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Résumé (Francais)

Une sélection efficace et durable repose sur un compromis entre efforts a court terme afin de
proposer aux agriculteurs des variétés compétitives, et le maintien d’'une base génétique large
garantissant des variétés futures qui répondront aux défis climatiques, biologiques et sociétaux de
demain. Les avancées du génotypage haut débit ont ouvert de nouvelles perspectives de sélection
pour les caractéres quantitatifs, telles que la prédiction génomique de performances individuelles, la
prédiction de I'intérét de plans de croisements, ainsi que la gestion de la diversité. L'objectif de cette
thése est de contribuer au développement de méthodologies et schémas de sélection efficaces et
durables. Cela inclue I'évaluation de la diversité génétique des populations élites, sa conversion
efficace en gain génétique a court et long termes, ainsi que I'identification de sources de variabilité

génétique d’intérét et leur introduction dans les populations de sélection.

Nous proposons tout d’abord d’exploiter des séries temporelles de données phénotypiques et
génotypiques afin d’évaluer I'effet de la sélection sur la diversité génétique des populations élites ainsi
gue leur réponse attendue a la sélection. En Chapitre 1, nous proposons trois séries d’indicateurs :
phénotypique, génotypique et génomique. Le fondement théorique de ces indicateurs est tout d’abord
présenté. lls sont ensuite appliqués a un programme de sélection mais grain portant sur les groupes
hétérotiques cornés et dentés. Un gain génétique significatif est observé sur dix ans dans les
populations “cornée” et “dentée” en sélection et est accompagné d’une perte de variance génétique
additive en absence d’introductions de matériel externe dans la population “denté”. Une perte
significative de diversité génétique ainsi que des régions a tres faible diversité dans les régions péri-
centromériques sont aussi observées dans ce groupe. Enfin, il est estimé que la répulsion entre locus
causaux capture 24% de la variance génique additive totale chez les dentés, soit 4,9% de la réponse
potentielle maximale a la sélection. Cette proportion varie entre chromosomes ce qui permet de
suggérer différentes stratégies de gestion et d’amélioration de la réponse a la sélection selon les
chromosomes. Ces indicateurs sont faciles a implémenter et permettent d’exploiter, 3 moindre cod(t,
les données phénotypiques et génotypiques stockées dans des bases de données sur plusieurs

générations de sélection afin d’aider les sélectionneurs dans leurs décisions stratégiques.
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Par la suite, nous nous sommes intéressés a la gestion de la diversité génétique afin d’optimiser
sa conversion en gain génétique a court terme sans compromettre le gain génétique a long terme. La
sélection du plan de croisement qui génére des descendants performants et maintient suffisamment
de diversité est un facteur clef du succeés a court et long termes des programmes de sélection
récurrente. L'identification du croisement maximisant la probabilité de sélectionner une descendance
meilleure que les parents de départ repose sur la prédiction de la distribution d’'un caractére
guantitatif dans la descendance du croisement. Cette approche est communément appelée critere
d’utilité et prend en compte la complémentarité entre parents, i.e. la ségrégation mendélienne dans
la descendance, pour le caractére quantitatif considéré. En Chapitre 3, le modele prédictif de la
distribution d’un caractére quantitatif dans une famille biparentale est étendu au cas des familles
multi-parentales. Une approche multi-caractéres est ensuite proposée, considérant les performances
agronomiques et les contributions parentales comme des caractéres quantitatifs corrélés et
normalement distribués. Cette approche dénommeée critére d’utilité et contributions parentales
(UCPC) permet de prédire la performance moyenne et la diversité attendues dans la fraction
sélectionnée de la descendance d’un croisement. L'UCPC peut étre utilisé afin d’étendre la sélection
optimale de plan de croisements (OCS) qui a pour but de maximiser le gain génétique tout en limitant
la perte de diversité. En Chapitre 4, nous comparons différents plans de croisements par simulation. Il
est tout d’abord observé qu’une sélection des croisements basée sur le critére d’utilité maximise le
gain a court et long termes comparativement a une sélection basée sur la moyenne des performances
parentales sans prise en compte de la ségrégation attendue de leur descendance. Ensuite, nous
montrons que les approches de croisement optimales (OCS) sont plus performantes a long terme mais
au prix d’une pénalité a court terme comparativement au critere d’utilité. Finalement, I’OCS basée sur
I'UCPC convertit plus efficacement la diversité génétique en gain a court et long termes que I'OCS.
Ainsi, la sélection de croisement optimale basée sur I'UCPC aide les sélectionneurs dans leur choix de

plan de croisements pour satisfaire leurs objectifs a court et long termes.

Une base génétique étroite des populations élites compromet le gain génétique a long terme.
De ce fait, une stratégie d’élargissement de leur base génétique sans compromettre le gain a court
terme est nécessaire. De nombreuses sources de diversité peuvent étre considérées mais toutes ne
peuvent étre évaluées. En Chapitre 2, différents critéres prédictifs sont passés en revue et comparés
afin d’évaluer l'utilité de ressources génétiques pour enrichir un pool élite. Ces critéres évaluent la
complémentarité entre ressources génétiques et lignée élite receveuse afin d’assurer |'apport de
nouveaux alleles ou haplotypes favorables absents de la population élite. Les criteres proposés
s’appuient sur les effets aux marqueurs estimés dans un panel collaboratif constitué de lignées de

diversité publiques et de lignées élites privées (panel denté issu du projet « Amaizing »). La qualité
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prédictive obtenue par validation croisée sur le panel collaboratif ainsi que la qualité prédictive non
nulle obtenue sur une large population élite montre l'intérét d’utiliser ces effets a des fins
d’identification de ressources génétiques pour I'élargissement de la base génétique élite. Enfin, dans
le Chapitre 5, nous proposons d’utiliser I’OCS basée sur 'UCPC afin d’identifier le croisement optimal
entre ressources génétiques et lignées élites en fonction des caractéristiques d’originalité et de
performance des ressources génétiques. Nous proposons d’améliorer les ressources génétiques (pre-
breeding), puis de connecter les ressources génétiques améliorées au matériel élite (bridging) avant
de les introduire dans la population en sélection. Par simulations, nous montrons I'intérét de réaliser
des introductions récurrentes de ressources génétiques préalablement améliorées afin de maximiser
le gain génétique tout en maintenant la diversité constante dans la population élite. De méme, nous
montrons I'importance de la composition de la population utilisée pour calibrer le modeéle de sélection
génomique utilisé lors de l'introduction des ressources génétique dans la population élite. Nous
préconisons de considérer une population de référence constituée de lignées élites et de la
descendance de croisement entre lignées élites et lignées issues de ressources génétiques. Ce dernier
chapitre fournit des recommandations quant a I'exploitation de la variabilité polygénique présente

dans les ressources génétiques afin d’enrichir la base génétique d’une population élite.

L’ensemble de ces travaux ainsi que les récentes études cités au long de ce manuscrit ouvrent
de nouvelles perspectives pour la gestion de la diversité génétique au sein de programmes de sélection

compétitifs et durables.
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General introduction

Crop adaptation to human needs, i.e. crop improvement, is as ancient as agriculture itself (app. 10,000
years ago, Doebley et al. 2006). Crop improvement, like natural evolution, occurs through the selection
operating on the genetic variability of plant populations (Lush 1937; Simmonds 1962). Both, natural
evolution and early agricultural practices have left their signatures and shaped the genetic diversity of
modern crops. Human selection initially carried out by farmers has been recently, for main crops and
industrialized countries, optimized and structured into variety improvement by breeders and
production by farmers (e.g. first French “seed dealers” in the mid-17™ century). In this context,
different levels of diversity can be distinguished for each crop: (i) the overall crop diversity stored in ex
situ collections, (ii) the diversity of modern crop breeding populations (i.e. intra-breeding program)
and (iii) the diversity of cultivated varieties delivered by breeders to farmers (Figure 1). At farmers’
level, the diversity of varieties and crops contribute to the agroecosystem resilience to biotic and
abiotic perturbations (Vandermeer et al. 1998; Malézieux et al. 2009). Thus, the management of
genetic diversity at each level is of critical importance in a context of climate change characterized by
an increased frequency of unpredictable extreme temperatures, drought, pests and plant pathogen
outbreaks (McCouch et al. 2013). In the following, this dissertation will focus mostly on the second
level of diversity, i.e. diversity within breeding populations that determinates the diversity available to
breeders to develop new varieties (Figure 1).

/  Farmers \ Level 3

Bregders Level 2
ANWARAN
C?verall_ crop dlve‘rs ity Level 1
(in ex situ collections)

Figure 1 Diagram illustrating the three hierarchical levels of crop diversity for major crops in
industrialized countries. This thesis focused on the diversity within breeding populations (Level 2).

Importance of genetic diversity for crop improvement
Domestication and improvement shaped crop genetic diversity

During their evolutionary history, crops have experienced different genetic bottlenecks through
selection and drift during domestication and migrations (Spillane and Gepts 2001). Such events explain
the reduction of current genetic diversity in main crops compared to the wild relatives and traditional
varieties referred to as landraces (Ladizinsky 1985; Doebley et al. 2006). Artificial selection by farmers
and modern plant breeders yielded major improvement in most crops to sustain humanity
development but also reduced the genetic variability (Simmonds 1962; Cooper et al. 2001; Fu 2006,
2015). For instance, cultivated barley (Brown and Clegg 1983; Petersen et al. 1994), soybean (Doyle
1988; Hyten et al. 2006; Han et al. 2016), chickpea (Cooper et al. 2001), peanut (Fonceka et al. 2012)
and wheat (Charmet 2011) show a narrow genetic base because of bottlenecks at domestication and
migration. Other crops such as maize present a narrow genetic base arising from bottlenecks during
modern breeding but contain a much larger available diversity in older germplasm (Tallury and
Goodman 2001).



General introduction

The loss of genetic variability in closed and finite selected populations is due to genetic drift induced
by selection of a limited number of individuals. Also, directional selection for some agronomic traits
(e.g. yield, quality, diseases tolerance) favors a favorable allele, respectively disfavors an unfavorable
allele, at quantitative trait loci (QTLs) underlying the selected traits. As a result of selection, the allele
frequency shifts in one direction yielding a reduction of deoxyribonucleic acid (DNA) sequence diversity
at the QTLs and neighboring regions by linkage drag (Maynard-Smith and Haigh 1974). Alternatively, a
balancing-stabilizing selection (e.g. selection for an optimal precocity), maintains multiple alleles in the
breeding population and elevates sequence diversity at the QTLs and surrounding regions.

In practice, the impact of selection on crop genetic diversity at the farmers’ level, also referred to as
diversity erosion (Wouw et al. 2010), is difficult to observe. For instance, Fu (2006) reviewed 23 studies
released from 2000 to 2005 evaluating the impact of modern plant improvement on genetic diversity
of agricultural crops, such as maize (Duvick et al. 2004; Clerc et al. 2005; Reif et al. 2005b), wheat (Reif
et al. 2005a; Roussel et al. 2005; Fu et al. 2006), barley (Koebner et al. 2003) and oat (Fu et al. 2004).
This review revealed different impacts of modern crop improvement on elite germplasm. In general,
the genomewide reduction of crop genetic diversity over time was minor, but allelic reduction at
individual chromosomal segments was substantial. Only few studies focused on the impact of long-
term selection on genetic diversity at the level of a given breeding program (e.g. in maize, Labate et al.
1999; Feng et al. 2006; Fischer et al. 2008; Van Inghelandt et al. 2010; Gerke et al. 2015, in soybean
Bruce et al. 2019). The authors observed either significant reductions of genetic diversity or complex
changes in genetic diversity due to large open breeding systems, i.e. with introductions of new extrinsic
allelic variation (Feng et al. 2006; Bruce et al. 2019). Since every breeding population is subject to
different breeding strategies, additional studies of the evolution of genetic diversity within commercial
breeding programs and consequences on genetic improvement are required to drive an empirical
consensus on good breeding practices.

Genetic diversity a cornerstone for crop improvement

The relationship between the additive genetic variation and the expected response to selection is
known as the “breeder’s equation” (Lush 1937). Assuming an infinite breeding population and a
normally distributed targeted trait, the expected change in mean performance (Au) per generation is
proportional to the selection intensity (i), the selection accuracy (h) and the population additive
genetic standard deviation of the targeted trait (g,):

Au = ihoy, (Eq. 1)

where the selection accuracy (h) is defined as the correlation between the value used for selection and
the additive genetic value for the targeted trait. Equation 1 states that in absence of mutation and
epistasis, the total response to selection is limited by the initial standing additive variation (0%, the
variance of additive genetic values which corresponds to the sum of the additive diversity at causal loci
and the additive covariances between causal loci, Bulmer 1971; Lynch and Walsh 1998; Gianola et al.
2009). Larger initial Gi in the breeding population yields higher expected response to selection per
generation.

Two parameters are commonly used to characterize the level of diversity in selected populations. The
first one is the effective population size (Ne, Fischer 1930; Wright 1931), which refers to the number
of breeding individuals in an idealized panmictic population with absence of selection that would show
the same amount of genetic diversity as the population at hand. The second one is the expected
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heterozygosity in the idealized population (He, Nei 1973). For biallelic loci, the expected heterozygosity
in a panmictic population and no selection is He = % }”:1 2p;(1 — pj), with p; the frequency of the
reference allele at locus j € [1, m]. The effective population size (Ne) can be estimated from changes
in frequency of heterozygotes in the panmictic population assuming only drift: He;,; = He; (1 —
1/2N,) (Falconer and Mackay 1996). Thus, both expected heterozygosity (He) and effective
population size (Ne) are related concepts.

In a long-term perspective, large and diverse populations show a greater efficiency of selection (Fischer
1930, p. 102; Weber and Diggins 1990). The effect of Ne on potential maximal response to selection is
well known in quantitative genetic literature (Robertson 1960). Under the assumptions of an
infinitesimal model (Fisher 1918), i.e. many locus of small effects underlying the trait, absence of
mutation, a selection intensity i, an accuracy h, a population with effective size Ne and additive genetic
standard deviation g, the maximum potential response in long-term is:

2Ne ihay,. (Eq. 2)

The maximum potential response to selection reduces to 2NeAu with Au being the expected response
to selection in the first generation as defined in Eq. 1. Thus, a first advantage of a larger effective
population size is to reduce the loss of initial genetic variance by genetic drift resulting in an increased
selection limit. A second advantage is the greater accumulation of genetic variation by recombination
events and mutations. Hill (1982a; b) derived that if new mutations are steadily accumulated and
generate an additional variance o3 per generation, then 2Ne i 64 /0p is the eventual additional
response rate per generation, with gp being the phenotypic standard deviation. More recently, Barton
extended this work including epistasis (2017).

While the expected response to selection is proportional to the selection intensity i (Eq.1, 2), the
effective population size Ne is inversely proportional to the square of the selection intensity i?
(Robertson 1961; Wray and Thompson 1990; Sanchez et al. 2006; Woolliams et al. 2015).
Consequently, maximizing the selection intensity to maximize the short-term response to selection will
inevitably reduce the effective population size and long-term response to selection (Eq. 2). This
highlights the inherent dilemma between the genetic diversity and the genetic gain and opens the
scope for optimization.

As expressed in Lush (1937) and Robertson (1960), a reduced genetic diversity in breeding populations
might induce yield plateau or substantially increase breeding efforts and investments to keep constant
rates of genetic gain. A reduced genetic diversity in breeding populations might also induce a reduced
diversity in fields limiting the ability to overcome biotic and abiotic stresses, or even yielding crop
failure in a changing environment (McCouch et al. 2013). One of the disastrous evidence is the Irish
potato famine in the 1840s, caused by the homogenous sensitivity of cultivated varieties to late blight.
More recently, the southern leaf blight epidemic in the US maize crop in 1969-1970 induced 15% losses
caused by the use of the same cytoplasmic DNA male sterility in developed maize varieties which were
uniformly susceptible to a race of the fungus (Ullstrup 1972; Bruns 2017). Consequently, there is a
continuing need to balance improvement and diversity in crop breeding through an optimized
management of intrinsic (i.e. internal to the breeding population) genetic variability and enrichment
in new variability from different extrinsic (i.e. external to the breeding population) genetic resources
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to increase breeding ceiling and reduce the genetic susceptibility to rising and yet unknown biotic and
abiotic stresses.

Managing and broadening the genetic base of breeding programs

It is generally recognized in species suffering strong inbreeding depression and where the breeding
population is also the production population (e.g. animal breeding) that one cannot simply select and
mate the best individuals without also taking into account the degree of relatedness among them to
limit consanguinity and the impact of deleterious alleles causing inbreeding depression. The
identification of the mating plan that maximizes the genetic merit in the next generation while
constraining the average relationship between parents involves the optimization of parental
contributions, i.e. the fraction of genes contributed by a parent to the future generation, a concept
well known in animal genetics (James and McBride 1958; Woolliams et al. 2015). Parental
contributions have simple relationships with key parameters of population genetics. While the genetic
gain is proportional to the product of individuals’ contributions and deviations from population mean
(Woolliams and Thompson 1994; Woolliams et al. 1999), the rate of inbreeding, i.e. loss of diversity, is
inversely proportional to the square of individuals’ contributions (Robertson 1961; Wray and
Thompson 1990; Sanchez et al. 2006; Woolliams et al. 2015). Based on this theory, a mating strategy
called optimal contribution selection has been investigated for decades in animal breeding (e.g. Wray
and Goddard 1994; Meuwissen 1997; Kinghorn 2011), in tree breeding (e.g. Kerr et al. 1998; Hallander
and Waldmann 2009a; b) and has been increasingly adopted in crop breeding (e.g. Akdemir and
Sanchez 2016; De Beukelaer et al. 2017; Gorjanc et al. 2018; Akdemir et al. 2018).

There are several reasons that might explain why such considerations have been firstly developed in
animal breeding and only recently adopted in crop breeding. One reason may be that major crops are
inbred species (e.g. wheat, barley) and suffer little inbreeding depression or pass by a hybrid stage (e.g.
maize) allowing to complement recessive sub lethal alleles. Complementarily, since most crop
breeders have the possibility to broaden the genetic base of their population using different extrinsic
genetic resources publically available (e.g. current and old varieties) and conserved worldwide in
international gene banks and national collections (e.g. wild relatives, exotic germplasm accessions and
landraces, Hammer et al. 2003; Commission on Genetic Resources for Food 2010), they might have
underestimated the importance of intrinsic diversity management. The recent increased interest of
crop breeders for intrinsic genetic diversity management might be explained by the fact that the more
breeding germplasm is improved, the more expensive and time consuming becomes the introduction
of extrinsic diversity.

Crop genetic resources are defined as “genetic material of actual or potential value” by the Convention
on Biological Diversity (https://www.cbhd.int/) and provide the basis to improve productivity, resilience

and nutritional quality of crops (Wang et al. 2017). Although plant breeders recognize the importance
of genetic resources for elite genetic base broadening, only little use has been made of it (Glaszmann
et al. 2010; Wang et al. 2017). The main reason is that breeding progress continues to be made in most
crops (e.g. in maize grain yield, Duvick 2005, in wheat, Tadesse et al. 2019) and that breeders are
reluctant to compromise elite germplasm with unadapted and unimproved genetic resources
(Kannenberg and Falk 1995). Consequently, there is a need for a breeding system that can efficiently
broaden the genetic base of elite germplasm while not compromising the performance of released
varieties. Such a system first involves the description and the understanding of the genetic diversity
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present in collections and the definition of core sets of genetic resources representing the global
diversity (Frankel 1984; Brown 1989). Genetic resources are characterized for adaptation traits in few
locations (e.g. flowering day length, earliness, stress resistance ...). Adapted genetic resources should
be further extensively evaluated for agronomic traits (e.g. grain yield, quality ...) and their genotype by
environment interactions (GxE) before being identified as interesting for breeding purpose. The
identification can be based on phenotypic evaluation of potential donors, progeny of the cross donor
x elite material or considering molecular information (e.g. Bernardo 2014; Crossa et al. 2016; Yu et al.
2016). In the case of traits determined by few genes of large effect, the favorable alleles can be
identified and introgressed into elite germplasm (Figure 2) following well established marker-assisted
backcross procedures (e.g. Charmet et al. 1999; Servin et al. 2004; Bernardo 2016; Han et al. 2017).
Introgressions have been successful for mono- or oligogenic traits (e.g. earliness loci in maize,
Simmonds 1979; Smith and Beavis 1996, SUB1 gene in rice, Bailey-Serres et al. 2010). Introgressions
also proved to be successful for more polygenic traits where few major causal regions have been
identified. For instance, Ribaut and Ragot (2006) successfully introgressed five regions associated with
maize flowering time and yield components under drought conditions. For complex traits controlled
by numerous genes with small effect introgression procedures were mostly unsuccessful to broaden
the genetic base of breeding populations (Simmonds 1993). Simmonds (1993) proposed a general
scheme for genetic base broadening that consists in the incorporation of extrinsic polygenic variation
in the breeding population. Simmonds distinguished three hierarchical steps starting from a broad
population of genetic resources to the locally adapted breeding population. It starts with the pre-
breeding, called base broadening in Simmonds (1993), to improve genetic resources in order to reduce
the performance gap with the breeding population. Pre-breeding can be defined as the recurrent
improvement of genetic resources to release donors that can be further introduced into the elite
breeding population (Figure 2). For Simmonds, the pre-breeding must be kept completely independent
of the breeding population until it starts to provide performing resources (Simmonds 1993). Best pre-
breeding progeny are further considered for incorporation in a buffer population with some of the
breeding material. This population bridges the elite breeding genetic base with the pre-breeding
genetic base and this step is referred to as bridging (Figure 2). For the sake of clarity, bridging aims at
limiting the negative impact of introductions on short-term varieties’ performance. The best bridging
individuals are further considered as breeding parents in the routine breeding program (Figure 2).
Alternatively, one could suggest to skip the bridging if pre-breeding releases material that is directly
competitive with elite parents (Figure 2).
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A maize perspective

In this section, the maize history and modern hybrid breeding that shaped maize genetic diversity are
presented. The interest of genetic base broadening in the maize context is further discussed and some
maize genetic base broadening projects are shortly reviewed.

Maize domestication and adaptation shaped the maize genetic diversity

Maize production exceeded 1.3 billion tons on about 240 million ha worldwide in 2017, which makes
maize the first crop before rice in terms of production (nearly a billion tons) (Food and Agriculture
Organization, FAO 2019). Maize was domesticated once from its wild progenitor teosinte Zea mays
ssp. parviglumis about 9,000 years ago in the Balsas valley of Mexico (Beadle 1939; Doebley 1990;
Matsuoka et al. 2002). Maize domestication resulted in original maize landrace varieties further spread
and adapted by Native Americans in a wide range of environmental conditions: as far as the current
Canada and southern Chile (Figure 3). For instance, the American Northern Flint landraces were
adapted to cold temperate regions (Brown and Anderson 1947) and are genetically divergent
compared to other tropical or subtropical landraces (Doebley et al. 1986). About 200 years ago,
Southern Dent and American Northern Flint germplasm were hybridized and gave rise to the Corn Belt
Dent type adapted to the mid United States region (Doebley et al. 1988; Camus-Kulandaivelu et al.
2006). Due to day-length adaptation bottleneck, most of the tropical maize diversity is not represented
in Corn Belt Dent (Goodman 1985).

The first introduction of tropical maize in south Europe is commonly attributed to Columbus in 1493
(Figure 3). European Northern Flint originated from the second introduction of pre-acclimated sources
of maize from the eastern coast of North America in the north of Europe, currently Germany, Belgium
and Netherlands, during the 16" century (Brandolini 1970; Rebourg et al. 2001, 2003; Dubreuil et al.
2006; Camus-Kulandaivelu et al. 2006). Further introductions may have occurred in Italy from South
America (Brazil, Argentina) explaining the high similarity between traditional varieties of these regions
(Tenaillon and Charcosset 2011). As a consequence of these introductions, European maize diversity
derives from America and presents only few European specific alleles (Rebourg et al. 2003). Admixture
events were also observed in Europe between different genetic backgrounds and led to the creation
of new groups such as the broad European Flints group spanning from north to south Europe
(Brandenburg et al. 2017).

As a result of domestication and adaptation to different growing conditions, maize exhibits a strong
morphological variability among different origins. Maize is cultivated mainly for grain but also for silage
in a wide range of environments, from temperate to tropical regions. As an allogamous species
showing substantial inbreeding depression for grain yield (A. R. Hallauer and Miranda 1988, chapter
9), maize was historically, and is still in some regions (e.g. Bellon et al. 2003), cultivated in
heterogeneous populations of heterozygous individuals called open-pollinated varieties (OPVs).
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Figure 3 Maize genetic groups and diffusions pathways inferred from 66 maize landraces (adapted
from Brandenburg et al. 2017). Points represent the 66 landraces origin and arrows the migration flux.

Modern maize breeding: hybrid breeding

Historically the OPVs of maize were the source of material used in temperate maize breeding
programs. In the early 1900s, Shull (1908) proposed to “clone” the best heterozygote individual in the
OPV as an hybrid between inbred parents (East 1908; Shull 1909). This revolutionized maize breeding
and led to the rediscovery of the concept of hybrid vigor (Darwin 1876) further described as heterosis
(Shull 1914). In the first generations, few OPVs served as source populations to derive inbred lines for
use as hybrid parents. Due to strong inbreeding depression, the quantity of seeds produced by the first
derived inbred lines was too small to directly used these lines as parents of commercial hybrids. And
thus, first hybrids were double cross hybrids resulting from [Inbred1 x Inbred 2] x [Inbred 3 x Inbred 4]
(Jones 1918). In the 1960s, with the improvement in seed quantity and quality traits, breeders switched
from double cross hybrids to single cross hybrids resulting directly from Inbred1 x Inbred 2. It rapidly
and completely replaced mass-selected OPVs in the United States and Europe (Anderson 1944; Troyer
1999). Hybrid breeding tremendously increased maize productivity (Figure 4). The inbred stage purges
recessive deleterious alleles and increases the variance among families (Horner et al. 1969; Hallauer
and Miranda 1988) and thereby increases the selection effectiveness.



General introduction

Breeders defined and maintained distinct heterotic groups that maximized the inter-heterotic group
hybrid vigor. Heterotic groups have been defined by testing different hybrid combinations. The hybrid
breeding relies on the improvement of heterotic groups and the identification of the inbred parents
from distinct heterotic groups that yield outstanding hybrids. Within heterotic groups, inbreds are
improved in a reciprocal recurrent selection scheme (Russell and Eberhart 1975) designed to enhance
the combining ability between the two heterotic groups, so that their cross will improve in
performance over selection cycles. The hybrid performance is modeled as the sum of the general
combining ability (GCA) of inbred parent from heterotic group 1 and of inbred parent from heterotic
group 2 and specific combining ability (SCA) that is the effect specific to the hybrid combination. In a
classical hybrid breeding scheme (Figure 5), within and between heterotic group breeding are distinct
steps. Within heterotic groups, inbred segregating progeny of parental crosses are selected based on
their GCA estimated from their evaluation in hybrid combination with one or few different inbreds
representative of the opposite group (app. 1 to 3) called testers. Such evaluation is referred to as
testcross evaluation. The best performing inbreds (app. 5%-10% best) are recycled as parents of next
generation crosses. Additionally, these inbred lines are further evaluated for testcross performance on
more testers and are further selected. In the second step, the best inbreds of both pools are crossed
in an incomplete factorial to evaluate SCA and produce desirable commercial hybrids (Bernardo 1994;
Technow et al. 2012, 2014) (Figure 5). Given that testcross means, i.e. GCAs, behave in a statistically
additive manner (Hallauer and Miranda 1988), statistical dominance (SCA) is accounted for only in the
incomplete factorial between both populations for commercial hybrid selection.

In the US by the 1960s, production of high-yielding hybrids in temperate conditions was largely based
on inbreds from two Corn Belt Dent OPVs: the Reid Yellow Dents and Lancaster sure crops (Smith
1988). While the founders of these heterotic groups were not initially differentiated, the heterotic
groups diverged genetically over time to become highly structured and isolated with a decreased
diversity within groups (Heerwaarden et al. 2012). Today’s North American Dent maize is composed
of multiple heterotic groups and their nomenclature is complex and depends on the authors (Mikel
and Dudley 2006). As a rule of thumb, the female, i.e. seed parent, is mainly from lowa Stiff Stalk
Synthetics origin (ISSS, that includes lines that were widely used in breeding e.g. B73, B14, B37, A632)
which is predominantly derived from Reid Yellow Dents and the male, i.e. pollen parent, is mostly from
the Lancaster sure crops origin (e.g. Oh43, Mo17, C103). More recently, the lodent (e.g. PH207) used
as male parent added early flowering time and cool conditions adaptation and contributed to spread
maize cultivation further north (Goodman 1990). In Europe, hybrids between Corn Belt Dent and
European Flint inbreds proved to combine productivity and environmental adaptation for maize
cultivation in Northern Europe from West to East. Subsequent reciprocal selection of the two groups
increased their differentiation and complementarity (Rincent et al. 2014). In southern Europe (e.g.
Spain, ltaly, Turkey), similar heterotic groups as in the Corn Belt are considered, resulting in ISSS Dent
x non ISSS Dent hybrids.
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Broadening maize hybrid breeding programs

Despite hybrid breeding improved tremendously grain yield and quality as well as resistance to biotic
and abiotic stresses at world scale (e.g. Figure 4, Duvick 2001, 2005), it also reduced elite genetic
diversity. It has been observed that during the transition from landraces to hybrids, many favorable
alleles have probably been lost because of their association with unfavorable alleles and/or genetic
drift (Ho et al. 2005; Reif et al. 2005b; Buckler et al. 2006; Yamasaki et al. 2007). For instance, Ho et al.
(2005) estimated that only 56% of the alleles found in the Corn Belt Dent landraces were present in a
diverse set of inbred lines. US and more generally worldwide hybrid breeding is relying on the use of a
very narrow elite germplasm (Goodman 1990). For instance, in the US, about three Lancaster type
inbred lines (Oh43, Mo17, C103) and three ISSS type inbred lines (B73, B37, A632) and their close
relatives were represented in a very high percentage (70% or more) of all U.S. hybrids (Goodman 1990).
More recently, the lodents (mainly derived from Pioneer PH207 and Dekalb/Monsanto 31IH6 lines)
took an important place in temperate non ISSS dent proprietary pedigrees (Mikel 2018). A recent high-
density haplotypic analysis revealed significant haplotype sharing between maize inbred lines
registered from 1976 to 1992 and key maize founders B73, Mo17 and PH207 (Coffman et al. 2020).
Since maize hybrid breeding developed along with intellectual property rights, it also limited
germplasm exchange between private programs (Goodman 1999).

Different sources of diversity can be considered to broaden the genetic base of maize breeding
programs. Brown (1979) estimated that there might be 150-180 distinct “races” of maize worldwide.
On a racial basis, it was indicated by Brown (1979) and Goodman (1985) that only 2% of the available
germplasm was considered in temperate maize breeding and only 5% worldwide (Tallury and
Goodman 2001), when excluding subsistence farming. Goodmann (1999) observed that only about
0.3% of Tropical exotic germplasm was used in US hybrid breeding in 1996. Local or exotic landraces
which did not contribute to the founding material of commercial programs provide a source to broaden
the genetic base of commercial breeding programs. Landraces have also been well characterized
relative to elite germplasm in Europe (e.g. Dubreuil and Charcosset 1999; Rebourg et al. 2001; Reif et
al. 2005b; Dubreuil et al. 2006; Frascaroli et al. 2013; Strigens et al. 2013) and America (e.g.
Heerwaarden et al. 2011; Hellin et al. 2014). The use of reproducible libraries of doubled haploid (DH)
lines from landraces has been suggested to ease genotyping, phenotyping and evaluation of the
variation within landraces (Strigens et al. 2013; Melchinger et al. 2017; Bohm et al. 2017; Brauner et
al. 2019; Holker et al. 2019). Since maize hybrid industry is highly competitive, commercial breeders
do not spend time and resources for evaluation, adaptation and improvement of non-improved
landraces. Instead, commercial breeders will prefer to consider inbred lines from other than their own
program (Kannenberg 2001). This includes breeding program targeting different environments and
competitors’ inbreds obtained by selfing or reverse breeding from hybrids (Smith et al. 2008) or
running out of the plant variety protection act after 20 years in the US (ex-PVPA, Mikel and Dudley
2006). Hundreds of ex-PVPA are publically released every year, which make an improved source of
variation available. To broaden the genetic base of European germplasm with US inbreds is appealing.
For instance, Reif et al. (2010) evaluated the interest to introgress US public inbreds into German
European inbreds and recommended to introgress ISSS inbreds into European dents and non ISSS
inbreds into European Flints.

To harness genetic variability and potential of adaptation in genetic resources, public-private
collaborations that share costs between public institutes and private companies are of great interest.
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In the following, some public-private maize genetic base broadening projects are listed with a focus on
their contribution to the private breeding sector. Cramer and Kannenberg (1992) proposed the
hierarchical open-ended population enrichment (HOPE) breeding system to release enriched maize
inbreds further considered to broaden the genetic base of Canadian commercial maize breeding
programs. In its last version, the HOPE system was composed of three hierarchical open-ended gene
pools, i.e. the best genotypes of a basal pool were further used as parents in the superior pool,
permitting the transfer of favorable alleles from genetic resources to the elite pools (Popi 1997;
Kannenberg 2001). The genetic resources were introduced in the basal pool without heterotic group
distinction until the introduction in the two elite pools (Popi 1997). After 20 years, only four inbreds
have been released to the industry with no success story up to date. The Latin American maize project
(LAMP, Pollak 1990; Salhuana et al. 1997; Salhuana and Pollak 2006) provided maize breeders with
useful characterization and evaluation of US and Latin American tropical germplasm accessions. The
germplasm enhancement of maize project (GEM, Pollak and Salhuana 2001) was a public-private
collaborative effort to enhance the accessions identified as useful by LAMP with proprietary lines
furnished by private partners (Pollak 2003). In practice, LAMP lines were first crossed with an elite
inbred from a private partner and further crossed to a second private partner’s elite line to derive a
bridging germplasm carrying on average 25% of LAMP parent genome. In 2014, more than 270
temperate adapted inbreds were developed from more than 30 different exotics germplasm. Similarly,
the seeds of discovery project initiated by the International Maize and Wheat Improvement Center
(SeeD, Gorjanc et al. 2016) aims to harness favorable variation from more than four thousand
landraces and to develop a bridging germplasm with on average 25% of landrace genome that would
be useable for genetic base broadening in commercial maize programs. In France, the INRA/Promais
(Gallais et al. 2001) project and continuation, are also examples of the interest for public-private
partnership genetic base broadening projects.

Genomic selection revolutionized breeding

Marker assisted selection to genomic selection

Molecular markers refer to DNA fragments that exhibit polymorphism between individuals and that
can be easily typed and used as genetic markers. In maize, different genetic markers and density have
succeeded: from few multi-allelic markers such as restriction length polymorphism (RFLP), single
sequence repeats (SSR) to today’s commonly used single nucleotide polymorphism (SNP) that can be
typed on predefined bead chips with 50k SNPs (Ganal et al. 2011) or 600 SNPs (Unterseer et al. 2014)
and by sequencing (GBS, Elshire et al. 2011). These markers can be used on a large number of
individuals to evaluate, structure and sample genetic diversity within an between ex-situ collections
(Glaszmann et al. 2010; Mascher et al. 2019). These markers can also be used to monitor the genetic
diversity of breeding germplasm and assist selection. The use of markers linked to QTLs, further
referred to as marker assisted selection (MAS), opened new perspectives for breeding. In the 1960’s,
Neimann-Sorensen and Robertson (1961) considered blood groups as markers supporting selection in
animals. Lande and Thompson (1990) proposed to estimate the genetic value of selection candidate
by summing the estimated effects of genetic markers significantly associated with QTLs. More recently,
the development of cheap high-throughput SNP genotyping and statistical developments enabled to
consider a large number of genomewide markers for prediction (Whittaker et al. 2000; Meuwissen et
al. 2001). This is referred to as genomic selection (GS) and this approach has been implemented in
many animal and plant species over the last decades.
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Genomic selection

In GS, a sample of individuals (training set, TS) is genotyped and phenotyped for a trait, before being
used to train a statistical model. The statistical model is further used to predict the genetic value of
genotyped individuals. Several models have been proposed (e.g. Heslot et al. 2012) but the most
common and robust is the genomic best linear unbiased prediction model (G-BLUP) that relies on the
infinitesimal model (Fisher 1918). G-BLUP considers the genomic relationship matrix between
individuals to model the covariance of their genetic values (VanRaden 2008). Note that before GS,
prediction of individual breeding values using BLUP with pedigree information to model genetic
covariance between individuals was common in animals (Henderson 1975) and investigated in maize
(Bernardo 1996a; b). A standard G-BLUP model can be written as:

y=XB+ Zu+ e, (Eq. 3)

where y is the column vector of genotypes, X is the incidence matrix of fixed effects with the
respective column vector effect B (e.g. location effect), Z is the incidence matrix of random effects,
i.e. linking genotypes to genetic values, u is the column vector of genetic values with u ~ N (0, Go?)
and G is the genomic relationship matrix that models the covariance between individuals at markers,
o¢ is the genetic variance. The column vector of errors e is modeled as e ~ N(0, IoZ) with I the
identity matrix. After estimation of variance components 62 and 67, the best linear unbiased predictor
of the genetic value #i; of a given genotyped individual i is predicted using mixed model equations
(Henderson 1975). Estimated marker effects can be derived out of G-BLUP model by back-solving
(Wang et al. 2012) thanks to the equivalence with the ridge regression best linear unbiased prediction
model (RR-BULP) that considers directly the matrix of allelic doses and assumes that all marker effects
are drawn from the same normal distribution.

The interest of GS is commonly attributed (i) to the acceleration of selection progress by shortening
generation intervals and (ii) to higher selection accuracy especially for traits difficult or costly to
measure (Hayes et al. 2009). Different usages and implications of GS have been suggested in plant
breeding (Heslot et al. 2015). For instance, instead of selecting progeny of parental crosses based on
expensive phenotypes in multi-location replicated trials, marker information and GS models can be
used to increase selection accuracy and optimize the phenotyping efforts (e.g. no more replicates or
unbalanced designs). As a step further, GS can be used to predict progeny genetic values without
phenotyping, which yield a gain of 3 to 5 years but also raises questions about the updating of the GS
model with new phenotypes (Pszczola et al. 2012; Rincent et al. 2012; Isidro-Sanchez et al. 2015;
Neyhart et al. 2017; Eynard et al. 2018). GS in plant breeding and particularly in maize breeding enables
to generate larger biparental families and thus increases within family selection intensity. Among other
applications, GS can be used to predict the interest of parental crosses based on different criteria, such
as the usefulness criterion of a cross (UC, Schnell and Utz 1975) that represents the expected genetic
value of the selected fraction of the progeny of the cross (Figure 6):

UC = u+ihay, (Eq. 4)
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where u is the mean genetic value of the progeny of the cross, i and h are the within family selection
intensity and accuracy, respectively and g2 the within family additive genetic variance that can be

Distribution of the breeding values of the
progeny of a biparental cross
Selected
fraction of

progeny

Low ' ih High
predicted for biparental crosses using information of recombination frequency and linkage

disequilibrium between loci (Lehermeier et al. 2017b).
Figure 6 lllustration of the Eq. 4 in case of a biparental cross P1 x P2.

Genomic selection in the light of diversity management

As GS enables to shorten selection cycles and/or increase selection accuracy compared to phenotypic
selection, it is expected to accelerate the loss of genetic diversity per unit of time due to rapid fixation
of large effect regions. Jannink (2010) and Lin et al. (2016) observed by simulations that GS leaded
higher loss of diversity than phenotypic selection. Experimentally, Jacobson et al. (2015) observed only
a limited loss of genetic diversity due to genomic selection within biparental populations after one
generation. However, the effect on long-term recurrent selection through both within family selection
and parental cross selection is still unclear. In long-term simulations of wheat breeding, Rutkoski et al.
(2015) observed that GS increased the loss of diversity compared to phenotypic selection. GS also
tends to shrink toward the population mean the predicted genetic values of individuals with less
phenotypic observations and/or less phenotypic observations on relatives in the TS and of individuals
genetically distant to the TS (Habier et al. 2010; Pszczola et al. 2012). The shrinkage results in lower
coefficients of determination (CD, Laloé 1993) associated with the predicted values. As a consequence,
individuals with low relationship relative to the elite majority of the TS are likely predicted to be
average with a small chance to be selected. Similarly, in the RR-BLUP formulation, the rare favorable
allele effects are shrunk toward zero, which increases the risk of losing rare favorable alleles and
consequently reduces the long-term genetic gain (Goddard 2009; Jannink 2010). Several authors
suggested to up-weight rare favorable alleles to correct for shrinkage in GS model with encouraging
results obtained by simulations (e.g. Goddard 2009; Jannink 2010; Sun and VanRaden 2014; Liu et al.
2015). However, such approaches suffer the difficulty to define appropriate up-weighting factors.

While GS raises concerns about its effect on genetic diversity erosion, it also opens new ways for
intrinsic genetic diversity management and genetic base broadening. Firstly, GS models enable to
estimate genomic variance components giving access to the causal diversity and the impact of linkage
disequilibrium (LD) on additive genetic variance (Sorensen et al. 2001; Lehermeier et al. 2017a).
Despite such decomposition can provide breeders with substantial information on the potential
response to selection of a breeding population, to our knowledge, it has never been implemented in
this context. Secondly, GS models might be implemented in the optimal contribution selection initially
considering the pedigree information to predict the next generation merit (pedigree BLUP model) and
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to constrain the pedigree relatedness among parents. Clark et al. (2013) observed that using genomic
information for merit prediction and relatedness estimation increased optimal contribution selection
performance. The optimal cross selection (OCS), an extension of the optimal contribution selection to
deliver a crossing plan, has been recently adopted in plant breeding (e.g. Akdemir and Isidro-Sanchez
2016; Gorjanc et al. 2018; Akdemir et al. 2019). In previous works, OCS has been defined to balance
the genetic merit and diversity in the progeny. However, as stated above, in GS plant breeding one
typically has large biparental families with high within family selection intensity. Therefore, it would
be likely more interesting to consider OCS that balances the genetic merit and diversity expected in
the best performing fraction of each family. To our knowledge this has not yet been considered. Finally,
GS models might help to characterize and identify interesting genetic resources in gene banks as
suggested in Crossa et al. (2016) and Yu et al. (2016). More recently, Brauner et al. (2018, 2019)
evaluated the predictive ability of GS models within DH lines derived from maize landraces. GS is also
offering the possibility to fasten a long and expensive pre-breeding approach to harness polygenic
variation in genetic resources and make it more attractive for commercial breeders (Longin and Reif
2014; Gorjanc et al. 2016). However, to our knowledge no simulation studies demonstrated the
interest of genomic selection recurrent genetic base broadening considering pre-breeding, bridging
and introductions as illustrated in Figure 2.

Objectives of this thesis

The sustainable management of genetic diversity in breeding programs is receiving increasing
attention in the company RAGT2n and competitors (personal communications) for maize and other
crops. This thesis has been articulated around five main objectives addressed in chronological order
and corresponding each to a chapter of this dissertation.

1. Considering a given breeding program, how did the genetic diversity in a specific population

evolve genomewide and in different genomic regions? How to release genetic variation in low
diversity genomic regions?
In chapter 1, we reviewed and suggested three sets of indicators based on temporal
phenotypic and genotypic data to assess the past efficiency of breeding population
improvement and its sustainability. We further applied the indicators on an early European
grain maize program recorded from 2003 to 2016.

2. Assuming the genetic diversity is limiting, many genetic resources are accessible to breeders

but cannot all be considered to broaden the elite genetic diversity. How can we identify
appropriate donors for genetic base broadening of an elite population?
In chapter 2, we reviewed and proposed different criteria based on estimated marker effects
from GS models to select donor(s) in order to enrich elite recipient(s). To compare the different
criteria, marker effects were estimated on the Amaizing Dent collaborative panel composed
of 338 public Dent lines of different origins and 48 proprietary lines provided by seven
companies including RAGT2n (Rio et al. 2019). Ten elite recipients from RAGT2n material were
considered in this case study.

3. After identifying donors of diversity, how do breeders optimally cross them to elite recipients
in order to maximize the expected performance and donor’s polygenic contribution to
progeny? Depending on the genetic and phenotypic distance of donor relative to elites is it
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preferable to use biparental crosses between donor and recipient or more complex multi-
parental crosses?

In chapter 3, we extended algebraic formulas in Lehermeier et al. (2017b) to predict the
usefulness criterion of multi-parental crosses. We also propose to consider the parental
contributions, i.e. percentage of genome in progeny inherited from a parent, as a polygenic
trait in a multivariate usefulness criterion context. We validated our method by simulations.

4. Although breeders have the possibility to broaden their genetic diversity by integrating other

germplasm, it requires investments and delays the genetic progress. For these reasons, an
optimal management of intrinsic genetic diversity to be competitive at short-term while
maintaining a long-term potential genetic gain is challenging.
Considering a closed breeding population showing substantial genetic diversity, in chapter 4,
we adapted the approach developed in chapter 3 for optimal cross selection (OCS) to account
for the effect of within family selection on the performance and on the diversity in the next
generation. We simulated 60 years of breeding and compared our strategy to OCS not
accounting for within family selection.

5. Finally, in chapter 5 we evaluated the interest of the approach developed in chapter 4 in the
context of an open breeding population regularly enriched in extrinsic variability from different
sources of diversity. We simulated 60 years of breeding and evaluated the interest of recurrent
introductions after bridging depending on the type of donor considered. We also investigated
the effect of TS diversity and composition on within family prediction accuracies and the
efficiency of genetic base broadening.

The following chapters 1, 2, 3 and 4 have been published in peer-reviewed journals and the edited

version is provided in this manuscript. Chapter 5 is a draft article that has not been peer-reviewed. All
chapters are discussed and put into perspectives in the last section.
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Abstract

Key message We review and propose easily implemented and affordable indicators to assess the genetic diversity and
the potential of a breeding population and propose solutions for its long-term management.

Abstract Successful plant breeding programs rely on balanced efforts between short-term goals to develop competitive
cultivars and long-term goals to improve and maintain diversity in the genetic pool. Indicators of the sustainability of
response to selection in breeding pools are of key importance in this context. We reviewed and proposed sets of indicators
based on temporal phenotypic and genotypic data and applied them on an early maize grain program implying two breed-
ing pools (Dent and Flint) selected in a reciprocal manner. Both breeding populations showed a significant positive genetic
gain summing up to 1.43 qx/ha/year but contrasted evolutions of genetic variance. Advances in high-throughput genotyping
permitted the identification of regions of low diversity, mainly localized in pericentromeric regions. Observed changes in
genetic diversity were multiple, reflecting a complex breeding system. We estimated the impact of linkage disequilibrium
(LD) and of allelic diversity on the additive genetic variance at a genome-wide and chromosome-wide scale. Consistently
with theoretical expectation under directional selection, we found a negative contribution of LD to genetic variance, which
was unevenly distributed between chromosomes. This suggests different chromosome selection histories and underlines the
interest to recombine specific chromosome regions. All three sets of indicators valorize in house data and are easy to imple-
ment in the era of genomic selection in every breeding program.

Introduction to selection per breeding cycle is determined by the selec-

tion intensity, the selection accuracy and the additive genetic
Successful plant breeding implies meeting short-term goals  variance of the trait (Lush 1937). Hence, a characteriza-
to develop competitive cultivars, while maintaining diver-  tion of the additive genetic variance and its components
sity in the genetic pool to meet long-term goals. Response  in breeding populations is needed. In quantitative genetics
theory, selection is expected to modify the additive genetic
variance by changing allele frequency at quantitative trait

Communicated by Benjamin Stich. loci (QTLs) and by modifying covariances between QTLs
(linkage disequilibrium, LD) (Bulmer 1971). Directional
Electronic supplementary material The online version of this selection increases the frequency of favorable alleles at

article (https://doi.org/10.1007/s00122-019-03280-w) contains

? S 5 : 1 TLs generating a “hitch-hiking” eff link
supplementary material, which is available to authorized users. selected QTLs generating a “hitch-hiking” effect at linked

loci, leading ultimately to a local reduction of genetic vari-
54 Alain Charcosset ation (Smith and Haigh 1974). In addition, selection in a

alain.charcosset@inra.fr population of limited effective size leads to genetic drift,
that is also expected to reduce the level of additive genetic
variation (Wright 1931; Falconer and Mackay 1996). A

! GQE - Le Moulon, INRA, Univ. Paris-Sud,
CNRS, AgroParisTech, Université Paris-Saclay,

91190 Gif-sur-Yvette, France recent simulation study (Gerke et al. 2015) suggested that

2 RAGT2n, Genetics and Analytics Unit, 12510 Druelle, genetic drift is the main force affecting evolution of genetic
France variation. Furthermore, directional selection induces linkage
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disequilibrium that diminishes the additive genetic variance
in the short term (i.e., repulsion between QTLs). This has
been well described in quantitative genetic literature as the
Bulmer effect (Bulmer 1971, 1980; Lynch and Walsh 1999).

In practice, most breeding schemes can be viewed as
recurrent selection (RS) schemes in the sense that selected
individuals at a given generation are intercrossed to pro-
duce the next generations. RS programs aim at increasing
favorable allele frequency while maintaining genetic vari-
ability along generations to ensure long-term genetic gains
(Hallauer and Darrah 1985). In species showing strong
heterotic effects (e.g., maize), hybrid breeding raises addi-
tional questions for diversity management. In this case, the
objective is to develop inbred lines that have the ability to
generate good hybrids when making appropriate crosses.
As a consequence, a recurrent reciprocal selection (RRS)
firstly proposed by Comstock et al. (1949) is implemented.
Its objective is to select in parallel within two pools (namely,
heterotic groups) designed to yield cross-group highly per-
formant hybrids. In this context, a trade-off exists between
the complementarity among heterotic groups and the diver-
sity within groups (Duvick et al. 2004).

