
HAL Id: tel-03420288
https://pastel.hal.science/tel-03420288

Submitted on 9 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced contributions in HTTP adaptive streaming
Nassima Bouzakaria

To cite this version:
Nassima Bouzakaria. Advanced contributions in HTTP adaptive streaming. Signal and Image Pro-
cessing. Télécom ParisTech, 2017. English. �NNT : 2017ENST0037�. �tel-03420288�

https://pastel.hal.science/tel-03420288
https://hal.archives-ouvertes.fr

2017-ENST-0037

EDITE � ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

Télécom ParisTech

Spécialité � Informatique et Réseaux �

présentée et soutenue publiquement par

Nassima BOUZAKARIA
le 25 Juillet 2017

Contributions au streaming HTTP adaptatif avancé

Advanced contributions in HTTP adaptive streaming

Directeur de thèse : Cyril CONCOLATO

Encadrant : Jean Le FEUVRE

Jury

M. Simon GWENDAL, Maître de Conférences HDR, IMT Atlantique, Cesson-Sévigné Rapporteur

M. Vincent CHARVILLAT, Professeur, Université de Toulouse, Toulouse Rapporteur

M. Dario ROSSI, Professeur, Télécom ParisTech, Paris Examinateur

Mme. Anissa MOKRAOUI, Professeur, L2TI Institut Galilée, Université Paris 13, Villetaneuse Examinateur

M. Cyril CONCOLATO, Maître de Conférences HDR, Télécom ParisTech, Paris Directeur de thèse

M. Jean LE FEUVRE, Ingénieur d'Étude, Télécom ParisTech, Paris Encadrant

Télécom ParisTech

Grande École de l'Institut Télécom - membre fondateur de ParisTech

46 rue Barrault � 75634 Paris Cedex 13 � Tél. +33 (0)1 45 81 77 77 � www.telecom-paristech.fr

ii

Acknowledgments

This work would not have been possible without the help and support of many people

to whom I am really grateful.

First and foremost, I am deeply grateful to my advisors, Cyril Concolato and Jean Le

Feuvre, for their time, support, guidance and encouragement. I would like to thank all

members of the Image, Data, Signal department at Telecom ParisTech for the excellent

scientific environment they provide. To my colleagues and friends, thank you for listening

and supporting me especially during the stressful moments.

Last, but not the least, I owe my tremendous gratitude to my parents, my two sisters

and my brother for their love, moral support and constant encouragement.

iv

Résumé

Le streaming adaptatif HTTP est une technologie récente dans les communications

multimédia, utilisant notamment le standard MPEG-DASH. L’un des principaux problèmes

dans le déploiement des services de streaming en direct est la réduction de plusieurs types

de latence tel que le délai de démarrage et la latence de bout en bout. Dans cette thèse,

nous abordons le problème de ces latences dans les services de streaming en direct utilisant

MPEG-DASH.

Tout d’abord, nous examinons les causes du délai de démarrage dans les systèmes

MPEG-DASH et les stratégies communes pour réduire ce délai. Nous proposons une nouvelle

méthode basée sur HTTP / 1.1 qui est compatible avec les infrastructures Web existantes.

Deuxièmement, nous étudions les principaux composants qui sont à l’origine de la

latence totale, nous proposons un système de streaming en direct à faible latence.

Troisièmement, nous montrons comment un système de streaming en direct utilisant

MPEG-DASH et à faible latence peut être combiné avec un système utilisant un réseau

Broadcast. Notre approche proposée garantit la synchronisation des deux contenus transmis

via deux réseaux de distribution DASH et broadcast.

vi

Abstract

HTTP adaptive streaming is a recent topic in multimedia communications with on-going

standardization activities, especially with the MPEG-DASH standard which covers on

demand and live services. One of the main issues in live services deployment is the reduction

of various latencies, the initial delay before the playback and the overall end-to-end latency.

In this thesis, we address the problem of these latencies in live DASH streaming.

First, we review the causes of startup delay in DASH and common strategies used to

reduce this delay. We propose a new method based on HTTP/1.1 and compatible with

existing caching and delivery infrastructures for reducing the initial setup of an MPEG-

DASH session.

Second, we investigate the major contributor components to the end-to-end latency.

We propose a complete novel low latency live DASH streaming system.

Third, we show how such a low latency live DASH system can be used to enable combined

broadcast and broadband services while keeping the client buffering requirements on the

broadcast link low. Our proposed approach insures two functionalities: synchronization

of both contents delivered through different distribution networks and keeping the client

buffering requirements on the broadcast link low.

Table of Contents

1 Introduction 1

1.1 Context . 1

1.2 Summary of Contributions . 3

1.3 Thesis Organization . 4

1.4 List of Publications . 4

2 Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming 7

2.1 Introduction . 7

2.2 Quality of Experience In Video Streaming 8

2.2.1 Streaming Service Types . 9

2.2.2 Streaming Session States . 10

2.2.3 Quality of Experience Assessment 11

2.2.4 Viewer Behaviors and Expectations 13

2.3 Selected Features of a Video Streaming Chain 16

2.3.1 Overview of a Video Streaming Chain 16

2.3.2 Components and Features . 17

2.3.3 Summary . 27

2.4 HTTP Adaptive Streaming . 28

2.4.1 MPEG-DASH . 29

2.4.2 HTTP Adaptive Streaming Features 32

2.5 Conclusion . 34

3 Improving the Starting of Live DASH Streaming Sessions 37

3.1 Introduction . 37

3.2 DASH Client Bootstrap Strategies . 40

3.2.1 TCP Startup Mechanisms . 41

3.2.2 Evaluation Parameters . 43

3.2.3 Evaluating DASH Client Bootstrap Strategies 45

3.3 Improved DASH Bootstrap . 52

3.4 Evaluation . 60

3.4.1 Settings . 60

3.4.2 Dataset . 62

3.4.3 Experiments And Results . 62

3.5 Conclusion . 83

4 Contributions to Reducing Live DASH Latency 85

4.1 Introduction . 85

4.2 Basic Live DASH Latency . 87

4.2.1 Segmenting Live Content . 87

4.2.2 Fetching Live Edge . 89

4.2.3 Progressive File Delivery over HTTP 90

4.3 Low Latency Live DASH Proposal . 91

4.4 Evaluation . 94

4.4.1 Design and Implementation . 94

4.4.2 Experiments and Results . 96

4.5 Conclusion . 111

5 Hybrid Streaming Services 113

5.1 Introduction . 113

5.2 Hybrid Delivery Challenges . 114

5.3 Hybrid Delivery Proposed System . 116

5.3.1 Timeline and External Media Information (TEMI) 116

5.3.2 TEMI and Low End-To-End Latency Live DASH System 117

5.4 Evaluation . 119

5.4.1 System Implementation . 119

5.4.2 Experiments and Results . 121

5.5 Conclusion . 123

6 Conclusion & future work 125

6.1 Thesis objectives . 125

6.2 Summary . 125

6.3 Perspectives . 127

A Résumé en Français 129

A.1 Introduction . 129

A.2 Contributions . 131

A.2.1 Réduction du Délai de Démarrage en DASH Live 131

A.2.2 Réduction de la Latence en DASH Live 137

A.2.3 Les applications en DASH Live . 142

A.3 Conclusion et Perspectives . 143

A.3.1 Conclusion . 143

A.3.2 Perspectives . 143

A.4 Liste des Publications . 144

Bibliography 147

List of Figures

2.1 Video streaming session states. 11

2.2 Architecture of a typical video streaming chain. 16

2.3 Closed GOP. 19

2.4 Open GOP. 20

2.5 Bitstream switching between two versions that are not RAP frame-aligned. 21

2.6 Generation of MPEG-2 TS packets. 24

2.7 MPD hierarchical data model [1]. 30

2.8 Simplified view of the phases of DASH client. 31

3.1 Startup delay components in DASH live streaming. 38

3.2 Typical strategy to download, buffer and display media segments. 39

3.3 TCP three-way handshake. 42

3.4 Congestion window size growth [2]. 43

3.5 Non-Persistent TCP connection. 45

3.6 Persistent TCP connection without pipelining. 46

3.7 Persistent TCP connection with pipelining. 47

3.8 Paralle TCP connections without pipelining to fetch NC
IS resources. 49

3.9 Client request and server responses within an HTTP/2 connection using a

server push. 50

3.10 HTTP/2 connection with an abbreviated TLS handshake using a server push. 51

3.11 Base64 IS embedding in MPD. 53

3.12 ”Multipart/mixed” content-type of MPD and IS entities. 53

3.13 IS structure. 55

3.14 ISOBMFFMoov Embedding in MPD. 59

3.15 Experimental setup for emulating a DSL network. 60

3.16 Experimental setup for a simple mobile network. 61

3.17 Example of an exchange of HTTP headers between client and DASHIF server. 65

3.18 HTTP response header of MPD when using a nodeJS-based web server. . . 71

3.19 Chrome Net Internals log for the persistent TCP connection without pipelin-

ing method when using the HTTP/2 server push mechanism to download

IS video and audio. 73

3.20 Chrome Net Internals log for the ISOBMFFMoov embedding method over

HTTP/2. 74

3.21 Total download size of 33 sequences for each method over HTTP/1.1 and

HTTP/2 using a nodeJS-based server. 75

3.22 Waterfall based on Dash-JS player over HTTP/1.1. 76

3.23 Network Timing of MPD, IS video, and IS audio using a persistent TCP

connection without pipelining over HTTP/1.1. 77

3.24 Network Timing of ISOBMFFMoov-based MPD over HTTP/1.1. 77

3.25 Bootstrap delay measured for the ISOBMFFMoov-based approach and

persistent TCP connection without pipelining approach over HTTP/1.1. . . 78

3.26 Theoretical bootstrap delay Vs real bootstrap delay for the ISOBMFFMoov-

based approach and persistent TCP connection without pipelining approach

over HTTP/1.1. 79

3.27 Bootstrap delay measured for the ISOBMFFMoov-based approach and

persistent TCP connection without pipelining approach using a server push

over HTTP/2. 79

3.28 Average bootstrap delay measured for the ISOBMFFMoov-based approach

and persistent TCP connection without pipelining approach using a 3G

mobile network. 80

3.29 Evaluation of bootstrap delay in terms of buffering delay. 82

3.30 Evaluation of bootstrap delay in terms of startup delay. 82

3.31 Evaluation of bootstrap delay in terms of startup delay of the persistent

method. 83

4.1 Structure of an ISOBMFF media segment with one media type. 88

4.2 Regular segmentation of a live stream into a sequence of media segments

following the basic media segment structure of Figure 4.1 (i.e. ”moof” box

followed by ”mdat” box). 88

4.3 Fetching the live edge. 89

4.4 Example of an HTTP/1.1 chunked response. 91

4.5 Structure of an ISOBMFF media segment with multiple movie fragments. . 92

4.6 Determination of the availability time of a media fragment in DASH. 93

4.7 Architecture of a low latency live DASH streaming system. 94

4.8 Flowchart of our proposed web server. 95

4.9 Structure of a media segment with ”eods” box. 96

4.10 Encoding of the Big Buck Bunny sequence at different CRF values for all

resolutions. 99

4.11 Overhead introduced by the ISOBMFF fragmentation. 100

4.12 Inner-chain latency measurements for live streaming service. 103

4.13 Frame latency of 200 frames of 4 segments (i.e. 40 fragments) (ds=2s,

dc=200ms, ATO=1800ms). 103

4.14 Frame latency histogram. 105

4.15 Chunk latency of 40 chunks of 4 segments (ds=2s, dc=200ms, ATO=1800ms).105

4.16 Chunk latency histogram. 106

4.17 Frame latency of the total streaming session (i.e. 22350 frames of 447

segments and 4470 fragments). 107

4.18 Structure of a media segment with ”prft” boxes. 107

4.19 End-to-end latency measurements for live streaming service. 108

4.20 Latency of the first frame of 10 segments (ds=1s, dc=33ms, ATO=1000ms). 108

4.21 Chunk latency (ds=1s, dc=33ms, ATO=1000ms). 109

4.22 Latency of the first frame of 10 segments (ds=1s, dc=166ms, ATO=867ms). 111

4.23 Chunk latency of 50 chunks of 10 segments (ds=1s, dc=166ms, ATO=867ms).111

5.1 Use cases with a frame-accurate content synchronization. 115

5.2 Hybrid broadcast/broadband delivery proposed system. 118

5.3 Client reception of TS and DASH frames. 119

5.4 Buffer length of MPEG-2 TS and DASH streams. 121

5.5 Screenshot of MP4Client in the GUI mode. 122

A.1 Base64 IS embedding in MPD. 132

A.2 ”Multipart/mixed” content-type of MPD and IS entities. 133

A.3 ISOBMFFMoov Embedding in MPD. 134

A.4 Bootstrap delay measured for the ISOBMFFMoov-based approach and

persistent TCP connection without pipelining approach over HTTP/1.1. . . 136

A.5 Bootstrap delay measured for the ISOBMFFMoov-based approach and

persistent TCP connection without pipelining approach using a server push

over HTTP/2. 136

A.6 Average bootstrap delay measured for the ISOBMFFMoov-based approach

and persistent TCP connection without pipelining approach using a 3G

mobile network. 137

A.7 Structure of an ISOBMFF media segment with multiple movie fragments. . 138

A.8 Determination of the availability time of a media fragment in DASH. 138

A.9 Overhead introduced by the ISOBMFF fragmentation. 140

A.10 Inner-chain latency measurements for live streaming service. 141

A.11 End-to-end latency measurements for live streaming service. 141

List of Tables

2.1 Viewer expectations depending on the delivered service type. 16

3.1 System parameters. 44

3.2 Analytical evaluation of the different DASH client bootstrap strategies. . . 52

3.3 Description of the main IS boxes. 55

3.4 MPD and IS information comparison. 57

3.5 Characteristics of the selected 33 sequences from DASHIF. 62

3.6 MPD and IS sizes of 33 sequences. 63

3.7 Generated MPD size in bytes for Base64 IS embedding and ISOBMFFMoov

embedding methods of 33 sequences. 65

3.8 Total download size (MPD, IS video, IS audio, and HTTP response headers)

of 33 sequences for each method over HTTP/1.1 using a DASHIF server. . 68

3.9 Total download size (MPD, IS video, IS audio, and HTTP response headers)

of 33 sequences for each method over HTTP/1.1 and HTTP/2 using a

nodeJS-based server. 70

4.1 Input video sequence characteristics. 96

4.2 Encoding of the Big Buck Bunny sequence at different CRF values for all

resolutions. 97

A.1 MPD and IS sizes of 33 sequences. 135

A.2 Total download size (MPD, IS video, IS audio, and HTTP response headers)

of 33 sequences for each method over HTTP/1.1 using a DASHIF server. . 135

List of Acronyms

IP Internet Protocol

QoS Quality of Service

QoE Quality of Experience

VoD Video on Demand

NALU Network Abstraction Layer Unit

AU Access Unit

RTP Real-time Transport Protocol

TS Transport Stream

ISOBMFF ISO Base Media File Format

UDP User Datagram Protocol

PES Packetized Elementary Stream

RAP Random Access Point

IDR Instantaneous Decoding Refresh

B frame Bidirectional frame

GOP Group Of Pictures

MTU Maximum Transmission Unit

TCP Transmission Control Protocol

HTTP Hypertext Transfer Protocol

Chapter 1

Introduction

Contents

1.1 Context . 1

1.2 Summary of Contributions . 3

1.3 Thesis Organization . 4

1.4 List of Publications . 4

1.1 Context

The popularization of convenient and advanced video capture and production technolo-

gies, the evolution of video delivery systems and the emergence of different video display

devices have created a larger number of multimedia applications including video streaming

that deeply stepped into people’s daily life. The rise of popularity of video streaming

services resulted in increased volumes of video contents. Today, video delivery accounts

for 64% of the majority of Internet traffic [3]. It is expected to grow to 80% by 2019. This

increasing demand for video services has changed viewer expectations of quality.

Over-The-Top (OTT) video streaming has become a cost-effective means for video

delivery nowadays since it relies on the open unmanaged Internet. In contrast to managed

newtork where the operator ensures a high level of service quality. OTT delivery offers a

viewing freedom since it is not limited to the PC screen, but extends to any connected

device, e.g. connected TV, gaming consoles, smartphones, connected tablets, etc. Viewers

can benefit from Video on Demand (VoD) and live streaming services provided by OTT.

Compared to VoD, live streaming is gaining popularity, especially for watching live sports

in the case of globally popular events.

The experienced quality of live streaming over OTT is commonly compared to live

broadcasting experience when delivered over traditional distribution systems, such as

2 1. Introduction

managed digital cable, terrestrial and satellite broadcast networks as well as managed

IPTV networks. The challenges raised when delivering a TV-like experience for live OTT

system have inspired many contributions and yet many issues remain open. In current

deployments, live OTT suffers from much higher latencies, typically from a few seconds up

to half a minute compared to the managed broadcasting services. This latency is defined as

the time difference between the instants when the live event occurs and when it is played

back to the viewer. This problem is not convenient when someone is watching for example

a football match, and may surprisingly hear his neighbors cheering over a scored goal,

which he will only see on his screen after several seconds, due to the delay introduced by

OTT streaming. As a consequence, the live latency is thus becoming an important factor

impacting the overall quality experienced by viewers. Another type of latency issue in live

OTT is the startup delay, which is the time difference between the moment when a viewer

clicks on the ”Play” button and the moment the video starts playing. In other words, it is

the time needed to download and to buffer all necessary information for the initial playback.

Viewers are highly impatient and less tolerant of slow starts in live streams compared to

VoD [4]. Larger startup delay increases the risk that viewers churn or abandon the video

stream.

Moreover, very low latency steaming is required for interactive or bidirectional ap-

plications such as video conferencing, live streaming with voting or telemedicine. Such

applications are characterized by very strict delay constraints. Another use case where low

latency is undeniably important is the hybrid delivery scenario where the OTT (broadband)

and broadcast networks are combined to enhance the broadcast service with premium

services, e.g. subtitles, gestures, languages, via broadband. The latency of the OTT system

should be lower than the broadcast for live capture/generation. Otherwise, additional

buffers are required to synchronize the broadcast content with the broadband content.

In recent years, HTTP adaptive streaming has emerged as the technology of choice for

the delivery of OTT services. It enables dynamic adaptation of video quality to varying

network bandwidth and client’s device capabilities, by choosing among several profiles

(versions of a stream encoded with certain bitrate and quality level) available on the server.

In this trend, a new standard called MPEG Dynamic Adaptive Streaming over HTTP

(DASH) was developed and is used worldwide [1]. Some research works have been proposed

for reducing the latencies listed above, in HTTP adaptive streaming. However, the latency

is still in the order of seconds.

The goal of this thesis is to propose new approaches to reduce the startup delay as well

as the end-to-end latency observed by viewers when using live DASH streaming. We target

a very low latency, i.e. latency in the order of frames (e.g. less than 200 ms), to deliver a

successful live OTT experience.

1.2. Summary of Contributions 3

1.2 Summary of Contributions

This thesis presents contributions related to live video streaming services using DASH. We

organized them into three themes: startup, delivery and applications.

� Live DASH Streaming Startup

Two contributions in this field were proposed. The first one consists in an analytical

evaluation of the different existing strategies that a DASH client can use to start a

video streaming session. The second one involves three methods to reduce the startup

delay in live DASH streaming. All methods are based on the idea that the starting

phase of a DASH session should not require multiple round-trips between the client

and the server. These approaches make a client capable of retrieving the necessary

information to start the initial playback using only one HTTP request and HTTP

response. The proposed methods have been designed to have no negative impact on

the existing caching and delivery infrastructures.

� Live DASH Streaming Content Delivery

Regarding this category, our main contribution consists in proposing a complete novel

low latency live DASH streaming system. It aims at reducing the end-to-end latency

in live DASH. The three major functions, including content preparation, content

distribution and content display of the live DASH streaming system are modified as

follows. First, we make the content preparation process (i.e. content segmentation

process) that is in charge of segmenting the content into several segments progressive

without changing the encoding process. For that, we divide each segment into multiple

small parts that we push immediately to the web server. Second, we make the client

capable of sending out a request once some parts of the segment content are available.

Third, we develop an intelligent web server that can send available data parts to

client before the media segment is fully ready and published. Finally, we modify the

client to be able of receiving and processing incomplete segments, i.e. those data

parts.

� Live DASH Streaming Applications

Hybrid delivery is one of the multimedia applications that requires a low latency

delivery especially the broadband side. Our contribution consists in combining broad-

cast and broadband delivery services for very low latency, for quality enhancement for

example through scalable codecs. We investigate a scenario where we consider a basic

content delivered over traditional broadcast channels enhanced with an additional

content delivered over broadband networks using DASH. Our proposed approach in-

sures two functionalities: synchronization of both contents delivered through different

4 1. Introduction

distribution networks and keeping the client buffering requirements on the broadcast

link low. For that, we use the low latency live DASH streaming system that we have

described in the previous contributions.

1.3 Thesis Organization

This manuscript is organized into three distinct parts. The first part presents in detail

the fundamentals of video streaming over IP-based networks. Chapter 2 describes the

factors impacting the perceived quality and presents the video streaming chain with a

detailed overview of its components. It ends with an overview of the basic concepts of

HTTP adaptive streaming system.

The second part describes our contributions for the delivery of live streaming video

content using MPEG-DASH. Chapter 3 introduces our approaches related to the improve-

ment of the starting of live DASH streaming. It begins with an analytical evaluation of

the different DASH client strategies for starting a streaming session. Then, we propose

three methods to reduce the startup delay. The methods were deployed and evaluated

over different networks and using different versions of the HTTP protocol. The obtained

results are reported and analyzed. Chapter 4 presents our contributions for the low latency

live DASH streaming service. We describe our proposed system to reduce the end-to-end

latency. Finally, we validate this low latency system by some experimentations using live

and interactive streaming services.

The third part exposes our contributions on the hybrid delivery application. Chapter 5

starts with a summary of the main issues and challenges that we have identified in the

delivery of media content over hybrid broadcast/broadband networks. Next, we experiment

and evaluate our proposed hybrid delivery system when using a multi-resolution content

use case. Finally, we conclude the chapter after reporting the obtained results.

We end this manuscript with a summary of the proposed methods and their associated

results, as well as some future works of this thesis in Chapter 6.

1.4 List of Publications

Conference papers

� N. Bouzakaria, C. Concolato and J.L. Feuvre, “Overhead and performance of low

latency live streaming using MPEG-DASH”, Proceeding of The 5th International

Conference on Information, Intelligence, Systems and Applications (IISA) , Crete,

Greece, July 2014.

1.4. List of Publications 5

� N. Bouzakaria, C. Concolato and J.L. Feuvre, “Fast dash bootstrap”, Proceeding

of IEEE 17th International Workshop on Multimedia Signal Processing (MMSP) ,

Xiamen, China, October 2015.

� J.L. Feuvre, C. Concolato, N. Bouzakaria and V. T. Nguyen, “MPEG-DASH for Low

Latency and Hybrid Streaming Services”, Proceeding of The 23rd ACM International

Conference on Multimedia (ACM MM) , Brisbane, Australia, October 2015.

Contributions to Standardization

� C. Concolato, J. Le Feuvre and N. Bouzakaria, “Data URLs in MPD”, Moving Picture

Experts Group (MPEG), Geneva, Switzerland, May 2016, n° M38649

� C. Concolato, J. Le Feuvre and N. Bouzakaria, “Guidelines for DASH Fast Start”,

Moving Picture Experts Group (MPEG), Geneva, Switzerland, October 2015, n°

M37254.

� C. Concolato, J. Le Feuvre and N. Bouzakaria, “Use of HTTP/2 Push for DASH

Bootstrap”, Moving Picture Experts Group (MPEG), Geneva, Switzerland, October

2015, n° M37255.

6 1. Introduction

Chapter 2

Video Streaming Over IP: Quality

of Experience and HTTP

Adaptive Streaming

Contents

2.1 Introduction . 7

2.2 Quality of Experience In Video Streaming 8

2.2.1 Streaming Service Types . 9

2.2.2 Streaming Session States . 10

2.2.3 Quality of Experience Assessment 11

2.2.4 Viewer Behaviors and Expectations 13

2.3 Selected Features of a Video Streaming Chain 16

2.3.1 Overview of a Video Streaming Chain 16

2.3.2 Components and Features . 17

2.3.3 Summary . 27

2.4 HTTP Adaptive Streaming . 28

2.4.1 MPEG-DASH . 29

2.4.2 HTTP Adaptive Streaming Features 32

2.5 Conclusion . 34

2.1 Introduction

The work done in this thesis is aimed at proposing new video delivery approaches for

MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH). We begin this thesis

8
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

manuscript by a state of-the-art chapter that covers the fundamentals of video streaming

over IP-based networks that are useful in our research.

In this chapter, we first give an overview of the different expectations of viewers in

terms of Quality of Experience (QoE) when using a video streaming service in Section

2.2. We then present a typical video streaming chain in Section 2.3. On the first hand,

basic concepts of the chain’s components are reviewed. On the second hand, the technical

features and functions of each component are analysed and discussed from the QoE point

of view. Finally, we review the HTTP adaptive streaming system in Section 2.4.

2.2 Quality of Experience In Video Streaming

Video streaming over IP-based networks is exposed to various types of network impairments

that can occur along the communication paths. IP does not guarantee any particular

timeliness of delivery, or that a packet will be delivered at all. IP packets may be lost,

reordered, delayed, duplicated, or corrupted. IP itself does not attempt to correct these

problems that can severely deteriorate the video quality as perceived by viewers. Usually,

service providers who use such networks for video streaming deploy systems to remove

those problems and insure that their viewers receive adequate quality at all times. They

assess the Quality of Service (QoS), i.e. the quality of the network delivery, through network

performance analysis mechanisms.

QoS assessment addresses the different challenges associated with the accurate measurement

or estimation of network level parameters such as bandwidth, one way delay [5], packet loss

[6], or jitter [7]. However, these QoS parameters are typically used to indicate the impact

on the video quality from the network performance and data transmission point of views,

but do not reflect the viewer’s perception. They are not sufficient for measuring the quality

experienced by viewers.

Thus, Quality of Experience (QoE) [8] was introduced to overcome the limitations of

QoS parameters. It concerns the aspects that are related to the human perception. It is

based on human auditory and visual systems and relates to the perceived auditory and

visual experience of the viewer with the contents. This manuscript focuses on the visual

component of the QoE. The methodologies used for video QoE assessment relies on set of

metrics, which must be able to assess the viewer satisfaction with the contents played on

its device. We can classify QoE metrics into two groups: metrics to assess the quality of

the perceived video content and metrics to evaluate the quality of the provided service.

QoE metrics have different relative importances depending on the delivered service type.

For a given video streaming session, QoE assessment indicates if the viewers are satisfied

or disappointed.

2.2. Quality of Experience In Video Streaming 9

In this section, we want to review the different expectations of viewers in terms of QoE in

video streaming using IP networks. For that, we first review the different types of video

streaming services. Then, we describe the different phases of a video streaming session that

may impact the viewer’s perception. Finally, we highlight the most relevant QoE metrics

along with the different QoE assessment methods.

2.2.1 Streaming Service Types

Video streaming offers different types of services, namely, Video on Demand (VoD), live

streaming, and real-time interactive streaming. We discuss each service type separately.

� VoD is a type of service that allows viewers to request a pre-recorded video content

from a server at any time, rather than having to watch it at a specific live time.

There is a broad diversity of VoD service models that are detailed in [9]. Interactive

VoD (IVoD) is getting more important because it offers the same Personal Video

Recorder (PVR) functions of modern TV systems such as: Play/Resume (i.e. start a

playback from the beginning or resume it after a temporary stop), Pause (i.e. pause

a playback from a few seconds up to several hours), Stop (i.e. stop the playback of a

video), Fast/Slow Forward (i.e. browse through a video in the forward direction at

a faster or a lower speed than standard forward), Fast/Slow Rewind (i.e. browse a

video backwards at a faster or a lower rate than the standard rewind), Jump For-

ward/Backward (i.e. jump to a particular time in a video in a forward or a backward

direction), etc. These functionalities allow viewers to interact and control the content

being watched.

� Live streaming is a type of service that delivers content over the network as it is

captured to viewers, for instance live sports or live news events. In live streaming,

viewers are limited to the interactive functions that perform on past content. The

capacity to watch live content from minutes in the past, up to the beginning of the

program, is called time-shifting. Catch-up is one of the most advanced time-shifting

services that offers a way to watch live programs through VoD service for a period of

days after the original event. It is worth noticing that catch-up services are widely

used for live TV contents where the viewers are allowed to catch up on TV programs

(e.g. a live football game) that have been missed. For more detail, an exhaustive

overview of time-shifting services is provided in [10].

� Real-time interactive streaming is a type of service in which the viewer interactions

can impact the production of the live content at the source. The form of the interaction

can vary. Video conferencing and cloud gaming are the most common applications of

10
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

real-time interactive service. Video conferencing is simply a telephone call with added

video so that participants can see each other as well as hear each other. Cloud gaming

renders an interactive gaming application remotely in the cloud and streams the

scenes as a video sequence back to the player over the Internet. A cloud gaming player

interacts with the application through a client, which is responsible for displaying

the video from the cloud rendering server as well as collecting the player’s commands

and sending the interactions back to the cloud. Other interactive applications include

telemedicine and remote surgery, where a surgeon in one location is able to perform

surgery in another location over the network using remote-control robots and a video

feed.

Such applications are characterized by very strict delay constraints compared to live

streaming. The term ”interactive” in the real-time interactive streaming service does

not refer to the same notion as interactive in VoD and live streaming where the

viewers interact with the content. It rather means interactivity with the application

or between participants.

The contributions of this thesis are mainly targeting live streaming and real-time interactive

streaming services.

2.2.2 Streaming Session States

In this section, we propose a description of the multiple states of a video streaming session

that are perceived by a viewer. We identify as well, the states that may impact the viewer’s

QoE.

Viewer actions and the underlying network conditions move the video streaming session

from one state to another. As shown in Figure 2.1, a video player is initially in the idle

state. It transits to the Starting state when it starts displaying the first loaded video data

on the viewer’s screen. This can be initiated by a viewer, for example, pressing the ”Play”

button of a video player. The Starting state may affect the viewer’s perception, especially

if there is a long time between the viewer’s action and the start of the initial playback.

When the playback can start, i.e. when the buffer is filled sufficiently, a video player enters

into the Playing state to continue the video playback. If packet losses, delay fluctuations,

or bandwidth drops occur in the network transmission the client’s reception rate may drop

below the client’s consumption rate. Hence, the client buffer starts draining which may

result in a buffer underflow. In this case, a video player enters into the Paused state where

the viewer experiences an interruption. Once the buffer is replenished sufficiently, a video

player moves in the Playing state to resume the video playing. The duration of the Paused

state and the number of transitions beween the Paused and Playing states may impact the

viewer QoE.

2.2. Quality of Experience In Video Streaming 11

Figure 2.1 – Video streaming session states.

The Paused state can be avoided or at least reduced by a video player if a video streaming

system is adaptive. In an adaptive video streaming system, several bitrates/qualities

encodings can be available for the same video content on a server or potentially encoded

on-the-fly. The decision to switch between bitrates and qualities can be made either by a

client or a server.

To prevent the buffer underflow event when network conditions become bad, a client or a

server adapts the bitrate to the underlying network bandwidth by choosing a lower video

bitrate encoding compared to the current one. The buffer is then filled with the new low

video bitrate encoding and the player continues providing an uninterrupted playback in

the Playing state.

During the video playback process, a viewer could initiate actions such as pause, forward,

rewind, etc. to control and interact with the content. When the playback of a video data

ends, a video player goes to the Done state. It is worth noticing that a viewer can end

voluntarily a video playback either before the video startup or after watching some portion

of it, for example, clicking the ”Stop” button of a video player, in particular when he is not

satisfied with the content or with the QoE.

2.2.3 Quality of Experience Assessment

In this section, we give an overview of the different QoE assessment metrics that can evaluate

the quality of a video streaming session from the viewer’s point of view. A complete QoE

assessment considers not only the factors that affect directly the quality of the perceived

video content by viewers, but it also takes into account how viewers perceive the overall

quality of the delivered service. QoE assessment relies on a set of metrics that we classify

12
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

into two categories: video content quality metrics and service performance metrics, that we

explore below.

Video Content Quality Metrics

Video content quality metrics consider factors that directly affect the quality of the

received video content. Opposed to the classical QoS metrics, which are mostly network

centered, video content quality metrics are independent from how the video was delivered.

They depend on several video parameters like encoding bitrate, video resolution, framerate,

dropped frames, and used video codec. They are based on two main video quality assessment

methodologies, namely subjective and objective.

Subjective assessment [11] relies on an accurate and repeatable approach to estimate

how video streams are perceived by viewers, i.e. what is their opinion on the quality of a

particular video. The most common used subjective metric is Mean Opinion Score (MOS)

that a viewer utilizes for the evaluation of each video by selecting a score from a quality

scale that ranges from 1 to 5 (i.e. bad to excellent) [12]. The minimum threshold for an

acceptable video content quality corresponds to a MOS of 3.5 [13].

