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Chapter 1. Hippocampus-depend-
ent memories and place cells



Introduction
Large degree of adaptability is one of the most striking properties of living organisms.

Naturally changing environmental conditions demand from the living systems constant fitting
to altered circumstances in order to survive. Adaptations could span generations, ensuring
survival of populations, but also any living being possesses at least minimal means for adap-
tions that increase the chance of a single organism for longer life.

One of the types of such adaptations, adaptations to past events and experiences is
one of the most studied phenomena in neuroscience, and it is widely known under the term
“memory”. The most common framework to think about memory postulates that memory
processes constitute the ability to encode, store and retrieve information. Present-day neu-
roscience perspective sees encoding of memories as a process of converting information from
perceptual event to a form of neuronal code. Storage includes all operations within neural
tissue that conserve this information for some period of time. Retrieval is accessing stored

memories resulting in the formation of new memory and/or motor reaction.

Hippocampus-dependent memories

Hippocampus is important for memorization
Hippocampus became a center of memory research after the case study published by
William Scoville and Branda Miller (Scoville and Miller, 1957). The patient Henry Gustav Mo-
laison (referred later as HM) has had a surgery ablating bilaterally hippocampal formation,
amygdala, parts of entorhinal and temporal cortices as an attempt to cure severe pharmaco-
resistant epilepsy. Epilepsy was placed under control; however, the procedure had a profound
effect on the memory of HM. He partially forgot information memorized before the surgery
but more strikingly, he was completely unable to form new memories —a phenomenon that
was labeled ‘anterograde amnesia’. Interestingly, HM had perfect capability to form new mo-
tor skills, but any verbalizable information could not be memorized by him.
This case and the extensive research that HM and other amnesic patients had under-
gone have led to several important insights:
e Medial temporal zone including hippocampus and its surrounding structures
are crucial for the process of memorization;
e Memory is not a homogeneous entity — it consists of several domains that could
be independently affected by lesions and/or experimental procedures;
e Thereisaneural substrate for the process of memory consolidation: converting

labile just-encoded memory into its “solid” form for future storage and retrieval.

Classification of memory
Memory can be classified by the time after which it can be retrieved (Fig. 1-1). HM had

untouched capacity to form short-term memories and impaired ability to form long-term



memories. Long-term memory splits in two very different domains: declarative memories and
non-declarative memories. Notably, as Milner’s research has shown, patient HM was able to
form non-declarative forms of memory. Non-declarative type includes pavlovian conditioning,
priming, any non-associative memory and procedural memory (Milner et al., 1998; Squire,
2004). Forms of memory that were impaired in HM were named declarative memories. De-
clarative memories can use language to be retrieved. Semantic memories are a subtype of
declarative memories that represent facts and concepts. Episodic memories were introduced
earlier by Endel Tulving (Tulving and Schacter, 1990), and were defined as the memory of
events in the precise spatial and temporal context (subjective memories of agent in particular
circumstances).

This classification is based mostly on neuropsychological data recorded from humans
and requires care when we transfer it into animal’s research. Without entering intricate de-
bates on what constitutes declarative memories in animals, we will accept here an operational
definition of episodic-like memories: a unified memory about place, time and contents of the
event (Eacott and Easton, 2010). Notably, episodic memories in humans and episodic-like
memories in animals share neural substrates: medial temporal lobe and hippocampus (Eich-
enbaum, 2017).

LONG-TERM MEMORY

NONDECLARATIVE (IMPLICIT)

DECLARATIVE (EXPLICIT) PROCEDURAL  PRIMING SIMPLE NONASSOCIATIVE

(SKILLS CLASSICAL LEARNING
AND CONDITIGNING
HABITS)
FACTS EVENTS
MO, MUSGULATRE Figure 1-1. Classification of long-term memory.
DNl on . STRATUM HEOCORTER AMYGOAA e iavs Adapted from Milner et al., 1998.

