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Résumé (Français) 

 

Une sélection efficace et durable repose sur un compromis entre efforts à court terme afin de 

proposer aux agriculteurs des variétés compétitives, et le maintien d’une base génétique large 

garantissant des variétés futures qui répondront aux défis climatiques, biologiques et sociétaux de 

demain. Les avancées du génotypage haut débit ont ouvert de nouvelles perspectives de sélection 

pour les caractères quantitatifs, telles que la prédiction génomique de performances individuelles, la 

prédiction de l’intérêt de plans de croisements, ainsi que la gestion de la diversité. L’objectif de cette 

thèse est de contribuer au développement de méthodologies et schémas de sélection efficaces et 

durables. Cela inclue l’évaluation de la diversité génétique des populations élites, sa conversion 

efficace en gain génétique à court et long termes, ainsi que l’identification de sources de variabilité 

génétique d’intérêt et leur introduction dans les populations de sélection. 

Nous proposons tout d’abord d’exploiter des séries temporelles de données phénotypiques et 

génotypiques afin d’évaluer l’effet de la sélection sur la diversité génétique des populations élites ainsi 

que leur réponse attendue à la sélection. En Chapitre 1, nous proposons trois séries d’indicateurs : 

phénotypique, génotypique et génomique. Le fondement théorique de ces indicateurs est tout d’abord 

présenté. Ils sont ensuite appliqués à un programme de sélection maïs grain portant sur les groupes 

hétérotiques cornés et dentés. Un gain génétique significatif est observé sur dix ans dans les 

populations ‘’cornée‘’ et ‘’dentée‘’ en sélection et est accompagné d’une perte de variance génétique 

additive en absence d’introductions de matériel externe dans la population ‘’denté‘’. Une perte 

significative de diversité génétique ainsi que des régions à très faible diversité dans les régions péri-

centromériques sont aussi observées dans ce groupe. Enfin, il est estimé que la répulsion entre locus 

causaux capture 24% de la variance génique additive totale chez les dentés, soit 4,9% de la réponse 

potentielle maximale à la sélection. Cette proportion varie entre chromosomes ce qui permet de 

suggérer différentes stratégies de gestion et d’amélioration de la réponse à la sélection selon les 

chromosomes. Ces indicateurs sont faciles à implémenter et permettent d’exploiter, à moindre coût, 

les données phénotypiques et génotypiques stockées dans des bases de données sur plusieurs 

générations de sélection afin d’aider les sélectionneurs dans leurs décisions stratégiques. 
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Par la suite, nous nous sommes intéressés à la gestion de la diversité génétique afin d’optimiser 

sa conversion en gain génétique à court terme sans compromettre le gain génétique à long terme. La 

sélection du plan de croisement qui génère des descendants performants et maintient suffisamment 

de diversité est un facteur clef du succès à court et long termes des programmes de sélection 

récurrente. L’identification du croisement maximisant la probabilité de sélectionner une descendance 

meilleure que les parents de départ repose sur la prédiction de la distribution d’un caractère 

quantitatif dans la descendance du croisement. Cette approche est communément appelée critère 

d’utilité et prend en compte la complémentarité entre parents, i.e. la ségrégation mendélienne dans 

la descendance, pour le caractère quantitatif considéré. En Chapitre 3, le modèle prédictif de la 

distribution d’un caractère quantitatif dans une famille biparentale est étendu au cas des familles 

multi-parentales. Une approche multi-caractères est ensuite proposée, considérant les performances 

agronomiques et les contributions parentales comme des caractères quantitatifs corrélés et 

normalement distribués. Cette approche dénommée critère d’utilité et contributions parentales 

(UCPC) permet de prédire la performance moyenne et la diversité attendues dans la fraction 

sélectionnée de la descendance d’un croisement. L’UCPC peut être utilisé afin d’étendre la sélection 

optimale de plan de croisements (OCS) qui a pour but de maximiser le gain génétique tout en limitant 

la perte de diversité. En Chapitre 4, nous comparons différents plans de croisements par simulation. Il 

est tout d’abord observé qu’une sélection des croisements basée sur le critère d’utilité maximise le 

gain à court et long termes comparativement à une sélection basée sur la moyenne des performances 

parentales sans prise en compte de la ségrégation attendue de leur descendance. Ensuite, nous 

montrons que les approches de croisement optimales (OCS) sont plus performantes à long terme mais 

au prix d’une pénalité à court terme comparativement au critère d’utilité. Finalement, l’OCS basée sur 

l’UCPC convertit plus efficacement la diversité génétique en gain à court et long termes que l’OCS. 

Ainsi, la sélection de croisement optimale basée sur l’UCPC aide les sélectionneurs dans leur choix de 

plan de croisements pour satisfaire leurs objectifs à court et long termes.  

Une base génétique étroite des populations élites compromet le gain génétique à long terme. 

De ce fait, une stratégie d’élargissement de leur base génétique sans compromettre le gain à court 

terme est nécessaire. De nombreuses sources de diversité peuvent être considérées mais toutes ne 

peuvent être évaluées. En Chapitre 2, différents critères prédictifs sont passés en revue et comparés 

afin d’évaluer l’utilité de ressources génétiques pour enrichir un pool élite. Ces critères évaluent la 

complémentarité entre ressources génétiques et lignée élite receveuse afin d’assurer l’apport de 

nouveaux allèles ou haplotypes favorables absents de la population élite. Les critères proposés 

s’appuient sur les effets aux marqueurs estimés dans un panel collaboratif constitué de lignées de 

diversité publiques et de lignées élites privées (panel denté issu du projet « Amaizing »). La qualité 
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prédictive obtenue par validation croisée sur le panel collaboratif ainsi que la qualité prédictive non 

nulle obtenue sur une large population élite montre l’intérêt d’utiliser ces effets à des fins 

d’identification de ressources génétiques pour l’élargissement de la base génétique élite. Enfin, dans 

le Chapitre 5, nous proposons d’utiliser l’OCS basée sur l’UCPC afin d’identifier le croisement optimal 

entre ressources génétiques et lignées élites en fonction des caractéristiques d’originalité et de 

performance des ressources génétiques. Nous proposons d’améliorer les ressources génétiques (pre-

breeding), puis de connecter les ressources génétiques améliorées au matériel élite (bridging) avant 

de les introduire dans la population en sélection. Par simulations, nous montrons l’intérêt de réaliser 

des introductions récurrentes de ressources génétiques préalablement améliorées afin de maximiser 

le gain génétique tout en maintenant la diversité constante dans la population élite. De même, nous 

montrons l’importance de la composition de la population utilisée pour calibrer le modèle de sélection 

génomique utilisé lors de l’introduction des ressources génétique dans la population élite. Nous 

préconisons de considérer une population de référence constituée de lignées élites et de la 

descendance de croisement entre lignées élites et lignées issues de ressources génétiques. Ce dernier 

chapitre fournit des recommandations quant à l’exploitation de la variabilité polygénique présente 

dans les ressources génétiques afin d’enrichir la base génétique d’une population élite. 

L’ensemble de ces travaux ainsi que les récentes études cités au long de ce manuscrit ouvrent 

de nouvelles perspectives pour la gestion de la diversité génétique au sein de programmes de sélection 

compétitifs et durables. 
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Crop adaptation to human needs, i.e. crop improvement, is as ancient as agriculture itself (app. 10,000 

years ago, Doebley et al. 2006). Crop improvement, like natural evolution, occurs through the selection 

operating on the genetic variability of plant populations (Lush 1937; Simmonds 1962). Both, natural 

evolution and early agricultural practices have left their signatures and shaped the genetic diversity of 

modern crops. Human selection initially carried out by farmers has been recently, for main crops and 

industrialized countries, optimized and structured into variety improvement by breeders and 

production by farmers (e.g. first French “seed dealers” in the mid-17th century). In this context, 

different levels of diversity can be distinguished for each crop: (i) the overall crop diversity stored in ex 

situ collections, (ii) the diversity of modern crop breeding populations (i.e. intra-breeding program) 

and (iii) the diversity of cultivated varieties delivered by breeders to farmers (Figure 1). At farmers’ 

level, the diversity of varieties and crops contribute to the agroecosystem resilience to biotic and 

abiotic perturbations (Vandermeer et al. 1998; Malézieux et al. 2009). Thus, the management of 

genetic diversity at each level is of critical importance in a context of climate change characterized by 

an increased frequency of unpredictable extreme temperatures, drought, pests and plant pathogen 

outbreaks (McCouch et al. 2013). In the following, this dissertation will focus mostly on the second 

level of diversity, i.e. diversity within breeding populations that determinates the diversity available to 

breeders to develop new varieties (Figure 1). 

 

Figure 1 Diagram illustrating the three hierarchical levels of crop diversity for major crops in 

industrialized countries. This thesis focused on the diversity within breeding populations (Level 2). 

Importance of genetic diversity for crop improvement 

Domestication and improvement shaped crop genetic diversity 

During their evolutionary history, crops have experienced different genetic bottlenecks through 

selection and drift during domestication and migrations (Spillane and Gepts 2001). Such events explain 

the reduction of current genetic diversity in main crops compared to the wild relatives and traditional 

varieties referred to as landraces (Ladizinsky 1985; Doebley et al. 2006). Artificial selection by farmers 

and modern plant breeders yielded major improvement in most crops to sustain humanity 

development but also reduced the genetic variability (Simmonds 1962; Cooper et al. 2001; Fu 2006, 

2015). For instance, cultivated barley (Brown and Clegg 1983; Petersen et al. 1994), soybean (Doyle 

1988; Hyten et al. 2006; Han et al. 2016), chickpea (Cooper et al. 2001), peanut (Fonceka et al. 2012) 

and wheat (Charmet 2011) show a narrow genetic base because of bottlenecks at domestication and 

migration. Other crops such as maize present a narrow genetic base arising from bottlenecks during 

modern breeding but contain a much larger available diversity in older germplasm (Tallury and 

Goodman 2001). 
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The loss of genetic variability in closed and finite selected populations is due to genetic drift induced 

by selection of a limited number of individuals. Also, directional selection for some agronomic traits 

(e.g. yield, quality, diseases tolerance) favors a favorable allele, respectively disfavors an unfavorable 

allele, at quantitative trait loci (QTLs) underlying the selected traits. As a result of selection, the allele 

frequency shifts in one direction yielding a reduction of deoxyribonucleic acid (DNA) sequence diversity 

at the QTLs and neighboring regions by linkage drag (Maynard-Smith and Haigh 1974). Alternatively, a 

balancing-stabilizing selection (e.g. selection for an optimal precocity), maintains multiple alleles in the 

breeding population and elevates sequence diversity at the QTLs and surrounding regions. 

In practice, the impact of selection on crop genetic diversity at the farmers’ level, also referred to as 

diversity erosion (Wouw et al. 2010), is difficult to observe. For instance, Fu (2006) reviewed 23 studies 

released from 2000 to 2005 evaluating the impact of modern plant improvement on genetic diversity 

of agricultural crops, such as maize (Duvick et al. 2004; Clerc et al. 2005; Reif et al. 2005b), wheat (Reif 

et al. 2005a; Roussel et al. 2005; Fu et al. 2006), barley (Koebner et al. 2003) and oat (Fu et al. 2004). 

This review revealed different impacts of modern crop improvement on elite germplasm. In general, 

the genomewide reduction of crop genetic diversity over time was minor, but allelic reduction at 

individual chromosomal segments was substantial. Only few studies focused on the impact of long-

term selection on genetic diversity at the level of a given breeding program (e.g. in maize, Labate et al. 

1999; Feng et al. 2006; Fischer et al. 2008; Van Inghelandt et al. 2010; Gerke et al. 2015, in soybean 

Bruce et al. 2019). The authors observed either significant reductions of genetic diversity or complex 

changes in genetic diversity due to large open breeding systems, i.e. with introductions of new extrinsic 

allelic variation (Feng et al. 2006; Bruce et al. 2019). Since every breeding population is subject to 

different breeding strategies, additional studies of the evolution of genetic diversity within commercial 

breeding programs and consequences on genetic improvement are required to drive an empirical 

consensus on good breeding practices. 

Genetic diversity a cornerstone for crop improvement 

The relationship between the additive genetic variation and the expected response to selection is 

known as the “breeder’s equation” (Lush 1937). Assuming an infinite breeding population and a 

normally distributed targeted trait, the expected change in mean performance (Δ𝜇) per generation is 

proportional to the selection intensity (𝑖), the selection accuracy (ℎ) and the population additive 

genetic standard deviation of the targeted trait (𝜎𝐴): 

Δ𝜇 = 𝑖ℎ𝜎𝐴, (Eq. 1) 

where the selection accuracy (ℎ) is defined as the correlation between the value used for selection and 

the additive genetic value for the targeted trait. Equation 1 states that in absence of mutation and 

epistasis, the total response to selection is limited by the initial standing additive variation (σA
2 , the 

variance of additive genetic values which corresponds to the sum of the additive diversity at causal loci 

and the additive covariances between causal loci, Bulmer 1971; Lynch and Walsh 1998; Gianola et al. 

2009). Larger initial σA
2  in the breeding population yields higher expected response to selection per 

generation. 

Two parameters are commonly used to characterize the level of diversity in selected populations. The 

first one is the effective population size (𝑁𝑒, Fischer 1930; Wright 1931), which refers to the number 

of breeding individuals in an idealized panmictic population with absence of selection that would show 

the same amount of genetic diversity as the population at hand. The second one is the expected 
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heterozygosity in the idealized population (He, Nei 1973). For biallelic loci, the expected heterozygosity 

in a panmictic population and no selection is 𝐻𝑒 =
1

𝑚
∑ 2𝑝𝑗(1 − 𝑝𝑗)
𝑚
𝑗=1 , with 𝑝𝑗  the frequency of the 

reference allele at locus 𝑗 ∈ ⟦1,𝑚⟧. The effective population size (𝑁𝑒) can be estimated from changes 

in frequency of heterozygotes in the panmictic population assuming only drift: 𝐻𝑒𝑡+1 = 𝐻𝑒𝑡 (1 −

1/2𝑁𝑒) (Falconer and Mackay 1996). Thus, both expected heterozygosity (He) and effective 

population size (𝑁𝑒) are related concepts. 

 

In a long-term perspective, large and diverse populations show a greater efficiency of selection (Fischer 

1930, p. 102; Weber and Diggins 1990). The effect of 𝑁𝑒 on potential maximal response to selection is 

well known in quantitative genetic literature (Robertson 1960). Under the assumptions of an 

infinitesimal model (Fisher 1918), i.e. many locus of small effects underlying the trait, absence of 

mutation, a selection intensity 𝑖, an accuracy ℎ, a population with effective size 𝑁𝑒 and additive genetic 

standard deviation 𝜎𝐴, the maximum potential response in long-term is: 

2𝑁𝑒 𝑖ℎ𝜎𝐴. (Eq. 2) 

The maximum potential response to selection reduces to 2𝑁𝑒Δ𝜇 with Δ𝜇 being the expected response 

to selection in the first generation as defined in Eq. 1. Thus, a first advantage of a larger effective 

population size is to reduce the loss of initial genetic variance by genetic drift resulting in an increased 

selection limit. A second advantage is the greater accumulation of genetic variation by recombination 

events and mutations. Hill (1982a; b) derived that if new mutations are steadily accumulated and 

generate an additional variance 𝜎𝑀
2  per generation, then 2𝑁𝑒 𝑖 𝜎𝑀

2 /𝜎𝑃 is the eventual additional 

response rate per generation, with 𝜎𝑃 being the phenotypic standard deviation. More recently, Barton 

extended this work including epistasis (2017).  

While the expected response to selection is proportional to the selection intensity 𝑖 (Eq.1, 2), the 

effective population size 𝑁𝑒 is inversely proportional to the square of the selection intensity 𝑖2 

(Robertson 1961; Wray and Thompson 1990; Sanchez et al. 2006; Woolliams et al. 2015). 

Consequently, maximizing the selection intensity to maximize the short-term response to selection will 

inevitably reduce the effective population size and long-term response to selection (Eq. 2). This 

highlights the inherent dilemma between the genetic diversity and the genetic gain and opens the 

scope for optimization. 

 

As expressed in Lush (1937) and Robertson (1960), a reduced genetic diversity in breeding populations 

might induce yield plateau or substantially increase breeding efforts and investments to keep constant 

rates of genetic gain. A reduced genetic diversity in breeding populations might also induce a reduced 

diversity in fields limiting the ability to overcome biotic and abiotic stresses, or even yielding crop 

failure in a changing environment (McCouch et al. 2013). One of the disastrous evidence is the Irish 

potato famine in the 1840s, caused by the homogenous sensitivity of cultivated varieties to late blight. 

More recently, the southern leaf blight epidemic in the US maize crop in 1969-1970 induced 15% losses 

caused by the use of the same cytoplasmic DNA male sterility in developed maize varieties which were 

uniformly susceptible to a race of the fungus (Ullstrup 1972; Bruns 2017). Consequently, there is a 

continuing need to balance improvement and diversity in crop breeding through an optimized 

management of intrinsic (i.e. internal to the breeding population) genetic variability and enrichment 

in new variability from different extrinsic (i.e. external to the breeding population) genetic resources 
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to increase breeding ceiling and reduce the genetic susceptibility to rising and yet unknown biotic and 

abiotic stresses. 

Managing and broadening the genetic base of breeding programs 

It is generally recognized in species suffering strong inbreeding depression and where the breeding 

population is also the production population (e.g. animal breeding) that one cannot simply select and 

mate the best individuals without also taking into account the degree of relatedness among them to 

limit consanguinity and the impact of deleterious alleles causing inbreeding depression. The 

identification of the mating plan that maximizes the genetic merit in the next generation while 

constraining the average relationship between parents involves the optimization of parental 

contributions, i.e. the fraction of genes contributed by a parent to the future generation, a concept 

well known in animal genetics (James and McBride 1958; Woolliams et al. 2015). Parental 

contributions have simple relationships with key parameters of population genetics. While the genetic 

gain is proportional to the product of individuals’ contributions and deviations from population mean 

(Woolliams and Thompson 1994; Woolliams et al. 1999), the rate of inbreeding, i.e. loss of diversity, is 

inversely proportional to the square of individuals’ contributions (Robertson 1961; Wray and 

Thompson 1990; Sanchez et al. 2006; Woolliams et al. 2015). Based on this theory, a mating strategy 

called optimal contribution selection has been investigated for decades in animal breeding (e.g. Wray 

and Goddard 1994; Meuwissen 1997; Kinghorn 2011), in tree breeding (e.g. Kerr et al. 1998; Hallander 

and Waldmann 2009a; b) and has been increasingly adopted in crop breeding (e.g. Akdemir and 

Sánchez 2016; De Beukelaer et al. 2017; Gorjanc et al. 2018; Akdemir et al. 2018). 

There are several reasons that might explain why such considerations have been firstly developed in 

animal breeding and only recently adopted in crop breeding. One reason may be that major crops are 

inbred species (e.g. wheat, barley) and suffer little inbreeding depression or pass by a hybrid stage (e.g. 

maize) allowing to complement recessive sub lethal alleles. Complementarily, since most crop 

breeders have the possibility to broaden the genetic base of their population using different extrinsic 

genetic resources publically available (e.g. current and old varieties) and conserved worldwide in 

international gene banks and national collections (e.g. wild relatives, exotic germplasm accessions and 

landraces, Hammer et al. 2003; Commission on Genetic Resources for Food 2010), they might have 

underestimated the importance of intrinsic diversity management. The recent increased interest of 

crop breeders for intrinsic genetic diversity management might be explained by the fact that the more 

breeding germplasm is improved, the more expensive and time consuming becomes the introduction 

of extrinsic diversity. 

 

Crop genetic resources are defined as “genetic material of actual or potential value” by the Convention 

on Biological Diversity (https://www.cbd.int/) and provide the basis to improve productivity, resilience 

and nutritional quality of crops (Wang et al. 2017). Although plant breeders recognize the importance 

of genetic resources for elite genetic base broadening, only little use has been made of it (Glaszmann 

et al. 2010; Wang et al. 2017). The main reason is that breeding progress continues to be made in most 

crops (e.g. in maize grain yield, Duvick 2005, in wheat, Tadesse et al. 2019) and that breeders are 

reluctant to compromise elite germplasm with unadapted and unimproved genetic resources 

(Kannenberg and Falk 1995). Consequently, there is a need for a breeding system that can efficiently 

broaden the genetic base of elite germplasm while not compromising the performance of released 

varieties. Such a system first involves the description and the understanding of the genetic diversity 

https://www.cbd.int/
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present in collections and the definition of core sets of genetic resources representing the global 

diversity (Frankel 1984; Brown 1989). Genetic resources are characterized for adaptation traits in few 

locations (e.g. flowering day length, earliness, stress resistance …). Adapted genetic resources should 

be further extensively evaluated for agronomic traits (e.g. grain yield, quality …) and their genotype by 

environment interactions (GxE) before being identified as interesting for breeding purpose. The 

identification can be based on phenotypic evaluation of potential donors, progeny of the cross donor 

x elite material or considering molecular information (e.g. Bernardo 2014; Crossa et al. 2016; Yu et al. 

2016). In the case of traits determined by few genes of large effect, the favorable alleles can be 

identified and introgressed into elite germplasm (Figure 2) following well established marker-assisted 

backcross procedures (e.g. Charmet et al. 1999; Servin et al. 2004; Bernardo 2016; Han et al. 2017). 

Introgressions have been successful for mono- or oligogenic traits (e.g. earliness loci in maize, 

Simmonds 1979; Smith and Beavis 1996, SUB1 gene in rice, Bailey-Serres et al. 2010). Introgressions 

also proved to be successful for more polygenic traits where few major causal regions have been 

identified. For instance, Ribaut and Ragot (2006) successfully introgressed five regions associated with 

maize flowering time and yield components under drought conditions. For complex traits controlled 

by numerous genes with small effect introgression procedures were mostly unsuccessful to broaden 

the genetic base of breeding populations (Simmonds 1993). Simmonds (1993) proposed a general 

scheme for genetic base broadening that consists in the incorporation of extrinsic polygenic variation 

in the breeding population. Simmonds distinguished three hierarchical steps starting from a broad 

population of genetic resources to the locally adapted breeding population. It starts with the pre-

breeding, called base broadening in Simmonds (1993), to improve genetic resources in order to reduce 

the performance gap with the breeding population. Pre-breeding can be defined as the recurrent 

improvement of genetic resources to release donors that can be further introduced into the elite 

breeding population (Figure 2). For Simmonds, the pre-breeding must be kept completely independent 

of the breeding population until it starts to provide performing resources (Simmonds 1993). Best pre-

breeding progeny are further considered for incorporation in a buffer population with some of the 

breeding material. This population bridges the elite breeding genetic base with the pre-breeding 

genetic base and this step is referred to as bridging (Figure 2). For the sake of clarity, bridging aims at 

limiting the negative impact of introductions on short-term varieties’ performance. The best bridging 

individuals are further considered as breeding parents in the routine breeding program (Figure 2). 

Alternatively, one could suggest to skip the bridging if pre-breeding releases material that is directly 

competitive with elite parents (Figure 2). 
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Figure 2 Diagram illustrating the difference between genetic base broadening, i.e. polygenic trait 

enrichment and introgression (adapted from Simmonds 1993). 
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A maize perspective 

In this section, the maize history and modern hybrid breeding that shaped maize genetic diversity are 

presented. The interest of genetic base broadening in the maize context is further discussed and some 

maize genetic base broadening projects are shortly reviewed. 

Maize domestication and adaptation shaped the maize genetic diversity 

Maize production exceeded 1.3 billion tons on about 240 million ha worldwide in 2017, which makes 

maize the first crop before rice in terms of production (nearly a billion tons) (Food and Agriculture 

Organization, FAO 2019). Maize was domesticated once from its wild progenitor teosinte Zea mays 

ssp. parviglumis about 9,000 years ago in the Balsas valley of Mexico (Beadle 1939; Doebley 1990; 

Matsuoka et al. 2002). Maize domestication resulted in original maize landrace varieties further spread 

and adapted by Native Americans in a wide range of environmental conditions: as far as the current 

Canada and southern Chile (Figure 3). For instance, the American Northern Flint landraces were 

adapted to cold temperate regions (Brown and Anderson 1947) and are genetically divergent 

compared to other tropical or subtropical landraces (Doebley et al. 1986). About 200 years ago, 

Southern Dent and American Northern Flint germplasm were hybridized and gave rise to the Corn Belt 

Dent type adapted to the mid United States region (Doebley et al. 1988; Camus-Kulandaivelu et al. 

2006). Due to day-length adaptation bottleneck, most of the tropical maize diversity is not represented 

in Corn Belt Dent (Goodman 1985). 

The first introduction of tropical maize in south Europe is commonly attributed to Columbus in 1493 

(Figure 3). European Northern Flint originated from the second introduction of pre-acclimated sources 

of maize from the eastern coast of North America in the north of Europe, currently Germany, Belgium 

and Netherlands, during the 16th century (Brandolini 1970; Rebourg et al. 2001, 2003; Dubreuil et al. 

2006; Camus-Kulandaivelu et al. 2006). Further introductions may have occurred in Italy from South 

America (Brazil, Argentina) explaining the high similarity between traditional varieties of these regions 

(Tenaillon and Charcosset 2011). As a consequence of these introductions, European maize diversity 

derives from America and presents only few European specific alleles (Rebourg et al. 2003). Admixture 

events were also observed in Europe between different genetic backgrounds and led to the creation 

of new groups such as the broad European Flints group spanning from north to south Europe 

(Brandenburg et al. 2017). 

As a result of domestication and adaptation to different growing conditions, maize exhibits a strong 

morphological variability among different origins. Maize is cultivated mainly for grain but also for silage 

in a wide range of environments, from temperate to tropical regions. As an allogamous species 

showing substantial inbreeding depression for grain yield (A. R. Hallauer and Miranda 1988, chapter 

9), maize was historically, and is still in some regions (e.g. Bellon et al. 2003), cultivated in 

heterogeneous populations of heterozygous individuals called open-pollinated varieties (OPVs). 
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Figure 3 Maize genetic groups and diffusions pathways inferred from 66 maize landraces (adapted 

from Brandenburg et al. 2017). Points represent the 66 landraces origin and arrows the migration flux. 

