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THÈSE DE DOCTORAT
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Abstract

This thesis focuses on two problems motivated by simulations during the design phase of in-
dustrial complex systems. The first part is dedicated to model and to identify costly design
margins during the design process. We investigate the fundamental basis of the margin concept
and provide a mathematical object to model it. With this model, we exhibit how margins are
taken, independently of the field. Various margin practices from different fields are modeled
within this framework. Some tools, inspired from the sensitivity analysis domain, are developed
to identify which margins contribute the most to a cost or to a loss of performance. These works
thus propose a non ambiguous approach to a quantitative analysis of margins. The second part
focuses on uncertainty quantification (U.Q) in a multidisciplinary context. The design process
of a complex system is modeled by the composition of computer codes, that is represented by
a directed acyclic graph. Each node is associated to a computer code whose inputs are random
variables. These variables can either come from the outputs of other disciplines (external vari-
able) or be modeled within the discipline (internal variable). We investigate a U.Q method that
is based on sample reweighting and allows for disciplinary autonomy. First, at each node and
for each external variable, some synthetic samples that do not follow the true law are generated
and the respective outputs are computed. Second, a method is chosen to weight to outputs
with respect to the inputs, and these weights are propagated in the graph. The final result is
a weighted sample whose law approximates the theoretical joint law of the graph. In the first
chapter, we study a particular weighting method based on a Wasserstein distance criterion. An
explicit expression of the weights is derived, for which we prove the consistency and give some
theoretical rates of convergence in terms of expected Wasserstein distance. Then, we generalize
the approach by defining the WLAMs (Weighted Linear Approximation Methods), for which we
define a local consistency criterion. Under the assumption of local consistency at each node, we
prove the convergence towards the true joint law. We show that a discrete Bayesian network can
be used to simplify the numerical computations in the propagation phase.

Résumé court

Cette thèse s’intéresse à deux problèmes, initialement motivés par la simulation dans les systèmes
industriels complexes. La première partie est dédiée à la modélisation et l’identification des
marges de conception coûteuses. Nous étudions les composantes fondamentales de la notion
de de marge de conception et proposons un object mathématiques pour la modéliser. Grâce à
ce modèle, nous décrivons la façon dont les marges sont prises, indépendamment du champs
d’application. Diverses pratiques d’ingénieurs sont ainsi modélisées avec ce modèle et des outils
sont développés pour faire de l’analyse de sensibilité et trouver les marges les plus coûteuses.
La seconde partie se focalise sur la quantification d’incertitude (U.Q) dans un contexte mul-
tidisciplinaire. Le processus de conception des systèmes complexes est modélisé par un graphe
orienté acyclique. Chaque noeud est associé à un code de calcul dont les entrées sont des va-
riables aléatoires. Ces variables peuvent provenir d’autres disciplines (variables externes) ou être
modélisées par la discipline elle-même (variables internes). Nous étudions une méthode basée sur
la repondération d’échantillons, qui a l’avantage de permettre une autonomie entre discipline.
Dans un premier temps, un calcul basé sur un échantillon synthétique est effectué pour chaque
noeud et chaque variable externe. Cet échantillon ne suit pas la vraie loi de la variable aléatoire.
Ensuite, dans un second temps, les sorties synthétiques sont repondérées en fonction des entrées
et les poids sont propagés dans le graphe. La méthode retourne un échantillon pondéré dont la loi
empirique approche la loi théorique. Nous étudions tout d’abord une méthode spécifique, basée
sur la minimisation d’une distance de Wasserstein. Nous calculons les poids sous forme explicite
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et nous en démontrons la consistance ainsi que des taux de convergence asymptotiques. Nous
généralisons ensuite l’approche, en définissant des WLAMs (Méthode de pondérations linéaire
en la loi), pour lesquels nous définissons un critère de consistance locale. Sous l’hypothèse que
chaque noeud est consistant, nous démontrons que la méthode converge globalement. Un réseau
bayésien discret peut être utilisé pour faciliter les calculs numériques.
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Chapitre 1

Résumé

1.1 Contexte et motivation industrielle

L’éventail toujours plus grand des possibilités technologiques, soutenu par les innovations in-
dustrielles, a permis de concevoir de grands systèmes répondant à de multiples exigences et
combinant un grande variété de composants de natures différentes. Nous pouvons citer comme
exemple les avions, les voitures, les engins spatiaux ou même les centrales nucléaires, que nous
regroupons sous l’appellation systèmes industriels complexes1. Une de leur premières évocations
dans la littérature [102] précise que ce sont des systèmes pour lesquels “des composants satisfai-
sants ne se combinent pas toujours en un système satisfaisant”[Notre traduction]. En d’autres
termes, la complexité liée à l’agrégation de plusieurs composants fait apparâıtre des phénomènes
dits “émergents” issus des interactions entre composants. Le comportement de l’ensemble est
donc extrêmement difficile à prévoir en étudiant seulement chaque composant séparément. Une
autre façon de voir les systèmes industriels complexes est de les présenter comme des systèmes
dont les comportements, les évolutions et les enjeux principaux ne peuvent pas être compris
complètement par un seul esprit humain. Pour parvenir à les concevoir, il est donc nécessaire
de faire appel des ingénieurs de disciplines différentes, dont le nombre peut varier de la centaine
(e.g. pour une nouvelle série de voiture) à la dizaine de milliers (e.g. la conception d’un avion).

Le processus de conception de ces systèmes complexes est complexe lui aussi et l’on y observe
de nombreuses sources d’incertitudes à presque toutes les échelles. Du point de vue de la conduite
de projet et de la définition des exigences du système, le domaine de l’ingénierie système [58,63,
72] propose de formaliser les pratiques pour en mâıtriser le pilotage. Un des outils proposés par
exemple, est de multiplier les différentes représentations du système (fonctionnelle, physique,...)
pour guider les choix de conception. Des questions vont être formulées sur le système, portant
sur l’optimisation, la validation d’exigences, ou la certification par exemple, mais ces pratiques
ne permettent pas à elles seules de les résoudre.

Face à ces requêtes, des ingénieurs spécialisés vont interagir entre eux et mettre en place
des techniques pour y répondre, basées sur la modélisation mathématique et physique, puis
sur l’expérimentation ou la simulation. Sur ce dernier point, il est admis que, dans certaines
industries, la modélisation et la simulation numérique sont arrivées à un niveau de maturité plus
que convenable [29]. Les entreprises produisant des systèmes industriels complexes ont à leur
disposition des experts qui peuvent répondre quantitativement à des questions spécifiques sur
des sous-systèmes. Cependant, en raison du grand nombre d’acteurs en jeu, la coordination et la

1Nous rajoutons le mot “industriels” pour les différencier des systèmes complexes en physique, qui ont une
définition différente.
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compilation de ces résultats restent un exercice assez difficile. La modélisation et la gestion des
incertitudes de façon quantitative, à l’échelle globale du système, est un enjeu important pour la
conception et est source de grands défis industriels et de questions scientifiques ouvertes.

Les travaux de cette thèse ont été conduits à l’Institut de Recherche Technologique SystemX,
au sein du projet AMC (Agilité et Marge de Conception), qui regroupe des partenaires indus-
triels des domaines de l’aéronautique (Airbus) et de l’automobile (Groupe PSA, Valeo, Sherpa,
Siemens, Renault, DPS) autour de la thématique des techniques de conception de systèmes com-
plexes. Ils ont été encadrés par le CERMICS, le laboratoire de mathématiques appliquées de
l’École Nationale des Ponts et Chaussées.

Cette thèse en mathématiques appliquées se propose d’approcher la question des incertitudes
dans les processus de conception de systèmes industriels complexes via deux angles différents.
La première partie se concentre sur la modélisation de la notion de marge de conception, qui est
une pratique de gestion de l’incertitude communément utilisée par les ingénieurs. La deuxième
partie étudie une méthode de propagation d’incertitude dans le cadre d’un graphe de fonctions,
représentant les interactions entre les différentes disciplines d’ingénierie.

1.2 Partie I : modélisation et analyse de sensibilité des
marges de conception pour les systèmes industriels
complexes

L’utilisation de marges de conception est peut-être le moyen le plus ancien pour gérer les incer-
titudes ; il est sans doute l’un des plus intuitifs. Il consiste à faire des choix plus robustes ou plus
sûrs que le strict nécessaire prescrit par un modèle.

Supposons, par exemple, que vous deviez arriver à 9 h à un rendez-vous très important (une
soutenance de thèse, pour prendre un exemple au hasard). Vous avez calculé que le trajet de votre
maison à l’amphithéâtre était de 30 min porte à porte, en prenant les transports en commun. Au
vu de l’extrême importance de l’enjeu, vous n’allez sans doute pas partir à 8 h30 min, mais bien
avant, disons 7 h45 min, pour être sûr d’arriver à l’heure. Ces 45 min en plus (différence entre
8 h30 min et 7 h45 min), sont utilisées pour couvrir des risques qui peuvent être identifiés (retard
d’un train, grève des transports, tombée de neige dans la nuit...) ou même des risques auxquels
vous n’avez pas pensé (perte de vos clés...). Elles sont un exemple parfait de marge de conception.

1.2.1 De l’utilisation des marges au problème de surdimensionnement

De nos jours, des méthodes avancées ont été développées pour modéliser l’incertitude et gérer
les risques en ingénierie, comme celles basées sur la théorie des probabilités [37]. Elles ont vocation
à gérer l’incertitude de façon plus précise que les méthodes basées sur des marges. Toutefois, nos
partenaires industriels ont constaté que dans un environnement multidisciplinaire avec une grande
diversité d’acteurs et d’objectifs, les marges de conception restent un des mécanismes principaux
pour gérer les multiples risques. L’hypothèse industrielle qui motive les travaux sur les marges
est que l’incertitude dans la conception de systèmes complexes est gérée en grande partie à
l’échelle locale de chaque acteur, qui prennent chacun des marges de conception. Comme cette
gestion n’est pas faite à l’échelle globale, chaque acteur choisit la valeur des marges en fonction
de l’information à sa disposition et des marges non pertinentes apparaissent. Un exemple typique
est qu’un même risque peut être couvert par les marges de plusieurs acteurs, sans que chacun
ne soit au courant des marges prises par les autres. Un autre exemple arrive quand deux acteurs
prennent des marges pour couvrir des évènements qui ne peuvent pas arriver au même moment,
conduisant à des conceptions en pire cas irréalistes (cet aspect est développé en Section 6).
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L’accumulation de marges non pertinentes peut entrâıner un phénomène appelé surconception
ou surdimensionnement, car certaines marges impactent négativement les performances et le
coût, sans améliorer significativement les objectifs en termes de sûreté de fonctionnement du
système [46]. Pour résoudre ce problème, plusieurs stratégies ont été envisagées dans la littérature
scientifique. En sciences de la conception, des travaux basés sur des entretiens dans des bureaux
d’études ou des analyses de systèmes industriels complexes en opération [46, 67, 68] permettent
d’identifier et de classifier les marges, ainsi que de préciser la façon dont elles interagissent [44]
(voir la Section 3.2.5). Dans certains domaines spécifiques (e.g. le génie nucléaire ou spatial),
une définition de marge est proposée, comme référence pour les pratiques du domaine [38,39,42,
83](voir les Sections 3.2.3 et 3.2.1) et le lien entre risque et marges est clairement identifié via
des modèles probabilistes. Ces définitions de référence facilitent la communication des marges
entre tous les acteurs. En conception des systèmes industriels complexes, une définition simple
de marge est proposée, et des méthodes d’allocation et d’analyse de sensibilité permettent de
choisir les valeur des marges et de quantifier leur impact en modélisant le système à une échelle
plus globale [23,24,27,111–113](voir les Sections 3.2.4 et 3.2.5).

Notre démarche est complémentaire à la littérature et se rapproche dans l’esprit de celle
des mathématiques appliquées à la physique. Nous partons du concept intuitif de marge de
conception en ingénierie pour nous intéresser à ce qu’il y a de fondamental en celui-ci. Ensuite,
nous en proposons une définition mathématique, puis regardons comment modéliser les pratiques
existantes à partir de cette définition. Enfin nous proposons des outils pour identifier les marges
importantes, en nous inspirant du domaine de l’analyse de sensibilité. Cela nous a permis de
poser des bases non ambiguës à une approche quantitative des marges et a ouvert un certain
nombre de perspectives pour la modélisation de problèmes de conception.

Pour comprendre cette approche, retournons aux bases et intéressons-nous à ce qu’est une
marge en terme d’ingénieur.

1.2.2 Marge : les fondamentaux

Le vocable “marge” ou “margin” en anglais est issu du latin “margo” qui signifie frontière ou
bordure. Si ce mot est toujours utilisé sous cette acception, son sens a été élargi par métonymie.
De nos jours, il peut aussi désigner la distance à une frontière, une frontière incluse à l’intérieur
d’une autre frontière ou même le domaine entre les deux frontières. La marge d’une feuille de
papier est ainsi l’espace blanc dans lequel rien de doit être écrit et est contenu entre deux
frontières : le bord de la feuille et le bord de la zone d’impression.

Cette zone entre deux frontières est un sens qui semble être d’usage commun en ingénierie,
souvent avec l’hypothèse implicite que cette zone couvre un risque lié à une incertitude ; on peut
voir la marge d’une feuille papier comme une zone où les caractères peuvent déborder si il y a un
problème d’alignement lors de l’impression. En ingénierie, un des plus vieux exemples documentés
[47, pp 44], [1, 34] est le “coefficient de sûreté” ou “safety factor” en anglais. Il mesure, en un
certain sens, la charge supplémentaire qu’une structure peut supporter, comparée à une charge
nominale. De façon plus générale, la notion que nous voulons formaliser mathématiquement peut
être décrite informellement de la façon suivante.

Definition 1.2.1. Marge, (informel, 1) Une marge est une quantité en plus qui permet de s’as-
surer du succès ou de la sûreté de fonctionnement.

Nous retrouvons bien dans cette quantité en plus, le domaine entre un point de fonctionne-
ment du système et un point de défaillance. Si le succès ou la sûreté étaient certains, l’ajout d’un
quantité en plus ne serait pas nécessaire ; le besoin de s’en “assurer” dénote la présence d’incer-
titudes. Comme nous le verrons dans la revue de la littérature du Chapitre 3, cette définition se
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décline de façon variée dans différents domaines d’ingénierie.
Un premier concept important est la distinction entre la marge en tant que quantité requise

par les ingénieurs pour se couvrir d’un risque, et la marge en tant que quantité réelle qu’un
système possède pour éviter la défaillance ou le dysfonctionnement. C’est le sens de la dichotomie
entre la marge effective, qui est la mesure de la quantité en plus pour un système donné, et la
marge demandée, qui traduit l’exigence d’avoir au moins une certaine valeur de marge effective
(voir Section 2.1). Cette distinction est rarement explicite dans la littérature, mais nous a permis
de comprendre plus facilement les différents concepts utilisés en pratique. Le lien entre les deux
est qu’une marge demandée m se traduit comme l’exigence qu’un système ait au moins une marge
effective supérieure à m.

Pour calculer une marge effective, la mesure de la quantité en plus se fait naturellement
en mathématiques par une métrique/distance. Toutefois, cette distance ne se calcule pas sur
l’ensemble des variables descriptives et tous les états du système, mais seulement dans un sous-
ensemble de ceux-ci et dans une unité précise. Nous proposons en Section 4.2 un modèle de
marge, noté M, qui décrit mathématiquement tous ces paramètres. La définition mathématique
de la marge effective (Définition 4.2.1) est donc la mesure de cette “distance”, au sens large, entre
un design u (i.e. un choix de conception) et un ensemble interdit F. Elle s’écrit emM(u,F) ∈ R.
La définition de la marge demandée m (Définition 4.2.2) découle directement de celle de la
marge effective, en interdisant les designs avec une marge effective inférieur à m. Elle agit en
réduisant l’ensemble des designs acceptables A, ou bien, de façon équivalente, en étendant les
designs interdits F. Mathématiquement, c’est une application qui transforme un ensemble de
designs interdits F en un ensemble encore plus grand F′ = dmM,m(F), pour une valeur de
marge demandée m donnée.

1.2.3 Lien entre marge et risque

Comme nous l’avons vu précédemment, la notion de marge est intrinsèquement liée au risque
qu’elle essaye de prévenir. Pour étudier cette relation, nous devons d’abord préciser ce qu’est le
risque. Si plusieurs définitions existent dans la littérature [9,10], nous utilisons une conceptuali-
sation du risque comme combinaison d’incertitudes et de conséquences [11]

Risque = (Incertitudes,Conséquences),

la mesure du risque prenant en compte ces deux composantes. En pratique, il existe différentes
façons de modéliser l’incertitude, allant d’une vague idée de la variation d’un paramètre incertain
à la représentation précise de sa loi de probabilité. La mesure des conséquences dépend aussi
beaucoup de la problématique considérée ; est-ce que l’on raisonne sur un système critique ou
bien sur des équipements de confort ? Peut-on le coût en cas d’évènement redouté ? Finalement,
la mesure du risque, qui combine les incertitudes et les conséquences en une indice (quantitatif
ou qualitatif) peut aussi varier, comme les différentes mesures de risque introduites dans [98] en
témoignent. Pour que notre propos reste général, nous n’imposons ni de modélisation particulière
du risque, ni d’estimation spécifique des conséquences.

Du point de vue de l’application, nous distinguons cependant les incertitudes réductibles (ou
épistémiques) des incertitudes irréductibles (ou aléatoires) [37, Section 14.1], [60, Section 2]. Les
incertitudes réductibles sont, par définition, les incertitudes qui peuvent être réduites pendant le
processus de conception (par exemple en effectuant de nouvelles expérimentations, ou par l’apport
de nouvelles informations). Les incertitudes irréductibles sont les autres incertitudes. Les marges
issues des incertitudes réductibles sont ainsi appelées marges réductibles (Figure 1.1). Cette
caractéristique nous permettra de les cibler lorsque nous voudrons réduire l’impact des marges
sur un coût.
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Marge
demandée
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ConséquencesIncertitudes
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de marge
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réductible/irréductible

Figure 1.1 : Dans le processus de conception, des marges demandées sont prises pour couvrir
des risques. On appelle marge réductibles (resp. irréductibles) les marges demandées qui couvrent
des incertitudes réductibles (resp. irréductibles).

Nous modélisons ensuite les étapes méthodologiques qui amènent un ingénieur à choisir la
valeur d’une marge. Nous détaillons cette approche en Section 4.4.1, que nous appelons quan-
tification de marge. En substance, elle consiste à choisir un ou plusieurs modèles de marge et
des marges demandées pour couvrir le risque. Dans le cas d’une seule marge, l’analyste choisit
un modèle M et une valeur de marge demandée m > 0 tels que le nouvel ensemble interdit
F′ = dmM,m(F) couvre des risques qui ne sont pas modélisés par F. Dans le cas de plusieurs
marges, un ensemble de paires modèle de marge et marge demandée (M1,m1), . . . , (Mn,mn) est
choisi, tel que le nouvel espace interdit, résultant de la composition des opérateurs

F′ = dmMn,mn ◦ · · · ◦ dmM1,m1(F)

couvre les risques.

1.2.4 L’identification des marges importantes

L’accumulation des marges demandées dans le processus de conception Une fois que
nous avons identifié le mécanisme de quantification de marge, nous vérifions en Section 4.5 que
les principales pratiques de la littérature peuvent être décrites par des modèles de marge. Fort de
ce constat, nous interprétons le processus de conception d’un système industriel complexe comme
la composition successive d’opérateurs de marge demandée, modélisant la prise de marges par
divers acteurs. Cette description mathématique permet de proposer une réponse quantitative aux
questions suivantes.

- Comment le coût du système évolue avec les marges demandées ?

- Comment une marge effective évolue avec les marges demandées ?

Le coût induit et la marge induite calculent respectivement le coût supplémentaire et la marge
effective perdue, en fonction des valeurs des différentes marges demandées. En notant les marges
demandées, (m1, . . . ,mn) ∈ Rn, ces deux notions ont la forme générale d’une fonction

R∗n+ 7→ R+

(m1, . . . ,mn)→ indF(m1, . . . ,mn)
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qui est croissante en fonction de chaque marge demandée.

Analyse de sensibilité des marges Maintenant que nous avons défini la relation entre les
marges demandées et un coût, il nous reste à trouver des indicateurs pertinents pour classer les
marges demandées en fonction de leur impact sur le coût. Nous nous inspirons des pratiques
d’analyse de sensibilité [66, 100] pour définir deux familles d’indicateurs. Notons (m1, . . . ,mn)
les marges demandées réelles. La première famille d’indicateurs (Di)i∈J1,nK est calculée de façon
locale, en fonction des dérivées partielles. L’indice Di quantifie l’impact de la marge demandée
mi sur le coût induit, sous hypothèse qu’il est presque linéaire. Ce coût se décompose de façon
approximative

indF(m1, . . . ,mn) '
n∑

i=1

Di

comme la somme des impacts liés à chaque marge i. La deuxième famille d’indicateurs (Ssi )i∈J1,nK
est calculée en intégrant les dérivées partielles de (m1, . . . ,mn) à (0, . . . , 0) le long d’un chemin
noté s. L’indice Ssi quantifie un impact global de la marge demandée mi sur le coût induit et la
décomposition

indF(m1, . . . ,mn) =

n∑

i=1

Ssi

est exacte. Le calcul de ces indices nécessite cependant plus d’évaluations du modèle et demande
de fixer un chemin de réduction de marge s de façon arbitraire.

1.2.5 La réduction des marges demandées importantes

Une fois que les marges demandées importantes sont identifiées, une étape naturelle est d’essayer
de les réduire. L’étude des mécanismes de diminution des marges demandées se situe encore à la
lisière de nos réflexions et requiert sans doute plus de maturité pour arriver à une modélisation
mathématique complète. Nous avons toutefois identifié, en Section 5.3, trois façons différentes de
réduire les marges demandées, tout en gardant les mêmes critères de sûreté de fonctionnement.

1. Monter en maturité dans la phase de quantification de marge.

Des marges demandées élevées peuvent être causées par un déficit de confiance dans les
calculs ou la modélisation. Arriver à relier plus précisément le risque et la valeur de la
marge demandée permet en général de réduire les valeurs de marge.

2. Mettre à jour les marges réductibles.

Les marges réductibles (Figure 1.1) sont dues à des incertitudes qui peuvent se réduire
au fur et à mesure que le processus de conception avance dans le temps. Elles peuvent se
réduire d’elles-mêmes (e.g. un choix de conception a été fait par un acteur, qui fixe une
valeur pour les autres) ou bien lorsqu’on les cible activement (e.g. on demande plus de
tests pour réduire une erreur statistique). Mettre à jour et réduire ces incertitudes conduit
mécaniquement à réduire les marges associées.

3. Faire de la quantification mutuelle.

Lorsque les marges sont quantifiées par des acteurs qui ne partagent pas d’informations,
elles ne permettent pas de prendre en compte les corrélations ou indépendances entre les
incertitudes qu’elles couvrent. Cela peut mener à de la conception en “pires cas irréalistes”
où le système est conçu pour faire face à des situations qui n’arrivent jamais dans la réalité.
Quantifier plusieurs marges demandées en même temps permet de toutes les réduire, en
satisfaisant le même critère de sûreté de fonctionnement.
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1.2.6 Organisation de la partie I

Après un bref rappel du contexte au chapitre 1, nous effectuons une revue de la littérature
existante sur les marges dans le chapitre 3. Les définitions du modèle de marge et des concepts
associés (marge effective, marge demandée, quantification de marge) sont exposées au chapitre 4
(Section 4.2). Nous y réinterprétons aussi la littérature dans le cadre du modèle de marge.
L’analyse de sensibilité par rapport à des marges demandées est développée dans le chapitre 5,
ainsi que des pistes pour réduire les marges influentes, une fois qu’elles ont été identifiées. Un
mécanisme de réduction de marge, la quantification mutuelle, est illustré sur un cas d’usage dans
le chapitre 6. Nous concluons la partie et décrivons les perspectives qui nous semblent les plus
prometteuses dans le chapitre 7. Le chapitre 8 est consacré à des développements annexes.

1.3 Partie II : Quantification d’incertitude et analyse de
sensibilité dans des graphes de modèles

Dans cette partie, nous nous intéressons à un contexte industriel légèrement différent de la
partie précédente. Nous voulons effectuer de l’analyse d’incertitude probabiliste (quantification
d’incertitude et analyse de sensibilité) dans une portion d’un système industriel complexe qui
met en jeu plusieurs disciplines. Cette problématique a motivé des travaux de recherche récents
dans la communauté de quantification d’incertitude [4, 6, 57, 82, 84, 101]. La spécificité de notre
contexte industriel impose que les calculs ne peuvent pas s’effectuer dans l’ordre nécessaire pour
les méthodes classiques (e.g. approches par Monte-Carlo). Nous allons donc étudier des méthodes
qui sont compatibles avec une certaine autonomie des disciplines.

Nous représentons la partie du système complexe à simuler par un graphe G = (V,E).
Les noeuds V représentent les disciplines et les arêtes E représentent des interactions entre les
disciplines, dont la nature sera précisée plus bas (voir Figure 1.2).

v3

v2

v1

v5

v4

v7

v6

Figure 1.2 : Graphe d’interactions entre les disciplines. Un sommet vi représente une discpline
et une arête représente une interaction.

Avant de développer le cas multi-acteurs, nous décrivons brièvement en quoi consiste l’analyse
d’incertitudes dans la modélisation probabiliste en ingénierie.

1.3.1 Le cadre classique de l’analyse d’incertitudes

L’analyse d’incertitudes consiste en un ensemble de méthodes numériques et de pratiques ap-
pliquées pour extraire de l’information d’un phénomène modélisé par

Y = f(X) (1.1)
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Étape (A) :
Modélisation du système

Y = f(X)

Étape (B) :
Modélisation

des incertitudes d’entrée

X Variable aléatoire
vecteur aléatoire

Étape (C) :
Propagation des

incertitudes.

QI = E[φ(Y )]
(Probabilité de défaillance

espérance, variance...)

Indices de sensibilité

Étape (C’) :
Analyse de sensibilité

Figure 1.3 : Méthodologie ABCC’ (figure adaptée de [36]).

où X = (X1, . . . , Xn) est un vecteur aléatoire, f est un code de calcul déterministe et Y est la
sortie de ce code. Dans un contexte industriel, des études peuvent êtres décrites dans le cadre
développé dans [36,37,107], composé de quatre étapes A-B-C-C’ (Figure 1.3).

(A) La modélisation mathématique du phénomène, via la relation fonctionnelle Y = f(X).

(B) La modélisation probabiliste de l’incertitude en entrée X. Elle peut se faire, par exemple,
par l’estimation de paramètres de la loi de probabilité de l’entrée.

(C) La propagation d’incertitude/quantification d’incertitude (U.Q) consiste à calculer la loi
de sortie (ou une quantité d’intérêt qui lui est liée), en fonction de l’entrée.

(C’) L’analyse de sensibilité (S.A), permet de quantifier quelles sont les entrées parmi les
(X1, . . . , Xn) qui contribuent le plus à la variablité de Y .

Le “prime” de C’ signifie que l’étude se concentre parfois seulement sur l’analyse de sensibilité,
sans faire de propagation d’incertitude. Bien que les étapes de modélisation (A) et (B) dépendent
beaucoup du champ d’ingénierie considéré, les étapes (C) et (C’) ont pu être étudiées de façon
transverse à tous les domaines. Elles ont été la source de multiples investigations académiques
ces dernières décennies [54] et c’est sur ces deux points que se consacrera notre étude.

En U.Q, les défis portent par exemple sur la construction de métamodèles, surfaces de réponse
ou approximations (approcher f à partir d’un petit nombre de points, puis propager l’incertitude)
avec des techniques du type Krigeage [75], polynôme de chaos [88,108], approximation par tenseur
de rangs faibles [28], etc. En S.A [66,100], la recherche s’est portée, entre autres, sur la définition et
le calculs d’indices qui permettent de classifier l’impact de chaque entrée. Les méthodes populaires
sont par exemple le screening et la décomposition de variance (e.g. Indices de Sobol [65]).

Notons que la construction de métamodèles en U.Q a de fortes ressemblances avec la regression
en apprentissage statistique supervisé (tel que défini dans [59]), puisqu’il s’agit, étant donnés
des couples (Xi, Yi)i∈J1,nK, d’estimer f . Une des différences principales est qu’en quantification
d’incertitude, la loi de l’entrée X est très souvent supposée connue et simulable informatiquement
et f est calculable mais chère. En apprentissage statistique, le paradigme est différent car l’on a
seulement accès à des observations (Xi, Yi)i∈J1,nK.
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1.3.2 Interactions multidisciplinaires : échange de variables

Revenons maintenant au cas multi-acteur. Nous supposons que chaque discipline v possède un
modèle fv qui représente le phénomène considéré. Ce modèle permet de calculer la sortie Yv qui
est un vecteur aléatoire, via l’équation

Yv = fv (Xv,Θv) . (1.2)

Contrairement au cas classique de l’analyse d’incertitude en Section 1.3.1, nous distinguons
maintenant les entrées qui

- proviennent d’autres disciplines. Elles sont représentées par le vecteur Xv et sont appelées
variables externes ;

- ne requièrent pas d’information provenant d’autres disciplines. Elles sont représentées par
le vecteur Θv et sont appelées variables internes. Elles peuvent modéliser à la fois

(a) des variables aléatoires de lois connues et simulables sur demande par l’acteur v (ap-
proche du type quantification d’incertitude “classique”) ;

(b) des variables aléatoires simulées à chaque évaluation de fv par v mais non simulables
en dehors de cette évaluation (approche du type simulateur stochastique [127]) ;

(c) des variables aléatoires observées (e.g. un bruit dans une approche Statistiques/Machine
learning [18,59]).

Nous supposons que les variables externes Xv et internes Θv sont indépendantes l’une de l’autre,
de lois respectives µXv et µΘv . En notant les parents directs du sommet v dans le graphe G par
I(v) = {u ∈V|(u, v) ∈E}, le vecteur des variables externes s’écrit comme la réunion des sorties
des parents

Xv = (Xu,v)u∈I(v)

et la variable transmise du noeud u au noeud v est une transformation de la sortie de u

Xu,v = gu,v(Yu),

où gu,v est une fonction facile à calculer (typiquement le choix de ne garder qu’un sous-ensemble
de composants du vecteur Yv), contrairement à fv qui est coûteuse. Dans le graphe de la Fi-
gure 1.2, les interactions sont maintenant des échanges de variables, qui sont représentées en
Figure 1.4.

1.3.3 Graphes de fonctions et non simultanéité : la besoin de méthodes
basées sur la décomposition

Non-simultanéité des calculs Pour effectuer de la propagation d’incertitude dans un tel
graphe, une méthode naturelle serait d’utiliser de l’échantillonnage de Monte-Carlo. Dans le cas
de la Figure 1.4, les acteurs v5, v6, v7 généreraient tous un nombre n ∈ N d’observations de leur
sorties respectives, qui seraient ensuite transmises comme entrées à v4, v3. Ces derniers calcule-
raient l’image de ces entrées, en générant en plus n observations de Θ4 et Θ3, et transmettraient
leurs échantillons à v2 et v1.

Toutefois, du fait de l’organisation complexe du processus de conception, les acteurs n’ont
souvent pas la même temporalité, ni la même localisation spatiale. Faire un échange d’échantillon
“en ligne”, en suivant l’ordre donné par le graphe est difficile en pratique. L’acteur v3 pourrait
par exemple faire une série de calculs en début de projet puis s’arrêter, avant même que v6 et
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Yv3Θv3

Yv2Θv2

Yv1Θv1

Yv5

Θv5

Yv4

Θv4

Yv7

Θv7

Yv6

Θv6

Xv2,v4

Xv1,v4

Xv3,v5

Xv2,v5

Xv5,v7

Xv5,v6

Xv4,v7

Xv4,v6

Figure 1.4 : Exemple d’un graphe de modèle numérique, orienté et acyclique, avec 7 acteurs.
Par exemple, pour l’acteur v5, nous avons Yv5 = fv5(Xv3,v5 , Xv2,v5 ,Θv5). La variable Yv5 est
transformée en Xv5,v7 = gv5,v7(Yv5) puis transmise à v7. Elle est aussi transformée en Xv5,v6 =
gv5,v6(Yv5) puis transmise à v6.

v7 aient commencé à faire les leurs. La technique de Monte-Carlo n’est donc pas adaptée pour
ce cas ; nous cherchons donc une technique qui permettrait de faire les calculs de façon non
séquentielle. Cette problématique se rencontre dans la littérature d’optimisation multidiscipli-
naire, sous le terme “d’autonomie des disciplines” et d’approches dites de décomposition [3, Sec.
2.4]. En quantification d’incertitude multidisciplinaire, un algorithme de propagation basé sur la
décomposition a été proposé pour la première fois en 2012 [5, 6] par S. Amaral, D. Allaire et K.
Willcox.

Algorithme de propagation par repondération Notre but est d’approcher la loi jointe
du vecteur de variables aléatoires (Yv)v∈V. L’algorithme se décompose en deux étapes.

- Phase offline : Chaque acteur fait appel localement à sa fonction de calcul fv. Il donne
comme entrée un échantillon synthétique de Xv tiré selon une loi choisie par v et un
échantillon de Θv tiré selon sa vraie loi µΘv

2. Des échantillons

(X ′j,v, Y
′
j,v)j∈J1,nvK = (X ′j,v, f(X ′j,v))j∈J1,nvK

sont générés à chaque noeud.

- Phase online : Les échantillons sont réunis par un acteur externe, l’architecte de simulation.
Il va repondérer successivement les échantillons pour approcher la vraie loi.

Tout l’enjeu ici est de trouver comment pondérer les échantillons pour avoir une approximation
consistante. Dans le chapitre 10, nous allons étudier une méthode de pondération différente de
celle proposée initialement en [5, 6]. Elle sera basée sur la minimisation des distances de Was-
serstein entre deux mesures empiriques, ce qui résulte dans l’utilisation de méthodes de plus
proches voisins. Ensuite, dans le chapitre 11, nous proposerons un cadre général pour la propa-
gation de poids dans le graphe, dans lequel une large famille de pondérations peuvent s’inscrire.
Nous les nommons méthodes de pondérations linéaires en loi ou WLAMs, pour Weighted Linear

2Comme dit précédemment, le vecteur Θv peut aussi représenter un bruit d’observation ou une quantité
stochastique d’un simulateur stochastique sans changer le raisonnement, du moment où il reste indépendant de
Xv .
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Approximation Methods. Nous étudierons quelles sont les caractéristiques de ces méthodes qui
garantissent la convergence de cet algorithme. Nous verrons aussi que la propagation de poids
peut se voir comme un problème d’inférence dans un réseau bayésien.

Le reste de cette section est dédiée à une explication plus détaillée de nos résultats.

1.3.4 Propagation sur un noeud : repondération par minimisation de
la distance de Wasserstein et plus proches voisins (k-NN)

1.3.4.a Pondération par un acteur

Nous allons tout d’abord nous intéresser à la pondération effectuée pour un seul acteur v dans
une approche de décomposition. L’ensemble des variables d’entrée externes sont réunies dans le
vecteur Xv = (Xu,v)u∈I(v) et les variables d’entrée internes sont réunies dans le vecteur Θv (voir
schéma Figure 1.5).

Yu1

YuK

... Yv

Θv

...

Xu1,v

XuK,v

Figure 1.5 : Représentation des entrées d’un noeud.

Dans un but de simplification des notations, nous abandonnons temporairement le symbole
v en indice et notons X = Xv, Y = Yv, etc. Au niveau de v, la pondération s’effectue de la façon
suivante.

Phase offline : calcul de f sur un échantillon synthétique Durant la phase offline,
l’acteur v effectue des calculs de f sans avoir accès à la loi de X. Il utilise donc un échantillon
synthétique de variables (X

′

j)j∈J1,noffK indépendantes identiquement distribuées, de loi commune
µX′ , ainsi qu’un échantillon (Θj)j∈J1,noffK tiré selon la vraie loi µΘ. Ces échantillons servent au
calcul de (

X′noff
,Y′noff

)
=
(
X
′

j , Y
′

j

)
j∈J1,noffK

,

avec Y
′

j = f(X
′

j ,Θj), j ∈ J1, noffK. Insistons sur le fait que la loi µX′ est choisie par v avec peu
d’informations sur X. Elle a donc très peu de chance d’être la vraie loi de X.

Phase online : repondération de l’échantillon Durant la phase online, l’architecte de
simulation a accès à des échantillons (Xi)i∈J1,nonK, tirés selon la vraie loi de X. Cependant, il ne
peut pas faire d’évaluation de la fonction f .

Le coeur de notre approche consiste à repondérer l’échantillon des sorties synthétiques (Y
′

j )j∈J1,noffK
avec des poids wnoff

= (wj)j∈J1,noffK, qui dépendent de (Xi)i∈J1,nonK, de telle sorte que l’échantillon

(
Y ′j , wj

)
j∈J1,noffK
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approche la loi de Y . Cela signifie que pour tout φ continue bornée, nous souhaitons avoir

1

noff

noff∑

j=1

wjφ(f(X
′

j ,Θj)) −−−−−−−−−→
noff ,non→+∞

E [φ(f(X,Θ))] , (1.3)

ou en termes de loi empirique, la mesure

µ̂
wnoff

Y′noff

=
1

noff

noff∑

j=1

wjδY ′j (1.4)

doit converger étroitement vers µY quand noff et non tendent vers l’infini. Pour parvenir à ce
résultat, le vecteur de poids wnoff

doit dépendre à la fois de l’échantillon synthétique (X ′i)i∈J1,noffK
et de celui tiré selon la vraie loi (Xj)j∈J1,nonK .

1.3.4.b Une première méthode de pondération : estimation des ratios d’impor-
tances

Dans l’algorithme original de 2012 [5], les poids sont construits pour approcher le ratio d’impor-
tance

wj =
µ̃X
µ̃X′

(X ′j) '
µX
µX′

(X ′j) = w(X ′j)

en prenant pour µ̃X et µ̃X′ des estimations de densité à noyaux construits à partir des échantillons.
L’observation à la base de l’échantillonnage d’importance, qui est que

1

noff

noff∑

j=1

w(X
′

j)φ(f(X
′

j ,Θj)) −−−−−−→
noff→+∞

∫
φ(f(x, θ))

µX
µX′

(x)µX′(x)dxdµΘ(θ)

=

∫
φ(f(x, θ))µX(x)dxdµΘ(θ)

= E [φ(f(X,Θ))]

permet de conclure à la convergence en loi. Plus généralement, différentes techniques d’estimation
de ratio d’importance ont été développées dans la littérature [109] pour estimer w(X ′j). Toutefois,
ces techniques supposent l’existence d’un w vérifiant µX(dx) = w(x)µX′(dx), ce qui revient à
dire que µX est absolument continue par rapport à µX′ .

Dans notre contexte cependant, µX′ doit être choisi par l’acteur v sans avoir une information
précise sur µX . Par expérience, v peut connâıtre l’étendue de son support, mais comme X peut
être la sortie d’une fonction, son support exact peut être une sous-variété de l’espace. Imaginons
que le code de calcul du parent u soit

Yu = fu(Xu) =
(
X2
u, sin(2πXu)

)
, Xu ∼ U([−1, 1]).

L’acteur v peut savoir que son entrée X = Yu prend ses valeurs dans le rectangle [−0.5, 1.5] ×
[−1.5, 1.5], mais ne sait pas qu’elles sont exactement dans la courbe

(
t2, sin(2πt)

)
. Nous pouvons

donc nous retrouver dans une situation semblable à celle de la Figure 1.6, où le support de µX
est inclus dans celui de µX′ , mais l’absolue continuité n’est pas vérifiée. Nous cherchons une
méthode consistante dans ces cas-là.
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1.5 Support de X 
Support de X ′

Figure 1.6 : La mesure µX n’est pas absolument continue par rapport à µX′ , mais le support
de µX est inclus dans celui de µX′ .

1.3.4.c Surmonter la non absolue continuité : méthode de pondération par mini-
misation d’une distance de Wasserstein

Cette nécessité d’abandonner l’hypothèse d’absolue continuité nous amène à considérer naturel-
lement la famille de distances de Kantorovich–Rubinstein, plus connues sous le nom de distances
de Wasserstein Wq, dont nous rappelons la définition.

Definition (Distance de Wasserstein). Soit Pq(Rd) l’ensemble des mesures de probabilité sur
Rd de moment d’ordre q ∈ [1,+∞) fini. La distance de Wasserstein d’ordre q entre deux mesures
µ et ν de Pq(Rd) est définie par

Wq(µ, ν) = inf

{∫

Rd×Rd
|x− x′|qdγ(x, x′) : γ ∈ Π(µ, ν)

}1/q

,

où Π(µ, ν) est l’ensemble des mesures de probabilité sur Rd × Rd de lois marginales µ et ν.

Contrairement à certaines mesures de dissimilarité, comme la divergence de Kullback-Leibler,
la distance de Wasserstein est bien définie même lorsque aucune des deux mesures n’est abso-
lument continue par rapport à l’autre. Nous nous référons à [90] pour une revue des résultats
existants sur cette distance.

Au lieu de nous intéresser directement à la convergence de µ̂
wnoff

Y′noff

vers µY de l’Équation (1.4),

nous regardons d’abord l’approximation de µX par µ̂
wnoff

X′noff

, en notant

µ̂
wnoff

X′noff

=
1

noff

noff∑

j=1

wjδX′j , (1.5)

un argument utilisant l’expression duale de la distance de Wasserstein W1 nous permettant
de remonter à l’approximation de µYv par µ̂

wnoff

Y′noff

. Nous découpons classiquement l’erreur via

l’inégalité triangulaire

Wq(µX , µ̂
wnoff

X′noff

) ≤Wq(µX , µ̂Xnon
) +Wq(µ̂Xnon

, µ̂
wnoff

X′noff

),
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avec µ̂Xnon
la mesure empirique de l’échantillon (Xi)i∈J1,nonK. La convergence de la mesure em-

pirique vers la mesure théorique est étudiée dans la littérature [50], et nous donne les taux de
convergence de l’espérance de Wq(µXv , µ̂Xnon

) vers 0. Nos travaux se concentrent donc sur l’étude

du deuxième terme Wq(µ̂Xnon
, µ̂

wnoff

X′noff

). Nous commençons par montrer que les poids optimaux

minimisant la distance
w∗noff

= arginf
w

Wq(µ̂Xnon
, µ̂

wnoff

X′noff

),

ont une expression simple en terme de plus proches voisins. La composante w∗j du vecteur optimal,
est proportionnelle au nombre de points dans (Xi)i∈J1,nonK dont X ′j est le 1-plus proche voisin,
parmi tous les points de (X ′j)i∈J1,noffK.

Résultats Nous démontrons la consistance dans la section 10.3.1 : sous des hypothèses faibles

de moment et d’inclusion du support de µX dans le support de µX′ , la quantité Wq(µ̂Xnon
, µ̂

w∗noff

X′noff

)

converge bien vers 0 en espérance. Dans la section 10.3.2, nous nous intéressons aux taux de
convergence. Sous des hypothèses plus fortes, notamment que µX′ ait une densité pX′ avec un
certain poids et que l’on ait

E
[

1 + |X|q
pX′(X)q/d

]
< +∞,

nous démontrons le taux de convergence suivant

E
[
W q
q (µ̂Xnon

, µ̂
w∗noff

X′noff

)

]
∝ n−q/d

(
E
[

1

pX′(X)q/d

]
+ o(1)

)
.

