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Résumé 

 
La théorie de la décision fournit des techniques qui permettent de calculer la valeur de 
l’information et de guider des décisions dans l’incertain. Ces dernières sont très pertinentes 
pour le calcul économique dans l’incertain. Mais elles ignorent la valeur de l’inconnu et il est 
largement reconnu qu’il est inapproprié, voire trompeur, d’utiliser dans l’inconnu des 
techniques de calcul économique dérivées de la théorie de la décision. Dans ce contexte, 

cette thèse cherche précisément à développer, dans le cadre théorique de la théorie de 

la conception, des techniques qui permettent d’isoler et d’évaluer la valeur de 

l’information dans l’inconnu. Nous nous intéressons à l’évaluation économique de 
l’inconnu contenu dans un type particulier de situations : les situations dans lesquelles on ne 
s’attend à priori pas du tout à trouver de l’inconnu. Nous appelons les inconnus dans ce type 
de situation les « inconnus cachés » ou « non visibles de manière évidente ».  
 
Nous avons développé ces techniques d’évaluation économique dans l’inconnu avec l’objectif 
d’évaluer l’impact d’inconnus cachés au niveau de phénomènes de conception réglée et de 
conception innovante identifiés sur l’industrie aéronautique commerciale : une dynamique 
fortement croissante des coûts de développement au niveau du secteur d’une part, et deux 
cas d’investissement chez Airbus d’autre part. À travers le prisme des modèles économiques 
traditionnels dérivés de la théorie de la décision, ces phénomènes semblaient particulièrement 
intrigants. Étaient-ce des anomalies ? En mettant en évidence et en évaluant l’impact et le 
rôle d’inconnus cachés, nos techniques de calcul basées sur la théorie de la conception 
fournissent de nouveaux cadres explicatifs pour des phénomènes qui apparaissent 
incompréhensibles. Ces techniques relèvent que l’impact économique d’inconnus cachés peut 
être considérable. L’inconnu caché peut entraîner de très forts coûts. Et il peut générer des 
profits colossaux, à condition que les méthodes adaptées pour détecter et explorer 
efficacement l’inconnu aient été déployées.  
 
Le résultat selon lequel l’impact économique des inconnus cachés est quantifiable et peut être 
substantiel souligne l’importance de continuer à chercher comment l’évaluation économique 
de l’inconnu pourrait être outillée plus systématiquement et plus généralement, au-delà des 
phénomènes spécifiques étudiés dans cette thèse : l’enjeu associé à un tel outillage est de 
piloter l’impact économique de l’inconnu, en particulier d’éviter ses effets néfastes et 
d’exploiter son potentiel économique prometteur. Cela soulève aussi des questions 
organisationnelles par exemple en termes de transformations requises par les inconnus cachés 
à fort effet économique.   
 
Ce travail de recherche a donné lieu à une thèse par articles. Un article porte sur une forme 
spécifique d’inconnu caché, l’expansion fonctionnelle, dont nous évaluons l’impact 
économique. Deux articles visent à mettre en évidence et isoler l’inconnu et sa contribution 
à la création de valeur économique dans deux cas de projets d’investissement identifiés chez 
Airbus. Ces trois articles sont en annexe de ce document (Section 8), après une synthèse des 
contributions de notre travail de recherche au sujet de l’évaluation économique de la 
conception dans l’inconnu (Sections 1 à 7).  
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Abstract 

 

Decision theory provides computational techniques which quantify the value of information 
and guide decisions under uncertainty. These latter are very relevant for economic calculation 
under uncertainty, but they ignore the value of the unknown. And it is now well proved that 
such techniques are unsuitable, even misleading in situations that contain unknown. 
If design theory extends decision theory to the unknown, it has not gone as far as providing 
computational techniques to assess the value of information in the unknown. In this context, 

the object of this thesis is precisely to develop, within design theory-based models, 

techniques that enable to isolate and assess the value of information in the unknown. 

We are interested in the economic evaluation of the unknown contained in a particular 

type of situation: situations in which one does not expect to find the unknown at all. 

We call the unknowns in such situations the 'hidden unknowns' or 'not obviously 

visible unknowns’. 
 
We have developed techniques of economic evaluation in the unknown with the aim of 
evaluating the impact of the ‘not obviously visible’ unknown at the level of rule-based design 
and innovative-design phenomena identified in the commercial aircraft industry: a cost 
escalation trend on the one hand, and two Airbus investment cases on the other hand.  
Viewed through the prism of traditional decision theory-based economic models, these 
phenomena seemed particularly intriguing. Anomalous? By highlighting and assessing the 
impact and the role of the ‘hidden unknowns’, our design theory-based computational 
techniques provide new explanatory frameworks for economic phenomena that seemed 
anomalous. They also reveal that the economic impact of ‘not obviously visible unknown’ can 
be substantial. It can entail high costs. And it can generate huge returns, provided appropriate 
design methods suitable to detect and efficiently explore the unknown have been deployed. 
 
Beyond the specific phenomena studied in this thesis, the finding that the economic impact 
of ‘hidden unknowns’ is quantifiable and can be large emphasizes the importance of further 
investigating how ‘economic evaluation in the unknown’ could be tooled more generally and 
systematically in order to manage the economic impact of the unknown, and in particular 
avoid its detrimental effects and exploit its promising economic potential. And it raises 
organizational questions (in terms of organizational transformations required by ‘hidden 
unknowns’ with high economic impact)  
 
This research work gave rise to a paper-based thesis. One paper is studies the impact of a 
special form of discreet unknown (that is functional expansion-induced unknown) on 
development cost escalation phenomena. Two papers are dedicated to highlighting and 
isolating the unknown and its contribution to the creation of economic value in two puzzling 
investment cases identified in Airbus. These three working papers are appended to this 
document (Section 8), after a synthesis of the contributions of our research work on the topic 
of ‘economic evaluation of designing in the unknown’ (Sections 1 to 7).    
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1. Introduction: motivations for evaluating economic performance in the unknown 

1.1. Developing calculation techniques for economic evaluation – a long-standing issue 
 
The development of theories and tools to assess situations in economic terms and generate 
quantitative information that will indicate a ‘rational’ course of action (the rationality being 
that of the theory in question) and guide decision-making is a long-standing problem.  
 
For example, in the late 19th century, the second industrial rise called for the development of 
economic calculation techniques to manage expensive investments in new, high-volume 
production technologies. There was a challenge of ensuring that the economies of scale 
induced by the increased production volume would compensate the high cost of the new 
production technologies (Chandler, 1990). Such questions encouraged the development of 
economic notions and techniques (e.g. the first production functions, the theory of marginal 
productivity) which are now well established in industrial firms, and still taught nowadays.  
 
In the early 20th century, one major challenge for economic calculation concerned the 

treatment of uncertainty. In the previous example, the parameters involved in the decision 
are fairly foreseeable and identifiable (parameters associated with a new production 
technology), and the level of uncertainty is relatively low. But when the level of uncertainty 
is higher, economic performance measurement issues become trickier. The difficulties raised 
by uncertainty for economic calculation were identified from the early 1900s, both among 
practitioners, who used ‘rudimentary’ approaches to deal with it (Pezet, 1996) and among 
scholars theorizing the notions of ambiguity, uncertainty, radical uncertainty (Knight, 1921; 
Keynes, 1921). The Cold War years confronted economic decision-makers to more 
uncertainty-intensive situations (innovative New Product Development projects, R&D 
activities…) and triggered major advances in Operational Research (linear programming, 
multiple-criteria decision analysis, etc.), namely to develop calculable decision rules that 
would solve resource allocation and task planning problems. 
The formalization of decision theory in the 1950s/1960s, in particular Savage’s (1954) 
Subjective Expected Utility Theory (described in The Foundations of Statistics) has provided 
a solid theoretical basis for economic calculation under uncertainty. Indeed, it has provided 
economists with a model of rationality, that is a ‘Bayesian rationality’1. Economists have 
largely adopted this model to describe how economic agents make rational choices under 
uncertainty (Giocoli, 2013; Binmore, 2007; Keifer and Nyarko, 1991). They sometimes refer 
to Savage-Bayesian models (Keifer and Nyarko, 1991). In Savage-Bayesian models, Savage’s 
(1954) axioms lay down the rules that the decision-makers’ beliefs need to meet in order to 
be consistent with probability calculation. The rational behavior is modelled by expected 
utility optimization: in the face of a set of choices, the decision-maker chooses the alternative 
which maximizes his/her (subjective) expected utility. Learning is a byproduct of the 
maximizing expected utility behavior. And it takes place in a Bayesian mode: following the 
collection of new information, the decision-maker will update his/her a priori beliefs 

                                                
 
1 Giocoli (2013) explains that Savage’s (1954) Subjective Expected Utility Theory contributed to economics in an 
unintended way: Savage’s (1954) original goal was to propose the foundations of a new kind of statistics, where 
the statisticians would behave as economic agents. This project was a failure. But economists took up Subjective 
Expected Utility Theory as a model of rationality (they had been looking for such a model for a hundred years!) 
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according to Bayes rule, turning a priori beliefs into better informed, less uncertain a posteriori 
beliefs.  
 
Subjective Expected Utility Theory and Savage’s axioms have been the subject of a series of 
criticism and debates in the economic discipline. These criticisms, starting with Allais’ (1953) 
paradox, could very well have led economists to give up expected utility models. Quite the 
contrary, economists have rather attempted to answer and address successive paradoxes and 
contestations, by enhancing, refining the axioms, but keeping the original expected utility 
model (Lainé, 2014)2. This model, which economists have adopted and kept, entails major 
advances from the viewpoint of the mathematical treatment of uncertainty. Indeed, Savage’s 
(1954) axioms cover subjective beliefs. And subjective probability (consistent with Savage’s 
axioms) becomes the variable that models uncertainty (Hey, 1990). Put differently, subjective 
probability models the lack of knowledge of the decision-maker about the decision space, i.e. 
about the decisional alternatives, their consequences and about the states of the world. With 
subjective probability as an uncertainty variable, a mathematical treatment of Knightian 
uncertainty becomes possible (this latter can be ‘reduced’ to Knightian risk3). The 

formalization of decision theory has contributed to the development of a spectrum of 

analytical techniques (from decision trees (Wald, 1950), the earliest ones, to real 

options, the most recent ones (Myers, 1977; Trigeorgis, 1997) that enable to compute 

the value of uncertainty-reducing information and that indicate a rational decisional 

way thanks to the expected utility criteria.  
 
In sum, the articulation of conventional deterministic economic notions (Net Present Value, 
net benefits, costing estimation, etc.) with decision theory and deriving techniques offers a 
means to rigorously address economic problems under uncertainty (for example, problems 
which involve the selection of the best alternative between various investment projects). 
Cases of the deployment of economic evaluation tools based on decision theory can be found 
in the oil industry (Charreton and Bourdaire, 1985; Hatchuel and Moisdon, 1987) and in the 
automotive industry (Hooge, 2010), with subjective probability distributions being built 
based on expert opinion. But such an application is not straightforward. Cognitive biases 
(Kahneman and Tversky, 1974) or limited rationality (Simon, 1955) may lead actors to make 
decisions that differ from the decision theory-based rational way of doing. The rationality of 
decision theory-based tools may also conflict with the functioning of the organizations which 
attempt to deploy them4 (Hatchuel and Moisdon, 1987), raising in turn difficulties in 
implementing these economic calculation practices.  
 
This thesis leaves these problems aside to concentrate on an issue of a different nature. It 
does not focus on situations where the computational means are already available, and suffer 
                                                
 
2 According to Lainé (2014), contemporary microeconomics of decision-making under uncertainty can be seen as 
the heritage of all the responses to the series of paradoxes and contestations that emerged in economics.  
3 Knightian risk (Knight, 1921) corresponds to ‘measurable uncertainty’: the occurrence of an event can be 
evaluated in a numerical way (with probabilities). In contrast, Knightian uncertainty corresponds to proper, 
unmeasurable uncertainty: the event is identified but the one cannot quantify its probability of occurrence 
4 real organizations differ from the ideal organization required by decision theory, that is ‘a unique decision-maker 
who simultaneously takes into account all the aspects of the problem being dealt with’ (Hatchuel and Moisdon, 
1987) 
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from biases, limitations, applicability difficulties, etc. when deployed in a real organization 
context. It focuses on situations where economic quantification itself is problematic, from a 
computational point of view, i.e. on situations which seem to be orphaned by economic 
calculation, and which seem to call for new developments in terms of economic evaluation 
techniques. And after ‘uncertainty’, it is ‘the unknown’ that seems to require new 

developments in economic calculation. In what follows, we explain how the unknown 
raises difficulties for economic calculation from a modelling point of view (subsection 1.2) 
and from an empirical point of view (subsection 1.3). 
 
 

1.2. Theoretical motivations: from ‘uncertainty’ to ‘the unknown’, a new challenge for 
economic calculation 

 
The unknown – definition used in the thesis  

 

Let us consider a collective of actors located in an organization, which, on the basis of its 
knowledge, expertise, and methodologies (i.e. methodologies for generating hypothetical 
scenarios of the future), is able to identify a certain number of variables that characterize a 
situation (e.g. that characterize a project): '( , '*, '+, … , '-.  
 
Some of these /0 may be affected by uncertainty: the actors do not associate them with a 
deterministic value, but only with a distribution of probabilities.  
Figure 1a. below illustrates that if we suppose that the variables '( , '*, '+, … , '- take their 
values from discrete (subjective) probability distributions which represent the collective’s 
beliefs, a finite number & of possible combinations {'(, '*, '+, … , '-} can be forecasted, with 
a discrete probability of occurrence 12 for each possible combination {'(, '*, '+, … , '-}2. A 
combination {'(, '*, '+ , … , '-}2 can be assimilated to a ‘state of the world’, and the set 
formed by {'(, '* , '+, … , '-}2,			25(..$ constitutes the ‘state space’ associated with the 
situation. This state space is relative to the collective’s knowledge, expertise, methods, etc. 
One can make a parallel with the ‘subjective space of possibilities’ theorized by Faulkner et 
al. (2017) or the ‘scenario spaces’ in Feduzi et al. (2020).  
Under uncertainty, decision theory and deriving techniques can be leveraged to guide 

collective action under uncertainty, in particular to identify the utility-maximizing 

decisional way and to assess the value of information under uncertainty (the value of 

uncertainty reduction) (Figure 1b).  
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Figure 1a. A state-space representation in an uncertain situation 

Figure 1b. Decision theory-based techniques to guide action under uncertainty 

 

The description offered by the state-space {'(, '* , '+ , … , '-}2,			25(..$ may suffer from 
inaccuracies with respect to the real situation. These latter may take various forms (Faulkner 
et al. 2017). One form of inaccuracy interests us particularly: the fact that some variables 

/678, /679, … , /67: of the real situation may be unknown to the collective, and thus may 

be missing from the representation {/8, /9, /;,… , /6}0,			058..<. Associated with these 

latter are new, initially unknown states of the world, which can be called ‘the 

unknown’.  
 
It has long been acknowledged that new, initially unknown states of the world (and by 
implication, new, initially unknown '2) cannot be quantified by decision theory (Loch et al., 
2006). They  fall into Shackle’s residual hypothesis which is the only form of uncertainty that 
remains out of reach for decision theory (Hey, 1990 ;Le Masson et al., 2019). If one uses 
decision theory-based economic evaluation techniques in a state-space involving both 
uncertainty and unknown, one will only compute the value of uncertainty-reducing 
information, and one will neglect the value of information in unknown, i.e. one will not 
capture the economic impact of the discovery of new states of the world. This may be more 
or less problematic depending on whether the unknown is ‘with impact’ or ‘without impact / 
under control’. 
 

1.2.1. In a decision theory-based paradigm: the issue of ‘unknowns with impact’ 
 

Unknown with impact – definition 

In what follows, we call ‘unknown with impact’ the new, initially unknown variables '-7(,
'-7*, … , '-7= that may disturb the variables '(, '*, '+ , … , '- and the associated states of the 
world {'(, '* , '+, … , '-}2	, that may render them negligible or no longer relevant, or that may 
supersede them, entailing strong (socio-)economic impacts. 
 
In the rest of the document, when the term ‘unknown’ is used alone, it refers to 

‘unknown with impact’. 
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If the new '2 	are negligible / ‘without impact’, or if the collective is able to control the new '2 
in a fashion such that the {'( , '*, '+, … , '-, '-7(, '-7*, … , '-7=}2,			25(..? state-space is 
equivalent to the {'(, '*, '+ , … , '-}2,			25(..$ state-space, one can continue to guide decision-
making with an assessment of the uncertainty related to the already-identified variables5.  
In contrast, if the new '2 that are to emerge are ‘with impact’ (e.g. if they strongly disturb the 
variables '( , '*, '+, … , '- and the associated states of the world {'(, '* , '+, … , '-}2, if they 
render them negligible or no longer relevant, or if they supersede them, which can translate 
into strong (socio-)economic impacts), decision theory is no longer suitable to provide 
reliable quantitative indications that can guide decision-making, because it can only quantify 
the uncertainty related to already-identified variables / already identified states of the world. 
It will not evaluate the impact of the new, initially unknown variables, which can be 
misleading for action-taking in the unknown, namely for investment decision-making in the 
unknown.  
 
Indeed, classical decision theory-based techniques (e.g. decision trees) applied in the 
unknown will assimilate the unknown to an extreme form of uncertainty. In the face of radical 
innovation projects that may contain unknown, they will predict a very low expected 
profitability (since according to decision theory, the more uncertain a project is, the lower the 
probability of making it profitable) and advise rational, risk-averse decision-makers against 
investing in such projects. In other words, they may reject promising innovation projects. In 
order to avoid this, there exist other techniques which evaluate and manage highly uncertain 
situations in a more sophisticated way, with the logic of little risky pre-investment trials: real 
options (McGrath, 1996), discovery-driven planning (McGrath and MacMillan, 2009), etc. 
Real options concede a small amount of investment6 in additional information gathering 
(uncertainty-reducing information), so that one can, in a second time, decide more knowingly 
on whether or not to invest. As a financial option, the real option offers the right but not the 
obligation to purchase the asset. Therefore, if the asset proves interesting, one invests further. 
And if it turns out to be unprofitable, one has no obligation to invest and one loses nothing, 
except the cost of the option. Discovery-driven planning proposes to set a minimum 
acceptable economic return target, and to list the assumptions that need to be satisfied for 
the economic target to be met (McGrath and MacMillan, 2009): as new, unknown states of 
the world are unveiled during the discovery-driven process, the assumptions are updated.  
These pre-investment trial approaches propose to manage highly uncertain situations with an 
adaptive process. They delay the immediate, risky investment in large-scale budgets, and 
avoid immediately rejecting promising projects. But if the target is in the unknown, launching 
pre-investment trials may be an inefficient and costly groping search, since it may take a lot 
of testing and time before a satisfactory result is finally achieved. Be the trials sequential or 
parallel, it is like taking gambles on small steps (Kokshagina, 2013). In addition, be it real 
options or discovery-driven planning (which can moreover be combined), the value of the 
new information brought by the newly discovered states of the world is not assessed in an 
‘isolated’ way –it is either not assessed at all, or blended with the value of uncertainty-

                                                
 
5 This is what generally happens when decision theory-based techniques are applied in the real world:  when 
decision theory under uncertainty is applied, the actors are never entirely omniscient and / or the future is never 
entirely predictable. So, in practice, decision theory is never applied within a perfectly fixed state-space. 
6 The cost of the option 
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reducing information. Finally, one can note that since one has no obligation to invest if the 
option proves unprofitable, real options encourage creating highly volatile option portfolios, 
with high variance, which can, with admittedly low probabilities, reach extreme values in 
terms of profit (McGrath, 1999). But nothing ensures that such option portfolios are robust 
to the emergence of unknown unknowns, unexpected events, etc. 
 
In summary, the more sophisticated approaches which propose to evaluate and manage high 
uncertainty situations, remain in a decision-theory paradigm: they only assess the economic 

impact of uncertainty, and not the economic impact of new, initially unknown states 

of the world. Using these uncertainty-centered economic evaluation approaches to guide 
decision-making in the unknown may be misleading. Consequently, as one moves from 
uncertainty to the unknown, one ‘loses’ the decision theory-based formal framework and the 
computational techniques deriving from it. And situations where new '2 ‘with impact’ are 
likely to emerge are undecidable from the viewpoint of decision theory.  
 
 

1.2.2. Design theory-based decision model: a promising basis to quantify the effects 
of newly designed ‘unknowns with impact’ 

 
Recent theoretical advances have demonstrated that design theory extends decision theory to 
the unknown (Le Masson et al., 2018)7: with a design theory-based decision model accounting 
for the possibility to enrich a decisional space by designing new decisions and / or new states 
of the world in the unknown, Le Masson et al. (2018) propose a model of decision-making in 
the unknown, with an associated rationality for actions in the unknown. In this design theory-
based paradigm, situations that involve ‘unknown with impact’ are no longer undecidable.  
And according to this model, decision-makers design the new, initially unknown '2 – they 
design the unknown, and which suggests that its impact and its value are also ‘to be designed’. 
But thus far, these advances in design theory did not yet go as far as proposing the 
computational techniques that would quantify the value associated with the impact of newly 
designed '2 and provide economic-based guidance for rational action in the unknown.  
 
Theoretical motivations:  
The absence of techniques enabling to quantify the impact of new, initially unknown '2 is a 
first motivation for studying the topic of economic evaluation in the unknown: it is 
theoretically interesting to investigate whether in a design theory-based paradigm, the value 
of newly designed, initially unknown '2 can be quantified, in the same fashion as decision 
theory quantifies the value of reducing the uncertainty associated with already identified '2. 
In addition, it is theoretically interesting to investigate how quantified unknown-related 
information could be integrated within operational models or tools that guide investment 
decision-making and help manage economic value in the unknown. 
 
In the next subsection, we explain how being able to quantify the impact of new, initially 
unknown '2 could also have an empirical interest. 

                                                
 
7 This model will be described in more details in our literature review (section 2.2) 
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1.3. Empirical motivations: the issue of ‘potentially hidden unknown with impact’ 
1.3.1. ‘Obviously visible unknown with impact’ in disruptive innovation projects 

 
‘Unknowns with impact’ can obviously be associated with radical, disruptive innovations 
which break products legacy architecture in a very visible way, as Figure 2 below illustrates.  
 

 
Figure 2. Highly visible ‘unknowns with impact’ at the level of disruptive innovation 

projects  

 
 
Over the last decades, market and technological dynamics have been pressing firms to develop 
radical, disruptive innovations, generating a context of intensive innovations. The projects 
devoted to the development of these innovations are the most obvious places to find 
‘unknown with impact’. In these projects, ‘unknowns with impact’ are inevitable and 
everywhere, at the level of the product with engineering departments being required to 
regenerate their set of design rules, to renew the architecture, the identity, the value space 
and value criteria associated with the product, etc. (Le Masson, 2001; Le Masson et al., 2014; 
Gillier et al., 2015), at the level of the ecosystem of actors which can be impacted by 
substantial changes, at the level of product marketing, etc.). And exploring and designing 
these unknowns with an innovative design approach is the essence of the project.  
 
As we have seen above, no technique seems available to quantify the economic impact of the 
unknown, be it in the decision theory framework or in the design theory framework. But with 
respect to disruptive innovation projects aimed at revising the identity of a product, a certain 
amount is already known about the economic phenomena associated with the unknown 
contained in these projects, as well as regarding the value management levers in these 
projects. 

INNOVATIVE DESIGN PROJECTS AIMING 

TO REVISE PRODUCT IDENTITY

‘Aircraft of the future’ conceptsStabilized legacy architecture

RULE-BASED DESIGN

Legacy ‘tube and wing’ architecture to 

be broken

Highly visible emergence of ‘unknowns with impact’, at the level of product architecture, 

but also at the level of the ecosystem of actors that interact with the object, etc.
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In particular, the design function8 is a design theory-based model (Le Masson, 2001; Hatchuel 
and Le Masson, 2006 ;Le Masson et al., 2010) which accounts for how the knowledge 
regeneration achieved by exploring the unknown can have a strongly positive effect on 
economic growth dynamics in situations of radical innovations. For instance, this model 
explains how Tefal9 has followed a thriving growth dynamics for 20 years thanks to its ability 
to explore unknown knowledge bases in a systematic, repeated manner: the firm had 
developed the capacity to reuse on subsequent developments the ‘excess knowledge’ earned 
from the exploration of unknown knowledge bases on previous developments projects: this 
dynamic allowed Tefal to generate lineages of competences and lineages of products (with the 
diversification of product families) which entailed a strong innovation-driven growth 
dynamics. 
 
Regarding value management, it is largely acknowledged that conventional value management 
approaches are unsuitable in projects that aim at revising product identity (Gillier and Hooge, 
2015). Targets (market, technical, etc.) are difficult, if not impossible to forecast. Costs, 
benefits, Net Present Values cannot be fairly and reliably assessed, etc. The conditions for 
value engineering (Miles, 1961)10 to be applied (which namely require a ‘stable product 
identity’) are not met (Gillier and Hooge, 2015). Yet, ‘value in the unknown’ is not 
unmanageable: recent research works propose a value management engineering involving 
specific tools for managing value in the unknown and guiding decisions accordingly, in the 
framework of ‘design regimes’ for the value of the unknown (Hooge, 2020). In this value 
management approach of the unknown, the unknown has value that is a priori not present, 
and calls for being designed with a rigorous managerial approach and dedicated tools, in the 
framework of an expanded concept of value: beyond economic value, the design of strategic 
value and stakeholder adhesion value in the unknown are to be managed.  
 
These works did not go as far as proposing an economic evaluation of the unknown. In this 
context, a technique to quantify the impact of the unknown, and an associated economic 
management logic would be ‘a plus’ that could contribute, in a complementary way, to this 
engineering of value management in the unknown, in the same fashion as decision theory-
based techniques contribute to value management under uncertainty: for the management of 
project portfolio in the unknown, it would offer a single criterion against which to rank 
investment projects (although this classification may not necessarily the only criterion for the 

                                                
 
8 The ‘design function’ model is a function defined over two spaces: a space of goods @ and a space of knowledge 
A. This function accounts for the extension of these two spaces with new goods and new competences. (Le Masson, 
2001; Le Masson et al., 2010). It can be represented with the relationship:  

   @	 × 	A																→ 							@	 × 	A															      
(@(, 	 … , @- , A(… ,AD)

E→ (@(, 	 … , @- ,… , @-72 , A(… ,AD,… , AD7=) 
where the Gi refer to the goods and the Ki refer to competences. This model generalizes the model of the production 
function, which in contrast covers a fixed list of goods, in a Lancasterian framework. The initial space and the final 
space being identical, the design function is recursive: FGF…GF accounts for how the outputs generated at a time 
H can be used as resources at time H + 1. In that, contrary to the production function which computes static outputs 
to inputs ratios only, the design function accounts for dynamics returns.  
9 a French household electrical goods company known for its non-stick pans 
10 started in General Electric, in the 40s, during WWII, value engineering involves tool that can be applied to 
eliminate unnecessary costs, while still increasing product quality and reliability (Miles, 1961) 
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decision, it would constitute interesting additional information for decision-making); beyond 
the numerical result of the calculation, the use of an economic calculation technique generates 
discussions between actors and encourages the gathering of coherent information – which 
can have positive impacts in terms of coordination and building coherence in a project 
(Hatchuel and Moisdon, 1986 ; Hooge, 2010). 
 
But are the projects which involve the revision of the identity of the product (in particular, a 
clear break in the legacy architecture of a product) the only place where ‘unknowns with 
impact’ can be found? For example, could there also be ‘unknown with impact’ in rule-based 
design-driven product evolution trajectories? In the first instance, the intuition is rather that 
there is ‘no unknown with impact’ in rule-based design (Figure 2 above illustrates this 
intuition well).  
 
However, two phenomena taking place in contexts where product identity is not specifically 
revised lead to ask whether ‘hidden’ / invisible ‘unknowns with impact’ could be found in 
rule-based design. These phenomena are explained in detail the next subsection.   
 
 

1.3.2. ‘Potentially hidden unknown with impact’ in rule-based design 
 

A concerning and intriguing multiplication of costly (i.e. ‘with impact’) design crises 

The recent years have been marked by several ‘design crises’, among which the Dieselgate, 
the explosion of the Samsung battery Note 7 and the crashes of the Boeing 737-Max.  
 
In these three cases, the failure concerns a well-known product feature, which was supposed 
to be well mastered by the firm’s engineering departments:  

- For decades, with each new generation of engines, Volkswagen has consistently and 
successfully been reducing by a few percent pollutant emissions, hence meeting the 
regulations in force. The American and European authorities had informed car manufacturers 
well ahead of time about the coming enforcement of the new regulations (which were not 
immensely more stringent than the previous regulations). But curiously enough, the failure 
at the origin of the Dieselgate concerns the engine and the pollutant emissions: the design 
failure occurred because Volkswagen discovered that it was unable to simultaneously 
reconcile customer requirements in terms of car performance (particularly engine power) and 
(the US) regulatory requirements in terms of reducing pollutant emissions. So it added 
rigging software that detected regulatory test situations, allowing the car operating in a first 
fashion that met regulatory requirements in test situations, and in a second fashion that met 
customer requirements in real driving situations. 

- Samsung has been designing increasingly thinner-shelled smartphones for years. 
Under this trend, increasingly smaller and more powerful batteries are designed by battery 
suppliers and integrated in these casing. And the source of the short-circuits triggering the 
explosions of the smartphones turns out to be linked to battery sizing. Samsung retraced the 
failure mechanism that led to the short-circuits and explosions at the level of the batteries of 
its Galaxy Note 7. Over the successive generations, smartphones are becoming increasingly 
thinner-shelled. For the Galaxy Note 7, the (first) supplier in charge of the batteries designed 
a battery with a thinner separator between electrodes which are not supposed to touch (this 
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boils down to reducing design (here safety) margins, in order to reduce size. In addition, the 
battery involved ‘a higher energy density’ (which can ‘exacerbate the severity of a battery 
failure’). Finally, when these batteries were integrated into the smartphone, within the space 
allotted by Samsung’s smartphone design, the battery suffered from deformations at the 
upper corner. According to Samsung’s investigations, these deformations can lead some 
electrodes (supposed to be separated by the ‘thinner’ separator) to touch and generate a short-
circuit.   

- Boeing’s products are highly reputed, their safety is validated and endorsed by 
recognized and demanding aviation authorities (FAA11, EASA12). The architecture of 
commercial aircraft is typical of a dominant design architecture (‘tube and wing’ architecture), 
which is supposed to be mastered by Boeing’s engineers. Designing a stable aircraft, 
informing the Flight Control Systems with data coming from reliable sensors is part of the 
very basis of the design activities which Boeing has been successfully achieving for decades. 
And precisely, the failures which triggered the crashes of Lion’s Air and Ethiopian aircraft 
were due to design errors at these levels. With the aim of improving some features (namely 
engine power, fuel efficiency, noise level, weight) of its B737, Boeing has integrated an 
innovative engine. The diameter of this engine being larger than that of previous engine 
generations, and the wings of this aircraft having being particularly low-riding, Boeing 
repositioned the engine further forward under the wing (with respect previous aircraft). As a 
consequence, the aircraft tended to pitch upwards in certain situations, which could lead to a 
dangerous aerodynamics stall. Traditionally, when such a situation arises, the weather-vane-
like sensor which detects that the angle-of-attack drifts too high (thanks to airspeed and 
altitude sensing) warns pilots, who then they can handle the situation (by moving the 
horizontal stabilizer trim upward). When Boeing discovered (quite late, during the first flight 
tests) that such situations would regularly arise on the B737-MAX (because of the position 
of the new engine), it (rapidly) designed a new system, the MCAS (Manoeuvring 
Characteristics Augmentation System) that would further help pilots bring the nose down. 
Such a system enabled to reconcile (i) the new position of the engine under the aisles and (ii) 
the aircraft stability requirements. If the MCAS had been introduced as a new system which 
pilots could decide to activate or deactivate when they want, the 737-MAX would have been 
considered as involving significant changes in terms of operating conditions for pilots. This 
would have entailed additional training (delta training) for the pilots, which is less attractive 
to airlines. This would have made the aircraft less saleable. So in order to reconcile (i) 
newlypositioned engine, (ii) aircraft safe stability conditions, (iii) no delta training, Boeing 
decided that the help offered by the MCAS would activate automatically (without requiring 
pilot action, nor without requiring to inform him), if the nose were to drift too high as the 
pilot flew manually, and it would deactivate automatically when the angle of attack would be 
sufficiently low, all this without the pilot noticing anything. Making the MCAS a ‘silent’ 
system was already questionable. But beyond that, in order to constitute a safe design, the 
triple (i), (ii) and (iii) needed a fourth dimension: (iv) a reliable Angle of Attack sensing 
system (or reliability in case of failure of the Angle of Attack sensor). Boeing failed to meet 
this fourth: in the case of Lion’s Air and Ethiopian crashes, the angle of attack sensor 

                                                
 
11 Federal Aviation Administration (the US authorities) 
12 European Aviation Safety Agency 
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erroneously sensed that the nose was drifting too high, so the system activated automatically 
and pushed the nose down while it was not needed (Gates and Baker, 2019)13. 
 
If the design issues at the origin of these three failures came from a radically novel function, 
or a disruptive technology, hence breaking the identity and the architecture of the car, the 
smartphone and the commercial aircraft, these cases would not be intriguing. They could be 
interpreted as an inability of the three firms to prepare the renewal of their products in a 
timely manner, in particular an inability to generate the necessary knowledge, to renew the 
design rules and the architectural knowledge, etc.  
But there is seemingly no radical innovation (and no ‘unknown with impact’) in these cases. 
The engineering departments of Volkswagen, Samsung and Boeing were respectively 
mandated to design ‘a less-polluting engine’, ‘a thinner-shelled smartphone with a safe 
battery’ and ‘a stable commercial aircraft with a newly-positioned engine’. In these three 
cases, the design target was fairly identifiable, part of a product evolution dynamics which 
seemed to be perfectly mastered by the three highly reputed firms. Designing the incriminated 
features seemed to solely required the manipulation of known design variables and the 
application of existing design rules. In other words, design engineers were in the face classical 
rule-based design problems they were supposed to be perfectly equipped to solve. So the 
common explanations that incriminate an exhausted product architecture and an 
overambitious functional target are not convincing for such reputed engineering departments. 
In sum, one finds it difficult to discern the very rule-based design issue that explains such 
catastrophes. But what if the design issue was precisely not a rule-based design issue? 
We can raise the questions: wouldn’t some ‘unknown with impact’ have been encountered by 
the engineering departments and played a role, as a hidden variable? Could the unknown (a 
discreet, latent, silent form of ‘unknown with impact’) explain these to date incomprehensible 
design crises? And if ‘unknown with impact’ turns out to be the problem, what approaches 
could be considered and prescribed to counteract such phenomena and their devastating 
socio-economic impacts14?  
 

                                                
 
13 https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-
system-gained-power-and-lost-safeguards/ 
14 Since the fraud was uncovered in 2015, the Dieselgate has costed Volkswagen $30 bn (mainly to compensate 
American consumers) (Reuters, 2019). And the firm continues to set aside money for potential future fines, 
namely in Europe. Beyond these major economic impacts, this crisis also has dramatic socio-economic effects: 
impacts on the US supply chain, environmental and public health issues, etc. 
(https://www.usinenouvelle.com/article/dieselgate-volkswagen-met-de-cote-5-5-milliards-d-euros-de-
plus.N838295)  
The explosion of the batteries of the Samsung Galaxy Note 7 has entailed a loss of 20 bn� for Samsung (due to a 
10% drop in three days in its market capitalization). The recall of faulty devices, consumer compensation and lost 
sales cost Samsung $4.9 bn (Rousseau, 2017)14. This crisis has cancelled the efforts of a promising development 
program which planned to sell 20 million units. In addition, the failure also negatively impacted Samsung 
reputation. (https://www.lesechos.fr/2017/01/samsung-accuse-les-batteries-de-ses-fournisseurs-dans-le-fiasco-
du-galaxy-note-7-160217) 
The effects of the unreliable MCAS system introduced by Boeing on its 737-MAX are also considerable: two crashes 
and 346 deaths, slowed down, and then idle production lines, Boeing’s 2019 revenues down by 24% versus 2018, 
a net loss (-$636 bn) in 2019 (Boeing 2019 Annual Report, 2020), while the firm had been generated net profits 
since 1997, etc.  
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Functional expansion phenomena: another form of unknown with impact? 

As mentioned above, disruptive innovation is clearly a form of ‘unknown with impact’ (which 
disqualifies traditional economic value management approaches).  
The conventional wisdom is that the emergence of this kind of ‘unknowns with impact’ which 
break the legacy identity and architecture of a product is punctual and rare along the evolution 
dynamics of a product with time. In other words, the conventional wisdom is that most of a 
product evolution dynamic is driven by the improvement and / or combination of already-
existing functions, and that punctually, new disruptive functions are introduced and renew 
product identity (playing the role of punctual ‘unknowns with impact’). This representation 
reflects Lancaster's (1966) theory according to which the evolution of goods results from the 
combinations and recombinations of a given fixed set of functions.  
 
But recent research works have demonstrated that in the case of some consumption goods 
(among which the smartphone, the vacuum cleaner, the iron, the toothbrush, etc.), the 
product evolution dynamics is not only driven by the improvement and / or combination of 
already existing functions (El Qaoumi, 2016 ; Le Masson et al., 2018): the number of 

functions contained in the product increases according to a pattern which corresponds 

to a continuous emergence of new functions with time. Such patterns are called 

functional expansion (El Qaoumi, 2016). If one considers each function as one edge of a 
graphic matroid, different possible evolution scenarii of the matroid rank can be associated 
with different regimes of functional expansion (El Qaoumi, 2016 ; Le Masson et al., 2018). 
One of these regimes is called 'endogenous expansion' where endogenous means that the 
functional change does not result from exogenous / external events (e.g. market-pull or 
techno-push dynamics, regulatory requirements) but from a dynamic of design that is internal 
to the product. Empirical tests reveal that most of the studied consumption goods (some of 
which the identity is a priori stable) follow this regime of endogenous expansion (El Qaoumi, 
2016) the pace of which accelerates from the 1990s (Le Masson et al., 2018).  
 
With respect to the definition of the unknown given in subsection 1.2, the new functions that 
emerge in the framework of an endogenous functional expansion dynamics correspond to the 
emergence of new, initially unknown '2, i.e. to the emergence of unknown. And this 
phenomenon questions what ‘with impact’ is and what ‘disruption’ is in the framework of a 
product evolution dynamics. Indeed, the new functions part of a functional expansion 
phenomenon do not entail disruptions in the classical sense of the term, they do not 
continuously disrupt product identity. But are they still unknowns with no impact? What is 
the guarantee that this form of unknown does not hide more large-scale effects at the level of 
design activities, which themselves may entail substantial (socio-)economic impacts? Could 
the new functions that emerge in the framework of a functional expansion dynamics be an 
‘unknown with impact’? Could there actually exist two forms of disruptions: (i) the well-
known form corresponding to the new functions which obviously disrupt the identity and 
architecture of a product, and (ii) the ‘functional expansion’-form corresponding to new 
functions which preserve the identity and architecture of a product, but which have a 
disruptive impact in another manner? 
 
The idea that some functional changes that are not obviously visible at the level of the product 
overall architecture (and identity) may actually be the source of substantial impacts has 



 13 

already been mentioned in the literature related to CoPS (Complex Products and Systems). 
For instance, Hobday (1998) notes that ‘what appears to be incremental evolution at the 
system performance level can mask substantial discontinuities at the component level’. In 
other words, some phenomena ‘with impact’ may actually be hidden behind a seemingly 
stabilized product architecture. In the literature on complex systems, a paradigm of 
‘continuously increasing complexity’ from one product generation to the next one has been 
described. According to Alderson and Doyle (2010) and Carlson and Doyle (2005), a complex 
system and its ‘parent’ simpler system fulfil the same basic functionalities (i.e. there is no 
obviously visible disruption): the evolution from the parent system to the next generation 
system offers an increase in the level of robustness of the basic functions (e.g. a wider window 
of operation, such as the possibility to operate in more extreme weathers for an aircraft). But 
this increase in robustness is accompanied by an increase in complexity: in particular, the 
new, more robust system is also more vulnerable to emergence phenomena, that is 
unexpected behaviors resulting from unpredicted interactions between some subsystems 
which were not supposed to interact –emergence phenomena (which are generally associated 
with rare and catastrophic events) can be seen as a form of ‘high impact’ associated with no 
obviously visible disruptions.  
In sum, the literature on complex products reports examples of ‘not obviously visible 
unknowns having an impact’ which occasionally arise. But to our best knowledge, it does not 
mention dynamics that would involve a continuous emergence of ‘not obviously visible 

unknowns with impact’. Could functional expansion be a continuous emergence of ‘not 
obviously visible unknowns with impact’?  
 
We have found that commercial aircraft (which are complex products with a stabilized 
architecture) were affected by functional expansion, i.e. by a continuous emergence of ‘not 
obviously visible unknowns’ (cf. Figure 3). 
 

Figure 3. Commercial aircraft functional evolution, retraced in terms of cumulative number of 

newly added, rewritten or deleted paragraphs in FAR-25, which is the American regulatory basis 

that a commercial aircraft must satisfy in order to be certified (Source: Appendix 1 of Paper 1 

appended at the end of this document: using the statistical method which enables to detect the 

presence of functional expansion (Le Masson et al., 2019), we have found that the above pattern 

of increase corresponds to a dynamic of endogenous functional expansion)15 

                                                
 
15 Remark: the curve above, which has enabled us to detect the presence of functional expansion in 
commercial aircraft, has been built by counting the cumulative number of newly added, rewritten or 
deleted paragraphs in FAR-25, which is the American regulatory basis that a commercial aircraft must 
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Are these not obviously visible unknowns ‘with impact’? It seems interesting to investigate 
this question, all the more so as if functional expansion is found to be ‘with impact’, we could 
ask whether there could be a link between the above-mentioned design crises and functional 
expansion. 
 
A means to clarify these questions would be to test the presence of ‘unknown with impact’ in 
rule-based design, by measuring unknowns (e.g. measuring the economic impact of functional 
expansion) in rule-based design. 
 
Empirical motivations 

On the one hand, technique(s) enabling to quantify the value of new, initially unknown '2 
(i.e. the value of information of the unknown) would be a ‘plus’ in situations involving the 
revision of the identity of a product, where unknowns with impact are already obviously 
visible (and where one already knows that their impact will be substantial). This would 
contribute, as a complement, to the management of the value of the unknown in these kinds 
of projects.  
 
On the other hand, functional expansion suggests that ‘not obviously visible unknowns’ may 
be continuously emerging in a hidden way in rule-based design. It appears critical to develop 
techniques that enable to detect them and quantify them, in order to get a better 
understanding the extent of their ‘impact’ (in terms of order of magnitude). Indeed, hidden 
‘unknowns with impact’ could be associated with detrimental scenarii. For instance, a 
decision-maker unaware of the presence of ‘not obviously visible unknowns with impact’ 
could launch (with a decision theory-based investment reasoning) a project that is seemingly 
profitable and decidable – and this project could turn out to be affected by some undesirable 
effects when the initially discreet unknown comes up (if it is an ‘unknown with impact’). 
The other way round, if a decision-maker faces an undecidable situation (e.g. a seemingly 
unprofitable project) from the viewpoint of decision theory, such that no unknown with 
impact is obviously visible, but such that he or she thinks that there is room for designing 
unknowns the impact of which could enhance profitability, how to highlight them? And how 
to integrate them within a managerial logic where they would be treated a valuable resource? 
With which tools? 
 
 

1.4. Research questions  
 
The identified empirical and theoretical motivations lead us to phrase two research questions. 

                                                
 
satisfy in order to be certified. We have built this curve thanks to the data of an historical database 
owned and regularly updated by a department of Airbus responsible for Airworthiness. This curve 
captures the functional evolution of one functional sub-space of commercial aircraft: indeed, we only 
count the changes that affect safety-related functions. This means that the functional expansion 
phenomenon observed in this case is only a lower bound of the total functional expansion that affects 
commercial aircraft.  
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(RQ1): To what extent can the unknown that emerges in rule-based design be ‘with 

(economic) impact’?  

Addressing this question will contribute to the topic of ‘economic evaluation in the unknown, 

in rule-based design’. In the first instance, the intuition is that there is no (or only occasional) 
unknown with impact in rule-based design, and that there is no need to develop techniques 
to evaluate the unknown in this context. But the phenomena mentioned above (rule-based 
design crises, functional expansion, etc.) raise the doubt. And the purpose of (RQ1) is 
precisely to remove doubt. In the framework of (RQ1), we will attempt to build an instrument 

that allows observing the ‘discreet’ unknowns that may be present in rule-based design and 

measure their impact. If the impact turns out to be non-negligible, this will mean that 
‘economic evaluation in the unknown, in rule-based design’ is a genuine topic, and that in 
rule-based design organizations are in need for tools allowing to assess and manage the 
economic impact of the unknown.   
 

(RQ2): In the framework of projects that are undecidable from a decision theory-based 

viewpoint, to what extent and with what kind of tools could ‘unknowns with impact’ 

be the objects of a design theory-based economic value management, in particular an 

informed investment decision-making reasoning that is not based on a betting logic? 

Addressing this question will contribute to the topic of ‘economic evaluation in the unknown, 

in innovative design’. It focuses on the projects which conventional economic calculation 
advises against launching (i.e. they appear either unprofitable or undecidable), but which a 
decision-maker decides to launch, with the purpose of adopting an innovative design approach 
where he or she will design unknowns with impact, whose impact can generate extra value. 
In the framework of (RQ2), we will attempt to design an instrument to measure the additional 

value brought by the unknown. And we will focus on the possible tools to steer this value in the 

unknown.  
 
The research work has started shedding light on these questions by studying three empirical 
economic phenomena in the commercial aircraft industry and mobilizing of design-theory 
models. In the framework of this approach, we refined (RQ1) and (RQ2) in more specific sub-
questions that we addressed in three papers.  

Within (RQ1), we built an instrument enabling to assess whether a specific form of unknown, 
that is ‘functional-expansion-induced unknown’, is an ‘unknown with economic impact’. 
Paper 1, appended in this document, is dedicated to this investigation.  

Within (RQ2), we focused on two investment cases where: (i) the presence of ‘unknown with 
impact’ is not obvious, (ii) an investment was realized although the projects were due to be 
unprofitable according to conventional economic calculation, (iii) the projects generated 
substantial economic returns. These cases are extremely puzzling with respect to traditional 
investment decision-making models. So, we built an instrument in order to detect whether 
or not some hidden ‘unknowns with impact’ are contained in these investment cases and 
could have played a role in the generation of the economic returns, and we double-check with 
empirical case studies. Papers 2 and 3 are dedicated to these investigations.  
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This document is dedicated to both reporting the results of the papers, and introducing the 
new insights developed regarding (RQ1) and (RQ2). The next subsection specifies the outline 
and the content of the thesis.  

1.5. Outline and content of the document 
 
This document is structured as follows: Section 2 summarizes the literature background 
which the three papers of the thesis rely on, which allows us to introduce their respective 
research questions (which are sub-questions of RQ1 and RQ2). Section 3 is dedicated to the 
presentation of the material and method mobilized in this research work: an intervention 
research carried out within Airbus, in the framework of which we used a theoretical 
simulation method, a statistical method and a case study method. Section 4 summarizes each 
individual paper. Then, Section 5 takes a step back and presents the findings obtained 
regarding our two research questions on economic calculation in rule-based design and 
innovative design. Finally, Section 6 discusses these findings and their implications (in 
particular their organizational implications).  
 
 

2. Literature background: the economic impact of functional expansion ; investment 

decision-making models in the face of ‘unknown with impact’ 

 

2.1. Functional expansion, an unknown with economic impact? [Paper 1] 
 
The following sections suggest that one way to assess the extent to which functional 
expansion is an unknown ‘with impact’ could consist in trying to capture the cost impact of 
functional expansion (subsection 2.1.1.). But interestingly enough, no instruments seem to 
exist to assess the costs induced by newly added functions (subsection 2.1.1. and 2.1.2).   
 

2.1.1. The quantitative relationship between product functionality and product 
development effort 

 
Extensive literature is dedicated to the fact that, in several industries, the costs related to 
development programs (i.e., development costs, unit production costs, and by implication, 
unit prices) are subject to increasing trends in the form of cost escalation (i.e., cost increase 
from one product generation to the subsequent generation) and cost growth16 (i.e. cost 
overrun with respect to the initially targeted costs). This concerns, for example, military 
aircraft, helicopters, ships, submarines, battle tanks, and commercial aircraft. For instance, 
Bongers and Torres (2013) found that the costs of U.S. jet fighter aircraft have increased by 
12.6% per year since 1944. Particularly in the defense sector , this cost evolution gave rise to 
a large number of studies that aimed to improve the understanding of the driving forces that 
underlie cost increases and considered leverages that could slow down these cost increases 
(Augustine 1983; Eskew 2000; O’Neil 2011; Arena et al. 2008; Cancian 2010; Dobson 2014; 
Hove and Lillekvelland 2014). In these studies, the significance and plausibility of potential 

                                                
 
16 Cost growth generally undermines the ambitions that contemplate a slowdown of cost escalation 
curves with time 
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cost factors was investigated and discussed. Among these factors are, for example, inflation, 
changes at product level, requirement volatility  involving programs that deviate from their 
initial target, management errors, poor program execution, subcontracting issues, unrealistic 
cost estimates, and flawed initial concept caused by over-optimism and non-progressive 
application of new technologies in the framework of a continuous race for superior 
technologies, leading to development problems. 
 
Functional upgrades turn out to be a major cost factor. Arena et al. (2008), Bongers and 
Torres (2013), and Hove and Lillekvelland (2014) found a strong correlation between the 
upgrade of existing product characteristics (e.g., range, cruising speed, maximum speed, and 
whether the aircraft is carrier-based) and cost escalation. However, in these studies, the 
impact of newly added functions was not quantitatively discussed. Arena et al. (2008), and 
Hove and Lillekvelland (2014) used a regression vector that involved the same variables over 
the studied cost escalation period and that could not be extended to include newly introduced 
product characteristics. Bongers and Torres (2013) used hedonic prices in a Lancasterian 
framework, where the only possible product change scenarios are the optimization and/or 
combination of existing characteristics (i.e., a fixed-size functional space that does not allow 
the emergence of new product characteristics). Arena et al. (2008) explicitly mentioned the 
omission of newly added functions, referring to ‘other elements’ that could not be taken into 
account in their regression analysis (i.e., changes in avionics, software implementation, and 
product longevity) because the variables for measuring them are only available for recent 
systems and not applicable to older systems.  
Despite this, at a qualitative level, Arena et al (2008) interviewed military aircraft programs’ 
prime contractors regarding the topic of cost escalation: the interviewees reported that new 
innovative characteristics in military aircraft (e.g., stealth, software-controlled systems, and 
new mission equipment) are important contributors to cost escalation. Cancian (2010) also 
stressed that the excess cost (i.e., cost growth) incurred during the course of a military 
program may actually be the funding of the development of additional military capabilities 
that were not planned in the initial concept, and that may give extra value to the product. 
These are explicit references to non-negligible costs that seem to have contributed to 

funding the development of new product functions. However, these facts are not 

addressed in quantitative terms.  

