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Abstract

The goal of this thesis is to develop algorithms to help visual artists create and ma-
nipulate images easily with deep learning and computer vision tools. AI advances, in
particular generative models, have enabled new possibilities that can be leveraged in the
artistic domain to simplify the manipulation of digital visual content, and assist artists in
finding inspiring ideas. Progress in this domain could democratize the access to visual
content manipulation software, which still requires time, money and expert skills.

The first contribution of this thesis is the introduction of two methods for generating
novel and surprising images: one for generating new fashion designs and one for creating
unexpected visual blends. First, we show how generative adversarial networks can be
used as an inspirational tool for fashion designers to create realistic and novel designs.
While most image generation models aim to generate realistic images that cannot be dif-
ferentiated from the real ones, they tend to reproduce the training examples. We instead
focus on designing models that encourage novelty and surprise in the generated images.
Second, we develop a visual blending model that allows the generation of compositions
by blending objects in uncommon contexts based on visual similarity. Using recent ad-
vances in image retrieval, completion and blending, our simple model provides realistic
and surprising visual blends. We study how the selection of the foreground object influ-
ences its novelty and realism. In the rest of the thesis, we focus on improving the image
generation methods presented by exploring how generative models can be extended to
resolution independent image generation and by studying the quality of image features
used in image retrieval from a training data perspective.

The second contribution is a new layered image decomposition and generation model
aimed at representing images in a resolution independent and easily editable way. Gen-
erating higher resolution images is challenging from a training time and stability per-
spectives. To alleviate these difficulties, we design the first deep learning based image
generation model using vector mask layers. We frame vector mask generation using a
parametric function (multi-layer perceptron) applied on a regular coordinate grid to ob-
tain mask values at input pixel positions. Our model reconstructs images by predicting
vector masks and their corresponding colors then iteratively blends colored masks. We
train our model to reconstruct natural images, from face images to more diverse ones, we
show how our model captures interesting mask embeddings that can be used for image
editing and vectorization. Furthermore, we show our model can also be trained in an
adversarial fashion.

The third contribution is focused on image retrieval and few-shot classification. In-
deed, a large part of the artistic work and effort when creating visual blends is searching
for relevant images to use. To simplify this tedious step of image search, deep features can
be used as similarity measures to retrieve images. While there has been consequent work
on learning image representations for image classification, and particularly using self-
supervised techniques, the impact of the training dataset on the quality of learned features
has not been extensively explored. Thus, we study the impact of the base dataset com-
position on the quality of features from a few-shot classification perspective. We show
that designing the base training dataset is crucial for improving the features for few-shot
classification performance. For instance, a careful dataset relabeling allows to increase
the performance considerably using a simple competitive baseline model.
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Résumé

L’objectif de cette thèse et de déveloper des algorithmes capables d’aider les artistes
visuels à créer et à manipuler facilement des images avec les outils de l’apprentissage
profond et de la vision par ordinateur. Les avancées de l’IA, en particulier les modèles
génératifs, ont permis de nouvelles possibilités qui peuvent être utilisées dans le domaine
artistique afin de simplifier la manipulation des contenus visuels et d’assister les artistes
à trouver des idées inspirantes.

La première contribution de cette thèse est l’introduction de deux méthodes pour
générer des images nouvelles et surprenantes : une pour générer de nouveaux designs de
mode et une pour créer des mélanges visuels. Premièrement, dans la génération d’images
de mode, nous montrons en particulier comment les réseaux génératifs adversaires peu-
vent être utilisés comme un outil d’inspiration pour les créateurs de mode pour créer des
designs réalistes et novateurs. Alors que la plupart des modèles de génération d’images
visent à générer des images réalistes qui ne peuvent pas être différenciées des vraies,
ces modèles ont tendance à reproduire les exemples d’apprentissage. Nous nous con-
centrons plutôt sur la conception de modèles qui encouragent la nouveauté et la surprise
dans les images générées. Deuxièmement, nous développons un nouveau modèle de col-
lage qui permet la génération de compositions en mélangeant des objets dans des con-
textes inhabituels basés sur la similarité visuelle. En utilisant les avancées récentes dans
la récupération, la complétion et le mélange d’images, notre modèle simple fournit des
mélanges visuels réalistes et surprenants. Nous étudions comment la sélection de l’objet
de premier plan influence l’originalité et le réalisme des compositions obtenues.

Dans le reste de la thèse, nous nous concentrons sur l’amélioration des méthodes de
génération proposées dans la première partie. Tout d’abord, nous explorons une extension
des modèles génératifs à la génération d’images à résolution indéfinie. Ensuite, nous
étudions la qualité des représentations d’images pour la recherche d’images par rapport à
la base d’images d’entraı̂nement.

La deuxième contribution est un nouveau modèle de décomposition et de génération
d’images en couches visant à représenter les images d’une manière indépendante de la
résolution. La génération d’images à plus haute résolution est un défi du point de vue
du temps et de la stabilité de l’entraı̂nement. Pour pallier ces difficultés, nous concevons
le premier modèle de génération d’images basé sur l’apprentissage profond utilisant des
couches de masques vectoriels.

Nous exprimons la génération de masques vectoriels avec une fonction paramétrique
(perceptron multicouche) appliquée sur une grille de coordonnées régulière pour obtenir
des valeurs de masque aux positions des pixels d’entrée. Notre modèle reconstruit les im-
ages en prédisant les masques vectoriels et leurs couleurs correspondantes puis mélange
itérativement les masques colorés. Nous entraı̂nons notre modèle à reconstruire des im-
ages naturelles, des images de visage à des images plus diverses, nous montrons com-
ment notre modèle capture des représentations de masque intéressantes qui peuvent être
utilisées pour l’édition et la vectorisation d’images. De plus, nous présentons le premier
modèle de génération d’images vectorielles formé de manière adversaire.

La troisième contribution est centrée sur la recherche d’images et la classification à
partir de peu d’exemples. En effet, une grande partie du travail et de l’effort artistique lors
de la création de mélanges visuels consiste à rechercher des images pertinentes à utiliser.
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Pour simplifier cette étape fastidieuse de recherche d’images, des représentations pro-
fondes d’images peuvent être utilisées comme mesures de similarité pour récupérer des
images. Bien qu’il y ait eu des travaux conséquents sur l’apprentissage des représentations
d’images pour la classification des images, et en particulier à l’aide de techniques auto-
supervisées, l’impact de l’ensemble de données d’apprentissage sur la qualité des car-
actéristiques apprises n’a pas été exploré de manière approfondie. Ainsi, nous étudions
l’impact de la composition de l’ensemble de données de base sur la qualité des car-
actéristiques du point de vue de la classification à partir de peu d’exemples. Nous mon-
trons que la conception de l’ensemble de données d’entraı̂nement de base est cruciale pour
améliorer les fonctionnalités des performances de classification à partir de peu d’exemples.
Par exemple, un réétiquetage minutieux de l’ensemble de données permet d’augmenter
considérablement les performances à l’aide d’un modèle de base concurrentiel simple.

Mots-clés: Apprentissage profond, génération d’images, classification d’images avec
peu d’exemples, recherche d’images.
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Chapter 1

Introduction

1.1 Goals
Can an AI inspire us to push the boundaries of creativity ? The goal of this thesis is
to develop learning based image generation and manipulation tools with the perspective
of assisting human artists. By leveraging the advances in visual representation learning
and image generation, we build learning algorithms that can serve as an inspirational
assistant by creating visually pleasing and novel images. Among the large number of
artistic applications enabled by recent computer vision advances, we particularly focus
on two: fashion image generation and visual blends creation. This leads us to tackle two
fundamental challenges with impact beyond the considered creative applications. First,
we aim to enable high resolution and easily interpretable image generation and second,
we aim at understanding the impact of training data on supervised deep image features.

1.2 Motivations
Our main motivation for tackling creative image generation is to support digital artists
with the next-generation tools for imagining, creating and manipulating the visual content
in art, fashion and communication that we discuss hereafter.

Art The evolution of image generation algorithms is changing the way we think about
art and the way we create. Early works in the computational creativity literature have
used evolutionary methods with a human in the loop guiding the process, where the com-
puter explores the creative space and the human plays the role of the observer whose
feedback drives the process (Graf and Banzhaf, 1995). Recently, Creative Adversarial
Networks (CAN) (Elgammal et al., 2017) introduced an image generation model trained
on art paintings of different styles, that is able to generate realistic and aesthetically ap-
pealing images. Some of their best generations are shown in Fig. 1.1a. These image
generation techniques transform the art domain; in 2018, an AI generated painting was
valued for more than 400.000$ at an auction (Christies.com, 2018). The increased realism
of the generations makes it difficult to distinguish real artwork from an automatically gen-
erated one. Many artists have embraced this new direction of painting by creating with
code, and the perspective of having an algorithm able to generate realistic and meaning-

11



12 CHAPTER 1. INTRODUCTION

ful artworks is very exciting. Building on previous work such as CAN (Elgammal et al.,
2017), we explore the potential of these generative models on fashion image generation.

Fashion There is a considerable interest in leveraging artificial intelligence for fashion
design. Creating a garment is a complex process that requires imagination, creativity
and continuous reinvention. Designers usually take inspiration from their environments
and sources such as the internet. Having a virtual assistant able to inspire new designs
based on a large set of images could allow them to explore new directions while maintain-
ing high level controls over the influences of their designs. Nowadays, it is not difficult to
imagine an AI-inspired collection of garments, an idea that could reinvent a large industry
that is fashion. Fashion image generation differs from standard image generation because
of the design elements specific to fashion that are shape and texture or fabric of the gar-
ment. Also, generating a garment needs to respect a set of wearability rules which makes
it a challenging task for image generation models. Having algorithms able to generate
garments with high levels controls could allow applications such as item personalization
and enable designers and customers to quickly customize a garment with different styles
and body poses as is shown in Fig. 1.1b.

Advertising and communication Visual blends are a powerful expression tool com-
monly used in advertising, news and art. They consist in representing an analogy, whether
phonetic, linguistic or pictorial using composite images. They have been extensively stud-
ied in multiple marketing and advertising papers showing their impact and understand-
ing their properties (Gkiouzepas and Hogg, 2011; Phillips and McQuarrie, 2004; Jeong,
2008), and are also widely used by artists and shared by content creators on internet. Cre-
ating visual blends is a lengthy process that requires finding an analogy, searching for
the right images to illustrate the concept and performing a visual blending step that can
require professional skills. However, it can be simplified by leveraging automatic search
using semantic, visual or phonetic similarities and automatic image blending techniques
to the retrieved images. Fig. 1.1c shows visual blending examples that demonstrate the
difficulty of the search and blending process to make a seamless and realistic visual blend.
Another example of that is the Artbreeder (https://www.artbreeder.com/) tool
which allows users to mix images and create new ones using automated tools. Other
artists, such as @idriesk on Instagram, use visual metaphors to create striking and un-
common visual analogies that feature scenes, people or objects from different contexts
and cultures. Inspired by these artists’ works, we are interested in creating an algorithm
to help artists find interesting visual analogies and compositions.

1.3 Context
Over the last decade, artificial intelligence has known impressive advances in a wide
variety of domains. From ordinary tasks such as perception in computer vision (He
et al., 2017, 2015a; Tan et al., 2020; Redmon and Farhadi, 2018) and speech processing
(Schneider et al., 2019), natural language understanding (Collobert et al., 2011), genera-
tion (Brown et al., 2020; Roller et al., 2020) and translation (Lample and Conneau, 2019;
Fan et al., 2020), common sense reasoning and planning (Silver et al., 2016) to new tasks

https://www.artbreeder.com/
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(a) Examples of images generated by Creative Adversarial Networks CAN (Elgammal et al.,
2017), trained on an art paintings dataset.

(b) Using generative models to visualize new outfits by transferring the colors or the body pose
Yildirim et al. (2019).

The Economist Nov. 2009 Tabasco Ad “Ice cream” by WWF

(c) Examples of visual blends. Top row: examples from art, fashion, advertising and communica-
tion.

Figure 1.1: Motivation

such as symbolic mathematics (Lample and Charton, 2020), medical diagnosis (McKin-
ney et al., 2020; Muckley et al., 2020) and other scientific challenges (Senior et al., 2020;
Chanussot et al., 2020; Li et al., 2020; Javaheri et al., 2020). A key direction for artificial
intelligence research is artistic creativity where the goal is for machines to generate orig-
inal items with realistic, aesthetic attributes. In fact, the evolution of generative modeling
across different modalities such as speech, text and images allowed important advances

http://www.ateriet.com/creative-tabasco-ads/
https://fr.adforum.com/creative-work/ad/player/49872/ice-cream/wwf


14 CHAPTER 1. INTRODUCTION

in generating realistic content and the exploration of the creative directions that resulted
from them. For example, previous work has explored the use of deep learning for music
generation (Briot et al., 2019), imitating the styles of great painters (Gatys et al., 2016;
Dumoulin et al., 2017) or doodling sketches (Ha and Eck, 2018).

In this work, we are interested in image generation and its potential in artistic appli-
cations such as fashion item generation and visual blends creation. Using a deep learning
based and a data oriented approach, we propose models that allow the generation and
editing of novel content. Multiple factors have enabled this research direction; data, com-
puting and software resources. First, the creation of large scale datasets dedicated to un-
derstanding the trends in art and fashion as well as to novel and realistic image generation
(wikiart.org, 2010; Liu et al., 2016; Rostamzadeh et al., 2018). Second, the availability
of powerful hardware such as Graphical Processing Units (GPUs) with large memory and
number of processing cores that were adapted from their original purpose of graphical
rendering to perform tensor operations for deep learning. GPU usage has been made ac-
cessible thanks to development of rich and easy-to-use deep learning frameworks such as
PyTorch (Paszke et al., 2019) and Tensorflow (Abadi et al., 2015). Finally, reproducible
code open-sourcing and open paper publishing have allowed this field to evolve rapidly.

1.4 Challenges and contributions
In the following, we present the challenges that we consider in this thesis and present the
contribution that address them.

Realistic and novel image generation Generative models learn to reproduce the data
distribution they are trained on, which leads to realistic samples very similar to the original
ones. A major challenge of image generation is going beyond the creation of realistic
images indistinguishable from the real ones, by enforcing novelty and diversity in the
generations while maintaining realistic aspect of the generations.

Resolution-independent and editable image generation Another challenging aspect
of image generation is the resolution of generated images. While different works have
introduced multiple techniques to stabilize training of image generation models, thus
improving the possible resolution from 32 × 32 Goodfellow et al. (2014) to 1024 ×
1024 Karras et al. (2017) and more, getting rid of resolution constraints by considering
new paradigms of image generation is an open challenge. Instead of generating images
pixel by pixel, can we generate images in a vector representation that can be then rendered
at any desired resolution?

Learning strong image representations Having strong image features is crucial in
image retrieval and understanding. Image features can be learned using classification
on labelled training classes and a major characteristic of these image representations is
their ability to generalize on new categories different from the labelled ones seen during
the training. An interesting challenge is understanding the impact of the training dataset
labeling on the quality of learned features and finding ways to improve the available image
annotations to obtain better features.
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(a) By introducing new training objectives for generative models and building a search and com-
position model, we propose models that output original and realistic images.

Original Bilinear Vector

(b) We propose a novel paradigm for resolution independent image representation and generation.
A simple example on generating MNIST in 1024× 1024 numbers from a learned vector represen-
tation. From left to right: original image, a bilinear upsampling and a high resolution using the
vector representation.

o𝑟

(c) Should we annotate more classes or more examples per class for example? We study how the
dataset annotation and design affects the quality of learned features.

Figure 1.2: Illustration of contributions

To tackle these challenges, we present three contributions:

• We build models that enable creative applications by suggesting novel images, gen-
erations or compositions with a trade-off between originality and realism. Fig. 1.2a

• We propose an image generation paradigm for vector and layered image generation
allowing simple image editing using learned masks and resolution-independent im-
age representation. Fig. 1.2b

• We study the importance of datasets design for learning image features. Fig. 1.2c
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1.5 Thesis outline
This thesis is organized as follows:

• Chapter 2 gives an overview of the main concepts and works that are relevant for
this dissertation.

• In chapter 3, we present two methods for novel image generation in the contexts
fashion image generation and visual blends creation.

• Chapter 4, we present a new paradigm for image generation in vector layers that
allows resolution-independent image representation and simple editing.

• In chapter 5, we present a study on the importance of dataset design in the context
of feature learning for few-shot image classification.

1.6 Publication list
The work presented in this thesis has been published as described below.

• Othman Sbai, Mohamed Elhoseiny, Antoine Bordes, Yann LeCun and Camille
Couprie (2018). DesIGN: Design inspiration from generative networks. In the
first workshop on Computer Vision for Fashion, Art and Design at the European
Conference on Computer Vision (ECCVW 2018).

• Othman Sbai, Camille Couprie and Mathieu Aubry. (2020) Unsupervised Image
Decomposition in Vector Layers. In the International Conference on Image Pro-
cessing (ICIP 2020).

• Othman Sbai, Camille Couprie and Mathieu Aubry. Impact of base dataset design
on few-shot image classification. (2020) In European Conference on Computer
Vision (ECCV 2020).

• Othman Sbai, Camille Couprie and Mathieu Aubry. (2021) Surprising image com-
positions. In the International Conference on Computational Creativity and in the
fourth Workshop on Computer Vision for Fashion, Art, and Design at the Confer-
ence on Computer Vision and Pattern recognition (ICCC2021 and CVPRW 2021).

We open-sourced the code corresponding to the papers, and created web pages for
each project with additional visualizations of the results available at https://www.
sbaiothman.com/. I received the best paper award for the DesIGN paper at ECCV
Workshop 2018 in Munich.

https://www.sbaiothman.com/
https://www.sbaiothman.com/


Chapter 2

Related work

In this chapter, we give an overview of the concepts and works that are the most relevant
for this dissertation.

First, we start with an introduction of the machine learning framework, the important
building blocks of deep learning and how it can be used to learn powerful image repre-
sentations from data. Second, we present the generative adversarial learning framework,
its major progress and how it is leveraged for creative image editing applications. Third,
we present works on vector and layered image generation that allow image generation in
a resolution-independent manner. Finally, we discuss important works that marked the
research in machine learning for creative applications especially in fashion image gener-
ation and visual conceptual blending.

2.1 Learning visual representations

2.1.1 Supervised learning from data
The goal of machine learning is to build algorithms that endow machines with the ability
to perform given tasks without explicitly hardcoding their solution. Machine learning
algorithms can vary in their level of supervision from fully supervised to weakly and
self-supervised or even unsupervised learning. They also can be either parametric or non-
parametric depending on the assumptions on the form of the function that maps input
variables to output ones.

In parametric machine learning, instead of specifying the algorithm for solving the
task, a mathematical model with learnable parameters w is trained on a training dataset
by minimizing a loss function that describes how well the model performs the task.

In the supervised setting, a target label yi is known for each data sample xi, and the
goal of the model is to predict an output ŷi as close as possible to yi given xi. The total loss
function Lw is the average of individual cost `w on each data sample (xi, yi), i ∈ [1, .., N ]
available for training:

Lw =
1

N

N∑
i=1

`w(yi, ŷi) (2.1)

For example, in the case of classification, the loss function `w can be the negative
log likelihood of the observed model’s output and the expected target labels. Given C

17
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Figure 2.1: Visualization of the basic neural network architectures: the perceptron (left)
and the multi-layer perceptron (right).

the number of classes, and yij are the one-hot encoded class targets yi, the negative log-
likelihood loss is:

Lw = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij) (2.2)

Similaly, in regression, the loss to optimize can be a least squares loss between the
model’s output and the expected target labels:

Lw = − 1

N

N∑
i=1

‖yi − ŷi‖22 (2.3)

At each training iteration, the model’s parameters are updated so that the loss function
is minimized using the gradient of the loss on random samples with respect to the model’s
parameters.

2.1.2 Artificial neural networks

Deep learning is a specific branch of machine learning where the learning model is an
artificial neural network. Neural networks are a family of parametric models constructed
using differentiable modules that process data and forward it to connected modules. The
parameters of the models are adjusted during training using the backpropagation algo-
rithm that we explain below, which allows us to compute the gradient for each parameter
to find a local optimum of the loss function. The simplest, and historically the first exam-
ple of neural networks is the perceptron.

The perceptron Presented in (Rosenblatt, 1958), it is a single layer neural network that
inputs a vector of numbers x ∈ Rd and outputs a binary class prediction fw(x) ∈ {0, 1},
where w is a vector of real-valued weights. It performs of a dot product between inputs x
and weights followed by a non-linear activation function ψ(x), namely the Heaviside step
function, defined by ψ(x) = 1 if x > 0 and 0 otherwise.

ŷ = fw(x) = ψ(w.x)
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To perform the classification task effectively, the parameters w are updated iteratively
to find the set of parameters that best explains a given dataset using the parameter update
rule for every training pair (xi, yi) ∈ D following:

w ← w + (yi − fw(xi))xi

as presented in the original paper, however, a similar network with different non lin-
earity can be optimized using backpropagation.