In public and private breeding programs, phenotypic and
genotypic data are stored over time and available for several
cycles of selection. These data can be used to get a proper
understanding of phenotypic and genomic changes associated
with past selection, which can be useful to best orientate next
breeding cycles. Phenotypic data over time allow to estimate
jointly the evolution of the genetic performance of breeding
pools. The evolution of genetic performance for a given trait
over several selection cycles is called the genetic trend. In
case of linear genetic trend, the genetic gain is estimated as
a linear regression of the mean genetic performance on year
(Eberhart 1964; Rutkoski 2018). Genetic trends in grain yield
among commercial maize hybrids have been estimated in
different environments and periods (Duvick 1984; Russell
1991; Duvick et al. 2004; Fischer et al. 2008). Nonetheless,
few studies aimed to estimate the realized genetic gain in
complementary breeding pools, which is of interest for breed-
ers to better allocate resources among pools and monitor their
effectiveness (Rutkoski 2018). In addition to the estimation
of genetic gain, phenotypic data over time allow estimating
the evolution of the additive genetic variance at each breed-
ing cycle. Several studies have estimated the evolution of the
additive genetic variance in breeding programs (Fischer et al.
2008) or selection experiments (Betran and Hallauer 1996;
Falke et al. 2007a) but none in private breeding programs.

Genetic markers based on deoxyribonucleic acid (DNA)
polymorphism (e.g., restriction fragment length poly-
morphism, RFLP; single sequence repeat, SSR or single
nucleotide polymorphism, SNP) have become more and
more accessible in most crops. When available along gen-
erations, genotypic data make it possible to follow the
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evolution of the genetic diversity and the breeding pools
structuring along breeding cycles. Labate et al. (1999) fol-
lowed the genetic diversity for 13 generations of breeding
in the Jowa’s recurrent reciprocal (RR) maize breeding pro-
gram using RFLP markers. Genetic diversity evolution in
private maize breeding programs has been analyzed using
low-density SSR markers (Feng et al. 2006). More recently,
using high-throughput genotyping information, i.e., SNP
markers, Gerke et al. (2015) observed a significant loss of
genetic diversity along with a differentiation of genetic pools
in Jowa’s RRS program.

Using both genotypic and phenotypic information ena-
bles one to jointly estimate components of genetic vari-
ance, accounting or not for covariance between QTLs (LD)
(Lehermeier et al. 2017). The effect of LD on additive
genetic variance has been mostly investigated using com-
puter simulations (Hospital and Chevalet 1996). In Falke
et al. (2007b), authors followed for several selection cycles
in biparental populations the genetic variance and the LD
between favorable alleles at detected QTLs using SSR
markers (Falke et al. 2007a). High-throughput genotyping
information with genomic selection models makes it pos-
sible to extend this approach at the genome-wide level and
to have a better estimation of LD effect on additive genetic
variance. A Markov chain Monte Carlo (MCMC) approach
coupled with a genome-wide regression has been proposed
to decompose the additive genetic variation into (1) a com-
ponent assuming linkage equilibrium (LE), called the addi-
tive genic variance, and (2) a deviation term accounting for
covariance between QTLs (LD) (Sorensen et al. 2001; de los
Campos et al. 2015; Lehermeier et al. 2017). So far it has
not been applied on a private breeding program for diversity
management purposes.

We investigated a North European early grain maize
hybrid breeding program as a case study to assess the use of
three sets of indicators to understand past selection events
and derive recommendations to manage breeding pools
regarding selection potential and genetic diversity. Firstly,
we applied two classical indicators based on phenotypic and
genotypic data, further referred as phenotypic indicators and
genotypic indicators, respectively, which inform about past
efficiency and future short-term tendencies. In phenotypic
indicators, we jointly analyzed the realized genetic gain and
the additive genetic variance at each generation. In genorypic
indicators, we followed the genome-wide and local genetic
diversity over time in complementary breeding pools.
Finally, in genomic indicators, we estimated the contribution
of each chromosome to the genetic variance and the portion
of it that is masked by selection induced LD between QTLs.
Based on results of genomic indicators, we suggested man-
agement strategies to improve future response to selection.
We start with a theoretical background section that reviews
the expected links between the different indicators, including
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considerations on Bulmer’s effect and distinction between
genetic and genic variance.

Theoretical background for proposed indicators

Let us consider a classical linear model where phenotypes
¥;,1 € [1,n] are determined by the genotype at Q quantita-
tive trait loci (QTL) x; = {x; }.j € [1, Q] with x; € {0;1;2}
being the reference allele content for md1v1dua] i at QTL
J. The n-dimensional vector of genotypes at QTL j,
x; = {x;},i € [1,n] can be further centered by the frequency
of the reference allele at QTL j(p;) as z; = x; — 2p;. Then the
phenotype of individual i can be modeled as:

Q
Vi=ll+zzlj/ﬂj+€p (1
=

where 4 is the intercept, f; is the allele substitution effect of
areference allele at a bxa]]ehc QTL j, Z | 2;iB; 18 the genetic
value of the individual i, ¢, is the environmental residual
term assumed to be independent draws from
N(0,62),Vi € [1,n]. Assuming that allele substitution
effects at QTLs are known, absence of dominance and
epistasis and orthogonality between additive genetic and
environmental effects, Eq. 1 leads to the following decom-
position of phenotypic variance:

Q

Z‘uﬂ

Jj=1

Var(y) = var( )+Var< Jedtd @

where o-j is the additive genetic variance that can be further
decomposed into (Lynch and Walsh 1999; de los Campos

et al. 2015):

2
O =

=0’ +d, %))
where o2 = ZQ Var(b,j)ﬁj2 is the additive genic variance
andd = z% Z -Cov(z;, 2 ) ;B depends on the covari-
ances between QTLs Note that Var(z,-j) stands for the vari-
ance of allelic contents at QTL j and Cov/(z;, z;) for the
covariance between QTL j and j'. The additive genic vari-
ance (o2) is the genetic variance expected in the absence of
gametic phase disequilibrium (linkage equilibrium, LE).
At a given generation ¢, the expected response to selec-
tion, i.c., genetic gain, in the next generation is determined
by Lush (1937):
(C)]

e+ 1) = u() = i)/ o2,

where u(r + 1) is the expected mean genetic performance in
the next generation, u(¢) is the mean genetic performance of
generation ¢, i is the selection intensity, A(¢) is the selection
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accuracy and ai(t) is the additive genetic variance in gen-
eration 7. In order to assess the past history of a breeding
population and the short-term expected evolution assuming
no changes in breeding practices, it is interesting to estimate
the mean and the additive genetic variance for several cycles
until the current generation (phenotypic indicators).
Considering a set of inbred lines and assuming that geno-
types at QTL are independent (LE), we can express the
expected additive genic variance as a function of genetic
diversity. We define the genetic diversity for a set of inbred
lines as the expected hetcrozygosity averaged on Q biallelic
QTLs (He, Nei 1978) A, = 5 3,2, 2p;(1 — p;). In a popula-
tion of inbred lines the varlance is doubled compared to a
population in Hardy—Weinberg equilibrium, so the variance
at locus j Var(z;) = 4p;(1 — p;). The genic variance that
does not take into account covariances between QTL can be
expressed as o2 = Y7 Var(z;) 57 = T2, 4p;(1 - p;) 2.
In practice, allele substitution effects are unknown and
commonly estimated in a linear regression model assuming
them to be random draws from a normal distribution
f~ N(O, ajl) (Meuwissen et al. 2001; VanRaden 2008;

Gianola et al. 2009). Following this framework, the expected
value for the additive genic variance can be derived as (Gia-
nola et al. 2009):

0
Elo,1 =E [Z 4p; (1 ‘/’j)ﬂf]
=1

0
=0 24,7_,.(1 - p;) = 20208,

j=1

5
where H, is the genetic diversity averaged on Q biallelic
QTLs defined previously and 07; the variance of allele sub-
stitution effect distribution. Assuming complete LE between
QTLs, i.e., the covariance term () in Eq. 3 is null, the addi-
tive genetic variance is equal to the additive genic variance.
Under this assumption, genome-wide genetic diversity at
causal loci (QTLs) is expected to be a proxy of the additive
genetic variance and therefore to the expected response to
selection. Consequently, it is of interest to evaluate the past
evolution of genetic diversity (genotypic indicators) jointly
with that of additive genetic variance.

The LE assumption between QTLs is not realistic when
there is selection, genetic drift or introgression (Gianola
et al. 2009) and the covariance component of the additive
genetic variance should be accounted for. The contribu-
tion of LD to the additive genetic variance is well known
in quantitative genetics (Hill and Robertson 1966; Bulmer
1971; Avery and Hill 1977; Gianola et al. 2009). The LD is
built up as the result of two opposite forces: selection that
generates LD between QTLs and recombination that tends
to break LD in every subsequent generation by recombina-
tion events until an equilibrium is reached. A positive LD
(d>0) implies that genetic variance is created by positive
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covariance between QTLs (i.e., coupling) and occurs under
a structuration of the population into subpopulations of
contrasted means (i.e., likely due to divergent selection or
recent admixture) (Felsenstein 1965). For instance, a posi-
tive d value was observed by Lehermeier et al. (2017) in
an Arabidopsis panel evaluated for flowering time, showing
strong evidence for diversifying selection. A negative LD
(d<0) implies that additive genic variance is partly hidden
by negative covariance between QTLs (i.e., repulsion), as
occurs under directional and stabilizing selection. In this
case, there is an interest to generate additive genetic vari-
ance (o3) by recombination. Efficiency of recombination to
break repulsion between QTLs will depend on the linkage
between QTLs (Lynch and Walsh 1999, chapter 16 and 26;
Hospital and Chevalet 1996) and the frequency of alternative
haplotypes. Consequently, a proper estimation of additive
genetic variance components (Eq. 3) jointly with an analysis
of genetic diversity (He) allows one to evaluate the interest
of recombination to unlock the potential response to selec-
tion (genomic indicators).

Materials and methods
Genetic material

We worked on a subset of a North European early grain
maize private breeding program from RAGT2n. This pro-
gram was organized around a Dent-Flint heterotic pattern
and aimed at improving grain yield (quintal per hectare, qx/
ha) performance and stability while keeping grain maturity
constant. Both groups were evaluated in the same network
of testing locations in the north of France and Germany from
2006 to 2016. In brief, each year new segregating recombi-
nant inbred lines (RILs: F4 to more advanced inbreds) or
doubled haploid (DH) lines were evaluated 3 years after the
biparental cross was made (namely, breeding start). Their
hybrid progeny with one representative line from the com-
plementary group (tester) was evaluated for | year in four
to six locations. Best performing lines (F6 and inbred lines
or DH lines) were then tested more extensively with several
testers and for several years. Lines considered in this study
were evaluated for 1-11 years on an average of 1.3 different
testers. Testers were running on average for 5 years, allowing
some bridges between years for hybrid value decomposi-
tion into its general combining ability (GCA) and specific
combining ability (SCA) components. To follow temporal
evolution of proposed indicators, we considered cohorts that
consisted in lines derived from breeding starts realized at a
given year within one heterotic group. We considered eleven
cohorts from 2003 to 2013 with an average of 316 and 272
lines in the Dent and Flint cohorts, respectively. The average
generation interval, i.e., average number of years between
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the creation of an inbred and that of its parents, was 5 years.
Commercial checks and most advanced material were evalu-
ated during several years, which makes it possible to obtain
estimates of mean performances and variance components
over cohorts (phenotypic indicators).

For genetic diversity analysis (genotypic indicators), only
parental inbred lines of breeding start crosses were consid-
ered. Parental inbred lines contributed on average to two
cohorts, leading to some overlap between cohorts in terms
of parents. Every parental inbred line was genotyped with
the MaizeSNP50 Illumina ® BeadChip (Ganal et al. 2011).
Only Panzea markers designed from 27 diverse founder lines
were used for diversity analysis to reduce SNP discovery
ascertainment bias (Gore et al. 2009). Further, only markers
that mapped on the B73 refgenV4 genome (Jiao et al. 2017),
presenting a call rate > 0.9, and a heterozygosity level < 0.15
were kept, resulting in 28,803 genome-wide SNPs used for
the analyses. Lines exhibiting a call rate > 0.8 and heterozy-
gosity level <0.10 were considered, representing, respec-
tively, 214 Dent and 111 Flint parental inbred lines. Missing
marker values were imputed using Beagle v4 (Browning and
Browning 2007).

The evaluation of the impact of LD and genetic diversity
on genetic variance (genomic indicators) was not applied on
temporal data but only on the six last Dent cohorts represent-
ing 1809 RILs or DH lines evaluated on Flint testers from
2011 to 2016 (i.e., cohorts 2008-2013) for which marker
data were available. These 1809 lines were genotyped with
a low-density array and imputed on 28,803 SNPs based on
parental genotypes using Beagle v4 (Browning and Brown-
ing 2007).

Phenotypic indicators: genetic gain and additive
genetic variance evolution

Linear genetic gain and intra-cohort additive genetic vari-
ance were estimated in each heterotic group using Eq. 6 fit-
ted by R-ASReml (Butler et al. 2009; R Core Team 2017):

Yijer = M+ E, + (1= 6;)Cj + 8;(T. + a1 + ay + 0155) +¢

cjer®

(6)
where Y, ., is the phenotype of the hybrid between line i
of cohort ¢ € [1, 13] and tester j evaluated in environment
e (Location X Year) and repetition r. u is the intercept, E,
is the environment e fixed effect, 6; is a dummy variable
equal to zero for checks and to one otherwise, Cj; is the cor-
responding check hybrid fixed effect, I', a fixed effect that
differently accounts for the cohort ¢ performance in Model
la and Model 1b (detailed hereinafter), a, ; ~ N(O, 6?) is
the GCA random effect of the tested line i within cohort
¢ considered as being independently distributed with an
intra-cohort specific variance ﬂf ;) is the tester j GCA
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fixed effect, 0,; ~ N (0, og) is the hybrid ij SCA random
effect. Finally, €;,;,, ~ N(O, 67 ) is the random residual error
assumed to be independent and identically distributed (IID).
In Model 1a, I, =ay, with a the linear regression slope of
performances on cohort’s year y, considered as numeric vari-
able. The estimated regression slope a was used to assess
linear genetic gain and its significance was estimated using
a Wald test conditionally to other fixed effects. To estimate
the intra-cohort GCA variance, i.e., Model 1b, I' is defined
as the fixed effect of cohort ¢ with cohort considered as cat-
egorical variable. The evolution of intra-cohort GCA vari-
ance was estimated assuming a linear regression of o7 on
cohort’s year and linear slope parameter significance was
estimated using a ¢ test. Further, the annual genetic gain
in units of initial genetic standard deviation was estimated
using Model 1a after scaling Y, ;,, by the intra-cohort genetic
standard deviation of the first cohort 6, _ (i.e., cohort 2003)
obtained in Model 1b.

Genotypic indicators: Patterns of diversity
and differentiation between pools

Due to limited number of parental lines per cohort, cohorts
were merged into 5 years periods that corresponded approxi-
mately to the interval between two generations of inbreds.
We considered periods as sliding windows with a 1-year
increment yielding 36—113 parental lines per period with
an average of 66 lines in each pool. Genetic diversity was
assessed by the expected heterozygosity (He) at each locus
Jj € [1,m] as He; = 2p;(1 — p;) (Nei 1978), where p; is the
frequency of the allele whose homozygous genotype is
coded as 2 at locus j and m=28,803 the total number of
loci. He was averaged chromosome-wide and genome-wide
and significance of the difference between two period means
was assessed using a paired 7 test.

Furthermore, the minor allele frequency (MAF) at locus
j was defined as MAF; = min {p;;1 - p;}. MAF was used
to detect nearly fixed chunks of SNPs, defined as regions of
at least ten successive SNPs presenting a MAF < (.05 and
covering more than 0.5 Mb. Such regions define chunks of
successive SNPs where inbred parental lines are expected
to be identical by descent (IBD), so that their within group
hybrid progeny is expected to be homozygous. We referred
to them as runs of expected homozygosity (ROHe), by anal-
ogy to the concept of runs of homozygosity increasingly
used in animal genetics (MacLeod et al. 2009; Peripolli et al.
2017). To our knowledge, there is no reference of its use in
hybrid plant breeding.

Differentiation between Flint and Dent pools was esti-
mated along the genome using a Fg index according to
Nei’s definition (Nei 1975). In pairwise comparison between
two pools of sizes n; and n,, and with allele frequencies p,;
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and p,; at a given locus j, the Fgp; was estimated and aver-
aged genome wide as:

n

1 ¢ 1 "l"z(l’ni _172,')2
Fop= = N Fep i = ‘ .
Tm le m /=Zl ("1P1_/ + ”21’2,‘)("1 +ny —npy — "sz,)

Genomic indicators: estimation of linkage
disequilibrium contribution to additive genetic
variance

We implemented a Bayesian chromosome partitioning on
the four last Dent cohorts in two stages. In the first stage,
we computed best linear unbiased estimators (BLUEs) of
the 1809 tested lines general combining ability (GCA) using
R-ASReml (Butler et al. 2009; R Core Team 2017) with the
following model:

Yie = u+Ey + (1-6;) C;

+8; (o + ay + 01 + 0V + 0V +0Y 1) (7
+ €

ijlyr»
where Yj;,, is the phenotype of the hybrid between line i and
tester j evaluated in environment /y (Location / X Year y)
and repetition r, u is the intercept, E,, is the environment ly
fixed effect, 9;; is a dummy variable etlual to zero for checks
and to one otherwise, Cj; is the corresponding check hybrid
performance fixed effect, a,; is the tested line i GCA fixed
effect, ay; is the tester j GCA fixed effect, 6,,; ~ N(0,032)is
the hybrid ij SCA random effect. 8Y,;, ~ N(0, 65 1year)
and 0Y,;, ~ N(0,05, 5 ven) 1€ the tested line i and
tester j GCAs by Year y random interaction effects, and
0Y 55, ~ N(0, 62 year ) i8 the hybrid ij SCA by Year y ran-
dom interaction effect. Finally, e, ~ N(0,6?) is the ran-
dom residual term. Every random effect was assumed IID.
In a second stage, to estimate the proportion of variance
explained by each chromosome, accounting or not for the
covariance between QTLs, we partitioned the variance of
estimated GCA (BLUEs) across chromosomes. Genome-
wide markers were partitioned into two sets corresponding,
respectively, to markers mapped on one chromosome and
markers mapped on the nine others as suggested by Jensen,
Su, and Madsen (2012)

5 (2)) o a(@)
a“=y+Zz,-jﬂj : +Z<'Uﬂj +€;,

JeQ, Jj€Q,

®

where @,; is the GCA of Dent line i estimated in Eq. 7,
z;=x;—2p; is the centered allele content of line i at locus j,
where x; is the genotype of line / at locus j coded as 0, 1, 2
and p; is the frequency of the reference allele (as defined for
genotypic indicators). /?J.(Q') and ﬂj(Ql) are the allele substitu-
tion effect of marker j in the partition 1 (Q,) and 2 (Q,) of
the markers, respectively. Marker effects are treated as inde-
pendent draws from a normal distribution with null mean
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and partition-specific marker effect variances o2, . and

P2

0'; @)y €~ N(0, 521 is the random vector of residugll t)erms
assumed IID. We implemented Eq. 8 in a Bayesian MCMC
setting (Sorensen et al. 2001; Lehermeier et al. 2017), using
the Bayesian ridge regression from the R function BGLR
(Pérez and de los Campos 2014). We considered default
parameters implemented in BGLR for the number of degrees
of freedom (df=35) of the scaled inverse-y? prior distribu-
tions. The scale parameters were set to correspond to a prior
heritability of each partition as estimated beforehand by
solving Eq. 8 using R-ASReml (Butler et al. 2009). The vari-
ances and covariance of genetic values of partitions Q, and
0, estimated at each MCMC post burn-in sample were aver-
aged and used to infer the additive genetic variances (ai),

referred as 6>, . and 6>, . and to infer the additive genetic
A(Q) A(0,)

covariance between @, and Q, 65 (o, o,) [method M2, defined
in Lehermeier et al. (2017)]. Additive genic variances of Q,
and Q, assuming LE between QTLs (s7) were estimated
using the posterior mean of marker effects variances 6-/:; @)

and 62 respectively [method M1, defined in Lehermeier

#(0.)
et al. (2017)]. Additive genic variances were referred as

6%, . and 6%, ., respectively. We used a total of 40,000
a(Q) a(0,)

iterations where the first 15,000 iterations were discarded as
burn-in. Every fifth sample was kept leading to 5000 sam-
ples used to estimate posterior mean and standard deviation
of variances 62, &3 and the covariance G(0,.0,) Following
Eq. 3 and using estimators described above, we approxi-
mated for a given partition Q, the amount of genic variance
captured by negative covariance between QTLs by the ratio
of additive genetic variance &/2\ @) on additive genic variance

52 This ratio was computed at each of the 5,000 MCMC

samples and based on these the posterior mean, namely

o2 .

a (Ql)

6>, /6> ., and the posterior standard deviation were
A()" "a(e))

estimated.

Results

Phenotypic indicators: joint evolution of genetic
performance and additive genetic variance

The genetic gain in trait units was highly significant
(p <107 in both pools and was higher in the Flint pool
(0.85 +0.08 gx/ha/year) than in the Dent pool (0.58 +0.07
qx/ha/year) (Table 1). After scaling on the first (i.e., cohort
2003) intra-cohort genetic standard deviation, the genetic
gain in standard deviation units was still higher in the Flint
pool (0.16 +0.02 sd/year) than in the Dent pool (0.13 +0.02
sd/year) (Table 1). The variance of intra-cohort GCA esti-
mated in Model 1b showed no significant evolution over
time in the Flint pool but its reduction was significant at a
10% risk level in the Dent pool (Tables 1, S1). The intra-
cohort additive genetic variance averaged over cohorts was
higher in the Flint pool (18.94 +11.06) than in the Dent pool
(9.68 +5.83) (Table 1).

Genotypic indicators: changes in genetic diversity
over time

Genome-wide genetic diversity was higher on average in the
Flint (0.276) than in the Dent pool (0.147). Genetic diver-
sity was nearly stable over time in the Flint pool while it
was depleted in the Dent pool (from 0.160 in 2003-2007
t0 0.136 in 2012-2016, Fig. 1, Table S2). This evolution of
genetic diversity was associated with that of the differentia-
tion between heterotic groups (Fst), which raised from 0.156
in 2003-2007 to 0.178 in 2012-2016 (Fig. 1, Table S2).
Considering only two extreme non-overlapping 7 years
periods, 2003-2009 and 2010-2016, we observed different
patterns for the evolution of genetic diversity between chro-
mosomes and heterotic groups (Fig. 2, Table S3). For sake
of simplicity, we focused on three chromosomes (3, 4, 6)
showing different behaviors. Chromosome 3, one of the most
diverse chromosomes in the Dent pool, showed a significant
increase in genetic diversity in the Dent pool (from 0.209 to
0.224) as well as a smaller, but still significant, increase in
the Flint pool (from 0.290 to 0.296) (Table S3). The other

Table 1 Genetic gain between two successive cohorts (Model 1a, Eq. 6) and intra-cohort additive genetic variance (GCA) evolution (Model 1b,

Eq. 6) of material generated from 2003 to 2013

Group Genetic gain in qx/ha/year  Genetic gain in units of genetic standard ~ Slope on intra-cohort GCA Mean of intra-cohort
(+se) deviation/year (+se) variance (+se) GCA variance (+se)

Dent 0.58%#* (+0.07) 0.13*** (+0.02) —1.00° (£0.48) 9.68 (+5.83)

Flint 0.85%#* (+0.08) 0.16%** (+£0.02) 0.14™ (x£1.11) 18.94 (+11.06)

Annual genetic gains are expressed in qx/ha/year and in units of genetic standard deviation in the first cohort 2003. Standard error of estimates

are given as (= se)

p values significance: *#%< 107 #¥<0.001; ¥<0.01; °°<0.05; °<0.1; “< 1
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Fig. 1 Evolution of intra-group genetic diversity (He, right axis) and
differentiation between heterotic groups (Fst, left axis) measured
on 5 years sliding windows with 1 year increment. 03-07 stands for
2003-2007

two chromosomes presented specific patterns of diversity
(Fig. 2, top panel). Chromosome 4 showed a low diversity
in the pericentromeric region in the Dent but not in the Flint

pool. This large region was enriched in new ROHe in the
second period (Fig. 2, bottom panel). In this second period,
ROHe covered about 43% of chromosome 4 physical length
compared to 10% in the first period (Table S4). While global
genetic diversity on chromosome 6 in Dent was significantly
reduced between periods (0.115-0.105), it showed a local
increase in frequency of originally rare alleles in the peri-
centromeric region (40-90 Mb). On the contrary, in the Flint
pool, chromosome 6 did not show a significant evolution of
diversity (0.311-0.312).

Genomic indicators: chromosome partitioning
of additive variances and genetic diversity

The total variance of grain yield GCA in the analyzed Dent
material was 55.111 (Table S5). Estimated additive genic
variance (62, M1) and genetic variance (62, M2) using Eq. 8
with a genome-wide marker set were, respectively,
27.399 +3.864 and 20.599 + 1.459 (Table S5). The genome-

wide ratio o3 /62 (0.761 £0.079) indicated that repulsion
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Fig.2 Genetic diversity (top panel) and distribution of ROHe (bot-
tom panel) along physical map. Top panel: Genetic diversity in Dent
pool (a) and in Flint pool (b) for chromosomes 3, 4, 6. Genetic diver-
sity 2003-2009 in blue full line and 2010-2016 in red dotted line.
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Centromeres are marked in bold on the abscissa. Bottom panel: Evo-
lution of ROHe in Dent pool (a) and in Flint pool (b) for chromo-
somes 3, 4, 6. Regions are colored regarding their evolution between
2003-2009 and 2010-2016
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between QTLs captured 23.9% of the additive genic vari-
ance. In chromosome partitioning, the estimated additive
genic variance (&3) was higher than the estimated additive
genetic variance (&f\) for all chromosomes (Table 2). We
also observed substantial differences in the contribution of
chromosomes to the total variance. For instance, regarding
&j, contribution of chromosome 3 (&f =9.147+2.820) was
about eight times superior to that of chromosome 4
(62=1.151+0.494). Considering 67, contribution of chro-
mosome 3 (&i =4.533 +£0.995) was approximately six times
that of chromosome 4 (63 =0.707 +0.292). In accordance
with the theoretical link between genetic diversity and addi-
tive genic variance (Eq. 5), a significant tendency at risk
level 10% (R*=0.306, p=0.097) was observed between
chromosome He and 62 explained by one chromosome, after
correction for chromosome length (Fig. S1). A significant
relationship at risk level 5% was observed for the additive
genetic variance &i (R*=0.427, p=0.040). The genetic
covariances &A(Q.-Q:) (method M2) between one chromo-
some (partition Q,) and the rest of the genome (partition Q)
ranged from —0.593 +0.682 (between chromosome 2 and
0,) to 0.810+0.442 (between chromosome 3 and Q,)
(Table 2). The ratio o7 /o2 varied over chromosomes with
an average value of 0.597 and an average standard deviation
of 0.166 (Table 2). We observed different extreme chromo-
somes for o3 /62 and He. Chromosome 10 showed a low
diversity (He=0.064) and a low o7 /62 (0.372£0.116).
Chromosome 8 also showed a low diversity (He=0.063) but
a higher 073 /62 (0.831 £0.300). For more diverse chromo-
somes, chromosome 5 (He =0.119) showed a low 6% /2
(0.523 +£0.120) while chromosome 2 (He =0.119) showed a
higher 67 /62 (0.647 +0.145).

Discussion

Here, we discuss the main results for each indicator, pro-
pose generalized interpretation grids and suggest decision
guidelines.

Phenotypic indicators: joint evolution of genetic
performance and additive genetic variance

Assuming complete additivity, estimations of genetic gain
in both breeding pools led to a total annual genetic gain at
the hybrid level of 1.43 gqx/ha/year. As a matter of com-
parison, Duvick (1984) estimated on released commercial
hybrids a genetic gain of 1.12 gx/ha/year from 1955 to
1980. More recently, Duvick et al. (2004) estimated on the
period 1930-2001 a total genetic gain of (.77 gqx/ha/year.
In Europe, Fischer et al. (2008) observed over 29 years of
European Flint X Dent breeding program at the University of
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Hohenheim a significant evolution of mean hybrid perfor-
mance of 1.70 gx/ha/year.

In this study, the additive genetic variance showed a
reduction (significant at a 10% risk level) in the Dent pool
but not in the Flint pool. The absence of a monotonic trend
toward a reduction of variance in the Flint pool is due to
genetic diversity introgression in 2011 and 2013 Flint
cohorts (Table S1). We decided to keep these years in the
evaluation since they reflected the recent breeding strategy
in the Flint pool, which contrasts with that of the Dent pool.
The lower mean intra-cohort additive genetic variance in
Dent (9.68 +5.83) compared to Flint (18.94 +11.06) may
explain the lower genetic gain observed in Dent, since simi-
lar selection intensities were applied in both pools. In the
Hohenheim University breeding program, Fischer et al.
(2008) observed neither a significant temporal evolution
of the GCA variance in the Flint or Dent pools, nor sig-
nificantly different mean variances between pools. These
findings reflect differences in breeding strategies and objec-
tives between the Hohenheim University breeding program
and the one analyzed in the present study, the Hohenheim
University germplasm being regularly enriched with new
germplasm (Fischer et al. 2008).

In this study, the Flint pool showed an increase in genetic
performance and a stable non-zero additive genetic variance
over one decade (Table 1). This situation reveals a sustain-
able breeding population with promising expected response
to selection. The introgression events in the Flint population
in 2011 and 2013 likely contributed to maintain the genetic
variance and long-term selection response. It can be advised
for this Flint population to keep managing existing genetic
diversity and/or introduce new original favorable alleles to
maintain long-term genetic gain while maximizing short-
term genetic gain. On the contrary, the Dent pool, showed an
increase in genetic performance and a reduction of additive
genetic variance over one decade (Table 1). Such a situation
will potentially lead to a depletion of the expected response
to selection and therefore genetic gain in a mid-long-term
future. Identification of relevant sources of diversity to
be introduced in the breeding pool may mitigate this risk.
This identification should consider the potential increase
in genetic diversity, the level of performance of introduced
accessions, as well as the maintenance of the complementa-
rity between heterotic groups.

The reduction in the additive genetic variance is inher-
ent to directional selection but its conversion into short and
long-term genetic gain can be optimized. Several approaches
to optimize parental cross-designs have been suggested
to this end. For instance, optimum contribution selection
approaches (Brisbane and Gibson 1995; Meuwissen 1997;
Woolliams et al. 2015; Akdemir and Sanchez 2016; Gorjanc
et al. 2018) aim to optimize the contribution of parents to
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the next generation to minimize the loss of diversity (i.e.,
inbreeding) while maximizing the short-term genetic gain.
In case of multi-objective selection, maintaining an appro-
priate level of diversity is even more critical (1) to ensure a
long-term genetic gain on several traits and (2) to be able to
select for emergent traits in changing environments. In this
context Akdemir et al. (2018) extended the optimal contribu-
tion to multi-objective selection.

Genotypic indicators: changes in genetic diversity
over time

Genome-wide markers make it possible to estimate genetic
diversity and therefore bring complementary elements to
the evolution of additive genetic variance. For practical rea-
sons we worked on the parental lines of the crosses involved
in each cohort but the analysis could be easily extended
to progeny if such genotypic data is available. The lower
genome-wide genetic diversity in the Dent pool compared
to the Flint pool is in contradiction with previous observa-
tions on maize panels assembling diversity from different
heterotic groups (Rincent et al. 2014). This can be explained
by the fact that the Dent pool analyzed here belongs to a
specific segment of Dent lines which is complementary
to Flint lines. It is known that the clite Dent germplasm
that has been introduced into Europe since the 1950s until
today to complement Flint germplasm presents a reduced
genetic basis compared to that of the total Dent gene pool
that also includes heterotic groups used in the corn belt and
Southern Europe (Inghelandt et al. 2010; personal commu-
nication Alain Charcosset). The steady temporal decrease
in genome-wide genetic diversity within the Dent pool of
parental lines is consistent with the reduction of GCA vari-
ance in the progeny (phenotypic indicators). Symmetrically,
in the Flint pool no significant tendency toward depletion
in genome-wide genetic diversity was observed. The intro-
gression of external diversity sources in cohorts 2011 and
2013 likely contributed to this steady genetic diversity. The
corresponding increase in differentiation between Dent and
Flint pools is the result of reciprocal selection that increases
the differentiation between pools (Feng et al. 2006; Gerke
et al. 2015) and minimizes the variation of SCA relative to
that of GCA (Reif et al. 2007; Fischer et al. 2009).

In addition to global trends, we observed that selection
increased the frequency of initially rare alleles in some
regions (e.g., chromosome 6 in Dent) and fixed alleles in
other regions (e.g., chromosome 4 in Dent). Regions with
an initially low diversity mainly presented a further decrease
in diversity in the next generations. As previously observed
by Gerke et al. (2015) in maize, such regions were mainly
located in low recombination pericentromeric regions (e.g.,
chromosome 4 in Dent, Fig. S2). We can suggest several
nonexclusive forces leading to regions with such long ROHe,
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which correspond to identical by descent (IBD) haplotypes.
Founder effects, known to be important in the European
Dent pool, can be a first explanation. Some ROHe might be
due to selection induced linkage drag in regions surrounding
causal genes. This assumption is supported by the ongoing
extension of low diversity regions, e.g., genome-wide aver-
age length of ROHe increased from 1.45 Mb (2003-2009)
to 2.46 Mb (2010-2016) in the Dent pool (Table S4). A
complementary explanation is an intense selection along
with a reduced effective population size that induces genetic
drift. It is difficult to distinguish the direct effect of selection
and its indirect effect through induced genetic drift. Based
on simulation results, Gerke et al. (2015) suggested that
changes in allele frequencies were mainly due to genetic
drift rather than selection on causal loci. This underlines the
importance of increasing the effective population size (i.e.,
He) to avoid the random loss of favorable alleles for both
main and secondary traits (e.g., emergent stress tolerance).
In theory, the effective population size can be estimated
from the rate of LD decay and recombination rate assuming
selective neutrality, close and panmictic populations (Weir
and Hill 1980; Hill 1981; Tenesa et al. 2007; Waples and
England 2011). In breeding populations, these assumptions
are likely violated, which limits the use of such an estimator.
However, a reduced effective population size is expected
to be associated with a reduced genetic diversity (He) and
higher linkage disequilibrium (Waples and England 2011).
For instance, Truntzler et al. (2012) observed that LD was
higher in a population of private maize dent lines compared
to a more diverse dent panel. Only few ROHe were observed
in Flint (Table S4) and few were overlapping with ROHe
observed in Dent (0.29%). This suggests that, in a given
region fixed in Dent, several complementary haplotypes are
segregating in Flint, which maintains genetic variations.
The identification of large regions with low genetic diver-
sity in the Dent pool raises the question of their enrichment
by external variability to select for favorable recombinants.

Genomic indicators: chromosome partitioning
of additive variance(s) and genetic diversity

Beyond estimating separately additive genetic variance and
genetic diversity, molecular markers enable to estimate com-
ponents of the additive genetic variance (Eq. 3). The propor-
tion of additive variance of a trait explained by regression
on markers has been mostly estimated using REML or a
Bayesian setting (Yang et al. 2010). However, as stressed in
de los Campos et al. (2015), the traditional definition of
genomic variance does not account explicitly for the contri-
bution of LD to genetic variance. They proposed an alterna-
tive MCMC approach to estimate both additive genic (¢2)
and additive genetic (¢3) variances explained by each chro-
mosome. Chromosome partitioning showed substantial
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variations in the contribution of chromosomes to the additive
genic and genetic variances. It revealed also a strong varia-
tion among chromosomes for the proportion of additive
genic variance captured by LD between QTLs (Table 2).
Further, in Eq. 8 the estimated additive genetic covariance
&A(Q|~Qz) between partitions Q, (i.e., tested chromosome) and
0, (i.e., rest of the genome) were small and mostly positive
(Table 2). These values suggested that the total M2 genetic
variance, which determines the potential response to selec-
tion, was partly due to positive covariance, i.e., coupling
between chromosomes. It means that on average individuals
that were performant on one chromosome were also perfor-
mant on the rest of the genome, except for chromosome 2
that showed a negative covariance with the rest of the
genome. Notice that these results should be interpreted with
care due to relatively high standard deviations of the poste-
rior distributions.

Following Eq. 3, in the case of directional and stabiliz-
ing selection, a low o3 /o2 ratio (bounded by 0) means that
a large amount of genic variance is hidden due to repul-
sion phase between QTLs. On the contrary, a high 62 /o2
ratio (bounded by 1 under directional selection) means that
genetic variance reflects directly genic variance. As breeders
only have a grip on additive genetic variance, it is interesting
to evaluate how much additive genic variance is currently
hidden by negative covariances and could be available under
linkage equilibrium. Considering sequentially the additive
genic variance (o?), and the ratio (o3 /67), we considered
three general situations (namely A to C, Table 3). If a chro-
mosome shows a high genic variance compared to others
(situation A and B), disregarding any other information, we
can conclude that long-term response to selection should
not be compromised. Considering in addition the informa-
tion provided by o3 /o2, we can distinguish two cases. When
ai o/ af is high (situation A), the genetic variance is expected
to be close to its maximum and there is no interest to favor
recombination. Selection pressure can likely be increased
on such a chromosome. Assuming o'f\ / of is low (situation
B), which can occur for a chromosome subjected to recent
selection, there is a potential for increasing genetic vari-
ance through recombination within the population. It can

be achieved by accounting for complementarity between
parents when defining the crossing design at each cycle.
Finally, a chromosome showing a low genic variance, what-
ever its af\ /0'3 ratio, has little potential for response to selec-
tion (situation C). Either maximum performance has been
reached or new favorable alleles should be introduced to
unlock response to selection on such a chromosome. Consid-
ering the illustration data set (Fig. 3), the genomic indicators
underlines the interest to enhance recombination on chromo-
some 10 and to broaden the genetic diversity at causal loci
in chromosomes 4 and 8 in the Dent pool. This observation
on chromosome 4 is consistent with results from genotypic
indicators.

The additive genic variance (¢2) has to be estimated using
a whole-genome regression model. Under the infinitesimal
model assumption, i.e., assuming that every locus has a
small effect, o> can be approximated by the genetic diversity
(He) (Eq. 5). In practice, we observed a low but significant
(R*=0.306, p =0.097) relationship between chromosome
additive genic variance af corrected for chromosome length
and its genetic diversity He (Fig. S1). This low relation-
ship can be explained by the deviation from the infinitesimal
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chromosome length (in Mega basepairs, Mbp) of ten chromosomes in
the Dent last cohorts (1809 lines). Values between the quantiles 0.3
and 0.7 are cross-hatched on both axes to distinguish the three situa-
tions in Table 3

Table 3 Decision tree using

D A——— . o2 (diversity at o1 /0? Situation  Proposed strategy
T causal loci)
ratio o} /o
High High (few genic A Increase or maintain current levels of selection intensity
variance hidden
by repulsion)
Low (lot of genic B Potential gain to favor recombination within breeding pool
variance hidden
by repulsion)
Low High or low C Introduce external genetic diversity
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Table 4 Summary of sets of indicators, required data and usage

Indicator set Data required

Usage

Phenotypic indicators

Joint temporal evolution of genetic performance
and additive genetic variance

Genotypic indicators

Genetic diversity and structuration between heter-
otic groups

Genomic indicators

Chromosome partitioning of variance, estimation
of selection induced LD contribution to genetic
variance

Phenotypic data over several cohorts

Genotypic data over several cohorts
(parents or progeny)

Phenotypic and genotypic data (can
be applied over several cohorts)

Assess the sustainability of a breeding population
and future potential response to selection

Enable to allocate efforts between populations

Assess the past evolution of genetic diversity
Define regions with critical lack of diversity (ROHe)

Allocate efforts between populations and genomic
regions

Define the optimal way to unlock potential response
to selection per chromosome

- Increase selection intensity
- Introgress genetic diversity
- And/or enhance recombination

model, resulting in the fact that the variance at neutral loci
does not exactly reflect the variance at causal loci. Note that
both the low He (genetic diversity) and the low aj (diversity
at causal loci) for chromosomes 4 and 8 in the Dent last
cohorts converge toward the importance to increase genetic
diversity of these chromosomes.

In practice, selection of favorable recombinants on spe-
cific chromosomes while maintaining favorable configura-
tions on others is not straightforward. Different approaches
can be considered, such as planning crosses based on the
molecular dissimilarity in the regions of interest, applying
foreground selection for the chromosome(s) where targeted
recombination events are desired and background selection
to maintain a uniform genetic background on remaining
chromosomes (Bernardo 2014, 2017). More recently, the
promise of new breeding technics such as genome editing
allow targeting and/or designing recombination events to
reveal hidden genic variance and increase genetic gain as
simulated in Gonen et al. (2017) or Bernardo (2017).

In this study, we partitioned the genome into chromo-
somes but Eq. 8 is defined in a general case. In theory, it is
possible to consider finer regions (Speed and Balding 2014;
Gusev et al. 2014). However, it might be computationally
intensive and potential non-orthogonality between parti-
tions might yield unreliable variance estimates. Also, we
focused on the last Dent cohorts for which all candidates
were genotyped. As this generation showed the lowest addi-
tive genetic variance, evaluating the temporal evolution of
the LD effect on additive genetic variance would be interest-
ing. For instance, using REML estimates of additive genetic
variance estimated in Flachenecker et al. (2006) and LD
between favorable alleles at QTLs, Falke et al. (2007b) did
not observe a long-term reduction of the additive genetic
variance due to negative LD. For the authors these results

2} Springer

32

supported the hypothesis that in maize recurrent selection
programs, LD generated by high intensity of selection is not
a limiting factor if an efficient recombination procedure is
employed during mate allocation.

Conclusion

Temporal series of phenotypic and genotypic data available
in breeding programs can be used to analyze the phenotypic
and genomic changes associated with past selection. This
provides a basis for managing the trade-off between genetic
diversity and short-term genetic gain. In this study, we
proposed to harness this information through three indica-
tors summarized in Table 4. The joint analysis of achieved
genetic gain and evolution of additive genetic variance (phe-
notypic indicators) assesses the past efficiency of selection
and the sustainability of the breeding population. Comple-
mentarily, the analysis of genetic diversity evolution along
the genome (genotypic indicators) can reveal local genomic
patterns indicative of past breeding strategies. The proposed
definition of ROHe enables to draw breeders’ attention on
populations likely requiring genetic diversity introgression
and to define regions that might gain to be enriched in diver-
sity. Finally, using molecular markers in a MCMC approach
(genomic indicators) enables to estimate to which extent the
additive genetic variance is affected by selection induced
linkage disequilibrium. It allows to propose fine scale strate-
gies to manage genetic diversity and to unlock the potential
response to selection (Bernardo 2017; Gonen et al. 2017).
Advances in genomic technologies promise to make it fea-
sible, affordable and highly beneficial. Proposed indica-
tors can easily be extended to other breeding programs and
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species, which are likely to show different results depending
on past choices and long-term strategies.
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Abstract

Key message Collaborative diversity panels and genomic prediction seem relevant to identify and harness genetic
resources for polygenic trait-specific enrichment of elite germplasms.

Abstract In plant breeding, genetic diversity is important to maintain the pace of genetic gain and the ability to respond to
new challenges in a context of climatic and social expectation changes. Many genetic resources are accessible to breeders
but cannot all be considered for broadening the genetic diversity of elite germplasm. This study presents the use of genomic
predictions trained on a collaborative diversity panel, which assembles genetic resources and elite lines, to identify resources
to enrich an elite germplasm. A maize collaborative panel (386 lines) was considered to estimate genome-wide marker effects.
Relevant predictive abilities (0.40-0.55) were observed on a large population of private elite materials, which supported
the interest of such a collaborative panel for diversity management perspectives. Grain-yield estimated marker effects were
used to select a donor that best complements an elite recipient at individual loci or haplotype segments, or that is expected
to give the best-performing progeny with the elite. Among existing and new criteria that were compared, some gave more
weight to the donor—elite complementarity than to the donor value, and appeared more adapted to long-term objective. We
extended this approach to the selection of a set of donors complementing an elite population. We defined a crossing plan
between identified donors and elite recipients. Our results illustrated how collaborative projects based on diversity panels
including both public resources and elite germplasm can contribute to a better characterization of genetic resources in view
of their use to enrich elite germplasm.

Introduction

Successful plant-breeding programs rely on balanced efforts
between short-term goals to develop competitive cultivars
and the maintenance of a broad genetic pool to guarantee
long-term progress. In practice, as newer lines and varieties
have been mainly derived from intercrosses of existing elite
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lines, genetic improvement has been accompanied by a nar-
rowing of the elite germplasm genetic diversity in several
crops (Jenkins 1978; Mikel and Dudley 2006; Rauf et al.
2010). For instance, Allier et al. (2019a) observed a signifi-
cant reduction in the genetic diversity over time in a private
maize breeding pool with chromosome regions showing
critical lack of genetic variation. These results supported
previous observations in different maize breeding programs
(Feng et al. 2006; Gerke et al. 2015). Low genetic diversity
may restrict breeding potential to address new constraints
related to climate change and changes in agronomical prac-
tices to respond to social demands (e.g., low input farming
Fess et al. 2011 for a review). In this context, harnessing
appropriate genetic resources to enhance the potential of
breeding programs is a key factor of long-term success.

A broad range of candidate genetic resources are available
to plant breeders. The following considerations are focused
on maize but can be generalized to many other plant spe-
cies. A maize breeder working for a given climatic zone has
access to a large amount of potential genetic resources that
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require more or less improvement for adaptation or perfor-
mance, i.e., pre-breeding, before being integrated into the
elite germplasm of interest. Considering first the closest to
this elite germplasm, original favorable alleles may be found
in elite breeding programs of the company which target other
environments, in competitor lines obtained from commercial
exchanges or in material derived from competitor hybrid cul-
tivars using reverse breeding (Smith et al. 2008). Secondly,
genetic variability can be accessed in US commercial inbred
lines with expired plant variety protection act (ex-PVPA).
Ex-PVPASs show about 20 years of genetic performance gap
compared to current elite material but have been identified
to present interesting genetic variability absent from cur-
rent elite material (Mikel and Dudley 2006; Nelson et al.
2008; Kurtz et al. 2016). Thirdly, genetic variability can be
accessed among and within landraces and the first inbred
lines that have been created in early steps of hybrid breeding.
Such genetic resources are maintained and are accessible in
collections. Several studies characterized the diversity avail-
able in maize landraces and derived lines (Rebourg et al.
2001; Gauthier et al. 2002; Gouesnard et al. 2017). Despite
a strong genetic performance gap accumulated since the
beginning of hybrid breeding 60 years ago, landraces have
been shown to represent interesting sources of adaptation
alleles that can be harnessed using doubled-haploid tech-
nology (Strigens et al. 2013; Hellin et al. 2014; Melchinger
et al. 2017; Bohm et al. 2017; Mayer et al. 2017; Brauner
et al. 2019). Finally, breeders can exploit the genetic vari-
ability present in exotic material and derived inbred lines
(Pollak and Salhuana 2001; Salhuana and Pollak 2006). This
last source of original alleles has been depicted in several
studies (e.g., Warburton et al. 2005; Wu et al. 2016) but
requires more pre-breeding investments for improvement
and adaptation to temperate conditions.

Regarding this large number of candidate materials, meth-
ods to predict the most interesting genetic resources to enrich
elite recipient(s) in new favorable alleles are needed. In case
of traits determined by major genes, causal variants can be
identified using genome-wide association studies (e.g., Mil-
let et al. 2016) and candidate genetic resources carrying the
favorable allele can be further introgressed into elite mate-
rial using backcross or gene pyramiding approaches (Servin
et al. 2004; Han et al. 2017). For polygenic traits enrich-
ment, i.e., the enrichment for a trait determined by a large
number of small effect loci, the identification of donors is
more complex and should account for genome-wide variants.
Genomic prediction (GP) has been widely implemented to
complement the expensive phenotyping of candidates in elite
breeding (Heslot et al. 2015; Crossa et al. 2017). In genomic
prediction, genome-wide molecular marker effects are esti-
mated using both phenotypes and genotypes on a training
population (TP) and are used to predict the performances
of genotyped individuals of the prediction population (PP)
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(Whittaker et al. 2000; Meuwissen et al. 2001). It has been
also recently shown that GP trained across a broad diver-
sity is promising to mine natural variation present in gene
banks: Triticum aestivum L. (Crossa et al. 2016) and Sor-
ghum bicolor L. (Yu et al. 2016) but also in DH libraries
from European flint maize landraces (Brauner et al. 2018).

The interest of genetic resources for polygenic trait
enrichment of an elite germplasm depends on the recipient
elite material considered. Therefore, one appealing strategy
is to calibrate prediction models on a population assembling
both types of material: genetic resources and elite material,
further referred to as collaborative diversity panel. The pub-
lic diversity component may include founders of breeding
pools, elite material recently released into public domain
(ex-PVPA) and public breeding material, whereas the pro-
prietary elite component would come from different private
partners’ elite breeding programs. The interest of using such
collaborative diversity panels relies on a shared investment
between partners, a broader diversity covered and potentially
enabling more accurate phenotyping for traits difficult or
expensive to measure in fields and that cannot be evaluated
in routine in breeding populations. Furthermore, the collabo-
rative combination of facilities and expertise improves the
identification and spreading of traits. To our knowledge, no
study investigated the interest of genomic prediction models
trained on collaborative diversity panels to identify genetic
resources to enrich an elite germplasm.

