracy in time, k linear systems similar to (1.25) (meaning that they are
composed of similar operators, in particular the grad-div operator always appears) have to
be solved per time step. This is a sizeable advantage with respect to the other two segregated
methods presented above, namely the Projection and the Penalty methods, for which orders
higher than second cannot be proved.

The AC method for the NSE has been considered in Guermond and Minev (2015) and, in
order to remain in the spirit of the method (namely, being efficiency-oriented), it is suggested
to use an explicit convection term. If one wants to avoid the stability limitation that such
a choice induces on the admissible values of the time step, one could choose to consider a
linearized convection operator. �

Remark 1.14 - Algebraic consequences of the grad-div operator. Solving linear
systems with the additional term −η∇∇ · u might not be so easy, hence reducing the
advantages the AC method not as much convenient with respect to the coupled system
(i.e. the saddle-point problem of the monolithic approach). On the one hand, owing to
(1.27), one tends to choose high values for η which could lead to ill-conditioned systems. On
the other hand, the grad-div operator couples all the Cartesian components of the velocity,
hence increasing the filling of the matrix with extra-diagonal entries. A solution to this
latter problem consists in considering direction-splitting schemes as proposed in Guermond
and Minev (2017). For instance, in two dimensions, a Gauss–Seidel-like splitting method

1.3 Numerical methods for the Navier–Stokes equations 33

Table 1.2 – Main features of the time-stepping strategies for the unsteady NSE discussed
in Section 1.3.5. The methods that will be considered in this Thesis are highlighted (“HH”
stands for “Helmholtz-Hodge”).

Monolithic Projection Penalty AC
Key feature Saddle-point HH splitting grad-div grad-div

Pros Accuracy Simplicity Efficiency Efficiency
Arbitrary order Arbitrary order

Cons Numerical effort BCs Relaxed mass Relaxed mass
Limited order Adjust parameter Adjust parameter

No p feedback

could rely on replacing

∇∇ · vn =

∂
∂x1

(∂v
n
1

∂x1
+ ∂vn2

∂x2
)

∂
∂x2

(∂v
n
1

∂x1
+ ∂vn2

∂x2
)

 with

∂
∂x1

(∂v
n
1

∂x1
+ ∂vn−1

2
∂x2

)
∂
∂x2

(∂v
n
1

∂x1
+ ∂vn2

∂x2
)

 . (1.29)

The 2D unsteady Stokes AC problem modified by taking the right-hand side of (1.29) is
proved to be unconditionally stable. However, to our knowledge there is no theoretical proof
in 3D, although the numerical results in Guermond and Minev (2017) suggest a stable a
stable behavior. �

Summary and retained techniques

We give in Table 1.2 a one-glance summary of the time-stepping techniques discussed in
this section. Among these methods, two will be retained and used in this Thesis, namely
the monolithic approach and the AC method. The monolithic approach has been retained
because it is the only one that does not introduce an additional error: although it may
require an important numerical effort, the monolithic approach will be our choice when
accuracy is of order. On the other end of the spectrum, one can find the AC method which
is oriented towards efficiency. One can choose this method when some accuracy might be
traded in favor of quick results. We prefer the AC method over the Penalty technique
although the two are somewhat similar because we think it lies on more sound basis and,
furthermore, the possibility of devising time schemes with arbitrary order of convergence is
very promising (although, no order higher than the second is considered in this Thesis).

Remark 1.15 - Stabilization by grad-div. We have encountered the grad-div operator
several times in our discussion. As a matter of fact, it is known to have a stabilizing effect
on the system and to help in recovering divergence-free discrete solutions. The grad-div
operator is at the core of the Augmented Lagrangian technique (Hestenes, 1969; Fortin and
Glowinski, 1983): recall that in Aλ := A + λBTB from (1.14), the term BTB is a discrete
vision of the continuous grad-div operator. Furthermore, several authors advocate adding
the grad-div operator even when the monolithic approach is retained, see, for instance,
Olshanskii (2002), Olshanskii and Reusken (2004), Olshanskii and Benzi (2008), Layton et
al. (2009), and Galvin et al. (2012). Finally, in the Penalty and AC methods, the grad-div
operator is the result of the decoupling of the velocity and the pressure. A drawback of the
grad-div operator is that it couples all the Cartesian components of the velocity (which is not
the case for the diffusion operator, for instance) and thus increases the filling of the matrix.
However, see Remark 1.14 for some insight on how to deal with the grad-div operator. �

34 Ch. 1 Introduction

1.4 Document overview
The topics of the four chapters which constitute the rest of this Thesis are summarized here.
Part of Chapter 2 and some numerical results given in Chapter 3 have been presented in

• Bonelle, J., Ern, A., and Milani, R. (2020). “Compatible Discrete Operator schemes
for the steady incompressible Stokes and Navier–Stokes equations”. In: Finite Vol.
Complex Appl. IX; Methods Theor. Aspects. Ed. by R. Klöfkorn et al. Vol. 323.
Springer Proc. Math. Stat. Bergen: Springer International Publishing, pp. 93–101.

Chapter 2 sets the discrete setting that is considered in this Thesis. It opens with the
definition of some useful notation, the mesh regularity assumptions are stated, and the CDO-
Fb discretization (a low-order hybrid discretization with cell- and face-based DoFs) for the
NSE is introduced. Next, the discrete operators used in this Thesis are presented. We start
by extending to the vector-valued case the stabilized gradient reconstruction introduced
in Bonelle (2014, Section 8.3); consistency (i.e. exactness on affine functions) and stability
properties are proved. The second operator is the divergence, which ensures the velocity-
pressure coupling; a discrete inf-sup condition is proved. Lastly, taking inspiration from the
HHO framework, an advection operator for scalar problems is introduced and then extended
to the vector-valued case in order to recover a suitable operator for the convection term in
the NSE. We prove a bound on the consistency error for the scalar operator, recover a
discrete counterpart of a well-known integration-by-parts result and, finally, show that the
convection operator is non-dissipative under appropriate conditions.

The CDO-Fb discretization of the incompressible steady Stokes and NSE is addressed
in Chapter 3. Firstly, we derive the discrete variational formulation of the Stokes equations
using the CDO-Fb operators introduced in Chapter 2. It is then shown how these operators
are implemented in practice, and an algebraic point of view of the static condensation
(procedure which enables one to temporarily eliminate the cell-based DoFs) is given as well.
The same steps are then followed for the NSE. The setting is tested on classical test cases,
such as the 2D Bercovier–Engelman flow for the steady Stokes problem, or the 2D lid-driven
cavity problem for the NSE. When reference solutions are available, the expected orders of
convergence in space are investigated for discrete L2- and H1-like norms of the velocity and
the L2-like norm of the pressure.

Chapter 4 deals with the unsteady versions of the Stokes and NSE introduced in the
previous chapter. A simple setting consisting in an implicit first-order time discretization is
considered. In the first part, two common strategies used to deal with the velocity-pressure
coupling are discussed: the monolithic approach, chosen for its accuracy, and the Artificial
Compressibility (AC) method, chosen for its efficiency. For each strategy, advantages and
drawbacks are discussed, discretized systems by means of CDO-Fb schemes are presented,
and a kinetic energy balance is given. In the second part of the chapter, we move to the
NSE and we compare three classical techniques to address the nonlinear term resulting from
the convection term. We consider, in particular, a Picard algorithm as well as a linearized
and an explicit treatment. Some insights are given in order to recover a discrete kinetic
energy balance. Finally, numerical tests are presented, such as the 2D Taylor–Green vortex,
in order to assess the implementation and the accuracy of our time-stepping techniques.
Moreover, taking advantage of a large-size test case on an unsteady Stokes problem, we
compare the performances of the monolithic approach and the AC method. We also study
numerically the stability limit on the time-step when treating the convection term explicitly.

The analysis of a second-order time-discretization of the unsteady NSE with CDO-Fb
is the subject of Chapter 5. If, on the one hand, a classical method such as the Backward
Differentiation Formulae (BDF) suffices for the monolithic approach, a more sophisticated
technique has to be considered with the AC strategy, that is, a bootstrapping procedure

1.4 Document overview 35

introduced in Guermond and Minev (2015). In the case of the NSE, we couple both strategies
with the convection treatments presented in Chapter 4. Finally, considering again the same
numerical examples as in Chapter 4 allows us, on the one hand, to show that the expected
orders of convergence in time are recovered and, on the other hand, to compare not only the
two velocity-pressure couplings (monolithic and AC), but also the two time-schemes (first-
and second-order) in order to see which strategies are the most efficient.

36 Ch. 1 Introduction

Chapter 2

Discrete face-based CDO setting

Contents
2.1 The mesh . 37

2.1.1 Basic definitions . 38
2.1.2 Mesh regularity . 39

2.2 Functional discrete setting and degrees of freedom 40
2.2.1 Degrees of freedom in a CDO-Fb discretization 41
2.2.2 Reduction maps . 42

2.3 Velocity gradient reconstruction 43
2.4 Velocity-pressure coupling . 47

2.4.1 Main definitions and basic properties 47
2.4.2 Inf-sup condition . 49

2.5 Scalar-valued advection and vector-valued convection 50
2.5.1 Scalar-valued advection . 50
2.5.2 Vector-valued convection . 55

2.6 Source term . 60

This chapter introduces the discretization tools on which the face-based CDO (CDO-
Fb) problem is built. Firstly, in Section 2.1, the notion of mesh is introduced along with
the needed regularity assumptions. The discrete functional spaces and related degrees of
freedom (DOFs) are presented in Section 2.2. Then, the CDO operators needed to build the
Navier–Stokes equations (NSE) are discussed: the gradient reconstruction in Section 2.3,
velocity-pressure coupling in Section 2.4, the convection operator in Section 2.5, and finally
the body force treatment in Section 2.6.

2.1 The mesh
We now introduce the notation and the geometric setting on which the design of CDO-Fb
hinges. Let Ω ⊂ Rd be an open, polytopal, bounded, Lipschitz domain on which the NSE are
posed. The space dimension may take the values d ∈ {2, 3}. The boundary of the domain
is denoted by ∂Ω, and its outward unit normal, which can be defined (almost) everywhere
on ∂Ω, is denoted by n∂Ω. This section deals with the way of discretizing the domain Ω.
We notice that even though the vocabulary is related to three-dimensional settings, the
discussion can be carried out in two dimensions as well.

38 Ch. 2 CDO-Fb setting

2.1.1 Basic definitions

Definition 2.1 - Mesh. A mesh M := {F, C} is a discretization of Ω composed of elements
of dimension d, the cells, and d−1, the faces. The set of the cells is a finite collection C := {c}
of nonempty, disjoint, open polytopes covering Ω exactly. A generic mesh element is denoted
by c. A generic mesh face is denoted by f and the mesh faces are collected in the set F. If
d = 2, faces are also called edges. The mesh also contains vertices and edges (which differ
from faces if d ≥ 3), but these additional mesh entities are not needed in what follows. ◦

Definition 2.2 - Internal and boundary faces. The set of the faces is partitioned into
boundary and internal faces. The former are subsets of ∂Ω, and collected in Fb := {f ∈
F | f ⊂ ∂Ω}. The latter are those faces shared by two distinct cells, and they are collected
in the set is Fi := F \ Fb. ◦

The faces are supposed to be planar. This property is assumed so that one can define a
constant unit normal vector, denoted by nf , valid for the whole face. It is chosen to point
outward of Ω if f ∈ Fb, and its orientation is left arbitrary but fixed once and for all if f ∈ Fi.

Let us set some convenient notation and definitions. The hash symbol # will stand for
the cardinality of a set: for instance, #Fb is the number of boundary faces. The classical
Hausdorff measure of sets in Rd′ , 1 ≤ d′ ≤ d, is denoted by |·| and the subscript is dropped
if there is no ambiguity. Hence, |c| is the volume of c ∈ C and |f| is the surface of f ∈ F.
Moreover, |x1 − x2| is the distance between x1, x2 ∈ Rd.

Definition 2.3 - Barycenter of a mesh entity. The barycenter of a generic mesh entity
z = c or z = f is denoted by xz:

xz := 1
|z|

∫

z
x . ◦ (2.1)

Definition 2.4 - Diameter of a mesh entity. One defines the diameter of a generic
mesh entity z = c or z = f as follows:

hz := max
x1,x2∈z

|x1 − x2| . ◦ (2.2)

Definition 2.5 - Mesh size. h := maxc∈C hc is called the size of the mesh M. ◦

The following property is assumed to hold for all the meshes considered in this Thesis.

Definition 2.6 - Barycentric star-shapedness. Given a mesh M = {C,F}, every cell
c ∈ C is star-shaped with respect to its barycenter xc. The same holds for every face f ∈ F
with respect to its barycenter xf . ◦

Let us also define some convenient local objects which will be used in what follows.
Consider a cell c ∈ C. The faces composing its boundary are collected in the set

Fc := {f ∈ F | f ⊂ ∂c} . (2.3)

For each face f ∈ Fc, a unit normal vector pointing outward c is denoted by nfc. Hence,
nfc = ιf,cnf , where ιf,c = ±1 according to the orientation which was chosen for nf . We are
going to make use of a subdivision of the cell c as Pc := {pf,c}f∈Fc , where the subsets pf,c are
the nonempty, disjoint subpyramids (or subtriangles if d = 2) obtained by considering the
cell barycenter xc as apex, and a face f ∈ Fc as basis. The set Pc indeed induces a partition
of c if c is star-shaped with respect to its barycenter, which is ensured by Definition 2.6. An
example of a mesh cell and of one subpyramid is shown in Fig. 2.1.

2.1 The mesh 39

xc

pf,c

Figure 2.1 – Example of a face-based subdivision of a 3D cell with one hanging node: because
of the hanging node, this pentagon-prismatic cell is considered to have 10 faces (instead of
7). A subpyramid obtained by considering a face as basis and the cell-barycenter as apex is
highlighted.

A useful identity is as follows:
∑

f∈Fc

|f|nfc = 0 ∀c ∈ C . (2.4)

This identity is simply proved by observing that ∑f∈Fc |f|nfc =
∫
∂c n∂c = 0, where the first

equality holds since the faces are planar.
Given a face f ∈ F, Cf is the set of the cells whose boundary contains f, that is, Cf :=

{c ∈ C | f ⊂ ∂c}, yielding

#Cf =
{

2 f ∈ Fi,
1 f ∈ Fb .

(2.5)

2.1.2 Mesh regularity

We are going to consider the setting of Di Pietro and Ern (2015) (see also Di Pietro and
Ern (2011, Section 1.4)). The main definitions and results are recalled here for the sake of
completeness. The chosen mesh framework is often considered when dealing with polyhedral
meshes (see, for instance, Brezzi et al. (2009) and Eymard et al. (2010)). On the one hand,
once the appropriate functional spaces are set, it allows one to recover essential properties
which are classically used in the Finite Element literature such as the trace and inverse
inequalities (see, for instance, Ern and Guermond (2004, Section 1.7)). On the other hand,
the needed assumptions are fairly general and are often met in most of the meshes that are
commonly used in practical implementations or applications.

Before stating the assumptions on the mesh regularity, some further definitions are
required. Consider a mesh sequence MH := {Mh}h∈H, where the set H := {h ∈ R |h > 0}
is such that it is countable and its only accumulation point is 0. The index h indicates the
size of the mesh, see Definition 2.4 above. Let us recall the classical definition of a simplex.

Definition 2.7 - Simplex. Fix a dimension d ≥ 2. For any d′ = {1, . . . , d}, given a set of
(d′ + 1) points in Rd {x0, . . . , xd′}, such that the vectors {x1 − x0, . . . , xd′ − x0} are linearly
independent, the convex hull of the points is called a d′-dimensional simplex in Rd (in short,
simplex if d′ = d). ◦

Definition 2.7 leads to a triangle if d′ = 2, and to a tetrahedron if d′ = 3.

Definition 2.8 - Matching simplicial submesh. Fix a dimension d ≥ 2 and take a
general mesh Mh = {F,C} and a simplicial one Sh = {F,C} (all its faces and cells are
simplexes). Then, Sh is said to be a matching simplicial submesh of Mh if:

40 Ch. 2 CDO-Fb setting

(i) For any c ∈ C with vertices {x0, . . . , xd}, for any c′ ∈ C, c′ 6= c such that ∂c′ ∩ ∂c is not
empty, this subset is a lower-dimensional simplex formed from a subset of {x0, . . . , xd};

(ii) For any c ∈ C, there exists only one c ∈ C such that c ⊂ c;

(iii) For any f ∈ F, there exists only one f ∈ F such that f ⊂ f. ◦
The following definition deals with classical regularity requirements of mesh sequences

and will be assumed to hold for all the mesh sequences considered in this Thesis.

Definition 2.9 - Shape regularity. A mesh sequence MH is said to be shape-regular if
for all h ∈ H:

(SR1) Mh admits a matching simplicial submesh Sh which is itself shape-regular in the usual
sense of Ciarlet (1978): there exists ρ1 > 0, independent of h ∈ H, such that

ρ1hc ≤ rc ∀c ∈ C , (2.6)

where rc is the inradius of c (the diameter of the largest ball inscribed in c);

(SR2) There exists ρ2 > 0, independent of h ∈ H, such that

ρ2hc ≤hc ∀c ∈ C, ∀c ∈ C such that c ⊂ c ,
ρ2hf ≤hf ∀f ∈ F, ∀f ∈ F such that f ⊂ f . ◦ (2.7)

Remark 2.10 - Equivalent length scales. Notice that assumptions (SR1) and (SR2)
lead to

ρ1ρ2hc ≤ hf ≤ hc ∀c ∈ C, ∀f ∈ Fc . � (2.8)

Remark 2.11 - Uniformly bounded cardinality. Consider a mesh Mh = {F,C} ∈ MH

and its simplicial matching submesh Sh = {F,C}. Let Cc := {c ∈ C} and Ff := {f ∈ F}.
Then, assuming Definition 2.9, Di Pietro and Ern (2011, Lemmata 1.40-41) prove that #Cc,
#Ff and #Fc are uniformly bounded with respect to h. �
Remark 2.12 - Original CDO mesh requirements. Owing to Remark 2.11, the require-
ments for a sequence of meshes to be of class (MR) according to Bonelle (2014, Definition
5.8) (see also Bonelle and Ern (2014)), which collects the mesh regularity assumptions in
the first version of CDO, are met by a shape-regular sequence in the sense of Definition 2.9.
The mesh regularity assumptions considered for the CDO framework in Cantin (2016) are
also met by Definition 2.9, provided that the star-shapedness (see Definition 2.6) is addition-
ally assumed. Inequality (2.8) is recovered also from class (MR) (allowing one to replace
hypothesis (SR2) with the uniform boundedness of the simplicial sub-decomposition, see
Brezzi et al. (2009)). �

2.2 Functional discrete setting and degrees of freedom
We set in this section the functional spaces considered in the CDO-Fb discretization and
how they translate into DoFs.

Let us set some preliminary notation. For a generic mesh entity z = c or z = f, Pq(z)
(resp. P denotes the Rd-valued (resp. tensor-valued) polynomials of degree q at most and
defined on z. For instance, if d = 3, P1(c) collects the R3-valued affine functions defined on
c. If the polynomials are scalar, the underline is omitted: P1(c) collects the scalar-valued
affine functions defined on c. With an abuse of notation, if now one considers a collection
Z of mesh entities instead of a single mesh entity as the domain of the polynomials, Pq(Z)
refers to piecewise-polynomials functions; for instance, P1(Fc) :=×f∈Fc

P1(f).

2.2 Functional discrete setting and degrees of freedom 41

2.2.1 Degrees of freedom in a CDO-Fb discretization
The CDO-Fb setting is a lowest-order discretization, hence it considers piecewise constant
variables. A discrete, vector-valued variable, such as the velocity for instance, is discretized
using the following spaces:

Uz := P0(z) ≡ Rd , with z ∈ F or z ∈ C . (2.9)

A generic element of Uz is usually reported with a lower-case underlined letter and a sub-
script indicating the mesh entity on which it is defined: for instance, we write uf ∈ U f . In
the CDO-Fb discretization, the velocity is hybrid, meaning that it has DoFs attached to
both faces and cells. Considering a cell c ∈ C, the local hybrid velocity space associated
with c is defined as follows:

Ûc :=×
f∈Fc

U f × Uc ≡ Rd(#Fc+1) , ∀c ∈ C . (2.10)

Hybrid variables and spaces will be denoted with a hat: ûc := ((uf)f∈Fc , uc) ∈ Ûc. When
considering the global space, the face values are uniquely defined, so that the global hybrid
velocity space is not simply the union of the local ones, but instead

Ûh :=×
f∈F
U f × ×

c∈C
Uc ≡ Rd(#F+#C) . (2.11)

For a generic v̂h ∈ Ûh, we use the notation

v̂h := (vF, vC) = ((vf)f∈F, (vc)c∈C) . (2.12)

Remark 2.13 - Summation over face-based DoFs. Owing to the single-valuedness of
the face-based DoFs and the skew-symmetry of the normal vector at an internal face with
respect to the two adjacent cells, one has for all v̂h ∈ Ûh,

∑

c∈C

∑

f∈Fc

∫

f
vf · nfc =

∑

f∈F

∑

c∈Cf

∫

f
vf · nfc =

∑

f∈Fb

∫

f
vf · nf +

∑

f∈Fi

∑

c∈Cf

∫

f
vf · nfc

=
∑

f∈Fb

∫

f
vf · nf +

∑

f∈Fi

∫

f
vf · (nfc − nfc) =

∑

f∈Fb

∫

f
vf · nf ,

(2.13)

where only the boundary faces are left since the contribution of the internal ones sums
to zero. Using the same arguments, a similar identity is proven for a continuous function
v ∈ C0(Ω):

∑

c∈C

∑

f∈Fc

∫

f
v · nfc =

∑

f∈Fb

∫

f
v · nf . � (2.14)

Concerning the CDO-Fb discrete pressure, it is attached to the cells only. Hence, follow-
ing a similar notation to that for the velocity, the local and global discrete pressure spaces
are

Pc := P0(c) ≡ R, ∀c ∈ C, Ph :=×
c∈C
Pc ≡ R#C . (2.15)

The complete set of DoFs for velocity and pressure in a polyhedral cell is shown in Fig. 2.2.
When devising the CDO-Fb discretization of NSE, we consider for the sake of simplicity

homogeneous Dirichlet boundary conditions (BCs) for the velocity and a zero mean-value
constraint on the pressure. We take into consideration these two constraints directly in the
(discrete) functional spaces, namely we additionally define:

Ûh,0 :=
{
v̂h ∈ Ûh | vf = 0 ∀f ∈ Fb

}
, (2.16)

Ph,∗ :=

qh ∈ Ph |

∑

c∈C
|c| qc = 0

 . (2.17)

42 Ch. 2 CDO-Fb setting

= vector
(velocity)

= scalar
(pressure)

Figure 2.2 – Velocity (vectors) and pressure (ball) degrees of freedom for a CDO-Fb dis-
cretization on a cell with one hanging node. Face-based DoFs are depicted in orange,
cell-based ones in green.

2.2.2 Reduction maps
Reduction maps are operators that allow one to compute discrete DoFs from continuous (or
smooth enough) functions. For our framework, where the discrete spaces are composed of
functions which are entity-wise constant, it is sufficient to consider L2-orthogonal projections
(that is, mean values).

Definition 2.14 - Local orthogonal projections. Let c ∈ C and consider z = c or z = f
with f ∈ Fc. Set D(πz) = L1(c) if z = c, and D(πz) = Hs(c), s > 1

2 , if z = f ∈ Fc. The
orthogonal L2-projection corresponds to the average of the function on c or the average of
the trace of the function on f, and is defined as follows

πz : D(πz) → P0(z) ≡ R

q 7→ 1
|z|

∫

z
q .

(2.18a)

Notice that the subscript denotes the entity onto which the reduction is made. For d-valued
functions, such as the velocity, one defines similarly

πz : D(πz) → P0(z) ≡ Rd

v 7→ 1
|z|

∫

z
v ,

(2.18b)

where D(πz) = L1(c) if z = c, and D(πz) = Hs(c), s > 1
2 , if z = f ∈ Fc. Recall that the

underlined notation indicates a vector-valued field; thus, for instance, L2(z) := [L2(z)]d, and
similarly for H1. Finally, when dealing with the projection onto hybrid spaces, we set

π̂c : Hs(c) → Ûc
v 7→

(
(πf(v))f∈Fc , πc(v)

)
,

(2.18c)

with s > 1
2 . ◦

Definition 2.15 - Global orthogonal projections. Definition 2.14 is extended readily
to the global spaces by setting

π̂h(v) :=
(
(πf(v))f∈Fc , (πc(v))c∈C

)
∈ Ûh , ∀v ∈ Hs(Ω) , s > 1

2 ,

πh(q) := (πc(q))c∈C ∈ Ph , ∀q ∈ L2(Ω) .
(2.19)

Notice that π̂h(v) ∈ Ûh,0 if v ∈ H1
0(Ω) and πh(q) ∈ Ph,∗ if q ∈ L2

∗(Ω). ◦

2.3 Velocity gradient reconstruction 43

ûc G0
c(ûc)

+

Gs
c(ûc)

Figure 2.3 – Building stages of the gradient reconstruction operator Gc = G0
c + Gs. For the

sake of clarity, we have considered a scalar-valued hybrid variable ûc. The consistent part G0
c

is cell-wise constant, the stabilization part Gs
c is piecewise constant on the cell subpartition.

Face- and cell-based quantities are shown, respectively, in orange and green.

2.3 Velocity gradient reconstruction
The first operator needed in the discretization of the NSE is the reconstruction of the
gradient of the velocity, used to deal with the diffusive part of the problem. This operator
is based on an orthogonal consistency-stabilization split identified in Bonelle et al. (2015)
and it has been considered for the scalar Laplacian problem in Bonelle (2014, Ch. 8). Here,
we readily extend it to the vector-valued case and recall its main properties.

Definition 2.16 - Local velocity gradient reconstruction. Consider a cell c ∈ C and
its pyramidal partition Pc. The tensor-valued velocity gradient reconstruction Gc(ûc) is
defined as follows

Gc : Ûc → P0(Pc) := [P0(Pc)]d×d
ûc 7→ G0

c(ûc) + Gs
c(ûc)

(2.20a)

where G0
c : Ûc → P0(c) is cell-wise constant and defined as follows:

G0
c(ûc) := 1

|c|
∑

f∈Fc

|f| (uf − uc)⊗ nfc, (2.20b)

and Gs
c : Ûc → P0(Pc) is piecewise constant on the subpyramids: ∀f ∈ Fc, we set

Gs
c(ûc)|pf,c := β

|f|
|pf,c|

(
(uf − uc)−G0

c(ûc)(xf − xc)
)
⊗ nfc , (2.20c)

with β > 0 being an arbitrary parameter. Unless stated otherwise, we will take β := 1. The
principles of the gradient reconstruction are illustrated in Fig. 2.3. ◦

Definition 2.17 - Global velocity gradient reconstruction. The global version of the
gradient Gh(ûh) simply collects the local instances:

Gh : Ûh → [P0({Pc}c∈C)]#C

ûh 7→
(
Gc(ûc)

)
c∈C

.
(2.21)

◦

Remark 2.18 - Comparison with similar schemes. Some remarks about the gradient
reconstruction have already been made in Section 1.2.2, in particular for the gradient of
scalar functions and an elliptic problem, settings which we consider again here for the sake

44 Ch. 2 CDO-Fb setting

of simplicity. It has been proven in Bonelle (2014, Prop. 8.38) that the CDO-Fb formulation
of the gradient is equivalent to the one of the HFV/SUSHI scheme developed in Eymard
et al. (2010) for the choice β := 1√

d
of the user-defined stabilization parameter. This is not

surprising since it often happens that lowest-order schemes hinging on a stabilized gradient
reconstruction are equivalent up to a comparable stabilization. This is the case for the
Generalized Crouzeix–Raviart scheme from Di Pietro and Lemaire (2015) as well. The
gradient discretization proposed in this framework can be recovered from the CDO-Fb one
by choosing β := 1.

We have already pointed out in Section 1.2.2 (see also Fig. 1.5) the differences between
CDO-Fb and the lowest-order HHO method (see Di Pietro et al. (2014) for instance for
the simplest setting). In particular, the gradient reconstruction in HHO(k = 0) is cell-
wise constant and a stabilization is added to the scheme, whereas in CDO-Fb the gradient
reconstruction is piecewise constant on the cell subdivision and no additional stabilization
(apart from the one built-in through Gs

c) is needed. Lemma 2.23 shows that the HHO
(stabilized) bilinear form is equivalent to the one resulting from the CDO-Fb discretization
up to a comparable stabilization coefficient. �

The design of G0
c stems from the following geometric identity, valid when the faces are

planar (see, e.g. Droniou and Eymard (2006) for the proof)
∑

f∈Fc

|f| (xf − xc)⊗ nfc = |c| Id . (2.22)

G0
c is called the consistent part of the gradient reconstruction since it is exact for affine

functions. Let us prove this result.

Lemma 2.19 - Exactness of G0
c on P1(c). Given the definitions (2.20b) of G0

c and (2.18c)
of π̂c, it holds

G0
c ◦ π̂c = ∇ on P1(c) , ∀c ∈ C . (2.23)

Proof. Consider a generic affine function P1(c) 3 φ(x) := T x + b, with T ∈ Rd×d and
b ∈ Rd. We are going to prove that G0

c(π̂(φ)) = ∇ φ = T . Recall that φ
z

:= πz(φ) =
1
|z|
∫
z φ = (φ)(xz) for z = f, c where the last equality is ensured by the linearity of φ and

having chosen the entity barycenter xz. Then, φf − φc = T (xf − xc) = ∇φ(xf − xc), and
plugging this identity into (2.20b) and using (2.22), one gets G0

c(π̂c(φ)) = ∇ φ.

Moving to Gs
c, this part of the gradient reconstruction embodies a stabilization relying

on a first-order Taylor expansion of the form vf ≈ vc + G0
c(v̂c)(xf − xc). Let us give two

useful properties of Gs
c.

Corollary 2.20 - G0
c on P1(c). Gs

c vanishes for affine functions. In particular, given the
definitions (2.20c) of G0

c and (2.18c) of π̂c, it holds

Gs
c(π̂c(φ)) = 0, ∀φ ∈ P1(c) , ∀c ∈ C . (2.24)

Proof. One proceeds as in the proof of Lemma 2.19. Considering a generic affine function
φ ∈ P1(c), one can write φf−φc = ∇φ(xf−xc) = G0

c(π̂c(φ))(xf−xc) where the last equality
comes from Lemma 2.19. It readily follows that Gs

c(π̂c(φ))|pf,c = 0 for all f ∈ Fc.

Lemma 2.21 - Average of Gc. The following holds true:
∫

c
Gs

c(v̂c) = 0, ∀v̂c ∈ Ûc , ∀c ∈ C . (2.25)

Consequently:

2.3 Velocity gradient reconstruction 45

(i) G0
c and Gs

c are L2-orthogonal, in the sense that
∫

c
G0

c(v̂c) : Gs
c(v̂c) = 0, ∀v̂c ∈ Ûc , ∀c ∈ C . (2.26)

(ii) G0
c is the average of Gc:

1
|c|

∫

c
Gc(v̂c) = G0

c(v̂c), ∀∀v̂c ∈ Ûc , ∀c ∈ C . (2.27)

Proof. (2.26) is readily obtained from (2.25) by recalling that G0
c is constant on a cell and

observing that, for all c ∈ C and all v̂c ∈ Ûc
∫

c
G0

c(v̂c) : Gs
c(v̂c) = G0

c(v̂c) :
(∫

c
Gs

c(v̂c)
)

= 0 . (2.28)

Similarly, owing to the definition (2.20a) of Gc, the following holds for all v̂c ∈ Ûc and all
c ∈ C, ∫

c
Gc(v̂c) =

∫

c
G0

c(v̂c) + Gs
c(v̂c) =

∫

c
G0

c(v̂c) = |c|G0
c(v̂c) , (2.29)

which proves (2.27). Hence, it is left to prove (2.25).
Gs

c(vc) being piecewise constant on the subpyramids, one gets
∫

c
Gs

c(v̂c) =
∑

f∈Fc

∫

pf,c
Gs

c(v̂c)|pf,c =
∑

f∈Fc

|f|
(
(vf − vc)−G0

c(v̂c)(xf − xc)
)
⊗ nfc , (2.30)

where the last equality is obtained using the definition (2.20c) and the fact that Gs
c is

constant on each subpyramid. Now, (2.25) is readily obtained by recalling the definition of
G0

c , see (2.20b), and using (2.22).

Proposition 2.22 - Exactness of Gc on P1(c). Given the definitions (2.20a) of Gc and
(2.18c) of π̂c, it holds

Gc ◦ π̂c = ∇ on P1(c) . (2.31)

Proof. The result is readily obtained from Lemma 2.19 and Corollary 2.20.

Let us define the following discrete norm on Ûh,0:

‖v̂h‖21,h :=
∑

c∈C
‖v̂c‖21,c ‖v̂h‖21,c :=

∑

f∈Fc

1
hc
‖vf − vc‖2L2(f) =

∑

f∈Fc

1
hc
|f| |vf − vc|22 , (2.32)

where |x|22 := ∑d
i=1 x

2
i is the Euclidean norm in Rd and hc has been introduced in Defini-

tion 2.4. The last equality at the right-hand side of (2.32) is obtained simply by observing
that (vf − vc) is constant on each face.

Let us state the main result concerning the gradient reconstruction operator Gh.

Lemma 2.23 - Stability of Gh. There exists δ > 0, independent of h ∈ H, such that, for
all v̂c ∈ Ûc and all c ∈ C

δ ‖v̂c‖21,c ≤
∥∥∥Gc(v̂c)

∥∥∥
2

L2(c)
≤ δ−1 ‖v̂c‖21,c . (2.33)

Consequently, summing over all the mesh cell

δ ‖v̂h‖21,h ≤
∥∥∥Gh(v̂h)

∥∥∥
2

L2(Ω)
≤ δ−1 ‖v̂h‖21,h . (2.34)

46 Ch. 2 CDO-Fb setting

Proof. A similar result has been proved (for the scalar-valued case) in Eymard et al. (2010,
Lemma 4.1) for the HFV/SUSHI framework and, up to the stabilization parameter, can be
adapted to the CDO-Fb case as well. However, for the sake of completeness, we outline
the proof. We shall use the notation a . b to mean that a ≤ Cb, where C > 0 is constant
independent of h but possibly depending on the mesh regularity parameters.

We start by proving the second inequality of (2.33). Owing to the orthogonality of G0
c

and Gs
c, see (2.26), we have
∥∥∥Gc(v̂c)

∥∥∥
2

L2(c)
=
∥∥∥G0

c(v̂c) + Gs
c(v̂c)

∥∥∥
2

L2(c)
=
∥∥∥G0

c(v̂c)
∥∥∥

2

L2(c)
+
∥∥∥Gs

c(v̂c)
∥∥∥

2

L2(c)
. (2.35)

Recalling the definition (2.20b) of G0
c , one can write

∥∥∥G0
c(v̂c)

∥∥∥
2

L2(c)
≤ 1
|c|

∑

f∈Fc

|f|

∑

f∈Fc

|f| |(vf − vc)⊗ nfc|2

.
1
hc

∑

f∈Fc

|f| |vf − vc|2

 = ‖v̂c‖21,c ,

(2.36)

where we used on the first line the Cauchy–Schwarz inequality and, on the second line, the
identity

|a⊗ b| = |a| |b| ∀a, b ∈ Rd , (2.37)
and geometrical inequalities which result from the mesh regularity assumptions in Defini-
tion 2.9. Let ẽf,c := xf − xc. Addressing now Gs

c, we proceed similarly to the derivation of
(2.36) and get

∥∥∥Gs
c(v̂c)

∥∥∥
2

L2(c)
≤
∑

f∈Fc

β2d |f|∣∣∣ẽf,c

∣∣∣

∣∣∣(vf − vc)−G0
c(v̂c)ẽf,c

∣∣∣
2
. ‖v̂c‖21,c (2.38)

where we used (2.37), the geometric identity |f|
∣∣∣ẽf,c

∣∣∣ = d |pf,c| for all c ∈ C and all f ∈ Fc,
and (2.36). Putting (2.36) and (2.38) together, one obtains the second inequality of (2.33).

Now, we address the first inequality. Owing to the definition (2.20c) of Gs
c, one has, for

all f ∈ Fc,
(vf − vc)⊗ nfc = 1

β
Gs

c(v̂c) + (G0
c(v̂c)ẽf,c)⊗ nfc . (2.39)

Let us consider the module of (2.39). Using the triangle inequality, (2.37), the definition
(2.8) of hc, and the mesh regularity assumptions given in Definition 2.9, we obtain

|vf − vc|2 . h2
c

(∣∣∣Gs
c(v̂c)

∣∣∣
2

+
∣∣∣G0

c(v̂c)
∣∣∣
2
)

= h2
c

∣∣∣Gc(v̂c)|pf,c

∣∣∣
2
, ∀f ∈ Fc . (2.40)

Now, summing (2.40) over all f ∈ Fc gives

‖v̂c‖21,c .
1
hc

(#Fchd−1
c)h2

∣∣∣Gc(v̂c)|pf,c

∣∣∣
2
. hdc

∣∣∣Gc(v̂c)
∣∣∣
2
.
∥∥∥Gc(v̂c)

∥∥∥
2

L2(c)
, (2.41)

which proves the first inequality in (2.33) and thus concludes the proof.

Remark 2.24 - Alternative length scale. For the sake of simplicity, we used the diameter
hc of the cell c ∈ C in ‖·‖1,h. Owing to the mesh regularity (see Definition 2.9), any other
local equivalent length scale can be chosen. One can consider for instance the norm

‖v̂h‖21,ẽ :=
∑

c∈C

∑

f∈Fc

1∣∣∣ẽf,c

∣∣∣
‖vf − vc‖2L2(f) , (2.42)

where ẽf,c := xf −xc, and xz is the barycenter of the mesh entity (face or cell) z. This norm
fits the spirit to the CDO-Fb framework of Bonelle (2014) and Bonelle and Ern (2014). �

2.4 Velocity-pressure coupling 47

Figure 2.4 – The discrete divergence is cell-wise constant (the whole cell is colored). Only
face-based DoFs (in orange) of the velocity are used (see Remark 2.27).

2.4 Velocity-pressure coupling

The divergence plays an essential role when considering the NSE. In fact, classically, in the
related variational formulation, continuous or discrete, it is this operator that ensures the
velocity-pressure coupling and gives the characteristic saddle-point structure to the problem.

2.4.1 Main definitions and basic properties

Definition 2.25 - Local discrete divergence. Consider a cell c ∈ C. The local discrete
divergence operator within the CDO framework is defined as follows:

Dc : Ûc → Pc

ûc 7→ tr(G0
c(ûc)) = 1

|c|
∑

f∈Fc

|f| (uf − uc) · nfc . ◦ (2.43)

Definition 2.26 - Global discrete divergence. As it was the case for the velocity gra-
dient, the global version of the divergence operator is defined as the collection of the local
discrete divergences:

Dh : Ûh → Ph
ûh 7→ (Dc(ûc))c∈C .

(2.44)

◦

Remark 2.27 - Simplified formulation. Even if, formally, the operator Dc involves all
of the DoFs the velocity in the cell c and its faces, it is readily seen that only the face-based
ones are relevant:

Dc(ûc) = 1
|c|

∑

f∈Fc

|f|uf · nfc − uc ·
∑

f∈Fc

|f|nfc

 = 1

|c|
∑

f∈Fc

|f|uf · nfc , (2.45)

where the last equality follows from (2.4). This is the formulation that we will consider
in what follows and also in our implementations. See Fig. 2.4 for an illustration of the
construction of the divergence. �

Remark 2.28 - Divergence theorem. The design of the discrete operator Dc can be
related to the divergence theorem and this link is easily drawn from (2.45). In fact, an
alternative design approach could have started from the divergence theorem

∫
c∇ · u =∑

f∈Fc

∫
f u · nfc and choosing to approximate u at this stage, which would have led us to

(2.45). �

48 Ch. 2 CDO-Fb setting

Remark 2.29 - Link to the gradient reconstruction. The local divergence operator
stems from the discrete local gradient reconstruction operator similarly to what happens for
the continuous differential operator, see (2.43). Notice however that only the consistent part
of Gc, namely G0

c , is used. However, if the stability part were to be used as well, its action
will vanish as soon as the divergence is tested against a cell-wise constant function, as is the
case with any discrete pressure. In fact, considering a constant test function qc ∈ P0(c), one
obtains ∫

c
qc tr(Gs

c(ûc)) = qc

∫

c
tr(Gs

c(ûc)) = 0 , (2.46)

owing to the linearity of the trace and to (2.25). �

Remark 2.30 - Discrete divergence and reduction. The commutation between the
divergence and the reduction by projection can be easily shown: For all v ∈ H1(c), we have

πc(∇ · v) = 1
|c|

∫

c
∇ · v = 1

|c|
∑

f∈Fc

∫

f
v · nfc = Dc(π̂c(v)) , (2.47)

owing to the divergence theorem, the hypothesis about planar faces, and finally (2.45). The
relation (2.47) can be extended to the global operator Dh when it is tested against a function
q ∈ P0(C). As a matter of fact, we have for all v ∈ H1(Ω),

∫

Ω
qπh(∇ · v) =

∑

c∈C
πc(∇ · v)

∫

c
q =

∑

c∈C
Dc(π̂c(v))

∫

c
q =

∫

Ω
Dh(π̂h(v))q . (2.48)

This proves that
πh(∇ · v) = Dh(π̂h(v)) , ∀v ∈ H1(Ω) . � (2.49)

Remark 2.31 - Dc and the original CDO divergence of Bonelle (2014) and Bonelle
and Ern (2014). The discrete velocity divergence Dc may be bridged to the original CDO
divergence operator DIVc from Bonelle and Ern (2014) and Bonelle (2014). Given a face-
defined function φFc = (φf)f∈Fc ∈ P0(Fc), the definition of DIVc is

DIVc : Fc := P0(Fc) → P0(c), DIVc(φFc) :=
∑

f∈Fc

ιf,cφf , (2.50)

and the reduction for a generic function φ ∈ Hs(Ω), s > 1
2 , is

RFc : Hs(Ω) → Fc , RFc(φ)|f =
∫

f
φ · nf , ∀ f ∈ Fc . (2.51)

Then we have
DIVc(RFc(φ)) =

∑

f∈Fc

∫

f
(ιf,cnf) · φf = |c|Dc(π̂c(φ)) , (2.52)

where we used the fact that the faces are planar and that nfc = ιf,cnf . �

Remark 2.32 - Comparison with other schemes. The same divergence operator as in
(2.43) is found in the HMM framework of Droniou et al. (2015). It was already shown in
Bonelle (2014) and Bonelle and Ern (2014) how the CDO and the HMM gradient opera-
tor are equivalent up to a stabilization, whose action, however, vanishes when considering
the divergence. Similar operators may be found in other frameworks to which the CDO
framework has already been linked. An early version of the MFD (Beirão da Veiga et al.,
2009b), which later became part of the HMM, relies on an operator which considers only
the velocity fluxes. Moreover, the divergence operator proposed for the HHO method in Di
Pietro et al. (2016) is equivalent to Dc when specified for the lowest-order case, k = 0. �

2.4 Velocity-pressure coupling 49

2.4.2 Inf-sup condition
The inf-sup condition (see Proposition 1.3) plays a paramount role in the variational for-
mulation of the NSE. Recall that this condition means that there exists β > 0 such that

inf
q∈L2∗(Ω)

sup
v∈H1

0(Ω)

b(v, q)
‖q‖L2∗(Ω) ‖v‖H1

0(Ω)
≥ β , (2.53)

where for all v ∈ H1(Ω) and all q ∈ L2(Ω), b(v, q) := − ∫Ω q∇ · v. We prove in this section
that an analogous inequality holds for the CDO discrete divergence Dh and the discrete
functional spaces Ûh,0 and Ph,∗ defined in (2.16) and (2.17). Recall that Ûh,0 is equipped
with the following norm defined in (2.32):

‖v̂h‖21,h :=
∑

c∈C

∑

f∈Fc

1
hc
|f| |vf − vc|22 , (2.54)

whereas, a norm with which to equip Ph,∗ is

‖qh‖2h :=
∑

c∈C
|c| q2

c = ‖qh‖2L2(Ω) . (2.55)

Moreover, we define the discrete bilinear form bh : Ûh,0 × Ph,∗ → R associated with the
velocity-pressure coupling as follows:

bh(v̂h, qh) :=
∑

c∈C
bc(v̂c, qc) , bc(v̂c, qc) := −

∫

c
Dc(v̂c)qc = − |c|Dc(v̂c)qc . (2.56)

The bilinear form bh(·, ·) is the discrete counterpart of the continuous bilinear form b(·, ·)
used in the inf-sup condition (2.53).