 
In addition, the relationship between functionality and cost is also addressed in parametric 
models that aim to provide estimates of design effort. Some models (Function Points 
(Albrecht (1979), COCOMO II (Boehm et al., 2000), cited in Fenton and Bieman (2014)) 
measure the functionality of a software, i.e. measure its functional size (by counting items of 
various types contained in the specifications), in order to provide estimates of development 
costs and time. In the case of hardware, Bashir and Thomson (2001) propose parametric 
models involving product functionality (measured with a complexity metric) and 
requirements severity as parameters to estimate the design effort. According to these 
estimation models, the addition of new functions contributes to increased design costs. 
However, the statistical relationships they involve do not go as far to account for how a 
continuous emergence of new functions affects design work and generates additional 
development costs. 
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In the following subsection, we aim at determining whether the literature on engineering 
changes and change propagation phenomena provides additional insights regarding the 
contribution of new product functions to costs, and regarding how to measure it.  
 
 

2.1.2. The cost of change propagation 
 
The literature on engineering changes distinguishes two types of engineering changes.  
(1) Intentional engineering changes are developed and implemented by design engineers to 
answer market dynamics (e.g., customer demand for more performance), respond to 
regulatory requirements, or follow the emergence of new technologies. (2) While the 
intentional engineering changes concern targeted entities of the architecture (e.g., targeted 
functions, subsystems, and components), they may propagate to other entities within the 
architecture, and trigger additional changes (e.g., rework and redesign) in these other entities 
(Clarkson et al. 2004): this phenomenon is called change propagation. Intentional changes 
may also lead to emergence phenomena, which correspond to unanticipated interactions 
between entities that were not expected to affect one another. Such emergence phenomena 
can result in potentially undesirable effects in the product and lead to additional work (e.g., 
building ‘barriers’ to prevent interaction between the newly interdependent entities) (Carlson 
and Doyle 2005; Alderson and Doyle 2010). If emergence or propagation effects arise, their 
impact on a project can be dramatic (e.g., an ‘avalanche’ of propagated changes, as theorized 
by Eckert et al. (2004), can have catastrophic consequences in terms of costs and delays). 
 
There exist models which compute the cost of change propagation (Georgiades et al. 2017 ; 
Rebentisch et al., 2017). These latter rely on Clarkson et al.’s (2004) seminal matrix-based 
change propagation method (CPM), which enables propagation paths to be traced within a 
design structure matrix (DSM). The CPM (Clarkson et al. 2004) is a probabilistic change 
propagation model that quantifies propagation in terms of likelihood, impact, and risk. As 
illustrated in Figure 4, based on DSMs, the CPM involves a propagation likelihood matrix K =
(M:0)8N0,:N6 , which represents the probability O=2 that a change in entity P (e.g., a subsystem)17 
propagates to another entity Q with which it is interfaced: if an interaction between P and Q is 
highlighted in the DSM, then 0 < O=2 	≤ 1,	and if there is no interaction, then O=2 = 0. 
The likelihood matrix K only covers ‘direct’ propagation paths, that is, propagation paths 
between interfaced entities. However, indirect propagations (with a longer-than-one 
propagation chain, where an entity plays the role of a bridge between two entities that are not 
directly interfaced) may also occur. As shown in the third matrix from the left in Figure 4, the 
CPM offers the ability to predict a ‘combined propagation likelihood,’ which aggregates the 
occurrence probabilities of all propagation paths between two components, including longer-
than-one paths, using the forward CPM algorithm (Clarkson et al. 2004); forward CPM is a 
brute-force search algorithm that considers all possible propagation paths individually. More 
recently, Hamraz et al. (2013) proposed a matrix-based algorithm that, for a given integer k, 

                                                
 
17 Note that most studies that use DSM and CPM are based on component DSM. However, because this study 
specifically focuses on functional expansion and upgrades, we chose to represent functional-DSM in Figure 4 and 
all the DSM used in this work 
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computes UO=2($), which is the probability that a change in P propagates to Q through propagation 
paths with lengths of up to &. 
 
 

Figure 4. Direct Propagation Likelihood matrices (K) and Combined Propagation Likelihood 

Matrices (VK and VK(<)) that are the elements of CPM involved in Georgiades et al. (2017) and 

Rebentisch et al. (2017) 

 
By combining a k-order combined propagation likelihood matrices with a vector featuring the 
individual cost of each entity, one can compute the cost of an engineering change as the sum 
of: 
- the nominal cost of the intentional change 
- the cost of the propagated changes induced by the cost of the intentional change 
 
And if we consider a theoretical sequence of intentional engineering changes, we can generate 
of family of theoretical attainable cost escalation curves, using the Rebentisch et al. (2017) 
algorithm. 
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Figure 5. Possibility to generate a family of cost escalation curves, from the least cost-effective 

(the highest curves; high values of <) to the most cost-effective (the lowest curves; low values 

of <) using the Rebentisch et al. (2017) algorithm 

 
 
What is the nature of the changes covered by cost propagation models? Is functional 
expansion addressed?  
 
The CPM (as most, if not all, propagation models) is designed to help to manage increasing 
complexity, that is, to help to handle products for which the number of elements (e.g., parts 
and components), level of interconnectedness, and vulnerability to emergence and 
propagation tend to increase. Such an increase in complexity results from the fact that 
products are required to be increasingly high-performing, and must therefore be continuously 
improved by engineering changes (Clarkson and Doyle 2002; Alderson and Doyle 2010; 
Clarkson et al. 2004; Rebentisch et al. 2017). These improvements and changes that render 
products increasingly complex include upgrades to existing characteristics. By contrast, it is 
not clear whether the addition of new, innovative entities is also covered. Indeed, the CPM 
and propagation models generally analyze propagation within the composite entities of a 
product breakdown at one moment W in the product evolution dynamics; they do not 
distinguish between already-existing and newly added entities. More specifically, to the best 
of our knowledge, they do not compare the propagation likelihood matrix at time W with the 
previous matrix at time W − 1, and thus do not highlight whether some of the entities 
contained in the matrix at time W might have been absent at time W − 1; that is, newly added 
entities may very well be present in the breakdown considered by propagation models at time 
W, but they are neither identified as ‘new’ nor managed in a different manner to already-
existing entities.  
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Thus, with cost propagation models, the literature dedicated to engineering changes offers an 
instrument which enables to observe and measure the economic impact (the cost impact) of 
functional upgrades along a product evolution dynamics. This instrument does not assess the 
cost impact of newly-added functions. But it can be easily extended for this purpose. Indeed, 
one only has to consider DSM that increase in size over time. This is what Paper 1 is devoted 
to, and enables us to address the three following questions (which are three sub-questions 
for RQ1). 
 
 
(RQ1): To what extent can the unknown that emerges in rule-based design be ‘with 

(economic) impact’?  

Sub-questions for (RQ1) focusing on assessing the cost impact of functional expansion 
 
(RQ1-S1): What is the shape of ‘pure’-functional-expansion-driven development cost 
escalation curves? To what extent does this shape suggest that functional expansion can 
potentially have a large magnitude impact on development costs? 
This sub-question aims at isolating functional expansion and at determining how the different dimensions 
of functional expansion (the new functions themselves ; the propagation phenomena generated by the new 
functions) respectively contribute to cost escalation. 
 
(RQ1-S2): To what extent can well-proven modularity strategies slow down the cost 
escalation curves under functional expansion? 
 
(RQ1-S3): With respect to functional upgrades that have already been demonstrated as a 
significant cost driver, under which conditions may functional expansion also be a significant 
cost driver (conditions under which functional expansion would be a priority in terms of cost 
management, ahead of controlling the costs of already-existing functions)? 
 
With these sub-research questions, we do not aim at modelling very precise cost curves that 
would approximate the real cost curves of a specific product. Given the lack of knowledge 
regarding the cost impact of functional expansion, we rather aim at getting a first 
understanding of the order of magnitude of functional expansion cost impact. Therefore, we will try 
get first insights regarding the behavior of a specific type of costs, that is propagation costs, 
under functional expansion: we will generate cost curves within this restricted perimeter and 
investigate which insights these curves provide regarding (RQ1-S1), (RQ1-S2) and (RQ1-S3). 
 
 

2.2. Investment decision-making models in the face of ‘unknown with impact’ [Papers 2 
& 3] 

2.2.1. From investment decision-making under uncertainty to investment decision-
making in the unknown 

 

Under uncertainty, i.e. in the face of identified, but uncertainly known states of the world, 
decision theory (Wald, 1945, 1949 ; Savage; 1954 ; Raiffa, 1968) and deriving techniques 
enable to reduce and eliminate uncertainty thanks to the collection of new information. In an 
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investment decision situation, one can use these techniques in order to select the utility-
maximizing choice among: (d1) investing in the project, (d2) killing the project and (d3) 
launching an uncertainty-reducing pre-investment trial, with a trial approach (e.g. real 
options (McGrath, 1996), discovery-driven planning (McGrath and MacMillan, 2009)…)  so 
that one can make a better-informed decision later on.  
Decision theory-based investment decision models inform very rigorously the choice between 
these three alternatives, by highlighting the expected-utility-maximizing decisional way. In 
this context: 

- The decision criteria are clear and quantifiable: one can quantify expected utility 
(deduced from expected profitability, expected Net Present Values, etc.). And one can 
quantify the value of uncertainty reduction, i.e. the gain of utility one can hope to earn 
if one chooses to collect additional information in order to reduce uncertainty (i.e. the 
pre-investment trial decisional way).  

- Expected utility depends on the intensity of the uncertainty contained in the decisional 
situation: the more uncertain a project is, the lower the probability of making it 
profitable, and the more intuition-based and the riskier the decision to invest. 
Therefore, in decision theory based models, investments in highly uncertain projects 
are equivalent to risky gambles. They might generate substantial return, but with a 
very low probability of occurrence. Based on this decision-theory-based view, 
organizations are often reluctant to invest in highly uncertain projects.  

- If one decides to invest in a pre-investment trial (d3), the  perspective of making profits 
depends on the reliability of the ‘tool’ which enables to collect and ‘observe’ 
additional, uncertainty-reducing information (appropriate experimentation means, 
trial-and-error learning principles…). In addition, the possibility of reaping the 
expected profitability depends on the decision-maker’s capacity to manage and 
organize uncertainty reduction, with the appropriate tools, processes, methods, 
capabilities, etc. 

In summary, investment decision models based on decision theory rely on a quantified 
uncertainty-reduction logic. The uncertainty is very rigorously managed and controlled with 
a quantified technique.   
 
But in the unknown, that is if the target associated with the investment is unknown (i.e. if 
one is unable to make sufficiently reliable estimates in terms of costs, benefits, technical 
feasibility, potential market, etc.), the third decisional way d3 encounters serious issues. 
Indeed, a trial-based search is likely to be vain. Be the trials sequential or parallel, it will be 
like taking gambles on small steps (Kokshagina, 2013): this is likely to be time and resource-
intensive before. The unknown does not call for updating the state-space and its probabilities, 
but for designing new states of the world (Hooge et al., 2016 ; Feduzi and Runde, 2014). 
Gillier and Lenfle (2018) demonstrate that the unknown requires specific experimentation 
principles, adapted to ‘expandable search’ which differ from Thomke’s experimentation 
principles. But decision theory-based models do not assess the value associated with a search 
in the unknown: experimentation instruments and their accuracy being given, the value of 
the search is the value of the update of already-existing information. The value associated 
with the emergence of new states of the world is not counted.  
In sum, the uncertainty reduction mechanism allowed by decision theory-based models is 
neither helpful nor appropriate to guide decisions and manage the generation of profitability 
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in the unknown. The third abovementioned decisional alternative (d3) (‘launching an 
uncertainty-reducing pre-investment trial so that one can make a better-informed decision 
later on’) is no longer an alternative.  
 

Figure 6. Decisional situation faced by a decision-maker in the unknown 
 
If d3 is no longer a decisional alternative, decision-makers and managers are confronted to a 
kind of dilemma between d1 and d2 in the unknown: 

- Either they invest (d1), but an informed way, i.e. in a ‘pay and let us see what happens’ 
philosophy, which boils down to take a very risky gamble 

- Or they kill the project (d2), i.e. they do not run the risk of not getting a return on 
their investment, but they run the risk of missing promising opportunities 

One can note that decision theory, as a rational theory of choice, will designate the first option 
as the utility-maximizing option and advise for killing the project. But both options are 
unsatisfactory. 
 
In the face of this unsatisfactory dilemma, two kinds of alternative investment decision 
models can be considered.  
 

2.2.2. First class of alternative investment decision models in the unknown: 
Investment decision model based on lightened economic criteria and enriched 
with new criteria 

 

Investing in the 
project

Killing the 
project

d1

d2

Decision space

d3

Investing in the 
collection of 
uncertainty-

reducing
additional

information

XNot an 

option to 

handle

initially

unknown

states of 

the world

Space of 
events Q {q1 ; q2 ; … ; qn } 

p

1-p

{q1 ; q2 ; … ; qn } such that the project is profitable

{q1 ; q2 ; … ; qn } such that the project is not profitable

Utility

Ut1

Ut2

U1: The 

sample of 

additional 

information 

predicts that 

the project 

should prove 

profitable

U2: The 

sample of 

additional 

information 

predicts that 

the project 

should not 

prove 

profitable

P(U1)

P(U2)

0

p’, 1-p’, p’’ and 1-p’’: a posteriori, more certain probabilities obtained with Bayes rule

Expected 
utilities

Expected utility associated with d1

= p.Ut1 + (1-p).Ut2 

Investing in 
the projectd1

p’

1-p’

{q1 ; q2 ; … ; qn } 
such that the 

project is profitable

{q1 ; q2 ; … ; qn } 
such that the project 

is not profitable

Killing the 
project

d2

Utility

0

Ut1

Ut2

Investing in 
the project

d1

p’’

1-p’’

{q1 ; q2 ; … ; qn } 
such that the project 

is profitable

{q1 ; q2 ; … ; qn } 
such that the project 

is not profitable

Killing the 
project

d2

0

Ut1

Ut2

Expected utility associated with d2

= 0

Expected utility associated with d3

= P(U1). max(p’.Ut1 + (1-p’).Ut2 ; 0) +
P(U2).max(p’’.Ut1 + (1-p’’).Ut2 ; 0)

Value of uncertainty reduction = 
Expected utility associated with d3

- max(expected utility associated with

d1 ; expected utility associated with d2) 



 24 

A first class of alternative investment decision models temporarily circumvents the 
profitability criterion and enrich the set of decision criteria with new criteria (quasi-
quantitative, qualitative...). Within these models: 

- The set of decision criteria is specifically designed for highly innovative projects18, it 
is not fixed19 and it is made of non-monetary criteria. Strategic fit, customer relevance, 
communication potential, competitive potential, future business potential, etc. are 
examples of criteria which can be found in such sets (Dziallas, 2020 ; Martinsuo and 
Poskela, 2011 ; Hart et al., 2003). These criteria are informed through more or less 
formal means (from analysis grids to conversational mode) and may include 
perception-based assessments (Shenhar et al., 2001), expert evaluation (Chang et al., 
2008)... 

- Expected profitability is not quantified, since the profitability criterion is 
circumvented. However, this type of evaluation framework does not abandon 
profitability ambitions. The application of the set of criteria is expected to select 
projects that will open new business opportunities, attract new customers… for the 
future, and thus will pay off later on (Shenhar et al., 2001 ; Frederiksen et Knudsen, 
2017). 

- The possibility of making profits which such decision models will depend on whether 
or not the project passes the later phases of the stage-stage process, when the 
profitability criterion is to be reintroduced.  

 
These alternative models propose an investment decision approach which involves a 
‘lightened’ economic management. In this regard, Dziallas (2020) even advocates for 
lightened (more flexible and faster) resources allocation procedures (arguing that the delays 
of ‘traditional’ budget allocation processes may be long and may threaten innovation 
opportunities). The circumvention of the unknown and the use of additional decisional 
criteria enable to bring back the decisional situation to a situation where decision theory 
applies again. So the investment decision is well-informed, based on the alternative criteria. 
It is not gambling-based. And one can note that information which will enable to check 
whether the criteria are met are being collected and fuel an uncertainty reduction mechanism. 
In other words, d3 is restored for criteria other than the profitability criterion. 
But such an investment decision model does not restore in the unknown the level of economic 
rigor that decision theory-based models offer under uncertainty. Indeed, the unknown related 
to profitability is not quantified: it is circumvented. In addition, it is not guaranteed at all that 
the innovation project will pass this step. In this regard, recent works show that such a move 
from exploration to exploitation (in the sense of March’s (1991) distinction) is all but 
automatic, and that having an impermeable frontier between the objectives of exploration on 
the one side, and the objectives of exploitation activities on the other side may actually be a 
threat to innovation (Le Glatin, 2018 ; Le Glatin et al., 2018). 
 

                                                
 
18 According to Schmidt et al. (2009), one should use different sets of evaluation criteria depending on whether 
one assesses incremental innovation or radical innovation projects – i.e. specific evaluation criteria should be 
dedicated to highly innovative projects (and hence projects which may contain unknown). 
19 The set of criteria may vary depending on the strategic objectives of the firm (no one-size-fits-all set of criteria) 
(Hart et al., 2003 ; Martinsuo and Poskela, 2011) 
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2.2.3. Second class of alternative investment decision models in the unknown: 
Design-theory based investment decision models 

 
As mentioned in Section 1, it was recently demonstrated that design theory extends decision 
theory to the unknown (Le Masson et al., 2018): moving from a decision-theory-based 
reasoning to a design-based reasoning when it comes to make decisions in the unknown 
means that a decision problem in the unknown no longer consists in identifying the best 
choice among a set of possible alternatives, but in designing a new, better decision space, 
either by designing new decisions (better than the already existing ones) or designing new 
states of the world (that will lead to reconsider the preference ranking of the decisions that 
can be possibly taken, or that will increase / decrease the expected utility associated with all 
the decisional ways). 
Managing an investment decision in the unknown with a design theory-based decision model 
would provide decision-makers with the possibility to either design a new ‘investing’ 
decisional way d4 which meets profitability requirements or design states of the world which 
render the ‘investing’ decisional way d1 profitable. This suggests that theoretically, in the 
frame of a design-based economic reasoning  in the unknown, it is always possible to reach 
one’s profitability target without necessarily throwing one’s lot with chance, if one designs 
the judicious states of the world or the judicious decisions (i.e. if one designs the judicious 
‘unknowns with impact’) to this end.  
 
This design theory-based prediction is a complete break with the conventional wisdom 
according to which the expected profitability associated with investments in the unknown is 
extremely low and that by implication, investments in the unknown are very risky gambles20.  
And it is extremely counterintuitive in the first instance. A literal interpretation of it suggests 
an investment decision model where any investment project in the unknown can be made 
profitable by anyone who uses a design reasoning. While such a literal interpretation is absurd 
and unrealistic, we can envisage a sounder investment decision model in the unknown, where 
any investment could be made profitable, albeit subject to two conditions:  

(i) the investment is allocated to a project which is suitable for the design of 

new decisional alternatives or new states of the world, i.e. to a project which  
contains unknown with (economic) impact. This raises the question of the 
decision maker’s capacity to detect and highlight non-necessarily obviously visible 
unknowns, i.e. to detect the fact that there is room for ‘unknowns with impact’ to 
be designed. In this respect, research works dedicated to the design of value in the 
unknown highlight the importance of discussing the sources of the unknown, 
which need to be supported and managed with appropriate tools (Hooge, 2020 ; 
Hooge and Stasia, 2016) 

(ii) the decision-maker or other actors in charge of developing the project own 

the indispensable methods, tools, capabilities, processes, organization… to 

successfully design new states of the world or new decisions. This raises the 
question of the suitable techniques to explore the unknow. In this respect, works 

                                                
 
20 This conventional wisdom is based on an assimilation of the unknown to ‘an extreme degree of uncertainty’ 
and relies on the prediction of decision theory according to which the more uncertain a project is, the lower its 
expected profitability, and the more intuition-based the decision to invest. 
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dedicated to the questions of building and managing value in the unknown 
(Hooge, 2020 ; Hooge et Stasia, 2016 ; Gillier et al., 2014), experimenting in the 
unknown (Gillier and Lenfle, 2018), designing generic technologies in the 
unknown (Hooge et al., 2016), etc. stress the importance of being capable to 
rigorously manage unknown exploration, thanks to dedicated organizations, 
managerial approaches, tools, evaluation frameworks  

 
Enriched with these two conditions, such an investment decision model seems more realistic. 
In addition, in comparison with the first class of alternative investment decision models 
described in the previous subsection, we can make the assumption that a design-theory based 
investment decision model could: 

- offer the possibility to reintroduce expected profitability (or utility) in the set of 
investment decision criteria 

- could allow to assess the value of unknown exploration, i.e. the value that one can 
expect to generate if one chooses to explore and structure the unknown, by building 
new states of the world or new decisional alternatives (i.e. by building unknowns with 
impact), in the same fashion as decision theory-based investment decision models 
assess the value of uncertainty reduction (i.e. the gain of utility a decision-maker can 
hope to earn if s/he chooses to collect additional uncertainty-reducing information)  

(the d3 decisional way would have a kind of dual d3’ in the unknown, and a decision-maker in 
the unknown could choose the optimal decision between d1, d2 and d3’ after an expected utility 
calculation). 
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Figure 7. Alternative investment decision-making model in the unknown suggested by Le 

Masson and al.’s (2018) design theory-based decision-making model in the unknown 

 
Such an alternative (to date hypothetical) investment decision model in the unknown would 
be particularly interesting and attractive, because it promises to generate a lot of profitability 
in the unknown in a rigorously managed way (from an economic management point of view, 
it would treat unknown exploration in a quantitative, computational way which is as rigorous 
as the way in which uncertainty reduction is treated by decision theory). Thus, it appears 
relevant to attempt to validate / invalidate this model. To that end, we need to identify real-
world investment cases which we suspect fall within a design theory-based investment 
decision model. And we need to address the following sub-research questions, in order to 
determine whether the cases confirm the model.  
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be the objects of a design theory-based economic value management, in particular an 

informed investment decision-making reasoning that is not based on a betting logic? 

 
In the investment cases which we suspect fall within a design theory-based investment 
decision model: 
 
RQ2-S1: Was the decision to invest [in the project] supported by the perspective of learning 
in the unknown? / Is the remarkable profitability [of the project] attributable to unknown 
exploration and ensuing impact?  
 
RQ2-S2: How were project selection and unknown exploration carried out in the frame of the 
project? Do these practices confirm the assumptions which characterize our hypothetical 
design theory-based investment decision model in the unknown? 
 
Papers 2 and 3 respectively study one investment case and both attempt to address S2-RQ1 
and S2-RQ2. 
 
As we will explain it in more detail in Section 3, RQ2-S1 requires to build an instrument that 
measures / detects the presence of unknown, while RQ2-S2 requires an empirical case study 
method which could double-check the answer to RQ2-S1.  
 
 
3. Material and method 

 
Based on our literature review and our research questions, we need material (empirical and / 
or theoretical), and methods to:  
(1) test whether the shape of cost escalation curves could be a relevant indicator of the 

impact of functional expansion that would offer a better understanding of the 
characteristics of the unknowns which underlie functional expansion (unknowns with or with 
no impact?) 
(2) test the hypothetical design theory-based model of investment decision-making in 

the unknown introduced in subsection 2.2.3. To that end, we need to design an instrument 
that detects the presence / absence of the unknown in investment situations, which would 
then allow us to test whether the situations that were found to contain unknown confirm the 
model. 
 
The commercial aircraft industry and Airbus seem to offer a particularly relevant field in terms 
of material: this engineering intensive industry is highly concerned by the problematic of 
measuring and managing economic impacts ; and it is affected by a functional expansion 
phenomenon (Section 3.1). So this research has been lead in partnership with Airbus, in the 
framework of what can be seen as an intervention research method (Section 3.2). Within 
Airbus, we have identified anomalous phenomena which seemed hardly explainable with 
traditional economic calculation means, and in which we have suspected the presence of the 
unknown. We have studied these phenomena with different methods (theoretical simulation 
; statistical method ; case study) which are explained in Section 3.3.  
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3.1. The commercial aircraft industry and its relevance to study the topic of ‘economic 
evaluation of the impact of the unknown’ 

 
Commercial aircraft belong to the category of Complex Products and Systems (CoPS): they 
are ‘high cost, high technology, software-intensive, engineering-intensive and knowledge-
intensive goods made in projects and small batches’ (Hobday, 2000 ; Hobday and Rush, 
1999). 
 
Indeed, commercial aircraft count several million parts and they are made of hundreds of 
systems (flight control, propulsion, avionics, fuel, etc.) which are themselves individually 
complex. These latter must work under strong constraints (temperature, moisture, 
vibrations…). They must be integrated and installed in a physical space which is ‘small’ in 
comparison with other products (e.g. cars…) (Altfeld, 2010). They are required to work 
together so that the integrated aircraft fulfils its primary function, that is flying from a point 
A to a point B. But beyond that, aircraft manufacturers must certify that the aircraft will fly 
safely from point A to point B. Therefore, aircraft manufacturers have to carry out a large 
documentation effort, numerous, costly testing… in order to certify that newly developed 
products comply with high requirements in terms of safety, reliability and product integrity. 
 
The design of these complex products requires a large workforce of engineers in program-
based organizations. For instance, at the peak of the development of the A380, Airbus 
employed 6000 people on the program, without counting 34 000 people who were directly 
involved at suppliers (Altfeld, 2010). The overall development costs for these programs reach 
several billion dollars: for example, the development costs of the A380 are estimated at 
between 20 and 25 billion dollars, those of Boeing Dreamliner at around 40 billion dollars, 
etc. With these considerable investment volumes, launching one program has an impact on 
the cash reserves of the company, limiting the possibilities for launching other programs 
(Spitz et al., 2001), and hence leaving little room for errors in investment decision-making or 
in cost management. In this context, the measure of economic impacts, in the form of careful 
profitability analyses, costing analyses, etc. is indispensable to help rigorously manage 
economic performance. And commercial aircraft manufacturers are precisely massive users of 
economic calculation and economic management tools (well-established finance 
organizations, a large set of tools, indicators, methods, such as financial tools, business cases, 
costing models, controlling, etc.).  
 
As with complex products in general, the cost of the early phases of commercial aircraft 
development programs (which involve the definition of design objectives, choice of 
architecture, etc.) represents only a small part of total development costs, but the decisions 
made during these phases are decisive for total development costs: architecting decisions in 
the framework of complex systems design represent less than 1% but determine 80% of the 
overall costs (Simmon et al., 2005, cited in Sinha, 2010). In addition to having high economic 
stakes, making decisions in the early phases of a complex product development project is 
itself ‘a complex phenomenon’ (Jankovic et al., 2009): numerous actors owning the 
knowledge and expertise associated with the different product (sub)systems are involved, and 
issues related to the ‘collaborative’ nature of the decision-making may be encountered, 
especially when it comes to define the project objectives, to define the project planning, etc.. 
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But as mentioned in Section 1, behind their seemingly stabilized architecture, commercial 
aircraft are concerned by a continuous emergence of ‘hidden unknowns’ (in the form of new 
functions), in the framework of a functional expansion dynamic.  
 

 
Figure 3. Commercial aircraft functional evolution, retraced in terms of cumulative number of 

newly added, rewritten or deleted paragraphs in FAR-25, which is the American regulatory basis 

that a commercial aircraft must satisfy in order to be certified (Source: Appendix 1 of Paper 1 

appended at the end of this document: using the statistical method which enables to detect the 

presence of functional expansion (Le Masson et al., 2019), we have found that the above pattern 

of increase corresponds to a dynamic of functional expansion) 

 
Thus, from the viewpoint of the commercial aircraft industry, it appears of utmost importance 
to determine whether some ‘non obviously visible unknowns’ are a variable ‘with impact’ that 
should be taken into account when evaluating economic aspects and taking decisions. 
 
 

3.2. An ‘intervention research method’ within Airbus 
 
This research work was carried out in the framework of a partnership with Airbus (a CIFRE 
contract24 running from November 2016 to November 2019). We had the status of an Airbus 
employee within the department responsible for architecting and ensuring the 
synchronization of the different phases of the product development in the framework of the 
Product Development Plan, from program launch to aircraft entry into service.  
 
Within Airbus, we have identified anomalous phenomena which seemed difficult to explain 
with traditional economic calculation models – and we have suspected them to involve 
‘unknowns with impact’:  
- a development cost escalation phenomenon affecting commercial aircraft which is puzzling 
for a rule-based design product.  This led us to develop an instrument for assessing the 

impact of functional expansion on cost escalation curves and start addressing RQ1 and 

its sub-questions (Paper 1). This phenomenon was brought to our attention at the kick-off 
meeting of this research work in Airbus, in October 2016, and the costing department has 
followed with interest the progress of our research on this topic during the PhD. 
 

                                                
 
24 Convention Industrielle de Formation par la REcherche (Industrial Convention of Training through Research) 
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- two investment cases where: (i) investments have been made although the projects were 
due to be unprofitable according to conventional economic calculation, (ii) the projects 
generated substantial economic returns.  These cases are extremely puzzling with respect to 
traditional investment decision-making models. And managers who had been involved in 
these cases and / or were still involved in their follow-ups were interested in getting a model 
that would scientifically explain how these economic returns had been generated.  In the face 
of these cases, we built an instrument in order to detect whether or not some hidden 

‘unknowns with impact’ are contained in these investment cases, and whether these 

cases could provide empirical confirmation for the design theory-based investment 

decision-making model introduced in section 2.2.3 (Papers 2 and 3 – one paper for one 

investment case). 
 
Building observation instruments that would isolate / highlight ‘not obviously visible 
unknowns’ and assess their impact was of interest both from the academic viewpoint and 
from Airbus viewpoint (with the above mentioned anomalies that can be seen as feelings of 
discomfort (Hatchuel and Molet (1986) expressed by Airbus). So we have led what can be 
seen as an intervention research (Hatchuel and David, 2008) within Airbus, although, beyond 
the steering committees that regularly gathered our academic supervisors and industrial 
supervisors, the ‘intervention’ side of the research is not obvious at first sight.  
 
Indeed, the methods used to build the observation instruments and study the anomalous 
phenomena introduced above (which are explained in details in Section 3.3) mostly involve 
theoretical investigations and ex-post analyses of past projects with empirical data being 
collected from two main sources: an access to the internal documents related to past projects 
(minutes of meeting, meeting presentations, technical documents, etc.) (we would not have 
necessarily accessed them without a status of Airbus employee) ; and numerous and regular 
exchanges (interviews and informal discussions) with persons and teams related to the 
investigated topics.  
Our implication in some projects or activities within Airbus (that were not necessarily related 
to cost escalation or the two investment cases mentioned above) helped us get a better 
understanding of the functioning of Airbus organizations. But with a few exceptions 
(participation in events or workshops related to our research topics, etc.), we rarely 
intervened on Airbus projects or activities with our researcher’s cap on.  
 
However, the knowledge generated by our instruments which assess the impact of the 
unknown has not only provided new explanatory frameworks for the anomalies that 
concerned Airbus. This knowledge also has organizational implications. It namely highlights 
actions / activities devoted to ‘not obviously visible unknowns with impact’  - these actions 
which were thus far invisible (since both the unknown and its impact were invisible). So our 
research offers new representations for collective action, and it calls for transformations at 
the level of collective action.  This corresponds to the principle of inseparability between 
knowledge and relationships (Hatchuel, 2001) according to which modifications at the level 
of knowledge necessarily entails modifications at the level of the relationships (between the 
actors of a collective). This can be seen as an ‘intervention’ side of our research.  
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One can note that Section 4 which summarizes our three papers essentially focuses on the 
‘knowledge’ generated by our research. We come back to the ‘organizational’ and 
relationships aspects in Section 6 (with section 6.1 dedicated to the nature of the knowledge 
produced during this research work and sections 6.2 to 6.4 dedicated to its organizational 
implications). 
 
 

3.3. Method to address the sub-questions of (RQ1) in Paper 1 
3.3.1. An anomalous development cost evolution dynamics 

 
Within a product emblematic of rule-based design, the engineering departments of the 
commercial aircraft industry should a priori have accumulated a solid capital of design 
knowledge, know-how, methods, design rules, etc., and should be able to use this capital with 
increasing efficiency, i.e. develop new product designs at increasingly lower development 
costs, within increasingly lower development times, thanks to learning effects.  
 
But commercial aircraft development costs have by no means moved down a learning curve. 
They have steadily increased with time (see Figure 9a). And development times (from 
program launch to aircraft Entry Into Service) have also steadily increased (a second-degree 
polynomial increase, represented in Figure 9b below). 
 

 
Figure 9a. Commercial aircraft development cost escalation (in 2012 $m) (Source: Nolte et al., 

2012) 
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Thus far, the tasks dedicated to functional expansion are not claimed by any corporate 
department. They may be managed by the traditional organizations (the organizations in 
charge of already-existing functions, the organizations in charge of product architecture and 
integration, etc.), in a silent, unclaimed way, without specific tools and methods, without a 
specific budget line, etc. that would be dedicated to functional expansion. The accountability 
systems or costing systems of large R&D firms do neither have an area of expenditure nor a 
specific budget dedicated to functional expansion. The cost of functional expansion is blended 
with that of other activities. To date, a manager confronted to a cost escalation curve 
experienced by a product affected by functional expansion is neither able to say whether or 
not, nor able to say with which intensity newly added functions play a role in the cost increase 
dynamics. And if functional expansion turns out to be a driving force in a cost escalation 
trend, a manager is not able to answer the question: what approaches (in terms of means of 
action, management, organization, method…) could be considered and prescribed to 
counteract such phenomena and their harmful economic impacts? 
 
In the face of these elements, we will attempt to develop an instrument which measures the 
impact of functional expansion in cost escalation curves. We introduce the method we use to 
do so in the following subsection. 
 

3.3.2. A theoretical simulation-based method to assess the cost impact of functional 
expansion 

 
Our research approach to investigate the relationship between functional expansion and costs 
could have been empirical: collecting data about the incurred costs of past aircraft programs, 
and identifying in the cost structure the costs associated with newly added functions. Beyond 
the fact that such a study on real-world costs would have implied confidentiality issues, we 
have also noticed that distinguishing between functional-expansion-induced costs and 
upgrades-induced costs (especially distinguishing between functional-expansion-induced and 
upgrades-induced propagation costs) is not so obvious. In particular, given the large lack of 
knowledge regarding the order of magnitude of the cost impact of functional expansion, we 
do not know what kind of ‘instruments’ (especially in terms of precision) would be needed 
to empirically capture the costs of functional expansion. 
 
So in the framework of this thesis, we have rather used a theoretical approach (that goes 
beyond the perimeter of the commercial aircraft industry) to address the question of the share 
of responsibility of functional expansion in a cost escalation curve. Instead of carrying out an 
empirical study limited to a specific product, we attempted to get a general understanding 
(non-specific to any product), with a simulation method. By combining and adapting models 
that exist in the literature, we built a simulation instrument that enables to generate cost 
escalation curves, and we assessed how functional expansion impacts the shape of a cost 
escalation curve (of a family of cost escalation curves more specifically). This instrument 
allowed us to capture the order of magnitude of the impact of functional expansion on a 
specific sub-type of development costs, that is propagation costs. 
After this quantitative characterization of functional expansion in terms of cost impact, we 
have been interested in managerial approaches to control the studied phenomenon, i.e. to 
manage the impact of functional expansion. Again, we have used a theoretical, simulation-
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based approach: on the one hand, simulation of modularization strategies, and on the other 
hand, anticipation-oriented overinvestment strategies. This allows us to identify the extent to 
which functional expansion-induced unknown questions the economic management 
techniques conventionally used in rule-based design. 
 

3.4. Methods to address the sub-questions of (RQ2) in Papers 2 and 3 
3.4.1. Two puzzling economic calculation practices in Airbus – promising candidates 

for offering empirical evidence for the existence of a design theory-based 
investment decision model 

   
First puzzling economic calculation practice: the Flextrack robot (Airbus Saint 

Nazaire) 

 
The Flextrack robot is an automated drilling system, patented by Boeing, which may be used 
to drill the orbital and / or longitudinal joints of an aircraft fuselage28. 
 
 

 
Figure 10a. In red and green, the orbital drills on an aircraft fuselage 

 
 
In a context where the traditional technique to drill holes (manual drilling, which consists in 
putting grids (templates, like stencils) against the fuselage and drilling the holes with a hand 
drill) is well-mastered, but time-intensive, the perspective to automate drilling activities is 
investigated by aircraft manufacturers. In particular, Boeing has developed, patented and 
implemented the Flextrack drilling system. The principle consists in putting rails across (resp. 
along) the fuselage for an orbital drill (resp. longitudinal drill). And the Flextrack (the robot) 
is a platform which moves along the rails and drills the holes. Boeing has implemented the 
Flextrack on several of its product lines (since 2011 on 787 ; since 2013 on the 777 ; and also 
implemented on 767, 747-8…). And three suppliers own the license.  
 
 

                                                
 
28 The structure of an aircraft fuselage is made of a skeleton (frames and stringers) which is recovered by a skin. 
The whole formed by the skeleton and the skin is assembled thanks to orbital and longitudinal rows of rivets. 
Installing these rivets requires making rows of orbital and longitudinal holes 
 

For a semi junction of 

Airbus A330: 1334 holes  
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Figure 10b. The Flextrack rails and the robot (in blue) drilling an orbital drill in red 

 
Between 2009 and 2013, the plant of Airbus Saint Nazaire (France) started its first activities 
related to the Flextrack (and to automated drilling activities), with an R&T project which 
aimed at developing first bricks of knowledge regarding the technology. And in 2013, the 
opportunity of introducing one or two robots in the production environment (on one station 
of the A330 line) was studied. Eleven different implementation scenarii were considered: they 
differed depending on whether one or two robots were to be deployed, depending on whether 
the robot to be introduced was a retrofit (i.e. an adaptation to the production environment) 
of the prototype which the R&T had used for its laboratory experimentations or a new robot 
purchased from a supplier, depending on whether purchasing an extra module (a sensor 
allowing the robot to better detect the location of the hole to be drilled) was part of the 
scenario or not.  
In order to assess the economic interest of these scenario, the traditional economic calculation 
process of the plant was followed: a business case (involving a profitability estimation with 
an NPV calculation) was associated with each scenario. The perspective of ergonomic gains 
for the operators, the fact that Boeing had already deployed the robot or the fact that it could 
be used on other production lines was not taken into account in the calculation. In each of 
the studied scenario, the profitability criterion required by the plant to allow the launch an 
investment project (that is a less-than-two-year payback time) was not met.  
 
In order to represent the extent to which the Flextrack project was predicted to be 
unprofitable, we have computed the mean and the standard deviation of the 11 profitability 
estimations. This allows to plot the gaussian probability distribution featured in blue in 
Figure 11 below, which is centered around 0.5 � saved per drilled hole, and which is rather 
highly uncertain. This probability distribution is far from 1.1 euro saved per drilled hole, the 
threshold which should have been attained to make the project profitable. In the blue 
distribution, 1.1 euro saved per drilled hole is a highly uncertain value. In sum, in this 
investment decision situation, everything advices against launching the project, which is 
expected to be all but profitable.  
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Figure 11. The Flextrack investment project – a seemingly all but profitable investment 

 
But in spite of this seemingly unfavorable investment situation, it was decided to invest in a 
trial involving a prototype (the robot used by the R&T for the laboratory experiments) before 
considering the purchase of a new robot.  
 
One year after the beginning of the deployment of the prototype in the production 
environment, its performance was assessed: it was about 0.8� saved per drilled hole 
(represented by the red line in the Figure below). And based on this information, ten new 
profitability estimations were computed in order to assess the economic interest of 
purchasing a new robot (with the same economic evaluation process as in the first step). 
Again, we computed the mean and the standard deviation of the savings per drilled hole 
involved in these 10 profitability estimations. This enables us to plot the green probability 
distribution in the Figure below. Although the profitability limit (in black) is not yet reached 
with the green curve, the observed profitability dynamics that had been set in motion was 
considered as sufficiently promising to suggest interesting spillovers (beyond the A330 
production line) and to suggest the possibility of going beyond this threshold later on. In 
addition, in the meantime, the plant had upgraded its priorities in terms of automation and 
the profitability constraint for this type of project had been revised downwards. So the 
economic results associated with the green curve were considered as sufficiently conclusive 
to validate the decision to purchase a new robot.  
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Figure 12. Dramatic performance shift following the deployment of the prototype 

 
The shift from the blue to the green probability distribution is striking: we are in the face of 
the same investment project, on the same production line (A330), on the same work station. 
And the blue and the green curve represent two very different investment projects. How can 
the shift from the blue to the green curve be explained?  
 
In sum, two elements are puzzling in this case: the investment decision, and the huge returns.  
The fact that an investment was conceded, whereas economic calculation advised against 
investing can be seen as a kind of ‘deviant’ economic calculation practice. The project did not 
respect the traditional investment rule. We can add that although the robot was innovative, 
the project did not seem to involve much innovative design and unknown at first sight: indeed, 
the introduction of a new machine is very common in a plant. 
 
This leads to ask the questions:  

- are we in the face of a deviant, irrational (and worrying) economic calculation practice 
which, this time, ended well (thanks to luck), but such that nothing guarantees that 
it will not lead to a failure if it is reiterated? 

- or are we in the face of an outstandingly performing uncertainty-reducing-learning-
by-doing mechanism? 

- or, contrary to appearances, would there be in this case unknown the impact of which 
would have generated the move from the blue to the green curve? Would the decision 
to invest and the generation of the huge returns be the result of an original economic 
reasoning in the unknown?   

 
A theoretical interest underlies this question: could the Flextrack case provide empirical 
evidence for the theoretical, design-theory-based model introduced at the end of Section 
2.2.3.?  
At the same time, a manager of the A330 production line was interested in rigorously 
highlighting the mechanisms which had allowed such returns.    
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Second puzzling economic calculation practice: an Airbus innovation cluster (AIC) 

which manages a portfolio of incubation and acceleration projects 

 
In January 2019, we presented our analysis of the performance of the Flextrack case at the 
partners' day of the chair Design Theory and Methods for Innovation. This day was attended 
by the innovation leader of an innovation cluster in Airbus , who manages a portfolio of 
incubation and acceleration projects. He brought our attention to this very portfolio, the 
performance outcomes of which had some similarities with the Flextrack case. He was seeking 
to rigorously explain the mechanisms underlying the generation of the portfolio performance, 
and he asked us whether we were interested in carrying out a study on this portfolio and its 
economic performance.  
 
The project portfolio in question selects difficult, technology-based problem-driven topics 
that traditional organizations perceive as so risky that choose not to launch them. These 
projects are highly uncertain. And economic calculation either renders negative results, or is 
simply impossible (a so high level of uncertainty that economic data cannot be quantified). 
The innovation cluster is very selective about the projects which join the portfolio. In 2018, 
36 out of the 1500 projects which applied were selected. And in 2018, the portfolio 
demonstrated a remarkable profitability (x6 rate of return). In addition, among 55 projects 
incubated or accelerated within this portfolio between 2013 and 2018, 41 (i.e. 75%) gave rise 
to further investments within the very same organizations which had chosen not to launch 
them.  
 
Contrary to the case of the Flextrack robot where the presence of innovative design is not 
obvious, innovation is at the core of the mission of the innovation cluster. But the decision to 
invest in these highly uncertain, seemingly unprofitable projects remains daring. And the x6 
rate of return is huge and surprising for a portfolio made of projects that should not have been 
launched29. Indeed, according to traditional decision theory-based model, the more uncertain 
a project is, the lower the probability of making it profitable, so the lower its expected 
profitability. Put differently, the probability that an uncertainty reduction mechanism 
generates ‘considerable’ value is generally extremely low, according to decision theory.  
 
This leads to raise the same kind of questions as in the case of the Flextrack robot: do the 
economic results of the portfolio result from luck? Do they result from uncertainty reduction 
(in this case, it should be an outstandingly performing uncertainty reduction mechanism)? 
Or could unknowns with impact explain these remarkable economic results?  
A theoretical interest underlies this question: could this portfolio provide empirical evidence 
for the theoretical, design-theory-based model introduced at the end of Section 2.2.3.? 
 
 

                                                
 
29 In Airbus, the economic performance of the portfolio, especially the x6 rate of return, also aroused surprise 
(sometimes doubt). So for the manager of this portfolio, our research was the opportunity to complement his 
2018 profitability analysis with an ‘independent’ study, that would describe the mechanisms that led to generate 
such profits (and confirm the solidity of the economic results)   



 41 

3.4.2. Methods used to test whether these two puzzling economic calculation 
practices confirm the design-theory-based model introduced at the end of Section 
2.2.3. 

 
We studied the Flextrack project first, the innovation project portfolio second. But the 
research questions and the broad lines of the methodological approaches are similar.    
On the one hand, in both cases, we used a statistical method to determine whether the 
outcomes obtained in these two cases result from luck, uncertainty reduction or the unknown. 
In particular, we utilized Bayesian statistics to test whether the economic outcomes resulted 
from an outstandingly performing uncertainty-reduction-only mechanism.  
On the other hand, we have carried out case studies in order to double-check the results of 
the statistical test and get a better understanding of the managerial practices underlying these 
cases. One can note that these cases are particularly appropriate for single case study 
(Siggelkow, 2007) research because they are anomalous, seemingly deviant phenomena 
within the decision-theoretic framework. In the first instance, they do not fall within an 
existing theoretical framework. They are unexplained. So investigating these cases would 
potentially provide us new with insights regarding investment and profitability within an 
unknown-including, design-theoretic framework. The tables below summarizes the main 
source of data collection in the framework of these statistical and case study methods.    
 

Table 1. Summary of the data sources in the case of the Flextrack project 

Internal documents Interviews Observations

Documents internal to Flextrack project:

• Economic evaluation documents (initial business cases and

associated NPV calculations, and those completed after

one year)

• The minutes and presentations associated with some

preparatory meetings

• The minutes of the kick-off meeting of the first launch of

Flextrack (retrofitted prototype)

• The minutes of the milestone review meeting – including

the last milestone which provides the figures related to the

performance of the robot

• Etc.

à These documents provided us the figures that allowed

us to describe the evolution of the performance of the

Flextrack robot

Between November 2017 and June 2018:

• 3 one-hour interviews with the manager of head of the

A330 projects (+ additional informal discussions)

• 1 one-hour interview with two members of the initial

R&T project, who participated in the deployment of the

robot on the A330 line

• 1 one-hour interview with the project leader of the

subsequent project allowed by Flextrack (i.e. deployment

of 20 robots on the A320 production line)

(October 2019:

• 1 one-hour meeting with two members of the initial R&T

project, who participated in the deployment of the robot

on the A330 line (the same as in 2018) in order to show

them the results)

December 2017:

• Participation in the organization of a workshop the

objective of which was to ‘explain’ and ‘explicit’ the

mechanisms which had allowed the Flextrack project

to be profitable

• Informal discussions with workshop participants



 42 

 

Table 2. Summary of the data sources in the case of Airbus innovation cluster’s (AIC) 

portfolio of incubation and acceleration projects 

 

 

4. Summary of the papers 

4.1. Summary of Paper 1: Cost-effectiveness management under functional expansion: 
simulation of product development cost escalation curves and modularization 
strategies  

 
Status: first version submitted to Research in Engineering Design in March 2020, revision 
submitted in November 2020 
 
Previous version: Agathe Gilain, Pascal Le Masson, Benoit Weil. The hidden feat behind 
development cost escalation - how engineering design enables functional expansion in the 
aerospace industry. ICED, Aug 2019, Delft, Netherlands. ⟨hal-02095385⟩  
 
This paper is theoretical, simulation-based. It studies how functional expansion (El Qaoumi, 
2016 ; Le Masson et al., 2018) ‘contributes’ to accelerate cost escalation curves, in an attempt 
to determine whether functional expansion is an ‘unknown with impact’.  
 
The literature dedicated to cost escalation identifies several factors responsible for cost 
increases, among which changes at product level, requirement volatility  involving programs 
that deviate from their initial target, management errors, poor program execution, 
subcontracting issues, unrealistic cost estimates, and flawed initial concept caused by over-
optimism and non-progressive application of new technologies in the framework of a 
continuous race for superior technologies, leading to development problems, etc. According 
to statistical studies (Arena et al., 2008 ; Bongers and Torres, 2013 ; Hove and Lillekvelland, 
2014), changes at product level are a significant cost drivers. But these studies only consider 
one kind of product changes: upgrades of existing product functions. The addition of new 
functions is reported to be costly, based on qualitative investigations (interviews). But it is 
not assessed quantitatively.  
 

Internal documents Interviews Observations

Documents internal to the AIC:

• The excel file which records the progress of each individual project (in

terms of economic value, maturity, prototyping progress, etc.) and which

is continuously kept up to date by the AIC innovation leader

• The AIC evaluation of the year 2018 (critical summary of its way of

working, its achievements, its economic performance, its perspectives for

2019)

• The Mission Letters for each individual project joining the portfolio

• Projects final presentations summarizing the outcomes of the incubation /

acceleration process and presented to the members of the selection board

AIC’s documents for communication within Airbus and outside Airbus

• Brochures, communication documents (toward Airbus employees) which

present the AIC and the portfolio, the incubation / acceleration, its

resources, its offers, its performance

• Minutes of roundtables presenting the AIC in external events

Between mid-February and mid-June 2019:

• 4 one-hour interviews with the AIC Innovation

Leader (+ additional informal discussions)

• 3 one-hour interviews with incubation /

acceleration project owners (responsible for 3

different projects)

• 2 one-hour interviews with the coaches

responsible for the methodological support

offered to the project (+ additional informal

discussions)

Between mid-February and October 2019:

• Informal discussions with people (often the

interviewees) involved in the AIC

October 2019

• Attendance of an ‘Innovation Event’ organized

by the AIC.

- Co-facilitation of a workshop dedicated to ‘the

creation of value with prototyping’

- Informal discussion with project members who

presented the outcomes of their incubation /

acceleration project in a marketplace format

December 2019

• Attendance of a AIC monthly meeting where

candidates pitch their ideas and where

technology watch information are shared
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This sub-question aims at isolating functional expansion and at determining how dimension of functional 
expansion (the new functions themselves or the propagation phenomena generated by the new functions) 
contributes to cost escalation. 
 
(RQ1-S2): To what extent can well-proven modularity strategies slow down the cost 
escalation curves under functional expansion? 
 
(RQ1-S3): With respect to functional upgrades that have already been demonstrated as a 
significant cost driver, under which conditions may functional expansion also be a significant 
cost driver (conditions under which functional expansion would be a priority in terms of cost 
management, ahead of controlling the costs of already-existing functions)? 
 
We addressed each of these three questions with a simulation. In each simulation, we 
mobilized a cost propagation model30 (Rebentisch et al., 2017). Cost propagation models are 
particularly appropriate to simulate families of cost escalation curves. Indeed, as mentioned 
in subsection 2.1.2., they are based on &-order combined propagation likelihood matrices 
CL(k). In these matrices, [M0:(<) is the probability that the implementation of an intentional 
engineering change in the function Fj propagates to Fi through a propagation path the length 
of which is equal to or less than &, and requires addition design work and costs for Fi. 
 

 
Figure 14. A <-order combined propagation likelihood matrix (Clarkson et al., 2004), used in 

the Rebentisch et al. (2017) cost propagation model 

 
	‘&’ denotes to the length of a propagation chain, i.e. to the capability of an engineering 
department to prevent the occurrence of longer-than-& propagation chains. The integer & can 
be seen as an indicator of an engineering department’s capital of architectural knowledge 
(design rules, capability of the teams in charge of the different functions to coordinate with 
one another,…).  
If we define a theoretical product evolution dynamics, driven by both bundles of upgrades and 
the emergence of new functions at each time step, we can generate a cost escalation curve 
associated with one integer ‘&’. In order words, the integer ‘&’ involved in cost propagation 
models enables to discretize the cost space within which engineering departments ‘play in the 
framework of a product evolution trajectory.  
 