Remarquons ici que µ̂X ne doit pas nécessairement être à densité. Nous nous sommes donc
affranchis de l’hypothèse d’absolue continuité. Ces résultats nous permettent de calculer des
taux de convergence pour l’estimation de la quantité d’intérêt de l’équation (1.3) dans un cas
sans variable aléatoire Θ. Si l’on veut inclure Θ, un estimateur basé sur le 1-plus proche voisin
n’est plus forcément consistant. Nous le replaçons par des poids basés sur des knoff

-plus proches
voisins avec knoff

qui doit tendre vers l’infini avec noff . Une adaptation simple du cas pour 1-plus
proche voisin permet de retrouver de la consistance et de calculer des taux de convergence.

Le Chapitre 10 nous permet de voir quantitativement comment se c omporte une méthode
de pondération au niveau d’un noeud. Dans la prochaine section, nous revenons au cas général
du graphe.

1.3.5 Propagation sur le graphe et méthode d’approximation par pondération
linéaire en la loi (WLAMs)

Revenons au cas général du graphe ; nous pouvons maintenant décrire le fonctionnement de
l’algorithme un peu plus précisément.

Phase offline Si un noeud v n’a pas de parents (i.e. c’est une racine du graphe), il génère des
observations

Sv,nv = (Y ′v,j)j∈J1,nvK

avec Y ′v,j = fv(Θv,j). Si un noeud v a des parents, il génère des échantillons synthétiques

Sv,nv =
(
X
′

v,j , Y
′
v,j

)
j∈J1,nvK

avec Y ′v,j = fv(X
′

v,j ,Θv,j).
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Phase online Nous découpons la phase online en deux étapes.

Approximation des loi conditionnelles Pour chaque noeud v qui n’est pas une ra-
cine, des échantillons (X ′u,v,j)i∈J1,nuK issus des parents u ∈ I(v) sont calculés. Ces échantillons
vérifient, pour j ∈ J1, nuK

X ′u,v,j = gu,v(Y
′
u,j)

= gu,v(fu(X ′u,j ,Θu,j)),

c’est à dire qu’ils sont issus des sorties de l’échantillons synthétique des parents. En utilisant
ces derniers et Sv,nv , une méthode de pondération calcule un tableau à |I(v)| + 1 dimensions,
qui pour chaque multi-indice (ju)u∈I(v), contient des poids (Wv,jv (Sv,nv , (X

′
u,v,ju

)u∈I(v))). Ces

poids doivent approcher la probabilité conditionnelle que Yv prenne la valeur Y
′

v,jv
sachant que

Xv = (X ′u,v,ju)u∈I(v).

Propagation des poids Une fois que ce tableau de poids est construit pour chaque noeud,
il reste à combiner ces poids pour retrouver la loi jointe. Un algorithme de propagation des poids
doit permettre de calculer une approximation de la loi des (Yv)v∈V.

Nos travaux se concentrent sur deux questions portant sur deux aspects importants de l’algo-
rithme.

- Que fait une méthode de pondération et quelles propriétés doit-elle vérifier pour que notre
algorithme approche effectivement la loi jointe des (Yv)v∈V ?

L’article séminal [5] propose une pondération par estimation des ratios d’importance. Nous
proposons une pondération par minimisation de distance de Wasserstein dans le Cha-
pitre 10. Ces deux méthodes peuvent se voir comme des cas particuliers de méthodes
d’approximation par pondération linéaire en lois (WLAMs), que nous définissons dans un
cadre abstrait et qui généralisent les deux techniques. Nous proposons une définition de
consistance au niveau d’un noeud, qui permettra d’avoir un résultat de convergence dans
un sens approprié vers la loi au niveau du graphe.

- Une fois que les poids sont calculés à chaque noeud du graphe, comment reconstruire les
lois jointes (Yv)v∈V ?

La pondération à chaque noeud peut se voir comme une table de probabilité conditionnelle
(CPT) des sorties par rapport aux entrées. Sous cette interprétation, la propagation de
poids est équivalente au problème dit d’inférence dans réseau bayésien discret. Nous expli-
citons cette formulation et montrons comment construire ce réseau bayésien. En utilisant
les algorithmes classiques de ce domaine, nous pouvons donc effectuer la propagation des
poids pour approcher la loi jointe de n’importe quel sous-ensemble de variables dans le
graphe.

1.3.6 Organisation de la partie II

Le chapitre 10 est dédié à l’étude théorique de la méthode de pondération par distance de Was-
serstein. Nous y dérivons les résultats de consistance en Section 10.3.1 et les taux de convergence
en Section 10.3.2. Dans la Section 10.4 nous appliquons ces résultats aux calculs de quantités
d’intérêt. Dans le chapitre 11, nous décrivons l’approche de propagation de poids généralisée.
En Section 11.2.1.a, nous définissons tout d’abord la famille des WLAMs, qui sont des méthodes
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de pondération particulières et nous établissons un critère de consistance local. Sous l’hypothèse
de consistance locale à chaque noeud, nous démontrons la convergence faible de la loi dans l’en-
semble du graphe en Section 11.2.2.b. Enfin, nous explicitons un réseau bayésien discret pour les
calculs numériques dans la section 11.3 et nous appliquons cette méthode sur un cas industriel
dans la section 11.4.

1.4 Un objectif commun : la réduction des marges impor-
tantes

Nous avons vu que les résultats des Parties I et II répondent à des questions différentes et
peuvent se comprendre de façon indépendante. Ils se rejoignent cependant sur une application
commune : la réduction des marges de conception qui contribuent le plus à un coût dans un
système industriel complexe.

Le constat industriel est qu’une modélisation probabiliste précise de l’ensemble des incerti-
tudes dans tout le processus de conception serait très coûteuse. Dans certains contextes, elle serait
même impossible à mettre en place. Nous voulons donc surtout nous concentrer sur les parties
où les incertitudes peuvent avoir un grand impact négatif sur un coût ou sur une performance
finale. Nous quantifions tout d’abord l’impact des différentes marges pour un coût donné, dans
un graphe d’interactions entre disciplines (Figure 1.7a). Cette étape nécessite seulement l’estima-
tion de l’ordre de grandeur des marges demandées à chaque niveau et ne requiert pas d’approche
probabiliste. Le but est d’identifier les principaux contributeurs à un coût (e.g. la masse du
système, la résistance, etc.) via l’analyse de sensibilité du chapitre 5. Ensuite, une fois que le
sous-ensemble des contributeurs est identifié, un effort de modélisation probabiliste et de quanti-
fication d’incertitude est effectué à chaque niveau, en utilisant des WLAMs (Figure 1.7b). Cette
étape peut se faire de façon asynchrone, sans que les disciplines aient à effectuer la modélisation
et les calculs au même moment. La reconstruction se fait par la technique de propagation du
chapitre 11.

Pour le moment, cette approche reste toutefois à l’état de perspective. Même si ces travaux
nous ont permis de décrire rigoureusement une grande partie du problème, il reste encore au
moins deux verrous de modélisation.

Le premier verrou est celui de la propagation des marges et de leur décomposition dans un
système multidisciplinaire, pendant la phase de la Figure 1.7a. Comme nous l’évoquons dans
les perspectives du Chapitre 7, propager les marges dans un système multidisciplinaire revient à
interpréter la marge induite d’un parent comme la marge demandée d’un enfant. Il reste à préciser
cette relation, pour que la décomposition de la marge induite d’un acteur “parent” se transmette
à la décomposition de la marge induite d’un acteur “enfant”. Des premières expériences sur des
cas jouets ont été concluantes et nous sommes donc confiants sur la possibilité d’effectuer une
propagation des indicateurs de sensibilité de marge sur un graphe.

Le deuxième verrou est celui des critères probabilistes pour la quantification mutualisée de
marges. Plus précisément, en agrégeant les marges de plusieurs acteurs, il faut aussi en agréger
les risques et leurs niveaux d’acceptation. Une description plus complète de la quantification de
marge mutualisée avec un modèle de risque probabiliste est nécessaire pour être sûr de garder le
même niveau d’exigence en terme de sûreté de fonctionnement.

Des perspectives plus détaillées sont listées dans les Chapitres 7 et 11.
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(a) L’analyse de sensibilité sur les marges per-
met d’identifier que le coût de v14 est dû en
grande partie à la prise de marge séquentielle
depuis v7.

v6

v8

v7

v10

v11

v14

(b) Une propagation d’incertitude locale est de-
mandée à chaque acteur du sous-graphe entre
v7 et v14. Une quantification de marge mutua-
lisée, se basant sur des critères probabilistes
permet de réduire les marges et donc le coût
final. La propagation peut se faire de façon
découplée, via des WLAMs.

Figure 1.7 : Réduction globale des marges par quantification des marges mutualisée via un
modèle de risque probabiliste, en se basant sur les résultats des Parties I et II. C’est un cas fictif
décrivant une application plausible.
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Chapter 2

Introduction and motivation

2.1 Why model margins?

The use of margins to cover some risks is maybe one of the oldest practices when designing a
system. Broadly speaking, a margin is an extra quantity taken to cover the risk, understood as
some uncertainties and their consequences. However, this definition actually covers two notions:

• the demanded margin is a requirement of a minimum extra quantity, to cover some
risks;

• the effective margin is the actual extra quantity that a design has and that can be used
to cover uncertainties. It is sometimes used when analyzing a design to characterize the
risk.

During the design of industrial complex systems, one way to mitigate risks is to require demanded
margins on multiple quantities to cover various risks. These additional requirements reduce the
range of design choices and consequently decrease the performance obtainable and/or increase
the cost. In this specific context, two questions are motivated by the industrial stakes:

- Do the demanded margins have a great impact on the system performance or
on its cost?

- On which uncertainties should the analyst focus to reduce impactful margins?

We put the stress on the fact that, in the engineering practices, the uncertainties are not
modeled within a probabilistic framework in general.

The works developed in this part are the continuation of [115] and are devoted to answering
these very two questions, in a quantitative way. The first step is to have a mathematical model
for the demanded and the effective margins, that can be used to describe a wide variety of
engineering practices. In our review of the literature in Chapter 3, we did not find any definition
that fitted this purpose and thus, we proposed a model of margin in Chapter 4. The effective
margin on a given quantity is defined as a distance to a forbidden set on a subspace of the designs.
The demanded margin is defined as an operator that reduces the set of the possible designs.

Once these two notions are rigorously defined, we can describe what happens when an engineer
“takes a margin”. In fact, they define a model of margin and choose a demanded margin to cover
the risks; we call this phase margin quantification (Section 4.4.1).

Now, assuming that multiple demanded margins have been taken, we must compute the
impact of these margins on the cost of the system or on its performance. In Chapter 5, we
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identify a quantity, that is the induced cost or induced loss of performance, for which we propose
some sensitivity indices with respect to the margins. The additional cost/loss of performance is
decomposed as the sum of the contributions of the demanded margins, either by some locally
computed indices or globally computed indices. This task has a strong resonance with the factor
prioritization in sensitivity analysis (see [54,100] for a comprehensive review of the techniques).
Indeed, sensitivity analysis is defined in [99] as “the study of how uncertainty in the output of
a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the
model input” and factor prioritization ranks the input variables by order of the impact they have
on an output. In our case, the input variables are the demanded margins and the output variable
is the cost or the performance.

Finally, when the influential margins are identified, we put in light three ways to decrease their
negative impact without reducing the safety or reliability target. The first one (Section 5.3.1) is
to precise how the margin quantification is done. The second one (Section 5.3.2) is to focus on
the margins that are taken to cover reducible uncertainties. By definition, these uncertainties
can be reduced during the design of the system; a new assessment can shrink them and thus
decrease the associated margins. A third way is to model the correlation/independence between
the uncertainties that cause margins (Section 5.3.3). When the margin quantification is per-
formed separately on each variable, the margins cannot model the correlation and then lead to
a worst-case design that is sometimes unrealistic (e.g. it might never happen almost surely). A
probabilistic modeling of a few targeted variables may lead to a significant decrease in terms of
margins. An application is presented in Chapter 6. The conclusion is drawn in Chapter 7 along
with some perspectives both on the industrial applications and on the mathematical study of
the model of margin.

We conclude this introductory chapter by a presentation of some relevant notions under
the form of short questions and answers. During the author’s Ph.D. thesis, industrial partners
formulated practical questions about margins and some of them are presented in the following
section.

2.2 Frequently asked questions about margins

- What is a design margin?

We call design margins the margins that are used in the design phases of an industrial
system. It is a real nonnegative number m ≥ 0, it is unidimensional and is most of the
time related to a physical quantity (distance, mass, current intensity...).

- Is a margin a characteristic of the system or a kind of safety factor?

In fact the word designates both concepts. To avoid any confusion we distinguish two types
of margins: the effective margin (Def. 4.2.4), is broadly speaking the distance from a design
point to the failure, and the demanded margin (Def. 4.2.8), is a requirement on the design
in terms of effective margins, to cover some uncertainties. We can remark that in both
cases, they are a real unidimensional nonnegative number.

- Are margins good in design phases?

Practically speaking, one can see the use of margins as a tradeoff between the complexity of
the uncertainty model and the cost of production/operation of a system. In that sense, they
are neither good nor bad in essence, but sometimes some gain can be made by questioning
their relevance.

- Is a margin a random quantity?
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The margins we model are deterministic quantities that are used to cover the uncertainties
and their consequences. Choosing their value is done in the margin quantification phase
(Sec. 4.4.1). During this phase, engineers can use probabilistic computations and criterion,
but it is not always the case.

- How about the margin of error in Statistics? It depends on a random sample.

The margin of error that is sometimes used in margin quantification (Section 4.4.1), may in-
deed be random (i.e. proportional to the standard deviation estimator σ̂n). However, when
focusing on what happens in the design after the margin quantification, it is considered as
a fixed quantity and its randomness is not taken into account.

- Some engineers talk about margins as a range of freedom/operating range and
some describe it as an additional constraint. How do you interpret it?some

This range of freedom is the “other point of view” of a demanded margin. Assume that an
electronic device is designated to work at temperatures between [Tnom −mT ;Tnom + mT ]
with Tnom = 40 °C and mT = 50 °C. From the device designer point of view, the demanded
margin mT is an additional constraint - they must ensure it works properly in both high
and low temperatures. However, from the user of the device point of view, it is a range of
freedom, as they can use it in either in hot and cold environments.

- What is the cost of a margin?

The cost of the margin is intuitively the extra cost due to the presence of margins. It is
calculated as the cost with margins minus the cost without margins. We define it generally
in Section 5.1, as the induced cost.

- Which margins can be removed from a design?

At first, one must assume that all the margins are taken for specific purposes (safety,
uncertainty about the future, etc.). Consequently, they must not be removed without
extra analysis, as it could lead to unfortunate consequences. The basis of the approach is
that “One can remove a margin only if they ensure the criterion for which it was taken and
the decision based on it are still valid after removing it”.

- How can we remove a margin?

At the sources of the margins lie the uncertainties and their consequences. If these un-
certainties can be reduced during the project, it is possible to remove the margins that
cover them. Another way to remove margins is to take into account the correlation or
independence between the uncertainty sources, as they are typically not taken into account
in margins. These aspects are described in Section 5.3.

- Does removing margins always reduce the cost of a system?

In most cases, removing margins indeed reduces the associated cost in a design, as it permits
to explore a wider range of decisions. However, in some cases, especially when a quantity
is shared between multiple stakeholders, increasing the margin for a player could result in
more range of freedom for another player. In that case, more margins could result in a
more optimal solution (see the “allocated margin” in the perspective of Section 7.2.1).

- Where are the important margins in a system? For a given induced cost or induced
loss of performance, one can identify the impactful margins by a sensitivity analysis. We
propose some quantitative indices to measure it in Chapter 5. One can also compute the
impact of a margin on other margins, by performing a sensitivity analysis on an induced
margin (Section 5.1).
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Chapter 3

State of the art

In order to propose our own model of margin, our literature review focuses on two categories of
publications. The first one is those presenting engineering notions, such as confidence intervals,
that can be interpreted as margins.

The second category is frameworks for margins, that were industrially motivated by the
needs for a unified practice or at least, a unified definition. This need typically appears in large
industrial system design, for regulatory, licensing or efficiency purposes.

Engineering field Notion Section

Statistics Confidence interval 3.1.1
Robust optimization Uncertainty set, Info-gap model 3.1.2
Control Phase margin, Gain margin 3.1.3
Robust control Stability radius 3.1.3
Civil engineering Partial safety factor 3.1.4
Mechanics of materials Safety factor 3.1.5
Finance and robust optimization Coherent risk measure, Acceptance set 3.1.6

Engineering field Framework name Section
Nuclear safety Traditional margin, Probabilistic margin 3.2.1

Quantification of margin and uncertainties (QMU) 3.2.2
Complex system design Performance margins, Safety performance margins 3.2.3

Margin allocation and tradeoff 3.2.4
Buffer, Excess, Margin value method (MVM) 3.2.5

Table 3.1: Margin notions and frameworks in the literature that we studied to construct our
model. This table echoes Table 4.2 in which we reinterpret them as margins under our framework.

3.1 Margins in engineering fields

3.1.1 Confidence intervals

Confidence intervals are statistical objects that were first introduced in [86] by J. Neyman in 1937.
They have become the standard way to handle uncertainty in estimation and tests [19, 32, 121]
and are practically used in any engineering field using statistics such as survey design, control,
finance, statistical quality [85,96], etc.
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Definition 3.1.1 (Confidence interval). Let θ ∈ R be a parameter of the law of the random
variable X and X1, . . . , Xn be n i.i.d copies of X. A confidence interval Λn of level 1−α ∈ [0; 1]
is an interval that is a function of X1, . . . , Xn, such that

P (θ ∈ Λn) = 1− α.

Other types of confidence interval can be found in the literature, such as asymptotic confidence
intervals for which the equality holds in the limit n → +∞ or conservative confidence intervals
for which the probability is required to be greater than or equal to 1− α.

A widely known example is when X is a normal random variable of mean θ and variance σ2,
that is assumed known. In that case, the centered confidence interval of level 1−α ≥ 0.5 for the
parameter θ is

Λn =

[
θ̂n − q1−α/2

σ√
n

; θ̂n + q1−α/2
σ√
n

]

with θ̂n = 1
n

∑n
i=1Xi and q1−α/2 is the quantile of level 1− α/2 of a standard random variable.

By the Central Limit Theorem, it is also an asymptotic confidence interval of θ = E [X] for any
random variable X with finite variance.

The value m = q1−α/2
σ√
n

is the extra quantity taken to prevent the statistical uncertainty

involved by taking θ̂n instead of θ. It is then a demanded margin.

3.1.2 Uncertainty sets in robust optimization (Operations Research)

In Operations Research, the field of Robust Optimization is devoted to solve the following opti-
mization problem [16]:

minimize f0(x)

subject to fi(x, ui) ≤ 0 ∀ui ∈ Ui, i ∈ J1, nK
(3.1)

with the ui representing the uncertain parameters and Ui the so-called uncertainty sets, that
are used to model the uncertainty on the variables u1, . . . , un. The underlying idea behind this
formulation is that, in some applications, a probabilistic description of the uncertainties might
not be relevant (e.g. observations of data are lacking but there is an expert judgment). Instead
the uncertainty on ui is modeled by a set, that is often centered at a nominal value ûi.

One of the topics of interest of the field is to study the tractability of the problem (3.1) for
some family of uncertainty sets, coupled with specific optimization problems. The uncertainty
sets can take the form of an interval/cuboid, but also more complex forms, such as an ellipsoid,
for which we recall the definition.

Definition 3.1.2 (Ellipsoidal uncertainty set). An ellipsoidal uncertainty set [14] [16, Section
3.1] centered on û ∈ Rn is defined as:

UQ(û, γ) =
{
ũ : (ũ− û)′Σ−1(ũ− û) ≤ γ2

}
(3.2)

with Σ ∈ Rd×d a positive definite matrix and γ > 0.

The coordinates û1, . . . , ûn are the nominal values of the parameters u1, . . . , un and the choice
of γ sets the extent of the domain. The quantity γ is then a demanded margin.



3.1. MARGINS IN ENGINEERING FIELDS 37

3.1.2.a Extensions of robust optimization

An extension of robust optimization is the use of data to construct the uncertainty sets [17],
from some data and confidence intervals of statistical tests. The value of the demanded margin
is then chosen based on data.

Let (X,T) be a measurable space and F be a (measurable) failure set included in X. Other
approaches, known as Optimal Uncertainty Quantification [89] and Distributionally robust opti-
mization [122], are interested in probabilistic constraints such as PX∼µX (X 6∈ F) ≥ p that must
hold for all µX in P. The set P is a family of probability distributions of random variables
taking their value in X. In this context, demanded margins are then taken on the probability
measures of random variables.

3.1.2.b Info-gap methodology

The info-gap methodology, exposed in [12, 13] aims to be a decision theory under uncertainty,
without a probabilistic modeling.

Info-gap model The methodology is based on a mathematical object called info-gap model
that can be seen as a parametrized uncertainty set of Equation (3.1). If u is a point of a Banach
space X, an info-gap model is a family of sets U (α, u) parametrized by α ∈ [0,+∞) such that

if 0 ≤ α ≤ β, then U(α, u) ⊂ U(β, u)

and U(0, u) = {u}. It also often verifies the following linearity property, for α > 0

U(α, u) = αU(1, 0) + u. (3.3)

Robustness The robustness at a point u ∈ X is defined as the greatest α for which the
requirements are satisfied for all points in the uncertainty set. For a vector of decision x, its
expression is [13, Eq. 3.1]

α̂(x, u) = max {α| f(x, u) ≤ 0, ∀u ∈ U(α, u)} ,
with f(x, u) being positive if and only if the constraints are not met. By denoting the failure set
F(x) = {u| f(x, u) > 0}, we can rewrite the robustness as

α̂(x, u) = max {α| y 6∈ F(x), ∀y ∈ U(α, u)} . (3.4)

The last expression really puts in light that α̂(x) is an effective margin: it is measures the extra
quantity around u that separates it from the failure states F(x).

Robust-satisficing optimization Robust-satisficing optimization [13, Sec. 11] consists in
choosing the most robust decision x at a critical point uc

x∗ = argmax
x

α̂(x, uc).

3.1.3 Control and robust control

In order to ensure some robustness in the design of systems, the theory of control and robust
control have developed some notions of margins. The goal of the analysis is to ensure the stability
of a system that is modeled by the complex transfer function

Hcl(s) =
Hfo(s)

1 +Hol(s)
, s ∈ C, (3.5)
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with Hfo being the feedforward , Hol the open-loop and Hcl the closed-loop transfer functions,
that are rational complex functions with real coefficients. The stability is ensured as soon as the
roots of the polynomial

1 +Hol(s) = a0 + a1s+ a2s
2 + . . .+ ans

n

have negative real parts. Such a polynomial is called strictly Hurwitz.

3.1.3.a Gain margin and phase margin

The gain margin and the phase margin [51, Section 6.4], [77, Section 8.4.2] came from the
Strecker-Nyquist criterion, introduced in [87], that is a graphical method to verify the stability.
It is based on Cauchy’s argument principle that states that when Hol has no poles with positive
real parts, the number of roots with positive real parts of 1 + Hol(s) is actually the number of
times the graph in the complex plane of

Hol(tj)

encircles the point −1 + 0j when t goes from −∞ to +∞ (j is the complex number of imaginary
part equal to 1 and null real part). The gain and the phase margins measure how far the curve
(Hol(tj))t∈[−∞,+∞] is from encircling −1, either in terms of additional gain or additional phase.
They are effective margins.

3.1.3.b Stability radius

Besides ensuring that 1 + Hol(s) is strictly Hurwitz, the robust control approach verifies that
polynomials around 1 + Hol(s) are also strictly Hurwitz, to cover possible uncertainties. More
precisely, they investigate the stability of polynomials with coefficients parametrized by q ∈ Q

1 +Hol,q(s) := p(s,q) = a0(q) + a1(q)s+ . . .+ an(q)sn

with Q being the domain of the design parameters and check the stability by ensuring that each
polynomial in the set

P (Q) = {p(s,q)| q ∈ Q}
are strictly Hurwitz. The set of parameters is typically a box Q = [q1,−, q1,+]× · · · × [ql,−, ql,+]
with l the number of parameters. After centering Q on the origin, the stability radius ρ ( [2, Chap.
7]) is the smallest dilatation λ > 0 such that P (λQ) has an element that is not stable. It writes

ρ = inf {λ > 0| ∃p ∈ P (λQ) that is not strictly Hurwitz} . (3.6)

The number ρ plays the role of a margin, measuring the “extra quantity” by which the parameters
can vary from their mean value (qi,− + qi,+)/2, before reaching an unstable state. It is then an
effective margin.

From a computational point of view, Kharitonov’s theorem [69] has permitted to handle
cases when the ai are linear in q. Tsypkin-Polyak’s locus method [118] dealt with other shapes
of parameter sets Q.

3.1.4 Partial safety factors

The semi-probabilistic approach with partial safety factors was described in the ISO document
General principles on reliability for structures [106, Section 9] and was applied, for instance, in
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the European standards documents for structural engineering Eurocode [35]. It was used for
the design of civil engineering structures, when the failure modes, their consequences and the
representation of the uncertainties can be categorized and standardized. In that case, some safety
coefficients, the so-called partial factors, can be calibrated with a probabilistic model so that the
rules for design can be written deterministically.

More precisely, it is assumed that the structural response can be categorized either as a
desirable state or a failure state, the failure being defined through the inequality

G(x1, . . . , xm, y1, . . . , yn) := R(x1, . . . , xm)− S(y1, . . . , yn) ≤ 0. (3.7)

Here, (x1, . . . , xm) are the resistance parameters, (y1, . . . , yn) are the action parameters, the
function R models the resistance and the function S models the action effect. In order to take
some uncertainties into account, a partial factor

γ ∈ [1,+∞)

is assigned to each variable so that the value used in the computation, called design value, is
different from the one that is estimated, designated under the name of characteristic value.

The design value of the resistance is Rd = R(x1,d, . . . , xm,d)/γR with γR accounting for the
model uncertainty of the resistance model. For each resistance parameter xi, its design value
is xi,d = xi,k/γxi with xi,k being its characteristic value, determined through experiments for
instance, and γxi accounting for the uncertainty on the material property. The function R is
assumed to be an increasing function of each resistance parameter.

The design value for the action is Sd = S(yd,1, . . . , yd,n)γS with γS accounting for the uncer-
tainties in modeling the effects of the actions. For each action, the design value is yj,d = γyjyj,k
with yj,k being the characteristic value of the action γyj accounting for the uncertainty in its
determination. The function S is assumed to be an increasing function of each action parameter.

Finally, the verification using partial factors consists in checking that the inequality

Gd = Rd − Sd = R(x1,k/γx1
, . . . , xm,k/γxm)/γR − S(γy1y1,k, . . . , γynyn,k)γS > 0 (3.8)

holds. Under this criterion, each partial factor γ−1 takes the role of a demanded margin, i.e. the
“extra quantity” between the design value and the characteristic value that mitigates the risks.

Partial factors calibration The choice of the numerical values of the partial factor in the
standards is called design code calibration - code is here a synonym of standard. According
to [80], the choice of these values was done in the past by real life feedback and references to
expert judgments. Modern approaches, such as those followed in [53, 80, 105, 110] [76, Section
10], consist in calibrating partial safety factors with a probabilistic model for a given domain of
validity - thus providing a rule that covers a range of scenarios. The introduction of [105] shows
a clear 7-step process used in the calibration:

1. Definition of the scope of the rules, by choosing which type of structures it applies to.

2. Definition of the reliability targets, in term of probability of failure.

3. Definition of how the rules would be presented.

4. Identification of typical failure modes and of stochastic models.

5. Choice of a measure of closeness between the target reliability and the one actually reached
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6. Determination of the optimal partial safety factors, by minimizing the distance between
the computed probability of failure and the targets.

7. Verification

The calibration finally gives numerical values for the partial factors, along with the type of
structure considered and the target reliability.

3.1.5 Safety factors

In mechanics of material, failure analysis is devoted to identify when the failure occurs, for a
given structure and solicitation. Some authors in this field [21, 22, 124] provide a definition of a
safety factor λl of the form

λl = max λ
HΣ + λF0 = 0
(N l

i,j ,M
l
i,j) ∈ G, l ∈ J1, nK.

The symbols Ni,j (resp. Mi,j) represent the values of the tensor of the membrane force (resp.
the bending moment). The first equation HΣ + λF0 = 0 is the equilibrium principle for the
finite element methods with F0 being the reference load for the structure. The vector Σ =
(Ne

i1,j1
. . . , Ne

in,jn
,Me

i1,j1
, . . . ,Me

in,jn
) is the vector of the static unknowns at different points of

the mesh and H is the stiffness matrix. From the finite element solution, the values of the central
membrane force and bending moment (N l

i,j ,M
l
i,j) are evaluated by interpolation at some given

points indexed by l ∈ J1, nK. There is a failure if one of these points does not belong to G.
The quantity λl represents the maximum extent to which it is possible to increase F0 before

reaching the failure. It is then an effective margin.

3.1.6 Coherent risk measures

Coherent risk measure Coherent risk measures were introduced in [8] by P. Artzner, F.
Delbaen, J-M. Eber and D. Heath in the field of Mathematical finance and are widely popular
in risk management for regulatory purposes.

Let X be a real random variable modeling the final net worth of a position. A risk measure
is a function taking X as input and returning a deterministic real number

ρ : L0(Ω,R) → R
X 7→ ρ(X)

with L0(Ω,R) denoting the set of the real random variables. Intuitively, ρ(X) is the measure of
the risk that is associated to holding the position X. If the measure is coherent (see below), the
risk is expressed in terms of cash and ρ(X) actually represent the amount of money to put aside
in order to cover the risk of the position. This extra quantity is used to cover the risk; it is then
a demanded margin.

A risk measure is coherent if it satisfies the following properties:

- Translation property. For each deterministic value x ∈ R

ρ(X + x) = ρ(X)− x. (3.9)

- Positive homogeneity. For any β ≥ 0

ρ(βX) = βρ(X).
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- Convexity. For any (X,Y ) ∈
(
L0(Ω,R)

)2
and t ∈ [0, 1]

ρ(tX + (1− t)Y ) ≤ tρ(X) + (1− t)ρ(Y ).

- Monotonicity. If (X,Y ) ∈
(
L0(Ω,R)

)2
and X ≤ Y then

ρ(Y ) ≤ ρ(X).

Let us denote by F−1
X the inverse CDF of X. A classic result is that the Value at Risk of

level α
VaRα(X) = −F−1

X (α),

the that is widely used in financial risk management and represents the worst loss in the 1 − α
proportion of the best cases, is actually not coherent. It lacks convexity and thus cannot model
the decrease of the risk by the diversification of the portfolio. That is why, its integrated version,
the Conditional Value at Risk

CVaRα(X) = − 1

α

∫ α

0

VaRp(X)dp, (3.10)

is proposed as an alternative. It is coherent and models the mean loss of the α worst scenarios.

Acceptance set We can associate an acceptance set to each risk measure

Aρ =
{
X ∈ L0(Ω,R)| ρ(X) ≤ 0

}
,

the that contains the random variable with a measure of risk smaller than 0. In other terms,
the position with positive risk are not allowed. Conversely, for any subset of random variables
A ⊂ L0(Ω,R), it is possible to associate a risk measure

ρA = inf {r ∈ R| X − r 6∈ A} .

If A contains all the random variables that are nonnegative, and the only nonpositive random
variable in A is 0, then ρA is coherent if and only if A is convex and is a positively homogeneous
cone (i.e. X ∈ A implies that aX ∈ A for any positive a).

3.2 Margin frameworks

3.2.1 Probabilistic margins in nuclear safety

In order to validate and license nuclear reactor designs in terms of safety, multiple methodologies
were developed to take into account uncertainties. These methods have evolved with time,
as practices were refined and the computing power increased and the related margins changed
accordingly.

Former practices: traditional margins According to the American department of energy
(DOE) report [74, Sec. 3.4], a margin is traditionally defined in nuclear engineering on a “safety-
significant” parameter y(a) as the difference between the load and the capacity, with a repre-
senting the event considered. The load represents the actual value of y(a) in operation while
the capacity is the maximum or minimum value of y(a) that the system can withstand. When
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the requirement of y(a) is to stay below an upper threshold yupp, the expression of the margin
is [41,42,83]

M(y(a)) =





yupp−y(a)
yupp−yref if yref ≤ y(a) ≤ yupp,

0 if y(a) ≥ yupp,
1 if y(a) ≤ yref ,

(3.11)

with a being the scenario considered, y(a) the value of the parameter when a occurs, yref a
reference value for normalization and yupp the upper threshold limit. When the requirement is
a lower threshold ylow, the margin is

M(y(a)) =





y(a)−ylow
yref−ylow if ylow ≤ y(a) ≤ yref ,

0 if y(a) ≤ ylow,
1 if y(a) ≥ yref .

Notice that the unnormalized version also exists [128]

M(y(a)) = ysup − y(a).

Another traditional margin is given in the Safety Margin Action Plan final report [64, Eq.
4-1] called margin to damage

MD =
C − L√
σ2
C + σ2

L

with C and σC (resp. L and σL) are the mean value and standard deviation of the capacity
(resp. load). We must remark it is also of use in Civil engineering, under the name of the Cornell
index [76].

Probabilistic margins A drawback of the traditional margins of the form of Equation 3.11,
is that they require too conservative - i.e. pessimistic - computations [42,83]. In fact, y(a) being
a deterministic value conditionally to a, it has to take into account the modeling, estimation and
numerical simulation error, whose extent is not sharply estimated. That is why the use of prob-
abilistic margins is prescribed. To construct them, one needs a random variable Y representing
the uncertainty that y is facing. For a given safety criterion 1−α ∈ [0, 1] (the regulatory instance
typically impose 95%), the theoretical expression of the probabilistic margin is the difference be-
tween the quantile of Y of level 1 − α, denoted by Q1−α(Y ) and the limiting safety threshold.
For instance, in the case of an upper limit, its expression is

M theo
prob(α) =





ysup−Q1−α(Y )
ysup−yref if yref ≤ Q1−α(Y ) ≤ yupp,

0 if Q1−α(Y ) ≥ yupp,
1 if Q1−α(Y ) ≤ yref .

(3.12)

This margin has the good property that

Pmodel

(
ysup − Y
ysup − yref

≥M theo
prob(α)

)
≥ 1− α,

that means that it gives the “worst margin” in the fraction α of the best cases. Here, the notation
Pmodel means that the probability is computed on the theoretical model.

In practice, however, Q1−α(Y ) is computed from a statistical estimation Q̂1−α(Y ). With a

naive estimation method (empirical quantile), the probability for the estimated value Q̂1−α(Y ) to
be lower than the actual value of the quantile Q1−α(Y ) is 1/2. To cover the risk of this quantile
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to be underestimated, a level of confidence in the estimation is chosen and we can construct a
lower-bounded confidence interval [Q̂1−α,β(Y ),+∞) (Section 3.1.1) such that

Pest

(
Qα(Y ) ∈ [Q̂1−α,1−β(Y ),+∞)

)
≥ 1− β

the probability measure Pest being defined with respect the randomness due to the statistical esti-
mation. Finally, the probabilistic margin is defined by choosing both a safety level α, accounting
for the variability of Y in the model and a confidence level β accounting for the estimation error,
leading to the expression

Mprob(α, β) =





ysup−Q̂1−α,1−β(Y )
ysup−yref if yref ≤ Q̂1−α,1−β(Y ) ≤ yupp,

0 if Q̂1−α,1−β(Y ) ≥ yupp,

1 if Q̂1−α,1−β(Y ) ≤ yref .

This expression permits to control separately the modeled uncertainty of Y with α and the
estimation/computation uncertainty with β. In practice, the quantile Q̂1−α,1−β(Y ) is computed
with the Wilks’ method [123], that often requires only a small number of observations of Yi,
thanks to the use of order statistics. This margin is computed to measure the distance between
a given design to a failure; it is thus an effective margin.

3.2.2 Quantification of Margins and Uncertainly

The Quantification of Margins and Uncertainty (QMU) is a methodology that addresses risk
and risk mitigation in complex systems, when some information remains unknown. It is mainly
motivated by the needs for decision indicators for licensing and certifying nuclear stockpiles. They
are used with other considerations (social, economic, political, etc.) to support decision in the
so-called “Risk-informed Decision Making” methodology. Here, existing systems are scrutinized,
and the effective margins are assessed to ensure that they actually cover the risk, especially as
the systems age.

The margin is defined under a quite general form in [60, Sec. 6.1]: it is assumed that the
system can be represented by a performance vector P ∈ Rn and a requirement vector R ∈ Rn.
The margin of a system is a function

M : Rn × Rn → R
(P,R) 7→ M(P,R)

such that

M(P,R) ≥ 0⇒ compliance of the performance P with the requirement R,

and

M(P,R) < 0⇒ noncompliance of the performance P with the requirement R.

The most common example being the case when P and R are unidimensional and R expresses
an upper (resp. lower) requirement, in which case the margin is expressed as M(P,R) = R−P
(resp. M(P,R) = P − R). The performance and requirement can be some physical quantity
(see [60, Sec. 3.1]) but can also represent some probability of failure.

The goal is ultimately to quantify the amplitude of the margins versus the amplitude of the
uncertainty they cover, in the sense that margins must be high enough to cover uncertainties
with a reasonable risk level. The first approach that we can identify in the earliest publications
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[103,104], is to compute a ratio margin over uncertainty, under the form of an inverse coefficient
of variation

C =
E[M(P,R)]√
Var(M(P,R))

.

We can remark that, by Chebyschev’s inequality, the probability of M(P,R) to be lower than
zero is bounded by 1/C2, as soon as the variance is finite and E[M(P,R)] > 0.

More recent contributions [60,61,92] stress the fact that this representation is not enough to
communicate on uncertainty and there is a need to separate the epistemic/reducible uncertainty,
that is the uncertainty arising from a lack of knowledge, and the aleatory uncertainty, modeling
the “true” randomness of the phenomenon analysed. This separation must be clear in the
presentation of the results by, for instance, representing them under different forms. The main
motivation is that the decision might not be the same if a quantity is subject to large uncertainty
due to the randomness of the phenomenon or if it is due to a lack of knowledge. For instance,
in [62] the margin is expressed on a probability of failure, taking into account the aleatory
uncertainty, but keeping the epistemic randomness. The margin is then a random variable due
to the epistemic uncertainty; as it is unidimensional, its cumulative distribution function can
be plotted [62, Fig. 2.2], permitting to visualize the impact of the epistemic uncertainty on the
estimation.

3.2.3 Performance margins and safety performance margins in Space
engineering

Space engineering is a field in which the complexity and inherent uncertainties of the designed
systems has required harmonized risk management practices and consequently harmonized mar-
gin practices. A proficient literature on the topic is constituted from the NASA publications such
as the Risk Management Handbook [39], the Risk-Informed Decision Making Handbook [40], the
System Safety Handbook [38] and Systems Engineering Handbook [63].

Performance margin A performance margin is defined in [39, Sec. 4.1.3.1] as “the distance
from the achieved value of a performance measure at any point in time to a decision boundary
for that measure.[...] Sometimes, however, the maximum allowed value is taken to be the perfor-
mance requirement minus a contingency percentage of that value (e.g. 10%). [...] In that case
the decision boundary is 90% of the performance requirement.”

If we denote by p the performance measure and preq an upper performance requirement, the
performance margin is the classic expression

mperf = preq − p.

in which we recognize the “extra quantity” to ensure the performance. There may be a further
contingency ν (equal to 90% in the previous example) such that the performance margin is in
fact

mperf = νpreq − p,
Notice the similarity between ν and the inverse of partial safety factors of Section 3.1.4 1/γ.
In fact it is also a margin as it is a quantity included to cover uncertainty, that is used, for
instance,“[...] to allow for mass growth that is expected to occur, based on prior experience
[...]” [39, Sec. 4.1.3.1].

In this framework, preq and ν are deterministic but p may be a random variable and conse-
quently mperf is also a random variable. A safety requirement in that case is typically that the
random margin mperf must be greater than mreq with a probability greater than 1− α ∈ [0, 1].
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Safety performance margin A safety performance margin is a margin on a safety perfor-
mance. A safety performance is defined in [38, Sec. 2.1] as the the probability of the complemen-
tary of an harmful event i.e. one minus the probability of an adverse event. If we denote by F
the harmful event, the safety performance is just a performance expressed in terms of probability

p = 1− P(F ) = P(F c).

A safety requirement preq is then the minimum acceptable level of safety performance and the
safety performance margin is

msfty perf = P(F c)− preq

or in the normalized form

m̃sfty perf =
P(F c)− preq

preq
.

The motivation for these safety performance margin is that, although a part of the risk is modeled
in F , another part, linked to the unknown unknowns, is not modeled [38, Sec. 3.1.1]. The
unknown unknowns are the uncertainties that the analyst is not even aware of and the analysis
of previous projects show they can have a substantial impact.

Margin value In order to choose their value, [15] observed that a real-life mission fail-
ure in space launches (Soyuz, Space shuttle, Ariane; etc.) puts in light some unknown un-
knowns/underappreciated risks. These risks are taken into account after the accident and incor-
porated by practitioners in the simulation models.

The authors performed a retrospective analysis, i.e. they estimated the ratio of the probability
computed by the models with the new risks and the models without these risk incorporated. As a
result, they knew the order of magnitude of the error of the models that did not take the unknown
unknowns into account. They give the margin values for m̃sfty perf , for different maturity of the
projects taken in Table 3.2 given in terms of multiplicative margin

m̃sfty perf ≥ mreq ⇔ P(F c) = (1 +mreq)preq.

3.2.4 Margin allocation in industrial complex systems

Still motivated by aeronautics and astronautics use cases, but from a slightly different point of
view, some authors concentrated on the allocation/determination of margins in complex systems
design. The margins are integrated in a decision-oriented framework and are chosen thanks to
an underlying probabilistic model.

Margin determination The first publications of this kind come from D.P Thunissen’s PhD
Thesis (2005) [111–113], that proposes a five-step method to determine - i.e. choose the value
of - the margins in a project management context. The goal is to choose the reserves that must
be kept on tradable parameters and cover the uncertainties; in practice this choice is guided
by an underlying probabilistic model. Tradable parameters are defined as important variables
that include for instance the cost of a project, the mass of the system, the schedule, and other
important performance variables.

Let y be a tradable quantity, the method assumes that two models are created: a deterministic
model that yields a reference value ydet and a probabilistic model Y that accounts for the
uncertainties of the project. The margin of level α ∈ [0, 1] is defined as [112, Eq. 8.1]

M(α) = 100
Q1−α(Y )− ydet

ydet
,
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Context of the design
Prescribed value for

m̃sfty perf

The system had at least 125 actual cycles
of operation.

∼ 0

New system, developed with low time pres-
sure and high reliability and safety having
a higher priority than cost and schedule.

∼ 1

New system, developed with moderate time
pressure with cost and schedule having an
equal priority than reliability and safety.

∼ 2

New system, developed with significant
time pressure but with reliability and safety
having a higher priority than cost and
schedule.

∼ 4

New system, developed with significant
time pressure, with cost and schedule hav-
ing a higher priority than reliability and
safety.

∼ 9 and larger

Table 3.2: Safety performance margin requirement as a function of the design context and
maturity, for space programs, summarized from [15, Table 3]. The context descriptions and
values are given for illustration only, please refer to the original article for a comprehensive
understanding of these values.

with Qα(Y ) being the quantile of Y of level α. Typically, the margins are computed for three
levels of confidence, 0.05, 0.01 and 0.001 and the margin allocated depends on the decision maker
needs by the formula

ymarg = ydet(1 +M(α)/100) = Q1−α(Y ) (3.13)

i.e. the quantile of the level 1 − α of the random model Y , similarly to a classic probabilistic
approach. One advantage of monitoring this margin is the ability to see the evolution of the
margins as the design gains in maturity and compare its value between designs. This margin is
used as a requirement to choose the reserves to keep; it is thus a demanded margin.