In Fig. 2.1 we show the perceptron’s simple architecture.

Multi-layer Perceptron. While the perceptron has a limited representational power, the
multi-layer perceptron is a neural network architecture where the input vector is processed
using multiple layers of perceptrons and activation functions sequentially as shown in
Figure 2.1. Each layer is an affine transformation that can be implemented as a matrix
multiplication between the layer weights W and the input X and then adding a bias,
followed by a non-linearity σ (Sigmoid, ReLU, etc.):

Y = σ(W.X + b) (2.4)

Multi-layer perceptrons are powerful models for learning complex functions. The
universal approximation theorem (Cybenko, 1989) states that any continuous function can
be approximated by a neural network with one hidden layer and a large enough number
of neurons.

Convolutional neural networks. For high dimensional inputs such as images, it can be
impractical to connect all neurons to all neurons in the previous volume. Convolutional
neural networks take advantage of the structure of images and use convolutions to process
them in a linear and translation covariant way. They are widely used in computer vision to
process images efficiently thus reducing the amount of required parameters LeCun et al.
(1998); Krizhevsky et al. (2012).

Backpropagation. To train artificial neural networks, backpropagation computes the
gradient of the loss function with respect to the parameters of the network. Starting from
the last layer and iterating backwards, backpropagation computes the gradient for each
layer and combines them using the chain rule:

y = f(u), u = g(x) =⇒ dy

dx
=
dy

du
.
du

dx
, where f and g are differentiable functions

(2.5)
thus being more efficient than a naive gradient computation for each parameter.

2.1.3 Optimization and learning
Neural network optimization is challenging because of the non-convexity of the functions
that we optimize. Multiple optimization techniques have been proposed to improve neural
network optimization in order to avoid local minima, and to achieve faster convergence.
An important optimization algorithm is batch Stochastic Gradient Descent (batch-SGD).
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It is an iterative optimization technique that uses mini-batches of data to estimate an ex-
pectation of the gradient of the parameters, rather than the full gradient of the parameters
using all available data. It represents a compromise between computing the gradient on
the full dataset and on a single sample, by considering a mini-batch at each step. This al-
gorithm can be improved in different ways. For instance, Adam (Kingma and Ba, 2014) is
an adaptive learning rate optimization algorithm that utilises both momentum and scaling
based on first and second moments of the gradients, usually improving the training speed
and accuracy. Using momentum consists of remembering the past update at each itera-
tion and defining the next update as a linear combination between the computed gradient
and the previous update, while scaling refers to modulating the learning rate depending
on moving averages of the gradients. Multiple techniques are also used to obtain faster
convergence, avoid overfitting and local minima such as adding weight decay as an L2
regularization of the model’s weights to reduce model overfitting, or using dropout layers
(Srivastava et al., 2014). Furthermore, other architectural changes can also have an im-
pact on the optimization landscape such as normalization layers (e.g. BatchNorm (Ioffe
and Szegedy, 2015), LayerNorm (Ba et al., 2016)), or using skip connections (He et al.,
2015b) to optimize the residual mappings rather than the original one.

2.1.4 Learning deep visual representations

Learning strong image representations has been a longstanding challenge in computer
vision research. Images in their rasterised form do not provide a relevant descriptor for
evaluating image similarity and for describing image content. Classical image descriptors
were proposed to describe the image content using local features associated with distinct
image keypoints. SIFT, (Lowe, 2004) propose a method of identifying scale invariant
local features in images by locating pixel amplitude extrema. These handcrafted features
provide an image descriptor that allows searching and locating objects in images. The
evolution of deep learning has allowed the development of deep image features that are
learned from data by training a model on a given task. For example, on the ImageNet
classification benchmark (Deng et al., 2009b), the impressive performance improvement
on classifying a thousand different categories of natural images (Krizhevsky et al., 2012;
He et al., 2015b; Simonyan and Zisserman, 2014; Tan and Le, 2019) has provided good
image features that are used in multiple other visual tasks. Using pretrained deep image
features is crucial for multiple computer vision applications such as evaluating image
similarity using cosine distance Zheng et al. (2016) and transfer learning by reusing mid
level image representations (Oquab et al., 2014).

The quality of image features can be evaluated from different perspectives. In deep
metric learning, the goal is to learn image features that are suited for image retrieval
by embedding images of similar objects closer than those of different concepts. The
metric learning literature provides efficient methods for retrieving similar images (Teh
et al., 2020; Johnson et al., 2017; Jegou et al., 2010). In addition, in few-shot learning,
the goal is to obtain features that are able to generalize to new tasks (new classes in
case of few-shot classification). Classification based features provide a good baseline for
few-shot classification using a nearest neighbor classifier (Wang et al., 2019; Gidaris and
Komodakis, 2018; Zhai and Wu, 2018) that sometimes surpass complex meta-learning
methods (Ravi and Larochelle, 2017; Chen et al., 2019). Beyond the learning algorithm
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complexity, data also plays an important role on the quality of learned features that has
been tackled from different perspectives (Triantafillou et al., 2020; Huh et al., 2016).

2.2 Image generation powered creative tools

2.2.1 Generative adversarial learning
Generative adversarial learning is a framework introduced by Goodfellow et al. (2014)
for learning to generate samples from data distributions using an adversarial zero-sum
game where two networks are trained simultaneously with opposite objectives. A first
discriminator network is trained to recognize real from fake or generated data, while a
second generator network G is trained to generate samples from a latent code that fools
the discriminator network D. This adversarial formulation is particularly useful when it
is difficult to formulate a loss as it is the case for realistic image generation. To avoid
crafting a loss that evaluates the realism of images, we use a discriminator network to
learn this task during training while the generator learns the data distribution. Since the
discriminator is differentiable, we can obtain gradients to train the generator.

This is formulated as a two-player minmax game :

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]

where pdata and pz are respectively the real data distribution and the noise distribution we
sample from.

2.2.2 Adversarial image generation and editing
Since their introduction by (Goodfellow et al., 2014), generative adversarial networks
(GANs) have allowed a plethora of derivative works and applications related to realistic
image generation. The original GAN paper proposes a framework for learning generative
models via an adversarial process, and demonstrates modest but promising performance
on image generation on low resolution images.

This adversarial image generation framework happens to be particularly challenging
to train especially for generating high resolution realistic images due to the instability of
the adversarial game. Among the many possible failure cases, mode collapse represents
the setup where the generated samples do not cover the entire data distribution. In the
following we present few main directions that shaped the research in the GAN literature.

Initial GAN architectures. Stabilizing the training process of training generative ad-
versarial networks and scaling up the generations has been a constant goal since the in-
troduction of the GAN framework. Multiple papers propose novel GAN architectures,
losses and techniques to stabilize the training procedure and produce more realistic sam-
ples. Figure 2.2 shows the evolution of the best trainable resolution since the original
GAN paper in 2014. We present some of the notable contributions that influenced this
domain. (Denton et al., 2015) combines a conditional GAN with a laplacian pyramid
approach by upscaling generated images in an additive manner. (Zhang et al., 2017) de-
composes the problem into a two-stage sketch-refinement process, by first generating low
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Figure 2.2: Evolution of generated images resolution since the introduction of the gener-
ative adversarial networks framework.

Figure 2.3: Fully convolutional generator architecture from (Radford et al., 2016) for
adversarial image generation.

resolution images in a first stage and then adding compelling details in a second one.
(Radford et al., 2016) proposed a deep convolutional architecture for the generator and
the discriminator able to generate samples at 64 × 64 pixels resolution, the generator ar-
chitecture is shown in Fig. 2.3. (Odena et al., 2017) proposes a variant with an auxiliary
classifier GAN for the discriminator to predict the class label in addition to the probability
of the input being real. While not being very different, this simple architecture modifi-
cation and data supervision produces better results and appears to slightly stabilize the
training. (Wang and Gupta, 2016) introduces a two-component approach factoring image
generation: structure representing the underlying 3D model and style being the texture
mapped onto structure. They demonstrate its potential in learning RGB D representations
in an unsupervised manner.

Techniques for stable training of GANs. In addition, another line of work has fo-
cused on proposing more or less principled techniques for training generative adversarial
networks with better convergence guarantees. (Salimans et al., 2016) present numerous
architectural features and training procedures to train generative adversarial networks. For
example, feature matching as a new objective for the generator to match activations on an
intermediate layer of the discriminator, and historical averaging of the parameters. Some
papers have explored the use of different loss metrics to replace the Jensen-Shannon di-
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vergence used in original GAN formulation. (Arjovsky et al., 2017; Arjovsky and Bottou,
2017) propose WGAN an alternative training method of GANs using the Earth-Mover dis-
tance or Wasserstein-1 distance between the distributions of real and generated samples,
which was later improved with a gradient penalty to penalize the norm of the gradient of
the discriminator with respect to its input to avoid unstable behavior. (Heusel et al., 2017)
introduces a two time-scale update rule to further stabilize the training and outperform the
quality of the generations. In addition to the Wasserstein GAN training loss, (Mao et al.,
2017) propose the use of L2 distance to avoid the vanishing gradients that can come from
using the sigmoid cross entropy loss in the original GAN formulation. (Berthelot et al.,
2017) propose to use an autoencoder as a discriminator and optimize a lower bound of the
Wasserstein distance between auto-encoder loss distributions on real and fake data. They
introduce an additional hyperparameter to control the equilibrium between the generator
and discriminator. (Mescheder et al., 2018) propose to penalize the gradient of the dis-
criminator on the real data alone and prove global convergence for simple settings where
the true data distribution is a single point or a single Gaussian distribution which was then
generalized by (Sun et al., 2020). (Miyato et al., 2018) introduces spectral normalization,
a lightweight and very efficient technique that helps control the Lipschitz constant of the
discriminator by literally constraining the spectral norm of each layer. Finally, (Kurach
et al., 2019) and (Lucic et al., 2018) provide large scale studies comparing these different
losses, architectures and normalization techniques in a thorough empirical analysis.

High resolution image generation. The presented techniques allowed the training of
more stable image generation models able to train at high resolution images. The first pa-
per able to generate realistic 1024× 1024 images was (Karras et al., 2017) by introducing
a progressive training scheme that starts training at 4× 4 then doubles the resolution until
the final 1024× 1024 pixels. However, this requires many training tricks such as keeping
a moving average of the generator’s weight used for inference, using an equalized learn-
ing rate among other techniques. This architecture was further simplified and improved
in (Karras et al., 2019) with the use of an adaptive instance normalization module to in-
corporate style vectors at different levels of the generation, leading to a generator with
controllable coarse and fine features. Finally, (Brock et al., 2019) train generators that
output 1024× 1024 samples by adopting orthogonal regularization in a class-conditional
image synthesis setup using a self-attention based architecture (Zhang et al., 2019).

Evaluating generated images Evaluation of image generation models is a long stand-
ing challenge. Several automatic metrics have been proposed to alleviate the need of
human annotation and to have a more quantitative objective comparison.

(Salimans et al., 2016) propose the Inception score, an image quality assessment score
that uses a classification Inception v3 network pre-trained on ImageNet to assess the en-
tropy of the distribution of generated samples taking into account both the variety of
generated images and the entropy of their classification as shown in Eq. 2.6. This score
has been further improved to account for the distribution of real images in (Zhou et al.,
2017).

IS(G) = exp
(
Ex∼pg DKL( p(y|x) ‖ p(y) )

)
, (2.6)
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where x ∼ pg indicates that x is an image sampled from pg, DKL(p‖q) is the KL-
divergence between the distributions p and q, p(y|x) is the conditional class distribution,
and p(y) =

∫
x
p(y|x)pg(x) is the marginal class distribution. The exp in the expression is

there to make the values easier to compare.
(Heusel et al., 2017) introduce the Fréchet Inception Distance FID which captures

the similarity of generated images to real ones better than the inception score, by using
the first two moments (mean m and covariance C) of the activations of a pre-trained
Inception v3 network, (mg,Cg) and (mr,Cr) for generated and real images respectively,
as shown in Eq 2.7.

d2((mg,Cg), (mr,Cr)) = ‖mg −mr‖22 + Tr
(
Cg + Cr − 2

(
CgCr

)1/2) (2.7)

It is shown to better correlate with generation quality.

2.2.3 Creative image editing with generative models
Image generation models allow high-level image editing beyond the pixel level which
is time-consuming and requires professional and artistic skills. There are multiple ap-
proaches to image editing with generative models. First, using image to image translation
models that maps an image from its original domain to a new one. Second, using style
transfer, to apply a style from an given image. Third, by manipulating images in a latent
space of a generative model. Fourth, using attribute based image editing. We discuss a
few notable papers and applications in each image editing approach.

Image to image translation. Image to image translation relies on using a neural net-
work that inputs a 2D image and outputs another one with the desired edits such as U-Nets
(Ronneberger et al., 2015). The network thus learns a mapping from a source domain to
another such as in (Isola et al., 2017) with applications to colorization (Zhang et al., 2016),
semantic segmentation (Long et al., 2015), generating images from semantic maps (Park
et al., 2019b; Wang et al., 2018a), image inpainting (Yu et al., 2019), super-resolution
(Ledig et al., 2017), etc. This mapping can be learned using only domain level supervi-
sion without paired data samples (Zhu et al., 2017a; Liu et al., 2017; Kim et al., 2017) and
across more than multiple domains (Choi et al., 2018). These works use mainly a com-
bination of the adversarial loss to make the generated image indistinguishable from real
ones and a cycle consistency loss through reconstruction of the original image given the
back-translated one. These unsupervised image to image translation methods have been
successfully applied to artistic applications by mapping real photographs to a domain of
Monet paintings for example or inversely to visualize how paintings would look in real
life (Zhu et al., 2017a). Similarly, in Fig. 2.4 an artist uses image to image translation to
map a 2D drawing into a geometric 3D form.

Style transfer. A similar application is style transfer, where the goal is to change the
style of an image given an input style from another one, for example, applying the style
from a Van Gogh painting to a real world image. There have been multiple works on style
transfer (Gatys et al., 2016; Ulyanov et al., 2016; Huang and Belongie, 2017). These
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Figure 2.4: Using an image to image translation network (Wang et al., 2018a), an artist
explores abstract, geometric 3D form through a simple drawing interface (Eaton, 2019).

methods rely on an image representation of content and style obtained using deep neural
network’s outputs at different layers as introduced in (Gatys et al., 2016) and shown in
Fig. 2.5. The content representations are the output layer activations themselves, while the
style representations are obtained as correlations between different features in different
layers.

Image manipulation in a latent space Generative models are not only interesting for
their ability to generate samples from a learned distribution similar to the training one,
but they also provide a continuous manifold of images suited for image editing. One
commonly demonstrated property of generative models is the interpolation between latent
image representations, leading to a smooth transition sequence of generated images that
lie on the natural images manifold. Several works propose methods to use generative
models for image editing. For example, Zhu et al. (2016) propose a framework for image
editing that allows coloring, sketching and warping while constraining the output to lie
on the learned manifold of a generative neural network via optimization. However, most
of these methods require a way to project real images on the latent space of a trained
GAN, also known as inverting a generative network or latent space embedding. There are
two existing approaches to embed instances from the image space into the latent space.
First, is by learning an encoder network (Kingma and Welling, 2014; Donahue et al.,
2016). Second, is using optimization from a random initial latent code (Zhu et al., 2016;
Creswell and Bharath, 2018; Abdal et al., 2019). While the first method is fast by only
requiring a forward pass through the encoder network, the optimization based approach
leads to a more general and stable solution (Abdal et al., 2019).

In addition to latent space embedding of real images, other works explore different
methods to find meaningful directions for applying edits using trained generative net-
works. Bau et al. (2019) present a method for analyzing GANs by identifying groups
of interpretable units that are related to object concepts. Härkönen et al. (2020) iden-
tify important latent directions based on Principal Component Analysis (PCA) leading to
a simple but powerful way to manipulate images with existing GANs as shown in Fig-
ure 2.6. Similarly, Collins et al. (2020) use clustering techniques on the activations of
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Figure 2.5: Using intermediate representations from a pretrained VGG network (Si-
monyan and Zisserman, 2014) to extract content and style information at different layers.
These content and style features are used in style transfer and to define the perceptual loss
(Johnson et al., 2016).

Figure 2.6: Sequence of image edits obtained with discovered controls using a pre-trained
generative model. (Härkönen et al., 2020)
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generative models to identify clusters corresponding to semantic objects and parts and
use them to perform local edits. Finally, other methods are used to identify interpretable
directions in GAN latent space (Voynov and Babenko, 2020; Cherepkov et al., 2020).

Attribute based image editing One way to enforce the learning of a particular attribute
editing is by using additional inputs to condition the generative model. While it would
be simple to train in a supervised case if images with each attribute were available, many
methods aim to disentangle image content from controllable attributes as in (Perarnau
et al., 2016; Lample et al., 2017; He et al., 2019b). For example, (Lample et al., 2017)
learns an attribute invariant latent representation using an encoder-decoder architecture
and adversarial training. Thus, changing the attribute manually effectively translates into
the corresponding semantic edit.

2.3 Vector and layered image generation
Most approaches to image generation consider generating raster images through the use
of convolutional and upsampling layers, thus leading to fixed resolution output. One way
to overcome the resolution challenge of generative models is to create vector images that
are resolution independent. While the image vectorization literature is very important,
only few works consider generating vector images using deep learning techniques. In the
following we present notable image vectorization methods and sequential stroke based
image generation methods. Finally, we introduce recent works on generating and repre-
senting vector images with deep neural networks using implicit functions.

2.3.1 Image vectorization algorithms and representations

Many vector representations have been proposed to represent an image into a vector way
using simple shapes with uniform color or linear gradient or more complex and mathe-
matical representation using triangular patches with Bézier curves (Xia et al., 2009) or
rectangular patches with Ferguson patches (Sun et al., 2007). Multiple vectorization al-
gorithms have been proposed to convert a raster image into a vector one (Richardt et al.,
2014; Favreau et al., 2017; Liao et al., 2012; Orzan et al., 2008). While most region par-
titioning approaches consider images as one layer with hard boundaries between regions,
others use a multi-layer approach to decompose the image into soft segments (Aksoy
et al., 2017; Tai et al., 2007). Scalable Vector Graphics (SVG) is a widely used format for
encoding vector images as XML files of basic shapes or paths, with colors, transforms and
other information. It is based on simple shapes such as circles, rectangles, lines etc. or
more complex Bézier curves that allow the creation of more complex paths. Generating
images from their SVG representation has been framed recently in (Carlier et al., 2020)
using a Transformer architecture for sequential generation to generate the SVG drawing
commands. Their approach provides a new deep learning based approach for vector im-
age generation that allows interpolation between vector images for example. Lopes et al.
(2019) also present a learned representation for scalable vector graphics through a se-
quential generative model. Using an inverse graphics approach, their model consists of a
variational autoencoder (VAE) (Kingma and Welling, 2014) and an autoregressive SVG
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Figure 2.7: Sample images generated by (Mellor et al., 2019). showing discovered visual
that resemble those made by children and novice illustrators.

decoder. They also exploit the learned latent space for style propagation on a dataset of
fonts.

2.3.2 Sequential stroke based image generation

Image generation can be framed as generating a sequence of commands that build the
image from an empty canvas. In fact, it is the most similar way to the human way of
drawing and creating vector images.

(Ha and Eck, 2017) have been the first ones to use a recurrent neural network to
construct stroke-based drawings of common objects. Reinforcement learning based ap-
proaches have been developed to learn image generation as a sequence of drawing com-
mands. (Xie et al., 2013) present an RL approach for oriental ink painting by interacting
with a simulated environment of smooth and natural strokes. They first learn the recon-
struction of simple brush strokes before generalizing it to global image reconstruction.
(Ganin et al., 2018) also represent images as high level programs and train an RL agent
to generate programs that are executed by an external drawing engine. This adversarial
reinforced learning allows the use of any external drawing engine, however leads to a
slower training. It has been further improved in (Mellor et al., 2019) showing that gener-
ative agents can learn to produce images with a degree of visual abstraction as shown in
Figure 2.7.

(Zheng et al., 2018) contributes a model-based method to approximate the external
non-differentiable environment with neural networks, leading to a faster convergence on
several datasets. Similarly, (Huang et al., 2019) builds a differentiable neural renderer to
render strokes, allowing the use of model-based deep reinforcement learning algorithms.
Inspired by (Ha and Schmidhuber, 2018), (Nakano, 2019) learn a generative model for
a given painting environment to simulate the same outputs given similar action inputs,
leading to a fully differentiable architecture that can be trained with regular adversarial
methods.
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Original image Reconstructed image

Figure 2.8: Overfitting a Multi-Layer Perceptron on a single image taking as input only
pixel coordinates. Using the demo from (Karpathy, 2015)

2.3.3 Implicit functions for resolution independent image generation

There have been significant efforts for finding suitable data representations for modeling
images and 3D information. Implicit functions have recently gained a lot of attention
as functions of the spatial dimensions represented by a multi-layer perceptron MLP. In
the image domain, using implicit functions to represent an image dates back to (Stanley,
2007) with the introduction of CPPN (Compositional Pattern Producing Networks). These
networks were in fact a mapping from the pixel coordinates to the pixel RGB colors.
Several works also have explored overfitting a single image with an MLP and representing
images in a resolution independent manner (Ha, 2016a,b; Karpathy, 2015) as shown in the
Figure 2.8.