Objective video quality assessment is based on mathematical models (algorithms) to

measure and estimate the quality of a video. These algorithms are classified into three

approaches depending on the amount of reference information they require during the video

quality assessment: Full-Reference (FR), No-Reference (NR), and Reduced-Reference (RR).

They are explained in detail in [11]. There is a broad diversity of objective metrics referred

in [14], that can be used to generate a quantitative measure of the video quality. Peak

Signal to Noise Ratio (PSNR) is the most used objective quality metric among the FR

assessment approach. It makes pixel-by-pixel comparison between the reference (original)

and decoded content to detect content distortions. Content with higher similarity will result

in higher PSNR values (above than 37 dB reflects an excellent video content quality) [14].

Service Performance Metrics

Service performance metrics consider the factors that influence the performance and the

usability of a delivered service. We describe in the following the most relevant metrics for

the assessment of the performance of video streaming services.

� Startup delay is defined as the time span since the viewer queries the system about a

specific video content, for instance, by clicking the ”Play” button of a video player,

until the video is rendered on the viewer’s screen (i.e. until the video player transits

to the Starting state to begin the first playback).

2.2. Quality of Experience In Video Streaming 13

� Rebuffering duration and frequency are two metrics that can be used when rebuffering

events occur. The rebuffering duration measures the total time spent in the filling

of the client’s buffer during the total video streaming session. It corresponds to the

duration of the Paused state. The rebuffering frequency measures how frequent the

viewer experienced a rebuffering event during the total video streaming session. It

corresponds to the number of video player’s transitions beween the Paused and

Playing states. There is a trade-off between the rebuffering duration and the risk of

shortly recurring interruption events.

� End-to-end latency is defined as the time span from when the image is captured

(image acquisition) until the image is rendered on the viewer’s screen (image playout).

� Response delay is the time elapsed between when a viewer performs an action

impacting the content generation at the source and when he/she views the result.

The goal of our contributions is the optimization of the quality of the delivered service,

specifically live streaming and real-time interactive streaming. For that, we target in our

work two essential service performance parameters, the startup delay and the end-to-end

latency. Our main contributions consist in reducing these delays to achieve a fast startup

and a low latency video delivery, which can enhance the viewer QoE.

2.2.4 Viewer Behaviors and Expectations

Viewers may behave differently during a video streaming session depending on the network

QoS, the quality of the video content, the type of service, the real-time requirements of a

service. In this respect, three categories of viewer behaviors can be distinguished [15].

The first category is viewer abandonment where a viewer abandons the video stream after

watching some portion of it, or even before it starts playing. This way of behaving may

reflect the frustration of a viewer and the failure of a session. The video abandonment

can be either forced when errors and problems occur in a system, or voluntarily when the

offered QoE of a streaming session does not fit the viewer expectations.

The second category is viewer engagement which relates to the amount of time a viewer

watches a video. If a viewer plays a video completely, it may reflect its satisfaction and the

success of a session.

The third category is repeated viewing that refers to the behavior of viewers over longer

periods of time. It consists in the viewers, who after watching videos on a content provider’s

site return after some period of time to watch more. For instance, a viewer who experienced

a failed viewing is less likely to revisit the site to view more videos within a specified time

period than a similar viewer who did not experience a failed viewing.

14
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

Based on existing research works, we review the viewer expectations in terms of QoE for

video streaming by identifying QoE metrics impacting the most the viewer engagement,

across different content genres and service types:

� In the case of VoD services, videos can be divided into short videos that have a

duration of less than 15 minutes and long videos that have a duration of more than

15 minutes [4]. Examples of short video consist of news clips, trailers, and short

interviews. In contrast, long video includes movies, episodes, and programs. The

viewer requirements for VoD service are not very tight. For instance, the end-to-end

latency has no interest because the viewer is watching a video which is pre-recorded

and stored on the server.

In VoD services, the response delay is not applicable because the viewer can interact

and control the content being watched but it cannot modify its production at the

source.

Regarding the startup delay, high values up to several seconds in this metric can

be frustrating for the viewers but they usually tolerate it, especially if they intend

to watch a long video. For long and short VoD, a wait time of 2 s or less before

beginning the playback does not have a large effect on viewers. However, [4] reports

that 4.20% of viewers viewing a long VoD content abandon between 2 s and 3 s of

waiting whereas 5.70% of viewers abandon requesting a short content. On the other

side, short startup delay might be desirable for user-generated content where the

viewers start many videos but watch only the first seconds, in order to search for

some contents they are interested in [16] [17].

As expected, rebuffering has a relevant impact on viewer behavior compared to the

startup delay. Approximately 90% of viewers prefer waiting longer before the video

consumption starts than experiencing unexpected stalling within the service [18]. For

long and short VoD, rebuffering duration is the most important service performance

metric [19]. In the experiments made in [4], 35% of long VoD viewers experience

buffering compared with 30% for short VoD. The time spent in the rebuffering for

short and long VoD is 6.5 min and 6.8 min respectively for 90 minutes of viewing

sessions [4]. For the rebuffering frequency, [19] indicates that one rebuffering event is

prefered over frequent rebuffering that may be annoying to viewers.

A viewer is interested in the quality of the rendered video content. It depends mostly

on the used bitrate and resolution in the video encoding. Video resolution has an

impact on viewing. In long and short VoD, a high resolution is viewed approximately

26.5% longer than the low resolution [4].

� Live streaming has tighter constraints than VoD. Regarding the startup delay, viewers

are less tolerant to slow starts in live streams. According to [4], more than 18% of

2.2. Quality of Experience In Video Streaming 15

viewers requesting a live stream abandoned between 2 s and 3 s of waiting before the

video starts, which is more than 4 times higher than long VoD, but a wait time of 2

s or less does not have a large impact on viewers.

The end-to-end latency has a significant effect on viewers if they compare their live

service relying on IP networks to the existing live TV broadcast systems that are

able to deliver the same content with a constant latency in the order of 6 s.

In live streaming, the buffer should be shorter than in VoD to ensure that the live

stream is received by viewers with a small latency. However, the use of small buffers

increases buffering events because there is little time to recover when the bandwidth

fluctuates. According to [4], 48% of live streams experience buffering. The time spent

in the buffering for live streams is 10.8 min for a 90 minutes of viewing session [4].

An increase of the buffering of only 1% can lead to more than 3 minutes of reduced

viewer engagement [19].

In contrast to VoD, live viewers do not require but only prefer high video content

quality if it is available.

Response delay is not applicable to live streaming scenarios where interactive actions

such as catchup and rewinding video do not change the content at the source.

� In real-time interactive streaming service, viewers are more sensitive to delay than in

the other services. Limiting end-to-end latency is very important. In video confer-

encing for instance, long delays make the interaction between participants difficult,

because each participant has to wait for the signals to reach him to see if he can

begin speaking or not. A widely recognized maximum delay limit for each direction

in a two-way videoconference is 150 milliseconds. After display start, the playout

must be continuous without any interruptions. Rebuffering is not acceptable at all.

Otherwise, any late media data will be discarded.

Based on the previous analysis, we summarize in Table 2.1 the viewer expectations depending

on the offered service type. It can be observed that viewers impose different constraints

for each service type. We can note that rebuffering constantly has the highest impact on

viewer engagement across all types of service. The time spent before the playback starts

and the end-to-end latency have an important impact on the viewer experience for live

streaming and real-time interactive streaming services. We also see that almost all metrics

play a significantly more important role in the case of real-time interactive than live and

VoD services.

16
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

Viewer expectations VoD Live
streaming

Real-time
interactive
streaming

Short startup delay Medium High High

Free / infrequent rebuffering High Highest Highest

Low end-to-end latency Low Medium High

Low response delay Not
applicable

Not
applicable

High

High video content quality High Medium Medium

Table 2.1 – Viewer expectations depending on the delivered service type.

2.3 Selected Features of a Video Streaming Chain

In this section, we want to identify and explain the causes of delay experienced by viewers

in video streaming services. For that, we first present the architecture of a typical video

streaming chain. Then, we review its components and their features. For each component,

we identify the major features which may contribute to the end-to-end latency. Finally,

we show how the viewer requirements (i.e. low end-to-end latency) in live streaming

and real-time interactive streaming services may impact and drive the setting of these

components.

2.3.1 Overview of a Video Streaming Chain

Figure 2.2 depicts the different key components with which a typical architecture for video

streaming can be built. Audiovisual content is captured by a camera device, encoded and

then passed to a packager (sometimes called a segmenter) in order to generate files or

packets suitable for delivery protocols and networks. The packaged streams are directly

delivered over the network or forwarded to a server where they can be accessed. A client

can request and receive the content through the IP network, which is then decoded and

displayed on the viewer’s device. The content can be buffered before invoking the decoding

process. Each component in the chain introduces a delay as shown in Figure 2.2. An analysis

Figure 2.2 – Architecture of a typical video streaming chain.

2.3. Selected Features of a Video Streaming Chain 17

of the different delays contributing to end-to-end latency experienced by a viewer in live

streaming was explored in [20]. However, the authors of [20] do not investigate the origin

sources of these delays, i.e. which used features or functions add a delay. We note that the

acquisition delay is not further discussed as we did not consider it in this thesis.

2.3.2 Components and Features

In this section, we represent the relationships among the different components of a video

streaming chain, i.e. how these pieces work together, by defining and examining their

functions. Essential features of each component are analyzed and discussed from the

end-to-end latency point of view.

2.3.2.1 Encoder

Video content can be either generated by users (i.e. viewers) producing so-called user-

generated content which can go directly from a camera device to the encoder, or gathered

from a variety of sources into a central production where it may incur many steps of

processing such as editing, color correction, encoding, decoding, logo insertion, etc. before

invoking the final encoder. In our work, we start evaluating the end-to-end latency either

from the frame capture time or from the final encoder input, depending on the encoding

methods used (live/on-the-fly or offline).

The captured video content may be encoded either on-the-fly or off-line. Off-line encoding

is used for VoD service in order to maximize the video quality. It has the advantage that it

does not require real-time encoding constraints. This enables more efficient encoding such

as two-pass encoding. In the first pass of two-pass encoding, the encoder analyzes the video

from the beginning to the end to determine the best possible way to fit the video within

the bitrate limits. It determines for example the best possible positions for intra-frames to

constitute Groups Of Pictures (GOPs). In the second pass, the collected data from the

first pass is used to optimize the bitrate and to achieve the maximum encoding quality.

On-the-fly encoding is used for live streaming and real-time interactive streaming services

that require a real-time encoding, and potentially a very short encoding delay for real-time

interactive streaming service. In our experiments, we use on-the-fly encoding as we target

a low latency delivery in both services.

Video Coding Reminder

Since uncompressed video images consume a large amount of bandwidth, compression is

usually used for storage, archival and transmission. The encoder takes as input a series

18
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

of raw video images, encodes it, and produces compressed video bitstream suitable for

further processing by the packager. As Advanced Video Coding (H.264/AVC) [21] and High

Efficiency Video Coding (H.265/HEVC) [22] are the most common video coding standards

for OTT, we limited ourselves to these two video codecs in our work.

As H.264/AVC, an HEVC bitstream consists of a number of encoded frames called access

units (AUs), each including coded data to which timing information such as Decoding/P-

resentation timestamps (DTS/PTS) can be attributed. Each AU is divided into NAL units

(NALUs). AVC and HEVC encoders output each NALU once it is produced. In our work,

we do not consider the generated NALUs until a complete frame is constructed.

Encoder Features

We present in this section the coding features and how their use for video streaming services

impact the end-to-end latency.

� B frames

B frames are bidirectional predicted frames, i.e. they are predicted from both pre-

vious and future frames, either I, P or B frames. By using bidirectional prediction,

compression performance improves because the temporal correlation among several

neighboring frames is better exploited [23]. Reference frames need to be encoded and

transmitted before the B frame itself. This re-ordering of frames by the encoder intro-

duces a delay. For example, the additional delay for a typical IBP-coding structure

is one frame duration. It is two frames durations for IBBP-coding structure. The

introduced delay depends on the GOP structure, i.e. depends on the position of the

reference frames in the GOP. The greater the distance between the reference frames,

the larger the delay. This coding type is most common in VoD and live streaming

services but it is not suitable for real-time interactive streaming service where latency

is of importance and the delay is to be kept at a minimum. In our live streaming

experiments, we do not use B frames.

� GOP type

There are two primary GOP types known as closed and open GOP. Both GOPs types

use a Random Access Point (RAP) frame which is a location in a bitstream at which

a decoder can begin successfully decoding frames following the RAP in display order

without needing to decode any earlier frames in the bitstream. A RAP is provided by

a frame which can be independently decoded of all other frames. RAP frames are

used in video streaming to provide functionalities such as seeking and tune-in. It is

interesting to note that the GOP type affects the switching in adaptive streaming

systems as we explain below.

2.3. Selected Features of a Video Streaming Chain 19

A) Closed GOP

Closed GOPs cannot contain any frames that reference a frame in the previous

or next GOP. As shown in Figure 2.3, a closed GOP must start with a specific

RAP frame called an Instantaneous Decoding Refresh (IDR) frame, followed by

non-IDR frames that can be decoded in decoding order without inter prediction

from any frame decoded before the IDR frame. The presence of an IDR frame

causes a reset of the decoding process, i.e. mark all reference frames as ”unused

for reference” immediately after decoding the IDR frame, while an I frame that

is not an IDR frame does not. We show in Figure 2.3 the display order as well

as the decoding order of the frames in the GOP.

Figure 2.3 – Closed GOP.

B) Open GOP

A GOP is open when the reference frames from the previous GOP at the current

GOP boundary can be exploited. As shown in Figure 2.4, open GOPs may begin

in display order with one or more B frames that reference the last P frame of

the previous GOP as well as the first I frame of its own GOP. The frames that

precede the I frame in display order appear in the stream afterward in decoding

order, e.g. the first two B frames of the current GOP in Figure 2.4. These frames

are called ”leading frames”. They do not only refer to the I frame, but also to

some earlier reference frames, e.g. the last P frame of the previous GOP in

Figure 2.4, that is not available and known to a decoder which has just started

decoding the stream. Consequently, these frames cannot be correctly decoded.

They must therefore be discarded by a decoder that starts its decoding process

at I frame.

20
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

Figure 2.4 – Open GOP.

Open GOPs are more efficient than closed GOPs because they reuse data from

previous GOPs. This can reduce the bitrate and provide an efficient compression.

Additionally, they allow a better smoothing of the used bitrate, i.e. they have a

smoother data distribution in the GOP. When using a closed GOP, the bitrate

is not smooth because the first P frame in the GOP is transmitted right after

the IDR frame as shown in Figure 2.3. Note that P frame requires an important

bitrate but much less than I frame does. However, in an open GOP as depicted

in Figure 2.4, two B frames that do not need a high bitrate are transmitted

between the I and P frames, which can smooth the bitrate peaks of I and P

frames.

Open GOPs are often used in broadcast TV systems due to their good compres-

sion performance. In case of channel change, the inability to decode some frames

as explained above has no impact on viewer experience because it concerns “past

frames”, before the IDR and therefore before the first frame presented after

tune-in. In OTT however, since the network bandwidth varies over the time,

the client is likely to switch regularly between streams encoded with different

bitrates. If open GOPs are used in OTT systems, the non-decodable frames

would be discarded at each switching which may be noticeable in the playback

and result in a degradation in the quality experienced by viewers. That is why

the use of open GOPs in OTT is still limited. Currently, most of OTT providers

use closed GOPs.

� GOP length

The GOP length represents a trade-off between the needs of random access versus

bandwidth. It also enables the error recovery in lossy environments. By increasing the

GoP length, there will be less I frames and more inter-frames which can optimize the

bandwidth and ensure a high compression. On the other hand, streams with smaller

GOP length contain frequent RAPs which can be desirable for fine grain random

2.3. Selected Features of a Video Streaming Chain 21

access (seeking and tune-in). The seek time as well as the tune-in time will be lower

at the expense of high bitrate or low quality.

� Multiple version encoding

For adaptive video streaming systems, the encoder can encode the same video content

into different versions (e.g. different bitrates and resolutions). The use of this feature

enables dynamic adaptation of video quality to varying network bandwidth and

client’s device capabilities so as to provide uninterrupted video streaming service.

Figure 2.5 illustrates an example of a bitstream switching between two streams

encoded with two different bitrates but that are not RAP aligned. When a client

decides to switch to a new rate (e.g. rate 2 in Figure 2.5), if it is not aware of the RAP

positions in the new stream, it has to retrieve the new stream from the beginning,

find the most recent I frame, decode it, and then decode all necessary inter-frames

up to the desired frame. This results in a double download of ”δd” frames and in a

double decoding of ”δg” frames, which can increase the downloading and decoding

delays and consequently the end-to-end latency. On the other hand, the server knows

in advance the RAP positions in the new stream. If it drives the adaptation process,

it will switch to rate 2 exactly at the RAP frame as shown in Figure 2.5. Hence,

whether the rate adaptation is server-driven or the encoded streams are RAP aligned

the double downloading and decoding is avoided.

Figure 2.5 – Bitstream switching between two versions that are not RAP frame-aligned.

2.3.2.2 Packager

A packager receives the encoded frames and packages them in a specific format suitable for

storage or transmission for a given delivery protocol and network. The basic principle of

packaging consists of creating packets or files by adding a certain amount of information in

a header of a packet or a file to the media data. In our work, we have identified a packager

as an important contributor to end-to-end latency in live video streaming. Hence, reducing

the packaging delay was one of the challenges of this thesis.

A packager provides a set of functions that we define below. Following that, we review the

common packaging formats.

22
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

Packager Functions

� Aggregation

The aggregation process is introduced when the encoded media data to be delivered

over the network is smaller than the Maximum Transmission Unit (MTU) size of

the underlying network, i.e. the largest packet size that can be transmitted over the

network without being fragmented on the network layer. The packager can aggregate

either complete encoded frames or parts of them in a specific format, depending on

the delivery protocol and network, to constitute packets or files. The aggregation at

the packager level avoids undesirable packetization overhead because only one header

is used for several frames or parts of them. The process of aggregating many encoded

frames can increase the packaging delay if the frames are transmitted sequentially to

the packager (usual situation), so the packet/file can only be delivered once the last

frame is produced.

� Fragmentation

Large encoded media data that exceed the network MTU must be fragmented into

several transport packets before transmission. This process is typically needed for

video data as it is considerably larger than audio. It creates an overhead because many

packets headers are used per frame. However, the packaging delay when fragmentation

is used is low because the packet can be sent before the entire frame is produced.

In modern bitstream formats, the encoder typically defines some marker points in

the encoded frames called synchronization parsing points that the packager relies on

to split the frame in appropriate places to help the client use the data in the event of

some parts being lost. Making the packager aware of the boundaries to perform the

fragmentation refers to the media-aware fragmentation mechanism.

� Multiplexing

The multiplexing functionality consists in mixing different media types into a single

stream and transmiting it over the network. It mainly has two functions:

– Synchronization: It allows the packager to synchronize the different media

streams (e.g. video and audio) and avoid possible synchronization issues at the

client due to separate stream delivery.

– Media interleaving: Groups of encoded frames of different streams are stored

alternatively in the file/packet, e.g. N milliseconds of video frames, followed

by N milliseconds of audio frames, followed by N milliseconds of video frames,

etc. The groups are stored/transmitted consecutive in the file/packet. Typically,

interleaved frames are grouped within an interleaving window. When the inter-

2.3. Selected Features of a Video Streaming Chain 23

leaving window is small the overhead increases and the frames can be buffered

and reconstructed back to their original order quickly. The obvious disadvantage

of a large interleaving window is that it increases latency. As video frames take

longer time to encode compared to audio frames, the file/packet can only be

delivered once the last frame of the video group is produced which can increase

latency.

In this thesis, we only dealt with frame aggregation.

Common Packager Formats

There are several types of packaging formats, each targeting different areas of applications.

Standard ones are Real-time Transport Protocol (RTP), MPEG-2 Transport Stream

(MPEG-2 TS), and ISO Base Media File Format (ISOBMFF). Our system focuses on the

latter two formats. In the following, we review how the previous packager’s functions are

used in these formats. We also evaluate the packaging delay introduced by each format.

1. RTP

RTP is designed for real-time packet streaming. When using H.264/AVC and

H.265/HEVC, NALUs are the data source for RTP packets. In the simple pack-

etization model, one NALU is put in one RTP packet. This results in a negligible

packaging delay.

In some cases, NALUs may be bigger than the RTP packet size. For example, when

the content is pre-encoded without knowing the MTU size of the underlying network.

Hence, large NALUs are broken into several parts called Fragment Units (FUs). Each

FU is then put into the payload of an RTP packet, but this keeps the packaging delay

low.

In RTP systems, some source data are typically very small- a few bytes at most

(e.g. the parameter set NALUs). To respect the RTP packet size, it is better for the

packager to aggregate them with other NALUs into a single packet. The aggregation

process can reduce the introduced overhead. The NALUs may be produced after a

non-negligeable time. However in such cases, these NALUs would typically not be

aggregated on a single packet, but sent as dedicated packets.

2. MPEG-2 TS

MPEG-2 TS is typically used in digital TV broadcast networks and in some video

streaming technologies such as Apple’s HTTP Live Streaming. It is one of the

multiplex stream formats specified by the MPEG-2 systems standard. It consists of

relatively short fixed-length packets of 188 bytes, each with a 4 byte header. The

packetization for this model is illustrated in Figure 2.6. It is as follow: an AU, or

24
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

one or more NALUs are packaged at first into a long variable-length packet called

Packetized Elementary Stream (PES) packet. A PES packet is then partitioned

up into 184 bytes parts to fit in the TS packet payload. A TS header is added to

constitute a TS packet. Thus, the packaging delay is negligible.

As with the RTP packaging format, a TS packager may aggregate many AUs in a

single PES packet, particularly for audio, which increases potentially the delay but

reduces padding. It may also fragment an AU across different PES packets, with no

impact on the delay.

Figure 2.6 – Generation of MPEG-2 TS packets.

3. ISOBMFF

ISO Base Media File Format (ISOBMFF) is used for storage, file exchange, editing

and streaming purposes over IP. ISOBMFF organizes the media data and its metadata

in data structures called boxes. A box typically consists of four bytes for the box

type, four bytes for the box length, and the remaining bytes for the payload. Files are

structured as a series of boxes that can be organized sequentially and hierarchically.

The metadata for each media type present in the file is stored in a track box (”trak”),

which are subsequently grouped with the others in a movie box (”moov”). The media

data of each track could be either enclosed in the same file in a media data box

(”mdat”) or in a separate file. The media data of each track consists of media samples

which are the access units of a media type, i.e. the output of the encoder.

The internal file organization differs significantly when using ISOBMFF for storage

only or when using it for streaming purposes. The above described file organization

method is not suitable for incremental generation/consumption of the media content

at the server/client for two reasons. First, the amount of metadata of the ”moov” box

is constantly growing as data is encoded. The ISOBMFF file cannot be written until

the movie box is completely constructed. Second, if the video is long (e.g. a movie)

the tables describing the samples in the ”moov” box are large values and could take a

long time to be downloaded.

2.3. Selected Features of a Video Streaming Chain 25

For that, progressive generation of the metadata and the media data was introduced.

The file still contains the ”moov” box that holds decoder initialization information

and metadata that is valid for the whole file. The rest of the file is a sequence of

movie fragments that contains an alternating series of movie fragments boxes (”moof”)

and media data boxes (”mdat”). The movie fragment box contains the metadata for

a single fragment while the media data box stores the associated media samples (e.g.

audio or video encoded frames). A movie fragment (i.e. ”moof” and ”mdat” boxes)

is the smallest entity that can be independently parsable. For advanced streaming

purposes such as HTTP adaptive streaming, an additional layer for the organization

method, called segmentation, was proposed by 3GPP [24]. It consists in dividing the

ISOBMFF file into self-contained independently decodable files called segments. Each

segment consists of either a movie box, with its associated media data and other

associated boxes or one or more movie fragments boxes, with their associated media

data, and other associated boxes.

So, in ISOBMFF, the packager aggregates either all access units into a single ISOB-

MFF file, or it can select an integral number of complete closed GOPs to constitute

one segment in HTTP adaptive streaming, that we will explore in 2.4. This results in

a packaging delay equal to either the file duration or the media segment duration.

Long segments ensure a low overhead but they introduce a long packaging delay. This

configuration is not suitable for live streaming and real-time interactive services. One

of our contributions consists in using the movie fragments as new delivery entities

to clients instead of media segments, thereby reducing the packaging delay to the

duration of a fragment.

2.3.2.3 Networks and Servers

Servers are responsible for receiving the packaged stream to form IP packets. RTP packets

are typically delivered using User Datagram Protocol (UDP) over IP networks. Two

methods can be used for the carriage of MPEG-2 TS packets over IP: the direct UDP

method where the TS packets are carried in the UDP payload, or the RTP method where

RTP payload is used to transport the TS packets. ISOBMFF files are generally delivered

using the HTTP protocol, transported over Transmission Control Protocol (TCP), and

delivered over IP.

The server may become overloaded when the demand for video contents increases. This

phenomenon causes degradations in network performance, resulting in a decrease in useful

bandwidth, an increase in queuing delay, packet loss rate and jitter. Server scalability (i.e.

the capacity to accept a very large number of clients) is achieved by two different solutions

that we explore below.

26
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

1. RTP-based services

Multicast or one-to-many video streaming over IP is the first solution in RTP-based

services. The server streams a single packet of data at the same time to many clients.

This can reduce the network resource usage and increase the bandwidth efficiently.

However, muticast provides limited flexibility as the clients cannot request different

video contents at different instants. It is useful only when multiple clients would

watch the same video at the same live time. Additionally, the system deployment is

not easy because routers and intermediaries are not configured to route multicast at

all, or only configured and allowed in local networks. Moreover, multicast requires

UDP which may also be filtered.

2. HTTP-based services

In HTTP-based services, large distributed systems called Content Delivery Networks

(CDNs) were developed to overcome the scalability problem. They consist in hundreds

or thousands of servers placed in the path between the source and the clients. The

server that is located close to the source is the origin server while the ones which

are close to the clients are the edge servers. The primary technique that a CDN

uses to speed the delivery of contents to end users is caching, which entails storing

replicas of content in multiple edge servers, so that user requests can be served by

a nearby edge server rather than by a far-off origin server. This fact implies that

CDN can reduce the request/response time, the network bandwidth consumption,

the probability of packet loss and the total network resource usage. The server thus

has sufficient bandwidth to handle additional network requests.

Network Constraints

In contrast to the previous components that present some technical features and functions,

the network provides a number of constraints and challenging issues that are detailed

below.

� Time-varying network bandwidth

The bandwidth available between two points in the open Internet network is generally

time-varying and requires constant estimation. The server is limited to send data to

clients at the available bandwidth. If the server transmits faster than the available

bandwidth then congestion occurs and packets are lost, causing degradation in video

quality. If the server transmits slower than the available bandwidth, the client does

not use effectively the bandwidth and receives sub-optimal video quality. The main

challenge in particular in HTTP adaptive streaming is to estimate the available

2.3. Selected Features of a Video Streaming Chain 27

bandwidth and then adapt the encoded video bitrate to be transmitted to the

available bandwidth.

2.3.2.4 Client

A client requests data, receives the network packets from the server, unpackages them

to retrieve the encoded frames, decodes and displays the frames on the viewer’s screen.

Buffering in the client side may be needed to deal with transport jitter and provide a

smooth playback. A client is also required to synchronize the different frames of different

media arriving at different times. Additionally, it may be in charge of applying the viewer

preferences if requested (e.g. language and subtitle).

The playout delay is the time between when the frame is fully decoded and ready to be

played out and when it is actually displayed.

In the client, a buffer is used to store a few seconds of content before their decode and

display to minimize sporadic failures or delay fluctuations in the network transmission.

The size of the buffer must be tuned carefully according to the current network conditions

and the application’s needs. If it is too big, it adds unnecessary delay, if it is too small,

the playback may freeze. There are two kinds of buffers at the client side, de-jittering and

decoding. A de-jittering buffer is designed to remove the delay variation (i.e. jitter) in

packet arrival times. For transmission of video packets over IP networks, it has been shown

that the typical value of delay jitter can be up to 2 s [25]. A decoding buffer is used to

store data in case of the decoder cannot consume it as soon as it arrives. Usually, they are

the same buffer.

2.3.3 Summary

The analysis that we have conducted in this section is aimed at identifying and explaining the

main contributing components to the end-to-end latency. Content encoding, packetization,

downloading, buffering at the client side, decoding and playout add delays which may

increase the end-to-end latency.

Three factors may impact the introduced delay by encoding and decoding processes.

The use of B frames requires a re-ordering of frames in the encoder/decoder which can

introduce an additional delay. In case of client-driven rate adaptation, the non-temporal

RAP alignment increases the downloading delay as well as the decoding delay. The GOP

type, i.e. open or closed, does not impact the latency but it affects the switching in adaptive

streaming systems. The RAP frequency impacts the bitrate and operations such as seeking

and tune-in, but not the delay.

For all packaging formats, the number of encoded frames aggregated in a single packet or

28
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

file presents a trade-off between overhead and latency. The ability to package less than a

frame determines if latency can be smaller than a frame duration.

The download delay depends on the content size, available network bandwidth and the

roundtrip time between the client and the server. The buffering delay depends on the buffer

size which is usually fixed by the application type. Finally, the playout delay is bounded

between 0 ms and the frame duration.

The main challenge for content and service providers is to design a video streaming chain

to reliably deliver high-quality video experience to viewers over IP network when dealing

with the above components’ features and constraints.

For viewers that require a low end-to-end latency, the streaming chain should be

configured as follows. When using B frames, the distance between the reference frames

should not be too long. If latency is to be reduced to its minimum, B frames should not be

used. Regarding VoD, we can use many B frames and no real-time encoding constraints.

From the adaptivity point of view, the GOPs should not be very long. A long GOP could

be too slow to adapt to sudden bandwidth drops, and could increase the rebuffering events

which may impact the viewer QoE as shown in Section 2.2. Live streaming and real-time

interactive streaming services require the use of short buffers.

2.4 HTTP Adaptive Streaming

Diverse IP-based video streaming systems have been presented and used in the academic

studies and industrial implementations [26] [27]. HTTP Adaptive Streaming (HAS) has

emerged as the technology of choice for the delivery of audiovisual content over the Internet.

In this section, we review the basic concept of HAS with its various features.

In an HAS system, it is necessary for the server to maintain multiple versions of the same

video content, encoded in different bitrates and quality levels. Each encoded version goes

through a segmentation process where it is divided into short-duration segments, typically

a few seconds. The segmentation process is one the main challenges of this thesis related

to low latency live video streaming. We address this problem in Chapter 4.

Once the client chooses the appropriate video version to download, it sends an HTTP

request to fetch a particular segment from an HTTP web server and then renders the

media while the next segment content is being downloaded. The client drives the video

quality adaptation by requesting different segments at different encoding versions. If during

the encoding process, all versions of the same content are perfectly RAP aligned and no

open GOPs are used, switching between them can be completely seamless, even with one

decoder.

A rate adaptation algorithm at the client-side will decide which quality version is requested

from the server. Several algorithms have been proposed recently, which can be classified

2.4. HTTP Adaptive Streaming 29

into three main categories with respect to the required input information, ranging from

network characteristics to application-layer parameters such as the playback buffer. Firstly,

throughput-based algorithms, such as PANDA [28] or Festive [29], rely their decision on

the observed TCP throughout. Secondly, time-based algorithms such as ABMA [30] rely

on the same principle of probing, but this time to estimate the download time of each

segment. Lastly, buffer-based algorithms, such as BBA [31] and BOLA [32], observe and

react to the level of the client’s playback buffer. [33] provides a comprehensive comparative

study of the main existing HAS algorithms by evaluating their performance per class under

controlled experimental conditions.

HAS has an issue which relates to the undesirable behaviors of HAS players that affect

viewer QoE [34], [29], [35]. It is common that two or more players share a network bottleneck

and compete for available bandwidth. This competition can lead to three performance

problems: instability (i.e. the video quality often changes so the client switching is too

frequent), unfairness (i.e. allocate throughput unfairly to multiple competing players

sharing a bottleneck link) and inefficiency (i.e. bandwidth under-utilization). Most of

these problems happen because the clients repeatedly go between downloading and pause

phases (called ON and OFF periods), which confuses other competing clients about how to

estimate their fair share bandwidth correctly during the OFF periods [34]. To solve these

problems, some researchers try removing the ON/OFF periods with the help of the server

[36], [37], while others develop more accurate bandwidth estimation algorithms [29], [38].

Numerous streaming service providers have adopted HAS technology and have proposed

new solutions that are widely deployed such as Microsoft’s Smooth Streaming (MSS),

Apple’s HTTP Live Streaming (HLS), Adobe’s HTTP Dynamic Streaming (HDS). In this

trend, a new standard called MPEG Dynamic Adaptive Streaming over HTTP (DASH)

was developed and used worldwide. We present in the following MPEG-DASH as our work

focuses on this standard. We then describe and compare the main features of HAS systems,

especially DASH-based ones.