Lemma 2.33 - CDO-Fb inf-sup condition. There exists β∗ > 0 such that, for all h ∈ H,

inf
qh∈Ph,∗

sup
v̂h∈Ûh,0

bh(v̂h, qh)
‖qh‖h ‖v̂h‖1,h

≥ β∗ . (2.57)

Proof. A proof of (2.57) for the HHO framework can be found in Di Pietro et al. (2016) and
it can adapted to the CDO-Fb case by setting k = 0 for the polynomial degree in HHO. For
the sake of completeness, we outline the proof. The main idea is to start from the continuous
version of the inf-sup condition (2.53) and choose a suitable projection (also called Fortin
operator) to recover it at the discrete level.

Since Ph,∗ ⊂ L2
∗(Ω) (cf. (2.17)), using (2.53), we infer that for all qh ∈ Ph,∗, and all

h ∈ H, there exists vqh ∈ H1
0(Ω) satisfying

∇ · vqh = −qh and β
∥∥∥∇ vqh

∥∥∥
L2(Ω)

≤ ‖qh‖L2(Ω) = ‖qh‖h . (2.58)

The projection of vqh onto the discrete space Ûh,0 is a good candidate to satisfy (2.53).
Let us set v̂qh :=

(
(vf := πf(vqh))f∈F, (vc := πc(vqh))c∈C

)
. Notice that v̂qh ∈ Ûh,0 since

vqh ∈ H1
0(Ω). One has

bh(v̂qh , qh) = −
∑

c∈C
|c|Dc(v̂qh,c)qc = −

∑

c∈C

∫

c
qc∇ · vqh = −

∫

Ω
∇ · vqhqh = ‖qh‖2h , (2.59)

where we used the definition (2.56) of bh(·, ·), the commutation between the discrete diver-
gence and the projection (see Remark 2.30), and the first identity in (2.58).

50 Ch. 2 CDO-Fb setting

The next step is to investigate the discrete norm of v̂qh . We have
∥∥∥v̂qh

∥∥∥
2

1,h
=
∑

c∈C

∑

f∈Fc

1
hc

∥∥∥πf(vqh)− πc(vqh)
∥∥∥

2

L2(f)

=
∑

c∈C

∑

f∈Fc

1
hc

∥∥∥πf
(
vqh − πc(vqh)

)∥∥∥
2

L2(f)

≤
∑

c∈C

∑

f∈Fc

1
hc

∥∥∥vqh − πc(vqh)
∥∥∥

2

L2(f)

≤
∑

c∈C
C1
∥∥∥∇ vqh

∥∥∥
2

L2(c)
= C1

∥∥∥∇ vqh

∥∥∥
2

L2(Ω)

≤ C1β
−2 ‖qh‖2h ,

(2.60)

where we used in the first line the fact that the projection over a cell is constant over a face
and the linearity of the projection, the L2(f)-stability of the projection πf at line two, the
multiplicative trace inequality from Di Pietro and Ern (2011, Lemma 1.49) combined with
the local Poincaré inequality at line three, and finally the bound in (2.58) at line four. The
constant C1 does not depend on h ∈ H.

Now putting (2.59) and (2.60) together, we infer that

‖qh‖2h = bh(v̂qh , qh) =
bh(v̂qh , qh)∥∥∥v̂qh

∥∥∥
1,h

∥∥∥v̂qh

∥∥∥
1,h

≤

 sup
v̂h∈Ûh,0

bh(v̂h, qh)
‖v̂h‖1,h

C

1
2
1 β
−1 ‖qh‖h .

(2.61)

The sought relation is obtained by dividing both sides by ‖qh‖h and setting β∗ := βC
− 1

2
1 .

2.5 Scalar-valued advection and vector-valued convection

The scalar-valued advection operator (see Section 2.5.1) is at the core of the development
of the operator which will be used to deal with the convection term in the NSE (see Sec-
tion 2.5.2). That is why the two operators are discussed in the same section.

2.5.1 Scalar-valued advection
Consider a Lipschitz-continuous advective field β with bounded divergence, i.e.,

β ∈ Lip(Ω) := Lip(Ω;Rd) and ∇ · β ∈ L∞(Ω) . (2.62)

Let ∂Ω± :=
{
x ∈ ∂Ω |β · n∂Ω ≷ 0

}
, and consider the following hybrid functional subspaces,

which are the scalar counterpart of (2.10) and (2.11):

Ŝc :=×
f∈Fc

Sf × Sc ≡ R#Fc+1 ∀c ∈ C ,

Ŝh :=×
f∈F
Sf × ×

c∈C
Sc ≡ R#F+#C .

(2.63)

We introduce below the CDO operator needed to discretize the continuous form related to
the advection term, namely, ts(β; s, r) :=

∫
Ω(β · ∇ s)r +

∫
∂Ω(β · n∂Ω)−sr, with s, r smooth

enough. Recall that ts(·; ·, ·) is considered to formulate the PDE −β∇ s = f in Ω and s = g
on ∂Ω−.

2.5 Scalar-valued advection and vector-valued convection 51

Definition 2.34 - Scalar-valued advection. The scalar-valued CDO bilinear form dis-
cretizing the advection operator on a given mesh cell c ∈ C is defined as follows:

tsc(β; ·, ·) : Ŝc × Ŝc → R
(ŝc, r̂c) 7→

∑

f∈Fc

∫

f
(β · nfc)(sf − sc)rc

+1
2
∑

f∈Fc

∫

f
(β · nfc)(sf − sc)(rf − rc) .

(2.64)

The global bilinear form is obtained as usual by summing over all the mesh cells with the
addition of two terms whose role will be explained in Remark 2.35:

tsh(β; ·, ·) : Ŝh × Ŝh → R
(ŝh, r̂h) 7→

∑

c∈C
tsc(β; ŝh, r̂h) + ts,∂h (β; ŝh, r̂h) + ts,uh (β; ŝh, r̂h) , (2.65)

with

ts,∂h (β; ŝh, r̂h) :=
∑

f∈Fb

∫

f
(β · nfc)−sfrf , (2.66)

ts,uh (β; ŝh, r̂h) := 1
2Ξupw ∑

f∈Fi

∑

c∈Cf

∫

f
|β · nfc| (sf − sc)(rf − rc) , (2.67)

and Ξupw ∈ {0, 1} is a user-defined parameter, where, for any x ∈ R, (x)± := 1
2(|x| ± x). ◦

Remark 2.35 - Roles of the terms. Let us clarify the roles of the different terms in
Eqs. (2.64) to (2.67). The first line of (2.64) discretizes the volumetric part of the usual
continuous variational formulation. In fact, an approximation of the gradient of s on a face
may be noticed: sf − sc. The second term is needed to recover a positivity property in a
consistent way in the same spirit of dG methods (see Di Pietro and Ern (2011, Section 2.2)),
cf. Remark 2.39 below. Moreover, the second term plays the same role as the Temam’s trick
(see Temam (1977)) in the context of vector-valued convection, see also Remark 2.46. Let us
now move to (2.66): ts,∂h (β; ·, ·) embodies the weak enforcement of the boundary conditions
at the inlet ∂Ω−, as is usually needed when considering a problem with an advection term
but no diffusion. If diffusion is present, this term is still useful to temper oscillations that
may be caused by boundary outflow layers (Bazilevs and Hughes, 2007; Schieweck, 2008).
Finally, concerning (2.67), if the need arises, one can choose to add a stabilization by
upwinding using a technique introduced in the discontinuous Galerkin framework by Brezzi
et al. (2004): it just suffices to set Ξupw := 1 in (2.67). Otherwise, using Ξupw := 0 amounts
to considering a scheme with the so-called centered fluxes. �

Remark 2.36 - Comparison with similar schemes. The bilinear form tsh(β; ·, ·) is
inspired from the HHO framework (Di Pietro et al., 2015) in the lowest-order case k := 0.
However, the present discretization has been applied directly to the continuous formulation
without performing an integration by parts. �

Remark 2.37 - Simplifications. Notice that the advection velocity β appears only in
face integrals. Since all the terms but those related to β are constant on a face, the only
quantities left to compute are the fluxes of β at the faces:

∫
f β · nfc. Since we are assuming

planar faces, only the knowledge of βf := πf(β) is necessary since it is readily shown that∫
f β · nfc = |f|βf · nfc. Suppose now that the partition Fb of the boundary ∂Ω is such that
there exist no f ∈ Fb such that f ∩ ∂Ω− 6= ∅ and f ∩ ∂Ω+ 6= ∅ at the same time. Then, a
similar observation holds for (β ·nfc)−. In conclusion, only the normal part of the advection

52 Ch. 2 CDO-Fb setting

field at faces is needed to build (2.65) and all its terms. Thus, two advection fields differing
only in the tangential part will carry the same contribution to the discrete problem since
their normal components are identical. �

Remark 2.38 - Symmetry. Let us reorganize the addends in (2.64). We have

tsc(β; ŝc, r̂c) = 1
2
∑

f∈Fc

∫

f
(β · nfc)(

symmetric︷ ︸︸ ︷
sfrf − scrc +

skew-symmetric︷ ︸︸ ︷
sfrc − scrf), (2.68)

where we took care of separating symmetric and skew-symmetric terms. Notice that the
boundary contribution (2.66) and the upwind contribution (2.67) are symmetric, hence the
only skew-symmetric part of tsh(β; ·, ·) comes from ∑

c∈C t
s
c(β; ·, ·). �

Remark 2.39 - Discrete integration by parts and positivity. Consider the following
Integration by Parts (IBP) result:

∫

Ω

(
(β · ∇ s)r + (β · ∇ r)s

)
= −

∫

Ω
∇ · β sr +

∫

∂Ω
(β · n∂Ω)sr , (2.69)

valid for smooth functions s, r ∈ C1(Ω). Let us prove that a discrete counterpart is satisfied
by tsc(β; ·, ·). We have

∑

c∈C

(
tsc(β; ŝc, r̂c) + tsc(β; r̂c, ŝc)

)
=
∑

c∈C

∑

f∈Fc

1
2

∫

f
(β · nfc)(sf − sc)(rf + rc)

+
∑

c∈C

∑

f∈Fc

1
2

∫

f
(β · nfc)(sf + sc)(rf − rc)

= −
∑

c∈C
scrc

∑

f∈Fc

∫

f
(β · nfc) +

∑

c∈C

∑

f∈Fc

∫

f
(β · nfc)sfrf ,

(2.70)
where the contribution of the skew-symmetric part of tsc(β; ·, ·) vanishes. Observe that,
owing to Remark 2.13, when summing over the mesh cells, the contribution of the internal
faces to the second term vanishes as well. Finally, using the divergence theorem, one can
write

∑

c∈C

(
tsc(β; ŝc, r̂c) + tsc(β; r̂c, ŝc)

)
= −

∑

c∈C

∫

c
(∇ · β)scrc +

∑

f∈Fb

∫

f
(β · nf)sfrf , (2.71)

which is the sought discrete version of (2.69).
Consider now tsh(β; ·, ·) as defined in (2.65). Choose r̂h = ŝh and use (2.71). Proceeding

in a similar fashion as it was done for (2.71), one can write

tsh(β; ŝh, ŝh) = − 1
2
∑

c∈C

∫

c
(∇ · β)s2

c + 1
2
∑

f∈Fb

∫

f

∣∣∣β · nf

∣∣∣ s2
f

+ Ξupw 1
2
∑

f∈Fi

∑

c∈Cf

∫

f

∣∣∣β · nf

∣∣∣ (sf − sc)2 .
(2.72)

Hence, if ∇ · β ≥ a.e. in Ω,

tsh(β; ŝh, ŝh) ≥ 0 , ∀ŝh ∈ Ŝh . (2.73)

Notice that (2.73) is the discrete counterpart of a positivity results for the classical advection
form ts(β; s, r) :=

∫
Ω(β · ∇ s)r− ∫∂Ω−(β · n∂Ω)sr, see, for instance, Di Pietro and Ern (2011,

Lemma 2.8). �

2.5 Scalar-valued advection and vector-valued convection 53

Remark 2.40 - Conservative formulation. Hinging on the well-known differential iden-
tity ∇ · (βs) = β · ∇ s+∇ · β s, one can modify tsh(β; ·, ·) to obtain a conservative version of
the advection operator. In particular, tsc(β; ·, ·) is modified as follows:

ts,csv
c (β; ŝc, r̂c) := tsc(βc; ŝc, r̂c) +

∫

c
(∇ · β)scrc

= 1
2
∑

f∈Fc

∫

f
(β · nfc)(sf − sc)(rf − rc) +

∑

f∈Fc

∫

f
(β · nfc)sfrc

= 1
2
∑

f∈Fc

∫

f
(β · nfc)(sfrf + scrc + sfrc − scrf) ,

(2.74)

whereas ts,∂h (β; ·, ·) and ts,uh (β; ·, ·) do not change. �
Let us state and prove the main result to be used in the error analysis if the bilinear

form tsh(β; ·, ·) were to be used to approximate an advection problem. This result consists
of bounding the consistency error and stating that it exhibits a decay rate as O

(
h 1

2
)
. We

only detail the bound on the consistency error to highlight the properties of the scheme. Set

τ0 := max

∥∥∥∇ · β

∥∥∥
L∞(Ω)

,

∥∥∥β
∥∥∥
L∞(Ω)
hΩ

 , (2.75)

where hΩ is the diameter of the domain, defined similarly to (2.8). The length scale hΩ is
introduced to make the definition of τ0 dimensionally consistent, so that τ0 scales as the
reciprocal of a time scale. Define also the following norm based on (2.72):

‖r̂h‖2β :=
∑

c∈C
τ0 |c| r2

c +
∑

f∈Fb

∫

f

∣∣∣β · nf

∣∣∣ r2
f +

∑

c∈C

∑

f∈Fc

∫

f

∣∣∣β · nf

∣∣∣ (rf − rc)2 . (2.76)

Proposition 2.41 - Bound on consistency error. For all s ∈ H1(Ω), define the consis-
tency error as the following linear functional: For all r̂h ∈ Ŝh,

Ets(r̂h) :=
∑

c∈C

∫

c
(β · ∇ s)rc +

∑

f∈Fb

∫

f
(β · nf)−srf − tsh(β; π̂h(s), r̂h) . (2.77)

Then, assuming the advection field β satisfies (2.62), and that the considered mesh sequence
is shape-regular as in Definition 2.9, there exists a constant C, independent of h, but possibly
depending on the mesh regularity parameters, such that

|Ets(r̂h)| . max
(

(τ0h)
1
2 ,
∣∣∣β
∣∣∣

1
2

L∞(Ω)

)
h

1
2 ‖∇ s‖L2(Ω) ‖r̂h‖β . (2.78)

Proof. We shall use the notation a . b to mean that a ≤ Cb whenever the constant C
satisfies the dependency statement made in Proposition 2.41. The technique of the proof is
inspired by Ern and Guermond (2006a), see also Di Pietro et al. (2015) and Di Pietro and
Ern (2011). Applying the usual hybrid notation, let ŝh := π̂h(s), i.e., we set sc := πc(s) for
all c ∈ C and sf := πf(s) for all f ∈ F. Let us rewrite the first term of Ets(r̂h):

∑

c∈C

∫

c
(β · ∇ s)rc = −

∑

c∈C

∫

c
(∇ · β)src +

∑

c∈C

∑

f∈Fc

∫

f
(β · nfc)src

= −
∑

c∈C

∫

c
(∇ · β)src

+
∑

c∈C

∑

f∈Fc

∫

f
(β · nfc)s(rc − rf) +

∑

f∈Fb

∫

f
(β · nf)srf ,

(2.79)

54 Ch. 2 CDO-Fb setting

where the first equality is recovered by applying the IBP result (2.69) and observing that,
since rc ∈ P0(c), the term

∫
c(β · ∇ rc)s vanishes, and the second equality follows from the

identity established in Remark 2.13 and adding/subtracting rf . Similarly, proceeding as in
Remark 2.39, one can write

∑

c∈C

∑

f∈Fc

∫

f
(β · nfc)(sf − sc)rc = −

∑

c∈C

∫

c
(∇ · β)scrc +

∑

c∈C

∑

f∈Fc

∫

f
(β · nfc)sf(rc − rf)

+
∑

f∈Fb

∫

f
(β · nf)sfrf .

(2.80)

Plugging (2.79) and (2.80) in (2.77) and noticing that (x)− + x = (x)+ for all x ∈ R, one
obtains:

Ets(r̂h) =−
∑

c∈C

∫

c
(∇ · β)(s− sc)rc +

∑

f∈Fb

∫

f
(β · nf)+(s− sf)rf

−
∑

c∈C

∑

f∈Fc

∫

f
(β · nfc)(s− sf)(rf − rc)−

∑

c∈C

∑

f∈Fc

∫

c

1
2(β · nfc)(sf − sc)(rf − rc)

− ts,uh (β; ŝh, r̂h) .
(2.81)

Consider now the absolute value of Ets(r̂h). Let us bound each term on the right-hand side
of (2.81). For the first one, we have

∣∣∣∣∣∣
−
∑

c∈C

∫

c
(∇ · β)(s− sc)rc

∣∣∣∣∣∣
≤
∥∥∥∇ · β

∥∥∥
L∞(Ω)

∑

c∈C
|s− sc|2L2(c)

1
2

∑

c∈C

∫

c
r2

c

1
2

. τ0h ‖∇ s‖L2(Ω)

∑

c∈C

∫

c
r2

c

1
2

= τ
1
2

0 h ‖∇ s‖L2(Ω)

∑

c∈C

∫

c
τ0r

2
c

1
2

≤ τ
1
2

0 h ‖∇ s‖L2(Ω) ‖r̂h‖β ,

(2.82)

where we used the Cauchy-Schwarz inequality, the definition (2.75) of τ0, and the local
Poincaré inequality in order to bound ‖s− sc‖L2(Ω), see for instance Ern and Guermond
(2004, Proposition 1.134) or Di Pietro and Ern (2011, Lemma 1.59). Moving on, it is
readily proven that, for all c ∈ C and all f ∈ Fc,

‖sf − sc‖L2(f) = ‖πf(s− sc)‖L2(f) ≤ ‖s− sc‖L2(f) . h
1
2c ‖∇ s‖L2(c) , (2.83)

where one uses the linearity, the stability of πf , and the approximation property from Di
Pietro and Ern (2011, Lemma 1.59) of the orthogonal projection. Similarly, using the
triangle inequality leads to

‖s− sf‖L2(f) ≤ ‖s− sc‖L2(f) + ‖sc − sf‖L2(f) . h
1
2c ‖∇ s‖L2(c) . (2.84)

Using the fact that the number of faces of a cell is uniformly bounded, these last two results
may be easily extended to ‖·‖2L2(∂c) := ∑

f∈Fc ‖·‖
2
L2(f) The second term on the right-hand

2.5 Scalar-valued advection and vector-valued convection 55

side of (2.81) is then treated similarly to (2.82) and using (2.84). We get

∥∥∥∥∥∥
∑

f∈Fb

∫

f
(β · nfc)+(s− sf)rf

∥∥∥∥∥∥
≤
∥∥∥β
∥∥∥

1
2

L∞(Ω)

∑

f∈Fb
‖s− sf‖2L2(f)

1
2

∑

f∈Fb

∫

f

∣∣∣β · nf

∣∣∣ r2
f

1
2

.
∣∣∣β
∣∣∣

1
2

L∞(Ω)
h

1
2 ‖∇ s‖L2(Ω)

∑

f∈Fb

∫

f

∣∣∣β · nf

∣∣∣ r2
f

1
2

≤ τ
1
2

0 h
1
2
Ωh

1
2 ‖∇ s‖L2(Ω) ‖r̂h‖β .

(2.85)

Owing to (2.83) and (2.84), the last three terms of (2.81) are bounded in the same way.
Taking, for instance, the third term, we obtain

∣∣∣∣∣∣
∑

c∈C

∑

f∈Fc

∫

f
(β · nfc)(s− sf)(rf − rc)

∣∣∣∣∣∣

.
∥∥∥β
∥∥∥

1
2

L∞(Ω)

∑

c∈C

∑

f∈Fc

‖s− sf‖2L2(f)

1
2

∑

c∈C

∑

f∈Fc

∫

f

∣∣∣β · nf

∣∣∣ r2
f

1
2

. τ
1
2

0 h
1
2
Ωh

1
2 ‖∇ s‖L2(Ω) ‖r̂h‖β ,

(2.86)

where the last inequality is obtained using (2.84) and then summing over the mesh cells.
Similar results hold for the last two terms of (2.81). Putting (2.82), (2.85), and (2.86)
together and using the definition (2.76) of ‖·‖β proves (2.78).

2.5.2 Vector-valued convection

The CDO-Fb discretization of the scalar-valued advection operator described in Section 2.5.1
is now extended to act on Rd-valued fields in order to deal with the convection operator
encountered in the NSE. Thus our aim is to provide a discretization of the following well-
known trilinear form:

t(w;u, v) :=
∫

Ω

(
(w · ∇)u

)
· v =

∫

Ω
vT∇uw =

∫

Ω

d∑

i,j=1
wi
∂uj
∂xi

vj , (2.87)

where the convective field is now denoted by w instead of β.
Let us start by giving the vector-valued counterpart of tsh(β; ·, ·) defined in (2.65). Since

in the discrete NSE, the convection field is discrete as well, w has to be replaced by a hybrid
variable, that we denote by ŵh ∈ Ûh. Owing to Remark 2.37, only the face-based DoFs of
ŵh are actually relevant to the formulation of the discrete trilinear form.

Definition 2.42 - Convection - Discrete trilinear form. The vector-valued trilinear
forms, counterparts of Eqs. (2.64) to (2.67), are:

th(·; ·, ·) : Ûh × Ûh × Ûh → R
(ŵh, ûh, v̂h) 7→

∑

c∈C
tc(ŵc; ûc, v̂c) + t∂h(ŵh; ûh, v̂h)

+tuh(ŵh; ûh, v̂h)

(2.88)

56 Ch. 2 CDO-Fb setting

with

tc(ŵc; ûc, v̂c) :=
∑

f∈Fc

|f| (wf · nfc)(uf − uc) · vc

+ 1
2
∑

f∈Fc

|f| (wf · nfc)(uf − uc) · (vf − vc) , (2.89)

t∂h(ŵh; ûh, v̂h) :=
∑

f∈Fb
|f| (wf · nfc)−uf · vf , (2.90)

tuh(ŵh; ûh, v̂h) := 1
2Ξupw ∑

f∈Fi

∑

c∈Cf

|f| |wf · nfc| (uf − uc) · (vf − vc) . (2.91)

Here, Ξupw ∈ {0, 1} has the same meaning as in (2.65), namely Ξupw := 1 activates a
stabilization by upwinding. ◦

Remark 2.43 - Roles of the terms. The comments made in Remark 2.35 on tsh(β; ·, ·)
can be readily adapted to the vector-valued case. �

Remark 2.44 - Symmetry. Rearranging the terms in (2.88), we have

th(ŵh; ûh, v̂h) = 1
2
∑

c∈C

∑

f∈Fc

|f| (wf · nfc)(
symmetric︷ ︸︸ ︷

uf · vf − uc · vc +
skew-symmetric︷ ︸︸ ︷
uf · vc − uc · vf)

+ t∂h(ŵh; ûh, v̂h)︸ ︷︷ ︸
symmetric

+ tuh(ŵh; ûh, v̂h)︸ ︷︷ ︸
symmetric

.
(2.92)

As in Remark 2.38, the only skew-symmetric part of th(·; ·, ·) results from tc(·; ·, ·). �

Lemma 2.45 - Positivity and skew-symmetry of th(·; ·, ·). Fix a discretely divergence-
free field ŵh ∈ Ûh, i.e.,

Dc(ŵc) = 0 ∀c ∈ C . (2.93)

Then:

i) For all ûh ∈ Ûh,
th(ŵh; ûh, ûh) ≥ 0 . (2.94)

ii) Suppose additionally that the normal component of ŵh is null at the boundary:

wf · nf = 0 ∀f ∈ Fb . (2.95)

Then, whenever Ξupw = 0, th(ŵh; ·, ·) is skew-symmetric, i.e.

th(ŵh; ûh, ûh) = 0 , ∀ûh ∈ Ûh . (2.96)

Proof. Let us start by addressing i). Set v̂h := ûh in Definition 2.42 and let us consider each
term separately. The stabilization by upwinding, defined in (2.91), yields

tuh(wh; ûh, ûh) = 1
2Ξupw ∑

f∈Fi

∑

c∈Cf

|f| |wf · nfc| |uf − uc|22 ≥ 0 , (2.97)

which holds for Ξupw ∈ {0, 1}. Moving to the boundary term defined in (2.90), it is readily
seen that

t∂h(ŵh; ûh, ûh) =
∑

f∈Fb
|f| (wf · nfc)− |uf |22 . (2.98)

2.5 Scalar-valued advection and vector-valued convection 57

Now, considering (2.89) and dropping the skew-symmetric terms (see (2.92)), one has
∑

c∈C
tc(ŵc; ûc, ûc) = 1

2
∑

c∈C

∑

f∈F
|f| (wf · nfc)(|uf |22 − |uc|22) . (2.99)

Consider now the second term on right-hand side, the one dealing with the cell-based DoFs.
With simple manipulations and owing to the definition of the discrete divergence in (2.43),
one gets

∑

c∈C

∑

f∈F
|f| (wf · nfc) |uc|22 =

∑

c∈C
|uc|22

∑

f∈F
|f| (wf · nfc) =

∑

c∈C
|c| |uc|22 Dc(ŵc) = 0 , (2.100)

where the last equality is obtained owing to the assumption (2.93). Summing (2.98) and
(2.99) and using (2.100), one has

∑

c∈C
tc(ŵc; ûc, ûc) + t∂h(ŵh; ûh, ûh) =

∑

f∈Fb
|f| (wf · nfc)+ |uf |22 ≥ 0 , (2.101)

since, for all x ∈ R, (x)− + 1
2 |x| = (x)+ ≥ 0. Hence, combining (2.97) and (2.101) yields

(2.94), which concludes the first part of the proof.
Let us now prove ii). For this part, we have supposed Ξupw = 0, hence we drop tuh(·; ·, ·).

From (2.95), one deduces that t∂h(ŵh; ûh, v̂h) = 0. Thus, only tc(ŵh; ûh, v̂h) is left to analyze.
Owing to the first line in (2.92), one may write

th(ŵh; ûh, v̂h) = 1
2
∑

c∈C

∑

f∈Fc

|f| (wf · nfc)(uf · vc − uc · vf)

+ 1
2
∑

c∈C

∑

f∈Fc

|f| (wf · nfc)(uf · vf)
︸ ︷︷ ︸

I1

−1
2
∑

c∈C

∑

f∈Fc

|f| (wf · nfc)(uc · vc)
︸ ︷︷ ︸

I2

.
(2.102)

The term I2 is dealt with similarly to (2.100), hence one has

I2 =
∑

c∈C
Dc(ŵc)uc · vc = 0 . (2.103)

Let us address I1. Invert the cell- and face-summations and separate internal and boundary
faces:

I1 =
∑

f∈Fb
|f| (wf · nf)(uf · vf) +

∑

f∈Fi

∑

c∈Cf

|f| (wf · nfc)(uf · vf) = 0 , (2.104)

where we concluded using the hypothesis (2.95) for the first term and the usual properties
on the summation on internal faces, see Remark 2.13, for the second term. Plugging (2.103)
and (2.104) into (2.102) one gets

th(ŵh; ûh, v̂h) = 1
2
∑

c∈C

∑

f∈Fc

|f| (wf · nfc)(uf · vc − uc · vf) . (2.105)

This proves that th(ŵh; ·, ·) is skew-symmetric whenever the assumptions (2.93) and (2.95)
are satisfied.

Remark 2.46 - Dissipativity. Property (2.94) is crucial in the context of the NSE since it
establishes the dissipativity of the discrete problem, and therefore the possibility of deriving
a priori estimates for the discrete NSE. Other schemes (based, e.g., on continuous finite
elements or discontinuous Galerkin methods) may not guarantee this dissipativity property.
In this context, a popular trick based on Temam (1977) is to add a consistent term in
the scheme so that the discrete trilinear form becomes skew-symmetric (or dissipative).
Lemma 2.45 shows that the CDO trilinear form th(·; ·, ·) has the Temam’s trick built-in
(recall the positivity term mentioned in Remark 2.35). �

58 Ch. 2 CDO-Fb setting

Remark 2.47 - Alternative convection formulations. Other trilinear formulations
can be derived by applying differential identities to the operator (u · ∇)u. The reader is
referred, for instance, to Charnyi et al. (2017) which gives an overview of several of these
formulations with a particular focus on their conservation properties. The development of
these alternative formulations within the CDO-Fb framework is left as future work. �
Remark 2.48 - Discrete integration by parts. Following Remark 2.39, let us investi-
gate the global contribution of tc(·; ·, ·) (we drop the upwinding and the boundary term in
(2.88)):
∑

c∈C

(
tc(ŵc; ûc, v̂c) + tc(ŵc; v̂c, ûc)

)
=
∑

c∈C

∑

f∈Fc

|f| (wf · nfc)(uf · vf − uc · vc)

= −
∑

c∈C
Dc(ŵh)uc · vc +

∑

f∈Fb
|f| (wf · nf)uf · vf ,

(2.106)

where one discards the skew-symmetric terms and follows the steps of Lemma 2.45. Notice
that (2.106) is the discrete counterpart of
∫

Ω

((
(w · ∇)u

)
· v+

(
(w · ∇)v

)
·u
)

= −
∫

Ω
(∇ ·w)(u ·w) +

∫

∂Ω
(w ·n∂Ω)(u · v) . � (2.107)

Remark 2.49 - Comparison with similar schemes. As it was mentioned in Re-
mark 2.36, the advection bilinear form tsh(β; ·, ·) was inspired by the HHO framework (see
in particular Di Pietro et al. (2015)). As matter of fact, the final trilinear form for the NSE
is the same for CDO-Fb and HHO(k := 0). Set Ξupw := 0, and compare the definition of
th(·; ·, ·) in Eqs. (2.88) to (2.91) and the form provided in Botti et al. (2019, Remark 9)
(notice that the gradients of cell-based functions vanish in HHO(k := 0) since one considers
cell-wise constant functions).

In the HMM framework, two different convection operators have been proposed in Dro-
niou and Eymard (2017). In the first version, initially proposed and analyzed in Droniou
and Eymard (2009), the face-based DoFs of the convection field are considered and they
are tested with the jump (respectively the mean) at the faces of the cell-based DoFs of
the velocity (resp. test function). In doing so, the cell-based DoFs of the velocity become
coupled and static condensation is no longer possible. In the second version of the discrete
convection operator, the authors consider an additional local problem defined on the face-
based DoFs of the velocity and fluxes at the faces of the barycentric subdivision of the cell
(e.g. the faces shared by the subpyramids, see Fig. 2.1). The resulting convection operator
does not use cell-based DoFs, neither for the convection field, nor for the velocity, nor for
the test function: a static condensation process can be thus performed as in the present
CDO-Fb scheme. �
Remark 2.50 - Convection limit-conformity. We show here that the discrete trilinear
form th(·; ·, ·) satisfies the requirement of convection limit-conformity as stated in Eymard
et al. (2018, Definition 2.10). For simplicity, we assume that no upwind stabilization is
considered, Ξupw := 0, and that the convection field is zero at the boundary, wf = 0 for all
f ∈ Fb. Owing to these assumptions, we rewrite the discrete trilinear form as follows: for
all ŵh, ûh, v̂h ∈ Ûh,0

th(ŵh; ûh, v̂h) = 1
2
∑

c∈C

∑

f∈Fc

(wf · nfc)(uf − uc) · (vf + vc)

= 1
2
∑

c∈C

∫

c

((
G̃c(ûc)ΠF

c (ŵc)
) ·ΠC

c (v̂c)−
(
G̃c(v̂c)ΠF

c (ŵc)
) ·ΠC

c (ûc)

+ Dc(ŵc)ΠC
c (ûc) ·ΠC

c (v̂c)
)
,

(2.108)

2.5 Scalar-valued advection and vector-valued convection 59

where
ΠC

c (v̂c) := vc , ∀c ∈ C ,

ΠF
c (v̂c)|pf,c := vf , ∀c ∈ C, ∀f ∈ Fc ,

G̃c|pf,c := |f|
|pf,c|

(vf − vc)⊗ nfc , ∀c ∈ C, ∀f ∈ Fc ,

(2.109)

and we define the global counterparts of these operators such that for all c ∈ C,

ΠC
h (v̂h)|c := ΠC

c (v̂c) , ΠF
h (v̂h)|c := ΠF

c (v̂c) , G̃h(v̂h)|c := G̃c(v̂c) . (2.110)

We study now some properties of these new operators. We proceed as in Lemma 2.23, using
in particular (2.39)-(2.40), to obtain

∥∥∥G̃h(v̂h)
∥∥∥
L2(Ω)

.
∥∥∥Gh(v̂h)

∥∥∥
L2(Ω)

. (2.111)

Let us assume that d = 3 and let p ∈ [2, 6] (if d = 2 we can take p ∈ [2,∞)). Let [[vC]]f be
the jump of vC across the face f. We have

∥∥∥ΠC
h (v̂h)

∥∥∥
p

Lp(Ω)
=
∑

c∈C
|c| |vc|p .

∑

f∈F

|f|
hc
|[[vC]]f ± vf |22

p
2

.

∑

c∈C

∑

f∈Fc

|f|
hc
|vf − vc|22

p
2

= ‖v̂h‖p1,h .
∥∥∥Gh(v̂h)

∥∥∥
p

L2(Ω)
,

(2.112)

where we used a discrete Sobolev inequality in the first line (see, for instance, Eymard et al.
(2010)) and Lemma 2.23 in the third line. Similarly, for ΠF

h , we obtain:

∥∥∥ΠF
h (v̂h)

∥∥∥
p

Lp(Ω)
=
∑

c∈C

∑

f∈Fc

|pf,c| |vf |p .

∑

c∈C

∑

f′∈FPc

|f ′|
hc
‖[[vF]]f′ ± vc‖22

p
2

.

∑

c∈C

∑

f∈Fc

|f|
hc
|vf − vc|22

p
2

= ‖v̂h‖p1,h .
∥∥∥Gh(v̂h)

∥∥∥
p

L2(Ω)
,

(2.113)

where FPc collects all the internal faces of Pc, the pyramidal subdivision of c, and where we
used again a discrete Sobolev inequality and Lemma 2.23. Equations (2.112) and (2.113) are
called p-coercivity in Eymard et al. (2018, Definition A.1) and here we need this property
for p > 4. We can now proceed as in the proof of Eymard et al. (2018, Lemma A.2) and
obtain in particular

lim
h→0

th(ŵh; ûh, v̂h) = 1
2
(
t(w;u, v)− t(w; v, u)

)
. (2.114)

A similar result holds for the HHO convection form as well and it has been defined
sequentially consistency and proven in Di Pietro and Krell (2018, Prop. 6). �

60 Ch. 2 CDO-Fb setting

2.6 Source term
The last brick that we will need to build the CDO-Fb discrete NSE is how to deal with a
possible source term in the momentum balance equation. The aim is to approximate the
linear form at the right-hand side of the classical variational formulation:

l(v) :=
∫

Ω
f · v . (2.115)

The key point is to define a lifting (or reconstruction) operator, denoted by Lh , that takes a
generic discrete hybrid element of Ûh,0 and gives a continuous (or smooth enough) function
which can be tested against the body force, so that one can approximate (2.115) as follows:

l(v) =
∫

Ω
f · v ≈

∫

Ω
f · Lh(v̂h) =: l(Lh(v̂h)) . (2.116)

The straightforward choice is to extract only the cell-based values of the velocity, that is,
such that Lh(v̂h)|c := vc for all c ∈ C and all v̂h ∈ Ûh,0. Then, starting from the right-hand
side of (2.116), one obtains:

Lh(v̂h) := vC , l(Lh(v̂h)) =
∫

Ω
f · v̂C =

∑

c∈C

∫

c
f · vc =

∑

c∈C
vc ·

(∫

c
f

)
. (2.117)

Equation (2.117) is the discrete formulation of the source term that we will employ in this
Thesis. Hence, in practice, one only needs to integrate the body force in each mesh cell.

Remark 2.51 - Alternative choices. Other choices are possible and may involve a differ-
ent definition of Lh or a modification of the linear form (2.115). One could take advantage
of Gh and use it in a Taylor expansion: For all c ∈ C and all f ∈ Fc, we can set

Lh(v̂h)(x) := vc + Gc(v̂c)|pf,c(x− xc) ∀x ∈ pf,c . (2.118)

This choice is reminiscent of the reconstruction operators commonly used in the HHO frame-
work in the lowest-order case k := 0, see, for instance, Di Pietro et al. (2014, Eq. (15)).

Furthermore, the linear form (2.115) may accommodated incorporate information about
the forcing term. For instance, suppose that there exists φ ∈ H1(Ω) such that f = ∇φ, and
that the potential φ is known. Then, integrating by parts, we have at continuous level

∫

Ω
f · v =

∑

f∈Fb

∫

f
φ(v · nf)−

∑

c∈C

∫

c
φ(∇ · v) . (2.119)

Now, plugging a CDO-Fb discretization in (2.119), one may approximate the right-hand
side as follows: ∫

Ω
f · v ≈

∑

f∈Fb
(vf · nf)

(∫

f
φ

)
−
∑

c∈C
Dc(v̂c)

(∫

c
φ

)
. (2.120)

The main difference between (2.117) and the two alternatives proposed in this remark is that
in (2.117) only cell-based DoFs of v̂h are relevant, whereas both the face- and the cell-based
DoFs are employed in (2.118) and (2.119). �

Chapter 3

The steady Navier–Stokes equations

Contents
3.1 Stokes equations with face-based CDO 62

3.1.1 Continuous formulation . 62
3.1.2 CDO formulation . 62
3.1.3 Algebraic viewpoint . 64

3.2 Navier–Stokes equations with face-based CDO 68
3.2.1 Continuous formulation . 68
3.2.2 CDO formulation . 69
3.2.3 Algebraic viewpoint . 70

3.3 Preliminary numerical setting . 71
3.3.1 Meshes . 71
3.3.2 Error norms and quadrature rules 72
3.3.3 Implementation . 75

3.4 Numerical results: Stokes equations 75
3.4.1 2D Bercovier–Engelman . 76
3.4.2 3D modified Taylor–Green Vortex 77

3.5 Numerical results: Navier–Stokes equations 80
3.5.1 2D Burggraf flow . 81
3.5.2 3D Modified Taylor–Green Vortex 82
3.5.3 2D lid-driven cavity . 84

In this chapter, the CDO-Fb operators introduced in Chapter 2 are used to discretize
the Stokes and Navier–Stokes equations (NSE). Only steady problems are considered in this
chapter. Hence, the target problem is: Find (u, p) ∈ H1

0(Ω)× L2
∗(Ω), such that

−ν∆u+ ξNS(u · ∇)u+∇ p = f in Ω ,

∇ · u = 0 in Ω ,

u = u∂ on ∂Ω ,

(3.1)

where ν > 0 is the viscosity, and ξNS is a dummy parameter which lets us recover the
Stokes, ξNS := 0, or the NSE, ξNS := 1. For the sake of simplicity, we will mostly deal
with homogeneous Dirichlet Boundary Conditions (BCs), u∂ := 0 on ∂Ω, but other types

62 Ch. 3 Steady NSE

of BCs can be considered. In the first two sections of this chapter we apply the CDO-
Fb framework to devise discrete versions of the Stokes and NSE. Then we present the
setting for our numerical experiments. Finally, in the last two sections of this chapter,
numerical computations are presented in order to verify the soundness of the design and
of the implementation of the CDO-Fb schemes. The results presented in this chapter have
been partly presented in Bonelle, Ern, and Milani (2020).

3.1 Stokes equations with face-based CDO

In this section, the classical variational formulation of the Stokes equations is translated
into the CDO-Fb framework. Some properties of the resulting discrete problem are studied,
and an algebraic and more implementation-oriented vision is given as well.

3.1.1 Continuous formulation

The classical (continuous) variational formulation, already briefly introduced in Sec-
tion 1.3.2, involves the functional spaces

H1
0(Ω) := {v ∈ H1(Ω) | v|∂Ω = 0} , (3.2a)

L2
∗(Ω) := {q ∈ L2(Ω) |

∫

Ω
q = 0} . (3.2b)

The variational formulation then reads: Find (u, p) ∈ H1
0(Ω)× L2

∗(Ω) such that
{
νa(u, v)+b(v, p) = l(v) ∀v ∈ H1

0(Ω) ,
b(u, q) = 0 ∀q ∈ L2

∗(Ω) ,
(3.3)

where
a(u, v) :=

∫

Ω
∇u : ∇ v , b(u, q) := −

∫

Ω
q∇ · u ,

l(v) :=
∫

Ω
f · v .

(3.4)

Remark 3.1 - Pressure test space. In (3.3), it is possible to consider the larger pressure
test space L2(Ω), since it is readily seen that

− b(u, 1) =
∫

Ω
∇ · u =

∫

∂Ω
u · n∂Ω = 0 , (3.5)

since u ∈ H1
0(Ω). Seeking p ∈ L2

∗(Ω) classically allows one to uniquely define the pressure. �

3.1.2 CDO formulation

Let us introduce appropriate discrete functional spaces for the above problem. Recall that

Ûh :=×
f∈F
U f × ×

c∈C
Uc , (3.6)

Ph :=×
c∈C
Pc . (3.7)

The related spaces where the homogeneous Dirichlet boundary conditions over the whole
boundary ∂Ω for the velocity and the zero mean-value constraint on the pressure have been

3.1 Stokes equations with face-based CDO 63

enforced as follows:

Ûh,0 :=
{
v̂h ∈ Ûh | vf = 0 ∀f ∈ Fb

}
, (3.8)

Ph,∗ :=

qh ∈ Ph |

∑

c∈C
|c| qc = 0

 . (3.9)

Recall that these spaces are equipped with the norms ‖·‖1,h and ‖·‖h defined (2.32) in and
(2.55), respectively.