In fact, in 3D recent works have demonstrated the powerful capacity of MLPs to rep-
resent complex 3D scenes and reconstruct 3D objects. Groueix et al. (2018) use an MLP
to deform points on a 2D surface into a 3D one to reconstruct parts of objects. (Park et al.,
2019a) represent a 3D scene as an implicit signed distance function modeled by an MLP,
recovering the surface of the objects as the iso-surfaces of value zero. More recently,
(Mildenhall et al., 2020) propose a powerful 3D scene representation for generating mul-
tiple scene views given camera position and orientation. (Tancik et al., 2020) propose a
Fourier transform of the low dimensional spatial coordinates to allow these MLP to learn
high frequency details. Similarly, (Sitzmann et al., 2020) makes use of periodic activation
functions as a way to increase the representation power of the MLP representing complex
natural signals from spatial dimensions. Finally, multiple works have used MLP type ar-
chitectures for learning resolution independent image generators (Anokhin et al., 2020).
(Lin et al., 2021) proposes a model for two-stage image generation with infinite resolu-
tion; a first structure synthesizer based on an implicit function, and a texture synthesizer
based on a fully convolutional StyleGAN2 generator that renders local details.
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2.4 Machine learning and creativity
While great strides have been made into the machine’s capability of simulating human
intelligence aspects (perception, understanding, planning, reasoning, etc.), creativity re-
mains probably the most difficult one to tackle. There have been multiple efforts for
defining creativity. According to (Boden et al., 2004), creativity is the “ability to come up
with ideas or artifacts that are new, surprising, and valuable”.

There are many works in the computational creativity domain, fueled by the evolution
of generative models. Using different modalities, machine learning researchers explore
diverse creative applications. In the musical domain, multiple efforts are made on music
generation, artistic style transfer of melodies from one instrument or domain to another,
etc (Hadjeres and Pachet, 2017; Briot et al., 2017). In the linguistic domain, many works
leverage the advances of natural language processing for automated story generation and
automated pun generation (Ritchie, 2005; Yu et al., 2018). In the visual domain, creativity
focused works have tackled visual conceptual blending (Cunha et al., 2020), generating
novel artwork (Elgammal et al., 2017), neural style transfer (Gatys et al., 2016), draw-
ing and sketching (Parikh and Zitnick, 2020) etc. An important aspect of computational
creativity is the collaboration and interaction between human artists and the machine, in
what is usually refered to as co-creativity (Kantosalo and Takala, 2020).

The developments of generative models have shown the capacity of machines to gen-
erate realistic and aesthetic content. The evaluation of these generative models remains a
challenge to pick the most interesting generations.

In the next subsections, we discuss two main creative applications of generative mod-
els; namely fashion image generation and visual metaphor creation.

2.4.1 Creative fashion generation

Can artificial intelligence algorithms, like fashion designers, create new and creative fash-
ion collections? Most efforts of the machine learning and computer vision research com-
munity on fashion have focused on understanding the clothing trends from a large collec-
tion of images (Yamaguchi et al., 2012; Liu et al., 2016; Al-Halah et al., 2017).

Recent works have tackled the problem of fashion image generation from a perspec-
tive of enabling virtual try-on, by generating images of human models in controllable
outfits (Zhu et al., 2017c; Lassner et al., 2017). Rostamzadeh et al. (2018) proposes a
new fashion dataset with large resolution images and textual annotations to enable text-
to-image image generation.

While these models focus on generating realistic rendering of the person wearing the
garment, they focus most of the model’s capacity on learning semantic segmentation of
the piece of clothing on the person’s body, and do not contribute to generating creative
garments. Date et al. (2017) instead uses neural style transfer algorithm (Gatys et al.,
2016) to synthesize new custom clothes based on user preferences.

2.4.2 Visual conceptual blending

Visual metaphors or conceptual blends are composite images obtained by juxtaposing
objects from different contexts that share a given analogy. They are a powerful way
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Figure 2.9: An illustration of a simple design pattern for constructing visual blends from
(Chilton et al., 2019)

of communication in marketing, art and public service announcements, and have been
studied thoroughly in the marketing literature (Gkiouzepas and Hogg, 2011; Phillips and
McQuarrie, 2004; Jeong, 2008). For example, Chilton et al. (2019) highlight that adver-
tisements with visual metaphors are much more persuasive than those with plain images
or text alone when conveying a message. Metaphors have been first and foremost studied
in the linguistic research community with a focus on detecting figurative use of words
(Mohler et al., 2013; Hovy et al., 2013; Tsvetkov et al., 2014). Forceville (1994) proposes
a theory of the mechanics underlying visual metaphors. When viewers encounter a visual
metaphor, they recognize an object, but also quickly identify something odd about it that
leads them to construct a figurative interpretation of the composition. However, some
visual compositions can be hard to decode which sets a tradeoff between the complexity
of the underlying message to convey and the clarity of the composition.

The creation of these composite images is a time consuming process that includes
three main phases; a brainstorming phase to find the idea of the analogy, an image search
phase to find the best suitable image to illustrate the idea and the last phase of performing
the image blending. Chilton et al. (2019) describe a flexible and collaborative workflow
for brainstorming and synthesizing visual blends. It is part of a research direction for
leveraging collaborative efforts for ideation and brainstorming (Siangliulue et al., 2015,
2016)

When interpreting visual blends, the human visual system uses many different visual
features at different stages to recognize an object including its 3D shape, silhouette, depth,
color and details (Birney and Sternberg, 2011). Fig. 2.9 describes a simple shape mapping
design pattern for obtaining a visual blend.

Xiao et al. (2015) propose Vismantic, a semi-automatic system for generating com-
posite images from pairs of a subject word and a message word. It searches for candidate
images, which are filtered manually before being combined using juxtaposition, fusion or
replacement implemented using a combination of object extraction, inpainting and texture
transfer. Karimi et al. (2018) proposes a system for creative ideation through the explo-
ration of conceptual shifts using sketch similarity to find similar sketches from different
categories. More recently, Cunha et al. (2020) provides a roadmap for generating visual
blends. They highlight important steps for the conceptualisation of the generated com-
posite by grounding it using perceptual, naming/homophones or affordance attributes.
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Chapter 3

Original image generation

3.1 Abstract

Can an algorithm create original and compelling images to serve as an inspirational assis-
tant ? To help answer this question, we design and investigate two different image gener-
ation models associated with creativity in fashion image generation and visual conceptual
blending domains. We particularly explore how to adapt image generation methods to cre-
ate original, surprising and realistic images by crafting novel loss functions for generative
models as in Fig. 3.1 (top row) or by searching for interesting object compositions using
visual similarity and semantics, and performing blending as in Fig. 3.1 (bottom row). A
key challenge of this study is the tradeoff between novelty and realism of the generated
images and the evaluation of their quality, hence we put together an evaluation protocol
associating automatic metrics and human experimental studies to assess the novelty, the
likability and realism of generated images.

Keywords: artistic image generation, generative adversarial networks, image blend-
ing.

3.2 Introduction

Artificial Intelligence (AI) research has been making huge progress in the machine’s ca-
pability of human level understanding across the spectrum of perception, reasoning and
planning (He et al., 2017; Andreas et al., 2016; Silver et al., 2016). Another key yet still
relatively understudied direction is creativity where the goal is for machines to generate
original items with realistic, aesthetic and/or thoughtful attributes, usually in artistic con-
texts. We can indeed imagine AI to serve as inspiration for humans in the creative process
and also to act as a sort of creative assistant able to help with more mundane tasks, espe-
cially in the digital domain. Previous work has explored writing pop songs (Briot et al.,
2017), imitating the styles of great painters (Gatys et al., 2016; Dumoulin et al., 2017) or
doodling sketches (Ha and Eck, 2018) for instance. However, it is not clear how creative
such attempts can be considered since most of them mainly tend to mimic training sam-
ples without expressing much originality. Creativity is a subjective notion that is hard to
define and evaluate, and even harder for an artificial system to optimize for.

In this work, we tackle two different creative applications, namely, fashion image

33



34 CHAPTER 3. ORIGINAL IMAGE GENERATION

Figure 3.1: Top row: Image samples from our trained generative model with novelty
losses leading to realistic and creative 512× 512 fashion images. Bottom row: Examples
of obtained visual analogies using our search and composition method. From left to right:
Bagel/Wheel, Squirrel/Boy, Lighthouse/Rocket.

generation and visual blends creation using generative networks and image blending. We
particularly explore how computer vision algorithms can help augment artists workflow
by suggesting interesting and novel images. Using recent advances in image generation
and understanding, algorithms have the potential to create inspiring new images in a co-
creative approach guided by the artist’s intent.

First, we study how AI can generate creative samples for fashion. Based on a collab-
oration with a fashion industry that provides a collection of high quality images of gar-
ments, we are interested in exploring the potential of the advances of generative models
into inspiring designers. Fashion image generation opens the door for breaking creativity
into design elements (shape and texture in our case), which is a novel aspect of our work.
In contrast to most generative models works, the creativity angle we introduce makes us
go beyond replicating images seen during training. More specifically, this work explores
various architectures and losses that encourage GANs to deviate from existing fashion
styles covered in the training dataset, while still generating realistic pieces of clothing
without needing any image as input at test time. To the best of our knowledge, this work
is the first attempt at incorporating creative fashion generation by explicitly relating it to
its design elements.

Second, we propose an algorithm for suggesting surprising image compositions based
on image similarity with deep features and object semantics. Visual blends and metaphors
are very commonly used in advertising, news and art (Gkiouzepas and Hogg, 2011;
Phillips and McQuarrie, 2004; Forceville, 1994). In fact, Jeong (2008) shows that vi-
sual advertisements are much more persuasive when based on visual metaphors. They are
usually used to challenge and trigger thoughts or simply entertain. While they are some-
times hard to decode (Petridis and Chilton, 2019), it is even more challenging to obtain
image compositions that have a strong conceptual grounding. The collage creation pro-
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cess can be tedious as it not only requires the artist to find a new interesting analogy idea
but it also involves a lengthy process of image search and image blending. In this work,
we leverage recent visual object retrieval and image composition advances to improve the
collage creation experience by suggesting varied combinations given a selected input ob-
ject. Our approach grounds the composition using perceptual features and semantic ones.
Our contributions are two-fold:

• We propose a novelty loss on image generation of fashion items with a specific
conditioning of texture and shape, learning a deviation from existing ones. Our best
models manage to generate realistic images with high resolution 512 × 512 (Fig.
3.1, top row) using a relatively small dataset (about 4000 images). More than 60%
of our generated designs are judged as being created by a human designer while
also being considered original, showing that an AI could offer benefits serving as
an efficient and inspirational assistant.

• We design a foreground image search and blending method adapted to the real-time
setting that suggests interesting foreground combinations based on the local features
similarity with the query foreground object (Fig. 3.1, bottom row). Our simple copy
pasting model performs geometric and color adaptations to the foreground object
in addition to image inpainting. Our composition network is easier to train than
competing methods, relying solely on supervised training on synthetic images, but
proves to be robust and effective. In particular, we experimentally study the trade-
off between the quality of the composite image and the surprising aspect of the
composition.

3.3 Original fashion image generation

3.3.1 Related work
There has been a growing interest in generating images using convolutional neural net-
works and adversarial training, given their ability to generate appealing images uncondi-
tionally, or conditionally like from text, class labels, and for paired and unpaired image
translations (Zhu et al., 2017a). GANs (Goodfellow et al., 2014) allow image genera-
tion from random numbers using two networks trained simultaneously: a generator is
trained to fool an adversarial network by generating images of increasing realism. The
initial resolution of generated images was 32 × 32. From this seminal work, progress
in generating higher resolution images has been achieved, using a cascade of convolu-
tional networks (Denton et al., 2015) and deeper network architectures (Radford et al.,
2016). The introduction of auxiliary classifier GANs (Odena et al., 2017) then consisted
of adding a label input in addition to the noise and training the discriminator to classify
the synthesized 128 × 128 images. The addition of text inputs (Reed et al., 2016; Zhang
et al., 2017) allowed the generative network to focus on the area of semantic interest and
generate photo-realistic 256×256 images. Recently, impressive 1024×1024 results were
obtained using a progressive growth of the generator and discriminator networks (Karras
et al., 2017), by training models during several days.

Neural style transfer methods (Gatys et al., 2016; Johnson et al., 2016) opened the
door to the application of existing styles on clothes (Date et al., 2017), the difference
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with generative models being the constraint to start from an existing image in input. Isola
et al. (2017) relaxes this constraint partly by starting from a binary image of edges, and
presents some generations of handbags images. Another way to control the appearance of
the result is to enforce some similarity between the input texture patch and the resulting
image (Xian et al., 2018). Using semantic segmentation and large datasets of people
wearing clothes, Zhu et al. (2017c); Lassner et al. (2017) generate full bodies images and
are conditioning their outputs either on text descriptions, color or pose information. In
this work, we are interested in exploring the creativity of generative models and focus on
presenting results using only random or shape masks as inputs to leave freedom for a full
exploration of GANs creative power.

3.3.2 Novelty losses

Architecture Novelty Loss Design Elements
DCGAN (Radford et al., 2016) CAN (Elgammal et al., 2017) Texture (ours)

StyleGAN (ours) MCE (ours) Shape (ours)
StackGAN Shape & Texture (ours)

Table 3.1: Dimensions of our study. We propose fashion image generation models that
differ in their architecture and their novelty loss that encourages the generations to deviate
from existing shapes, textures, or both.

Table 3.1 summarizes our models and losses exploration. Let us consider a dataset D
of N images. Let xi be a real image sample and zi a vector of n of real numbers sampled
from a normal distribution. In practice n = 100.

GANs. As in Goodfellow et al. (2014); Radford et al. (2016), the generator parameters
θG are learned to compute examples classified as real by D:

min
θG
LG real/fake = min

θG

∑
zi∈Rn

log(1−D(G(zi))).

The discriminator D, with parameters θD, is trained to classify the true samples as 1
and the generated ones as 0:

min
θD
LD real/fake = min

θD

∑
xi∈D, zi∈Rn

− logD(xi)− log(1−D(G(zi))).

GANs with auxiliary classification loss. Following Odena et al. (2017), we use shape
and texture labels to learn additional shape and texture classifiers in the discriminator.
Adding these labels improves over the plain model and stabilizes the training for larger
resolution. Let us define the texture and shape integer labels of an image sample x by t̂ and
ŝ respectively. We are adding to the discriminator network either one branch for texture
Dt or shape Ds classification or two branches for both shape and texture classification
D{t,s}. In the following section, for genericity, we employ the notation Db,k, designating
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the output of the classification branch b for class k ∈ {1, ..., K}, where K is the number
of different possible classes of the considered branch (shape or texture). We add to the
discriminator loss the following classification loss:

LD = λDrLD real/fake + λDb
LDclassif with LD classif = −

∑
xi∈D

log

(
eDb,ĉi

(xi)∑K
k=1 e

Db,k(xi)

)
,

where ĉi is the label of the image xi for branch b.

Losses encouraging original generations. Because GANs learn to generate images
very similar to the training images, we explore ways to make them deviate from this
replication by studying the impact of an additional loss for the generator. The final loss
of the generator that is optimized jointly with LD is:

LG = λGrLG real/fake + λGeLG novelty

We explored different losses for novelty that we detail in this section. First, we employ
binary cross entropies over the adversarial network outputs as in CANs. Second, we
suggest employing the multi-class cross entropy (MCE) as a natural way to normalize the
penalization across all classes.

Binary cross entropy loss (CAN (Elgammal et al., 2017)). Given the adversarial
network’s branch Dc trained to classify different textures or shapes, we can use the CAN
loss LCAN as LG novelty to create a new style that confuses Db:

LCAN = −
∑
i

K∑
k=1

1

K
log(σ(Db,k(G(zi)))) +

K − 1

K
log(1− σ(Db,k(G(zi)))), (3.1)

where σ denotes the sigmoid function.
Multi-class Cross Entropy loss. We propose to use LG novelty the Multi-class Cross

Entropy (MCE) loss between the class prediction of the discriminator and the uniform
distribution. The goal is for the generator to make the generations hard to classify by the
discriminator.

LMCE = −
∑
i

K∑
k=1

1

K
log

(
eDb,k(G(zi))∑K
q=1 e

Db,q(G(zi))

)
= −

∑
i

K∑
k=1

1

K
log(D̂i), (3.2)

where D̂i is the softmax of Db(G(zi)). In contrast to the CAN loss that treats every
classification independently, the MCE loss should better exploit the class information in
a global way.

3.3.3 Generation architectures
We experiment using three architectures : modified versions of the DCGAN model (Rad-
ford et al., 2016), StackGANs (Zhang et al., 2017) with no text conditioning, and our
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proposed styleGAN which decomposes image generation into a 2-step shape and texture
generation.

DCGAN. The DCGAN generator’s architecture was only modified with more layers
to output 256×256 or 512×512 images. The discriminator architecture also includes these
modifications and contains additional classification branches depending on the employed
loss function.

Unconditional StackGAN. Conditional StackGAN (Zhang et al., 2017) has been
proposed to generate 256× 256 images conditioned on captions. The method first gener-
ates a low resolution 64 × 64 image conditioned on text. Then, the generated image and
the text are tiled on a 16 × 16 × 512 feature map extracted from the 64 × 64 generated
image to compute the final 256×256 image. We adapted the architecture by removing the
conditional units (i.e. the text) but realized that it did not perform well for our application.
The upsampling in Zhang et al. (2017) was based on nearest neighbors which we found
ineffective in our setting. Instead, we first generate a low resolution image from normal
noise using a DCGAN architecture (Radford et al., 2016), then conditioning on it, we
build a higher resolution image of 256 × 256 with a generator inspired from the pix2pix
architecture with 4 residual blocks (Isola et al., 2017). The upsampling was performed
using transposed convolutions.

StyleGAN1: Conditioning on masks. To grant more control on the design of new
items and get closer to standard fashion processes where shape and texture are handled
by different specialists, we also introduce a model taking binary masks representing a
desired shape in input. Since even for images on white background a simple threshold
fails to extract accurate masks, we compute them using the graph based random walker
algorithm (Grady, 2006).

Figure 3.2: From the segmented mask of a fashion item and different random vector z,
our StyleGAN model generates different styled images.

In the StyleGAN model, a generator is trained to compute realistic images from a
mask input and noise representing style information (see Fig. 3.2), while a discriminator is
trained to differentiate real from fake images. We use the same discriminator architecture

1this work was done prior to the publication of the similarly named Karras et al. (2019)
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as in DCGAN with classifier branches that learn shape and texture classification on the
real images on top of predicting real/fake discrimination.

Previous approaches of image to image translation such as pix2pix (Isola et al., 2017)
and CycleGAN (Zhu et al., 2017a) create a deterministic mapping between an input image
to a single corresponding one, i.e. edges to handbags for example or from one domain
to another. This is due to the difficulty of training a generator with two different inputs,
namely mask and style noise, and making sure that no input is being neglected. In order
to allow sampling different textures for the same shape as a design need, we avoid this
deterministic mapping by enforcing an additional `1 loss on the generator:

Lrec =
∑
i

∑
p∈P

|G(mi,p, zi = 0)−mi,p|, (3.3)

where mi,p denotes the mask of a sample image xi at pixel p, and P denotes the set
of pixels of mi. This loss encourages the reconstruction of the input mask in case of null
input z (i.e. zeros) and hence ensures the impact of the mask in the generations.

3.3.4 Experiments and results
After presenting our datasets, we describe some automatic metrics we found useful to sort
models in a first assessment, present quantitative results followed by our human experi-
ments that allow us to identify the best models.

Dataset Unlike similar work focusing on fashion item generation (Lassner et al., 2017;
Zhu et al., 2017c), we choose datasets which contain fashion items in uniform background
allowing the trained models to learn features useful for creative generation without gen-
erating wearers face and the background. We augment each dataset five times by jittering
images with random scaling and translations.

The RTW dataset. We have at our disposal a set of 4157 images of Ready To Wear
(RTW) items of size 3000×3760. Each piece is displayed on a uniform white background.
These images are classified into seven clothes categories: jackets, coats, shirts, tops, t-
shirts, dresses and pullovers, and seven texture categories: uniform, tiled, striped, animal
skin, dotted, print and graphical patterns.