Modern maize breeding: hybrid breeding 

Historically the OPVs of maize were the source of material used in temperate maize breeding 

programs. In the early 1900s, Shull (1908) proposed to “clone” the best heterozygote individual in the 

OPV as an hybrid between inbred parents (East 1908; Shull 1909). This revolutionized maize breeding 

and led to the rediscovery of the concept of hybrid vigor (Darwin 1876) further described as heterosis 

(Shull 1914). In the first generations, few OPVs served as source populations to derive inbred lines for 

use as hybrid parents. Due to strong inbreeding depression, the quantity of seeds produced by the first 

derived inbred lines was too small to directly used these lines as parents of commercial hybrids. And 

thus, first hybrids were double cross hybrids resulting from [Inbred1 x Inbred 2] x [Inbred 3 x Inbred 4] 

(Jones 1918). In the 1960s, with the improvement in seed quantity and quality traits, breeders switched 

from double cross hybrids to single cross hybrids resulting directly from Inbred1 x Inbred 2. It rapidly 

and completely replaced mass-selected OPVs in the United States and Europe (Anderson 1944; Troyer 

1999). Hybrid breeding tremendously increased maize productivity (Figure 4). The inbred stage purges 

recessive deleterious alleles and increases the variance among families (Horner et al. 1969; Hallauer 

and Miranda 1988) and thereby increases the selection effectiveness. 
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Breeders defined and maintained distinct heterotic groups that maximized the inter-heterotic group 

hybrid vigor. Heterotic groups have been defined by testing different hybrid combinations. The hybrid 

breeding relies on the improvement of heterotic groups and the identification of the inbred parents 

from distinct heterotic groups that yield outstanding hybrids. Within heterotic groups, inbreds are 

improved in a reciprocal recurrent selection scheme (Russell and Eberhart 1975) designed to enhance 

the combining ability between the two heterotic groups, so that their cross will improve in 

performance over selection cycles. The hybrid performance is modeled as the sum of the general 

combining ability (GCA) of inbred parent from heterotic group 1 and of inbred parent from heterotic 

group 2 and specific combining ability (SCA) that is the effect specific to the hybrid combination. In a 

classical hybrid breeding scheme (Figure 5), within and between heterotic group breeding are distinct 

steps. Within heterotic groups, inbred segregating progeny of parental crosses are selected based on 

their GCA estimated from their evaluation in hybrid combination with one or few different inbreds 

representative of the opposite group (app. 1 to 3) called testers. Such evaluation is referred to as 

testcross evaluation. The best performing inbreds (app. 5%-10% best) are recycled as parents of next 

generation crosses. Additionally, these inbred lines are further evaluated for testcross performance on 

more testers and are further selected. In the second step, the best inbreds of both pools are crossed 

in an incomplete factorial to evaluate SCA and produce desirable commercial hybrids (Bernardo 1994; 

Technow et al. 2012, 2014) (Figure 5). Given that testcross means, i.e. GCAs, behave in a statistically 

additive manner (Hallauer and Miranda 1988), statistical dominance (SCA) is accounted for only in the 

incomplete factorial between both populations for commercial hybrid selection. 

 

In the US by the 1960s, production of high-yielding hybrids in temperate conditions was largely based 

on inbreds from two Corn Belt Dent OPVs: the Reid Yellow Dents and Lancaster sure crops (Smith 

1988). While the founders of these heterotic groups were not initially differentiated, the heterotic 

groups diverged genetically over time to become highly structured and isolated with a decreased 

diversity within groups (Heerwaarden et al. 2012). Today’s North American Dent maize is composed 

of multiple heterotic groups and their nomenclature is complex and depends on the authors (Mikel 

and Dudley 2006). As a rule of thumb, the female, i.e. seed parent, is mainly from Iowa Stiff Stalk 

Synthetics origin (ISSS, that includes lines that were widely used in breeding e.g. B73, B14, B37, A632) 

which is predominantly derived from Reid Yellow Dents and the male, i.e. pollen parent, is mostly from 

the Lancaster sure crops origin (e.g. Oh43, Mo17, C103). More recently, the Iodent (e.g. PH207) used 

as male parent added early flowering time and cool conditions adaptation and contributed to spread 

maize cultivation further north (Goodman 1990). In Europe, hybrids between Corn Belt Dent and 

European Flint inbreds proved to combine productivity and environmental adaptation for maize 

cultivation in Northern Europe from West to East. Subsequent reciprocal selection of the two groups 

increased their differentiation and complementarity (Rincent et al. 2014). In southern Europe (e.g. 

Spain, Italy, Turkey), similar heterotic groups as in the Corn Belt are considered, resulting in ISSS Dent 

x non ISSS Dent hybrids. 
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Figure 4 Maize grain yield (qx/ha) evolution in USA from 1866 to 2019 based on USDA data all states 

confounded (https://quickstats.nass.usda.gov/). Three linear regressions are provided for each three 

main eras: OPVs (1866 to 1936), Double hybrids (1937 to 1955) and Simple hybrids (1956 to 2019). 

Grain yield was converted from bushel/acre to qx/ha using the correspondence 1 corn bushel = 0.254 

qx and 1 acre = 0.405 hectare. (Adapted from Beckett (2017)) 
 

 

Figure 5 Schematic view of hybrid maize breeding. Plain crosses (in blue and orange) represent 

testcross evaluations with tester(s) of the opposite pool. Cycle length of each step in years and sample 

sizes are given for an averaged mid-size breeding program and do not reflect the variability between 

breeding programs and breeding strategies. 

  

https://quickstats.nass.usda.gov/
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Broadening maize hybrid breeding programs 

Despite hybrid breeding improved tremendously grain yield and quality as well as resistance to biotic 

and abiotic stresses at world scale (e.g. Figure 4, Duvick 2001, 2005), it also reduced elite genetic 

diversity. It has been observed that during the transition from landraces to hybrids, many favorable 

alleles have probably been lost because of their association with unfavorable alleles and/or genetic 

drift (Ho et al. 2005; Reif et al. 2005b; Buckler et al. 2006; Yamasaki et al. 2007). For instance, Ho et al. 

(2005) estimated that only 56% of the alleles found in the Corn Belt Dent landraces were present in a 

diverse set of inbred lines. US and more generally worldwide hybrid breeding is relying on the use of a 

very narrow elite germplasm (Goodman 1990). For instance, in the US, about three Lancaster type 

inbred lines (Oh43, Mo17, C103) and three ISSS type inbred lines (B73, B37, A632) and their close 

relatives were represented in a very high percentage (70% or more) of all U.S. hybrids (Goodman 1990). 

More recently, the Iodents (mainly derived from Pioneer PH207 and Dekalb/Monsanto 3IIH6 lines) 

took an important place in temperate non ISSS dent proprietary pedigrees (Mikel 2018). A recent high-

density haplotypic analysis revealed significant haplotype sharing between maize inbred lines 

registered from 1976 to 1992 and key maize founders B73, Mo17 and PH207 (Coffman et al. 2020). 

Since maize hybrid breeding developed along with intellectual property rights, it also limited 

germplasm exchange between private programs (Goodman 1999).  

Different sources of diversity can be considered to broaden the genetic base of maize breeding 

programs. Brown (1979) estimated that there might be 150-180 distinct “races” of maize worldwide. 

On a racial basis, it was indicated by Brown (1979) and Goodman (1985) that only 2% of the available 

germplasm was considered in temperate maize breeding and only 5% worldwide (Tallury and 

Goodman 2001), when excluding subsistence farming. Goodmann (1999) observed that only about 

0.3% of Tropical exotic germplasm was used in US hybrid breeding in 1996. Local or exotic landraces 

which did not contribute to the founding material of commercial programs provide a source to broaden 

the genetic base of commercial breeding programs. Landraces have also been well characterized 

relative to elite germplasm in Europe (e.g. Dubreuil and Charcosset 1999; Rebourg et al. 2001; Reif et 

al. 2005b; Dubreuil et al. 2006; Frascaroli et al. 2013; Strigens et al. 2013) and America (e.g. 

Heerwaarden et al. 2011; Hellin et al. 2014). The use of reproducible libraries of doubled haploid (DH) 

lines from landraces has been suggested to ease genotyping, phenotyping and evaluation of the 

variation within landraces (Strigens et al. 2013; Melchinger et al. 2017; Böhm et al. 2017; Brauner et 

al. 2019; Hölker et al. 2019). Since maize hybrid industry is highly competitive, commercial breeders 

do not spend time and resources for evaluation, adaptation and improvement of non-improved 

landraces. Instead, commercial breeders will prefer to consider inbred lines from other than their own 

program (Kannenberg 2001). This includes breeding program targeting different environments and 

competitors’ inbreds obtained by selfing or reverse breeding from hybrids (Smith et al. 2008) or 

running out of the plant variety protection act after 20 years in the US (ex-PVPA, Mikel and Dudley 

2006). Hundreds of ex-PVPA are publically released every year, which make an improved source of 

variation available. To broaden the genetic base of European germplasm with US inbreds is appealing. 

For instance, Reif et al. (2010) evaluated the interest to introgress US public inbreds into German 

European inbreds and recommended to introgress ISSS inbreds into European dents and non ISSS 

inbreds into European Flints. 

 

To harness genetic variability and potential of adaptation in genetic resources, public-private 

collaborations that share costs between public institutes and private companies are of great interest. 
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In the following, some public-private maize genetic base broadening projects are listed with a focus on 

their contribution to the private breeding sector. Cramer and Kannenberg (1992) proposed the 

hierarchical open-ended population enrichment (HOPE) breeding system to release enriched maize 

inbreds further considered to broaden the genetic base of Canadian commercial maize breeding 

programs. In its last version, the HOPE system was composed of three hierarchical open-ended gene 

pools, i.e. the best genotypes of a basal pool were further used as parents in the superior pool, 

permitting the transfer of favorable alleles from genetic resources to the elite pools (Popi 1997; 

Kannenberg 2001). The genetic resources were introduced in the basal pool without heterotic group 

distinction until the introduction in the two elite pools (Popi 1997). After 20 years, only four inbreds 

have been released to the industry with no success story up to date. The Latin American maize project 

(LAMP, Pollak 1990; Salhuana et al. 1997; Salhuana and Pollak 2006) provided maize breeders with 

useful characterization and evaluation of US and Latin American tropical germplasm accessions. The 

germplasm enhancement of maize project (GEM, Pollak and Salhuana 2001) was a public-private 

collaborative effort to enhance the accessions identified as useful by LAMP with proprietary lines 

furnished by private partners (Pollak 2003). In practice, LAMP lines were first crossed with an elite 

inbred from a private partner and further crossed to a second private partner’s elite line to derive a 

bridging germplasm carrying on average 25% of LAMP parent genome. In 2014, more than 270 

temperate adapted inbreds were developed from more than 30 different exotics germplasm. Similarly, 

the seeds of discovery project initiated by the International Maize and Wheat Improvement Center 

(SeeD, Gorjanc et al. 2016) aims to harness favorable variation from more than four thousand 

landraces and to develop a bridging germplasm with on average 25% of landrace genome that would 

be useable for genetic base broadening in commercial maize programs. In France, the INRA/Promaïs 

(Gallais et al. 2001) project and continuation, are also examples of the interest for public-private 

partnership genetic base broadening projects. 

Genomic selection revolutionized breeding 

Marker assisted selection to genomic selection 

Molecular markers refer to DNA fragments that exhibit polymorphism between individuals and that 

can be easily typed and used as genetic markers. In maize, different genetic markers and density have 

succeeded: from few multi-allelic markers such as restriction length polymorphism (RFLP), single 

sequence repeats (SSR) to today’s commonly used single nucleotide polymorphism (SNP) that can be 

typed on predefined bead chips with 50k SNPs (Ganal et al. 2011) or 600 SNPs (Unterseer et al. 2014) 

and by sequencing (GBS, Elshire et al. 2011). These markers can be used on a large number of 

individuals to evaluate, structure and sample genetic diversity within an between ex-situ collections 

(Glaszmann et al. 2010; Mascher et al. 2019). These markers can also be used to monitor the genetic 

diversity of breeding germplasm and assist selection. The use of markers linked to QTLs, further 

referred to as marker assisted selection (MAS), opened new perspectives for breeding. In the 1960’s, 

Neimann-Sorensen and Robertson (1961) considered blood groups as markers supporting selection in 

animals. Lande and Thompson (1990) proposed to estimate the genetic value of selection candidate 

by summing the estimated effects of genetic markers significantly associated with QTLs. More recently, 

the development of cheap high-throughput SNP genotyping and statistical developments enabled to 

consider a large number of genomewide markers for prediction (Whittaker et al. 2000; Meuwissen et 

al. 2001). This is referred to as genomic selection (GS) and this approach has been implemented in 

many animal and plant species over the last decades.  
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Genomic selection 

In GS, a sample of individuals (training set, TS) is genotyped and phenotyped for a trait, before being 

used to train a statistical model. The statistical model is further used to predict the genetic value of 

genotyped individuals. Several models have been proposed (e.g. Heslot et al. 2012) but the most 

common and robust is the genomic best linear unbiased prediction model (G-BLUP) that relies on the 

infinitesimal model (Fisher 1918). G-BLUP considers the genomic relationship matrix between 

individuals to model the covariance of their genetic values (VanRaden 2008). Note that before GS, 

prediction of individual breeding values using BLUP with pedigree information to model genetic 

covariance between individuals was common in animals (Henderson 1975) and investigated in maize 

(Bernardo 1996a; b). A standard G-BLUP model can be written as: 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝒆, (Eq. 3) 

where 𝒚 is the column vector of genotypes, 𝑿 is the incidence matrix of fixed effects with the 

respective column vector effect 𝜷 (e.g. location effect), 𝒁 is the incidence matrix of random effects, 

i.e. linking genotypes to genetic values, 𝒖 is the column vector of genetic values with 𝒖 ∼ 𝑁(𝟎,𝑮𝜎𝐺
2) 

and 𝑮 is the genomic relationship matrix that models the covariance between individuals at markers, 

𝜎𝐺
2 is the genetic variance. The column vector of errors 𝒆 is modeled as 𝒆 ∼ 𝑁(𝟎, 𝑰𝜎𝐸

2) with 𝑰 the 

identity matrix. After estimation of variance components 𝜎̂𝐺
2 and 𝜎̂𝐸

2, the best linear unbiased predictor 

of the genetic value 𝑢̂𝑖 of a given genotyped individual 𝑖 is predicted using mixed model equations 

(Henderson 1975). Estimated marker effects can be derived out of G-BLUP model by back-solving 

(Wang et al. 2012) thanks to the equivalence with the ridge regression best linear unbiased prediction 

model (RR-BULP) that considers directly the matrix of allelic doses and assumes that all marker effects 

are drawn from the same normal distribution. 

 

The interest of GS is commonly attributed (i) to the acceleration of selection progress by shortening 

generation intervals and (ii) to higher selection accuracy especially for traits difficult or costly to 

measure (Hayes et al. 2009). Different usages and implications of GS have been suggested in plant 

breeding (Heslot et al. 2015). For instance, instead of selecting progeny of parental crosses based on 

expensive phenotypes in multi-location replicated trials, marker information and GS models can be 

used to increase selection accuracy and optimize the phenotyping efforts (e.g. no more replicates or 

unbalanced designs). As a step further, GS can be used to predict progeny genetic values without 

phenotyping, which yield a gain of 3 to 5 years but also raises questions about the updating of the GS 

model with new phenotypes (Pszczola et al. 2012; Rincent et al. 2012; Isidro-Sanchez et al. 2015; 

Neyhart et al. 2017; Eynard et al. 2018). GS in plant breeding and particularly in maize breeding enables 

to generate larger biparental families and thus increases within family selection intensity. Among other 

applications, GS can be used to predict the interest of parental crosses based on different criteria, such 

as the usefulness criterion of a cross (UC, Schnell and Utz 1975) that represents the expected genetic 

value of the selected fraction of the progeny of the cross (Figure 6):  

𝑈𝐶 = 𝜇 + 𝑖ℎ𝜎𝐴, (Eq. 4) 
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where 𝜇 is the mean genetic value of the progeny of the cross, 𝑖 and ℎ are the within family selection 

intensity and accuracy, respectively and 𝜎𝐴
2 the within family additive genetic variance that can be 

predicted for biparental crosses using information of recombination frequency and linkage 

disequilibrium between loci (Lehermeier et al. 2017b).  

Figure 6 Illustration of the Eq. 4 in case of a biparental cross P1 x P2. 

Genomic selection in the light of diversity management 

As GS enables to shorten selection cycles and/or increase selection accuracy compared to phenotypic 

selection, it is expected to accelerate the loss of genetic diversity per unit of time due to rapid fixation 

of large effect regions. Jannink (2010) and Lin et al. (2016) observed by simulations that GS leaded 

higher loss of diversity than phenotypic selection. Experimentally, Jacobson et al. (2015) observed only 

a limited loss of genetic diversity due to genomic selection within biparental populations after one 

generation. However, the effect on long-term recurrent selection through both within family selection 

and parental cross selection is still unclear. In long-term simulations of wheat breeding, Rutkoski et al. 

(2015) observed that GS increased the loss of diversity compared to phenotypic selection. GS also 

tends to shrink toward the population mean the predicted genetic values of individuals with less 

phenotypic observations and/or less phenotypic observations on relatives in the TS and of individuals 

genetically distant to the TS (Habier et al. 2010; Pszczola et al. 2012). The shrinkage results in lower 

coefficients of determination (CD, Laloë 1993) associated with the predicted values. As a consequence, 

individuals with low relationship relative to the elite majority of the TS are likely predicted to be 

average with a small chance to be selected. Similarly, in the RR-BLUP formulation, the rare favorable 

allele effects are shrunk toward zero, which increases the risk of losing rare favorable alleles and 

consequently reduces the long-term genetic gain (Goddard 2009; Jannink 2010). Several authors 

suggested to up-weight rare favorable alleles to correct for shrinkage in GS model with encouraging 

results obtained by simulations (e.g. Goddard 2009; Jannink 2010; Sun and VanRaden 2014; Liu et al. 

2015). However, such approaches suffer the difficulty to define appropriate up-weighting factors. 

 

While GS raises concerns about its effect on genetic diversity erosion, it also opens new ways for 

intrinsic genetic diversity management and genetic base broadening. Firstly, GS models enable to 

estimate genomic variance components giving access to the causal diversity and the impact of linkage 

disequilibrium (LD) on additive genetic variance (Sorensen et al. 2001; Lehermeier et al. 2017a). 

Despite such decomposition can provide breeders with substantial information on the potential 

response to selection of a breeding population, to our knowledge, it has never been implemented in 

this context. Secondly, GS models might be implemented in the optimal contribution selection initially 

considering the pedigree information to predict the next generation merit (pedigree BLUP model) and 
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to constrain the pedigree relatedness among parents. Clark et al. (2013) observed that using genomic 

information for merit prediction and relatedness estimation increased optimal contribution selection 

performance. The optimal cross selection (OCS), an extension of the optimal contribution selection to 

deliver a crossing plan, has been recently adopted in plant breeding (e.g. Akdemir and Isidro-Sánchez 

2016; Gorjanc et al. 2018; Akdemir et al. 2019). In previous works, OCS has been defined to balance 

the genetic merit and diversity in the progeny. However, as stated above, in GS plant breeding one 

typically has large biparental families with high within family selection intensity. Therefore, it would 

be likely more interesting to consider OCS that balances the genetic merit and diversity expected in 

the best performing fraction of each family. To our knowledge this has not yet been considered. Finally, 

GS models might help to characterize and identify interesting genetic resources in gene banks as 

suggested in Crossa et al. (2016) and Yu et al. (2016). More recently, Brauner et al. (2018, 2019) 

evaluated the predictive ability of GS models within DH lines derived from maize landraces. GS is also 

offering the possibility to fasten a long and expensive pre-breeding approach to harness polygenic 

variation in genetic resources and make it more attractive for commercial breeders (Longin and Reif 

2014; Gorjanc et al. 2016). However, to our knowledge no simulation studies demonstrated the 

interest of genomic selection recurrent genetic base broadening considering pre-breeding, bridging 

and introductions as illustrated in Figure 2. 

Objectives of this thesis 

The sustainable management of genetic diversity in breeding programs is receiving increasing 

attention in the company RAGT2n and competitors (personal communications) for maize and other 

crops. This thesis has been articulated around five main objectives addressed in chronological order 

and corresponding each to a chapter of this dissertation.  

 

1. Considering a given breeding program, how did the genetic diversity in a specific population 

evolve genomewide and in different genomic regions? How to release genetic variation in low 

diversity genomic regions?  

In chapter 1, we reviewed and suggested three sets of indicators based on temporal 

phenotypic and genotypic data to assess the past efficiency of breeding population 

improvement and its sustainability. We further applied the indicators on an early European 

grain maize program recorded from 2003 to 2016. 

2. Assuming the genetic diversity is limiting, many genetic resources are accessible to breeders 

but cannot all be considered to broaden the elite genetic diversity. How can we identify 

appropriate donors for genetic base broadening of an elite population?  

In chapter 2, we reviewed and proposed different criteria based on estimated marker effects 

from GS models to select donor(s) in order to enrich elite recipient(s). To compare the different 

criteria, marker effects were estimated on the Amaizing Dent collaborative panel composed 

of 338 public Dent lines of different origins and 48 proprietary lines provided by seven 

companies including RAGT2n (Rio et al. 2019). Ten elite recipients from RAGT2n material were 

considered in this case study.  

3. After identifying donors of diversity, how do breeders optimally cross them to elite recipients 

in order to maximize the expected performance and donor’s polygenic contribution to 

progeny? Depending on the genetic and phenotypic distance of donor relative to elites is it 
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preferable to use biparental crosses between donor and recipient or more complex multi-

parental crosses?  

In chapter 3, we extended algebraic formulas in Lehermeier et al. (2017b) to predict the 

usefulness criterion of multi-parental crosses. We also propose to consider the parental 

contributions, i.e. percentage of genome in progeny inherited from a parent, as a polygenic 

trait in a multivariate usefulness criterion context. We validated our method by simulations. 

4. Although breeders have the possibility to broaden their genetic diversity by integrating other 

germplasm, it requires investments and delays the genetic progress. For these reasons, an 

optimal management of intrinsic genetic diversity to be competitive at short-term while 

maintaining a long-term potential genetic gain is challenging.  

Considering a closed breeding population showing substantial genetic diversity, in chapter 4, 

we adapted the approach developed in chapter 3 for optimal cross selection (OCS) to account 

for the effect of within family selection on the performance and on the diversity in the next 

generation. We simulated 60 years of breeding and compared our strategy to OCS not 

accounting for within family selection. 

5. Finally, in chapter 5 we evaluated the interest of the approach developed in chapter 4 in the 

context of an open breeding population regularly enriched in extrinsic variability from different 

sources of diversity. We simulated 60 years of breeding and evaluated the interest of recurrent 

introductions after bridging depending on the type of donor considered. We also investigated 

the effect of TS diversity and composition on within family prediction accuracies and the 

efficiency of genetic base broadening. 

 

The following chapters 1, 2, 3 and 4 have been published in peer-reviewed journals and the edited 

version is provided in this manuscript. Chapter 5 is a draft article that has not been peer-reviewed. All 

chapters are discussed and put into perspectives in the last section. 
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Abstract 

The narrow genetic base of elite germplasm compromises long-term genetic gain and increases the 

vulnerability to biotic and abiotic stresses in unpredictable environmental conditions. Therefore, an 

efficient strategy is required to broaden the genetic base of commercial breeding programs while not 

compromising short-term variety release. Optimal cross selection aims at identifying the optimal set 

of crosses that balances the expected genetic value and diversity. We propose to consider genomic 

selection and optimal cross selection to recurrently improve genetic resources (i.e. pre-breeding), to 

bridge the improved genetic resources with elites (i.e. bridging), and to manage introductions into the 

elite breeding population. Optimal cross selection is particularly adapted to jointly identify bridging, 

introduction and elite crosses to ensure an overall consistency of the genetic base broadening strategy. 

We compared simulated breeding programs introducing donors with different performance levels, 

directly or indirectly after bridging. We also evaluated the effect of the training set composition on the 

success of introductions. We observed that with recurrent introductions of improved donors, it is 

possible to maintain the genetic diversity and increase mid- and long-term performances with only 

limited penalty at short-term. Considering a bridging step yielded significantly higher mid- and long-

term performance when introducing low performing donors. The results also suggested to consider 

marker effects estimated on a broad training population including donor by elite and elite by elite 

progeny to identify bridging, introduction and elite crosses. 

Key message 

With recurrent genetic base broadening after pre-breeding, commercial breeding programs can 

maintain genetic diversity and take advantage of introduced favorable alleles to reach significantly 

higher long-term performance. 

Key words 

genetic base broadening; pre-breeding; bridging; introduction; genomic prediction; optimal cross 

selection  
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Introduction 

Modern breeding has been successful in exploiting crop diversity for genetic improvement. However, 

current yield increases may not be sufficient in view of rapid human population growth (Godfray et al. 

2010). Moreover, modern intensive breeding practices have exploited a very limited fraction of the 

available crop diversity (Cooper et al. 2001; Reif et al. 2005). The narrow genetic base of elite 

germplasm compromises long-term genetic gain and increases the genetic vulnerability to 

unpredictable environmental conditions (McCouch et al. 2013). Efficient genetic diversity 

management is therefore required in breeding programs. This involves the efficient incorporation of 

new genetic variation and its conversion into short- and long-term genetic gain. 

        Among the possible sources of diversity, wild relatives, exotic germplasm accessions and landraces 

that predate modern breeding exhibit substantial genetic diversity. These ex-situ genetic resources are 

conserved worldwide in international gene banks and national collections. They provide a promising 

basis to improve crop productivity, crop resilience to biotic and abiotic stresses and crop nutritional 

quality (Salhuana and Pollak 2006; Wang et al. 2017). In case of traits determined by few genes of large 

effect, the favorable alleles can be identified and introgressed into elite germplasm following 

established marker-assisted backcross procedures (e.g. Charmet et al. 1999; Servin et al. 2004; Han et 

al. 2017). Such introgressions have been successful for mono- and oligogenic traits (e.g. earliness loci 

in maize, Simmonds 1979; Smith and Beavis 1996 and SUB1 gene in rice, Bailey-Serres et al. 2010). 

Introgressions also proved to be successful for more polygenic traits where few major causal regions 

have been identified. For instance, Ribaut and Ragot (2006) successfully introgressed five regions 

associated with maize flowering time and yield components under drought conditions. For complex 

traits controlled by numerous genes with small effect, e.g. grain yield in optimal conditions, the 

identification and introgression of favorable alleles into elite germplasm were mostly unsuccessful. 