The approach to build the discrete bilinear forms consists in considering the local ones
for any cell c ∈ C, and then summing them together. The problem hence reads: Find
(ûh, ph) ∈ Ûh,0 × Ph,∗ such that:

{
νah(ûh, v̂h) + bh(v̂h, ph) = l(vC) ∀v̂h ∈ Ûh,0 ,

bh(ûh, qh) = 0 ∀qh ∈ Ph,∗ ,
(3.10)

with (recall (2.56) and (2.117))

ah(ûh, v̂h) :=
∑

c∈C
ac(ûc, v̂c) , ac(ûc, v̂c) :=

∫

c
Gc(ûc) : Gc(v̂c) ,

bh(v̂h, ph) :=
∑

c∈C
bc(v̂c, pc) , bc(v̂c, pc) := −

∫

c
Dc(v̂c)qc = − |c|Dc(v̂c)qc ,

l(vC) :=
∑

c∈C

∫

c
f · vc .

(3.11)

Remark 3.2 - Pressure test space. Similarly to what has been pointed out in Remark 3.1,
the whole discrete space Ph can be used as the pressure test space, since

− bh(ûc, 1) =
∑

c∈C
|c|Dc(ûh) =

∑

f∈Fi

∑

c∈Cf

|f|uf ·nfc +
∑

f∈Fb
|f|uf ·nf =

∑

f∈Fb
|f|uf ·nf = 0 , (3.12)

where we used the definition (3.11) of bh(·, ·) and the definition (2.43) of Dc, exchanged
the order of summation between cells and faces, used the single-valuedness of uf and the
skew-symmetry of nfc on two adjacent cells (cf. Remark 2.13), and finally used the boundary
conditions. �

It has been proved in Lemma 2.33, that Ûh,0, Ph,∗, and bh(·, ·) are such that there exists
β∗ > 0 verifying, for all h ∈ H,

inf
qh∈Ph,∗

sup
v̂h∈Ûh,0

bh(v̂h, qh)
‖qh‖h ‖v̂h‖1,h

≥ β∗ . (3.13)

This property in turn ensures that the problem (3.10) is well-posed.
Exploiting the HHO error analysis in the lowest-order (i.e., choosing k := 0 as the poly-

nomial degree), see Di Pietro et al. (2016, Thm. 7), we can state the following convergence
result:

Lemma 3.3 - Error estimate. Let (u, p) ∈ H1
0(Ω) × L2

∗(Ω) and (ûh, ph) ∈ Ûh,0 × Ph,∗
be the solutions to (3.3) and (3.10), respectively. Suppose additionally that u ∈ H2(Ω) and
p ∈ H1(Ω). Then the following holds true:

‖π̂h(u)− ûh‖1,h . h
(
‖u‖H2(Ω) + 1

ν
‖p‖H1(Ω)

)
, (3.14a)

‖πh(p)− ph‖L2(Ω) . h
(
ν ‖u‖H2(Ω) + ‖p‖H1(Ω)

)
. (3.14b)

64 Ch. 3 Steady NSE

Moreover, if the assumption on full elliptic regularity pickup holds true, then

‖πc(u)− uc‖L2(Ω) . h2
(
‖u‖H2(Ω) + 1

ν
‖p‖H1(Ω)

)
. (3.15)

Remark 3.4 - Pressure-robustness. The error estimates from Lemma 3.3 show that the
present CDO-Fb discretization is not pressure-robust. This means that the velocity error
will suffer from pollution coming from the pressure error as soon as the pressure cannot be
represented exactly in the discrete space Ph,∗. Because of the factor 1

ν on the right-hand
side of (3.14a), this issue becomes problematic as ν → 0+, i.e. in the context of the NSE, as
the Reynolds number becomes large. A way to ensure the pressure-robustness of the scheme
is to define an appropriate lifting operator Lh to use with test functions when dealing with
the source term, i.e., one replaces l(vC) by l(Lh(v̂h)) in (3.10). In particular, one should use
Lh : Ûh → H (div, Ω) such that, for all v̂h ∈ Ûh,0 verifying Dh(v̂h) = 0, then ∇ · Lh(v̂h) = 0.
This new definition ensures that, whenever there exists φ ∈ H1(Ω) such that f = ∇φ,
then

∫
Ω f · Lh(v̂h) = 0 if Dh(v̂h) = 0. Further details on how to build such a reconstruction

operator using Raviart–Thomas finite elements on simplicial meshes can be found in Section
3.4 of Di Pietro et al. (2016) to which the reader is referred to, see also Thm. 4 therein for
the resulting convergence result and Remarks 5 and 11 therein for the differences with other
schemes from the literature. The idea of modifying the test functions on the right-hand
side of the momentum balance equation to ensure pressure-robustness has been developed
in Linke (2014), see also John et al. (2017) and Lederer et al. (2017). �

Remark 3.5 - Other BCs. In the presentation of the problem, both in the continuous
and discrete settings, homogeneous Dirichlet BCs are considered for the sake of simplicity,
and they are taken into account directly in the functional spaces (cf. (3.2a)). However,
other BCs can be considered. The test cases presented in this Thesis mainly deal with non-
homogeneous Dirichlet BCs. Other BCs can be considered, for instance, Neumann, outlet,
Robin, slip (see also Section 3.3.1), or periodicity. �

Remark 3.6 - Dirichlet BCs treatment. In practice, the boundary DoFs related to
Dirichlet BCs are left in the system. Several ways are available to deal with them, most of
them are briefly introduced in Ern and Guermond (2004, Ch. 8.4): an algebraic manipulation
virtually eliminating the related DoFs, and the Nitsche’s boundary-penalty method (Nitsche,
1971; Freund and Stenberg, 1995; Juntunen and Stenberg, 2009; Burman, 2012). We mostly
use the algebraic manipulation: it is a very straightforward procedure, with no additional
arbitrary parameter, and, even if the symmetry of the matrix may be impacted, iterative
solvers maintain good performances (see, e.g. Ern and Guermond (2004, Prop. 8.18)). The
procedure is detailed later in this section, see for instance (3.27)-(3.29). �

3.1.3 Algebraic viewpoint

We are going to give here the algebraic structure of the CDO-Fb formulation (3.10), that
is, how the discrete problem (3.10) is recast into matrices. For the sake of simplicity, we
are going to deal with a local problem concerning only a given mesh cell c ∈ C. This will
allow us to have a better view on how the operators act on the different DoFs. We use the
notation 0d for the null vector in Rd

3.1 Stokes equations with face-based CDO 65

Setting

The algebraic vector Uc ∈ Rd(#Fc+1)+1 gathers face- and cell-based velocity DoFs as well as
the pressure DoF, all related to the cell c:

Uc = [

d#Fc︷ ︸︸ ︷
uTfi1 . . . 99 uTfb1 . . . |

d︷︸︸︷
uTc ‖

1︷︸︸︷
pc]T . (3.16)

Every vector uz ∈ Rd in (3.16) contains the velocity DoFs associated with the generic mesh
entity z, z denoting a face f ∈ Fc or the cell c ∈ C. We have arbitrarily chosen an order: the
pressure DoF comes last, just after the cell-based velocity ones; among the face-based ones,
those related to internal faces (denoted by f in) precede those associated with the boundary
faces (fbn), if any. The vertical bars in (3.16) are just a graphical expedient to stress the
different types of DoFs: dashed lines 99 separate internal and boundary faces, single lines
| faces and cell DoFs, double lines ‖ velocity and pressure DoFs. The overbraces tell us
the size of each subarray. The vector of the right-hand size of the system, Fc, is similarly
structured.

Diffusive contribution

Let us start by investigating the diffusion term. The matrix Gc ∈ Rd̃G×d̃G , with d̃G =
d(#Fc + 1), corresponding to

∫
c Gc(ûc) : Gc(v̂c) has the following structure

Gc =

Gfi1fi1
. . . Gfi1fb1

. . . Gfi1c
...

Gfb1fi1
. . . Gfb1fb1

. . . Gfb1c
...

Gcfi1
. . . Gcfb1

. . . Gcc

d#Fc

}
d

︸ ︷︷ ︸
d#Fc

︸ ︷︷ ︸
d

(3.17)

The gradient acts on all the face- and the cell-based velocity DoFs, but it never couples
two different Cartesian velocity components. Hence each internal matrix Gn,m ∈ Rd×d is
diagonal: Gn,m = Gn,mIdd, with Idd being the identity matrix of dimension d × d and
Gn,m ∈ R, n,m ∈ {f1, . . . , f#Fc , c}, is the entry that one computes for the scalar-valued
version of the Laplace operator (Bonelle, 2014, Section 8.3).

Velocity divergence operator

Consider the divergence operator Dc, defined in (2.43), which couples velocity and pres-
sure DoFs, and is used both to discretize the incompressibility constraint and the pressure
gradient:

Dc =

d#Fc︷ ︸︸ ︷[
dTfi1 . . . 99 dTfb1 . . . |

d︷︸︸︷
0Td] , (3.18)

where df := |f|nfc for all f ∈ Fc. One has Dc ∈ R1×(d(#Fc+1)). Notice that, as outlined in
Remark 2.27, the cell-based velocity DoFs are not relevant in the divergence operator.

66 Ch. 3 Steady NSE

Source term

Recalling (2.117), the right-hand side vector Fc has contributions corresponding to the
velocity cell-based DoFs:

Sc =
[

0Td . . . 0Td . . . sTc 0
]T

, (3.19)

where sc :=
∫

c f .

Final system

One can now consider the system related to the mesh cell c ∈ C: it is obtained by simply
combining the matrices Gc, Dc, and Sc. It takes the form

[
Ac BT

c
Bc 0

]
Uc = Fc , (3.20)

where, in order to make the saddle-point structure clearer, we defined Bc := −Dc for the
coupling (we consider here the negative divergence in the mass balance), and used a generic
matrix Ac for the velocity-velocity block. For the Stokes problem, we have

Ac := νGc , (3.21)

since the only contribution is the diffusive one, and similarly Fc := Sc. This general writing
will be handy later when dealing with the convection term and the mass one (coming from
the time derivative).

Each block of the local system (3.20) is dispatched into the global one and assembled
(by simple summation) according to the global ordering of the DoFs. Assuming that the
order presented above (face-based velocity, cell-based velocity, and then pressure DoFs) is
kept in the global system as well, one may write

AFF AFC BT
CF

ACF ACC 0CC

BCF 0CC 0CC

uF
uC

pC

 =

0F
fC

0C

 . (3.22)

Here, we have set

uF =
[
uTf1 . . .u

T
fn . . .u

T
f#F

]T
∈ Rd#F , uC =

[
uTc1 . . .u

T
cn . . .u

T
c#C

]T
∈ Rd#C ,

pC =
[
pc1 . . . pcn . . . pc#C

]T
∈ R#C , fC =

[
fTc1 . . . f

T
cn . . . f

T
c#C

]T
∈ Rd#C ,

(3.23)

and the global matrices are assembled from the local ones in such a way that

AFF ∈ R(d#F)×(d#F) , ACC ∈ R(d#C)×(d#C) ,

AFC ∈ R(d#F)×(d#C) , BCF ∈ R(#C)×(d#C) .
(3.24)

Since the Stokes problem is symmetric, at least in its velocity-velocity block, the sub-
matrices AFF and ACC are symmetric, and one also has AFC = AT

CF.

3.1 Stokes equations with face-based CDO 67

Elimination of the cell-based unknowns

One can notice that the cell-based velocity DoFs of two distinct cells are not coupled directly
together and they do not contribute to the velocity-pressure coupling (cf. Remark 2.27).
Therefore, they can be eliminated before the assembly stage and then recovered as a post-
processing. This operation hinges on the notion of Schur complement and is often called
static condensation in the literature.

In the static condensation procedure, one expresses uc in terms of uf in (3.22), obtaining

AFF −AFCA−1
CCACF 0FC BT

CF
A−1

CCACF ICC 0CC

BCF 0CC 0CC

uF

uC

pC

 =

−AFCA−1
CCfC

A−1
CCfC

0C

 . (3.25)

Notice that ACC is diagonal. Indeed, its nonzero terms are those associated with the
diffusion, and they do not couple the cells nor the Cartesian components of the velocity.
Hence, the inverse of ACC is very simple to compute in practice. Moreover, in order to
effectively reduce the size of the global system and potentially speed up the performance, one
does not assemble the second line of (3.25): one just needs to store A−1

CCACF ∈ Rd#C×d#F

and A−1
CCfC ∈ Rd#C and then one computes uc in a post-processing stage. The final global

system then involves only face-based velocity DoFs and pressure DoFs:
[

AFF −AFCA−1
CCACF BT

CF

BCF 0CC

] [
uF

pC

]
=
[−AFCA−1

CCfC

0C

]
. (3.26)

The size will then be (d#F + #C)× (d#F + #C).
It is worth mentioning that the static condensation procedure may be considered at the

local level, before the assembly stage.

BCs: algebraic treatment

We conclude this section by describing the algebraic treatment of the boundary conditions.
We recall the procedure outlined in Ern and Guermond (2004, Section 8.4.3). At this stage,
the cell-based velocity DoFs have been eliminated, the global matrix thus contains only
face-based velocity DoFs and the pressure DoFs. We rewrite (3.26) as follows:

ÃFiFi ÃFiFb BT
CFi

ÃFbFi ÃFbFb BT
CFb

BCFi BCFb 0CC

uFi

uFb

pC

 =

f̃Fi

f̃Fb

0C

 (3.27)

where this time, we separated internal and boundary faces, i.e., we decomposed the matrices
ÃFF := AFF−AFCA−1

CCACF and BCF and the vector f̃F := −AFCA−1
CCfC into two subblocks.

Suppose that Dirichlet BCs, possibly inhomogeneous, are enforced on the whole bound-
ary as u|∂Ω = u∂ , so that we want to enforce at the discrete level

uFb = uF∂ := [πfb1
(u∂) . . . πfb

#Fb
(u∂)]T . (3.28)

In order to take into account this piece of information while keeping the boundary DoFs
inside the system, one modifies the second line of (3.27) in order to have an identity block on
the diagonal, zeros elsewhere on that line, and one uses the projection of the Dirichlet data
on the right-hand side. On the other lines of the system, the blocks related to boundary

68 Ch. 3 Steady NSE

faces are set to zero and the right-hand side is modified by using uF∂ . The final system is
as follows:

ÃFiFi 0FiFb BT
CFi

0FbFi IFbFb 0FbC

BCFi 0CFb 0CC

uFi

uFb

pC

 =

f̃Fi − ÃFiFbuF∂

uF∂

−BCfbuF∂

 . (3.29)

The above procedure can be performed locally before the assembly of the global system,
and this is indeed preferable since it can result in better performance and memory savings.
For the sake of simplicity, we have dealt only with the situation where Dirichlet boundary
conditions are enforced over the whole boundary. However, the procedure may be performed
with straightforward modifications in the case where only a subset of the boundary is of
Dirichlet type.

Linear solvers for the Stokes equations

We have presented in Section 1.3.4 some techniques to deal with saddle-point problems by
means of iterative methods. To start with, we usually consider the augmented system (see
Hestenes (1969), Glowinski and Le Tallec (1989), and Benzi et al. (2005, 2011) for details)
of (3.22): [

Aλ BT

B 0

] [
u
p

]
=
[
f
0

]
,

Aλ := A + λBTB ,

(3.30)

where λ ≥ 0 is the user-defined augmentation parameter. The formulation (3.30) is still not
efficiently exploitable with iterative solvers, but it will be treated by considering a Golub-
Kahan Bidiagonalization (GKB) (see Arioli (2013)) or an Uzawa algorithm (see Arrow et al.
(1958)). The latter leads us to the following procedure (see (1.16)): Given an initial guess
p0, iterate on k ≥ 1 until convergence:

Aλuk + BTpk−1 = f ,
pk = pk−1 − λBuk .

(3.31)

If most of the times iterative solvers will be our first choice to solve the first line of
(3.31), we still sometimes employ direct solvers, in particular an LU factorization, if the size
of the system allows it.

3.2 Navier–Stokes equations with face-based CDO
Similarly to what has been done in Section 3.1 for the Stokes equations, the problem obtained
by applying a CDO-Fb discretization to the NSE (take ξNS := 1 in (3.1)) is discussed in this
section.

3.2.1 Continuous formulation
Assuming homogeneous Dirichlet BCs, the classical variational formulation of the NSE
reads: Find (u, p) ∈ H1

0(Ω)× L2
∗(Ω) such that

{
νa(u, v) + t(u;u, v)+b(v, p) = l(v) ∀v ∈ H1

0(Ω) ,
b(u, q) = 0 ∀q ∈ L2

∗(Ω) ,
(3.32)

where the definitions of the functional spaces are in (3.2), those of the bilinear forms a(·, ·)
and b(·, ·) and the linear form l(·) in (3.4), and the one of t(·; ·, ·) in (2.87) (i.e., t(w;u, v) :=∫

Ω v
T (∇u)w).

3.2 Navier–Stokes equations with face-based CDO 69

3.2.2 CDO formulation

Let us recall that the discrete velocity space, Ûh,0, is defined in (3.8) and the discrete
pressure space, Ph,∗, is defined in (3.9). The CDO-Fb formulation of the NSE then reads:
Find (ûh, ph) ∈ Ûh,0 × Ph,∗ such that:

{
νah(ûh, v̂h) + th(ûh; ûh, v̂h)+bh(v̂h, ph) = l(vC) ∀v̂h ∈ Ûh,0,

bh(ûh, qh) = 0 ∀qh ∈ Ph,∗ .
(3.33)

With respect to the discrete Stokes equation (3.10), one remarks the addition of the discrete
convection trilinear form th(·; ·, ·) defined in (2.88), that is,

th(ŵh; ûh, v̂h) = 1
2
∑

c∈C

∑

f∈Fc

|f| (wf · nfc)(uf − uc) · (vf + vc)

+
∑

f∈Fb
|f| (wf · nf)−uf · vf

+ Ξupw 1
2
∑

f∈Fi

∑

c∈Cf

|f| |wf · nfc| (uf − uc) · (vf − vc) .

(3.34)

The bilinear forms ah(·, ·) and bh(·, ·), and the linear one l(·) have already been defined in
(3.11).

As announced in Section 1.3.4, a Picard algorithm is used to deal with the nonlinearity
of the NSE. Applying it to (3.33), one obtains: Given an initial guess u0

h ∈ Ûh,0, iterate on
k ≥ 1 until convergence: Find (ûkh, pkh) ∈ Ûh,0 × Ph,∗ such that:

{
νah(ûkh, v̂h) + th(ûk−1

h ; ûkh, v̂h)+bh(v̂h, p
k
h) = l(vC) ∀v̂h ∈ Ûh,0 ,

bh(ûkh, qh) = 0 ∀qh ∈ Ph,∗ .
(3.35)

We have yet to define the discrete residual of the Picard iterations. As stated in Sec-
tion 1.3.4, we consider an approximation of the L2-norm of the increment of the velocity
normalized by the norm of a reference velocity, in general evaluated using the previous
step solution. Although using a cell-based norm (for instance, adapting (2.55) to the case
of vector-valued functions) is a possible choice, we prefer to use a (semi)norm based on
face-based DoFs, namely:

‖v̂h‖2F :=
∑

c∈C

∑

f∈Fc

|pf,c| |vf |22 . (3.36)

To motivate the choice of ‖·‖F, recall that owing to the static condensation (see Section 3.1.3
and (3.25) in particular), these DoFs of the velocity are eliminated from the final CDO
system. For better performance, it is thus preferable to avoid the recovery of the cell-based
DoFs during the Picard iterations. Moreover, we are addressing the convection term and
our discrete operator uses face-based DoFs only. The (semi)norm defined in (3.36) is thus
an attractive choice. The final stopping criterion then reads:

∥∥∥uk − uk−1
∥∥∥

F
‖uk−1‖F

< εP, (3.37)

where εP is a user-defined tolerance. Finally, a maximum number of iterations, K, is also
set, so that the algorithm stops and fails whenever k > K.

Remark 3.7 - Stopping criterion. Other types of quantities, relative or not, and other
types of norms might be chosen for the stopping criterion. The normalization by using the

70 Ch. 3 Steady NSE

norm of the previous-step solution might appear inconvenient, since it changes at each step.
However, as the Picard algorithm is expected to be convergent, the quantity ‖uk−1‖L2(Ω)
should stabilize after an initial transitory phase. Other normalizations might be chosen, for
instance based on the initial iterate, if a non-null one is available. The latter strategy might
come in handy with unsteady problems, especially when one can use the solution from the
previous time step as initial guess and when the solution is not supposed to vary a lot, due to
a quasi-steady regime or a small time step value. Another important aspect of the stopping
criterion is the considered norm. In (3.37) we considered only the face-based L2-norm of
the velocity. One may argue that a more appropriate norm for the velocity would be an
H1-like norm. Moreover, one may want to take into account the pressure as well. �
Remark 3.8 - Initial guess. When considering a steady problem, one usually does not
have any approximation or knowledge of the solution, hence a null initial guess is considered:
u0 ≡ 0. This also means that the first Picard iteration actually amounts to solving a Stokes
problem. Alternatively, the solution of the same (steady) problem but at a different (lower)
Reynolds number can be chosen. When unsteady problems are considered, once the time
discretization has been deployed, the previous-step solution provides a suitable initial guess:
At each time step tn, one initializes the Picard algorithm with un,0 := un−1. �

3.2.3 Algebraic viewpoint
The only contribution to the system (3.33) whose algebraic structure has not yet been
investigated is the one resulting from the discrete trilinear form. t(·; ·, ·). As it was the case
for the gradient reconstruction, if the convection field is known (condition met in practice if
one uses Picard iterations, see (3.35)), let us say ŵh, the convection operator becomes linear
and can be represented by local matrices in each mesh cell c. Each local matrix, denoted
below by Tc(ŵc), consists of diagonal submatrices since the linearized convection operator
does not couple the Cartesian components of the velocity. This leads to the following
structure:

Tc(ŵc) =

Tfi1fi1
0dd 0dd . . . Tfi1c

...
0dd . . . Tfb1fb1

0dd Tfb1c
...

Tcfi1
. . . Tcfb1

. . . Tcc

, (3.38)

where, for the sake of readability, we have dropped the dependency on ŵc in the submatrices.
One readily finds that

Tff = 1
2 |f| (wf · nfc)Idd , Tcc = −1

2
∑

c∈C
|f| (wf · nfc) = −1

2Dc(ŵc)Idd ,

Tcf = −Tfc = 1
2 |f| (wf · nfc)Idd .

(3.39)

Modifications might be needed in order to take into account the additional terms of th(·; ·, ·)
coming from (2.90) and (2.91). This leads to

Tfifi = 1
2
∣∣∣f i
∣∣∣
(
(wfi · nfic) + Ξupw |wfi · nfic|

)
Idd ∀fi ∈ Fc ∩ Fi ,

Tfbfb =
∣∣∣fb
∣∣∣
(1

2(wfb · nfb) + (wfb · nfb)−
)
Idd = 1

2
∣∣∣fb
∣∣∣ |wfb · nfb | Idd ∀fb ∈ Fc ∩ Fb .

(3.40)

Recall now the local system (3.22), i.e.
[

Ac BT
c

Bc 0

]
Uc = Fc , (3.41)

3.3 Preliminary numerical setting 71

Now, in the context of the NSE, one has Ac := νGc + Tc(ûc) if (3.33) is considered, and
Ac := νGc + Tc(ûk−1

c) if (3.35) is considered.

Remark 3.9 - Simplifications. Assuming that Dc(ŵc) = 0 for all c ∈ C, one simply has
Tcc = 0. This is a condition often met since, for instance, the advection field ŵh considered
in the Picard procedure is discretely incompressible. Moreover, since face-based quantities
are single-valued at internal faces, the first term of the internal face block of (3.40) disappears
after assembly. Hence, one ends up with just assembling Tfifi = 1

2
∣∣fi
∣∣Ξupw |wfi · nfic| Idd.

Notice that Tfifi = 0dd if Ξupw = 0. Finally, in the context of Lemma 2.45 and the
corresponding assumptions on ŵh, the structure of Tc can be further simplified, hence
obtaining a skew-symmetric matrix. �

3.3 Preliminary numerical setting
In this section, we introduce the setting for the numerical experiments that will be carried
out in this Thesis. In particular, a presentation of the meshes, the error norms, and the
practical implementation is given.

3.3.1 Meshes
Both two- and three-dimensional test cases will be considered in the numerical experiments.

2D computations in Code_Saturne

Only 3D computations are allowed in Code_Saturne. Hence, a workaround is necessary to
run 2D test cases. Our approach is to consider a one-layer 3D mesh made of prisms, namely
a 2D lattice extruded in the z-direction. The depth is not discretized, so that only one
cell is introduced in the z-direction. An example of such a mesh is shown in Fig. 3.1. The
BCs need to be adapted, too. The Dirichlet BCs related to the original 2D problem are
easily extended to the higher dimensional case by considering a Dirichlet datum which is
independent of z. The 3D problem is closed by considering a set of BCs on the artificial
boundary planes parallel to the xy-plane. In particular, the normal velocity component (the
z-component) is set to 0, whereas the tangential part is left free by means of a homogeneous
Neumann condition. Altogether, this boils down to a slip BC:

u · n±z = 0, t±z − (t±z · n±z)n±z = 0 on ∂Ω±xy (3.42)

where ∂Ω±xy are the artificial planes, n±z their normal vectors, t±z := σn±z and σ :=
ν∇u − pId. These BCs are dealt with by a Nitsche technique (Nitsche, 1971): one can
find an example of this technique applied to the slip BC and Stokes problem in Freund and
Stenberg (1995).

Polyhedra and cells with hanging nodes

It has been mentioned that the CDO-Fb scheme can handle polyhedral meshes. This feature
comes in handy when one has to deal with hanging nodes. In fact, one splits the face on which
the hanging node lies into several coplanar ones (this pre-processing operation increases the
number of faces of the cell). An example taken from a locally refined Cartesian mesh is
given in Fig. 3.2. The square on the left has one face split by a hanging node. The cell is
then considered as a pentagon (with two coplanar faces). The advantage of this procedure
is its simplicity. Once the mesh has been pre-processed, the CDO-Fb scheme does not need
any special treatment to handle hanging nodes.

72 Ch. 3 Steady NSE

n+z

∂Ω+xy

Figure 3.1 – Example of 2D mesh extruded in order to be compatible with Code_Saturne
computations. No refinement is considered in the (virtual) z-direction.

1
2

3
4

5

Figure 3.2 – Example of a cell with a hanging node: the hanging node splits the face into
two coplanar faces, so that the square cell becomes a pentagon with its five faces marked in
orange.

Commonly used meshes

Several mesh sequences have been considered in 2D, see Fig. 3.3, and in 3D, see Fig. 3.4,
aiming at representing a large panel of possible configurations. Standard meshes such as
regular Cartesian (Figs. 3.3a and 3.4a) or simplicial (Figs. 3.3c and 3.4d) are included.
Moreover, in order to investigate the performances of the CDO-Fb method on more general
grids, tests are run on purely polyhedral meshes (Figs. 3.3d, 3.4b and 3.4f), on meshes with
hanging nodes (usually resulting from local refinements as in Figs. 3.3b and 3.4b), and even
on distorted (Kershaw) meshes which satisfy very poor regularity assumptions (Fig. 3.4c).
Most of these meshes are part or have been built from those proposed in the benchmark
session of the FVCA conference (see for instance Fořt et al. (2011)).

3.3.2 Error norms and quadrature rules
Let us dwell for a moment on the discrete error norms that will be used for the analysis
of the test cases. First, given a generic discrete cell-based function gh := (gc)c∈C ∈ Rl#C,
where, at this stage, the dimension l is left unspecified, we define a discrete cell-based L2-like
norm as follows:

‖gh‖2C :=
∑

c∈C
|c| |gc|22 , (3.43)

where |·|2 is the Euclidean norm in Rl. This is similar to the definition of the pressure norm
‖·‖h, see (2.55). With an abuse of notation, we will use the same symbol for hybrid variables
as well:

‖ĝh‖2C :=
∑

c∈C
|c| |gc|22 ∀ĝh := ((gf)f∈F, (gc)c∈C) , (3.44)

meaning that the face-based DoFs are not considered in this norm, so that we are actually
defining a seminorm. Let now p ∈ L2

∗(Ω) be the exact pressure. We define Eh(p) ∈ Ph as

3.3 Preliminary numerical setting 73

(a) Regular Cartesian - H . (b) Locally refined Cartesian - HR .

(c) Triangles - T . (d) Polygons - PrG .

Figure 3.3 – Examples of 2D meshes with their marker used in the plots.

the difference between the projection of the exact pressure and the discrete pressure:

Eh(p) := (πc(p)− pc)c∈C . (3.45)

Similarly, let u ∈ H1(Ω) denote the exact velocity field. The velocity error is defined as

Êh(u) :=
(
(πf(u)− uf)f∈F , (πc(u)− uc)c∈C

)
. (3.46)

We will report the pressure and velocity L2-like errors measured as

‖Eh(p)‖C and
∥∥∥Êh(u)

∥∥∥
C
. (3.47)

We will also be interested in tracking the error on the discrete velocity gradient Gh, defined
in (2.20a), since it involves both face- and cell-based velocity DoFs. Since Gh is piecewise
constant on subpyramids of every mesh cell, the H1-like velocity error is defined as follows:

∥∥∥Gh(Êh(u))
∥∥∥

2

C
:=
∑

c∈C

∑

f∈F
|pf,c|

∣∣∣Gc(Êc(u))|pf,c

∣∣∣
2

2
, (3.48)

with Êc(u) defined in (3.46).

74 Ch. 3 Steady NSE

(a) Cartesian - H . (b) CheckerBoard - CB .

(c) Kershaw - Ker . (d) Tetrahedra - T .

(e) Prisms - Triangular bases - PrT . (f) Prisms - Polygonal bases - PrG .

Figure 3.4 – Examples of 3D meshes with their marker used in the plots.

3.4 Numerical results: Stokes equations 75

Since second-order convergence rates in space are expected for the L2-like (semi)norms,
it is important to use accurate enough quadrature rules to evaluate the projection of the
reference solution. We will proceed with a subdivision of each mesh element into simplices,
obtained for d = 3 by considering the barycenter of the element, the barycenter of a face
f ∈ Fc, and the two vertices of one of the edges forming the boundary of f. We can
then invoke in each simplex appropriate quadrature rules of fourth- or fifth-order Ern and
Guermond (2004, Section 8.1). This should be enough to avoid that the quadrature errors
affect the evaluation of the approximation error of the discrete solution. Recall that we are
assuming that the mesh cells are star-shaped with respect to their barycenter. This is the
case for all the meshes in Figs. 3.3 and 3.4. The subdivision is avoided if the element itself
is a simplex.

No transformation into reference elements is applied: so far, in our computations, this
choice has never led to inaccurate results and, in fact, with the only exception of the Kershaw
series, the meshes that we usually consider (Figs. 3.3 and 3.4) lead to a subdivision with uni-
formly bounded regularity parameters. In fact, the need for integrals in CDO computation
arises only in evaluating body forces or BCs.

3.3.3 Implementation
The developments of the CDO schemes presented in this Thesis have been added to the
related module available in Code_Saturne (Archambeau et al., 2004).1 We give in this section
some details on the implementation. All the results that will be shown in this and the
following chapters have been obtained using the Code_Saturne implementation and, unless
stated otherwise, performed on a Intel i7 laptop with 32GB RAM.

In all the test cases presented below, the following values was set for the gradient stabi-
lization parameter (see (2.20c)) β := 1.

Most of the solvers discussed in Section 1.3.4 are available in Code_Saturne. It is worth
mentioning that the Augmented-Lagrangian–Uzawa and the Golub–Kahan Bidiagonaliza-
tion algorithms which deal with saddle-point problems are natively available in Code_Saturne
within a parallelized framework. In our numerical experiments, depending on the nature of
the linear system to solve, we will use a preconditioned Conjugate-Gradient. As precondi-
tioners, we will mainly use a Jacobi or an Algebraic Multi-Grid. Moreover, an interface to
the external libraries MUMPS (Amestoy et al., 2001) and PETSc (Balay et al., 1997) allows
us to have access to LU and LDLT direct solvers, as well as alternative algorithms to the
above-mentioned linear solvers and preconditioners.

Remark 3.10 - Pressure average. In the present implementation, the constraint on the
average of the pressure is not taken into account in the building stage of the problem (see
also Remark 3.2) but rather treated as a post-processing after the resolution of the discrete
system. �

3.4 Numerical results: Stokes equations
In this section and in Section 3.5, several two- and three-dimensional test cases are pre-
sented aiming at verifying numerically the properties of the CDO-Fb scheme discussed in
Sections 3.1 and 3.2 and the soundness of our implementation.

The current section deals with the steady Stokes problem. Two cases taken from the
benchmark considered in Cancès and Omnes (2017) are presented: the Bercovier–Engelman
flow in 2D and a Taylor-Green Vortex (TGV) flow adapted to 3D. Both problems have an
analytical reference solution which allows us to measure the spatial orders of convergence.

1https://github.com/code-saturne/code_saturne

https://github.com/code-saturne/code_saturne

76 Ch. 3 Steady NSE

3.4.1 2D Bercovier–Engelman
The Bercovier–Engelman test case (Bercovier and Engelman, 1979) is based on a 2D analytic
solution to the Stokes problem. It has been proposed in the benchmark Cancès and Omnes
(2017, test case 2.1). It consists of a polynomial solution illustrated in Fig. 3.5 on a PrG
mesh (see Fig. 3.3d). The details are

uBE(x, y) := [u(x, y),−u(y, x)]T ,

pBE(x, y) :=
(
x− 1

2

) (
y − 1

2

)
,

u(x, y) := − 256x2(x− 1)2y(y − 1)(2y − 1) ,

(3.49)

on Ω := [0, 1]2, and the viscosity is set to ν := 1. Homogeneous Dirichlet BCs are considered
and the source term is computed from (3.49), giving

fBE(x, y) := [f(x, y) +
(
y − 1

2

)
,−f(y, x) +

(
x− 1

2

)
]T ,

f(x, y) := 256
(
6x2(x− 1)2(2y − 1) + 2y(y − 1)(2y − 1)(6x2 − 12x+ 2)

)
.

(3.50)

A direct sparse solver from MUMPS has been used for this test case.

(a) Velocity: directions and magnitude. (b) Pressure.

Figure 3.5 – Bercovier–Engelman test case (3.49), reference solution. Finest mesh of the
PrG sequence (see Fig. 3.3d).

The results are presented in Fig. 3.6. The expected orders of convergence are recovered:
second-order for the discrete L2-norm of the velocity error and first-order for the velocity
gradient error and the pressure L2-error. Optimal orders are obtained also for polygonal
meshes, such as the refined Cartesian HR and those with distorted cells, e.g. PrG. Moreover,
the pressure errors show sometimes an order of convergence higher than expected: the ones
observed on Cartesian () and polygonal () meshes are quite close to second order.

Remark 3.11 - Comparisons. By taking advantage of the benchmark proposed in Cancès
and Omnes (2017, Case 2.2), the results of CDO can be compared to those of other par-
ticipants. In particular, we consider three contributions of lowest-order method: a DDFV
method with cell-based velocity proposed by Delcourte and Omnes (2017), a DDFV method

3.4 Numerical results: Stokes equations 77

102 103 104 105

10−5

10−4

10−3

10−2

2 nd
ord

cells

∥∥∥Êh(u)
∥∥∥

C
/ ‖πh(u)‖C

(a) Velocity errors.

102 103 104 105

10−4

10−3

10−2

10−1

1 st ord

cells

∥∥∥Gh(Êh(u))
∥∥∥

C
/
∥∥∥Gh(π̂h(u))

∥∥∥
C

(b) Velocity gradient errors.

102 103 104 105

10−4

10−3

10−2

10−1

100

1st ord

2 nd
ord

cells

‖Eh(p)‖C / ‖πh(p)‖C

Hexa
HR
PrG
T

(c) Pressure errors.

Figure 3.6 – 2D Stokes Bercovier–Engelman test case (3.49) - Spatial convergence.

with cell-based pressure by Boyer et al. (2017), and a Finite Difference-Volume (FDV)
method by Angeli et al. (2017). The results for Cartesian meshes are shown in Fig. 3.7.
The dimensions of the discrete functional velocity and pressure spaces of each method are
considered for a fair comparison. The CDO schemes provide satisfactory results when com-
pared to the other methods, especially for the L2-norm of the velocity. The details of the
results obtained on the finest mesh of the series are given in Table 3.1, which allows us to
compare the differences in the dimension of the different discrete settings. �

3.4.2 3D modified Taylor–Green Vortex

For this second test case, a 3D solution to the Stokes problem has been chosen. It is drawn
from the benchmark considered in Cancès and Omnes (2017, test case 2.2) and it is a steady
3D adaptation to the Stokes problem of the well-known Taylor–Green Vortex (Taylor and
Green, 1937). The 3D counterpart is a sinusoidal solution shown in Fig. 3.8. The velocity

78 Ch. 3 Steady NSE

104 105

10−5

10−4

10−3

10−2

2 nd
ord

u DoFs

∥∥∥Êh(u)
∥∥∥

C
/ ‖πh(u)‖C

(a) Velocity errors.

104 105

10−4

10−3

10−2

1 st ord

u DoFs

∥∥∥Gh(Êh(u))
∥∥∥

C
/
∥∥∥Gh(π̂h(u))

∥∥∥
C

(b) Velocity gradient errors.

103 104 105
10−3

10−2

10−1

100

1 st ord

2 nd
ord

p DoFs

‖Eh(p)‖C / ‖πh(p)‖C

(c) Pressure errors.

Figure 3.7 – 2D Stokes Bercovier–Engelman test case (3.49) - Comparison with FVCA VII
participants. Methods: CDO (Bonelle et al., 2020), DDFV-u (Boyer et al., 2017),

DDFV-p (Delcourte and Omnes, 2017), (Angeli et al., 2017).

Table 3.1 – 2D Stokes Bercovier–Engelman test case (3.49) - Comparison with FVCA VII
participants - Details from Fig. 3.7 for finest mesh, Cartesian with 2562 cells. Methods:
CDO (Bonelle et al., 2020), DDFV-u (Boyer et al., 2017), DDFV-p (Delcourte and
Omnes, 2017), (Angeli et al., 2017).

Method # u DoFs # p DoFs u L2 error u H1 error p L2 error
CDO 263168 65536 1.21e−5 6.41e−5 1.85e−3

DDFV-u 263170 131584 8.27e−5 5.89e−4 4.08e−2
DDFV-p 263200 131601 7.72e−5 5.49e−5 2.82e−3
FDV 263168 65536 7.89e−5 5.83e−5 2.74e−3

3.4 Numerical results: Stokes equations 79

field is divergence-free, but a non-zero source term is needed in the momentum equation:

u3TGV(x, y, z) :=

−2 cos(2πx) sin(2πy) sin(2πz)
sin(2πx) cos(2πy) sin(2πz)
sin(2πx) sin(2πy) cos(2πz)

 ,

p3TGV(x, y, z) := − 6π sin(2πx) sin(2πy) sin(2πz) ,

(3.51)

on Ω := [0, 1]3, the viscosity is set to ν := 1, and finally the source term is

f3TGV(x, y, z) := [−36π2 cos(2πx) sin(2πy) sin(2πz), 0, 0]T . (3.52)

Non-homogeneous Dirichlet BCs corresponding to (3.51) are enforced.

(a) Velocity: directions (on selected cells) and
magnitude. (b) Pressure.

Figure 3.8 – 3D Taylor–Green Vortex test case (3.51). Domain sliced at x = 0.75. Finest
mesh of the PrG sequence (see Fig. 3.4f).

Remark 3.12 - GKB procedure and linear solver. For this test case, a Golub–Kahan
Bidiagonalization (GKB) has been considered to tackle the saddle-point problem. The
tolerance of the procedure was set to 10−10 on the absolute residual of the momentum and
mass equations. A Conjugate Gradient (CG) iterative solver was used at each step of the
GKB procedure with the tolerance of the CG set to 10−5. An in-house K-cycle Algebraic
Multi-Grid preconditioner Notay (2010) was considered. Notice that the tolerance of the
internal solver is higher than the one of the global procedure, but this latter works in
incremental mode, so that the aforementioned choice appears to be coherent. Preliminary
tests have been run to confirm this intuition and they are shown in Table 3.2. The considered
mesh is the finest grid from the Cartesian sequence, which is supposed to lead to the most
accurate result among all the considered sequences and refinements. No significant difference
is observed on the error under analysis, hence confirming that the tolerances are not too
loose. Notice however that somewhat less tight tolerances could be considered as well. �

The results for the 3D TGV case are shown in Fig. 3.9. As before, the expected orders of
convergence for the velocity (second order), its gradient (first order) and the pressure (first
order) are recovered, and the pressure errors are sometimes better than expected, especially
for the Cartesian and Prismatic polygonal meshes.

80 Ch. 3 Steady NSE

Table 3.2 – L2- and H1-error of the velocity and L2-error of the pressure obtained on a
Cartesian mesh composed of 643 cells with a GKB procedure with no augmentation pa-
rameter, a CG linear solver and an AMG preconditioner. The tolerances of the iterative
procedures (εGKB and εCG) vary. In the first columns, εGKB is fixed and εCG varies, then
vice versa.

εGKB = 10−10, εCG varies εGKB varies, εCG = 10−5

10−4 10−5 10−8 10−6 10−10 10−12
∥∥Ê(u)h

∥∥
C

‖πh(u)‖C
1.84e−3 1.80e−3 1.80e−3 1.84e−3 1.80e−3 1.80e−3

∥∥G
h
(Êh(u))

∥∥
C∥∥G

h
(π̂h(u))

∥∥
C

2.01e−3 2.01e−3 2.01e−3 2.01e−3 2.01e−3 2.01e−3

‖Eh(p)‖C
‖πh(p)‖C

2.50e−3 2.50e−3 2.50e−3 2.50e−3 2.50e−3 2.50e−3

Table 3.3 – 3D Stokes Taylor–Green Vortex test case (3.51). Comparisons of CDO (Bonelle
et al., 2020) and FDV (Angeli et al., 2017). Cartesian meshes.