Attribute discovery dataset. We extracted from the attribute discovery dataset (Berg
et al., 2010) 5783 images of bags, keeping for our training only images with white back-
ground. There are seven different handbags categories: shoulder, tote, clutch, backpack,
satchel, wristlet, hobo. We also classify these images by texture into the same seven
texture classes as the RTW dataset.

Automatic evaluation metrics Training generative models on fashion datasets gener-
ates impressive designs mixed with less impressive ones, requiring some effort of visual
cherry-picking. We propose some automated criteria to evaluate trained models and com-
pare different architectures and loss setups. Later, we study how these automatic metrics
correlate with the human evaluation of generated images.

Evaluating the diversity and quality of a set of images has been tackled by scores such
as the inception score and variants like the AM score (Zhou et al., 2017). We adapt both of
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Figure 3.3: From the mask of a garment, our StyleGAN model generates different styled
images for each style noise.

them for our two attributes specific to fashion design (shape and texture) and supplement
them by a mean nearest neighbor distance. Our final set of automatic scores contains ten
metrics:

• Shape score and texture score, each based on a Resnet-18 classifier of (shape or
texture respectively);

• Shape AM score and texture AM score, based on the output of the same classifiers;
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• Distance to nearest neighbors images from the training set;
• Texture and shape confusion of classifier;

Inception-like scores. The Inception score (Salimans et al., 2016; Warde-Farley and
Bengio, 2017) was introduced as a metric to evaluate the diversity and quality of gener-
ations, with respect to the output of a considered classifier (Szegedy et al., 2017). For
evaluating N samples {x}N1 , it is computed as

Iscore({x}N1 ) = exp(E[KL(c(x)||E[c(x)])])),

where c(x) is the softmax output of the trained classifier c, originally the Inception
network.

Intuitively, the score increases with the confidence in the classifier prediction (low en-
tropy score) of each image and with the diversity of all images (high overall classification
entropy). In this paper, we exploit the shape and texture class information from our two
datasets to train two classifiers on top of Resnet-18 (He et al., 2015a) features, leading to
the shape score and texture score.

AM scores. We also use the AM score proposed in Zhou et al. (2017). It improves
over the inception score by taking into consideration the distribution of the training sam-
ples x̄ as seen by the classifier c, which we denote c̄train = E[c(x̄)]. The AM score is
calculated as follows:

AMscore({x}N1 ) = E[KL(c̄train||c(x)]−KL(c̄train||E[c(x)])]

The first term is maximized when each of the generated samples is far away from
the overall training distribution, while the second term is minimized when the overall
distribution of the generations is close to that of the training. In accordance with Zhou
et al. (2017), we find that this score is more sensible as it accounts for the training class
distribution.

Nearest neighbors distance. To be able to assess the creativity of the different mod-
els while making sure that they are not reproducing training samples, we compute the
mean distance for each sample to its retrieved k-Nearest Neighbors (NN), with k = 10,
as the Euclidean distance between the features extracted from a Resnet18 pre-trained on
ImageNet (He et al., 2015a) by removing its last fully connected layer. These features are
of size 512. This score gives an indicator of the similarity to the training data. A high NN
distance may either mean that the generated images have some artifacts, in this case, it
could be seen as an indicator of failure, or it could mean that the generation is novel and
highly creative.

We experiment using weights λGe of 1 and 5 for the MCE novelty loss. It appeared
that the weight 1 worked better for the bags dataset, and 5 for the RTW dataset. We also
tried different weights for the CAN and SM loss but they did not have a large influence
on the results and was fixed to 1. All models were trained using the default learning rate
0.002 as in Radford et al. (2016). Our different models take about half a day to train on
four Nvidia P100 GPUs for 256 × 256 models and almost two days for the 512 × 512
ones. In our study, it was more convenient from a memory and computational resources
standpoint to work with 256×256 images but we also provide 512×512 results in Fig. 3.1
to demonstrate the capabilities of our approach. For each setup, we manually select four



42 CHAPTER 3. ORIGINAL IMAGE GENERATION

Figure 3.4: First column: random generations by the GAN MCE shape model. Four left
columns: Retrieved Nearest Neighbors for each sample.

saved models after a sufficient number of iterations. Our models produce plausible results
after training for 15000 iterations with a batch size of 64 images.

Table 3.2 presents shape and texture classifier confidence C scores, AM scores (for
shape and texture), average NN distances computed for each model on a set of 100 ran-
domly selected images. Our first observation is that the DCGAN model alone seems to
perform worse than all other tested models with the highest NN distance and lower shape
and texture scores. The value of the NN distance score may have different meanings. A
high value could mean an enhanced creativity of the model, but also a higher failure rate.

For the RTW dataset, the two models having high AM texture score, and high NN
distances scores are DCGAN with MCE loss models and Style CAN with texture novelty.
On the handbags datasets, the models obtaining the best metrics overall are the DCGAN
with MCE novelty losses texture alone or on shape and texture. To show that our models
are not reproducing exactly samples from the dataset, we display in Fig. 3.4 results from
the model having the lowest NN distance score, with its four nearest neighbors. We note
that even if uniform bags tend to be similar to training data, complex prints show high
differences. These differences are amplified on the RTW dataset.

Creating evaluation sets.
To automatically access the best generations from each model, we extract different

clusters of images with particular visual properties that we want to associate with realism,
overall appreciation and novelty. Given the selected models, 10000 images are generated
from random numbers – or randomly selected masks for the styleGAN model – to produce
8 sets of 100 images each. Based on the shape entropy, texture entropy and mean nearest
neighbors distance of each image we can rank the generations and select the ones with
(i) high/low shape entropy, (ii) high/low texture entropy, (iii) high/low NN distance to
real images. We also explore random and mixed sets such as low shape entropy and
high nearest neighbors distance. We expect such a set to contain plausible generations
since low shape entropy usually correlates with well defined shapes, while high nearest
neighbor distance contains unusual designs. Overall, we have 8 different sets that may
overlap. We choose to evaluate 100 images for each set.

Human study We perform a human study where we evaluate different sets of genera-
tions of interest on a designed set of questions in order to explore the correlations with
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C sh AM sh C tex AM tex NN
GAN 0.26 7.88 0.39 2.07 14.2
GAN classif 0.27 9.78 0.58 1.58 13
GAN MCE sh 0.31 8.22 0.59 1.69 13.1
GAN MCE tex 0.25 8.05 0.59 2.33 13.8
GAN MCE shTex 0.21 8.96 0.49 1.45 13.3
CAN sh 0.27 8.52 0.48 1.86 13.2
CAN tex 0.29 8.40 0.48 2.24 13.4
CAN shTex 0.19 10.1 0.46 2.39 13.2
StackGAN 0.25 8.82 0.52 1.95 12.9
StackGAN MCE sh 0.27 8.16 0.64 2.03 13.6
StackGAN MCE tex 0.26 8.55 0.63 1.68 13.2
StackGAN MCE shTex 0.27 7.90 0.71 1.91 13.6
StackCAN sh 0.20 8.96 0.67 1.46 12.7
StackCAN tex 0.22 9.45 0.49 2.32 13.2
StackCAN shTex 0.26 8.11 0.67 2.07 13.4
Style GAN 0.25 8.24 0.52 1.76 13.7
Style CAN tex 0.29 7.93 0.48 2.05 13.9
Style GAN MCE tex 0.34 7.35 0.49 1.49 13.4

(a) Ready To Wear dataset

C sh AM sh C tex AM tex NN
GAN 0.43 3.65 1.71 1.57 20.8
CAN tex 0.35 4.29 1.79 1.60 21.4
CAN sh 0.39 4.23 1.88 1.26 21
CAN sh tex 0.39 3.93 1.89 1.56 21.1
GAN MCE tex 0.34 4.38 1.99 1.60 21.6
GAN MCE sh 0.38 4.15 1.98 1.84 20.8
GAN MCE sh tex 0.42 3.73 2.00 1.80 21

(b) Attribute bags dataset

Table 3.2: Quantitative evaluation on the RTW dataset and bag datasets. For better read-
ability we only display metrics that correlate most with human judgment. Higher scores,
highlighted in bold, are usually preferred.

each of the proposed automatic metrics in choosing best models and ranking sound gener-
ations. As our RTW garment dataset could not be made publicly available, we conducted
two independent studies:

1. In our main human evaluation study, 800 images — selected as described in the pre-
vious section — per model were evaluated, each image evaluated by five different
persons. There were on average 90 participants per model assessment, resulting on
average to 45 images assessed per participant. Since the assessment was conducted
given the same conditions for all models, we are confident that the comparative study
is fair. Each subject is shown images from the 8 selected sets described in the previous
section and is asked six questions:

• Q1: how do you like this design overall on a scale from 1 to 5?
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Figure 3.5: Best generations of handbags as rated by human annotators. Each question is
in a row. Q1: overall score, Q2: shape novelty.

• Q2/Q3: rate the novelty of shape (Q2) and texture (Q3) from 1 to 5.
• Q4/Q5: rate the complexity of shape (Q4) and texture (Q5) from 1 to 5.
• Q6: Do you think this image was created by a fashion designer or generated by a

computer? (yes/no)

Each image is annotated by taking the average rating of five annotators.

2. We conducted another study in our lab were we mixed both generations (500 total im-
ages picked randomly from 5 best models) and 300 real down-sampled images from
the RTW dataset. We asked if the images were real or generated to about 45 partici-
pants who rated 20 images each on average. We obtain 20% of the generations thought
to be real, and 21.5% of the original dataset images were considered to be generated.

Going from a score of 64% to more than 75% in likabity from classical GANs to
our best model with shape novelty is a great improvement over the baseline model. Our
proposed Style GAN and StackGAN models are producing competitive scores compared
to the best DCGAN setups with high overall scores. In particular, our proposed StyleGAN
model with novelty loss is ranked in the top-3, some results are presented in Fig. 3.3. We
display images which obtained the best scores for each of the 6 questions in Fig. 3.6, and
some results of handbags generation in Fig. 3.5.

Correlations between human evaluation and automatic scores.
From Table 3.3, we see that the automatic metrics that correlate the most with the

overall likability are the classifiers confidence scores, the inception texture score, and the
average intensity.

3.4 Image search and composition for visual blends cre-
ation

3.4.1 Related work
Visual blends creation. Many works have addressed the challenge of visual blends
creation. Steinbrück (2013) describes a method based on geometrical shape correspon-
dence and object semantics to replace objects with new retrieved ones. Similarly, Chilton
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Figure 3.6: Best generations of RTW items as rated by human annotators. Each question
is in a row. Left: Q1: overall score, Q2: shape novelty, Q3: shape complexity, Right: Q4:
texture novelty, Q5: texture complexity, Q6: Realism.

et al. (2019) propose a shape based algorithm for finding and matching objects to blend
together with a handcrafted blending synthesis method. Xiao et al. (2015) present Vis-
mantic, a framework for generating image compositions based on a textual input, in order
to express a specific meaning, using semantic associations and basic visual operations
such as juxtaposition, replacement or fusion. Recently, Cun and Pun (2020) provide a de-
tailed outline for building visual blendings with a strong conceptual grounding, without
implementing that framework. In contrast to these methods, we do not use textual input
to create visual compositions, but use both perceptual similarity and object semantics to
suggest relevant compositions. Moreover, we propose a new image composition method
based on recent advances in visual blending methods.

Searching for relevant objects to replace an existing one have been tackled in other
works without the aim of creating visual blends. Tsai et al. (2016) present a pipeline for
sky replacement to search for proper skies and perform a semantic-aware color transfer.
Chen et al. (2009) construct a photomontage from a sketch by searching for candidate im-
ages matching the provided text label and performing the composition. Zhao et al. (2019)
instead search for foreground objects that are semantically compatible with a background
image given the category of the object to find.

Image blending. Early works on automatic image composition (Burt and Adelson,
1983; Milgram, 1975) use a multi-resolution image representation to create large mosaics
of images. The seminal work of Poisson image blending (Pérez et al., 2003) proposes
an elegant mathematical formulation based on solving Poisson equations to seamlessly
blend images in the gradient domain. Several works improved the Poisson blending ap-
proach (Jia et al., 2006; Tao et al., 2010), which remains a very strong baseline for image
composition.

Another line of work has tackled reducing the color discrepancy between composited
images. Traditional image harmonization methods focused on better matching low level
statistics between source and target images (Xue et al., 2012; Lalonde and Efros, 2007).
Xue et al. (2012) identify image statistics that are correlated with composite realism such
as luminance, saturation, contrast, while Lalonde and Efros (2007) study color statistics
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Human over- shape shape tex. tex. real
Auto all nov. comp. nov. comp. fake
I sh score 0.43 0.65 0.67 0.33 0.60 0.30
AM sh score 0.46 0.66 0.68 0.38 0.64 0.28
C sh score 0.48 0.51 0.55 0.34 0.50 -0.06
I tex score 0.48 0.63 0.62 0.30 0.55 0.28
AM tex score 0.37 0.47 0.46 0.16 0.42 0.22
C tex score 0.48 0.67 0.71 0.48 0.64 0.27
N10 0.46 0.63 0.65 0.33 0.58 0.23

Human over- shape shape tex. tex. real
Auto all nov. comp. nov. comp. fake
coat 0.14 0.37 0.43 0.21 0.34 0.27
top -0.15 0.12 0.16 0.18 0.07 -0.08
shirt 0.43 0.46 0.37 0.07 0.30 0.21
jacket 0.27 0.36 0.31 0.08 0.28 -0.02
t-shirt 0.44 0.49 0.43 0.31 0.49 0.08
dress 0.40 0.49 0.57 0.36 0.53 0.12
pullover 0.24 0.41 0.50 0.32 0.47 0.33
dotted 0.41 0.35 0.40 0.26 0.32 0.25
striped 0.20 0.16 0.15 0.08 0.21 0.11
print 0.42 0.31 0.26 0.30 0.35 -0.04
uniform 0.31 0.51 0.54 0.26 0.51 0.13
tiled 0.23 0.17 0.14 -0.08 -0.01 0.22
skin -0.03 0.32 0.32 0.30 0.17 0.17
graphical 0.34 0.46 0.47 0.17 0.46 0.20

Table 3.3: Correlation scores between human evaluation ratings and automatic scores on
the set of randomly sampled images of all models.

on a large dataset of realistic and unrealistic images to improve composites and discrimi-
nate unrealistic ones.

More recently, color harmonization (Cohen-Or et al., 2006) can be performed using
deep learning methods Yan et al. (2015); Tsai et al. (2017); Cun and Pun (2020) that
learn appearance adjustment using end-to-end networks. Recently, Cong et al. (2020)
contributed a large-scale color harmonization dataset and a network to reduce foreground
and background color inconsistencies.

In addition to color adjustment, some works study the geometric corrections necessary
to place the new object in its new context. Using spatial transformer networks (Jaderberg
et al., 2015), a differentiable module for sampling an image through an affine transformed
grid, several works such as Lin et al. (2018) learn affine transformations to adjust the
foreground position and reduce the geometric inconsistency between the source and the
target images. While previous methods insert an object on an empty background image
and focus on color harmonization, GCC-GAN (Chen and Kae, 2019) introduce a deep
learning model based on predicting color and geometric adjustment for replacing a given
object with a new one in addition to inpainting missing empty regions. Finally, performing
using copy pasting for image composition has been enhanced with refined mask prediction
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of the foreground as in Arandjelović and Zisserman (2019).
Assessing the realism of generated composite images is a challenge. RealismCNN

(Zhu et al., 2015) propose a learning based approach to discriminate real images from
composite ones by predicting a realism score while RGB-N (Zhou et al., 2018) introduce
a two-stream Faster R-CNN network to detect the tampered regions given a manipulated
image which we use in our study.

3.4.2 Foreground selection and image composition

(a) Class similarity

(b) Instance similarity

Figure 3.7: Overview of the class and instance similarity based foreground selection meth-
ods. From each class we keep the closest foreground. While instance similarity ranks the
classes by local foreground similarity, class similarity instead ranks them with their dis-
tance to the query class.

Our approach relies on two key components; searching for suitable foregrounds to re-
place a selected one and performing image composition automatically. We first search for
visually similar foregrounds from different classes, leading to placing objects in uncom-
mon contexts. We then design an image composition model similar to the one proposed in
GCC-GAN (Chen and Kae, 2019), where we apply affine geometric and color transforma-
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tions to the foreground before pasting it on the inpainted background. In the following, we
assume we have access to a dataset of centered segmented objects with class annotations.

Foreground selection To find visually similar but semantically different foregrounds
for a given query image, we search foregrounds of different semantic classes with the
most similar features. Using local features allows us to have an object similarity with
more emphasis on the shape similarity than using global pooled features. We found that
masking out the background of each object when computing local features leads to re-
trieving similar objects with similar masks, which is useful for visual blending through
object replacement. We use the layer3 features of a ResNet-50 trained on the images
from ImageNet (Deng et al., 2009b) using MoCoV2 (Chen et al., 2020). To limit the
memory footprint and computational cost, we reduce the dimension of each local feature
from 1024 to 50 using Principal Component Analysis. Each local feature is `2 normal-
ized. Each foreground is then represented by a 14× 14× 50 feature map. Given a query
foreground object, we search the index and keep only the closest foreground from each
class for our analysis as visualized in Fig. 3.7.

More formally, given a query image Iq and the associated binary mask Mq, we select
for each class c the image Ic and mask Mc defined by:

(Ic,Mc) = arg max(I,M)∈Dc
〈f(IqMq), f(IM)〉 (3.4)

where f is our feature extraction and Dc the set of pairs of image and mask associated to
class c. To enable fast online search, we build an index from pre-computed local features
using the FAISS library (Johnson et al., 2017) and search for similar foregrounds using
the inner product between the flattened features.

In our analysis, we consider two ranking setups to select the pairs (Ic,Mc) to use for
our composition, based on the visual similarity of foregrounds as described above and
on a distance between the different classes, both setups are explained in Fig. 3.7. For
the first one, dubbed instance similarity, we rank the images according to their distance
to the query, similar to equation 3.4 and we select the closest foreground in each class.
For the second one, dubbed class similarity, we instead use the similarity of the average
feature of each class 1

|Dc|
∑

(I,M)∈Dc
f(IqMq), where |Dc| is the number of images in Dc

with the average feature of the query class. While in the first setup we focus on the visual
foreground similarity to rank the images, in the second one instead we rank the closest
objects according to the average similarity of the class, introducing a notion of semantics
in the similarity.

Image composition Here, we assume we want to create a composite image using the
foreground object of image F associated with the mask MF and the background image
B excluding the object defined by the mask MB. We consider a composition framework
that predicts geometric and color corrections and applies them to the foreground object,
similar to GCC-GAN (Chen and Kae, 2019). We use affine transformations for both the
spatial and color components. Particularly, we use spatial transformers (Jaderberg et al.,
2015) as a differentiable module to spatially transform the foreground object, and denote
T and C respectively the spatial and color transformations applied to the foreground. We
denote by g the network predicting the spatial and color transformation parameters θST
and θC , it takes as input the concatenation of the masked foreground FMF and the masked
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Figure 3.8: Overview of our image composition pipeline. We learn a model that pre-
dicts spatial and color corrections θST and θC respectively on synthetic examples. We
apply these parameters using spatial transformers (Jaderberg et al., 2015) and an affine
color transformation in RGB space, before blending the transformed foreground onto the
inpainted background.

backgroundB(1−MB). We use the same architecture for g as in Lin et al. (2018). While,
T and C are differentiable and have no trainable parameters, they take as input θST and
θC . Fig. 3.8 illustrates our entire composition pipeline.

At test time, to compose our final image, we first compute the spatial and color trans-
formation parameters θST and θC using the network g as shown in Eq. 3.5 to define a
transformed foreground image F̂ and a transformed foreground mask M̂F as in Eq. 3.6.

θST , θC = g(FMF , B(1−MB)) (3.5)

F̂ = C(T (F, θST ), θC) and M̂F = T (MF , θST ) (3.6)

We then use the network InpaintNet from Yu et al. (2019) to inpaint the background
into InpaintNet(B(1−MB),MB). Finally, we compose the transformed foreground image
and the background image into a final composite image:

F̂ M̂F + (1− M̂F )InpaintNet(B(1−MB),MB) (3.7)

We train g by creating synthetic examples as follows and as shown in Fig. 3.9: as-
suming we have access to segmented objects, we first extract an object and use its mask
to create both foreground and background images; we then erode the border of both the
foreground and background and jitter the foreground image using random affine color
and spatial transformations obtained from a normal distribution N (0, 0.1) as perturba-
tions from the identity of each transform. We use two different losses for the spatial
and color transformation prediction. For the spatial part, we simply minimize the `2 dis-
tance between the predicted and target parameters to undo the spatial perturbation. For
the color, such an error was not representative of the visual similarity between the trans-
formed images. We use instead the `1 distance between the original foreground and the
corrected one using the predicted color transformation. Note that mask erosion of the
foreground and background is important to remove obvious visual clues and to make the
training more challenging.
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Original Jittered Combined w. erosion

Figure 3.9: Examples of color and spatial random transformation used in our synthetic
dataset to train our model. From left to right, we show the original image, the jittered one,
and the overlap of eroded foreground and background that we input as six channels. The
top row shows color modification associated with mask erosion. While the bottom one
shows an example with spatial transformation jittering.