The identification of genetic resource(s) to complement
and enrich elite recipient(s) can be grounded on different
approaches proposed to select inbred parents based on paren-
tal performance and parental complementarity assessment.
For a given pair of parents, Dudley (1984, 1987) proposed
to subdivide biallelic quantitative trait loci (QTLs) into four
genotypic classes (I, J, K, and L) and count the number of
QTLs in each class (Table 1). Class I and class L correspond
to QTLs where donor and recipient both carry the favora-
ble and unfavorable allele, respectively. Class J and class
K correspond to QTLs where parents are polymorphic. In
the following, I, J, K, and L refer to the proportion of QTLs
in these classes. When considering a donor X elite recipient
cross, K (respectively J) is the proportion of QTLs for which
the donor carries the favorable (respectively unfavorable)

Table 1 Classes of loci according to Dudley (1984) and Bernardo
(2014). For each biallelic locus the favorable allele is denoted +and
the unfavorable allele —

Class of loci Recipient (Inbred) Donor (Inbred)
I +/+ +/+
J +/+ -/
K —/— +/+
L —/- -/
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allele and the recipient the alternative allele. In this context,
one is seeking the donor maximizing K, while minimizing J.
Initially, Dudley (1984, 1987) used phenotypic evaluations
of single cross and per se values of parents to measure heter-
osis as an indicator of the complementarity between parents
to estimate I, J, K and L. With high density genotyping and
assuming that each locus is in linkage with QTLs, genome-
wide estimated marker effects can replace phenotypic evalu-
ations to predict I, J, K, and L as done by Bernardo (2014).

However, individual estimated marker effects do not
directly reflect the effect of QTLs. In addition, the limited
number of recombination events while deriving the prog-
eny from donor X elite recipient crosses, i.e., haplotype block
inheritance, needs to be accounted for when evaluating the
complementarity between parents. It has been suggested to
integrate estimated marker effects on predefined haplotype
segments to identify the most complementary parents using
the optimal haploid value (OHV, Daetwyler et al. 2015). The
OHV of a biparental cross aims at predicting the best dou-
bled-haploid progeny that can be produced from this cross.
Goiffon et al. (2017) generalized the OHV to a population,
namely optimal population value (OPV), that predicts the
performance of the best possible doubled-haploid progeny
produced by a given population after an infinite number of
generations. In a donor identification context, OHV can be
considered to identify the donor that complements at best an
clite recipient and OPV to identify donor(s) that complement
at best an elite recipient population. However, neither OHV
nor OPV accounts for the recombination rate in donor X elite
recipient cross(es).

Large scale evaluation of the panel

Ll

Collaborative
panel

Germplasm
(publicly maintained and private)

Landraces

Private
partner’s
elites

Elite recipient(s)

Fig. 1 Tllustration of the suggested strategy to predict the interest of
potential donor(s) to complement clite recipient(s). Collaboration
between public and several private partners is presented on the top
part and internal application by a given private partner is presented
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PVPA\ Potential donors

The interest of a donor to complement an elite recipient
can be further evaluated using the usefulness criterion (UC,
Schnell and Utz 1975), that corresponds to the expected
genetic gain from the cross between the elite recipient and
the donor. The UC of a cross is defined as a sum of the
expected mean progeny performance u and the expected
genetic gain, considering that the best progeny is selected
with an intensity i, an accuracy h, for a trait-specific genetic
standard deviation in progeny o, resulting in UC = y + iho.
While u can be easily estimated as the mean of parental
performances, the estimation of progeny variance (o) is
not straightforward. Bernardo et al. (2006) estimated the
genetic variance using either phenotypic data or QTL detec-
tion results. Nonetheless, results based on QTL detection
were not convincing, likely illustrating the limits of progeny
variance estimates based on QTL detection approaches. To
overcome this limitation, genome-wide estimated marker
effects can be used to estimate the progeny variance. Ber-
nardo (2014) and Mohammadi et al. (2015) proposed to use
genome-wide estimated marker effects and stochastic simu-
lations of progeny to estimate progeny variance. Recently,
Lehermeier et al. (2017b) proposed an efficient algebraic
formula accounting for the recombination rate and linkage
disequilibrium between QTLs in parental lines to predict
progeny mean and variance for biparental crosses. This was
further extended to heterozygote parents and crosses imply-
ing up to four parents (Allier et al. 2019b).

In this study, we considered genome-wide marker effects
estimated on the maize “Amaizing” dent diversity panel
showing a continuum from old accessions to elite mate-
rial (Rio et al. 2019) to help the identification of donor(s)

N A o
&
* 5
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<
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Yrp =1ny, Bo+ XrpB+ € §
\ 4 @

N \ 4
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N complementarity E'
criterion 4
°
[+
¥ 3
=
[}

Selected donor(s) v

on the bottom part. The model training equation refers to Eq. 1. In
this study, we considered as potential donors the lines evaluated in
the collaborative panel, excluding the other partners’ elites
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to enrich an elite germplasm for grain yield (Fig. 1). We
first evaluated the predictive ability of the estimated marker
effects on a private elite breeding material covering 13 years
of breeding. We then applied different criteria based on the
estimated marker effects to evaluate the interest of candi-
date donors from the “Amaizing” dent panel. These criteria
account differently for candidate donor performance and
complementarity to the elite recipient. After considering
the selection of a single donor to enrich a given elite recipi-
ent, we extended the approach to the identification of a set
of donors to enrich an elite population. We further proposed
a crossing plan between identified donors and elite recipi-
ents to maximize the expected short-term genetic gain con-
sidering doubled-haploid progeny. These objectives were
addressed and illustrated sequentially considering as elite
material representative Iodent maize inbred lines from a pri-
vate breeding program (RAGT2n).

Materials and methods
Collaborative panel

We worked with the “Amaizing” dent panel presented in Rio
et al. (2019), composed of 389 dent maize lines genotyped
with the MaizeSNP50 Illumina® BeadChip (Ganal et al.
2011). After quality control (line call rate > 0.8, line het-
erozygosity rate <0.1, marker call rate > 0.9 and marker het-
erozygosity rate <0.15), 386 dent lines genotyped for 40,478
single nucleotide polymorphism markers (SNPs) were con-
sidered. The positions of the markers on a genetic map were
obtained by predicting genetic positions from physical posi-
tions (Jiao et al. 2017) using a spline-smoothing interpo-
lating procedure described in Bauer et al. (2013) and the
consensus dent genetic map of Giraud et al. (2014). In the
following, for all genetic material considered, the heterozy-
gous marker genotypes were set as missing genotypes and all
missing genotypes were imputed using Beagle v4 (Brown-
ing and Browning 2007, 2016). These 386 lines (training
population, TP) were evaluated for test-cross performances
on a single Flint tester (UHOO07) in seven locations for one
year. In this study we considered Lsmeans for each line over
the seven locations for grain yield standardized at 15% of
grain moisture (qx/ha), male flowering time and grain mois-
ture (Rio et al. 2019). This panel showed several interesting
properties regarding our objectives. The 386 dent lines were
from different origins corresponding to three main dent het-
erotic groups: 57 Iodent, 82 Stiff Stalk and 199 Other dent
public lines and 27 Iodent, 16 Stiff Stalk and 5 Other dent
private elite lines (Rio et al. 2019). Good prediction accu-
racies for within- and between-group genomic predictions
were obtained (Rio et al. 2019). The panel includes 338 lines
of public origin consisting (1) in founders of maize dent
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groups (Iodent, Stiff Stalk, and Other dent) (2) lines derived
from landraces (3) elite material released into public domain
(ex-PVPA) and (4) breeding material derived out of them by
public institutes (principally CSIC, CIAM, Hohenheim Uni-
versity and INRA). Ex-PVPA and derived material ensured
a continuum toward the current private elite germplasm rep-
resented by 48 lines provided by seven breeding companies
and also included in the panel.

Genomic prediction model

In order to estimate unbiased estimator of progeny variance
(PMYV; posterior mean variance) presented in Lehermeier
et al. (2017a,b), phenotypes and genotypes of the TP were
used to estimate genome-wide marker effects in a Bayesian
Ridge Regression implemented in BGLR (Pérez and de los
Campos 2014):

Yip=1, b+ Xpp+e, €))
where Y, is the n,-dimensional vector of phenotypes in the
TP with nyp = 386, 1, is a nyp-dimensional vector of ones,
f, is the TP mean performance, Xp is the [np X M]-dimen-
sional matrix of reference allele counts of the TP coded in 0
or 2, B is a M-dimensional vector of random marker effects
and e the nyp-dimensional vector of random residuals. In this
Bayesian model, identical and independent prior Gaussian
distributions were assigned to marker effects N(0, 1‘7;21) and
residual terms N(0,I5?). Scaled inverse y* distributions
were assigned to the marker effects and residual variances
(a; and o-f respectively). Hyperparameters for the scaled
inverse y? prior distributions were defined according to
default settings in BGLR, resulting in sparsely informative
priors. Samples from the posterior distributions were gener-
ated from a Markov chain Monte Carlo (MCMC) algorithm
implemented in BGLR. We used 20,000 iterations where the
first 5000 were discarded as burn-in. One-fifth of the sam-
ples were kept for posterior inference resulting in a total of
§=3000 samples. The M-dimensional vector of posterior
mean marker effects () was derived as the mean of marker
effects estimated in all samples of the thinned post burn-in
MCMC chain as: g = S"B(S)ls, where, B(s) isa[MxS
]-dimensional matrix of marker effect samples with the mth
row representing marker m (m € [1, M) and the sth column
the sample s (s € [1, S]). After fitting the model using the
whole TP (386 lines), we considered only the 338 lines of
public origin as candidate donors.

Elite material

To evaluate the relevance of the model and the TP to predict
the interest of a donor relatively to an elite population, we
firstly evaluated its predictive ability in an elite population of
594 inbred lines (prediction population, PP). The 594 inbred
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lines were generated between 2004 and 2016 in an early
Iodent grain maize breeding program (RAGT2n). Lines were
evaluated on private Flint testers for grain yield standard-
ized at 15% of grain moisture (qx/ha), male flowering time
and grain moisture (more details in File S1). From these
data, we estimated best linear unbiased estimators of their
general combining ability (GCA) (more details in File S1).
These lines were genotyped with the MaizeSNP50 Illumina®
BeadChip and the same set of SNPs as for the calibration set
was kept after imputation of missing values. Posterior mean
marker effects obtained from Eq. 1 were used to predict the
genomic estimated breeding values (GEBVs) of the PP. The
predictive ability was defined as the correlation between the
predicted GEBVs and estimated GCA for individuals in the
PP (more details in File S1). As an illustrative elite popula-
tion to be complemented by donors, we considered a total
of 10 elite lodent lines (named E1 to E10) from the same
breeding pool as the PP.

Criteria to select a single donor to enrich a unique
elite recipient

We compared different criteria for selecting a donor among
a population of candidate donors, which will most likely
complement a given elite recipient for a polygenic trait. Fol-
lowing Dudley (1987) and Bernardo (2014), we considered
the genotypic information and the sign of posterior mean
marker effects to estimate the proportions of QTLs I, J, K,
and L (Table 1) for each donor Xxelite recipient cross. We
ranked the donors depending on the fraction of new favora-
ble alleles initially absent from the elite recipient (criterion
K). In addition, we also considered the risk of bringing unfa-
vorable alleles using the ratio K/J.

To account for differences in marker effect estimates and
prevent consequences of the inaccuracy in estimations, one
can integrate individual marker effects across haplotype
segments. This enables to evaluate the complementarity of
parents on predefined haplotype segments instead of single
loci. The posterior mean marker effects are summed across
haplotypes to define the haplotypic estimated breeding value
matrix (HEBV):

HEBV = (XOINBT)Z, ®)

where X is the [NxM]-dimensional genotyping matrix coded
in 0 or 2 of the candidate donors and elite recipients, 1 is an
N-dimensional vector of ones, fi is the M-dimensional vector
of marker effects estimated in Eq. 1, o denotes the entry-wise
product. Z is a [M x nH}-dimensional design matrix of 0
and 1, where nH is the total number of haplotype segments
considered. Elements Z(j, h), Vj € [1, M], h € [1,nH] indi-
cate whether locus j is in haplotype segment i (Z(j, h) = 1)
or not (Z(j, h) = 0). It results that HEBV is an [N X nH]
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-dimensional matrix with N lines in rows and nH haplotype
segments in columns. Elements of HEBV are the estimated
genetic effects for each haplotype segment in each individ-
ual. In OHV defined by Daetwyler et al. (2015), nSeg non-
overlapping continuous segments per chromosome are con-
sidered in the design matrix Z resulting in HEBV°HY (Egq. 2).
The authors suggested to consider a relatively small number
of segments per chromosome (nSeg=1 to 3) to reflect the
small number of recombination events occurring per meio-
sis. However, when selecting donor X elite recipient crosses,
one is interested in evaluating the complementarity between
parents at a finer scale. Furthermore, recombination events
likely take place genome-wide rather than at fixed locations
defined by nSeg parameter and chromosome size. We con-
sidered different nSeg in OHV (nSeg=2 and nSeg=100).
We also extended the OHV to the criterion H considering
overlapping segments in the design matrix Z resulting in
HEBV# (Eq. 2). In the illustration, we considered haplotype
segments of 100 SNPs with a 20 SNPs increment. The OHV
and H of the cross between an inbred donor and an inbred
elite recipient are defined as:

nH

A ) max {HEBV
h=1

HEBV ey }» 3)

(donor./t)?

where HEBV stands for the matrix HEBVCHY or matrix
HEBV? for OHV or H criterion, respectively. The scaling
parameter A = number of loci per segment/number of loci
increment aims at correcting for the overlapping segments
and that on average a locus is taken into account several
times. Note that A = 1in case of OHV. With this, criteria H
and OHV are comparably scaled and represent an expecta-
tion of the performance of the best doubled-haploid line that
can be derived from the cross donor X elite recipient when
the number of progeny is sufficiently large and recombina-
tion events take place as assumed for the construction of
the HEBV matrix. The visualization of the HEBVH matrix
along the genome for a candidate donor and an elite recipi-
ent also enables to identify chromosomic regions where the
donor is more or less performant than the elite (as illustrated
in Fig. 2, with H(+) and H(—) regions, respectively). H(+)
regions can be further considered to target specific recom-
bination events in progeny of the cross donor X recipient (as
proposed by Bernardo 2017). Similarity, H(—) regions, i.e.,
risk of introgressing unfavorable alleles, can be considered
as a secondary criterion to distinguish candidate donors
showing similar H values.

Furthermore, we can account for recombination rate
(i.e., genetic position of markers) to evaluate the inter-
est of a donor using the usefulness criterion (UC) of the
cross donor x elite recipient. Considering the posterior
mean estimated marker effects (B), no dominance and no
epistasis, the progeny mean can be estimated as the mean of
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Fig.2 Visualization of the haploid estimated breeding value (HEBV)
with overlapping segments (100 SNP with 20 SNP increment) along
the genome considering elite line E6 and two donors (D1 and D2).
The x-axis represents the mean physical position of each haplotype
segments in Mbp. The centromere regions are represented in bold
on the x-axis. This illustration highlights genomic regions where the
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donor was more performant than the elite recipient, called H(+) (e.g..
centromeric region of chromosome 4 for D1), its opposite H(—) (e.g.,
chromosome 8: 0-30 Mbp for D1) and regions where both elite and
donor showed the same HEBV (e.g., centromeric region of chromo-
some 4 for D2)
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the parental breeding values /i = %(xgﬁ +xT B), where x,
and x, are the marker genotypes of donor and elite recipi-
ent, respectively. Using estimated marker effects in each
MCMC sample s € [1, S], the posterior mean progeny
variance accounting for linkage disequilibrium between
markers can be dcgichd(s?Ts pfg})oscd by Lehermeier et al.
(2017b): 6* = % >._, B~ ZB". The genotypic covariance
matrix between loci genotypes in progeny X is defined for
a population of DH lines derived from the FI plant follow-
ing Lehermeier et al. (2017b). This matrix relies on recom-
bination rates between markers that were estimated using
the Haldane function (Haldane 1919) and the genotype of
parental lines. The estimated UC of all donor X elite recipi-
ent crosses was computed considering 2 = 1 (i.e., assuming
within family selection accuracy of one) and different selec-
tion intensities (i):

UC = ji + iho. 4)
A selection of the 5% most performant progeny (i = 2.06)
was considered to represent a common selection intensity
(UC)). In addition, to give more weight to the progeny vari-
ance we considered an extreme selection of the 1073% most
performant progeny (i = 5.78) corresponding to UC, that
reflected a selection limit. We also considered the prog-
eny variance (62) as a criterion to identify donors, further
referred to as VarG.

Finally, we evaluated the ranking of 57 lodent candidate
donors to enrich the elite recipient depending on the cri-
teria used: genotypic classes of loci (K and K/J), H, OHV
(nSeg=2 or 100), usefulness criteria UC,, UC,, and VarG.
We considered two simpler criteria as benchmark: the GEBV
of donors (ngi), that selects donors based on their predicted
values, and the pairwise modified Roger’s distance between
donors and the elite recipient (MRD, Wright 1978), that
selects donors based on their originality compared to the
elite line.

Selection of a set of donors to enrich an elite
population

Instead of a single elite recipient, breeders might want to
enrich a whole elite population with new favorable alleles.
In this context, we accounted for within elite lines variation
to favor the selection of donors carrying favorable alleles
not present yet in the population of elite lines. We built an
iterative forward approach to identify a set of interesting
donors from a population PopD of k candidate inbred donors
(P, to Py;) complementing with favorable alleles a popula-
tion PopE of n recipient inbred lines (P;, to P,,). First we
computed HEBV for all donors and elite recipients. Simi-
larly as OHV (Daetwyler et al. 2015) has been extended to
a population with the OPV criterion (Goiffon et al. 2017),
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we extended the criterion H (Eq. 3) to consider a population
of elite recipients. For each donor in PopD, we computed:

{ (e} |

®)]
where A is the scaling parameter defined in Eq. 3. In this
context, H reflects the maximum doubled-haploid line per-
formance expected after several generations of intercross
and selection of the donor and elite lines in PopE. The donor
maximizing H was included in PopE for the next iteration.
We iterated this step to identify a set of donors comple-
menting elite recipients with most of the favorable haplo-
type segments available. The number of donors in the set
was determined considering the relative gain of introducing
a new donor, into the population PopE composed of elites
and previously selected donors. This rationale aimed at
balancing the gain and the costs of selecting an additional
donor. Finally, the usefulness criterion (UC,) of all possi-
ble crosses between the selected donors and the elite lines
{P)1,P\,, ..., P\, } was predicted. We selected for each donor
the donor X elite recipient cross maximizing UC,. An exem-
plary R script (R Core Team 2017) for the forward section of
donors and UC computation is provided in File S2. To illus-
trate defined criteria, we considered the 57 publicly avail-
able Iodent as diverse candidate donors and 10 private elite
Iodent recipients (E1 to E10). When considering a single
elite recipient, results are shown for the elite line E6 that is
representative of the ten private lines (E1 to E10).

nH
H=1 z max

h=1

HEBV#

(elite, )

HEBV/ max

(donor.h)” eliteePopE

Results
Relevance of the predictive model for the elite lines

We observed a positive correlation r=0.404 between the
performances predicted using marker effects estimated on
the collaborative panel and the observed performances
of 594 RAGT2n elite lines for grain yield (GY, Fig. 3a).
The estimated marker effects predicted partly the realized
genetic improvement over the 13 years considered. When
focusing on lines derived a same year, i.e., on average 46
lines for grain yield, the predictive ability became very vari-
able across years for all traits (e.g., r=—10.062 to r=0.722
for GY, with a mean value 0.305, File S1 Table S1). The
predictive ability of RAGT2n elite lines was slightly lower
when considering the training population without the 48
elite private lines (r=0.377, File S1 Table S1). For traits
under stabilizing selection such as male flowering time (MF)
or grain moisture (GM), the predictions were more accurate
with r=0.495 and r=0.550 (Fig. 3b, c), respectively.
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Criteria to select a single donor to enrich a unique
elite recipient

The 10 different criteria ranked the Iodent candidate donors
in different ways relatively to their interest to enrich the
Iodent elite recipient E6. The candidate donor performance
(GEBV) and the complementarity between candidate donor
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over new unfavorable alleles brought by the donor relatively
to E6, the optimal haploid value (OHV) (nSeg=2), and the
usefulness criterion with 5% selection pressure (UC,) of
the donor X E6 crosses was significantly positively corre-
lated with the donor GEBV (r=0.89, r=0.83 and r=0.94,
respectively). Interestingly, the haplotypic criterion H, the
OHV (nSeg = 100) and the usefulness criterion with 1078%
selection pressure (UC,) showed lower but still positive cor-
relations with almost all criteria and seemed to account for
both donor performance and distance with the elite recipient
(Fig. 4). When increasing the number of segments (nSeg)
in OHV from 2 to 100, i.e., considering more recombina-
tion events, the correlation between OHV and donor GEBV
decreased (r=0.83 to r=0.54), whereas the correlation
between OHV and MRD donor-E6 increased (r=0.13
to r=0.68). OHV (nSeg=100) also converged toward H
(r=0.99) and UC, (r=10.94) which assumed that somehow
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Fig.6 Results of the stepwise selection of a set of donors using the
criterion H. a Increase of H (Eq. 5) when selecting donors. The seven
donors selected are marked in the red box. b Crossing plan that maxi-

Selection of a set of donors to enrich an elite
population

Considering the complementarity within elite recipients El
to E10 during the forward selection of donors, we built up
an ideotype population carrying most favorable haplotypes.
The increase in the criterion H, i.e., the interest of select-
ing an additional donor, plateaued at around seven donors
(Fig. 6a) and identified the donors HM V5502, Lo1242, UH_
P084, F1819, PHG83, HMV5301, and NQ508. These donors
were already identified as part of the five best donors using
most of previously defined criteria to enrich E6 (Table 2).
For instance, the candidate HMV5502 was selected by eight
criteria, Lo1242 by seven criteria, NQ508 by six criteria and
HMV5301 by five criteria (Table 2). Alternatively, some
selected donors were rarely selected to enrich E6, such
as F1819 selected by criteria K and MRD and UH_P084
selected only by the criterion H (Table 2). Note that donors
maximizing the different criteria to enrich the recipient E6
were also selected in the forward approach, except UH_P072
that maximized criteria related to its genetic distance to E6
(Table 2). We further determined for each identified donor
the biparental cross with an elite recipient that maximized
the short-term genetic gain UC,. The resulting crossing plan
involved three elite lines with an intensive use of the best-
performing elite line E3 in five out of seven crosses (Fig. 6b).

Discussion
Interest of collaborative diversity panels

We estimated marker effects across the “Amaizing” maize
dent panel to identify genetic resources to enrich an elite
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mizes the UC, (Eq. 4) of crosses between each donor (red) with an
elite recipient (blue). Gray links represent the biparental donor X elite
recipient crosses

germplasm in new favorable alleles for a polygenic trait. This
approach relied on estimated marker effects that are assumed
to be predictive for genetic resources and to have a certain
predictive ability within the elite germplasm considered. It has
been shown by cross-validations that marker effects estimated
in this panel on a mixture of several dent groups predicted
accurately individuals from one specific group (Rio et al.
2019). The same study also showed that prediction models
trained over materials developed by public institutes could pre-
dict variation across the set of private elite lines obtained by
different partner companies. In the present study, we observed
that estimated marker effects were able to predict main differ-
ences in a larger serie of 594 RAGT elite lodent lines covering
13 years of breeding for grain yield (r=0.404, Fig. 3a). Note
that the observed predictive ability was quite high consider-
ing (1) the low heritability in the PP (GY, \/ﬁ =0.347; MF,

n2=0.519; GM, /A2 =0.681, File S1 Table S1) and (2) that
the tester and locations used to evaluate the TP differed from
those used to evaluate the PP. When considering only lines
generated the same year, i.e., on average 46 lines for grain
yield, predictive ability became very variable across years for
all traits (e.g., GY, r=—0.062 to 0.722, File S1 Table S1).
When excluding the elite private material (48 lines) from the
training population, we observed only a slight loss of accu-
racy for grain yield (r=0.404 to 0.377, File S1 Table S1) and
small changes for male flowering time (r=0.495 to 0.509, File
S1 Table S1) and grain moisture (r=0.550 to 0.541, File Sl
Table S1). These results may be explained by (1) the broad
diversity covered by the public lines including lines directly
derived from landraces, old elite material (ex-PVPA) and pub-
lic breeding material and (2) the small fraction of elite private
material in the panel (48 out of 386 lines). Despite predictions
do not seem accurate enough for breeding perspectives within
a given year, the “Amaizing” dent panel showed a stability
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in prediction efficiency over larger time trends and material
origins that appears promising to address the identification of
donors complementary to elite material.

Criteria to select a single donor to enrich a unique
elite recipient

The interest of a donor to enrich a specific recipient elite line
relies on a balance between its genetic value, which deter-
mines the expected mean performance of the progeny, and
its originality at QTLs, which contributes to the expected
long-term genetic progress. Several criteria have been pro-
posed to identify crosses between inbred lines based on the
complementarity between parents at individual loci (Dudley
1984, 1987; Bernardo 2014), the complementarity between
parents at haplotype segments (Daetwyler et al. 2015; Goif-
fon et al. 2017) and based on the expected progeny distri-
bution (Schnell and Utz 1975; Bernardo 2014; Lehermeier
et al. 2017b) that we applied in the context of donor X elite
recipient crosses using genome-wide estimated marker
effects. We evaluated their ability to account for donor per-
formance and originality compare to a given elite recipient
and discussed their interest depending on short- or long-term
objectives.

Considering the Iodent line E6 as the elite recipient,
we observed a linear tendency between the proportion of
loci K (favorable allele in donor but not in recipient) and
J (favorable allele in recipient but not in donor) for Iodent
donors (Fig. 7). This linear tendency was related to the dis-
tance between donor and recipient E6 (r(K, MRD)=0.94,
Fig. 4), highlighting that, in this case, increasing the num-
ber of original favorable alleles generally comes at the
cost of an increase in unfavorable alleles. This observation
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Fig.7 Prediction of the percentage of loci in dissimilarity genotypic
classes at loci K (donor +/+, elite —/—) and J (donor —/—, elite +/+)
for every donorxE6 pair. All 338 dent candidate donors are pre-
sented with a color depending on their heterotic group. The bisector
line is shown as red dashed line
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is in line with the negative correlation between the per-
formance of the Iodent donors (GEBV) and the genetic
distance donors—E6 (MRD) likely driven by the fact that
E6 is an elite line. Interestingly, this trend was less clear
when considering donors from other heterotic groups than
Iodent and especially the “Other dent” group (Fig. 7).
Maximizing the percentage of loci in class K (i.e., the
number of favorable alleles brought by the donor and not
present in the elite line) yielded the selection of donors
from non lodent groups and specifically some Stiff Stalk
lines appeared to be promising for improving the Iodent
line E6 (Fig. 7). Furthermore, the heterotic group called
“Other dent” appeared to have an excess of unfavorable
alleles (class J) likely due to a large extent of old lines that
predate the definition of the Iodent and Stiff Stalk groups
(Rio et al. 2019). In practice, the ratio K/J was inferior to
one for most of lodent donors (Fig. 7) showing that line
E6 was expected to carry more favorable alleles than most
donors, consistently with the fact that E6 was more recent.

Whereas previous criteria were based on individual
markers, criteria OHV and H addressed donor-recipient
complementarity based on haplotype segments defined
by splitting chromosomes into continuous segments or
overlapping segments, respectively. Small haplotype seg-
ments consider a high number of recombination events,
i.e., assume implicitly numerous intercross generations.
In this sense, the optimal haplotype segment parameters
depend on the introgression objectives, i.e., short- or long-
term gain. Increasing nSeg in OHV (nSeg=100), i.e.,
assuming more recombination events, accounted more for
donor distance to elite recipient compared to donor per-
formance and converged toward the criterion H (r=0.99,
Fig. 4). Note that, in criterion H, haplotype segments have
been defined using a fixed number of markers rather than a
predefined physical or genetic window size. This is justi-
fied as the MaizeSNP50 Illumina® BeadChip (Ganal et al.
2011) has been defined to reflect the density in genes, but
may have to be adjusted for different genotyping tools.
Haplotype segments could also account for recombination
rates by considering genetic distances which would yield
smaller haplotypes in recombination hotspots and larger
haplotypes in recombination coldspots. Alternatively, one
could focus on specific regions of interest (e.g., low diver-
sity regions in elites as identified in Gerke et al. (2015) and
Allier et al. (2019a).

One can further refine the prediction of the complemen-
tarity between a donor and an elite recipient for a polygenic
trait by accounting for the recombination frequency and link-
age disequilibrium between markers. This can be achieved
by considering the progeny variance (VarG) in usefulness
criterion (UC). When considering a selection intensity that
is common for elite breeding (i=2.06), UC, tended to select
the most performant donor, which is interesting at short term,
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but gives a very limited weight to the expected response to
selection, i.e., progeny variance (r(UC,, GEBV)=0.94 and
r(UC,, VarG)=0.05, Figs. 4, 5). On the contrary, consider-
ing an extreme selection intensity (i=5.78), UC, accounted
more for the donor X recipient progeny variance, i.e., donor
originality (r(UC,, GEBV)=0.60 and r(UC,, VarG) =0.58,
Figs. 4, 5). In case of UC, the higher selection intensity (i)
the more importance is given to the progeny variance, i.e.,
somehow to longer-term gain.

In a nutshell, the comparison of tested criteria with donor
performances (GEBV) and originality (MRD donor-recipi-
ent) enabled to identify three main groups of correlated
criteria for the ranking of Iodent donors (Fig. 4): (1) UC,,
OHV (nSeg=2) and the ratio K/J that correlated well with
the performance of the donor (GEBV) (2) the VarG and the
proportion K that correlated well with the genetic distance
donor-elite recipient (MRD) and (3) the three criteria H,
OHV (nSeg=100) and UC, that balanced the performance
and the originality of the donor. This clustering was also
consistent with the best donors identified by the different
criteria (Table 2) except for OHV (nSeg=2). This illustrates
the use of different criteria knowing that the optimal criteria
depends on the objectives. As a rule of thumb, if one is inter-
ested in the short-term gain expected from introgressing the
donor into the elite recipient one might consider OHV with
few and large haplotypes per chromosomes, as suggested
in Daetwyler et al. (2015), or UC with a selection intensity
common in breeding (5% selected progeny in our case). On
the contrary, if one is more interested in the long-term gain
expected from introgressing the donor into the elite recipi-
ent, one might consider criteria accounting more for the
complementarity donor—recipient such as H and OHV with
smaller haplotype segments or UC with a higher selection
intensity. Finally, in genetic diversity conservation program
with no trait improvement objective, one might just want to
maximize progeny variance (VarG) if one trait is of interest,
or the MRD donor-recipient in the absence of trait-specific
considerations.

Selection of a set of donors to enrich an elite
population

In practice one may want to enrich a population of elite
lines with new favorable alleles from different donors. To
build a population mixing elites and donors in which most
of the favorable alleles are segregating requires that selected
donors bring new favorable alleles absent in elite material
and that different donors bring different favorable alleles.
The forward selection of donors based on the criterion H
considers the complementarity between donors to comple-
ment at best the elite population. Using the forward selection
of donors based on the extension of H criterion to popula-
tions (Eq. 5), we identified a set of seven donors. Some of
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these selected donors were also selected to enrich the elite
line E6 (HMV5502, HMV 5301, NQ508, Table 2) and oth-
ers (Lo1242, UH_P084, F1819, PHGS83) were in the top
five donors for at least one criteria (Table 2). These results
suggest that the forward selection approach identified donors
covering different criteria previously described considering
the elite E6, which was representative of the elite population
El to E10. We further proposed a crossing plan between the
identified donors and elite recipients. This proposal consid-
ers only one generation of selection in biparental crosses,
which is likely not optimal in view of longer-term objectives
to pyramid at best the favorable alleles. In case of highly
polygenic traits considered in this study, the extension of
UC to complex multi-parental crosses, such as suggested in
Allier et al. (2019b) for four-way crosses, might be of inter-
est but its extension to more complex crosses was not in the
scope of this study. In case of a limited number of favora-
ble alleles, Han et al. (2017) proposed the predicted cross
value (PCV) to identify the biparental cross maximizing
the likelihood of pyramiding major favorable alleles from a
donor into a given recipient. As suggested by the authors, the
extension of PCV to multiple donors would be challenging
but useful here.

Practical implementation in maize breeding

In maize hybrid breeding, lines are generally evaluated first
by their test-cross performance, which is the performance
of the hybrid between the line and a tester line from a com-
plementary heterotic group. In a second step, performance
evaluation implies to use several testers from the comple-
mentary heterotic group to differentiate the general com-
bining abilities (GCAs) of the tested lines with the testers
from the specific combining ability (SCA) that is peculiar
to the interaction line X tester. In the “Amaizing” dent diver-
sity panel, donors have been tested on a single Flint tester
which does not allow to separate GCA and SCA for donors.
As donor alleles are evaluated in combination with alleles
of the tester, the tester should reflect the heterotic pattern
designed in the elite breeding program. Otherwise, the inter-
est of identified donors might be biased with respect to the
breeding objective. In particular, due to inbreeding depres-
sion, the use of a tester related to part of the materials that
are evaluated may lead to an underestimation of their poten-
tial for producing hybrids with unrelated materials (Lariepe
et al. 2017). In this study, this risk can be considered as
minor because the Flint-Todent pattern is common for early
maize breeding in Europe and UHOO07 is highly distant from
all tested lines. The expansion of the identification of donors
to all dent groups suggested the interest of Stiff Stalks to
enrich and complement Iodent lines evaluated against a Flint
tester. However, the introgression of genomic regions from a
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third heterotic group (here Stiff Stalk) into one (here Iodent)
of the two heterotic groups usually considered in this cli-
matic zone (here Flint-Iodent) can complicate the future
exchanges of genetic material within the breeding programs
addressing warmer climatic zones and which work with the
classical Stiff Stalk—Ilodent heterotic pattern. Consequently,
we advise to consider an additional constraint on donor local
origin characteristics depending on private partner heterotic
group management strategies.

We should also warn at this stage that despite all material
in the “Amaizing” panel was screened for early to mid-flow-
ering time, part of the interest of some donors for grain yield
may be associated with late flowering, i.e., long growth cycle
leading to high grain yield (e.g., HMV5502 and HMV5301
that outperform E6). This could be accounted for by cor-
recting the grain yield by the grain moisture at harvest. We
presented an approach based on a single trait of economic
interest, but other donor traits or characteristics can be
accounted for. For instance, selected donors are also likely
bringing some agronomic flaws such as root or stalk lodging
(Oyervides-Garcia et al. 1985) or, on the contrary, second-
ary interesting traits such as drought tolerance (Millet et al.
2016), quality or biotic stress resistance. If phenotypes are
available for these traits we can consider trait indexes or to
use the multivariate formulation of the usefulness criterion.

Further investigations on collaborative diversity
panels

Genomic prediction models calibrated on the “Amaizing”
dent collaborative diversity panel showed promising predic-
tive ability on the elite material considered, supporting the
pertinence of comparing different criteria of donor selec-
tion based on genomic predictions. Further evaluation of the
predictive ability would be interesting on other elite mate-
rial, along with the evaluation of the accuracy of described
criteria to rank donors. On the donor side, not all available
genetic resources can be evaluated within a training panel
and new candidates (e.g., ex-PVPA, Kurtz et al. 2016) are
released every year with only little available information,
genomic prediction could be helpful to predict the missing
information for these newly released lines to help breeders
identifying the most appropriate ones. This strategy is in
line with that described by Yu et al. (2016) and Crossa et al.
(2016) to better harness genetic diversity contained in large
gene banks. For instance, it would be of interest to predict
the flowering time to target the right testing environment and
recipient breeding pool. However, the predictive ability for
these external unphenotyped genetic resources also needs
to be further studied.

Our results suggested the interest of collaborative panels
covering a continuum of the genetic diversity from founders
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of main breeding pools to current elite private material for
genetic resource identification and introgression into elite
germplasm. We believe that the collaboration among aca-
demic research centers, genetic collections and private
breeders can help harnessing genetic resources to optimize
and fasten the response to new agricultural and societal chal-
lenges in several species. Collaborative projects in maize and
other species are good opportunities to efficiently investigate
these assumptions.
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ABSTRACT Predicting the usefulness of crosses in terms of expected genetic gain and genetic diversity is
of interest to secure performance in the progeny and to maintain long-term genetic gain in plant breeding.
A wide range of crossing schemes are possible including large biparental crosses, backcrosses, four-way
crosses, and synthetic populations. In silico progeny simulations together with genome-based prediction of
quantitative traits can be used to guide mating decisions. However, the large number of multi-parental
combinations can hinder the use of simulations in practice. Analytical solutions have been proposed re-
cently to predict the distribution of a quantitative trait in the progeny of biparental crosses using information
of recombination frequency and linkage disequilibrium between loci. Here, we extend this approach to
obtain the progeny distribution of more complex crosses including two to four parents. Considering agro-
nomic traits and parental genome contribution as jointly multivariate normally distributed traits, the useful-
ness criterion parental contribution (UCPC) enables to (i) evaluate the expected genetic gain for agronomic
traits, and at the same time (i) evaluate parental genome contributions to the selected fraction of progeny.
We validate and illustrate UCPC in the context of multiple allele introgression from a donor into one or
several elite recipients in maize (Zea mays L.). Recommendations regarding the interest of two-way, three-
way, and backcrosses were derived depending on the donor performance. We believe that the computa-
tionally efficient UCPC approach can be useful for mate selection and allocation in many plant and animal
breeding contexts.

Allocation of resources is a key factor of success in plant and animal
breeding. Ateach selection cycle, breeders are facing the choice of crosses
to generate the genetic variation on which selection will act at the next
generation. In case of limited genetic variation for targeted traits, the
introduction of favorablealleles from donors to elite material is necessary
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to ensure long term genetic gain. Several approaches have been pro-
posed to introgress superior quantitative trait locus (QTL) alleles
from a donor into a recipient. In case of a single desirable allele, it
can be accomplished using molecular assisted introgression (Visscher
et al. 1996; Frisch et al. 1999). In case of multiple desirable alleles, gene
pyramiding strategies have been proposed (Hospital and Charcosset
1997; Charmet et al. 1999; Servin et al. 2004). More recently, Han
et al. (2017) proposed the predicted cross value (PCV) to select at each
generation crosses that maximize the likelihood of pyramiding desir-
able alleles in their progeny. For quantitative traits implying numer-
ous QTL with small individual effects, genomic selection has been
proposed to fasten the introgression of exotic alleles into elite
germplasm (Bernardo 2009) and to harness polygenic variation
from genetic resources (Gorjanc et al. 2016) using two-way crosses
or backcrosses. However, plant breeders are not only considering
biparental crosses such as two-way crosses or backcrosses but also
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multi-parental crosses including three-way crosses, four-way crosses
or synthetic populations (Gallais 1990; Schopp et al. 2017). Crosses
implying several parental lines are highly interesting for breeders to
exploit at best the genetic diversity underlying one or several traits.
Beyond fastening the introgression of genetic resources into elite
germplasm, genomic selection could be used to predict the interest
of a multi-parental cross involving one or several donors and recip-
ients. Among possible crosses, the identification of those that secure
the performance in progeny and maximize the genome contribu-
tion of donors to the selected progeny is essential for increasing or
maintaining genetic gain and diversity of an elite population.

The interest of a cross for a given quantitative trait can be defined
using the usefulness criterion (Schnell and Utz 1975) that is de-
termined by its expected genetic mean (w) and genetic gain (iho):
UC = i+ i h o, where o is the progeny genetic standard deviation.
The selection intensity (i) depends on the selection pressure and the
selection accuracy (h) can be assumed to be one when selecting on
genotypic effects (Zhong and Jannink 2007). While u can be easily
predicted for different crossing schemes by the weighted average of
parental values, the difficulty to have a good prediction of progeny
variance (o) hindered the use of UC in favor of simpler criteria (for
a recent review on different criteria, see Mohammadi et al. 2015).
Bernardo et al. (2006) suggested to predict the progeny variance of
a given population using genotypic data of its progenitors and quan-
titative trait loci (QTL) effect estimates, assuming unlinked QTL.
Zhong and Jannink (2007) extended this concept to linked loci. With
the availability of high-density genotyping, it has been proposed to
predict the progeny variance using in silico simulations of progeny
and genome-wide marker effects (Iwata et al. 2013; Bernardo 2014;
Lian et al. 2015; Mohammadi et al. 2015). However, the geometrically
increasing number of cross combinations possible for n parents makes
the testing of all crosses computationally intensive. For instance, with
only n = 50 potential parents, a total of C} = @ = 1,225 genet-
ically different two-way crosses can be formed. This number increases
by a factor of n when crossing all the possible two-way crosses to the
n different parents, so that nCj = 61,250 three-way crosses and
backcrosses are possible. Recently, Lehermeier et al. (2017b) de-
rived algebraic formulas to predict for a single trait the genetic
variance of doubled haploid (DH) or recombinant inbred line
(RIL) progeny derived from two-way crosses, using information
of recombination frequency and linkage disequilibrium in paren-
tal lines. These algebraic formulas have not been extended so far
to multi-parental crosses, hindering the prediction of the interest
of such crosses.

While the expected genetic gain (UC) is a meaningful measure of the
interest of a cross for breeding, it does not account for the parental
genome contributions to the selected fraction of progeny that determine
the genetic diversity in the next generation. Parental genome contribu-
tion to unselected progeny has been studied for several years and is of
specific interest in breeding for donor introduction and to manage long
term genetic gain and inbreeding rate (Hill 1993; Bijma 2000; Woolliams
et al. 2015). Hill (1993) derived the variance of the non-recurrent parent
genome contribution to heterozygous backcross individuals in cattle.
Wang and Bernardo (2000) formulated the variance of parental ge-
nome contribution to F2 and backcross plant progeny considering a
finite number of loci. Frisch and Melchinger (2007) extended this
approach to a continuous integration over loci and showed that a
normal distribution approximated well parental genome contribution
obtained from computer simulations. Also empirical data on pairs of
human full-sibs confirmed that parental genome contributions, i.e.,
additive relationship, can be considered as normally distributed
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around the expected value of 0.5 (Visscher et al. 2006; Visscher 2009).
All these studies considered the parental genome contribution distribu-
tion in unselected progeny. However, to control parental contribution
during polygenic traits introgression, it is of interest to predict parental
genome contribution after selection for quantitative traits.

In this study, we develop a multivariate approach called usefulness
criterion parental contribution (UCPC) to evaluate the interest of a
multi-parental cross implying a donor line and one or several elite
recipients based on the expected genetic gain (UC) and the diversity
(parental contributions, PC) in the selected progeny. We extend here
the rational given by Lehermeier et al. (2017b) for two important
aspects. We address the prediction of progeny variance for multi-
parental crosses implying two to four parents and we consider the
parental contribution as an additional quantitative trait. The orig-
inality of this approach is that it uses derivations of the prediction
of progeny variance in multi-parental crosses implying up to four
parents to jointly predict (i) the performance of the next generation
using the usefulness criterion and (ii) the parental contributions to
the selected fraction of progeny, which to our knowledge has not
been investigated so far. We illustrate the use of UCPC in the
context of external genetic resources introgression into elite mate-
rial considering the specific case of a unique donor that is crossed
to one or several elite recipients. We address the type of multi-
parental cross that should be preferred among two-way crosses,
three-way crosses or backcrosses in order to maximize genetic gain
while introgressing donor alleles in the elite population within one
selection cycle.

MATERIALS AND METHODS

Application example: breeding context

We assumed a generic plant breeding population of fully homozygote
inbred lines genotyped for biallelic single nucleotide polymorphism
(SNP) markers with known positions. We considered a quantitative
agronomic trait (e.g., grain yield) implying p QTL with known
additive effects and with positions sampled among the SNP marker
positions. Further, we considered that the breeding population is an
elite population that should be enriched with several alleles from a
donor without a priori knowledge on major QTL to be introgressed.
We assumed a donor line (D) has been identified and should be
crossed with lines from the elite population (e.g., E, and E,) in
order to obtain high-performing progeny that combine donor fa-
vorable alleles in a performing elite background. This donor line
can vary in its performance level and its diversity relative to the elite
population.

In this context, we aimed at evaluating the interest of two-way
crosses (i.e., D x E; and D x E,), backcrosses (i.e., (D x E;) x E,
and (D x E;) x E;) or three-way crosses (i.e. (D x E;) x E; and
(D x E;) x E;) based on (i) the mean performance of the selected
progeny and (ii) the average genome contribution of the donor to the
selected progeny. Considering different donor characteristics, i.e.,
originality and performance level, we compared the interest of the
multi-parental crosses listed above in order to derive guidelines for
the use of the donor D. As a benchmark, we also evaluated the interest
of different elite multi-parental crosses.

Usefulness Criterion Parental Contribution

In order to predict the progeny distribution of a given cross in terms of
expected genetic gain and genetic diversity, we considered the agro-
nomic trait and the parental genome contribution as jointly multivariate
normally distributed traits. This enabled us to (i) evaluate the genetic
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Figure 1 lllustration of Usefulness Criterion Parental Contribution (UCPC) for a two-way cross between P; and P,. UCPC combines (A) the concept
of usefulness criterion for an agronomic trait normally distributed (N(ur. o)) and (B) P1 genome contribution considered as a normally distributed
quantitative trait (N(uc. o°¢)) in a multivariate approach (C). UCPC enables to predict the expected progeny performance for the trait (UCr) and P;
genome contribution to the selected fraction of progeny (ug"”) that depends on the covariance o1 mainly driven by the difference between P;
and P, performances.

gain of the selected progeny for the agronomic trait, and to  contribution of parents to progeny requires to consider parental specific
(ii) evaluate the contribution of each parental line to this selected  alleles. Thus, we extend the definition of parental genotypes to a multi-
progeny. An illustration of the concept of UCPCis given in Figure 1.In  allelic coding:

the following sections we present in more detail the theory underlying

UCPC in the general case of a four-way cross. X x1 0 01', 0[;
X = x| 0 x 0, 0p

. Pa al — ' = ' ' ' ' )
Multi-parental crosses and genetic model: To cover diverse types of renta X3 Op 0p x3 0p

' ’ g ' ’

crosses, we consider a general multi-parental cross implying four X4 0p 0p 0p x4

fully homozygous parents (Py, P, P; and P, Figure 2). Note that for

this general presentation of the theory, parents can be lines from the ~ With Xpurenar a (4X4p) dimensional matrix defining the genotype of
elite population and/or considered as external donors. This four-  the four parentsat the 4p parental alleles at QTL, X; the 4p-dimensional

way cross implies two initial crosses giving generations Flmapd Fl(z), vector defining the genotype of parent i and 0, a p-dimensional vector
respectively (Figure 2). A second cross between F|"and F\” yields  of zeros.
the generation F1 standing for pseudo F1. Two-way crosses, three- We first concentrate on doubled haploid (DH) lines derived

way crosses and backcrosses can be seen as specific cases of four-way ~ from the F 1 generation (DH-1), and then extend our work to DH

crosses depending on the number of parents considered as visualized lines generated after more selfing generations from the F1' and

in Figure 2. to recombinant inbred lines (RILs) at different selfing generations,
Assuming known genotypes at p QTL underlying the quantitative  i.e., partially heterozygous progeny. Absence of selection is as-

trait considered and biallelic markers at QTL positions, x; denotes the ~ sumed while deriving the progeny from generation FI'. In case

p-dimensional genotype vector of parent i, with the j™ element codedas ~ of DH-1, we denote the (N x 4p)-dimensional genotyping matrix of

1 or -1 for the genotypes AA or aa at locus j. Assuming biallelic QTL N progeny derived from a four-way cross (Figure 2) in a multi-allelic

effects, a classical way to define the parental genotypes matrix would be ~ context as:

a (4 x p)-dimensional matrix (x, x2 x3 x4 )'. Addressing parental

specific effects and following the identical by descent (IBD) genome Xprogeny = (Xl Progeny X2 Progeny X3 Progeny X4 P"’XL'"}')~

£.G3Genes| Genomes | Genefics Volume 9 May 2019 | UCPC for Multi-parental Crosses | 1471
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Four-way Three-way
Py xP, P; x Py Py xP, Py xP,
Fl(l) X Fx(z) Fl(l) X Py
Backcross
RiLs F;  DH
P, x P, Py x Py
RIL-1 DH-1 %
DH-2 K X P
Two-way
RIL-k PyxPy P, xP,
DH-k
Py X P,

Figure 2 lllustration of four-way crosses (left) and derived crossing
schemes (right). In the general case of four-way crosses, nomenclature
is defined for recombinant inbred lines (RILs) after k generations of
selfing (RIL-k) from pseudo F1 generation (F1’) and doubled haploid
lines (DH) derived from the RIL generation k-1 (DH-k, for k > 1). RIL-1
corresponds to the pseudo F2 generation and RIL © = DH .

where for instance X pyogeny is 2 (N x p)-dimensional matrix of prog-
eny genotypes at QTL coded -1 or 1 for alleles inherited from parent
P, and 0 otherwise.

The multi-parental coding enables to consider By
(ﬁnﬁlT2 Bra ﬁn)' a 4p-dimensional vector of known parental
specific additive effects for the agronomic trait. Thus, Xprogeny By is
the vector of progeny breeding values of the agronomic trait. As
we assumed additive effects, the breeding value equals the genetic
value. Assuming no parental specific effects for the agronomic
trait, as in the application example considered, B reduces to
Br= (Bo ﬁo BO Bu) where B, is the vector of known QTL effects
in the elite and donor populations. Furthermore, the multi-parental
coding considered enables to define the effects to follow IBD parental
contributions either genome-wide (namely C, ) or considering only
the favorable alleles (namely C(+), B¢(,)). In this study, we focused
on the first parent (P;) genome IBD contributions, but a general-
ization to every parent is straightforward. In the following, B¢ is a
4p-dimensional vector defined to follow P; genome-wide contribu-
tion and B ) a 4p-dimensional vector defined to follow Py genome
contribution at favorable alleles. In the general case of four-way

crosses B = % (x[ 0,', 0,; 0,',)' = [l—, X, and B is identical to B ex-
cept that if Py has the unfavorable allele at QTL g € [1, p], the cor-
responding element of B is null. Thus, Xpyogeny B represents the
proportion of alleles in the progeny that are inherited from P, in-
dependently of the allele effect and Xprogeny Bc( ) represents the
proportion of alleles in the progeny that are inherited from P,
and favorable. In the specific case of two-way crosses (i.e., P, = P,
and P; = P4 so x; —xz and X4 = x3), P, genome-wide contribution
is defined by B —— (x1 xl 0 0p)".