Margin allocation and tradeoff More recently, X. Chen’s PhD thesis (2017) [27, 56] de-
veloped a framework to choose margin values by considering the interactions between margins,
performance and risk.

Methodology Two stakeholders take part in the design: the designer and the expert in
uncertainties and probabilistic modeling. This distinction finds its origins in industrial organi-
zations, where there is often a difference between engineers/architects who have knowledge and
experience on the system and handle uncertainties with deterministic margins and experts in
statistics and probability, who do not have an extensive knowledge of the system but can more
easily model uncertainties within a probabilistic framework (e.g. with probabilities of failure,
random variables, quantiles, etc.). The goal is to choose relevant margins while keeping the two
activities separated.

It is decomposed in two phases: the margin allocation and the tradeoff analysis, summarized
in Figure 3.1.
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Design problem formulation

Sensitivity analysis
Uncertainty Quantification

Uncertainty
Quantification

Initial margin allocation
- Choice of the variables that have margins
- Choice of the margins range of variation

Trade-off study
- Margin vs. margin
- Margin vs. risk
- Margin vs. performance

Satisfactory choice of
margin values

Uncertainty expert/Probability modeler Designer

Order of
magnitude

Computation of
probability of failure

Figure 3.1: Summary of the methodology proposed in [27], closely adapted from [27, Fig. 4-3]

The margins mi presented in these publications are defined only for unidimensional compo-
nents yi ∈ R and can only be of the form “the lower the better”

yi,marg = yi +mi (absolute) / yi,marg = yi(1 +mi/100) (percentage)

or “the greater the better”

yi,marg = yi −mi (absolute) / yi,marg = yi(1−mi/100) (percentage) .

Margin allocation The initial margin allocation consists in finding the variables on which
margins must be modeled, to choose their initial value and their possible range of variation.
They can account for two types of uncertainty:

• The requirement uncertainty, due to the vagueness of the constraints formulation;

• The modeling uncertainty, due to a lack of knowledge.

If the number of variables with margins is too large, probabilistic sensitivity analysis and screen-
ings can be used to identify the real contributors. The initial allocation (i.e. the choice of their
values) is done either using a quantile of a probabilistic model (similarly to the aforementioned
Thunissen approach), or by designer’s expert judgement if the probabilistic model is not available.
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Tradeoff analysis This phase consists in choosing a satisfactory allocation of margin.
This choice is based on the visualization of the impact of a margin on other margins, on the
performance and on the risk.

• Impact of margins on other margins

If the value of a margin on a variable is too high, it could forbid to take margins on
other parameters as the design would not satisfy the constraints. The authors propose a
graphical solution to study this tradeoff, by some interactive plot of the feasible/infeasible
regions with respect to the margins in [56, Fig. 4.13] as well as some parallel coordinate
plot in [56, Fig. 4.14]

• Impact of margins on the risk

Let D be the space of the designs. For a given design point u ∈ D, an underlying probabilis-
tic model permits to define some infeasible design space, based on a risk level 1−α ∈ [0, 1]

F(α) = {u ∈ D | P(Constraints satisfied for u) ≤ α} .

Similarly, it is possible to define a failure set with margin only with a deterministic model

F′(mi1 , . . . ,min) = {u ∈ D| Constraints satisfied for umargin(mi1 , . . . ,min)} ,

where umargin(mi1 , . . . ,min) is the design choice u with margins mi1 , . . . ,min on the com-
ponents i1, . . . , in.

By comparing graphically the probabilistic failure set F(α0) for a given level α0 with the
failure set with margins F′, it is possible to see if the margins are well allocated [56, 4.3.4.2].
A first criterion is to check that the set with margins actually contains the probabilistic
failure set, i.e. F(α0) ⊂ F′. This permits to know that the risks are actually mitigated
by the margins. The second criterion proposed is to verify that the set with margin F′

has a similar shape to F(α0). This ensures that the margins are allocated on “the good
variables”.

3.2.5 Margins as the cause of over-capacity/overdesign

In contrast with the margin allocation of Section 3.2.4, some authors in engineering design and
design science focused on the multidisciplinary aspect of margins exchange and the identification
of margins in design processes.

As early as 2004 [43], C. Eckert, P.J. Clarkson, W. Zanker described the tolerance margins
as an important factor in system change management. In 2012, C. Eckert, O. Isaksson and C.
Earl identified the margins as an important factor for over-capacity [45]. This observation was
confirmed with the study of an in-operation complex system - an hospital - in [68] and a set
of interviews of engineers in trucks design processes in [46, 67]. In [44], they propose a formal
definition for margins, encompassing the various practices in design. Informally the margin is
described as the extent to which a parameter value exceeds what it needs to meet its functional
requirements regardless of the motivation for which the margin was included. For a given design
choice y ∈ D, the capability of the parameter i, denoted Ci(y), is the value the parameter can
reach. For a requirement/constraint Ri on this parameter, the margin is defined by

Mi(y) = Ri − Ci(y)

if the requirement is of the type “must not exceed” or

Mi(y) = Ci(y)−Ri
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Figure 3.2: Distinction between the buffer Bi and the excess Ei in [44], closely adapted from [44,
Fig. 3]. The buffer Bi covers the uncertainty due to the vagueness of the requirement Ri.

if the requirement is of the type “must exceed”. When Ri depends on the chosen solution, it is
called a constraint, and when it is stated independently it is called a requirement. This margin
is divided in Mi(y) = Bi + Ei, the buffer Bi being the part covering the uncertainties and the
excess Ei being the remaining part. An illustration is given in Figure 3.2, for a “must exceed”
requirement, the uncertainty being on the requirement value Ri.

The quantity Bi is a requirement used to cover the uncertainty and it is thus a demanded
margin. The excess is what remains, once the requirements have been made; it is the effective
margin of the system, taking into account the demanded margin requirements.

Margin-value method Based on these conceptual distinctions, the recent works of A. Brahma
and D.C. Wynn [23,24] (2020) focused on the identification of the excess part of the margins in
the design process. The ultimate goal is to have a quantitative estimate of the over-design parts
in complex systems. In order to evaluate the impact of the margins on the design, they define
three metrics:

1. Excess margin

The fist metric is the classic excess margin, in the “must exceed” normalized form

Excessi(y) =
yi − yi,thresh

yi,thresh
.

It quantifies by how much the parameter yi oversatisfies its requirement/constraint yi,thresh;

2. The adverse impact on performance

The second metric quantifies the impact of the Excess on yi on a given performance pa-
rameter Pk. We denote by Pk its value computed with yi and Pk,thresh its value computed
by taking yi,thresh instead of yi. In other terms, the margin on yi is removed and the other
margins remain the same. The impact

Impacti,k =
Pk − Pk,thresh

Pk,thresh

computes by how much the performance Pk is impacted by the margin on yi.

3. The absorption benefit

This metric quantifies the positive impact of the excess margins, in the sense that they per-
mit to satisfy more cumbersome requirements. For an input requirement Rl, the maximum
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value possible before a design change, denoted by Rmax, is computed. The deterioration is
defined as

Deteriorationl =
Rmax −Rl

Rl

that quantifies by how much the requirement Rl can be tougher. This new requirement
Rmax has imposed new values of threshold for the variables yi,newthresh. The part of dete-
rioration of Rl that was absorbed by the variable yi,newthresh is measured by

Absorptionil =
yi,newthresh − yi,thresh

yi,threshDeteriorationl
.

These three metrics altogether help spotting where it can be interesting to investigate the excess
margins and to remove them.

3.3 Our contributions regarding the existing literature

In order to perform a sensitivity analysis of the cost/loss of performance with respect to the
margins, one needs to rigorously define how the margins impact it. The notion of demanded
margin is crucial in this step, because it is this type of margin that induces a cost. Although it
is often easily possible to distinguish a posteriori the notions of demanded and effective margins
in the literature (introduced in Section 2.1), we did not find an explicit separation of the two
concepts. The margin definition is often implicit, or designated as a difference between the value
a unidimensional design variable and a limiting threshold. However, such a definition may be
ambiguous, for instance when the limiting threshold is a function of another variable, and the
evolution of this second variable is not precised.

For these reasons, we propose a mathematical model of margin (Section 4.2), that is the basis
of the definition of the effective (Section 4.2.1) and demanded margin (Section 4.2.2). Using these
rigorous notions, we are able to quantify precisely how the cost/loss of performance is impacted
through the induced function in Section 5.1. This function is analyzed through a Sensitivity
Analysis approach in Chapter 5, developed specifically for this context. The final goal of our
approach is close to the Margin value method of Section 3.2.5 and the tradeoff study of the
margin allocation described in Section 3.2.4, but we developed different tools.

On a more methodological side, we use this framework to provide a general description
of the process of uncertainty mitigation with margins in Section 4.4.1. It includes a margin
quantification phase, that permits to interpret a lot of practices from the literature in Section 4.5.
Some ways to reduce margins are also described in Section 5.3.

We refer to the conclusion of this part, in Chapter 7, for a comprehensive summary of our
works on margins.



Chapter 4

Model of margin

As stated in Section 2.1, the vocable engineering margin actually covers two notions, the effec-
tive margin and the demanded margin. In Sections 4.1 and 4.2, we propose the mathematical
foundation to rigorously define them. Then, based on these tools, we model in Section 4.4.1 a
general approach to risk mitigation with margins, the margin quantification, that is commonly
followed by engineers. Finally, in Section 4.5, the margins from the literature review of Chapter 3
are reinterpreted within our framework.

Use case, part 1 (Description). A simple industrial use case with a toy model is developed
in these framed boxes. Its aim is to illustrate the theoretical concepts by practical examples.

Initial setup The action takes place in an aeronautics department, in charge of the design
of an aircraft wing. The global aircraft architect asks them a value Wmax for the maximum
weight of the wing. They identified two main variables that contribute to the mass: the
radius of a specific composite property κ and the loads F the wing is facing, that give the
weight with the relationship

W = f(κ, F ),

for a known function f , that is increasing both in κ and F . The true value of (κ, F ), denoted
by

(κ0, F0)

is not known by the engineers. A nominal value Fnom is assessed for F and a safety factor
βF > 1 is taken to cover the uncertainties. For κ they know that the true value is the
expectation of a normal random variable κ0 = E [K] of known standard deviation σK for
which they have n i.i.d observations (Ki)i∈J1,nK. They estimate its value with

κ̂ =
1

n

n∑

i=1

Ki

and take into account the margin of statistical error mκ. The maximum weight is now
expressed as Wmax = maxW (κ′, F ′) with (κ′, F ′) ranging over [κ̂, κ̂+mκ]× [Fnom, βFFnom].
The architect asks them the smallest possible value of Wmax which avoids underestimating
the true value with a certain level of confidence. They now ask themselves

51
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• What is the impact of the margins on the mass transmitted?

• What margins should they reduce to provide the lowest estimation of Wmax possible,
with the same level of confidence?

4.1 Problem description

We assume that the phenomenon or system studied is described by variables in a state space E.
The physical equations or logical relationships that link these variables is given by the set of the
problem constraints C.

Definition 4.1.1 (State space). The state space, denoted by E, is a set.

An element of the state space will generically be called a design, denoted by the symbol u.

Definition 4.1.2 (Problem constraints). The set of the problem constraints is C ⊂ E.

We call (E,C) the problem description. We denote a forbidden set or failure set by

F ⊂ C,

to which a design u belongs if and only if the system/phenomenon is in an adverse situation that
the analyst needs to prevent. The acceptance set is simply its complementary in the set of the
physically acceptable designs

A = C \ F.

In the model of the phenomenon, it is possible but not desirable for a design u to be outside the
acceptance set A, but it is impossible to be outside the set of the problem constraints C.

Use case, part 2. The state space is composed of the four variables from Use case 1

E =
{

(Wmax,W, κ, F ) ∈ R4
+

}
.

The problem constraints are given by the equation

C = {(Wmax,W, κ, F ) ∈ E| W = f(κ, F )} .

The failure set is composed by the designs for which the mass transmitted Wmax is lower
than the actual mass

F = {(Wmax,W, κ, F ) ∈ C| Wmax < W} ,

which encodes the requirement “not to underestimate Wmax”.

4.2 Basis of the model

The core concept of the margin is the existence of an extra quantity in the distance from a design
u to a failure set F. This distance will be measured in a metric space S, through a projection
map φu, which indicates on which scalar quantity, related to u, the margin is taken. However,
this distance a priori depends on which paths connecting u to F are taken into consideration.
The notion of probing set introduced below specifies these paths.



4.2. BASIS OF THE MODEL 53

Definition 4.2.1 (Probing set). Let u ∈ C, the probing set at the point u is a set

Gu ⊂ E

such that u ∈ Gu.

Definition 4.2.2 (Margin space and projection map). The margin space is a space S endowed
with a distance dS. A projection map is a function from the probing set to the margin space

φu : Gu → S. (4.1)

In the margin space, the distance between two designs is expressed in the units of the margin.

Definition 4.2.3 (Model of margin). A model of margin on the set C is composed of a margin
space and a family of projection maps along with their probing sets

M = (S, (Gu)u∈C, (φu)u∈C) . (4.2)

In practice, φu is often a projection onto the coordinate on which one wants to compute a
margin and the distance dS of S gives the reference unit for the measure of the margin.

Use case, part 3. We now describe two models of margin corresponding to the notion of
“taking a margin” on κ and F .

Model of margin on κ For a design u = (Wmax,W, κ, F ) ∈ A, the probing set for the
model of margin Mκ on κ is

Gκ,u = {v = (W ′max,W
′, κ′, F ′) ∈ E| Wmax = W ′max, κ ≤ κ′, F = F ′} .

The margin space is Sκ = R+, and for any design u ∈ C, the projection map is

φκ,u(v) = κ′ − κ.

Model of margin on F Likewise, the probing set of the model of margin MF on F is

GF,u = {v = (W ′max,W
′, κ′, F ′) ∈ E| Wmax = W ′max, κ = κ′, F ≤ F ′} .

In order to represent the fact that the margin βF is expressed as a ratio, we take SF =
[1,+∞) and

φF,u(v) =
F ′

F
.

4.2.1 Effective margin

The effective margin is a margin m ∈ R ∪ {−∞,+∞} that a design u has with respect to a
forbidden set F. As various choices are possible to compute such a margin, one needs first to
define a model of margin M. Then, the associated effective margin function emM computes the
effective margin.

Definition 4.2.4 (Effective margin function). Let (E,C) be a problem description, F be a forbid-
den set and M = (S, (Gu)u∈C, (φu)u∈C) be a model of margin. For any u ∈ C, we set uS = φu(u),
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FS(u) = φu(F ∩Gu) and AS(u) = φu(A ∩Gu), where we recall that A = C \ F. The effective
margin at the design u for the margin model M and the forbidden set F is defined by

emM(u,F) =

{
dS(uS,FS(u)) if u ∈ A,

−dS(uS,AS(u)) if u ∈ F,
(4.3)

with the convention dS(u,∅) = +∞.

Use case, part 4. When a design u is in A, its effective margin on κ is

emMκ
(u,F) = max {m ≥ 0| f(κ+m,F ) ≤Wmax}

and the effective margin on F is

emMF
(u,F) = max {β ∈ [1,+∞)| f(κ, βF ) ≤Wmax} − 1,

for which an illustration is given in Figure 4.1.
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Figure 4.1: Visualization of the effective margin for the models of margin Mκ and MF , in
the plane (κ, F ), at the design u : Wmax = 490, κ = 9.7 and F = 5.

The effective margin on κ is in the unit of κ and measures the distance from u to F, the
value of F being fixed. The effective margin on F is dimensionless and measures by how
much it is possible to multiply F before reaching F, the value of κ being fixed.

The failure and acceptation property stated below follows from Definition 4.2.4. In substance,
given a design u in A, any point in the probing set Gu that is at a distance lower than the effective
margin of u is also in A. Thus, the effective margin is the actual extra quantity separating u
from F.
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Proposition 4.2.5 (Acceptability and failure property). With the notation of Definition 4.2.4,
let u ∈ C.

(i) If u ∈ A, then for all v ∈ C ∩Gu, if dS(φu(u), φu(v)) < emM(u,F), then v ∈ A.

(ii) If u ∈ F, then for all v ∈ C ∩Gu, if dS(φu(u), φu(v)) < |emM(u,F)|, then v ∈ F.

An immediate consequence of this definition is that if a design u has a strictly positive margin,
then it is in A and if it has a strictly negative margin, then it is in F. A point with exactly zero
margin may be either in F or A.

Example 4.2.6 (Unidimensional model). The effective margin for a phenomenon described by
one real number u ∈ R is the most intuitive. In that case E = C = R and we compute the
margin for two natural failure sets, an upper bound Fupp = (uupp,+∞) and a lower bound
Flow = (−∞, ulow).

To construct our model of margin, the projection map is the identity and the distance is the
standard distance in R

∀(u, v) ∈ R2, φu(v) = v,
S = R, dS(v1, v2) = |v1 − v2|,

and we define three probing sets G→,u = [u,+∞),G←,u = (−∞, u],G↔,u = R, that we associate
respectively to the models of margin M→, M←, M↔.

F = (−∞, ulow) F = (uupp,+∞)
M→ u 6∈ F emM(u,F) = +∞ emM(u,F) = uupp − u > 0

u ∈ F emM(u,F) = u− ulow ≤ 0 emM(u,F) = −∞
M← u 6∈ F emM(u,F) = u− ulow > 0 emM(u,F) = +∞

u ∈ F emM(u,F) = −∞ emM(u,F) = uupp − u ≤ 0
M↔ u 6∈ F emM(u,F) = u− ulow > 0 emM(u,F) = uupp − u > 0

u ∈ F emM(u,F) = u− ulow ≤ 0 emM(u,F) = uupp − u ≤ 0

Table 4.1: Value of the effective margin for various models of margin and failure sets, in the
unidimensional case.

The values of the effective margins for the different combinations are summarized in Table 4.1.
We can remark that we retrieve the classic expression of the margin, except for the increasing
model of margin M→ and the decreasing model of margin M← for which there are some infinite
values. For M→, the positive infinite value means that when u is greater than ulow, it can
increase by any amount without reaching the failure set (−∞, ulow). The value −∞ means that,
when u is in (uupp,+∞), there are no amount of increase in the positive direction that will make
it leave the forbidden set (uupp,+∞). For M←, the negative infinite value means that when u
is in (−∞, ulow) there are no amount decrease that can make it leave the forbidden set. The
positive infinite value means that when u is lower than uupp, it can decrease by any amount
without reaching the forbidden set.

Remark 4.2.7 (Influence of the probing set). The value of a margin on one coordinate is
often ambiguous because the “boundary” from which one computes the margin depends on other
coordinates. The probing set defines what are the values to take into account. In Figure 4.2,
for E = C = R2 and various probing sets, we can see that the value of the effective margin
on x greatly varies with respect to the values of (x′, y′) that are allowed in the computation. In
practice, a lot of situations can be modeled by deciding which variables to fix, which variables can
only increase or only decrease and which variables are free (see Section 4.3.4).
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emM1(u,F)
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(a) With a probing set defined by
G1,u =

{
(x′, y′) ∈ R2|x′ ≥ x, y′ = y

}
, the effec-

tive margin on x is emM1(u,F) = 0.5.
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(b) With a probing set defined by
G2,u =

{
(x′, y′) ∈ R2|(x′, y′) = (x, y) + λ(1, 3), λ ≥ 0

}
,

the effective margin on x is emM2(u,F) = 0.125.
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(c) With a probing set defined by G3,u ={
(x′, y′) ∈ R2|x′ ≥ x, y′ ≥ y

}
, the effective margin on x is

emM3(u,F) = 0.

Figure 4.2: Computation of the effective margin on x, at the point u = (x, y) = (0.25, 0.25), for
various probing sets. The three models of margin M1,M2,M3 have different probing sets but
share the same projection map φu(x′, y′) = x′ − x ∈ S = R+, problem description E = C = R2

and failure set F = {(x, y)|y > 1− x}.
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4.2.2 Demanded margin

The demanded margin is a real number m ≥ 0 that means that someone has required a margin of
at least m in the analysis of the phenomenon. It requires a model of margin M to tell precisely
which margin must be greater than m. The demanded margin operator shows the impact of the
failure set on which a demanded margin has been taken.

Definition 4.2.8 (Demanded margin operator). Let m ≥ 0 and M be a model of margin for the
problem description (E,C). The demanded margin operator dmM,m is the function that takes a
forbidden set F as input and returns another forbidden set F′

F′ = dmM,m(F)

with, if m > 0
F′ = {u ∈ C| emM(u,F) < m} .

When m = 0, we define

F′ = F ∪ {u ∈ C| emM(u,F) = 0} = {u ∈ C| emM(u,F) ≤ 0} .
The nonnegative real number m is called the demanded margin.

Taking a demanded margin m is equivalent to declaring forbidden all the points with less
than m effective margin. When m > 0, the inequality is strict to keep the points with an effective
margin equal to m in the new acceptance set A′ = C \ F′. When m = 0, a design with zero
effective margin - that can be either in F or A - is included in the new forbidden set F′.

Example 4.2.9. Using the variable problem description of Example 4.2.6, we can compute the
impact of a demanded margin m > 0 with model of margin M↔ on the upper bound failure set

dmM↔,m((uupp,+∞)) = (uupp −m,+∞) ,

and on the lower bound failure set

dmM↔,m((−∞, ulow)) = (−∞, ulow +m) .

As one can intuitively guess in that case, a demanded margin of m > 0 is equivalent to choosing
a requirement of ulow + m in the case of a lower bound and uupp −m in the case of an upper
bound.

A fundamental property of the demanded margin operator is that it always reduces the set
of acceptable designs A, or equivalently it extends the forbidden set F.

Proposition 4.2.10 (Inclusion). For any demanded margin m ≥ 0, we have

F ⊂ F′,

which rewrites equivalently
A′ ⊂ A.

Proof. By definition of the effective margin, if u ∈ F then emM(u,F) ≤ 0 ≤ m for any m ≥ 0.
As u ∈ C, we have u ∈ F′.

A way to see the demanded margin as an extra requirement is the following relationship, for
m > 0

∀u ∈ C, u 6∈ dmM,m(F)⇔ emM(u,F) ≥ m, (4.4)

which means that belonging to a set with demanded margin dmM,m(F) is equivalent to having
an effective margin larger than m.
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(a) The effective margin is computed for a specific design u ∈ A. For the point
u = (14, 10), its effective margin is emM(u,F) = 6.
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(b) The demanded margin operator expands the forbidden set F and reduces
the acceptance set A. The darker area shows the expanded forbidden set for a
demanded margin m = 6.

Figure 4.3: Illustration of the difference between the effective and the demanded margin. The
problem description is E = C = R2 and the model of margin M consists in an increasing probing
set on x: G(x,y) = {(x′, y′) ∈ E|x′ ≥ x, y′ = y} and a projection map φ(x,y)(x

′, y′) = x′ ∈ R. The

forbidden set is F = {(x, y) ∈ R2| (x− 10)2 /2 + (y − 10)2 > 102}.
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Use case, part 5. Engineers have chosen the values of mκ > 0 on κ and a safety coefficient
βF > 1 on F , based on the uncertainties they are facing. These values are, in fact, some
demanded margins. We can compute the image of F = {u ∈ C|f(κ, F ) > Wmax}, by the
margin operator

F′κ = dmMκ,mκ
(F)

= {u ∈ C| emMκ
(u,F) < mκ}

= {u ∈ C| f(κ+mκ, F ) > Wmax} .

In this computation, we used the fact f is increasing in κ, thus emMκ
(u,F) ≥ mκ is equivalent

to (Wmax, f(κ+mκ, F ), κ+mκ, F ) 6∈ F. This is not true for a general failure set F.
The same reasoning can be done with dmMκ,mκ

(F) and the variable F , leading to the
acceptance set with both margins

F′κ,F = dmMF ,βF−1(F′κ)

= {u ∈ C| f(κ+mκ, βF ) > Wmax} .
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Figure 4.4: Action of the demanded margin operator for a demanded margin mκ = 0.5, plotted
in the plane (Wmax, κ), the variable F being fixed. The design u1 is initially acceptable but
is forbidden after the demanded margin has been taken. In order to find another acceptable
design for the same value of κ, the value of the mass transmitted Wmax must increase, leading
for instance to the point u2.

4.3 Construction of a model of margin

Definition 4.2.3 provides models of margin for general problem descriptions (E,C). In engi-
neering practices however, margins can often be represented in a more compact form, either
as a directional model of margin (Sections 4.3.1 and 4.3.2) or as a slightly more complex one
(Section 4.3.4). An illustration of these concepts, based on an use case is provided in Chapter 8.
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4.3.1 Unidirectional model of margin

The directional model of margin is the natural model for calculating a margin on one variable,
all other variables being fixed. When it is unidirectional it computes either a positive change or
a negative change, but not both at the same time.

Definition 4.3.1 (Unidirectional model of margin). Let (E,C) be a problem description such that
E =

∏n
k=1Ek and Ei is metric and totally ordered for a given i ∈ J1, nK. Let u = (u1, . . . , un) be

a point in C. The increasing directional model of margin in the component i is denoted by Mi,→
and is defined by

Gu =
{
v ∈ C| vi ≥ ui and vj = uj for i 6= j

}

φu(v) = vi,

with v = (v1, . . . , vn). The decreasing directional model of margin in the component v is denoted
by Mi,← and has the same definition with vi ≤ ui.

When E is a vector space, a natural extension of this definition is an increasing directional
model of margin in an arbitrary direction e ∈ E. For a design u, the probing set Gu is the
semi-line starting at u of direction vector e, i.e.

Gu = {u+ λe, λ ≥ 0}.

The decreasing directional model of margin follows the same definition with λ ≤ 0. For a given
failure set F ⊂ E and point u ∈ A, the effective margin is expressed

emMv,→(u,F) = inf {λ ≥ 0| u+ λei ∈ F}

by Definition 4.2.4. It is the smallest λ such that it is possible to reach a point in the failure
and verifies the equations of the problem at the same time. When e is a direction vector on the
canoncial coordinate i, we retrieve the definition of a model of margin in the component i.

4.3.2 Bidirectional model of margin

The bidirectional model of margin consider both increasing and decreasing changes on the vari-
able, all other variables being fixed.

Definition 4.3.2 (Bidirectional model of margin). Let (E,C) be a problem description such that
E =

∏n
k=1Ek and Ei is metric for a i ∈ J1, nK. Let u = (u1, . . . , un) be a point in C. The

bidirectional model of margin in the component i is denoted by Mi,↔ and is defined by, for all
u ∈ C

Gu =
{
v ∈ C| vj = uj for j 6= i

}

φu(v) = vi.

with v = (v1, . . . , vn).

A consequence of the definition is that for all u ∈ A

emMi,↔(u) = min(emMi,→(u), emMi,←(u)).
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4.3.3 Fixed and free variables in probing sets

A more general way to describe probing sets is in term of free and fixed variables. We assume that
E =

∏n
i=Ei, and each Ei is totally ordered. A design u is composed of n variables (u1, . . . , un)

and we can construct a probing set by assigning to each variable i ∈ J1, nK one of the four labels

→ can vary in the increasing direction. The constraint vi ≥ ui is added to the probing set;

← can vary in the decreasing direction. The constraint vi ≤ ui is added to the probing set;

↔ free to change (any direction). No constraints are added;

× fixed variable. The constraint vi = ui is added in the probing set,

so that the probing set at the design u is composed of the designs v that verify the constraints.
For instance, the probing sets from Use Case part 3 can be described by

(Gκ,u)u∈C : Wmax : ×, W :↔, κ :→, F : ×

and
(GF,u)u∈C : Wmax : ×, W :↔, κ : ×, F :→ .

The probing sets of an increasing directional model of margin assigns the status → to the main
variable and the statuts × to all the other variables. For a decreasing directional model of
margin, the main variable has the status ← and for a bidirectional one it has the status ↔.

4.3.4 A simple description of models of margin

To conclude this part, we introduce a way to describe simply a lot of models of margin. Let
(E,C) be a problem description and let a design be u = (u1, . . . , un) ∈ E =

∏n
i=1Ei. Only two

aspects must be specificied.

1. The variable or the set of variables on which the margin is measured, that define the margin
space.

For one variable it consists in an index i ∈ J1, nK with a distance dEi . The projection map
is then φu(v) = vi and S = Ei (e.g. Ei = R and dEi is the absolute value). For a set
of variables, it can be a set of indices i1, . . . , iK and a distance d on the product space∏K
k=1Eik . The projection map is φu(v) = (v1, . . . , vK) and S =

∏K
k=1Eik .

2. Which variables are fixed, free or may vary in a given direction, defining the probing sets.

As described in the previous section, one only has to assign the status ←,→,↔ or × to
each component.

4.4 Margin quantification: one of the four steps of uncer-

tainty mitigation with margins

4.4.1 The four steps of uncertainty mitigation with margins

When engineers use margins to cover uncertainties, it is possible to identify some recurring prac-
tices, occurring independently of the field considered. We call them the four steps of uncertainty
mitigation with margins, that are the following.
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1. Model the phenomenon considered, with equations or numerical simulations. Definition of
the problem description (E,C).

2. (Can be done in later phases) Exhibit how the system can fail. Definition of F.

3. Identify the risks, i.e. the uncertainties and their impacts on the analysis. An extremely
wide range of methods can be used to identify, model and quantify the uncertainty of a
system.

4. Margin quantification.

(a) Choose on which variables take the demanded margins. Definition of M1, . . . ,Mn.

(b) Assess the demanded margins values required to mitigate the uncertainties. Choice
of the value of the demanded margin m1, . . . ,mn.

(c) (If there are more than one model of margin) Choice of the order in which to compose
the demanded margin operators dmM1,m1

, . . . ,dmMn,mn
.

After these steps, the analyst proceeds to the initial task assigned such as margin allocation
or design analysis shown in Figure 4.5. These steps are often implicit and not shared among all
the stakeholders; the fact that the margins are not shown in the design may lead to the problem
of hidden margins. The model of margin makes the steps 1,2 and 4a explicit and this information
is available for a subsequent analysis of the system, such as sensitivity analysis.

Similarly to the uncertainty quantification in probabilistic modeling, we call margin quantifi-
cation to the step 4.

Definition 4.4.1 (Margin quantification). Given a problem description (E,C), a failure set F,
an assessment of the uncertainties and some models of margin M1, . . . ,Mn, the act of choosing
the demanded margins m1, . . . ,mn such that

F′ = dmMn,mn
◦ · · · ◦ dmM1,m1

(F)

covers the uncertainties is called margin quantification.

Margin quantification
The new failure set
F
′

= dmM,m(F)
covers the risk.

· · ·

Design analysis
Verify that a design u has
enough effective margin
− Verify that u 6∈ F′

For instance verify that:
emM(u,F) ≥ m

Margin allocation
Choose a design u with
enough effective margin
− Find a design u 6∈ F′

For instance
u = argmin c(v)

v ∈ A′

or

Figure 4.5: After the margin quantification, various steps can be done, such as allocating the
margins by choosing a design outside the new failure set (by optimizing a cost function c for
instance) or verifying that a design has enough effective margin.
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Remark 4.4.2 (Taking multiple margins). Let M1 and M2 be two models of margin on the same
problem description. Let F be a failure set, for which a margin m1 is taken in M1 and then, a
margin m2 is taking in M2. The resulting failure set F

′′
is the image of F by the composition of

the margin operators

F
′′

= dmM2,m2
(dmM1,m1

(F)).

In terms of models, this means that the risks that M1 and M2 must cover can happen at the
same time. This aspect is discussed more deeply in Chapter 5 and in the use case of Chapter 6.

Use case, part 6. Here are how engineers follows the four steps in the use case

Step 1 They identified the variables E, the equations C.

Step 2 They constructed the forbidden set F.

Step 3 They identified two sources of uncertainty: the statistical uncertainty due to the
estimation of κ0 by κ̂ and the uncertainty due to the replacement of F0 by the nominal value
Fnom.

Step 4 They decided to take a margin (i.e. impose a demanded margin) on κ with Mκ and
F with MF (step 4a). In order to quantify the value of the demanded margin mκ (step 4b),
they now choose a level of confidence 1− α = 0.99 and use the statistical theory to set

mκ =
q0.99σκ√

n
,

with q0.99 being the quantile of level 0.99 of a standard normal random variable. In that case,
they can verify that if Wmax is chosen as a function of κ̂ and F0, such that

(Wmax, f(κ̂, F0), κ̂, F0) 6∈ dmMκ,mκ
(F) almost surely,

then
P ((Wmax, f(κ0, F0), κ0, F0) 6∈ F) ≥ 1− α.

In other terms, the uncertainty due to the statistical estimation is covered by replacing F
with dmMκ,mκ

(F). The value mκ = q0.99σκ√
n

ensures a level of confidence of 1− α.

For the value of βF (step 4b), they use an internal document of reference, based on previous
experimental results. It states that in early design phase, when the shape of the wing is not
known, the value of the coefficient must be βF = 3. In their uncertainty model, it means that
they consider that F0 ≤ βFFnom is certain.

The resulting failure set is given by applying the composition of the demanded operators

F′κ,F = dmMκ,mκ
(dmMF ,βF−1(F)) =

{
u ∈ C|

(
Wmax,W, κ+

q0.99σκ√
n

, 3F

)
∈ F

}
,

for which they conclude that if Wmax is chosen as a function of κ̂ and Fnom such that

(Wmax, f(κ̂, Fnom), κ̂, Fnom) 6∈ F′κ,F almost surely,
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then
(Wmax, f(κ0, F0), κ0, F0) 6∈ F

with probability at least 1−α. In other terms, if the ”nominal design” is not in the forbidden
set with margins, the true design, which is uncertain, will not be in the forbidden set, with a
certain level of confidence.

Engineers can now provide a value of Wmax among all the acceptable values A′κ,F =

C \ F′κ,F . As they were asked to provide the smallest value, their choice is given by the
minimization problem

W ∗max = inf{Wmax ∈ R+| ∃(W,κ, F ) ∈ R3
+ s.t (Wmax,W, κ, F ) ∈ A′κ,F }

= f(κ̂+mκ, βFFnom).

It is important to notice that in Definition 4.4.1, we do not propose a mathematical model
for the assessment of the uncertainties.

The first reason is because it is still possible to make some reasoning and study the system
using only already quantified margin as a proxy for the system uncertainty. Even an imprecise
map of the margin in the system can still be useful in a sensitivity analysis to identify the most
important contributors. If the model for uncertainty is known, it is still possible to use it to
reduce the non relevant margins, as it is done in Section 6.

The second reason is that the uncertainty model depends on the practices of the engineering
field and the experience of the analyst doing them. The review of the literature on the civil
engineering field of Section 3.1.4 is particularly revealing; at the beginning, the partial safety
factors - that are demanded margins - were chosen purely based on the experience/expert judg-
ment. Then, they were calibrated to handle a large variety of situations, using a higher level
probabilistic modeling. Finally, in some specific cases, an explicit probabilistic modeling can be
performed, ensuring the “best tailored” factors. Margins can be defined in these three types of
situation and the existence of similar approaches in other fields makes no doubt. In our approach,
we want to model the practices of most of the engineers working on an industrial systems; we
then need to remain agnostic of the uncertainty representation.

4.4.2 Margin quantification with level of risk

The margin quantification of Definition 4.4.1 is quite general as it aims is to describe engineering
approaches. In the case where one is interested in developing a methodology for margin quan-
tification, we can outline some good properties that the model of risk in Steps 3 and 4 could
satisfy.

Step 3, identification of the risks

(a) Identify the sources of the uncertainties and if they are reducible1;

(b) Identify a measure of the risk ρ and an admissible risk level α, based on the conse-
quences of the uncertainties;

(c) Assess the range of the uncertainties s.

Then, Step 4b is modified to choose demanded margins m1(s, α), . . . ,mn(s, α), that are functions
of the admissible level of risk and s. When such a form is achieved, we say that there is an explicit
model of risk for the margin quantification. This approach gives more information that can then

1Reducible uncertainties are uncertainties can be practically reduced during the design process, as introduced
in Chapter 1.
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be used to eliminate the costly margins. Knowing that some uncertainties that cause margins
are reducible allows for margin reduction (Section 5.3) for instance.

Example 4.4.3 (The statistical approach). In Use case, part 6, there is an explicit model of risk
for κ, that makes Step 3 explicit.

(a) The source of the uncertainty is the statistical uncertainty due to the estimation of κ0 by
κ̂. It is reducible under the condition that more observations of K are available.

(b) The measure of the risk is the probability that the condition Wmax ≥ W = f(κ0, F0) does
not hold when κ̂ replace κ0. The chosen level is α = 0.01.

(c) The range of the uncertainty is σR/
√
n, with n the size of the sample (Ki)i∈J1,nK.

The demanded margin value is set as mκ = q0.99σR/
√
n to ensure a level of confidence of 1− α.

Example 4.4.4 (A probabilistic model). Another probabilistic approach is used in the literature,
in the margin allocation approach for instance (Section 3.2.4). Let (E,C) be a problem description
such that E = {(x, y) ∈ Ex × Ey}. The first step is the construction of a failure set by a
deterministic model F. The variable y models the uncertainty with respect to a reference value
yref , so that y = yref means that no uncertainty is included in the model. The variable x is
deterministic and chosen by the analyst. Steps 3 and Steps 4 are the following.

3 (a) The uncertainty on y can come from various sources, that are listed and modeled in a
random variable Y .

(b) The risk is measured by the probability of (x, Y ) to belong in the failure set F, to be
bounded by α

P((x, Y ) ∈ F) < α.

(c) A nominal deterministic value yref is computed and the range of uncertainty is given
in Y − yref .

4 (a) A margin is taken on y, through the model My.

(b) Some probabilistic computation gives the value of demanded margins my such that if
a nominal design uref = (x, yref) is not in the failure set with margins

F′ = dmMy,my
(F)

then the probabilistic criterion holds

P((x, Y ) ∈ F) < α. (4.5)

This means that if the nominal design is not in the forbidden set with margins, the
true design (that is uncertain in general) is acceptable with the required confidence
level. It is interesting to notice that, if F contains all the design with zero effective
margins, Equation (4.5) can be rewritten as the probability

P(emMy
((x, Y ),F) ≤ 0) < α,

or, in terms of quantile,
Qα(emMy

((x, Y ),F)) > 0.

with Qα(Z) being the quantile of level α of the random variable Z. This form is used
in design analysis to check that margins are high enough.
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4.5 The existing literature under the prism of the model of

margin

Having the model of margin and the four steps of uncertainty mitigation in mind, we are now
armed to interpret the industrial practices of Section 3.1 in our framework. We will see that they
often relate to a specific part of the process, either by defining a model of margin, computing an
effective margin or performing a margin quantification either to allocate margins or to verify that
the risk mitigation criteria are met. In Table 4.2, we summarize the methods of the literature
under the prism of the model of margin framework and we develop each point in the rest of the
section.

4.5.1 Statistics

This section refers to notions reviewed in Section 3.1.1.

Depending on the goal, three classic shapes can be chosen for a confidence interval in the
estimation of θ by θ̂:

• An upper-bounded confidence interval
(
−∞, θ̂ +m

]
;

• A centered confidence interval
[
θ̂ −m, θ̂ +m

]
;

• A lower-bounded confidence interval
[
θ̂ −m,+∞

)
.

Choosing one of these three shapes is actually equivalent to choosing either an increasing di-
rectional model of margin (upper-bounded), a bidirectional model of margin (centered) or a
decreasing directional model of margin (lower-bounded), introduced in Sections 4.3.1 and 4.3.2.

Let us denote by Mθ the model of margin on θ and assume that a design can be written
u = (x, θ) ∈ E. The choice of the margin mα for a given level 1− α, e.g. mα = q1−α/2σ/

√
n, is

a margin quantification. It is based on the observation that if a nominal design (x, θ̂) satisfies

(x, θ̂) 6∈ dmMθ,mα
(F) almost surely,

with x a random variable that is a function of the estimated parameter θ̂, then the probability
that the true design (x, θ) is acceptable is greater than or equal to 1− α, i.e.

P ((x, θ) 6∈ F) ≥ 1− α.

Notice that here the randomness comes from the fact that x is a random variable.

4.5.2 Robust optimization

This section refers to notions reviewed in Section 3.1.2.

Choosing the shape of the uncertainty sets is actually choosing a model of margin. For in-
stance, the ellipsoidal uncertainty set can be modeled by a projection on the uncertain parameter
ũ with the following distance on the margin space

dS(u, v)2 = (u− v)′Σ−1(u− v). (4.6)
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Engineering
field

Concept Interpretation in the model of mar-
gin framework

Statistics Choice of an upper/centered/lower in-
terval

Defines a model of margin

Length of the confidence interval Margin quantification

Robust opti-
mization

Shape of the uncertainty set Defines a model of margin

Performing the optimization Optimization under demanded margin
constraints

Data driven robust optimization Margin quantification

Info-gap theory Info-gap model Defines a model of margin
Stability radius Effective margin
Robust-satisficing optimization Optimization of the margin

Civil engineering Partial factor Defines a model of margin
Partial factor calibration Margin quantification

Control Phase margin, Gain margin Defines a model of margin

Robust Control Stability radius Effective margin

Finance Monetary risk measure Effective margin
Requirement that the risk is negative Margin quantification
Acceptance set Acceptance set A = Fc

Nuclear safety Quantification of margins and uncer-
tainty

Margin quantification and design analysis

Traditional margins Defines a model of margin
Probabilistic margin Wilks’ quantile of an effective margin

Margin quantification and design analysis

Space engineer-
ing

Performance margin/Safety perfor-
mance margins

Defines a model of margin

Margin value Margin quantification

Complex system
design

Margin allocation and tradeoff in com-
plex systems

Margin quantification

Tradeoff analysis Study of the impact of margins

Design science Buffer Demanded margin/Margin quantification
Excess Effective margin
Margin value method Margin sensitivity analysis

Table 4.2: Reinterpretation of the literature on the margins in the model of margin framework.
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In the framework of the model of margin, a robust optimization problem with constraint of the
form F = {(x,u)|f1(x, u1) ≤ 0, . . . , fn(x, un) ≤ 0} can be rewritten

minimize f0(x)

subject to (x, û) 6∈ dmMu,m (F)

with u = (u1, . . . , un) being the vector of the uncertain parameters and û being a nominal value
of this vector. The object Mu is a model of margin on the whole vector u, the projection map
being the identity and the probing set being the whole space of the parameters. The distance
depends on the shape of the uncertainty set. In the case of an ellipsoidal uncertainty set (given
in Definition 3.1.2), γ plays the role of m.

The data-driven robust optimization consists in calibrating the shape of the uncertainty set
with data and then choose the value of the demanded margin m to use in dmMu,m. It is then
a margin quantification.

Info-gap theory Let U be an info-gap model verifying the linearity property given in Equa-
tion (3.3). The real function pU(0,1)(u) = inf {α ∈ R+ |u ∈ αU (0, 1)} is called the gauge or
Minkovski functional of the set U(0, 1) in the functional analysis literature [30, Proposition 1.4].
Under the assumption that U(0, 1) is an absorbing set, the gauge is actually a mathematical
seminorm so we can rewrite

U(α, u) =
{
v ∈ C| ‖u− v‖U(0,1) ≤ α

}

with ‖ · ‖U(0,1) = pU(0,1)(·). The robustness of Equation (3.4) can then be rewritten as a pseu-
dometric

α̂(x, u) = sup
{
α > 0| ∀v, ‖u− v‖U(0,1) ≤ α, v 6∈ F(x)

}

= dU(0,1)(u,F(x)),

dU(0,1) being the pseudometric induced by the seminorm ‖ · ‖U(0,1). If we define the state space
by (x, u) ∈ E, the robustness of an info-gap model is the effective margin

α̂(x, u) = emMx
((x, u),FIG)

with a probing set G(x,u) = {(y, v) ∈ E|y = x}, and a projection map φx,u(y, v) = v. The distance
on the margin space S is dS = dU(0,1). The failure set is FIG = {(x, u) ∈ E|u ∈ F(x)}.