Note that our training and composition procedure are much simpler and more stable
than the one proposed in Chen and Kae (2019), which uses multiple adversarial losses
that we were unable to reproduce.

3.4.3 Experiments and results
In this section, we demonstrate the performance of our composition method by highlight-
ing the importance of using spatial and color corrections through comparison with base-
lines both using a tampering detection metric and visually. We then present the human
study that we perform to compare the two class sorting methods for selecting foregrounds
of our composites, and show images that obtained unanimous ratings in our human study.

Dataset In order to demonstrate our search and composition method, we use Open-
Images V6, a large collection of objects from diverse annotated classes with their mask
annotations. We subsample a set of relevant segments by filtering out small objects (
< 64×64 pixels) and images of low quality computed using the image quality estimation
network Koncept-512 (Hosu et al., 2020) leading to a dataset of 37 233 images from 319
object classes. Note that the quality of the obtained compositions heavily depend on the
diversity of annotations in the dataset, and that using a larger image set would definitely
lead to better image compositions.
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Original Composition Original Composition

Figure 3.10: Examples of obtained visual blends (right) and their original images (left)
using our search and composition method. Visual blends are usually used to challenge
and trigger thoughts or simply entertain. From left to right: Bagel/Wheel, Squirrel/Boy,
Nail/Mushroom, Lighthouse/Rocket.

Composition baselines We consider three baselines for our composition algorithm.
The first one is based on simple object copy pasting, enhanced with inpainting the re-
gion of the removed object. The two other baselines are based on Poisson image blend-
ing (Pérez et al., 2003). While this algorithm is designed for inserting a foreground object
on a background image, we adapt it with an inpainting step to fill in the removed ini-
tial object mask, we name this baseline “Poisson”. In the last enhanced baseline that we
name “ST+Poisson”, we apply our learned spatial transformation module to adjust the
foreground spatially, and blend it using Poisson blending.

Quantitative evaluation RGB-N score is a tampering detection score presented in Zhou
et al. (2018), it represents how realistic an image is by detecting tampered regions and av-
eraging their detection scores. In Table 3.4, we report this average over 1000 images
sampled from the top-10 compositions obtained with our two foreground ranking strate-
gies for our approach and the different baselines presented above. While copy pasting
composites are systematically detected as tampered ones, our composition method ob-
tains lower RGB-N score than all baselines both for top-10 compositions obtained with
class similarity or using instance similarity. Also, we note the very clear boost given by
our spatial transformation both with our composition method and the Poisson composition
baselines.

Qualitative comparison to composition baselines In Fig. 3.10, we show examples of
obtained visual blends and their original images. New foreground objects are visually
similar to the original object but from a semantically different class, leading to surpris-
ing and original compositions. In Fig. 3.11, we show a comparison of our composition
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Method Class sim. Instance sim.
Real images 59.24
Copy-paste 97.49 97.45
Poisson 73.06 72.55
ST+Poisson 65.42 64.02
Ours 58.01 56.95

Table 3.4: Tampering RGB-N scores for real and composite images computed over 1000
samples. (lower is better)

algorithm with the baselines including a simple object copy paste. Our model is trained
to undo synthetic affine color and spatial transformations, therefore, it predicts suitable
geometric and color transformations to adjust the spatial arrangement of the foreground
object and harmonize its appearance in the background image. On the contrary, the Pois-
son blending baseline suffers from color bleeding and is unable to resize and place the
foreground object.

Human study We design an experiment where human raters are asked to evaluate dif-
ferent compositions obtained from the same original image. The goal is to understand how
real, surprising and liked our compositions are given the class selection strategy for the
new foreground. We thus rank the candidate classes either using our instance similarity or
our class similarity strategy. For each annotation task, we sample four composite images
from four groups defined by the rank of the selected composition (between 1 and 5, 6 and
10, 11 and 20 or above 20). For each of the class selection strategies, we randomly sample
200 tasks obtained from the same original images, and each task is presented to 5 differ-
ent raters, leading to 1000 task evaluations per class selection strategy. Raters are shown
the original image and four shuffled compositions and asked to select the most surprising
composition, the one they like the most and the most realistic one independently.

In Fig. 3.12, we compare the ratings obtained by each group and for each search
method; using class similarity or instance similarity to rank the selected foregrounds.
We observe a much clearer correlation of the surprise and realism ratings with the rank
groups from the class similarity selection - smaller ranks corresponding to more realistic
and less surprising compositions - while little correlations are observed with the instance
similarity. The observed correlations for class similarity are significant, as checked using
a Pearson’s Chi-squared test with p-values (0.002 for likeability, < 0.001 for surprise and
< 0.001 for realism). Instead, using instance similarity foreground ranking method, only
the correlation with realism is significant with a p-value of 0.002, the other p-values being
larger than 0.05. We show examples of images with unanimous ratings in Fig. 3.13. We
observe in these examples that composites generated by our method can be very realistic,
by replacing foreground objects in similar contexts (birds or animals replacements). In
contrast, when the foreground class is picked far from the original one, the context may
be very different, resulting in surprising results (e.g. giraffe in the city, crocodile in plate).
The most liked compositions, more difficult to analyze, can be explained in some cases
by a judgment of the image aesthetic, or preference for some object class.
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B F Copy-paste Poisson ST+Poisson Ours

Figure 3.11: Comparison to baselines. Our model is able to place the foreground object
and adjust its appearance so that it is blended seamlessly in the new context.
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Figure 3.12: Human study: comparing realism, likeability, and surprise ratings for com-
positions obtained with class or instance similarity ranking. We represent the proportion
of each group in being selected as real, liked or surprising on 1000 tasks.

3.5 Conclusion

We presented two different approaches for novel image generation by leveraging both
generative models and image composition techniques. First, using generative adversarial
networks, we propose a model for generating original garment images from a clothing
dataset by introducing a specific conditioning on texture and shape elements. Adding
novelty losses allows the learning to deviate from a reproduction of the training set and
the generation of high resolution, realistic and novel designs, as reflected by our human
study.

Second, using image search and an image composition model we are able to suggest
realistic and surprising visual blends using visual similarity and blending methods. Our
approach simplifies image composition by considering color and spatial adaptations that
are trained synthetically in parallel with a state-of-the-art inpainting model for a seamless
foreground blending.

Based on human studies, we observe that our proposed models are able to generate
realistic images with a high likeability and surprise score. In visual blends generation, our
human study shows that we can control the realism, likeability and surprise by considering
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Original Most liked Original Most surprising Original Highest realism

Figure 3.13: Composite images and their original ones selected through our human study
with the most liked, most surprising or highest realism ratings. By pairs, the left columns
represent the original images and the right ones our composites. Images that we show
have at least 4 unanimous ratings among 5 raters.
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class similarity instead of foreground similarity alone.
Finally, we believe that using recent image generation models conditioned on natural

language could be a great advance in visual metaphor generation and novel generation of
fashion designs.
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Chapter 4

Image generation in multiple vector
layers

4.1 Abstract

Deep image generation is becoming a tool to enhance artists and designers creativity po-
tential. In this chapter, we aim at making the generation process more structured and
easier to interact with. Inspired by vector graphics systems, we propose a new deep im-
age reconstruction paradigm where the outputs are composed from simple layers, defined
by their color and a vector transparency mask. This presents a number of advantages com-
pared to the commonly used convolutional network architectures. In particular, our lay-
ered decomposition allows simple user interaction, for example to update a given mask, or
change the color of a selected layer. From a compact code, our architecture also generates
vector images with a virtually infinite resolution, the color at each point in an image be-
ing a parametric function of its coordinates. We validate the efficiency of our approach by
comparing reconstructions with state-of-the-art baselines given similar memory resources
on CelebA and ImageNet datasets. Most importantly, we demonstrate several applications
of our new image representation obtained in an unsupervised manner, including editing,
vectorization and image search.

Keywords: vector graphics, image reconstruction, image editing, image generation.

4.2 Introduction

Deep image generation models demonstrate breathtaking and inspiring results, e.g. (Zhu
et al., 2017a,b; Karras et al., 2019; Brock et al., 2019), but usually offer limited control
and little interpretability. It is indeed particularly challenging to learn end-to-end editable
image decomposition without relying on either expensive user input or handcrafted image
processing tools. In contrast, we introduce and explore a new deep image generation
paradigm, which follows an approach similar to the one used in interactive design tools.
We formulate image generation as the composition of successive layers, each associated
to a single color. Rather than learning high resolution image generation, we produce
a decomposition of the image in vector layers, that can easily be used to edit images
at any resolution. We aim at enabling designers to easily build on the results of deep

57
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Figure 4.1: Our system learns in an unsupervised manner a decomposition of images as
superimposed α-channel masks (top) that can be used for quick image editing (bottom).
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image generation methods, by editing layers individually, changing their characteristics,
or intervening in the middle of the generation process.

Our approach is in line with the long standing Computer Vision trend to look for a
simplified and compact representation of the visual world. For examples, in 1971 Bin-
ford (Binford, 1971) proposes to represent the 3D world using generalized cylinders and
in 1987 the seminal work of Biederman (Biederman, 1987) aims at explaining and in-
terpreting the 3D world and images using geons, a family of simple parametric shapes.
These ideas have recently been revisited using Neural Networks to represent a 3D shape
using a set of blocks (Tulsiani et al., 2017) or, more related to our approach, a set of
parametric patches (Groueix et al., 2018). The idea of identifying elementary shapes and
organizing them in layers has been successfully applied to model images (Adelson, 1991;
Isola and Liu, 2013) and videos (Wang and Adelson, 1994). A classical texture genera-
tion method, the dead leaves model (Lee et al., 2001) which creates realistic textures by
relying on the iteration of simple patterns addition, is particularly related to our work.

We build on this idea of composing layers of simple primitives in order to design a
deep image generation method, relying on two core ingredients. First, the learning of
vector transparency masks as parametric continuous function defined on the unit square.
In practice, this function is computed by a network applied at 2D coordinates on a square
grid, to output mask values at each pixel coordinates. Second, a mask blending module
which we use to iteratively build the images by superimposing a mask with a given color
to the previous generation. At each step of our generation process, a network predicts both
parameters and color for one mask. Our final generated image is the result of blending
a fixed number of colored masks. Figure 4.1 shows the reconstruction from the mask
decomposition and sample image editing we can perform. One of the advantages of this
approach is that, differently to most existing deep generation setups where the generation
is of fixed size, our generations are vector images defined continuously, and thus have
virtually infinite resolution. Another key aspect is that the generation process is easily
interpretable, allowing simple user interaction.

To summarize, our main contribution is a new deep image generation paradigm which:

• builds images iteratively from masks corresponding to meaningful image regions,
learned without any semantic supervision.

• is one of the first to generate vector images from a compact code.

• is useful for several applications, including image editing using generated masks,
image vectorization, and image search in mask space.

Our code is available1.

4.3 Related work
We begin this section by presenting relevant works on image vectorization, then focus on
most related unsupervised image generation strategies and finally discuss applications of
deep learning to image manipulation.

1http://imagine.enpc.fr/~sbaio/pix2vec/
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Vectorization. Many vector-based primitives have been proposed to allow shape edit-
ing, color editing and vector image processing ranging from paths and polygons filled
with uniform color or linear and radial gradients (Richardt et al., 2014; Favreau et al.,
2017), to region based partitioning using triangulation (Demaret et al., 2006; Liao et al.,
2012; Duan and Lafarge, 2015), parametric patches (Bezier patches) (Xia et al., 2009)
or diffusion curves (Orzan et al., 2008). We note that traditionally, image vectorization
techniques were handcrafted using image smoothing and edge detectors. In contrast, our
approach parametrizes the image using a function defined by a neural network.

Differentiable image parametrizations with neural networks were first proposed in Stan-
ley (2007) which introduced Compositional Pattern Producing Networks (CPPNs) that are
simply neural networks that map pixel coordinates to image colors at each pixel. The
architecture of the network determines the space of images that can be generated. Since
CPPNs learn images as functions of pixel coordinates they provide the ability to sample
images at high resolution. The weights of the network can be optimized to reconstruct
a single image (Karpathy, 2015) or sample randomly in which case each network results
in abstract patterns (Ha, 2016a). In contrast with these approaches, we propose to learn
the weights of this mapping network and condition it on a an image feature so that it can
generate any image without image-specific weight optimization. Similarly, recent works
have modeled 2D and 3D shapes using parametric and implicit functions (Groueix et al.,
2018; Mescheder et al., 2019; Park et al., 2019a; Chen and Zhang, 2019). While previous
attempts to apply this idea on images has focused on directly generating images on simple
datasets such as MNIST (Ha, 2016b; Chen and Zhang, 2019), we obtain a layer decom-
position allowing various applications such as image editing and retrieval on complex
images.

Deep, unsupervised, sequential image generation.
We now present deep unupervised sequential approaches to image generation, the

most related to our work. Rolfe and LeCun (2013) use a recurrent auto-encoder to recon-
struct images iteratively, and employs a sparsity criterion to make sure that the image parts
that are added at each iteration are simple. A second line of approaches (Gregor et al.,
2015; Eslami et al., 2016; Gregor et al., 2016) are designed in a VAE framework. Deep
Recurrent Attentive Writer (DRAW) (Gregor et al., 2015) frame a recurrent approach us-
ing reinforcement learning and a spatial attention mechanism to mimic human gestures.
A potential application of DRAW arises in its extension to conceptual image compres-
sion (Gregor et al., 2016), where a recurrent convolutional and hierarchical architecture
allows to obtain various levels of lossy compressed images. Attend, Infer, Repeat (Eslami
et al., 2016) models scenes by latent variables of object presence, content, and position.
The parameters of presence and position are inferred by an RNN and a VAE decodes the
objects one at a time to reconstruct images. A third strategy for learning sequential gen-
erative models is to employ adversarial networks. Ganin et al. (2018) employ adversarial
training in a reinforcement learning context. Specifically, their method dubbed SPIRAL,
trains an agent to synthesize programs executed by a graphic engine to reconstruct im-
ages. The Layered Recursive GANs (Yang et al., 2017) learn to generate foreground and
background images that are stitched together using STNs to form a consistent image. Al-
though presented in a generic way that generalizes to multiple steps, the experiments are
limited to foreground and background separation, made possible by the definition of a
prior on the object size contained in the image. In contrast, our method (i) does not rely
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Figure 4.2: Our iterative generation pipeline for image reconstruction of target I . The
previous canvas It−1 (I0 can be initialized to a random uniform color) is concatenated
with I and forwarded through a ResNet feature extractor, to obtain a color ct and mask
parameters pt. A Multi Layer Perceptron f generates a parametric mask Mt from pixel-
wise coordinates of a 2D grid and mask parameters pt. Our Mask Blending Module (in
green) finally blends this mask with its corresponding color to the previous output It−1.

on STNs; (ii) extends to tens of steps as demonstrated in our experiments; (iii) relies on
simple architectures and losses, without the need of LSTMs or reinforcement learning.

Image manipulation. Some successful applications of deep learning to image ma-
nipulation have been demonstrated, but they are usually specialized and offer limited user
interaction. Image colorization (Zhang et al., 2016) and style transfer (Gatys et al., 2016)
are two popular examples. Most approaches that allow user interaction are supervised.
Zhu et al. (2016) integrate user constraints in the form of brush strokes in GAN gener-
ations. More recently Park et al. (2019b) use semantic segmentation layouts and brush
strokes to allow users to create new landscapes. In a similar vein, Bau et al. (2019) locate
sets of neurons related to different visual components of images, such as trees or artifacts,
and allows their removal interactively. Approaches specialized in face editing, such as
Shen et al. (2016) and Portenier et al. (2018) demonstrate the large set of photo-realistic
image manipulations that can be done to enhance quality, for instance background re-
moval or swapping, diverse stylization effects, changes of the depth of field of the back-
ground, etc. These approach typically require precise label inputs from users, or training
on heavily annotated datasets. Our approach provides an unsupervised alternative, with
similar editing capacities.

4.4 Layered Vector Image Generation

We frame image generation as an alpha-blending composition of a sequence of layers
starting from a canvas of random uniform color I0. Given a fixed budget of T iterations,
we iteratively blend T generated colored masks onto the canvas. In this section, we first
present our new architecture for vector image generation, then the training loss and finally
discuss the advantages of our new architecture compared to existing approaches.



62 CHAPTER 4. IMAGE GENERATION IN MULTIPLE VECTOR LAYERS

4.4.1 Architecture
The core idea of our approach is visualized in Fig. 4.2. At each iteration t ∈ {1...T}, our
model takes as input the concatenation of the target image I ∈ R3×W×H and the current
canvas It, and iteratively blends colored masks on the canvas resulting in It:

It = g(It−1, I), (4.1)

where g consists of:

(i) a Residual Network (ResNet) that predicts mask parameters pt ∈ RP , with the
corresponding color triplet ct ∈ R3,

(ii) a mask generator module f , which generates an alpha-blending mask Mt from the
parameters pt, and

(iii) our mask blending module that blends the masks Mt with their color ct on the
previous canvas It−1.

We represent the function f generating the mask Mt from pt as a standard Multi-
Layer Perceptron (MLP), which takes as input the concatenation of the mask parameters
pt and the two spatial coordinates (x, y) of a point in image space. This MLP f defines
the continuous 2D function of the mask Mt by:

Mt(x, y) = f(x, y,pt). (4.2)

In practice, we evaluate the mask at discrete spatial locations corresponding to the
desired resolution to produce a discrete image. We then update It at each spatial location
(x, y) using the following blending:

It(x, y) = It−1(x, y).(1−Mt(x, y)) + ct.Mt(x, y), (4.3)

where It(x, y) ∈ R3 is the RGB value of the resulting image It at position (x, y). We
note that, at test time, we may perform a different number of iterations N than the one
during training T . Choosing N > T may help to model accurately images that contain
complex patterns, as we show in our experiments.

All the design choices of our approach are justified in detail in Section 4.4.3 and
supported empirically by experiments and ablations in Section 4.5.3.

4.4.2 Training losses
We learn the weights of our network end-to-end by minimizing a reconstruction loss be-
tween the target I and our result R = IT . We perform experiments either using an `1
loss, which enables simple quantitative comparisons, or a perceptual loss (Johnson et al.,
2016), leading to visually improved results. Our perceptual loss Lperc is based on the
Euclidean norm ‖.‖2 between feature maps φ(.) extracted from a pre-trained VGG16 net-
work and the Frobenius norm between the Gram matrices obtained from these feature
maps G(φ(.)):

Lperc = Lcontent + λLstyle,
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where
Lcontent(I, R) = ‖φ(I)− φ(R)‖2 ,

Lstyle(I, R) = ‖G(φ(I))−G(φ(R))‖F ,
and λ is a non-negative scalar that controls the relative influence of the style loss. To
obtain even sharper results, we may optionally add an adversarial loss. In this case, a
discriminator D is trained to recognize real images from generated ones, and we optimize
our generator G to fool this discriminator. We train D to minimize the non saturating
GAN loss from Goodfellow et al. (2014) with R1 Gradient Penalty loss (Mescheder et al.,
2018). The architecture of D is the patch discriminator defined in Isola et al. (2017).

4.4.3 Discussion

Architecture choices. Our architecture choices are related to desirable properties of the
final generation model:

Layered decomposition: This choice allows us to obtain a mask decomposition which
is a key component of image editing pipelines. Defining one color per layer, similar to
image simplification and quantization approaches, is important to obtain visually coherent
regions. We further show that a single layer baseline does not perform as well.

Vectorized layers: By using a lattice input for the mask generator, it is possible to
perform local image editing and generation at any resolution without introducing up-
sampling artifacts or changing our model architecture. This vector mask representation is
especially convenient for HD image editing.

Recursive vs one-shot: We generate the mask parameters recursively to allow the
model to better take into account the interaction between the different masks. We show
that a one-shot baseline, where all the mask parameters are predicted in a single pass leads
to worse results. Moreover, as mentioned above and demonstrated in the experiments,
our recursive procedure can be applied a larger number of times to model more complex
images.

Number of layers vs. size of the mask parameter. Our mask blending module itera-
tively adds colored masks to the canvas to compose the final image. The size of the mask
parameter p controls the complexity of the possible mask shapes, while the number of
masks controls the amount of different shapes that be used to compose the image. Since
we aim at producing a set of layers that can easily be used and interpreted by a human,
we use a limited number of strokes and masks.