 

                                                
 
30 Subsection 2.1.2 gives details about cost propagation models 
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Figure 15. A family of cost curves where each cost curve corresponds to a certain capacity of 

the engineering department to prevent longer-than-k propagation paths 

 
  

Based on cost propagation models, we ran three simulations.  
 
Simulation 1: getting a better understanding of the shape of pure-functional-

expansion-driven cost escalation curves 

Simulation 1 aims at addressing RQ1-S1, i.e. at generating pure-functional-expansion-driven 
cost escalation curves, in order to get a better understanding of their shape. The simulation 
does not aim at modelling the cost behavior of a specific product, but at assessing the order 
of magnitude of the cost impact of functional expansion. However, to set the simulation 
parameters, we were inspired by the fact that in the case of aircraft, the number of regulatory 
paragraphs has tripled between 1965 and 2018 (details on the data in Figure 3, in 
Introduction). So we simulated a functional-expansion-driven product evolution dynamics 
such that the size of the functional space triples. In addition, computing31 CL(k) matrices when 
the functional size is large (i.e. the size of the DSM is large), is very time intensive. So this 
restricted the possibilities in terms of size of the functional space. We started at time W	 = 	0 
with a theoretical product made of 8 functions, (̂, … , _̂. And we ran the simulation over 16 
iterations, adding one function _̂7` at each time step (i.e. a ‘modest’ functional expansion 
mechanism), ending with a size-24 functional space at W	 = 	16.  
In this simulation, at each time W,  
- we counted the nominal cost Cnew = 10 of the newly-added function _̂7` 
- we counted the propagation costs induced by the addition of ̂ _7`. If a function of the already-
existing-functional space ( (̂, *̂, …, _̂7`b() is affected by a propagated change originating 
from ̂ _7` through a propagation path the length of which is less than or equal to &, a redesign 
which costs x% of its initial cost is required. In the cost escalation curves plotted in Figure 16 

                                                
 
31 With Matlab 
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functional expansion is, is part of the objectives of
this paper
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below, we simulated redesigns which cost 20% of a function initial costs, and we made &	vary 
between 1 and 4, which led to generate four cost escalation curves. 
 
Figure 16 below (explained in more details in the paper), shows that the costs induced by 
newly added functions may be substantial if propagation costs are not well-controlled, that is 
if the propagation depth of an intentional change can be as large as 4. One can note that the 
curves CL1, CL2, CL3 and CL4 only represent a lower bound of the possible cost impact of 
functional expansion. CL5, CL6… curves would be even higher32.  
 
 

Figure 16. Cost escalation curves in the frame of a pure-functional-expansion-driven product 

evolution dynamics, such that one function is added at each iteration and propagates changes in the 
already existing functional space. A ‘CLk’ (with k > 0) curve is a cost escalation curve computed with 
the combined likelihood propagation matrix CL(k) – only length-less-or-equal-to-k propagation paths 

may occur.  
 
In sum, the unknown introduced by functional expansion in a product architecture may 
involve dramatic shocks, which themselves may induce huge propagation costs (indeed, the 
linear curve CL0 illustrates the nominal costs of the newly-added functions: the costs ‘above’ 
this curve are due to propagation). Controlling the propagation costs induced by functional 
expansion seems crucial, if one wants to avoid dramatic cost escalation trends.  
  
So in Simulation 2, we investigated whether modularization, a well-proven method to prevent 
undesirable propagation chains and reduce costs, can slow down cost escalation under 
functional expansion.  
 
Simulation 2: is the cost-reduction power of modularization preserved under functional 

expansion?  

                                                
 
32 We have not computed CL5, CL6… curves, because computing CL(k) matrices for large values of k is very long 
– several hours 
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Figure 20. Simulation of a product evolution dynamics where the upgrade of already existing 

functions is ill-controlled by engineering departments. 

Left: family of cost escalation curves associated with an ill-controlled, pure-upgrades-driven product 
evolution dynamics. Right: the same upgrades as on the left-figure have been simulated, but in 
addition, at each iteration, one new function was added. 
 
Figure 20 shows that introducing new functions in a product evolution dynamics where the 
costs of upgrades are ill-managed has a visible, but non-spectacular impact of functional 
expansion on an ill-controlled upgrade-driven cost escalation curve. 
 
But conversely, if the engineering department is capable of upgrading already-existing 
functions without incurring additional costs (i.e. although they are upgraded, the 
development costs of the already-existing function remain stable), adding one function at 
each iteration may have a significant impact in the cost escalation curve.  
 

Figure 21. Simulation of a product evolution dynamics where the upgrade of already existing 

functions is well-controlled by engineering departments. 

Left: family of cost escalation curves associated with an well-controlled, pure-upgrades-driven product 
evolution dynamics. Right: the same upgrades as on the left-figure have been simulated, but in 
addition, at each iteration, one new function was added. 
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The cost escalation curves plotted in Figure 21b may be misleading for a manager who is 
unaware of functional expansion and aims at reducing costs:  
- this manager may be tempted to deploy a modularization strategy (e.g. invest in the 
deployment of a platform) – but such a strategy is likely to be disappointing, since functional 
expansion rapidly eliminated architectural independencies 
- this manager may be tempted to pressure engineering departments to cut the costs of the 
individual functions. But we are in a scenario where engineering departments already master 
the costs of functional upgrades. So the cost reduction potential of such a strategy is limited… 
And as we will discuss later on, we can ask whether such decisions under functional expansion 
would not tend generate to crises in engineering departments, when engineers departments 
realize that they will not be able to reach the functional targets within the allocated budgets…  
 
To conclude this summary of our first paper, we can highlight the following contributions.   
 
Firstly, the results show that functional expansion requires a double-deliverable from 
engineering departments: (1) ensuring that the functional requirements of the individual 
product functions will be effectively met (classical rule-based design tasks) ; (2) continuously 
decoupling the expanding functional space, i.e. continuously designing independencies in the 
unknown (innovative-design activities, which are generally not expected in rule-based 
design).  
 
Secondly, these results contribute to the literature on platforms, which has already 
emphasized the importance of managing and anticipating platforms obsolescence in order to 
avoid a violent loss of leadership (Meyer and Lehnerd, 1997, etc). This paper highlights that 
functional expansion may be a major obsolescence factor from the viewpoint of a platform 
architecture. This suggests that regarding watching for signs of platform obsolescence, design 
engineers should be very attentive to obsolescence that may originate from functional 
expansion. If an engineering department denies or ignores functional expansion and chooses 
traditional cost reduction strategies under functional expansion (e.g. modularization, 
reduction of the nominal costs of the individual functions, etc.), the results are likely to be 
disappointing or even worse. 
 
Finally, our results contribute to interfaces challenges (Lakemond et al., 2013) in product 
development projects. Indeed, they highlight that a very specific source of interface challenge 
(Lakemond et al., 2013), that is functional expansion-driven product complexity (which can 
be distinguished from upgrades-driven complexity) requires particular early attention 
(anticipation?) from design engineers, project managers, etc.: if ignored, denied, ill-managed, 
it may alone trigger considerable costs (those which our simulation has assessed). In addition, 
as sources of interface challenge may combine with each other and reinforce each other 
(Lakemond et al., 2013), functional expansion-driven product complexity may combine with 
production complexity, organizational separations…, and generate even high-magnitude 
(economic) consequences.   
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All these elements clearly show that functional expansion-induced unknowns are unknowns 
with impact, which emphasizes the importance of organizing the management of rule-based 
design under functional expansion. 
 

Table 3. Summary of the first paper 

 
Paper Cost-effectiveness management under functional expansion: simulation of 

product development cost escalation curves and modularization strategies 

Research 
questions 

(RQ1-S1): What is the shape of functional-expansion-driven development cost 
escalation curves? Can functional expansion potentially have a large magnitude 
impact on development costs? 
(RQ1-S2): To what extent can well-proven modularity strategies slow down the cost 
escalation curves under functional expansion? 
(RQ1-S3): With respect to functional upgrades that have already been demonstrated 
as a significant cost driver, under which conditions may functional expansion also be 
a significant cost driver (conditions under which functional expansion would  be an 
important object of cost management )?   

Literature 
background 

- The literature dedicated to cost escalation in the defense sector identified changes 
at product level as major cost inductors: a strong correlation between the upgrade of 
existing product functions and cost escalation ; and according to qualitative 
investigations (interviews), newly-added functions are also costly 
 - Change propagation phenomena are major cost inductors 

Literature 
gap 

Thus far, the cost impact of newly added functions has never been assessed. By 
implication, one does not know the how functional expansion influences a cost 
escalation curve 

Research 
objective 

Determining the magnitude of the impact of functional expansion on cost escalation. 
And if this impact is substantial, investigating possible cost-reduction strategies 
under functional expansion. In particular, investigating whether functional expansion 
preserves the cost-reducing power of a classic, well-known cost reduction strategy, 
that is modularization 

Theoretical 
framework 

Functional expansion ; cost escalation ; change propagation ; modularization  

Material Theoretical material: bricks of models that exist in the literature (cost propagation 
models) 

Method Simulation of families of theoretically attainable cost curves 
Results (RQ1-S1): Functional expansion generates genuine ‘shocks’ in the product 

architecture. If these latter are out of control, their impact on costs is dramatic 
(exponential explosion). Thus functional-expansion-induced propagation costs might 
be huge. 
 
(RQ1-S2): Newly added functions may eliminate critical architectural independencies 
and render the modularized architecture obsolete, thereby undermining the cost-
reduction power of modularization  
 
(RQ1-S3): There exists conditions under which functional-expansion-induced costs 
may dominate upgrade-induced cost 

Academic 
implications 

1/ Our results highlight that functional expansion requires a double-deliverable from 
engineering departments:  
- ensuring that the functional requirements of the individual product functions will 
be effectively met (classical rule-based design tasks) 
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- continuously decoupling the expanding functional space, i.e. continuously designing 
independencies in the unknown (innovative-design activities, which are generally not 
expected in rule-based design). 
 
2/ These results contribute to the literature on platforms, which has already 
emphasized the importance of managing and anticipating platforms obsolescence in 
order to avoid a violent loss of leadership (Meyer and Lehnerd, 1997, etc). This paper 
highlights that functional expansion may be a major obsolescence factor from the 
viewpoint of a product architecture. This suggests that regarding watching for signs 
of platform obsolescence, design engineers should be very attentive to obsolescence 
that may originate from functional expansion.    
 
3/ If an engineering department denies or ignores functional expansion and chooses 
traditional cost reduction strategies under functional expansion (e.g. modularization, 
reduction of the nominal costs of the individual functions, etc.), the results are likely 
to be disappointing, or even worse. 

Managerial 
implications 

Given its dramatic impact on product architecture and on costs, functional expansion 
is a variable which should not be ignored / which should be integrated in the 
traditional economic models which are used in rule-based design (in particular, in the 
economic models which assess the feasibility (both technical and economic) of the 
target, in the models which help budget projects, etc.) 
From a managerial perspective, our results highlight the importance of integrating 
functional expansion in the models and tools that are used when it comes to budget, 
to assess the technical feasibility of a new rule-based design project. This would 
involve shifting from traditional economic models which only optimize the budget 
supposed to enable to reach a fairly well-known target to economic models which also 
plan the emergence (perhaps not major, but still significant) of unknown events 
within the seemingly stabilized product architecture 

Limits and 
perspectives 

Wouldn’t recent industrial catastrophes be symptomatic of a denial of functional 
expansion and its impact on product architecture, which would have led to a misuse 
of traditional cost reduction strategies, which then would have entailed treachery?  
 
Simulating more sophisticated cost-reduction strategies under functional expansion 
(e.g. combining the ‘continuous modularization’ with other strategies…) 

 
 

4.2. Summary of Paper 2: Managing Learning Curves in the Unknown: from Learning by 
Doing to Learning by Designing 

 
Current version: Working paper 
 
Previous version: Agathe Gilain, Pascal Le Masson, Benoit Weil (2018). Managing Learning 
Curves in the Unknown: from Learning by Doing to Learning by Designing. R&D 
Management Conference, Milan, July 2018. 
 
Central in this paper is the case of the Flextrack robot (Airbus Saint Nazaire), presented in 
details in Section 3. It aims at determining whether this case provides empirical evidence to 
validate the design theory-based investment decision-making model proposed at the end of 
section 2.2.3.   
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Figure 12. Dramatic performance shift following the deployment of the prototype 

 
As previously explained, given the economic calculation outcomes summarized in the blue 
curve, and given the profitability threshold represented by the black line, the fact that an 
investment was conceded to deploy a Flextrack prototype in the production line of the A330 
is puzzling. The project did not respect the traditional investment rule. Was it a mistake? A 
risky gamble?  
 
In addition, the shift from the blue to the green probability distribution is striking: we are in 
the face of the same investment project, on the same product line (A320), on the same work 
station. And the blue and the green curve respectively represent two very different investment 
projects. How can the shift from the blue to the green curve be explained?  
 
This leads to phrase three explanatory assumptions:  
H1: we are in the face of a deviant, irrational (and worrying) economic calculation practice 
which, in this very case, ended well (thanks to luck), but such that nothing guarantees that it 
will not lead to a failure if it is reiterated. 
H2: we are in the face of an outstandingly performing uncertainty-reducing-learning-by-doing 
mechanism. 
H3: or, contrary to appearances, would there be ‘unknowns with impact’ in this case? Would 
the decision to invest and the generation of the huge profits be the result of an original 
economic reasoning in the unknown that would take into account to possibility to generate 
unknowns with (economic) impact?  
 
Based on these assumptions, we phrased two research questions:  
RQ2-S1: Was the decision to invest in the Flextrack project supported by the perspective of 
learning in the unknown? / Is the remarkable learning curve of the Flextrack robot deployed 
in Airbus Saint Nazaire plant attributable to unknown exploration?  
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RQ2-S2: How can we characterize the learning approach and the management principles (in 
terms of investment decision, economic steering and learning strategy) which resulted in the 
observed dramatic performance gains (i.e. the observed learning curve)? 
 
Statistical test 

In order to address RQ2-S1, we carried out a statistical test in the first part of the paper. 
Bayesian statistics only account for the transformation of a priori knowledge into a posteriori 
knowledge. Since there is no information to update about initially unknown states of the 
world, Bayesian statistics do not manipulate the unknown. They only cover uncertainty 
reduction on a fixed {'( , '*, '+, … , '-}2,			25(..$ state-space. So if the move from the blue to 
the green curve results from an outstandingly performance uncertainty-reduction mechanism 
(i.e. if H2 is true), the green curve should be a Bayesian update of the blue curve, based on 
the new information (the learning) offered by the red curve, i.e. the learning allowed by the 
prototype. 
In order to test whether the green curve is indeed a Bayesian update of the blue curve based 
on the learning brought by the red line, we have determined the theoretical “red” information 
which should have been observed so that the green curve is indeed a Bayesian update of the 
blue curve: this theoretical observation in represented by the dashed line in Figure 22. The 
test reveals that this theoretical observation is very far from what was observed in reality. In 
addition, it corresponds to a value which it is highly improbable (almost impossible) to draw 
in the blue distribution. 
 

 
Figure 22. Statistical test which highlights that the move from the blue to the green curve 

cannot be attributed to a sole mechanism of uncertainty reduction 

 
Thus, it is absurd that the green curve results from an update of the states of the world 
contained in the blue curve. This statistical test dismisses the assumption according to which 
the green curve results from uncertainty reduction (with a very high statistical significance: 
p-value < 0.002%). This suggests that during the move from the blue to the green curve, 
some new states of the world, some new '2 with impact may have been designed, i.e. the 
unknown has been explored.  
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The idea according to which the move from the blue to the green curve results from unknown 
exploration can be debated: for instance, what guarantees that the level of risk aversion and 
conservatism that was involved when the blue curve was computed was not higher than for 
the green curve? (This would suggest that the blue curve represented in Figure 22 is actually 
more to the left than it actually was). To what extent could this change the result of the 
statistical test? Such discussions highlight that for the Flextrack study, it is necessary to 
double-check the statistical test. In an attempt to empirically confirm the presence of the 
unknown, we studied the Flextrack case with a single case study approach (Siggelkow, 2007). 
 
But beyond the debate about its capacity to really highlight the unknown in the specific case 
of Flextrack, the application of this statistical test provides interesting insights regarding the 
issue of ‘economic evaluation in the unknown in innovative design’. Indeed, formally 
speaking, this statistical test detects the newly designed '2 with impact. This means that an 
actor who ensures that the same level conservatism and risk aversion is applied for computing 
a priori and a posteriori distributions can use this test to detect the unknown. In other words, 
the statiscal instrument used in this case to detect the unknown (without going as far as 
measuring it) could lead to imagine operational tools to manage the unknown in 
organizations.  
 
 
Empirical investigations 

 
As indicated in section 3 (Table 1), these empirical investigations rely on empirical data 
collected from Airbus internal documents and interviews.  
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during project execution, an additional (orthogonal) concept space was explored, and 
additional knowledge bases were generated.  
 
The initial state space was explored quite widely before project launch: study of eleven 
scenarii, associated profitability analyzes. Numerous meetings were dedicated to this 
exploration ‘on paper’, which followed the R&T project. But according to the knowledge 
contained in the initial knowledge base, the concepts contained in this initial concept space 
were due to be unprofitable. In spite of that, among the 11 concepts that had been studied, 
the least resource-intensive concept was selected and given funding through an 
unconventional funding approach: the R&T department of the plant, which was interested in 
seeing the follow-up of the R&T project in the plant, provided the investment, so that the 
plant could retrofit and deploy a prototype (which was actually the prototype that the R&T 
had used for its laboratory experiments during its project) within the production 
environment.  
 
When deploying the prototype in the production environment, the managers in charge of the 
project did not ‘try hard’ to make the selected concept profitable within the initial concept 
space (this would have probably been vain – the profitability studies had clearly shown that 
this concept space was unprofitable). Rather, the managers in charge of the project moved to 
another concept space – more precisely, they seized the opportunity to move to another 
concept space, when the operators who manipulated the robot started being interested in it, 
and became highly skilled.  The exploration of this other concept space generated a base of 
additional knowledge, represented in Figure 23. And in the new concept space, with the new 
knowledge, new conditions of use of the robots were determined, which were profitable. This 
led to purchase one new robot, from a supplier, as indicated at the end of the second branch 
of the new concept space. In addition, the convincing performance of the robot led to consider 
the introduction of the robot on a new, strategic production line, that of the A320 concerned 
with a ramp-up problematic: this can be seen as a spillover from the investment in the 
deployment of the prototype, which was initially due to be all but profitable.  
 
These elements highlight that the profitability of the Flextrack robot is not due to chance. It 
is rather the result of an intentional and very structured exploration of the unknown.  
 
One can stress that the performance reached by the Flextrack robot results from one very 
specific learning regime, which can be distinguished from the learning-by-doing learning 
regime generally expected when one deploys a new machine in a production environment.  
The classical, generally expected learning regime consists in learning by collecting a sample 
of information related to already identified states of the world (i.e. related to the information 
contained in an initially known, but uncertain knowledge base), in order to confirm or infirm 
an assumption. In the case of the Flextrack robot, this would that consisted in deploying the 
prototype in the production environment, ‘letting it run’, and after one year, collecting a 
sample of ‘x’ performance values, and deciding to purchase a new robot if the sample of values 
reveals a good performance of the robot, or deciding to kill the profit if the sample of values 
reveals the contrary. In this case, we are in a traditional decision theory framework. The value 
of learning is the value of information, obtained by sampling. Learning is Bayesian: it is an 
update of the uncertain knowledge contained in an initial knowledge base, an update of the 
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knowledge related to initially identified states of the world. This is learning by reducing 
uncertainty. And the generated economic value is at best, that of a Bayesian move, i.e. a 
moderate shift. This is the value of Learning by Doing. 
But in the case of the Flextrack robot, learning did not occur within the initial concept spaces 
and knowledge spaces. A new concept space was explored. New states of the world were 
designed, which opened new sources of profitability. The created value is not the value 
brought by the collection of a simple sample of information. In the Flextrack case, the learning 
approach did not consist in deploying the robot, letting it run, and after one year, collecting a 
sample of information that will either recommend to kill the project or further invest in it. In 
the Flextrack case, learning is learning by exploring the unknown.  
 
Finally, this case suggests that if the unknown is adequately dealt with (with a learning by 
designing approach, which allows the exploration new concept spaces), the unknown seems 
to allow remarkable value enhancement (the value of learning by designing, beyond the value 
of traditional, uncertainty-reducing learning by doing).  
 
This case which involves an investment decision in the unknown, and a rigorous exploration 
of the unknown provides partial empirical evidence for a design theory-based investment 
decision-making model. In particular, we do not go as far as quantifying the value of the 
information collected by exploring the unknown, although we propose a first tool which 
formally detects the presence of the unknown. In addition, the narrative does not exhibit the 
methods, techniques, tools, etc. that were used to explore the unknown. These aspects are 
addressed in Paper 3.   
 

Table 4. Summary of the second paper 

Paper Managing Learning Curves in the Unknown: from Learning by Doing to 

Learning by Designing 

Research 
questions 

RQ2-S1: Was the decision to invest in the Flextrack project supported by the 
perspective of learning in the unknown? / Is the remarkable learning curve of the 
Flextrack robot deployed in Airbus Saint Nazaire plant attributable to unknown 
exploration?  
 
RQ2-S2: How can we characterize the learning approach and the management 
principles (in terms of investment decision, economic steering and learning strategy) 
which resulted in the observed dramatic performance gains (i.e. the observed 
learning curve)? 

Literature 
background 

Investment projects and learning mechanisms:  
- If a project is an investment under uncertainty, the decision to launch it can be 
justified by integrating uncertainty in economic calculation. In particular, 
uncertainty-reduction-oriented learning curves enable to do this. Indeed, the 
perspective of moving down a learning curve characterized by a forecast learning rate 
can justify the decision to launch a project that is initially non profitable (e.g. a 
negative NPV).  
- But if a project is an investment in the unknown, one does not have means to 
highlight the unknown, and to justify the interest in investing in the unknown. One 
does not know how to assess the value associated with the perspective of exploring 
and structuring the unknown  
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Literature 
gap 

What is a learning curve in the unknown? What managing a learning curve dynamic 
in the unknown would be? 

Research 
objectives 

 Determining whether the Flextrack project simply involves odd, deviant practices 
and economic reasoning in the framework of decision theory, or whether it would 
not hide a more sophisticated investment reasoning in the unknown  

Theoretical 
framework 

Uncertainty-reducing learning by doing mechanisms 
Decision theory-based decision models 
Design theory (Design theory-based decision models) 

Material Empirical material: data from Airbus Saint Nazaire plant 
Method A statistical method (Bayesian statistics) to address RQ1 

A empirical method (interviews, access to presentations) which complements our 
answer to RQ1 (double check) & addresses RQ2 

Results (RQ2-S1) The high profitability of the Flextrack robot does neither result from luck, 
nor from uncertainty reduction. It results from an exploration of the unknown 
(RQ2-S2) The exploration of the unknown was carried out with a rigorous learning 
approach.   

Academic 
implications 

Economic performance in the unknown can be rigorously managed, with an 
approach that is specific and adapted to the unknown, and that uses classical 
economic notions (the NPV) in a diverted way: this paper seems to have unveiled 
first empirical evidence for a design-theory-based investment decision model. 
 
The results also highlight a learning dynamics, learning by designing, which can be 
seen as an extension of uncertainty-reducing-learning-by-doing to the unknown.  

Managerial 
implications 

 Our results can contribute to change managers viewpoint on the unknown, which 
is generally perceived as very risky, as a threat and as something which cannot be 
managed economically 

Perspectives - In an economic calculation, can we estimate the value associated with the 
exploration of the unknown? 
- Can we confirm with on larger sample that the exploration of unknown can 
generate a lot of profitability, more than uncertainty reduction? 

 
 

4.3.  Summary of Paper 3: Why is investing in the unknown less risky and more profitable 
than investing under uncertainty? Model and empirical evidence 

 
Status: working paper to be submitted to Creativity and Innovation Management Journal 
 
Previous version: Agathe Gilain, Pascal Le Masson, Kevin Levillain, Yannick Marin, Benoit 
Weil. How to enhance the profitability of your project portfolio – by reducing uncertainty or 
exploring the unknown?. IPDM, Jun 2019, Leicester, United Kingdom. ⟨hal-02095624⟩ 
 
This paper focuses on the case of the portfolio of incubation and acceleration projects 
introduced in Section 3. It aims at determining whether this project portfolio provides 
validates the hypothetical design theory-based investment decision-making model introduced 
in Section 2.2.3. 
 
As a reminder: at the entrance of the portfolio are candidate projects which traditional 
organizations have chosen not to launch. Among these projects, the portfolio selects the 
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difficult, technology-based problem-driven topics. It selects projects among these whose level 
of uncertainty or risk is the reason why the traditional organizations have chosen not to 
launch them. (Economic calculation either renders negative results or is simply impossible (a 
so high level of uncertainty that economic data cannot be quantified)).  
 
For a selected project, two states of the world are possible: E1: profitable. E2: unprofitable. 
And the belief that E2 is the true space is very high: P(E2) = 0.95 (subjective probability 
confirmed by the innovation leader who manages the portfolio). Then, if a project is selected, 
it is offered incubation or acceleration means (a budget, 100 days, a methodological support, 
a place, facilities…) to explore the concept it proposes. During incubation / accelerations, 
observations are made, which can be seen as leading an advice given by the portfolio 
organization on the profitability of the project. U1: profitable ; U2: unprofitable.  
Based on this advice, several statuses are possible for the project which has gone through the 
portfolio: being stopped (inconclusive, disappointed outcomes), stored (valuable outcomes, 
but which do not give rise to a following project), launched by the R&T department, or 
implemented in a traditional organization (the very same that had perceived them as very 
risky and had chosen not to invest at the beginning of the process). In 2018, the portfolio 
demonstrated a remarkable profitability (x6 rate of return)33. In addition, among 55 projects 
incubated or accelerated within this portfolio between 2013 and 2018, 41 (i.e. 75%) gave rise 
to further investments within the very same organizations which had chosen not to launch 
them. These projects are launched with the belief that P(E1|U1) = 0.80 (i.e. a 80% confidence 
that the investment will eventually pay off, if the advice of the portfolio is a recommendation 
to launch the project).  
 
As mentioned above, although innovation is the core of the mission of the innovation cluster 
in charge of the portfolio, the decision to invest in these highly uncertain projects that are 
due to be all but profitable remains daring. In addition, the generation of a x6 rate of return 
for a portfolio which selects highly uncertain, seemingly unprofitable projects is puzzling. 
Indeed, classical decision theory-based models predict that the more uncertain a project is, 
the lower the probability of making it profitable, so the lower its expected profitability. Put 
differently, the probability that an uncertainty reduction mechanism generates ‘considerable’ 
value is generally extremely low, according to decision theory.  
 
So we can phrase the same explanatory assumptions as in the case of the Flextrack project:  
H1: we are in the face of a deviant, irrational (and worrying) economic calculation practice 
which, in this very case, ended well (thanks to luck), but such that nothing guarantees that it 
will not lead to a failure if it is reiterated. 
H2: we are in the face of an outstandingly performing uncertainty-reducing-learning-by-doing 
mechanism. 
H3: or, contrary to appearances, would there be unknown in this case? Would the decision to 
invest and the generation of the huge profits be the result of an original economic reasoning 
in the unknown, taking into account to possibility to generate unknowns with (economic) 
impact?  

                                                
 
33 For 1 euro invested in the portfolio, a promise of 6 euros given back to Airbus 
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Based on these assumptions, the paper aims to address to research questions (very similar to 
those addressed in the previous paper):  
RQ2-S1’: Are the remarkable profits of Airbus portfolio of incubation and acceleration 
projects attributable to unknown exploration?  
 
RQ2-S2’: How are project selection and unknown exploration carried out in the frame of 
Airbus portfolio? Do these practices confirm the assumptions which characterize our 
hypothetical design theory-based investment decision model? 
 
We can rapidly test H1 . Did the portfolio randomly select 55 projects, among which 41 were 
profitable? The probability of such a scenario is 1 = cdde(f. 0.05e( . 0.95(e ≈ 9.7.10be* . In other 
words, the scenario associated with H1 is highly unlikely. We eliminated it.  
 
Then, in order to test H2, we tried to  determine whether the information collected during 
incubation / acceleration only updated initial identified states of the world, which resulted in 
reduced uncertainty only. To that end, we represented in a decision theoretic framework the 
probabilistic data P(E1), P(E2), P(U1), P(U2), P(E1|U1), P(E1|U2). We tested whether the 
probabilistic beliefs related to the profitability of the projects correspond to beliefs that have 
been updated according to a Bayesian mechanism. To do so, we computed the reliability of 
the observation instruments that should have been used to observe the profitability of the 
projects: and we found that if the values P(E1), P(E2), P(U1), P(U2), P(E1|U1), P(E1|U2) 
obey to a Bayesian law, the observations U1 and U2 should have been made with an 
instrument such that P(U2|E2) < 0.26: in other word, an observation which predicts 
profitability when a project is not profitable… which is absurd and invalidates H2. (The test 
in described in more details in Paper 2). 
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candidates are also encouraged to demonstrate how the project is in line with the strategy of 
the Airbus, which is also a selection criterion. This phase can already be seen as the beginning 
of the exploration of new knowledge bases, or even new branches of concepts. During the 
selection process, the innovation cluster mobilizes numerous stakeholders, numerous 
competences (innovation catalysts, top managers and high level sponsors, methodological 
coaches, experts etc.) and enforces clear and strict criteria in order to detect and select projects 
which are genuinely innovative and which have the potential to be turned into “real business 
applications”. These selection criteria are applied in a very systematic way and select projects 
which all have the same very specific profile: projects rejected by traditional organizations, 
perceived as highly uncertain34, aligned with Airbus strategy and roadmap, mobilizing the 
existing Airbus knowledge related to the topic, involving prototyping perspectives, etc.  
All these elements support the assumption according to which the innovation cluster has 
developed a kind of unknown-unveiling and unknown-sensing capability, which detects 
projects where there is room to explore the unknown, i.e. there is room to design new states 
of the world. 
 
Then, during project run, the selected projects benefit from a strong level of support: an access 
to a methodological package, enabling them to carry out their project method methods such 
as C-K theory, Agile, Design thinking, Learn UX, … The innovation cluster ensures that all 
the relevant existing knowledge is available to the project team. On the one hand, this is made 
possible thanks to the multidisciplinarity of the project (and by implication the 
multidisciplinarity of the team). On the other hand, one person from Airbus information 
centre is dedicated full-time to take in charge any documentary research that the team would 
need in the frame of the project. Regular steering committees also enable the project to benefit 
from the view and the knowledge of the heads of the competence centres (which can help 
unblock some problems). Besides, one person from Airbus costing department provides 
support regarding the economic questions. 
 
In terms of management, the innovation manager in charge of the portfolio requires a 
demanding reporting from the project team. In order to follow the creation of economic value, 
he keeps track of them with the use about more than 30 indicators (even 99 if we do not 
consider that some are mutually exclusive), which summarize the progress of the project, its 
maturity, which characterize the prototyping effort, the economic figures… The projects are 
well equipped, supported (in terms of methods, tools, competences, prototyping means…) 
and rigorously managed (a high level of reporting) to investigate a topic that calls for an 
exploratory approach. 

In summary, we found that the portfolio is managed with a large set of methods that help 
select projects associated an initial knowledge base and an initial concept space such that the 
concepts of the conceptual space are unprofitable, but which contain unknown, i.e. room for 
exploring an ‘orthogonal’ concept space. So the portfolio provides funding for one of these 
initial unprofitable concepts. And the purpose is by no means not to try hard to make this 

                                                
 
34 In the final steps of the selection, the innovation leader in charge of the portfolio systematically favors non-
consensual projects, i.e. projects the pitch of which has both been given very good and very bad marks by the 
members of the selection board 
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very concept become profitable. The project owners are mandated to explore another, 
orthogonal concept space, within which new learning will be made, and conditions for 
profitability will be discovered. During its execution, the project can use specific methods 
which help explore the unknown. And the building of economic value as the project 
progresses is followed closely by the innovation leader.  
 
Finally, after the case study which has confirmed the statistical test, i.e. which has confirmed 
the role of the unknown in the portfolio, the paper comes back on the probabilistic data, and 
shows that it is possible assess the value of the information that were collected by exploring 
the unknown. This shows that in the framework of a design theory-based investment decision 
model, the value of the unknown can be assessed as rigorously as the value of uncertainty can 
be assessed thanks to decision theory-based models.  
 
The contributions of the paper are the following.  
On a sample of 55 projects, this case provides statistical and empirical evidence for a design 
theory-based investment decision model, where the decision-makers’ capacity to (i) detect 
projects that contain unknown, and (ii) deploy capabilities, methods and managerial 
approaches that allow the exploration of the unknown, are necessary conditions that need to 
be met in order to effectively generate profits. Within this model, investing in the unknown 
may be less risky and more profitable than investing in high, basic uncertainty: the law of 
decision theory according to which the more uncertain a project is, the lower the probability 
of making it profitable no longer applies. The huge returns of the portfolio which were 
incomprehensible in the decision theory-based framework become comprehensible, 
explained, in this design theory-based framework. And in this case, the statistical instrument 
which detects the unknown also quantifies the value of unknown exploration (more 
specifically, the value of information in the unknown). Beyond being an experimental 
instrument in this specific case, this could be seen as a basis for an economic calculation in 
innovative design.  
  
 

Table 5. Summary of the third paper 

 
Paper Why is investing in the unknown less risky and more profitable than investing 

under uncertainty? Model and empirical evidence 

Research 
questions 

RQ2-S1’: Are the remarkable profits of Airbus portfolio of incubation and 
acceleration projects attributable to unknown exploration?  
 
RQ2-S2’: How are project selection and unknown exploration carried out in the 
frame of Airbus portfolio? Do these practices confirm the assumptions which 
characterize our hypothetical design theory-based investment decision model? 

Literature 
background 

When it comes on whether or not to invest in the unknown, there is a lack of 
convincing economic models: the exiting economic models supposed to guide 
investment decision-making derive from the decision theory and confront investors 
to an unsatisfactory dilemma: either investing in a ‘pay and let us see what happens’ 
philosophy, which is equivalent to gambling ; or killing the project and running the 
risk of missing a promising opportunity. This dilemma is based on the fact that 
according to profitability considerations based on decision theory, investments in 
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the unknown are predicted to have a very low expected profitability and to be very 
risky gambles.  
 
It was recently demonstrated that design theory extends decision theory to the 
unknown (Le Masson et al., 2018). And if applied in an investment situation in the 
unknown, the proposed design theory-based decision model theoretically predicts 
that it is always possible to reach one’s profitability target without necessarily 
throwing one’s lot with chance, if one designs the judicious states of the world or 
the judicious decisions to this end. On the one hand, this theoretical prediction is 
very counterintuitive, even absurd (it suggests that one could always design 
profitable opportunities in the unknown). On the other hand, it is very attractive, 
because it suggests that investment decision-making and profitability generation in 
the unknown could not only be a matter of luck, but could be rigorously 
(quantitatively) controlled. This is more convincing than the propositions of the 
decision theory-based investment decision models within which one necessarily 
needs to gamble if one wants to invest in the unknown. 

Literature 
gap 

Design theory-based investment decision models could be a promising alternative 
to the unsatisfactory decision theory-based models when it comes to make 
investment decisions in the unknown. But to date, these models are based on 
theoretical advances which did not yet go as far as specifying an ‘applicable’ 
investment decision model in the real world, in which ‘profitability in the unknown’ 
could be rigorously (ideally, quantitatively) controlled.   

Research 
objectives 

Investigating whether we could find empirical evidence (e.g. a case providing a large 
sample of projects) for the predictions of design theory regarding profitability 
dynamics in the unknown.  
 
Getting more specific insights regarding what a design theory-based investment 
decision model would be in the real world (in terms of methods, organization, 
computational approach of value, etc.)  

Theoretical 
framework 

Design theory (Design theory-based decision models) 

Material Empirical material: data from Airbus innovation cluster’s portfolio of incubation and 
acceleration projects 

Method A statistical method (Bayesian statistics) to address RQ1 
A empirical method (interviews, access to presentations) which complements our 
answer to RQ1 (double check) & addresses RQ2 

Results (RQ2-S1’) The remarkable economic outcomes achieved on 55 projects by Airbus 
portfolio of incubation and acceleration projects can be attributed to the unknown. 
This unknown can be explicitly detected with a statistical test.  
 
(RQ2-S2’) -Provided one is able to detect and select projects that contain unknown, 
and provided one is able to rigorously manage them with adapted unknown 
exploration methods, investing in the unknown can be very profitable and little risky  
- The value of the new information collected by exploring the unknown can be 
quantified, in the same fashion as decision theory-based techniques quantify the 
value of the new information collected by reducing uncertainty 

Academic 
implications 

Our results confirm the predictions of the design theory-based decision model 
regarding profitability: when one shifts from basic uncertainty to the unknown, there 
is a rupture in terms of profitability logics. Profitability no longer follows the 
prediction of decision theory.  
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This contributes to the literature in management which had already pointed that 
generating a lot of profits thanks to innovation is more a question of good 
management and organization than a question of luck 
The fact that the value of unknown exploration can be valued confirms that 
economic calculation can be extended to the unknown (in the frame of a design-
theory-based economic calculation) 

Managerial 
implications 

Our results can contribute to change managers viewpoint on the unknown, which is 
generally perceived as very risky.  
On the one hand, they represent call for developing capacities of detecting and 
rigorously managing the unknown and largely applying them, since the profits can 
be dramatic. However, the acquisition of design-based methods can by no means be 
considered by firms as a magic bullet which enables them to generate systematic 
returns out of the unknown. Generating a lot of profits in the unknown requires an 
‘compatibility’ between the nature of the unknown which is identified and the 
efficiency (the power) of design method one owns.  

Perspectives - Further research regarding the ‘compatibility’ between the nature of the unknown 
which is identified and the efficiency (the power) of design method one owns. 
- Discussion the organizational aspects that would be associated with the 
deployment of ‘economic calculation in the unknown’ in R&D firms? 
- Could the economic reasoning in the unknown help guide decision-making in the 
frame of threats (global warming, social crises, sanitary crises…) marked by a strong 
level of unknown?  

 
 
5. Findings: contributions to the topic of economic calculation in the unknown 

 
The starting point of this research work is twofold:  

- it is well-known that decision theory provides relevant techniques for economic 
calculation under uncertainty. These latter quantify the value of information and guide 
decisions under uncertainty. They are very relevant for economic calculation under 
uncertainty, but they ignore the value of the unknown. It is now well-proved that such 
techniques are unsuitable, even misleading in a situation that contains unknown. (e.g. 
Loch et al., 2006). If design theory extends decision theory to the unknown (Le 
Masson et al., 2018), it did not go as far as providing computational techniques to 
assess the value of information in the unknown. In other words, there seem to exist 
no economic calculation techniques, no economic evaluation instrument in the 
unknown.  
- at the same time, rule-based design and innovative design activities are confronted 
to ‘not obviously visible unknowns’ for which it would be interesting to assess the 
impact. Several forms of evaluation and characterization could be considered, but it 
seems particularly relevant to carry out ‘economic evaluation’ for a first 
characterization. It will allow R&D firms to know whether they should be concerned 
by these invisible unknowns.  

 
In this context, we have formulated the following research questions. 
 
Regarding the topic of ‘economic evaluation in the unknown in rule-based design’ 
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(RQ1): To what extent can the unknown that emerges in rule-based design be ‘with 

(economic) impact’?  

 

Regarding the topic of ‘economic evaluation in the unknown in innovative design 

(RQ2): In the framework of projects that are undecidable from a decision theory-based 

viewpoint, to what extent and with what kind of tools could ‘unknowns with impact’ 

be the objects of a design theory-based economic value management, in particular an 

informed investment decision-making reasoning that is not based on a betting logic? 

 
We have started by addressing sub-research questions for these questions. This has led us to 
design and experiment two instruments which measure ‘not necessarily obviously visible 
unknowns with impact’. In rule-based design, our instrument has measured extremely costly 
‘unknowns with impact’ (induced by functional expansion). And in innovative design, our 
instrument has highlighted ‘unknowns with impact’ which, provided they are detected by the 
actors and managed with appropriate design-based methods, can generate dramatic economic 
returns.  
 
The following subsections summarize and further develop these ideas.  
 

5.1. Evaluating the economic impact of the unknown in rule-based design (RQ1) 
5.1.1. Functional expansion identified an ‘unknown with impact’, thanks to a cost-

escalation-curves-simulation instrument   
 
Within RQ1, we focused on the emergence of a specific form of unknown in rule-based design: 
the unknown introduced by functional expansion in an already-existing architecture. Our 
objective was to get a better understanding of this unknown, which is not obviously visible 
(not as obviously visible as a disruptive innovations are), but which emerge on a continuous 
basis – with an ‘instrument’ which simulates cost escalation curves, we have assessed the 
economic effect of this specific form of unknown that can affect rule-based design products.  
 
We highlighted that the unknown introduced by the newly added functions can trigger major 
shocks in product architecture, disturbing a seemingly solid capital of rule-based design 
assets. If ill-mastered, these shocks may have considerable economic impact: they may 
generate exponential development costs escalation dynamics.  
In other words, functional expansion is an unknown with impact.  

 
We also found that the unknown introduced by functional expansion tends to disturb the 
effectiveness of the cost management techniques that are classically used in pure rule-based 
design (without functional expansion): functional expansion undermines the cost-reducing 
power of modularization strategies. Thus, designing a product architecture that is robust to 
the shocks which functional expansion generates in an already-existing product architecture 
requires from engineering departments capabilities that are specific to functional expansion. 
In our first paper, we have identified one kind of strategy that seems interesting to master the 
effects of functional expansion: re-modularizing the architecture after each phase of functional 
expansion, i.e. continuously designing independences, in the unknown. Such an architectural 
strategy restores the cost-reducing power of modularization under functional expansion.  
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This suggests that functional expansion in rule-based design requires a double-deliverable 
from engineering departments:  

- ensuring that the functional requirements of the individual product functions will be 
effectively met, namely in terms of cost, quality and delay: this is the classical rule-
based deliverable 

- continuously decoupling the expanding functional space, i.e. continuously designing 
independencies in the unknown. Required by the presence of functional expansion, 
this deliverable is an outcome of innovative-design activities which are generally not 
expected in rule-based design. 

The design efforts related to the first deliverable (ensuring that the functional requirements 
of the individual product functions are effectively met) generate economic returns which will 
be immediately visible: they are carried out during the development program responsible for 
designing a new product generation, and they pay off as soon as this newly developed product 
is released on the market (with the revenues being determined by the extent to which the 
cost-quality-lead-time objectives are met (namely from the viewpoint of customers)). In 
contrast, the design efforts related to the second deliverable (continuously renewing 
independences in an expanding functional space) generate economic returns which are less 
visible, and will pay off in a longer run. Indeed, in the first steps of a functional expansion 
dynamics, only a small number of functions have started accumulating: neglecting the 
decoupling of the functional space might seem to have no serious impact, perhaps only a small 
number of additional propagation paths to manage, negligible excess costs, etc. But as new 
functions accumulate in the functional space, there is a combinatorial explosion of the 
number of possible propagation paths, and the costs for managing the propagation paths 
induced by the new functions increase exponentially. Therefore, although its effects are less 
visible, and although it seems more ‘prevention-related’, this design effort is indispensable. 
As we will discuss in more details in Section 6.2, identifying the ‘places’ in the architecture 
where this kind of design effort is needed and implementing a continuous decoupling effort 
pose significant decision-making and organizational challenges.   
 
Beyond the fact that according to the our simulations of propagation costs, neglecting the 
renewal of architectural independencies in an expanding functional space may generate 
exponential cost explosions, we can also ask whether the denial (or the ignorance) of a 
functional expansion phenomenon might not be a possible explanation for a scenario of 
industrial catastrophe. 
 
 

5.1.2. New explanations for recent design crises offered by economic calculation in 
the unknown? 

 
In Figure 21 (reminded below), we noted that if an engineering department is already 
proficient at mastering the cost of upgrades, the cost-reduction potential associated with a 
strategy that consists of cutting the cost of already-existing functions is very low. What would 
happen if a cost manager is misled by the steady functional-expansion-driven cost escalation 
curve generated by this engineering department (e.g. Figure 21b.) and decides to pressure the 
organizations responsible for the development of individual functions to cut their costs?  
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Figure 21. Simulation of a product evolution dynamics where the upgrade of already existing 

functions is well-controlled by engineering departments. 

Left: family of cost escalation curves associated with an well-controlled, pure-upgrades-driven product 
evolution dynamics. Right: the same upgrades as on the left-figure have been simulated, but in 
addition, at each iteration, one new function was added. 
 
A first (harmless) possibility is that this classic cost-cut strategy will yield little cost reduction 
and be disappointing. However, a second, more detrimental, possibility is that the cost cuts 
will prevent the engineering department from performing critical activities dedicated to 
observing the signs of obsolescence of the architecture. The engineering department will lack 
the necessary resources to prepare the renewal of the architectural design rules accordingly. 
And if a product is under functional expansion, the potential sources of architectural 
obsolescence are numerous: each newly added function may destroy a critical independency 
and require the restructuring of the architecture. Thus, cutting the cost of an engineering 
department in an attempt to reduce the nominal development costs of the functions may have 
a detrimental effect under functional expansion: depriving the engineering department of the 
necessary resources to observe and manage architectural obsolescence sources that would 
come from functional expansion. The non-detection of architectural obsolescence may have 
catastrophic impacts: launching the next development project based on a flawed architecture 
that will turn out not to allow functional requirements to be met, i.e. launching the next 
development project based on ‘false assumptions of feasibility’. When it is discovered that the 
assumptions of feasibility are false, this generates a crisis situation in the development 
project. And two options are possible: (1) acknowledging the fact that the project is in the 
face of ‘concept’ or ‘scope deviation’ (Ingvarsson et al., 2015), which will require the 
intervention of task forces, and entail changes in project resources, planning… or (2) denying 
the deviation, using somehow the flawed architecture, i.e. cheating with the risk that 
unanticipated propagation phenomena happen as the product is in service. We can ask 
whether the combination of an inappropriate cost-reduction strategy and an unnoticed 
functional-expansion-induced architectural obsolescence (caused by lack of engineering 
resources) which was then denied could explain design catastrophes, such as the case of the 
Boeing 737-MAX, Dieselgate, Samsung Galaxy Note 7 (which are all three incomprehensible 
in a pure rule-based design framework). 
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5.1.3. Dynamics returns and the benefits of a specific class of anticipative-learning-

oriented overinvestments in rule-based design under functional expansion  
 
The performance logic associated with pure rule-based design involves resources 
optimization, minimization of knowledge production… In rule-based design under functional 
expansion, does this logic still apply? Or could anticipative investments (i.e. investing in the 
generation of excess knowledge, ahead of time, that will be used later on) enhance economic 
performance along a product evolution dynamic under functional expansion? In order to study 
this question, we have run a simulation aiming at determining the conditions under which 
anticipative-learning-oriented overinvestments could pay off in rule-based design under 
functional expansion. 
 
Our simulation relies on a model which seeks to establish a relationship between investment 
in knowledge creation (horizontal axis in Figure 24) and its effects in terms of product 
transformation (vertical axis in Figure 24). A technological frontier (the orange line) is 
defined, above which functionalities are not attainable. And we are interested in possible 
investment strategies to move from a certain functional level FL0 to a superior level FL1. A 
minimum investment is necessary to move from FL0 to FL1 : one cannot switch freely (i.e. 
vertically) from FL0 to FL1. This minimum investment is represented by the feasibility 
constraint (dotted line, left). An ‘obvious’ investment strategy at first sight is to reach FL1 
with this minimum investment (red arrow: the ratio klmkn  is maximized): this is the investment 
strategy in classical rule-based design. But we can also study over-investment strategies, in a 
logic of anticipated knowledge production (green arrow). This deteriorates the ratio klmkn .	We 

define a threshold beyond which this deterioration of the ratio klmkn  is no longer acceptable 
(criterion of minimum profitability delimited by the dotted line on the right. The authorized 
investments are those made in the cone delimited by the two constraints / the two dotted 
lines.  
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Figure 24. model of the relationship between investment in knowledge creation and its 

effects in terms of product transformation 

 
We have attempted to identify the conditions under which it is more interesting to overinvest 
than to minimize the investment.  
 
To this end, we have simulated different investment strategies deployed to reach a sequence 
of functional level (illustrated by the two schemes in Figure 25) 
(a) The first strategy consists in choosing the minimum investment for each functional 
increment 
(b) The second strategy is to over-invest. We tested cases where overinvestment was 
rewarded by shifting the technological frontier and cases where the technological frontier 
remained unchanged. 
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Figure 25. Simulation: comparison of different investment strategies 

 
The main results of the simulation are the following:  
(1) if the overinvestment is not rewarded by a shift of the technological frontier, profitability 
is either deteriorated (one invests more to reach the same functional level), or unchanged 
(this corresponds to a load smoothing scenario: one overinvests at an earlier step, in order to 
reduce a substantial investment at a subsequent step) 
 
(2) the sole class of overinvestments that enhance profitability are those which shift the 
technological frontier. And the cases in which the overinvestment strategy is significantly 
more profitable are those within which the technological frontier is very horizontal with 
respect to the feasibility constraint, i.e. the case in which a large investment effort is required 
to achieve even a small functional increment. It is then interesting to over-invest in order to 
move the frontier and thus open up new technological possibilities. The zone of unreachable 
functionality can be seen as corresponding to an "unknown" zone: thus, these simulation 
results suggest that an overinvestment is economically interesting if it allows to explore the 
unknown, i.e. if it corresponds to a decision to explore the unknown. 
 
This suggests that in rule-based design under functional expansion, overinvestment strategy 
related to the first deliverable (ensuring that the functional requirements of the individual 
product functions are effectively met) will not contribute to enhance economic performance. 
For the traditional rule-based design deliverable of rule-based design under functional 
expansion, the rule-based design performance logic still applies: exploiting at best existing 
knowledge bases, avoiding unnecessary costs. In contrast, anticipation-oriented 
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overinvestment strategies could be interesting for the second deliverable, that is the renewal 
of architectural independencies in the unknown… 
 

5.1.4. Conclusion: Functional expansion – an ‘unknown with impact’ which disturbs 
robustness in rule-based design and calls for transformations at the level of rule-
based design organizations 

 
In summary, our results reveal that the unknown introduced by functional expansion plays a 
non-negligible role in rule-based design. It is an explanatory variable for phenomena that 
appear impossible, incomprehensible in pure rule-based design. Namely, it offers a new 
explanation regarding why commercial aircraft development costs do not move down a 
learning curve. It also offers an explanation for recent rule-based design crises.  
The explanatory mechanism is the following: the continuous generativity that functional 
expansion introduces in rule-based design destabilizes the practices, the rules, the 
principles… which traditionally ensure robustness in pure-rule-based design. Under 
functional expansion, applying Suh’s (2005) information and independence axioms will not 
be sufficient to ensure a robust design. Managing the convergence of product development 
projects toward cost, quality and time objectives is insufficient to ensure reliable project 
deliverables: one can note that the products in cause in the recent design crises (Dieselgate, 
Boeing 737, Samsung Galaxy Note 7…) were, for a time, before the design flaws were 
discovered, evaluated as performing in terms of cost, quality and development lead time35. 
 