4.5.3 Control and robust control

This section refers to notions reviewed in Section 3.1.3.

Phase margin and gain margin The phase margin and the gain margin provide a way to
compute a margin for a given design; they define then a model of margin.

Stability radius The stability radius ρ is the effective margin for the model of margin Mq

that we now define. The state space and the problem constraints are the space where the vector
of the parameters can take its value q ∈ E = C ⊂ Rl, l ∈ N. There is a failure whenever the
polynomial associated to q is not strictly Hurwitz, i.e.

F = {q ∈ C| p(s,q) is not strictly Hurwitz} .
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The projection map is the identity φq(q′) = q′. The margin space is S = Rl with a normalized
supremum norm such that Q =

∏
i∈J1,lK [−qi, qi] is the unit ball (assuming the parameters are

centered), i.e.

dS(r, s) = sup
i∈J1,lK

|ri − si|
qi

= inf{λ ≥ 0| (r, s) ∈ λQ}.

with r = (r1, . . . , rl) and s = (s1, . . . , sl). The parameter space being centered, the effective
margin is computed at the nominal point 0Rl

emM(0Rl ,F) = dS(0Rl ,F)

= inf
w∈F

dS(0Rl , w)

= inf {λ ≥ 0| w ∈ λQ and w ∈ F}
= ρ

by definition of the Stability radius in Equation (3.6).

4.5.4 Partial safety factor

This section refers to notions reviewed in Section 3.1.4.
Let us consider the case of one resistance parameter x and one action parameter y with one

resistance variable Rd and one action effect variable Sd. The state space contains the values
(x, y,Rd, Sd) ∈ E and the set of problem constraints

C = {(x, y,Rd, Sd) ∈ E| Rd = R(x), Sd = S(y), x > 0, y > 0}

is constructed from the phenomenon equations, so that

F = {(x, y,Rd, Sd) ∈ C| Rd < Sd}.

Provided that R is increasing and continuous in x, a partial safety factor γ > 1 on a stress
variable x corresponds to a demanded margin mx = 1 − 1/γ associated to the model of margin
M, that has a decreasing probing set

(Gu)u∈C : x :←, y : ×, Rd :↔ , Sd :↔

with the family of projection maps

φu(v) =
x′

x
.

The following equivalences hold

u 6∈ dmM,1− 1
γ

(F)⇔ inf
v∈F

∣∣∣∣1−
x′

x

∣∣∣∣ ≥ 1− 1

γ

⇔ inf
v∈F

x− x′ ≥
(

1− 1

γ

)
x

⇔ inf
v∈F
−x′ ≥ −x

γ

⇔ inf
v∈F
−R(x′) ≥ −R

(
x

γ

)
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because R is increasing and continuous in x. We can remark that

inf
v∈F
−R(x′) = sup

(x′,y,Rd,Sd)|R(x′)<S(y)
R(x′) = S(y),

so that the condition finally rewrites

u 6∈ dmM,1− 1
γ

(F)⇔ S(y) ≤ R(x/γ),

in which we retrieve the partial safety factor of Equation 3.8. This proof can be adapted to
multiple resistance variable by defining the same kind of models of margin and composing them.
The same kind of equivalence also holds with y, with the probing set

(Gu)u∈C : x : ×, y :→, Rd :↔ , Sd :↔

and a demanded margin my = γ − 1.
The act of calibrating the value of the partial factor, either by expert judgment or using a

high level probabilistic model consists in choosing the value mx and my taking into account the
uncertainties; it is then a margin quantification.

4.5.5 Coherent risk measure

This section refers to notions reviewed in Section 3.1.6.
A coherent risk measure is the opposite of an effective margin on a space of random variables.

The state space is the set of real-valued random variables E = L0(Ω,R) and a design X is a
random variable modeling the final net worth of a given portfolio allocation.

For a given risk measure ρ, the failure set contains the positions that have a positive risk

F = {X ∈ E| ρ(X) > 0} .

We can define a model of margin MX on X, that have a probing set describing the translations
of X

GX = {X ′ ∈ E| X ′ = X + λ, λ ∈ R}
and a projection map

φX(X + λ) = λ.

When X ∈ A, this model of margin measures by how much X can decrease before being in
the failure set

emMX
(X,F) = sup {λ ≥ 0| ρ(X − λ) ≤ 0}

= sup {λ ≥ 0| λ ≤ −ρ(X)} (translation property)

= −ρ(X).

In other terms, the measure of the risk ρ(X) is the opposite of a margin on X for an acceptance
set A = Fc defined by ρ(X) ≤ 0.

4.5.6 Nuclear safety

This section refers to notions reviewed in Sections 3.2.1 and 3.2.2.
Both traditional and probabilistic margins are effective margins that are used in design anal-

ysis to evaluate the safety of a design or compare two designs. In our framework, a design is



4.5. THE EXISTING LITERATURE 71

defined as u = (y, a) ∈ E where y denotes the physical quantities and a the vector of the en-
vironment variables. The equations are given by C = {(y, a) ∈ E|f(y, a) = 0}, with f including
the physical and logical relationships. We treat the case of a requirement on y in terms of upper
threshold, for which the failure set is expressed as

F = {(y, a) ∈ C| y ≤ yupp} .

For a given reference value yref , we can define an increasing model of margin M with a mapping
function

φu(v) =

{
y′ if y′ ≥ yref ,
yref if y′ < yref ,

and a probing set
Gu = {v ∈ E| y′ ≥ y}

with u = (y, a) and v = (y′, a′). With this model of margin, the value of the effective margin for
the design u is

emM,m(u,F) =

{
ysup − y if ysup ≥ yref ,
ysup − yref if ysup < yref .

We retrieve the expression of the traditional margin

M(y, a) =
max(emM(y, a), 0)

ysup − yref

by normalizing it by a reference value and capping it at 0.
In order to construct the probabilistic margin, y is replaced with a random variable Y . A

safety level is chosen α ∈ [0, 1] for the probabilistic criterion

P((Y, a) 6∈ F) < α.

As illustrated in Example 4.4.4, this condition can be rewritten

Qα(emM,m((Y, a),F)) > 0,

or in the normalized form
Qα(M(Y, a)) > 0.

This effective margin is used to analyze the design; if it is positive, then the the probabilistic
criterion is satisfied. In order to compute it numerically, a probabilistic method is used with a
level of confidence 1− β on the error, parametrizing this margin by α and β.

4.5.7 Performance margin and safety performance margin

This section refers to notions reviewed in Section 3.2.3.

Performance margin Let u = (p, preq) ∈ E = C = R∗2+ be a performance parameter and a
requirement. Given a forbidden set of the form F = {(p, preq) ∈ E|p > preq}, the performance
margin on p, is

mperf = preq − p.
This quantity is an effective margin with a model of margin Mp with projection map φu(p′, p′req) =
p′ and probing set Gu = {(p′, p′req)|p′req = preq}, such that

emMp
(p,F) = preq − p, (4.7)
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(see Example 4.2.6). The performance margin with contingency writes

mperf = νpreq − p (4.8)

with a coefficient ν ∈ (0, 1). Similarly to the safety coefficient, 1− ν can be seen as a demanded
margin on the requirement preq. Its model of margin Mpreq has a projection map

φu(p′req, p
′) =

p′req

preq
,

for which the effective margin at the point u 6∈ F writes

emMpreq
((p, preq),F) = inf

p′req<p

|preq − p′req|
preq

=1− p

preq
.

It follows from this observation that

dmMpreq ,1−γ(F) = {(p, preq)| γpreq > p}

and then the margin of Equation (4.8) writes

mperf = emp((p, preq),dmMpreq ,1−γ(F)) = γpreq − p,

i.e. it is an effective margin on p, once a demanded margin on preq has been taken.

Safety performance margin Let Y be a random vector modeling the (uncertain) state of the
phenomenon/design and let the adverse event be Y ∈ G of probability p ∈ [0, 1]. We can model
the problem with the variables (Y, p) ∈ E, such that the equations are given by

C = {(Y, p) ∈ E| p = P(Y ∈ G)} .

The rest of the model is identical to the aforementioned performance margin leading to the
expression

msfty perf = preq − p.

Margin value The prescribed values for the safety performance margins, in Table 3.2, are
demanded margins that are chosen to cover the unknown unknowns and depends on the maturity
of the design. This is a case of margin quantification.

4.5.8 Margin allocation in industrial complex systems

This section refers to notions reviewed in Section 3.2.4.
In margin allocation, a trading parameter (cost, mass...) is associated (sometimes implicitly)

to two variables: the allocated budget ybudget and the value that will be actually consumed y.
They are both in the state space (ybudget, y) ∈ E and the problem constraints C depend on the
system considered. When the variable is of the type “the smaller the better” (for instance a
monetary cost), there is a failure whenever the budgeted variable is smaller than the actual value

F =
{

(ybudget, y) ∈ C| ybudget < y
}
.
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If we define a model of margin My on y, with a probing set

(Gu)u∈C : y :↔, ybudget : ×

and projection map

φu(v) =
y′

y

with u = (ybudget, y) and v = (y′budget, y
′), we get the following expression for the effective margin

emMy
((ybudget, y),F) =

ybudget − y
y

.

However, as the value of y is unknown, it is replaced by an estimated value ydet and a demanded
margin is included in the failure set. Similarly to Example 4.4.4, a random variable Y is con-
structed to model the uncertainty that is generated when replacing y with ydet. For a given level
of risk α ∈ [0, 1], the demanded margin is chosen as a function of α

m(α) =
Q1−α(Y )− ydet

ydet

such that if (ybudget, ydet) ∈ dmM,m(α)(F), then the probability of having a positive margin
with the random model is greater than 1− α

P
(
emM((ybudget, Y ),F) > 0

)
≥ 1− α.

In this context of margin allocation, a probabilistic model with a level of confidence is used to
choose the demanded margin value. It is then a margin quantification with an explicit model of
risk.

The impact of margins on other margins tradeoff analysis consists in imposing some direc-
tional demanded margins on some variables and then studying what are the effective margins
(i.e the remaining margins that could be taken) on other variables.

The impact of margins on the risk consists in comparing graphically the failure set with
a probabilistic model and confidence level with a failure set with a deterministic model and
demanded margins. It permits to check the quality of the margin quantification. When the
quantification is well done, the two models should have a very similar shape.

4.5.9 Margin as the cause of over-capacity

This section refers to notions reviewed in Section 3.2.5.
The distinction buffer/excess can be interpreted as a distinction demanded margin/remaining

effective margin in our framework. Indeed, the description of the buffer margin is that it“caters
for uncertainties”, and thus follows the definition of a demanded margin that has been quantified.
The excess margin is the remaining part, and is then the effective once the demanded margin
has been taken.

In order to illustrate this point, let us consider a problem description of the type (y, yreq) ∈
E = C = R2 and a forbidden set of the form

F = {(y, yreq) ∈ C| y < yreq} .

When there are some uncertainties, let us say on the value of yreq, the margin quantification
consists in choosing a demanded margin m > 0 to cover these uncertainties. It is usually done
with a bidrectional model of margin Myreq on yreq, i.e. the probing sets are

(Gu)u∈C : y : ×, ybudget :↔
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and the projection maps
φu(y′, y′req) = y′req.

After taking a demanded margin, the resulting forbidden set is

F′ = dmMyreq ,m
(F) = {(y, yreq) ∈ C| y < yreq +m} .

For a given design u, the remaining margin is measured in terms of effective margin

emMyreq
(u,F′) = y − (yreq +m),

so that we can rewrite the initial margin

y − yreq = m+ emMyreq
(y,dmMyreq ,m

(F′)).

The buffer margin m is in fact a demanded margin to cover some uncertainties. The excess
margin emM(y,F′) is the remaining effective margin on the point y, with respect to a forbidden
set on which the demanded margin has been taken.

We remark that a benefit of the model of margin is that the demanded and effective margins
can be defined on different variables: various buffers can be taken on a set variables and the
excess can be measured on another variable.

Margin value method A part of the objective of the margin value method is close to the
margin sensitivity analysis of Chapter 5.

The excess metric is an effective margin, as exposed above.
The impact metric measures by how much a performance is increased when one margin on

a variable i is set to its limit value. In its spirit, it is close to the induced loss of performance
we defined in Section 5.1. Indeed, the idea is to put the margin to 0 and see by how much
the performance is increased. Let us remark that the global sensitivity analysis of Section 5.2.3
permits to analyze the impact on the design when removing multiple demanded margins at the
same time.

The absorption benefits are not considered in our framework for the moment as we concen-
trated only on the negative impacts of the margins. Reinterpreting the absorption under the
prism of the effective/demanded margin is a very interesting perspective.



Chapter 5

Margin sensitivity analysis and
margin reduction

So far, Chapter 4 has shown the descriptive ability of the model of margin to encompass en-
gineering margin practices. This chapter develops a set of tools and methods to address the
motivating industrial question of the design margin reduction.

5.1 Induced cost and induced margin

In the design margin literature, authors often refer to the impact of margins on other margins
and the cost of the margins (see Sections 3.2.4 and 3.2.5 for instance). To compute the cost
of the margin, we define the induced cost as the difference between the cost of a design with
demanded margin and the cost of a design without margin. In our context it has the property
of being an increasing function of the demanded margins.

When one computes the impact of some margins on another margin, they actually compute
the impact of some demanded margins on an effective margin. We define the induced margin, in
a similar way to the cost, that is the difference between the effective margin without demanded
margin and the effective margin with demanded margins. Throughout this section, we fix a
problem description (E,C).

5.1.1 Composition of demanded margin operators

As stated in Remark 4.4.2, when multiple margins are taken to cover some risks, the demanded
margin operators are functionally composed. For a given problem description and failure set F,
the resulting failure set after taking a demanded margin m1 in M1, m2 in M2,... and mn in Mn

is denoted by

F′(m1, . . . ,mn) = dmMn,mn
◦ . . . ◦ dmM1,m1

(F). (5.1)

We can remark that the greater the demanded margins are, the stronger the constraints are, and
thus the larger the forbidden set is. This is the meaning of Proposition 5.1.1.

Proposition 5.1.1 (Monotonicity of the inclusion). Let (m1, . . . ,mn) ∈ Rn+ and (m′1, . . . ,m
′
n) ∈

Rn+ such that mi ≤ m′i for all i in J1, nK. Then

F′(m1, . . . ,mn) ⊂ F′(m′1, . . . ,m
′
n).

75
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Proof. Let us remark that if a failure set F1 is included in another failure set F2, then, for any
design u ∈ C and any model of margin M, the effective margin with respect to F1 will always be
greater than or equal to the effective margin with respect to F2 (the distance to the set included
in the other is the greatest). Thus,

if F1 ⊂ F2, then dmM,m(F1) ⊂ dmM,m(F2) (5.2)

for any M and m ≥ 0. A second property is that greater margin always expands the failure set,
for m′ ≥ m ≥ 0

dmM,m(F) = {u ∈ C| emM(u,F) < m} ⊂
{
u ∈ C| emM(u,F) < m′

}
= dmM,m′(F). (5.3)

We can conclude by induction over n that

F′(m1, . . . ,mn) ⊂ F′(m′1, . . . ,m
′
n).

5.1.2 Induced margin

The induced margin measures the impact of multiple demanded margins on an effective margin.

Definition 5.1.2 (Induced margin). Let m1, . . . ,mn be n positive nonnegative margins associated
to the models of margins M1, . . . ,Mn, let F be a failure set. The induced margin on the model
of margin M is the difference between the effective margin in M with the n demanded margins
and without the n demanded margins

indMM(u,m1, . . . ,mn) = emM(u,F′(0, . . . , 0))− emM(u,F′(m1, . . . ,mn))

and is defined for each design u verifying |emM(u,F′(0, . . . , 0))| < +∞.

The induced margin is nonnegative and is an increasing function of the demanded margins,
as shown in Proposition 5.1.3.

Proposition 5.1.3 (Monotonicity of the induced margin). Let u ∈ C, (m1, . . . ,mn) and (m′1, . . . ,m
′
n)

be two vectors of Rn+ such that mi ≤ m′i for all i ∈ J1, nK. Then

0 ≤ indM(u,m1, . . . ,mn) ≤ indM(u,m′1, . . . ,m
′
n).

Proof. As stated previously, if u ∈ C and F ⊂ F′ then emM(u,F) ≥ emM(u,F′). Proposition 5.1.1
ensures that

F′(0, . . . , 0) ⊂ F′(m1, . . . ,mn) ⊂ F′(m′1, . . . ,m
′
n).

Thus
emM(u,F′(0, . . . , 0)) ≥ emM

(
u,F′(m1, . . . ,mn)

)
≥ emM(u,F′(m′1, . . . ,m

′
n))

and then
0 ≤ indMM(u,m1, . . . ,mn) ≤ indMM(u,m′1, . . . ,m

′
n).

Let us consider the unidimensional case u ∈ R, with an upper bound F = [ureq,+∞) and an
increasing model of margin M. The induced margin on u measured by M due to a demanded
margin m > 0 with model of margin M is m

indMM(u,m) = emM(u, [ureq,+∞))− emM(u,dmM,m([ureq,+∞)))

= emM(u, [ureq,+∞))− emM(u, [ureq −m,+∞))

= ureq − u− (ureq −m− u)

= m.
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Figure 5.1: Induced margin in the one dimensional case, where indMM(u,m) = m = 0.25.
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Figure 5.2: When u = (x, y), we can compute the induced margin on y due to taking a margin
on x. The effective margin is computed with an increasing model of margin My in y and the
demanded margin is a increasing model of margin Mx in x.

The induced margin is illustrated for a one-dimensional case in Figure 5.1 and for a two-
dimensional case in Figure 5.2.

We can interpret the induced margin in two ways:
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• It measures a kind of demanded margins in M to cover an uncertainty.

If the demanded margins m1, . . . ,mn are taken to cover the uncertainty A, then the induced
margin indMM is the expression of the margin in M that is used to mitigate A.

• It measures the effective margin in M that is consumed by the demanded marginsm1, . . . ,mn.

If two kinds of uncertainty A (e.g statistical uncertainty) and B (e.g modeling uncertainty)
are identified and the demanded margins m1, . . . ,mn cover the uncertainty A, then the
induced margin measure the loss of effective margin in M that could possibly be used to
cover B.

5.1.3 Induced cost

In this section, we define some settings in which the induced cost, i.e. the cost of the demanded
margins, can be defined.

We assume that the design can be described by some variables that are fixed during the
analysis x = (x1, . . . , xn) and some variables that can be chosen to optimize the design y =
(y1, . . . , ym). The state space writes E =

∏n
i=1Exi ×

∏m
j=1Eyj with possibly n = 0 or m = 0.

As usual, we denote by C the set of the problem constraints and F ⊂ C the forbidden set. For
x ∈∏n

i=1 Exi , we assume that the cost of a design can be computed as

cost(x,F) = inf c(x, y)

y ∈Hx

(x, y) ∈ C \ F

with Hx being the optimization space, that depends possibly on x. The cost is not necessarily
a monetary cost but can model other parameters such as the mass of the system, the power
consumed, the number of days of work, etc. An immediate property is that a wider forbidden
set restricts the optimization space and thus increases the cost, i.e. if F ⊂ F′ then

cost(x,F′) ≥ cost(x,F).

The induced cost monitors this inflation with respect to the demanded margins.

Definition 5.1.4 (Induced cost). Let m1, . . . ,mn be n nonnegative demanded margins associated
to the models of margin M1, . . . ,Mn and let F be a forbidden set. The induced cost is the
difference between the cost with margins and the cost without margins

indC(x,m1, . . . ,mn) = cost(x,F′(m1, . . . ,mn))− cost(x,F′(0, . . . , 0)).

Similarly to the induced margin, the induced cost also verifies a nonnegativity and mono-
tonicity property.

Proposition 5.1.5 (Monotonicity of the induced cost). Let (m1, . . . ,mn) and (m′1, . . . ,m
′
n) be

two vectors of Rn+ such that mi ≤ m′i for all i ∈ J1, nK. Then

0 ≤ indC(x,m1, . . . ,mn) ≤ indC(x,m′1, . . . ,m
′
n).

Proof. Proposition 5.1.1 us that F′(m1, . . . ,mn) ⊂ F′(m′1, . . . ,m
′
n). We conclude using the fact

that a wider forbidden set increases the cost.

The induced cost function matches our intuition in the sense that greater margins increase
the cost.
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Induced loss of performance It is possible to model an induced loss of performance, by
replacing the cost c by the opposite of a performance measure −p. In that case, the induced
function is nonpositive and represents the loss of performance due to demanded margins.

Use case, part 7. In the use case, the state space is decomposed as Wmax ∈ Ey1 = R+ and
(W,κ, F ) ∈ Ex1

×Ex2
×Ex3

= R3
+ and the cost is Wmax. Engineers must provide the smallest

value of Wmax that has a certain confidence level and consequently, they transmit W ∗max, that
is the minimum value under constraints with margins

W ∗max = cost ((κ̂, Fnom) ,F′(mκ,mF )) = inf Wmax

W = f(κ̂, Fnom)

(Wmax,W, κ̂, Fnom) 6∈ F′(mκ,mF )

with mF = βF − 1, F′(mκ,mF ) = dmMκ,mκ
(dmMF ,mF

(F)) being the failure set with
margins and F is defined in Use case, part 2. We have . The induced cost

indC((κ̂, Fnom),mκ,mF ) = cost((κ̂, Fnom),F′(mκ,mF ))− cost((κ̂, Fnom),F′(0, 0)).

is plotted in Figure 5.3.
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Figure 5.3: Graph of the induced cost mκ,mF 7→ indC(mκ,mF ).
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5.2 Margin sensitivity analysis

5.2.1 Induced function

In this section, we are considering an induced cost for a fixed point x ∈ Ex or an induced
margin for a fixed design u ∈ C. The goal is to identify where the demanded margins should be
decreased. We start with some initial values of demanded margins, denoted by

(m1, . . . ,mn) ∈ Rn+

and for some lower values of demanded margins (m1, . . . ,mn) ∈ [0,m1]× . . .× [0,mn], we study
the induced function

indF(m1, . . . ,mn) =

{
indC(x,m1, . . . ,mn) for an induced cost,
indMM(u,m1, . . . ,mn) for an induced margin,

that is nonnegative and nondecreasing. We seek to characterize the gain in cost or in effective
margin when each mi goes from mi to 0.

5.2.2 Local sensitivity analysis

If indF is differentiable at the point (m1, . . . ,mn), the Taylor expansion provides the approxima-
tion

indF(m1, . . . ,mn) ' indF(m1, . . . ,mn)−
n∑

i=1

(mi −mi)
∂indF

∂mi
(m1, . . . ,mn),

so that the induced value is approximated by

indF(m1, . . . ,mn) '
n∑

i=1

mi
∂indF

∂mi
(m1, . . . ,mn).

By the monotonicity of indF, the quantity mi
∂indF
∂mi

(m1, . . . ,mn) is nonnegative. When indF has
variations that are almost linear, it quantifies the contribution of the margin mi to the induced
cost/margin under a first-order approximation.

Definition 5.2.1. Let (M1,m1), . . . , (Mn,mn) be n pairs of model of margin/demanded margin
and indF an induced cost parametrized by m1, . . . ,mn. The local sensitivity index with respect to
the variable i ∈ J1, nK is

Di = mi
∂indF

∂mi
(m1, . . . ,mn)

and the relative local sensitivity index is

D̃i =
Di∑n
j=1 Dj

∈ [0, 1].

Use case, part 8. In order to quantify the impact of the margins on κ and F , the engineers
compute the local sensitivity indices. Their expression are

Dκ = mκ
∂indC

∂κ
(κ̂+mκ, βFFnom)
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and

DF = (βF − 1)
∂indC

∂F
(κ̂+mκ, βFFnom).

The normalized values are plotted in Figure 5.4.

D̃κ

D̃F

Figure 5.4: Local decomposition of the induced cost on Wmax

If the cost function is actually linear, the induced function can be decomposed as

indF(m1, . . . ,mn) =

n∑

i=1

Di, (5.4)

motivating the expression of the indices.

Remark 5.2.2. The local sensitivity indices that we propose are close from the Sigma-Normalized
derivatives from the Sensitivity Analysis literature [100]

Si = σi
∂indF

∂mi
(m1, . . . ,mn),

but the demanded margin mi takes the role of the standard deviation σi of the variable i. This
similarity is due to the fact that a demanded margin mi is chosen to cover the extent of the
uncertainty in a model with margins and σi actually measures the extent of the uncertainty in
a probabilistic model. They then play a similar role in two different models. When the margin
quantification is done with a statistical model and the variable i is Gaussian, the demanded
margin mi is actually proportional to σi, up to a factor depending on the level of confidence.

5.2.3 Global sensitivity analysis along a margin reduction path

The local sensitivity analysis provides a good approximation when the induced function has quasi
linear variations. When it is not the case, we propose a global sensitivity analysis that take into
account the varations in all the domain. We now assume that indF is continuously differentiable
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on [0,m1] × . . . × [0,mn] and we want to quantify each impact through a decomposition of the
form

indF(m1, . . . ,mn) =

n∑

i=1

Si

with each Si measuring the impact of the margin mi on indF.

Global sensitivity decomposition on a linear path For each variable i ∈ J1, nK, we define
a linear path function

Li(t) = (1− t)mi, t ∈ [0, 1],

with t being called the path parameter. Using the chain rule, we can differentiate the function

d

dt
indF(L1(t), . . . ,Ln(t)) = −

n∑

i=1

mi
∂indF

∂mi
((1− t)m1, . . . , (1− t)mn)

and remark that, similarly to the local decomposition, the infinitesimal decrease of indF can be
decomposed in n infinitesimal decreases −mi ∂indF

∂mi
(tm1, . . . , tmn)dt, each measuring the impact

of the margin i. By integrating from t = 0 to t = 1, we get

∫ 1

0
− d

dt
indF(L1(t), . . . ,Ln(t))dt = indF(m1, . . . ,mn)

=

n∑

i=1

∫ 1

0
mi

∂indF

∂mi
((1− t)m1, . . . , (1− t)mn)dt.

The global sensitivity index on a linear path of the variable i is defined as

SL
i =

∫ 1

0
mi

∂indF

∂mi
((1− t)m1, . . . , (1− t)mn)dt,

and indF(m1, . . . ,mn) can be decomposed as the sum of each individual impact

indF(m1, . . . ,mn) =

n∑

i=1

SL
i . (5.5)

These indices can be seen as the generalization of the local sensitivity indices for nonlinear
induced functions. Proposition 5.2.3 shows the relevance of this expression, by stating that in
the case where all demanded margins mi have a separate impact on the induced function, the
sensitivity indices capture exactly each of these impacts.

Proposition 5.2.3. If the induced function is the sum of n separate univariate functions

indF(m1, . . . ,mn) =

n∑

i=1

fi(mi)

then the sensitivity index for the margin mi is

SL
i = fi(mi).

In particular, if fi is linear, then SL
i = Di.

Proof. It is a direct consequence of the linearity of the differentiation/integration.
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Use case, part 9. Engineers now compute the global decomposition on the linear path

SL
κ = mκ

∫ 1

0

∂indC(tmκ, t(βF − 1))

∂mκ
dt

and

SL
F = (βF − 1)

∫ 1

0

∂indC(tmκ, t(βF − 1))

∂mF
dt,

the result is drawn in Figure 5.5. They remark that the variable κ has a greater importance
in the global decomposition than in the local decomposition of Figure 5.4. As a conclusion,
if they want to reduce the induced cost on Wmax they should focus on reducing margin on
Fnom first.

Ssκ

SsF

Figure 5.5: Global decomposition on a linear path of the induced cost on Wmax

Global decomposition on a general margin reduction path So far, the global sensi-
tivity indices were computed by imposing that each demanded margin is an affine function of
t : (1− t)mi. This linear decrease contains the implicit assumption that, if the demanded margin
were reduced, each margin would decrease at the same rate (in proportion).

It is however possible to choose other paths, that take the value mi at t = 0 and 0 at t = 1,
so that the decomposition of Equation 5.5 still holds. For instance, one might want to compute
the decomposition when the first margin m1 vanishes and the others remain the same, then the
margin m2 vanishes and the others remain the same, etc... In general, these paths are called
margin reduction paths.

Definition 5.2.4 (Margin reduction path). Let (m1, . . . ,mn) ∈ Rn+ be n positive real numbers,
representing demanded margins. A margin reduction path is a function

s : [0, 1]→ Rn+
t 7→ (s1(t), . . . , sn(t))

such that
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(i) s is absolutely continuous;

(ii) s(0) = (m1, . . . ,mn);

(iii) s(1) = (0, . . . , 0);

(iv) For all i ∈ J1, nK, si(t) is nonincreasing.

We can now provide the general definition of a global sensitivity index.

Definition 5.2.5 (Global sensitivity index). Let s be a margin reduction path, the global sensi-
tivity index of the demanded margin mi along the path s is

Ssi =

∫ 1

0
−s′i(t)

∂indF

∂mi
(s1(t), . . . , sn(t))dt (5.6)

and the relative global sensitivity index is

S̃si =
Ssi∑n
j=1 S

s
j

.

For any margin reduction path, the induced function can be decomposed

indF(m1, . . . ,mn) =

n∑

i=1

Ssi

and the indices are always nonnegative. However, for two different paths s and s′, the equality
of the indices is not guaranteed in general:

Ssi 6= Ss
′

i ,

except in two noticeable cases. The first one is when indF is the sum of univariate functions, in
which case the global sensitivity index does not depend on the choice of the path.

Proposition 5.2.6. Proposition 5.2.3 holds for any reduction path s.

Proof. It is a consequence of the linearity of the differentiation and integration.

The second case is when s′ is a reparametrization of s by a continuously differentiable function.

Proposition 5.2.7. Let r : [0, 1] 7→ [0, 1]be a nondecreasing C1 function such that r(0) = 0 and
r(1) = 1. Then, for i ∈ J1, nK, we have

Ssi = Ss◦ri ,

Proof. Differentiating the i-th component of s ◦ r gives the expression (s ◦ r)′i = r′(s′i ◦ r). The
i-th sensitivity index along the path s ◦ r is then

Ss◦ri =

∫ 1

0
r′(t)s′i(r(t))

∂indF

∂mi
(s1(r(t)), . . . , sn(r(t)))dt

=

∫ 1

0
s′i(t
∗)
∂indF

∂mi
(s1(t∗), . . . , sn(t∗))dt∗

= Ssi ,

with the change of variable t∗ = r(t).
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This proposition shows that the sensitivity indices depend only on the 1-dimensional curve
{(s1(t), . . . , sn(t)), t ∈ J0, 1K}, that is embedded in an Rn-dimensional space. Thus, the variable
t plays only the role of a convenient parametrization.

Remark 5.2.8. The global sensitivity indices that we propose are similar to the derivative-based
sensitivity measure, introduced in [73]

w(i) =

∫

[0,m1]×...×[0,mn]

∂f

∂xi
(x1, . . . , xn) dx1 . . . dxn. (5.7)

In our context, we exploit the particular form of the cost function f and integrate only on a sub
path of [0,m1] × . . . × [0,mn] so that we can achieve an exact decomposition of the cost that is
not possible with those from Equation (5.7).

Representation of the decomposition Let s be a margin reduction path, and 0 < ta < tb < 1
be two values of the path parameter. Let us remark that we can define the sensitivity indices
between ta and tb such that

indF(m1,b, . . . ,mn,b)− indF(m1,a, . . . ,mn,a) =

n∑

i=1

∫ b

a
−s′(t)∂indM

∂mi
(s1(t), . . . , sn(t))dt

=

n∑

i=1

Sta,tb,si ,

with mi,a = si(ta) and mi,b = si(tb). In other terms, each difference of the form
indF(m1,b, . . . ,mn,b)− indF(m1,a, . . . ,mn,a) can be decomposed in terms of sensitivity indices,
and not only the difference indF(m1, . . . ,mn)−indF(0, . . . , 0), that was studied above. By rewrit-
ing

indF(m1,b, . . . ,mn,b)− indF(m1,a, . . . ,mn,a) = 1 · (indF(m1,b, . . . ,mn,b)− indF(m1,a, . . . ,mn,a))

one can grasp the intuition that the surface of the rectangle of length

(indF(m1,b, . . . ,mn,b)− indF(m1,a, . . . ,mn,a))

and width 1 can be partitioned into n surfaces of area Sta,tb,si , i ∈ J1, nK and can thus be naturally
represented graphically in a similar way as Figure 5.6.

In order to draw this decomposition, one must choose a discretization step 0 < δt < 1 and,
for each N ∈ J0, b1/δtcK, compute the decomposition of the induced function between Nδt and
(N + 1)δt.

indF(m1,(N+1)δt, . . . ,mn,(N+1)δt+1)− indF(m1,Nδt, . . . ,mn,Nδt) =

n∑

i=1

S
Nδt,(N+1)δt,s
i

Then, the rectangle between the abscissa indF(m1,Nδt, . . . ,mn,Nδt) and indF(m1,(N+1)δt, . . . ,mn,(N+1)δt)

and the ordinate 0 and 1 is partitioned into n surfaces by giving a area S
Nδt,(N+1)δt,s
i to the

variable i ∈ J1, nK.
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Use case, part 10. The engineers follow this visualization method to decompose the induced
cost as a partition of a rectangle and obtain Figure 5.6. The total area of the orange surface
is equal to the global sensitivity index SL

κ and the area of the blue surface is equal to SL
F .

They can see that when they want to reduce the induced cost, the variable F will be the main
contributor to the decrease from 500 to 150 and then κ will contribute the most.

0 100 200 300 400

indC

0.00

0.25

0.50

0.75

1.00

P
ro
p
or
ti
on

indC(mκ,mF )

Contribution of mκ

Contribution of mF

Figure 5.6: Decomposition of the induced cost on Wmax with respect to the demanded
margins mκ and mF . The induced cost is in abscissa and the proportion in the ordinate.
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Figure 5.7: The value of the sensitivity index between two induced cost ca and cb is the area
of each surface between the two costs.
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5.3 Mechanisms of margin reduction

Modeling the margins and performing a sensitivity analysis on the induced costs permits to
highlight where the impactful demanded margins are. Once this step is done, there remains to
know how to remove the margins. We propose three approaches.

5.3.1 Improve the maturity of margin quantification

The margin quantification, in engineering practices, takes a variety of forms, leading to more or
less precise results. For instance, sometimes the forbidden set is not known, or only the order of
magnitude of the demanded margin is known. By precising the link between the uncertainty and
the demanded margin in the margin quantification phase, the demanded margins could possibly
greatly decrease and approach more sharply the safety or reliability goal.

Let us take the example of Civil engineering as an illustration. In De architetura [93], the
earliest known treatise of civil engineering, Vitruvius declares about building a wall that “in the
course of time, the mortar has lost its strength [...] and so the monuments are tumbling down
and going to pieces [...]. He who wishes to avoid such a disaster should leave a cavity behind
the facings, and on the inside build walls two feet thick [...]”. This value of two feet includes a
demanded margin, taken to cover the risk of failure over time. However, the choice is not based
on a model, but purely on experience; one has no clue a priori of how far the chosen two feet
are from the forbidden set, and even the very definition of the forbidden set is quite nebulous in
this context. There is a demanded margin in those two feet, but it is not possible to know how
much.

In modern approaches, models from continuum mechanics provide a quantitative approxima-
tion of where the failure happens. Some safety factors β1, . . . , βn, that increase the constraint
or decrease the resistance (Section 3.1.4), are taken to cover the uncertainty. In that case, the
thickness of a wall is chosen using an approximated mechanical model, knowing that the margin
to the real failure set is of order of magnitude β1, . . . , βn.

Last, when the failure of multiple walls has been observed, along with the external conditions,
probabilistic models coupled with continuum mechanics models can be constructed. One can then
link the demanded margin to the probability of failure. The demanded margins are chosen in
order to satisfy an acceptable probability of failure.

The margin quantifications of the three examples above show a different degree of maturity
(illustrated in Figure 5.8). As a rule of thumb, if one assumes that the design already satisfies
a safety goal, the more precise the margin quantification is, the smaller the margin can be. It
is explained by the fact that a part of the uncertainty in the modeling is reduced and thus the
margins can be decreased. Some measures that can be made in terms of model to improve the
margin maturity are:

• Constructing a failure set that better represents the safety goals;

• Have a more precise simulation of the behaviour;

• Identify the level of risk that would be considered as acceptable;

• Model more precisely the uncertainties, in a quantitative way.

Even if these measures may read as an engineering triviality in the sense that “a better model
would lead to a better fitted design”, one must keep in mind that in a margin sensitivity context,
they need to be applied only where the impactful margins are identified. Thus, this effort shall
not be made on the whole system, but only where substantial potential gains are identified.
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The design is chosen “far”

from the failure

based on experience

· · ·
F is identified.

The order of magnitude

of m is known

· · ·
Explicit link between

the level of risk and

the demanded margin value

· · ·

Maturity of the margin quantification.

Figure 5.8: The variety of engineering approaches leads to different maturity in terms of margin
quantification.

5.3.2 Update the reducible uncertainties

As margins are used to cover some uncertainties, if the uncertainties are reducible, the associated
margins can be lowered when uncertainties are actually reduced. Sometimes, the uncertainties
can be reduced by an active action; it can be done for instance by

• Providing a better model for the uncertainties.

One could think of the civil engineering example, in which the earliest partial factor were
demanded margins quantified by the experience and had an high value. Then, engineers
proposed a probabilistic modeling that permitted to reduce the margin for a vast range of
cases;

• Reducing the statistical uncertainties, by drawing more observations of the quantity of
interest;

• Reducing the numerical errors with more trusted model and simulation for the phenomenon.

In other cases, uncertainties just vanish by themselves, as the design gains in maturity. It happens
for instance when the demanded margins are some room for manoeuvre because a quantity was
not yet fixed. When it is actually chosen - for instance when the supplier gives of a component
with known characteristics - these margins have no more reason to exists. They can just be
removed.

5.3.3 Perform a mutual quantification of margins

Another way to reduce margins is to take into account the correlation between the underlying
uncertainties. In substance, two demanded margins that were quantified separately cannot model
the correlation bewteen the uncertainty they cover. As a consequence, it may result in an
unrealistic worst-case design. The application of Chapter 6 illustrates one specific aspect of such
a worst case and the core idea can be understood from Example 5.3.1.

Example 5.3.1. The goal of the design problem is to choose the minimum value of the resistance
R∗ ∈ R such that R∗ is greater than the stress S(Y1, Y2) for all the possible values of the random
variables Y1 and Y2. The margin quantification phase would consist in identifying the range of
variation for each variable Y1 and Y2. In practice, two nominal values would be chosen (y∗1 , y∗2) ∈
R2 along with four directional increasing and decreasing margins (m1,−,m1,+,m2,−,m2,+) ∈ R4

so that

Y1 ∈ [y∗1 −m1,−, y
∗
1 +m1,+] and Y2 ∈ [y∗2 −m2,−, y

∗
2 +m2,+]
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almost surely. Finally, the resistance is calculated as

R∗marg = maxS(y1, y2)

y1 ∈ [y∗1 −m1,−, y
∗
1 +m1,+]

y2 ∈ [y∗2 −m2,−, y
∗
2 +m2,+].

Now, let us assume that the randomness of Y1 and Y2 come from the same source, Y1 = g1(X)
and Y2 = g2(X) with X a uniform random variable U ([x−, x+]).

X

Y1 =
g1(X)

Y2 =
g2(X)

S(Y1, Y2)

Figure 5.9: Diamond workflow leading to the worst-case approach in design with margins, when
the dependency of Y1 and Y2 on X are forgotten.

In that case, the maximum required resistance can be refined as

R∗des = maxS (g1(x), g2(x))

x ∈ [x−, x+].

As the margin quantification implies g1([x−, x+]) ⊂ [y∗1 −m1,−, y∗1 + m1,+] and g2([x−, x+]) ⊂
[y∗2−m2,−, y∗2 +m2,+], the choice with margins taken separately is always greater than the choice
with the correlations,

R∗des ≤ R∗marg,

the inequality being strict most of the time. In other terms, the choice taking the correlations
into account permits to have a more precise estimate than sole margin approach.

For instance, if we take

R(y1, y2) = y1 + y2

y1 = g1(x) = 2x

y2 = g2(x) = −x

the values are R∗marg = 2x+ − x− and R∗des = x+. The overdesign, in terms of resistance R is
equal to R∗marg −R∗des = x+ − x− > 0.

In order to formalize this example, let us consider a problem description (E,C) and a a
forbidden set F. We assume that n risks R1, . . . , Rn must be covered by n models of margin
M1, . . . ,Mn, such that Mi is defined to cover Ri at a level αi. We can identify two ways to
quantify margins.
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Sequential quantification

- The demanded margin m1 is chosen to cover R1 at the level α1 for F, resulting in the
forbidden set F′1 = dmM1,m1

(F).

- The demanded margin m2 is chosen to cover R2 at the level α2 for F′1, resulting in the
forbidden set F′2 = dmM2,m2

(F′1).

...

- The demanded margin mn is chosen to cover Rn at the level αn for F′n−1, resulting in the
forbidden set F′n = dmMn,mn

(F′n−1).

We rename F′seq = F′n. This sequential quantification represents a multidisciplinary context.
When multiple engineering disciplines must interact together, each one often takes its margins to
cover its own risks and communicates their possible designs (i.e. failure sets) with no information
on the risks covered.

Mutual quantification The risks R1, . . . , Rn are assessed together and a new forbidden
set F′mut is chosen to cover them at the levels α1, . . . , αn (see Example 5.3.3, for instance).

From a modeling point of view, the mutual quantification represents a complete communica-
tion of the uncertainties between all stakeholders in a multidisciplinary context.

Principle 5.3.2 (Sequential versus mutual quantification). If F′mut and F′seq are chosen to cover
the same risks R1, . . . , Rn at the levels α1, . . . , αn, we have, in general

A′seq ⊂ A′mut.

In other terms, for the same reliability/safety target, the sequential quantification is more conser-
vative than the mutual quantification and the sequential quantification has a tendency to forbid
designs based on unrealistic constraints.

The non optimality of the sequential quantification is due to two characteristics.

- The correlation are not taken into account.

- The demanded region is often a rectangular box.

The demanded region is the area around a design that must be included in the acceptance set in
order for the design to be acceptable, due to the demanded margins. The mutual quantification
must focus on these two aspects to find a better F′mut. Chapter 6 establishes that, when two risks
are mutually exclusive, it is sufficient to take the intersection of the failure set with demanded
margin, instead of composing the demanded margin operators. The safe region around the design
point is not a box anymore but permits to choose a more efficient design. In Example 5.3.1, an
efficient forbidden set cannot result from demanded margins on y1 and y2 taken separately; the
shape must take their correlation into account. In Example 5.3.3, only focusing on the correlation
and not on the shape of reduction still permits to reduce the impact of the margins.

Last, we must acknowledge that this principle is based on an intuition built upon particular
cases. Finding a rigorous and precise definition of the mutual margin quantification and proving
its optimality is one of the main perspectives of development for this framework.
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Example 5.3.3 (Sum of two Gaussian variables). In this stress-resistance problem, the state
space E is composed by two stress variables (s1, s2) ∈ R+ and a resistance variable r ∈ R+ and
there are no problem constraints C = R3

+. The failure happens when the resistance is lower than
the sum of the two stresses

F = {r < s1 + s2}.
Two design values for the stress ŝ1 and ŝ2 are estimated, but are uncertain. The differences
between the estimated and the true values s1,0 and s2,0 are centered independent normal random
variables G1 and G2 of variance σ2

1 and σ2
2. The goal is to choose the lowest r that does not fail,

with a probability of 1− α.