Mesh # u DoFs # p DoFs u L2 error ord u H1 error ord p L2 error ord
CDO

H4 720 64 3.18e−1 – 4.36e−1 – 4.83e−1 –
H8 5184 512 1.05e−1 1.69 2.60e−1 0.79 1.49e−1 1.70
H16 39168 4096 2.82e−2 1.95 1.36e−1 0.96 3.95e−2 1.92
H32 304128 32768 7.18e−3 2.00 6.91e−2 1.00 1.00e−2 1.98

FDV (Angeli et al., 2017)
H4 720 64 3.43e−1 – 1.25e+0 – 2.21e−1 –
H8 5184 512 9.98e−2 2.03 5.48e−1 1.25 5.53e−2 1.99
H16 39168 4096 2.26e−2 2.05 1.92e−1 1.56 1.40e−2 1.98
H32 304128 32768 5.66e−3 2.03 7.64e−2 1.35 3.53e−3 1.99

Remark 3.13 - Irregularity in the convergence rates. A plateau in the convergence
is observed for the CB () and Ker () mesh sequences. Concerning the CB meshes, it
happens at the coarsest meshes and it might be explained by the fact that for those meshes
the ratio of boundary faces to internal faces is quite high: the related DoFs are consequently
exactly imposed by considering the BCs, so that the accuracy in this case is facilitated.
Concerning the Kershaw mesh family, it should be said that it has rather poor regularity
properties. Nonetheless, the regularity slightly improves in the most refined meshes, which
is reflected by a slight improvement of the convergence rates on the finer meshes. �

Remark 3.14 - Comparison. We move as in Remark 3.11 and compare the results ob-
tained with CDO-FB with those proposed by Angeli et al. (2017) with a FDV scheme for
the FVCA VIII benchmark. The detailed data is given in Table 3.3. Differently from the
2D case (see Remark 3.11 and Fig. 3.7), CDO is slightly less accurate than FDV, but the
two schemes lead to very similar results. �

3.5 Numerical results: Navier–Stokes equations
Numerical experiments are now going to be carried out on the CDO-Fb Navier–Stokes
problem. As it has been done with the Stokes one (Section 3.4), both 2D and 3D test cases
are considered. First, two test cases with analytical solution (the Burggraf flow and an

3.5 Numerical results: Navier–Stokes equations 81

102 103 104 105 106

10−4

10−3

10−2

10−1

100

2 nd
ord

cells

∥∥∥Ê(u)h

∥∥∥
C
/ ‖πh(u)‖C

(a) Velocity errors.

102 103 104 105 106

10−2

10−1

100

1 st ord

cells

∥∥∥Gh(Êh(u))
∥∥∥

C
/
∥∥∥Gh(π̂h(u))

∥∥∥
C

(b) Velocity gradient errors.

102 103 104 105 106

10−3

10−2

10−1

100

1 st ord

2 nd
ord

cells

‖Eh(p)‖C / ‖πh(p)‖C

Hexa
CB
PrT
PrG
TH
Ker

(c) Pressure errors.

Figure 3.9 – 3D Stokes Taylor–Green Vortex test case (3.51) - Spatial convergence.

adapted 3D TGV) will allow us to verify the orders of convergence, and then the classical
lid-driven cavity test case will be addressed in a 2D setting.

3.5.1 2D Burggraf flow
The Burggraf flow is a 2D analytical polynomial solution to the NSE (Burggraf, 1966):

uBRG(x, y) :=
[
8f(x)g′(y), −8f ′(x)g(y)

]T
,

pBRG(x, y) := 8 1
Re

[
F (x)g′′′(y) + f ′(x)g′(y)

]
+ 64F2(x)

[
g(y)g′′(y)− [g′(y)]2

]
.

(3.53)

Notice that the pressure has an average different than zero, so that the zero average condition
will be enforced before comparing exact pressure to the discrete pressure resulting from the
CDO-Fb scheme. The body force is

fBRG(x, y) :=
[
0, 8

Re
[24F (x) + 2f ′(x)g′′(y) + f ′′′(x)g(y)] + 64[F2(x)G1(y)− g(y)g′(y)F1(x)]

]T

, (3.54)

82 Ch. 3 Steady NSE

with

f(x) := x2 (x− 1)2 , g(y) := y2 (y − 1) (y + 1) ,

F (x) :=
∫ x

0
f(x̃)dx̃ , G(y) :=

∫ y

0
g(ỹ)dỹ ,

F1(x) := f(x)f ′′(x)− [f ′(x)]2 , G1(y) := g(y)g′′′(y)− g′(y)g′′(y) ,

F2(x) :=
∫ x

0
f(x̃)f ′(x̃)dx̃ = [f(x)]2/2 .

(3.55)

The domain is Ω := [0, 1]2 and Re := 100. Considering a reference length L := 1 and
velocity U := 1, one finds ν = 1

Re = 0.01.

(a) Velocity: directions and magnitude, coarsest
Certesian mesh.

(b) Pressure, coarsest locally refined Cartesian
mesh.

Figure 3.10 – Burggraf test case (3.53).

No upwinding stabilization has been considered, i.e. Ξupw := 0, and a direct LU sparse
solver from MUMPS has been used to deal with the linear systems. The mesh sequences in
Fig. 3.3 have been used. The Picard tolerance was set to εP := 10−6 and about 15 iterations
were needed.

The results, displayed in Fig. 3.11, reflect what has already been observed in the Stokes
case. The expected orders of convergence have been recovered and higher rates are observed
for the convergence of the error pressure on certain mesh sequences.

3.5.2 3D Modified Taylor–Green Vortex

We consider again the 3D TGV test case addressed in Section 3.4. We tested ν = 1 and
ν = 0.1, leading to Re = 1 and Re = 10. The source term, however, needs to be adapted in
order to take into account the convection term. This leads to

f3TGV,NS(x, y, z) :=− 12π2

(1 + 2ν) cos(2πx) sin(2πy) sin(2πz)
(1− ν) sin(2πx) cos(2πy) sin(2πz)
(1− ν) sin(2πx) sin(2πy) cos(2πz)

− π

2

−2 sin(2πx) (cos(2πy) + cos(2πz)− 2)
sin(2πy) (cos(2πx)− 2 cos(2πz) + 1)
sin(2πz) (cos(2πx)− 2 cos(2πy) + 1)

 .

(3.56)

3.5 Numerical results: Navier–Stokes equations 83

102 103 104 105

10−4

10−3

10−2

10−1

2 nd
ord

cells

∥∥∥Êh(u)
∥∥∥

C
/ ‖πh(u)‖C

(a) Velocity errors.

102 103 104 105

10−2

10−1

100

1 st
ord

cells

∥∥∥Gh(Êh(u))
∥∥∥

C
/
∥∥∥Gh(π̂h(u))

∥∥∥
C

(b) Velocity gradient errors.

102 103 104 105

10−4

10−3

10−2

10−1

1 st ord

2 nd
ord

cells

‖Eh(p)‖C / ‖πh(p)‖C

Hexa
HR
PrG
T

(c) Pressure errors.

Figure 3.11 – 2D Navier–Stokes Burggraf flow (3.53), Re = 100 - Spatial convergence.

The mesh sequences illustrated in Fig. 3.4 have been considered. An Augmented La-
grangian–Uzawa method has been employed to solve the saddle-point problems with an
augmentation parameter λ = 100. The stopping criterion for the ALU method is based on
the maximum between the relative increment of the solution at the current (solver) iter-
ation and the global norm of the divergence of the solution. The internal linear systems
obtained at each iteration of the ALU method have been solved using a LU direct solver
from MUMPS. Concerning the nonlinear solver, typically, 5 iterations of the Picard algo-
rithm were needed to reach convergence to the requested tolerance, εP := 10−6. No upwind
stabilization has been considered, i.e. Ξupw := 0.

The results are shown in Fig. 3.12 for Re = 1, and in Fig. 3.13 for Re = 10. As it was the
case for the previous experiments, good results have been observed for all the three errors
under consideration (the velocity, its gradient and the pressure), and higher than expected
rates have been observed for the pressure with the regular Cartesian mesh sequence and the
prismatic mesh sequence with polygonal basis. Some irregularities are observed, but the
comments made in Remark 3.13 apply here too.

When comparing the results for the two Reynolds numbers, one can notice that the

84 Ch. 3 Steady NSE

pressure errors do not vary too much. On the contrary, both the L2- and H1-like discrete
velocity errors increase when moving from Re = 1 to Re = 10: this is a consequence
of the lack of pressure-robustness of the scheme, i.e. the velocity errors are not viscosity-
independent.

102 103 104 105 106

10−4

10−3

10−2

10−1

100

2 nd
ord

cells

∥∥∥Êh(u)
∥∥∥

C
/ ‖πh(u)‖C

(a) Velocity errors.

102 103 104 105 106

10−2

10−1

100

1 st ord

cells

∥∥∥Gh(Ê(u)h)
∥∥∥

C
/
∥∥∥Gh(π̂h(u))

∥∥∥
C

(b) Velocity gradient errors.

102 103 104 105 106

10−3

10−2

10−1

100

1 st ord

2 nd
ord

cells

‖Eh(p)‖C / ‖πh(p)‖C

Hexa
CB
PrT
PrG
TH
Ker

(c) Pressure errors.

Figure 3.12 – 3D Navier–Stokes Taylor–Green Vortex test case (3.51), Re = 1 - Spatial
convergence.

3.5.3 2D lid-driven cavity

The lid-driven cavity problem is a well-known validation test case. The fluid is contained in
a domain whose walls except the upper one are fixed. The upper wall has uniform velocity
stirring the fluid, leading to different configurations of vortices depending on the velocity of
the wall and the viscosity of the fluid. The flow is stationary up to a certain value of the
Reynolds number. It is accepted in the litterature that a 2D stationary solution is observed
up to Re = 8000 (Cazemier et al., 1998; Poliashenko and Aidun, 1995; Bruneau and Saad,
2006). No analytical solution is available but the literature is rich with references, among
others Ghia et al. (1982), Botella and Peyret (1998), and Erturk et al. (2005). Even though

3.5 Numerical results: Navier–Stokes equations 85

102 103 104 105 106

10−3

10−2

10−1

100

2 nd
ord

cells

∥∥∥Êh(u)
∥∥∥

C
/ ‖πh(u)‖C

(a) Velocity errors.

102 103 104 105 106

10−1

100

1 st
ord

cells

∥∥∥Gh(Ê(u)h)
∥∥∥

C
/
∥∥∥Gh(π̂h(u))

∥∥∥
C

(b) Velocity gradient errors.

102 103 104 105 106

10−3

10−2

10−1

100

1 st ord

2 nd
ord

cells

‖Eh(p)‖C / ‖πh(p)‖C

Hexa
CB
PrT
PrG
TH
Ker

(c) Pressure errors.

Figure 3.13 – 3D Navier–Stokes Taylor–Green Vortex test case (3.51), Re = 10 - Spatial
convergence.

3D experiments of this sort are available (see among others Albensoeder and Kuhlmann
(2005) and Botti et al. (2019)), we focus on the more common two-dimensional setting to
temper the computational burden.

The domain is Ω := [0, 1]2. All the boundary conditions are of Dirichlet type. The
velocity of the moving wall is set to umw := Uex with U := 1, the other walls are fixed. The
configuration is depicted in Fig. 3.14. The viscosity may vary in order to let us test different
Reynolds numbers given by Re = UL

ν = 1
ν , since, given the dimension of the computational

domain, one takes L := 1.
We are going to study how the CDO-Fb solutions compare with the results of the

literature by looking at the velocity, the vorticity, and the pressure. The computations
are performed mainly on pseudo-2D Cartesian meshes (see Section 3.3.1 about how one
mimics 2D meshes in Code_Saturne), some tests with other meshes will be run to verify the
method on less regular meshes. Given the reduced size of the problem (for instance, the
most refined Cartesian mesh that we considered has 511× 511 cells), a direct LU solver has
been used to deal with the linear systems. No upwind stabilization has been considered,

86 Ch. 3 Steady NSE

u
=

0

u = 0

u
=

0

umw = Uex

Re = 1
ν

Figure 3.14 – Lid-driven cavity. Left: problem setup. Right: velocity (magnitude and
directions on selected cells) obtained for Re = 1000 on a 511× 511 Cartesian mesh with the
CDO-Fb discretization.

i.e. Ξupw := 0. The tolerance for the Picard algorithm was set to εP := 10−7.
The computations have been carried out for several Reynolds numbers, namely Re ∈

{100, 400, 1000, 3200, 5000}. In Fig. 3.15 we report the vertical and horizontal velocity
profiles at the symmetry axes of the domain (x = 1

2 and y = 1
2) obtained on a 511 × 511

Cartesian grid: the cell-based values of the velocity are shown. Results taken from Ghia
et al. (1982) () and, when available, Botella and Peyret (1998) () and Bruneau and
Saad (2006) () are printed in order to have a comparison. At this discretization level, the
results obtained with CDO-Fb are basically superimposed to the results from the considered
references.

The mesh used in Fig. 3.15, Cartesian with 511×511 cells, is indeed quite refined, hence
the good results observed might not be so surprising. We next fix the Reynolds number
to Re = 1000, and run some computations on different levels of discretization. The results
are shown in Fig. 3.16. Excluding the coarsest one (63 × 63), hence starting from the
127×127 Cartesian mesh, the CDO results turn out to be fairly accurate with respect to the
literature, and no significant gain is observed between the two most refined meshes, namely
255× 255 and 511× 511 .

Remark 3.15 - Singularities. No specific treatment has been considered to treat the
singularities of the solution to the lid-driven cavity test case that appear at the corners of
the moving wall of the domain. �

Remark 3.16 - Nonlinearity treatment. As expected, the number of iterations of the
Picard algorithm needed to achieve the prescribed tolerance, εP := 10−7, depends on the
Reynolds number. For moderate values, Re ≤ 1000, less than 30 iterations are needed, and
this number does not seem to depend much on the discretization level. For instance, all the
computations shown in Fig. 3.16 need the same number of iterations. This number grows
rapidly with the Reynolds number, as shown in Fig. 3.17. For instance, up to 171 iterations
are needed for Re = 5000. Moreover, recalling that the computations were started with a
null initial guess (hence, by solving a Stokes problem), some gains might have been achieved
if, for instance, the solution obtained for a lower Reynolds number was fed to the algorithm
as initial guess. �

Besides the velocity profiles, other quantities may be compared to the references from
the literature. In Fig. 3.18 we report the vorticity and the pressure profiles for different

3.5 Numerical results: Navier–Stokes equations 87

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

(a) Re = 100

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

(b) Re = 400

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

(c) Re = 1000

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

(d) Re = 3200

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

(e) Re = 5000

Figure 3.15 – Lid-driven cavity: horizontal and vertical velocity profiles (cell-based DoFs)
on the symmetry axes for different Reynolds numbers. : CDO; : Ghia et al. (1982), :
Botella and Peyret (1998), : Bruneau and Saad (2006). Cartesian mesh 511× 511.

88 Ch. 3 Steady NSE

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y
0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ux

y

Figure 3.16 – Lid-driven cavity: horizontal and vertical velocity profiles (cell-based DoFs)
on the symmetry axes. Re = 1000. References: : Ghia et al. (1982), : Botella and
Peyret (1998), : Botella and Peyret (1998). CDO-Fb with Cartesian meshes: 511 × 511

, 255× 255 , 127× 127 , 63× 63 .

100 400 1000 3200 5000
10

50

100

150

∝
√ Re

Re

#
Pi
ca
rd

ite
ra
tio

ns

Figure 3.17 – Lid-driven cavity: iterations needed by the Picard algorithm to reach the
prescribed tolerance, εP := 10−7, at several Reynolds numbers on a 511 × 511 Cartesian
mesh.

3.5 Numerical results: Navier–Stokes equations 89

mesh refinements on Cartesian meshes, and compare them to the data provided in Botella
and Peyret (1998) for Re = 1000. To be consistent with Botella and Peyret (1998), we set
U = −1 and the zero-average constraint on the pressure is replaced by setting p

(
1
2 ,

1
2

)
= 0.

Moreover, the discrete vorticity ωc is defined to be cell-wise constant and is computed using
the extra-diagonal entries of the consistent discrete gradient G0

c (see (2.20b)) as follows:

ωc := [G0
c(ûc)]yx − [G0

c(ûc)]xy ∀c ∈ C . (3.57)

Since we are dealing with a two-dimensional test case, the vorticity is a scalar. The vorticity
results in Fig. 3.18 reflect those for the velocity: the discrete vortices are close to the reference
data, even on fairly coarse meshes. The effect of the mesh refinement is more visible in the
pressure results, where the values at the boundary are sensibly underestimated on coarse
meshes.

Finally, generic meshes are considered to test the CDO scheme on non-Cartesian grids.
The meshes at hand are the triangular one, such as the one tagged as T (cf. Fig. 3.3c), and
one taken from the Locally Refined Cartesian series (cf. Fig. 3.3b). Both meshes have a
number of cells similar to the 255 × 255 Cartesian mesh, which will be used for reference.
The results for Re = 1000 are reported in Fig. 3.19. Both non-Cartesian meshes lead to a
slightly lower accuracy with respect to the Cartesian mesh, especially around the extrema
of the profiles. All in all, the overall results are quite satisfactory and the accuracy remains
quite good on polyhedral meshes.

90 Ch. 3 Steady NSE

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

x

w
−5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

w

y

(a) Vorticity.

0 0.2 0.4 0.6 0.8 1
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

x

p

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

0

0.2

0.4

0.6

0.8

1

p

y

(b) Pressure.

Figure 3.18 – Lid-driven cavity (here U = −1): horizontal and vertical vorticity (above) and
pressure (below) profiles on the symmetry axes. The discrete vorticity is defined in (3.57),
and the pressure is normalized to have p

(
1
2 ,

1
2

)
= 0. Re = 1000. References: : Botella and

Peyret (1998), : Bruneau and Saad (2006). CDO-Fb with Cartesian meshes: 511 × 511
, 255× 255 , 127× 127 , 63× 63 .

3.5 Numerical results: Navier–Stokes equations 91

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ux

y

(a) Triangular mesh - T.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u
y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ux

y

(b) Refined Cartesian mesh - HR.

Figure 3.19 – Lid-driven cavity: horizontal and vertical velocity profiles (cell-based DoFs)
on the symmetry axes. Re = 1000. References: : Ghia et al. (1982), : Botella and Peyret
(1998), : Bruneau and Saad (2006). CDO-Fb meshes: Cartesian: , Triangular: ,
Refined Cartesian: .

92 Ch. 3 Steady NSE

Chapter 4

First-order time-stepping techniques for the
Navier–Stokes equations

Contents
4.1 Preliminary notions . 94

4.1.1 Continuous setting . 94
4.1.2 Time-discrete setting . 95
4.1.3 Fully discrete setting . 95

4.2 Velocity-pressure couplings and time-stepping techniques 96
4.2.1 Monolithic approach and the saddle-point problem 97
4.2.2 The Artificial Compressibility technique 98

4.3 Convection treatments . 101
4.3.1 Implicit convection: Picard algorithm 101
4.3.2 Linearized convection . 103
4.3.3 Explicit convection . 104

4.4 Numerical results: Stokes equations 105
4.4.1 Convergence in time . 107
4.4.2 Efficiency results . 108
4.4.3 Polyhedral meshes . 110

4.5 Numerical results: Navier–Stokes equations 113
4.5.1 Convergence in time . 114
4.5.2 Convection treatments and dissipativity 116
4.5.3 Stability results with an explicit convection 116

4.6 Detailed results . 122
4.6.1 Stokes equations . 122
4.6.2 Navier–Stokes equations . 126

After having dealt with steady problems, we now move on to unsteady ones. The target
problem is then

∂u

∂t
− ν∆u+ ξNS(u · ∇)u+∇ p = f in Ω× (0, T) ,

∇ · u = 0 in Ω× (0, T) ,
u = u∂ on ∂Ω× (0, T) ,

u|t=0 = u0 on Ω ,

(4.1)

94 Ch. 4 1st-order time-stepping for the NSE

with T > 0 denoting the finite observation time of the flow. Recall that the parameter
ξNS allows us to switch from the Stokes (ξNS := 0) to the Navier–Stokes equations (NSE,
ξNS := 1). To be compatible with the divergence constraint, the (non)homogeneous Dirichlet
datum must satisfy

∫
∂Ω u∂ · n∂Ω = 0 for any t ∈ (0, T). The Initial Condition (IC), u0, is a

given function and we assume that it satisfies

∇ · u0 = 0 in Ω and u0 = u∂ on ∂Ω . (4.2)

These conditions mean that the initial velocity field is compatible. For simplicity we assume
that u∂ = 0 in the presentation of the schemes.

This chapter opens with an overview on the two velocity-pressure coupling techniques
that we use to address the NSE, the monolithic approach and the Artificial Compressibility
(AC) method. A second part deals with various ways of handling the convection term in
the time-dependent case. Finally, numerical results are presented to support the theory and
to identify the best numerical strategies in practice.

4.1 Preliminary notions

In this section various settings are introduced, moving from the continuous to the fully (time
and space) discrete one.

4.1.1 Continuous setting

Let us briefly recall some classical concepts of functional analysis for parabolic PDEs. We
will follow Ern and Guermond (2004, Ch. 6). For a more thorough and in-depth discussion
specific to the NSE, the reader may also refer to Temam (1977, Ch. III).

Given a function q(x, t) defined on the space-time cylinder Ω× (0, T) and taking values
in Rl, l ≥ 1, we may look at it as a function of t only and with values in a Banach space V
composed of functions from Ω to Rl and equipped with a norm denoted by ‖·‖V . Thus, the
elements of V only depend on the space variable x. In other words, we associate with the
function q(x, t) the function

q : (0, T) 3 t 7→ q(t) ≡ q(·, t) ∈ V , (4.3)

and we keep the same notation for simplicity.
Let C`([0, T];V) be the Banach space of `-continuously differentiable functions with

values in V . We assume that there is a smooth enough solution to the unsteady NSE (4.1)
such that

u ∈ C0([0, T];H1
0(Ω)) ∩ C1([0, T];L2(Ω)) , p ∈ C0([0, T];L2

∗(Ω)) , (4.4)

and we assume that f ∈ C0([0, T];L2(Ω)).
A more generic setting for the unsteady NSE is to consider a weak solution in a suitable

Bochner–Hilbert space. One critical issue is then the regularity in time of the velocity
time-derivative and of the pressure.

Remark 4.1 - Initial pressure. In general, the initial pressure is not a datum for the
unsteady NSE. Here we restrict ourselves to smooth solutions so that we can assume that
the initial pressure is well-defined. �

4.1 Preliminary notions 95

4.1.2 Time-discrete setting
In order to discretize the reference time interval [0, T], we consider an increasing sequence
of time nodes (tn)n=0,...,N , with t0 = 0, tN ≥ T and N being a natural positive number. For
the sake of simplicity, we assume the time step to be constant, so that, once a time step ∆t
is chosen, we can write tn := n∆t, n = 0, . . . , N , N := d T∆te and [0, T] ⊆ ⋃N−1

n=0 [tn, tn+1]. In
general, ∆t is chosen so that there is indeed an integer N such that N∆t = T .

In this chapter, we consider a simple first-order time-discretization scheme so that the
focus is on the velocity-pressure coupling and on how to deal with the convection and the
resulting nonlinearity. We thus consider a simple backward Euler time discretization: For
n = 1, . . . , N , given un−1 ∈ H1

0(Ω) from the previous time step or the initial condition, find
(un, pn) ∈ H1

0(Ω)× L2
∗(Ω) solving

un − un−1

∆t − ν∆un + ξNS(un · ∇)un +∇ pn = fn := f(tn) ,

∇ · un = 0 .
(4.5)

The variational formulation associated with (4.5) is: Find (un, pn) ∈ H1
0(Ω)×L2

∗(Ω) solving

1
∆tm(un − un−1, v) + νa(un, v) + ξNSt(un;un, v) + b(v, pn) = ln(v) ,

b(un, q) = 0 ,
(4.6)

for all v ∈ H1
0(Ω) and all q ∈ L2

∗(Ω). Recall that

a(w, v) :=
∫

Ω
∇w : ∇ v , b(w, q) := −

∫

Ω
q∇ · w , (4.7a)

t(w;u, v) :=
∫

Ω

(
(w · ∇)u

)
· v , (4.7b)

and define
m(w, v) :=

∫

Ω
w · v , ln(v) :=

∫

Ω
fn · v . (4.7c)

At this stage, we are considering an implicit treatment of the convection term and a strong
velocity-pressure coupling. Alternative strategies are presented later in this chapter.

After a time discretization has been introduced, as in (4.5), the space time function
q ∈ C0 ([0, T];V) is approximated by qN := {qn}n=0,...,N ∈ [V]N+1 where, for each n, qn ≈
q(·, tn) ∈ V .

4.1.3 Fully discrete setting
The spatial discretization of (4.6) is now considered. Recall that in the face-based CDO
(CDO-Fb) formulation, the velocity un is approximated as ûnh ∈ Ûh,0 and the pressure pn

as pnh ∈ Ph,∗. We then set ûh,N := (ûnh)n=0,...,N ∈ [Ûh,0]N+1 and ph,N := (pnh)n=0,...,N ∈
[Ph,∗]N+1. For the sake of brevity, whenever no confusion arises between the steady and
unsteady problems, the subscript N is dropped: e.g. we write ûh := (ûnh)n=0,...,N .

Similarly to how the source term is treated (see Section 2.6 and (3.19)), the part of the
problem resulting from the time-discretization, un−un−1

∆t in (4.5), only involves cell-based
DoFs. This is natural in hybrid methods where the equations associated with the cell-based
test functions express the balance of a conservation property (e.g. the velocity momentum) in
each mesh cell, whereas the equations associated with the face-based test functions express
the equilibrium of the fluxes across a given face. Recall that for a given function v̂h ∈ Ûh,0,
we write v̂h = (vC, vF) to identify the cell- and face-based components of v̂h. Then, (4.6)

96 Ch. 4 1st-order time-stepping for the NSE

translates as follows in the CDO-Fb framework: For n = 1, . . . , N , given un−1
h ∈ Ûh,0 from

the previous time step or the initial condition, find (ûnh , pnh) ∈ Ûh,0 × Ph,∗ solving

1
∆tm(unC − un−1

C , vC) + νah(ûnh , v̂h) + ξNSth(ûnh ; ûnh , v̂h) + bh(v̂h, p
n
h) = ln(vC) ,

bh(ûnh , qh) = 0 ,
(4.8)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Notice that

m(wC, vC) :=
∑

c∈C
mc(wc, vc) , mc(wc, vc) :=

∫

c
wc · vc = |c|wc · vc . (4.9)

Remark 4.2 - Right-hand side of (4.8). The discussion made in Section 2.6 about how
to deal with the source term in the CDO-Fb context, represented by ln(vC) in (4.8), is also
relevant (after appropriate adaptations) to the unsteady case. In particular, it is possible to
consider the two alternatives proposed in Remark 2.51 involving a velocity reconstruction
for the test functions. �

Time-related mass matrix

From the algebraic point of view, the bilinear term m(unC, vC) is taken into account locally
in every cell c ∈ C as a mass matrix lumped on the cell-based DoFs

Mc :=
[

0FcFc 0Fcd

0dFc |c| Idd

] }
d#Fc}
d

.

︸ ︷︷ ︸
d#Fc

︸ ︷︷ ︸
d

(4.10)

Similarly, the local contribution of m(un−1
C , vC) to the right-hand side reads:

Rn−1
c =

[
0TFc (mc)T 0

]T
, (4.11)

where mn−1
c = |c|un−1

c .
Recall the local linear system presented in Section 3.1.3, see especially (3.20):

[
Ac BT

c
Bc 0

]
Uc = Fc . (4.12)

For the unsteady NSE, one has

Ac := 1
∆tMc + νGc + ξNSTc(ûnc) ,

Bc := Dc ,

Fn
c := Snc + 1

∆tR
n−1
c .

(4.13)

4.2 Velocity-pressure couplings and time-stepping tech-
niques

In this section, we detail two coupling techniques used in time-stepping schemes for the NSE:
the monolithic approach and the AC method. They have already been briefly introduced in

4.2 Velocity-pressure couplings and time-stepping techniques 97

Section 1.3.5. Here, we give more details. Recall that the monolithic approach aims at the
maximum accuracy of the solution, whereas the AC technique focuses on the efficiency.

Since the velocity-pressure coupling is a consequence of the incompressibility constraint,
it is present both in the Stokes and NSE. Hence, in order to keep the discussion as simple
as possible, we focus on the Stokes problem in the rest of this section, i.e. we set ξNS := 0
in (4.8).

4.2.1 Monolithic approach and the saddle-point problem

We will use the term monolithic approach to refer to the classical formulation of the Stokes
or NSE which leads to a saddle-point system. As it was pointed out in Section 1.3.5, adapted
algorithms and considerable numerical effort might be needed to solve this type of problem.
On the other hand, one obtains the best possible solution that the chosen time-scheme
and the spatial discretization provide, since no further approximations are considered. In
particular, the velocity field is discretely divergence-free.

The discrete CDO system given in (4.8) with ξNS := 0 becomes: For n = 1, . . . , N , given
ûn−1

h ∈ Ûh,0, find (ûnh , pnh) ∈ Ûh,0 × Ph,∗ such that

1
∆tm(unC − un−1

C , vC) + νah(ûnh , v̂h) + bh(v̂h, p
n
h) = ln(vC) ,

bh(ûnh , qh) = 0 ,

(4.14a)

(4.14b)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Similarly the algebraic realization presented in Eqs. (4.10)
to (4.13) becomes:

[
Ac BT

c
Bc 0

]
Un

c = Fn
c ,

Ac := 1
∆tMc + νGc , Bc := Dc , Fn

c := Snc + 1
∆tR

n−1
c .

(4.15)

Energy balance

Let us investigate the energy balance of the CDO-Fb Stokes problem with a monolithic
approach and an Implicit Euler time discretization. Given a discrete velocity field v̂h ∈ Ûh,
we define the corresponding (cell-based) kinetic energy as

Ekin,h(v̂h) := 1
2 ‖vC‖2L2(Ω) , ‖vC‖2L2(Ω) = ‖v̂h‖2C =

∑

c∈C
|c| |vc|22 . (4.16)

It is clear that Ekin,h(v̂h) ≥ 0 for all v̂h ∈ Ûh.

Lemma 4.3 - Energy balance for (4.14). Assume f := 0. Let n = 1, . . . , N and let
(ûnh , pnh) solve (4.14). The following holds true:

Ekin,h(ûnh)− Ekin,h(ûn−1
h) + Ekin,h(ûnh − ûn−1

h)
︸ ︷︷ ︸

≥0

+ ν∆t
∥∥∥Gh(ûnh)

∥∥∥
2

L2(Ω)
︸ ︷︷ ︸

≥0

= 0 . (4.17)

The two rightmost terms in (4.17) being nonnegative, the scheme (4.14) is dissipative,
i.e. we have

Ekin,h(ûnh) ≤ Ekin,h(ûn−1
h) . (4.18)

98 Ch. 4 1st-order time-stepping for the NSE

Proof. Consider (4.14a) (recall f := 0), multiply it by ∆t and set v̂h := ûnh . The incom-
pressibility constraint (4.14b) enforced by the monolithic approach gives bh(ûnh , pnh) = 0.
Concerning the diffusion contribution, using the definition of ah(·, ·), (3.11), it is readily
seen that

νah(ûnh , ûnh) = ν
∥∥∥Gh(ûnh)

∥∥∥
2

L2(Ω)
. (4.19)

It is now left to investigate the mass-related term m(·, ·). Owing to the definition (4.9) and
trivial manipulations, one has

m(unC − un−1
C , unC) =

∑

c∈C

∫

c
(unc − un−1

c) · unc =
(
unC − un−1

C , unC
)
L2(Ω)

. (4.20)

The following identity is readily verified

± 2 (v, w)L2(Ω) = ‖v ± w‖2L2(Ω) − ‖v‖2L2(Ω) − ‖w‖2L2(Ω) . (4.21)

Plugging (4.21) in (4.20), one has

m(unC − un−1
C , unC) = 1

2 ‖u
n
C‖2L2(Ω) −

1
2
∥∥∥un−1

C

∥∥∥
2

L2(Ω)
+ 1

2
∥∥∥unC − un−1

C

∥∥∥
2

L2(Ω)

= Ekin,h(ûnh)− Ekin,h(ûn−1
h) + Ekin,h(ûnh − ûn−1

h) ,
(4.22)

where the last equality follows from the definition (4.16) of Ekin,h(·). One has thus recovered
the three leftmost terms in (4.17), and the proof is complete.

4.2.2 The Artificial Compressibility technique

Let us recall here the main features of the Artificial Compressibility technique and discuss
how it is adapted to the CDO-Fb setting.

Consider the Stokes equations discretized only in time, similarly to what has been done
in (4.5). The key point of the AC method is that the velocity-pressure coupling in the
momentum equation is broken by considering an additional grad-div term and by approxi-
mating the pressure with the previous step solution. The pressure is subsequently updated
at the end of the time step. When applied to (4.5) with ξNS := 0, this procedure leads to

un − un−1

∆t − ν∆un +∇ pn = fn ,

pn − pn−1 + νη∇ · un = 0 ,
(4.23)

Where η is a user-dependent nondimensional parameter. Rearranging (4.23) leads to

un − un−1

∆t − ν(∆un + η∇∇ · un) = fn −∇ pn−1 , (4.24a)

pn = pn−1 − νη∇ · un . (4.24b)

Let us have a look at the role of the additional grad-div operator in the momentum equation.
Applying an integration by parts and taking into account the boundary conditions yields
for any smooth functions v and w

−
∫

Ω
(∇∇ · w) · v =

∫

Ω
∇ · w∇ · v +

∫

∂Ω
∇ · w(v · n∂Ω) =

∫

Ω
∇ · w∇ · v . (4.25)

Hence the grad-div term leads to a dissipative contribution to the energy balance.

4.2 Velocity-pressure couplings and time-stepping techniques 99

Let us apply the AC technique to the CDO-Fb discrete problem (4.8) with ξNS := 0.
The grad-div term is discretized by using the CDO-Fb divergence operator (given Defini-
tion 2.25), and which we recall here for convenience

dh(ŵh, v̂h) :=
∑

c∈C
dc(ŵc, v̂c) ,

dc(ŵc, v̂c) :=
∫

c
Dc(ŵc)Dc(v̂c) = 1

|c|

∑

f∈Fc

|f|nfc · wf

∑

f∈Fc

|f|nfc · vf

 .

(4.26)

The AC version of (4.8) thus reads: For n = 1, . . . , N , given ûn−1
h ∈ Ûh,0, find ûnh ∈ Ûh,0

such that

1
∆tm(unC − un−1

C , vC) + ν (ah(ûnh , v̂h) + ηdh(ûnh , v̂h)) = ln(vC)− bh(v̂h, p
n−1
h) , (4.27a)

for all v̂h ∈ Ûh,0, and then update the pressure as follows:

pnh = pn−1
h − νηDh(ûnh) . (4.27b)

See Remark 4.5 below on the pressure initialization.

Remark 4.4 - Pressure mass matrix. In order to derive (4.27b), one considers the
mass matrix associated with the spatial discretization chosen for the pressure. In the CDO-
Fb discretization, the pressure is cell-wise constant and the resulting mass-matrix is then
diagonal with entries equal to the volumes of the cells. Similarly, the divergence, which is at
the right-hand side of (4.27b), is cell-wise constant as well. Hence, it is trivial to eliminate
the mass matrix and this yields (4.27b). �

From an algebraic standpoint, the grad-div term in (4.27a) translates into the following
matrix:

Lc =

Lfi1fi1
. . . Lfi1fb1

. . . 0dd
...

Lfb1fi1
. . . Lfb1fb1

. . . 0dd
...

0dd . . . 0dd . . . 0dd

, (4.28)

where Lflfm = |fl||fm|
|c| nfl ⊗ nfm for all fl, fm ∈ Fc. The structure of the matrix is dense in the

face-face block and all the faces of a cell may be coupled together, whereas the matrix has null
blocks in the cell-related part, since the cell DoFs are not involved in the computation of the
divergence (see (2.45)). Moreover, differently from the gradient operator, the submatrices
forming Lc are not a priori diagonal and couple the different Cartesian components of the
velocity. This is also the case for the diagonal blocks Lf,f .

The local problem resulting from the AC technique is substantially different from (4.15):
in fact, the saddle-point structure is traded against a symmetric positive-definite matrix,
and the size of the system to be solved is reduced since the pressure DoFs are no longer part
of the unknowns. The AC technique combined with the CDO-Fb discretization thus leads
to the following (local) two-step procedure. First, the linear system is assembled from the
following local contributions: For every cell c ∈ C,

Ac

[
unf
unc

]
= [−DT

c p
n−1
c | fc]T , (4.29)

100 Ch. 4 1st-order time-stepping for the NSE

with
Ac := 1

∆tMc + ν (Gc + ηLc) ,

fnc := snc + 1
∆tm

n
c .

(4.30)

The size of the linear system, after the elimination of the cell-based DoFs and the assembly
is just d#F. Then, one performs the pressure update: For every c ∈ C,

pnc = pn−1
c − νηDc

[
unf
unc

]
, (4.31)

Remark 4.5 - Pressure initialization. System (4.24) needs an additional IC on the
pressure, p0. If not available, it can be computed as suggested in Guermond and Minev
(2015) using the velocity IC and the forcing term at t = 0, provided enough smoothness is
available. Indeed, considering the momentum equation of the Stokes problem, ξNS := 0, at
t = 0 and taking its divergence, one obtains after simplifications

{
∆p0 = ∇ · f |t=0 on Ω ,

∇ p0 · n∂Ω = (f |t=0 + ν∆u0) · n∂Ω on ∂Ω ,
(4.32)

where a Neumann boundary condition has been considered to close the Poisson problem on
the initial pressure. However, in our numerical experiments, the initial pressure is always
known analytically, so that we are going to explicitly use it. �

Energy balance

Differently from Section 4.2.1, we are going to analyze the dissipativity of the AC method
by considering an energy which depends on the velocity and on the pressure. Specifically,
given v̂h ∈ Ûh,0, qh ∈ Ph,∗ and ∆t, η, ν > 0, we define

EAC,h(v̂h, qh) := Ekin,h(v̂h) + ∆t
2νη ‖qh‖2L2(Ω) . (4.33)

One has EAC,h(v̂h, qh) ≥ 0 for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗.

Lemma 4.6 - Energy balance for (4.27). Assume f := 0. Let n = 1, . . . , N and let
(ûnh , pnh) solve (4.27). The following holds true:

EAC,h(ûnh , pnh)− EAC,h(ûn−1
h , pn−1

h) + EAC,h(ûnh − ûn−1
h , pnh − pn−1

h)
︸ ︷︷ ︸

≥0

+ ν∆t
∥∥∥Gh(ûnh)

∥∥∥
2

L2(Ω)
︸ ︷︷ ︸

≥0

= 0 .

(4.34)

As for the monolithic scheme, the diffusion contribution ∆t
∥∥∥Gh(ûnh)

∥∥∥
2

L2(Ω)
and the cross-

term EAC,h(ûnh − ûn−1
h , pnh − pn−1

h) are nonnegative, so that the AC scheme is dissipative as
well.

Proof. We follow Ern and Guermond (2020, Lemma 75.2) to which the reader is referred
also for a more general case (f 6= 0 and a function gn on the right-hand side of the second
line of (4.23)). Instead of addressing directly (4.27), we start from (4.23) with f = 0, and
after simple manipulations, we obtain

1
∆tm(unC − un−1

C , vC) + νah(ûnh , v̂h) + bh(v̂h, p
n
h) = 0 ,

(
pnh − pn−1

h , qh
)
L2(Ω)

− νηbh(ûnh , qh) = 0 ,

(4.35a)

(4.35b)

4.3 Convection treatments 101

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Now, we take v̂h := ûnh and qh := pnh , multiply (4.35a)
by ∆t and add the result to (4.35b) multiplied by ∆t

νη : the terms involving the bilinear form
bh(·, ·) sum up to zero. This gives

(
unC − un−1

C , unC
)
L2(Ω)

+ ∆t
νη

(
pnh − pn−1

h , pnh
)
L2(Ω)

+ ν∆t
∥∥∥Gh(ûnh)

∥∥∥
2

L2(Ω)
= 0 . (4.36)

Now, using the identity (4.21) to deal with the first two terms of (4.36) and recalling the
definition (4.33) of EAC,h, one recovers (4.34).

4.3 Convection treatments
In this section, we deal with three techniques of increasing numerical simplicity to handle
the nonlinearity induced by the convection term in the NSE.

4.3.1 Implicit convection: Picard algorithm

The idea here is to solve directly the nonlinearity. In order to do so, one usually takes
advantage of fixed-point procedures, which are iterative procedures. We have given a brief
presentation of some classes of such methods in Section 1.3.4, where we also presented the
Picard iterations. Here, we briefly recast the material in the CDO-Fb setting.

Picard iterations and monolithic approach

The algorithm is readily adapted to the monolithic CDO-Fb formulation (see (4.14)) as
follows: For n = 1, . . . , N , iterate on k ≥ 1 until convergence: find (ûn,kh , pn,kh) ∈ Ûh,0 ×Ph,∗
such that

1
∆tm(un,kC − un−1,∞

C , vC) + νah(ûn,kh , v̂h) + th(ûn,k−1
h ; ûn,kh , v̂h) + bh(v̂h, p

n,k
h) = ln(vC) ,

bh(ûn,kh , qh) = 0 .
(4.37)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Here ûn−1,∞
h denotes the solution given by the Picard

algorithm at the time step n− 1. The time-stepping is initialized with an initial condition
û0,∞

h := π̂h(u0). Moreover, at each time step, the Picard iterations have to be initialized: a
suitable choice is to take the solution at the previous time step, i.e.,

un,0h := un−1,∞
h . (4.38)

Remark 4.7 - Picard iterations and Oseen problem. At each Picard iteration of a
given time step n, one has to solve an Oseen-like problem. �

Energy balance

Lemma 4.8 - Energy balance for (4.37). Assume f := 0. Let n = 1, . . . , N and let
(ûnh , pnh) solve (4.37). The following holds true:

Ekin,h(ûn,kh)− Ekin,h(ûn−1,∞
h)

+ Ekin,h(ûn,kh − ûn−1,∞
h)

︸ ︷︷ ︸
≥0

+ ν∆t
∥∥∥Gh(ûn,kh)

∥∥∥
2

L2(Ω)
︸ ︷︷ ︸

≥0

+ th(ûn,k−1
h ; ûn,kh , ûn,kh)

︸ ︷︷ ︸
≥0

= 0 . (4.39)

102 Ch. 4 1st-order time-stepping for the NSE

Proof. The results is readily proved by proceeding as in the proof of Lemma 4.3. The sign of
the contribution of the convection term is recovered from Lemma 2.45 about the positivity of
the operator th(·; ·, ·) (see (2.94) in particular). Notice that the hypothesis on the convective
field being discretely divergence-free requested in Lemma 2.45 is satisfied by ûn,k−1

h because
it has been computed by solving an Oseen-like problem with the monolithic approach.

Lemma 4.8 can be readily extended to the limit k → ∞, thus to the solution of the
nonlinear system. On the other hand, since Lemma 4.8 holds for all k ≥ 1, it means that
one can stop the algorithm at any iteration k and the dissipativity of the time-scheme is
always ensured.