Among what could restore robustness under functional expansion, we have identified (1) a 
capability that seems key to keep the economic impacts of functional expansion under control 
(continuously renewing architectural independencies in an expanding functional space), and 
(2) an investment strategy that could help enhance economic trajectories with time 
(overinvesting in anticipative learning for the design of architectural independencies in the 
unknown). But we have not discussed the kind of organizational structure that would be 
required for the exercise of a continuous remodularization capability and / or the deployment 
of overinvestment strategies in the unknown. Nor have we talked about the organizational 
transformations which this would entail within the current organizations of an R&D firm. It 
is already possible to say that deploying a continuous remodularization capability and / or 
overinvestment strategies in the unknown would imply non negligible transformations in 
D(evelopment) organizations (engineering department, product development 
organizations…) which traditionally rely on rigid and disciplined development logics (e.g. 
stage-gate processes to manage convergence to Cost, Quality Time targets), on resources 
optimization… Which actors could take the responsibility for the design of independencies 
in the unknown which will not immediately pay off? Which actors could take responsibility 
for  overinvestments which deoptimize immediate economic returns? Etc. Such practices 
which consist in incorporating a small dose of flexibility within the rigorous, highly controlled 
product development logics of rule-based design, are unnatural from the viewpoint of pure 
rule-based design. So we will further discuss these questions in section 6. 
 
                                                
 
35 They are not known for excessive cost growth with respect to their initial budget. They passed the tests which 
controlled their technical performance. Etc. 
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5.2. Evaluating the economic impact of the unknown in innovative design (RQ2) 
5.2.1. In a design theory framework, rigorously managing the economic performance 

of projects that conventional economic calculation advises against launching is 
possible, and can be very profitable… 

 
As mentioned earlier, in a decision theory framework, innovative design projects that contain 
unknown prove undecidable and unmanageable. Any possibility of management stops at the 
investment calculation stage, since investment calculation proves either impossible (lack of 
data) or advises against launching such risky project. If, in spite of the advice of decision 
theory-based profitability calculations, the project is launched, decision theory does not offer 
any approach to economically manage the execution of the project and its value. But if one 
leaves the decision theory framework, and moves to design theory, rigorous managerial 
approaches enabling to build value in the unknown can be considered (Hooge, 2020). Falling 
into the avenue opened by these works, our research works exhibited empirical evidence 
which show that in a design theory framework, rigorously managing the profitability of 
innovative design projects that conventional economic calculation advises against launching 
is possible:  

(1) In this design theory-based investment framework, quantifying the economic value 
generated by exploring the unknown is possible. In that, one can extend uncertainty-
reduction-value calculation to the unknown.  
(2) In addition, in this framework, an indispensable condition for effectively 
generating profits by exploring the unknown is the deployment of managerial tools 
that will be used to mobilized to select projects that contain unknown, and to closely 
monitor unknown exploration during project execution. 

 
This calls for two remarks: in the design theory framework, profitability has a behavior in its 
own right, which differs from the behavior of profitability under (high) uncertainty. In this 
framework, luck is not the sole explanation for high gains in the unknown. Contrary to high 
gains under high uncertainty which can only be explained by luck, high gains in the unknown 
can be explained by a rigorous exploration of the unknown, based on the exercise of design-
methods that enable to build new states of the world, which may bring new sources of profits.  
 
But we can also highlight that acquiring the indispensable methods that enable to effectively 
‘systematically’ generate a lot of profits in the unknown (e.g. profits of the same order as 
those of Airbus innovation cluster) is difficult. We develop this point in the next subsection. 
 

5.2.2. … but systematically generating a lot of profits in the unknown requires to 
meet demanding and difficult conditions 

 

Articulating (i) a capability to detect not necessarily obviously visible unknowns with impact, 
and (ii) a capability to explore these unknowns with design-based methods in order to design 
high profits in the unknown is possible, but difficult.  
 
To develop this point, we can rapidly come back to the way one represents uncertainty in an 
investment decision under uncertainty only. Under uncertainty, one generally computes an 
economic indicator (e.g. a NPV), which can be affected by a variance representing uncertainty. 
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The comparison between the outcome of this economic calculation and a threshold generally 
guides investment decision-making. In other words, from a perspective that only takes 
uncertainty into account, if the project is not affected by the unknown, the manager's objective 
is to situate it on a horizontal axis, with a level of confidence that depends on the degree of 
uncertainty affecting the project. (Figure 26 below) 

 

Figure 26. Investment decision-making under uncertainty only 

 

If the project does not contain any unknowns, its positioning can be considered reliable on 
this axis. In contrast, if a project contains unknown, its position on the horizontal axis can be 
disturbed. To take this into account, we introduce a representation that involves a second 
axis, unknown potential', distinguishing between a positive unknown potential 
(corresponding to initially unknown '2 which, if they emerge (e.g. if designed), can have a 
positive economic impact) and a negative unknown potential (corresponding to initially 
unknown '2 which, if they emerge can have negative, undesirable economic impacts, and thus 
which call for being controlled or avoided)  (Figure 27 below). 
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 Figure 27. Introduction of a vertical axis to represent the unknown in investment decision-

making 

 
 
What happens to project D in Figure 25 is what has happened to the Flextrack project and to 
the 75% of the projects incubated or accelerated by Airbus innovation cluster portfolio: the 
project which was due to be unprofitable according to classical economic calculation becomes 
profitable and generates profits (in the frame of subsequent projects).  
But the conditions for an initially unprofitable project to experience a trajectory similar to 
that of project D (i.e. become profitable) are demanding and difficult to meet. 
In the scheme of Figure 24, moving from the unprofitability zone to the profitability zone 
depends on the combination of two things:  

- the slope o of the vector between the initial position of project D, with the unknown 
being taken into account, and the genuine position of project D after unknown 
exploration. This slope can be seen as an indicator of the capability of the actors of 
explore and structure the unknown. The larger this slope (i.e. the closer it is to zero), 
the more performing the capability to explore the unknown  

- the height of the initial position of project D: if the performance o of the unknown 
exploration methods is fixed, an unprofitable project needs to have an unknown 
potential which is high enough, if it is to become profitable. The necessary height is 
determined by the dashed straight line in Figure 25. Given o, the unprofitable projects 
need to be above this line if they are to become profitable after unknown exploration 
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In summary, with two ‘exemplary cases’, our research works have highlighted that in 
innovative design, the value of information in the unknown is quantifiable, and that it can be 
rigorously managed and generate a lot of profits, provided one owns appropriate design 
methods. In subsection 5.2.2. we have highlighted that the conditions which are required to 
generate high profitability in the unknown are demanding and difficult to reach.  
 
One can add that we have demonstrated the economic ‘quantifiability’ and the ‘manageability’ 
of the unknown in cases (Flextrack and Airbus innovation cluster) which have a specificity. 
Airbus innovation clusters explicitly claims to address projects which all have the same profile 
and face the same kind of issues: projects perceived as highly risky and uncertain, non-
consensual projects36, aligned with Airbus strategy and roadmap, mobilizing the existing 
Airbus knowledge related to the topic, involving prototyping plans, etc., and rejected by the 
traditional organizations. In other words, Airbus innovation cluster achieves a generative 
exploration of the unknown which generates a lot of profits under ‘restricted’ conditions: it 
only addresses a very specific class of problem, that is the fact that promising innovation 
projects are be rejected by traditional organizations, because traditional economic calculation 
predicts non profitability37.  
 
These restricted conditions are a limitation of our findings. We will further discuss this in 
Section 6.3 which is devoted to what can be inferred from these findings for the organization 
of a contemporary Innovation Department.   
 
 
6. Discussion  

6.1. Nature of the knowledge produced by our intervention 
 
Within two design theory-based theoretical frameworks (functional expansion ; design theory 
based-decision model) which endogenize the unknown but do not quantify its impact, this 
research work has developed computational techniques (referred to as ‘instruments’ in this 
document) which, from a formal viewpoint, allow to isolate and evaluate the economic impact 
of the unknown (i.e. of new, initially unknown '2 with respect to the definition of the 
unknown given in section 1.2).  
 
The development of these techniques has been motivated by the objective of investigating 
whether the unknown played a role as a ‘hidden’ variable in the framework of rule-based 
design and innovative design phenomena identified in the commercial aircraft industry, and 
which appeared anomalous when analyzed with traditional decision theory-based economic 
models. 
Our economic evaluation instruments which were designed specifically for the analysis of 
these anomalous phenomena highlighted that (1) the economic impact of the unknown is 

                                                
 
36 In the final steps of the selection, the innovation leader in charge of the portfolio systematically favors non-
consensual projects, i.e. projects the pitch of which has both been given very good and very bad marks by the 
members of the selection board 

37 The Flextrack project addressed a problem of the same class 
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quantifiable, and (2) these economic impacts can be large: high economic impacts generated 
by hidden unknown (on the one hand high costs; on the other hand,  huge returns, provided 
appropriate design methods suitable to efficiently explore the unknown are deployed). Once 
the (huge) economic impact of the hidden unknown is revealed, our phenomena seem much 
less intriguing.  

- A second degree polynomial increase for the development costs of commercial aircraft 
no longer seems unexplainable when one knows that commercial aircraft are affected 
by functional expansion, and that functional expansion can lead to exponential cost 
dynamics.  

- The transformation of a project that was due to be unprofitable into a highly profitable 
project seems much less intriguing when one knows that investors in the unknown, if 
they are equipped with adapted design methods to detect and explore the unknown, 
can redesign their decisional space by designing an economic target and by designing 
the new decisions or the states of the world that will allow to reach the target.   

In other words, by proposing economic calculation instruments that endogenize the 
unknown, this research work has produced new interpretation frameworks for phenomena 
that seemed incomprehensible.  
 
The fact that the economic impact of ‘hidden unknowns’ can be large suggests that there is a 
strong contemporary need for economic computational and managerial means detecting and 
managing ‘hidden unknowns with impact’. This emphasizes the importance of further 
investigating how the economic evaluation of design in the unknown could be tooled more 
broadly and systematically in order to manage hidden unknowns, and in particular avoid their 
detrimental effects and exploit their promising economic potential. And this emphasizes the 
importance of further investigating how these results call for organizational transformations. 
 
During our intervention, the interaction between our evaluation instruments and Airbus 
organizations was restricted to an application to analyze past projects and to presentations in 
meetings, namely in steering committee – no attempt was made to implement the tool. 
However, this form of interaction generates some impacts in Airbus organizations (which our 
papers do not discuss).  
Between hidden unknowns and their impact highlighted by our instruments, there are some 
activities / actions which were hidden as long as the impact of the associated unknown had 
not been quantified: either hidden activities in the sense that these activities are effectively 
carried out, but in an unclaimed, invisible way (involving invisible relationships between 
actors) ; or hidden activities in the sense that the activities are not carried out and should be 
– which calls for building new relationships between actors. So our research offers new 
representations for collective action, and it calls for transformations at the level of collective 
action. This corresponds to the principle of inseparability between knowledge and 
relationships (Hatchuel, 2001) according to which modifications at the level of knowledge 
necessarily generates modifications at the level of the relationships between the actors of an 
organization. In particular, the importance of a continuous renewal of architectural 
interdependencies under functional expansion (Paper 1) suggests a need for organizational 
relationships dedicated to decoupling tasks. These relationships and the associated activities 
are thus far hidden. Some relationships may exist, with the associated activities effectively 
carried out, but in an unclaimed, invisible way. Others may be neglected, ignored, and the 
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dependency that has not been decoupled may lead to costly design issues (propagation 
effects). The perspective of characterizing and ‘generating’ these relationships (where they 
are needed, how to tool them, etc.) in the framework of a future research work with Airbus 
has been mentioned. 
In terms of impact, the results of Paper 1 aroused interest and numerous discussions in 
Airbus, namely regarding the extent to which a slowdown of the cost escalation curves 
experienced by commercial aircraft manufacturers is feasible and realistic, regarding the 
costing of integration task, regarding the possible strategies to master development costs, etc. 
Following the last steering committee of this thesis work, in October 2019, where the 
department in charge of Airbus Product Development Plan, the Costing department and the 
R&T department were represented, we were asked to present the results to several teams in 
charge of activities or projects where functional expansion could be influential. The point was 
to raise awareness about functional expansion (i.e. diffuse the new vision offered by models 
which have made hidden unknowns visible), namely within the Costing community and 
within teams working on the product development logic (current and that ‘of the future’). 
Moreover, the results regarding economic calculation in rule-based design and in innovative 
design were both presented to the stakeholders of the innovation cluster’s project portfolio 
analyzed in Paper 3. For the presentation, we were asked to insist on the role played by the 
exploration methods and the close managerial control / close monitoring in the generation of 
the huge economic returns. 
 
In what follows, we further discuss the limitations of our results and their organizational 
impacts. 
 

6.2. Limitations: Rule-based design under functional expansion: which organizational 
impacts for rule-based design organizations (engineering departments and in product 
development organizations)? 

 
As mentioned in Section 5.1, the unknown introduced by functional expansion disturbs the 
traditional ways to ensure robustness in rule-based design. Our investigations have led us to 
identify two strategies that could contribute to robustness in rule-based design under 
functional expansion: (1) continuously renewing architectural independencies, and (2) 
overinvesting in anticipative learning in the unknown. From a pure rule-based design 
viewpoint oriented toward immediate profit optimization, minimization of knowledge 
production, reuse of a stable set of design rules, etc. such strategies are very unnatural and 
are likely to require substantial organizational transformations. This leads to ask the question: 
wouldn’t there exist alternative strategies which could help efficiently manage functional 
expansion in rule-based design, without requiring major organizational changes in 
engineering departments and in product development organizations? Two such strategies can 
actually be identified: we discuss them in subsections 6.2.1 and 6.2.2, and we explain that 
they are little convincing to help efficiently deal with functional expansion in rule-based 
design.  
 

6.2.1. Strict control of the flow of new functions: restricting functional expansion to 
modular functional expansions 
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The renewal of architectural independencies may take place during the course of the project in 
order to ‘decouple’ entities which, if they remain coupled, could trigger undesirable 
phenomena, not necessarily for the product under development, but perhaps for the next 
development projects (indeed, the risk of undesirable phenomena appearing on the next 
developments is multiplied by the (accumulation of the) functional expansions emerging on 
the next generation products). So, the model represented in Figure 32 involves interactions 
between teams or actors during the course of the project, in order to ‘decouple’ or ‘prepare 
the decoupling’ of entities the interaction of which may have undesirable effects. This 
corresponds to a dynamic relationship between the emergence of knowledge (here, 
knowledge regarding the identification of potentially detrimental couplings), product 
architecture and organization which has already been underlined by previous research works 
(Lakemond and Magnusson, 2017). This also suggests that under functional expansion, forms 
of collaborative decision-making and associated models and tools (Jankovic et al., 2010) may 
be required beyond the early phases of a product development project. Similarly interaction 
management models (e.g. Stal-Le Cardinal and Marle, 2006) which are generally supposed to 
structure projects during their early phases, by defining the interactions within Product 
Breakdown Structures, Work Breakdown Structures may, in a context of functional 
expansion, be needed (under adapted forms) in later phases, and this regularly.  
 
One can note that the continuous re-modularization model and its dynamic set of design rules 
represent significant difficulties for the coordination of design work between different project 
teams, since the design rules may change between the descent and ascent of the V-cycle. This 
means that if the actors of the design do not coordinate and communicate on the updates of 
the design rules, product sub-assemblies (systems, subsystems, components…) may be 
developed with different the design rules, leading to incompatible sub-assemblies and 
integration problems during the later phases of the development process. This suggests that 
functional expansion in rule-based design involves a kind of innovation which does not lend 
itself well to collaborations with external partners, unless appropriate coordination means are 
available. This leads to questions regarding what appropriate coordination tools (architecture 
modelling tools, digital modelling tools, decision-making tools …)  under functional 
expansion could be, in order to manage continuously evolving design rules. This also leads to 
ask which actors, which managerial figures, which decision-maker figures, could take on the 
role of coordinating different design teams who work based on unstable sets of design rules.  
This discussion suggests that under functional expansion, opting for a tiered outsourcing 
strategy and delegating the integration of sub-assemblies to Tier-1 suppliers may be very risky 
– a close sharing of the design rules changes will be required between the final integrator 
which outsources and its Tier-1 suppliers, in order to avoid integration issues. In the case of 
Boeing’s B787 program which (for the first time) involved a tiered outsourcing strategy39 
(Denning, 2013), the dramatic integration issues (which caused major delays and overcosts, 
which led Boeing to buy one of the Tier-1 suppliers) are namely attributed to a lack of know-
how of the Tier-1 suppliers, to a web-based communication tool (Exostar) which, reportedly, 
did not allow a satisfying collaboration between the design teams, etc. But one can ask 
whether an instable basis of design rules due to functional expansion would not be an 

                                                
 
39 http://comlabgames.com/45-971/instructor/02_outsourcing/boeing/What%20Went%20Wrong%20At%20Boeing.pdf 
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additional explanation to the problems experienced by the suppliers of the Boeing 787 
program.  
 
In conclusion, this discussion has further lengthened the list of the potential large-scale and 
undesirable effects of ignored / denied functional expansion in rule-based design. And it has 
underlined the organizational challenges raised by the ‘unknown with impact’ which 
functional expansion is. (Re)gaining control over functional expansion seems of utmost 
importance – and the solutions to do so seem to require a genuine rationalization of 
Development organizations: new investment logics, new coordination tools, new architectural 
activities and architectural roles, new decision-making activities, etc., which would also have 
an impact at the level of engineering education.  
 
 

6.3. Limitations of the findings regarding ‘economic management in the unknown’ 
6.3.1. The unknown, a manageable economic variable according to our results on 

‘economic evaluations in innovative design’: but which organizational 
suggestions for contemporary Innovation Departments? 

 
Our research dedicated to economic calculation in the unknown in innovative design aimed 
at studying potential tools which could provide an economic performance management 
approach for projects declared as unprofitable, and hence unmanageable by traditional 
decision theory-based economic calculation techniques. This led us to primarily focus on the 
managerial approaches and on the methods used within Airbus innovation cluster and in the 
case of the Flextrack project. 
In this subsection, beyond the methods and managerial approaches, we briefly come back to 
Airbus innovation cluster and to the Flextrack project with a focus on their organizational 
setting.  
 
One first remark is that neither Airbus innovation cluster nor the Flextrack project falls into 
a setting of organizational ambidexterity (in the sense of March (1991)). The innovation 
cluster’s project portfolio is strongly related with Airbus traditional organizations: it has 
deployed a network of local innovation correspondents within the competences centres, it 
selects ideas that come from the traditional organizations (engineering, manufacturing, 
customer services…), the heads of the competence centers are members of the project 
selection board, and members of the projects steering committees. The innovation leader in 
charge of the portfolio ensures that the incubated / accelerated projects can as much as 
possible access all Airbus-existing knowledge which could contribute to the project. As for 
the Flextrack project, it took place within a very traditional organization (the plant). At the 
first sight, the project was a very common manufacturing plant problem which involved no 
innovative design and no unknown. Throughout its duration, it was managed by the 
operational objectives of the plant (recurring costs, ramp-up issues, etc.).  
In this regard, our results are consistent with previous research work (Le Glatin, 2018) which 
emphasize the important of conditioning the objectives exploration with the knowledge of 
exploitation.  
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All these elements (the position of the Flextrack project, the relationship of the incubation / 
acceleration portfolio with the traditional organizations) stress that the knowledge heritage 
of the traditional organizations is by no means a hindrance for carrying out economic 
reasonings in the unknown that generate a lot of profitability. Quite the contrary, in both 
cases, the initial knowledge base, and the access to the corporate knowledge plays an 
important role in the performance of the exploration of the unknown.  
 
In order to better understand the organizational forms associated with these innovative design 
regime which generates a lot of profitability, we could have tried to get a better understanding 
of the role of the innovation cluster’s Innovation Leader: as mentioned earlier, he closely 
monitors the progress of the projects. Doing so, his aim is to follow (and ensure) value 
building. His feedback probably plays a role in triggering the exploration of a space of concepts 
which departs from the initial, unprofitable concept. We could have further investigated 
whether his role is close to that of a creative leader (Ezzat et al., 2017). 
 
Finally, as mentioned in Paper 3, prototyping activities have a major place in Airbus 
innovation cluster. A project needs to propose prototyping tracks if it is to enter the project 
portfolio. The innovation leader in charge of the portfolio studies very closely the prototyping 
activities of the incubated / accelerated projects: he has built about twenty indicators to 
characterize the prototype(s) built by the team during the course of the project – and based 
on these prototypes, he infers a ‘prototyping performance’ of the project. During our research, 
we noted that prototypes which turned out to invalidate the explored concept can be marked 
as ‘performing’ by the innovation leader – we could have further investigated these aspects.  
 

6.3.2. Restricted deployment situations for the identified economic evaluation and 
management techniques in the unknown? 

 
Our research work in ‘innovative design’ revealed that the value associated with unknown 
exploration can be assessed and can be large, provided it is managed with appropriate design-
based methods – however, we demonstrated this result for projects which meet very specific 
conditions, in the framework of the Flextrack projects and the projects of Airbus innovation 
cluster. In all these cases, the economic issue is similar and clear: it is about solving a 
seemingly impossible economic equation in the framework of a problem which has been 
provided by a traditional organization. The projects that enter Airbus innovation cluster’s 
portfolio are aligned with Airbus strategy and roadmaps. And they are to be solved in a short-
medium term, with objectives of ‘disruptive business applications’. And Airbus innovation 
cluster does not initiate new projects.  
For these reasons, we are in the face of an innovative design regime, with a slightly  ‘inferior’ 
level of generativity. This leads to ask the extent to which the model identified in these 
specific Airbus cases could be extended for enhanced generativity, while keeping the same 
kind of profitability regime and the same kind of economic calculation in the unknown.  In 
particular, this leads to ask whether the calculation of the value of the unknown and the 
associated management logic which work in the abovementioned specific cases would be 
applicable for innovative design activities in a less constrained way. Could the value of the 
unknown be computed with this very calculation in the case of innovative design activities 
which aim at making innovation fields emerge? Could it apply for more prospective innovative 
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design activities? Could it apply when it comes to guide decision-making for major themes 
(e.g. energy transition)? 
 
The other way round, another limitation of our research is that it did not go as far as 
identifying how functional expansion-induced unknown with impact could make the object 
of an economic management. But we could ask whether the economic evaluation and 
management techniques identified in the Flextrack case and in Airbus innovation cluster 
could be deployable to help manage the unknown in rule-based design. This is what we 
discuss in the next subsection. 
 

6.4. Conclusion and opening 
6.4.1. Summaries of (R1) A rule-based design regime under functional expansion and 

(R2) A ‘highly framed’ innovative design regime 
 
This thesis work dedicated to economic calculation in the unknown has studied two 
phenomena coming from the commercial aircraft industry.  
 
The first phenomenon is the development cost escalation phenomenon affecting the 
commercial aircraft industry, which is incomprehensible from in the performance analysis 
framework of rule-based design (unless engineering departments are very under-performing). 
In the face of this phenomenon, we built an instrument that measures the economic impact 
of functional-expansion-induced unknown. And we used the instrument as an analytical tool 
in an attempt to get a better understanding cost escalation dynamics in rule-based design. 
This revealed that the unknown could be an explanatory variable for increasing development 
costs in rule based design. And it enabled to investigate and study the approaches which could 
be considered and prescribed to manage this unknown and its large-scale impacts.   
The findings and the above discussions provide us elements to start characterizing, in terms 
of reasoning, performance logics and organizational forms (Le Masson et al., 2017) a rule-
based design regime under functional expansion. This regime (R1) is a rule-based design 
regime which is deeply destabilized by a slightly superior, continuous and non-negligible dose 
of generativity. It is summarized in Table 4 below.  
 
The second phenomenon is related to puzzling, seemingly deviant economic calculation 
practices, which, contrary to the predictions of traditional economic calculation techniques, 
turn out to generate huge returns.  Mobilizing design-theory models, we built an instrument 
which detects whether some unknown has been structured during the course of a project, and 
isolates and quantifies the value of unknown exploration. From this instrument, one could 
derive a tool and identify associated management logics enabling to design the economic value 
of projects which, according to traditional economic calculation techniques should not be 
launched and hence  unmanageable. 
The findings and discussions associated with unknown detection and assessment techniques 
provide us elements to characterize a new design regime: a highly-framed but highly profitable 
innovative design regime (R2), equivalent to an innovative design regime with a slightly 
inferior level of generativity. It is summarized in Table 4 below.  
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As indicated in Table 4. below, R1 and R2 include both elements of rule-based design (in 
particular discipline-oriented elements) and elements of innovative design (in particular 
generativity-oriented elements).  
 

Table 4. toward the characterization of R1. A rule-based design regime under functional 

expansion and R2. A ‘highly framed’ innovative design regime 

 

 

Outcome of the work dedicated to economic calculation 

in the unknown, in rule-based design

Outcome of the work dedicated to economic calculation 

in the unknown, in innovative design

R1

Rule-based design under functional expansion = rule-

based design regime with a slightly superior, continuous 

and non negligible dose of generativity

R2

Highly framed innovative design regime in place in the 

frame of Airbus innovation cluster

= an innovative design regime with a slightly inferior level 

of generativity 

Design reasoning Within a stable dominant design architecture which is only

‘apparent’. The seemingly stable, already-existing

architecture may be subject to genuine shocks triggered by

the newly added functions

è Engineering departments’ twofold deliverable:

1. Ensuring that the functional requirements of the

individual product functions are effectively met

2. Renewing architectural independencies, especially

architectural independencies in the unknown

A search for business-application-oriented disruptive

solutions to address problems experienced by the

traditional organizations

Product identity is not necessarily to be destabilized

Deliverables:

New knowledge and concepts, not to initiate new projects

within new innovation fields, but to provide successful

operational solution which will meet the performance

objectives of the traditional organizations

Logics of performance Regarding the first deliverable: Optimizing resources:

achieving the improvements at product level while

minimizing knowledge production (the production of

excess knowledge)

Regarding the second deliverable: producing excess

knowledge (i.e. overinvesting) may be economically

interesting to renew architectural independencies the

unknown.

(Over)Investment in projects which are due to be

unprofitable and should not be launched according to

traditional economic calculation

The project objective is to meet the operational objective

of the traditional organization, more than destabilizing

product identify

Management of economic 

performance

For the first deliverable: Management by objectives, the

performance objectives being:

- Cost quality lead time

- Static returns: revenues / resources ratio

For the second deliverable:

From management by objectives to value management

(management of the value of the unknown) (Hooge, 2010

2020)

à Which performance objectives and criteria to manage

the economic performance of the renewal of architectural

independences?

Value needs to be designed, which requires appropriate

managerial approaches (Hooge, 2010, 2020)

+ The economic value associated with unknown

exploration can be quantified and managed. It can be very

large provided appropriate methods and capabilities to

detect and explore the unknown (and to design

profitability in the unknown).

à This result has been demonstrated and is valid under

‘restricted conditions'

Forms of collective 

organization

The forms of collective organization of pure rule-based

design are inappropriate to manage the dynamic set of

design rules. Keeping the organizational setting of rule-

based design (e.g. cost cuts of the individual functions ;

tiered outsourcing…) may entail catastrophic

consequences. This emphasizes a need for new

organizational settings, in particular for collaborative tools

adapted to a context of ‘dynamic design rules’, to

coordinate different design teams under functional

expansion…

A very strict organization which relies on the knowledge

heritage of the exploitation.

A steering committee with a high level of sponsorship

A place (e.g. Airbus Protospace), with prototyping

resources, a training, a strong innovation leadership…
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6.4.2. How could a coupling between (R1) and (R2) help them address their 
respective challenges? 

 
The discussion in the previous subsections clearly highlight that both R1 and R2 face issues. 
 
Regarding R1: ill-controlled functional expansion turns out to have large scale, detrimental 
(socio)economic impacts. Thus, for product development organizations, it is crucial to 
(re)gain control over functional expansion. It is not impossible that spontaneously, without 
claiming it, some product development organizations have already started developing ways to 
manage functional expansion, in particular, to coordinate themselves in a context where 
design rules are instable40. But such implicit, unbudgeted ways of managing functional 
expansion could be vulnerable to cost cuts measured deployed by a management who ignores 
or denies functional expansion. And nothing guarantees that spontaneous ways of managing 
functional expansion will be sufficient if the pace of functional expansion accelerates. So there 
is a challenge of developing organizational forms which explicitly take on functional 
expansion. Our research works suggest that the nature of the organizational means required 
to master functional expansion substantially differs from the organizational forms in place in 
rule-based design: reinforcing existing rule-based design organizational forms in an attempt 
to master functional expansion is likely to have undesirable effects. In other words, the slight 
but non-negligible dose of generativity induced by functional expansion confronts traditional 
Development organizations to a crisis calling for a necessary rationalization step (new 
coordination logics, new investment logics, new decision-making logics, new tools, new 
roles…) of rule-based design.  
 
Regarding R2: the strength of R2 is that it can potentially generate a lot of profits out of the 
unknown (more than uncertainty reduction), in a less risky way than if one engages in high 
uncertainty without unknown. However, the conditions under which such design regimes 
may take place are very demanding (difficult to reach) and restrictive. Does this mean that 
the occurrence of such a design regime, and the huge performance it may generate, are 
condemned to remain rare?  
 
These issues related to R1 and R2 would call for future research. However, we can conclude 
on the following opening: to what extent could a coupling between R1 and R2 allow them to 
address their respective abovementioned issues? In particular, to what extent could the highly 
framed (but highly profitable) innovative design regime R2 help address the crisis faced by 
the rule based design regime under functional expansion? Indeed, the discipline (close 
monitoring…) and the high profits of R2 are perfectly compatible with a design regime which 
is mainly rule-based. R2 could bring methods, organizational ways, rigor to R1 in building 
independencies in the unknown and in continuously renewing design rules. This could restore 
the robustness of rule-based design, which is threatened in rule-based design under functional 
                                                
 
40 According to the public data we collected, development costs and development times seem to have 
been experiencing a polynomial increase (x2) in the commercial aircraft industry (Figure 1b. and Figure 
9). This could suggest that in the commercial aircraft industry, engineering departments already 
developed ways to manage the unknown introduced by functional expansion, but in an invisible, 
unclaimed way, without any dedicated organization, tools, budget, etc.   
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expansion (because of functional expansion). The other way round, such a coupling between 
R1 and R2 would offer R2 an area where it could express its generativity more intensely 
(initiating projects, operating in the unknown of products’ architectural design space…).  
 
Such a model is of course not evident to set up. It would probably be very demanding in terms 
of unknown management, especially in terms unknown exploration methods.  
But this would not be the first time that innovative design feeds rule-based design in order to 
help it renew its design rules – quite the contrary, such a coupling has existed and played a 
critical role at the very origin of engineering departments (Le Masson and Weil, 2010). Could 
it be an opportunity for their survival in the face of functional expansion? 
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Résumé 

L'émergence régulière de nouvelles fonctions dans les produits est un phénomène largement connu qui peut être 
mesuré à l'aide de la notion d'expansion fonctionnelle. Cependant, la façon dont les bureaux d’étude exécutent les 
tâches de conception liées à l’expansion fonctionnelle, ainsi que les coûts associés à ces tâches et les outils qui 
permettent de les gérer sont mal connus. En particulier, alors que l’incrémentation des fonctions existantes est déjà 
reconnu comme un inducteur de coûts majeur, l'influence sur les coûts de développement des fonctions nouvelles 
n'a pas été quantifiée. Dans cette étude, nous avons simulé les tendances d'évolution des coûts de développement 
associées à la dynamique d'évolution des produits induite par l'expansion fonctionnelle. Tout d'abord, nous avons 
simulé les coûts d’une dynamique d'évolution produit induite par l'expansion fonctionnelle pure et nous avons 
constaté que les coûts de propagation induits par l'expansion fonctionnelle pouvaient être colossaux. Ensuite, nous 
avons simulé des stratégies de modularisation pour vérifier si les techniques de modularisation traditionnelles 
réduisent les coûts de propagation induits par l'expansion fonctionnelle. Cette simulation a révélé que les fonctions 
nouvellement ajoutées peuvent éliminer les indépendances architecturales critiques et rendre l'architecture 
modularisée obsolète, éliminant ainsi le potentiel de réduction des coûts de la modularisation. Nous avons ensuite 
simulé une stratégie de modularisation alternative qui est spécifique à l'expansion fonctionnelle et qui restaure la 
propriété de réduction des coûts de la modularité : une stratégie de re-modularisation continue. Enfin, nous avons 
simulé une dynamique d'évolution des produits impliquant incrémentation et expansion fonctionnelle afin de 
déterminer les conditions dans lesquelles les coûts induits par l'expansion fonctionnelle peuvent dominer les coûts 
induits par l’incrémentation de fonctions existantes, et vice versa. Ces résultats encouragent à discuter non 
seulement sur le potentiel de réduction des coûts mais aussi les risques de conception associés à une (mauvaise) 
utilisation de trois techniques de réduction des coûts dans le cadre d'une expansion fonctionnelle : réduction des 
coûts nominaux des fonctions, modularisation classique et modularisation continue.   
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Abstract 

The regular emergence of new functions in products is a well-known phenomenon that can be measured using the 

notion of functional expansion. However, we know little about how engineering departments execute functional-

expansion-related design tasks, in particular, the development costs induced by functional expansion and the 

appropriate cost management techniques under functional expansion. The upgrade of already-existing functions 

has been found to be a significant cost factor. However, the influence of newly added functions on development 

costs has not been quantified. In this study, we simulated the development cost evolution trends associated with 

functional-expansion-driven product evolution dynamics. First, we simulated the costs of pure functional-

expansion-driven product evolution dynamics and found that functional-expansion-induced propagation costs 
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might be huge. Second, we simulated modularization strategies to test whether traditional modularization 

techniques reduce functional-expansion-induced propagation costs. This simulation revealed that newly added 

functions may eliminate critical architectural independencies and render the modularized architecture obsolete, 

thereby undermining the cost-reduction power of modularization. Thus, we simulated an alternative 

modularization strategy that is specific to functional expansion and restores the cost-reduction property of 

modularity: a continuous re-modularization strategy. Finally, we simulated upgrade-and-functional-expansion-

driven product evolution dynamics to determine the conditions under which functional-expansion-induced costs 

may dominate upgrade-induced cost, and vice versa. These findings encourage the discussion of not only cost-

reduction potential but also the design risks associated with the (mis)use of three cost-reduction techniques under 

functional expansion: cutting functions’ nominal costs, classic modularization, and continuous modularization. 

 

Keywords: functional expansion; cost escalation; modularization; cost reduction; architectural independencies 
 

1. Introduction  

 
In a competitive context marked by the influence of, for example, market-based dynamics (e.g., customer demand 

for improved performance, higher quality, more customization, and lower prices), technology and innovation-

based dynamics (e.g., new computer-aided design capabilities, new technologies, and new innovative materials), 

and regulatory-based dynamics, firms are strongly encouraged to enrich their products with innovative features. 

Design engineers develop and implement changes at the product level that can take the form of functional 

optimizations or of upgrades that improve existing product characteristics, or can take a more disruptive form, that 

is, an enrichment of the product’s functional space with the addition of innovative characteristics. Innovative 

changes in the form of functional upgrades or newly added functions drive product evolution trajectories. 

Additionally, they may entail significant modifications and disruptions within product architectures. Hobday 

(1998) stated that even incremental changes (i.e., upgrades) implemented in a product whose architecture seems 

stable may hide disruptive changes at the level of subsystems or components. In recent research, the magnitude of 

the emergence of new functions with time in the case of consumption goods has been measured and found it to be 

very strong (El Qaoumi 2016; Le Masson et al. 2019). More specifically, the measures highlight consumption 

goods, some of which present a seemingly stabilized architecture, that prove to be continuously enriched with new 

functions. The continuous enrichment of products with new functions is called functional expansion (El Qaoumi 

2016; Le Masson et al. 2019). An example of this phenomenon is the vacuum cleaner was enriched with as many 

new functions as the mobile phone, albeit over a time period that was three times longer. 
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If a product is under functional expansion, it can reasonably be assumed that functional expansion results in 

additional functional-expansion-related design tasks for engineering departments. But how much additional design 

work is induced by functional expansion? What are the associated costs? 

 

Extensive literature is dedicated to the quantitative relationship between product functionality and product 

development effort (in particular product development costs). 

In several industries, the costs related to development programs (i.e., development costs, unit production costs, 

and by implication, unit prices) are subject to increasing trends in the form of cost escalation (i.e., cost increase 

from one product generation to the subsequent generation) and cost growth (i.e., cost overrun with respect to the 

initially targeted costs, which generally undermine the ambitions that contemplate a slowdown of cost escalation 

curves with time). This concerns, for example, military aircraft, helicopters, ships, submarines, battle tanks, and 

commercial aircraft. For instance, Bongers and Torres (2013) found that the costs of U.S. jet fighter aircraft have 

increased by 12.6% per year since 1944. Particularly in the defense sector , this cost evolution gave rise to a large 

number of studies that aimed to improve the understanding of the driving forces that underlie cost increases and 

consider leverages that could slow down these cost increases (Augustine 1983; Eskew 2000; O’Neil 2011; Arena 

et al. 2008; Cancian 2010; Dobson 2014; Hove and Lillekvelland 2014). In these studies, the significance and 

plausibility of potential cost factors was investigated and discussed. Among these factors are, for example, 

inflation, changes at product level, product complexity, requirement volatility  involving programs that deviate 

from their initial target, management errors, poor program execution, subcontracting issues, unrealistic cost 

estimates, and flawed initial concept caused by over-optimism and non-progressive application of new 

technologies in the framework of a continuous race for superior technologies, leading to development problems. 

Functional upgrades are a major cost factor. Arena et al. (2008), Bongers and Torres (2013), and Hove and 

Lillekvelland (2014) found a strong correlation between the upgrade of existing product characteristics (e.g., range, 

cruising speed, maximum speed, and whether the aircraft is carrier-based) and cost escalation. However, in these 

studies, the impact of newly added functions was not quantitatively discussed. Arena et al. (2008), and Hove and 

Lillekvelland (2014) used a regression vector that involved the same variables over the studied cost escalation 

period and that could not be extended to include newly introduced product characteristics. Bongers and Torres 

(2013) used hedonic prices in a Lancasterian framework, where the only possible product change scenarios are the 

optimization and/or combination of existing characteristics (i.e., a fixed-size functional space that does not allow 

the emergence of new product characteristics). Arena et al. (2008) explicitly mentioned the omission of newly 
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added functions, referring to ‘other elements’ that could not be taken into account in their regression analysis (i.e., 

changes in avionics, software implementation, and product longevity) because the variables for measuring them 

are only available for recent systems and not applicable to older systems.  

Despite this, at a qualitative level, Arena et al (2008) interviewed military aircraft programs’ prime contractors 

regarding the topic of cost escalation: the interviewees reported that new innovative characteristics in military 

aircraft (e.g., stealth, software-controlled systems, and new mission equipment) are important contributors to cost 

escalation. Cancian (2010) also stressed that the excess cost (i.e., cost growth) incurred during the course of a 

military program may actually be the funding of the development of additional military capabilities that were not 

planned in the initial concept, and that may give extra value to the product. These are explicit references to non-

negligible costs that seem to have contributed to funding the development of new product functions. However, 

these facts are not addressed in quantitative terms.  

The relationship between functionality and cost is also addressed in parametric models that aim to provide 

estimates of design effort. Some models (Function Points (Albrecht (1979), COCOMO II (Boehm et al., 2000), 

cited in Fenton and Bieman (2014)) measure the functionality of a software, i.e. measure its functional size (by 

counting items of various types contained in the specifications), in order to provide estimates of development costs 

and time. In the case of hardware, Bashir and Thomson (2001) propose parametric models involving product 

functionality (measured with a complexity metric) and requirements severity as parameters to estimate the design 

effort. According to these estimation models, the addition of new functions contributes to increased design costs. 

However, the statistical relationships they involve do not go as far to account for how a continuous emergence of 

new functions affects design work and generates additional development costs. 

 

This lack of insights regarding the relationship between functional expansion and development costs is 

problematic, particularly in industries whose products are both seemingly stabilized and under functional 

expansion, and which are subject to cost escalation (see the example of the commercial aircraft industry in 

Appendix 1). Indeed, in these industries, engineering departments do not claim responsibility for activities 

dedicated to functional expansion. The claimed development process is a stage-gate-like process that is seemingly 

dedicated to a product whose already-existing functions will be improved. This suggests that the design tasks 

related to functional expansion are performed by traditional organizations (e.g., those responsible for already-

existing functions and those responsible for product architecture and integration), in a silent, unclaimed manner, 

without, for example, specific tools and methods, and a specific budget line dedicated to functional expansion. 
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And the cost manager confronted by the cost escalation curve experienced by the product under functional 

expansion but the architecture of which is seemingly stabilized, can neither say whether nor with what intensity 

newly added functions play a role in the cost increase dynamics. The cost manager does not know what a well-

managed functional expansion phenomenon is supposed to cost. Additionally, this manager does not know how 

far the extra costs associated with ill-managed functional expansion can extend. 

 

From a theoretical point of view, this raises a series of questions. If we consider the ‘spectrum’ of development 

cost evolution curves that an engineering department can theoretically attain depending on how proficient it is at 

mastering costs in the framework of upgrade-and-functional-expansion-driven product evolution dynamics (see 

Figure 1): 

(1) What is the contribution of functional expansion to a development cost evolution curve? What is the nature 

of the cost increase induced by functional expansion? What is the shape of the cost space associated with a 

functional expansion dynamics? 

(2) In terms of managerial practices, what strategies can be used to slow down cost escalation and move to a 

lower, more cost-effective cost evolution curve? Are the traditional strategies that apply without functional 

expansion still valid and efficient? In particular, it is widely acknowledged that the design of modular 

architectures (i.e., architectures whose entities (e.g., components or functions) are arranged into dense 

modules (also called clusters or chunks) that are as decoupled from one another as possible (i.e., inter-module 

interactions are weak) (Ulrich 1994; Browning 1998; Koh et al. 2015)) can facilitate the implementation of 

engineering changes and control the destabilization that changes may trigger in the product structure. Modular 

architectures facilitate the upgrading of existing modules by limiting the perimeter of the design work to a 

few modules. Additionally, they also facilitate the addition of new modules, that is, ‘product extension’ 

(Ulrich 1994) or augmentation (Baldwin and Clark 2006), also referred to as ‘add-ons’ (Ulrich 1995). It is 

largely acknowledged that this can contribute to reducing the development costs and time of next-generation 

products. Are these economic properties of modularization preserved under functional expansion or are they 

undermined by functional expansion, which would suggest that functional expansion calls for the acquisition 

of a specific capital of, for example, architectural methods, strategies, knowledge, and design rules?  

(3) In comparison with other proven cost factors, in particular functional upgrades, is functional expansion a 

significant cost driver that should be taken into account as an important object of cost management? 





 

 7 

 

 

This paper is structured as follows; In Section 2, we examine the literature on models that could provide the 

equation that underlies a product-change-driven cost escalation curve, which could enable us to build Simulations 

1, 2, and 3. In Section 3, we introduce the simulation model that we have chosen. In Section 4, we present the 

results of the simulation, which reveal that functional expansion significantly accelerates cost escalation dynamics. 

Additionally, it provides some insights into the conditions under which modularization strategies can slow down 

cost escalation curves in the context of functional expansion. We discuss these results in Section 5.  

 
 
 
 

2. Review of the literature: review of cost model equations that could help to simulate groups of 

functional-expansion-driven cost escalation curves and functional-expansion-and-upgrade-driven 

cost escalation curves, and modularization strategies 

 
In this section, we examine the literature on models that meet the following three requirements: 

(i) enable the isolation of the (minimum) impact of functional expansion on development costs (to be able 

to build Simulation 1); 

(ii) enable the simulation of the modularization of product architectures (to be able to build Simulation 2); 

and 

(iii) enable the assessment of the extent to which functional expansion might be a significant cost driver, with 

respect to functional upgrades that have already been demonstrated as a major cost driver (Simulation 3). 

 
 
2.1. Isolating the cost impact of functional expansion 

 
What is the nature of the costs induced by functional expansion? What are the types of other cost effects that we 

have to ‘neutralize’ if we want to isolate functional expansion?  

 

To answer these questions, we can rely on the literature on engineering changes, which distinguishes two types of 

engineering changes. (1) Intentional engineering changes are developed and implemented by design engineers to 

answer market dynamics (e.g., customer demand for more performance), respond to regulatory requirements, or 

follow the emergence of new technologies. Functional upgrades and functional expansion can be seen as two 

specific forms of intentional engineering changes. (2) While the intentional engineering changes concern targeted 

entities of the architecture (e.g., targeted functions, subsystems, and components), they may propagate to other 

entities within the architecture, and trigger additional changes (e.g., rework and redesign) in these other entities 

(Clarkson et al. 2004): this phenomenon is called change propagation. Intentional changes may also lead to 
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emergence phenomena, which correspond to unanticipated interactions between entities that were not expected to 

affect one another. Such emergence phenomena can result in potentially undesirable effects in the product and 

lead to additional work (e.g., building ‘barriers’ to prevent interaction between the newly interdependent entities) 

(Carlson and Doyle 2005; Alderson and Doyle 2010). If emergence or propagation effects arise, their impact on a 

project can be dramatic (e.g., an ‘avalanche’ of propagated changes, as theorized by Eckert et al. (2004), can have 

catastrophic consequences in terms of costs and delays). 

 

Functional expansion can be seen as a specific type of engineering change. Additionally, the costs it induces could 

be broken down in the following manner: 

- the nominal cost of the new function that is intentionally developed and implemented; and 

- the cost induced by the changes propagated by the new function in the already-existing architecture. 

 

If we want to isolate these costs caused by functional expansion, we have to neutralize the costs induced by another, 

more well-known and mastered form of engineering change: functional upgrades. Similar to the costs induced by 

functional expansion, the costs of functional upgrades can be broken down into 

- the nominal cost of the intentional upgrade; and 

- the cost induced by the changes propagated by the upgrade in the architecture. 

 

We can easily set a standard nominal cost corresponding to the development effort of a new function. Additionally, 

we can easily define a trivial mathematical function to compute the nominal development costs over an expanding 

functional space. 

 

Less obvious is how to assess the extent to which the newly introduced function disturbs the already-existing 

architecture, and generate propagation costs. In the next section, we investigate how cost propagation models 

handle functional-expansion-induced propagation costs. 

 
 
2.2. Cost propagation models: appropriateness to compute functional-expansion-induced propagation costs  

 

 

Cost propagation models account for how “costs propagate” as changes propagate (Georgiades et al. 2017). To 

model how costs propagate among the entities contained in a product, Georgiades et al. (2017) and Rebentisch et 

al. (2017) combined two key elements:  
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- a change propagation model: both Georgiades et al. (2017) and Rebentisch et al. (2017) used Clarkson et 

al.’s (2004) seminal matrix-based change propagation method (CPM), which enables propagation paths to 

be traced within a design structure matrix (DSM); and 

- a record of the individual costs of the entities among which changes (and costs) propagate: Georgiades et 

al. (2017) used a vector and Rebentisch et al. used a matrix (2017).  

 
The CPM (Clarkson et al. 2004) is a probabilistic change propagation model that quantifies propagation in terms 

of likelihood, impact, and risk. As illustrated in Figure 2, based on DSMs, the CPM involves a propagation 

likelihood matrix	K = (M:0)8N0,:N6	,	which represents the probability	O=2 	that a change in entity	P	(e.g., a subsystem)41 

propagates to another entity Q	with	which	it is interfaced: if an interaction between P and Q	is highlighted in the 

DSM, then	0 < O=2 	≤ 1,	and if there is no interaction, then	O=2 = 0.	Additionally, the CPM involves a propagation 

impact matrix	p = (p0:)8N0,:N6	such that q=2	is the proportion of	j	that needs to be redesigned if it is affected by a 

propagated change originating from i. Based on the likelihood matrix and the impact matrix, the CPM involves 

the calculation of a risk propagation matrix r. Georgiades et al. (2017) and Rebentisch et al. (2017) only used the 

likelihood matrix of the CPM in their cost propagation models.  

The likelihood matrix	K	only covers ‘direct’ propagation paths, that is, propagation paths between interfaced 

entities. However, indirect propagations (with a longer-than-one propagation chain, where an entity plays the role 

of a bridge between two entities that are not directly interfaced) may also occur. As shown in in Figure 2c, the 

CPM offers the ability to predict a ‘combined propagation likelihood,’ which aggregates the occurrence 

probabilities of all propagation paths between two components, including longer-than-one paths, using the forward 

CPM algorithm (Clarkson et al. 2004); forward CPM is a brute-force search algorithm that considers all possible 

propagation paths individually. More recently, Hamraz et al. (2013) proposed a matrix-based algorithm that, for a 

given integer	k,	computes	UO=2($),	which is the probability that a change in	P	propagates to	Q	through propagation 

paths with lengths of up to k.		

	

	

                                                
 
41 Note that most studies that use DSM and CPM are based on component DSM. However, because this study 

specifically focuses on functional expansion and upgrades, we chose to represent functional-DSM in Figure 2 

and all the figures in this paper.  
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Figure 2. Direct Propagation Likelihood matrices (K) and Combined Propagation Likelihood Matrices (VK 

and VK(<)) that are the elements of CPM involved in Georgiades et al. (2017) and Rebentisch et al. (2017) 
	

By combining CPM likelihood matrices with a vector featuring the individual cost of each entity, Georgiades et 

al. (2017) considered each possible (non-cyclic) propagation path in turn and associated it with a cost. For each 

pair of entities	 (P, Q),	 they computed aggregated propagation costs generated by the combination of all the 

propagation paths that may connect	P	and	Q.	To summarize, this method provides a comprehensive view of all the 

propagation paths and their associated costs. When design engineers implement design changes that involve initial 

changes in some specific components, they can check such a visualization to observe the likely impacts of the 

change in terms of propagated costs. Rebentisch et al. (2017) used the articulation of the CPM and a matrix 

featuring the individual cost of each entity to assess the cost impacts of several specific design change alternatives, 

and compare them. This enables the selection of the most cost-effective alternative. They modeled a ‘design change 

alternative’ by highlighting in a dedicated matrix the entities to be changed in the framework of a particular 

alternative. Then, articulating this matrix with (normally distributed) combined propagation likelihoods and with 

the individual cost of each entity, Rebentisch et al. (2017) modeled the successive steps of a propagation chain, 

which converge under a less-than-one learning factor that is multiplied by the propagation probability at each step, 

and therefore eventually decrease to zero. Associated with this sequence of change propagations, the final result 

given by the model is a cost probability distribution that enables an assessment of the cost-effective nature of the 

initial intentional change alternative. 
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What is the nature of the changes covered by cost propagation models? Can they address functional expansion?  
 

The CPM (as most, if not all, propagation models) is designed to help to manage increasing complexity, that is, to 

help to handle products for which the number of elements (e.g., parts and components), level of 

interconnectedness, and vulnerability to emergence and propagation tend to increase. Such an increase in 

complexity results from the fact that products are required to be increasingly high-performing, and must therefore 

be continuously improved by engineering changes (Clarkson and Doyle 2002; Alderson and Doyle 2010; Clarkson 

et al. 2004; Rebentisch et al. 2017). These improvements and changes that render products increasingly complex 

include upgrades to existing characteristics. By contrast, it is not clear whether the addition of new, innovative 

entities is also covered. 