2.4.1 MPEG-DASH

Adaptive streaming solutions developped by different vendors (like Microsoft, Apple, and

Adobe) use different file formats. In other words, no interoperability exists between devices

and servers of various vendors. To receive a content from each server, a device must support

its corresponding proprietary client. Therefore, MPEG-DASH, a new common standard in

adaptive streaming, has been developed by MPEG and 3GPP to enable the interoperability

in the industry [1]. In this section, we mainly review the DASH principles regarding how

the available media on HTTP servers is presented and described, and the DASH client

behavior.

30
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

Media Presentation Description

In MPEG-DASH, a description of the available media content at the server and its various

alternatives is provided by a Media Presentation Description (MPD) file, which is an

XML-based document. Figure 2.7 demonstrates the MPD hierarchical data model. Each

media content may be composed of one or more media components (e.g. video, audio,

subtitle), each of which might have different characteristics. A long media content could

be divided into one or more temporal chapters called periods. Each period has a starting

time and duration and consists of one or multiple adaptation sets. An adaptation set

includes information about one or more media components and its various encoded versions.

Each adaptation set consists of multiple representations. A representation is an encoded

version of the content components. Each representation varies from other representations

by bitrate, resolution, number of channels, or other characteristics. The media stream in a

representation is chopped into a sequence of portions that can be independently decoded,

called media segments. Media segments can be in separate files (common for live streaming

service), or they can be byte ranges within a single file (common for VoD service). Each

media segment has a unique URL that indicate an addressable location on a web server

that can be requested by a client using HTTP GET, as complete ressource or with byte

ranges. It exists several addressing schemes that define how media segment URLs are

identified in the MPD file:

� Segment List is a complete list of segment URLs provided for all available segments.

� Segment Template (Segment Time-Based): A URL template is provided from which

clients build a segment list where the segment URLs include segment start times.

� Segment Template (Segment Number-Based): A URL template is provided from

Figure 2.7 – MPD hierarchical data model [1].

2.4. HTTP Adaptive Streaming 31

which clients build a segment list where the segment URLs include segment numbers

(like index numbers).

� Segment Base (BaseURL): A non-segmented scheme where a single segment is

identified with a single URL (BaseURL), with the intent that the content will be

retrieved through byte-range requests given within the content.

DASH Client Behavior

DASH relies on a client-driven streaming approach. In other words, it is the client’s

responsibility to make its choices on which segments to download. A simplified DASH client

behavior can be divided into three phases as shown in Figure 2.8. We note that the other

HAS solutions follow similar client behaviors.

1. Bootstrap Phase

In a first phase which we call bootstrap, the client retrieves all necessary information

to start the streaming session. It begins by fetching the MPD file from the web

server. Once the MPD is received, the client parses it and learns about the program

timing, media-content availability, media types, resolutions, and the existence of

Figure 2.8 – Simplified view of the phases of DASH client.

32
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

various encoded alternatives of multimedia components, media-component locations

on the network, and other content characteristics. Using this information, the client

selects a set of adaptation sets compatible with its capabilities in terms of codecs,

content media types (audio, video, subtitle), languages. Within each adaptation set,

it chooses a representation that best satisfies its needs regarding bitrate, resolution.

It then fetches the initialization segment (IS) that contains decoder configuration (e.g

ISOBMFF ”moov” box) of each selected representation using HTTP GET requests.

After some buffering, the client enters a stable phase.

2. Stable Phase

In the stable phase, the client continuously downloads media segments and potentially

updates the MPD. The client plays media segments and monitors the network

bandwidth fluctuations.

3. Switching Phase

In some cases, the client may need to switch dynamically between different repres-

entations (with lower or higher bitrates) to adapt to fluctuating network conditions

and to maintain an adequate buffer. It enters then a switching phase where it may

have to initialize newly selected representations. Following that, it can fetch and play

segments of the new quality, entering again the stable phase.

There are cases where the bootstrap and switching phases interact: when a DASH

client switches between 2 representations not sharing the same IS, the DASH client

has to download the IS corresponding to the new representation, prior to the new

media segment.

2.4.2 HTTP Adaptive Streaming Features

We describe the main features of HAS systems that adaptive streaming solutions have

picked. All solutions are implemented differently but they share a similar operational model.

� File organization unit: HAS relies on two different ways to organize the different

encoding bitrate versions of the same video content at the server side: one-file-

per-segment-and-bitrate or one-single-file-per-bitrate. If encoded bitrate version is

partitioned into many segments as described above and each segment is self-contained

file, this refers to the one-file-per-segment-and-bitrate approach. Otherwise, each

encoding bitrate version is stored in a single file, which refers to one-single-file-per-

bitrate approach. This approach is efficient to decrease the web servers and CDNs

load, and management of millions of tiny files. It is used typically for VoD service.

All HAS solutions may use both approaches.

2.4. HTTP Adaptive Streaming 33

� Segment duration (i.e. how much media time each segment should carry) is generally

fixed over the streaming period. In practice, default segment duration is 2 s in MSS

[39], 10 s in HLS [40] and it ranges from 2 to 10 s in DASH. In [41], the authors

observe that the choice of segment duration has a great impact on the accuracy of

bandwidth estimation and video quality adaptation. A short duration could lead to

suboptimal bandwidth estimation and incur more overhead from frequent HTTP

requests/responses. However, a long duration allows more accurate bandwidth estim-

ation but could be too slow to adapt to sudden bandwidth drop, and could increase

the rebuffering events. Note that timely response to fast-changing bandwidth is the

key to minimizing the frequency of rebuffering events that significantly undermine

viewer QoE.

� Manifest file and update: In HAS system, a client fetches first from a web server a

description of a streaming session in a manifest file. This tells a client which content

media types are accessible, which codecs were used to encode the content, which

bitrate, resolution, and language are available, and a list of the available segments

with either their start times or durations.

This manifest in MSS is called a client manifest with a specific extension (*.ismc).

In addition to this, the IIS Smooth server stores and uses another type of manifest

(*.ism) for the mapping between requested bitrates and the MP4 files stored on disk.

In Live MSS, a client doesn’t need to repeatedly download a manifest. It can continue

fetching segments without having to request a new update manifest because the

next URL segment is inband. The current segment holds the timestamp of the next

segment or two in a box inside the file [42].

HLS defines two types of manifest of the same extension (*.m3u8): Normal and

variant playlist files. The normal playlist is defined per video encoding version and

lists URLs of segments that should be played in the chronological order. Variant

playlist file lists a collection of normal playlist files with their metadata (e.g. bitrate,

resolution, codec, an ID). The variant playlists support delivery of multiple streams

of the same content with varying quality levels for different bandwidths or devices.

In case of live streaming, whenever a new media segment is ready, the normal playlist

file is updated to include the newest segment and to remove the oldest one. HLS

recommends that the playlist contains at least the 3 latest segments so that the client

can pause, resume, and rewind for at least the duration of 3 segments (30 s by default)

[39]. The client loads a new version of the normal playlist file periodically to get the

URLs of the new media segments. When the client decides to switch between the

alternates streams, it has to download the appropriate normal playlist that satisfies

its needs regarding the quality level.

DASH defines a client MPD manifest. In live streaming, the client has to update

the MPD file if the URLs of the available segments are listed explicitly or an MPD

34
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

update period is given.

� Types of data: Three types of data are used in HAS systems including media,

initialization, and index data.

First, media data is the actual media files or segments that a client plays. All solutions

define a specific media data type for the video playback. Second, initialization data

consists of metadata required for decoder initialization to start the video playback.

It is inband in MPEG-2 TS format (i.e. stored in the same file as media data) or

outband in ISOBMFF (i.e. stored in a separate segment file). All solutions use the

initialization data. Finally, index data provides mainly a mapping between the time

and the location of media in a segment or in a file. MSS uses an index data and it

is stored in a movie fragment random access “mfra” [39]. DASH may use an index

segment and it consists in one or more segment index box (”sidx”) which is placed

before the movie fragment box (”moof”).

� HTTP requests/responses transactions: As we have already mentioned before, a

client is required to download a manifest file from a web server either in MSS or

DASH using one HTTP request. HLS needs two round trips to fetch and receive the

two types of manifest files as mentioned above, which increases the startup delay.

When using initialization segments for ISOBMFF format, a client has to fetch the

initialization segment before starting issuing media segments using additional HTTP

requests/responses.

2.5 Conclusion

This chapter presented the basic aspects of QoE of video streaming services using IP

networks. We have presented a qualitative description of viewers’ behaviors and expectations

in terms of QoE for different services types. We focused in particular on the quality of

the provided service targeting the latency service performance metric. In the litterature,

many QoE metrics were proposed to accurately assess viewer QoE for video streaming

services. This chapter can be extended to include other evaluation metrics such as a switch

frequency. This metric is used to report the number of switch events that look place during

the video streaming session.

This chapter explains as well all the aspects that are related to the latency in a video

streaming chain. It presented the architecture of a video streaming chain with its main

components. We analyzed the features of each component of the chain from the latency

point of view. We also presented how a video streaming chain should be configured when

low latency is needed. The choice of components settings may differ if latency is not the

first viewer requirement. Additionally, the analysis of the video streaming chain can be

2.5. Conclusion 35

extended regarding the multicast and CDN distribution networks.

Finally, this chapter presented the specific aspects that are related to the HTTP adaptive

video streaming that are related to latency (e.g. number of manifests to download, manifest

update, download of initialization segments, segment duration, etc). Our contributions

target the optimization of the bootstrap as well as the steady phases in terms of latency.

36
2. Video Streaming Over IP: Quality of Experience and HTTP Adaptive

Streaming

Chapter 3

Improving the Starting of Live

DASH Streaming Sessions

Contents

3.1 Introduction . 37

3.2 DASH Client Bootstrap Strategies 40

3.2.1 TCP Startup Mechanisms . 41

3.2.2 Evaluation Parameters . 43

3.2.3 Evaluating DASH Client Bootstrap Strategies 45

3.3 Improved DASH Bootstrap . 52

3.4 Evaluation . 60

3.4.1 Settings . 60

3.4.2 Dataset . 62

3.4.3 Experiments And Results . 62

3.5 Conclusion . 83

3.1 Introduction

Today’s viewers are highly impatient and less tolerant of slow starts in live streams compared

to VoD streaming. Some studies [4] indicate that if the startup delay exceeds 2 seconds,

the number of people that abandon viewing dramatically increases. To retain viewers, it is

therefore important to provide them with an ”instantaneous” video playback.

One of the solutions to address the slow start of a live streaming session issue is to reduce

the startup delay that we have defined in Chapter 2 as the delay between the time when a

viewer issuing ”Play” to the start of video display.

38 3. Improving the Starting of Live DASH Streaming Sessions

The startup delay components in DASH live streaming are shown in a simplified manner

in Figure 3.1.

Figure 3.1 – Startup delay components in DASH live streaming.

The bootstrap delay corresponds to the duration of the bootstrap phase that is presented

in Chapter 2, in which a client retrieves all necessary information (i.e. MPD and IS files) to

start the DASH streaming session. A client starts by issuing an HTTP request to retrieve

the MPD from a web server. Once the MPD is received, the client parses it and selects a

set of adaptation sets compatible with its capabilities in terms of codecs, content media

types (audio, video, subtitle), and languages. Within each adaptation set, it chooses a

representation that best satisfies its needs regarding bitrate and resolution. A client issues

then additional HTTP requests to fetch the IS of each chosen representation for the initial

playback. This separate download of MPD and IS increases the bootstrap delay which

increases the startup delay; in this chapter, we focus on the bootstrap delay.

Following that, a client proceeds to download, buffer and decode the first media segments to

be ready for the initial playback as depicted in Figure 3.1. For that, a client can use different

strategies depending on its configuration and implementation. Figure 3.2 shows a regular

strategy which is the most deployed in the existing HTTP live streaming technologies and

widely used in the current web browsers. The principle of this strategy consists in buffering

one media segment or more before invoking the playback. This means that a client cannot

start playing a media segment before some media segments are completely downloaded

and buffered. In Figure 3.2, we consider the case where only one entire segment is buffered

before starting playback.

According to Figure 3.2, media segments are generated and then stored on a web server. A

client sends an HTTP request to download the first media segment (Si). A media segment

is defined as a consecutive series of frames, which are a sequence of bytes. A client receives

the requested media segment byte by byte from a web server. It starts receiving the first

byte of the first frame (FBf1). After a certain amount of received bytes, it receives the last

byte of the first frame (LBf1). Thus, the first complete frame (f 1) is constituted. Ddow f 1 is

the time needed to download this f 1. A client continues receiving the bytes and forming the

remaining frames until it receives the last frame (f m) of a media segment. The time that

3.1. Introduction 39

is required to download all frames constituting a media segment (Si) is the downloading

delay (DSi). Once a media segment is entirely downloaded, it is sent immediately to the

decoding buffer. The buffering delay is defined as the delay between the time when the first

frame enters into the buffer and when it comes out of the buffer for decoding. Filling the

decoding buffer is instantaneous and the for the first frame decoding can start immediately.

Therefore, the buffering delay is considered to be zero on startup. The decoding of the first

frame takes a certain time (Ddecod f 1) depending on the frame type (i.e. I, P, or B frames).

In Figure 3.2, we consider only I and P frames. If B frames were involved, we would have

an additional delay in the decoding due to frames reordering. Finally, the frame f 1 goes

out the decoder to be displayed for Dplay f 1 time. The decoder usually starts decoding the

second frame (f 2) while the first one is displaying. The frames decoding/displaying process

continues until all frames of a media segment are completely displayed.

The client continues to request, download, buffer, decode and playout the following media

segments in the same manner as the first one.

The downloading delay could be negligible if the beginning of the video that the viewer is

likely to watch is prefetched by the video player. The main principle of prefetching is to

retrieve content from the server before it is requested by a client and store it in a location

Figure 3.2 – Typical strategy to download, buffer and display media segments.

40 3. Improving the Starting of Live DASH Streaming Sessions

that can be accessed by a client conveniently and fast in periods of low link usage [43].

Prefetching is interesting and efficient to reduce the startup delay but it cannot be used

for live streaming as live content is provided on-the-fly. Therefore, it is out-of-scope of our

work because we target a low latency live DASH streaming case.

Initialization segments are not only downloaded in the bootstrap phase for the initial

playback, but may be also retrieved in the switching phase of a streaming session. In

particular, when a DASH client switches between 2 representations not sharing the same

IS, the DASH client has to download the IS corresponding to the new representation, prior

to the new media segment. If the available network bandwidth is low or if the time until

the playback of the new segment is too short, this might be problematic. To anticipate

such problem, a DASH client may request more than one IS in the bootstrap phase. For

instance, it may fetch all IS for all video qualities to be ready to switch. This might increase

the duration of the bootstrap phase but can improve the switching.

The main contribution of this chapter consists in reducing the bootstrap delay which can

reduce the startup delay in DASH live streaming. This chapter proposes and evaluates

several methods to reduce the bootstrap delay. All methods are based on the idea that

the bootstrap phase should not require multiple round-trips between the client and the

server. The methods exploit the counter-intuitive fact that in some situations downloading

the MPD and all IS in one download can be achieved faster than downloading the MPD

and then the only needed IS although smaller in size. The proposed methods have been

designed to have no negative impact on the existing caching and delivery infrastructure.

The remainder of this chapter is organized as follows. Section 3.2 reviews typical DASH

client strategies for bootstrap. Section 3.3 presents in detail our proposal. Finally, section

3.4 describes the test-bed of our experiments, details the experimentations and the obtained

results before section 3.5 which concludes the chapter.

3.2 DASH Client Bootstrap Strategies

For the startup of a streaming session, during the bootstrap phase, the DASH client is

required to download MPD and IS files 1. For that, the client can use several strategies

depending on the version of the HTTP protocol and on the number of desired TCP

connections. Because MPD and IS files are small size resources (as will be shown in Section

3.4) and are delivered after the establishment of a TCP connection, it is essential to begin

this section with an overview of the TCP startup mechanisms, in particular the TCP three-

way handshake and TCP slow start phase. We then present the system parameters that we

1IS is necessary only when media segments are based on ISO/IEC 14496-12 (ISOBMFF), that we
consider in our work, as it is used by most existing DASH deployments.

3.2. DASH Client Bootstrap Strategies 41

use throughout the chapter. Finally, we describe our first contribution which consists of an

analytical evaluation of the different DASH client bootstrap strategies in terms of number

of TCP connections, number of HTTP requests/responses, and the associated bootstrap

delay.

3.2.1 TCP Startup Mechanisms

Every TCP connection must go through the TCP three-way handshake and then the TCP

slow start phase. In the following, we illustrate how these mechanisms operate for a simple

HTTP transfer.

TCP Three-Way Handshake

The TCP three-way handshake enables a server and a client to negotiate the parameters of

the network connection (e.g. Initial Sequence Number (ISN) and Maximum Segment Size

(MSS)) before beginning the data transfer. ISN is the starting segment sequence number

that both sides must generate randomly for security issues. It is used for the numbering of

the transmitted bytes in a TCP segment. MSS defines the largest amount of data, specified

in bytes, that a client or a server can receive in a single TCP segment.

This mechanism is known as three-way handshake because three TCP segments (SYN, SYN

ACK and ACK) are exchanged between the client and the server as depicted in Figure 3.3:

� SYN: The client begins by picking an ISN that will be indicated in the Sequence

Number field of a TCP segment header. It also indicates its MSS value in the options

field. It then sends a TCP segment with an activated SYN (Synchronization) flag.

This SYN segment will inform the server what sequence number the client will start

its TCP segments with. It may also include additional TCP flags and options.

� SYN ACK: The server acknowledges the client’s SYN segment by adding the next

sequence number that it is expecting to receive in an Acknowledgment Number field

of the TCP segment header, which consists of the client’s ISN incremented by one

(ISNclient +1). It then picks its own random ISN, appends its own set of flags and

options, activates the ACK (Acknowledgment) and SYN flags, and finally transmits

the ACK SYN response.

� ACK: Finally, the client acknowledges the server’s SYN ACK segment by incrementing

the server’s ISN by one and adding this value in an Acknowledgment Number field

of the TCP segment header. The received acknowledgment number in the previous

SYN ACK segment indicates which value of sequence number the server is expecting

to receive from a client in the ACK segment. So, the client appends this value in the

42 3. Improving the Starting of Live DASH Streaming Sessions

Sequence Number field of the TCP segment header. The client can now complete

the handshake by dispatching the last ACK segment. The connection is therefore

established and the data transfer can start between the client and the server.

Figure 3.3 – TCP three-way handshake.

As a consequence, each new TCP connection will have a full roundtrip of latency before any

data can be transferred which can penalize the startup delay. [44] has identified the TCP

three-way handshake as an expensive component to create for each new TCP connection.

The authors proposed a new mechanism called TCP Fast Open (TFO) to minimize the

roundtrip penalty of the three-way handshake imposed on new TCP connections, by

enabling a safe data transfer during TCP’s initial handshake. This means that data will

be transferred within a TCP SYN and SYN ACK segments. The analysis and testbed

results have shown that TFO can improve single HTTP request latency by over 10% and

the whole page load time from 4% to 40%. TFO eliminates one full RTT of latency but it

works only in certain cases: there are limits on the maximum data size to be transferred

during the handshake and only certain types of HTTP requests can be sent. A detailed

discussion on the capabilities and limitations of TFO is provided in [45]. This proposal

requires modifications in TCP stack and in existing web servers that we did not use.

TCP Slow Start

Once a connection is established, a client and a server cannot use immediately the full

capacity of the link for the data transfer. TCP must enter the slow start phase where a

client and a server try to quickly converge on the available bandwidth on the network

path between them. The slow start algorithm is based on a congestion window (cwnd)

which identifies how many TCP data segments a server may transmit without receiving

an acknowledgment (ACK) from the client. Slow start mechanism starts with a small

initial congestion window (init cwnd) and increases it by the number of data segments

acknowledged at each roundtrip as shown in Figure 3.4. TCP leaves the slow start phase

either if packet loss occurs in the network or if cwnd reaches the size of the available client

3.2. DASH Client Bootstrap Strategies 43

buffer space.

Figure 3.4 – Congestion window size growth [2].

The init cwnd is at most 4 TCP segments, but more typically is 3 TCP segments (approx-

imately 4KB) [46] in an Ethernet network. However, recently [47] involves increasing the

init cwnd to 10 TCP segments (about 15 KB) in order to minimize the latency caused by

the slow start phase. This proposal can reduce the startup delay for short web transfers,

such as those required for the delivery of DASH MPD and IS. The authors have shown that

90% of HTTP web responses of top sites and Google applications fit in these segments. The

authors have show that the average latency of HTTP responses improved by approximately

10% with the largest benefits being demonstrated in high RTT and bandwidth delay

product networks. In addition to the regular 3 TCP segments, we will use this init cwnd of

10 TCP segments in our evaluation.

3.2.2 Evaluation Parameters

In the following evaluation of the different DASH client bootstrap strategies, we consider

that the server can send MPD and IS in the initial slow start phase of a TCP connection

as they are short file transfers. For that, we assume that there is no packet loss, no delayed

acknowledgment and no congestion. Table 3.1 reports the employed parameters throughout

the chapter.

44 3. Improving the Starting of Live DASH Streaming Sessions

Notations

N Number of adaptation sets in an MPD
Mj Number of representations within an adaptation set j
M Number of representations in an MPD
NIS Number of IS in an MPD

NC
IS Number of IS chosen by the client at the startup

Dss (A) Download time of resource A in the slow start phase of a TCP connection
using HTTP/1.x (see formula 3.4)

D́ss (A) Download time of A in the slow start phase of a TCP connection using HTTP/2
(see formula 3.4)

Table 3.1 – System parameters.

We note N the number of adaptation sets in an MPD. Each adaptation set is indexed by

”j”. The number of representations within an adaptation set ”j” is noted by Mj and can

vary based on media content type. The number (M) of representations in an MPD can be

expressed in Equation 3.1 as the sum of the number of representations in all adaptation

sets.

M =

N∑
j=1

Mj (3.1)

Additionally, each representation may have an IS or all representations within an adaptation

set may share the same IS. Therefore, the number (NIS) of IS in an MPD is bounded

between N and M as expressed in Equation 3.2:

N ≤ NIS ≤M (3.2)

In the bootstrap phase, a client may choose to request a certain number (NC
IS) of IS which

is bounded between N and NIS as shown in Equation 3.3:

N ≤ NC
IS ≤ NIS (3.3)

The download time of resource A in the slow start phase of a TCP connection is given

below [48]:

Dss(A) = dlog(
S × (γ − 1)

init cwnd×MSS
+ 1)e ×RTT +

S

C
(3.4)

3.2. DASH Client Bootstrap Strategies 45

where S is the download resource size, γ is set to 2 because we assumed no delayed

acknowledgments and C is the network capacity. Dss is composed of the number of RTT

required to transfer data in the slow start phase plus the transmission delay.

3.2.3 Evaluating DASH Client Bootstrap Strategies

In this section, we present our first contribution that consists in evaluating five strategies

of DASH clients in the bootstrap phase, in terms of number of TCP connections, number

of HTTP requests/responses and the associated bootstrap delay. Furthermore, we highlight

their advantages and drawbacks. Table 3.2 will summarize the analytical evaluation of the

different strategies.

1. Non-Persistent TCP Connection

Using HTTP/1.0, connections are non-persistent. As depicted in Figure 3.5, this

means that a client has to open a new TCP connection to send each HTTP request

and receive the MPD file and the chosen IS (NC
IS). Hence, the number of open TCP

connections is identical to the number of HTTP requests/responses and it equals

(1 + NC
IS) as expressed in Table 3.2. Each connection begins with a TCP three-way

handshake which takes a full RTT between the client and the server. Following that,

Figure 3.5 – Non-Persistent TCP connection.

46 3. Improving the Starting of Live DASH Streaming Sessions

the client will incur another RTT to retrieve each resource (MPD or IS) due to the

request-response cycle. Finally, we have to add the download time of the resource in

the slow start phase to get the total time for every sent HTTP request.

The required bootstrap delay (Dboot1) to fetch the MPD file and the chosen IS when

using a non-persistent TCP connection is the sum of the total times for all sent

HTTP requests. It is indicated in Equation 3.5.

Dboot1 = 2× (1 +NC
IS)×RTT +Dss(MPD) +

NC
IS∑

k=1

Dss(ISk) (3.5)

2. Persistent TCP Connection Without Pipelining

As depicted in Figure 3.6, TCP connections can be maintained to send and receive

multiple HTTP requests/responses when using the keepalive, or the persistent HT-

TP/1.1 feature. Both names refer to the same mechanism. The server can deliver

the associated resources (MPD and IS) over a single TCP connection. This feature

allows avoiding connection setup for each IS which eliminates many TCP three-way

handshakes and slow start phases. The client incurs only one handshake, plus one

slow start phase in the beginning. Using this approach, the server is idle most of

the time because it has to wait for its response to reach the client and for the next

request to arrive. In some cases, this can trigger a Slow Start Restart (SSR) TCP

Figure 3.6 – Persistent TCP connection without pipelining.

3.2. DASH Client Bootstrap Strategies 47

behavior [49]. The SSR mechanism resets the cwnd to the initial default value after

a connection has been idle for a server-defined period of time. It aims at avoiding

network congestion, especially since the network conditions may have changed while

the connection was idle. The SSR can have a significant impact on performance

of long-lived TCP connection that may be idle for bursts of time, e.g. HTTP/1.1

persistent connections. As a result, in our experiment, we disabled SSR on the server.

With keepalive, the first request for the MPD incurs two RTT: one RTT for the TCP

handshake and one RTT for the request/response cycle. The following requests for

the NC
IS files incur only one RTT. Each resource suffers from the download time in

the slow start phase. The bootstrap delay for (1 + NC
IS) HTTP requests/responses

delivered via a single TCP connection is indicated in Equation 3.6.

Dboot2 = (2 +NC
IS)×RTT +Dss(MPD) +

NC
IS∑

k=1

Dss(ISk) (3.6)

3. Persistent TCP Connection With Pipelining

Pipelining is a little improvement of the persistent technique where HTTP requests

and responses can be pipelined on a connection, so that the full roundtrip imposed by

response and request propagation latencies during which a server is idle is eliminated.

A DASH client sends an HTTP request to fetch the MPD and waits for the full

HTTP response. Following that, a client makes multiple requests for the IS files

without waiting for each individual HTTP response. We note that typically a client

Figure 3.7 – Persistent TCP connection with pipelining.

48 3. Improving the Starting of Live DASH Streaming Sessions

cannot use the pipelining to get the IS files while it requests the MPD because it has

first to receive and parse it for selecting the IS to request.

The server still processes the HTTP requests in sequence, but can respond to a

request as soon as the previous one is done. The server sends the responses in the

same order as the requests were received which may imply a head-of-line blocking

problem [2]. A large or slow response can still block others behind it. A client can

incur an unpredictable delay. For a fast startup, a DASH client that will choose to

request multiple IS for a given adaptation set has to avoid this problem. For that, it

has to dispatch first the requests for the IS required for the initial playback, following

by the requests for the first media segments and finally the requests for those extra

IS. The head-of-line blocking problem is solved by multiplexing in HTTP/2, but

this is not possible in HTTP/1.1. We note that in practice, not all web servers and

intermediaries support pipelining.

The number of HTTP requests/responses is (1 + NC
IS) as it is reported in Table 3.2.

With the pipelining technique, the client incurs only three RTT: one for the handshake,

one for the MPD request/response cycle, and one for the first IS request/response

cycle, plus the download time of all retrieved resources to get the bootstrap delay

that is expressed in Equation 3.7.

Dboot3 = 3×RTT +Dss(MPD) +

NC
IS∑

k=1

Dss(ISk) (3.7)

4. Parallel TCP connections

In absence of multiplexing in HTTP/1.x, the DASH client is left with no other choice

than to open multiple TCP connections in parallel to fetch the chosen IS files. We

note that the client has already requestd, received and parsed the MPD for selecting

the IS to request before opening the multiple TCP connections that are shown in

Figure 3.8. In practice, most modern browsers, both desktop and mobile, open up to

six connections per server [2].

The use of parallel TCP connections eliminates the response queue on the server

side compared to the persistent TCP connection with pipelining. However, opening

multiple connections and performing multiple HTTP transactions in parallel have

several disadvantages. It is not always supported by servers. It creates a competition

for shared bandwidth between the parallel TCP streams. TCP’s mechanisms for

starting up the connection and then probing the available bandwidth have to be

repeated for each new connection which introduce latency. Finally, the implementation

complexity is raised on the client as it has to handle collections of connections.

3.2. DASH Client Bootstrap Strategies 49

Figure 3.8 – Paralle TCP connections without pipelining to fetch NC
IS resources.

In the absence of pipelining, the number of HTTP requests/responses is the same

as the number of connections and equals to (1 + NC
IS). The total delay for every

HTTP request is two RTT (one RTT for the handshake and one RTT for the resource

request/response cycle) plus the download delay of each resource in the slow start

phase. Hence, the bootstrap delay for (1 + NC
IS) resources is obtained by the sum of

the total delay for the MPD request and the maximum of the total delays for the

NC
IS requests delivered over NC

IS parallel connections. It is indicated in Equation 3.8.

Dboot4 = 2×RTT +Dss(MPD) + max
k=1,..NC

IS

(2×RTT +Dss(ISk)) (3.8)

5. HTTP/2 Connection

DASH clients can overcome the limitations of the previous strategies based on

HTTP/1.x by using HTTP/2. All HTTP/2 communication is performed within a

single connection that can carry any number of bidirectional streams. A stream is a

flow of bytes that has a unique integer identifier. It consists in a sequence of one or

multiple frames. A frame in turn is the smallest unit in HTTP/2, each containing a

frame header, which at minimum identifies the stream to which the frame belongs. The

frames may be interleaved and then reassembled via the embedded stream identifier.

There are a number of frame types that serve a different purpose. For example,

HEADERS and DATA frames form the basis of HTTP requests and responses;

other frame types like SETTINGS, WINDOW UPDATE, and PUSH PROMISE are

used in support of other HTTP/2 features. The server push and request-response

multiplexing are the most promising features in HTTP/2. The server push is explored

in the following examples. HTTP/2 uses true multiplexing that allows many streams

(i.e. MPD and IS) to be interleaved together on a connection at the same time, so

50 3. Improving the Starting of Live DASH Streaming Sessions

that the head-of-line blocking problem is eliminated.

Figure 3.9 illustrates an HTTP/2 client/server communication to download the MPD

and IS resources at the frame level with enabled server push. A client sends an HTTP

request for the first stream (i.e. MPD) using a HEADERS frame. A web server starts

sending the MPD response that consists in a HEADERS frame and one or more

DATA frames. With server push, instead of triggering one request for each IS, the

web server can actively push all IS (NIS) resources after receiving the first request for

the MPD. This is achieved by the server sending PUSH PROMISE frames to the

client to signal its intention to push all IS. According to [50], the PUSH PROMISE

frames must be sent by the server before the end of stream of the requested MPD,

i.e. before sending the last DATA frame of the MPD stream, as shown in Figure

3.9. Each PUSH PROMISE frame includes the identifier of the stream the server

plans to create (e.g. the first IS is identified as stream 2 and the last one is identified

as stream (2 + NIS) in Figure 3.9). We note that the web server sends all present

IS in the MPD because a client cannot select the desired IS when requesting the

MPD since it ignores the DASH session structure. Therefore, IS and MPD delivery

in HTTP/2 are independent.

After transmitting the last DATA frame of MPD, the web server starts pushing

a HEADERS frame and one or more DATA frames for each IS response. The

client and the web server can exchange other types of frame (e.g. SETTINGS,

UPDATE WINDOW, etc).

Figure 3.9 – Client request and server responses within an HTTP/2 connection using a server push.

As depicted in Figure 3.10, an HTTP/2 connection starts with a TCP three-way

handshake which takes one full RTT as the TCP transport layer does not change. Most

client implementations (Firefox, Chrome) support HTTP/2 only over an encrypted

connection using Transport Layer Security (TLS) protocol. Unfortunately, establishing

a TLS secure channel between the client and the server requires a TLS handshake

which takes two RTT or one RTT for abbreviated TLS handshake [2].

3.2. DASH Client Bootstrap Strategies 51

Figure 3.10 – HTTP/2 connection with an abbreviated TLS handshake using a server push.

With server push, the number of HTTP requests/responses is 1. Otherwise, it is (1

+ NIS). If we consider the case of an abbreviated TLS handshake, the client incurs

only three RTT: one for the handshake, one for the TLS, and one for the MPD

request/response cycle, plus the download time of all retrieved resources to get the

bootstrap delay, that is indicated in Equation 3.9.

Dboot5 = 3×RTT + D́ss(MPD) +

NIS∑
k=1

D́ss(ISk) (3.9)

6. Summary

The bootstrap delay formulas of all strategies are summarized in Table 3.2. They

are dominated by an RTT component influenced by the number of TCP connections

and the number of requests, and by the slow start phase. Based on the analytical

evaluation of the strategies presented in Table 3.2, the minimum bootstrap delay

using HTTP/1.x is obtained using a persistent TCP connection with pipelining.

However, this strategy is not widely supported and still suffers from a big number

of RTT mainly due to the number of HTTP requests/responses transfers. In the

rest of this chapter, for HTTP/1.x we will experiment only with the persistent TCP

connection without pipelining strategy because it is the most used and supported

strategy by web servers. Note however that the benefits of our proposed approach

would be the same compared to the pipelining approach.