This requires to go beyond the introgression of few identified favorable alleles toward the polygenic 

enrichment of elite germplasm (Simmonds 1962, 1993). Although plant breeders recognize the 

importance of genetic resources for elite genetic base broadening, only little use has been made of it 

(Glaszmann et al. 2010; Wang et al. 2017). The main reason is that breeding progress continues (Duvick 

2005; Tadesse et al. 2019) and that breeders are reluctant to compromise elite germplasm with 

unadapted and unimproved genetic resources (Kannenberg and Falk 1995). Despite genetic resources 

carry novel favorable alleles that may counter balance their low genetic value by an increased genetic 

variance when crossed to elites (Longin and Reif 2014; Allier et al. 2019b), their progeny performance 

is mostly insufficient for breeders. Thus, breeding strategies are needed to bridge the performance 

gap between genetic resources and elites and to transfer beneficial genetic variations into elite 

germplasm while not compromising the performance of released varieties (Simmonds 1993; Gorjanc 

et al. 2016). Pre-breeding can be defined as the recurrent improvement of genetic resources to release 

donors that can be further introduced into the elite breeding population (Figure 1). According to 

Simmonds (1993), pre-breeding should start from a broad germplasm and should be carried out on 

several generations with low selection intensity to favor extensive recombination events and minimal 

inbreeding. The donor released from pre-breeding can be directly introduced into the elite breeding 

population. However, in cases where the performance gap between the donor released from pre-

breeding and elites is too large, one may consider a buffer population between donor and elites before 

introduction in the elite breeding population, further referred to as bridging. The best progeny of 

bridging is then considered for introduction into the elite breeding population (Figure 1). 
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Figure 1 Diagram illustrating the respective positioning of pre-breeding, bridging and breeding 

from genetic resources to variety release. 

        Different sources of donors can be considered in autogamous and allogamous species for genetic 

base broadening. This includes landraces historically cultivated before modern breeding. For instance 

in maize, open pollinated varieties (OPVs) are landrace populations of heterozygous individuals 

cultivated before the hybrid maize breeding revolution in the 1950’s (Anderson 1944; Troyer 1999). 

Inbred lines derived from OPVs present a large diversity and a potential interest for adaptation, but 

also a large performance gap with current varieties (Böhm et al. 2014; Melchinger et al. 2017; Böhm 

et al. 2017). These landraces can be further improved through pre-breeding that can be shared 

between the industry and public institutes in collaborative projects. In maize, the Latin American Maize 

Project (LAMP, Pollak 1990; Salhuana et al. 1997; Salhuana and Pollak 2006) provided breeders with 

useful characterization and evaluation of US and Latin American tropical germplasm accessions. Later, 

the Germplasm Enhancement of Maize project (GEM, Pollak and Salhuana 2001) improved the 

accessions identified in LAMP with elite lines furnished by private partners (Pollak 2003). Similarly, the 

Seed of Discovery project (SeeD, Gorjanc et al. 2016) aimed to harness favorable variations from 

landraces and to develop a bridging germplasm useful for genetic base broadening of commercial 

maize breeding programs. In this vein, Cramer and Kannenberg (1992) proposed the Hierarchical 

Open-ended Population Enrichment (HOPE) breeding system to release enriched maize inbreds for the 

industry. In its last version, the HOPE system is a breeding program with three hierarchical open ended 

gene pools permitting the transfer of favorable alleles from genetic resources to the elite pools (Popi 

1997; Kannenberg 2001). Finally, breeders can consider the varieties released by breeding programs 

selecting on a different germplasm and in different environments as donors. In hybrid species, the 

ability to use one of the variety’s inbred parent as a donor depends on the germplasm proprietary 

protection relative to species and countries (e.g. using reverse breeding, Smith et al. 2008). In the US, 

maize inbred parents of hybrid varieties become publically available after twenty years of plant variety 

protection act, these are referred to as ex-PVPA (Mikel and Dudley 2006). In inbred species such as 

wheat, using current varieties for breeding is straightforward if cultivated under the union for the 

protection of new varieties of plants convention (UPOV, Dutfield 2011). These donors are likely the 

most performing but also the less original that can be considered.  

        With the availability of cheap high density genotyping, Whittaker et al. (2000) and Meuwissen et 

al. (2001) have proposed to use genomewide prediction to fasten breeding progress by shortening 

generation intervals. In the most frequently used approaches of genomewide prediction, it is assumed 

that most genomic regions equally contribute with relatively small effects to polygenic traits. A large 

number of genomewide markers is employed, and their effects are estimated on a training set (TS) of 
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phenotyped and genotyped individuals. The genomic estimated breeding values (GEBVs) are further 

predicted considering the estimated marker effects and individuals’ molecular marker information. 

Recurrent selection based on genomewide prediction, further referred to as genomic selection (GS), 

has been increasingly implemented in crop breeding programs (Heslot et al. 2015; Voss-Fels et al. 

2019). GS efficiency depends on the relationship between individuals in the TS and the target 

population of individuals to predict (Habier et al. 2010; Pszczola et al. 2012). We assume that as a 

consequence, in commercial breeding programs, GS has been mostly implemented considering a 

narrow elite TS that optimizes the prediction accuracy on elite material. However, such a narrow TS 

limits the prediction accuracy on individuals carrying rare alleles, which is the case for the progeny of 

elite by donor crosses. Therefore, it is important to define the TS composition that maximizes the 

prediction accuracy in both elite and introduction families. 

        In the context of genetic base broadening, GS is also interesting to fasten and reduce the costs for 

the evaluation and identification of genetic resources in gene banks (Crossa et al. 2016; Yu et al. 2016). 

Furthermore, GS can fasten pre-breeding programs to reduce the performance gap between genetic 

resources and elite populations (Gorjanc et al. 2016). Instead of truncated selection (i.e. select and 

mate individuals with the largest estimated breeding values), Cowling et al. (2017) proposed to use the 

optimal contribution selection to improve genetic resources while maintaining a certain level of 

diversity in the pre-breeding population. Optimal contribution selection (Wray and Goddard 1994; 

Meuwissen 1997; Woolliams et al. 2015) aims at identifying the optimal parental contributions to the 

next generation in order to maximize the expected genetic value in the progeny under a certain 

constraint on diversity. Therefore, the optimal contribution selection is particularly adapted to pre-

breeding and genetic diversity management. Cowling et al. (2017) considered the pedigree 

relationship information but considering the genomic relationship information can further improve the 

optimal cross selection (Clark et al. 2013). Considering optimal contribution selection on empirical 

cattle data, Eynard et al. (2018) observed that allowing for the introductions of old individuals in the 

breeding population supported long‐term response to selection. The optimal cross selection (OCS) is 

the extension of optimal contribution selection to deliver a crossing plan (Kinghorn et al. 2009; 

Kinghorn 2011; Akdemir and Isidro-Sánchez 2016; Gorjanc et al. 2018; Akdemir et al. 2019). We 

propose to take advantage of OCS for selection of bridging, introduction and elite crosses (Figure 1). 

Using OCS, the donors and donor by elite crosses are selected complementarily to the elite by elite 

crosses in order to ensure an overall consistency of the genetic base broadening strategy. Allier et al. 

(2019c) proposed to account for within family variance and selection in a new version of OCS referred 

to as Usefulness Criterion Parental Contribution based OCS (UCPC based OCS). They observed both 

higher short- and long-term genetic gain compared to OCS in a simulated closed commercial breeding 

program.  

        We extend here the use of UCPC based OCS to pre-breeding, following Cowling et al.(2017), and 

to an open commercial breeding program with recurrent introductions of genetic resources, extending 

the work of Eynard et al. (2018). In this context, we aimed at evaluating the efficiency of genetic base 

broadening depending on the type of donors considered and the genetic base broadening scheme 

(Figure 1). We considered either donors corresponding to the generation of the founders of breeding 

pools or improved varieties released twenty years ago and five years ago. Our objectives were to 

evaluate (i) the interest of recurrent introductions of diversity in the breeding population, (ii) the 

interest to conduct or not bridging and (iii) the impact of the training set composition on within family 

genomewide prediction accuracies. 
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Material and methods 

Simulated breeding programs 

Material and simulations 

We considered 338 Dent maize genotypes from the Amaizing project (Rio et al. 2019; Allier et al. 2020) 

as founders of genetic pools. This diversity was structured into three main groups: 82 Iowa Stiff Stalk 

Synthetics, 57 Iodents and 199 other dents. We sampled 1,000 biallelic quantitative trait loci (QTLs) 

with a minimal distance between two consecutive QTLs of 0.2 cM among the 40,478 single nucleotide 

polymorphisms (SNPs) from the Illumina MaizeSNP50 BeadChip (Ganal et al. 2011). Each QTL was 

assigned an additive effect sampled from a Gaussian distribution with a mean of zero and a variance 

of 0.05 and the favorable allele was attributed at random to one of the two SNP alleles. We sampled 

2,000 SNPs as non-causal markers further used as genotyping information. The consensus genetic 

positions of sampled QTLs and SNPs was considered according to Giraud et al. (2014). 

        We simulated two different breeding programs: an external breeding program (Figure 2A) that 

released every year varieties that were later considered as potential donors for introduction in a 

commercial breeding program (Figure 2C-D). Both external and commercial programs used doubled 

haploid (DH) technology to derive progeny. We assumed a period of three years to derive, genotype 

and phenotype DH progeny. Every year 𝑇, progeny of the three last generations 𝑇−3, 𝑇−4 and 𝑇−5 

were considered as potential parents of the next generation. It created overlapping and connected 

generations as it can be encountered in breeding. We first considered a burn-in period of twenty years 

with recurrent phenotypic selection from a population of founders. Burn-in created extensive linkage 

disequilibrium as often observed in elite breeding programs (Van Inghelandt et al. 2011). Every 

progeny was phenotyped and phenotypes were simulated considering the genotypes at QTLs, an error 

variance corresponding to a trait repeatability of 0.4 in the founder population, and no genotype by 

environment interactions (Appendix A). Every individual was evaluated in four environments in one 

year. After twenty years of burn-in, we simulated different breeding programs using GS. Every year, 

progeny phenotypes and genotypes of the three last available generations were used to fit a G-BLUP 

model (Appendix A). Progeny were selected based on GEBVs and marker effects were obtained by 

back-solving the G-BLUP model (Wang et al. 2012) and further used for optimal cross selection to 

generate the next generation (see optimal cross selection section and Appendix B). 
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Figure 2 Diagram of simulated breeding programs. (A) External breeding program that generates 

potential donors, (B) commercial benchmark program without introductions, (C) commercial program 

with introductions without bridging or (D) commercial program with introductions after bridging.  
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External breeding program: Improvement of genetic resources 

The external breeding program (Figure 2A), was simulated starting from a broad population of 40 

founders sampled among the 338 maize genotypes. During the three first years, the founders were 

randomly crossed with replacement to generate each year 20 biparental families of 40 DH progeny to 

initiate the three overlapping generations. The genetic material in the external breeding is referred to 

as improved donors (D). During seventeen years, we first selected among the three last generations 

the 10% D progeny per family (i.e. 4 DH lines/family x 20 families x 3 years) with the largest phenotypic 

mean. We further randomly mated with replacement the 50 DH with the largest phenotypic mean to 

generate 20 biparental families of 40 DH lines. Note that we considered 20 biparental families to be 

consistent with the post burn-in simulations. After twenty years of burn-in, we considered GS trained 

on the D progeny of the three last generations (i.e. 2,400 D progeny, Figure 2A). Among these three 

last generations, we considered per family the 10% D progeny with the largest GEBVs as potential 

parents of the next generation, i.e. 4 DH lines/family x 20 families x 3 years = 240 potential parents. 

The 20 two-way crosses among the 240*239/2 = 28,680 candidate crosses were selected using optimal 

cross selection as detailed in the section: optimal cross selection. 

Commercial breeding programs 

The commercial breeding program (Figure 2B-D) started from a population of 10 founders sampled 

among the 57 Iodent genotypes. During the first three years, the founders were randomly crossed with 

replacement to generate each year 10 biparental families of 80 DH progeny to initiate the three 

overlapping generations. The elite genetic material in the internal breeding is referred to as elite 

progeny (E). During seventeen years, we considered as potential parents of the next generation the 50 

E progeny with the largest phenotypic mean from the three last generations, i.e. without applying a 

preliminary within family selection. These were randomly mated to generate 20 biparental families of 

80 DH lines. After twenty years of burn-in, we considered GS and differentiated three different 

scenarios: the benchmark commercial breeding program without introductions (Figure 2B), the 

commercial breeding program with direct introductions without bridging (Figure 2C) or the commercial 

breeding program with introductions after bridging (Figure 2D).  

        In absence of introductions (benchmark), the E progeny were selected based on the elite GS model 

trained on E progeny of the three last generations (i.e. 4,800 E progeny, Figure 2B). The 5% E progeny 

with the largest GEBVs within each family (i.e. 4 DH) in the three last breeding generations were 

considered as potential parents. The 20 two-way crosses among the 28,680 candidate crosses were 

defined using optimal cross selection as detailed in the next section: optimal cross selection. 

        For scenarios with introductions, we considered different sub-scenarios (i) for the genetic base 

broadening scheme including (Bridging) or not bridging (Nobridging) and (ii) for the potential donors 

considered, to cover different possibilities in both hybrid and inbred species. We considered as 

potential donors either the 338 genotypes from the Amaizing project or the D progeny with the largest 

GEBVs released by the external breeding program (i.e. 1 DH/family/year, 20 potential donors released 

every year). The scenario using the 338 genotypes from the Amaizing panel for genetic base 

broadening was identified with the suffix Panel. For the donors released by the external breeding 

program, we considered two time constraints for the access to diversity. To mimic a situation close to 

that of the US maize ex-PVPA system (Mikel and Dudley 2006), we first considered donors released 20 
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to 24 years before the current year (i.e. 5 years x 20 DH = 100 potential D) in scenarios with the suffix 

20y. To simulate a faster access to external diversity, as it would be the case in line breeding under 

UPOV convention (Dutfield 2011), we considered the donors released by the external breeding 5 to 9 

years before the current year (i.e. 100 potential D) in scenarios with the suffix 5y. For scenarios without 

bridging (Figure 2C), the E candidate parents were selected every year among the 5% E progeny 

showing the largest GEBVs per family in the three last breeding generations resulting in NE = 4 DH x 20 

families x 3 years = 240 potential E parents. The E progeny were selected based on the elite GS model 

trained on E progeny of the three last generations (i.e. 4,800 E progeny, Figure 2C). The 20 breeding 

crosses among the 28,680 candidate ExE elite crosses and DxE introduction crosses were selected using 

optimal cross selection without constraint on the type of crosses elite or introduction, using the elite 

GS model as described in section “Optimal cross selection”. For scenarios with bridging (Figure 2D), 

the population was split into a bridging population of 5 families of 80 DH (i.e. 400 DE progeny) and a 

breeding population of 15 families of 80 DH (i.e. 1,200 E progeny). Every year, the E candidate parents 

for breeding were selected among the 5% E progeny per family showing the largest GEBVs from the 

three last breeding generations, resulting in NE = 4 DH/family x 15 family x 3 year = 180 potential E 

parents. The E progeny were selected based on the elite GS model trained on all E progeny of the three 

last generations (i.e. 3,600 E progeny, Figure 2D). The DE candidate parents for introduction in the 

breeding population were similarly selected among the three last bridging generations, resulting in NDE 

= 4 DH/family x 5 families x 3 years = 60 potential DE parents. The DE progeny were selected based on 

the bridging GS model trained on all DE progeny of the three last generations, i.e. 1,200 DE (Figure 2D). 

Among the NE(NE -1)/2 = 16,110 ExE elite crosses and NDENE= 10,800 DExE introduction crosses possible 

for breeding, the 15 breeding crosses were defined using optimal cross selection with the elite GS 

model and without constraint on the type of crosses ExE (elite) or DExE (introduction). The 5 DxE 

bridging crosses were selected among the possible crosses between the available D and potential E 

parents with the bridging GS model, conditionally to selected breeding crosses as described in the next 

section: optimal cross selection. 

Optimal cross selection 

The optimal cross selection selects the set of crosses (𝒏𝒄) that maximizes the expected genetic value 

in the progeny (𝑉) under a constraint on the genomewide genetic diversity in the progeny (𝐷) 

(Kinghorn et al. 2009; Kinghorn 2011; Akdemir and Isidro-Sánchez 2016; Gorjanc et al. 2018; Akdemir 

et al. 2019). As proposed in Allier et al. (2019c), the effect of within family selection with intensity (𝑖) 

and accuracy (ℎ) on 𝑉(𝑖,ℎ) and 𝐷(𝑖,ℎ) can be accounted for in optimal cross selection by using UCPC 

based OCS (Appendix B). Similarly as in Allier et al. (2019c), we considered ℎ = 1 for sake of simplicity. 

        For breeding crosses, the optimal set of |𝒏𝒄| = 20 crosses (in scenarios without bridging, Figure 

2A-C) or |𝒏𝒄| = 15 crosses (in scenarios with bridging, Figure 2D) was selected to solve the multi-

objective optimization problem: 

max
𝒏𝒄

𝑉(𝑖)(𝒏𝒄) 

with 𝐷(𝑖)(𝒏𝒄) ≥ 𝐻𝑒(𝑡), (Eq. 1) 

where 𝐻𝑒(𝑡), ∀ 𝑡 ∈ [0, 𝑡∗] is the minimal genomewide diversity constraint at time 𝑡. The evolution of 

diversity along time was controlled by the targeted diversity trajectory, i.e. 𝐻𝑒(𝑡), ∀ 𝑡 ∈ [0, 𝑡∗] where 

𝑡∗ ∈ ℕ∗ is the time horizon when the diversity 𝐻𝑒(𝑡∗) = 𝐻𝑒∗ should be reached. For the external and 
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the commercial benchmark without introductions breeding programs, we considered 𝐻𝑒∗ = 0.10 and 

𝐻𝑒∗ = 0.01 reached after sixty years, respectively. As in Allier et al. (2019c), the constraint on 𝐷(𝑖) 

followed a linear trajectory over time: 

𝐻𝑒(𝑡) = {
𝐻𝑒0 +

𝑡

𝑡∗
(𝐻𝑒∗ −𝐻𝑒0),  ∀ 𝑡 ∈  ⟦0, 𝑡∗⟧

𝐻𝑒∗,  ∀ 𝑡 > 𝑡∗
, (Eq. 2) 

where 𝐻𝑒0 is the initial diversity at 𝑡 = 0, i.e. at the end of burn-in. 

        For the commercial breeding program with introductions, we maintained the genomewide 

diversity constant after the end of burn-in, i.e. 𝐻𝑒(𝑡) = 𝐻𝑒0, ∀ 𝑡 ∈ ⟦0, 𝑡∗⟧. Thus, the UCPC based OCS 

selected introduction crosses (i.e. DxE if no bridging and DExE if bridging) when necessary to maximize 

the performance while keeping genomewide diversity constant (Eq. 1). In case of bridging, we 

completed the 15 selected breeding crosses with 5 bridging crosses (DxE, Figure 2D) that maximized 

the following function on the full set of |𝒏𝒄| = 20 crosses: 

max
𝒏𝒄

 𝛼 𝑉(𝑖)∗(𝒏𝒄) + (1 − 𝛼) 𝐷(𝑖)∗(𝒏𝒄), (Eq. 3) 

where, 𝛼 ∈ [0,1] is the relative weight given to performance compared to diversity, 𝑖 is the within 

family selection intensity, 𝑉(𝑖)∗(𝒏𝒄) =
𝑉(𝑖)(𝒏𝒄)−𝑉(𝑖)(𝒏𝒄𝐷

∗ )

𝑉(𝑖)(𝒏𝒄𝑉
∗ )−𝑉(𝑖)(𝒏𝒄𝐷

∗ )
 and 𝐷(𝑖)∗(𝒏𝒄) =

𝐷(𝑖)(𝒏𝒄)−𝐷(𝑖)(𝒏𝒄𝑉
∗ )

𝐷(𝑖)(𝒏𝒄𝐷
∗ )−𝐷(𝑖)(𝒏𝒄𝑉

∗ )
 with 𝒏𝒄𝑉

∗  

and 𝒏𝒄𝐷
∗  are the lists of crosses that maximize the performance (𝑉) and the diversity (𝐷), respectively. 

A differential evolution (DE) algorithm was used to find Pareto-optimal solutions of Eq. 1 and Eq. 3 

(Storn and Price 1997; Kinghorn et al. 2009; Kinghorn 2011). 

Interest of pre-breeding and bridging 

We compared different commercial breeding programs with recurrent introductions considering or 

not bridging at constant cost (i.e. total of 1,600 DH/year) and considering three types of potential 

donors, resulting in the six genetic base broadening scenarios: Bridging_Panel, Nobridging_Panel, 

Bridging_20y, Nobridging_20y, Bridging_5y, Nobridging_5y. We ran ten independent simulation 

replicates of the external program that generated donors, the commercial benchmark without 

introductions, and the six genetic base broadening scenarios. Note that at a given simulation replicate 

the commercial breeding program accessed the potential donors released by the corresponding 

external breeding program simulation replicate. 

        We followed several indicators in the breeding families (i.e. E progeny, Figure 2). At each 

generation 𝑇 ∈ [0,60] with 𝑇 = 0 corresponding to the last burn-in generation, we computed the 

mean genetic merit of E progeny 𝜇(𝑇) = 𝑚𝑒𝑎𝑛(𝑇𝐵𝑉(𝑇)) and of the ten most performing E progeny 

𝜇10(𝑇) = 𝑚𝑒𝑎𝑛 (max
10

(𝑇𝐵𝑉(𝑇))) as a proxy of the performance that could be achieved at the 

commercial level by releasing these lines as varieties. We also measured the frequency of the favorable 

allele in the E progeny 𝑝𝑗(𝑇) at each QTL 𝑗 among the 1,000 QTLs. We further focused on the QTLs 

where the favorable allele was rare at the end of burn-in, i.e. 𝑝𝑗(0) ≤ 0.05. The results were averaged 

and standard errors were computed over ten independent replicates. 
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Effect of a joint genomic selection model for bridging and breeding 

For the three scenarios with bridging, we investigated the interest of a single TS grouping 3,600 DE and 

1,200 E progeny to predict both breeding and bridging families. These three additional scenarios were 

referred to as Bridging_Panel (Single TS), Bridging_20y (Single TS) and Bridging_5y (Single TS). Every 

generation, we defined the prediction accuracies as the correlation between true breeding values and 

GEBVs (𝑐𝑜𝑟(𝑢, 𝑢̂)) within breeding elite families (ExE), breeding introduction families (DExE) and 

bridging families (DxE). The prediction accuracies were averaged over the ten replicates and further 

averaged over the sixty generations. Note that considering a single GS model at constant cost yielded 

not only a broader but also a larger training set (4,800 DH progeny instead of 3,600 DH progeny for 

elite GS or 1,200 DH progeny for bridging GS, Figure 2). 

        We further investigated the effect of the proportion of DE and E progeny in the TS at constant size 

on within ExE and DExE family selection accuracy. We considered the 1,200 DE and 3,600 E progeny 

genotypes and phenotypes simulated at generations 18, 19, 20 in the first replicate of scenario 

Bridging_20y. We further selected the 5% DH per family with the highest GEBVs obtained using a GS 

model trained on all 4,800 progeny genotypes and phenotypes. These were randomly crossed to 

generate 50 elite (ExE) and 50 introduction (DExE) families of 80 DH progeny. These families were 

considered as the validation set (VS). We randomly sampled among the 4,800 DH progeny different TS 

of variable sizes and compositions (Table 1) and we evaluated the within elite (ExE) and introduction 

(DExE) family prediction accuracy (𝑐𝑜𝑟(𝑢, 𝑢̂)). We also evaluated the within family variance prediction 

accuracy as the correlation between the variance of true breeding values and the estimated variance 

(𝑐𝑜𝑟(𝜎, 𝜎̂)). We reported results for twenty independent samples. 

 

Table 1 Description of the training sets compared: the full training sets considering all available 

progeny of the last three generations and training sets at constant size (1,200 progeny or 3,600 

progeny) with variable proportion of DE progeny. 

 TS name Number of E Number of DE 

Full TS 

Pure E (3,600) 3,600 0 

Pure DE (1,200) 0 1,200 

1/4 - DE (4,800) 3,600 1,200 

Constant size 

(1,200) 

Pure E (1,200) 1,200 0 

1/4 - DE (1,200) 900 300 

Constant size 

(3,600) 

1/3 - DE (3,600) 2,400 1,200 

1/4 - DE (3,600) 2,700 900 

1/6 - DE (3,600) 3,000 600 

1/12 – DE (3,600) 3,300 300 

1/24 - DE (3,600) 3,450 150 

1/36 - DE (3,600) 3,500 100 
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Results 

Interest of pre-breeding and bridging 

The interest of recurrent introductions in the commercial breeding program after or without bridging 

depended on the type of donor considered. Panel donors showed a large performance gap with the 

elites they were crossed to. This performance gap increased with advanced breeding generations (on 

average a true breeding value difference with elites increasing from -15 and -104 trait units). Improved 

donors showed a lower performance gap with elites. Twenty-year old donors showed an intermediate 

performance gap with elite (on average -22 trait units) and five-year old donors showed a reduced 

performance gap with elite (on average -8 trait units). 

        Direct introductions of panel donors without bridging (Nobridging_Panel) penalized the breeding 

population mean performance (𝜇) at short-term (at five years, 𝜇 = 8.168 +/- 0.282 compared to 9.239 

+/- 0.237 without introductions, Figure 3A, Table S1) and long-term (at sixty years, 𝜇 = 9.651 +/- 0.958 

compared to 38.837 +/- 1.563 without introductions, Figure 3A, Table S1). When considering the mean 

performance of the ten best progeny (𝜇10), the short-term penalty was no more significant (at five 

years, 𝜇10 = 15.802 +/- 0.341 compared to 15.746 +/- 0.391 without introductions, Figure 3B, Table S2) 

but the long-term penalty was still significant (at sixty years, 𝜇10 = 29.767 +/- 1.108 compared to 39.567 

+/- 1.571 without introductions, Figure 3B, Table S2). The introduction of panel donors after bridging 

(Bridging_Panel) did not significantly penalize the short-term mean performance of the breeding 

population (at five years, 𝜇 = 8.688 +/- 0.329 compared to 9.239 +/- 0.237 without introductions, Figure 

3A, Table S1) and yielded significantly higher long-term performance (at sixty years, 𝜇 = 52.110 +/- 

0.886 compared to 38.837 +/- 1.563 without introductions, Figure 3A, Table S1). When considering 

𝜇10, the short-term penalty was reduced (at five years, 𝜇10 = 15.605 +/- 0.477 compared to 15.746 +/- 

0.391 without introductions, Figure 3B, Table S2) and the long-term gain increased (at sixty years, 𝜇10 

= 61.763 +/- 1.298 compared to 39.567 +/- 1.571 without introductions, Figure 3B, Table S2).  