Prediction of progeny mean and progeny variance: In this section we
consider a generic quantitative trait defined by the 4p-dimensional
vector of parent specific additive effects B = (B{ B; B3 B4)'. The
vector B can be replaced by B, B¢ or B, without loss of gener-
ality. In order to evaluate the performance of a four-way cross, we
derive its expected progeny mean and variance. The expected prog-
eny mean can be derived as the mean of all four parents’ breeding
values:
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1,
Mngcny = Z 1y XPun‘nlul B (1)
The progeny variance can be derived as:
U%’ragsny = Var(Xngeny B) = B'var(Xp,,,ge,,y)ﬂ = B’ 6, ()

where X is the (4p x 4p)-dimensional covariance matrix between pa-
rental alleles at QTL in progeny. The diagonal elements =;; (j € [1, 4p])
are equal to the variance of parental alleles in progeny. Note that off-
diagonal elements X (j # I € [1,4p]) correspond to the disequilib-
rium covariance between two parental alleles j and / at different QTL
(i.e., different physical positions) or at the same QTL. The linkage
disequilibrium parameter in the progeny between parental alleles D
can be derived from the linkage disequilibrium parameter among the
four parental lines and the recombination frequency between parental
alleles in progeny (Table 1, see File S1 for derivation). In the specific
case considered, i.e., doubled haploid lines derived from generation
F1 (DH-1), this leads to the covariance entry:
) d lj[) P

where @ = D},Z + D3} is the sum of the disequilibrium parameter
between parental alleles j and / in pairs of parents implied in the first
crosses and @, = Dj',“ + Dj‘f + D}?f + DJ?," is the sum of disequilib-
rium parameter between parental alleles j and [/ in pairs of parents
indirectly implied in the second cross. D denotes the linkage disequi-
librium between parental alleles j and / in the palr of parental lines P,
and P, which can be computed as D}Z =1r 16l(X1 — Xz)(Xl—XZ)']j,.

‘,l) is the recombination frequency between parental alleles j and /
in the parental lmes obtained from the absolute genetic distance dj; in
Morgan as cJ (1 ¢~24) (Haldane 1919). When] and [ refer to
parental alleles at the same QTL, it holds dj = c][, = 0. This formula
given in [Equation 3] can be applied analogously in every case pre-
sented in Figure 2: three-way crosses, backcrosses and two-way crosses.
See File S1 for a detailed derivation of the covariance in DH-1 progeny
[Equation 3] and File S2 for an extension to DH progeny derived after
selfing generations and to recombinant inbred lines at different selfing
generations.

_ 5.0
ch,

2y = 4Dy = (1= 2¢) (B + (1 )

Indirect response to selection for parental contributions: We aim at
predicting the full multivariate progeny distribution (mean, variance
and pairwise covariances) for the agronomic trait, P; genome-wide
contribution (C) and P; contribution at favorable alleles (C(+))
Therefore, we consider all three traits in the (4p x 3)-dimensional
multi-trait effect matrix (B 1 B¢ Be+)- Similarly as for one trait, the
mean performance (/.LT ) and mean genome-wide contribution of
Py in progeny before selection (p.c ) are derived as the mean of all
four parents’ breeding values for each trait [Equation 1]. As expected,
#(Co) = 0.25 for four-way, three-way and backcrosses and y.? =05
for two-way crosses. Progeny variances for all three traits are estimated
using Equation 2 and pairwise covariances in progeny are estimated as:

> =B = Bc=Bc2PBr, (4a)

oy c+) =Br Z BC(+) = Bc(+) ZBr (4b)
Progeny means and (co)-variances before selection can be used to
estimate the expected response to selection on multiple traits. For
this purpose, we used the Usefulness Criterion (Schnell and Utz

1975) in a multi-trait approach as illustrated in Figure 1. Assuming
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! Table 1 Overview of genotypic covariance between loci j and I for different populations derived from the F1’ generation based on the
dlsequnllbrlum parameter in pairs of parental lines

DH generatlon ka (1= 2¢;" )y + (1 - 2¢

1 1)
i e (1= 2@y
\ 3 ( )
RIL generation k £ (1-2¢;7 = (0.5(1-2¢")) )y + (1 = cﬂk')(1 - 2¢i") 1y
?Doubled haploid (DH) lines derived after k-1 generations of selfing (k € N*, k = 1 for DH lines derived directly from F17)
Recombinant Inbred Lines (RIL) after k generatlons of selfing (k € N*, k = 1 for pseudo F2 generation)

By = D“ +D3* and dy = DJ* + DY + D7 +

o = z R i 4 0.5’(1—2c’,1’) )

an intra-family selection of the progeny with the highest values  quantitative agronomic trait (e.g, grain yield) implying p = 500 QTL
for the agronomic trait with a selection intensity i and a selec-  with known biallelic effects B, sampled from N(0,,0.0021,).

tion accuracy of one (Figure 1A), the expected mean performance

after selection ;L(;d) is defined as the usefulness criterion of  Simulation experiment 1: validation of UCPC: In order to validate

the cross: the derivations for progeny (co)-variances and UCPC method in case of
(s © . four-way crosses for DH and RIL progeny for selfing generations
UCr=py =npy +ior B ke [1,6] (Table 1), we randomly generated 100 four-way crosses out

of the 57 elite lines. For each cross, a set of 500 QTL was randomly

sampled among the 40,478 SNP markers across the genome to generate

the agronomic trait. We also considered the first parent (i.c., P;)

contributions: genome-wide (C) and at favorable alleles (C(+)). On

p.ge’) = p.g” 442 0C (6a)  one hand, we used algebraic formulas to predict the mean and

ar (co)-variances for trait and contributions before selection within

each cross (derivation). On the other hand, 50,000 DH or RIL prog-

eny genotypes were simulated per cross at every selfing generation

(se) _  (0) OT.0(+) and the empirical mean and (co)-variances before selection were
c(+) — C(+) * i (6b) estimated (in silico). For in silico simulations, crossover iti

oy 5 i positions

were determined using recombination rates obtained with Hal-

dane’s function (Haldane 1919). The correlated response to selec-

The correlated response to selection on Py genome w1de contribution
(,LL(”I’) and P, contribution at favorable alleles (/,L( ) are (Falconer
and Mackay 1996):

and

The contribution of P; at unfavorable alleles after selection can be

derived as: tion on P; contributions after selecting the 5% upper fraction of
) (0) OTC-) (o) (0) . OT(C-C(+) progeny for the agronomic trait were either predicted using UCPC
He(—y= M-yt or Mo~ Moy T o (derivation) or estimated after a threshold selection (in silico). The
(sel) _ (sel) correspondence between predictors was assessed by the squared

—ilc M) (6)  Jinear correlation and the mean squared difference between pre-

dicted (derivation) and empirical (in silico) values.
Figure 1C illustrates, in the case of a two-way cross (P1 x P,), the

\<E . - . . . .
indirect response to selection on P\ genome-wide contribution (e ') Simulation experiment 2: evaluation of different multi-parental

depending on the covariance o7 that is mainly driven by the differ-  ¢crossing schemes between donor and elite lines: We used UCPC to
ence of performance between Py and P,. address the question of the best crossing scheme between a given genetic

resource (donor Py, Figure 2), and elite lines. We identified the crossing
Simulation experiments scheme that maximized the short term expected genetic gain and eval-

We performed two simulation experiments. The aim of the simulation  uated donor genome contributions to the selected fraction of progeny.
experiment 1 was the validation of the presented formulas for the  For this, we set up a simulation study where, at each iteration, an elite
moments of the distribution of progeny from four-way crosses. In  population of 25 lines was randomly sampled out of the 57 elite lines.
simulation experiment 2, we investigated different crossing schemes  Further, 500 QTL were sampled among monomorphic and polymor-
(two-way, three-way and backcrosses) in terms of genetic gain and  phic markers in the elite population in order to conserve the frequency
donor contribution. of monomorphic loci observed on 40,478 SNPs in the entire elite pop-
ulation. At each iteration, 100 intra-elite two-way crosses, backcrosses,
Genetic material: We considered 57 lodent inbred lines from the  and three-way crosses were randomly sampled as benchmark. Their
Amaizing Dent panel (Rio ef al. 2019). Iodent defines a heterotic group ~ progeny mean (u,) and progeny standard deviation (o) for the
that has been derived 50 to 70 years ago and that is commonly used in ~ agronomic trait were predicted by Equation 1 and 2, respectively.
maize breeding (Troyer 1999; Van Inghelandt et al. 2012). In the fol- Within each iteration, 216 donor genotypes were constructed to
lowing we refer to these lines as elite lines. Elite lines were genotyped  cover a wide spectrum of donors in terms of performance and originality
with the Illumina MaizeSNP50 BeadChip (Ganal et al. 2011). After ~ compared to the elite population. We defined three tuning parameters
quality control and imputation, 40,478 high quality biallelic SNPs were  that reflect the proportions of six classes of QTL (Dudley 1984) defined
retained. The genetic map was obtained by predicting genetic positions by the polymorphism between the donor and the elite population
from physical positions (Jiao et al. 2017) using a spline-smoothing  (Table 2). All possible combinations of the three tuning parameters
interpolating procedure described in Bauer et al. (2013) and the con-  varying from 0 to 1 with steps of 0.2 were considered. For instance,
sensus dent genetic map in Giraud et al. (2014). We considered a ~ among the favorable QTL in the elite population (classes I and J,
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I Table 2 Classes of quantitative trait loci (QTL) and tuning
parameters considered for simulating the donors. The favorable
allele at QTL is denoted (+) and the unfavorable is denoted (-). A
polymorphic QTL in the elite population is denoted (+/-)

1/(|+J)

| + +

J + -

K . + K/(K+L) &

L 2 %

M +/- + M/(M+N) ©

N +/-

aproportion of monomorphic favorable QTL in the elite population where the

donor had the favorable allele.
proportion of monomorphic unfavorable QTL in the elite population where the
donor had the favorable allele.

proportion of polymorphic QTL in the elite population where the donor had
the favorable allele.

Table 2), in the donor genome these QTL were randomly assigned to
be favorable or unfavorable with probability I/(I+]) or J/(I+]), re-
spectively. This was done similarly for all classes in Table 2. For each
donor, we considered the simulated agronomic trait together with
the donor genome contributions genome-wide (C) and at favorable
alleles (C(+)). We defined the genetic gap with the elite population
as the difference between donor and mean elite genetic values. The
originality of the donor was defined as its mean pairwise modified
Rogers distance (MRD) with elite lines.

For all possible 25 two-way crosses, 600 three-way crosses and
25 backcrosses between every donor and the elite population we
predicted the progeny mean (1) and the progeny standard deviation
(o) of each trait (Equation 1 and Equation 2) and the covariances
between agronomic trait and contributions (o1 ¢, Equation 4a and
o7,c(+) Equation 4b). We defined the post-selection mean for the
agronomic trait using Equation 5 with selection intensity i corre-
sponding to a selection pressure of 5%. For comparison between
iterations, we subsequently standardized the UC for the agronomic
trait based on the elite population by UCr = (,U-(TSd) = Kgiire) / O Elites
where ptg;. is the mean and o g, the genetic standard deviation of the
elite population. After selection on the agronomic trait, the correlated
response on donor contributions was estimated using Equation 6 a-c.
Finally, for each type of cross (two-way, three-way and backcrosses)
and each donor, we identified the cross that maximized the expected
genetic gain for the agronomic trait (UCr).

Data availability

Simulations were based on genotypic maize data and genetic map
deposited in File S4 at figshare. All simulations have been realized using
R coding language (R Core Team 2017). Supplemental material avail-
able at Figshare: https://doi.org/10.25387/g3.7405892.

RESULTS

Simulation experiment 1: validation of UCPC

Predictions from the analytical derivations (Equation 1, 2, 4a, 4b, 5, 6a,
6b) showed a high correspondence with empirical results from in silico
simulations for the 100 DH-1 families (DH lines after F1', Figure 2).
The predicted progeny variance from derivations and from in silico
simulations (Figure 3A-C) as well as the covariances between the ag-
ronomic trait and parent contributions (Figure 3D-E) showed squared
correlations above 0.96. Predicted and simulated post-selection mean of
the agronomic trait as well as predicted and simulated post-selection
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parental genome contributions showed correlations above 0.9 (Figure
3F-H) (R? = 1.000 for Trait, R? = 0.900 for C and R? = 0.946 for C(+)).
Validations for RIL and DH progeny derived from more selfing
generations are presented in File S2.

Simulation experiment 2

Intra-elite multi-parental crosses: a benchmark: Considering only
the elite population generated at each iteration, the mean average
performance over 20 iterations was gy, = 0.067 = 1.009 and the
mean elite standard deviation was o gy = 0.748 = 0.107. We observed
(Table 3) that intra-elite three-way crosses generated more prog-
eny standard deviation (o) (0.576 * 0.034) than two-way crosses
(0.510 = 0.026) and backcrosses (0.442 * 0.022). In terms of prog-
eny mean (uq), differences were not significant between types of
crosses. The gain in oy yielded a higher usefulness criterion (UCr ean)
with three-way crosses (1.599 ogjie = 0.317) than two-way crosses
(1.461 ogire = 0.268). On the contrary, when only considering the
best cross in terms of gain for the agronomic trait (UCr pest), two-way
crosses led to a higher UC (3.115 ogjye = 0.362) than three-way
crosses (2.876 ogjie = 0.420) or backcrosses (2.804 o g = 0.377).

Donor genome contribution in multi-parental crosses: For each
simulated donor, we identified the two-way cross, three-way cross
and backcross that maximized the UC for the agronomic trait (UCr).
Those crosses are denoted as best crosses in the following. We ana-
lyzed the relationship between donor contributions to the selected
progeny of the best crosses and the genetic gap between the donor
and the mean elite population (Figure 4). The genome-wide contribu-
tion, the contribution at favorable alleles, and the contribution at un-
favorable alleles are shown in Figures 4A, 4B and 4C, respectively. For
a given donor, the genome-wide donor contribution after selection was
higher in the best two-way crosses than in the best three-way crosses or
backcrosses. For illustrative purposes, we differentiated five cases from
the worst donor carrying only unfavorable alleles at QTL (case 0) to
the best donor carrying favorable alleles at all QTL (case 4). Starting
from case 0, the selection tended to eliminate most of the donor
genome in progeny until a lower bound (Figure 4A, 27.1% for the best
two-way cross, 6.7% for the best three-way cross and 6.3% for the best
backcross). Very badly performing donors (case 1; genetic gap
= —5),i.e, carrying favorable alleles at maximum 180 QTL, had little
chance to pass their favorable alleles to the selected progeny (Figure
4B, }Lgfﬂ) = 4.5% in the best two-way cross, ;L(CS(EQ) = 1.9% in the best
three-way cross and ,u.(é(”ﬂz) = 1.7% in the best backcross). When the
performance of the donor increased (case 2; —5 < genetic gap =5),
a higher portion of the donor genome was retained in the selected
progeny (Figure 4B). With an increased number of favorable alleles
(case 2), genome-wide donor contribution increased linearly with the
genetic gap due to both, the selection of favorable alleles from the
donor (Figure 4B) and the linkage drag with unfavorable alleles (Figure
4C). This linear trend continued until the donor had mainly favorable
alleles (case 3; 5 < genetic gap). In case 3, we observed a linear increase
of donor contribution at favorable alleles (Figure 4B). A correlated
decrease of donor contribution at unfavorable alleles was observed at
a nearly constant genome-wide contribution. Finally, in case 4, the
genome-wide contribution was equal to an upper bound limit (Figure
4A, 72.6% for the best two-way cross, 42.9% for the best three-way
cross and 43.5% for the best backcross).

Comparison of genetic gain among multi-parental crossing schemes:
When the donor outperformed the elite population, the best two-way

Z.G3 Genes| Genomes | Genetics
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cross was more likely yielding a higher genetic gain than the best three-
way cross or backcross (Figure 5A). On the contrary, when the donor
underperformed the elite population, the best three-way cross and
backeross yielded a higher genetic gain than the best two-way cross.
The higher progeny standard deviation (o7) in the best two-way cross
compared to the best three-way cross or backcross (Figure 5B) did not
compensate the loss in progeny mean (p;) (Figure 5C) in the best two-
way cross. We observed that the type of cross maximizing the UCy (i.e.,
two-way cross, three-way cross or backcross) depended only on
the performance of the donor, whatever the mean genetic distance
with the elite population (results not shown). A similar comparison
between three-way crosses and backcrosses showed that the best back-
cross yielded similar i (Figure 5B) but lower o than the best three-
way cross (Figure 5C), especially when the donor had a genetic value
close to the best elite lines. This resulted in a slightly higher expected
genetic gain in three-way crosses compared to backcrosses (Figure 5A).

DISCUSSION

Usefulness criterion for quantitative traits in multi-
parental crosses

Accurate predictors of progeny variance accounting for the map position
ofloci and linkage phase of alleles in parents have been recently derived
for biparental crosses (Lehermeier et al. 2017b; Osthushenrich et al.
2017). Nonetheless, breeders might use multi-parental crosses imply-
ing more than two parents to combine best alleles segregating in the

=.G3 Genes | Genomes | Genetics

breeding population. Therefore, we extended derivations given by
Lehermeier et al. (2017b) for two-way crosses to four-way crosses by
accounting for linkage disequilibrium between pairs of parental lines.
We validated the derived genetic variance of RIL and DH progeny of
four-way crosses by simulations (Figure 3, File S2). As expected, the
formula for four-way crosses reduces to the one given by Lehermeier
et al. (2017b) in case of two-way crosses (File S1). The results from our
simulations showed that, considering elite material only, three-way
crosses generate on average more variance than two-way crosses or
backcrosses, resulting in higher genetic gain (Table 3). Nevertheless,
the best possible cross (i.e., maximizing the expected genetic gain) was
a two-way cross for most iterations (90%). This can be explained by
the fact that crossing the two best elite lines generates more genetic
gain than crossing them to a third less performant elite line, despite
a potential gain in progeny variance. Notice that we considered only
one polygenic agronomic trait but three-way crosses can be more
advantageous for bringing complementary alleles for several traits.
Under the formulated assumptions and with available marker effects
(see discussion below), the general formula to predict mean and var-
iance of four-way cross progeny makes it possible to identify the
multi-parental cross that maximizes a given multi-trait selection ob-
jective (see discussion below) without requiring computationally in-
tensive in silico simulations of progeny. The generalization to several
generations of selfing for RIL progeny enables in addition to differ-
entiate crosses releasing differently the variance in time (File S2). The
presented formula for four-way crosses can also be applied to crosses
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I Table 3 Intra-Elite crosses predicted progeny mean (u;), progeny standard deviation (1) and resulting expected genetic gain UC; with
a selection pressure of 5%, once averaged over all crosses (UCr ,,c.,) and for the best cross identified (UCr ). For all parameters the mean

(= SD) over 20 iterations is given

+ 1.016)

Two-way 0.086 0.510 (= 0.026)
Three-way 0.049 (+ 1.040) 0.576 (= 0.034)
Backcross 0.058 (= 1.042) 0.442 (= 0.022)

1.461 (= 0.268)
1.599 (= 0.317)
1.232 (= 0.247)

3.115 (= 0.362)
2.876 (+ 0.420)
2.804 (= 0.377)

of two heterozygous parents by considering its phased genotypes
as four separate parents. Doing so, our approach can be adapted for
heterozygous plant varieties that are common in perennial species
and for crosses with hybrids, as well as for animal breeding where
the prediction of Mendelian sampling variance can be very useful for
mating decisions (Bonk et al. 2016).

Parental contributions in multi-parental crosses

under selection

Frisch and Melchinger (2007) derived the expected variance of parental
contribution before selection in fully homozygote progeny accounting
for linkage disequilibrium between loci assuming a biparental cross and
considering only polymorphic loci. In this study, we proposed an orig-
inal way to follow parental genome contribution to the selected fraction
of progeny in multi-parental crosses, namely UCPC. It is grounded in
a normal approximation of the probability mass function of parental
contribution (Hill 1993; Frisch and Melchinger 2007) and progeny
variance derivations. In the specific case of DH lines derived from
two-way crosses or backcrosses and considering one chromosome
of 100cM, our prediction of parental genome contribution variance
converged to the one of Frisch and Melchinger (2007) when increasing
the number of loci (File $3). However, the previous literature did not
combine parental contributions with quantitative traits. Our original
multivariate UCPC approach enables to predict the covariance between
parental genome contributions and traits of economic interest. Based
on multivariate selection theory, UCPC predicts the expected realized
parental genome contribution after selection on traits of interest.
It allows to follow parental genome contribution inheritance over
generations and provides the likelihood of reaching a specific level
of parental contribution while prescreening the most performing
lines. Such information can guide breeders and researchers to deter-
mine the minimal number of progeny to derive from a cross between
a donor and one or several elite lines so that the expected donor
contribution after selection can reach a targeted value.

Predicted genome-wide donor contribution to progeny after se-
lection was bounded to a minimum in case of the worst donor and
a maximum in case of the best donor. In line with the predicted
distribution of parental genome contribution before selection obtained
in maize by Frisch and Melchinger (2007), these results show that in
one selection cycle with a reasonable selection intensity (e.g., 5%) it is
unlikely to get completely rid of unfavorable parental alleles. Parental
genome contribution was bounded in selected progeny due to the low
probability of combining all alleles from a single parent. Note that
UCPC also allows to follow the contribution of parents to progeny
performance by defining a vector of effects based on parental perfor-
mance marker effects. For instance, considering (B-}-, 01; 0;, 0;,)’ en-
ables to follow the first parent contribution to progeny performance.

Recommendations for donor by elites crosses

Using UCPC, we addressed the question of polygenic trait introgression
from an inbred donor to inbred elite recipients with a focus on common
plant breeding crossing schemes: two-way, three-way and backcrosses.
We assumed that the objective was to derive in one selection cycle an
inbred progeny that combined donor favorable alleles in a performing
elite background. Such progeny can be used as parental lines for new
crosses in order to quickly introgress new favorable alleles in a breeding
program. Such a short term vision of genetic resource integration can
be complementary to a longer term pre-breeding approach using
exotic material (Bernardo 2009; Gorjanc et al. 2016; Yu et al. 2016).
As expected, donors underperforming the elite population (inferior
donor) yielded a higher genetic gain when complemented by two elite
lines in three-way crosses or by twice an elite line in backcrosses rather
than by a single elite line in two-way crosses. In this case, there is an
advantage of crossing schemes involving, on average before selection,
only one fourth of the donor genome instead of half of the donor
genome as it would be the case for a two-way cross. On the contrary,
two-way crosses were more adapted to donors outperforming the elite
population. If the donor showed a similar performance level as the
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Figure 4 Donor contribution to the selected progeny of the best two-way cross (Donor*Elite), the best three-way cross ((Donor*Elite1)*Elite2) and

the best backcross ((Donor“Elite1)’Elite1), depending on the genetic gap between donor line and the elite population. Each data point corre-
sponds to the progeny of the best cross and is colored depending on the type of cross. (A) Donor genome-wide contribution after selection p."é“"",
(B) donor genome contribution at favorable alleles after selection [.L(Cslc:)] and (C) donor genome contribution at unfavorable alleles after selection
,u'c“'i) Numbers (0, 1, 2, 3, 4) correspond to illustrative cases based on genetic gap referred in the text. lllustrative cases 0 and 4 correspond to the
worst and best donor respectively. lllustrative cases 1, 2, 3 are delimited by genetic gap values -5, 5 as represented by the vertical dashed lines.
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Figure 5 Comparison of the best two-way cross (Donor*Elite), the best three-way cross ((DonorElite1)*Elite2) and the best backcross
((Donor*Elite1)*Elite 1), depending on the genetic gap (x-axis) with the elite population. Each data point corresponds to the progeny of the best
cross and is colored depending of the type of cross. Comparison for the (A) expected genetic gain UCr, (B) progeny mean (ur), and (C) progeny

standard deviation (o'7).

elite lines, no general rule could be drawn. In such a case, we rec-
ommend to identify the best crossing scheme by predicting every
potential cross using the UCPC approach. As expected under a
lower dilution of donor alleles into elite alleles in two-way crosses
compared to three-way crosses or backcrosses, the predicted ge-
nome-wide donor contribution to selected progeny was higher in
the best two-way cross than in the best three-way cross or the best
backcross (Figure 4A).

We observed for a polygenic trait that, despite a lower competition
between donor and elite favorable alleles, backcrosses were not signif-
icantly superior to three-way crosses for maintaining higher donor
contribution at favorable alleles (Figure 4B). In addition, backcrosses
generated less progeny variance (Figure 5C) but similar progeny mean
than three-way crosses, resulting in a lower genetic gain (Figure 5A).
This observation depends on the elite population considered. For in-
stance, it might not hold if one unique elite line highly outperforms all
other lines. More generally, while backcrosses only combine donor
alleles with alleles of one elite parent, three-way crosses combine donor
alleles with alleles of two complementary elite lines and are thus closer
to material generated at the same time using two-way crosses in routine
breeding. For these reasons, we suggest that three-way crosses should
be preferred over backcrosses for polygenic trait introgression in elite
germplasm. Our results support a posteriori the crossing strategy
adopted in the Germplasm Enhancement of Maize project (GEM,
e.g., Goodman 2000). In GEM, maize exotic material has been intro-
gressed into maize elite private lines using three-way crosses imply-
ing two different private partners. With the possibility to efficiently
predict the progeny distribution of three-way crosses (UCPC), the
best crossing partners can be identified to meet the targeted out-
come in short time which allows to fully profit of the advantages of
three-way crosses.

Multivariate selection for agronomic traits and

parental contributions

Weobserved that badly performing donors had little chance to pass their
favorable alleles to progeny selected for their agronomic trait perfor-
mance. This is a consequence of the negative covariance between the
performance for the trait and donor contribution in case of an inferior
donor (Figure 1C). To prevent this loss of original alleles, we could
account for such tension in the multivariate context, for instance by
applying a truncation on donor contribution before selecting for the
trait using the truncated multivariate normal theory (Horrace 2005)
or vice versa. Otherwise, selection on donor contribution and the
agronomic trait can be applied jointly by building a selection index,
which is promising to balance short term genetic gain and long term
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genetic diversity (i.e., selection on donor contribution) according to
specific pre-breeding strategies.

More generally, the multivariate context provides the opportunity
to deal with several quantitative traits on which selection is directly or
indirectly applied. Further traits for which genome-wide estimated
marker effects or QTL effects are available can be considered. For
external genetic resource utilization, it enables to introgress second-
ary traits such as polygenic tolerances to biotic or abiotic stresses (e.g.,
drought tolerance), while agronomic flaws (e.g., plant lodging) can
be counter-selected using threshold selection. Recently it has been
shown by Akdemir et al. (2018) how the improvement of multiple
traits can be addressed with multi-objective optimized breeding
strategies.

Practical implementation of UCPC in breeding

In practice, marker effects estimated with whole-genome regres-
sion models can be used in lieu of QTL effects that are unknown.
Such effects should be estimated on a proper training population
mixing both elite lines and original genetic resources. Marker
effects can be estimated using Bayesian Ridge Regression as sug-
gested in Lehermeier et al. (2017a; b) to derive an unbiased esti-
mator of progeny variance (PMV: posterior mean variance). In our
simulation study, we considered only biallelic QTL effects. As we
formulated a multi-allelic model, population-specific additive ef-
fects could be considered straightforwardly. Considering that the
donor might have a different origin than the elite lines (e.g., other
heterotic group in hybrid crops), it might be of interest to use parental
specific effects estimated by e.g., multivariate QTL mapping (Giraud
et al. 2014) or genome-wide prediction models (Lehermeier et al.
2015). UCPC relies on individual marker effects but the computa-
tion of the variance in the progeny accounts for collinearity among
markers, i.e., considers haplotype transmission. We therefore expect
that inaccuracies in marker effects estimates will affect UCPC to a
limited extent, but this warrant specific investigations as suggested
by Miiller et al. (2018).

Our approach is totally genericand can deal with any information on
the position and the effect of QTL. However, main assumptions should
be discussed at this point. We assumed known true genetic positions
of QTL and no interference during crossover formation to derive
recombination frequencies (Haldane 1919). In practice, the precision
of recombination frequency estimates is a function of the available
mapping information and the frequency of interference. Further-
more, recombination frequency might vary among the same species
(Bauer et al. 2013) impairing the accuracy of variance prediction.
To limit this risk we suggest to use a multi-parental consensus map
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(e.g., Giraud et al. 2014). The effect of genetic map inaccuracies on
progeny co-variances prediction requires further investigations.
Furthermore, derivations assumed no selection before develop-
ing progeny. However, selecting progeny from which to derive DH
lines is likely in practice. This can involve voluntary molecular
prescreening for disease resistance (e.g., during selfing generations)
or practical limitations (e.g., originating from low DH induction
rates). If the genetic correlation between those traits and the traits
considered within UCPC is null, the derived progeny distribution
and UC for the four-way crosses will still hold.

The derived formula for progeny mean and variance holds for
mono- and oligo-genic traits, whereas the usefulness criterion un-
derlying UCPC uses normal distribution properties. When consider-
ing traits involving a sufficient number of underlying QTL, as it is the
case for most agronomic traits and parental genome contributions,
this assumption of normality is likely guaranteed by the central limit
theorem. If only a limited number of known major QTL should be
introgressed from a donor, an allele pyramiding strategy will be more
suitable (Hospital and Charcosset 1997; Charmet et al. 1999; Servin
et al. 2004). Furthermore, the predicted cross value (PCV) as recently
suggested by Han et al. (2017) can be applied in this context and could
be extended to multi-parental crosses considering our derivation of
progeny variance.

We presented an IBD definition of parental genome contribu-
tions using a multi-allelic approach. The multi-allelic coding yields
covariance matrices that are four times larger compared to using a
biallelic coding. In practice, to obtain a less computationally intensive
solution, the genotyping matrix can be reduced to a bi-allelic coding
which yields an identity by state (IBS) parental genome contribu-
tion that informs on the sequence similarity between one parent and
progeny (see File S3). However, in such a case parental contributions
do not sum up to one and it cannot be accounted for multi-allelic (i.e.,
haplotypic) effects. For biparental crosses (i.e., two-way and back-
crosses), an IBS approach (File S3) considering only polymorphic
markers homogeneously covering the genome can be used as an
approximation of the IBD contribution.

Future research directions

UCPC is opening several future research directions. We illustrated the
use of UCPC for a simple donor introgression problem but it can be
extended to more complex problematics commonplace in breeding. For
instance, UCPC can be applied to evaluate the interest of introgressing
several donors, e.g., evaluate the interest of combining alleles from two
donors (D; and D,) with elites (E; and E;) in (D, x E;) x (D, x E,)
or (D) x D,) x (E; x E).

Mating design optimizations, i.e., finding an optimized list of crosses
to realize each year, accounting for a compromise between short and
long term genetic gain have been investigated using two-way crosses
and parental means as predictor of the expected gain and the inbreed-
ing rate in the next generation (De Beukelaer et al. 2017; Gorjanc et al.
2018). Applying UCPC within the context of mating design optimiza-
tion would enable to account for parental complementarity through
the use of progeny variation, i.e., within cross variance, as proposed
by Shepherd and Kinghorn (1998), Akdemir and Sinchez (2016) and
Miiller et al. (2018). Furthermore, UCPC would enable to use parental
contribution to the selected fraction of progeny to predict the realized
inbreeding in the next generation. We conjecture that considering
the realized parental genome contribution together with the usefulness
criterion in UCPC is promising for mating design optimization to
manage short and long term genetic gain in breeding programs. Future
research will also be needed to investigate the use of multi-parental
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crosses in mating design optimizations. Hereby, UCPC that efficiently
predicts the progeny distribution of crosses with up to four parents
will represent a good starting point for further research.

Conclusions

We developed, validated and illustrated the usefulness crite-
rion parental contribution (UCPC) that evaluates the interest of
multi-parental crosses based on the expected genetic gain (UC) and
the parental contributions (PC) in the next generation. UCPC allows
to (i) predict the progeny variance of four-way crosses accounting for
linkage disequilibrium and to (ii) follow all parental genome contri-
butions to the selected progeny to evaluate the interest of a cross
regarding an objective that is a function of the expected performance
and the diversity in the selected progeny. lllustration of the use of
UCPC in the context of polygenic trait introgression from a donor to
elite recipients enabled to draw some major recommendations. As
expected, three-way crosses and backcrosses were more adapted to
donors underperforming the elite population (inferior donor) while
two-way crosses were more adapted to donors outperforming the elite
population. We also suggested that three-way crosses should be pre-
ferred over backcrosses for polygenic traits introgression. Further-
more, we highlighted the importance of a compromise between
UC and PC in case of an inferior donor.
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The implementation of genomic selection in recurrent breeding programs raises the
concern that a higher inbreeding rate could compromise the long-term genetic gain. An
optimized mating strategy that maximizes the performance in progeny and maintains
diversity for long-term genetic gain is therefore essential. The optimal cross-selection
approach aims at identifying the optimal set of crosses that maximizes the expected
genetic value in the progeny under a constraint on genetic diversity in the progeny. Optimal
cross-selection usually does not account for within-family selection, i.e., the fact that only a
selected fraction of each family is used as parents of the next generation. In this study, we
consider within-family variance accounting for linkage disequilibrium between quantitative
trait loci to predict the expected mean performance and the expected genetic diversity in
the selected progeny of a set of crosses. These predictions rely on the usefulness criterion
parental contribution (UCPC) method. We compared UCPC-based optimal cross-selection
and the optimal cross-selection approach in a long-term simulated recurrent genomic
selection breeding program considering overlapping generations. UCPC-based optimal
cross-selection proved to be more efficient to convert the genetic diversity into short- and
long-term genetic gains than optimal cross-selection. We also showed that, using the
UCPC-based optimal cross-selection, the long-term genetic gain can be increased with
only a limited reduction of the short-term commercial genetic gain.

Keywords: genomic prediction, optimal cross-selection, usefulness criterion, parental contributions, genetic
diversity, Bulmer effect

INTRODUCTION

Successful breeding requires strategies that balance immediate genetic gain with the maintenance of
population diversity to sustain long-term progress (Jannink, 2010). At each selection cycle, plant breeders
are facing the choice of new parental lines and the way in which these are mated, to improve the mean
population performance and generate the genetic variation on which selection will act. As breeding
programs from different companies compete for short-term gain, breeders tend to use intensively the
most performant individuals sometimes at the expense of genetic diversity (Rauf et al,, 2010; Gerke et al.,
2015; Allier et al., 2019a). The identification of the crossing plan that maximizes the performance in
progeny and limits diversity reduction for long-term genetic gain is essential.

Frontiers in Genetics | www.frontiersin.org

1 October 2019 | Volume 10 | Article 1006

69



Chapter 4 Improving short- and long-term genetic gain by accounting for within family variance in

optimal cross selection

Allier et al.

UCPC for Optimal Cross-Selection

Historically, breeders used to select the best individuals based
on phenotypic observations, considered as a proxy of their
breeding value, i.e., the expected value of their progeny. In order
to better estimate the breeding value of individuals, phenotypic
selection has been complemented by pedigree-based prediction of
breeding values (Henderson, 1984; Piepho et al., 2008) and more
recently by genomic prediction of breeding values (Meuwissen
et al., 2001), taking advantage of the availability of cheap high-
density genotyping. In genomic selection (GS), amodel calibrated
on phenotype and genotype information of a training population
is used to predict genomic estimated breeding values (GEBVs)
from genome-wide marker information. A truncation selection
is commonly applied on GEBVs, and the selected individuals
are intercrossed to create the next generation. The interest of
GS is due to the acceleration of selection progress by shortening
generation interval, the increase in selection intensity, and the
increase in accuracy (Hayes et al., 2010; Daetwyler et al., 2013;
Heslot et al.,, 2015). As a consequence, compared to phenotypic
selection, GS is expected to accelerate the loss of genetic diversity
due to the rapid fixation of genomic regions with large effects,
but also the higher probability to select individuals that are the
closest to the training population and are therefore predicted
more accurately (Clark et al., 2011; Pszczola et al., 2012). As a
result, it has been shown in an experimental study (Rutkoski
et al,, 2015) and by stochastic simulations (Jannink, 2010; Lin
et al., 2016) that GS increases the loss of diversity compared to
phenotypic selection. Thus, the optimization of mating strategies
in GS breeding programs is a critical area of theoretical and
applied research.

Several approaches have been suggested to balance the short-
and long-term genetic gain while selecting crosses in GS. In line
with Kinghorn, (2011), Pryce et al. (2012), and Akdemir and
Isidro-Sanchez (2016), the selection of a set of crosses requires
two components: (i) a cross-selection index (CSI) that measures
the interest of a set of crosses and (ii) an algorithm to find the set
of crosses that maximizes the CSIL.

The CSI may consider crosses individually; i.e., the interest
of a cross does not depend on the other crosses in the selected
set. In classical recurrent GS, candidates with the highest GEBV's
are selected and intercrossed to maximize the expected progeny
mean in the next generation. In this case, the CSI is simply the
mean of parental GEBVs. However, such an approach maximizes
neither the expected response to selection in the progeny, which
involves genetic variance generated by Mendelian segregation
within each family, nor the long-term genetic gain. Alternative
measures of the interest of a cross have been proposed to account
for parent complementarity, based on within cross variability
and expected response to selection. Daetwyler et al. (2015)
proposed the optimal haploid value (OHV) that accounts for
the complementarity between parents of a cross for predefined
haplotype segments. Using stochastic simulations, the authors
observed that OHV selection yielded higher long-term genetic
gain and preserved greater amount of genetic diversity than
truncation GS. However, OHV accounts for neither the position
of quantitative trait loci (QTLs) nor the linkage disequilibrium
between QTLs (Lehermeier et al.,, 2017b; Miiller et al., 2018).
Schnell and Utz (1975) proposed the usefulness criterion (UC)
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of a cross to evaluate the expected response to selection in its
progeny. The UC of a cross accounts for the progeny mean (j1)
that is the mean of parental GEBVs and the progeny standard
deviation (o) the selection intensity (i) and the selection accuracy
(h): UC = p + tho. Zhong and Jannink (2007) proposed to predict
progeny variance using estimated QTL effects, accounting for
linkage between loci. Genome-wide marker effects have also been
considered to predict the progeny variance with computationally
intensive stochastic simulations (e.g., Mohammadi et al., 2015).
Recently, an unbiased predictor of progeny variance (0?) has
been derived in Lehermeier et al. (2017b) for two-way crosses
and extended in Allier et al. (2019b) for multiparental crosses
implying up to four parents. Lehermeier et al. (2017b) observed
that using UC as a CSI increased the short-term genetic gain
compared to using OHV or mean parental GEBV. Similar results
have been obtained by simulations by Miiller et al. (2018),
considering the expected maximum haploid breeding value
(EMBV) that is akin to the UC for normally distributed and fully
additive traits.

Alternatively, one can consider a more holistic CSI for which
the interest of a cross depends on the other selected crosses. This
is the case in optimal contribution selection (Wray and Goddard,
1994; Meuwissen, 1997; Woolliams et al., 2015), where a set of
candidate parents is evaluated as a whole regarding the expected
short-term gain and the associated risk on loosing long-term gain.
Optimal contribution selection aims at identifying the optimal
contributions (c) of candidate parents to the next generation
obtained by random mating, in order to maximize the expected
genetic value in the progeny (V) under a certain constraint on
inbreeding (D). Optimal cross-selection, further referred as OCS,
is an extension of the optimal contribution selection to deliver
a crossing plan that maximizes V by considering additional
constraints on the allocation of mates in crosses to limit D
(Kinghorn et al., 2009; Kinghorn, 2011; Akdemir and Isidro-
Sanchez, 2016; Gorjanc et al., 2018; Akdemir et al., 2018). In GS,
the expected genetic value in progeny (V) to be maximized is the
mean of parental GEBV (a) weighted by parental contributions
¢, i.e ca, and the constraint on inbreeding (D) to be minimized
is ¢'Kc with K a genomic coancestry matrix. Differential
evolutionary algorithms have been proposed to obtain optimal
solutions for ¢ and the crossing plan (Storn and Price, 1997;
Kinghorn et al., 2009; Kinghorn, 2011). Optimal contribution
selection is commonly used in animal breeding (Woolliams et al.
2015) and is increasingly adopted in plant breeding (Akdemir
and Isidro-Sanchez, 2016; De Beukelaer et al., 2017; Lin et al.,
2017; Gorjanc et al., 2018; Akdemir et al., 2018).

In plant breeding, one typically has larger biparental families
than in animal breeding. Especially with GS, the selection
intensity within-family can be largely increased so that plant
breeders capitalize much more on the segregation variance
within families than animal breeders. In previous works, the
genetic gain (V) and constraint (D) have been defined at the
level of the progeny before within-family selection. Exceptions
are the work of Shepherd and Kinghorn (1998) and Akdemir
and Isidro-Sanchez (2016); Akdemir et al. (2018), who added a
term to V accounting for within cross variance assuming linkage
equilibrium between QTLs. To our knowledge, no previous
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study considered linkage disequilibrium (LD) between QTLs.
Furthermore, as observed in historical wheat data (Fradgley
et al,, 2019) and using simulations in a maize context (Allier
et al., 2019b), within-family selection also affects the effective
contribution of parents to the next generation. This likely biases
the prediction of inbreeding/diversity in the next generation,
which to our knowledge has not been considered in previous
studies.

In this study, we propose to adjust V and D terms so that
within-family selection of the candidate parents for the next
generation is accounted for. We propose to use the usefulness
criterion parental contribution (UCPC) approach (Allier et al.,
2019b) that enables to predict the expected mean performance of
the selected fraction of progeny and to predict the contribution
of parents to the selected fraction of progeny. We compared
our OCS strategy based on UCPC with other cross-selection
strategies, in a long-term simulated recurrent GS breeding
program involving overlapping generations (Figure 1A). Our
objectives were to demonstrate (1) the interest of UCPC to
predict the genetic diversity in the selected fraction of progeny
and (2) the interest of accounting for within-family selection in
OCS for both short- and long-term genetic gains.

MATERIALS AND METHODS

Simulated Breeding Program

Breeding Program

We simulated a breeding program to compare the effect of
different CSIs on short- and long-term genetic gain in a realistic
breeding context considering overlapping and connected
generations (i.e., cohorts) and the use of doubled haploid (DH)

Generations (cohorts)

A il T+1 T+2 T+3 T+4 T+5 T+6
t + t + + + +
L = ® CS = Cross selection
@ Derive, genotype and phenotype progeny

it & ®cs @ DH = Doubled haploid progeny available

T2+ @ L ] L Je
g o i
S T+3+ ‘@DA @ 3 ®cs
K S N

T+4 +

T+5 T

T+6 +

technology to derive progeny (Figure 1A). We considered that
the process to derive DH progeny from a cross and to phenotype
and genotype DH lines takes 3 years. Furthermore, we considered
as candidate parents of a cohort T the selected fraction of DH
progeny of the three last available cohorts, i.e., T-3, T-4 and T-5
(Figures 1A, B).

Each simulation replicate started from a population of 40
founders sampled among 57 Iodent maize genotypes from the
Amaizing project (Rio et al., 2019; Allier et al., 2019b). We
sampled 1,000 biallelic QTLs among the 40,478 high-quality
single-nucleotide polymorphisms (SNPs) from the Illumina
MaizeSNP50 BeadChip (Ganal et al. 2011), with consensus
genetic positions from Giraud et al. (2014). The sampling process
obeyed two constrains: a QTL minor allele frequency > 0.2 and a
distance between two consecutive QTLs > 0.2 cM. Each QTL was
assigned an additive effect sampled from a Gaussian distribution
with a mean of zero and a variance of 0.05, and the favorable
allele was attributed at random to one of the two SNP alleles.

We initiated a virtual breeding program starting from the
founder genotypes with a burn-in period of 20 years that mimicked
recurrent phenotypic selection. Burn-in started by randomly
crossing the 40 founders into 20 biparental families, i.e., two-
way crosses, during the first 3 years to initiate three overlapping
cohorts. In each cohort, 80 DH progeny genotypes per cross were
simulated. Phenotypes were simulated considering the genotype
at QTLs, an error variance corresponding to a trait repeatability
of 0.4 in the founder population and no genotype by environment
interactions. For phenotyping, every individual was evaluated
in four environments in lyear. Since no secondary trait was
considered and sufficient seed production for extensive progeny
testing was assumed, we simulated a unique within-family selection
of the 5% best progeny (i.e., 4 DHs) that is a common selection

Year T
Selection procedure:
r Evaluate candidates (TBV, EBV, GEBV)*

> Pre-select the best 4 individuals/family to

& ,,’ be potential parents
&&‘ i »  Selection of |nc| = 20 two-way crosses
&7 based on a specific cross selection index

Crosses are made

" Poolof “+

did

from cohorts H YearsT+1&T +2

T-3,T-4 ! | »  DH process for nProg = 80 DH/cross
& andT - 5if »  Genotype and phenotype of DH lines
~._ defined _-~
e
Gose
Dot Year T + 3

e S«
= 1600 DH progeny of the cohort T are
available for breeding

* Evaluation procedure:
TBV = True Breeding Value (TRUE scenario)
EBV = Estimated Breeding Value (PS scenario)
GEBV = Genomic Estimated Breeding Value (GS scenario)

FIGURE 1 | Schematic view of the simulated breeding program. (A) Overall view of the breeding program and overlapping cohorts. (B) Life cycle of a given post
burn-in cohort T depending on the scenario considered (TRUE with 1,000 known QTL effects, PS in absence of genomic information or GS with 2,000 noncausal

SNPs estimated effects).
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intensity in maize breeding. During burn-in, we first considered
within-family phenotypic selection and then used the 50 DHs
with the largest phenotypic mean as potential parents of the next
cohort. These were randomly mated, i.e., without any constraint
on parental contributions, to generate 20 biparental families of 80
DH lines. After 20 years of burn-in, this created extensive linkage
disequilibrium as often observed in elite plant breeding programs
(e.g., Van Inghelandt et al, 2011). We then compared different
CSIs for 60years of recurrent GS using DH technology (Figure
1). As in burn-in, each cohort T was generated by 20 two-way
crosses (|nc|=20) of 80 DH progeny each (nProg = 80). Candidate
parents of cohort T' were selected from the available DH of the
three cohorts: T=3, T-4, and T-5 (Figures 1A, B). Per family, the
4 DH lines (i.e., 5%) with the largest breeding values, detailed in
“Evaluation scenario” section, were considered as potential parents,
yielding 4 DH lines/family x 20 families/cohort x 3 cohorts = 240
potential parents. Considering these N = 240 potential parents,
N(N-1)/2 = 28,680 two-way crosses are possible. The set of |nc|
= 20 two-way crosses among these 28,680 candidate crosses was
defined using different CSI detailed in the following sections. This
simulated scheme yielded overlapping and connected cohorts as
it is standard in practical plant breeding (Figure 1A). A detailed
description of the simulated breeding program and the material is
provided in Supplementary Material (File S1).

Evaluation Scenarios

We considered different scenarios for genome-wide marker effects
and progeny evaluation. In order to eliminate the uncertainty
caused by the estimation of marker effects, we first compared
several CSI assuming that we have access to the positions and
effects of the 1,000 QTLs (referred to as TRUE scenario). For a
representative subset of the CSI showing differentiated results in
the TRUE scenario, we also considered a more realistic scenario
where the effects of QTLs are unknown and selection was based
on the effects of 2,000 noncausal SNPs randomly sampled over
the genome. In this scenario, marker effects were obtained by
back-solving (Wang et al., 2012) a G-BLUP model fitted using
blupf-90 AI-REML solver (Misztal, 2008). This scenario was
referred to as GS scenario, and marker effects used to predict
the CSI were estimated every year with all candidate parents that
were phenotyped and genotyped. The progeny were selected on
their GEBV considering their phenotypes and their genotypes at
noncausal SNPs. As a benchmark, we also considered a phenotypic
selection scenario where progeny were selected based on their
phenotypic mean (PS scenario). For details on the evaluation
models, see Supplementary Material (File S1). In the following,
for sake of clarity, we present the different cross-selection strategies
considering selection based on known QTL effects and positions
(TRUE scenario). In GS scenario, QTL effects and positions were
replaced by estimated marker effects and positions.

Cross-Selection Strategies

Optimal Cross-Selection Not Accounting for Within-
Family Selection

Considering N homozygote candidate parents, N(N-1)/2 two-
way crosses are possible. We define a crossing plan nc as a set of

|nec| crosses out of possible two-way crosses, giving the index of
selected crosses, i.e., with the i element nc(i)€[1,N(N-1)/2]. The
(N x 1) dimensional vector of candidate parents contributions ¢
is defined as

c= é(l,c, + Z,cz) ¥

1)

where Z, (respectively Z,) is a (N x |nc|) dimensional design
matrix that links each N candidate parent to the first (respectively
second) parent in the set of crosses nc, ¢, (respectively, c,) is a
(|nc| x 1) dimensional vector containing the contributions of the
first (respectively, second) parent to progeny, i.e., a vector of 0.5
when assuming no selection within crosses.

The (N'x 1) dimensional vector of candidate parents true breeding
values is @ = XBrwhere X = (x,,...,xy)" is the (N x m) dimensional
matrix of known parental genotypes at m biallelic QTLs, where x,
denotes the (m x 1) dimensional genotype vector of parent pe[1,N]
with the j" element coded as 1 or —1 for the genotypes AA or aa at
QTL j. Bris the (m x 1) dimensional vector of known additive QTL
effects for the quantitative agronomic performance trait considered.
The genetic gain V(nc) for this set of two-way crosses is defined as
the expected mean performance in the DH progeny:

V(nc)=ca.

2

We define the constraint on diversity (D) as the mean expected
genetic diversity in DH progeny (He, Nei, 1973):

D(nc)=1— cKc , (3)

where K=% ixx’+ 1| is the (N x N) dimensional identity
m

by state (IBS) coancestry matrix between the N candidates.
Supplementary Material (File S2) details the relationship
between the IBS coancestry among parents (K), the parental
contributions to progeny (¢) and the mean expected heterozygosity

in progeny He= iZZ P; (l— P j) where p; the frequency of the

Jj=1

genotypes AA at QTL j in the progeny.

