

Catalyse asymétrique en présence de complexes d'or(I) -Un nouvel arsenal pour la construction d'architectures moléculaires

Yue Tang

► To cite this version:

Yue Tang. Catalyse asymétrique en présence de complexes d'or(I) - Un nouvel arsenal pour la construction d'architectures moléculaires. Autre. Université Paris sciences et lettres, 2019. Français. NNT: 2019PSLEC038. tel-03510215

HAL Id: tel-03510215 https://pastel.hal.science/tel-03510215

Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THÈSE DE DOCTORAT

DE L'UNIVERSITÉ PSL

Préparée à l'Ecole Nationale Supérieure de Chimie de Paris – Chimie ParisTech

Catalyse asymétrique en présence de complexes d'or(l) - Un nouvel arsenal pour la construction d'architectures moléculaires

Soutenue par Yue TANG Le 25 octobre 2019

Ecole doctorale n° 406 Chimie moléculaire de Paris centre Composition du jury :

Françoise, COLOBERT

Janine, COSSY Professeur, ESPCI Paris

Présidente de jury

Rapporteur

Abderrahmane, AMGOUNE Professeur, Université Claude Bernard Lyon 1 *Rapporteur*

Véronique, MICHELET Professeur, Université Côte d'Azur

Professeur, Université de Strasbourg

Directrice de thèse

Spécialité Chimie moléculaire

REMERCIEMENTS

Cette thèse a été effectuée au laboratoire CSB2D (Catalyse, Synthèse de Biomolécules et Développement Durable) de l'Ecole Nationale Supérieure de Chimie de Paris (Chimie ParisTech) et au laboratoire APSM (Arômes Parfums Synthèse et Modélisation) de l'Institut de Chimie de Nice (ICN) sous la direction de Madame Véronique Michelet, Professeure à Université Côte d'Azur.

Je remercie vivement Madame Françoise Colobert, Professeure à l'Université de Strasbourg, et Monsieur Abderrahmane Amgroune, Professeur à l'Université Claude Bernard Lyon 1, d'avoir accepté d'examiner cette thèse en qualité de rapporteurs, ainsi que Madame Janine Cossy, Professeure émérite à l'ESPCI Paris, Monsieur Philippe Belmont, Professeur à l'Université Paris Descartes et Monsieur Vincent César, Chargé de Recherche au LCC Toulouse d'avoir consacré du temps à l'examen de cette thèse.

J'adresse mes plus sincères remerciements à Véronique de m'avoir accueilli au sein de son équipe et de m'avoir fait confiance durant ces trois années et demi. Je lui suis particulièrement reconnaissant de m'avoir aidé à progresser et à me dépasser en me prodiguant de précieux conseils, également pour tous ses encouragements, sa patience et sa disponibilité dont elle a fait preuve au quotidien. Votre enthousiasme pour la chimie est communicatif et particulièrement motivant.

J'adresse également mes remerciements à Vincent César, Stéphanie Bastin et Philippe Belmont pour les nombreuses discussions faites au cours de ces trois années et les guides du projet ANR. Un très grand merci à Idir Benaissa pour toutes les synthèses et les envois des complexes d'or, ce qui a conduit à un bon déroulement de mon travail.

Mes remerciements continuent dans l'équipe CSB2D, dans lequel je me suis timidement installé un jour du janvier 2015 en tant que stagiaire de Master 2. Pour commencer, je tiens à remercier Charlotte de m'avoir aidé à me familiariser dans le labo bleu et de partager sa paillasse avec moi, ainsi que sa bonne humeur, et merci à Maxime de m'avoir appris à utiliser la HPLC. Un énorme merci à Quentin, Charlène, Benjamin et Aymane pour avoir organisé diverses activités, comme « bubble run », « jungle sling », le jeu du laser, le parc asterix, etc., j'ai passé beaucoup de bons moments avec vous. Grâce à vous tous, j'ai fait de grands progrès en français. Now I shift to English for two Chinese guys who granted from the China Scholarship Council, Longsheng and Fei. I have benefited a lot from their skills and knowledges in organic synthesis. Fei is always full of energy, I'm sure that he will succeed for his post-doctoral project in Germany as well as his future life. Longsheng is so reliable as a friend and a colleague, and thanks for coming to Nice to visit me. Je souhaite un bon déroulement à Johanne et Bin, qui avaient débuté leur thèse dans cette équipe quand je suis parti à Nice.

Mes remerciements vont également à toutes les personnes que j'ai côtoyées dans cette équipe : Virginie Vidal, Maxime Vitale, Sylvain Darses, Phannarath Phansavath, Mansour Haddad Aurélie Claraz, Clément Heinrich, pour tous les conseils dont j'ai pu bénéficier de leurs parts. Je tiens à remercier également Marie-Noëlle Rager, Céline Fosse et Claudine Fleurant pour les nombreuses analyses RMN et masse.

En octobre 2017, je suis arrivé à Nice. J'aimerais tout d'abord remercier Lorenzo de m'avoir aidé à me familiariser avec ce nouveau labo et à me laisser sentir l'enthousiasme et l'humour particuliers des Espagnols. Je suis également très reconnaissant à Aurélien, qui a réalisé un excellent travail pour notre projet ANR et m'a aidé à synthétiser de nombreux substrats. Sans doute, il sera un chimiste extraordinaire un jour. Le paillasse de Romain est toujours bien rangé, ce qui est une habitude excellente que nous tous devons apprendre. Je remercie également Sara de nous avoir invité aux concerts plusieurs fois et au restaurant marocain. Le baztela et le lham bel berqouq étaient très impressionnants. Merci à Haotian d'amener la vitalité et ses éclats de rire au labo. And finally, I would like to thank Xi for our numerous discussions about chemistry, which benefited me a lot.

Mes remerciements vont également à Dominique Bonhomme pour son aide à l'installation et la maintenance de la machine hybride HPLC/SFC, à Marc Gaysinski pour ses analyses RMN, et à toutes les personnes que j'ai côtoyées dans l'ICN : Elisabet Duñach, Jean-Claude Clinet, Sandra Olivero, Sophie Martini, Vincenzo Marsicano, Marie Dayras, Lingling Xiong, pour leurs aides au quotidien.

Je voudrais maintenant remercier Yihan Yang, Yaheng Cui, Zhilu Zhang, qui me soutiennent durant la préparation de cette thèse, merci de m'avoir encouragé et de m'avoir supporté dans les moments d'anxiété.

All that I owe to my parents and my family can't be summarized in a few lines. I express the deepest gratitude to them. Thanks for supporting me from the beginning and respecting each decision I've made.

Je conclurai par un poème que j'écris en chinois en exprimant mes sentiments sincères pour ces années mémorables des études en France :

负复西学 越以七载 仰学博士 迁转三城 蒙师恩渥 授道金业 格物致知 以答拔擢 苍穹蚍蜉 时矢沿溯 理学浩淼 余生求索 承君相伴 终须一别 心蕴所同 再会江湖 "Je suis de ceux qui pensent que la science a une grande beauté... Un savant dans son laboratoire n'est pas seulement un technicien : c'est aussi un enfant placé en face des phénomènes naturels qui l'impressionnent comme un conte de fées... Je ne crois pas non plus que, dans notre monde, l'esprit d'aventure risque de disparaître. Si je vois autour de moi quelque chose de vital, c'est précisément cet esprit d'aventure qui paraît indéracinable et s'apparente à la curiosité."

> Marie Curie Madame Curie, Ève Curie, éd. Gallimard, **1938**

> > À ma famille

Table des matières

Inti	roduction générale	1
Cha	apitre I : Rappels bibliographiques	3
I.	Généralité sur la catalyse à l'or	8
	1. Les complexes d'or (I)	10
	2. Les complexes d'or (III)	12
II.	Les réactions asymétriques catalysées par l'or (I)	15
	1. Cycloisomérisation des énynes	16
	2. Les réactions domino (tandem) énantiosélectives	30
	2.1 Hydroxy/alcoxycyclisation des énynes	30
	2.2 Hydroarylation/cyclisation des énynes	39
	2.3 Hydroxy/alcoxycyclisation des <i>o</i> -alcynyl arylaldéhydes	41
III.	Les réactions asymétriques catalysées par l'or (III)	43
IV.	Conclusion	45
Cha	apitre II : Les réactions de cycloisomérisation et domino des énynes-1,6	46
I.	Les ligands basés sur le squelette imidazo[1,5-a] pyridin-3-ylidène	47
	1. Etat de l'art	47
	2. Synthèse des complexes d'or de type IPy	52
II.	Synthèse des complexes d'or de type phosphine	57
III.	Synthèse des substrats	58
	1. Synthèse des énynes-1,6 azotés et oxygénés	58
	2. Synthèse des énynes carbonés	61
IV.	Cycloisomérisation des énynes-1,6	62
	1. Synthèse des diènes-1,4	62
	2. Mécanisme	65
	3. Etude de la réactivité des complexes de type IPy	67
	4. La méthode de Gutmann-Beckett	70
	5. Cycloisomérisation d'un énynamide-1,6	72
	6. Cycloisomérisation asymétriques d'énynes-1,6 azotés et oxygénés	74
V.	Réaction domino d'hydroxy/alcoxycyclisation des énynes-1,6	78
	1. Version racémique	78
	2. Les post-fonctionnalisations des dérivés éther et diène-1,4	81
	3. Version asymétrique	82
	4. Détermination du sens de l'énantiosélectivité	85
VI.	Réaction domino des énynes-1,6 via la voie 5-exo	91
	1. Version racémique	91

2. Catalyse asymétrique	95		
3. Détermination de la stéréosélectivité des processus domino	99		
4. Post-fonctionnalisation d'un dérivé azoté			
VII. Réaction de cyclisation oxydative des énynes-1,6	104		
1. Version racémique	104		
2. Version asymétrique			
3. Détermination de la stéréosélectivité	112		
VIII. Les réactions de Prins11			
1. Etat de l'art	115		
2. Résultats en version racémique	118		
3. La réaction Prins en version asymétrique	122		
Chapitre III : Synthèse et réactivité des carbonyl-ynes	124		
I. Synthèse des ortho-alkynyl arylaldéhydes	125		
II. Hydroarylation/cyclisation des o-alcynylbenzaldéhydes			
1. Catalyse en version racémique	127		
2. Catalyse en version asymétrique	130		
III. Réactivité des 1-(alcynyl-1-yl)-1H-indole-2-carbaldéhydes	136		
1. Synthèse des 1-(alcynyl-1-yl)-1 <i>H</i> -indole-2-carbaldéhydes	137		
2. Réactions des 1-(alcynyl-1-yl)-1 <i>H</i> -indole-2-carbaldéhydes	137		
Conclusion générale	142		
Partie expérimentale	146		
General procedures for the preparation of 1,6-enynes:	149		
General procedures for gold-catalyzed reactions of 1,6-enynes:	150		
Experimental data:	152		
General procedures for the preparation of o-alkynyl benzaldehydes:	201		
Procedure for Au-catalyzed reaction of carbonyl-ynes:	202		
Experimental data:	202		
Appendix			

Liste des abréviations

Ar	Aryle
Ad	Adamantyle
Ac	Acétyle
Bn	Benzyle
CCM	Chromatographie sur Couche Mince
Conv.	Conversion
Су	Cyclohexyle
DCM	Dichlorométhane
DCE	Dichloroéthane
de	Excès diastéréoisomérique
Dipp	Diisopropylphényle
DM	3,5-diméthyle
DMF	Diméthylformamide
DMSO	Diméthylsulfoxyde
DRX	Diffraction des rayons X
dr	Ratio diastéréoisomérique
DTB	3,5-di- <i>tert</i> -butyle
DTBM	3,5-di-tert-butyl-4-méthoxy
ee	Excès énantiomérique
éq.	Equivalent
<i>i</i> Bu	iso-Butyle
iPr	<i>iso</i> -Propyle
IPr	N,N'-bis(2,6-di-iso-propylphényl)imidazol-2-ylidène
IPy	Imidazo[1,5-a] pyridin-3-ylidène
HPLC	Chromatographie en phase liquide à haute performance
Mes	Mésityle (1,3,5-triméthybenzyle)
NHC	Carbène N-hétérocyclique
Nu	Nucléophile
NaBARF	Tétrakis[3,5-bis(trifluorométhyl)phényl]borate de sodium
<i>n</i> -Bu	<i>n</i> -Butyle
Ph	Phényle
Pic	2-Pyridinecarboxylate
Pin	Pinacolate
PPF	(Diphénylphosphino)ferrocényle
PPN	Bis(triphénylphosphine)iminium

quant.	Quantitative
Rdt	Rendement
RMN	Résonance magnétique nucléaire
SFC	Chromatographie en phase supercritique
t.a.	Température ambiante
<i>t</i> -Bu	<i>tert</i> -Butyle
Tf	Triflate (trifluorométhanesulfonate)
THF	Tétrahydrofurane
tht	Tétrahydrothiophène
TMS	Triméthylsilyle
TOF	Turn-over frequency
TON	Turn-over number
Ts	Tosyle (para-toluènesulfonyle)

Introduction générale

Classée parmi les douze principes du concept de « chimie verte », l'utilisation de procédés catalytiques est devenue ces dernières décennies un axe de recherche essentiel aussi bien d'un point de vue fondamental qu'industriel.¹ La catalyse permet de développer des réactions à économie d'atomes ainsi que des réactions où le nombre d'étapes de synthèse et de quantités de réactifs utilisés sont limités. L'utilisation de complexes de métaux de transition permet de réaliser ces transformations, et longtemps considéré comme inerte et donc délaissé par la communauté scientifique,² l'or a démontré son activité ces trente dernières années, et actuellement un des métaux les plus étudiés en catalyse.

Les réactions catalysées par l'or, comme la cycloisomérisation et les processus domino,³ répondent précisément au concept d'économie d'atomes et parmi celles-ci, les procédés impliquant des énynes, des aldéhydes-ynes et autres composés insaturés ont été largement étudiés.⁴ Ces réactions ont souvent permis d'accéder en une seule étape à des squelettes complexes de molécules bioactives ou d'intérêt biologique.⁵

¹ *Green Chemistry and Catalysis*, Sheldon R.A., Arends I., Hanefeld U., Eds., Wiley-VCH, Weinheim, **2007**.

² a) D. Thompson, *Gold Bull.* 1998, 31,111. (b) D. Thompson, *Gold Bull.* 1999, 32, 12. c) G. Dyker, *AngewChem. Int. Ed.* 2000, 39, 4237. d) G. J. Hutchings, *Catal. Today* 2002, 72, 11. e) A. Arcadi, S. Di Giuseppe, *Curr. Org. Chem.* 2004, 8,795. f) A. S. K. Hashmi, *Gold Bull.* 2004, 37,51. g) A. Arcadi, *Chem. Rev.* 2008, 108, 3266. h) G. J. Hutchings, M. Brust, H. Schmidbaur, *Chem. Soc. Rev.* 2008, 37,1759.

³ a) D. E. Fogg, E.N. dos Santos, *Coord. Chem. Rev.* **2004**, *248*, 2365. b) L.F. Tietze, *Chem. Rev.* **1996**, *96*, 115. c) G. Poli, G. Giambastiani, A. Heumann, *Tetrahedron* **2000**, *56*, 5959.

⁴ a) B. M. Trost, M. J. Krische, *Synlett* 1998, 1. b) G. C. Lloyd-Jones, *Org. Biomol. Chem.* 2003, *1*, 215.
c) M. Rubin, A. W. Sromek, V. Gevorgyan, *Synlett* 2003, 2265. d) A. Marinetti, H. Jullien, A. Voituriez, *Chem. Soc. Rev.* 2012, *41*, 4884. e) Y. Yamamoto, *Chem. Rev.* 2012, *112*, 4736. f) C. Aubert, O. Buisine, M. Malacria, *Chem. Rev.* 2002, *102*, 813. g) L. Zhang, J. Sun, S. Kozmin, *Adv. Synth. Catal.* 2006, *348*, 2271. h) V. Michelet, P. Y. Toullec, J.-P. Genêt, *Angew. Chem. Int. Ed.* 2008, *47*, 4268. i) E. Jiménez-Núñez, A. M. Echavarren, *Chem. Rev.* 2008, *108*, 3326. j) P. Belmont, E. Parker, *Eur. J. Org. Chem.* 2009, *35*, 6075. k) S. I. Lee, N. Chatani, *Chem. Commun.* 2009, 371. l) P. Y. Toullec, V. Michelet, *Top. Curr. Chem.* 2011, *302*, 31. m) D.-H. Zhang, Z. Zhang, M. Shi, *Chem. Commun.* 2012, *48*, 10271. n) C. Obradors, A. M. Echavarren, *Acc. Chem. Res.* 2014, *47*, 902.

 ⁵ a) A. S. K. Hashmi, M. Rudolph, *Chem. Soc. Rev.* 2008, *37*,1766. b) M. Rudolph, A. S. K. Hashmi, *Chem. Soc. Rev.* 2012, *41*, 2448. c) D. Pflästerer, A. S. K. Hashmi, *Chem. Soc. Rev.* 2016, *45*, 1331. d)
 P. Y. Toullec, V. Michelet, *Isr. J. Chem.* 2018, *58*, 578.

Un des enjeux majeurs d'aujourd'hui concerne la catalyse asymétrique en présence d'or du fait des propriétés géométriques linéaires défavorables des complexes d'or (I) et du défi de la synthèse des complexes d'or (III). Malgré ces difficultés rencontrées, certains progrès significatifs ont été accomplis dans ce domaine au cours des dernières années.⁶ Notamment, les développements des nouveaux ligands ont actuellement enrichi considérablement la potentialité de l'induction de la chiralité des complexes d'or et ont pu réaliser des transformations hautement stéréosélectives.

C'est dans ce contexte que mon travail de thèse se situe. Dans ce manuscrit, nous aborderons le développement de la catalyse à l'or avec des ligands originaux potentiellement chiraux et de nouvelles méthodologies de synthèse de carbo- et d'hétérocycles fonctionnalisés par l'utilisation de différents systèmes asymétriques à base d'or(I). Dans un premier temps, nous présenterons un aperçu de l'avancement décrit dans la littérature de la catalyse d'or énantiosélective pour les énynes et les *ortho*-alcynyl arylaldéhydes. Nous exposerons dans une seconde partie nos résultats concernant l'emploi des différents systèmes catalytiques pour les réactions de cycloisomérisation et domino des énynes-1,6 en présence de divers nucléophiles. Les applications des nouveaux systèmes catalytiques à base des ligands imidazo[1,5-*a*] pyridin-3-ylidène (IPy) seront également discutées dans cette partie. Dans un troisième chapitre, nous aborderons l'extension des réactions domino à des carbonyl-ynes de type *ortho*-alcynyl arylaldéhydes et 1-(alcynyl-1-yl)-*1H*-indole- 2-carbaldéhydes.

⁶ a) Y. Li, W. Li, J. Zhang, *Chem. Eur. J.* 2017, 23, 467. b) W. Zi, F. D. Toste, *Chem. Soc. Rev.* 2016, 45, 4567. c) Y. M. Wang, A. D. Lackner, F. D. Toste, *Acc. Chem. Res.* 2014, 47, 889. d) G. Cera, M. Bandini, *Isr. J. Chem.* 2013, 53, 848. e) A. Pradal, P. Y. Toullec, V. Michelet, *Synthesis* 2011, 10, 1501.

Chapitre I : Rappels bibliographiques

Des objets funéraires aux bijoux, ornements et monnaies, l'or a été considéré comme un métal rare et précieux depuis des temps immémoriaux. Etant stable et malléable, l'or a été chéri pour sa beauté et son lustre inhérents, symbolisant la richesse, le pouvoir, la divinité et l'éternité.⁷

Présenté dans la nature sous la forme de paillettes ou de pépites, l'or était l'un des premiers métaux connus par l'humain. Les artefacts les plus anciens découverts remontent au V^e millénaire av. J.-C. (avant Jésus-Christ) et ont été exhumés dans des sépultures de la Nécropole de Varna en Bulgarie (**Schéma 1**).⁷ Les Égyptiens de l'Antiquité ont été les premiers à exploiter l'or et le séparer des minerais. Dans la culture égyptienne ancienne, l'or était associé au dieu du soleil Rê, et la parure dorée était réservée aux pharaons et aux prêtres. Toutefois, la durabilité et la densité uniques de l'or ont plus tard incité à l'utiliser comme monnaie d'échange. La monnaie en or est apparue vers 635 av. J.-C. dans le royaume de Lydie (Turquie à présent). Les pièces originales étaient constituées d'électrum, alliage d'or et d'argent. Sous le règne du roi Crésus (560-546 av. J.-C.), les Lydiens frappèrent les premières pièces de monnaie en or pur et en argent, ce qui lança un système monétaire novateur et répandu pour les transactions autour du bassin méditerranéen.⁸

Schéma 1 : Objets en or trouvés dans la Nécropole⁹

Tout au long de l'évolution de l'humanité, l'or a été vénéré en tant qu'un élément de valeur pure et le désir incessant de sa possession a eu un impact significatif sur l'histoire

⁷ a) S. La Niece, *Gold*, 1st ed., Harvard University Press, Cambridge, MA, **2009**; b) R. Zorach, M. W. Phillips, *Gold: nature and culture*, 1st ed., Reaktion Books, London, **2016**.