        Direct introductions of twenty-year donors without bridging (Nobridging_20y) yielded a penalty 

in the mid-term compared to not introducing donors (at twenty years, 𝜇 = 16.818 +/- 2.397 compared 

to 23.182 +/- 1.446 without introductions, Figure 3A, Table S1). When considering 𝜇10, the mid-term 

penalty due to introductions was limited (Figure 3B, Table S2). After thirty years, this introduction 

scenario significantly outperformed the benchmark (𝜇 = 33.546 +/- 1.519 compared to 30.006 +/- 1.319 

without introductions, Figure 3A, Table S1) and this advantage increased until the end of the sixty years 

evaluated period  (𝜇 = 66.944 +/- 0.849 compared to 38.837 +/- 1.563 without introductions, Figure 

3A, Table S1). The introduction of twenty-year old donors after bridging (Bridging_20y) penalized only 

the short-term performance (at five years, 𝜇 = 8.687 +/- 0.293 compared to 9.239 +/- 0.237 without 

introductions, Figure 3A, Table S1) and yielded significantly higher performance than the benchmark 

after twenty years (𝜇 = 27.987 +/- 0.840 compared to 23.182 +/- 1.446 without introductions, Figure 

3A, Table S1). Introductions after bridging significantly outperformed the direct introductions until the 

end of the sixty years evaluated period (𝜇 = 69.154 +/- 0.868 with bridging compared to 66.944 +/- 

0.849 without bridging and 𝜇10 = 74.413 +/- 0.932 with bridging compared to 72.258 +/- 0.978 without 

bridging, Figure 3A-B, Table S1-S2). 

        Introducing five-year old donors after or without bridging yielded significantly higher mid- and 

long-term performances than all other tested scenarios, without any significant long-term advantage 

of introductions after bridging compared to direct introductions (at sixty years, 𝜇 = 74.074 +/- 0.869 

with bridging compared to 74.662 +/- 0.938 without bridging, Figure 3, Table S1). 
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        We observed that the recurrent introductions of donors impacted the genetic diversity of the 

commercial germplasm. The more the commercial program had access to recent germplasm of the 

external program, the more the varieties released by the commercial program where admixed with 

the external program elite germplasm (Figure 4B and Figure 4C). In the scenario where only panel 

donors were accessible for introductions, the internal program diversity did not converge toward the 

external program (Figure 4A). 

Figure 3 Evolution of the breeding population over generations. Scenarios considering presence or 

absence of bridging before introduction with different type of donors (panel, twenty-year old and five-

year old donors). (A) Mean breeding population performance (𝜇), (B) mean performance of the ten 

best progeny (𝜇10) and (C) frequency of the favorable alleles that were rare at the end of burn-in (i.e. 

𝑝(0) ≤ 0.05 corresponding on average to 269.9 +/- 23.6 QTLs).  

 

Figure 4 Principal component analysis of the modified Roger’s genetic distance matrix (Wright 1978) 

of the 338 founders (gray: points for the 57 Iodent lines and triangles for the 281 remaining lines), the 

commercial ten best performing E progeny per generation (colored circles sign) and the twenty donors 

per generation released by the external program (colored plus sign). Both commercial and external 

lines are colored regarding their generation (note that negative generations correspond to burn-in). 

Black circles represent the donors that have been introduced into the commercial breeding program. 

Only three scenarios with bridging are represented for the first simulation replicate, (A) when only 

donors from panel were accessible, (B) when twenty-year old donors from the external breeding were 

accessible and (C) when five-year old donors from the external breeding were accessible. 
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        The evolution of the mean frequency of initially rare favorable alleles (i.e. favorable allele that had 

a frequency at the end of burn-in ≤ 0.05 in the elite breeding population) also highlighted differences 

between strategies. The older the donors, the lower the increase in frequency of initially rare favorable 

alleles (at sixty years for scenario with bridging, the mean frequency was 0.414 +/- 0.012 for five-year 

old donors, 0.361 +/- 0.009 for twenty-year old donors, 0.263 +/- 0.008 for panel donors and 0.016 +/- 

0.006 without introductions, Figure 3C, Table S3). For twenty-year old donors, omitting the bridging 

before introduction delayed the increase in frequency of initially rare favorable alleles (e.g. at twenty 

years, the mean frequency was 0.088 +/- 0.014 without bridging compared to 0.116 +/- 0.011 with 

bridging, Figure 3C, Table S3). More importantly, for panel donors the absence of bridging significantly 

penalized the increase in frequency of initially rare favorable alleles (at sixty years, 0.068 +/- 0.007 

without bridging compared to 0.263 +/- 0.008 with bridging, Figure 3C, Table S3). 

Effect of a joint genomic selection model for bridging and breeding 

Scenarios considering a single TS of 3,600 E and 1,200 DE progeny yielded higher mid- and long-term 

𝜇 and 𝜇10 than scenarios considering two distinct TS for bridging and breeding (Figure 5A-B). After 

twenty years, single TS scenarios significantly outperformed scenarios with two distinct TS (𝜇 = 40.111 

+/- 1.149 compared to 34.900 +/- 0.905 for five-year old donors, 𝜇 = 30.497 +/- 1.135 compared to 

27.987 +/- 0.840 for twenty-year old donors and 𝜇 = 29.292 +/- 0.802 compared to 25.212 +/- 1.314 

for panel donors, Figure 5A, Table S1). After sixty years, the advantage of a single TS remained 

significant except for five-year old donors (𝜇 = 75.749 +/- 1.093 compared to 74.074 +/- 0.869 for five-

year old donors, 𝜇 = 71.130 +/- 1.028 compared to 69.154 +/- 0.868 for twenty-year old donors and 𝜇 

= 57.067 +/- 1.444 compared to 52.110 +/- 0.886 for panel donors, Figure 5A, Table S1). When 

considering 𝜇10, a single TS was still more performing but its interest was less significant (e.g. for panel 

donors after sixty years, 𝜇10 = 63.699 +/- 1.698 compared to 61.763 +/- 1.298, Figure 5 B, Table S1-S2). 

A single TS also favored the increase in frequency of initially rare favorable alleles introduced by five-

year old donors and twenty-year old donors (e.g. for twenty-year old donors after sixty years, 0.380 

+/- 0.010 compared to 0.361 +/- 0.009, Figure 5C, Table S3). 

        The observed within family prediction accuracies varied depending on the TS considered. For 

twenty-year old donors introduced after bridging, considering a single TS of 4,800 DE+E did not 

significantly improve the prediction accuracy within ExE families compared to using the pure elite TS 

of 3,600 E (𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.73 +/- 0.06 compared to 𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.72 +/- 0.07, Table 2). However, it 

significantly improved the prediction accuracy within introduction DExE families compared to the pure 

elite TS of 3,600 E (𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.77 +/- 0.07 compared to 𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.61 +/- 0.11, Table 2). A single 

TS also slightly but not significantly improved the prediction accuracy within bridging DxE families 

compared to the pure bridging TS of 1,200 DE (𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.78 +/- 0.05 compared to 𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.73 

+/- 0.06, Table 2). Similar observations were made on the other scenarios considering five-year old and 

panel donors. Prediction accuracies were larger in introduction DExE and bridging DxE families with 

older donors, i.e. phenotypically distant to elites, due to larger within family variances (e.g. for DExE 

families 14.43 +/- 4.40 for panel donors, 6.92 +/- 2.10 for twenty-year old donors and 5.00 +/- 1.41 for 

five-year old donors, Table 2). 
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Figure 5 Evolution of the breeding population over generations. Scenarios considering bridging with 

different donors (panel, twenty-year old and five-year old donors) and either a single broad TS (Single 

TS) or two distinct training set for bridging and breeding (default). (A) Mean breeding population 

performance (𝜇), (B) mean performance of the ten best progeny (𝜇10) and (C) frequency of the 

favorable alleles that were rare at the end of burn-in (i.e. 𝑝(0) ≤ 0.05 corresponding on average to 

269.9 +/- 23.6 QTLs). 

Table 2 Within family prediction accuracies (𝑐𝑜𝑟(𝑢, 𝑢̂)) depending on the validation set (VS): elite (ExE), 

introduction (DExE) and bridging (DxE) and the training set (TS) considered: pure elite (E), pure bridging 

(DE) and merged (E+DE). Results are given for scenarios with different donors, from the panel, twenty-

year old and five-year old donors, considering a single TS and prediction accuracies are averaged over 

the ten replicates and all sixty generations. In brackets are given the standard errors averaged over 

sixty generations. 

 

a Prediction accuracies that would have been realized if the breeding (E) or bridging (DE) families had been each 

predicted only by the corresponding training set (to be compared with b). 
b Realized prediction accuracies when considering a single training set (to be compared with a). 
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TS =  
E 

(3,600) 

TS = 
DE 

(1,200) 

TS = 
E+DE 

(4,800) 

TS =  
E 

(3,600) 

TS = 
DE 

(1,200) 

TS = 
E+DE 

(4,800) 

TS =  
E 

(3,600) 

TS = 
DE 

(1,200) 

TS = 
E+DE 

(4,800) 

ExE 
3.76 

(1.17) 
0.69 a 
(0.07) 

0.48 
(0.1) 

0.72 b 
(0.06) 

3.93 
(1.06) 

0.72 a 
(0.07) 

0.47 
(0.10) 

0.73 b 
(0.06) 

4.02 
(1.16) 

0.72 a 
(0.05) 

0.44 
(0.10) 

0.73 b 
(0.05) 

DExE 
5.00 

(1.41) 
0.60 a 
(0.1) 

0.59 
(0.1) 

0.73 b 
(0.07) 

6.92 
(2.10) 

0.61 a 
(0.11) 

0.65 
(0.10) 

0.77 b 
(0.07) 

14.43 
(4.40) 

0.65 a 
(0.12) 

0.78 
(0.07) 

0.86 b 
(0.05) 

DxE 
9.69 

(2.01) 
0.61 

(0.08) 
0.66 a 
(0.08) 

0.73 b 
(0.07) 

18.31 
(3.78) 

0.65 
(0.08) 

0.73 a 
(0.06) 

0.78 b 
(0.05) 

64.15 
(12.89) 

0.74 
(0.07) 

0.82 a 
(0.04) 

0.86 b 
(0.03) 
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        At constant TS size of 3,600 DH, the increase in proportion of DE progeny from 0 to 1/3 in the TS 

increased the prediction accuracy within introduction DExE families (𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.58 +/- 0.02 to 0.73 

+/- 0.01, Figure 6B) while it reduced the prediction accuracy within elite ExE families (𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.70 

+/- 0.01 to 0.65 +/- 0.02, Figure 6A). The TS with 3,000 E and 600 DE, appeared as a suitable 

compromise with within introduction DExE family 𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.70 +/- 0.02 and elite ExE families 

𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.68 +/- 0.01. At constant TS size of 1,200 DH, the TS with 900 E and 300 DE progeny 

performed similarly as the pure bridging TS for prediction within DExE families (𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.63 +/- 

0.03 compared to 0.62 +/- 0.02, Figure 6B) but significantly outperformed the pure bridging TS for 

prediction within elite ExE families (𝑐𝑜𝑟(𝑢, 𝑢̂) = 0.52 +/- 0.04 compared to 0.34 +/- 0.02, Figure 6A). 

The within family variance prediction accuracy showed similar tendencies (Figure 7A-B). The increase 

in proportion of DE progeny from 0 to 1/3 in the TS increased the prediction accuracy within 

introduction DExE families (𝑐𝑜𝑟(𝜎, 𝜎̂) = 0.56 +/- 0.09 to 0.76 +/- 0.07, Figure 7B) while it reduced the 

prediction accuracy within elite ExE families (𝑐𝑜𝑟(𝜎, 𝜎̂) = 0.74 +/- 0.07 to 0.71 +/- 0.08, Figure 7A). 
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Figure 6 Effect of TS composition on intra family prediction accuracies (𝑐𝑜𝑟(𝑢, 𝑢̂)) considering 

genotypes simulated at generations 18, 19, 20 in the scenario Bridging_20y. (A) Mean prediction 

accuracy within 50 elite (ExE) families and (B) mean prediction accuracy within 50 introduction (DExE) 

families. Boxplots represent the results for 20 independent replicates. One can distinguish three 

training set types (left to right): Full training set considering all 3,600 E progeny (Pure E), all 1,200 DE 

progeny (Pure DE) and all 3,600 E + 1,200 DE progeny; Training sets at constant size of 1,200 DH for 

comparison with Pure DE; Training sets at constant size of 3,600 DH and variable proportion of DE 

progeny for comparison with Pure E. The red dotted line represents the median value for Pure E TS.  

 

Figure 7 Effect of TS composition on family variance prediction accuracy (𝑐𝑜𝑟(𝜎, 𝜎̂)) considering 

genotypes simulated at generations 18, 19, 20 in the scenario Bridging_20y. (A) Mean prediction 

accuracy in 50 elite (ExE) families and (B) mean prediction accuracy in 50 introduction after bridging 

(DExE) families. Boxplots represent the results for 20 independent replicates. One can distinguish three 

training set types (left to right): Full training set considering all 3,600 E progeny (Pure E), all 1,200 DE 

progeny (Pure DE) and all 3,600 E + 1,200 DE progeny; Training sets at constant size of 1,200 DH for 

comparison with Pure DE; Training sets at constant size of 3,600 DH and variable proportion of DE 

progeny for comparison with Pure E. The red dotted line represents the median value for Pure E TS. 
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Discussion 

Genetic base broadening with optimal cross selection accounting for within family 

variance 

Despite the recognition of the importance to broaden the elite genetic base in most crops, commercial 

breeders are reluctant to penalize the result of several generations of intensive selection by crossing 

these to unimproved genetic resources. Furthermore, among the large diversity available for genetic 

base broadening (e.g. landraces, public lines, varieties…), the identification of the useful genetic 

diversity to broaden the elite pool is difficult and might dishearten breeders. Consequently, there is a 

need for global breeding strategies that improve genetic resources to bridge the performance gap with 

elites, identify interesting sources of diversity that complement at best the elite germplasm and 

efficiently introduce them into elite germplasm. 

        The identification of genetic resources for polygenic enrichment of the elite pool should account 

for the complementarity between genetic resources and elites as reviewed in Allier et al. (2020). Allier 

et al. (2019b) proposed the Usefulness Criterion Parental Contribution (UCPC) approach to predict the 

interest of crosses between genetic resources and elite recipients based on the expected performance 

and diversity in the most performing fraction of the progeny. The interest of UCPC relies on the fact 

that it accounts for within family variance and selection when identifying crosses. For instance, when 

crossing phenotypically distant parents, e.g. genetic resource and elite recipient, we expect a higher 

cross variance that should be accounted for to properly evaluate the usefulness of the cross (Schnell 

and Utz 1975; Longin and Reif 2014; Allier et al. 2019b). Additionally, we expect the best performing 

fraction of the progeny to be genetically closer to the best parent. This deviation from the average 

parental value should be considered to evaluate properly the genetic diversity in the next generation 

(Allier et al. 2019b; d). Accounting for parental complementarity at marker linked to QTLs also favors 

effective recombination in progeny and breaks negative gametic linkage disequilibrium between QTLs 

(i.e. repulsion), which unleashes additive genetic variance and increases long-term genetic gain (Allier 

et al. 2019c). Therefore, the OCS is particularly adapted to genetic diversity management in pre-

breeding and breeding programs (Akdemir and Isidro-Sánchez 2016; Cowling et al. 2017; Gorjanc et al. 

2018; Allier et al. 2019c). The objective and the originality of this study were to consider UCPC based 

OCS to jointly select donors, introduction crosses and elite crosses to ensure an overall consistency of 

genetic base broadening accounting for the performance and diversity available in both bridging and 

breeding populations.  

Genetic resources and simulated pre-breeding 

Different sources of diversity can be considered by commercial breeders. The most original, but which 

show a large performance gap with elites, are landraces (e.g. DH libraries derived from landraces, 

Strigens et al. 2013; Melchinger et al. 2017; Böhm et al. 2017) and first varieties derived from 

landraces. Since breeding industry is highly competitive, breeders are likely reluctant to introduce 

unselected genetic resources directly into the breeding germplasm despite they might carry favorable 

adaptation alleles to face climatic changes (McCouch et al. 2013; Hellin et al. 2014; Böhm et al. 2017). 

Instead, commercial breeders will prefer to consider elite inbred lines from other than their own 

program (Kannenberg 2001). 
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        In this study, the external breeding program was designed to release every generation several 

improved lines, later considered as donors for genetic base broadening of the commercial breeding 

program. The external program started from a broader genetic diversity than the commercial program 

(on average, He = 0.283 compared to He = 0.133 at the end of burn-in) and was designed to maintain 

higher genetic diversity during selection (on average, He = 0.101 compared to He = 0.014 after sixty 

years). This was done to mimic in a simple way the outcome of the activity of several companies 

conducting separate programs and therefore maintaining a global diversity. The external program can 

also be viewed as a pre-breeding program since it aimed at improving genetic resources to reduce their 

performance gap with elites while maintaining genomewide diversity among the pre-breeding 

population (Figure 1). The situation where the commercial breeding program can access donors 

released twenty years ago mimicked the situation of private lines with expired plant protection act in 

maize (Mikel and Dudley 2006) or old public lines. The situation where the commercial breeding 

program can access donors released five years ago mimicked either donors released by pre-breeding 

programs (e.g. in maize the SeeD project, Gorjanc et al. 2016) or donors released by programs working 

a different genetic basis and targeting different environments (e.g. commercial varieties in inbred 

species accessible for breeding under the UPOV convention, Dutfield 2011). The selection intensity 

was lower in the external breeding than in the commercial breeding programs (10% vs 5% of progeny 

selected, respectively). This was done to compensate the increased response to selection due to the 

higher genetic diversity and ensure that the donors released by the external program underperform 

the commercial breeding elites. It should be noted that donors outperforming elites might be 

encountered in practice when considering elite germplasm as source of diversity, but this situation was 

not considered in this study. In such a situation the direct introduction of donors would be clearly 

preferable. 

Interest of introductions after bridging 

When considering recent and performing donors (five-year old), scenarios with introductions after 

bridging or direct introductions performed similarly. Conversely, for panel and twenty-year old donors, 

introductions after bridging yielded significantly higher mid- and long-term performance compared to 

direct introductions. Note that introductions after bridging can be seen as a specific three-way cross 

with selection of the progeny of the first donor by elite recipient cross followed by crossing the selected 

progeny to a second more recent elite recipient. Assuming no selection between the first cross and 

the second cross, Allier et al. (2019b) predicted that three-way crosses were more prone to deliver 

performing progeny than back-crosses and F1 biparental crosses, when considering donors 

underperforming the elite germplasm. Since donors (D) were less performing than elites, the fraction 

of progeny selected in donor by elite bridging families (DE progeny) carried on expectation less than 

half of donor’s genome (Allier et al. 2019b). Thus, progeny of introduction crosses after bridging (DExE) 

carried on expectation less than one fourth of the donor (D) genome. This D fraction includes favorable 

alleles but also unfavorable alleles brought by linkage drag, which number depends on the donor 

considered. Introductions penalized the mean breeding population performance in the first 

generations (Figure 3A-B). Next generations of recombination and selection partially broke the linkage 

between favorable and unfavorable alleles in introduced regions, resulting in a higher genetic gain than 

in the benchmark (Figure 3A-B) and an increase of the frequency of novel favorable alleles (Figure 3C). 

The more performing the donor, the less unfavorable alleles linked to favorable alleles and the more 
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rapidly novel favorable alleles were introduced and spread in the breeding population (Figure 3C). In 

absence of bridging, the introduction progeny (DxE) carried on expectation one half of the donor 

genome. Consequently, the penalty due to introductions was more important and the conversion into 

genetic gain required more recombination events, i.e. recycling generations (Figure 3A-B). For panel 

donors showing a large performance gap with elites, the direct introductions were not converted into 

genetic performance. The high inter-family additive variance in this scenario (Figure S1 A) reflected the 

structuration of the breeding population into badly performing introduction families and performing 

elite families with only limited gene flow between them. Such behavior might be corrected by adding 

a constraint to force the recycling of introduction progeny in Eq. 1 when donors are too badly 

performing, which requires further investigations. 

Practical implementation in breeding programs 

We considered a commercial breeding program with a genetic diversity at the end of the burn-in 

matching that of an experimental program reported by Allier et al. (2019a). Breeding programs 

ongoing for different species and breeders may present a diversity superior or inferior to the one that 

was simulated, which would make the importance of introductions lower or stronger than in the 

simulated scenarios, respectively. UCPC based OCS for genetic base broadening requires to genotype 

the candidate parents, including breeding material and potential donors, a genetic map and reliable 

marker effect estimates. This information is available in breeding programs that have already 

implemented genomic selection. In this study, we assumed fully homozygous inbred lines but 

considering heterozygote parents in UCPC based OCS is straightforward following the extension of 

UCPC to four-way crosses (Allier et al. 2019b). This is particularly interesting for perennial plants.  

        We proposed to implement bridging at constant cost by splitting the breeding population into a 

small bridging population and a large breeding population. This involves practical changes in the 

breeding organization that remain to be studied. We considered equal family sizes and within family 

selection intensities for bridging and breeding families. However, in practice different within family 

selection intensities can be considered in UCPC based OCS (Appendix B) and one may want to modulate 

the selection intensity among families, e.g. select less intensively in bridging and more intensively in 

breeding families. We could consider the selection intensities as fixed parameters regarding breeding 

objectives or as variable parameters to be optimized. The effect and the optimization of within family 

intensities in bridging and breeding requires further investigations. We considered a selection accuracy 

ℎ = 1 for cross selection, for sake of facility. However, we observed that within family prediction 

accuracies were variable (Table 2, Figure 6). Note that a priori within family accuracy can be accounted 

for in UCPC based OCS (Appendix B). For instance it would give less importance to predicted variance 

for crosses with a priori low within family accuracy. The consequences on short- and long-term UCPC 

based OCS efficiency need to be investigated. In bridging, we gave more importance to performance 

than to diversity (𝛼 = 0.7) when selecting bridging crosses in order to reduce the performance gap 

between donors derived materials and elites. When giving less weight to the performance than to the 

diversity, i.e. 𝛼 = 0.3, we observed non-significant changes on the short- or long-term performance 

for scenarios with five-year and twenty-year old donors and a significant increase of long-term 

performance and novel favorable allele frequency for the scenario with panel donors (Figure S2 A-C). 

This suggested that for unimproved donors, to select too strongly for performance in bridging favors 
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the first elite recipient genome contribution and limits the introduction of novel favorable alleles. 

Further investigations are required to better define this parameter for practical implementation. 

        In scenarios with bridging, we considered by default two distinct bridging and breeding GS models. 

The prediction of elite (ExE) and introduction (DExE) crosses usefulness and the prediction within 

crosses were based on a model trained on the breeding progeny of the three corresponding previous 

generations. Considering a unique genomic selection model trained on both bridging and breeding 

progeny increased the prediction accuracy within introduction families (DExE) (Table 2). This higher 

selection accuracy favored the spreading of the introduced favorable alleles in the breeding population 

and resulted in an increased mid- and long-term performance (Figure 5). Furthermore, compared to 

use two distinct TS, a single TS led to introduce more bridging progeny (DE) for scenarios considering 

good performing donors (five-years old) and less for scenarios considering bad performing donors 

(twenty-years old) (Figure S3 A). Also, as we likely selected more accurately the introduction crosses 

(DExE) with a single TS, there was an increase in the proportion of those that contributed to the ten 

best lines, especially for twenty-year old and panel donors (Figure S3 B). 

        It is well known that the prediction accuracy is increased for larger TS (Hickey et al. 2014). At 

constant TS size, increasing the proportion of bridging progeny (DE) up to one third in the TS 

significantly increased the family variance prediction accuracy (𝑐𝑜𝑟(𝜎, 𝜎̂)) and within family prediction 

accuracy (𝑐𝑜𝑟(𝑢, 𝑢̂)) in introduction families (DExE). Conversely, these higher proportions of bridging 

progeny (DE) in the TS significantly decreased 𝑐𝑜𝑟(𝜎, 𝜎̂) and 𝑐𝑜𝑟(𝑢, 𝑢̂) in elite families (ExE). The 

optimal balance between introduction and elite family prediction accuracies is likely data dependent 

as observed when considering genotypes and phenotypes simulated in different generations (Figure 

S4). For instance, considering later generations, a large proportion of DE in the TS penalized less the 

within elite prediction accuracy (Figure S4 C). The reason being that later breeding generations get 

closer to the external program germplasm (Figure 4). The optimal balance between bridging and 

breeding progeny in the training set might be defined using an optimization criterion such as the 

CDmean (Rincent et al. 2012) extended to account for linkage disequilibrium as suggested by Mangin 

et al. (2019).  

Outlooks 

We considered an inbred line breeding program corresponding to selecting lines on per se values for 

line variety development or on testcross values with fixed tester lines from the opposite heterotic pool 

for hybrid breeding. In this case, the use of testcross effects estimated on hybrids between candidate 

lines and tester lines is straightforward. The extension to hybrid reciprocal breeding is of interest for 

genetic broadening in several species such as maize and hybrid wheat (Longin and Reif 2014). In this 

context it is possible to account for the complementarity between heterotic groups in UCPC based OCS 

to complementarily enrich and improve both pools, ensuring a consistency of the hybrid program. This 

would require to include dominance effects in UCPC based OCS.  

        We considered a single trait selected in both the external and the commercial breeding programs 

in the same population of environments for a total of eighty years. These assumptions should be 

relaxed in further simulations. Firstly, it is well recognized that genetic resources suffer agronomic 

flaws (e.g. lodging, Tallury and Goodman 2001; Longin and Reif 2014) or miss adaptation (e.g. flowering 

time) that should be accounted for during pre-breeding and introduction in breeding. In such a multi-

trait context, the multi-objective optimization framework proposed in Akdemir et al. (2019) can be 
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adapted to UCPC based OCS. Secondly, in practice several public pre-breeding programs or competitor 

programs can be considered as sources of candidate donors for genetic base broadening. These 

programs likely did not select for the same target environments and are themselves continuously 

enriched in new allelic variation. Thirdly, in a context of climate change and rapid evolving agricultural 

practices, breeding targets are expected to change (e.g. emerging biotic or abiotic stresses). 