Spatial memaories are also hippocampus-dependent memories

Richard Morris proved a crucial role of hippocampus in spatial memory (Morris et al.,
1982). In his experiment, rats had to navigate through a swimming pool with opaque water to
a platform (a Morris maze), which is naturally attractive to the animals who do not like to
swim. In one condition, a platform was visible to the swimming rat, and in the other condition
it was hidden in opaque water. In both conditions, animals took little time to master the task,
i.e. to find the shortest way to the platform regardless of starting point. However, while ani-
mals with lesions in the hippocampus kept solving the condition with visible platform with
equal ease, in the condition with hidden platform lesioned animals demonstrated large defi-
cits in memorizing location of the platform.

This experiment allows for distinction between hippocampus-dependent and hippo-

campus-independent memory which also bears close resemblance to memory classification



in humans. Without overstating that spatial memory is a special case of episodic-like memo-
ries are the same phenomena, it would be rigorous to say that their neural correlates vastly
overlap. Hippocampus-independent behaviors can be triggered by any sort of external cue
that informs agent to act a certain way, and they do not require intact hippocampus to be
manifested (Morris et al., 1982; Kim and Fanselow, 1992). On the other hand, hippocampus-
dependent behaviors usually demand to form a certain representation of a situation, and they

are impaired upon lesions in hippocampus.

Cognitive map

Term “cognitive map” was introduced by Edward Tolman who aimed to prove that
animals can learn in the flexible manner rather than using only ‘stimulus-response’ (5-R) mech-
anism as prevailing behaviorism theories stated at the time. Tolman built complex mazes, and
rats were allowed to explore freely the environment for several trials (Tolman et al., 1946).
After exploration phase, a reward was placed in certain location of the maze and an original
path was blocked; a large proportion of animals were able to use newly available shortcut,
which it could not be predicted by the S-R theory. Tolman suggested that instead of using S-
R mechanism, animals had built systematically organized sets of knowledge that function as
a map that represents environmental relationships and possible paths in the psychological
space (Tolman, 1948).

Neural correlates of spatial memories
Place cells and their properties
This idea became very influential in later cognitive sciences but probably its most pop-

ular reappearance happened after John O’Keefe and Jonathan Dostrovsky has discovered that
population of neurons in subfield CA1 of dorsal hippocampus fired action potentials in the
location-specific manner (O’Keefe and Dostrovsky, 1971). These neurons were called “place
cells”, and their existence was confirmed in many species including bats (Yartsev and Ula-
novsky, 2013), primates (Courellis et al., 2019), humans (Ekstrom et al., 2003), and even birds
(Payne et al., 2020). Moreover, place cells were also found in the subfields CA2 and CA3 of
hippocampus (Kay et al., 2016; O’Keefe, 1979), dentate gyrus (Leutgeb et al., 2007), ventral
hippocampus (Poucet et al., 1994), subiculum and parasubiculum (Sharp and Green, 1994;
Taube, 1995). However, the vast majority of research that concentrates on place cells focus
on pyramidal neurons of dorsal CA1; this manuscript will follow the convention and will center

itself on them too.
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Box 1-1. Anatomy of hippocampus and trisynaptic loop

Hippocampal formation consists of hippocampus itself and surrounding regions that
functionally support hippocampus. Hippocampus is a layered structure that is phylogenetically
older than neocortex (‘archicortex’) — it comprises only of three layers. Hippocampus consists
of 3 subfields, or areas, numbered serially: CA1, CA2 and CA3 and the dentate gyrus. Cell bod-
ies of principal cells, named pyramidal cells, could be found in thin stratum pyramidale, or
pyramidal layer. Basal dendrites and axons of pyramidal cells are located dorsally from pyram-
idal layer in the layer called stratum oriens. Apical dendrites of pyramidal cells projects ven-
trally in the stratum radiatum and further in stratum lacunosum-moleculare. Another subtype
of neurons found in hippocampus includes various GABA-ergic interneurons (for detailed re-
view on interneurons, please see Pelkey et al., 2017).

Dentate gyrus is a three-layered structure that can be found below field CA1, and it
consists mostly of glutamatergic granule cells that lay in stratum granulare. Outer stratum
moleculare includes mostly fibers projecting from entorhinal cortex, and inner stratum multi-
forme, or hilus, consists of excitatory mossy cells.