⁸ P. L. Bernstein, *The power of gold: the history of an obsession*, John Wiley & Sons, New York, NY, **2000**

⁹ Ancient Artifacts, Gold of the Varna Necropolis (<u>http://psjfactoids.blogspot.com/2019/03/gold-of-varna-necropolis.html</u>)

du monde entier. Au Moyen Âge, les alchimistes occidentaux ont poursuivi la création de la pierre des Philosophes, une substance qui était supposée être capable de transmuter les métaux de base tels que le plomb et le cuivre en or. Malgré les résultats infructueux, ces premières expériences alchimiques ont éventuellement étayé la fondation de la chimie moderne. ¹⁰ Au 16^{ème} siècle, afin de rechercher l'or, les conquistadors espagnols ont exploré et conquis l'Amérique centrale et l'Amérique du sud, ce qui a causé le déclin des empires aztèque et inca. L'attrait de l'or ne s'est pas estompé et le 19^e siècle a été orchestré par une série de ruées majeures vers l'or. Des milliers de mineurs du monde entier se sont rendus dans de nouveaux pays où de l'or avait été découvert, notamment aux États-Unis, au Canada, en Australie et en Afrique du Sud. Ces événements de migration massive ont considérablement accéléré le rythme de l'intégration mondiale en révolutionnant l'industrie, la technologie, les transports et les communications.¹¹

La quantité totale d'or exploitée depuis le début de la civilisation humaine est estimée à 190 400 tonnes.¹² Plus de 90% de l'or est extrait depuis la ruée vers l'or de Californie en 1849.¹³ En 2017, la production minière mondiale de l'or était d'environ 3250 tonnes. En outre, une partie importante de l'approvisionnement de l'or provenait du recyclage des déchets métalliques (environ 1 200 tonnes). La bijouterie consomme environ 60% de l'or, celui restant est utilisé pour la fabrication des lingots et pièces de monnaie (30%) et les applications industrielles et médicales (10%).¹² Contrairement à ce que l'on pense, l'or n'est pas le métal le plus rare ni le plus cher en comparant à d'autres métaux de transition fréquemment utilisés dans l'industrie, tels que le rhodium, le palladium et l'iridium (**Schéma 2**).¹⁴

¹⁰ L. M. Principe, *The secrets of alchemy*, 1st ed., University of Chicago Press, Chicago, IL, **2013**.

¹¹ B. Mountford, S. Tuffnell, *A global history of gold rushes*, 1st ed., University of California Press, Oakland, CA, **2018**.

¹² R. O'Connell, C. Alexander, R. Strachan, B. Alway, S. Nambiath, J. Wiebe, S. Li, N. Scott-Gray, D. Aranda, Z. Chan, *GFMS gold survey 2018*, Thomson Reuters, London, **2018**.

¹³ W. C. Butterman, E. B. Amey III, *Mineral commodity profiles - gold*, U.S. Geological Survey (USGS), Reston, VA, **2005**.

¹⁴ Prix des métaux précieux : <u>http://www.infomine.com/investment/metal-prices/</u>, accès en mai 2019.

Schéma 2 : Prix des métaux précieux en mai 2019 (1 Oz = 28.35 g)

Du point de vue industriel et médical, l'or a une excellente résistance à la corrosion, sa stabilité dans l'eau et l'air fait que l'or est souvent qualifié d'inerte chimiquement. Dans le même temps, « l'inertie » de l'or a conduit la société chimique à négliger l'or pendant une période très longue comme un catalyseur potentiel. Ce n'est que dans les années 1970 que commence l'essor de la chimie de l'or.¹⁵ L'utilisation industrielle de procédés de catalyse d'or hétérogène pour l'oxydation du CO en CO₂ ou encore la formation du chlorure de vinyle à partir de l'acétylène, qui est ensuite le monomère pour fabriquer le poly(chlorure de vinyle) (**Schéma 3**).¹⁶ Aujourd'hui, les nanoparticules d'or sont employées dans le domaine de la catalyse hétérogène, tant en ce qui concerne les recherches qui sont menées que les applications.¹⁷

Schéma 3 : Procédés qui utilisent la catalyse hétérogène à l'or

Depuis les années 1990, c'est la catalyse homogène à l'or qui connaît une croissance importante, donnant une avancée considérable sur la compréhension de l'activité de ce métal et des possibilités qu'il offre.¹⁸ Ces vingt dernières années peuvent être qualifiées

¹⁵ L.-U. Meyer, A. de Meijere, *Tetrahedron Letters* **1976**, *17*, 497.

¹⁶ Revue sur l'utilisation de l'or en catalyse hétérogène : Hutchings, G. J. *Chem Commun.* **2008**, 1148.

¹⁷ Revue sur la nanocatalyse à l'or : Grzelczak, M. ; Perez-Juste, J. ; Mulvanry, P. ; Liz-Marzan, L. M. *Chem. Soc. Rev.* **2008**, *37*, 1783.

¹⁸ A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896–7936.

des deuxièmes « ruées vers l'or » comme en témoigne l'augmentation du nombre de publications de façon presque exponentielle (**Schéma 4**).¹⁹

Schéma 4 : Nombre de publications sur « gold catalysis » de 1995 à le mai 2019. Données extraites du Web de Science.¹⁹

La catalyse homogène présente de nombreux avantages, par rapport à la catalyse hétérogène. Elle permet de s'affranchir des problèmes liés au processus d'adsorption/désorption en surface du catalyseur hétérogène. En effet, les propriétés de surface de tels catalyseurs (taille des particules, surface de contact, etc.) sont primordiales pour la reproductibilité des réactions. Les conditions de réaction utilisées sont plus douces (température, pression, etc.) et les catalyseurs à base d'or sont relativement non toxiques par rapport aux autres métaux.²⁰

La plupart des transformations catalysées par un métal sont basées sur des processus d'addition oxydante et d'élimination réductive, dans lesquels le métal alterne entre différents états d'oxydation. Quant à l'or, les cycles catalytiques entre l'or (I) et l'or (III) sont encore assez peu exploités²¹ à cause du potentiel redox élevé de Au(I)/Au(III) (1.41 V) par rapport à ceux de Pd(0)/Pd(II) (0.91 V) ou Pt(0)/Pt(II) (1.18 V),²² un oxydant externe puissant est souvent requit pour oxyder l'or (I) en l'or (III). Les espèces

¹⁹ Clarivate Analytics, *Web of Science* (<u>https://clarivate.com/products/web-of-science/</u>, accès le 16 mai 2019)

²⁰ a) S. Spreckelmeyer, C. Orvig, A. Casini, *Molecules* 2014, *19*, 15584. b) S. Medici, M. Peana, V. M. Nurchi, J. I. Lachowicz, G. Crisponi, M. A. Zoroddu, *Coord. Chem. Rev.* 2015, *284*, 329. c) K. S. Egorova, V. P. Ananikov, *Organometallics* 2017, *36*, 4071.

²¹ Exemple récent de catalyse Au(I)/Au(III) dans la réaction de couplage croisé : A. Zeineddine, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, *Nat. Commun.* 2017, *8*, 1.

²² S. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1.

d'or cationiques possèdent des propriétés d'acide de Lewis- π et activent les liaisons carbonées insaturées. ²³ Le catalyseur d'or est ensuite souvent régénéré par protodéauration.

Ce n'est jusqu'en 1986 que le premier exemple, décrit par Hayashi et ses collaborateurs, marque un jalon de la catalyse asymétrique à l'or.²⁴ La réaction d'aldolisation énantiosélective par l'addition de l'isocyanoacétate de méthyle **1** sur le benzaldéhyde conduit à la formation du dérivé oxazoline **2** avec 98% de rendement et 96% d'*ee* en présence d'un complexe d'or cationique avec le ligand chiral de type ferrocénylphosphine L3 (Schéma 5).

Schéma 5 : Premier exemple de catalyse asymétrique à l'or

Dans le contexte de notre projet de recherche, nous allons présenter dans la suite de ce manuscrit quelques généralités sur la catalyse à l'or, d'où vient la réactivité de l'or de type acide de Lewis- π unique, puis les ligands chiraux associés à l'or, enfin, les réactions énantiosélectives des énynes et aldéhydes-ynes catalysées par les complexes d'or chiraux.

I. Généralité sur la catalyse à l'or

L'or, de numéro atomique Z = 79, a une configuration électronique [Xe]4f¹⁴5d¹⁰6s¹. Ses états d'oxydation parcourent de -1 (seul cas : CsAu) à +6 (eg. AuF₆).²⁵ Les degrés d'oxydation les plus fréquents sont +1 et +3. Ce sont ces deux états d'oxydation de l'or qui sont pour le moment exploités en catalyse homogène.

²³ Revues sur l'effet relativiste : a) D. J. Gorin, F. D. Toste, *Nature*, **2007**, *446*, 395. Revue sur l'étude théorique de l'or et de ses oxydes : b) P. Pyykö, *Angew. Chem. Int. Ed.*, **2004**, *43*, 4412

²⁴ a) W. A. Nugent, *Angew. Chem. Int. Ed.* **2012**, *51*, 8936. b) Y. Ito, M. Sawamura, T. Hayashi, *J. Am. Chem. Soc.* **1986**, *108*, 6405.

²⁵ J. Lin, S. Zhang, W. Guan, G. Yang, Y. Ma, J. Am. Chem. Soc. 2018, 140, 9545.

La configuration électronique confère à l'or des effets relativistes très importants qui ont de nombreuses conséquences sur l'électrophilie des complexes d'or.²³ Ces effets proviennent de la grande vitesse des électrons des couches externes. En effet, leur vitesse n'est pas négligeable par rapport à celle de la lumière. Afin de conserver l'énergie mécanique liée à leur position dans les différentes couches électroniques, les électrons se rapprochent du noyau, cela entraîne une augmentation de la masse des électrons et diminue légèrement leur vitesse. Ces phénomènes provoquent une contraction des orbitales *6s* et *6p* de l'or plus importante que dans le cas des autres éléments (**Schéma 6**).

Schéma 6 : Influence des effets relativistes sur des éléments de transition^{23a}

La contraction de l'orbitale 6s a pour conséquence une stabilisation de cette orbitale, et donc la diminution de l'énergie de la plus basse orbitale vacante (LUMO) pour l'or (I) et l'or (III). L'abaissement en énergie de cette orbitale rend les complexes cationiques de l'or électrophiles, et explique l'exceptionnelle acidité de Lewis des complexes d'or (I). De plus, l'expansion des orbitales 5d et 5f est une conséquence de ces contractions qui entraînent la formation d'un écran. Les électrons de ces orbitales 5d et 5f perçoivent donc moins la charge du noyau, et ces orbitales deviennent plus diffuses. L'orbitale 5d de 1'or est donc l'orbitale de valence la plus haute occupée (HOMO). Les électrons de la 5d sont plus faciles à « extraire » de l'atome. Ainsi, l'or est donc quand même susceptible de redonner de la densité électronique à un ligand. Cette rétrodonation permet la stabilisation des intermédiaires réactionnels pendant les réactions.

L'étendue importante de l'orbitale 6s vacante rend également l'interaction entre le centre métallique et le ligand de nature orbitalaire. Les complexes d'or sont par conséquent considérés comme des acides de Lewis « mous », se complexant plus

facilement à des ligands « mous » comme des systèmes π . De ce fait, l'or est souvent décrit comme un acide de Lewis- π .

Une théorie permet de prédire l'électrophilie des complexes d'or.²⁶ La configuration électronique de l'or (I) (type R_3PAu^+) le rend isolobal à un proton, mais également au cuivre (I), à l'argent (I) ou au mercure (II). Tous ces espèces ont un caractère d'acide de Lewis très prononcé. Un complexe d'or (I) peut être considéré, en première approximation, comme un gros proton chimiosélectif, ce qui permet d'expliquer simplement la réactivité de ces complexes. Le même raisonnement peut être appliqué à l'or (III), isolobal au platine (II).

L'analogie entre le proton et l'or (I) aussi rationnalise les liaisons aurophiles, qui ont été mises en évidence dans certains complexes d'or.²⁷ Ces liaisons mettent en avant une interaction réciproque d'ions or (I) à une distance trop longue pour constituer une liaison Au-Au covalente, mais plus courte que pour les forces de Van der Waals. Ces liaisons sont comparables à des liaisons hydrogènes en termes d'interaction.

1. Les complexes d'or (I)

Les complexes d'or (I) adoptent une géométrie linéaire dicoordiné. L'approche d'un substrat nécessite préalablement la décoordination de l'un des deux ligands du métal, un ligand fortement coordinant accompagné d'un autre ligand faiblement coordinant sont donc souvent utilisés, comme une phosphine, un phosphite ou un carbène, accompagné d'un thioéther, un nitrile ou un anion NTf₂. Les précatalyseurs de type LAuCl sont aussi largement exploités, et peuvent être activés et générer l'espèce catalytique au milieu réactionnel par l'ajout d'un co-catalyseur (souvent un sel d'argent AgX). La métathèse des ions forme le précipité AgCl et LAu⁺X⁻.

En termes des propriétés chimiques des complexes d'or (I), ils sont considérés comme des acides de Lewis mous, se complexant plus facilement à des ligands mous comme les systèmes π . Les complexes d'or, comparés à un grand nombre d'autres complexes métalliques, sont généralement insensibles à l'oxygène et compatibles avec les conditions aqueuses et faciles à manipuler. De plus, ils sont relativement non toxiques,

²⁶ R. Hoffman, Angew. Chem. Int. Ed., **1982**, 21, 711.

²⁷ H. Schmidbaur, *Gold Bulletin*. **2000**, *33*, 3.

surtout en comparant avec les complexes de mercure, qui peuvent également être utilisées comme acide de Lewis pour activer un système π .

Les complexes d'or (I) ont une affinité particulière pour les insaturations carbonées comme les alcynes, les allènes et les alcènes. Il mérite d'être mentionné que les complexes d'or (I) se coordinent plus facilement à un alcène qu'à un alcyne mais activeront de manière contraire en raison d'une meilleure interaction orbitalaire avec le système π . De plus, l'addition nucléophile à l'alcyne activé est généralement supposée via un mécanisme de type « sphère externe » (**Schéma 7**).^{23a,28} Cela permet d'expliquer les régio- et chimiosélectivités excellentes de la formation des liaisons carbone-carbone ou carbone-hétéroatome, notamment dans les réactions de cycloisomérisation d'ényne.

Schéma 7 : Mode de coordination des complexes d'or (I)

Cependant, la géométrie linéaire des complexes d'or (I) rend l'induction chirale défavorable pour la catalyse asymétrique. La source de la chiralité est éloignée du site de coordination, par conséquent, les ligands chiraux simples ne donnent en général qu'une énantiosélectivité médiocre, et il nécessite habituellement l'utilisation de contre-ions chiraux, d'espèces dinucléaires avec les ligands atropoisomériques, voire les ligands hélicoïdaux pour générer un environnement plus encombré.⁶

La diversité des ligands rend les réactivités des complexes différentes. En géréral, les ligands utilisés dans la chimie de l'or sont classés en trois types : les ligands carbéniques, les ligands phosphites /phosphoramides et les ligands phosphines.

Les ligands de type carbène comme les carbènes *N*-hétérocycliques donnent au complexe d'or un caractère π -accepteur peu prononcé (donc le complexe est peu électrophile) mais un caractère σ -donneur important (**Schéma 8**).^{23a} Ces complexes

 ²⁸ a) M. C. Gimeno, A. Laguna, *Chem. Rev.* 1997, 97, 511. b) A. Fürstner, P. W. Davies, *Angew. Chem. Int. Ed.* 2007, 46, 3410. c) A. S. K. Hashmi, *Angew. Chem. Int. Ed.* 2010, 49, 5232.

permettent donc la stabilisation de carbocations et la formation d'intermédiaires de type carbènes d'or.

Schéma 8 : Exemples de ligands chiraux utilisés en catalyse asymétrique à l'or

A l'opposé des carbènes, les ligands de type phosphite et phosphoramide rendent les complexes d'or très électrophiles par leur caractère π -accepteur important mais σ -donneur peu prononcé. Les ligands phosphines combinent les caractères π -accepteur et σ -donneur. La modification des groupements sur l'atome de phosphore permet de moduler l'activité des complexes d'or, soit par effets électroniques, soit par effets stériques. Dans le cas des ligands phosphines chiraux, la chiralité est souvent introduite sur le ligand diphosphine atropoisomérique, qui conduit à des complexes binucléaires.

2. Les complexes d'or (III)

Les complexes d'or (III) ont une configuration électronique [Xe]4f¹⁴5d⁸6s⁰ et adoptent une géométrie plan carré tétracoordiné. Au contraire de la catalyse à l'or (I), qui a été reconnue pour son efficacité et variation dans la méthodologie de la construction des liaisons carbone-carbone et carbone-hétéroatome, la catalyse à l'or (III) se limite usuellement à l'utilisation des sels d'or (III) inorganiques,²⁹ tels que AuCl₃ et NaAuCl₄, qui sont commerciaux et directement actifs en catalyse sans l'addition d'un ligand ou d'un co-catalyseur. Le complexe AuCl₃ est en fait un dimère de la forme Au₂Cl₆

²⁹ H. Schmidbaur, A. Schier, Arab. J. Sci. Eng. 2012, 37, 1187.

possédant deux ponts μ-C1 (**Schéma 9**). D'autres halogénures d'or (III) comme AuBr₃ et AuI₃ existent également.

Schéma 9

Les synthèses des catalyseurs organométalliques d'or (III) sont communément délicates à cause du potentiel rédox élevé de l'or (III), qui rend les complexes associés plutôt labiles et susceptibles de se réduire en espèces d'or (I).³⁰ En outre, les ligands capables de stabiliser le centre d'or (III) produisent souvent des complexes catalytiquement inertes.³¹

Malgré ces difficultés, la catalyse à l'or (III) pourrait potentiellement être une alternative particulièrement bénéfique de part la géométrie plan carré du complexe. Le ligand chiral se placerait significativement plus proche du site actif par rapport à la géométrie linéaire de l'or (I).³² En plus du potentiel géométrique et stérique, les propriétés uniques des espèces d'or (III) ont une incidence sur la réactivité et la sélectivité des réactions, ce qui élargirait encore la portée de la catalyse à l'or (**Schéma 10**).³³

Schéma 10 : Représentation schématique de la stéréo-induction du ligand dans les complexes d'or (I) et d'or (III).

Les ligands les plus utilisés pour les catalyseurs d'or (III) sont les dérivés de la pyridine.³⁴ Le caractère oxophile de l'or (III) rend aussi la coordination avec l'atome

³⁰ M. Joost, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2015, 54, 15022.

³¹ a) A. S. K. Hashmi, M. C. Blanco, D. Fischer, J. W. Bats, Eur. J. Org. Chem. 2006, 1387; b) S. Gaillard,

A. M. Z. Slawin, A. T. Bonura, E. D. Stevens, S. P. Nolan, Organometallics 2010, 29, 394; c) W. J. Wolf,

M. S. Winston, F. D. Toste, Nat. Chem. 2013, 6, 159-164.

³² J. Rodriguez, D. Bourissou, Angew. Chem. Int. Ed. 2018, 57, 386.

³³ A. Leyva-Pérez, A. Corma, Angew. Chem. Int. Ed. 2011, 51, 614.