Accounting for Within-Family Selection in OCS

In the OCS, as defined above, the progeny derived from the nc
crosses are all expected to contribute to the next generation. We
propose to consider V(nc) and D(nc) terms accounting for the fact
that only a selected fraction of each family will be candidate for
the next generation (e.g., 5% per family in our simulation study).
For this, we apply the UCPC approach proposed by Allier et al.
(2019b) for two-way crosses and extend its use to evaluate the
interest of a set nc of two-way crosses after selection in progeny.

UCPC for Two-Way Crosses
Two inbred lines P, and P, are considered as parental lines for
a candidate cross P, x P, and (x,, x,)” denotes their genotyping

Frontiers in Genetics | www.frontiersin.org

72

October 2019 | Volume 10 | Article 1006



Chapter 4 Improving short- and long-term genetic gain by accounting for within family variance in

optimal cross selection

Allier et al.

UCPC for Optimal Cross-Selection

matrix. Following Lehermeier et al. (2017b), the DH progeny
mean and progeny variance of the performance in the progeny
before selection can be computed as follows:

Hr =05 (xlxﬁr +x'zﬁT) > (4a)

oi=B.% B, (4b)

where x,, x, and B; were defined previously, and X is the (mxm)
-dimensional variance covariance matrix of QTL genotypes in
DH progeny defined in Lehermeier et al. (2017b).

To follow parental contributions, we consider P, parental
contribution as a normally distributed trait (Allier et al,
2019b). As we only consider two-way crosses and biallelic
QTLs, we can simplify for computational reasons the
formulas by using IBS parental contributions computed for
polymorphic QTLs between P, and P, instead of using identity-
by-descent parental contributions (Allier et al,, 2019b). We
define the (mx1) -dimensional vector B, to follow P, genome

X =%,

contribution at QTLs as B, = ( . We compute

xl_xz)'(xl_xz)
the mean of P, contribution in the progeny before selection
Uer=0.5(x" B +x o +1). The progeny variance o, for P
contribution in the progeny before selection is computed
using Eq. 4b by replacing by B, The progeny mean for P,
contribution is then defined as p, = 1-i¢.
Following Allier etal. (2019b), we compute the covariance between
the performance and P, contribution in progeny as follows:

Or,ct =BrZ B (5)

The expected mean performance of the selected fraction of
progeny, i.e., UC (Schnell and Utz, 1975), of the cross P,xP, is
as follows:

uct) =, +iho, | )

where i is the within-family selection intensity, and the exponent
(i) in UC expresses the dependency of UC on the selection
intensity i. We considered a selection accuracy h=1 as in
Zhong and Jannink (2007), which holds when selecting on true
breeding values in TRUE scenario. As discussed further, we
also considered h = 1 when selecting crosses based on UCPC in
GS scenario. The correlated responses to selection on P, and P,
genome contributions in the selected fraction of progeny are as
follows (Falconer and Mackay, 1996):

Cross-Selection Based on UCPC

Accounting for within-family selection intensity i, the genetic
gain term V(nc) for a set of two-way crosses nc is defined as the
expected performance in the selected fraction of progeny:

v (ne)= m zjmuc‘”( . ®)

The constraint on diversity D®(nc) in the selected progeny is
defined as follows:

p" (nc) =1- cgecl) : (9)

where ¢ is defined like ¢ in Eq. 1 but accounting for within-family
selection by replacing the ante-selection parental contri?’}ftions
€ %nd ¢, by the post-selection parental contributions ¢;’ and
cg' (Eq. 7), respectively. Note that considering the absence of
selection in progeny, i.e., i = 0, yields V/=%(nc) being the mean of
parent breeding values (Eq. 2) and D/~ %(nc) being the expected
diversity in progeny before selection (Eq. 3), which is equivalent
to optimal cross-selection as proposed by Gorjanc et al. (2018).
The R code (R Core Team, 2017) to evaluate a set of crosses as
presented in the UCPC-based optimal cross-selection is provided
in Supplementary Material (File S3).

Multiobjective Optimization Framework

In practice, one does not evaluate only one set of crosses but
several ones in order to find the optimal set of crosses to reach
a specified target that is a function of V(nc) and D¥(nc). We
use the e-constraint method (Haimes et al., 1971; Gorjanc and
Hickey, 2018) to solve the multiobjective optimization problem:

max V(i] (nc)

(10)
with D(")(nc)z He(t)

>

where He(t), Vt€[0,t"] is the minimal diversity constraint at time
t. A differential evolutionary (DE) algorithm was implemented
to find the set of nc crosses that is a Pareto-optimal solution of
Eq. 10 (Storn and Price, 1997; Kinghorn et al., 2009; Kinghorn,
2011). DE is an optimization process inspired by natural
selection. It started from an initial population of 7,170 random
candidate solutions that are improved during 1,000 iterations
through mutation (random changes in candidate solutions),
recombination (exchanges between candidate solutions), and
selection (every iteration a candidate solution was replaced by
its mutated and recombined version if superior). The direct
consideration of He(f) in the optimization allows to control the
decrease in genetic diversity similarly to what was suggested
for controlling inbreeding rate in animal breeding (Woolliams

(i) .Or.ci (i) () et al., 1998, Woolliams et al., 2015). The loss of diversity along
G = He ti andc;' =1-¢;", (7) % - ; :
o time is controlled by the targeted diversity trajectory, i.e., He(t),
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Vte[0.1'], where £'eN” is the time horizon when the genetic
diversity He(t') = He' should be reached. In this study, He(t) is
defined as follows:

He(t)= H( ; ] ('~ W e o]

He ,V t>t
(1)

where He" is the initial diversity at f = 0, and s is a shape parameter
with s = 1 for a linear trajectory. Figure 2 gives an illustration of
alternative trajectories that can be defined using Eq. 11.

Cross-Selection Indices

We considered different cross-selection approaches varying in
the within-family selection intensity (i) in V@(nc), D%(nc) (Eq.
10) and in the targeted diversity trajectory He(t) (Eq. 11). We
first considered as a benchmark the absence of constraint D
(nc), i.e., He(t) = 0, Vt. We defined two alternative CSIs PM
(parental mean) and UG, respectively considering V¥="(nc) and
Vi =206)(nc), with i = 2.06 corresponding to the selection of the
5% most performant progeny per family. PM is equivalent to
cross the best candidates together without accounting for within
cross variance, while UC is defined as crossing candidates based
on the expected mean performance of the 5% selected fraction
of progeny. Note that the absence of constraint on diversity also
means the absence of constraint on parental contributions. To
compare optimal cross-selection accounting or not for within-
family selection, we considered three linear diversity trajectories
(Eq. 11) with He' = {0.01, 0.10, 0.15} that should be reached in
t" =60 years. We defined the OCS methods, further referred to as
OCS-He*, with V@=%(nc) and D= 9(nc). We defined the UCPC
cross-selection methods, further referred to as UCPC-He*, with

He®
0.3
(0]
ﬁ 0.2+ s
2 — 05
@ -1
g
& E—; 2
0.1
He'
0'0- T T T T
0 20 40 60

Generation (cohort)

FIGURE 2 | Targeted diversity trajectories for three different shape
parameters (s = 1, linear trajectory; s = 2, quadratic trajectory; and s = 0.5,
inverse quadratic trajectory) for fixed initial diversity (He” = 0.3) at generation 0
and targeted diversity (He" = 0.01) at generation 60 (t* = 60). We considered
in this study only linear trajectories (s = 1).

Vi =206)(nc) and DU = 2%)(nc). The eight CSIs considered are
summarized in Table 1.

Simulation 1: Interest of UCPC to Predict
the Diversity in the Selected Fraction

of Progeny

Simulation 1 aimed at evaluating the interest to account for the
effect of selection on parental contributions, i.e., post-selection
parental contributions (using UCPC), compared to ignore
selection, i.e., ante-selection parental contributions (similarly
as in OCS), to predict the genetic diversity (He) in the selected
fraction of progeny of a set of 20 crosses (using Eqgs. 9 and 3,
respectively). We considered a within-family selection intensity
corresponding to selecting the 5% most performant progeny.
We used the same genotypes, genetic map, and known QTL
effects as for the first simulation replicate of the PM CSI in the
TRUE scenario (Table 1). We extracted the simulated genotypes
of 240 DH candidate parents of the first post burn-in cohort
(further referred as E1) and of 240 DH candidate parents of
the 20th post burn-in cohort (further referred as E2). Due to
the selection process, E1 showed a higher diversity and lower
performance compared to E2. We randomly generated 300 sets
of 20 two-way crosses: 100 sets of intrageneration E1 crosses (E1
x E1), 100 sets of intrageneration E2 crosses (E2 x E2), and 100
sets of intergeneration and intrageneration crosses randomly
sampled (E1 x E2, E1 x E1, E2 x E2). We derived 80 DH
progeny per cross and predicted the ante- and post-selection
parental contributions to evaluate the post-selection genetic
diversity (He) for each set of crosses. We estimated the empirical
post-selection diversity for each set of crosses and compared
predicted and empirical values considering the mean prediction
error as the mean of the difference between predicted He and
empirical post-selection He, and the prediction accuracy as the
squared correlation between predicted He and empirical post-
selection He.

Simulation 2: Comparison of Different Csis
We ran 10 independent simulation replicates of all eight CSI
summarized in Table 1 for 60years post burn-in considering
known effects at the 1,000 QTLs (TRUE scenario). We also
compared in 10 independent simulation replicates the CSI: PM,

TABLE 1 | Summary of tested cross-selection indices (CSl) in TRUE scenario
defined for a set of crosses ne depending on the within-family selection intensity /.

Cross-selection index Gain term Diversity term
(csl)

PM Vi=0(nc) .

OCS-He' (3 different He") Vi=9%(nc) Di=%nc)

uc W =256nc) -

UCPC-He* (3 different He*) Wi=246)(nc) Di-2%i(nc)

He* = {0.15; 0.10; 0.01} to be reached lineanly (s = 1) at the end of simulation (' = 60 years).
Wi=9(nc) is the averaged parental mean (PM] of crosses in nc and V'=2%nc) is the
averaged usefuiness criterion (UC) of crosses in ne considering a within-family selection
intensity of 2.06. D'=%{nc) and D'=2%(nc) are the expected genetic diversity in the
progeny before and after within-family seiection, respectively.
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UC, OCS-He* and UCPC-He* with He* = 0.01 considering
estimated marker effect at the 2,000 SNPs (GS scenario) and PM
based only on phenotypic evaluation (PS scenario). We followed
several variables on the 80 DH progeny/family x 20 crosses realized
every year. At each cohort T€[0,60] with T'= 0 co rresponding to
the last burn-in cohort, we computed the additive genetic variance
as the variance of the 1,600 DH progeny true breeding values
(TBVs): 034 (T) = var(TBV(T)), We followed the mean genetic
merit of all progeny y(T) = mean(TBV(T)) and of the 10 most
performant progeny u,,(T)= mean(max(TBV(T))) as a proxy of
realized performance that could be achieved at a commercial level
by releasing these lines as varieties. Then, we centered and scaled
the two genetic merits to obtain realized cumulative genetic gains
in units of genetic standard deviation at the end of the burn-in

(T = 0), at the whole progeny level G(T)= (,u(T)—u(O) /\}O'f, (0)

and at the commercial level G,(T') =(u,0(T) - ,u(O))/ 0;(0).
The interest of long-term genetic gain relies on the ability to
breed at long term, which depends on the short-term economic
success of breeding. Following this rationale, we penalized
strategies that compromised the short-term commercial genetic
gain using the discounted cumulative gain following Dekkers
et al. (1995) and Chakraborty et al. (2002). In practice, we
computed the weighted sum of the commercial gain value in

0
each generation EWT G,,,(T) , where the discounted weights
60
T=1

w=1/(1+p)TVTE[1,60] were scaled to have ZWT =1 and p is

the interest rate per generation. The discounte:i 1Wt'eights measure
how much breeders will care about future genetic gain compared
to today’s genetic gain, also referred as the “net present value” of
long-term gain in finance. For p = 0, the weights were wy¢(; ¢ =
1/60; i.e., the same importance was given to all cohorts. We
compared different values of p and reported results for p = 0,
p = 0.04 giving approximatively seven times more weight to
short-term gain (after 10years) compared to long-term gain
(after 60 years) and p = 0.2 giving nearly no weight to gain after
30years of breeding.

We also measured

QILs cj(r)zzj:]‘; p,(T)(1-p,(T))B2>  the  mean

expected  heterozygosity QTLs (He,
e m e

He (T)=m z]_dz p/(D(1=p; (1)), and the number of

the additive genic variance at

at Nei, 1973)

QTLs where the favorable allele was fixed or lost in the progeny,
with p,(T) the allele frequency at QTL j€[1,m] in the 1,600 DH
progeny and B, the additive effect of the QTL j. In addition, we
considered the ratio of additive genetic over genic variance
6% /62 hich provides an estimate of the amount of additive
genic variance captured by negative covariances between QTLs,
known as the Bulmer effect under directional selection (Bulmer,
1971, Bulmer, 1980; Lynch and Walsh, 1999). All these variables
were further averaged on the 10 simulation replicates, and the
standard error divided by the square root of the number of
replicates is reported.

RESULTS

Simulation 1

Compared to the usual approach that ignores the effect of
selection on parental contributions, accounting for the effect of
within-family selection increased the squared correlation (R?)
between predicted genetic diversity and genetic diversity in the
selected fraction of progeny (Figures 3A, B) for all three types
of crosses. The squared correlation between predicted genetic
diversity and post-selection genetic diversity for intrageneration
crosses was only slightly increased (E1 x E1: from 0.811 to 0.822
and E2 x E2: from 0.880 to 0.888), while the squared correlation
for sets of crosses involving also intergeneration crosses showed
a larger increase (from 0.937 to 0.987) (Figures 3A, B). Using
post-selection parental contributions instead of ante-selection
parental contributions also reduced the mean prediction error of
He (predicted — empirical He) (Figures 4A, B) for all three types
of crosses. The mean prediction error for intrageneration crosses

Ante-selection parental contributions
0304 "
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X
o
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3 i
Dh. 0.15
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Empirical He (post-selection)
B . . .
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e E1XE1 ® E2xE2 e Random (E1, E2)
FIGURE 3 | Squared correlations (R2) between predicted genetic diversity
(He) and empirical He in the selected fraction of progeny of a set of 20
biparental crosses in the TRUE scenario considering (A) ante-selection
parental contributions or (B) post-selection parental contributions to predict
He. In total, 100 sets of each three types of crosses (intrageneration: E1xE1
and E2xE2 or randomly intragenerations and intergenerations): random
(E1, E2) are shown, and the squared correlations between predicted and
empirical post-selection He are given in the corresponding color.

Frontiers in Genetics | www.frontiersin.org

75

October 2019 | Volume 10 | Article 1006



Chapter 4 Improving short- and long-term genetic gain by accounting for within family variance in

optimal cross selection

Allier et al.

UCPC for Optimal Cross-Selection

was only slightly reduced (E1 x E1: from 0.006 to 0.005 and E2 x
E2: from 0.016 to 0.015), while the mean prediction error for
sets involving intergeneration crosses was more reduced (from
0.032 to 0.008) (Figures 4A, B). The mean prediction error of He
was reduced but still positive when considering post-selection
parental contributions, which means that the genetic diversity
in the selected fraction of progeny remains overestimated.
Note that the ante-selection contributions predicted well the
empirical genetic diversity before selection for all three types of
crosses (mean prediction error = 0.000 and R* > 0.992, results
not shown).

Simulation 2

Interest of UC Over PM

Considering known QTL effects (TRUE scenario), we observed
that UC yielded significantly higher short- and long-term
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FIGURE 4 | Mean prediction error (predicted — empirical) of predicting

the genetic diversity (He) in the selected fraction of progeny of a set of 20
biparental crosses in the TRUE scenario depending on the mean difference
of performance between parents (Delta true breeding value TBV). Mean
prediction error is measured as the predicted He — empirical post-selection
He, considering (A) ante-selection parental contributions or (B) post-
selection parental contributions to predict He. In total, 100 sets of each three
types of crosses (intrageneration: E1 x E1 and E2 x E2 or randomly intra and
inter-generations): random (E1, E2) are shown, and the averaged errors are
given in the corresponding color.

genetic gain at commercial level (G,,) than PM (on average,
G,o = 9.316 [+0.208] compared to 8.338 [+0.195] 10years post
burn-in and G, = 18.293 [+0.516] compared to 15.744 [+0.449]
60years post burn-in; Figures 5B, C; Supplementary Material
[Table S1 File S4]). When considering the whole progeny
mean performance (G), PM nonsignificantly outperformed UC
for the first 5 years (on average, G = 4.647 [+0.174] compared
to 4.633 [+0.138] 5years post burn-in), and after 5years, UC
significantly outperformed PM (on average, G=7.620 [+0.158]
compared to 7.197 [+0.199] 10years post burn-in) [Figure 5A,
Supplementary Material (Table S1 File $4)]. UC showed higher
genic (67 ) and genetic (67 ) additive variances than PM (Figures
6A, B), but both yielded a genic and genetic variance near zero
after 60years of breeding. The genetic over genic variance ratio
(03 /07) was also higher for UC compared to PM (Figure 6C).
The evolution of genetic diversity (He) along years followed the
same tendency as the genic variance (Figure 7A, Figure 6A). UC
fixed more favorable alleles at QTLs after 60 years (Figure 7B) and
lost less favorable alleles at QTLs than PM in all 10 simulation
replicates, with an average of 243.1 (+4.547) QTLs where the
favorable allele was lost compared to 274.9 (+4.283) QTLs for PM
[Figure 7C; Supplementary Material (Table S1 File $4)].

Targeted Diversity Trajectory

Considering known QTL effects (TRUE scenario), the tested
optimal cross-selection methods OCS-He* and UCPC-He*
showed lower short-term genetic gain at the whole progeny level
(G; Figure 5A) and at the commercial level (G,,; Figures 5B, C)
but significantly higher long-term genetic gains than UC at
60years Supplementary Material (Table S1 File S4). The lower
the targeted diversity He*, the higher the short-term and midterm
genetic gain at both whole progeny (G; Figure 5A) and commercial
(G,; Figures 5B, C) levels. The higher the targeted diversity He*,
the higher the long-term genetic gain except for OCS-He*=0.10
and OCS-He*=0.01 that performed similarly after 60years (on
average, G, = 21.925 [+0.532] and 21.892 (+0.525]; Figure 5B,
Supplementary Material [Table S1 File $4]). The highest targeted
diversity (He* = 0.15) showed a strong penalty at the short term
and midterm, while the intermediate targeted diversity (He* = 0.10)
showed a lower penalty at the short term and midterm compared to
the lowest targeted diversity (He* = 0.01) (Figures 5A-C).

For all targeted diversities and all simulation replicates,
accounting for within-family selection (UCPC-He*) yielded
a significantly higher short-term commercial genetic gain
(Gy) after 5 and 10years compared to OCS-He* [Figures 5B,
C; Supplementary Material (Table S1 File S4)]. Long-term
commercial genetic gain (G,,) after 60 years was also higher for
UCPC-He* than for OCS-He* with He* = 0.01 in the 10 simulation
replicates (on average, G,,= 22.869 [+0.641] compared to 21.892
[+£0.525]) and less importantly with He* = 0.10 in nine out of 10
replicates (on average, G,,= 22.474 [+0.645] compared to 21.925
[+£0.532]). However, for He* = 0.15, UCPC-He* outperformed
OCS-He* at the long term in only three out of 10 replicates (on
average, G,= 20.665 [+0.573] compared to 20.938 [+0.553])
[Figures 5B, C; Supplementary Material (Table S1 File $4)]. The
discounted cumulative gain giving more weight to short-term
than to long-term gain (p = 0.04) was higher for UCPC-He* than
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OCS-He* in all simulation replicates for He* = 0.01 (on average,
12.321 [+0.284] compared to 11.675 [+0.262]), in all simulation
replicates for He*= 0.10 (on average, 11.788 [+0.280] compared
to 11.278 [+0.264]) and in nine out of 10 simulation replicates
for He*=0.15 (on average, 11.176 [+0.250] compared to 10.884
[+£0.250]) (Table 2). Discounted cumulative gain giving the same
weight to short- and long-term gain (p = 0) was also higher for
UCPC-He* compared to OCS-He* (Table 2). When giving almost
no weight to long-term gain after 30years (p = 0.2), the best CSI
appeared to be UC [on average, 6.822 (+0.145)] followed by the
UCPC-He* with the lowest constraint on diversity (i.e., He*=
0.01) [on average, 6.682 (+0.143)].

For a given He*, the additive genic variance (o ; Figure 6A)
and genetic diversity at QTLs (He; Figure 7A) were constrained by
the targeted diversity trajectory for both UCPC-He* or OCS-He*.
However, UCPC-He* and OCS-He* behaved differently for genetic
variance ( 6% ; Figure 6A) resulting in differences for the ratio genetic
over genic variances (0% /0. ; Figure 6C). UCPC-He* yielded
a higher ratio than OCS-He* (Figure 6C) independently of the
targeted diversity He* at short term and midterm. For low targeted
diversity (He* = 0.01), UCPC-He* showed in all 10 replicates a lower
number of QTLs where the favorable allele was lost compared to
OCS-He* (Figure 7C; Supplementary Material [Table S1 File $4],
on average 173.6 [+4.031] QTLs-194.3 [+2.633] QTLs).

GS Scenario With Estimated Marker Effects

Considering estimated marker effects (GS scenario) yielded lower
genetic gain than when considering known marker effects [Figures
5-8 and Supplementary Material (Tables S1 and S2 File S4)].
However, the short- and long-term superiority of the UC over
the CSI ignoring within cross variance (PM) was consistent with
estimated effects (onaverage, G,,=8.338 [+0.237] compared to7.713
[£0.256] 10years post burn-in and G,, = 15.367 [+0.358] compared
to 13.287 [+0.436] 60 years post burn-in; Figure 8, Supplementary
Material [Table S2 File $4]). Similarly, the long-term superiority
of UCPC-He*=0.01 over UC was conserved in all 10 replicates
(on average, G, = 16.398 [+0.426] compared to 14.438 [+0.320]
40years post burn-in and G, = 18.161 [+0.470] compared to 15.367
[£0.358] 60years post burn-in; Figure 8, Supplementary Material
[Table S2 File $4]). Before the 40th year, UC and UCPC-He*=0.01
performed similarly Supplementary Material (Table S2 File $4).

In GS scenario, UCPC-He*=0.01 outperformed OCS-He*=0.01
during the first 20 years in all 10 replicates (on average, G,, = 8.162
[+£0.208] compared to 7.734 [+0.237] 10years post burn-in and
G,, = 11.881 [+0.272] compared to 11.313 [+0.323] 20years post
burn-in; Figure 8, Supplementary Material [Table S2 File S4]).
After 20years, UCPC-He*=0.01 outperformed OCS-He*=0.01
in eight out of 10 replicates (on average, G,, = 16.398 [+0.426]
compared to 15.850 [+0.384] 40 years post burn-in and G,, = 18.161
[£0.470] compared to 17.528 [+0.438] 60 years post burn-in; Figure
8, Supplementary Material [Table S2 File S4]). Observations on
the genic variance ( o’)and genetic variance ( o) were consistent
as well. We also observed that UCPC-He*=0.01 yielded a lower
number of QTLs where the favorable allele was lost (on average,
218.8 [+£3.852]) compared to OCS-He*=0.01 (on average, 234.5
[£3.908]) (Figure 8). PM not considering the marker information,
i.e, phenotypic selection (PS scenario), yielded lower short- and
long-term genetic gains than PM considering marker information
(GS scenario) (on average, G,, = 6.402 [+0.166] compared to 7.713
[£0.256] 10years post burn-in and G, = 10.810 [+0.329] compared
to 13.287 [+0.436) 60 years post burn-in; Figure 8, Supplementary
Material [Table S2 File $4]).

DISCUSSION

Predicting the Next-Generation Diversity

Accounting for within-family selection increased the squared
correlation and reduced the mean error of post-selection genetic
diversity prediction (Figures 3, 4). The gain in squared correlation
(Figure 3) and the reduction in mean error (Figure 4), were more
important for parents showing differences in performance. This
result is consistent with observations in Allier et al. (2019b), where
crosses between two phenotypically distant parents yielded post-
selection parental contributions that differ from their expectation
before selection (i.e., 0.5). The mean prediction error was always
positive, which can be explained by the use in Eq. 9 of genome-wide
parental contributions to progeny in lieu of parental contributions
at individual QTLs to predict allelic frequency changes due to
selection Supplementary Material (File S2). As a result, the
predicted extreme frequencies at QTLs in the progeny are shrunk
toward the mean frequency, leading to an overestimation of the

TABLE 2 | Discounted cumulative gain in TRUE scenario for three different parameters p giving more weight to short-term gain in different levels and assuming known

QTL effects (TRUE scenario).

Cross-selection index (CSl)

Discounted cumulative gain

p=0 p=0.04 p=0.2
UCPC - He*=0.01 156.949 (+0.398) 12.321 (+0.284) 6.682 (+0.143)
UCPC - He*=0.10 16.174 (+0.386) 11.788 (+0.280) 6.593 (+0.158)
uc 14.408 (+0.355) 11.689 (+0.266) 6.822 (+0.145)
OCS - He*=0.01 15.148 (+0.346) 11.675 (+0.262) 6.360 (+0.149)
OCS - He*=0.10 14.630 (+0.349) 11.278 (+0.264) 6.230 (+0.149)
UCPC - He*=0.15 14.205 (+0.334) 11.176 (+0.250) 6.454 (£0.149)
OCS - He*=0.15 14.056 (+0.337) 10.884 (+0.250) 6.103 (+0.155)
PM 12.609 (+0.280) 10.392 (+0.217) 6.345 (+0.155)

Mean discounted cumulative gain with p = 0 (constant weight along years), p = 0.04 (decreasing weight along years) and p = 0.2 (nearly null weights after 30 years) on the ten
independent replicates. CSl are ordered in decreasing discounted cumulative gain with p = 0.04.
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expected heterozygosity (He) (results not shown). Local changes
in allele frequency under artificial selection could be predicted
following Falconer and Mackay (1996) and Gallais et al. (2007), but
this approach would assume linkage equilibrium between QTLs,
which is a strong assumption that does not correspond to the highly
polygenic trait that we simulated.

Effect of UC on Short- and Long-Term
Recurrent Selection

In a first approach, we considered no constraint on diversity
during cross-selection and compared cross-selection maximizing
the UC or maximizing the PM in the TRUE scenario, assuming
known QTL effects and positions. The UC yielded higher short-
term genetic gain at commercial level (G,,; Figures 5B, C). This
was expected because UC predicts the mean performance of
the best fraction of progeny. When considering the genetic gain

at the mean progeny level (G; Figure 5A), UC needed 5years
to outperform PM. These results underline that UC maximizes
the mean performance of the next generation issued from
the intercross of selected progeny, sometimes at the expense
of the current generation progeny mean performance. This
observation is consistent with the fact that candidate parents of
the sixth cohort came all from the three first cohorts generated
considering UC and thus the sixth cohort took full advantage
of the use of UC (Figure 1A). This tendency was also observed
in simulations by Miiller et al. (2018) considering the EMBV
approach, akin to the UC for normally distributed additive
traits. The UC also showed a higher long-term genetic gain at
both commercial (G,;) and whole progeny level (G) compared
to intercrossing the best candidate parents (PM). This long-term
gain was driven by a higher additive genic variance at QTLs
(o?; Figure 6A) and a lower genomic covariance between
QTLs (03 /07 ; Figure 6C) resulting in a higher additive genetic
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variance in UC compared to PM (o%; Figure 6B). Note that
with lower ¢ the ratio /0, becomes less interpretable in
the long-term (Figure 6C). UC also better managed the fixation
(Figure 7B) or the maintenance (Figure 7C) of the favorable allele
at QTLs compared to PM. These results highlight the interest of
considering within cross variance in cross-selection for improving
long-term genetic gain as observed in Miiller et al. (2018).

Accounting for Within-Family Variance in
Optimal Cross-Selection

Assuming known marker effects, we observed that considering
a constraint on diversity, i.e., optimal cross-selection, always
maximized the long-term genetic gain, at the cost of a variable
penalty for short-term gain, compared to no constraint on
diversity (e.g., UC). We further compared the OCS (Gorjanc
et al, 2018) with the UCPC-based optimal cross-selection
that accounts for the fact that only a selected fraction of each
family contributes to the next generation. In the optimization
framework considered, we compared the ability of UCPC
(referred to as UCPC-He*) and OCS (referred to as OCS-He*)
to convert a determined loss of diversity into genetic gain. For
a given diversity trajectory, UCPC-He* yielded higher short-
term commercial gain than OCS-He*. Both, OCS-He* and
UCPC-He* yielded similar additive genic variance ( o} ), but we
observed differences in terms of the ratio 03 /0. As expected
under directional selection, the ratio 07} /0. was positive
and inferior to one, revealing a negative genomic covariance
between QTLs (Bulmer, 1971). UCPC-He* yielded a higher
ratio, i.e., lower repulsion, and thus a higher additive genetic
variance (07 ) than OCS-He* for a similar He*. This explains
the higher long-term genetic gain at commercial and whole
progeny levels observed for UCPC-He*. This result supports
the idea, suggested in Allier et al. (2019a), that accounting for
complementarity between parents when defining crossing plans
is an efficient way to favor recombination events to reveal part
of the additive genic variance hidden by repulsion between
QTLs. For low targeted diversity (He* = 0.01), UCPC-He*
also appeared to better manage the rare favorable alleles at
QTLs than OCS-He*. These results highlighted the interest of
UCPC-based optimal cross-selection to convert the genetic
diversity into genetic gain by maintaining more rare favorable
alleles and limiting repulsion between QTLs. In case of higher
targeted diversity (He* = 0.15), the loss of diversity was likely
not sufficient to fully express the additional interest of UCPC
compared to OCS to convert diversity into genetic gain. In
this case, UCPC-He* and OCS-He* performed similarly.
Accounting for within cross variance to measure the expected
gain of a cross in optimal cross-selection was already suggested
in Shepherd and Kinghorn (1998). More recently, Akdemir and
Isidro-Sanchez (2016) and Akdemir et al. (2018) accounted for
within cross variance considering linkage equilibrium between
QTLs. Akdemir and Isidro-Sanchez (2016) also observed that
accounting for within cross variance during cross-selection
yielded higher long-term mean performance with a penalty at
short-term mean progeny performance.

Short-term economic returns of a breeding program condition
the resources invested to maintain/increase response to selection
and therefore long-term competitive capacity. Hence, to fully take
advantage of their benefit at long term, it is necessary to make
sure that tested breeding strategies do not compromise too much
the short-term commercial genetic gain. For this reason, we
considered the discounted cumulative commercial gain following
Dekkers et al. (1995) and Chakraborty et al. (2002) as a summary
variable to evaluate CSI while giving more weight to short-term
gain in different levels. UCPC-He* outperformed OCS-He*
for a given He* either considering uniform weights (p = 0) or
giving approximately seven times more weight to short-term gain
compared to long-term gain (p = 0.04). This was also true when
focusing only on short-term gain (p = 0.2), but in this case the best
model was UC without accounting for diversity (Table 2).

Practical Implementations in Breeding
UCPC With Estimated Marker Effects

In simulations, we first considered 1,000 QTLs with known
additive effects sampled from a centered normal distribution.
For a representative subset of CSIs (PM, UC, UCPC-He*, and
OCS-He* with He*=0.01; Figure 8), we considered estimated
effects at 2,000 SNPs. The main conclusions obtained with
known and estimated marker effects were consistent, supporting
the practical interest of UCPC-based optimal cross-selection
(Figure 8). The difference was that the superiority of UCPC-
based optimal cross-selection over optimal cross-selection not
accounting for within-family selection in GS scenario was not
significant after 60 years Supplementary Material (Table S2 File
$4). With estimated marker effects instead of known QTL effects,
the predicted progeny variance (0?) corresponded to the variance
of the predicted breeding values, which are shrunk compared to
TBVs, depending on the model accuracy (referred to as variance
of posterior mean [VPM] in Lehermeier et al.). An alternative
would be to consider the marker effects estimated at each sample
of a Monte Carlo Markov Chain process, e.g., using a Bayesian
ridge regression, to obtain an improved estimate of the additive
genetic variance (referred to as posterior mean variance [PMV]
in Lehermeier et al., 2017a; Lehermeier et al., 2017b).

In practice, QTL effects are unknown, so the selection of
progeny cannot be based on TBVs, and thus the selection
accuracy (h) is smaller than one. In our simulation study
assuming unknown QTLs (GS scenario), progeny were selected
based on estimated breeding values taking into account genotypic
information as well as replicated phenotypic information,
which led to a high selection accuracy, as it can be encountered
in breeding. Thus, the assumption # = 1 used in Eq. 6 for GS
scenario is reasonable. In order to shorten the cycle length of the
breeding scheme, selection of progeny can be based on predicted
GEBVs of genotyped but not phenotyped progeny. In such a
case, the selection accuracy (h) will be considerably reduced. In
such a situation, one can advocate to use PMV instead of VPM
in the computation of UCPC and to take into account the proper
selection accuracy (h) within crosses adapted to the selection
scheme. When selection is based on predicted values, i.e.,
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genotyped but not phenotyped progeny, the shrunk predictor
VPM should be a good approximation of (ho)2.

UCPC-Based Optimal Cross-Selection

In this study, we assumed fully homozygous parents and two-way
crosses. However, neither the optimal cross-selection nor UCPC-
based optimal cross-selection is restricted to homozygote parents.
Considering heterozygote parents in optimal cross-selection is
straightforward. Following the extension of UCPC to four-way
crosses (Allier et al., 2019b), UCPC optimal cross-selection can
be used for phased heterozygous individuals, as it is commonly
the case in perennial plants or animal breeding. Animal breeders
are interested in Mendelian sampling variance for individual
and cross-selection (Segelke et al., 2014; Bonk et al., 2016; Bijma
et al., 2018) and might be interested to incorporate it into OCS
strategies. We considered an inbred line breeding program, but
the extension to hybrid breeding is of interest for species such
as maize. The use of testcross effects, i.e., estimated on hybrids
obtained by crossing candidate lines with lines from the opposite
heterotic pool, in UCPC-based optimal cross-selection is
straightforward, and so the UCPC-based optimal cross-selection
can be used to improve each heterotic pool individually. In
order to jointly improve two pools, further investigations are
required to include dominance effects in UCPC-based optimal
cross-selection. In addition, this would imply that crossing plans
in both pools are jointly optimized to manage genetic diversity
within pools and complementarity between pools.

We considered a within-family selection intensity corresponding
to the selection of the 5% most performant progeny as candidates
for the next generation. Equal selection intensities were assumed
for all families, but in practice due to experimental constraints or
optimized resource allocation (e.g., generate more progeny for
crosses showing high progeny variance but low progeny mean),
within-family selection intensity can be variable. Different within-
family selection intensities (see Eqs. 8 and 9) can be considered in
UCPC-based optimal cross-selection, but an optimization regarding
resource allocation of the number of crosses and the selection
intensities within crosses calls for further investigations. However, in
marker-assisted selection schemes based on QTL detection results
(Bernardo et al., 2006), an optimization of selection intensities per
family was observed to be only of moderate interest.

Proposed UCPC-based optimal cross-selection was compared
to OCS in a targeted diversity trajectory context. We considered
a linear trajectory, but any genetic diversity trajectory can be
considered (e.g., Figure 2). The optimal diversity trajectory cannot
be easily determined and depends on breeding objectives and data
considered. Optimal contribution selection in animal breeding
considers a similar €-constraint optimization with a targeted
inbreedingtrajectory determinedbya fixed annual rate ofinbreeding
(e.g., 1% advocated by the Food and Agriculture Organization
(FAO), Woolliams et al., 1998). Woolliams et al. (2015) argued that
the optimal inbreeding rate is also not straightforward to define.
An alternative formulation of the optimization problem to avoid
the use of a fixed constraint is to consider a weighted index (1-a)
V(nc)+aD(nc), where a is the weight balancing the expected gain
V(nc) and constraint D(nc) (De Beukelaer et al., 2017). However,
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the appropriate choice of a is difficult and is not explicit either in
terms of expected diversity or expected gain.

Introgression of Diversity and Anticipation of a
Changing Breeding Context
We considered candidate parents coming from the three
last overlapping cohorts (Figure 1) in order to reduce the
number of candidate crosses during the progeny covariances
prediction (UCPC) and the optimization process. This yielded
elite candidate parents that were not directly related (no
parent-progeny) and that did not show strong differences in
performances, which is standard in a commercial plant breeding
program focusing on yield improvement. However, when the
genetic diversity in a program is so low that long-term genetic
gain is compromised, external genetic resources need to be
introgressed by crosses with internal elite parents. As suggested
by results of simulation 1, we conjecture that the advantage of
UCPC-based optimal cross-selection over OCS increases in
such a context where heterogeneous, i.e., phenotypically distant,
genetic materials are crossed. This requires investigations that
we hope to address in subsequent research.

Our simulations also assumed fixed environments and
a single targeted trait over 60 years. However, in a climate
change context and with rapidly evolving societal demands for
sustainable agricultural practices, environments and breeders
objectives will likely change over time. In a multitrait context, the
multiobjective optimization framework proposed in Akdemir et
al. (2018) can be adapted to UCPC-based optimal cross-selection.
The upcoming but yet unknown breeding objectives make the
necessity to manage genetic diversity even more important than
highlighted in this study.
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Abstract

The narrow genetic base of elite germplasm compromises long-term genetic gain and increases the
vulnerability to biotic and abiotic stresses in unpredictable environmental conditions. Therefore, an
efficient strategy is required to broaden the genetic base of commercial breeding programs while not
compromising short-term variety release. Optimal cross selection aims at identifying the optimal set
of crosses that balances the expected genetic value and diversity. We propose to consider genomic
selection and optimal cross selection to recurrently improve genetic resources (i.e. pre-breeding), to
bridge the improved genetic resources with elites (i.e. bridging), and to manage introductions into the
elite breeding population. Optimal cross selection is particularly adapted to jointly identify bridging,
introduction and elite crosses to ensure an overall consistency of the genetic base broadening strategy.
We compared simulated breeding programs introducing donors with different performance levels,
directly or indirectly after bridging. We also evaluated the effect of the training set composition on the
success of introductions. We observed that with recurrent introductions of improved donors, it is
possible to maintain the genetic diversity and increase mid- and long-term performances with only
limited penalty at short-term. Considering a bridging step yielded significantly higher mid- and long-
term performance when introducing low performing donors. The results also suggested to consider
marker effects estimated on a broad training population including donor by elite and elite by elite
progeny to identify bridging, introduction and elite crosses.

Key message

With recurrent genetic base broadening after pre-breeding, commercial breeding programs can
maintain genetic diversity and take advantage of introduced favorable alleles to reach significantly
higher long-term performance.

Key words

genetic base broadening; pre-breeding; bridging; introduction; genomic prediction; optimal cross
selection
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Introduction

Modern breeding has been successful in exploiting crop diversity for genetic improvement. However,
current yield increases may not be sufficient in view of rapid human population growth (Godfray et al.
2010). Moreover, modern intensive breeding practices have exploited a very limited fraction of the
available crop diversity (Cooper et al. 2001; Reif et al. 2005). The narrow genetic base of elite
germplasm compromises long-term genetic gain and increases the genetic vulnerability to
unpredictable environmental conditions (McCouch et al. 2013). Efficient genetic diversity
management is therefore required in breeding programs. This involves the efficient incorporation of
new genetic variation and its conversion into short- and long-term genetic gain.

Among the possible sources of diversity, wild relatives, exotic germplasm accessions and landraces
that predate modern breeding exhibit substantial genetic diversity. These ex-situ genetic resources are
conserved worldwide in international gene banks and national collections. They provide a promising
basis to improve crop productivity, crop resilience to biotic and abiotic stresses and crop nutritional
quality (Salhuana and Pollak 2006; Wang et al. 2017). In case of traits determined by few genes of large
effect, the favorable alleles can be identified and introgressed into elite germplasm following
established marker-assisted backcross procedures (e.g. Charmet et al. 1999; Servin et al. 2004; Han et
al. 2017). Such introgressions have been successful for mono- and oligogenic traits (e.g. earliness loci
in maize, Simmonds 1979; Smith and Beavis 1996 and SUB1 gene in rice, Bailey-Serres et al. 2010).
Introgressions also proved to be successful for more polygenic traits where few major causal regions
have been identified. For instance, Ribaut and Ragot (2006) successfully introgressed five regions
associated with maize flowering time and yield components under drought conditions. For complex
traits controlled by numerous genes with small effect, e.g. grain yield in optimal conditions, the
identification and introgression of favorable alleles into elite germplasm were mostly unsuccessful.
This requires to go beyond the introgression of few identified favorable alleles toward the polygenic
enrichment of elite germplasm (Simmonds 1962, 1993). Although plant breeders recognize the
importance of genetic resources for elite genetic base broadening, only little use has been made of it
(Glaszmann et al. 2010; Wang et al. 2017). The main reason is that breeding progress continues (Duvick
2005; Tadesse et al. 2019) and that breeders are reluctant to compromise elite germplasm with
unadapted and unimproved genetic resources (Kannenberg and Falk 1995). Despite genetic resources
carry novel favorable alleles that may counter balance their low genetic value by an increased genetic
variance when crossed to elites (Longin and Reif 2014; Allier et al. 2019b), their progeny performance
is mostly insufficient for breeders. Thus, breeding strategies are needed to bridge the performance
gap between genetic resources and elites and to transfer beneficial genetic variations into elite
germplasm while not compromising the performance of released varieties (Simmonds 1993; Gorjanc
et al. 2016). Pre-breeding can be defined as the recurrent improvement of genetic resources to release
donors that can be further introduced into the elite breeding population (Figure 1). According to
Simmonds (1993), pre-breeding should start from a broad germplasm and should be carried out on
several generations with low selection intensity to favor extensive recombination events and minimal
inbreeding. The donor released from pre-breeding can be directly introduced into the elite breeding
population. However, in cases where the performance gap between the donor released from pre-
breeding and elites is too large, one may consider a buffer population between donor and elites before
introduction in the elite breeding population, further referred to as bridging. The best progeny of
bridging is then considered for introduction into the elite breeding population (Figure 1).
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Figure 1 Diagram illustrating the respective positioning of pre-breeding, bridging and breeding

from genetic resources to variety release.

Different sources of donors can be considered in autogamous and allogamous species for genetic
base broadening. This includes landraces historically cultivated before modern breeding. For instance
in maize, open pollinated varieties (OPVs) are landrace populations of heterozygous individuals
cultivated before the hybrid maize breeding revolution in the 1950’s (Anderson 1944; Troyer 1999).
Inbred lines derived from OPVs present a large diversity and a potential interest for adaptation, but
also a large performance gap with current varieties (B6hm et al. 2014; Melchinger et al. 2017; B6hm
et al. 2017). These landraces can be further improved through pre-breeding that can be shared
between the industry and public institutes in collaborative projects. In maize, the Latin American Maize
Project (LAMP, Pollak 1990; Salhuana et al. 1997; Salhuana and Pollak 2006) provided breeders with
useful characterization and evaluation of US and Latin American tropical germplasm accessions. Later,
the Germplasm Enhancement of Maize project (GEM, Pollak and Salhuana 2001) improved the
accessions identified in LAMP with elite lines furnished by private partners (Pollak 2003). Similarly, the
Seed of Discovery project (SeeD, Gorjanc et al. 2016) aimed to harness favorable variations from
landraces and to develop a bridging germplasm useful for genetic base broadening of commercial
maize breeding programs. In this vein, Cramer and Kannenberg (1992) proposed the Hierarchical
Open-ended Population Enrichment (HOPE) breeding system to release enriched maize inbreds for the
industry. In its last version, the HOPE system is a breeding program with three hierarchical open ended
gene pools permitting the transfer of favorable alleles from genetic resources to the elite pools (Popi
1997; Kannenberg 2001). Finally, breeders can consider the varieties released by breeding programs
selecting on a different germplasm and in different environments as donors. In hybrid species, the
ability to use one of the variety’s inbred parent as a donor depends on the germplasm proprietary
protection relative to species and countries (e.g. using reverse breeding, Smith et al. 2008). In the US,
maize inbred parents of hybrid varieties become publically available after twenty years of plant variety
protection act, these are referred to as ex-PVPA (Mikel and Dudley 2006). In inbred species such as
wheat, using current varieties for breeding is straightforward if cultivated under the union for the
protection of new varieties of plants convention (UPOV, Dutfield 2011). These donors are likely the
most performing but also the less original that can be considered.

With the availability of cheap high density genotyping, Whittaker et al. (2000) and Meuwissen et
al. (2001) have proposed to use genomewide prediction to fasten breeding progress by shortening
generation intervals. In the most frequently used approaches of genomewide prediction, it is assumed
that most genomic regions equally contribute with relatively small effects to polygenic traits. A large
number of genomewide markers is employed, and their effects are estimated on a training set (TS) of
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phenotyped and genotyped individuals. The genomic estimated breeding values (GEBVs) are further
predicted considering the estimated marker effects and individuals’ molecular marker information.
Recurrent selection based on genomewide prediction, further referred to as genomic selection (GS),
has been increasingly implemented in crop breeding programs (Heslot et al. 2015; Voss-Fels et al.
2019). GS efficiency depends on the relationship between individuals in the TS and the target
population of individuals to predict (Habier et al. 2010; Pszczola et al. 2012). We assume that as a
consequence, in commercial breeding programs, GS has been mostly implemented considering a
narrow elite TS that optimizes the prediction accuracy on elite material. However, such a narrow TS
limits the prediction accuracy on individuals carrying rare alleles, which is the case for the progeny of
elite by donor crosses. Therefore, it is important to define the TS composition that maximizes the
prediction accuracy in both elite and introduction families.

In the context of genetic base broadening, GS is also interesting to fasten and reduce the costs for
the evaluation and identification of genetic resources in gene banks (Crossa et al. 2016; Yu et al. 2016).
Furthermore, GS can fasten pre-breeding programs to reduce the performance gap between genetic
resources and elite populations (Gorjanc et al. 2016). Instead of truncated selection (i.e. select and
mate individuals with the largest estimated breeding values), Cowling et al. (2017) proposed to use the
optimal contribution selection to improve genetic resources while maintaining a certain level of
diversity in the pre-breeding population. Optimal contribution selection (Wray and Goddard 1994;
Meuwissen 1997; Woolliams et al. 2015) aims at identifying the optimal parental contributions to the
next generation in order to maximize the expected genetic value in the progeny under a certain
constraint on diversity. Therefore, the optimal contribution selection is particularly adapted to pre-
breeding and genetic diversity management. Cowling et al. (2017) considered the pedigree
relationship information but considering the genomic relationship information can further improve the
optimal cross selection (Clark et al. 2013). Considering optimal contribution selection on empirical
cattle data, Eynard et al. (2018) observed that allowing for the introductions of old individuals in the
breeding population supported long-term response to selection. The optimal cross selection (OCS) is
the extension of optimal contribution selection to deliver a crossing plan (Kinghorn et al. 2009;
Kinghorn 2011; Akdemir and Isidro-Sanchez 2016; Gorjanc et al. 2018; Akdemir et al. 2019). We
propose to take advantage of OCS for selection of bridging, introduction and elite crosses (Figure 1).
Using OCS, the donors and donor by elite crosses are selected complementarily to the elite by elite
crosses in order to ensure an overall consistency of the genetic base broadening strategy. Allier et al.
(2019c) proposed to account for within family variance and selection in a new version of OCS referred
to as Usefulness Criterion Parental Contribution based OCS (UCPC based OCS). They observed both
higher short- and long-term genetic gain compared to OCS in a simulated closed commercial breeding
program.

We extend here the use of UCPC based OCS to pre-breeding, following Cowling et a/.(2017), and
to an open commercial breeding program with recurrent introductions of genetic resources, extending
the work of Eynard et al. (2018). In this context, we aimed at evaluating the efficiency of genetic base
broadening depending on the type of donors considered and the genetic base broadening scheme
(Figure 1). We considered either donors corresponding to the generation of the founders of breeding
pools or improved varieties released twenty years ago and five years ago. Our objectives were to
evaluate (i) the interest of recurrent introductions of diversity in the breeding population, (ii) the
interest to conduct or not bridging and (iii) the impact of the training set composition on within family
genomewide prediction accuracies.
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Material and methods

Simulated breeding programs
Material and simulations

We considered 338 Dent maize genotypes from the Amaizing project (Rio et al. 2019; Allier et al. 2020)
as founders of genetic pools. This diversity was structured into three main groups: 82 lowa Stiff Stalk
Synthetics, 57 lodents and 199 other dents. We sampled 1,000 biallelic quantitative trait loci (QTLs)
with a minimal distance between two consecutive QTLs of 0.2 cM among the 40,478 single nucleotide
polymorphisms (SNPs) from the lllumina MaizeSNP50 BeadChip (Ganal et al. 2011). Each QTL was
assigned an additive effect sampled from a Gaussian distribution with a mean of zero and a variance
of 0.05 and the favorable allele was attributed at random to one of the two SNP alleles. We sampled
2,000 SNPs as non-causal markers further used as genotyping information. The consensus genetic
positions of sampled QTLs and SNPs was considered according to Giraud et al. (2014).