Remark 4.9 - Skew-symmetry. The contribution of the convection term may vanish
under additional assumptions, namely, if no upwind stabilization is considered in the discrete
convection operator (that is Ξupw := 0, see the definition in (2.88) and, in particular, (2.91)).
As a matter of fact, it has been pointed out in Lemma 2.45 (see result ii) in particular) that
th(ŵh; ·, ·) is skew-symmetric whenever (Sk1) Dc(ŵc) = 0, for all c ∈ C, (Sk2) wf · nf = 0
for all f ∈ Fb, and (Sk3) no upwind stabilization is considered. In (4.37), we consider
ŵh := ûn,k−1

h . Hypothesis (Sk1) is then satisfied since the monolithic approach is used at
each iteration of the Picard algorithm. Hypothesis (Sk2) is satisfied as well, since, for all k,
one seeks ûn,kh in Ûh,0. Finally, hypothesis (Sk3) is assumed. �

Picard iterations and Artificial Compressibility

A Picard algorithm, or indeed any nonlinear procedure involving iterating at each time step,
would somehow go against the driving principles of the AC. In fact, the method has been
developed on the basis of avoiding cumbersome strategies to address the velocity-pressure
coupling and accepting the related error: one would hence accept also an approximation of
the nonlinearity. However, when investigating all the possible strategies, we are also going to
consider the AC method with Picard iterations. The system then reads: For n = 1, . . . , N ,
iterate on k ≥ 1 until convergence: find un,kh ∈ Ûh,0 such that

1
∆tm(un,kC − un−1,∞

C , vC) + ν
(
ah(ûn,kh , v̂h) + ηdh(ûn,kh , v̂h)

)
+ th(ûn,k−1

h ; ûn,kh , v̂h)

= ln(vC)− bh(v̂h, p
n−1,∞
h) , (4.40a)

for all v̂h ∈ Ûh,0, and then set

pnh = pn−1
h − νηDh(ûn,∞h) . (4.40b)

Remark 4.10 - Alternative formulation. An alternative formulation of (4.40) can be
obtained by taking into account the pressure in the Picard iterations as well. Namely,
instead of fixing pn−1,∞

h and updating the pressure only after the velocity iterations have
converged, one can update the pressure at each iteration and use it in the next one. This
procedure leads to: For n = 1, . . . , N , iterate on k ≥ 1 until convergence: find un,kh ∈ Ûh,0
such that

1
∆tm(un,kC − un−1,∞

C , vC) + ν
(
ah(ûn,kh , v̂h) + ηdh(ûn,kh , v̂h)

)
+ th(ûn,k−1

h ; ûn,kh , v̂h)

= ln(vC)− bh(v̂h, p
n,k−1
h) , (4.41a)

for all v̂h ∈ Ûh,0, and then set

pn,kh = pn,k−1
h − νηDh(ûn,kh) . (4.41b)

4.3 Convection treatments 103

The previous-time-step solution can be used as initial guess for the pressure: pn,0 := pn−1,∞.
Interestingly, the system in this configuration can be bridged to the monolithic approach.
Indeed, consider the semi-discretized version of (4.41) where the spatial discretization has
been discarded for simplicity. Now, sum the two equations to obtain

un,k − un−1,∞

∆t + (un,k−1 · ∇)un,k − ν∆un,k +∇ pn,k = fn ,

1
νη

(pn,k − pn,k−1) +∇ · un,k = 0 .
(4.42)

Letting (un,∞, pn,∞) be the limit for k →∞ of the solution of (4.42) (provided that such a
limit exists), then it solves

un,∞ − un−1,∞

∆t + (un,∞ · ∇)un,∞ − ν∆un,∞ +∇ pn,∞ = fn ,

∇ · un,∞ = 0 ,
(4.43)

where we remark that the incompressibility constraint is now exactly satisfied. �

Energy balance

Differently from the monolithic case, we cannot recover a clear-cut result as in Lemma 4.8 or
in Lemma 4.6 regarding the energy balance. In particular, one cannot conclude on the sign
of the contribution of the convection term th(·; ·, ·) because the incompressibility constraint
of the convective field is not satisfied exactly in the AC case.

4.3.2 Linearized convection
The main disadvantage of the Picard iterations is that several linear systems have to be
solved at each time step. A possible way to avoid iterating while still keeping the convection
in the matrix is to linearize the convection operator by using the velocity at the previous
time step.

Linearized convection and monolithic approach

When the linearization is applied in addition to the monolithic approach, the CDO problem
reads: For n = 1, . . . , N , find (unh , pnh) ∈ Ûh,0 × Ph,∗ solving

1
∆tm(unC − un−1

C , vC) + νah(ûnh , v̂h) + th(ûn−1
h ; ûnh , v̂h) + bh(v̂h, p

n
h) = ln(vC) ,

bh(ûnh , qh) = 0 ,
(4.44)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Solving (4.44) is clearly equivalent to stop the Picard
iterations (4.37) after the first iteration if (4.38) is chosen as initialization step. Moreover,
(4.44) consists in solving a single Oseen-like problem.

Energy balance

A result equivalent to Lemma 4.8 can be formulated in this case.
Lemma 4.11 - Energy balance for (4.44). Assume f := 0. Let n = 1, . . . , N and let
(ûnh , pnh) solve (4.44). The following holds true:

Ekin,h(ûnh)− Ekin,h(ûn−1
h) + Ekin,h(ûnh − ûn−1

h)
︸ ︷︷ ︸

≥0

+ ν∆t
∥∥∥Gh(ûnh)

∥∥∥
2

L2(Ω)
︸ ︷︷ ︸

≥0

+ th(ûn−1
h ; ûnh , ûnh)

︸ ︷︷ ︸
≥0

= 0 .

(4.45)

104 Ch. 4 1st-order time-stepping for the NSE

Proof. One observes that ûn−1
h is discretely divergence-free. Hence, one proceeds as in the

proof of Lemma 4.8 and (4.45) is readily proved.

Remark 4.12 - Skew-symmetry. The arguments made in Remark 4.9 can be adapted
to the convective field ûn−1

h . One can thus conclude that the contribution of the convection
term in (4.45) vanishes whenever no upwind stabilization is considered. �

Linearized convection and Artificial Compressibility

The problem obtained when the AC technique and a linearized convection term are used
reads: For n = 1, . . . , N , find (unh , pnh) ∈ Ûh,0 × Ph,∗ such that

1
∆tm(unC − un−1

C , vC) + ν (ah(ûnh , v̂nh) + ηdh(ûnh , v̂h)) + th(ûn−1
h ; ûnh , v̂h)

= ln(vC)− bh(v̂h, p
n−1
h) , (4.46a)

for all v̂h ∈ Ûh,0, and then set

pnh = pn−1
h − νηDh(ûnh) . (4.46b)

Energy balance

The arguments given in Section 4.3.1 on the AC case with Picard iterations apply to the
linearized convection, i.e. no definite conclusion can be drawn about the energy balance
associated with (4.46).

4.3.3 Explicit convection

With the linearization of the convection field, one has reduced the number of linear systems
to solve per time step to just one. A further gain in efficiency results from using a fully
explicit convection term. Indeed, this yields a symmetric linear system, so that more efficient
(iterative) solvers can be used than in the nonsymmetric case.

Explicit convection and monolithic approach

The CDO-Fb problem obtained after considering an explicit convection and a monolithic
approach is as follows: For n = 1, . . . , N , find (unh , pnh) ∈ Ûh,0 × Ph,∗ solving

1
∆tm(unC − un−1

C , vC) + νah(ûnh , v̂h) + bh(v̂h, p
n
h) = ln(vC)− th(ûn−1

h ; ûn−1
h , v̂h) ,

bh(ûnh , qh) = 0 ,
(4.47)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. The convection term has been moved to the right-hand
side since it is a known quantity. Notice that solving (4.47) is equivalent to solving one time
step of an unsteady Stokes problem.

Energy balance

When investigating the kinetic energy and testing (4.47) with v̂h = ûnh , one is confronted
with the term th(ûn−1

h ; ûn−1
h , ûnh). The term related to the discrete divergence of ûn−1

h (see the
derivation of (2.100)) vanishes since we are considering a strong velocity-pressure coupling.

4.4 Numerical results: Stokes equations 105

However, no definite sign can be recovered for th(ûn−1
h ; ûn−1

h , ûnh). Notice that even the
upwiding term is not dissipative since

tuh(ûn−1
h ; ûn−1

h , ûnh) = 1
2
∑

c∈C

∑

f∈Fc∩Fi
|f|
∣∣∣ûn−1

h · nfc

∣∣∣ (ûn−1
f − ûn−1

c) · (ûnf − ûnc) . (4.48)

Explicit convection and Artificial Compressibility

Similarly, considering the AC technique and an explicit convection term leads to the follow-
ing procedure: For n = 1, . . . , N , find (unh , pnh) ∈ Ûh,0 × Ph,∗ such that

1
∆tm(unC − un−1

C , vC) + ν (ah(ûnh , v̂h) + νηdh(ûnh , v̂h))

= ln(vC)− bh(v̂h, p
n−1
h)− th(ûn−1

h ; ûn−1
h , v̂h) , (4.49a)

for all v̂h ∈ Ûh,0, and then set

pnh = pn−1
h − νηDh(ûnh) . (4.49b)

Among the three strategies which have been presented above, this latter one appears to
be the most coherent one with the AC principles and indeed it is the one used in Guermond
and Minev (2015).

Energy balance

As it was the case for the other convection treatments with the AC method, the dissipative
nature of the energy balance resulting from (4.49) cannot be determined a priori.

4.4 Numerical results: Stokes equations
We start by considering the unsteady Stokes problem. The focus is on the time-stepping
procedure and the coupling (hence avoiding the influence of the nonlinearity due to the
convection operator of the NSE). The first goal of these tests is to verify that the proposed
time-stepping algorithms recover the expected order of convergence. The second goal is to
compare the accuracy and the efficiency of the AC approach described in Section 4.2.2 to
the classical monolithic approach described in Section 4.2.1.

We choose again the 3D Taylor–Green Vortex solution (3.51) and we add a time depen-
dency by modulating its amplitude:

uUTGV(x, y, z) := α(t)u3TGV(x, y, z) ,
pUTGV(x, y, z) := α(t)p3TGV(x, y, z) ,

α(t) := sin(1.7πt+ π
5) ,

u3TGV(x, y, z) :=

−2 cos(2πx) sin(2πy) sin(2πz)
sin(2πx) cos(2πy) sin(2πz)
sin(2πx) sin(2πy) cos(2πz)

 ,

p3TGV(x, y, z) := − 6π sin(2πx) sin(2πy) sin(2πz) .

(4.50)

The viscosity is set to ν := 1, whereas the source term is adapted as follows:
{
fUTGV(x, y, z) := f3TGV(x, y, z) + 1.7π cos(1.7πt+ π

5)u3TGV(x, y, z) ,
f3TGV(x, y, z) := [−36π2 cos(2πx) sin(2πy) sin(2πz), 0, 0]T .

(4.51)

106 Ch. 4 1st-order time-stepping for the NSE

We fix a time limit T := 2 and run the computations for several values of the time step:
∆t = 1

2 ,
1
4 , . . . ,

1
128 .

Since we are analyzing the time errors, we use very fine spatial meshes, so that the spatial
error should be negligible. In particular, a Cartesian mesh of the unit cube (cf. Fig. 3.4a)
with each edge of the domain divided into 256 segments has been considered. This leads
to more than 16M cells and a size of the final linear system in the saddle-point problem
of more than 151M unknowns. The significant size of such a mesh precluded the usage of
a direct solver and also demanded more powerful resources. The computations have thus
been run on EDF cluster GAIA1 on up to 525 cores. Even if a hybrid parallelization based
on MPI+OMP would have been possible, we chose to use all the cores at our disposal on the
MPI side. Such costly computations will also come in handy when comparing, for instance,
two linear solvers or couplings: the differences in their performances will be magnified and
hence clearly visible.

We shall work first with Cartesian meshes in Sections 4.4.1 and 4.4.2 in order to explore
different combinations of preconditioners and solvers, and finally the most promising ones
will be tested on polyhedral meshes in Section 4.4.3.

Let us give some details on the linear solvers. When considering the monolithic approach
(MONO), the GKB(γ) procedure is used. As highlighted in Section 1.3.5, this algorithm
shares some features with the ALU method, in particular it needs an arbitrary augmentation
parameter, γ. Since this parameter may affect the conditioning of the resulting linear
systems, it is something whose effect we are interested in measuring. A similar remark
applies to the AC technique and its arbitrary parameter η. Moreover, since we are addressing
the Stokes problem, and since the systems are decoupled (by means of the GKB(γ) or
AC(η) procedures), they are symmetric, so that we can use a Conjugate Gradient algorithm
as linear solver. We may choose between two preconditioners, a Jacobi preconditioner or
an in-house K-cycle Algebraic Multi-Grid (AMG) preconditioner inspired by the work of
Notay. In the monolithic computations, the threshold for the GKB algorithm is 10−10 on
the absolute residual of the momentum and mass equations, whereas the threshold of the
internal CG iterative solver is 10−5 on the relative norm of the velocity increment. The
choice for these tolerances is discussed in Remark 4.13.

Since we are now dealing with unsteady problems, discrete time errors should be intro-
duced. Consider a space-time function

g(t, x) ∈ C0
(
[0, T]; [L2(Ω)]l

)
, (4.52)

and a series of distinct time nodes (tn)n=0,...,N . The dimension l is left generic, so that it may
identify scalar- or vector-valued functions. With an abuse of notation, dropping the explicit
time dependency, we denote by gh := (gnh)n=0,...,N ∈ [Rl]N the fully discrete approximation
of g(t, x), where gnh approximates g(tn, ·). Owing to the notation introduced in Section 4.1.2
and relying on the discrete norms defined in Section 3.3.2, one can compute a space-time
L2-like error as follows:

‖gh‖2`2,C :=
N∑

n=1
∆t ‖gnh‖2C =

N∑

n=1
∆t

∑

c∈C
|c| |gnc |22

 , (4.53)

where we used the definition of the discrete L2-like spatial norm, see (3.43). For a hybrid
variable, a similar definition is used by relying, this time, on (3.44):

‖ĝh‖2`2,C :=
N∑

n=1
∆t ‖ĝnh‖2C =

N∑

n=1
∆t

∑

c∈C
|c| |gnc |22

 . (4.54)

1243rd of the TOP500 list, November 2020

4.4 Numerical results: Stokes equations 107

Furthermore, we define the pressure error

Eh(p) :=
(
(πc(p(tn, ·))− pnc)c∈C

)
n=1,...,N , (4.55)

(we dropped the dependency on time in the error definition for simplicity) and the L2-like
velocity error

Êh(u) :=
(
(π̂c(u(tn, ·))− ûnc)c∈C

)
n=1,...,N . (4.56)

The norms of interest will be:
∥∥∥Êh(u)

∥∥∥
`2,C

, ‖Eh(p)‖`2,C , and
∥∥∥Gh(Êh(u))

∥∥∥
`2,C

, (4.57)

where
∥∥∥Gh(Êh(u))

∥∥∥
`2,C

is based on the discrete H1-like (semi)norm of the velocity (see
(3.48))

∥∥∥Gh(Êh(u))
∥∥∥

2

`2,C
:=

N∑

n=1
∆t
∥∥∥Gh(Ênh(u))

∥∥∥
2

C
=

N∑

n=1
∆t
∑

c∈C

∑

f∈F
|pf,c|

∣∣∣Gc(Ê
n

c (u))|pf,c

∣∣∣
2

2
. (4.58)

Remark 4.13 - GKB procedure and linear solver. As in the steady case (see also
Remark 3.12), preliminary tests concerning the configuration of the GKB procedure have
been run in order to ensure that the numerical setting was adapted to the problem. We
used ∆t = T

32 = 6.25e−2. Firstly, we fix the tolerance for the stopping criterion of the
GKB procedure, εGKB := 10−10, and let the tolerance of the CG solver, εCG vary. Then,
εGKB varies while we set εCG := 10−5. The results are shown in Table 4.1. No significant
difference is observed between the considered tolerances for CG. This confirms that the
tolerances requested for the linear solvers do not impact the discretization errors (temporal
and spatial errors are combined in this case) and corroborates our choices. Notice that less
stringent tolerances could be considered to save computational time, but we preferred to
stay “on the safe side”. �

Table 4.1 – Space-time errors for the velocity and the pressure on a Cartesian mesh composed
of 2563 cells and ∆t = T

32 = 6.25 10−2. The linear systems resulting from the monolithic
approach are solved using a GKB(0) procedure, a CG iterative solver and an AMG pre-
conditioner. The tolerances of the iterative procedures (εGKB and εCG) vary. In the first
column, εGKB is fixed and εCG varies, and vice versa in the second column.

εGKB := 10−10, εCG varies εGKB varies, εCG := 10−5

10−4 10−5 10−6 10−8 10−10 10−12
∥∥∥Êh(u)

∥∥∥
`2,C

1.77e−3 1.77e−3 1.77e−3 1.77e−3 1.77e−3 1.77e−3
∥∥∥Gh(Êh(u))

∥∥∥
`2,C

1.43e−2 1.43e−2 1.43e−2 1.43e−2 1.43e−2 1.43e−2
‖Eh(p)‖`2,C 1.20e−3 1.20e−3 1.20e−3 1.20e−3 1.20e−3 1.20e−3

4.4.1 Convergence in time
Let us start by checking the accuracy in time of the considered schemes. Three values are
tested for the parameter η in the AC method: η ∈ {1, 10, 100}. The results with AC(η)
method should approach those of the monolithic approach as η gets larger.

The results for the space-time velocity and pressure errors are presented in Fig. 4.1
(complete details for selected strategies are given in Tables 4.5 to 4.7). Here we focus on

108 Ch. 4 1st-order time-stepping for the NSE

the L2-like norms for the velocity and the pressure, while observing that the results for the
`2(H1) norm of the velocity error are similar. First-order convergence in time is observed as
expected. Slightly lower rates are measured for the coarsest time steps with AC(1). Since
very few time steps are considered in this situation (as few as 4), some stagnation can be
expected. However, the expected slope is recovered for finer values of ∆t. The results also
lead to interesting observations about the influence of the parameter η on the accuracy of
AC(η). As expected, higher values of η give more accurate solutions. The effect seems to be
stronger for the pressure: for instance, the difference between η = 10, , and η = 100, ,
is greater for the pressure than for the velocity. This is not surprising since the parameter η
impacts directly the incompressibility constraint, hence the pressure. Moreover, as expected
for values of η →∞, the monolithic approach is recovered, and indeed the plot for AC(100),

, is superimposed with the monolithic one, .

T
256

T
128

T
64

T
32

T
16

T
8

T
4

10−3

10−2

1s
t ord

∆t

∥∥∥Êh(u)
∥∥∥

`2,C

T
256

T
128

T
64

T
32

T
16

T
8

T
4

10−3

10−2

10−1

1s
t ord

∆t

‖Eh(p)‖`2,C

AC(1) AC(10) AC(100) MONO(0)

Figure 4.1 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Cartesian mesh
with 2563 cells. Convergence in time. Left: velocity L2-error, right: pressure L2-error.

4.4.2 Efficiency results

We are now going to compare the efficiency of the monolithic approach and the AC method
on the basis of accuracy vs. computational times. As detailed above, several combinations
of linear solver and preconditioners have been used, and the computations have always been
run on dedicated nodes of the EDF GAIA cluster in order to ensure the fairness of the
results.

Figure 4.2 shows the results of these efficiency tests. Since many combinations have
been run, we decrease the opacity of some curves in Fig. 4.2 in order to make the best
results stand out. We proceed to some remarks. (i) Concerning the monolithic approach,
the best result is obtained with γ = 0 (which, we recall, means that no augmentation is
considered) and the AMG preconditioner. Whenever γ > 0, the performance of the AMG
preconditioner degrades significantly, to an extent that the computations were not able to
terminate in a reasonable amount of time. Consequently, only computations with γ > 0 and
a Jacobi preconditioner are presented in Fig. 4.2. The reason of this gap in the performances
is likely to be found in how the grad-div operator adds some coupling between the faces
and, more importantly, the Cartesian components of the velocity. An ad-hoc strategy for

4.4 Numerical results: Stokes equations 109

105 106 107

10−3

10−2

Elapsed time × cores [s]

∥∥∥Êh(u)
∥∥∥

`2,C

105 106 107
10−3

10−2

10−1

Elapsed time × cores [s]

‖Eh(p)‖`2,C

Coupling: MONO AC
Parameter (γ or η): 0 1 10 100

Preconditioner: AMG Jacobi
Highlighted combinations: : MONO, GKB(γ = 0), CG, AMG

: AC(η = 10), CG, Jacobi
: AC(η = 100), CG, Jacobi

Figure 4.2 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Cartesian mesh
with 2563 cells. Cost vs. accuracy for velocity (left) and pressure (right). The most efficient
combinations have more intense colors.

the construction of the coarser levels in the multigrid algorithm should then be considered so
that the AMG preconditioner (which, in the current configuration, is optimized for elliptic
problems) remains meaningful and efficient. (ii) Similarly, the best performances for the AC
method have been observed with the Jacobi preconditioner. Moreover, as expected, a high
value for η affects the conditioning of the linear system and, consequently, the performance
of the iterative solvers. Compare for instance the computation times of AC(10), , and
AC(100), . Considering the remarks in Section 4.4.1 on high values of η leading to
more accurate computations, the right balance between CPU time and error level should
be investigated. (iii) Considering all the results, we observe that the two leftmost (thus
the best) curves are both obtained with the AC method, in particular, AC(10), , and
AC(100), . Hence, given a target error threshold, the AC method reaches it in less
computational time than the monolithic approach.

For the sake of completeness, we report in Fig. 4.3 the efficiency results with respect
to the error measure

∥∥∥Gh(Êh(u))
∥∥∥
`2,C

for the best three strategies. The conclusion is the
same as above with the AC method being more efficient than the monolithic approach. We
notice here a hint of stagnation at the end of the curves, most likely due to the spatial
discretization becoming relevant for the smallest time-step values.

To summarize, the AC(η) method appears to be an efficient alternative to the monolithic
approach for the unsteady Stokes problem. However, caution has to be used in the choice
of the parameter η in order to recover both acceptable computation times and accurate
results. The observation here is that to reach a given error threshold, AC(10) requests less
computational effort than AC(100). Notice, however, that this threshold is reached with a
smaller ∆t for AC(10) than for AC(100). For instance, in the pressure results in Fig. 4.1,

110 Ch. 4 1st-order time-stepping for the NSE

106 107

10−2

10−1

Elapsed time × cores [s]

∥ ∥ ∥G
h
(Ê

h
(u

))
∥ ∥ ∥ `

2
,C

Coupling Parameter Preconditioner
: MONO γ = 0 AMG
: AC η = 10 Jacobi
: AC η = 100 Jacobi

Figure 4.3 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Cartesian mesh
with 2563 cells. Cost vs. `2(H1)-accuracy.

the points of AC(10), , are almost at the same level as those of AC(100), , with a
time step two times larger, but the former points are obtained with less computational time.
Finally, having access to a preconditioner adapted to the grad-div operator may result in a
significant efficiency improvement.

We would like to point out that these results, although providing a general idea about
the behavior of the two considered coupling strategies, may vary if a different numerical
setting is considered. For one, a tuning of the iterative linear solvers (GKB(γ) and CG)
and, in particular, of the related tolerances (see Remark 4.13) may lead to different results,
especially when considering the execution time. For example, we compare in Fig. 4.4 the best
results of Fig. 4.2 (semi-transparent) with the results obtained with a GKB(0) procedure
where the tolerance is less strict, εGKB := 10−8 (instead of 10−10 as above). We can see
that although there is some moderate gain in the computation times, it is not enough to
make the monolithic approach more efficient than the AC method. Moreover, regarding
possible improvements, the computations may benefit from a preconditioner adapted to the
grad-div operator: this should benefit both the AC method and the monolithic approach, for
which no parameter γ > 0 was retained in the GKB procedure since the Jacobi and AMG
preconditioners did not perform well. Nevertheless, we think that the efficiency results shown
in Fig. 4.2 provide a reliable comparison of the performances of the monolithic approach and
of the AC method, and we are confident that we would draw the same general conclusions
if another (fair) numerical setting were to be used.

4.4.3 Polyhedral meshes
Having identified the best combinations of coupling, solver and preconditioner in the previ-
ous section, we are going to test them on polyhedral meshes, namely the Prismatic meshes
with polygonal bases (PrG, Fig. 3.4f) and the CheckerBoard meshes (CB, Fig. 3.4b). The
PrG mesh chosen for this test case has more than 4M cells, leading to a final coupled sys-
tem of more than 56M unknowns (after static condensation); the CB mesh has more than
31M cells and a total system size of more than 414M unknowns. The meshes have been
created in Code_Saturne by copying and gluing the most refined grid of each sequence used

4.4 Numerical results: Stokes equations 111

106 107

10−3

10−2

Elapsed time × cores [s]

∥∥∥Êh(u)
∥∥∥

`2,C

106 107

10−2

10−1

Elapsed time × cores [s]

‖Eh(p)‖`2,C

: MONO, GKB(0), CG, AMG, εGKB := 10−8, εCG := 10−5

: MONO, GKB(0), CG, AMG, εGKB := 10−10, εCG := 10−5

: AC(10), CG, Jacobi, εCG := 10−10

: AC(100), CG, Jacobi, εCG := 10−10

Figure 4.4 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Cartesian mesh
with 2563 cells. Cost vs. accuracy for velocity (left) and pressure (right).

so far. Only the best three combinations are tested for each mesh: a monolithic approach
solved by GKB(γ = 0) with a CG internal solver and AMG preconditioner, together with
AC(η = 10) and AC(η = 100) solved with a Jacobi-preconditioned CG. The results are
shown in Figs. 4.5 and 4.6, where the results obtained for the Cartesian results are redrawn
as reference (denoted by H and). More detailed results for these two polyhedral meshes
are given in Tables 4.8 to 4.13 which are postponed to Section 4.6.1.

Generally speaking, the expected first-order convergence rates are recovered for each
method and mesh. However, one can notice the effect of the space discretization error
which becomes dominant for low values of the time step. Especially when using CB meshes,
a plateau is visible for the pressure errors. On the contrary, the velocity errors seem to be
less affected. This stagnation, however, provides us with some interesting insights. In the
right panel of Fig. 4.5, the stagnation for AC(10), , begins for lower values of ∆t than
for the other two considered procedures. If one reasonably assumes that there is no coupling
error in the monolithic case, , so that this case could be taken as reference, then the
difference in the levels of the plateaus can be identified as the coupling error due to the
AC technique with η = 10. Moreover, given a strategy, we observe no significant difference
between the errors due to the different meshes, whereas one would expect the Cartesian
meshes to be more accurate, than, for instance the PrG one, since the shape is more regular
and the mesh is more refined. However, this confirms that these errors are essentially due
to the time discretization.

The cost vs. accuracy results on the PrG mesh sequence confirm what has been observed
in the previous section about the Cartesian grid: the AC technique with the two considered
values of the parameter η are the most efficient ones. The behavior on the PrG and Cartesian
meshes are actually very similar. On the CB meshes, one observes different results. Even
though the AC(10) method still remains the most efficient approach, especially when looking
at the velocity results, the gap between the other two considered techniques is less evident.
It is worth mentioning that, in the case of a regular solution, the precision of the CB is

112 Ch. 4 1st-order time-stepping for the NSE

T
256

T
128

T
64

T
32

T
16

T
8

T
4

10−3

10−2

1s
t ord

∆t

∥∥∥Êh(u)
∥∥∥

`2,C

T
256

T
128

T
64

T
32

T
16

T
8

T
4

10−3

10−2

10−1

1s
t ord

∆t

‖Eh(p)‖`2,C

Mesh: H PrG CB
Method: AC(10) AC(100) MONO(0)

Figure 4.5 – Unsteady Stokes problem and 3D TGV solution (4.50), T = 2. Polyhedral
meshes. Convergence in time. Error plots for velocity (left) and pressure (right).

105 106 107 108

10−3

10−2

Elapsed time × cores [s]

∥∥∥Êh(u)
∥∥∥

`2,C

105 106 107 108

10−2

10−1

Elapsed time × cores [s]

‖Eh(p)‖`2,C

Mesh: PrG CB
Method: AC(10) AC(100) MONO(0)

Figure 4.6 – Unsteady Stokes problem and 3D TGV solution (4.50), T = 2. Polyhedral
meshes. Cost vs. accuracy for velocity (left) and pressure (right).

4.5 Numerical results: Navier–Stokes equations 113

governed by the size of the larger cuboids (see Fig. 3.4b), thus obtaining the same accuracy
level of a regular mesh with much fewer DoFs. The CB is hence a rather inefficient choice
for this test case, but it allows us to test the discretization on meshes with hanging-nodes.

This analysis shows once again the importance of the arbitrary parameter η in the AC
method. If the system is relatively easy to invert, as was the case on the Cartesian meshes,
one might choose high values for η knowing that the gain in the accuracy should compensate
the loss in the performance. However, when the system is more ill-conditioned due to the
mesh geometry, as in the CB meshes for instance, lower values of η should be preferred
in order to avoid degrading excessively the performance of the solver while still ensuring
acceptable accuracy levels.

4.5 Numerical results: Navier–Stokes equations

The Taylor–Green Vortex (TGV) (Taylor and Green, 1937) is a well-known 2D test case
usually considered to evaluate the performances of a Navier–Stokes unsteady solver. In fact,
it constitutes an analytic solution of the 2D NSE given by

uTGV(x, y) := exp(−2νt)
[

sin(x) cos(y)
− cos(x) sin(y)

]
,

pTGV(x, y) := 1
4 exp(−4νt)(cos(2x) + cos(2y)) .

(4.59)

The remarkable property of the TGV test case is that the viscous term balances the time
derivative, whereas the convection term balances the pressure gradient, hence avoiding the
need for a source term:

∂uTGV
∂t

= ν∆uTGV , (uTGV · ∇)uTGV = −∇ pTGV , fTGV = 0 . (4.60)

The domain is Ω := [0, 2π]2, and the viscosity ν is varied to consider different Reynolds
numbers. For the sake of simplicity, we set L := 1 and U := 1, so that Re = 1

ν . Notice that
the exact solution features a separation of variables between space and time, and only the
time behavior depends on the viscosity (and hence the Reynolds number). The higher the
viscosity, the steeper the time decrease. The time limit T varies according to the Reynolds
number in order to let the solution "evolve sufficiently". The reference solution at t = 0
is depicted in Fig. 4.7. We will mainly deal with fairly refined Cartesian meshes, the ones
already considered for the lid-driven cavity test in Section 3.5.3: the 2D setting allows us to
take advantage of direct solvers, in particular the sparse LU decomposition from MUMPS.

We pursue several aims with this test case. The first one is to evaluate the orders of con-
vergence in time for all the combinations of coupling techniques and convection treatments
presented in Sections 4.2 and 4.3, respectively. Secondly, we want to assess the conservation
properties of the various schemes regarding the kinetic energy. Finally, having considered
an explicit treatment of the convection, a numerical study is performed in order to find the
stability limit on the time step for such a strategy and how it depends on the Reynolds
number.

Contrary to the previous test case, no efficiency study will be performed. In fact, the
extensive use of a direct solver levels out the performances and no insightful remarks can
be drawn, except the most obvious ones. Undoubtedly, the Picard iterations will always
be less efficient than the two other convection treatments (namely, the linear and explicit
convection), and similarly, a resolution of a system coming from the AC technique will be
faster than for a saddle-point problem. However, for instance, using a direct solver will
not allow us to appreciate the difference that there could be between a system obtained

114 Ch. 4 1st-order time-stepping for the NSE

(a) Velocity: directions (on selected cells) and
magnitude. (b) Pressure.

Figure 4.7 – 2D Taylor–Green Vortex (4.59), reference solution at t = 0. Cartesian mesh
composed of 1282 cells (see Fig. 3.3a).

by linearization of the convection (hence nonsymmetric) and one where the convection is
explicit (hence symmetric).

No upwind stabilization is considered, Ξupw := 0. Let us also remark that uTGV ·n∂Ω = 0
on ∂Ω. Hence, owing to Lemma 2.45, if the convection field is (discretely) divergence-free,
the CDO convective trilinear form is skew-symmetric. This should be the case whenever
the monolithic approach is used, no matter the convection treatment (or, indeed, no matter
the iteration if the Picard algorithm is considered) since the approximate convection field
is always the solution of an Oseen problem. The tolerance for the Picard algorithm εP has
been set to 10−6.

Remark 4.14 - Choice of η for AC. The arbitrary parameter of the AC method was
chosen so that η = 10Re. Indeed, in order to obtain results whose accuracy is comparable
to that obtained with the monolithic approach, the Reynolds number seems to play a role in
the determination of an adequate parameter η. We report in Table 4.2 the errors obtained
with Re ≈ 33 and Re = 100, the finest considered ∆t, a linearized convection operator, and
by letting η vary. All in all, the choice η = 10Re seems to ensure a good level of accuracy
comparable to the level obtained with the monolithic approach while still leading to an
acceptable conditioning of the system. Hence, we will use η = 10Re in this test case. �

4.5.1 Convergence in time
Different combinations of coupling techniques and convection treatments are now tested
to see if first-order of convergence in time is recovered. Two values of the viscosity are
considered: ν = 0.03 leading to Re ≈ 33 and ν = 0.01 leading to Re = 100. The final time
is chosen so that maxΩ |uTGV(T, x)| ≈ 1

10 maxΩ |uTGV(0, x)|, giving T = 40 for Re ≈ 33,
and T = 120 for Re = 100. The considered time step values are ∆t = T

8 ,
T
16 ,

T
32 ,

T
64 .

The results are reported in Fig. 4.8. The data about the explicit convection for Re = 100
is missing since the considered values of the time step lead to the divergence of the method,
both with the monolithic and AC techniques: the stability of this procedure will be further

4.5 Numerical results: Navier–Stokes equations 115

T
64

T
32

T
16

T
8

10−1

1s
t ord

∆t

∥∥∥Êh(u)
∥∥∥

`2,C

T
64

T
32

T
16

T
8

10−1

100

1s
t ord

∆t

∥∥∥Êh(u)
∥∥∥

`2,C

T
64

T
32

T
16

T
8

10−1

10−0.5

1s
t ord

∆t

∥∥∥Gh(Êh(u))
∥∥∥

`2,C

T
64

T
32

T
16

T
8

10−0.5

100 1s
t ord

∆t

∥∥∥Gh(Êh(u))
∥∥∥

`2,C

T
64

T
32

T
16

T
8

10−2

10−1

100

1st ord

∆t

‖Eh(p)‖`2,C

T
64

T
32

T
16

T
8

10−2

10−1

100

1st ord

∆t

‖Eh(p)‖`2,C

Coupling method: MONO AC
Convection treatment: Picard Linearized Explicit

Figure 4.8 – 2D Navier–Stokes, Taylor–Green Vortex. Convergence in time. Top: velocity
L2-error; middle: velocity H1-error; bottom: pressure L2-error. Left column: Re ≈ 33,
T = 40, Cartesian mesh composed of 1282 cells; left column: Re = 100, T = 120, Cartesian
mesh composed of 5122 cells.

116 Ch. 4 1st-order time-stepping for the NSE

Table 4.2 – Space-time velocity and pressure errors. Linearized convection. AC method
with η ∈ {Re, 10Re, 100Re}. The errors obtained with the monolithic approach are given
in parenthesis as reference. First group of columns: Re ≈ 33, Cartesian mesh composed of
1282 cells, T = 40, ∆t = T

64 = 0.625. Second group of columns: Re = 100, Cartesian mesh
composed of 5122 cells, T = 120, ∆t = T

64 = 1.875.

Re ≈ 33 Re = 100
η Re 10Re 100Re (MONO) Re 10Re 100Re (MONO)∥∥Êh(u)
∥∥
`2,C

1.35e−1 1.80e−2 1.59e−2 (1.58e−2) 6.44e−1 8.67e−2 3.06e−2 (2.51e−2)∥∥G
h
(Êh(u))

∥∥
`2,C

3.21e−1 2.65e−1 2.64e−1 (2.64e−2) 8.91e−1 3.65e−1 3.46e−1 (3.45e−1)
‖Eh(p)‖`2,C 8.99e−2 3.80e−2 3.31e−2 (3.21e−2) 3.34e−1 9.36e−2 6.92e−2 (6.60e−2)

discussed in Section 4.5.3. We observe in Fig. 4.8 that the expected orders of convergence
in time are recovered for all the strategies, except for the H1-norm of the velocity which
shows an early stagnation likely due to the spatial error becoming dominant. As usual,
we observe a slight difference between the errors obtained with AC(10Re) method and the
monolithic approach. Another relevant observation is that the convection treatment has a
significant impact on the pressure error since the errors curves are grouped by the convection
treatment. This behavior may be explained by the particular setting of the TGV test case
in which the convection term compensates the gradient of the pressure. As expected, the
Picard algorithm is the most accurate, followed by the linearized convection and, finally, the
explicit convection.

4.5.2 Convection treatments and dissipativity
We now test the dissipativity of the scheme with respect to the kinetic energy Ekin,h(ŵh)
defined in (4.16). We recall that the monolithic approach combined with an implicit or
linearized convection has been proved to be dissipative (see Lemmas 4.8 and 4.11), whereas
one has no a priori knowledge about the monolithic approach with the explicit convection or
with the AC method (whichever convection treatment is considered). Let us notice that we
will investigate Ekin,h(ŵh) and not EAC,h(ŵh, qh) := Ekin,h(ŵh) + ∆t

2νη ‖qh‖2L2(Ω) when dealing
with the AC method.

We investigate the following quantity:

dEnkin,h := Ekin,h(v̂nh)− Ekin,h(v̂n−1
h)

∆t , n = 1, . . . , N . (4.61)

dEnkin,h is a first-order measure of the time-derivative of the kinetic energy at the discrete
time node tn. Hence, one expects dEnkin,h to be negative whenever the scheme is dissipative.
The results concerning dEnkin,h for Re ≈ 33 and 100 are shown respectively in Figs. 4.9
and 4.10. We notice that the negativity of dEnkin,h is recovered for the monolithic approach
as expected, but also for the AC method. No remarkable difference due to the convection
treatment is observed: see, for instance, Fig. 4.11, which, for a given coupling technique and
a time step value, compares the data obtained for the different convection treatments.

4.5.3 Stability results with an explicit convection
As expected, some stability issues are observed in combination with the explicit convection
strategy in the results presented in Sections 4.5.1 and 4.5.2. We shed here some light by
means of a numerical study. For both the monolithic approach and the AC method, we let
∆t vary, and we seek the critical time-step value, ∆ts, that is the greatest ∆t ensuring that
the computation does not diverge (see (vi) below). For these tests, we take (i) a Cartesian
mesh composed of 1282 cells, (ii) three Reynolds numbers, Re ∈ {200, 500, 1000} (notice that

4.5 Numerical results: Navier–Stokes equations 117

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(a) Picard and monolithic.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(b) Picard and AC.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(c) Linearized convection and monolithic.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(d) Linearized convection and AC.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(e) Explicit convection and monolithic.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(f) Explicit convection and AC.

Figure 4.9 – 2D Navier–Stokes, Taylor–Green Vortex. Re ≈ 33. T = 40. Mesh: Cartesian
composed of 1282. Discrete time-derivative of the kinetic energy at tn, dEnkin,h, see (4.61).
∆t = T

8 , T
16 , T

32 , T
64 .

118 Ch. 4 1st-order time-stepping for the NSE

0 20 40 60 80 100 120
−4

−3

−2

−1

0
·10−2

t

dE
n ki

n,
h

(a) Picard and monolithic.

0 20 40 60 80 100 120
−4

−3

−2

−1

0
·10−2

t

dE
n ki

n,
h

(b) Picard and AC.

0 20 40 60 80 100 120
−4

−3

−2

−1

0
·10−2

t

dE
n ki

n,
h

(c) Linearized convection and monolithic.

0 20 40 60 80 100 120
−4

−3

−2

−1

0
·10−2

t

dE
n ki

n,
h

(d) Linearized convection and AC.

Figure 4.10 – 2D Navier–Stokes, Taylor–Green Vortex. Re = 100. T = 120. Mesh: Carte-
sian composed of 5122. Discrete time-derivative of the kinetic energy at tn, dEnkin,h, see
(4.61). ∆t = T

8 , T
16 , T

32 , T
64 .

they are all higher than the numbers considered in Sections 4.5.1 and 4.5.2), (iii) T such
that T Re = 104, (iv) η = 10Re whenever the AC method is used (cf. Remark 4.14), (v) we
seek a resolution of 1%, meaning that the gap between ∆ts and the smallest ∆t leading to
divergence is less than 1% of ∆ts, (vi) and we flag a computation as having diverged if, for
some n ≥ 1, we have

Ekin,h(ûnh) > 1.1 Ekin,h(û0
h) = 1.1 Ekin,h(π̂h(u0)) . (4.62)

Notice that the solution (4.59) goes exponentially towards 0 with respect to time. Thus a
failure to satisfy (4.62) is a symptom of numerical issues. Whenever ∆t > ∆ts, we define
the divergence time, Td, as the smallest tn satisfying (4.62).

The results for, respectively, the monolithic approach and the AC method (with η =
10Re) are shown in Figs. 4.12 and 4.13, a one-glance summary with all the obtained ∆ts is
given in Table 4.3 (where the results with other values of η for the AC method are presented
as well). We observe that the two coupling strategies show similar results: as a matter of
fact, the critical time-step values of the AC method lie in the confidence interval (recall that
we chose a resolution of 1%) of the values obtained with the monolithic approach. Moreover,
as shown in the bottom right panels of Figs. 4.12 and 4.13, we recover a dependency of ∆ts
on the inverse of the Reynolds number. Finally, computations have been run by using the
smallest ∆t leading to divergence but considering a linearized convection (instead of explicit),

4.5 Numerical results: Navier–Stokes equations 119

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(a) Monolithic coupling - Re ≈ 33.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(b) AC technique - Re ≈ 33.

0 20 40 60 80 100 120
−4

−3

−2

−1

0
·10−2

t

dE
n ki

n,
h

(c) Monolithic coupling - Re = 100.

0 20 40 60 80 100 120
−4

−3

−2

−1

0
·10−2

t

dE
n ki

n,
h

(d) AC technique - Re = 100.

Figure 4.11 – 2D Navier–Stokes, Taylor–Green Vortex. Discrete time-derivative of the ki-
netic energy at tn, dEnkin,h, see (4.61). Picard algorithm , linearized or explicit
convection Left: monolithic approach, right: AC technique. Top: Re ≈ 33, T = 40, Carte-
sian mesh composed of 1282 cells. Bottom: Re = 100, T = 120, Cartesian mesh composed
of 5122 cells. ∆t = T

64 .

Table 4.3 – Stability limits, ∆ts, up to a resolution of 1% obtained on a Cartesian mesh
composed of 1282 cells with the monolithic approach or the AC method for three Reynolds
numbers, Re.

Re MONO AC(1Re) AC(10Re) AC(100Re)
200 2.98e−2 3.00e−2 2.98e−2 2.97e−2
500 1.03e−2 1.04e−2 1.04e−2 1.03e−2
1000 5.03e−3 5.05e−3 5.03e−3 5.00e−3

and these computations did not diverge, thus confirming that the explicit treatment of the
convection is the central issue. Concerning the influence of the parameter η on the stability
of the AC method (see last columns of Table 4.3), we notice a slight decrease in ∆ts when
moving to a higher value of η (we were expecting the opposite behavior). However, we
observe that the results obtained for η := Re lie just outside the 1%-resolution intervals of
∆ts obtained for η := 100Re.