³⁴ a) A. S. K. Hashmi, J. P. Weyrauch, M. Rudolph, E. Kurpejovic, *Angew. Chem. Int. Ed.* 2004, *43*, 6545 b) A. S. K. Hashmi, M. Rudolph, J. W. Bats, W. Frey, F. Rominger, T. Oeser, *Chem. Eur. J.* 2008, *14*, 6672 c) H.-M. Ko, K. K.-Y. Kung, J.-F. Cui, M.-K. Wong, *Chem. Commun.* 2013, *49*, 8869. d) Y.

oxygène souvent présentée. Les ligands carbéniques d'or (III) existent également.³⁵ (Schéma 11)

Schéma 11 : les catalyseurs d'or (III)

Le groupe de Toste a décrit une stratégie efficace et pratique pour oxyder les complexes d'or(I) à d'or (III) *in situ* par coupure de liaison carbone-carbone du biphénylène **4** et a ainsi préparé une variété de complexes d'or (III) stables et réactifs (eg. **5**).³⁶ Les méthodes rapportées précédemment pour générer de tels complexes nécessitaient l'utilisation d'oxydants forts halogénés qui limitaient la présence des groupements fonctinalisés. A cet égard, cette stratégie représente une avancée notable dans la chimie de l'or (III). En outre, l'acidité de Lewis oxophile dure des complexes d'or(I). En 2017, la même stratégie a été utilisée pour la préparation des complexes d'or (III) chiraux. Le complexe **6** a été identifié de part un facteur de sélectivité excellent dans une réaction de dédoublement cinétique d'ényne-1,5.³⁷ (**Schéma 12**)

^{Yang, W. Hu, X. Ye, D. Wang, X. Shi,} *Adv. Synth. Catal.* 2016, *358*, 2583. e) V. K.-Y. Lo, Y. Liu, M.-K. Wong, C.-M. Che, *Organic Letters* 2006, *8*, 1529. f) K. Kato, T. Kobayashi, T. Fujinami, S. Motodate, T. Kusakabe, T. Mochida, H. Akita, *Synlett* 2008, 1081.

³⁵ a) E. Tomás-Mendivil, P. Y. Toullec, J. Díez, S. Conejero, V. Michelet, V. Cadierno, *Org. Lett.* **2012**, *14*, 2520. b) E. Tomás-Mendivil, P. Y. Toullec, J. Borge, S. Conejero, V. Michelet, V. Cadierno, *ACS Catal.* **2013**, *3*, 3086. c) P. de Fremont, R. Singh, E. D. Stevens, J. L. Petersen, S. P. Nolan, *Organometallics* **2007**, *26*, 1376.

³⁶ C.-Y. Wu, T. Horibe, C. B. Jacobsen, F. D. Toste, *Nature* 2015, 517, 449.

³⁷ P. T. Bohan, F. D. Toste, J. Am. Chem. Soc., 2017, 139, 11016.

Schéma 12 : La stratégie *in situ* de synthèse des complexes d'or (III) par coupure de la liaison C-C du biphénylène

En 2017, l'équipe de Wong a décrit une classe des complexes d'or (III) cyclométallés chiraux (environ 50 congénères) coordinant avec le BINOL comme point d'encrage (eg. **7**, **8**, **9**, **Schéma 13**). Notamment, la chiralité axiale du BINOL est complètement transférée à la chiralité centrale au cours de la coordination du BINOL à l'or.³⁸ Les applications de ce type de complexes d'or en catalyse asymétrique seront discutées dans la section suivante.

Schéma 13 : Représentation des complexes d'or (III) cyclométallés chiraux

II. Les réactions asymétriques catalysées par l'or (I)

Comme mentionné précédemment, les complexes d'or (I) peuvent activer les systèmes π tels qu'un alcyne, un alcène et un allène et il en résulte différentes espèces intermédiaires après une addition nucléophile (**Schéma 14**). Nous nous intéressons particulièrement à l'activation des alcynes dans les molécules bifonctionnalisés et portant un alcène ou un carbonyle, qui jouent le rôle de nucléophiles et conduisent à une addition intramoléculaire.

³⁸ a) J.-F. Cui, H.-M. Ko, K.-P. Shing, J.-R. Deng, N. C.-H. Lai, M.-K. Wong, *Angew. Chem. Int. Ed.* **2017**, *56*, 3074. b) J.-J. Jiang, J.-F. Cui, B. Yang, Y. Ning, N. C.-H. Lai, M.-K. Wong, *Org. Lett.* **2019**, *21*, 6289.

Dans cette section, nous allons donc présenter les avancements en catalyse asymétrique en nous focalisant sur les énynes et les carbonyle-ynes.

1. Cycloisomérisation des énynes

La cycloisomérisation est une réaction dans laquelle une chaîne hydrocarbonée, est isomérisée avec perte concomitante d'une ou plusieurs insaturations, sans perte ou gain d'atomes et avec la formation d'un ou plusieurs cycles. Ces transformations répondent au concept d'économie d'atomes de chimie verte que nous avons présenté en introduction.¹

Parmi les stratégies pour la synthèse des cycles fonctionnalisés, la cycloisomérisation d'ényne catalysée par les métaux de transition est considérée comme une méthode remarquable car ce processus permet d'augmenter rapidement la complexité structurelle des molécules à partir des sous-unités acycliques relativement simples contenant des fragments d'alcènes et d'alcynes.^{4h} Les conditions réactionnelles douces et la compatibilité élevée pour les fonctions sont aussi les raisons pour lesquelles cette méthode a été largement développée non seulement dans la synthèse totale des molécules bioactives,⁵ mais aussi en catalyse asymétrique.⁶

Dans le cas de cycloisomérisation d'ényne-1,6 catalysée par l'or, le mécanisme implique une activation électrophile de l'alcyne. L'or coordonne la triple liaison et ainsi l'active vis-à-vis de l'addition nucléophile de l'oléfine par voies 5-*exo-dig* ou 6-*endo-dig* et génère les espèces cyclopropylcarbéniques **B** et **C**. La nature du produit de cycloisomérisation dépend étroitement du catalyseur utilisé et de la structure de l'ényne.

Après réarrangement et protodémétallation, des diènes **D**, **E**, **H** et **I**, des cyclobutènes **F** ou des bicyclo[4.1.0]heptènes **G** peuvent être obtenus. (**Schéma 15**)

Cycloisomérisation des énynes-1,6 par voie 6-endo-dig

La première réaction de cycloisomérisation asymétrique catalysée par l'or est rapportée par l'équipe de Chung ³⁹ en 2006 sur l'ényne-1,6 azoté **10**. En général, cette transformation conduit au diène-1,4 et au bicyclo[4.1.0]heptène via la voie 6-*endo-dig*. Les auteurs ont observé la formation du diène **11** avec de bons rendements de 95% et 85% en présence du complexe d'or bimétallique **12** et du complexe portant le ligand monodente phosphine **13** respectivement. Néanmoins, les deux complexes donnent un excès énantiomérique maximal de 22%. (**Schéma 16**)

³⁹ S. I. Lee, S. M. Kim, S. Y. Kim, Y. K. Chung, Synlett, 2006, 14, 2256, corrigé: Synlett, 2009, 8, 1355

Schéma 16

Plus tard en 2009, le premier système asymétrique de cycloisomérisation d'ényne-1,6 a été décrit par notre équipe.⁴⁰ En utilisant un catalyseur d'or(I) binucléaire **18** portant le ligand (R)-DTBM-MeOBIPHEP, les énynes oxygénés 14 peuvent être transformés en dérivés bicyclo[4.1.0]heptènes 15 avec une bonne à excellente stéréosélectivité via la voie 6-endo. Les propriétés électroniques des substituants sur le noyau aromatique à l'extrémité acétylénique des énynes 14 n'ont pas affecté les énantiosélectivités, 90-98% d'ee ont été obtenus. Le même système catalytique a également été évalué pour les énynes-1,6 azotés. Le meilleur résultat est la formation dérivé du azabicyclo[4.1.0]heptène 17 à partir de l'ényne 16 avec 74% de conversion et 98% d'ee. Cependant, pour la plupart des autres énynes azotés, de modestes rendements et ee sont obtenus.⁴¹ (Schéma 17)

⁴⁰ C.-M. Chao, D. Beltrami, P. Y. Toullec, V. Michelet, Chem. Commun. 2009, 45, 6988.

⁴¹ A. Pradal, C.-M. Chao, P. Y. Toullec, V. Michelet, *Beilstein J. Org. Chem.*, **2011**, 7, 1021.

Les complexes d'or **21** avec les ligands hélicoïdaux HelPHOS, développés par Marinetti, Voituriez et Licandro, ont montré d'excellentes énantiosélectivités pour la cycloisomérisation des divers énynes-1,6 azotés. Dans le cas des énynes **19** portant un vinyle, les dérivés azabicyclo[4.1.0]heptènes **20** ont été obtenus avec 68%-89% d'*ee*.⁴² Pour l'ényne **22**, une réaction cascade de cycloisomérisation/ réarrangement du vinylcyclopropane-cyclopentène fournit le produit tricyclique **23** avec 96% *ee* en présence du complexe **24**. (**Schéma 18**)

Le complexe d'Helixol bisphosphinite **27**, développé par Barbazanges récemment, a conduit à un excès énantiomérique très modeste de 11% pour la cycloisomérisation de l'ényne azoté **25** en dérivé azabicyclo[4.1.0]heptène **26** (**Schéma 19**).⁴³ L'introduction de la chiralité assez faible, par rapport aux ligands **21** hélicoïdaux HelPHOS, est probablement dûe à la distance éloignée entre le centre de coordination et la cavité hélicoïdale.

⁴² a) K. Yavari, P. Aillard, Y. Zhang, F. Nuter, P. Retailleau, A. Voituriez, A. Marinetti, *Angew. Chem. Int. Ed.* 2014, *53*, 861. b) P. Aillard, A. Voituriez, D. Dova, S. Cauteruccio, E. Licandro, A. Marinetti, *Chem. Eur. J.* 2014, *20*, 12373.

⁴³ C. Medena, F. Calogero, Q. Lemoine, C. Aubert, E. Derat, L. Fensterbank, G. Gontard, O. Khaled, N. Vanthuyne, J. Moussa, C. Ollivier, M. Petit, M. Barbazanges, *Eur. J. Org. Chem.* **2019**, *11*, 2129.

En 2013, Sollogoub et ses collègues ont synthétisé un nouveau type de complexe NHC **30** porté par une cyclodextrine- α et - β .⁴⁴ Le motif NHC est fixé au sommet de la cyclodextrine conique en tant qu'un pont lié par deux méthylènes, et le centre métallique est encapsulé à la cavité. L'induction de la chiralité est générée par l'environnement total de la cyclodextrine. La cycloisomérisation de l'ényne **28** a fourni le composé azabicyclo[4.1.0]heptène **29** avec une énantiosélectivité moyenne. L'excès est meilleur (59% *ee*) en présence de la cyclodextrine- β que la cyclodextrine- α (43% *ee*) (**Schéma 20**).

Les ligands phosphoramidites de type TADDOL développés par le groupe de Fürstner ont démontré une excellente énantiosélectivité pour la cycloisomérisation des énynes-1,6.⁴⁵ En utilisant le complexe 2-naphthyle (*S, S, S, S*)-**L33**-AuCl et AgBF₄ dans le toluène à 0°C, les énynes azotés **31** ont donné les azabicyclo[4.1.0]heptènes **32** avec de bons rendements (53-94%) et des *ee* excellents (89-98%) (**Schéma 21**).

⁴⁴ M. Guitet, P. Zhang, F. Marcelo, C. Tugny, J. Jiménez-Barbero, O. Buriez, C. Amatore, V. Mouriès-Mansuy, J.-P. Goddard, L. Fensterbank, Y. Zhang, S. Roland, M. Ménand, M. Sollogoub, *Angew. Chem. Int. Ed.* **2013**, *52*, 7213.

⁴⁵ H. Teller, M. Corbet, L. Mantilli, G. Gopakumar, R. Goddard, W. Thiel, A. Fürstner, J. Am. Chem. Soc., **2012**, 134, 15331.

Schéma 21

Pour les énynes oxygénés avec deux groupement en α et α ' de l'oxygène, le complexe (*R*, *R*, *R*, *R*)-L34-AuCl fournit les composés tricycliques 35-37 avec des excès énantiomériques allants de 93% à 99%. Il est observé que la substitution sur l'alcyne est primordiale puisque le substrat possédant un groupement méthyle (R₁) conduit au tricycle 38 avec 34% d'*ee*. (Schéma 22)

Au niveau des applications de cette méthodologie, le groupe de Fürstner a décrit une synthèse totale asymétrique d'un candidat antidépresseur (inhibiteur de la recapture de la dopamine, de la sérotonine et de la noradrénaline), nommé GSK1360707, qui porte un squelette de type bicyclo[4.1.0]heptane.⁴⁶ L'étape clé est la cycloisomérisation de l'ényne-1,6 **39** en présence des catalyseurs d'or de type TADDOL. Le 2-naphtyle phosphoramidite tétrasubstitué (*S*, *S*, *S*, *S*)-**L33** conduit au bicyclo[4.1.0]heptène **40** avec 88% de rendement et 95% d'excès énantiomérique. (**Schéma 23**)

⁴⁶ H. Teller, A. Fürstner, *Chem. Eur. J.*, **2011**, *17*, 7764.

En 2016, Voituriez, Betzer et ses collègues ont synthétisé une nouvelle classe de ligand phosphoramidite avec un squelette de type paracyclophane, dans lequel deux cycles aryles sont liés à la fois par le biphénylène-1,8 et un pont O-P-O.⁴⁷ Lorsque deux substituants aryles ont été introduits sur différents côtés de la chaîne macrocyclique, une chiralité planaire a ainsi été générée. Le complexe d'or (I) correspondant (*Rp*, *S*)-L43 avec un substituant *m*-terphényle a favorisé la cycloisomérisation de l'ényne 16 pour fournir le produit attendu 17 avec un *ee* de 79%. Les diénynes 41 avec différentes substitutions aryles ont été testés dans les mêmes conditions pour fournir selon un processus de désymétrisation les dérivés bicyclo[4.1.0]heptènes correspondants 42 avec trois stéréocentres contigüs avec une excellente diastéréosélectivité (*d.r.* \ge 95:5), un bon rendement et une énantiosélectivié élevée jusqu'à 95% *ee*. (Schéma 24)

⁴⁷ Z. Wu, K. Isaac, P. Retailleau, J.-F. Betzer, A. Voituriez, A. Marinetti, Chem. Eur. J., 2016, 22, 3278.

Schéma 24

Le groupe de Zhang a décrit une réaction de cyclopropanation énantiosélective d'énynes-1,6 **44** incorporés dans un squelette d'indène en présence du complexe d'or avec le ligand **L46** de type monophosphine sulfinamide chiral, nommé XiangPhos.⁴⁸ Cette transformation permet de construire des composés polycycliques condensés **45** avec des centres stéréogéniques quaternaires. Les énantiosélectivités élevées (jusqu'à 98% ee) et les rendements excellents (> 97%) ont été obtenus avec une étendue à une gamme de substrats assez large de 34 exemples. (**Schéma 25**)

Schéma 25

Récemment, le groupe d'Echavarren a développé une nouvelle classe de complexes d'or **49** sur la base du ligand de type JohnPhos. La modification avec un groupement diarylpyrrolidine crée une cavité étroite. La chiralité- C_2 est donc proche du site où la formation de la liaison C-C prend place dans les cyclisations des énynes-1,6. La cycloisomérisation énantiosélective des énynes **47** a conduit aux dérivés

⁴⁸ P.-C. Zhang, Y. Wang, Z.-M. Zhang, J. Zhang, Org. Lett. **2018**, 20, 7049.

azabicyclo[4.1.0]heptènes **48, 50, 51** avec des *ee* allant de 48% à 94% et des rendements de 35-97% (**Schéma 26**).⁴⁹

Schéma 26

Cycloisomérisation des énynes-1,n (n = 5, 7)

La recherche effectuée par l'équipe de Sanz a montré qu'une cyclisation de type 5endo-dig des o-alkynylstyrènes **52** était possible.⁵⁰ Les meilleurs résultats sont obtenus en présence du catalyseur **56** (*S*)-DM-MeOBIPHEP-(AuCl)₂. Les rendements de 80% à 96% avec une excellente énantiosélectivité jusqu'à 86% *ee* sont obtenus. Lorsque l'oalkynylstyrène contient un substituant alkyle secondaire en position terminale de l'alcène (**54**), une réaction conduit à des composés tétracycliques **55**, avec une énantiosélectivité plus modeste (34-42% *ee*). (**Schéma 27**)

⁴⁹ G. Zuccarello, J. G. Mayans, I. Escofet, D. Scharnagel, M. S. Kirillova, A. H. Pérez-Jimeno, P. Calleja,

J. R. Boothe, A. M. Echavarren, J. Am. Chem. Soc. 2019, 141, 11858.

⁵⁰ a) A. Martínez, P. García-García, M. A. Fernández-Rodríguez, F. Rodríguez, R. Sanz, Angew. Chem.

Int. Ed. 2010, 49, 4633. b) A. M. Sanjuán, M. A. Rashid, P. García-García, A. Martínez-Cuezva, M. A. Fernández-Rodríguez, F. Rodríguez, R. Sanz, *Chem. Eur. J.* 2015, 21, 3042.

La conception des réactions de cycloisomérisation d'ényne a été aussi étendue à des énynes activées, à savoir des dérivés de type silyloxyényne (**Schéma 28**). En 2012, L'équipe de Toste a décrit l'utilisation de complexes d'or chiraux à base de ligands bidentes atropoisomères SEGPHOS et MeOBIPHEP, en employant le contre-ion emcombré BARF⁻ pour la cycloisomérisation des énynes-1,5 **57** et -1,6 **60**, produisant les dérivés cétones **58** et **61** avec des bons rendements et des excès énantiomériques élévés de 71% à 94%. Une variété de groupements aromatiques s'est avérée compatible avec les conditions réactionnelles pour cette réaction.⁵¹

⁵¹ J.-F. Brazeau, S. Zhang, I. Colomer, B. K. Corkey, F. D. Toste, J. Am. Chem. Soc. 2012, 134, 2742.

L'incorporation d'une insaturation sur le substrat, qui donne les 3-siloxy-1, 3-diène-7ynes **62** a permis la formation de dérivés bicyclo[3.3.0]octane **63** polysubstitués en deux étapes de cyclisation séquentielles. Cette annélation en tandem est probablement basée sur une silyloxy-ényne-cyclisation via un processus de cyclisation 5-*endo*, donnant l'intermédiaire vinylique **62b**, qui ensuite s'additione sur la cétone- α , - β insaturée, fournissant l'intermédiaire carbénoïde bicyclique **62c** avec une nouvelle liaison carbone-carbone formée. Une migration d'hydrure-1,2 et démétallation donnent finalement le produit bicyclique **63**. En employant le complexe (*R*)-DTBM-SEGPHOS-(AuCl)₂ **59** et du NaBARF à température ambiante dans du DCE, les composés bicycliques **63** ont été isolés avec des rendements allant de 61% à 91%, des *ee* jusqu'à 99%, et des diastéréosélectivités excellentes (> 20 : 1). (**Schéma 29**)

 $R_1 = Ph, 4-Cl-C_6H_4, 4-NO_2-C_6H_4, 1-naphthyle,$ *c*-Hex,*n*-Bu R₂ = H, Me, R₃ = Me, Et

Schéma 29

Les *N*-propargyle tryptamines peuvent être cyclisées en azépino[4,5-b]indoles ou spiroindolénine désaromatisée. ⁵² La spirocyclisation énantiosélective de la *N*,*N*-dipropargyl tryptamine **64** a été réalisée en présence du catalyseur d'or **24'** de type

⁵² a) C. Ferrer, A. M. Echavarren, *Angew. Chem. Int. Ed.* **2006**, *45*, 1105. b) C. Ferrer, C. H. M. Amijs, A. M. Echavarren, *Chem. Eur. J.* **2007**, *13*, 1358. c) En fonction de la nature du substituant sur l'azote, la spiroindolénine désaromatisée peut être formée : V. Magné, A. Marinetti, V. Gandon, A. Voituriez, X. Guinchard, *Adv. Synth. Catal.* **2017**, *359*, 4036.

phosphahélicène chiral et le dérivé hétérocyclique **65** a été obtenu avec 68% d'*ee*. (Schéma 30)

Cycloisomérisation des énynes et réarrangement

En 2014, Gagné et ses collègues ont rapporté la cycloisomérisation des énynes-1,5 portant un groupement cyclopropylidène.⁵³ L'ényne **66** subit une cyclisation 6-*endo* et génère l'intermédiaire carbocation cyclopropyle **66a**, suivie d'un agrandissement de cycle, fournissant le carbocation **66b**. Une migration d'hydrure-1,2 et démétallation donne le produit bicyclo[4.2.0]diène **67**. Cette méthode est compatible avec une variété de substituants R_1 et R_2 . En présence du catalyseur (*R*,*R*)-(*i*Pr)-DuPHOS-(AuCl)₂, les dérivés bicyclo[4.2.0]octadiènes **67** ont été obtenus avec des rendements élevés (76-96%) et des excès énantiomériques modérés à bons (20-70% *ee*). (**Schéma 31**)

Schéma 31

⁵³ H. Zheng, R. J. Felix, M. R. Gagné, Org. Lett. 2014, 16, 2272.
La cycloisomérisation suivie de l'expansion de cycle des énynes-1,6 **69** substitués par un cyclopropyle fournit un accès aux dérivés 2-oxocyclobutyle cyclopentane.⁵⁴ En utilisant le complexe (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (**18**), les diastéréoisomères **70** ont été obtenus avec d'excellents excès énantiomériques de 74-99% et des rendements de 77-94%. Les calculs DFT suggèrent que l'intermédiaire carbénoïde cyclopropyle **69a** se réarrange en cyclobutanones par une expansion de cycle. (**Schéma 32**)

Schéma 32

Le groupe de Shi a rapporté la cycloisomérisation d'*ortho*-(propargyloxy) arèneméthylènecyclopropanes 71 en 2,3-dihydrobenzofurane 72. ⁵⁵ Le mécanisme proposé impliquerait l'expansion de cycle de l'unité cyclopropyle, suivie d'une attaque nucléophile de l'atome d'oxygène sur le cation cyclobutényle 71b, l'oxonium 71c subirait ensuite un réarrangement sigmatropique-[2,3] en libérant le catalyseur d'or. Le complexe bimétallique (*R*)-59 conduit à de bonnes énantiosélectivités (62-95% *ee*). (Schéma 33)

⁵⁴ Z. Wu, D. Lebœuf, P. Retailleau, V. Gandon, A. Marinetti, A. Voituriez, *Chem. Commun.* **2017**, *53*, 7026.