We simulated two different breeding programs: an external breeding program (Figure 2A) that
released every year varieties that were later considered as potential donors for introduction in a
commercial breeding program (Figure 2C-D). Both external and commercial programs used doubled
haploid (DH) technology to derive progeny. We assumed a period of three years to derive, genotype
and phenotype DH progeny. Every year T, progeny of the three last generations T-3, T-4 and T-5
were considered as potential parents of the next generation. It created overlapping and connected
generations as it can be encountered in breeding. We first considered a burn-in period of twenty years
with recurrent phenotypic selection from a population of founders. Burn-in created extensive linkage
disequilibrium as often observed in elite breeding programs (Van Inghelandt et al. 2011). Every
progeny was phenotyped and phenotypes were simulated considering the genotypes at QTLs, an error
variance corresponding to a trait repeatability of 0.4 in the founder population, and no genotype by
environment interactions (Appendix A). Every individual was evaluated in four environments in one
year. After twenty years of burn-in, we simulated different breeding programs using GS. Every year,
progeny phenotypes and genotypes of the three last available generations were used to fit a G-BLUP
model (Appendix A). Progeny were selected based on GEBVs and marker effects were obtained by
back-solving the G-BLUP model (Wang et al. 2012) and further used for optimal cross selection to
generate the next generation (see optimal cross selection section and Appendix B).
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Figure 2 Diagram of simulated breeding programs. (A) External breeding program that generates
potential donors, (B) commercial benchmark program without introductions, (C) commercial program
with introductions without bridging or (D) commercial program with introductions after bridging.
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External breeding program: Improvement of genetic resources

The external breeding program (Figure 2A), was simulated starting from a broad population of 40
founders sampled among the 338 maize genotypes. During the three first years, the founders were
randomly crossed with replacement to generate each year 20 biparental families of 40 DH progeny to
initiate the three overlapping generations. The genetic material in the external breeding is referred to
as improved donors (D). During seventeen years, we first selected among the three last generations
the 10% D progeny per family (i.e. 4 DH lines/family x 20 families x 3 years) with the largest phenotypic
mean. We further randomly mated with replacement the 50 DH with the largest phenotypic mean to
generate 20 biparental families of 40 DH lines. Note that we considered 20 biparental families to be
consistent with the post burn-in simulations. After twenty years of burn-in, we considered GS trained
on the D progeny of the three last generations (i.e. 2,400 D progeny, Figure 2A). Among these three
last generations, we considered per family the 10% D progeny with the largest GEBVs as potential
parents of the next generation, i.e. 4 DH lines/family x 20 families x 3 years = 240 potential parents.
The 20 two-way crosses among the 240*239/2 = 28,680 candidate crosses were selected using optimal
cross selection as detailed in the section: optimal cross selection.

Commercial breeding programs

The commercial breeding program (Figure 2B-D) started from a population of 10 founders sampled
among the 57 lodent genotypes. During the first three years, the founders were randomly crossed with
replacement to generate each year 10 biparental families of 80 DH progeny to initiate the three
overlapping generations. The elite genetic material in the internal breeding is referred to as elite
progeny (E). During seventeen years, we considered as potential parents of the next generation the 50
E progeny with the largest phenotypic mean from the three last generations, i.e. without applying a
preliminary within family selection. These were randomly mated to generate 20 biparental families of
80 DH lines. After twenty years of burn-in, we considered GS and differentiated three different
scenarios: the benchmark commercial breeding program without introductions (Figure 2B), the
commercial breeding program with direct introductions without bridging (Figure 2C) or the commerecial
breeding program with introductions after bridging (Figure 2D).

In absence of introductions (benchmark), the E progeny were selected based on the elite GS model
trained on E progeny of the three last generations (i.e. 4,800 E progeny, Figure 2B). The 5% E progeny
with the largest GEBVs within each family (i.e. 4 DH) in the three last breeding generations were
considered as potential parents. The 20 two-way crosses among the 28,680 candidate crosses were
defined using optimal cross selection as detailed in the next section: optimal cross selection.

For scenarios with introductions, we considered different sub-scenarios (i) for the genetic base
broadening scheme including (Bridging) or not bridging (Nobridging) and (ii) for the potential donors
considered, to cover different possibilities in both hybrid and inbred species. We considered as
potential donors either the 338 genotypes from the Amaizing project or the D progeny with the largest
GEBVs released by the external breeding program (i.e. 1 DH/family/year, 20 potential donors released
every year). The scenario using the 338 genotypes from the Amaizing panel for genetic base
broadening was identified with the suffix Panel. For the donors released by the external breeding
program, we considered two time constraints for the access to diversity. To mimic a situation close to
that of the US maize ex-PVPA system (Mikel and Dudley 2006), we first considered donors released 20
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to 24 years before the current year (i.e. 5 years x 20 DH = 100 potential D) in scenarios with the suffix
20y. To simulate a faster access to external diversity, as it would be the case in line breeding under
UPQV convention (Dutfield 2011), we considered the donors released by the external breeding 5 to 9
years before the current year (i.e. 100 potential D) in scenarios with the suffix 5y. For scenarios without
bridging (Figure 2C), the E candidate parents were selected every year among the 5% E progeny
showing the largest GEBVs per family in the three last breeding generations resulting in Ne =4 DH x 20
families x 3 years = 240 potential E parents. The E progeny were selected based on the elite GS model
trained on E progeny of the three last generations (i.e. 4,800 E progeny, Figure 2C). The 20 breeding
crosses among the 28,680 candidate EXE elite crosses and DxE introduction crosses were selected using
optimal cross selection without constraint on the type of crosses elite or introduction, using the elite
GS model as described in section “Optimal cross selection”. For scenarios with bridging (Figure 2D),
the population was split into a bridging population of 5 families of 80 DH (i.e. 400 DE progeny) and a
breeding population of 15 families of 80 DH (i.e. 1,200 E progeny). Every year, the E candidate parents
for breeding were selected among the 5% E progeny per family showing the largest GEBVs from the
three last breeding generations, resulting in Ne = 4 DH/family x 15 family x 3 year = 180 potential E
parents. The E progeny were selected based on the elite GS model trained on all E progeny of the three
last generations (i.e. 3,600 E progeny, Figure 2D). The DE candidate parents for introduction in the
breeding population were similarly selected among the three last bridging generations, resulting in Npe
=4 DH/family x 5 families x 3 years = 60 potential DE parents. The DE progeny were selected based on
the bridging GS model trained on all DE progeny of the three last generations, i.e. 1,200 DE (Figure 2D).
Among the Ng(Ne -1)/2 = 16,110 EXE elite crosses and NpeNe= 10,800 DEXE introduction crosses possible
for breeding, the 15 breeding crosses were defined using optimal cross selection with the elite GS
model and without constraint on the type of crosses ExE (elite) or DEXE (introduction). The 5 DxE
bridging crosses were selected among the possible crosses between the available D and potential E
parents with the bridging GS model, conditionally to selected breeding crosses as described in the next
section: optimal cross selection.

Optimal cross selection

The optimal cross selection selects the set of crosses (nc) that maximizes the expected genetic value
in the progeny (V) under a constraint on the genomewide genetic diversity in the progeny (D)
(Kinghorn et al. 2009; Kinghorn 2011; Akdemir and Isidro-Sanchez 2016; Gorjanc et al. 2018; Akdemir
et al. 2019). As proposed in Allier et al. (2019c), the effect of within family selection with intensity (i)
and accuracy (h) on V&M and DGR can be accounted for in optimal cross selection by using UCPC
based OCS (Appendix B). Similarly as in Allier et al. (2019c), we considered h = 1 for sake of simplicity.

For breeding crosses, the optimal set of |nc| = 20 crosses (in scenarios without bridging, Figure
2A-C) or |nc| = 15 crosses (in scenarios with bridging, Figure 2D) was selected to solve the multi-
objective optimization problem:

max VO (nc)

with D@ (nc) > He(t), (Eq. 1)

where He(t),V t € [0,t*] is the minimal genomewide diversity constraint at time t. The evolution of
diversity along time was controlled by the targeted diversity trajectory, i.e. He(t),V t € [0,t*] where
t* € N* is the time horizon when the diversity He(t*) = He™ should be reached. For the external and
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the commercial benchmark without introductions breeding programs, we considered He* = 0.10 and
He* = 0.01 reached after sixty years, respectively. As in Allier et al. (2019c), the constraint on p®
followed a linear trajectory over time:

He® +t—t*(He* —He%, vte [0,t]
He*, Vt>t*

where He? is the initial diversity at t = 0, i.e. at the end of burn-in.

For the commercial breeding program with introductions, we maintained the genomewide
diversity constant after the end of burn-in, i.e. He(t) = He®, vV t € [0, t*]. Thus, the UCPC based OCS
selected introduction crosses (i.e. DxE if no bridging and DEXE if bridging) when necessary to maximize
the performance while keeping genomewide diversity constant (Eq. 1). In case of bridging, we
completed the 15 selected breeding crosses with 5 bridging crosses (DxE, Figure 2D) that maximized
the following function on the full set of |nc| = 20 crosses:

max a V®*(nc) + (1 — a) DD*(nc), (Eq. 3)
nc

where, a € [0,1] is the relative weight given to performance compared to diversity, i is the within
VO ne)-vD(nch) i)+ _ DD me)-pD(nc})
VO (ney) 7O ep) 19 D (MO = 50y 50 ey )

family selection intensity, V®0*(nc) = with ncy,

and ncj, are the lists of crosses that maximize the performance (V) and the diversity (D), respectively.
A differential evolution (DE) algorithm was used to find Pareto-optimal solutions of Eq. 1 and Eq. 3
(Storn and Price 1997; Kinghorn et al. 2009; Kinghorn 2011).

Interest of pre-breeding and bridging

We compared different commercial breeding programs with recurrent introductions considering or
not bridging at constant cost (i.e. total of 1,600 DH/year) and considering three types of potential
donors, resulting in the six genetic base broadening scenarios: Bridging _Panel, Nobridging Panel,
Bridging_20y, Nobridging_20y, Bridging_5y, Nobridging_5y. We ran ten independent simulation
replicates of the external program that generated donors, the commercial benchmark without
introductions, and the six genetic base broadening scenarios. Note that at a given simulation replicate
the commercial breeding program accessed the potential donors released by the corresponding
external breeding program simulation replicate.

We followed several indicators in the breeding families (i.e. E progeny, Figure 2). At each
generation T € [0,60] with T = 0 corresponding to the last burn-in generation, we computed the
mean genetic merit of E progeny u(T) = mean(TBV(T)) and of the ten most performing E progeny
U10(T) = mean (rri%X(TBV(T))) as a proxy of the performance that could be achieved at the

commercial level by releasing these lines as varieties. We also measured the frequency of the favorable
allele in the E progeny p;(T) at each QTL j among the 1,000 QTLs. We further focused on the QTLs
where the favorable allele was rare at the end of burn-in, i.e. p;(0) < 0.05. The results were averaged

and standard errors were computed over ten independent replicates.
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Effect of a joint genomic selection model for bridging and breeding

For the three scenarios with bridging, we investigated the interest of a single TS grouping 3,600 DE and
1,200 E progeny to predict both breeding and bridging families. These three additional scenarios were
referred to as Bridging_Panel (Single TS), Bridging_20y (Single TS) and Bridging_5y (Single TS). Every
generation, we defined the prediction accuracies as the correlation between true breeding values and
GEBVs (cor(u,#i)) within breeding elite families (ExE), breeding introduction families (DExE) and
bridging families (DxE). The prediction accuracies were averaged over the ten replicates and further
averaged over the sixty generations. Note that considering a single GS model at constant cost yielded
not only a broader but also a larger training set (4,800 DH progeny instead of 3,600 DH progeny for
elite GS or 1,200 DH progeny for bridging GS, Figure 2).

We further investigated the effect of the proportion of DE and E progeny in the TS at constant size
on within EXE and DEXE family selection accuracy. We considered the 1,200 DE and 3,600 E progeny
genotypes and phenotypes simulated at generations 18, 19, 20 in the first replicate of scenario
Bridging_20y. We further selected the 5% DH per family with the highest GEBVs obtained using a GS
model trained on all 4,800 progeny genotypes and phenotypes. These were randomly crossed to
generate 50 elite (ExE) and 50 introduction (DExE) families of 80 DH progeny. These families were
considered as the validation set (VS). We randomly sampled among the 4,800 DH progeny different TS
of variable sizes and compositions (Table 1) and we evaluated the within elite (EXE) and introduction
(DEXE) family prediction accuracy (cor(u, @1)). We also evaluated the within family variance prediction
accuracy as the correlation between the variance of true breeding values and the estimated variance
(cor(a, 5)). We reported results for twenty independent samples.

Table 1 Description of the training sets compared: the full training sets considering all available
progeny of the last three generations and training sets at constant size (1,200 progeny or 3,600
progeny) with variable proportion of DE progeny.

TS name Number of E Number of DE
Pure E (3,600) 3,600 0
Full TS Pure DE (1,200) 0 1,200
1/4 - DE (4,800) 3,600 1,200
Constant size  Pure E (1,200) 1,200 0
(1,200) 1/4 - DE (1,200) 900 300
1/3 - DE (3,600) 2,400 1,200
1/4 - DE (3,600) 2,700 900
Constant size  1/6 - DE (3,600) 3,000 600
(3,600) 1/12 - DE (3,600) 3,300 300
1/24 - DE (3,600) 3,450 150
1/36 - DE (3,600) 3,500 100
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Results

Interest of pre-breeding and bridging

The interest of recurrent introductions in the commercial breeding program after or without bridging
depended on the type of donor considered. Panel donors showed a large performance gap with the
elites they were crossed to. This performance gap increased with advanced breeding generations (on
average a true breeding value difference with elites increasing from -15 and -104 trait units). Improved
donors showed a lower performance gap with elites. Twenty-year old donors showed an intermediate
performance gap with elite (on average -22 trait units) and five-year old donors showed a reduced
performance gap with elite (on average -8 trait units).

Direct introductions of panel donors without bridging (Nobridging_Panel) penalized the breeding
population mean performance (u) at short-term (at five years, u = 8.168 +/- 0.282 compared to 9.239
+/- 0.237 without introductions, Figure 3A, Table S1) and long-term (at sixty years, u =9.651 +/- 0.958
compared to 38.837 +/- 1.563 without introductions, Figure 3A, Table S1). When considering the mean
performance of the ten best progeny (i,), the short-term penalty was no more significant (at five
years, (19 = 15.802 +/- 0.341 compared to 15.746 +/- 0.391 without introductions, Figure 3B, Table S2)
but the long-term penalty was still significant (at sixty years, ;o = 29.767 +/- 1.108 compared to 39.567
+/- 1.571 without introductions, Figure 3B, Table S2). The introduction of panel donors after bridging
(Bridging_Panel) did not significantly penalize the short-term mean performance of the breeding
population (at five years, 1 = 8.688 +/- 0.329 compared to 9.239 +/- 0.237 without introductions, Figure
3A, Table S1) and yielded significantly higher long-term performance (at sixty years, u = 52.110 +/-
0.886 compared to 38.837 +/- 1.563 without introductions, Figure 3A, Table S1). When considering
U190, the short-term penalty was reduced (at five years, ;¢ = 15.605 +/- 0.477 compared to 15.746 +/-
0.391 without introductions, Figure 3B, Table S2) and the long-term gain increased (at sixty years, {19
=61.763 +/- 1.298 compared to 39.567 +/- 1.571 without introductions, Figure 3B, Table S2).

Direct introductions of twenty-year donors without bridging (Nobridging_20y) yielded a penalty
in the mid-term compared to not introducing donors (at twenty years, u = 16.818 +/- 2.397 compared
to 23.182 +/- 1.446 without introductions, Figure 3A, Table S1). When considering p;, the mid-term
penalty due to introductions was limited (Figure 3B, Table S2). After thirty years, this introduction
scenario significantly outperformed the benchmark (1 = 33.546 +/- 1.519 compared to 30.006 +/- 1.319
without introductions, Figure 3A, Table S1) and this advantage increased until the end of the sixty years
evaluated period (u = 66.944 +/- 0.849 compared to 38.837 +/- 1.563 without introductions, Figure
3A, Table S1). The introduction of twenty-year old donors after bridging (Bridging_20y) penalized only
the short-term performance (at five years, u = 8.687 +/- 0.293 compared to 9.239 +/- 0.237 without
introductions, Figure 3A, Table S1) and yielded significantly higher performance than the benchmark
after twenty years (u = 27.987 +/- 0.840 compared to 23.182 +/- 1.446 without introductions, Figure
3A, Table S1). Introductions after bridging significantly outperformed the direct introductions until the
end of the sixty years evaluated period (u = 69.154 +/- 0.868 with bridging compared to 66.944 +/-
0.849 without bridging and py = 74.413 +/- 0.932 with bridging compared to 72.258 +/- 0.978 without
bridging, Figure 3A-B, Table S1-52).

Introducing five-year old donors after or without bridging yielded significantly higher mid- and
long-term performances than all other tested scenarios, without any significant long-term advantage
of introductions after bridging compared to direct introductions (at sixty years, u = 74.074 +/- 0.869
with bridging compared to 74.662 +/- 0.938 without bridging, Figure 3, Table S1).
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We observed that the recurrent introductions of donors impacted the genetic diversity of the
commercial germplasm. The more the commercial program had access to recent germplasm of the
external program, the more the varieties released by the commercial program where admixed with
the external program elite germplasm (Figure 4B and Figure 4C). In the scenario where only panel
donors were accessible for introductions, the internal program diversity did not converge toward the

external program (Figure 4A).
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Figure 3 Evolution of the breeding population over generations. Scenarios considering presence or
absence of bridging before introduction with different type of donors (panel, twenty-year old and five-
year old donors). (A) Mean breeding population performance (1), (B) mean performance of the ten
best progeny (u40) and (C) frequency of the favorable alleles that were rare at the end of burn-in (i.e.
p(0) < 0.05 corresponding on average to 269.9 +/- 23.6 QTLs).
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Figure 4 Principal component analysis of the modified Roger’s genetic distance matrix (Wright 1978)
of the 338 founders (gray: points for the 57 lodent lines and triangles for the 281 remaining lines), the
commercial ten best performing E progeny per generation (colored circles sign) and the twenty donors
per generation released by the external program (colored plus sign). Both commercial and external
lines are colored regarding their generation (note that negative generations correspond to burn-in).
Black circles represent the donors that have been introduced into the commercial breeding program.
Only three scenarios with bridging are represented for the first simulation replicate, (A) when only
donors from panel were accessible, (B) when twenty-year old donors from the external breeding were
accessible and (C) when five-year old donors from the external breeding were accessible.
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The evolution of the mean frequency of initially rare favorable alleles (i.e. favorable allele that had
a frequency at the end of burn-in < 0.05 in the elite breeding population) also highlighted differences
between strategies. The older the donors, the lower the increase in frequency of initially rare favorable
alleles (at sixty years for scenario with bridging, the mean frequency was 0.414 +/- 0.012 for five-year
old donors, 0.361 +/- 0.009 for twenty-year old donors, 0.263 +/- 0.008 for panel donors and 0.016 +/-
0.006 without introductions, Figure 3C, Table S3). For twenty-year old donors, omitting the bridging
before introduction delayed the increase in frequency of initially rare favorable alleles (e.g. at twenty
years, the mean frequency was 0.088 +/- 0.014 without bridging compared to 0.116 +/- 0.011 with
bridging, Figure 3C, Table S3). More importantly, for panel donors the absence of bridging significantly
penalized the increase in frequency of initially rare favorable alleles (at sixty years, 0.068 +/- 0.007
without bridging compared to 0.263 +/- 0.008 with bridging, Figure 3C, Table S3).

Effect of a joint genomic selection model for bridging and breeding

Scenarios considering a single TS of 3,600 E and 1,200 DE progeny yielded higher mid- and long-term
U and pqo than scenarios considering two distinct TS for bridging and breeding (Figure 5A-B). After
twenty years, single TS scenarios significantly outperformed scenarios with two distinct TS (u = 40.111
+/- 1.149 compared to 34.900 +/- 0.905 for five-year old donors, ¢ = 30.497 +/- 1.135 compared to
27.987 +/- 0.840 for twenty-year old donors and u = 29.292 +/- 0.802 compared to 25.212 +/- 1.314
for panel donors, Figure 5A, Table S1). After sixty years, the advantage of a single TS remained
significant except for five-year old donors (i = 75.749 +/- 1.093 compared to 74.074 +/- 0.869 for five-
year old donors, pt = 71.130 +/- 1.028 compared to 69.154 +/- 0.868 for twenty-year old donors and u
= 57.067 +/- 1.444 compared to 52.110 +/- 0.886 for panel donors, Figure 5A, Table S1). When
considering [1, a single TS was still more performing but its interest was less significant (e.g. for panel
donors after sixty years, (1o = 63.699 +/- 1.698 compared to 61.763 +/- 1.298, Figure 5 B, Table S1-52).
A single TS also favored the increase in frequency of initially rare favorable alleles introduced by five-
year old donors and twenty-year old donors (e.g. for twenty-year old donors after sixty years, 0.380
+/-0.010 compared to 0.361 +/- 0.009, Figure 5C, Table S3).

The observed within family prediction accuracies varied depending on the TS considered. For
twenty-year old donors introduced after bridging, considering a single TS of 4,800 DE+E did not
significantly improve the prediction accuracy within EXE families compared to using the pure elite TS
of 3,600 E (cor(u,@) = 0.73 +/- 0.06 compared to cor(u,@) = 0.72 +/- 0.07, Table 2). However, it
significantly improved the prediction accuracy within introduction DEXE families compared to the pure
elite TS of 3,600 E (cor(u, @) = 0.77 +/- 0.07 compared to cor(u, i) = 0.61 +/- 0.11, Table 2). A single
TS also slightly but not significantly improved the prediction accuracy within bridging DxE families
compared to the pure bridging TS of 1,200 DE (cor(u, @) = 0.78 +/- 0.05 compared to cor(u, @) = 0.73
+/-0.06, Table 2). Similar observations were made on the other scenarios considering five-year old and
panel donors. Prediction accuracies were larger in introduction DEXE and bridging DxE families with
older donors, i.e. phenotypically distant to elites, due to larger within family variances (e.g. for DEXE
families 14.43 +/- 4.40 for panel donors, 6.92 +/- 2.10 for twenty-year old donors and 5.00 +/- 1.41 for
five-year old donors, Table 2).
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Figure 5 Evolution of the breeding population over generations. Scenarios considering bridging with
different donors (panel, twenty-year old and five-year old donors) and either a single broad TS (Single
TS) or two distinct training set for bridging and breeding (default). (A) Mean breeding population
performance (i), (B) mean performance of the ten best progeny (i) and (C) frequency of the
favorable alleles that were rare at the end of burn-in (i.e. p(0) < 0.05 corresponding on average to
269.9 +/- 23.6 QTLs).

Table 2 Within family prediction accuracies (cor (u, 1)) depending on the validation set (VS): elite (ExE),
introduction (DEXE) and bridging (DxE) and the training set (TS) considered: pure elite (E), pure bridging
(DE) and merged (E+DE). Results are given for scenarios with different donors, from the panel, twenty-
year old and five-year old donors, considering a single TS and prediction accuracies are averaged over
the ten replicates and all sixty generations. In brackets are given the standard errors averaged over

sixty generations.

60

Five-year old donor Twenty-year old donor Panel donor
> 8 Prediction accuracy - 3 Prediction accuracy > 8 Prediction accuracy

Vs E £ TS = TS = TS = E = TS = TS = TS = E £ TS = TS = TS =
&5 E DE E+DE & % E DE E+DE G § E DE  E+DE
> (3,600) (1,200) (4,800) > (3,600) (1,200) (4,800) > (3,600) (1,200) (4,800)

ExE 3.76 0.69° 0.48 0.72° 3.93 0.72° 0.47 0.73° 4.02 0.72° 0.44 0.73°
(1.17)  (0.07) (0.1) (0.06) (1.06) (0.07) (0.10) (0.06) (1.16) (0.05) (0.10) (0.05)

DEXE 5.00 0.60? 0.59 0.73" 6.92 0.61° 0.65 0.77" 14.43 0.65? 0.78 0.86"
(1.41) (0.1) (0.1) (0.07) (2.10) (0.11) (0.10) (0.07) (4.40) (0.12) (0.07) (0.05)

DxE 9.69 0.61 0.66 0.73° 18.31 0.65 0.73 0.78° 64.15 0.74 0.822 0.86°
(2.01) (0.08) (0.08) (0.07) (3.78) (0.08) (0.06) (0.05) (12.89) (0.07) (0.04) (0.03)

2 Prediction accuracies that would have been realized if the breeding (E) or bridging (DE) families had been each
predicted only by the corresponding training set (to be compared with ).

b Realized prediction accuracies when considering a single training set (to be compared with ?).
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At constant TS size of 3,600 DH, the increase in proportion of DE progeny from 0 to 1/3 in the TS
increased the prediction accuracy within introduction DExE families (cor(u, i) = 0.58 +/- 0.02 to 0.73
+/- 0.01, Figure 6B) while it reduced the prediction accuracy within elite EXE families (cor(u, i) = 0.70
+/- 0.01 to 0.65 +/- 0.02, Figure 6A). The TS with 3,000 E and 600 DE, appeared as a suitable
compromise with within introduction DExE family cor(u,) = 0.70 +/- 0.02 and elite ExE families
cor(u,q) = 0.68 +/- 0.01. At constant TS size of 1,200 DH, the TS with 900 E and 300 DE progeny
performed similarly as the pure bridging TS for prediction within DExE families (cor(u, i) = 0.63 +/-
0.03 compared to 0.62 +/- 0.02, Figure 6B) but significantly outperformed the pure bridging TS for
prediction within elite ExE families (cor(u, @) = 0.52 +/- 0.04 compared to 0.34 +/- 0.02, Figure 6A).
The within family variance prediction accuracy showed similar tendencies (Figure 7A-B). The increase
in proportion of DE progeny from 0 to 1/3 in the TS increased the prediction accuracy within
introduction DEXE families (cor (o, ) = 0.56 +/- 0.09 to 0.76 +/- 0.07, Figure 7B) while it reduced the
prediction accuracy within elite ExE families (cor(o, 6) = 0.74 +/- 0.07 to 0.71 +/- 0.08, Figure 7A).
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Figure 6 Effect of TS composition on intra family prediction accuracies (cor(u,i)) considering
genotypes simulated at generations 18, 19, 20 in the scenario Bridging_20y. (A) Mean prediction
accuracy within 50 elite (ExE) families and (B) mean prediction accuracy within 50 introduction (DEXE)
families. Boxplots represent the results for 20 independent replicates. One can distinguish three
training set types (left to right): Full training set considering all 3,600 E progeny (Pure E), all 1,200 DE
progeny (Pure DE) and all 3,600 E + 1,200 DE progeny; Training sets at constant size of 1,200 DH for
comparison with Pure DE; Training sets at constant size of 3,600 DH and variable proportion of DE
progeny for comparison with Pure E. The red dotted line represents the median value for Pure E TS.
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Figure 7 Effect of TS composition on family variance prediction accuracy (cor(o,d)) considering
genotypes simulated at generations 18, 19, 20 in the scenario Bridging_20y. (A) Mean prediction
accuracy in 50 elite (ExE) families and (B) mean prediction accuracy in 50 introduction after bridging
(DEXE) families. Boxplots represent the results for 20 independent replicates. One can distinguish three
training set types (left to right): Full training set considering all 3,600 E progeny (Pure E), all 1,200 DE
progeny (Pure DE) and all 3,600 E + 1,200 DE progeny; Training sets at constant size of 1,200 DH for
comparison with Pure DE; Training sets at constant size of 3,600 DH and variable proportion of DE
progeny for comparison with Pure E. The red dotted line represents the median value for Pure E TS.
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Discussion

Genetic base broadening with optimal cross selection accounting for within family
variance

Despite the recognition of the importance to broaden the elite genetic base in most crops, commercial
breeders are reluctant to penalize the result of several generations of intensive selection by crossing
these to unimproved genetic resources. Furthermore, among the large diversity available for genetic
base broadening (e.g. landraces, public lines, varieties...), the identification of the useful genetic
diversity to broaden the elite pool is difficult and might dishearten breeders. Consequently, there is a
need for global breeding strategies that improve genetic resources to bridge the performance gap with
elites, identify interesting sources of diversity that complement at best the elite germplasm and
efficiently introduce them into elite germplasm.

The identification of genetic resources for polygenic enrichment of the elite pool should account
for the complementarity between genetic resources and elites as reviewed in Allier et al. (2020). Allier
et al. (2019b) proposed the Usefulness Criterion Parental Contribution (UCPC) approach to predict the
interest of crosses between genetic resources and elite recipients based on the expected performance
and diversity in the most performing fraction of the progeny. The interest of UCPC relies on the fact
that it accounts for within family variance and selection when identifying crosses. For instance, when
crossing phenotypically distant parents, e.g. genetic resource and elite recipient, we expect a higher
cross variance that should be accounted for to properly evaluate the usefulness of the cross (Schnell
and Utz 1975; Longin and Reif 2014; Allier et al. 2019b). Additionally, we expect the best performing
fraction of the progeny to be genetically closer to the best parent. This deviation from the average
parental value should be considered to evaluate properly the genetic diversity in the next generation
(Allier et al. 2019b; d). Accounting for parental complementarity at marker linked to QTLs also favors
effective recombination in progeny and breaks negative gametic linkage disequilibrium between QTLs
(i.e. repulsion), which unleashes additive genetic variance and increases long-term genetic gain (Allier
et al. 2019c). Therefore, the OCS is particularly adapted to genetic diversity management in pre-
breeding and breeding programs (Akdemir and Isidro-Sanchez 2016; Cowling et al. 2017; Gorjanc et al.
2018; Allier et al. 2019c). The objective and the originality of this study were to consider UCPC based
OCS to jointly select donors, introduction crosses and elite crosses to ensure an overall consistency of
genetic base broadening accounting for the performance and diversity available in both bridging and
breeding populations.

Genetic resources and simulated pre-breeding

Different sources of diversity can be considered by commercial breeders. The most original, but which
show a large performance gap with elites, are landraces (e.g. DH libraries derived from landraces,
Strigens et al. 2013; Melchinger et al. 2017; Bohm et al. 2017) and first varieties derived from
landraces. Since breeding industry is highly competitive, breeders are likely reluctant to introduce
unselected genetic resources directly into the breeding germplasm despite they might carry favorable
adaptation alleles to face climatic changes (McCouch et al. 2013; Hellin et al. 2014; Bohm et al. 2017).
Instead, commercial breeders will prefer to consider elite inbred lines from other than their own
program (Kannenberg 2001).
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In this study, the external breeding program was designed to release every generation several
improved lines, later considered as donors for genetic base broadening of the commercial breeding
program. The external program started from a broader genetic diversity than the commercial program
(on average, He = 0.283 compared to He = 0.133 at the end of burn-in) and was designed to maintain
higher genetic diversity during selection (on average, He = 0.101 compared to He = 0.014 after sixty
years). This was done to mimic in a simple way the outcome of the activity of several companies
conducting separate programs and therefore maintaining a global diversity. The external program can
also be viewed as a pre-breeding program since it aimed at improving genetic resources to reduce their
performance gap with elites while maintaining genomewide diversity among the pre-breeding
population (Figure 1). The situation where the commercial breeding program can access donors
released twenty years ago mimicked the situation of private lines with expired plant protection act in
maize (Mikel and Dudley 2006) or old public lines. The situation where the commercial breeding
program can access donors released five years ago mimicked either donors released by pre-breeding
programs (e.g. in maize the SeeD project, Gorjanc et al. 2016) or donors released by programs working
a different genetic basis and targeting different environments (e.g. commercial varieties in inbred
species accessible for breeding under the UPOV convention, Dutfield 2011). The selection intensity
was lower in the external breeding than in the commercial breeding programs (10% vs 5% of progeny
selected, respectively). This was done to compensate the increased response to selection due to the
higher genetic diversity and ensure that the donors released by the external program underperform
the commercial breeding elites. It should be noted that donors outperforming elites might be
encountered in practice when considering elite germplasm as source of diversity, but this situation was
not considered in this study. In such a situation the direct introduction of donors would be clearly
preferable.

Interest of introductions after bridging

When considering recent and performing donors (five-year old), scenarios with introductions after
bridging or direct introductions performed similarly. Conversely, for panel and twenty-year old donors,
introductions after bridging yielded significantly higher mid- and long-term performance compared to
direct introductions. Note that introductions after bridging can be seen as a specific three-way cross
with selection of the progeny of the first donor by elite recipient cross followed by crossing the selected
progeny to a second more recent elite recipient. Assuming no selection between the first cross and
the second cross, Allier et al. (2019b) predicted that three-way crosses were more prone to deliver
performing progeny than back-crosses and F1 biparental crosses, when considering donors
underperforming the elite germplasm. Since donors (D) were less performing than elites, the fraction
of progeny selected in donor by elite bridging families (DE progeny) carried on expectation less than
half of donor’s genome (Allier et al. 2019b). Thus, progeny of introduction crosses after bridging (DEXE)
carried on expectation less than one fourth of the donor (D) genome. This D fraction includes favorable
alleles but also unfavorable alleles brought by linkage drag, which number depends on the donor
considered. Introductions penalized the mean breeding population performance in the first
generations (Figure 3A-B). Next generations of recombination and selection partially broke the linkage
between favorable and unfavorable alleles in introduced regions, resulting in a higher genetic gain than
in the benchmark (Figure 3A-B) and an increase of the frequency of novel favorable alleles (Figure 3C).
The more performing the donor, the less unfavorable alleles linked to favorable alleles and the more
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rapidly novel favorable alleles were introduced and spread in the breeding population (Figure 3C). In
absence of bridging, the introduction progeny (DxE) carried on expectation one half of the donor
genome. Consequently, the penalty due to introductions was more important and the conversion into
genetic gain required more recombination events, i.e. recycling generations (Figure 3A-B). For panel
donors showing a large performance gap with elites, the direct introductions were not converted into
genetic performance. The high inter-family additive variance in this scenario (Figure S1 A) reflected the
structuration of the breeding population into badly performing introduction families and performing
elite families with only limited gene flow between them. Such behavior might be corrected by adding
a constraint to force the recycling of introduction progeny in Eq. 1 when donors are too badly
performing, which requires further investigations.

Practical implementation in breeding programs

We considered a commercial breeding program with a genetic diversity at the end of the burn-in
matching that of an experimental program reported by Allier et al. (2019a). Breeding programs
ongoing for different species and breeders may present a diversity superior or inferior to the one that
was simulated, which would make the importance of introductions lower or stronger than in the
simulated scenarios, respectively. UCPC based OCS for genetic base broadening requires to genotype
the candidate parents, including breeding material and potential donors, a genetic map and reliable
marker effect estimates. This information is available in breeding programs that have already
implemented genomic selection. In this study, we assumed fully homozygous inbred lines but
considering heterozygote parents in UCPC based OCS is straightforward following the extension of
UCPC to four-way crosses (Allier et al. 2019b). This is particularly interesting for perennial plants.

We proposed to implement bridging at constant cost by splitting the breeding population into a
small bridging population and a large breeding population. This involves practical changes in the
breeding organization that remain to be studied. We considered equal family sizes and within family
selection intensities for bridging and breeding families. However, in practice different within family
selection intensities can be considered in UCPC based OCS (Appendix B) and one may want to modulate
the selection intensity among families, e.g. select less intensively in bridging and more intensively in
breeding families. We could consider the selection intensities as fixed parameters regarding breeding
objectives or as variable parameters to be optimized. The effect and the optimization of within family
intensities in bridging and breeding requires further investigations. We considered a selection accuracy
h =1 for cross selection, for sake of facility. However, we observed that within family prediction
accuracies were variable (Table 2, Figure 6). Note that a priori within family accuracy can be accounted
for in UCPC based OCS (Appendix B). For instance it would give less importance to predicted variance
for crosses with a priori low within family accuracy. The consequences on short- and long-term UCPC
based OCS efficiency need to be investigated. In bridging, we gave more importance to performance
than to diversity (¢ = 0.7) when selecting bridging crosses in order to reduce the performance gap
between donors derived materials and elites. When giving less weight to the performance than to the
diversity, i.e. @ = 0.3, we observed non-significant changes on the short- or long-term performance
for scenarios with five-year and twenty-year old donors and a significant increase of long-term
performance and novel favorable allele frequency for the scenario with panel donors (Figure S2 A-C).
This suggested that for unimproved donors, to select too strongly for performance in bridging favors
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the first elite recipient genome contribution and limits the introduction of novel favorable alleles.
Further investigations are required to better define this parameter for practical implementation.

In scenarios with bridging, we considered by default two distinct bridging and breeding GS models.
The prediction of elite (ExE) and introduction (DEXE) crosses usefulness and the prediction within
crosses were based on a model trained on the breeding progeny of the three corresponding previous
generations. Considering a unique genomic selection model trained on both bridging and breeding
progeny increased the prediction accuracy within introduction families (DEXE) (Table 2). This higher
selection accuracy favored the spreading of the introduced favorable alleles in the breeding population
and resulted in an increased mid- and long-term performance (Figure 5). Furthermore, compared to
use two distinct TS, a single TS led to introduce more bridging progeny (DE) for scenarios considering
good performing donors (five-years old) and less for scenarios considering bad performing donors
(twenty-years old) (Figure S3 A). Also, as we likely selected more accurately the introduction crosses
(DEXE) with a single TS, there was an increase in the proportion of those that contributed to the ten
best lines, especially for twenty-year old and panel donors (Figure S3 B).

It is well known that the prediction accuracy is increased for larger TS (Hickey et al. 2014). At
constant TS size, increasing the proportion of bridging progeny (DE) up to one third in the TS
significantly increased the family variance prediction accuracy (cor(o, &)) and within family prediction
accuracy (cor(u, i)) in introduction families (DEXE). Conversely, these higher proportions of bridging
progeny (DE) in the TS significantly decreased cor(a, ) and cor(u, i) in elite families (ExE). The
optimal balance between introduction and elite family prediction accuracies is likely data dependent
as observed when considering genotypes and phenotypes simulated in different generations (Figure
S4). For instance, considering later generations, a large proportion of DE in the TS penalized less the
within elite prediction accuracy (Figure S4 C). The reason being that later breeding generations get
closer to the external program germplasm (Figure 4). The optimal balance between bridging and
breeding progeny in the training set might be defined using an optimization criterion such as the
CDmean (Rincent et al. 2012) extended to account for linkage disequilibrium as suggested by Mangin
et al. (2019).

Outlooks

We considered an inbred line breeding program corresponding to selecting lines on per se values for
line variety development or on testcross values with fixed tester lines from the opposite heterotic pool
for hybrid breeding. In this case, the use of testcross effects estimated on hybrids between candidate
lines and tester lines is straightforward. The extension to hybrid reciprocal breeding is of interest for
genetic broadening in several species such as maize and hybrid wheat (Longin and Reif 2014). In this
context it is possible to account for the complementarity between heterotic groups in UCPC based OCS
to complementarily enrich and improve both pools, ensuring a consistency of the hybrid program. This
would require to include dominance effects in UCPC based OCS.

We considered a single trait selected in both the external and the commercial breeding programs
in the same population of environments for a total of eighty years. These assumptions should be
relaxed in further simulations. Firstly, it is well recognized that genetic resources suffer agronomic
flaws (e.g. lodging, Tallury and Goodman 2001; Longin and Reif 2014) or miss adaptation (e.g. flowering
time) that should be accounted for during pre-breeding and introduction in breeding. In such a multi-
trait context, the multi-objective optimization framework proposed in Akdemir et al. (2019) can be
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adapted to UCPC based OCS. Secondly, in practice several public pre-breeding programs or competitor
programs can be considered as sources of candidate donors for genetic base broadening. These
programs likely did not select for the same target environments and are themselves continuously
enriched in new allelic variation. Thirdly, in a context of climate change and rapid evolving agricultural
practices, breeding targets are expected to change (e.g. emerging biotic or abiotic stresses).
Considering a more realistic context, where donors are released by different programs selecting in
different environments and for different traits changing over time, likely makes the interest of
maintaining genomewide genetic diversity through genetic base broadening even more important
than highlighted in this study.
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Appendix A

Simulation of progeny genotypes and phenotypes

Doubled haploid (DH) progeny genotypes were simulated considering meiosis events without
crossover interference. The number of chiasmata was drawn from a Poisson distribution with A equal
to the chromosome length in Morgan, and crossover positions were determined using the
recombination frequency obtained using the Haldane mapping function (Haldane 1919).

For phenotyping, we considered environmental effects sampled from a normal distribution of mean
zero and variance 25 and did not consider genotype by environment interactions. Each generation was
evaluated in Nj,. = 4 locations in one year, i.e. four environments. Environmental errors were
sampled from a normal distribution with mean zero and an error variance 62 defined by the initial
repeatability in the founder population r = a;ig = 0.40. This led to a heritability in the founder

a¢

——£5 — =10.73 and h? = 0.42 at the end of burn-in in commercial breeding
06+0&/Nioc

population of h? =

scenarios.

Genomewide prediction model

The genomic estimated breeding values of progeny (GEBV, i) were estimated in Model 1 S1 fitted
using mixed model software blup-f 90 (Misztal 2008) with AI-REML variance component estimates:

Y=1u+ Efgn, + Wu + €, (Model 1 S1)

where Y is the vector of phenotypic values, u is the intercept, E is the incidence matrix for
environmental effects, Bgny, is the vector of environmental fixed effects, W is the incidence matrix of
individual breeding value random effects u, u ~ N(0,02G) is the vector of breeding value random
effects with G the genomic relationship matrix and € is the vector of independent residual random
terms € ~ N(0,021). G was estimated using the 2,000 non causal loci:

c 77’
~tr(ZZ)/n

where Z contains the centered allele counts, with elements computed as xij +1- 2p;, where the
element x;; € {—1,1} is the genotype for individual i at non causal locus j and p; is the frequency of
the allele for which the homozygous genotype is coded 1 at non causal locus j. tr(ZZ") is the trace of
ZZ' and tr(ZZ")/n forces the diagonal of G to be 1 on average (Legarra et al. 2009; Forni et al. 2011).
Estimated marker effects B were obtained by back-solving: B = Z'(ZZ")~ 14 (Wang et al. 2012). The
prediction accuracy was defined as cor(u, &) with u and U the vectors of true breeding values and
genomic estimated breeding values, respectively.
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Appendix B

We applied the Usefulness Criterion Parental Contributions approach (UCPC) proposed by Allier et al.
(2019b) and further extended in Allier et al. (2019c) to evaluate the interest of a set of two-way crosses
regarding the performance and the diversity in the best fraction of the progeny of each cross.

Prediction of the mean expected breeding value and parental contributions in the
selected fraction of progeny

Considering two inbred lines P; and P, and the cross P; x P, and (x4,x,)" denotes their (2 x m)-
dimensional genotyping matrix at the m = 2,000 SNP markers. x,, denotes the (m x 1)-dimensional
genotype vector of parent Ppe(q 23 with thej”’ element coded as 1 or -1 for the genotypes AA or aa at
QTLj. Following Lehermeier et al. (2017), the DH progeny mean and progeny variance of the breeding
values in the progeny before selection can be computed as:

fr = 0.5 (x'1B + x'5B), (Eq. 1a)
6f = B'E B, (Eq. 1b)

where B is (m x 1)-dimensional vector of estimated marker effects and Z is the (m x m)-dimensional
variance covariance matrix of marker genotypes in DH progeny defined in Lehermeier et al. (2017). We

define the (m x 1)-dimensional vector 8-, to follow P; genome contribution to progeny as 81 =
X1—Xy

(x1=22)" (1 —x2)"

computed as:

The mean and variance of P; contribution in the progeny before selection are

te1 = 0.5 (x'1Bc1 + x'2Bc1 + 1), (Eq. 2a)
UC21 = B¢1 Z Bci- (Eq. 2b)

The progeny mean for P, contribution is then pc, =1 — pey.
Following Allier et al. (2019b), the covariance between the breeding values and P; contribution in
progeny is:

6T,C1 = ﬁ' X B¢ (Eq.3)

The expected mean breeding value of the selected fraction of progeny, i.e. usefulness criterion (Schnell
and Utz 1975), of the cross P; x P, is:

UceM = fi. + ihéy, (Eq. 4)

where i is the within family selection intensity and h the within family selection accuracy. The
correlated responses to selection on P; and P, contributions to the selected fraction of progeny are:

£ 6;:1 and &{"™ = 1 - &M _(Eq. 5)

= lic1 T ih
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Optimal cross selection accounting for within family variance

Considering N homozygote candidate parents, N(N — 1)/2 two-way crosses are possible. We define
a crossing plan nc as a set of |nc| crosses out of possible two-way crosses, giving the index of selected
crosses, i.e. with the it" element nc (i) € [1, N(N —1)/2]. The (N x 1)-dimensional vector of

candidate parents estimated contributions in the selected fraction of progeny of each cross ¢(*™ is:

e = = (z,e™ + 2,e{™), (Eq. 6)

Inc|

where Z; (respectively Z,) is a (N x |nc|)-dimensional design matrix that links each N candidate
parent to the first (respectively second) parent in the set of crosses nc, E‘(li'h) (respectively ﬁg’h)) isa
(|nc] x 1)-dimensional vector containing the estimated contributions of the first (respectively second)
parent to the selected fraction of the progeny of the crosses in nc.

The expected performance V(nc) for this set of two-way crosses is defined as the expected mean

performance of the selected DH progeny, i.e. usefulness criterion:

5 (i 1 T (i ,
PEW ne) = = T jenc UCUD (). (E0. 7)

c|
The constraint on diversity D &) (nc) in the selected progeny is:
DM (ne) = 1 — el K &), (Eq. 8)

where K is the (N x N)-dimensional identity by state (IBS) coancestry matrix at markers between the

N candidates. Allier et al. (2019¢) showed that D&M (nc) is a good proxy of the genomewide diversity

@@n)

in the selected fraction of progeny He(®M = %Z}"zl ZpJ(i’h)(l — pj(-i'h)) where pj is the frequency

of the genotypes AA at marker j in the selected fraction of progeny.
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There is an increasing awareness that plant breeding programs have to move from short-term to long-
term perspectives in order to cope with future challenges. The advent of high density genotyping has
opened new perspectives for breeding quantitative traits including genetic diversity assessment,
genomic variance partitioning and genomic prediction of the genetic merit of individuals and parental
crosses. The main objectives of this thesis were to develop indicators to assess plant breeding
programs past efficiency and sustainability, and to develop strategies that balance the need for short-
term genetic gain with that of maintaining and introducing diversity to enable long-term response to
selection. In the next section the five chapters of this thesis are discussed and put into perspectives.
For the sake of continuity of the general discussion, some chapters have been merged regardless of
the chronology of publications. In the last section some perspectives for crops diversity management
are discussed.

Contributions to diversity management

Diagnosis of breeding programs

Quantitative genetics theory provides breeders with the factors influencing short- and long-term
breeding success. In chapter 1 (Allier et al. 2019a), we proposed indicators based on quantitative
genetics theory to quantify past breeding program efficiency and to forecast its near future evolution
assuming past tendencies persist. These indicators are easily implemented and take advantage of the
increasing amount of phenotyping and genotyping information available in most crop breeding
programs that use genomic selection (Heslot et al. 2015; Voss-Fels et al. 2019). Phenotypic data can
be used to estimate realized genetic gain and additive genetic variance evolution over breeding
generations. The additive genetic variance trend enables to project the future response to selection
on targeted traits based on response to selection theory models (Lush 1937; Robertson 1960).
Complementarily, genotypic data inform about the genetic diversity without a priori on the trait(s)
considered, i.e. the “neutral”
targets raising in a context of societal and climatic changes (McCouch et al. 2013). In the illustrative
hybrid maize breeding program considered, both breeding populations showed a significant positive

diversity, which is of future importance to address yet unknown breeding

genetic gain but contrasted evolutions of genetic variance and “neutral” genetic diversity, reflecting a
complex open breeding system. In particular, we found in the Dent pool some large genomic regions
with a very low diversity. As observed in Gerke et al. (2015), these regions were mainly located in low
recombining pericentromeric regions. The different nonexclusive forces that can lead such hitchhiking
were discussed in chapter 1, including founder effect, genetic drift and selection of favorable
haplotypes. These regions raise several concerns: Do we really need to increase allelic diversity and/or
recombination in these regions? As suggested in Gerke et al. (2015) the fixation of these regions may
be important for group complementarity. This requires further investigations but the large size of low
diversity and low recombining regions likely suggests that they may be composed of both favorable
and unfavorable segments fixed by linkage drag. In order to test this assumption, one could think of
haplotypic visualization approaches developed in chapter 2 (Allier et al. 2020) using marker effects
estimated on a broad panel where these regions are segregating.

Beyond estimating separately additive genetic variance and “neutral” genetic diversity, genomic
regression models enable the estimation of the components of the additive genetic variance
genomewide and per chromosome. The additive genetic variance can indeed be decomposed into the
additive genic variance that corresponds to the sum of the additive variance at individual QTLs under
the assumption of linkage equilibrium between QTLs and the covariance between QTLs (Bulmer 1971;
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Lynch and Walsh 1998; Gianola et al. 2009; Lehermeier et al. 2017a). As expected under directional
selection, negative covariances were observed in all chromosomes and captured between 17-63% of
the additive genic variance. Based on the proportion of additive genic variance hidden by repulsion
and the genic variance for each chromosome, we proposed to draw fine scale strategies to manage
and increase the potential response to selection per chromosome. However, strategies to increase
genic variance or unleash variance by recombination in specific chromosomes are far from evident.
One solution would involve the selection of breeding crosses accounting for parental complementarity
at markers linked to QTLs in these specific regions. As illustrated by simulations in chapter 4 (Allier et
al. 2019c), optimal cross selection (OCS) favors effective recombination events and unleashes parts of
the hidden additive genic variance into additive genetic variance. Alternatively, modern plant breeding
biotechnologies offer new opportunities to modify targeted loci and change recombination landscape
and/or increase recombination, as it will be discussed in the last section.

We considered a private early maize breeding program as an application case but the advances in
genotyping in most crops and animal species offer the opportunity to extend the use of global
indicators to different breeding programs and species. Proposed indicators can be improved in
different ways. For instance, we did not consider pedigree information in the analysis of genetic gain
and additive genetic variance but, if of sufficient depth and quality, pedigree might be accounted for
to better model the additive genetic component. We also considered a maize genotyping array of 50k
SNPs (Ganal et al. 2011) as genotyping arrays are common routine genotyping technologies used in
breeding companies (e.g. Van Inghelandt et al. 2010). However, such genotyping technology focuses
on common variants only, which limits genetic diversity evaluation and management. This is referred
to as the ascertainment bias caused by the SNP discovery process in which a small number of
individuals are used in the discovery panel and by the selection of SNP with equilibrated frequencies
(Albrechtsen et al. 2010). Alternatively, genotyping by sequencing (GBS, Elshire et al. 2011) that
discovers and genotypes both common and rare variants, provides a robust diversity estimate with
much reduced ascertainment bias (Heslot et al. 2013). For instance, Eynard et al. (2016) highlighted
the interest of using common and rare SNP variants for genetic diversity quantification. The authors
observed that whole-genome sequence revealed considerable losses of genetic diversity for rare
variants that were unperceivable considering 50k SNP bead chip in cattle. GBS is also highly relevant
for curating, identifying and harnessing variability in gene banks (Kilian and Graner 2012; Sehgal et al.
2015; Yu et al. 2016). Finally, sequencing technologies would enable to identify structural variations
such as presence/absence and copy number variation (Springer et al. 2009; Alkan et al. 2011) that
represent diversity untapped by SNP bead chips. In maize, GBS approaches are based on cost effective
low depth sequencing of individuals (<1X genome coverage) and generate numerous missing data that
need to be further imputed (e.g. up to 80% of missing data accurately imputed in Torkamaneh and
Belzile 2015), which raises issues on the accuracy of imputation. One can expect that rapid progress in
sequencing and the availability of large sequence database will alleviate this limitation for most crops.