Sequential quantification Let us consider the case where the discipline v1 is in charge of
s1 and the discipline v2 is in charge of s2. In order to obtain a global confidence level α, each
discipline needs to cover the risk at the level 1− α1 = 1− α2 =

√
1− α

Margin quantification of v1 The discipline v1 does not know the true value s1,0 and thus
replace it by its estimated value ŝ1. In order to cover the related uncertainties, they want to take
a demanded margin m1 on Ms1,→ so that if

(r1, ŝ1, s2) 6∈ dmm1,Ms1,→
(F)⇔ r1 ≥ ŝ1,0 +m1 + s2

almost surely, then
P (r < s1,0 + s2,0) ≤ α1.

Using the fact that ŝ1,0 − s1,0 = G1, they conclude that they can take m1 = q1−α1
σ1. The new

forbidden set F′1 = dmm1,Ms1,→
(F) is transmitted to v2.

Margin quantification of v2 The discipline v2 follows the same approach as v1, but re-
placing F with F′1. They conclude that if they replace s2,0 by ŝ2,0, they have to take a margin
m2 = q1−α2

σ2 with the model of margin M2,→. The final forbidden set is

F′2 = dmM2,→,m2
(F′1) = {r < ŝ1,0 + q1−α1

σ1 + ŝ2,0 + q1−α2
σ2}

and the choice is rseq = ŝ1,0 + ŝ2,0 + q√1−α(σ1 + σ2).

Mutual quantification As the information is shared, the designer knows that the difference
between the true and the estimated value ŝ1,0 + ŝ2,0 − s1,0 − s2,0 is a normal random variable
of variance σ2

1 + σ2
2. The designer can thus take a margin either on s1 or s2 of value m =

q1−α

√
σ2

1 + σ2
2 to cover the risk. The choice is then

rmut = ŝ1,0 + ŝ2,0 + q1−α

√
σ2

1 + σ2
2 .

Conclusion of the example As both q1−α < q√1−α and
√
σ2

1 + σ2
2 < σ1 + σ2, the value of

rmut is lower than rseq, whereas they were chosen to meet the same confidence level. The design
with mutual margin quantification leads to a more efficient design than a design with sequential
margin quantification, that pays the price of not sharing the information on the risks.
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Chapter 6

Model of margin: from the
mathematical formulation to an
operational implementation

This chapter describes joint works with Romain Barbedienne1 and Jean-Michel Edaliti2 in the
context of the AMC project at IRT SystemX. They were presented at the “5th International
Conference on System Reliability and Safety” and subsequently published in [114]. We present
this version with minor updates to standardize the notations.

6.1 Introduction

Uncertainties are generated all along the life cycle of large industrial systems, in their design,
manufacturing, operation and even their end-of-life. Some quantitative methods, designated
under the name of Uncertainty Quantification (UQ), have been developed to provide meaningful
indicators for decision. A probabilistic modeling of these uncertainties is often used [37]. However
it appears that, in some industrial collaborative contexts, UQ methods are not widely shared
across the variety of engineering stakeholders who must interact together, thus limiting the
opportunity to go beyond purely deterministic simulations. In these contexts, engineers keep
using margins to ensure the reliability of the models, the simulations and the system in general.
Margins are informally understood here as an amount of something included so as to be sure of
success or safety (Oxford dictionary). However, the margins are often implicit or hidden, as they
are not monitored [44]. Thus, they cannot be used as indicators to characterize the system.

To address this problem, some recent works, such as [44], focused on laying the theoretical
foundation of the concept of margin in design science. In order to rigorously formulate problems
on margins, independently from the engineering field or modeling practice, we proposed a formal
mathematical framework to define margins in Chapter 4. More precisely, the concept of model
of margin was proposed, describing the sufficient information to uniquely define a margin. This
approach is pursued in this paper, based on a use case. A practical link between the model of
margin and the risks prevented is presented hereafter. Section 6.4 shows how models of margin
can be used in an industrial context to formalize and generalize the margin practices. Section

1IRT SystemX
2Sherpa Engineering

93
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6.5 presents a design pattern used to guide the numerical implementation of the margin presets
for the use case.

6.2 Industrial case: an automotive battery sizing

6.2.1 Initial problem

The use case presented in this section is typically part of a pre-design sizing study. To this end,
simple models are used in order to get a first idea of the characteristics of the system. The
numerical values used in this paper are provided for the purpose of the demonstration only and
are not actual values used by our industrial partners.

The system of interest for this use case is a battery used to power the starting engine of an
automotive combustion engine. The battery also supplies the vehicle components with power
when the engine is not running. When the engine is running, the alternator provides enough
power to charge the battery and to operate the car devices.

We concentrate hereafter on satisfying the requirement: the battery should store and supply
enough energy to crank the engine running in tough conditions. It is refined as follows:

• The battery must handle at least 6 months of storage in warm, temperate and cold coun-
tries;

• To ensure that the engine actually start, there must be enough power to perform three
crankings.

6.2.2 Modeled phenomena

The variables used in this section are classified and explained in Table 6.1 and Table 6.2. Due
to the specific needs of our analysis, we chose to only model the following phenomena:

Self-discharge Because of their internal electric conductivity, batteries cannot keep their state
of charge, even when unused. The conductivity is temperature-dependent and thus affects the
self-discharge rate. We assume furthermore that the discharge rate is independent from the
battery state of charge at a given time. The energy consumed during a period of inactivity of
tin is approximated by:

Edischarge = Cbatt Vbatt tin k0(θdis − θref1)α (6.1)

Post-cooling After the engine stops, some additional energy is required to cool the engine and
avoid hot spots. The post-cooling energy is expressed as:

Ecool =





0, if θ < θs

Pcool(tm + (tc − tm) θcool−θsθc−θs ), if θ ∈ [θs; θc]

Pcooltc, if θ > θc.

(6.2)

Electronic Control Unit standby mode Most of the car embedded electronics components
(ECU) - like the battery management system - keep operating periodically after the engine is
stopped. This is modeled as a linear cost with respect to the parking duration:

Estandby = E0 + Pstandbytin. (6.3)
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Variable Description Unit

Design parameters

Creq
Minimum battery capacity
needed

A h

Environment constraints

θ+
cool

Maximum cooling tempera-
ture required

K

θ−start
Minimum starting tempera-
ture required

K

θ+
dis

Maximum mean temperature
required

K

Non-controllable variables

Cbatt Capacity consumed A h

Estart
Energy required to start the
vehicle

J

Edischarge Battery self-discharge energy J

Ecool Energy used to cooling engine J

Estandby
Energy consumed by standby
equipments

J

θdis Mean battery temperature K

θcool Engine temperature (cooling) K

θstart Engine temperature (start) K

Table 6.1: Description of model variables

Starting energy The energy required to start the engine is dependent on the temperature.
This has an impact on the duration of the starting phase, which is modeled by a dependency of
the time on the temperature:

Estart = Pstart

(
tstart +K1(θstart − θref2)β+

)
(6.4)

Total energy consumed The starting energy is counted three times to match the require-
ments. The expression of the total energy consumed is:

Ebatt = Edischarge + Ecool + Estandby + 3Estart (6.5)

from which we deduce the expression of the total consumed capacity:

Cbatt =
Ebatt

Vbatt
. (6.6)

6.2.3 Aim of the analysis

The goal of the analysis is to determine the minimum battery capacity Creq that fulfills the
requirements stated in Section 6.2.1. The designer must choose the design parameter Creq such
that for all θcool ≤ θ+

cool, θdis ≤ θ+
dis and θstart ≥ θ−start the inequation:

Creq ≥ Cbatt(θcool, θstart, θdis). (6.7)
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Variable Description Unit

Constants

tin Vehicle parking duration s

θs
Engine temperature that re-
quires cooling

K

K0 self-discharge coefficient K−α/s

θref1
Temperature with zero self-
discharge

K

α
Exponent of the temperature
dependency

No unit

θc

Critical engine temperature
that requires a long time cool-
ing

K

tc Critical cooling time s

tm Minimal cooling time s

Pcool
Power of the engine cooling
system

W

Pstandby
Power consumed by standby
equipments

W

Pstart Power of the starter W

tstart
Time required to start engine
at the temperature θref2

s

K1
Additional cooling time coeffi-
cient

s/Kβ

θref2 Reference temperature K

β
Exponent of the temperature
and time dependency

No unit

Vbatt Battery nominal voltage V

Table 6.2: Description of model constants.

is true. The temperature constraints θ+
cool, θ

+
dis, θ

−
start represent the range of temperature for

which the requirements must hold. The other limits, θ−cool, θ
−
dis and θ+

start are not considered
here, as they have no influence on our modeling.

6.3 Taking a margin

6.3.1 Taking a margin on a set of points

When one speaks of taking a margin m, most of the times they implicitly think of defining
a model of margin M and imposing a minimum margin m > 0 for this model of margin. In
that case, the requirement value m is called the demanded margin, by opposition to an effective
margin, which is the margin actually measured for a point u. In this chapter, instead of writing
that the acceptance set A is reduced by imposing a margin emM(u,F) > m, we write that m
margin is taken in M, M being a model of margin.
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6.3.2 Taking a margin on a point

Sometimes, it is easy to choose the “best” point u∗ as a unique solution of:

u∗ = arg min
u∈A

c(u). (6.8)

c is a cost function, that can be trivial to compute. It can be the value of one coordinate of u for
instance. It might be easy as well to choose the best point v∗ from the “marged” acceptance set
C \ dmM,m(F) for the same cost function. It seems common that, in that case, one says that
“v∗ is the point u∗ with m margin”.

6.4 Application to the industrial case

In this section, we compare two classic design methods to choose the battery capacity to an
approach enabled by the model of margin, namely the design with explicit margins. Each of the
three methods have in common a formulation of an optimization problem under constraints:

C∗req = arg min
Creq∈D

Creq. (6.9)

The difference lies in the construction of the optimization space D.

6.4.1 Three design approaches

6.4.1.a Worst-case design

The worst-case approach consists in taking each environment variable at its worst value for all the
considered environments. Looking at the given reference values in Table 6.3, and considering the
monotony of the capacity with respect to the environment variables, the worst case happens when
θ+
cool = 80 °C, θ+

dis = 35 °C and θ−start = −18 °C. The optimization space D is then constructed
by applying the condition of Equation (6.7) with the aforementioned values. Thanks to the
monotonicity of the model, we compute the optimal design as Cbatt(80,−18, 35), which leads to
a numerical value of:

C∗req = 92 A h.

This approach is interpreted as a sequential margin accumulation in Section 6.4.2.

Environment θ+
cool θ+

dis θ−start probability

Temperate 65 °C 20 °C 0 °C ptemp

Cold 65 °C 20 °C −18 °C pcold

Warm 80 °C 35 °C 0 °C pwarm

Table 6.3: Reference environment constraints depending on the environment.

6.4.1.b Probabilistic design

In the probabilistic approach, each environment of Table 6.3 is assigned to an event. The universe
is then composed of three exclusive events Ω = {ωtemp, ωcold, ωwarm}, modeling the event “being
in a temperate (resp. cold and warm) country”. A probability measure is constructed from
data on the consumer profiles and assigns the probabilities ptemp, pcold and pwarm to each event.
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θ+
cool, θ

+
dis and θ−start are now random variables whose laws are given by the values associated to

the probability of each scenario (see Table 6.3).
Cbatt is then also a random variable. The criteria is reformulated in “satisfying Equation

(6.7) with a probability of γ ∈ [0, 1]”. The optimization space D is then given by the values Creq

for which:
P
(
Cbatt(θ

+
cool, θ

+
start, θ

−
dis) ≤ Creq

)
≥ γ. (6.10)

As illustrated in Figure 6.1, different choices of C∗req are possible (43 A h, 63 A h or 69 A h),
depending on the γ chosen.

Figure 6.1: Probability γ to satisfy the constraint with respect to the value of Creq. This is also
the cumulative distribution function of Cbatt.

One can remark that even for γ = 1, i.e when Equation (6.7) is always satisfied, the optimal
value Creq is 69 A h, which is smaller than the worst-case value 92 A h. This characteristic is
captured in margin framework, by performing a mutual accumulation on the margins instead of
a sequential one, as explained in Section 6.4.2.

6.4.1.c Design with explicit margins

The global motivation of the proposed approach is to ensure that all the margins considered
in the analysis are relevant. Margins can be explicitly identified and described thanks to their
models of margin.

In Table 6.3, one can see that a margin of −18 °C has been taken for θ−start in the cold
environment, with respect to the temperate one. A margin of 15 °C for θ+

cool and θ+
dis has been

taken in the warm environment.
As a car cannot be in a cold country and in a warm country at the same time, a simple rule is

to consider that these margins must not be taken “at the same time”, but instead separately. By
applying this rule, one computes C∗req as the maximum of Cbatt(65, 20,−18) and Cbatt(80, 35, 0).
The numerical value is the same as the probabilistic modeling with γ = 1:

C∗req = 69 A h.

The rigorous interpretation of this use case in terms of models of margin is presented in Section
6.4.2. The rule is generalized in Section 6.4.3. Section 6.5 gives some insights to implement it
globally as a numerical tool.
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6.4.2 Detail of the design with explicit margins

We reformulate the industrial case within our margin framework. To do so, we first construct
a deterministic problem description of the models of margin. The state space E is chosen to be
the set of the design variables and the environment constraints given in Table 6.1. The set of
the problem constraints C is given by the equations of Section 6.2.2. The acceptance set A is
composed of the states satisfying the criterion of Equation (6.7) and we define the failure set
by F = C \A. The point u represents a battery designed for temperate countries. We want to
prevent two risks that are not modeled in the problem description:

• (R1): being parked in a cold country and running out of battery;

• (R2): being parked in a hot country and running out of battery.

We define M1, a directional model of margin in the direction of a decrease in θ−start. To
prevent (R1), we take a margin of 18 °C in M1, i.e we impose a smaller minimum starting
temperature.

We define M2, a directional model of margin in the direction of an increase in θ+
cool, θ

+
dis

(i.e. for the direction vector that has the coordinate 1 on both θ+
cool and θ+

dis). To prevent
(R2), we take a margin of 15 °C in M2, i.e we impose a greater maximum cooling and mean
temperature.

These two margins lead to the conditions of Table 6.3 for warm and cold countries. In order
to choose our best design, we use an informal design rule:

When two risks are mutually exclusive, there is no need to add up the margins taken
for each event. Instead, one could consider the possible designs with margins for each
event separately and choose the best among their intersections.

This rule actually describes an implicit consideration modeled in the probabilistic design. As a
car cannot be parked in a cold country and in a warm country at the same time, the values of
the constraints θ+

dis = 35 °C and θstart = −18 °C should not be imposed at the same time. If they
were, the composition of the demanded margin operators would give the resulting optimization
space. Instead, the optimization space D is the intersection of the designs with a margin of 18 °C
in M1 and of the designs with a margin of 15 °C in M2:

D =
{
u ∈ L0 (Ω,E) |emM1

(u,F) ≥ 18 °C
}

∩
{
u ∈ L0 (Ω,E) |emM2

(u,F) ≥ 15 °C
} (6.11)

The impact of different strategies of margin accumulation is illustrated in Figure 6.2.
With this method, our optimal value is:

C∗req = 69 A h. (6.12)

This result is the same as the probabilistic design with γ = 1.

6.4.3 Generalization of the industrial case

The example given in the previous section will help generalizing it. During the design process,
multiple margins are taken to cover various risks. This process can be described as:

1. Starting with some failure criteria that define a set of acceptable designs A.

In the previous case, A is given by Equation (6.7).
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Figure 6.2: Reduction of the optimization space depending on the accumulation strategy. D1 is
the optimization space in the design with explicit margins and D2 is the optimization space in the
worst case.

2. Considering a first risk (R1), that is not prevented by the failure criteria.

In the previous case (R1) is “being parked in a cold country and running out of battery”’.

3. Taking some margins on some quantities to cover the risk (R1).

m1 = 18 °C margin in M1 has been taken in the previous case.

4. For each other risk (Ri) repeating Step 3.

Only (R2) “being parked in a warm country and running out of battery” has been consid-
ered previously.

5. Getting a “marged” acceptance set Amarg covering all the risks considered.

This set was denoted by D in the previous case.

6. Choosing an optimal design among Amarg.

The optimal design was Creq = 69 A h in the previous case.

6.4.3.a Margin accumulation strategies

An interesting remark that can be made from the previous case is that there are (at least) two
different ways to take two margins simultaneously, namely the sequential accumulation and the
mutual accumulation.

Sequential accumulation Considering a margin m1 has been taken in M1, take an additional
margin m2 in M2. This is modeled by the composition of the margin operators

Fseq = dmM2,m2
(dmM1,m2

(F)). (6.13)

An illustration of sequential margins accumulation is shown in Figure 6.3a. This leads to the
worst-case design in the industrial case.
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Mutual accumulation The points u are required to have m1 margin in M1 and m2 margin
in M2. In that case, the resulting failure set is the union of

Fmut = dmM1,m1
(F) ∪ dmM2,m2

(F) (6.14)

An illustration of mutual margins accumulation is shown in Figure 6.3b. This leads to the design
with explicit margins in the industrial case.

(a) Sequential margins accumulation of
a margin of 1 taken in M1 then of mar-
gin of 0.5 taken in M2.

(b) Mutual margin accumulation of 1
margin taken in M1 and 0.5 margin
taken in M2.

(c) Comparison of both strategies (se-
quential is in plain grey and mutual is
dotted).

Figure 6.3: Two strategies of margins accumulation for the acceptance set A =
{

(x, y)|y ≥ x2
}

.
M1 is a directional model of margin on a decrease in x and M2 is a directional model of margin
on a decrease in y. A margin of 1 is taken in M1 and a margin of 0.5 is taken in M2.

It is possible to prove that sequential forbidden set Fseq is always bigger than the mutual
forbidden set Fmut. The argument is that,

dmM1,m1
(F) ⊂ dmM2,m2

(dmM1,m1
(F))

and
dmM2,m2

(F) ⊂ dmM2,m2
(dmM1,m1

(F)),
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leading to

dmM1,m1
(F) ∪ dmM2,m2

(F) ⊂ dmM2,m2
(dmM1,m1

(F)).

This is illustrated in the comparison of Figure 6.3c.
Nonetheless, the sequential accumulation should not be forbidden. In fact, both strategies

are relevant depending on the purpose of the accumulation.
The purpose of the sequential accumulation is first to prevent the risk (R1) by taking a margin

of m1 in M1. Then, assuming this risk occurs, one prevents a second risk (R2) (potentially the
same) by taking a margin of m2 in M2.

The mutual accumulation can be seen as preventing a risk (R1) by taking a margin of m1 in
M1 and a second risk (R2) by taking a margin of m2 in M2. The case in which (R1) and (R2)
happen at the same time is not considered, though.

It is now possible to rewrite the informal design rule as follows:

Assuming that (R1) and (R2) are two risks that cannot happen at the same time
and a margin of m1 (resp. m2) has been taken in M1 (resp. M2) to cover (R1)
(resp. (R2)), the final acceptance set covering (R1) and (R2) can be constructed by
the mutual accumulation of m1 taken in M1 and m2 taken in M2.

It is assumed that the models of margin M1 and M2 share the same problem description and,
in particular, the same acceptance set.

6.4.3.b On the construction of the acceptance set A

From a modeling point of view, in an optimization context of the type:

u∗ = arg min
u∈dmM,m(F)

c(u) (6.15)

it seems easier to express the mutual accumulation when the margins are taken on the variable
threshold - θ+

cool for instance - rather than on the actual values - θcool for instance.

Taking a margin on a constraint only imposes a stronger constraint, e.g a greater θ+
cool.

However, margins on actual values exclude relevant designs. Let us assume that θcool is included
in the point u instead of θ+

cool. In that case, a temperate constraint θcool > 65 °C would likely be
included in the acceptance set, to make sure that the design would fulfill the temperate country
requirements. A margin for the warm countries in an increase θcool would forbid any θcool value
between 65 °C and 80 °C. Then, even a mutual accumulation would impose θcool ≥ 80 °C. With
a similar reasoning on the two other environment variables, the optimal design would be the
worst-case, instead of the one with explicit margins.

6.4.4 Conclusion of the section

The margin that were taken during the design are now rigorously defined, thanks to the models
of margin. This rigorous formulation helped us expressing a particular design margin rule for
general cases. This illustrates the aim and the potential of the model of margin: to formulate
problems on margins and their solutions in a rigorous, general way.

6.5 Structure of an implementation of a model of margin

The previous formulation of the model of margin allows an exhaustiveness to manage each model
of margin. However, it may not be simple enough to be used by a specialist simulation designer.
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Method Creq

Worst-case 92 A h

+ The simplest.

− Very conservative.

Explicit margins 69 A h

+ No more additional phenomena modeling than in the worst-case, performs better,
interpretation in terms of margins.

− Needs a modeling of the margins and of the risks.

Probabilistic model Depends on γ, ≤ 69 A h

+ Takes into account the correlations.

− Requires a probabilistic framework.

Table 6.4: Comparison of the three design methods

In this section, a software design pattern for the model of margin is built. This pattern enables
the definition of presets that could be plugged to each concept of model of margin. A focus on
the preset for the use case is presented. The pattern will be described thanks to a metamodel,
that defines the concepts and the relationships between these concepts.

6.5.1 Metamodel definition

The metamodel of the model of margin describes its components, for the purpose of their software
implementations. The Unified Modeling Language (UML) is used to describe the metamodel,
although one does not need to be familiar with it to understand the patterns we expose. When
some UML concepts are used in a figure, their meaning is given in a table below the figure.

A UML class, represented as a box, has the same meaning as classes described in programming
language as C++, Java, or Modelica. It is a collection of properties and operations. Classes can
be seen as a mold, where instances can be seen as items generated from a class.

Each mathematical object is modeled with an abstract class, which is a class that cannot be
instantiated as is. The classes that are actually instantiated all inherit from the abstract classes.
The process of inheritance consists in imposing the feature (attributes and methods/operations)
interfaces of the parent abstract class to the classes that inherit from it. To differentiate abstract
classes from other classes, the name of abstract classes is written in italic. For instance, in Figure
6.4, each model of margin must have a class inheriting from ProblemConstraints. Each of these
classes must have an operation getState, which represents the computation of the state (inputs
and outputs) with respect to the inputs. However, the operation getState can be different for
two models of margin, as they can refer to different phenomena.



104 CHAPTER 6. MODEL OF MARGIN: AN OPERATIONAL IMPLEMENTATION

ModelOfMargin

operations

getMargin( v: Inputs): Real

ProbingSet

MarginSpace

Distance

ProjectionMap

Problem description

StateFactory

ProblemConstraints

operations

getState( v: Inputs): State

ForbiddenSet

operations

isStateAcceptable( u: State): Boolean
SubsetOfMarginSpace

[1] *

[1]

*

[1]

*

coordFunct [1]

1

[1]

1

[1]

1

probingSet [1]
1

Figure 6.4: Description of Margin metamodel using UML Class Diagram

Association Composition Dependency

A B
b [1]*

A B

b [1]1
A B

A class A has an association with
another class B if an object of
class A needs to maintain a ref-
erence to an object of class B. [33]

A composition is a unidirec-
tional association, it means
that A is composed of B.

A Dependency is a Relationship that
signifies that a single model Element
or a set of model Elements requires
other model Elements for their speci-
fication or implementation. [95]

6.5.1.a Problem description

The abstract class ModelOfMargin is associated with the ProblemConstraints, StateFactory and
AcceptanceSet abstract classes. The three latter classes come from a prior modeling, without
any margin consideration a priori. They can then exist without the model of margin, and
consequently, an association link is used.

State space The role of the state space E in the mathematical model of margin is to declare
what are the variables that would be of interest in the model. The variables can either be input,
intermediary or output variables. The numerical counterpart is the StateFactory, which defines
how to instantiate the state.

The BatteryState of the use case (Figure 6.5) is implemented to be used in an optimization
context. The distinction between the design parameters, the battery outputs and the environ-
ment variables allows to identify the variables on which an optimization algorithm can operate.
These variables are taken from Tables 6.1 and 6.2. The BatteryStateSpace has a method Build-
BatteryState(. . . ) to construct a state instance.
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BatteryStateSpace

operations

BuildBattState( θ+
cool...

BatteryState

attributes

θ+
cool: Real

θ−start: Real

θ+
dis: Real

Cbatt: Real

Edischarge: Real

Ecool: Real

Estandby: Real

Estart: Real

DesignParameters

attributes

Cbatt: Real

EnvironementVariables

attributes

θ+
cool: Real

θ−start: Real

θ+
dis: Real

BatteryOutputs

attributes

Edischarge: Real

Ecool: Real

Estandby: Real

Estart: Real

StateFactory

Figure 6.5: State of case study

Generalization

B class inherits from A class means that all characteristics of A class are included in B class

AcceptanceSet
RiskMeasureAcceptanceSet

operations

isStateAcceptable( u: State): Boolean

RiskMeasure

attributes

riskThreshold: Real [1]

operations

riskMeasure( u: State): Real [1..*]

MarginThresholdRiskMeasure

attributes

precedingMargins: Real

ModelOfMargin Risk

return true if

riskMeasure(u)≤riskThreshold

[1..*]

1

previousModelOfMargins [1]

1

[*]

1

Figure 6.6: AcceptanceSet implementation for the case study .

Problem constraints As written in the introduction, an implementation of the ProblemCon-
straints must have a method getState. This method is given by the models simulating the
phenomenon.
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Acceptance set For the numerical representation of A, we only impose that any represen-
tation inheriting from AcceptanceSet has an “oracle function” isStateAcceptable. This function
returns “True” if the state given in argument is in acceptance set and “False” otherwise. The
construction of this acceptance criterion may come from various sources. For instance it can
be some requirements specifications documents, the simulation itself, or a demanded margin
condition.

The initial acceptance set of the use case has come from the criterion of Equation (6.7) and
was deduced from the high level requirements. The quantity ρ = Cbatt − Creq can be identified
as a measure of the risk, that must be smaller than the threshold ρreq = 0. It can thus be
modeled with a RiskMeasureAcceptanceSet, as shown in Figure 6.6. In this specialization of
AcceptanceSet, isStateAcceptable is True if and only if ρ(State) ≤ ρreq.

It has been stated that taking a margin consists in reducing the acceptance set by imposing
emM(u,F) ≥ m (see Section 6.3.1). The implementation of this operation is illustrated in Figure
6.6 in the MarginThresholdRiskMeasure class. The condition can be expressed with risk measure,
by defining ρ(u) = −emM(u,F) and ρreq = −m.

6.5.1.b Specific objects of the model of margin

The problem description comes from the modeling of the phenomenon. The other objects, such
as the probing set or the coordinate functions are specific to the model of margin.

Each model of margin specific object is defined as an abstract class. Theses classes could not
exist without a model of margin and thus, they have a composition link with the ModelOfMargin
abstract class.

Probing set For each state u, the classes inheriting from ProbingSet must describe the value
of the states that would be explored in the computation of the margin. In a directional model
of margin, it is implemented as a vector. This direction vector represents the semi-line starting
at the state u and going in the direction of the vector.

In the use case, the two models of margin defined in Section 6.4.2 are directional margins.
The probing direction of M1 is −eθ−start , the unit vector in θ−start and the probing direction of M2

is eθ+cool
+ eθ+dis

, the sum of the two unit vectors in θ+
cool and in θ+

dis.

Coordinates functions and coordinates of interest The specialization of CoordinateFunc-
tions must carry the information to project any state in the ProbingSet to an element of Coor-
dinatesOfInterest.

In a directional model of margin, the coordinate of interest is formed by the abscissa of points
on the semi-line. It can thus be deduced from the direction vector. In this case, the information
of the CoordinateFunctions and CoordinateOfInterest can be factorized with the information
used to construct the probing set.

Distance The implementation of Distance must describe how to compute a distance between
two elements of CoordinatesOfInterest.

By convention, in a directional model of margin, the direction vector defining the ProbingSet
(Section 6.5.1.b) is also the “unit vector” defining the Distance. However, the (mathematical)
probing set and the distance remain two different conceptual objects.
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6.6 Conclusion of the chapter

The application of the theoretical model of margin presented in Chapter 4 to the automotive
case of Section 6.2 helped:

• Formulating a margin problem and formulating its solution in a rigorous way, in Section
6.4.2.

• Generalizing the solution so it can be applied in an approach of design with explicit margin,
in Section 6.4.3. This approach consists in identifying the relevant margins.

• Deducing some software design patterns for a numerical use of the model of margin, in
Section 6.5.

This is an encouraging sign for the ability of the model of margin to formalize practical margin
approaches to handle risk.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion

In order to answer the initial problem of the modeling and the identification of the most impactful
demanded margins, we proposed a framework containing the following elements.

1. A mathematical definition for the notions of effective margin and demanded margin in
Section 1. The model of margin (Section 4.2) defines on which variable and for which
evolution of design the margin is computed/taken. The effective margin (Section 4.2.1) is
a function of a design point and a failure set, computing a specific distance between them.
The demanded margin is an application reducing the set of acceptable designs by removing
all the points that do not have enough effective margin.

2. A generic description of the way engineers mitigate uncertainty with margins. The margin
quantification (Section 4.4.1) consists in choosing the value of a demanded margin, taking
some risks into account.

3. The description of the margins from the literature within this framework, in Table 4.2. The
majority of the concepts from the literature can be interpreted either as an effective margin,
that monitors how far the system is from the failure point, or as a margin quantification,
prescribing the value of the demanded margin in a specific context. The models of margin
were explicited in Section 4.5.

4. A rigorous definition of the impact of the demanded margins on the cost, on the performance
loss and on another effective margin. It is computed by the induced function with respect
to demanded margins, defined in Section 5.1.

5. Some sensitivity analysis indices of the induced cost or induced margin with respect to the
demanded margins. The local sensitivity indices (Section 5.2.2) and the global sensitiv-
ity indices (Section 5.2.3) permit to decompose an induced function with respect to the
demanded margins. They do not require a probabilistic model.

We also present some methodological considerations to reduce influential margins. Three
recommendations are stated in Section 5.3; the first one is to better formalise the margin quan-
tification, the second one is to update the reducible margins and the last one is to take the
correlation/independence into account.

109



110 CHAPTER 7. CONCLUSION AND PERSPECTIVES

An industrial application is proposed in Chapter 6, illustrating the gain that can be made
when margins are computed taking into account the correlation between the risks they cover. It
focuses on the way to accumulate two margins when the risks covered are mutually exclusive.

7.2 Perspectives

These works have opened up some new perspectives, both in the industrial applications and in
the applied mathematics field. Here are some of the most promising ones.

7.2.1 Industrial applications

A methodology based on the model of margin In some industrial contexts, an important
stake is to have a unified practice on the management of uncertainty. Identifying first, for each
stakeholder, what is their model of margin, their way to quantify margin and the uncertainty
they cover would help to have a picture of the current practices. A lot of margin quantification
are surely implicit and an interviewing phase would be required to identify them.

Then, prescribing some ways to quantify margins, by telling which uncertainty to cover by
which mean would provide some guidance. A particular attention should be taken on quantifying
margins together (Section 5.3.3), in order to avoid unrealistic worst-cases.

An industrial application of margin sensitivity analysis This framework is ready for
real-life industrial application at a larger scale. This would be done by choosing some reference
cost/performance, computing their related induced function (Section 5.1), and decomposing them
with respect to the demanded margins (Section 5.2.1). The real values of the demanded margins
do not need to be actually known precisely; even an order of magnitude of where the margins
have been taken and for which reason can be useful to identify the greatest contributors.

The “allocated” margin, the other side of the demanded margin In our works, we
focused on the stakeholders for which the margin is a constraint. In practice, it is represented
by the demanded margin operator, that expands the forbidden set

dmM,m(F) = {u ∈ C| emM(u,F) < m} (7.1)

and thus reduces the set of possible designs A. Even if demanded margins are often only a
constraint on the global design (e.g. when they cover uncertainty that are external to the design
process) they may have a positive impact, when they are taken to cover an uncertainty on a
possible choice in the future. In that case, a demanded margin taken on a variable, can be seen
as a room for manoeuvre, a freedom of choice, that can be “consumed” by the same or another
stakeholder. We can extend the model of margin by distinguishing the two notions:

• The “demanded” margin, that imposes additional constraint on the design for a given
stakeholder.

• The “allocated” margin, that extends the set of possible designs and that consumes some
specific demanded margins.

The allocated margin would typically be built with a symmetric definition to Equation 7.1,
that reduces the forbidden set instead of increasing it. The sensitivity indices could be
similarly defined on the induced cost/gain in performance, to measure the positive impact
of this allocation.
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This would permit to model more design scenarios, with stakeholders having demanded margins
on some variables, and allocated margins on other. This model could possibly formalize the
problem of “margin negotiation”, for which each stakeholder needs an allocated margin on a
demanded margin shared with the others (for instance, when two engineering disciplines need to
share a common budget).

7.2.2 Applied mathematics

We formulate here theoretical questions on the model of margin as a mathematical tool. We are
confident on the fact that some of them could be answered by linking them to the relevant result
from the literature. However, answering others might lead to original results.

The commutation of the margin operators To ensure that, for two or more models of
margin, the order in which the demanded margins are taken is not important, one must ensure
that the margin operators commute. Let M1 and M2 be two model of margin on the same
problem description, one must ensure that

∀F ⊂F,∀(m1,m2) ∈ R∗2+ , dmM1,m1
(dmM2,m2

(F)) = dmM2,m2
(dmM1,m1

(F)),

for a family of failure set F ⊂ P(C). In Section 8.2, we show some cases under which the
equality does not hold and we precise a sufficient condition in which they actually commute.
Finding more relevant sufficient conditions for the commutations would permit to simplify the
computations.

Optimal global decomposition In order to define the sensitivity indices of an induced func-
tion indF with respect to the demanded margins m1, . . . ,mn (Section 5.2.3), one needs first to
choose a margin reduction path s = (s1(t), . . . , sn(t)) (Definition 5.2.4), that is somewhat arbi-
trary. Now, let us assume that, for each demanded margin mi, one knows the cost of reducing
mi to mi −∆i, denoted by

di(mi −∆i), mi −∆i ∈ [0,mi].

For instance, in the case of a demanded margin due to statistical uncertainty, the margin is
mi = q1−ασi/

√
ni with ni the number of observations. If one needs to reduce the margin from

mi to mi −∆i, then the number of sample ni should be greater than (q1−ασi/(mi −∆i))
2. By

denoting ηi the cost of obtaining one more sample, the reduction cost is

di(mi −∆i) = ηidq2
1−ασ

2
i (1/(mi −∆i)

2 − 1/m2
i )e.

When such a cost can be defined for all the demanded margin, a natural choice of path would be
the path that reduces the most the induced function, under constraints of budget. Let us denote
s∗ such a path, it would verify

indF(s∗1(t), . . . , s∗n(t)) = inf
s∈S

indF(s1(t), . . . , sn(t))

d1(s1(t)) + . . .+ dn(sn(t)) ≤ d1(s∗1(t)) + . . .+ dn(s∗n(t))

with S the set of the margin reduction paths. Under suitable assumption, this path should be
unique up to a reparametrization. Thus, there would be an unique global decomposition, along
the most efficient path to reducing the margin. Computing such an index would surely be of
interest to show which margin should be reduced in priority.
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Worst and best global sensitivity indices Another way to get rid of the arbitrariness of
the choice of the path of s in the definition of the sensitivity indices

Ssi =

∫ 1

0
s′i(t)

∂indF

∂mi
(s1(t), . . . , sn(t))dt

would be to compute them, for the greatest and smallest bound

S+
i = sup

s∈S

∫ 1

0
s′i(t)

∂indF

∂mi
(s1(t), . . . , sn(t))dt and S−i = inf

s∈S

∫ 1

0
s′i(t)

∂indF

∂mi
(s1(t), . . . , sn(t))dt

for any margin reduction path. If they are close, mi would contribute by the same amount
for any reduction path. For instance, if indF(m1, . . . ,mn) writes under the form f(mi) +
g(m1, . . . ,mi−1,mi+1, . . . ,mn), then S+

i = S−i = f(mi)− f(0). If they are far from each other,
it would mean that the impact of mi would greatly vary with respect to the reduction of the
other demanded margins. Developing some numerical methods to compute them would provide
more tools for margin sensitivity analysis.

Margin propagation and propagation of the decomposition One of the purposes of the
definition of the induced margin in Section 5.1, is the ability to model the fact that demanded
margins m1, . . . ,mn on some variables can lead to an induced margin indM on another variable.
In a multidisciplinary context, the latter variable can be transmitted to other disciplines. In that
case, one could morally interpret the value of the induced margin indM as a demanded margin
on another problem description; the margin is propagated.

A design process could then be described as a succession of stakeholders that have some input
demanded margins and provide some output variables with induced margins, that are themselves
some input demanded margins for other stakeholders. The decomposition of the variables could
also be transmitted in that case. Defining mathematically the propagation of the margin and the
propagation of the decomposition would have some application in a multidisciplinary context.

Numerical ways to compute effective margins and forbidden sets with margins This
thesis did not focus on the algorithms to compute effective margins (Definition 4.2.4) and to
numerically represent forbidden sets with demanded margins (Section 4.2.8). Linking their the-
oretical formulation to some classic algorithms from the numerical literature (Newton’s zero
method, convex optimization...) would be a path of improvement for the effectiveness of the
framework. It would permit for instance to efficiently compute induced costs and induced mar-
gins.

A rigorous principle for sequential quantification vs mutual quantification So far, the
benefits of the mutual quantification with respect to a sequential quantification is stated as a
principle in Section 5.3.3, based on an intuition and some observations. An interesting question
to investigate is the possibility to add more rigor into it and to find the right set of assumptions
that both models engineering practices and permits to demonstrate such a result.

Estimating the gain in mutual quantification The margin decompositions that we proposed
use a sensitivity index for each margin. In the spirit they are crafted to identify which reducible
margin should be decreased first.

However, in Section 5.3.3 we have put in light the fact that substantial gains might be obtained
by performing a mutual quantification instead of a sequential one. In order to guide this practice,
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some indices could provide an estimation of gain if two margins were to be mutually quantified
instead of sequentially quantified, in the spirit of the higher-order Sobol indices. It would help
to reduce the costs even when there are only irreducible margins.
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Chapter 8

More on models of margins

8.1 Models of margin on one coordinate

Defining a model of margin on one coordinate leave quite a broad range of freedom. Let us
denote by x this coordinate, the analyst must ask themselves:

• Does the margin have to be calculated only for increasing/decreasing values of x or does
it have to consider the evolution in both directions?

• Does the margin have to hold when the coordinates different from x remain the same or
does it need to hold for any change?

The answers to these questions depend on the aim of the modeling an by answering them, the
analyst chooses a particular shape for the probing set Gu. This section develops an example to
highlight the different modeling possibilities.

Example 8.1.1 (Electrical switch case).

Problem description The goal is to design the electrical circuit of Figure 8.1, for which two
variables E =

{
(Rd, Id) ∈ R+ × R

}
must be chosen, namely the resistance Rd and the intensity of

the current Id. The resistance R0 = 15Ω is fixed. The resistors at our disposal have resistances
Rd that range between 5Ω and 20 kΩ and the generators can provide an intensity Id between 0 A
and 25 A. The set of the problem constraints is then C =

[
5, 20.103

]
× [0, 25].

Failure set There is a failure in the system whenever the power dissipated by Joule heating PJ
is greater than a limit Pmax = 33 kW. In order to minimize the dissipation, the switch chooses
automatically the branch with the lowest resistance; the final resistance is then min (R0, Rd).
Using the Ohm’s law, we can deduce that the power actually dissipated is

PJ = min (R0, Rd) I2
d .

Another mode of failure happens when the intensity is lower than Imin = 10 A; the generator
cannot provide enough power to some critical devices (that are not represented here). The failure
set is then given by the expression

F =
{
Id ≥

√
Pmax/min (R0, Rd)

}
∪ {Id ≤ Imin} .

The acceptance set is shown by the white area in Figure 8.2.
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R0

Rd

Id

Figure 8.1: Diagram of the electrical switch model for which a margin on Id must be defined.

Figure 8.2: Acceptance set of the electrical switch model.

Computing a margin on Id The analyst chooses a design u = (Rd : 10Ω, Id : 11 A), plotted
in red in Figure 8.2 and would like to compute a margin on Id.

- If they know that Rd is chosen once for all and will never change and that the generator
may have some surges that only increase the current, they would compute by how much
Id could increase before reaching F. This type of margin is modeled by a unidirectional
model of margin in the positive direction (Figure 8.3), that is defined in Section 4.3.1. The
effective margin is equal to 8 A in that case.

- If instead, the generator has no surge but may provide less current than specified, they would
only investigate the possible decrease. This margin is also modeled with a unidirectional
model of margin, but in the negative direction. Its effective margin is equal to 1 A.

- When the analyst needs to consider the variation of Id, irrespective of an increase or de-
crease, they compute the minimum variation in both directions. This margin is modeled
with a bidirectional model of margin, defined in Section 4.3.2. The value of the effective
margin is 1 A.
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- Now, they assume that the value of Rd is 10Ω for now, but it could change in the future.
They see that, if they consider every possible change of Rd, the intensity can increase only
by 4 A before reaching F and decrease by −1 A. If they consider both directions at the time,
it can only change by 1 A before reaching F. These margins are modeled with Whole space
projected and Half-space projected models of margin (Figure 8.4), defined in Table 8.1.

The probing sets are summarized in Table 8.1.

With Example 8.1.1, we can see that even in a simple model with two variables, there are
various ways to compute a margin that lead to different values of effective margins. There is no
general criterion to determine which margin is better than the other; as they measure different
things and consider different scenarios, they have different uses.

The model of margin
measures →
when
↓

only increasing (resp. decreasing)
changes in Id

both increasing and decreasing changes
in Id

Rd keeps the same
value.

Directional model of margin Bidirectional model of margin

G(Rd,Id) : Rd : ×, Id :→ G(Rd,Id) : Rd : ×, Id :↔
(resp. G(Rd,Id) : Rd : ×, Id :← )

Rd can take any value. Half-space model of margin Whole space model of margin

G(Rd,Id) : Rd :↔, Id → G(Rd,Id) : Rd :↔ Id :↔
(resp. G(Rd,Id) : Rd :↔, Id ← )

Table 8.1: Four possible probing sets in Example 8.1.1, for a model of margin on Rd.

Figure 8.3: Unidirectional models of margin in Example 8.1.1. The effective margin in the increas-
ing direction is emMId,→

(u) = 7.5 A.
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Figure 8.4: Increasing half-space model of margin MId,◦+ in the Example 8.1.1. The effective
margin for the design u is emMId,◦+

(u,F) = 15− 11 = 4.

8.2 Commutation and non commutation of the demanded

margins operators

Let M1 and M2 be two models of margin defined on the same problem description. One can
wonder if taking first a margin m1 on M1 and then a margin m2 on M2 is equivalent to taking
first a margin m2 on M2 and then a margin m1 on M1. In general the answer is no and this
property can be formulated as the commutation of the demanded margin operators.

Definition 8.2.1 (Commutation of the demanded margin operators). Let M1 and M2 be two
models of margins, defined on the same problem description. We say that the demanded margin
operators commute for F ⊂ E when

∀(m1,m2) ∈ R∗2+ , dmM1,m1
(dmM2,m2

(F)) = dmM2,m2
(dmM1,m1

(F)).