⁵⁵ W. Fang, Y. Wei, X.-Y. Tang, M. Shi, Chem. Eur. J. 2017, 23, 6845.

En 2015, le groupe de Toste a développé une réaction cascade asymétrique d'alcoxylation/ réarrangement de Claisen pour synthétiser des cycloheptènes polysubstitués 74 à partir des diènynes 73.⁵⁶ En présence du complexe d'or, l'alcyne serait activé puis l'attaque par le groupe alcoxyle (-OR₃), conduirait à la formation d'espèces oxonium vinyle 73a. Le réarrangement-3,3 concerté via un état de transition « chaise » 73b serait mis en œuvre par la suite, fournissant les cycloheptènes 74 après une étape de démétallation. Le complexe (*S*)-59' a conduit aux excès énantiomériques de 60-96% *ee*. En outre, les réactions des diénynes cycliques 75 ont également fourni les composés bicycliques 76 avec des rendements élevés (86%) et de bonnes énantiosélectivités. (Schéma 34)

⁵⁶ H. Wu, W. Zi, G. Li, H. Lu, F. D. Toste, Angew. Chem. Int. Ed. 2015, 127, 8649.

Les réactions de cycloisomérisation d'énynes peuvent être influencées lorsqu'un autre nucléophile est impliqué comme un alcool, un éther ou un aryle. Dans ce cas, des réactions domino peuvent avoir lieu, ce que nous allons développer dans le paragraphe suivant.

2. Les réactions domino (tandem) énantiosélectives

2.1 Hydroxy/alcoxycyclisation des énynes

En présence des nucléophiles oxygénés comme l'eau et les alcools, les énynes-1,6 peuvent être cyclisés et fonctionnalisés par hydroxy/alcoxylation. Les complexes d'or catalysent ce type de processus de façon stéréospécifique. Du point de vue mécanistique, ce processus peut être interprété par l'attaque du nucléophile sur l'intermédiaire carbène cyclopropylique sur le carbone *a* ou *b* pour former les produits correspondants (**Schéma 35**). Les produits d'hydratation directe sur l'alcyne ne sont généralement pas observés car l'hydroxycyclisation est plus rapide.

Schéma 35

Le premier exemple asymétrique est décrit en 2005 par l'équipe d'Echavarren.⁵⁷ L'ényne 77 est transformé en composé 78 via un mode de cycloisomérisation 5-*exo* avec 52% de rendement et 94% d'*ee* en présence du complexe (*R*)-TolBINAP-(AuCl)₂ 79. Les autres complexes tels que le (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ 18 et les complexe carbénique 80 conduisent à des meilleurs rendements mais des excès enantiomériques plus faibles.⁵⁸ L'efficacité du complexe (*R*)-TolBINAP-(AuCl)₂ n'a été observé que dans le cas de l'ényne 77 portant le groupement phényle. Les autres exemples décrits n'ont conduit qu'à de faibles *ee*. (Schéma 36)

Schéma 36

⁵⁷ M. P. Muñoz, J. Adrio, J. C. Carretero, A. M. Echavarren, Organometallics, 2005, 24, 1293.

⁵⁸ a) C.-M. Chao, E. Genin, P. Y. Toullec, J.-P. Genêt, V. Michelet, J. Organomet. Chem. 2009, 694,

^{538.} b) A. Pradal, C.-M. Chao, M. R. Vitale, P. Y. Toullec, V. Michelet, Tetrahedron 2011, 67, 4371. c)

D. Banerjee, A. K. Buzas, C. Besnard, E. P. Kündig, Organometallics 2012, 31, 8348.

En 2015, Hashmi et ses collaborateurs ont rapporté cette réaction en présence des complexes d'or(I) de type carbène acyclique sur un squelette paracyclophane chiral.⁵⁹ Le complexe (*Sp*)-**81** a donné la meilleure performance pour le composé méthoxylé **78** avec 93% de rendement, mais seulment 52% d'*ee* (Schéma 36).

Une forte dépendance de la substitution des énynes **82** a été démontrée à travers l'utilisation de groupes ester plus volumineux, qui ont donné de meilleurs *ee* dans la réaction d'hydroxycyclisation. L'excès énantiomérique des alcools **83** a augmenté de 58% à 89% lors de la variation du malonate de méthyle à l'analogue *tert*-butylique. En outre, l'ényne azoté **84** a conduit à l'alcool **85** avec seulement 46% de rendement et 23% d'*ee*. ^{58b} (Schéma 37)

Schéma 37

Yamada, Tomioka et ses collaborateurs ont étudié une série des ligands carbènes *N*-hétérocycliques (NHC) chiraux en C₂-symétrie et ils ont découvert que le complexe (*S*,*S*)-**L87**-AuCl était capable d'induire une énantiosélectivité moyenne, conduisant à la formation de l'éther **86** avec 91% de rendement et 59% d'*ee*.⁶⁰ En 2011, l'équipe de Shi a mis au point les conditions d'utilisation de l'acide acétique à la place de l'eau ou des alcools conduisant à la formation d'adduit **88** en présence du complexe d'or (I) (*aR*)-**L89**-AuCl avec une chiralité axiale. L'hétérocycle **88** est obtenu avec 99% de rendement et 59% d'*ee*.⁶¹ (**Schéma 38**)

⁵⁹ V. Göker, S. R. Kohl, F. Rominger, G. Meyer-Eppler, L. Volbach, G. Schnakenburg, A. Lützen, A. S. K. Hashmi, *J. Organomet. Chem.*, **2015**, *795*, 45.

⁶⁰ Y. Matsumoto, K. B. Selim, H. Nakanishi, K. Yamada, Y. Yamamoto, K. Tomioka, *Tetrahedron Lett.* 2010, *51*, 404.

⁶¹ W. Wang, J. Yang, F. Wang, M. Shi, Organometallics 2011, 30, 3859.

Schéma 38

Un processus de cyclisation domino d'énynes-1,6 **84** en employant le diphénylsulfoxyde comme oxydant est également décrit dans cet article.⁶¹ Un seul diastéréoisomère du cyclopropylaldéhyde **90** a été obtenu. D'après le mécanisme rapporté précédemment par le groupe de Toste,⁶² l'aldéhyde est formé par transfert d'oxygène du diphénylsulfoxyde sur l'intermédiaire **84a** cyclopropyle. L'ensemble des ligands carbéniques chiraux et une dizaine de solvants ont été testés et le meilleur résultat a été obtenu avec le ligand (*aS*)-**91** dans le PhCl à 10°C. Cependant, les excès énantiomériques restent généralement modérés et le meilleur *ee* est 70%. (**Schéma 39**)

⁶² C. A. Witham, P. Mauleón, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838.

La réaction domino des énynes-1,6 **92** liés par un noyau aromatique a conduit aux dérivés dihydronaphtalènes-1,2 **93** avec des rendements de 41-75% et des excès énantiomériques de 80-98% en présence du complexe **49**.⁴⁹ Les produits ont été utilisés dans la synthèse totale des carexanes. Les diols **94** ont été obtenus avec un rendement de 62-67% par la réaction d'hydroboration-oxydation, puis une ou plusieurs étapes a permis d'isoler trois types de carexane en gardant les excès énantiomériques. (**Schéma 40**)

Schéma 40

Dans le même domaine que les cycloisomérisations décrites par le groupe de Sanz⁵⁰, les indènes chiraux fonctionnalisés **95** ont été isolés avec d'excellents rendements (77-99%) et 28-92% *ee* en présence du complexe (*S*)-DM-MeOBIPHEP(AuCl)₂ (**56**). L'alkynylstyrène portant un groupement méthylènedioxy a été transformé en indène **95**' avec 98% d'*ee* après recristallisation. (**Schéma 41**)

Une réaction d'alcoxycyclisation similaire de type 5-*endo-dig* a été observée pour les substrats diénynes **96**.⁶³ Les cyclopentadiènes **97** ont été isolés avec 31-81% de rendements et 84-93% d'*ee* en présence du complexe (*S*)-DM-MeOBIPHEP(AuCl)₂ (**56**). Le cyclopentadiène **97**' a ensuite été valorisé par une cycloaddition diastéréosélective de Diels-Alder avec les dérivés de 1*H*-pyrrole-2,5-dione **98**, ce qui donne un accès rapide aux cycloadduits-*endo* **99**, y compris à cinq centres stéréogènes contigüs avec deux carbones quaternaires. Les bons rendements de 70-79% ont été obtenus en gardant les excès énantiomériques. (**Schéma 42**)

En 2010, L'équipe de Toste a également rapporté les réactions domino intramoléculaires en présence des groupements tels que les phénols (100) et un acide

⁶³ A. M. Sanjuán, P. García-García, M. A. Fernández-Rodríguez, R. Sanz, Adv. Synth. Catal. 2013, 355, 1955.

carboxylique (103).⁶⁴ En présence du complexe (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (18) et du co-catalyseur AgSbF₆ dans du *m*-xylène à -40°C, les dérivés polycycliques 101, 102, 104 ont été obtenus avec de bons rendements (50-98%) et d'excellentes stéréosélectivités (88-96% *ee*). (Schéma 43)

Schéma 43

Les nitrones peuvent être également utilisées comme nucléophiles oxygénés pour les réactions domino asymétriques. En 2009, le groupe de Zhang a décrit la cycloaddition [3 + 3] de la 2-(1-alcynyl)-2-alcén-1-one **105** avec la nitrone **106**.⁶⁵ Les réactions ont fourni une voie régio- et diastéréosélective à des dérivés hétérobicycliques d'oxazine substitués comme **107** avec de bons rendements. D'un point de vue du mécanisme, une cyclisation intramoléculaire initiée par l'or pourrait générer un intermédiaire d'or zwitterionique furanylique **105a**, qui serait ensuite piégé par l'oxygène de la nitrone, et suivie d'une cyclisation intramoléculaire de Mannich pour conduire au composé final. (**Schéma 44**)

⁶⁴ S. G. Sethofer, T. Mayer, F. D. Toste, J. Am. Chem. Soc. 2010, 132, 8276.

⁶⁵ F. Liu, Y. Yu, J. Zhang, Angew. Chem. Int. Ed. 2009, 48, 5505.

En présence du complexe (*R*)-MeOBIPHEP-(AuCl)₂ (**108**), le furo[3,4-*d*][1,2]oxazine **107** a été obtenu avec un excellent rendement (95%) mais un excès modéré (50%). L'étude suivante⁶⁶ a montré qu'en utilisant le complexe (*R*)-TUNEPHOS-(AuCl)₂ (**109**), les résultats étaient améliorés jusqu'à 97% de rendement et 95% *ee*, ce qui est probablement dû à l'interaction plus rigide générée par la liaison aurophile (Au-Au). D'autre part, en présence du complexe plus volumineux (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (**18**), l'énantiosélectivité a pu être augmentée jusqu'à 99% *ee* à 0°C. (**Schéma 44**)

En 2014, le même groupe a présenté une classe de nouveaux ligands chiraux sulfinamides monophosphine **113**, nommés MingPhos, et testé sur la cycloaddition [3 + 3] des divers 2-(1-alcynyl)-2-alcén-1-ones **110** avec les nitrones **111**.⁶⁷ La diversité des groupements R₁-R₅ est très grande. Notamment, les deux énantiomères-**112**, ont pu être obtenus lorsque les ligands diastéréoisomères (R, R_s)-**113** ou (S, R_s) -**113** ont été utilisés. D'excellents rendements (85-99%) et énantiosélectivités (93-99%) ont été obtenus. (**Schéma 45**)

⁶⁶ F. Liu, D. Qian, L. Li, X. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2010, 49, 6669.

⁶⁷ Z.-M. Zhang, P. Chen, W. Li, Y. Niu, X.-L. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 4350.

Schéma 45

Selon la même stratégie, la cycloaddition [2+2+3] de nitrones **115** sur l'ényne-1,6 **114** a été décrite par Liu et ses collaborateurs. ⁶⁸ Les dérivés des oxazépane-1,2 polysubstitués **116** ont été obtenus avec 73-82% de rendements et 84-95% d'*ee* en présense du complexe (*R*) -DTBM-MeOBIPHEP-(AuCl)₂ (**18**). (Schéma 46)

Schéma 46

Les nucléophiles carbonés de type aryle riche en électrons conduisent également à des processus domino. Nous allons présenter dans le paragraphe suivant la réaction d'hydroarylation/cyclisation énantiosélective des énynes.

⁶⁸ S. A. Gawade, S. Bhunia, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 7835.

2.2 Hydroarylation/cyclisation des énynes

Le premier exemple a été décrit par l'équipe de Toste pour les substrats alkylidène cyclopropanes tels que $117.^{69}$ Une addition non-usuelle de type 6-*exo-dig* du fragment alcényle peut être expliquée par la présence et stabilité du cation 117a allylique (et benzylique) qui participe à une réaction d'électrocyclisation de type Nazarov, ce qui conduit à la formation du dérivé tétracyclique 118. Le complexe (*R*)-L119-(AuCl)₂ fournit le composé 118 avec 91% de rendement et 82% *ee*. (Schéma 47)

Schéma 47

L'utilisation de dérivés aromatiques riches en électrons en tant que carbo-nucléophiles pour les réactions intermoléculaires domino des énynes-1,6 83 a été rapportée par notre équipe.^{58,70} Après optimisation des conditions, 86-99% de rendements et 86-99% ee ont été obtenus en présence du système (R)-DTBM-MeOBIPHEP-(AuCl)₂ (3 mo1%) / AgOTf (6 mol%) dans l'éther à température ambiante. La réaction d'hydroarylation/cyclisation a été étendue à d'autres nucléophiles aromatiques tels que le pyrrole, le di- ou triméthoxybenzène. Cependant, les résultats dépendent fortement des substrats et des nucléophiles. Les meilleurs résultats ont été obtenus pour les énynes-1,6 82 liés par un lien carboné possédant des groupes encombrés (CO2iPr, CO₂Bn, SO₂Ph) comme observé dans le cas des réactions d'hydroxycyclisation. Les hétérocycles 120 ont été isolés avec 86-99% de rendement et 72-98% d'ee. (Schéma **48**)

⁶⁹ S. G. Sethofer, S. T. Staben, O. Y. Hung, F. D. Toste, Org. Lett. 2008, 10, 4315.

⁷⁰ C.-M. Chao, M. R. Vitale, P. Y. Toullec, J.-P. Genêt, V. Michelet, Chem. Eur. J. 2009, 15, 1319.

Lorsque l'ényne malonate prossède un groupement aromatique sur la position acétylénique (**121**), une réaction d'hydroarylation/ cyclisation intramoléculaire est possible et fournit les produits tricyliques **122** de type Friedel-Crafts avec 92-93% d'*ee* en présence de (*R*)-DTBM-MeOBIPHEP-(AuCl)₂.⁷⁰ Le complexe **123** préparé à partir du BINOL est également capable de réaliser cette transformation avec 73-88% d'*ee* et 70-98% de rendements.⁷¹ (**Schéma 49**)

Le complexe de type JohnPhos **49** a permis de réaliser ce processus en isolant 61-99% de dérivés tricycliques **125** avec 58-92% d'*ee* (**Schéma 50**).⁴⁹

⁷¹ N. Delpont, I. Escofet, P. Pérez-Galán, D. Spiegl, M. Raducan, C. Bour, R. Sinisi, A. M. Echavarren, *Catal. Sci. Technol.* **2013**, *3*, 3007.

En présence de nucléophile interne, les énynes **126** sont cyclisés selon un processus 6exo et fournissent les composés polycycliques **127**, **128** avec 61-98% de rendement et des énantiosélectivités excellentes (94-97%) en présence du complexe (R)-DTBM-MeOBIPHEP-(AuCl)₂ (**Schéma 51**).⁶⁴

Schéma 51

La réactivité des énynes pourrait être comparée à celle des aldéhydes-ynes. Le seul exemple de catalyse asymétrique à l'or à notre connaissance impliquant un aldéhyde-yne est décrit dans la paragraphe suivant.

2.3 Hydroxy/alcoxycyclisation des o-alcynyl arylaldéhydes

En 2002, le groupe de Yamamoto a décrit pour la première fois une nouvelle réaction domino d'acétalisation/cycloisomérisation des *ortho*-alcynyl arylaldéhydes en présence de sels de palladium (II).⁷² Le mécanisme proposé par les auteurs impliquerait une activité de l'aldéhyde par le complexe de palladium (intermédiaire **A**). L'addition du nucléophile Nu⁻ est ainsi favorisée sur l'atome de carbone C=O-[M] déficient en électrons (**B**), ce qui permet ensuite l'attaque de l'oxygène sur le carbone déficient en

⁷² N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764.

électrons de l'alcyne π -coordiné au métal, engageant ainsi la réaction de cycloisomérisation de type 5-*exo-dig* (C) ou 6-*endo-dig* (D) (Voie 1, Schéma 52).

La même équipe a ensuite développé une nouvelle méthodologie de cyclisation plus générale permettant d'obtenir des produits de cyclisation de type 6-*endo-dig* de manière régiosélective en présence d'iodure de cuivre comme catalyseur. ⁷³ L'étude du mécanisme a montré que le complexe de cuivre a un caractère carbophile, dans ce cas, le métal active l'alcyne préférentiellement et cette étape est suivie d'une cyclisation de type 5-*exo-dig* ou 6-*endo-dig*, générant ainsi les intermédiaires (**F**) et (**G**) respectivement. L'espèce oxonium (intermédiaires **F** ou **G**) pourrait alors subir l'addition du nucléophile conduisant aux intermédiaires (**C**) ou (**D**) (Voie 2, Schéma 52).

L'exemple asymétrique connu dans la littérature est celui du groupe de Slaughter, en utilisant des complexes d'or carbéniques acycliques chiraux.⁷⁴ Le complexe (*R*)-**131** binaphtyle portant le groupement électron-attracteur $3,5-(CF_3)_2C_6H_3$ conduit aux dérivés 1*H*-isochromènes **130** avec des excès énantiomériques allant de 56% à 99%. Les meilleurs excès (>99%) ont été obtenus dans le cas des alcools encombrés et pour les substrats portant soit un groupe phényle ou *p*-tolyle en position acétylénique (R₁). (Schéma **53**)

⁷³ N. T. Patil, Y. Yamamoto, J. Org. Chem. 2004, 69, 5139.

⁷⁴ S. Handa, L. M. Slaughter, *Angew. Chem. Int. Ed.* **2012**, *51*, 2912. Pour deux exemples impliquant des cétones, voir : a) M. Terada, F. Li, Y. Toda, *Angew. Chem., Int. Ed.* **2014**, 53, 235. b) K. Saito, Y. Kajiwara, T. Akiyama, *Angew. Chem., Int. Ed.* **2013**, 52, 13284.

