
HAL Id: tel-03419751
https://pastel.hal.science/tel-03419751v2

Submitted on 8 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strengthening fonctional validation of critical system by
using Model Checking : application to Instrumentation

and control systems in nuclear power plants
Yanjun Sun

To cite this version:
Yanjun Sun. Strengthening fonctional validation of critical system by using Model Checking : appli-
cation to Instrumentation and control systems in nuclear power plants. Software Engineering [cs.SE].
Télécom ParisTech, 2017. English. �NNT : 2017ENST0047�. �tel-03419751v2�

https://pastel.hal.science/tel-03419751v2
https://hal.archives-ouvertes.fr

T

H

È

S

E

2017-ENST-0047

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Yanjun SUN
le 9 octobre 2017

Strengthening fonctional validation of critical system by using
Model Checking : Application to

Instrumentation and Control systems in nuclear power plants

Directeur de thèse : Gérard MEMMI
Co-encadrement de la thèse : Sylvie VIGNES

Jury
Mme Lydie DU BOUSQUET, Professeur, Université Grenoble-Alpes, LIG Rapporteur
M. Alessandro FANTECHI, Professeur, Université de Florence, Italie Rapporteur
M. Luc COYETTE, Esterel technologies/ ANSYS Examinateur
M. Frédéric DAUMAS, Expert Sûreté de Fonctionnement CC, EDF R&D Examinateur
M. Elie NAJM, Professeur, Télécom ParisTech Président du jury
M. Gérard MEMMI, Professeur, Télécom ParisTech Directeur de thèse
Mme Sylvie VIGNES, Maître de conférence, Télécom ParisTech Directeur de thèse

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

Acknowledgment

I would like to thank my thesis supervisors Gérard Memmi and Sylvie Vignes for
their precious guidance and support during the past four years. I truly could not
have imagined having better mentors than them.

I would like to thank the members of my committee for their insightful com-
ments and encouragement: Lydie du Bousquet, Alessandro Fantechi and Elie Na-
jm.

My thanks also go to “CONNEXION” colleagues: Catherine Devic, Frédéric
Daumas, Maxime Neyret, Gaëtan Robin from EDF; Luc Coyette and François-
Xavier Dormoy from ESTEREL Technologies; Benjamin Blanc, Jean-Yves Pierron
from CEA; François Chastrette from ALL4Tech; Olivier Bruneau from CORYS.
This thesis is partially funded by the “CONNEXION” project. A special gratitude
to Adrien Champion for his valuable help and advice.

I am grateful to other colleagues at École Télécom ParisTech for their advice
and friendship. I am also grateful to school staff for their unfailing assistance.

Finally I would like to thank my parents, my parents-in-law, my husband and
my son, for their love and support.

2

Abstract

The verification and validation of safety-critical real-time system are subject to
stringent standards and certifications. Recent progress in model-based system en-
gineering should be applied to such systems since it allows early detection of defects
and formal verification techniques. The French project “CONNEXION” propos-
es an innovative process introducing multi-level model-based functional validation
supporting the nuclear I&C system development life cycle. Various modeling and
verification tools provided by project partners automate this process as much as
possible. “CONNEXION” also proposes a verification platform integrating vari-
ous models and tools, which allows closed-loop simulation of the control/command
system and its physical environment.

As part of the “CONNEXION” project, this thesis proposes a model-based
testing methodology dedicated to functional validation of safety-critical real-time
systems. The methodology focuses on an iterative use of a model checker to
generate coverage-based open-loop test sequence. We also propose a refinement
technique of progressively adding environment constraints during test generation.
The refinement is expected to support the passage from coverage-based open-loop
test sequence to functional requirements-based closed-loop test case. Our method-
ology also considers the state explosion problem of a model checker and proposes
a heuristic called hybrid verification which combines model checking and simu-
lation. Finally we design an information system of traceability to support the
co-simulation verification platform.

Part of our methodology has been tested on a “CONNEXION” case study, with
support of “CONNEXION” tools. To implement the complete methodology, in
particular hybrid verification, we have tested several academic model checking tools
for the synchronous data-flow language Lustre (choice of “CONNEXION”). We
review state of the art of Lustre regarding version evolution, related model checking
tools, translator of Lustre to other modeling languages, etc. For Lustre-based
models, implementation of the complete methodology may require an integration
of several model checking tools.

3

Résumé français

Introduction

Contrôle de processus industriels, contrôle de véhicules (automobiles, trains, avion-
s. . .), systèmes militaires de contrôle-commande..., voici quelques exemples de sys-
tèmes réactifs temps réel. Le terme “réactif” indique que le système interagit en
permanence avec son (éventuellement physique) environnement; nous réservons le
terme “temps réel” pour les systèmes réactifs soumis à des contraintes temporelles
externes, comme suggéré par Benveniste et Berry[26]. Les systèmes hautement
critiques en sûreté de fonctionnement sont en général des systèmes réactifs temps
réel, tels que le système de contrôle-commande dans une centrale nucléaire ou le
système de contrôle de vol de l’avion. Ce domaine d’application nécessite une con-
ception très soignée et une vérification ainsi qu’une validation très rigoureuses. La
sûreté de fonctionnement est une propriété cruciale ici car un simple défaut peut
produire des conséquences extrêmes et catastrophiques.

Historiquement, la conception des systèmes réactifs temps réel a longtemps
été la préoccupation des automaticiens. La théorie du contrôle automatique a été
appliquée à la conception des systèmes dont le comportement est attendu, d’une
manière dite “bottom-up”. Au niveau de Vérification et Validation (V&V), la
tâche ne peut être approchée que tardivement dans le cycle de développement.
Prototypes physiques des systèmes (ou sous-systèmes) sont connectés à la plate-
forme de simulation “Hardware-in-the-Loop (HIL)”, pour étudier le comportement
au niveau du système. Pour les système unitaires avec un nombre limité des vari-
ables d’entrée et de sortie, il est possible de les tester de manière exhaustive. Mais
le défi reste à effectuer une validation complète et systématique, étant donné le
grand nombre de situations pertinentes pour les systèmes complexes [160].

Au cours des décennies précédentes, des contributions majeures ont été faites
pour établir des approches dites “basées sur modèles” (model-based en anglais)
pour la description, la conception et l’analyse de systèmes [71]. Divers langages de
modélisation graphique ont été développés, afin de rendre les modèles plus visuels

4

et de faciliter la communication avec les parties prenantes. En 2007, l’INCOSE
(International Council on Systems Engineering) a lancé l’initiative “INCOSE MB-
SE”1, où MBSE indique l’Ingénierie dirigée par les modèles (Model-Based
Systems Engineering). Depuis les deux dernières décennies, divers méthodologies
et outils MBSE ont été développés. Un résumé peut être trouvé dans l’enquête
INCOSE portant sur les méthodologies MBSE [79].

Definition 1. Ingénierie des systèmes dirigée par les modèles (MBSE) est l’application
formalisée de la modélisation pour soutenir les exigences, la conception, l’analyse,
la vérification et validation du système, à partir de la phase de conception et tout
au long des phases de développement et de cycle de vie ultérieur [7].

En bref, MBSE donne aux modèles un rôle central dans le processus de l’ingénierie
de la spécification à la conception, l’intégration et la validation d’un système [79].
Les approches MBSE comprennent l’analyse comportementale, l’architecture du
système, la traçabilité des exigences, l’analyse de la performance, la simulation, les
tests, etc. Cela résulte en une transition de l’ingénierie système traditionnellemen-
t “documents-centriques” vers une approche “modèles-centriques” préconisée par
l’INCOSE[7]. De plus MBSE permet aux ingénieurs logiciels et systèmes de mieux
comprendre l’impact de changement de conception, de communiquer l’intention de
conception et d’analyser la conception d’un système avant le développement.

L’application des progrès récents en MBSE aux systèmes industriels réactifs
temps-réel et critique constitue le contexte de cette thèse. La vérification et la
validation de ces systèmes sont soumises à des normes strictes [9]. Des méthodes
formelles sont parfois nécessaires, au moins en ce qui concerne les propriétés haute-
ment critiques. La thèse s’appuie sur le cluster de projets R&D français “CON-
NEXION” dans le domaine nucléaire. À partir d’un cas d’étude industriel et d’un
ensemble préconisé d’outils, nous avons eu l’occasion d’examiner les difficultés
d’adopter les techniques modernes MBSE dans un contexte industriel critique. De
plus, MBSE permet de réaliser la V&V tôt dans les phases de conception et donc
de détecter des défauts au plus tôt possible. Cette approche est très rentable pour
les systèmes réactifs temps-réel et critiques puisque le coût des défauts trouvés
plus tard dans le système peut être extrêmement élevé.

1http://www.incose.org/ChaptersGroups/WorkingGroups/transformational/

mbse-initiative

5

http://www.incose.org/ChaptersGroups/WorkingGroups/transformational/ mbse-initiative
http://www.incose.org/ChaptersGroups/WorkingGroups/transformational/ mbse-initiative

Problématique

Depuis 2012, les principaux partenaires industriels de nucléaire français et a-
cadémiques ont initié un ambitieux programme de R&D appelé “CONNEXION”.
Regroupant plusieurs projets, “CONNEXION” [71] vise à améliorer le processus de
développement du système d’instrumentation et contrôle (I&C) dans des centrales
nucléaires. “CONNEXION” s’appuie sur les expertises existantes des opérateurs
dans l’industrie nucléaire française: EDF, ALSTOM, AREVA et RRCN; ainsi que
sur divers outils fournis par des partenaires: CEA, CORYS, ESTEREL Technolo-
gies et ALL4TEC.

Definition 2. Validation Fonctionnelle [9] est en fait la vérification des modèles
du système construits en amont de la conception par rapport aux exigences fonc-
tionnelles du système.

La conception du système I&C se décline en plusieurs phases. Les modèles de
plus en plus détaillés décrivant le comportement du système sont construits dans
les phases amont. La vérification des ces modèles par rapport aux exigences fonc-
tionnelles du système, définie comme Validation Fonctionnelle, est actuellement
réalisée d’une manière manuelle. Un objectif de “CONNEXION” est d’automatiser
autant que possible la validation fonctionnelle, en s’appuyant sur l’outillage fournie
par des partenaires.

Contribution de thèse

Dans le cadre du projet “CONNEXION”, notre travail de recherche s’appuie sur
différents outils fournis par des partenaires et traite un cas d’étude industriel du
système I&C. Nous proposons une méthodologie de test dirigée par les modèles
(Model-Based Testing ou MBT), pour renforcer la validation fonctionnelle des
modèles du système I&C. La méthodologie proposée n’est pas limitée au secteur
nucléaire et peut être généralisée et appliquée à d’autres systèmes réactifs temps-
réel et critiques en sûreté de fonctionnement.

Notre méthodologie repose principalement sur la technique dite “model check-
ing” [19]. Cette technique a été proposée initialement comme une méthode formelle
pour vérifier l’exactitude d’un modèle par rapport à un ensemble de propriétés.
L’outil qui automatise la technique model checking est un model checker. Dans
notre méthodologie, un model checker est utilisé de façon itérative, comme un outil
de génération de test. En effet la validation fonctionnelle du système I&C doit être
réalisée non seulement par rapport aux exigences fonctionnelles, mais également
par rapport aux critères de couverture structurelle comme MC/DC. Les objectifs

6

de test basés sur la couverture sont spécifiés comme des “propriétés de piège” [91]
pour forcer le model checker à générer des contre-exemples. Ces contre-exemples
sont ensuite élaborés en cas de test permettant améliorer la couverture structurelle.

Le système I&C est composé de deux sous systèmes: un système contrôle-
commande et un environnement physique. Le contrôle-commande est en réaction
permanente et en temps-réel avec l’environnement physique. En raison de leurs dif-
férentes caractéristiques, l’environnement et le contrôle-commande sont en général
spécifiés par deux différents langages de modélisation. Une solution est de re-
construire l’environnement avec le même langage de spécification du contrôle-
commande, tel que présenté dans [43]. Mais ce n’est pas le choix de “CONNEX-
ION”. Par conséquent, nous avons décidé d’utiliser des hypothèses sur l’environnement
pour raffiner la génération de test par model checking. Nous proposons une tech-
nique qui ajoute progressivement ces hypothèses pour obtenir un test de plus en
plus réaliste. Cela aide les experts du système à concevoir un test en boucle fermée
à partir d’un test en boucle ouverte. Nous donnons ci-dessous les définitions de
“boucle fermée” et “boucle ouverte”:

Definition 3. Boucle fermée: un test en boucle fermée est une co-exécution d’un
système réactif temps-réel avec son environnement physique.

Definition 4. Boucle ouverte: un test en boucle ouverte exécute seulement un
système réactif temps-réel, sans prendre en compte les réactions de son environ-
nement physique.

Enfin, dans notre méthodologie, nous considérons le “Time Out” d’un model
checker suite au problème d’explosion des états. Nous proposons une heuristique
dite vérification hybride qui combine simulation et model checking. Model check-
ing explore l’ensemble de l’espace d’état tandis que la vérification hybride n’explore
qu’un sous-ensemble de tous les états possibles. Nous proposons également les
éléments pour mettre en pratique la vérification hybride. Ces éléments compren-
nent:

• Chercher un model checker puissant et complet pour effectuer la vérification
hybride sur un modèle en Lustre. Nous passons en revue les différentes
versions du langage Lustre et nous avons testé plusieurs outils académiques
sur le cas d’étude “CONNEXION”.

• Nous avons également considéré la traduction d’un modèle en Lustre vers un
autre langage de modélisation, SMV par exemple, pour bénéficier d’autres
outils de model checking.

7

Nous arrivons à la conclusion qu’un seul outil n’est pas suffisant pour appliquer
la vérification hybride à un modèle en Lustre de taille industrielle. La vérification
hybride combine plusieurs techniques: exploration exhaustive de l’espace d’état,
mémorisation des traces d’exploration, génération avant et arrière de traces, sim-
ulation pas-à-pas, etc. Une intégration de plusieurs outils est une solution.

Model checking et son application

Model checking

La vérification formelle est une technique qui applique des méthodes mathématiquement
formelles à la vérification de systèmes. L’objectif est de prouver l’exactitude (ou
l’inexactitude) du système sous test d’une manière rigoureuse. La recherche sur
la vérification formelle au cours des deux dernières décennies a abouti à des tech-
niques prometteuses. Ces techniques sont aussi soutenues par de puissants outils
logiciels qui peuvent être utilisés pour automatiser divers étapes de vérification et
ainsi réduire le coût.

Au début des années 1980, le model checking est proprosé comme une technique
de vérification formelle. Il provient du travail indépendant de deux équipes: Clarke
et Emmerson [61]; Sifakis et Queille [145]. Un model checker est l’outil qui au-
tomatise model checking. À une spécification formelle du système (c’est-à-dire un
modèle du système), un model checker explore tous les états possibles du système.
L’objectif est de prouver avec une rigueur mathématique l’exactitude du modèle
de système par rapport à une propriété. Des model checkers d’avant garde peuvent
gérer des espaces d’état d’environ 108 à 109 états avec des algorithmes explicites
d’exploration. De plus grands espaces d’état, de 1020 jusqu’à 10476 états, peuvent
être traités pour des problèmes spécifiques, en utilisant des algorithmes intelligents
et dees structures de données sur mesure [19]. Cependant, le problème d’explosion
d’état reste fondamental pour le model checking. En raison de ce problème, les
model checkers peuvent s’arrêter sur un “time out” (TO), c’est à dire terminer le
calcul sans donner une réponse au problème de vérification. Au cours des dernières
années, les techniques de model checking ont suscité l’intérêt de nombreuses in-
dustries ayant des besoins en sûreté de fonctionnement, telles que la signalisation
ferroviaire [42], l’avionique [43, 132, 133] et le nucléaire [172, 118, 171, 116].

Le premier prérequis pour utiliser le model checking est de disposer d’un modèle
du système considéré. En informatique, les systèmes de transition sont souvent
utilisés comme modèles pour décrire le comportement des systèmes. Ils sont il-
lustrés par des graphes orientés où les nœuds représentent les états et les arêtes

8

représentent les transitions entre états. Un état décrit quelques informations sur
le comportement du système à un moment donné. Les transitions précisent com-
ment le système peut évoluer d’un état à l’autre. Le système ne peut se trouver
que dans un état à la fois. L’état dans lequel il se trouve à un moment donné est
appelé l’état actuel.

Le modèle du système et les propriétés à vérifier doivent être décrits de manière
précise et non ambiguë. La logique temporelle est un formalisme mathématique
adapté aux déclarations et au raisonnement où le temps est impliqué. Elle offre
des opérateurs spécifiques pour le temps, proches du langage naturel (les adverbes
comme “toujours”, “jusqu’à” par exemple). Elle vient aussi avec une sémantique
formelle, faisant de la logique temporelle un outil indispensable pour formaliser les
propriétés concernant les comportements dynamiques d’un système. Les logiques
temporelles les plus courantes sont les LTL (Linear Time Logic) [142] et CTL
(Computation Tree Logic) [62].

Étant donné un modèleM et une propriété φ du système considéré, l’algorithme
de model checking répond à la question “M satisfait-il la propriété φ ?”. Si une
violation de propriété est détectée, un model checker est capable de retourner un
contre-exemple, illustrant comment la violation se produit. Dans la littérature,
plusieurs algorithmes de model checking ont été proposés: le model checking ex-
plicite [124, 63, 145, 167] étant la première génération; le model checking sym-
bolique [128] la deuxième génération et le model checking borné [37] la dernière
génération.

Un problème de model checking est généralement un problème de vérification
de propriété. D’autre part, les cas de test sont liés à certains objectifs de test. Si
les objectifs du test peuvent être spécifiés dans la logique temporelle, puis utilisés
comme propriétés pour forcer le model checker à générer des contre-exemples, le
problème de génération de test est en fait transformé en un problème classique de
model checking. L’idée principale de tester avec les model checkers est de forcer
les model checkers à générer des contre-exemples, et puis interpréter ces contre-
exemples comme des cas de test, comme montré par la Fig. 2.5. C’est important
de noter que la spécification de propriété devrait être la négation d’un objectif
de test de sorte qu’un contre-exemple violant la propriété, en fait, satisfait le test
objectif.

Une approche répandue consiste à créer des propriétés en fonction des critères
de couverture. En effet, de tels critères sont des objectifs de test très couramment
utilisés. Les propriétés basées sur les critères de couverture sont initialement ap-

9

Figure 1: Testing with model checkers

pelées “trap properties” [91]. Une telle propriété déclare que certains éléments ne
pourraient jamais être couverts par une exécution. Dans ce cas-là, le model check-
ing de cette propriété va générer un contre-exemple illustrant comment l’élément
peut être couvert si la propriété est violée. La majorité de générations de tests
basées sur la couverture utilisent des critères de couverture structurelle. Il est
parfois souhaitable de créer les cas de test basés sur d’autres objectifs de test. D-
ifférentes techniques comprennent, par exemple, l’approche basée sur les exigences
[51, 170] et l’approche basée sur la mutation [15].

Approche synchrone pour les systèmes réactifs et temps réel

Autour des années 90s, trois langages de programmation synchrones ont été pro-
posés par des groupes académiques français: Esterel [36, 32], Signal [122, 28, 29] et
Lustre [52, 101]. Ces langages de programmation partagent les mêmes principes:
hypothèse synchrone et concurrence déterministe. En pratique, l’hypothèse syn-
chrone suppose que le programme est capable de réagir à un événement externe
avant qu’un autre événement se produise. Ces langages synchrones diffèrent les
uns des autres dans le style, ce qui correspond à leur usage dans différents do-
maines d’application. On s’intéresse dans ce document à Lustre puisque c’est le
choix du projet “CONNEXION” ainsi que la thèse.

10

Lustre est un langage déclaratif synchrone, basé sur les flots de données (data-
flow). Lustre est basé sur deux notions fondamentales: (1) flot: chaque variable
et expression Lustre est considérée comme un flot, c’est-à-dire, une séquence de
valeurs d’un type donné; (2)horloge: une horloge représente une séquence de temp-
s. Chaque flot est implicitement associé à une horloge: le flot prend la nième valeur
de sa séquence au nième instant de son horloge. Si le comportement d’un système
peut être décrit de manière cyclique, alors ce cycle qui définit une séquence de
temps est appelée l’horloge globale (ou l’horloge de base). Tout flot dont l’horloge
est l’horloge globale prend la nième valeur au nième cycle d’exécution. D’autres
horloges différentes peuvent être définies par rapport à l’horloge globale en util-
isant un flot de valeur booléenne: par exemple, l’horloge est une séquence de temps
où le flot booléen prend la valeur “vrai”.

Un programme Lustre décrit les relations entre ses entrées et ses sorties par les
variables et équations. Chaque variable est un flot, donc les variables X et Y sont
respectivement (x1, x2, ..., xn) et (y1, y2, ..., yn). L’équation X = Y dénote xi = yi
où 0 ≤ i ≤ n. Lustre propose des types de données de base et des opérateurs
habituels (arithmétiques, booléens, relationnels, contrôle). Lustre offre également
deux opérateurs temporels: (1) l’opérateur pre fait référence à la valeur de son
opérande au cycle précédent; (2) l’opérateur -> est utilisé pour attribuer à son
opérande la valeur au cycle initial.

Lustre a eu du succès dans deux projets industriels (l’un nucléaire et l’autre
avionique) dans les années 1980. Par conséquent, Lustre a été commercialisé
et donne lieu à SCADE (Safety-Critical Application Development Environmen-
t). SCADE propose un environnement synchrone dirigé par les modèles pour la
conception, la validation et la mise en œuvre de logiciels embarqués. Combinant
diagrammes de blocs et machines à états hiérarchiques, SCADE permet aux u-
tilisateurs de créer les modèles graphiques de haut niveau avec des spécifications
formelles rigoureuses. SCADE supporte également la simulation visuelle et l’analyse
de couverture de test ainsi que des techniques de vérification formelle. Le kit com-
plet SCADE est maintenant largement utilisé dans les industries critiques telles
que l’avionique, l’automobile, la ferroviaire, etc. SCADE est également le choix de
“CONNEXION” pour spécifier des modèles du système I&C.

Côté académique Lustre continue à évoluer depuis plus de vingt ans et a abouti
à deux versions couramment utilisées: Lustre V4 et Lustre V6. Le formalisme de
la version actuelle de SCADE est Scade 6 [65]. Le formalisme Scade 6 est con-
stitué de diagrammes de blocs (block diagrams) et de machines à états (safety

11

state machines). Lustre V6 est le langage textuel sous-jacent des diagrammes de
blocs. Les machines à états de sécurité ont évolué à partir du langage Esterel et du
modèle SyncCharts des statecharts synchrones. Il a été démontré que les machines
à états sont adaptables aux grands systèmes de contrôle [33]. La Fig. 2.10 illustre
la relation entre différentes versions de Lustre et Scade 6.

Figure 2: Relationship between academic Lustre versions and Scade 6

Le langage Lustre bénéficie déjà de divers outils de vérification. Ils compren-
nent des model checkers open-source: Lesar [99, 100], Kind 2 [57], PKind [114],
jKind [89], Zustre [117]). Ces outils sont orientés vers model checking tradition-
nel: vérification de propriété. Il y a également des outils plus orientés pour la
génération de test: Lutess [44, 72, 140], Lurette [149, 111, 109, 110] et GATeL
[126, 127]. GATeL a été choisi par le projet “CONNEXION”. Dans cette thèse,
on étudie Lesar, Kind 2 et GATeL.

Projet “CONNEXION”: vers un environnement

complet de V&V

Les objectifs de “CONNEXION” concernent les Systèmes de Contrôle Nucléaire
et les Technologies Opérationnelles pour maintenir un haut niveau de sûreté de
fonctionnement, pour offrir de nouveaux services améliorant l’efficacité des ac-
tivités opérationnelles. Avec l’approche actuelle de l’ingénierie, des modèles de

12

plus en plus détaillés décrivant le comportement du système I&C ont été con-
struits dans les phases amont de conception. Ces modèles sont spécifiés avec un
langage métier qui est formel mais pas directement exécutable. Par conséquent,
la validation fonctionnelle de ces modèles est actuellement réalisée d’une manière
manuelle. Les tests automatisés ne sont possible qu’au niveau de l’implémentation.

Un objectif du projet est donc d’automatiser autant que possible la validation
fonctionnelle. “CONNEXION” rassemble un ensemble unique et complet d’outils
de modélisation et de vérification. Intégrant les progrès récents de MBSE, “CON-
NEXION” propose de renforcer le cycle en V de développement en introduisant
deux sous-cycles de validation fonctionnelle. Les deux sous-cycles effectuent la
vérification de la conception en modèles par rapport aux exigences fonctionnelles,
résultant en un cycle innovant en triple V, schématisé par la Fig. 3.1. Le pro-
cessus de développement est aligné avec la norme CEI [5], en encourageant les
outils d’automatisation des tests. Le cycle de vie actuel repose sur une approche
document-centrique; “CONNEXION” permet la transition vers un pratique cen-
trée sur les modèles préconisée par l’INCOSE [7].

Figure 3: Triple V system life cycle of the I&C system

Le système I&C d’une centrale nucléaire est composé de plusieurs centaines
de systèmes élémentaires (SE), contrôlant avec un très haut niveau de sécurité
des milliers d’actionneurs commandés à distance: environ 8000 signaux binaires et
4000 signaux analogiques envoyés à la salle de contrôle, concernant plus de 10 000
sous fonctions I&C et plus de 300 armoires I&C. Chaque SE est un ensemble de
circuits et de composants, remplissant une fonction essentielle au fonctionnement

13

de la centrale nucléaire. Chaque SE est documenté par un dossier de système
élémentaire (DSE), contenant des documents détaillant le SE dans différents as-
pects: fonctionnement, contrôle-commande, équipement, etc.

Un système élémentaire est composé de deux sous-systèmes:

• le procédé représente l’infrastructure physique et l’équipement, par exem-
ple, échangeurs de chaleur, vannes, tuyaux, etc.

• le contrôle-commande (CC) est un système réactif temps-réel réagissant
en permanence avec le procédé. Il est responsable de la protection, du con-
trôle et de la supervision du fonctionnement du procédé.

Le procédé et le contrôle-commande représentent différents aspects du SE et
donc correspondent à différents documents dans le DSE. Le contrôle-commande,
décrivant l’aspect fonctionnel du SE, est spécifié par diagramme fonctionnel
(DF). Le DF est un langage formel dédié au secteur nucléaire basé sur blocs
prédéfinis.

Le cycle en V , correspondant à l’approche actuelle, contient les phases 1, 2,
3, 7, 8, 9 et 10 (voir Fig. 3.1). Le côté descendant du modèle V (1, 2, 3, 7)
représente la conception et l’implémentation du système et le côté montant (8, 9,
10) représente la vérification et la validation. Il est important de noter que le côté
descendant du modèle V concerne un seul système élémentaire, mais les activités
de V&V sont réalisées en intégrant ce SE à une abstraction de son environnement
[71]. De plus, la granularité du modèle de procédé utilisé en co-simulation es-
t adapté aux objectifs de validation spécifiques à chacune de ces trois dernières
phases (8, 9 et 10).

La conception commence en phase 1 avec une modélisation globale de la spécification
fonctionnelle du SE à partir d’un schéma simplifié du procédé et de ses divers con-
figurations opérationnelles. Le schéma simplifié du procédé est une spécification
fonctionnelle pour l’environnement physique et son contrôle-commande [71]. En
phase 2, une spécification fonctionnelle dédiée au contrôle-commande est développée
sous la forme d’un diagramme fonctionnel par des ingénieurs de système. Ce DF
représente une spécification explicite du comportement de contrôle-commande co-
hérent avec le diagramme du procédé et la description des exigences fonctionnelles
produits dans la phase 1. Cette spécification de conception est ensuite progres-
sivement détaillée dans un diagramme fonctionnel raffiné (DFR) en phase 3, qui
est prêt à être transformé en programmes implémentés en phase 7. La V&V du
système commence dans la phase 8 en vérifiant l’implémentation (en sortie de la

14

phase 7) par rapport à sa spécification de conception (phase 3). En phase 9, le con-
trôle-commande du SE est intégré aux autres systèmes élémentaires déjà validés.
A la fin du cycle de vie (phase 10), les techniques Hardware-In-the-Loop (HIL)
[30] sont appliquées à tous les SEs interconnectés et validés en phase 9.

Le projet “CONNEXION” cherche à améliorer la validation fonctionnelle en
introduisant un premier sous-cycle en V (phases 1, 2 et 4) et un second sous-
cycle en V (phases 1, 2, 3, 5 et 6). Les deux sous-cycles introduisent des modèles
exécutables de contrôle-commande: en phase 2 et 3, les spécifications exécutables
correspondant à la DF et DFR sont développées. Phase 1 présente un modèle
de haut niveau décrivant le système élémentaire. Le modèle exécutable du DF
produit en phase 2 est vérifié par rapport aux exigences fonctionnelles (phase 4).
Le modèle exécutable du DFR produit en phase 3 sera (i) vérifié par rapport au
modèle de spécification fonctionnelle développé en phase 2 (phase 5) et (ii) vérifié
par rapport aux exigences fonctionnelles (phase 6). Les deux sous-cycles V se
traduisent par un cycle de vie innovant du système en triple V.

Un autre objectif de “CONNEXION” est de développer une plateforme com-
plète de V&V soutenant les méthodologies de validation fonctionnelle présentées
ci-dessus. La plateforme accompagnerait toutes les activités de V&V nécessaires
au développement du système I&C tout au long de son cycle de vie. La Fig. 3.2
illustre le principe d’une telle plate-forme au niveau d’un système élémentaire.
Grâce à la co-simulation du procédé et du contrôle-commande, cette plateforme
permet aux ingénieurs de vérifier divers aspects du système pendant ses phases
de développement. Le modèle des propriétés attendues du système et le modèle
d’environnement, tel que perçu par le contrôle-commande, est également nécessaire
pour décrire en particulier les exigences que le SE doit respecter et les contraintes
sur sa sollicitation. Nous spécifions que le modèle d’environnement introduit les
contraintes qui proviennent d’autres systèmes élémentaires interconnectés au SE
sous test. Il est tout à fait possible d’effectuer une vérification sans contexte du
SE sous test, qui dans ce cas ne nécessite aucun modèle d’environnement particuli-
er. Enfin, nous pensons que la plateforme devrait être supportée par un système
d’information de traçabilité (SIT). Le SIT accompagne les activités de V&V et
enregistre non seulement les données mais aussi l’historique de leur relations.

Les outils préconisés par les partenaires de “CONNEXION” peuvent être di-
visés en deux catégories: outils de modélisation et outils de vérification. Les outils
de modélisation contiennent: (1) Papyrus [90] de CEA (basé sur SysML) est utilisé
pour créer un model de haut niveau d’un système élémentaire; (2) Dymola (outil
commercial basé sur Modelica) pour modéliser le procédé; (3) SCADE Suite pour

15

Figure 4: A complete verification platform

spécifier le contrôle-commande à différents niveaux d’abstraction, correspondant à
DF et DFR. Les outils de vérification sont résumés dans le tableau 1 ci-dessous.

MaTeLo outil de génération de test dirigé par les modèles
GATeL Model checker pour modèles en Lustre

SCADE QTE analyse de couverture pour modèles Scade
ALICES plateforme de co-simulation

ARTiMon observateur temps-réel

Table 1: Aperçu des outils V&V dans “CONNEXION”

• MaTeLo [58] de ALL4TECH est un outil de génération de test dirigé par les
modèles pour test d’usage statistique [123]. La génération de test est basée
sur un modèle d’usage (châıne de Markov), créées manuellement à partir de
la spécification des exigences fonctionnelles. Un cas de test correspond à un
chemin choisi au hasard dans le modèle d’utilisation. Dans “CONNEXION”,
le modèle d’utilisation est construit en fonction des exigences et les cas de
test générés sont destinés aux simulations en boucle fermée.

• Puisque le modèle procédé et le modèle contrôle-commande sont spécifiés
dans différents languages, la simulation en boucle fermée est réalisée sur une
plateforme: ALICES [136] de CORYS. ALICES est responsable de l’échange
et de la synchronisation de données entre les modèles via le standard open
source FMI/FMU.

• Pendant la co-simulation, ARTiMon [90] du CEA fournit une observation
temps-réel des résultats d’exécution de sorte que toute violation des pro-
priétés sera enregistrée. ARTiMon est également intégré sur ALICES.

16

• SCADE QTE (Qualified Testing Environment) est utilisé pour mesurer le
taux de couverture structurelle à partir des résultats d’exécution.

• GATeL du CEA est un model checker pour les modèles en Lustre. Avec un
objectif de test exprimé dans une version étendue de Lustre, GATeL génère
des données de test qui conduisent le système à un état satisfaisant l’objectif
du test. Les modèles Scade peuvent être automatiquement transformés en
modèles Lustre par l’outil s2d 2.