:

52 3. Improving the Starting of Live DASH Streaming Sessions

Request
Strategies

Nb of TCP
Connec-
tions

Nb of Re-
quests /Re-
sponses

Bootstrap Delay

Non-
persistent

1 + NC
IS 1 + NC

IS Dboot1 = 2 × (1 + NC
IS) × RTT + Dss(MPD) +

NC
IS∑

k=1

Dss(ISk)

Persistent 1 1 + NC
IS Dboot2 = (2 + NC

IS) × RTT + Dss(MPD) +
NC

IS∑
k=1

Dss(ISk)

Pipelined 1 1 + NC
IS Dboot3 = 3×RTT +Dss(MPD) +

NC
IS∑

k=1

Dss(ISk)

Parallel 1 + NC
IS 1 + NC

IS Dboot4 = 2 × RTT + Dss(MPD) +
maxk=1,..NC

IS
(2×RTT +Dss(ISk))

HTTP/2 1 1 / 1 + NIS Dboot5 = 3×RTT + D́ss(MPD) +

NIS∑
k=1

D́ss(ISk)

Table 3.2 – Analytical evaluation of the different DASH client bootstrap strategies.

3.3 Improved DASH Bootstrap

In this section, we present our new approach to reduce the bootstrap delay. It consists in

using a single HTTP request and HTTP response to retrieve the necessary information to

start the playback. The first HTTP request made by the DASH client to retrieve the MPD

is not modified, but the response sent by the origin server is. The principle of creating this

HTTP response is to rely on the MPD to carry the additional IS resources. This can be

done in three ways which are detailed below.

1. Base64 IS Embedding

A simple option is to encode the binary IS into an ASCII string using the Base64

encoding for binary-to-text encoding. The encoding process consists in representing

groups of 3 bytes (24 bits) of input bits as output strings of 4 encoded ASCII

characters. The encoded IS is then put in the MPD file, in the initialization attribute,

using the data URI scheme2. The data URI scheme allows embedding an arbitrary

resource directly in files in any attribute that can use URL. It has the following

syntax: data:[<mediatype>][;base64],<data>. Figure A.1 shows an MPD file example

with Base64 IS embedding. When a client receives the MPD, it will need to decode

the Base64 string to recover the original binary IS. The advantage of this näıve

2http://tools.ietf.org/rfc/rfc2397.txt

3.3. Improved DASH Bootstrap 53

method is its compatibility with the current DASH standard. The drawback is that

the base64 encoding expands encoded stream by a factor of 4/3, incurring a 33%

byte overhead. It may therefore not be acceptable but is a good anchor point.

Figure 3.11 – Base64 IS embedding in MPD.

2. Multipart Content Embedding

In DASH, each HTTP response contains only one entity in its body. Our second

proposed option consists of the combination of different entities of independent data

types (MPD and IS) in the single body of the HTTP response, using HTTP/1.1

”multipart” media type. To respond to the HTTP request made by the DASH client

to retrieve the MPD, the server is expected to send a single HTTP response body

carrying the MPD part and the IS parts as shown in Figure A.2.

Figure 3.12 – ”Multipart/mixed” content-type of MPD and IS entities.

54 3. Improving the Starting of Live DASH Streaming Sessions

In the case of multipart entities, a ”multipart” content type field must appear in the

entity’s header of the HTTP response. The multipart body can contain one or more

body parts, each preceded by a boundary delimiter, and the last one followed by a

closing boundary delimiter. Each body part consists of a header area, a blank line,

and a body area.

In our approach, we used the ”multipart/mixed” subtype because MPD and IS body

parts are independent. We added HTTP headers in each body start including content-

type header for giving the media type of this content, content-length for specifying

the length in bytes of each body part, content-disposition for naming each part with

a corresponding name in the MPD, and content-transfer-encoding for indicating what

type of transformation has been applied to the body part.

In the Base64 IS embedding method, only Base64 IS are embedded in the MPD file to

constitute the HTTP response body. In the Multipart content embedding method, the

HTTP response body is a set of parts (MPD and Base64 IS), and for each part several

HTTP headers are added. Consequently, this latter method introduces more overhead

than the former. Note that multipart method were ruled out in our evaluations in

Section 3.4

3. ISOBMFFMoov Embedding

Our third option consists in adding to the MPD the information required to reconstruct

the IS at the client side from that MPD only. For that, we first looked more closely

to the IS content and structure, i.e. which information an IS contains and how it

is organized. Following that, we compared the MPD and IS of different contents to

identify the potential common and missing pieces of information. Finally, we created

a new element in the MPD to carry the missing information. Each step is described

and detailed below.

IS Structure

Conforming to the ISOBMFF, an IS is structured as a series of boxes that can be

organized sequentially and hierarchically. An IS contains the metadata for the whole

presentation, which is stored in a single movie box (”moov”). It describes the encoding

of the media content (elementary stream), specifically of the representation. It stores

the metadata of each media content in a track box (“trak”), which is subsequently

grouped with the others if any in the movie box (”moov”). In contrast to a media

segment, IS shall not contain any media data. Figure 3.13 provides an overall view of

the IS structure for unencrypted media contents and shows the possible information

containment.

3.3. Improved DASH Bootstrap 55

Figure 3.13 – IS structure.

A brief description of the main boxes constituing an IS file is provided in Table 3.3.

Table 3.3 – Description of the main IS boxes.

Box Type Box Name Description

ftyp file type
identifies the specifications to which this file is

conformant.

moov movie contains all the metadata for the presentation.

mvhd movie header

defines generic information about the present-

ation (e.g. presentation duration, presentation

timescale).

trak track
contains all the metadata about an individual

media content type or stream.

tkhd track header
defines the caracteristics of a single track (e.g.

track duration, track identifier).

edts edit
contains edit lists, typically used to adjust syn-

chronization.

elst edit list

maps the presentation timeline including the edit

lists to the media timeline as it is stored in the

file.

mdia media
contains information about the media data

within a track.

Continued on next page

56 3. Improving the Starting of Live DASH Streaming Sessions

Table 3.3 – Continued from previous page

Box type Box name Description

mdhd media header

contains the caracteristics of the media in a track

(e.g. media duration, media timescale, media lan-

guage).

hdlr
handler refer-

ence

indicates the type of the track or the type of

metadata.

minf
media informa-

tion
container for all media information in the track.

vmhd/smhd/

hmh-

d/nmhd

video/sound/

hint/null

media header

each track has a specific media information

header that contains the overall information.

dinf
data informa-

tion

contains information that declares the location

of the media information in a track

dref
data reference

box

declares the location of the media data used

within the presentation.

stbl sample table contains sample signaling information.

stsd
sample descrip-

tion
signals elementary stream decoder configuration.

stts
Sample To

Time

indicates the time at which a sample should be

decoded (Decoding Time Stamp (DTS)). It is

empty.

stsz Sample To Size signals the size of each sample. It is empty.

mvex movie extend
indicates that the client has to expect movie

fragments.

mehd
movie extends

header

gives the duration of the movie with all fragments

(not in live).

trex
track extends

header

assigns for each track the default sample proper-

ties that are used by the movie fragments.

IS and MPD Information Analysis

We analyzed the MPD file and the IS of different content. We gathered the common

information and we identified the information which is only present in the IS. Table

3.4 summarizes the information comparison of the MPD and IS.

3.3. Improved DASH Bootstrap 57

Information MPD IS

Media presentation duration × ×
Samples configuration ×

Track ID ×
Content type × ×

Video resolution × ×
Media language × ×

Decoder configuration ×
Edit list ×

Table 3.4 – MPD and IS information comparison.

According to Table 3.4, it appears that four useful information present in the IS

are also present in the MPD. In the following, we give an overview of that common

information and how it is designed in the MPD and IS. We also show the containment

of each information, i.e. in which box type or element is stored.

(a) Media presentation duration corresponds to the length of the media display.

In the MPD, this information is specified in a media presentation duration

attribute, which is found in an MPD element. In the IS, it is indicated in a

fragment duration field of a movie extends header box (”mehd”) in case of a

fragmented content.

(b) Video resolution is one of the most important visual characteristic of any video.

Width and height specify the horizontal and the vertical visual presentation

size of the video media type. They are designed in width and height attributes,

which are placed in a representation element of the MPD. In the IS, they are

identified by width and height fields in a track header box (”tkhd”), which is

found in a track box (”trak”). This means that they are specific for each track.

(c) Content type specifies the nature of media content for the adaptation set such as

audio, video, and subtitle. It may be defined for each media component when mul-

tiple media contents are mutiplexed in an adaptation set through a content type

attribute. In the IS, it is specified by a handler reference box (”hdlr”), which is

contained in a media box (”mdia”), which is in turn found in a track box (”trak”).

(d) Media language declares the language code for the media. It is defined by a lang

attribute, which is placed in an adaptation set element if media representations

of an adaptation set share the same language. Otherwise, a lang attribute is

found for each media content in a media content component element if media

58 3. Improving the Starting of Live DASH Streaming Sessions

contents of an adaptation set are multiplexed. In IS, it is defined by a language

field in a media header box (”mdhd”).

From Table 3.4, we identified four potential missing pieces of information from the

MPD:

(a) Decoder configuration in ISOBMFF is stored in the sample description box

(”stsd”). As shown in Figure 3.13, ”stsd” box is contained in a sample table box

(”stbl”). For some video packaging types (identified by ”avc3” and ”hev1”), this

box is mostly empty, can be reconstructed from the MPD information, and can

therefore be omitted. For other packaging types such as audio, subtitle or some

video (identified by ”avc1”, ”hvc1” or others), the box does contain information

required by the client and has to be embedded in the MPD.

(b) Samples configuration includes the default sample properties which are stored in

the track extends box (”trex”), and the sample group configurations box (”sgbd”)

which is contained in a sample table box (”stbl”). Default sample properties

are the default values for size, duration, description index, flags that are may

be required to parse the movie fragments. Sample group configurations give

information about the characteristics of sample groups such as random access

or pre-roll.

Default sample properties and sample group configurations can be configured at

the IS file level or for each media segment. In some profiles such as Common

Media Application Format (CMAF) [51], the properties are defined only at the

media segment level. In our approach, we follow this profile and we assume that

this information is not needed to be exposed in the MPD.

(c) A track may have an edit list, which shall be sent to the client to ensure proper

synchronization. In all DASH cases however, the edit list only consists in a single

time offset used to adjust synchronization between tracks, either advancing or

delaying the playback position of one track compared to other tracks. This offset

has to be embedded in the MPD.

(d) Track ID is a unique value that identifies the track over the entire life-time of

the media presentation. In the case of multiplexed media contents such as audio

and video, track ID is required in the MPD.

3.3. Improved DASH Bootstrap 59

ISOBMFFMoov Element

From the MPD and IS analysis and comparison, we introduced a new <ISOBMFF-

Moov> element for each representation in the MPD. Because MPD is an XML file

supporting only text, each binary IS information such as the sample description box

(”stsd”) must be encoded into text using the Base64 encoding before embedding it

in the MPD. Each <ISOBMFFMoov> element carries for each track, through an

ISOBMFTrack element, its ID, the base64 stsd box and the edit list as a media offset

to the MPD timeline as shown in Figure A.3. Note that the proposed <ISOBMFF-

Moov> element could be extended to handle other file or track level boxes, such as

static meta and encryption boxes.

Figure 3.14 – ISOBMFFMoov Embedding in MPD.

Our proposed approach is slightly similar to the IIS Microsoft Smooth Streaming existing

approach3. However, this latter does not use at all IS files for decoder initialization.

Manifests carry neither edit lists nor track ID. It carries only the decoder configuration

information. This approach is not suitable for generic ISOBMFF content.

With our approach, we need to decide which IS to embed in the MPD. On the one hand,

we can embed all IS of the adaptation sets in the MPD. Regarding caching, the MPD is

always present in the caches as it is the first resource that each client has to fetch from the

edge server. The caching of IS files depends on the clients. The non-popular IS, i.e. those

that are not yet requested by any client, are not present in the caches. Embedding all IS

in the MPD in our approach has a benefit of avoiding cache miss on non-popular IS and

ensures a 100% cache hit ratio.

On the other hand, a client can select the desired IS files when requesting the MPD

although it ignores what a server has as resources. For that, we propose to send in the

single HTTP request for the MPD additional information that express the client needs for

3http://www.iis.net/downloads/microsoft/smooth-streaming

60 3. Improving the Starting of Live DASH Streaming Sessions

IS files regarding its capabilities and preferences. Based on that request information, the

server may take a decision on which IS to send to client. The first idea is to use HTTP

request headers to pass additional information about the client to the server. We use for

instance an ”Accept” request header to tell the server what desired MIME-media types a

client is looking for (e.g. audio, video, text, application, etc). Additionally, we can specify

the codecs that a client supports. We can also indicate the languages that are acceptable

for the response through ”Accept-language” request header. We could add another header

to indicate the quantity of IS that a client would like to receive. This would however be

less cache efficient, so we did not use this approach.

3.4 Evaluation

3.4.1 Settings

Our proposed approach has been evaluated under two different network types including: a

DSL network and a mobile network with 3G technology. In the following, we present the

test-bed architecture as well as the settings of each network.

3.4.1.1 DSL Netwrork

Figure 3.15 depicts the architecture of the experimental system that we used for emulating

a DSL network. It consists of four components: a web client, a bandwidth shaper, a network

emulator, and a web server, connected via Ethernet in a local area network. The network

emulator component was used to add a delay to obtain an RTT value of 50 ms using the

Linux Emulator Network (Netem) [52]. Based on the bandwidth shaper component, we

limited the maximum outgoing bandwidth to 2 Mbps from the server to the client using

Linux Traffic Control (TC) [53] command line tool and the Hierarchical Token Bucket

(HTB) [53]. The Network emulator and the bandwidth shaper were running on the web

server. These settings were set following Google Chrome’s network throttling settings.

Figure 3.15 – Experimental setup for emulating a DSL network.

3.4. Evaluation 61

We implemented a web server that supports HTTP/1.1 and HTTP/2 on top of NodeJS4.

In the case of HTTP/2, we used the server push mechanism to start pushing all the IS

resources as soon as the server receives the client request for the MPD. If the client does

not want the pushed IS files, it can reject it. We used the Chrome Canary browser and the

Dash-JS video player which is based on XMLHttpRequest (XHR).

Because init cwnd is a critical parameter in determining how quickly the DASH streaming

session can start, our experiments were evaluated under two different values of init cwnd: 3

and 10 TCP segments. The init cwnd was configured on the server side that runs Ubuntu

with the default congestion control algorithm ”TCP Cubic”, using the ”initcwnd” option

of the ip route command. The Maximum Transmission Unit (MTU) allowed by Ethernet

is set to 1500 bytes. When we exclude IP and TCP headers from the MTU, it remains a

Maximum Segment Size (MSS) with 1460 bytes. Hence, the init cwnd of 3 TCP segments is

approximately 4380 bytes (i.e. init cwnd = 3*MSS) and the init cwnd of 10 TCP segments

is about 14 600 bytes (i.e. init cwnd = 10*MSS).

3.4.1.2 Mobile Network

Figure 3.16 shows a simple mobile test-bed infrastructure. It comprises a web server sup-

porting HTTP/1.1 on top of NodeJS, a web client running Dash-JS video player in the

Google Chrome browser, and a smartphone device equipped with a 3G interface. We used

the hotspot feature on the smartphone to share the mobile data connection with the host

running a web client to create a real-world mobile environment. We used Wi-Fi to tether

the smartphone to the host.

Figure 3.16 – Experimental setup for a simple mobile network.

4https://nodejs.org/

62 3. Improving the Starting of Live DASH Streaming Sessions

3.4.2 Dataset

We used ISOBMFF live profile DASH content from the DASH Industry Forum (DASHIF)5.

We have selected 33 sequences (MPD files and associated IS), for which multiple bitrates,

resolutions, frame rates, languages are available, as it is summarized in Table 3.5. Common

encryption test sequences were not selected due to some authoring issues in the source IS

(many/a lot of padding data). Some sequences could not be downloaded from the DASHIF

server as they were moved or deleted. Some MPDs include multiple periods. We considered

only IS files that belong to the first period because those ones have to be downloaded in

the bootstrap phase for the initial playback.

Video Audio

Bitrate (Kbps) Resolution Frame Rate Bitrate (Kbps) Frame Rate Language

500 320x240 24 33 24 english
900 512x288 25 64 48 french
1000 640x360 29.97 96
1500 720x480 128
2000 768x432
2500 1280x720
3000 1920x1080
4000
8000

Table 3.5 – Characteristics of the selected 33 sequences from DASHIF.

According to Table 3.1, the number of adaptation sets (N) in each MPD equals to 2:

video and audio. The number of representations within a video adaptation set (M1) varies

and is bounded between 2 and 4. Video representations differ in bitrates and resolutions.

Videos identified by ”avc1” and ”avc3” are present. Additionally, audio adaptation set (M2)

contains only 1 representation, using the ”aac” codec. Hence, the number of representations

(M) in MPDs varies between 3 and 5. None of these sequences uses shared IS among

representations. Each representation consists of one IS file. Therefore, the number of IS in

MPDs (NIS) varies between 3 and 5.

3.4.3 Experiments And Results

In order to validate our proposal presented in Section 3.3, we have conducted two types of

experiments. First, experiments to measure the total download size of the MPD and IS files,

including the HTTP response headers, for three methods: the persistent TCP connection

without pipelining method, and our two proposed methods (Base64 IS Embedding and

5http://dashif.org/testvectors/

3.4. Evaluation 63

ISOBMFFMoov Embedding). Depending on the amount of IS to download in the bootstrap

phase, two strategies were evaluated for the regular persistent method. One strategy

downloads all IS of the adaptation sets in the bootstrap phase preparing for futur switching.

The other one downloads only the IS needed to start the video playback.

The second serie of experiments consists in measuring and comparing the bootstrap delay

in a DSL network between the persistent TCP connection without pipelining strategy

when using Dash-JS player, our ISOBMFFMoov Embedding proposal using HTTP/1.1

and HTTP/2, and the HTTP/2 push-based approach. In a 3G mobile network, we also

measured the bootstrap delay for our ISOBMFFMoov Embedding approach compared

with the persistent TCP connection without pipelining strategy. Finally, we computed the

startup delay and the percentage of bootstrap delay.

3.4.3.1 Total Download Size

This section presents, step by step, the process used to measure the total download size of

our test sequences when using four different methods.

1. We first downloaded the 33 test sequences from the DASHIF server. Each sequence

consists of an MPD file and associated IS for all representations of the video and

audio adaptation sets. We measured the size of each downloaded resource as well as

the size of its HTTP response header. Table A.1 represents for each sequence the

MPD size, the IS size for the only representation in the audio adaptation set, and

finally the IS size for all representations in the video adaptation set.

Table 3.6 – MPD and IS sizes of 33 sequences.

Sequence

Number
MPD Size (Byte) IS Audio Size (Byte) IS Video Size (Byte)

0 1597 615 687, 687

1 1482 656 720, 720

2 2251 776 841, 841, 841

3 2358 676 841, 841, 841

4 1766 615 687, 687

5 2332 776 841, 841, 841

6 2333 776 841, 841, 841

7 1773 656 720, 724, 721, 719

8 1773 656 720, 724, 721, 719

9 2371 676 839, 839, 841

10 2326 776 839, 839, 841

Continued on next page

64 3. Improving the Starting of Live DASH Streaming Sessions

Table 3.6 – Continued from previous page

Sequence

Number
MPD Size (Byte) IS Audio Size (Byte) IS Video Size (Byte)

11 2384 776 840, 840, 841

12 2388 776 840, 840, 841

13 3939 776 841, 841, 841

14 3181 776 841, 841

15 3172 776 841, 841

16 4125 776 841, 841, 841

17 5768 776 841, 841, 841

18 5010 776 841, 841

19 5271 776 841, 841, 841

20 4098 776 841, 841, 841

21 3340 776 841, 841

22 4095 776 841, 841, 841

23 3337 776 841, 841

24 2953 776 841, 841, 841

25 2945 776 841, 841, 841

26 3383 776 841, 841, 841

27 2704 776 848, 848, 848, 848

28 2696 776 848, 848, 848, 848

29 3114 776 848, 848, 848, 848

30 2768 776 846, 846, 847, 848

31 2719 776 846, 846, 847, 848

32 3178 776 846, 846, 847, 848

Maximum 5768 776 848

Average 2998 755 824

Minimum 1482 615 687

At the end of the Table A.1, we report the maximum, average, and minimum sizes of

the MPD and IS sizes. We can see first that they are small size resources. We can

note that the MPD size varies between arround 1 KB and 6 KB. The IS video size

is within the range 600 bytes to 900 bytes while the IS audio size varies between

arround 600 bytes and 800 bytes.

The average HTTP response header size is 487 bytes for the response carrying an

IS video or audio content. It is 499 bytes for the response involving an MPD data.

We also measured the average of HTTP request header size which is 191 bytes when

3.4. Evaluation 65

requesting the MPD and it is 204 bytes when fetching the IS file. The large size of

those HTTP response headers is due to long strings used for cache information (Etag,

modified dates) and to CORS (Cross-Origin Resource Sharing) headers that DASHIF

server sends back for access control requests as defined by the CORS specification 6.

Figure 3.17 shows what headers the DASHIF server can send to the client making a

simple GET request for the MPD resource (manifest.mpd) of the sequence number

0. The server sends Access-Control-Allow-Headers with a value of ”origin, range,

accept-encoding, referer”, confirming that these are permitted headers to be used with

the actual request. It also responds with Access-Control-Allow-Methods indicating

that GET, HEAD and OPTIONS are acceptable methods to query the resource in

question. Access-Control-Allow-Origin header allows the server to describe the set of

origins that are permitted to read that information using a web browser.

Figure 3.17 – Example of an exchange of HTTP headers between client and DASHIF server.

2. Based on our 33 test sequences, we generated new MPD files (i.e. MPD with Base64

IS embedding and ISOBMFFMoov-based MPD) in conformance to our two proposed

methods. We then measured the size of those MPDs. The results are provided in

Table 3.7.

Table 3.7 – Generated MPD size in bytes for Base64 IS embedding and ISOBMFFMoov
embedding methods of 33 sequences.

Sequence

Number
MPD Base64 IS Size (Byte) MPD ISOBMFFMoov Size (Byte)

0 4502 2429

1 4475 2232

2 6604 3036

3 6675 3107

4 4724 2651

5 6614 3046

Continued on next page

6https://www.w3.org/TR/cors/

66 3. Improving the Starting of Live DASH Streaming Sessions

Table 3.7 – Continued from previous page

Sequence

Number
MPD Base64 IS Size (Byte) MPD ISOBMFFMoov Size (Byte)

6 6615 3047

7 6902 3149

8 6902 3149

9 6674 3114

10 6651 3091

11 6630 3070

12 6656 3096

13 8275 4707

14 6408 3735

15 6435 3762

16 8451 4883

17 10116 6548

18 8249 5576

19 9608 6040

20 8371 4803

21 6504 3831

22 8388 4820

23 6521 3848

24 8380 3921

25 8375 3916

26 8665 4206

27 8187 3740

28 8182 3735

29 8472 4025

30 8216 3765

31 8191 3740

32 8501 4050

Maximum 10116 6548

Average 7367 3814

Minimum 4475 2232

At the end of the Table 3.7, we report the maximum, average, and minimum sizes

of the generated MPDs for both approaches for all sequences. We can see that the

generated MPD with embedded Base64 IS size varies between around 4KB and 10KB.

3.4. Evaluation 67

We can note that the generated MPD with embedded ISOBMFFMoov varies between

arround 2KB and 7KB.

3. We calculated the total download size of each sequence when using our two methods

(Base64 IS embedding, ISOBMFFMoov embedding), i.e. the size of the generated

MPD plus the size of the HTTP header of the MPD response.

We compared those results with the total download size of the persistent TCP

connection without pipelining when :

� NC
IS is maximal (i.e. equal to M) as implemented by GPAC player .

� NC
IS is minimal (i.e. equal to N) as implemented by Dash-JS player where the

average IS size of video adaptation set is used for each sequence.

The total download size of these two last methods is obtained from the sum of the

MPD size, the size of NC
IS IS for the representations of the video and audio adaptation

sets, and their HTTP headers. For that, we used the previous size measurements (i.e.

MPD size, IS size, and their HTTP response headers sizes) summarized in Table A.1.

Table A.2 represents for each method the total download size of 33 sequences. We

give below a detailed example showing how a total download size for each method

was calculated for the first sequence of number 0.

� When the GPAC player downloads all IS for the representations of the audio

and video adaptation sets for sequence 0 (NC
IS = M = 3 as shown in Table A.1),

the total download size is defined as the sum of MPD size, all IS video and audio

sizes, MPD HTTP response header size, HTTP response header size of each IS.

It equals 5546 bytes (5546 = 1597 + 615 + 687 + 687 + 499 + 487 + 487 + 487) as

presented in Table A.2.

� For the Dash-JS player that downloads the minimal amount of IS (NC
IS = N =

2), the total download size is the sum of the MPD size, IS audio size, average IS

size of video adaptation set, and their HTTP response headers. We obtained

4372 of downloaded bytes (4372 = 1597+615+avg(687+687)+499+487+487)

as shown in Table A.2.

� In ISOBMFFMoov embedding approach, the total download size is the sum of

the generated MPD with embedded ISOBMFFMoov size, and the HTTP header

size of the MPD. As presented in Table A.2, it is 2928 bytes (2928 = 2429+499).

68 3. Improving the Starting of Live DASH Streaming Sessions

� The total download size when using the Base64 IS embedding approach is

the sum of the genrated MPD with embedded Base64 IS size, and the header

size of the MPD. It equals 5001 bytes (5001 = 4502+499) as shown in Table A.2.

Table 3.8 – Total download size (MPD, IS video, IS audio, and HTTP response headers) of
33 sequences for each method over HTTP/1.1 using a DASHIF server.

Sequence

Number
NC

IS=M (GPAC) NC
IS=N (Dash-JS) MPD Base64 IS MPD ISOBMFFMoov

0 5546 4372 5001 2928

1 5538 4331 4974 2731

2 7997 5341 7103 3535

3 8104 5448 7174 3606

4 5715 4541 5223 3150

5 8078 5422 7113 3545

6 8079 5423 7114 3546

7 8247 4623 7401 3648

8 8247 4623 7401 3648

9 8113 5459 7173 3613

10 8068 5414 7150 3590

11 8128 5473 7129 3569

12 8132 5477 7155 3595

13 9685 7029 8774 5206

14 7599 6271 6907 4234

15 7590 6262 6934 4261

16 9871 7215 8950 5382

17 11514 8858 10615 7047

18 9428 8100 8748 6075

19 11017 8361 10107 6539

20 9844 7188 8870 5302

21 7758 6430 7003 4330

22 9841 7185 8887 5319

23 7755 6427 7020 4347

24 10026 7370 8879 4420

25 10018 7362 8874 4415

26 10456 7800 9164 4705

27 9806 5801 8686 4239

Continued on next page

3.4. Evaluation 69

Table 3.8 – Continued from previous page

Sequence

Number
NC

IS=M (GPAC) NC
IS=N (Dash-JS) MPD Base64 IS MPD ISOBMFFMoov

28 9798 5793 8681 4234

29 10216 6211 8971 4524

30 9865 5863 8715 4264

31 9816 5814 8690 4239

32 10275 6273 9000 4549

Maximum 11514 8858 10615 7047

Average 8793 6168 7866 4313

Minimum 5538 4331 4974 2731

At the end of the Table A.2, we report the maximum, average, and minimum sizes of

the total download size for the 33 DASHIF sequences. We can see first that data size

remains small (≤ 12 KB) in all approaches. We can notice that our ISOBMFFMoov-

based embedding method reduces the downloaded data size by an average of 36%

compared to the approach that downloads the minimal amount of IS and the MPD

separately (as implemented in Dash-JS). As we can also see, the strategy used by

GPAC, which downloads all IS to prepare for future switches, always leads to more

bytes downloaded than Dash-JS. Interestingly also, we can see that downloading all

IS in one single HTTP response using Base64 encoding may lead to a smaller amount

of data being downloaded compared to the GPAC method.

4. Finally, we used a NodeJS-based web server to serve our ISOBMFFMoov-based

MPDs using HTTP/1.1 and HTTP/2, and to serve separatley the MPD and the

minimal amount of IS (i.e. one IS video and one IS audio) using HTTP/1.1 and

HTTP/2 with and without enabled server push. For each method, we measured the

total download size of those resources from the transfer size field in the Network

Panel of Google Chrome. Table 3.9 reports for each method the total download size

of the 33 sequences.

70 3. Improving the Starting of Live DASH Streaming Sessions

Table 3.9 – Total download size (MPD, IS video, IS audio, and HTTP response headers) of
33 sequences for each method over HTTP/1.1 and HTTP/2 using a nodeJS-based
server.

Sequence

Number

NC
IS=N

HTTP/1.1

Dash-JS

HTTP/1.1

MPD ISOB-

MFFMoov

NC
IS=N HT-

TP/2 With

Push (Dash-

JS)

NC
IS=N

HTTP/2

Without

Push (Dash-

JS)

HTTP/2

MPD ISOB-

MFFMoov

0 3471 2617 3234 3172 2629

1 3400 2420 3201 3154 2432

2 4410 3224 4210 4141 3235

3 4517 3295 4325 4271 3306

4 3640 2839 3403 3364 2850

5 4491 3234 4291 4222 3245

6 4492 3235 4292 4223 3246

7 3690 3337 3491 3421 3348

8 3690 3337 3491 3421 3348

9 4528 3302 4337 4259 3313

10 4483 3279 4285 4214 3291

11 4542 3258 4352 4273 3269

12 4546 3284 4348 4300 3296

13 6098 4896 5899 5852 4915

14 5340 3923 5141 5071 3934

15 5331 3950 5132 5085 3961

16 6285 5072 6094 6024 5091

17 7928 6737 7737 7667 6756

18 7170 5765 6979 6932 5785

19 7431 6229 7240 7170 6248

20 6258 4992 6066 5997 5012

21 5499 4019 5299 5230 4030

22 6254 5009 6054 5985 5028

23 5496 4036 5297 5227 4047

24 5112 4109 4913 4843 4120

25 5104 4104 4903 4835 4115

26 5542 4395 5343 5273 4414

27 4870 3928 4674 4601 3939

28 4862 3923 4664 4593 3934

Continued on next page

3.4. Evaluation 71

Table 3.9 – Continued from previous page

Sequence

Number

NC
IS=N

HTTP/1.1

Dash-JS

HTTP/1.1

MPD ISOB-

MFFMoov

NC
IS=N

HTTP/2

W Push

(Dash-JS)

NC
IS=N HT-

TP/2 WO

Push (Dash-

JS)

HTTP/2

MPD ISOB-

MFFMoov

29 5280 4213 5084 5011 4224

30 4932 3953 4742 4663 3964

31 4883 3928 4688 4614 3939

32 5342 4238 5152 5073 4250

Maximum 7928 6737 7737 7667 6756

Average 5119 4002 4920 4854 4016

Minimum 3400 2420 3201 3154 2432

At the end of Table 3.9, we represent the maximum, average, and minimum of the

total download size for the mentioned methods using a NodeJS web server. For

ISOBMFFMoov embedding and Dash-JS based HTTP/1.1 methods, we can note

that the total download size of resources is less than when fetching them from the

DASHIF server (e.g. Apache server) as shown previously in Table A.2. This is due to

the decrease in the amount of HTTP response headers. Figure 3.18 shows that no

cache headers are present. Only Access-Control-Allow-Origin from the CORS headers

is available.

Figure 3.18 – HTTP response header of MPD when using a nodeJS-based web server.

The total download size is reduced by approximately by 25% when using our method

over HTTP/1.1 compared to the amount of data being downloaded for the method

that uses Dash-JS player over HTTP/1.1.

We can see that the total download size of the Dash-JS method without push over

HTTP/2 is slightly less than over HTTP/1.1 by an avearage of 6%. This is possibly

due to the HTTP/2 header compression that is applied by default.

Additionally, we can see that when using our method over HTTP/2, the total

download size is reduced by an average of 21% compared to the HTTP/2 push

method. To investigate each HTTP/2 session, we used the Net Internals console of

Google Chrome that gives the raw output of the HTTP/2 streams and frames. Figure

72 3. Improving the Starting of Live DASH Streaming Sessions

3.19 and 3.20 present the logs of the HTTP/2 push method and our ISOBMFFMoov

embedding approach over HTTP/2, in which we index each frame type used in HTTP

request or response messages by a color bloc: green for HEADERS frame type, purple

for DATA frame type, and red for PUSH PROMISE frame type.

Based on Figure 3.19, we notice that the extra size in the HTTP/2 push method

is firstly due to the two PUSH PROMISE frames that the server needs to notify

the client in advance of the two IS video and audio that it intends to send. Each

PUSH PROMISE frame contains the HTTP headers and the stream identifier of the

promised resource. For example, video and audio IS are identified respectively as

stream 2 and stream 4.

