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Résumé (Français)

Une sélection efficace et durable repose sur un compromis entre efforts à court terme afin de proposer aux agriculteurs des variétés compétitives, et le maintien d'une base génétique large garantissant des variétés futures qui répondront aux défis climatiques, biologiques et sociétaux de demain. Les avancées du génotypage haut débit ont ouvert de nouvelles perspectives de sélection pour les caractères quantitatifs, telles que la prédiction génomique de performances individuelles, la prédiction de l'intérêt de plans de croisements, ainsi que la gestion de la diversité. L'objectif de cette thèse est de contribuer au développement de méthodologies et schémas de sélection efficaces et durables. Cela inclue l'évaluation de la diversité génétique des populations élites, sa conversion efficace en gain génétique à court et long termes, ainsi que l'identification de sources de variabilité génétique d'intérêt et leur introduction dans les populations de sélection.

Nous proposons tout d'abord d'exploiter des séries temporelles de données phénotypiques et génotypiques afin d'évaluer l'effet de la sélection sur la diversité génétique des populations élites ainsi que leur réponse attendue à la sélection. En Chapitre 1, nous proposons trois séries d'indicateurs : phénotypique, génotypique et génomique. Le fondement théorique de ces indicateurs est tout d'abord présenté. Ils sont ensuite appliqués à un programme de sélection maïs grain portant sur les groupes hétérotiques cornés et dentés. Un gain génétique significatif est observé sur dix ans dans les populations ''cornée'' et ''dentée'' en sélection et est accompagné d'une perte de variance génétique additive en absence d'introductions de matériel externe dans la population ''denté''. Une perte significative de diversité génétique ainsi que des régions à très faible diversité dans les régions péricentromériques sont aussi observées dans ce groupe. Enfin, il est estimé que la répulsion entre locus causaux capture 24% de la variance génique additive totale chez les dentés, soit 4,9% de la réponse potentielle maximale à la sélection. Cette proportion varie entre chromosomes ce qui permet de suggérer différentes stratégies de gestion et d'amélioration de la réponse à la sélection selon les chromosomes. Ces indicateurs sont faciles à implémenter et permettent d'exploiter, à moindre coût, les données phénotypiques et génotypiques stockées dans des bases de données sur plusieurs générations de sélection afin d'aider les sélectionneurs dans leurs décisions stratégiques.

Résumé (Français)

viii Par la suite, nous nous sommes intéressés à la gestion de la diversité génétique afin d'optimiser sa conversion en gain génétique à court terme sans compromettre le gain génétique à long terme. La sélection du plan de croisement qui génère des descendants performants et maintient suffisamment de diversité est un facteur clef du succès à court et long termes des programmes de sélection récurrente. L'identification du croisement maximisant la probabilité de sélectionner une descendance meilleure que les parents de départ repose sur la prédiction de la distribution d'un caractère quantitatif dans la descendance du croisement. Cette approche est communément appelée critère d'utilité et prend en compte la complémentarité entre parents, i.e. la ségrégation mendélienne dans la descendance, pour le caractère quantitatif considéré. En Chapitre 3, le modèle prédictif de la distribution d'un caractère quantitatif dans une famille biparentale est étendu au cas des familles multi-parentales. Une approche multi-caractères est ensuite proposée, considérant les performances agronomiques et les contributions parentales comme des caractères quantitatifs corrélés et normalement distribués. Cette approche dénommée critère d'utilité et contributions parentales (UCPC) permet de prédire la performance moyenne et la diversité attendues dans la fraction sélectionnée de la descendance d'un croisement. L'UCPC peut être utilisé afin d'étendre la sélection optimale de plan de croisements (OCS) qui a pour but de maximiser le gain génétique tout en limitant la perte de diversité. En Chapitre 4, nous comparons différents plans de croisements par simulation. Il est tout d'abord observé qu'une sélection des croisements basée sur le critère d'utilité maximise le gain à court et long termes comparativement à une sélection basée sur la moyenne des performances parentales sans prise en compte de la ségrégation attendue de leur descendance. Ensuite, nous montrons que les approches de croisement optimales (OCS) sont plus performantes à long terme mais au prix d'une pénalité à court terme comparativement au critère d'utilité. Finalement, l'OCS basée sur l'UCPC convertit plus efficacement la diversité génétique en gain à court et long termes que l'OCS.

Ainsi, la sélection de croisement optimale basée sur l'UCPC aide les sélectionneurs dans leur choix de plan de croisements pour satisfaire leurs objectifs à court et long termes.

Une base génétique étroite des populations élites compromet le gain génétique à long terme.

De ce fait, une stratégie d'élargissement de leur base génétique sans compromettre le gain à court terme est nécessaire. De nombreuses sources de diversité peuvent être considérées mais toutes ne peuvent être évaluées. En Chapitre 2, différents critères prédictifs sont passés en revue et comparés afin d'évaluer l'utilité de ressources génétiques pour enrichir un pool élite. Ces critères évaluent la complémentarité entre ressources génétiques et lignée élite receveuse afin d'assurer l'apport de nouveaux allèles ou haplotypes favorables absents de la population élite. Les critères proposés s'appuient sur les effets aux marqueurs estimés dans un panel collaboratif constitué de lignées de diversité publiques et de lignées élites privées (panel denté issu du projet « Amaizing »). La qualité Résumé (Français) ix prédictive obtenue par validation croisée sur le panel collaboratif ainsi que la qualité prédictive non nulle obtenue sur une large population élite montre l'intérêt d'utiliser ces effets à des fins d'identification de ressources génétiques pour l'élargissement de la base génétique élite. Enfin, dans le Chapitre 5, nous proposons d'utiliser l'OCS basée sur l'UCPC afin d'identifier le croisement optimal entre ressources génétiques et lignées élites en fonction des caractéristiques d'originalité et de performance des ressources génétiques. Nous proposons d'améliorer les ressources génétiques (prebreeding), puis de connecter les ressources génétiques améliorées au matériel élite (bridging) avant de les introduire dans la population en sélection. Par simulations, nous montrons l'intérêt de réaliser des introductions récurrentes de ressources génétiques préalablement améliorées afin de maximiser le gain génétique tout en maintenant la diversité constante dans la population élite. De même, nous montrons l'importance de la composition de la population utilisée pour calibrer le modèle de sélection génomique utilisé lors de l'introduction des ressources génétique dans la population élite. Nous préconisons de considérer une population de référence constituée de lignées élites et de la descendance de croisement entre lignées élites et lignées issues de ressources génétiques. Ce dernier chapitre fournit des recommandations quant à l'exploitation de la variabilité polygénique présente dans les ressources génétiques afin d'enrichir la base génétique d'une population élite.

L'ensemble de ces travaux ainsi que les récentes études cités au long de ce manuscrit ouvrent de nouvelles perspectives pour la gestion de la diversité génétique au sein de programmes de sélection compétitifs et durables.

Résumé (Français)

x Crop adaptation to human needs, i.e. crop improvement, is as ancient as agriculture itself (app. 10,000 years ago, [START_REF] Doebley | The Molecular Genetics of Crop Domestication[END_REF]. Crop improvement, like natural evolution, occurs through the selection operating on the genetic variability of plant populations [START_REF] Lush | Animal breeding plans[END_REF]Simmonds 1962). Both, natural evolution and early agricultural practices have left their signatures and shaped the genetic diversity of modern crops. Human selection initially carried out by farmers has been recently, for main crops and industrialized countries, optimized and structured into variety improvement by breeders and production by farmers (e.g. first French "seed dealers" in the mid-17 th century). In this context, different levels of diversity can be distinguished for each crop: (i) the overall crop diversity stored in ex situ collections, (ii) the diversity of modern crop breeding populations (i.e. intra-breeding program) and (iii) the diversity of cultivated varieties delivered by breeders to farmers (Figure 1). At farmers' level, the diversity of varieties and crops contribute to the agroecosystem resilience to biotic and abiotic perturbations [START_REF] Vandermeer | Global change and multispecies agroecosystems: Concepts and issues[END_REF][START_REF] Malézieux | Mixing Plant Species in Cropping Systems: Concepts, Tools and Models: A Review[END_REF]). Thus, the management of genetic diversity at each level is of critical importance in a context of climate change characterized by an increased frequency of unpredictable extreme temperatures, drought, pests and plant pathogen outbreaks (McCouch et al. 2013). In the following, this dissertation will focus mostly on the second level of diversity, i.e. diversity within breeding populations that determinates the diversity available to breeders to develop new varieties (Figure 1). 

Importance of genetic diversity for crop improvement

Domestication and improvement shaped crop genetic diversity

During their evolutionary history, crops have experienced different genetic bottlenecks through selection and drift during domestication and migrations [START_REF] Spillane | Evolutionary and genetics perspectives on the dynamics of crop genepools, pp. 25-53 in Broadening the Genetic Base of Crop Production[END_REF]. Such events explain the reduction of current genetic diversity in main crops compared to the wild relatives and traditional varieties referred to as landraces [START_REF] Ladizinsky | Founder effect in crop-plant evolution[END_REF][START_REF] Doebley | The Molecular Genetics of Crop Domestication[END_REF]. Artificial selection by farmers and modern plant breeders yielded major improvement in most crops to sustain humanity development but also reduced the genetic variability (Simmonds 1962;Cooper et al. 2001;[START_REF] Fu | Impact of plant breeding on genetic diversity of agricultural crops: searching for molecular evidence[END_REF][START_REF] Fu | Understanding crop genetic diversity under modern plant breeding[END_REF]. For instance, cultivated barley [START_REF] Brown | Isozyme assessment of plant genetic resources[END_REF][START_REF] Petersen | Genetic diversity among wild and cultivated barley as revealed by RFLP[END_REF], soybean [START_REF] Doyle | 5S ribosomal gene variation in the soybean and its progenitor[END_REF][START_REF] Hyten | Impacts of genetic bottlenecks on soybean genome diversity[END_REF][START_REF] Han | Domestication footprints anchor genomic regions of agronomic importance in soybeans[END_REF], chickpea (Cooper et al. 2001), peanut [START_REF] Fonceka | Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding[END_REF] and wheat [START_REF] Charmet | Wheat domestication: Lessons for the future[END_REF] show a narrow genetic base because of bottlenecks at domestication and migration. Other crops such as maize present a narrow genetic base arising from bottlenecks during modern breeding but contain a much larger available diversity in older germplasm (Tallury and Goodman 2001).

The loss of genetic variability in closed and finite selected populations is due to genetic drift induced by selection of a limited number of individuals. Also, directional selection for some agronomic traits (e.g. yield, quality, diseases tolerance) favors a favorable allele, respectively disfavors an unfavorable allele, at quantitative trait loci (QTLs) underlying the selected traits. As a result of selection, the allele frequency shifts in one direction yielding a reduction of deoxyribonucleic acid (DNA) sequence diversity at the QTLs and neighboring regions by linkage drag [START_REF] Maynard-Smith | The hitch-hiking effect of a favourable gene[END_REF]. Alternatively, a balancing-stabilizing selection (e.g. selection for an optimal precocity), maintains multiple alleles in the breeding population and elevates sequence diversity at the QTLs and surrounding regions. In practice, the impact of selection on crop genetic diversity at the farmers' level, also referred to as diversity erosion [START_REF] Wouw | Genetic erosion in crops: concept, research results and challenges[END_REF], is difficult to observe. For instance, [START_REF] Fu | Impact of plant breeding on genetic diversity of agricultural crops: searching for molecular evidence[END_REF] reviewed 23 studies released from 2000 to 2005 evaluating the impact of modern plant improvement on genetic diversity of agricultural crops, such as maize [START_REF] Duvick | Long-term selection in a commercial hybrid maize breeding program[END_REF][START_REF] Clerc | Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers[END_REF]Reif et al. 2005b), wheat (Reif et al. 2005a;[START_REF] Roussel | SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000[END_REF][START_REF] Fu | Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers[END_REF], barley [START_REF] Koebner | Temporal flux in the morphological and molecular diversity of UK barley[END_REF] and oat [START_REF] Fu | Amplified fragment length polymorphism analysis of 96 Canadian oat cultivars released between 1886 and 2001[END_REF]). This review revealed different impacts of modern crop improvement on elite germplasm. In general, the genomewide reduction of crop genetic diversity over time was minor, but allelic reduction at individual chromosomal segments was substantial. Only few studies focused on the impact of longterm selection on genetic diversity at the level of a given breeding program (e.g. in maize, [START_REF] Labate | Temporal changes in allele frequencies in two reciprocally selected maize populations[END_REF][START_REF] Feng | Temporal trends in SSR allele frequencies associated with long-term selection for yield in maize[END_REF][START_REF] Fischer | Trends in genetic variance components during 30 years of hybrid maize breeding at the University of Hohenheim[END_REF][START_REF] Van Inghelandt | Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers[END_REF][START_REF] Gerke | The Genomic Impacts of Drift and Selection for Hybrid Performance in Maize[END_REF], in soybean Bruce et al. 2019). The authors observed either significant reductions of genetic diversity or complex changes in genetic diversity due to large open breeding systems, i.e. with introductions of new extrinsic allelic variation [START_REF] Feng | Temporal trends in SSR allele frequencies associated with long-term selection for yield in maize[END_REF][START_REF] Bruce | Genome-wide genetic diversity is maintained through decades of soybean breeding in Canada[END_REF]). Since every breeding population is subject to different breeding strategies, additional studies of the evolution of genetic diversity within commercial breeding programs and consequences on genetic improvement are required to drive an empirical consensus on good breeding practices.

Genetic diversity a cornerstone for crop improvement

The relationship between the additive genetic variation and the expected response to selection is known as the "breeder's equation" [START_REF] Lush | Animal breeding plans[END_REF]. Assuming an infinite breeding population and a normally distributed targeted trait, the expected change in mean performance (Δ𝜇) per generation is proportional to the selection intensity (𝑖), the selection accuracy (ℎ) and the population additive genetic standard deviation of the targeted trait (𝜎 𝐴 ): Δ𝜇 = 𝑖ℎ𝜎 𝐴 , (Eq. 1)

where the selection accuracy (ℎ) is defined as the correlation between the value used for selection and the additive genetic value for the targeted trait. Equation 1 states that in absence of mutation and epistasis, the total response to selection is limited by the initial standing additive variation (σ A 2 , the variance of additive genetic values which corresponds to the sum of the additive diversity at causal loci and the additive covariances between causal loci, [START_REF] Bulmer | The stability of equilibria under selection[END_REF][START_REF] Lynch | Genetics and analysis of quantitative traits[END_REF][START_REF] Gianola | Additive Genetic Variability and the Bayesian Alphabet[END_REF]. Larger initial σ A 2 in the breeding population yields higher expected response to selection per generation.

Two parameters are commonly used to characterize the level of diversity in selected populations. The first one is the effective population size [START_REF] Fischer | The genetical theory of natural selection[END_REF][START_REF] Wright | Evolution in Mendelian Populations[END_REF], which refers to the number of breeding individuals in an idealized panmictic population with absence of selection that would show the same amount of genetic diversity as the population at hand. The second one is the expected heterozygosity in the idealized population (He, Nei 1973). For biallelic loci, the expected heterozygosity in a panmictic population and no selection is 𝐻𝑒 = 1 𝑚 ∑ 2𝑝 𝑗 (1 -𝑝 𝑗 ) 𝑚 𝑗=1

, with 𝑝 𝑗 the frequency of the reference allele at locus 𝑗 ∈ ⟦1, 𝑚⟧. The effective population size (𝑁𝑒) can be estimated from changes in frequency of heterozygotes in the panmictic population assuming only drift: 𝐻𝑒 𝑡+1 = 𝐻𝑒 𝑡 (1 -1/2𝑁 𝑒 ) (Falconer and Mackay 1996). Thus, both expected heterozygosity (He) and effective population size (𝑁𝑒) are related concepts.

In a long-term perspective, large and diverse populations show a greater efficiency of selection (Fischer 1930, p. 102;[START_REF] Weber | Increased selection response in larger populations. II. Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes[END_REF]. The effect of 𝑁𝑒 on potential maximal response to selection is well known in quantitative genetic literature [START_REF] Robertson | A theory of limits in artificial selection[END_REF]. Under the assumptions of an infinitesimal model [START_REF] Fisher | XV.-The Correlation between Relatives on the Supposition of Mendelian Inheritance[END_REF], i.e. many locus of small effects underlying the trait, absence of mutation, a selection intensity 𝑖, an accuracy ℎ, a population with effective size 𝑁𝑒 and additive genetic standard deviation 𝜎 𝐴 , the maximum potential response in long-term is:

2𝑁𝑒 𝑖ℎ𝜎 𝐴 . (Eq. 2)
The maximum potential response to selection reduces to 2𝑁𝑒Δ𝜇 with Δ𝜇 being the expected response to selection in the first generation as defined in Eq. 1. Thus, a first advantage of a larger effective population size is to reduce the loss of initial genetic variance by genetic drift resulting in an increased selection limit. A second advantage is the greater accumulation of genetic variation by recombination events and mutations. Hill (1982a;b) While the expected response to selection is proportional to the selection intensity 𝑖 (Eq.1, 2), the effective population size 𝑁𝑒 is inversely proportional to the square of the selection intensity 𝑖 2 [START_REF] Robertson | Inbreeding in artificial selection programmes[END_REF][START_REF] Wray | Prediction of rates of inbreeding in selected populations[END_REF][START_REF] Sanchez | Palliating the impact of fixation of a major gene on the genetic variation of artificially selected polygenes[END_REF]Woolliams et al. 2015). Consequently, maximizing the selection intensity to maximize the short-term response to selection will inevitably reduce the effective population size and long-term response to selection (Eq. 2). This highlights the inherent dilemma between the genetic diversity and the genetic gain and opens the scope for optimization.

As expressed in [START_REF] Lush | Animal breeding plans[END_REF] and [START_REF] Robertson | A theory of limits in artificial selection[END_REF], a reduced genetic diversity in breeding populations might induce yield plateau or substantially increase breeding efforts and investments to keep constant rates of genetic gain. A reduced genetic diversity in breeding populations might also induce a reduced diversity in fields limiting the ability to overcome biotic and abiotic stresses, or even yielding crop failure in a changing environment (McCouch et al. 2013). One of the disastrous evidence is the Irish potato famine in the 1840s, caused by the homogenous sensitivity of cultivated varieties to late blight. More recently, the southern leaf blight epidemic in the US maize crop in 1969-1970 induced 15% losses caused by the use of the same cytoplasmic DNA male sterility in developed maize varieties which were uniformly susceptible to a race of the fungus [START_REF] Ullstrup | The Impacts of the Southern Corn Leaf Blight Epidemics of 1970-1971[END_REF][START_REF] Bruns | Southern Corn Leaf Blight: A Story Worth Retelling[END_REF]. Consequently, there is a continuing need to balance improvement and diversity in crop breeding through an optimized management of intrinsic (i.e. internal to the breeding population) genetic variability and enrichment in new variability from different extrinsic (i.e. external to the breeding population) genetic resources to increase breeding ceiling and reduce the genetic susceptibility to rising and yet unknown biotic and abiotic stresses.

Managing and broadening the genetic base of breeding programs

It is generally recognized in species suffering strong inbreeding depression and where the breeding population is also the production population (e.g. animal breeding) that one cannot simply select and mate the best individuals without also taking into account the degree of relatedness among them to limit consanguinity and the impact of deleterious alleles causing inbreeding depression. The identification of the mating plan that maximizes the genetic merit in the next generation while constraining the average relationship between parents involves the optimization of parental contributions, i.e. the fraction of genes contributed by a parent to the future generation, a concept well known in animal genetics [START_REF] James | The spread of genes by natural and artificial selection in closed poultry flock[END_REF]Woolliams et al. 2015). Parental contributions have simple relationships with key parameters of population genetics. While the genetic gain is proportional to the product of individuals' contributions and deviations from population mean [START_REF] Woolliams | A theory of genetic contributions[END_REF][START_REF] Woolliams | Expected genetic contributions and their impact on gene flow and genetic gain[END_REF], the rate of inbreeding, i.e. loss of diversity, is inversely proportional to the square of individuals' contributions [START_REF] Robertson | Inbreeding in artificial selection programmes[END_REF][START_REF] Wray | Prediction of rates of inbreeding in selected populations[END_REF][START_REF] Sanchez | Palliating the impact of fixation of a major gene on the genetic variation of artificially selected polygenes[END_REF]Woolliams et al. 2015). Based on this theory, a mating strategy called optimal contribution selection has been investigated for decades in animal breeding (e.g. Wray and Goddard 1994;Meuwissen 1997;Kinghorn 2011), in tree breeding (e.g. [START_REF] Kerr | Maximising genetic response in tree breeding with constraints on group coancestry[END_REF]Hallander and Waldmann 2009a;b) and has been increasingly adopted in crop breeding (e.g. Akdemir and Sánchez 2016;[START_REF] Beukelaer | Moving beyond managing realized genomic relationship in long-term genomic selection[END_REF]Gorjanc et al. 2018;Akdemir et al. 2018).

There are several reasons that might explain why such considerations have been firstly developed in animal breeding and only recently adopted in crop breeding. One reason may be that major crops are inbred species (e.g. wheat, barley) and suffer little inbreeding depression or pass by a hybrid stage (e.g. maize) allowing to complement recessive sub lethal alleles. Complementarily, since most crop breeders have the possibility to broaden the genetic base of their population using different extrinsic genetic resources publically available (e.g. current and old varieties) and conserved worldwide in international gene banks and national collections (e.g. wild relatives, exotic germplasm accessions and landraces, [START_REF] Hammer | Agrobiodiversity with emphasis on plant genetic resources[END_REF]; Commission on Genetic Resources for Food 2010), they might have underestimated the importance of intrinsic diversity management. The recent increased interest of crop breeders for intrinsic genetic diversity management might be explained by the fact that the more breeding germplasm is improved, the more expensive and time consuming becomes the introduction of extrinsic diversity.

Crop genetic resources are defined as "genetic material of actual or potential value" by the Convention on Biological Diversity (https://www.cbd.int/) and provide the basis to improve productivity, resilience and nutritional quality of crops (Wang et al. 2017). Although plant breeders recognize the importance of genetic resources for elite genetic base broadening, only little use has been made of it (Glaszmann et al. 2010;Wang et al. 2017). The main reason is that breeding progress continues to be made in most crops (e.g. in maize grain yield, [START_REF] Duvick | The Contribution of Breeding to Yield Advances in Maize (Zea mays L.)[END_REF], in wheat, Tadesse et al. 2019) and that breeders are reluctant to compromise elite germplasm with unadapted and unimproved genetic resources (Kannenberg and Falk 1995). Consequently, there is a need for a breeding system that can efficiently broaden the genetic base of elite germplasm while not compromising the performance of released varieties. Such a system first involves the description and the understanding of the genetic diversity present in collections and the definition of core sets of genetic resources representing the global diversity [START_REF] Frankel | Genetic perspectives of germplasm conservation[END_REF][START_REF] Brown | The case for core collections[END_REF]). Genetic resources are characterized for adaptation traits in few locations (e.g. flowering day length, earliness, stress resistance …). Adapted genetic resources should be further extensively evaluated for agronomic traits (e.g. grain yield, quality …) and their genotype by environment interactions (GxE) before being identified as interesting for breeding purpose. The identification can be based on phenotypic evaluation of potential donors, progeny of the cross donor x elite material or considering molecular information (e.g. [START_REF] Bernardo | Genomewide Selection of Parental Inbreds: Classes of Loci and Virtual Biparental Populations[END_REF]Crossa et al. 2016;Yu et al. 2016). In the case of traits determined by few genes of large effect, the favorable alleles can be identified and introgressed into elite germplasm (Figure 2) following well established marker-assisted backcross procedures (e.g. Charmet et al. 1999;Servin et al. 2004;[START_REF] Bernardo | Genomewide Predictions for Backcrossing a Quantitative Trait from an Exotic to an Adapted Line[END_REF]Han et al. 2017).