MBT pour Validation Fonctionnelle: vers vérification

hybride

Dans cette thèse, une méthodologie est définie comme une collection de processus,
méthodes, et outils. Une méthodologie de MBT (Model-Based Testing) est donc
la collection de processus, méthodes et outils, utilisée pour effectuer la V&V d’un
système dans un contexte dirigé par les modèles. Nous proposons une nouvelle
méthodologie de MBT pour des systèmes réactifs temps-réel et critique. Dans
“CONNEXION”, cette méthodologie est appliquée à la validation fonctionnelle
des modèles du système I&C développés dans les phases amont de conception.

Terminologie

Definition 5. Unité structurelle (structural unit ou SU en anglais) Une SU est
la mesure de l’unité de couverture sur le modèle, indépendamment des critères de
couverture choisis.

Definition 6. Vérification de l’accessibilité. Pour une unité structurelle donnée,
un model checker vérifie formellement si cette unité structurelle peut être exécutée
par n’importe quel test. Si oui, cette unité structurelle est dite accessible.

Definition 7. Test en boucle ouverte. Dans un test en boucle ouverte, seul le
système réactif temps réel lui-même est exécuté. Comportement de son environ-
nement physique n’est pas pris en compte.

Definition 8. Test en boucle fermée. Dans un test en boucle fermée, le système
réactif temps réel et son environnement sont exécutés ensemble, également appelé
co-exécution. Le comportement du système réactif temps réel est donc influencé
par son environnement.

2The s2d tool is developed and provided by Laboratoire Sûreté des Logiciels, CEA/DRT/DT-
SI/SOL, 91191 Gif sur Yvette, France

17

Workflow et outils

Notre méthodologie est composée de trois phases principales:

• Phase 1: Génération de cas de test basés sur des objectifs de test dérivés
de exigences fonctionnelles de haut niveau. Ces cas de test fonctionnel-
s sont ensuite exécutés en boucle fermée. Un outil MBT est utilisé pour la
génération de test (MaTeLo dans “CONNEXION”). Un simulateur soutenan-
t l’exécution de tests en boucle fermée est également requis. (la plate-forme
ALICES dans “CONNEXION”).

• Phase 2: Après l’exécution, la couverture structurelle de ces cas de test
est mesurée (couverture MC/DC dans “CONNEXION”). Il est important
de noter que la couverture est mesurée uniquement sur le système réactif
temps réel. Les unités structurelles non couvertes sont collectées. Un outil
de l’analyse de la couverture est requis dans cette phase (SCADE QTE dans
“CONNEXION”).

• Phase 3: Pour chaque unité non couverte, un model checker est utilisé pour
générer les séquences de test exécutant l’unité considérée. Le model check-
er travaille sur le modèle du système réactif temps réel et donc génère des
séquences de test en boucle ouverte. Avec l’aide des experts du système, les
cas de test en boucle fermée peuvent être développés à partir de ces tests
en boucle ouverte. Les nouveaux cas de test ne devraient pas seulement
améliorer la couverture structurelle, mais également être liés aux exigences
fonctionnelles. Ce processus est itéré sur chaque unité non couverte jusqu’à
ce que les critères de couverture soient satisfaits. L’outil requis dans cette
phase comprend un model checker (GaTeL in “CONNEXION”), pour la
génération de tests basés sur la couverture. L’outil utilisé en phase 1 est
aussi nécessaire pour en construire un test fonctionnellement réaliste cou-
vrant l’unité structurelle considérée.

Méthodologie MBT: Partie 1 sur 2

La première partie de la méthodologie est schématisée par la Fig. 4.2. Un outil
de génération de tests fonctionnels est d’abord utilisé pour dériver une suite de
tests fonctionnels (TS) selon les exigences fonctionnelles (étape 1). Cette suite
de tests est ensuite exécutée en co-simulation sur les modèles du système (étape
2). La couverture structurelle (SC) de la suite de tests est mesurée par un outil
de l’analyse de couverture (étape 3). Nous définissons SUU comme l’ensemble
de toutes les unités structurelles non couvertes après l’exécution de TS (étape 4).
SUA est l’ensemble de toutes unités réellement inaccessibles et SUP l’ensemble

18

de toutes les unités potentiellement inaccessibles, pour lesquelles la méthode n’a
pas réussi à répondre à la question d’accessibilité. Initialement ces trois ensembles
sont tous vides. Prenez une unité structurelle non couverte su de SUU (étape 6)
et appliquez un model checker pour vérifier si su est accessible (étape 7):

• Si su n’est pas accessible, envoyez un message d’alerte à l’utilisateur (étape
11) et enregistrez su comme une unité structurelle réellement inaccessible
(étape 12): SUA

j = SUA
j−1 ∪ su. Passez à l’étape 5 et continuez les étapes

suivantes.

• Si su est accessible, le model checker doit avoir produit des séquences de
test en boucle ouverte qui forcent le système à atteindre su. Ces données
seront utilisées pour construire un cas de test fonctionnel en boucle fermée
(noté ntc) qui couvre cette unité structurelle particulière et probablement
d’autres unités (éventuellement dans SUP qui devait être calculé à nouveau)
(étape 9). À ce stade, un retour au niveau des exigences fonctionnelles est
nécessaire pour assurer la réalité fonctionnelle de ntc. Complétez l’ancienne
suite de tests TS avec ce nouveau cas de test (étape 10): TSi = TSi−1∪ntc.
Passez à l’étape 2 et continuez les étapes suivantes.

Méthodologie MBT: Partie 2 sur 2

La Fig. 4.3 représente la deuxième partie de notre méthodologie. La troisième
possibilité de la vérification d’accessibilité d’une unité (étape 7) est TO: le model
checker arrête son exécution sans donner une réponse. Notre solution est d’abord
d’augmenter TO puis d’appliquer la vérification hybride (une combinaison de mod-
el checking et simulation) de manière similaire à [131] pour vérifier l’accessibilité
de cette unité (étape 13). Si su est accessible alors allez à étape 8 et continuez
le processus suivant. La vérification hybride peut aussi produire un TO, ce qui
conduit à envoyer un message “abandon” à l’utilisateur (étape 15) puis enregistrer
su comme potentiellement inaccessible (étape 16): SUP

k = SUP
k−1 ∪ su. Passer

ensuite à l’étape 5 et poursuivre le processus suivant. Notez qu’à l’étape 5, nous
avons SUU

i = SUU
i − SUA

j − SUP
k .

Ce processus converge lorsque le critère de couverture structurelle est satis-
fait ou s’il n’y a plus d’unités structurelles non couvertes inexplorées, c’est-à-dire
SUU

i = ∅. Comme TSi ⊃ TSi−1, ceci entrâıne SUU
i ⊂ SUU

i−1 et SCi > SCi−1 car
au moins une unité structurelle en plus est couverte.

Il est possible que le processus se termine immédiatement après l’exécution
de la suite de tests fonctionnels initiaux TS0, si le SC0 correspondant est déjà

19

Figure 5: Model-based testing methodology: part 1 of 2

Figure 6: Model-based testing methodology: part 2 of 2

20

satisfaisant. Sinon, à la fin du processus, si la boucle à gauche est exécutée au
moins une fois, nous avons une couverture de test améliorée; si la boucle à droite
est exécutée au moins une fois, c’est-à-dire SUA ∪ SUP 6= ∅, une analyse plus
approfondie avec les auteurs de la spécification est requise car au moins une unité
structurelle est suspectée d’être code mort ou même un bug.

Une heuristique: vérification hybride

La vérification hybride [158, 157, 55] est une technique combinant model check-
ing et simulation. Le model checking explorer tous les états possibles tandis que
la simulation explore partiellement l’ensemble de l’espace d’état. La Fig. 4.4
représente le principe de vérification hybride. La vérification hybride nécessite
diverses techniques telles que l’exploration de l’espace d’état, la mémorisation des
traces d’exploration, la génération avant/arrière, la simulation étape par étape, etc.

Figure 7: Principles of hybrid verification

Supposons que nous ayons un modèle du système sous test et que le problème à
vérifier est le suivant: à partir d’un état initial S0, pouvons-nous trouver un cas de
test qui arrive à l’état cible Star. Dans le cadre de notre méthodologie, une unité

21

structurelle non couverte peut être considérée comme l’état cible. Le model checker
effectue le calcul jusqu’à épuisement du temps ou de la mémoire (Time Out). Nous
supposons que le model checker est capable de mémoriser les traces d’exploration
des états déjà explorées juste avant TO. Par exemple, le model checker s’est arrêté
à un cycle de calcul où les cinq états Sp, Sq, Sl, SmetSn ont été explorés. Nous
sélectionnons parmi les cinq états un candidat, disons Sl, comme l’état candidat
pour démarrer une simulation étape par étape. La sélection de l’état candidat
est basée sur une distance informelle définie par l’utilisateur entre chaque état
candidat potentiel et l’état cible. La définition d’une telle sélection reste la partie
la plus délicate et la plus difficile de la technique. Certaines heuristiques peuvent
être facilement trouvées, cependant, nous doutons qu’une distance formelle peut
être établie. Si tel était le cas, cela pourrait être intégré au model checker.

Raffinement par ajout progressif des contraintes

Cette section présente une technique pour raffiner la génération de test en boucle
ouverte présentée dans la méthodologie ci-dessus. La technique est illustrée avec
le model checker GATeL. GATeL prend le modèle Lustre du système de contrôle-
commande comme une entrée. Il permet également deux autres entrées: un ob-
jectif de test et une description de l’environnement. Notre objectif de test est
de vérifier si une unité su donnée peut être couverte par n’importe quel test,
c’est-à-dire l’accessibilité de su. Au cas où su est atteignable, GATeL génère
des séquences de test atteignant su désirée au dernier cycle de calcul. La de-
scription de l’environnement est composée d’expressions booléennes destinées à
sélectionner parmi toutes les valeurs possibles de variables celles correspondant aux
réactions réalistes de l’environnement physique. Chaque expression de sélection
est indiquée comme une directive “assert” qui doit être vraie à chaque cycle de
séquences générées. Ces expressions sont utilisées par GATeL pour dériver des
contraintes définissant des relations entrées/sorties.

Les contraintes sont divisées en trois catégories: (1) Contraintes physiques:
filtrer les valeurs qui ne pouvaient pas apparâıtre dans le système réel physique
où le modèle est appliqué. Ces contraintes concernent seulement des variables
d’entrée. (2) Contraintes d’initialisation: définir les valeurs de variables au cycle
initial. Ces contraintes concernent seulement des variables d’entrée. (3) Con-
traintes d’exigences: dérivées des exigences fonctionnelles du système, définir les
relations entre des variables d’entrée et de sortie. L’ordre pour ajouter progressive-
ment les contraintes est en premier ajout des contraintes physiques, puis ajout des
contraintes d’initialisation et finalement ajout des contraintes d’exigences. Notez
que toutes les exigences fonctionnelles ne peuvent être traduites en contraintes
invariantes. Dans cette thèse nous ne traitons que les exigences invariantes.

22

Figure 8: Refining test generation by adding constraints to the model checker

La Fig. 4.14 illustre le principe de la technique de raffinement. Étant donné une
unité structurelle su non-couverte, GATeL vérifie si su est accessible tout en respec-
tant les contraintes définies dans la description de l’environnement. D’abord cette
description contient seulement une contrainte C1 et la vérification d’accessibilité
peut produire trois résultats:

• (1) su est accessible (R);

• (2) su est trouvé non-accessible (NR). À ce stade, il n’est pas nécessaire
d’ajouter plus de contraintes. su sera enregistrée comme une unité non
accessible.

• (3) GATeL a un TO.

Pour le résultat (1) ou (3), de nouvelles contraintes sont ensuite ajoutées progres-
sivement à la description de l’environnement, une à la fois. Après chaque ajout
d’une nouvelle contrainte, GATeL vérifie à nouveau l’accessibilité de su. Avec plus
de contraintes, les résultats possibles sont:

• (1.1) su est toujours accessible. Dans ce cas, GATeL génère des séquences
de test où su est couverte au dernier cycle. Les séquences construisent un
nouveau cas de test en boucle ouverte satisfaisant les contraintes C1 ∧ C2 ∧
...Cn. Cela aide à construire un cas de test en boucle fermée couvrant su.

• (1.2) su devient NR avec la nouvelle contrainte, ce qui signifie que le résultat
précédent R (1) n’était pas réaliste. Cela pourrait suggérer que su est un
unité structurelle inaccessible qui nécessite une analyse plus approfondie.

23

Cela pourrait aussi indiquer un bug quelque part: la contrainte n’est peut
être pas correctement formalisée ou bien il peut y avoir une violation de
l’exigence décrite par la contrainte.

• (1.3) GATeL a un TO. En général, ajouter des contraintes réduit l’espace
d’état que GATeL doit explorer. Une explication possible est que les séquences
de test précédemment générées dans (1) sont éliminées par la contrainte nou-
vellement ajoutée et GATeL, exactement comme dans (1.2), ne peut pas
trouver une autre nouvelle trace couvrant su dans une période de temps
restreinte.

• (3.1) Avec plus de contraintes ajoutées à la description de l’environnement,
GATeL génère des séquences de test de plus en plus réalistes couvrant su.

• (3.2) Nous avons une hypothèse plus forte que “su est inaccessible”.

• (3.3) Un TO. D’après Fig. 4.3 la vérification hybride est la dernière solution
à envisager.

Cas d’étude “CONNEXION”: SRI

L’étude de cas proposée dans “CONNEXION” est SRI: un système élémentaire
présent dans le système I&C de toutes les centrales nucléaires françaises. La pre-
mière partie de notre méthodologie a été testée sur SRI et les résultats seront
présentés ci-dessous. Bien que la deuxième partie de la méthodologie n’ait pas
été testée avec succès, nous avons essayé trois model checkers (GATeL, Lesar,
Kind2) sur SRI et les avons comparés par rapport aux techniques requises pour la
vérification hybride.

La fonction principale de SRI est d’assurer la réfrigération de plusieurs autres
systèmes élémentaires en interface, dits les clients de SRI. SRI s’interface également
avec une source de refroidissement SEN à travers des échangeurs de chaleur. Le
procédé de SRI comprend deux échangeurs de chaleur en parallèle, où l’eau froide
de SEN et l’eau chaude de ses clients se mélangent. La température de l’eau à
la sortie des échangeurs de chaleur est régulée par trois vannes parallèles, variant
par leur ouverture le débit et donc l’efficacité des échangeurs. Un réservoir d’eau
est utilisé pour compenser la fuite éventuelle du circuit. Trois pompes en parallèle
assurent la circulation de l’eau dans le système (La troisième pompe n’est utilisée
qu’un remplacement). La Fig.5.1 illustre un schéma simplifié du procédé de SRI.
Le contrôle-commande de SRI est modélisé en diagramme de blocs dans SCADE
Suite.

24

Figure 9: A simplified schema of SRI

Les résultats d’expérimentations sont organisés en trois phases, de la même
manière que la méthodologie est présentée précédemment.

Phase 1

Les activités réalisées pendant cette phase comprennent la génération de tests
fonctionnels avec l’outil MaTeLo et l’ exécution de ces tests en boucle fermée sur la
plateforme ALICES. À partir des exigences fonctionnelles, AREVA, un partenaire
du projet, a créé un modèle d’usage de SRI dans MaTeLo et a généré une suite
de test contenant 10 cas de test. Ensuite, nous exécutons ces 10 cas de test par
simulation en boucle fermée sur ALICES. Nous obtenons les scripts enregistrant les
données d’échange entre le procédé et le contrôle-commande pendant la simulation.

Phase 2

Les scripts obtenus en phase 1 sont maintenant utilisés pour mesurer la couverture
MC/DC sur chaque opérateur composant le modèle de contrôle-commande, comme
indiqué dans la Fig. 5.3. Plus de détails concernant les métriques de couverture des
modèles Scade peuvent être trouvés dans [80]. Le modèle du système de contrôle-
commande en Scade est structuré comme une hiérarchie d’opérateurs. Au niveau

25

de l’opération racine (l’opérateur du plus haut niveau), le taux de couverture
MC/DC mesuré d’environ 50%.

Figure 10: Coverage measurement

Phase 3

Nous devons choisir une unité structurelle non couverte pour effectuer la vérification
d’accessibilité. Une suggestion est de commencer avec un opérateur au plus “pro-
fond” possible, qui ne contient pas d’autres opérateurs. L’avantage est qu’un test
exécutant cette unité au bas niveau a une grande chance de couvrir également
d’autres SU au niveau supérieur qui n’ont pas été couvertes. L’unité structurelle
que nous avons choisie est à trois niveaux plus bas par rapport à l’opérateur racine:
les deux entrées booléennes d’un opérateur “and” logique n’ont jamais pris la valeur
VRAI tous les deux à la fois.

GATeL est ensuite utilisé pour vérifier l’accessibilité de cette unité structurelle
selon la technique de raffinement: ajouter progressivement des hypothèses sur le
comportement de l’environnement. Ces hypothèses sont traduites en contraintes
invariantes pour GATeL. Ces contraintes peuvent être trouvées dans l’annexe A.
Au début il y avait une seule contrainte physique C1. Cette contrainte suppose
trois situations: (1) la température de l’eau est comprise entre 0◦C et 100◦C; (2)
le niveau d’eau dans le réservoir est compris entre 0 et le niveau maximum; (3)
les variables booléennes représentant l’état de la pompe et le défaut de la pompe

26

ne peuvent pas prendre la valeur VRAI en même temps (si la variable d’état est
vraie, cela signifie que la pompe n’a pas de défaut).

Sous la contrainte C1, cette unité structurelle a été trouvée accessible et une
séquence de test contenant 3 cycles a été généré. Nous avons mesuré à nouveau
la couverture MC/DC, y compris ce nouveau test généré. Le nouveau test a non
seulement couvert l’unité considéré mais aussi il a augmenté le taux de couverture
de 50% à 80% au niveau de l’opération racine. Cela signifie que d’autres unités
structurelles non couvertes précédemment ont également été exécutées par le nou-
veau test.

Ensuite, une contrainte d’initialisation C2 a été ajoutée à la description de
l’environnement. C2 suppose que dans l’état initial du système, tous les deux
échangeurs de chaleur fonctionnent normalement. Nous avons rencontré TO au
départ: GATeL a arrêté l’exécution sans donner de résultat. En fait, la config-
uration dans GATeL concernant le nombre maximum de cycles générés avait été
fixé à 20, ce qui n’est pas suffisant sous les hypothèses C1 ∧ C2. Nous avons donc
augmenté cette configuration à 30 et nous avons obtenu une séquence de test de
23 cycles. Le temps de calcul est 6391 secondes et la mémoire utilisée 272309
kilo-octets.

Ce résultat indique que la séquence de test à trois cycles obtenue la première
fois n’est pas réaliste. Cela prouve que le raffinement en ajoutant progressivement
des contraintes peut aider à améliorer la réalité fonctionnelle de test généré. Nous
admettons qu’à partir d’un test en boucle ouverte de 23 cycles, construire un test
en boucle fermée ne sera pas facile. Mais la profondeur du test suggère aussi que
la conception manuelle d’un test couvrant l’unité structurelle peut être très difficile.

Vers la vérification hybride

Nous avons testé trois model checkers pour le langage Lustre: GATeL, Lesar et
Kind 2, pour mettre en œuvre la méthodologie complète, y compris la vérification
hybride en particulier. Lesar prend en entrée un model en Lustre V4; Kind2 ac-
cepte Lustre V4 étendu avec une partie de V6; alors que GATeL travaille sur une
extension spécifique de Lustre V4. La première étape de cette expérimentation
consiste à construire un modèle d’entrée correct pour chaque model checker. Nous
avons commencé avec le modèle du contrôle-commande de SRI en Scade textuel,
généré automatiquement à partir du modèle graphique par SCADE KCG (générateur
de code). Ce modèle est ensuite traduit par l’outil s2d en une extension de Luster
V4 directement acceptable par GATeL.

27

L’unité structurelle non couverte choisie pour l’expérience est à trois niveaux
plus bas par rapport à l’opérateur racine. Par conséquent, les entrées et sorties de
cette unité sont considérées comme variables internes ou locales. Cependant, pour
Kind 2 et Lesar, il est nécessaire de spécifier une propriété concernant uniquement
les entrées et les sorties de l’opérateur racine. Donc nous décidons de modifier le
modèle graphique en Scade de manière à faire ressortir ces variables internes per-
tinentes aux sorties du niveau racine. Ensuite, en suivant la procédure ci-dessus,
nous obtenons un modèle modifié du contrôle-commande de SRI pour GATeL.

Le modèle d’entrée pour GATeL n’est pas directement lisible pour Kind 2 et
Lesar. Heureusement, le modèle pour GATeL ne contient pas de syntaxe non
incluse ni dans Lustre V4 ni dans V6. Cependant, il doit encore être soumis à une
modification de syntaxe incluant:

• Pour la définition de données complexes, par exemple, type T_NS = {T1: real, T2: real, T3: real};

toutes les virgules , doivent être remplacées par des points-virgules ;.

• GATeL permet d’écrire assume expression_1 pour indiquer que expression_1
est toujours vrai. Dans Lustre, la directive assume doit être remplacée par
assert avec la même sémantique.

• Scade et GATeL offrent les ID utilisateur #1, #2, #3 pour identifier différentes
instances du même opérateur. Cette définition n’existe pas dans Lustre V4
ou V6.

• Dans Scade et GATeL, l’évaluation d’une variable structurée peut être effec-
tuée à travers un opérateur make comme make T = (v1, v2, v3) où T est
une variable de type T_NS. Dans Lustre, cela devrait écrire comme T.T1=v1;
T.T2=v2; T.T3=v3.

• Scade et GATeL offrent un opérateur caseof comme une déclaration “switch”.
Dans Lustre,caseof doit être remplacé par plusieurs if then else.

Après ces modifications, le modèle GATeL a été traduit en modèles d’entrée
pour Kind2 et Lesar. La figure 5.9 donne un aperçu de la relation entre les différents
modèles.

Les trois model checkers répondent assez différemment au même problème:

• Lesar est à court de mémoire, c’est-à-dire Time Out. En fait, Lesar est un
model checker qui gère exclusivement les valeurs booléennes. Il est donc
clairement non adapté pour le modèle de contrôle-commande de SRI. Lesar
n’enregistre pas les résultats temporaires pendant l’exploration de l’espace

28

Figure 11: Applying different model checkers to the SRI CC

d’état. En conséquence, il est pas possible d’effectuer la vérification hybride,
ce qui nécessite une mémorisation de traces d’exploration.

• GATeL réussit à générer des séquences de test qui améliorent la couverture
structurelle, comme discuté dans la section précédente. Cependant, GATeL
n’offre que la génération de test en arrière (backward) et donc il n’est pas
adapté pour la vérification hybride.

• Kind 2 repose sur les solveurs SMT disponibles sur le marché. Les solveurs
SMT ne sont pas adaptés pour les expressions non-linéaires telles que la
multiplication/division des variables (présentes dans le modèle du contrôle-
commande de SRI). Une solution consiste à remplacer ces expressions non
linéaires par des abstractions définies dans des contrats de type “assume-
grantee”. Le modèle ainsi obtenu peut convenir à la vérification des pro-
priétés, s’il est prouvé équivalent au modèle original. Mais notre objectif est
la génération de test.

Nous avons également cherché des traducteurs de Lustre vers d’autres langages
de modélisation afin de profiter d’autres outils puissants tels que NuSMV. Il ex-
iste un framework du traducteur Lustre qui est propriétaire de Rockwell Collins

29

et l’Université du Minnesota. Mais le projet n’est plus financé. Un autre tra-
ducteur académique de Lustre à SMV n’est plus maintenu. Concernant SCADE
Design Verifier (basé sur le model checker Prover), sa licence n’était pas incluse
dans “CONNEXION”. Par conséquent nous sommes arrivés à la conclusion que
la mise en œuvre de notre méthodologie complète nécessite une intégration de
plusieurs outils. Une solution alternative est de développer un nouveau model
checker avec les caractéristiques suivantes: génération en avant et arrière; vider
les états inexplorés après TO; reprendre l’exploration après simulation.

Conclusion

La vérification et validation du système réactif temps-réel et critique sont soumis-
es aux normes et certifications rigoureuses. Intégration des progrès récents dans
l’ingénierie des systèmes dirigée par les modèles (MBSE) dans le cycle de vie de
cette catégorie de systèmes constitue le contexte de cette thèse. Approches MB-
SE, telles que “Model-Based Design” (MBD) et “Model Based Testing” (MBT),
encouragent la vérification dans les étapes amont de conception, permettant une
détection des défauts le plus tôt possible. C’est très rentable pour de tels systèmes
puisque le coût des défauts découverts dans le système réel peut être extrêmement
élevé.

Nous proposons une méthodologie MBT dirigée par la couverture structurelle
et exigences fonctionnelles. La méthodologie repose sur une utilisation répétitive
de model checker pour générer des séquences de test en boucle ouverte basées sur
la couverture. Le passage de boucle ouverte à boucle fermée nécessite une ex-
pertise des ingénieurs du système et n’est pas dans le champ de notre recherche.
Cependant, nous proposons un raffinement de génération de test en ajoutant pro-
gressivement des contraintes de l’environnement. Ces contraintes sont dérivées
des conditions physiques, des conditions d’initialisation et des exigences fonction-
nelles. Sous ces contraintes, les séquences de test générées doivent respecter les
comportements réalistes par rapport au système complet. Notre méthodologie con-
sidère également qu’un model checker peut TO en raison de problème d’explosion
d’état et propose une heuristique dite vérification hybride qui combine le model
checking et la simulation. Le principe est de collecter les états explorés au cycle
de calcul juste avant le TO, sélectionner un état candidat qui devrait être le plus
proche de l’état cible, et de commencer une simulation étape par étape à partir de
cet état candidat en essayant d’atteindre l’état cible.

La méthodologie proposée dans cette thèse est très coûteuse et donc adaptée
exclusivement pour les systèmes hautement critiques en sûreté de fonctionnemen-

30

t. Les activités de V&V de ce type de systèmes sont soumises à des normes
rigoureuses. De tels systèmes nécessitent un niveau de couverture très élevé au-
delà des exigences fonctionnelles. Notre méthodologie offre une solution pour au-
tomatiser autant que possible la génération de test basée sur la couverture, qui
est un processus purement manuel dans l’approche d’ingénierie actuelle. Deux-
ièmement, la méthodologie inclut un raffinement de génération de test en boucle
ouverte. Le passage de la boucle ouverte à la boucle fermée nécessite une col-
laboration des experts du système. Notre raffinement peut aider les experts du
système à intervenir efficacement dans la préparation de cas de test fonctionnels
en boucle fermée. Notre méthodologie est donc rentable car il permet aux experts
du système de gagner du temps. Enfin nous avons examiné divers model checkers
pour le langage Lustre pour mettre en œuvre la méthodologie. Nous arrivons à
la conclusion qu’une intégration de plusieurs outils est nécessaire. À notre avis,
il est également avantageux de revisiter les versions académiques de Lustre et les
outils associés. Cependant, ces recommandations argumentées dépassent le travail
de cette thèse.

Les travaux futurs concernent (1) la définition et éventuellement le développement
d’un nouvel outil pour effectuer la vérification hybride; (2) la proposition de s-
tratégies de sélection utilisées en vérification hybride, c’est-à-dire, comment définir
une distance entre deux états dans l’espace d’état d’un système de transition; (3)un
framework généralisé de raffinement de la génération de test en boucle ouverte; (4)
l’exploration de la génération de test par Kind 2 en utilisant les contrats “assume-
garantee” par rapport à la vérification hybride.

31

List of Figures

1 Testing with model checkers . 10
2 Relationship between academic Lustre versions and Scade 6 12
3 Triple V system life cycle of the I&C system 13
4 A complete verification platform . 16
5 Model-based testing methodology: part 1 of 2 20
6 Model-based testing methodology: part 2 of 2 20
7 Principles of hybrid verification . 21
8 Refining test generation by adding constraints to the model checker 23
9 A simplified schema of SRI . 25
10 Coverage measurement . 26
11 Applying different model checkers to the SRI CC 29

1.1 Embedded systems, reactive systems and real-time systems 38
1.2 Reactive systems . 39
1.3 V-model: system development lifecycle 42
1.4 W-model: extension of V-model strengthening the bond between

design and test . 43

2.1 Model checking approach . 53
2.2 Graphical representation of a finite transition system 56
2.3 Execution tree of the transition system HOP 57
2.4 Comparison of path quantifiers A and E 61
2.5 Testing with model checkers . 63
2.6 Two common execution schemes for reactive systems 67
2.7 A simple counter described using Lustre operators 72
2.8 Lustre program structure . 73
2.9 Function HOP depicted in Scade block diagram 76
2.10 Relationship between academic Lustre versions and Scade 6 78
2.11 Model checking tools for Lustre and Scade 80
2.12 An overfiew of Lustre V4 and V6 formats and tools 85
2.13 Translator Framework . 86

32

3.1 Triple V system life cycle of the I&C system 92
3.2 A complete verification platform . 94
3.3 UML use case diagram of the Information System 102
3.4 UML class diagram of the Information System 103
3.5 Prototype . 104

4.1 Model-based testing process . 106
4.2 Model-based testing methodology: part 1 of 2 112
4.3 Model-based testing methodology: part 2 of 2 113
4.4 Principles of hybrid verification . 114
4.5 Cruise control model in SCADE Suite 116
4.6 Original structural coverage of cruise control model 118
4.7 GATeL interface: node of test . 119
4.8 GATeL interface: test case generated 120
4.9 New structural coverage of cruise control model 121
4.10 Operator modified in cruise control model 121
4.11 GATeL interface: unreachable branch detected 122
4.12 Cruise control model complexity: Nesting Level metrics 122
4.13 Cruise control model complexity: Data Flow metrics 123
4.14 Refining test generation by adding constraints to the model checker 124

5.1 A simplified schema of SRI . 127
5.2 A part of the SRI control/command in SCADE Suite 128
5.3 Coverage measurement . 129
5.4 MC/DC coverage on each operator of the control/command model . 130
5.5 The uncovered SU chosen for experiment 131
5.6 MC/DC coverage at the su level . 132
5.7 MC/DC coverage at the top level: before and after 132
5.8 The uncovered SU chosen for experiment: modify the top level node 134
5.9 Applying different model checkers to the SRI CC 135

33

List of Tables

1 Aperçu des outils V&V dans “CONNEXION” 16

2.1 Application of function HOP in regulating water level 57
2.2 CTL and LTL syntax comparison 59
2.3 A summarize of some model checkers for different languages and

techniques . 62
2.4 Some basic Esterel statements . 68
2.5 A sampling of Signal operators . 69
2.6 Example of an execution of the counter 72
2.7 Example of an execution of the function HOP 74
2.8 Comparison of Esterel, Signal and Lustre 74

3.1 Overview of “CONNEXION” verification tools 96

34

Contents

1 Introduction 37
1.1 Problem statement . 44
1.2 Thesis contributions . 45
1.3 Thesis organization . 49

2 Model checking and its application 51
2.1 Model checking preliminaries . 54

2.1.1 Transition systems . 54
2.1.2 Temporal Logic and properties 58
2.1.3 Model checking algorithms 60

2.2 Testing with model checkers . 62
2.3 Synchronous approach for real-time systems 66

2.3.1 Esterel . 67
2.3.2 Signal . 68
2.3.3 Lustre . 69
2.3.4 A brief summary . 73

2.4 The story of Lustre . 75
2.4.1 SCADE and Lustre . 75
2.4.2 Lustre versions . 77
2.4.3 Model checking tools for Lustre 78
2.4.4 Lustre translators . 84

3 Project “CONNEXION”: Towards a complete testing environe-
ment 88
3.1 Functional validation objectives . 89
3.2 Unique and complete tool box . 95
3.3 “CONNEXION”: challenges and constraints 97
3.4 Information system of traceability 98

35

4 Model-based testing for functional validation: Towards hybrid
verification 105
4.1 Model-based testing process . 105

4.1.1 Coverage criteria . 108
4.1.2 A new MBT methodology for safety-critical systems 109
4.1.3 A heuristic: hybrid verification 114
4.1.4 An first example: cruise control 115

4.2 Refinement by gradually adding constraints in GATeL 122
4.2.1 Three categories of constraints 124
4.2.2 Refinement by adding progressively the constraints 125

5 “CONNEXION” Case study: SRI 126
5.1 Description of SRI . 126
5.2 Experimentation results of part 1 127
5.3 Lustre model checkers toward hybrid verification 133

6 Conclusion 137

Appendices 140

A Constraints coded in GATeL to refine test generation 141

36

Chapter 1

Introduction

Our daily life relies more and more on all kinds of software and hardware systems.
The complexity of these systems is also increasing rapidly. No longer standalone,
these systems are typically embedded in a larger environment, connecting and in-
teracting with other components. Embedded systems, first appeared in large
industrial applications: factories, power plants, transportation systems, avionics
and automotive. Nowadays they also concern a wide variety of everyday smart
objects: cell phones, digital watches, microwave ovens, etc. Embedded system can
be considered as a combination of software, hardware, and sometimes additional
mechanical, electronic or other parts. These components are interconnected, de-
signed to perform a dedicated function. This distinguishes an embedded system
from a general-purpose computer for multiple tasks. An embedded computer is
just one functional element of a system (another brick in the wall), rather than
a stand-alone versatile computing machine. Embedded systems are vulnerable to
errors since the number of defects grows exponentially with the number of inter-
acting system components.