Indeed, the CPM and propagation models generally analyze propagation within the composite entities of a product 

breakdown at one moment W in the product evolution dynamics; they do not distinguish between already-existing 

and newly added entities. More specifically, to the best of our knowledge, they do not compare the propagation 

likelihood matrix at time W with the previous matrix at time W − 1, and thus do not highlight whether some of the 

entities contained in the matrix at time W might have been absent at time W − 1; that is, newly added entities may 

very well be present in the breakdown considered by propagation models at time W, but they are neither identified 

as ‘new’ nor managed in a different manner to already-existing entities. In both the successive propagation steps 

of Rebentisch et al. (2017) and the propagation visualization provided by Georgiades et al. (2017), the size of the 

propagation likelihood matrix remains unchanged.  

 

Clearly, cost propagation models do not directly provide the equation that underlies the evolution of functional-

expansion-induced propagation costs with time.  

First, Georgiades et al. (2017) did not consider any specific change scenarios, but provided a visualization of all 

possible change scenarios at a specific moment in time. Rebentisch et al. (2017) studied one moment in the product 

evolution dynamics at which different change alternatives were considered and compared. However, we can easily 

specify a sequence of bundles of engineering changes that define the move from one generation of a product to its 

successor (cf. Figure 3) and compute the associated sequence of ‘propagated costs’ using the principle involved 

in the models of Rebentisch et al. (2017) and Georgiades et al. (2017). If we define bundles of engineering changes 

that involve augmenting the DSM a new row and a new column (i.e., augmenting the size of the DSM), this results 

in a simulation of the emergence of a new architectural entity. Additionally, if we apply the formula involved in 

change propagation models in the enlarged architecture, we capture propagation costs under functional expansion. 
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Thus, using cost propagation models, we can simulate the propagation costs caused by upgrades and the 

propagation costs caused by functional expansion. As illustrated in Figure 3, the integer parameter	&	in the k-order 

combined propagation likelihood matrices	"!($)	is highly relevant to our research. Indeed, varying & produces a 

spectrum (i.e., a range) of possible costs curves: a low value of & is associated with a ‘low cost curve’ in the cost 

space (close to the lower bound of the cost space), thereby highlighting well-controlled functional-expansion-

induced propagation. A high value of	&	is associated with a ‘high cost curve’ in the cost space (close to the upper 

bound of the cost space), thereby highlighting the costs induced by ill-controlled functional-expansion-induced 

propagation.  

Traditionally, the capability of an engineering department to master change propagation depends on its capacity 

to design a smart structure of dependencies that will not be too prone to generate propagated changes (Sinha 2014; 

Clarkson et al. 2004; Fricke and Schulz 2005; Carlson and Doyle 2002; Fu et al. 2012). More specifically, an 

engineering department’s mastery of propagation depends on the department’s capital of architectural knowledge 

(e.g., design rules, capability of the departments responsible for specific functional entities to be aware of their 

respective design constraints and to coordinate each other, and capital of change propagation management tools). 

For instance, a modular architecture facilitates the implementation of engineering changes by allowing “module 

designs to be changed and improved over time without undercutting the functionality of the system as a whole” 

(Baldwin and Clark 2006). The use of techniques and tools that highlight the possible propagation paths within 

the network of interrelated entities (e.g., functions, components, requirements, and design parameters) that make 

up a product enables design engineers to be highly knowledgeable regarding the possible consequences (in terms 

of propagation) of a considered intentional change, and thus helps them determine whether it is relevant to 

implement the change (Clarkson et al. 2004; Koh and Clarkson 2009; Hamraz 2013).  
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The integer ‘k’ in Figure 3 can be seen as an indicator of the engineering department’s capital of architectural 

knowledge under functional expansion. Additionally, we can ask the following question: under functional 

expansion, should an engineering department mobilize the same capital of architectural knowledge as in scenarios 

in which there is no functional expansion? We start to address this wide question in Simulation 2 by investigating 

whether modularization strategies can slow down the pure-functional-expansion-driven cost escalation curves 

obtained in Simulation 1.  

Figure 3. Possibility to generate a family of propagation cost evolution curves, from the least cost-effective 

(the highest curves; high values of <) to the most cost-effective (the lowest curves; low values of <) using 

the Rebentisch et al. (2017) algorithm 

 
 

Thus, in this subsection, we have seen that cost propagation models can be adapted to generate functional-

expansion-induced propagation costs. Associated with a function that defines the nominal costs of the newly added 

functions, the Rebentisch et al. (2018) cost propagation model satisfies the first requirement (i) mentioned at the 

beginning of this section.  

Additionally, if we record the evolution of the architecture in a DSM and a propagation likelihood matrix, we can 

simulate modularization strategies: indeed, there exist algorithms for clustering DSM, that is, rearranging the 

elements of the DSM into modules (Thebeau 2001). Thus, we can capture how functional-expansion-propagation 
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costs evolve as we shift from a non-modular architecture to a modular architecture. This satisfies the second 

requirement (ii) mentioned at the beginning of Section 2. 

Thus, in Section 3, we propose a method to simulate the following: 

(A) the cost of functional-expansion-induced propagation; to achieve this, we adapt the Rebentisch et al. 

(2018) cost propagation formula with a direct propagation likelihood matrix ! whose size increases; 

(B) the nominal cost of a newly added entity that was not on the product at time W; and 

(C) the cost reductions allowed by the modularization of the architecture defined by a direct propagation 

likelihood matrix !. 

 

 

2.3. Comparing functional-expansion-induced cost variations with other forms of product-driven cost 

variations that might occur during a product evolution trajectory 

 

Propagation costs are only one specific type of cost variation that may impact (and increase) the costs of the 

individual entities of an architecture: the costs of individual entities may evolve not only under the influence of 

propagation costs, but also under the influence of intentional changes (with the nominal costs of the very 

intentional changes that might trigger propagation) or learning effects (with the benefits that might be yielded from 

the reuse/repetition of activities that have already been completed on the previous-generation product). 

In Section 2.1, we noted that ill-managed propagation could have a dramatic cost impact (e.g., cascading changes). 

In this case, the nominal cost of intentional upgrades and the benefits caused by learning effects might become 

negligible compared with the propagation costs. However, if engineering departments have a high capital of, for 

example, know-how, methods, tools, and practices, this enables them to master propagation (i.e., to have a low 

value of k in Figure 3), there is no guarantee that the nominal cost of intentional, targeted upgrades and the benefit 

from learning economies will be negligible with respect to propagation costs.  

 

In Section 3, for Simulation 3, we propose a method to compute three additional types of possible cost variations: 

(D) learning effect-induced cost reductions for functions that were already present at time W and which are 

reused at time W + 1; 

(E) the nominal cost increase caused by the intentional upgrade of already-existing functions t; and  
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(F) the cost of upgrade-induced propagation (to achieve this, we adapt the Rebentisch et al. (2018) cost 

propagation formula with a fixed-size direct propagation likelihood matrix L). 

 

2.4. Research questions 

 

If we define a method to compute (A)-type, (B)-type, (C)-type, (D)-type, and (E)-type cost variations, we will 

have the necessary components to run simulations that (i) allow the isolation of functional-expansion-induced 

costs and (iii) assess the extent to which functional expansion might be a significant cost driver, with respect to 

functional upgrades that have already been demonstrated as a major cost driver. Additionally, the use of Rebentisch 

et al. (2018) is compatible with a modularization algorithm (Thebeau, 2001). Thus, we will have the necessary 

components to run simulations that will help us to address the following three research questions:  

 

(RQ1): What is the shape of ‘pure’-functional-expansion-driven development cost escalation curves? Can 

functional expansion potentially have a large magnitude impact on development costs? 

(RQ2): To what extent can well-proven modularity strategies slow down the cost escalation curves under 

functional expansion? 

 (RQ3): With respect to functional upgrades that have already been demonstrated as a significant cost driver, under 

which conditions may functional expansion also be a significant cost driver (conditions under which functional 

expansion would be an important object of cost management)?  

 

The following section details the method that supports the three simulations that we use to address these research 

questions.  

 

3. Method: simulation of cost escalation curves based on cost propagation models 

 

We introduce two main inputs (shown in Figure 4) that we use to generate cost escalation curves in Simulations 

1, 2, and 3:  

• the costs of each individual function on the previous-generation product, incurred at a given moment in 

time W. Following Rebentisch et al. (2017), we record these individual costs in a diagonal matrix pV(s) =
(pV0:(s))8N0,:N6(s), where pV00(s) = Vt0(s) is the incurred costs for 2̂ at time W; and 
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• a propagation likelihood matrix K(s) (Clarkson et al. 2004) which represents the structure of 

dependencies of the modeled product. We use this matrix to compute &-order combined propagation 

likelihood matrices. 

 

Figure 4. Matrices IC(t) and L(t), which we use to compute the evolution of the costs of individual 

functional entities with time 

 

At each time step W, the total development cost is the sum ∑ "lv(W)w2xy	z{	m
25( . 

In Section 2, we mentioned that, as we move from W to W + 1, five types of cost variations (from (A)-type to (E)-

type), from "lv(W) to "lv(W + 1), may be induced. 

 

In the next subsection, we explain the approach that we use to compute upgrade-induced propagation costs and 

functional-expansion-induced propagation costs. 

 

3.1. Computing propagation costs ((A)-type and (F)-type cost variations)) 

 

At time W + 1, we need to compute, for each individual function ( 2̂)25(..-, the probability that, in the framework 

of the considered change scenario, it will be affected by propagation (which will require redesign/rework 

activities). To achieve this, we take the following steps (illustrated in Figure 4): 

- First, we create a change scenario matrix "|(W + 1) = (U}2=)(N2,=N- (inspired by Rebentisch et al. 2017): the 

functions 2̂ , which are part of the bundle of functions that have been selected to be intentionally upgraded at 

time W + 1 , are assigned a value of 1 on the diagonal, that is, U}22 = 1. All other elements are set to zero. 
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- Second, by applying the matrix-multiplication-based algorithm of Hamraz et al. (2013) to the direct 

propagation likelihood matrix !, which describes the architecture of the product being considered, we obtain a 

combined propagation likelihood matrix VK(<) = ([M0:(<))8N0,:N6. For each couple ( 2̂ , =̂), this matrix enables us 

to identify the probability [M0:(<), that is, the aggregated probability that a change initiated in =̂  propagates to 2̂ 

through propagation paths of length less than or equal to &. In the view provided by such a matrix, all the 

functions can initiate change propagation; that is, such a matrix provides information regarding all possible 

propagation paths of length less than or equal to &. However, within the framework of our model, only a given 

number of ‘selected functions’ (in the framework of the considered change scenario) can initiate propagated 

changes. Additionally, only a restricted number of propagation paths associated with the functions are possible. 

- Consequently, in the third step of our model, we compute V~(s + 8) ×	VK(<) to retain only the occurrence 

probabilities of the propagation paths that may be triggered by the changes initiated under the considered 

change scenario. We obtain the matrix V� = ([Ä0:)8N0,:N6. 

- Fourth, based on this new combined likelihood propagation matrix restricted to the change scenario initiated 

at time W, for each individual function, we compute the aggregated likelihood oU12 of being affected by a 

propagated change. In this step, we use the formula developed by Clarkson et al. (2004). 
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Figure 5. Four steps that enable us to compute, for each individual function, the probability that in the 

framework of a given change scenario, it will be affected by propagation, and hence redesign 

 

Using oU1=  and an additional parameter Å= (which represents the proportion of =̂  that needs to be redesigned if it 

is affected by a propagated change, and hence, the share of the total costs of =̂  that is additionally incurred if it is 

affected by a propagated change), we can compute the expected value of propagation costs in the case of a product 

without functional expansion using the following formula:  

ÇÉ1ÑUWÑÖ	1ÜG1oáoWPGH	UG}W}(W + 1) = 	∑ Å= . oU1= .-=5( "là(W + 1).  (D1)   

(D2) If the product is subject to functional expansion, the propagation costs that may affect the H(W) functions that 

were already present in the previous-generation product can be computed by applying the same formula as in (D1) 

with individual cost matrices, propagation likelihood matrices, and change scenario matrices whose size increases; 

that is, the expected propagation costs caused by functional expansion are given by the following equation: 

ÇÉ1ÑUWÑÖ	1ÜG1oáoWPGH	UG}W}(W + 1) = 	∑ Å= . oU1= .-(`)
=5( "là(W + 1). (D2) 
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3.2. Computing (E)-type cost variations: cost increases induced by the additional activities 

required by upgrades 

This type of cost variation concerns the functions 2̂ that fulfill functional requirements that were already present 

in the previous-generation product at W, and which become more demanding at time W + 1; for instance, some 

performance aspects of the function need to be improved or the function needs to be optimized. Meeting the higher 

functional requirements requires additional design activities from engineering departments in comparison with the 

activities that had been completed for the same function at time W; for example, finer control over the behavior of 

the function, the phrasing of more detailed functional (sub)requirements, the recombining of design parameters, 

looking for and mobilizing new design parameters, and additional testing may be required. To compute this type 

of variation, we introduce ä > 1, such that42 "lv(W + 1) = 	ä. "lv(W). 

 

3.3. Computing (D)-type cost variations: cost reductions (learning economies) induced by 

learning effects 

This type of cost variation concerns the functions 2̂ that were already present in the previous-generation product 

at time W and that require neither upgrade nor optimization. They can be reused: the associated list of functional 

requirements and design parameters remain unchanged. The performance points that are to be attained are already 

attainable with the use of the functional requirements and the design parameters of the previous-generation 

product. The design activities that have been performed to design these functions at time W are repeated at time 

W + 1, potentially with a learning effect. Some activities may not need to be repeated (a 100% learning rate). 

However, in the case of highly complex products (which are precisely the type of products that may experience 

both cost escalation and functional expansion), some activities remain indispensable (although they may benefit 

from a learning rate); for example, resizing activities for the specificities of the generation product at time t +1 

and testing activities for safety certification. To simulate the cost "lv(W + 1) of the design activities required to 

reuse 2̂, we introduce é	 ≤ 1 such that43	"lv(W + 1) = 	é. "lv(W). 

 

3.4. Computing (B)-type cost variations: nominal cost of newly introduced functions 

 

This type of cost variation concerns the functions 2̂ that were not present in the previous-generation product at 

time W. 

                                                
 
42 We sum the costs of all the functions that need to be upgraded. Hence, we do not introduce a specific ä2 for 

each 2̂. ä can be considered as the average value of all possible ä2. 
43 We sum the costs of all the functions that need to be upgraded. Hence, we do not introduce a specific é2  for 

each 2̂. é can be considered as the average value of all possible é2 . 
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If ê new functions 2̂ are introduced at time W + 1, the sizes of pV(s) and !(W) need to be increased by ê as we 

move to pV(s + 8) and K(s + 8). Individual costs "lv(W + 1) needs to be assigned to these ê new functions 2̂ in 

pV(s).  
 

3.5. Computing (C)-type cost variations: cost reductions allowed by the modularization of the 

architecture defined by a direct propagation likelihood matrix L 

 

It is important to note that modularization also involves costs, such as the costs of the modularization effort or the 

costs incurred by the possible drawbacks of modularization, for example, a reduction in product performance 

(Ulrich 1995; Höltta-Otto and de Weck 2007). In the real world, these costs need to be considered (and compared 

with the potential benefits) before deciding on the implementation of a modularization strategy. However, at this 

stage of this research, we only quantify the benefits of modularization in the cost curves, that is, the extent to which 

modularization slows down the cost escalation curves obtained in Simulation 1.  

 

It is also important to note that, for a given architecture, there may be several possible modularization solutions, 

but they may not be equal in terms of, for example, benefits and costs. The costs of some modularization solutions 

might outweigh the benefits and render these solutions unacceptable. In particular, the entire modularization of an 

architecture might be neither feasible, realistic, nor desirable. In this context, methods involving the identification 

of the relevant or high-priority entities to be modularized allow superior (partial) modularization solutions (e.g., 

Koh et al. 2015). However, at this stage of the research, we only model one particular and very basic 

modularization solution, which is the modularization of the entire architecture. We are aware that this is not 

necessarily realistic, but as a first step, this seems sufficient to provide a rough quantification of the extent to which 

modularization can slow down cost escalation. 

 

To simulate a ‘basic’ modularization strategy, we use the following steps: 

- We first use Thebeau’s (2001) algorithm44 for clustering the DSMs, that is, for rearranging the 

architecture into modules.  

                                                
 
44 We used the open access MATLAB code available at https://dsmweb.org/matlab-macro-for-clustering-dsms. 
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- Once the DSM is organized into clusters, we perform decoupling by detecting the inter-cluster 

dependencies, that is, the dependencies between functions that belong to different clusters (by detecting 

the non-null propagation likelihoods that are ‘far’ from the diagonal), and deleting some of them.  

- According to our new (clustered–decoupled) DSM, we modify the input likelihood matrix !; that is, we 

rearrange the functions into clusters. The propagation likelihoods O2=  that correspond to the deleted inter-

cluster dependencies are assigned a value of 0. 

- Based on this new likelihood matrix !, we generate five combined propagation likelihood matrices VK(8), 
VK(9), VK(;), and VK(ë)  using the algorithm of Hamraz et al. (2013).  

Additionally, we introduce a parameter called ÖÑUGí1OPHá_ÑFFGÜW, which is an integer that denotes the number 

of deleted inter-cluster interactions.  

 

4. Simulation parameters and findings 

4.1.  Simulation 1: shape of pure-functional-expansion-driven cost escalation curves 

4.1.1. Setting the simulation parameters 

The objective of this simulation is to isolate functional expansion and its effects on costs. We aim to identify the 

cost increase pattern of a pure-functional-expansion-driven cost escalation trend. Hence, we ‘neutralize’ the cost 

effects of functional upgrades and the cost effects of functional reuse.  

In this simulation, we only need to compute (B)-type cost variations, that is, the nominal costs of newly added 

entities. Additionally, the cost of individual, already-existing functions only evolve under the influence of the 

propagation effects caused by the newly introduced functions (i.e., (D2)-type cost variations); that is, 

îGWoO	ÇÉ1ÑUWÑÖ	UG}W	PHUÜÑo}Ñ	ïÑWñÑÑH	W	oHÖ	W + 1	 

=	∑ "lv(W + 1)lv		-yó	{ò-ô`2z-w  + ∑ Å= . oU1= .-(`)
=5( "là(W + 1). 

 

 

What order of magnitude do we want to simulate in terms of the increase of the size of the functional space? If we 

examine the commercial aircraft industry, the size of the functional space related to safety tripled between February 

1965 and November 2018 (see Appendix 1). Without seeking to model this specific product, we can rely on this 

indication to define functional-expansion-driven product evolution dynamics.  

A second ‘guideline’ originates from practical constraints related to the calculation of propagation costs. Combined 

propagation likelihood matrices "!($) with high values of k (as soon as &	= 5) require increasingly long computing 
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times as the size of the input propagation likelihood matrix L increases (several hours for a "!(ö) when the size of 

L is more than 20). 

If we consider a ‘modest’ functional expansion scenario in which one function is added at a time (i.e., _6õú(s) 	=
	8 ∀W) , starting from 6(s = û) = ü functions in the initial functional space enables us to reach 6(s†06°M = 8¢) 	=
	9ë functions. In terms of computing times, this remains acceptable (a few hours to compute the entire sequence 

of propagation costs from W = 0 to s†06°M = 8¢ using MATLAB). 

 

After setting the number of initial functions, we can define K(s = û) and pV(s = û). We do not aim at modeling 

the accurate cost escalation curve experienced by a particular real-world product. Hence, any matrix of size 8 is 

chosen, without any particular modularity property. We chose a likelihood matrix (featured in Figure 6) such that 

the associated DSM has a density in terms of interfaces which is realistic (
-òD£y§	z{	2-`y§{•ôyw	

D•`§2¶	w2xyß ≈ 0.2).	 

 

In pV(s = û), the cost of the individual functions is summed. Hence, we set all the "lv(0) to the same value 

"(0) = 10, which can be considered as an average value over all the functions.  

Figure 6. Initial architecture (characterized by its DSM and its propagation likelihood matrix) L(t = 0) 

and an initial matrix of individual costs 
 

At each iteration, we add one new function -̂(`7(). We record its individual cost in q"(W) by increasing the size 

of q"(W) by 1 and by assigning the value "( -̂(`7()(W + 1)) = 	Vt6õú  to its last diagonal element. Vt6õú can be 

considered as the average nominal cost over all the functions that are to emerge during the product evolution 

trajectory. The objective of this simulation is to improve our understanding of the shape of the cost escalation 

curve that can be expected in the context of functional expansion. In particular, we are interested in being more 
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knowledgeable about the minimal increasing trend that can be expected under functional expansion. Thus, we 

assign a value to Vt6õú, which can be considered as a lower bound: Vt6õú = 	"(0) 	= 	10. 
The parameter 06sõ®†°[õ_ú0s©(s) denotes the number of already-existing functions that interface with the 

newly introduced function. We define the function 06sõ®†°[õ_ú0s©(s) so that the density of the architecture in 

terms of interfaces remains constant. Table 1 provides values taken by the function PHWÑÜFoUÑ_ñPWℎ(W). We 

consider the newly introduced function to be both a propagation ‘sender’ and ‘receiver.’ Therefore, at each 

iteration, there are 2. PHWÑÜFoUÑ}_ñPWℎ(W + 1) new interdependencies (denoted by non-null propagation 

likelihoods in the direct propagation matrix !. In practice, the 06sõ®†°[õ_ú0s©(s) already-existing functions that 

interface with the newly introduced function are randomly chosen based on a discrete uniform distribution defined 

over the H(W − 1) already-existing functions. If the new function -̂(`7() interfaces with 2̂, we independently 

generate (with a uniform distribution) one random value strictly between 0 and 1 for the direct propagation 

likelihood O2,-(`7() and one other random value for O-(`7(),2.  
Table 1. Number PHWÑÜFoUÑ}_ñPWℎ(W + 1) of already-existing functions that interface with the newly 

introduced function and number of new interfaces introduced at time W 
W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

H(W) 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

PHWÑÜFoUÑ_ñPWℎ(W) N/A 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 

 

The depth & of a propagation (on which "!($) depends) varies between 1 (good control of propagation by 

engineering departments because of a high capital of architectural knowledge) and 4 (deteriorated control since 

length-4 propagation chains contribute to increased costs). For each value of &, we generate one cost escalation 

curve. 

Finally, we must assign a value for the parameter Å, which is the proportion of 2̂ that needs to be redesigned if it 

is affected by a propagated change, and corresponds in our simulations to the rate by which the individual cost of 

a function is increased if it is affected by the propagated change. The larger Å, the steadier the pace of that cost 

increase. In what follows, we present our simulation results with Å = 20%. 

 

4.1.2. Simulation results 
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Based on the ‘input’ likelihood matrix !(W = 0), we computed four combined likelihood propagation matrices 

CL(1), CL(2), CL(3), and CL(4) using the algorithm of Hamraz et al. (2013). Using the equation 

ÇÉ1ÑUWÑÖ	WGWoO	UG}W	PHUÜÑo}Ñ	ïÑWñÑÑH	W	oHÖ	W + 1	 = ∑ "lv(W + 1)-(`7()
25-(`)7( +∑ Å= . oU1= .-(`)

=5( "là(W + 1) 

 and the simulation parameters described above, for each of the combined likelihood propagation matrices CL(1), 

CL(2), CL(3), and CL(4), we generated a cost curve over 16 iteration steps. 

 

Figure 7 shows the accumulated costs that the 16 new functions generated over the 16 iteration steps, from the 

cost of the initial product, which was 80.  

Figure 7. Isolated functional-expansion-driven cost escalation, with ¨ = 9û%. Because the new interfaces 

were randomly selected, this family of cost curves represents the average cost curves obtained over 10 

simulations. See the details of the mean values and standard deviations in Appendix 2. 

 

In the legend of Figure 7, a ‘CLk’ (with k > 0) curve is a cost escalation curve computed with the combined 

likelihood propagation matrix CL(k). CL0, the lowest, linear curve (slope + 10) represents the cumulated costs that 

functional expansion induces if the newly added functions generate no propagation at all (+160 with respect to the 

initial cost 80). The difference between CL0 and the CLk, k > 0 curves highlights the extra costs associated with 

the accumulation of new propagation paths; for instance, at time W = 16, if the 16 newly added functions are all 

initiators of first-order propagated changes among the functions that existed before their emergence45, they induce 

                                                
 
45 We do not count the propagated changes that a newly added function F

t 
could send to a new function that 

emerges after it. For instance, in the case of F
10

, we only count the propagated changes it may trigger in F
i, i=1..9.

 

In this simulation, after having introduced F
11

, we do not count how changes in F
10

 may affect F
11

. 
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an extra cost of +5646. Additionally, if the 16 newly added functions are all initiators of fourth-order propagated 

changes, they induce an extra cost of +40447. 

If the propagation depth of an intentional change can be as large as 4, and if all the newly added functions can be 

sources of propagated change, the cost impact of tripling the functional size by adding one function at a time may 

be dramatic. We note that we have only added one function at a time; the magnitude of a real-world functional 

expansion phenomenon could be greater (or accelerate with time).  

This representation of functional-expansion-induced costs, where at time W all the newly added functions F9, F10, 

…, Ft propagated changes in the functional space that existed before their emergence, corresponds to all ill-

controlled functional expansion phenomenon in terms of propagation, particularly if the propagation order is high. 

Traditionally, modularization is a well-proven method to prevent undesirable propagation chains. In the next 

subsection, we investigate whether modularization could break some propagation chains initiated by newly added 

functions and slow down the cost escalation curves in Figure 7.  

 

4.2. Simulation 2: cost-reduction properties of modularization under functional expansion 

We applied the modularization strategy explained in Section 3: a clustering–decoupling strategy. First, we 

performed a ‘control test’ (Simulation 2a) in a fixed-size functional space to ensure that this modularization 

principle indeed enabled a slowdown of propagation costs in a traditional scenario.  

 

4.2.1. Simulation 2a: the effects of modularity propagation in a fixed-size functional space 

We set 6(s = û) = ü functions and 6(s†06°M = 8¢) = ü. We used the same pV(s = û) and the same K(s = û)	as 

in Simulation 1. 

We set a proportion 1 ≤ 1, which represented the proportion of functions of the functional space that can initiate 

propagation. Then we computed the first family of cost escalation curves (Figure 8a) with the non-modularized 

matrix L(t = 0). Additionally, we computed three families of cost escalation curves (Figures 8b, 8c, and 8d), with 

a clustered-decoupled L(t = 0). Figure 8 illustrates the outcomes of one such modularization strategy with 1 =
1/3. Because the outcomes of the modularization algorithm are random, and the selection of the functions that are 

sources of propagation are random, we ran the modularization strategy 10 times with 1 = 1, 10 times with 1	 =

                                                
 
46 Equals 296 − 240. 
47 Equals 644 − 240. 
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	1/3, and 10 times with 1 = 2/3 to be able to compute average values of the average cost reduction (cf. the 

example of the average cost reductions in Figure 8) and associated standard variations. Table 2 summarizes these 

results. In these simulations, we set Å = +20% (impact of propagated changes).  
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Figure 8.a  Reference cost escalation curve, with no modularization, 
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Figures 8b, 8c and 8d: cost escalation curves after having clustered the DSM and respectively deleted one, 

three and five inter-cluster dependency(ies). Ä = 8	; 	¨ = 9û%.  
These are average cost escalation curves. See details about mean value and standard deviation in 

Appendix 2.  

 

Table 2. Average values and standard deviation associated for 10 executions of each scenario of Simulation 2a 

 

p = 1 
Clustering and decoupling effort Average cost slowdown* 

1 
7.25%  

(Standard deviation: 0.04 ) 

3 
18.70% 

(Standard deviation: 0.06 ) 

5 
29.08% 

(Standard deviation: 0.06) 
* With respect to the cost escalation curves obtained with a non-modular L, obtained for 10 executions of the 
simulation 
 
The control test was conclusive: our modularization strategy systematically reduced cost escalation in a fixed-size 

functional space.  

Additionally, to be fully rigorous, we should state the following regarding how we model modularization. Given 

the formula used to compute our cost curves (equation (D1) derived from Rebentisch et al.’s (2017) propagation 

cost model), the deletion of some inter-cluster dependencies necessarily reduces costs. Conversely, if we apply the 

propagation cost equation to a clustered matrix, but without deleting any inter-cluster dependencies, we obtain 

exactly the same family of cost curves as if the matrix was not clustered. Therefore, we have checked that the 

slowdown in cost escalation illustrated in Figures 8b, 8c, and 8d is indeed caused by the clustered architecture of 

the matrix and not solely by deleting some interactions that are no longer counted in equation (D1). To check that 

the slowdown in cost escalation illustrated in Figures 8b, 8c, and 8d is indeed caused by the clustered architecture 

of the matrix and not solely by deleting some interactions that are no longer counted in equation (6), we simulated 

additional families of cost curves corresponding to the following scenarios: 

- not clustering the DSM and randomly deleting 1 interaction in ! (i.e., decoupling_effort = 1); 

- not clustering the DSM and randomly deleting 3 interactions in ! (i.e., decoupling_effort = 3); and 

p = 1/3  p = 2/3 
Clustering and 

decoupling effort 
Average cost 
slowdown* 

 
Clustering and 

decoupling effort 
Average cost 
slowdown* 

1 
8.89%  

(Standard deviation: 
0.07) 

 1 
8.78% 

(Standard deviation: 
0.06) 

3 
24.23% 

(Standard deviation: 
0.10 ) 

 3 
22.46% 

(Standard deviation: 
0.10 ) 

5 
36.68% 

(Standard deviation: 
0.09 ) 

 5 
37.67% 

(Standard deviation: 
0.08 ) 
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- not clustering the DSM and randomly deleting 5 interactions in ! (i.e., decoupling_effort = 5). 

These simulations confirmed that the slowdown in costs observed in Figures 8b, 8c, and 8d was indeed caused by 

both the clustering and decoupling efforts. The magnitude of the slowdown observed in these families of cost 

curves is much smaller than in the families of cost curves plotted in Figures 8b, 8c, and 8d, as summarized in Table 

2.  

Table 3. Results of additional tests conducted to ensure that the cost reductions obtained with the modularization 
strategy were not solely caused by the deletion of dependencies. A comparison of the two tables confirms that this 
is true.  

 

p = 1 (no random effect) 
Clustering and decoupling effort Average cost slowdown* 

1 
1.93%  

(Standard deviation: 0) 

3 
5.28% 

(Standard deviation: 0) 

5 
5.52% 

(Standard deviation: 0) 
*With respect to an equivalent of Figure 8a – no modularization attempt; statistics over 10 simulation executions 

 

4.2.2. Simulation 2b: the effects of modularizing L(t = 0) on the pure-functional-expansion-

driven cost escalation curve obtained in Simulation 1 

First, we consider a modularization strategy such that, at time W = 0, we have three initially modularized 

architectures (clustered and decoupled): the modularized version of !(W = 0)48 with ÖÑUGí1OPHá_ÑFFGÜW	 = 	1; 

the modularized version of !(W = 0)with ÖÑUGí1OPHá_ÑFFGÜW	 = 	3; and the modularized version of !(W =
0)with ÖÑUGí1OPHá_ÑFFGÜW	 = 	5. We then generate a pure-functional-expansion-driven product evolution 

dynamics, and we compute the costs induced by functional expansion, in these modularized architectures. 

                                                
 
48 That is, the version used in Simulation 1. 

p = 1/3  p = 2/3 
Clustering and 

decoupling effort 
Average cost 
slowdown* 

 
Clustering and 

decoupling effort 
Average cost 
slowdown* 

1 
0.99%  

(Standard deviation: 
0.007) 

 1 
2.16% 

(Standard deviation: 
0.005) 

3 
2.45% 

(Standard deviation:  
) 

 3 
5.44% 

(Standard deviation:  
0.011) 

5 
3% 

(Standard deviation: 
0.014) 

 5 
5.76% 

(Standard deviation: 
0.012) 
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Additionally, we compare the results with a reference family of cost escalation curves, which is a representative 

of the cost escalation curves obtained in Simulation 1 (e.g., the cost of Figure 7), with a non-modular architecture.  

We ran 10 simulations, which computed (a) the reference family of cost escalation curves (which is equivalent to 

re-executing Simulation 1), (b) a family of functional-expansion-induced cost curves generated in a modular 

architecture with ÖÑUGí1OPHá_ÑFFGÜW	 = 	1, (c) a family of functional-expansion-induced cost curves in a 

modular architecture with ÖÑUGí1OPHá_ÑFFGÜW	 = 	3, and (d) a family of functional-expansion-induced cost 

curves generated in a modular architecture with ÖÑUGí1OPHá_ÑFFGÜW	 = 	5.  

Additionally, whereas modularization systematically significantly reduced the cost of propagation in the fixed-

size functional space in Simulation 2a, this simulation in an expanding functional space revealed that 

modularization slowed down cost escalation only very slightly, in particular in the cases where the newly added 

function reintroduced a dependency between functions that had been decoupled when we modularized !(W = 0). 
This introduced new possible propagation chains in the architecture, which then may induce extra propagation 

costs (function-expansion-induced propagation costs); that is, the newly added functions in functional-expansion-

driven product evolution dynamics may undermine the modular properties of an architecture and render this 

architecture obsolete, thereby requiring the restructuring of the structure of dependencies. Figure 9 illustrates the 

(slight) cost reductions achieved in cases in which functional expansion destroyed decoupling. 
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Table 4.  Total average cost slowdown associated with Simulation 2b 

 

 

If functional expansion renders modular architectures obsolete, and by implication, does not preserve the economic 

properties of modularity that we illustrated in Simulation 2a, in a scenario without functional expansion, could we 

restore the cost-reduction potential of modularity by considering a renewal of the structure of dependencies (i.e., 

a re-modularization) after each functional expansion? Could such a continuous modularization strategy slow down 

costs effectively? In Simulation 2c, we simulate such an approach. 

 

4.2.3. Simulation 2c: the cost effects of a continuous re-modularization strategy 

We start with the same three modular matrices as in Simulation 2b. At each iteration, after having added one new 

function, we re-cluster and decouple the entire architecture before computing the costs. In this simulation, the total 

number of deleted interactions increases in proportion to the size of the matrix. In Figure 10, the tables indicate 

the associated values of ÖÑUGí1OPHá_ÑFFGÜW (which correspond to the total number of interactions that have been 

deleted, compared with the neither clustered nor decoupled reference matrix that we used to obtain the reference 

functional-expansion-driven cost curves in Simulation 1). 

 Clustering and decoupling effort 
Average cost slowdown (with respect to the cost  

escalation curves obtained with a non-modular !) 
(obtained for 10 executions of the simulation) 

1 
-1.74%  

(Standard deviation: 0.01) 

3 
-4.39% 

(Standard deviation: 0.01) 

5 
-6.97% 

(Standard deviation: 0.01) 
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Table 5. Cost-reduction effects of a continuous re-modularization strategy 

 

Simulation 2c reveals that, provided the modularization effort is renewed at each iteration, modularization can 

significantly slow down the cost escalation in a context of functional expansion. Such a renewed modularization 

effort can be compared with the continuous platform renewal effort advocated by Meyer and Lehnerd (1997). We 

discuss this later in the paper.  

 

Thus far, we have only studied pure-functional-expansion-induced cost escalation curves, and we have highlighted 

a possible cost management architectural approach specific to functional expansion: a continuous re-

modularization strategy that eliminates the change propagation risks associated with the destruction of critical 

independences by newly added functions. However, real-world product evolution dynamics is generally mixed, 

driven by both functional upgrades and functional expansion. In the case of mixed product evolution dynamics, to 

what extent may functional-expansion-induced costs dominate over upgrade-induced costs, and vice versa? When 

confronted with a mixed cost escalation curve, under which conditions should a cost manager focus on traditional 

cost-reduction approaches, that is, cutting the cost of individual functions and/or implementing traditional 

architecture management strategies (e.g., modularization), to handle upgrade-induced costs? Under which 

conditions should a cost manager focus on newly added functions and implement a continuous re-modularization 

strategy to eliminate the risk of having critical independences destroyed by a newly added function?  

In an attempt to address these questions, we generated some mixed cost escalation curves and experimented with 

the following parameters introduced in Section 3:  

- the cost of an upgrade, that is, the rate ä ≥ 1 such that "lv(W + 1) = 	ä. "lv(W) if 2̂ is upgraded; 

- the learning rate é ≤ 1 such that "lv(W + 1) = 	é. "lv(W) if 2̂ remains unchanged is reused from the 

previous-generation product; and 

- the proportion 1 of functions that are upgraded (the others being reused). 

 

Clustering and decoupling effort 
Average cost slowdown (with respect to the cost  

escalation curves obtained with a non-modular !) 
(obtained for 10 executions of the simulation) 

1 
- 4.0%  

(Standard deviation: 0.01 ) 

3 
- 8.6% 

(Standard deviation: 0.02) 

5 
- 17.0% 

(Standard deviation: 0.03) 
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4.3. Simulation 3: the relative weight of functional expansion and functional upgrades in a cost 

escalation curve 

We found that there exist conditions (corresponding to a scenario in which the upgrade of the eight already-existing 

functions is poorly managed) such that the cost impact of functional expansion is not substantial (i.e., upgrade-

induced costs dominate). For instance, under conditions such that ä = 1.30 (i.e., a 30% increase if a function is 

upgraded), é = 1 (i.e., no learning effect), = 1/3 , and Å = 20%, we generated the first family of upgrade-driven 

cost escalation curves, without functional expansion (Figure 11a). Additionally, we generated a second family of 

cost escalation curves (Figure 11b), where at each iteration, one-third of the functions of the initial functional space 

were upgraded, and one new function was added. In this simulation, the 16 newly added functions were not 

upgraded. They only created additional propagation paths that could propagate costs when the existing functions 

were upgraded. Additionally, they created functional-expansion-induced propagation costs at the time of their 

introduction, in addition to their nominal costs. With these values of ä, é, and 1, we observed that the addition of 

functional expansion contributed to the acceleration of cost escalation, but not in a spectacular manner. 

 

Figure 11. Non-negligible, but non-spectacular impact of functional expansion on an ill-controlled 

upgrade-driven cost escalation curve 

  

In such a scenario, already-existing functions are not upgraded in a cost-effective manner. A trivial response to 

this deficiency is to take measures to cut the costs of the individual functions. This might be an interesting first 

step to start reducing the costs contained in the mixed cost escalation curve plotted in Figure 11b (and naturally, 

this would also work on Figure 11a).  

 

(11a) Without functional expansion

Parameters: ! = 1.30; ' = 1	; ) = 0.20	; , = 1/3

(11b) With functional expansion
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We can also exhibit values of ä, é, and 1, where the costs of functional expansion substantially dominate the costs 

induced by upgrades. For instance, if the engineering department is capable of upgrading 1 = 1/3 of the already-

existing functions without incurring additional costs (ä = 1), and if we set é = 1 (i.e., no learning effect) and Å =
20%, we obtain the cost escalation curves of Figure 12a if there is no functional expansion, and the cost escalation 

curves of Figure 12b if there is functional expansion. As in the previous simulation, the newly added functions are 

not selected to be upgraded. They only create additional propagation paths. Additionally, they induce propagation 

costs and nominal costs at the time of their introduction.  

Figure 12. Example of a case in which the addition of functional expansion violently changes the shape of 
the cost escalation curve 

 

In the scenario depicted in Figure 12b, design engineers are already able to upgrade functions cost-effectively. The 

potential of cost reduction associated with efforts dedicated to cut the costs associated with the individual costs of 

the functions is rather low. Additionally, according to our Simulation 3b, the investment in a classic one-shot 

modularization of the architecture (e.g., the development of a platform) is likely to be disappointing; indeed, 

nothing guarantees that the newly added functions introduced by the functional expansion dynamics will not 

destroy critical architectural independences of the platform and render it obsolete. According to our Simulation 

3c, a continuous re-modularization strategy would be more promising; this would require design engineers to take 

special care of the critical already-achieved independencies that the newly added functions might destroy, and that 

would require being renewed after the introduction of the new functions.  

In Figure 12b, functional expansion plays a major role in the cost increasing trend. This example confirms that 

functional expansion may be a major cost driver. Additionally, this confirms the importance of considering 

functional expansion as an object of cost management that matters. More specifically, this confirms the importance 
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of identifying the capital of architectural knowledge and tools that could be applied to effectively slow down cost 

escalation curves such as those depicted in Figure 12b.  

 

5. Conclusion: new insights regarding cost-effectiveness evaluation and management under functional 

expansion 

5.1. Summary of the contributions 

5.1.1. Answer to (RQ1): the shape ‘pure’-functional-expansion-driven development cost 

escalation curves 

We found that functional expansion dramatically accelerates propagation cost escalation. The reason is that the 

continuous addition of new functions (even one function at a time) entails dramatic shocks at the level of a 

product’s structure of dependencies. It dramatically increases the number of possible propagation paths between 

two functional entities.  

Our finding of a high cost potential of newly added functions is consistent with the findings of Arena et al.’s 

interviews (2008). This result is also consistent with the literature on complexity, which pinpoints the dramatic 

consequences (i.e., the high costs) of the events and contemporary trends that generate perturbations (emergence 

of new components and emergence of new interfaces) in product architectures (e.g., Carlson and Doyle 2005; 

Sinha 201; Luo and Wood 2017), that is, which increase the complexity of an architecture.  

When confronted with increasing complexity, this literature recommends designing structures of dependencies 

that will not be too prone to generate propagated changes (e.g., Sinha 2014; Clarkson et al. 2004; Fricke and Schulz 

2005). This calls for the leverage of, for example, appropriate architectural knowledge, design rules, and tools. As 

mentioned in our literature review, interestingly, the literature generally analyses an architecture and its interrelated 

composite entities without distinguishing between already existing and newly added functions. Newly added 

functions may very well be present in the structure of dependencies considered in studies on complexity, but they 

are neither identified as ‘new’ nor managed in a specific manner, which differs from the approach to managing 

already-existing functions. Managing functional expansion could be seen as managing complexity in an expanding 

architecture; it could be seen as managing a type of specific complexity, that is, an ‘expansion complexity,’ which, 

as with traditional complexity, calls for, for example, specific architectural knowledge, know-how, and tools.  
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By addressing RQ2, we investigated whether a famous complexity management approach, well-known for 

contributing to cost reduction, could be part of the architectural knowledge that would enable us to manage 

functional expansion and reduce the associated costs.  

 

5.1.2. Answer to (RQ2): the cost-reducing power of modularity under functional expansion 

We found that in an expanding functional space, traditional modularization strategies do not necessarily slow down 

cost escalation as efficiently as they do in fixed-size functional space. If the newly added functions destroy 

previously achieved independencies, significant cost reduction cannot be achieved. In this study, we tested one 

alternative strategy, which, after each functional expansion, consists of continuously renewing the architectural 

independencies that may have been rendered obsolete by the newly added functions. According to our simulation, 

such a continuous re-modularization strategy effectively slows cost functional-expansion-induced propagation 

costs. We can draw a parallel with Meyer and Lehnerd (1997) by stressing the importance of platform renewal for 

ensuring long-term market leadership and economic growth. 

 

These results suggest that functional expansion calls for a specific capital of, for example, architectural knowledge 

and tools, which requires the continuous design of independencies in expanding architectures, that is, which 

requires the design of independencies in the unknown so as not to lose control over the architecture, and to master 

its propensity to propagate. This calls for further research regarding what a continuous re-modularization strategy 

is specifically and what type of design tasks it involves. The evolution of avionics retraced by Lakemond et al. 

(2020) highlights a long history of functional expansion, and we can ask whether a continuous re-modularization 

effort underlies the integration of these very newly introduced functions.  

Additionally, in the semiconductor industry, the role of cross-application managers theorized by Kokshagina et al. 

(2016) illustrates the nature of the activities that renewing architectural independences in the unknown may consist 

of; to efficiently and successfully design generic technologies in a double-unknown context (unknown 

technologies and unknown markets), these actors design independencies either between unknown markets, 

between unknown technologies, or between unknown markets and unknown technologies.  

 

5.1.3. Answer to (RQ3): respective weight of functional upgrades and functional expansion 

in a cost escalation curve 
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Simulation 3 has revealed that the costs incurred by functional expansion may dominate the costs incurred by 

functional upgrades, that is, in scenarios where the nominal cost of functional upgrades is well-managed. This 

suggests that functional expansion is a major object of cost management. Additionally, this encourages us to further 

discuss the very cost management issues it entails.  

 

5.2. Discussion: cost management issues associated with cost escalation 

5.2.1. Toward other strategies to slow down cost escalation under functional expansion 

With Simulations 2 and 3, we started to discuss how possible cost-reduction strategies (a: a cost-reduction effort 

at the level of individual functions; b: a traditional modularization effort; c: a continuous re-modularization effort) 

can be prioritized by a manager who aims at slowing down cost escalation. If individual functions are very ill-

managed in terms of nominal development costs, rationalizing these costs could be the first step to slow down cost 

escalation. Contrarily, if the nominal costs of individual functions are well-controlled, the cost-reduction potential 

of strategy (a) is very low. The investment in a modularization strategy may yield disappointing results because 

nothing guarantees that the newly added functions will not destroy critical architectural independencies of the 

modularized architecture and render it obsolete. Among strategies (a), (b), and (c), the third (i.e., continuous re-

modularization) addresses the core of the functional expansion phenomenon. It directly addresses its impact, that 

is, the destruction of previously achieved functional independencies. In Simulation 2c, we only tested the extent 

to which this type of architectural strategy could reduce costs. The test was conclusive. Further work could also 

try to simulate the extent to which the combination of a continuous re-modularization strategy (c) with a strategy 

that aims to reduce the cost of individual functions (e.g., in the framework of a digitalization strategy) could further 

improve cost-performance (i.e., could slow down cost escalation even more than strategy (c) alone).  In addition, 

further works searching for more sophisticated cost management techniques under functional expansion could 

investigate how grouping functional expansions together versus implementing functional expansions sequentially 

impact costs – in particular, one could study how this factor may enhance or slow down the cost reduction power 

of strategy (c). 

 

5.2.2. Parallel between the need for a continuous re-modularization effort under functional 

expansion and the problem of platform architecture renewal 

As mentioned above, a parallel can be drawn between the continuous re-modularization effort tested in Simulation 

2c and the importance of platform renewal (to ensure long-term market leadership and economic growth of the 
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platform) stressed by Meyer et al. (Meyer and Lehnerd 1997; Meyer et al. 1997; Meyer and Mugge 2001): design 

engineers need to continuously exert preparatory ‘renewal’ efforts (i.e., innovative design efforts) to be ‘ready’ 

when market-pull or techno-push factors render obsolete the current product platform (Meyer et al. 2001). 

Alongside new product development activities, the preparation of this renewal of the set of architectural rules that 

underlie the platform is an activity in its own right, which requires a demanding innovation effort from design 

engineers, for which firms are not necessarily organized (Meyer et al. 1997)49.  

In this study, we showed that functional expansion is a major obsolescence factor from the viewpoint of a product 

architecture. Indeed, under functional expansion, the destruction of critical, previously achieved functional 

independencies may be a brutal factor of architectural obsolescence, thereby requiring the complete restructuring 

of the architecture after the addition of the new function. This suggests that regarding watching for signs of 

platform obsolescence, design engineers should be very attentive to obsolescence that may originate from 

functional expansion.  

 

5.2.3. Could contemporary design crises be the result of the combination of inappropriate 

cost-reduction strategies and functional-expansion-induced architectural 

obsolescence having gone unnoticed?  

As we mentioned above, if an engineering department is already proficient at mastering the cost of upgrades, the 

cost-reduction potential associated with a strategy that consists of cutting the cost of already-existing functions is 

very low. What would happen if a cost manager is misled by the steady functional-expansion-driven cost escalation 

curve generated by this engineering department and decides to pressure the organizations responsible for the 

development of individual functions to cut costs? A first (harmless) possibility is that this classic cost-cut strategy 

will yield little cost reduction and be disappointing. However, a second, more detrimental, possibility is that the 

cost cuts will prevent the engineering department from performing critical activities dedicated to observing the 

signs of obsolescence of the architecture. The engineering department will lack the necessary resources to prepare 

the renewal of the architectural design rules accordingly. Additionally, if a product is under functional expansion, 

the potential sources of platform obsolescence are numerous: each newly added function may destroy a critical 

independency and require the restructuring of the architecture. Thus, cutting the cost of an engineering department 

in an attempt to reduce the nominal development costs of the functions may have a detrimental effect: depriving 

                                                
 
49 Therefore, Meyer et al. advocated setting up appropriate organizations (processes) dedicated to platform 

renewal and for “making platform renewal a continuous process in R&D.” 
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the engineering department of the necessary resources to observe and manage architectural obsolescence sources 

that would come from functional expansion. The non-detection of architectural obsolescence may have 

catastrophic impacts: a flawed architecture that does not allow functional requirements to be met and requires 

additional architectural work during development. Even worse, it could encourage cheating or generate an 

unanticipated propagation phenomenon as the product is in service. We could ask whether the combination of an 

inappropriate cost-reduction strategy and unnoticed functional-expansion-induced architectural obsolescence 

(caused by lack of engineering resources) could explain design catastrophes, such as the case of the Boeing 737-

MAX or Dieselgate. 
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Appendix 1. Functional expansion and cost escalation in the commercial aircraft industry 

Following studies on functional expansion (El Qaoumi 2016; Le Masson et al. 2019), we sought to identify whether 

commercial aircraft are subject to a phenomenon of functional expansion. To achieve this, we studied the evolution 

(with time) of a regulation known as ‘14 CFR Part 25’50 or FAR-2551. This regulation is prescribed by the U.S. 

Federal Aviation Administration. Additionally, for an aircraft to be certified, and allowed to be commercialized 

and operated in U.S. airspace, commercial aircraft manufacturers must demonstrate that its design complies with 

the relevant airworthiness requirements contained in FAR-25. This demonstration is a significant effort in the 

framework of a new aircraft development program. FAR-25 is structured into subparts (e.g., Flight, Structure, and 

Powerplant), which are themselves structured into paragraphs. Changes at the paragraph level of (by the addition 

of new paragraphs, or the modification or deletion of existing paragraphs) can result from two main mechanisms. 

First, a change in design can be triggered by a change in the airworthiness requirements, following the report of 

an unsafe scenario (typically revealed by incidents/accidents) or following the decision to internationally 

harmonize airworthiness requirements. Second, new functions or designs initiated by aircraft manufacturers trigger 

the enactment of new airworthiness requirements in FAR-25 to make the new design certifiable. Therefore, 

changes in FAR-25 record the introduction of new or updated (e.g., reprioritized) intended purposes at the aircraft 

level (i.e., new functions). Hence, the evolution of FAR-25 can be regarded as a good proxy of the functional 

evolution of commercial aircraft. 

In the framework of this research, a commercial aircraft manufacturer gave us access to a summary of successive 

amendments of FAR-25 that it has been compiling since February 1965. Using this document, we studied the 

evolution of FAR-25 between February 1965 and November 2018. This led us to find that FAR-25 has been subject 

to substantial changes:  

- The total number of paragraphs surged, from 122 paragraphs in 1965 to 416 in 2018 (i.e., it more than 

tripled).  

- The number of paragraph deletions over the same period is derisory (12 paragraphs deleted).  

- Modifications, that is, updating/rewriting, concerns 381 already-existing paragraphs.  