Conservation of the kinetic energy is not the only criterion for stability. We now investi-
gate a second criterion based on the enstrophy, φ(ω) :=

∫
Ω |ω|2, where ω is the (scalar-valued)

120 Ch. 4 1st-order time-stepping for the NSE

2.95 3 3.05 3.1 3.15 3.2 3.25

·10−2

6

8

10
2.
97
5

∆t

T
d

(a) Re = 200.

1 1.1 1.2 1.3 1.4 1.5

·10−2

2

4

6

8

1.
03

∆t

T
d

(b) Re = 500.

5 5.1 5.2 5.3 5.4 5.5

·10−3

1.5

2

2.5

3

3.5

5.
03

∆t

T
d

(c) Re = 1000.

200 500 1000

0.0297

0.0103

0.00503 ∝ 1/Re

Re

∆
t s

(d) ∆ts dependency on Re.

Figure 4.12 – 2D Navier–Stokes, Taylor–Green Vortex. Divergence time, Td, for different
choices of ∆t with the monolithic approach and explicit convection for three Reynolds
numbers, Re, and dependency of the stability limit, ∆ts, (up to 1% resolution) on Re.
Td are in orange, ∆ts in green. Cartesian mesh composed of 1282 cells.

vorticity. At discrete level, the vorticity is calculated as follows:

ωc := [G0
c(ûc)]yx − [G0

c(ûc)]xy ∀c ∈ C . (4.63)

and we define the discrete enstrophy as

φh(ωC) :=
∑

c∈C
|c| |ωc|2 . (4.64)

We thus extend the setting of this numerical experiment described in the hypotheses (i)-(vi)
above by adding: (vii) we flag a computation as having diverged if, for some n ≥ 1, we have

φh(ωnC) > 1.1φh(ω0
C) . (4.65)

A comparison of the results obtained with the setting (i)-(vi) and (i)-(vii) is given in Ta-
ble 4.4. The addition of the new criterion on the enstrophy seems to affect only the higher
Reynolds numbers, but the critical time-step values ∆ts obtained for the two settings still
remain close.

4.5 Numerical results: Navier–Stokes equations 121

3 3.05 3.1 3.15

·10−2

7

8

9

10
2.
97
50

∆t

T
d

(a) Re = 200.

1.05 1.1 1.15

·10−2

3

4

5

6

7

1.
04
25

∆t

T
d

(b) Re = 500.

5 5.05 5.1 5.15 5.2

·10−3

2.5

3

5.
02
5

∆t

T
d

(c) Re = 1000.

200 500 1000

0.0297

0.0104

0.00502 ∝ 1/Re

Re

∆
t s

(d) ∆ts dependency on Re.

Figure 4.13 – 2D Navier–Stokes, Taylor–Green Vortex. Divergence time, Td, for different
choices of ∆t with the AC method with η = 10Re and explicit convection for three Reynolds
numbers, Re, and dependency of the stability limit, ∆ts, (up to 1% resolution) on Re. Td
are in orange, ∆ts in green. Cartesian mesh composed of 1282 cells.

Table 4.4 – 2D Navier–Stokes, Taylor–Green Vortex. Stability limits, ∆ts, up to a resolution
of 1% obtained on a Cartesian mesh composed of 1282 cells with the monolithic approach or
the AC(10Re) method for three Reynolds numbers, Re. Comparison between a divergence
criterion concerning the kinetic energy only, or the kinetic energy and the enstrophy.

MONO AC(10Re)
Re Ekin,h Ekin,h & φh Ekin,h Ekin,h & φh
200 2.98e−2 2.98e−2 2.98e−2 2.98e−2
500 1.03e−2 1.03e−2 1.04e−2 1.03e−2
1000 5.03e−3 4.96e−3 5.03e−3 4.96e−3

122 Ch. 4 1st-order time-stepping for the NSE

4.6 Detailed results
We give in this section additional results on the test cases presented in Section 4.4 and
Section 4.5.

4.6.1 Stokes equations
In Section 4.4, several simulations of the modified 3D Taylor–Green Vortex test case for the
unsteady Stokes equation have been run. Their results for the different meshes (Cartesian,
CheckerBoard, and Prismatic with polygonal bases), the two coupling techniques (mono-
lithic approach and AC method), and several combinations of iterative solvers and precon-
ditioners are collected in Tables 4.5 to 4.13. In addition to the velocity and error values
already presented in Section 4.4, the tables also provide insights on the computational time
and the performances of the iterative solvers. We refer to the introduction in Section 4.4
for more details on the algebraic setting.

Table 4.5 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Cartesian mesh with 2563 cells. Detailed results for the monolithic
approach solved with a GKB algorithm with an arbitrary parameter γ = 0, and a CG solver equipped with an AMG preconditioner - in
Fig. 4.2.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order
∥∥∥G

h
(Êh(u))

∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.35e−2 – 1.08e−1 – 9.09e−2 – 1.88e+3 350 6.58e+5 1.65e+5 237
8 6.79e−3 0.99 5.44e−2 0.99 4.59e−2 0.99 3.76e+3 350 1.31e+6 1.64e+5 238
16 3.50e−3 0.96 2.80e−2 0.96 2.36e−2 0.96 7.53e+3 350 2.63e+6 1.65e+5 233
32 1.77e−3 0.98 1.43e−2 0.98 1.20e−2 0.98 1.45e+4 350 5.09e+6 1.59e+5 229
64 8.95e−4 0.99 7.31e−3 0.96 6.04e−3 0.99 2.85e+4 350 9.97e+6 1.56e+5 229
128 4.54e−4 0.98 3.92e−3 0.90 3.06e−3 0.98 3.87e+4 525 2.03e+7 1.59e+5 238
256 2.33e−4 0.96 2.39e−3 0.72 1.57e−3 0.96 8.05e+4 525 4.22e+7 1.65e+5 251

Table 4.6 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Cartesian mesh with 2563 cells. Detailed results for the AC technique,
arbitrary parameter η = 10, solved with a CG iterative solver and a Jacobi preconditioner - in Fig. 4.2.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order
∥∥∥G

h
(Êh(u))

∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.49e−2 – 1.12e−1 – 1.13e−1 – 5.49e+2 350 1.92e+5 4.81e+4 2631
8 8.42e−3 0.82 6.18e−2 0.86 9.35e−2 0.27 1.08e+3 350 3.78e+5 4.73e+4 2613
16 4.61e−3 0.87 3.37e−2 0.87 5.87e−2 0.67 2.06e+3 350 7.22e+5 4.51e+4 2504
32 2.40e−3 0.94 1.77e−2 0.93 3.21e−2 0.87 3.98e+3 350 1.39e+6 4.35e+4 2388
64 1.22e−3 0.98 9.23e−3 0.94 1.65e−2 0.96 7.39e+3 350 2.59e+6 4.04e+4 2239
128 6.17e−4 0.99 4.98e−3 0.89 8.31e−3 0.99 1.32e+4 350 4.61e+6 3.60e+4 2012
256 3.13e−4 0.98 2.95e−3 0.76 4.18e−3 0.99 1.59e+4 525 8.34e+6 3.26e+4 1730

Table 4.7 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Cartesian mesh with 2563 cells. Detailed results for the AC technique,
arbitrary parameter η = 100, solved with a CG iterative solver and a Jacobi preconditioner - in Fig. 4.2.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order
∥∥∥G

h
(Êh(u))

∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.35e−2 – 1.08e−1 – 8.88e−2 – 9.52e+2 525 5.00e+5 1.25e+5 6965
8 6.83e−3 0.99 5.45e−2 0.98 4.65e−2 0.93 1.79e+3 525 9.40e+5 1.17e+5 6909
16 3.52e−3 0.96 2.81e−2 0.95 2.43e−2 0.94 3.61e+3 525 1.89e+6 1.18e+5 6612
32 1.78e−3 0.98 1.43e−2 0.98 1.23e−2 0.98 6.87e+3 525 3.60e+6 1.13e+5 6241
64 8.99e−4 0.99 7.33e−3 0.96 6.23e−3 0.99 1.26e+4 525 6.63e+6 1.04e+5 5786
128 4.56e−4 0.98 3.94e−3 0.90 3.16e−3 0.98 2.31e+4 525 1.21e+7 9.46e+4 5231
256 2.34e−4 0.96 2.40e−3 0.72 1.62e−3 0.96 4.18e+4 525 2.19e+7 8.57e+4 4656

Table 4.8 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Detailed results for the monolithic approach solved with a GKB algorithm
with an arbitrary parameter γ = 0, and a CG solver equipped with an AMG preconditioner. Prismatic-Polygonal mesh. in Figs. 4.5 and 4.6.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.35e−2 – 9.10e−2 – 1.26e+3 350 4.42e+5 1.10e+5 436
8 6.84e−3 0.98 4.61e−2 0.98 2.45e+3 350 8.57e+5 1.07e+5 435
16 3.55e−3 0.95 2.39e−2 0.95 4.76e+3 350 1.67e+6 1.04e+5 429
32 1.82e−3 0.96 1.23e−2 0.96 9.60e+3 350 3.36e+6 1.05e+5 440
64 9.47e−4 0.95 6.46e−3 0.93 1.35e+4 525 7.11e+6 1.11e+5 438
128 5.07e−4 0.90 3.57e−3 0.86 2.46e+4 525 1.29e+7 1.01e+5 459
256 2.87e−4 0.82 2.20e−3 0.70 5.02e+4 525 2.64e+7 1.03e+5 477

Table 4.9 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Detailed results for the AC technique, arbitrary parameter η = 10, solved
with a CG iterative solver and a Jacobi preconditioner. Prismatic-Polygonal mesh. in Figs. 4.5 and 4.6.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.49e−2 – 1.13e−1 – 2.35e+2 350 8.23e+4 2.06e+4 2710
8 8.46e−3 0.82 9.36e−2 0.27 4.61e+2 350 1.61e+5 2.02e+4 2657
16 4.65e−3 0.86 5.88e−2 0.67 8.57e+2 350 3.00e+5 1.88e+4 2469
32 2.44e−3 0.93 3.22e−2 0.87 1.63e+3 350 5.70e+5 1.78e+4 2327
64 1.26e−3 0.96 1.66e−2 0.95 1.95e+3 525 1.02e+6 1.60e+4 2071
128 6.57e−4 0.94 8.51e−3 0.97 3.47e+3 525 1.82e+6 1.42e+4 1826
256 3.55e−4 0.89 4.46e−3 0.93 6.06e+3 525 3.18e+6 1.24e+4 1585

Table 4.10 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Detailed results for the AC technique, arbitrary parameter η = 100,
solved with a CG iterative solver and a Jacobi preconditioner. Prismatic-Polygonal mesh. in Figs. 4.5 and 4.6.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.36e−2 – 8.89e−2 – 6.52e+2 350 2.28e+5 5.70e+4 7557
8 6.87e−3 0.98 4.68e−2 0.93 1.27e+3 350 4.44e+5 5.55e+4 7426
16 3.57e−3 0.95 2.46e−2 0.93 2.34e+3 350 8.21e+5 5.13e+4 7063
32 1.83e−3 0.96 1.27e−2 0.96 4.64e+3 350 1.62e+6 5.08e+4 6686
64 9.51e−4 0.95 6.64e−3 0.94 8.39e+3 350 2.94e+6 4.59e+4 6052
128 5.09e−4 0.90 3.65e−3 0.86 1.46e+4 350 5.09e+6 3.98e+4 5328
256 2.88e−4 0.82 2.24e−3 0.71 2.53e+4 350 8.85e+6 3.46e+4 4581

Table 4.11 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Detailed results for the monolithic approach solved with a GKB
algorithm with an arbitrary parameter γ = 0, and a CG solver equipped with an AMG preconditioner. CheckerBoard mesh. in Figs. 4.5
and 4.6.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.35e−2 – 9.13e−2 – 5.42e+3 350 1.90e+6 4.75e+5 217
8 6.82e−3 0.98 4.65e−2 0.97 1.07e+4 350 3.74e+6 4.67e+5 212
16 3.54e−3 0.95 2.47e−2 0.91 2.14e+4 350 7.48e+6 4.68e+5 212
32 1.81e−3 0.97 1.38e−2 0.84 4.20e+4 350 1.47e+7 4.59e+5 206
64 9.35e−4 0.96 8.94e−3 0.62 5.67e+4 525 2.98e+7 4.65e+5 205
128 4.94e−4 0.92 7.15e−3 0.32 1.11e+5 525 5.85e+7 4.57e+5 197
256 2.72e−4 0.86 6.59e−3 0.12 1.44e+5 875 1.26e+8 4.94e+5 202

Table 4.12 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Detailed results for the AC technique, arbitrary parameter η = 10,
solved with a CG iterative solver and a Jacobi preconditioner. CheckerBoard mesh. in Figs. 4.5 and 4.6.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.49e−2 – 1.13e−1 – 2.47e+3 350 8.65e+5 2.16e+5 2829
8 8.45e−3 0.82 9.37e−2 0.27 4.92e+3 350 1.72e+6 2.15e+5 2817
16 4.64e−3 0.86 5.91e−2 0.67 9.43e+3 350 3.30e+6 2.06e+5 2697
32 2.43e−3 0.93 3.28e−2 0.85 1.81e+4 350 6.35e+6 1.98e+5 2565
64 1.25e−3 0.96 1.77e−2 0.89 2.26e+4 525 1.19e+7 1.86e+5 2405
128 6.46e−4 0.95 1.05e−2 0.75 4.02e+4 525 2.11e+7 1.65e+5 2154
256 3.44e−4 0.91 7.64e−3 0.46 7.02e+4 525 3.69e+7 1.44e+5 1864

Table 4.13 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Detailed results for the AC technique, arbitrary parameter η = 100,
solved with a CG iterative solver and a Jacobi preconditioner. CheckerBoard mesh. in Figs. 4.5 and 4.6.

∆t = T
...

∥∥∥Êh(u)
∥∥∥
`2,C

Order ‖Eh(p)‖`2,C Order Elapsed [s] #cores Elps×#rnk [s] Elps×#rnk/#TS [s] Solver Iter/#TS

4 1.35e−2 – 8.91e−2 – 6.26e+3 350 2.19e+6 5.48e+5 7159
8 6.86e−3 0.98 4.72e−2 0.92 1.25e+4 350 4.36e+6 5.45e+5 7131
16 3.56e−3 0.95 2.53e−2 0.90 2.51e+4 350 8.80e+6 5.50e+5 6815
32 1.82e−3 0.97 1.41e−2 0.85 4.44e+4 350 1.55e+7 4.86e+5 6398
64 9.38e−4 0.96 9.06e−3 0.64 5.53e+4 525 2.90e+7 4.54e+5 5922
128 4.95e−4 0.92 7.19e−3 0.33 9.99e+4 525 5.25e+7 4.10e+5 5363

126 Ch. 4 1st-order time-stepping for the NSE

4.6.2 Navier–Stokes equations
The classical 2D Taylor–Green Vortex for the NSE has been considered in Section 4.5. The
same coupling techniques as in the previous test case (monolithic approach and AC method)
are combined with the three classical convection treatments (Picard iterations, linearized
and explicit convection).

We investigate the following quantity

rn(Ekin) := Ekin,h(v̂nh)− Ekin(tn)
Ekin(tn) , n = 0, . . . , N , (4.66)

where
Ekin(t) := 1

2

∫

Ω
|u|22 = π2 exp(−4νt) , (4.67)

is the exact kinetic energy of the TGV flow, readily inferred from (4.59). rn(Ekin) is the
normalized difference (with sign) of the computed and exact kinetic energy. We report in
Figs. 4.14 and 4.15 the results obtained for rn(Ekin) at, respectively, Re ≈ 33 and Re = 100.
The difference between the coarsest and finest time step values that have been considered is
significant, with the latter being remarkably closer to the reference curve. This shows the
time discretization errors are dominant. Conversely, neither the coupling technique nor the
convection treatment lead to notable differences. This remark is confirmed by the results
in Fig. 4.16 which compare the data obtained for the smallest time step values between the
different convection treatments.

4.6 Detailed results 127

0 10 20 30 40

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(a) Picard and monolithic.

0 10 20 30 40

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(b) Picard and AC.

0 10 20 30 40

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(c) Linearized convection and monolithic.

0 10 20 30 40

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(d) Linearized convection and AC.

0 10 20 30 40

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(e) Explicit convection and monolithic.

0 10 20 30 40

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(f) Explicit convection and AC.

Figure 4.14 – 2D Navier–Stokes, Taylor–Green Vortex. Re ≈ 33. T = 40. Mesh: Cartesian
composed of 1282 cells. Ratio (in percentage) between the computed and reference kinetic
energy r(Ekin,h) (see (4.66)) for different combinations of coupling technique and convection
treatment. ∆t = T

8 , T
16 , T

32 , T
64 .

128 Ch. 4 1st-order time-stepping for the NSE

0 20 40 60 80 100 120

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(a) Picard and monolithic.

0 20 40 60 80 100 120

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(b) Picard and AC.

0 20 40 60 80 100 120

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(c) Linearized convection and monolithic.

0 20 40 60 80 100 120

0

+5%

+10%

+15%

t

rn
(E

ki
n
)

(d) Linearized convection and AC.

Figure 4.15 – 2D Navier–Stokes, Taylor–Green Vortex. Re = 100. T = 120. Mesh: Carte-
sian 5122 cells. Ratio (in percentage) between the computed and reference kinetic energy
r (Ekin,h) (see (4.66)) for different combinations of coupling technique and convection treat-
ment. ∆t = T

8 , T
16 , T

32 , T
64 .

4.6 Detailed results 129

0 10 20 30 40

0

+5%

t

rn
(E

ki
n
)

(a) Monolithic coupling - Re ≈ 33.

0 10 20 30 40

0

+5%

t

rn
(E

ki
n
)

(b) AC technique - Re ≈ 33.

0 20 40 60 80 100 120

0

+5%

t

rn
(E

ki
n
)

(c) Monolithic coupling - Re = 100.

0 20 40 60 80 100 120

0

+5%

t

rn
(E

ki
n
)

(d) AC technique - Re = 100.
Convection treatment: Picard Linearized Explicit

Figure 4.16 – 2D Navier–Stokes, Taylor–Green Vortex. Ratio (in percentage) between the
computed and reference kinetic energy r (Ekin,h) (see (4.66)) for different combinations of
coupling technique and convection treatment. Top: Re ≈ 33, T = 40, Cartesian 128 × 128
mesh. Bottom: Re = 100, T = 120, Cartesian 512× 512 mesh. ∆t = T

64 .

130 Ch. 4 1st-order time-stepping for the NSE

Chapter 5

Extension to second-order time-stepping

Contents
5.1 Second-order time-schemes . 131

5.1.1 Monolithic approach . 132

5.1.2 Artificial Compressibility . 134

5.2 Numerical results: Stokes equations 136

5.2.1 Comparison: Monolithic approach vs. Artificial Compressibility . . 137

5.2.2 Comparison: first- vs. second-order time discretizations 139

5.3 Numerical results: Navier–Stokes equations 141

5.3.1 Convergence in time . 141

5.3.2 Convection treatments and dissipativity 141

5.3.3 Stability results with an explicit convection 145

5.4 Detailed results . 148

5.4.1 Stokes equations . 148

5.4.2 Navier–Stokes equations . 152

The framework introduced in Chapter 4 constitutes a minimal setting to deal with the
time discretization of the Navier-Stokes equations (NSE). The setting is now extended to
second-order time-schemes, both for the classical monolithic approach and the Artificial
Compressibility (AC) method. As before, several strategies resulting from combinations of
coupling techniques, time-schemes and convection treatments are compared both in terms of
accuracy and efficiency. Two second-order time-schemes are presented in the first part of this
chapter: a Backward Differentiation Formula (BDF2) applied to the monolithic approach
and a bootstrapping technique applied to the AC method.

5.1 Second-order time-schemes

As in the previous chapter, two velocity-pressure coupling techniques are considered: the
monolithic approach and the Artificial Compressibility method. We now present second-
order time-schemes for both of these coupling techniques.

132 Ch. 5 2nd-order time-stepping

The model problem is: Find (u, p) such that

∂u

∂t
− ν∆u+ ξNS(u · ∇)u+∇ p = f in Ω× (0, T) ,

∇ · u = 0 in Ω× (0, T) ,
u = u∂ on ∂Ω× (0, T) ,

.u|t=0 = u0 on Ω ,

(5.1)

For the sake of simplicity, we take u∂ := 0 in the presentation of the schemes.

5.1.1 Monolithic approach
Two of the most common second-order time-schemes are undoubtedly the Crank–Nicolson
scheme (CN) and the second-order Backward Differentiation Formula (BDF2).

One of the main advantage of the CN scheme is that only the evaluation of the solution
at the previous time step is needed (as it is the case for the first-order Implicit Euler used
in Chapter 4). Moreover, its analysis is well established (Kim and Moin, 1985; Heywood
and Rannacher, 1990; Charnyi et al., 2017).

However, we prefer to focus on the BDF2 time-scheme because of its stronger stability
properties. The counterpart is that one needs to store two evaluations of the solution and
thus consider an adapted initialization. Avoiding for the moment the spatial discretization
and focusing on the Stokes equation (ξNS := 0 in (5.1)), using the BDF2 scheme for the
time discretization leads to

3un − 4un−1 + un−2

2∆t − ν∆un +∇ pn = fn ,

∇ · un = 0 .
(5.2)

Thus, one takes advantage of the solution at the two previous time steps to build a second
order approximation of the time-derivative at tn. Equation (5.2) is valid only if the discrete
time nodes tn are uniformly spaced (∆t is constant): alternative forms are available if ∆t
varies.

Remark 5.1 - Initialization. The BDF2 time-scheme needs two initial conditions to start:
consider for instance n = 1 in (5.2), then u0 and u−1 are required. However, the latter is
not available. In order to overcome the problem, the most common strategy is to replace
at n = 1 the BDF2 scheme by an Implicit Euler time discretization (see for instance (4.5))
which needs only u0. The complete procedure hence reads:

un − un−1

∆t − ν∆un +∇ pn = fn ,

∇ · un = 0 ,
n = 1 ,

3un − 4un−1 + un−2

2∆t − ν∆un +∇ pn = fn ,

∇ · un = 0 ,
n ≥ 2 .

(5.3)

One can show, at least for the heat equation, that second-order in time error estimates are
recovered in the energy norm.

Another possible strategy for the initialization is the Richardson’s extrapolation. Let
us briefly detail it for the case at hand. Suppose that (u1,i, p1,i), i = 1, 2, are two ap-
proximations obtained by using a first-order time-scheme (e.g. Implicit Euler) with two
different time steps, ∆t1 6= ∆t2. Then, (u1,i, p1,i), i = 1, 2, can be combined in order to

5.1 Second-order time-schemes 133

obtained a (final-step) solution (u1, p1) which is second-order in time. Take for instance
2∆t1 = ∆t2 = ∆t; then, u1 := 2u1,2 − u1,1 is second-order accurate. A similar relation
holds for the pressure. Thus, Richardson’s extrapolation allows one to recover a sequence
of solutions which is second-order in time from the first time step. The price to pay consists
in one additional system to be solved initially. �

Face-based CDO discretization and algebraic version

All the tools needed in order to recover a face-based CDO (CDO-Fb) discretization of the
system (5.2) have been already discussed in Section 3.1.3 and Section 4.1. The CDO problem
reads: For all n = 1, . . . , N , find (ûnh , pnh) ∈ Ûh,0 × Ph,∗ such that

1
2∆tm(3unC − 4un−1

C + un−2
C , vC) + νah(ûnh , v̂nh) + bh(v̂h, p

n
h) = ln(vC) ,

bh(ûnh , qh) = 0 ,
(5.4)

for all (v̂h, qh) ∈ Ûh,0 × Ph,∗.
The local system corresponding to (5.4) has the same structure as (4.12) where the

matrices are built as follows:

Ac = 3
2∆tMc + νGc ,

Bc = Dc ,

Fn
c = Snc + 2

∆tR
n−1
c − 1

2∆tR
n−2
c .

(5.5)

Remark 5.2 - Energy balance. We cannot proceed as in the proof of Lemma 4.3 to
recover an equation for the kinetic energy associated with ûnh . However, we believe that
one can proceed as in Ern and Guermond (2020) to recover a stability result on the kinetic
energy, see in particular Lemma 36.1 therein for the heat equation. �

Convection treatments

The convection treatments presented in Section 4.3 need to be slightly adapted so that
second-order time accuracy is maintained. All the techniques presented below hinge on the
following extrapolation result. Consider a smooth function g(t) and a sequence of equispaced
time nodes {tn := n∆t}n=0,...,N . Using Taylor expansions at tn, we readily see that

g̃n := 2gn−1 − gn−2 (5.6)

is a second order approximation of gn.

Explicit convection Applying (5.6) to g := (u · ∇)u gives

2(un−1 · ∇)un−1 − (un−2 · ∇)un−2 (5.7)

as a second-order explicit extrapolation of the convection operator. The CDO-Fb problem
then reads: For n = 1, . . . , N , find (ûnh , pnh) ∈ Ûh,0 × Ph,∗ solving

1
2∆tm(3unC − 4un−1

C + un−2
C , vC) + νah(ûnh , v̂h) + bh(v̂h, p

n
h)

= ln(vC)−
(
2th(ûn−1

h ; ûn−1
h , v̂h)− th(ûn−2

h ; ûn−2
h , v̂h)

)
,

bh(ûnh , qh) = 0 ,

(5.8)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗.

134 Ch. 5 2nd-order time-stepping

Linearized convection This time, the target term is only the convection field. Hence,
applying (5.6) to u, approximating the convection term at tn in the NSE by

(ũn · ∇)un, ũn := 2un−1 − un−2 , (5.9)

and considering a CDO-Fb discretization, one gets: For n = 1, . . . , N , find (ûnh , pnh) ∈
Ûh,0 × Ph,∗ solving

1
2∆tm(3unC − 4un−1

C + un−2
C , vC) + νah(ûnh , v̂h) + th(˜̂un−1

h ; ûnh , v̂h) + bh(v̂h, p
n
h) = ln(vC) ,

bh(ûnh , qh) = 0 ,
(5.10)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. We used ˜̂unh := 2ûn−1
h − ûn−2

h .

Picard iteration Being an iterative method, the Picard algorithm, whenever it converges,
should automatically recover second-order time accuracy. Thus no special modifications are
needed. The CDO-Fb formulation then reads: For n = 1, . . . , N , iterate on k ≥ 1 until
convergence: find (ûn,kh , pn,kh) ∈ Ûh,0 × Ph,∗ such that

1
2∆tm(3un,kC − 4un−1,∞

C + un−2,∞
C , vC) + νah(ûn,kh , v̂h)

+ th(ûn,k−1
h ; ûn,kh , v̂h) + bh(v̂h, p

n,k
h) = ln(vC) ,

bh(ûn,kh , qh) = 0 ,

(5.11)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗. Recall that ûn−1,∞
h (respectively ûn−2,∞

h) denotes the
solution given by the Picard algorithm at the time step n− 1 (resp. n− 2). Our numerical
experiments indicate that the Picard iteration might take a lot of time to converge: using
ûn,0h

˜̂unh as initialization might improve its performances.

Remark 5.3 - Energy balance. A stability result for the BDF2 time-scheme similar to
the one presented in Ern and Guermond (2020, Lemma 67.1) and discussed Remark 5.2 can
be obtained whenever the convection treatment is dissipative (or neutral with respect to the
kinetic energy) since the analysis requires testing the momentum equation with v̂h := ûnh for
(5.10) or v̂h := ûn,kh for (5.11). This is the case for the Picard algorithm and the linearized
convection (one proceeds as in the proofs of Lemmas 4.8 and 4.11). �

5.1.2 Artificial Compressibility
We recall that the AC method hinges on a perturbation of the mass balance which enables
one to decouple velocity and pressure. In Chapter 4, in the case of a Stokes problem, a first-
order time-scheme has been used leading to (see (4.24))

un − un−1

∆t − ν(∆un + η∇∇ · un) +∇ pn−1 = fn ,

pn = pn−1 − νη∇ · un .
(5.12)

A promising feature of the AC strategy is the possibility of devising time-schemes of
arbitrary order of convergence (Guermond and Minev, 2015). This is achieved via a boot-
strapping technique: in short, by solving k accurately-designed equations similar to (5.12)
per time step, one can recover k-th order convergence in time.

Combined with the BDF technique to handle the time derivative, the bootstrapping
technique leads to the following procedure for the Stokes equations: For n ≥ 1, find (un1 , pn1)

5.1 Second-order time-schemes 135

such that

un1 − un−1
1

∆t − ν (∆un1 + η∇∇ · un1) = fn −∇ pn−1
1 ,

pn1 = pn−1
1 − νη∇ · un1 , δpn1 := pn1 − pn−1

1 ,

(5.13a)

(5.13b)
and for n ≥ 2, find (un2 , pn2) such that

3un2 − 4un−1
2 + un−2

2
2∆t − ν (∆un2 + η∇∇ · un2) = fn −∇ (pn−1

2 + δpn1) ,

pn2 = pn−1
2 + δpn1 − νη∇ · un2 .

(5.13c)

(5.13d)

Here, uni (respectively pni) is an approximation of order i of the velocity un (resp. pressure
pn). Notice that Eqs. (5.13a) and (5.13b) have the same structure as the equations used in
the first-order case (5.12).

Remark 5.4 - Pressure mass matrix. We observe that, as explained in Remark 4.4,
although usually a mass matrix related to the pressure is sometimes introduced in the finite
element setting in order to deal with (5.13b) and (5.13d), in the CDO-Fb framework those
equations simply boil down to an update step since the pressure and the divergence are
cell-wise constant. �
Remark 5.5 - Alternative formulation. Instead of using a BDF scheme and recover-
ing (5.13), Guermond and Minev (2015) propose also a defect correction technique which
involves only first-order time-derivative discretizations while still ensuring second-order con-
vergence in time. The defect correction technique relies on a Taylor expansion in which the
derivatives of order higher than one are discretized as well. Applying this technique to the
AC method leads to replacing Eqs. (5.13c) and (5.13d) with

un2 − un−1
2

∆t − ν (∆un2 + η∇∇ · un2) = −∇ (pn−1
2 + δpn1

∆t)− 1
2δ

2un+1
1 ,

pn2 = pn−1
2 + δpn1

∆t − νη∇ · u
n
2 , δu

n+1
1 := un+1

1 − un1
∆t , δ2un+1

1 := δun+1
1 − δun1

∆t .

(5.14a)

(5.14b)

The numerical results presented in Guermond and Minev (2015) indicate that this defect
correction version Eqs. (5.13a), (5.13b), (5.14a) and (5.14b) seems to be more stable than
Eqs. (5.13a) to (5.13d) when used in the context of NSE and explicit convection. Yet, we
decided to keep the BDF-based version in order to be consistent with what has been done
for the monolithic approach. �

Convection treatments

For (5.13) to remain of second order, when convection is considered, one of the techniques
presented in Section 4.2.2 should be applied to (5.13a), and one of the techniques discussed
in Section 5.1.1 to (5.13c), preferably the same method for both equations.

Let us stress again that neither the Picard algorithm nor the linearized convection are
usually considered whenever dealing with NSE and the AC method. The main reason is that
this framework aims at being as efficient as possible, even starting from the Stokes problem.
Secondly, one tries to obtain a final linear system as simple as possible to solve, thus avoiding
peculiar numerical procedures: this is why one tends to avoid the Picard iterations, but also
the linearization of the convection, which would lead to a nonsymmetric linear system. For
instance, in Guermond and Minev (2015, Remark 5.3), the authors advocate the use of an
explicit convection treatment describing it as the natural way of moving from the Stokes to
the NSE. However, for the sake of completeness, in addition to the explicit convection, we
still test the linearized convection. The resulting CDO-Fb schemes are given below.

136 Ch. 5 2nd-order time-stepping

Explicit convection Adding an explicit convection to (5.13) as suggested in Guer-
mond and Minev (2015, Remark 5.4) leads to the following procedure: For n ≥ 1, find
(ûn1,h, pn1,h) ∈ Ûh,0 × Ph,∗ such that

1
∆tm(un1,C − un−1

1,C , vC) + ν
(
ah(ûn1,h, v̂h) + ηdh(ûn1,h, v̂h)

)

= ln(vC)− bh(v̂h, p
n−1
1,h)− th(ûn−1

1,h ; ûn−1
1,h , v̂h) ,

pn1,h = pn−1
1,h − νηDh(ûn1,h) , δpn1,h := pn1,h − pn−1

1,h ,

(5.15a)

(5.15b)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗; and, for n ≥ 2, find (ûn2,h, pn2,h) ∈ Ûh,0 × Ph,∗ such that

1
2∆tm(3un2,C − 4un−1

2,C + un−2
2,C , vC) + +ν

(
ah(ûn2,h, v̂h) + ηdh(ûn2,h, v̂h)

)

= ln(vC)− bh(v̂h, p
n−1
2,h + δpn1,h)−

(
2th(ûn−1

2,h ; ûn−1
2,h , v̂h)− th(ûn−2

2,h ; ûn−2
2,h , v̂h)

)
,

pn2,h = pn−1
2,h + δpn1,h − νηDh(ûn2,h) ,

(5.15c)

(5.15d)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗.

Linearized convection This time, we add a convection term using in (5.13c) the ex-
trapolated velocity ˜̂un2,h := 2ûn−1

2,h − ûn−2
2,h as the convection field. We obtain the following

procedure: For n ≥ 1, find (ûn1,h, pn1,h) ∈ Ûh,0 × Ph,∗ such that

1
∆tm(un1,C − un−1

1,C , vC) + ν
(
ah(ûn1,h, v̂h) + ηdh(ûn1,h, v̂h)

)

+ th(ûn−1
1,h ; ûn1,h, v̂h) = ln(vC)− bh(v̂h, p

n−1
1,h) ,

pn1,h = pn−1
1,h − νηDh(ûn1,h) , δpn1,h := pn1,h − pn−1

1,h ,

(5.16a)

(5.16b)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗; and, for n ≥ 2, find (ûn2,h, pn2,h) ∈ Ûh,0 × Ph,∗ such that

1
2∆tm(3un2,C − 4un−1

2,C + un−2
2,C , vC) + +ν

(
ah(ûn2,h, v̂h) + ηdh(ûn2,h, v̂h)

)

+ th(˜̂un−1
2,h ; ûn2,h, v̂h) = ln(vC)− bh(v̂h, p

n−1
2,h + δpn1,h) ,

pn2,h = pn−1
2,h + δpn1,h − νηDh(ûn2,h) ,

(5.16c)

(5.16d)

for all v̂h ∈ Ûh,0 and all qh ∈ Ph,∗.

5.2 Numerical results: Stokes equations
The test case presented in Section 4.4 is considered again here in order to evaluate the
second-order time-schemes presented in Section 5.1. We recall that the problem at hand
consists in the unsteady 3D Stokes equations with the following analytic solution:

uUTGV(x, y, z) := α(t)u3TGV(x, y, z) ,
pUTGV(x, y, z) := α(t)p3TGV(x, y, z) ,

α(t) := sin(1.7πt+ π
5) ,

u3TGV(x, y, z) :=

−2 cos(2πx) sin(2πy) sin(2πz)
sin(2πx) cos(2πy) sin(2πz)
sin(2πx) sin(2πy) cos(2πz)

 ,

p3TGV(x, y, z) := − 6π sin(2πx) sin(2πy) sin(2πz) .

(5.17)

5.2 Numerical results: Stokes equations 137

The domain is Ω := [0, 1]3, the time limit is T := 2 and the viscosity is set to ν := 1. The
source term, presented in (4.51), is

{
fUTGV(x, y, z) := f3TGV(x, y, z) + 1.7π cos(1.7πt+ π

5)u3TGV(x, y, z) ,
f3TGV(x, y, z) := [−36π2 cos(2πx) sin(2πy) sin(2πz), 0, 0]T .

(5.18)

First, the convergence rates of the time errors are measured. A comparison between
the monolithic approach and the AC technique is made with a special attention on the
performances. Finally, the advantages and disadvantages of the second-order time-schemes
with respect to the first-order time-schemes are studied.

We recall that, among the several combinations of coupling, linear solver, and precondi-
tioners, only three have been selected as being potentially the most efficient ones, namely,
the monolithic approach solved with a GKB procedure (with parameter γ := 0) with a
Conjugate Gradient iterative solver and a K-cycle preconditioner (MONO(0) for short), the
AC(η) technique with parameter η set to 10 or 100 and solved with a Jacobi-preconditioned
CG (AC(10) or AC(100) for short).

Remark 5.6 - Initialization. The initialization of the BDF2 time-scheme has been per-
formed by means of an Implicit Euler iteration, see (5.3), so that it is more coherent with the
AC scheme, see (5.13). Hence, the convergence rates for both strategies might be affected
by this non-optimal start, especially if only a few time steps are considered. �

5.2.1 Comparison: Monolithic approach vs. Artificial Compressibility
Figure 5.1 collects the results obtained for the 3D unsteady TGV test case for the three
strategies (AC(10), AC(100) and MONO(0)) at hand and for two different meshes, a Carte-
sian mesh composed of 2563 cells and a mesh composed of prisms with polygonal bases
(differently from Section 4.4.3, we do not consider here the CheckerBoard mesh for which
we obtained stagnation due to the spatial error). Only the discrete `2(L2)-like velocity and
pressure space-time errors are reported in Fig. 5.1. Insights about the `2(H1) velocity error
are given later in Tables 5.4 to 5.6 for the Cartesian mesh only, for which the results were
less polluted (with respect to the polyhedral mesh) by the spatial error. Generally speaking,
second-order convergence in time is recovered for all the considered errors, that is the dis-
crete L2-like norm of the velocity and the pressure. Some sub-optimal rates are observed at
the two ends of the curves. The inaccuracy observed for the coarsest values of the time step
is due to the non-optimal initialization (see Remark 5.6). On the other end of the curve,
the stagnation is due to the spatial error dominating the temporal one. This is clear by
observing the results on the polygonal meshes in Fig. 5.1b where a plateau forms starting
from the third finest time step value. Moreover, focusing on the pressure errors, AC(10),

, which was the least accurate in the first-order setting, now reaches the level of the
other two strategies, hence confirming that the spatial error dominates. The coupling does
not seem to have a sizable impact on the velocity errors, at least for the three considered
strategies (recall that a gap have been observed between the AC(10) and the monolithic
results with the first-order schemes, see Fig. 4.1 for instance). However, the coupling still
has an influence on the pressure errors, see the right column of Fig. 5.1.

Let us now move on to the efficiency results by comparing the three strategies. The
results are presented in Fig. 5.2. One notices that AC(10), , is the most efficient strategy:
for a given error threshold, it achieves it in less computational time. Differently to what was
observed with the first-order schemes (cf. Fig. 4.2), the monolithic and the AC(100)
strategies are really close, with the latter being the least efficient one. The positions actually
switched with respect to the results obtained with first-order schemes. This is due to the
fact that with the monolithic approach and the BDF2 time-scheme (5.2), only one system

138 Ch. 5 2nd-order time-stepping

T
256

T
128

T
64

T
32

T
16

T
8

T
4

10−5

10−4

10−3

10−2

2n
d ord

∆t

∥∥∥Êh(u)
∥∥∥

`2,C

T
256

T
128

T
64

T
32

T
16

T
8

T
4

10−4

10−3

10−2

10−1

2n
d ord

∆t

‖Eh(p)‖`2,C

(a) Mesh: Cartesian 2563.

T
256

T
128

T
64

T
32

T
16

T
8

T
4

10−5

10−4

10−3

10−2

2n
d ord

∆t

∥∥∥Êh(u)
∥∥∥

`2,C

T
256

T
128

T
64

T
32

T
16

T
8

T
4

10−4

10−3

10−2

10−1

2n
d ord

∆t

‖Eh(p)‖`2,C

(b) Mesh: PrG160.
Method: AC(10)-bootstrap AC(100)-bootstrap MONO(0)-BDF2

Figure 5.1 – Unsteady Stokes problem. 3D TGV solution (5.17), T = 2. Convergence
in time. Left: velocity L2-error, right: pressure L2-error. Top: Cartesian mesh, bottom:
prismatic mesh with polygonal bases.

resolution per time step is needed (as it was the case for the first-order scheme, too). On
the other hand, two systems need to be solved per time step in the AC-bootstrap technique,
whereas only one was necessary with the standard first-order AC method. Since the linear
systems resulting for the first- and second-order schemes feature the same operators, this
results in an execution time which doubles from the first- to the second-order time-schemes.
In Fig. 5.2, we did not show the results obtained for the error on the gradient of the velocity,
which were affected by the spatial error. For this error, the conclusions are similar to those
regarding the `2(L2) error of the velocity itself.

5.2 Numerical results: Stokes equations 139

106 107
10−5

10−4

10−3

10−2

Elapsed time × cores [s]

∥∥∥Êh(u)
∥∥∥

`2,C

106 107
10−4

10−3

10−2

10−1

Elapsed time × cores [s]

‖Eh(p)‖`2,C

(a) Mesh: Cartesian 2563.

105 106 107

10−4

10−3

10−2

Elapsed time × cores [s]

∥∥∥Êh(u)
∥∥∥

`2,C

105 106 107

10−3

10−2

10−1

Elapsed time × cores [s]

‖Eh(p)‖`2,C

(b) Mesh: PrG160.
Method: AC(10)-bootstrap AC(100)-bootstrap MONO(0)-BDF2

Figure 5.2 – Unsteady Stokes problem. 3D TGV solution (5.17), T = 2. Cost vs. accuracy.
Left: velocity L2-error, right: pressure L2-error. Top: Cartesian mesh, bottom: prismatic
mesh with polygonal bases.

5.2.2 Comparison: first- vs. second-order time discretizations

We continue here the analysis of the efficiency of the second-order time-schemes by inves-
tigating the differences between the first- and second-order time-schemes. In Fig. 5.3 we
compare the results of Figs. 4.2 and 4.6 (see also Tables 4.5 to 4.10) to those of Fig. 5.2.

A detailed summary is given in Tables 5.4 to 5.9, which are collected in Section 5.4.1.
As it was pointed out in Section 5.2.1, the computational times double for the bootstrap-
ping technique with respect to the standard first-order time-scheme, while the times remain
almost unchanged when moving from the Implicit Euler to the BDF2 with the monolithic
approach. However, this additional computational effort is always compensated by a signif-
icant gain in the error results: those obtained with the second-order schemes are even 10

140 Ch. 5 2nd-order time-stepping

times smaller than those computed with the first-order schemes (see for instance the last
lines of Tables 5.4 to 5.6).

106 107
10−5

10−4

10−3

10−2

Elapsed time × cores [s]

∥∥∥Êh(u)
∥∥∥

`2,C

106 107
10−4

10−3

10−2

10−1

Elapsed time × cores [s]

‖Eh(p)‖`2,C

(a) Mesh: Cartesian 2563.

105 106 107

10−4

10−3

10−2

Elapsed time × cores [s]

∥∥∥Êh(u)
∥∥∥

`2,C

105 106 107

10−3

10−2

10−1

Elapsed time × cores [s]

‖Eh(p)‖`2,C

(b) Mesh: PrG160.
Order time-schemes: 1st 2nd

Method: AC(10) AC(100) MONO(0)

Figure 5.3 – Unsteady Stokes problem. 3D TGV solution (5.17), T = 2. Cost vs. ac-
curacy. Left: velocity L2-error, right: pressure L2-error. Legend: AC(10)-bootstrap ,
AC(100)-bootstrap , MONO(0)-BDF2 . Results obtained with second-order schemes
(cf. Fig. 5.2) are in solid lines, those obtained with first-order schemes (cf. Figs. 4.2 and 4.6)
in dashed lines.