Néanmoins, aucune transformation d'hydroarylation/cyclisation catalysée par l'or a été décrite pour les *ortho*-alkynyl arylaldéhydes, ni en version racémique, ni en version asymétrique. Une partie de mon travail de thèse s'est située dans ce contexte, les résultats seront détaillés dans le chapitre III. Les exemples que nous venons de voir dans cette partie étaient basés sur des complexes d'or (I) chiraux. Les exemples impliquant des complexes de l'or (III) sont présentés dans le paragraphe suivant.

III. Les réactions asymétriques catalysées par l'or (III)

Comme discuté dans la partie **I.2**, la catalyse asymétrique à l'or (III) est rarement exploitée malgré le potentiel de l'introduction de chiralité selon une géométrie plan carré. Il n'existe à notre connaissance que deux exemples décrits dans la littérature.³²

L'équipe de Toste a décrit une réaction de dédoublement cinétique énantioconvergente des énynes-1,5 (+/-)-132 catalysée par le complexe d'or (III) NHC (R,R)-6.³⁷ L'optimisation des conditions réactionelles et substrats a donné 88% *ee*, 38% de conversion et un facteur de sélectivité de 48 (133-3). Ces transformations marquent les premières réactions énantiosélectives catalysées par un complexe d'or (III) bien défini. (Schéma 54)

L'application des complexes d'or (III) cyclométallés chiraux coordinants avec le BINOL a été discutée dans le cas des *o*-alcynyl arylaldéhydes **134**.³⁸ En présence de 2.5 mol% de **rac-9** et les orthoformiates de trialkyle, les acétals **135** ont été obtenu avec 62-96% de rendement (11 exemples). Lorsque les substrats portant une extrémité acétylénique ($R_2 = H$), les dérivés 3-alkoxyindanones **136** ont été formés en présence du complexe d'or (III) et l'acide camphosulfonique (CSA) (9 exemples, rendement jusqu'à 87%). L'exemple énantiosélectif dans cet article a été réalisé avec 2.5 mol% de complexe chiral (*R*, *R*)-**137**, le composé **136-1** a été obtenu avec 41% d'*ee* et 52% de rendement. (**Schéma 55**)

Schéma 55

IV. Conclusion

La catalyse d'or est donc un outil puissant pour construire des composés carbocycliques et hétérocycliques complexes et hautement fonctionnalisés à partir des blocs de construction relativement simples. Malgré la contrainte géométrique défavorable des complexes d'or (I), des progrès significatifs ont été accomplis en catalyse asymétrique au cours des 15 dernières années. L'aperçu des contributions récentes à ce domaine montre une diversité des transformations possibles pouvant être réalisées en utilisant des complexes d'or chiraux. De nombreuses réactions intra- et intermoléculaires en présence des groupements alcynes comme nous l'avons vu, mais également alcènes ou allènes ont été réalisées, ce qui a permis la construction d'un ou de plusieurs centres chiraux de manière stéréosélective. Certaines transformations ont été également employées dans la synthèse totale de composés naturels et pharmaceutiques.

Les recherches présentes dans ce domaine s'intégrent également dans le développement de nouveaux ligands. La plupart des transformations reposent actuellement sur des dérivés de type bisphosphines atropoisomériques et des ligands phosphoramidites. Ces dernières années, de nouveaux squelettes de ligands ont émergé, y compris les diaminocarbènes acycliques, les phosphahélicènes, les phosphines chirales portant un groupement sulfinamide, etc. En outre, les complexes d'or (III) bien définis ont aussi montré leur potentiel et efficacité en catalyse asymétrique à l'or.

Les chapitres suivants mettent en lumière une nouvelle classe de ligands de type NHC à base d'imidazopyridine et leur emploi dans les réactions de cycloisomérisation et réactions domino des énynes-1,6 et des substrats de type carbonyl-ynes. Les ligands classiques comme les bisphosphines atropoisomères ont également été utilisés et leur efficacité a été comparée aux ligands de type NHC chiraux.

Chapitre II :

Les réactions de cycloisomérisation et domino des énynes-1,6

I. Les ligands basés sur le squelette imidazo[1,5-a] pyridin-3ylidène

1. Etat de l'art

Nous nous sommes intéressés à la conception de NHC fonctionnalisés et le développement de nouveaux systèmes catalytiques en utilisant les ligands basés sur des carbènes imidazo[1,5-*a*] pyridin-3-ylidène (IPy). Cette plateforme, décrite pour la première fois de manière indépendante par les groupes de Lassaletta⁷⁵ et Glorius⁷⁶ en 2005, place le groupe R en position C5 à proximité du centre métallique, du fait de l'annélation des cycles pyridinyle et imidazolyle. Comparé avec les carbènes classiques d'imidazole(in)-2-ylidene, ces architectures carbéniques modulables ont été spécifiquement conçues pour apporter l'information chirale au plus près du centre métallique et actif, ce qui représente une des clés pour une induction chirale efficace en catalyse à l'or. (**Schéma 56**)

imidazole(in)-2-ylidène

Schéma 56

Lassaletta, Perez et leurs collobarateurs ont mis en évidence l'existence d'une protection stérique extrêmement élevée du centre métallique par le ligand IPy.⁷⁷ L'estimation du volume stérique des ligands NHC, décrite par %V_{bur} (pourcentage du volume « buried »), a donné les valeurs de %V_{bur} les plus élevées jusqu'à présent dans

⁷⁵ M. Alcarazo, S. J. Roseblade, A. R. Cowley, R. Fernández, J. M. Brown, J. M. Lassaletta, *J. Am. Chem. Soc.* **2005**, *127*, 3290.

⁷⁶ C. Burstein, C. W. Lehmann, F. Glorius, *Tetrahedron* 2005, *61*, 6207.

⁷⁷ a) M. Espina, I. Rivilla, A. Conde, M. M. Díaz-Requejo, P. J. Pérez, E. Álvarez, R. Fernández, J. M. Lassaletta, *Organometallics* 2015, *34*, 1328. b) F. Grande-Carmona, J. Iglesias-Sigüenza, E. Álvarez, E. Díez, R. Fernández, J. M. Lassaletta, *Organometallics* 2015, *34*, 5073. c) J. Iglesias-Siguenza, C. Izquierdo, E. Diez, R. Fernandez, J. M. Lassaletta, *Dalton Trans.* 2018, *47*, 5196. d) Y. Kim, Y. Kim, M. Y. Hur, E. Lee, *J. Organomet. Chem.* 2016, *820*, 1.

la chimie du NHC (jusqu'à 59.9%, les valeurs usuelles⁷⁸ : 21.1-51.2%). Ce phénomène impliquerait une meilleure stabilité du complexe et une coordination potentielle stéréospécifique avec les substrats.

Le squelette IPy pourrait être considéré comme l'analogue géométriquement carbène des phosphines de type Buchwald. Il est intéressant de noter que la chimie de coordination des ligands IPy a été étudiée avec une grande variété de métaux de transition (Ag,^{75,77} Fe,⁷⁹ Pd, ^{76,80} Ir,⁸¹ Rh,^{75,77c} Au,^{77,82} Ni⁸³ et Cu⁷⁷) et les complexes ainsi formés se sont avérés très stables. Ces NHC se sont également révélés être des ligands auxiliaires efficaces en catalyse homogène dans les transformations catalysées au palladium. Le composé **140** a été obtenu avec 86% de rendement dans la réaction du couplage de Suzuki-Miyaura en présence du ligand L141 (Eq. 1, Schéma 57). ⁷⁶ Le composé **144** a été obtenu avec 90% de rendement et 91% d'*ee* dans la réaction de substitution allylique catalysée par le complexe de palladium portant le ligand de type IPy chiral L145. (Eq. 2, Schéma 57).⁸⁰ De plus, la réaction de boration en β des esters insaturés- α , β **146** catalysée par le cuivre conduit aux alcools **147** avec des énantiosélectivités jusqu'à 97% (Eq. 3, Schéma 57).⁸⁴

⁷⁸ H. Clavier, S. P. Nolan, Chem. Commun. 2010, 46, 841.

⁷⁹ C. Grohmann, T. Hashimoto, R. Fröhlich, Y. Ohki, K. Tatsumi, F. Glorius, *Organometallics* **2012**, *31*, 8047.

⁸⁰ S. J. Roseblade, A. Ros, D. Monge, M. Alcarazo, E. Álvarez, J. M. Lassaletta, R. Fernández, *Organometallics* **2007**, *26*, 2570.

⁸¹ C.-H. Chien, S. Fujita, S. Yamoto, T. Hara, T. Yamagata, M. Watanabe, K. Mashima, *Dalton Trans.* **2008**, 916.

⁸² a) M. Alcarazo, T. Stork, A. Anoop, W. Thiel, A. Fürstner, *Angew. Chem. Int. Ed.* 2010, 49, 2542. b)
J. Francos, F. Grande-Carmona, H. Faustino, J. Iglesias-Sigüenza, E. Díez, I. Alonso, R. Fernández, J.

M. Lassaletta, F. López, J. L. Mascareñas, J. Am. Chem. Soc. 2012, 134, 14322. c) I. Varela, H. Faustino,

E. Díez, J. Iglesias-Sigüenza, F. Grande-Carmona, R. Fernández, J. M. Lassaletta, J. L. Mascareñas, F.

López, ACS Catal. 2017, 7, 2397. d) J.-Q. Zhang, Y. Liu, X.-W. Wang, L. Zhang, Organometallics 2019, 38, 3931.

⁸³ E. Y. Tsui, T. Agapie, *Polyhedron* **2014**, *84*, 103.

⁸⁴ Z. Niu, J. Chen, Z. Chen, M. Ma, C. Song, Y. Ma, J. Org. Chem. 2015, 80, 602.

Ces quelques exemples illustrent l'intérêt des ligands IPy. Les complexes d'or impliquant un ligand IPy ont trouvé leur place dans la réaction de cycloaddition. La cyclisation de l'allène-diène **149**, qui commence par une étape de cycloaddition concertée et conduit généralement au produit d'addition [4+3] **151**, peut être modulée et conduire à la formation du produit d'addition [4+2] **150** en présence du complexe IPy cyclophanique **152**.^{82a} La cycloaddition [2+2] intermoléculaire entre le phényléthyne **153** et l' α -méthylstyrène **154** conduit à la formation du dérivé cyclobutène **155** avec 71% de rendement et 30% d'*ee* en présence du complexe **156**.^{77b} (Schéma 58)

Schéma 58

L'analogue du complexe **156**, dans lequel le groupement CH est remplacé par un atome d'azote conduisant à un noyau triazole, permet d'atteindre plus de 99% d'*ee* dans la réaction de cycloaddition [4+2] intermoléculaire entre les allènamides **157** et les diènes **158**.^{82b} Cette réaction fournit une approche versatile et pratique aux dérivés cyclohexènes **159** hautement fonctionnalisés et optiquement actifs. La chiralité axiale du complexe **160** a également été valorisée dans une cycloaddition [2+2+2] intermoléculaire entre les fonctions allène, alcène et aldéhyde, ce qui a conduit au dérivé de tétrahydro-2*H*-pyrane **161** avec 80% de rendement et une diastéréosélectivité élevée de 90/10 entre les composés *cis* et *trans*. Le composé *cis*-**161** a été isolé avec un excès énantiomérique de 87%. (**Schéma 59**)

Très récemment, l'équipe de Zhang a rapporté un nouveau type de ligand IPy possédant une chiralité axiale (aR ou aS) et une chiralité centrale (R) et leurs applications dans les diverses transformations asymétriques catalysées par l'or.^{82d} Les deux complexes atropoisomères **164** ont été employés dans la cycloaddition intermoléculaire [4+2] entre l'allènamide **157-1** et le (E)-1-phényl-1,3-butadiène **162** pour donner le cyclohexène **163** avec des bons rendements (82-84%) et des énantiosélectivités opposées jusqu'à 84% (**Eq. 1, Schéma 60**). De même, la cyclopropanation du styrène par le carbène d'or généré à partir du phényldiazoacétate de méthyle **165** a fourni le cyclopropane **166** avec 87-91% de rendement et 73-77% d'*ee* opposés en présence des deux atropoisomères **164 (Eq. 2, Schéma 60)**. En outre, le complexe (aS, R)-**164** a permis de réaliser une réaction d'hydroxylation/cyclisation de l'ényne **167** et conduit à l'éther **168** avec 97% de rendement et 77% d'*ee* (**Eq. 3, Schéma 60**). Notamment, l'étude de la rotation de l'axe biaryle montre que les deux atropoisomères **164** se racémisent vers un point d'équilibre (aS/aR = 1/2) à 80°C dans le DCE au bout de 36h, ce qui implique que le (aR)-164 est thermodynamiquement plus stable que (aS)-164 (Eq. 4, Schéma 60).

Malgré ces résultats prometteurs, cette plateforme carbénique reste encore sousexploitée, probablement en raison des problèmes de synthèse, des réactifs chers et des rendements faibles. En outre, les substituants sur la position C5 de la plateforme IPy dans les complexes existants sont souvent aromatiques, ce qui génère une chiralité axiale par atropoisomérie, difficile à obtenir, risque à racémiser et manquant surtout de versatilité. Dans ce contexte, nous nous sommes intéressés à cette nouvelle classe de ligands IPy fonctionnalisés, dont la position C5 est remplacée par un groupement anionique (ou neutre) basé sur un squelette barbiturique, qui pourrait être dérivatisé par l'introduction de différents groupements (**Schéma 61**).

Schéma 61

Les synthèses et les caractérisations de ces complexes IPy ont été réalisées par Idir Benaissa, doctorant dans l'équipe du Dr. V. César (LCC, Laboratoire de Chimie de Coordination) à Toulouse, et seront brièvement exposées dans le paragraphe suivant.

2. Synthèse des complexes d'or de type IPy

Le motif IPy a été préparé en trois étapes à partir du 2,5-dibromopryridine.⁸⁵ En présence de *n*-BuLi à -80°C, l'échange halogène-métal suivie de l'addition du DMF conduit à un aldéhyde. Les aldimines, générées par condensation entre l'aldéhyde et les dérivés d'aniline, sont ensuite cyclisées pour conduire au noyau aromatique IPy par l'insertion d'un carbone sp^2 en présence du paraformaldéhyde et du TMSBr. Les bromures de IPy **169** ont été synthétisés à une échelle de 5-10 g avec un rendement global de 68-69%. (Schéma 62)

Schéma 62

L'hétérocycle barbiturique a été choisi pour fonctionnaliser la plateforme IPy car il combine des unités d'urée et de malonate dans sa structure, ce qui peut remarquablement servir à la dérivatisation ultérieure et à la catalyse asymétrique par l'introduction des groupements chiraux. La préparation du dérivé barbiturique **172** a été réalisée par une réaction de déshydratation de type Steglich entre les fonctions carbodiimide du **171** et l'acide carboxylique du **170** avec 89% de rendement.⁸⁶ La synthèse du dérivé barbiturique chiral a été effectuée à partir de la (*S*)-1-phényléthan-1-amine et du carbonate de diéthyle. Le triazabicyclodécène, qui est une base forte de type guanidine, a permis de catalyser la réaction de condensation et de générer le dérivé d'urée **173** avec 85% de rendement. Une seconde condensation avec l'acide malonique

⁸⁵ K. Azouzi, C. Duhayon, I. Benaissa, N. Lugan, Y. Canac, S. Bastin, V. César, *Organometallics* **2018**, *37*, 4726.

⁸⁶ U. Huber, EP Patent 1081140, **2012**.

en présence de Ac₂O a conduit au dérivé barbiturique **174** chiral avec 60% de rendement. (Schéma 63)

Les précurseurs zwitterioniques **176** ont ensuite été préparés par un couplage du bromure de 5-bromoimidazo [1,5-*a*] pyridinium **169** et des dérivés barbituriques **175** à l'échelle du gramme. La substitution nucléophile aromatique (SNAr) nécessite deux équivalents d'hexahydropyrimidinetrione **175** déprotonée, le second équivalent servant de base et étant récupéré après la réaction. Les composés **176** ont été caractérisés par des techniques spectroscopiques et analytiques et leurs structures moléculaires ont été établies par diffraction des rayons X (DRX). Par exemple, dans le cas du précurseur portant les groupements Dipp et isopropyle (**176-1**), l'hétérocycle barbiturique latéral s'est trouvé géométriquement presque parfaitement plan et incorpore l'unité malonate à six électrons {O₁-C₂₁-C₂₀-C₂₃-O₃}. Alors que la longueur de la nouvelle liaison C₂-C₂₀ (1.462 Å) reliant les deux hétérocycles s'est avérée typique d'une liaison simple C*sp*²-C*sp*², la non-coplanarité des hétérocycles cationiques et anioniques a été mise en évidence par le grand angle dièdre {N₂-C₂-C₂₀-C₂₃} de 50.01°. (**Schéma 64**)

Le traitement de **176-1** avec un équivalent d'hexaméthyldisilazane de lithium (LiHMDS) dans du THF à température ambiante a conduit proprement et quantitativement au sel de lithium stable. Le complexe d'or anionique **177** a ensuite été généré *in situ* en présence du (tht)AuCl à basse température. Pour des raisons de solubilité, une métathèse de sel a été réalisée en ajoutant du chlorure de bis(triphénylphosphine) iminium [(PPN)Cl] à la solution brute de **177** dans du CH₂Cl₂ pour donner le complexe **178** avec un rendement de 66%. La structure moléculaire de **178** a été confirmée par une analyse de DRX. La partie anionique de ce complexe affiche la géométrie de coordination linéaire typique des complexes d'or (I) {C₁-Au₁-C₁₁} (177.74°) et le centre Au (I) fait face à l'unité malonate anionique de l'hétérocycle barbiturique presque plan, avec une distance Au₁-C₂₀ de 3.024 Å. (**Schéma 65**)

Parallèlement, la modification des complexes a été également étudiée afin d'examiner l'impact électronique global du ligand NHC sur le centre d'or. En présence du triflate de méthyle ou l'anhydride triflique, le complexe **177** a été ainsi converti en complexes de l'or (I) neutres **179** et **180**. Cette fonctionnalisation de l'oxygène de l'unité malonate

s'accompagne de la perte du plan de symétrie présent dans les complexes anioniques (177, 178), et donc pourrait rendre les deux complexes potentiellement atropoisomères. Néanmoins, les complexes désymétrisés sont préparés de manière racémique car nous nous sommes intéressés à l'induction de la chiralité par le groupement L* (Schéma 61), géométriquement plus proche du site de coordination. Le complexe 179 a été aussi caractérisé par DRX. En présence de PhICl₂, le complexe d'or (III) 181 a été obtenu avec 72% de rendement. L'analyse de DRX a confirmé que la géométrie du centre d'or est bien plan carré, dans lequel l'or est coordiné avec le carbène IPy, deux chlorures et le centre barbiturique. (Schéma 65)

Une analyse des cartes stériques topographiques des complexes **178** et **179** à l'aide du logiciel Cavallo's SambVCa⁸⁷ a révélé que les deux ligands présentaient un encombrement élevé sur le centre de l'or et même à proximité du site potentiellement actif en position *trans* avec le centre du carbène (zones rouge et orange). Un tel confinement du ligand avait déjà été démontré comme étant bénéfique pour une activité et une sélectivité élevée pour la catalyse d'or.⁷⁷ Le complexe **179** possède donc une pression stérique globale du ligand NHC avec un pourcentage de volume « buried » de %V_{bur} = **53.4**. (**Schéma 66**)

Schéma 66

Les ligands **182** en substituant un méthyle au centre barbiturique ont également été préparés à partir des précurseurs zwitterioniques chiraux **176-2** en présence de l'iodométhane. La coordination de l'or a été ensuite réalisée en milieu basique et a conduit aux complexes iodures **183-185** avec des rendements de 87% à 95%. Lorsque

⁸⁷ L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano, L. Cavallo, *Organometallics* **2016**, *35*, 2286.

la substitution du méthyle génère un carbone sp³ au centre barbiturique et les conformères potentielles en tournant l'axe entre le cycle barbiturique et le noyau IPy, une caractérisation du complexe **183** par DRX a permis de montrer que le méthyle s'oriente vers l'extérieur et le squelette barbiturique face au centre d'or. (**Schéma 67**)

Schéma 67

Le schéma suivant regroupe tous les complexes IPy que nous avons utilisé au cours de cette thèse, leurs structures variant par la chiralité et la charge électronique (**Schéma 68**) :

Schéma 68

Nous nous sommes également intéressés aux versions asymétriques de différentes réactions en présence d'autres complexes d'or que ceux intégrant le squelette IPy.