Considering a more realistic context, where donors are released by different programs selecting in 

different environments and for different traits changing over time, likely makes the interest of 

maintaining genomewide genetic diversity through genetic base broadening even more important 

than highlighted in this study.  
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Appendix A 

Simulation of progeny genotypes and phenotypes 

Doubled haploid (DH) progeny genotypes were simulated considering meiosis events without 

crossover interference. The number of chiasmata was drawn from a Poisson distribution with 𝜆 equal 

to the chromosome length in Morgan, and crossover positions were determined using the 

recombination frequency obtained using the Haldane mapping function (Haldane 1919). 

For phenotyping, we considered environmental effects sampled from a normal distribution of mean 

zero and variance 25 and did not consider genotype by environment interactions. Each generation was 

evaluated in 𝑁𝑙𝑜𝑐 = 4 locations in one year, i.e. four environments. Environmental errors were 

sampled from a normal distribution with mean zero and an error variance 𝜎𝜖
2 defined by the initial 

repeatability in the founder population 𝑟 =
𝜎𝐺
2

𝜎𝐺
2+𝜎𝜖

2 = 0.40. This led to a heritability in the founder 

population of ℎ2 =
𝜎𝐺
2

𝜎𝐺
2+𝜎𝜖

2/𝑁𝑙𝑜𝑐
= 0.73 and ℎ2 = 0.42 at the end of burn-in in commercial breeding 

scenarios. 

Genomewide prediction model 

The genomic estimated breeding values of progeny (GEBV, 𝑢̂) were estimated in Model 1 S1 fitted 

using mixed model software blup-f 90 (Misztal 2008) with AI-REML variance component estimates: 

𝒀 = 𝟏𝜇 + 𝑬𝜷𝑬𝒏𝒗 +𝑾𝒖+ 𝝐, (Model 1 S1) 

where 𝒀 is the vector of phenotypic values, 𝜇 is the intercept, 𝑬 is the incidence matrix for 

environmental effects, 𝜷𝑬𝒏𝒗 is the vector of environmental fixed effects, 𝑾 is the incidence matrix of 

individual breeding value random effects 𝒖, 𝒖 ∼ 𝑁(𝟎, 𝜎𝐺
2𝑮) is the vector of breeding value random 

effects with 𝑮 the genomic relationship matrix and 𝝐 is the vector of independent residual random 

terms 𝝐 ∼ 𝑁(𝟎, 𝜎𝜖
2𝑰). 𝑮 was estimated using the 2,000 non causal loci: 

𝑮 =
𝒁𝒁′

𝑡𝑟(𝒁𝒁′)/𝑛
 

where 𝒁 contains the centered allele counts, with elements computed as 𝑥𝑖𝑗 + 1 –  2𝑝𝑗, where the 

element 𝑥𝑖𝑗 ∈ {−1,1} is the genotype for individual 𝑖 at non causal locus 𝑗 and 𝑝𝑗  is the frequency of 

the allele for which the homozygous genotype is coded 1 at non causal locus 𝑗. 𝑡𝑟(𝒁𝒁′) is the trace of 

𝒁𝒁′ and 𝑡𝑟(𝒁𝒁′)/𝑛 forces the diagonal of 𝑮 to be 1 on average (Legarra et al. 2009; Forni et al. 2011). 

Estimated marker effects 𝜷̂ were obtained by back-solving: 𝜷̂ = 𝒁′(𝒁𝒁′)−𝟏𝒖̂ (Wang et al. 2012). The 

prediction accuracy was defined as 𝑐𝑜𝑟(𝒖, 𝒖̂) with 𝒖 and 𝒖̂ the vectors of true breeding values and 

genomic estimated breeding values, respectively. 
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Appendix B 

We applied the Usefulness Criterion Parental Contributions approach (UCPC) proposed by Allier et al. 

(2019b) and further extended in Allier et al. (2019c) to evaluate the interest of a set of two-way crosses 

regarding the performance and the diversity in the best fraction of the progeny of each cross. 

Prediction of the mean expected breeding value and parental contributions in the 

selected fraction of progeny 

Considering two inbred lines 𝑃1 and 𝑃2 and the cross 𝑃1 x 𝑃2 and (𝒙1, 𝒙2)
′ denotes their (2 x 𝑚)-

dimensional genotyping matrix at the 𝑚 = 2,000 SNP markers. 𝒙𝒑 denotes the (𝑚 x 1)-dimensional 

genotype vector of parent 𝑃𝑝∈{1,2} with the 𝑗𝑡ℎ element coded as 1 or −1 for the genotypes AA or aa at 

QTL 𝑗. Following Lehermeier et al. (2017), the DH progeny mean and progeny variance of the breeding 

values in the progeny before selection can be computed as: 

𝜇̂𝑇 = 0.5 (𝒙′1𝜷̂ + 𝒙
′
2𝜷̂), (Eq. 1a) 

𝜎̂𝑇
2 = 𝜷̂′ 𝚺 𝜷̂, (Eq. 1b) 

where 𝜷̂ is (𝑚 x 1)-dimensional vector of estimated marker effects and 𝚺  is the (𝑚 x 𝑚)-dimensional 

variance covariance matrix of marker genotypes in DH progeny defined in Lehermeier et al. (2017). We 

define the (𝑚 x 1)-dimensional vector 𝜷𝐶1 to follow 𝑃1 genome contribution to progeny as 𝜷𝐶1 =
𝒙1−𝒙2

(𝒙1−𝒙2)
′(𝒙1−𝒙2)

. The mean and variance of 𝑃1 contribution in the progeny before selection are 

computed as:  

𝜇𝐶1 = 0.5 (𝒙′1𝜷𝐶1 + 𝒙′2𝜷𝐶1 + 1), (Eq. 2a) 

𝜎𝐶1
2 = 𝜷𝐶1

′  𝚺 𝜷𝐶1. (Eq. 2b) 

The progeny mean for 𝑃2 contribution is then 𝜇𝐶2 = 1 − 𝜇𝐶1. 

Following Allier et al. (2019b), the covariance between the breeding values and 𝑃1 contribution in 

progeny is:  

𝜎̂𝑇,𝐶1 = 𝜷̂′ 𝚺 𝜷𝐶1. (Eq. 3) 

The expected mean breeding value of the selected fraction of progeny, i.e. usefulness criterion (Schnell 

and Utz 1975), of the cross 𝑃1 x 𝑃2 is:  

𝑈𝐶̂(𝑖,ℎ) = 𝜇̂𝑇 + 𝑖ℎ𝜎̂𝑇, (Eq. 4) 

where 𝑖 is the within family selection intensity and ℎ the within family selection accuracy. The 

correlated responses to selection on 𝑃1 and 𝑃2 contributions to the selected fraction of progeny are: 

𝑐̂1
(𝑖,ℎ) = 𝜇𝐶1 + 𝑖ℎ

𝜎̂𝑇,𝐶1

𝜎̂𝑇
 and 𝑐̂2

(𝑖,ℎ) = 1 − 𝑐̂1
(𝑖,ℎ). (Eq. 5) 
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Optimal cross selection accounting for within family variance 

Considering 𝑁 homozygote candidate parents, 𝑁(𝑁 − 1)/2  two-way crosses are possible. We define 

a crossing plan 𝒏𝒄 as a set of |𝑛𝑐| crosses out of possible two-way crosses, giving the index of selected 

crosses, i.e. with the 𝑖𝑡ℎ  element 𝑛𝑐 (𝑖) ∈ [1, 𝑁(𝑁 − 1)/2]. The (𝑁 x 1)-dimensional vector of 

candidate parents estimated contributions in the selected fraction of progeny of each cross 𝒄̂(𝑖,ℎ) is:  

𝒄̂(𝑖,ℎ) =
1

|𝑛𝑐|
(𝒁𝟏𝒄̂𝟏

(𝑖,ℎ)
+ 𝒁𝟐𝒄̂𝟐

(𝑖,ℎ)
), (Eq. 6) 

where 𝒁𝟏 (respectively 𝒁𝟐) is a (𝑁 x |𝑛𝑐|)-dimensional design matrix that links each 𝑁 candidate 

parent to the first (respectively second) parent in the set of crosses 𝒏𝒄, 𝒄̂𝟏
(𝑖,ℎ) (respectively 𝒄̂𝟐

(𝑖,ℎ)) is a 

(|𝑛𝑐| x 1)-dimensional vector containing the estimated contributions of the first (respectively second) 

parent to the selected fraction of the progeny of the crosses in 𝒏𝒄.  

The expected performance 𝑉(𝒏𝒄) for this set of two-way crosses is defined as the expected mean 

performance of the selected DH progeny, i.e. usefulness criterion:  

𝑉̂(𝑖,ℎ)(𝒏𝒄) =
1

|𝒏𝒄|
 ∑ 𝑼𝑪̂(𝑖,ℎ)(𝑗)𝑗∈𝒏𝒄 . (Eq. 7) 

The constraint on diversity 𝐷̂(𝑖,ℎ)(𝒏𝒄) in the selected progeny is: 

𝐷̂(𝑖,ℎ)(𝒏𝒄) = 1 − 𝒄̂(𝑖,ℎ)
′
𝑲 𝒄̂(𝑖,ℎ), (Eq. 8) 

where 𝑲 is the (𝑁 x 𝑁)-dimensional identity by state (IBS) coancestry matrix at markers between the 

𝑁 candidates. Allier et al. (2019c) showed that 𝐷̂(𝑖,ℎ)(𝒏𝒄) is a good proxy of the genomewide diversity 

in the selected fraction of progeny 𝐻𝑒(𝑖,ℎ) =
1

𝑚
∑ 2𝑝𝑗

(𝑖,ℎ)(1 − 𝑝𝑗
(𝑖,ℎ))𝑚

𝑗=1   where 𝑝𝑗
(𝑖,ℎ) is the frequency 

of the genotypes AA at marker 𝑗 in the selected fraction of progeny. 
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There is an increasing awareness that plant breeding programs have to move from short-term to long-

term perspectives in order to cope with future challenges. The advent of high density genotyping has 

opened new perspectives for breeding quantitative traits including genetic diversity assessment, 

genomic variance partitioning and genomic prediction of the genetic merit of individuals and parental 

crosses. The main objectives of this thesis were to develop indicators to assess plant breeding 

programs past efficiency and sustainability, and to develop strategies that balance the need for short-

term genetic gain with that of maintaining and introducing diversity to enable long-term response to 

selection. In the next section the five chapters of this thesis are discussed and put into perspectives. 

For the sake of continuity of the general discussion, some chapters have been merged regardless of 

the chronology of publications. In the last section some perspectives for crops diversity management 

are discussed. 

Contributions to diversity management 

Diagnosis of breeding programs 

Quantitative genetics theory provides breeders with the factors influencing short- and long-term 

breeding success. In chapter 1 (Allier et al. 2019a), we proposed indicators based on quantitative 

genetics theory to quantify past breeding program efficiency and to forecast its near future evolution 

assuming past tendencies persist. These indicators are easily implemented and take advantage of the 

increasing amount of phenotyping and genotyping information available in most crop breeding 

programs that use genomic selection (Heslot et al. 2015; Voss-Fels et al. 2019). Phenotypic data can 

be used to estimate realized genetic gain and additive genetic variance evolution over breeding 

generations. The additive genetic variance trend enables to project the future response to selection 

on targeted traits based on response to selection theory models (Lush 1937; Robertson 1960). 

Complementarily, genotypic data inform about the genetic diversity without a priori on the trait(s) 

considered, i.e. the “neutral” diversity, which is of future importance to address yet unknown breeding 

targets raising in a context of societal and climatic changes (McCouch et al. 2013). In the illustrative 

hybrid maize breeding program considered, both breeding populations showed a significant positive 

genetic gain but contrasted evolutions of genetic variance and “neutral” genetic diversity, reflecting a 

complex open breeding system. In particular, we found in the Dent pool some large genomic regions 

with a very low diversity. As observed in Gerke et al. (2015), these regions were mainly located in low 

recombining pericentromeric regions. The different nonexclusive forces that can lead such hitchhiking 

were discussed in chapter 1, including founder effect, genetic drift and selection of favorable 

haplotypes. These regions raise several concerns: Do we really need to increase allelic diversity and/or 

recombination in these regions? As suggested in Gerke et al. (2015) the fixation of these regions may 

be important for group complementarity. This requires further investigations but the large size of low 

diversity and low recombining regions likely suggests that they may be composed of both favorable 

and unfavorable segments fixed by linkage drag. In order to test this assumption, one could think of 

haplotypic visualization approaches developed in chapter 2 (Allier et al. 2020) using marker effects 

estimated on a broad panel where these regions are segregating.  

Beyond estimating separately additive genetic variance and “neutral” genetic diversity, genomic 

regression models enable the estimation of the components of the additive genetic variance 

genomewide and per chromosome. The additive genetic variance can indeed be decomposed into the 

additive genic variance that corresponds to the sum of the additive variance at individual QTLs under 

the assumption of linkage equilibrium between QTLs and the covariance between QTLs (Bulmer 1971; 
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Lynch and Walsh 1998; Gianola et al. 2009; Lehermeier et al. 2017a). As expected under directional 

selection, negative covariances were observed in all chromosomes and captured between 17-63% of 

the additive genic variance. Based on the proportion of additive genic variance hidden by repulsion 

and the genic variance for each chromosome, we proposed to draw fine scale strategies to manage 

and increase the potential response to selection per chromosome. However, strategies to increase 

genic variance or unleash variance by recombination in specific chromosomes are far from evident. 

One solution would involve the selection of breeding crosses accounting for parental complementarity 

at markers linked to QTLs in these specific regions. As illustrated by simulations in chapter 4 (Allier et 

al. 2019c), optimal cross selection (OCS) favors effective recombination events and unleashes parts of 

the hidden additive genic variance into additive genetic variance. Alternatively, modern plant breeding 

biotechnologies offer new opportunities to modify targeted loci and change recombination landscape 

and/or increase recombination, as it will be discussed in the last section. 

 

We considered a private early maize breeding program as an application case but the advances in 

genotyping in most crops and animal species offer the opportunity to extend the use of global 

indicators to different breeding programs and species. Proposed indicators can be improved in 

different ways. For instance, we did not consider pedigree information in the analysis of genetic gain 

and additive genetic variance but, if of sufficient depth and quality, pedigree might be accounted for 

to better model the additive genetic component. We also considered a maize genotyping array of 50k 

SNPs (Ganal et al. 2011) as genotyping arrays are common routine genotyping technologies used in 

breeding companies (e.g. Van Inghelandt et al. 2010). However, such genotyping technology focuses 

on common variants only, which limits genetic diversity evaluation and management. This is referred 

to as the ascertainment bias caused by the SNP discovery process in which a small number of 

individuals are used in the discovery panel and by the selection of SNP with equilibrated frequencies 

(Albrechtsen et al. 2010). Alternatively, genotyping by sequencing (GBS, Elshire et al. 2011) that 

discovers and genotypes both common and rare variants, provides a robust diversity estimate with 

much reduced ascertainment bias (Heslot et al. 2013). For instance, Eynard et al. (2016) highlighted 

the interest of using common and rare SNP variants for genetic diversity quantification. The authors 

observed that whole-genome sequence revealed considerable losses of genetic diversity for rare 

variants that were unperceivable considering 50k SNP bead chip in cattle. GBS is also highly relevant 

for curating, identifying and harnessing variability in gene banks (Kilian and Graner 2012; Sehgal et al. 

2015; Yu et al. 2016). Finally, sequencing technologies would enable to identify structural variations 

such as presence/absence and copy number variation (Springer et al. 2009; Alkan et al. 2011) that 

represent diversity untapped by SNP bead chips. In maize, GBS approaches are based on cost effective 

low depth sequencing of individuals (<1X genome coverage) and generate numerous missing data that 

need to be further imputed (e.g. up to 80% of missing data accurately imputed in Torkamaneh and 

Belzile 2015), which raises issues on the accuracy of imputation. One can expect that rapid progress in 

sequencing and the availability of large sequence database will alleviate this limitation for most crops. 

 

We therefore believe that in practice such indicators of the genetic variances and diversity should be 

considered in routine in breeding programs to ensure the consistency between breeding long-term 

strategy and the breeding population. For instance, a joint reduction of the additive genetic variance 

and genetic diversity over time should indicate that a better management of the intrinsic diversity and 

introductions of extrinsic diversity is required. Waiting for a slowdown in genetic gain would be risky 

for genetic base broadening that usually takes several years or decades to be efficient. Alternatively, 
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sufficient additive genetic variance and genetic diversity stable over time would suggest that an 

optimization of the intrinsic diversity management is sufficient. In the following, we discuss the 

chapters 2, 3, 4 and 5 considering first that intrinsic genetic diversity is sufficient and then that genetic 

base broadening is needed. 

Optimization of mating design 

First, let us assume the indicators proposed in chapter 1 suggest that the genetic diversity is not 

limiting regarding the short- and long-term breeding objectives. In this context, the main breeder’s 

objective is to efficiently convert the intrinsic diversity into long-term genetic gain while not 

compromising the variety performance at short-term. As suggested in Bernardo (2003) and Lado et al. 

(2017), cross selection is one of the most important decision in breeding. The ideal mating plan being 

the crosses that provide superior progeny performance and enough diversity to maintain genetic gain. 

Consequently, a shift should operate from the paradigm of recycling and crossing super elite lines 

together to the recognition of the interest of less performing but more complementary parents that 

will generate a longer term genetic variation. 

Different predictive tools have been proposed to support crop breeders with the implementation of 

their mating design. First, the optimal cross selection (OCS) has proven to be efficient to convert 

genetic diversity into long-term genetic gain (e.g. Akdemir and Isidro-Sánchez 2016; De Beukelaer et 

al. 2017; Gorjanc et al. 2018). When constraining on the genomic relationship matrix, OCS accounts 

indirectly for parental complementarity at neutral markers assuming independence of the loci and 

tends implicitly to favor crosses with higher Mendelian segregation variance. The usefulness criterion 

(UC) of a cross explicitly accounts for Mendelian segregation variance specific to the targeted trait(s). 

The concept of UC is quite ancient (Schnell and Utz 1975) but has long suffered the absence of accurate 

predictors of within cross variance. With recent advances in this domain the UC is more and more 

implemented in crops (Lehermeier et al. 2017b), and was also found as being of interest in animal 

breeding (Segelke et al. 2014; Bonk et al. 2016; Bijma et al. 2018). In chapter 3 (Allier et al. 2019b), we 

proposed to consider a multivariate UC that predicts the expected performance in the best fraction of 

progeny and the parental contributions (PC) to the best fraction of progeny, namely the UCPC. We also 

extended the algebraic formulas for multi-parental crosses implying up to four parents, i.e. biparental 

crosses between heterozygote phased individuals which enables considering three-way or four-way 

crosses that are frequent in annual plants but also outbred animal or perennial plants. In chapter 4 

(Allier et al. 2019c), we then proposed the UCPC based OCS that differs from OCS in the sense that the 

parental complementarity for the traits considered is explicitly accounted for with consideration of 

linkage map and linkage disequilibrium. Furthermore, the next generation diversity at the whole 

genome level, which is derived from parental contributions, is optimized while anticipating the effect 

of within family selection. Simulations in chapter 4 highlighted the importance to balance short-term 

performance and genetic diversity using OCS methods to more efficiently convert genetic diversity into 

genetic gain and maximize long-term performance. Constraining on diversity had a cost for short-term 

variety release compared to UC that might dishearten commercial breeders. Considering explicitly 

within family variance and selection in UCPC based OCS limited this penalty at short-term and yielded 

higher long-term performance. This involves crossing complementary parents to favor effective 

recombination events between complementary parental haplotypes. As a result, the recombination 

unleashes parts of the additive genic variance captured by the build-up of negative covariances 

observed in chapter 1 (Bulmer 1971; Rasmusson and Phillips 1997; Bijma et al. 2018).  
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In practice, UCPC based OCS can be implemented in routine breeding programs to help breeders with 

cross selection regarding their short- and long-term objectives. UCPC based OCS requires parental 

genotype information, a genetic map, estimated marker effects and an optimization algorithm. We 

considered common SNP variants as markers but GBS data can be used to compute genomic 

relationship matrix between parents (Eynard et al. 2015, 2016). For instance, Eynard et al. (2016) 

observed that considering common and rare variants to estimate genomic relationship matrix in 

optimal contribution selection slightly reduced the loss of rare variants, while using 50k SNP bead chip 

data was sufficient to conserve common variants. 

In chapter 4, since we aimed at comparing different crossing strategies, we considered a simplistic 

linear trajectory of diversity over generations and a fixed selection intensity within each family. More 

complex strategies can be applied but were not tested. The parametrization of the UCPC based OCS 

strategy regarding short- and long-term objectives (e.g. the constraint on diversity, within family 

selection intensity) is complex and requires quantified breeding objectives (e.g. targeted diversity, 

targeted annual genetic gain). The optimal parametrization of such an approach could be done using 

simulations based on breeding germplasm genotypes and assuming estimated marker effects as true 

QTL effects, i.e. assuming reliable estimates and neglecting the fact that estimated marker effects are 

allele frequency dependent. 

We evaluated the interest of UCPC based OCS in an inbred plant breeding program and discussed its 

extension to crosses between heterozygote individuals. This is interesting for animal breeders and 

plant breeders working with heterozygous individuals (e.g. in perennial species). It also extends the 

use of UCPC based OCS to the two-part GS breeding program proposed by Gaynor et al. (2017) and 

Hickey et al. (2017). The authors proposed to distinguish the population improvement component to 

develop improved germplasm and the product development component to fix and identify new inbred 

parents for hybrids. In the population improvement component, the most performing progeny of 

parental crosses are selected and recycled before fixation to generate the next population 

improvement generation. In this context, Gorjanc et al. (2018) observed that OCS enabled optimal 

management and exploitation of population improvement germplasm and we can conjecture an 

additional gain to use UCPC based OCS.  

Furthermore, as heterozygous individuals are conceptually crosses between two phased parental 

gametes, UCPC can be useful to select individuals accounting for the Mendelian segregation in their 

gametes (Segelke et al. 2014; Bonk et al. 2016; Bijma et al. 2018). For instance some individuals 

produce more variable progeny than others regardless of the second parent, i.e. more likely 

outstanding progenies of agricultural interest. In a breeding perspective, one may want to select 

individuals maximizing an index between their GEBV and expected gametic variances (Bijma et al. 

2018). On the contrary, in a farmer perspective, one may select for high individual GEBV but low 

gametic variance to have more homogenous progeny (e.g. pig birth-weight) and simplify herd 

management (Cole and VanRaden 2011; Segelke et al. 2014). Such a balance between breeding and 

production objectives should also be considered for open pollinated plant species were the breeding 

population is also the production population (e.g. participatory breeding of maize landraces in 

developing countries, Bellon et al. 2003). 
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Genetic base broadening 

Let us assume now, that the indicators proposed in chapter 1 suggest that the genetic diversity is 

suboptimal regarding the long-term breeding objectives. A first step would consist in characterizing 

and identifying genetic resources for genetic base broadening using multi-environment trials. In 

chapter 2 (Allier et al. 2020), we reviewed, proposed and compared different criteria to identify genetic 

resources that can complement an elite population and that can compensate their low mean 

performance by an increased genetic variance when crossed to elites (Longin and Reif 2014). The 

different criteria account differently for parental complementarity at individual loci or haplotype 

segments. Criteria were parameterized to consider more or less recombination events and 

consequently evaluate the interest of genetic resources at more or less long-term when crossed to 

elites. Hence, the optimum parametrization cannot be provided and depends on the breeder’s 

objectives. We observed that a genomewide prediction model trained on a collaborative panel 

including old material and elite material (Amaizing dent collaborative panel, Rio et al. 2019) had a 

relevant predictive ability on a large elite private material. This suggests that genomic predictions 

calibrated on such a collaborative panel can be used to identify interesting sources of diversity in the 

panel. This strategy might be extended to other collaborative diversity panels, libraries of DH lines 

derived from landraces (Strigens et al. 2013; Melchinger et al. 2017; Böhm et al. 2017; Hölker et al. 

2019) or gene banks in other species to evaluate non phenotyped genetic resources as proposed in Yu 

et al. (2016) and Crossa et al. (2016). Methodological developments in chapter 3 could enrich the 

proposal made in chapter 2 in complementary ways. First, it would allow considering multi-parental 

crosses between genetic resources and elites which appeared to be of interest in case of low 

performing genetic resources (Allier et al. 2019b). UCPC would also make it possible to evaluate the 

genetic resources that balance performance and originality (as implemented in chapter 5 in case of 

two way crosses). Finally, UCPC enables consideration of parental contributions in specific regions 

under the assumption that a sufficient number of loci are independently segregating in these regions 

to ensure the normality of the trait. Thus, UCPC could be used to identify donors that enrich specific 

regions in diversity, such as regions identified in chapter 1. 

Finally in chapter 5, we evaluated strategies inspired from Simmonds (1993) for recurrent 

introductions in a simulated commercial breeding program. We considered different types of donors 

with variable performance gap with elites and compared two introduction strategies: direct 

introductions or indirect introductions in the breeding population. The latter involves a buffer 

population, namely bridging population, which bridges the most complementary genetic resources 

and elites before introduction in the breeding population. We considered the UCPC based OCS to 

manage recurrent genetic base broadening. In this context, an OCS holistic approach, where bridging 

crosses, introduction crosses and elite crosses are jointly optimized, ensures an overall consistency of 

the genetic base broadening strategy. We considered the UCPC based OCS to maximize genetic 

performance while maintaining genetic variation constant thanks to the intrinsic variability and 

introductions of extrinsic variability. Simulation demonstrated that recurrent introductions of pre-

improved genetic resources (i.e. through pre-breeding or a minima bridging) can increase the genetic 

mid- and long-term genetic gain while maintaining genomewide genetic diversity constant. The less 

performant the introduced material, the more important was the short-term penalization of variety 

release. We also suggest to consider marker effects estimated on a large and broad TS that blends 

elites and progeny of elite by genetic resource crosses in order to balance the prediction accuracy in 

elite crosses and in introduction crosses. 
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Further investigations might be considered to complete this work. For instance, we discussed in 

chapter 2 the practical interest of public-private collaborative pre-breeding projects. However, further 

investigations are required to identify key parameters of successful public-private diversity panels, 

including the origin of genetic resources, their improvement and the relative proportion of elite 

proprietary germplasm. Furthermore, simulations can also be performed to validate the interest of 

criteria proposed in chapter 2 and evaluate the sensitivity of criteria accuracy to different training set 

compositions. In chapter 5, we simulated a breeding program with a reduced genetic diversity at the 

end of burn-in to be in the situation where genetic base broadening is required. In practice, the need 

of broadening genetic diversity might be variable depending on the adequacy of intrinsic diversity 

diagnosis and short- and long-term breeding objectives. We also assumed absence of mutations, 

epistasis and a single-trait breeding target that was constant during sixty years. Mutations and epistasis 

might reduce the importance of genetic base broadening by releasing additive genetic variance over 

generations as discussed in the next section. In a context of climatic and social expectation changes 

the breeding target is likely multi-trait and changing over time. Coupling different climatic scenarios 

with the simulation of a breeding program with a multi-trait target could be interesting to evaluate the 

interest of genetic base broadening in a more complex context. We believe that the need for genetic 

base broadening is likely more valuable than highlighted in chapter 5 to be able to address yet 

unknown breeding objectives. 