Secondly, the HTTP/2 push method requires two response messages to send the

video and audio IS. Each response contains three frames, i.e. one frame is the

HEADERS frame carrying the HTTP response header and two frames are DATA

frames containing the IS data. In our approach however, only one response message

is needed to send the ISOBMFFMoov-based MPD. Only 3 frames are required as

shown in Figure 3.20: one frame for the HEADERS frame and two for the DATA

frames.

As we can also see, the HTTP/2 push method leads to more bytes downloaded than

when not using the HTTP/2 server push mechanism. This is due to the additional

PUSH PROMISE frames. Both methods download IS video and audio files. Hence,

they use the same number as well as the same frame types (i.e. HEADERS and

DATA) for each request/response message. The other frame types such as SETTINGS

and WINDOW UPDATE are also used by both methods.

3.4. Evaluation 73

Figure 3.19 – Chrome Net Internals log for the persistent TCP connection without pipelining
method when using the HTTP/2 server push mechanism to download IS video and
audio.

74 3. Improving the Starting of Live DASH Streaming Sessions

Figure 3.20 – Chrome Net Internals log for the ISOBMFFMoov embedding method over HTTP/2.

We present the results of Table 3.9 in Figure 3.21. The DASHIF sequences are sorted

according to the total download size measured when the IS and MPD are delivered

separately over a single persistent TCP connection.

3.4. Evaluation 75

Figure 3.21 – Total download size of 33 sequences for each method over HTTP/1.1 and HTTP/2
using a nodeJS-based server.

3.4.3.2 Bootstrap Delay

In this section, we measured the bootstrap delay when using four different methods under

two different network types.

DSL Network

We compared, in terms of bootstrap delay, our ISOBMFFMoov-based approach first to the

persistent TCP connection without pipelining approach over HTTP/1.1, and then to the

HTTP/2 server push approach.

For the persistent strategy, we measured using Google Chrome Network Panel the elapsed

time between when the Dash-JS player establishes a TCP connection to request the MPD

from the web server and when it receives the last byte of the last IS. The MPD processing

time by Dash-JS as reported by Chrome is deduced in this measurement. Additionally, we

also measured the time to download the ISOBMFFMoov-based MPD.

Figure 3.22 displays a visual waterfall of all network requests made by the Dash-JS player

over HTTP/1.1 for a given sequence using the two approaches: persistent TCP connection

without pipelining and ISOBMFFMoov-based approach. The former approach requires

three requests to download separately the MPD, IS video, and IS audio. Only one request is

required to fetch the ISOBMFFMoov-based MPD. For each resource, it shows the body size

which is the compressed content size sent. It shows also the time it took to load each resource.

In the single persistent TCP connection as depicted in Figure 3.22(a), it took 114 ms for

MPD, 52.9 ms for IS video, 52.4 for IS audio, and all adding up to 219.4 ms in total which

76 3. Improving the Starting of Live DASH Streaming Sessions

represents the bootstrap delay. However, Figure 3.22(b) shows that MPD ISOBMFFMoov

embedding spent only 113.7 ms. There is a difference of two RTTs between both approaches.

(a) Persistent TCP connection without pipelining strategy.

(b) ISOBMFFMoov strategy.

Figure 3.22 – Waterfall based on Dash-JS player over HTTP/1.1.

As illustrated in Figures 3.23 and 3.24, each resource loading time is represented as a

set of bars that specify the time spent on the various network stages: stalling (time the

request spent waiting before it could be sent), DNS lookup (time spent performing the DNS

lookup), initial connection (time it took to establish a TCP connection), request sent (time

spent issuing the network request), waiting (known as the Time To First Byte (TTFB)

which is the time spent waiting for the initial response), content download (time spent

receiving the response data), and SSL (if required time spent completing a SSL handshake)

to download the resource. Each bar color indicates its specific phase.

Close analysis of Figure 3.23(a) shows that the download time of the MPD, indicated in

blue, is a small fraction of the total latency of each connection. In addition to the TCP

connection handshake delay indicated by the orange bar, there is a lot of network latency

while waiting to receive the first byte of each response as marked by the green bar. Same

analysis concerning Figure 3.23(b) and 3.23(c) except that no TCP handshake time is

needed as they are delivered over a persistent TCP connection.

3.4. Evaluation 77

(a) MPD (b) IS Video

(c) IS Audio

Figure 3.23 – Network Timing of MPD, IS video, and IS audio using a persistent TCP connection
without pipelining over HTTP/1.1.

Figure 3.24 – Network Timing of ISOBMFFMoov-based MPD over HTTP/1.1.

Figure A.4 shows these measurements when the downloads were made over an Ethernet

network, using HTTP/1.1, with varying TCP’s init cwnd (3 and 10 TCP segments). The

DASHIF sequences are sorted according to the total download size measured in the previous

experiment when the IS and MPD are delivered separately over a single persistent TCP

connection.

78 3. Improving the Starting of Live DASH Streaming Sessions

Figure 3.25 – Bootstrap delay measured for the ISOBMFFMoov-based approach and persistent
TCP connection without pipelining approach over HTTP/1.1.

These results show first that the bootstrap delay using our approach is decreased by

around 2 RTT (100 ms) compared to the persistent approach used by Dash-JS player.

These 2 RTT are due to the two request-response cycles that the player needs to retrieve

the video and audio IS to start the initial playback. We notice also that the bootstrap

delay when init cwnd is set to 3 TCP segments seems stable for almost all sequences

using our approach. From the 26th to the 33th sequence, the delay is increased by 1 RTT

(50 ms). This is explained by the fact that the number of TCP segments allowed in the

init cwnd (3 TCP segments about 4380 bytes) is not sufficient to fit the entire MPD with

embedded IS information. In this case, the TCP slow start algorithm requires waiting for

acknowledgements to arrive before new data is sent which induces an additional RTT. The

size of these eight sequences is increased because they are packaged using the ”avc1” mode

and therefore, the embedded base64 encoded ”stsd” box in the MPD is larger. We observe

the same behavior for the persistent approach except that the bootstrap delay is increased

by 1 RTT (50 ms) from the 30th to the 33th sequence. This is due to the MPD size that

exceeds the init cwnd size for these sequences.

When increasing the init cwnd to 10 TCP segments (approximately 14 600 bytes), the

bootstrap time is stable for all sequences for both approaches. This is because the size of

the downloaded resources is less than the init cwnd size.

Finally, it should be noted that our approach is more efficient when the number of IS

chosen by the client (NC
IS) is closer to NIS, i.e. when the MPD contains several adaptation

sets with different content types. We presented here a worst case, with only 2 adaptation

sets.

3.4. Evaluation 79

Beside the experiment measurements, we also computed the theoretical download time for

those resources for both approaches according to the formulas shown in Table 3.2. In Figure

3.26, we compared the theoretical bootstrap delay with the real one for both approaches

and we confirmed that they are approximately identical which proved the reliability of our

experiments.

Figure 3.26 – Theoretical bootstrap delay Vs real bootstrap delay for the ISOBMFFMoov-based
approach and persistent TCP connection without pipelining approach over HTTP/1.1.

Finally, we measured the bootstrap delay using our ISOBMFFMoov-based approach and

the server push method over HTTP/2. The server push is enabled on the web server and

on the client. The server is aware of all IS (i.e. IS video and IS audio) to push for a given

MPD. The results in Figure A.5 show that both methods take 3 RTT: one RTT for the

TCP handshake, one RTT for the TLS handshake, and one RTT for the only MPD request.

Figure 3.27 – Bootstrap delay measured for the ISOBMFFMoov-based approach and persistent
TCP connection without pipelining approach using a server push over HTTP/2.

80 3. Improving the Starting of Live DASH Streaming Sessions

Both methods provide similar results with a slight advantage for the HTTP/2 push method

despite the fact that the download size of our approach is smaller (see Table 3.9). After

deep inspection with Net Internals logs, we suspect a problem with the NodeJS web server

that sends the ISOBMFFMoov-based MPD late compared to the push method.

When looking more closely to Figure 3.20, we note that the client sends a HEADERS

frame for the HTTP request to download the ISOBMFFMoov-based MPD at t = 1ms

and after 73 ms of delay it receives the HTTP response header in the HEADERS frame,

which is more than one RTT. Following that, the web server sends the first DATA frame

carrying MPD data after 37 ms. However, in the push method in Figure 3.19, we can see

that after 76 ms the HEADERS frame of the MPD response is sent to the client which

is approximately close to our approach. Interestingly, the first DATA frame for the MPD

response is not delayed and it is sent immediately as shown in Figure 3.19. This can explain

the fact that the bootstrap delay in the push method is slightly smaller than when using

our method. This needs to be confirmed with another implementation.

Mobile Network

We now compare, in terms of bootstrap delay, our ISOBMFFMoov-based approach to

the persistent TCP connection without pipelining strategy in a mobile 3G-based network.

As in a DSL network, we used Google Chrome Network Panel to measure the bootstrap

delay for both approaches. For each sequence, we repeated the measurement 10 times and

then we calculated the average value. Figure A.6 shows the average of these measurements.

Note that the sequences are sorted according to the total download size measured in the

previous experiment when the IS and MPD are delivered separately over a single persistent

Figure 3.28 – Average bootstrap delay measured for the ISOBMFFMoov-based approach and
persistent TCP connection without pipelining approach using a 3G mobile network.

3.4. Evaluation 81

TCP connection. These results show many variations in the download delay that varies

between 3 s and 600 ms. During the measurements test, we notice that the delay varies

even between the 10 measurements for a given sequence. Interestingly, we can see that the

bootstrap delay using our approach is decreased by an average of more than 1 s compared

to the persistent approach.

3.4.3.3 Startup Delay

We now evaluate the bootstrap delay measured over HTTP/1.1 compared to the startup

delay when using our ISOBMFFMoov-based approach and the persistent TCP connection

without pipelining. For that, we choose two sequences which include representations with

high and low bandwidth (e.g. 500 Kbps and 8 Mbps) in a video adaptation set.

We changed the buffering delay (Dbuff) from 40 ms (one frame duration) to 30 s. For each

buffering delay, we calculated the download delay (Ddown) as expressed in Equation 3.10,

using a network capacity (C) of 2 Mbps and the bitrate (B) of the video representation.

Ddown = Dbuff ×B/C. (3.10)

We then calculated the startup delay (Dstup) that consists of the sum of the download

delay and the bootstrap delay. We used the previous measured bootstrap delays for both

approaches of the two sequences.

Dstup = Dboot +Ddown (3.11)

Finally, we derived the percentage of bootstrap delay compared to the startup delay as

expressed in Equation 3.12 and we presented it in terms of buffering delay in Figure 3.29.

Dboot(%) = Dboot/Dstup (3.12)

According to Figure 3.29, we can note that the percentage of the bootstrap delay becomes

negligible when the buffering delay increases. The optimization of the bootstrap delay is

relevant when the buffering is small, i.e. when using low latency (see Chapter 4). We can

see also that the percentage of bootstrap delay is less important for video representations

with a high bandwidth than for video representations with a low bandwidth.

82 3. Improving the Starting of Live DASH Streaming Sessions

Figure 3.29 – Evaluation of bootstrap delay in terms of buffering delay.

In Figure 3.30, we present the percentage of the bootstrap delay compared to the startup

delay for the two representations. We can see that under 600 ms of startup delay it becomes

interesting to optimize the bootstrap delay because it represents between 20% to 40%

of the startup. We can note that the percentage of bootstrap delay is reduced when we

embedded MPD and IS in a single download compared to the approach that downloads

the IS and MPD separately.

Figure 3.30 – Evaluation of bootstrap delay in terms of startup delay.

3.5. Conclusion 83

To view differently the results of Figure 3.30, we can compare our approach with the

persistent method when using the longest startup delay as it is observed in the persistent

method. Figure 3.31 presents the percentage of the bootstrap delay compared to the startup

delay of the persistent method.

As shown in Chapter 2, [4] reports that a startup delay of 2 s or less does not have a large

effect. According to our results, it is worth highlighting that when the startup delay is 2

s or less, the buffering delay is small and the percentage of bootstrap delay compared to

the startup delay becomes more important. This case is needed and used in low latency

live streaming where a client should use a short buffer length. It is therefore important to

reduce the bootstrap delay in low latency live streaming case which is the scope of Chapter

4.

Figure 3.31 – Evaluation of bootstrap delay in terms of startup delay of the persistent method.

3.5 Conclusion

In this chapter, we have reviewed the possible causes of latency in the bootstrap phase of a

DASH session. Using the different options offered by the HTTP and TCP layers, we have

provided an analytical evaluation of the different DASH client bootstrap strategies in terms

of number of TCP connections, number of HTTP requests/responses and the associated

bootstrap delay. Then, we have proposed three methods (i.e. Base64 IS Embedding,

Multipart Content Embedding, ISOBMFFMoov Embedding) to reduce the bootstrap delay.

They are based on a single HTTP request and HTTP response to retrieve the MPD and IS

resources.

Base64 IS Embedding and ISOBMFFMoov Embedding were the two approaches that we

84 3. Improving the Starting of Live DASH Streaming Sessions

have evaluated in our experiments. We have measured and compared the total download size

and the bootstrap delay of our proposal to several existing approaches. These measurements

were made over two different networks (ADSL and 3G-mobile) and using two versions of

the HTTP protocol (HTTP/1.x and HTTP/2 with and without a server push mechanism).

We have shown that the total bootstrap download size is reduced by 36% when using our

ISOBMFFMoov embedding approach compared to the amount of data being downloaded for

the persistent TCP connection without pipelining strategy over HTTP/1.1. It is decreased

by an average of 21% in our method over HTTP/2 versus HTTP/2 push method. Regarding

the bootstrap delay, we have shown a gain of 2 RTTs in HTTP/1.x and almost no penalty

when using HTTP/2 in a DSL network with push.

In a mobile network, we have shown a gain of 1 s or more when using our ISOBMFFMoov

embedding approach compared to the persistent TCP connection without pipelining.

Finally, we have presented that reducing the bootstrap delay is critical to reduce the startup

delay when the buffering delay is small. We have shown that our method can give up to

50% time saving.

The work presented in this chapter has been resulted in one paper published in the

IEEE 17th international workshop of the Multimedia Signal Processing (MMSP) in 2015

[54], in three contributions to standardization in Moving Picture Experts Group (MPEG)

standard in 2015, and is included in the Broadcast TV Profile of MPEG-DASH.

Chapter 4

Contributions to Reducing Live

DASH Latency

Contents

4.1 Introduction . 85

4.2 Basic Live DASH Latency . 87

4.2.1 Segmenting Live Content . 87

4.2.2 Fetching Live Edge . 89

4.2.3 Progressive File Delivery over HTTP 90

4.3 Low Latency Live DASH Proposal 91

4.4 Evaluation . 94

4.4.1 Design and Implementation . 94

4.4.2 Experiments and Results . 96

4.5 Conclusion . 111

4.1 Introduction

Live DASH streaming may suffer from significant end-to-end latency which can be in the

order of tens of seconds [20]. This latency is defined as the difference between the time

when a live event occurs (e.g. when an image is captured) and when it is played to the

viewer (e.g. when an image is rendered on the viewer’s screen). In VoD service, such latency

has no interest because the viewer is watching a video which is pre-recorded and stored on

the web server. But it may not be acceptable for live events such as live sports games.

The end-to-end latency of HTTP adaptive live streaming becomes more problematic when

comparing it to other live delivery channels. For instance, existing live TV broadcast

86 4. Contributions to Reducing Live DASH Latency

systems feature a constant latency (e.g. six seconds). This issue of latency is even more

important when someone is watching for example a football match, and may hear his

neighbors cheering over a scored goal before he actually sees the goal scored on the screen.

In this case, the viewer is most likely to switch to other delivery systems to be close to the

live event. As a consequence, the end-to-end latency has a relevant impact on the overall

viewer’s QoE and engagement as shown in Chapter 2.

While packet-based streaming solutions, e.g. using RTP, can achieve latency under one

frame, HTTP adaptive streaming solutions such as DASH are not used today for very low

latency streaming. The major reason for that is that HTTP adaptive streaming relies on a

segmentation process, whereby encoded media frames are aggregated into segments with

pre-defined (often fixed and long) durations. Each video segment is used as a download and

a switching unit in HTTP requests and responses. In typical scenarios, the video content

cannot be delivered until the video segment it belongs to is fully generated. Therefore,

in the live streaming case, the live latency is at least one segment duration even without

considering any encoding/decoding, buffering and network delays that are introduced in

Chapter 2. In a typical configuration, the segment duration is in the order of ten seconds,

leading to a minimal latency of tens of seconds, which is not acceptable in many live

streaming scenarios.

Despite the benefits of HTTP adaptive streaming explained in Chapter 2, DASH is not

initially adapted for low latency. In this chapter, we propose and demonstrate how to

achieve very low latency, i.e. latency similar to the one achievable with RTP systems, but

using DASH. A straightforward solution to lower the latency is to reduce the duration of

the segments. However, the reduced segment duration may greatly impact the performance

of HTTP servers and caches. For example, it would cause an explosion in the number of

HTTP requests and responses since each segment requires an HTTP request/response.

Additionally, it would increase the number of GOPs as each segment in HTTP adaptive

streaming solutions shall start with a RAP (i.e. IDR in AVC and HEVC); reducing the

segment duration implies reducing the GOP size, therefore increasing the required bitrate

to achieve the same video quality. To solve the latency issue, we introduce a separation

between the delivery unit (i.e. what can be sent) and the download unit (i.e. what can

be requested). We rely in our approach on specific parts of a media segment called movie

fragments as new delivery units in HTTP responses while we keep the media segment as

the basic download and switching unit in HTTP requests.

This chapter is organized as follow. Section 4.2 focuses on the basic concepts of live DASH

streaming. Section 4.3 describes our proposed approach to reduce the end-to-end latency.

Section 4.4 describes some experiments made to validate the approach and Section 4.5

concludes the chapter.

4.2. Basic Live DASH Latency 87

4.2 Basic Live DASH Latency

A live DASH streaming service provides a live stream as a sequence of media segments,

which are continuously downloaded by the client. In addition to the basic delays of a

streaming chain already introduced in Chapter 2, the authors of [20] have identified some

new delays specific to DASH, i.e. segmentation delay and asynchronous fetch delay, that

we explain below:

� Segmentation delay is the time needed by a segmenter (also described as a packager)

to create a segment in ISOBMFF format. It depends directly on the media segment

duration. The segmentation process will be described later in detail.

� Asynchronous fetch delay is due to the fact that a media segment is not requested

immediately once it is completely available on a web server. There is an uncertainty

about when a new media segment is available and when it should be requested. This

is due to the possible mismatch between the clock times used by the client and the

server.

Additionally, to be able to make a request, a client needs to know the media segment

URL and when it is available. In some systems, each time the segmenter completes

a new media segment, the MPD is updated. In this case, a client is required to

regularly fetch the MPD to get the newest media segment and then compute its

availability, which can introduce an additional delay. In other systems, the media

segment URL is known in advance and its availability can be computed, thereby

avoiding the additional MPD update delay.

In order to minimize the end-to-end latency, it is important to understand how media

segments are generated, how a client can determine the latest available media segment,

and when it is available in a live DASH streaming session. In the following, we respond to

all these issues.

4.2.1 Segmenting Live Content

In live DASH streaming, a sequence of media segments are created on-the-fly from a

continuous live stream. The live video segmenter aggregates and packages a certain amount

of incoming encoded frames to produce a compliant ISOBMFF segment in such a way

that the time interval between the first and the last frames in the segment equals segment

duration (ds).

Each generated ISOBMFF media segment typically consists of a segment type box (”styp”)

which acts as a file identity, an optional segment index box (”sidx”) that provides the list

of RAPs in that segment (time and position), and a movie fragment.

A movie fragment consists of a movie fragment box (”moof”) that holds the fragment’s

88 4. Contributions to Reducing Live DASH Latency

metadata (e.g. timestamp, duration, size, etc) and a media data box (”mdat”) that contains

all the media samples. HTTP adaptive streaming solutions use a self-contained fragment,

i.e. the ”moof” box references only data contained in the ”mdat” box. A ”moof” box contains

a movie fragment header box (”mfhd”) that holds the fragment sequence number, and

then at most one track fragment box (”traf”) for each media type. When the presentation

contains a single video track and a single audio track, each ”moof” may contain two ”traf”,

one for the video and one for the audio. The ”traf” contains in turn one or more track

run boxes (”trun”) that documents a contiguous set of samples of that traf (e.g. sample

size, duration and RAP). The track fragment header box (”tfhd”) sets up information and

defaults used for those runs of samples. The media samples of each ”traf”, i.e. encoded

media frames, are enclosed in the ”mdat” box. Figure 4.1 presents the structure of a media

segment with only one media type.

Figure 4.1 – Structure of an ISOBMFF media segment with one media type.

Figure 4.2 depicts the regular segmentation process that all HTTP adaptive streaming

solutions use. The segmenter receives the live video stream from the encoder at t0. It then

constructs a sequence of media segments following the ISOBMFF media segment structure

of Figure 4.1. All HTTP adaptive streaming solutions force storing the ”moof” box before

the ”mdat” box in a media segment. This implies that the ”moof” box should be sent to the

web server before the ”mdat” box. However, the segmenter cannot construct the ”moof” box

until all the media samples are received, i.e. until the ”mdat” box is completely constructed.

Hence, the segmenter cannot output and deliver a media segment to the web server before

the entire segment (i.e. ”moof” and ”mdat” boxes) is ready. Thus, the segmentation process

Figure 4.2 – Regular segmentation of a live stream into a sequence of media segments following the
basic media segment structure of Figure 4.1 (i.e. ”moof” box followed by ”mdat” box).

4.2. Basic Live DASH Latency 89

introduces a delay of at least one segment duration to the end-to-end latency.

An alternative approach to reduce this latency even further could be to reverse the order

of ”moof” and ”mdat” boxes, but it opens compatibility issues with current systems that

we did not tackle, but that could be investigated in future work.

4.2.2 Fetching Live Edge

In case of live session, a DASH client is required to fetch a media segment, possibly the

latest, at the right time based on the MPD information. The MPD can describe all available

and not-yet available media segments. It can provide in advance all media segments URLs

(e.g. using a segment template or list addressing schemes). In this case, the client can

determine the latest media segment URL without updating the MPD. In Apple’s HLS,

whenever a new media segment is ready, the manifest is updated to include the newest

segment URL and to remove the oldest one [40].

As opposed to other HTTP adaptive streaming solutions, DASH usually expects that both

servers and clients are synchronized on a common clock (the UTC clock). This approach

enables clients to find the current live point and to make only the requests for segments at

precise times.

As illustrated in Figure 4.3, we present the different steps that a DASH client has to execute

to determine the most recent media segment and when it is available on the web server.

1. When the client connects to the live stream, it first fetches the MPD from the web

Figure 4.3 – Fetching the live edge.

90 4. Contributions to Reducing Live DASH Latency

server. The MPD may be generated on-the-fly, or may have been generated before.

2. In addition to the description of media representations and segments’ URLs inform-

ation, the MPD for live sessions should contain additional key fields such as the

type field set to ”dynamic” as well as the availabilityStartTime field. The ”dynamic”

type indicates that the MPD may be updated. The availabilityStartTime field is a

reference UTC time used for the computation of the availability of media segments.

It usually specifies the start time of a live streaming session.

3. The client then selects the suitable representation based on the described qual-

ity/bandwidth to start requesting the associated media segments. When the MPD

is dynamic, the client must carefully determine the latest available media segment.

For that, it uses the @availabilityStartTime attribute value (ASTMPD) indicated in

the MPD and the current time (t = tnow), i.e. the current UTC wallclock of client.

The number of the media segment being produced at t = tnow in the period can be

computed as:

i =

⌊
tnow − (ASTMPD + periodStart)

ds

⌋
+ startNumber (4.1)

where periodStart is the start time of the period to play and is equal to the value

of @start attribute specified in the MPD, ds is the media segment duration, and

startNumber is the number of the first media segment in the period. All these

parameters values are present in the MPD.

4. The client should determine precisely the availability start time of the computed

media segment ”i”, i.e. when segment ”i” is fully ready on the web server, to make the

necessary request at the right time. The availability start time (ASTi) of the media

segment ”i” is expressed as:

ASTi = ASTMPD + periodStart+ ds × (1 + i− startNumber) (4.2)

5. Once the client determines the latest media segment number (”i”) to request and its

availability time (ASTi), it waits for the segment to be ready and makes the request.

The server responds with the entire requested segment.

4.2.3 Progressive File Delivery over HTTP

HTTP adaptive streaming solutions using the regular HTTP/1.1 transfer can only deliver

files once completed. This means that a web server cannot deliver the data content until

the file it belongs to is fully produced which can add a delay of at least one file duration.

4.3. Low Latency Live DASH Proposal 91

HTTP/1.1 ”Chunked-Transfer Encoding” mechanism [55] enables the web server to start

sending available data parts of a file before the file is completely generated. It modifies the

body of the HTTP response in order to transfer it as a series of chunks, followed by a final

chunk of length zero, followed by an optional trailer (that should be treated like headers, as

if they were at the top of the response), and a blank line. Each chunk consists in two parts:

� a line with the size of the chunk data, in hexadecimal, possibly followed by extra

parameters, and ending with CRLF.

� the data itself, followed by CRLF.

This allows dynamically produced content to be transferred along with the information

necessary for the client to verify that it has received the full response as well as to be

cached. Figure 4.4 depicts an example of HTTP/1.1 chunked response. The Chunked

Transfer-Encoding header must appear in the HTTP response headers at the place of

Content-Length header. All HTTP/1.1 clients must be able to receive and treat chunked

responses.

Figure 4.4 – Example of an HTTP/1.1 chunked response.

Obviously, if a single movie fragment (i.e. ”moof” and ”mdat” boxes regardeless of their

order) is used in one media segment, the Chunked-Transfer Encoding mechanism will not

be beneficial at all. To benefit from this feature, we propose in the next section our new

approach based on making the segmentation process progressive without changing the

encoding process.

4.3 Low Latency Live DASH Proposal

In this section, we present our new approach to reduce the end-to-end latency, specifically

the segmentation delay in live DASH streaming. It consists in using a finer granularity

92 4. Contributions to Reducing Live DASH Latency

unit for HTTP delivery than the media segment while maintaining the media segment

as a download unit in HTTP requests. For that, we use a new internal media segment

organization as it is depicted in Figure A.7.

Figure 4.5 – Structure of an ISOBMFF media segment with multiple movie fragments.

Each media segment is divided into multiple small parts in such a way that they are

independently parsable. These parts are called movie fragments. Based on the Chunked-

Transfer Encoding mechanism, the web server can push available data parts, i.e. those

movie fragments, to the client before the media segment is fully ready. But the request has

to arrive before a typical DASH request, before the end of the segment.

To address this problem, we modify manually in our first experiments the availability start

time of a media segment through the availabilityStartTime attribute in the MPD. We

set its value to the time at which one or more fragments are available to force a client to

send a request earlier. This strategy works very well and allows reducing the segmentation

delay to the duration of fragments. However, the main problem of this strategy is that

the shifted AST value is global in the MPD, i.e. it is applied to all media contents and

distribution networks described in the MPD. Additionally, a client may not be optimized

for chunk-transfer processing of DASH segments, and using chunk transfer may alter its

bandwidth estimation process because the download time is close to the segment duration

whatever the bandwidth.

To overcome this problem, we proposed the introduction of a new attribute named availabil-

ityTimeOffset (ATO) at the representation level in the MPD. The ATO attribute indicates

the difference between the availability start time of the segment and the UTC time at

which the server can start delivering data for this segment, e.g. using HTTP/1.1 chunks.

Typically, this latter time corresponds to the time at which one or more fragments are

available. This is a fundamental change: with the presence of this attribute, a client is now

aware that a part of the segment is available earlier than the segment. The client is also

capable of making the necessary request for the current segment at a time that will not

imply waiting or that will not trigger a HTTP 404 response, although the segment is not

fully produced. If the ATO is chosen to match the time at which the first fragment is fully

produced, the packaging latency can be reduced to the duration of a fragment.

4.3. Low Latency Live DASH Proposal 93

The availabilityTimeOffset (ATO) of the media segment ”i” is expressed in Equation A.1:

ATOi = ASTi − (ASTi − ds + dc) = ds − dc (4.3)

Figure A.8 shows the relationship between the availabilityStartTime of segment ”i” (ASTi),

availabilityTimeOffset (ATOi), segment duration (ds) and fragment duration (dc).

Figure 4.6 – Determination of the availability time of a media fragment in DASH.

In the following, we present the updated client procedure enabling issuing an HTTP request

for the most recent media segment once one fragment or more are available on the web

server. The web server pushes the newly available fragments as HTTP/1.1 chunks without

waiting for the completion of the segment.

1. Step 1, 2 and 3 are similar to those presented in Section 4.2.2. The only difference is

that we indicate in the MPD when one fragment or more are available on the web

server through the availabilityTimeOffset (ATO) attribute.

2. After computing the latest media segment number ”i” and using the ATO value, the

client waits for the movie fragments of that segment to be ready and makes the

request. This waiting time is at most one fragment duration because the live media

is encoded in real-time.

3. Each media segment contains #n movie fragments. The server is able to send out

the fragments earlier, at best as soon as it has been completely generated, using

HTTP/1.1 chunks. It keeps sending the remaining chunks of segment once they are

ready until the end of segment is detected.

4. The client is able to consume any received partial response (i.e chunks) before the

reception of all parts. Especially, each chunk (i.e. ”moof” and ”mdat” boxes) can be

parsed and queued for playback even if the complete segment is not yet received.

94 4. Contributions to Reducing Live DASH Latency

4.4 Evaluation

4.4.1 Design and Implementation

To experiment with the proposed approach, we have designed and implemented a complete

DASH streaming system based on three main functions: content preparation, content

distribution, and content decoding and display, as depicted in Figure 4.7 and detailed

below:

Figure 4.7 – Architecture of a low latency live DASH streaming system.

� Content Preparation

The content preparation part of the system is in charge of three tasks: encoding

the live video stream in real-time, fragmenting and segmenting the video into small

fragments and segments according to the ISOBMFF format as depicted in Figure A.7,

and generating the DASH MPD. The live video encoder encodes the input live video

stream into multiple versions (i.e. DASH representations), with different resolutions

and bitrates. Each fragment (i.e. ”moof” and ”mdat” boxes) is flushed to disk/file in an

atomic way, i.e. the ”moof” and ”mdat” boxes are stored temporarily in the memory

and are then written at once in the file as soon as they are completely constructed.

We set the availabilityTimeOffset (ATO) attribute value in the MPD to indicate the

availability time of the first fragment of each segment.

4.4. Evaluation 95

In our experiments, we used the DashCast live encoder and segmenter tool from the

GPAC1 project. We have used different number of fragments per segments, ranging

from 1 fragment carrying one video frame to 1 fragment carrying the whole segment.

� Content Distribution

The ISOBMFF fragments and associated MPD are deployed on a web server. The

web server supports HTTP/1.1. It is connected to the client via Ethernet in a Local

Area Network (LAN).

In our experiments, we have implemented an ISOBMFF-aware web server based

on the NodeJS2 framework. This web server is responsible for monitoring content

changes in media segments during the generation. An event is triggered each time

new data is written in the segment file. The web server distributes media segments as

it is illustrated in Figure 4.8. The web server starts monitoring a media segment file

when that file is requested by a client. When the media segment file is modified, the

server starts the parsing to detect new ISOBMFF fragments. If there is any ”moof”

box followed by ”mdat” box, this denotes the availability of a new fragment whereby

the server forms up an HTTP/1.1 chunk using the Chunked-Transfer Encoding

mechanism and sends the response to the client. Otherwise, it keeps listening and

Figure 4.8 – Flowchart of our proposed web server.

1https://gpac.io/
2http://nodejs.org/

96 4. Contributions to Reducing Live DASH Latency

waiting for new fragments. In our system, the server detects the end of a media

segment by the presence of a new end of dash segment box (”eods”), as shown in

Figure 4.9. This enables a server to terminate the data chunk transfer by sending a

final chunk of length zero.

Figure 4.9 – Structure of a media segment with ”eods” box.

If a client joins the live stream and requests the current media segment that is

partially generated (i.e. a client makes a request late regarding the availability time

of the first fragment), our web server is configured in such a way that all produced

fragments since the beginning of a media segment are sent to the client in one chunk.

� Content Display

In our approach, we use the MP4Client player from the GPAC project. It is a

compliant DASH client with HTTP/1.1 capability, i.e. it is able to receive chunked

responses; and is capable of processing progressively incomplete segments.

4.4.2 Experiments and Results

In order to validate our approach, we have conducted two types of experiments: experiments

to measure the overhead introduced by the packaging and transport tools, and experiments

to measure the latency of the system. This section details these two parts.

4.4.2.1 Overhead Measurements

For our overhead measurements, we used two video sequences (sports and cartoon), initially

compressed with the AVC format, with the characteristics reported in Table 4.1.

Sequence Bite rate
(Kbps)

Frame
rate
(fps)

Resolution GOP
size

Duration

RedBull 6000 24 1920x1080 15 s 1 min

Big Buck Bunny 9000 29.97 1920x1080 3 s 10 min

Table 4.1 – Input video sequence characteristics.