II. Synthèse des complexes d'or de type phosphine

La synthèse de complexes phosphines d'or(I) s'effectue à partir du (tht)AuCl et les ligands phosphines. La liaison soufre-or peut être facilement remplacée par la liaison phosphore-or quantitativement et proprement à température ambiante dans le CH₂Cl₂ et les complexes obtenus ne nécessitent qu'un traitement simple. Les caractérisations sont réalisées par RMN ³¹P, les δ_P des ligands étant largement déplacés une fois qu'ils sont coordinés avec l'or. Dans certains cas, nous avons également utilisé la stratégie *in situ*, en mélangeant le ligand et le complexe (tht)AuCl pour générer le pré-catalyseur puis ajouter le co-catalyseur pour capturer l'ion chlorure et transférer les réactifs au milieu catalytique. Au cours de cette thèse, nous avons préparé les complexes **18**, **188**-**193** à partir des ligands analogues du (*R*)-MeOBIPHEP, du ligand ferrocénylphosphine (*R, S*)-PPF-PtBu₂ et des ligands de type (*R, S*)-BiaxPhos (**Schéma 69**).

Schéma 69

Notamment, les complexes d'or de type (R, S)-BiaxPhos ont été pour la première fois synthétisés. L'analyse cristallographique du complexe **190** (Ar = Ph) a mis en évidence une distance Au-Au de 4.4-4.5 Å (voir *Apprendix i*), distance trop grande pour envisager l'existence d'une interaction aurophile (Au-Au autour de 3.0 Å).²⁷ Ces ligands terphényles *ortho*-orientés présentant deux axes Ar–Ar atropoisomères forment une architecture unique. La construction des ligands BiaxPhos a été conçue par une approche d'activation C-H, dans laquelle les deux axes stéréogéniques ont été synthétisés dans l'équipe du Pr. Françoise Colobert dans le Laboratoire d'Innovation Moléculaire et Applications (LIMA) dans l'Université de Strasbourg. L'application de ces ligands dans la réaction hydrogénation catalysée par le rhodium a été décrite avec des énantiosélectivités excellentes.⁸⁸

III. Synthèse des substrats

Afin d'évaluer l'efficacité et la réactivité des complexes d'or de type IPy (imidazopyridine) et l'énantiosélectivité des ligands chiraux dérivés, nous avons réalisé la synthèse de divers énynes-1,6 fonctionnalisés sur les fonctions alcène, alcyne et/ou en position propargylique. Les énynes-1,6 possédant un lien azoté, oxygéné, et carboné de type diester ou disulfone ont également été préparés.

1. Synthèse des énynes-1,6 azotés et oxygénés

Une première série d'énynes-1,6 azotés a été synthétisée en deux étapes à partir de la propargylamine selon des protocoles classiques de protection et substitution nucléophile.⁸⁹ Celle-ci est dans un premier temps mono-protégée par le chlorure de tosyle en présence de Et₃N pour conduire au dérivé **194** avec un rendement de 93%. L'alkylation de ce dernier par les bromures d'allyle, effectuée en présence de carbonate de potassium dans l'acétone au reflux, permet l'obtention des composés **84**, **195-199** avec des rendements entre 85% et 98% (**Tableau 1**).

⁸⁸ Q. Dherbassy, J.-P. Djukic, J. Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2018, 57, 4668.

⁸⁹ a) T. Masquelin, D. Obrecht, *Synthesis* **1995**, *3*, 276. b) E. Genin, L. Leseurre, P. Y. Toullec, J.-P. Genêt, V. Michelet, *Synlett* **2007**, *11*, 1780.

Les couplages de Sonogashira en présence des haloarènes ou bromures de vinyle permettent de substituer le carbone sp^2 de l'alcyne terminal des énynes **84**, **195-199** avec des rendements allant de 61% à 86%.^{39,40} Divers aromatiques ont été introduits dont le phényle, des aromatiques portant des groupements électrodonneurs et électroattracteurs. (**Tableau 2**)

L'ényne **212** portant le groupement cyclohexane a été préparé par la réaction de Mitsunobu à partir du dérivé **194** et du 2-cyclohexylidèneéthan-1-ol **211**, lui-même synthétisé par la réaction de Horner-Wadsworth-Emmons à partir de la cyclohexanone puis une réduction de l'ester **210** en alcool **211**.⁹⁰ Le couplage de Sonogashira en présence d'iodobenzène conduit à la formation de l'ényne **213** avec un rendement de 58%. (**Schéma 70**)

Nous avons également préparé un ényne substitué en α par un carbonyle à partir de l'acide phénylpropiolique, l'isocyanate de *p*-toluènesulfonyle et le bromure d'allyle. La synthèse *one-pot* a été réalisée en deux étapes : en présence de Et₃N, l'isocyanate réagit avec l'acide carboxylique et est converti en amide en libérant une molécule de CO₂, l'ajout du bromure d'allyle et de la Et₃N supplémentaire conduit à la formation du dérivé énynamide-1,6 **214** avec 63% de rendement.⁹¹ (**Schéma 71**)

⁹⁰ T. Matsuda, Y. Sakurai, J. Org. Chem. 2014, 79, 2739.

⁹¹ D. Qian, J. Zhang, Chem. Commun. 2011, 47, 11152.

Schéma 71

Les énynes oxygénés **14** et **215** sont synthétisés à partir du 3-phényl-2-propyn-1-ol en présence des bromures d'allyle en une seule étape avec 67% et 87% de rendement respectivement (**Schéma 72**).

Schéma 72

2. Synthèse des énynes carbonés

Les énynes-1,6 carbonés ont été préparés par des réactions d'alkylation successives des dérivés malonates d'alkyle et disulfones. Le dérivé **216** a été synthétisé par monoalkylation du 1-bromo-3-méthylbut-2-ène sur le malonate de diméthyle **143** dans l'acétone en présence de K_2CO_3 . Une seconde alkylation en présence du bromure de propargyle ou du 1-bromobut-2-yne a conduit à la formation des énynes **167** et **217** avec 93% et 99% de rendement respectivement. L'ényne **167** a aussi été transformé en ényne **121** substitué par un groupe phényle par un couplage de Sonogashira avec 82% de rendement. (**Schéma 73**)

Schéma 73

Les énynes **82** sont préparés par une première alkylation par le bromure de propargyle, conduisant aux dérivés **218** et **219** avec 67% et 90% de rendement respectivement, suivie d'une seconde alkylation par introduction du groupement cinnamyle. (**Schéma 74**)

IV. Cycloisomérisation des énynes-1,6

1. Synthèse des diènes-1,4

Dans un premier temps, nous avons choisi d'étudier la cycloisomérisation 6-*endo* des énynes-1,6 azotés. D'après l'étude bibliographique,³⁹ ce type de transformation conduit souvent aux bicyclo[4.1.0]heptènes. Cependant, du point de vue des applications, les diènes-1,4 sont également très intéressants, mais peu d'exemples ont été décrits dans la littérature concernant la transformation en diènes-1,4. Afin d'étudier la généralité et les limitations pour la formation de diènes-1,4, une série d'énynes ont été testés en version racémique.

Nous avons reproduit la transformation décrite par le groupe de Chung dans leurs meilleures conditions réactionnelles. En présence du système catalytique Ph₃PAuCl /AgOTf dans le DCM, un rendement de 74% a été obtenu avec une chimiosélectivité totale en faveur du diène-1,4 (Entrée 1). En remplaçant ce système catalytique par le complexe préalablement activé Ph₃PAuNTf₂, les bicyclo[4.1.0]heptènes ont été observés également (Entrées 2, 3, 7-9), ce qui est en accord avec l'observation de Chung : la variation du contre-ion, tel que SbF₆⁻ et PF₆⁻, a une influence sur la chimiosélectivité. En outre, en présence des complexes NHC, une augmentation significative de la proportion du composé bicyclo[4.1.0]heptène (a/b = 55/45 et 23/77) a été observée, ce qui peut s'expliquer par une plus grande stabilité de l'intermédiaire généré par le ligand NHC (Entrées 4, 5). Le mécanisme sera détaillé dans la section suivante. (Tableau 3)

	TsN	Ar [Au] 5 mol%	TsN	Ar _ TsN	Ar	
		DCM t.a.		\rightarrow	Í H	
	,			a	b	
Entrée	Ar	Cat.	t (h)	produit	a/b ^a	Rdt (%)
1	Ph (10)	Ph ₃ PAuCl/AgOTf	3		100/0	74
2		Ph ₃ PAuNTf ₂	17	TsN	83/17	81
3 ^b		Ph ₃ PAuNTf ₂	72		94/6	77
4 ^b		IPrAuNTf ₂	72	11	55/45	(96) ^c
5		[IPrAu(MeCN)]BF4	147		23/77	(46) ^c
6	4-MeOC ₆ H ₄ (204)			ТѕМ	Э	
		Ph ₃ PAuCl/AgOTf	15	\succ	100/0	74
				220		
7	3,4-	Ph ₃ PAuNTf ₂	4.5		91/9	(74) ^c
8	OCH ₂ OC ₆ H ₃	Ph ₃ PAuCl/AgOTf	4		/ .	
	(205)			221	100/0	96
				221 Br		
9	3-BrC6H4		68	TsN		
	(206)	Ph ₃ PAuNTf ₂			90/10	73(87) ^c
	()			222		

^a déterminé par RMN ¹H, ^b dans le CDCl₃, ()^c conversion

Tableau 3

La variation sur le groupement aromatique a conduit aux résultats similaires avec le dérivés diènes-1,4 en majorité (**Entrées 2, 7, 9, Tableau 3**). La présence du groupement électrodonneur (**204, 205**) favorise la cycloisomérisation et conduit aux diènes-1,4 avec un rendement jusqu'à 96% (**Entrée 8, Tableau 3**). L'augmentation de la densité électronique de l'alcyne favoriserait la formation du complexe η^2 avec l'or (**Schéma 7**). En revanche, la présence du groupement électroattracteur (-CF₃) donnerait le diène-1,4 **224** via la voie 5-*exo* également. Les deux diènes ont été isolés en mélange avec 66% de rendement et un ratio de 77/23 (6-*endo* : 5-*exo*) (**Schéma 75**).

Schéma 75
Les variations sur l'alcène conduisent à la formation des bicyclo[4.1.0]heptènes ainsi que d'autre composés dont la structure n'a pas pu être déterminée (Entrées 1, 2, **Tableau 4**). La double substitution sur l'alcène terminal semble essentielle pour l'obtention du diène-1,4. Afin de confirmer cette hypothèse, l'ényne 213 a été mis en réaction, le diène-1,4 226 a été isolé avec 89% de rendement (Entrée 3). Nous avons ensuite examiné la réactivité des énynes-1,6 liés par différents atomes. Le diène-1,4 227 a été obtenu avec 12% de rendement en partant l'ényne oxygéné 215. Le rendement faible est dû à une dégradation importante et à la formation de nombreux sous-produits (Entrée 4). (Tableau 4)

^a déterminé par RMN ¹H, ()^b conversion, ^c Ph₃PAuNTf₂ 5 mol%, n.d. : non détecté, comp. : mélange complexe.

Tableau 4

La cycloisomérisation de l'ényne **121** lié par l'unité malonate de méthyle conduit à la formation exclusive du produit **122** de type Friedel-Crafts avec 87% de rendement (**Schéma 76**). Ces résultats impliquent que la transformation de l'ényne-1,6 en diène-1,4 est également dépendant des substrats. Les résultats observés semblent indiquer que

l'accès aux diènes-1,4 est favorisé par un lien azoté et par une disubstitution *gem* de l'alcène.

Schéma 76

Nous avons également étudié la régiosélectivité de la réaction pour la formation du diène-1,4 lorsque la substitution-*gem* sur alcène est différent. L'ényne **202** portant le groupement géranyle est transformé en un mélange des dérivés **228** et **229** avec un ratio de 1/2 (**Schéma 77**). Le diène le plus substitué est préférentiellement obtenu, ce qui suggère une règle de Zaïtev dans ce type de transformation.

Schéma 77

2. Mécanisme

Le groupe de Chung a proposé un mécanisme de formation du diène-1,4 par une voie carbocationique.³⁹ L'alcène attaquerait le complexe η^2 et générerait le carbocation **A**, puis l'un des protons du méthyle se déprotone et après la démétallation sur **B**, le diène-1,4 serait formé. D'autre part, l'équipe de Shi a proposé un mécanisme pour l'espèce bicyclo[4.1.0]heptène selon un processus faisant intervenir un intermédiaire carbène **C**, en équilibre avec le carbocation **D**. Le processus est suivie d'une migration d'hydrure-[1,2] et la démétallation, le bicyclo[4.1.0]heptène est ainsi généré.⁹² En présence d'un alcool, l'intermédiaire carbénique **C** pourrait également être attaqué par l'oxygène de l'alcool (intermédiaire **F**) et transformé en l'éther (flèches en bleu, **Schéma 78**). Cette transformation domino d'hydroxy/alcoxycyclisation sera détaillée dans la partie **V** de ce chapitre.

⁹² D.-H. Zhang, Y. Wei, M. Shi, Chem. Eur. J. 2012, 18, 7026.

Basé sur les mécanismes décrits par Chung et Shi, ainsi que nos observations expérimentales, nous avons donc proposé la formation du diène-1,4 à partir de l'intermédiaire carbénique C (flèches en rouge, Schéma 78). L'un des protons des *gem* diméthyles s'éliminerait et conduirait à l'espèce B. Les raisons pour lesquelles la voie carbocationique n'est pas favorisée seraient que nous devrions observer la formation du diène-1,3 (issue de la migration du carbocation A) plus stable que le diène-1,4, et que cette voie ne pourrait pas expliquer la formation du bicyclo[4.1.0]heptène en tant que sous-produit.

Schéma 78

D'après ce mécanisme, nous pouvons ainsi expliquer la chimiosélectivité différentes entre les ligands phosphine et les ligands carbéniques (**Tableau 3**). La stabilisation de l'intermédiaire **C** par les ligands carbéniques rend son existence plus longue et donc la probabilité de formation du bicyclo[4.1.0]heptène augmente.

Ayant en mains différentes conditions permettant l'obtention des diènes-1,4 et des bicyclo[4.1.0]heptènes, nous nous sommes ensuite intéressés à la réactivité des complexes de type IPy.

3. Etude de la réactivité des complexes de type IPy

Sachant que les ligands NHC conduisent préférentiellement aux dérivés bicyclo[4.1.0]heptènes dans les réactions développées précédemment, nous avons donc sélectionné un modèle plus simple qui conduit en général exclusivement au dérivé bicyclo[4.1.0]heptène ($16 \rightarrow 17$) afin d'évaluer les réactivités des complexes IPy. Le complexe 179 permet d'obtenir le composé 17 en présence d'un équivalent du sel d'argent par rapport à la quantité de l'or, lorsqu'aucune transformation n'a été observée dans le cas des complexes ioniques (Entrées 5, 6 vs. Entrées 1, 3, 4). L'utilisation d'un deuxième équivalent du sel de l'argent permet d'atteindre une conversion de 44% dans le cas du complexe 186 (Entrée 2). Les réactions ont aussi été mises en œuvre dans le toluène afin de pouvoir augmenter la température pour une meilleure conversion. Nous avons observé une conversion totale en augmentant la température de 60°C à 100°C. Cependant, ce processus s'accompagne de la formation du diène-1,3 230 lorsque la réaction est chauffée à 80°C (Entrées 7, 8, 9). (Tableau 5)

	TsN	- <u>-</u> Ph	[Au] x m AgX y m	ol% ol% ───► Ts	N	Ph +	TsN	Ph
		\int	Solvant,	T/°C	H			
		16			17		230	
Entrée	Cat.	AgX	x/y	Solvant	T (°C)	t (h)	17/230 ^a	Conv. (%) ^a
1	186	AgOTf	4/4				-	0
2	186	AgOTf	7/14				100/0	44
3	178	AgOTf	4/4	DCM	to	10	-	0
4	178	AgSbF ₆	4/4	DCM	ı.a.	10	-	0
5	179	AgOTf	4/4				100/0	72
6	179	AgSbF ₆	4/4				100/0	90
7	179	AgNTf ₂	4/4	Tal	60	113	100/0	46
8	179	AgNTf ₂	4/4	101	80	66	91/9	66
9	179	AgNTf ₂	4/4		100	46	81/19	100

^a déterminé par RMN ¹H

Tableau 5

Le fait que le deuxième équivalent du sel d'argent initie la réaction pourrait probablement être dû à la formation d'une espèce zwitterionique quand un seul équivalent du sel d'argent est employé. L'interaction électrostatique entre l'anion malonate et le cation d'or inhiberait probablement la réactivité des complexes. Le deuxième équivalent du sel d'argent permettrait de relibérer l'or en neutralisant l'anion malonate (**Schéma 79**). La stratégie de l'emploi de deux équivalents du sel d'argent a été utilisée dans toute les réactions suivantes pour les complexes ioniques. En outre, cette hypothèse a été confirmée par la suite lors de l'étude de l'acidité de Lewis des complexes selon la méthode Gutmann-Beckett dans la section **IV.4**.

Schéma 79

L'efficacité des complexes d'or IPy a été ensuite examinée dans le cas de la cycloisomérisation de l'ényne 10 en diène-1,4 (Tableau 6). Le complexe désymétrisé 179 a fourni 72% de conversion et un ratio du diène-1,4 et de bicyclo[4.1.0]heptène (a/b) de 89/11 alors que le complexe 180 n'a donné que 17% de conversion en diène (Entrées 1, 2). Les complexes ioniques 186 et 178 conduisent à la formation du bicyclo[4.1.0]heptène majoritaire (Entrées 3, 4). En comparant avec les complexes commerciaux, le complexe IPrAuNTf2 a donné un mélange des deux composés presque équimolaires et le complexe cationique [IPrAu(MeCN)]BF4 a conduit à une proportion de a/b de 23/77 (Entrées 5, 6). Nous avons observé qu'en terme de chimiosélectivité, les complexes NHC ioniques ont donné une proportion presque identique autour 20/80 (a/b) (Entrées 3, 4, 6), et les complexes neutres ont conduit aux sélectivités variables (Entrées 1, 2, 5). En présence du complexe d'or (III) 181 et un équivalent du sel d'argent, la conversion a atteint 38%. L'utilisation de deux équivalents du sel d'argent conduit à une conversion de 72% avec la même durée réactionnelle, ce qui pourrait être expliqué par le double site de coordination activé. Un essai analogue en présence du système PicAu(III)Cl₂/AgNTf₂ a fourni le diène-1,4 avec une bonne sélectivité et une conversion de 77%, ce qui est en accord avec l'observation faite dans le cas du complexe 181, impliquant une réactivité similaire de ces complexes d'or (III) (Entrées 7-9, Tableau 6).

TsN	Ph [Au] 2.5 mol% AgNTf ₂ 2.5 mol%	TsN	Ph	Ph
	CDCl ₃ , t.a.		\succ	H
	10		а	b
Entrée	Cat.	t (h)	a/b ^a	Conv. (%) ^a
1	179	71	89/11	72
2	180	72	trace b	17
3 ^b	186	72	17/83	34
4 ^b	178	72	21/79	62
5°	IPrAuNTf ₂	72	55/45	96
6 ^{c,d}	[IPrAu(MeCN)]BF4	147	23/77	46
7	181	46	trace b	38
8 ^b	181	46	trace b	72
9 ^{b,d}	PicAuCl ₂	42	trace b	77

^a déterminé par RMN ¹H, ^b AgNTf₂ 5 mol%, ^c sans AgNTf₂, ^d dans le DCM.

Tableau 6

Les énynes-1,6 14 et 215 liés par l'atome d'oxygène ont été également testés (**Tableau** 7). Pour l'ényne 14, le complexe 179 a conduit au composé bicyclo[4.1.0]heptène avec 74% de rendement (**Entrée 1**). Les conversions faibles de 25-31% ont été observées en présence des complexes ioniques 186 et 178 (**Entrées 2, 3**). Comme observé précédemment (**Entrée 4, Tableau 4**), l'ényne 215 portant les groupements *gem*méthyles a conduit à une dégradation et au mélange de nombreux produits en présence du complexe 179 (**Entrées 4, 5**). Les conversions faibles (8-13%) en dérivé bicyclo[4.1.0]heptène ont été également observées en présence du complexe ionique 178 (**Entrées 6, 7**).

o_───Ph O	[Au] 2.5 mol% AgX ou NaBARF 2.5 mol%	0 Ph
R_1	Solvant, t.a.	$\begin{array}{c} & & & \\ & & & \\ & H & R_2 \end{array}$

Entrée	ényne-1,6	Cat.	Co-cat.	Solvant	t (h)	Rdt (%) ^a
1	Ph	179			3	74
2 ^b	Ph	186	AgOTf	Tol	68	(31) ^c
3 ^b	14	178			72	23(25) ^c

4	Ph	179	AgSbF ₆		14	Dégradation
5	٩	179	NaBARF	DCM	16	22
6 ^b	<i>у</i> —	178	AgSbF ₆	DCM	38	(13) ^c
7 ^b	215	178	NaBARF		66	(8) ^c

^a rendement isolé, ^b en présence du 5 mol% de co-catalyseur, ()^c conversion.