Introgressions have been successful for mono-or oligogenic traits (e.g. earliness loci in maize, Simmonds 1979;[START_REF] Smith | Diversity of United States Hybrid Maize Germplasm; Isozymic and Chromatographic Evidence[END_REF]Beavis 1996, SUB1 gene in rice, Bailey-Serres et al. 2010). Introgressions also proved to be successful for more polygenic traits where few major causal regions have been identified. For instance, Ribaut and Ragot (2006) successfully introgressed five regions associated with maize flowering time and yield components under drought conditions. For complex traits controlled by numerous genes with small effect introgression procedures were mostly unsuccessful to broaden the genetic base of breeding populations (Simmonds 1993). Simmonds (1993) proposed a general scheme for genetic base broadening that consists in the incorporation of extrinsic polygenic variation in the breeding population. Simmonds distinguished three hierarchical steps starting from a broad population of genetic resources to the locally adapted breeding population. It starts with the prebreeding, called base broadening in Simmonds (1993), to improve genetic resources in order to reduce the performance gap with the breeding population. Pre-breeding can be defined as the recurrent improvement of genetic resources to release donors that can be further introduced into the elite breeding population (Figure 2). For Simmonds, the pre-breeding must be kept completely independent of the breeding population until it starts to provide performing resources (Simmonds 1993). Best prebreeding progeny are further considered for incorporation in a buffer population with some of the breeding material. This population bridges the elite breeding genetic base with the pre-breeding genetic base and this step is referred to as bridging (Figure 2). For the sake of clarity, bridging aims at limiting the negative impact of introductions on short-term varieties' performance. The best bridging individuals are further considered as breeding parents in the routine breeding program (Figure 2). Alternatively, one could suggest to skip the bridging if pre-breeding releases material that is directly competitive with elite parents (Figure 2). 

A maize perspective

In this section, the maize history and modern hybrid breeding that shaped maize genetic diversity are presented. The interest of genetic base broadening in the maize context is further discussed and some maize genetic base broadening projects are shortly reviewed.

Maize domestication and adaptation shaped the maize genetic diversity

Maize production exceeded 1.3 billion tons on about 240 million ha worldwide in 2017, which makes maize the first crop before rice in terms of production (nearly a billion tons) (Food and Agriculture Organization, FAO 2019). Maize was domesticated once from its wild progenitor teosinte Zea mays ssp. parviglumis about 9,000 years ago in the Balsas valley of Mexico [START_REF] Beadle | Teosinte and the origin of maize[END_REF][START_REF] Doebley | Molecular Evidence and the Evolution of Maize[END_REF][START_REF] Matsuoka | A single domestication for maize shown by multilocus microsatellite genotyping[END_REF]. Maize domestication resulted in original maize landrace varieties further spread and adapted by Native Americans in a wide range of environmental conditions: as far as the current Canada and southern Chile (Figure 3). For instance, the American Northern Flint landraces were adapted to cold temperate regions [START_REF] Brown | The Northern Flint Corns[END_REF] and are genetically divergent compared to other tropical or subtropical landraces [START_REF] Doebley | Exceptional Genetic Divergence of Northern Flint Corn[END_REF]. About 200 years ago, Southern Dent and American Northern Flint germplasm were hybridized and gave rise to the Corn Belt Dent type adapted to the mid United States region [START_REF] Doebley | The origin of cornbelt maize: The isozyme evidence[END_REF][START_REF] Camus-Kulandaivelu | Maize Adaptation to Temperate Climate: Relationship Between Population Structure and Polymorphism in the Dwarf8 Gene[END_REF]. Due to day-length adaptation bottleneck, most of the tropical maize diversity is not represented in Corn Belt Dent [START_REF] Goodman | Exotic maize germplasm: Status, prospects, and remedies[END_REF].

The first introduction of tropical maize in south Europe is commonly attributed to Columbus in 1493 (Figure 3). European Northern Flint originated from the second introduction of pre-acclimated sources of maize from the eastern coast of North America in the north of Europe, currently Germany, Belgium and Netherlands, during the 16 th century [START_REF] Brandolini | Maize[END_REF][START_REF] Rebourg | Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation[END_REF][START_REF] Rebourg | Maize introduction into Europe: the history reviewed in the light of molecular data[END_REF][START_REF] Dubreuil | More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements [Zea mays L.; Simple Sequence Repeats[END_REF][START_REF] Camus-Kulandaivelu | Maize Adaptation to Temperate Climate: Relationship Between Population Structure and Polymorphism in the Dwarf8 Gene[END_REF]. Further introductions may have occurred in Italy from South America (Brazil, Argentina) explaining the high similarity between traditional varieties of these regions [START_REF] Tenaillon | A European perspective on maize history[END_REF]. As a consequence of these introductions, European maize diversity derives from America and presents only few European specific alleles [START_REF] Rebourg | Maize introduction into Europe: the history reviewed in the light of molecular data[END_REF]. Admixture events were also observed in Europe between different genetic backgrounds and led to the creation of new groups such as the broad European Flints group spanning from north to south Europe [START_REF] Brandenburg | Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts[END_REF].

As a result of domestication and adaptation to different growing conditions, maize exhibits a strong morphological variability among different origins. Maize is cultivated mainly for grain but also for silage in a wide range of environments, from temperate to tropical regions. As an allogamous species showing substantial inbreeding depression for grain yield (A. R. Hallauer and Miranda 1988, chapter 9), maize was historically, and is still in some regions (e.g. [START_REF] Bellon | Participatory landrace selection for on-farm conservation: An example from the Central Valleys of Oaxaca, Mexico[END_REF], cultivated in heterogeneous populations of heterozygous individuals called open-pollinated varieties (OPVs). 

Modern maize breeding: hybrid breeding

Historically the OPVs of maize were the source of material used in temperate maize breeding programs. In the early 1900s, [START_REF] Shull | The composition of a field of maize[END_REF] proposed to "clone" the best heterozygote individual in the OPV as an hybrid between inbred parents [START_REF] East | Inbreeding in corn[END_REF][START_REF] Shull | A pure-line method in corn breeding[END_REF]. This revolutionized maize breeding and led to the rediscovery of the concept of hybrid vigor (Darwin 1876) further described as heterosis [START_REF] Shull | Duplicate genes for capsule-form in Bursa bursa-pastoris[END_REF]). In the first generations, few OPVs served as source populations to derive inbred lines for use as hybrid parents. Due to strong inbreeding depression, the quantity of seeds produced by the first derived inbred lines was too small to directly used these lines as parents of commercial hybrids. And thus, first hybrids were double cross hybrids resulting from [Inbred1 x Inbred 2] x [Inbred 3 x Inbred 4] (Jones 1918). In the 1960s, with the improvement in seed quantity and quality traits, breeders switched from double cross hybrids to single cross hybrids resulting directly from Inbred1 x Inbred 2. It rapidly and completely replaced mass-selected OPVs in the United States and Europe (Anderson 1944;[START_REF] Troyer | Background of U.S. Hybrid Corn[END_REF]. Hybrid breeding tremendously increased maize productivity (Figure 4). The inbred stage purges recessive deleterious alleles and increases the variance among families [START_REF] Horner | Comparison of Selection Based on Yield of Topcross Progenies and of S2 Progenies in Maize (Zea mays L.) 1[END_REF][START_REF] Hallauer | Quantitative genetics in maize breeding[END_REF] and thereby increases the selection effectiveness.

General introduction 10

Breeders defined and maintained distinct heterotic groups that maximized the inter-heterotic group hybrid vigor. Heterotic groups have been defined by testing different hybrid combinations. The hybrid breeding relies on the improvement of heterotic groups and the identification of the inbred parents from distinct heterotic groups that yield outstanding hybrids. Within heterotic groups, inbreds are improved in a reciprocal recurrent selection scheme [START_REF] Russell | Hybrid Performance of Selected Maize Lines from Reciprocal Recurrent and Testcross Selection Programs 1[END_REF] designed to enhance the combining ability between the two heterotic groups, so that their cross will improve in performance over selection cycles. The hybrid performance is modeled as the sum of the general combining ability (GCA) of inbred parent from heterotic group 1 and of inbred parent from heterotic group 2 and specific combining ability (SCA) that is the effect specific to the hybrid combination. In a classical hybrid breeding scheme (Figure 5), within and between heterotic group breeding are distinct steps. Within heterotic groups, inbred segregating progeny of parental crosses are selected based on their GCA estimated from their evaluation in hybrid combination with one or few different inbreds representative of the opposite group (app. 1 to 3) called testers. Such evaluation is referred to as testcross evaluation. The best performing inbreds (app. 5%-10% best) are recycled as parents of next generation crosses. Additionally, these inbred lines are further evaluated for testcross performance on more testers and are further selected. In the second step, the best inbreds of both pools are crossed in an incomplete factorial to evaluate SCA and produce desirable commercial hybrids [START_REF] Bernardo | Prediction of Maize Single-Cross Performance Using RFLPs and Information from Related Hybrids[END_REF][START_REF] Tallury | The State of the Use of Maize Genetic Diversity in the USA and Sub-Saharan Africa, pp. 159-179 in Broadening the Genetic Base of Crop Production[END_REF][START_REF] Technow | Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize[END_REF] (Figure 5). Given that testcross means, i.e. GCAs, behave in a statistically additive manner [START_REF] Hallauer | Quantitative genetics in maize breeding[END_REF], statistical dominance (SCA) is accounted for only in the incomplete factorial between both populations for commercial hybrid selection.

In the US by the 1960s, production of high-yielding hybrids in temperate conditions was largely based on inbreds from two Corn Belt Dent OPVs: the Reid Yellow Dents and Lancaster sure crops [START_REF] Smith | Diversity of United States Hybrid Maize Germplasm; Isozymic and Chromatographic Evidence[END_REF]. While the founders of these heterotic groups were not initially differentiated, the heterotic groups diverged genetically over time to become highly structured and isolated with a decreased diversity within groups [START_REF] Heerwaarden | Historical genomics of North American maize[END_REF]). Today's North American Dent maize is composed of multiple heterotic groups and their nomenclature is complex and depends on the authors (Mikel and Dudley 2006). As a rule of thumb, the female, i.e. seed parent, is mainly from Iowa Stiff Stalk Synthetics origin (ISSS, that includes lines that were widely used in breeding e.g. B73, B14, B37, A632) which is predominantly derived from Reid Yellow Dents and the male, i.e. pollen parent, is mostly from the Lancaster sure crops origin (e.g. Oh43, Mo17, C103). More recently, the Iodent (e.g. PH207) used as male parent added early flowering time and cool conditions adaptation and contributed to spread maize cultivation further north [START_REF] Goodman | Genetic and germ plasm stocks worth conserving[END_REF] 

Broadening maize hybrid breeding programs

Despite hybrid breeding improved tremendously grain yield and quality as well as resistance to biotic and abiotic stresses at world scale (e.g. Figure 4, [START_REF] Duvick | Biotechnology in the 1930s: the development of hybrid maize[END_REF][START_REF] Duvick | The Contribution of Breeding to Yield Advances in Maize (Zea mays L.)[END_REF], it also reduced elite genetic diversity. It has been observed that during the transition from landraces to hybrids, many favorable alleles have probably been lost because of their association with unfavorable alleles and/or genetic drift [START_REF] Ho | Extent and Distribution of Genetic Variation in U.S. Maize[END_REF]Reif et al. 2005b;[START_REF] Buckler | Molecular and functional diversity of maize[END_REF][START_REF] Yamasaki | Genomic Screening for Artificial Selection during Domestication and Improvement in Maize[END_REF]). For instance, [START_REF] Ho | Extent and Distribution of Genetic Variation in U.S. Maize[END_REF] estimated that only 56% of the alleles found in the Corn Belt Dent landraces were present in a diverse set of inbred lines. US and more generally worldwide hybrid breeding is relying on the use of a very narrow elite germplasm [START_REF] Goodman | Genetic and germ plasm stocks worth conserving[END_REF]). For instance, in the US, about three Lancaster type inbred lines (Oh43, Mo17, C103) and three ISSS type inbred lines (B73, B37, A632) and their close relatives were represented in a very high percentage (70% or more) of all U.S. hybrids [START_REF] Goodman | Genetic and germ plasm stocks worth conserving[END_REF]).

More recently, the Iodents (mainly derived from Pioneer PH207 and Dekalb/Monsanto 3IIH6 lines) took an important place in temperate non ISSS dent proprietary pedigrees [START_REF] Mikel | Progenitor lineage within proprietary dent corn germplasm[END_REF]. A recent highdensity haplotypic analysis revealed significant haplotype sharing between maize inbred lines registered from 1976 to 1992 and key maize founders B73, Mo17 and PH207 [START_REF] Coffman | Haplotype structure in commercial maize breeding programs in relation to key founder lines[END_REF].

Since maize hybrid breeding developed along with intellectual property rights, it also limited germplasm exchange between private programs (Goodman 1999). Different sources of diversity can be considered to broaden the genetic base of maize breeding programs. [START_REF] Brown | Development and improvment of the germplasm base of modern maize[END_REF] estimated that there might be 150-180 distinct "races" of maize worldwide. On a racial basis, it was indicated by [START_REF] Brown | Development and improvment of the germplasm base of modern maize[END_REF] and [START_REF] Goodman | Exotic maize germplasm: Status, prospects, and remedies[END_REF] that only 2% of the available germplasm was considered in temperate maize breeding and only 5% worldwide (Tallury and Goodman 2001), when excluding subsistence farming. Goodmann (1999) observed that only about 0.3% of Tropical exotic germplasm was used in US hybrid breeding in 1996. Local or exotic landraces which did not contribute to the founding material of commercial programs provide a source to broaden the genetic base of commercial breeding programs. Landraces have also been well characterized relative to elite germplasm in Europe (e.g. [START_REF] Dubreuil | Relationships among maize inbred lines and populations from European and North-American origins as estimated using RFLP markers[END_REF][START_REF] Rebourg | Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation[END_REF]Reif et al. 2005b;[START_REF] Dubreuil | More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements [Zea mays L.; Simple Sequence Repeats[END_REF][START_REF] Frascaroli | Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs[END_REF]Strigens et al. 2013) and America (e.g. [START_REF] Heerwaarden | Genetic signals of origin, spread, and introgression in a large sample of maize landraces[END_REF]Hellin et al. 2014). The use of reproducible libraries of doubled haploid (DH) lines from landraces has been suggested to ease genotyping, phenotyping and evaluation of the variation within landraces (Strigens et al. 2013;Melchinger et al. 2017;Böhm et al. 2017;[START_REF] Brauner | Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm[END_REF][START_REF] Hölker | European maize landraces made accessible for plant breeding and genome-based studies[END_REF]. Since maize hybrid industry is highly competitive, commercial breeders do not spend time and resources for evaluation, adaptation and improvement of non-improved landraces. Instead, commercial breeders will prefer to consider inbred lines from other than their own program (Kannenberg 2001). This includes breeding program targeting different environments and competitors' inbreds obtained by selfing or reverse breeding from hybrids (Smith et al. 2008) or running out of the plant variety protection act after 20 years in the US (ex-PVPA, Mikel and Dudley 2006). Hundreds of ex-PVPA are publically released every year, which make an improved source of variation available. To broaden the genetic base of European germplasm with US inbreds is appealing. For instance, [START_REF] Reif | Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data[END_REF] evaluated the interest to introgress US public inbreds into German European inbreds and recommended to introgress ISSS inbreds into European dents and non ISSS inbreds into European Flints.

To harness genetic variability and potential of adaptation in genetic resources, public-private collaborations that share costs between public institutes and private companies are of great interest.

In the following, some public-private maize genetic base broadening projects are listed with a focus on their contribution to the private breeding sector. [START_REF] Cramer | Five Years of HOPE: The Hierarchical Open-Ended Corn Breeding System[END_REF] proposed the hierarchical open-ended population enrichment (HOPE) breeding system to release enriched maize inbreds further considered to broaden the genetic base of Canadian commercial maize breeding programs. In its last version, the HOPE system was composed of three hierarchical open-ended gene pools, i.e. the best genotypes of a basal pool were further used as parents in the superior pool, permitting the transfer of favorable alleles from genetic resources to the elite pools (Popi 1997;Kannenberg 2001). The genetic resources were introduced in the basal pool without heterotic group distinction until the introduction in the two elite pools (Popi 1997). After 20 years, only four inbreds have been released to the industry with no success story up to date. The Latin American maize project (LAMP, Pollak 1990;Salhuana et al. 1997;Salhuana and Pollak 2006) 

Genomic selection revolutionized breeding

Marker assisted selection to genomic selection

Molecular markers refer to DNA fragments that exhibit polymorphism between individuals and that can be easily typed and used as genetic markers. In maize, different genetic markers and density have succeeded: from few multi-allelic markers such as restriction length polymorphism (RFLP), single sequence repeats (SSR) to today's commonly used single nucleotide polymorphism (SNP) that can be typed on predefined bead chips with 50k SNPs (Ganal et al. 2011) or 600 SNPs [START_REF] Unterseer | A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array[END_REF] and by sequencing (GBS, [START_REF] Elshire | A Robust, Simple Genotypingby-Sequencing (GBS) Approach for High Diversity Species[END_REF]. These markers can be used on a large number of individuals to evaluate, structure and sample genetic diversity within an between ex-situ collections (Glaszmann et al. 2010;[START_REF] Mascher | Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding[END_REF]. These markers can also be used to monitor the genetic diversity of breeding germplasm and assist selection. The use of markers linked to QTLs, further referred to as marker assisted selection (MAS), opened new perspectives for breeding. In the 1960's, Neimann- [START_REF] Neimann-Sorensen | The association between blood groups and several production characteristics in three Danish cattle breeds[END_REF] considered blood groups as markers supporting selection in animals. [START_REF] Lande | Efficiency of marker-assisted selection in the improvement of quantitative traits[END_REF] proposed to estimate the genetic value of selection candidate by summing the estimated effects of genetic markers significantly associated with QTLs. More recently, the development of cheap high-throughput SNP genotyping and statistical developments enabled to consider a large number of genomewide markers for prediction (Whittaker et al. 2000;Meuwissen et al. 2001). This is referred to as genomic selection (GS) and this approach has been implemented in many animal and plant species over the last decades.

Genomic selection

In GS, a sample of individuals (training set, TS) is genotyped and phenotyped for a trait, before being used to train a statistical model. The statistical model is further used to predict the genetic value of genotyped individuals. Several models have been proposed (e.g. [START_REF] Heslot | Genomic Selection in Plant Breeding: A Comparison of Models[END_REF] but the most common and robust is the genomic best linear unbiased prediction model (G-BLUP) that relies on the infinitesimal model [START_REF] Fisher | XV.-The Correlation between Relatives on the Supposition of Mendelian Inheritance[END_REF]. G-BLUP considers the genomic relationship matrix between individuals to model the covariance of their genetic values [START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF]. Note that before GS, prediction of individual breeding values using BLUP with pedigree information to model genetic covariance between individuals was common in animals [START_REF] Henderson | Best Linear Unbiased Estimation and Prediction under a Selection Model[END_REF]) and investigated in maize (Bernardo 1996a;b). A standard G-BLUP model can be written as:

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝒆, (Eq. 3)
where 𝒚 is the column vector of genotypes, 𝑿 is the incidence matrix of fixed effects with the respective column vector effect 𝜷 (e.g. location effect), 𝒁 is the incidence matrix of random effects, i.e. linking genotypes to genetic values, 𝒖 is the column vector of genetic values with 𝒖 ∼ 𝑁(𝟎, 𝑮𝜎 𝐺 2 )

and 𝑮 is the genomic relationship matrix that models the covariance between individuals at markers, 𝜎 𝐺 2 is the genetic variance. The column vector of errors 𝒆 is modeled as 𝒆 ∼ 𝑁(𝟎, 𝑰𝜎 𝐸 2 ) with 𝑰 the identity matrix. After estimation of variance components 𝜎 ̂𝐺 2 and 𝜎 ̂𝐸 2 , the best linear unbiased predictor of the genetic value 𝑢 ̂𝑖 of a given genotyped individual 𝑖 is predicted using mixed model equations [START_REF] Henderson | Best Linear Unbiased Estimation and Prediction under a Selection Model[END_REF]. Estimated marker effects can be derived out of G-BLUP model by back-solving (Wang et al. 2012) thanks to the equivalence with the ridge regression best linear unbiased prediction model (RR-BULP) that considers directly the matrix of allelic doses and assumes that all marker effects are drawn from the same normal distribution.

The interest of GS is commonly attributed (i) to the acceleration of selection progress by shortening generation intervals and (ii) to higher selection accuracy especially for traits difficult or costly to measure [START_REF] Hayes | Invited review: Genomic selection in dairy cattle: Progress and challenges[END_REF]. Different usages and implications of GS have been suggested in plant breeding (Heslot et al. 2015). For instance, instead of selecting progeny of parental crosses based on expensive phenotypes in multi-location replicated trials, marker information and GS models can be used to increase selection accuracy and optimize the phenotyping efforts (e.g. no more replicates or unbalanced designs). As a step further, GS can be used to predict progeny genetic values without phenotyping, which yield a gain of 3 to 5 years but also raises questions about the updating of the GS model with new phenotypes (Pszczola et al. 2012;Rincent et al. 2012;[START_REF] Isidro-Sanchez | Training set optimization under population structure in genomic selection[END_REF][START_REF] Neyhart | Evaluating Methods of Updating Training Data in Long-Term Genomewide Selection[END_REF]Eynard et al. 2018). GS in plant breeding and particularly in maize breeding enables to generate larger biparental families and thus increases within family selection intensity. Among other applications, GS can be used to predict the interest of parental crosses based on different criteria, such as the usefulness criterion of a cross (UC, Schnell and Utz 1975) that represents the expected genetic value of the selected fraction of the progeny of the cross (Figure 6):

𝑈𝐶 = 𝜇 + 𝑖ℎ𝜎 𝐴 , (Eq. 4)
where 𝜇 is the mean genetic value of the progeny of the cross, 𝑖 and ℎ are the within family selection intensity and accuracy, respectively and 𝜎 𝐴 2 the within family additive genetic variance that can be predicted for biparental crosses using information of recombination frequency and linkage disequilibrium between loci (Lehermeier et al. 2017b).

Figure 6 Illustration of the Eq. 4 in case of a biparental cross P1 x P2.

Genomic selection in the light of diversity management

As GS enables to shorten selection cycles and/or increase selection accuracy compared to phenotypic selection, it is expected to accelerate the loss of genetic diversity per unit of time due to rapid fixation of large effect regions. [START_REF] Jannink | Dynamics of long-term genomic selection[END_REF] and [START_REF] Cogan | Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass[END_REF] observed by simulations that GS leaded higher loss of diversity than phenotypic selection. Experimentally, [START_REF] Jacobson | Minimal Loss of Genetic Diversity after Genomewide Selection within Biparental Maize Populations[END_REF] observed only a limited loss of genetic diversity due to genomic selection within biparental populations after one generation. However, the effect on long-term recurrent selection through both within family selection and parental cross selection is still unclear. In long-term simulations of wheat breeding, [START_REF] Rutkoski | Genetic Gain from Phenotypic and Genomic Selection for Quantitative Resistance to Stem Rust of Wheat[END_REF] observed that GS increased the loss of diversity compared to phenotypic selection. GS also tends to shrink toward the population mean the predicted genetic values of individuals with less phenotypic observations and/or less phenotypic observations on relatives in the TS and of individuals genetically distant to the TS (Habier et al. 2010;Pszczola et al. 2012). The shrinkage results in lower coefficients of determination (CD, Laloë 1993) associated with the predicted values. As a consequence, individuals with low relationship relative to the elite majority of the TS are likely predicted to be average with a small chance to be selected. Similarly, in the RR-BLUP formulation, the rare favorable allele effects are shrunk toward zero, which increases the risk of losing rare favorable alleles and consequently reduces the long-term genetic gain [START_REF] Goddard | Genomic selection: prediction of accuracy and maximisation of long term response[END_REF][START_REF] Jannink | Dynamics of long-term genomic selection[END_REF]. Several authors suggested to up-weight rare favorable alleles to correct for shrinkage in GS model with encouraging results obtained by simulations (e.g. [START_REF] Goddard | Genomic selection: prediction of accuracy and maximisation of long term response[END_REF][START_REF] Jannink | Dynamics of long-term genomic selection[END_REF][START_REF] Sun | Increasing Long-Term Response by Selecting for Favorable Minor Alleles[END_REF][START_REF] Liu | Upweighting rare favourable alleles increases long-term genetic gain in genomic selection programs[END_REF]. However, such approaches suffer the difficulty to define appropriate up-weighting factors.