We therefore believe that in practice such indicators of the genetic variances and diversity should be
considered in routine in breeding programs to ensure the consistency between breeding long-term
strategy and the breeding population. For instance, a joint reduction of the additive genetic variance
and genetic diversity over time should indicate that a better management of the intrinsic diversity and
introductions of extrinsic diversity is required. Waiting for a slowdown in genetic gain would be risky
for genetic base broadening that usually takes several years or decades to be efficient. Alternatively,
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sufficient additive genetic variance and genetic diversity stable over time would suggest that an
optimization of the intrinsic diversity management is sufficient. In the following, we discuss the
chapters 2, 3, 4 and 5 considering first that intrinsic genetic diversity is sufficient and then that genetic
base broadening is needed.

Optimization of mating design

First, let us assume the indicators proposed in chapter 1 suggest that the genetic diversity is not
limiting regarding the short- and long-term breeding objectives. In this context, the main breeder’s
objective is to efficiently convert the intrinsic diversity into long-term genetic gain while not
compromising the variety performance at short-term. As suggested in Bernardo (2003) and Lado et al.
(2017), cross selection is one of the most important decision in breeding. The ideal mating plan being
the crosses that provide superior progeny performance and enough diversity to maintain genetic gain.
Consequently, a shift should operate from the paradigm of recycling and crossing super elite lines
together to the recognition of the interest of less performing but more complementary parents that
will generate a longer term genetic variation.

Different predictive tools have been proposed to support crop breeders with the implementation of
their mating design. First, the optimal cross selection (OCS) has proven to be efficient to convert
genetic diversity into long-term genetic gain (e.g. Akdemir and Isidro-Sanchez 2016; De Beukelaer et
al. 2017; Gorjanc et al. 2018). When constraining on the genomic relationship matrix, OCS accounts
indirectly for parental complementarity at neutral markers assuming independence of the loci and
tends implicitly to favor crosses with higher Mendelian segregation variance. The usefulness criterion
(UC) of a cross explicitly accounts for Mendelian segregation variance specific to the targeted trait(s).
The concept of UC s quite ancient (Schnell and Utz 1975) but has long suffered the absence of accurate
predictors of within cross variance. With recent advances in this domain the UC is more and more
implemented in crops (Lehermeier et al. 2017b), and was also found as being of interest in animal
breeding (Segelke et al. 2014; Bonk et al. 2016; Bijma et al. 2018). In chapter 3 (Allier et al. 2019b), we
proposed to consider a multivariate UC that predicts the expected performance in the best fraction of
progeny and the parental contributions (PC) to the best fraction of progeny, namely the UCPC. We also
extended the algebraic formulas for multi-parental crosses implying up to four parents, i.e. biparental
crosses between heterozygote phased individuals which enables considering three-way or four-way
crosses that are frequent in annual plants but also outbred animal or perennial plants. In chapter 4
(Allier et al. 2019c), we then proposed the UCPC based OCS that differs from OCS in the sense that the
parental complementarity for the traits considered is explicitly accounted for with consideration of
linkage map and linkage disequilibrium. Furthermore, the next generation diversity at the whole
genome level, which is derived from parental contributions, is optimized while anticipating the effect
of within family selection. Simulations in chapter 4 highlighted the importance to balance short-term
performance and genetic diversity using OCS methods to more efficiently convert genetic diversity into
genetic gain and maximize long-term performance. Constraining on diversity had a cost for short-term
variety release compared to UC that might dishearten commercial breeders. Considering explicitly
within family variance and selection in UCPC based OCS limited this penalty at short-term and yielded
higher long-term performance. This involves crossing complementary parents to favor effective
recombination events between complementary parental haplotypes. As a result, the recombination
unleashes parts of the additive genic variance captured by the build-up of negative covariances
observed in chapter 1 (Bulmer 1971; Rasmusson and Phillips 1997; Bijma et al. 2018).
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In practice, UCPC based OCS can be implemented in routine breeding programs to help breeders with
cross selection regarding their short- and long-term objectives. UCPC based OCS requires parental
genotype information, a genetic map, estimated marker effects and an optimization algorithm. We
considered common SNP variants as markers but GBS data can be used to compute genomic
relationship matrix between parents (Eynard et al. 2015, 2016). For instance, Eynard et al. (2016)
observed that considering common and rare variants to estimate genomic relationship matrix in
optimal contribution selection slightly reduced the loss of rare variants, while using 50k SNP bead chip
data was sufficient to conserve common variants.

In chapter 4, since we aimed at comparing different crossing strategies, we considered a simplistic
linear trajectory of diversity over generations and a fixed selection intensity within each family. More
complex strategies can be applied but were not tested. The parametrization of the UCPC based OCS
strategy regarding short- and long-term objectives (e.g. the constraint on diversity, within family
selection intensity) is complex and requires quantified breeding objectives (e.g. targeted diversity,
targeted annual genetic gain). The optimal parametrization of such an approach could be done using
simulations based on breeding germplasm genotypes and assuming estimated marker effects as true
QTL effects, i.e. assuming reliable estimates and neglecting the fact that estimated marker effects are
allele frequency dependent.

We evaluated the interest of UCPC based OCS in an inbred plant breeding program and discussed its
extension to crosses between heterozygote individuals. This is interesting for animal breeders and
plant breeders working with heterozygous individuals (e.g. in perennial species). It also extends the
use of UCPC based OCS to the two-part GS breeding program proposed by Gaynor et al. (2017) and
Hickey et al. (2017). The authors proposed to distinguish the population improvement component to
develop improved germplasm and the product development component to fix and identify new inbred
parents for hybrids. In the population improvement component, the most performing progeny of
parental crosses are selected and recycled before fixation to generate the next population
improvement generation. In this context, Gorjanc et al. (2018) observed that OCS enabled optimal
management and exploitation of population improvement germplasm and we can conjecture an
additional gain to use UCPC based OCS.

Furthermore, as heterozygous individuals are conceptually crosses between two phased parental
gametes, UCPC can be useful to select individuals accounting for the Mendelian segregation in their
gametes (Segelke et al. 2014; Bonk et al. 2016; Bijma et al. 2018). For instance some individuals
produce more variable progeny than others regardless of the second parent, i.e. more likely
outstanding progenies of agricultural interest. In a breeding perspective, one may want to select
individuals maximizing an index between their GEBV and expected gametic variances (Bijma et al.
2018). On the contrary, in a farmer perspective, one may select for high individual GEBV but low
gametic variance to have more homogenous progeny (e.g. pig birth-weight) and simplify herd
management (Cole and VanRaden 2011; Segelke et al. 2014). Such a balance between breeding and
production objectives should also be considered for open pollinated plant species were the breeding
population is also the production population (e.g. participatory breeding of maize landraces in
developing countries, Bellon et al. 2003).

119



General discussion and perspectives

Genetic base broadening

Let us assume now, that the indicators proposed in chapter 1 suggest that the genetic diversity is
suboptimal regarding the long-term breeding objectives. A first step would consist in characterizing
and identifying genetic resources for genetic base broadening using multi-environment trials. In
chapter 2 (Allier et al. 2020), we reviewed, proposed and compared different criteria to identify genetic
resources that can complement an elite population and that can compensate their low mean
performance by an increased genetic variance when crossed to elites (Longin and Reif 2014). The
different criteria account differently for parental complementarity at individual loci or haplotype
segments. Criteria were parameterized to consider more or less recombination events and
consequently evaluate the interest of genetic resources at more or less long-term when crossed to
elites. Hence, the optimum parametrization cannot be provided and depends on the breeder’s
objectives. We observed that a genomewide prediction model trained on a collaborative panel
including old material and elite material (Amaizing dent collaborative panel, Rio et al. 2019) had a
relevant predictive ability on a large elite private material. This suggests that genomic predictions
calibrated on such a collaborative panel can be used to identify interesting sources of diversity in the
panel. This strategy might be extended to other collaborative diversity panels, libraries of DH lines
derived from landraces (Strigens et al. 2013; Melchinger et al. 2017; Bohm et al. 2017; Holker et al.
2019) or gene banks in other species to evaluate non phenotyped genetic resources as proposed in Yu
et al. (2016) and Crossa et al. (2016). Methodological developments in chapter 3 could enrich the
proposal made in chapter 2 in complementary ways. First, it would allow considering multi-parental
crosses between genetic resources and elites which appeared to be of interest in case of low
performing genetic resources (Allier et al. 2019b). UCPC would also make it possible to evaluate the
genetic resources that balance performance and originality (as implemented in chapter 5 in case of
two way crosses). Finally, UCPC enables consideration of parental contributions in specific regions
under the assumption that a sufficient number of loci are independently segregating in these regions
to ensure the normality of the trait. Thus, UCPC could be used to identify donors that enrich specific
regions in diversity, such as regions identified in chapter 1.

Finally in chapter 5, we evaluated strategies inspired from Simmonds (1993) for recurrent
introductions in a simulated commercial breeding program. We considered different types of donors
with variable performance gap with elites and compared two introduction strategies: direct
introductions or indirect introductions in the breeding population. The latter involves a buffer
population, namely bridging population, which bridges the most complementary genetic resources
and elites before introduction in the breeding population. We considered the UCPC based OCS to
manage recurrent genetic base broadening. In this context, an OCS holistic approach, where bridging
crosses, introduction crosses and elite crosses are jointly optimized, ensures an overall consistency of
the genetic base broadening strategy. We considered the UCPC based OCS to maximize genetic
performance while maintaining genetic variation constant thanks to the intrinsic variability and
introductions of extrinsic variability. Simulation demonstrated that recurrent introductions of pre-
improved genetic resources (i.e. through pre-breeding or a minima bridging) can increase the genetic
mid- and long-term genetic gain while maintaining genomewide genetic diversity constant. The less
performant the introduced material, the more important was the short-term penalization of variety
release. We also suggest to consider marker effects estimated on a large and broad TS that blends
elites and progeny of elite by genetic resource crosses in order to balance the prediction accuracy in
elite crosses and in introduction crosses.
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Further investigations might be considered to complete this work. For instance, we discussed in
chapter 2 the practical interest of public-private collaborative pre-breeding projects. However, further
investigations are required to identify key parameters of successful public-private diversity panels,
including the origin of genetic resources, their improvement and the relative proportion of elite
proprietary germplasm. Furthermore, simulations can also be performed to validate the interest of
criteria proposed in chapter 2 and evaluate the sensitivity of criteria accuracy to different training set
compositions. In chapter 5, we simulated a breeding program with a reduced genetic diversity at the
end of burn-in to be in the situation where genetic base broadening is required. In practice, the need
of broadening genetic diversity might be variable depending on the adequacy of intrinsic diversity
diagnosis and short- and long-term breeding objectives. We also assumed absence of mutations,
epistasis and a single-trait breeding target that was constant during sixty years. Mutations and epistasis
might reduce the importance of genetic base broadening by releasing additive genetic variance over
generations as discussed in the next section. In a context of climatic and social expectation changes
the breeding target is likely multi-trait and changing over time. Coupling different climatic scenarios
with the simulation of a breeding program with a multi-trait target could be interesting to evaluate the
interest of genetic base broadening in a more complex context. We believe that the need for genetic
base broadening is likely more valuable than highlighted in chapter 5 to be able to address yet
unknown breeding objectives.

Altogether, this study supports breeders with tools to evaluate, manage and reveal intrinsic genetic
variation, to identify and introduce extrinsic variation and efficiently convert genetic variation into
genetic gain. Such quantitative genetics tools, among others, will support breeders toward integrated
and sustainable breeding programs. In the next section we will discuss the importance of mutation and
epistasis in open breeding populations. Then, we discuss the use of biotechnologies to fasten genetic
base broadening in crops.

Perspectives

Is continued crop improvement sustainable?

In long-term simulations of chapter 4, nearly all the additive genetic variance was eroded and genetic
merit plateaus were reached in most scenarios after sixty years. Other long-term simulation studies in
plants also reached similar results (e.g. De Beukelaer et al. 2017; Gorjanc et al. 2018). Experimentally,
Weber (2004) observed a selection plateau under directional selection in a large population of
Drosophila. On the opposite, continued genetic gains are observed in most crops (e.g. in maize Duvick
2005, in wheat Tadesse et al. 2019) and the long-term lllinois divergent selection experiment for maize
oil and protein content showed continuous genetic gains for hundred generations (Dudley and Lambert
2004). This raises questions about the sustainability of crop breeding but also the realism of the genetic
model assumed in most long-term simulation studies. Several nonexclusive reasons may explain why
continued improvement is possible in crops contrary to what simulations appear to claim.

Firstly, in simulations different approaches are compared for their efficiency to convert intrinsic
variability into genetic gain for a clear breeding target trait (e.g. De Beukelaer et al. 2017; Gorjanc et
al. 2018; Allier et al. 2019c). However, in practice commercial breeding programs are often more
complex than simulated ones and extrinsic variation is used to maintain the response to selection (e.g.
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Feng et al. 2006; Allier et al. 2019a; Bruce et al. 2019). Indeed, allowing for extrinsic variation
introduction into the breeding population increased the selection limit and delayed the selection
plateau in simulations (chapter 5). Furthermore, the breeding target is likely implying multiple traits
showing different genetic (co)variances and changing over generations. Thus, selection efforts are
spread over variable traits and it is less likely that breeders completely erode the additive genetic
variation underlying the targeted traits in the breeding population.

Secondly a crop’s genome is dynamic and new variations arise every generation while most simulated
breeding programs assumed the absence of mutations. In maize the mutation rate is about 9-20 107
mutations per base pair per generation (Kremling et al. 2018). For a genome size of 2.4 Gb, this
represents 20 to 50 mutations per generation of which most are neutral. Estimates of additional
mutational variance per generation for a range of species and quantitative traits averaged on 0.1% of
the environmental variance (Houle et al. 1996; Keightley 2004; Hill 2016). Despite mutation effects
seem negligible, the multi-generation lllinois maize kernel content selection experiment (Dudley and
Lambert 2004) and the long-term divergent selection experiment for flowering time in maize inbred
lines (Durand et al. 2010, 2015) tend to nuance this a priori. In the lllinois experiment, lines have been
selected for oil and protein content over hundred generations with variability still sufficient to achieve
progress from selection, which can be explained only by mutations (Walsh 2004). In the divergent
flowering time experiment, continued response to selection is observed after more than seventeen
generations, which can be explained mainly by mutations following a phase of fixation of residual
heterozygosity (Durand et al. 2010, 2015).

The third complementary explanation is that epistasis is neglected in most long-term simulation
studies. Physiological epistasis arises from pleiotropies and interactions in metabolic pathways.
Statistical epistasis is the statistical contribution of the interactions between loci to genetic variance
and therefore depends on allelic frequencies (Lynch and Walsh 1998; Paixdo and Barton 2016). As a
consequence, in a finite population, additive by additive epistatic variance tends to be lost by genetic
drift but is also partly converted into additive variance (Goodnight 1988), which maintains the response
to selection (Barton and Turelli 2004; Carlborg et al. 2006; Paixdo and Barton 2016; Barton 2017; Hill
2017). In the extreme regime where genetic drift drives allelic frequency changes, as it can be
encountered in case of strong selection on a large number of loci in a finite population, Paixdo and
Barton (2016) observed that the total response to selection mostly depends on the initial standing
variation. In the opposite regime, where directional selection drives the allelic changes in frequency,
the authors observed that the total response to selection is greatly impacted by the conversion of
epistatic to additive variance when initially neutral or deleterious alleles become favorable as the
genetic background changes. Furthermore, mutations might present interactions with the genetic
background (e.g. Durand et al. 2015) so that it is difficult to disentangle mutation from epistatic effects
on long-term response to selection. In practice, which regime may correspond to breeding
populations? The lowa hybrid maize selection experiment (Gerke et al. 2015) showed that while most
of allelic changes can be attributed to genetic drift, some regions showed signatures of selection, and
seemed to indicate an intermediate regime. According to Hill (2017), the contribution of epistatic
variance conversion to additive variance is likely more important than contribution of mutations in
long-term experiments. However, as concluded by Hill (2017): “It is not obvious that we should be
trying explicitly to exploit it by changing the focus of the selection to the epistasis itself. It seems better
to concentrate on utilizing additive variance, and hope for a bonus from converting epistatic variance”.
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Simulations not accounting for mutations or epistasis might be pessimistic regarding the sustainability
of crop improvement. Nevertheless, simulation results obtained in chapter 4 and chapter 5 provide
important information on the optimal diversity management strategies. We can draw the following
general recommendations. One should avoid too low genetic diversity in breeding populations to (i)
maximize the conversion of additive genetic variance into gain and (ii) to hope for a bonus from
converting epistatic variance in additive variance. One needs to evaluate frequently the additive
genetic variance in the breeding population to assess if mutational and epistatic bonus are sufficient
regarding long-term objectives. One needs to anticipate (e.g. participate to collaborative pre-breeding
projects, routinely evaluate some available genetic resources) and introduce genetic resources to
prevent a potential decrease of the additive genetic variance.

Biotechnologies for genetic base broadening

We highlighted in chapter 1 the interest in increasing genetic diversity in specific chromosomic regions
and in favoring recombination events to unleash genetic variation captured by repulsion between
causal loci. Conventional solutions involve the selection of crosses between complementary parents
in these regions using for instance UCPC based OCS (chapter 3 and chapter 4). In chapter 5, we
highlighted the interest of recurrent introductions of polygenic variation in breeding population on
mid- and long-term genetic gain. We observed in our simulations, similarly as in chapter 3, that
haplotypes introduced from the donor carried some original favorable alleles tightly linked with
unfavorable alleles. However, recombination is often not sufficient to break this linkage and combine
intrinsic and extrinsic favorable alleles in a single superior haplotype that will reach fixation. On the
contrary, multiple sub-optimal haplotypes selectively interfere with one another so that none reach
fixation, which is known as the Hill-Robertson interference (Felsenstein 1965; Hill and Robertson 1966).
Advances in genome editing technics for adding, deleting or replacing a series of nucleotides in the
genome are opening alternative perspectives to bypass the Hill-Robertson effect. In recent techniques
this can be achieved using specific nuclease that cut DNA at specific predetermined places (e.g. zinc
finger nuclease: ZNF, transcription activator-like effector nucleases: TALEN or clustered regulatory
interspaced short palindromic repeats: CRISPR, Gaj et al. 2013; Belhaj et al. 2013).

Genome editing can be used to increase meiotic recombination rates (for a recent review, Blary and
Jenczewski 2018) or induce mitotic recombination at precise locations (Sadhu et al. 2016). Battagin et
al. (2016) performed simulations to explore the potential of manipulating recombination rates to
increase response to selection in livestock breeding programs. The authors had to tremendously
increase the genomewide recombination rate to 10-20 fold to significantly increase the response to
selection. A disadvantage of increased recombination rate is the rapid decrease of linkage between
QTLs and markers on which genomic selection predictive ability relies (Habier et al. 2013), requiring
frequent updating of the genomic selection model (Battagin et al. 2016). Using simulations, Gonen et
al. (2017) evaluated the interest to recombine in regions that did not recombine for several
generations. The authors observed a release of additive genetic variance in the form of new allele
combinations and thus an increased genetic gain. Tourrette et al. (2019) compared by simulations two
different approaches to increase recombination in plants. The first approach increased the global
recombination without affecting the recombination landscape and used a mutant of anti-crossover
genes (developed in A. thaliana, Fernandes et al. 2018, pea, rice and tomato Mieulet et al. 2018). The
second increased the recombination particularly in pericentromeric regions using differences of the
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ploidy level between parents (developed in crosses between Brassica rapa and Brassica napus, Pelé et
al. 2017). The authors found up to 30% of gain after twenty generations with an advantage to the
recombination landscape modification.

However, all recombination events are not favorable. Recombination is advantageous if it uncouples
favorable-unfavorable complexes that capture additive genetic variance but recombination is
unfavorable if it breaks favorable-favorable complexes. Thus, the amount of variation that arises from
induced recombination depends on the location of recombination points relative to the causal variants
and gametic phase disequilibrium. Assuming that the estimated marker effects are accurate enough
and that precise targeted meiotic recombination technology is available, Bernardo (2017) proposed an
in silico simulation approach to identify one or two target recombination points in doubled haploid
progeny of a cross between inbred maize lines to enhance the genetic gain. The author observed that
one or two targeted recombination events per chromosome yielded 100 to 600% gain in response to
selection compared to non-targeted recombination events. Still the feasibility and efficiency of such
meiotic recombination in plants remains to be proved.

The CRISPR/Cas9 technology has also successfully been used to modify crop traits including drought
tolerance in maize (Shi et al. 2017), sorghum, rice, wheat and soybean (Belhaj et al. 2013; Shalem et
al. 2015). Beyond fastening few introgressions, genome editing is expected to fasten genetic base
broadening while generating genetic diversity at multiple loci simultaneously (Ma et al. 2015; Sharon
et al. 2018; Wolter et al. 2019). For instance, Jenko et al. (2015) evaluated the interest of multiple loci
genome editing, referred to as promotion of alleles by genome editing (PAGE), in a simulated cattle
breeding program where only sire where edited. The authors observed that PAGE had great potential
in response to selection after 20 generations. However, the authors warned against the overuse of
edited parents that would yield a rapid decrease in polygenic variation (Jenko et al. 2015).

These prospects assume reliable estimates of allelic effects to edit. It will require massive data from
genotypes to phenotypes and at different integrated levels (gene expression, proteomic, etc.) to
inverse the curse of dimensionality (i.e. from n <<p to n>p) (Jenko et al. 2015; Wallace et al. 2018;
Ramstein et al. 2019). Despite promising preliminary simulation studies on the use of genome editing
for quantitative trait breeding and improving accuracy of genome editing technics, there are still some
unknown factors such as the approval by government agencies in Europe for food production and the
acceptance by public opinion. Consequently, it is a necessity to manage and harness the “native”
genetic diversity and continue to develop and optimize conventional introgression and genetic base
broadening strategies.

Personal conclusion

| personally believe that sustainable and continued crop breeding for productivity and quality in a
changing environment is possible and desirable. This involves an optimization of breeding strategies
to ensure adequacy of the breeding germplasm with changing breeding targets. This involves a better
environmental characterization and consideration of GxE in predictive breeding. This also involves the
rapid and efficient conversion of intrinsic and extrinsic genetic variability into multivariate response to
selection. Finally, this requires the management and usage of ex-situ genetic resources with strong
public-private logistical and financial partnership to make it compelling for breeders.
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Figure S2 Genetic diversity (Top panel) and distribution of ROHe (Bottom panel) along genetic map.

Top panel: Genetic diversity in Dent pool (A) and in Flint pool (B) for chromosomes 3, 4, 6 on genetic
scale. Genetic diversity 2003-2009 in blue full line and 2010-2016 in red dotted line. Centromeres are
marked in bold on the abscissa. Bottom panel: Evolution of ROHe in Dent pool (A) and in Flint pool (B)

for chromosomes 3, 4, 6 on genetic scale. Regions are colored regarding their evolution between 2003-
2009 and 2010-2016.
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Table S1 Intra-cohort additive genetic variance (£ standard error) in both pools estimated in Model 1b
and sample size.

Dent Flint
Cohort
GCA variance (tse) Sample size | GCA variance (tse) Sample Size
2003 21.35 (+5.87) 163 29.71 (+9.37) 83
2004 3.03 (+2.04) 208 28.27 (£7.97) 108
2005 13.79 (£3.39) 313 11.24 (+3.10) 256
2006 13.99 (+3.12) 353 11.00 (+2.82) 275
2007 10.67 (+3.11) 446 16.09 (+3.71) 275
2008 8.82 (+2.74) 403 12.79 (+3.16) 276
2009 14.21 (+4.07) 267 11.62 (+3.07) 349
2010 2.72 (£1.87) 315 11.50 (+2.69) 354
2011 6.17 (£1.99) 439 30.53 (+4.37) 356
2012 8.38 (£3.88) 340 5.80 (+2.93) 372
2013 3.40 (+3.66) 228 39.84 (+6.36) 290

Table S2 Intra-heterotic group genetic diversity and differentiation between heterotic groups using a
five year sliding window with a one year increment.

Period He Fst
Dent Flint
2003-2007 0.160 0.274 0.156
2004-2008 0.158 0.276 0.156
2005-2009 0.154 0.281 0.155
2006-2010 0.154 0.286 0.15
2007-2011 0.152 0.283 0.154
2008-2012 0.145 0.276 0.161
2009-2013 0.140 0.271 0.166
2010-2014 0.138 0.269 0.178
2011-2015 0.136 0.270 0.177
2012-2016 0.136 0.269 0.178

Table S3 Genetic diversity evolution between 2003-2009 and 2010-2016 in Dent and Flint pools and
paired t-test significance on the difference between periods.

Chr. Dent (He) Flint (He)
2003-2009 2010-2016 AHe 2003-2009 2010-2016 AHe
1 0.148 0.113 -0.036*** 0.260 0.269 0.009***
2 0.236 0.217 -0.019%** 0.291 0.290 -0.001™
3 0.209 0.224 0.015%*** 0.290 0.296 0.006***
4 0.141 0.113 -0.027*** 0.271 0.268 -0.003°
5 0.210 0.184 -0.026*** 0.276 0.287 0.012***
6 0.115 0.105 -0.010%** 0.311 0.312 0.001"
7 0.167 0.109 -0.058*** 0.277 0.290 0.013***
8 0.115 0.075 -0.040%** 0.271 0.287 0.016***
9 0.147 0.133 -0.014%** 0.292 0.275 -0.017%***
10 0.084 0.081 -0.004* 0.270 0.270 -0.001"

p.value significance: <10* ***; <0.001 **; <0.01 *; <0.05 °°;, <0.1 >, < 1"
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Table S4 Evolution of runs of expected homozygosity (ROHe) distribution between 2003-2009 and
2010-2016 in Dent pool in physical length. Column “% of chr” represents the percentage of the
chromosome covered by ROHe.

Period 2003-2009

Period 2010-2016

Nb.

Mean Length

Max Length

Nb.

Mean Length

Max Length

Chr. | ROHe (Mb) Mb)  *ofehrl poHe (Mb) (Mp) eofehr.
1 27 0.98 2.19 8.66 36 1.86 8.99 21.81
2 4 1.92 2.31 3.15 9 1.74 3.67 6.41
3 9 1.25 2.22 4,79 1 1.59 1.59 0.68
4 22 1.14 2.11 10.18 16 6.64 72.16 43.06
5 9 1.00 1.32 4.01 12 1.03 1.32 5.51
6 15 2.84 10.88 24.61 22 2.36 28.26 29.94
7 18 1.51 4.09 15.05 27 1.99 13.29 29.62
8 27 1.86 8.44 27.74 23 3.01 40.06 38.26
9 10 0.86 1.62 5.42 14 2.88 27.12 25.28
10 20 1.17 2.50 15.49 20 1.47 3.67 19.45

Mean | 16.10 1.45 3.77 11.91 18.00 2.46 20.01 22.00

Table S5 Posterior means (+ posterior standard deviation) of genomewide genomic variance
accounting (M2, @24) or not (M1, @2,) for covariance between QTLs in the 1,809 candidate RIL or DH
Dent lines. Phenotypic variance (variance of BLUEs, Pheno) is also presented for comparison.

M1 (sd) M2 (tsd) Pheno Ratio (tsd)
6%, Residual Total 6%, Residual Total Total 02/a?
27.399 34.606 62.004 20.599 34.544 55.143 55111 0.761
(+3.864) (£1.424) (+3.587) (+1.459) (£0.817) (£1.230) (£0.079)
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File S1: Predictive ability on elite material

In the following, we evaluated the predictive ability of model in Eq. 1 trained across the Amazing dent
panel (training population, TP) on elite private material (prediction population, PP). The PP lines
consisted in lines produced in elite breeding from 2004 to 2016 and evaluated in hybrid combination
on Flint testers for grain yield corrected at 15% of grain moisture (594 lines for GY; gx/ha), grain
moisture (594 lines for GM; %) and male flowering time (539 lines for MF; days). These lines were
genotyped with the MaizeSNP50 Illumina ® BeadChip (Ganal et al. 2011) and after quality control and
imputation the same set of 40,478 SNPs as for the TP was kept, resulting in the genotyping matrix Xpp.

The best linear unbiased estimators (BLUEs) of PP lines general combining ability (GCA) were estimated
using the following model:

Yiipir = 0+ By1 + @y + @z + 01245 + 01y iy + €jy1- (Model S1)

where, Y; ;- is observation r of the hybrid between line i and tester j evaluated in location [ and year
Y. uis the intercept, By, is the environment yl (Location x Year) fixed effect, ay; is the tested PP line i
GCA fixed effect, a,; is the Flint tester j GCA fixed effect. 81 ~ N(O, 0512 I) is the vector of hybrids
between PP lines and Flint testers specific combining ability (SCA) random effects, 81y ~ N(O, o?y I)

is the vector of tested PP line GCA by Year interaction random effects. Finally, € ~ N(O, ol I) is the
vector of independent random residual errors.

The heritability in the PP was estimated considering Model S1 where the tested PP line i GCA effect
was modeled as random with a1~N(0, 02, I). The heritability in the PP was defined as: h? =
621/ (8Z1 + 6412/nuyp + 68y /ny + 62/nops), where nyyy is the harmonic mean number of
hybrids per line, ny is the harmonic mean number of years a given line was tested and ng,; is the
harmonic mean number of observations on a given line. The harmonic mean was considered instead
of arithmetic mean as suggested in literature for unbalanced data set (Holland et al. 2010). The average
coefficient of determination (referred as CD, Laloé 1993) of @, best linear predictors (BLUP) was also
considered as a proxy of trait heritability in the PP.

The BLUPs of genomic estimated breeding values of elite material were obtained as:
GEBV = Xpp B

where, Xpp is the genotyping matrix of reference allele counts coded in 0 or 2 and i;’ the vector of
marker effects posterior mean obtained in Eq. 1. The predictive ability was evaluated as the correlation
between the vector of GEBV and the vector of GCA in the PP: r = cor(GEBV, &,).
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Table S1 Square root of trait heritability in the prediction population PP and linear correlations
between predictions and observations in the PP depending on the training population composition
(TP, with or without elite private material) and the PP (all 13 years or a single year). For single-year
predictions, the correlations were estimated on a subset of lines generated a given year and the
minimum, maximum and mean correlations are reported.

e Predictive ability
Heritability in — -
. . Training population (TP)
the prediction L
opulation (PP) 338 public lines 338 public lines
Trait P + 48 private lines
Predicted population (PP)
~/ h? JCD All 13 1 year All 13 1 year
years min to max (mean) years min to max (mean)
GY 0.347 0.371 0.404 -0.062 t0 0.722 (0.305) 0.377 0.042 t0 0.721 (0.282)
MF 0.519 0.548 0.495 0.222t0 0.715 (0.476) 0.509 0.260t0 0.728 (0.477)
GM 0.681 0.699 0.550 0.286 t0 0.811 (0.560) 0.541 0.261t0 0.789 (0.542)
Cited literature:

Ganal M. W., G. Durstewitz, A. Polley, A. Bérard, E. S. Buckler, et al., 2011 A Large Maize (Zea mays L.)
SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare
with the B73 Reference Genome. PLOS ONE 6: €28334.

Holland J. B., W. E. Nyquist, and C. T. Cervantes-Martinez, 2010 Estimating and Interpreting Heritability
for Plant Breeding: An Update, pp. 9-112 in Plant Breeding Reviews, John Wiley & Sons, Ltd.

Laloé D., 1993 Precision and information in linear models of genetic evaluation. Genet. Sel. Evol. 25:
557.
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File S2: Supporting R code

Genomic prediction with a maize collaborative panel:
identification of genetic resources to enrich elite breeding

prograins
File S2 - Supporting R code

Antoine Allier, Simon Teyssédre, Christina Lehermeier, Alain Charcosset, Laurence Moreau

Contents

Examplary data and whole-genome regression model 2
Definition of the criterion H 3
Forward selection of donors based on the criterion H 4
Identification of donor by elite recipient crosses using the usefulness criterion 5
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In this supporting file we provide the R script to compute the criterion H defined in the case of a donor and
a population of elite lines PopE (Eq. 5). We also implement the forward selection of donors in PopD to
enrich a population PopFE of elite inbred lines based on this H criterion. Finaly, we provide the code to
compute the usefulness criterion for crosses between two inbred parents considering doubled haploid progeny
derived from the F'1 individual (Eq. 4) using the posterior mean variance (PMV) as described in Lehermeier
ct al. (2017) Genetics 207:1651-1661.

Examplary data and whole-genome regression model

For this documentation, we load a simulated maize data set from the synbreedData R package (Wimmer et
al. 2012, Bioinformatics, 28:2086-2087), which includes genotypic data, phenotypic data, and a genetic map.

# Required packages
library (BGLR)
library(dplyr)
library(zoo)
library(synbreed)
library(synbreedData)

# Ezamplary data
data(maize)

maize <- codeGeno(maize)
Pheno <- maize$phenol[,1,1]
Geno <- maize$geno*2 # recode markers to 0,2

Map <- data.frame(CHROMOSOME = maize$map$chr,
POSITION = maize$map$pos,
MARKER = rownames (maize$map),
stringsAsFactors = FALSE)

First, a whole-genome regression model is fitted using phenotypic and genotypic data of a training population.
For this, the function BGLR from R package BGLR is used (Perez and de los Campos 2014, Genetics, 198:483-
495). With the option saveEffects = T, MCMC samples of marker effects are saved in a separate .bin
file.

# Number of iterations and burn-in should be increased for proper inference

nlter <- 1000

burnIn <- 100

thin <- 2

# Run the Bayesian Ridge Regression

WGR <- BGLR(y = Pheno,
ETA = list(list(X = Geno,model = "BRR",saveEffects = T)),
nlter = nIter,burnIn = burnIn,thin = thin)

# Load .bin file including MCMC samples of marker effects

B <- readBinMat("ETA_1_b.bin")

# Posterior means of marker effects

Bhat <- colMeans(B)

# Genomic estimated breeding wvalues

GEBV <- Geno’*7Bhat

Let us define the examplary PopD of 50 candidate donors and PopFE of 10 elite lines:

# Assuming the Elites are the 10 best lines

PopE <- names(GEBV [order (GEBV,decreasing = TRUE),]) [1:10]

# Donors are sampled among the remaining lines

PopD <- sample(setdiff(rownames(GEBV),PopE),50,replace = FALSE)
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Definition of the criterion H

The following function computes the matrix HEBV described in Eq. 2.
Function arguments:

¢ ObjectGeno: Genotype matrix with individuals (donors and elites) in line and markers in column

o ObjectBeta: Line vector of posterior mean marker effects

o ObjectMap: Data.frame of the genetic map with columns: CHROMOSOME, POSITION and MARKER
(order by CHROMOSOME and POSITION)

o WindowSize: Integer for the size of the sliding haplotypes in nb. of markers

o StepSize: Integer for the increment of the sliding haplotypes in nb. of markers

e lambda: Scalling parameter to correct for overlapping segments (by default StepSize/WindowSize)

Value:

e Returns a list with the matrix of haplotypes estimated breeding values (HEBV) with individuals in
line and haplotypes in column and a data.frame with the mean position (Mbp) and chromosome of
each haplotype.

GetHEBVmat = function(ObjectGeno,ObjectBeta,ObjectMap,
WindowSize,StepSize,lambda = StepSize/WindowSize){
# Matriz with loci effects for each individual in line and loci in column
GEBVmat <- ObjectGeno*matrix(ObjectBeta,ncol = ncol(ObjectGeno),
nrow = nrow(ObjectGeno) ,byrow = TRUE)
# Affect loci to haplotypes
rownames (ObjectMap) <- ObjectMap$MARKER
Haplo <- do.call(rbind,lapply(unique (ObjectMap$CHROMOSOME) ,function(chr_tmp){
Lchr <- ObjectMap[intersect (ObjectMap$MARKER [0bjectMap$CHROMOSOME==chr_tmp] ,
colnames (GEBVmat) ), "MARKER"]
LHchr <- rollapply(Lchr,width = WindowSize,by = StepSize,align = "left",
FUN = function(d) {return(d)})
rownames (LHchr) <- pasteO("Hap_",seq(1,nrow(LHchr))," CHR_",chr_tmp)
return(LHchr)
M)
# Design matriz Z affecting loci to haplotypes
Z <- matrix(0,nrow = length(intersect(0ObjectMap$MARKER, colnames(GEBVmat))),
ncol = nrow(Haplo))
rownames (Z) <- intersect(ObjectMap$MARKER,colnames (GEBVmat))
colnames(Z) <- rownames (Haplo)
invisible(lapply(1:ncol(Z),function(i){
Z[Haplo[i,],i] <<- 1
1))
# Compute the HEBV matriz and mean position of each haplotypes
HEBV <- (GEBVmat[,rownames(Z)]%*%Z)*1lambda
POS <- data.frame(HAP = colnames(Z),
CHR = sub(".*CHR_","",colnames(Z)),
POSITION = t(ObjectMap[rownames(Z),"POSITION"]%*%Z)/apply(Z,2,sum),
stringsAsFactors = FALSE)
return(list (HEBV = HEBV,
POSITION = POS))
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The following function uses the HEBV matrix to compute the criterion H as described in the mansucript
(Eq. 5).
Function arguments:

¢ ObjectHEBVmat: HEBV matrix with individuals in line and haplotypes in column
o ListPopE: Line vector of elite line names, i.e. PopE
o ListPopD: Line vector of candidate donor names, i.e. PopD

Value:

o Returns a data.frame with two columns: LINE (candidate donors) and corresponding H criterion value

ComputeH = function(ObjectHEBVmat,ListPopE,ListPopD){
# Evaluate only the elite haplotypes
if (is.null(ListPopD)) {
tmp <- apply(ObjectHEBVmat [ListPopE,],2,max)
output <- data.frame(H = sum(tmp),
LINE = "PopE",
stringsAsFactors = FALSE)
} else {
# Evaluate the elite and donor haplotypes
output <- do.call(rbind,lapply(ListPopD,function(i){
tmp <- apply(ObjectHEBVmat [c(ListPopE,i),],2,max)
return(data.frame(H = sum(tmp),
LINE = i,
stringsAsFactors = FALSE))
1))
¥

return(output)

Forward selection of donors based on the criterion H

In the following we used previously defined functions in a forward iterative process.

# User parameters
WindowSizeUI = 20
StepSizeUIl = 5
nDonorUI = 20

# Compute the HEBV matriz
ObjectHEBV <- GetHEBVmat(ObjectGeno = Geno[c(PopE,PopD),],
ObjectBeta = Bhat,
ObjectMap = Map,
WindowSize = WindowSizeUI,
StepSize = StepSizeUI)
# Forward selection of donors
SelDonor <- c()
HSelDonor <- ComputeH(ObjectHEBVmat = ObjectHEBVSHEBV,# elites only
ListPopE = PopE,
ListPopD = NULL)
invisible(lapply(1:nDonorUI,function(iter){
tmp <- ComputeH(ObjectHEBVmat = ObjectHEBVSHEBV,
ListPopE = c(SelDonor,PopE) ,# PopE + selected donors
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ListPopD = PopD[!PopD%injc(SelDonor)] # yet unselected donors
)
# Increment with selected donor
SelDonor <<- c(SelDonor,tmp[order (tmp$H,decreasing =TRUE),]$LINE[1])
# Increment with H criterion value of elites + selected donors
HSelDonor <<- rbind(HSelDonor,tmp[order (tmp$H,decreasing =TRUE),][1,])
M)

We can plot the increase in H during the forward selection of donors.

plot (HSelDonor$H,type = "o",xaxt = "n",
main="H criterion along selection of donors",xlab="",ylab="H (qx/ha)")
axis(side = 1,at = 1:(length(SelDonor)+1),labels = c("No donor",SelDonor),las = 2)

H criterion along selection of donors

H (gx/ha)
54 56
L

52
|

D11909 —
D11589 —
D11677 —
D11780 —
D12287 —
D11959 —
D12313
D11432 —
D12026 —
D11982 —
D11828 —
D11815 —
D12082 —
D11685 —
D12449 —
D12305 —
D12457 —
D11466 —
D11903 —

No donor —

Identification of donor by elite recipient crosses using the usefulness
criterion

This function computes the covariance matrix ¥ between marker genotypes in doubled haploid derived from
F1 progeny of the cross P; x P as presented in Lehermeier et al. (2017) Genetics 207:1651-1661.

Function arguments:

o ObjectGenoP1: Line vector of P, genotype

o ObjectGenoP2: Line vector of P, genotype

e ObjectMap: Data.frame of the genetic map with columns: CHROMOSOME, POSITION and MARKER
(order by CHROMOSOME and POSITION)

Value:
o Returns the variance covariance matrix ¥ of genotypes in DH progeny of the cross P, x P

GenCovProgeny  <- function(ObjectGenoP1,0bjectGenoP2,0bjectMap){
# Computing expected frequency of recombinants cl
myDist <- sapply(1:nrow(ObjectMap),
function(x) abs(0ObjectMap$POSITION[x] - ObjectMap$POSITION))
myCHR1 <- do.call(rbind,lapply(1:nrow(ObjectMap),function(x)
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rep(0bjectMap$CHROMOSOME [x] ,nrow(ObjectMap))))
myCHR2 <- t(myCHR1)
cl <- 0.5%(1-exp(-2*(myDist/100)))
c1[myCHR1!=myCHR2] <- 0.5
Recomb <- (1-2*c1)
# Computing diseqilibrium
tmp <- rbind(ObjectGenoP1,0bjectGenoP2)/2
D <- crossprod(scale(tmp,scale=F))/2
# Sigma matriz
MyVarCov <- 4*D*Recomb
return(MyVarCov)
}

This function computes the posterior mean variance (PMV) estimate of DH progeny variance of the cross P
x P 2.

Function arguments:

e Bmat: Matrix including MCMC samples (in line) of marker effects (in column)

o ObjectGenoP1: Line vector of P; genotype

¢ ObjectGenoP2: Line vector of P, genotype

e ObjectMap: Data.frame of the genetic map with columns: CHROMOSOME,POSITION and MARKER
(order by CHROMOSOME and POSITION)

Value:

o Returns the PMV of the trait in DH progeny of the cross P, x P

PMV <- function(Bmat,ObjectGenoP1,0bjectGenoP2,0bjectMap){
# Variance-covariance matriz of genotypes in progeny
Gecov <- GenCovProgeny(ObjectGenoP1,0bjectGenoP2,0bjectMap)
# Posterior wvariance-covariance matriz of marker effects
vB <- 1/nrow(Bmat)*crossprod(scale(Bmat,TRUE,FALSE))

# Posterior mean of marker effects

Bhat <- as.matrix(apply(Bmat,2,mean))

# Posterior mean variance in progeny

PMV <- sum(diag(Gcov %*% vB)) + t(Bhat) %*% Gcov %’ Bhat
return (PMV)

}

This function computes the usefulness criterion (UC) considering DH progeny of the cross Py x P using
previously defined functions.

Function arguments:

e Bmat: Matrix including MCMC samples (in line) of marker effects (in column)

o ObjectGenoP1: Line vector of P; genotype

o ObjectGenoP2: Line vector of P, genotype

¢ ObjectMap: Data.frame of the genetic map with columns: CHROMOSOME, POSITION and MARKER
(order by CHROMOSOME and POSITION)

o Psel: Selected fraction of progeny (by default 5%)

e h: Selection accuracy (by default 1)

Value:

¢ Returns the UC of the cross P, x P,

UC <- function(Bmat,0ObjectGenoP1,0bjectGenoP2,0bjectMap,Psel=0.05,h=1){
Bhat <- colMeans (Bmat)
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i <- dnorm(gnorm(1-Psel))/Psel
# Posterior mean wvariance

VarG <- PMV(Bmat,ObjectGenoP1,0bjectGenoP2,0bjectMap)
# Mean GEBVs of parents
mu <- mean(crossprod(ObjectGenoP1,Bhat),crossprod(0ObjectGenoP2,Bhat))
return(mu + i*h*sqrt(VarG))

}

Finally, let us use the UC to identify the selected donor x elite recipient € PopFE cross that maximizes the
expected performance of selected DH progeny.

# Assuming we have selected the donors:

HSelDonor$LINE[2:6]

# For each donor predict UC for all possible crosses

ResUC <- do.call(rbind,lapply(SelDonors4UC,function(Donor){

return(do.call(rbind,lapply (PopE,function(Recipient){

UCtmp <- UC(Bmat =

ObjectGenoPl1 =

ObjectGenoP2 =

ObjectMap = Map,

SelDonors4UC <-

Psel =
h=1)

B’

0.05,

Geno [Donor,],
Geno[Recipient,],

return(data.frame (DONOR = Donor,
RECIPIENT = Recipient,
UC = UCtmp))

DN
)

# Selected crosses:
data.frame (ResUC %>%

## DONOR RECIPIENT

## 1 ID11909
## 2 ID11589
## 3 ID11677
## 4 ID11780
## 5 ID12287

ID11857
ID12318
ID12318
ID11935
ID11666

1)

uc
23.56729
17.73277
19.78924
25.06862
30.04510

group_by (DONOR) %>7
top_n(n =
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File S1: Derivation of linkage disequilibrium parameter in progeny for four-way
cross and specific case of two-way cross, three-way cross and backcross

Here we derive the linkage disequilibrium parameter of doubled haploid progeny derived from the F;’
generation of a four-way cross (Figure 1 S1), while we give an extension for DH lines generated from
higher selfing generations and for recombinant inbred lines in File S2. The crossing scheme for a four-
way cross visualizing parental and potential progeny haplotypes is given in Figure 1 S1. Gametes from
a four-way cross with four different parents (P1, P2, P3, and P4) correspond to gametes from six
biparental crosses (P1xP2, P3xP4, P1xP3, P1xP4, P2xP3, P2xP4).

P2

P1
Al 1A
ge - e

]

P4
E| |E

b4
[
{1} 2
F1 F1
A E

b
g0 ~ Bl

F,

|

Parental haplotypes Recombinants from F' x F¥

408 [ iEAH

Recombinants from F'1 % F'1
A E A
F F

Figure 1 S1 Visualization of crossing scheme and two-locus parental as well as progeny haplotypes of
a four-way cross from parents P1, P2, P3, and P4. Potential types of haplotypes are denoted with T1,
T2, and T3.

m

m

To derive the entries of the Linkage Disequilibrium (LD) matrix D of the progeny of the four-way cross,
we derive the frequencies of all different possible haplotypes. For this, three types of haplotypes can
be differentiated (namely, T1, T2 and T3).

The first type T1 corresponds to parental haplotypes, for example AB from Figure 1 S1. The frequency
of the haplotype AB in the parents is:

1
Pap = )
The frequency of AB in gametes from the cross Fl(l) X F1(2) is:

Pap = %(1 —c®),
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with ¢ the recombination frequency and 1- cM) the frequency that no recombination takes place
within the cross Fl(l) X Fl(z).
Similarly, the frequency of AB in gametes from the cross F| X Fj is:

1
pip =7+ (1—c®)
4
As there are four different parental haplotypes, the frequency of the type T1 haplotypes is:

n n n 14 2
P(Ty) = pip + 0cp + PeF + P6n = (1 - C(l)) (1)

o ) )
The second type T2 corresponds to haplotypes formed by recombination in the cross F;"~ X F"™, for
example AD. The frequency of this haplotype in the parents is

Pap =0

The frequency of AD in gametes from the cross Fl(l) X Fl(z) is:

€y
As CT is the frequency of recombinants within Fl(l), the frequency in the whole cross is reduced by a

factor of 1/2. The frequency of AD in gametes from the cross F] X Fj is:

p1,4,D = %C(l)(l — C(l)),

with (1 — ¢™) the frequency that no recombination takes place within the cross F| x Fj.
Overall, the frequency of the type T2 haplotypes is:

P(Ty) = pap + pcp + PEn + P6r = C(l)(l - C(l)) ()

The third type T3 corresponds to haplotypes formed by recombination in the cross F| X Fj, for
example AF. The frequency of these haplotypes in the parents is:
par =0

The frequency of AF in gametes from the cross Fl(l) X Fl(z) is:

!

Par =0
The frequency of AF in gametes from the cross F] X F; can be calculated as:

ORI CO I | (€Y)

c c c
—(1-c®

2 * 2 2 (1—c®)x 2

1 1
Pl =3 (1= c®) 3 (1= c)

C(l) C(l) C(l) C(l) C(l) 1
* + — % * = — C(l)
2 2 2 2 2 8

1
+§(1 - C(l)) *
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Overall, the frequency of the type T3 haplotypes is:

P(T3) = pjr + P + PCr + PEp + PAn + Pos + eu + 0ép = ¢ (3)

All the different haplotypes and frequencies are summarized in Table 1 S1.

We define hj; = (hj, hl) a haplotype including loci j and [, with h; and h; the alleles of the haplotype
atlocijandl, hj, h; € {0,1}. Using the frequencies of the three types of haplotypes, we derive the LD
in the progeny between locus j and [ as:

Dﬁrogeny = pj1— Pjn
=P (hy = (z,2))) = P(hy = 2)P(hy = 2))

=Y3%=1P(hjy = (25, 2) | T )P(Ty) — P(h; = z))P(hy = ), (4)

where z; and z; denotes realizations of h; and hy, respectively.
For the conditional haplotype probabilities it holds:

1
P(hj = (2,2) | Ti) = T Z 1=z, X Lyj==z,

v €Tk

with | Ty | the number of haplotypes of type k, v;; = (vj,vl) a haplotype of type k, 1,,].::21 (1,,].==Zl)
an indicator equal to 1 if v; = z; (v; = z;) and 0 otherwise.
For the allele frequencies it holds:

1
P(h] = Z]) = Z (1A==Zj + 1C==Zj + 1E==Zj + 1G==Zj)

1
P(hl = Zl) = Z (1B==Zl + 1D==Zl + 1F==Z1 + 1H==Zl)

Table 1 S1 Different haplotype types, their frequency in the parents (G0), after the first cross (G1),
after the second cross (G2) and the Linkage Disequilibrium (LD) in G2.