In other terms, if we reduce the acceptable set by taking first the margin m1 then the margin
m2, it will results to the same set as if we took first the margin m2 and then the margin m1, for
any margin value.

We can easily exhibit a counterexample e.g. two demanded margin operators that does not
commute, for instance when one margin is “additive” and the other one “multiplicative”. Let
the problem description be E = R and C = [1,+∞) and let the first model of margin M1 be
defined by

G1,u = C

φ1,u(v) = v

for (u, v) ∈ C2. The second model of margin M2 is defined by

G2,u = C

φ2,u(v) =
v

u
.
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For a given failure set F, if emM1
(u) = m, then u is at least at a distance m of any point in

F. On the other hand, if emM2
(u) = m, then u is at least at a distance mu from any point in

F. Let us take for instance F = (10,+∞), and the demanded margins m1 = 3 and m2 = 1. We
have

dmM1,m1
(dmM2,m2

(F)) = dmM1,m1
((5,+∞)) = (2,+∞)

dmM2,m2
(dmM1,m1

(F)) = dmM2,m2
((7,+∞)) = (3.5,+∞).

Thus, even in one dimension, the demanded margin operator might not commute. There are
some case in which it is possible to demonstrate the commutation.

Proposition 8.2.2 (Commutation of directional models of margins). Let M1 and M2 be either
directional or bidirectional models of margins, let E = C = Rn and let A be a closed convex set.
Then the demanded margins operators of M1 and M2 commute.

Proof. Let us assume that M1 is an increasing unidirectional model of margin in the component
i. Then, when A is closed and convex, we can rewrite

emM1
(u) ≥ m1 ⇔ inf{λ ≥ 0| u+ λei ∈ F} ≥ m

⇔ ∀λ ∈ [0,m), u+ λei ∈ A

⇔ u ∈ A and u+m1ei ∈ A.

If M2 is also an increasing unidirectional model of margin in the component j, one can easily verify
that

dmM2,m2
(dmM1,m1

) = dmM2,m2
({v ∈ C| v ∈ A and v +m1ei ∈ A})

= {v ∈ C| v ∈ A, v +m1ei ∈ A, v +m2ej ∈ A and v +m1ei +m2ej ∈ A}.

The last expression being symmetric in i and j, we conclude that it is also equals to dmM1,m1
(dmM2,m2

),
proving the commutation of the operators.

This proof can be easily adapted to the negative directional model of margin replacing “u +
m1ei ∈ A” with “u − m1ei ∈ A” and to the bidirectional model of margin replacing “u ∈
A and u+m1ei ∈ A” with “u−m1ei ∈ A and u+m1ei ∈ A”.

However, when C is not the full space Rn, it is not clear when two directional models of
margin commute, even if we assume that A is closed and convex.
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Part II

Uncertainty propagation in
graphs of models
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Chapter 9

Introduction and motivation

9.1 Industrial motivation

Industrial complex systems Industrial complex systems1 are characterized by a large number
of components that are assembled together to satisfy a huge number of requirements. Examples
of such systems are cars, airplanes, space engines, nuclear reactors etc. One of the main sources
of challenges comes from the fact that “satisfactory components do not necessarily combine to
produce a satisfactory system” [102]. Thus, the behavior of the system as a whole must be
assessed, instead of characterizing only each component separately. In terms of organization, it
implies that a huge number of engineering disciplines must interact during the design process, to
optimize the design and validate the requirements. These interactions can be naturally modeled
with a graph G = (V,E), where the nodes V are the disciplines and the edges E are the
interactions (see Figure 9.1).

v3

v2

v1

v5

v4

v7

v6

Figure 9.1: Graph of interactions between disciplines. A vertex vi represents a discipline and an
edge represents an interaction.

Uncertainty quantification and sensitivity analysis Uncertainties arise at all steps and at
all scales during the design process of industrial complex systems. In this part, we assume that
each discipline v models the part of the system they are in charge with a function

Yv = fv(Xv),

1Industrial complex systems, are distinct from complex systems in physics, which have a different definition.
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such that Xv is a vector of random variables that models probabilistically the uncertainties. They
can then perform a uncertainty quantification and a sensitivity analysis phase, to characterize
the uncertainties on the important variables of the system.

Step (A):
Model the system

Yv = fv(Xv)

Step (B):
Model the

input uncertainties

Random variables
random vectors

Xv

Step (C):
Propagate the
uncertainty.

QI = E[φ(Yv)]
(Probability of failure

expectation, variance...)

Sensitivity indices

Step (C’):
Sensitivity analysis

Figure 9.2: ABCC’ methodology.

These practices are well identified in the industry [37] and are parts of the “ABCC’”methodology
(Figure 9.2).

(A) Provide a model of the system, through the mathematical relationship Yv = fv(Xv).

(B) Provide a probabilistic model for the input variables Xv.

(C) Propagate/quantify uncertainties (U.Q), i.e. compute either the law of the output or an
associated quantity of interest.

(C’) Perform a sensitivity analysis (S.A) to characterize which components amongXv = (Xv,1, . . . , Xv,n)
have the greatest influence on the variability of Y .

The same letter is used for (C) and (C’) to signify that in some contexts, only one of these
steps is performed. While Steps (A) and (B) depend inherently on the phenomenon modeled,
Steps (C) and (C’) are studied transversally and they are the source of a still growing academic
literature [54,66,100]. In U.Q, some of the works consists in constructing metamodels/response
surfaces/regression methods, with techniques such as Kriging, chaos polynomials, etc... In S.A,
a part of the research focuses on defining and computing indices that can rank each input by its
influence on the output.

Multidisciplinary interactions The industrial goal is to perform U.Q and S.A in a multidis-
ciplinary context. The model of the phenomenon now writes

Yv = fv(Xv,Θv).

We distinguish the input variables that

- comes from other disciplines, is denoted by Xv and is called external variable;
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- is modeled by the discipline, is denoted by Θv and is called internal variable.

The variables Xv and Θv are assumed independent. In this part, we denote the space in which
Yv takes its values by Fv, the space in which Xv takes its values by Ev and the space in which
Θv takes its values by Θv.

Let us denote the direct parents of v by I(v) = {u ∈V|(u, v) ∈E}. The external input
variable Xv = (Xu,v)u∈I(v) of v is composed by the output of the parents of v, up to a transfor-
mation Xu,v = gu,v(Yu), where gu,v is typically easy to compute. In this context, the interactions
between the disciplines are an exchange of variables and the graph from Figure 9.1, can be rep-
resented as a graph of computer codes in Figure 9.3. This graph shows that, for instance, Yv5 is
a function of Θv5 and the outputs of v3 and v2, through the transformations Xv3,v5 = gv3,v5(Yv3)
and Xv2,v5 = gv2,v5(Yv2).

Yv3Θv3

Yv2Θv2

Yv1Θv1

Yv5

Θv5

Yv4

Θv4

Yv7

Θv7

Yv6

Θv6

Xv2,v4

Xv1,v4

Xv3,v5

Xv2,v5

Xv5,v7

Xv5,v6

Xv4,v7

Xv4,v6

Figure 9.3: Graph of computer codes.

Disciplinary autonomy and decomposition-based approach for U.Q A natural way to
perform uncertainty quantification in the graph of Figure 9.3 would be to use methods based
on Monte Carlo sampling. In that case, each root v (i.e. the nodes with no parents), woud
generate n independent observations (Θv,i)i∈J1,nK, compute Yv,i = fv(Θv,i) and transmit the
sample (Yv,i)i∈J1,nK to its children. Then the child w would use the sample (gv,w(Yv,i))i∈J1,nK
along with n independent realizations of (Θw,i)i∈J1,nK, to compute Yw,i = fw(Xw,i,Θw,i), and
then transmit the sample to its children and so on. Finally, a Monte Carlo estimator could be
used to estimate any quantity of interest.

However, due to the complexity of the design process, the discipline might not have neither
the same schedule nor the same geographical location. Exchanging samples in an online fashion
would therefore be difficult in practice. For instance, the discipline v3 could start performing
its computation then stop, even before the discipline v6 and v7 are able to start their own
computations. This problematic is described in the multidisciplinary optimization literature,
under the name of “disciplinary autonomy” and a decomposition-based approach is required
[3]. In Uncertainty Quantification, it means that it is not possible to perform a direct Monte
Carlo approach. This part is dedicated to developing some decomposition-based approach for
uncertainty quantification.
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9.2 Sample reweighting

Our strategy to perform uncertainty quantification is based on a decomposition technique that
was first proposed under this form in 2012 by S. Amaral, D. Allaire and K. Willcox [5, 6]. This
algorithm has two steps.

Offline phase Each discipline v calls locally its own simulation code fv. The roots generate
a sample (fv(Θv))j∈J1,nvK and non roots generate a sample (Y ′v,j)j∈J1,nvK, with Y ′v,j =

fv(X ′v,j ,Θv,j) and the X ′v,j being drawn independently according to a chosen law µX′v .

Online phase At each node v, the sample (Y ′v,j)j∈J1,nvK is reweighted according to a weight-
ing method to approximate the true law of Yv, using the the already weighted samples from
its parents. No call of fv is allowed in this phase.

One can remark that in the offline phase, the order in which the fv are computed is not important,
and the discipline v does not need to wait for its parents I(v) to obtain some external inputs
samples. The law of µX′v is chosen locally by each node v and is called the proposal or synthetic
law. As it is very unlikely that the chosen law of µX′v is exactly the true law of the input µXv
and that all the Yv are independent, the online phase seeks to ponderate the synthetic outputs
to approximate the theoretical joint law of (Yv)v∈V. More precisely, for each multi-index

jV = (jv)v∈V, jv ∈ J1, nvK,

a weight wjV is computed, so that weighted probability measure approximates the joint law, i.e.

∑

jV

wjVδ(Y ′v,jv )v∈V 'L((Yv)v∈V).

The seminal article [5] uses a weighting method based on a estimation of an importance ratio
thanks to kernel density estimation. More generally, the field of density ratio estimation [109]
proposes a variety of methods to compute such weights, as long as the law of Xv is absolutely
continuous with respect to the law of X ′v.

In our context, however, Xv = (Xu,v)u∈I(v) is the output of the computer codes of the parents
of v. The discipline v might know the extent of the support of Xv, but in a multidimensional case,
this support might be a submanifold of the space. Knowing the shape of this submanifold would
require a lot of information on the input random variable, that v might not have in practice.
This entails the practical impossibility to construct X ′v to verify the absolute continuity. That is
why, we are looking for weighting methods that are consistent without the absolute continuity
assumption.

9.3 Outline of the part

Chapter 10 focuses on the theoretical study of a weighting method given by a Wasserstein
distance minimization and quite interestingly, its weights are expressed in terms of Nearest-
Neighbor. We obtain some consistency results in Section 10.3.1, along with some convergence
rates in Section 10.3.2. These results are used to compute the convergence rates in the estimation
of a quantity of interest in Section 10.4.

Chapter 11, is dedicated to the general weight propagation in graphs. In Section 11.2.1, we
define the family of the Weighted Linear Approximation Methods (WLAMs), that are a specific
family of weighting methods, for which we establish a local consistency criterion. Under the
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assumption of local consistency at each node, we demonstrate the convergence to the theoretical
law in the whole graph, in a certain sense, in Section 11.2.2.b. Finally, we define explicitly a
discrete Bayesian network that simplify numerical computations in Section 11.3 and this method
is applied to an industrial case in Section 11.4.
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Chapter 10

Reweighting samples under
covariate shift using a
Wasserstein distance criterion

This chapter presents the works contained in the preprint [97], currently in revision, for publi-
cation in the Electronic Journal of Statistics (EJS).

10.1 Introduction

10.1.1 Covariate shift in U.Q

A common task in Uncertainty Quantification (U.Q) for Computer Experiments [37, 49] is the
evaluation of a quantity of interest QI of the form

QI = E[φ(Y )],

where Y ∈ F = Re is a random vector which is typically the output of a numerical simulation
with uncertain inputs and parameters, and φ : Re → R is the observable. Generically, the random
vector Y writes

Y = f(X,Θ),

where X ∈ E = Rd represents the inputs of the numerical simulation, Θ is the set of parameters of
this simulation (which takes its values in some measurable space Θ), and f : Rd×Θ→ Re is the
numerical model, which is the function actually evaluated by the computer code. We denote by
µX and µΘ the respective probability distributions of X and Θ and assume that these variables
are independent. Virtually, if one is able to sample iid realizations (X1,Θ1), . . . , (Xn,Θn) from
µX ⊗ µΘ, then QI can be estimated by the direct Monte Carlo estimator

Q̂In :=
1

n

n∑

i=1

f(Xi,Θi).

The present work is motivated by the study of U.Q in complex engineering systems, where

• the input X can be itself the output of possibly several other “upstream” numerical simu-
lations,
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• each evaluation of the function f is costly.

When X is modeled by a deterministic variable, this problem can be treated by the so-called
Collaborative Optimization methods [25, 125] in Multidisciplinary Analysis and Optimization.
When X is a random variable, the implementation of the direct Monte Carlo method is impos-
sible because, in practice, the law µX is unknown and one cannot wait for a sample X1, . . . , Xn
to be generated by the upstream numerical simulations before starting running one’s own sim-
ulation. In contrast, we however assume that µΘ is known and that one is able to sample iid
realizations Θ1, . . . ,Θn from this distribution. This naturally leads one to generate a synthetic
sample X ′1, . . . , X

′
noff

according to some user-chosen probability measure µX′ on Rd, and evalu-
ate the numerical model f on the sample (X ′1,Θ1), . . . , (X ′noff

,Θnoff
) to obtain a corresponding

set of realizations Y ′1 , . . . , Y
′
noff

during some offline phase. Once actual realizations X1, . . . , Xnon

become available in a subsequent online phase, they have to be used in combination with the
synthetic sample to construct an estimator of QI, but evaluations of the numerical model f are
no longer allowed.

The assumption that the sequence Θ1, . . . ,Θnoff
be independent from X ′1, . . . , X

′
noff

then

ensures that for all x ∈ Rd,

Law(Y ′|X ′ = x) = Law(f(x,Θ)) = Law(Y |X = x).

This situation is known in the statistical learning literature as a covariate shift [25], [94, Sec-
tion 1.4].

10.1.2 Density ratio estimation

Inspired by the importance sampling technique, an intuitive approach to estimate QI from the
synthetic sample {(X ′j ,Θj ;Y ′j ), 1 ≤ j ≤ noff} consists in writing

QI =

∫

Rd×Θ
φ(f(x, θ))dµX(x)dµΘ(θ)

=

∫

Rd×Θ
φ(f(x′, θ))

dµX
dµX′

(x′)dµX′(x
′)dµΘ(θ),

so that assuming that µX is absolutely continuous with respect to µX′ , an unbiased and consistent
(in the noff → +∞ limit) estimator of QI is given by

1

noff

noff∑

j=1

ρX,X′(X
′
j)φ(Y ′j ), ρX,X′(x

′) :=
dµX
dµX′

(x′).

Of course, the Radon–Nikodym derivative ρX,X′ is actually not known in this situation, and it
has to be estimated in the online phase thanks to the sample X1, . . . , Xnon

. Observe that this
problem no longer involves neither Θ1, . . . ,Θnoff

nor Y ′1 , . . . , Y
′
noff

.
The theoretical issue of estimating the Radon–Nikodym derivative ρX,X′ from independent

samples Xnon
:= (X1, . . . , Xnon

) and X′noff
:= (X ′1, . . . , X

′
noff

) is known in the statistical learning
literature as density ratio estimation [109]. A rather generic procedure consists in fixing some
distance-like function d on the set of probability measures on Rd, writing

ρX,X′ = arg min
ρ

d (ρµX′ , µX) ,

and estimating ρX,X′ by

ρ̂Xnon ,X
′
noff

:= arg min
ρ

d
(
ρµ̂X′noff

, µ̂Xnon

)
,
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Figure 10.1: Example in which µX is not absolutely continuous with respect to µX′ but its support
is included in the support of µX′ .

with the empirical measures

µ̂Xnon
:=

1

non

non∑

i=1

δXi , µ̂X′noff
:=

1

noff

noff∑

j=1

δX′j .

Since the quantity which is minimized only depends on ρ through the measure ρµ̂X′noff
, and

thus through the values ρ(X ′1), . . . , ρ(X ′noff
), the actual output is a vector of weights ŵnoff

:=
(ŵ1, . . . , ŵnoff

) which approximate the values of ρX,X′ at the points X ′1, . . . , X
′
noff

, and therefore
yield the estimator

Q̂Inoff ,non
:=

1

noff

noff∑

j=1

ŵjφ(Y ′j ) (10.1)

of QI. This approach has been applied with several choices of distance-like functions d, such
as moment/kernel matching, L2 distance, Kullback–Leibler divergences; we refer to [109] for an
extensive review supplemented with a detailed list of references. Since the primary purpose of
these methods is the approximation of the density ratio ρX,X′ , the existence of this ratio (and
often the existence of positive densities for µX and µX′ with respect to the Lebesgue measure, at
least on some bounded subset of Rd) is almost always a necessary condition for their theoretical
analysis.

However, in the Computer Experiment context in which we are interested, this ratio need not
exist. Indeed, while some prior information on the law µX may be known, such as bounds on its
support, mean or dispersion, it may happen for example that some components of the vector X
be tied to each other by deterministic relations of the form h(X) = 0, so that the actual support
of µX might be contained in a low-dimensional manifold and difficult to determine precisely, see
Figure 10.1.

Therefore, designing a synthetic probability distribution µX′ with respect to which µX is
absolutely continuous may actually turn out to be impossible. Nevertheless, one may retain the
idea to approximate QI by an estimator of the form (10.1), where the weights (ŵ1, . . . , ŵnoff

)
only depend on the samples Xnon

and X′noff
, and are determined by minimizing some distance
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between the empirical measure µ̂Xnon
and weighted empirical measures of the form

µ̂
wnoff

X′noff

=
1

noff

noff∑

j=1

wjδX′j , wnoff
:= (w1, . . . , wnoff

).

This idea was for example applied in the U.Q context in [5–7]. Notice that for µ̂
wnoff

X′noff

to be a

probability measure, the weights (w1, . . . , wnoff
) must satisfy

∀j ∈ J1, noffK, wj ≥ 0, and

noff∑

j=1

wj = noff . (10.2)

In this chapter, we follow this approach and study the estimator Q̂Inoff ,non
of QI obtained

by minimizing the Wasserstein distance, whose definition is recalled below, between µ̂Xnon
and

µ̂
wnoff

X′noff

. The main reason for this choice is that, unlike Kullback–Leibler or more general φ-

divergences, or Lp distances, the Wasserstein distance between two probability measures on Rd
is not sensitive to whether these measures have densities with respect to the Lebesgue measure,
or are absolutely continuous with respect to one another. The optimal weights can be expressed
terms of Nearest Neighbor and our estimator can be interpreted as the Monte Carlo evaluation
of a Nearest Neighbor Regression under covariate shift, for which we bound the error explicitly.

10.1.3 Organization of the chapter

The Wasserstein distance is introduced in Section 10.2, as well as the explicit form of the optimal
weights and their reformulation in terms of Nearest Neighbor. Section 10.3 is devoted to the
analysis of the convergence of the weighted empirical measure to µX , in terms of Wasserstein
distance. The consistency is studied in Section 10.3.1 and we state our main result in Sec-
tion 10.3.2, namely the asymptotic rates of convergence. The link between these results and the
estimation of QI is discussed in Sections 10.4.1, 10.4.2 and 10.4.3, with the computation of rates
of convergence for Q̂Inoff ,non

. Some links with the Nearest Neighbor literature are highlighted in
Section 10.4.4. Numerical experiments are performed in Section 10.5, in which the impact of the
difference between µX and µX′ is investigated.

10.1.4 Notation

Throughout this chapter, we denote by N the set of the natural integers including zero and by
N∗ = N \ {0} the set of the positive integers. Given two integers n1 ≤ n2, the set of the integers
between n1 and n2 is written Jn1, n2K = {n1, . . . , n2}. For x ∈ R, dxe (resp. bxc) is the unique
integer verifying x ≤ dxe < x + 1 (resp. x − 1 < bxc ≤ x). For (x, y) ∈ R2, we use the join and
meet notation x ∧ y = min(x, y) and x ∨ y = max(x, y). The supremum norm of φ : Rd → R is
denoted by ‖φ‖∞ = supx∈Rd |φ(x)|.

10.2 Wasserstein distance minimization and Nearest Neigh-

bor Regression

10.2.1 Optimal weights for Wasserstein distances

We begin by recalling the definition of the Wasserstein distance. Throughout this article, we fix
a norm | · | on Rd, which need not be the Euclidean norm.
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Definition 10.2.1 (Wasserstein distance). Let P(Rd) be the set of probability measures on Rd
and, for any q ∈ [1,+∞), let

Pq(Rd) =

{
ν ∈P(Rd) :

∫

Rd
|x|qdν(x) < +∞

}
.

The Wasserstein distance of order q between µ and ν ∈Pq(Rd) is defined as

Wq(µ, ν) = inf

{∫

Rd×Rd
|x− x′|qdγ(x, x′) : γ ∈ Π(µ, ν)

}1/q

,

where Π(µ, ν) is the set of probability measures on Rd × Rd with marginals µ and ν.

We refer to [120, Section 6] for a general introduction to Wasserstein distances.
This definition allows for an explicit resolution of the minimization problem on wnoff

, which

relies on the notion of Nearest Neighbor. For x ∈ Rd and k ∈ J1, noffK, we denote by NN
(k)
X′noff

(x)

the k-th Nearest Neighbor (k-NN) of x among the sample X′noff
, that is to say the k-th closest

point to x among X ′1, . . . , X
′
noff

for the norm | · |. If there are several such points, we define

NN
(k)
X′noff

(x) to be the point X ′j with lowest index j. We omit the superscript notation (k) when

referring to the 1-NN, i.e.

NNX′noff
(x) = NN

(1)
X′noff

(x).

In the next statement, for any i ∈ J1, nonK and l ∈ J1, noffK, we denote by j
(l)
i the (lowest) index

j such that X ′j = NN
(l)
X′noff

(Xi).

Proposition 10.2.2 (Optimal vector of weights). Let the k-NN vector of weights w
(k)
noff

= (w
(k)
1 , . . . , w

(k)
noff

)
be defined by, for all j, k ∈ J1, noffK,

w
(k)
j :=

noff

knon

non∑

i=1

k∑

l=1

1{j=j(l)i }
. (10.3)

The vector w
(k)
noff

satisfies (10.2) and verifies, for all q ∈ [1,+∞),

W q
q

(
µ̂Xnon

, µ̂
w(k)
noff

X′noff

)
≤ 1

knon

non∑

i=1

k∑

l=1

∣∣∣Xi −NN
(l)
X′noff

(Xi)
∣∣∣
q
. (10.4)

For k = 1, the equality is reached

W q
q

(
µ̂Xnon

, µ̂
w(1)
noff

X′noff

)
=

1

non

non∑

i=1

∣∣∣Xi −NNX′noff
(Xi)

∣∣∣
q
, (10.5)

and the vector is optimal in the sense that for any wnoff
= (w1, . . . , wnoff

) which also satis-
fies (10.2), we have

Wq

(
µ̂Xnon

, µ̂
w(1)
noff

X′noff

)
≤Wq

(
µ̂Xnon

, µ̂
wnoff

X′noff

)
. (10.6)

In other words, for a given j ∈ J1, noffK, w(k)
j is proportional to the number of points Xi of

which X ′j is one of the first k Nearest Neighbors. We refer to [79] for a numerical illustration of

the use of the vector of weights w
(1)
noff

in the context of classification under covariate shift.
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Proof. For a general vector of weights wnoff
= (w1, . . . , wnoff

) which satisfies (10.2), the Wasser-

stein distance W q
q

(
µ̂Xnon

, µ̂
wnoff

X′noff

)
is the solution of the following optimal transport problem

inf
(γi,j)(i,j)∈J1,nonK×J1,noff K

non∑

i=1

noff∑

j=1

γi,j |Xi −X ′j |q,

∀i ∈ J1, nonK,
noff∑

j=1

γi,j =
1

non
(marginal condition on µ̂Xnon

),

∀j ∈ J1, noffK,
non∑

i=1

γi,j =
wj
noff

(marginal condition on µ̂
wnoff

X′noff

),

∀(i, j) ∈ J1, nonK× J1, noffK, γi,j ≥ 0,

(10.7)

where γi,j is the coefficient of the discrete transport plan between δXi and δX′j . For the k-NN

vector of weights w
(k)
noff

defined by (10.3), the transport plan

γ
(k)
i,j =

1

knon

k∑

l=1

1{j=j(l)i }

satisfies the two marginal conditions. Reordering the terms in the associated cost gives the upper
bound of Equation (10.4).

We now prove the equality (10.5) and optimality (10.6) of w
(1)
noff

at the same time. For a given

wnoff
, if we drop the marginal condition on µ̂

wnoff

X′noff

, the values of (γi,j)j∈J1,noffK for a given i do not

constrain the values of (γi′,j)j∈J1,noffK for another i′ 6= i. Thus, the optimal values can be found
by minimizing separately the following subproblem for i ∈ J1, nonK

inf
(γi,j)j∈J1,noff K

noff∑

j=1

γi,j |Xi −X ′j |q,

noff∑

j=1

γi,j =
1

non
,

∀j ∈ J1, noffK, γi,j ≥ 0,

the solution of which is trivially 1
non
|Xi −NNX′noff

(Xi)|q. As a consequence, we get the estimate

W q
q

(
µ̂Xnon

, µ̂
wnoff

X′noff

)
≥ 1

non

non∑

i=1

|Xi −NNX′noff
(Xi)|q (10.8)

for any wnoff
satisfying Equation (10.2). Taking wnoff

= w
(1)
noff

in the left-hand side and combining
this inequality with (10.4) for k = 1, we obtain both the equality (10.5) and optimality (10.6).

Remark 10.2.3. In order to alleviate notation, from now on we shall write µ̂
(k)
X′noff

= µ̂
w(k)
noff

X′noff

.
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10.2.2 NNR reformulation

With the choice of weights w
(k)
noff

introduced in Proposition 10.2.2, the resulting estimator of QI
writes

Q̂I
(k)

noff ,non
=

1

non

non∑

i=1

1

k

k∑

l=1

φ
(
Y ′
j
(l)
i

)
,

which makes the method very close to Nearest Neighbor Regression (NNR) [18, Chapter 9], since
it may be reformulated as the following two-step procedure:

1. define the regression function ψ of φ(Y ) on X by, for any x ∈ Rd,

ψ(x) := E [φ(Y )|X = x] = E [φ (f(x,Θ))] , (10.9)

and let the k-NNR estimator of ψ(x) be given by

ψ̂
(k)
noff

(x) :=
1

k

k∑

l=1

φ
(
Y ′j(l)(x)

)
, (10.10)

where j(l)(x) is the (lowest) index j such that X ′j = NN
(l)
X′noff

(x);

2. approximate the expectation

QI = E[φ(Y )] = E[ψ(X)]

by the empirical mean

1

non

non∑

i=1

ψ̂
(k)
noff

(Xi) = Q̂I
(k)

noff ,non
.

In this context, the peculiar fact that the law of the evaluation set X1, . . . , Xnon
differs from

the law of the training set X ′1, . . . , X
′
noff

is referred to as domain adaptation [94]. From a U.Q
point of view, the first step may be reinterpreted as the construction, based on the Nearest
Neighbor approach, of a metamodel for the regression function ψ.

10.3 Convergence analysis

As is evidenced by its reformulation in terms of NNR, the method does not actually depend on
the choice of the observable φ ◦ f , and its primary purpose is rather the direct estimation of the

law µX by the weighted empirical measure µ̂
(k)
X′noff

. Rewriting

QI = E[φ(Y )] =

∫

Rd
ψ(x)dµX(x),

we observe that estimates on the approximation of QI by Q̂I
(k)

noff ,non
which are uniform in φ can be

obtained from estimates on the approximation of µX by µ̂
(k)
X′noff

. Therefore, we turn our attention

to the convergence, when the sizes noff and non of the two samples go to ∞, of µ̂
(k)
X′noff

to µX .

We naturally work with Wasserstein distances.
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10.3.1 Consistency

Let us fix q ∈ [1,+∞) and use Jensen’s inequality to write

E
[
W q
q

(
µX , µ̂

(k)
X′noff

)]
≤ 2q−1

(
E
[
W q
q

(
µX , µ̂Xnon

)]
+ E

[
W q
q

(
µ̂Xnon

, µ̂
(k)
X′noff

)])
. (10.11)

As soon as there exists s > q such that E[|X|s] < +∞, the first term E[W q
q

(
µX , µ̂Xnon

)
] is known

to converge to 0 when non → +∞ and explicit rates are available [50], see also the discussion
in Subsection 10.4.1 below. We therefore focus on the second term and first observe that, by
Proposition 10.2.2, we have

E
[
W q
q

(
µ̂Xnon

, µ̂
(1)
X′noff

)]
= E

[
1

non

non∑

i=1

∣∣∣Xi −NNX′noff
(Xi)

∣∣∣
q
]

= E
[∣∣∣X −NNX′noff

(X)
∣∣∣
q]
,

(10.12)

for k = 1, and

E
[
W q
q

(
µ̂Xnon

, µ̂
(k)
X′noff

)]
≤ E

[
1

knon

non∑

i=1

k∑

l=1

∣∣∣Xi −NN
(l)
X′noff

(Xi)
∣∣∣
q
]

=
1

k

k∑

l=1

E
[∣∣∣X −NN

(l)
X′noff

(X)
∣∣∣
q]
,

(10.13)

for k ≥ 2. Observe that the right-hand side of both (10.12) and (10.13) no longer depend on non.
We now formulate two crucial assumptions and then state our first main result. For all

x ∈ Rd and r ≥ 0, we denote B(x, r) := {x′ ∈ Rd : |x− x′| ≤ r}, and recall that the support of a
probability measure ν ∈P(Rd) is defined by

supp(ν) :=
{
x ∈ Rd : ∀r > 0, ν(B(x, r)) > 0

}
.

Assumption 10.3.1 (Support condition). We have supp(µX) ⊂ supp(µX′).

Assumption 10.3.2 (Min-integrability). There exists an integer m0 ≥ 1 such that

E
[

min
j∈J1,m0K

|X ′j |
]
< +∞.

Theorem 10.3.3 (Consistency). Let Assumptions 10.3.1 and 10.3.2 hold. For all q ∈ [1,+∞)
such that E[|X|q] < +∞, and any sequence of positive integers (kn)n≥1 such that kn/n→ 0 when
n→∞, we have

lim
noff→+∞

E
[
W q
q

(
µ̂Xnon

, µ̂
(knoff

)

X′noff

)]
= 0,

uniformly in non.

Remark 10.3.4 (On Assumption 10.3.2). Assumption 10.3.2 is obviously satisfied if X ′ has
a finite first order moment, but also for some heavy-tailed distributions. It writes under the
equivalent form ∫ ∞

0
P(|X ′| > r)m0dr < +∞,

which may be easier to check. An example of a random variable which does not satisfy this
assumption, in dimension d = 1, is X ′ = exp(1/U) where U is a uniform random variable on
[0, 1].

Theorem 10.3.3 is proved in Subsection 10.3.3.
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10.3.2 Rates of convergence

The next step of our study consists in complementing Theorem 10.3.3 with a rate of convergence.
We first discuss the case k = 1. Following (10.12), we start by writing

E
[
W q
q

(
µ̂Xnon

, µ̂
(1)
X′noff

)]
= E

[∣∣∣X −NNX′noff
(X)

∣∣∣
q]

(10.14)

= E
[
E
[∣∣∣X −NNX′noff

(X)
∣∣∣
q∣∣∣X

]]
,

and observe that for any x ∈ supp(µX), |x− NNX′noff
(x)| = minj∈J1,noffK |x−X ′j |. If there is an

open set U of Rd containing x and such that µX′(· ∩ U) has a density pX′ with respect to the
Lebesgue measure which is continuous at x, then an elementary computation shows that, for all
r ≥ 0,

lim
noff→+∞

P
(
noff

1/d min
j∈J1,noffK

|x−X ′j | > r

)
= exp

(
−rdvdpX′(x)

)
,

where vd denotes the volume of the unit sphere of Rd for the norm | · |. If pX′(x) > 0 then
this indicates that the correct order of convergence in Theorem 10.3.3 should be noff

−q/d. If
pX′(x) = 0, or if the measure µX′(·∩U) is not absolutely continuous with respect to the Lebesgue
measure, it is easy to construct elementary examples yielding different rates of convergence; see
also [18, Chapter 2] for the singular case. We leave these peculiarities apart and work under the
following strengthening of the support condition of Assumption 10.3.1.

Assumption 10.3.5 (Strong support condition). There exists an open set U ⊂ Rd which contains
supp(µX) and such that:

(i) the measure µX′(· ∩ U) has a density pX′ with respect to the Lebesgue measure;

(ii) the density pX′ is continuous and positive on U ;

(iii) there exist κ ∈ (0, 1] and rκ > 0 such that, for any x ∈ U , for any r ∈ [0, rκ],

P
(
X ′ ∈ B(x, r)

)
≥ κpX′(x)vdr

d.

Obviously, Assumption 10.3.5 implies Assumption 10.3.1 because then supp(µX) ⊂ U ⊂
supp(µX′). Part (iii) of Assumption 10.3.5 was introduced in [52] in the context of Nearest
Neighbor Classification, and called Strong minimal mass assumption there.

Under Assumption 10.3.5, for all x ∈ supp(µX), a positive random variable Z such that
P(Z > r) = exp(−rdvdpX′(x)) has moments

E [Zq] =
Γ(1 + q/d)

(vdpX′(x))q/d
,

where Γ denotes Euler’s Gamma function. Therefore, as soon as the sequence

noff
q/d min

j∈J1,noffK

∣∣X −X ′j
∣∣q

is uniformly integrable, the normalized quantity

noff
q/dE

[
W q
q

(
µ̂Xnon

, µ̂
(1)
X′noff

)]
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converges to
Γ(1 + q/d)

v
q/d
d

E
[

1

pX′(X)q/d

]
,

when noff goes to infinity. This statement appears in the literature of stochastic quantization
of probability distributions [55, Theorem 9.1]. Here, we provide an explicit moment condition
ensuring uniform integrability.

Assumption 10.3.6 (Moments). In addition to Assumption 10.3.5, the condition

E
[

1 + |X|q
pX′(X)q/d

]
< +∞

holds.

Assumptions 10.3.5 and 10.3.6 are discussed in more detail below. We now state our second
main result.

Theorem 10.3.7 (Convergence rates for k = 1). Let Assumptions 10.3.2 and 10.3.5 hold, and
let q ∈ [1,+∞) be such that Assumption 10.3.6 holds. Then we have

lim
noff→+∞

noff
q/dE

[
W q
q

(
µ̂Xnon

, µ̂
(1)
X′noff

)]
=

Γ(1 + q/d)

v
q/d
d

E
[

1

pX′(X)q/d

]
.

Theorem 10.3.7 is proved in Subsection 10.3.3.

We now discuss the estimation of µ̂Xnon
by the weighted empirical measure µ̂

(k)
X′noff

for an

arbitrary k ∈ J1, noffK. By (10.8), we first observe that we always have

Wq

(
µ̂Xnon

, µ̂
(k)
X′noff

)
≥Wq

(
µ̂Xnon

, µ̂
(1)
X′noff

)
,

so that the estimation of µ̂Xnon
is deteriorated by increasing the number of neighbors. Still, in the

asymptotic regime of Theorem 10.3.3, a bound of the same order of magnitude as Theorem 10.3.7
may be obtained.

Corollary 10.3.8 (Convergence rates for k-NN). Under the assumptions of Theorem 10.3.7, for
any nondecreasing sequence of positive integers (kn)n≥1 such that kn/n → 0 when n → ∞, we
have

lim sup
noff→+∞

(
noff

knoff

)q/d
E
[
W q
q

(
µ̂Xnon

, µ̂
(knoff

)

X′noff

)]
≤ cd,q

Γ(1 + q/d)

v
q/d
d

E
[

1

pX′(X)q/d

]
,

with some constant cd,q > 1.

Corollary 10.3.8 is proved in Subsection 10.3.3, where the explicit expression of the constant
cd,q is also given.

Remark 10.3.9 (Optimal synthetic distribution). When X also has a densitity pX with respect

to the Lebesgue measure, an interesting fact is that the minimum of E
[
1/pX′(X)q/d

]
over the

probability measure pX′ is not reached when pX′ = pX . Instead, according to [126], the minimum
is attained when pX′(x) ∝ pX(x)d/(q+d).
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Let us conclude this subsection with some comments on Assumptions 10.3.5 and 10.3.6.
When X has a compact support, Assumptions 10.3.5 and 10.3.6 are verified as soon as µX′ has
a continuous density pX′ which is bounded from below and above on an open set containing
the support of µX . Indeed, in that case this open set can be taken as U and contains an ε-
neighborood of supp(µX) for some ε > 0. Then, Assumption 10.3.5(iii) is verified with rκ = ε
and κ = infx∈U pX′(x)/ supx∈U pX′(x).

Assumptions 10.3.5 and 10.3.6 also hold in some nontrivial noncompact cases. An example
of a sufficient condition for Assumption 10.3.5, which does not depend on µX , is given in the
next statement and is proved in Subsection 10.3.3.

Lemma 10.3.10 (Radial density - Sufficient condition for Assumption 10.3.5). Let ‖ ·‖ be a norm
on Rd, induced by an inner product and not necessarily identical to | · |. If µX′ has a density
pX′ with respect to the Lebesgue measure on Rd, which writes pX′(x) = h(‖x − x0‖) for some
x0 ∈ Rd and h : [0,+∞) → R continuous, positive and nonincreasing, then Assumption 10.3.5
holds with U = Rd.

We also refer to [52, Section 2.4] for a discussion of this assumption.
Assumption 10.3.6 gives a relationship between µX and pX′ to ensure the convergence. In

essence, it asserts that the tail of µX must be quite lightweight compared to the tail of pX′ . For
instance, if X and X ′ are centered Gaussian vectors with respective covariance σ2Id and σ′2Id,
then by Lemma 10.3.10, Assumption 10.3.5 is satisfied with U = Rd, and it is easy to check that
for q ∈ [1,+∞), Assumption 10.3.6 holds if and only if σ′2 > σ2q/d.

10.3.3 Proofs

In this subsection, we present the proofs of Theorems 10.3.3 and 10.3.7, Corollary 10.3.8 and
Lemma 10.3.10.

Proof of Theorem 10.3.3. We begin our proof with the constant case kn = 1 for all n and then
extend it to the general case. We recall that by (10.12),

E
[
W q
q

(
µ̂Xnon

, µ̂
(1)
X′noff

)]
= E

[∣∣∣X −NNX′noff
(X)

∣∣∣
q]

= E
[

min
j∈J1,noffK

|X −X ′j |q
]
.

By Assumption 10.3.1, X ∈ supp(µX′) almost surely, so that we deduce from Lemma 2.2
in [18, Chapter 2] that

min
j∈J1,noffK

|X −X ′j |q
a.s−→

noff→+∞
0.

Let m0 be the integer given by Assumption 10.3.2, we have

min
j∈J1,noffK

|X −X ′j |q ≤ 2q−1

(
|X|q + min

j∈J1,noffK
|X ′j |q

)
.

The random variable |X|q is integrable by assumption and for noff ≥ dqem0, the inequality

E
[

min
j∈J1,noffK

∣∣X ′j
∣∣q
]
≤ E

[
min

j∈J1,noffK

∣∣X ′j
∣∣dqe

]q/dqe

≤ E
[

min
j∈J1,m0K

∣∣X ′j
∣∣ min
j∈Jm0+1,2m0K

∣∣X ′j
∣∣ · · · min

j∈J(dqe−1)m0+1,dqem0K

∣∣X ′j
∣∣
]q/dqe

≤ E
[

min
j∈J1,m0K

∣∣X ′j
∣∣
]q
< +∞
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holds. Then by the dominated convergence theorem,

E
[

min
j=J1,noffK

|X −X ′j |q
]
−→

noff→+∞
0.

For the general case kn/n→ 0, we adapt directly the proof of [18, Theorem 2.4] to the context
µX 6= µX′ . Let us fix l ∈ J1, noff/2K and partition the set {X ′1, . . . , X ′noff

} into 2l sets of size
n1, . . . , n2l with, for all j ∈ J1, 2lK,

bnoff/2lc ≤ nj ≤ bnoff/2lc+ 1.

We denote by NN
(1,j)
X′noff

the 1-NN among the subset j. By the definition of NN
(l)
X′noff

, there are at

least l subsets j for which

|X −NN
(l)
X′noff

(X)| ≤ |X −NN
(1,j)
X′noff

(X)|,

therefore

|X −NN
(l)
X′noff

(X)|q ≤ 1

l

2l∑

j=1

|X −NN
(1,j)
X′noff

(X)|q,

and consequently

E
[∣∣∣X −NN

(l)
X′noff

(X)
∣∣∣
q]
≤ 2E

[∣∣∣X −NNX′bnoff/2lc
(X)

∣∣∣
q]
.

Finally, we deduce from (10.13) that, as soon as knoff
≤ noff/2,

E
[
W q
q

(
µ̂Xnon

, µ̂
(knoff

)

X′noff

)]
≤ 1

knoff

knoff∑

l=1

E
[∣∣∣X −NN

(l)
X′noff

(X)
∣∣∣
q]

≤ 2

knoff

knoff∑

l=1

E
[∣∣∣X −NNX′bnoff/2lc

(X)
∣∣∣
q]

≤ 2E
[∣∣∣X −NNX′bnoff/2knoff

c
(X)

∣∣∣
q]
,

(10.15)

which goes to 0 as a consequence of the first part of the proof when noff/2knoff
goes to infinity.

Proof of Theorem 10.3.7. By (10.12), we have

E
[
noff

q/dW q
q (µ̂Xnon

, µ̂
(1)
X′noff

)
]

= E
[
E
[
noff

q/d min
j∈J1,noffK

∣∣X −X ′j
∣∣q
∣∣∣∣X
]]

=

∫

Rd

∫ +∞

0
P(noff

q/d min
j∈J1,noffK

|x−X ′j |q > t)dtdµX(x)

=

∫

Rd

∫ +∞

0
P(noff

q/d|x−X ′|q > t)noff dtdµX(x),

(10.16)

by independence of the X ′j . The proof consists in computing the pointwise limit of P(noff
p/d|x−

Y |p > t)noff for (x, t) ∈ supp(µX)× R+ and then establishing the convergence of the integral via
the dominated convergence theorem.



10.3. CONVERGENCE ANALYSIS 141

Pointwise convergence. We have

P(noff
q/d|x−X ′|q > t)noff =

(
1− P(|x−X ′| ≤ t1/q/noff

1/d)
)noff

= exp
(
noff log

(
1− P(|x−X ′| ≤ t1/q/noff

1/d)
))

.

By Assumption 10.3.5, we have

P(|x−X ′| ≤ t1/q/noff
1/d) = pX′(x)vdt

d/q/noff + o(1/noff),

with vd the volume of the unit sphere. Thus

noff log
(

1− P(|x−X ′| ≤ t1/q/noff
1/d)

)
= −pX′(x)vdt

d/q + o(1),

and we conclude that

P(noff
q/d|x−X ′|q > t)noff −→

noff→+∞
exp

(
−pX′(x)vdt

d/q
)
.

Dominated convergence. Let rκ > 0 be given by Assumption 10.3.5. We split the integral in
the right-hand side of (10.16) and study each term separately

∫

Rd

∫ +∞

0
P(noff

q/d|x−X ′|q > t)noff dtdµX(x) = I + II

with

I :=

∫

Rd

∫ rqκnoff
q/d

0
P(|x−X ′| > t1/q/noff

1/d)noff dtdµX(x),

II :=

∫

Rd

∫ +∞

rqκnoff
q/d

P(|x−X ′| > t1/q/noff
1/d)noff dtdµX(x).