While GS raises concerns about its effect on genetic diversity erosion, it also opens new ways for intrinsic genetic diversity management and genetic base broadening. Firstly, GS models enable to estimate genomic variance components giving access to the causal diversity and the impact of linkage disequilibrium (LD) on additive genetic variance [START_REF] Sorensen | Inferring the trajectory of genetic variance in the course of artificial selection[END_REF]Lehermeier et al. 2017a). Despite such decomposition can provide breeders with substantial information on the potential response to selection of a breeding population, to our knowledge, it has never been implemented in this context. Secondly, GS models might be implemented in the optimal contribution selection initially considering the pedigree information to predict the next generation merit (pedigree BLUP model) and to constrain the pedigree relatedness among parents. [START_REF] Clark | The effect of genomic information on optimal contribution selection in livestock breeding programs[END_REF] observed that using genomic information for merit prediction and relatedness estimation increased optimal contribution selection performance. The optimal cross selection (OCS), an extension of the optimal contribution selection to deliver a crossing plan, has been recently adopted in plant breeding (e.g. Akdemir and Isidro-Sánchez 2016;Gorjanc et al. 2018;Akdemir et al. 2019). In previous works, OCS has been defined to balance the genetic merit and diversity in the progeny. However, as stated above, in GS plant breeding one typically has large biparental families with high within family selection intensity. Therefore, it would be likely more interesting to consider OCS that balances the genetic merit and diversity expected in the best performing fraction of each family. To our knowledge this has not yet been considered. Finally, GS models might help to characterize and identify interesting genetic resources in gene banks as suggested in Crossa et al. (2016) and Yu et al. (2016). More recently, [START_REF] Brauner | Genomic Prediction Within and Among Doubled-Haploid Libraries from Maize Landraces[END_REF][START_REF] Brauner | Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm[END_REF] evaluated the predictive ability of GS models within DH lines derived from maize landraces. GS is also offering the possibility to fasten a long and expensive pre-breeding approach to harness polygenic variation in genetic resources and make it more attractive for commercial breeders (Longin and Reif 2014;Gorjanc et al. 2016). However, to our knowledge no simulation studies demonstrated the interest of genomic selection recurrent genetic base broadening considering pre-breeding, bridging and introductions as illustrated in Figure 2.

Objectives of this thesis

The sustainable management of genetic diversity in breeding programs is receiving increasing attention in the company RAGT2n and competitors (personal communications) for maize and other crops. This thesis has been articulated around five main objectives addressed in chronological order and corresponding each to a chapter of this dissertation.

1. Considering a given breeding program, how did the genetic diversity in a specific population evolve genomewide and in different genomic regions? How to release genetic variation in low diversity genomic regions?

In chapter 1, we reviewed and suggested three sets of indicators based on temporal phenotypic and genotypic data to assess the past efficiency of breeding population improvement and its sustainability. We further applied the indicators on an early European grain maize program recorded from 2003 to 2016. 2. Assuming the genetic diversity is limiting, many genetic resources are accessible to breeders but cannot all be considered to broaden the elite genetic diversity. How can we identify appropriate donors for genetic base broadening of an elite population?

In chapter 2, we reviewed and proposed different criteria based on estimated marker effects from GS models to select donor(s) in order to enrich elite recipient(s). To compare the different criteria, marker effects were estimated on the Amaizing Dent collaborative panel composed of 338 public Dent lines of different origins and 48 proprietary lines provided by seven companies including RAGT2n (Rio et al. 2019). Ten elite recipients from RAGT2n material were considered in this case study. 3. After identifying donors of diversity, how do breeders optimally cross them to elite recipients in order to maximize the expected performance and donor's polygenic contribution to progeny? Depending on the genetic and phenotypic distance of donor relative to elites is it preferable to use biparental crosses between donor and recipient or more complex multiparental crosses?

In chapter 3, we extended algebraic formulas in Lehermeier et al. (2017b) to predict the usefulness criterion of multi-parental crosses. We also propose to consider the parental contributions, i.e. percentage of genome in progeny inherited from a parent, as a polygenic trait in a multivariate usefulness criterion context. We validated our method by simulations. 4. Although breeders have the possibility to broaden their genetic diversity by integrating other germplasm, it requires investments and delays the genetic progress. For these reasons, an optimal management of intrinsic genetic diversity to be competitive at short-term while maintaining a long-term potential genetic gain is challenging. Considering a closed breeding population showing substantial genetic diversity, in chapter 4, we adapted the approach developed in chapter 3 for optimal cross selection (OCS) to account for the effect of within family selection on the performance and on the diversity in the next generation. We simulated 60 years of breeding and compared our strategy to OCS not accounting for within family selection. 5. Finally, in chapter 5 we evaluated the interest of the approach developed in chapter 4 in the context of an open breeding population regularly enriched in extrinsic variability from different sources of diversity. We simulated 60 years of breeding and evaluated the interest of recurrent introductions after bridging depending on the type of donor considered. We also investigated the effect of TS diversity and composition on within family prediction accuracies and the efficiency of genetic base broadening.

The following chapters 1, 2, 3 and 4 have been published in peer-reviewed journals and the edited version is provided in this manuscript. Chapter 5 is a draft article that has not been peer-reviewed. All chapters are discussed and put into perspectives in the last section.
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Introduction

Modern breeding has been successful in exploiting crop diversity for genetic improvement. However, current yield increases may not be sufficient in view of rapid human population growth [START_REF] Godfray | Food Security: The Challenge of Feeding 9 Billion People[END_REF]. Moreover, modern intensive breeding practices have exploited a very limited fraction of the available crop diversity (Cooper et al. 2001;Reif et al. 2005). The narrow genetic base of elite germplasm compromises long-term genetic gain and increases the genetic vulnerability to unpredictable environmental conditions (McCouch et al. 2013). Efficient genetic diversity management is therefore required in breeding programs. This involves the efficient incorporation of new genetic variation and its conversion into short-and long-term genetic gain. Among the possible sources of diversity, wild relatives, exotic germplasm accessions and landraces that predate modern breeding exhibit substantial genetic diversity. These ex-situ genetic resources are conserved worldwide in international gene banks and national collections. They provide a promising basis to improve crop productivity, crop resilience to biotic and abiotic stresses and crop nutritional quality (Salhuana and Pollak 2006;Wang et al. 2017). In case of traits determined by few genes of large effect, the favorable alleles can be identified and introgressed into elite germplasm following established marker-assisted backcross procedures (e.g. Charmet et al. 1999;Servin et al. 2004;Han et al. 2017). Such introgressions have been successful for mono-and oligogenic traits (e.g. earliness loci in maize, Simmonds 1979;[START_REF] Smith | Diversity of United States Hybrid Maize Germplasm; Isozymic and Chromatographic Evidence[END_REF]Beavis 1996 andSUB1 gene in rice, Bailey-Serres et al. 2010). Introgressions also proved to be successful for more polygenic traits where few major causal regions have been identified. For instance, Ribaut and Ragot (2006) successfully introgressed five regions associated with maize flowering time and yield components under drought conditions. For complex traits controlled by numerous genes with small effect, e.g. grain yield in optimal conditions, the identification and introgression of favorable alleles into elite germplasm were mostly unsuccessful. This requires to go beyond the introgression of few identified favorable alleles toward the polygenic enrichment of elite germplasm (Simmonds 1962(Simmonds , 1993)). Although plant breeders recognize the importance of genetic resources for elite genetic base broadening, only little use has been made of it (Glaszmann et al. 2010;Wang et al. 2017). The main reason is that breeding progress continues [START_REF] Duvick | The Contribution of Breeding to Yield Advances in Maize (Zea mays L.)[END_REF]Tadesse et al. 2019) and that breeders are reluctant to compromise elite germplasm with unadapted and unimproved genetic resources (Kannenberg and Falk 1995). Despite genetic resources carry novel favorable alleles that may counter balance their low genetic value by an increased genetic variance when crossed to elites (Longin and Reif 2014;Allier et al. 2019b), their progeny performance is mostly insufficient for breeders. Thus, breeding strategies are needed to bridge the performance gap between genetic resources and elites and to transfer beneficial genetic variations into elite germplasm while not compromising the performance of released varieties (Simmonds 1993;Gorjanc et al. 2016). Pre-breeding can be defined as the recurrent improvement of genetic resources to release donors that can be further introduced into the elite breeding population (Figure 1). According to Simmonds (1993), pre-breeding should start from a broad germplasm and should be carried out on several generations with low selection intensity to favor extensive recombination events and minimal inbreeding. The donor released from pre-breeding can be directly introduced into the elite breeding population. However, in cases where the performance gap between the donor released from prebreeding and elites is too large, one may consider a buffer population between donor and elites before introduction in the elite breeding population, further referred to as bridging. The best progeny of bridging is then considered for introduction into the elite breeding population (Figure 1). Inbred lines derived from OPVs present a large diversity and a potential interest for adaptation, but also a large performance gap with current varieties [START_REF] Böhm | Breeding Potential of European Flint Maize Landraces Evaluated by their Testcross Performance[END_REF]Melchinger et al. 2017;Böhm et al. 2017). These landraces can be further improved through pre-breeding that can be shared between the industry and public institutes in collaborative projects. In maize, the Latin American Maize Project (LAMP, Pollak 1990;Salhuana et al. 1997;Salhuana and Pollak 2006) provided breeders with useful characterization and evaluation of US and Latin American tropical germplasm accessions. Later, the Germplasm Enhancement of Maize project (GEM, Pollak and Salhuana 2001) improved the accessions identified in LAMP with elite lines furnished by private partners (Pollak 2003). Similarly, the Seed of Discovery project (SeeD, Gorjanc et al. 2016) aimed to harness favorable variations from landraces and to develop a bridging germplasm useful for genetic base broadening of commercial maize breeding programs. In this vein, [START_REF] Cramer | Five Years of HOPE: The Hierarchical Open-Ended Corn Breeding System[END_REF] proposed the Hierarchical Open-ended Population Enrichment (HOPE) breeding system to release enriched maize inbreds for the industry. In its last version, the HOPE system is a breeding program with three hierarchical open ended gene pools permitting the transfer of favorable alleles from genetic resources to the elite pools (Popi 1997;Kannenberg 2001). Finally, breeders can consider the varieties released by breeding programs selecting on a different germplasm and in different environments as donors. In hybrid species, the ability to use one of the variety's inbred parent as a donor depends on the germplasm proprietary protection relative to species and countries (e.g. using reverse breeding, Smith et al. 2008). In the US, maize inbred parents of hybrid varieties become publically available after twenty years of plant variety protection act, these are referred to as ex-PVPA (Mikel and Dudley 2006). In inbred species such as wheat, using current varieties for breeding is straightforward if cultivated under the union for the protection of new varieties of plants convention (UPOV, Dutfield 2011). These donors are likely the most performing but also the less original that can be considered.

With the availability of cheap high density genotyping, Whittaker et al. (2000) and Meuwissen et al. (2001) have proposed to use genomewide prediction to fasten breeding progress by shortening generation intervals. In the most frequently used approaches of genomewide prediction, it is assumed that most genomic regions equally contribute with relatively small effects to polygenic traits. A large number of genomewide markers is employed, and their effects are estimated on a training set (TS) of phenotyped and genotyped individuals. The genomic estimated breeding values (GEBVs) are further predicted considering the estimated marker effects and individuals' molecular marker information. Recurrent selection based on genomewide prediction, further referred to as genomic selection (GS), has been increasingly implemented in crop breeding programs (Heslot et al. 2015;Voss-Fels et al. 2019). GS efficiency depends on the relationship between individuals in the TS and the target population of individuals to predict (Habier et al. 2010;Pszczola et al. 2012). We assume that as a consequence, in commercial breeding programs, GS has been mostly implemented considering a narrow elite TS that optimizes the prediction accuracy on elite material. However, such a narrow TS limits the prediction accuracy on individuals carrying rare alleles, which is the case for the progeny of elite by donor crosses. Therefore, it is important to define the TS composition that maximizes the prediction accuracy in both elite and introduction families.

In the context of genetic base broadening, GS is also interesting to fasten and reduce the costs for the evaluation and identification of genetic resources in gene banks (Crossa et al. 2016;Yu et al. 2016). Furthermore, GS can fasten pre-breeding programs to reduce the performance gap between genetic resources and elite populations (Gorjanc et al. 2016). Instead of truncated selection (i.e. select and mate individuals with the largest estimated breeding values), [START_REF] Cooper | Evolving gene banks: improving diverse populations of crop and exotic germplasm with optimal contribution selection[END_REF] proposed to use the optimal contribution selection to improve genetic resources while maintaining a certain level of diversity in the pre-breeding population. Optimal contribution selection (Wray and Goddard 1994;Meuwissen 1997; Woolliams et al. 2015) aims at identifying the optimal parental contributions to the next generation in order to maximize the expected genetic value in the progeny under a certain constraint on diversity. Therefore, the optimal contribution selection is particularly adapted to prebreeding and genetic diversity management. [START_REF] Cooper | Evolving gene banks: improving diverse populations of crop and exotic germplasm with optimal contribution selection[END_REF] considered the pedigree relationship information but considering the genomic relationship information can further improve the optimal cross selection [START_REF] Clark | The effect of genomic information on optimal contribution selection in livestock breeding programs[END_REF]. Considering optimal contribution selection on empirical cattle data, Eynard et al. (2018) observed that allowing for the introductions of old individuals in the breeding population supported long-term response to selection. The optimal cross selection (OCS) is the extension of optimal contribution selection to deliver a crossing plan [START_REF] Kannenberg | HOPE, a Hierrarchical, Open-ended System for Broadening the Breeding Base of Maize[END_REF]Kinghorn 2011;Akdemir and Isidro-Sánchez 2016;Gorjanc et al. 2018;Akdemir et al. 2019). We propose to take advantage of OCS for selection of bridging, introduction and elite crosses (Figure 1). Using OCS, the donors and donor by elite crosses are selected complementarily to the elite by elite crosses in order to ensure an overall consistency of the genetic base broadening strategy. Allier et al. (2019c) proposed to account for within family variance and selection in a new version of OCS referred to as Usefulness Criterion Parental Contribution based OCS (UCPC based OCS). They observed both higher short-and long-term genetic gain compared to OCS in a simulated closed commercial breeding program.

We extend here the use of UCPC based OCS to pre-breeding, following Cowling et al.( 2017), and to an open commercial breeding program with recurrent introductions of genetic resources, extending the work of Eynard et al. (2018). In this context, we aimed at evaluating the efficiency of genetic base broadening depending on the type of donors considered and the genetic base broadening scheme (Figure 1). We considered either donors corresponding to the generation of the founders of breeding pools or improved varieties released twenty years ago and five years ago. Our objectives were to evaluate (i) the interest of recurrent introductions of diversity in the breeding population, (ii) the interest to conduct or not bridging and (iii) the impact of the training set composition on within family genomewide prediction accuracies.
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Material and methods

Simulated breeding programs Material and simulations

We considered 338 Dent maize genotypes from the Amaizing project (Rio et al. 2019;Allier et al. 2020) as founders of genetic pools. This diversity was structured into three main groups: 82 Iowa Stiff Stalk Synthetics, 57 Iodents and 199 other dents. We sampled 1,000 biallelic quantitative trait loci (QTLs) with a minimal distance between two consecutive QTLs of 0.2 cM among the 40,478 single nucleotide polymorphisms (SNPs) from the Illumina MaizeSNP50 BeadChip (Ganal et al. 2011). Each QTL was assigned an additive effect sampled from a Gaussian distribution with a mean of zero and a variance of 0.05 and the favorable allele was attributed at random to one of the two SNP alleles. We sampled 2,000 SNPs as non-causal markers further used as genotyping information. The consensus genetic positions of sampled QTLs and SNPs was considered according to Giraud et al. (2014).

We simulated two different breeding programs: an external breeding program (Figure 2A) that released every year varieties that were later considered as potential donors for introduction in a commercial breeding program (Figure 2C-D). Both external and commercial programs used doubled haploid (DH) technology to derive progeny. We assumed a period of three years to derive, genotype and phenotype DH progeny. Every year 𝑇, progeny of the three last generations 𝑇-3, 𝑇-4 and 𝑇-5 were considered as potential parents of the next generation. It created overlapping and connected generations as it can be encountered in breeding. We first considered a burn-in period of twenty years with recurrent phenotypic selection from a population of founders. Burn-in created extensive linkage disequilibrium as often observed in elite breeding programs [START_REF] Van Inghelandt | Extent and genomewide distribution of linkage disequilibrium in commercial maize germplasm[END_REF]. Every progeny was phenotyped and phenotypes were simulated considering the genotypes at QTLs, an error variance corresponding to a trait repeatability of 0.4 in the founder population, and no genotype by environment interactions (Appendix A). Every individual was evaluated in four environments in one year. After twenty years of burn-in, we simulated different breeding programs using GS. Every year, progeny phenotypes and genotypes of the three last available generations were used to fit a G-BLUP model (Appendix A). Progeny were selected based on GEBVs and marker effects were obtained by back-solving the G-BLUP model (Wang et al. 2012) and further used for optimal cross selection to generate the next generation (see optimal cross selection section and Appendix B). 

External breeding program: Improvement of genetic resources

The external breeding program (Figure 2A), was simulated starting from a broad population of 40 founders sampled among the 338 maize genotypes. During the three first years, the founders were randomly crossed with replacement to generate each year 20 biparental families of 40 DH progeny to initiate the three overlapping generations. The genetic material in the external breeding is referred to as improved donors (D). During seventeen years, we first selected among the three last generations the 10% D progeny per family (i.e. 4 DH lines/family x 20 families x 3 years) with the largest phenotypic mean. We further randomly mated with replacement the 50 DH with the largest phenotypic mean to generate 20 biparental families of 40 DH lines. Note that we considered 20 biparental families to be consistent with the post burn-in simulations. After twenty years of burn-in, we considered GS trained on the D progeny of the three last generations (i.e. 2,400 D progeny, Figure 2A). Among these three last generations, we considered per family the 10% D progeny with the largest GEBVs as potential parents of the next generation, i.e. 4 DH lines/family x 20 families x 3 years = 240 potential parents.

The 20 two-way crosses among the 240*239/2 = 28,680 candidate crosses were selected using optimal cross selection as detailed in the section: optimal cross selection.

Commercial breeding programs

The commercial breeding program (Figure 2B-D) started from a population of 10 founders sampled among the 57 Iodent genotypes. During the first three years, the founders were randomly crossed with replacement to generate each year 10 biparental families of 80 DH progeny to initiate the three overlapping generations. The elite genetic material in the internal breeding is referred to as elite progeny (E). During seventeen years, we considered as potential parents of the next generation the 50 E progeny with the largest phenotypic mean from the three last generations, i.e. without applying a preliminary within family selection. These were randomly mated to generate 20 biparental families of 80 DH lines. After twenty years of burn-in, we considered GS and differentiated three different scenarios: the benchmark commercial breeding program without introductions (Figure 2B), the commercial breeding program with direct introductions without bridging (Figure 2C) or the commercial breeding program with introductions after bridging (Figure 2D). In absence of introductions (benchmark), the E progeny were selected based on the elite GS model trained on E progeny of the three last generations (i.e. 4,800 E progeny, Figure 2B). The 5% E progeny with the largest GEBVs within each family (i.e. 4 DH) in the three last breeding generations were considered as potential parents. The 20 two-way crosses among the 28,680 candidate crosses were defined using optimal cross selection as detailed in the next section: optimal cross selection.

For scenarios with introductions, we considered different sub-scenarios (i) for the genetic base broadening scheme including (Bridging) or not bridging (Nobridging) and (ii) for the potential donors considered, to cover different possibilities in both hybrid and inbred species. We considered as potential donors either the 338 genotypes from the Amaizing project or the D progeny with the largest GEBVs released by the external breeding program (i.e. 1 DH/family/year, 20 potential donors released every year). The scenario using the 338 genotypes from the Amaizing panel for genetic base broadening was identified with the suffix Panel. For the donors released by the external breeding program, we considered two time constraints for the access to diversity. To mimic a situation close to that of the US maize ex-PVPA system (Mikel and Dudley 2006), we first considered donors released 20

Chapter 5 Genetic resources and optimal cross selection for broadening the genetic base of elite breeding programs 93 to 24 years before the current year (i.e. 5 years x 20 DH = 100 potential D) in scenarios with the suffix 20y. To simulate a faster access to external diversity, as it would be the case in line breeding under UPOV convention [START_REF] Dutfield | The role of the international Union for the Protection of New Varieties of Plants (UPOV)[END_REF], we considered the donors released by the external breeding 5 to 9 years before the current year (i.e. 100 potential D) in scenarios with the suffix 5y. For scenarios without bridging (Figure 2C), the E candidate parents were selected every year among the 5% E progeny showing the largest GEBVs per family in the three last breeding generations resulting in NE = 4 DH x 20 families x 3 years = 240 potential E parents. The E progeny were selected based on the elite GS model trained on E progeny of the three last generations (i.e. 4,800 E progeny, Figure 2C). The 20 breeding crosses among the 28,680 candidate ExE elite crosses and DxE introduction crosses were selected using optimal cross selection without constraint on the type of crosses elite or introduction, using the elite GS model as described in section "Optimal cross selection". For scenarios with bridging (Figure 2D), the population was split into a bridging population of 5 families of 80 DH (i.e. 400 DE progeny) and a breeding population of 15 families of 80 DH (i.e. 1,200 E progeny). Every year, the E candidate parents for breeding were selected among the 5% E progeny per family showing the largest GEBVs from the three last breeding generations, resulting in NE = 4 DH/family x 15 family x 3 year = 180 potential E parents. The E progeny were selected based on the elite GS model trained on all E progeny of the three last generations (i.e. 3,600 E progeny, Figure 2D). The DE candidate parents for introduction in the breeding population were similarly selected among the three last bridging generations, resulting in NDE = 4 DH/family x 5 families x 3 years = 60 potential DE parents. The DE progeny were selected based on the bridging GS model trained on all DE progeny of the three last generations, i.e. 1,200 DE (Figure 2D). Among the NE(NE -1)/2 = 16,110 ExE elite crosses and NDENE= 10,800 DExE introduction crosses possible for breeding, the 15 breeding crosses were defined using optimal cross selection with the elite GS model and without constraint on the type of crosses ExE (elite) or DExE (introduction). The 5 DxE bridging crosses were selected among the possible crosses between the available D and potential E parents with the bridging GS model, conditionally to selected breeding crosses as described in the next section: optimal cross selection.

Optimal cross selection

The optimal cross selection selects the set of crosses (𝒏𝒄) that maximizes the expected genetic value in the progeny (𝑉) under a constraint on the genomewide genetic diversity in the progeny (𝐷) [START_REF] Kannenberg | HOPE, a Hierrarchical, Open-ended System for Broadening the Breeding Base of Maize[END_REF]Kinghorn 2011;Akdemir and Isidro-Sánchez 2016;Gorjanc et al. 2018;Akdemir et al. 2019). As proposed in Allier et al. (2019c), the effect of within family selection with intensity (𝑖) and accuracy (ℎ) on 𝑉 (𝑖,ℎ) and 𝐷 (𝑖,ℎ) can be accounted for in optimal cross selection by using UCPC based OCS (Appendix B). Similarly as in Allier et al. (2019c), we considered ℎ = 1 for sake of simplicity.

For breeding crosses, the optimal set of |𝒏𝒄| = 20 crosses (in scenarios without bridging, Figure 2A-C) or |𝒏𝒄| = 15 crosses (in scenarios with bridging, Figure 2D) was selected to solve the multiobjective optimization problem:

max 𝒏𝒄 𝑉 (𝑖) (𝒏𝒄)
with 𝐷 (𝑖) (𝒏𝒄) ≥ 𝐻𝑒(𝑡), (Eq. 1)

where 𝐻𝑒(𝑡), ∀ 𝑡 ∈ [0, 𝑡 * ] is the minimal genomewide diversity constraint at time 𝑡. The evolution of diversity along time was controlled by the targeted diversity trajectory, i.e. 𝐻𝑒(𝑡), ∀ 𝑡 ∈ [0, 𝑡 * ] where 𝑡 * ∈ ℕ * is the time horizon when the diversity 𝐻𝑒(𝑡 * ) = 𝐻𝑒 * should be reached. For the external and
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𝐻𝑒(𝑡) = { 𝐻𝑒 0 + 𝑡 𝑡 * (𝐻𝑒 * -𝐻𝑒 0 ), ∀ 𝑡 ∈ ⟦0, 𝑡 * ⟧ 𝐻𝑒 * , ∀ 𝑡 > 𝑡 * , (Eq. 2)
where 𝐻𝑒 0 is the initial diversity at 𝑡 = 0, i.e. at the end of burn-in.