Tableau 7

D'après l'ensemble de ces résultats sur les énynes-1,6 azotés et oxygénés, nous avons donc un aperçu préliminaire des réactivités des complexes IPy. A priori, les complexes neutres ont démontré une performance plus importante que ceux ioniques. Une hypothèse de la génération d'une espèce zwitterionique dans le cas des complexes ioniques a été faite. Afin de quantifier cette différence de réactivité et la comparer avec les complexes commerciaux, nous avons donc utiliser une méthode de Gutmann-Beckett permettant évaluer l'acidité de Lewis des complexes dans le paragraphe suivant.

4. La méthode de Gutmann-Beckett

La méthode Gutmann-Beckett est une procédure expérimentale pour évaluer l'acidité de Lewis de divers composés en utilisant souvent l'oxyde de triéthylphosphine (Et₃PO) comme une sonde moléculaire. Le déplacement chimique ³¹P (δ) de Et₃PO est sensible à l'environnement chimique et peut généralement être trouvé entre +40 et +100 ppm. L'atome d'oxygène de la Et₃PO est une base de Lewis et son interaction avec les sites acides de Lewis cause le déblindage de l'atome phosphore adjacent.⁹³

Cette méthode a été utilisée en général pour déterminer les acidités de Lewis des éléments du bloc p, mais il existe également des exemples sur les métaux alcalinoterreux (Mg, Ca) et l'or dans les articles récents.^{94,36} Gutmann a décrit une échelle de nombre d'accepteurs (AN) pour l'acidité de Lewis avec deux points de référence concernant le ³¹P (δ) de Et₃PO dans l'hexane qui n'a quasiment pas d'acidité de Lewis

⁹³ a) U. Mayer, V. Gutmann, W. Gerger, *Monatsh. Chem.* 1975, *106*, 1235; b) V. Gutmann, *Coord. Chem. Rev.* 1976, *18*, 225; c) M. A. Beckett, G. C. Strickland, J. R. Holland, K. S. Varma, *Polym.* 1996, *37*, 4629; d) M. A. Beckett, D. S. Brassington, M. E. Light, M. B. Hursthouse, *Inorg. Chem. Commun.* 2000, *3*, 530; e) M. A. Beckett, D. S. Brassington, M. E. Light, M. B. Hursthouse, *J. Chem. Soc. Dalton Trans.* 2001, 1768.

⁹⁴ a) S. Brand, J. Pahl, H. Elsen, S. Harder, *Eur. J. Inorg. Chem.* 2017, *36*, 4187. b) J. Pahl, S. Brand, H. Elsen, S. Harder, *Chem. Commun.* 2018, *54*, 8685.

 $(\delta = 41.0 \text{ ppm}, \text{AN} = 0)$ et dans le solvant SbCl₅, qui a une fortement acidité de Lewis ($\delta = 86.1 \text{ ppm}, \text{AN} = 100$). Les nombres d'accepteur (AN) peuvent donc être calculé d'après la formule AN = $2.21 \times (\delta \text{ échantillon} - 41.0)$. Les valeurs de AN plus élevées indiquent une acidité de Lewis plus importante.^{93b}

Nous avons utilisé l'oxyde de triphénylphosphine (OPPh₃) comme sonde moléculaire. De manière qualitative, les complexes IPy **179**, **180** neutres et ionique **178**, ainsi que les complexes NHC commerciaux ont été comparés et discutés. Expérimentalement, le complexe d'or (NHC)AuCl (0.010 mmol) a été introduit dans un flacon contenant de l'hexafluoroantimonate d'argent (AgSbF₆, 0.010 mmol) dissous dans 0.55mL de CD₂Cl₂. Le choix du sel d'argent permet d'avoir une dissociation maximale entre le contre-ion et l'espèce cationique d'or [(NHC)Au]⁺. Après 10 minutes d'agitation, le mélange a été filtré à travers un filtre à seringue (0.2 µm, PTFE membrane) pour éliminer le chlorure d'argent. Dans nos cas, un excès d'oxyde de triphénylphosphine (OPPh₃, 0.020 – 0.030 mmol) a été ajouté et puis, l'espèce [(NHC)Au(OPPh₃)]⁺ cationique a été analysée par RMN ³¹P (**Schéma 80**).

Les signaux de $[(IPr)Au(OPPh_3)]^+$ et $[(IMes)Au(OPPh_3)]^+$ ont été trouvés à $\delta P = 51.0$ et 51.2 ppm (Spectres vert et jaune, **Schéma 80**), ce qui est en accord avec une acidité de Lewis similaire des deux espèces cationiques $[(IPr)Au]^+$ et $[(IMes)Au]^+$, résultant de systèmes électroniques globaux presque identiques des ligands IPr et IMes. Les pics larges autour de $\delta P = 28.0$ ppm pourraient être interprétés comme montrant une attraction faible et l'échange entre l'excès de OPPh₃ et l'espèce $[(NHC)Au(OPPh_3)]^+$. Le déplacement chimique plus élevé à $\delta P = 57.3$ ppm a été obtenu en mélangeant AuCl₃ et OPPh₃ sans l'ajout de AgSbF₆ (Spectre rouge, **Schéma 80**), ce qui est en accord avec l'acidité de Lewis plus élevée attendue de AuCl₃ par rapport aux cations d'or(I).

L'acidité de Lewis de l'espèce cationique $[(L179)Au]^+$ ($\delta P = 50.5$ ppm) est similaire à celle de $[(IPr)Au]^+$ (Spectres violet et vert, **Schéma 80**). En revanche, la charge négative sur l'hétérocycle barbiturique diminue significativement l'acidité de Lewis de l'espèce zwitterionique $[(L178)Au]^+$ avec un déplacement chimique observé à $\delta P = 47.5$ ppm (Spectre cyan, **Schéma 80**), ce qui confirme aussi l'hypothèse précédente (**Schéma 79**). Aucune conclusion définitive n'a pu être tirée pour le complexe **180** puisqu'un précipité noir a été observé immédiatement en mélangeant ce complexe et AgSbF₆ (Spectre bleu, **Schéma 80**). La réactivité faible de ce complexe est donc probablement dû au problème de stabilité dans les solvants.

5. Cycloisomérisation d'un énynamide-1,6

D'après le mécanisme proposé (**Schéma 78**), si l'ényne est substitué en position propargylique, la chimiosélectivité pourrait être améliorée et cela conduirait exclusivement au diène-1,4 grâce à la disparition de l'équilibre entre l'intermédiaire carbène et le carbocation via une migration d'hydrure-1,2. Pour vérifier cette hypothèse, nous avons préparé l'énynamide **214**, qui a été décrit par l'équipe de Chung pour la cycloisomérisation catalysée par Ph₃PAuCl/AgSbF₆.⁹⁵ Selon cet article, le lactame **231** a été obtenue avec 67% de rendement. Cependant, lorsque nous avons reproduit ce résultat, un sous-produit **232** de type Friedel-Crafts a également observé avec un ratio de 48/52 par rapport au lactame **231**. Une expérience de contrôle en absence du complexe d'or montre que l'argent est aussi capable de catalyser cette réaction et donne exclusivement le produit **232** avec un excellent rendement de 97%.⁹⁶ (**Schéma 81**)

⁹⁵ Y. T. Lee, Y. K. Kang, Y. K. Chung, J. Org. Chem. 2009, 74, 7922.

⁹⁶ Ce travail est poursuivi par X. Chen (Doctorante UCA)

L'efficacité des catalyseurs d'or ioniques a donc été ensuite examinées afin d'éliminer l'influence de l'argent. L'effet du solvant a été aussi pris en compte. Les résultats montrent que le composé **232** est initié non seulement par l'argent, mais également par l'or. Les proportions de **231/232** sont relativement indépendantes, pourtant certaines tendances peuvent être signalés: le complexe Ph₃PAuNTf₂ est plus sélectif envers le lactame **231** (**Entrées 4-7**); en revanche, le complexe [XPhosAu(MeCN)]SbF₆ fournit plutôt le composé **232** (**Entrées 1, 3**) à l'exception de l'exemple réalisé dans le dioxane; en présence du catalyseur [IPrAu(MeCN)]BF₄, un mélange complexe et une dégradation de l'énynamide de départ ont été observés dans le DCM et le dioxane (**Entrées 8, 9**), puis dans le toluène, une chimiosélectivité similaire au catalyseur Ph₃PAuNTf₂ a été observée (**Entrée 10**). (**Tableau 8**)

	-Ph [Au] 5 mol%	Ph +	TsN
214		231	232
Entrée	[Au]	Solvant	231/232 ^a
1		DCM	23/77
2	[XPhosAu(MeCN)]SbF ₆	Dioxane	72/28
3		Tol	37/63
4		DCM	61/39
5	DL DANNTE	Dioxane	81/19
6	Pfi3PAun I 12	Tol	75/25
7		CDCl ₃	74/26
8		DCM	comp.
9	[IPrAu(MeCN)]BF4	Dioxane	comp.
10		Tol	80/20

^a déterminé par RMN ¹H, comp. : mélange complexe

Tableau 8

De manière inattendue, en remplaçant le méthylène par un carbonyle, l'énynamide **214** a donc montré une réactivité totalement différente de son analogue ényne-1,6 **10**. La formation du composé **232** pourrait être expliqué du fait d'un recouvrement orbitalaire favorable et l'effet électroattracteur du carbonyle comparé à l'analogue ényne **121** qui conduit au produit de type Friedel-Crafts. L'activité en présence du sel d'argent limite l'utilisation des complexes de type chlorures d'or, mais montre un potentiel intéressant pour la cycloisomérisation de ce type d'énynamide. La catalyse en présence d'autres métaux de transition pourrait également être envisageable. Conformément à notre intérêt pour la catalyse à l'or asymétrique, nous avons poursuivi nos recherches sur les énynes-1,6.

6. Cycloisomérisation asymétriques d'énynes-1,6 azotés et oxygénés

Dans l'article du groupe de Chung, les auteurs ont observé 22% d'*ee* pour la formation du diène-1,4 en présence du complexe d'or **12** bimétallique (*R*)-BINAP-(AuCl)₂ et du complexe **13** avec le ligand monodente phosphine (*R*)-MOP.³⁹ Les énantiosélectivités modestes nous laissaient un grand espace pour une amélioration et nous avons donc dans un premier temps employé les conditions décrites en remplaçant leurs complexes par le (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (**18**), qui a conduit aux meilleures énantiosélectivités dans de nombreuses réactions.^{40,51,54,58,64,66,68,70}

Un excès de 53% a été observé en utilisant le co-catalyseur AgOTf comme piégeur de chlorure (Entrée 1). Puis une variation du sel d'argent a permis d'évaluer l'effet de contre-ions, et nous avons observé 73% d'*ee* en présence du AgNTf₂ (Entrée 2). Lorsque la réaction est réalisée à 0°C, l'excès a été légèrement amélioré à 76% mais la conversion a été diminuée à 17% (Entrée 3). Une dégradation importante de l'ényne départ a été observée en présence de AgSbF₆, En outre, le diène-1,4 11 a été obtenu avec seulement 35% d'*ee* (Entrée 4). Le AgBF₄ a conduit au diène avec 64% d'*ee* (Entrée 5). Aucune transformation n'a été observée en présence de AgOAc, ce qui peut être expliqué par une interaction forte entre l'anion acétate et le complexe d'or cationique généré, qui inhibe la coordination du substrat (Entrée 6). L'utilisation du NaBARF comme co-catalyseur a conduit à une conversion très faible (6%) après 98h (Entrée 7). (Tableau 9)

5	AgBF ₄	3.5	14(35) ^c	64	
6	AgOAc	105	n.d.	/	
7	NaBArF	98	(6) ^c	/	

^a rendement isolé, ^b déterminé par SFC, ()^c conversion, ^d à 0°C.

Tableau 9

Ces résultats obtenus pourraient provenir d'une dissociation plus importante du complexe [LAu]NTf₂, ce qui a déjà été proposé dans différents travaux de la littérature,⁹⁷ et les pK_a des sels d'argent n'a pas permis d'établir une corrélation.⁹⁸

La variation des substituants du noyau aromatique conduit à des énantiosélectivités similaires autour de 70% d'*ee*. Cependant, les conversions ne sont pas complètes et le temps de réaction est souvent long (48-135 h) (**Entrées 1-3**). Le remplacement du DCM par le DCE ou le chloroforme permet d'augmenter la température de la réaction et améliorer la conversion. Nous avons observé une diminution de l'énantiosélectivité (25% d'*ee*) dans le DCE lorsque la réaction a été chauffée à 60°C (**Entrée 4**). L'emploi du chloroforme a permis de maintenir l'énantiosélectivité en chauffant mais le dérivé bicyclo[4.1.0]heptène a été également formé (**Entrées 5, 6**). (**Tableau 10**)

TsN R = 4-0 = 4- = 3,	CF ₃ 203 MeO 204 4-OCH ₂ O 205	18 2.5 mol% AgNTf ₂ 7 mol% Solvant, T	► TsN	223 220 221	MeO PAr ₂ MeO PAr ₂ Ar = 4-MeO-3,5-(<i>t</i> -B 18	AuCl AuCl u) ₂ C ₆ H ₂
Entrée	R	Solvant	T (°C)	t (h)	Rdt (%) ^a	<i>ee</i> (%) ^b
1	4-MeO	DCM	t.a.	135	40(44)°	70
2	4- CF ₃	DCM	t.a.	96	18(23) ^c	64
3	3,4-OCH ₂ O	DCM	t.a.	48	50	76
4	4-MeO	DCE	60	16	53	25
5	4-MeO	CDCl ₃	40	54	72(80)°	75
6 ^d	4-MeO	CDCl ₃	60	5.5	55(100) ^c	71

^a rendement isolé (diène-1,4), ^b déterminé par HPLC/SFC, ()^c conversion. ^d dérivé bicyclo[4.1.0]heptène isolé avec 27% de rendement

Tableau 10

⁹⁷ M. Jia, M. Bandini, ACS Catal. 2015, 5, 1638.

⁹⁸ T. Godet, C. Vaxelaire, C. Michel, A. Milet, P. Belmont, Chem. Eur. J. 2007, 13, 5632.

Les autres complexes d'or ont également été testés. Le complexe **188** (*R*)-DTB-MeOBIPHEP-(AuCl)₂ a conduit un meilleur excès énantiomérique de 94% (**Entrée 1**). Le complexe **189** de type ferrocénylphosphine qui a une chiralité planaire et centrale n'a fourni qu'un composé racémique (**Entrée 2**). Le complexe **190** (*R*, *S*)-BiaxPhos-(AuCl)₂ a conduit à un excès modeste de 47% (**Entrée 3**). D'après l'analyse des temps de rétention en SFC, le complexe (*R*)-DTB-MeOBIPHEP-(AuCl)₂ et le complexe (*R*, *S*)-BiaxPhos-(AuCl)₂ ont conduit au même énantiomère majoritaire du diène-1,4 **11** (**Entrées 1, 3**). En outre, deux complexes carbéniques chiraux **234** et **235**, généreusement donné par le Pr. L. Slaughter,⁷⁴ ont conduit au diène-1,4 **11** racémique et au diène-1,4 **220** avec un excès faible de 13% (**Entrées 4, 5**). L'utilisation de notre complexe IPy ionique chiral **187** a conduit au diène **221** racémique (**Entrée 6**). (**Tableau 11**)

Entrée	R	Cat.	t (h)	Rdt (%) ^a	<i>ee</i> (%) ^b
1	Н	188	48	53	-94
2	Н	189	64	48(81) ^c	0
3	Н	190	18	43	-47
4 ^{d,e}	Н	234	1	66	0
5 ^e	4-MeO	235	7	33	13
6 ^{d,f}	3,4-OCH ₂ O	187	53	(42) ^c	0

^a rendement isolé, ^b déterminé par SFC, le signal négatif « - » représente tr₂ > tr₁, ()^c conversion, ^d dans le DCM, ^e
5 mol% de [Au], ^f à 0°C.

Tableau 11

La cycloisomérisation de l'ényne oxygéné 14 a été ensuite sélectionnée pour étudier les compatibilités et efficacités des nouveaux complexes chiraux avec un autre ényne. La reproductibilité des résultats obtenus dans notre équipe avec le complexe 18 (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ et son analogue 188 (*R*)-DTB-MeOBIPHEP-(AuCl)₂ a donné d'excellents excès énantiomériques de 92%-93% (Entrées 1, 2).⁴⁰ Les

complexes **190-193** de type (*R*, *S*)-BiaxPhos-(AuCl)₂ ont permis l'obtention du bicyclo[4.1.0]heptène **15** avec 33-79% d'*ee* et 42-62% de rendement (**Entrées 3-6**). Notamment, le complexe **193** monodente a conduit à la meilleure énantiosélectivité de 79%, ce qui suggère que les deux centres d'or des complexes (*R*, *S*)-BiaxPhos-(AuCl)₂ fonctionnent indépendamment et que celui sur le noyau aromatique disubstitué (noyau **B**) contribuerait plus à l'introduction de la chiralité (**Entrée 6**). Au contraire des complexes phosphines, le complexe IPy chiral **187** a conduit au produit **15** avec seulement 8% de rendement et 7% d'*ee* (**Entrée 7**). En outre, l'étude en SFC a démontré que l'énantiomère préférentiel en présence de ces complexes est le même. (**Tableau 12**)

0		[Au] x mol% AgOTf y mol% Tol (0.2M), t.a.	Ph H 15	h	A PPh ₂ AuCl 190-192 AuCl	0Me	PPh ₂ AuCl Br
	Entrée	e [Au]	x/y	t (h)	Rdt (%) ^a	<i>ee</i> (%) ^b	_
_	1	18	3/6	16	53	-93	-
	2	188	3/6	4.5	52(81) ^c	-92	
	3	190	2/4	2	48	-53	
	4	191	2/4	94	42	-33	
	5	192	2/4	18	51	-41	
	6	193	4/4	1	62	-79	
	7	187	3/6	67	8	-7	

 a rendement isolé, b déterminé par SFC, le signal négatif $\,$ « - $\,$ » représente tr_2 > tr_1, ()^c conversion.

Tableau 12

Nous avons ainsi montré que la cycloisomérisation des énynes-1,6 conduisant aux diènes-1,4 via le mode 6-endo avait une dépendance forte vis-à-vis des substrats : la présence des groupements *gem* diméthyles sur l'alcène est essentielle pour la formation des diènes-1,4. La tentative d'introduire un groupement carbonyle pour éviter la formation du bicyclo[4.1.0]heptène conduit au produit de type Friedel-Crafts, qui est semblable au produit tricyclique issu de l'ényne-1,6 carboné lié par un groupement malonate. En outre, la présence du groupement donneur a logiquement favorisé cette transformation. En version asymétrique, nous avons observé le meilleur *ee* de 94% en présence du complexe (*R*)-DTB-MeOBIPHEP-(AuCl)₂. Les complexes d'or de type (*R*, *S*)-BiaxPhos ont également démontré un potentiel prometteur pour la catalyse asymétrique, un ee de 79% a été observé pour le dérivé bicyclo[4.1.0]heptène.

Concernant les complexes IPy, nous avons montré que leurs réactivités et sélectivités étaient moins efficaces que celles des complexes phosphines dans ce type de transformation. L'une des raisons pourrait être que les intermédiaires carbéniques avec les ligands NHC sont plus stables et conduiraient à une faible chimiosélectivité au cours de l'équilibre entre les précurseurs des diène-1,4 et des bicyclo[4.1.0]heptènes. L'autre raison dans le cas des complexes IPy ioniques, pourrait être que l'acidité de Lewis de ces complexes, mésurée par la méthode de Gutmann-Beckett, est plus faible que celle des complexes IPr.

Parallèlement aux résultats que nous avons obtenus dans les réactions de cycloisomérisation d'énynes-1,6 en version racémique et asymétrique, nous avons aussi étudié les réactions domino d'hydroxy/alcoxycyclisation, d'hydroarylation/cyclisation et de cyclisation oxydante de ces énynes, ce qui va faire l'objet des paragraphes suivants.