Convergence of I. For t ∈ [0, rqκnoff
q/d], we have t1/q/noff

1/d ≤ rκ and thus

P(|x−X ′| > t1/q/noff
1/d)noff =

(
1− P(|x−X ′| ≤ t1/q/noff

1/d)
)noff

≤
(

1− pX′(x)vdκt
d/q

noff

)noff

by Assumption 10.3.5.
Using the elementary inequality (1− a/n)n ≤ exp(−a) for a ≤ n, we can write

P(|x−X ′| > t1/q/noff
1/d)noff ≤ exp(−κvdpX′(x)td/q).

This bound does not depend on noff and the integral

∫

Rd

∫ +∞

0
exp

(
−κvdpX′(x)td/q

)
dtdµX(x) =

∫

Rd

Γ(1 + q/d)

(κvdpX′(x))q/d
dµX(x)

=
Γ(1 + q/d)

(κvd)q/d
E
[

1

pX′(X)q/d

]
,
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is finite by Assumption 10.3.6. We therefore deduce from the dominated convergence theorem that

I −→
noff→+∞

∫

Rd

∫ +∞

0
exp

(
−pX′(x)vdt

d/q
)

dtµX(dx) =
Γ(1 + q/d)

v
q/d
d

E
[

1

pX′(X)q/d

]
.

Convergence of II. Let noff ≥ 2(q + 1)m0. Using the change of variable rq = t/noff
q/d, we

have

II = q

∫

Rd

∫ +∞

rκ

noff
q/drq−1P(|x−X ′| > r)noff drdµX(x)

≤ q
∫

Rd

∫ +∞

rκ

Vnoff
(x, r)drdµX(x),

with

Vnoff
(x, r) := noff

q/dP(|x−X ′| > rκ)noff−(q+1)m0rq−1P(|x−X ′| > r)(q+1)m0 .

As P(|x−X ′| > rκ) < 1 for all x in U , by Assumption 10.3.5, Vnoff
(x, r) is pointwise convergent to

0 on the support of µX . We check that Vnoff
(x, r) is bounded from above by an integrable function

which does not depend on noff . Let us denote noff
′ = noff − (q + 1)m0 ≥ noff/2 and rewrite

noff
q/dP(|x−X ′| > rκ)noff−(q+1)m0 =

(
noff

noff
′

)q/d
noff
′q/dP(|x−X ′| > rκ)noff

′

≤ 2q/dnoff
′q/d (1− P(|x−X ′| ≤ rκ)

)noff
′

≤ 2q/dnoff
′q/d exp

(
−noff

′κpX′(x)vdr
d
κ

)
,

where we have used Assumption 10.3.5 and the elementary above inequality at the third line. We
deduce that

noff
q/dP(|x−X ′| > rκ)noff−(q+1)m0 ≤ C1

pX′(x)q/d
, C1 :=

2q/d

(κvdrdκ)q/d
sup
u≥0

(uq/de−u),

so that

Vnoff
(x, r) ≤ Ṽ (x, r) :=

C1

pX′(x)q/d
rq−1P(|x−X ′| > r)(q+1)m0 . (10.17)

To complete the proof, we verify that Ṽ (x, r) is integrable on U× [rκ,+∞). We first fix x ∈ Rd
and estimate the integral of Ṽ (x, r) in r. Using the fact that if |x −X ′| > r then |X ′| > r − |x|,
we first write

∫ +∞

rκ

rq−1P(|x−X ′| > r)(q+1)m0dr ≤
∫ +∞

0
rq−1P(|X ′| > r − |x|)(q+1)m0dr

=

∫ +∞

−|x|
(r + |x|)q−1P(|X ′| > r)(q+1)m0dr.

On the interval [−|x|, 0], we have

∫ 0

−|x|
(r + |x|)q−1P(|X ′| > r)(q+1)m0dr =

∫ 0

−|x|
(r + |x|)q−1dr =

|x|q
q
.
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On the interval [0,+∞), we first rewrite

∫ +∞

0
(r + |x|)q−1P(|X ′| > r)(q+1)m0dr =

∫ +∞

0
(r + |x|)q−1P

(
min

j∈J1,m0K
|X ′j | > r

)q+1

dr,

and recall from Assumption 10.3.2 that C2 := E[minj∈J1,m0K |X ′j |] < ∞. As a consequence, we
deduce from Markov’s inequality that the right-hand side in the previous equality is bounded from
above by ∫ |x|∨1

0
(r + |x|)q−1dr + Cq+1

2

∫ +∞

|x|∨1

(r + |x|)q−1

rq+1
dr.

If |x| ≤ 1 then this expression is bounded from above. If |x| > 1, then we have

∫ |x|

0
(r + |x|)q−1dr ≤ 2q−1|x|q

on the one hand, and

∫ +∞

|x|

(r + |x|)q−1

rq+1
dr =

1

|x|

∫ +∞

1

(u+ 1)q−1

uq+1
du,

which is bounded from above, on the other hand. Overall, we conclude that there exists a constant
C3 such that ∫ +∞

rκ

rq−1P(|x−X ′| > r)(q+1)m0dr ≤ C3(1 + |x|q). (10.18)

As a consequence, the combination of (10.17) and (10.18) yields

∫

Rd

∫ +∞

rκ

Ṽ (x, r)drdµX(x) ≤ C1C3E
[

1 + |X|q
pX′(X)q/d

]
,

which by Assumption 10.3.6 allows to apply the dominated convergence theorem to show that II
goes to 0, and thereby completes the proof.

Proof of Corollary 10.3.8. We start from the second line of Equation (10.15) and estimate its
right-hand side

E
[
W q
q (µ̂Xnon

, µ̂
(knoff

)

X′noff

)
]
≤ 2

knoff

knoff∑

l=1

E
[∣∣∣X −NNX′bnoff/2lc

(X)
∣∣∣
q]

=
2

knoff

knoff∑

l=1

(
2knoff

noff

l

knoff

noff

2l

)q/d
E
[∣∣∣X −NNX′bnoff/2lc

(X)
∣∣∣
q]

=

(
knoff

noff

)q/d
2q/d+1

knoff

knoff∑

l=1

(
l

knoff

)q/d
F
(noff

2l

)

with F (u) = uq/dE[|X − NNX′buc
(X)|q]. Let ε > 0. By Theorem 10.3.7, there exists uε ≥ 0 such

that, for all u ≥ uε, ∣∣∣∣∣F (u)− Γ(1 + q/d)

v
q/d
d

E
[

1

pX′(X)q/d

]∣∣∣∣∣ ≤ ε.
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We can remark that for noff ∈ N∗ and l ∈ J1, knoff
K,

noff

2l
≥ noff

2knoff

−−−−−−−→
noff→+∞

+∞.

Thus, if we take nε such that for all n ≥ nε,
⌊
n

2kn

⌋
≥ uε, we have

∣∣∣∣∣F
(noff

2l

)
− Γ(1 + q/d)

v
q/d
d

E
[

1

pX′(X)q/d

]∣∣∣∣∣ ≤ ε

for any noff ≥ nε and l ≤ knoff
. Consequently,

∣∣∣∣∣∣
1

knoff

knoff∑

l=1

(
l

knoff

)q/d(
F
(noff

2l

)
− Γ(1 + q/d)

v
q/d
d

E
[

1

pX′(X)q/d

])∣∣∣∣∣∣

≤ ε

∣∣∣∣∣∣
1

knoff

knoff∑

l=1

(
l

knoff

)q/d
∣∣∣∣∣∣

≤ ε,

lim
noff→+∞

2q/d+1

knoff

knoff∑

l=1

(
l

knoff

)q/d
F
(noff

2l

)
= cd,q

Γ(1 + q/d)

v
q/d
d

E
[

1

pX′(X)q/d

]
,

where

cd,q := lim
n→+∞

2q/d+1

kn

kn∑

l=1

(
l

kn

)q/d

=





2q/d+1

k

k∑

l=1

(
l

k

)q/d
if supn≥1 kn = k < +∞,

2q/d+1

∫ 1

0
uq/ddu =

2q/d+1

q/d+ 1
if supn≥1 kn = +∞,

because knoff
is nondecreasing. This concludes the proof.

Proof of Lemma 10.3.10. Obviously, it suffices to check that pX′ satisfies the point (iii) of As-
sumption 10.3.5. Let us denote by 〈·, ·〉 and B(x, r) respectively the inner product and the ball of
center x and radius r associated to ‖ · ‖. We set x0 = 0 without loss of generality. As h is positive
and nonincreasing, we may fix r0 > 0 and define

κ :=
h(r0)

h(0)
∈ (0, 1].

If ‖x‖ ≤ r0/2, then for all y ∈ B(0, r0/2), the monotonicity of h ensures that pX′(x + y) ≥
κpX′(x). By the equivalence of the norms, there exist C ≥ c > 0 such that for any x ∈ Rd and
any r ≥ 0, B(x, cr) ⊂ B(x, r) ⊂B(x,Cr). Thus

∀r ≤ r0/2c, P
(
X ′ ∈ B(x, r)

)
≥ P

(
X ′ ∈B(x, cr)

)
≥ (c/C)dvdκpX′(x)rd.
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If ‖x‖ > r0/2, let us introduce the half-cone

Cx =

{
x′ ∈ Rd : 〈x′ − x,−x〉 ≥ ‖x

′ − x‖‖x‖
2

}
,

and notice that for all r ≤ r0/2 and x′ ∈ Cx ∩B(x, r),

‖x′‖2 = ‖x‖2 + ‖x′ − x‖2 + 2〈x′ − x, x〉
≤ ‖x‖2 + ‖x′ − x‖2 − ‖x′ − x‖‖x‖
≤ ‖x‖2 + ‖x′ − x‖2 − ‖x′ − x‖2

= ‖x‖2.

Thus, for all x′ ∈ Cx ∩B(x, r), pX′(x
′) ≥ pX′(x). For a given r, the sets Cx ∩B(x, r) have the

same volume for all x, which we denote by αvdr
d for some α ∈ (0, 1/Cd). Finally, we have

∀r ≤ r0/2c, P(X ′ ∈ B(x, r)) ≥ P(X ′ ∈B(x, cr) ∩Cx) ≥ αcdvdpX′(x)rd.

If we take κ = (c/C)d min(αCd, κ) and rκ = r0/2c, we obtain the point (iii) of Assumption 10.3.5.

10.4 Discussion

Going back to our initial problem, we are now able to compute Lq rates of convergence of the
weighted estimator

Q̂I
(knoff

)

noff ,non
=

1

noff

noff∑

j=1

w
(knoff

)

j φ(Y
′

j )

to QI = E[φ(Y )]. First, in Section 10.4.1, we derive the convergence rates of µ̂
(knoff

)

X′noff

to µX

in terms of Wasserstein distance. Then in Section 10.4.2, we study the case in which Y =
f(X) and there is no external source of uncertainty, that we call the noiseless case, using the
terminology from statistical Machine Learning regression. The noisy case Y = f(X,Θ) is treated
in Section 10.4.3.

Finally, in Section 10.4.4, we reinterpret Theorem 10.3.7 under the prism of the Nearest
Neighbor literature.

10.4.1 Convergence to µX

Let us focus on the speed of convergence of µ̂
(knoff

)

X′noff

to µX . Provided that X has enough moments,

namely that there exists s > 2q such that E[|X|s] < +∞, we have from [50, Theorem 1]

E
[
W q
q

(
µX , µ̂Xnon

)]
=





O
(
non
−1/2

)
if q > d/2,

O
(
non
−1/2 log(1 + non)

)
if q = d/2,

O
(
non
−q/d

)
if q < d/2.

In dimension d = 1, we deduce from (10.11) that

E
[
W q
q

(
µX , µ̂

(knoff
)

X′noff

)]1/q
= O

((
1

non

)1/2q

+
knoff

noff

)



146 CHAPTER 10. REWEIGHTING SAMPLES

for any value of q ≥ 1. For the choice q = 1, both error terms have the same order of magnitude
if the sizes of the offline and online samples satisfy

non ∝
(
noff

knoff

)2

.

In dimension d ≥ 2, the minimal upper bound for E[W q
q (µX , µ̂Xnon

)]1/q is achieved as soon as
q ≤ d/2, in which case, up to the logarithmic correction,

E
[
W q
q

(
µX , µ̂

(knoff
)

X′noff

)]1/q
= O

((
1

non

)1/d

+

(
knoff

noff

)1/d
)
,

and both error terms have the same order of magnitude if the sizes of the offline and online
samples satisfy

non ∝
noff

knoff

.

10.4.2 Rate of convergence of Q̂I
(knoff

)

noff ,non
in the noiseless case

We assume that Y = f(X) and study the rate of convergence of Q̂I
(knoff

)

noff ,non
to QI. When φ ◦ f is

L-Lipschitz continuous, we can derive the result using the duality formula of the W1 Wasserstein
distance [120, Remark 6.5]

W1

(
µX , µ̂

(knoff
)

X′noff

)
= sup
|ϕ|Lip≤1

{∫

Rd
ϕ(x)dµX(x)−

∫

Rd
ϕ(x)dµ̂

(knoff
)

X′noff

(x)

}
(10.19)

and bound
∣∣∣∣QI− Q̂I

(knoff
)

noff ,non

∣∣∣∣
q

=

∣∣∣∣
∫

Rd
φ ◦ f(x)dµX(x)−

∫

Rd
φ ◦ f(x)dµ̂

(knoff
)

X′noff

(x)

∣∣∣∣
q

≤ LqW q
1

(
µX , µ̂

(knoff
)

X′noff

)

≤ LqW q
q

(
µX , µ̂

(knoff
)

X′noff

)
.

We can conclude from Section 10.4.1.

Proposition 10.4.1 (Rates of convergence in the noiseless case). Assume that:

(i) the function f does not depend on Θ,

(ii) the function φ ◦ f is globally Lipschitz continuous,

and let the assumptions of Corollary 10.3.8 hold. We have, as soon as q 6= d/2 and there exists
s > 2q such that E[|X|s] < +∞,

E
[∣∣∣∣QI− Q̂I

(knoff
)

noff ,non

∣∣∣∣
q]1/q

= O
(
non
−min(1/2q,1/d)

)
+ O

((
knoff

noff

)1/d
)
. (10.20)

There is no need for knoff
to go to infinity and thus knoff

= 1 seems a reasonable choice.
These computations can be adapted to cases other than φ ◦ f Lipschitz continuous. For

instance, if A ⊂ Re, φ(y) = 1{y∈A} and f is globally Lipschitz continuous, it is possible to use
the margin assumption of [116] to deduce theoretical rates of convergence in the estimation of
QI = P(Y ∈ A).
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10.4.3 Noisy case

We now study the convergence of Q̂I
(knoff

)

noff ,non
to QI when Y = f(X,Θ). A first striking result is

then that even under the assumptions of Theorem 10.3.3, the estimator Q̂I
(1)

noff ,non
need not be

consistent. Indeed, consider the case where X is actually deterministic and always equal to some
x0 ∈ Rd. Then we have

Q̂I
(1)

noff ,non
=

1

non

non∑

i=1

φ(Y ′
j
(1)
i

),

where j
(1)
i is the index of the closest X ′j to Xi. But since Xi = x0 for all i, all indices j

(1)
i are

equal to some j(1) and the estimator rewrites

Q̂I
(1)

noff ,non
= φ(Y ′j(1)) = φ(f(X ′j(1) ,Θj(1))).

While Assumption 10.3.1 ensures that X ′
j(1)

converges to x0 when noff → +∞, in general the

corresponding sequence of Θj(1) does not converge.
As is evidenced on this example, the presence of an atom in the law of X makes the estimator

Q̂I
(1)

noff ,non
depend on a single realization of Θ and therefore prevents this estimator to display

an averaging behavior with respect to the law of Θ. In Proposition 10.4.2, we clarify this point

by exhibiting a necessary and sufficient condition for the estimator Q̂I
(1)

noff ,non
to be consistent,

while in Proposition 10.4.4, we show that replacing Q̂I
(1)

noff ,non
with Q̂I

(knoff
)

noff ,non
with knoff

→ +∞
allows to recover such an averaging behavior and make the estimator consistent, even when µX
has atoms. In the latter case, we also provide rates of convergence.

We recall that ψ(x) = E[φ(f(x,Θ))] is defined in Equation (10.9). In the next statement, we
denote by AX the set of atoms of µX , that is to say the set of x ∈ Rd such that P(X = x) > 0,
and introduce the notation ϑ(x) := Var(φ(f(x,Θ))).

Proposition 10.4.2 (Consistency of the 1-NN in the noisy case). Assume that:

(i) the function φ is bounded,

(ii) the function ψ is globally Lipschitz continuous,

(iii) the function ϑ is continuous,

and let the assumptions of Theorem 10.3.3 hold. We have

E
[∣∣∣∣Q̂I

(1)

noff ,non
−QI

∣∣∣∣
]
−−−−−−−−−−→
noff ,non→+∞

0

if and only if,
∀x ∈ AX , Var(φ(f(x,Θ))) = 0.

In particular, under the above assumptions, if the law of X has no atom, i.e. AX = ∅, then

Q̂I
(1)

noff ,non
converges to QI.

Proof. Let us write

Q̂I
(1)

noff ,non
−QI =

(
Q̂I

(1)

noff ,non
− Q̃I

(1)

noff ,non

)
+

(
Q̃I

(1)

noff ,non
−QI

)
,
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with

Q̃I
(1)

noff ,non
=

1

noff

noff∑

j=1

w
(1)
j ψ(X ′j).

Using the Lipschitz continuity of ψ, the duality formula (10.19) and Theorem 10.3.3, we get that

Q̃I
(1)

noff ,non
−QI converges to 0 when noff , non → +∞, in L1. Therefore, Q̂I

(1)

noff ,non
−QI converges

to 0 if and only if Q̂I
(1)

noff ,non
− Q̃I

(1)

noff ,non
converges to 0.

Let us rewrite

Q̂I
(1)

noff ,non
− Q̃I

(1)

noff ,non
=

1

noff

noff∑

j=1

w
(1)
j

(
φ
((
X ′j ,Θj

))
− ψ

(
X ′j
))

=
1

non

non∑

i=1

(
φ
(
f
(
X ′
j
(1)
i

,Θ
j
(1)
i

))
− ψ

(
X ′
j
(1)
i

))
,

introduce the notation
A+
X := {x ∈ AX : ϑ(X) > 0},

and denote

e1 :=
1

non

non∑

i=1

(
φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′
j
(1)
i

)
)
1{Xi 6∈A+

X}
,

e2 :=
1

non

non∑

i=1

(
φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′
j
(1)
i

)
)
1{Xi∈A+

X}
.

In Step 1 below, we prove that
E [|e1|] −−−−−−−−−−→

non,noff→+∞
0,

demonstrating at the same time the direct implication of the convergence when A+
X = ∅. In

Step 2, we show that if A+
X 6= ∅ then E[|e2|] does not converge to 0, which implies that in this

case, Q̂I
(1)

noff ,non
− Q̃I

(1)

noff ,non
does not converge to 0 in L1.

In both steps, we shall use the following preliminary remark: given a measurable subset A

of Rd, taking the conditional expectation with respect to (Xnon
,X′noff

) it is easy to see that for
i ∈ J1, nonK,

E
[
(φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′
j
(1)
i

))1{Xi∈A}

]
= 0,

and for (i1, i2) ∈ J1, nonK2,

E
[
(φ(f(X ′

j
(1)
i1

,Θ
j
(1)
i1

))− ψ(X ′
j
(1)
i 1

))1{Xi1∈A}(φ(f(X ′
j
(1)
i2

,Θ
j
(1)
i2

))− ψ(X ′
j
(1)
i2

))1{Xi2∈A}

]

= E
[
1{j(1)i1

=j
(1)
i2
}ϑ(X ′

j
(1)
i1

)1{Xi1∈A,Xi2∈A}

]
.

Therefore,

E[|e1|2] =
1

non
2



non∑

i=1

E
[
ϑ(X ′

j
(1)
i

)1{Xi 6∈A+
X}

]
+
∑

i1 6=i2

E
[
1{j(1)i1

=j
(1)
i2
}ϑ(X ′

j
(1)
i1

)1{Xi1 6∈A
+
X ,Xi2 6∈A

+
X}

]


=
1

non
E
[
ϑ(X ′

j
(1)
1

)1{X1 6∈A+
X}

]
+
non − 1

non
E
[
1{j(1)1 =j

(1)
2 }

ϑ(X ′
j
(1)
1

)1{X1 6∈A+
X ,X2 6∈A+

X}

]
,
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and a similar expression holds for E[|e2|2].
Step 1. Thanks to the boundedness of φ, and thus of ϑ, it is immediate that 1

non
E[ϑ(X ′

j
(1)
1

)1{X1 6∈A+
X}

]

converges to 0 when non → +∞, uniformly in noff . Therefore, to show that E[|e1|2] converges to
0, it suffices to prove that

E
[
1{j(1)1 =j

(1)
2 }

ϑ(X ′
j
(1)
1

)1{X1 6∈A+
X ,X2 6∈A+

X}

]
−−−−−−−→
noff→+∞

0.

In this purpose, let us first write

E
[
1{j(1)1 =j

(1)
2 }

ϑ(X ′
j
(1)
1

)1{X1 6∈A+
X ,X2 6∈A+

X}

]
≤ E

[
1{NNX′noff

(X1)=NNX′noff
(X2)}ϑ(NNX′noff

(X1))1{X1 6∈A+
X}

]
,

and recall that, by Assumption 10.3.1 and Lemma 2.2 in [18, Chapter 2], NNX′noff
(X1) converges

to X1 and NNX′noff
(X2) converges to X2, almost surely. As a consequence, if X1 ∈ AX \ A+

X

then ϑ(X1) = 0 and by the continuity of ϑ and the boundedness of φ, the dominated convergence
theorem shows that

E
[
1{X1∈AX\A+

X}
1{NNX′noff

(X1)=NNX′noff
(X2)}ϑ(NNX′noff

(X1))

]
−−−−−−−→
noff→+∞

0.

On the other hand, ifX1 6∈ AX , then almost surelyX1 6= X2, and therefore 1{NNX′noff
(X1)=NNX′noff

(X2)}

converges to 0 almost surely. Using the boundedness of φ and the dominated convergence theorem
again, we deduce that

E
[
1{X1 6∈AX}1{NNX′noff

(X1)=NNX′noff
(X2)}ϑ(NNX′noff

(X1))

]
−−−−−−−→
noff→+∞

0,

which completes the proof of the fact that E[|e1|2], and thus E[|e1|], converge to 0.
Step 2. Let us now assume that A+

X is nonempty and show that e2 does not converge to 0 in
L1. We shall actually prove that e2 does not converge to 0 in L2: since e2 is bounded then this
prevents the convergence from occuring in L1. From the preliminary remark, we write

E[|e2|2] =
1

non
E
[
ϑ(X ′

j
(1)
1

)1{X1∈A+
X}

]
+
non − 1

non
E
[
1{j(1)1 =j

(1)
2 }

ϑ(X ′
j
(1)
1

)1{X1∈A+
X ,X2∈A+

X}

]
,

and we prove that

lim inf
noff→+∞

E
[
1{j(1)1 =j

(1)
2 }

ϑ(X ′
j
(1)
1

)1{X1∈A+
X ,X2∈A+

X}

]
> 0.

Let x ∈ A+
X . Obviously,

E
[
1{j(1)1 =j

(1)
2 }

ϑ(X ′
j
(1)
1

)1{X1∈A+
X ,X2∈A+

X}

]
≥ E

[
1{j(1)1 =j

(1)
2 }

ϑ(X ′
j
(1)
1

)1{X1=X2=x}

]

= E
[
ϑ(NNX′noff

(x))1{X1=X2=x}

]
.

By Assumption 10.3.1 and Lemma 2.2 in [18, Chapter 2] again, NNX′noff
(x) converges to x al-

most surely, therefore using the continuity and boundedness assumptions on ϑ, the dominated
convergence theorem shows that

E
[
ϑ(NNX′noff

(x))1{X1=X2=x}

]
−−−−−−−→
noff→+∞

ϑ(x)µX({x})2 > 0,

which completes the proof.
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We now study the estimator Q̂I
(knoff

)

noff ,non
and show that it is unconditionnally consistent as soon

as knoff
→ +∞. We provide L2 convergence rates in Proposition 10.4.4.

Proposition 10.4.3 (Consistency in the noisy case). Assume that

(i) the function φ is bounded,

(ii) the function ψ is globally Lipschitz continuous,

(iii) there exists ε > 0 such that E
[
|X|2+ε

]
< +∞,

then, as soon as knoff
goes to infinity with noff , we have

E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
−QI

∣∣∣∣
2
]1/2

−−−−−−−−−−→
non,noff→+∞

0.

Proof. We decompose the error as

Q̂I
(knoff

)

noff ,non
−QI =

(
Q̂I

(knoff
)

noff ,non
− Q̃I

(knoff
)

noff ,non

)
+

(
Q̃I

(knoff
)

noff ,non
−QI

)
,

with

Q̃I
(knoff

)

noff ,non
=

1

noff

noff∑

j=1

w
(knoff

)

j ψ(X ′j).

As ψ is globally Lipschitz continuous and does not depend on Θ, we have

E

[(
Q̃I

(knoff
)

noff ,non
−QI

)2
]1/2

≤ LE
[
W 2

2

(
µX , µ̂

(knoff
)

X′noff

)]1/2

≤ L
(

2q−1E
[
W 2

2

(
µX , µ̂Xnon

)]
+ 2q−1E

[
W 2

2 (µ̂Xnon
, µ̂

(knoff
)

X′noff

)
])1/2

by Jensen’s inequality, with L the Lipschitz constant of ψ. The second term E
[
W 2

2 (µ̂Xnon
, µ̂

(knoff
)

X′noff

)
]

goes to 0 by theorem Theorem 10.3.3. For the first term, let us remark that

(
W 2

2

(
µX , µ̂Xnon

))1+ε/2
= W 2+ε

2

(
µX , µ̂Xnon

)

≤W 2+ε
2+ε

(
µX , µ̂Xnon

)

≤ 22+ε−1

(
1

non

non∑

i=1

|Xi|2+ε + E
[
|X|2+ε

]
)
.

Thus, for any non ∈ N∗, we have

E
[(
W 2

2

(
µX , µ̂Xnon

))1+ε/2
]
≤ 22+εE[|X|2+ε] < +∞

and the sequenceW 2
2

(
µX , µ̂Xnon

)
is uniformly integrable [20, Section 5]. Therefore, sinceW 2

2

(
µX , µ̂Xnon

)

converges in probability to 0 [90], its expectation E
[
W 2

2

(
µX , µ̂Xnon

)]
also converges to 0. Let us
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consider the other part of the decomposition. We write the quadratic error

E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
− Q̃I

(knoff
)

noff ,non

∣∣∣∣
2
]

= E





 1

noff

noff∑

j=1

w
(knoff

)

j (ψ(X ′j)− φ(f(X ′j ,Θj)))




2



= E


 1

noff
2

noff∑

j=1

w
(knoff

)2

j

(
ψ(X ′j)− φ(f(X ′j ,Θj))

)2



+ E


noff − 1

noff
2

noff∑

j,l=1,j 6=l
w

(knoff
)

j w
(knoff

)

l

(
ψ(X ′j)− φ(f(X ′j ,Θj))

) (
ψ(X ′l)− φ(f(X ′l ,Θl))

)

 .

Using the fact that E[w
(knoff

)

j f(X ′j ,Θj)|Xnon
,X′noff

] = w
(knoff

)

j ψ(X ′j) by definition and the inde-
pendence of the Θj , the cross terms vanish. The remaining quadratic term is

E


 1

noff
2

noff∑

j=1

w
(knoff

)2

j

(
ψ(X ′j)− φ(f(X ′j ,Θj))

)2

 =

1

noff
2

noff∑

j=1

E
[
w

(knoff
)2

j (ψ(X ′j)− φ(f(X ′j ,Θ)))2
]

≤ 4

noff
2

noff∑

j=1

E
[(
w

(knoff
)

j

)2
]
‖φ‖2L∞ .

(10.21)

We remark that
noff∑

j=1

(
w

(knoff
)

j

)2
=

noff
2

non
2k2
noff

non∑

i1,i2=1

knoff∑

l1,l2=1

1{j(l1)
i1

=j
(l2)
i2
}

and that for some fixed i1,i2 and l1, there exists exactly one l2 ∈ J1, noffK such that j
(l1)
i1

= j
(l2)
i2

as (j
(l)
i2

)1≤l≤noff
is a permutation of J1, noffK. Therefore, there exists at most one l2 ∈ J1, knoff

K
verifying this property and, consequently,

noff∑

j=1

(
w

(knoff
)

j

)2
≤ noff

2

non
2k2
noff

non∑

i1,i2=1

knoff∑

l1=1

1 =
noff

2

knoff

.

We can then bound the second term

E





 1

noff

noff∑

j=1

w
(knoff

)

j (ψ(X ′j)− φ(f(X ′j ,Θj)))




2



1/2

≤ 2

k
1/2
noff

‖φ‖L∞

that converges to 0 when knoff
goes to infinity.

We now proceed to the derivation of the convergence rates.
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Proposition 10.4.4 (Rates of convergence in the noisy case). Assume that there exists s > 4
such that E

[
|X|s

]
< +∞ and the assumptions of Corollary 10.3.8 and Proposition 10.4.3 hold.

Then, the L2 rate of convergence is optimal when knoff
∼ noff

2/(d+2) and is, when d 6= 4,

E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
−QI

∣∣∣∣
2
]1/2

= O
(
non
−min(1/4,1/d)

)
+ O

(
noff
−1/(d+2)

)
.

When d = 4, the first term is replaced with non
−1/4 log(1 + non)1/2.

The loss of convergence order with respect to Proposition 10.4.1 is similar to the NNR context,
in which it deteriorates from the rate 1/d in the noiseless case to the rate of 1/(d + 2) in the
noisy case [18, Section 14.6 and Section 15.3].

Proof. With the additional assumption of Corollary 10.3.8, the proof of Proposition 10.4.3 can be
adapted by remarking that

E

[(
Q̃I

(knoff
)

noff ,non
−QI

)2
]1/2

= O
(
non
−min(1/4,1/d)

)
+ O

((
knoff

noff

)1/d
)
,

as a direct application of Proposition 10.4.1. Finally, the triangle inequality gives

E

[∣∣∣∣QI− Q̂I
(knoff

)

noff ,non

∣∣∣∣
2
]1/2

= O

((
1

non

)min(1/4,1/d)

+

(
knoff

noff

)1/d

+
1

k
1/2
noff

)
,

and the optimal rate of growth is reached at knoff
∼ noff

2/(d+2), leading to

E

[∣∣∣∣QI− Q̂I
(knoff

)

noff ,non

∣∣∣∣
2
]1/2

≤ O
(
non
−min(1/4,1/d) + noff

−1/(d+2)
)
.

10.4.4 Reformulation of our results in terms of Nearest Neighbors

In this section, we do not refer to an offline and an online phase. Instead, we consider a sample
(X ′j)j∈J1,nK of n iid observation of law µX′ and a random variable X ∼ µX independent of
the sample. We do not distinguish anymore φ ◦ f from f in the regression function defined in
Equation (10.9), that now writes

ψ(X) = E [f(X,Θ)|X]

and its Nearest Neighbor approximation of Equation (10.10) is

ψ̂
(k)
n (x) =

1

k

k∑

l=1

f(Xj(l)(x),Θj(l)(x)).

In Section 10.4.4.a, we study the case µX = µX′ and in Section 10.4.4.b the case µX 6= µX′ .
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10.4.4.a Convergence of the Nearest Neighbor distance for non compact support

By rewriting

E[W q
q (µ̂Xnon

, µ̂
(1)
X′noff

)] = E[|X −NNX′noff
(X)|q]

in Theorem 10.3.7, and choosing µX′ = µX , we get some asymptotic properties on the Nearest
Neighbor distance

E[|X −NNXn
(X)|q], (10.22)

which has some application in the theoretical study of the Nearest Neighbor regressors and
classifiers [18, Chapter 2]. The previous works on the topic focus mainly on the convergence
when q = 2 and assume that X has a bounded support [18,48,78,91].

Some works [26,70] consider some random variables X with unbounded support in the context
of the k-NN regression, i.e. they study the convergence of

E
[∣∣∣ψ(X)− ψ̂(k)

n (X)
∣∣∣
]
.

However, they make the assumption of a bounded regression function ψ whereas, in Equa-
tion (10.22), we would like to take ψ(X) = X and thus these results do not apply. A direct
corollary from Theorem 10.3.7 is

Corollary 10.4.5. Let X has a density pX for which the strong minimal mass assumption 10.3.5 (iii)
holds with U = Rd and ∫

Rd
(1 + xq)pX(x)1−q/ddx < +∞.

We have

E [|X −NNXn
(X)|q] ∼

n→+∞

Γ(1 + q/d)

v
q/d
d nq/d

∫

Rd
pX(x)1−q/ddx.

This extends the results of the literature by ensuring the asymptotic equivalence for some
random variables with unbounded support.

10.4.4.b L2 convergence rates of the generalization error under covariate shift

The case µX 6= µX′ is also of interest in the framework of the Nearest Neighbor regression. The
law of the training sample is µX′ and is different from the law of the test sample µX , leading to
the so-called covariate shift.

Theorem 10.4.6 (L2 generalization error of the k-NN regression under covariate shift). Let
µX (the law of the test sample) and µX′ (the law of the training sample) verify the assump-
tions of Theorem 10.3.7, f be Lipschitz continuous in x of constant L > 0 uniform in Θ, and

Var(f(x,Θ)) = E
[
|f(x,Θ)− E [f(x,Θ)]|2

]
≤ σ2 < +∞ for all x in the support of µX′ . When

kn ∼ n2/(d+2), we have

lim sup
n→+∞

n1/(2+d)E
[∣∣∣ψ(X)− ψ̂(kn)

n (X)
∣∣∣
2
]1/2

≤ σ + CE
[

1

pX′(X)2/d

]1/2

with C a positive constant.

We retrieve essentially the same orders of convergence as in the case without covariate shift.

The quantity E
[
1/pX′(X)2/d

]1/2
seems to be the relevant bound of the loss due to the use of

µX′ instead of µX and we expect that the greater this quantity is, the slower the convergence
will be.
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Proof. The proof is an adaptation of [18, Theorem 14.5], using elements of the proof the Theo-
rem 10.3.7 and Corollary 10.3.8. We can decompose the L2 error

E
[∣∣∣ψ(X)− ψ̂(k)

n (X)
∣∣∣
2
]1/2

≤ E
[∣∣∣ψ(X)− ψ̃(kn)

n (X)
∣∣∣
2
]1/2

+ E
[∣∣∣ψ̃(kn)

n (X)− ψ̂(kn)
n (X)

∣∣∣
2
]1/2

with ψ̃
(kn)
n (x) = 1

kn

∑kn
i=1 E[f(NN

(i)
X′n

(x),Θ)]. The first term can be bounded by

E
[∣∣∣ψ(X)− ψ̃(kn)

n (X)
∣∣∣
2
]1/2

≤ LE
[∣∣∣X −NN

(kn)
X′n

(X)
∣∣∣
2
]1/2

and then

lim sup
n→+∞

(
n

kn

)1/d

E
[∣∣∣ψ(X)− ψ̃(kn)

n (X)
∣∣∣
2
]1/2

≤ Lcd,2E
[

1

pX′(X)2/d

]1/2

by Corollary 10.3.8. The second term is bounded by

E
[∣∣∣ψ̃(kn)

n (X)− ψ̂(kn)
n (X)

∣∣∣
2
]1/2

=
1

kn
E

[
kn∑

i=1

(
f(NN

(i)
X′n

(X),Θli)− E[f(NN
(i)
X′n

(X),Θ)|X]
)2
]1/2

≤ 1

k
1/2
n

σ

The optimal rate is kn ∼ n2/(2+d), leading to

lim sup
n→+∞

n1/(2+d)E
[∣∣∣ψ(X)− ψ̂(kn)

n (X)
∣∣∣
2
]1/2

≤ σ + CE
[

1

pX′(X)2/d

]1/2

,

with C = Lcd,2

10.5 Numerical illustration

10.5.1 Influence of µX′ on the convergence of µ̂
(1)
X

We investigate how the relationship between µX and µX′ impacts the convergence of µ̂
(1)
X′noff

presented Section 10.4.1 . In this numerical experiment, we set the dimension d = 2, choose

X = (U,U), U ∼ U ([0, 1]) ,

and

X ′ ∼N

((
µ
µ

)
, σ2

(
1 scorr

scorr 1

))
,

with µ = 0.5, σ = 0.3 and various scorr in (−1, 1). Intuitively, the closer scorr is to 1, the closer
µX′ is to µX , as illustrated in Figure 10.2.

In order to quantify the quality of the reconstruction, we estimate the measure µ̂
(1)
X′noff

by

Gaussian kernel density estimation [119], i.e.

ρ̂(x1, x2) = Kh ∗ µ̂(1)
X′noff

(x1, x2) =
1

noff

noff∑

j=1

w
(1)
j Kh((x1, x2)−X ′j)
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Figure 10.2: Plot of the support of X and 1500 iid realizations of X ′ for different values of scorr.

with Kh(x1, x2) = 1
2πh2 exp(−(x2

1 +x2
2)/2h2). Then, we estimate the density of the first marginal

of the conditional distribution of ρ̂ on the support of X

ρ̂[0,1](x) =
ρ̂(x, x)

∫ 1
0 ρ̂(u, u)du

, x ∈ [0, 1]

and we compute the integrated L2 error of this estimation with respect to the theoretical measure
ρ[0,1](x) = 1, x ∈ [0, 1]

e2 =

(∫ 1

0

(
ρ̂[0,1](x)− ρ[0,1](x)

)2
dx

)1/2

=

(∫ 1

0

(
ρ̂[0,1](x)− 1

)2
dx

)1/2

.

As this quantity depends on Xnon
and X′noff

, we estimate its expectation E[e2].

We can see in Figure 10.3 that the greater scorr is, the better the reconstruction looks like.
This observation is confirmed in Figure 10.4, illustrating that E [e2] decreases when scorr in-
creases, i.e. when the µX′ gets closer to µX . The important amount error that is done for
negative values of scorr can be explained by Figures 10.2a and 10.3. Indeed, when scorr is low,
an observation of X ′ has a low probability to be drawn close to the segments [(0, 0), (0.25, 0.25)]
and [(0.75, 0.75), (1, 1)], and thus, some values are “missed”. This effect is mitigated for greater
values of scorr in which some observations are closer to the segments.
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Figure 10.3: Kernel density estimation ρ̂[0,1](x) for different values of scorr.
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Figure 10.4: Estimation of E[e2] with respect to scorr by a Monte Carlo estimatio of size 500 with
noff = non = 600.

10.5.2 Influence of µX′ on the convergence of Q̂I
(knoff

)

noff ,non

We now concentrate on the impact on the efficiency Q̂I
(knoff

)

noff ,non
. We keep the framework of

Section 10.5.1, and we try to estimate the quantity of interest

QI = E[φ(f(X,Θ))], f((x1, x2), θ) = sin(2πx1) sin(2πx2)(1 + θ)

with Θ ∼ U([−1, 1]) and φ(y) = y. The L2 error

E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
−QI

∣∣∣∣
2
]1/2

= E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
− 0.5

∣∣∣∣
2
]1/2

is computed by Monte Carlo estimation. As highlighted in Figure 10.5, the closeness of µX to
µX′ is an important factor for the efficiency of the estimator.

Figure 10.5: Estimation of the L2 error with respect to scorr for non = noff = 900 and knoff
= 4,

averaged on 2000 replications.



Chapter 11

Uncertainty quantification in
graphs of functions using
reweigthing methods

11.1 Introduction

This chapter is dedicated to the study of a method to propagate uncertainties in graphs of
functions/computer codes. This problematic, originally motivated by the need for simulation in
complex systems, has been the main focus of recent research works [4, 6, 57,82,84,101].

Our approach is based more specifically on sample reweighting and propagation of the weights
in a graph. It can be seen as a generalization of the method exposed in [6] and it keeps the benefit
of being compatible with a “disciplinary autonomy”, as exposed in Section 9.1.

From a technical point of view, we can summarize the approach with three “key ideas”.

1. A graph of composition of computer codes is in general a continuous Bayesian network,
provided that the graph is directed and acyclic. It can then be described only by the
local conditional dependencies given between the random variables at each nodes. These
dependencies are given by the equation Yv = f(Xv,Θv).

2. Nonparametric linear regressions and some supervised machine learning methods gives
naturally a weighting procedure, that we call WLAM. They can provide some approximate
conditional laws of Yv given Xv under the form of discrete conditional probability tables.

3. When we replace the true laws by the approximate laws at each node, the resulting Bayesian
network is now discrete. It is possible to compute the approximate full law of any subset
of variables using the already existing algorithms for discrete Bayesian network.

The steps 1 and 3 are relatively straightforward, once stated rigorously. One remaining funda-
mental challenge is to know when the WLAMs can approximate the true law and how good they
are at doing it, as this directly drives the performances of the algorithm.

Our works focus on providing a rigorous definition of a WLAM and a “local” consistency
criterion at a node that ensure the consistency of the “global” propagation in the graph, in a
weak sense. We also exhibit the general expression of the weights, along with a way to construct
explicitly the discrete Bayesian network of step 3.
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11.1.1 Graph of computer codes

In this section, we recall the definitions introduced in Chapter 9 for a graph of computer codes
and we introduce the required probabilistic framework. In our context, the design process of
complex industrial systems is naturally modeled by a directed graph structure G = (V,E).
More precisely, each vertex v ∈V is associated with a function

fv :

{
Ev ×Θv → Fv
(xv, θv) 7→ yv

and a pair of vertices (u, v) belongs to the set of edges E if the output yu is an input of v. Thus,
each edge (u, v) ∈E is associated with a function

gu,v :

{
Fu → Eu,v
yu 7→ xu,v

which represents the actual information contained in yu which is taken as an input for v, and
the vertices satisfy the compatibility condition

∀v ∈V, Ev =
∏

u∈I(v)

Eu,v,

where I(v) := {u ∈ V : (u, v) ∈ E} denotes the set of parents of v in G. When I(v) = ∅, we
call v a root of G.

In the sequel, we shall work under the crucial assumption that G is a Directed Acyclic Graph
(DAG), that is to say that is does not contain oriented cycles. This excludes the situation, called
strong coupling in the industrial context, where two numerical models take as input the output
of each other. This structural assumption induces a partial order on V which then allows to
define inductively, given (θv)v∈V:

• for any root v, the variable yv = fv(θv);

• for any edge (u, v) for which yu is defined, xu,v = gu,v(yu);

• for any vertex v such that the variables xu,v, u ∈ I(v) are defined, the variable yv =
fv(xv, θv), with xv = (xu,v)u∈I(v).

Thus, the vector yV := (yv)v∈V is well-defined as a (composite) function of θV := (θv)v∈V, which
we denote by

FV :

{ ∏
v∈V Θv → ∏

v∈V Fv,
θV 7→ yV.