Entorhinal cortex is situated laterally from hippocampus. It is a neocortical 6-layered
structure. Entorhinal cortex is the main hub that connects the rest of the neocortex with hip-
pocampal archicortical networks. Pyramids of layer Il projects into hippocampus and conveys
sensory information in the hippocampus, whereas pyramidal cells of layer V receives projec-
tions from the hippocampus and send the downstream to other cortical and subcortical areas.

Trisynaptic loop is the main functional connectivity pattern in the hippocampal for-
mation. In its most simplified form (for more detailed version, please see Fig. 1-2b), the con-
nections follow this schema: pyramidal cells of layer Il in entorhinal cortex project to the den-
tate gyrus via perforant path. Granular cells of DG send their axons to the subfield CA3 of
hippocampus; these axons are called mossy fibers. Pyramidal cells of CA3, in turn, project to
apical dendrites of CA1 pyramidal cells and send collaterals to lesser known area CA2. CA2 in
turn projects to basal dendrites of CA1 pyramidal neurons. Pyramidal cells of CA1 send their

projections to deep layers of entorhinal cortex and outside of hippocampus. It is important to

note that entorhinal cortex projects also directly to CA3 and CA1 neurons.

IR

Figure 1-2. Anatomy of hippocampus and its connectivity. A. Coronal section of hippo-

campus stained with Timm’s method. Adapted from Burwell and Agster, 2007. B. Schematic

depiction of trisynaptic loop. Adapted from Hartley et al., 2014.
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Locations of neuronal firing, or place fields, typically appear in the first minutes after
an animal is placed in the novel environment (Wilson and McNaugton, 1993), and hippocam-
pus robustly keeps place coding of a certain environment for long periods of time (Thompson
and Best, 1990). Importantly, if an animal is exposed to the new environment, place field of a
particular neuron does not depend on its place field in the previous environment (O’Keefe and
Conway, 1978). However, certain changes in the environment can trigger alterations in place
coding. Substantial reorganization of place fields is called ‘global remapping’, or ‘complete
remapping’ (Muller and Kubie, 1987; Leutgeb et al., 2005). Global remapping occurs if the
majority of distant landmarks have moved, for example, if one changes the room where the
environment is located. In contrast to that, if only proximal cues are changed, rate remapping
can be observed (Leutgeb et al., 2005; Fyhn et al., 2007). Rate remapping involves changes in
firing rate of place cells without altering their place fields. It has been suggested that phenom-
ena of global and rate remapping demonstrate different axes of encoded information. If global
remapping points at the existence of navigational system in the brain, which can build maps
of physical space, rate remapping indicates that non-spatial features of environment are also
represented on top of place cells population code (Colgin et al., 2008). Indeed, rate remapping
was observed in the experiments where place coding could be affected by task parameters
(Wood et al., 1999; Anderson and Jeffery, 2003), or even factors related to motivation and

emotions. | will describe in detail how emotional stimuli affect place cells activity in chapter 4.

Phase-coding in place cell system

Place cells do not use solely firing rates to represent position of the animal. It has
been shown that time of spikes fired by a particular place cell depend on the phase of ongoing
theta oscillations present during any exploratory activity in rodents (O’Keefe and Recce, 1993;
Skaggs et al., 1996). When an animal enters the place field of a place cell, neuron starts to fire
spike in the late phase of theta cycle; however, while the animal traverses the place field
spikes shift to the earlier phases of theta cycle. This phenomenon of theta phase precession
has an important implication (Fig. 1-3).

Let’s we assume slightly overlapping place fields of three place cells and a place cell
system with phase precession. When an animal is in the center of neuron B’s place field, it is
in the beginning and the end of the place fields of neuron A and C correspondingly. According
to the rules of theta precession, it would mean that neuron C would be firing action potentials
in the early phases of theta, neuron B — at the trough of a cycle and neurons A at the late
phasein a cycle. Therefore, these three neurons fire in close succession after each other. Such
co-activity of place cells with adjacent place fields creates a temporal opportunity for long-
term potentiation of their synapses, and therefore, organization of place cells into se-

quences (so called ‘theta sequences’). Theta sequences are considered an evidence of cell
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assemblies’ existence and point to the fact that spatial memories could be stored in hippo-
campus as an auto-associative network (Buzsaki, 2006).