The results presented here advocate for the usage of the second-order time-schemes over
the first-order time-schemes. For a given coupling, in general it is more efficient to consider
second-order schemes than first-order ones. If one would like to draw more general conclu-
sions (concerning for instance the best combination of coupling technique, linear solver, and
time-discretization), some uncertainties still remain. For instance, the arbitrary parameter
η in the AC technique may affect significantly both the accuracy and the necessary com-

5.3 Numerical results: Navier–Stokes equations 141

putational effort: if well chosen, η could lead to an efficient method which can compete
with the saddle-point approach. The range of the values ensuring this may not be so wide,
especially when the bootstrapping technique is performed. Moreover, we have seen that the
linear solvers play a major role in the performance of the overall resolution procedure. Thus,
the results may be different if other types of linear solvers are chosen and if the stopping
criteria and thresholds of the iterative procedures change. This being said, a reasonable
guess, no matter what linear solvers one has at his disposal, would be to consider a second-
order AC-bootstrap scheme and a fairly small arbitrary parameter η.

5.3 Numerical results: Navier–Stokes equations

We address here the same problem as in Section 4.5, namely the Taylor–Green Vortex (TGV)
(Taylor and Green, 1937). It consists in a 2D analytical solution of the NSE

uTGV(x, y) := exp(−2νt)
[

sin(x) cos(y)
− cos(x) sin(y)

]
,

pTGV(x, y) := 1
4 exp(−4νt)(cos(2x) + cos(2y)) ,

(5.19)

in the square domain Ω := [0, 2π]2. We consider here two values for the viscosity: ν := 0.3,
and ν := 0.03. Setting L = 1 and U = 1, the two viscosity values lead to Re ≈ 3 and
Re ≈ 33 respectively. The final time is T := 4, if Re ≈ 3, or T := 40 otherwise. The values
has been chosen so that exp(−2νt) ≈ 1

10 .
As it was done in Section 4.5, we compare the monolithic approach and the AC method.

For this latter, we set η := 10Re.

5.3.1 Convergence in time
We begin by evaluating the orders of convergence in time of the implementation of the BDF2
time-scheme and the bootstrapping technique proposed in Section 5.1.

The results are shown in Fig. 5.4. Recall that for the bootstrapping technique, we
do not consider the Picard algorithm. Generally speaking, the expected second order of
convergence is recovered both for the monolithic approach with the BDF2 time-scheme and
for the second-order bootstrapping technique with the AC method. However, the error on
the gradient of the velocity (middle) suffers from early stagnation, especially for Re ≈ 33
(right column). The issue seems to be due to the spatial error becoming dominant, and it
is probably increased by the lack of pressure-robustness of our discretization. Rates slightly
lower-than-second are observed also for the pressure errors (bottom).

As for the first-order time-schemes, one can observe the influence of the convection
treatment on the pressure errors (recall that for the TGV solution (5.19), the convection
term compensates the pressure gradient). Stability issues prevent us from recovering data
with the explicit convection treatment for Re ≈ 33. Notice that for the Implicit Euler
discretization, see Fig. 4.8, we used a more coarser grid which facilitates the stability. Yet
the CFL condition seems to be more stringent with second-order time-schemes than with
first-order time-schemes. A more detailed stability analysis is presented in Section 5.3.3.

5.3.2 Convection treatments and dissipativity
We follow what has been done in Section 4.5.2 and investigate the following quantities:

dEnkin,h := Ekin,h(v̂nh)− Ekin,h(v̂n−1
h)

∆t , n = 1, . . . , N . (5.20)

142 Ch. 5 2nd-order time-stepping

T
64

T
32

T
16

T
8

10−3

10−2

2n
d ord

∆t

∥∥∥Êh(u)
∥∥∥

`2,C

T
64

T
32

T
16

T
8

10−2

10−1

2n
d ord

∆t

∥∥∥Êh(u)
∥∥∥

`2,C

T
64

T
32

T
16

T
8

10−3

10−2

2n
d ord

∆t

∥∥∥Gh(Êh(u))
∥∥∥

`2,C

T
64

T
32

T
16

T
8

10−2

10−1

2n
d ord

∆t

∥∥∥Gh(Êh(u))
∥∥∥

`2,C

T
64

T
32

T
16

T
8

10−3

10−2

10−1

2n
d ord

∆t

‖Eh(p)‖`2,C

T
64

T
32

T
16

T
8

10−3

10−2

10−1

2n
d ord

∆t

‖Eh(p)‖`2,C

Coupling method: MONO AC
Convection treatment: Picard Linearized Explicit

Figure 5.4 – 2D Navier–Stokes, Taylor–Green Vortex. Convergence in time. Cartesian mesh
composed of 5122 cells. Top: velocity L2-error; middle: velocity H1-error; bottom: pressure
L2-error. Left column: Re ≈ 3, T = 4; right column: Re ≈ 33, T = 40.

5.3 Numerical results: Navier–Stokes equations 143

0 1 2 3 4

−1

−0.5

0

t

dE
n ki

n,
h

(a) Explicit convection and monolithic.

0 1 2 3 4

−1

−0.5

0

t

dE
n ki

n,
h

(b) Explicit convection and AC.

0 1 2 3 4

−1

−0.5

0

t

dE
n ki

n,
h

(c) Linearized convection and monolithic.

0 1 2 3 4

−1

−0.5

0

t

dE
n ki

n,
h

(d) Linearized convection and AC.

0 1 2 3 4

−1

−0.5

0

t

dE
n ki

n,
h

(e) Picard and monolithic.

Figure 5.5 – 2D Navier–Stokes, Taylor–Green Vortex. Re ≈ 3. T = 4. Cartesian mesh
composed of 5122 cells. Discrete time-derivative of the kinetic energy at tn, dEnkin,h, see
(5.20). ∆t = T

8 , T
16 , T

32 , T
64 .

The results are shown in Figs. 5.5 and 5.7. Even though no a priori knowledge is available,
we observe that all the strategies are dissipative in this test case. Moreover, as in the first-
order case, the convection treatment does not seem to lead to sizeable differences, see for
instance the comparison in (5.6).

144 Ch. 5 2nd-order time-stepping

0 1 2 3 4

−1

−0.5

0

t

dE
n ki

n,
h

(a) Monolithic coupling.

0 1 2 3 4

−1

−0.5

0

t

dE
n ki

n,
h

(b) AC technique - Re ≈ 3.

Figure 5.6 – 2D Navier–Stokes, Taylor–Green Vortex. Discrete time-derivative of the kinetic
energy at tn, dEnkin,h, see (5.20). Picard algorithm , linearized or explicit
convection. Re ≈ 3, T = 4, Cartesian mesh composed of 5122 cells. ∆t = T

64 . Left:
monolithic approach, right: AC technique.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(a) Linearized convection and monolithic.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(b) Linearized convection and AC.

0 10 20 30 40

−0.1

−0.05

0

t

dE
n ki

n,
h

(c) Picard and monolithic.

Figure 5.7 – 2D Navier–Stokes, Taylor–Green Vortex. Re ≈ 33. T = 40. Cartesian mesh
composed of 5122 cells. Discrete time-derivative of the kinetic energy at tn, dEnkin,h, see
(5.20). ∆t = T

8 , T
16 , T

32 , T
64 .

5.3 Numerical results: Navier–Stokes equations 145

1.14 1.15 1.16 1.17

·10−2

5

6

7

8

1.
14
5

∆t

T
d

(a) Re = 200.

4.1 4.2 4.3 4.4 4.5

·10−3

2

4

6

4.
15
5

∆t

T
d

(b) Re = 500.

2.1 2.15 2.2

·10−3

1

1.2

1.4

1.6

1.8

2

2.
07
5

∆t

T
d

(c) Re = 1000.

200 500 1000

0.0114

0.00415

0.00207

∝ 1/Re

Re

∆
t s

(d) ∆ts dependency on Re.

Figure 5.8 – 2D Navier–Stokes, Taylor–Green Vortex. Divergence time, Td, for different
choices of ∆t with the monolithic approach with BDF2 and explicit convection for three
Reynolds numbers, Re, and dependency of the stability limit, ∆ts, (up to 1% resolution) on
Re. Td are in orange, ∆ts in green. Cartesian mesh composed of 1282 cells.

5.3.3 Stability results with an explicit convection

Following Section 4.5.3, we propose a numerical stability study of the explicit convection
treatment with the two second-order time-schemes presented in Section 5.1. Let us recall
the setting of these tests. Recall that ∆ts denotes the critical time-step value, that is, the
greatest ∆t for which we have not observed divergence, and, in a diverging computation,
Td is the first time node that satisfies the divergence criterion (5.21) below. Moreover,
we consider (i) a Cartesian mesh composed of 1282 cells, (ii) three Reynolds numbers,
Re ∈ {200, 500, 1000}, (iii) T such that T Re = 104, (iv) η = 10Re whenever the AC
method is used, (v) we seek a resolution of 1%, meaning that the gap between ∆ts and the
smallest ∆t leading to divergence is less than 1% of ∆ts, (vi) and we flag a computation as
having diverged if for a tn, n ≥ 1, we have

Ekin,h(v̂nh) > 1.1 Ekin,h(v̂0
h) = 1.1 Ekin,h(π̂h(u0)) . (5.21)

146 Ch. 5 2nd-order time-stepping

1.15 1.2 1.25 1.3

·10−2

4

6
1.
14

∆t

T
d

(a) Re = 200.

4.15 4.2 4.25 4.3

·10−3

3

4

5

4.
16

∆t

T
d

(b) Re = 500.

2.05 2.1 2.15 2.2

·10−3

1

1.5

2

2.
06
5

∆t

T
d

(c) Re = 1000.

200 500 1000

0.0114

0.00416

0.00206

∝ 1/Re

Re

∆
t s

(d) ∆ts dependency on Re.

Figure 5.9 – 2D Navier–Stokes, Taylor–Green Vortex. Divergence time, Td, for different
choices of ∆t with the AC-bootstrap method with η = 10Re and explicit convection for three
Reynolds numbers, Re, and dependency of the stability limit, ∆ts, (up to 1% resolution) on
Re. Td are in orange, ∆ts in green. Cartesian mesh composed of 1282 cells.

We present the results concerning the critical time-step values, ∆ts, and the divergence
times, Td, in Figs. 5.8 and 5.9 for, respectively, the monolithic approach with the BDF2
time-scheme and the AC method with the bootstrapping technique. As it was the case for
the results concerning the first-order time-schemes (see Figs. 4.12 and 4.13), the values of
∆ts measured for the AC method are close to those obtained with the monolithic approach.
Moreover, a dependency on the inverse of the Reynolds number is observed for ∆ts in the
second-order case as well.

The results on ∆ts obtained with the monolithic-BDF2 and the AC-bootstrap strategies
are summarized in Table 5.1. The influence of the η parameter of the AC method on the
stability is less remarkable than for the first-order case. We proceed to a comparison of the
stability results obtained with the first- (see Figs. 4.12 and 4.13) and second-order times-
schemes. In Fig. 5.10, we observe that we can usually choose greater time-step values when
considering first-order schemes: indeed, the critical time-step values ∆ts for the first-order
time-schemes are more than two times higher than the ∆ts obtained at the same Reynolds
number and with the same coupling strategy but with second-order time-schemes. See

5.3 Numerical results: Navier–Stokes equations 147

200 500 1000

0.00316

0.01

0.0316

∝ 1/Re

Re

∆
t s

(a) Monolithic approach.

200 500 1000

0.00316

0.01

0.0316

∝ 1/Re

Re

∆
t s

(b) AC method.

Figure 5.10 – Critical time-step values for stability ∆ts with respect to Reynolds number.
Comparison of first- and second-order time-schemes. The results obtained with first- and
second-order time-schemes are, respectively, in dashed and solid lines. Cartesian mesh
composed of 1282 cells.

Table 5.1 – 2D Navier–Stokes, Taylor–Green Vortex. Critical time-step values for stabil-
ity, ∆ts, with respect to Reynolds number, Re, obtained with second order time-schemes.
Cartesian mesh composed of 1282 cells.

Re MONO AC(Re) AC(10Re) AC(100Re)
200 1.15e−2 1.14e−2 1.14e−2 1.13e−2
500 4.16e−3 4.18e−3 4.16e−3 4.15e−3
1000 2.08e−3 2.07e−3 2.07e−3 2.05e−3

Table 5.2 for more detailed results.
Finally, we investigate the effects of considering an additional constraint for the detection

of the divergence. In fact, we track the enstrophy as well, quantity defined as follows:

φh(ωC) :=
∑

c∈C
|c| |ωc|2 , ωc := [G0

c(ûc)]yx − [G0
c(ûc)]xy ∀c ∈ C . (5.22)

In particular, to the hypotheses (i)-(vi) above, we add: (vii) we flag a computation as having
diverged if, for some n ≥ 1, we have

φh(ωnC) > 1.1φh(ω0
C) . (5.23)

Table 5.3 reports the results when the new criterion (vii) is taken into account and a com-
parison with the results obtained without it. Differently from the first-order case where a
slight decrease of ∆ts was observed for Re = 1000, no sizeable differences are reported here.

Table 5.2 – 2D Navier–Stokes, Taylor–Green Vortex. Critical time-step values for stability,
∆ts, with respect to the Reynolds number, Re. Comparison of first- and second-order time-
schemes. Cartesian mesh composed of 1282 cells. η := 10Re when the AC is considered.

Monolithic AC
Re 1st 2nd 1st

2nd 1st 2nd 1st

2nd

200 2.98e−2 1.15e−2 2.60 2.98e−2 1.14e−2 2.61
500 1.03e−2 4.16e−3 2.48 1.04e−2 4.16e−3 2.51
1000 5.03e−3 2.08e−3 2.42 5.03e−3 2.07e−3 2.43

148 Ch. 5 2nd-order time-stepping

Table 5.3 – 2D Navier–Stokes, Taylor–Green Vortex. Stability limits, ∆ts, up to a resolution
of 1% obtained on a Cartesian mesh composed of 1282 cells with the monolithic approach or
the AC(10Re) method for three Reynolds numbers, Re. Comparison between a divergence
criterion concerning the kinetic energy only, or the kinetic energy and the enstrophy.

MONO AC(10Re)
Re Ekin,h Ekin,h & φh Ekin,h Ekin,h & φh
200 1.15e−2 1.14e−2 1.14e−2 1.14e−2
500 4.16e−3 4.16e−3 4.16e−3 4.16e−3
1000 2.08e−3 2.06e−3 2.07e−3 2.07e−3

5.4 Detailed results
We give in this section the tables collecting the details of the results presented in Section 5.2
and Section 5.3.

5.4.1 Stokes equations
The purpose of this section is to provide the complete details of the simulations presented
in Section 5.2, which covers a 3D modified Taylor–Green Vortex solution to the unsteady
Stokes equations. Comparisons between two second-order time-schemes, namely a BDF2
for the monolithic approach and a bootstrapping technique in the AC context, and between
first- (Implicit Euler) and second-order time-schemes are done. The results are in Tables 5.4
to 5.9. The columns of the table are grouped and each third column denotes the ratio
between the values obtained with the second- and first-order scheme for the strategy at
hand.

Table 5.4 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Comparison of second- and first-order results of velocity and pressure
errors and computational time. Coupling: monolithic . Mesh: Cartesian.

∥∥∥Êh(u)
∥∥∥
`2,C

∥∥∥Gh(Êh(u))
∥∥∥
`2,C

‖Eh(p)‖`2,C Elapsed×cores [s]
∆t = T

... First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd

4 1.35e−2 1.58e−2 0.9 1.08e−1 1.27e−1 0.9 9.09e−2 1.07e−1 0.8 6.58e+5 6.92e+5 1.0
8 6.79e−3 5.92e−3 1.1 5.44e−2 4.74e−2 1.1 4.59e−2 4.00e−2 1.1 1.31e+6 1.37e+6 1.0
16 3.50e−3 1.73e−3 2.0 2.80e−2 1.39e−2 2.0 2.36e−2 1.17e−2 2.0 2.63e+6 2.69e+6 1.0
32 1.77e−3 4.75e−4 3.7 1.43e−2 4.09e−3 3.5 1.20e−2 3.21e−3 3.7 5.09e+6 5.11e+6 1.0
64 8.95e−4 1.32e−4 6.8 7.31e−3 1.84e−3 4.0 6.04e−3 9.01e−4 6.7 9.97e+6 1.02e+7 1.0
128 4.54e−4 4.01e−5 11.3 3.92e−3 1.53e−3 2.6 3.06e−3 2.80e−4 10.9 2.03e+7 2.02e+7 1.0
256 2.33e−4 1.75e−5 13.3 2.39e−3 1.51e−3 1.6 1.57e−3 1.40e−4 11.2 4.22e+7 4.07e+7 1.0

Table 5.5 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Comparison of second- and first-order results of velocity and pressure
errors and computational time. Coupling: AC(10) . Mesh: Cartesian.

∥∥∥Êh(u)
∥∥∥
`2,C

∥∥∥Gh(Êh(u))
∥∥∥
`2,C

‖Eh(p)‖`2,C Elapsed×cores [s]
∆t = T

... First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd

4 1.49e−2 1.62e−2 0.9 1.12e−1 1.28e−1 0.9 1.13e−1 1.07e−1 1.1 1.92e+5 3.37e+5 0.6
8 8.42e−3 6.14e−3 1.4 6.18e−2 4.83e−2 1.3 9.35e−2 5.10e−2 1.8 3.78e+5 7.08e+5 0.5
16 4.61e−3 1.89e−3 2.4 3.37e−2 1.47e−2 2.3 5.87e−2 2.11e−2 2.8 7.22e+5 1.40e+6 0.5
32 2.40e−3 5.61e−4 4.3 1.77e−2 4.48e−3 4.0 3.21e−2 7.39e−3 4.3 1.39e+6 2.67e+6 0.5
64 1.22e−3 1.68e−4 7.3 9.23e−3 1.94e−3 4.7 1.65e−2 2.49e−3 6.6 2.59e+6 4.96e+6 0.5
128 6.17e−4 5.31e−5 11.6 4.98e−3 1.55e−3 3.2 8.31e−3 9.25e−4 9.0 4.61e+6 9.25e+6 0.5
256 3.13e−4 2.10e−5 14.9 2.95e−3 1.51e−3 2.0 4.18e−3 4.13e−4 10.1 8.34e+6 1.64e+7 0.5

Table 5.6 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Comparison of second- and first-order results of velocity and pressure
errors and computational time. Coupling: AC(100) . Mesh: Cartesian.

∥∥∥Êh(u)
∥∥∥
`2,C

∥∥∥Gh(Êh(u))
∥∥∥
`2,C

‖Eh(p)‖`2,C Elapsed×cores [s]
∆t = T

... First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd

4 1.35e−2 1.58e−2 0.9 1.08e−1 1.27e−1 0.9 8.88e−2 1.06e−1 0.8 5.00e+5 8.60e+5 0.6
8 6.83e−3 5.92e−3 1.2 5.45e−2 4.74e−2 1.1 4.65e−2 4.02e−2 1.2 9.40e+5 1.80e+6 0.5
16 3.52e−3 1.73e−3 2.0 2.81e−2 1.39e−2 2.0 2.43e−2 1.19e−2 2.0 1.89e+6 3.49e+6 0.5
32 1.78e−3 4.75e−4 3.7 1.43e−2 4.09e−3 3.5 1.23e−2 3.31e−3 3.7 3.60e+6 6.83e+6 0.5
64 8.99e−4 1.33e−4 6.8 7.33e−3 1.84e−3 4.0 6.23e−3 9.54e−4 6.5 6.63e+6 1.29e+7 0.5
128 4.56e−4 4.02e−5 11.3 3.94e−3 1.53e−3 2.6 3.16e−3 3.15e−4 10.0 1.21e+7 2.36e+7 0.5
256 2.34e−4 1.73e−5 13.5 2.40e−3 1.50e−3 1.6 1.62e−3 1.49e−4 10.9 2.19e+7 4.22e+7 0.5

Table 5.7 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Comparison of second- and first-order results of velocity and pressure
errors and computational time. Coupling: monolithic . Mesh: prismatic with polygonal bases.

∥∥∥Êh(u)
∥∥∥
`2,C

‖Eh(p)‖`2,C Elapsed×cores [s]
∆t = T

... First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd

4 1.35e−2 1.58e−2 0.9 9.10e−2 1.07e−1 0.8 4.42e+5 4.12e+5 1.1
8 6.84e−3 5.97e−3 1.1 4.61e−2 4.03e−2 1.1 8.57e+5 8.00e+5 1.1
16 3.55e−3 1.76e−3 2.0 2.39e−2 1.19e−2 2.0 1.67e+6 1.58e+6 1.1
32 1.82e−3 4.97e−4 3.7 1.23e−2 3.52e−3 3.5 3.36e+6 3.03e+6 1.1
64 9.47e−4 1.59e−4 5.9 6.46e−3 1.53e−3 4.2 7.11e+6 6.20e+6 1.1
128 5.07e−4 8.49e−5 6.0 3.57e−3 1.22e−3 2.9 1.29e+7 1.30e+7 1.0
256 2.87e−4 7.41e−5 3.9 2.20e−3 1.19e−3 1.9 2.64e+7 2.79e+7 0.9

Table 5.8 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Comparison of second- and first-order results of velocity and pressure
errors and computational time. Coupling: AC(10) . Mesh: prismatic with polygonal bases.

∥∥∥Êh(u)
∥∥∥
`2,C

‖Eh(p)‖`2,C Elapsed×cores [s]
∆t = T

... First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd

4 1.49e−2 1.62e−2 0.9 1.13e−1 1.07e−1 1.1 8.23e+4 1.43e+5 0.6
8 8.46e−3 6.18e−3 1.4 9.36e−2 5.12e−2 1.8 1.61e+5 3.01e+5 0.5
16 4.65e−3 1.92e−3 2.4 5.88e−2 2.12e−2 2.8 3.00e+5 5.75e+5 0.5
32 2.44e−3 5.78e−4 4.2 3.22e−2 7.52e−3 4.3 5.70e+5 1.09e+6 0.5
64 1.26e−3 1.89e−4 6.7 1.66e−2 2.77e−3 6.0 1.02e+6 1.95e+6 0.5
128 6.57e−4 9.12e−5 7.2 8.51e−3 1.50e−3 5.7 1.82e+6 3.51e+6 0.5
256 3.55e−4 7.48e−5 4.7 4.46e−3 1.25e−3 3.6 3.18e+6 6.02e+6 0.5

Table 5.9 – Unsteady Stokes problem. 3D TGV solution (4.50), T = 2. Comparison of second- and first-order results of velocity and pressure
errors and computational time. Coupling: AC(100) . Mesh: prismatic with polygonal bases.

∥∥∥Êh(u)
∥∥∥
`2,C

‖Eh(p)‖`2,C Elapsed×cores [s]
∆t = T

... First Second Ratio 1st

2nd First Second Ratio 1st

2nd First Second Ratio 1st

2nd

4 1.36e−2 1.58e−2 0.9 8.89e−2 1.06e−1 0.8 2.28e+5 3.90e+5 0.6
8 6.87e−3 5.97e−3 1.2 4.68e−2 4.04e−2 1.2 4.44e+5 8.32e+5 0.5
16 3.57e−3 1.76e−3 2.0 2.46e−2 1.21e−2 2.0 8.21e+5 1.64e+6 0.5
32 1.83e−3 4.97e−4 3.7 1.27e−2 3.61e−3 3.5 1.62e+6 3.15e+6 0.5
64 9.51e−4 1.60e−4 6.0 6.64e−3 1.56e−3 4.3 2.94e+6 5.65e+6 0.5
128 5.09e−4 8.50e−5 6.0 3.65e−3 1.23e−3 3.0 5.09e+6 9.90e+6 0.5
256 2.88e−4 7.41e−5 3.9 2.24e−3 1.19e−3 1.9 8.85e+6 1.80e+7 0.5

152 Ch. 5 2nd-order time-stepping

5.4.2 Navier–Stokes equations
We report in this section the additional details on the Taylor–Green Vortex test case ad-
dressed with second-order time-schemes. The setting of the test case is given in Section 5.3.
As it has been done in Section 4.6.2 for the first-order time setting, we compare the computed
and exact kinetic energy by means of the following quantity (see (4.66))

rn(Ekin) := Ekin,h(v̂nh)− Ekin(tn)
Ekin(tn) , n = 0, . . . , N , (5.24)

where the exact kinetic energy Ekin(t) is defined as follows:

Ekin(t) := 1
2

∫

Ω
|u|22 = π2 exp(−4νt) . (5.25)

The results obtained for the different strategies are in Fig. 5.11. As in the first-order case,
the discretization errors are dominant: notice the difference between the results obtained
with the coarsest and finest time-step. On the contrary, differently than the first-order case,
the considered second-order time-schemes seem to slightly underestimate the energy (with
respect to the analytical formula (5.25)) on the long run. No sizable difference due to the
convection treatment is observed.

5.4 Detailed results 153

0 1 2 3 4
−10%

−5%

0

+5%

+10%

t

rn
(E

ki
n
)

(a) Explicit convection and monolithic.

0 1 2 3 4
−10%

−5%

0

+5%

+10%

t

rn
(E

ki
n
)

(b) Explicit convection and AC.

0 1 2 3 4
−10%

−5%

0

+5%

+10%

t

rn
(E

ki
n
)

(c) Linearized convection and monolithic.

0 1 2 3 4
−10%

−5%

0

+5%

+10%

t

rn
(E

ki
n
)

(d) Linearized convection and AC.

0 1 2 3 4
−10%

−5%

0

+5%

+10%

t

rn
(E

ki
n
)

(e) Picard and monolithic.

Figure 5.11 – 2D Navier–Stokes, Taylor–Green Vortex. Re ≈ 3. T = 4. Cartesian mesh
composed of 5122 cells. Ratio (in percentage) between the computed and reference kinetic
energy r(Ekin,h), see (5.24), for different combinations of coupling technique and convection
treatment. ∆t = T

8 , T
16 , T

32 , T
64 .

154 Ch. 5 2nd-order time-stepping

0 10 20 30 40
−10%

−5%

0

+5%

+10%

t

rn
(E

ki
n
)

(a) Linearized convection and monolithic.

0 10 20 30 40
−10%

−5%

0

+5%

+10%

t

rn
(E

ki
n
)

(b) Linearized convection and AC.

0 10 20 30 40
−10%

−5%

0

+5%

+10%

t

rn
(E

ki
n
)

(c) Picard and monolithic.

Figure 5.12 – 2D Navier–Stokes, Taylor–Green Vortex. Re ≈ 33. T = 40. Cartesian
mesh composed of 5122. Ratio (in percentage) between the computed and reference kinetic
energy r(Ekin,h), see (5.24), for different combinations of coupling technique and convection
treatment. ∆t = T

8 , T
16 , T

32 , T
64 .

Chapter 6

Conclusions and perspectives

The work presented in this Thesis allowed us to extend the face-based CDO (CDO-Fb)
discretization to the unsteady, incompressible Navier–Stokes equations (NSE). Special at-
tention has been paid to the treatment of the velocity-pressure coupling and to the treatment
of the nonlinear convection term in order to improve the numerical strategy in terms of accu-
racy and efficiency. Concerning the velocity-pressure coupling, the monolithic approach and
the Artificial Compressibility (AC) technique have been tested, whereas classical methods
such as the Picard algorithm, the linearization and the explicitation of the convection term
have been used to deal with the nonlinearity of the NSE.

The lowest-order discrete CDO-Fb setting and the related tools needed to build a steady
Navier–Stokes problem are introduced in Chapter 2. The starting point is the work of
Bonelle (2014, Section 8.3) and Bonelle and Ern (2015), whose gradient reconstruction op-
erator has been used (in the vector-valued form) in our setting. A divergence operator
satisfying an inf-sup condition and common to other lowest-other methods has been con-
sidered. The main contribution to the CDO-Fb setting is the development of two operators
discretizing, respectively, the scalar-valued advection and the vector-valued convection term.
Importantly, the convection operator is dissipative (and skew-symmetric under certain as-
sumptions) and satisfies the discrete counterparts of some well-known integration-by-parts
results.

Hinging on the aforementioned operators, the discrete version of the steady incompress-
ible Stokes and NSE have been built in Chapter 3. Test cases have been considered both in
two and three dimensions. The results have shown that the expected orders of convergence
in space were recovered for the discrete L2- and H1-like norms of the velocity and the L2-
like norm of the pressure (for the pressure, even slightly higher-than-expected rates were
sometimes measured). Simulations have been run on general and distorted meshes, and the
theoretical orders of convergence were observed even on these latter meshes.

Having validated the steady case, we have moved in Chapter 4 to the unsteady Stokes
and NSE. The performances of the monolithic approach and AC method strategies have
been compared on Stokes test cases and the results showed that AC is a reliable method
which ensures great efficiency while still providing good accuracy. As for the nonlinear
treatment, classical strategies (Picard algorithm, linearized and explicit convection) have
been compared on the well-known Taylor–Green Vortex test case. The expected orders of
convergence in time have been recovered for all the considered strategies, and the behavior of
the kinetic energy did not exhibit significant differences among all the considered strategies,
at least in the test cases at hand. An empirical study aiming at evaluating the stability of
the explicit treatment of the convection term has been performed, revealing a dependency
of the critical time-step value on the inverse of the Reynolds number.

156 Ch. 6 Conclusions and perspectives

The unsteady discrete setting has been extended in Chapter 5 by applying second-order
time schemes. In particular, a BDF discretization has been coupled with the monolithic
approach and a bootstrapping technique with the AC method. The same test cases as in
Chapter 4 have been considered. The results suggest that the second-order discretization is
more efficient, in the sense that it can reach a given error threshold with less computational
time than the first-order discretization. The AC method remained competitive with respect
to the monolithic approach even though the gap between the two coupling techniques is
less pronounced than for the first-order time-stepping scheme. These observations highlight
the importance of an optimal tuning of the user-defined parameter of the AC method. The
aforementioned convection treatments have been tested with second-order time-schemes,
and the stability of the explicit convection has been investigated, leading to similar results
as in the first-order case with, however, a reduced stability zone.

Let us now outline some perspectives to the work. Increasing the robustness of the
present schemes with respect to the Reynolds number constitutes a first axis of improvement.
We have already briefly discussed some techniques which could be considered to address the
pressure-robustness of the CDO-Fb discretization. In particular, one possibility would be
to modify the way in which the right-hand side of the discrete momentum equation is taken
into account by considering a reconstruction hinging on Raviart–Thomas FEM if a simplicial
mesh is considered. Other improvements can involve taking into consideration a variable
viscosity and a complete stress constraint tensor, and especially the symmetric gradient.

The difficulties noticed at high Reynolds numbers are also the symptoms of a numerical
setting which could need some improvements. We have chosen the Picard algorithm because
of its robustness, while we are aware that it may not be the most efficient method. The de-
velopment of a more adapted method, such as the Newton one or the Anderson acceleration,
should be tested. Moreover, the overall efficiency would benefit from linear solvers that are
more adapted to the NSE than those that we have considered (i.e. LU factorization or Jacobi-
preconditioned Conjugate Gradient on the augmented system). Such improvements may in-
clude adapted preconditioners, see for instance Benzi and Olshanskii (2006) and Olshanskii
and Benzi (2008), or even reliable and efficient iterative solvers for nonsymmetric matrices
(see Benzi et al. (2005)). It must be said that, however, the aforementioned improvements
are especially needed when dealing with the NSE. In fact, the performance measured for
the Stokes problem where a “friendlier” setting is recovered (i.e. symmetric definite positive
velocity-velocity block) gave satisfactory results when using the GKB algorithm.

The numerical tests (see especially Section 4.4) also confirmed that the AC method is
an efficient and accurate alternative to the monolithic approach. Further analyses of the
strategy may include a more thorough study on the influence of the user-defined parameter
involved in the method. It has been shown that, on the one hand, it can have a positive
impact on the accuracy but, at the same time, the performance highly depends on it (due to
a possibly ill-conditioned system). Ideally, one hopes to be able to provide the range in which
the optimal value lies or, even better, to let the code set it automatically. Furthermore, the
perturbation of the incompressibility constraint in the AC method deserves to be further
investigated. For one, in the CDO-Fb discretization, the skew-symmetry of the convection
operator requires the discrete velocity to be divergence-free, which is in general not the case
when the AC method is used. A first and straightforward fix is to consider the so-called
Temam’s trick. This could in particular ensure energy conservation, which is important
at high Reynolds numbers. Another issue is the use of a non divergence-free velocity to
transport a solute. Several authors warn against this lack of incompressibility (see for
instance Chippada et al. (1997), Wheeler et al. (2002), Olshanskii and Reusken (2004),
Linke (2009), and Galvin et al. (2012)). A way to overcome this problem could be to
consider a postprocessing in which a divergence-free velocity field is reconstructed starting

157

from the one recovered from the AC step.
Even though generic BCs are allowed, only Dirichlet ones were considered in the nu-

merical tests. Other types of BCs should be tested; among others, the symmetry and the
homogeneous Neumann (outflow) BCs will allow one to extend the method on more mean-
ingful applications. Possibly starting from classical test cases such as the backward facing
step, or the flow behind a cylinder or around a NACA profile, one will then move to in-
dustrial applications. Since most of the industrial applications involve turbulent regimes, a
turbulent model should be integrated into the system.

All the extensions to the CDO-Fb discussed in this Thesis have been fully integrated to
the open-source, industrial CFD software Code_Saturne, and they are available to the end-
user. NSE discretized by means of CDO-Fb schemes are currently being tested (in a setting
composed of the monolithic approach and the Picard algorithm) by engineers at EDF R&D
for solidification problems where the value of the Reynolds number is sufficiently low in
order to avoid the turbulent regime (besides the NSE, an energy equation with a Boussinesq
approximation and the transport of the solute concentration are considered). Ongoing
comparisons with, for example, the legacy prediction-correction method of Code_Saturne
hinging on a colocated Finite Volume scheme showed that the robustness and the accuracy
of CDO-Fb allows the user to choose larger time-steps and to achieve a better overall
performance. A prototype for CDO-Fb schemes with prediction-correction strategies is being
developed at EDF R&D. At this preliminary stage, the incremental formulation (which takes
into account the pressure in the prediction step as well) is considered and the correction
step is performed by means of a scalar-valued diffusion problem on the pressure. So far,
the CDO-Fb discretization is kept for the latter system. This means that the pressure is
hybrid as well. The face-based DoFs can be simply discarded when dealing with the vector-
valued velocity-related equation or one can think of using them by means of an appropriate
reconstructor. In this latter case, a lifting involving both face- and cell-based pressure DoFs
might be devised and used in the bilinear form ensuring the velocity-pressure coupling. If
discarding pressure DoFs can be accepted, different CDO schemes may be considered for
the Poisson problem for the pressure, namely, the cell-based and the vertex-based version
with additional cell-based DoFs. In any case, the projection method could be included in
the efficiency comparisons done between the monolith approach and the AC method.

Finally, in order to better evaluate the performance of the CDO-Fb schemes in the
context of the NSE, comparisons with other spatial polyhedral methods, both classical (for
instance, the colocated FV of Code_Saturne) and more recent schemes (lowest-order HHO
or Gradient Schemes) should be considered. A possible test playground could be the recent
FVCA VIII benchmark, which has been already considered for some of the numerical results
presented in Sections 3.4 and 3.5.

158 Ch. 6 Conclusions and perspectives

Acronyms

Re Reynolds number

AC Artificial Compressibility

ALU Augmented Lagrangian–Uzawa algorithm

BC Boundary conditions

BDF2 Backward Differentiation Formula - 2nd order

CDO Compatible Discrete Operator schemes

CFD Computational Fluid Dynamics

CR Crouzeix–Raviart finite element

dG Discontinuous Galerkin methods

DoF Degree of Freedom

FEM Finite Element Methods

FV Finite Volume schemes

GKB Golub–Kahan Bidiagonalization

HDG Hybridizable Discontinuous Galerkin methods

HFV Hybrid Finite Volume schemes

HHO Hybrid High-Order schemes

HMM Hybrid Mixed Mimetic family

MFD Mimetic Finite Difference schemes

MFV Mixed Finite Volume schemes

NSE Navier–Stokes equations

PDE Partial differential equation

TGV Taylor–Green Vortex

VEM Virtual Element Methods

160 Acronyms

Bibliography

Abbas, M., Ern, A., and Pignet, N. (2018). “Hybrid High-Order methods for the finite
deformations of hyperelastic materials”. Comput. Mech. 62.4, pp. 909–928 (cited on
p. 24).

Aghili, J. and Di Pietro, D. A. (2018). “An advection-robust Hybrid High-Order Method
for the Oseen problem”. J. Sci. Comput. 77.3, pp. 1310–1338 (cited on p. 23).

Aghili, J., Boyaval, S., and Di Pietro, D. A. (2015). “Hybridization of mixed high-order
methods on general meshes and application to the Stokes equations”. Comput. Methods
Appl. Math. 15.2, pp. 111–134 (cited on p. 23).

Albensoeder, S. and Kuhlmann, H. C. (2005). “Accurate three-dimensional lid-driven cavity
flow”. J. Comput. Phys. 206.2, pp. 536–558 (cited on p. 85).

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J. (2001). “A fully asynchronous
multifrontal solver using distributed dynamic scheduling”. SIAM J. Matrix Anal. Appl.
23.1, pp. 15–41 (cited on pp. 26, 75).

Andreianov, B., Bendahmane, M., Hubert, F., and Krell, S. (2012). “On 3D DDFV dis-
cretization of gradient and divergence operators. I. Meshing, operators and discrete du-
ality”. IMA J. Numer. Anal. 32.4, pp. 1574–1603 (cited on p. 22).

Andreianov, B., Bendahmane, M., and Hubert, F. (2013). “On 3D DDFV discretization of
gradient and divergence operators: Discrete functional analysis tools and applications to
degenerate parabolic problems”. Comput. Methods Appl. Math. 13.4, pp. 369–410 (cited
on p. 22).

Angeli, P.-E., Puscas, M.-A., Fauchet, G., and Cartalade, A. (2017). “FVCA8 benchmark for
the Stokes and Navier–Stokes equations with the TrioCFD code – Benchmark session”.
In: Finite Vol. Complex Appl. VIII; Methods Theor. Aspects. Vol. 199. Springer Proc.
Math. Stat. Lille: Springer International Publishing, pp. 181–202 (cited on pp. 77, 78,
80).

Angot, Ph. and Fabrie, P. (2012). “Convergence results for the vector penalty-projection
and two-step artificial compressibility methods”. Discret. Contin. Dyn. Syst. Series B
17.5, pp. 1383–1705 (cited on p. 32).

Angot, Ph., Caltagirone, J.-P., and Fabrie, P. (2008). “Vector Penalty-Projection Methods
for the Solution of Unsteady Incompressible Flows”. In: Finite Vol. Complex Appl. V;
Probl. Perspect. Ed. by R. Eymard and J.-M. Hérard. Vol. 1. Aussois: ISTE Ltd - J.
Wiley & Sons (UK, USA), pp. 169–176 (cited on p. 32).

Angot, Ph., Caltagirone, J.-P., and Fabrie, P. (2011). “A Spectacular Vector Penalty-
Projection Method for Darcy and Navier–Stokes Problems”. In: Finite Vol. Complex
Appl. VI; Probl. Perspect. Ed. by J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert.
Vol. 1. Springer Proc. Math. Stat. Praha: Springer-Verlag (Berlin), pp. 39–47 (cited on
p. 32).

162 Bibliography

Angot, Ph., Caltagirone, J.-P., and Fabrie, P. (2012). “A new fast method to compute saddle-
points in constrained optimization and applications”. Appl. Math. Lett. 25.3, pp. 245–
251 (cited on p. 32).

Antonietti, F. P., Beirão da Veiga, L., Mora, D., and Verani, M. (2014). “A stream Virtual
Element formulation of the Stokes problem on polygonal meshe”. SIAM J. Numer. Anal.
52.1, pp. 386–404 (cited on p. 23).

Archambeau, F., Méchitoua, N., and Sakiz, M. (2004). “Code Saturne: A Finite Volume
Code for Turbulent flows - Industrial Applications”. Int. J. Finite Vol. 1.1 (cited on
pp. 12, 75).

Arioli, M. (2013). “Generalized Golub–Kahan bidiagonalizationand stopping criteria”. SIAM
J. Matrix Anal. Appl. 34.2, pp. 571–592 (cited on pp. 24, 26, 68).

Arioli, M., Kruse, C., Ulrich, R., and Tardieu, N. (2018). An iterative generalized Golub-
Kahan algorithm for problems in structural mechanics. Tech. rep. August (cited on p. 26).

Arnold, D. N. (1982). “An interior penalty Finite Element Method with discontinuous Ele-
ments”. SIAM J. Numer. Anal. 19.4, pp. 742–760 (cited on p. 21).

Arnold, D. N., Brezzi, F., and Fortin, M. (1984). “A stable finite element for the Stokes
equations”. Calcolo 21.4, pp. 337–344 (cited on p. 20).

Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2001). “Unified analysis of
discontinuous Galerkin methods for elliptic problems”. SIAM J. Numer. Anal. 29.5,
pp. 1749–1779 (cited on p. 21).

Arrow, K. J., Hurwicz, L., and Uzawa, H. (1958). Studies in Linear and Nonlinear Program-
ming. Standford: Cambridge University Press (cited on pp. 24, 25, 68).

Ayuso de Dios, B., Lipnikov, K., and Manzini, G. (2016). “The nonconforming Virtual
Element Method”. ESAIM Math. Model. Numer. Anal. 50.3, pp. 879–904 (cited on p. 23).

Babuška, I. (1973). “The finite element method with Lagrangian multipliers”. Numer. Math.
20.3, pp. 179–192 (cited on p. 19).

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. (1997). “Efficient Management
of Parallelism in Object Oriented Numerical Software Libraries”. In: Modern Software
Tools in Scientific Computing. Ed. by E. Arge, A. M. Bruaset, and H. P. Langtangen.
Birkhäuser Press, pp. 163–202 (cited on p. 75).

Bassi, F. and Rebay, S. (1997). “A high-order accurate discontinuous finite element method
for the numerical solution of the compressible Navier-Stokes equations”. J. Comput.
Phys. 131.2, pp. 267–279 (cited on p. 21).

Bazilevs, Y. and Hughes, T. J. R. (2007). “Weak imposition of Dirichlet boundary conditions
in fluid mechanics”. Comput. Fluids 36.1, pp. 12–26 (cited on p. 51).

Becker, R., Capatina, D., Luce, R., and Trujillo, D. (2015). “Finite element formulation of
general boundary conditions for incompressible flows”. Comput. Methods Appl. Mech.
Eng. 295, pp. 240–267 (cited on p. 18).

Beirão da Veiga, L., Lipnikov, K., and Manzini, G. (2009a). “Convergence analysis of the
High-Order Mimetic Finite Difference method”. Numer. Math. 113.3, pp. 325–356 (cited
on p. 23).