Type GO G1 G2 LD
T %(11 O 1%* (1= c0)? 13* (1 - W) —1—161
T2b 0 L 2¢Wx(1-c®) W (1-c®) -
T3¢ 0 0 %cm %cm _%

9Haplotypes: AB, CD, EF, GH (parental haplotypes)
bHaplotypes: AD, BC, EH, FG (recombinant from Fl(l) X Fl(z))
“Haplotypes: AF, AH, CF, CH, EB, ED, GB, GD (recombinant from F| X F])
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Further, we use the linkage disequilibrium among two parents between loci j and [, which is
exemplified for parent 1 and 2:

12 _ 12 12,12
D" = pji — pi°pi

1

1
= E(1A==Zj X 1B==zl + 1C==z]- X 1D==Zl) - Z(1A==Z]‘ + 1C==z]-) (1B==zl + 1D==zl)

= Z(1A==Zj X 1B==Zl + 1C==Z]- X 1D==Zl - 1A==Z]- X 1D==Zl - 1C==Zj X 1B==Zl)-

For sake of clarity, we abbreviate in the following 1A:Zj with 1,, 15__, with 15 and accordingly for

therest (C, D, E, F, G, H). Then we can reform the LD in the progeny as a function of the recombination

frequency cj(ll) and the LD among two parents between loci j and [:

3

pproseny Z P(hy = (2, 2,)| Tx)P(Ti) — P(hy = ;)P (hy = z,)
k=1

1 )2
= 2 (Lilp +1c1p + 151p +161y) (1-c)

1
+ 7 (Ldp + 115 + 151y + 1,1)c” (1- )

1
+5 (Lp+ 1,1 + 1cp + 11y + 1515 + 1p1p + 1615 + 1,1p)c”

1
_E(1A+1C+1E+1G)(1B+1D+1F+1H)

1 my?_ 1
T2 ((1 ~ G ) B Z) (1p1p +1c1p + 1p1p + 161y)
1
+ (CJ'(D (1 - Cj(ll)) B Z) (141p +1c1p + 11, + 1615)

l
M1
+ (JT - Z) (L1 + 11+ 1.1+ 1.1+ 11+ 11, + 1,15+ 141))

B

%
(1-¢”) (1al1p +1c1p + 151, + 161)
+ci? (1= ¢?) (Lalp + 1c1p + 1514 + 161)
1 1
— 2 (Ll + 11y + 11p + 1615) = 7 (Lalp + 1oLy + Lply + 1615)

1
- Z(l = 2¢f7) (Ladp + Laly + Ledp + 11y + 1515 + 151, + 151,

+1, 1D)]
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1 ©
Z [(1 — i) (Lalp +1c1p + 1510 + 161,)

o (1- (1)) (La1p +1c1p + 1515 + 161, — 1,1, — 1015 — 151,
—1,1;) _Z (Ladp + 11y + 11, + 11y + 141, + 101, + 151, + 1615)

1
- Z(l = 2¢f7) (Lalp + 11y + Lelp + 11y + 1515 + 1515 + 151,

+1, 1D)]

- [(1 — i) ( 1A13 +1c1p + 1515 + 161y) — 4 (1 - c7) (D2 + D
—= (1A13 Flelp + 11, + 1p1y + 141, + 1015 + 151, + 1,15)
1 (€Y} 23 24
+ 4( — 2¢{Y) (4D} + 4D}* + 4DF + 4DZ* — 21,15 — 2101, — 21,1,

- 21, 1H)]

1 2
[(1 — C]-(ll) 4 Z(l - ch(ll))> (1415 +1c1p + 151 + 161y)
— 4cf (1 (1))( Di") -7 ( 1a1p +1clp +1p1y, +1615)

1
+ 7(1-2¢) (4} + aD}* + 4D +4Dﬁ4)]

1
[Z (11 + 1,1+ 11+ 1,1, — 141, — 1.1 — 11— 1,15)

—acf? (1-c?) (Dj2 + D3*) + (1-2¢”) (D} + D} + D3 + Dﬁ“)]

171
=2 [Z (4D} +4D3*) — 4 (1 - V) (D}

€)
+ (1 —2¢;; ) (Dj? + Dji* + D3? + D]-Zl4 ]

BN

[( ( 4C(1)(1 (1))) ( 2cj(ll)) (Dﬁ3 + Djll4 + Dﬁ?’ n Dﬁ4)]
1

T [ 2c(1) ( Dj?i4) + (1 - ch(ll)) (Dﬁ3 + Djll4 + DJ%S + Dﬁ“ ]
1

- Z( zc(l)) [ (DI + DX* + DF* + D3*) + (1 3 2C(1)) D34)]

=(1-2¢") @2+ (1-2¢) @1 5] 15

with @, ; = Djllz + Dﬁ“ summing the LD values among parents that can be considered to be involved
as biparental crosses in Fl(l) X Fl(z) and with @, ;; = Djll3 + DJ-114 + Dﬁ3 + D]-Zl4 summing the LD values

among parents that can be considered to be involved as biparental crosses in F] X Fj.

161



Supplementary Material Chapter 3

The linkage disequilibrium parameter ®;and @, and equation (5) can be simplified in the case of two-
way, three-way and backcrosses (Table 2 S1). For two-way crosses we arrive at the same variance
covariance matrix elements X;; as given by Lehermeier et al. (2017).

Table 2 S1 Linkage disequilibrium parameter between QTLs j and [ in pairs of parental lines depending
on the mating design.

@y D3 1 2

1
Fourway ~ Djf+ Di* DJ? +D*+DF +Di*  (1-2c) ( (D} +D* + D + D3*) + (1 — 2 (D} )
Three-way  Dji? 2 (D}* + D3* (1 2c (1)) ( (D3 + (1 2 (1)) D} )
Backcross  Djj* 2Dj* (1 _ 26(1)) (3 (1))
Two-way 0 4 Dj* ( _7 C(l))
Cited literature:

Lehermeier C., S. Teyssedre, and C.-C. Schon, 2017 Genetic Gain Increases by Applying the Usefulness
Criterion with Improved Variance Prediction in Selection of Crosses. Genetics 207: 1651-1661.
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File S2: Validation of four-way cross formulas for DH-k and RIL-k and evolution of
RIL variance depending on selfing generations

In File S1, we considered DH lines generated from F1’ (DH-1), i.e., only two meioses took place. Progeny
variance for DH-1 is expressed in terms of parental expected recombination frequency ¢ (Table 2
S1). For recombinant inbred lines (RILs) or when DH lines are generated from higher selfing
generations, the expected frequency of recombinants increases depending on the number of selfing
generations. In the following k denotes the generation from which progeny are derived (Figure 1). The
expected frequency of recombinants in generation k can be derived from the genotype probabilities
given in Broman (2012) as done in File S1 of Lehermeier et al. (2017). Hence, for DH lines after k
generations, ¢ in Table 2 S1 should then be replaced by ¢, leading to the general four-way DH-k
formula as shown in Table 1:

2¢W k
0 = 2 (1_ 05K (1—2c® :
¥ = (1-05%(1-2c®)"), vk e N

In case of RILs, no doubling of gametes takes place and the covariance for RILs after generation k is

k
obtained by updating ¢® by ¢® + 0.5 [0.5(1 - Zc(l))] ,V k € N* (Table 1). Note that the variance-
covariance of DH-k and RIL-k converge with increasing k.

Formulas for DH-k and RIL-k in the general case of four-way crosses have been validated by simulations
for k € [[1,6] (Table 1 S2 and Table 2 S2). The observed high positive correlations (Table 1 S2) and low
mean squared differences (Table 2 S2) between predicted (derivation) and empirical (in silico) values

validate the presented formulas. Lower squared correlations between predicted and empirical values

were observed for M(Csel) and u(Cs(il)) compared to the variances and covariances. This can be explained

by sampling bias in in silico simulations (50,000 progenies) where the P; parental genome contribution
before selection slightly differed from the expected value of 0.25 for four way crosses (ranging from
0.249 to 0.251).

Predicted RIL progeny variance for the simulated agronomic trait increased with the number of selfing
generations considered (k) and converged toward DH progeny variance after five generations of selfing
(k = 5) (Figure 1 S2). We observed that some crosses profited more from an increase in selfing
generations by generating more variance compared to others. An example with two crosses is shown
in Figure 2 S2. While the cross visualized in blue showed a higher variance in generation RIL-1 than the
cross visualized in orange, it reached a plateau faster and showed a lower variance than the orange
cross with k > 3. Differences in the speed to release variance between crosses is likely due to
differences in the recombination frequency between segregating QTLs in parental lines. This
underlines the interest of predicting RIL progeny variance using proposed algebraic formula.
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Table 1 S2 Squared correlations (R?) between empirical values (in silico) and predictions (derivation)
per generation and type of progeny.

Generation  ¢Z o O orc OT,c(+) Ucy M(Csel) Mgs(il))
DH1 0.999 0.960 0.995 0.999 0.999 1.000 0.900 0.946
DH2 0.999 0.964 0.995 0.998 0.998 1.000 0.909 0.952
DH3 0.999 0.966 0.995 0.999 0.999 1.000 0.914 0.955
DH4 0.999 0.969 0.995 0.999 0.999 1.000 0.912 0.955
DH5 0.999 0.961 0.994 0.998 0.998 1.000 0.914 0.955
DH6 0.999 0.963 0.994 0.998 0.998 1.000 0.913 0.955
RIL1 0.999 0.957 0.994 0.999 0.999 1.000 0.938 0.967
RIL2 0.999 0.957 0.994 0.999 0.999 1.000 0.917 0.957
RIL3 0.999 0.960 0.994 0.998 0.998 1.000 0.918 0.958
RIL4 0.999 0.962 0.994 0.998 0.998 1.000 0.915 0.956
RILS 0.999 0.962 0.994 0.998 0.998 1.000 0.912 0.955
RIL6 0.999 0.962 0.994 0.999 0.998 1.000 0.911 0.954

Table 2 S2 Mean squared difference between empirical values (in silico) and predictions (derivation)

per generation and type of progeny.

Generation o o Te) or,c OT,c(+) UCr psey ﬂg(il))
DH1 5.20E-06 3.28E-09  3.52E-10  5.99E-08  2.07E-08  8.44E-04  4.92E-05  1.42E-05
DH2 5.09E-06 2.81E-09  3.16E-10  6.65E-08 ~ 2.24E-08  7.02E-04  3.83E-05  1.12E-05
DH3 5.36E-06 2.56E-09 2.97E-10  4.74E-08 ~ 151E-08  6.49E-04  3.50E-05  1.03E-05
DH4 456E-06 230E-09 2.876-10  5.16E-08  1.66E-08  6.856-04 3.55E-05  1.05E-05
DH5 4.83E-06 2.88E-09 3.326-10  5095E-08 ~ 1.99E-08  6.40E-04 3.47E-05  1.03E-05
DH6 476E-06 2.74E-09  3.14E-10  6.08E-08 ~ 1.96E-08  6.776-04  3.47E-05  1.04E-05
RIL1 225E-06 1.56E-09 1.81E-10  2.96E-08  9.80E-09  4.30E-04 251E-05  7.54E-06
RIL2 3.26E-06 2.29E-09  2.69E-10  4.09E-08 ~ 1.37E-08  5.73E-04  3.40E-05  1.00E-05
RIL3 3.93E-06 2.58E-09  3.056-10  5.28E-08 ~ 1.72E-08  6.226-04  3.34E-05  9.84E-06
RILA 4.49E-06 259E-09  3.026-10  5.64E-08  1.81E-08  6.596-04  3.43E-05  1.01E-05
RILS 491E-06 269E-09  3.10E-10  5.59E-08  1.83E-08  6.656-04  3.53E-05  1.04E-05
RIL6 491E-06 271E-09 3.136-10  554E-08  1.83E-08  6.63E-04 3.59E-05  1.06E-05
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Trait Variance (Derivation)
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Figure 1 S2 Evolution of predicted progeny trait variance depending on progeny type (DH, left or RIL,

right) and generation (k). The red dotted line presents the median DH progeny variance over 100

crosses.

Trait Variance (Derivation)
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Figure 2 S2 Example of two crosses showing different evolutions of predicted RIL progeny variance

depending on the selfing generation (k).

Cited literature:

Broman K. W., 2012 Genotype probabilities at intermediate generations in the construction of
recombinant inbred lines. Genetics 190: 403-412.
Lehermeier C., S. Teyssedre, and C.-C. Schon, 2017 Genetic Gain Increases by Applying the Usefulness

Criterion with Improved Variance Prediction in Selection of Crosses. Genetics 207: 1651-1661.
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File S3: Comparison of IBD parental contribution variance with Frisch and
Melchinger (2007) and simplification to IBS contribution

We used an algebraic formula to predict the variance of P; genome contribution in doubled haploid
progeny derived from F1’ plants. We considered two-way crosses DH-1 (called (F1)-DH) and
backcrosses DH-1 (called (BC1)-DH) and compared our results with the results given by Frisch and
Melchinger (2007). We considered one chromosome of 100cM for which Frisch and Melchinger (2007)
derived a variance of parental contribution of 0.1419 for (F1)-DH and 0.0945 for (BC1)-DH. We varied
the number of loci p used in our approach and for each, we ran ten independent samplings of loci. We
observed that the results from our approach converged with increasing number of loci to the solution
given by Frisch and Melchinger (2007) (Figure 1 S3).

Var of (BC1)-DH
Var of (F1)-DH

0,145
95 = =t n = e — — 1 =
0,095~ _ - 4 *= - H + +

' ' ' ' ' ' ' ' '
0 500 1000 1500 2000 0 500 1000 1500 2000

Nb. loci Nb. loci

Figure 1 S3 Average parental genome contribution variance (black dots) for (BC1)-DH (left) and (F1)-
DH (right) from ten simulation replications (+/- standard deviation represented by black vertical lines)
with different number of considered loci. Red dotted line shows the results given by Frisch and
Melchinger (2007).

In cases where the origin of the allele is not of interest and an identical by state (IBS) similarity between
progeny and parental lines is sufficient, the multi-allelic coding can be simplified to a biallelic coding.
This reduces the size of the covariance matrix from (4p x 4p) to (p x p), with p being the number of
loci considered. For this, let us define the genotyping matrix of parental lines in biallelic coding:

Xips = diagXparentar) = (X1 X2 X3 x)’

where, X;ps is a (4 x p)-dimensional matrix of genotypes. The (p x 4)-dimensional matrix of global
parental contribution marker effects for each of the four parents can be defined as:

1
BIBS = %XIBS

I

where, Vi € [1;4] Bigs(.,i) is the p-dimensional vector of marker effect to follow the IBS
contribution of parent i and p is the total number of loci considered.

We denote the (N xp)-dimensional genotyping matrix of N doubled haploid (DH) progeny as
X1Bs-progeny With element X;ps_progeny (, 1),V j € [1,N],1 € [1,p] the genotype of progeny j at

167



Supplementary Material Chapter 3

locus | coded as -1, 1 for the genotypes aa, AA, respectively. It results in the following (N x 4)-
dimensional matrix of parental IBS contribution to progeny:

Cigs = Xigs—progeny Bips + > 141}

where,V j € [1;N],V i € [1;4], C;55(j, i) is the parental line i contribution to progeny line j.

Cited literature:

Frisch M., and A. E. Melchinger, 2007 Variance of the Parental Genome Contribution to Inbred Lines
Derived From Biparental Crosses. Genetics 176: 477-488.
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File S1: Additional material
Material

We initiated simulations with the genome of 57 maize lodent inbred lines (Zea mays L.) (Allier et al.
2019). These lines were genotyped with the lllumina MaizeSNP50 BeadChip (Ganal et al. 2011). After
quality control and imputation, 40,478 high-quality SNPs were retained. The genetic map was obtained
by predicting genetic positions from physical positions on the reference genome B73-v4 (Jiao et al.
2017) using a spline-smoothing interpolating procedure described in Bauer et al. (2013) and the dent
genetic map in Giraud et al. (2014). At each simulation replicate we randomly sampled 40 lines to be
the founder population. We randomly sampled 1,000 SNPs to be additive biallelic quantitative trait loci
(QTL) of a polygenic trait. The sampling of QTL obeyed two constraints: QTL minor allele frequency >
0.2 and distance between two consecutive QTL = 0.2 cM. Each QTL was randomly assigned an additive
effect from a Gaussian distribution with a mean of zero and a variance of 0.05. For the scenario where
the 1,000 QTLs were unknown, we randomly sampled 2,000 non causal SNPs as genomewide markers
used for evaluation (see “Evaluation model” section).

Simulation scheme

We aimed at comparing the effect of parent selection and allocation methods on short and long term
genetic gains in a realistic breeding context using doubled haploid (DH) technology and considering
overlapping and connected cohorts (i.e. generations) of three years as illustrated in Figure 1A. We
considered that the process to derive DH lines from a cross and to phenotype and genotype DH lines
took three years. Furthermore we considered as candidate parents of a new cohort only the DH
progeny of the three last cohorts. For sake of clarity, the candidate parents of cohort T were selected
from the available DH progeny of the three cohorts: T — 3, T — 4 and T — 5 (Figure 1A-B). Within this
breeding context, we defined a burn-in period of 20 years starting from founders that mimicked a
phenotyping selection (PS) program using DH technology (more details in the “phenotyping” and
“evaluation model” sections). Afterward, we compared different cross selection strategies during 60
years of breeding. We considered either that we had access to the 1,000 QTL effects (TRUE scenario)
or that we estimated the effects of the 2,000 non causal SNPs (GS scenario). We also considered the
absence of genomic information for selection, i.e. phenotypic selection (PS scenario).

We can distinguish the following simulation phases for the cohorts T € [1,80]:
e Burn-in Phase 1 (T € [1; 3]): Initialization

Every year during the three first years, a cohort was initiated by randomly generating 20 biparental
crosses from the 40 founders. We derived 80 DH lines per cross. Note that lines can contribute as
parents to different crosses and cohorts, so that parental contributions are not controlled and different
cohorts can share the same crosses at this stage.

e Burn-in Phase 2 (T € [4;20])

The second phase of burn-in mimicked 17 years of phenotypic selection to build up extensive linkage
disequilibrium to compare scenarios in a realistic ongoing breeding context. In burn-in phase 2,
phenotypic selection (PS) was used to estimate breeding value of candidate lines from the three last
cohorts (T —3, T — 4 and T — 5, if available). After selecting the 4 best DH progeny per family (i.e.
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5%), the overall 50 best progeny out of 3 cohorts x 20 families/cohort x 4 DH/family = 240 DH progeny
were considered as potential parents of the cohort and were randomly mated to generate 20
biparental families of 80 DH lines. Note that lines can contribute as parents to different crosses and
cohorts, so that parental contributions are not controlled and different cohorts can share the same
crosses at this stage. Burn-in ended up with overlapping cohorts connected by the pedigree as it can
be found in real breeding program.

e Post burn-in (T € [21;70])

In post burn-in, the life cycle of a cohort was similar to burn-in phase 2 except changes in the way to
evaluate, select and mate parents (Figure 1B).

Phenotyping

For phenotyping, we considered environmental effects sampled in a normal distribution of mean zero
and variance 25 and did not consider genotype by environment interactions. Each cohort was
evaluated in N;,. = 4 locations in one year, i.e. four environments. At each simulation replicate, five
founder lines were randomly sampled to be check individuals phenotyped every year. Environmental
errors were sampled from a normal distribution with mean zero and an error variance 62 defined by

2
the initial repeatability in the founder population r = % = 0.40. This led to a heritability in the
G €

a8
2
04+0¢/Nio¢

selection cycles relatively to the evolution of additive genetic variance 05 (e.g. h? = 0.73 in founder

founder population of h? = = 0.73. Note that the repeatability and heritability varied along

population to h? = 0.59 at the end of burn-in and to h? = 0.03 after 60 years in the PS scenario).
Evaluation model

Different evaluation models were considered and should be distinguished at this stage. For phenotypic
selection (PS scenario), the phenotypes of progeny were used to estimate their breeding values (EBV).
We distinguished two scenarios using genomic information. On one hand, the 1,000 QTL positions and
effects were known (TRUE scenario) and the evaluation consisted in summing the individual additive
QTL effects to obtain the true breeding value (TBV) of progeny. On the other end, the 1,000 QTL
positions and effects were unknown (GS scenario) and 2,000 SNP effects were estimated using the
phenotypes and genotypes of the progeny from the three last cohorts. The progeny were selected on
their genomic estimated breeding values (GEBV).

The breeding value of progeny (EBV in PS or GEBV in GS) were estimated in Model 1 S1 fitted using
mixed model software blup-f 90 (Misztal 2008) with AI-REML variance component estimates:

Y=1u+ Efg,, + Wu + €, (Model 1 S1)

where Y is the vector of phenotypic values, u is the intercept, E is the incidence matrix for
environmental effects, B,y is the vector of environmental fixed effects, W is the incidence matrix of
individual breeding value random effects u, u ~ N(O, O'(%U) is the vector of breeding value random
effects with 62U its variance-covariance matrix and € is the vector of residual random terms € ~
N(0,521) independent and identically distributed. For phenotypic selection (PS), the individuals were
assumed independent, i.e. u ~ N(O, 051). For genomic selection (GS), the covariance between
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individuals was modeled using the genomic relationship matrix G, i.e. u ~ N(O, agG). Hereby, G was
estimated using the 2,000 non causal loci as:

‘o 77’
"~ tr(ZZ)/n

where, Z contains the centered allele counts, with elements computed as x;; + 1 - 2p;, where the
element x;; € {—1,1} is the genotype for individual i at non causal locus j and p; is the frequency of
the allele for which the homozygous genotype is coded 1 at non causal locus j. tr(ZZ") is the trace of
ZZ' and tr(ZZ")/n forces the diagonal of G to be 1 on average (Legarra et al. 2009; Forni et al. 2011).
Note that for fully homozygous individuals tr(ZZ") /n = 4% ;p; (1 — p;). Estimated marker effects Br
were obtained by back-solving: By = Z'(ZZ")~ 11 (Wang et al. 2012) and used in lieu of known QTL
effects Br.

Simulation of progeny genotypes

Doubled haploid progeny genotypes were simulated considering meiosis events without crossover
interference. The number of chiasmata was drawn from a Poisson distribution with A equal to the
chromosome length in Morgan, and crossover positions were determined using the recombination
frequency obtained using the Haldane mapping function (Haldane 1919).

Cited literature:
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File S2: Relationship between IBS coancestry and genetic diversity in progeny
The identity by state (IBS) coancestry between N inbred parents is defined as:

K= 05 (% (XX") + 1N1;V), (Eq. 1)

where, X is the genotyping matrix of the N parents in line and m loci in column, with elements coded
-1 or1and 1y is a N-dimensional column vector of ones.

Considering the N-dimensional column vector of expected parental genomewide contributions ¢, with
c(j), j € [1,N] the contribution of the parent j to progeny, the mean expected IBS coancestry in
progeny is:

IBS =c'Kc=05 [%(C’XX’C) + c'1N1;Vc]. (Eq. 2a)
Note that ¢'1y1yc¢ = 1 since 2?’:1 c(j) = 1. Then, Eq. 2a simplifies:
IBS = 0.5 [i(c’XX’c) + 1] (Eq. 2b)
The mean expected genetic diversity (He) in progeny is:

He =— 13, (2p ° (1, —P)), (Eq. 32)

m

where 1,, is a m-dimensional column vector of ones, o is the pairwise entry product and p is the m-
dimensional column vector of expected allelic frequencies in progeny:

p=05(X+1y1;,)" oC) 1y, (Eq.4a)
where C is the (m x N)-dimensional matrix of expected local parental contributions to progeny with
C(i,j), i € [1,m], j € [1, N] the contribution of parent j to progeny at the locus i. C(i,j),V i € [1,m]

is further approximated by the genomewide parental contribution to progeny c(j). Consequently, the
m-dimensional column vector of expected allelic frequencies (Eq. 4a) is approximated as:

p=05X+1y1;,) c. (Eq. 4b)
We replace p by its approximation p in Eq. 3a:
He= — 15, ((X'c+ 1,1j¢) o (1, — 0.5 X'c — 0.5 1,,13,)). (Eq. 52)

Note that 1,,1y¢ = 1,, and Eq. 5a becomes:

— 1
He = — 1, (X'c+1,)°(051, -05Xc))

1 ! U !
=— 1y (05(1,, —X'coX'0))
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=05 (1 —% 1. (X'c ox'c)). (Eq. 5b)
Let us note v = X'c. It can be shown that 1;, (v e v) = v'v, resulting in:
He=05 (1 —% (c’XX’c)) =0.5(1—21IBS+1) =1—IBS. (Eq. 6)

Note that this equivalence is conserved whether we consider ante- or post-selection parental
contributions (c), respectively in OCS or in UCPC based OCS.
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File S3: Supporting R code

Improving short and long term genetic gain by
accounting for within family variance in optimal cross

selection
File S3 - Supporting R code

Allier Antoine, Christina Lehermeier, Alain Charcosset, Laurence Moreau and Simon

Teyssedre
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1 Load examplary data 2
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1

177



Supplementary Material Chapter 4

This document illustrates how the UCPC (Usefulness Criterion Parental Contribution, described in Allier et
al. (2019) in G3 5:1469-1479, doi: https://doi.org/10.1534/g3.119.400129) is used to predict the expected
gain and parental contributions after progeny selection for a cross between two homozygous parental lines.
We further extend it to the evaluation of a set of crosses (nc) underlying the UCPC based optimal cross
selection.

1 Load examplary data

For this documentation, we load a simulated maize data set from the synbreedData R package, which
includes genotypic data and a genetic map.

rm(list=1s())

library(synbreed)

library(synbreedData)

set.seed(1993)

# Use simulated maize data set from synbreedData package as example data

data(maize)

# Convert genotypes into -1, 1 coding

geno <- maize$geno*2-1

# Set a genetic map object

map <- data.frame(CHROMOSOME=maize$map$chr,
POSITION=maize$map$pos,
MARKER=rownames (maize$map) )

2 Usefulness criterion and parental contribution (UCPC) for a
single two-way cross

We sample two homozygous parents further referred to as P, and Ps.

# Sample tllustrative parental lines
xP1 <- geno[10,]
xP2 <- geno[200,]

2.1 Genotypic covariance in doubled haploid progeny (DH-1) of P, x P,

The following function computes the genotypic covariance matrix 3 in doubled haploid (DH) progeny derived
from the cross between homozygous lines P, and P, as described in Lehermeier et al. (2017) Genetics

207:1651-1661.
Function arguments:

o ObjectGenoP1: Line vector of genotypes at loci of parent P; (coded -1/1)
o ObjectGenoP2: Line vector of genotypes at loci of parent P, (coded -1/1)
e ObjectMap: Data.frame of the genetic map with columns: CHROMOSOME, POSITION and MARKER

Value:
o Returns the covariance matrix of genotypes in DH progeny of the cross P, x P,

GenCovProgeny <- function(ObjectGenoP1, ObjectGenoP2, ObjectMap){
# Compute expected frequency of recombinants ci
myDist <- sapply(1:nrow(ObjectMap),
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function(x) abs(0bjectMap$POSITION[x] - ObjectMap$POSITION))

myCHR1 <- do.call(rbind, lapply(l:nrow(ObjectMap),
function(x) rep(ObjectMap$CHROMOSOME [x] ,nrow(ObjectMap))))

myCHR2 <- t(myCHR1)
cl <- 0.5%(1-exp(-2*(myDist/100)))
c1[myCHR1!=myCHR2] <- 0.5
Recomb <- (1-2*cl)
# Compute disequilibrium
tmp <- rbind(0ObjectGenoP1,0bjectGenoP2)/2
D <- crossprod(scale(tmp,scale=F))/2
# Sigma matriz
MyVarCov <- 4*D*Recomb

return(MyVarCov)
}
The genotypic covariance matrix in the illustrative example is computed as:
Sigma <- GenCovProgeny(ObjectGenoP1l = xP1,
ObjectGenoP2 = xP2,

ObjectMap = map)

2.2 Ante-selection: progeny means and co-variances
2.2.1 Definition of marker effects

Let us simulate the column vector of effects r for the performance trait 7" as:

# Simulate marker effects (can be replaced by estimated marker effects)
BetaT <- matrix(rnorm(ncol(geno),0,sqrt(0.05)), ncol=1)

It results in the parent P; and P» breeding values:

# P1 performance is:
round (xP1%*7,BetaT, digits=3)[1,1]

## [1] -8.438

# P2 performance is:
round (xP2%*%BetaT, digits=3)[1,1]

## [1] -8.836

The following function defines the column vector of marker effects S¢1 to follow P; identity by state (IBS)
contribution to progeny considering only polymorphic loci between parents P, and Ps.
Function arguments:
e ObjectGenoP1: Line vector of genotypes at loci of parent P; (coded -1/1)
o ObjectGenoP2: Line vector of genotypes at loci of parent P, (coded -1/1)
Value:
¢ Returns a column vector ¢ of effects to follow P, parental IBS contribution to progeny considering
only polymorphic loci between P; and Ps.

GetBetaCl = function(ObjectGenoPl, ObjectGenoP2){
X1tmp <- matrix(ObjectGenoP1l, ncol=1)
X2tmp <- matrix(ObjectGenoP2, ncol=1)
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tmp <- X1tmp-X2tmp
return(tmp/crossprod(tmp) [1])

I
BetaCl <- GetBetaC1l(ObjectGenoP1
ObjectGenoP2

xP1,
xP2)

1l

It results in the parent P} contribution to parents:

# P1 contribution to itself is:
round (xP1%*%BetaCl + 0.5, digits=3)[1,1]

## [1]1 1

# P1 contribution to P2 is:
round (xP2%*%BetaCl + 0.5, digits=3)[1,1]

## [1] O

2.2.2 Progeny means

The effects 87 and o1 are used to compute progeny means (pur and pc) before selection:

# Progeny mean performance before selection is:
MuT <- 0.5%(xP17*/BetaT+xP2/*/BetaT)
round (MuT, digits=3)[1,1]

## [1] -8.637

# Progeny mean P1 contribution before selection is:
MuCl <- 0.5*(xP1%*%BetaCl + xP2%*%BetaCl + 1)
round (MuC1, digits=3)[1,1]

## [1] 0.5

2.2.3 Progeny co-variances

The following function computes the genetic co-variances of two traits in progeny based on marker effects
and the genotypic covariance matrix in progeny 3.

Function arguments:

e ObjectBetal: Column vector of marker effects for trait 1 (/1)
¢ ObjectBeta2: Column vector of marker effects for trait 2 (/32)
e ObjectSigma: Covariance matrix of genotypes in progeny (%)

Value:
¢ Returns the genetic covariance 3133 = 8533;.

VarCovProgeny = function(ObjectBetal, ObjectBeta2, ObjectSigma){
crossprod(ObjectBetal,ObjectSigma’*/0bjectBeta2)
}

The genetic variance in progeny for the performance trait 7' (02,) is:

VarT <- VarCovProgeny(ObjectBetal = BetaT,
ObjectBeta2 = BetaT,
ObjectSigma = Sigma)
round(VarT, digits=3)[1,1]
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## [1] 16.94
The genetic variance in progeny for P; contribution trait (¢2,) is:

VarC1l <- VarCovProgeny(ObjectBetal = BetaCl,
ObjectBeta2 BetaCl,
ObjectSigma = Sigma)
round(VarCl, digits=3)[1,1]

## [1] 0.014

The genetic covariance between performance trait and Py contribution trait (op,c1) is:

CovTC1l <- VarCovProgeny(ObjectBetal = BetaT,
ObjectBeta2 = BetaCl,
ObjectSigma = Sigma)

round (CovTC1, digits=3)[1,1]

## [1] 0.048

2.3 DPost-selection: usefulness criterion and parental contribution (UCPC)

The following function computes the usefulness criterion parental contribution (UCPC) for a single cross P
x P, based on progeny means and genetic co-variances previously predicted and a within cross selection of
the pSel most performant progeny.

Function arguments:

¢ ObjectMuT: Progeny mean for the performance trait 7' (yur)

« ObjectVarT: Progeny genetic variance for the performance trait 7' (02.)

¢ ObjectMuC1: Progeny mean for the P; contribution (i.e. pc; = 0.5 for two-way cross)

¢ ObjectCovTCl: Progeny genetic covariance between the performance and the P, contribution (o7,c1)
e ObjectpSel: Percentage of selected progeny within the family

¢ h: Selection accuracy (by default h=1)

Value:

o Returns a data.frame giving the progeny mean performance before selection (p7), the usefulness criterion

for the performance trait 7' (U 073) ), the expected P; and P, contributions to progeny before selection

(c1, c2) and the expected P, and P contributions to the selected fraction of progeny (cgi), cg')).

GetUCPC = function(ObjectMuT, ObjectVarT, ObjectMuCl, ObjectCovTCl,
ObjectpSel, h=1){
i <- dnorm(gnorm(1-ObjectpSel))/ObjectpSel
# Usefulness criterion on T
UCT <- ObjectMuT+i*h*sqrt(ObjectVarT)
# Correlated response to selection for CI
Clsel <- ObjectMuCl+i*h*0ObjectCovTC1l/sqrt(ObjectVarT)
return(data.frame (MuT = ObjectMuT,
UCT = UCT,
MuC1 = ObjectMuCl,
MuC2 = 1-ObjectMuCl,
SelCl = Cilsel,
SelC2 = 1-Cisel))

}

I

UCPC <- GetUCPC(ObjectMuT = MuT, ObjectVarT = VarT, ObjectMuCl = MuCl,

181



Supplementary Material Chapter 4

ObjectCovTCl = CovTC1l, ObjectpSel = 0.05)

UCPC

#it MuT UCT MuC1 MuC2 SelC1 SelC2
## 1 -8.637359 -0.1475092 0.5 0.5 0.524217 0.475783

3 UCPC to evaluate the interest of a set of two-way crosses

In optimal cross selection, we evaluate a set. of crosses as a whole instead of independent single crosses.

# Sample of a set of twenty two-way crosses
SampledP1 <- sample(1:nrow(geno),20, replace = TRUE)
SampledP2 <- sample(setdiff(1:nrow(geno),SampledP1),20, replace = TRUE)
# Create a cross object: with parents and within cross percentage of selected progeny
Crosses = data.frame(PARENT1 = SampledP1,
PARENT2 = SampledP2,
PSelect = 0.05,
stringsAsFactors = FALSE)

3.1 Compute the UCPC for several two-way crosses

The following function implements the UCPC previously defined for a single cross in a loop for several crosses.

Function arguments:

o ObjectCrosses: Data.frame of crosses with columns: PARENT1, PARENT2 and PSelect giving
respectively the first and second parent of the cross and the within family selected fraction of progeny

e ObjectBetaT: Column vector of trait performance marker effects 3

¢ ObjectGeno: Genotype of all candidate parents in lines and markers in column (coded in -1/1)

o ObjectMap: Data.frame of the genetic map with columns: CHROMOSOME, POSITION and MARKER

Value:

e Returns a data.frame giving for every cross: the progeny mean performance before selection (ur),

the usefulness criterion for the performance trait 7 (U C'¥ )), the expected Py and P, contributions to
progeny before selection (¢1, ¢2) and the expected P; and P, contributions to the selected fraction of

Progeny ((‘](li)-. (ST))

GetSetUCPC = function(ObjectCrosses, ObjectBetaT, ObjectGeno, ObjectMap){

return(do.call(rbind,lapply(1:nrow(ObjectCrosses), function(nCross){

# Parents and within cross selection parameters

P1 <- ObjectCrosses$PARENT1 [nCross]

P2 <- ObjectCrosses$PARENT2 [nCross]

pSel <- ObjectCrosses$PSelect [nCross]

# Genotype of parents

xP1 <- ObjectGeno[P1,]

xP2 <- ObjectGeno[P2,]

# Get Sigma matriz

Sigma <- GenCovProgeny(ObjectGenoP1 = xP1,
ObjectGenoP2 = xP2,
ObjectMap = ObjectMap)

# Construct C1 effects

BetaCl <- GetBetaC1l(ObjectGenoP1 = xP1,
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ObjectGenoP2 = xP2)
# Get ante-selection means and co-variances
MuT <- 0.5*(xP1%*70bjectBetaT+xP2/*/0bjectBetaT)
VarT <- VarCovProgeny(ObjectBetal = ObjectBetaT,
ObjectBeta2 = ObjectBetaT,
ObjectSigma = Sigma)
MuC1l <- 0.5%(xP1%#*7BetaCl + xP2/*/BetaCl + 1)
CovTC1 <- VarCovProgeny(ObjectBetal = ObjectBetaT,
ObjectBeta2 = BetaCl,
ObjectSigma = Sigma)
# Get the UCPC considering within family selection
UCPC <- GetUCPC(ObjectMuT = MuT, ObjectVarT = VarT,
ObjectMuCl = MuCl, ObjectCovICl = CovTC1,
ObjectpSel = pSel)

return(cbind(data.frame(Cross = pasteO(P1,"x",P2),

PARENT1 = P1,
PARENT2 = P2,
PSel = pSel,

stringsAsFactors = FALSE),
UCPC))
bH»
3

SetUCPC <- GetSetUCPC(ObjectCrosses = Crosses, ObjectGeno = geno,
ObjectBetaT = BetaT, ObjectMap = map)
SetUCPC[1:5,-c(2,3)]

## Cross PSel MuT UCT MuC1 MuC2 SelC1 SelC2
## 1 20x315 0.05 -9.797972 -1.656583 0.5 0.5 0.5473419 0.4526581
## 2 702x1227 0.05 1.580834 10.411533 5 0.4579492 0.5420508
## 3 822x367 0.05 -6.345915 2.739877 5 0.4696598 0.5303402
## 4 186x182 0.05 -4.039036 2.027207 5 0.5029892 0.4970108
## 5 626x913 0.05 2.735078 14.270303 5 0.4924262 0.5075738

O O O o
a0,

0.
0.
0.
0.

3.2 Evaluate a set of crosses for expected genetic gain and genetic diversity
To evaluate this set of crosses we need to compute the gain term V() (nc) and diversity constraint term
D@ (nc) depending on the within family selection intensity i.
The IBS coancestry among candidate parents is defined using the following function.
Function arguments:

e ObjectGeno: Genotype of all candidate parents in lines and markers in column (coded in -1/1)
Value:

o Returns a matrix of IBS coancestry among candidate parents.

GetIBS = function(ObjectGeno){
0.5* (tcrossprod(ObjectGeno) /ncol (ObjectGeno)+1)
}

Then, the following function is used to evaluate the set of crosses either accounting (UCPC) or not (OCS) for
within family selection.
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Function arguments:

e ObjectUCPC: UCPC data.frame obtained previously for the set of crosses
o ObjectGeno: Genotype of all candidate parents in lines and markers in column (coded in -1/1)

Value:

« Returns a data.frame with the number of crosses in the set (“nCROSS”), the number of unique parents
(“nUniqParents”), V(=% (nc) and D= (nc) not accounting for within family selection (“OCS_ Vnc”
and “OCS_Dnc”), V() (nc) and D) (nc) accounting for within family selection (“UCPC_Vnc” and
“UCPC_Dnc”).

EvaluateSetUCPC = function(ObjectUCPC, ObjectGeno){

# Incidence matrices Z1 and Z2

UniqueParents <- unique(c(0ObjectUCPC$PARENT1,0bjectUCPC$PARENT2))

Z1 <- matrix(0,ncol=nrow(0bjectUCPC) ,nrow=1length(UniqueParents))

Z2 <- matrix(0,ncol=nrow(0bjectUCPC) ,nrow=1length(UniqueParents))

invisible (lapply(1:length(UniqueParents), function(x){
Z1[x,0bjectUCPC$PARENT1==UniqueParents[x]] <<-1
Z2[x,0bjectUCPC$PARENT2==UniqueParents[x]] <<-1

)

# Compute IBS matriz

K <- GetIBS(ObjectGeno = ObjectGeno[UniqueParents,])

# UCPC based 0CS: D(nc) and V(nc) terms accounting for within family selection

cl <- matrix(ObjectUCPC$SelC1l, ncol=1)

c2 <- matrix(0ObjectUCPC$SelC2, ncol=1)

c <= (Z1%*%c1+Z2*7,c2) /nrow (0bjectUCPC)

UCPC_Dnc <- 1-crossprod(c,K/*%c)

UCPC_Vnc <- mean(0ObjectUCPC$UCT)

# classical 0CS: D(nc) and V(nc) terms not accounting for within family selection

cl <- matrix(ObjectUCPC$MuCl, ncol=1)

c2 <- matrix(0ObjectUCPC$MuC2, ncol=1)

c <= (Z1%*%c1+22}*%c2) /nrow(0bjectUCPC)

0CS_Dnc <- 1-crossprod(c,K/*%c)

0CS_Vnc <- mean(0ObjectUCPC$MuT)

return(data.frame (nCROSS = nrow(0ObjectUCPC),
nUniqParents = length(UniqueParents),
0CS_Vnc = 0CS_Vnc,
0CS_Dnc = 0CS_Dnc,
UCPC_Vnc = UCPC_Vnc,
UCPC_Dnc = UCPC_Dnc,
stringsAsFactors = FALSE))

}

SetEval <- EvaluateSetUCPC(0ObjectUCPC = SetUCPC, ObjectGeno = geno)
SetEval

## nCROSS nUniqParents 0CS_Vnc  0CS_Dnc UCPC_Vnc UCPC_Dnc
## 1 20 40 -0.8399918 0.3373086 8.155683 0.3367695
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Supplementary figures
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Figure S1 Evolution of the additive genetic variance intra- and inter-family components in the breeding
population. Scenarios considering presence or absence of bridging before introduction and different
type of donors (panel, twenty-year old and five-year old donors). (A) Inter-family additive variance and

(B) intra-family additive variance.
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Figure S2 Evolution of the breeding population over generations. Scenarios considering presence of
bridging with different type of donors (panel, twenty-year old and five-year old donors) and two
weightings for the optimal cross selection in bridging (default is & = 0.7). (A) Mean breeding
population performance (u), (B) mean performance of the ten best progeny (i) and (C) frequency of
the favorable alleles that were rare at the end of burn-in (i.e. p(0) < 0.05 corresponding on average
to 269.9 +/- 23.6 QTLs).
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b
@
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% of introduction crosses
contribute to commercial gain
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Scenarios Scenarios

Figure S3 Summary statistics on the introduction crosses. Scenarios considering bridging, different
donors (panel, twenty-year old and five-year old donors) and either a single training set (Single TS) or
two distinct training sets for bridging and breeding (default). (A) Number of introduction crosses (DEXE)
per year and (B) the fraction of the introduction crosses (DEXE) that contributed at least in one of the
ten best progeny released by the internal breeding program. The distribution over the sixty
generations is given after averaging over the ten replicates.
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Figure S4 Effect of TS composition on intra-family prediction accuracies (cor(u, 1)) considering
genotypes simulated at generations 8, 9, 10 (A, B) or 38, 39, 40 (C, D) in the scenario Bridging_20y. (A,
C) Mean prediction accuracy within 50 elite (ExE) families and (B, D) mean prediction accuracy within
50 introduction (DExE) families. Boxplots represent the results for 20 independent replicates. One can
distinguish three training set types (left to right): Full training set considering all 3,600 E progeny (Pure
E), all 1,200 DE progeny (Pure DE) and all 3,600 E + 1,200 DE progeny; Training sets at constant size of
1,200 DH for comparison with Pure DE; Training sets at constant size of 3,600 DH and variable
proportion of DE progeny for comparison with Pure E. The red dotted line represents the median value

for Pure ETS.
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Résumé :

Une sélection efficace et durable repose sur un compromis entre
efforts a court terme afin de proposer aux agriculteurs des variétés
compétitives, et le maintien d’une base génétique large garantissant
des variétés futures qui répondront aux défis climatiques, biologiques
et sociétaux de demain. Les avancées du génotypage haut débit ont
ouvert de nouvelles perspectives de sélection pour les caracteres
quantitatifs telles que la prédiction génomique de performances
individuelles, de I'intérét de plans de croisements, ainsi que la gestion
de la diversité. L'objectif de cette thése est de contribuer au
développement de méthodologies et schémas de sélection efficaces
et durables. Cela inclue I'évaluation de la diversité génétique des
populations élites, sa conversion efficace en gain génétique a court et
long termes, ainsi que lidentification de sources de variabilité
génétique d’intérét et leurs introductions dans les populations de
sélection.

Nous avons tout d’abord proposé d’exploiter des séries temporelles
de phénotypes et génotypes afin d’évaluer I'effet de la sélection sur
la diversité génétique des populations élites ainsi que leur réponse
attendue a la sélection. Ces indicateurs ont été appliqués a un
programme privé de sélection mais grain et des stratégies de gestion
et amélioration de la réponse a la sélection ont été discutées.

La sélection du plan de croisement qui génere des descendants
performants et suffisamment de diversité est un facteur clef du
succes a court et long termes des programmes de sélection. Le
modele prédictif de la distribution d’un caractére quantitatif dans une
famille biparentale a été étendu au cas des familles multi-parentales.
Une approche multi-caractéres a été proposée, considérant les
performances agronomiques et les contributions parentales comme
des caracteres corrélés et normalement distribués.

Cette approche dénommée critére d’utilité et contributions parentales
(UCPC) permet de prédire la performance moyenne et la diversité
attendues dans la fraction sélectionnée de la descendance d’un
croisement. L'UCPC peut étre utilisé afin d’étendre la sélection optimale de
plan de croisements (OCS) qui a pour but de maximiser le gain génétique
tout en limitant la perte de diversité. Nous avons montré par simulation
que I'OCS basée sur I'UCPC converti plus efficacement la diversité
génétique en gain a court et long termes que I’OCS.

La base génétique étroite des populations élites compromet le gain
génétique a long terme. De ce fait, une stratégie d’élargissement de leur
base génétique sans compromettre le gain a court terme est nécessaire. De
nombreuses sources de diversité peuvent étre considérées mais toutes ne
peuvent étre évaluées. Différents criteres prédictifs ont été passés en revue
et comparés afin d’évaluer I'utilité de ressources génétiques pour enrichir
un pool élite. Ces critéres s’appuient sur les effets aux marqueurs estimés
dans un panel collaboratif constitué de lignées de diversité publiques et de
lignées élites privées. L'UCPC permet de méme [lidentification du
croisement multi-parental optimal entre ressources génétiques et lignées
élites en fonction des caractéristiques d’originalité et de performance des
ressources génétiques. Finalement, nous avons proposé d’utiliser
I'approche OCS basée sur I'UCPC afin d’améliorer des ressources
génétiques, puis de connecter les ressources génétiques améliorées au
matériel élite avant de les introduire dans la population en sélection. Par
simulations, nous avons montré l'intérét de réaliser des introductions
récurrentes de ressources génétiques préalablement améliorées afin de
maximiser le gain génétique tout en maintenant la diversité constante.

Ces travaux ouvrent de nouvelles perspectives pour la gestion de la
diversité génétique.

Tile: Contributions to Genetic Diversity Management in Maize Breeding Programs using Genomic Selection
Keywords: Maize, Genetic Diversity, Genomic Prediction, Optimal Cross Selection, Usefulness Criterion, Genetic Base Broadening

Abstract :

There is an increasing awareness that crop breeding programs
should move from short- to long-term objectives by maintaining
genetic diversity to cope with future challenges in a context of
climatic changes. The advent of high density genotyping opened new
avenues for breeding quantitative traits including genomic prediction
of individual performances, of parental crosses usefulness, and
genetic diversity management. This thesis aims at developing
methodologies to further enhance the efficiency and sustainability of
breeding programs. This involves the evaluation of genetic diversity
in elite breeding pools, its efficient conversion into short- and long-
term genetic gain and the efficient identification, improvement and
introduction of extrinsic variability into breeding pools.

We first investigated how temporal phenotypic and genotypic data
can be used to develop indicators of the genetic diversity and the
potential response to selection of a breeding population. We applied
these indicators on a commercial hybrid grain maize program and
discussed strategies to manage and unlock potential response to
selection in breeding populations.

Selection of parental crosses that generate superior progeny while
maintaining sufficient diversity is a key success factor of short- and
long-term breeding. We extended analytical solutions to predict the
distribution of a quantitative trait in the progeny of biparental crosses
to the case of multiparental crosses. We also proposed to consider a
multitrait approach where agronomic trait and parental genome
contributions are considered as correlated normally distributed
traits.

This approach, called Usefulness Criterion Parental Contribution (UCPC),
enables to predict the expected mean performance and diversity in the
most performing fraction of progeny. We used UCPC to extend the Optimal
Cross Selection (OCS) method, which aims at maximizing the performance
in progeny while maintaining diversity for long-term genetic gain. In a long-
term simulated recurrent genomic selection breeding program, UCPC
based OCS proved to be more efficient than OCS to convert the genetic
diversity into short- and long-term genetic gains.

The narrow genetic base of an elite population might compromise its
long-term genetic gain in unpredictable environmental conditions. An
efficient strategy to broaden the genetic base of commercial breeding
programs is therefore required. Many genetic resources are accessible to
breeders but cannot all be considered. We reviewed, proposed and
compared different predictive criteria for selecting genetic resources that
best complement elite recipients, based on genomewide marker effects
estimated on a collaborative diversity panel. We also investigated which
mating design should be implemented between a promising genetic
resource and elite recipient(s) depending on its phenotypic and genetic
distance to elites. Finally, we evaluated the interest of UCPC based OCS to
improve genetic resources (pre-breeding), to bridge pre-breeding and
breeding (bridging), and to manage recurrent introductions into the
breeding population. In a long-term simulated commercial breeding
program, we demonstrated that recurrent introductions from a pre-
breeding population maximize long-term genetic gain while maintaining
genetic diversity constant, with only limited short-term penalty.

The results of this thesis open new perspectives to manage genetic
diversity in breeding.
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