Place cells can drive location-specific behaviors

Activity of hippocampal neurons can be used to drive spatial behavior. In the seminal
study, improving technology first used by Garner et al., 2012, used immediate early gene-
driven strategy of expressing ChR2 was used, an excitatory light-gated opsin, in the neurons
that were active in a specific environment 1 (Ramirez et al., 2013). After that, authors have
transferred animals into the environment 2 where they have performed fear conditioning us-
ing activation of neurons tagged in the environment 1 as a conditioned stimulus. However,
when mice where placed back to environment 1 they exhibited elevated levels of freezing
despite the fact that they never had formed aversive association there. These results suggest
that firing of dentate gyrus neurons is required and sufficient to retrieve the behavior that
was learnt in pavlovian paradigm. However, it was not clear what was the role of place cells
in this experiment and what is physiological meaning of simultaneous firing of neurons that
are usually fire separately. Later it was demonstrated that pairing intracranial rewarding stim-
ulation with reactivation (see below) of a particular place cell during sleep results in increased
preference for the reinforced location (de Lavilléon et al., 2015). It confirmed that rewarding
an animal at the time when place cell firing is completely detached from behavior is sufficient
to create positive association with place. Another study used targeted activation of place cells
that code for rewarded zone (Robinson et al., 2020). Animals have learnt to lick at the specific
location on a virtual track to receive reward. If place cells that represented reward zone were
optogenetically activated outside of reward zone, lick rate was increasing two-fold suggesting

causal role of place cells in driving behaviors associated with spatial memory.
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Figure 1-3. Schematics illustrating theta phase precession. Adapted from Drieu and

Zugaro, 2019. A. Theta phase precession in one place cell. Spike of the place cells progressively

moves earlier in the phase of theta cycle while the mouse traverses place the field. B. Theta
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phase precession with four neurons. When an animal traverses overlapping place fields, their
place cells fire in different phases of theta cycle, which creates time-compressed theta se-
quences of place cells (see also text).

Head direction cells

Place cells are not the only cells in the brain that contribute to navigation. Probably,
the most basic feature, the direction of the animal’s head is coded by head direction (HD) cells
(Taube et al., 1990). They could be recorded in subiculum and entorhinal cortex of hippocam-
pal formation but most of them are studied in anterior dorsal nucleus of thalamus and retro-
splenial cortex (Taube, 2007). HD cells are considered to provide basis for the allocentric di-
rection coding and are often described by the metaphor of compass. Importantly, selective

lesions in HD system can also damage place fields of place cells (Calton et al., 2003).

Grid cells
Grid cells were described by the laboratory of May-Britt and
Edvard Mosers (Hafting et al., 2005). Grid cells could be recorded in

the medial entorhinal cortex, and their receptive field tesselate en-

(@) 14.1

vironment with a regular pattern. First reports suggested that grid
) 86 !

N
system could participate in the place coding by providing infor- '
mation about path integration. However, relationships between - -
grid cells and place cells go beyond simple fact that grid system

S

could give a reference frame for place cell system. Inactivation of

medial septum leaves place coding intact but completely disrupts
grid cell receptive fields (Koenig et al., 2011), and inactivation of
hippocampus itself damages grid code completely (Bonnevie et al.,

2013). There is still no consensus on how exactly grid cells contrib-

ute to navigational system in the brain.

Boundary cells

Boundary cells were first predicted theoretically (Hartley et

al., 2000; Burgess et al., 2000), and only recently they have been

recorded in an experiment. Boundary cells have receptive field that )
P y P Figure 1-4. Fundamental types

of spatial cells. Adapted from
the environment. They have been recorded in subiculum (Barryetal.,  Hartley et al., 2014. Left: tuning
2006; Lever et al., 2009), medial entorhinal cortex (Solstad et al., ~ maps of each cell. Right: trajec-
tories with spike points (in
green) superimposed. A. Place
cell. B. Head direction cell. C.
Grid cell. D. Boundary cell.

stretches along one or is at the angle of two natural boundaries in

2008; Savelli et al., 2008), and also in pre- and para-subiculum (Boc-
cara et al., 2010).
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Models of memory. Consolidation
There are several ideas suggested in the past that are relevant to understand modern

hippocampal-dependent memory research and its subfield of spatial memory. They focus on
different aspects of memory and different levels of brain organization and serve as a reminder

that memory is complex and dynamical process.