These definitions are illustrated on Figure 11.1. We shall from now on assume that all sets
Ev, Θv and Fv are endowed with a σ-field (and in particular that the σ-field over Ev is the
product of the σ-fields over Eu,v, u ∈ I(v)), and that all functions fv, gu,v are measurable.
We define the canonical probability space (Ω,F,P) by Ω =

∏
v∈V Θv, F the associated product

σ-field, and P = ⊗v∈VµΘv
. On this canonical space, elements of Ω are generically denoted by

ΘV := (Θv)v∈V and, for any v ∈ V and (u, v) ∈ E, the random variables Xu,v, Xv, Yv are
defined according to the procedure above. Our purpose is then to estimate quantities of interest
related with the joint law of YV := (Yv)v∈V. Notice that for sensitivity analysis, quantities of
interest related with the joint law of {ΘV, YV} are also relevant.
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Figure 11.1: An example of a graph of numerical models with 7 vertices. The vertices v3, v2, v1

are roots, and the vertices v7, v6 are leaves.

11.1.2 Reweighting methods

Let Φ :
∏
v∈V Fv → R be a measurable (and, say, bounded) function. In order to estimate the

quantity of interest
QI := E [Φ (YV)] ,

an obvious direct Monte Carlo procedure consists in fixing n ≥ 1 and proceeding sequentially,
following the DAG structure of G, as follows:

• each root v generates n independent realisations Θv,1, . . . ,Θv,n according to µΘv
and com-

putes a sample Yv,1 = fv(Θv,1), . . . , Yv,n = fv(Θv,n) which we denote by Yv,n;

• for each v ∈ V such that the samples Yu,n, u ∈ I(v) have been computed, the vertex
v generates n independent realisations Θv,1, . . . ,Θv,n according to µΘv

and computes a
sample Yv,1 = fv(Xv,1,Θv,1), . . . , Yv,n = fv(Xv,n,Θv,n) which we denote by Yv,n, with
Xv,j = (gu,v(Yu,j))u∈I(v) for any j ∈ {1, . . . , n};

and QI is estimated by

Q̂I
MC

n :=
1

n

n∑

j=1

Φ
(
YV,j

)
, YV,j := (Yv,j)v∈V.

Since this estimator directly rewrites

Q̂I
MC

n =
1

n

n∑

j=1

Φ
(
FV(ΘV,j)

)
, ΘV,j := (Θv,j)v∈V,

and the vectors ΘV,j , j ∈ {1, . . . , n} are iid according to P, it is clear that it is (strongly)
consistent, in the sense that when n → +∞, it converges almost surely to QI. Notice that all
random variables involved in this procedure need not be defined on the canonical probability
space, but on the contrary it is more natural to define them on some experimental probability
space on which each vertex v ∈ V is assumed to be able to generate a sequence (Θv,j)j≥1 of
independent realisations of µΘv

.
This direct Monte Carlo procedure is generally difficult to implement in practice for large

networks because it requires each vertex v to wait for the results of all upstream codes before
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running its own code, and if the evaluation of fv is time consuming then the whole process
becomes intractable. In this chapter, we study a decomposition method, partially inspired by [4,
6], in which all vertices work in parallel with a synthetic sample X ′v,1, . . . , X

′
v,nv which is generated

locally, independently from the results of other codes, during some offline phase. We however
assume that during this offline phase, each vertex remains able to sample independent realisations
Θv,1, . . . ,Θv,nv from the ‘true’ distribution µΘv

. The offline phase results in a family of samples
Sv,nv = (X ′v,j , Y

′
v,j)1≤j≤nv , with Y ′v,j = fv(X ′j,v,Θj,v), which are sent to a simulation architect.

In an online phase, the simulation architect then has to construct an estimator of QI based only
on the collection of samples SV := (Sv,nv )v∈V.

11.1.3 Outline and main results

We address the estimation of QI in this offline/online context by looking for estimators of the
form

Q̂InV
=

∑

jV∈NV

wjV (SV)Φ
(
Y ′V,jV

)
, (11.1)

with

nV := (nv)v∈V, jV := (jv)v∈V, NV :=
∏

v∈V
{1, . . . , nv}, Y ′V,jV := (Y ′v,jv )v∈V. (11.2)

In this formula, (wjV (SV))jV∈NV
is some family of weights which somehow represent how likely

each observation Y ′V,jV should be under P. We shall proceed in two steps.
In Section 11.2, we assume that for each vertex v and any xv ∈ Ev, we are given a method to

compute an estimator of

`v(xv,dyv) := P(Yv ∈ dyv|Xv = xv) = µΘv
◦ fv(xv, ·)−1(dyv)

of the form
nv∑

j=1

Wv,j(Sv,nv , xv)δY ′v,j (dyv).

When v is a root, that is to say Ev = ∅, we adapt the notation above and assume that we are
given estimators of

`v(dyv) := P(Yv ∈ dyv) = µΘv
◦ f−1

v (dyv)

of the form
nv∑

j=1

Wv,jδY ′v,j (dyv).

We call such a method a Weighted Linear Approximation Method (WLAM). The main results of
Section 11.2 are the formula (11.9), which defines the global weight wjV (SV) as a function of the
local weights Wv,j(Sv,nv , xv) and Theorem 11.2.9 which shows the consistency of this formula.

In Section 11.2.1.c, we then construct a particular instance of a WLAM, based on the Nearest
Neighbor regression method studied in Chapter 10. Combining this construction with the results
from Theorem 11.2.9 finally yields a consistent estimator of QI.

Section 11.3 is dedicated to some numerical considerations. We construct an intermediary
discrete Bayesian network, that permits to simplify the computations of the weights wjV (SV)
using classic results from the Bayesian network literature. Finally, this procedure is applied in
Section 11.4 on an industrial multidisciplinary use case.
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11.2 Reweighting procedure

In this section, we provide a practical algorithm to compute a family of weights (wjV (SV))jV∈NV

which makes the estimator Q̂InV
defined in (11.1) consistent, in a certain sense, when the sizes

nv, v ∈ V of all samples go to +∞. The building brick of our method is the notion of WLAM
introduced in Subsection 11.2.1 on a single vertex, and then applied to the graph in Subsec-
tion 11.2.2.

11.2.1 Weighted Linear Approximation Method

In this subsection we work at the level of a single vertex and therefore remove the subscript v
from our notation. We thus let E, T and F be three measurable spaces, f : E × T → F be a
measurable function, and µΘ be a probability measure on T.

We assume that, on some canonical probability space (Ω,F,P), two independent random
variables X and Θ are defined, with respective distribution µX and µΘ, and let Y = f(X,Θ).
For any x ∈ E, the conditional distribution of Y given X = x, which is the pushforward measure
of µΘ by the function f(x, ·), is then denoted by `(x,dy) (and simply `(dy) if E = ∅).

We also assume that, on some experimental probability space (Ω∗,F∗,P∗), a sequence of
independent random variables (Θj)j≥1 distributed according to µΘ is defined.

Last, we denote by BF the space of real-valued, bounded and measurable functions on F.

11.2.1.a Definition and consistency

Definition 11.2.1 (WLAM). In the setting described above, an n-Weighted Linear Approxima-
tion Method (n-WLAM) is a pair (Wn,X

′
n) such that:

• X′n = (X ′j)1≤j≤n is a collection of E-valued random variables, defined on the probability
space (Ω∗,F∗,P∗), and independent from the sequence (Θj)j≥1;

• Wn = (Wj)1≤j≤n : (E×F)n×E→ [0,+∞)n is a function such that, for any sn ∈ (E×F)n

and x ∈ E,
n∑

j=1

Wj(sn, x) = 1.

In the particular case where E = ∅, an n-WLAM is simply a vector Wn = (Wj)1≤j≤n of
nonnegative numbers whose sum equals to 1.

An n-WLAM naturally induces a random Markov kernel ̂̀n(x,dy) from E to F, defined by

∀x ∈ E, ̂̀
n(x,dy) =

n∑

j=1

Wj(Sn, x)δY ′j (dy),

where the sample Sn is defined on the experimental probability space by Sn = (X ′j , Y
′
j )1≤j≤n,

with Y ′j = f(X ′j ,Θj).

Definition 11.2.2 (Consistency). Let B be a linear subspace of BF. A sequence of n-WLAMs,
n ≥ 1, is called B-consistent if, for any x ∈ E and φ ∈ B,

lim
n→+∞

∫

y∈F
φ(y)̂̀n(x, dy) =

∫

y∈F
φ(y)`(x,dy), in probability on (Ω∗,F∗,P∗).
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In the sequel we shall always implicitly consider sequences of n-WLAMs, to which we shall
simply refer as ‘WLAM’.

Definition 11.2.2 rewrites, for any φ ∈ B, for any x ∈ E,

lim
n→+∞

n∑

j=1

Wj(Sn, x)φ(Yj) = E[φ(Y )|X = x],

in probability. In other words, a WLAM can be reinterpreted as a linear nonparametric regression
estimator for E[φ(Y )|X = x] = E[φ(f(x,Θ))] [117, Section 1.5], which is consistent for any
function φ in the class B.

11.2.1.b Examples and comments

Example 11.2.3 (Case E = ∅). If E = ∅, the WLAM Wn defined by Wj = 1/n for any
j ∈ {1, . . . , n} is BF-consistent.

Example 11.2.4 (Discrete case). Assume that E is a discrete space and let µX′ be a probability
measure on E such that µX′(x) > 0 for any x ∈ E. Consider the WLAM composed by a sample
X′n of independent random variables X ′1, . . . , X

′
n distributed according to µX′ , and the function

Wn defined by

Wj(Sn, x) =





1

n
if Σ(x) = 0,

1{x=X′j}

Σ(x)
if Σ(x) > 0,

where Σ(x) :=
∑n
j=1 1{x=X′j}. This WLAM is BF-consistent.

Example 11.2.5 (Nadaraya–Watson WLAM). If E = Rd, a natural generalisation of Exam-
ple 11.2.4 would be to draw an iid synthetic sample X ′1, . . . , X

′
n according to some probability

measure µX′ , and set

Wj(Sn, x) =
δX′j (dx)

Σ(x)
, Σ(x) :=

n∑

j=1

δX′j (dx),

but of course this expression does not make sense. Smoothing the Dirac masses by convolution
with a kernel K > 0 and a bandwidth h > 0, we get

Wj(Sn, x) =
K(h−1(x−X ′j))

Σh(x)
, Σh(x) :=

n∑

j=1

K(h−1(x−X ′j)).

For any φ ∈ BF, the quantity

∫

y∈F
φ(y)̂̀n(x,dy) =

n∑

j=1

Wj(Sn, x)φ(Y ′j )

then turns out to be the Nadaraya–Watson estimator of the regression function E[φ(Y )|X =
x] [117, Section 1.5]. From standard results in kernel density estimation, it can be checked that
if µX′ has a positive and continuous density with respect to the Lebesgue measure on Rd, and the
bandwidth h = hn is chosen so that hn → 0, nhn → +∞, then this WLAM is B-consistent, for
any class B of measurable and bounded functions φ for which the mapping x 7→ E[φ(f(x,Θ))] is
continuous.
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A WLAM based on another popular nonparametric regression method, the Nearest Neighbor
method, will be discussed in detail in Section 11.2.1.c. In contrast, parametric regression meth-
ods, such as linear or logistic, may only be expected to yield consistent WLAMs for drastically
restricted classes of functions φ and f .

In the previous examples, the weights Wj(Sn, x) only depend on the sample Sn through X′n,
but there are nonparametric regression methods, such as regression trees [59], for which weights
also depend on (Y ′1 , . . . , Y

′
n). Last, let us also emphasise the fact that while in the examples

above, the design X′n is iid, our framework also allows to work with deterministic, user-chosen
designs, as long as they fulfill the consistency property of Definition 11.2.2.

11.2.1.c The Nearest Neighbor WLAM

From the results of Chapter 10, we naturally infer the construction of the following WLAM: X′n
is the synthetic sample X ′1, . . . , X

′
n, taken iid according to µX′ , and for any sn = (x′n,yn) and

x ∈ Rd, we let W
(k)
n = (W

(k)
j )1≤j≤n be defined by

W
(k)
j (sn, x) =

1

k

k∑

l=1

1{j=j(l)(x)},

with j(l)(x) the (lowest) index j such that x′j is the l-th closest point to x, among the sample

x′n. The consistency of this WLAM follows from Proposition 10.4.3 with µX = δx.

Proposition 11.2.6 (Consistency of the Nearest Neighbor WLAM). Assume that the synthetic
sample X′n is drawn according to a probability measure µX′ with support Rd and such that there
exists m0 ≥ 1 for which E[min1≤j≤m0

|X ′j |] < +∞. Then for any sequence of positive integers

(kn)n≥1 such that kn → +∞ and kn/n → 0, the WLAM (X′n,W
(kn)
n ) is B-consistent, for any

class B of measurable and bounded functions φ for which the mapping x 7→ E[φ(f(x,Θ))] is
Lipschitz continuous.

More explicitly, if the mapping x 7→ f(x, θ) is assumed to be Lipschitz continuous, uniformly

in θ, then under the assumptions of Proposition 11.2.6, the WLAM (X′n,W
(kn)
n ) is B-consistent

with B the class of bounded and Lipschitz continuous functions.

11.2.1.d Toward WLAM composition

As a consequence of Definition 11.2.2, if a WLAM (Wn,X
′
n)n≥1 is B-consistent, then for any

measurable and bounded function Φ : E× F→ R such that Φ(x, ·) ∈ B for all x ∈ E, we have

lim
n→+∞

∫

E

n∑

j=1

Wj(Sn, x)Φ(x, Y ′j )µX(dx) = E[Φ(X,Y )], (11.3)

in probability. This suggests that if the probability measure µX is approximated by a finite sum
of Dirac masses

µ̂X,m =

m∑

i=1

wiδX′i ,

then the joint law of (X,Y ) should be approximated by the probability measure

m∑

i=1

n∑

j=1

wiWj(Sn, X
′
i)δ(X′i,Y ′j ). (11.4)
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This remark will be generalised in the next subsection.

Remark 11.2.7 (Linearity of a WLAM). The linear nature of the WLAM is exhibited in Equa-
tion (11.3). Indeed, even though the mapping x 7→ Wj(Sn, x) is far from linear in general, we
can define the image operator G of a WLAM so that, for each measure ρ,

G(ρ) =

n∑

i=1

(∫

E
Wj(Sn, x)ρ(dx)

)
δY ′j .

This operator is linear on the vector space of the finite measures on E and verifies G(ρ)(F) = ρ(E).
In particular a probability measure on E is mapped to a probability measure on F.

11.2.2 Computing weights on the graph

In this subsection, we come back to the study of the graph of numerical models G and assume
that each vertex v ∈ V is provided with a consistent WLAM (Wv,nv ,X

′
v,nv ) defined on some

experimental probability space (Ω∗v,F
∗
v ,P∗v). We denote by Sv,nv = (X ′v,j , Yv,j)1≤j≤nv the

associated sample, defined on the product (Ω∗V,F
∗
V,P∗V) of all the experimental spaces.

Our purpose is now to describe an ‘online’ algorithm taking as an input the WLAMs of all
vertices and returning a family of weights (wjV (SV))jV∈NV

making the estimator Q̂InV
of QI

defined in (11.1) consistent.

11.2.2.a Markov property and factorisation formula

A leaf is a vertex v ∈ V which has no descendent, that is to say that there is no edge in E of
the form (v, w). Let us denote by L ⊂ V the set of leaves, and introduce the sub-σ-field of the
canonical probability space

F− := σ
(
(Θv)v∈V\L

)
,

which is generated by the family of random variables Θv which are not located on leaves. Clearly,
for any v ∈ L, the random variable Xv is F−-measurable, while Θv is independent from F−.
Therefore, since the random variables (Θv)v∈L are independent, the conditional distribution of
(Yv)v∈L given F− is the product measure1

∏

v∈L
`v(Xv,dyv),

where we recall that, for each v ∈L, Xv = (gu,v(Yu))u∈I(v). This fact can be seen as a Markov
property for the graph structure of G.

We deduce that the joint law µYV
(dyV) of the complete vector YV = (Yv)v∈V satisfies the

disintegration formula

µYV
(dyV) = µYV\L (dyV\L)

∏

v∈L
`v(xv,dyv), xv = (gu,v(yu))u∈I(v),

where µYV\L (dyV\L) refers to the law of the vector YV\L = (Yv)v∈V\L. Since G is a DAG with
a finite number of vertices, it is easily seen that L 6= ∅. Therefore, the disintegration formula
may be iterated to yield inductively

µYV
(dyV) =

∏

v∈R
`v(dyv)

∏

v∈V\R

`v(xv,dyv), xv = (gu,v(yu))u∈I(v), (11.5)

where R denotes the set of roots of V.
1In this expression, the terms corresponding to vertices v which are roots should write `v(dyv) rather than

`v(Xv , dyv). In order not to overload the presentation, we shall often keep this distinction implicit in the sequel.
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11.2.2.b Definition of weights and consistency theorem

We recall that, for each root v ∈R, the law `v(dyv) of Yv is approximated by

̂̀
v,nv (dyv) =

nv∑

j=1

Wv,jδY ′v,j (dyv),

and for any v ∈ V \R and x ∈ Ev, the conditional distribution `v(xv,dyv) of Yv given Xv = x
is approximated by

̂̀
v,nv (x,dyv) =

nv∑

j=1

Wv,j(Sv,nv , x)δY ′v,j (dyv). (11.6)

It is therefore natural to approximate the joint law µYV
(dyV), which satisfies the factorisation

formula (11.5), by the measure

µ̂YV,nV
(dyV) :=

∏

v∈R

̂̀
v,nv (dyv)

∏

v∈V\R

̂̀
v,nv (xv,dyv), xv = (gu,v(yu))u∈I(v). (11.7)

The latter rewrites

µ̂YV,nV
(dyV) =

∑

jV∈NV

wjV (SV)δY ′V,jV
, (11.8)

where we recall the notation from (11.2) and, for any jV ∈NV, we set

wjV (SV) :=
∏

v∈R
Wv,jv

∏

v∈V\R

Wv,jv (Sv,nv , (gu,v(Y ′u,ju))u∈I(v)). (11.9)

This definition generalises the derivation of (11.4).

We now study the consistency of the estimator Q̂InV
, defined in (11.1), with weights wjV (SV)

given by (11.9). We shall state a weak form of consistency, in which the limits nv → +∞,
v ∈ V must be taken in the reverse order induced by G, see Theorem 11.2.9 below. We believe
that stronger conditions on the model and the WLAMs may be imposed in order to make the
consistency hold in the joint limit (nv)v∈V → +∞, but stick to this simple statement as a

‘proof-of-concept’ theoretical justification of the approximation of QI by Q̂InV
.

From now on, we denote by N the cardinality of V.

Definition 11.2.8 (G-coherent enumeration of V). An enumeration v1, . . . , vN of V is G-
coherent if, for any pair of indices (k, l) such that k < l, there is no oriented path from vl
to vk in G.

Given such an enumeration, to any measurable and bounded function Φ :
∏
v∈V Fv → R we

associate the family of measurable and bounded functions Φl :
∏l
k=1 Fvk → R, l ∈ {0, . . . , N},

defined by ΦN := Φ and, for l ∈ {0, . . . , N − 1},

Φl
(
(yvk)1≤k≤l

)
:=

∫

yvl+1
∈Fvl+1

Φl+1

(
yv1 , . . . , yvl , yvl+1

)
`vl+1

(
xvl+1

,dyvl+1

)
,

with xvl+1
= (gu,vl+1

(yu))u∈I(vl+1), and `vl+1
(xvl+1

,dyvl+1
) replaced with `vl+1

(dyvl+1
) if vl+1 ∈

R. This expression is well defined because xvl+1
can only depend on the values of yv1 , . . . , yvl ;

besides, Φ0 = QI.
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Theorem 11.2.9 (G-consistency of Q̂InV
). Assume that for each v ∈V, the WLAM (Wv,nv ,X

′
v,nv )

is Bv-consistent, for some linear subspace Bv of the space of bounded and measurable functions
BFv on Fv. Let v1, . . . , vN be a G-coherent enumeration of V. Let Φ :

∏
v∈V Fv → R be a

measurable and bounded function, and assume that for any l ∈ {1, . . . , N}, for all (yvk)1≤k≤l−1,
the function yvl 7→ Φl(yv1 , . . . , yvl−1

, yvl) belongs to Bvl . Then we have

lim
nv1→+∞

· · · lim
nvN→+∞

Q̂InV
= QI,

in probability on (Ω∗,F∗,P∗).

Proof. Let us define the family of functions Φ̂l, l ∈ {0, . . . , N} by the same formulas as Φl but

replacing each `v with ̂̀v,nv , so that in particular Φ̂0 = Q̂InV
. It follows from a backward inductive

argument over l ∈ {0, . . . , N}, the consistency of each WLAM and the dominated convergence
theorem that for any (yvk)1≤k≤l,

lim
nvl+1

→+∞
· · · lim

nvN→+∞
Φ̂l
(
(yvk)1≤k≤l

)
= Φl

(
(yvk)1≤k≤l

)
,

in probability. For l = 0, this yields the claimed identity.

Let us assume that all roots v ∈R are provided with the WLAM described in Example 11.2.3.
On the one hand, if all spaces Ev, v ∈ V \ R are discrete, and provided with a WLAM as
described in Example 11.2.4, then the assumptions of Theorem 11.2.9 hold for any measurable
and bounded function Φ :

∏
v∈V Fv → R, without any more condition over the functions fv and

gu,v than mere measurability. On the other hand, if some spaces Ev, v ∈V\R are continuous and
provided with the Nadaraya–Watson WLAM from Example 11.2.5, then more intricate uniform
continuity conditions must be imposed over Φ and the functions fv and gu,v for the assumptions
of Theorem 11.2.9 to hold.

11.3 Algorithms for the numerical computation of the weights

So far, Theorem 11.2.9 has confirmed that the approximate law µ̂YV,nV
(dyV) converges towards

the true law µYV
(dyV), at least in a weak sense. However, from a computational point of view,

the formulæ (11.1) and (11.9) defining Q̂InV
are severely demanding, since in order to evaluate

the latter quantity, the simulation architect has to compute the
∏
v∈V nv weights wjV (SV). It

is therefore likely that the combinatorics of the problem become prohibitive quickly.
Nonetheless, thanks to the factorization of µ̂YV,nV

(dyV) in Equation (11.7), the computation
of the weights can be drastically reduced by the topology of G and the number of variables on
which Φ actually depends on. We illustrate this point in the extreme case where G is a line graph
in Section 11.3.1. We generalize this approach in Section 11.3.2 by introducing an intermediate
Bayesian network for the needs of the computations.

11.3.1 Line graphs

When G is a line graph (see Figure 11.2), each approximate Markov kernel ̂̀vi,nvi can be repre-
sented by a matrix, and the computation of the weights is a succession of matrix products.

Let us consider the case of the line graph V = {v1, . . . , vN}, E = {(vl, vl+1), 1 ≤ l ≤ N − 1},
and assume that the quantity of interest writes

QI = E[Φ(YvN )].



11.3. ALGORITHMS FOR THE NUMERICAL COMPUTATION OF THE WEIGHTS 167

YvN

ΘvN

Yv1

Θv1

Yv2

Θv2

· · ·

Figure 11.2: Line graph.

The estimator Q̂InV
then writes

Q̂InV
=

nvN∑

jvN=1

wvN ,jvN Φ(Y ′vN ,jvN
),

with weights given by
wvN ,jvN = (Wv1Wv2 · · ·WvN )jvN , (11.10)

where Wv1 is the (row) vector with coordinates (Wv1,jv1
)1≤jv1≤nv1 while, for l ≥ 2, Wvl is the

nvl−1
×nvl matrix with coordinates (Wvl,jvl

(Svl,nvl , gvl−1,vl(Yvl−1,jvl−1
)))1≤jvl−1

≤nvl−1
,1≤jvl≤nvl .

Computing the matrix product Wv1Wv2 · · ·WvN from the left to the right requires nv1nv2 +
nv2nv3 + · · · + nvN−1

nvN operations, which thus significantly reduces the computational cost of
the method, in comparison with the nv1nv2 . . . nvn weights to be computed in the formula (11.1).

11.3.2 General DAG with an intermediate Bayesian network

In the general case, such a marginalisation procedure can still be implemented, with the matrix
product appearing in (11.10) replaced by some tensor operations, but the topology of the graph
G may make the whole operation tedious to track. Fortunately, we can construct a discrete
Bayesian network whose law is exactly µ̂YV,nV

(dyV). Thus, we can readily employ the tools

from this field for the numerical computation of Q̂InV
.

From now on, we consider that the experimental samples Y ′V,jV are fixed for all jV ∈ NV

and we are looking to compute the weights associated to each realization, denoted by wjV (SV)
in Equation (11.9) .

11.3.2.a Definition of the intermediate random variables

In addition to the canonical and experimental probability spaces, we introduce a computational
probability space (Ω†,F†,P†), on which we define a family of discrete random variables (Y †v )v∈V
on the graph. For any v ∈V, the support of the associated random variable is given by

Y †v ∈ {Y ′v,1, . . . , Y ′v,nv},

with the (Yv,j)j∈J1,nvK being part of the sample Snv from Section 11.2.2. We define the condi-

tional law of Y †v with respect to its parents by

P†
(
Y †v = Y ′v,jv

∣∣∣Y †u = Y ′u,ju , u ∈ I(v)
)

= Wv,jv (Sv,nv , (gu,v(Y ′u,ju))u∈I(v)) (11.11)

with jw ∈ J1, nwK, for any w ∈ {v} ∪I(v). When v is a root, the formula naturally extends to

P†
(
Y †v = Y ′v,jv

)
= Wv,jv (11.12)
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by the definition of a WLAM in that case. When two collisions occur, i.e. if there exists two

j1 6= j2 such that Y ′v,j1 = Y ′v,j2 , we sum the weights so that P†
(
Y †v = Y ′v,j1 |. . .

)
= Wv,j1(. . .) +

Wv,j2(. . .), and we do the same for more than two collisions. Notice that it is the use of the
probability measure P† that permits to consider that the Y ′v,jv are fixed.

In the Bayesian network language, we have defined the conditional probability tables in Equa-
tions (11.11) and (11.12). It is a standard result in this field that the joint law of (Y †v )v∈V is
fully specified by these equations and that it writes

P†
(
Y †V = Y ′V,jV

)
=
∏

v∈R
P†
(
Y †v = Y ′v,jv

) ∏

v∈V\R

P†
(
Y †v = Y ′v,jv

∣∣∣Y †u = Y ′u,ju , u ∈ I(v)
)
,

(11.13)

with jV ∈ NV. In other terms, the law of the (Y †v )v∈V factors over G and (G, (Y †v )v∈V) is a
discrete Bayesian network [71].

11.3.2.b Equality of the joint laws

As a consequence of Equations (11.8),(11.9) and (11.13), the law of (Y †v )v∈V under P† is the
probability measure µ̂YV,nV

on
∏
v∈V Fv. Thus, computing a quantity of interest with respect

to the approximate law µ̂YV,nV
is actually equivalent to performing an inference [71] (with no

evidence) in the Bayesian network (G, (Y †v )v∈V). The numerical procedure can be decomposed
in two steps.

1. For each node v, compute the conditional probability tables from the WLAMs using Equa-
tions (11.11) and (11.12).

2. Feed these tables to a Bayesian network inference algorithm (e.g. variable elimination,
clique trees... [71, Chapter 10]) to propagate the law.

The inference algorithms from the literature typically take a subset of the nodes V′ ⊂ V,
called a request, as input and returns the joint probability table of the (Y †v )v∈V′ . This can
be used for uncertainty propagation, by remarking that the approximate quantity of interest is
computed by replacing YV with Y †V in the real quantity of interest

QI = E [Φ (YV)] ' E†
[
Φ
(
Y †V

)]
= Q̂InV

.

The joint probability table also permits to compute some variance-based sensitivity analysis
indices. Indeed, given two nodes u, v ∈V, we can approximate the quantity

Var(E[Yv|Yu]) = E[E[Yv|Yu]2]− E[Yv]2

' E†[E†[Y †v |Y †u ]2]− E†[Y †v ]2.

Using an inference algorithm, a request on V′ = {u, v} would permit to obtain the joint tables

(
P†
(
Y †u = Y ′u,ju , Y

†
v = Y ′v,jv

))
(ju,jv)∈J1,nuK×J1,nvK

so that we could compute the square of the expectation

E†[Y †v ]2 =




nv∑

jv=1

Y ′v,jvP
†
(
Y †v = Y ′v,jv

)



2
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and the expectaction of the square conditional expectation with the formula

E†[E†[Y †v |Y †u ]2] =

nu∑

ju=1




nv∑

jv=1

Y ′v,jv

P†
(
Y †u = Y ′u,ju , Y

†
v = Y ′v,jv

)

P†
(
Y †u = Y ′u,ju

)




2

P†
(
Y †u = Y ′u,ju

)
.

The marginals are obtained by summing the joint law over one coordinate

P†
(
Y †u = Y ′u,ju

)
=

nv∑

j=1

P†
(
Y †u = Y ′u,ju , Y

†
v = Y ′v,jv

)
.

The equivalence with the discrete Bayesian network also gives us information on the typical
complexity for an algorithm that propagates the weights. For a general graph, the time complex-
ity of the exact algorithms may be exponential in the number of nodes (they are NP-hard [31])
and polynomial with high degrees in the size of the sample nv. However, this is greatly influenced
by graphs topologies and computations are tractable for many of them, in practice. For instance,
in Section 11.3.1, in the case of a line graph, the complexity is linear in the number of nodes
and quadratic in the size of the sample nv. For polytrees (i.e. DAG without undirected cycles),
with a restricted number of parents at each nodes, these algorithms are also expected to behave
well [71, 9.B].

11.3.2.c Extension to some nonlinear weighting methods

In [7], a weighting method is proposed that is not linear in the sense of Remark 11.2.7. More
precisely, the weighting function does not depend only on the value of the parent variables but
also on their probability of occurence in a nonlinear way. The weighting function is now written
in a more general form

Wv,jv

(
Sv,nv , (gu,v(Yu,ju),P†(Y †u = Yu,ju))u∈I(v)

)
.

Assuming that G does not contain any directed cycle, the algorithms from Bayesian inference can
be adapted to handle such a situation. For each node with a nonlinear weighting method, the
full joint law of the parents must be computed before having to use the weight of the node in the
inference. In a variable elimination algorithm, this would restrict the choice of the elimination
ordering, for example.

11.4 Industrial application

The presented case is based on a model developed by the ROM team at IRT SystemX, as a
part of the Airbus TOICA project (Thermal Overall Integrated Conception of Aircraft). The
main motivation of the project is to validate the thermal constraints of an aircraft, coming
from a system-level simulation down to the equipment behaviour (i.e. the component scale, see
Figure 11.3). The purpose of these results is to be used in the design and certification phases.

In our application, we are interested in a simple model for a few components. The question is
how to perform a multidisciplinary uncertainty quantification to account for the errors on various
variables.
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Figure 11.3: Outline of the thermal case objectives (figure provided by Airbus).

11.4.1 Description of the case

The thermal state of the components is modeled by eleven physical variables

(T1, T2, Ti1 , T3, R12, H23, S3, R23, S1, H12, Pd)

and seven terms modeling the error

(ε1, εi1 , ε2, ε3, αi1 , α1, α2),

that all are real-valued random variables. These variables are linked together by the following
equations

R23 = fv1(S3, H23, ε3) =
1 + ε3
S3H23

, (11.14)

Pd = fv2(Pd) = Pd, (11.15)

R12 = fv3(S1, H12, ε1) =
1 + ε1
S1H12

, (11.16)

T2 = fv4(T3, Pd, R23, α2, ε2) = (1 + ε2)(T3 + PdR23) + α2, (11.17)

Ti1 = fv5(Pd, R12, εi1 , αi1) = (1 + εi1)PdR12 + αi1 , (11.18)

T1 = fv6(T2, Ti1, α1) = T2 + Ti1 + α1. (11.19)

that are represented in the graph of the numerical models in Figure 11.4. The law of the internal
variables is given in Table 11.1. In the context of this use case, the 10 disciplines have their own
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timeline and the computations of the fvi cannot be done in an online Monte-Carlo fashion. The
goal is to perform an uncertainty propagation to compute some quantity of interest on T1.

The disciplines v4, v5, v6 have a Nearest-Neighbor WLAM, with the synthetic samples of law
presented in Table 11.1. The disciplines v1, v2, v3 are root nodes, and are equipped with a “Monte
Carlo WLAM”, that assigns the weight 1/nv to each (i.i.d) realization of their sample. Each v
computes a sample of size nv = n and the law of T1 is reconstructed with a variable elimination
algorithm.

R12

v3

(S1, H12, ε1)

Pd

v2

(Pd)

R23

v1

(S3, H23, ε3)

Ti1

v5

(εi1 , αi1)

T2

v4

(T3, ε2, α2)

T1

v6

(α1)

Figure 11.4: Graph of the numerical models in the use case. The internal parameters, which can
be simulated locally by each nodes, are written in gray.

Symbol Probability law
S1 U(0.1, 0.2)

H12,H23 U(4, 6)

Pd U(50, 70)

S3 U(1, 2)

T3 log−N(20, 5, 0)

α1, α2, αi1 T(−2.5, 0, 2.4)

ε1, ε2, ε3, εi1 U(0, 1)

Table 11.1: True probability law
of each internal variables (they are
assumed independent).

Symbol Probability law Symbol Probability law

v4 v5

P ′d U(40, 90) R′12 N(1.55, 1)

R′23 U(0.05, 0.3) P ′d U(30, 85)

v6

T ′2 N(35, 20)

T ′i1 U(35, 180)

Table 11.2: Synthetic laws used by each nodes.

11.4.2 Results

The result of the sum-product algorithm is a weighting (T ′1,i, wi)i∈J1,nv1K associated to each
syntethic observation of T1. A first encouraging qualitative result is given in Figure 11.5. As
expected, the synthetic samples drawn by v1 are reweighted to approximate the theoretical law.
We verify that, for various quantities of interest, the root of the mean squared error vanishes, as
shown in Figure 11.6a, 11.6b and 11.6c. This gives some strong clues that these estimators are
consistent. In Figure 11.6d, the convergence of the non normalized Kolmogorov-Smirnov statistic
confirms that the approximation of the true law becomes more and more precise as the size of
the sample increases. This algorithm can thus be used in a context that requires disciplinary
autonomy.
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Figure 11.5: Comparison of the unweighted and weighted synthetic sample, to approximate the
theoretical P.D.F (n = 500). The theoretical P.D.F is reconstructed by a kernel densitiy estimation
based on a huge number of samples from a direct Monte-Carlo procedures.

11.5 Conclusion and perspectives

The uncertainty propagation in graphs using weighting methods being a rather new technique,
it carries a lot of open questions and interesting perspectives.

Measuring the efficency of WLAMs Even though we have a pointwise criterion to ensure
consistency, the rate of convergence depends on the weighting technique and Chapter 10 has
shown that it also depends on how far the synthetic and the true samples are from each other.
The numerical simulations show that this aspect is critical for the efficiency of the algorithm and
controlling the error at each node seems to be one of the main criteria for success.

Studying the speed of convergence for some classic linear nonparametric regression methods
to approximate the true law while learning on synthetic samples would be an interesting devel-
opment. Ideally, it would give an a posteriori estimator of the error at each node, in order to
identify if and where it is relevant to draw more samples. For instance, for a Nearest-Neighbor
WLAM, Corollary 10.3.8 tells us that estimating the quantity

(
knv
nv

)1/d

c1,q
Γ(1 + 1/d)

v
1/d
d

E
[
1/pX′v (Xv)1/d

]
Lip(fv)

would give some estimate on the L1 error due to the synthetic sample. The quantity Lip(fv) is
the Lipschitz constant of fv in Xv, uniformly in Θv.

Last, a very interesting theoretical work would be to derive some rates of convergence of the
approximate law toward the theoretical law in the whole graph, with respect to the characteristics
of each WLAM.
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Figure 11.6: Evolution of the expected error of various estimators, with respect to the number
of samples. The experiment was replicated 200 times at each point to compute the mean error.
The computations were done with a 4-core processor i5-8250U CPU @ 3.40GHz and 12GB of
RAM. For one experiment with n = 200, the time necessary to compute the Nearest-Neighbors at
each node is approximately 6× 10−1 s and the propagation phase using variable elimination takes
approximately 1.7× 10−4 s.
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Change of function in one node In addition to allowing for disciplinary autonomy, this
method can be seen as a way to change a function in a node, without having to compute the
functions at the other node again. Assessing its performance in this context, in comparison with
other techniques would be of practical interest.

Sparse conditional probability tables for numerical efficiency In polytrees (graph with
no cycle), the only source of exponential complexity in the Bayesian network inference algorithms
is when a node v as a huge number of parents u. Indeed, it is necessary to compute a conditional
probability table

(Wv,jv (Sv,nv , (gu,v(Yu,j))u∈I(v)))jv∈J1,nvK,ju∈J1,nuK,u∈I(v)

of size nv
∏
u∈I(v) nu, leading to a complexity of n#I(v)+1 when all the samples have a size n.

However, assuming that we are not interested in the joint law of the parents of v, we could only
consider the diagonal terms of the joint law,

(Wv,jv (Sv,nv , (gu,v(Yu,j))u∈I(v)))jv,j∈J1,nK2

reducing the table to a quadratic size n2, but loosing the information on the law the parents.
We think that such a method cannot be performed in general Bayesian networks, because the
cross terms are important in general. In our case however, the interpretation of the variable Y †v
in terms of bootstrap of a sample suggests that using only the diagonal terms would be close to
a Monte-Carlo approach. Thus, any estimator based on this method would be consistent and
the loss of variance due to leaving the cross terms out may be greatly compensated by the gain
in computation speed.

For a given request V′ ⊂ V, an algorithm could use only the diagonal terms in the part
where the joint law are not required, while using the full cross-terms where it is necessary.

Algorithms for nonlinear weighting methods As shown in Section 11.3.2.c, some weighting
methods that are nonlinear in the measure also exist. The propagation of the weights seems
pretty clear in the case of polytrees, as one needs to compute the full law of the parents before
computing the weights of a node. However, in the case of a DAG with an undirected cycle, it is
less obvious how the dependency should be handled in the nonlinear case. Adapting the Bayesian
network algorithms to this case would be an interesting development.

Estimating the law of the parameters This formalism does not include the internal variables
Θv in the graph. It is thus not possible to make a request to perform a sensitivity analysis of
an Yu with respect to Θv. Including them in the analysis without having to consider them as
external variables would be therefore of great interest.

Markov random fields for general graphs? So far, we concentrated on Directed Acyclic
Graphs, as the law of (Yv)v∈V was straightforward to define in that case. A Bayesian network
was therefore the natural related object to perform computations on. However, some industrial
cases might include some directed loops also known as “strong coupling” (see e.g. [81]). Provided
that the laws of the random variables are well defined in that case, the structure of (G, (Yv)v∈V)
would be a Markov random field, generalizing the Bayesian network structure. A natural question
is that if we construct the equivalent discrete Markov random field [71, Chapter 4] in a similar
way as 11.3.2, would an inference algorithm approximate the true law of (G, (Yv)v∈V)?
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calcul à la rupture. Theses, Université Paris-Est, December 2018.

[125] Wen Yao, Xiaoqian Chen, Wencai Luo, Michel van Tooren, and Jian Guo. Review of
uncertainty-based multidisciplinary design optimization methods for aerospace vehicles.
Progress in Aerospace Sciences, 47(6):450–479, 2011.

[126] Paul Zador. Development and evaluation of procedures for quantizing multivariate distri-
butions. Technical report, STANFORD UNIV CALIF, 1963.

[127] Xujia Zhu and Bruno Sudret. Emulation of stochastic simulators using generalized lambda
models. arXiv preprint arXiv:2007.00996, 2020.

[128] Enrico Zio, Francesco Di Maio, and Jiejuan Tong. Safety margins confidence estimation for
a passive residual heat removal system. Reliability Engineering & System Safety, 95(8):828
– 836, 2010.


	Résumé
	Contexte et motivation industrielle
	Modélisation des marges de conception
	De l'utilisation des marges au problème de surdimensionnement
	Marge: les fondamentaux
	Lien entre marge et risque
	L'identification des marges importantes
	La réduction des marges demandées importantes
	Organisation de la partie I

	Propagation d'incertitude dans des graphes de modèles
	Le cadre classique de l'analyse d'incertitudes
	Interactions multidisciplinaires: échange de variables
	Graphes de fonctions
	Propagation sur un noeud
	Propagation sur le graphe et méthode d'approximation par pondération linéaire en la loi (WLAMs)
	Organisation de la partie II

	Un objectif commun: la réduction des marges importantes

	I Model of margin and margin sensitivity analysis
	Introduction and motivation
	Why model margins?
	Frequently asked questions about margins

	State of the art
	Margins in engineering fields
	Confidence intervals
	Uncertainty sets in robust optimization (Operations Research)
	Control and robust control
	Partial safety factors 
	Safety factors
	Coherent risk measures

	Margin frameworks
	Probabilistic margins in nuclear safety
	Quantification of Margins and Uncertainly
	Performance margins and safety performance margins in Space engineering
	Margin allocation in industrial complex systems
	Margins as the cause of over-capacity/overdesign

	Our contributions regarding the existing literature

	Model of margin
	Problem description
	Basis of the model
	Effective margin
	Demanded margin

	Construction of a model of margin
	Unidirectional model of margin
	Bidirectional model of margin
	Fixed and free variables in probing sets
	A simple description of models of margin

	Margin quantification
	The four steps of uncertainty mitigation with margins
	Margin quantification with level of risk

	The existing literature
	Statistics
	Robust optimization
	Control and robust control
	Partial safety factor
	Coherent risk measure
	Nuclear safety
	Performance margin and safety performance margin
	Margin allocation in industrial complex systems
	Margin as the cause of over-capacity


	Margin sensitivity analysis and margin reduction
	Induced cost and induced margin
	Composition of demanded margin operators
	Induced margin
	Induced cost

	Margin sensitivity analysis
	Induced function
	Local sensitivity analysis
	Global sensitivity analysis along a margin reduction path

	Mechanisms of margin reduction
	Improve the maturity of margin quantification
	Update the reducible uncertainties
	Perform a mutual quantification of margins


	Model of margin: an operational implementation
	Introduction
	Industrial case: an automotive battery sizing
	Initial problem
	Modeled phenomena
	Aim of the analysis

	Taking a margin
	Taking a margin on a set of points
	Taking a margin on a point

	Application to the industrial case
	Three design approaches
	Detail of the design with explicit margins
	Generalization of the industrial case
	Conclusion of the section

	Structure of an implementation of a model of margin
	Metamodel definition

	Conclusion of the chapter

	Conclusion and perspectives
	Conclusion
	Perspectives
	Industrial applications
	Applied mathematics


	More on models of margins
	Models of margin on one coordinate
	Commutation


	II Uncertainty propagation in graphs of models
	Introduction and motivation
	Industrial motivation
	Sample reweighting
	Outline of the part

	Reweighting samples
	Introduction
	Covariate shift in U.Q
	Density ratio estimation
	Organization of the chapter
	Notation

	Wasserstein distance minimization and Nearest Neighbor Regression
	Optimal weights for Wasserstein distances
	NNR reformulation

	Convergence analysis
	Consistency
	Rates of convergence
	Proofs

	Discussion
	Convergence to X
	Rate of convergence of QI"0362QInoff,non(knoff) in the noiseless case
	Noisy case
	Reformulation of our results in terms of Nearest Neighbors

	Numerical illustration
	Influence of X' on the convergence of "0362(1)X
	Influence of X' on the convergence of QI"0362QInoff,non(knoff)


	Uncertainty quantification in graphs of functions
	Introduction
	Graph of computer codes
	Reweighting methods
	Outline and main results

	Reweighting procedure
	Weighted Linear Approximation Method
	Computing weights on the graph

	Algorithms for the numerical computation of the weights
	Line graphs
	General DAG with an intermediate Bayesian network

	Industrial application
	Description of the case
	Results

	Conclusion and perspectives