                                                
 
50 CFR is the abbreviation of Code of Federal Regulations and 25 denotes the aircraft level. 
51 FAR is the abbreviation of Federal Aviation Regulations. 
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We plotted a curve (Figure 2) that shows the cumulated number of modified, newly added, or deleted paragraphs 

in the 146 successive amendments made to FAR-25 over the studied period. 

 

 

 

Figure 1. Capturing the commercial aircraft functional evolution by retracing FAR-25 evolution in terms 

of the cumulative number of newly added, rewritten, or deleted paragraphs 

 

We implemented the statistical method that enables the detection of the presence of functional expansion (Le 

Masson et al. 2019) and found that the pattern of increase in Figure 2 corresponded to that of the phenomenon of 

functional expansion.52 

This approach captures the potential functional expansion that might affect commercial aircraft over a specific, 

restricted functional space, that is, the safety functional space: we only measured a lower bound of the functional 

expansion phenomenon that affects commercial aircraft; that is, this leads us to think that under the seemingly 

stabilized architecture of commercial aircraft, this product is subject to a significant trend of functional expansion.  

 

                                                
 
52 The presentation and discussion of analysis of the detailed results of the test will be the objective of another 

paper.  
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Additionally, public data (Nolte et al. 2012) regarding the development costs of commercial aircraft reveal a strong 

cost escalation phenomenon.  

 

Figure 2. Commercial aircraft development costs (in $m, 2012 economic conditions, (Nolte et al. 2012))  

 

Among commercial aircraft manufacturers, there is mounting concern about this trend. Indeed, although 

development costs represent only a portion of total life cycle costs, and although additional efforts may be 

conceded during the development phase to generate savings later in the product life cycle (e.g., to reduce 

production costs or reduce operating costs), this dynamic is worrisome and alarming for several reasons. First, in 

the commercial aircraft industry, development costs (non-recurring costs) represent an extremely expensive 

investment ticket (even when the new design is not started from scratch). Launching one program has an impact 

on the cash reserves of the company and limits the possibility for launching other programs (Spitz et al. 2001). 

Second, the most recent products are not only costlier (and longer to develop than their predecessors), they are 

also characterized by major overcosts and delays with respect to the initial target53. These cost growth phenomena 

raise concern because they make the attainment of the investment break-even point more difficult. With the halt 

in production of the A380 and the final shutdown of the program, this huge investment ticket will not have paid 

for itself. Some press articles also ask whether the Boeing 787 will reach profitability. The CSeries program has 

depleted Bombardier’s financial resources and even forced the company to, for example, cancel a business jet 

program, delay the development of another, and sell a 30-percent stake of its train building divisions. 

                                                
 
53 For example, the development costs of the A380 are estimated to be between $20 billion and $25 billion, 

which represents more than +90% with respect to the initially planned budget ($10.5 billion). Additionally, the 

program experienced a two-year delay. The development costs of the Boeing 787 are also twice the initial target 

($440 billion compared with $20 billion initially planned), and the program was 40 months behind schedule. 

Another example is that of the A220 (Bombardiers’ CSeries): the program experienced +90% cost growth: $6 

billion incurred compared with $3.2 billion initially planned, and a three-year delay. 
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Thus, in absolute terms, this cost trend seems alarming. However, in relation to functional expansion, is it? This 

study attempts to provide some insights in this regard.  

Appendix 2. Cost escalation curve variations caused by the random nature of the selection of the new 

interfaces resulting from the emergence of new functions and the random nature of the selection of the 
functions to be upgraded 

 

Simulation 1 

Figure 7, for Å = 20% 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average value 
of functional-

expansion- 
induced-

propagation_ 
costs(t) 

CL1 80 92 104 116 128 140 153 166 180 193 206 221 235 251 265 280 296 

CL2 80 94 107 122 135 150 167 184 202 220 240 261 283 309 332 357 385 

CL3 80 95 111 127 143 160 181 203 226 250 277 308 342 383 420 463 514 

CL4 80 96 113 132 150 168 192 220 249 277 310 350 396 452 503 568 644 

Standard 

deviation 

CL1 0 0 1 1 2 2 2 3 4 3 3 3 4 4 5 5 5 

CL2 0 1 3 4 5 5 7 9 10 10 11 13 18 20 22 23 22 

CL3 0 2 5 6 8 9 12 16 18 19 22 28 38 47 53 60 61 

CL4 0 3 5 7 9 11 15 17 19 22 30 40 53 68 82 99 108 

(Sample size = 10)  

Simulation 2 

Simulation 2a: control test, modularization over a fixed-size functional space 

(Figure 8a.) No modularization. Reference family of cost curves. Å = 20%, 1 = 1/3 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 84 88 91 95 100 104 109 115 121 126 132 138 145 153 161 169 

CL2 80 87 94 100 109 118 127 138 151 164 177 192 208 226 248 268 292 

CL3 80 89 97 106 118 130 142 156 174 193 212 233 257 285 318 349 387 

CL4 80 89 99 109 121 134 148 164 183 205 226 251 278 309 348 384 428 

Standard 

deviation 

CL1 0 1,70 2,10 2,25 1,88 2,28 2,53 2,40 3,36 3,08 3,01 2,30 4,36 4,63 5,54 6,79 6,20 

CL2 0 2 3 4 4 5 5 6 8 9 9 10 14 16 20 22 18 

CL3 0 2 4 5 4 7 5 8 8 10 11 11 19 21 26 29 25 
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CL4 0 2 4 5 5 7 5 8 8 11 12 12 20 23 28 32 27 

 

(Figure 8b.) Modularization. Decoupling effort = 1. Å = 20%, 1 = 1/3 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 84 87 90 95 99 103 107 113 118 123 128 134 140 147 153 161 

CL2 80 87 93 99 107 115 123 133 144 156 167 179 194 210 228 245 265 

CL3 80 88 96 104 114 125 135 148 163 180 196 213 234 257 285 310 341 

CL4 80 89 97 105 117 129 140 154 170 189 207 226 249 276 306 335 371 

Standard 

deviation 

CL1 0 1,7 2,2 2,4 2,2 2,8 3,4 3,7 4,6 4,7 4,5 4,3 6,3 6,1 5,7 5,1 4,4 

CL2 0 2 4 4 4 6 7 9 11 13 14 14 19 21 23 23 22 

CL3 0 2 4 5 5 8 9 12 15 18 20 21 27 29 35 35 37 

CL4 0 2 4 5 6 9 9 13 14 18 20 23 30 33 38 40 42 

 

(Figure 8c.) Modularization. Decoupling effort = 3. Å = 20%, 1 = 1/3 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 83 86 89 93 97 100 103 108 112 116 120 125 130 136 141 147 

CL2 80 85 90 96 102 109 115 123 131 141 149 157 169 182 195 208 223 

CL3 80 86 92 99 108 117 125 134 145 158 170 182 198 216 235 255 278 

CL4 80 87 93 100 108 118 126 137 149 162 174 187 204 223 244 264 289 

Standard 

deviation 

CL1 0 1,22 1,87 2,31 2,42 3,07 3,28 4,56 4,84 5,55 5,56 7,42 8,14 8,03 7,18 8,20 7,60 

CL2 0 1 3 4 5 7 7 11 11 14 15 18 22 24 26 30 30 

CL3 0 1 3 5 7 10 11 15 17 21 23 27 33 37 42 48 52 

CL4 0 1 3 5 7 10 11 16 18 22 24 28 35 39 45 51 56 

 

(Figure 8d.) Modularization. Decoupling effort = 3. Å = 20%, 1 = 1/3 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 

CL1 80 83 86 88 91 94 97 100 104 107 111 114 118 122 127 131 136 

CL2 80 85 90 94 98 105 111 117 124 130 137 145 153 162 171 180 191 
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expansion- 
induced-
propagation- 
costs(t) 

CL3 80 86 91 96 102 110 117 124 133 140 150 160 169 181 193 205 221 

CL4 80 86 92 97 102 111 118 126 135 143 153 163 174 185 199 211 228 

Standard 

deviation 

CL1 0 1,38 2,16 2,40 2,63 3,12 3,45 4,32 4,98 5,86 6,25 8,62 9,15 8,62 8,25 8,87 8,30 

CL2 0 2 4 4 5 7 8 10 12 15 17 22 24 24 24 27 27 

CL3 0 2 4 5 6 8 10 13 15 19 23 29 31 32 32 36 38 

CL4 0 2 4 5 6 9 10 14 16 20 24 31 32 33 34 38 41 

 

Simulation 2b: First modularization strategy (modularization at t = 0 only) 

(Figure 9b.) Decoupling effort = 1 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 92 104 116 128 140 153 166 180 193 206 221 235 251 265 280 296 

CL2 80 94 107 122 135 150 167 184 202 219 239 260 282 308 331 356 384 

CL3 80 95 110 126 142 158 179 201 223 246 272 303 336 376 412 455 504 

CL4 80 96 112 129 146 164 187 212 239 266 298 337 379 433 483 546 618 

Standard 

deviation 

CL1 0 0.49 0.95 1.39 1.92 2.19 2.33 3.10 3.67 3.11 2.71 2.65 3.96 4.30 4.70 5 4.88 

CL2 0 1 3 4 5 5 7 9 10 10 11 13 18 20 22 24 22 

CL3 0 2 5 7 8 10 12 16 18 19 22 28 38 47 53 61 62 

CL4 0 2 5 8 11 12 17 21 25 26 32 40 55 70 82 97 107 

 

(Figure 9c) Decoupling effort = 3 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 92 104 116 128 140 153 166 180 193 206 221 235 251 265 280 296 

CL2 80 94 107 121 135 149 166 182 200 217 237 258 280 305 328 352 379 

CL3 80 95 109 125 140 156 176 197 218 240 265 295 326 364 399 440 486 

CL4 80 95 110 127 143 159 181 204 228 253 282 318 356 404 449 504 568 

Standard 

deviation 

CL1 0,00 0,49 0,95 1,39 1,92 2,19 2,33 3,10 3,67 3,11 2,71 2,65 3,96 4,30 4,70 5,00 4,88 

CL2 0 1 3 4 5 5 7 8 9 10 11 13 18 20 22 23 22 

CL3 0 2 4 7 8 9 12 15 17 18 23 28 38 48 54 61 62 
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CL4 0 2 5 8 10 11 16 20 24 26 34 42 56 74 87 104 115 

 

(Figure 9c) Decoupling effort = 5 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 92 104 116 128 140 153 166 180 193 206 221 235 251 265 280 296 

CL2 80 93 107 121 134 149 165 182 199 215 235 256 277 301 324 348 375 

CL3 80 94 109 124 139 155 175 195 214 235 259 288 318 354 387 426 469 

CL4 80 95 109 125 141 158 180 202 224 248 276 310 347 393 435 488 549 

Standard 

deviation 

CL1 0,00 0,49 0,95 1,39 1,92 2,19 2,33 3,10 3,67 3,11 2,71 2,65 3,96 4,30 4,70 5,00 4,88 

CL2 0 2 3 4 4 5 7 7 7 10 12 17 20 23 27 31 36 

CL3 0 2 4 6 8 9 12 15 16 18 22 27 37 45 51 57 58 

CL4 0 3 5 7 10 12 16 20 22 24 31 38 52 67 78 91 98 

 

 

Sample size = 10 

Simulation 2c: Continuous re-modularization strategy 

(Figure 10b.) Initial decoupling effort = 1 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 92 104 116 128 140 153 166 179 192 205 220 234 249 264 278 294 

CL2 80 93 107 121 135 149 165 182 199 216 235 256 277 301 323 346 373 

CL3 80 95 110 126 141 156 175 197 218 240 266 295 326 363 396 434 479 

CL4 80 96 111 128 145 161 183 207 233 259 289 327 366 415 459 514 579 

Standard 

deviation 

CL1 0 0,49 0,95 1,39 1,92 2,19 2,12 3,04 3,59 3,09 2,87 3,45 4,82 5,27 5,65 6,12 6,01 

CL2 0 1 3 4 4 5 6 8 10 10 12 15 19 23 25 27 26 

CL3 0 2 4 6 7 8 12 15 18 19 23 31 39 50 55 63 64 

CL4 0 2 5 7 9 11 16 20 24 25 31 41 54 71 82 96 104 

 

(Figure 10c) Initial decoupling effort = 3 
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W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 92 104 116 127 139 152 165 179 192 205 219 233 249 262 276 292 

CL2 80 93 106 120 133 147 163 179 196 213 230 250 271 294 314 335 361 

CL3 80 94 108 123 138 153 170 190 210 231 252 279 307 340 368 400 439 

CL4 80 94 109 124 140 156 175 196 219 243 267 299 333 375 410 453 504 

Standard 

deviation 

CL1 0,00 0,49 0,94 1,57 2,15 2,39 2,63 3,19 3,74 3,21 2,58 2,51 3,98 4,33 5,13 5,45 5,52 

CL2 0 1 2 4 5 5 6 7 8 9 9 10 14 16 18 18 18 

CL3 0 2 3 5 7 8 9 11 13 14 14 18 24 30 34 36 35 

CL4 0 2 4 6 8 10 11 13 16 17 18 23 31 40 48 53 55 

 

(Figure 10c) Initial decoupling effort = 5 

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Average 
value  
of 
functional- 
expansion- 
induced-
propagation- 
costs(t) 

CL1 80 92 103 115 127 139 152 164 177 190 202 216 230 245 259 272 288 

CL2 80 93 106 119 132 145 160 174 191 206 222 240 259 280 298 318 342 

CL3 80 94 107 121 135 149 166 181 200 217 236 260 283 312 334 363 396 

CL4 80 94 107 122 137 151 168 184 204 223 244 272 298 332 358 394 436 

Standard 

deviation 

CL1 0 0,51 0,97 1,45 2,02 2,36 2,42 3,05 3,59 3,23 3,26 2,99 4,08 4,29 5,19 5,63 5,34 

CL2 0 1 3 4 5 6 6 7 8 8 9 9 11 14 15 16 15 

CL3 0 2 4 6 7 8 9 10 12 12 13 14 18 23 24 27 26 

CL4 0 2 4 6 8 10 10 12 14 14 15 17 22 29 31 36 37 

 

 

Sample size = 10 

 

Simulation 3 
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Résumé 

Cet article s’intéresse à un projet d’innovation intriguant, impliquant l’introduction d’une nouvelle 
machine dans une usine de l’industrie aéronautique. Ce projet a attiré notre attention car il a atteint 
des résultats de performance remarquablement élevés malgré un business case initial négatif. La 
tendance observée en matière de performance ne correspond ni à une réduction d’incertitude, ni à un 
pur investissement dans l’inconnu : nous démontrons que ce cas est une anomalie par rapport aux 
logiques de décision d’investissement et aux dynamiques d’apprentissage (Learning by Doing) qui 
expliquent traditionnellement les gains de performance. Ce papier met en évidence que la dynamique 
de performance a été rendue possible par approche managériale originale et rigoureuse adoptée pour 
faire face à la présence importante d'inconnu au lancement du projet et pendant son déploiement. Sur 
la base de cette étude de cas, nous identifions trois principes visant respectivement à orienter les 
décisions d'investissement, à gérer (économiquement) les projets et à organiser l'apprentissage dans 
l'inconnu. Le premier principe recommande de continuer à utiliser les outils économiques classiques 
(par exemple, les analyses de rentabilité) qui déconseillent le projet, mais de manière "détournée", 
c'est-à-dire comme un moyen de maîtriser les pertes en cas d'échec. La deuxième suggère de fixer 
clairement dans la mission de l'équipe l'objectif de découvrir de nouvelles variables de performance. 
La troisième propose de déployer une stratégie d'apprentissage liée aux variables nouvellement 
découvertes qui est basée sur l'objectif même d'accroître la rentabilité et de transformer le projet en 
un projet rentable. 

 

 

 



Paper submitted to: 

R&D Management Conference 2018 “R&Designing Innovation: Transformational Challenges for Organizations and Society”  

June, 30th -July, 4th, 2018, Milan, Italy 

 2 

 

Managing Learning Curves In The 

Unknown: From ‘Learning By Doing’ To 

‘Learning By Designing’ 

Agathe Gilain1, Pascal Le Masson 2 and Benoît Weil 3  

1 Mines Paristech, agathe.gilain@mines-paristech.fr  
2 Mines Paristech, pascal.le_masson@mines-paristech.fr 
3 Mines Paristech, benoit.weil@mines-paristech.fr 
 

Abstract: Central in this paper is a puzzling innovation project involving the introduction of a new 

machine in an assembly plant in the aviation industry. The project drew our attention because it 

achieved remarkably high performance results despite being launched with a negative business case. 

The observed performance trend neither corresponds to uncertainty reduction nor results from a 

pure investment in the unknown: we demonstrate that this case is an anomaly with regards to 
investment decision-making logics and learning dynamics (Learning by Doing) which traditionally 

explain performance gains. We find that the dynamics at work were made possible by an original 

and rigorous managerial approach adopted to address the significant presence of unknown at project 

launch and during project deployment. Based on this case study, we identify three principles 

respectively aiming at guiding investment decisions, at (economically) managing projects and at 

organizing learning in the unknown. The first principle recommends to keep using the classical 

economic tools (e.g. business cases) which advise against the project, but in a “diverted” way, i.e. as 

a means to keep the losses under control in case of failure. The second one suggests to clearly set in 

the team’s mission the objective to discover new performance variables. The third one proposes to 

deploy a learning strategy related to the newly-discovered variables that is based on the very 

objective to build profitability and turn the project into a profitable one. 

1. Introduction 

 
This paper focuses on a puzzling innovation project observed in a plant in the aviation industry. Firstly, this project was 

launched in spite of a negative business case. However, this feature is not the most disconcerting of the case since at their 

outset, such improvement projects are often marked by uncertainties. Further information and evidence must be acquired 

in order to reduce and eliminate the uncertainties. During project deployment, Learning by Doing mechanisms enable to 

collect such uncertainty-reducing information and evidence. Consequently, Learning by Doing represents the opportunity 

for the plant to achieve in the long run performance improvements (e.g. cost reduction, productivity growth…) which are 

higher than those that would be obtained without having invested in the project at all (Terwiesch and Bohn, 2001). 
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Therefore, the perspective of Learning by Doing represents the possibility to justify the launch of initially costly 

innovation projects (Mody, 1989 ; Terwiesch and Bohn, 2001). But in our case, uncertainty reduction during project 

deployment did not lead to performance improvements: quite the contrary, it oriented the project toward a less favourable 

conjuncture than forecasted in its business case. However, surprisingly, the overall performance of the project did turn 

out to be remarkably higher than estimated in the business case. Therefore, this case appears not to have followed 

traditional Learning by Doing dynamics. This leaves us with a couple of options to explain the rationale driving the 

decision to invest in this project and to explain the dramatic performance trend that it experienced. Either this project 

brings to light a new form of uncertainty reduction, in a form other than Learning by Doing. Either the literature suggests 

that not only uncertainties (related to previously identified states of the world) but also unknown-unknowns (related to 

non-initially identifiable states of the world) could have played in role in this project which would be the result of an 

investment decision in the unknown (Pich et al., 2002 ; Sommer et Loch, 2004 ; Sommer et al., 2008 ; Feduzi et Runde, 

2014). This “investment in the unknown” scenario, implies managers paying in order to gather further information and 

evidence, but without initially knowing the nature of the information to be collected nor their related states of the world. 

In this second scenario, unknown-unknowns are expected to uncover additional information. In other words, this second 

explanation would imply that the plant, counting on serendipity, deployed a “gambling” strategy and accepted to pay in 

order to see what would happen.  

In this paper, we demonstrate that our case does not fall within the scope of any of these two explanations. And we 

describe and attempt to characterize the original managerial response to unknown-unknowns that positively impacted 

performance. In other words, we observed an investment in the unknown framed by a rigorous managerial approach, 

which neither consisted in reducing uncertainties nor in awaiting unknown-unknowns to emerge, but which consisted in 

an organized approach structured around three principles respectively aiming at guiding investment decisions, at 

(economically) managing projects and at organizing learning in the unknown.  

 

Consequently, we seek to provide answers to the two following research question. To what extent is the performance 

trend achieved in this case anomalous with respect to performance gains traditionally achieved by reducing uncertainty? 

How can we characterize the managerial approach (and its associated principles in terms of investment decision, economic 

steering and learning strategy) which resulted in the observed dramatic performance gains?  

 

The plan of this paper is as follows. In Section 2, we review the literature related to investment decisions, Learning by 

Doing and uncertainty management. Section 3 explains the research method. Section 4 is dedicated to our case study: we 

demonstrate that our case is indeed an anomaly and we attempt to characterize the managerial logic and principles 

enabling to explore the unknown and to build such significant performance gains. We call ‘Learning by Designing’ this 

approach.  Finally, research implications and practical implications are respectively given in Sections 5 and 6.  

2. Review of the literature: Learning by Doing, investment decisions and uncertainty 

management 

2.1 Learning by Doing as a lever to justify (costly) investments in innovation, engineering… efforts 
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Learning by repeating fixed tasks is the most obvious form of learning: by repeating tasks in a fixed-facility environment, 

individual workers accumulate experience and learn, which results in a reduction in the time needed to fulfil the tasks, 

and as a consequence allows costs reductions. This form of autonomous, free of charge and non-intentional learning has 

often been associated with both Wright’s (1936) curves which describe labour-hours (and thus production costs) 

decreasing with cumulative production volumes in aircraft assembly plants and with Arrow’s (1962) seminal notion of 

Learning by Doing. However, Wright (1936) notes the diminishing returns of the phenomenon described by his curves 

and he is less interested in learning at the level of individual workers than in levers which could reduce production costs, 

such as scaling effects, investment in new equipment... (Bell et Scott-Kemmis, 2010). Similarly, whereas many studies 

claiming to represent the ‘Learning by Doing’ frame focus on the relationship between cumulative production volumes 

(cumulative outputs) and firm’s productivity, Arrow’s original work studies the relationship between cumulative 

investments (cumulative inputs) and productivity (Bell et Scott-Kemmis, 2010). By focusing on cumulative inputs (which 

record investments in new equipment, triggering “new situations” in the production environment) rather than on 

cumulative outputs, Arrow is more interested in productivity gains resulting from “changed situations” than in 

productivity gains resulting from repetition: 

 

“Learning associated with repetition of essentially the same problem is subject to diminishing returns. There is 

an equilibrium response pattern for any given stimulus, toward which the behaviour of the learner tends with 

repetition. To have steadily increasing performance, then, implies that the stimulus situations must themselves 

be steadily evolving rather than merely repeating.” (Arrow, 1962) 

 

Thus, Wright’s (1936) approach and Arrow’s (1962) definition of Learning by Doing represent a lever to justify (costly) 

investments in projects involving new situations (e.g. new equipment, new processes…). In particular, they already 

indirectly represent a lever to justify investments marked by a part of uncertainty (triggered by the new situation). 

Arrow’s (1962) work introducing the concept of ‘Learning by Doing’ is theoretical. But more or less recent cases show 

that investments in new equipment and technical improvement turn out to explain dramatic productivity gains that could 

not be attributed to “Learning by repeating” mechanisms. This is namely the case for impressive productivity gains in 

aircraft and ship production during WWII which occurred in spite of important turnover and / or scarce labour force 

(Mishina, 1999 for the case of the Boeing B-17 ; Budrass et al., 2010 for several German manufacturers, and Thompson, 

2001 for the Liberty ship producers). A study carried out in a more contemporary firm producing specialty chemicals 

(Sinclair et al., 2000) also finds cost reductions which seem to be more attributable to process R&D aiming at introducing 

technological innovations than to learning at the level of individual workers. 

 

 

If investments in new situations trigger learning effects, which enable to reduce uncertainty and reach performance 

improvement targets, one can seek to better understand how exactly such learning mechanisms operate (subsection 2.2) 

and which managerial principles “efficient learning” and efficient performance improvement rely on (subsection 2.3). 

 

2.2 Reducing uncertainty by experimenting 
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Let us consider a process characterized by a set of n variables in a plant. The performance of the process is determined 

by the value of some of these n variables. In order to improve performance, a manager can decide to introduce new 

equipment. Such a deliberate decision to invest in new equipment can be seen as a decision to invest in a form of induced 

(deliberate) learning (Dutton and Thomas, 1984) which Terwiesch and Bohn (2001) call experimentation. This triggers a 

new situation (as described by the “Learning by Doing” theory) which destabilizes the knowledge that the manager has 

about some of the n variables characterizing the process (Bohn, 1994). For instance, instead of accurately knowing the 

value of a given variable, only a probability distribution indicating the mean and a standard deviation around this mean 

is known. In other words, the new equipment introduces uncertainty and the plant loses control of some of the n variables 

of the process (Bohn, 1994). The reason is that some information is missing (Tyre and von Hippel, 1995) (because of 

uncertainty), which therefore induces problems to solve. A classical approach enabling to acquire the missing information, 

in order to reduce uncertainty and regain control over the destabilized variables is to deploy an experimentation plan. 

Thomke (1998b, 2003) namely proposes an “experimentation model” relying on iterative experimentation cycles, and 

more specifically, on trial-and-error cycles involving the four following steps: 

- Designing an experiment 

- Building the necessary models or prototypes (the “apparatus”) to deploy the experiment 

- Running the experiment 

- Analysing the results: the results provide new information (new knowledge). Armed with these new information 

(i.e. having learned), designers can deploy consecutive cycles which will enable to progressively converge 

toward a performance target (or an “acceptable result” (Thomke, 1998b)). 

 

Efficiently reducing uncertainties, and therefore efficiently reaching the performance targets requires a well-designed 

experimentation plan: this implies deploying a relevant sampling strategy, by devoting experimentation efforts to topics 

marked by critical uncertainty.  

Numerous research works have proposed to characterize and model what well-designed experimentation strategies are. 

For example, Thomke (1998) notes that the heterogeneity in terms of firm performance can be explained by the 

heterogeneity of their experimentation strategy, i.e. by the way in which they combine the possible forms of 

experimentation (simulation, prototyping…). Consequently, Thomke (1998) proposes a model aiming at enabling 

managers to identify the optimal “mix” of these different strategies: building this mix represents a lever to optimize both 

development costs and lead-time when developing a new product. More specifically, the model identifies an optimal point 

which informs managers of when it is time to switch from one form of experimentation to the other. Thomke (1998) 

insists on the fact that budgets (e.g. simulation budget, prototyping budget) should be allocated depending on this optimal 

point, instead of following an arbitrarily-decided budget distribution (such as switching from simulation to prototyping 

once all the ex-ante allocated simulation budget is exhausted). 

Justifying investments in experimentations in a plant is not obligatorily straightforward, since in the short run, deploying 

improvement initiatives and associated experimentations as enablers to reach performance targets can appear costly, in 

comparison with focusing on ensuring that the production line is run at full-capacity (indeed, with such experimentations, 

problems are encountered, which slows down the production rate…) (Terwiesch and Bohn, 2001). However, Terwiesch 

and Bohn (2001) stress the idea a plant which accepts to bear experimentation costs earlier is likely to yield better 

performance in the long run, namely in terms of quality (which involves economic cost avoidance). In order to help guide 

decisions of investments in experimentation, they propose a model involving the costs and benefits of experimenting.  
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In sum, in this subpart, we described the mechanisms through which experimenting generates new insights and learning 

effects which enable to address uncertainty. However, in the two following subsections, we will see that ‘Learning by 

experimenting’ is applicable up to a certain degree of uncertainty only. In particular, when the degree of uncertainty is 

such that we are in the presence of unforeseeable uncertainties (i.e. in the presence of unknowns), experimentation as 

defined above is ill-adapted (Gillier et Lenfle, 2018). One major issue is managerial: Gillier and Lenfle (2018) 

demonstrate that the management principles proposed by Thomke (2003) to frame the above-mentioned experimentation 

cycles are not adapted when it comes to deal with the unknown, which calls for new principles (and they identify new 

managerial principles, as we will explain later). 

 

The rest of this section is structured as follows. Since subsection (2.2) highlights that deploying experimentations to 

reduce uncertainty is all but automatic and that it calls for strategic decision-making and for a rigorous organization during 

deploying: 

- subsection 2.3 is devoted to the existing approaches to manage experimentation in the presence of (basic) 

uncertainty (and thus reduce uncertainty) 

- subsection 2.4 focuses on the issues faced in the presence of unknowns and on the possible management 

principles 

 

2.3 Managing uncertainty reduction 

 

In line with Arrow’s conception of learning stemming from ‘changed’ situations, Mishina (1999) investigates the learning 

mechanisms responsible for dramatically increasing productivity in the plants producing the Boeing B-17 during WWII, 

and supports the idea of “learning” as the consequence of new situations, with the expression “Learning from new 

experiences”. However, the sole modifications of the production systems do not lead to productivity gains. Mishina 

(1999) stresses that learning at the level of core managers plays a significant role in the observed productivity gains 

(through an efficient work coordination, namely making it possible for operators to be tasked with operations in which 

their potential is optimally exploited: no waiting times…) 

 

According to many research works (Adler et Clark, 1991 ; Sinclair et al., 2000 ; Carrillo et Gaimon, 2004 ; Budrass et al., 

2010), the efficiency of learning mechanisms relies on managerial learning, with managers being empowered to make 

decisions on two dimensions:  

(1) Investing in new equipment / in technical improvement / innovation process / in engineering activities (which 

boil down to experimentations which will trigger new situations) 

(2) Investing in new knowledge, competences, expertise (through trainings, hiring new employees…) 

 

Researchers have investigated the mechanisms through which the decisions on these dimensions enable to build learning, 

and performance eventually. A first issue is the very decision of investing. Carrillo and Gaimon (2004) seek to model 

how managers allocate their budgets on these two dimensions (investing in process change and investing in human 

capital). Modelling situations in which managers are motivated by the incentive to reach a given target, they study how 

uncertainty impacts the manager’s choices: they demonstrate that the nature and the rules of the firm’s managerial system 
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(more or less severity toward failed projects for example…) have a strong impact on what is learned, and on firm’s 

performance as a consequence.  

Budrass et al. (2010) epitomize the importance of objectives and incentives managers are subject to: during WWII, the 

National Socialist regime imposed fixed-price contracts on German aircraft manufacturers: this represented the incentive 

to reduce costs for the industrials, all the more so as they could keep the benefit of the margin resulting from cost 

reduction). New contracts being based on the reached production costs at the expiration of the previous contract, managers 

were encouraged to think ahead of time about new technical solutions which could be deployed to reduce costs even 

more. For this reason, several successive waves of cost reduction are observed. 

Therefore, a clear purpose (set at the level of managerial objectives) seems to be an important characteristic of 

economically-efficient learning.  

The mechanisms through which ‘Learning by doing’ takes place and impacts firm’s performance can be summarized as 

follows: firm’s managerial system and objectives set at the managers’ level influence managerial investment decisions in 

(1) Technical capital (new equipment, new processes…) 

(2) Knowledge capital 

These investments trigger experimentation situations, which enable to collect further information and evidence (i.e. 

learning), which enables to reduce uncertainty and bring about economic improvements phenomena (productivity gains, 

cost reduction…). These very learning mechanisms are due to steered experimentations which are deployed in an attempt 

to solve problems raised by the perspective to introduce or raised by the introduction of new equipment or processes. As 

these problems are being solved by experimenting, the convergence toward an initially-set performance target is achieved. 

 

The approaches so far described consist in ‘Learning by reducing uncertainty on n known variables’ (by deploying well-

designed experimentation plans). They apply when the states of the world involved in the project are exhaustively known 

and when managers have the possibility to estimate how the different variables will be impacted by their decisions 

(knowing at least the mean and the standard deviation of the variables). In this case, when it comes to decide whether to 

launch a project or not, managers have the possibility to compute expected values to inform and guide their investment 

decision. All the states of the world being known, the topics (e.g. the performance variables) most affected by critical 

uncertainty are identifiable. Therefore, managers and their teams can establish clear objectives, deploy a sampling strategy 

and design experimentations which will efficiently address these critical topics, by generating the necessary knowledge. 

In sum, when all the states of the world are known, managers can knowingly make their investment decisions. And they 

can design experimentation plans likely to effectively reduce uncertainty and optimize the convergence of the project 

toward an initially-set performance target. In some, a rather straightforward and clear process (implying the identification 

of the critical topics affected by uncertainty, the definition of a sampling strategy, the definition of hypotheses and 

associated experiments, the deployment of tests and the collection of the new information) appears when it comes to 

manage uncertainty reduction. 

 

However, ‘Learning by reducing uncertainty on known variables’ is unsuitable when it comes to deal with unforeseeable 

uncertainties or unknown unknowns. In particular, the perspective of ‘Learning by reducing uncertainty on known 

variables’ does not offer the possibility to justify costly investments in the presence of unknowns, nor to efficiently 

manage project deployment in the unknown.  
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2.4 Investment decisions and project management in the unknown 

When dealing with uncertainty, all the (n) variables affecting performance are known beforehand, although for some of 

them, only the mean and the standard deviation (instead of a precise value) are identified. In contrast, when dealing with 

the unknown, initially unforeseen events are likely to arise and to uncover new performance variables (related to new 

states of the world) whose standard deviation cannot even be estimated. 

 

- Investment decisions in the unknown 

 

Unknown unknowns can be defined as the inability to identify beforehand “all relevant variables affecting performance”, 

i.e. as the inability to identify beforehand all states of the world (Sommer et al., 2009) or as “events which could not be 

imagined as a possibility prior to their occurrence” (Feduzi et Runde, 2014). The unknown makes it difficult to justify 

investment decisions: managers have an incomplete view of all possible the states of the world which are likely to be 

involved and impacted in the course of the project (Pich et al., 2002 ; Sommer et Loch, 2004 ; Feduzi et Runde, 2014). 

The calculation of investment costs and benefits being based on incomplete information, it is imperfect, if not impossible. 

For this reason, economic tools, such as the Net Present Value and Business Cases often predict non-profitability for 

promising innovation projects. Therefore, managers face a dilemma. Either they do not invest in the project at all, which 

represents the risk for the firm to miss opportunities, or to be unprepared to face market or competitive shocks... Either 

they invest, i.e. they pay to see what happens. The firm’s level of risks and error acceptance, more or less openness 

regarding ‘Learning from errors’… play a role in deciding on the dilemma. However, these considerations do not involve 

elements related to the economic performance of the project. What makes the economic decision tricky is that some 

information are missing (e.g. non identifiable states of the world). Feduzi and Runde’s (2014) propose an algorithm 

enabling to generate beforehand “alternative hypotheses” (which enrich the initial decision space with new states of the 

world): the rationale is to proactively eliminate unknown-unknowns, in order to avoid encountering them during project 

deployment. But the problem related to guiding the economic decision remains open: traditional managerial techniques 

do not indicate when generating alternative hypotheses and testing them with experiments (in order to create new 

knowledge) stops being economically-efficient (Feduzi et Runde, 2014).  

 

If managers decide to invest, the rationale of the investment decision is to gather further knowledge and information 

during project deployment. Experimentation is again a key approach to collect initially-missing information (Feduzi et 

Runde, 2014 ; Gillier et Lenfle, 2018). But in this case, managers are in charge of experimentations in the unknown, 

which cannot be steered in the same way as described in subsection 2.3. 

 

- Project management in the unknown 

 

One can note that Thomke’s (1998b, 2003) trial-and-error model is resilient to unknown-unknowns. With its successive 

experimentation cycles, the approach is flexible enough so that managers can integrate in the subsequent experimentation 

cycles the unknown-unknowns discovered during a previous experiment. Indeed, trial-and-error learning offers the 

possibility to actively search for new information, and to progressively adjust, refine and even redefine the objectives 

depending on what is learnt when collecting further information and knowledge (Sommer et al., 2009). However, the 

decision to invest in experiments and the design of these experiments (especially the definition step) are based on the 

initially-known states of the world only. If unknown unknowns are to be unveiled, they will only be taken into 
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consideration from the next experimentation cycles onwards. Managers patiently wait for unknown-unknowns to emerge 

and are ready to adapt the project accordingly (Snowden et Boone, 2007). Trial-and-error learning consists in a reactive 

approach to unknown unknowns. Accompanied with Thomke’s (2003) management principles (cf. table 1 below), this 

approach works as long as managers and their team own the necessary knowledge to generate hypotheses and define 

experiments to test these hypotheses. But in the absence of prior knowledge, i.e. when uncertainty reaches a degree that 

can be designated as “extreme”, Thomke’s (2003) principles do not apply (Gillier et Lenfle, 2018). Gillier and Lenfle 

(2018) explain that “completeness” (in the sense of Garud et al., (2008)), represents the “boundary” for the applicability 

of Thomke’s principle: under the completeness condition, managers and their teams own sufficient knowledge to fairly 

specify the problem they need to address and thus, to design experiments accordingly. From the case of the Manhattan 

project, they also define key features which characterize an experimentation in the unknown (1- lack of theoretical 

knowledge, 2- lack of theoretical instruments, 3- absence of a pre-established organization) and which render Thomke’s 

principles inapplicable. Consequently, based on the Manhattan Project, Gillier and Lenfle (2018) propose principles to 

manage experimentation in the unknown, in the absence of prior knowledge (cf. table 1 below). 

 

Thomke’s principles Gillier and Lenfle’s principles 

Anticipate and exploit early information 
Identify what cannot be predicted by current theory 

& focus on the most challenging aspect 

Experiment frequently but do not overload your 

organization 
Create new divisions and recruit new expertise 

Combine new and traditional technologies 
Observe and measure unknown phenomena with new 

instruments 

Organize for rapid experimentation Conduct overlapping experiments 

Fail early and often, but avoid mistakes 
Do not expect perfect tests & learn from imperfect 

tests 

Table 1: comparison between Thomke’s (2003) experimentation principle & Gillier and Lenfle’s (2018) experimentation 

principles 

 

Contrarily to the knowledge developed in Thomke’s (2003) approach, which draws on already known information, the 

knowledge generated when applying Gillier and Lenfle’s (2018) principles is related to new states of the world since they 

draw on a diagnosis on the unknown (completed by identifying what cannot be predicted by current theory).    

Regarding the deployment of a learning strategy, the extended principles proposed by Gillier and Lenfle (2018) highlight 

that the processes that govern experimentation in the unknown are far less straightforward and sequential than the process 

that appears for uncertainty reduction (that is: identification of the critical topics affected by uncertainty, definition of a 

sampling strategy, definition of hypotheses and associated experiments, deployment of tests and collection of the new 

information). In the unknown, as outlined in the fourth principle, experiments overlap: one given experiment does not 

match one clear set of hypotheses to be tested and associated tests results. Thomke and Gillier’s (2018) principles imply 

carrying out “crude experiments” in order to “see what happens” and start building basic knowledge and theory. In this 

approach, close interactions between theory-building and practical experimentations enable to progressively structure the 

exploration of the unknown.  
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In sum, the important point to bear in mind is that most of what has been so far theorized regarding how to manage 

experiments actually draws on uncertainty reduction dynamics. Gillier and Lenfle’s (2018) paper on the Manhattan project 

is a notable exception. This is not very surprizing since, cases of management in the unknown are quite rare.  

 

We did identify in a plant in the aviation industry a case which seems to have been driven by logics which have to do 

with management in the unknown, especially in terms of investment decision, economic steering and learning strategy. 

In this case, everything tended to support the hypothesis according to which the project was not profitable. No alternative 

information indicated that the project could turn out to be profitable. In spite of that, it was launched and proved far more 

economically-efficient than any hypothesis could suggest. Consequently, in the paper, we try to understand how an 

initially highly improbable hypothesis turned out to prove true during project deployment. We namely seek to characterize 

the managerial logics and principles which played a significant role in turning this highly improbable hypothesis into 

reality. 

To this end, using the method described in Section 3, we draw on this case in an attempt to provide new insights regarding 

the management of investment decisions, economic performance and learning strategies in the unknown. 

3. Method 

Central in this paper is a puzzling innovation project which involved the introduction of a machine relying on a new 

drilling technology in an assembly plant in the aviation industry. This project drew our attention because it achieved 

remarkably high performance results despite being launched with a negative business case.  

As mentioned in the introduction, we seek to address two research questions. To what extent is the performance trend 

achieved in this case anomalous with respect to performance gains traditionally achieved by reducing uncertainty? How 

can we characterize the managerial approach (and its associated principles in terms of investment decision, economic 

steering and learning strategy) which resulted in the observed dramatic performance gains? 

 

In order to address the first research question (anomalous nature of our case), the method is the following. This case does 

not fall into the category of improvement projects experiencing uncertainty reduction, be it in the form of ‘Learning by 

Doing’ or in another form, nor into the category of investments in the unknown consisting in paying in order to collect 

further knowledge and “see what happens”, in the absence of any structured economic steering approach. Consequently, 

this single-case study constitutes an anomaly (Siggelkow, 2007) which epitomizes the management of an investment in 

the unknown. We demonstrate this by applying a statistical method on data related to the costs and the savings generated 

by the project, with a particular interest in the trends and dynamics that followed these data. In order to understand the 

dynamics which affected the costs and the savings in our case, we broke these latter down and tried to understand how 

their nature evolved over time, as the project performance was evolving. 

 

After having demonstrated the anomalous nature of our case, we attempt to characterize the managerial logic at work 

behind the observed performance trend (and thus answer the second research question) with an in-depth case study. As 

Thompson (2010) notes, studies at the level of individual plants offer the opportunity to gather rich data and precisely 

retrace dynamics followed by the firm, such as moving down its learning curve. Interviews with the managers carrying 

out the project provided us with narrative elements that we analysed, which offered us insights to better understand the 

mechanisms underlying the observed upward performance trend.  
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4. Case study: an innovation project demonstrating a highly remarkable performance 

evolution – from ‘Learning by Doing’ to ‘Learning by Designing’ 

 
The case described below occurred in the assembly plant in the aviation industry. The project considered in this case 

consisted in launching automated-drilling robots on some stations of a given production line. The R&T department had 

been developing and testing the technology for four years when the plant started studying the opportunity of a pilot 

deployment in the production environment, as TRL 6 had just been reached. The project seemed very promising, with 

interesting benefits in terms of costs and lead-time reduction. However, it faced a classical hurdle for innovation projects: 

the business cases did not meet the profitability criterion (a less than two-year payback time) required to launch the 

project. In total, eleven business cases scenarii were studied. None was positive with respect to the two-year profitability 

criterion. In spite of that, because the plant managers supporting the project were confident in its potential, the project 

was launched (with a subsidy from the R&T department financing the part of the investment which made the business 

case negative). The selected scenario implied a step-by-step deployment of two robots on a given production line. After 

this step-by-step deployment project (project 1), another project (project 2) involving the deployment of 16 robots on 

another production line was launched.  

We will describe and analyse the learning mechanisms, the economic trends and the managerial logics on both projects.  

To that end, we first demonstrate that project 1 is an anomaly since its performance trend is not governed by an uncertainty 

reduction dynamic, nor does it consist in a form of “investment in the unknown” theorized in the literature. Consequently, 

we will propose in subsection 4.4 the concept of ‘Learning by Designing’ to account for the observed mechanisms and 

managerial approach. 

 

 

4.1 Project 1: Step-by-step deployment of two robots 

 
Given the uncertainties and the level of unknown surrounding the project (in spite of the fact that the managers responsible 

for the project were confident in its value), a first robot was deployed alone, as a pilot phase in Project 1, in order to 

validate some assumptions and get further knowledge before launching the second robot part of the project. 

After one year running the first deployed robot, the results in terms of costs and benefits were stunning: 

- Overcosts: +14% versus what was planned 

- But also extra-savings per product: +31% versus what was expected 

In the following subsection, we sought to understand better the nature of this upward trend in terms of savings. We namely 

attempted to understand what was contained in these extra 31%. 
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4.1.1 Two first robots’ performance evolution 

Using the mean and the standard deviation of the 11 

savings estimations in the 11 initial business cases, 

we were able to plot the probability distribution of 

the expected savings-per-drilled-hole (we used a 

normal distribution). After one year running the 

first deployed robot, the performance in terms of 

savings per drilled hole (represented by the vertical 

line in Figure 1) is far higher than expected and 

corresponds to a value which had a very low 

probability of occurrence in the initial distribution.  

 

 

Before installing the second robot on the production 

line, savings estimations were re-adjusted, based on 

the savings generated by the first robot: eight new 

Business Case scenarii were realized. We 

represented the probability distribution of these 

adjusted savings with the dashed curve plotted in 

Figure 2. (The solid curve is the same as the curve 

plotted in Figure 1: it represents the initial saving 

estimations.) We observe a dramatic shift on the 

right, i.e. a dramatic performance gain with respect 

to the initial estimations before project launch.  

 

 

Today, these two robots associated to initially non-profitable business cases are still running and generate profit. In other 

words, the performance gains were such that they enabled to turn Project 1 into a profitable project.  

 

In the next subsection, we seek to explain this stunning robot’s performance gain illustrated by the change from the solid 

curve to the dashed curve. 

 

 
4.1.2 Narrative description of the events which arose during Project 1 deployment 

 
As a link with the literature review in Section 2, we can consider that the drilling robot impacted a process characterized 

by n variables at the outset of the project. In particular, the savings estimations were distributed across two variables:  

- Recurring Costs savings (induced by lead-time reduction: the robot installation-drilling-uninstallation time is 

supposed to be less than the time of the initial human-operated process ; and induced by a reduced number of 

blue-collars required to work on the line) 

- Non-quality reduction 
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As described in the literature review, the introduction of the new robot destabilized some of the n variables, i.e. the 

managers and the operators lost full control of some of these variables.  

 

If we look at the perspective of learning on the 2 known variables, by solving encountered problems, it did not help 

improve the performance in terms of savings per drilled holes. It even oriented the project toward a less favourable 

conjuncture because of some deficiencies in the initial assumptions. In particular, the specifications assumed that the 

robots would cover 100% of a certain kind of contingencies previously managed by human operators. However, they 

turned out to only be able to cover x% (x<100) of these contingencies. For instance, some perpendicularity conditions 

had to be met for the robots to be able to operate. The specifications implicitly assumed that these conditions would be 

met. But they were not always met: in this case, the robots were not able to autonomously restore perpendicularity, as 

human operators would do. Such events paralyzed the line and extra labour hours (implying extra Recurring Costs) were 

needed to restore perpendicularity (as a solution to the encountered problem). As a consequence, regarding the 2 known 

variables, the plant learnt that the robots operated on a restricted action field with respect to what was initially planned. 

So learning on these known variables impacted the performance negatively. In terms of probability distribution, this 

deterioration would correspond to the solid curve shifting on the left. 

 

On the other hand, unforeseeable uncertainties (unknown unknowns) emerged during deployment, in the form of 

unanticipated events. Among these unknown unknowns was the interest that the robot, (as a co-worker of a new kind 

which was not working well and which was paralysing the production line), aroused among the operators. This unknown-

unknown (the operator’s interest) was strategically managed by the managers carrying out the project. They used it as an 

opportunity of “free trainings”, to provide the operators with the opportunity to enhance their skills and become robots’ 

programmators. Ultimately, the association between the robot operating on a restricted action field and the more-skilled 

operators turned out to be more efficient than the initial assumption of robots covering 100% of the contingencies. And a 

third variable emerged in the savings generated by the robot: Rework Avoidance, in addition to Recurring Costs savings 

and Non Quality avoidance. 

In sum, managers turned the unknown-unknown which emerged (that was the operators’ interests’ in the robot) into an 

opportunity for the project. More specifically, they turned it into the opportunity to build a new variable / a new 

“dimension” (Rework avoidance) in the structure of the savings. This contributed to the robot’s performance gains. 

 

The narrative story of the deployment of the two first robots (project 1) suggests that “Learning in the Unknown” effects 

have played a significant role in the robot’s dramatic performance gains. In other words, it suggests that the observed 

performance trend has nothing to do with “uncertainty reduction on known variables”, i.e. with classical Learning by 

Doing and uncertainty reduction. In subsection 4.3, using the data concerning the savings per drilled hole, we test this 

hypothesis. 

 

But before that, we describe the logics at work in project 2.   

 

4.2 Project 2: Deployment of 16 new robots on the production line of another product 

 
Following the first project, a second project involving the deployment of 16 new robots (identical to those deployed in 

Project 1) was launched. In this second project, not only was the affected product different from the one involved in the 
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first project, but it also faced an important challenge in terms of ramp-up (contrarily to the product of the first project 

whose production rate was in a rather ‘stable’ dynamic). Aware that the two robots involved in Project 1 had become 

profitable and considering the strategic nature (due to the ramp-up challenge) of the affected production line, we expected 

the Business Cases of this second project to be positive. Interestingly, as we collected the data, we observed that they 

were negative, despite taking into account the learning effects induced by Project 1, namely by incorporating in the 

savings structure the third variable unveiled during Project 1, that was ‘Rework Avoidance’.  Faced to this finding, we 

attempted to understand the learning effects and performance trends related to this project.  

 

Project 2 clearly benefited from the learning effects that Project 1 yielded: the technology moved up from TRL6 to TRL9. 

Under the regime of cooperation between robots and programmators, the technology was now reliable.  However, due to 

the ramp-up challenge, Project 2’s managers imagined a more ambitious project aiming to efficiently reduce the lead-

time. To that end, they imagined a more complex organization of the robots’ work on the station (for instance implying 

concurrent tasks instead of sequential tasks in Project 1). How does Lead-Time Reduction impact the performance 

variables, namely, the 3 known savings variables? 

- Firstly, lead-time reduction impacts the first variable of the savings structure that is Recurring Costs Reduction 

(since Recurring Costs directly result from the number of hours spent by blue collars on the process).  

- Besides, the more reduced the lead-time, the more important the benefits over one period of time (one month, 

one year…), since more products are delivered: this aspect is not captured by our probability distribution which 

represents the savings per unit product per drilled holes (this view was interesting to illustrate the technical 

progress of the machine). However, in the firm’s Business Cases evaluating the profitability of the projects, the 

estimated savings per unit product are multiplied by the expected production rate over a given year. As a 

consequence, the benefits resulting from the possibility to produce more units thanks to reduced lead-time was 

taken into account in the firms’ prevision.   

- However, in a context of ramp-up, lead-time reduction does not only impact the savings variable that is 

Recurring Costs Reduction. Indeed, behind each hour of delay lies the perspective for the firm of not meeting 

the ramp-up objective and facing severe penalties as a consequence. This aspect was not introduced into the 

Business Cases assumption, whereas the objective of using these robots as an enabler for a successful ramp-up 

(and avoiding costs due to delays) is the very managerial orientation which structured the deployment and the 

organization of Project 2. Consequently, avoidance of costs which would be induced by unsuccessful ramp-up is 

a new variable which joins the three other variables structuring the savings (that were Recurring Costs reduction, 

Non Quality avoidance and Reword Avoidance). This fourth variable was invisible in the Business Cases.  

 

This variable has not been integrated in the Business Cases and has not formally been used as a lever to demonstrate the 

profitability of the project, because this new variable is ‘being built / designed’ by the project managers. This new 

performance variable has been ‘imagined’ ahead of time, very early in the project. The first months of the project consist 

by the way in a setup period aiming to accurately identify the number of lead-time hours that can be saved with the 

ambitious reorganization of the tasks carried out by the blue-collars and the robot (and to adjust and adapt the 

reorganization of the tasks so that lead-time savings are optimized). One can note a shift in the nature of the objective: 

whereas in Project 1, the purpose was to demonstrate the robot’s capacity to reduce costs, in Project 2, the purpose is to 

optimize lead-time (for a successful ramp-up), even if this implies higher costs.  
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This addition of new performance variables can be seen as a generative / and expansive dynamic affecting the structure 

of the savings attributable to the robot. Managers play an important role in imagining and building these new variables. 