Hebbian synapse

Donald Hebb suggested a model of how new memories can be formed at the neuronal
level (Hebb, 1949). Hebb proposed that short reverberatory neuronal activity constitutes
short-term memory. Given that, he assumed that if the activity persists long enough, it adds
to the stability of connection between neurons and induces long-term changes. Summarized
by the short motto “neurons that fire together wire together”, his model describes two hypo-
thetical neurons that are synaptically linked to each other. If neuron A persistently activates
another neuron B, synaptic link between them is strengthened, and it takes less excitation
from neuron A to induce action potential in neuron B. This idea will be called Hebbian synapse

in the further text.

Long-term potentiation

The Hebb’s model remained theoretical possibility until Timothy Bliss and Terje Lamo
discovered in hippocampal slices phenomenon of long-term potentiation (LTP) (Bliss and
Lemo, 1973). They have stimulated perforant path, a bunch of projections of entorhinal cortex
to hippocampus (see Box 1), and recorded its downstream target, neurons of dentate gyrus
(DG). They have demonstrated that certain type of stimulation — very fast (‘tetanic’) trains of
short pulses (100-400 Hz) — increased a response of post-synaptic neuron to a single stimulus.
Later, researchers have shown that this effect is caused by increased conductance of iono-
tropic AMPA receptors on the post-synaptic membrane and de novo synthesis of more gluta-
mate receptors. These structural changes are long-lasting — thus, Hebb’s theory obtained its
first experimental prove.

Later, it was demonstrated that tight temporal coordination between spikes of pre-
and post-synaptical neurons is required to induce LTP. Action potential of the neuron A should
occur less than 20 ms before neuron B for the LTP to occur in neuron B (Markram et al., 1997,
Bi and Poo, 1998).

Systemic consolidation models

David Marr kept Hebbian synapse in mind when he suggested the first mechanistic
model of memory consolidation (Marr, 1971). He noticed that hippocampus has internal con-
nectivity different than that of neocortex and proposed that hippocampus act as a tempo-
rary storage for sensory information, whereas neocortical networks are well-suited for long-

term storage. Marr suggested that new memories are encoded continuously during active
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periods, and due to presence of recurrent connections in hippocampus, a full memory can be
retrieved upon activation of one neuron participating in storing a memory. However, poten-
tially limited capacity to store information in hippocampal networks can lead, according to
Marr, to the fact that hippocampus progressively sends newly encoded memories to neocor-
tex, a storage of long-term memories. This transfer would constitute the process of consoli-
dation. Strikingly, this purely theoretical work generated a huge number of predictions that
were validated years later by experimental neuroscientists.

Most notably, Gyorgy Buzsaki has proposed two-stage memory consolidation model
that was built mostly on the foundations laid by Donald Hebb and David Marr (Buzsaki, 1989).
Trained as a physiologist, Buzsaki have unified several experimental observations into coher-
ent model of systems consolidation. He has stressed the fact that hippocampal activity is very
different during active exploratory behaviors and calm consummatory behaviors, immobility
or sleep. During active exploration, hippocampal neurons oscillates in theta band (5-10 Hz);
during such theta state, dominantly active subpopulation of neurons is granule cells of dentate
gyrus. Calm state is characterized mostly by large-amplitude irregular activity that is rarely
interrupted by fast oscillatory events called ‘sharp-wave ripples’ - SWRs (120-200 Hz). During
ripples, CA3 neurons are massively and synchronously discharge and excite mostly their down-
stream CA1 neurons that, in turn, activate their neocortical targets. During this state, pyram-
idal cells in CA1 are the most active neurons.