 

Altogether, this study supports breeders with tools to evaluate, manage and reveal intrinsic genetic 

variation, to identify and introduce extrinsic variation and efficiently convert genetic variation into 

genetic gain. Such quantitative genetics tools, among others, will support breeders toward integrated 

and sustainable breeding programs. In the next section we will discuss the importance of mutation and 

epistasis in open breeding populations. Then, we discuss the use of biotechnologies to fasten genetic 

base broadening in crops. 

 

Perspectives 

Is continued crop improvement sustainable? 

In long-term simulations of chapter 4, nearly all the additive genetic variance was eroded and genetic 

merit plateaus were reached in most scenarios after sixty years. Other long-term simulation studies in 

plants also reached similar results (e.g. De Beukelaer et al. 2017; Gorjanc et al. 2018). Experimentally, 

Weber (2004) observed a selection plateau under directional selection in a large population of 

Drosophila. On the opposite, continued genetic gains are observed in most crops (e.g. in maize Duvick 

2005, in wheat Tadesse et al. 2019) and the long-term Illinois divergent selection experiment for maize 

oil and protein content showed continuous genetic gains for hundred generations (Dudley and Lambert 

2004). This raises questions about the sustainability of crop breeding but also the realism of the genetic 

model assumed in most long-term simulation studies. Several nonexclusive reasons may explain why 

continued improvement is possible in crops contrary to what simulations appear to claim. 

Firstly, in simulations different approaches are compared for their efficiency to convert intrinsic 

variability into genetic gain for a clear breeding target trait (e.g. De Beukelaer et al. 2017; Gorjanc et 

al. 2018; Allier et al. 2019c). However, in practice commercial breeding programs are often more 

complex than simulated ones and extrinsic variation is used to maintain the response to selection (e.g. 
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Feng et al. 2006; Allier et al. 2019a; Bruce et al. 2019). Indeed, allowing for extrinsic variation 

introduction into the breeding population increased the selection limit and delayed the selection 

plateau in simulations (chapter 5). Furthermore, the breeding target is likely implying multiple traits 

showing different genetic (co)variances and changing over generations. Thus, selection efforts are 

spread over variable traits and it is less likely that breeders completely erode the additive genetic 

variation underlying the targeted traits in the breeding population. 

Secondly a crop’s genome is dynamic and new variations arise every generation while most simulated 

breeding programs assumed the absence of mutations. In maize the mutation rate is about 9-20 10-9 

mutations per base pair per generation (Kremling et al. 2018). For a genome size of 2.4 Gb, this 

represents 20 to 50 mutations per generation of which most are neutral. Estimates of additional 

mutational variance per generation for a range of species and quantitative traits averaged on 0.1% of 

the environmental variance (Houle et al. 1996; Keightley 2004; Hill 2016). Despite mutation effects 

seem negligible, the multi-generation Illinois maize kernel content selection experiment (Dudley and 

Lambert 2004) and the long-term divergent selection experiment for flowering time in maize inbred 

lines (Durand et al. 2010, 2015) tend to nuance this a priori. In the Illinois experiment, lines have been 

selected for oil and protein content over hundred generations with variability still sufficient to achieve 

progress from selection, which can be explained only by mutations (Walsh 2004). In the divergent 

flowering time experiment, continued response to selection is observed after more than seventeen 

generations, which can be explained mainly by mutations following a phase of fixation of residual 

heterozygosity (Durand et al. 2010, 2015). 

The third complementary explanation is that epistasis is neglected in most long-term simulation 

studies. Physiological epistasis arises from pleiotropies and interactions in metabolic pathways. 

Statistical epistasis is the statistical contribution of the interactions between loci to genetic variance 

and therefore depends on allelic frequencies (Lynch and Walsh 1998; Paixão and Barton 2016). As a 

consequence, in a finite population, additive by additive epistatic variance tends to be lost by genetic 

drift but is also partly converted into additive variance (Goodnight 1988), which maintains the response 

to selection (Barton and Turelli 2004; Carlborg et al. 2006; Paixão and Barton 2016; Barton 2017; Hill 

2017). In the extreme regime where genetic drift drives allelic frequency changes, as it can be 

encountered in case of strong selection on a large number of loci in a finite population, Paixão and 

Barton (2016) observed that the total response to selection mostly depends on the initial standing 

variation. In the opposite regime, where directional selection drives the allelic changes in frequency, 

the authors observed that the total response to selection is greatly impacted by the conversion of 

epistatic to additive variance when initially neutral or deleterious alleles become favorable as the 

genetic background changes. Furthermore, mutations might present interactions with the genetic 

background (e.g. Durand et al. 2015) so that it is difficult to disentangle mutation from epistatic effects 

on long-term response to selection. In practice, which regime may correspond to breeding 

populations? The Iowa hybrid maize selection experiment (Gerke et al. 2015) showed that while most 

of allelic changes can be attributed to genetic drift, some regions showed signatures of selection, and 

seemed to indicate an intermediate regime. According to Hill (2017), the contribution of epistatic 

variance conversion to additive variance is likely more important than contribution of mutations in 

long-term experiments. However, as concluded by Hill (2017): “It is not obvious that we should be 

trying explicitly to exploit it by changing the focus of the selection to the epistasis itself. It seems better 

to concentrate on utilizing additive variance, and hope for a bonus from converting epistatic variance”. 

 



General discussion and perspectives 

123 
 

Simulations not accounting for mutations or epistasis might be pessimistic regarding the sustainability 

of crop improvement. Nevertheless, simulation results obtained in chapter 4 and chapter 5 provide 

important information on the optimal diversity management strategies. We can draw the following 

general recommendations. One should avoid too low genetic diversity in breeding populations to (i) 

maximize the conversion of additive genetic variance into gain and (ii) to hope for a bonus from 

converting epistatic variance in additive variance. One needs to evaluate frequently the additive 

genetic variance in the breeding population to assess if mutational and epistatic bonus are sufficient 

regarding long-term objectives. One needs to anticipate (e.g. participate to collaborative pre-breeding 

projects, routinely evaluate some available genetic resources) and introduce genetic resources to 

prevent a potential decrease of the additive genetic variance.  

Biotechnologies for genetic base broadening 

We highlighted in chapter 1 the interest in increasing genetic diversity in specific chromosomic regions 

and in favoring recombination events to unleash genetic variation captured by repulsion between 

causal loci. Conventional solutions involve the selection of crosses between complementary parents 

in these regions using for instance UCPC based OCS (chapter 3 and chapter 4). In chapter 5, we 

highlighted the interest of recurrent introductions of polygenic variation in breeding population on 

mid- and long-term genetic gain. We observed in our simulations, similarly as in chapter 3, that 

haplotypes introduced from the donor carried some original favorable alleles tightly linked with 

unfavorable alleles. However, recombination is often not sufficient to break this linkage and combine 

intrinsic and extrinsic favorable alleles in a single superior haplotype that will reach fixation. On the 

contrary, multiple sub-optimal haplotypes selectively interfere with one another so that none reach 

fixation, which is known as the Hill-Robertson interference (Felsenstein 1965; Hill and Robertson 1966). 

Advances in genome editing technics for adding, deleting or replacing a series of nucleotides in the 

genome are opening alternative perspectives to bypass the Hill-Robertson effect. In recent techniques 

this can be achieved using specific nuclease that cut DNA at specific predetermined places (e.g. zinc 

finger nuclease: ZNF, transcription activator-like effector nucleases: TALEN or clustered regulatory 

interspaced short palindromic repeats: CRISPR, Gaj et al. 2013; Belhaj et al. 2013). 

 

Genome editing can be used to increase meiotic recombination rates (for a recent review, Blary and 

Jenczewski 2018) or induce mitotic recombination at precise locations (Sadhu et al. 2016). Battagin et 

al. (2016) performed simulations to explore the potential of manipulating recombination rates to 

increase response to selection in livestock breeding programs. The authors had to tremendously 

increase the genomewide recombination rate to 10-20 fold to significantly increase the response to 

selection. A disadvantage of increased recombination rate is the rapid decrease of linkage between 

QTLs and markers on which genomic selection predictive ability relies (Habier et al. 2013), requiring 

frequent updating of the genomic selection model (Battagin et al. 2016). Using simulations, Gonen et 

al. (2017) evaluated the interest to recombine in regions that did not recombine for several 

generations. The authors observed a release of additive genetic variance in the form of new allele 

combinations and thus an increased genetic gain. Tourrette et al. (2019) compared by simulations two 

different approaches to increase recombination in plants. The first approach increased the global 

recombination without affecting the recombination landscape and used a mutant of anti-crossover 

genes (developed in A. thaliana, Fernandes et al. 2018, pea, rice and tomato Mieulet et al. 2018). The 

second increased the recombination particularly in pericentromeric regions using differences of the 
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ploidy level between parents (developed in crosses between Brassica rapa and Brassica napus, Pelé et 

al. 2017). The authors found up to 30% of gain after twenty generations with an advantage to the 

recombination landscape modification. 

However, all recombination events are not favorable. Recombination is advantageous if it uncouples 

favorable-unfavorable complexes that capture additive genetic variance but recombination is 

unfavorable if it breaks favorable-favorable complexes. Thus, the amount of variation that arises from 

induced recombination depends on the location of recombination points relative to the causal variants 

and gametic phase disequilibrium. Assuming that the estimated marker effects are accurate enough 

and that precise targeted meiotic recombination technology is available, Bernardo (2017) proposed an 

in silico simulation approach to identify one or two target recombination points in doubled haploid 

progeny of a cross between inbred maize lines to enhance the genetic gain. The author observed that 

one or two targeted recombination events per chromosome yielded 100 to 600% gain in response to 

selection compared to non-targeted recombination events. Still the feasibility and efficiency of such 

meiotic recombination in plants remains to be proved. 

 

The CRISPR/Cas9 technology has also successfully been used to modify crop traits including drought 

tolerance in maize (Shi et al. 2017), sorghum, rice, wheat and soybean (Belhaj et al. 2013; Shalem et 

al. 2015). Beyond fastening few introgressions, genome editing is expected to fasten genetic base 

broadening while generating genetic diversity at multiple loci simultaneously (Ma et al. 2015; Sharon 

et al. 2018; Wolter et al. 2019). For instance, Jenko et al. (2015) evaluated the interest of multiple loci 

genome editing, referred to as promotion of alleles by genome editing (PAGE), in a simulated cattle 

breeding program where only sire where edited. The authors observed that PAGE had great potential 

in response to selection after 20 generations. However, the authors warned against the overuse of 

edited parents that would yield a rapid decrease in polygenic variation (Jenko et al. 2015). 

 

These prospects assume reliable estimates of allelic effects to edit. It will require massive data from 

genotypes to phenotypes and at different integrated levels (gene expression, proteomic, etc.) to 

inverse the curse of dimensionality (i.e. from n <<p to n>p) (Jenko et al. 2015; Wallace et al. 2018; 

Ramstein et al. 2019). Despite promising preliminary simulation studies on the use of genome editing 

for quantitative trait breeding and improving accuracy of genome editing technics, there are still some 

unknown factors such as the approval by government agencies in Europe for food production and the 

acceptance by public opinion. Consequently, it is a necessity to manage and harness the “native” 

genetic diversity and continue to develop and optimize conventional introgression and genetic base 

broadening strategies. 

 

Personal conclusion 

I personally believe that sustainable and continued crop breeding for productivity and quality in a 

changing environment is possible and desirable. This involves an optimization of breeding strategies 

to ensure adequacy of the breeding germplasm with changing breeding targets. This involves a better 

environmental characterization and consideration of GxE in predictive breeding. This also involves the 

rapid and efficient conversion of intrinsic and extrinsic genetic variability into multivariate response to 

selection. Finally, this requires the management and usage of ex-situ genetic resources with strong 

public-private logistical and financial partnership to make it compelling for breeders. 
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Figure S1 Relationship between genetic diversity (He) and genic  𝜎̂²𝑎 (M1, left), genetic 𝜎̂²𝐴 (M2, right) 

additive variances corrected by chromosome length (in Mbp). Vertical dashed bars represent posterior 

standard deviations of variance estimators. 

 

Figure S2 Genetic diversity (Top panel) and distribution of ROHe (Bottom panel) along genetic map. 

Top panel: Genetic diversity in Dent pool (A) and in Flint pool (B) for chromosomes 3, 4, 6 on genetic 

scale. Genetic diversity 2003-2009 in blue full line and 2010-2016 in red dotted line. Centromeres are 

marked in bold on the abscissa. Bottom panel: Evolution of ROHe in Dent pool (A) and in Flint pool (B) 

for chromosomes 3, 4, 6 on genetic scale. Regions are colored regarding their evolution between 2003-

2009 and 2010-2016. 
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Table S1 Intra-cohort additive genetic variance (± standard error) in both pools estimated in Model 1b 

and sample size.  

Cohort 
Dent Flint 

GCA variance (±se) Sample size GCA variance (±se) Sample Size 

2003 21.35 (±5.87) 163 29.71 (±9.37) 83 

2004 3.03 (±2.04) 208 28.27 (±7.97) 108 

2005 13.79 (±3.39) 313 11.24 (±3.10) 256 

2006 13.99 (±3.12) 353 11.00 (±2.82) 275 

2007 10.67 (±3.11) 446 16.09 (±3.71) 275 

2008 8.82 (±2.74) 403 12.79 (±3.16) 276 

2009 14.21 (±4.07) 267 11.62 (±3.07) 349 

2010 2.72 (±1.87) 315 11.50 (±2.69) 354 

2011 6.17 (±1.99) 439 30.53 (±4.37) 356 

2012 8.38 (±3.88) 340 5.80 (±2.93) 372 

2013 3.40 (±3.66) 228 39.84 (±6.36) 290 

 

Table S2 Intra-heterotic group genetic diversity and differentiation between heterotic groups using a 

five year sliding window with a one year increment. 

Period 
He 

Fst 
Dent Flint 

2003-2007 0.160 0.274 0.156 

2004-2008 0.158 0.276 0.156 

2005-2009 0.154 0.281 0.155 

2006-2010 0.154 0.286 0.15 

2007-2011 0.152 0.283 0.154 

2008-2012 0.145 0.276 0.161 

2009-2013 0.140 0.271 0.166 

2010-2014 0.138 0.269 0.178 

2011-2015 0.136 0.270 0.177 

2012-2016 0.136 0.269 0.178 

 

Table S3 Genetic diversity evolution between 2003-2009 and 2010-2016 in Dent and Flint pools and 

paired t-test significance on the difference between periods. 

Chr. 
Dent (He) Flint (He) 

2003-2009 2010-2016 ΔHe 2003-2009 2010-2016 ΔHe 

1 0.148 0.113 -0.036*** 0.260 0.269 0.009*** 

2 0.236 0.217 -0.019*** 0.291 0.290 -0.001ns 

3 0.209 0.224 0.015*** 0.290 0.296 0.006*** 

4 0.141 0.113 -0.027*** 0.271 0.268 -0.003° 

5 0.210 0.184 -0.026*** 0.276 0.287 0.012*** 

6 0.115 0.105 -0.010*** 0.311 0.312 0.001ns 

7 0.167 0.109 -0.058*** 0.277 0.290 0.013*** 

8 0.115 0.075 -0.040*** 0.271 0.287 0.016*** 

9 0.147 0.133 -0.014*** 0.292 0.275 -0.017*** 

10 0.084 0.081 -0.004* 0.270 0.270 -0.001ns 

p.value significance: <10-4 ***; <0.001 **; <0.01 *; <0.05 °°; <0.1 °; < 1 ns 
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Table S4 Evolution of runs of expected homozygosity (ROHe) distribution between 2003-2009 and 

2010-2016 in Dent pool in physical length. Column “% of chr” represents the percentage of the 

chromosome covered by ROHe. 

Chr. 

Period 2003-2009 Period 2010-2016 

Nb.  
ROHe 

Mean Length  
(Mb) 

Max Length  
(Mb) 

% of chr. 
Nb.  

ROHe  
Mean Length  

(Mb) 
Max Length  

(Mb) 
% of chr. 

1 27 0.98 2.19 8.66 36 1.86 8.99 21.81 

2 4 1.92 2.31 3.15 9 1.74 3.67 6.41 

3 9 1.25 2.22 4.79 1 1.59 1.59 0.68 

4 22 1.14 2.11 10.18 16 6.64 72.16 43.06 

5 9 1.00 1.32 4.01 12 1.03 1.32 5.51 

6 15 2.84 10.88 24.61 22 2.36 28.26 29.94 

7 18 1.51 4.09 15.05 27 1.99 13.29 29.62 

8 27 1.86 8.44 27.74 23 3.01 40.06 38.26 

9 10 0.86 1.62 5.42 14 2.88 27.12 25.28 

10 20 1.17 2.50 15.49 20 1.47 3.67 19.45 

Mean 16.10 1.45 3.77 11.91 18.00 2.46 20.01 22.00 
 

Table S5 Posterior means (± posterior standard deviation) of genomewide genomic variance 

accounting (M2, 𝝈̂²𝑨) or not (M1, 𝝈̂²𝒂) for covariance between QTLs in the 1,809 candidate RIL or DH 

Dent lines. Phenotypic variance (variance of BLUEs, Pheno) is also presented for comparison.  

 

  

M1 (±sd) M2 (±sd) Pheno Ratio (±sd) 

𝜎̂²𝑎 Residual Total 𝜎̂²𝐴 Residual Total Total 𝜎𝐴
2/𝜎𝑎

2̂  

27.399 
(±3.864) 

34.606 
(±1.424) 

62.004 
(±3.587) 

20.599 
(±1.459) 

34.544 
(±0.817) 

55.143 
(±1.230) 

55.111 
0.761  

(±0.079) 
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File S1: Predictive ability on elite material 

In the following, we evaluated the predictive ability of model in Eq. 1 trained across the Amazing dent 

panel (training population, TP) on elite private material (prediction population, PP). The PP lines 

consisted in lines produced in elite breeding from 2004 to 2016 and evaluated in hybrid combination 

on Flint testers for grain yield corrected at 15% of grain moisture (594 lines for GY; qx/ha), grain 

moisture (594 lines for GM; %) and male flowering time (539 lines for MF; days). These lines were 

genotyped with the MaizeSNP50 Illumina ® BeadChip (Ganal et al. 2011) and after quality control and 

imputation the same set of 40,478 SNPs as for the TP was kept, resulting in the genotyping matrix 𝑿𝑷𝑷. 

The best linear unbiased estimators (BLUEs) of PP lines general combining ability (GCA) were estimated 

using the following model: 

𝑌𝑖𝑗𝑦𝑙𝑟 = 𝜇 + 𝛽𝑦𝑙 + 𝛼1𝑖 + 𝛼2𝑗 + 𝜃12 𝑖𝑗  + 𝜃1𝑌 𝑖𝑦 + 𝜖𝑖𝑗𝑦𝑙𝑟 (Model S1) 

where, 𝑌𝑖𝑗𝑦𝑙𝑟 is observation 𝑟 of the hybrid between line 𝑖 and tester 𝑗 evaluated in location 𝑙 and year 

𝑦. 𝜇 is the intercept, 𝛽𝑦𝑙  is the environment 𝑦𝑙 (Location x Year) fixed effect, 𝛼1𝑖 is the tested PP line 𝑖 

GCA fixed effect, 𝛼2𝑗 is the Flint tester 𝑗 GCA fixed effect. 𝜽𝟏𝟐 ~ 𝑁(𝑶,  𝜎𝜃12
2  𝑰) is the vector of hybrids 

between PP lines and Flint testers specific combining ability (SCA) random effects, 𝜽𝟏𝒀 ~ 𝑁(𝑶,  𝜎1𝑌
2  𝑰) 

is the vector of tested PP line GCA by Year interaction random effects. Finally, 𝝐 ~ 𝑁(𝑶,  𝜎𝜖
2 𝑰) is the 

vector of independent random residual errors. 

The heritability in the PP was estimated considering Model S1 where the tested PP line 𝑖 GCA effect 

was modeled as random with 𝜶𝟏~𝑁(𝑶, 𝜎𝛼1
2  𝑰). The heritability in the PP was defined as: ℎ2 =

 𝜎̂𝛼1
2 / (𝜎̂𝛼1

2  + 𝜎̂𝜃12
2 /𝑛𝐻𝑦𝑏 + 𝜎̂1𝑌

2 /𝑛𝑌  + 𝜎̂𝜖
2/𝑛𝑂𝑏𝑠), where 𝑛𝐻𝑦𝑏 is the harmonic mean number of 

hybrids per line, 𝑛𝑌 is the harmonic mean number of years a given line was tested and 𝑛𝑂𝑏𝑠 is the 

harmonic mean number of observations on a given line. The harmonic mean was considered instead 

of arithmetic mean as suggested in literature for unbalanced data set (Holland et al. 2010). The average 

coefficient of determination (referred as CD̅̅̅̅ , Laloë 1993) of 𝜶̂𝟏 best linear predictors (BLUP) was also 

considered as a proxy of trait heritability in the PP. 

The BLUPs of genomic estimated breeding values of elite material were obtained as:  

𝑮𝑬𝑩𝑽 = 𝑿𝑷𝑷 𝜷̂ 

where, 𝑿𝑷𝑷 is the genotyping matrix of reference allele counts coded in 0 or 2 and 𝜷̂ the vector of 

marker effects posterior mean obtained in Eq. 1. The predictive ability was evaluated as the correlation 

between the vector of GEBV and the vector of GCA in the PP: 𝑟 = 𝑐𝑜𝑟(𝑮𝑬𝑩𝑽, 𝜶̂𝟏). 
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Table S1 Square root of trait heritability in the prediction population PP and linear correlations 

between predictions and observations in the PP depending on the training population composition 

(TP, with or without elite private material) and the PP (all 13 years or a single year). For single-year 

predictions, the correlations were estimated on a subset of lines generated a given year and the 

minimum, maximum and mean correlations are reported. 

 

 

Cited literature: 

Ganal M. W., G. Durstewitz, A. Polley, A. Bérard, E. S. Buckler, et al., 2011 A Large Maize (Zea mays L.) 

SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare 

with the B73 Reference Genome. PLOS ONE 6: e28334. 

Holland J. B., W. E. Nyquist, and C. T. Cervantes‐Martínez, 2010 Estimating and Interpreting Heritability 

for Plant Breeding: An Update, pp. 9–112 in Plant Breeding Reviews, John Wiley & Sons, Ltd. 

Laloë D., 1993 Precision and information in linear models of genetic evaluation. Genet. Sel. Evol. 25: 

557. 

 

  

Trait 

Heritability in 
the prediction 

population (PP) 

Predictive ability 

Training population (TP) 
338 public lines 

+ 48 private lines 
338 public lines 

√𝒉𝟐 √𝑪𝑫̅̅ ̅̅  

Predicted population (PP) 
All 13 
years 

1 year 
min to max (mean) 

All 13 
years 

1 year 
min to max (mean) 

GY 0.347 0.371 0.404 -0.062 to 0.722 (0.305) 0.377 0.042 to 0.721 (0.282) 

MF 0.519 0.548 0.495 0.222 to 0.715 (0.476) 0.509 0.260 to 0.728 (0.477) 

GM 0.681 0.699 0.550 0.286 to 0.811 (0.560) 0.541 0.261 to 0.789 (0.542) 
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File S2: Supporting R code 
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File S1: Derivation of linkage disequilibrium parameter in progeny for four-way 

cross and specific case of two-way cross, three-way cross and backcross 

Here we derive the linkage disequilibrium parameter of doubled haploid progeny derived from the 𝐹1’ 

generation of a four-way cross (Figure 1 S1), while we give an extension for DH lines generated from 

higher selfing generations and for recombinant inbred lines in File S2. The crossing scheme for a four-

way cross visualizing parental and potential progeny haplotypes is given in Figure 1 S1. Gametes from 

a four-way cross with four different parents (P1, P2, P3, and P4) correspond to gametes from six 

biparental crosses (P1xP2, P3xP4, P1xP3, P1xP4, P2xP3, P2xP4).  

Figure 1 S1 Visualization of crossing scheme and two-locus parental as well as progeny haplotypes of 

a four-way cross from parents P1, P2, P3, and P4. Potential types of haplotypes are denoted with T1, 

T2, and T3. 

To derive the entries of the Linkage Disequilibrium (LD) matrix 𝑫 of the progeny of the four-way cross, 

we derive the frequencies of all different possible haplotypes. For this, three types of haplotypes can 

be differentiated (namely, T1, T2 and T3). 

The first type T1 corresponds to parental haplotypes, for example AB from Figure 1 S1. The frequency 

of the haplotype AB in the parents is: 

𝑝𝐴𝐵 =
1

4
 

The frequency of AB in gametes from the cross 𝐹1
(1)
× 𝐹1

(2)
 is: 

𝑝𝐴𝐵
′ =

1

4
(1 − 𝑐(1)), 

(T1) (T2) 

(T3) 
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with 𝑐(1) the recombination frequency and (1 − 𝑐(1)) the frequency that no recombination takes place 

within the cross 𝐹1
(1)
× 𝐹1

(2)
. 

Similarly, the frequency of AB in gametes from the cross 𝐹1
′ × 𝐹1

′ is: 

𝑝𝐴𝐵
′′ =

1

4
∗ (1 − 𝑐(1))

2
 

As there are four different parental haplotypes, the frequency of the type T1 haplotypes is:  

𝑃(𝑇1) = 𝑝𝐴𝐵
′′ + 𝑝𝐶𝐷

′′ + 𝑝𝐸𝐹
′′ + 𝑝𝐺𝐻

′′ = (1 − 𝑐(1))
2
 (1) 

The second type T2 corresponds to haplotypes formed by recombination in the cross 𝐹1
(1)
× 𝐹1

(2)
, for 

example AD. The frequency of this haplotype in the parents is 

𝑝𝐴𝐷 = 0 

The frequency of AD in gametes from the cross 𝐹1
(1)
× 𝐹1

(2)
 is: 

𝑝𝐴𝐷
′ =

1

2
∗
𝑐(1)

2
=
1

4
𝑐(1) 

As 
𝑐(1)

2
 is the frequency of recombinants within 𝐹1

(1)
, the frequency in the whole cross is reduced by a 

factor of 1/2. The frequency of AD in gametes from the cross 𝐹1
′ × 𝐹1

′ is: 

𝑝𝐴𝐷
′′ =

1

4
𝑐(1)(1 − 𝑐(1)), 

with (1 − 𝑐(1)) the frequency that no recombination takes place within the cross 𝐹1
′ × 𝐹1

′. 