4.4. Evaluation 97

We used the open source x2643 encoder with the Constant Rate Factor (CRF) encoding

mode to encode these sequences at different resolutions (ranging from QCIF 176x144 to

full HD 1920x1080). We targeted different quality levels for each resolution encoding by

setting CRF to the following different values: 16, 18, 19, 20, 22, 32, 24, 26, 28, and 30. We

started with a low CRF value (e.g. 16) and then we raised it until 30 where the quality

becomes really bad.

Additionally, we set the GOP size to be 1 second, corresponding to a typical DASH segment

starting with a RAP, i.e. an IDR frame in the AVC coding format. No B frames were used

and only 1 reference frame was used for prediction. We used a frame rate of 24 for the Big

Buck Bunny sequence and 30 for the RedBull sequence. We kept only the sequences which

resulted in a bitrate lower than the initial one. The exact command line for this encoding

is provided below:

x264 –sar 1:1 –o output video.h264 input video.h264 –ref 1 –crf <x> –bframes 0 –keyint <y> –vf

resize:<w>,<h> –b-pyramid none –fps <f> –preset veryslow –tune psnr –psnr

Each quality encoding with a constant CRF value results in a couple of values: Y-PSNR

value which reflects the output video quality level and a bitrate value. Table 4.2 represents

the output results of the encoding of Big Buck Bunny sequence.

Table 4.2 – Encoding of the Big Buck Bunny sequence at different CRF values for all resolutions.

Resolution CRF Bitrate (Kbps) Y-PSNR (dB)

176x144

16 412.12 47.081

18 343.08 45.544

19 312.69 44.784

20 284.26 44.021

22 234.02 42.508

23 211.75 41.761

24 191.58 41.03

26 156.07 39.557

28 126.37 38.113

30 101.74 36.694

352x288

16 1279.6 47.437

18 1052.14 46.025

19 952.97 45.322

20 861.55 44.622

22 701.71 43.231

23 631.95 42.546

24 569.12 41.871

Continued on next page
3https://www.videolan.org/developers/x264.html

98 4. Contributions to Reducing Live DASH Latency

Table 4.2 – Continued from previous page

Resolution CRF Bitrate (Kbps) Y-PSNR (dB)

26 459.47 40.505

28 368.08 39.145

30 292.26 37.789

640x360

16 2522.37 47.746

18 2060.22 46.4

19 1859.82 45.728

20 1676.42 45.061

22 1357.09 43.739

23 1218.52 43.089

24 1093.59 42.447

26 878.84 41.157

28 703.84 39.869

30 562.1 38.589

960x540

16 4559.88 48.364

18 3695.03 47.017

19 3326.55 46.354

20 2991.21 45.696

22 2409.96 44.413

23 2160.59 43.789

24 1938.27 43.179

26 1560.4 41.964

28 1252.64 40.744

30 1001.52 39.524

704x576

16 3791.54 47.953

18 3063.98 46.672

19 2754.33 46.038

20 2474.08 45.41

22 1991.09 44.159

23 1784.99 43.544

24 1600.35 42.936

26 1284.27 41.712

28 1027.05 40.484

30 818.83 39.257

1280x720

16 6857.14 48.428

18 5455.84 47.177

19 4869.94 46.562

20 4346.87 45.961

Continued on next page

4.4. Evaluation 99

Table 4.2 – Continued from previous page

Resolution CRF Bitrate (Kbps) Y-PSNR (dB)

22 3463.92 44.78

23 3095.83 44.201

24 2771.11 43.634

26 2223.47 42.489

28 1784.99 41.342

30 1431.98 40.188

1920x1080

20 7604.31 47.802

22 6172.14 46.371

23 5546.75 45.691

24 4986.47 45.053

26 4020.28 43.796

28 3216.31 42.55

30 2559.99 41.336

Based on those results, we represent in Figure 4.10 the output video quality (Y-PSNR) in

terms of the required bitrate for all CRF values and resolutions.

The encoding results of the Red Bull sequence exhibits the same pattern. For all resolutions,

it can be seen that lower CRF values would result in better quality (high PSNR value) at

the expense of higher bitrates.

The total overhead of our approach can be decomposed into: the overhead introduced by

the packaging of encoded frames into ISOBMFF fragments, and the overhead introduced

by the download of those fragments as HTTP/1.1 chunks.

Figure 4.10 – Encoding of the Big Buck Bunny sequence at different CRF values for all resolutions.

100 4. Contributions to Reducing Live DASH Latency

� ISOBMFF overhead

The packaging in ISOBMFF used in our DASH streaming system introduces an

overhead which can be decomposed in: an initial overhead due to the packaging of

encoded media frames into the structured ISO format; and the additional overhead

due to the fragmentation required in DASH.

The initial overhead does not depend on the bitrate but does depend on the number of

samples, i.e. the number of encoded frames per seconds. Our experiments on the Big

Buck Bunny and Red Bull sequences show that the additional overhead introduced

by the simple storage of encoded sequences in MP4 files compared to the raw AVC

sequences is negligible. Typically, across video sequences, resolutions and bitrates,

we have an overhead that ranges between 0.0028% for higher resolution with higher

bitrate (e.g. 7604 kbps for Full HD sequence encoded at a CRF value of 20) and 0.26%

for lower resolution with lowest bitrate (e.g. 100 kbps for QCIF sequence encoded at

a CRF value of 30).

When it comes to fragmented ISOBMFF, we only consider the encoded videos with

the default CRF value of 23 for the x264 encoder. We consider a constant segment

duration of 1 s containing 24 frames for the Big Buck Bunny sequence and 30 frames

for the RedBull sequence. The overhead depends on the number of fragments per

segment, i.e. on the number of frames per fragment. Figure A.9 shows the results

for the Big Buck Bunny sequence, with the overhead computed with respect to the

non-fragmented sequence.

Figure 4.11 – Overhead introduced by the ISOBMFF fragmentation.

We can see that the fragmentation introduces an overhead, which decreases as the

number of frames per fragment increases. We can also see that, for a given number of

frames per fragment, the fragmentation overhead decreases as the video size increases

to higher resolutions (hence higher bitrates). For classical resolutions (SD and more),

4.4. Evaluation 101

we can note that the maximum introduced overhead when fragments carry only one

frame is 1% which is less than 2% of overhead when using RTP [56]. For 3 frames

per fragment, the overhead is fewer than 4% for all resolutions and bitrates. A high

overhead of 9% can be reached up when using one frame per fragment for a QCIF

resolution encoded at a bitrate of 212 kbps. This corresponds to what we can observe

for audio. For audio, we can have an overhead that ranges approximately between

9% for a bitrate of 200 Kbps and 20% for a bitrate of 64 kbps. This is not a problem

for audio because the total fragment size is still very small and can fit in one IP packet.

� HTTP/1.1 overhead

Finally, the last overhead introduced by the system is in the delivery of content over

HTTP/1.1. In typical DASH scenarios, an HTTP request is made for every media

segment. The size of the request is highly dependent on the information present in

the header (descriptions of the user agent, of the server, list of accept headers, use of

byte range, CORS as seen in Chapter 3, etc). In [20], the authors report a typical

size of 140 bytes. In [57], the authors report a size of 280 bytes. We can assume an

average size of 200 bytes per request. However, in our approach what matters more

is the overhead introduced by the Chunked-Transfer Encoding mechanism.

The chunk size is expressed with 4 bytes. The CRLF is represented with 2 bytes.

Hence, each chunk with no extra parameters (extensions) requires 8 bytes. The

maximum overhead of an HTTP/1.1 chunked response body containing #n + 1

chunks (i.e. #n chunks correspond to #n ISOBMFF fragments and one for the last

chunk of length zero) and no trailers can be computed as in Equation 4.4. Each chunk

or ISOBMFF fragment contains between 1 frame up to the full segment. Note that

the content length in Equation 4.4 represents the length of the chunked response

body which is the sum of all chunks sizes.

Overheadmax =
8× (n+ 1)

content length
(4.4)

We supposed a sequence encoded at 8 Mbps, at 24 fps, and fragmented with one frame

per fragment. Following Equation 4.4, the maximum additional overhead represents

0.02% which can be considered negligible.

As a consequence, the total overhead for the delivery of an AVC encoded video sequence,

stored in fragmented ISOBMFF, delivered with HTTP/1.1, using 1 chunk per fragment, is

mostly the overhead of the fragmentation.

102 4. Contributions to Reducing Live DASH Latency

4.4.2.2 Latency measurements

At first, we measured the latency from the encoder output to the decoder input, i.e. the

time needed to produce and to send ISOBMFF fragments. Following that, we measured it

from the capture to the display.

For our measurements, we have implemented a complete DASH streaming system in

accordance to our proposed low latency live DASH streaming architecture shown in Figure

4.7. Our web server is located on the same physical machine as DashCast. DashCast and

MP4Client were run on different machines, whose UTC system times where configured to

use the same Network Time Protocol (NTP) server (e.g. ”ntp.enst.fr”) to be synchronized.

However, we noticed an important mismatch (e.g. up to one minute) between the times

used by both machines. We also used the local NTP server of windows 7 system but we

were still having the drift time between client and server. Hence, we had to adjust the

system time of both machines regularly in our experiments.

Therefore, we decided not to rely on NTP and used a dedicated NTP-inspired mechanism

to synchronize the machines, as follows. Upon sending the MPD to the client, the web

server adds an extra HTTP header indicating its UTC system time. When the client

receives the MPD from the server, it fetches its own UTC system time, substracts the time

read from the HTTP headers and obtains an estimated UTC time difference between the

two machines. This difference is assigned to λ. This mechanism is very simple, and omits

the delivery time of the MPD. Additionally, it assumes no drift between the servers, so

is calculated just once and applied every time the availability start time of a segment is

compared to the client system time.

1. Inner-chain latency

As shown in Figure A.10, we have instrumented DashCast (respectively MP4Client)

to log the different UTC times at which:

� a frame was completely encoded (resp. starting to be decoded).

� a fragment was fully produced (resp. a chunk was fully received).

MP4Client was configured to remove all buffering. We set the segment duration

(ds) to 2 s and the fragment duration (dc) (equal to the chunk duration) to 200 ms

to obtain 10 fragments per segment. The following DashCast command was run,

grabbing the screen of the computer at a resolution of 800x600 pixels, at 25 frames

per second, encoding it according to the configuration given in the dashcast.conf file,

4.4. Evaluation 103

Figure 4.12 – Inner-chain latency measurements for live streaming service.

using ”eods” marker and with ATO equal to ds − dc (1800 ms). The input video is

encoded at 2 Mbps and at a resolution of 1280x720 pixels.

DashCast -vf x11grab -v :0 -seg-dur 2000 -frag-dur 200 –live -conf dashcast.conf

-ast-offset -1800 -vres 800x600 -vfr 25 – seg-marker eods

We run the system for 894 seconds during which MP4Client retrieved 447 segments

that include 4470 fragments or chunks.

Figure 4.13 shows the frame latency, i.e. the difference between the time at which a

frame was encoded and at which it was starting to be decoded as shown in Figure

A.10. With 25 frames per second, a fragment of 200 ms contains 5 frames and a

segment of 2 s includes 50 frames. On Figure 4.13, we represent the latency of 200

frames of 4 segments (i.e. 40 fragments). In this configuration (5 frames per fragment),

the fragmentation overhead is 0.2% as shown previously in Figure A.9.

Figure 4.13 – Frame latency of 200 frames of 4 segments (i.e. 40 fragments) (ds=2s, dc=200ms,
ATO=1800ms).

104 4. Contributions to Reducing Live DASH Latency

We can see that the latency of most fragments is around 160 ms. The first frame

of each fragment experiences a high latency (160 ms) because it waits for the four

remaining frames to construct the fragment. The second output encoded frame is

delayed by 120 ms because it waits for the remaining 3 frames of the fragment. The

third one incurs a latency of two frames duration (80 ms). The fourth frame waits

only 40 ms. The last frame suffers almost no latency.

The waiting time of each encoded frame at the segmenter depends on the availability

time of the remaining frames needed to construct the fragment for the encoding.

For example, the first frame (f1) is ready immediately for the encoding. It is then

transmitted to the segmenter where it is hold until the last required frame (f5) for

the fragment is generated and available at the segmenter, at most after four frames

(160 ms). Hence, the fragment is fully produced and ready to be sent to the web

server after 160 ms of delay.

For the first frame of each segment, the maximum latency is around 210 ms instead of

160 ms. This latency is however reduced for the next fragment as it is pushed by the

server and no request is made by the client. We decompose this additional delay of 50

ms into two values as follows. The first delay of 10 ms can be explained by the client

making the request for the segment too late. This can be due to slight variations in

the estimated UTC drift time between the client and server machines, very likely due

to the MPD request download time which is not estimated. The second delay of 40 ms

is due to the fact that we have indicated through ATO that the first fragment of each

segment will be available at 200 ms, whereas the 5 frames constituting the chunk are

encoded and packaged in 160 ms. This is due to our proposed model that considers

by default the availability time of each frame as the sum of its acquisition time, its

duration, and its encoding time (acquisition and encoding delays are negligible in our

case). This principle is applied to all media types (e.g. video, audio, and subtitle).

For instance in audio, the encoder has to wait for an integral number of samples

needed to construct a coding frame before invoking the compression. If the number

of samples per coded frame is 1024 for example, the encoding process does not start

before receiving 1024 samples (i.e. before 1024
sampling rate seconds). However, for video,

a frame is ready for compression as soon as captured, hence is processed by the

segmenter roughly at its capture time (assuming encoding time is negligeable).

Hence, the ATO in our proposed model represents the availability time of the fragment,

i.e. the availability time of the last frame of the fragment, including its duration. For

the video case however, the end of production of the fragment is one frame duration

less which explains the delay of 40 ms.

4.4. Evaluation 105

Figure 4.14 shows the histogram of the number of frames per latency value for the

total streaming session. As we can see on the histogram there are 5 high bursts

corresponding to the latency of each frame in the fragment. The low burst at the

right side represents the number of first frames of each segment that experiences

200 ms of latency. The second burst represents the number of first frames of each

fragment being delayed most (160 ms), and the last burst at the left side shows the

number of fifth frames suffering almost no latency.

Figure 4.14 – Frame latency histogram.

Figure 4.15 shows the chunk latency, i.e. the difference between the time at which

a fragment was fully produced by DashCast and at which it was received as an

HTTP chunk by MP4Client (i.e. specifically by the chunk parser as shown in Figure

A.10). The figure represents 40 chunks which is equivalent to 4 segments. The other

segments exhibit the same pattern. As can be seen on the figure, the chunk latency

is of the order of 2-4 ms for every chunk, except for the first chunk of each segment,

where it is in the order of 50 ms. As explained previously, this is due to the client

Figure 4.15 – Chunk latency of 40 chunks of 4 segments (ds=2s, dc=200ms, ATO=1800ms).

106 4. Contributions to Reducing Live DASH Latency

that requests the segment (i.e. the first chunk) approximately 40 ms after the last

frame encoding and to the variation in the UTC drift estimation (around 10 ms).

We construct an histogram to provide a quick summary of the number of chunks per

latency value for the total streaming session in Figure 4.16. As can be seen on the

histogram, the smallest chunk latency is about 1 ms and the highest is about 54 ms.

Most of the chunks (i.e. 3997 chunks) are between 1 ms and 5 ms of latency. For

instance, the biggest number of chunks (i.e. 1278 chunks) have a latency of 3 ms. A

handful of chunks (i.e. 26 chunks) are between 6-28 ms of latency. We can see on the

right side there are a few chunks (i.e. 430 chunks) whose latencies are between 45–49

ms, and some chunks (i.e. 17 chunks) were between 50-54 ms. These last bars whose

latencies are higher than the rest are the first chunks of segments. If we sum the

chunks whose latencies that lies in 45–49 ms and 50-54 ms intervals, we obtain 447

chunks which is equivalent to the number of received segments during the streaming

session.

Figure 4.16 – Chunk latency histogram.

These results show that the client receives all HTTP/1.1 chunks that our web server

sends, i.e. all fragments that the segmenter provides. This means that our web server

identifies correctly the fragments when monitoring the segment file and then delivers

them as chunks.

Additionally, when the client joins the live stream it makes requests for segments at

the precise time, i.e. it is accurate to the first fragment availability time of a segment,

because we do not have a case where the first received chunk contains #n fragments.

Moreover, the latency of the total frames of the streaming session is constant as

shown in Figure 4.17. It does not exceed the higher latency of 210 ms which means

that no drift between the web server and the client during the total streaming session.

4.4. Evaluation 107

Figure 4.17 – Frame latency of the total streaming session (i.e. 22350 frames of 447 segments and
4470 fragments).

2. End-to-end latency

For latency measurements, we added a new box called producer reference time box

(”prft”) which is located before any ”moof” box in the movie fragment as shown in

Figure 4.18.

Figure 4.18 – Structure of a media segment with ”prft” boxes.

We added the NTP time at which the first frame of each fragment was captured in

the ”prft” box of each fragment. When the MP4Client receives the fragments from

the server specifically the first frames of those fragments, it fetches its own NTP

system time, substracts the time read from the ”prft” box and obtains an estimated

latency. Compared with previously, we measured the latency between the capture

and the display. We set ds to 1 s. We used one frame per fragment and then 5 frames

per fragment.

(a) One frame per fragment

We captured from a video webcam device the content at a resolution of 640x480

pixels, at 30 frames per second using the following command:

DashCast -vf dshow -vres 640x480 -vfr 30 -v video=”HD Webcam C615” -pixf

yuv420p -live -low-delay -seg-marker eods -insert-utc -min-buffer 0.05 -frag 33

-ast-offset -1000

108 4. Contributions to Reducing Live DASH Latency

We set dc to 33 ms (approximately one frame duration). We set ATO to 1000

ms which means that a client makes requests for segments at the beginning

of the first frame, i.e. when the first frame is completely encoded. In this

configuration (one frames per fragment), the fragmentation overhead is 0.6% as

shown previously in Figure A.9.

As shown in Figure A.11, MP4Client was configured to provide two buffers,

decoding and composition. We set the length of the decoding buffer to 10 ms.

So, when the buffer receives a frame its level exeeds 10 ms which means that the

frame should be played out immediately. As shown in Chapter 2, the decoding

time of I frames is higher than P frames and even higher than B frames. To

smooth the playback, we used a composition buffer after the decoder. We set its

length to 2 frames (approximately 66 ms).

Figure 4.19 – End-to-end latency measurements for live streaming service.

Figure 4.20 shows the latency of the first frame of each segment, i.e. the difference

between the time at which the frame was captured and at which it was starting

to be displayed as shown in Figure A.11. It represents the latency for 10 segments.

As we can see the latency is almost 100 ms which consists in the sum of the

encoding delay, the segmentation delay, the network delay, the decoding buffer

Figure 4.20 – Latency of the first frame of 10 segments (ds=1s, dc=33ms, ATO=1000ms).

4.4. Evaluation 109

delay, the decoding delay, and the composition buffer delay.

The buffering delays are in the order of 99 ms (approximately 3 frames). The en-

coding, network, decoding delays are negligible (i.e. in the order of microseconds).

As we use one frame per fragment, the segmentation delay is instantaneous (less

than 1 ms).

The first frame of the first segment of the streaming session has a high latency

of 439 ms. This is due to the client that joins the live stream a certain time

after the beginning of the current segment, and plays in fast-forward mode that

segment up to the current time. This latency is however reduced for the next

segments once the client has played the first segment and makes requests for

next segments at their precise availability time, i.e. once the first frame of the

segment is available.

We also measured the chunk latency and the results are shown in Figure 4.21(a).

With 30 frames per second, and approximately 33 ms per chunk, a segment

contains 30 chunks. We represent the latency of 300 chunks which is equivalent

to 10 segments. As can be seen on the figure, the chunk latency is in the order

of 20-25 ms for each chunk which is below the chunk duration.

(a) 300 chunks of 10 segments. (b) Zoom on the tuning phase of Figure 4.21(a) (30
chunks of 2 segments).

Figure 4.21 – Chunk latency (ds=1s, dc=33ms, ATO=1000ms).

In traditional streaming systems (broadcast or multicast IP), when a client

connects to a session it has to wait for the next RAP to start decoding and

playing, which introduces a delay. In RTSP system however, a server usually

adjusts the time requested by the client to the nearest RAP in the stream in

110 4. Contributions to Reducing Live DASH Latency

order to avoid such waiting delay. In HAS solutions, when the client connects to

the live stream after a certain time of the beginning of the current segment, it

has the choice to either wait for the next segment and makes the request at the

right time or request the current video segment, decode all frames very fast up

to the current time (i.e. live time) and then starts playing. To reduce the startup

delay (seen in Chapter 3), we used the second strategy in our experiments.

We provide a zoom of the tuning phase of Figure 4.21(a) in Figure 4.21(b). We

can note that the client joins the live stream approximately at the middle of

the current segment. The tuning phase shows 15 HTTP/1.1 chunks containing

30 fragments. The first chunk incurring a high latency of 439 ms includes all

produced fragments since the beginning (i.e. 16 fragments) of the media segment.

The remaining 14 chunks contain one fragment and their latency decrease

progressively.

(b) Five frames per fragment

We set now dc to 166 ms where each fragment contains 5 frames. Thus, a segment

of 1 s includes 5 chunks and 30 frames. ATO equals to 867 ms which corresponds

to the availability time of the last frame of the fragment. In this configuration (5

frames per fragment), the fragmentation overhead is 0.2% as shown previously

in Figure A.9.

Figure 4.22 shows the latency of the first frame of each segment from the capture

to the playback. The figure represents 10 segments. As it can be seen, the first

frame experiences a high latency in the order of 220 ms. The main contributor to

this latency is the segmentation delay (133 ms) where the first frame would wait

for the four remaining frames to construct the chunk, as explained previously.

Additionally, the latency of the two decoded frames (66 ms) that are stored

in the composition buffer. We can see a high latency (around 586 ms) in the

initialization phase that decreases progressively. This is due to the client that

joins the live stream after a certain time of the beginning of the current segment

and choose to request that segment that is partially generated as explained

previously.

4.5. Conclusion 111

Figure 4.22 – Latency of the first frame of 10 segments (ds=1s, dc=166ms, ATO=867ms).

Figure 4.23 shows the chunk latency for 50 chunks. We can see that the latency

is around 150 ms which consists in the sum of the segmentation delay (133 ms)

and the transmission delay (approximately 25 ms).

Figure 4.23 – Chunk latency of 50 chunks of 10 segments (ds=1s, dc=166ms, ATO=867ms).

4.5 Conclusion

In this chapter, an analysis of the latency of live streaming services using DASH was

presented, indicating that the major component inducing extra latency compared to other

delivery systems was the segmentation process. We have proposed a new method to

reduce the end-to-end latency, specifically the segmentation delay in live DASH streaming

without requiring changes in the infrastructure. It is based on specific packaging format, i.e.

ISOBMFF movie fragments, and on HTTP/1.1 Chunked-Transfer Encoding mechanism.

This approach enables a client to send out a request as soon as some parts (fragments)

112 4. Contributions to Reducing Live DASH Latency

of a segment are ready. With this approach, the fragments are pushed to the web server

early and the download of the segment can start before it is completely ready. In order to

validate our approach, we have conducted two types of measurements.

First, we measured the overhead introduced by the ISOBMFF packaging, the associated

fragmentation and the transport tools such as chunked encoding. We have shown that

the fragmentation process of DASH is the main contributor to the overall overhead. The

overhead introduced by the simple storage of encoded media frames into the structured

ISO format as well as by the HTTP/1.1 chunked encoding delivery is negligible. As a

result, we have shown that for 3 frames per fragment the overhead is fewer than 4% for all

resolutions and bitrates, but more interestingly, that the maximum overhead that can be

reached when using one frame per fragment for classical resolutions (SD and more) is 1%,

which is less than when using RTP.

Second, we have measured the latency at first from the encoder output to the decoder

input. A very low latency in the order of 160 ms can be achieved when using 5 frames per

fragment. The measured latency from the capture to the display is in the order of 100 ms

for a fragment being only one frame. It is approximately 225 ms for a fragment containing

5 frames. Through these results, we have validated that our method is capable of achieving

a very low latency.

In future work, we plan to examine how such low latency system will behave in real

content delivery networks, and to further evaluate our proposal with multiple players and

switching phases. Additionally, we plan to measure the latency in real-time interactive

service. Finally, we could investigate the method that reverses the ”moof” and ”mdat” boxes

in the media segment structure and check if the latency is even further reduced than the

typical method.

The work presented in this chapter has been published in the the 5th international

conference on Information, Intelligence, Systems and Applications (IISA) in 2014. It has

been also standardized in the first DASH amendment and is being deployed by several

companies (Harmonic, Ericsson, etc).

Chapter 5

Hybrid Streaming Services

Contents

5.1 Introduction . 113

5.2 Hybrid Delivery Challenges . 114

5.3 Hybrid Delivery Proposed System 116

5.3.1 Timeline and External Media Information (TEMI) 116

5.3.2 TEMI and Low End-To-End Latency Live DASH System 117

5.4 Evaluation . 119

5.4.1 System Implementation . 119

5.4.2 Experiments and Results . 121

5.5 Conclusion . 123

5.1 Introduction

Recent years have seen the increasing presence of connected devices in the home network

like mobile phones, tablets, set-top-boxes and TV sets as well. Some devices are capable

of connecting to several networks concurrently. For instance, connected TVs can receive

content from broadcast channels (e.g. terrestrial and satellite) as well as from broadband

networks. On broadcast channels, identical content can be efficiently delivered to a lot

of viewers, but delivering personalized content or high content quality (e.g. UHD, HDR,

etc) that can only be decoded by a small subset of TVs is impractical due to bandwidth

limitation. On broadband networks, personalized content can be delivered to individual

viewers, but stable delivery to a large audience is costly. [58] With the growing adoption

of connected TVs, it is interesting to enhance broadcast services with premium services

of various kinds (e.g. alternate views, alternate audio, subtitles, sign language, etc) via

114 5. Hybrid Streaming Services

broadband. Moreover, it is interesting to deliver a basic content quality (e.g. HD) to all

viewers via broadcast and an additional content quality to only viewers that are eligible

for a high quality (e.g. UHD) via broadband. This is called ”transition phases” service

in DTV industry. Combining broadcast channels and broadband networks is sometimes

named hybrid delivery systems.

HTTP adaptive streaming solutions, including DASH, are the most popular systems

for content delivery on unmanaged broadband networks. In this chapter, we investigate

scenarios where we consider basic contents delivered over traditional broadcast channels

enhanced with additional contents delivered over unicast IP using DASH. In this case, the

latency of the DASH system should be lower than the broadcast. Otherwise, it may be

necessary to delay the broadcast content by introducing additional buffers either at the

client side or at the encoder side.

In this chapter, we use the approach described in the previous chapter to reduce the latency

in live DASH, and we show how such a system can be used to enable combined broadcast

and broadband services while keeping the buffering requirements on the broadcast link low.

Additionally, we show how data from both channels can be accurately synchronized.

This chapter is organized as follows. Sections 5.2 present the challenges of a hybrid delivery

system. Section 5.3 demonstrates our proposed hybrid delivery system. Section 5.4 describes

an experiment made to validate the approach and Section 5.5 concludes the chapter.

5.2 Hybrid Delivery Challenges

This section summarizes the main issues that we have identified in the delivery of media

content over hybrid broadcast/broadband networks.

� Stream location

In hybrid delivery, when a client connects to the broadcast stream, it needs to locate

the upcoming external media stream delivered over a broadband channel [59]. For

instance, if DASH is used, it needs a link to download the MPD.

� Stream synchronization

In hybrid delivery, we are interested in inter-stream multi-networks synchronization

[60] [61]. The different streams, i.e. TS and DASH streams, are not signalled as being

synchronized because they are generated based on different clocks and delivered

through different distribution networks. The clock of MPEG-2 TS is the Program

Clock Reference (PCR). All media timestamp information (DTS/PTS) of each frame

refers to PCR. In DASH, the presentation time of each frame maps to the MPD

5.2. Hybrid Delivery Challenges 115

media presentation timeline which is common to all DASH representations in the

Period. The presentation time offset of the representation relative to the start of the

Period is given through the presentationTimeOffset attribute in the MPD to map

actual timestamp to the MPD media presentation timeline.

There is therefore a need to synchronize those streams. However, different services

may require different levels of synchronization. Some use cases of real-time interactive

streaming service (e.g. scalable/multiviewing video coding) require frame-accurate

synchronization of the different streams delivered through different distribution

networks on the client device. This frame-accurate synchronization may be required

for synchronized decoding or synchronized rendering.

If N streams delivered through N distribution networks are decoded by a single

decoder that outputs a single stream, the synchronization at the frame level must be

done before the decoding process. In other words, the frames coming from N streams

must be processed by the decoder at the same time. Figure 5.1(a) illustrates this use

(a) Single video decoder for TS and DASH streams and frame-
accurate content synchronization before the decoding process.

(b) Video decoder for each TS and DASH stream and frame-
accurate content synchronization after the decoding process but
before the presentation.

Figure 5.1 – Use cases with a frame-accurate content synchronization.

116 5. Hybrid Streaming Services

case with one TS and DASH stream.

If the N streams are decoded by N decoders but only one stream is recomposed at

the end as depicted in Figure 5.1(b), the frame-accurate synchronization is done after

the decoding process but before the presentation. The only requirement in this case

is that the frames of the N streams must be displayed at the same time regardless

their decoding times.

Any delay between the frames coming from N streams may be a problem in the

decoding or in the rendering processes which can be noticeable in the playback and

result in a degradation in the quality experienced by viewers.

In live streaming, use cases that have less constraints in synchronization (e.g. Pic-

ture/Picture and audio descriptions) do not require a frame-accurate content syn-

chronization. The introduced delay between the frames of the N streams may not

deteriorate the viewer QoE if it is not too important.

� End-to-end latency

The final challenge in such hybrid scenario is that typical broadcast channels feature

a constant latency, usually lower than HTTP adaptive streaming solutions, including

DASH. Therefore, we aim at providing a novel DASH system with latency close

or lower to broadcast channels without introducing any additional buffers at the

broadcast chain.

5.3 Hybrid Delivery Proposed System

In this section, we present our proposed system that combines DASH streaming over

broadband with broadcast and uses two new functionalities, i.e. TEMI and the low end-to-

end latency live DASH system.

5.3.1 Timeline and External Media Information (TEMI)

TEMI [62] enables signaling and synchronization of external enhancements of contents

carried over MPEG-2 TS. Specifically, it enables transport of a media timeline in an

MPEG-2 TS content and signaling of the location of current and potentially upcoming

external media enhancements carried over a broadband channel.

In order to provide frame-accurate timeline alignments despite the potential PCR discon-

tinuities that typically occur in an MPEG-2 TS network, different types of time codes

can be inserted into the TEMI such as times relative to global clocks (e.g. NTP) or to

an external media clock (e.g. DASH). The TEMI information can be sent in a dedicated

PES stream identified in the Program Map Table (PMT), for cases where bandwidth

5.3. Hybrid Delivery Proposed System 117

requirements are not too constrained, or can be inserted in the adaptation field of TS

packets of a media elementary stream when the overhead of sending one TS packet per

time information would be too high.

The payload of a TEMI PES packet contains a single complete access unit composed of

one or several AF descriptors. AF descriptors are structures used to carry various features

of the timeline or other information; they all have a format which begins with an 8-bit tag

value that identifies the descriptor type (e.g. timeline and location descriptors). The tag

value is followed by an 8-bit AF descriptor length and data fields. Location descriptor is

used to signal the location of external data that can be synchronized with the TS content.

The timeline descriptor is used to carry timing information that can be used to synchronize

external data. AF descriptors of different types may be sent in different access units and

at different rates, and are independently decodable (all TEMI access units are therefore

random access points).

5.3.2 TEMI and Low End-To-End Latency Live DASH System

A low-latency DASH broadband channel is produced with the system described in Chapter

4. Additionally, an MPEG-2 system generates a multiplexed TS with the TEMI stream.

TEMI carries the HTTP URL of the MPD and the corresponding media time in the DASH

session.

When the broadband content to be synchronized with the broadcast is live content, i.e.

not entirely available at the beginning of the session, DASH requires the use of ’dynamic’

MPD as seen in Chapter 4, which implies accurate UTC clock at both server and client

sides in order to locate the live edge. As seen in Chapter 4, the live edge, i.e. the media

segment number ”i” in the period being produced at time UTC, can be computed as:

i =

⌊
UTC − (ASTMPD + periodStart)

ds

⌋
+ startNumber (5.1)

In hybrid delivery systems, the UTC timing can be obtained from the broadcast or

broadband environment.

On the first hand, most broadcast systems are designed to work on non-UTC synchronized

devices, and consequently most DTV receivers do not maintain a precise UTC clock. On

the second hand, in broadband systems, the accurate UTC timing configuration of both

server and clients may not be always satisfied: different, not accurately synchronized NTP

servers may be used by client and servers; or no NTP may be available at the client side.