Most embedded systems are reactive systems and real-time systems. We call
“reactive” systems that are permanently interacting with its (possibly physical)
environment; and we reserve the term “real-time” for reactive systems that are
subject to externally defined timing constraints, as suggested by Benveniste and
Berry [26]. In other words, we distinguish two kinds of time constraints:

1. Synchronous hypothesis assumes that the system is able to react to an exter-
nal event from its environment before any further event occurs. Synchronous
hypothesis concerns the input frequencies, meaning between two successive
inputs, the environment is considered unchanged.

2. Real-time constraint requires that the system is not only able to react to its
environment but also to guarantee response within specified time constraints.

37

Figure 1.1: Embedded systems, reactive systems and real-time systems

Real-time constraint is imposed on the input-output response time.

Reactive systems are systems that satisfy the synchronous hypothesis. Real-
time systems are reactive systems subject to the real-time constraint. The broad
class of reactive systems contains therefore real-time applications as well as non-
real-time applications, e.g., communication protocols, man-machine interfaces, etc.
The relationship between different systems is illustrated in Fig. 1.1.

The notion of reactive systems was first introduced in the eighties [103, 143] to
distinguish them from transformational systems and interactive systems. A reac-
tive system receives inputs from the environment (sensors, human operators, etc)
and responds with calculated outputs to command the environment (Fig. 1.2).
The definition and characteristics of reactive systems have then been pointed out
many times [35, 31, 97].

An embedded system is a computer system with a dedicated function, em-
bedded as a part of a complete device system that includes hardware, such as
electrical and mechanical components.

Reactive system maintains permanent interaction with its environment, mean-
ing it receives inputs from the environment and responds with calculated out-
puts to command its environment.

Real-time system (RTS) is a reactive system interacting with an environment
that cannot wait. The input/output calculation time must respect the time
constraint imposed by its environment.

38

Highly safety-critical systems are usually real-time systems, such as control/-
command system in a nuclear power plant or a commercial aircraft flight control
system. This domain of application requires very careful design and very stringent
verification and validation. Safety is crucial concerning this area, since a simple
bug can produce extreme and catastrophic consequences. A real-time system is
subject to at least two kinds of requirements:

– Logical correctness : the classical respect of the input/output specification is
essential for all kinds of applications

– Temporal correctness : additional requirement for RTS. A logically correct
RTS can fail to adequately control its environment if the outputs are not
produced on time, i.e. the input/output computation time does not respect
the time constraint imposed by its environment.

Figure 1.2: Reactive systems

Historically, the design of reactive and real-time systems have long been the oc-
cupation of control engineers. Automatic control theory has been applied to design
systems with desired behavior, in a so-called “bottom-up” manner. Reactive and
real-time applications evolved mostly from the use of analog machines and relay
circuits to the use of microprocessors and computers. Various application fields
are treated by practitioners having their own methods and vocabulary, although
strongly technically related, little relation has been established between them.

39

When it comes to verification and validation, the task can be approached on-
ly late in the product development cycle. Physical prototypes of either complete
systems or subsystems are connected to Hardware-in-the-Loop (HIL) simulation
platforms, to investigate system-level behavior. For unit system with limited num-
ber of input and output variables, it is possible to test in an exhaustive manner.
But the challenge remains to perform a systematic test and validation considering
the huge number of situations that are relevant for complex embedded systems
[160].

For a long time, engineering of reactive and real-time systems did not benefit
from the recent progress in software and programming technology as much as did
other fields. This situation must change rapidly, for the following reasons:

1) Modern applications will require strong interaction between different applica-
tion fields, so specific terminologies and tools must be aligned for ontologies
to keep large systems tractable.

2) Complex safety-critical systems usually have a long life cycle during which
the systems are subject to partial changes and renovations “top-down” pro-
gramming approach familiar to software engineers can be very helpful in im-
proving the efficiency of validation and maintenance of this kind of systems.
“Bottom-up” low-level programming techniques will remain acceptable dur-
ing maintenance.

3) It will be necessary and sometimes even required to verify the correctness
of programs using rigorous formal methods (Sec. 2.1), at least with respect
to certain crucial safety properties. Application of formal methods requires
mathematically rigorous concepts and programming tools, as well as auto-
matic verification tools.

During the past half century, historical contributions have been made to es-
tablish model-based approaches for system description, design and analysis [71].
Based on a firm mathematical foundation, model-based approaches to system
engineering support system design and analysis through machine readable models.
Various graphical modeling languages have been developed by software and system
engineers, in order to make models more visual and intuitive. The Unified Model-
ing Language (UML) [151] and the System Modeling Language (SysML) [10], for
example, are two graphical machine-readable modeling languages adopted by the
Object Management Group (OMG). In 2007, the International Council on Systems
Engineering (INCOSE) launched the INCOSE MBSE Initiative1, where MBSE

1http://www.incose.org/ChaptersGroups/WorkingGroups/transformational/

mbse-initiative

40

http://www.incose.org/ChaptersGroups/WorkingGroups/transformational/mbse-initiative
http://www.incose.org/ChaptersGroups/WorkingGroups/transformational/mbse-initiative

denotes Model-Based System Engineering. Over the past two decades, var-
ious MBSE methodologies and supporting commercial modeling tools have been
developed. A summary can be found in the INCOSE survey of MBSE methodolo-
gies [79].

Model-based systems engineering (MBSE) is the formalized application of
modeling to support system requirements, design, analysis, verification and
validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases [7].

In a nutshell, MBSE is about elevating models in the engineering process to a
central and governing role in the specification, design, integration and validation
of a system [79]. In a model-based process, activities that support the engineer-
ing process are to be accomplished through development of increasingly detailed
(“top-down”) models. MBSE approaches include behavioral analysis, system ar-
chitecture, requirement traceability, performance analysis, simulation, test, etc.
This results in a transition from traditional document-centric system engineering
approach to a model-centric practice as advocated by the INCOSE [7]. Shifting to
MBSE enables software and system engineers to more readily understand design
change impacts, communicate design intent and analyze a system design before
it’s built.

Various development lifecycle models have been created and applied to large-
scale system and software development projects (e.g., the waterfall model [150],
the spiral model [40], etc.) The V-model (or Vee-model) [84, 85] is considered as
one of the most famous models of a system or software development lifecycle. Fig.
1.3 presents a simplified V-model describing system development lifecycle. The
left side of “V” represents “top down” decomposition of requirements and cre-
ation of system specifications; whereas the right side of “V” represents integration
of components/units, their verification and validation in a “bottom up” approach.
In a nutshell, verification is always against the requirements (technical terms) and
validation always against the real world or the user needs.

The V-model is a graphical presentation summarizing major steps in system de-
velopment lifecycle. It represents one-to-one relationship between the documents
on the left side and the test activities on the right side. However, to claim that
verification and validation only occurs at the right side may not always be opti-
mal. For example, requirements need to be validated first against the user needs
and there is also some validation of system models that can partially be done at
the left side. Based on the V-model, the W-model [156] shows how the tasks of

41

Figure 1.3: V-model: system development lifecycle

testing relate to the tasks in the development model. The purpose is to extend the
V-model to support the broader view of testing as a continuously major activity
throughout the system development lifecycle. The W-model (Fig. 1.4) clarifies the
dependence between development and testing activities. The connection between
various test stages and the basis for the test is clear with W-Model, which is not
clear in the V-model. The W-model also points out that testing and debugging
are different activities performed preferably by different persons.

The V-model and the W-model are clearly different; but they both show one
thing: a system development lifecycle encompasses two kinds of activities: design
and testing. Therefore integration of model-based approach to system development
lifecycle naturally results in model-based design (MBD) [134] and model-based
testing (MBT) [144, 166].

– Model-based design (MBD) refers to the use of domain specific modeling
languages that can be executed and analyzed before the actual system is
built. System engineers could create a model of the system with this kind of
modeling language and then execute and analyze the model on their desktop
rather than the target machine. With support of appropriate tools, the
model can be used to automatically generate code as well as test cases.

– Model-based testing (MBT) is a method of testing that relies on abstract
formal models describing the intended behavior of systems. Test cases can

42

Figure 1.4: W-model: extension of V-model strengthening the bond between de-
sign and test

be automatically generated from the model using specific tools, then adapted
and executed on the system under test (SUT). The model used for test
generation can be an abstraction of the SUT, or a specific model created in
particular for this purpose, the so-called “environment model” [166].

The complexity of modern embedded systems keeps growing, same is the need
to improve communication between development holders, to improve product qual-
ity as well as to reduce the verification and validation cost. All these new require-
ments result in the transition from document-centric approach to model-centric
approach. Models should replace documents as the primary product or artefact of
system engineering processes. The future of system engineering is, in our opinion,
model-based.

Application of recent progress in MBSE and MBT in particular to industrial
safety-critical real-time reactive system constitutes the background of this thesis.
The verification and validation of these systems are subject to stringent standards
and certifications [9]. Formal methods are sometimes necessary and even required,
at least with respect to highly safety-critical properties. The thesis is part of the
French methodology project “CONNEXION” in the nuclear domain. Profiting
from a realistic industrial study case and a unique and complete set of modeling and
verification tools, we had the opportunity to examine the difficulties of adopting
modern MBSE techniques in a safety-critical industrial context. Moreover, MBSE
encourages performing verification activities in the early design stages, allowing
early detection of defects. This is very cost-effective for safety-critical RTS since
the cost of defects found later in the actual system can be extremely high.

43

1.1 Problem statement

Since 2012, the main industrial and academic partners of the French nuclear in-
dustry initiated an ambitious R&D program called “CONNEXION”. Regroup-
ing a number of projects, “CONNEXION” [71] aims to improve the development
process of the Instrumentation & Control (I&C) system of nuclear power plants
(NPPs). “CONNEXION” is based on the existing expertises of major operators in
French nuclear industry (EDF, ALSTOM, AREVA and RRCN) and various soft-
ware tools provided by other partners (CEA, CORYS, ESTEREL Technologies
and ALL4TEC).

The I&C system is the “central nervous system” of a nuclear power plant. As
a safety-critical real-time system, the nuclear I&C system is required to be de-
veloped and validated under the strongest standards and certifications. With the
current system engineering approach, increasingly detailed models describing the
behavior of the I&C system have been built in early design phases. The models
are specified in a formal language dedicated to the nuclear sector, using predefined
blocks. The specification of this language complies with IEC (International Elec-
trotechnical Commission) standard 61804-1 [4] and the implementation is defined
by elementary blocks with reference to IEC standard 61131-3 [11].

During development phases, these models of the I&C system are subject to
verification with respect to the functional requirements, which is defined as Func-
tional Validation (FV) in IEC standard 61513 [9]. These models, specified in the
previously mentioned language, are formally verifiable but not directly executable.
As consequence, functional validation of these models are currently performed in
a manual way. Automated testing is only performed at the implementation level.
The actual approach, clearly fulfills the high quality requirements defined in the
standards of nuclear sector. However the cost is very high considering the inherent
evolution during the development process.

Functional Validation (FV) [9], is actually an activity of verification: verifica-
tion of model with respect to functional requirements.

Based on the conventional engineering approach, briefly presented above, “CON-
NEXION” gathers together a unique and complete set of modeling and verification
tools to automate the functional validation as much as possible. In particular,
the synchronous modeling language Lustre [52, 101] and its commercialized tool
SCADE [33] have been chosen by “CONNEXION” to recreate equivalently the
models of the I&C systems. Since SCADE models are machine readable and ex-
ecutable, they can be used to generate automatically test cases, with support of

44

appropriate tools. Another advantage is to apply formal methods and techniques
(e.g. model-checking [64]) to these models, considering that there are quite a few
formal verification tools for Lustre. “CONNEXION” has chosen GaTeL [126] from
CEA List. Other tools for models specified in Lustre include Lesar [99, 100], Kind2
[57], jKind [89], just to name a few. Each of of these tools supports a slight differ-
ent subset/extension of the Lustre language. The fact that Lustre is continuously
being developed (different versions) on the academic side adds more complexity to
the subject (see Sec. 2.4).

1.2 Thesis contributions

As part of the “CONNEXION” project, our research work benefits from the var-
ious tools provided by partners and an industrial case study of the nuclear I&C
system. We propose a model-based testing (MBT) methodology, including relat-
ed process, methods and tools, to enrich functional validation of the models of
the I&C system. The proposed methodology is not restricted to the nuclear sec-
tor and it can be generalized and applied to other safety-critical real-time systems.

Our methodology relies mainly on model checking so let’s briefly present this
technique. Model checking [19] was originally proposed as a formal verification
technique to evaluate the correctness of a model with respect to a given set of
properties. Model checkers are software tools that automate model checking. A
model checker considers every possible combination of input variables of the model,
making the verification equivalent to exhaustive testing. If the property is found
not true, the model checker returns a counterexample showing how the property
is proven false.

During the last two decades, model checking has first proved effective in hard-
ware verification [50, 83]; and more recently in software verification [113]. Model
checking has also been applied to the verification and analysis of safety critical
systems. In the avionic industry, model checking has been utilized in formal ver-
ification of important properties of flight control system [43, 132]. In the safety
analysis [95] of an embedded control system of a tunnel tube, model checking has
been used in proving functional correctness and assessing reliability of the system
[138].

As for the nuclear industry, model checking has been applied to the Korean
nuclear power plant automation systems [172, 118, 171]. Several critical logic er-
rors have been identified in programmable logic controllers that had been specified

45

as function block diagrams. In the work of Lahtinen et al. [121], a systematic
methodology for modeling function blocked based system designs in the nuclear
domain has been proposed. Model checking has also been utilized to perform
quantitative risk analysis [116].

As an enrichment and complement to these works, in this thesis model check-
ing is applied to reinforce functional validation of early designs of nuclear control
command system. Model checker is utilized in an iterative approach, as a test
generation tool. Functional validation of the system is subject to requirements
of functional correctness as well as of structural coverage criterion (MC/DC for
example). Coverage-based test objectives are specified as “trap properties” for the
model checker to force counterexample generation.

When use model checking on the specification of control/command system,
the physical environment model permanently interacting with this specification
must be taken into account. Due to their different characteristics, the physical
environment and the control/command system are specified using different mod-
eling languages. One solution would be rebuilding the environment with the same
specification language of the control/command, as presented in [43]. But this was
not the choice in the project “CONNEXION”. As a result we decided to using
assumptions about the environment to refine test generation by the model check-
er. We propose a technique to gradually adding these assumptions to get more
and more realistic test. This helps system experts to pass from open-looped test
(based only on structural coverage) to closed looped test (also related to func-
tional requirements). Furthermore, our methodology also takes into account the
“state explosion” problem of model checking and propose the “hybrid verification”
heuristic. The heuristic combines both model checking and simulation (see 4.4).
Finally, the project “CONNEXION” integrates multiple specifications at different
abstraction levels as well as various model-based engineering tools. The project
should be supported by an information system of traceability. We propose a design
of such a system with UML and a prototype of implementation.

The methodology proposed in this thesis targets the functional validation of
the models of a safety-critical RTS. The methodology consists of three major steps:

1. Prepare a set of test cases fulfilling the properties derived from the functional
requirements of the system under test (SUT). The test generation can be
automated with support of appropriate tools.

2. Execute these test cases on the model of the SUT and measuring the struc-
ture coverage of these test cases. Structure coverage and functional require-
ment coverage are not the same thing. A set of test cases covering 100% of

46

functional requirements does not necessarily execute every structural part
(e.g. a line of code) of the model.

3. For all uncovered structural part of the model, “testing with model checker”
approach is applied. A“trap property” [91] saying that this part can never
be executed is used to force the model checker to generate a counterexample.

The step 3 can produce several outcomes: (a) the model checker does not gen-
erate a counterexample, i.e., there is no test that can execute the structural part
under consideration. Further analysis is required since this is a sign of eventual
defects. (b) the model checker produces a counterexample which can be adapted
to a test case for the model. This test case enriches the original set of test by
improving its structural coverage. The structural part under consideration, and
possible other structural parts should be executed by the new test case. (c) the
model checker has a “time out” (TO): it stops the calculation without giving an
answer. “Time out” is usually due to the fundamental “state-explosion” problem
of model checking. However, the “time out” situation is rarely explored in the
literature on testing with model checkers.

In our methodology, we consider the TO of a model checker and propose a
heuristic referred to as hybrid verification: to combine model checking and sim-
ulation. Model checking explores the entire state space while hybrid verification
explores only a subset of all possible states. We also propose the elements for
putting hybrid verification into practice. These elements include in particular:

• Looking for a powerful and comprehensive model checking tool for the Lus-
tre language to perform hybrid verification. We review different versions of
the Lustre language and test several academic model checkers on the “CON-
NEXION” case study.

• Considering translating a model specified in Lustre to another modeling lan-
guage (e.g. SMV) to benefit from other model checking tools.

We come to the conclusion that to apply hybrid verification to an industrial-size
Lustre model, a single model checking tool may not be enough. Hybrid verification
combines several techniques: exhaustive state-space exploration, memorizing ex-
ploration traces, forward/backward trace generation, step-by-step simulation, etc.
An integration of several tools is one solution.

The methodology presented in this thesis applies to safety-critical real-time
systems. Let’s recall the fact that real-time systems are at first reactive systems
(Fig.1.2). They are interacting permanently to a physical environment. The RTS

47

and its environment are usually specified using different languages due to their
different nature and characteristics, which is the case in “CONNEXION”. This
results in two kinds of test and simulation:

– open-loop simulation is execution of the RTS itself. Open-loop test is ded-
icated for this kind of execution.

– closed-loop simulation is co-execution of the RTS as well as its environment.
Closed-loop test is dedicated for this kind of co-execution.

In “CONNEXION”, models of the I&C system and its physical environment
are specified using different languages. These models are integrated through a
platform to perform closed-loop simulation. Various models exchange data and
synchronize with each other via the Functional Mock-up Interface (FMI) [39].

It is important to precise that a model checker usually accepts one modeling
language. In our case, the model checker takes as input the Lustre model of the
I&C system. Counterexamples generated by the model checker can be interpreted
as open-loop test, i.e., executable only on the I&C system. An open-loop test does
not take into account how the environment reacts to the outputs produced by the
I&C system. Our research work concentrates on using model checkers to produce
open-loop counterexample. How to develop closed-loop test from open-loop data
requires expertise from system engineers and is not in the scope of the thesis. In
the practice, closed-loop test is more realistic and valuable than open-loop test
and sometimes necessary or even required. Therefore our methodology proposes
some techniques to help with the passage from open loop to closed loop. These
techniques are based on formalizing properties describing the physical environment
as invariant constraints for the model checker and using these properties to pro-
gressively refine the generation of counterexamples (Sec. 4.2).

Most safety-critical real-time systems have a long lifecycle, several decades in
the case of nuclear I&C system. During this time, both the I&C system and
its environment need to evolve, e.g., modification of a functional requirement of
the I&C system, addition of a new sensor to its physical environment, etc. As a
result, some partial renovations and limited modifications are to be made to the
system and/or its environment. The “new” system needs to, without any doubt, be
verified and validated. The techniques previously-mentioned allow to perform the
new V&V more efficiently. Consider that a property concerning the environment
has been changed. The modification can be taken into account through simply
changing certain constraints for counterexample generation by model checking.
Although the I&C system and its environment evolve independently, they are
both considered for new test generation.

48

1.3 Thesis organization

This thesis is organized as follows:

– Chapter 2 is a state of art on model checking and its applications, as well as
synchronous modeling languages, which ends up focusing on Lustre (language
chosen in “CONNEXION”).

– Sec. 2.1 introduces model checking preliminaries including transition
systems, temporal logic and properties and model checking algorithms.

– Sec. 2.2 discusses the application of model checking in testing as a
model-based testing approach. Traditional model checking problem
(property verification) can be transformed to a test generation problem
and model checkers can therefore be used to automatically generate
complete and large sets of test cases.

– Sec. 2.3 presents synchronous approaches since they are commonly-
accepted specification for real-time systems. Three French academic
synchronous languages (Esterel, Signal and Lustre) are briefly discussed
and compared, with a special focus on the Lustre language (choice of
“CONNEXION”).

– Sec. 2.4 is a short story of the Lustre language: different academic
versions, model checking tools for Lustre models, translators of Lustre
to other modeling languages, etc.

– Chapter 3 is dedicated to the project “CONNEXION”.

– Sec. 3.1 presents the triple V-model of the innovative system engineer-
ing lifecycle proposed in “CONNEXION”. Different from the V-model
(Fig. 1.3) and W-model (Fig. 1.4), the triple V-model introduces func-
tional validation at multiple levels during development phases.

– As a real-time system, the I&C system is in permanent interaction with
a physical environment. Models of the I&C system and its environment
are specified in different languages, which leads to the notions of open-
loop and closed-loop. Sec. 3.3 discusses the additional challenges due
to this characteristic.

– Partners of “CONNEXION” provide a complete and unique set of mod-
eling, verification and simulation tools. A brief presentation of these
tools are given in Sec. 3.2.

– Chapter 4 presents the model-based methodology to enrich functional vali-
dation.

49

– Our general methodology is presented in Sec. 4.1, including related
processes, methods and tools. Application of the methodology to a
simple example with support of “CONNEXION” tools is also discussed.

– Sec. 4.2 explains the techniques to support the passage from open-loop
counterexamples to closed-loop test cases.

– Sec. 4.1.3 discusses the “hybrid verification” as an heuristic to address
the time out of model checking.

– Chapter 5 is about the “CONNEXION” case study and related experiment
results.

– Sec. 5.1 gives a description of the case study SRI including its functions,
requirements and the physical environment to which it permanently
reacts.

– Experiment results of applying our methodology to SRI using “CON-
NEXION” tools is discussed in Sec. 5.2.

– To put hybrid verification into practice, three model checkers for Lustre
models are tested on the SRI model. Sec. 5.3 covers this aspect.

– Chapter 6 concludes the thesis with a synthesis of the proposed methodology
and experiment results as well as a discussion of future works.

50

Chapter 2

Model checking and its
application

In the context of software and hardware systems, verification usually requires more
time and effort than development. In a typical commercial development organi-
zation, the cost of debugging, testing, and verification activities can easily range
from 50% to 75% of the total development cost [96].

System verification and validation are independent procedures used for check-
ing that a system meets the requirements and specifications and that it fulfills its
intended purposes. Although often confused, verification and validation are not
the same thing.

Verification is the process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions
imposed at the start of that phase [2].

Validation is the process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies specified
requirements [2].

As Boehm [41] points out:

• Verification: “Have we made what we were trying to make ?”, i.e., does the
product conform to the specifications?

• Validation: “Are we trying to make the right thing ?”, i.e., is the product
specified to the user’s actual needs?

51

Formal methods are a particular kind of techniques to apply mathematically
based methods for the specification, development and verification of systems. The
aim is to prove the correctness (or incorrectness) of the system under consideration
in a mathematically rigorous manner. The use of formal methods for software and
hardware design is expected to contribute to the reliability and robustness of the
design. As Dijkstra points out: “Testing shows presence not the absence of bugs”.
Formal methods aim at proving the absence of bugs.

Research in formal methods during the last two decades has resulted in the
development of some promising verification techniques. These techniques offer a
large potential in early detection of defects in the design process. They are also
supported by powerful software tools that can be used to automate various ver-
ification steps and thus reduce verification cost. The great potential of formal
methods has led to an increasing use by engineers for the verification of complex
systems, especially in the case of safety related systems. According to standards
of the IEC (International Electrotechnical Commission) and the ESA (European
Space Agency), formal methods are one of the “highly recommended” verification
techniques for safety-critical systems.

In the early 1980’s, model checking is introduced as a formal verification tech-
nique. It originates from the independent work of two pairs: Clarke and Emmerson
[61]; Sifakis and Queille [145]. The motivation was to encompass concurrent sys-
tems [63, 124] and to avoid the difficulties with manual deductive proofs [74].
Starting with a formal specification of the system (i.e. system model), model
checking is a verification technique that explores all possible states of the system.
The aim is to prove with mathematical rigor whether the system model truly sat-
isfies a certain property. Model checker is the software tool that automates model
checking. State-of-the art model checkers can handle state spaces of about 108 to
109 states with explicit state-space-exploration algorithms. Larger state spaces,
1020 up to even 10476 states, can be handled for specific problems, using clever
algorithms and tailored data structures [19]. However, state explosion problem
remains a big and fundamental problem of model checking. Due to state explosion
problem, model checkers can “time out” (TO): end the calculation without giving
an answer to the verification problem. In recent years, model checking techniques
have raised the interest of many safety-critical industries such as railway signaling
[42] and avionics [43, 133].

A model checker takes as input an automaton-based model of the system and
a property formalized as temporal logic formula. The system model is usually
automatically generated from a model description specified in some dialect of pro-

52

Figure 2.1: Model checking approach

gramming languages, such as Verilog or VHDL for hardware description and C
or Java for software description. The property specification prescribes what the
system should or should not do; whereas the model describes how the system be-
haves. The model checker then tries to explore the entire state space of the system
model to determine whether the property is satisfied. If the state space explo-
ration shows no property violations, then correctness with regard to the property
is formally proved. Should a property violation be detected, the model checker is
able to return a counterexample illustrating how the violation happens. With the
help of a simulator, the violation scenarios can be played on the system model and
useful debugging information can be obtained (see Fig. 2.1). The error may exist
in the system model, or in the property specification or even in the model checker
itself.

The complexity of a model checking problem depends on the complexity of the
model. The third possible outcome of a model checking problem is “time out”
(TO). The model checker terminates calculation without giving an answer to the
property verification. TO is related to the fundamental state explosion problem
of model checking. In fact, the state space grows exponentially with the number
of variables of the model and quickly becomes too large for the model checker to
explore. In the literature, the time out problem is naturally regarded as the result
of state explosion and therefore rarely explored.

As a formal verification tool, model checkers are capable of providing coun-
terexample illustrating property violations. Normally these counterexamples are
meant to guide the analysis of discovering and locating defects in the system’s
specification. However they can also be very useful when interpreted as test cases,
which has led to the idea of testing with model checkers. The main challenge is to
force the model checker to automatically and systematically generate counterex-
amples; these counterexamples can then be used as test cases executable on the
system model to fulfill specific testing purposes. In the late 1990’, Callahan et al.

53

[51] and Engels et al. [77] initially proposed to use model checkers for the auto-
mated generation of test cases. Two decades of research on testing with model
checkers has resulted in many different techniques of test generation, many prob-
lems have been solved, yet many issues remain.

This chapter is organized as follows: in Sec. 2.1 basic concepts regarding
model checking technique are presented; Sec. 2.2 discusses several main stream
approaches of automated test generation with model checkers; Sec. 2.3 presents
and compares three synchronous modeling languages (Esterel, Signal, Lustre) for
specifying real-time systems. We focus on the Lustre language as it has been
chosen as the model description language in “CONNEXION”; Sec. 2.4 reviews
the the story of Lustre including different academic versions, model checking tools,
translator of Lustre to other modeling languages, etc.

2.1 Model checking preliminaries

2.1.1 Transition systems

The first prerequisite for model checking is a model of the system under considera-
tion. In computer science, transition systems are often used as models to describe
the behavior of hardware and software systems. They are illustrated by directed
graphs where nodes represent states and edges state transitions. A state describes
some information about a system at a certain moment of its behavior. Transi-
tions specify how the system can evolve from one state to another. The system is
only in one state at a time, the state it is in at any given time is called current state.

In the following we include transition labels for the transitions and atomic
propositions for the states. Transition labels typically represent input expected,
conditions to trigger the transition, or actions performed during the transition.
Atomic propositions express known facts about the states of the system under
consideration.

Definition 9. Transition System.

A transition system TS is a tuple (S,E, T, S0, AP, L):

• S is a set of states;

• E is a set of labels;

• T ⊆ S × E × S is a set of labeled transitions.

54

• S0 ⊆ S is a set of initial states;

• AP is a set of atomic propositions;

• L : S → 2AP is a labeling function mapping each state to a set of atomic
propositions that holds in this state.1

TS is called finite if S, E and AP are finite.

For convenience, we write p
e−→ q instead of (p, e, q) ∈ T , where p, q ∈ S and

e ∈ E.

The labeling function L relates a set L(s) ∈ 2AP of atomic propositions to a
state s ∈ S. L(s) denotes those atomic propositions which are satisfied by state
s. We know formally define the notion of “a formula satisfied in a given state”.
Given that Φ is a propositional logic formula, then s satisfies the formula Φ if the
evaluation induced by L(s) makes the the formula Φ true: s |= Φ iff L(s) |= Φ.

The definition of transition system given above includes labels for both tran-
sitions and states. This definition encompasses Kripke structure [120], another
formalism commonly used to describe model checking. A Kripke structure is basi-
cally a transition system where the labels of transitions are omitted and only the
labels of states are kept.

Fig. 2.2 is a graphical representation of a very simple transition system, in a
block diagram style at left and in an automaton style at right. This example is
a function referred to as “HOP”, extracted from the case study SRI discussed in
Chapter 5. The system has three boolean variables, two inputs HP , E and one
output yL. The system has two states based on the output yL. Note that there
are two initial states as we do not make any assumption about the initial values of
the three variables. For boolean variables, the value true is denoted by 1 and the
value false denoted by 0. The transitions from the state yL = 1 are only related to
the input variable HP : if HP = 0 then the system stays in this state, otherwise
the systems “jumps” to another state yL = 0. The input variable E is irrelevant
in this case. When the system is the state yL = 0, it will change state only when
the next input vector is (HP = 0, E = 1), otherwise it stays in the same state.
The evaluation of input variables can also be used as transition labels.

In the case study SRI, the function HOP plays an important role in regulating
water level in a tank. The input variable HP is the result of comparing measured

1Recall that 2AP denotes the power set of AP .

55

Figure 2.2: Graphical representation of a finite transition system

water level in the tank with a predefined constant max (the high threshold). The
input variable E is the result of comparing measured water level in the tank with
a predefined constant min (the low threshold). HP = 1 and E = 0 denote that
the water level in the tank already exceeds the high threshold, which results in
the output yL = 0 (stop adding water into the tank). HP = 0 and E = 1 denote
that the water level in the tank is lower than the low threshold, which results in
yL = 1 (start adding water into the tank). All possible combinations of the input
variables are summarized in Table 2.1.

According to the formal definition of transition system, we should define a set
of atomic propositions and a labeling function mapping each state to those atomic
propositions that hold and only hold in the state. The atomic propositions in the
transition system depend on the properties under consideration. A simple choice
is to let the state names act as atomic propositions, i.e., L(s) = s. However, if
we want to verify the relation between the input variables HP,E and the output
variable yL, the atomic proposition “the input variable E that the system has just
received can never be 1” holds and only holds in the state yL = 1.

This example illustrates a certain arbitrariness concerning the choice of atomic
propositions and transition labels. They will be casually dealt in the following.

HOP can be unwinded into an infinite execution tree (Fig. 2.3). Now we for-

56

Inputs Meaning Output
HP=1 and E=0 water level >max yL=0
HP=0 and E=0 water level is normal yL does not change value
HP=0 and E=1 water level <min yL=1
HP=1 and E=1 practically infeasible yL=0

Table 2.1: Application of function HOP in regulating water level

Figure 2.3: Execution tree of the transition system HOP

malize the behaviors of a transition system using the notion of path and execution.

Definition 10. Path. A path of a transition system TS = (S,E, T, S0, AP, L) is
a sequence σ = 〈s0, s1, s2, . . .〉 such that ∀i ≥ 0, (si, ei, si+1) ∈ T . The length of a
path σ, denoted |σ| can be finite or infinite.

Definition 11. Execution.
A partial execution of a transition system TS = (S,E, T, S0, AP, L) is a path start-
ing from the initial state s0, where s0 ∈ S0. The length of a partial execution can
be finite or infinite. An execution is called maximal when it can not be extended.
It is either infinite, or ends in a state out of which no transition is possible (we
speak of a deadlock in this case). An execution can be seen as a “branch” in the
execution tree.