Complexity of the mask generator network. Interestingly, if the network generating
the masks from the parameters was very large, it could generate very complex patterns. In
fact, one could show using the universal approximation theorem (Cybenko, 1989; Hornik,
1991) that, with a large number of hidden units in the MLP f , an image could be approxi-
mated with only three layers (N = 3) of our generation process, using one mask for each
color channel. Thus it is important to control the complexity of f to obtain meaningful
primitive shapes. For example, we found that replacing our MLP by a ResNet leads to
less interpretable masks (see Section 4.5.3 and Fig. 4.10).
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4.5 Experiments

Figure 4.3: Our editing interface using automatically extracted masks to bootstrap the
editing process.

In this section we first introduce the datasets, the training and network architecture
details, then we demonstrate the practical interest of our approach in several applications,
and justify the architecture choices in extensive ablation studies.

4.5.1 Datasets and implementation details

Datasets. Our models are trained on two datasets, CelebA (Liu et al., 2015) (202k im-
ages of celebrity faces) and ImageNet (Deng et al., 2009a) (1.28M natural images of 1000
classes), using images downsampled to 128× 128.

Training details. The parameters of our generator g are optimized using Adam (Kingma
and Ba, 2014) with a learning rate of 2× 10−4, β1 = 0.9 and no weight decay. The batch
size is set to 32 and training image size is fixed to 128× 128 pixel images.

Network architectures. The mask generator f consists of an MLP with three hidden
layers of 128 units with group normalization (Wu and He, 2018), tanh non-linearities, and
an additional sigmoid after the last layer. f takes as input a parameter vector p and pixel
coordinates (x, y), and outputs a value between 0 and 1. The parameter p and the color c
are predicted by a ResNet-18 network.

4.5.2 Applications

We now demonstrate how our image decomposition may serve different purposes such as
image editing, retrieval and vectorization.
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Figure 4.4: Some editings on CelebA and ImageNet, using little supervision (mask se-
lection in one click and new style/color selection). Note that the CelebA editings are
performed on 1024× 1024 images. Left: original; center: mask; right: edit.

Image editing. Image editing from raw pixels can be time consuming. Using our gener-
ated masks, it is possible to alter the original image by applying edits such as luminosity
or color modifications on the region specified by a mask. Fig. 4.3 shows an interface
we designed for such editing showing the masks corresponding to the image. It avoids
going through the tedious process of defining a blending mask manually. The learned
masks capture the main components of the image, such as the background, face, hairs,
lips. Fig. 4.4 demonstrate a variety of editing we performed and the associated masks.
Our approach works well on the CelebA dataset, and allows to make simple image modi-
fications on the more challenging ImageNet images. To optimize our results on ImageNet,
the edits of Fig. 4.4 are obtained by finetuning our model on images of each object class.

Attribute-based image retrieval. A t-SNE (Maaten and Hinton, 2008) visualization of
the mask parameters obtained on CelebA is shown in Fig. 4.5. Different clusters of masks
are clearly visible, for backgrounds, hairs, face shadows, etc. This experiment highlights
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Figure 4.5: t-SNE visualization of masks obtained from 5000 reconstructions on CelebA.

the fact our approach naturally extract semantic components of face images.
Our approach may be used in an image search content: given a query image, a user

can select a mask that displays a particular attribute of interest and search for images
which decomposition includes similar masks. Suppose we would like to retrieve pictures
of people wearing a hat as displayed in a query image, we can easily extract the mask
that corresponds to the hat in our decomposition and its parameters. Nearest neighbor
for different masks, using a cosine similarity distance between mask parameters p are
provided in Fig. 4.6. Note how different masks extracted from the same query image
lead to very different retrieved images. Such a strategy could potentially be used for
efficient image annotation or few-shot learning. We evaluated oneshot nearest neighbor
classification for the ”Wearing Hat” and ”Eyeglasses” categories in CelebA using the hat
and glasses examples shown in Fig. 4.6, and obtained respectively 34% and 49% average
precision. Results for eyeglasses attribute were especially impressive with 33% recall at
98% precision, compared to a low recall (less than 10% at 98% precision) for a baseline
using cosine distance between features of a Resnet18 trained on ImageNet.

Vector image generation. Producing vectorized images is often essential for design
applications. We demonstrate in Fig. 4.7(a) the potential of our approach for producing a
continuous vector image from a low resolution bitmap. Here, we train our network on the
MNIST dataset (28 × 28), but generate the output at resolution 1024 × 1024. Compared
to bilinear interpolation, the image we generate presents less artifacts.

We finally compare our model with SPIRAL (Ganin et al., 2018) on a few images from
CelebA dataset published in Ganin et al. (2018). SPIRAL is the approach the most closely



4.5. EXPERIMENTS 67

related to ours in the sense that it is an iterative deep approach for reconstructing an image
and extracting its structure only using a few color strokes and that it can produce vector
results. We report SPIRAL results using 20-step episodes. In each episode, a tuple of 8
discrete decisions is estimated, resulting in a total of 160 parameters for reconstruction.
Our results shown in Fig. 4.7(b) are obtained with a model using 10 iterations and 10 mask
parameters. Although we do not reproduce the stroke gesture for drawing each mask as it
is the case in SPIRAL, our results reconstruct the original images much better.

4.5.3 Architecture and training choices
L1, perceptual and adversarial loss. In Fig. 4.8, we show how the perceptual loss
allows to obtain qualitatively better reconstructions than these obtained with an `1 loss.
Training our model with an additional adversarial loss enhances further the sharpness of
the reconstructions.

In the remainder of this section, we trained our models with an `1 loss which results
in easier quality assessment using standard image similarity metrics.

Comparison to baselines. As discussed in Section 4.4.3, every component of our model
is important to obtain reconstructions similar to the target. To show that, we provide
comparisons between different versions of our model and baselines using PSNR and MS-
SSIM metrics. Each baseline consists of an auto-encoder where the encoder is a residual
network (ResNet-18, same as our model) producing a latent code z and different types of
decoders. The different baselines, depicted in Fig. 4.9 with a summary of their properties,
are designed to validate each component of our architecture:

A. ResNet AE: using as a decoder a ResNet with convolutions, residual connections,
and upsampling similarly to the architecture used in Miyato et al. (2018); Kurach
et al. (2019).

B. MLP AE: using as decoder an MLP with a 3×W ×H output.

C. Vect. AE: the decoder computes the resulting imageR as a function f of the coordi-
nates (x, y) of a pixel in image space and the latent code z as R(x, y) = f(x, y, z).
Here f is an MLP similar to the one used in our mask generation network, but with
a 3-channel output instead of a 1-channel as for the mask.

D. Ours One-shot: generates all the mask parameters pt and colors ct in one pass, in-
stead of recursively. The MLP then processes each pt separately leading to different
masks to be assembled in the blending module as in our approach.

E. Ours ResNet: using a ResNet decoder to generate masks Mt and otherwise similar
to our method, iteratively blending the masks with one color onto the canvas, in our
experiments we started with a black canvas.

Table 4.1 shows a quantitative comparison of results obtained by our model and base-
lines trained with `1 loss and for the same bottleneck |z| = 320. This corresponds to
a size of parameters of P = |z|/N − 3 where 3 is the number of parameters used for
color prediction. On both datasets, our approach (F) clearly outperforms the baselines
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which produce vector outputs, either in one layer (C) or with one-shot parameters predic-
tion (D). Interestingly, a parametric generation (C) is itself better than directly using an
MLP to predict pixel values (B). Finally, our approach (F) has quantitative reconstruction
results similar to the ResNet baselines (A and E).

However, our method has two strong advantages over Resnet generations. First, it
produces vector outputs. Second, it produces more interpretable masks. This can be seen
in Fig. 4.10 where we compare the masks resulting from (E) and (F). Our method (F)
captures much better the different components of face images, notably the hairs, while
the masks of (E) include several different component in the image, with a first mask
covering both hairs and faces.

ImageNet CelebA
PSNR MSSIM PSNR MSSIM

A. MLP AE 16.45 0.46 19.69 0.78
C. Vect. AE 17.95 0.62 20.99 0.82
D. Ours One-shot 20.00 0.77 23.13 0.89
E. Ours Resnet 21.05 0.82 24.67 0.92
F. Ours 21.03 0.82 24.02 0.90

Table 4.1: Comparing the quality of reconstruction on ImageNet and CelebA using a
bottleneck z of size 320 (10 masks for iterative approaches).

T = 5 T = 10 T = 20
One-shot Ours One-shot Ours One-shot Ours

PSNR 21.97 23.07 22.25 24.2 22.37 24
Time(h)
95%
PSNR

7.6 9.8 12.1 16.9 19.8 36.5

Testing
time
(ms)

12 32 18 65 31 129

Table 4.2: Comparison of our recursive strategy with the One-shot approach, in terms
of reconstruction quality (PSNR) and training time required to reach 95% of its best
achievable PSNR at full convergence on CelebA. The inference time does not exceeds
0.2 seconds.

Recursive setup and computational cost. There is of course a computational cost to
our recursive approach. In Table 4.2, we compare the PSNR and computation time for
the same total number of parameters (320) but using different number of masks T , both
for our approach and the one-shot baseline. Interestingly, the quality of the reconstruction
improves with the number of masks for both approaches, our approach being consistently
more than a point PSNR better than the one-shot baseline. However, as expected our
approach is slower than the baseline both for training and testing, and the cost increases
with the number of masks.

Table 4.3 evaluates the reconstruction quality when recomposing images at test time
with a larger number of masks N than the T = 10 masks used at training time. On both
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datasets, the PSNR increases by almost a point with additional masks. This is another
advantage of our recursive approach.

ImageNet CelebA
N 10 20 40 80 10 20 40 80
PSNR 20.97 21.72 21.83 21.84 24.02 24.82 24.86 24.86

Table 4.3: Forwarding more masks at test time improves reconstruction. These results
with N masks forwards are obtained with a model trained using T=10 masks (|z| = 320).

4.6 Conclusion
We have presented a new paradigm for image reconstruction using a succession of single-
color parametric layers. This decomposition, learned without supervision, enables image
editing from the masks generated for each layer.

We also show how the learned mask parameters may be exploited in a retrieval context.
Moreover, our experiments prove that our image reconstruction results are competitive
with convolution-based auto-encoders.

Our work is the first to showcase the potential of a deep vector image architecture for
real world applications. Furthermore, while our model is introduced in an image recon-
struction setting, it may be extended to adversarial image generation, where generating
high resolution images is challenging. We are aware of risks surrounding manipulated
media but we believe the importance of publishing this work openly may have benefits in
augmented reality filters or more realistic virtual reality.

We think that because of its differences and its advantages for user interaction, our
method will inspire new approaches.
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Hat Shirt Backgrd Glasses Face Lipstick
collar text direction

Figure 4.6: Given a target image and a mask of an area of interest extracted from it,
a nearest neighbor search in the learned mask parameter space allows the retrieval of
images sharing the desired attribute with the target.
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Original Bilinear Ours

(a) Vectorization: reconstructions of MNIST images.
Target L1 Perceptual Spiral (Ganin et al., 2018)

(b) Comparison with SPIRAL (Ganin et al., 2018) on CelebA.

Figure 4.7: Our model learns a vectorized mask representation that can be generated at
any resolution without interpolation artifacts.
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Figure 4.8: Training with perceptual and adversarial loss allows our model to reach more
convincing details in the reconstructions. From top to bottom: Original images, `1 recon-
struction, using perceptual loss, adding adversarial loss.
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A.
MLP AE

B.
Vect. AE

C. Ours
Oneshot

D. Ours
Resnet

E. Ours

Figure 4.9: Considered baselines. R: reconstructed image; BM: Mask blending module
of Fig. 4.2.

Figure 4.10: Comparison of masks obtained with our approach (F) (bottom), with these
obtained by our iterative ResNet baseline (E) (top).
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Chapter 5

Dataset impact on image representation

5.1 Abstract

Learning good image representations is crucial for multiple computer vision tasks such
as image similarity search and transfer learning for downstream tasks. In chapter 3, our
introduced model for generating original image compositions relies mainly on an image
search of similar foregrounds to a given object. Deep image features provide a good
measure of object similarity whether trained in a supervised or weakly-supervised manner.
However, learning good features with few labelled data remains a major challenge. There
have been many works in the deep metric learning literature that aim for better features
both in terms of image retrieval and generalization to new unseen concepts.

The quality and generality of deep image features is crucially determined by the data
they have been trained on, but little is known about this often overlooked effect. In this
chapter, we systematically study the effect of variations in the training data by evaluating
deep features trained on different image sets in a few-shot classification setting. The ex-
perimental protocol we define allows us to explore key practical questions. What is the
influence of the similarity between base and test classes? Given a fixed annotation bud-
get, what is the optimal trade-off between the number of images per class and the number
of classes? Given a fixed dataset, can features be improved by splitting or combining
different classes? Should simple or diverse classes be annotated? In a wide range of ex-
periments, we provide clear answers to these questions on the mini-ImageNet, ImageNet
and CUB-200 benchmarks. We also show how the base dataset design can improve per-
formance in few-shot classification more drastically than replacing a simple baseline by
an advanced state of the art algorithm.

Keywords: Dataset labeling, few-shot classification, meta-learning.

5.2 Introduction

Deep features can be trained on a base dataset and provide good descriptors on new im-
ages (Sharif Razavian et al., 2014; Oquab et al., 2014). The importance of large scale
image annotation for the base training is now fully recognized and many efforts are ded-
icated to creating very large scale datasets. However, little is known on the desirable
properties of such dataset, even for standard image classification tasks. To evaluate the

75
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o𝑟

(a) Annotate more classes or more examples per class?

o𝑟

𝑐𝑙𝑎𝑠𝑠:𝑐𝑙𝑎𝑠𝑠: 𝑣𝑖𝑛𝑦𝑙	𝑟𝑒𝑐𝑜𝑟𝑑

𝑐𝑙𝑎𝑠𝑠: 𝑝𝑜𝑖𝑛𝑡𝑠𝑒𝑡𝑡𝑖𝑎

𝑐𝑙𝑎𝑠𝑠: 𝑓𝑙𝑜𝑤𝑒𝑟𝑐𝑙𝑎𝑠𝑠: 𝑣𝑖𝑛𝑦𝑙	𝑟𝑒𝑐𝑜𝑟𝑑

𝑐𝑙𝑎𝑠𝑠: 𝑝𝑜𝑖𝑛𝑡𝑠𝑒𝑡𝑡𝑖𝑎𝑐𝑙𝑎𝑠𝑠: 𝑝𝑜𝑖𝑛𝑡𝑠𝑒𝑡𝑡𝑖𝑎

(b) Build classes using more or less diverse images?

Figure 5.1: How should we design the base training dataset and how will it influence
the features? a) Many classes with few examples / few classes with many examples; b)
Simple or diverse base training images.

impact of the dataset on the quality of learned features, we propose an experimental pro-
tocol based on few-shot classification. In this setting, a first model is typically trained to
extract features on a base training dataset, and in a second classification stage, features
are used to label images of novel classes given only few exemplars. Beyond the interest
of few-shot classification itself, our protocol is well suited to vary specific parameters
in the base training set and answer specific questions about its design, such as the ones
presented in Fig. 5.1.

We believe this work is the first to study, with a consistent approach, the importance
of the similarity of training and test data, the suitable trade-off between the number of
classes and the number of images per class, the possibility of defining better labels for a
given set of images, and the optimal diversity and complexity of the images and classes to
annotate. Past studies have mostly focused on feature transfer between datasets and tasks
(Huh et al., 2016; Zamir et al., 2018). The study most related to ours is likely Huh et al.
(2016), which asks the question “What makes ImageNet good for transfer learning?”.
The authors present a variety of experiments on transferring features trained on ImageNet
to SUN (Xiao et al., 2010) and Pascal VOC classification and detection (Everingham
et al., 2010), as well as a one-shot experiment on ImageNet. However, using AlexNet fc7
features (Krizhevsky et al., 2012), and often relying on the WordNet hierarchy (Fellbaum,
1998), the authors find that variations of the base training dataset do not significantly
affect transfer performance, in particular for the balance between image-per-class and
classes. This is in strong contrast with our results, which outline the importance of this
trade-off in our setup. We believe this might partially be due to the importance of the effect
of transfer between datasets, which overshadows the differences in the learned features.
Our few-shot learning setting precisely allows to focus on the influence of the training
data without considering the complex issues of domain or task transfer.

Our work also aims at outlining data collection strategies and research directions that
might lead to new performance boosts. Indeed, several works (Chitta et al., 2019; Tri-
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antafillou et al., 2020) have recently stressed the limitations of performance improve-
ments brought when training on larger datasets, obtained for example by aggregating
datasets (Triantafillou et al., 2020). On the contrary, Ge and Yu (2017) show that per-
formance can be improved using a “Selective Joint Fine-Tuning” strategy for transfer
learning, selecting only images in the source dataset with low level feature similar to the
target dataset and training jointly on both. Our results give insights on why it might hap-
pen, showing in particular that a limited number of images per class is often sufficient to
obtain good features. Code is available at imagine.enpc.fr/˜sbaio/fewshot_
dataset_design.

Contribution. Our main contribution is an experimental protocol to systematically study
the influence of the characteristics of the base training dataset on the resulting deep fea-
tures for few-shot classification. It leads us to the following key conclusions:

• The similarity of the base training classes and the test classes has a crucial effect
and standard datasets for few-shot learning consider only a very specific scenario.

• For a fixed annotation budget, the trade-off between the number of classes and the
number of images per class has a major effect on the final performance. The best
trade-off usually corresponds to much fewer images per class (∼ 60) than collected
in most datasets.

• If a dataset with a sub-optimal class number is already available, we demonstrate
that a performance boost can be achieved by grouping or splitting classes. While
oracle features work best, we show that class grouping can be achieved using self-
supervised features.

• Class diversity and difficulty also have an independent influence, easier classes with
lower than average diversity leading to better few-shot performances.

While we focus most of our analysis on a single few-shot classification approach and
architecture backbone, key experiments for other methods and architectures demonstrate
the generality of our results.

5.3 Related Work

5.3.1 Data selection and sampling
Training image selection is often tackled through the lens of active learning (Cohn et al.,
1994). The goal of active learning is to select a subset of samples to label when training a
model, while obtaining similar performance as in the case where the full dataset is anno-
tated. A complete review of classical active learning approaches is beyond the scope of
this work and can be found in Settles (2009). A common strategy is to remove redundancy
from datasets by designing acquisition functions (entropy, mutual information, and error
count) (Gal et al., 2017; Chitta et al., 2019) to better sample training data. Specifically,
Chitta et al. (2019) introduce an “Adaptive Dataset Subsampling” approach designed to
remove redundant samples in datasets. It predicts the uncertainty of ensemble of models
to encourage the selection of samples with high “disagreement”. Another approach is to
select samples close to the boundary decision of the model, which in the case of deep
networks can be done using adversarial examples (Ducoffe and Precioso, 2018). In Sener

imagine.enpc.fr/~sbaio/fewshot_dataset_design
imagine.enpc.fr/~sbaio/fewshot_dataset_design
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and Savarese (2017), the authors adapt active learning strategies to batch training of neural
networks and evaluate their method in a transfer learning setting. While these approaches
select specific training samples based on their diversity or difficulty, they typically focus
on performance on a fixed dataset and classes, and do not analyze performance of learned
features on new classes as in our few-shot setting.

Related to active learning is the question of online sampling strategies to improve
the training with fixed, large datasets (Fan et al., 2017; London, 2017; Buda et al., 2017;
Katharopoulos and Fleuret, 2018). For instance, the study of Buda et al. (2017) on class
imbalance highlights over-sampling or under-sampling strategies that are privileged in
many works. Fan et al. (2017) and Katharopoulos and Fleuret (2018) propose respectively
reinforcement learning and importance sampling strategies to select the samples which
lead to faster convergence for SGD.

The spirit of our work is more similar to studies that try to understand key properties
of good training samples to remove unnecessary samples from large datasets. Focusing
on the deep training process and inspired by active SVM learning approaches, Vodra-
halli et al. (2018) explore using the gradient magnitude as a measure of the importance
of training images. However using this measure to select training examples leads to poor
performances on CIFAR and ImageNet. Birodkar et al. (2019) identify redundancies in
datasets such as ImageNet and CIFAR using agglomerative clustering (Defays, 1977).
Similar to us, they use features from a network pre-trained on the full dataset to compute
an oracle similarity measure between the samples. However, their focus is to demon-
strate that it is possible to slightly reduce the size of datasets (10%) without harming test
performance, and they do not explore further the desirable properties of a training dataset.

5.3.2 Few-shot classification

The goal of few-shot image classification is to be able to classify images from novel
classes using only a few labeled examples, relying on a large base dataset of annotated im-
ages from other classes. Among the many deep learning approaches, the pioneer Match-
ing networks (Vinyals et al., 2016) and Prototypical networks (Snell et al., 2017) tackle
the problem from a metric learning perspective. Both methods are meta-learning ap-
proaches, i.e. they train a model to learn from sampled classification episodes similar to
those of evaluation. MatchingNet considers the cosine similarity to compute an attention
over the support set, while ProtoNet employs an `2 between the query and the class mean
of support features.