The latest DASH standard allows embedding either an URL to fetch the specific time

server or directly the time value in the UTC timing element in the MPD. The client is

required to retrieve the time information before processing segments if an URL is indicated,

118 5. Hybrid Streaming Services

therefore introducing an additional delay. In order to avoid this, we propose to inject NTP

time used by the DASH origin server in the TS broadcast as shown in Figure 5.2, thereby

helping the client find the live edge unambiguously.

Figure 5.2 – Hybrid broadcast/broadband delivery proposed system.

The client is capable of receiving both TS and DASH streams through different delivery

networks. The MPEG-TS demultiplexer is in charge of demultiplexing the TEMI from

the TS stream as shown in Figure 5.2. Following that, it parses timeline and location

descriptors and notifies the client about available additional content and the timecode

corresponding to the current time in the MPEG-TS program (PCR). Based on the MPD

URL carried in the location descriptor, the client sends an HTTP request to fetch the

MPD file from the web server.

Figure 5.3 shows an example of the client reception of TS and DASH frames. A DASH

fragment is made of 5 frames and the availabilityTimeOffset (ATO) indicates the time at

which one fragment is available.

As shown in Figure 5.3, the client starts receiving the TS frames one by one. Based on the

NTP injected in some frames, the segment in which the desired frame (e.g. f1) is packaged

is computed using the Equation 5.1. Using the availabilityTimeOffset (ATO), the client

waits for the movie fragment of that computed segment to be ready and makes the request.

The DASH frames are received at once as they are packaged in one fragment. As shown

in Figure 5.3, the DASH frames are received after the TS frames. Hence, the reception

time of a DASH frame minus the reception time of the same frame from the TS is positive.

However, some TS frames could arrive later than the DASH frames if the TS propagation

time would be longer than the request/response transmission delay on the broadband

network. Note that this behavior assumes that the DASH and TS encoders are perfectly

synchronized.

5.4. Evaluation 119

Figure 5.3 – Client reception of TS and DASH frames.

5.4 Evaluation

5.4.1 System Implementation

For the evaluation of our proposed hybrid delivery system, we consider the use case of

multi-resolution content (scalable content). It consists in an HEVC encoded video at HD

resolution broadcasted as MPEG-2 TS to be synchronized with an SHVC video enhancement

layer at 4K resolution encapsulated in a DASH presentation.

In the following, we present the scalable content generation procedure, the test-bed archi-

tecture as well as the settings of each network.

5.4.1.1 Content Generation

We used an HEVC stream with one enhancement layer as input encoded bitstream to

generate the contents to be delivered over broadband and broadcast networks:

1. import the video stream in an ISOBMFF file, with one track per layer:

MP4Box -add input video 3840x1600.hevc:fps=24:svcmode=splitnox:noedit -new video 3840x1600.mp4

2. Create an ISOBMFF file containing only the base layer at HD resolution (HD HEVC):

MP4Box -add video 3840x1600.mp4 -new video 1920x800.mp4

3. Create an ISOBMFF file containing only the enhancement layer at 4K resolution

(UHD SHVC):

MP4Box -rem 1 video 3840x1600.mp4

120 5. Hybrid Streaming Services

5.4.1.2 DASH over Broadband Network

A low latency DASH system is in charge of delivering the SHVC enhancement video layer

over the broadband network with the system described below and composed of the following

open-source tools, developed within GPAC1:

� Live DASH encoding simulator and packager

It uses as input an already encoded video, i.e. an SHVC enhancement layer stored

in an MP4 file. It packages and divides the stream into ISOBMFF compliant movie

fragments. To simulate a real-time live, MP4Box is configured to flush each fragment

to disk at the end of its duration using the ”-frag-rt” operation. This ensures that

the client cannot get any future fragment ahead of time. It also produces the MPD

describing the service.

The exact command line for creating the DASH session for the scalable stream is

provided below:

MP4Box -dash-live 1333 -frag 208 -frag-rt -min-buffer 208 -insert-utc -segment-marker

eods -profile live -segment-name segment -out manifest.mpd -mpd-refresh 20 -ast-offset

-1125 video 3840x1600.mp4

The input scalable video has the following characteristics: a duration of 12min13s, a

GoP length of 32 frames, and a frame rate of 24 fps. We have configured MP4Box to

produce segments of one GOP (1333 ms). We obtained 550 segments for the whole

video duration. Each media segment is divided into multiple movie fragments of 5

frames each (208 ms) except the last one which is made of two frames. We obtained

7 fragments per segment.

We set the availabilityTimeOffset (ATO) value in the MPD to 1125 ms which

corresponds to the time at which one fragment is available. Thus, a client is aware

that a fragment of the segment is available earlier than the segment to make a request.

� HTTP/1.1 compliant server 2

The HTTP server is the same ISOBMFF-aware web server used in Chapter 4. It

is used to deliver both the MPD and ISOBMFF media segments. To achieve low

latency, the server detects when new movie fragments are flushed on disk and pushes

them immediately to client using HTTP/1.1 Chunked-Transfer encoding mechanism.

1https://gpac.io/
2https://github.com/gpac/node-gpac-dash

5.4. Evaluation 121

5.4.1.3 Broadcast Channel

A broadcast channel is simulated by the use of an IP multicast delivery of an MPEG-2

Transport Stream (TS), generated from the base HEVC layer. The MPEG-2 TS PCR

information is randomly initialized at startup to demonstrate synchronization aspects. The

TS stream is enriched with location (i.e. the HTTP URL of the DASH session) and timing

information (i.e. UTC time and PCR-to-DASH-time mapping) that are signaled using

TEMI.

We start the multicast stream using the following command line:

MP42TS -src video 1920x800.mp4 -single-au -dst-udp 239.255.0.1:1234 -temi-noloop -temi

<MPD URL> -ifce <IP address server> -insert-ntp -rate 10000

5.4.2 Experiments and Results

In order to validate our hybrid approach, we have conducted an experiment to measure

the buffer length and the arrival time of each frame from both MPEG-2 TS and DASH

streams.

Figure 5.4 represents the buffer length of both streams at the client side. The buffer length

is measured in both cases as the media time of the frame received last minus the media time

of the frame currently being played. We can see that at t=0 s the client starts receiving

the TS frames and the buffer is filling up progressively until it reaches about 680 ms per

configuration. After that, the buffer length remains constant because after each played

frame a new frame is received.

At t=1.8 s approximately, the client starts receiving and buffering the DASH movie

Figure 5.4 – Buffer length of MPEG-2 TS and DASH streams.

122 5. Hybrid Streaming Services

fragments. First, we can see that the DASH buffer length starts at a value of 468 ms,

meaning that the received frame is meant to be played after 468 ms. This means that the

DASH client is not fetching the live edge, but it is fetching DASH frames that have media

times compatible with what the TS buffer contains. This guarantees synchronization. Then,

we can see the 5 frames of a fragment are received at the same time (vertical lines), and

the last frame of the fragment is meant to played after 675 ms.

We can see on the figure that sometimes the DASH buffer length graph is above the TS

buffer length graph. This means that some DASH frames arrive before the TS frames. As

explained in Section 5.3.2, in theory, DASH frames arrive after TS frames excpet if the

TS propagation time is longer than the HTTP request/response transmission delay. In

our experiment, we started the TS and DASH sessions, i.e. MP4Box, MP42TS and the

web server, at the same time. Based on the obtained results, we realize that the DASH

generator is started a few milliseconds before the MP42TS. This can explain the DASH

frames that are received before the TS frames.

Based on the results, we realize that we could set the broadcast buffer length to 212 ms

(i.e. 680 - 468 = 212 ms) instead of 680 ms since the minimum value of the DASH buffer is

468 ms. However, in OTT networks, these 468 ms of supplemental buffer can be used to

deal with the jitter.

Additionally, in our experiments on a LAN, the TS packet delivery time and the HTTP

request/response times are both negligible. In practice, if the TS packet delivery time (e.g.

via satellite) is larger than the request/response times, this additional TS buffer could even

be removed but this remain to be investigated.

Figure 5.5 represents a screenshot of MP4Client receiving and playing the TS and DASH

streams. With the GUI mode, we can see the client statistics such as the bandwidth, the

buffer level, the framerate, and the CPU.

Figure 5.5 – Screenshot of MP4Client in the GUI mode.

5.5. Conclusion 123

5.5 Conclusion

Hybrid delivery of media content allows providing additional and customized content

on the broadband network, synchronized to the content delivered over the broadcast

channel. Extending broadcast services with HTTP streaming solutions requires accurately

synchronizing data from both channels, possibly at the frame level (e.g. for scalable

enhancement) introducing no or small additional buffers and latency. In this chapter, we

have proposed to use TEMI to locate and synchronize external DASH content with MPEG-2

TS content. We have demonstrated a low latency DASH system for both broadband and

hybrid broadcast/broadband delivery chains, based on open source tools and standards

for a multi-resolution content usage scenario. Our proposed hybrid delivery system has

been implemented and validated in local networks. In future work, we plan to examine how

such system will behave in real content delivery networks, and if the network bandwidth

variations on the broadband system can delay the DASH stream compared to TS and

hence impact the synchronization of both streams and the buffering requirements on the

broadcast chain.

The work presented in this chapter has been resulted in one paper published and

demonstrated in the ACM 23rd International Conference on Multimedia (ACM MM) in

2015 [63].

124 5. Hybrid Streaming Services

Chapter 6

Conclusion & future work

Contents

6.1 Thesis objectives . 125

6.2 Summary . 125

6.3 Perspectives . 127

6.1 Thesis objectives

The purpose of this thesis was to introduce and develop new solutions to achieve fast live

DASH streaming startup, low latency live DASH content delivery, and hybrid delivery of

broadcast and broadband contents (i.e. DASH and MPEG-2 TS contents). Three main

contributions have structured this thesis:

� The proposal and the evaluation of different methods for reducing the startup delay,

specifically the bootstrap delay in live DASH.

� The development and the evaluation of a complete novel low latency live DASH

system.

� The synchronized combination of the broadband and broadcast contents.

6.2 Summary

In this section, we summarize our major contributions and the key results of this thesis

while citing the limitations.

126 6. Conclusion & future work

Fast DASH Bootstrap

Our first contribution in this thesis is related to the improvement of the bootstrap phase

of DASH. It aims at reducing the bootstrap delay in live DASH. The first step was to

analyze existing DASH client bootstrap strategies in terms of number of TCP connections,

number of HTTP requests/responses and the associated bootstrap delay. The results of

this analytical evaluation reveal a need for exploring and designing new methods in which

the bootstrap phase should not require multiple round-trips between the client and the

server. Our proposed methods use a single HTTP response and HTTP request to retrieve

the necessary information (i.e. MPD and initialization data) to start the initial playback.

The idea of our main method ”ISOBMFFMoov Embedding” is to rely on the MPD to carry

the additional IS when creating the HTTP response for the MPD request.

The results show that the total download size when using our method over HTTP/1.1 and

HTTP/2 respectively is reduced by an average of 25% and 21% compared to the HTTP/1.1

persistent approach without pipelining and the HTTP/2 push method. Furthermore, we

show a gain of 2 RTTs in HTTP/1.1 and no penalty when using HTTP/2. This suggests

that our method can be valuable even during the transition phase to HTTP/2. More

interestingly, our method over HTTP/2 is more efficient than HTTP/2 server push in

terms of the amount of data being downloaded. We show that reducing the bootstrap delay

is critical to reduce the startup delay when the buffering delay is small which is the scope

of our second contribution. Our method is generic and can be applied to HTTP adaptive

streaming solutions. Additionally, it is compatible with the existing caching and delivery

infrastructure.

Low latency live DASH system

This second contribution is designed for interactive or bidirectional applications such as

video conferencing and live streaming, or for hybrid delivery scenarios. Our contribution

consists in proposing a complete novel low latency live DASH system. It aims at reducing

the end-to-end latency, specifically the segmentation delay that we have identified as the

greatest latency contributor in live DASH compared to traditional delivery systems. The

proposed model is able to achieve low latency based on the HTTP/1.1 Chunked-Transfer

Encoding mechanism and on a specific packaging using the ISOBMFF movie fragments.

With this system, we validated our approach for very low end-to-end live latency streaming

in local networks, with latency in the order of 100 ms and an overhead of 0.6% approximately

for a fragment being only one frame. We manipulate here the live video streams at the

frame scale. Our system does not consider any structure within the frame because it relies

on the ISOBMFF packaging format that does not allow the fragmentation at the frame level.

6.3. Perspectives 127

This system is quite successful already because it is being deployed by several companies.

Hybrid broadcast/broadband delivery system

Hybrid delivery is one of the multimedia applications that require a low latency delivery.

Our contribution consists in using broadcast and broadband delivery services and synchron-

izing streams with frame-level accuracy. In other words, a basic content is delivered over

traditional broadcast channels and is enhanced with an additional content which is de-

livered over unicast IP using DASH. Synchronization of both contents as they are delivered

through different distribution networks and keeping the client buffering requirements on

the broadcast link low were our two challenges. To overcome these problems, we proposed a

model that uses the above low latency DASH system and TEMI to locate and synchronize

external DASH content with MPEG-2 TS content. Through experiments, we demonstrated

that this model provides synchronization with or no small additional buffers.

6.3 Perspectives

At the time of concluding this manuscript, several interesting perspectives can be proposed

to continue the work done in this thesis. Interesting extensions to improve the performance

and other research directions in the context of video streaming adaptation are listed below.

� We manipulate the live video streams at the frame scale, i.e. the ISOBMFF packager

is limited to produce fragments from the frame level. Enabling the packaging of small

parts of a frame could be needed in low latency services.

� Another interesting research topic could be the examination of how such low latency

system will behave in real content delivery networks. Until now, the DASH client was

directly connected to the web server in a local network. A CDN has clever rerouting,

redirection and caching mechanisms which can influence the delivery of a fragment

to the client. Early experimentations show that our system behaves well, but further

investigations are needed.

� In the current experiments, our fast DASH bootstrap proposal is only compared to

the HTTP/2 server push method. It could be useful to compare it to other HTTP/2

mechanisms as such as the full request and response multiplexing.

� Switching has not been part of our research in this thesis but it is the next phase

of a DASH client after the bootstrap and stable phases. We could investigate a fast

switching process to our low latency live DASH system. In HTTP adaptive streaming,

a client can only switch at the end of segment because switching in the middle of

128 6. Conclusion & future work

segment requires at worse double download and decoding (as explained previously

in Chapter 2). A client is constrained to wait the end of segment to switch. This

waiting time for switching becomes even more significant when long media segments

are used. A solution could be to use the RAPs contained in a segment as switching

points. Thus, the client is able to switch within a segment at each GoP.

� Studying the impact of our low latency system on other recent use cases such as

Virtual Reality (VR) applications, especially 360 VR videos is interesting. Adaptive

360 VR live video streaming presents many technical challenges including the end-to-

end latency delivery and switching latency. Combining our low latency system with a

new fast switching process may improve the viewer experience.

Annex A

Résumé en Français

A.1 Introduction

Le développement de l’industrie multimédia, l’évolution des systèmes de diffusion vidéo

et l’émergence de différents périphériques d’affichage vidéo ont créé un grand nombre

d’applications multimédia, y compris le streaming vidéo. Le streaming vidéo qui ne cesse

de gagner en popularité a entrâıné une augmentation des volumes de contenu vidéo.

Aujourd’hui, le streaming vidéo correspond à 64% de la majorité du trafic Internet. On

s’attend à ce qu’il atteigne 80% d’ici 2019. Cette demande croissante pour les services vidéo

a changé les attentes des utilisateurs par rapport à la qualité.

Le streaming vidéo Over-The-Top (OTT) est devenu le moyen le plus rentable pour la

diffusion de vidéos car il s’appuie sur le réseau Internet non managé. La diffusion OTT offre

une liberté de visualisation car elle n’est pas limitée uniquement au PC, mais elle s’étend

à tout périphérique connecté, par exemple TV, consoles de jeux, smartphones, tablettes,

etc. Les utilisateurs peuvent bénéficier de la vidéo à la demande (VoD) et des services de

streaming en direct (live) fournis par OTT. Le streaming live est plus populaire que la

VoD, en particulier pour regarder des émissions de sport en direct dans le cas d’événements

mondialement populaires.

La qualité d’expérience des services de streaming OTT en direct est généralement com-

parée à la qualité des systèmes de broadcast traditionnels tels que les systèmes numériques

par câble, terrestre, satellite, et les réseaux IPTV. Dans les déploiements actuels, le stream-

ing OTT en direct souffre de latences beaucoup plus élevées, généralement de quelques

secondes jusqu’à une demi-minute par rapport aux services de broadcast. Cette latence est

définie comme étant le délai entre le moment où l’événement survient et le moment où il

est joué. Elle devient une problématique quand un utilisateur regarde un évènement en

direct (e.g. un match de foot) sur son ordinateur et il entend ses voisins qui regardent le

130 A. Résumé en Français

même évènement à la télévision applaudissant le but marqué avant qu’il le voit sur son

écran. Dans ce cas, cet utilisateur peut rapidement savoir qu’il y a un problème de latence.

Il est donc susceptible de passer à d’autres systèmes de streaming pour qu’il soit proche du

live. En conséquence, la latence devient ainsi un facteur important qui affecte la qualité

globale vécu par les utilisateurs.

Un autre type de problème de latence dans le streaming OTT en direct est le délai de

démarrage. Ce dernier est la différence de temps entre le moment où un utilisateur clique sur

le bouton ”Play” et le moment où la vidéo commence à jouer. En d’autres termes, le délai de

démarrage est le temps nécessaire pour télécharger et buffériser toutes les informations et

les données média nécessaires pour démarrer la session de streaming vidéo. Les utilisateurs

sont très impatients et moins tolérants aux démarrages lents dans les services de streaming

en direct par rapport à la VoD [4].

En outre, le streaming à très faible latence est nécessaire pour les applications interactives

ou bidirectionnelles telles que la vidéoconférence, le vidéo gaming, ou la télémédecine. Telles

applications sont caractérisées par des contraintes de délais très strictes. Un autre cas

d’utilisation où la faible latence est importante est le scénario de streaming hybride où

les réseaux broadband et broadcast sont combinés pour améliorer et enrichir le service

de broadcast avec des services variés par exemple rajouter et envoyer des sous-titres,

langage des signes, audio avec plusieurs langues, via le réseau broadband. La latence

du système broadband devrait être inférieure à la latence des systèmes broadcast pour

la capture/génération en direct. Dans le cas contraire, des buffers supplémentaires sont

nécessaires pour synchroniser le contenu broadcast avec le contenu broadband.

Ces dernières années, le streaming adaptatif sur HTTP est apparu comme la technologie

de choix pour la diffusion des services OTT. Il permet une adaptation dynamique de la

qualité de la vidéo à la bande passante variée du réseau et aux capacités des périphériques

du client. Une nouvelle norme appelée MPEG Dynamic Adaptive Streaming over HTTP

(DASH) a été développée et est utilisée dans le monde entier [1]. Certains travaux de

recherche ont été proposés pour réduire les latences énumérées ci-dessus, dans le streaming

adaptatif sur HTTP. Cependant, la latence est toujours dans l’ordre des secondes.

L’objectif de cette thèse est de proposer de nouvelles approches pour réduire le délai

de démarrage ainsi que la latence de bout en bout observée par les utilisateurs lors de

l’utilisation du streaming DASH live. Nous ciblons une latence très faible, c’est-à-dire une

latence dans l’ordre des trames (par exemple moins de 200 ms).

Dans ce résumé, nous présentons nos contributions pour le streaming vidéo en direct

utilisant DASH. Nous décrivons premièrement nos approches liées à l’amélioration du

démarrage de la session du streaming DASH en direct. Ensuite, nous présentons nos

solutions pour réduire la latence de bout en bout d’un système DASH en direct. Après,

A.2. Contributions 131

nous exposons nos contributions sur l’application de distribution hybride. Enfin, nous

conclurons ce résumé.

A.2 Contributions

Cette thèse présente des contributions liées aux services de streaming vidéo en direct

utilisant DASH. Nous les avons organisés en trois thèmes: démarrage, distribution et

applications.

A.2.1 Réduction du Délai de Démarrage en DASH Live

Dans ce domaine, nous avons examiné les causes possibles de délai dans la phase de

démarrage d’une session DASH et nous avons proposés deux contributions.

A.2.1.1 Évaluation des Stratégies de Bootstrap du Client DASH

La première contribution consiste à évaluer différentes stratégies qu’un client DASH

peut utiliser pour démarrer une session de streaming vidéo. L’évaluation analytique est

fâıte en termes de nombre de connexions TCP, nombre de requêtes/réponses HTTP et de

délai de bootstrap associé. Nous avons trouvé que le délai de bootstrap dans toutes les

stratégies est dominé par la composante RTT influencée par le nombre de connexions TCP

et le nombre de requêtes, et par le temps de téléchargement des ressources dans la phase

slow start. En se basant sur cette évaluation analytique, le délai de bootstrap minimal

utilisant HTTP/1.x est obtenu à l’aide d’une connexion TCP persistante avec pipelining.

Cependant, cette stratégie n’est pas largement supportée par les serveurs web et souffre

encore d’un grand nombre de RTT dû principalement au nombre de requêtes/réponses

HTTP.

Pour nos expérimentations sur HTTP/1.x, nous utilisons uniquement la connexion TCP

persistante sans pipelining car elle est la stratégie la plus utilisée et supportée par les

serveurs web. Les avantages de notre approche proposée seraient les mêmes par rapport à

l’approche de pipelining.

A.2.1.2 Amélioration de la Phase Bootstrap en DASH Live

La seconde contribution comporte trois méthodes (i.e. Base64 IS Embedding, Multipart

Content Embedding, ISOBMFFMoov Embedding) pour réduire le délai de démarrage,

plus spécifiquement le délai de bootstrap en DASH live. Les méthodes proposées ont

132 A. Résumé en Français

été conçues pour ne pas avoir d’impact négatif sur les infrastructures existantes (caches

et serveurs web). Elles sont basées sur l’idée que la phase de démarrage d’une session

DASH ne devrait pas nécessiter de multiples RTTs entre le client et le serveur. Elles

consistent à utiliser une seule requête HTTP et une réponse HTTP pour récupérer les

informations (MPD et IS) nécessaires pour démarrer la session vidéo. La première requête

HTTP effectuée par le client DASH pour récupérer le MPD n’est pas modifiée, mais la

réponse envoyée par le serveur d’origine est modifiée. La création de cette réponse HTTP est

de s’appuyer sur le MPD pour transporter les ressources IS. Cela peut se faire de trois façons.

1. Base64 IS Embedding

Le principe de cette méthode est d’encoder le fichier binaire IS en ASCCI en utilisant

l’encodage Base64. On met ensuite l’IS encodé dans l’attribut ”initialization” du MPD

en utilisant ”data URI shceme” 1. Figure A.1 montres un exemple du fichier MPD

intégrant des IS encodés en Base64. L’avantage de cette méthode est sa compatibilité

avec le standard DASH. L’inconvénient est qu’elle rajoute un overhead de 33%.

Figure A.1 – Base64 IS embedding in MPD.

2. Multipart Content Embedding

Dans DASH, chaque réponse HTTP contient une seule entité dans son corps. Notre

deuxième méthode proposée consiste à la combinaison de différentes entités de types

de données indépendants (MPD et IS) dans le corps unique de la réponse HTTP, en

utilisant le type de média ”HTTP/1.1 multipart”. Pour répondre à la requête HTTP

1http://tools.ietf.org/rfc/rfc2397.txt

A.2. Contributions 133

faite par le client DASH pour récupérer le MPD, le serveur devrait envoyer plusieurs

parties (MPD et IS) dans le corps de la réponse HTTP. Dans notre approche, nous

avons utilisé le sous-type ”multipartite/mixte” vu que les différentes parties (MPD

et IS) sont indépendantes. Comme le montre la Figure A.2, nous avons ajouté des

en-têtes HTTP dans chaque début de partie, y compris l’en-tête ”content-type” pour

donner le type de média de ce contenu, ”content-length” pour spécifier la longueur en

octets de chaque partie, ”content-disposition” pour nommer chaque partie avec un

nom correspondant dans le MPD, et ”content-transfer-encoding” pour indiquer quel

type de transformation a été appliqué à la partie.

Figure A.2 – ”Multipart/mixed” content-type of MPD and IS entities.

Dans la méthode Base64 IS embedding, seuls les IS en Base64 sont intégrés dans le

fichier MPD pour constituer le corps de la réponse HTTP. Dans la méthode Multipart

content embedding, le corps de la réponse HTTP est un ensemble de parties (MPD

et Base64 IS), et pour chaque partie, plusieurs en-têtes HTTP sont ajoutés. Par

conséquent, cette dernière méthode introduit plus d’overhead que la première. Dans

toutes nos évaluations, la méthode multipart est exclue.

3. ISOBMFFMoov Embedding

En examinant de plus près le problème, il semble que la plupart des informations

utiles présentes dans l’IS sont aussi présentes dans le MPD. Le principe de notre

troisième méthode consiste à ajouter au MPD les informations nécessaires pour

reconstruire l’IS du côté client à partir de ce MPD uniquement. Pour cela, nous avons

analysé le MPD et l’IS de différents contenus et nous avons identifié les informations

134 A. Résumé en Français

manquantes.

A partir de cette analyse, nous avons introduit un nouveau élément ”ISOBMFFMoov”

dans le MPD comme le montre la Figure A.3. Cet élément contient les informations

suivantes:

� Configuration de décodeur (Stsd) en Base64

� Information de synchronisation entre pistes (Edit list)

� Identifant de piste si fichiers multiplexés (Track ID)

Figure A.3 – ISOBMFFMoov Embedding in MPD.

A.2.1.3 Expérimentations et Résultas

Base64 IS Embedding et ISOBMFFMoov Embedding ont été les deux approches que

nous avons évaluées dans nos expériences. Nous avons mesuré et comparé la taille totale

du téléchargement et le délai de bootstrap de notre proposition à plusieurs approches

existantes. Ces mesures ont été réalisées sur deux réseaux différents (ADSL et mobile 3G)

et en utilisant deux versions du protocole HTTP (HTTP/1.x et HTTP/2).

Nous avons d’abord mesuré la taille du MPD et de l’IS audio et vidéo pour chaque

séquence. Tableau A.1 rapporte les tailles maximales, moyennes et minimales des tailles

MPD et IS. Nous pouvons voir d’abord que ce sont des ressources de petite taille. Nous

pouvons noter que la taille du MPD varie entre 1 kilooctet et 6 kilooctets. La taille de l’IS

vidéo est comprise entre 600 et 900 octets, tandis que la taille de l’IS audio varie entre 600

et 800 octets.

A.2. Contributions 135

Sequence
Number

MPD Size (Byte) IS Audio Size (Byte) IS Video Size (Byte)

Maximum 5768 776 848

Average 2998 755 824

Minimum 1482 615 687

Table A.1 – MPD and IS sizes of 33 sequences.

Nous avons calculé ensuite la taille totale du téléchargement de chaque séquence lorsque

nous utilisons nos deux méthodes (Base64 IS embedding, ISOBMFFMoov embedding), i.e.

la taille du MPD généré plus la taille de l’en-tête HTTP de la réponse MPD. Nous avons

comparé ces résultats avec la taille totale du téléchargement en utilisant une connexion

TCP persistante sans pipelining lorsque:

� NC
IS est maximal (i.e. égal à M) tel qui est implémenté par le player GPAC.

� NC
IS est minimal (i.e. égal à N) tel qui est implémenté par le player Dash-JS.

La Table A.2 représente pour chaque méthode la taille totale du téléchargement de 33

séquences.

Sequence
Number

NC
IS=M (GPAC) NC

IS=N (Dash-JS) MPD Base64 IS MPD ISOBMFFMoov

Maximum 11514 8858 10615 7047

Average 8793 6168 7866 4313

Minimum 5538 4331 4974 2731

Table A.2 – Total download size (MPD, IS video, IS audio, and HTTP response headers) of 33
sequences for each method over HTTP/1.1 using a DASHIF server.

Nous avons remarqué que la taille totale de téléchargement est faible dans toutes les

approches (inférieur ou égale à 12 kilooctets).

Nous avons noté aussi que la taille totale est supérieure quand on télécharge tous les IS

séparément (tel que est implémenté dans GPAC player) par rapport à un téléchargement

minimum (tel que est implémenté dans Dash-JS).

Nous avons montré aussi que la taille totale est inférieure quand on télécharge les IS en

base64 par rapport au téléchargement séparé des IS.

Nous avons montré aussi que la taille totale est réduite dans notre méthode ”ISOBMFFMoov

embedding” de 36% par rapport à la méthode qui télécharge un minimum d’IS séparément

sur HTTP/1.1.

En outre, nous avons montré que la taille totale de téléchargement est diminuée d’une

moyenne de 21% dans notre méthode ”ISOBMFFMoov embedding” sur HTTP/2 par

rapport à la méthode qui utilise le serveur push sur HTTP/2.

136 A. Résumé en Français

Nous avons comparé, en termes de délai de bootstrap, notre approche basée sur

”ISOBMFFMoov” d’abord à la méthode utilisant la connexion TCP persistante sans

pipelining sur HTTP/1.1, puis à l’approche utilisant le serveur push sur HTTP/2.

Pour la stratégie persistante, nous avons mesuré en utilisant ”Google Chrome Network

Panel” le temps écoulé entre le moment où le player Dash-JS établit une connexion TCP

pour demander le MPD du serveur web et le moment où il reçoit le dernier octet du dernier

IS. Le temps de traitement du MPD par Dash-JS tel que rapporté par Chrome est déduit

dans cette mesure. De plus, nous avons également mesuré le temps de téléchargement du

MPD lors de l’utilisation de notre approche ”ISOBMFFMoov”.

Les Figures A.4 et A.5 montrent ces mesures lorsque les téléchargements ont été faits sur

un réseau Ethernet, en utilisant HTTP/1.1 et HTTP/2, avec des init cwnd variables (3 et

10 segments TCP). Elles montrent un gain de 2 RTT dans HTTP/1.1 et presque aucune

pénalité lors de l’utilisation de HTTP/2 dans un réseau DSL avec le serveur push.

Figure A.4 – Bootstrap delay measured for the ISOBMFFMoov-based approach and persistent
TCP connection without pipelining approach over HTTP/1.1.

Figure A.5 – Bootstrap delay measured for the ISOBMFFMoov-based approach and persistent
TCP connection without pipelining approach using a server push over HTTP/2.

A.2. Contributions 137

Dans un réseau mobile, nous avons montré un gain de 1 seconde ou plus lors de l’utilisation

de notre approche ISOBMFFMoov par rapport à la stratégie de connexion TCP persistante

sans pipelining.

Figure A.6 – Average bootstrap delay measured for the ISOBMFFMoov-based approach and per-
sistent TCP connection without pipelining approach using a 3G mobile network.

A.2.2 Réduction de la Latence en DASH Live

En ce qui concerne cette catégorie, une analyse de la latence des services de streaming en

direct utilisant DASH a été présentée. Cette analyse indique que le composant principal

induisant une latence supplémentaire par rapport aux autres systèmes de streaming était

le processus de segmentation. Notre contribution principale consiste à proposer un nouveau

système de streaming en direct à faible latence utilisant DASH.

A.2.2.1 Proposition du Système DASH Live à Faible Latence

Nous avons proposé une nouvelle méthode pour réduire la latence de bout en bout, en

particulier le délai de segmentation en DASH live. Le principe de cette solution consiste à

utiliser une unité de transfert différente et plus petite que le segment tout en maintenant le

segment comme un élément de téléchargement dans les requêtes HTTP, notamment pour

le cache.

Pour cela, nous avons utilisé une nouvelle organisation interne de segment média, telle

qu’elle est décrite dans la Figure A.7. Chaque segment média est divisé en plusieurs petites

parties appelées ”movie fragments” de manière à pouvoir être analysé indépendamment. En

utilisant le mécanisme ”Chunked-Transfer Encoding” de HTTP/1.1, le serveur web peut

commencer à pousser ces fragments au client sous la forme de chunks avant la fin de la

production du segment. Avec cette solution, l’overhead provient donc de la fragmentation

138 A. Résumé en Français

Figure A.7 – Structure of an ISOBMFF media segment with multiple movie fragments.

supplémentaire et du chunking. En plus, la latence peut être réduite à la durée d’un

fragment.

Cependant, le client doit faire sa requête pour le segment avant la fin de sa production.

Pour résoudre ce problème, on a proposé d’introduire un nouvel attribut ”Availability

Time Offset” au niveau de la représentation dans le MPD. L’ATO indique le moment où

un ou plusieurs fragments sont disponibles au niveau du serveur ce qui permet au client

d’envoyer ses requêtes plus tôt. Si l’ATO est choisi pour correspondre au moment où le

premier fragment est entièrement produit, la latence de packaging peut être réduite à la

durée d’un fragment.

L’availability time offset (ATO) du segment média ”i” est exprimé dans l’Équation A.1:

ATOi = ASTi − (ASTi − ds + dc) = ds − dc (A.1)

La Figure A.8 montre la relation entre ”AvailabilityStartTime” du segment ”i” (ASTi),

”availabilityTimeOffset” (ATOi), la durée du segment (ds) et la durée du fragment (dc).

Figure A.8 – Determination of the availability time of a media fragment in DASH.