57

We conclude these definitions by introducing the notion of reachable state. A
state is said to be reachable if there exists at least one execution in which it ap-
pears. A model called parallel program schema for the representation and study of
programs containing parallel sequencing has been presented [115] including formal
definition of reachability sets.

2.1.2 Temporal Logic and properties

Model checking consists in verifying with mathematical rigor the system model
with respect to some properties of the system. Both the system model and the
properties to verify need to be described in a precise and unambiguous manner.
Temporal logic is a mathematical formalism tailored for statements and reasoning
where time is involved. It offers special operators for time, fairly close to natu-
ral language statements (the adverbs “always”, “until”, etc). It also comes with
a formal semantics, making temporal logic an indispensable tool for formalizing
properties concerning dynamic behaviors of a system.

The most common temporal logics are the LTL (Linear Time Logic) [142]
and the CTL (Computation Tree Logic) [62]. Time can either be interpreted
to be linear (LTL) or branching (CTL). Both logics are subsets of CTL*, intro-
duced by Emerson and Halpern [75]. Most model checkers support either LTL
or CTL, or sometimes both. Other temporal logics used for model checking are
HML (Hennessy-Milner Logic) [104], Modal µ-calculus [119], and different flavors
of CTL such as timed [14], fair [76] or action [137] CTL.

The logic CTL* served to formally state properties concerned with the execu-
tions of a transition system. It consists of the following elements:

1. Atomic propositions φ ∈ AP .

2. Boolean operators:

• Constants true and false.

• Logical “not” ¬, logical “or” ∨, logical “and” ∧.

• Logical implication ⇒ and double implication ⇔. For φ, ψ ∈ AP ,
φ⇒ ψ means if φ then ψ; ⇔ states “if and only if”.

• Temporal operators X, F, G and U. Xφ states that φ holds for the next
state; Fφ states that a future state satisfies φ without specifying which
state; and Gφ that all the future states satisfy φ, i.e φ will always hold.

58

CTL* syntax CTL LTL
Atomic Propositions φ ∈ AP 3 3

Boolean operators true, false, ¬, ∨, ∧ 3 3

Logical implication ⇒, ⇔ 3 3

Temporal operators X, F, G, U 3 3

Path quantifiers A, E 3 7

Table 2.2: CTL and LTL syntax comparison

U is the “until” operator. For φ, ψ ∈ AP , φUψ states that φ holds true
until a state where ψ is satisfied.

• Path quantifiers A and E. The logic presented above deals with only
one path of execution. There remains to express that several paths are
possible starting from a given state. The path quantifiers allow one to
quantify over the set of executions. Aφ states that all the executions
out of the current state satisfy φ; whereas Eφ states that there exists
an execution out of the current state where φ holds.

CTL adopts all the boolean and temporal operators as well as the path quan-
tifiers listed just above. It is the subset of CTL* obtained by requiring that each
temporal operator is immediately preceded by a path quantifier. This means that
CTL formulas are state formulas, i.e. true in a specific state. In contrast LTL
contains no path quantifiers and therefore LTL formulas are considered to be path
formulas.

Definition 12. CTL Syntax. The concepts presented above lead to the following
formal grammar of CTL:

φ, ψ ::=a ∈ AP |¬φ|φ ∨ ψ|φ ∧ ψ|
AXφ|AFφ|AGφ|A(φUψ)|
EXφ|EFφ|EGφ|E(φUψ)

The CTL semantics can be expressed by satisfaction relations for state formu-
las. TS, s |= φ denotes that a state formula φ is satisfied in state s of a transition
system TS. Paths(TS, s) denotes the set of paths starting from the state s of a
transition system TS. For a path σ, σ0 is its initial state and σi is the ith state
with i ∈ N.

Definition 13. CTL semantics. Satisfaction of CTL formulas by a state s ∈ S of
a transition system TS = (S,E, T, S0, AP, L) is defined as follows, where a ∈ AP ,

59

TS, s |= a ⇐⇒ a ∈ L(s) ∧ s ∈ S
TS, s |= ¬φ ⇐⇒ ¬(TS, s |= φ)

TS, s |= φ ∨ ψ ⇐⇒ (TS, s |= φ) ∨ (TS, s |= ψ)

TS, s |= φ ∧ ψ ⇐⇒ (TS, s |= φ) ∧ (TS, s |= ψ)

TS, s |= AXφ ⇐⇒ ∀σ ∈ Paths(TS, s) : TS, σ1 |= φ

TS, s |= AFφ ⇐⇒ ∀σ ∈ Paths(TS, s) : ∃i ∈ N : TS, σi |= φ

TS, s |= AGφ ⇐⇒ ∀σ ∈ Paths(TS, s) : ∀i ∈ N : TS, σi |= φ

TS, s |= A(φUψ) ⇐⇒ ∀σ ∈ Paths(TS, s) : ∃i ∈ N : i ≥ 0 ∧ ∀j < i : TS, σj |= φ ∧ TS, σi |= ψ

TS, s |= EXφ ⇐⇒ ∀σ ∈ Paths(TS, s) : TS, σ1 |= φ

TS, s |= EFφ ⇐⇒ ∀σ ∈ Paths(TS, s) : ∃i ∈ N : TS, σi |= φ

TS, s |= EGφ ⇐⇒ ∀σ ∈ Paths(TS, s) : ∀i ∈ N : TS, σi |= φ

TS, s |= E(φUψ) ⇐⇒ ∀σ ∈ Paths(TS, s) : ∃i ∈ N : i ≥ 0 ∧ ∀j < i : TS, σj |= φ ∧ TS, σi |= ψ

The difference between A and E is illustrated in Fig. 2.4.
The two most common categories of properties are:

• Safety properties: a safety property expresses that, under certain condi-
tions, some event (usually something bad) should never occur.

• Liveness properties: a liveness property expresses that, under certain con-
ditions, some event (usually something good) will eventually occur.

To formally express the two types of properties using temporal logic CTL, a
safety property AG¬φ indicates that some “bad thing” φ will never happen; a
liveness property can be written as AG(φ⇒ AFψ), where ψ represents the “good
thing” that ultimately happens whenever φ is true.

2.1.3 Model checking algorithms

Given a model M and a property φ of the system under consideration, the model
checking algorithm answers the question “whether M satisfies the property φ ?” in
a mathematically formal manner. Should a property violation detected, a model
checker is capable to return a counterexample, illustrating how the violation oc-
curs. Several different algorithms have been proposed, for property specification
in different temporal logics, and using different data structures. As mentioned
before, LTL formulas are considered to be path formulas as well as CTL formulas
state formulas. Consequently, counterexamples for LTL formulas are also linear

60

Figure 2.4: Comparison of path quantifiers A and E

sequences; whereas counterexamples for CTL formulas are a set of states and spe-
cial algorithms [60] are then used to derive example paths.

Explicit (state) model checking is the first generation of successful model check-
ing algorithms. Different approaches for LTL-based properties [124, 167] and CTL-
based properties [63, 145] have been proposed. Explicit model checking explores
explicitly the state space of a model and searches by forward exploration until a
property violation is founded. In LTL model checking, the exploration algorith-
m can be depth-first or breadth-first: breadth-first approach finds the shortest
possible counterexamples but demands significantly higher in memory use than
depth-first approach. In CTL model checking, the set of all the states satisfying
the given property are determined by recursively calculating the satisfied sub-
formulas for each state. If all states are visited and no violation is detected, the
model is considered to satisfy the property.

It is not surprising to see that explicit model checking approaches quickly en-
counters the state explosion problem. The second generation of model checking
algorithms, symbolic model checking [129], uses a particular data structure called

61

Model checker Input model language Model checking technique
SPIN Promela Explicit
Kronos, Open-Kronos Timed automata

Symbolic
SMV SMV
NuSMV SMV

Symbolic and bounded (SMT based)
SAL SAL

Table 2.3: A summarize of some model checkers for different languages and tech-
niques

BDD (Binary Decision Diagrams) [47, 48]. The application of BDD to model
checking was suggested by three different groups [66, 50, 141]. BDD is used to
represent more efficiently state sets and function relations on these states and thus
allows the representation of significantly larger state space.

Bounded model checking [37] is the third generation of model checking algo-
rithms. The model checking problem is reformulated to a constraint satisfaction
problem (CSP), which allows using the propositional satisfiability (SAT) solvers
to calculate counterexamples to a certain upper bound. Bounded model check-
ing and traditional model checking techniques supplement each other: bounded
model checking has been successfully applied to systems where traditional model
checking fails; there are also many cases where bounded model checking fails while
symbolic model checking is efficient.

Regarding the tools for different model checking techniques, SPIN (Simple
Promela Interpreter) developed by Holzmann and Murray [105], is a common-
ly used explicit model checker. Kronos [45] and its successor Open-Kronos[164],
SMV [128] and its deriviative NuSMV [59], as well as SAL (Symbolic Analysis
Laboratory) [68], these model checkers perform symbolic model checking. NuS-
MV and SAL also support bounded model checking. All these tools are open
source and available via Internet. Table 2.3 gives a summarize of model checkers
based on different model checking techniques.

2.2 Testing with model checkers

The main idea of testing with model checkers is to force model checkers to sys-
tematically generate counterexamples and then interpret these counterexamples as
test cases. Model checking is originally proposed as a formal verification technique
and a model checking problem is normally a property verification problem. On the

62

other hand, test cases are related to certain test purposes, describing the desired
characteristics of test cases. If the test purposes can be specified in temporal logic
and then used as properties to force the model checker to generate counterexam-
ples, the test generation problem is actually transformed to a “traditional” model
checking problem (see Fig. 2.5).

Definition 14. Test case.

A test case t related to a transition system TS = (S,E, T, S0, AP, L) is a finite
sequence 〈s0, s1, . . . , sn〉 where ∀0 ≤ i < n, (si, ei, si+1) ∈ T and s0 ∈ S0.

Definition 15. Test suite.

A test suite is a finite set of n test cases. The size of the test suite is n. The
length of the test suite is the sum of the lengths of its n test cases.

Figure 2.5: Testing with model checkers

The first challenge of using a model checker as a test generation tool is to
specify test purposes as formal properties using temporal logic. It is important
to notice that the property specification should be the negation of a test pur-
pose so that a counterexample violating the property actually satisfies the test
purpose. Early research work on testing with model checkers involved manually

63

specifying the negation of test purposes as “never-claims” [77]. Test purposes are
specified as properties in temporal logic, then model checking a never-claim (nega-
tion of a property) on a model. The model checker returns a counterexample if
the never-claim becomes false at some point. The counterexample illustrates how
the violation of the never-claim occurs, and thus illustrates how the original test
purpose is fulfilled.

Manual specification of test purposes can lead to efficient test cases, but to
ensure complete coverage of all possible system behaviors remains difficult. Many
different techniques have been proposed to automatically and systematically de-
rive complete sets of test cases. Most of them follow the idea of never-claims. A
popular approach is to automatically create properties based on coverage criteria
(see Sec. 4.1.1), since coverage criteria are very commonly used test purposes. The
properties based on coverage criteria are initially called “trap properties” [91], for
each item that should be covered, one trap property is generated. A trap property
states that certain item could never be covered by any execution. Model checking
the trap property results in a counterexample illustrating how the item can be
covered, if the trap property is violated.

The idea of coverage-based test generation using model-checking has already
been studied by a few researchers. [92] proposes using a model-checker to generate
a test case that covers certain areas of the program. [146] uses model-checking to
perform reachability analysis, i.e. whether certain areas can ever be covered by any
test case. In [81], model-checking is used to derive test cases from all uncovered
branches to enhance structural coverage. [92] and [146] explain how one test case
can be built as [81] presents a procedure for dealing with every uncovered branch.
To answer the question ”how to design a test case using model-checking”, [147]
presents a framework where structural coverage criterion MC/DC is formalized as
temporal logic formula used to challenge a model-checker to find test cases. Also
in [78], are demonstrated techniques of using model-checker to generate test cases
from coverage criteria including branch coverage and MC/DC.

The majority of coverage based test generation approaches use some struc-
tural coverage criterion based on the model. It is sometimes desirable to create
test cases based on other test purposes than coverage criteria. Examples of differ-
ent techniques include requirements based approach and mutation based approach.

Requirements based test generation [51, 170] uses requirement properties as
test purposes. Challenging the model checker with the negation of a requirement
property results in a counterexample. But this counterexample is not always nec-

64

essarily useful regarding the property. For example, negating a safety property
might result in a counterexample consisting of only one state (the initial state).

Mutation based approach involves intentionally modifying a program or spec-
ification in small ways. Each mutated version is called a mutant. Then a model
checker is used to show how much those mutants differ from the original model.
The difference is shown with sequences that can be used as test cases. Mutation
testing was originally applied to source code [70], and later then to specification
[49]. Regarding testing with model checkers, Ammann and Black [3] first intro-
duced specification mutation for coverage analysis; Ammann et al. [15] initially
suggested the use for test case generation. More details regarding different test
generation techniques using model checkers can be found here [86, 87].

After choosing the strategy of triggering counterexamples generation, next chal-
lenge is to interpret these counterexamples as test cases. This depends on several
factors: the types of the system under test, the abstraction level of the model with
respect to the system, etc. In the literature, testing with model checkers is most
commonly applied to reactive systems [97]. A reactive system communicates with
an environment, reading input values and sending output values, as shown in Fig.
1.2. The model of a reactive system usually consists of vectors of input and output
variables, and possibly internal variables. For this kind of model, counterexamples
generated by model checkers are sequences of valuations for input, output and in-
ternal variables. Such counterexamples are directly usable as test cases, consisting
of input data and the expected output data. Although testing with model checkers
is not limited to reactive systems, the mapping from counterexamples to test cases
is less obvious for other kind of systems [106, 107].

The execution of test cases also depends on the type of the system under test
and the abstraction level of the model used for test generation. In the literature,
a common scenario of execution on reactive systems is preformed in a cyclical
manner: in each cycle the system receives stimuli (inputs), performs some calcu-
lations and sends the results as outputs. The observation of an execution leads
to the problem of oracle [24]. An oracle specifies the expected outcome of a test
as applied to a tested object. The use of oracles involves comparing the expected
output for a specified input to the observed output sent by the system under test.
The result can either be fail if the observed output does not match the oracle; or
pass if otherwise.

65

2.3 Synchronous approach for real-time systems

Let’s first briefly present reactive systems before talking about synchronous lan-
guages. The term “reactive systems” was first introduced in 1985 by Harel and
Pnueli [103]. Now it is commonly accepted to designate a system permanently in-
teracting with a physical environment. The reactive system receives input from the
environment (sensors, actuators, human operators, etc) and responds with calcu-
lated output to the environment (Fig. 1.2. It is important to precise that reactive
systems have to react to an environment which can not wait. This distinguishes
reactive systems from interactive systems. Interactive systems permanently com-
municate with an environment, at their own speed (make the environment wait).
Concurrent processes in operating systems or in data-base management are gener-
ally interactive. Reactive systems also differ from transformational systems, which
are classical programs beginning with initial data and terminating with providing
calculated results (a compiler for example).

In the literature, the specific features of reactive systems have been pointed
out several times [35, 31][97]:

• Deterministic concurrency: unlike most interactive systems, reactive systems
are generally deterministic and their description involves concurrency. The
concurrency comes from several reasons: reactive systems run in parallel
with their environment; their implementation is quite often distributed for
reasons of performance and fault tolerance, etc. Most of the time, even if the
systems are implemented in a centralized way, it is convenient to describe
them as parallel modules.

• Synchrony: reactive systems should support the simple and commonly used
implementation schemes in Fig. 2.6, where all mentioned actions are assumed
to take finite memory and respect time constraints. Time constraints concern
input frequencies and input-output response time. They are introduced by
the environment and should be imperatively satisfied.

• Critical reliability: most of reactive systems are highly safety-critical, such as
control/command system in a nuclear power plant or a commercial aircraft
flight control system. The application domain of reactive systems requires
very careful design and very stringent verification. As mentioned at the
beginning of this chapter, formal methods should be used with higher priority
for safety-critical systems.

Fig. 2.6 illustrates two common execution schemes as a way to implement a
reactive system by a single loop [97]. The program scheme is either “event driv-
en”, if each reaction is triggered by an input event; or “sampling driven”, which

66

consists in periodically sampling the inputs. In both cases the program typically
implements an automaton: the states are the valuations of the memory and the
transitions correspond to the reactions. With their simplicity and efficiency, au-
tomata are useful tools to describe reactive systems, but they are very difficult
to design by hand. As a result, synchronous languages [26] have been proposed
around the nineties aiming to provide high level and modular constructs to make
design easier.

Figure 2.6: Two common execution schemes for reactive systems

Statecharts [102] proposed by Harel in the early eighties are probably the first
and most popular formal language for the design of reactive systems. However, s-
tatecharts were proposed more as a specification formalism than as a programming
languages. Moreover, determinism is not ensured and many semantic problems
were raised [23]. Around the nineties, three synchronous programming languages
were proposed by French academic groups: Esterel [36, 32], Signal [122, 28, 29]
and Lustre [52, 101]. All these programming languages share some same prin-
ciples: synchronous hypothesis and deterministic concurrency. In practice the
synchronous hypothesis assumes that the program is able to react to an external
event before any further event occurs. These synchronous languages also differ
from each other in style, which results in different application domains. In the
following we first introduce separately the three french synchronous languages and
then focus on Lustre, since it’s the language chosen in the project “CONNEXION”
as well as in this thesis.

2.3.1 Esterel

Esterel is an imperative synchronous language developed at Ecole des Mines and
Inria Sophia Antipolis. Esterel provides usual constructs such as assignments of

67

variables, making control decisions, etc (see Table 2.4 for a sampling of the com-
plete language [27]). An Esterel program consists of nested, concurrently running
threads whose execution is synchronized to a single global clock. At the beginning
of each reaction, each thread starts its execution or resumes if it was paused in
the last reaction, performs imperative code and finally terminates or pauses for
the next reaction.

Esterel has been successfully applied in design of synchronous circuits. Most
hardware description languages(for example Verilog [161, 6] and VHDL [8]) are
very useful in designing the data part of a circuit, however, they are of little help
when it comes to describe complex hardware controllers. This explains the success
of Esterel in this field. Some references about the application of Esterel can be
found here [155, 153, 163].

Statement Interpretation
emit S Make signal S present immediately
present S then p else q end If signal S is present, perform P otherwise q
pause Stop this thread of control until the next reaction
p; q Run p then q
loop p end Run p; restart when it terminates
await S Pause until the next reaction in which S is present

p ‖ q
Start p and q together;
terminate when both have terminated

abort p when S
Run p up to, but not including,
a reaction in which S is present

suspend p when S Run p except when S is present
sustain S Means loop emit S; pause end
run M Expands to code for module M

Table 2.4: Some basic Esterel statements

2.3.2 Signal

Another data-flow synchronous language Signal was developed at IRISA Rennes.
Based on the synchrony hypothesis, the semantics of Signal is defined via a math-
ematical model of multiple-clocked flows. Signal handles (possibly infinite) se-
quences of data and events with respect to a discrete time scale and such sequences
are referred to as signals. At a given instant, signals may have the state absen-
t or the state present. All the signals taking the state present simultaneously

68

are said to possess the same clock, and they are said to possess different clocks
otherwise. so clocks can be considered as equivalence classes of signals that are
always present simultaneously. Signal offers operators relating clocks to the values
of various signals involved in a given dynamic system. Such systems have been
referred to as Multiple-Clocked Recurrent Systems (MCRS) [26] and Signal is a
multiclock language. Using Signal to specify this kind of system releases the
programmer from the burdens of handling explicitly multiple time indices. Every
signal has a associated clolck and an implicit time index and the operators define
relations between these time indices.

Table 2.5 gives a sampling of Singal operators. The state absent of a signal
at a given instant is marked by ⊥. Xτ denotes the status (⊥ if absent or actual
carried value if present) of a signal X in an arbitrary reaction τ . The first two s-
tatements concern signal possessing the same clock. They are called single-clocked
statements. Integer k represents the instants at which signals are present. Note
that the index k is implicit and does not appear in the syntax. op denotes a basic
operator operating pointwisely to the sequence of values of a signal (e.g. +, *,
...). The third and forth statements concern signals possessing different clocks.
They are referred to as multiclocked statements. More details regarding Signal
semantics can be found elsewhere [122, 27].

Statement Meaning

Single-clocked
Z := X op Y

Zτ 6=⊥⇔ Xτ 6=⊥⇔ Yτ 6=⊥,
∀k : Zk = op (Xk, Yk)

Y := X$1
Xτ 6=⊥⇔ Yτ 6=⊥,
∀k : Yk = Xk−1(delay)

Multiclocked
X := U when B

Xτ = Uτ when Bτ = true,
otherwise Xτ =⊥

X := U default V
Xτ = Uτ when Uτ 6=⊥,

otherwise Xτ = Vτ

Table 2.5: A sampling of Signal operators

2.3.3 Lustre

Lustre is a synchronous data-flow language developed at CNRS Grenoble. Lustre
is based on two fundamental notions:

• flow : each Lustre variable and expression is considered as a flow, i.e., a
(possibly infinite) sequence of values of a given type.

69

• clock : a clock represents a sequence of times

Each flow is associated implicitly to a clock: the flow takes the nth value of its se-
quence at the nth instant of its clock. If the behavior of a system can be described
in a cyclic manner, then that cycle defines a sequence of times called the global
clock (also called the basic clock). Any flow whose clock is the global clock takes
the nthvalue at the nth execution cycle. Other different clocks can be defined with
respect to the global clock using a boolean-valued flow: for example the clock is a
sequence of times when the boolean flow takes the value true.

The notion of “clock” introduces a discrete time scale. For a synchronous
language, the time granularity must be adapted a priori to the time constraints
imposed by the environment to which the system reacts. The time granularity
concerns the input frequencies and the input-output response time. Both times
should be considered negligible with respect to one cycle of the global clock. In
other words, between two successive cycles, there are no external events (new in-
puts coming from the environment) and the time to compute outputs from inputs
is considered negligible to the duration of one cycle. As a result, inputs are taken
into account and outputs are computed “at the same time” with respect to the
discrete time scale. The synchrony hypothesis should be validated a posteriori.
The functional behavior of a system described in Lustre does not depend on the
clock cycle. Therefore, it is possible, and probably more convenient to perform a
functional validation of the system description on another machine (e.g. the devel-
opment machine) rather than the target machine. The time validation, however,
must be performed on the target machine. If the input-output computation time
is less than the time interval between two successive instants on the global clock,
the synchrony hypothesis is considered satisfied. The computation time depends
on software and hardware performance. The time constraint (interval between two
successive instants) is usually imposed in the requirement specification.

A Lustre program describes the relations between its inputs and outputs through
variables and equations. Each variable is a flow, so variable X and Y are respec-
tively (x1, x2, · · · , xn) and (y1, y2, · · · , yn). The equation X = Y denotes xi = yi
with 0 ≤ i ≤ n. When two variables are considered identical, they have the same
sequence of values and the same clock. In a Lustre program, the order of the
equations does not matter, which is one important principle of the language: the
substitution principle. An equation such as X = Y is oriented in the sense that
it defines X and the way X is used in other equations can not give it more prop-
erties than those coming from its definition. As a result, X can be substituted
to Y anywhere in the program and vice versa. Extra (internal) variables can be
created just to give names to expressions. Lustre offers a few basic data types:

70

boolean, integer, real and a type constructor tuple. Other complex types
can be imported from a host language (e.g. C/C++) and handled as abstract
types. It is also possible to import functions from a host language. Constants are
flows have constant sequences of values following the global clock. Their types can
be the basic types or imported complex types.

An equation is expressed through variables and operators. Lustre offers usual
operators over basic types:

• arithmetic operators: +, -, *, /, div, mod

• boolean operators: not, and, or

• relational operators: =, <, <=, >=, >

• control operator: if then else

These operators are called data operators and they only operate on variables
or expressions sharing the same clock. Data operators work in a pointwise manner
on the sequences of values of their operands. Lustre also has two “temporal”
operators:

• operator pre (“pevious”) refers to the value of its operand at the previous cy-
cle: for a flowm = (m1,m2, · · · ,mn, · · ·), pre(m) = (nil,m1,m2, · · · ,mn, · · ·)
where nil denotes a undefined value.

• operator -> (“initialization”) is used to assign to its operand the value
at the initial cycle: for two flows m = (m1,m2, · · · ,mn, · · ·) and s =
(s1, s2, · · · , sn, · · ·), m -> s denotes a flow (m1, s2, · · · , sn, · · ·). Actually
the flow m -> s is equal to the flow s except for the first cycle.

The data types and operators mentioned above constitute the so-called “Lustre
core” [112], which is the common syntax shared by different versions of Lustre.
The two most commonly used version are Lustre V4 and Lustre V6. We will get
into more details on this subject in the following section. The semantics of Lustre
can also be given in terms of linear temporal logic [135].

Fig. 2.7 gives as example a simple counter described using Lustre. The counter
is graphically presented in a style very familiar to control engineers. The counter
has two integer inputs m and n and one integer output s. At every execution cycle,
the counter calculates the product of m and n and add the result to the value of
s at the previous cycle. We immediately recognize the two temporal operators ->
and pre. A constant integer 0 initialize the flow s. As a reminder, a constant is

71

Figure 2.7: A simple counter described using Lustre operators

also a flow so 0 = (0, 0, ...,). The “initialization” operator -> actually only effects
the first (initial) cycle so it can be considered “disappeared” for the following cy-
cles.

The same counter (Fig. 2.7) described in Lustre program looks like the follow-
ing. An internal variable p is defined as the result of m ∗ n. Table 2.6 gives the
values of all the flows in an execution of the counter.

node counter (m, n: int) returns (s:int);

var p: int;

let

p = m * n;

s = 0 -> p + pre(s);

tel

Cycle 1 2 3 4 5 ...
m 1 3 5 7 9 ...
n 2 4 6 8 10 ...
p 2 12 30 56 90 ...
s 0 12 42 98 188 ...

Table 2.6: Example of an execution of the counter

In a Lustre program, we distinguish two types of structures:

• operator: the basic operators (including temporal operators) described just
above; operator can be seen as a low-level node.

• node: a sub-program defining relations between its output parameters and
input parameters, through a set of unordered equations and possibly local

72

variables. Once declared, a node can be freely instantiated anywhere in the
program, just as a basic operator.

Through the notions of operator and node, Lustre naturally offers a hierar-
chical description and component reuse. A Lustre program is thus structured
into a hierarchical network of nodes and operators, as shown in Fig. 2.8.

Figure 2.8: Lustre program structure

Now we can easily describe the function HOP (Fig. 2.1) as a Lustre node:

node HOP (HP, E: bool) returns (yL:bool);

let

yL = 0 -> if HP then false

else if E then true

else pre(yL);

tel

The automaton in Fig. 2.1 does not impose any condition on the initial state,
however in the Lustre program, the first value of yL is set to false i.e. 0. An
example of execution is given in Table 2.7.

2.3.4 A brief summary

Nowadays, synchronous languages are widely accepted as a technology of choice
for specifying, modeling, validating, and implementing real-time systems. The

73

Cycle 1 2 3 4 5 ...
HP false false false false false ...
E true true true false true ...
pre(yL) nil false true true true ...
yL false true true true true ...

Table 2.7: Example of an execution of the function HOP

paradigm of synchrony has emerged as an engineer friendly design method based
on mathematically sound tools. In 1991, proceedings of the IEEE devoted a special
section [25] to the synchronous languages including Esterel, Signal and Lustre. At
the time, the three French synchronous languages were well defined and had seen
some industrial use, but were still under development. In the following decade, the
languages have been improved, gained a much larger user community, and have
been successfully commercialized. A little summary of the three languages are
given in Table 2.8.

Language Style Commercial tool Industrial use

Esterel Imperative Esterel
Avionics: Dassault,
CAD: Cadence, Synopsys,
Telecom: Thomson, TI.

Signal Data-flow Sildex

Lustre Data-flow SCADE
Avionics: Airbus, Honeywell,
Nuclear plants: EDF, Schneider-Electric

Table 2.8: Comparison of Esterel, Signal and Lustre

The first commercial version of Esterel was marketed in 1998 by the French
software company Simulog2. This division was spun off in 1991 to form the in-
dependent company Esterel Technologies3. In 2001 Esterel Technologies acquired
the commercial SCADE environment for Lustre programs to combine two comple-
mentary synchronous approaches.

Signal was licensed to a French software company TNI in the early nineties.
TNI developed and marketed the Sildex tool in 1993. Several versions have been
issued since then, most recently Sildex-V6. In 1999, TNI merged with Valiosys,
a startup operating in the area of validation techniques and became TNI-Valiosys4.

2https://www.ercim.eu/publication/Ercim_News/enw24/simulog.html
3http://www.esterel-technologies.com/
4http://www.tni-valiosys.com/

74

https://www.ercim.eu/publication/Ercim_News/enw24/simulog.html
http://www.esterel-technologies.com/
http://www.tni-valiosys.com/

In the 1980s, two big industrial projects including safety-critical software were
launched independently in France: the N4 series of nuclear power plants and the
Airbus A320. Facing with the challenge of designing highly safety-critical software,
the two companies, Schneider-Electric and Airbus decided to build their own tools
since they failed to find suitable existing tools. As consequence, both their tools
were based on synchronous data-flow formalism and used the Lustre language. Af-
ter some years of successfully using these tools, both companies were faced with the
problem of maintaining and improving them. Eventually, the software company
Verilog undertook the development of a commercial version of Lustre and built the
SCADE (Safety-Critical Application Development Environment). In 2001, Esterel
Technologies purchased the SCADE business unit5.

2.4 The story of Lustre

2.4.1 SCADE and Lustre

The SCADE development environment offers a synchronous model-based approach
to the design, validation and implementation for embedded software. Combining
block diagrams and hierarchical state machines, SCADE allows users to create
high-level graphical models with rigorous formal specifications. The SCADE KCG
compiler, offering C code generation from high-level designs, is certified at avionics
norm DO-178B highest level A. SCADE also supports visual simulation and anima-
tion, test coverage analysis and formal verification techniques. With the complete
SCADE tool set, users are allowed to generate correct-by-construction implemen-
tation from high-level formal specifications. Being executable, these specifications
can be thoroughly simulated and verified before being implemented. The SCADE
tool set is now widely used in the safety-critical industries such as avionics, auto-
motive, railway, etc.

In this thesis, we use SCADE for the software environment and Scade for the
underlying formalism. The current version of SCADE formalism is Scade 6 [65].
Scade 6 offers two specification formalisms for cycle-based design: block diagrams
and safety state machines. Lustre is the root textual language of Scade block
diagrams.

• Block diagrams, are a formalism familiar to control engineers, for specifying
continuous control. Continuous control means sampling the inputs at reg-

5http://www.esterel-technologies.com/

75

http://www.esterel-technologies.com/

ular time intervals, performing computations on the inputs and outputting
calculated results. In SCADE, continuous control is graphically presented
using block diagrams; the root textual language comes from Lustre. Fig.
2.9 depicts the previously discussed function HOP in Scade using block dia-
grams.

• Safety state machines (SSMs) [33], are the Scade state machines for specify-
ing discrete control. Discrete control means changing behaviors according to
external events. The events could originate either from discrete environment
inputs or from internal program events. SSMs evolved from the Esterel lan-
guage and SyncCharts [16, 17] which is a synchronous version of Statecharts
[102].

Figure 2.9: Function HOP depicted in Scade block diagram

The Scade 6 formalism provides its users with a full integration of block di-
agrams and SSMs. For example, a state in a state machines may contain either
another state machine or a block diagram. It is therefore possible to implement
the mode-automata [125] where the same flow can switch from one continuous
control computation to another according to boolean conditions.

The SCADE tool set now includes:

– SCADE Suite: an editor offering high-level graphical and textual descriptions
of a system as well as visual simulation.

– SCADE KCG: a C code generator certified by authorities for qualified soft-
ware production.

76

– SCADE QTE: a qualified testing environment including a test coverage anal-
ysis tool (SCADE MTC). The conventional coverage metrics need to be mod-
ified when applying to data-flow languages such as Scade and Lustre (see Sec.
4.1.1).

– SCADE Design Verifier (DV) [13]: an interface to formal verification tools
such as Prover plug-in6.

The SCADE environment and the Lustre Language have been chosen in “CON-
NEXION” to specify models of the I&C systems.

2.4.2 Lustre versions

The Lustre language was first designed more than twenty years ago, at the be-
ginning of the nineties. Lustre has been successfully commercialized and resulted
in an industrial software development tool: SCADE [33, 98]. SCADE is now be-
ing used by many major companies developing safety-critical embedded systems
(avionic, energy, transportation,...). On the academic side, Lustre is continuously
being developed and upgraded, resulted in two commonly used versions: Lustre
V4 and Lustre V6.