For the commercial breeding program with introductions, we maintained the genomewide diversity constant after the end of burn-in, i.e. 𝐻𝑒(𝑡) = 𝐻𝑒 0 , ∀ 𝑡 ∈ ⟦0, 𝑡 * ⟧. Thus, the UCPC based OCS selected introduction crosses (i.e. DxE if no bridging and DExE if bridging) when necessary to maximize the performance while keeping genomewide diversity constant (Eq. 1). In case of bridging, we completed the 15 selected breeding crosses with 5 bridging crosses (DxE, Figure 2D) that maximized the following function on the full set of |𝒏𝒄| = 20 crosses:

max 𝒏𝒄 𝛼 𝑉 (𝑖) * (𝒏𝒄) + (1 -𝛼) 𝐷 (𝑖) * (𝒏𝒄), (Eq. 3)
where, 𝛼 ∈ [0,1] is the relative weight given to performance compared to diversity, 𝑖 is the within family selection intensity, 𝑉 (𝑖) * (𝒏𝒄) =

Interest of pre-breeding and bridging

We compared different commercial breeding programs with recurrent introductions considering or not bridging at constant cost (i.e. total of 1,600 DH/year) and considering three types of potential donors, resulting in the six genetic base broadening scenarios: Bridging_Panel, Nobridging_Panel, Bridging_20y, Nobridging_20y, Bridging_5y, Nobridging_5y. We ran ten independent simulation replicates of the external program that generated donors, the commercial benchmark without introductions, and the six genetic base broadening scenarios. Note that at a given simulation replicate the commercial breeding program accessed the potential donors released by the corresponding external breeding program simulation replicate.

We followed several indicators in the breeding families (i.e. E progeny, Figure 2). At each generation 𝑇 ∈ [0,60] with 𝑇 = 0 corresponding to the last burn-in generation, we computed the mean genetic merit of E progeny 𝜇(𝑇) = 𝑚𝑒𝑎𝑛(𝑇𝐵𝑉(𝑇)) and of the ten most performing E progeny 𝜇 10 (𝑇) = 𝑚𝑒𝑎𝑛 (max 10 (𝑇𝐵𝑉(𝑇))) as a proxy of the performance that could be achieved at the commercial level by releasing these lines as varieties. We also measured the frequency of the favorable allele in the E progeny 𝑝 𝑗 (𝑇) at each QTL 𝑗 among the 1,000 QTLs. We further focused on the QTLs where the favorable allele was rare at the end of burn-in, i.e. 𝑝 𝑗 (0) ≤ 0.05. The results were averaged and standard errors were computed over ten independent replicates.
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Effect of a joint genomic selection model for bridging and breeding

For the three scenarios with bridging, we investigated the interest of a single TS grouping 3,600 DE and 1,200 E progeny to predict both breeding and bridging families. These three additional scenarios were referred to as Bridging_Panel (Single TS), Bridging_20y (Single TS) and Bridging_5y (Single TS). Every generation, we defined the prediction accuracies as the correlation between true breeding values and GEBVs (𝑐𝑜𝑟(𝑢, 𝑢 ̂)) within breeding elite families (ExE), breeding introduction families (DExE) and bridging families (DxE). The prediction accuracies were averaged over the ten replicates and further averaged over the sixty generations. Note that considering a single GS model at constant cost yielded not only a broader but also a larger training set (4,800 DH progeny instead of 3,600 DH progeny for elite GS or 1,200 DH progeny for bridging GS, Figure 2). We further investigated the effect of the proportion of DE and E progeny in the TS at constant size on within ExE and DExE family selection accuracy. We considered the 1,200 DE and 3,600 E progeny genotypes and phenotypes simulated at generations 18, 19, 20 in the first replicate of scenario Bridging_20y. We further selected the 5% DH per family with the highest GEBVs obtained using a GS model trained on all 4,800 progeny genotypes and phenotypes. These were randomly crossed to generate 50 elite (ExE) and 50 introduction (DExE) families of 80 DH progeny. These families were considered as the validation set (VS). We randomly sampled among the 4,800 DH progeny different TS of variable sizes and compositions (Table 1) and we evaluated the within elite (ExE) and introduction (DExE) family prediction accuracy (𝑐𝑜𝑟(𝑢, 𝑢 ̂)). We also evaluated the within family variance prediction accuracy as the correlation between the variance of true breeding values and the estimated variance (𝑐𝑜𝑟(𝜎, 𝜎 ̂)). We reported results for twenty independent samples. 

Results

Interest of pre-breeding and bridging

The interest of recurrent introductions in the commercial breeding program after or without bridging depended on the type of donor considered. Panel donors showed a large performance gap with the elites they were crossed to. This performance gap increased with advanced breeding generations (on average a true breeding value difference with elites increasing from -15 and -104 trait units). Improved donors showed a lower performance gap with elites. Twenty-year old donors showed an intermediate performance gap with elite (on average -22 trait units) and five-year old donors showed a reduced performance gap with elite (on average -8 trait units). Direct introductions of panel donors without bridging (Nobridging_Panel) penalized the breeding population mean performance (𝜇) at short-term (at five years, 𝜇 = 8.168 +/-0.282 compared to 9.239 +/-0.237 without introductions, Figure 3A, Table S1) and long-term (at sixty years, 𝜇 = 9.651 +/-0.958 compared to 38.837 +/-1.563 without introductions, Figure 3A, Table S1). When considering the mean performance of the ten best progeny (𝜇 10 ), the short-term penalty was no more significant (at five years, 𝜇 10 = 15.802 +/-0.341 compared to 15.746 +/-0.391 without introductions, Figure 3B, Table S2) but the long-term penalty was still significant (at sixty years, 𝜇 10 = 29.767 +/-1.108 compared to 39.567 +/-1.571 without introductions, Figure 3B, Table S2). The introduction of panel donors after bridging (Bridging_Panel) did not significantly penalize the short-term mean performance of the breeding population (at five years, 𝜇 = 8.688 +/-0.329 compared to 9.239 +/-0.237 without introductions, Figure 3A, Table S1) and yielded significantly higher long-term performance (at sixty years, 𝜇 = 52.110 +/-0.886 compared to 38.837 +/-1.563 without introductions, Figure 3A, Table S1). When considering 𝜇 10 , the short-term penalty was reduced (at five years, 𝜇 10 = 15.605 +/-0.477 compared to 15.746 +/-0.391 without introductions, Figure 3B, Table S2) and the long-term gain increased (at sixty years, 𝜇 10 = 61.763 +/-1.298 compared to 39.567 +/-1.571 without introductions, Figure 3B, Table S2).

Direct introductions of twenty-year donors without bridging (Nobridging_20y) yielded a penalty in the mid-term compared to not introducing donors (at twenty years, 𝜇 = 16.818 +/-2.397 compared to 23.182 +/-1.446 without introductions, Figure 3A, Table S1). When considering 𝜇 10 , the mid-term penalty due to introductions was limited (Figure 3B, Table S2). After thirty years, this introduction scenario significantly outperformed the benchmark (𝜇 = 33.546 +/-1.519 compared to 30.006 +/-1.319 without introductions, Figure 3A, Table S1) and this advantage increased until the end of the sixty years evaluated period (𝜇 = 66.944 +/-0.849 compared to 38.837 +/-1.563 without introductions, Figure 3A, Table S1). The introduction of twenty-year old donors after bridging (Bridging_20y) penalized only the short-term performance (at five years, 𝜇 = 8.687 +/-0.293 compared to 9.239 +/-0.237 without introductions, Figure 3A, Table S1) and yielded significantly higher performance than the benchmark after twenty years (𝜇 = 27.987 +/-0.840 compared to 23.182 +/-1.446 without introductions, Figure 3A, Table S1). Introductions after bridging significantly outperformed the direct introductions until the end of the sixty years evaluated period (𝜇 = 69.154 +/-0.868 with bridging compared to 66.944 +/-0.849 without bridging and 𝜇 10 = 74.413 +/-0.932 with bridging compared to 72.258 +/-0.978 without bridging, Figure 3A-B, Table S1-S2).

Introducing five-year old donors after or without bridging yielded significantly higher mid-and long-term performances than all other tested scenarios, without any significant long-term advantage of introductions after bridging compared to direct introductions (at sixty years, 𝜇 = 74.074 +/-0.869 with bridging compared to 74.662 +/-0.938 without bridging, Figure 3, Table S1).
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We observed that the recurrent introductions of donors impacted the genetic diversity of the commercial germplasm. The more the commercial program had access to recent germplasm of the external program, the more the varieties released by the commercial program where admixed with the external program elite germplasm (Figure 4B and Figure 4C). In the scenario where only panel donors were accessible for introductions, the internal program diversity did not converge toward the external program (Figure 4A). The evolution of the mean frequency of initially rare favorable alleles (i.e. favorable allele that had a frequency at the end of burn-in ≤ 0.05 in the elite breeding population) also highlighted differences between strategies. The older the donors, the lower the increase in frequency of initially rare favorable alleles (at sixty years for scenario with bridging, the mean frequency was 0.414 +/-0.012 for five-year old donors, 0.361 +/-0.009 for twenty-year old donors, 0.263 +/-0.008 for panel donors and 0.016 +/-0.006 without introductions, Figure 3C, Table S3). For twenty-year old donors, omitting the bridging before introduction delayed the increase in frequency of initially rare favorable alleles (e.g. at twenty years, the mean frequency was 0.088 +/-0.014 without bridging compared to 0.116 +/-0.011 with bridging, Figure 3C, Table S3). More importantly, for panel donors the absence of bridging significantly penalized the increase in frequency of initially rare favorable alleles (at sixty years, 0.068 +/-0.007 without bridging compared to 0.263 +/-0.008 with bridging, Figure 3C, Table S3).

Effect of a joint genomic selection model for bridging and breeding

Scenarios considering a single TS of 3,600 E and 1,200 DE progeny yielded higher mid-and long-term 𝜇 and 𝜇 10 than scenarios considering two distinct TS for bridging and breeding (Figure 5A-B). After twenty years, single TS scenarios significantly outperformed scenarios with two distinct TS (𝜇 = 40.111 +/-1.149 compared to 34.900 +/-0.905 for five-year old donors, 𝜇 = 30.497 +/-1.135 compared to 27.987 +/-0.840 for twenty-year old donors and 𝜇 = 29.292 +/-0.802 compared to 25.212 +/-1.314 for panel donors, Figure 5A, Table S1). After sixty years, the advantage of a single TS remained significant except for five-year old donors (𝜇 = 75.749 +/-1.093 compared to 74.074 +/-0.869 for fiveyear old donors, 𝜇 = 71.130 +/-1.028 compared to 69.154 +/-0.868 for twenty-year old donors and 𝜇 = 57.067 +/-1.444 compared to 52.110 +/-0.886 for panel donors, Figure 5A, Table S1). When considering 𝜇 10 , a single TS was still more performing but its interest was less significant (e.g. for panel donors after sixty years, 𝜇 10 = 63.699 +/-1.698 compared to 61.763 +/-1.298, Figure 5 

B, Table S1-S2).

A single TS also favored the increase in frequency of initially rare favorable alleles introduced by fiveyear old donors and twenty-year old donors (e.g. for twenty-year old donors after sixty years, 0.380 +/-0.010 compared to 0.361 +/-0.009, Figure 5C, Table S3).

The observed within family prediction accuracies varied depending on the TS considered. For twenty-year old donors introduced after bridging, considering a single TS of 4,800 DE+E did not significantly improve the prediction accuracy within ExE families compared to using the pure elite TS of 3,600 E (𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.73 +/-0.06 compared to 𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.72 +/-0.07, Table 2). However, it significantly improved the prediction accuracy within introduction DExE families compared to the pure elite TS of 3,600 E (𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.77 +/-0.07 compared to 𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.61 +/-0.11, Table 2). A single TS also slightly but not significantly improved the prediction accuracy within bridging DxE families compared to the pure bridging TS of 1,200 DE (𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.78 +/-0.05 compared to 𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.73 +/-0.06, Table 2). Similar observations were made on the other scenarios considering five-year old and panel donors. Prediction accuracies were larger in introduction DExE and bridging DxE families with older donors, i.e. phenotypically distant to elites, due to larger within family variances (e.g. for DExE families 14.43 +/-4.40 for panel donors, 6.92 +/-2.10 for twenty-year old donors and 5.00 +/-1.41 for five-year old donors, Table 2). Chapter 5 Genetic resources and optimal cross selection for broadening the genetic base of elite breeding programs 100 At constant TS size of 3,600 DH, the increase in proportion of DE progeny from 0 to 1/3 in the TS increased the prediction accuracy within introduction DExE families (𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.58 +/-0.02 to 0.73 +/-0.01, Figure 6B) while it reduced the prediction accuracy within elite ExE families (𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.70 +/-0.01 to 0.65 +/-0.02, Figure 6A). The TS with 3,000 E and 600 DE, appeared as a suitable compromise with within introduction DExE family 𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.70 +/-0.02 and elite ExE families 𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.68 +/-0.01. At constant TS size of 1,200 DH, the TS with 900 E and 300 DE progeny performed similarly as the pure bridging TS for prediction within DExE families (𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.63 +/-0.03 compared to 0.62 +/-0.02, Figure 6B) but significantly outperformed the pure bridging TS for prediction within elite ExE families (𝑐𝑜𝑟(𝑢, 𝑢 ̂) = 0.52 +/-0.04 compared to 0.34 +/-0.02, Figure 6A). The within family variance prediction accuracy showed similar tendencies (Figure 7A-B). The increase in proportion of DE progeny from 0 to 1/3 in the TS increased the prediction accuracy within introduction DExE families (𝑐𝑜𝑟(𝜎, 𝜎 ̂) = 0.56 +/-0.09 to 0.76 +/-0.07, Figure 7B) while it reduced the prediction accuracy within elite ExE families (𝑐𝑜𝑟(𝜎, 𝜎 ̂) = 0.74 +/-0.07 to 0.71 +/-0.08, Figure 7A). 

Discussion

Genetic base broadening with optimal cross selection accounting for within family variance

Despite the recognition of the importance to broaden the elite genetic base in most crops, commercial breeders are reluctant to penalize the result of several generations of intensive selection by crossing these to unimproved genetic resources. Furthermore, among the large diversity available for genetic base broadening (e.g. landraces, public lines, varieties…), the identification of the useful genetic diversity to broaden the elite pool is difficult and might dishearten breeders. Consequently, there is a need for global breeding strategies that improve genetic resources to bridge the performance gap with elites, identify interesting sources of diversity that complement at best the elite germplasm and efficiently introduce them into elite germplasm. The identification of genetic resources for polygenic enrichment of the elite pool should account for the complementarity between genetic resources and elites as reviewed in Allier et al. (2020). Allier et al. (2019b) proposed the Usefulness Criterion Parental Contribution (UCPC) approach to predict the interest of crosses between genetic resources and elite recipients based on the expected performance and diversity in the most performing fraction of the progeny. The interest of UCPC relies on the fact that it accounts for within family variance and selection when identifying crosses. For instance, when crossing phenotypically distant parents, e.g. genetic resource and elite recipient, we expect a higher cross variance that should be accounted for to properly evaluate the usefulness of the cross (Schnell and Utz 1975;Longin and Reif 2014;Allier et al. 2019b). Additionally, we expect the best performing fraction of the progeny to be genetically closer to the best parent. This deviation from the average parental value should be considered to evaluate properly the genetic diversity in the next generation (Allier et al. 2019b;d). Accounting for parental complementarity at marker linked to QTLs also favors effective recombination in progeny and breaks negative gametic linkage disequilibrium between QTLs (i.e. repulsion), which unleashes additive genetic variance and increases long-term genetic gain (Allier et al. 2019c). Therefore, the OCS is particularly adapted to genetic diversity management in prebreeding and breeding programs (Akdemir and Isidro-Sánchez 2016;[START_REF] Cooper | Evolving gene banks: improving diverse populations of crop and exotic germplasm with optimal contribution selection[END_REF]Gorjanc et al. 2018;Allier et al. 2019c). The objective and the originality of this study were to consider UCPC based OCS to jointly select donors, introduction crosses and elite crosses to ensure an overall consistency of genetic base broadening accounting for the performance and diversity available in both bridging and breeding populations.

Genetic resources and simulated pre-breeding

Different sources of diversity can be considered by commercial breeders. The most original, but which show a large performance gap with elites, are landraces (e.g. DH libraries derived from landraces, Strigens et al. 2013;Melchinger et al. 2017;Böhm et al. 2017) and first varieties derived from landraces. Since breeding industry is highly competitive, breeders are likely reluctant to introduce unselected genetic resources directly into the breeding germplasm despite they might carry favorable adaptation alleles to face climatic changes (McCouch et al. 2013;Hellin et al. 2014;Böhm et al. 2017). Instead, commercial breeders will prefer to consider elite inbred lines from other than their own program (Kannenberg 2001).
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In this study, the external breeding program was designed to release every generation several improved lines, later considered as donors for genetic base broadening of the commercial breeding program. The external program started from a broader genetic diversity than the commercial program (on average, He = 0.283 compared to He = 0.133 at the end of burn-in) and was designed to maintain higher genetic diversity during selection (on average, He = 0.101 compared to He = 0.014 after sixty years). This was done to mimic in a simple way the outcome of the activity of several companies conducting separate programs and therefore maintaining a global diversity. The external program can also be viewed as a pre-breeding program since it aimed at improving genetic resources to reduce their performance gap with elites while maintaining genomewide diversity among the pre-breeding population (Figure 1). The situation where the commercial breeding program can access donors released twenty years ago mimicked the situation of private lines with expired plant protection act in maize (Mikel and Dudley 2006) or old public lines. The situation where the commercial breeding program can access donors released five years ago mimicked either donors released by pre-breeding programs (e.g. in maize the SeeD project, Gorjanc et al. 2016) or donors released by programs working a different genetic basis and targeting different environments (e.g. commercial varieties in inbred species accessible for breeding under the UPOV convention, Dutfield 2011). The selection intensity was lower in the external breeding than in the commercial breeding programs (10% vs 5% of progeny selected, respectively). This was done to compensate the increased response to selection due to the higher genetic diversity and ensure that the donors released by the external program underperform the commercial breeding elites. It should be noted that donors outperforming elites might be encountered in practice when considering elite germplasm as source of diversity, but this situation was not considered in this study. In such a situation the direct introduction of donors would be clearly preferable.

Interest of introductions after bridging

When considering recent and performing donors (five-year old), scenarios with introductions after bridging or direct introductions performed similarly. Conversely, for panel and twenty-year old donors, introductions after bridging yielded significantly higher mid-and long-term performance compared to direct introductions. Note that introductions after bridging can be seen as a specific three-way cross with selection of the progeny of the first donor by elite recipient cross followed by crossing the selected progeny to a second more recent elite recipient. Assuming no selection between the first cross and the second cross, Allier et al. (2019b) predicted that three-way crosses were more prone to deliver performing progeny than back-crosses and F1 biparental crosses, when considering donors underperforming the elite germplasm. Since donors (D) were less performing than elites, the fraction of progeny selected in donor by elite bridging families (DE progeny) carried on expectation less than half of donor's genome (Allier et al. 2019b). Thus, progeny of introduction crosses after bridging (DExE) carried on expectation less than one fourth of the donor (D) genome. This D fraction includes favorable alleles but also unfavorable alleles brought by linkage drag, which number depends on the donor considered. Introductions penalized the mean breeding population performance in the first generations (Figure 3A-B). Next generations of recombination and selection partially broke the linkage between favorable and unfavorable alleles in introduced regions, resulting in a higher genetic gain than in the benchmark (Figure 3A-B) and an increase of the frequency of novel favorable alleles (Figure 3C). The more performing the donor, the less unfavorable alleles linked to favorable alleles and the more rapidly novel favorable alleles were introduced and spread in the breeding population (Figure 3C). In absence of bridging, the introduction progeny (DxE) carried on expectation one half of the donor genome. Consequently, the penalty due to introductions was more important and the conversion into genetic gain required more recombination events, i.e. recycling generations (Figure 3A-B). For panel donors showing a large performance gap with elites, the direct introductions were not converted into genetic performance. The high inter-family additive variance in this scenario (Figure S1 A) reflected the structuration of the breeding population into badly performing introduction families and performing elite families with only limited gene flow between them. Such behavior might be corrected by adding a constraint to force the recycling of introduction progeny in Eq. 1 when donors are too badly performing, which requires further investigations.

Practical implementation in breeding programs

We considered a commercial breeding program with a genetic diversity at the end of the burn-in matching that of an experimental program reported by Allier et al. (2019a). Breeding programs ongoing for different species and breeders may present a diversity superior or inferior to the one that was simulated, which would make the importance of introductions lower or stronger than in the simulated scenarios, respectively. UCPC based OCS for genetic base broadening requires to genotype the candidate parents, including breeding material and potential donors, a genetic map and reliable marker effect estimates. This information is available in breeding programs that have already implemented genomic selection. In this study, we assumed fully homozygous inbred lines but considering heterozygote parents in UCPC based OCS is straightforward following the extension of UCPC to four-way crosses (Allier et al. 2019b). This is particularly interesting for perennial plants.

We proposed to implement bridging at constant cost by splitting the breeding population into a small bridging population and a large breeding population. This involves practical changes in the breeding organization that remain to be studied. We considered equal family sizes and within family selection intensities for bridging and breeding families. However, in practice different within family selection intensities can be considered in UCPC based OCS (Appendix B) and one may want to modulate the selection intensity among families, e.g. select less intensively in bridging and more intensively in breeding families. We could consider the selection intensities as fixed parameters regarding breeding objectives or as variable parameters to be optimized. The effect and the optimization of within family intensities in bridging and breeding requires further investigations. We considered a selection accuracy ℎ = 1 for cross selection, for sake of facility. However, we observed that within family prediction accuracies were variable (Table 2, Figure 6). Note that a priori within family accuracy can be accounted for in UCPC based OCS (Appendix B). For instance it would give less importance to predicted variance for crosses with a priori low within family accuracy. The consequences on short-and long-term UCPC based OCS efficiency need to be investigated. In bridging, we gave more importance to performance than to diversity (𝛼 = 0.7) when selecting bridging crosses in order to reduce the performance gap between donors derived materials and elites. When giving less weight to the performance than to the diversity, i.e. 𝛼 = 0.3, we observed non-significant changes on the short-or long-term performance for scenarios with five-year and twenty-year old donors and a significant increase of long-term performance and novel favorable allele frequency for the scenario with panel donors (Figure S2 A-C). This suggested that for unimproved donors, to select too strongly for performance in bridging favors Chapter 5 Genetic resources and optimal cross selection for broadening the genetic base of elite breeding programs 105 the first elite recipient genome contribution and limits the introduction of novel favorable alleles. Further investigations are required to better define this parameter for practical implementation.

In scenarios with bridging, we considered by default two distinct bridging and breeding GS models. The prediction of elite (ExE) and introduction (DExE) crosses usefulness and the prediction within crosses were based on a model trained on the breeding progeny of the three corresponding previous generations. Considering a unique genomic selection model trained on both bridging and breeding progeny increased the prediction accuracy within introduction families (DExE) (Table 2). This higher selection accuracy favored the spreading of the introduced favorable alleles in the breeding population and resulted in an increased mid-and long-term performance (Figure 5). Furthermore, compared to use two distinct TS, a single TS led to introduce more bridging progeny (DE) for scenarios considering good performing donors (five-years old) and less for scenarios considering bad performing donors (twenty-years old) (Figure S3 A). Also, as we likely selected more accurately the introduction crosses (DExE) with a single TS, there was an increase in the proportion of those that contributed to the ten best lines, especially for twenty-year old and panel donors (Figure S3 B).

It is well known that the prediction accuracy is increased for larger TS [START_REF] Hickey | Evaluation of genomic selection training population designs and genotyping strategies in plant breeding programs using simulation[END_REF]. At constant TS size, increasing the proportion of bridging progeny (DE) up to one third in the TS significantly increased the family variance prediction accuracy (𝑐𝑜𝑟(𝜎, 𝜎 ̂)) and within family prediction accuracy (𝑐𝑜𝑟(𝑢, 𝑢 ̂)) in introduction families (DExE). Conversely, these higher proportions of bridging progeny (DE) in the TS significantly decreased 𝑐𝑜𝑟(𝜎, 𝜎 ̂) and 𝑐𝑜𝑟(𝑢, 𝑢 ̂) in elite families (ExE). The optimal balance between introduction and elite family prediction accuracies is likely data dependent as observed when considering genotypes and phenotypes simulated in different generations (Figure S4). For instance, considering later generations, a large proportion of DE in the TS penalized less the within elite prediction accuracy (Figure S4 C). The reason being that later breeding generations get closer to the external program germplasm (Figure 4). The optimal balance between bridging and breeding progeny in the training set might be defined using an optimization criterion such as the CDmean (Rincent et al. 2012) extended to account for linkage disequilibrium as suggested by [START_REF] Mangin | Training set optimization of genomic prediction by means of EthAcc[END_REF].