La procédure que le client utilise pour émettre une requête HTTP pour le segment média

le plus récent une fois qu’un fragment ou plus est disponible sur le serveur web est comme

suit.

1. Lorsque le client se connecte au flux live, il demande d’abord le MPD du serveur

Web. Le MPD peut être généré à la volée ou peut avoir été généré auparavant.

A.2. Contributions 139

2. Outre la description des représentations et des informations sur les URL des segments,

le MPD pour les sessions en direct doit contenir des champs clés supplémentaires

tels que le champ type défini sur ”dynamic” ainsi que le champ availabilityStartTime.

Nous indiquons aussi dans le MPD quand un fragment ou plus est disponible sur le

serveur web à travers l’attribut availabilityTimeOffset (ATO).

3. Le client sélectionne ensuite la représentation appropriée en fonction de la qual-

ité/bande passante décrite pour commencer à demander les segments média associés.

Lorsque le MPD est dynamique, le client doit déterminer précisément le dernier

segment média disponible.

4. Après avoir calculé le numéro du dernier segment média ”i” et utilisé la valeur ATO,

le client attend que les movie fragments de ce segment soient prêts et effectue la

requête.

5. Chaque segment média contient #n movie fragments. Le serveur est capable d’envoyer

les fragments plus tôt, au mieux dès qu’il a été complètement généré, en utilisant des

chunks HTTP/1.1.

6. Le client est capable de consommer toute réponse partielle reçue (i.e chunks) avant la

réception de toutes les parties. En particulier, chaque chunk (i.e. les bôıtes ”moof” et

”mdat”) peut être analysé et mis en file d’attente pour la lecture même si le segment

complet n’est pas encore reçu.

A.2.2.2 Expérimentations et Résultats

Afin de valider notre approche, nous avons effectué deux types de mesures.

1. Mesures d’overhead

L’overhead totale de notre approche peut être décomposé en: overhead introduit par

le packaging des trames encodées dans des fragments ISOBMFF et overhead introduit

par le téléchargement de ces fragments sur HTTP/1.1 en tant que chunks.

Le packaging ISOBMFF utilisé dans notre système de streaming DASH introduit un

overhead qui peut être aussi décomposé en: un overhead initial dû au packaging des

trames média encodés dans le format structuré d’ISO; et un overhead supplémentaire

dû à la fragmentation requise dans DASH. Nous avons montré que le processus de

fragmentation de DASH est le principal contributeur à l’overhead totale. L’overhead

introduit par le simple stockage des trames encodées dans le format d’ISO ainsi que

par la distribution de HTTP/1.1 Chunked Encoding sont négligeables.

140 A. Résumé en Français

Figure A.9 – Overhead introduced by the ISOBMFF fragmentation.

La Figure A.9 montre les résultats pour la séquence Big Buck Bunny, avec l’overhead

calculé par rapport à la séquence non fragmentée. Elle montre que pour 3 trames

par fragment, l’overhead est inférieur à 4% pour toutes les résolutions et débits. Plus

intéressant, l’overhead maximal qui peut être atteint lors de l’utilisation d’une trame

par fragment pour les résolutions classiques (SD Et plus) est 1%, ce qui est inférieur

quand on utilise RTP.

2. Mesures de latence

Pour expérimenter l’approche proposée, nous avons conçu et implémenté un système

de streaming DASH complet basé sur trois fonctions principales: la préparation du

contenu, la distribution du contenu, le décodage et l’affichage du contenu.

Premièrement, nous avons mesuré la latence de la sortie d’encodeur à l’entrée du

décodeur comme le montre la Figure A.10.

Avec 25 trames par seconde, le fragment de 200 ms contient 5 trames et le segment de

2 s comprend 50 trames. Avec cette configuration (5 trames par fragment), l’overhead

de la fragmentation est de 0,2% comme montré précédemment dans la figure A.9. La

latence mesurée est de l’ordre de 160 ms.

A.2. Contributions 141

Figure A.10 – Inner-chain latency measurements for live streaming service.

Deuxièmement, nous avons mesuré la latence de la capture à l’affichage comme le

montre la Figure A.11.

Figure A.11 – End-to-end latency measurements for live streaming service.

La latence totale est de l’ordre de 100 ms pour un fragment contenant une seule

trame. Elle est approximativement 225 ms pour un fragment contenant 5 trames.

Grâce à ces résultats, nous avons validé que notre méthode est capable d’obtenir

une latence très faible. Dans le cadre de travaux futurs, nous prévoyons d’examiner

comment ce système à faible latence se comportera dans des CDN, et d’évaluer

davantage notre proposition avec plusieurs players et des phases de switching. En

outre, nous prévoyons de mesurer la latence dans les services de streaming interactif

en temps réel. Enfin, nous pourrions étudier la méthode qui inverse les bôıtes ”moof”

et ”mdat” dans la structure du segment média et vérifier si la latence est encore plus

réduite que la méthode typique.

142 A. Résumé en Français

A.2.3 Les applications en DASH Live

La distribution hybride est l’une des applications multimédia qui nécessitent une distribution

à faible latence, en particulier sur le réseau broadband. Elle permet de fournir un contenu

supplémentaire et personnalisé sur le réseau broadband, synchronisé avec le contenu

distribué sur les réseaux broadcast.

La diffusion d’un contenu vidéo sur des réseaux hybrides présentent quelques problèmes

tels que :

� L’emplacement du flux broadband

En diffusion hybride, lorsqu’un client se connecte au flux broadcast, il doit localiser

le flux vidéo externe sur le réseau broadband. Par exemple, si DASH est utilisé, on a

besoin de l’URL du MPD.

� La corrélation de temps broadcast et broadband

Vu que les deux réseaux sont indépendants il peut y avoir des manipulations sur les

timestamps dans un réseau, et en particulier dans le réseau broadcast.

� La latence totale

Le réseau broadcast a une latence constante, et relativement plus faible que la latence

des solutions de streaming adaptatif sur HTTP dont DASH. Notre but est de fournir

un système DASH avec une latence proche ou inférieure à celle de broadcast.

Notre approche proposée assure deux fonctionnalités: la synchronisation des deux contenus

fournis par les différents réseaux de distribution et un buffer du client faible sur le réseau

broadcast. Notre système s’appuie sur deux outils:

� TEMI qui est un outil de la norme MPEG-2 TS qui a été développé par notre équipe.

Cet outil permet de localiser, synchroniser le contenu DASH externe avec le contenu

MPEG-2 TS et aussi synchroniser le client et le serveur web à travers une horloge

NTP.

� Le système de streaming en direct à faible latence utilisant DASH que nous avons

décrit dans les contributions précédentes.

Nous avons étudié un scénario d’utilisation de contenu multi-résolution où nous considérons

un contenu de base envoyé sur les réseaux traditionnels de broadcast améliorés avec un

contenu supplémentaire envoyé sur les réseaux broadband en utilisant DASH. Notre système

de distribution hybride proposé a été implémenté et validé dans les réseaux locaux. Dans

le cadre de travaux futurs, nous prévoyons d’examiner comment ce système se comportera

A.3. Conclusion et Perspectives 143

dans des réseaux de distribution de contenu réels, et si les variations de la bande passante

du réseau dans le système broadband peuvent retarder le flux DASH par rapport à TS et

par conséquence influencer la synchronisation des deux flux et les exigences de buffering

sur la châıne de broadcast.

A.3 Conclusion et Perspectives

A.3.1 Conclusion

Dans cette thèse, nous avons exploré des solutions pour améliorer les services de streaming

vidéo en direct. L’objectif de cette thèse était de proposer et de développer de nouvelles

solutions pour réaliser un démarrage rapide de la session du streaming en direct utilisant

DASH, une distribution de contenu DASH en direct à faible latence, et une diffusion hybride

de contenus broadcast et broadband (i.e. contenus DASH et MPEG-2 TS).

Trois principales contributions ont structuré cette thèse:

� La proposition et l’évaluation de différentes méthodes pour réduire le délai de démar-

rage, en particulier le délai de bootstrap en DASH live.

� Le développement et l’évaluation d’un nouveau système DASH live à faible latence.

� La combinaison synchronisée du contenu broadband et broadcast.

A.3.2 Perspectives

Au moment de la conclusion de ce manuscrit, plusieurs perspectives intéressantes peuvent

être proposées pour poursuivre le travail effectué dans cette thèse. Des extensions intéress-

antes pour améliorer les performances et d’autres axes de recherche dans le contexte de

l’adaptation de streaming vidéo sont listées ci-dessous.

� Nous manipulons les flux vidéo en direct à l’échelle de la trame, c’est-à-dire que le

packager ISOBMFF est limité à produire des fragments à partir de la trame. Le

packaging de petites parties d’une trame peut être nécessaire dans les services de

streaming à faible latence.

� Un autre sujet de recherche intéressant pourrait être l’analyse de la façon dont un tel

système à faible latence se comportera dans de vrais réseaux de diffusion de contenu.

Jusqu’à présent, le client DASH était directement connecté au serveur Web dans

un réseau local. Un CDN dispose de mécanismes intelligents de réacheminement, de

redirection et de mise en cache qui peuvent influencer la distribution d’un fragment

144 A. Résumé en Français

au client. Les premières expériences montrent que notre système se comporte bien,

mais d’autres investigations sont nécessaires.

� Dans les expérimentations actuelles, notre proposition relative à l’amélioration de la

phase Bootstrap en DASH live est seulement comparée à la méthode push du serveur

HTTP/2. Il pourrait être utile de la comparer à d’autres mécanismes HTTP/2 tels

que le multiplexage de requête et de réponse.

� La switching n’a pas fait partie de nos recherches dans cette thèse. Nous pourrions

étudier un processus de switching rapide pour notre système DASH Live à faible

latence. Dans le streaming adaptatif sur HTTP, un client ne peut switcher qu’à la

fin du segment car le switching au milieu du segment nécessite au pire un double

téléchargement et un décodage. Un client est contraint d’attendre la fin du segment

pour switcher. Ce temps d’attente pour la switching devient encore plus important

lorsque des segments média longs sont utilisés. Une solution pourrait consister à

utiliser les RAP contenus dans un segment comme points de switching. Ainsi, le client

est capable de switcher dans un segment à chaque GoP.

� Étudier l’impact de notre système à faible latence sur d’autres cas d’utilisation

récents tels que les applications de réalité virtuelle (VR), en particulier les vidéos 360

VR est intéressant. Le streaming 360 VR adaptatif en direct présente de nombreux

défis techniques, notamment la latence de distribution de bout en bout et la latence

de switching. La combinaison de notre système à faible latence avec un nouveau

processus de switching rapide peut améliorer l’expérience de l’utilisateur.

A.4 Liste des Publications

Articles de Conférence

� N. Bouzakaria, C. Concolato and J.L. Feuvre, “Overhead and performance of low

latency live streaming using MPEG-DASH”, Proceeding of The 5th International

Conference on Information, Intelligence, Systems and Applications (IISA) , Crete,

Greece, July 2014.

� N. Bouzakaria, C. Concolato and J.L. Feuvre, “Fast dash bootstrap”, Proceeding

of IEEE 17th International Workshop on Multimedia Signal Processing (MMSP) ,

Xiamen, China, October 2015.

� J.L. Feuvre, C. Concolato, N. Bouzakaria and V. T. Nguyen, “MPEG-DASH for Low

Latency and Hybrid Streaming Services”, Proceeding of The 23rd ACM International

Conference on Multimedia (ACM MM) , Brisbane, Australia, October 2015.

A.4. Liste des Publications 145

Contributions à la Normalisation

� C. Concolato, J. Le Feuvre and N. Bouzakaria, “Data URLs in MPD”, Moving Picture

Experts Group (MPEG), Geneva, Switzerland, May 2016, n° M38649

� C. Concolato, J. Le Feuvre and N. Bouzakaria, “Guidelines for DASH Fast Start”,

Moving Picture Experts Group (MPEG), Geneva, Switzerland, October 2015, n°

M37254.

� C. Concolato, J. Le Feuvre and N. Bouzakaria, “Use of HTTP/2 Push for DASH

Bootstrap”, Moving Picture Experts Group (MPEG), Geneva, Switzerland, October

2015, n° M37255.

146 A. Résumé en Français

Bibliography

[1] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the internet,”
IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, Oct. 2011. [Online]. Available: http:
//dx.doi.org/10.1109/MMUL.2011.71 Cited in Sec. (document), 1.1, 2.4.1, 2.7, A.1

[2] High performance browser networking. I. Grigorik, May 2013. Cited in Sec. (document), 3.4,
3, 4, 5

[3] Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2014–2019,” Cisco, Tech.
Rep., 2015. [Online]. Available: http://www.cisco.com/ Cited in Sec. 1.1

[4] Conviva, “Viewer experience report,” Tech. Rep., 2013. Cited in Sec. 1.1, 2.2.4, 3.1, 3.4.3.3, A.1

[5] G. Almes, S. Kalidindi, and M. J. Zekauskas, “A one-way delay metric for IPPM,” Internet
Requests for Comment, RFC Editor, Fremont, CA, USA, RFC 2679, Sep. 1999. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2679.txt Cited in Sec. 2.2

[6] ——, “A one-way packet loss metric for IPPM,” Internet Requests for Comment,
RFC Editor, Fremont, CA, USA, RFC 2680, Sep. 1999. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc2680.txt Cited in Sec. 2.2

[7] C. Demichelis and P. Chimento, “IP packet delay variation metric for IP performance metrics
(IPPM),” Internet Requests for Comments, RFC 3393, Fremont, CA, USA, RFC 3393, Nov.
2002. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3393.txt Cited in Sec. 2.2

[8] S. M. Patrick Le Callet and e. Andrew Perkis, “”qualinet white paper on definitions of quality
of experience (2012),” European Network on Quality of Experience in Multimedia Systems
and Services (COST Action IC 1003), Lausanne, Switzerland, Version 1.1, Tech. Rep., June 3
2012. Cited in Sec. 2.2

[9] D. V. E. DVEO, “Introduction to cdn and vod principles overview (rev 1.7),” Tech. Rep.,
November 2015. Cited in Sec. 2.2.1

[10] J. Abreu, J. Nogueira, V. Becker, and B. Cardoso, “Survey of catch-up tv and
other time-shift services: a comprehensive analysis and taxonomy of linear and
nonlinear television,” Telecommunication Systems, pp. 1–18, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11235-016-0157-3 Cited in Sec. 2.2.1

[11] O. B. Maia, H. C. Yehia, and L. de Errico, “A concise review of the quality of experience
assessment for video streaming,” Computer Communications, vol. 57, pp. 1–12, 2015. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2014.11.005 Cited in Sec. 2.2.3

[12] International Telecommunication Union, “ITU-T Recommendation P.800.2: Mean opinion score
interpretation and reporting,” Tech. Rep., 2013. Cited in Sec. 2.2.3

http://dx.doi.org/10.1109/MMUL.2011.71
http://dx.doi.org/10.1109/MMUL.2011.71
http://www.cisco.com/
http://www.rfc-editor.org/rfc/rfc2679.txt
http://www.rfc-editor.org/rfc/rfc2680.txt
http://www.rfc-editor.org/rfc/rfc2680.txt
http://www.rfc-editor.org/rfc/rfc3393.txt
http://dx.doi.org/10.1007/s11235-016-0157-3
http://dx.doi.org/10.1016/j.comcom.2014.11.005

[13] F. Kuipers, R. Kooij, D. De Vleeschauwer, and K. Brunnström, “Techniques for measuring
quality of experience,” in Proceedings of the 8th International Conference on Wired/Wireless
Internet Communications, ser. WWIC’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
216–227. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-13315-2 18 Cited in Sec.
2.2.3

[14] M. Mu, P. Romaniak, A. Mauthe, M. Leszczuk, L. Janowski, and E. Cerqueira, “Framework
for the integrated video quality assessment,” Multimedia Tools and Applications, vol. 61, no. 3,
pp. 787–817, 2012. [Online]. Available: http://dx.doi.org/10.1007/s11042-011-0946-3 Cited in
Sec. 2.2.3

[15] S. Krishnan and R. Sitaraman, “Video stream quality impacts viewer behavior: Inferring
causality using quasi-experimental designs,” Networking, IEEE/ACM Transactions on, vol. 21,
no. 6, pp. 2001–2014, Dec 2013. Cited in Sec. 2.2.4

[16] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao, “Youtube
everywhere: Impact of device and infrastructure synergies on user experience,” in
Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference,
ser. IMC ’11. New York, NY, USA: ACM, 2011, pp. 345–360. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068849 Cited in Sec. 2.2.4

[17] L. Chen, Y. Zhou, and D. M. Chiu, “Video browsing - a study of user behavior in online vod
services,” in Computer Communications and Networks (ICCCN), 2013 22nd International
Conference on, July 2013, pp. 1–7. Cited in Sec. 2.2.4

[18] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen, “Initial Delay Vs.
Interruptions: Between The Devil And The Deep Blue Sea,” in Proc. QoMEX (Quality of the
Multimedia Experience) 2012, Yarra Valley, Australia, Jul. 2012. Cited in Sec. 2.2.4

[19] F. Dobrian, A. Awan, D. A. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica, and H. Zhang,
“Understanding the impact of video quality on user engagement,” Commun. ACM, vol. 56,
no. 3, pp. 91–99, 2013. [Online]. Available: http://doi.acm.org/10.1145/2428556.2428577 Cited
in Sec. 2.2.4

[20] T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, and M. Kampmann, “Dynamic adaptive http
streaming of live content,” in World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2011 IEEE International Symposium on a, June 2011, pp. 1–8. Cited in Sec. 2.3.1, 4.1, 4.2,
4.4.2.1

[21] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h.264/avc video
coding standard,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13,
no. 7, pp. 560–576, July 2003. Cited in Sec. 2.3.2.1

[22] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency video
coding (hevc) standard,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 22, no. 12, pp. 1649–1668, Dec 2012. Cited in Sec. 2.3.2.1

[23] A. Leontaris and P. C. Cosman, “End-to-end delay for hierarchical b-pictures and pulsed
quality dual frame video coders,” in Proceedings of the International Conference on Image
Processing, ICIP 2006, October 8-11, Atlanta, Georgia, USA, 2006, pp. 3133–3136. [Online].
Available: http://dx.doi.org/10.1109/ICIP.2006.312937 Cited in Sec. 2.3.2.1

[24] G. T. 26.244, “”transparent end-to-end packet switched streaming service (pss), 3gpp file format
(3gp)”.” Cited in Sec. 3

[25] L. Zhang, L. Zheng, and K. S. Ngee, “Effect of delay and delay jitter on voice/video over
IP,” Computer Communications, vol. 25, no. 9, pp. 863–873, 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0140-3664(01)00418-2 Cited in Sec. 2.3.2.4

http://dx.doi.org/10.1007/978-3-642-13315-2_18
http://dx.doi.org/10.1007/s11042-011-0946-3
http://doi.acm.org/10.1145/2068816.2068849
http://doi.acm.org/10.1145/2428556.2428577
http://dx.doi.org/10.1109/ICIP.2006.312937
http://dx.doi.org/10.1016/S0140-3664(01)00418-2

[26] A. C. Begen, T. Akgul, and M. Baugher, “Watching video over the web: Part 1: Streaming
protocols,” IEEE Internet Computing, vol. 15, no. 2, pp. 54–63, 2011. Cited in Sec. 2.4

[27] ——, “Watching video over the web: Part 2: Applications, standardization, and open issues,”
IEEE Internet Computing, vol. 15, no. 3, pp. 59–63, 2011. Cited in Sec. 2.4

[28] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe
and adapt: Rate adaptation for HTTP video streaming at scale,” IEEE Journal on
Selected Areas in Communications, vol. 32, no. 4, pp. 719–733, 2014. [Online]. Available:
http://dx.doi.org/10.1109/JSAC.2014.140405 Cited in Sec. 2.4

[29] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in http-based
adaptive video streaming with festive,” in Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies, ser. CoNEXT ’12. New York, NY, USA:
ACM, 2012, pp. 97–108. [Online]. Available: http://doi.acm.org/10.1145/2413176.2413189
Cited in Sec. 2.4

[30] A. Beben, P. Wisniewski, J. M. Batalla, and P. Krawiec, “ABMA+: lightweight and efficient
algorithm for HTTP adaptive streaming,” in Proceedings of the 7th International Conference
on Multimedia Systems, MMSys 2016, Klagenfurt, Austria, May 10-13, 2016, 2016, pp.
2:1–2:11. [Online]. Available: http://doi.acm.org/10.1145/2910017.2910596 Cited in Sec. 2.4

[31] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A Buffer-based Approach
to Rate Adaptation: Evidence from a Large Video Streaming Service,”in Proc. ACM SIGCOMM,
Aug. 2014. Cited in Sec. 2.4

[32] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal bitrate adaptation for
online videos,” in IEEE INFOCOM., Apr. 2016. Cited in Sec. 2.4

[33] T. Karagkioules, C. Concolato, D. Tsilimantos, and S. Valentin, “A comparative case study of
http adaptive streaming algorithms in mobile networks,” in 2017 NOSSDAV, June 2017, pp.
1–6. Cited in Sec. 2.4

[34] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What happens when
http adaptive streaming players compete for bandwidth?” in Proceedings of the 22Nd
International Workshop on Network and Operating System Support for Digital Audio and
Video, ser. NOSSDAV ’12. New York, NY, USA: ACM, 2012, pp. 9–14. [Online]. Available:
http://doi.acm.org/10.1145/2229087.2229092 Cited in Sec. 2.4

[35] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Confused, timid, and
unstable: Picking a video streaming rate is hard,” in Proceedings of the 2012 Internet
Measurement Conference, ser. IMC ’12. New York, NY, USA: ACM, 2012, pp. 225–238.
[Online]. Available: http://doi.acm.org/10.1145/2398776.2398800 Cited in Sec. 2.4

[36] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “Server-based traffic
shaping for stabilizing oscillating adaptive streaming players,” in Proceeding of the 23rd
ACM Workshop on Network and Operating Systems Support for Digital Audio and Video,
ser. NOSSDAV ’13. New York, NY, USA: ACM, 2013, pp. 19–24. [Online]. Available:
http://doi.acm.org/10.1145/2460782.2460786 Cited in Sec. 2.4

[37] R. Houdaille and S. Gouache, “Shaping http adaptive streams for a better user experience,” in
Proceedings of the 3rd Multimedia Systems Conference, ser. MMSys ’12. New York, NY, USA:
ACM, 2012, pp. 1–9. [Online]. Available: http://doi.acm.org/10.1145/2155555.2155557 Cited
in Sec. 2.4

[38] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in dynamic http streaming,”
in Proceedings of the 8th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’12. New York, NY, USA: ACM, 2012, pp. 109–120. [Online].
Available: http://doi.acm.org/10.1145/2413176.2413190 Cited in Sec. 2.4

http://dx.doi.org/10.1109/JSAC.2014.140405
http://doi.acm.org/10.1145/2413176.2413189
http://doi.acm.org/10.1145/2910017.2910596
http://doi.acm.org/10.1145/2229087.2229092
http://doi.acm.org/10.1145/2398776.2398800
http://doi.acm.org/10.1145/2460782.2460786
http://doi.acm.org/10.1145/2155555.2155557
http://doi.acm.org/10.1145/2413176.2413190

[39] Microsoft. (2010) Iis smooth streaming technical overview. [Online]. Available: http:
//www.microsoft.com/download/en/details.aspx?displaylang=en&id=17678 Cited in Sec. 2.4.2

[40] A. Fecheyr-Lippens, “A review of http live streaming,” Tech. Rep., Jan. 2010. [Online].
Available: http://issuu.com/andruby/docs/http live streaming?viewMode=magazine&mode=
embed Cited in Sec. 2.4.2, 4.2.2

[41] S. Bae, D. Jang, and K. Park, “Why is HTTP adaptive streaming so hard?” in Proceedings of
the 6th Asia-Pacific Workshop on Systems, APSys 2015, Tokyo, Japan, July 27-28, 2015, 2015,
pp. 12:1–12:8. [Online]. Available: http://doi.acm.org/10.1145/2797022.2797031 Cited in Sec.
2.4.2

[42] “Comparing adaptive http streaming technologies,” rgb NETWORKS, Tech. Rep., 2011. Cited
in Sec. 2.4.2

[43] C.-M. Huang and T.-H. Hsu, “A user-aware prefetching mechanism for video streaming,”
World Wide Web, vol. 6, no. 4, pp. 353–374, Dec. 2003. [Online]. Available:
http://dx.doi.org/10.1023/A:1025661921237 Cited in Sec. 3.1

[44] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “Tcp fast open,” in
Proceedings of the Seventh COnference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’11. New York, NY, USA: ACM, 2011, pp. 21:1–21:12. [Online]. Available:
http://doi.acm.org/10.1145/2079296.2079317 Cited in Sec. 3.2.1

[45] Y. Cheng, J. Chu, A. Jain, and S. Radhakrishnan, “TCP Fast Open,” RFC 7413, Dec. 2014.
[Online]. Available: https://rfc-editor.org/rfc/rfc7413.txt Cited in Sec. 3.2.1

[46] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial Window,” Oct. 2002, rFC
3390. Cited in Sec. 3.2.1

[47] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, and
N. Sutin, “An argument for increasing tcp’s initial congestion window,” SIGCOMM
Comput. Commun. Rev., vol. 40, no. 3, pp. 26–33, Jun. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1823844.1823848 Cited in Sec. 3.2.1

[48] N. Cardwell, S. Savage, and T. Anderson, “Modeling tcp latency,” in in IEEE INFOCOM,
2000, pp. 1724–1751. Cited in Sec. 3.2.2

[49] M. Allman, V. Paxson, and W. Stevens, “RFC 2581 (rfc2581) - TCP Congestion Control,”
Tech. Rep. 2581, 1999. [Online]. Available: http://www.faqs.org/rfcs/rfc2581.html Cited in
Sec. 2

[50] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol Version 2 (HTTP/2),”
RFC 7540, May 2015. [Online]. Available: https://rfc-editor.org/rfc/rfc7540.txt Cited in Sec. 5

[51] ISO/IEC FDIS 23000-19, Common media application format (CMAF), Std. Cited in Sec. 3b

[52] S. Hemminger et al., “Network emulation with netem,” in Linux conf au, 2005, pp. 18–23. Cited
in Sec. 3.4.1.1

[53] B. Hubert, T. Graf, G. Maxwell, R. Van Mook, M. Van Oosterhout, P. B. Schroeder, J. Spaans,
and P. Larroy, Linux Advanced Routing & Traffic Control HOWTO, Linux Advanced Routing
& Traffic Control, Apr. 2004. Cited in Sec. 3.4.1.1

[54] N. Bouzakaria, C. Concolato, and J. L. Feuvre, “Fast dash bootstrap,” in 2015 IEEE 17th
International Workshop on Multimedia Signal Processing (MMSP), Oct 2015, pp. 1–6. Cited
in Sec. 3.5

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17678
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17678
http://issuu.com/andruby/docs/http_live_streaming?viewMode=magazine&mode=embed
http://issuu.com/andruby/docs/http_live_streaming?viewMode=magazine&mode=embed
http://doi.acm.org/10.1145/2797022.2797031
http://dx.doi.org/10.1023/A:1025661921237
http://doi.acm.org/10.1145/2079296.2079317
https://rfc-editor.org/rfc/rfc7413.txt
http://doi.acm.org/10.1145/1823844.1823848
http://www.faqs.org/rfcs/rfc2581.html
https://rfc-editor.org/rfc/rfc7540.txt

[55] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Rfc 2616, hypertext transfer protocol – http/1.1,” 1999. [Online]. Available:
http://www.rfc.net/rfc2616.html Cited in Sec. 4.2.3

[56] Y. F. Alex MacAulay, Boris Felts, “Ip streaming of mpeg-4:native rtp vs mpeg-2 transport
stream,” Envivio, Tech. Rep., October 2005. Cited in Sec. 4.4.2.1

[57] I. Kofler, R. Kuschnig, and H. Hellwagner, “Implications of the ISO base media file format
on adaptive HTTP streaming of H.264/SVC,” in 2012 IEEE Consumer Communications
and Networking Conference (CCNC), Las Vegas, NV, USA, January 14-17, 2012, 2012, pp.
549–553. [Online]. Available: http://dx.doi.org/10.1109/CCNC.2012.6180986 Cited in Sec.
4.4.2.1

[58] S. Aoki, K. Aoki, H. Hamada, Y. Kanatsugu, M. Yamamoto, and K. Aizawa, “A new transport
scheme for hybrid delivery of content over broadcast and broadband,” in 2011 IEEE Interna-
tional Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), June 2011,
pp. 1–6. Cited in Sec. 5.1

[59] C. Concolato, S. Thomas, R. Bouqueau, and J. L. Feuvre, “Synchronized delivery of
multimedia content over uncoordinated broadcast broadband networks,” in Proceedings
of the Third Annual ACM SIGMM Conference on Multimedia Systems, MMSys 2012,
Chapel Hill, NC, USA, February 22-24, 2012, 2012, pp. 227–232. [Online]. Available:
http://doi.acm.org/10.1145/2155555.2155590 Cited in Sec. 5.2

[60] A. Baba, K. Matsumura, S. Mitsuya, M. Takechi, H. Fujisawa, H. Hamada, S. Sunasaki, and
H. Katoh, “Seamless, synchronous, and supportive: Welcome to hybridcast: An advanced hybrid
broadcast and broadband system,” IEEE Consumer Electronics Magazine, vol. 1, no. 2, pp.
43–52, April 2012. Cited in Sec. 5.2

[61] L. B. Yuste, F. Boronat, M. Montagud, and H. Melvin, “Understanding Timelines Within
MPEG Standards,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 368–400, 2016.
Cited in Sec. 5.2

[62] “Iso/iec 13818-1, temi,.” [Online]. Available: http://mpeg.chiariglione.org/standards/mpeg-2/
systems/text-isoiec-13818-12013dam-6-delivery-timeline-external-data. Cited in Sec. 5.3.1

[63] J. Le Feuvre, C. Concolato, N. Bouzakaria, and V.-T.-T. Nguyen, “Mpeg-dash for low latency
and hybrid streaming services,” in Proceedings of the 23rd ACM International Conference on
Multimedia, ser. MM ’15. New York, NY, USA: ACM, 2015, pp. 751–752. [Online]. Available:
http://doi.acm.org/10.1145/2733373.2807977 Cited in Sec. 5.5

[64] M. M. Hannuksela, Y.-K. Wang, and M. Gabbouj, “Random access using isolated regions,” in
Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), vol. 3,
Sept 2003, pp. III–841–4 vol.2. Cited in Sec.

[65] G. BJONTEGAARD, “Calculation of average psnr differences between rd-curves,” ITU SG16
Doc. VCEG-M33, 2001. [Online]. Available: http://ci.nii.ac.jp/naid/10029505309/en/ Cited in
Sec.

http://www.rfc.net/rfc2616.html
http://dx.doi.org/10.1109/CCNC.2012.6180986
http://doi.acm.org/10.1145/2155555.2155590
http://mpeg.chiariglione.org/standards/mpeg-2/systems/text-isoiec-13818-12013dam-6-delivery-timeline-external-data.
http://mpeg.chiariglione.org/standards/mpeg-2/systems/text-isoiec-13818-12013dam-6-delivery-timeline-external-data.
http://doi.acm.org/10.1145/2733373.2807977
http://ci.nii.ac.jp/naid/10029505309/en/

	Introduction
	Context
	Summary of Contributions
	Thesis Organization
	List of Publications

	Video Streaming Over IP: Quality of Experience and HTTP Adaptive Streaming
	Introduction
	Quality of Experience In Video Streaming
	Streaming Service Types
	Streaming Session States
	Quality of Experience Assessment
	Viewer Behaviors and Expectations

	Selected Features of a Video Streaming Chain
	Overview of a Video Streaming Chain
	Components and Features
	Summary

	HTTP Adaptive Streaming
	MPEG-DASH
	HTTP Adaptive Streaming Features

	Conclusion

	Improving the Starting of Live DASH Streaming Sessions
	Introduction
	DASH Client Bootstrap Strategies
	TCP Startup Mechanisms
	Evaluation Parameters
	Evaluating DASH Client Bootstrap Strategies

	Improved DASH Bootstrap
	Evaluation
	Settings
	Dataset
	Experiments And Results

	Conclusion

	Contributions to Reducing Live DASH Latency
	Introduction
	Basic Live DASH Latency
	Segmenting Live Content
	Fetching Live Edge
	Progressive File Delivery over HTTP

	Low Latency Live DASH Proposal
	Evaluation
	Design and Implementation
	Experiments and Results

	Conclusion

	Hybrid Streaming Services
	Introduction
	Hybrid Delivery Challenges
	Hybrid Delivery Proposed System
	Timeline and External Media Information (TEMI)
	TEMI and Low End-To-End Latency Live DASH System

	Evaluation
	System Implementation
	Experiments and Results

	Conclusion

	Conclusion & future work
	Thesis objectives
	Summary
	Perspectives

	Résumé en Français
	Introduction
	Contributions
	Réduction du Délai de Démarrage en DASH Live
	Réduction de la Latence en DASH Live
	Les applications en DASH Live

	Conclusion et Perspectives
	Conclusion
	Perspectives

	Liste des Publications

	Bibliography