Fig. 2.10 illustrates the relationship between different academic Lustre versions
and the Scade 6 formalism. The Lustre syntax and semantics previously presented
in Sec. 2.3.3 correspond to the so-called Lustre core (or the basic Lustre), a
common part shared by Lustre V4 and V6. Lustre V4 and V6 also both support
arrays. The Lustre V6 specific features not supported by Lustre V4 include:

– V6 offers a new operator array iterators to replace the use of V4 homo-
morphic extension [148] and to provide a (restricted) notion of higher-order
programming.

– V6 supports structured data types such as struct, records, enumerations.

– V6 introduces a package system which aims at introducing a new level of
structuration and modularity as well as name space facilities.

Some Lustre V4 features not supported in Lustre V6:

– recursive arrays slices are replaced by array iterators

– complex data are replaced by structures and arrays, e.g., [int, real] becomes
struct; [int, int] becomes int∧2, etc;

6http://www.prover.com/

77

http://www.prover.com/

The strong evolutions of the language from V4 to V6 are prototyped thanks
to Marc Pouzet’s “Lucid synchrone” [53, 54], which is a higher order extension of
Lustre [98].

Figure 2.10: Relationship between academic Lustre versions and Scade 6

The Scade 6 formalism consists of block diagrams and safety state machines.
Lustre V6 is the underlying textual language of block diagrams. SSMs evolved
from the Esterel language and the SyncCharts synchronous statecharts model.
SSMs have been proved to be scalable to large control systems [33].

2.4.3 Model checking tools for Lustre

As a synchronous data-flow language, Lustre has been commonly accepted by a-
cademic and industrial users for specification and verification of reactive systems.
Lustre has also been successfully commercialized and resulted in the SCADE envi-
ronment. Reactive systems are usually highly safety-critical systems requiring very
careful design and stringent verification. As consequence, formal verification tech-
niques play an important role since they allow rigorous prove or disprove of criti-
cal safety properties. Combined with model-based system engineering approaches,
they offer early verification and detection of defects during the development phases.

The Lustre language therefore already benefits from various verification tools.
They include several open-source academic model checkers: Lesar [99, 100], Kind
2 [57], PKind [114], jKind [89], Zustre (a Lustre front end for the Z3-based model
checker Spacer [117]). These tools are oriented to the traditional model checking

78

problem: property verification. There are also some tools more oriented to test
generation: Lutess [44, 72, 140], Lurette [149, 111, 109, 110] and GATeL [126, 127].
Lutess and Lurette both consider the testing of reactive programs in a black-box
framework. Lustre is not used for the system specification but for the specification
of the environment where the program is embedded. GATeL offers test sequence
generation for Lustre based programs with finely tunable test objectives.

On the SCADE side, SCADE DV (Design Verifier) [13] uses Prover plug-in
verification engine to perform symbolic model checking. The user provides tem-
poral assertions about program behavior, derived from application requirements.
Assertions are expressed in the Scade formalism, technically as boolean flows that
should always stay true. Compared to conventional model checking problem where
properties are specified in temporal logic, the SCADE DV releases its user from
learning specific property specification languages. While SCADE DV performs
very well for certain verification tasks, it can fail badly for others due to complex-
ity problems. When a verification task is infeasible, SCADE DV provides the user
with little or no information regarding the causes. This makes it almost impossible
to decide which further measures to take: try to make the verification task feasi-
ble, or to settle for a weaker verification result, or to abandon formal verification
and invest in testing [22]. This is a disadvantage both for practical application in
industry and for academic research pertaining to formal verification with SCADE
DV. A recent study [108] on formal safety analysis of two industrial SCADE mod-
els may explain the industries’ indecision towards adopting formal verification in
productive processes. In [22], an alternative open-source SMT-based model check-
ing method for Scade models is presented. The method introduces LAMA as an
intermediate language for translating Scade programs into SMT solver input mod-
els with experiment results using the Z3 solver.

Fig. 2.11 illustrates the relationship between Lustre based formalisms and
model checking tools. The academic Lustre V4 benefits from several model check-
ing tool: GATeL is more oriented to test generation while Lesar and Kind 2 more
oriented to property verification. Each tool works on a slightly different version of
Lustre V4 as input modeling language. Lesar, the first academic model checker for
Lustre, takes standard V4. The front-end of Lesar is a compiler translating Lustre
V4 to the format EC (expanded code). GATeL takes an extension of V4 and Kind
2 a V4 extended with part of V6. Lustre V6 can be automatically translated to
the format LIC (Lustre internal code) which is equivalent to EC for Lustre V4.
Lustre V6 programs are therefore amenable to Lesar through LIC. The formalism
Scade 6 is based on Lustre V6 extended with safety state machines. SCADE De-
sign Verifier (based on Prover Plug-in) is the commercial formal verification tool

79

Figure 2.11: Model checking tools for Lustre and Scade

for Scade models.

SCADE DV is not included as part of the project “CONNEXION”. In this
thesis, we focus on three academic model checking tools for the Lustre language:
GATeL, Lesar and Kind 2. GATeL has been chosen in the project “CONNEX-
ION”. Lesar is a standard powerful model checker for Lustre V4 programs. Lesar
performs explicit and symbolic model checking and has been applied to verification
of real time properties of a landing gear control system [43]. Kind 2 relies on state-
of-the-art SMT solvers, capable of handling systems of infinite state space. Kind 2
is used in academia and in a variety of industrial settings [18]. We therefore chose
these tools as candidates to apply our methodology. Each tool works on a slightly
different extension or subset of the Lustre language. The fact that Lustre language
has several academic versions make the story more complicated. We also consider
another alternative of translating Lustre programs to other modeling languages so
as to benefit from more powerful tools (Sec. 2.4.4).

80

Lesar

Lesar [99, 100] is a formal verification tool for Lustre V4 programs with respect
to safety properties. Verification is performed on a finite state abstraction of the
program, which models only the behavior of boolean variables. Lesar performs
two kinds of verification techniques:

1. an exhaustive exploration of the state space of the model, similar to explicit
model checking.

2. a symbolic construction of the set of states that satisfy the property, analo-
gous to symbolic model checking [139].

GATeL

GATeL [127, 126], developed in CEA List and selected in “CONNEXION”, is a
model checking tool supporting test sequence generation for an extension of Lus-
tre V4. GATeL takes as input a Lustre model of the system under test, a test
objective and a specification of environment. A test objective can be a safety
property or a declarative characterization of some interesting states of the SUT. A
specification of the environment describes the possible evolution of the inputs that
can be considered during test sequence generation. Like a classical model checker,
GATeL performs formal verification of the model with respect to the test objec-
tive, considering the specification of environment in the same time. According to
the test objective, e.g., a safety property or a particular state, GATeL returns test
sequences as counterexamples illustrating the violation of property or how to reach
the particular state.

Compared to most model-based testing tools, GATeL offers mechanisms al-
lowing the definition of customized test selection strategies for the SUT. Through
test objectives, a user could define his own test selection strategy. For each test
case derived from the selection strategy, GATeL automates the generation of input
sequences. It also systematically calculates, from the Lustre model, the inputs,
outputs and variables involved in the test objective. This provides the information
needed to construct an oracle: these computed outputs constitute the expected
values that should be compared to actual outputs of the SUT.

The kernel of GATeL is a resolution procedure for constraints built from an
interpretation of Lustre constructions over boolean variables, variables with inte-
ger intervals (real numbers or floating-point number arithmetic are not considered
yet), and a special synchronization constraint for the status of each cycle (whose

81

value is either initial, or non_initial). Resolution proceeds by successive e-
limination of all constraints. A non-deterministic instantiation procedure (called
“labelling” in the logic programming community) instantiates the variables in-
volved in the constraints. In order to avoid erroneous valuations, a constraint
propagation mechanism continuously checks constraint satisfiability. The instan-
tiation of a variable ”awakes” the propagation of related constraints, which can
disappear (when solved) or awake/create other constraints [127]. More details on
this mechanism of constraint propagation can be found in [126].

It is not always possible to predict how long each test sequence will need to
be, i.e., of how many cycles it consists. However, this length is bounded by a
parameter (maximum number of cycles) tunable by the user. GATeL generates
test sequences in a backward manner: the state where the objective is reached
is considered as the final state of test sequence. Many other tools are based on
forward generation techniques: test sequences are generated from the initial state
and they are limited to the test of safety properties (invariant properties).

Kind2

Kind 2 [57] (successor of PKind [114]) is a multi-engine, SMT-based model checker
developed at the University of Iowa. Kind 2 takes as input models described in
an extension of the Lustre V4 language that allows the specification of assume-
guarantee-style contracts [56] for system components. Kind 2 relies on off-the-shelf
SMT solvers (Z3 [67], Yices [73] and CVC4 [20])to prove(or disprove)quantifier-free
regular safety properties. For those properties that are falsified, Kind 2 produces
input sequences illustrating the violations in XML format. Kind 2 runs a combi-
nation of different induction-based model checking engines in parallel. By default
Kind 2 runs a process for k-induction [154, 94, 93], two processes for invariant
generation, and a process for IC3 [46].

As mentioned in Sec. 2.3.3, Lustre programs are structured into nodes and
operators and naturally offer a hierarchical description and component reuse. Kind
2 takes advantage of this by performing two following techniques:

1. modular reasoning : each node can be assigned its own properties and verified
individually. The results of the verification process (e.g., proven properties
and auxiliary invariants) can be reused in the analysis of other components
calling that node.

2. compositional reasoning : the user is allowed to specify assume-guarantee
style contracts for each node. A contract has typically less states than the

82

node it specifies. When verifying a node, compositional reasoning consists in
abstracting the complexity of its components (sub-nodes) by their contracts.

Compositional reasoning is usually applied in conjunction with modular rea-
soning, since a successful compositional proof of a node does not guarantee the
correctness of the un-abstracted node. More details regarding k-induction, invari-
ant generation, IC3, modular reasoning and compositional reasoning can be found
in [12].

SMT solvers applies the cutting edge model checking techniques and have been
developed in academia and industry with increasing scope and performance [21].
However, the most notable restriction of SMT solvers is that nonlinear expres-
sions are forbidden, meaning that no multiplication or division is allowed between
variables. Kind 2 uses off-the-shelf SMT solvers and encounters difficulties when
applied to our case study from “CONNEXON”: the model of the SUT contains
several non-linear expression such as multiplication and division between local (in-
ternal) variables. One solution Kind 2 offers relies on the “CoCoSpec” extension:
a language providing assume-guarantee style contracts for every component of the
Lustre program. Non-linear expressions can be abstracted away using contracts
specification. Then through compositional reasoning, the complexity of compo-
nents containing non-linear expressions can be abstracted by the contracts.

An example of assume-guarantee style contracts for a multiplication expression
is given below. An assume-guarantee contract (A,G) for a node is a set of assump-
tions A and a set of guarantees G. Assumptions describe how the node must be
used, while guarantees specify how the node behaves. In the following example,
the node times outputs a real number z as multiplication of its two real inputs
x and y. The complexity of this non-linear expression is abstracted away by the
guarantee expressions defined in the contract. Note the absence of assume expres-
sions indicates that the node times always behave like guarantee. Kind 2 is able
to perform compositional reasoning, which consists in replacing the non-linear ex-
pression z=x*y by the contract every time the node times is called in the program.

node times(x, y: real) returns (z: real) ;

(*@contract

var abs_x: real = if x < 0.0 then -x else x ;

var abs_y: real = if y < 0.0 then -y else y ;

var abs_z: real = if z < 0.0 then -z else z ;

-- Neutral.

guarantee (z = y) = ((x = 1.0) or (y = 0.0)) ;

83

guarantee (z = x) = ((y = 1.0) or (x = 0.0)) ;

-- Absorbing.

guarantee (z = 0.0) = ((x = 0.0) or (y = 0.0)) ;

-- Sign.

guarantee (z > 0.0) = (

((x > 0.0) and (y > 0.0)) or

((x < 0.0) and (y < 0.0))

) ;

guarantee (z < 0.0) = (

((x > 0.0) and (y < 0.0)) or

((x < 0.0) and (y > 0.0))

) ;

-- Loose proportionality.

guarantee (abs_z >= abs_y) = ((abs_x >= 1.0) or (y = 0.0)) ;

guarantee (abs_z >= abs_x) = ((abs_y >= 1.0) or (x = 0.0)) ;

guarantee (abs_z <= abs_y) = ((abs_x <= 1.0) or (y = 0.0)) ;

guarantee (abs_z <= abs_x) = ((abs_y <= 1.0) or (x = 0.0)) ;

*)

let

z = x * y ;

tel

2.4.4 Lustre translators

Lustre, EC and LIC

The Luster V4 distribution7 is a tool kit containing the model checker Lesar and
other tools for compilation, simulation, etc. Those tools deal with several for-
mats; some of them are executable, while others are just scripts and shortcuts.
The Lustre V6 release consists mainly of front-end complier. Fig. ?? gives a sim-
plified overview of these formats and tools. More details are available in [148, 168].

The front end of all Lustre V4 tools is a pre-processor lus2ec. This is actually
a compiler transforming a Lustre V4 file (.lus) into a Lustre expended-code (EC)
file (.ec). A Lustre V4 file is structured into nodes and operators with modularity,
arrays, recursions etc; while a EC file is a single node without arrays or recursions.
A EC file can be considered as a “flattened” version of its Lustre V4 file. All other
tools in the tool kit (compilers, simulators) are running on the EC format. The
low-level target format in Lustre V4 is Ansi-C. This code can be obtained directly

7http://www-verimag.imag.fr/The-Lustre-Toolbox.html?lang=en

84

http://www-verimag.imag.fr/The-Lustre-Toolbox.html?lang=en

from the EC code, using the compiler ec2c. ecexe is a unix-filter style simulation
tool. It interprets EC code, reading on standard input and writing to standard
output. The Lustre V4 distribution provides in general shell scripts combining the
front-end lus2ec with the various back-ends. The Lustre model checker ecverif is
combined with lus2ec into the shell Lesar. In this thesis, Lesar and Lesar/ecverif
are interchangeable.

The Lustre V6 release consists of a compiler lus2lic, translating Lustre V6 to
LIC (Lustre internal code). LIC can be considered as the equivalent of EC for
Lustre V6. The compiler lus2lic serves therefore as front end for Lustre V6 pro-
grams, translating them into LIC programs amenable to various Lustre V4 tools.
Fig. 2.12 gives an overview of Lustre V4 and V6 formats and tools.

Figure 2.12: An overfiew of Lustre V4 and V6 formats and tools

Lustre to SMV

There exists a translator from EC format to SMV [128] input, developed by Gor-
don Pace8. Combined with lus2ec, this translator is able to convert a Lustre V4
program to a SMV program. However, the tool was developed in 2001 and is no
longer maintained by the author.

A translator framework

Fig. 2.13 summarizes a translator framework developed by Rockwell Collins and
the Critical Systems Research Group at the University of Minnesota [169, 134].

8http://www.cs.um.edu.mt/gordon.pace/tools.html

85

http://www.cs.um.edu.mt/gordon.pace/tools.html

With the growing popularity of model-based development for the design of embed-
ded systems, tools such as Simulink9 and SCADE Suite10 are achieving widespread
use in industry (in particular avionics and automotive). The graphical models pro-
duced by these tools provide a (nearly) formal specification that is often amenable
to formal analysis. The translator framework is developed with the motivation to
bridge the gap between these commercial modeling tools and the input languages
of the formal verification tools.

Figure 2.13: Translator Framework

The translator framework uses primarily the Lustre language but this is hidden
from the user. For SCADE models, the initial translation into Lustre is immediate
since Lustre is the underlying specification language of SCADE. Simulink and S-
tateFlow users can translate their models into Lustre using the Simulink Gateway
provided by Esterel Technologies. Another alternative is to import their models
into the Reactis11 test case generator developed by Reactive Systems and using a
translator developed by Rockwell Collins.

Once in Lustre, the specification is read into an abstract syntax tree (AST)
and a number of transformation passes are applied to it. Each transformation pass
produces a valid Lustre AST that is syntactically closer to the target specification
language and preserves the semantics of the original Lustre specification. This
allows all Lustre type checking and analysis tools to be used after each transfor-
mation pass. When the AST is sufficiently close to the target language, a pretty

9https://www.mathworks.com/products/simulink.html
10http://www.esterel-technologies.com/products/scade-suite/
11http://www.reactive-systems.com/

86

https://www.mathworks.com/products/simulink.html
http://www.esterel-technologies.com/products/scade-suite/
http://www.reactive-systems.com/

printer is used to output the target specification [133].

The translator framework is actually a product family of translators in that
many transformation passes are reused in the translators for each target language.
The translators of Lustre into other input languages of various model checking
tools allow to implement and extend our methodology. However, these translators
are Rockwell Collins proprietary and the project with University of Minnesota is
no longer supported.

87

Chapter 3

Project “CONNEXION”

Towards a complete testing environement

Since 2012, the main industrial and academic partners of the French nuclear in-
dustry initiated an ambitious R&D program called “CONNEXION”. Regrouping a
number of projects, “CONNEXION” [71] aims to improve the development process
of the Instrumentation & Control (I&C) system of nuclear power plants (NPPs).
“CONNEXION” is based on the existing expertises of major operators in French
nuclear industry (EDF, ALSTOM, AREVA and RRCN) and various software tool-
s provided by other industrial and academic partners (CEA, CORYS, ESTEREL
Technologies and ALL4TEC).

The objectives of “CONNEXION” concern nuclear Control Systems and Op-
erational Technologies to maintain a high level of safety, to offer new services
improving the efficiency and the effectiveness of operational activities. With the
current system engineering approach, increasingly detailed models describing the
behavior of the I&C system have been built in early design phases. The models
are specified in a formal language dedicated to the nuclear sector, using predefined
blocks. During development phases, these models of the I&C system are subjec-
t to verification with respect to the functional requirements, which is defined as
Functional Validation (FV) in IEC standard 61531. Functional validation of these
models are currently performed manually since these models are formal but not
directly executable. Automated testing is only performed at the implementation
level. The actual approach, clearly fulfills the high quality requirements defined
in the standards of nuclear sector. However the cost is very high considering the
inherent evolution during the development process.

To automate the functional validation as much as possible, “CONNEXION”

88

gathers together a unique and complete set of modeling and verification tools.
Integrating recent progress in MBSE, “CONNEXION” proposes to reinforce the
V-model development lifecycle by introducing two sub-cycles of functional vali-
dation. The two sub-cycles functional validation perform verification of design
models with respect to functional requirements, resulting in an innovative triple
V-model development lifecycle. Development process is aligned with IEC standard
[5], encouraging test automation tools. The current lifecycle relies on a document-
centric system engineering approach; “CONNEXION” enables the transition to a
model-centric practice as advocated by the INCOSE [7]. The introduction of the
two V sub-cycles answers for a key challenge of Industrial Cyber-Physical Systems:
early stage of Verification and Validation [82].

As real-time reactive systems (Sec. 1), the I&C system consists of a control/-
command system maintaining permanent reaction to a physical environment. The
control/command system and its environment are specified using different model-
ing languages. “CONNEXION” proposes a platform integrating the models, tools
and processes related to functional validation. The platform allows closed-loop
execution of the I&C system where models exchange data and synchronize with
each other via FMI/FMU (Sec. 1.2). In our opinion, it is advantageous that the
platform could benefit from an information system of tracebility (IST). The IST
accompanies activities of verification and validation and saves not only the data
but also the historical and traces between them. The IST is expected to pro-
vide a better understanding of the test coverage and minimize the effort to test
non-regression [24]. We present in Sec. 3.4 the design of IST in UML using the
open-source platform StarUML 21.

This chapter is organized as follows: Sec. 3.1 presents the project “CONNEX-
ION” focusing on its objectives related to functional validation of early design mod-
els; the unique and complete set of modeling and verification tools in“CONNEXION”
are discussed in Sec. 3.2; Sec3.3 reveals several challenges and constraints related
to the solution and methodology of “CONNEXION”; Sec. 3.4 concludes the chap-
ter by our design of the IST specified in UML diagrams as well as a prototype of
implementation.

3.1 Functional validation objectives

The I&C system, together with plant operations personnel, serves as the “central
nervous system” of a nuclear power plant (NPP). Through its various constituent

1http://staruml.io/

89

http://staruml.io/

elements such as sensors and actuators, the I&C system monitors all the aspects of
performance and safety of the NPP and allows the operators to act on the process
in any situation. It also responds to failures and off-normal events, thus ensur-
ing goals of efficient power production and safety. Essentially, the purpose of the
I&C system of a NPP is to enable and ensure safe and reliable power generation.
Therefore it is required to be a system of high quality to ensure a resilient and
efficient exploitation of the plant. At the same time, it is also characterized by a
very long life cycle: the design and implementation phase lasts about 10 years and
the operating life lasts at least 40 years.

Continuous technological advances in computer science and electronic engineer-
ing offer favorable conditions for completing and/or gradually replacing analogue
devices of the original design with digital components for nuclear I&C systems.
In addition, instead of building a completely customized I&C system, it is now
possible to purchase components off-the-shelf (COTS) and then to integrate these
ready-to-use elements. In addition, during its long life cycle, the I&C system is
subject to partial renovations resulting from either the evolution of requirements or
the modification of physical equipment. These partial evolution and modifications
can be frequent and integrate to different phases of system life cycle. This brings
not only productivity gains but also a challenge for the nuclear industry to ensure
that the new system meets all safety, reliability and performance requirements.

Since 2012, the main industrial and academic partners of the French nuclear in-
dustry initiated an ambitious R&D program called “CONNEXION”. Regrouping
a number of projects, “CONNEXION” [71] aims to improve the development pro-
cess of the I&C system of nuclear power plants. “CONNEXION” is based on the
existing expertises of major operators in French nuclear industry (EDF, ALSTOM,
AREVA and RRCN) and various software tools provided by other industrial and
academic partners (CEA, CORYS, ESTEREL Technologies and ALL4TEC). In
the following we first present the approach used today at EDF for the develop-
ment of I&C system and then focus on the needs of the project and the challenges
associated.

Triple V system life cycle

The I&C system of a nuclear power plant is composed of several hundreds of El-
ementary Systems (ES), controlling with a very high safety level thousands of
remote controlled actuators: about 8000 binary signals and 4000 analog signals
sent to the control room, concerning over 10 000 I&C sub-functions and over 300
I&C cabinets. Each ES is a set of circuits and components, performing an essential

90

function to the operation of the nuclear power plant. Each ES is documented by
an elementary system dossier (ESD), containing documents detailing the ES in
different aspects: operation, control/command, equipment, etc.

Every elementary system is composed of two sub-systems:

– the Process represents the physical infrastructure and equipment, e.g., heat
exchangers, valves, pipes, etc.

– the control/command (CC) is a real-time reactive system permanently
interacting with the Process. It is responsible for protection, control, and
supervision of functioning of the Process.

The Process and the control/command depict different aspects of the elemen-
tary system and correspond to different documents in the ESD. The control/com-
mand, describing the functional aspect of the ES, is specified using functional
diagram (FD). It is a formal language dedicated to the nuclear sector based on
predefined blocks. The specification of this language complies with IEC (Interna-
tional Electrotechnical Commission) standard 61804-1 [4] and the implementation
is defined by elementary blocks with reference to IEC standard 61131-3 [11].

To develop the control-command of one ES, the current approach practiced at
EDF gradually transforms a purely mechanical representation into a functional di-
agram. The FD is then implemented into executable code by automata dedicated
to this purpose. The approach integrates expertise of several domains including
mechanics, functioning and control engineering. The current verification and val-
idation process of the control-command leads to functional tests carried out on a
set of interconnected previously validated systems. These systems are automata
implemented with executable code of control/command applications. See [71] for
more details.

The original V-model life cycle, corresponding to the current approach, con-
tains phases 1, 2, 3, 7, 8, 9 and 10 (Fig. 3.1). The left side of the V-model (1, 2,
3, 7) represents the design and implementation of the system and the right side
(8, 9, 10) represents the system verification and validation. It is important to note
that the left side of the V-model relates to a single elementary system but the
verification and validation activities are performed by integrating this ES with an
abstraction of its environment [71]. Moreover, the granularity of the model of the
Process used in co-simulation is adapted to the validation objectives specific to
each of these last three phases (8, 9 and 10).

91

The design begins in phase 1 with a global modeling of the functional specifica-
tion of the ES from the simplified diagram of the Process and its various operating
configurations. The simplified diagram of the Process is a functional specification
for both the physical environment ant its control/command [71]. In phase 2, a
functional specification dedicated to control/command is developed in the form of
a functional diagram by system engineers. This FD represents an explicit spec-
ification of the expected control/command behavior consistent with the Process
diagram and the description of functional requirements produced in phase 1. This
design specification is then progressively detailed into a refined functional diagram
(RFD) in phase 3, which is ready to be transformed into programs implemented in
phase 7. The system V&V begins in phase 8 by verifying the implementation (at
the output of phase 7) with respect to its design specification (phase 3). In phase
9, the control/command of the ES is integrated with the other elementary systems
already validated. At the end of the life cycle (phase 10), Hardware-In-the-Loop
(HIL) [30] techniques is applied to all interconnected and validated ESs in phase
9. Through a virtualized real environment, developers are allowed to verify the
functioning of implemented automata before their actual on-site integration and
the corresponding final validation tests.

Figure 3.1: Triple V system life cycle of the I&C system

The current approach, corresponding to the left side of the V-model, provides
the elements for the production of elementary dossier. This approach is based
on various expertise knowledge and produces control/command models in form of
functional diagrams. The FDs are formally verifiable but not directly executable.
As consequence, functional validation of the FDs are manually performed. Au-

92

tomated testing is performed only at the level of implementation. The current
approach, clearly fulfills the high quality requirements defined in the standards of
nuclear sector. However the cost is very high considering the inherent evolution
during the development process.

The “CONNEXION” project searches to improve functional validation effi-
ciency by introducing the first V sub-cycle (phases 1, 2 and 4) and the second
V-sub-cycle (phases 1, 2, 3, 5 and 6), as shown in Fig. 3.1. The two sub-cycles
first introduce executable control/command models: at phase 2 and 3, executable
functional specification corresponding to the FD and RFD are developed. Phase
1 introduces a model describing the high level elementary system. The executable
model of the FD produced at phase 2 is verified with respect to the functional
requirements (phase 4). The executable model of the RFD produced at phase 3
will be (i) verified with respect to the model of functional specification developed
at phase 2 (phase 5) and (ii) verified with respect to the functional requirements
(phase 6). The two V sub-cycles results in an innovative triple V system life cycle.
A similar approach referred to as “multilevel testing for design verification” [152]
has been proposed for embedded systems.

The “CONNEXION” approach, similar to the current approach, still requires
integration of multiple domain expertise. However, by introducing a model in the
loop (MIL) [30] approach, functional validation can be automated as much as pos-
sible thanks to executable models of FD and RFD as well as appropriate tools.
Development process is aligned with IEC standard [5], encouraging test automa-
tion tools. The current life cycle relies on a document-centric system engineering
approach; “CONNEXION” enables the transition to a model-centric practice as
advocated by the INCOSE [7]. The introduction of the two V sub-cycles answers
for a key challenge of Industrial Cyber-Physical Systems: early stage of Verifica-
tion and Validation [82].

Towards a complete verification platform

Another objective of “CONNEXION” is to create a complete verification platfor-
m supporting functional validation methodologies presented above. The platform
would accompany all the V&V activities required in the development of the I&C
system throughout its life cycle. For one elementary system, the platform inte-
grates the Process model, the control/command model as well as a human machine
interface (HMI) dedicated to control operators. Supported by model-based test-
ing tools, the platform is able to generate automatically test cases and to execute
these test cases by co-simulation of the Process and the control/command. Since

93

the Process and the control/command are modeled using different languages, they
are integrated to the platform via Functional Mock-up Interface (FMI). This in-
dependent standard is designed to support both the exchange of models between
partners and the co-simulation of dynamic models.

Figure 3.2: A complete verification platform

Fig. 3.2 depicts the principle of such a platform at the level of one elementary
system. Through the co-simulation of the Process and the control/command, this
platform enables system engineers to verify various aspects of the system during
its development phases. The model of the expected properties of the system and
the environment model, as perceived by the control/command, are also necessary
to describe in particular the requirements that the elementary system must re-
spect and the constraints on its solicitation. We specify that the environmental
model introduces the constraints that come from other interconnected elementary
systems to the elementary system under test. It is quite possible to perform a
context-free verification of the ES under test, which in this case does not require
any model of the particular environment. Finally, we think the platform should be
supported by an information system of traceability (IST). The IST accompanies
activities of verification and validation and saves not only the data but also the
history and relationship between them.

The verification activities are based on the ALICES simulator2 provided by
CORYS3. ALICES is able to manage the interaction between several elementary
systems. For one elementary system, ALICES allows the co-simulation of Process
and control/command as well as HMI animation. The co-simulation environment
is not full scale, but it is realistic. ALICES can integrate different simulation or

2http://www.corys.com/en/alicesr
3http://www.corys.com/en

94

http://www.corys.com/en/alicesr
http://www.corys.com/en

animation modules, either in its proprietary technology, or by interfacing with
Scade models for the control/command and Modelica [88] models for the Process.

3.2 Unique and complete tool box

The tools brought by partners of “CONNEXION” can be divided into two cate-
gories: modeling tools and verification tools.

Modeling tools

We hereby briefly present the modeling tools chosen by “CONNEXION”. More
details can be found in [159].

Process model:

• Dymola4 is a commercial modelling and simulation environment based on
the open-source Modelica language. Dymola is used to model the Process.

High-level model of the ES:

• Based on Eclipse platform, Papyrus [90] from CEA offers an open-source
graphical editor for modeling in the formal language SysML [10]. In “CON-
NEXION”, a high-level model of the ES is developed in SysML with Papyrus.
This model has a high abstraction level, corresponding to that of the speci-
fication of functional requirements.

Models of the control/command:

• SCADE Suite [58] from ESTEREL Technologies has been chosen. Based on
the Scade formalism [34], SCADE Suite is specialized for designing safety-
critical systems as its code generator is qualified under several certifications.
In “CONNEXION”, SCADE Suite is used to specify models of the control/-
command at different abstraction levels, corresponding to the FD and RFD.

Verification tools

Verification tools automate as much as possible various activities such as formal
verification, test generation, test execution, coverage analysis, etc. Table 3.1 gives
an overview of these tools.

4http://www.3ds.com/products-services/catia/products/dymola

95

MaTeLo Model-based test generation tool
GATeL Model checker for Lustre models

SCADE QTE Coverage analysis for Scade models
ALICES Co-simulation platform

ARTiMon Real-time test observer

Table 3.1: Overview of “CONNEXION” verification tools

• MaTeLo [58] from ALL4TECH5 is a model-based test generation tool for
statistical usage testing [123], allowing testing the system from the user’s
angle. Test generation is based on a usage model specified using markov
chains, created manually from the specification of functional requirements.
One test case corresponds to a path randomly chosen from the usage model.
In “CONNEXION”, the usage model is built according to the functional
requirements of the ES and the test cases generated are intended for closed-
loop simulation.

• Since the Process model and the control/command model are in different for-
mats, the closed-loop simulation is performed on a platform: ALICES [136]
from CORYS. ALICES is responsible for the exchange and synchronization
of data between models through the open source standard FMI/FMU.

• The test suite generated by MaTeLo does not include the expected outputs
(oracles) to be compared with the actual outputs. The oracles are performed
by a test observer also integrated to ALICES: ARTiMon [90] from CEA. The
properties to verify are manually formalized in ARTiMon. During the co-
simulation, ARTiMon provides real-time observation of the execution results
so that any violation of the properties will be recorded.

• After the execution of test cases, the exchange of data between the Scade
model and the Process model is documented. These records are necessary
to measure the structural coverage of the test suite by another tool from the
SCADE tool kit: SCADE QTE (Qualified Testing Environment) [1].

• The model checker GATeL from CEA, works on models specified using the
synchronous Lustre language. It verifies properties that are invariant or
characterizations of reachable states of the system. With a test objective
expressed in an extended version of Lustre, GATeL generates test data which
drives the system to a state satisfying the test objective. Scade models can
be automatically transformed into Lustre models by the s2d tool6.

5http://www.all4tec.net/
6The s2d tool is developed and provided by Laboratoire Sûreté des Logiciels, CEA/DRT/DT-

96

http://www.all4tec.net/

3.3 “CONNEXION”: challenges and constraints

Sub-systems modeled in different languages

For each elementary system, the Process is modeled using Dymola and the con-
trol/command system modeled using SCADE Suite. The test generation tool
MaTeLo generates closed-loop test based on the functional requirements; the or-
acles are provided by ARTiMon, a real time observer integrated to the execution
platform ALICES; the structural coverage is measured on the control/command
model by SCADE QTE; finally the model checker GATeL takes the control/com-
mand model in Lustre, obtained by an automatic transformation of the control/-
command model in SCADE Suite.