And building performance on these new variables seems to put learning mechanisms at work: by designing these new 

initially unknown variables, managers structure the unknown.  We call ‘Learning by Designing’ this managerial logic, 

which we describe in more details in Subpart 4.4 to address our second research question. 

 

Before that, we address our first research question (to what extent is the performance trend achieved in this case 

anomalous with respect to performance gains traditionally achieved by reducing uncertainty ?) with a statistical method 

in subsection 4.3. 

 

4.3 Testing the hypothesis according to which that the observed performance trend is not governed 

by “uncertainty reduction on known variables” 

 

In the Bayesian statistics, reducing uncertainty consists in updating prior probability distributions on the basis of new 

information (gathered by making observations). The above-mentioned narrative elements show that ‘Learning by Doing’ 

mechanisms during project deployment are not responsible for the observed performance trend. Consequently, using the 

Bayesian statistics, we seek to verify whether another form of ‘uncertainty reduction’ played a significant role in this 

case. To that end, we test the hypothesis H1 according to which the curve shift would result from “Learning by reducing 

uncertainty” on the n known variables of the process  

 

Then, we test H1 with Bayesian statistics. Indeed, if H1 is true, the change from the solid curve to the dashed curve results 

from Baysian updating. This would mean that observations on initially known variables (estimated and summarized in 

the solid curve) have been made through probabilistic draws among these parameters. In other words, the savings 

estimations contained in the 11 initial business cases (solid curve) can be considered as corresponding to a prior 

probability ' ~ N(∞± , ≤±b() (where N is the normal probability distribution). If H1 is true, the estimations contained in the 

8 new business cases (dashed curve) adjusted on the basis of the performance of the first robot, can be considered as a 

posterior '	⎸y ~ N(∞±zw` , ≤±zw`b(), where y is an observation of a known variable which would have yield the learning 

effects. In this case, since the prior and the posterior follow normal distributions, ¥	⎸ ' also follows a normal distribution 

N(', ≤?b() whose parameters we can determine.  
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We find that the observation y=1.04 would 

have been made, with a precision ≤± = 90. We 

plotted the corresponding distribution with a 

dotted curve in Figure 3.  If the change from the 

solid curve to the dashed curve resulted from 

regaining control on known variables by 

reducing the uncertainty affecting these 

variables, this would mean that the value 1.04 

has been drawn when making observations.   

However, the value 1.04 was very improbable 

in the prior distribution (the associated p-value 

is less than 0.002%). Furthermore, 1.04 is far 

beyond the robot’s performance reached after 

one year in operation.  

Consequently, it is highly improbable that learning on the n initially known variables is responsible for the change from 

the solid curve to the dashed curve, which allows us to eliminate H1.  

 

This strengthens the hypothesis Hunk according to which “Learning in the unknown” effects have played a role in the 

dramatic robot’s evolution. And this answers our first research question, confirming that our case is an anomaly with 

regards to economic performance gains traditionally achieved by reducing uncertainty. 

Consequently, in what follows, we attempt to describe the managerial logic which accompanied the decision to invest in 

this project in the presence of unknown. Extending the “Learning by Doing” framework, we propose the notion of 

“Learning by Designing”, as a frame for the managerial principles enabling these learning mechanisms to occur (Subpart 

4.4). Doing so, we address our second research question, (How can we characterize the managerial approach (and its 

associated principles in terms of investment decision, economic steering and learning strategy) which resulted in the 

observed dramatic performance gains?) 

 

4.4 ‘From Learning by Doing’ to ‘Learning by Designing’ 

 

In Section 2, we noted that the efficiency of ‘Learning by Doing’ mechanisms rely on managerial learning, with managers 

being empowered to make decisions on two dimensions (Adler et Clark, 1991 ; Sinclair et al., 2000 ; Carrillo et Gaimon, 

2004 ; Budrass et al., 2010):  

(1) Investing in new equipment / in technical improvement / innovation process / in engineering activities (which 

will trigger new situations) 

(2) Investing in new knowledge, competences, expertise (through trainings, hiring new employees…) 

Managerial decisions on these two dimensions induce “Learning by Doing” effects since the introduction of new 

equipment and process change triggers problems, which call for experimentation and new competences and knowledge 

acquisition in order to be solved, which trigger learning. An optimal mix in terms of (investment) efforts on these two 

dimensions yields optimal “Learning by Doing” effects, both “before doing” and “during doing”. The decision of such a 

mix is the manager’s responsibility. In a “Learning by Doing” frame, the manager’s decision is influenced and determined 

by performance objectives: one of the plant’s processes is characterized by n known variables, and the manager’s 
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decisions are oriented toward the objective to achieve a performance target on some of these variables. This performance 

is reached progressively, by experimenting on these known n variables. 

 

 “Learning in the unknown” is not covered by the (1) and (2) decisions dimensions. This raises the following question: 

what kinds of managerial decisions, objectives and principles are “Learning in the unknown effects” related to? The 

anomalous nature of case study seems to bring about some understanding to that question.  

As we noted already, Project 1 was launched, in spite of a negative business case, by managers who firmly believed in its 

potential for the plant. After having overcome the financial hurdles requiring a positive business case (with a subsidy 

from the R&T), the Project 1’s managers had one major objective in mind: proving that the robot was effectively valuable 

for the plant and that it could yield valuable performance. Consequently, the managerial actions during project deployment 

were oriented toward this very objective. In addition, interviews the managers who carried out Project 1 revealed that at 

the outset of the project, they were aware that new dimensions would be discovered during the project. Indeed, introducing 

such a machine in the production environment was a real rupture and, to some extent, a leap in the unknown: the necessary 

competences were not available within the plant and were not even precisely identifiable at the beginning of the project. 

The plant had no referent Business Units nor experts regarding automation… Everything needed to be built. Project 1’s 

managers were aware of this and they knew that beyond the initially identified risks, other unforeseen events were likely 

to arise. Consequently, they were expecting unknown unknowns to emerge. And they were ready to manage them and 

find a value-creating solution at the moment of their emergence. More specifically, finding value-creating solutions 

consisting in designing new variables in the unknown. In sum, managers had set themselves the objective to turn the new 

dimensions into opportunities at the moment they would emerge. This is what happened when they strategically managed 

the operators’ interest in the robots, which triggered a valuable “cooperation” between more-skilled operators and the 

robots. 

 

This example of the operators’ interest in the robots, despite having been strategically managed, has perhaps a slight 

serendipitous connotation. However, in Project 2, the design of a new variable in terms of savings is all but accidental, 

since it constitutes the very purpose of the project: this new performance variable (that was Avoiding costs which would 

result from an unsuccessful ramp-up) was imagined at the outset of the project. And the perspective to design it and to 

turn it into a performance variable guides and structures the project (which is still ongoing today): it is a key element of 

the project since the outset.  

 

Therefore, these findings lead us to add a third action dimension, including with three associated management principles 

(a., b. and c.), to the two existing dimensions ((1) and (2)) in the “Learning by Doing” theoretical frame. Whereas 

decisions (1) and (2) are oriented toward converging to a performance target, decision (3) is oriented toward the objective 

of meeting a learning target which implies adding new variables in a given action field by designing in the unknown. 

(1) Investing in physical capital (new equipment, technical improvements…) 

(2) Investing in new knowledge, competences, expertise (through trainings, hiring new employees…) 

(3) Investing in the unknown, i.e. investing in the design of new variables which are “in the unknown” at the outset 

of the project.  

Associated with this decision dimension, we propose the following management principles:   

a. Regarding the economic decision. The economic calculation is imperfect, and often unfavourable, 

because of incomplete information, when it comes to estimate the profitability of an investment in the 
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unknown. The Net Present Value (involved in business cases) is ill-adapted to fairly assess the value of 

innovation projects and is widely criticized for that. However, this classical economic tool can all the 

same have a usefulness in the economic steering of projects in the unknown (even if the nature of this 

usefulness is not the same as when NPV classically is classically applied). In the unknown, the 

“negative” or “positive” result of the NPV is not reliable. Consequently, this feature is not the one of 

the greatest importance for managers and some innovation or improvement projects are launched in 

spite of a negative NPV. In this case, the risk of not succeeding in turning the project into a profitable 

one exists. However, the computed NPV also provides managers with a kind of “railing”, a kind of 

“protection” to ensure that the investment is capped and under control in case the project proves indeed 

non profitable. Thus the first managerial principle that we infer from our case is to use classical (perhaps 

unfavourable) economic tools as a means to ensure that in case of failure, no investment other than the 

initial one will be lost.  

b. Regarding managing project deployment in the unknown and especially regarding building 

economic profitability in the unknown. Owning only incomplete information and evidence, managers 

who invest in the unknown, in spite of an unfavourable business case, seek to collect new knowledge. 

However, they do not know the nature nor the content of the information they are going to collect. 

Consequently, they cannot set precise objectives in terms of knowledge to be collected. However, one 

managerial objective can be clearly set and cascaded to the teams: the objective to discover new 

performance variables (new states of the world) which were initially unknown and to develop learning 

related to these new variables in order to find levers that will help either reduce the costs or increase 

the benefits (and thus make the project profitable). Thus, the second managerial principle that we infer 

is to clearly set in the team’s mission the objective to discover new performance variables. One can 

note that these new variables can be imagined and contemplated as soon as the outset of the project, as 

in Project 2. Or, in cases when everything is to be built, such as in Project 1, they can be inspired by 

actively awaited unknown unknowns during project deployment. 

c. Regarding organizing learning in the unknown. Once they are discovered, one needs to acquire 

further knowledge related to the new states of the world in an attempt to make them effectively 

contribute to the economic profitability. Acquiring this knowledge requires experimenting. As 

mentioned above, in the unknown, it is not possible to have clear expectations and to set clear objectives 

regarding the outcomes of these experimentations. However, the objective to reduce costs and / or 

increase benefits can be set, in order to turn the project into a profitable one. Thus, the third inferred 

managerial principle is to deploy on the newly-discovered states of the world a learning strategy that is 

oriented toward the objective of turning the project into a profitable one. 

 

To summarize these three principles, the key purpose orienting the management of such investments in 

the unknown is to “design” and bring to life these contemplated variables, in order to structure the 

unknown and to benefit from new performance dimensions in this newly-structured world. The new 

variables being imagined (be it at the outset or later on in the project), the very objective of the project 

is to develop learning strategy enabling to take them out of the unknown and to generate knowledge 

that will make them turn the project into a profitable one. The project steering will be oriented to that 
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end. Instead of being seen as a threat, initially missing information are seen as an opportunity which 

must be unveiled.  

We call “Learning by designing” the learning process resulting from the managerial decisions and principles contained 

in (1), (2) and (3). 

5. Research implications 

Based on a single-case study, the ‘Learning by Designing’ framework extends the frame of “Learning by Doing”, by 

outlining principles to guide investment decisions (a.), (economically) manage project deployment (b.) and organize 

learning (c.) in the unknown.  

 

The first principle (a.) brings new insights into the problem of the economic evaluation and economic management of 

R&D projects. Indeed, similarly to the robot project we describe, many R&D projects find it difficult to prove that they 

are worth being launched when the classical financial tools, (e.g. Net Present Value (NPV)), are negative. Indeed, as 

highlighted in Hooge’s (2010) literature review, the NPV is ill-adapted to fairly assess the profitability of a project in a 

context marked by uncertainty and incomplete information and has consequently been widely criticized for that (Barger, 

1993 ; Phaal, 2005 ; Hartmann et al., 2006). Among other things, the NPV computation assumes that the project is 

financed up to completion, which introduces very little flexibility and makes the investment decision irreversible. Besides 

risks and uncertainties are summarized in one figure, the discount rate, ignoring the economic impact of more qualitative 

aspects. It namely ignores the impacts of learning effects and the potential spillovers that could be beneficial to subsequent 

projects. All these imperfections and approximations can lead the NPV to kill promising innovation projects. This is the 

reason why some research works propose new forms of NPV (stochastic NPV…) or even new tools (real options…) that 

value innovation projects more fairly.  

Our case is also based on the observation that the NPV does not fairly assess promising projects. But instead of 

transforming the NPV into a better tool, our case suggests an original (and even diverted) use the very ‘basic’ NPV.  

The economic management principle we identify does not rely on reaching (more or less artificially) a positive NPV to 

authorize project launch. If it is positive, it is of course better. However, in case the NPV is negative, the second and third 

management principles (b. and c.) of the ‘Learning by Designing’ frame recommend to imagine and design new 

performance variables and get new insights related to these latter, by experimenting, in order to make them contribute to 

the economic performance. 

 

 

Secondly, our case study epitomizes the thesis according to which the unknown can be managed, namely economically. 

Be it in the presence of uncertainties or unknown-unknowns, the issue in both cases is that some information and evidence 

are missing. This calls for new knowledge to be developed (knowledge whose nature differs depending on if we manage 

basic uncertainties of unknown-unknowns). Yet, in the same way as uncertainty is managed in a philosophy of 

“reduction”, most of the approaches that propose ways to manage the unknown aim at reducing and eliminating the 

unknown. For instance, as mentioned above Feduzi and Runde’s (2014) algorithm which generates knowledge related to 

new states of the world, aims at eliminating unknown-unknowns before encountering them later on. In other words, the 

unknown is in general negatively perceived (Gillier et Lenfle, 2018). 
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However, Gillier and Lenfle (2018) detect in the case of the Manhattan project a paradigm which implies identifying what 

is unknown and designing initially unknown things. In other words, they identified an expansive approach which consists 

in designing in the unknown, instead of seeing the unknown as an undesirable threat. Our anomalous case turns out to be 

an additional example which fits into this expansionist paradigm. The managerial principles inferred from the case study 

encourage to adopt such an expansionist approach: the second principle (b.) encourages managers to clearly set the goal 

to develop new states of the world and the third one (c.) recommends to organize and deploy a learning strategy related 

the newly discovered states of the world, by centring this strategy on the very objective to build economic profitability.  

Thus, our findings contribute to the research related to the Management of the Unknown, by bringing to light a case 

whose performance gains are attributable to learning in the unknown effects that were made possible by the deployment 

of three managerial principles. Falling within the research avenue pointed out by Gillier and Lenfle (2018) and as an 

additional proof to the fact that the unknown can be managed, this paper encourages to further explore the logics related 

to deploying projects in the unknown.  

6. Practical implications 

The managerial principles identified in the paper represent for firms the possibility to formally justify the launch of 

projects which, under classical tools and classical management rules, should not be launched. Our case illustrates that an 

initially unfavourable project can, if launched, represent the opportunity for a firm to allow the occurrence of initially 

impossible scenarii (dramatic performance gains and an eventually profitable project in our case). 

The Learning by designing frame does not reject traditional economic tools, but diverts their use, by not paying so much 

attention to their binary “positive” versus “negative” predictions, but using them as a protection to control costs.  

The financial sponsors of a project justified by the first identified principle (a.) are not asked to fund it in a “Let’s see 

what happens” philosophy: the important idea is that they are asked to pay in order to make possible the steered discovery 

of new action variables which are likely to open new (extended) action fields, and make initially impossible scenarii 

become possible. 
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Résumé 

Il est largement reconnu que plus un projet est incertain, plus la probabilité de le rendre rentable est faible. 
Dans ce cas, comment expliquer que chez Airbus, un cluster d’innovation possède un portefeuille de projets 
qui sélectionne des projets extrêmement incertains et fait preuve d’une rentabilité remarquable (taux de 
rentabilité x6) ? Selon les techniques d'évaluation économique traditionnelles basées sur la théorie de la 
décision qui quantifient la valeur de la réduction de l'incertitude, il est très peu probable qu'un mécanisme de 
réduction de l'incertitude génère une valeur " considérable ". Donc, si nous restons dans le cadre de la théorie 
de la décision, la rentabilité du portefeuille de projets du pôle d'innovation d'Airbus est due soit à la chance 
(c'est-à-dire au jeu), soit à un mécanisme de réduction de l'incertitude exceptionnellement efficace. Mais si 
nous passons de la théorie de la décision à la théorie de la conception, une autre explication peut être envisagée 
: l'exploration de l'inconnu. Alors que l'inconnu a longtemps été considéré comme hors de portée des 
techniques de décision, des travaux récents ont révélé que la théorie de la conception étend la théorie de la 
décision à l'inconnu. Appliqués aux décisions d'investissement, ces modèles de décision basés sur la théorie 
de la conception prédisent que dans l'inconnu, les décideurs peuvent toujours concevoir un espace décisionnel 
permettant de générer (beaucoup) de rentabilité. Cette prédiction semble absurde.  Mais en se basant sur le cas 
Airbus, cet article spécifie un modèle de décision d'investissement réaliste basé sur la théorie de la conception 
qui permet de générer des rendements spectaculaires dans l'inconnu, et explique le cas Airbus. 
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Abstract 

It is widely acknowledged that the more uncertain a project is, the lower the probability of making it profitable. 

But how then can we explain that in Airbus, an innovation cluster’s project portfolio selects highly uncertain 

projects and demonstrates a remarkable profitability (x6 rate of return)? According to traditional decision-

theory-based economic evaluation techniques which quantify the value of uncertainty reduction, it is very 

unlikely that an uncertainty reduction mechanism generates ‘considerable’ value. So if we remain under 

decision theory, the profitability of Airbus innovation cluster’s project portfolio is either due to chance (i.e. 

gambling) or to an outstandingly effective uncertainty reduction mechanism. But if we move from decision 

theory to design theory, another explanation can be considered: unknown exploration. While the unknown was 

long considered as out-of-reach for decision-making techniques, recent works have revealed that design theory 

extends decision theory to the unknown. Applied to investment decisions, these design-theory-based decision 

models predict that in the unknown, decision-makers can always design a decisional space allowing the 

generation of (a lot of) profitability. This prediction seems absurd.  But based on the Airbus case, this paper 

specifies a realistic design-theory-based investment decision model which accounts for the generation of 

dramatic returns in the unknown, and explains Airbus case. 
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Keywords: investment decision; uncertainty reduction; unknown exploration; radical innovation; 

performance; profitability  

 

1 Introduction 

 

In Airbus, an innovation cluster’s portfolio of incubation and acceleration projects selects highly uncertain 

projects which have been rejected by the economic evaluation criteria (NPV, pay-back time, etc.) in force in 

the traditional organizations (Engineering, Manufacturing, Customer Services, R&T, etc.): in terms of time, 

cost, operational performance, etc., these projects are found to be far too risky. The innovation cluster decides 

to fund some of these rejected projects that are due to be all but profitable, and guides their incubation or 

acceleration. And it demonstrates a dramatic profitability rate: in 2018, for 1 euro invested in the innovation 

cluster project porfolio, 6 euros have been given back to Airbus. This rate of return is extremely puzzling, 

because the traditional economic evaluation techniques deriving from decision theory (Wald, 1950 ; Savage; 

1954 ; Raïffa, 1968) are not known for predicting or explaining the generation of considerable economic value 

(apart from the eventual dramatic outcomes of a gamble). Indeed, they quantify the value of uncertainty 

reduction, that is the value that a decision-maker can expect to earn if he or she effectively reduces uncertainty 

during project run, which is generally moderate, of the order of a variance reduction, noise reduction. Thus, it 

seems impossible that decision-theory-based economic evaluation techniques and associated investment 

decision models account for the ‘x6’ rate of return observed in the case of Airbus, unless we are in the face of 

the outcomes of a  gamble or in the face of an outstandingly effective mechanism of uncertainty reduction. If 

we remain in the decision-theoretic framework, (i) chance or (ii) outstandingly effective uncertainty reduction 

are the two sole explanations for the dramatic profitability of the innovation cluster’s portfolio.  

 

If we leave the decision-theory-based framework and move to design theory, we can consider another 

mechanism which is not accounted for by decision theory and which could explain the profitability of the 

innovation cluster’s portfolio: unknown exploration54. Contrary to basic uncertainty which calls for being 

reduced and eliminated, by becoming more knowledgeable about the states of the world of a given states-

space, the unknown involves “voids” that call for being filled, i.e. that call for building the missing states of 

the world (Feduzi et Runde, 2014) and designing and shaping the states-space (Le Masson et Weil, 2020). It 

is well-proved that decision theory and deriving techniques are unsuitable (if not misleading) to explore the 

unknow (Loch et al., 2006). And the unknown has long been considered as “out of reach” for any decision-

making techniques. However, recent advances in design theory have made it possible to extend decision theory 

                                                
 
54 In this paper, the term ‘uncertainty’ designates ‘basic uncertainty’, i.e. initially identified, but uncertainly known states 
of the world, in a given, fixed-size states-space. And the ‘unknown’ refers to ‘initially missing, ignored states of the world 
that are to emerge or to be created in the states-space’: this includes unforeseeable uncertainties, also called unknown 
unknowns (Sommer et Loch, 2004 ; Sommer et al., 2009) and ‘unimagined possibilities’, unpredictable events (Faulkner 
et al., 2017 ; Feduzi et Runde, 2014). 
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to the unknown with a design-theory-based decision model accounting for the possibility to enrich a decisional 

space with the design of new decisions and new states of the world in the unknown (Le Masson et al., 2018): 

so far, this design-theory-based decision model is theoretic and formal. It does not yet include associated 

techniques which would explicitly quantify the value of unknown exploration mechanisms, in the same fashion 

as decision theory quantifies uncertainty reduction. But it already suggests that when one considers an 

investment decision in the unknown, one can always design the states of the world or the decisional alternatives 

which render the decision to invest profitable. This prediction departs from decision theory according to which 

the more uncertainty a project is, the lower the expected profitability and the riskier the decision to invest. 

Literally taken, this is extremely counterintuitive, if not absurd. Indeed, it suggests that in the unknown, every 

situation could be turned into a profitable opportunity. But at the same time, a decision-making model which 

can account for the generation of a lot of profitability is particularly interesting with respect to the puzzling 

case of Airbus innovation cluster. It could offer a new explanatory way. Thus, this paper aims at investigating 

whether one could specify a realistic and reasonable design-theory-based investment decision model, which 

could account for the generation of dramatic returns in the unknown, and which could explain Airbus case. 

 

This paper will address these two questions together: could the formal decision-making model offered by 

design theory provide an explanatory framework for the dramatic and puzzling profitability of Airbus 

innovation cluster’s portfolio of incubation and acceleration projects? And the other way around, could the 

case of Airbus innovation cluster’s project portfolio provide empirical evidence that would confirm the 

(counterintuitive) prediction of the design-theory based decision model regarding the behavior of profitability 

in the unknown? In addition, could the case of Airbus innovation cluster’s project portfolio provide new 

insights regarding possible investment decision techniques / tools that could be part of a design-theory-based 

decision model?   

 

To this end, this paper is structured as follows. Section 2 reviews the literature which claims to address 

investment decision-making questions under high uncertainty or the unknown. The objectives are to 

characterize more precisely the situation of investment decision-making in the unknown, to identify the models 

that are proposed to help decision-makers manage such a situation, to identify whether these models tend to 

be decision-theory or design theory-based, and to identify whether or not they quantify the expected 

profitability associated with the exploration of the unknown. This will lead us to trace the main outlines of 

what a design-theory-based investment decision model in the unknown could be. Section 3 describes our 

twofold method: firstly, a statistical method to test whether the case of Airbus innovation cluster falls into the 

decision-theoretic or design-theoretic framework, and secondly, an empirical method (single-case study) to 

analyze the economic management techniques and methods enforced in the frame of this unusual portfolio, in 

an attempt to get insights regarding the very practices that can possibly enable to generate (a lot of) profitability 

in the unknown. Finally, Sections 4 and 5 respectively describe and discuss our results.  

 

In what follows, AIC will refer to Airbus innovation cluster. 
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2 Literature review: investment decision models in the unknown 

 

The objective of this section is to characterize more precisely the situation of investment decision-making in 

the unknown, to identify the models that are proposed to help decision-makers manage such a situation and to 

identify whether these models tend to be decision-theory or design theory-based, and whether or not they 

quantify the expected profitability associated with the unknown. 

 

2.1 From a situation of investment decision-making under uncertainty to a situation of investment 

decision-making in the unknown 

2.1.1 Investment decision-making under uncertainty 

In order to help managers decide on whether or not to invest in projects the target of which is uncertain 

(uncertain target market, uncertain technical feasibility, uncertain costs to be incurred, uncertain potential 

benefits, etc.), the traditional profitability analysis tools (Return On Investment, Payback time, Discounted 

Cash Flow, etc.) need to be adapted and enriched.  

In this respect, investment decision-making techniques (decision trees ; real option analysis ; stochastic 

NPV…) deriving from Decision Theory (Wald, 1950 ; Savage; 1954 ; Raïffa, 1968)  propose to integrate 

uncertainty in the economic reasoning by using the probabilities of the events that are likely to arise: thanks to 

a probabilistic description of the uncertainty, these investment techniques pinpoint the investment choice that 

maximizes the decision-maker’s expected utility (e.g. expected profitability). As illustrated by the decisional 

way d3 represented in Figure 1 below, decision theory-based investment decision-making considers the 

possibility of collecting additional information that will reduce uncertainty. If the gain of utility associated 

with the perspective of collecting additional information is large enough, decision-theory recommends to 

follow that way. The equations underlying this mechanism of uncertainty reduction come from Bayesian 

statistics. 
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Figure 1. The formal framework associated with a decision-theory-based economic reasoning under 

uncertainty 

d
3 

is the decisional way that considers the possibility to reduce uncertainty through the collection of new 

information, with the use of an observation tool characterized by its reliability P(U
i
 | E

i
). P(E1) and P(E2) being 

given, formula coming from the Bayesian statistics enable to compute the probabilities of the observations 

P(Ui), and a posteriori, more certain probabilities P(E
i
 | U

i
), which incorporate the reduction of uncertainty. 

Choosing d
3
 has a cost which we do not explicitly represent in this Figure. But uncertainty reduction also offers 

value which can be assessed by computing the expected utility associated with d
3
. In orange, we propose an 

example with values describing what a typical investment situation under uncertainty could be. If we do not 

consider the possibility of becoming more knowledgeable regarding the two states of the world by reducing 

uncertainty (i.e. if we do not consider d
3
), the best decisional way is d

2 
(killing the project – with its expected 

utility 0 > -10). With respect to this ‘best’ decisional way, d3 offers an additional gain of expected utility of 

+25. Therefore, a decision-theory-based reasoning would recommend to reduce uncertainty in our example 

(provided the decision-maker is equipped with the organizational and managerial tools, capabilities, 

processes… necessary to effectively reduce uncertainty). 

 

 

2.1.2 Investment decision-making in the unknown 
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Unfortunately, the Bayesian logic described in the previous subsection no longer works when the level of 

uncertainty is so high that uncertainty does not only consist in uncertainly-known states of the world in a given 

states-space (i.e. basic uncertainty), but also involves initially ignored or missing states of the world (i.e. the 

unknown). The reason is that the uncertainty reduction logic, which relies on a Bayesian update of prior 

knowledge, thanks to the collection of new information is unsuitable in the face of initially unknown states of 

the world. Indeed, one owns no prior knowledge regarding the initially unknown states of the world (these 

latter are not characterizable in terms of probabilities – one knows neither the state of the world nor its 

probability). So in the unknown, there is nothing to update and there is no value to earn by collecting 

uncertainty-reducing information. Consequently, d3 is no longer an option to the decision-maker. 

 

Thus, a decision-maker who is ‘consciously’ considering the possibility to invest in a project in the unknown 

(i.e. a project the profitability of which cannot be fairly assessed, and which is likely to be impacted by 

unforeseeable events) is aware that if he or she invests, initially unknown states of the world are to 

unexpectedly arise, disturb the predictions of decision theory, and by implication disturb the plans that he or 

she may have initially made according to them. Such disturbances may translate into unwelcome developments 

that destabilize and ruin initial plans. But theoretically, anything can occur in the unknown, and the 

unpredictable events might also offer welcome opportunities (e.g. Zeckhauser, 2006 ; Roy et Zeckhauser, 2015 

; Lechler et al., 2012). In this context, the decision-maker who has to decide on whether or not to invest in a 

project in the unknown faces a decision situation involving the two following possible decisional paths: 

- Either d1: killing the project, considering that he does not want to run the risk of having his plans 

ruined by the emergence of unwelcome initially unknown events.  

- Or d2: investing in the project, in the hope that the unknown events that will arise will fill the very 

conditions that are required to render the project profitable.  

 

This decision situation is depicted the decision tree in Figure 2.   

 

 

Figure 2. Decision situation faced by a decision-maker in the unknown 
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The decisional situation represented in Figure 1 calls for two comments:  

(1) Following the first decisional path boils down to gambling on the occurrence of welcome 

developments that could be brought by the unknown, the probability p of which is very low, but non-

zero. Investors engage in this way if their intuition predominates over the recommendations of 

decision-theory. This reasoning is intuition/heuristic-based, but not necessarily deprived of cognition 

and rationality, especially if the rational underlying it involves the plan of investing in numerous 

projects in the unknown, knowing that many of them will fail (and generate losses), but that one of 

them might by chance turn out to be extraordinarily profitable and pay off for all the initial investments 

and the losses due to the failed projects – this is a profitability-oriented reasoning used by many angel 

investors (Huang et Pearce, 2015 ; Zeckhauser, 2006) 

 

(2) Following the second decisional path consists in following the rational and wise recommendations of 

decision theory, somehow applied with the scant available information regarding the project. 

However, this recommendation can be misleading and dangerously biasing, because it represents the 

risk of killing promising projects (e.g. Alkaraan et Northcott, 2006).  

 

While the first decision path suits 0%-risk averse investors (i.e. gamblers), the second one suits 100%-risk 

averse investors. But this decisional situation is extremely unsatisfactory for decision-makers who are neither 

willing to run the risk of killing promising projects under the pretext that they are prone to be affected by the 

unknown, nor willing to engage in an extremely risky gamble. An examination of the literature for alternative 

investment decisions models which could guide decision-makers who are neither 0%-risk averse investors nor 

100%-risk averse investors has led us to distinguish between two kinds of models:  

 

- The first kind of models puts aside the ‘profitability criterion’ and attempts to assess the potential of 

projects affected by the unknown with other criteria (strategic value, qualitative tools, quasi-

quantitative tools…). Such criteria are supposed to help choose the best alternative between d1 and d2, 

but considering a state space characterized by something other than profitability. We review the 

literature related to these methods in subsection 2.2.1 

- The second kind of models consists in building on the fact that decision-theory is unsuitable in the 

unknown (Loch et al., 2006)) and on the result that Design Theory extends decision theory to the 

unknown (Le Masson et al., 2018). We review the literature related to this second approach in 

subsection 2.2.2 

 

 

2.2 Alternative models to ‘quantified uncertainty-reduction’, which could help handle investment 

decision-making in the unknown 
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2.1.1 Model 1: informing the decision with criteria other than the profitability 

criterion 

 

According to Schmidt et al. (2009), one should use different sets of evaluation criteria depending on whether 

one assesses incremental innovation or radical innovation projects – i.e. specific evaluation criteria should be 

dedicated to highly innovative projects. Numerous research works try to characterize what such evaluation 

frameworks could be, in terms of the content, of implementation processes… (e.g. Dziallas, 2020 ; Martinsuo 

et Poskela, 2011 ; Hart et al., 2003…). The criteria that these very studies find to be the most appropriate to 

fairly value innovative projects in their early stage, when the degree of uncertainty is high (and possibly reaches 

the unknown55) are non-monetary: e.g. strategic fit, customer relevance, communication potential, competitive 

potential, future business potential, etc.56 Although they do not incorporate profitability-quantified criteria, 

these evaluation frameworks do not mean to fully give up profitability ambitions – the application of these 

criteria is expected to select projects that will open new business opportunities, attract new customers… for 

the future, and thus will pay off later on (Shenhar et al., 2001 ; Frederiksen et Knudsen, 2017). In this context, 

economic-oriented criteria are to be reintroduced later on when the project is more mature (e.g. in the later 

phases of a stage-gate process (Hart et al., 2003 ; Dziallas, 2020)).  

 

Such an economic reasoning seems to remain in a decision-theoretic paradigm. It consists in circumventing 

the ‘profitability criterion’ in order to render decision-theoretic logics applicable again, on other more 

qualitative aspects.  

 

The information that feed such evaluation frameworks are collected through more or less formal means (from 

analysis grids to conversational mode) and may include perception-based assessments (Shenhar et al., 2001), 

expert evaluation (Chang et al., 2008)... Some works advocate for the establishment of informal assessment 

systems (Koen et al., 2001 ; Nobelius et Trygg, 2002 ; Martinsuo et Poskela, 2011), arguing that formal systems 

can represent a threat for creative and innovative ideas. The mission of these frameworks is to offer a strategic 

view (Eling et al., 2014), offer transparency in the decision-making (provide the necessary elements for 

understanding, beyond using accurate figures), and allow quick and flexible decision-making. In this regard, 

Dziallas (2020) advocates for lightened (more flexible and faster) resources allocation procedures (arguing 

that the delays of ‘traditional’ budget allocation processes may be long and may threaten innovation 

opportunities).  

 

In sum, such an economic reasoning is associated with a very lightened economic management approach. It 

primarily concerned by the fact that the profitability requirements and the processes (e.g. resource allocation 

processes) that are enforced in the “exploitation regime” of a firm are a threat to creative and innovative 

                                                
 
55 Although, to our best knowledge, these works do not explicitly refer to the unknown 
56 Hart et al. (2003) and Martinsuo and Poskela (2011) suggest that the specific content of the set of criteria may vary 
depending on the strategic objectives of the firm (no one-size-fits-all set of criteria). 
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projects, i.e. to exploratory activities. In reaction to this, the above-mentioned works advocate for making 

investment decisions based on a project evaluation system which is well-separated from the one enforced for 

the management of mature, exploitative activities. In that, these alternative investment decision models can be 

seen as ambidexterity-oriented (in the sense of March’s (1991) definition of ambidexterity). While this 

reasoning efficiently mitigates the risk of killing promising innovation projects in their early phase, it does not 

guarantee that the projects will not be killed in later phases, when the profitability criteria are re-enforced (i.e. 

it does not guarantee that these very selected projects will be eventually reintegrated into the exploitation 

entities of the firm later on). In that regard, recent works show that such a move from exploration to exploitation 

is all but automatic, and that having an impermeable frontier to manage the objectives of exploration on the 

one side, and that of exploitation activities on the other side may actually be a threat to innovation (Le Glatin, 

2018 ; Le Glatin et al., 2018).  

 

Table 1 below summarizes the characteristics of this first kind of model (Model 1 column) and compares it 

with the model of ‘uncertainty-reduction assessment’ that we described in subsection 2.1 and that is no longer 

applicable in the unknown (Model 0 column).  

Table 1. Introduction of Model 1 – A restauration of the applicability of Model 0 in the unknown, but 

with a lightened economic management approach 

 

A major drawback of Model 1 and its lightened economic management is the risk of wasting resources on 

projects that will be killed later on.  

 

Model 0: 

Investment decision model based on decision theory

Model 1: 

Investment decision model based on lightened economic criteria and 

enriched with additional decision criteria

Nature of the decision 

criteria

• Expected utility (or expected profitability, expected Net Present Value, etc.)

• Value of uncertainty reduction, i.e. the gain of utility the decision-maker can

hope to earn if he or she chooses to collect additional information in order

reduce uncertainty (i.e. to follow the decisional way d3)

• Non monetary criteria, distinct from the investment criteria that are used in

traditional project management

Theoretical basis of the 

reasoning
Decision theory Decision theory

(Theoretical) 

Perspective of making 

profits

The perspective of making profits theoretically depends on:

- The value of the uncertainty contained in the decisional situation

- And on the reliability of the observation tool

The perspective of making profits cannot be initially quantified since the

decision is based on non-monetary considerations.

Necessary conditions to 

be met in order to 

effectively generate 

profit

The possibility of effectively making profits depends on the decision-maker’s

capacity to manage and organize uncertainty reduction (with the appropriate

tools, processes, methods, capabilities, etc.)

The possibility of making profits will depend of whether or not the project passes

the later phases of the stage-stage process and is indeed reintroduced in the

‘exploitation-oriented’ entities of the firm. This cannot be guaranteed by a

systematic rule. In other words, the perspective of making profits is very

aleatory. (the risk of having the project killed in the later phases of the stage-gate

process is even quite high (Le Glatin, 2018 ; Le Glatin et al., 2019)

Management of 

uncertainty

Quantified uncertainty reduction:

The uncertainty is very rigorously managed and controlled, with a quantified 

technique 

A very lightened economic management. The quantified economic approach of

Model 0 is put aside

Management of the 

unknown

The unknown is out of reach for these models These models propose to handle the selection of highly innovative projects.

These projects might contain unknown, but might also only contain a very high

level of ‘basic uncertainty’ – the abovementioned works do not specify. To some

extent, they treat the uncertainty and the unknown indistinctly.

If the handled projects indeed contained unknown, these models treat the

unknown by circumventing it thanks to the use of non-monetary decision

criteria: these criteria enable to bring back the decisional situation to a situation

where decision theory applies again
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In the next subsection, we turn our attention to a second alternative model, which, instead of proposing to put 

aside the monetary criteria when dealing with investment decisions in the unknown, proposes to put aside the 

decision-theory-based framework and move to a design-theory-based paradigm. 

 

2.1.2 Model 2: leaving the decision-theory based reasoning and moving to a design-

theory based reasoning 

 

As mentioned in Section 1, decision theory is not suitable to handle the unknown because it only covers the 

update of one’s knowledge related to a fixed-size states-space and it does not manipulate newly-emerging 

states of the world, i.e. the enrichment of the states-space with new dimensions (Loch et al., 2006 ; Loch et al., 

2008). Decision-making in the unknown calls for re-designing, reshaping the states-space, by hypothesizing 

and assessing possible additional states of the world (Feduzi et Runde, 2014) or by designing new decisional 

alternatives or new states of the world (Le Masson et al., 2018). Recent progress in design theory can extend 

decision theory to the unknown (Le Masson et al., 2018): moving from a decision-theory-based reasoning to 

a design-based reasoning when it comes to make decisions in the unknown means that a decision problem in 

the unknown no longer consists in identifying the best choice among a set of possible alternatives, but in 

designing a new, better decision space, either by designing new decisions di (better than the already existing 

ones) or designing new states of the world (that will lead to reconsider the preference ranking of the decisions 

that can be possibly taken). In the case of the decisional situation represented in Figure 3, this means that the 

investment decision problem no longer consists in choosing between d1 and d2, but in designing new states of 

the world, and thus, a new decision space within which d1 (i.e. investing) will be the best (rational) alternative. 

Under a design perspective, the objectives of the “decision-space-design problem” can be phrased in a 

profitability-oriented fashion (i.e. objective = “designing new states of the world such that in the new decision-

space, d1 is the best decisional path in terms of profitability”). This suggests that theoretically, in the frame of 

an investment in the unknown, it is always possible to reach one’s profitability target without necessarily 

throwing one’s lot with chance, if one designs the judicious states of the world or the judicious decisions to 

this end.  

 

This design-theory-based prediction is a complete break with the traditional decision-theory-based view of 

profitability under uncertainty, i.e. with the idea that risk goes up and expected profitability collapses as the 

degree of uncertainty increases. This prediction is extremely counterintuitive in the first instance. A literal 

interpretation of it suggests an investment decision model where any investment project in the unknown can 

be made profitable by anyone who uses a design reasoning. While such a literal interpretation is absurd and 

unrealistic, we can envisage a sounder investment decision model in the unknown, where any investment could 

be made profitable, albeit subject to two conditions:  

(iii) the investment is allocated to a project which is suitable for the design of new decisional 

alternatives or new states of the world, i.e. to a project which contains unknown. This raises the 

question of the decision maker’s capacity to detect the unknown. In this respect, research works 
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dedicated to the design of value in the unknown highlight the importance of discussing the sources 

of the unknown, which need to be supported and managed with appropriate tools (Hooge, 2020 ; 

Hooge et Stasia, 2016) 

(iv) the decision-maker or other actors in charge of developing the project own the indispensable 

methods, tools, capabilities, processes, organization… to successfully design new states of the 

world or new decisions. This raises the question of the suitable techniques to explore the unknow. 

In this respect, works dedicated to the questions of building and managing value in the unknown 

(Hooge, 2020 ; Hooge et Stasia, 2016 ; Gillier et al., 2014), experimenting in the unknown (Gillier 

et Lenfle, 2018), designing generic technologies in the unknown (Hooge et al., 2016), etc. stress 

the importance of being capable to rigorously manage unknown exploration, thanks to dedicated 

organizations, managerial approaches, tools, evaluation frameworks  

Enriched with these two conditions, such an investment decision model seems more realistic. A parallel can 

be made with the entrepreneurial literature and the logic of opportunity creation which refers to a pursuit of a 

kind of entrepreneurial opportunities that are not ‘already existing and to be identified and exploited’ by 

entrepreneurs, but which entrepreneurs are going to create and develop through their own actions (e.g. 

Sarasvathy, 2007). Considered alone, i.e. literally interpreted, this theoretical concept could suggest that one 

can always create an interesting entrepreneurial opportunity from any situation, which would be absurd. But 

there exist works (Welter et al., 2016) which propose to associate the theoretical concept of opportunity 

creation with an action framework, by investigating and building the behavioral and cognitive models that 

reflect why and how some people create entrepreneurial opportunities. This boils down to attempting to specify 

the assumptions that underlie the logic of opportunity creation and define the boundary conditions for its 

existence. Similarly, (i) and (ii) could be considered as the assumptions that underlie a design-theory-based 

investment decision model.   

 

A decision-theory which predicts that one can aspire to make a lot of profits out of the unknown without having 

to gamble, provided one is capable of detecting the projects that contain unknown and provided one is capable 

of managing unknown exploration seems to intellectually make sense. So in this paper, we would like to test 

such a model, i.e. to look for empirical evidence. In order to make this model testable, we rephrase the 

conditions (i) and (ii) into assumptions (A1) and (A2): we assume that the possibility of effectively making 

profits in the unknown relies on the decision-maker’s capacity:  

- (A1) To establish a capability that systematically diagnoses, detects, identifies the project that contain 

unknown 

- (A2) To deploy capabilities, methodologies and managerial approaches enabling to rigorously explore 

and structure the unknown  

 

In addition to the hypothetical characteristics described by (A1) and (A2), we can contemplate a decisional 

model in the unknown which  
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- (A3) Would offer a quantified technique to assess the value of unknown exploration as rigorously as 

decision-theory based investment decision models assess the value of uncertainty reduction 

 

The last column of Table 2 summarizes the definition of this theoretical investment decision model in the 

unknown (which we call Model 2) and the assumptions it embeds.  

 

Table 2: Introduction of Model 2, an extension of Model 0 to the unknown? 

 

Provided the assumptions underlying Model 2 are met, it theoretically promises a way to yield systematic 

returns from investments in the unknown. In comparison with Model 1 (subsection 2.2.1, recalled in Table 2 

below) which selects projects with a lightened economic management approach and which does not guarantee 

that the highly uncertain selected projects will not be killed in the later phases of the stage gate process, Model 

2 is very attractive. However, at this stage, this is only theoretical. Therefore, the remainder of this article is 

dedicated to look for potential empirical evidence for this model.  

 

 

Model 0: 

Investment decision model based on decision theory

Model 1: 

Investment decision model based on lightened

economic criteria and enriched with new criteria

Model 2: 

Investment decision model based on the design of 

decisions in the unknown

Nature of the 

decision criteria

• Expected utility (or expected profitability, expected Net

Present Value, etc.)

• Value of uncertainty reduction, i.e. the gain of utility

the decision-maker can hope to earn if he or she

chooses to collect additional information in order

reduce uncertainty (i.e. to follow the decisional way d3)

Non monetary criteria, distinct from the investment

criteria that are used in traditional project management

The decision criteria include profitability. The set of

criteria does not need to be different from the one used to

assess less innovative, more conventional projects:

Expected utility (or expected profitability, expected Net

Present Value, etc.) & value of uncertainty reduction, as in

Model 0

In addition: Value of unknown exploration (A3)

Theoretical basis 

of the reasoning
Decision theory Decision theory Design theory

(Theoretical) 

Perspective of 

making profits

The perspective of making profits theoretically depends

on:

- The value of the uncertainty contained in the decisional

situation

- And on the reliability of the observation tool

The perspective of making profits cannot be initially

quantified since the decision is based on non-monetary

considerations.

Design theory prediction:

Theoretically, in the frame of an investment in the

unknown, it is always possible to reach one’s profitability

target, provided one designs the suitable states of the

world or the suitable decisions to this end. In other words,

it seems theoretically possible to aspire for making a lot of

profitability in the unknown, without necessarily throwing

one’s lot with chance.

Necessary 

conditions to be 

met in order to 

effectively 

generate profit

The possibility of effectively making profits depends on

the decision-maker’s capacity to manage and organize

uncertainty reduction (with the appropriate tools,

processes, methods, capabilities, etc.)

The possibility of making profits will depend of whether

or not the project passes the later phases of the stage-stage

process and is indeed reintroduced in the ‘exploitation-

oriented’ entities of the firm. This cannot be guaranteed by

a systematic rule. In other words, the perspective of

making profits is very aleatory. (the risk of having the

project killed in the later phases of the stage-gate process

is even quite high (Le Glatin, 2018 ; Le Glatin et al.,

2019)

The possibility of effectively making profits depends on 

the decision-maker’s capacity to

- (A1) To establish a capability that systematically

diagnoses, detects, identifies the project that contain

unknown

- (A2) To deploy capabilities, methodologies and

managerial approaches enabling to rigorously

explore and structure the unknown

Management of 

uncertainty

Quantified uncertainty reduction:

The uncertainty is very rigorously managed and 

controlled, with a quantified technique 

A very lightened economic management. The quantified

economic approach of Model 0 is put aside

The uncertainty is rigorously managed and controlled,

with a quantified technique (which are the same as in

model 0*) (A3’)

* Model 2 is supposed to be an extension of Model 0, and

thus keep the properties of Model 0 under uncertainty (Le

Masson et al., 2018)

Management of 

the unknown

The unknown is out of reach for these models These models propose to handle the selection of highly

innovative projects. These projects might contain

unknown, but might also only contain a very high level of

‘basic uncertainty’ – the abovementioned works do not

specify. To some extent, they treat the uncertainty and the

unknown indistinctly.

If the handled projects indeed contained unknown, these

models treat the unknown by circumventing it thanks to

the use of non-monetary decision criteria: these criteria

enable to bring back the decisional situation to a situation

where decision theory applies again

The unknown is rigorously managed and controlled,

with a quantified technique (A3)

(that enables to assess the value of unknown exploration

as rigorously as model 0 enables to assess the value of

uncertainty reduction)
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2.3 Research questions 

 

Our literature review has led us to the draw the outlines of a theoretical investment decision model (Model 2, 

defined in the last column of Table 1) which predicts that one can aspire to make a lot of profits out of the 

unknown without having to gamble, subject to the decision-maker’s capacity:  

- (A1) To establish a capability that systematically diagnoses, detects, identifies the projects that contain 

unknown 

- (A2) To deploy capabilities, methodologies and managerial approaches enabling to rigorously explore 

and structure the unknown  

 

Besides, we have made the assumption that: 

- (A3) Model 2 could also incorporate a quantified technique to rigorously assess the value of unknown 

exploration, in the same fashion as decision-theory based investment decision models rigorously 

assess the value of uncertainty reduction 

 

In what follows, we would like to investigate whether we could find some empirical evidence for Model 2. 

With its remarkable profits, Airbus AIC’s portfolio of incubation and acceleration projects (briefly presented 

in Section 1) seems to be a good candidate to provide empirical evidence, because it contradicts the widely 

acknowledged idea that the more uncertain a project is, the lower the probability of making it profitable. More 

specifically: 

(i) The AIC claims to select projects that address difficult, highly complex and often long-lasting issues: 

these projects are perceived as very risky and undesirable economically-speaking (incomputable 

profitability assessment or “negative” profitability assessment). The traditional organizations of Airbus 

have chosen not to invest in these projects. Had they been, it is highly improbable that they would have 

been successful and profitable: “They would have generated nothing but frustration and demobilization. 

Nothing would have come out” according to the AIC Innovation Leader who heads the portfolio. In 

brief, this portfolio only selects highly uncertain projects rejected by the investment decision-making 

techniques used by traditional uncertainty-reducing organizations. And if the AIC detects ‘easy, little-

uncertain projects’ that traditional organizations would erroneously have rejected with an excessive risk 

aversion attitude, it rejects them as well (and redirects them to traditional organizations), because its 

goal is to help innovators boost genuinely disruptive ideas which will “change Airbus from the inside”. 

(ii) But surprisingly enough, in spite of the high level of uncertainty of the selected projects, this portfolio 

demonstrates a particularly performing profitability dynamic: an assessment of the potential of savings 

and benefits generated by the incubated or accelerated projects revealed that for 1 euro invested in the 

portfolio in 2018, 6 euros are expected to be given back to Airbus, due to the follow-up that traditional 

organizations have given to several projects after incubation / acceleration. 

In sum, this portfolio selects projects that are highly uncertain and due to be all but profitable, and turns them 

into profitable projects.  
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It is undeniable that the perspective of generating additional value, additional utility by reducing uncertainty 

(i.e. by following d3 in Figure 1) can justify investments in projects which initially appear not to be meet the 

required profitability criteria (for example, in the form of pre-investment trials). However, the value one can 

expect to generate by reducing uncertainty often remains moderate (of the order of a variance reduction, of a 

noise reduction). In Airbus case (and we will explain it in more details in subsection 3.1), the projects initially 

seemed so far from the required profitability criterion that we have the intuition that even the greatest possible 

expected utility gain associated with d3 would have been insufficient to meet this criteria. So the investments 

of AIC are puzzling with respect to decision theory, because it seems unlikely that decision theory could have 

recommended to follow d3, i.e. the launch of pre-investment trials in such projects: it seems that the decision-

makers went against the recommendations of decision theory. Furthermore, the profitability of the portfolio 

(the x6 rate of return) is puzzling, because it seems unlikely that such dramatic returns can be explained by 

uncertainty reduction, since again, the utility gains achievable thanks to uncertainty reduction often remain 

moderate.  

Thus, we have the intuition that Airbus’ AIC’s portfolio of incubation and acceleration projects might fall out 

of the decision theoretic framework. It might exemplify an investment decision-making case involving 

investments in the unknown, and falling into the design theoretic framework. For these reasons, Airbus’ AIC 

portfolio of incubation and acceleration projects seems to be a good potential candidate to provide empirical 

evidence for Model 2.  

 

If we want to test the existence of Model 2 in the real world the test of the validity of A1, A2 and A3 with 

Airbus case, we need a two-step approach. Firstly, we need to verify the intuition that this portfolio is indeed 

appropriate to provide insights regarding design-theory based investment decision models in the unknown. To 

that end, we need to answer the following research question: 

 

RQ1: Are the remarkable profits of Airbus portfolio of incubation and acceleration projects attributable to 

unknown exploration?  

 

Secondly, if the answer to RQ1 is affirmative, our next research question is:  

 

RQ2: How are project selection and unknown exploration carried out in the frame of Airbus portfolio? Do 

these practices confirm (A1), (A2) and (A3)? 

 

3 A twofold method: a statistical method and a single case study 

 

Internal documents, interviews and field observations have provided us with a large amount of data regarding 

Airbus’ AIC’s portfolio of incubation and acceleration projects. This fed a twofold methodology: a statistical 

method to address RQ1 and a single case study method to address RQ2. In subsection 3.1, we introduce the 
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quantitative elements which will enable us to describe the AIC’s portfolio in statistical terms, which will be 

key when we introduce our statistical method (based on Bayesian statistics) in subsection 3.2. Finally, in 

subsection 3.3, we describe our method for a single case study, according to the criteria of Goffin et al.’s 

(2019) Case Study Evaluation Template.  