Two-stage model of memory consolidation postulates that during theta exploratory
behavior information is encoded in labile form in the structures downstream to the dentate
gyrus. Information is transferred into a long-term storage during population bursts in the CA3
of hippocampus. It is important to stress that in this model, hippocampal neurons that were
potentiated during active behavior have higher probabilities to be excited during SWRs and

thus be converted into long-lasting memory.

Reactivations of place cells: neural correlates of spatial memory

As it was mentioned above, place cells are organized in the sequences during active

exploratory behavior, and temporal relationship between spikes within these sequences allow
for long-term potentiation, which in turn results in the increased possibility of co-firing of neu-
rons that were active together in the past. There are several studies which show that blocking
or manipulating with long-term potentiation, potentially key player for binding theta se-
guences together, in hippocampus results in severe impairments in spatial-dependent behav-
ior and place cell activity (Shapiro, 2001; Robbe and Buzsaki, 2009). Moreover, theta se-
guences disrupted during passive transportation of an animal result in degraded post-sleep
co-firing, suggesting necessity of theta sequences formation for reactivations (Drieu et al.,
2018).
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Discovery of reactivations

During exploration of the environment, place cells with overlapping place fields
demonstrated significantly larger mean pairwise cross-correlations than place cells whose
place fields did not overlap, which confirmed that place cells with adjacent place fields fire
together (Wilson & McNaughton, 1994). More strikingly, in post-exploration sleep period au-
thors also detected increased cross-correlations of neuron pairs with overlapping place fields
— this effect was comparable to the effect during exploration. Cross-correlations during rest
period, which preceded explorations, did not show any difference for two types of place cell
pairs. This effect suggested that place cell pairs, which had on average higher co-firing rate
than other place cell pairs, maintain their temporal relationships during subsequent rest pe-
riod. This effect was named ‘reactivations’.

In this manuscript, | will follow the consensus nomenclature proposed by a group of
researchers in the special issue dedicated to reactivations (Genzel et al., 2020). They sug-
gested that reactivation is an umbrella term that define reinstatement of the pattern of neu-
ronal activity that represents a prior experience significantly stronger than it is observed
before the experience took place. A replay would be a special type of reactivation that in-
cludes sequential information.

Reactivations happen during NREM sleep

Later, pairwise correlations method allowed researchers to show that temporal rela-
tionships between co-firing neurons are stable across exploration and post-exploration ses-
sions. Using ‘temporal bias’ measure, it was shown that place cells with overlapping place
fields on average have significant bias to fire in the specific order (Skaggs & McNaughton,
1996). It is important to mention that this result was obtained in unidirectional exploration
paradigms, so there was only one way to approach any given place field. Later, similar results
were obtained in the parietal cortex neurons (which have multiple place fields) but no tem-
poral bias was detected between hippocampal and neocortical neurons (Qin et al., 1997).

Improving on correlational methods described above, the group of Bruce McNaughton
suggested to assess similarity of cross-correlation matrices during exploration and rest peri-
ods, introducing ‘explained variance’ measure (Kudrimoti et al., 1999). Using this new meas-
ure, authors confirmed previous results and also demonstrated that almost no cross-correla-
tion variance during REM episodes of post-exploration sleep could be explained by previous
exploration experience, ruling out potential role of REM reactivations in memory consolida-

tion process.

Compressed place cells sequences are replayed during NREM sleep
Detection of specific place cell activation sequences, which represent trajectories
taken by the animal, opened a possibility to match these sequences to any given spike train.

Matching a template epoch on the running epoch using a sliding window vyielded significantly
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Box 1-2. Methods to detect neuronal reactivations

The main idea behind any method to detect reactivations is to look for the neuronal
activity that was present in active state of an animal in the subsequent period of time (mostly,
researchers are interested in sleep or calm consummatory behaviors). For detailed review on
the methods, please see Peyrache and Tingley, 2020.