Overall, the frequency of the type T2 haplotypes is: 

𝑃(𝑇2) = 𝑝𝐴𝐷
′′ + 𝑝𝐶𝐵

′′ + 𝑝𝐸𝐻
′′ + 𝑝𝐺𝐹

′′ = 𝑐(1)(1 − 𝑐(1))  (2) 

The third type T3 corresponds to haplotypes formed by recombination in the cross 𝐹1
′ × 𝐹1

′, for 

example AF. The frequency of these haplotypes in the parents is: 

𝑝𝐴𝐹 = 0 

The frequency of AF in gametes from the cross 𝐹1
(1)
× 𝐹1

(2)
 is: 

𝑝𝐴𝐹
′ = 0 

The frequency of AF in gametes from the cross 𝐹1
′ × 𝐹1

′ can be calculated as: 

𝑝𝐴𝐹
′′ =

1

2
(1 − 𝑐(1)) ∗

1

2
(1 − 𝑐(1)) ∗

𝑐(1)

2
+
𝑐(1)

2
∗
1

2
(1 − 𝑐(1)) ∗

𝑐(1)

2
 

+
1

2
(1 − 𝑐(1)) ∗

𝑐(1)

2
∗
𝑐(1)

2
+
𝑐(1)

2
∗
𝑐(1)

2
∗
𝑐(1)

2
=
1

8
𝑐(1) 
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Overall, the frequency of the type T3 haplotypes is: 

𝑃(𝑇3) = 𝑝𝐴𝐹
′′ + 𝑝𝐸𝐵

′′ + 𝑝𝐶𝐹
′′ + 𝑝𝐸𝐷

′′ + 𝑝𝐴𝐻
′′ + 𝑝𝐺𝐵

′′ + 𝑝𝐶𝐻
′′ + 𝑝𝐺𝐷

′′ = 𝑐(1)  (3) 

All the different haplotypes and frequencies are summarized in Table 1 S1. 

We define ℎ𝑗𝑙 = (ℎ𝑗, ℎ𝑙) a haplotype including loci 𝑗 and 𝑙, with ℎ𝑗 and ℎ𝑙 the alleles of the haplotype 

at loci 𝑗 and 𝑙, ℎ𝑗, ℎ𝑙 ∈ {0,1}. Using the frequencies of the three types of haplotypes, we derive the LD 

in the progeny between locus 𝑗 and 𝑙 as: 

𝐷𝑗𝑙
𝑝𝑟𝑜𝑔𝑒𝑛𝑦

= 𝑝𝑗𝑙 − 𝑝𝑗𝑝𝑙  

= 𝑃 (ℎ𝑗𝑙 = (𝑧𝑗, 𝑧𝑙)) − 𝑃(ℎ𝑗 = 𝑧𝑗)𝑃(ℎ𝑙 = 𝑧𝑙) 

= ∑ 𝑃(ℎ𝑗𝑙 = (𝑧𝑗 , 𝑧𝑙) | 𝑇𝑘)𝑃(𝑇𝑘) − 𝑃(ℎ𝑗 = 𝑧𝑗)𝑃(ℎ𝑙 = 𝑧𝑙)
3
  𝑘=1 ,  (4) 

where 𝑧𝑗 and 𝑧𝑙  denotes realizations of ℎ𝑗 and ℎ𝑙, respectively. 

For the conditional haplotype probabilities it holds: 

𝑃(ℎ𝑗𝑙 = (𝑧𝑗, 𝑧𝑙) | 𝑇𝑘) =  
1

|𝑇𝑘|
∑ 𝟏𝑣𝑗==𝑧𝑗 × 𝟏𝑣𝑙==𝑧𝑙

𝑣𝑗𝑙 ∈𝑇𝑘

, 

with |𝑇𝑘| the number of haplotypes of type 𝑘, 𝑣𝑗𝑙 = (𝑣𝑗, 𝑣𝑙) a haplotype of type 𝑘, 𝟏𝑣𝑗==𝑧𝑙  (𝟏𝑣𝑗==𝑧𝑙) 

an indicator equal to 1 if 𝑣𝑗 = 𝑧𝑗  (𝑣𝑙 = 𝑧𝑙) and 0 otherwise. 

For the allele frequencies it holds: 

𝑃(ℎ𝑗 = 𝑧𝑗) =
1

4
 ( 𝟏𝐴==𝑧𝑗 + 𝟏𝐶==𝑧𝑗 + 𝟏𝐸==𝑧𝑗 + 𝟏𝐺==𝑧𝑗)  

𝑃(ℎ𝑙 = 𝑧𝑙) =
1

4
 ( 𝟏𝐵==𝑧𝑙 + 𝟏𝐷==𝑧𝑙 + 𝟏𝐹==𝑧𝑙 + 𝟏𝐻==𝑧𝑙)  

Table 1 S1 Different haplotype types, their frequency in the parents (G0), after the first cross (G1), 
after the second cross (G2) and the Linkage Disequilibrium (LD) in G2. 
 

 
 
 
 
 
 
 

 a Haplotypes: AB, CD, EF, GH (parental haplotypes) 
 b Haplotypes: AD, BC, EH, FG (recombinant from 𝐹1

(1)
× 𝐹1

(2)
)  

 c Haplotypes: AF, AH, CF, CH, EB, ED, GB, GD (recombinant from 𝐹1
′ × 𝐹1

′) 

 

Type G0 G1 G2 LD 

T1a 
1

4
 

1

4
(1 − 𝑐(1)) 

1

4
∗ (1 − 𝑐(1))

2
 

1

4
∗ (1 − 𝑐(1))

2
−
1

16
 

T2b 0 
1

4
𝑐(1) 

1

4
𝑐(1) ∗ (1 − 𝑐(1)) 

1

4
𝑐(1) ∗ (1 − 𝑐(1)) −

1

16
 

T3c 0 0 
1

8
𝑐(1) 

1

8
𝑐(1) −

1

16
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Further, we use the linkage disequilibrium among two parents between loci 𝑗 and 𝑙, which is 

exemplified for parent 1 and 2: 

𝐷𝑗𝑙
12 =  𝑝𝑗𝑙

12 − 𝑝𝑗
12𝑝𝑙

12 

= 
1

2
(𝟏𝐴==𝑧𝑗 × 𝟏𝐵==𝑧𝑙 + 𝟏𝐶==𝑧𝑗 × 𝟏𝐷==𝑧𝑙) −

1

4
(𝟏𝐴==𝑧𝑗 + 𝟏𝐶==𝑧𝑗) (𝟏𝐵==𝑧𝑙 + 𝟏𝐷==𝑧𝑙) 

= 
1

4
(𝟏𝐴==𝑧𝑗 × 𝟏𝐵==𝑧𝑙 + 𝟏𝐶==𝑧𝑗 × 𝟏𝐷==𝑧𝑙 − 𝟏𝐴==𝑧𝑗 × 𝟏𝐷==𝑧𝑙 − 𝟏𝐶==𝑧𝑗 × 𝟏𝐵==𝑧𝑙). 

For sake of clarity, we abbreviate in the following  𝟏𝐴==𝑧𝑗  with 𝟏𝐴, 𝟏𝐵==𝑧𝑙 with 𝟏𝐵 and accordingly for 

the rest (C, D, E, F, G, H). Then we can reform the LD in the progeny as a function of the recombination 

frequency 𝑐𝑗𝑙
(1)

 and the LD among two parents between loci 𝑗 and 𝑙: 

𝐷𝑗𝑙
𝑝𝑟𝑜𝑔𝑒𝑛𝑦

= ∑ 𝑃(ℎ𝑗𝑙 = (𝑧𝑗, 𝑧𝑙)| 𝑇𝑘)𝑃(𝑇𝑘) − 𝑃(ℎ𝑗 = 𝑧𝑗)𝑃(ℎ𝑙 = 𝑧𝑙)

3

  𝑘=1

 

= 
1

4
 ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻) (1 − 𝑐𝑗𝑙

(1))
2

+ 
1

4
 ( 𝟏𝐴𝟏𝐷 + 𝟏𝐶𝟏𝐵 + 𝟏𝐸𝟏𝐻 + 𝟏𝐺𝟏𝐹)𝑐𝑗𝑙

(1)
(1 − 𝑐𝑗𝑙

(1)
)

+
1

8
 ( 𝟏𝐴𝟏𝐹 + 𝟏𝐴𝟏𝐻 + 𝟏𝐶𝟏𝐹 + 𝟏𝐶𝟏𝐻 + 𝟏𝐸𝟏𝐵 + 𝟏𝐸𝟏𝐷 + 𝟏𝐺𝟏𝐵 + 𝟏𝐺𝟏𝐷)𝑐𝑗𝑙

(1)

−
1

16
 ( 𝟏𝐴 + 𝟏𝐶 + 𝟏𝐸 + 𝟏𝐺)(𝟏𝐵 + 𝟏𝐷 + 𝟏𝐹 + 𝟏𝐻)  

= 
1

4
 [((1 − 𝑐𝑗𝑙

(1)
)
2
− 
1

4
) ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻)

+ (𝑐𝑗𝑙
(1) (1 − 𝑐𝑗𝑙

(1)) − 
1

4
 ) ( 𝟏𝐴𝟏𝐷 + 𝟏𝐶𝟏𝐵 + 𝟏𝐸𝟏𝐻 + 𝟏𝐺𝟏𝐹)

+ (
𝑐𝑗𝑙
(1)

2
− 
1

4
) ( 𝟏𝐴𝟏𝐹 + 𝟏𝐴𝟏𝐻 + 𝟏𝐶𝟏𝐹 + 𝟏𝐶𝟏𝐻 + 𝟏𝐸𝟏𝐵 + 𝟏𝐸𝟏𝐷 + 𝟏𝐺𝟏𝐵 + 𝟏𝐺𝟏𝐷)]  

= 
1

4
 [ (1 − 𝑐𝑗𝑙

(1))
2
( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻)

+ 𝑐𝑗𝑙
(1) (1 − 𝑐𝑗𝑙

(1)) ( 𝟏𝐴𝟏𝐷 + 𝟏𝐶𝟏𝐵 + 𝟏𝐸𝟏𝐻 + 𝟏𝐺𝟏𝐹)

−
1

4
 ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻) − 

1

4
 ( 𝟏𝐴𝟏𝐷 + 𝟏𝐶𝟏𝐵 + 𝟏𝐸𝟏𝐻 + 𝟏𝐺𝟏𝐹)

− 
1

4
(1 − 2𝑐𝑗𝑙

(1)) (𝟏𝐴𝟏𝐹 + 𝟏𝐴𝟏𝐻 + 𝟏𝐶𝟏𝐹 + 𝟏𝐶𝟏𝐻 + 𝟏𝐸𝟏𝐵 + 𝟏𝐸𝟏𝐷 + 𝟏𝐺𝟏𝐵

+ 𝟏𝐺𝟏𝐷)]  
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= 
1

4
 [ (1 − 𝑐𝑗𝑙

(1)) ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻)

− 𝑐𝑗𝑙
(1)
(1 − 𝑐𝑗𝑙

(1)
) ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻 − 𝟏𝐴𝟏𝐷 − 𝟏𝐶𝟏𝐵 − 𝟏𝐸𝟏𝐻

− 𝟏𝐺𝟏𝐹) −
1

4
 ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻 +  𝟏𝐴𝟏𝐷 + 𝟏𝐶𝟏𝐵 + 𝟏𝐸𝟏𝐻 + 𝟏𝐺𝟏𝐹)

− 
1

4
(1 − 2𝑐𝑗𝑙

(1)) (𝟏𝐴𝟏𝐹 + 𝟏𝐴𝟏𝐻 + 𝟏𝐶𝟏𝐹 + 𝟏𝐶𝟏𝐻 + 𝟏𝐸𝟏𝐵 + 𝟏𝐸𝟏𝐷 + 𝟏𝐺𝟏𝐵

+ 𝟏𝐺𝟏𝐷)]  

= 
1

4
 [ (1 − 𝑐𝑗𝑙

(1)
) ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻) − 4𝑐𝑗𝑙

(1)
(1 − 𝑐𝑗𝑙

(1)
) (𝐷𝑗𝑙

12 + 𝐷𝑗𝑙
34)

−
1

4
 ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻 + 𝟏𝐴𝟏𝐷 + 𝟏𝐶𝟏𝐵 + 𝟏𝐸𝟏𝐻 + 𝟏𝐺𝟏𝐹)

+ 
1

4
(1 − 2𝑐𝑗𝑙

(1)
) (4𝐷𝑗𝑙

13 + 4𝐷𝑗𝑙
14 + 4𝐷𝑗𝑙

23 + 4𝐷𝑗𝑙
24 − 2𝟏𝐴𝟏𝐵 − 2𝟏𝐶𝟏𝐷 − 2𝟏𝐸𝟏𝐹

− 2𝟏𝐺𝟏𝐻)]  

= 
1

4
 [ (1 − 𝑐𝑗𝑙

(1) − 
1

4
− 
2

4
(1 − 2𝑐𝑗𝑙

(1))) ( 𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻)

− 4𝑐𝑗𝑙
(1)
(1 − 𝑐𝑗𝑙

(1)
) (𝐷𝑗𝑙

12 + 𝐷𝑗𝑙
34) −

1

4
 (  𝟏𝐴𝟏𝐷 + 𝟏𝐶𝟏𝐵 + 𝟏𝐸𝟏𝐻 + 𝟏𝐺𝟏𝐹)

+ 
1

4
(1 − 2𝑐𝑗𝑙

(1)
) (4𝐷𝑗𝑙

13 + 4𝐷𝑗𝑙
14 + 4𝐷𝑗𝑙

23 + 4𝐷𝑗𝑙
24)]  

= 
1

4
 [ 
1

4
 (  𝟏𝐴𝟏𝐵 + 𝟏𝐶𝟏𝐷 + 𝟏𝐸𝟏𝐹 + 𝟏𝐺𝟏𝐻 − 𝟏𝐴𝟏𝐷 − 𝟏𝐶𝟏𝐵 − 𝟏𝐸𝟏𝐻 − 𝟏𝐺𝟏𝐹)

− 4𝑐𝑗𝑙
(1) (1 − 𝑐𝑗𝑙

(1)) (𝐷𝑗𝑙
12 + 𝐷𝑗𝑙

34) + (1 − 2𝑐𝑗𝑙
(1)) (𝐷𝑗𝑙

13 +  𝐷𝑗𝑙
14 +𝐷𝑗𝑙

23 + 𝐷𝑗𝑙
24)]  

= 
1

4
 [ 
1

4
 ( 4𝐷𝑗𝑙

12 + 4𝐷𝑗𝑙
34) −  4𝑐𝑗𝑙

(1) (1 − 𝑐𝑗𝑙
(1)) (𝐷𝑗𝑙

12 + 𝐷𝑗𝑙
34)

+ (1 − 2𝑐𝑗𝑙
(1)) (𝐷𝑗𝑙

13 +𝐷𝑗𝑙
14 + 𝐷𝑗𝑙

23 + 𝐷𝑗𝑙
24)]  

= 
1

4
 [ (𝐷𝑗𝑙

12 + 𝐷𝑗𝑙
34) (

1

4
− 4𝑐𝑗𝑙

(1)(1 − 𝑐𝑗𝑙
(1))) + (1 − 2𝑐𝑗𝑙

(1)) (𝐷𝑗𝑙
13 + 𝐷𝑗𝑙

14 +𝐷𝑗𝑙
23 + 𝐷𝑗𝑙

24)]  

= 
1

4
 [  (1 − 2𝑐𝑗𝑙

(1))
2
(𝐷𝑗𝑙

12 + 𝐷𝑗𝑙
34) + (1 − 2𝑐𝑗𝑙

(1)) (𝐷𝑗𝑙
13 + 𝐷𝑗𝑙

14 + 𝐷𝑗𝑙
23 +𝐷𝑗𝑙

24)]  

= 
1

4
(1 − 2𝑐𝑗𝑙

(1)) [  (𝐷𝑗𝑙
13 + 𝐷𝑗𝑙

14 + 𝐷𝑗𝑙
23 + 𝐷𝑗𝑙

24) + (1 − 2𝑐𝑗𝑙
(1)) (𝐷𝑗𝑙

12 + 𝐷𝑗𝑙
34)] 

=
1

4
(1 − 2𝑐𝑗𝑙

(1)) [Φ2 𝑗𝑙 + (1 − 2𝑐𝑗𝑙
(1))Φ1 𝑗𝑙] (5) 

with Φ1 𝑗𝑙 = 𝐷𝑗𝑙
12 + 𝐷𝑗𝑙

34 summing the LD values among parents that can be considered to be involved 

as biparental crosses in 𝐹1
(1)
× 𝐹1

(2)
 and with Φ2 𝑗𝑙 = 𝐷𝑗𝑙

13 + 𝐷𝑗𝑙
14 + 𝐷𝑗𝑙

23 + 𝐷𝑗𝑙
24 summing the LD values 

among parents that can be considered to be involved as biparental crosses in 𝐹1
′ × 𝐹1

′. 
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The linkage disequilibrium parameter Φ1and Φ2 and equation (5) can be simplified in the case of two-

way, three-way and backcrosses (Table 2 S1). For two-way crosses we arrive at the same variance 

covariance matrix elements Σ𝑗𝑙  as given by Lehermeier et al. (2017). 

 

Table 2 S1 Linkage disequilibrium parameter between QTLs 𝑗 and 𝑙 in pairs of parental lines depending 

on the mating design. 

 

 

 

Cited literature: 

Lehermeier C., S. Teyssèdre, and C.-C. Schön, 2017 Genetic Gain Increases by Applying the Usefulness 

Criterion with Improved Variance Prediction in Selection of Crosses. Genetics 207: 1651–1661. 

 

  

 Φ1 𝑗𝑙 Φ2 𝑗𝑙 Σ𝑗𝑙 

Four-way 𝐷𝑗𝑙
12 + 𝐷𝑗𝑙

34 𝐷𝑗𝑙
13 + 𝐷𝑗𝑙

14 + 𝐷𝑗𝑙
23 + 𝐷𝑗𝑙

24 (1 − 2𝑐𝑗𝑙
(1)) ((𝐷𝑗𝑙

13 + 𝐷𝑗𝑙
14 + 𝐷𝑗𝑙

23 + 𝐷𝑗𝑙
24) + (1 − 2𝑐𝑗𝑙

(1)) (𝐷𝑗𝑙
12 + 𝐷𝑗𝑙

34)) 

Three-way 𝐷𝑗𝑙
12 2 (𝐷𝑗𝑙

14 + 𝐷𝑗𝑙
24) (1 − 2𝑐𝑗𝑙

(1)) (2 (𝐷𝑗𝑙
14 + 𝐷𝑗𝑙

24) + (1 − 2𝑐𝑗𝑙
(1))𝐷𝑗𝑙

12) 

Backcross 𝐷𝑗𝑙
14 2 𝐷𝑗𝑙

14 (1 − 2𝑐𝑗𝑙
(1)) (3 − 2𝑐𝑗𝑙

(1)) 𝐷𝑗𝑙
14 

Two-way 0 4 𝐷𝑗𝑙
14 4 (1 − 2𝑐𝑗𝑙

(1)) 𝐷𝑗𝑙
14 
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File S2: Validation of four-way cross formulas for DH-k and RIL-k and evolution of 

RIL variance depending on selfing generations 

In File S1, we considered DH lines generated from F1’ (DH-1), i.e., only two meioses took place. Progeny 

variance for DH-1 is expressed in terms of parental expected recombination frequency 𝑐(1) (Table 2 

S1). For recombinant inbred lines (RILs) or when DH lines are generated from higher selfing 

generations, the expected frequency of recombinants increases depending on the number of selfing 

generations. In the following 𝑘 denotes the generation from which progeny are derived (Figure 1). The 

expected frequency of recombinants in generation 𝑘 can be derived from the genotype probabilities 

given in Broman (2012) as done in File S1 of Lehermeier et al. (2017). Hence, for DH lines after 𝑘 

generations, 𝑐(1) in Table 2 S1 should then be replaced by 𝑐(𝑘), leading to the general four-way DH-𝑘 

formula as shown in Table 1:  

𝑐(𝑘) =
2𝑐(1)

1 + 2𝑐(1)
 (1 − 0.5𝑘 (1 − 2𝑐(1))

𝑘
) , ∀ 𝑘 ∈  ℕ∗ 

In case of RILs, no doubling of gametes takes place and the covariance for RILs after generation 𝑘 is 

obtained by updating 𝑐(𝑘) by 𝑐(𝑘) + 0.5 [0.5(1 − 2𝑐(1))]
𝑘
, ∀ 𝑘 ∈  ℕ∗ (Table 1). Note that the variance-

covariance of DH-𝑘 and RIL-𝑘 converge with increasing 𝑘. 

Formulas for DH-𝑘 and RIL-𝑘 in the general case of four-way crosses have been validated by simulations 

for 𝑘 ∈ ⟦1,6⟧ (Table 1 S2 and Table 2 S2). The observed high positive correlations (Table 1 S2) and low 

mean squared differences (Table 2 S2) between predicted (derivation) and empirical (in silico) values 

validate the presented formulas. Lower squared correlations between predicted and empirical values 

were observed for 𝝁𝑪
(𝒔𝒆𝒍)

 and 𝝁𝑪(+)
(𝒔𝒆𝒍)

 compared to the variances and covariances. This can be explained 

by sampling bias in in silico simulations (50,000 progenies) where the 𝑃1 parental genome contribution 

before selection slightly differed from the expected value of 0.25 for four way crosses (ranging from 

0.249 to 0.251).  

Predicted RIL progeny variance for the simulated agronomic trait increased with the number of selfing 

generations considered (𝑘) and converged toward DH progeny variance after five generations of selfing 

(𝑘 = 5) (Figure 1 S2). We observed that some crosses profited more from an increase in selfing 

generations by generating more variance compared to others. An example with two crosses is shown 

in Figure 2 S2. While the cross visualized in blue showed a higher variance in generation RIL-1 than the 

cross visualized in orange, it reached a plateau faster and showed a lower variance than the orange 

cross with 𝑘 ≥ 3. Differences in the speed to release variance between crosses is likely due to 

differences in the recombination frequency between segregating QTLs in parental lines. This 

underlines the interest of predicting RIL progeny variance using proposed algebraic formula. 
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Table 1 S2 Squared correlations (R²) between empirical values (in silico) and predictions (derivation) 

per generation and type of progeny. 

Generation 𝝈𝑻
𝟐 𝝈𝑪

𝟐 𝝈𝑪(+)
𝟐  𝝈𝑻,𝑪 𝝈𝑻,𝑪(+) 𝑼𝑪𝑻 𝝁𝑪

(𝒔𝒆𝒍)
 𝝁𝑪(+)

(𝒔𝒆𝒍)
 

DH1 0.999 0.960 0.995 0.999 0.999 1.000 0.900 0.946 

DH2 0.999 0.964 0.995 0.998 0.998 1.000 0.909 0.952 

DH3 0.999 0.966 0.995 0.999 0.999 1.000 0.914 0.955 

DH4 0.999 0.969 0.995 0.999 0.999 1.000 0.912 0.955 

DH5 0.999 0.961 0.994 0.998 0.998 1.000 0.914 0.955 

DH6 0.999 0.963 0.994 0.998 0.998 1.000 0.913 0.955 

RIL1 0.999 0.957 0.994 0.999 0.999 1.000 0.938 0.967 

RIL2 0.999 0.957 0.994 0.999 0.999 1.000 0.917 0.957 

RIL3 0.999 0.960 0.994 0.998 0.998 1.000 0.918 0.958 

RIL4 0.999 0.962 0.994 0.998 0.998 1.000 0.915 0.956 

RIL5 0.999 0.962 0.994 0.998 0.998 1.000 0.912 0.955 

RIL6 0.999 0.962 0.994 0.999 0.998 1.000 0.911 0.954 

Table 2 S2 Mean squared difference between empirical values (in silico) and predictions (derivation) 

per generation and type of progeny. 

Generation 𝝈𝑻
𝟐 𝝈𝑪

𝟐 𝝈𝑪(+)
𝟐  𝝈𝑻,𝑪 𝝈𝑻,𝑪(+) 𝑼𝑪𝑻 𝝁𝑪

(𝒔𝒆𝒍)
 𝝁𝑪(+)

(𝒔𝒆𝒍)
 

DH1 5.20E-06 3.28E-09 3.52E-10 5.99E-08 2.07E-08 8.44E-04 4.92E-05 1.42E-05 

DH2 5.09E-06 2.81E-09 3.16E-10 6.65E-08 2.24E-08 7.02E-04 3.83E-05 1.12E-05 

DH3 5.36E-06 2.56E-09 2.97E-10 4.74E-08 1.51E-08 6.49E-04 3.50E-05 1.03E-05 

DH4 4.56E-06 2.30E-09 2.87E-10 5.16E-08 1.66E-08 6.85E-04 3.55E-05 1.05E-05 

DH5 4.83E-06 2.88E-09 3.32E-10 5.95E-08 1.99E-08 6.40E-04 3.47E-05 1.03E-05 

DH6 4.76E-06 2.74E-09 3.14E-10 6.08E-08 1.96E-08 6.77E-04 3.47E-05 1.04E-05 

RIL1 2.25E-06 1.56E-09 1.81E-10 2.96E-08 9.80E-09 4.30E-04 2.51E-05 7.54E-06 

RIL2 3.26E-06 2.29E-09 2.69E-10 4.09E-08 1.37E-08 5.73E-04 3.40E-05 1.00E-05 

RIL3 3.93E-06 2.58E-09 3.05E-10 5.28E-08 1.72E-08 6.22E-04 3.34E-05 9.84E-06 

RIL4 4.49E-06 2.59E-09 3.02E-10 5.64E-08 1.81E-08 6.59E-04 3.43E-05 1.01E-05 

RIL5 4.91E-06 2.69E-09 3.10E-10 5.59E-08 1.83E-08 6.65E-04 3.53E-05 1.04E-05 

RIL6 4.91E-06 2.71E-09 3.13E-10 5.54E-08 1.83E-08 6.63E-04 3.59E-05 1.06E-05 

 



Supplementary Material   Chapter 3 

165 
 

 

Figure 1 S2 Evolution of predicted progeny trait variance depending on progeny type (DH, left or RIL, 

right) and generation (𝑘). The red dotted line presents the median DH progeny variance over 100 

crosses.  