Outlooks

We considered an inbred line breeding program corresponding to selecting lines on per se values for line variety development or on testcross values with fixed tester lines from the opposite heterotic pool for hybrid breeding. In this case, the use of testcross effects estimated on hybrids between candidate lines and tester lines is straightforward. The extension to hybrid reciprocal breeding is of interest for genetic broadening in several species such as maize and hybrid wheat (Longin and Reif 2014). In this context it is possible to account for the complementarity between heterotic groups in UCPC based OCS to complementarily enrich and improve both pools, ensuring a consistency of the hybrid program. This would require to include dominance effects in UCPC based OCS.

We considered a single trait selected in both the external and the commercial breeding programs in the same population of environments for a total of eighty years. These assumptions should be relaxed in further simulations. Firstly, it is well recognized that genetic resources suffer agronomic flaws (e.g. lodging, Tallury and Goodman 2001;Longin and Reif 2014) or miss adaptation (e.g. flowering time) that should be accounted for during pre-breeding and introduction in breeding. In such a multitrait context, the multi-objective optimization framework proposed in Akdemir et al. (2019) 

Optimal cross selection accounting for within family variance

Considering 𝑁 homozygote candidate parents, 𝑁(𝑁 -1)/2 two-way crosses are possible. We define a crossing plan 𝒏𝒄 as a set of |𝑛𝑐| crosses out of possible two-way crosses, giving the index of selected crosses, i.e. with the 𝑖 𝑡ℎ element 𝑛𝑐 (𝑖) ∈ [1, 𝑁(𝑁 -1)/2]. The (𝑁 x 1)-dimensional vector of candidate parents estimated contributions in the selected fraction of progeny of each cross 𝒄 ̂(𝑖,ℎ) is:

𝒄 ̂(𝑖,ℎ) = 1 |𝑛𝑐| (𝒁 𝟏 𝒄 ̂𝟏 (𝑖,ℎ) + 𝒁 𝟐 𝒄 ̂𝟐 (𝑖,ℎ) ), (Eq. 6)
where 𝒁 𝟏 (respectively 𝒁 𝟐 ) is a (𝑁 x |𝑛𝑐|)-dimensional design matrix that links each 𝑁 candidate parent to the first (respectively second) parent in the set of crosses 𝒏𝒄, 𝒄 ̂𝟏 (𝑖,ℎ) (respectively 𝒄 ̂𝟐 (𝑖,ℎ) ) is a (|𝑛𝑐| x 1)-dimensional vector containing the estimated contributions of the first (respectively second) parent to the selected fraction of the progeny of the crosses in 𝒏𝒄. The expected performance 𝑉(𝒏𝒄) for this set of two-way crosses is defined as the expected mean performance of the selected DH progeny, i.e. usefulness criterion:

𝑉 ̂(𝑖,ℎ) (𝒏𝒄) = 1 |𝒏𝒄| ∑ 𝑼𝑪 ̂(𝑖,ℎ) (𝑗) 𝑗∈𝒏𝒄 . (Eq. 7)
The constraint on diversity 𝐷 ̂(𝑖,ℎ) (𝒏𝒄) in the selected progeny is:

𝐷 ̂(𝑖,ℎ) (𝒏𝒄) = 1 -𝒄 ̂(𝑖,ℎ) ′ 𝑲 𝒄 ̂(𝑖,ℎ) , (Eq. 8)
where 𝑲 is the (𝑁 x 𝑁)-dimensional identity by state (IBS) coancestry matrix at markers between the 𝑁 candidates. Allier et al. (2019c) showed that 𝐷 ̂(𝑖,ℎ) (𝒏𝒄) is a good proxy of the genomewide diversity in the selected fraction of progeny 𝐻𝑒 (𝑖,ℎ) = 1 𝑚 ∑ 2𝑝 𝑗 (𝑖,ℎ) (1 -𝑝 𝑗 (𝑖,ℎ) )

𝑚 𝑗=1
where 𝑝 𝑗 (𝑖,ℎ) is the frequency of the genotypes AA at marker 𝑗 in the selected fraction of progeny.
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There is an increasing awareness that plant breeding programs have to move from short-term to longterm perspectives in order to cope with future challenges. The advent of high density genotyping has opened new perspectives for breeding quantitative traits including genetic diversity assessment, genomic variance partitioning and genomic prediction of the genetic merit of individuals and parental crosses. The main objectives of this thesis were to develop indicators to assess plant breeding programs past efficiency and sustainability, and to develop strategies that balance the need for shortterm genetic gain with that of maintaining and introducing diversity to enable long-term response to selection. In the next section the five chapters of this thesis are discussed and put into perspectives.

For the sake of continuity of the general discussion, some chapters have been merged regardless of the chronology of publications. In the last section some perspectives for crops diversity management are discussed.

Contributions to diversity management

Diagnosis of breeding programs

Quantitative genetics theory provides breeders with the factors influencing short-and long-term breeding success. In chapter 1 (Allier et al. 2019a), we proposed indicators based on quantitative genetics theory to quantify past breeding program efficiency and to forecast its near future evolution assuming past tendencies persist. These indicators are easily implemented and take advantage of the increasing amount of phenotyping and genotyping information available in most crop breeding programs that use genomic selection (Heslot et al. 2015;Voss-Fels et al. 2019). Phenotypic data can be used to estimate realized genetic gain and additive genetic variance evolution over breeding generations. The additive genetic variance trend enables to project the future response to selection on targeted traits based on response to selection theory models [START_REF] Lush | Animal breeding plans[END_REF][START_REF] Robertson | A theory of limits in artificial selection[END_REF].

Complementarily, genotypic data inform about the genetic diversity without a priori on the trait(s) considered, i.e. the "neutral" diversity, which is of future importance to address yet unknown breeding targets raising in a context of societal and climatic changes (McCouch et al. 2013). In the illustrative hybrid maize breeding program considered, both breeding populations showed a significant positive genetic gain but contrasted evolutions of genetic variance and "neutral" genetic diversity, reflecting a complex open breeding system. In particular, we found in the Dent pool some large genomic regions with a very low diversity. As observed in [START_REF] Gerke | The Genomic Impacts of Drift and Selection for Hybrid Performance in Maize[END_REF], these regions were mainly located in low recombining pericentromeric regions. The different nonexclusive forces that can lead such hitchhiking were discussed in chapter 1, including founder effect, genetic drift and selection of favorable haplotypes. These regions raise several concerns: Do we really need to increase allelic diversity and/or recombination in these regions? As suggested in [START_REF] Gerke | The Genomic Impacts of Drift and Selection for Hybrid Performance in Maize[END_REF] the fixation of these regions may be important for group complementarity. This requires further investigations but the large size of low diversity and low recombining regions likely suggests that they may be composed of both favorable and unfavorable segments fixed by linkage drag. In order to test this assumption, one could think of haplotypic visualization approaches developed in chapter 2 (Allier et al. 2020) using marker effects estimated on a broad panel where these regions are segregating.

Beyond estimating separately additive genetic variance and "neutral" genetic diversity, genomic regression models enable the estimation of the components of the additive genetic variance genomewide and per chromosome. The additive genetic variance can indeed be decomposed into the additive genic variance that corresponds to the sum of the additive variance at individual QTLs under the assumption of linkage equilibrium between QTLs and the covariance between QTLs [START_REF] Bulmer | The stability of equilibria under selection[END_REF][START_REF] Lynch | Genetics and analysis of quantitative traits[END_REF][START_REF] Gianola | Additive Genetic Variability and the Bayesian Alphabet[END_REF]Lehermeier et al. 2017a). As expected under directional selection, negative covariances were observed in all chromosomes and captured between 17-63% of the additive genic variance. Based on the proportion of additive genic variance hidden by repulsion and the genic variance for each chromosome, we proposed to draw fine scale strategies to manage and increase the potential response to selection per chromosome. However, strategies to increase genic variance or unleash variance by recombination in specific chromosomes are far from evident. One solution would involve the selection of breeding crosses accounting for parental complementarity at markers linked to QTLs in these specific regions. As illustrated by simulations in chapter 4 (Allier et al. 2019c), optimal cross selection (OCS) favors effective recombination events and unleashes parts of the hidden additive genic variance into additive genetic variance. Alternatively, modern plant breeding biotechnologies offer new opportunities to modify targeted loci and change recombination landscape and/or increase recombination, as it will be discussed in the last section.

We considered a private early maize breeding program as an application case but the advances in genotyping in most crops and animal species offer the opportunity to extend the use of global indicators to different breeding programs and species. Proposed indicators can be improved in different ways. For instance, we did not consider pedigree information in the analysis of genetic gain and additive genetic variance but, if of sufficient depth and quality, pedigree might be accounted for to better model the additive genetic component. We also considered a maize genotyping array of 50k SNPs (Ganal et al. 2011) as genotyping arrays are common routine genotyping technologies used in breeding companies (e.g. [START_REF] Van Inghelandt | Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers[END_REF]. However, such genotyping technology focuses on common variants only, which limits genetic diversity evaluation and management. This is referred to as the ascertainment bias caused by the SNP discovery process in which a small number of individuals are used in the discovery panel and by the selection of SNP with equilibrated frequencies [START_REF] Albrechtsen | Ascertainment Biases in SNP Chips Affect Measures of Population Divergence[END_REF]. Alternatively, genotyping by sequencing (GBS, [START_REF] Elshire | A Robust, Simple Genotypingby-Sequencing (GBS) Approach for High Diversity Species[END_REF]) that discovers and genotypes both common and rare variants, provides a robust diversity estimate with much reduced ascertainment bias [START_REF] Heslot | Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity[END_REF]. For instance, [START_REF] Eynard | Whole-genome sequence data uncover loss of genetic diversity due to selection[END_REF] highlighted the interest of using common and rare SNP variants for genetic diversity quantification. The authors observed that whole-genome sequence revealed considerable losses of genetic diversity for rare variants that were unperceivable considering 50k SNP bead chip in cattle. GBS is also highly relevant for curating, identifying and harnessing variability in gene banks [START_REF] Kilian | NGS technologies for analyzing germplasm diversity in genebanks*[END_REF][START_REF] Sehgal | Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement[END_REF]Yu et al. 2016). Finally, sequencing technologies would enable to identify structural variations such as presence/absence and copy number variation (Springer et al. 2009;[START_REF] Alkan | Genome structural variation discovery and genotyping[END_REF]) that represent diversity untapped by SNP bead chips. In maize, GBS approaches are based on cost effective low depth sequencing of individuals (<1X genome coverage) and generate numerous missing data that need to be further imputed (e.g. up to 80% of missing data accurately imputed in Torkamaneh and Belzile 2015), which raises issues on the accuracy of imputation. One can expect that rapid progress in sequencing and the availability of large sequence database will alleviate this limitation for most crops.

We therefore believe that in practice such indicators of the genetic variances and diversity should be considered in routine in breeding programs to ensure the consistency between breeding long-term strategy and the breeding population. For instance, a joint reduction of the additive genetic variance and genetic diversity over time should indicate that a better management of the intrinsic diversity and introductions of extrinsic diversity is required. Waiting for a slowdown in genetic gain would be risky for genetic base broadening that usually takes several years or decades to be efficient. Alternatively, sufficient additive genetic variance and genetic diversity stable over time would suggest that an optimization of the intrinsic diversity management is sufficient. In the following, we discuss the chapters 2, 3, 4 and 5 considering first that intrinsic genetic diversity is sufficient and then that genetic base broadening is needed.

Optimization of mating design

First, let us assume the indicators proposed in chapter 1 suggest that the genetic diversity is not limiting regarding the short-and long-term breeding objectives. In this context, the main breeder's objective is to efficiently convert the intrinsic diversity into long-term genetic gain while not compromising the variety performance at short-term. As suggested in [START_REF] Bernardo | Parental selection, number of breeding populations, and size of each population in inbred development[END_REF] and [START_REF] Lado | Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs[END_REF], cross selection is one of the most important decision in breeding. The ideal mating plan being the crosses that provide superior progeny performance and enough diversity to maintain genetic gain. Consequently, a shift should operate from the paradigm of recycling and crossing super elite lines together to the recognition of the interest of less performing but more complementary parents that will generate a longer term genetic variation. Different predictive tools have been proposed to support crop breeders with the implementation of their mating design. First, the optimal cross selection (OCS) has proven to be efficient to convert genetic diversity into long-term genetic gain (e.g. Akdemir and Isidro-Sánchez 2016;[START_REF] Beukelaer | Moving beyond managing realized genomic relationship in long-term genomic selection[END_REF]Gorjanc et al. 2018). When constraining on the genomic relationship matrix, OCS accounts indirectly for parental complementarity at neutral markers assuming independence of the loci and tends implicitly to favor crosses with higher Mendelian segregation variance. The usefulness criterion (UC) of a cross explicitly accounts for Mendelian segregation variance specific to the targeted trait(s). The concept of UC is quite ancient (Schnell and Utz 1975) but has long suffered the absence of accurate predictors of within cross variance. With recent advances in this domain the UC is more and more implemented in crops (Lehermeier et al. 2017b), and was also found as being of interest in animal breeding [START_REF] Segelke | Prediction of expected genetic variation within groups of offspring for innovative mating schemes[END_REF][START_REF] Bonk | Mendelian sampling covariability of marker effects and genetic values[END_REF][START_REF] Bijma | Increasing genetic gain by selecting for higher Mendelian sampling variance[END_REF]. In chapter 3 (Allier et al. 2019b), we proposed to consider a multivariate UC that predicts the expected performance in the best fraction of progeny and the parental contributions (PC) to the best fraction of progeny, namely the UCPC. We also extended the algebraic formulas for multi-parental crosses implying up to four parents, i.e. biparental crosses between heterozygote phased individuals which enables considering three-way or four-way crosses that are frequent in annual plants but also outbred animal or perennial plants. In chapter 4 (Allier et al. 2019c), we then proposed the UCPC based OCS that differs from OCS in the sense that the parental complementarity for the traits considered is explicitly accounted for with consideration of linkage map and linkage disequilibrium. Furthermore, the next generation diversity at the whole genome level, which is derived from parental contributions, is optimized while anticipating the effect of within family selection. Simulations in chapter 4 highlighted the importance to balance short-term performance and genetic diversity using OCS methods to more efficiently convert genetic diversity into genetic gain and maximize long-term performance. Constraining on diversity had a cost for short-term variety release compared to UC that might dishearten commercial breeders. Considering explicitly within family variance and selection in UCPC based OCS limited this penalty at short-term and yielded higher long-term performance. This involves crossing complementary parents to favor effective recombination events between complementary parental haplotypes. As a result, the recombination unleashes parts of the additive genic variance captured by the build-up of negative covariances observed in chapter 1 [START_REF] Bulmer | The stability of equilibria under selection[END_REF][START_REF] Rasmusson | Plant Breeding Progress and Genetic Diversity from De Novo Variation and Elevated Epistasis[END_REF][START_REF] Bijma | Increasing genetic gain by selecting for higher Mendelian sampling variance[END_REF].

In practice, UCPC based OCS can be implemented in routine breeding programs to help breeders with cross selection regarding their short-and long-term objectives. UCPC based OCS requires parental genotype information, a genetic map, estimated marker effects and an optimization algorithm. We considered common SNP variants as markers but GBS data can be used to compute genomic relationship matrix between parents [START_REF] Eynard | The effect of rare alleles on estimated genomic relationships from whole genome sequence data[END_REF][START_REF] Eynard | Whole-genome sequence data uncover loss of genetic diversity due to selection[END_REF]. For instance, [START_REF] Eynard | Whole-genome sequence data uncover loss of genetic diversity due to selection[END_REF] observed that considering common and rare variants to estimate genomic relationship matrix in optimal contribution selection slightly reduced the loss of rare variants, while using 50k SNP bead chip data was sufficient to conserve common variants.

In chapter 4, since we aimed at comparing different crossing strategies, we considered a simplistic linear trajectory of diversity over generations and a fixed selection intensity within each family. More complex strategies can be applied but were not tested. The parametrization of the UCPC based OCS strategy regarding short-and long-term objectives (e.g. the constraint on diversity, within family selection intensity) is complex and requires quantified breeding objectives (e.g. targeted diversity, targeted annual genetic gain). The optimal parametrization of such an approach could be done using simulations based on breeding germplasm genotypes and assuming estimated marker effects as true QTL effects, i.e. assuming reliable estimates and neglecting the fact that estimated marker effects are allele frequency dependent.

We evaluated the interest of UCPC based OCS in an inbred plant breeding program and discussed its extension to crosses between heterozygote individuals. This is interesting for animal breeders and plant breeders working with heterozygous individuals (e.g. in perennial species). It also extends the use of UCPC based OCS to the two-part GS breeding program proposed by [START_REF] Gaynor | A Two-Part Strategy for Using Genomic Selection to Develop Inbred Lines[END_REF] and [START_REF] Hickey | Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery[END_REF]. The authors proposed to distinguish the population improvement component to develop improved germplasm and the product development component to fix and identify new inbred parents for hybrids. In the population improvement component, the most performing progeny of parental crosses are selected and recycled before fixation to generate the next population improvement generation. In this context, Gorjanc et al. (2018) observed that OCS enabled optimal management and exploitation of population improvement germplasm and we can conjecture an additional gain to use UCPC based OCS. Furthermore, as heterozygous individuals are conceptually crosses between two phased parental gametes, UCPC can be useful to select individuals accounting for the Mendelian segregation in their gametes [START_REF] Segelke | Prediction of expected genetic variation within groups of offspring for innovative mating schemes[END_REF][START_REF] Bonk | Mendelian sampling covariability of marker effects and genetic values[END_REF][START_REF] Bijma | Increasing genetic gain by selecting for higher Mendelian sampling variance[END_REF]. For instance some individuals produce more variable progeny than others regardless of the second parent, i.e. more likely outstanding progenies of agricultural interest. In a breeding perspective, one may want to select individuals maximizing an index between their GEBV and expected gametic variances [START_REF] Bijma | Increasing genetic gain by selecting for higher Mendelian sampling variance[END_REF]. On the contrary, in a farmer perspective, one may select for high individual GEBV but low gametic variance to have more homogenous progeny (e.g. pig birth-weight) and simplify herd management [START_REF] Cole | Use of haplotypes to estimate Mendelian sampling effects and selection limits[END_REF][START_REF] Segelke | Prediction of expected genetic variation within groups of offspring for innovative mating schemes[END_REF]. Such a balance between breeding and production objectives should also be considered for open pollinated plant species were the breeding population is also the production population (e.g. participatory breeding of maize landraces in developing countries, [START_REF] Bellon | Participatory landrace selection for on-farm conservation: An example from the Central Valleys of Oaxaca, Mexico[END_REF].

Genetic base broadening

Let us assume now, that the indicators proposed in chapter 1 suggest that the genetic diversity is suboptimal regarding the long-term breeding objectives. A first step would consist in characterizing and identifying genetic resources for genetic base broadening using multi-environment trials. In chapter 2 (Allier et al. 2020), we reviewed, proposed and compared different criteria to identify genetic resources that can complement an elite population and that can compensate their low mean performance by an increased genetic variance when crossed to elites (Longin and Reif 2014). The different criteria account differently for parental complementarity at individual loci or haplotype segments. Criteria were parameterized to consider more or less recombination events and consequently evaluate the interest of genetic resources at more or less long-term when crossed to elites. Hence, the optimum parametrization cannot be provided and depends on the breeder's objectives. We observed that a genomewide prediction model trained on a collaborative panel including old material and elite material (Amaizing dent collaborative panel, Rio et al. 2019) had a relevant predictive ability on a large elite private material. This suggests that genomic predictions calibrated on such a collaborative panel can be used to identify interesting sources of diversity in the panel. This strategy might be extended to other collaborative diversity panels, libraries of DH lines derived from landraces (Strigens et al. 2013;Melchinger et al. 2017;Böhm et al. 2017;[START_REF] Hölker | European maize landraces made accessible for plant breeding and genome-based studies[END_REF] or gene banks in other species to evaluate non phenotyped genetic resources as proposed in Yu et al. (2016) and Crossa et al. (2016). Methodological developments in chapter 3 could enrich the proposal made in chapter 2 in complementary ways. First, it would allow considering multi-parental crosses between genetic resources and elites which appeared to be of interest in case of low performing genetic resources (Allier et al. 2019b). UCPC would also make it possible to evaluate the genetic resources that balance performance and originality (as implemented in chapter 5 in case of two way crosses). Finally, UCPC enables consideration of parental contributions in specific regions under the assumption that a sufficient number of loci are independently segregating in these regions to ensure the normality of the trait. Thus, UCPC could be used to identify donors that enrich specific regions in diversity, such as regions identified in chapter 1.

Finally in chapter 5, we evaluated strategies inspired from Simmonds (1993) for recurrent introductions in a simulated commercial breeding program. We considered different types of donors with variable performance gap with elites and compared two introduction strategies: direct introductions or indirect introductions in the breeding population. The latter involves a buffer population, namely bridging population, which bridges the most complementary genetic resources and elites before introduction in the breeding population. We considered the UCPC based OCS to manage recurrent genetic base broadening. In this context, an OCS holistic approach, where bridging crosses, introduction crosses and elite crosses are jointly optimized, ensures an overall consistency of the genetic base broadening strategy. We considered the UCPC based OCS to maximize genetic performance while maintaining genetic variation constant thanks to the intrinsic variability and introductions of extrinsic variability. Simulation demonstrated that recurrent introductions of preimproved genetic resources (i.e. through pre-breeding or a minima bridging) can increase the genetic mid-and long-term genetic gain while maintaining genomewide genetic diversity constant. The less performant the introduced material, the more important was the short-term penalization of variety release. We also suggest to consider marker effects estimated on a large and broad TS that blends elites and progeny of elite by genetic resource crosses in order to balance the prediction accuracy in elite crosses and in introduction crosses.

Further investigations might be considered to complete this work. For instance, we discussed in chapter 2 the practical interest of public-private collaborative pre-breeding projects. However, further investigations are required to identify key parameters of successful public-private diversity panels, including the origin of genetic resources, their improvement and the relative proportion of elite proprietary germplasm. Furthermore, simulations can also be performed to validate the interest of criteria proposed in chapter 2 and evaluate the sensitivity of criteria accuracy to different training set compositions. In chapter 5, we simulated a breeding program with a reduced genetic diversity at the end of burn-in to be in the situation where genetic base broadening is required. In practice, the need of broadening genetic diversity might be variable depending on the adequacy of intrinsic diversity diagnosis and short-and long-term breeding objectives. We also assumed absence of mutations, epistasis and a single-trait breeding target that was constant during sixty years. Mutations and epistasis might reduce the importance of genetic base broadening by releasing additive genetic variance over generations as discussed in the next section. In a context of climatic and social expectation changes the breeding target is likely multi-trait and changing over time. Coupling different climatic scenarios with the simulation of a breeding program with a multi-trait target could be interesting to evaluate the interest of genetic base broadening in a more complex context. We believe that the need for genetic base broadening is likely more valuable than highlighted in chapter 5 to be able to address yet unknown breeding objectives.

Altogether, this study supports breeders with tools to evaluate, manage and reveal intrinsic genetic variation, to identify and introduce extrinsic variation and efficiently convert genetic variation into genetic gain. Such quantitative genetics tools, among others, will support breeders toward integrated and sustainable breeding programs. In the next section we will discuss the importance of mutation and epistasis in open breeding populations. Then, we discuss the use of biotechnologies to fasten genetic base broadening in crops.

Perspectives

Is continued crop improvement sustainable?