Recently, Chen et al. (2019) revisited few-shot classification and showed that the sim-
ple, meta-learning free, Cosine Classifier baseline introduced in Gidaris and Komodakis
(2018) performs better or on par with more sophisticated approaches. Notably, its results
on the CUB and Mini-ImageNet benchmarks were close to the state-of-the-art (Antoniou
and Storkey, 2019; Lee et al., 2019). Many more approaches have been proposed even
more recently in this very active research area (e.g. (Rusu et al., 2019; Li et al., 2019)),
including approaches relying on other self-supervised tasks (e.g. (Gidaris et al., 2019a))
and semi-supervised approaches (e.g. (Kim et al., 2019; Liu et al., 2019; Hu et al., 2019)),
but a complete review is outside the scope of this work, and exploration of novel methods
orthogonal to our goal.

The choice of the base dataset remains indeed largely unexplored in previous studies,



5.4. METHOD 79

whereas we show that it has a huge impact on the performance, and different choices of
base datasets might lead to different optimal approaches. The Meta-dataset (Triantafillou
et al., 2020) study is related to our work from the perspective of analyzing dataset im-
pact on few-shot performance. However, it investigates the effect of meta-training hyper-
parameters, while our study focuses on how the base dataset design can improve few-shot
classification performance. More recently, Zhou et al. (2020) investigate the same ques-
tion of selecting base classes for few-shot learning, leading to a performance better than
that of random choice, while highlighting the importance of base dataset selection in few-
shot learning.

Since a Cosine Classifier (CC) with a Wide ResNet backbone is widely recognized as
a strong baseline (Gidaris and Komodakis, 2018; Gidaris et al., 2019a; Chen et al., 2019;
Wang et al., 2019), we use it as reference, but also report results with two other classical
algorithms, namely MatchingNet and ProtoNet.

The classical benchmarks for few-shot evaluation on which we build and evaluate are
listed below. Note this is not an exhaustive review, but a selection of diverse datasets
which are suited to our goals.

Mini-ImageNet benchmark. Mini-ImageNet is a common benchmark for few-shot
learning of small resolution images (Vinyals et al., 2016; Ravi and Larochelle, 2017). It
includes 600K images from 100 random classes sampled from the ImageNet-1K (Deng
et al., 2009b) dataset and downsampled to 84 × 84 resolution. It has a standard split of
base training, validation and test classes of 64, 16, and 20 classes respectively.

ImageNet benchmark. For high-resolution images, we consider the few-shot learn-
ing benchmark proposed by Hariharan and Girshick (2017); Wang et al. (2018b). This
benchmark splits the ImageNet-1K dataset into 389 base training, 300 validation and 311
novel classes. The base training set contains 497350 images.

CUB benchmark. For fine-grained classification, we experiment with the CUB-200-
2011 dataset (Wah et al., 2011). It contains 11,788 images from 200 classes, each class
containing between 40 to 60 images. Following Hilliard et al. (2018); Chen et al. (2019)
we resize the images to 84×84 pixels and use the standard splits in 100 base, 50 validation
and 50 novel classes and use exactly the same evaluation protocol as for mini-ImageNet.

5.4 Method
In this section, we present the different components of our analysis. First, we explain in
detail the main few-shot learning approach that we use to evaluate the influence of train-
ing data. Second, we present the large base dataset we use to sample training sets. Third,
we discuss the different descriptors of images and classes that we consider, the differ-
ent splitting and grouping strategies we use for dataset relabeling and the class selection
methods we analyze. Finally we give details on architecture and training.

5.4.1 Dataset evaluation using few-shot classification
Few-shot image classification aims at classifying test examples in novel categories using
only a few annotated examples per category and typically relying on a larger base training
set with annotated data for training categories. We use the simple but efficient nearest
neighbor based approach, visualized in Fig. 5.2.
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Figure 5.2: Illustration of our few-shot learning framework. We train a feature extractor
together with a classifier on base training classes. Then, we evaluate the few-shot classifi-
cation performance of this learned feature extractor to classify novel unseen classes with
few annotated examples using a nearest neighbor classifier.

More precisely, we start by training a feature extractor f with a cosine classifier on
base categories (Fig. 5.2 top). Then, we define a linear classifier for the novel classes as
follows: if zi for i = 1...N are the labelled examples for a given novel class, we define
the classifier weights w for this class as:

w =
1

N

N∑
i=1

f(zi)

‖f(zi)‖
. (5.1)

In other words, we associate each test image to the novel class for which its average
cosine similarity with the examples from this novel class is the highest. Previous work
on few-shot learning focuses on algorithm design for improving the classifier defined on
new labels. Instead, we explore the orthogonal dimension of base training dataset and
compare the same baseline classifier using features trained on different base datasets.

5.4.2 A large base dataset, ImageNet-6K
To investigate a wide variety of base training datasets, we design the ImageNet-6K dataset
from which we sample images and classes for our experiments. We require both a large
number of classes and a large number of images per class, to allow very diverse im-
age selections, class splittings or groupings. We define ImageNet-6K as the subset from
the ImageNet-22K dataset (Russakovsky et al., 2015; Deng et al., 2009b) containing the
largest 6K classes, excluding ImageNet-1K classes. Image duplicates are removed au-
tomatically as done in Sablayrolles et al. (2018). Each class has more than 900 images,
with a total number of 7135116 images. For experiments on mini-ImageNet and CUB,
we downsample the images to 84×84, and dub the resulting dataset MiniIN6K. For CUB
experiments, to avoid training on classes corresponding to the CUB test set, we addition-
ally look for the most similar images to each of the 2953 images of CUB test set using our
oracle features (see Section 5.4.3), and completely remove the 296 classes they belong to.
We denote this base dataset MiniIN6K*.
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5.4.3 Class definition and sampling strategies

Image and class representation. In most experiments, we represent images by what
we call oracle features, i.e. features trained on our IN6k or miniIN6K datasets. These
features can be expected to provide a good notion of distance between images, but can of
course not be used in a practical scenario where no large annotated dataset is available.
Each class is represented by its average feature as defined in Equation 5.1. This class
representation can be used for examples to select training classes close or far from the test
classes, or to group similar classes.

We also report results with several alternative representations and metrics. In particu-
lar, we experiment with self-supervised features, which could be computed on a new type
of images from a non-annotated dataset. We tried using features from RotNet (Gidaris
et al., 2019b), DeepCluster (Caron et al., 2018), and MoCo (He et al., 2019a) approaches,
and obtained stronger results with MoCo features which we report. MoCo exploits the
self-supervised feature clustering idea and builds a feature dictionary using a contrastive
loss. As an additional baseline we report results using deep features with randomly initial-
ized weights and updated batch normalization layers during 1 epoch of miniIN6k. Finally,
similar to several prior works, we experiment using the WordNet (Fellbaum, 1998) hier-
archy to compute similarity between classes based on the shortest path that relates their
synsets and on their respective depths.

Defining new classes. A natural question is whether for a fixed set of images, different
labels could be used to train a better feature extractor.

Given a set of images, we propose to use existing class labels to define new classes
by splitting or merging them. Using K-means to cluster images or classes would lead
to unbalanced classes, we thus used different strategies for splitting and grouping, which
give consistently better performance than using K-means:

• Class splitting. We iteratively split in half every class along the principal component
computed over the features of the class images. We refer to this strategy as BPC
(Bisection along Principal Component).

• Class grouping. To merge classes, we use a simple greedy algorithm which defines
meta-classes by merging the two closest classes using their mean features, and re-
peat the same process for unprocessed classes recursively.

We display examples of resulting grouped and splitted classes in Fig. 5.3.

Measuring class diversity and difficulty. One of the questions we ask is whether class
diversity impacts the trained features’ few-shot performance. We therefore analyze results
by sampling classes more or less according to their diversity and difficulty:

• Class diversity. We use the variance of the normalized features as a measure of
class diversity. We show in Fig. 5.3 (c,d) examples of least and most diverse classes.
Classes with low feature variance consist of very similar looking objects or simple
visual concepts while the ones with high feature variance represent abstract con-
cepts or include very diverse images.

• Class difficulty. To measure the difficulty of a class, we use the validation accuracy
of our oracle classifier.
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(a) Images from two meta-classes obtained by grouping four dataset classes.

(b) Images from sub-classes obtained by splitting classes “Sunflower” and “Tulips”.

c) Least diverse classes d) Most diverse classes
(Horse, Angora cat ...) (Arabesque, cherry...)

Figure 5.3: a) Images from meta-classes obtained by grouping dataset classes using pre-
trained features. Each line represents a meta-class. b) Examples of sub-classes obtained
by splitting dataset classes using pre-trained features. Each column represents a sub-
class. c), d) Images from least or most diverse classes from miniIN6k, with one line per
class.

5.4.4 Architecture and training details

We use different architectures and training methods in our experiments. Similar to previ-
ous works (Wang et al., 2019; Chen et al., 2019), we perform our experiments using the
WRN28-10, ResNet10, ResNet18 and Conv4 architectures. The ResNet architectures are
adapted to handle 84×84 images by replacing the first convolution with a kernel size of 3
and stride of 1 and removing the first max pooling layer. In addition to the cosine classifier
described in Section 5.4.1, we experiment with the classical Prototypical Networks (Snell
et al., 2017) and Matching Networks (Vinyals et al., 2016).

Since we compare different training datasets, we adapt the training schedule depend-
ing on the size of the training dataset and the method. For example on MiniIN-6k, we
train Prototypical Networks and Matching Networks for 150k episodes, while when train-
ing on smaller size datasets we use 40k episodes as in Chen et al. (2019). We also use
fewer query images per class when training on classes with not enough images per class
for Prototypical and Matching Networks.

When training a Cosine Classifier, we train using an SGD optimizer with momentum
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of 0.9 and weight decay of 5.10−4 for 90 epochs starting with an initial learning rate of
0.05 and dividing it by 10 every 30 epochs. We also use a learning rate warmup for the
first 6K iterations, that we found beneficial for stabilizing the training and limiting the
variance of the results. For large datasets with more than 106 images, we use a batch size
of 256 and 8 GPUs to speed up the training convergence, while for smaller datasets (most
of our experiments are done using datasets of 38400 images, as in MiniIN training set),
we use a batch size of 64 images and train on a single GPU. During training, we use a
balanced class sampler that ensures sampled images come from a uniform distribution
over the classes regardless of their number of images.

On the ImageNet benchmark, we use a ResNet-34 network and trained for 150K di-
viding the learning rate by 10 after 120K, 135K and 145K iterations using a batch size of
256 on 1 GPU.

Following common practices, during evaluation, we compute the average top-1 accu-
racy on 15 query examples over 10k episodes sampled from the test set on 5-way tasks for
miniIN and CUB benchmarks, while we compute the top-5 accuracy on 6 query examples
over 250-way tasks on the ImageNet benchmark.

5.5 Analysis

In this section, we provide an analysis of the components of our method by evaluating the
influence of the training data in multiple setups. We first start by validating the impact
of the base dataset size on the quality of learned features and its similarity with test data.
Second, we consider the tradeoff between the number of classes and images per class for
a fixed number of annotations. Third, we explore how redefining class labels through
splitting and grouping allows to confirm the previously observed tradeoff before finally
considering the class selection bias from the perspective of diversity and difficulty.

5.5.1 Importance of base data and its similarity to test data

We start by validating the importance of the base training dataset for the few-shot classi-
fication, both in terms of size and of the selection of classes. In table 5.1, we report five
shot results on the CUB and MiniIN datasets, the one shot results are available in table
5.2. We write N the total number of images in the dataset and C the number of classes.
On the miniIN benchmark, we observe that our implementation of the strong CC baseline
using a WRN backbone yields slightly better performance using miniIN base classes than
the ones reported in Gidaris et al. (2019a); Lee et al. (2019)(76.59). We validate the con-
sistency of our observations by varying algorithms and architectures using the codebase
of Chen et al. (2019).

Our first finding is that using the whole miniIN-6K dataset for the base training boosts
the performance on miniIN by a very large amount, 20% and 18% for 1-shot and 5-shot
classification respectively, compared to training on 64 miniIN base classes. Training on
IN-6K images also results in a large 10% boosts in 5-shot top-5 accuracy on ImageNet
benchmark. Another interesting result is that sampling random datasets of 64 classes and
600 images per class leads to a 5-shot performance of 75.48% on MiniIN clearly below the
one using the base classes from miniIN 78.95%. A similar observation can be made for
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MiniIN CUB

MiniIN
N=38400
C = 64

MiniIN6K
Random
N=38400
C = 64

MiniIN6K
N≈7,1.106

C=6000

CUB
N=5885
C = 100

MiniIN6K*
Random
N=38400
C = 64

MiniIN6K*
N≈6,8.106

C = 5704

WRN PN 73.64±0.84 70.26±1.30 85.14±0.28 87.84±0.42 52.51±1.57 68.62±0.5

WRN MN 69.19±0.36 65.45±1.87 82.12±0.27 85.08±0.62 46.32±0.72 59.90±0.45

WRN CC 78.95±0.24 75.48±1.53 96.91±0.14 90.32±0.14 58.03±1.43 90.89±0.10

Conv4 65.99±0.04 64.05±0.75 74.56±0.12 80.71±0.15 56.44±0.63 66.81±0.30

ResNet10 CC 76.99±0.07 74.17±1.42 91.84±0.06 89.07±0.15 57.01±1.44 82.20±0.44

ResNet18 CC 78.29±0.05 75.14±1.58 93.36±0.19 89.99±0.07 56.64±1.28 88.32±0.23

Table 5.1: 5-shot, 5-way accuracy on MiniIN and CUB test sets using different base train-
ing data, algorithms and backbones. PN: Prototype Networks Snell et al. (2017). MN:
Matching Networks Vinyals et al. (2016). CC: Cosine Classifier. WRN: Wide ResNet28-
10. MiniIN6K (resp. MiniIN6K*) Random: 600 images from 64 classes sampled ran-
domly from MiniIN6K (resp. MiniIN6K*). We evaluate the variances over 3 different
runs.

MiniIN CUB

MiniIN
N=38400
C = 64

MiniIN6K
Random
N=38400
C = 64

MiniIN6K
N≈7,1.106

C=6000

CUB
N=5885
C = 100

MiniIN6K*
Random
N=38400
C = 64

MiniIN6K*
N≈6,8.106

C = 5704

WRN 61.62±0.17 58.49±2.29 85.40±0.15 76.73±0.40 41.62±0.93 73.51±0.21

Conv4 48.62±0.09 46.87±0.70 56.09±0.16 61.21±0.16 39.65±0.71 47.01±0.26

ResNet10 59.06±0.35 56.06±1.74 74.42±0.20 74.48±0.42 40.92±0.51 57.81±0.43

ResNet18 60.85±0.17 57.51±1.79 81.42±0.20 76.13±0.39 40.90±0.86 63.14±0.93

Table 5.2: 1-shot, 5-way accuracy on MiniIN and CUB using a Cosine Classifier (CC)
on different base training data and backbones. WRN: Wide ResNet28-10. MiniIN6K
Random: 600 images from 64 classes sampled randomly from MiniIN6K. We evaluate
the variances over 3 different runs, each run compute the few-shot performance on 10k
sampled episodes. MiniIN6K*: MiniIN6K without images from bird categories.



5.5. ANALYSIS 85

10 50 100 500 1000 2500 6000
Number of classes

50

60

70

80

90

5-
sh

ot
, 5

-w
ay

 a
cc

ur
ac

y

Feature type
Oracle
MoCo
WordNet

Ranking method
Closest
Farthest
Random

10 50 100 500 1000 2500 6000
Number of classes

50

60

70

80

90

5-
sh

ot
, 5

-w
ay

 a
cc

ur
ac

y

Learning method/arch
CC WRN
CC ResNet18
CC ResNet10
ProtoNet WRN
MatchingNet WRN

Ranking method
closest
random

(a) Different selection criteria (b) Different backbone and algorithms

Figure 5.4: Five-shot accuracy on miniIN when sampling classes from miniIN-6K clos-
est/farthest to the miniIN test set or randomly using 900 images per class. (a) Comparison
between different class selection criteria for selecting classes closest or farthest from the
test classes. (b) Comparison of results with different algorithms and backbones using
oracle features to select closest classes.
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Figure 5.5: Five-shot accuracy on CUB when sampling classes from miniIN-6K clos-
est/farthest to the CUB test set or randomly.

different backbones (Conv4, ResNets) and algorithms tested (ProtoNet, MatchingNets),
as well as on the ImageNet benchmark.

A natural explanation for these differences is that the base training classes from the
benchmarks are correlated to the test classes.

To validate this hypothesis, we selected a varying number of base training classes
from miniIN-6K closest and farthest to miniIN test classes using either oracle features,
MoCo features, or the WordNet hierarchy, and report the results of training using a cosine
classifier with the WRN architecture in Fig. 5.4. Similar experiment on CUB is shown in
Fig. 5.5. We used 900 random images for each class.

For computing MoCo features, we use the self-supervised features on ImageNet using
a ResNet-50 backbone from Tian et al. (2019)1 unofficial implementation of Momentum
Contrast for unsupervised visual representation learning He et al. (2019a).

While all features used for class selection yield similarly superior results for closest
class selection and worst results for farthest class selection, we observe that using oracle

1Moco features from https://github.com/HobbitLong/CMC/

https://github.com/HobbitLong/CMC/
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Figure 5.6: Trade-off between the number of classes and images per class for a fixed
image budget. In (a,b) we show the trade-off for different dataset sizes and points are
annotated with the corresponding number of images per class. In (c,d) we consider a total
budget of 38400 annotated images and show the tradeoff for different architectures and
methods. The top scale shows the number of images per class and the bottom scale the
number of classes.

features leads to larger differences than than MoCo features and Wordnet hierarchy. In
Fig. 5.4, we study the influence of the architecture and training method on the previously
observed importance of class similarity to test classes. Similar gaps can be observed in
all cases. Note however that for ProtoNet, MatchingNet and smaller backbones with CC,
the best performance is not obtained with the largest number of classes.

While these findings themselves are not surprising, the amplitude of performance vari-
ations demonstrates the importance of studying the influence of training data and strate-
gies for training data selection, especially considering that most advanced few-shot learn-
ing strategies only increase performance by a few percentage points compared to strong
nearest neighbor based baselines such as CC (Chen et al., 2019; Qiao et al., 2018).
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Figure 5.7: Trade-off between the number of classes and images per class for a fixed im-
age budget on the IN benchmark. Each point is annotated with its corresponding number
of images per class.

5.5.2 Effect of the number of classes for a fixed number of annota-
tions

An important practical question when building a base training dataset is the number of
classes and images to annotate, since the constraint is often the cost of the annotation
process. We thus consider a fixed number of annotated images and explore the effect
of the trade-off between the number of images per class and the number of classes. In
Fig. 5.6, we visualize the 5-shot performance resulting from this trade-off in the base
training classes on the miniIN and CUB benchmarks. In all cases, we select the classes
and images randomly from our miniIN6K and miniIN6k* dataset respectively, and plot
the variance over 3 runs.

First, in Fig. 5.6 (a,b) we compare the trade-off for different numbers of annotated
images. We sample randomly datasets of 38400 or 3840 images with different number of
classes and the same number of image in each class. We also indicate the performance
with the standard benchmarks base dataset and the full miniIN6K data. The same graph
on ImageNet benchmark can be seen in Fig. 5.7 using 50k and 500k images datasets.

As expected, the performance decreases when too few classes or too few images per
classes are available. Interestingly, on the miniIN test benchmark (Fig. 5.6a) the best
performance is obtained around 384 classes and 100 images per class with a clear boost
(around 5%) over the performance using 600 images for 64 classes which is the trade-off
chosen in the miniIN benchmark. In Fig. 5.6b, we observe that the best trade-off is very
different on the CUB benchmark, corresponding to more classes and very few images per
class. We believe this is due to the fine-grained nature of the dataset.

Second, in Fig. 5.6 (c,d), we study the consistency of these findings for different ar-
chitectures and few-shot algorithms with a 38400 annotated images budget. While the
trade-off depends on the architecture and method, there is always a strong effect, and the
optimum tends to correspond to much fewer images per class than in standard bench-
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Figure 5.8: Impact of class grouping or splitting on few-shot accuracy on miniIN and
CUB depending on the initial number of classes. Starting from different number of classes
C, we group similar classes together into meta-classes or split them into sub-classes to
obtain α×C ones. α ∈ {1

8
, 1
4
, 1
2
, 1, 2, 4, 8} is the x-axis. Experiments in a) and b) use CC

WRN setup.

marks. For example, the best performance with ProtoNet and MatchingNet on the miniIN
benchmark is obtained with as few as 30 images per class. This is interesting since it
shows that the ranking of different few-shot approaches may depend on the trade-off be-
tween number of base images and classes selected in the benchmark.