 

Figure 2 S2 Example of two crosses showing different evolutions of predicted RIL progeny variance 

depending on the selfing generation (𝑘).  

 

Cited literature: 

Broman K. W., 2012 Genotype probabilities at intermediate generations in the construction of 

recombinant inbred lines. Genetics 190: 403–412. 

Lehermeier C., S. Teyssèdre, and C.-C. Schön, 2017 Genetic Gain Increases by Applying the Usefulness 

Criterion with Improved Variance Prediction in Selection of Crosses. Genetics 207: 1651–1661. 
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File S3: Comparison of IBD parental contribution variance with Frisch and 

Melchinger (2007) and simplification to IBS contribution 

We used an algebraic formula to predict the variance of 𝑃1 genome contribution in doubled haploid 

progeny derived from F1’ plants. We considered two-way crosses DH-1 (called (F1)-DH) and 

backcrosses DH-1 (called (BC1)-DH) and compared our results with the results given by Frisch and 

Melchinger (2007). We considered one chromosome of 100cM for which Frisch and Melchinger (2007) 

derived a variance of parental contribution of 0.1419 for (F1)-DH and 0.0945 for (BC1)-DH. We varied 

the number of loci 𝑝 used in our approach and for each, we ran ten independent samplings of loci. We 

observed that the results from our approach converged with increasing number of loci to the solution 

given by Frisch and Melchinger (2007) (Figure 1 S3). 

Figure 1 S3 Average parental genome contribution variance (black dots) for (BC1)-DH (left) and (F1)-

DH (right) from ten simulation replications (+/- standard deviation represented by black vertical lines) 

with different number of considered loci. Red dotted line shows the results given by Frisch and 

Melchinger (2007). 

In cases where the origin of the allele is not of interest and an identical by state (IBS) similarity between 

progeny and parental lines is sufficient, the multi-allelic coding can be simplified to a biallelic coding. 

This reduces the size of the covariance matrix from (4𝑝 x 4𝑝) to (𝑝 x 𝑝), with 𝑝 being the number of 

loci considered. For this, let us define the genotyping matrix of parental lines in biallelic coding:  

𝑿𝐼𝐵𝑆 =  𝑑𝑖𝑎𝑔(𝑿𝑃𝑎𝑟𝑒𝑛𝑡𝑎𝑙) = (𝒙1 𝒙2 𝒙3 𝒙4)
′ 

where, 𝑿𝐼𝐵𝑆 is a (4 x 𝑝)-dimensional matrix of genotypes. The (𝑝 x 4)-dimensional matrix of global 

parental contribution marker effects for each of the four parents can be defined as: 

𝜷𝐼𝐵𝑆 =
1

2𝑝
𝑿𝐼𝐵𝑆

′ 

where, ∀ 𝑖 ∈ [1; 4] 𝜷𝐼𝐵𝑆(. , 𝑖) is the 𝑝-dimensional vector of marker effect to follow the IBS 

contribution of parent 𝑖 and 𝑝 is the total number of loci considered. 

We denote the (𝑁 x 𝑝)-dimensional genotyping matrix of 𝑁 doubled haploid (DH) progeny as 

𝑿𝐼𝐵𝑆−𝑃𝑟𝑜𝑔𝑒𝑛𝑦 with element 𝑿𝐼𝐵𝑆−𝑃𝑟𝑜𝑔𝑒𝑛𝑦 (𝑗, 𝑙), ∀ 𝑗 ∈ [1, 𝑁], 𝑙 ∈ [1, 𝑝] the genotype of progeny 𝑗 at 
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locus 𝑙 coded as -1, 1 for the genotypes aa, AA, respectively. It results in the following (𝑁 x 4)-

dimensional matrix of parental IBS contribution to progeny: 

𝑪𝐼𝐵𝑆 = 𝑿𝐼𝐵𝑆−𝑃𝑟𝑜𝑔𝑒𝑛𝑦 𝜷𝐼𝐵𝑆 +
1

2
𝟏𝑁𝟏4

′  

where, ∀ 𝑗 ∈ [1;𝑁], ∀ 𝑖 ∈ [1; 4] , 𝑪𝐼𝐵𝑆(𝑗, 𝑖) is the parental line 𝑖 contribution to progeny line 𝑗. 

 

 

 

Cited literature: 

Frisch M., and A. E. Melchinger, 2007 Variance of the Parental Genome Contribution to Inbred Lines 

Derived From Biparental Crosses. Genetics 176: 477–488. 
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File S1: Additional material 

Material 

We initiated simulations with the genome of 57 maize Iodent inbred lines (Zea mays L.) (Allier et al. 

2019). These lines were genotyped with the Illumina MaizeSNP50 BeadChip (Ganal et al. 2011). After 

quality control and imputation, 40,478 high-quality SNPs were retained. The genetic map was obtained 

by predicting genetic positions from physical positions on the reference genome B73-v4 (Jiao et al. 

2017) using a spline-smoothing interpolating procedure described in Bauer et al. (2013) and the dent 

genetic map in Giraud et al. (2014). At each simulation replicate we randomly sampled 40 lines to be 

the founder population. We randomly sampled 1,000 SNPs to be additive biallelic quantitative trait loci 

(QTL) of a polygenic trait. The sampling of QTL obeyed two constraints: QTL minor allele frequency ≥ 

0.2 and distance between two consecutive QTL ≥ 0.2 cM. Each QTL was randomly assigned an additive 

effect from a Gaussian distribution with a mean of zero and a variance of 0.05. For the scenario where 

the 1,000 QTLs were unknown, we randomly sampled 2,000 non causal SNPs as genomewide markers 

used for evaluation (see “Evaluation model” section). 

Simulation scheme 

We aimed at comparing the effect of parent selection and allocation methods on short and long term 

genetic gains in a realistic breeding context using doubled haploid (DH) technology and considering 

overlapping and connected cohorts (i.e. generations) of three years as illustrated in Figure 1A. We 

considered that the process to derive DH lines from a cross and to phenotype and genotype DH lines 

took three years. Furthermore we considered as candidate parents of a new cohort only the DH 

progeny of the three last cohorts. For sake of clarity, the candidate parents of cohort 𝑇 were selected 

from the available DH progeny of the three cohorts: 𝑇 − 3, 𝑇 − 4 and 𝑇 − 5 (Figure 1A-B). Within this 

breeding context, we defined a burn-in period of 20 years starting from founders that mimicked a 

phenotyping selection (PS) program using DH technology (more details in the “phenotyping” and 

“evaluation model” sections). Afterward, we compared different cross selection strategies during 60 

years of breeding. We considered either that we had access to the 1,000 QTL effects (TRUE scenario) 

or that we estimated the effects of the 2,000 non causal SNPs (GS scenario). We also considered the 

absence of genomic information for selection, i.e. phenotypic selection (PS scenario).  

We can distinguish the following simulation phases for the cohorts 𝑻 ∈ [𝟏, 𝟖𝟎]: 

 Burn-in Phase 1 (𝑻 ∈  ⟦𝟏; 𝟑⟧): Initialization 

Every year during the three first years, a cohort was initiated by randomly generating 20 biparental 

crosses from the 40 founders. We derived 80 DH lines per cross. Note that lines can contribute as 

parents to different crosses and cohorts, so that parental contributions are not controlled and different 

cohorts can share the same crosses at this stage. 

 Burn-in Phase 2 (𝑻 ∈  ⟦𝟒; 𝟐𝟎⟧) 

The second phase of burn-in mimicked 17 years of phenotypic selection to build up extensive linkage 

disequilibrium to compare scenarios in a realistic ongoing breeding context. In burn-in phase 2, 

phenotypic selection (PS) was used to estimate breeding value of candidate lines from the three last 

cohorts (𝑇 − 3, 𝑇 − 4 and 𝑇 − 5, if available). After selecting the 4 best DH progeny per family (i.e. 
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5%), the overall 50 best progeny out of 3 cohorts x 20 families/cohort x 4 DH/family = 240 DH progeny 

were considered as potential parents of the cohort and were randomly mated to generate 20 

biparental families of 80 DH lines. Note that lines can contribute as parents to different crosses and 

cohorts, so that parental contributions are not controlled and different cohorts can share the same 

crosses at this stage. Burn-in ended up with overlapping cohorts connected by the pedigree as it can 

be found in real breeding program. 

 Post burn-in (𝑻 ∈ ⟦𝟐𝟏; 𝟕𝟎⟧) 

In post burn-in, the life cycle of a cohort was similar to burn-in phase 2 except changes in the way to 

evaluate, select and mate parents (Figure 1B). 

Phenotyping 

For phenotyping, we considered environmental effects sampled in a normal distribution of mean zero 

and variance 25 and did not consider genotype by environment interactions. Each cohort was 

evaluated in 𝑁𝑙𝑜𝑐 = 4 locations in one year, i.e. four environments. At each simulation replicate, five 

founder lines were randomly sampled to be check individuals phenotyped every year. Environmental 

errors were sampled from a normal distribution with mean zero and an error variance 𝜎𝜖
2 defined by 

the initial repeatability in the founder population 𝑟 =
𝜎𝐺
2

𝜎𝐺
2+𝜎𝜖

2 = 0.40. This led to a heritability in the 

founder population of ℎ2 =
𝜎𝐺
2

𝜎𝐺
2+𝜎𝜖

2/𝑁𝑙𝑜𝑐
= 0.73. Note that the repeatability and heritability varied along 

selection cycles relatively to the evolution of additive genetic variance 𝜎𝐺
2 (e.g. ℎ2 = 0.73 in founder 

population to ℎ2 = 0.59 at the end of burn-in and to ℎ2 = 0.03 after 60 years in the PS scenario). 

Evaluation model 

Different evaluation models were considered and should be distinguished at this stage. For phenotypic 

selection (PS scenario), the phenotypes of progeny were used to estimate their breeding values (EBV). 

We distinguished two scenarios using genomic information. On one hand, the 1,000 QTL positions and 

effects were known (TRUE scenario) and the evaluation consisted in summing the individual additive 

QTL effects to obtain the true breeding value (TBV) of progeny. On the other end, the 1,000 QTL 

positions and effects were unknown (GS scenario) and 2,000 SNP effects were estimated using the 

phenotypes and genotypes of the progeny from the three last cohorts. The progeny were selected on 

their genomic estimated breeding values (GEBV). 

The breeding value of progeny (EBV in PS or GEBV in GS) were estimated in Model 1 S1 fitted using 

mixed model software blup-f 90 (Misztal 2008) with AI-REML variance component estimates: 

𝒀 = 𝟏𝜇 + 𝑬𝜷𝑬𝒏𝒗 +𝑾𝒖+ 𝝐, (Model 1 S1) 

where 𝒀 is the vector of phenotypic values, 𝜇 is the intercept, 𝑬 is the incidence matrix for 

environmental effects, 𝜷𝑬𝒏𝒗 is the vector of environmental fixed effects, 𝑾 is the incidence matrix of 

individual breeding value random effects 𝒖, 𝒖 ∼ 𝑁(𝟎, 𝜎𝐺
2𝑼) is the vector of breeding value random 

effects with 𝜎𝐺
2𝑼 its variance-covariance matrix and 𝝐 is the vector of residual random terms 𝝐 ∼

𝑁(𝟎, 𝜎𝜖
2𝑰) independent and identically distributed. For phenotypic selection (PS), the individuals were 

assumed independent, i.e. 𝒖 ∼ 𝑁(𝟎, 𝜎𝐺
2𝑰). For genomic selection (GS), the covariance between 
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individuals was modeled using the genomic relationship matrix 𝑮, i.e. 𝒖 ∼ 𝑁(𝟎, 𝜎𝐺
2𝑮). Hereby, 𝑮 was 

estimated using the 2,000 non causal loci as: 

𝑮 =
𝒁𝒁′

𝑡𝑟(𝒁𝒁′)/𝑛
 

where, 𝒁 contains the centered allele counts, with elements computed as 𝑥𝑖𝑗 + 1 –  2𝑝𝑗, where the 

element 𝑥𝑖𝑗 ∈ {−1,1} is the genotype for individual 𝑖 at non causal locus 𝑗 and 𝑝𝑗  is the frequency of 

the allele for which the homozygous genotype is coded 1 at non causal locus 𝑗. 𝑡𝑟(𝒁𝒁′) is the trace of 

𝒁𝒁′ and 𝑡𝑟(𝒁𝒁′)/𝑛 forces the diagonal of 𝑮 to be 1 on average (Legarra et al. 2009; Forni et al. 2011). 

Note that for fully homozygous individuals 𝑡𝑟(𝒁𝒁′)/𝑛 = 4∑ 𝑝𝑗(1 − 𝑝𝑗)𝑗 . Estimated marker effects 𝜷𝑻̂ 

were obtained by back-solving: 𝜷𝑻̂ = 𝒁′(𝒁𝒁′)−𝟏𝒖̂ (Wang et al. 2012) and used in lieu of known QTL 

effects 𝜷𝑻. 

Simulation of progeny genotypes 

Doubled haploid progeny genotypes were simulated considering meiosis events without crossover 

interference. The number of chiasmata was drawn from a Poisson distribution with 𝜆 equal to the 

chromosome length in Morgan, and crossover positions were determined using the recombination 

frequency obtained using the Haldane mapping function (Haldane 1919). 
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File S2: Relationship between IBS coancestry and genetic diversity in progeny 

The identity by state (IBS) coancestry between 𝑁 inbred parents is defined as: 

𝑲 =  0.5 (
1

𝑚
 (𝑿𝑿′) + 𝟏𝑁𝟏𝑁

′ ), (Eq. 1) 

where, 𝑿 is the genotyping matrix of the 𝑁 parents in line and 𝑚 loci in column, with elements coded 

-1 or 1 and 𝟏𝑁 is a 𝑁-dimensional column vector of ones. 

Considering the 𝑁-dimensional column vector of expected parental genomewide contributions 𝒄, with 

𝑐(𝑗), 𝑗 ∈ [1, 𝑁] the contribution of the parent j to progeny, the mean expected IBS coancestry in 

progeny is: 

𝐼𝐵𝑆 = 𝒄′𝑲 𝒄 = 0.5 [ 
1

𝑚
(𝒄′𝑿𝑿′𝒄) + 𝒄′𝟏𝑁𝟏𝑁

′ 𝒄]. (Eq. 2a) 

Note that 𝒄′𝟏𝑁𝟏𝑁
′ 𝒄 = 1 since ∑ 𝒄(𝑗)𝑁

𝑗=1 = 1. Then, Eq. 2a simplifies: 

𝐼𝐵𝑆 = 0.5 [ 
1

𝑚
(𝒄′𝑿𝑿′𝒄) + 1] (Eq. 2b) 

The mean expected genetic diversity (He) in progeny is: 

𝐻𝑒 =
1

𝑚
 𝟏𝑚
′  (2 𝒑 ∘ (𝟏𝑚 − 𝒑)), (Eq. 3a) 

where 𝟏𝑚 is a 𝑚-dimensional column vector of ones, ∘ is the pairwise entry product and 𝒑 is the 𝑚-

dimensional column vector of expected allelic frequencies in progeny:  

𝒑 = 0.5 ((𝑿 + 𝟏𝑁𝟏𝑚
′  )′  ∘ 𝐂) 𝟏𝑁, (Eq. 4a) 

where 𝐂 is the (𝑚 x 𝑁)-dimensional matrix of expected local parental contributions to progeny with 

𝐶(𝑖, 𝑗), 𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑁] the contribution of parent 𝑗 to progeny at the locus 𝑖. 𝐶(𝑖, 𝑗), ∀ 𝑖 ∈ [1,𝑚] 

is further approximated by the genomewide parental contribution to progeny 𝑐(𝑗). Consequently, the 

𝑚-dimensional column vector of expected allelic frequencies (Eq. 4a) is approximated as: 

𝒑̃ = 0.5 (𝑿 + 𝟏𝑁𝟏𝑚
′  )′𝒄. (Eq. 4b) 

We replace 𝒑 by its approximation 𝒑̃ in Eq. 3a:  

𝐻𝑒̃ =  
1

𝑚
 𝟏𝑚
′  ((𝑿′𝒄 + 𝟏𝑚𝟏𝑁

′ 𝒄) ∘ (𝟏𝑚 − 0.5 𝑿′𝒄 − 0.5 𝟏𝑚𝟏𝑁
′ 𝒄)). (Eq. 5a) 

Note that 𝟏𝑚𝟏𝑁
′ 𝒄 = 𝟏𝑚 and Eq. 5a becomes:  

𝐻𝑒̃ =
1

𝑚
 𝟏𝑚
′  ((𝑿′𝒄 + 𝟏𝑚) ∘ (0.5 𝟏𝑚 − 0.5 𝑿′𝒄)) 

=
1

𝑚
 𝟏𝑚
′  (0.5 (𝟏𝑚 − 𝑿′𝒄 ∘ 𝑿′𝒄)) 
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= 0.5 (1 −
1

𝑚
 𝟏𝑚
′  (𝑿′𝒄 ∘ 𝑿′𝒄)). (Eq. 5b) 

Let us note 𝒗 = 𝑿′𝒄. It can be shown that 𝟏𝑚
′  (𝒗 ∘ 𝒗) =  𝒗′𝒗, resulting in:  

𝐻𝑒̃ = 0.5 (1 −
1

𝑚
 (𝒄′𝑿𝑿′𝒄)) = 0.5(1 − 2 𝐼𝐵𝑆 + 1) = 1 − 𝐼𝐵𝑆. (Eq. 6) 

Note that this equivalence is conserved whether we consider ante- or post-selection parental 

contributions (𝒄), respectively in OCS or in UCPC based OCS. 
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File S3: Supporting R code 
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Supplementary figures 

Figure S1 Evolution of the additive genetic variance intra- and inter-family components in the breeding 

population. Scenarios considering presence or absence of bridging before introduction and different 

type of donors (panel, twenty-year old and five-year old donors). (A) Inter-family additive variance and 

(B) intra-family additive variance. 

 

Figure S2 Evolution of the breeding population over generations. Scenarios considering presence of 

bridging with different type of donors (panel, twenty-year old and five-year old donors) and two 

weightings for the optimal cross selection in bridging (default is 𝛼 = 0.7). (A) Mean breeding 

population performance (𝜇), (B) mean performance of the ten best progeny (𝜇10) and (C) frequency of 

the favorable alleles that were rare at the end of burn-in (i.e. 𝑝(0) ≤ 0.05 corresponding on average 

to 269.9 +/- 23.6 QTLs).  
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Figure S3 Summary statistics on the introduction crosses. Scenarios considering bridging, different 

donors (panel, twenty-year old and five-year old donors) and either a single training set (Single TS) or 

two distinct training sets for bridging and breeding (default). (A) Number of introduction crosses (DExE) 

per year and (B) the fraction of the introduction crosses (DExE) that contributed at least in one of the 

ten best progeny released by the internal breeding program. The distribution over the sixty 

generations is given after averaging over the ten replicates. 
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Figure S4 Effect of TS composition on intra-family prediction accuracies (𝑐𝑜𝑟(𝑢, 𝑢̂)) considering 

genotypes simulated at generations 8, 9, 10 (A, B) or 38, 39, 40 (C, D) in the scenario Bridging_20y. (A, 

C) Mean prediction accuracy within 50 elite (ExE) families and (B, D) mean prediction accuracy within 

50 introduction (DExE) families. Boxplots represent the results for 20 independent replicates. One can 

distinguish three training set types (left to right): Full training set considering all 3,600 E progeny (Pure 

E), all 1,200 DE progeny (Pure DE) and all 3,600 E + 1,200 DE progeny; Training sets at constant size of 

1,200 DH for comparison with Pure DE; Training sets at constant size of 3,600 DH and variable 

proportion of DE progeny for comparison with Pure E. The red dotted line represents the median value 

for Pure E TS.
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Titre: Contributions à la gestion de la diversité génétique dans les programmes de sélection génomique maïs 
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génétique 
Résumé :  
   Une sélection efficace et durable repose sur un compromis entre 
efforts à court terme afin de proposer aux agriculteurs des variétés 
compétitives, et le maintien d’une base génétique large garantissant 
des variétés futures qui répondront aux défis climatiques, biologiques 
et sociétaux de demain. Les avancées du génotypage haut débit ont 
ouvert de nouvelles perspectives de sélection pour les caractères 
quantitatifs telles que la prédiction génomique de performances 
individuelles, de l’intérêt de plans de croisements, ainsi que la gestion 
de la diversité. L’objectif de cette thèse est de contribuer au 
développement de méthodologies et schémas de sélection efficaces 
et durables. Cela inclue l’évaluation de la diversité génétique des 
populations élites, sa conversion efficace en gain génétique à court et 
long termes, ainsi que l’identification de sources de variabilité 
génétique d’intérêt et leurs introductions dans les populations de 
sélection.  
   Nous avons tout d’abord proposé d’exploiter des séries temporelles 
de phénotypes et génotypes afin d’évaluer l’effet de la sélection sur 
la diversité génétique des populations élites ainsi que leur réponse 
attendue à la sélection. Ces indicateurs ont été appliqués à un 
programme privé de sélection maïs grain et des stratégies de gestion 
et amélioration de la réponse à la sélection ont été discutées. 
   La sélection du plan de croisement qui génère des descendants 
performants et suffisamment de diversité est un facteur clef du 
succès à court et long termes des programmes de sélection. Le 
modèle prédictif de la distribution d’un caractère quantitatif dans une 
famille biparentale a été étendu au cas des familles multi-parentales. 
Une approche multi-caractères a été proposée, considérant les 
performances agronomiques et les contributions parentales comme 
des caractères corrélés et normalement distribués. 

   Cette approche dénommée critère d’utilité et contributions parentales 
(UCPC) permet de prédire la performance moyenne et la diversité 
attendues dans la fraction sélectionnée de la descendance d’un 
croisement. L’UCPC peut être utilisé afin d’étendre la sélection optimale de 
plan de croisements (OCS) qui a pour but de maximiser le gain génétique 
tout en limitant la perte de diversité. Nous avons montré par simulation 
que l’OCS basée sur l’UCPC converti plus efficacement la diversité 
génétique en gain à court et long termes que l’OCS. 
   La base génétique étroite des populations élites compromet le gain 
génétique à long terme. De ce fait, une stratégie d’élargissement de leur 
base génétique sans compromettre le gain à court terme est nécessaire. De 
nombreuses sources de diversité peuvent être considérées mais toutes ne 
peuvent être évaluées. Différents critères prédictifs ont été passés en revue 
et comparés afin d’évaluer l’utilité de ressources génétiques pour enrichir 
un pool élite. Ces critères s’appuient sur les effets aux marqueurs estimés 
dans un panel collaboratif constitué de lignées de diversité publiques et de 
lignées élites privées. L’UCPC permet de même l’identification du 
croisement multi-parental optimal entre ressources génétiques et lignées 
élites en fonction des caractéristiques d’originalité et de performance des 
ressources génétiques. Finalement, nous avons proposé d’utiliser 
l’approche OCS basée sur l’UCPC afin d’améliorer des ressources 
génétiques, puis de connecter les ressources génétiques améliorées au 
matériel élite avant de les introduire dans la population en sélection. Par 
simulations, nous avons montré l’intérêt de réaliser des introductions 
récurrentes de ressources génétiques préalablement améliorées afin de 
maximiser le gain génétique tout en maintenant la diversité constante.  
   Ces travaux ouvrent de nouvelles perspectives pour la gestion de la 
diversité génétique. 

 

Tile: Contributions to Genetic Diversity Management in Maize Breeding Programs using Genomic Selection 
Keywords: Maize, Genetic Diversity, Genomic Prediction, Optimal Cross Selection, Usefulness Criterion, Genetic Base Broadening 
Abstract :  
   There is an increasing awareness that crop breeding programs 
should move from short- to long-term objectives by maintaining 
genetic diversity to cope with future challenges in a context of 
climatic changes. The advent of high density genotyping opened new 
avenues for breeding quantitative traits including genomic prediction 
of individual performances, of parental crosses usefulness, and 
genetic diversity management. This thesis aims at developing 
methodologies to further enhance the efficiency and sustainability of 
breeding programs. This involves the evaluation of genetic diversity 
in elite breeding pools, its efficient conversion into short- and long-
term genetic gain and the efficient identification, improvement and 
introduction of extrinsic variability into breeding pools. 
   We first investigated how temporal phenotypic and genotypic data 
can be used to develop indicators of the genetic diversity and the 
potential response to selection of a breeding population. We applied 
these indicators on a commercial hybrid grain maize program and 
discussed strategies to manage and unlock potential response to 
selection in breeding populations. 
   Selection of parental crosses that generate superior progeny while 
maintaining sufficient diversity is a key success factor of short- and 
long-term breeding. We extended analytical solutions to predict the 
distribution of a quantitative trait in the progeny of biparental crosses 
to the case of multiparental crosses. We also proposed to consider a 
multitrait approach where agronomic trait and parental genome 
contributions are considered as correlated normally distributed 
traits. 

   This approach, called Usefulness Criterion Parental Contribution (UCPC), 
enables to predict the expected mean performance and diversity in the 
most performing fraction of progeny. We used UCPC to extend the Optimal 
Cross Selection (OCS) method, which aims at maximizing the performance 
in progeny while maintaining diversity for long-term genetic gain. In a long-
term simulated recurrent genomic selection breeding program, UCPC 
based OCS proved to be more efficient than OCS to convert the genetic 
diversity into short- and long-term genetic gains. 
   The narrow genetic base of an elite population might compromise its 
long-term genetic gain in unpredictable environmental conditions. An 
efficient strategy to broaden the genetic base of commercial breeding 
programs is therefore required. Many genetic resources are accessible to 
breeders but cannot all be considered. We reviewed, proposed and 
compared different predictive criteria for selecting genetic resources that 
best complement elite recipients, based on genomewide marker effects 
estimated on a collaborative diversity panel. We also investigated which 
mating design should be implemented between a promising genetic 
resource and elite recipient(s) depending on its phenotypic and genetic 
distance to elites. Finally, we evaluated the interest of UCPC based OCS to 
improve genetic resources (pre-breeding), to bridge pre-breeding and 
breeding (bridging), and to manage recurrent introductions into the 
breeding population. In a long-term simulated commercial breeding 
program, we demonstrated that recurrent introductions from a pre-
breeding population maximize long-term genetic gain while maintaining 
genetic diversity constant, with only limited short-term penalty. 
   The results of this thesis open new perspectives to manage genetic 
diversity in breeding. 

 