GATeL is a model checking tool oriented to test generation. It is able to perfor-
m conventional model checking problem, i.e., property verification. It also offers
user-definable test objectives which can be used to force test sequence generation.
GATeL takes as input the control/command model and therefore generates open-
loop test sequence. In our methodology, we use coverage-based test objective to
force GATeL to generate open-loop test sequence. However, a suitable test case
for functional validation must be closed-loop and related to functional require-
ments. The passage from open-loop to closed-loop and from coverage-based to
requirement-based demands collaboration of testers and system engineers. Our
methodology includes a process refining test generation using GATeL (Sec. 4.2.2),
so as to help with the passage from open-loop to closed-loop.

Multiplication of models and tools

The “CONNEXION” approach proposes a multi-model and multi-tool environ-
ment for the development of I&C system. Each test model and associated tools
should help improve productivity and increase confidence in the verification and
validation cycle. The advantages of this approach are obvious: automation of
functional validation at early design stages can detect a defect as soon as possible.
Moreover, the choice of formal models and powerful verification tools ensures a
high level of quality of the system under consideration.

However, we believe that the multiplication of models and tools can quickly be-
come counter-productive. Each model and each tool ”speaks” their own language,
which requires extra time spent in learning and understanding. It may also be
necessary to spend time in transformations from one model to another. Moreover,
there may be a redundant overlay between the capabilities of different tools. It is

SI/SOL, 91191 Gif sur Yvette, France

97

therefore important to address these challenges by proposing a clear methodology
for the use of these tools. For example, choose carefully and even parsimoniously
any additional model. Each new model or tool from this first selection must show
a value of both verification efficiency and productivity. Always know how, when
and why to use a model. Finally, ideally, it is necessary to understand how a
multi-model environment can work ”seamlessly” in a fluid way by moving from
one tool to another in a flexible and clear workflow.

Another aspect concerns the transformations between models: recreate the FD
and RFD in SCADE Suite and transform them into Lustre models for GATeL.
We assume for now that these models are equivalent. The proof of equivalence
remains an open question.

Modification request

A test can show two kinds of problems: false negatives or false positives [130].
A problem can be located in various places in the verification chain: not only in
the model under test, but also in the test itself, e.g., the desired property may be
poorly formulated. It may also due to a defect of the verification tool itself or to
the semantics of the model [131]. The multiplicity of tools can be beneficial in this
respect: a verification tool may not find exactly the same result as another tool,
because the properties to be verified have not been described in a completely equiv-
alent way. Therefore verification by a tool at an abstraction level may shed light
on the verification by another tool. It is thus conceivable that it is even possible to
detect a false positive: a real problem in the model which is not detected at a phase
when it already exists and which is just detected at another phase by another tool.

Finding the same problem at several levels of abstraction of the description can
thus be an integral part of a global diagnostic methodology and allows classification
in terms of the severity of this problem. Reproducing the same problem under
a series of tests rather than just one will also be part of the methodology to
understand the extent and locate the origin of the problem.

3.4 Information system of traceability

We think that a complete verification environment should include an Information
System of tracebility (IST). The IST is expected to improve the verification ef-
ficiency especially when the system is being upgraded. The IST should save not
only the data but also the history and relationship between them. Moreover, the
IST must keep records of the operating conditions of the simulation environment.

98

That is to say, the control/command and the Process configuration related to the
state of the NPP unit: starting, operating at full power or at reduced power, cold
stop, etc.). Here are some basic elements that the IST should deal with:

• models of the system, properties under test, testing environment and data,
e.g., values, scenarios, simulation history, etc.

• traceability between one model and another

• development process of different states and variables

• what tools of which versions are used to perform what tests, etc

It will provide a better understanding of the test coverage and minimize the effort
to test non-regression.

HP Quality Center (QC)7 from HP is a leading commercial software testing
management tool. HP QC offers an environment supporting essential aspects of
testing management: requirements management, test planning, analysis of result-
s and management of defects and problems. The “CONNEXION” methodology
contains multiple models and verification tools and the traceability is therefore
more complicated than what HP QC is able to manage.

Design of the IST using UML diagrams

The design of our IST is specified in UML language on the open-source plat-
form StarUML 2. UML is a graphical modeling language allowing to specify,
visualize, modify and construct documents necessary for the development of an
object-oriented software. It offers a modeling standard to represent the software
architecture. The 14 charts proposed by UML can be divided into two categories:
structural diagrams and behavioral diagrams. We present two diagrams as the
IST models: a use case diagram and a class diagram.

The use case diagram of the IST (Fig. 3.3) belongs to behavioral diagrams.
It allows to identify the possible interaction between the IST and the actors out-
side the IST. In other words, the use case diagram describes all the functionality
that the IST must provide. The IST first proposes to the user functions of mod-
els and requirements management, e.g., registration, modification and search by
keywords, etc. Then, to verify a model with respect to certain requirements, the
user must set a test objective such as verification of a requirement under certain

7https://saas.hpe.com/en-us/software/quality-center

99

https://saas.hpe.com/en-us/software/quality-center

configuration of the NPP. During this activity, depending on the user needs, other
functions may be called: saving or canceling this test objective or search for tests
with similar objectives (verification of the same requirement under different NPP
configurations for example). Test execution starts with choosing a verification tool
while recording some information Of the tool: name, version and installation date,
etc. As mentioned previously, closed-loop test execution are performed on the AL-
ICES platform. We precise that the verification tools and simulation platform are
external entities of the IST and therefore the same are their activities including
test generation and execution. The IST is only capable of managing the results of
these activities such as test case files and test results management.

The class diagram of the IST (Fig. 3.4) is part of structural diagrams. It
represents classes involved in the system as well as all the relationships between
them.

• The Model class contains several necessary attributes to keep the traceabil-
ity: name, version, development date, type (Process or control/command)
and the underlying formalism. The ModelsManagement class generates
all objects from the Model class and offers functions such as search for one
or more models by keywords, modify a model and add or delete a model.

• The Requirement class has a structure similar to the Model class. All
objects in the Requirement class are managed by the Requirements-
Management class in a similar way.

• The TestCase class represents the smallest unit of test. A TestCase con-
tains a nuclear unit configuration and a data set. A configuration is defined
by the nuclear unit status, e.g., start, normal or degraded functioning, stop;
as well as environmental conditions, e.g., hot/cold period, the status of other
systems in interface, etc. Verification of one Requirement requires usually
more than one TestCase. A collection of TestCase compose one Test-
Suite which has a well defined test objective. The TestSuite class also
contains a reference to an object TestTool which represents the verification
tools related to the corresponding TestSuite. Each TestSuite produces a
TestResult which specifies the test result status (successful, unsuccessful
or unknown), the date of test execution and an error description if neces-
sary. All the tests and results are managed by TestTrackManagement.
It proposes functions to save or delete one TestCase, one TestSuite or
one TestResult. In addition, the association between Requirement and
TestSuite and that between Requirement and Model allow to keep the
traceability between all the key elements of the verification activity (model,

100

requirements, tool, tests performed and results). For example, in Test-
TrackManagement, one can assemble by a search query all the TestSuite
related to one Model, or all the TestResult associated with verification of
one Requirement, etc.

Finally, the features of ModelsManagement, RequirementsManagement
and of TestTrackManagement are assembled by UIManagement, the inter-
face between the user and the IST. It associates the actions of the user with the
functions provided by these three management classes and brings the results to
the user with a proper visualization.

Implementation Prototype

Fig. 3.5 shows the structure of this prototype at code level. The code is organized
in two “layers”: a storage system and a Java application. The communication
between the two layers is accomplished by JDBC (Java DataBase Connectivity)8

which is a programming interface allowing Java applications to access databases.

The storage system is divided into two parts: a system of files for simply stor-
ing the files of SCADE Suite models and Modelica models, the files of test cases,
etc; another system stores previously defined classed in the UML class diagram
(Fig. 3.4) in the form of tables with a well-defined structure. The latter requires
a DBMS (Database Management System) such as MySQL9, an open-source com-
monly used database management software.

At the Java application level, TrackManagement offers functions such as
saving, deleting, updating, searching for objects (models, requirements, tools, tests
and results). The user interface UIManagement sends the user’s actions to the
functions of TrackManagement and retrieve and then display the results.

8https://fr.wikipedia.org/wiki/Java_Database_Connectivity
9https://www.mysql.com/

101

https://fr.wikipedia.org/wiki/Java_Database_Connectivity
https://www.mysql.com/

F
ig

u
re

3.
3:

U
M

L
u
se

ca
se

d
ia

gr
am

of
th

e
In

fo
rm

at
io

n
S
y
st

em

102

F
ig

u
re

3.
4:

U
M

L
cl

as
s

d
ia

gr
am

of
th

e
In

fo
rm

at
io

n
S
y
st

em

103

F
ig

u
re

3.
5:

P
ro

to
ty

p
e

104

Chapter 4

Model-based testing for
functional validation

Towards hybrid verification

In this thesis, a methodology is defined as a collection of related processes, meth-
ods, and tools. A model-based testing methodology is therefore the collection of
related processes, methods, and tools used to support the verification and vali-
dation of a system in a model-based context [79]. Sec. 4.1 presents the generic
model-based testing process and a few testing-related concepts. Sec. 4.1.2 dis-
cusses our methodology including terminology, processes, tools and the “hybrid
verification” heuristic. Sec. 4.2 illustrates a new technique to refine test gen-
eration with model checking, by gradually adding constrains from the physical
environment.

4.1 Model-based testing process

Model-based testing (MBT) is about generating tests from a model of the system
under test (SUT). Utting et al. defined the generic process of model-based testing
in [166]. Fig. 4.1 illustrates this process. MBT tools are software tools that auto-
mate MBT activities.

Step 1: A model of the SUT is developed from the requirements of the system.
This model represents behaviors of the SUT with a level of abstraction. The mod-
el must be simpler than the SUT, otherwise the validation of this model will be
equivalent to that of the SUT. However the model must be close enough to the
SUT so as to generate relevant test cases.

105

Figure 4.1: Model-based testing process

Step 2: The test selection criteria are defined. These criteria describe infor-
mally the objectives of the test cases that will be generated by the MBT tools.
These criteria may refer to a certain functionality of the system (criterion based on
requirements) or to the structure of the model (state coverage, transition coverage,
i.e. non-functional criterion); or to stochastic characterizations.

Step 3: The test selection criteria are then translated into test case specifica-
tion which formalizes the criteria and make them operational.

Step 4: The model of the SUT and the test case specification being well defined,
the MBT tool is capable of generating test suites. A test suite is a collection of
test cases satisfying one test case specification. Test cases are interpreted as pairs
of inputs/outputs of the model: the outputs are those expected from the system
under test.

106

Step 5: The test cases are executed. The execution consists of two steps:

Step 5-1: Test cases are manually translated into executable scripts and sent to
an execution environment. The execution of a test case involves applying to the
SUT the inputs of the test case and recording the responses of the SUT which are
the actual outputs.

Step 5-2: A verdict is the result of comparing the actual outputs of the SUT
with the expected outputs defined in the test suite/script. A verdict can produce
three possible outcomes: (1)OK if the actual outputs consistent with those ex-
pected; (2)Not OK if the actual outputs do not consistent with those expected;
(3)unknown if the result is not clear enough. Recall that the model represents
the behavior of the SUT with a level of abstraction. Since test cases are gen-
erated from the model, applying the inputs of test suite to the SUT requires a
concretization of them. Similarly to compare the actual outputs of the SUT with
the expected outputs, it is necessary to map real outputs to test suite outputs [144].

Model-Based Testing has been more and more applied to industrial projects.
For example, to automate functional testing of a particular class of programmable
logic controllers[162]. Testing with model checker (Sec. 2.2) qualifies as model-
based testing approach. Our methodology focus on exploring the test sequence
generation ability of GATeL. Therefore, the model checker GATeL can also be
considered as a model based testing tool.

Testing strategies

In general, there are two mainstream testing strategies: black-box testing (or func-
tional testing) and white-box testing (or structural testing).

The goal of black-box testing is to find errors in the program by testing the
functions listed in the specification. Designing test set does not require analyzing
the details of the program but using the specification. On the contrary, white-box
testing focuses on the structure of the program. A test set in which every line of
the program under test is executed at least once is an example of white-box testing.

A mixture of different strategies can be used to improve the effectiveness of
testing. For example, since black-box testing does not require knowledge of the
structure of the program, there may be some parts of the program unreachable
because they are defective or insensitive to certain inputs, these problems may not

107

show up in functional testing.

The “CONNEXION” project focuses on functional validation of the models of
I&C system developed in early design phases. Test cases for functional validation
should verify these models with respect to the functional requirements. Meanwhile
the I&C system is highly safety critical. Therefore the functional test cases are also
required to “cover” (execute) as much as possible the structure of models (or at
least some parts). This inspired us to design a methodology combining black-box
and white-box testing strategies. These two strategies naturally lead to different
coverage criteria discussed in the following.

4.1.1 Coverage criteria

Coverage criteria indicate how adequately the testing has been performed. Accord-
ing to the testing strategies presented just above, there are at least two categories
of coverage criteria : requirement coverage and structural coverage. We hereby
adopt the definitions of different coverage criteria given in [165].

Definition 16. Requirement. A requirement is a testable statement of some func-
tionality that the system must perform.

Definition 17. Requirement coverage. It demands that all requirements are cov-
ered in the functional test set. In other words, a measurement of the requirements
that are covered in the test set indicates how well the functional testing has been
performed.

For structural coverage, many criteria have been discussed in the literature
[173]. Statement coverage and branch coverage are two most widely used criteria
in practice. A measurement of statements or branches covered in the test set
indicates the test adequacy.

Definition 18. Statement coverage. The test set must execute every reachable
statement in the program. The coverage rate of a test set is the ratio of the number
of executed statements to the total number of statements.

Definition 19. Decision coverage (or branch coverage). The test set must ensure
that each reachable decision is made true and false at least once.

Testing of a decision depends on the structure of that decision in terms of
conditions: a decision contains one or more conditions combined by logic operators
(and, or, not, etc.). Several decision-oriented coverage criteria are hence derived.

108

Definition 20. Multiple condition coverage (MCC). A test set achieves MCC if
it exercises all possible combinations of condition outcomes in each decision. This
requires up to 2N test cases for a decision with N conditions.

Definition 21. Modified condition/decision coverage (MC/DC). A test set achieves
MC/DC when each condition in the program is forced to true and to false in a test
case where that condition independently affects the outcome of the decision. A con-
dition is shown to independently affect a decision’s outcome by varying just that
condition while holding fixed all other possible conditions. For a decision contain-
ing N conditions, a maximum of 2N test cases are required to reach MC/DC.

Indeed, these different structural coverage criteria are not equally strong. For
example if we reach MCC then we reach MC/DC since MCC requires more test
cases than MC/DC. Similarly decision coverage is stronger than statement cov-
erage. More detailed information about the hierarchy of coverage criteria can be
found in [165].

Requirement coverage and structural coverage are somewhat independent to
the sense that a 100% requirement coverage does not guarantee a 100% structural
coverage and vice versa. In practice, the functional testing of large scale system is
usually performed by executing a set of functional test cases in a harness.

4.1.2 A new MBT methodology for safety-critical systems

In “CONNEXION” this methodology is being applied to functional validation of
the I&C system models developed in early design phases. We recall that the I&C
system of a nuclear power plant is composed of several hundreds of Elementary
Systems (ES) and each ES is composed of a Process (physical environment) and
a control/command system (RTS) reacting permanently to the Process.

Terminology

Definition 22. Structural unit (SU). A SU is the unit of coverage measurement
on the model regardless of the coverage criteria chosen.

Definition 23. Reachability check. For a given structural unit, a model checker
verifies formally whether this structural unit can be executed by any test.

We also recall some reappearing definitions that have been given in introduc-
tion.

109

Definition 24. Open-loop test. In an open-loop test, only the real-time system
itself is executed. Behavior of the environment permanently interacting with the
RTS is not taken into account.

Definition 25. Closed-loop test. In a closed-loop test, the real-time system and
its environment are executed together, also called co-execution. The behavior of
the RTS is thus influenced by the environment.

Workflow and tools

Our methodology is composed of three main phases.

• Phase 1: Generation of test cases based on test objectives derived from
high-level functional requirements. These functional test cases are then exe-
cuted through co-simulation of the environment and the RTS. A model-based
functional testing tool is utilized for test generation (MaTeLo in “CONNEX-
ION”). A simulator supporting closed-loop test execution is another require-
ment (the ALICES platform in “CONNEXION”).

• Phase 2: After the execution, structural coverage of these test cases is
measured (MC/DC coverage in “CONNEXION”). It is important to notice
that the coverage is measured only on the RTS. Uncovered structural units
are collected. A coverage monitoring tool is required in this phase (SCADE
QTE in “CONNEXION”).

• Phase 3: For each uncovered SU, a model checker is utilized to generate test
sequences executing the SU under consideration. The model checker takes as
input the RTS model and generates open-loop test sequences. With the help
of system experts, closed-loop test cases can be developed from these open-
loop test sequences. New test cases should not only improve the structural
coverage but also are related to the functional requirements. This process is
iterated on every uncovered SU until the coverage criteria are satisfied. Tools
required in this phase includes a model checker (GaTeL in “CONNEXION”),
for coverage-based test generation. The functional (closed-loop) test gener-
ation tool used in phase 1 is also needed for building a functional realistic
test case covering the SU under consideration.

Let’s now take a closer look at phase 3. For each uncovered structural unit, the
model checker is used to perform a reachability check in order to prove whether
this SU can be covered by any test. If a SU is found reachable, the model checker
generates test sequence that covers this particular SU and, interestingly enough
this test could also cover other SUs. It is possible that the SU could not be reached

110

by the model checker, either because it is truly unreachable or because the model
checker encounters a “time out” (TO). In the first case, this SU will be recorded
for further analysis since it can be dead code or even the manifestation of a bug,
which would require a fix. The second case is also (imperfectly) addressed since we
propose using hybrid verification similar to the work presented in [131] combining
model checking and simulation (Sec. 4.1.3).

For the nuclear I&C system, the Process and its control/command(CC) are
modeled using different languages. Test sequences generated by the model checker
can be interpreted as open-loop test, i.e., executable only on the CC system. An
open-loop test does not take into account how the Process reacts to the outputs
produced by the CC system; or what kind of data the Process can realistically
send as inputs to the CC. Our research work concentrates on using model checkers
to produce open-loop test sequences. How to develop closed-loop test from open-
loop data requires expertise from the I&C system experts and is not in the scope
of the thesis. In the practice, closed-loop test is more realistic and valuable than
open-loop test and sometimes necessary or even required. Therefore our method-
ology proposes some techniques to help with the passage from open loop to closed
loop. These techniques are based on formalizing properties describing behavior
of the physical environment as constraints for the model checker and using these
constraints to progressively refine the generation of open-loop test (Sec. 4.2)

Considering the length of the methodology, we decide to break it into two parts.
Part 1 deals with the SUs that have been found either reachable or not reachable in
the reachability check. Part 2 discusses the third possible outcome of reachability
check: the model checker has TO. The methodology of part 1 has been tested
on the “CONNEXION” case study with support of “CONNEXION” tools (Sec.
5.1). To implement hybrid verification proposed in part 2, we have tested several
academic model checkers but none of them could offer all the required techniques
(Sec. 5.3).

MBT methodology: Part 1 of 2

Fig. 4.2 illustrates the methodology part 1 including methods, processes and tool-
s that are requested for application. The process can be generalized for various
structural coverage metrics.

A functional test generation tool is first used to derive a functional test suite
(TS) according to the functional requirements (step 1). This test suite is then
executed in an environment on the model of the system (step 2). The structural
coverage (SC) of the test suite is measured by a coverage monitoring tool after

111

Figure 4.2: Model-based testing methodology: part 1 of 2

the execution (step 3). We define SUU as the set of all uncovered structural units
after the execution of TS (step 4). SUA is the set of all actually unreachable
structural units and SUP the set of all potentially unreachable structural units,
for which the method did not succeed to answer the reachability question. Initially
they are both empty. Take an uncovered structural unit su from SUU (step 6)
and apply a model checker to check if su is reachable (step 7):

• If su is not reachable, send a warning message to user (step 11) and record
su as an actual unreachable structural unit (step 12): SUA

j = SUA
j−1 ∪ su.

Go to step 5 and continue the following steps.

• If su is reachable, the model checker must have produced open-loop test da-
ta that forces the system to reach su. These data will be used to construct

112

a closed-loop functional test case (denoted ntc) that covers this particular
structural unit and possibly others (possibly in SUP which needed to be
computed again) (step 9). At this point a return to the high-level functional
requirements is required to ensure the functional reality of ntc. For systems
composed of different sub-systems modeled by different formats, the func-
tional test generation tool may also be necessary to prepare a closed-loop
test case. Complete the former test suite TS with this new test case (step
10): TSi = TSi−1 ∪ ntc. Go to step 2 and continue the following process.

MBT methodology: Part 2 of 2

Fig. 4.3 depicts the part 2 of our methodology. The third possibility of the reach-
ability check of a SU (step 7) is TO: the model-checker stops its execution without
giving an answer. Our solution is first to increase TO then to apply hybrid ver-
ification (i.e. a combination of model checking and simulation) similarly to [131]
to check the reachability of this su (step 13). If the su is reachable then go to
step 8 and continue the following process. Hybrid verifcation can also “time out”
which leads to sending an “abandon” message to the user (step 15) and then
recording su as potentially unreachable (step 16): SUP

k = SUP
k−1 ∪ su. Then

go to step 5 and continue the following process. Notice that in step 5, we have
SUU

i = SUU
i − SUA

j − SUP
k .

Figure 4.3: Model-based testing methodology: part 2 of 2

This process converges when either the structural coverage criterion is satisfied
or there are no more unexplored uncovered structural units i.e. SUU

i = ∅. Since
TSi ⊃ TSi−1, that leads to SUU

i ⊂ SUU
i−1 and SCi > SCi−1 because at least one

more structural unit is covered.

It is possible that the process terminates immediately after execution of the
initial functional test suite TS0 if the corresponding SC0 is already satisfying.

113

Otherwise, at the end of the process, if the loop at left is executed at least once,
we have an improved test coverage; if the loop at right is executed at least once, i.e.
SUA ∪ SUP 6= ∅, further analysis with the authors of the specification is required
since at least one structural unit is suspected to be dead code or even a bug.

4.1.3 A heuristic: hybrid verification

Hybrid verification [158, 157, 55] is a technique combining model checking and
simulation. Model checking tries to explore all the possible states while simulation
explores partially the entire state space. Fig. 4.4 depicts the principle of hybrid
verification. Hybrid verification requires various techniques such as exhaustive
state-space exploration, memorizing exploration traces, forward/backward trace
generation, step-by-step simulation, etc.

Figure 4.4: Principles of hybrid verification

Supposing that we have a model of the SUT and the problem to verify is: s-
tarting from an initial state S0, can we find a test case that finally arrives at the
target state Star. In the context of our methodology, an uncovered structural unit
can be considered as the target state Star. The model checker performs model
checking until it runs out of time or memory (time out). We suppose that the

114

model checker is able to memorize the already explored state traces just before
TO. Say, for example, the model checking at a computation cycle where five s-
tates Sp,Sq, Sl, Sm and Sn have been explored. We select from the five states a
candidate state, say Sl, as the candidate state to start a step-by-step simulation.
The selection of candidate state is based on an informal user-defined “distance”
between each potential candidate state and the target state. The definition of such
a selection remains the most delicate and difficult part of the hybrid technique.
Some heuristics can be easily found, however, we doubt that a formal distance
can be established. If that was the case, this could be incorporated to the model
checker.

Raffinement par ajout progressif des contraintes

Cette section présente une technique de raffinement de la génération de test en
boucle ouverte discutée ci-dessus. Cette technique est illustrée avec le model
checker GATeL. GATeL prend le modèle Lustre du système contrôle/commande
comme une entrée. Il permet également deux autres entrées: un objectif de test
et une description de l’environnement. Notre objectif de test est de vérifier si
une unité structurelle donné peut être couvert par n’importe quel test, c’est-à-
dire l’accessibilité de cette unité. Au cas où l’unité est accessible, GATeL génère
des séquences de test atteignant l’unité au dernier cycle de calcul. La description
de l’environnement est composée de booléen expressions destinées à sélectionner
parmi toutes les valeurs possibles de variables les correspondants aux réactions
réalistes du système. Chaque expression de sélection est indiquée comme une
directive assert ”qui doit être vraie à chaque cycle de séquences générées. Ces ex-
pressions sont utilisées par GATeL pour dériver des contraintes dé nir des entrées
/ sorties des relations.

4.1.4 An first example: cruise control

The following experiment results are based on a simple example: cruise control
system. It is a system that automatically controls the speed of a motor vehicle
by taking over the throttle of the car to maintain a steady speed as set by the driver.

The model of the system is built in SCADE Suite, coupling data-flow block
diagrams and hierarchical SSMs (Safe State Machines) [34]. MaTeLo serves as the
functional test generator and GATeL as the model-checker. SCADE QTE (Quali-
fied Testing Environment) [1] is responsible for executing test cases and measuring
the coverage.

115

F
ig

u
re

4.
5:

C
ru

is
e

co
n
tr

ol
m

o
d
el

in
S
C

A
D

E
S
u
it

e

116

The cruise control system presented in Fig. 4.5 consists in three nested state
machines, each having two states: the cruise control can be either Off or Enabled ;
while Enabled, the second automaton SM2 may be in state Interrupt or Active; a
third automaton SM3 defines two computation modes when in state Active: state
On or state StandBy. The system depends on these inputs: On (enable the cruise
control), Off (disable the cruise control), Resume (resume from state Interrupt),
Set (set current car speed as new cruise speed), QuickDecel and QuickAccel (de-
crease/increase the cruise speed), Accel (accelerator pedal sensor), Brake (brake
pedal sensor) and Speed (car speed sensor). At each cycle, depending on its ac-
tive state, the system computes three outputs: CruiseSpeed (cruise speed value),
ThrottleCmd (throttle command) and CruiseState (state of cruise control, it can
be OFF, ON, STDBY, or INT).

The original functional test set has three records. After execution, the model
coverage MC/DC is measured on each operator composing the model [80], as
shown in figure 4.6. The color green indicates a 100% coverage while yellow a
partial coverage. Note the boolean operator ”or” highlighted by a red arrow: in
figure 4.5 it corresponds to the operator calculating the internal variable StandBy
Condition. This operator has three inputs:

• input i1 Accel > PedalsMin is true when accelerator pedal is pressed;

• input i2 Speed < SpeedMin is true when current car speed is less then the
minimum speed value;

• input i3 Speed > SpeedMax is true when current car speed is greater then the
maximum speed value.

This operator describes a functional requirement of cruise control system: when
the accelerator pedal is pressed or the car speed is out of range, cruise control
should be in state StandBy and the output CruiseState is valued STDBY.

A full coverage of this operator requires 4 test cases while the original test set
only provide 2. We choose ”only input i2 is true” as an uncovered SU and apply
the model-checker GATeL. As mentioned before, GATeL works on models in Lus-
tre (a synchronous data-flow language). It also provides an extension to handle
state machine specifications [38]. The graphical SCADE model of cruise control is
first equivalently transformed into a textual Lustre model with help of the ”s2d”
tool1. Then in GATeL we define a test node to describe the test objective as well
as environmental conditions to reduce the domain of inputs’ values (see Fig. 4.7).

1The tool is developed and provided by Laboratoire Sûreté des Logiciels, CEA/DRT/DTSI/-
SOL, 91191 Gif sur Yvette, France

117

Figure 4.6: Original structural coverage of cruise control model

We ask GATeL to reach a state where the car speed is less then the minimum
speed value and the accelerator pedal is not pressed. Under this circumstance the
output CruiseState should be STDBY. The last line of test objective assures that
the test case generated contains at least 2 cycles. As shown in Fig. 4.8, GATeL
generates a test case where the objective is reached at the last cycle (cycle 0).

Following our testing methodology defined in Sec. 4.1.2, the original test set is
enriched by the new test case generated by GATeL. After execution of new test set,
its structural coverage is measured and the results are presented in Fig. 4.9. The
coverage rate of operator ”or” is enhanced from 2/4 to 3/4. Note that the operator
”lt” just above the operator ”or” has also changed from partial coverage (yellow)
to full coverage (green). It corresponds to the calculation of Speed < SpeedMin. As
SCADE operators are hierarchical, i.e. one operator can contain other operators,
it is advisable to start from the “deepest” operator when choosing an uncovered
structural unit.

118

Figure 4.7: GATeL interface: node of test

Suppose an error is introduced in the SCADE model: the operator ”or” with
three inputs is replaced by a combination of an operator ”and” and an operator
”or”, each having two inputs, as defined in Fig. 4.10. The rest part of model
remains unchanged. The original test set will not be able to identify this bug
because it doesn’t execute the modified branches.

The SCADE model with error is then transformed into an equivalent Lustre
model, taken by GATeL as input. We create the same test node as described
in previous subsection, but this time GATeL is not able to generate a sequence
satisfying our test objective, see Fig. 4.11. According to our methodology, this
SU is considered as unreachable. A simple code inspection guided by this result
will easily identify the design bug.

Experiment results on cruise control model somewhat validate our testing

119

Figure 4.8: GATeL interface: test case generated

methodology as an approach to enhance coverage and detect design bugs using
model-checking. The dimension of this model is too limited to challenge the model-
checker with a “time out” situation. So part 2 of methodology could not be tried
with this example.

Complexity of Scade models

In the domain of embedded systems, projects are increasingly adopting model-
based engineering tools, such as SCADE or Simulink, to specify the functional
architecture. One important impact of model-based engineering is automatic gen-
eration of certified code from models, with the result that the code metrics no
longer match engineering efforts. New methods must be developed to evaluate the
quality and complexity of these models.

The research project ERACES 2 performed at the Carnegie Mellon Software
Engineering Insitute aims at designing methods and tools to measure and reduce
complexity in software models. To evaluate complexity of SCADE models, im-
plementation of existing metrics and introduction of new metrics for data-flow
language have been proposed in [69]. Tools designed to compute complexity using
these notations have been released as plug-ins for SCADE tool set under an open-
source license. We computed complexity of cruise control model under Nesting
Level metrics and Data Flow metrics. The former goes through modeling compo-

2https://github.com/cmu-sei/eraces

120

Figure 4.9: New structural coverage of cruise control model

Figure 4.10: Operator modified in cruise control model

nents and counts the depth of non-predefined operators and state machine states;
the latter allows users to easily follow how each input data is broadcasted in the
model. Computation results are partially presented is Fig. 4.12 and Fig. 4.13.

Model complexity has a significant impact on maintenance costs during system
lifecycle. It matters particularly to safety-critical system which are usually main-

121

Figure 4.11: GATeL interface: unreachable branch detected

Figure 4.12: Cruise control model complexity: Nesting Level metrics

tained for more than 20 years. In this thesis, we settle for calculating complexity
with the SCADE extension developed by ERACES project. How to include this
aspect into application of our testing methodology will be one subject of future
work.

4.2 Refinement by gradually adding constraints

in GATeL

This section describes a refinement of the open-loop test generation by model
checking presented in the above methodology. The technique is illustrated with
the model checker GATeL.

The model checker GATeL takes the Lustre model of the control/command
system as one input. It also allows two more user inputs: the test objective and

122

Figure 4.13: Cruise control model complexity: Data Flow metrics

an environment description. Our test objective is to verify whether a given SU of
the model can be covered by any test, i.e the reachablity of this SU. In case that
the SU is reachable, GATeL generates test sequences reaching the desired SU at
the last computation cycle. The environment description is composed of boolean
expressions intended to select from all possible values of variables those corre-
sponding to realistic reactions of the system. Each selecting expression is stated
as an “assert” directive that must be true at each cycle of generated sequences.
These expressions are used by GATeL to derive constraints defining inputs/out-
puts relationships.

The refinement of test generation concerns adding progressively more con-
straints in the environment description. The constraints are divided into three
categories, including physical conditions, initialization conditions and functional
requirements. This decides the order to add them into the environment description.
After every addition of a new constraint, all the possible results are considered and
necessary decisions are taken.

123

Figure 4.14: Refining test generation by adding constraints to the model checker

4.2.1 Three categories of constraints

We distinguish three categories of constraints:

• Physical constraints only concern inputs of the model. Physical con-
straints filter out the values that could not appear in the actual physical
system where the model is applied. Such as incompatible values for two
input flows or an input domain restrained by physical law (the water tem-
perature is between 0 ◦C and 100◦C for example).