The first big group of strategies is designed to search for pairwise correlations between
neurons. Indeed, if two cells have fired together they would develop strengthened connec-
tions according to Hebb’s rules and they would continue to fire together after conditions that
have driven their co-firing have gone. Such effect could be detected using pairwise correla-
tions of spike trains (Wilson and McNaughton, 1994; Skaggs and McNaugthon, 1996). How-
ever, it is very indirect method to assess reactivations, and it does not account for possible
correlations present already before the experience. To overcome these limitations, explained
variance measure was introduced (Kudrimoti et al., 1999). Authors proposed that if co-firing
of neurons during active period translates to co-firing of neurons in later sleep, similarity be-
tween matrices of pairwise correlations in active behavior and in subsequent sleep would be
higher than between matrices in active behavior and in the sleep that precedes it. To assess
similarity, correlation coefficients of pairwise correlation matrices was used, and an explained
measure would be

2
/ Rtask,post - Rtask,pre & Rpre,post \
2 2
\/(1 - Rtask,pre) * (1 - Rpre,post)/

where R correspond to correlation coefficient of pairwise correlation matrices between peri-

EV =

ods of time indicated in lower index. Note that explained variance accounts for correlations
already present during sleep that precedes active task behavior and isolate only correlations
in post-sleep that were inherited from active behavior.

Another group of methods takes the templates of neuronal activity that was observed
during exploratory period and matches them to other epochs of interest (Nadasdy et al.,
1999). To account for possible replays that dynamically adjust their compression factor, tem-
plate matching methods could use rank order correlations (Lee and Wilson, 2002). Template
matching methods work great in the linear track tasks, however in more complex environ-
ments and with increasing number of place cells with multiple place fields, construction of
templates becomes very difficult.

Another strategy to detect reactivations comes as a hybrid between correlational
methods and template matching (Peyrache et al., 2009; Peyrache et al., 2010). The idea is to
extract meaningful components from the correlation matrix of neuronal activity by means of
dimensionality reduction techniques (usually, PCA or ICA). Obtained signals (or ‘templates’)
could be projected to the spike trains in the epoch of interest to obtain reactivation strength
measure. High reactivation strength measure at the particular period of time is interpreted as

an instance of reactivation of a particular template that is, in turn, interpreted as cell assembly
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/of neurons that fired together during active behavior. This strategy keeps temporal resolution \

and flexibility of classical template matching combining it with plain logic of correlational
methods.

Despite the fact that formally decoding falls in the template matching group of meth-
ods, we will stop at it separately as it is the golden standard of reactivation methods nowa-
days. If one knows unambiguous relationships between firing of a neuron and location of an
animal, one could decode animal’s position from neuronal activity only (Zhang et al., 1998).
The most used decoding framework uses Bayesian relationships, calculating posterior proba-
bilities of finding the animal in the specific spatial location from the population vectors of
neuronal firing at any given time point. This approach could be successfully applied to decode
the positions replayed during reactivation sequences (and would be described in more detail
in chapter 4).

In recent review on reactivation methods by Peyrache and Tingley (2020), authors have
pointed out that assumption of different strategies to detect reactivations to show similar
result on the same dataset is largely wrong. After using correlational methods, template
matching and Bayesian approach on the same real or simulated datasets of candidate events,

they have observed large disagreement between all methods used except linear correlation

and Bayesian approach. This could have deep impact on the joint interpretations of body of
K literature, in which different research groups use different methodology. /
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more repetitions than it would be expected by chance (Nadasdy et al., 1999), and confirmed
that sequences of neuronal activity are compressed in time approximately 10-fold. Later, tem-
plate matching method was brought to its full power in the thorough study in which authors
divided neuronal activation sequences with two, three and more than three neurons (Lee and
Wilson, 2002). Obviously, probability of exact sequence matching to any spike train is inversely
proportional to the sequence length. The study demonstrated that the sequences detected
during post-behavior NREM sleep had significantly stronger matching rate to the spike trains
recorded during active behavior than it could be predicted by the random occurrence of neu-
ronal activations. It is important to notice that random in this context implies possibility of
each neuron to excite each neuron within a neural network with equal probability. (It does
not correspond to reality, neurons are always confined by connectivity patterns and synaptic
weights).