The importance of this balance, and the fact that it does not necessarily correspond to
the one used in the standard datasets is also important if one wants to pre-train features
with limited resources. Indeed, better features can be obtained by using more classes
and less images per class compared to using all available images for the classes with the
largest number of images as is often done, with the idea to avoid over-fitting. Again, the
boost observed for few-shot classification performance is very important compared to the
ones provided by many advanced few-shot learning approaches.

5.5.3 Redefining classes

There are two possible explanations for the improvement provided by the increased num-
ber of classes for a fixed number of annotated images discussed in the previous paragraph.
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The first one is that the images sampled from more random classes cover better the space
of natural images, and thus provide images more likely similar to the test images. The
second one is that learning a classifier with more classes is itself beneficial to the quality
of the features. To investigate whether for fixed data increasing the number of classes can
boost performances, we relabel images inside each class as described in Section 5.4.3.

In Fig. 5.8, we compare the effect of grouping and splitting classes on three dataset
configurations sampled from miniIN-6K and miniIN6K* with a total number of im-
ages 38400 for different number of classes C ∈ {96, 384, 1536} for miniIN and C ∈
{384, 1536, 5704} for CUB. Given images originally labeled with C classes, we relabel
images of each class to obtain α × C sub-classes. The x-axes represent the class ra-
tio α ∈ {1

8
, 1
4
, 1
2
, 1, 2, 4, 8}. For class ratios lower than 1, we group classes using our

greedy iterative grouping, while for ratios α greater than 1, we split classes using our
BCP method. In Fig 5.8 (a,b), we show three possible behaviors on miniIN and CUB
when using our oracle features: (i) if the number of initial classes is higher than the op-
timal tradeoff, grouping is beneficial and splitting hurts performances (yellow curves);
(ii) if the number of initial classes is the optimal one, both splitting and grouping hurt
decrease performances (blue curves); (iii) if the number of initial classes is smaller than
the optimal tradeoff, splitting is beneficial and grouping hurts performance (red curves).
This is a strong result, since it shows there is potential to improve performances with a
fixed training dataset by redefining new classes. This can be done for grouping using
the self-supervised MoCo features. However, we found they were not sufficient to split
classes in a way that improves performances. Using random features on the contrary did
not lead to any significant improvements. Fig. 5.8c confirms the consistency of results
with various architecture on miniIN benchmark. Fig. 5.8d compares these results to the
ones obtained with ProtoNet and MatchingNet. Interestingly, we see that since the trade-
off for this methods was with much fewer images per class, class splitting can increase
performances in all the scenarios we considered.

These results outline the need to adapt not only the base training images but also
the base training granularity to the target few-shot task and algorithm. They also clearly
demonstrate that the performance improvements we observe compared to standard trade-
offs by using more classes and less images per class is not only due to the fact that the
training data is more diverse, but also to the fact that training a classifier with more classes
leads to improved features for few-shot classification.

5.5.4 Selecting classes based on their diversity or difficulty

In Section 5.5.1, we observed the importance of the similarity between base training
classes and the test classes. We now study whether the diversity of the base classes or their
difficulty is also an important factor. To this end, we compute the measures described in
Section 5.4.3 for every miniIN-6K classes and rank them by in increasing order. Then, we
split the ranked classes into 10 bins of similar diversity or validation accuracy. We found
that the bins obtained in this way were correlated to similarity to the test classes and thus
introduces a bias in the performance due to this similarity instead of the diversity or dif-
ficulty we want to study (see Fig. 5.10, we show the similarity of classes in each bin to
the test classes). To avoid this sampling bias, we associate to each class its distance to test
classes, and sample base classes in each bin only in a small range of similarities, so that the
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Figure 5.9: Impact of class selection using class diversity and validation accuracy
on few-shot accuracy on miniIN and CUB benchmarks and benchmarks sampled from
miniIN-1K. For training, we rank the classes of miniIN-6K in increasing feature variance
or validation accuracy and split them into 10 bins from which we sample C = 64 classes
that we use for base training. Fig. a) and c) show the importance of selecting classes
in each bin while considering their distance to test classes to disentangle both selection
effects. Fig. b) and d) show impact of class selection method on different benchmarks
from miniIN1k sampled as deciles of increasing class diversity or validation accuracy.

average distance to the test classes is constant over all bins. In Fig. 5.9 we show the perfor-
mances obtained by sampling using this strategy 64 classes and 600 images per class for
a total of 38400 images in each bin. The performances obtained are shown on miniIN and
CUB in Fig. 5.9 (a,c) both using random sampling from the bin and using sampling with
distance filtering as explained before. It can be seen that the effect of distance filtering is
very strong, decreasing significantly the range of performance variation especially on the
CUB dataset, however the difference in performance is still significant, around 5% in all
experiments. Both for CUB and miniIN, moderate class diversity - avoiding both the most
and least diverse classes - seem beneficial, while using the most difficult classes seem to
harm performances. To validate and provide additionnal insight on this experiment, we
also use test benchmarks sampled from miniIN1k with classes grouped by their diversity
or validation accuracy deciles from 1 to 10 in Fig. 5.9 (b, d). The curve in black shows
the average over all the bins. While the range of performances highly depends on the
test class selection criteria, the tendency seem very consistent on each of them. For class
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Figure 5.10: Class similarity between miniIN6k classes and miniIN test classes.
MiniIN6k classes (x-axis) are grouped in 10 bins of increasing class diversity or vali-
dation accuracy. We observe that class similarity to test classes correlates with both class
diversity and class validation accuracy, thus the importance of avoiding this bias during
class selection.

diversity, we observe a inversed U shape average curve, i.e. using most or least diverse
classes can hurt the few-shot performance, with optimal performances corresponding to
slightly lower than average diversity. For validation accuracy, better few-shot classifica-
tion performance is correlated with higher class validation performance, i.e. using classes
that are easier to classify lead to better feature for few-shot classification.

5.6 Conclusion
Our empirical study outlines the key importance of the base training data in few-shot
learning scenarios, with seemingly minor modifications of the base data resulting in large
changes in performance, and carefully selected data leading to much better accuracy.
We also show that few-hot performance can be improved by automatically relabelling an
initial dataset by merging or splitting classes. We hope the analysis and insights that we
present will:

• impact dataset design for practical applications, e.g. given a fixed number of images
to label, one should prioritize a large number of different classes and potentially
use class grouping strategies using self-supervised features. In addition to base
classes similar to test data, one should also prioritize simple classes, with moderate
diversity.

• lead to new evaluations of few-shot learning algorithm, considering explicitly the
influence of the base data training in the results: the current mini-ImageNet setting
of 64 classes and 600 images per class is far from optimal for several approaches.
Furthermore, he optimal trade-off between number of classes and number of images
per class can be different for different few-shot algorithms, suggesting taking into
account different base data distributions in future few-shot evaluation benchmarks.

• inspire advances in few-shot learning and in particular the design of practical ap-
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proaches to adapt base training data automatically and efficiently to the target few-
shot tasks.



Chapter 6

Conclusion

The application of machine learning advances to artistic creativity is promising yet chal-
lenging. Deep learning particularly has allowed leveraging large datasets and weak su-
pervision to achieve high level understanding, generation and manipulation of different
modalities (images, 3D, text, etc.). With the progress of generative models, not only sam-
ples have become more realistic, but also the control over the generations has become
simple and diverse, thus opening the way to useful creativity support tools.

In this work, we have focused on applying generative models advances to artistic cre-
ativity from the perspective of fashion and visual blends creation while addressing some
fundamental related computer vision problems. We contributed several deep learning
tools for image generation and manipulation aimed at assisting human artists. We pro-
posed two different generative models for original image generation with a great potential
for inspiring artists in a co-creative context, and studied multiple improvement directions
for related challenges. We explored how novelty and originality can be enforced using ad-
ditional loss functions or through image composition while keeping realistic generations.

First, using generative models, in particular generative adversarial networks, we de-
veloped an original fashion item generation model by using novelty losses that encourage
the generation of garments that deviate from known shape and texture classes. Using sim-
ple architectures and a relatively small training dataset, our model is able to generate high
resolution and original images. Our human study shows that our models with novelty
losses achieve higher likeability and realism compared to the baseline ones. While this
work was the first to frame fashion image generation using GANs and to suggest ways to
make the generations realistic and novel, it can benefit from the recent developments in
image generation from new architectures to better control over the generations.

Second, using image retrieval and composition methods, we built a model able to sug-
gest novel image compositions based on visual similarities between foreground objects
while performing the composition seamlessly through object replacement. Our human
study shows that we can select foregrounds to obtain composites with more or less re-
alism and surprise using the rank of the foreground object with respect to class similar-
ity. While this study does not provide a solution to the complex visual blends creation
problem, it remains the only work using visual similarity to suggest new plausible visual
blends. This method could be extended by giving artists more control over the selected
classes to ground the obtained composites in a given meaning. Generating intentful visual
metaphors by providing the underlying meaning of the generated image remains a chal-
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lenge to tackle. Also, leveraging learned generative models for high level image blending
could improve over the copy pasting approach considered.

In addition to these two original image generation methods, we proposed a model for
vector image generation aimed at high resolution image generation. Using neural net-
works as implicit functions over the 2D space, we defined a novel mask generator that
we use to represent an image in a layered way. Our model for image decomposition
in multiple colored vector layers allowed us to learn a meaningful embedding of masks
from a given dataset. We also showed how we can leverage this learned decomposition
for various applications spanning image editing, vectorization and image retrieval. Re-
cent work on image generation have focused on exploring novel architectures from style
conditioned architectures allowing manipulation of the generated images (Karras et al.,
2019), to architecture for image generation from discrete vectors (Esser et al., 2021), and
architectures using implicit functions to represent images in a resolution independent way
similar to our proposed method (Lin et al., 2021) which present a promising direction for
generating images with a hybrid model with a multi-layer perceptron for resolution inde-
pendent generation and convolutional layers for texture generation in a local scale.

Finally, we studied the importance of the training data on the quality of image repre-
sentations used for image search and classification. We developed an evaluation protocol
to measure the influence of the training data on the generalizaion capacity of learned
features from a few-shot classification perspective. By comparing multiple datasets of
different sizes, classes, and labelings, we highlighted important tradeoffs in the dataset
construction that directly affect the quality of the learned features. We also showed that
these findings generalize to multiple architectures, benchmarks and learning algorithms.

In sum, future work on artistic creativity should leverage multi-modal approaches
combining text and images i.e. (Radford et al., 2021), while also focusing on novel archi-
tectures that enable simple human interaction.
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Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv
preprint arXiv:1605.09782, 2016.

Liuyun Duan and Florent Lafarge. Image partitioning into convex polygons. In CVPR,
2015.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a
margin based approach. arXiv preprint arXiv:1802.09841, 2018.



BIBLIOGRAPHY 99

Vincent Dumoulin, Jonathon Shlens, Manjunath Kudlur, Arash Behboodi, Filip Lemic,
Adam Wolisz, Marco Molinaro, Christoph Hirche, Masahito Hayashi, Emilio Bagan,
et al. A learned representation for artistic style. ICLR, 2017.

Scott Eaton. Human allocation of space. nvidia.com, 2019. URL https:
//www.nvidia.com/en-us/deep-learning-ai/ai-art-gallery/
artists/scott-eaton/.

Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. Creative
adversarial networks. In ICCC, 2017.

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Ko-
ray Kavukcuoglu, and Geoffrey Hinton. Attend, Infer, Repeat: Fast Scene Understand-
ing with Generative Models. NIPS, 2016.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-
resolution image synthesis. In CVPR, 2021.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (VOC) challenge. International journal of
computer vision, 88(2):303–338, 2010.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth
Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman
Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli,
and Armand Joulin. Beyond english-centric multilingual machine translation. arXiv
preprint, 2020.

Yang Fan, Fei Tian, Tao Qin, and Tie-Yan Liu. Neural data filter for bootstrapping
stochastic gradient descent. ICLR Workshop, 2017.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. Photo2clipart: image
abstraction and vectorization using layered linear gradients. ACM Transactions on
Graphics (TOG), 2017.

Christiane Fellbaum. Wordnet: An electronic lexical database and some of its applica-
tions, 1998.

Charles Forceville. Pictorial metaphor in advertisements. Metaphor and symbol, 1994.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with
image data. In ICML, 2017.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Eslami, and Oriol Vinyals. Syn-
thesizing programs for images using reinforced adversarial learning. ICML, 2018.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In CVPR, 2016.

Weifeng Ge and Yizhou Yu. Borrowing treasures from the wealthy: Deep transfer learning
through selective joint fine-tuning. In CVPR, 2017.

https://www.nvidia.com/en-us/deep-learning-ai/ai-art-gallery/artists/scott-eaton/
https://www.nvidia.com/en-us/deep-learning-ai/ai-art-gallery/artists/scott-eaton/
https://www.nvidia.com/en-us/deep-learning-ai/ai-art-gallery/artists/scott-eaton/


100 BIBLIOGRAPHY

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forget-
ting. In CVPR, 2018.

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu Cord.
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an empirical evaluation of the memorization properties of convnets. ArXiv preprint
1809.06396, 2018.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In NIPS, 2016.



108 BIBLIOGRAPHY

Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsu-
pervised pre-training for speech recognition. In INTERSPEECH, 2019.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A
core-set approach. In ICLR, 2017.

A. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, Tim Green, C. Qin, Augustin
Zı́dek, Alexander W. R. Nelson, A. Bridgland, Hugo Penedones, Stig Petersen, K. Si-
monyan, Steve Crossan, P. Kohli, D. Jones, D. Silver, K. Kavukcuoglu, and D. Hass-
abis. Improved protein structure prediction using potentials from deep learning. Nature,
2020.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN
features off-the-shelf: an astounding baseline for recognition. In CVPR workshops,
2014.

Xiaoyong Shen, Aaron Hertzmann, Jiaya Jia, Sylvain Paris, Brian Price, Eli Shechtman,
and Ian Sachs. Automatic portrait segmentation for image stylization. In Computer
Graphics Forum, 2016.

Pao Siangliulue, Kenneth C Arnold, Krzysztof Z Gajos, and Steven P Dow. Toward
collaborative ideation at scale: Leveraging ideas from others to generate more creative
and diverse ideas. In Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing, 2015.

Pao Siangliulue, Joel Chan, Steven P Dow, and Krzysztof Z Gajos. Ideahound: improving
large-scale collaborative ideation with crowd-powered real-time semantic modeling. In
Proceedings of the 29th Annual Symposium on User Interface Software and Technol-
ogy, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. NeurIPS,
2020.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learn-
ing. In NeurIPS, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.



BIBLIOGRAPHY 109

Kenneth O Stanley. Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines, 2007.

Alexa Steinbrück. Conceptual blending for the visual domain. Ph. D. dissertation, Mas-
ters thesis, 2013.

Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum. Image vectorization using
optimized gradient meshes. ACM Transactions on Graphics (TOG), 2007.

Ruoyu Sun, Tiantian Fang, and A. Schwing. Towards a better global loss landscape of
gans. NeurIPS, 2020.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2017.

Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Soft color segmentation and its applications.
Trans. Pattern Anal. Mach. Intell., 2007.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In ICML. PMLR, 2019.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object
detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10781–10790, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier
features let networks learn high frequency functions in low dimensional domains.
NeurIPS, 2020.

Michael W Tao, Micah K Johnson, and Sylvain Paris. Error-tolerant image compositing.
In Eur. Conf. Comput. Vis., 2010.

Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Revisiting and re-
vitalizing proxy neighborhood component analysis. In European Conference on Com-
puter Vision (ECCV). Springer, 2020.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv
preprint arXiv:1906.05849, 2019.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo
Larochelle. Meta-dataset: A dataset of datasets for learning to learn from few ex-
amples. ICLR, 2020.

Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, and Ming-Hsuan Yang. Sky
is not the limit: semantic-aware sky replacement. ACM Trans. Graph., 2016.

Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, and Ming-Hsuan
Yang. Deep image harmonization. In IEEE Conf. Comput. Vis. Pattern Recog., 2017.



110 BIBLIOGRAPHY

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman, Eric Nyberg, and Chris Dyer.
Metaphor detection with cross-lingual model transfer. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2014.

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik.
Learning shape abstractions by assembling volumetric primitives. In Proc. CVPR, vol-
ume 2, 2017.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky. Texture net-
works: Feed-forward synthesis of textures and stylized images. In ICML, 2016.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching net-
works for one shot learning. In NeurIPS, 2016.

Kailas Vodrahalli, Ke Li, and Jitendra Malik. Are all training examples created equal? an
empirical study. ArXiv preprint 1811.12569, 2018.

Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions
in the gan latent space. In ICML, 2020.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
Caltech-UCSD birds-200-2011 dataset. California Institute of Technology, 2011.

John Wang and Edward Adelson. Representing moving images with layers. IEEE Trans-
actions on Image Processing, 1994.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catan-
zaro. High-resolution image synthesis and semantic manipulation with conditional
gans. In CVPR, 2018a.

Xiaolong Wang and Abhinav Gupta. Generative image modeling using style and structure
adversarial networks. ECCV, 2016.

Y. Wang, W.-L. Chao, K. Q. Weinberger, and L. van der Maaten. Simpleshot: Revisiting
nearest-neighbor classification for few-shot learning. ArXiv preprint 1911.04623, 2019.

Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learn-
ing from imaginary data. In CVPR, 2018b.

David Warde-Farley and Yoshua Bengio. Improving generative adversarial networks with
denoising feature matching. ICLR, 2017.

wikiart.org. Wikiart: Visual art encyclopedia. https://www.wikiart.org/, 2010.

Yuxin Wu and Kaiming He. Group normalization. ECCV, 2018.

Tian Xia, Binbin Liao, and Yizhou Yu. Patch-based image vectorization with automatic
curvilinear feature alignment. Trans. on Graphics (TOG), 2009.

Wenqi Xian, Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays.
TextureGAN: Controlling deep image synthesis with texture patches. CVPR, 2018.

https://www.wikiart.org/


BIBLIOGRAPHY 111

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun
database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.

Ping Xiao, Simo Matias Linkola, et al. Vismantic: Meaning-making with images. In
ICCC, 2015.

Ning Xie, Hirotaka Hachiya, and Masashi Sugiyama. Artist agent: A reinforcement learn-
ing approach to automatic stroke generation in oriental ink painting. IEICE TRANSAC-
TIONS on Information and Systems, 2013.

Su Xue, Aseem Agarwala, Julie Dorsey, and Holly Rushmeier. Understanding and im-
proving the realism of image composites. ACM Trans. Graph., 2012.

Kota Yamaguchi, M Hadi Kiapour, Luis E Ortiz, and Tamara L Berg. Parsing clothing
in fashion photographs. In 2012 IEEE Conference on Computer vision and pattern
recognition, 2012.

Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and Yizhou Yu. Automatic
photo adjustment using deep neural networks. ACM Trans. Graph., 2015.

Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. LR-GAN: layered recursive
generative adversarial networks for image generation. ICLR, 2017.

Gokhan Yildirim, Nikolay Jetchev, Roland Vollgraf, and Urs Bergmann. Generating
high-resolution fashion model images wearing custom outfits. In Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, pages 0–0, 2019.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-form
image inpainting with gated convolution. In Int. Conf. Comput. Vis., 2019.

Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. A neural approach to pun generation. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2018.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and
Silvio Savarese. Taskonomy: Disentangling task transfer learning. In CVPR, 2018.

Andrew Zhai and Hao-Yu Wu. Classification is a strong baseline for deep metric learning.
arXiv preprint arXiv:1811.12649, 2018.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang,
and Dimitris N. Metaxas. StackGAN: Text to photo-realistic image synthesis with
stacked generative adversarial networks. ICCV, 2017.

Han Zhang, I. Goodfellow, Dimitris N. Metaxas, and Augustus Odena. Self-attention
generative adversarial networks. In ICML, 2019.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV,
2016.

Yinan Zhao, Brian Price, Scott Cohen, and Danna Gurari. Unconstrained foreground
object search. In Int. Conf. Comput. Vis., 2019.



112 BIBLIOGRAPHY

Liang Zheng, Yi Yang, and Alexander G Hauptmann. Person re-identification: Past,
present and future. arXiv preprint arXiv:1610.02984, 2016.

Ningyuan Zheng, Yifan Jiang, and Dingjiang Huang. Strokenet: A neural painting envi-
ronment. In ICLR, 2018.

Linjun Zhou, Peng Cui, Xu Jia, Shiqiang Yang, and Qi Tian. Learning to select base
classes for few-shot classification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4624–4633, 2020.

Peng Zhou, Xintong Han, Vlad I Morariu, and Larry S Davis. Learning rich features for
image manipulation detection. In IEEE Conf. Comput. Vis. Pattern Recog., 2018.

Zhiming Zhou, Weinan Zhang, and Jun Wang. Inception score, label smoothing, gradient
vanishing and -log(d(x)) alternative. arXiv:1708.01729, 2017.

Jun-Yan Zhu, Philipp Krahenbuhl, Eli Shechtman, and Alexei A Efros. Learning a dis-
criminative model for the perception of realism in composite images. In Int. Conf.
Comput. Vis., 2015.
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