• Initialization constraints only concern inputs of the model. Initialization
constraints define input values at the initial cycle. These constraints are
not necessarily true after the first cycle. Although an expression stated by
“assert” directive must be true at each cycle, the Lustre language proposes
temporal operators such as delay (pre) and initialization (→), which make
initialization constraints possible.

• Requirement constraints concern inputs and outputs of the model. Re-
quirement constraints are derived from the functional requirements of the
system, defining relationships between inputs and outputs.

The order to progressively add the constraints is physical constraints, then
initialization constraints and finally requirement constraints. Note that not all
functional requirements can be translated as invariant constraints. In this thesis
we are only handling invariant requirements.

124

4.2.2 Refinement by adding progressively the constraints

Fig. 4.14 illustrates the principle of refining test generation in GATeL. Given an
uncovered structural unit su, GATeL verifies if su is reachable while respecting
the constraints defined in the environment description. At first the environment
description contains only one constraint C1 and the reachability check on su can
produce three outcomes:

• (1) su is found Reachable (R).

• (2) su is found Non-Reachable (NR). At this point there is no need to contin-
ue adding more constraints. su will be recorded as a non-reachable branch.

• (3) GATeL encounters Time-Out (TO).

For the outcome(1) or (3), new constraints are then added progressively to the
environment description, one at a time. After each addition of a new constraint,
GATeL verifies the reachability of su. With more constraints in the environment
description, the possible outcomes are:

• (1.1) su is still found reachable. In this case GATeL generates test sequences
where su is covered at the last cycle. The sequences construct a new open-
loop test case satisfying the constraints C1∧C2∧ ...Cn. It helps to construct
a functional closed-loop test case covering the structural unit su.

• (1.2) su becomes NR with the newly added constraint, which means the
previous result R(1) was not “realistic” This could suggest that su is an
unreachable structural unit which requires further analysis. This could also
indicate a bug somewhere: the constraint may not be correctly formalized
or there may be a violation of the requirement described by the constraint
in the model.

• (1.3) GATeL has a TO. In general adding constraints means reducing the
state space that GATeL needs to explore. One possible explanation for this
situation is that the previously generated test sequences in (1) are eliminated
by the newly added constraint and GATeL, exactly like in (1.2), can not find
another new trace covering su in a restricted period of time.

• (3.1) With more constraints added to the environment description, GATeL
generates realistic test sequences covering su.

• (3.2) We have a stronger hypothesis that su is unreachable.

• (3.3) A Time Out. Following Fig. 4.3 hybrid verification is the last resolution
to consider.

125

Chapter 5

“CONNEXION” Case study: SRI

The case study proposed in “CONNEXION” is SRI: an Elementary System present
in the I&C system of all the French nuclear power plants. SRI is briefly presented
in Sec. 5.1. The part 1 of our methodology has been tested on SRI and the
results are discussed in Sec. 5.2. Although the part 2 of the methodology has
not been successfully tested, we tried three academic model checkers on SRI and
compared them with respect to capacities required for hybrid verification. This
part is described in Sec. 5.3.

5.1 Description of SRI

The main function of the SRI is to ensure the refrigeration of several other ESs,
referred to as the clients of SRI. The SRI also interfaces with a cooling source SEN
through its heat exchangers.

The SRI Process includes two heat exchangers working in parallel, where the
cold water from SEN and the hot water from its clients are mixing. The water
temperature at the exit of the heat exchangers is regulated by three parallel valves,
varying by their opening the flow rate and thus the heat exchange. According to
different operational modes, a user can be connected to the SRI or not. A water
tank is used to compensate the eventual leakage of the circuit. Three pumps in
parallel ensure the water circulation in the system (pump 3 is spare). Fig. 5.1
demonstrates a simplified schema of the Process.

The control/command of SRI functions at several levels:

• regulating the water temperature at the exit of the heat exchangers;

• regulating the level in the water tank;

126

Figure 5.1: A simplified schema of SRI

• automatic start-up of a pump in case of malfunction of the pumps in service.

The control/command sub-system of SRI is modeled by SCADE Suite. A part
of the block diagram is shown by Fig. 5.2.

5.2 Experimentation results of part 1

The experimentation results are organized into three phases, same as when we
presented the methodology in previous chapter.

Phase 1

The activities performed in phase 1 include functional test generation with the
MaTeLo tool and closed-loop test execution with the ALICES platform.

Based on the functional requirements, AREVA, a project partner of“CONNEXION”,
has created a usage model of the SRI in MaTeLo. They have used MaTeLo to gen-
erate a functional test suite containing 10 test cases. Then we execute these 10 test
cases by closed-loop simulation on ALICES. We obtain the scripts recording data
exchange during simulation between the Process model and the control/command

127

F
ig

u
re

5.
2:

A
p
ar

t
of

th
e

S
R

I
co

n
tr

ol
/c

om
m

an
d

in
S
C

A
D

E
S
u
it

e

128

model.

Phase 2

The scripts obtained in phase 1 are now used to measure the MC/DC coverage on
each operator composing the control/command model, as shown in Fig. 5.3. More
details regarding coverage metrics of Scade models can be found in [80].

Figure 5.3: Coverage measurement

Fig. 5.4 shows the coverage result measured by SCADE QTE. Green color
indicates a 100% coverage, yellow a partial coverage and red a zero coverage. The
Scade model of control/command system is structured as an hierarchy of opera-
tors. The top level operator (the root operator) is called “ControlCommande”.
The MC/DC coverage rate measured at this level is about 50%, as highlighted in
the figure.

Phase 3

With a 50% coverage rate at the top level, we need to choose an uncovered struc-
tural unit to perform reachability check. While choosing an uncovered structural
unit, we suggest to start with a “deepest” operator who does not contain other

129

Figure 5.4: MC/DC coverage on each operator of the control/command model

predefined operators. The advantage is that a test executing this “deepest” SU
may as well covers other higher-level SU that have not been covered. The uncov-
ered structural unit su that we have chosen is three-level deeper with respect to
the top operator: the two boolean inputs i1 and i2 of an “and” logic have never

130

been both true (Fig. 5.5).

Figure 5.5: The uncovered SU chosen for experiment

We have used GATeL to perform reachability check following the refinement
technique: progressively adding assumptions about the behavior of the environ-
ment. These assumption are translated into invariant constraints for GATeL.
These constraints can be found in appendix A. We first challenged GATeL with
this su under a physical constraint C1. This constraint assumes three things:

1. the water temperature is confined between 0◦C and 100◦C;

2. the water level in the tank is confined between 0 and the maximum tank
level;

3. the boolean variables representing pump status and pump default can not
be true at the same time (if the status variable is true that means the pump
does not have a default).

Under C1, su has been found reachable and a test sequence containing 3 cycles
have been generated. We have measured again the MC/DC coverage, including
this newly generated test. Fig. 5.6 and Fig. 5.7 shows the MC/DC coverage
at the su level and the top node level. TS0 is the original functional test suite.
localV ar2 is the new test generated by GATeL to cover the previously uncovered
su that we have chosen. The new test has not only covered the su but also raised
the top level coverage rate from 50% to 80%. This means that other uncovered
structure units have also been executed by the new test.

131

Figure 5.6: MC/DC coverage at the su level

Figure 5.7: MC/DC coverage at the top level: before and after

Then an initialization constraint C2 has been added to the environment de-
scription. C2 assumes that in the initial state of the system, both the two heat-
exchangers are functioning. We encountered TO at first: the execution was aborted
without giving a result because of the configuration in GATeL regarding the max-
imum number of cycles of test generation. It had been set to 20, which is not long
enough under the assumptions C1 ∧C2. We have thus increased this configuration
to 30 and obtained a test sequence of 23 cycles. The calculation time is 6391
seconds and memory used 272309 kilobytes.

This result indicates that the 3-cycle test sequence obtained at first is not
realistic. This proves that the refinement by adding gradually constraints does
help enhancing functional reality of the test generation. We admit that based on
the test sequence of 23 cycles, preparing a relevant closed-loop test case would not
be easy. But the depth of the test also suggests that manually designing a test
covering the structural unit su can be very difficult.

132

5.3 Lustre model checkers toward hybrid verifi-

cation

We have tested three academic model checking tools for the Lustre language, GA-
TeL, Lesar and Kind 2, to implement the complete methodology including hybrid
verification in particular. Lesar and Kind 2 are model checkers oriented towards
the conventional property verification problem. Lesar takes as input the standard
Lustre V4 models while Kind 2 accepts as input modeling language Lustre v4
extended with a part of V6. Both Lesar and Kind 2 are used to verify safety prop-
erties. GATeL is a model checking tool oriented towards test sequences generation.
It accepts a specific extension of Lustre V4. Able to perform traditional model
checking problem, GATeL offers user-definable test objectives. A test objective
can be an invariant property such as a safety property, or some particular states
to be reached of the system under test. GATeL is able to generate test sequences
illustrating how the test objective can be satisfied. GATeL also takes as input a
specification of the environment describing possible evolution of the inputs that
can be considered during test sequence generation. This environment description
allows refining test sequence generation by progressively adding constraints as p-
resented in Sec. 4.2.

The first step of this experimentation is to build a proper input model of the
SUT for these three model checkers. We started with the textual Scade mod-
el of the SRI control/command (CC) which is automatically generated from the
graphical Scade model by SCADE KCG. The s2d tool provided by CEA/List then
translates the Scade code of the SRI CC to an extended Lustre V4 model which
can be directly input to GATeL. Once the SRI CC model in GATeL, we define
the test objective as checking the reachability of the unexecuted SU that has been
identified in Fig. 5.5. This is the same procedure previously used in Sec. 5.2.

The uncovered SU chosen for experiment is hierarchically three-level “deeper”
with respect to the top-level node. The inputs and output of the and operator are
considered as internal or local variable for the top-level node. However, for Kind 2
and Lesar, it is necessary to specify a target property concerning only the inputs
and outputs of the top-level node. Therefore, we decide to modify the graphical
Scade model of SRI CC so as to bring out i1 and i2 to top-level outputs o1 and
o2, as depicted in Fig. 5.8. Then following the above procedure, we obtain a
modified model of SRI CC for GATeL.

The GATeL input model is not directly readable by Kind 2 and Lesar, since
each tool works on a slightly different version of the Lustre language. Fig. 5.9

133

Figure 5.8: The uncovered SU chosen for experiment: modify the top level node

shows how the Scade model has to be transformed to become readable by our
three model checkers. Luckily the GATeL model of SRI CC does not contain
syntax not included neither in Lustre V4 nor in V6. However it is still subject to
some syntax modification including:

– For complex data definition e.g., type T_NS = {T1: real, T2: real, T3: real};

all the commas , need to be replaced by semi-colons;.

– GATeL allows writing assume expression_1 to indicate that expression_1
is always true. In Lustre, the assume needs to be replaced by assert with
the same semantics.

– Scade and GATeL offers user ID #1, #2, #3, etc to identify different instances
of the same operator or node. This definition does not exist in Lustre V4 or
V6.

– In Scade and GATeL, the evaluation of a structured variable can be per-
formed through an operator make such as make T = (v1, v2, v3) where T

is a T_NS type variable. In Lustre this should write as T.T1=v1; T.T2=v2;
T.T3=v3.

– Scade and GATeL offers an operator caseof as a swith statement, allowing
the value of a variable or expression to change the control flow of program
execution via a multiway branch. In Lustre, caseof must be equivalently
replaced by several nesting if then else.

After these modifications, the GATeL model has been translated to an input
model for both Kind 2 and the compiler lus2lic. During our experimentation we

134

have identified a defect of lus2lic. For the conversion of a real number to an integer
number, lus2lic calls for a function real2int which is not declared in the .ec file
generated. The tools for EC therefore return a segmentation error. The conver-
sion function actually exists in .ec under a different syntax int. A Unix filter is
good enough to correct the problem. We have informed the Lustre authors of this
defect. Finally we obtain an input model for each of the three model checking
tools. Fig. 5.9 gives an overview of the relationship between various models.

Figure 5.9: Applying different model checkers to the SRI CC

The three model checkers performs quite differently to the same property ver-
ification (or test generation) problem.

• Lesar runs out of memory, i.e. time out. In fact Lesar is a model checking
tool handling exclusively boolean values. It is therefore clearly not adapted
for the model of SRI CC, resulting in state explosion. Lesar does not record
any temporary results during state space exploration. As a consequence, it is
not possible to perform hybrid verification, which requires memorizing state
exploration traces.

• GATeL succeeds in generating test sequences which improve the structural
coverage, as discussed in previous section. However GATeL only offers back-

135

ward test generation so it’s not suitable for hybrid verification, which requires
forward and backward generation.

• Kind 2 relies on off-the-shelf SMT solvers. The SMT solvers are not adapted
for the non-linear expressions of the SRI CC such as multiplication/divi-
sion of variables. One solution is to replace these non-linear expressions
by abstractions defined in assume-grantee style contracts (Sec. 2.4.3). The
abstracted model may be suitable for property verification, if it’s proved
equivalent to the original model, but not amenable for test generation.

We also searched for translators of Lustre towards other modeling language so
as to benefit from other powerful model checking tools such as NuSMV [59]. The
Lustre translator framework presented in Sec. 2.4.4 is Rockwell Collins proprietary
and the project with University of Minnesota is no longer supported. Another
academic translator from EC to SMV (Sec. 2.4.4) is no longer maintained. The
SCADE Design Verifier (based on the model checker Prover)(Sec. 2.4.1) is a
product that we could not experience with since its license was not included in
“CONNEXION”. As a result we have come to the conclusion that to implement
the complete methodology presented in this thesis, an integration of several model
checking tools may be necessary. An alternative solution is to develop a new model
checker with the following features:

- forward and backward counterexample generation;

- dump unexplored states after TO;

- resume exploration after simulation.

136

Chapter 6

Conclusion

The verification and validation of safety-critical real-time system (RTS) are sub-
ject to stringent standards and certifications. Integration of recent progress in
model-bases system engineering (MBSE) into the life cycle of such systems con-
stitutes the background of this thesis. MBSE approaches, such as model-based
design (MBD) and model-based testing (MBT), encourage performing verification
activities in the early design stages, allowing early detection of defects. This is
very cost-effective for safety-critical RTS since the cost of defects found later in
the actual system can be extremely high.

Since 2012, the main industrial and academic partners of the French nuclear
industry initiated an ambitious R&D program called “CONNEXION”. Regroup-
ing a number of projects, “CONNEXION” [71] aims at improving the develop-
ment process of the Instrumentation & Control (I&C) system of nuclear power
plants (NPPs). “CONNEXION” is based on the existing expertises of major op-
erators from the French nuclear industry (EDF, ALSTOM, AREVA and RRCN)
and various software tools provided by other partners (CEA, CORYS, ESTEREL
Technologies and ALL4TEC). Several objectives regarding functional validation
(FV) have been proposed such as an (innovative) triple V development life cycle
where two additional FV sub-cycles are introduced on the models developed at
early design phases. Another objective is to create a complete verification platfor-
m supporting triple V life cycle through integration and co-simulation of various
models and tools. The partners of “CONNEXION” provide a rich and unique tool
set to automate as much as possible the functional validation.

The ambitious objectives of “CONNEXION” come with various challenges.
The control/command system and its Process are modeled in different languages
whereas most verification tools can only deal with one modeling language. Test
data generated from the control/command model is therefore referred to as open-

137

loop. However, a suitable test case for functional validation must be closed-loop
and related to functional requirements. Secondly the environment of multi-models
and multi-tools can quickly become counter-productive, considering the time spen-
t in error prone transformations back and forth from one model to another and
the eventual redundant overlay between the capabilities of different tools. Final-
ly we believe that the complete verification platform should be supported by an
information system of traceability (IST) to keep records of verification activities.
That is to say, models, properties, verification tools, environment configurations,
test data, results, as well as history and relationship between these elements. We
proposed a preliminary design of the IST using UML diagrams. We also proposed
an implementation prototype structured into two “layers”: a storage system for
keeping files and a Java application for user interface. The two layers communicate
through JDBC tools such as MySQL.

We propose a MBT methodology directed by structural coverage and functional
requirements. The methodology relies on a repetitive use of model checkers to gen-
erate coverage-based open-loop test sequences. The passage from coverage-based
open-loop test sequences to requirement-based closed-loop test cases requires ex-
pertise from system engineers and is not in the scope of our research. However, we
propose a refinement of test generation using model checkers through progressively
adding constraints of the environment. These constraints are derived from physi-
cal conditions, initialization conditions and functional requirements. They require
the generated test sequences to represent functionally realistic behaviors with re-
spect to the complete SUT. Our methodology also considers that a model checker
can TO due to state explosion problem and proposes a heuristic referred to as
hybrid verification which combines model checking and simulation. The principle
is to collect the states explored at the computation cycle just before TO, select a
candidate state which should be the “closest” state to the target state, and begin
a step-by-step simulation from this candidate state trying to reach the target state.

The thesis is part of “CONNEXION” and therefore benefits from an actual
case study of the I&C system. Our methodology (except hybrid verification) has
been tested with support of “CONNEXION” tools on the case study SRI. GATeL
is used as the model checker for test generation. The open-loop test sequence
generated by GATeL improve the structural coverage of the functional test suite.
Moreover, the refinement technique through progressively adding constraints also
help to produce more realistic functional test case with respect to the target SUT.

The synchronous data-flow language Lustre has been chosen in “CONNEX-
ION” to model the control/command system. To implement the complete method-

138

ology, in particular hybrid verification, we review the history of Lustre including
various academic versions and related model checking tools. Lustre has been suc-
cessfully commercialized and resulted in SCADE tool set which includes SCADE
DV based on the engine of Prover Plug-in. However SCADE DV is not included
in “CONNEXION”. As consequence, we have tested three academic model check-
ing tools Lesar, GATeL and Kind 2. Each tool takes as input modeling language
a different extension of Lustre. These tools are not able to fulfill 100% of the
methodology requirements. We also review the translators of Lustre towards oth-
er modeling languages, so as to benefit from other model checking tools such as
NuSMV.

The methodology proposed in this thesis is very costly and therefore adapt-
ed exclusively for highly safety-critical systems. The verification and validation
of this kind of systems are subject to stringent and strongest certifications and
standards. Such systems require a very high level of coverage beyond fulfilling
the safety requirements. Our methodology offers a solution to automate as much
as possible coverage-based test generation, which is a pure manual process in the
current engineering approach. Secondly, the methodology includes a refinement of
open-loop test generation. The passage from open-loop to closed-loop requires col-
laboration from system experts. Our refinement can help system experts to more
efficiently intervene in preparing closed-loop functional test cases. Our methodol-
ogy is therefore cost-effective since it saves the time of system experts. Finally we
have reviewed various academic model checking tools for the synchronous data-
flow language Lustre to implement the methodology. We come to the conclusion
that an integration of several tools may be necessary. In our opinion it is also ad-
vantageous to revisit the academic Lustre versions and the related model checking
tools. However, this is beyond the work of this thesis.

Future work concerns (1) define and possibly develop a new tool to support
sufficiently hybrid verification; (2) propositions of selection strategy used in hybrid
verification, i.e. how to define the distance between two states in the state space
of a transition system; (3) generalized framework of the open-loop test generation
refinement; (4) explore the test generation by Kind 2 using assume-garantee style
contracts with respect to implementing hybrid verification.

139

Appendices

140

Appendix A

Constraints coded in GATeL to
refine test generation

%p h y s i c a l c o n s t r a i n t s f o r c e r t a i n input va lue s o f the
c o n t r o l /command ;

node phyConstr (SRI001BA Z , SRI071MT S , SRI072MT S ,
SRI073MT S : r e a l ; SRI010PO D , SRI010PO E , SRI020PO D ,
SRI020PO E ,

SRI030PO D , SRI030PO E : bool)
r e tu rn s (r e s u l t : bool) ;
var v1 , v2 , v3 : bool ;
l e t

%the l e v e l in the tank i s con f ined between 0 m and the
maximum tank l e v e l ;

v1= (SRI001BA Z > 0 . 0) and (SRI001BA Z < 5 . 0) ;

%the water temperature i s con f ined between 0 and 100
degree s ;

v2 = (SRI071MT S > 273 .15 and SRI071MT S < 373 .15) and (
SRI072MT S > 273 .15 and SRI072MT S < 373 .15) and

(SRI073MT S > 273 .15 and SRI073MT S < 373 .15) ;

%pump s t a t u s and the pump d e f a u l t can not be t rue at the
same time ;

141

v3 = not (SRI010PO D and SRI010PO E) and not (SRI020PO D and
SRI020PO E) and not (SRI030PO D and SRI030PO E) ;

r e s u l t = v1 and v2 and v3 ;
t e l ;

%i n i t i a l i z a t i o n c o n d i t i o n s

% Al l the three pumps are automat i ca l l y c o n t r o l l e d (no
human i n t e r v e n t i o n) ;

a s s e r t (not SRI010PO AM −> t rue) ;
a s s e r t (not SRI020PO AM −> t rue) ;
a s s e r t (not SRI030PO AM −> t rue) ;

%Neither o f the pump pre s en t s a d e f a u l t ;
a s s e r t (not SRI010PO D −> t rue) ;
a s s e r t (not SRI020PO D −> t rue) ;
a s s e r t (not SRI030PO D −> t rue) ;

%The two heat−exchangers are both working i n i t i a l l y ;
a s s e r t (SRI050VN C −> t rue) ;
a s s e r t (SRI060VN C −> t rue) ;

%f u n c t i o n a l requ i rements concern ing the c o n t r o l /command
system than can be t r a n s l a t e d as i n v a r i a n t c o n s t r a i n t s ;

%SRI water temperature i s between 15 and 38 c e l s i u s degree
(in the f o l l o w i n g code k e l v i n temperature i s used) when
SRI i s f u n c t i o n i n g normally ;

node req8 (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 ,
sg20 : bool ; c l i e n t s : T Cl i ent s ; temp : r e a l)
r e tu rn s (r e s u l t : bool) ;
var condi t ion , ac t i on : bool ;
l e t
cond i t i on = f u n c t i o n i n g (PumpCom1, PumpCom2, PumpCom3,
sg10 , sg20 , c l i e n t s) ;
a c t i on = (temp > 288 .15) and (temp < 311 .15) ;
r e s u l t = true −> (i f c ond i t i on then ac t i on e l s e pre (r e s u l t)

) ;

142

t e l ;

%when the water temperature i s l e s s then 16 c e l s i u s degree
an alarm i s t r i g g e r e d when SRI i s f u n c t i o n i n g (not
n e c e s s a r i l y normal ly) ;

node req17 (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 , sg20 :
bool ; c l i e n t s : T Cl i ent s ; temp : r e a l ; Alarmes :

T Alarmes)
r e tu rn s (r e s u l t : bool) ;
var condi t ion , ac t i on : bool ;
l e t
cond i t i on = f u n c t i o n i n g (PumpCom1, PumpCom2, PumpCom3, sg10

, sg20 , c l i e n t s) ;
a c t i on = Alarmes . SRI901KA and temp < 2 8 9 . 1 5 ;
r e s u l t = true −> (i f c ond i t i on then ac t i on e l s e pre (r e s u l t)

) ;
t e l ;

%when the water temperature i s g r e a t e r than 30 c e l s i u s
degree an alarm i s t r i g g e r e d when SRI i s f u n c t i o n i n g (
not n e c e s s a r i l y normally) ;

node req18 (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 , sg20 :
bool ; c l i e n t s : T Cl i ent s ; temp : r e a l ; Alarmes :

T Alarmes)
r e tu rn s (r e s u l t : bool) ;
var condi t ion , ac t i on : bool ;
l e t
cond i t i on = f u n c t i o n i n g (PumpCom1, PumpCom2, PumpCom3, sg10

, sg20 , c l i e n t s) ;
a c t i on = Alarmes . SRI071KA and temp > 3 0 3 . 1 5 ;
r e s u l t = true −> (i f c ond i t i on then ac t i on e l s e pre (r e s u l t)

) ;
t e l ;

%When SRI i s in the low−temperature s ta r t−up a f t e r t o t a l
stop status , and the temperature i s l e s s than 7 c e l s i u s
degree , the 2 exchangers should not be working .

143

node req22 (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 , sg20 :
bool ; c l i e n t s : T Cl i ent s ; temp : r e a l ; SRI002VN C : r e a l)

r e tu rn s (r e s u l t : bool) ;
var condi t ion , ac t i on : bool ;
l e t
cond i t i on = startUpLT (PumpCom1, PumpCom2, PumpCom3, sg10 ,

sg20 , c l i e n t s) ;
a c t i on = SRI002VN C = 1.0 and temp < 2 8 0 . 1 5 ;
r e s u l t = true −> (i f c ond i t i on then ac t i on e l s e pre (r e s u l t)

) ;
t e l ;

%When SRI i s in the high−temperature s ta r t−up a f t e r t o t a l
stop status , and the temperature should be between 7 and
15 c e l s i u s degree s ;

node req23 (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 , sg20 :
bool ; c l i e n t s : T Cl i ent s ; temp : r e a l ; SRI002VN C : r e a l)

r e tu rn s (r e s u l t : bool) ;
var condi t ion , ac t i on : bool ;
l e t
cond i t i on = startUpHT (PumpCom1, PumpCom2, PumpCom3, sg10 ,

sg20 , c l i e n t s) ;
a c t i on = SRI002VN C = 1.0 and temp > 280 .15 and temp

<290.15;
r e s u l t = true −> (i f c ond i t i on then ac t i on e l s e pre (r e s u l t)

) ;
t e l ;

%When SRI i s in degrades stop , the dra in ing va lve should be
open ;

node req24 (pump1 , pump2 , pump3 , sg10 , sg20 : bool ; c l i e n t s :
T Cl i ent s ; SRI005VN C : bool)

r e tu rn s (r e s u l t : bool) ;
var condi t ion , ac t i on : bool ;
l e t
cond i t i on = degradedStop (pump1 , pump2 , pump3 , sg10 , sg20 ,

c l i e n t s) ;
a c t i on = SRI005VN C ;

144

r e s u l t = true −> (i f c ond i t i on then ac t i on e l s e pre (r e s u l t)
) ;

t e l ;

%When SRI i s f u n c t i o n i n g normally , opening o f the bypass
va lve i s l i m i t e d to 60 percent ;

node req34 (pump1 , pump2 , pump3 , sg10 , sg20 : bool ; c l i e n t s :
T Cl i ent s ; SRI002VN C : r e a l)

r e tu rn s (r e s u l t : bool) ;
var condi t ion , ac t i on : bool ;
l e t
cond i t i on = normFunct (pump1 , pump2 , pump3 , sg10 , sg20 ,

c l i e n t s) ;
a c t i on = SRI002VN C <= 0 . 6 ;
r e s u l t = true −> (i f c ond i t i on then ac t i on e l s e pre (r e s u l t)

) ;
t e l ;

%When SRI i s funct i on ing , the va lve SRI002VN C i s always
c l o s e d i f the warter temperature i s g r e a t e r than 17
c e l s i u s degree ;

node req47 (pump1 , pump2 , pump3 , sg10 , sg20 : bool ; c l i e n t s :
T Cl i ent s ; temp , SRI002VN C : r e a l)

r e tu rn s (r e s u l t : bool) ;
var condi t ion , ac t i on : bool ;
l e t
cond i t i on = f u n c t i o n i n g (pump1 , pump2 , pump3 , sg10 , sg20 ,

c l i e n t s) ;
a c t i on = temp > 290 .12 and SRI002VN C < 0 . 0 5 ;
r e s u l t = true −> (i f c ond i t i on then ac t i on e l s e pre (r e s u l t)

) ;
t e l ;

%SRI i s in the s t a tu s degraded stop meaning no pump nor
heat−exchanger i s working and only one c l i e n t (an
elementary system c a l l e d APP) i s connected to SRI ;

node degradedStop (pump1 , pump2 , pump3 , sg10 , sg20 : bool ;
c l i e n t s : T Cl i ent s)

145

r e tu rn s (s t a t u s : bool) ;
var numP, numE: i n t ; numU: bool ;
l e t
numP = PumpCounter (pump1 , pump2 , pump3) ;
numE = ExchCounter (sg10 , sg20) ;
numU = only APP (c l i e n t s) ;
s t a t u s = numP = 0 and numE = 0 and numU;
t e l ;

%SRI i s in the s t a tu s low−temperature s ta r t−up a f t e r t o t a l
stop meaning no heat−exchanger working , one or two pumps

are working and no c l i e n t connected ;

node startUpLT (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 ,
sg20 : bool ; c l i e n t s : T Cl i ent s)

r e tu rn s (s t a t u s : bool) ;
var numP, numE: i n t ; numU: bool ;
l e t
numP = PumpCounter (PumpCom1, PumpCom2, PumpCom3) ;
numE = ExchCounter (sg10 , sg20) ;
numU = n o c l i e n t (c l i e n t s) ;
s t a t u s = (numP = 1 or numP=2) and (numE = 0) and numU;
t e l ;

%SRI i s in the s t a tu s high temperature s ta r t−up a f t e r t o t a l
stop , meaning one or pumps working , no heat−exchanger

working and no c l i e n t connected or only SAP connected .

node startUpHT (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 ,
sg20 : bool ; c l i e n t s : T Cl i ent s)

r e tu rn s (s t a t u s : bool) ;
var numP, numE: i n t ; numU1, numU2: bool ;
l e t
numP = PumpCounter (PumpCom1, PumpCom2, PumpCom3) ;
numE = ExchCounter (sg10 , sg20) ;
numU1 = n o c l i e n t (c l i e n t s) ;
numU2 = only SAP (c l i e n t s) ;
s t a t u s = (numP = 1 or numP = 2) and (numE = 0) and (numU1

or numU2) ;
t e l ;

146

%SRI i s f u n c t i o n i n g meaning (two pumps and two heat−
exchagers working or one pump and two heat−exchangers
working or two pumps and one exchanger working) and at
l e a s t one c l i e n t i s connected ;

node f u n c t i o n i n g (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 ,
sg20 : bool ; c l i e n t s : T Cl i ent s)

r e tu rn s (s t a t u s : bool) ;
var numP, numE: i n t ; numU: bool ;
l e t
numP = PumpCounter (PumpCom1, PumpCom2, PumpCom3) ;
numE = ExchCounter (sg10 , sg20) ;
numU = a t l e a s t o n e (c l i e n t s) ;
s t a t u s = ((numP=2 and numE=2) or (numP=1 and numE=2) or (

numP=2 and numE=1)) and numU;
t e l ;

%Ver i fy i f the SRI i s f u n c t i o n i n g normally meaning 2 pumps
and 2 heat−exchangers working and at l e a s t one c l i e n t
connected ;

node normFunct (PumpCom1, PumpCom2, PumpCom3: bool ; sg10 ,
sg20 : bool ; c l i e n t s : T Cl i ent s)

r e tu rn s (s t a t u s : bool) ;
var numP, numE: i n t ; numU: bool ;
l e t
numP = PumpCounter (PumpCom1, PumpCom2, PumpCom3) ;
numE = ExchCounter (sg10 , sg20) ;
numU = a t l e a s t o n e (c l i e n t s) ;
s t a t u s = (numP = 2) and (numE = 2) and numU;
t e l ;

%count the number o f pumps that are f u n c t i o n i n g ;

node PumpCounter (PumpCom1, PumpCom2, PumpCom3: bool)
r e tu rn s (PumpNumber : i n t) ;
var p1 , p2 , p3 : i n t ;
l e t
p1= i f PumpCom1 then 1 e l s e 0 ;

147

p2= i f PumpCom2 then 1 e l s e 0 ;
p3= i f PumpCom3 then 1 e l s e 0 ;
PumpNumber = p1+p2+p3 ;
t e l ;

%count the number o f exchangers that are f u n c t i o n i n g ;
node ExchCounter (sg10 , sg20 : bool)
r e tu rn s (ExchNumber : i n t) ;
var ex1 , ex2 : i n t ;
l e t
ex1 = i f sg10 then 1 e l s e 0 ;
ex2 = i f sg20 then 1 e l s e 0 ;
ExchNumber = ex1+ex2 ;
t e l ;

%At l e a s t one c l i n e t i s connected to SRI ;

node a t l e a s t o n e (c l i e n t s : T Cl i ent s)
r e tu rn s (r e s u l t : bool) ;
l e t
r e s u l t = ((c l i e n t s .APP=true) or (c l i e n t s .CEX=true) or (

c l i e n t s .GFR=true) or (c l i e n t s .GHE=true) or (c l i e n t s .AGR=
true) or (c l i e n t s .GRHe=true) or (c l i e n t s .GSY=true) or (
c l i e n t s .SAP=true) or (c l i e n t s .CET=true) or (c l i e n t s .GGR=
true) or (c l i e n t s .GRHh=true) or (c l i e n t s .GST=true)) ;

t e l ;

%only APP i s connected to SRI ;

node only APP (c l i e n t s : T Cl i ent s)
r e tu rn s (r e s u l t : bool) ;
l e t
r e s u l t =((c l i e n t s .APP=true) and (c l i e n t s .CEX=f a l s e) and (

c l i e n t s .GFR=f a l s e) and (c l i e n t s .GHE=f a l s e) and (c l i e n t s .
AGR=f a l s e) and (c l i e n t s .GRHe=f a l s e) and (c l i e n t s .GSY=
f a l s e) and (c l i e n t s .SAP=f a l s e) and (c l i e n t s .CET=f a l s e)
and (c l i e n t s .GGR=f a l s e) and (c l i e n t s .GRHh=f a l s e) and (
c l i e n t s .GST=f a l s e)) ;

t e l ;

148

%only SAP i s connected to SRI ;

node only SAP (c l i e n t s : T Cl i ent s)
r e tu rn s (r e s u l t : bool) ;
l e t
r e s u l t =((c l i e n t s .APP=f a l s e) and (c l i e n t s .CEX=f a l s e) and (

c l i e n t s .GFR=f a l s e) and (c l i e n t s .GHE=f a l s e) and (c l i e n t s .
AGR=f a l s e) and (c l i e n t s .GRHe=f a l s e) and (c l i e n t s .GSY=
f a l s e) and (c l i e n t s .SAP=true) and (c l i e n t s .CET=f a l s e)
and (c l i e n t s .GGR=f a l s e) and (c l i e n t s .GRHh=f a l s e) and (
c l i e n t s .GST=f a l s e)) ;

t e l ;

%no c l i e n t i s connected to SRI ;

node n o c l i e n t (c l i e n t s : T Cl i ent s)
r e tu rn s (r e s u l t : bool) ;
l e t
r e s u l t =((c l i e n t s .APP=f a l s e) and (c l i e n t s .CEX=f a l s e) and (

c l i e n t s .GFR=f a l s e) and (c l i e n t s .GHE=f a l s e) and (c l i e n t s .
AGR=f a l s e) and (c l i e n t s .GRHe=f a l s e) and (c l i e n t s .GSY=
f a l s e) and (c l i e n t s .SAP=f a l s e) and (c l i e n t s .CET=f a l s e)
and (c l i e n t s .GGR=f a l s e) and (c l i e n t s .GRHh=f a l s e) and (
c l i e n t s .GST=f a l s e)) ;

t e l ;

%c a l c u l a t e the abso lu t e va lue o f the input ;

node abs (input : r e a l)
r e tu rn s (output : r e a l) ;
l e t
output = i f input >= 0.0 then input e l s e −input ;
t e l ;

149

Bibliography

[1] SCADE Qualified Testing Environment R15 Technical Data Sheet.