 

3.1 A statistical method to address RQ1 

3.1.1 Presentation of the quantitative data which enable to Airbus portfolio of 

incubation and acceleration projects in statistical terms  

 

In what follows, we introduce the elements which describe the portfolio in quantitative terms and which will 

enable us to deploy our statistical method to address RQ1, i.e. to test whether the portfolio could contain 

unknown, beyond uncertainty. 

 

Based on the description of the beliefs of traditional organizations (Engineering ; Customer Services ; 

Manufacturing ; R&T…) regarding the profitability of the selected projects, the projects that enter the portfolio 

can be quantified by the following a priori subjective probabilities:  

- A 0.05 probability of being profitable 

- A 0.95 probability of being unprofitable 

These values are confirmed by the AIC Innovation Leader.  

 

- Portfolio performance between 2013 and 2018 

The AIC Innovation Leader has given us access to a document containing detailed information regarding the 

status and the performance of 55 projects that have been incubated or accelerated between 2013 and 2018. 

This document reveals that after incubation / acceleration:  

- 4 projects (i.e. 7% of the 55 incubated / accelerated projects) have been stopped, because inconclusive  

- 10 projects (i.e. 18% of the 55 incubated / accelerated projects) have been classified as stored, that is 

to say the results are considered as conclusive, with a potential which could be exploited later on by 

one traditional organization. But this is not on its current list of priorities 

- 41 of the incubated or accelerated projects (i.e. 75% of the 55 incubated / accelerated projects) have 

been found to be economically interesting (with ‘a potential for a business application’, in the AIC’s 

words) and have given rise to a subsequent project within a traditional organization (Engineering ; 

Customer Services ; Manufacturing ; R&T…)  

In other words, the AIC has discovered that among the 55 incubated or accelerated projects, 75% were 

potentially profitable. The organizations which had initially rejected these projects (and which would not have 

invested 1 euro in them) have reconsidered their decision and invested. These post-incubation / acceleration 

investments can be quantified by the following subjective probabilities (which are degrees of confidence for 

classical investments): 

- A 0.80 probability of being profitable 
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- A 0.20 probability of being unprofitable 

These values are confirmed by the AIC Innovation Leader. 

 

- Additional figures regarding the performance in 2018 

In 2018, the AIC has wished to assess its performance more precisely, in terms of profitability, by gathering 

information regarding the budgets that traditional organizations raise to pursue post-incubation or post-

acceleration projects.    

 

It has considered the 23 projects (11 acceleration projects and 12 incubation projects) which had been launched 

and completed in 2018. Before incubation or acceleration, traditional organizations would have invested 0 euro 

in these projects. In total, the AIC invested É euros in incubating / accelerating these projects. Then, the post-

incubation / acceleration outcomes have convinced traditional organizations to raise ¥ euros to give rise to 

subsequent projects. And the benefits associated by these projects represent at least 6. É euros for Airbus (a 

potential rate of return of x6 of AIC).  

 

Be it the shift in the beliefs of the traditional organizations or the x6 rate of return, these quantified information 

are quite striking. Our intuition is that they cannot result from a basic mechanism of uncertainty reduction. Or 

if they do, it must be an outstandingly performing uncertainty reduction mechanism. Indeed, uncertainty 

reduction generally allows improvements of the order of a reduction of variance, a reduction of noise, etc. So 

our assumption H1 is that the remarkable profits of Airbus portfolio are due to a more powerful mechanism, 

that is unknown exploration and structuration. We test this assumption in the subsection (4.1) dedicated to 

RQ1: Are the remarkable profits of Airbus portfolio of incubation and acceleration projects attributable to 

unknown exploration and structuration? To do so, we use the statistical method described in the following 

subsection.  

 

3.1.2 Description of the statistical method 

 

Our assumption H1 is that the remarkable profits of Airbus portfolio are due to a more powerful 

mechanism than uncertainty reduction, that is unknown exploration and structuration. 

 

We will test H1 by statistically testing whether the dramatic returns and the shift in beliefs observed in the case 

of Airbus portfolio can be explained by decision theory. H1 will be validated if we statistically prove that the 

quantitative values which describe Airbus case are inconsistent with decision theory, since the unknown is 

precisely defined as the realm where decision theory no longer applies (Loch et al., 2006 ; Le Masson et al., 

2018),. 
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In Figure 3 below, we have represented in the classical decision-theoretic framework the statistical data 

introduced in subsection 3.1. We will test H1 by testing whether the data featured in Figure 3 are consistent 

with the equations that traditionally underlie a decision theoretic framework.  

 

Figure 3. Representation of Airbus case in a traditional decision-theoretic framework 

 

The values featured in Figure 3 could fit into a decision-theory-based framework in two ways 

- Either the shift from a priori to a posteriori beliefs can be explained as (i) the results from chance 

(decisional-way d1, i.e. a gambling attitude). In subsection 4.1.1, we will compute the probability that 

such a scenario can indeed explain Airbus case in order to test whether this scenario is plausible. 

- Or the shift from a priori to a posteriori beliefs can be interpreted as the results from an outstandingly 

performing capacity to reduce uncertainty, through d3 (pre-investment trials). In this case, there must 

exist a quadruplet of probabilities {P(U1|E1 ) , P(U2|E2), P(U1|E2 ) , P(U2|E1)} that fits in the above 

decision-theory based framework (i.e. that respect the Bayesian updating formula) and that accounts 

for the represented shift from a priori to a posteriori beliefs. In subsection 4.1.2, we compute and 

discuss the possible Bayesian values for {P(U1|E1 ) , P(U2|E2) , P(U1|E2 ) , P(U2|E1)} in order to test 

whether this scenario is plausible.  

 

If neither the (i) ‘gambling scenario’ nor the (ii) ‘outstandingly performing uncertainty reduction mechanism’ 

scenario are suitable to explain the outcomes of the AIC project portfolio, this will mean that decision theory 
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Figure 3. Representation of Airbus case in a decision-theoretic frame 
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If the profitability of Airbus portfolio of incubation and acceleration projects can be attributed to uncertainty reduction (i.e. if H1 is true), there exists a quadruplet {P(U1|E1 ) , P(U2|E2), 

P(E1|U1 ), P(E2|U2 )} that fits in the above decision-theory based framework and that accounts for the represented shift from a priori to a posteriori beliefs.

In order to test H1, we will try to compute the possible value for {P(U1|E1 ) , P(U2|E2), P(E1|U1 ), P(E2|U2 )} in subsection 4.1. 

A posteriori utility values in 

2018

The total costs invested in post-

incubations / accelerations

projects by traditional

organizations and the total
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cannot account for what happened this case and that unknown underlies the values featured in Figure 3. On 

the one hand, this would imply an affirmative answer to RQ1. The outcomes of the portfolio would be 

attributable to unknown exploration. And the traditional ‘uncertainty reduction decisional way’ d3 in Figure 3 

could be renamed ‘unknown exploration decisional way’. On the other hand, if the answer to RQ1 proves 

affirmative, an explanatory theoretical framework is still missing for this Airbus case (since decision theory 

does not explain it). Design theory, which extends decision theory to the unknown (Le Masson et al., 2018) is 

a very good candidate theoretical framework which could account for what happened in Airbus case. So we 

make the assumption H2 that Airbus portfolio of incubation and acceleration projects could fall into a 

design-theory based investment decision model and that Model 2 could be this very model. We test this 

assumption in subsection (4.2) dedicated to RQ2: How are project selection and unknown exploration carried 

out in the frame of Airbus portfolio? Do these practices confirm (A1), (A2) and (A3)? 

 

3.2 A single-case study to address RQ2 

 

In order to address RQ2, we have decided to carry out a single case study. In what follows, we describe our 

method, according to the criteria of Goffin et al.’s (2019) Case Study Evaluation Template.  

 

3.2.1 Theoretical foundation and theoretical sampling 

 

To our best knowledge, we have encountered no innovation entity which compute its profitability as the AIC 

does. In general, innovation entities claim that they render non-monetary ‘primary’ outcomes (skills, 

capabilities…) that will generate monetary returns later on, as secondary outcomes. This makes the AIC’s case 

appropriate for a single case study research. 

 

Secondly, if H1 is true, we are in the an exception, an anomaly with respect to decision-theory-based 

uncertainty reduction. And we are in the face of a case which has no explanatory theoretical framework.  

Design theory, which extends decision theory to the unknown (Le Masson et al., 2018) could potentially take 

over decision theory as an explanatory framework in Airbus case. And design-theory-based Model 2 could 

be the very theoretical framework that explains what happened in Airbus case (H2). In order to test H2, 

carrying out a single-case study (Siggelkow, 2007) seems particularly appropriate.  

 

3.2.2 Data sources, collection and triangulation 

 

Airbus’ AIC department gave us access to a rich base of internal documents (detailed in Table 3). These 

documents could be accessed thanks to the first author’s status of Airbus employee at the time of the study. 

These documents are also those which provided us with most of the figures involved in our statistical study. 

With respect to RQ2, they provided us with a first understanding regarding how the AIC handles the unknown. 
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On this basis, we prepared semi-structured interviews with various actors involved in the AIC and the projects 

of the portfolio. The profile of the intervieewes was the following: 

- The AIC Innovation Leader who heads the selection process and follows the progress of each project, 

namely in terms of value creation. The AIC Innovation leader is the fourth author of this paper 

- Four project members who could testify about the incubation / acceleration of their project. This 

sample of intervieews was constituted in the framework of discussions with the AIC Innovation 

Leader: the objective was to constitute a sample that would give us an overview of the different forms 

of learnings that occurred in the frame of the portfolio. 

- Three coaches in charge of the methodological support offered to the incubated / accelerated projects. 

This methodological offer is part of a ‘Methodological package’ which was co-developed by Airbus 

Emerging Technologies and Concepts department (which Airbus AIC reports to) and AirBusiness 

Academy (which is a learning centre for Airbus and its community of customers, suppliers and partners 

worldwide). These coaches are employees from AirBusiness Academy and are also involved in the 

innovation cells of other companies in the aerospace industry 

- The person from Airbus coaching department, in charge of providing support to the projects regarding 

the ecocomic evaluation aspects 

We had also the opportunity to exchange with these people (and other people related to the AIC) in informal 

meetings and discussions.  

 

Table 3. Summary of the data sources 

 

3.2.3 Data interpretation 

 

We structured the gathered data into first-order concepts, second-order themes and aggregate dimensions 

according to Gioia et al.’s, (2013) methodology. Then, we asked whether this data structure was consistent 

with A1 and A2.57   

                                                
 
57 In order to test A3, we come back to our statistical method 

Internal documents Interviews Observations

Documents internal to the AIC:

• The excel file which records the progress of each individual project (in

terms of economic value, maturity, prototyping progress, etc.) and which

is continuously kept up to date by the AIC innovation leader

• The AIC evaluation of the year 2018 (critical summary of its way of

working, its achievements, its economic performance, its perspectives for

2019)

• The Mission Letters for each individual project joining the portfolio

• Projects final presentations summarizing the outcomes of the incubation /

acceleration process and presented to the members of the selection board

AIC’s documents for communication within Airbus and outside Airbus

• Brochures, communication documents (toward Airbus employees) which

present the AIC and the portfolio, the incubation / acceleration, its

resources, its offers, its performance

• Minutes of roundtables presenting the AIC in external events

Between mid-February and mid-June 2019:

• 4 one-hour interviews with the AIC Innovation

Leader (+ additional informal discussions)

• 3 one-hour interviews with incubation /

acceleration project owners (responsible for 3

different projects)

• 2 one-hour interviews with the coaches

responsible for the methodological support

offered to the project (+ additional informal

discussions)

Between mid-February and October 2019:

• Informal discussions with people (often the

interviewees) involved in the AIC

October 2019

• Attendance of an ‘Innovation Event’ organized

by the AIC.

- Co-facilitation of a workshop dedicated to ‘the

creation of value with prototyping’

- Informal discussion with project members who

presented the outcomes of their incubation /

acceleration project in a marketplace format

December 2019

• Attendance of a AIC monthly meeting where

candidates pitch their ideas and where

technology watch information are shared
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3.2.4 Review and validation of evidence 

 

The progress of the study was paced by steering committees attended by the four authors and during which the 

results were presented to managers from Airbus interested in the more general topic of economic evaluation 

for innovative design projects. 

 

A first version of this paper, which included a first version of this case study, was presented at IPDM in June 

2019. In addition, in December 2019, the study was presented to a meeting gathering the members of the AIC, 

which enabled to collect additional feedback from the field and make adjustments. 

 

 

4 Results 

4.1 Testing whether decision-theory provides an explanatory framework for Airbus case 

4.1.1 Testing whether the dramatic returns and the shift in beliefs observed in the 

frame of Airbus portfolio can be attributed to chance 

 

If the dramatic returns and the shift in beliefs result from 55 random draws in the frame of d1, the probability 

of observing 75% of profitable projects (i.e. 41 projects) out of 55 investments is cdde(f. 0.05e( . 0.95(e ≈ 

9.7.10be*.  

 

The p-value associated with such a scenario, i.e. the probability of having randomly drawn 41 or more 

profitable projects is 

1_µoOíÑ = ∂ ∑55P ∏ 0.05
2 . 0.95ddb2 ≈	9.8.10be*

dd

25e(
 

 

Such a scenario is highly improbable. We can eliminate this theoretical explanation. 

 

4.1.2 Testing whether the dramatic returns and the shift in beliefs observed in the 

frame of Airbus portfolio can be attributed to uncertainty reduction 

 

In what follows: 

π(Ç2) denotes to the a priori probabilities or beliefs. 

π(∫2) denotes to the probabilities of the observations, when collecting samples of additional information that 

are intended to reduce uncertainty.  

πcÇ2 	|	∫=f denotes to a posteriori probabilities 
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πc∫2 	|	Ç=f denotes to the reliability of the observation tool (i.e. to the probability that when the true state of 

the world is Ç=, the observation tool indeed predicts Ç= by saying that it “sees” ∫=. 
 

The equations that account for uncertainty reduction are the following:  

π(∫2) = 	 ∑ π(∫2|Ç== ). π(Ç=)	 (1) 

πcÇ2 	|	∫=f = 	 ºcΩàæøv).º(øv)ºcΩàf 	 (2) 

 

Coming from Bayesian statistics, they describe how the observations ∫2 turn the a priori probabilities π(Ç2) 
into a posteriori, updated and more certain probabilities πcÇ2	|	∫=f. In Airbus case:  

π(Ç() = 0.05 ; π(Ç*) = 0.95 ; 

π(∫() = 0.75 ; π(∫*) = 0.25 ;  

π(Ç(	|	∫() = π(Ç*	|	∫*) = 0.80	; π(Ç(	|	∫*) = π(Ç*	|	∫() = 0.20 

 

If Airbus case can be explained by decision-theoretic uncertainty reduction, there exists a quadruplet of 

probabilities {P(U1|E1 ) , P(U2|E2), P(U1|E2 ) , P(U2|E1)} that fits in the above decision-theory based framework 

and that accounts for the represented shift from a priori to a posteriori beliefs. 

Given that  

 

π(∫(|Ç*) = 1 − π(∫*|Ç*) and π(∫*|Ç() = 1 − π(∫(|Ç(), we actually only need to compute π(∫(|Ç() and 

π(∫*|Ç*). 
 

From (1) (and (2)), we can obtain the following relationship between π(∫*|Ç*) and π(∫(|Ç()	: 
 

π(∫*|Ç*) = ¿.*
¿.¡d + 	

¿.¿d
¿.¡d . π(∫(|Ç()  (3) 

  

Equation (3) already allows us to discuss the values that π(∫(|Ç() and π(∫*|Ç*) can take. Indeed, given that 

0	 ≤ π(∫(|Ç() ≤ 1, equation (3) says that π(∫*|Ç*) is such that 0. 21 ≤ π(∫*|Ç*) ≤ 0.26. We can already 

note that an observation tool which is such that π(∫*|Ç*) ≤ 0.26 is very unusual. It means that this tool is 

very unreliable when it comes to detect unprofitable projects.  

 

Then, we can try to identify the values of π(∫(|Ç() and π(∫*|Ç*) that enable to obtain π(Ç(	|	∫() =
π(Ç*	|	∫*) = 0.80. 

 

In the case of π(Ç(	|	∫(), equation (2) implies that 

π(∫(|Ç() = 	 ¿.¬d¿.¿d . π(Ç(|∫(). This means that for 0	 ≤ π(∫(|Ç() ≤ 1, π(Ç(|∫() is such that 0 ≤ π(Ç(|∫() ≤
0.07. In other words, it is impossible that π(Ç(|∫() reaches 0.80. 
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In the system of Bayesian equations (1), (2), it is impossible to find a solution couple {	π(∫(|Ç() ; π(∫*|Ç*)} 
such that 

π(Ç() = 0.05 ; π(Ç*) = 0.95 ; 

π(∫() = 0.75 ; π(∫*) = 0.25 ;  

π(Ç(	|	∫() = π(Ç*	|	∫*) = 0.80	; π(Ç(	|	∫*) = π(Ç*	|	∫() = 0.20 

 

So the remarkable outcomes of Airbus portfolio of incubation and acceleration projects cannot be attributed to 

any mechanism of uncertainty reduction, even an outstandingly performing one.  

 

Answer to Research Question 1 

Our statistical tests reveal that neither gambling nor uncertainty reduction can explain what happened in 

Airbus’ portfolio of incubation and acceleration projects. Decision theory is in contraction with the quantitative 

elements which describe the case. So Airbus case falls beyond the domain of applicability of decision theory. 

This suggests that unknown underlies the value featured in Figure 3 and that in Figure 3, d3 could be renamed 

the ‘unknown exploration’ decisional way. Our answer to RQ1 is affirmative: the outstanding profitability of 

Airbus portfolio of acceleration and incubation projects can be attributed to unknown exploration and 

structuration.  

 

After having shown that, we still need to find an explanatory theoretical framework for Airbus case (since 

decision theory does not apply). Design theory, which can extend decision theory to the unknown (Le Masson 

et al., 2018) is a good candidate theoretical framework which could account for what happened. So we make 

the assumption H2 that Airbus portfolio of incubation and acceleration projects could fall into a design-

theoretic investment decision model and that the theoretical investment decision model we have hypothesized 

at the end of our literature review (i.e. Model 2) could be this very model. We test this assumption in the 

subsection (4.2) dedicated to RQ2: How are project selection and unknown exploration carried out in the 

frame of Airbus portfolio? Do these practices confirm (A1), (A2) and (A3)? 

 

In Subsection 4.2, we would like to test whether the real-world design-theory based investment decision model 

that underlies Airbus portfolio of projects is consistent with Model 2. In particular, we will test whether the 

AIC 

- has established a capability that systematically diagnoses, detects, identifies the projects that contain 

unknown (A1) 

- has deployed capabilities, methodologies and managerial approaches enabling to rigorously explore 

and structure the unknown (A2) 

To that end, we use a case study. 

 

Besides, we will discuss whether Airbus case confirms the possibility of developing a quantified technique to 

rigorously assess the value of unknown exploration, in the same fashion as decision-theory based investment 



 

 23 

decision models rigorously assess the value of uncertainty reduction (A3). To that end, we will come back to 

our statistical method in Subsection 4.3. 

 

4.2 Addressing RQ2 with an single-case study 

 

In order to address RQ2, we structured the data describing the AIC functioning according to Gioia et al.’s 

(2013) methodology. The structured representation of the data is given in Figure 4 below. In what follows, we 

detail our findings regarding the AIC’s mission (subsection 4.2.1), regarding how the AIC selects (subsection 

4.2.2) and manages (subsection 4.2.3) projects.  

 

 

Figure 4. Gathered data structured according to Gioia et al. (2013) method 

 

4.2.1 The AIC’s mission  

 

Over the recent years, the commercial aircraft industry has been increasingly concerned with challenges related 

to industrial ramp-up, mass production, etc. In this context driven by time, costs, operational performance and 

profitability, the eventual disruptive ideas of Airbus collaborators are perceived as too risky – and traditional 

AIC’s mission

• Providing idea owners with means to reveal and boost their innovation 

potential. (Idea owners considered as ‘entrepreneurs’ in need of means to 

‘shape their ideas’)

• Conveying disruptive innovation within Airbus, by selecting (and funding, 

supporting, guide) the ideas that will change Airbus from inside

Twofold selection process

• Short-listing (by innovation catalysts)

• Final selection after pitch & Q&A (Innovation board)

A clear raison-d’être oriented toward the pursuit of 

disruptive ideas, which have a potential to be 

turned into ’valuable business’

An informed, rigorous and very selective decision 

by skilled people with respect to the innovation 

questions

Pitch preparation phase supported by AirBusiness Academy coaches and 

innovation catalysts

Clear and strict selection criteria: strategic alignment, not done elsewhere, 

prototyping idea, transdisciplinarity…

Mapping of what is known, diagnosis of the sources 

unknown (in the sense of Hooge and Stasia (2016))

AIC provides the incubated / accelerated projects with: a budget, a place 

(Protospace) equipped with prototyping means ; methodological trainings & 

support ; access of a wide vast quantity of knowledge within Airbus (costing, 

documentation centre…), a steering committee with a strong sponsoring, a 

network within and outside Airbus…

AIC provides projects with a strong support  

(financial support, methodological support, 

technical, knowledge, competences)

Incubation / acceleration objectives (featured in the mission letter):

• A proof of feasibility, i.e. convincing evidence of the potential of the 

technology, with a prototype that  must respond to the “exam question”. 

The prototype will be presented to engineering top managers / program 

chief engineer team

• A proof of desirability, i.e. evidence of the value for customers or for Airbus

• A proof of viability, in terms of business aspects, mainly from Airbus 

perspective

AIC closely follows the progression of the 

exploration and ensures that value is being built

Objective to select projects 

that contain unknown

An unknown-sensing 

capability

A rigorously framed and 

supported exploration of 

the unknown

First order concepts Second order themes Aggregate dimensions

The team is mandated to explore the unknown

(Parallel with the design of ‘Need-Solution pairs’ 

(von Krogh and von Hippel (2016))

AIC Innovation leader created 30 indicators assessing the progress of the 

project (maturity, intensity and the quality of the prototyping effort, potential in 

terms of revenues,  etc.)
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organizations (Engineering, Manufacturing, Customer Services, R&T…) are unlikely to allocate them the 

resources for being tested and developed. In the face of this, the role of the AIC is too ensure that Airbus 

overall portfolio of projects does not get too unbalanced toward incremental innovation. It aims at providing 

‘fresh air for disruptive innovation’. 

Its mission is to detect the disruptive ideas which have ‘a promising innovation potential, and to provide their 

owners with resources and facilities to ‘shape’ and accelerate their ideas. In particular, the AIC provides a 

budget, a place (the Protospace, a prototyping lab in Toulouse, which is part of a network of 10 other 

Protospaces located the different international sites of Airbus, and which gives access to a vast network of 

knowledge and competences within the Group) and a ‘guidance package’, co-developed by the AIC and 

AirBusiness Academy) which offers methods to frame the incubation / acceleration of the ideas. The AIC 2019 

brochure states that it aims at ‘revealing your full innovation potential’ and ‘help you shape your ideas’. In 

addition, the AIC seeks the ideas which are not only disruptive, but which also have ‘a potential to be turned 

into valuable business applications’ and which ‘will change Airbus from the inside’. Thus, the ideas that enter 

the AIC’s portfolio of incubation / acceleration projects also need to be aligned with Airbus strategy (this is 

one of the selection criteria, which will be detailed later on). These numerous constraints lead to a very low 

selection rate (36/1500 in 2018). 

 

4.2.2 Selection of the projects to be incubated or accelerated 

 

Selection process 

The AIC brochure describes a selection process involving two main steps. The first one is called 

‘Trendification’: it is a continuous phase of technology watch, both within Airbus (innovation events ; presence 

of local innovation catalysts in the competence centers) and outside Airbus (benchmark and scouting, trend 

analysis…). This phase enables to reach and identify potential applicants for an incubation or an acceleration 

project. During this phase, a first selection filter applies at the level of local innovation correspondents 

(innovation catalysts) who short-list the best candidate ideas within their competence center and take them up 

to the AIC. The AIC Innovation Leader notes that “the innovation catalysts are familiar with the innovation 

problematics and well-placed to assess the appropriateness of the topics for the portfolio”. 

 

The short-listed projects are invited to enter the second phase of the selection process which involves a pitch 

in front of a selection board (attended by top managers, (e.g. head of competence centers, as potential sponsors 

of the project). If the project successfully passes this step, the team will frame its project with the 

methodological support of AirBusiness Academy coaches, before receiving an official mission letter.  

 

Interestingly, a coach from AirBusiness Academy reports an additional phase which does not explicitly appear 

in this process: “We do not only provide methodological support once the project owners have pitched and 

been selected. We also help the teams prepare their pitch” 
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The pitch preparation phase 

In order to help the candidates maximize their chance of successfully passing the pitch, AirBusiness Academy 

coaches encourage them to gather all the knowledge that already exists (especially within Airbus) on their 

topic and to make a solid project definition based on what exists in the different competence centers. This is 

all the more so important as one important selection criterion, called ‘Not done elsewhere’, requires that any 

engineer, any expert, any department etc., who is already working on the candidate topic within Airbus joins 

the application project: if he or she is not onboard, the project will not be selected to be incubated or 

accelerated. AirBusiness Academy coaches also help the candidates demonstrate how the project is in line with 

the strategy of the Airbus, so that ‘strategy-oriented’ selection criteria. This can be interpreted as an effort to 

comprehensively map what is already known, what is uncertain, and doing so, start discussing the sources the 

unknown, as recommended by Hooge and Stasia (2016).  

 

The coach who first mentioned this phase to us intervenes in innovation cells in other firms, and that to her 

knowledge, this preparation phase is unique to Airbus. One reason is that it consumes resources: “Firms are 

not necessarily willing to dedicate so much means to their innovation cell. The level of resources that Airbus 

dedicates is quite exceptional […] The preparation effort facilitates project run and increases the likelihood 

of a successful outcome. It plays a key role in the performance of the portfolio.”. Our field observations show 

that the members of the board precisely aim at assessing the level of preparedness of the team. For instance, 

one question submitted to the applicant was: “Are you aware of this technology X which actually seems similar 

to what you propose? How is your proposition different?”. One attendant also remarked that “we rapidly 

detect those [the applications] which are not solid.”. 

 

Selection criteria 

All the interviewees from the AIC (innovation leaders, support team) stress that the selection process is 

“demanding” and “highly selective”. In 2018, the AIC selected 36 out of 1500 applicant projects. According 

to the AIC Innovation Leader, “We only select the very best ideas. This is decisive in the performance of the 

portfolio.”. 

 

The criteria for a project to be selected are clear and the applicants are informed of them. Besides, they are 

strictly enforced, as we detail below. The projects must necessarily be novel in the sense that what is proposed 

has ‘not been done elsewhere’, especially in Airbus. If an expert, an engineer, a team is working on a similar 

topic, he must join the candidate project. Otherwise the project will not be selected. In 2018, 100% of the 

selected projects met this criteria. All acceleration and most incubation projects must also be transdisciplinary 

(multi-competence-centers, multi-functional or multi-business-units). In 2018, 80% of the projects selected 

met this criteria. The tackled issue must be strategic or roadmap-oriented, because the AIC seeks topics which 

can lead to a business application. In 2018, 100% of the selected acceleration projects and 80% of the selected 

incubation projects met these criteria. The AIC selects the projects which propose to address complex, difficult 

and long-lasting problems, the solving of which would represent an important business potential. A project 
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selected in 2018 which related to a design change implemented at the level of one system illustrates it. The 

design change was particularly interesting, because it promised significant increases in aircraft performance. 

But it entailed that one essential subsystem could no longer be integrated on the system. The project owner 

explained that: “We had been trying conventional solutions for 2 years, and it didn’t work. We were at a limit 

of feasibility. We needed a brand new solution, both disruptive and feasible […] We have applied for a SPRINT 

[i.e. an acceleration project] proposing a very aggressive solution. A priori, our answers to the ‘exam 

questions’ were blurred. We could set no targets, especially in terms of potential costs. But our sponsors were 

ready to pay a lot, because the challenge was the achievement of the major change at the system level, which 

represents a genuine performance gain on existing aircraft ”  

 

The AIC selects projects which involve both a large knowledge gap and a large conceptual gap. He has the 

final say on the selection decision observes that “he favors non-consensual topics (i.e. the topics that are 

attributed heterogenous marks by the members of the board).” 

 

 

In summary, the AIC’s investment decisions are extremely documented, informed and structured. The 

pitch preparation phase can be interpreted as a mapping of what is known and a diagnosis of the 

unknown. During the selection process, the AIC mobilizes numerous stakeholders, numerous 

competences (innovation catalysts, top managers and high level sponsors, methodological coaches, 

experts etc.) and enforces clear and strict criteria in order to detect and select projects which are 

genuinely innovative and which have the potential to be turned into “real business applications”.  

 

All these elements support the assumption according to which the AIC has developed a kind of 

unknown-unveiling and unknown-sensing capability. This validates A1. 

 

 

4.2.3 Management of the selected projects 

 

Mission letter 

Once the project has been defined, the team receives a Mission Letter prepared by the Innovation Leader 

mandating it to: 

- Assess technical feasibility of the topic, by identifying risks and showstoppers: the team needs to 

determine the assumptions under which the investigated concept could be a working concept 

- Build a prototype enabling a convincing demonstration which will be presented to engineering top 

managers / program chief engineer team 

- Provide first business information: costs, savings, lead-time... 
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In terms of deliverable, the Innovation Leaders expects “A proof of feasibility, i.e. convincing evidence of the 

potential of the technology, a proof of desirability, i.e. evidence of the value for customers or for Airbus and a 

proof of viability, in terms of business aspects, mainly from Airbus perspective.” 

 

The mission letter recalls the issue that the team members have proposed to address during their pitch. But it 

neither specifies a pre-defined target, nor a well-define problem, as illustrates this quote from a project owner: 

“[The project was related to an industrial assembly sequence] Usually, we have a model which describes how 

the parts move with one another. According to this, we define hypothetical assembly sequences that we 

experiment. Here, we had no such model. The traditional way to address the problem was not valid.”  

Specifying the problem which the topic will eventually address(or re-specifying it, since the traditional 

problem is ill-defined) is part of the incubation / acceleration objectives.  

 

Besides, as mentioned above the team members are expected to explore the “feasibility, desirability and 

viability” of solution that they have proposed using the pitch. But they might need to explore beyond this 

solution. For instance, the team (mentioned in the previous subsection) who had proposed the ‘aggressive’ 

solution (in an attempt to integrate the subsystem of the system the design of which was changed) has found 

out after a week of acceleration that its idea would not work. In spite of that, it has re-oriented the project, 

tested alternative ways with 4 (less disruptive) prototypes which have generated important knowledge 

regarding technological bricks that make today the object of further investigations. The Innovation Leader 

considers this project as an exemplar acceleration.   

 

We can make a parallel with the design of “Need-Solution pairs” theorized by von Hippel and von Krogh 

(2016). 

 

A strong level of support during project run 

The selected projects start with a one-week methodological training, to learn C-K theory, Agile, Design 

thinking, Learn UX, … During the course of the project, team members benefit from the full availability of a 

coach from AirBusiness Academy. These latter support them with the methodological aspects.  

 

The AIC ensures that all the relevant existing knowledge is available to the project team. On the one hand, this 

is made possible thanks to the multidisciplinarity of the project (and by implication the multidisciplinarity of 

the team). On the other hand, one person from Airbus information center is dedicated full-time to take in charge 

any documentary research that the team would need in the frame of the project. Regular steering committees 

also enable the project to benefit from the view and the knowledge of the heads of the competence centers 

(which can help unblock some problems). Besides, one person from Airbus costing department provides 

support regarding the economic questions. One coach from Air Business Academy notes that such a level of 

support is “massive in comparison with what is done in the other firms”.   
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A strong level of monitoring during project run 

In terms of management, the innovation manager in charge of the portfolio requires a demanding reporting 

from the project team. In order to follow the creation of economic value, he keeps track of them with the use 

about more than 30 indicators (even 99 if we do not consider that some are mutually exclusive), which 

summarize the progress of the project, its maturity, which characterize the prototyping effort, the economic 

figures…58 

In summary, the AIC Leader stresses that “To drive innovation teams forward to disruption, a high level 

of sponsorship, technology, trend analysis, cost and impact assessment, have proved helpful.”. He considers 

that the projects pay off thanks to “the rigor we give them: a place, with prototyping resources, a 

training and a steering committee with a high level of sponsorship”. The projects are well equipped, 

supported (in terms of methods, tools, competences…) and rigorously managed (a high level of 

reporting) to investigate a topic that calls for an exploratory approach. This supports A2. 

 

4.2.4 Is it possible to assess the value of unknown exploration? (i.e. testing A3) 

 

With our statistical test in subsection 4.1.2, we have seen that the figures featured in Figure 3 are inconsistent 

with the Bayesian formula that account for uncertainty-reduction mechanisms.  

Thus, the decisional way d3 can by no means represent to an “uncertainty-reduction decisional way” which 

would describe the decision-makers’ decision to invest in a pre-investment trial in the perspective of reducing 

uncertainty. This paper supports the idea that d3 plausibly corresponds to an “unknown exploration way”.  

 

Interestingly, although the statistical values represented in Figure 3 do not respect the Bayesian equations, 

nothing prevents us from making the traditional expected utility calculation for the d1, d2 and d3 way with the 

decision theory-based formula. We remind the formula below. 

- expected utility associated with d1 (investing in the projects): 0.05×3.É −0.95.É	
- expected utility associated with d2 (rejecting the projects): 0 

- expected utility associated with d3 (investing in an incubation or acceleration):		
0.75. 	√oÉ{0.80 × 6. É − 0.20. ¥	; 0}  +	0.25. 	√oÉ{0.20 × 6. É − 0.80. ¥	; 0},  

 

                                                
 
58 It is interesting to note that these indicators include monetary indicators, which enable follow the creation of value 
during the course of the incubation / acceleration. And they also include scored / quasi-quantitative indicators (e.g. those 
related to the intensity and the quality of the prototyping effort) that the innovation manager in charge of the AIC has 
created. This creation of indicators reminds some works which we have classified as ‘Model 1’ and which call for 
enriching the sets of investment decision criteria with new criteria better adapted to radical innovation. We will discuss 
this aspect in subsection 5.2.2.  
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The real values of x and y cannot be disclosed for confidentiality issues. But if we suppose that the amount of 

the initial investment to incubate / accelerate the projects was 10 (i.e. É	 = 	10), and that the outcomes of the 

incubations / acceleration led to dedicate a three-time-larger investment to give rise to subsequent projects (i.e. 

¥	 = 	30), we can compute the following expected utilities: 

- expected utility associated with d1 = -8 

- expected utility associated with d2 = 0 

- expected utility associated with d3 = 27 > 	ƒoÉ(−8, 0) 
 

If the figures fitted with the Bayesian formula, +27 (i.e. the difference between 27 and ƒoÉ(−8, 0)) would 

correspond to the value of uncertainty reduction, i.e. to the value that the decision-maker can expect to earn if 

he or she decides to make a pre-investment trial before deciding on a final investment  

In Airbus case, we have demonstrated that the figures do not fit with the Bayesian formula and that we are 

under design theory. So these +27 can be seen as the value generated by unknown exploration during 

incubation / acceleration. 

 

This validates A3: under Model 2, it is possible to rigorously assess the value of unknown exploration, 

in the same fashion as decision-theory based investment decision models rigorously quantify the value 

of uncertainty reduction 

 

These +27 m€ correspond to the value generated by the AIC Group. They are lower than the +60 (i.e. x6 rate 

of return) published in the economic assessment of the year 2018: the reason is that the AIC economic 

assessment only qualitatively describes the residual uncertainty or risk that remain after incubation / 

acceleration. The +27 correspond to a ‘promise’ of benefits, provided the projects launched by traditional 

organizations effectively prove successful. Beyond this, Figure 3 quantitatively includes in the expected utility 

calculation the residual uncertainty that the traditional organizations which invest in the post-incubation / 

acceleration projects will have to reduce.  

 

It is interesting to note that the fact that there remains residual risk or uncertainty after incubation/acceleration 

is not a predicament, it is perfectly normal. Indeed, traditional organizations are supposed to be well-equipped 

to reduce and eliminate uncertainty. They own the methods to do so. What is of upmost importance is that the 

incubated / accelerated projects that are handed over to traditional organizations do not contain residual 

unknown (because the emergence of residual unknown during the course of the project would probably not be 

in line with what these organizations expect to do with the projects and because traditional organizations are 

unlikely to own the methods that handle the unknown). This highlights that when a project contains both 

unknown and uncertainty, the sequence of processing these two forms of lack of knowledge is crucial: one 

needs to first structure the unknown, before handing over the project to an organization that will reduce the 

remaining uncertainty in a second time. Doing it the other way round is due to be underperforming, because 

the initial uncertainty reduction effort will be undermined when the residual unknown emerges. Apart in a 
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‘corrective effort’, if a project has mistakenly been launched with an reducing uncertainty approach while it 

contained unknown, it does not make sense for a project manager to explore the unknown after having reduced 

uncertainty.  

 

 

5 Conclusion and discussion 

 

5.1 Summary of the contributions 

 

Answer to RQ1: Are the remarkable profits of Airbus portfolio of incubation and acceleration projects 

attributable to unknown exploration?  

 

With a statistical test, this article reveals that the projects selected by Airbus AIC for being incubated or 

accelerated contain unknown. During the incubation / acceleration process, the project do not go through an 

uncertainty reduction process. The unknown they contain is explored, structured. Statistically, the structuration 

of the unknown is the possible consistent explanation for the remarkable economic outcomes achieved by the 

portfolio: neither chance nor uncertainty reduction could have led to such outcomes.  

 

Answer to RQ2: How are project selection and unknown exploration carried out in the frame of Airbus 

portfolio? Do these practices confirm (A1), (A2) and (A3)? 

 

With an empirical method, we have found that 

- Airbus AIC owns an ‘unknown sensing capability’ (i.e. has established a kind of pass-unknown filter) 

which enables it to exclusively select projects that contain unknown within its incubation / acceleration 

portfolio. (A1 confirmed) 

- Airbus AIC has developed very rigorous methodological, managerial and organizational means to 

efficiently explore the unknown, which follows the generation of value during the incubation and 

acceleration phases. (A2 confirmed) 

- it is possible to rigorously assess the value of unknown exploration, in the same fashion as decision-

theory based investment decision models rigorously assess the value of uncertainty reduction (A3 

confirmed) 

 

These findings provide empirical evidence for the existence of a design-theory based investment decision 

model in the unknown which predicts that it is possible to intentionally design a lot profitability in the 

unknown, without gambling, provided one is able to detect the presence of the unknown and to efficiently 

manage this unknown.  
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In summary, our answers to (RQ1) and (RQ2) confirm that in the same fashion as there is a genuine rupture in 

what we deal with depending on whether we face basic uncertainty or unknown, there is a rupture in the 

profitability dynamic when one moves to the unknown. Under basic uncertainty, expected profitability obeys 

decision-theoretic rules: it decreases as the level of uncertainty increases. But in the unknown, expected 

profitability can follow a design-theory-based behavior: this paper provides empirical evidence which illustrate 

that it is possible to intentionally design a lot profitability in the unknown, provided one is able to detect the 

presence of the unknown and to efficiently manage this unknown.  

Consequently, investing in the unknown may be less risky and more profitable than investing under basic 

uncertainty, provided the decision-maker’s economic reasoning falls into a design-theory based investment 

decision model (Model 2), and meets its assumptions in terms of capacity to detect the unknown (A1) and 

capacity rigorously manage its exploration (A2). Within this model, the decision maker can even assess the 

value gained by structuring the unknown (A3).  

 

In what follows, subsection 5.2.1 discusses the counterintuitive nature of these findings. Then, subsection 5.2.2 

reconsiders and re-discusses the elements of distinction between the research works which we have 

characterized as fitting with a Model 1 investment decision model (i.e. investment decision model based on 

lightened economic management and enriched sets of decision criteria) and Model 2 (i.e. investment decision 

model based on design theory). Finally, subsection 5.2.3 notes that the findings of this paper represent a call 

the acquisition of design based methodologies enabling to detect and explore the unknown and their application 

over a range of situations even wider than seemingly unprofitable projects. This could be very beneficial to 

this firm which does so. But subsection 5.2.3 also concludes on a warning: the sole acquisition of design based 

methodologies such as the ones of the AIC can by no means be considered as a magic bullet which will enable 

to generate systematic returns out of the unknown. This paper has definitely not clarified all facets of the 

generation of economic value in the unknown, and there remain some part of ‘mystery’ in this regard.      

 

5.2 Discussion 

5.2.1 Is it really counterintuitive to say that investing in the unknown may be less 

risky and more profitable than investing under uncertainty? 

 

A design-theory based investment decision model (Model 2) which predicts that one can generate a lot of 

profits by investing in the unknown, without necessarily gambling and taking extreme risk is definitely very 

counterintuitive in terms of economic reasoning under uncertainty. However, in the light of prior works in the 

management literature and in the entrepreneurship literature, this finding may not be so surprising. 

 

Firstly, we can make a parallel between the counterintuitive nature of this finding and Kleinschmidt and 

Cooper (1991) observing in the conclusion of a study dedicated to the relationship between innovativeness and 

firm performance:  
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« The assumption that highly innovative products are too risky and have a negative performance is incorrect. 

On average, they do very well! ».  

 

In 1991, Kleinschmidt and Cooper characterized their finding as ‘provocative’ (and hoped that it would 

encourage managers to be less reluctant to dedicate efforts to radical innovation). 

 

Beyond noting that that the counter-intuitiveness of our findings reminds the provocativeness of Kleinschmidt 

and Cooper’s (1991) result, one can make the two following remarks:  

- in the light of numerous subsequent works, Kleinschmidt and Cooper’s (1991) is no longer 

‘provocative’ in the management literature in 2020. Firstly, it is widely acknowledged that in a 

contemporary context of intensive innovation, investing in the development of radical, disruptive 

innovations is essential for firms’ long-term profitability and survival (e.g. Veryzer, 1998 ; Chao et 

Kavadias, 2008). In order to prepare its future and its survival, any firm is willing to invest in radical 

innovation. Secondly, and most importantly, over the last decades, research works in innovation 

management have dismissed the view of innovation as the simple output of an ‘innovation black box’ 

and stress that innovation covers a set of well-organized collective activities, capacities of action which 

are essential to obtain successful innovative results (Le Masson et al., 2017): this means that a firm 

which develops successful, profitable radical innovations is not a lucky gambler, but an exemplary 

case of a firm which owns and is able to manage its innovation capabilities, capacities of innovative 

action, etc. The idea that it is possible to create a lot of value out of the unknown, provided one is able 

to detect and efficiently explore the unknown is consistent with this.  

- other studies (e.g. Cooper et al., 2001 ; Green et al., 1995, etc.) found out that radical innovation 

projects are more likely to fail or to be killed before completion, contrary to Cooper and 

Kleinschmidt’s (1992) observation. In the first instance, this seems contradictory with the idea that 

one can create a lot of value by investing in the unknown (all the more so as these studies often assume 

that the high rates of failure could be due the risky and long-term nature of radical innovation projects). 

However, the works in the management literature dedicated to the organization, the development, the 

exercise of the capacities of innovative action mentioned in the previous paragraph provide alternative 

explanations for why radical innovation projects often fail: they stress that innovation which calls for 

dedicated organizations, specific processes, specific capabilities. In other words, innovation is an 

activity in its own right and the structures (organizations, processes, competences…) which frame it 

need to be adapted to the specificities of radical innovation (e.g. Le Masson et al., 2017 ; Le Masson, 

2001). For instance, the development of radical innovation may involve ‘concept shifts’ (Seidel, 2007) 

not only in the first phases of the development process (as in the case of incremental innovation), but 

at any phase during the development process: thus, the development process of radical innovation 

needs to be adapted to this specificity of radical innovation, i.e. this involves designing a development 

process model that is specific to the radical innovation (Seidel, 2007). Engaging in the development 

of radical innovations with the traditional and ill-adapted processes is very likely to lead to failures. 
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Thus, the failures in radical innovation may be symptomatic of firms which do not own action 

capabilities that are specific and adapted to radical innovation (rather than to the risky nature of 

innovation). And this fact that the failure rate is high is not so surprising. Indeed, establishing such 

organizations, capabilities, processes… specific to radical innovation is also a demanding task and is 

not straightforward. Thus, many firms may not own them, which would explain a high rate of failure. 

Similarly, establishing a capability to detect (A1) and rigorously explore (A2) the unknown is 

demanding and not straightforward task, which would explain why cases as remarkable as the one of 

the AIC are scarce.  

 

 

5.2.2 Re-discussion of the elements that distinguish Model 1 investment decision 

model (i.e. investment decision model based on lightened economic 

management and enriched sets of decision criteria) and Model 2 (i.e. 

investment decision model based on design theory) 

 

When studying the practices enforced by the AIC to manage the exploration of the unknown, we have observed 

that the Innovation Leader in charge of the AIC rigorously tracks the progress of the incubated / accelerated 

projects. To that end, he has created numerous indicators (about 30) which enable follow the creation of value 

during the course of the incubation / acceleration. These indicators include monetary criteria. And they also 

include scored / quasi-quantitative indicators (e.g. related to the intensity and the quality of the prototyping 

effort ; to the maturity of the projects ; its multidisciplinarity ; its sponsorship, etc.).  

 

We can make a parallel with research works which call for creating distinct sets of indicators, depending on 

whether evaluates incremental or radical innovation projects (e.g. Schmidt et al., 2009). In our literature 

review, we have classified as ‘Model 1’ these works which call for enriching the sets of investment decision 

criteria with new criteria better adapted to radical innovation, and which put aside the monetary criteria during 

the early phases of a radical innovation project. And we have considered that they remain in a decision-

theoretic paradigm, since they circumvent the profitability criterion and aim at collecting information on other 

dimensions which can be more easily characterized in explicit terms and used to inform the investment 

decisions.  

 

The fact that Airbus AIC investment decision model falls into design-based investment decision models, but 

creates new decisional criteria as recommended by Model 1 invites to question whether Model 1 decision 

frameworks falls so neatly with the decision-theoretic framework. Indeed, it would be interesting investigate 

whether the creation of new indicators could be seen as a design practice and investigate the extent to which 

this could lead to re-discuss / refine Table 3. 
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5.2.3 A call for developing capacities of detecting and rigorously managing the 

unknown… but which should not be misunderstood 

 

A call for developing capacities of detecting and rigorously managing the unknown… and largely 

applying them… 

In this paper,  in the frame of Airbus case, we have seen that being able to sense, detect the unknown and 

rigorously explore it are essential capabilities which can enable to generate a lot of profitability out of an 

investment in the unknown.  

 

One can add that recent works in design theory have revealed that the occurrence of radical innovation is less 

rare than one might initially think: quite the contrary, in the case of several consumption goods (the 

smartphone, but also vacuum cleaner, the toothbrush, etc.), radical innovations are occurring on a permanent 

basis (El Qaoumi, 2016), . This phenomenon is called functional expansion. It means that products the 

evolution of which seemed manageable with basic incremental innovation efforts actually require more 

radical-innovation-oriented design efforts. In the first instance, this can look daunting for the engineering 

departments which develop these products. But the results of this paper which highlight the possibility to 

generate a lot of profitability by intentionally investing in the unknown, without necessarily gambling are news 

for these engineering departments. Indeed, they suggest that the unknown could be a promising resource for 

developing radical innovations without taking excessive financial risk.  And they suggest that when one 

considers the development of a radical innovation, there may be an interest engaging in genuine unknown 

which may be less risky than basic uncertainty, and more profitable. For the engineering departments interested 

in such a perspective, the findings of this paper represent a call to develop the capabilities of detecting a 

rigorously managing the unknown. 

 

More generally, we can ask whether the capability to detect the unknown and the capability to rigorously 

manage its exploration could also helpful under investment decision situations other than ‘investment decision 

situations in the unknown’. 

In the specific case of Airbus AIC, these capabilities have enabled to turn projects that were due to be all but 

profitable (and that were rejected by the traditional organizations of the Group) into profitable projects. In that, 

they have generated interesting returns on investment for Airbus. So the question may be asked whether these 

capabilities could help generate profits in other situations. The outstanding performance of the portfolio of 

incubation and acceleration project reveals that the AIC is able to detect ‘positive unknown’, i.e. the unknown 

which offers room to design states of the world which will positively contribute to the generation of 

profitability. Is it also possible that the AIC’s unknown sensing capability detects the presence of ‘negative 

unknown’, i.e. the voids which are likely to be filled by unwelcome states of the world that could emerge 

during the course of the project? Such a ‘negative-unknown capability’ could be very useful to check that the 

projects selected by traditional organizations do not contain undesirable unknowns, but only uncertainty to be 

reduced. Conversely, we could investigate whether the absence of an unknown-sensing step in traditional 
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organizations could explain the unexpected failure of projects that were launched (by traditional 

organizations), that were perceived as low-risk and were due to be successful, and which, against all odds, 

have failed. This could open interesting perspectives for further research. 

 

However, the acquisition of design-based methods can by no means be considered by firms as a magic 

bullet which enables them to generate systematic returns out of the unknown 

 

In Airbus AIC’s case, we have seen that the articulation of (i) an unknown-detection-capability and (ii) a 

capability to efficiently manage and explore the unknown has enabled to turn projects that were due to be all 

but profitable into profitable projects. However, many aspects about how this articulation generates value 

remain mysterious and call for further research.  

 

Firstly, as noted above, generating value by investing in the unknown does not simply require to detect the 

unknown, it requires to detect the ‘positive unknown’ which offers room for the design of opportunities and 

to reject ‘negative unknown’ which will involve unwelcome events. Then, even within the ‘positive unknown’ 

category, all forms of unknown do not have the same potential. Some will embed a higher potential of value 

creation through exploration than others. Some projects might only contain a low positive potential of 

unknown, the exploration of which will generate little additional value, while others may contain a higher 

positive potential of unknown. In the same fashion as decision theory characterizes the intensity of the 

uncertainty involved in a project, we could imagine a scale which could locate projects depending on how high 

their potential of ‘value generation through exploration’ is. Incorporating (implicitly or explicitly) such a scale 

in one’s unknown sensing capability may be very important in order to avoid the selection of projects with the 

potential of positive unknown that will be insufficient to reach the firm’s profitability criteria. So far, we know 

little regarding such a characterization / such an assessment of the unknown (positive) potential. Even in Airbus 

case, it remains quite mysterious.  

 

Secondly, from one team to another, from one firm to another, the capacity to apply design-based methods and 

efficiently explore the unknown may be more or less performing. The exploration of the same potential of 

positive unknown by two different teams, or firms will not necessarily generate the same value of unknown 

exploration.  

 

This suggests that there is a challenge for firms to be aware of the ‘power’ of their unknown exploration 

capabilities, and to be able to detect and select projects which contain a potential of positive unknown that is 

‘high enough’ with respect to this exploratory power, so that they will indeed create profitability when 

exploring the unknown.  

 

In other words, the articulation between (i) an unknown-detection-capability and (ii) a capability to efficiently 

manage and explore the unknown, which seems to enable the generation of profitability out of the unknown is 
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all but straightforward. Further modelling efforts and empirical research are necessary to understand more 

deeply and specify the conditions and the mechanisms which can allow this articulation to effectively render 

value.  
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