Beirão da Veiga, L., Gyrya, V., Lipnikov, K., and Manzini, G. (2009b). “Mimetic Finite Dif-
ference method for the Stokes problem on polygonal meshes”. J. Comput. Phys. 228.19,
pp. 7215–7232 (cited on pp. 22, 48).

Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., and Russo, A.
(2013a). “Basic principles of Virtual Element Methods”. Math. Model. Methods Appl.
Sci. 23.1, pp. 199–214 (cited on p. 23).

Beirão da Veiga, L., Brezzi, F., and Marini, L. D. (2013b). “Virtual elements for linear
elasticity problems”. SIAM J. Numer. Anal. 51.2, pp. 794–812 (cited on p. 23).

Bibliography 163

Beirão da Veiga, L., Brezzi, F., Marini, L. D., Russo, A., Brezzi, F., and Manzini, G. (2014a).
“The Hitchhiker’s guide to the Virtual Element Method”. Math. Model. Methods Appl.
Sci. 24.8, pp. 1541–1573 (cited on p. 23).

Beirão da Veiga, L., Lipnikov, K., and Manzini, G. (2014b). The Mimetic Finite Difference
method for elliptic problems. Vol. 11. Springer (cited on p. 22).

Beirão da Veiga, L., Brezzi, F., Marini, L. D., and Russo, A. (2016a). “H (div) and H (curl)-
conforming Virtual Element Methods”. Numer. Math. 133.2, pp. 303–332 (cited on p. 23).

Beirão da Veiga, L., Brezzi, F., Marini, L. D., and Russo, A. (2016b). “Mixed Virtual Element
Methods for general second order elliptic problems on polygonal meshes”. ESAIM Math.
Model. Numer. Anal. 50.3, pp. 727–747 (cited on p. 23).

Beirão da Veiga, L., Lovadina, C., and Vacca, G. (2017). “Divergence free Virtual Elements
for the Stokes problem on polygonal meshes”. ESAIM Math. Model. Numer. Anal. 51.2,
pp. 509–535 (cited on p. 23).

Beirão da Veiga, L., Lovadina, C., and Vacca, G. (2018). “Virtual Elements for the Navier-
Stokes problem on polygonal meshes”. SIAM J. Numer. Anal. 56.3, pp. 1210–1242 (cited
on p. 23).

Benzi, M. and Olshanskii, M. A. (2006). “An augmented Lagrangian-based approach to the
Oseen problem”. SIAM J. Sci. Comput. 28.6, pp. 2095–2113 (cited on pp. 9, 26, 156).

Benzi, M., Golub, G. H., and Liesen, J. (2005). “Numerical solution of saddle point prob-
lems”. Acta Numer. 14, pp. 1–137 (cited on pp. 9, 25, 26, 68, 156).

Benzi, M., Olshanskii, M. A., and Wang, Z. (2011). “Modified augmented Lagrangian pre-
conditioners for the incompressible Navier–Stokes equations”. Int. J. Numer. Methods
Fluids 66, pp. 486–508 (cited on pp. 25, 26, 68).

Bercovier, M. and Engelman, M. S. (1979). “A finite element for the numerical solution of
viscous incompressible flows”. J. Comput. Phys. 30.2, pp. 181–201 (cited on p. 76).

Blanc, Ph. (1999). “Error estimate for a finite volume scheme on a MAC mesh for the
Stokes problem”. In: Finite Vol. Complex Appl. II. Hermes Science Publications Paris,
pp. 117–124 (cited on p. 21).

Boffi, D., Brezzi, F., and Fortin, M. (2013). Mixed finite element methods and applications.
Vol. 44. Springer series in Computational Mathemathics. Heidelberg: Springer (cited on
pp. 5, 15, 20).

Bonelle, J. (2014). “Compatible Discrete Operator schemes on polyhedral meshes for elliptic
and Stokes equations”. PhD thesis. Université Paris-Est (cited on pp. 4–7, 14–16, 22, 34,
40, 43, 44, 46, 48, 65, 155).

Bonelle, J. and Ern, A. (2014). “Analysis of Compatible Discrete Operator schemes for ellip-
tic problems on polyhedral meshes”. ESAIM Math. Model. Numer. Anal. 48.2, pp. 553–
581 (cited on pp. 4, 5, 14, 22, 40, 46, 48).

Bonelle, J. and Ern, A. (2015). “Analysis of Compatible Discrete Operator Schemes for the
Stokes Equations on Polyhedral Meshes”. IMA J. Numer. Anal. 35.4, pp. 1672–1697
(cited on pp. 4, 5, 14, 15, 155).

Bonelle, J., Di Pietro, D. A., and Ern, A. (2015). “Low-order reconstruction operators on
polyhedral meshes: application to compatible discrete operator schemes”. Comput. Aided
Geom. Des. 35, pp. 27–41 (cited on pp. 16, 43).

Bonelle, J., Ern, A., and Milani, R. (2020). “Compatible Discrete Operator schemes for the
steady incompressible Stokes and Navier–Stokes equations”. In: Finite Vol. Complex
Appl. IX; Methods Theor. Aspects. Ed. by R. Klöfkorn, E. Keilegavlen, F. A. Radu,
and J. Fuhrmann. Vol. 323. Springer Proc. Math. Stat. Bergen: Springer International
Publishing, pp. 93–101 (cited on pp. 7, 34, 62, 78, 80).

164 Bibliography

Bossavit, A. (1988). “Whitney forms: A class of finite elements for three-dimensional com-
putations in electromagnetism”. IEE Proc. A Phys. Sci. Meas. Instrumentation. Manag.
Educ. Rev. 135, pp. 493–500 (cited on pp. 4, 14).

Botella, O. and Peyret, R. (1998). “Benchmark spectral results on the lid-driven cavity
flow”. Comput. Fluids 27.4, pp. 421–433 (cited on pp. 84, 86–91).

Botti, L., Di Pietro, D. A., and Droniou, J. (2019). “A Hybrid High-Order method for the
incompressible Navier–Stokes equations based on Temam’s device”. J. Comput. Phys.
376, pp. 786–816 (cited on pp. 24, 58, 85).

Boyer, F., Krell, S., and Nabet, F. (2015). “Inf-Sup stability of the discrete duality finite
volume method for the 2D Stokes problem”. Math. Comput. 84.296, pp. 2705–2742 (cited
on p. 23).

Boyer, F., Krell, S., and Nabet, F. (2017). “Benchmark Session: The 2D Discrete Duality
Finite Volume method”. In: Finite Vol. Complex Appl. VIII; Methods Theor. Aspects.
Vol. 199. Springer Proc. Math. Stat. Lille: Springer International Publishing, pp. 181–
202 (cited on pp. 77, 78).

Branin, F. H. (1966). The algebraic-topological basis for network analogies and the vector
calculus (cited on pp. 4, 14).

Brezzi, F. (1974). “On the existence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers”. RAIRO 8, pp. 129–151 (cited on p. 19).

Brezzi, F., Marini, L. D., and Süli, E. (2004). “Discontinuous Galerkin methods for first-
order hyperbolic problems”.Math. Model. Methods Appl. Sci. 14.12, pp. 1893–1903 (cited
on p. 51).

Brezzi, F., Lipnikov, K., and Shashkov, M. (2005a). “Convergence of Mimetic Finite Dif-
ference Method for Diffusion Problems on Polyhedral Meshes”. SIAM J. Numer. Anal.
43.5, pp. 1872–1896 (cited on p. 22).

Brezzi, F., Lipnikov, K., and Simoncini, V. (2005b). “A family of Mimetic Finite Difference
methods on polygonal and polyhedral meshes”. Math. Model. Methods Appl. Sci. 15.10,
pp. 1533–1551 (cited on p. 22).

Brezzi, F., Buffa, A., and Lipnikov, K. (2009). “Mimetic Finite Differences for elliptic prob-
lems”. ESAIM Math. Model. Numer. Anal. 43, pp. 277–295 (cited on pp. 22, 39, 40).

Brezzi, F., Falk, R. S., and Marini, L. D. (2014). “Basic principles of mixed Virtual Element
Methods”. ESAIM Math. Model. Numer. Anal. 48.4, pp. 1227–1240 (cited on p. 23).

Bruneau, C.-H. and Saad, M. (2006). “The 2D lid-driven cavity problem revisited”. Comput.
Fluids 35, pp. 326–348 (cited on pp. 84, 86, 87, 90, 91).

Burggraf, O. R. (1966). “Analytical and numerical studies of the structure of steady sepa-
rated flows”. J. Fluid Mech. 24.1, pp. 113–151 (cited on p. 81).

Burman, E. (2012). “A penalty-free nonsymmetric Nitsche-type method for the weak im-
position of boundary conditions”. SIAM J. Numer. Anal. 50.4, pp. 1959–1981 (cited on
p. 64).

Cancès, C. and Omnes, P., eds. (2017). Finite Volumes for Complex Applications VIII -
Methods and Theoretical Aspects. FVCA 8, International Symposium. Vol. 199. Springer
Proc. Math. Stat. Lille, France: Springer International Publishing (cited on pp. 75–77).

Cangiani, A., Gyrya, V., and Manzini, G. (2016). “The nonconforming Virtual Element
Method for the Stokes equations”. SIAM J. Numer. Anal. 54.6, pp. 3411–3435 (cited on
p. 23).

Cantin, P. (2016). “Approximation of scalar and vector transport problems on polyhedral
meshes”. PhD thesis. Université Paris-Est (cited on pp. 4, 5, 14, 15, 40).

Cantin, P. and Ern, A. (2016). “Vertex-based Compatible Discrete Operator schemes on
polyhedral meshes for advection-diffusion equations”. Comput. Methods Appl. Math.
16.2, pp. 187–212 (cited on pp. 4, 5, 14, 15).

Bibliography 165

Cantin, P. and Ern, A. (2017). “An edge-based scheme on polyhedral meshes for vector
advection-reaction equations”. ESAIM Math. Model. Numer. Anal. 51.5, pp. 1561–1581
(cited on pp. 4, 5, 14, 15).

Cantin, P., Bonelle, J., Burman, E., and Ern, A. (2016). “A vertex-based scheme on poly-
hedral meshes for advection–reaction equations with sub-mesh stabilization”. Comput.
Math. with Appl. 72.9, pp. 2057–2071 (cited on pp. 4, 5, 14, 15).

Cazemier, W., Verstappen, R. W., and Veldman, A. E. (1998). “Proper orthogonal decompo-
sition and low-dimensional models for driven cavity flows”. Phys. Fluids 10.7, pp. 1685–
1699 (cited on p. 84).

Charnyi, S., Heister, T., Olshanskii, M. A., and Rebholz, L. G. (2017). “On conservation laws
of Navier–Stokes Galerkin discretizations”. J. Comput. Phys. 337, pp. 289–308 (cited on
pp. 18, 58, 132).

Cheng, H. M. and Droniou, J. (2019). “An HMM–ELLAM scheme on generic polygonal
meshes for miscible incompressible flows in porous media”. J. Pet. Sci. Eng. 172, pp. 707–
723 (cited on p. 22).

Chénier, E., Eymard, R., Gallouët, T., and Herbin, R. (2015). “An extension of the MAC
scheme to locally refined meshes: convergence analysis for the full tensor time-dependent
Navier–Stokes equations”. Calcolo 52.1, pp. 69–107 (cited on p. 21).

Chippada, S., Dawson, C. N., Martinez, M. L., and Wheeler, M. F. (1997). “A Projection
Method for Constructing A Mass Conservative Velocity Field”. Comput. Methods Appl.
Mech. Eng. 157, pp. 1–10 (cited on pp. 9, 156).

Chorin, A. J. (1967). “A Numerical Method for Solving Incompressible Viscous Flow Prob-
lems”. J. Comput. Phys. 2, pp. 12–26 (cited on p. 31).

Chorin, A. J. (1968). “Numerical Solution of the Navier–Stokes Equations”. Math. Comput.
22.104, pp. 745–762 (cited on p. 28).

Chorin, A. J. (1969). “On the convergence of discrete approximations to the Navier–/Stokes
equations”. Math. Comput. 23.106, pp. 341–353 (cited on p. 28).

Ciarlet, Ph. G. (1978). The Finite Element Method for Elliptic Problems. Amsterdam: North
Holland (cited on p. 40).

Cockburn, B., Dong, B., Guzmán, J., Restelli, M., and Sacco, R. (2009a). “A hybridizable
discontinuous Galerkin method for steady-state convection-diffusion-reaction problems”.
SIAM J. Sci. Comput. 31.5, pp. 3827–3846 (cited on p. 23).

Cockburn, B., Gopalakrishnan, J., and Lazarov, R. (2009b). “Unified hybridization of dis-
continuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic
problems”. SIAM J. Numer. Anal. 47.2, pp. 1319–1365 (cited on p. 23).

Cockburn, B., Nguyen, N. C., and Peraire, J. (2010). “A Comparison of HDG Methods for
Stokes Flow”. J. Sci. Comput. 45, pp. 215–237 (cited on p. 23).

Cockburn, B., Di Pietro, D. A., and Ern, A. (2016). “Bridging the Hybrid High-Order and
Hybridizable Discontinuous Galerkin methods”. ESAIM Math. Model. Numer. Anal.
Polyhedral discretization for PDE 50.3, pp. 635–650 (cited on pp. 23, 24).

Crouzeix, M. and Raviart, P.-A. (1973). “Conforming and Nongonforming Finite Element
Methods for Solving the Stationary Stokes Equations I”. RAIRO 7, pp. 33–75 (cited on
pp. 20, 22).

Delcourte, S. (2007). “Développement de méthodes de volumes finis pour la mécanique des
fluides”. French. PhD thesis. Université Paul Sabatier (cited on p. 23).

Delcourte, S. and Omnes, P. (2017). “Numerical results for a Discrete Duality Finite Vol-
ume discretization applied to the Navier–Stokes equations”. In: Finite Vol. Complex
Appl. VIII; Methods Theor. Aspects. Vol. 199. Springer Proc. Math. Stat. Lille: Springer
International Publishing, pp. 141–161 (cited on pp. 76, 78).

166 Bibliography

Di Pietro, D. A. and Ern, A. (2011). Mathematical Aspects of Discontinuous Galerkin Meth-
ods. Ed. by G. Allaire and J. Garnier. Vol. 69. Mathématiques & applications. Springer
Science & Business Media, p. 383 (cited on pp. 21, 39, 40, 50–54).

Di Pietro, D. A. and Ern, A. (2015). “A Hybrid High-Order locking-free method for linear
elasticity on general meshes”. Comput. Methods Appl. Mech. Eng. 283, pp. 1–21 (cited
on pp. 6, 16, 23, 24, 39).

Di Pietro, D. A. and Ern, A. (2017). “Arbitrary-order mixed methods for heterogeneous
anisotropic diffusion on general meshes”. IMA J. Numer. Anal. 37.1, pp. 40–63 (cited
on p. 23).

Di Pietro, D. A. and Krell, S. (2018). “A Hybrid High-Order Method for the Steady Incom-
pressible Navier–Stokes Problem”. J. Sci. Comput. 74.3, pp. 1677–1705 (cited on pp. 24,
59).

Di Pietro, D. A. and Lemaire, S. (2015). “An extension of the Crouzeix-Raviart space
to general meshes with application to quasi-incompressible linear elasticity and Stokes
flow”. Math. Comput. 84.291, pp. 1–31 (cited on pp. 22, 44).

Di Pietro, D. A., Ern, A., and Lemaire, S. (2014). “An Arbitrary-Order and Compact-
Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction
Operators”. Comput. Methods Appl. Math. 14.4, pp. 461–472 (cited on pp. 6, 16, 23, 24,
44, 60).

Di Pietro, D. A., Droniou, J., and Ern, A. (2015). “A discontinuous-skeletal method for
advection-diffusion-reaction on general meshes”. SIAM J. Numer. Anal. 53.5, pp. 2135–
2157 (cited on pp. 24, 51, 53, 58).

Di Pietro, D. A., Ern, A., Linke, A., and Schieweck, F. (2016). “A discontinuous skeletal
method for the viscosity-dependent Stokes problem”. Comput. Methods Appl. Mech. Eng.
306, pp. 175–195 (cited on pp. 8, 24, 48, 49, 63, 64).

Di Pietro, D. A., Droniou, J., and Manzini, G. (2018). “Discontinuous skeletal gradient
discretisation methods on polytopal meshes”. J. Comput. Phys. 355 (cited on p. 24).

Domelevo, K. and Omnes, P. (2005). “A finite volume method for the Laplace equation on
almost arbitrary two-dimensional grids”. Math. Model. Numer. Anal. 39.6, pp. 1203–
1249 (cited on p. 22).

Droniou, J. and Eymard, R. (2006). “A mixed finite volume scheme for anisotropic diffusion
problems on any grid”. Numer. Math. 105.1, pp. 35–71 (cited on pp. 22, 44).

Droniou, J. and Eymard, R. (2009). “Study of the mixed finite volume method for Stokes
and Navier–Stokes equations”. Numer. Methods Partial Differ. Equ. 25.1, pp. 137–171
(cited on pp. 22, 58).

Droniou, J. and Eymard, R. (2017). “Benchmark: Two hybrid mimetic mixed schemes for
the lid-driven cavity”. In: Finite Vol. Complex Appl. VIII; Methods Theor. Aspects.
Vol. 199. Springer Proc. Math. Stat. Lille: Springer International Publishing, pp. 107–
124 (cited on p. 58).

Droniou, J., Eymard, R., Gallouët, T., and Herbin, R. (2010). “A unified approach to
Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods”.
Math. Model. Methods Appl. Sci. 20.2, pp. 265–295 (cited on p. 22).

Droniou, J., Eymard, R., Gallouët, T., and Herbin, R. (2013). “Gradient schemes: a generic
framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic
equations”. Math. Model. Methods Appl. Sci. 23.13, pp. 2395–2432 (cited on p. 22).

Droniou, J., Eymard, R., and Feron, P. (2015). “Gradient Schemes for Stokes problem”.
IMA J. Numer. Anal. 36.4, pp. 1636–1669 (cited on pp. 22, 48).

Droniou, J., Eymard, R., Gallouët, T., Guichard, C., and Herbin, R. (2018). The Gradient
Discretisation method. Vol. 82. Springer International Publishing, p. 497 (cited on p. 22).

Bibliography 167

Elman, H. C., Silvester, D. J., and Wathen, A. J. (2014). Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Oxford University Press,
USA (cited on p. 25).

Engelman, M. S., Strang, G., and Bathe, K.-J. (1981). “The application of quasi-Newton
methods in fluid mechanics”. Int. J. Numer. Methods Eng. 17.5, pp. 707–718 (cited on
p. 27).

Ern, A. and Guermond, J.-L. (2004). Theory and Practice of Finite Element. Vol. 159.
Applied mathematics sciences. New York, NY: Springer Science & Business Media (cit-
ed on pp. 19, 20, 28, 39, 54, 64, 67, 75, 94).

Ern, A. and Guermond, J.-L. (2006a). “Discontinuous Galerkin methods for Friedrichs’
systems. Part I. General theory”. SIAM J. Numer. Anal. 44.2, pp. 753–778 (cited on
pp. 21, 53).

Ern, A. and Guermond, J.-L. (2006b). “Discontinuous Galerkin methods for Friedrichs’
systems. Part II. Second-order elliptic PDEs”. SIAM J. Numer. Anal. 44.6, pp. 2363–
2388 (cited on p. 21).

Ern, A. and Guermond, J.-L. (2008). “Discontinuous Galerkin methods for Friedrichs’ sys-
tems. Pert III. Multifield theories with partial coercivity”. SIAM J. Numer. Anal. 46.2,
pp. 776–804 (cited on p. 21).

Ern, A. and Guermond, J.-L. (2020). Finite Elements. Volume III: First-Order and Time-
Dependent PDEs. (in press). Springer (cited on pp. 31, 100, 133, 134).

Erturk, E., Corke, T. C., and Gökçöl, C. (2005). “Numerical solutions of 2-D steady incom-
pressible driven cavity flow at high Reynolds numbers”. Int. J. Numer. Methods Fluids
48.7, pp. 747–774 (cited on p. 84).

Eymard, R., Gallouët, T., and Herbin, R. (2000). “Finite Volume Methods”. In: Solution of
Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3). Ed. by J. Lions
and Ph. Ciarlet. Vol. 7. Handb. Numer. Anal. Elsevier, pp. 713–1020 (cited on p. 21).

Eymard, R., Herbin, R., and Latché, J. (2006). “On a stabilized colocated Finite Volume
scheme for the Stokes problem”. ESAIM Math. Model. Numer. Anal. EDP Sciences 40.3,
pp. 501–527 (cited on p. 21).

Eymard, R., Herbin, R., and Latché, J. (2007). “Convergence analysis of a colocated finite
volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D
meshes”. SIAM J. Numer. Anal. 45.1, pp. 1–36 (cited on p. 21).

Eymard, R., Gallouët, T., and Herbin, R. (2010). “Discretisation of heterogeneous and an-
isotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using
stabilisation and hybrid interfaces”. IMA J. Numer. Anal. 30.4, pp. 1009–1043 (cited on
pp. 6, 16, 22, 39, 44, 46, 59).

Eymard, R., Feron, P., and Guichard, C. (2018). “Family of convergent numerical schemes
for the incompressible Navier–Stokes equations”. Math. Comput. Simul. 144, pp. 196–
218 (cited on pp. 22, 58, 59).

Feron, P. (2016). “Gradient Schemes for some elliptic and parabolic, linear and non-linear
problems”. PhD thesis. université Paris-Est, p. 132 (cited on p. 22).

Fořt, J., Fürst, J., Halama, J., Herbin, R., and Hubert, F., eds. (2011). Finite Volumes for
Complex Applications VI - Problems & Perspectives. FVCA 6, International Symposium.
Vol. 4. Springer Proc. Math. Stat. Prague, Czech Republic: Springer Science & Business
Media (cited on p. 72).

Fortin, M. and Glowinski, R. (1983). Augmented Lagrangian methods: applications to the
numerical solution of boundary-value problems. Vol. 15. Studies in mathematics and its
applications. Amsterdam: Elsevier, p. 340 (cited on pp. 24, 26, 33).

168 Bibliography

Freund, J. and Stenberg, R. (1995). “On weakly imposed boundary conditions for second
order problems”. In: Proc. Ninth Int. Conf. Finite Elem. Fluids. Venice, pp. 327–336
(cited on pp. 64, 71).

Gallouët, T., Herbin, R., Latché, J.-C., and Mallem, K. (2016). “Convergence of the Marker-
and-Cell scheme for the steady-state incompressible Navier–Stokes equations on non-
uniform grids”. Found. Comput. Math. 18.1, pp. 249–289 (cited on p. 21).

Galvin, K. J., Linke, A., Rebholz, L. G., and Wilson, N. E. (2012). “Stabilizing poor mass
conservation in incompressible flow problems with large irrotational forcing and applica-
tion to thermal convection”. Comput. Methods Appl. Mech. Eng. 237-240, pp. 166–176
(cited on pp. 9, 33, 156).

Gatica, G. N., Munar, M., and Sequeira, F. A. (2018). “A mixed Virtual Element Method
for the Navier–Stokes equations”. Math. Model. Methods Appl. Sci. 28.14, pp. 2863–2904
(cited on p. 23).

Ghia, U., Ghia, K. N., and Shin, C. T. (1982). “High-Re solutions for incompressible flow
using the Navier–Stokes equations and a multigrid method”. J. Comput. Phys. 48.3,
pp. 387–411 (cited on pp. 84, 86–88, 91).

Girault, V. and Raviart, P.-A. (1986). Finite Element Methods for Navier–Stokes Equations:
Theory and Algorithms. Vol. 5. Berlin: Springer-Verlag (cited on p. 20).

Glowinski, R. and Le Tallec, P. (1989). Augmented Lagrangian and operator-splitting meth-
ods in nonlinear mechanics. Vol. 9. Studies in applied mathematics. Philadelphia, PA:
SIAM (cited on pp. 25, 26, 68).

Goda, K. (1979). “A multistep technique with implicit difference schemes for calculating
two- or three-dimensional cavity flows”. J. Comput. Phys. 30.1, pp. 76–95 (cited on
p. 29).

Golub, G. H. and Kahan, W. (1965). “Calculating the singular values and pseudo-inverse of
a matrix”. SIAM J. Numer. Anal. 2.2, pp. 205–224 (cited on p. 26).

Goudon, T., Krell, S., and Lissoni, G. (2019). “DDFV method for Navier–Stokes problem
with outflow boundary conditions”. Numer. Math. 142.1, pp. 55–102 (cited on p. 23).

Gresho, Ph. M. (1990). “On the theory of semi-implicit projection methods for viscous
incompressible flow and its implementation via a finite element method that also intro-
duces a nearly consistent mass matrix. Part 1: Theory”. Int. J. Numer. Methods Fluids
11.5, pp. 587–620 (cited on p. 28).

Guermond, J.-L. and Minev, P. D. (2015). “High-order time stepping for the incompressible
Navier–Stokes equations”. SIAM J. Sci. Comput. 37.6, A2656–A2681 (cited on pp. 8,
31, 32, 35, 100, 105, 134–136).

Guermond, J.-L. and Minev, P. D. (2017). “High-order time stepping for the Navier–Stokes
equations with minimal computational complexity”. J. Comput. Appl. Math. 310, pp. 92–
103 (cited on pp. 32, 33).

Guermond, J.-L. and Shen, J. (2003). “Velocity-correction projection methods for incom-
pressible flows”. SIAM J. Numer. Anal. 41.1, pp. 112–134 (cited on p. 29).

Guermond, J.-L., Minev, P. D., and Shen, J. (2006). “An overview of projection methods
for incompressible flows”. SIAM J. Sci. Comput. 195, pp. 6011–6045 (cited on pp. 28,
29).

Gyrya, V. and Lipnikov, K. (2008). “High-Order Mimetic Finite Difference Method for
diffusion problems on polygonal meshes”. J. Comput. Phys. 227.20, pp. 8841–8854 (cit-
ed on p. 23).

Harlow, F. H. and Welch, E. J. (1965). “Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface”. Phys. Fluids 8.12, pp. 2182–2189 (cited
on p. 21).

Bibliography 169

Hermeline, F. (1998). “Une méhode de volumes finis pour les équations elliptiques du second
ordre”. French. Comptes Rendus l’Academie des Sci. - Ser. I Math. 326.12, pp. 1433–
1436 (cited on p. 22).

Hermeline, F. (2000). “A Finite Volume Method for the Approximation of Diffusion Oper-
ators on Distorted Meshes”. J. Comput. Phys. 160.2, pp. 481–499 (cited on p. 22).

Hestenes, M. R. (1969). “Multiplier and Gradient Methods”. J. Optim. Theory Appl. 4.5,
pp. 303–320 (cited on pp. 24, 25, 33, 68).

Heywood, J. G. and Rannacher, R. (1990). “Finite-Element approximation of the nonsta-
tionary Navier–Stokes problem. IV. Error analysis for second-order time discretization”.
SIAM J. Numer. Anal. 27.2, pp. 353–384 (cited on p. 132).

Hyman, J. M. and Shashkov, M. (1997). “Natural discretizations for the divergence, gradient,
and curl on logically rectangular grids”. Components 33.4, pp. 81–104 (cited on p. 22).

Hyman, J. M., Morel, J. E., Shashkov, M., and Steinberg, S. (2002). “Mimetic finite dif-
ference methods for diffusion equations”. Comput. Geosci. 6.3-4, pp. 333–352 (cited on
p. 22).

John, V., Linke, A., Merdon, C., Neilan, M., and Rebholz, L. G. (2017). “On the divergence
constraint in mixed finite element methods for incompressible flows”. SIAM Rev. 59.3,
pp. 492–544 (cited on pp. 8, 64).

Juntunen, M. and Stenberg, R. (2009). “Nitsche’s method for general boundary conditions”.
Math. Comput. 78.267, pp. 1353–1374 (cited on p. 64).

Kim, J. and Moin, P. (1985). “Application of a Fractional-Step Method to Incompressible
Navier–Stokes Equations”. J. Comput. Phys. 59, pp. 308–323 (cited on pp. 29, 132).

Krell, S. (2011a). “Stabilized DDFV schemes for Stokes problem with variable viscosity on
general 2D meshes”. Numer. Methods Partial Differ. Equ. 27.6, pp. 1666–1706 (cited on
p. 23).

Krell, S. (2011b). “Stabilized DDFV Schemes For The Incompressible Navier-Stokes Equa-
tions”. In: Finite Vol. Complex Appl. VI Probl. Perspect. Ed. by J. Fořt, J. Fürst,
J. Halama, R. Herbin, and F. Hubert. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 605–612 (cited on p. 23).

Krell, S. and Manzini, G. (2012). “The Discrete Duality Finite Volume method for
Stokes equations on three-dimensional polyhedral meshes”. SIAM J. Numer. Anal. 50.2,
pp. 808–837 (cited on p. 23).

Kron, G. (1945). “Numerical solution of ordinary and Partial Differential Equations by
means of equivalent circuits”. J. Appl. Phys. 16.3, pp. 172–186 (cited on pp. 4, 14).

Kron, G. (1953). “A set of principles to interconnect the solutions of physical systems”. J.
Appl. Phys. 24 (cited on pp. 4, 14).

Kuznetsov, Yu., Lipnikov, K., and Shashkov, M. (2004). “The Mimetic Finite Difference
method on polygonal meshes for diffusion-type problems”. Comput. Geosci. 8.4, pp. 301–
324 (cited on p. 22).

Ladyzhenskaya, O. A. (1969). The mathematical theory of viscous incompressible flow. Rus-
sian. Vol. 2. New York, NY: Gordon and Breach (cited on p. 31).

Layton, W., Manica, C. C., Neda, M., Olshanskii, M. A., and Rebholz, L. G. (2009). “On
the accuracy of the rotation form in simulations of the Navier–Stokes equations”. J.
Comput. Phys. 228.9, pp. 3433–3447 (cited on p. 33).

Lederer, Ph. L., Linke, A., Merdon, C., and Schöberl, J. (2017). “Divergence-free recon-
struction operators for pressure-robust Stokes discretizations with continuous pressure
finite elements”. SIAM J. Numer. Anal. 55.5, pp. 1291–1314 (cited on pp. 8, 64).

Lesaint, P. and Raviart, P.-A. (1974). “On a Finite Element Method for solving the neutron
transport equation”. In: Math. Asp. Finite Elem. Partial Differ. Equations. Vol. 33.
New York: Academic Press, pp. 89–123 (cited on p. 21).

170 Bibliography

Linke, A. (2009). “Collision in a cross-shaped domain – A steady 2D Navier–Stokes example
demonstrating the importance of mass conservation in CFD”. Comput. Methods Appl.
Mech. Eng. 198.41-44, pp. 3278–3286 (cited on pp. 9, 156).

Linke, A. (2014). “On the role of the Helmholtz decomposition in mixed methods for in-
compressible flows and a new variational crime”. Comput. Methods Appl. Mech. Engrg.
268, pp. 782–800 (cited on pp. 8, 64).

Lipnikov, K. and Manzini, G. (2014). “A High-Order Mimetic method on unstructured
polyhedral meshes for the diffusion equation”. J. Comput. Phys. 272, pp. 360–385 (cited
on p. 23).

Nguyen, N. C., Peraire, J., and Cockburn, B. (2009). “An implicit high-order hybridizable
discontinuous Galerkin method for nonlinear convection-diffusion equations”. J. Comput.
Phys. 228.23, pp. 8841–8855 (cited on p. 23).

Nguyen, N. C., Peraire, J., and Cockburn, B. (2011). “An implicit high-order hybridiz-
able discontinuous Galerkin method for the incompressible Navier–Stokes equations”. J.
Comput. Phys. 230.4, pp. 1147–1170 (cited on p. 23).

Nicolaides, R. A. (1989). “Flow discretization by complementary volume techniques”. In:
9th Comput. Fluid Dyn. Conf. 1989. American Institute of Aeronautics and Astronautics
Inc (cited on p. 21).

Nicolaides, R. A. (1992). “Analysis and convergence of the MAC scheme I. The linear prob-
lem”. SIAM J. Numer. Anal. 29.6, pp. 1579–1591 (cited on p. 21).

Nicolaides, R. A. and Wu, X. (1996). “Analysis and convergence of the MAC scheme II.
Navier-Stokes equations”. Math. Comput. 65.213, pp. 29–44 (cited on p. 21).

Nitsche, J. (1971). “Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei
Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind”. German.
Abhandlungen aus dem Math. Semin. der Univ. Hambg. 36.1, pp. 9–15 (cited on pp. 64,
71).

Notay, Y. (2010). “An aggregation-based algebraic multigrid method”. Electron. Trans. Nu-
mer. Anal. 37, pp. 123–146 (cited on pp. 79, 106).

Olshanskii, M. A. (2002). “A low order Galerkin finite element method for the Navier–Stokes
equations of steady incompressible flow: a stabilization issue and iterative methods”.
Comput. Methods Appl. Mech. Eng. 191, pp. 5515–5536 (cited on p. 33).

Olshanskii, M. A. and Benzi, M. (2008). “An Augmented Lagrangian approach to linearized
problem in hydrodynamic stability”. SIAM J. Sci. Comput. 30.3, pp. 1459–1473 (cited
on pp. 9, 26, 33, 156).

Olshanskii, M. A. and Reusken, A. (2004). “Grad-Div stablilization for Stokes equations”.
Math. Comput. 73.248, pp. 1699–1718 (cited on pp. 9, 33, 156).

Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. Ed. by J. W. Minkowycs
and E. M. Sparrow. Vol. 80. Computational Methods in Mechanics and Thermal Sciences.
Mc Graw Hill (cited on p. 21).

Poliashenko, M. and Aidun, C. K. (1995). “A direct method for computation of simple
bifurcations”. J. Comput. Phys. 121.2, pp. 246–260 (cited on p. 84).

Rannacher, R. and Turek, S. (1992). “Simple nonconforming quadrilateral Stokes element”.
Numer. Methods Partial Differ. Equ. 8.2, pp. 97–111 (cited on p. 21).

Raviart, P.-A. and Thomas, J.-M. (1977). “Primal Hybrid Finite Element Methods for 2nd
order elliptic equations”. Math. Comput. 31.138, pp. 391–413 (cited on p. 22).

Reed, W. H. and Hill, T. R. (1973). Trinagular mesh methods for the neutron trnasport
equation. Tech. rep. Los Alamos, NM: Los Alamos Scientific Laboratory (cited on p. 21).

Saad, Y. (1996). Iterative Methods for Sparse Linear Systems. Boston, MA: PWS Publishing
(cited on pp. 9, 25).

Bibliography 171

Schieweck, F. (2008). “On the role of boundary conditions for CIP stabilization of higher
order finite elements”. Electron. Trans. Numeral. Anal. 32, pp. 1–16 (cited on p. 51).

Shashkov, M. and Steinberg, S. (1995). Support-Operator Finite-Difference Algorithms for
General Elliptic Problems (cited on p. 22).

Shen, J. (1992a). “On error estimates of projection methods for Navier–Stokes equations.
First-order schemes”. SIAM J. Numer. Anal. 29.1, pp. 57–77 (cited on p. 29).

Shen, J. (1992b). “On error estimates of some higher order projection and penalty-projection
methods for Navier–Stokes equations”. Numer. Math. 62, pp. 49–74 (cited on p. 29).

Shen, J. (1993). “A Remark on the Projection-3 Method”. Int. J. Numer. Methods Fluids
253.16, pp. 249–253 (cited on p. 29).

Shen, J. (1995). “On error estimates of the Penalty method for unsteady Navier–Stokes
equations”. SIAM J. Numer. Anal. 32.2, pp. 386–403 (cited on pp. 30, 31).

Shin, D. and Strikwerda, J. C. (1997). “Inf-sup conditions for finite-difference approxima-
tions of the stokes equations”. J. Aust. Math. Soc. Ser. B-Applied Math. 39.1, pp. 121–
134 (cited on p. 21).

Taylor, C. and Hood, P. (1973). “A numerical solution of the Navier–Stokes equations using
the finite element technique”. Comput. Fluids 1.1, pp. 73–100 (cited on p. 20).

Taylor, G. I. and Green, A. E. (1937). “Mechanism of the production of small eddies from
large ones”. Proc. R. Soc. Lond. A 158.895, pp. 499–521 (cited on pp. 77, 113, 141).

Temam, R. (1968). “Une méthode d’approximationdes solution des équation de Navier–
-Stokes”. French. Bull. la Société Mathématique Fr. 96, pp. 115–152 (cited on p. 30).

Temam, R. (1969a). “Sur l’Approximation de la Solution des Equations de Navier–Stokes
par la Méthode des Pas Fractionnaires (I)”. French. Arch. Ration. Mech. Anlysis 32.2,
pp. 135–153 (cited on p. 31).

Temam, R. (1969b). “Sur l’Approximation de la Solution des Equations de Navier–Stokes
par la Méthode des Pas Fractionnaires (II)”. French. Arch. Ration. Mech. Anlysis 33.5,
pp. 377–385 (cited on p. 28).

Temam, R. (1977). Navier–Stokes Equations: Theory and Numerical Analysis. Vol. 2. Studies
in mathematics and its applications. Amsterdam: North-Holland (cited on pp. 51, 57,
94).

Timmermans, L. J. P., Minev, P. D., and Vosse, Van de, F. N. (1996). “An Approximate
Projection Scheme for Incompressible Flow Using Spectral Elements”. Int. J. Numer.
Methods Fluids 22.7, pp. 673–688 (cited on p. 29).

Tonti, E. (1975). On the formal structure of physical theories. Istituto di matematica del
Politecnico di Milano (cited on pp. 4, 14).

Turek, S. (1999). Efficient Solvers for Incompressible Flow Problems. Vol. 6. Lecture Notes
in Computational Science and Engineering. Berlin: Springer Science & Business Media
(cited on pp. 21, 25).

Vladimirova, N, Kuznetsov, B, and Yanenko, N. N. (1966). “Numerical calculation of the
symmetrical flow of viscous incompressible liquid around a plate”. Russian. Some Prob-
lems in Computational and Applied Mathematics, Nauka (cited on p. 31).

Wheeler, M. F., Rivière, B., and Guillot, M. J. (2002). “Discontinuous Galerkin methods for
mass conservation equations for environmental modeling”. In: Dev. Water Sci. Comput.
Methods Water Resour. Ed. by W. Gray, S. Hassanizadeh, R. Schotting, and G. Pinder.
Vol. 1. Elsevier, pp. 947–955 (cited on pp. 9, 156).

Yanenko, N. N. (1971). The method of fractional steps. New York, NY: Springer-Verlag
(cited on p. 31).

	Abstract
	Contents
	Résumé de la Thèse
	1 Introduction
	1.1 Industrial context
	1.2 Compatible Discrete Operator schemes
	1.2.1 A brief introduction to CDO schemes
	1.2.2 The face-based CDO discretization

	1.3 Numerical methods for the Navier–Stokes equations
	1.3.1 Model problem
	1.3.2 Review of classical spatial discretizations
	1.3.3 Review of face-based spatial discretizations
	Lowest-order methods
	High-order methods

	1.3.4 Linear and nonlinear solvers for the Navier–Stokes equations
	Linear solvers for saddle-point problems
	Nonlinear solvers for the convection term

	1.3.5 Time-stepping and velocity-pressure coupling
	Monolithic approach
	Projection method
	Penalty method
	Artificial Compressibility
	Summary and retained techniques

	1.4 Document overview

	2 Discrete face-based CDO setting
	2.1 The mesh
	2.1.1 Basic definitions
	2.1.2 Mesh regularity

	2.2 Functional discrete setting and degrees of freedom
	2.2.1 Degrees of freedom in a CDO-Fb discretization
	2.2.2 Reduction maps

	2.3 Velocity gradient reconstruction
	2.4 Velocity-pressure coupling
	2.4.1 Main definitions and basic properties
	2.4.2 Inf-sup condition

	2.5 Scalar-valued advection and vector-valued convection
	2.5.1 Scalar-valued advection
	2.5.2 Vector-valued convection

	2.6 Source term

	3 The steady Navier–Stokes equations
	3.1 Stokes equations with face-based CDO
	3.1.1 Continuous formulation
	3.1.2 CDO formulation
	3.1.3 Algebraic viewpoint
	Setting
	Diffusive contribution
	Velocity divergence operator
	Source term
	Final system
	Elimination of the cell-based unknowns
	BCs: algebraic treatment
	Linear solvers for the Stokes equations

	3.2 Navier–Stokes equations with face-based CDO
	3.2.1 Continuous formulation
	3.2.2 CDO formulation
	3.2.3 Algebraic viewpoint

	3.3 Preliminary numerical setting
	3.3.1 Meshes
	2D computations in Code_Saturne
	Polyhedra and cells with hanging nodes
	Commonly used meshes

	3.3.2 Error norms and quadrature rules
	3.3.3 Implementation

	3.4 Numerical results: Stokes equations
	3.4.1 2D Bercovier–Engelman
	3.4.2 3D modified Taylor–Green Vortex

	3.5 Numerical results: Navier–Stokes equations
	3.5.1 2D Burggraf flow
	3.5.2 3D Modified Taylor–Green Vortex
	3.5.3 2D lid-driven cavity

	4 First-order time-stepping for the Navier–Stokes equations
	4.1 Preliminary notions
	4.1.1 Continuous setting
	4.1.2 Time-discrete setting
	4.1.3 Fully discrete setting
	Time-related mass matrix

	4.2 Velocity-pressure couplings and time-stepping techniques
	4.2.1 Monolithic approach and the saddle-point problem
	Energy balance

	4.2.2 The Artificial Compressibility technique
	Energy balance

	4.3 Convection treatments
	4.3.1 Implicit convection: Picard algorithm
	Picard iterations and monolithic approach
	Energy balance
	Picard iterations and Artificial Compressibility
	Energy balance

	4.3.2 Linearized convection
	Linearized convection and monolithic approach
	Energy balance
	Linearized convection and Artificial Compressibility
	Energy balance

	4.3.3 Explicit convection
	Explicit convection and monolithic approach
	Energy balance
	Explicit convection and Artificial Compressibility
	Energy balance

	4.4 Numerical results: Stokes equations
	4.4.1 Convergence in time
	4.4.2 Efficiency results
	4.4.3 Polyhedral meshes

	4.5 Numerical results: Navier–Stokes equations
	4.5.1 Convergence in time
	4.5.2 Convection treatments and dissipativity
	4.5.3 Stability results with an explicit convection

	4.6 Detailed results
	4.6.1 Stokes equations
	4.6.2 Navier–Stokes equations

	5 Extension to second-order time-stepping
	5.1 Second-order time-schemes
	5.1.1 Monolithic approach
	Face-based CDO discretization and algebraic version
	Convection treatments

	5.1.2 Artificial Compressibility
	Convection treatments

	5.2 Numerical results: Stokes equations
	5.2.1 Comparison: Monolithic approach vs. Artificial Compressibility
	5.2.2 Comparison: first- vs. second-order time discretizations

	5.3 Numerical results: Navier–Stokes equations
	5.3.1 Convergence in time
	5.3.2 Convection treatments and dissipativity
	5.3.3 Stability results with an explicit convection

	5.4 Detailed results
	5.4.1 Stokes equations
	5.4.2 Navier–Stokes equations

	6 Conclusions and perspectives
	Acronyms
	Bibliography