In long-term simulations of chapter 4, nearly all the additive genetic variance was eroded and genetic merit plateaus were reached in most scenarios after sixty years. Other long-term simulation studies in plants also reached similar results (e.g. [START_REF] Beukelaer | Moving beyond managing realized genomic relationship in long-term genomic selection[END_REF]Gorjanc et al. 2018). Experimentally, [START_REF] Weber | Population size and long-term selection[END_REF] observed a selection plateau under directional selection in a large population of Drosophila. On the opposite, continued genetic gains are observed in most crops (e.g. in maize Duvick 2005, in wheat Tadesse et al. 2019) and the long-term Illinois divergent selection experiment for maize oil and protein content showed continuous genetic gains for hundred generations [START_REF] Dudley | 100 generations of selection for oil and protein in corn[END_REF]. This raises questions about the sustainability of crop breeding but also the realism of the genetic model assumed in most long-term simulation studies. Several nonexclusive reasons may explain why continued improvement is possible in crops contrary to what simulations appear to claim. Firstly, in simulations different approaches are compared for their efficiency to convert intrinsic variability into genetic gain for a clear breeding target trait (e.g. [START_REF] Beukelaer | Moving beyond managing realized genomic relationship in long-term genomic selection[END_REF]Gorjanc et al. 2018;Allier et al. 2019c). However, in practice commercial breeding programs are often more complex than simulated ones and extrinsic variation is used to maintain the response to selection (e.g. [START_REF] Feng | Temporal trends in SSR allele frequencies associated with long-term selection for yield in maize[END_REF]Allier et al. 2019a;[START_REF] Bruce | Genome-wide genetic diversity is maintained through decades of soybean breeding in Canada[END_REF]. Indeed, allowing for extrinsic variation introduction into the breeding population increased the selection limit and delayed the selection plateau in simulations (chapter 5). Furthermore, the breeding target is likely implying multiple traits showing different genetic (co)variances and changing over generations. Thus, selection efforts are spread over variable traits and it is less likely that breeders completely erode the additive genetic variation underlying the targeted traits in the breeding population. Secondly a crop's genome is dynamic and new variations arise every generation while most simulated breeding programs assumed the absence of mutations. In maize the mutation rate is about 9-20 10 -9 mutations per base pair per generation [START_REF] Kremling | Dysregulation of expression correlates with rare-allele burden and fitness loss in maize[END_REF]. For a genome size of 2.4 Gb, this represents 20 to 50 mutations per generation of which most are neutral. Estimates of additional mutational variance per generation for a range of species and quantitative traits averaged on 0.1% of the environmental variance [START_REF] Houle | Comparing Mutational Variabilities[END_REF][START_REF] Kannenberg | HOPE, a Hierrarchical, Open-ended System for Broadening the Breeding Base of Maize, pp. 311-318 in Broadening the Genetic Base of Crop Production[END_REF][START_REF] Hill | Is Continued Genetic Improvement of Livestock Sustainable?[END_REF]. Despite mutation effects seem negligible, the multi-generation Illinois maize kernel content selection experiment [START_REF] Dudley | 100 generations of selection for oil and protein in corn[END_REF]) and the long-term divergent selection experiment for flowering time in maize inbred lines [START_REF] Tenaillon | Standing variation and new mutations both contribute to a fast response to selection for flowering time in maize inbreds[END_REF][START_REF] Tenaillon | Dearth of polymorphism associated with a sustained response to selection for flowering time in maize[END_REF] tend to nuance this a priori. In the Illinois experiment, lines have been selected for oil and protein content over hundred generations with variability still sufficient to achieve progress from selection, which can be explained only by mutations [START_REF] Walsh | Population-and quantitative-genetic models of selection limits[END_REF]). In the divergent flowering time experiment, continued response to selection is observed after more than seventeen generations, which can be explained mainly by mutations following a phase of fixation of residual heterozygosity [START_REF] Tenaillon | Standing variation and new mutations both contribute to a fast response to selection for flowering time in maize inbreds[END_REF][START_REF] Tenaillon | Dearth of polymorphism associated with a sustained response to selection for flowering time in maize[END_REF].

The third complementary explanation is that epistasis is neglected in most long-term simulation studies. Physiological epistasis arises from pleiotropies and interactions in metabolic pathways. Statistical epistasis is the statistical contribution of the interactions between loci to genetic variance and therefore depends on allelic frequencies [START_REF] Lynch | Genetics and analysis of quantitative traits[END_REF][START_REF] Paixão | The effect of gene interactions on the long-term response to selection[END_REF]. As a consequence, in a finite population, additive by additive epistatic variance tends to be lost by genetic drift but is also partly converted into additive variance [START_REF] Goodman | Broadening the genetic diversity in maize breeding by use of exotic germplasm, pp. 139-148 in The genetics and exploitation of heterosis in crops[END_REF], which maintains the response to selection [START_REF] Barton | Effects of Genetic Drift on Variance Components Under a General Model of Epistasis[END_REF][START_REF] Carlborg | Epistasis and the release of genetic variation during long-term selection[END_REF][START_REF] Paixão | The effect of gene interactions on the long-term response to selection[END_REF][START_REF] Barton | How does epistasis influence the response to selection?[END_REF][START_REF] Hill | Conversion" of epistatic into additive genetic variance in finite populations and possible impact on long-term selection response[END_REF]). In the extreme regime where genetic drift drives allelic frequency changes, as it can be encountered in case of strong selection on a large number of loci in a finite population, [START_REF] Paixão | The effect of gene interactions on the long-term response to selection[END_REF] observed that the total response to selection mostly depends on the initial standing variation. In the opposite regime, where directional selection drives the allelic changes in frequency, the authors observed that the total response to selection is greatly impacted by the conversion of epistatic to additive variance when initially neutral or deleterious alleles become favorable as the genetic background changes. Furthermore, mutations might present interactions with the genetic background (e.g. [START_REF] Tenaillon | Dearth of polymorphism associated with a sustained response to selection for flowering time in maize[END_REF]) so that it is difficult to disentangle mutation from epistatic effects on long-term response to selection. In practice, which regime may correspond to breeding populations? The Iowa hybrid maize selection experiment [START_REF] Gerke | The Genomic Impacts of Drift and Selection for Hybrid Performance in Maize[END_REF] showed that while most of allelic changes can be attributed to genetic drift, some regions showed signatures of selection, and seemed to indicate an intermediate regime. According to [START_REF] Hill | Conversion" of epistatic into additive genetic variance in finite populations and possible impact on long-term selection response[END_REF], the contribution of epistatic variance conversion to additive variance is likely more important than contribution of mutations in long-term experiments. However, as concluded by [START_REF] Hill | Conversion" of epistatic into additive genetic variance in finite populations and possible impact on long-term selection response[END_REF]: "It is not obvious that we should be trying explicitly to exploit it by changing the focus of the selection to the epistasis itself. It seems better to concentrate on utilizing additive variance, and hope for a bonus from converting epistatic variance".

General discussion and perspectives 123

Simulations not accounting for mutations or epistasis might be pessimistic regarding the sustainability of crop improvement. Nevertheless, simulation results obtained in chapter 4 and chapter 5 provide important information on the optimal diversity management strategies. We can draw the following general recommendations. One should avoid too low genetic diversity in breeding populations to (i) maximize the conversion of additive genetic variance into gain and (ii) to hope for a bonus from converting epistatic variance in additive variance. One needs to evaluate frequently the additive genetic variance in the breeding population to assess if mutational and epistatic bonus are sufficient regarding long-term objectives. One needs to anticipate (e.g. participate to collaborative pre-breeding projects, routinely evaluate some available genetic resources) and introduce genetic resources to prevent a potential decrease of the additive genetic variance.

Biotechnologies for genetic base broadening

We highlighted in chapter 1 the interest in increasing genetic diversity in specific chromosomic regions and in favoring recombination events to unleash genetic variation captured by repulsion between causal loci. Conventional solutions involve the selection of crosses between complementary parents in these regions using for instance UCPC based OCS (chapter 3 and chapter 4). In chapter 5, we highlighted the interest of recurrent introductions of polygenic variation in breeding population on mid-and long-term genetic gain. We observed in our simulations, similarly as in chapter 3, that haplotypes introduced from the donor carried some original favorable alleles tightly linked with unfavorable alleles. However, recombination is often not sufficient to break this linkage and combine intrinsic and extrinsic favorable alleles in a single superior haplotype that will reach fixation. On the contrary, multiple sub-optimal haplotypes selectively interfere with one another so that none reach fixation, which is known as the Hill-Robertson interference [START_REF] Felsenstein | The effect of linkage on directional selection[END_REF][START_REF] Hill | The effect of linkage on limits to artificial selection[END_REF]. Advances in genome editing technics for adding, deleting or replacing a series of nucleotides in the genome are opening alternative perspectives to bypass the Hill-Robertson effect. In recent techniques this can be achieved using specific nuclease that cut DNA at specific predetermined places (e.g. zinc finger nuclease: ZNF, transcription activator-like effector nucleases: TALEN or clustered regulatory interspaced short palindromic repeats: CRISPR, [START_REF] Gaj | ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[END_REF][START_REF] Belhaj | Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system[END_REF].

Genome editing can be used to increase meiotic recombination rates (for a recent review, Blary and Jenczewski 2018) or induce mitotic recombination at precise locations [START_REF] Sadhu | CRISPR-directed mitotic recombination enables genetic mapping without crosses[END_REF]. [START_REF] Battagin | Effect of manipulating recombination rates on response to selection in livestock breeding programs[END_REF] performed simulations to explore the potential of manipulating recombination rates to increase response to selection in livestock breeding programs. The authors had to tremendously increase the genomewide recombination rate to 10-20 fold to significantly increase the response to selection. A disadvantage of increased recombination rate is the rapid decrease of linkage between QTLs and markers on which genomic selection predictive ability relies [START_REF] Habier | Genomic BLUP Decoded: A Look into the Black Box of Genomic Prediction[END_REF], requiring frequent updating of the genomic selection model [START_REF] Battagin | Effect of manipulating recombination rates on response to selection in livestock breeding programs[END_REF]. Using simulations, [START_REF] Gonen | The potential of shifting recombination hotspots to increase genetic gain in livestock breeding[END_REF] evaluated the interest to recombine in regions that did not recombine for several generations. The authors observed a release of additive genetic variance in the form of new allele combinations and thus an increased genetic gain. [START_REF] Tourrette | Assessing by modeling the consequences of increased recombination in genomic selection of Oryza sativa and Brassica rapa[END_REF] compared by simulations two different approaches to increase recombination in plants. The first approach increased the global recombination without affecting the recombination landscape and used a mutant of anti-crossover genes (developed in A. thaliana, Fernandes et al. 2018, pea, rice andtomato Mieulet et al. 2018). The second increased the recombination particularly in pericentromeric regions using differences of the ploidy level between parents (developed in crosses between Brassica rapa and Brassica napus, [START_REF] Pelé | Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas[END_REF]. The authors found up to 30% of gain after twenty generations with an advantage to the recombination landscape modification. However, all recombination events are not favorable. Recombination is advantageous if it uncouples favorable-unfavorable complexes that capture additive genetic variance but recombination is unfavorable if it breaks favorable-favorable complexes. Thus, the amount of variation that arises from induced recombination depends on the location of recombination points relative to the causal variants and gametic phase disequilibrium. Assuming that the estimated marker effects are accurate enough and that precise targeted meiotic recombination technology is available, [START_REF] Bernardo | Prospective Targeted Recombination and Genetic Gains for Quantitative Traits in Maize[END_REF] proposed an in silico simulation approach to identify one or two target recombination points in doubled haploid progeny of a cross between inbred maize lines to enhance the genetic gain. The author observed that one or two targeted recombination events per chromosome yielded 100 to 600% gain in response to selection compared to non-targeted recombination events. Still the feasibility and efficiency of such meiotic recombination in plants remains to be proved.

The CRISPR/Cas9 technology has also successfully been used to modify crop traits including drought tolerance in maize [START_REF] Shi | ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[END_REF], sorghum, rice, wheat and soybean [START_REF] Belhaj | Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system[END_REF][START_REF] Shalem | High-throughput functional genomics using CRISPR-Cas9[END_REF]. Beyond fastening few introgressions, genome editing is expected to fasten genetic base broadening while generating genetic diversity at multiple loci simultaneously [START_REF] Ma | A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants[END_REF][START_REF] Chen | Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing[END_REF][START_REF] Wolter | Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites[END_REF]. For instance, [START_REF] Jenko | Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs[END_REF] evaluated the interest of multiple loci genome editing, referred to as promotion of alleles by genome editing (PAGE), in a simulated cattle breeding program where only sire where edited. The authors observed that PAGE had great potential in response to selection after 20 generations. However, the authors warned against the overuse of edited parents that would yield a rapid decrease in polygenic variation [START_REF] Jenko | Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs[END_REF].

These prospects assume reliable estimates of allelic effects to edit. It will require massive data from genotypes to phenotypes and at different integrated levels (gene expression, proteomic, etc.) to inverse the curse of dimensionality (i.e. from n <<p to n>p) [START_REF] Jenko | Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs[END_REF][START_REF] Wallace | On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics[END_REF][START_REF] Ramstein | Breaking the curse of dimensionality to identify causal variants in Breeding 4[END_REF]). Despite promising preliminary simulation studies on the use of genome editing for quantitative trait breeding and improving accuracy of genome editing technics, there are still some unknown factors such as the approval by government agencies in Europe for food production and the acceptance by public opinion. Consequently, it is a necessity to manage and harness the "native" genetic diversity and continue to develop and optimize conventional introgression and genetic base broadening strategies.

Personal conclusion

I personally believe that sustainable and continued crop breeding for productivity and quality in a changing environment is possible and desirable. This involves an optimization of breeding strategies to ensure adequacy of the breeding germplasm with changing breeding targets. This involves a better environmental characterization and consideration of GxE in predictive breeding. This also involves the rapid and efficient conversion of intrinsic and extrinsic genetic variability into multivariate response to selection. Finally, this requires the management and usage of ex-situ genetic resources with strong public-private logistical and financial partnership to make it compelling for breeders. 

File S1: Predictive ability on elite material

In the following, we evaluated the predictive ability of model in Eq. 1 trained across the Amazing dent panel (training population, TP) on elite private material (prediction population, PP). The PP lines consisted in lines produced in elite breeding from 2004 to 2016 and evaluated in hybrid combination on Flint testers for grain yield corrected at 15% of grain moisture (594 lines for GY; qx/ha), grain moisture (594 lines for GM; %) and male flowering time (539 lines for MF; days). These lines were genotyped with the MaizeSNP50 Illumina ® BeadChip (Ganal et al. 2011) and after quality control and imputation the same set of 40,478 SNPs as for the TP was kept, resulting in the genotyping matrix 𝑿 𝑷𝑷 .

The best linear unbiased estimators (BLUEs) of PP lines general combining ability (GCA) were estimated using the following model:

𝑌 𝑖𝑗𝑦𝑙𝑟 = 𝜇 + 𝛽 𝑦𝑙 + 𝛼 1𝑖 + 𝛼 2𝑗 + 𝜃 12 𝑖𝑗 + 𝜃 1𝑌 𝑖𝑦 + 𝜖 𝑖𝑗𝑦𝑙𝑟 (Model S1)
where, 𝑌 𝑖𝑗𝑦𝑙𝑟 is observation 𝑟 of the hybrid between line 𝑖 and tester 𝑗 evaluated in location 𝑙 and year 𝑦. 𝜇 is the intercept, 𝛽 𝑦𝑙 is the environment 𝑦𝑙 (Location x Year) fixed effect, 𝛼 1𝑖 is the tested PP line 𝑖 GCA fixed effect, 𝛼 2𝑗 is the Flint tester 𝑗 GCA fixed effect. 𝜽 𝟏𝟐 ~ 𝑁(𝑶, 𝜎 𝜃12 2 𝑰) is the vector of hybrids between PP lines and Flint testers specific combining ability (SCA) random effects, 𝜽 𝟏𝒀 ~ 𝑁(𝑶, 𝜎 1𝑌 2 𝑰)

is the vector of tested PP line GCA by Year interaction random effects. Finally, 𝝐 ~ 𝑁(𝑶, 𝜎 𝜖 2 𝑰) is the vector of independent random residual errors.

The heritability in the PP was estimated considering Model S1 where the tested PP line 𝑖 GCA effect was modeled as random with 𝜶 𝟏 ~𝑁(𝑶, 𝜎 𝛼1 2 𝑰). The heritability in the PP was defined as: ℎ 2 = 𝜎 ̂𝛼1 2 / (𝜎 ̂𝛼1 2 + 𝜎 ̂𝜃12 2 /𝑛 𝐻𝑦𝑏 + 𝜎 ̂1𝑌 2 /𝑛 𝑌 + 𝜎 ̂𝜖2 /𝑛 𝑂𝑏𝑠 ), where 𝑛 𝐻𝑦𝑏 is the harmonic mean number of hybrids per line, 𝑛 𝑌 is the harmonic mean number of years a given line was tested and 𝑛 𝑂𝑏𝑠 is the harmonic mean number of observations on a given line. The harmonic mean was considered instead of arithmetic mean as suggested in literature for unbalanced data set (Holland et al. 2010). The average coefficient of determination (referred as CD ̅̅̅̅ , Laloë 1993) of 𝜶 ̂𝟏 best linear predictors (BLUP) was also considered as a proxy of trait heritability in the PP.

The BLUPs of genomic estimated breeding values of elite material were obtained as:

𝑮𝑬𝑩𝑽 = 𝑿 𝑷𝑷 𝜷 ̂
where, 𝑿 𝑷𝑷 is the genotyping matrix of reference allele counts coded in 0 or 2 and 𝜷 ̂ the vector of marker effects posterior mean obtained in Eq. 1. The predictive ability was evaluated as the correlation between the vector of GEBV and the vector of GCA in the PP: 𝑟 = 𝑐𝑜𝑟(𝑮𝑬𝑩𝑽, 𝜶 ̂𝟏).

File S1: Derivation of linkage disequilibrium parameter in progeny for four-way cross and specific case of two-way cross, three-way cross and backcross

Here we derive the linkage disequilibrium parameter of doubled haploid progeny derived from the 𝐹 1 ' generation of a four-way cross (Figure 1 S1), while we give an extension for DH lines generated from higher selfing generations and for recombinant inbred lines in File S2. The crossing scheme for a fourway cross visualizing parental and potential progeny haplotypes is given in Figure 1 S1. Gametes from a four-way cross with four different parents (P1, P2, P3, and P4) correspond to gametes from six biparental crosses (P1xP2, P3xP4, P1xP3, P1xP4, P2xP3, P2xP4). To derive the entries of the Linkage Disequilibrium (LD) matrix 𝑫 of the progeny of the four-way cross, we derive the frequencies of all different possible haplotypes. For this, three types of haplotypes can be differentiated (namely, T1, T2 and T3).

The first type T1 corresponds to parental haplotypes, for example AB from Figure 1 S1. The frequency of the haplotype AB in the parents is:

𝑝 𝐴𝐵 = 1 4
The frequency of AB in gametes from the cross 𝐹 1 (1) × 𝐹 1 (2) is:

𝑝 𝐴𝐵 ′ = 1 4 (1 -𝑐 (1) ), (T1) (T2) (T3)
with 𝑐 (1) the recombination frequency and (1 -𝑐 (1) ) the frequency that no recombination takes place within the cross 𝐹 1 (1) × 𝐹 1 (2) .

Similarly, the frequency of AB in gametes from the cross 𝐹 1 ′ × 𝐹 1 ′ is:

𝑝 𝐴𝐵 ′′ = 1 4 * (1 -𝑐 (1) ) 2
As there are four different parental haplotypes, the frequency of the type T1 haplotypes is:

𝑃(𝑇 1 ) = 𝑝 𝐴𝐵 ′′ + 𝑝 𝐶𝐷 ′′ + 𝑝 𝐸𝐹 ′′ + 𝑝 𝐺𝐻 ′′ = (1 -𝑐 (1) ) 2 (1) 
The second type T2 corresponds to haplotypes formed by recombination in the cross 𝐹 1 (1) × 𝐹 1 (2) , for example AD. The frequency of this haplotype in the parents is

𝑝 𝐴𝐷 = 0
The frequency of AD in gametes from the cross 𝐹 1 (1) × 𝐹 1 (2) is:

𝑝 𝐴𝐷 ′ = 1 2 * 𝑐 (1) 2 = 1 4 𝑐 (1)
As 𝑐 (1) 2 is the frequency of recombinants within 𝐹 1 (1) , the frequency in the whole cross is reduced by a factor of 1/2. The frequency of AD in gametes from the cross 𝐹 1 ′ × 𝐹 1 ′ is:

𝑝 𝐴𝐷 ′′ = 1 4 𝑐 (1) (1 -𝑐 (1) ),
with (1 -𝑐 (1) ) the frequency that no recombination takes place within the cross 𝐹 1 ′ × 𝐹 1 ′ .

Overall, the frequency of the type T2 haplotypes is:

𝑃(𝑇 2 ) = 𝑝 𝐴𝐷 ′′ + 𝑝 𝐶𝐵 ′′ + 𝑝 𝐸𝐻 ′′ + 𝑝 𝐺𝐹 ′′ = 𝑐 (1) (1 -𝑐 (1) ) (2) 
The third type T3 corresponds to haplotypes formed by recombination in the cross 𝐹 1 ′ × 𝐹 1 ′ , for example AF. The frequency of these haplotypes in the parents is:

𝑝 𝐴𝐹 = 0
The frequency of AF in gametes from the cross 𝐹 1 (1) × 𝐹 1 (2) is:

𝑝 𝐴𝐹 ′ = 0
The frequency of AF in gametes from the cross 𝐹 1 ′ × 𝐹 1 ′ can be calculated as:

𝑝 𝐴𝐹 ′′ = 1 2 (1 -𝑐 (1) ) * 1 2 (1 -𝑐 (1) ) * 𝑐 (1) 2 + 𝑐 (1) 2 * 1 2 (1 -𝑐 (1) ) * 𝑐 (1) 2 + 1 2 (1 -𝑐 (1) ) * 𝑐 (1) 2 * 𝑐 (1) 2 + 𝑐 (1) 2 * 𝑐 (1) 2 * 𝑐 (1) 2 = 1 8 𝑐 (1)
The linkage disequilibrium parameter Φ 1 and Φ 2 and equation ( 5) can be simplified in the case of twoway, three-way and backcrosses (Table 2 S1). For two-way crosses we arrive at the same variance covariance matrix elements Σ 𝑗𝑙 as given by Lehermeier et al. (2017). 

File S3: Comparison of IBD parental contribution variance with Frisch and Melchinger (2007) and simplification to IBS contribution

We used an algebraic formula to predict the variance of 𝑃 1 genome contribution in doubled haploid progeny derived from F1' plants. We considered two-way crosses DH-1 (called (F1)-DH) and backcrosses DH-1 (called (BC1)-DH) and compared our results with the results given by Frisch and Melchinger (2007). We considered one chromosome of 100cM for which Frisch and Melchinger ( 2007) derived a variance of parental contribution of 0.1419 for (F1)-DH and 0.0945 for (BC1)-DH. We varied the number of loci 𝑝 used in our approach and for each, we ran ten independent samplings of loci. We observed that the results from our approach converged with increasing number of loci to the solution given by Frisch and Melchinger (2007) (Figure 1 S3). In cases where the origin of the allele is not of interest and an identical by state (IBS) similarity between progeny and parental lines is sufficient, the multi-allelic coding can be simplified to a biallelic coding. This reduces the size of the covariance matrix from (4𝑝 x 4𝑝) to (𝑝 x 𝑝), with 𝑝 being the number of loci considered. For this, let us define the genotyping matrix of parental lines in biallelic coding:

𝑿 𝐼𝐵𝑆 = 𝑑𝑖𝑎𝑔(𝑿 𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙 ) = (𝒙 1 𝒙 2 𝒙 3 𝒙 4 ) ′
where, 𝑿 𝐼𝐵𝑆 is a (4 x 𝑝)-dimensional matrix of genotypes. The (𝑝 x 4)-dimensional matrix of global parental contribution marker effects for each of the four parents can be defined as:

𝜷 𝐼𝐵𝑆 = 1 2𝑝 𝑿 𝐼𝐵𝑆 ′
where, ∀ 𝑖 ∈ [1; 4] 𝜷 𝐼𝐵𝑆 (. , 𝑖) is the 𝑝-dimensional vector of marker effect to follow the IBS contribution of parent 𝑖 and 𝑝 is the total number of loci considered.