By early 2000s, there was an ample evidence suggesting that place cells that were ac-
tive during specific behaviors could be found re-activated during subsequent sleep period with
higher probability than cells that were silent during behavior (Kudrimoti et al., 1999). Moreo-
ver, these re-activations that happen mostly during periods of SWRs in NREM sleep tend to
preserve temporal structure of their activity (Louie & Wilson, 2001; Lee & Wilson, 2002). It is
important to note that reports on REM sleep reactivations are still very rare (Louie & Wilson,
2001; Zielinski et al., 2021), and the consensus here has not been reached.

Sleep reactivations and replays were suggested for the role of neural substrate of
memory consolidation. Indeed, their occurrence mostly coincides with SWRs that were iden-
tified by two-stage memory consolidation model as events that promote memory consolida-
tion. In addition, due to their repetitive nature, reactivations of hippocampal could induce
long-term synaptic changes in their downstream cortical targets. | will review causal evidence

that hippocampal reactivations are important for memory consolidation later in this chapter.

Place cells are also replayed during calm wakefulness

Place cells reactivations were also found during calm periods during wakefulness
(Foster and Wilson, 2006). Interestingly, these periods were also characterized by high prob-
ability of SWRs occurrence. Reactivations observed unfolded mostly in the order opposite to
the order in which animal traversed place fields. These events were termed ‘reverse replays’.
Later, it was demonstrated by means of template matching approach that reverse replays oc-
cur after behavioral sequence was completed, and forward replays during wakefulness were
observed before start of a behavioral sequence (Diba and Buzhaki, 2007).

Forward and reverse replays during the task were observed in the linear track tasks. In
the linear track, place cells are activated in strict succession. Each place field could be ap-
proached only in two ways. In the two-dimensional environments, each location has several
paths to be approached by. This significantly reduces number of neuronal reactivation se-

guences that could be detected due to random neuronal firing. Despite that fact, very strong
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bias towards sequences activated during running epochs was found in re-activated sequences
detected during transient halt periods with high density of SWRs (Csicsvari et al., 2007). These
results further confirm existence of awake replay phenomenon.

Advances in decoding and recording techniques allowed researchers to determine
which locations are reactivated during different types of replay events. Thus, it was shown in
the linear environment that reactivations could begin not only with the place cell which was
active the last (and the place field which animal currently occupies) but also from remote lo-
cations in the environment (Davidson et al., 2009). Other group has shown that animal could
replay trajectories associated with the environment explored before the environment it is cur-
rently in (Karlsson and Frank, 2009). Very important findings were described in the work by
Pfeiffer and Foster (2013). Authors showed that during the goad-directed behavior in two-
dimensional open field animals replays future trajectories during transient stops in the behav-
ior. These replayed sequences were biased towards the goal location and, more interestingly,
they reflected trajectories that animals chose to take after a replay event. Close relation of
awake reactivation events to the task requirements were later confirmed in the study that
used a linear track with two stopping points where an animal was receiving reward (Olafsdét-
tiret al., 2017). Authors demonstrated that during the periods of immobility directly following
and directly preceding locomotion, animal reactivated mostly trajectories that it has just trav-
ersed or it will traverse in the immediate future. On the other hand, during immobility periods
that were not flanked by locomotion probability to detect remote replay was significantly
higher.

Replays that happen during wakefulness are thought to have a role beyond memory
consolidation. Since awake replay often is not mere repetition of explored trajectories but
simulation of future paths or even of trajectories that were never and will not be taken,
they are considered to play a role in planning and decision making (Pfeiffer and Foster, 2013;
Olafsdéttir et al., 2018; Pfeiffer, 2020). In an attempt to show causal role of awake replay in
spatial decision making, researchers interrupted SWRs while rats where performing W-maze
alternation task (Jadhav et al., 2012). Performance of these animals were significantly worse
than in control ones. However, it is hard to say whether manipulation with SWRs also trun-
cated replays and whether deficits in behavior were caused by problems in decision making
rather than memory consolidation (without going into a debate about interconnections be-

tween those two processes).

Preplays of preconfigured sequences

Surprisingly, one group of researchers have found that temporal sequences that are
active during subsequent exploratory period could b