[2] Ieee standard glossary of software engineering terminology. IEEE Std 610,
1990.

[3] A specification-based coverage metric to evaluate test sets. International
Journal of Reliability, Quality and Safety Engineering, 08(04):275–299, 2001.

[4] IEC61804-1: Function blocks (FB) for process control - Part 1: Overview of
system aspects, 2.0 edition, 2003.

[5] IEC60880: Nuclear power plants - Instrumentation and control systems im-
portant to safety - Software aspects for computer-based systems performing
category A functions, 2006.

[6] Ieee standard for verilog hardware description language. IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001), 2006.

[7] INCOSE Systems Engineering Vision 2020. INCOSE, 2007.

[8] Ieee standard vhdl language reference manual. IEEE Std 1076-2008 (Revi-
sion of IEEE Std 1076-2002), Jan 2009.

[9] IEC61513: Nuclear power plants - Instrumentation and control important to
safety - General requirements for systems, 2011.

[10] A Practical Guide to SysML: The Systems Modeling Language. Morgan
Kaufmann/OMG Press, 2011.

[11] IEC61131-3: Programmable controllers - Part 3: Programming languages,
3.0 edition, 2013.

[12] Kind 2 User Documentation, Version v1.0.1, 2016.

150

[13] P. A. Abdulla, J. Deneux, G. St̊almarck, H. Ågren, and O. Åkerlund. Design-
ing safe, reliable systems using scade. In Proceedings of the First Interna-
tional Conference on Leveraging Applications of Formal Methods, ISoLA’04,
pages 115–129, Berlin, Heidelberg, 2006. Springer-Verlag.

[14] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.
In Proceedings of the Fifth Annual IEEE Symposium on logic in Computer
Science (LICS 90), pages 414–425. IEEE Computer Society, 1990.

[15] P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to
generate tests from specifications. In Proceedings of the Second IEEE In-
ternational Conference on Formal Engineering Methods, ICFEM ’98, pages
46–, Washington, DC, USA, 1998. IEEE Computer Society.

[16] C. André. Representation and analysis of reactive behaviors: A synchronous
approach. In Proc. CESA’96, IEEE-SMC, Lille, France, 1996.

[17] C. André. Computing synccharts reactions. Electron. Notes Theor. Comput.
Sci., 88:3–19, Oct. 2004.

[18] J. Backes, D. Cofer, S. Miller, e. K. Whalen, Michael W.”, G. Holzmann, and
R. Joshi. NASA Formal Methods: 7th International Symposium, NFM 2015,
Pasadena, CA, USA, April 27-29, 2015, Proceedings, chapter Requirements
Analysis of a Quad-Redundant Flight Control System, pages 82–96. Springer
International Publishing, 2015.

[19] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press,
2008.

[20] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. Cvc4. In Proceedings of the 23rd International
Conference on Computer Aided Verification, CAV’11, pages 171–177, Berlin,
Heidelberg, 2011. Springer-Verlag.

[21] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Handbook of Satis-
fiability, chapter Satisfiability Modulo Theories, page 825–885. IOS Press,
2009.

[22] H. Basold, H. Günther, M. Huhn, and S. Milius. An Open Alternative for
SMT-Based Verification of Scade Models, pages 124–139. Springer Interna-
tional Publishing, Cham, 2014.

[23] M. v. d. Beeck. A comparison of statecharts variants. In Proceedings of the
Third International Symposium Organized Jointly with the Working Group

151

Provably Correct Systems on Formal Techniques in Real-Time and Fault-
Tolerant Systems, ProCoS, pages 128–148, London, UK, UK, 1994. Springer-
Verlag.

[24] B. Beizer. Software Testing Techniques (2Nd Ed.). Van Nostrand Reinhold
Co., New York, NY, USA, 1990.

[25] A. Benveniste and G. Berry. Prolog to the special section on another look
at real-time programming. Proceedings of the IEEE, 79(9):1268–1269, Sep
1991.

[26] A. Benveniste and G. Berry. Real-time systems design and programming.
Proceedings of the IEEE, 79(9):1270–1282, Sep 1991.

[27] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and
R. de Simone. The synchronous languages 12 years later. Proceedings of the
IEEE, 91(1):64–83, Jan 2003.

[28] A. Benveniste and P. L. Guernic. Hybrid dynamical systems theory and the
signal language. IEEE Transactions on Automatic Control, 35(5):535–546,
May 1990.

[29] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous program-
ming with events and relations: The signal language and its semantics. Sci.
Comput. Program., 16(2):103–149, Sept. 1991.

[30] D. Bergström and R. Göransson. Model- and hardware-in-the-loop testing
in a model-based design workflow, 2016. Student Paper.

[31] G. Berry. Real time programming : special purpose or general purpose
languages. Research Report RR-1065, INRIA, 1989.

[32] G. Berry. Proof, language, and interaction. chapter The Foundations of
Esterel, pages 425–454. MIT Press, Cambridge, MA, USA, 2000.

[33] G. Berry. SCADE: Synchronous Design and Validation of Embedded Control
Software, pages 19–33. Springer Netherlands, Dordrecht, 2007.

[34] G. Berry. SCADE: Synchronous Design and Validation of Embedded Control
Software. In Next Generation Design and Verification Methodologies for
Distributed Embedded Control Systems, pages 19–33. Springer, 2007.

[35] G. Berry, P. Couronne, and G. Gonthier. Synchronous programming of
reactive systems: An introduction to esterel. In Proceedings of the First

152

Franco-Japanese Symposium on Programming of Future Generation Com-
puters, pages 35–56, Amsterdam, The Netherlands, The Netherlands, 1988.
Elsevier Science Publishers B. V.

[36] G. Berry and G. Gonthier. The esterel synchronous programming language:
Design, semantics, implementation. Sci. Comput. Program., 19(2):87–152,
Nov. 1992.

[37] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without bdds. In Proceedings of the 5th International Conference on Tools
and Algorithms for Construction and Analysis of Systems, TACAS ’99, pages
193–207, London, UK, UK, 1999. Springer-Verlag.

[38] B. Blanc, C. Junke, B. Marre, P. LeGall, and O. Andrieu. Handling state-
machines specifications with gatel. In Electronic Notes in Theorectical Com-
puter Science, pages 3–17, 2010.

[39] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Ols-
son, J. v. Peetz, S. Wolf, A. S. Gmbh, Q. Berlin, F. Scai, and S. Augustin.
The functional mockup interface for tool independent exchange of simula-
tion models. In In Proceedings of the 8th International Modelica Conference,
2011.

[40] B. W. Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61–72, May 1988.

[41] B. W. Boehm. Software risk management: Principles and practices. IEEE
Software, 8(1):32–41, Jan. 1991.

[42] A. Bonacchi, A. Fantechi, S. Bacherin, and M. Tempestini. Validation pro-
cess for railway interlocking systems. Science of Computer Programming,
128:2–21, 2016.

[43] F. Boniol, V. Wiels, and E. Ledinot. Experiences in using model checking to
verify real time properties of a landing gear control system. In ERTS 2006:
3rd European Congress Embedded Real Time Software, pages 25–27, 2006.

[44] L. d. Bousquet and N. Zuanon. An overview of lutess: A specification-based
tool for testing synchronous software. In Proceedings of the 14th IEEE In-
ternational Conference on Automated Software Engineering, ASE ’99, pages
208–, Washington, DC, USA, 1999. IEEE Computer Society.

153

[45] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kro-
nos: a model-checking tool for real-time systems. In Computer Aided Verifi-
cation 10th International Conference, CAV’98, volume 1427 of Lecture Notes
in Computer Science, pages 546–549, Vancouver, BC, Canada, June 1998.
Springer.

[46] A. R. Bradley. Sat-based model checking without unrolling. In Proceedings
of the 12th International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI’11, pages 70–87, Berlin, Heidelberg, 2011.
Springer-Verlag.

[47] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Comput., 35(8):677–691, Aug. 1986.

[48] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv., 24(3):293–318, Sept. 1992.

[49] T. A. Budd and A. S. Gopal. Program testing by specification mutation.
Computer Languages, 10(1):63–73, Jan. 1985.

[50] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142
– 170, 1992.

[51] J. Callahan, F. Schneider, and S. Easterbrook. Automated software testing
using model-checking. In Proceedings 1996 SPIN Workshop, August 1996.

[52] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declara-
tive language for real-time programming. In Proceedings of the 14th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’87, pages 178–188, New York, NY, USA, 1987. ACM.

[53] P. Caspi and M. Pouzet. A functional extension to lustre. In Eighth Interna-
tional Symp. on Languages for Intensional Programming, ISLIP’ 95, Sidney,
1995.

[54] P. Caspi and M. Pouzet. A co-iterative characterization of synchronous
stream functions. Electronic Notes in Theoretical Computer Science, 11:1 –
21, 1998.

[55] E. Cerny, A. Dsouza, K. Harer, P.-H. Ho, and T. Ma. Supporting sequential
assumptions in hybrid verification. In Proceedings of the 2005 Asia and
South Pacific Design Automation Conference, ASP-DAC ’05, pages 1035–
1038, New York, NY, USA, 2005. ACM.

154

[56] A. Champion, A. Gurfinkel, T. Kahsai, and C. Tinelli. CoCoSpec: A Mode-
Aware Contract Language for Reactive Systems, pages 347–366. Springer
International Publishing, 2016.

[57] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli. The kind 2 model
checker. In Computer Aided Verification (CAV) - 28th International Con-
ference, pages 510–517, Toronto, ON, Canada, July 2016. Part II.

[58] F. Chastrette, F. Vallee, and L. Coyette. Application of model-based testing
to validation of new nuclear I&C architecture. ICCSEA 2013.

[59] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new
symbolic model verifier. In Proceedings of the 11th International Conference
on Computer Aided Verification, CAV ’99, pages 495–499, London, UK, UK,
1999. Springer-Verlag.

[60] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation of
counterexamples and witnesses in symbolic model checking. In Proceedings
of the 32nd Conference on Design Automation (DAC), pages 427–432. ACM
Press: New York, 1995.

[61] E. M. Clarke and E. A. Emerson. The Design and Synthesis of Synchroniza-
tion Skeletons Using Temporal Logic. In Proceedings of the Workshop on
Logics of Programs, volume 131, pages 52–71. Springer-Verlag Lecture Notes
in Computer Science, May 1981.

[62] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Work-
shop, pages 52–71. Springer: Berlin, 1982. ISBN 3-540-11212-X.

[63] E. M. Clarke, E. A. Emerson, and A. Sistla. Automatic verification of fi-
nite state concurrent system using temporal logic specifications: A practical
approach. In POPL’83: Proceedings of the 10th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 117–126. ACM
Press, 1983.

[64] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, Cambridge, MA, USA, 1999.

[65] J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of syn-
chronous data-flow with state machines. In Proceedings of the 5th ACM
International Conference on Embedded Software, EMSOFT ’05, pages 173–
182, New York, NY, USA, 2005. ACM.

155

[66] O. Coudert, C. Berthet, and J. C. Madre. Verification of snychronous se-
quential machines based on symbolic execution. In Proc. Int. Workshop
Automatic Verification Methods for Finite State Systems (CAV’89), volume
407 of Lecture Notes in Computer Science, pages 365–373. Springer, 1990.

[67] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[68] L. de Moura, S. Owre, H. Rueß, Rushby, N. Shankar, M. Sorea, and A. Ti-
wari. SAL 2, pages 496–500. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004.

[69] J. Delange. Managing complexity in software models. SCADE user group
conference, 2015.

[70] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection:
Help for the practicing programmer. Computer, 11(4):34–41, Apr. 1978.

[71] C. Devic and P. Morilhat. CONNEXION Contrôle Commande Nucléaire
Numérique pour l’Export et la rénovatION - coupler génie logiciel et in-
génierie système: source d’innovations. Génie Logiciel, 104:2–11, mars 2013.

[72] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess: A
specification-driven testing environment for synchronous software. In Pro-
ceedings of the 21st International Conference on Software Engineering, ICSE
’99, pages 267–276, New York, NY, USA, 1999. ACM.

[73] B. Dutertre and L. de Moura. The yices smt solver. Technical report,
Computer Science Laboratory, SRI International, 2006.

[74] E. A. Emerson. The beginning of model checking: A personal perspective.
In 25 Years of Model Checking, pages 27–45. Springer-Verlag, 2008.

[75] E. A. Emerson and J. Y. Halpern. Desicion procedures and expressiveness
in the temporal logic of branching time. In STOC’82: Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, pages 169–
180. ACM Press, 1982.

[76] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
logic strikes back. Science of Computer Programming, 8(3):275–306, 1987.

156

[77] A. Engels, L. Feijs, and S. Mauw. Test generation for intelligent network-
s using model checking. In Proceedings of the 3rd International Work-
shop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’97), 1997.

[78] E. P. Enoiu, A. Causevic, T. J. Ostrand, E. J. Weyuker, D. Sundmark,
and P. Pettersson. Automated test generation using model-checking: an
industrial evaluation. In ICTSS 2013.

[79] J. A. Estefan. Survey of Model-Based Systems Engineering (MBSE) Method-
ologies. Technical Report INCOSE-TD-2007-003-02, INCOSE, 2008.

[80] Esterel Technologies. SCADE Suite user manual.

[81] A. Fantechi, S. Gnesi, and A. Maggiore. Enhancing Test Coverage by Back-
tracking Model-checker Counterexamples. In Electronic Notes in Theoretical
Computer Science, volume 116, pages 199–211, 2004.

[82] A. Fisher, C. Jacobson, E. Lee, R. Murray, A. Sangiovanni-Vincentelli, and
E. Scholte. Industrial cyber-physical systems - iCyPhy. In Proceedings of
the Fourth International Conference on Complex Systems Design & Man-
agement, pages 21–37, 2013.

[83] L. Fix. Fifteen years of formal property verification in intel. 25 Years of
Model Checking, pages 139–144, 2008.

[84] K. Forsberg and H. Mooz. The relationship of system engineering to the
project cycle. INCOSE International Symposium, 1(1):57–65, 1991.

[85] K. Forsberg and H. Mooz. 4.4.4 application of the ‘vee’ to incremental and
evolutionary development. INCOSE International Symposium, 5(1):848–855,
1995.

[86] G. Fraser. Automated Software Testing with Model Checkers. PhD thesis,
Graz University of Technology, October 2007.

[87] G. Fraser, F. Wotawa, and P. E. Ammann. Testing with model checkers: A
survey. Softw. Test. Verif. Reliab., 19(3):215–261, Sept. 2009.

[88] P. Fritzson and P. Bunus. Modelica-a general object-oriented language for
continuous and discrete-event system modeling and simulation. In Proceed-
ings of the 35th Annual Simulation Symposium, SS ’02, pages 365–, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

157

[89] A. Gacek, A. Katis, M. W. Whalen, J. Backes, and D. Cofer. Towards
Realizability Checking of Contracts Using Theories, pages 173–187. Springer
International Publishing, Cham, 2015.

[90] J. Gallois, J. Pierron, and N. Rapin. Validation test production assistance.
ICCSEA 2013.

[91] A. Gargantini and C. Heitmeyer. Using model checking to generate tests
from requirements specifications. SIGSOFT Softw. Eng. Notes, 24(6):146–
162, Oct. 1999.

[92] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wolfsthal.
Coverage-directed test generation using symbolic techniques. In Lecture
Notes in Computer Science, volume 1166, pages 143–158, 1996.

[93] G. Hagen and C. Tinelli. Scaling up the formal verification of lustre programs
with smt-based techniques. In Proceedings of the 2008 International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD ’08, pages
15:1–15:9, Piscataway, NJ, USA, 2008. IEEE Press.

[94] G. E. Hagen. VERIFYING SAFETY PROPERTIES OF LUSTRE PRO-
GRAMS: AN SMT-BASED APPROACH. PhD thesis, University of Iowa,
2008.

[95] A. A. Haider and A. Nadeem. A survey of safety analysis techniques for
safety critical systems. International Journal of Future Computer and Com-
munication, 2(2):134, 2013.

[96] B. Hailpern and P. Santhanam. Software debugging, testing, and verification.
IBM SYSTEMS JOURNAL, 41(1):4–12, 2002.

[97] N. Halbwachs. Synchronous programming of reactive systems, a tutori-
al and commented bibliography. In Tenth International Conference on
Computer-Aided Verification, CAV’98, Vancouver (B.C.), jun 1998. LNC-
S 1427, Springer Verlag.

[98] N. Halbwachs. A Synchronous Language at Work: The Story of Lustre,
pages 15–31. John Wiley and Sons, Inc., 2012.

[99] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-
time systems by means of the synchronous data-flow language Lustre. IEEE
Transactions on Software Engineering, 18(9):785–793, Sep 1992.

158

[100] N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.-C. Glory. Specifying,
programming and verifying real-time systems using a synchronous declarative
language, pages 213–231. Springer Berlin Heidelberg, Berlin, Heidelberg,
1990.

[101] N. Halbwacks, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language lustre. Proceedings of IEEE, 79:1305–1320, Sept.
1991.

[102] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231–274, June 1987.

[103] D. Harel and A. Pnueli. Logics and models of concurrent systems. chapter
On the Development of Reactive Systems, pages 477–498. Springer-Verlag
New York, Inc., New York, NY, USA, 1985.

[104] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the ACM (JACM), 32(1):137–161, 1985.

[105] G. J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng.,
23(5):279–295, May 1997.

[106] H. Hong, I. Lee, and O. Sokolsky. Automatic test generation from statecharts
using model checking. Technical report, University of Pennsylvania, Janurary
2001.

[107] H. Huang, W. T. Tsai, and R. Paul. Automated model checking and testing
for composite web services. In Eighth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’05), pages 300–
307, May 2005.

[108] M. Huhn and S. Milius. Observations on formal safety analysis in practice.
Sci. Comput. Program., 80:150–168, Feb. 2014.

[109] E. Jahier, S. Djoko-Djoko, C. Maiza, and E. Lafont. Environment-Model
Based Testing of Control Systems: Case Studies, pages 636–650. Springer
Berlin Heidelberg, 2014.

[110] E. Jahier, N. Halbwachs, and P. Raymond. Engineering functional require-
ments of reactive systems using synchronous languages. In 8th IEEE Inter-
national Symposium on Industrial Embedded Systems (SIES 2013), 2013.

[111] E. Jahier, P. Raymond, and P. Baufreton. Case studies with lurette v2.
International Journal on Software Tools for Technology Transfer, 8(6):517–
530, 2006.

159

[112] E. Jahier, P. Raymond, and N. Halbwachs. The Lustre V6 Reference Manual,
2016.

[113] R. Jhala and R. Majumdar. Software model checking. ACM Computing
Surveys (CSUR), 41(4):21, 2009.

[114] T. Kahsai and C. Tinelli. Pkind: a parallel k-induction based model check-
er. In Proceedings 10th International Workshop on Parallel and Distributed
Methods in verification, PDMC 2011, EPTCS, volume 72, pages 55––62,
2011.

[115] R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst.
Sci., 3(2):147–195, May 1969.

[116] K. Y. Koh and P. H. Seong. SACS2: A dynamic and formal approach to
safety analysis for complex safety critical systems. In Sixth American Nucle-
ar Society International Topical Meeting on Nuclear Plant Instrumentation,
Control, and Human-Machine Interface Technologies, NPIC& HMIT, pages
5–9, 2009.

[117] A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for
recursive programs. In Proceedings of the 16th International Conference on
Computer Aided Verification - Volume 8559, pages 17–34, New York, NY,
USA, 2014. Springer-Verlag New York, Inc.

[118] S. R. Koo, P. H. Seong, J. Yoo, S. D. Cha, C. Youn, and H.-C. Han. Nusee:
An integrated environment of software specification and v&v for plc based
safetycritical systems. Nuclear Engineering and Technology, 38(3):259–276,
2006.

[119] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27(3):333–354, 1983.

[120] S. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, 16:83–94, 1963.

[121] J. Lahtinen, J. Valkonen, K. Bjőrkman, J. Frits, I. Niemelä, and K. Heljanko.
Model checking of safety-critical software in the nuclear engineering domain.
Reliability Engineering& System Safety, 105:104 – 113, 2012.

[122] P. Le Guernic, M. Le Borgne, T. Gautier, and C. Le Maire. Programming
real time applications with SIGNAL. Research Report RR-1446, INRIA,
1991.

160

[123] H. LeGuen and T. Thelin. Practical Experiences with Statistical Usage
Testing. In Proceedings of the Eleventh Annual International Workshop on
Software Technology and Engineering Practice (STEP’04).

[124] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In POPL’85: Proceedings of the 12th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 97–107. ACM Press, 1985.

[125] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific
construct for the development of safe critical systems. Science of Computer
Programming, 46(3):219–254, 2003.

[126] B. Marre and A. Arnould. Test Sequences generation from LUSTRE De-
scriptions: GATEL. In 15th IEEE Conf. on Automated SW Engineering,
pages 47–60, 2000.

[127] B. Marre and B. Blanc. Test selection strategies for lustre descriptions in
gatel. Electronic Notes in Theoretical Computer Science, 111:93 – 111, 2005.

[128] K. L. McMillan. The SMV System, pages 61–85. Springer US, Boston, MA,
1993.

[129] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[130] G. Memmi. Conduite du test à chrysalis: un retour d’expérience. Génie
Logiciel, 72:53–58, 2005. invited conference at ICSSEA’05.

[131] G. Memmi. Integrated circuits analysis, system and method using model-
checking. US Patent 7493247, feburary 2009.

[132] S. Miller, E. Anderson, L. Wagner, M. Whalen, and M. Heimdahl. Formal
verification of flight critical software. In Proceedings of the AIAA Guidance,
Navigation and Control Conference and Exhibit, pages 15–18, 2005.

[133] S. P. Miller. Bridging the gap between model-based development and model
checking. In Proceedings of the 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems: Held As Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS
2009,, TACAS ’09, pages 443–453, Berlin, Heidelberg, 2009. Springer-Verlag.

[134] S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model checking takes
off. Commun. ACM, 53(2):58–64, Feb. 2010.

161

[135] L. Ness. Issues Arising In the Analysis of L.0. In E. M. Clarke and R. P. Kur-
shan, editors, Computer-Aided Verification: 2nd International Conference,
CAV’90 Proceedings, pages 106–115. Springer-Verlag, 1990.

[136] M. Neyret, F. Dormoy, and J. Blanchon. Méthodologie de validation
des spécification fonctionnelles du contrôle-commande - Application au cas
d’étude du Système de Réfrigération intermédiaire (SRI). Génie Logiciel,
hors-séries:12–25, mai 2014.

[137] R. D. Nicola and F. Vaandrager. Action versus state based logics for tran-
sistion systems. In Proceedings of the LITP Spring School on Theorectical
Computer Science on Semantics of Systems of Concurrent Processes, pages
407–419. Springer: New York, 1990.

[138] F. Ortmeier, G. Schellhorn, A. Thums, W. Reif, B. Hering, and H. Trapp-
schuh. Safety analysis of the height control system for the Elbtunnel. Reli-
ability Engineering & System Safety, 81(3):259–268, 2003.

[139] G. Pace, N. Halbwachs, and P. Raymond. Counter-example generation in
symbolic abstract model-checking. International Journal on Software Tools
for Technology Transfer, 5(2):158–164, 2004.

[140] I. Parissis. Test de logiciels synchrones spécifiés en Lustre. (Testing syn-
chronous software specified in Lustre). PhD thesis, Joseph Fourier University,
Grenoble, France, 1996.

[141] C. Pixley. A theory and implementation of sequential hardware equiva-
lence. IEEE Transactions on Computer-Aided Design of Integrated Circuits,
11(12):1469–1478, 1992.

[142] A. Pnueli. The temporal logic of programs. In Eighteenth Annual Symposium
on Foundations of Computer Science, pages 46–57. IEEE Press, 1977.

[143] A. Pnueli. Current trends in concurrency. overviews and tutorials. chapter
Applications of Temporal Logic to the Specification and Verification of Re-
active Systems: A Survey of Current Trends, pages 510–584. Springer-Verlag
New York, Inc., New York, NY, USA, 1986.

[144] A. Pretschner and J. Philipps. 10 Methodological Issues in Model-Based
Testing. In M. B. et al., editor, Model-Based Testing of Reactive Systems,
pages 281–291, 2005.

[145] J.-P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In 5th International Symposium on Programming, volume

162

137 of Lecture Notes in Computer Science, pages 337–351. Springer-Verlag,
1982.

[146] G. Ratzaby, S. Ur, and Y. Wolfsthal. Coverability Analysis Using Symbolic
Model Checking, CHARME 2001. In Lectured Notes in Computer Science,
volume 2144. Springer-Verlag, 2001.

[147] S. Rayadurgam and M. P. Heimdahl. Coverage Based Test-Case Generation
using Model Checkers. IEEE, 2001.

[148] P. Raymond. LUSTRE-V4 manual (draft), 2013.

[149] P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber. Automatic testing of
reactive systems. In Proceedings of the IEEE Real-Time Systems Symposium,
RTSS ’98, pages 200–, Washington, DC, USA, 1998. IEEE Computer Society.

[150] W. W. Royce. Managing the development of large software systems: Con-
cepts and techniques. In Proceedings of the 9th International Conference on
Software Engineering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA,
1987. IEEE Computer Society Press.

[151] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[152] S. Schulz, J. W. Rozenbilt, and K. J. Buchenrieder. Multilevel testing for
design verification of embedded systems. IEEE Des. Test, 19(2):60–69, mar
2002.

[153] E. M. Sentovich, H. Toma, and G. Berry. Latch optimization in circuits gen-
erated from high-level descriptions. In Proceedings of the 1996 IEEE/ACM
International Conference on Computer-aided Design, ICCAD ’96, pages 428–
435, Washington, DC, USA, 1996. IEEE Computer Society.

[154] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using
induction and a sat-solver. In Proceedings of the Third International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD ’00, pages
108–125, London, UK, UK, 2000. Springer-Verlag.

[155] T. R. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic circuits.
In Proceedings of the 1996 European Conference on Design and Test, EDTC
’96, pages 328–, Washington, DC, USA, 1996. IEEE Computer Society.

[156] A. Spillner. The W-model strengthening the bond between development and
test. In STAReast2002, 2002.

163

[157] Y. Sun, G. Memmi, and S. Vignes. Model-based testing directed by struc-
tural coverage and functional requirements. In IEEE conference QRS 2016
Workshop MVV, Aug. 2016.

[158] Y. Sun, G. Memmi, and S. Vignes. A model-based testing process for enhanc-
ing structural coverage in functional testing. In Complex Systems Design &
Management Asia, pages 171–180. Springer, Feb. 2016.

[159] Y. Sun, G. Memmi, S. Vignes, and F. Daumas. CONNEXION: Éléments
de méthodologie de vérification et validation - Épisode 1: découvrir les chal-
lenges principaux. Génie Logiciel, 109:23–33, juin 2014.

[160] M. Tatar and J. Mauss. Systematic test and validation of complex embedded
systems. In ERTS 2014 - Embedded Real Time Software and Systems, 2014.

[161] D. E. Thomas and P. R. Moorby. The VERILOG Hardware Description
Language. Kluwer Academic Publishers, Norwell, MA, USA, 3rd edition,
1996.

[162] M. Tka. Génération automatique de test pour les contrôleurs logiques pro-
grammables synchrones. PhD thesis, 2016. Thèse de doctorat dirigée par
Parissis, Ioannis Informatique Grenoble Alpes 2016.

[163] H. Touati and G. Berry. Optimized controller synthesis using esterel. In
Proceedings of International Workshop on Logic Synthesis, 1993.

[164] S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed büchi automa-
ta emptiness efficiently. Formal Methods in System Design, 26(3):267–292,
2005.

[165] M. Utting and B. Legeard. Practical Model Based Testing: A Tools Approach.
Morgan Kaufmann, 2007.

[166] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based
testing. Working Paper Series, April 2006.

[167] M. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In Proceedings of the 1st IEEE
Symposium on Logic in Computer Science (LICS’86), pages 332–334. IEEE
Computer Society: Silver Spring, MD, 1986.

[168] Verimag. A Lustre V6 Tutorial, 2008.

164

[169] M. Whalen, D. Cofer, S. Miller, B. H. Krogh, and W. Storm. Integration of
Formal Analysis into a Model-Based Software Development Process, pages
68–84. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[170] M. Whalen, A. Rajan, and M. Heimdahl. Coverage metrics for requirements-
based testing. In Proceedings of International Symposium on Software Test-
ing and Analysis, pages 25–36. ACM, July 2006.

[171] J. Yoo, S. Cha, and E. Jee. A verification framework for fbd based software in
nuclear power plants. In Software Engineering Conference, 2008. APSEC’08.
15th Asia-Pacific, pages 385–392. IEEE, 2008.

[172] J. Yoo, E. Jee, and S. Cha. Formal modeling and verification of safety-critical
software. IEEE software, 26(3):42–49, 2009.

[173] H. Zhu, P. A. Hall, and J. H. May. Software Unit Test Coverage and Ade-
quacy. ACM Computing Surveys, 29(4):366–427, December 1997.

165

	Introduction
	Problem statement
	Thesis contributions
	Thesis organization

	Model checking and its application
	Model checking preliminaries
	Transition systems
	Temporal Logic and properties
	Model checking algorithms

	Testing with model checkers
	Synchronous approach for real-time systems
	Esterel
	Signal
	Lustre
	A brief summary

	The story of Lustre
	SCADE and Lustre
	Lustre versions
	Model checking tools for Lustre
	Lustre translators

	Project ``CONNEXION'': Towards a complete testing environement
	Functional validation objectives
	Unique and complete tool box
	``CONNEXION'': challenges and constraints
	Information system of traceability

	Model-based testing for functional validation: Towards hybrid verification
	Model-based testing process
	Coverage criteria
	A new MBT methodology for safety-critical systems
	A heuristic: hybrid verification
	An first example: cruise control

	Refinement by gradually adding constraints in GATeL
	Three categories of constraints
	Refinement by adding progressively the constraints

	``CONNEXION'' Case study: SRI
	Description of SRI
	Experimentation results of part 1
	Lustre model checkers toward hybrid verification

	Conclusion
	Appendices
	Constraints coded in GATeL to refine test generation