We denote the (𝑁 

File S1: Additional material

Material

We initiated simulations with the genome of 57 maize Iodent inbred lines (Zea mays L.) (Allier et al. 2019). These lines were genotyped with the Illumina MaizeSNP50 BeadChip (Ganal et al. 2011). After quality control and imputation, 40,478 high-quality SNPs were retained. The genetic map was obtained by predicting genetic positions from physical positions on the reference genome B73-v4 [START_REF] Jiao | Improved maize reference genome with single-molecule technologies[END_REF]) using a spline-smoothing interpolating procedure described in [START_REF] Bauer | Intraspecific variation of recombination rate in maize[END_REF] and the dent genetic map in Giraud et al. (2014). At each simulation replicate we randomly sampled 40 lines to be the founder population. We randomly sampled 1,000 SNPs to be additive biallelic quantitative trait loci (QTL) of a polygenic trait. The sampling of QTL obeyed two constraints: QTL minor allele frequency ≥ 0.2 and distance between two consecutive QTL ≥ 0.2 cM. Each QTL was randomly assigned an additive effect from a Gaussian distribution with a mean of zero and a variance of 0.05. For the scenario where the 1,000 QTLs were unknown, we randomly sampled 2,000 non causal SNPs as genomewide markers used for evaluation (see "Evaluation model" section).

Simulation scheme

We aimed at comparing the effect of parent selection and allocation methods on short and long term genetic gains in a realistic breeding context using doubled haploid (DH) technology and considering overlapping and connected cohorts (i.e. generations) of three years as illustrated in Figure 1A. We considered that the process to derive DH lines from a cross and to phenotype and genotype DH lines took three years. Furthermore we considered as candidate parents of a new cohort only the DH progeny of the three last cohorts. For sake of clarity, the candidate parents of cohort 𝑇 were selected from the available DH progeny of the three cohorts: 𝑇 -3, 𝑇 -4 and 𝑇 -5 (Figure 1A-B). Within this breeding context, we defined a burn-in period of 20 years starting from founders that mimicked a phenotyping selection (PS) program using DH technology (more details in the "phenotyping" and "evaluation model" sections). Afterward, we compared different cross selection strategies during 60 years of breeding. We considered either that we had access to the 1,000 QTL effects (TRUE scenario) or that we estimated the effects of the 2,000 non causal SNPs (GS scenario). We also considered the absence of genomic information for selection, i.e. phenotypic selection (PS scenario).

We can distinguish the following simulation phases for the cohorts 𝑻 ∈ [𝟏, 𝟖𝟎]:

 Burn-in Phase 1 (𝑻 ∈ ⟦𝟏; 𝟑⟧): Initialization Every year during the three first years, a cohort was initiated by randomly generating 20 biparental crosses from the 40 founders. We derived 80 DH lines per cross. Note that lines can contribute as parents to different crosses and cohorts, so that parental contributions are not controlled and different cohorts can share the same crosses at this stage.

 Burn-in Phase 2 (𝑻 ∈ ⟦𝟒; 𝟐𝟎⟧)

The second phase of burn-in mimicked 17 years of phenotypic selection to build up extensive linkage disequilibrium to compare scenarios in a realistic ongoing breeding context. In burn-in phase 2, phenotypic selection (PS) was used to estimate breeding value of candidate lines from the three last cohorts (𝑇 -3, 𝑇 -4 and 𝑇 -5, if available). After selecting the 4 best DH progeny per family (i.e. 5%), the overall 50 best progeny out of 3 cohorts x 20 families/cohort x 4 DH/family = 240 DH progeny were considered as potential parents of the cohort and were randomly mated to generate 20 biparental families of 80 DH lines. Note that lines can contribute as parents to different crosses and cohorts, so that parental contributions are not controlled and different cohorts can share the same crosses at this stage. Burn-in ended up with overlapping cohorts connected by the pedigree as it can be found in real breeding program.

 Post burn-in (𝑻 ∈ ⟦𝟐𝟏; 𝟕𝟎⟧)

In post burn-in, the life cycle of a cohort was similar to burn-in phase 2 except changes in the way to evaluate, select and mate parents (Figure 1B).

Phenotyping

For phenotyping, we considered environmental effects sampled in a normal distribution of mean zero and variance 25 and did not consider genotype by environment interactions. Each cohort was evaluated in 𝑁 𝑙𝑜𝑐 = 4 locations in one year, i.e. four environments. At each simulation replicate, five founder lines were randomly sampled to be check individuals phenotyped every year. Environmental errors were sampled from a normal distribution with mean zero and an error variance 

Evaluation model

Different evaluation models were considered and should be distinguished at this stage. For phenotypic selection (PS scenario), the phenotypes of progeny were used to estimate their breeding values (EBV). We distinguished two scenarios using genomic information. On one hand, the 1,000 QTL positions and effects were known (TRUE scenario) and the evaluation consisted in summing the individual additive QTL effects to obtain the true breeding value (TBV) of progeny. On the other end, the 1,000 QTL positions and effects were unknown (GS scenario) and 2,000 SNP effects were estimated using the phenotypes and genotypes of the progeny from the three last cohorts. The progeny were selected on their genomic estimated breeding values (GEBV).

The breeding value of progeny (EBV in PS or GEBV in GS) were estimated in Model 1 S1 fitted using mixed model software blup-f 90 (Misztal 2008) with AI-REML variance component estimates: 𝒀 = 𝟏𝜇 + 𝑬𝜷 𝑬𝒏𝒗 + 𝑾𝒖 + 𝝐, (Model 1 S1)

where 𝒀 is the vector of phenotypic values, 𝜇 is the intercept, 𝑬 is the incidence matrix for environmental effects, 𝜷 𝑬𝒏𝒗 is the vector of environmental fixed effects, 𝑾 is the incidence matrix of individual breeding value random effects 𝒖, 𝒖 ∼ 𝑁(𝟎, 𝜎 𝐺 2 𝑼) is the vector of breeding value random effects with 𝜎 𝐺 2 𝑼 its variance-covariance matrix and 𝝐 is the vector of residual random terms 𝝐 ∼ 𝑁(𝟎, 𝜎 𝜖 2 𝑰) independent and identically distributed. For phenotypic selection (PS), the individuals were assumed independent, i.e. 𝒖 ∼ 𝑁(𝟎, 𝜎 𝐺 2 𝑰). For genomic selection (GS), the covariance between

File S2: Relationship between IBS coancestry and genetic diversity in progeny

The identity by state (IBS) coancestry between 𝑁 inbred parents is defined as: 𝑲 = 0.5 ( 1 𝑚 (𝑿𝑿 ′ ) + 𝟏 𝑁 𝟏 𝑁 ′ ), (Eq. 1)

where, 𝑿 is the genotyping matrix of the 𝑁 parents in line and 𝑚 loci in column, with elements coded -1 or 1 and 𝟏 𝑁 is a 𝑁-dimensional column vector of ones.

Considering the 𝑁-dimensional column vector of expected parental genomewide contributions 𝒄, with 𝑐(𝑗), 𝑗 ∈ [1, 𝑁] the contribution of the parent j to progeny, the mean expected IBS coancestry in progeny is: (𝒄 ′ 𝑿𝑿 ′ 𝒄) + 1] (Eq. 2b)

𝐼𝐵𝑆 = 𝒄 ′ 𝑲 𝒄 = 0.
The mean expected genetic diversity (He) in progeny is:

𝐻𝑒 = 1 𝑚 𝟏 𝑚 ′
(2 𝒑 ∘ (𝟏 𝑚 -𝒑)), (Eq. 3a)

where 𝟏 𝑚 is a 𝑚-dimensional column vector of ones, ∘ is the pairwise entry product and 𝒑 is the 𝑚dimensional column vector of expected allelic frequencies in progeny: 𝒑 = 0.5 ((𝑿 + 𝟏 𝑁 𝟏 𝑚 ′ ) ′ ∘ 𝐂) 𝟏 𝑁 , (Eq. 4a)

where 𝐂 is the (𝑚 x 𝑁)-dimensional matrix of expected local parental contributions to progeny with 𝐶(𝑖, 𝑗), 𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑁] the contribution of parent 𝑗 to progeny at the locus 𝑖. 𝐶(𝑖, 𝑗), ∀ 𝑖 ∈ [1, 𝑚] is further approximated by the genomewide parental contribution to progeny 𝑐(𝑗). Consequently, the 𝑚-dimensional column vector of expected allelic frequencies (Eq. 4a) is approximated as: 𝒑 ̃= 0.5 (𝑿 + 𝟏 𝑁 𝟏 𝑚 ′ ) ′ 𝒄. (Eq. 4b)

We replace 𝒑 by its approximation 𝒑 ̃ in Eq. 3a:

𝐻𝑒 ̃= 1 𝑚 𝟏 𝑚 ′ ((𝑿 ′ 𝒄 + 𝟏 𝑚 𝟏 𝑁 ′ 𝒄) ∘ (𝟏 𝑚 -0.5 𝑿 ′ 𝒄 -0.5 𝟏 𝑚 𝟏 𝑁 ′ 𝒄)). (Eq. 5a)

Note that 𝟏 𝑚 𝟏 𝑁 ′ 𝒄 = 𝟏 𝑚 and Eq. 5a becomes: (𝒄 ′ 𝑿𝑿 ′ 𝒄)) = 0.5(1 -2 𝐼𝐵𝑆 + 1) = 1 -𝐼𝐵𝑆. (Eq. 6)

Note that this equivalence is conserved whether we consider ante-or post-selection parental contributions (𝒄), respectively in OCS or in UCPC based OCS. 

Figure 1

 1 Figure 1 Diagram illustrating the three hierarchical levels of crop diversity for major crops in industrialized countries. This thesis focused on the diversity within breeding populations (Level 2).

Figure 2

 2 Figure 2 Diagram illustrating the difference between genetic base broadening, i.e. polygenic trait enrichment and introgression (adapted from Simmonds 1993).

Figure 3

 3 Figure 3 Maize genetic groups and diffusions pathways inferred from 66 maize landraces (adapted from Brandenburg et al. 2017). Points represent the 66 landraces origin and arrows the migration flux.

Figure 5

 5 Figure 5 Schematic view of hybrid maize breeding. Plain crosses (in blue and orange) represent testcross evaluations with tester(s) of the opposite pool. Cycle length of each step in years and sample sizes are given for an averaged mid-size breeding program and do not reflect the variability between breeding programs and breeding strategies.

Figure 1

 1 Figure 1 Diagram illustrating the respective positioning of pre-breeding, bridging and breeding from genetic resources to variety release.

Figure 2

 2 Figure 2 Diagram of simulated breeding programs. (A) External breeding program that generates potential donors, (B) commercial benchmark program without introductions, (C) commercial program with introductions without bridging or (D) commercial program with introductions after bridging.

Figure 3

 3 Figure 3 Evolution of the breeding population over generations. Scenarios considering presence or absence of bridging before introduction with different type of donors (panel, twenty-year old and fiveyear old donors). (A) Mean breeding population performance (𝜇), (B) mean performance of the ten best progeny (𝜇 10 ) and (C) frequency of the favorable alleles that were rare at the end of burn-in (i.e. 𝑝(0) ≤ 0.05 corresponding on average to 269.9 +/-23.6 QTLs).

Figure 4

 4 Figure 4Principal component analysis of the modified Roger's genetic distance matrix[START_REF] Wright | variability within and among natural populations[END_REF] of the 338 founders (gray: points for the 57 Iodent lines and triangles for the 281 remaining lines), the commercial ten best performing E progeny per generation (colored circles sign) and the twenty donors per generation released by the external program (colored plus sign). Both commercial and external lines are colored regarding their generation (note that negative generations correspond to burn-in). Black circles represent the donors that have been introduced into the commercial breeding program. Only three scenarios with bridging are represented for the first simulation replicate, (A) when only donors from panel were accessible, (B) when twenty-year old donors from the external breeding were accessible and (C) when five-year old donors from the external breeding were accessible.
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 5995 Figure 5 Evolution of the breeding population over generations. Scenarios considering bridging with different donors (panel, twenty-year old and five-year old donors) and either a single broad TS (Single TS) or two distinct training set for bridging and breeding (default). (A) Mean breeding population performance (𝜇), (B) mean performance of the ten best progeny (𝜇 10 ) and (C) frequency of the favorable alleles that were rare at the end of burn-in (i.e. 𝑝(0) ≤ 0.05 corresponding on average to 269.9 +/-23.6 QTLs).

Figure 6

 6 Figure 6 Effect of TS composition on intra family prediction accuracies (𝑐𝑜𝑟(𝑢, 𝑢 ̂)) considering genotypes simulated at generations 18, 19, 20 in the scenario Bridging_20y. (A) Mean prediction accuracy within 50 elite (ExE) families and (B) mean prediction accuracy within 50 introduction (DExE) families. Boxplots represent the results for 20 independent replicates. One can distinguish three training set types (left to right): Full training set considering all 3,600 E progeny (Pure E), all 1,200 DE progeny (Pure DE) and all 3,600 E + 1,200 DE progeny; Training sets at constant size of 1,200 DH for comparison with Pure DE; Training sets at constant size of 3,600 DH and variable proportion of DE progeny for comparison with Pure E. The red dotted line represents the median value for Pure E TS.

Figure 7

 7 Figure 7 Effect of TS composition on family variance prediction accuracy (𝑐𝑜𝑟(𝜎, 𝜎 ̂)) considering genotypes simulated at generations 18, 19, 20 in the scenario Bridging_20y. (A) Mean prediction accuracy in 50 elite (ExE) families and (B) mean prediction accuracy in 50 introduction after bridging (DExE) families. Boxplots represent the results for 20 independent replicates. One can distinguish three training set types (left to right): Full training set considering all 3,600 E progeny (Pure E), all 1,200 DE progeny (Pure DE) and all 3,600 E + 1,200 DE progeny; Training sets at constant size of 1,200 DH for comparison with Pure DE; Training sets at constant size of 3,600 DH and variable proportion of DE progeny for comparison with Pure E. The red dotted line represents the median value for Pure E TS.

Figure S1

 S1 Figure S1 Relationship between genetic diversity (He) and genic 𝜎 ̂²𝑎 (M1, left), genetic 𝜎 ̂²𝐴 (M2, right) additive variances corrected by chromosome length (in Mbp). Vertical dashed bars represent posterior standard deviations of variance estimators.

Figure S2

 S2 Figure S2 Genetic diversity (Top panel) and distribution of ROHe (Bottom panel) along genetic map. Top panel: Genetic diversity in Dent pool (A) and in Flint pool (B) for chromosomes 3, 4, 6 on genetic scale. Genetic diversity 2003-2009 in blue full line and 2010-2016 in red dotted line. Centromeres are marked in bold on the abscissa. Bottom panel: Evolution of ROHe in Dent pool (A) and in Flint pool (B) for chromosomes 3, 4, 6 on genetic scale. Regions are colored regarding their evolution between 2003-2009 and 2010-2016.

Figure 1 S1

 1 Figure 1 S1 Visualization of crossing scheme and two-locus parental as well as progeny haplotypes of a four-way cross from parents P1, P2, P3, and P4. Potential types of haplotypes are denoted with T1, T2, and T3.

Figure 1 S3

 1 Figure 1 S3 Average parental genome contribution variance (black dots) for (BC1)-DH (left) and (F1)-DH (right) from ten simulation replications (+/-standard deviation represented by black vertical lines) with different number of considered loci. Red dotted line shows the results given by Frisch and Melchinger (2007).

  Note that the repeatability and heritability varied along selection cycles relatively to the evolution of additive genetic variance 𝜎 𝐺 2 (e.g. ℎ 2 = 0.73 in founder population to ℎ 2 = 0.59 at the end of burn-in and to ℎ 2 = 0.03 after 60 years in the PS scenario).

  𝑿𝑿 ′ 𝒄) + 𝒄 ′ 𝟏 𝑁 𝟏 𝑁 ′ 𝒄]. (Eq. 2a)Note that 𝒄 ′ 𝟏 𝑁 𝟏 𝑁 ′ 𝒄 = 1 since ∑ 𝒄(𝑗)

  5 (𝟏 𝑚 -𝑿′ 𝒄 ∘ 𝑿 ′ 𝒄)) ′ 𝒄 ∘ 𝑿 ′ 𝒄)). (Eq. 5b)Let us note 𝒗 = 𝑿 ′ 𝒄. It can be shown that 𝟏 𝑚 ′ (𝒗 ∘ 𝒗) = 𝒗 ′ 𝒗, resulting in:
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  Maize grain yield (qx/ha) evolution in USA from 1866 to 2019 based on USDA data all states confounded (https://quickstats.nass.usda.gov/). Three linear regressions are provided for each three main eras: OPVs (1866 to 1936), Double hybrids (1937 to 1955) and Simple hybrids (1956 to 2019). Grain yield was converted from bushel/acre to qx/ha using the correspondence 1 corn bushel = 0.254 qx and 1 acre = 0.405 hectare. (Adapted from[START_REF] Beckett | Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds[END_REF] 

	Figure 4
	. In Europe, hybrids between Corn Belt Dent and
	European Flint inbreds proved to combine productivity and environmental adaptation for maize
	cultivation in Northern Europe from West to East. Subsequent reciprocal selection of the two groups
	increased their differentiation and complementarity (Rincent et al. 2014). In southern Europe (e.g.
	Spain, Italy, Turkey), similar heterotic groups as in the Corn Belt are considered, resulting in ISSS Dent
	x non ISSS Dent hybrids.

Table 1

 1 Description of the training sets compared: the full training sets considering all available progeny of the last three generations and training sets at constant size (1,200 progeny or 3,600 progeny) with variable proportion of DE progeny.

		TS name	Number of E	Number of DE
		Pure E (3,600)	3,600	0
	Full TS	Pure DE (1,200)	0	1,200
		1/4 -DE (4,800)	3,600	1,200
	Constant size	Pure E (1,200)	1,200	0
	(1,200)	1/4 -DE (1,200)	900	300
		1/3 -DE (3,600)	2,400	1,200
		1/4 -DE (3,600)	2,700	900
	Constant size	1/6 -DE (3,600)	3,000	600
	(3,600)	1/12 -DE (3,600)	3,300	300
		1/24 -DE (3,600)	3,450	150
		1/36 -DE (3,600)	3,500	
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Table 2

 2 

Within family prediction accuracies (𝑐𝑜𝑟(𝑢, 𝑢 ̂)) depending on the validation set (VS): elite (ExE), introduction (DExE) and bridging (DxE) and the training set (TS) considered: pure elite (E), pure bridging (DE) and merged (E+DE). Results are given for scenarios with different donors, from the panel, twentyyear old and five-year old donors, considering a single TS and prediction accuracies are averaged over the ten replicates and all sixty generations. In brackets are given the standard errors averaged over sixty generations. a Prediction accuracies that would have been realized if the breeding (E) or bridging (DE) families had been each predicted only by the corresponding training set (to be compared with b ). b Realized prediction accuracies when considering a single training set (to be compared with a ).

VS

Five-

year old donor Twenty-year old donor Panel donor

  

		Family	variance	Prediction accuracy TS = E TS = DE TS = E+DE (3,600) (1,200) (4,800)	Family	variance	Prediction accuracy TS = E TS = DE TS = E+DE (3,600) (1,200) (4,800)	Family	variance	Prediction accuracy TS = E TS = DE TS = E+DE (3,600) (1,200) (4,800)
	ExE	3.76 (1.17)	0.69 a (0.07)	0.48 (0.1)	0.72 b (0.06)	3.93 (1.06)	0.72 a (0.07)	0.47 (0.10)	0.73 b (0.06)	4.02 (1.16)	0.72 a (0.05)	0.44 (0.10)	0.73 b (0.05)
	DExE	5.00 (1.41)	0.60 a (0.1)	0.59 (0.1)	0.73 b (0.07)	6.92 (2.10)	0.61 a (0.11)	0.65 (0.10)	0.77 b (0.07)	14.43 (4.40)	0.65 a (0.12)	0.78 (0.07)	0.86 b (0.05)
	DxE	9.69 (2.01)	0.61 (0.08)	0.66 a (0.08)	0.73 b (0.07)	18.31 (3.78)	0.65 (0.08)	0.73 a (0.06)	0.78 b (0.05)	64.15 (12.89)	0.74 (0.07)	0.82 a (0.04)	0.86 b (0.03)
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  to UCPC based OCS. Secondly, in practice several public pre-breeding programs or competitor programs can be considered as sources of candidate donors for genetic base broadening. These programs likely did not select for the same target environments and are themselves continuously enriched in new allelic variation. Thirdly, in a context of climate change and rapid evolving agricultural practices, breeding targets are expected to change (e.g. emerging biotic or abiotic stresses). Considering a more realistic context, where donors are released by different programs selecting in different environments and for different traits changing over time, likely makes the interest of maintaining genomewide genetic diversity through genetic base broadening even more important than highlighted in this study.

Table S2

 S2 Intra-heterotic group genetic diversity and differentiation between heterotic groups using a five year sliding window with a one year increment.

	Period	Dent	He	Flint	Fst
	2003-2007	0.160		0.274	0.156
	2004-2008	0.158		0.276	0.156
	2005-2009	0.154		0.281	0.155
	2006-2010	0.154		0.286	0.15
	2007-2011	0.152		0.283	0.154
	2008-2012	0.145		0.276	0.161
	2009-2013	0.140		0.271	0.166
	2010-2014	0.138		0.269	0.178
	2011-2015	0.136		0.270	0.177
	2012-2016	0.136		0.269	0.178

Table S3

 S3 Genetic diversity evolution between2003-2009 and 2010-2016 in Dent and Flint pools and paired t-test significance on the difference between periods.

	Chr.	2003-2009	Dent (He) 2010-2016	ΔHe	2003-2009	Flint (He) 2010-2016	ΔHe
	1	0.148	0.113	-0.036***	0.260	0.269	0.009***
	2	0.236	0.217	-0.019***	0.291	0.290	-0.001 ns
	3	0.209	0.224	0.015***	0.290	0.296	0.006***
	4	0.141	0.113	-0.027***	0.271	0.268	-0.003°
	5	0.210	0.184	-0.026***	0.276	0.287	0.012***
	6	0.115	0.105	-0.010***	0.311	0.312	0.001 ns
	7	0.167	0.109	-0.058***	0.277	0.290	0.013***
	8	0.115	0.075	-0.040***	0.271	0.287	0.016***
	9	0.147	0.133	-0.014***	0.292	0.275	-0.017***
	10	0.084	0.081	-0.004*	0.270	0.270	-0.001 ns
	p.value significance: <10 -4 ***; <0.001 **; <0.01 *; <0.05 °°; <0.1 °; < 1 ns		

Table S4

 S4 Evolution of runs of expected homozygosity (ROHe) distribution between 2003-2009 and 2010-2016 in Dent pool in physical length. Column "% of chr" represents the percentage of the chromosome covered by ROHe.

			Period 2003-2009			Period 2010-2016	
	Chr.	Nb. ROHe	Mean Length (Mb)	Max Length (Mb)	% of chr.	Nb. ROHe	Mean Length (Mb)	Max Length (Mb)	% of chr.
	1	27	0.98	2.19	8.66	36	1.86	8.99	21.81
	2	4	1.92	2.31	3.15	9	1.74	3.67	6.41
	3	9	1.25	2.22	4.79	1	1.59	1.59	0.68
	4	22	1.14	2.11	10.18	16	6.64	72.16	43.06
	5	9	1.00	1.32	4.01	12	1.03	1.32	5.51
	6	15	2.84	10.88	24.61	22	2.36	28.26	29.94
	7	18	1.51	4.09	15.05	27	1.99	13.29	29.62
	8	27	1.86	8.44	27.74	23	3.01	40.06	38.26
	9	10	0.86	1.62	5.42	14	2.88	27.12	25.28
	10	20	1.17	2.50	15.49	20	1.47	3.67	19.45
	Mean 16.10	1.45	3.77	11.91	18.00	2.46	20.01	22.00

Table S5

 S5 Posterior means (± posterior standard deviation) of genomewide genomic variance accounting (M2, 𝝈 ̂²𝑨 ) or not (M1, 𝝈 ̂²𝒂 ) for covariance between QTLs in the 1,809 candidate RIL or DH Dent lines. Phenotypic variance (variance of BLUEs, Pheno) is also presented for comparison.

		M1 (±sd)			M2 (±sd)		Pheno	Ratio (±sd)
	𝜎 ̂²𝑎	Residual	Total	𝜎 ̂²𝐴	Residual	Total	Total	𝜎 𝐴 2 /𝜎 𝑎 2 ̂
	27.399 (±3.864)	34.606 (±1.424)	62.004 (±3.587)	20.599 (±1.459)	34.544 (±0.817)	55.143 (±1.230)	55.111	0.761 (±0.079)

Table 2 S1

 2 Linkage disequilibrium parameter between QTLs 𝑗 and 𝑙 in pairs of parental lines depending on the mating design.

	Cited literature:

Lehermeier C., S. Teyssèdre, and C.-C. Schön, 2017 Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses. Genetics 207: 1651-1661.

Table 1 S2

 1 Squared correlations (R²) between empirical values (in silico) and predictions (derivation) per generation and type of progeny.

	Generation	𝝈 𝑻 𝟐	𝝈 𝑪 𝟐	𝝈 𝑪(+) 𝟐	𝝈 𝑻,𝑪	𝝈 𝑻,𝑪(+)	𝑼𝑪 𝑻	𝝁 𝑪 (𝒔𝒆𝒍)	𝝁 𝑪(+) (𝒔𝒆𝒍)
	DH1	0.999	0.960	0.995	0.999	0.999	1.000	0.900	0.946
	DH2	0.999	0.964	0.995	0.998	0.998	1.000	0.909	0.952
	DH3	0.999	0.966	0.995	0.999	0.999	1.000	0.914	0.955
	DH4	0.999	0.969	0.995	0.999	0.999	1.000	0.912	0.955
	DH5	0.999	0.961	0.994	0.998	0.998	1.000	0.914	0.955
	DH6	0.999	0.963	0.994	0.998	0.998	1.000	0.913	0.955
	RIL1	0.999	0.957	0.994	0.999	0.999	1.000	0.938	0.967
	RIL2	0.999	0.957	0.994	0.999	0.999	1.000	0.917	0.957
	RIL3	0.999	0.960	0.994	0.998	0.998	1.000	0.918	0.958
	RIL4	0.999	0.962	0.994	0.998	0.998	1.000	0.915	0.956
	RIL5	0.999	0.962	0.994	0.998	0.998	1.000	0.912	0.955
	RIL6	0.999	0.962	0.994	0.999	0.998	1.000	0.911	0.954

Table 2 S2

 2 Mean squared difference between empirical values (in silico) and predictions (derivation) per generation and type of progeny.

	Generation	𝝈 𝑻 𝟐	𝝈 𝑪 𝟐	𝝈 𝑪(+) 𝟐	𝝈 𝑻,𝑪	𝝈 𝑻,𝑪(+)	𝑼𝑪 𝑻	𝝁 𝑪 (𝒔𝒆𝒍)	𝝁 𝑪(+) (𝒔𝒆𝒍)
	DH1	5.20E-06 3.28E-09	3.52E-10	5.99E-08	2.07E-08	8.44E-04	4.92E-05	1.42E-05
	DH2	5.09E-06 2.81E-09	3.16E-10	6.65E-08	2.24E-08	7.02E-04	3.83E-05	1.12E-05
	DH3	5.36E-06 2.56E-09	2.97E-10	4.74E-08	1.51E-08	6.49E-04	3.50E-05	1.03E-05
	DH4	4.56E-06 2.30E-09	2.87E-10	5.16E-08	1.66E-08	6.85E-04	3.55E-05	1.05E-05
	DH5	4.83E-06 2.88E-09	3.32E-10	5.95E-08	1.99E-08	6.40E-04	3.47E-05	1.03E-05
	DH6	4.76E-06 2.74E-09	3.14E-10	6.08E-08	1.96E-08	6.77E-04	3.47E-05	1.04E-05
	RIL1	2.25E-06 1.56E-09	1.81E-10	2.96E-08	9.80E-09	4.30E-04	2.51E-05	7.54E-06
	RIL2	3.26E-06 2.29E-09	2.69E-10	4.09E-08	1.37E-08	5.73E-04	3.40E-05	1.00E-05
	RIL3	3.93E-06 2.58E-09	3.05E-10	5.28E-08	1.72E-08	6.22E-04	3.34E-05	9.84E-06
	RIL4	4.49E-06 2.59E-09	3.02E-10	5.64E-08	1.81E-08	6.59E-04	3.43E-05	1.01E-05
	RIL5	4.91E-06 2.69E-09	3.10E-10	5.59E-08	1.83E-08	6.65E-04	3.53E-05	1.04E-05
	RIL6	4.91E-06 2.71E-09	3.13E-10	5.54E-08	1.83E-08	6.63E-04	3.59E-05	1.06E-05

Figure 1 S2 Evolution of predicted progeny trait variance depending on progeny type (DH, left or RIL, right) and generation (𝑘). The red dotted line presents the median DH progeny variance over 100 crosses.

Figure 2 S2 Example of two crosses showing different evolutions of predicted RIL progeny variance depending on the selfing generation (𝑘).

  𝑙 coded as -1, 1 for the genotypes aa, AA, respectively. It results in the following (𝑁 x 4)dimensional matrix of parental IBS contribution to progeny: 𝑪 𝐼𝐵𝑆 (𝑗, 𝑖) is the parental line 𝑖 contribution to progeny line 𝑗.Frisch M., and A. E.Melchinger, 2007 Variance of the Parental Genome Contribution to Inbred Lines Derived From Biparental Crosses. Genetics 176: 477-488.

	𝑪 𝐼𝐵𝑆 = 𝑿 𝐼𝐵𝑆-𝑃𝑟𝑜𝑔𝑒𝑛𝑦 𝜷 𝐼𝐵𝑆 +	1 2	𝟏 𝑁 𝟏 4 ′
	where, ∀ 𝑗 ∈ [1; 𝑁], ∀ 𝑖 ∈ [1; 4] , Cited literature:		

x 𝑝)-dimensional genotyping matrix of 𝑁 doubled haploid (DH) progeny as 𝑿 𝐼𝐵𝑆-𝑃𝑟𝑜𝑔𝑒𝑛𝑦 with element 𝑿 𝐼𝐵𝑆-𝑃𝑟𝑜𝑔𝑒𝑛𝑦 (𝑗, 𝑙), ∀ 𝑗 ∈ [1, 𝑁], 𝑙 ∈ [1, 𝑝] the genotype of progeny 𝑗 at locus
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Abstract

The narrow genetic base of elite germplasm compromises long-term genetic gain and increases the vulnerability to biotic and abiotic stresses in unpredictable environmental conditions. Therefore, an efficient strategy is required to broaden the genetic base of commercial breeding programs while not compromising short-term variety release. Optimal cross selection aims at identifying the optimal set of crosses that balances the expected genetic value and diversity. We propose to consider genomic selection and optimal cross selection to recurrently improve genetic resources (i.e. pre-breeding), to bridge the improved genetic resources with elites (i.e. bridging), and to manage introductions into the elite breeding population. Optimal cross selection is particularly adapted to jointly identify bridging, introduction and elite crosses to ensure an overall consistency of the genetic base broadening strategy.

We compared simulated breeding programs introducing donors with different performance levels, directly or indirectly after bridging. We also evaluated the effect of the training set composition on the success of introductions. We observed that with recurrent introductions of improved donors, it is possible to maintain the genetic diversity and increase mid-and long-term performances with only limited penalty at short-term. Considering a bridging step yielded significantly higher mid-and longterm performance when introducing low performing donors. The results also suggested to consider marker effects estimated on a broad training population including donor by elite and elite by elite progeny to identify bridging, introduction and elite crosses.

Appendix A

Simulation of progeny genotypes and phenotypes

Doubled haploid (DH) progeny genotypes were simulated considering meiosis events without crossover interference. The number of chiasmata was drawn from a Poisson distribution with 𝜆 equal to the chromosome length in Morgan, and crossover positions were determined using the recombination frequency obtained using the Haldane mapping function (Haldane 1919).

For phenotyping, we considered environmental effects sampled from a normal distribution of mean zero and variance 25 and did not consider genotype by environment interactions. 

Genomewide prediction model

The genomic estimated breeding values of progeny (GEBV, 𝑢 ̂) were estimated in Model 1 S1 fitted using mixed model software blup-f 90 (Misztal 2008) with AI-REML variance component estimates:

where 𝒀 is the vector of phenotypic values, 𝜇 is the intercept, 𝑬 is the incidence matrix for environmental effects, 𝜷 𝑬𝒏𝒗 is the vector of environmental fixed effects, 𝑾 is the incidence matrix of individual breeding value random effects 𝒖, 𝒖 ∼ 𝑁(𝟎, 𝜎 𝐺 2 𝑮) is the vector of breeding value random effects with 𝑮 the genomic relationship matrix and 𝝐 is the vector of independent residual random terms 𝝐 ∼ 𝑁(𝟎, 𝜎 𝜖 2 𝑰). 𝑮 was estimated using the 2,000 non causal loci:

where 𝒁 contains the centered allele counts, with elements computed as 𝑥 𝑖𝑗 + 1 -2𝑝 𝑗 , where the element 𝑥 𝑖𝑗 ∈ {-1,1} is the genotype for individual 𝑖 at non causal locus 𝑗 and 𝑝 𝑗 is the frequency of the allele for which the homozygous genotype is coded 1 at non causal locus 𝑗. 𝑡𝑟(𝒁𝒁 ′ ) is the trace of 𝒁𝒁 ′ and 𝑡𝑟(𝒁𝒁 ′ )/𝑛 forces the diagonal of 𝑮 to be 1 on average (Legarra et al. 2009;Forni et al. 2011).

Estimated marker effects 𝜷 ̂ were obtained by back-solving: 𝜷 ̂= 𝒁 ′ (𝒁𝒁′) -𝟏 𝒖 ̂ (Wang et al. 2012). The prediction accuracy was defined as 𝑐𝑜𝑟(𝒖, 𝒖 ̂) with 𝒖 and 𝒖 ̂ the vectors of true breeding values and genomic estimated breeding values, respectively.

Appendix B

We applied the Usefulness Criterion Parental Contributions approach (UCPC) proposed by Allier et al. (2019b) and further extended in Allier et al. (2019c) to evaluate the interest of a set of two-way crosses regarding the performance and the diversity in the best fraction of the progeny of each cross.

Prediction of the mean expected breeding value and parental contributions in the selected fraction of progeny

Considering two inbred lines 𝑃 1 and 𝑃 2 and the cross 𝑃 1 x 𝑃 2 and (𝒙 1 , 𝒙 2 ) ′ denotes their (2 x 𝑚)dimensional genotyping matrix at the 𝑚 = 2,000 SNP markers. 𝒙 𝒑 denotes the (𝑚 x 1)-dimensional genotype vector of parent 𝑃 𝑝∈{1,2} with the 𝑗 𝑡ℎ element coded as 1 or -1 for the genotypes AA or aa at QTL 𝑗. Following Lehermeier et al. (2017), the DH progeny mean and progeny variance of the breeding values in the progeny before selection can be computed as:

𝜎 ̂𝑇 2 = 𝜷 ̂′ 𝚺 𝜷 ̂, (Eq. 1b)

where 𝜷 ̂ is (𝑚 x 1)-dimensional vector of estimated marker effects and 𝚺 is the (𝑚 x 𝑚)-dimensional variance covariance matrix of marker genotypes in DH progeny defined in Lehermeier et al. (2017). We define the (𝑚 x 1)-dimensional vector 𝜷 𝐶1 to follow 𝑃 1 genome contribution to progeny as

. The mean and variance of 𝑃 1 contribution in the progeny before selection are computed as: 𝜇 𝐶1 = 0.5 (𝒙′ 1 𝜷 𝐶1 + 𝒙′ 2 𝜷 𝐶1 + 1), (Eq. 2a)

The progeny mean for 𝑃 2 contribution is then 𝜇 𝐶2 = 1 -𝜇 𝐶1 . Following Allier et al. (2019b), the covariance between the breeding values and 𝑃 1 contribution in progeny is:

𝜎 ̂𝑇,𝐶1 = 𝜷 ̂′ 𝚺 𝜷 𝐶1 . (Eq. 3)

The expected mean breeding value of the selected fraction of progeny, i.e. usefulness criterion (Schnell and Utz 1975), of the cross 𝑃 1 x 𝑃 2 is:

𝑈𝐶 ̂(𝑖,ℎ) = 𝜇̂𝑇 + 𝑖ℎ𝜎 ̂𝑇, (Eq. 4)

where 𝑖 is the within family selection intensity and ℎ the within family selection accuracy. The correlated responses to selection on 𝑃 1 and 𝑃 2 contributions to the selected fraction of progeny are:

𝜎 ̂𝑇 and 𝑐̂2 (𝑖,ℎ) = 1 -𝑐̂1 (𝑖,ℎ) . (Eq. 5)

Supplementary Material Chapter 1

Supplementary Material Chapter 1 Supplementary Material Chapter 1

Supplementary Material Chapter 2

Supplementary Material Chapter 2 Table S1 Square root of trait heritability in the prediction population PP and linear correlations between predictions and observations in the PP depending on the training population composition (TP, with or without elite private material) and the PP (all 13 years or a single year). For single-year predictions, the correlations were estimated on a subset of lines generated a given year and the minimum, maximum and mean correlations are reported.

Cited literature:

Ganal M. W., G. Durstewitz, A. Polley, A. Bérard, E. S. Overall, the frequency of the type T3 haplotypes is:

All the different haplotypes and frequencies are summarized in Table 1 S1. We define ℎ 𝑗𝑙 = (ℎ 𝑗 , ℎ 𝑙 ) a haplotype including loci 𝑗 and 𝑙, with ℎ 𝑗 and ℎ 𝑙 the alleles of the haplotype at loci 𝑗 and 𝑙, ℎ 𝑗 , ℎ 𝑙 ∈ {0,1}. Using the frequencies of the three types of haplotypes, we derive the LD in the progeny between locus 𝑗 and 𝑙 as:

where 𝑧 𝑗 and 𝑧 𝑙 denotes realizations of ℎ 𝑗 and ℎ 𝑙 , respectively. For the conditional haplotype probabilities it holds: 

with Φ 1 𝑗𝑙 = 𝐷 𝑗𝑙 12 + 𝐷 𝑗𝑙 34 summing the LD values among parents that can be considered to be involved as biparental crosses in 𝐹 1 (1) × 𝐹 1 (2) and with Φ 2 𝑗𝑙 = 𝐷 𝑗𝑙 13 + 𝐷 𝑗𝑙 14 + 𝐷 𝑗𝑙 23 + 𝐷 𝑗𝑙 24 summing the LD values among parents that can be considered to be involved as biparental crosses in 𝐹 1 ′ × 𝐹 1 ′ .
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File S2: Validation of four-way cross formulas for DH-k and RIL-k and evolution of RIL variance depending on selfing generations

In File S1, we considered DH lines generated from F1' (DH-1), i.e., only two meioses took place. Progeny variance for DH-1 is expressed in terms of parental expected recombination frequency 𝑐 (1) (Table 2 S1). For recombinant inbred lines (RILs) or when DH lines are generated from higher selfing generations, the expected frequency of recombinants increases depending on the number of selfing generations. In the following 𝑘 denotes the generation from which progeny are derived (Figure 1). The expected frequency of recombinants in generation 𝑘 can be derived from the genotype probabilities given in Broman (2012) as done in File S1 of Lehermeier et al. (2017). Hence, for DH lines after 𝑘 generations, 𝑐 (1) in Table 2 S1 should then be replaced by 𝑐 (𝑘) , leading to the general four-way DH-𝑘 formula as shown in Table 1:

In case of RILs, no doubling of gametes takes place and the covariance for RILs after generation 𝑘 is obtained by updating 𝑐 (𝑘) by 𝑐 (𝑘) + 0.5 [0.5(1 -2𝑐 ( 1) )] 𝑘 , ∀ 𝑘 ∈ ℕ * (Table 1). Note that the variancecovariance of DH-𝑘 and RIL-𝑘 converge with increasing 𝑘.

Formulas for DH-𝑘 and RIL-𝑘 in the general case of four-way crosses have been validated by simulations for 𝑘 ∈ ⟦1,6⟧ (Table 1 S2 andTable 2 S2). The observed high positive correlations (Table 1 S2) and low mean squared differences (Table 2 S2) between predicted (derivation) and empirical (in silico) values validate the presented formulas. Lower squared correlations between predicted and empirical values were observed for 𝝁 𝑪 (𝒔𝒆𝒍) and 𝝁 𝑪(+) (𝒔𝒆𝒍) compared to the variances and covariances. This can be explained by sampling bias in in silico simulations (50,000 progenies) where the 𝑃 1 parental genome contribution before selection slightly differed from the expected value of 0.25 for four way crosses (ranging from 0.249 to 0.251).

Predicted RIL progeny variance for the simulated agronomic trait increased with the number of selfing generations considered (𝑘) and converged toward DH progeny variance after five generations of selfing (𝑘 = 5) (Figure 1 S2). We observed that some crosses profited more from an increase in selfing generations by generating more variance compared to others. An example with two crosses is shown in Figure 2 S2. While the cross visualized in blue showed a higher variance in generation RIL-1 than the cross visualized in orange, it reached a plateau faster and showed a lower variance than the orange cross with 𝑘 ≥ 3. Differences in the speed to release variance between crosses is likely due to differences in the recombination frequency between segregating QTLs in parental lines. This underlines the interest of predicting RIL progeny variance using proposed algebraic formula.

Supplementary Material Chapter 4

Supplementary Material Chapter 4 individuals was modeled using the genomic relationship matrix 𝑮, i.e. 𝒖 ∼ 𝑁(𝟎, 𝜎 𝐺 2 𝑮). Hereby, 𝑮 was estimated using the 2,000 non causal loci as:

where, 𝒁 contains the centered allele counts, with elements computed as 𝑥 𝑖𝑗 + 1 -2𝑝 𝑗 , where the element 𝑥 𝑖𝑗 ∈ {-1,1} is the genotype for individual 𝑖 at non causal locus 𝑗 and 𝑝 𝑗 is the frequency of the allele for which the homozygous genotype is coded 1 at non causal locus 𝑗. 𝑡𝑟(𝒁𝒁 ′ ) is the trace of 𝒁𝒁 ′ and 𝑡𝑟(𝒁𝒁 ′ )/𝑛 forces the diagonal of 𝑮 to be 1 on average (Legarra et al. 2009;Forni et al. 2011) 

Simulation of progeny genotypes

Doubled haploid progeny genotypes were simulated considering meiosis events without crossover interference. The number of chiasmata was drawn from a Poisson distribution with 𝜆 equal to the chromosome length in Morgan, and crossover positions were determined using the recombination frequency obtained using the Haldane mapping function (Haldane 1919). Une sélection efficace et durable repose sur un compromis entre efforts à court terme afin de proposer aux agriculteurs des variétés compétitives, et le maintien d'une base génétique large garantissant des variétés futures qui répondront aux défis climatiques, biologiques et sociétaux de demain. Les avancées du génotypage haut débit ont ouvert de nouvelles perspectives de sélection pour les caractères quantitatifs telles que la prédiction génomique de performances individuelles, de l'intérêt de plans de croisements, ainsi que la gestion de la diversité. L'objectif de cette thèse est de contribuer au développement de méthodologies et schémas de sélection efficaces et durables. Cela inclue l'évaluation de la diversité génétique des populations élites, sa conversion efficace en gain génétique à court et long termes, ainsi que l'identification de sources de variabilité génétique d'intérêt et leurs introductions dans les populations de sélection.

File S3: Supporting R code

Supplementary tables

Supplementary figures

Nous avons tout d'abord proposé d'exploiter des séries temporelles de phénotypes et génotypes afin d'évaluer l'effet de la sélection sur la diversité génétique des populations élites ainsi que leur réponse attendue à la sélection. Ces indicateurs ont été appliqués à un programme privé de sélection maïs grain et des stratégies de gestion et amélioration de la réponse à la sélection ont été discutées.

La sélection du plan de croisement qui génère des descendants performants et suffisamment de diversité est un facteur clef du succès à court et long termes des programmes de sélection. Le modèle prédictif de la distribution d'un caractère quantitatif dans une famille biparentale a été étendu au cas des familles multi-parentales. Une approche multi-caractères a été proposée, considérant les performances agronomiques et les contributions parentales comme des caractères corrélés et normalement distribués.

Cette approche dénommée critère d'utilité et contributions parentales (UCPC) permet de prédire la performance moyenne et la diversité attendues dans la fraction sélectionnée de la descendance d'un croisement. L'UCPC peut être utilisé afin d'étendre la sélection optimale de plan de croisements (OCS) qui a pour but de maximiser le gain génétique tout en limitant la perte de diversité. Nous avons montré par simulation que l'OCS basée sur l'UCPC converti plus efficacement la diversité génétique en gain à court et long termes que l'OCS.

La base génétique étroite des populations élites compromet le gain génétique à long terme. De ce fait, une stratégie d'élargissement de leur base génétique sans compromettre le gain à court terme est nécessaire. De nombreuses sources de diversité peuvent être considérées mais toutes ne peuvent être évaluées. Différents critères prédictifs ont été passés en revue et comparés afin d'évaluer l'utilité de ressources génétiques pour enrichir un pool élite. Ces critères s'appuient sur les effets aux marqueurs estimés dans un panel collaboratif constitué de lignées de diversité publiques et de lignées élites privées. L'UCPC permet de même l'identification du croisement multi-parental optimal entre ressources génétiques et lignées élites en fonction des caractéristiques d'originalité et de performance des ressources génétiques. Finalement, nous avons proposé d'utiliser l'approche OCS basée sur l'UCPC afin d'améliorer des ressources génétiques, puis de connecter les ressources génétiques améliorées au matériel élite avant de les introduire dans la population en sélection. Par simulations, nous avons montré l'intérêt de réaliser des introductions récurrentes de ressources génétiques préalablement améliorées afin de maximiser le gain génétique tout en maintenant la diversité constante.

Ces travaux ouvrent de nouvelles perspectives pour la gestion de la diversité génétique.

Tile: Contributions to Genetic Diversity Management in Maize Breeding Programs using Genomic Selection Keywords: Maize, Genetic Diversity, Genomic Prediction, Optimal Cross Selection, Usefulness Criterion, Genetic Base Broadening Abstract :

There is an increasing awareness that crop breeding programs should move from short-to long-term objectives by maintaining genetic diversity to cope with future challenges in a context of climatic changes. The advent of high density genotyping opened new avenues for breeding quantitative traits including genomic prediction of individual performances, of parental crosses usefulness, and genetic diversity management. This thesis aims at developing methodologies to further enhance the efficiency and sustainability of breeding programs. This involves the evaluation of genetic diversity in elite breeding pools, its efficient conversion into short-and longterm genetic gain and the efficient identification, improvement and introduction of extrinsic variability into breeding pools. We first investigated how temporal phenotypic and genotypic data can be used to develop indicators of the genetic diversity and the potential response to selection of a breeding population. We applied these indicators on a commercial hybrid grain maize program and discussed strategies to manage and unlock potential response to selection in breeding populations.

Selection of parental crosses that generate superior progeny while maintaining sufficient diversity is a key success factor of short-and long-term breeding. We extended analytical solutions to predict the distribution of a quantitative trait in the progeny of biparental crosses to the case of multiparental crosses. We also proposed to consider a multitrait approach where agronomic trait and parental genome contributions are considered as correlated normally distributed traits. This approach, called Usefulness Criterion Parental Contribution (UCPC), enables to predict the expected mean performance and diversity in the most performing fraction of progeny. We used UCPC to extend the Optimal Cross Selection (OCS) method, which aims at maximizing the performance in progeny while maintaining diversity for long-term genetic gain. In a longterm simulated recurrent genomic selection breeding program, UCPC based OCS proved to be more efficient than OCS to convert the genetic diversity into short-and long-term genetic gains.

The narrow genetic base of an elite population might compromise its long-term genetic gain in unpredictable environmental conditions. An efficient strategy to broaden the genetic base of commercial breeding programs is therefore required. Many genetic resources are accessible to breeders but cannot all be considered. We reviewed, proposed and compared different predictive criteria for selecting genetic resources that best complement elite recipients, based on genomewide marker effects estimated on a collaborative diversity panel. We also investigated which mating design should be implemented between a promising genetic resource and elite recipient(s) depending on its phenotypic and genetic distance to elites. Finally, we evaluated the interest of UCPC based OCS to improve genetic resources (pre-breeding), to bridge pre-breeding and breeding (bridging), and to manage recurrent introductions into the breeding population. In a long-term simulated commercial breeding program, we demonstrated that recurrent introductions from a prebreeding population maximize long-term genetic gain while maintaining genetic diversity constant, with only limited short-term penalty.

The results of this thesis open new perspectives to manage genetic diversity in breeding.