V. Réaction domino d'hydroxy/alcoxycyclisation des énynes-1,6

1. Version racémique

Nous avons d'abord étudié les conditions racémiques afin de préparer les échantillons et de séparer les énantiomères par HPLC chirale. Notre premier exemple domino a été réalisé dans le méthanol en présence du complexe [XPhosAu(MeCN)]SbF₆ pour l'ényne-1,6 **10**. Trois composés ont été observés avec une proportion de 64/18/18 d'après la RMN ¹H (**Schéma 82**). Les composés **237** et **238** sont issus de l'addition de méthanol sur l'alcyne activé avant la cyclisation avec l'alcène. L'emploi du DCM et en ajoutant le méthanol en quantité stœchiométrique a permis d'éviter la formation de ces composés (Entrée 1, Tableau 13).

La variation des alcools (éthanol, alcool allylique et alcool benzylique) a conduit aux éthers **239-242** de manière quasiment exclusive avec de bons rendements dans le DCM en présence du complexe [XPhosAu(MeCN)]SbF₆ (Entrées 2-4, Tableau 13). Cependant, le fait que l'eau soit peu miscible dans le DCM rend la conversion faible (39%) même après 6 jours (Entrée 5). En remplaçant le DCM par le dioxane, l'alcool 242 et le diène 11 ont été obtenus avec 88% de rendement et un ratio de 94/6 (Entrée 6).

TsN	— <u>—</u> Ph	[XPhosAu(RC	MeCN)]SbF ₆ 5 DH 5 - 80 éq.	mol% Ti	sNPh	TsN	236 : R = Me 239 : R = Et 240 : R = ally	le
	\succ	Ş	Solvant, t.a.			\succ	241 : R = Bn 242 : R = H	10
	10				a (236, 239-242)	b (11)		
	Entrée	Solvant	ROH	Équiv.	t (h)	a/b ^a	Rdt (%) ^b	
	1		MeOH	5	4		99	
	2		EtOH	5	5.5		97	
	3	DCM	AllyleOH	5	6.7	trace b	82	
	4		BnOH	5	3		63	
	5		H ₂ O	10	144		25(39)°	
	6		H ₂ O	30	96	94/6	88	
	7		MeOH	20	6.5	93/7	92	
	8		AllyleOH	5	18	71/29	83	
	9	Diawana	BnOH	5	8.5	67/33	n.i.	
	10	Dioxane	EtOH	5	7	78/22	78	
	11 ^d		EtOH	5	5.5	73/27	n.i.	
	12		EtOH	20	8.5	90/10	n.i.	
	13		EtOH	80	7	93/7	n.i.	

^a déterminé par RMN ¹H, ^b rendement isolé, ()^c conversion, ^d à 60°C, n.i. : non isolé.

Tableau 13

Les résultats des **entrées 1-5** nous ont permis d'obtenir les échantillons racémiques pour l'analyse en HPLC/SFC, mais du point de vue du mécanisme, il nous a semblé également intéressant d'étudier la compétition et la sélectivité entre la réaction domino et la cycloisomérisation. L'observation de la formation du diène **11** dans **l'entrée 6** donc nous a permis d'évaluer cette compétition dans le dioxane. Trois paramètres ont donc été évalués: la taille des alcools, le nombre d'équivalent de l'alcool et la température. En comparant la taille des alcools, plus l'alcool est volumineux, plus le diène-1,4 11 est formé (eg. taille : Bn >allyle >Et, $\%_{diène} = 33 : 29 : 22$), expliqué par l'attaque défavorable des nucléophiles encombrés. (Entrées 7 vs. 12, Entrées 8-10) En comparant la température, la formation du diène 11 est légèrement favorisée à 60°C comparé à température ambiante ($\%_{diène} = 27$ vs. 22) (Entrées 10 vs. 11). En comparant le nombre d'équivalent de l'alcool, sans surprise, plus l'alcool est utilisé en grande quantité (de 5 éq. à 80 éq.), plus l'éther est formé majoritairement ($\%_{éther}$ de 78 à 93) (Entrées 10, 12, 13). (Tableau 13)

D'autre part, nous avons noté que la réaction domino requiert en général moins de temps (3-9 h, **Tableau 13**) que le processus de cycloisomérisation (> 48 h, **Tableaux 3, 6, 9-11**) et les composés bicyclo[4.1.0]heptènes sont rarement observés. Cela pourrait être rationnalisé par la cinétique du mécanisme proposé précédemment (**Schéma 78**). La vitesse de l'addition nucléophile (v_1) serait plus élevée que l'étape d'élimination d'un proton conduisant au diène-1,4 (v_2), cette derrière étant plus rapide que la migration d'hydrure conduisant au dérivé bicyclo[4.1.0]heptène [$f(k)+v_3$] (**Schéma 83**).

Schéma 83

Dans le cadre de notre projet, les complexes IPy ont été ensuite évalués dans cette transformation domino. Selon les observations dans le cas des cycloisomérisations, les complexes IPy ont une activité faible puisque les réactions domino ont été réalisées à 60°C. Le meilleur résultat a été obtenu en présence du complexe **179** avec 65% de rendement et 90/10 de ratio **a/b** (Entrée 1). Une conversion très faible (<5%) a été observée en présence du complexe **180** (Entrée 2). Les complexes ioniques **186** et **178** conduisent à des conversions incomplètes et une chimiosélectivité faible (Entrées 3-6). Ces observations sont en accord avec celles dans les cas de cycloisomérisations (**Tableau 6**): l'électrophilie réduite pour les complexes ioniques (**IV-4**) et les ligands

carbéniques stabilisant l'intermédiaire carbène d'or permettraient probablement d'expliquer la faible chimiosélectivité (IV-2). (Tableau 14)

TsNPh +		+ ROH 10 éq.	[Au] x mol% AgNTf₂ y mol% Solvant, 60°C		TsN Ph TsN + TsN		Ph
1	0				a (236, 239	, 242)	ь (11)
Entrée	Cat.	ROH	x/y	Solvant	t (h)	a/b ^a	Rdt (%) ^b
1	179	EtOH	4/4	DCE	16	90/10	65
2	180	EtOH	4/4	DCE	120	-	(<5)°
3	186	EtOH	4/8	DCE	58	65/35	(51) ^c
7	186	H_2O	3/6	dioxane	71	-	n.d.
4	178	EtOH	4/8	DCE	42	93/7	(48) ^c
6	178	MeOH	2/4	CDCl ₃	53	45/55	(30) ^c

^a déterminé par RMN ¹H, ^b rendement isolé, ()^c conversion, n.d. : non détecté.

Tableau 14

2. Les post-fonctionnalisations des dérivés éther et diène-1,4

Les éthers et les diènes-1,4 obtenus peuvent être des précurseurs pour construire les squelettes plus complexes. Nous avons préparé les énynes-1,6 **207** et **208** en introduisant des groupements vinyles. Les réactions domino ont été réalisées en présence de l'alcool allylique, deux composés cyclisés de la voie 6-*endo* (**243**) et 5-*exo* (**244**) ont été observés avec une proportion de 83/17 à partir de l'ényne **207**. L'éther 6-*endo* **243** a été isolé avec 72% de rendement. L'éther **245** issu de l'ényne **208** a aussi été isolé avec 64% de rendement (**Eq. 1, Schéma 84**). L'éther 6-*endo* **243** a été ensuite engagé dans une métathèse intramoléculaire en présence du catalyseur de Grubbs II. Le composé bicyclique **246** a été isolé avec 75% de rendement. L'éther **245**, en revanche, n'a conduit à aucun produit désiré dans la condition de métathèse (**Eq. 2, Schéma 84**). Les produits cycloisomérisés **247** et **248** à partir des énynes **207** et **208** ont également été synthétisé avec 67% et 66% de rendement respectivement (**Eq. 3, Schéma 84**). Le triène **247** a été ensuite engagé dans une réaction de Diels-Alder avec l'acétylènedicarboxylate de diméthyle. Les deux diastéréroisomères **249** ont été obtenus avec un ratio de 1:1 et 69% de rendement (**Eq. 4, Schéma 84**).

3. Version asymétrique

Suite aux résultats obtenus précédemment dans le cas des dérivés bicycliques, nous avons testé dans un premier temps le complexe (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ pour la réaction domino d'ényne-1,6 **10** en présence de divers alcools. Les excès énantiomériques de 60 et 75% ont été observés en présence de l'éthanol et l'alcool benzylique respectivement dans le DCM (**Entrées 1, 8**). En remplaçant le DCM par le chloroforme, les éthers ont été obtenus avec des excès énantiomériques allant de 80% à 84% (**Entrées 2-5, 7**). Un exemple dans le toluène en présence de l'alcool allylique a permis aussi d'atteindre 84% d'*ee* (**Entrée 6**). Les conversions étaient généralement incomplètes, probablement à cause de la réduction de l'or (I) en or (0) au fur et à mesure du processus. Les éthers ont été obtenus avec des rendements de 46-71% et un pourcentage de 80% à 93% (7%-20% du diène **11**). (**Tableau 15**)

Entrée	ROH	Solvant	t (h)	a/b ^a	Conv.(%) ^a	Rdt (%) ^b	<i>ee</i> (%) ^c
1		DCM	21	92/8	78	71	60
2	EtOH	CHCl ₃	41	77/23	44	32	84
3		CDCl ₃	69	90/10	55	46	84

4	MeOH	CDCl ₃	113	93/7	91	70	82
5	AllylOH	CDCl ₃	113	89/11	92	60	80
6 ^d		Tol	105	83/17	100	57	84
7	BnOH	CDCl ₃	113	80/20	87	54	80
8		DCM	68	86/14	80	58	75

^a déterminé par RMN ¹H, ^b rendement isolé, ^c déterminé par HPLC/SFC, ^d à 50°C.

Tableau 15

Ayant en main des conditions optimales en présence d'éthanol dans le CDCl₃ (Entrée 3, Tableau 15) et comme dans le cas des cycloisomérisations, nous nous sommes demandés si d'autres complexes pouvaient avoir une activité similaire et peut être conduire à des *ee* supérieurs. Nous avons alors testé un autre dérivé du MeOBIPHEP, des analogues du BiaxPhos, un complexe ferrocényle, un phosphite et les complexes IPy chiraux.

Le complexe 188 (*R*)-DTB-MeOBIPHEP-(AuCl)₂ a conduit à l'éther 239 avec 91% d'*ee* (Entrée 1). Les dérivés de (*R*, *S*)-BiaxPhos 190-193 ont permis d'obtenir l'éther 239 avec 48-86% d'*ee* et 50-86% de rendement (Entrées 2-5). Au contraire à ce que nous avons observé dans le cas de la cycloisomérisation de l'ényne 14 (Tableau 12), les complexes bidentes ont conduit à un meilleur excès que celui du complexe monodente 193. Cela impliquerait donc dans ce cas un effet coopératif entre les deux centres métalliques. En présence du complexe ferrocénylphosphine 189, le produit racémique a été obtenu avec 70% de rendement (Entrée 6). Le complexe de type phosphite 250 a donné l'éther avec 14% d'*ee* et 90% de rendement (Entrée 7). Quant aux complexes carbéniques IPy, il a été nécessaire d'augmenter la température à cause de la conversion faible à température ambiante. Une chimiosélectivité faible (239/11 = 62/38) a été observée en présence du complexe ionique 187, et l'éther a été obtenu avec 8% d'*ee* (Entrées 8, 9). (Tableau 16)

TsN	Ph [Au] AgNT EtC CD	2.5 mol% f ₂ 7 mol% DH 5 éq. DCl ₃ , t.a.	TsN Ph OEt	+ TsN	-Ph =
	10		239	11	
PPh ₂ AuCl		O PAuCI	N N N Ph O Ph O Ph O Ph O Ph O Ph O Ph O) =N=PPha	Me N N N Ph O Ph O Ph
190-192	250		187		183
Entrée	[Au]	t (h)	239/11 ^a	Rdt (%) ^b	<i>ee</i> (%) ^c
1	188	48	87/13	71(82) ^d	-91
2	190	18	94/6	75	-66
3	191	19	93/7	83(100) ^d	-79
4	192	41	92/8	75(85) ^d	-86
5 ^e	193	24	97/3	86	-48
6	189	64	93/7	70	0
7 ^{e,f}	250	17	91/9	90	+14
8 ^g	187	21	62/38	(35) ^d	+8

^a déterminé par RMN ¹H, ^b rendement isolé, ^c déterminé par SFC, le signal « +/- » représente tr₁ > ou < tr₂, ()^d conversion, ^e 5 mol% de [Au], ^f dans le DCM, ^g à 60°C, ^h 2.5 mol% de AgNTf₂

Tableau 16

Comme observé précédemment (**Tableaux 11, 12**), les complexes (*R*)-MeOBIPHEP-(AuCl)₂ et (*R*, *S*)-BiaxPhos-(AuCl)₂ ont également induit la même stéréosélectivité(-) dans cette transformation domino, alors que les complexes IPy **187, 183** et phosphite **250** ont conduit à des énantiosélectivités opposées (+) (**Tableau 16**).

D'après l'étude de la compétition entre la formation de l'éther et du diène (**Tableau** 13), nous avons ensuite réalisé cette transformation asymétrique en présence d'un équivalent d'alcool benzylique à 60°C pour générer l'éther 241 avec un maximum du diène-1,4 11 en compétition. La conversion a atteint à 58% après 6 h avec une proportion de l'éther et du diène de 44/56. Les deux produits ont été isolés avec 17% et 25% de rendements respectivement. L'analyse par SFC a démontré qu'ils ont le même excès énantiomérique de 86% (**Schéma 85**). Ce résultat confirmerait le mécanisme proposé dans le **Schéma 78**: les deux produits seraient issus du même intermédiaire

carbénique et quel que soit le nucléophile, la chiralité serait induite une fois cet intermédiaire formé. Basé sur cette conclusion, si nous pouvions déduire la configuration absolue d'un des deux dérivés, celle du second composé pourrait être connue également.

Schéma 85

Le paragraphe suivant est dédié à la détermination du sens de l'énantiosélectivité, point primordial pour envisager un modèle stérique de ces transformations.

4. Détermination du sens de l'énantiosélectivité

Les excès énantiomériques jusqu'à 94% ont été obtenus dans l'étude précédente, nous avons donc ensuite envisagé de déterminer la configuration absolue de l'énantiomère majoritaire. La stratégie choisie a été de transformer les énantiomères en diastéréoisomères séparables en présence d'un agent chiral de dérivatisation (CDA). La configuration absolue du centre chiral de l'agent de dérivatisation étant définie, une analyse par diffraction RX de l'un des diastéréoisomères isolés, permettrait de déduire la configuration de (des) centre(s) chiral(aux) de l'énantiomère initial.

En tant qu'agent de dérivatisation, l'acide de Mosher⁹⁹ et son dérivé chlorure d'acide **251** ont été largement utilisés dans la littérature car ils peuvent réagir avec un alcool ou une amine et conduire à l'ester ou à l'amide correspondant et particulièrement, la

⁹⁹ a) J. A. Dale, H. S. Mosher, *J. Am. Chem. Soc.* **1973**, 95, 512. b) G. R. Sullivan, J. A. Dale, H. S. Mosher, *J. Org. Chem.* **1973**, 38, 2143. c) T. R. Hoye, M. K. Renner, *J. Org. Chem.* **1996**, 61, 2056. d) La modification de Kakisawa-Kusumi : I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, *J. Am. Chem. Soc.* **1991**, 113, 4092. e) B. M. Trost, J. L. Belletire, S. Godleski, P. G. McDougal, J. M. Balkovec, J. J. Baldwin, M. E. Christy, G. S. Ponticello, S. L. Varga, J. P. Springer, *J. Org. Chem.* **1986**, *51*, 2370. f) D. Parker, *Chem. Rev.* **1991**, 91, 1441. g) J. M. Seco, E. Quinoa, R. Riguera, *Chem. Rev.* **2004**, 104, 17.

configuration absolue de l'ester ou de l'amide formé peut être déterminée par la spectroscopie RMN du ¹H et/ou ¹⁹F grâce au modèle de Mosher^{99a,100} qui établit la corrélation entre les déplacements chimiques et les configurations des carbones stéréogènes. Cependant, dans notre cas, aucun produit désiré (**252**) n'a été observé lorsque l'alcool **242** a été mis en présence du chlorure d'acide de Mosher **251**, ce qui est probablement dû au fait que l'alcool tertiaire est difficile à estérifier.

Sachant que l'énantiosélectivité de ce processus domino dépend de l'intermédiaire carbénique quel que soit la nucléophile (**Tableau 15**, **Schéma 85**), par conséquent, une autre stratégie permettant de générer des diastéréoisomères au cours de la réaction en présence de nucléophiles chiraux a été considérée et réalisée. Dans les conditions racémiques, cette transformation devait conduire à deux diastéréoisomères dans les proportions 1 :1. La séparation et l'analyse par la diffraction RX permettrait de déterminer les configurations absolues de chaque diastéréoisomère. Ce ratio des deux diastéréoisomères (*dr*) serait changé dans les conditions asymétriques. En comparant les caractérisations des deux diastéréoisomères (RMN, R_f en CCM), nous pourrions ainsi savoir quel diastéréoisomère a été formé préférentiellement. (**Schéma 87**)

Schéma 87

Selon cette stratégie, il nous fallait trouver tout abord un couple de diastéréoisomères pouvant parfaitement être séparé par chromatographie. En utilisant le principe de

¹⁰⁰ a) T. R. Hoye, C. S. Jeffrey, F. Shao, *Nature Protocols* 2007, 2, 2451 b) D. A. Allen, A. E. Tomaso,
O. P. Priest, D. F. Hindson, J. L. Hurlburt, *J. Chem. Educ.* 2008, 85, 698. c) A. Ichikawa, H. Ono, Y. Mikata, *Molecules* 2015, *20*, 12880.

chimie combinatoire¹⁰¹, nous avons réalisé une série de réactions domino (25 réactions) à l'échelle de 0.02 mmol en condition racémiques à partir de divers énynes-1,6 (**10**, **204-206**, **213**) et cinq alcools chiraux commerciaux (**O1-O5**), dans le but de trouver rapidement une combinaison adéquate en consommant une petite quantité des réactifs. D'après l'analyse RMN ¹H, nous avons observé la présence de diastéréoisomères presque dans tous les cas sauf l'ényne **213** portant le groupement cyclohexane. Le diène-1,4 **226** issu de la réaction de cycloisomérisation est observé majoritairement, probablement dû à l'encombrement du cyclohexane conduisant à l'attaque nucléophile difficile. Dans le cas de l'ényne **206** portant un groupement 3-BrC₆H₄, les produits issus de la voie 5-*exo* ont été également observés, ce qui rend les séparations très compliquées. Afin d'avoir une meilleure séparation des diastéréoisomères, divers d'éluants ont également été testés. Nous avons alors choisi la combinaison de l'ényne **10** et l'alcool **O3** pour poursuivre notre étude. (**Schéma 88**)

¹⁰¹ a) R. A. Houghten, *Perspectives in Drug Discovery and Design*, **1995**, *2*. b) H. Weintraub, *Science*, **1995**, 267, 1609.

Les deux diastéréoisomères **253** ont été isolés avec 58% de rendement global et un dr de 1 :1 sur une échelle de 0.3 mmol (Spectre marron, **Schéma 89**). L'analyse par RMN ¹H nous a permis de différencier les deux diastéréoisomères grâce aux pics caractéristiques décalés (Spectres bleu et vert, **Schéma 89**). Après l'obtention des monocristaux de chaque diastéréoisomère, l'analyse par diffraction RX a permis d'élucider les configurations absolues de chaque diastéréoisomère. Le **253-dia-1** possède un centre crée de configuration *R* et celui du **253-dia-2** est *S* (**Schéma 89**, *Apprendix ii, iii*).

La réaction domino d'alcoxylation/cyclisation a ensuite été réalisée dans les conditions asymétriques. Les complexes (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (**18**) et (*R*, *S*)-BiaxPhos-(AuCl)₂ (**190**) ont été choisis compte tenu de leurs bonnes énantiosélectivités. Les *de*, déterminés par RMN ¹H, sont de 83% et 39% respectivement et en accord avec les valeurs d'*ee* (**Tableaux 15, 16**). Les deux complexes ont conduit au même

diastéréoisomère (**253**-*dia*-**2**) en majorité, ce qui est aussi en accord avec l'observation en SFC pour les énantiomères du diène **11** et de l'éther **239** (**Tableaux 11, 16**).

Basé sur ces résultats et le mécanisme (**Schémas 78, 85**), nous pouvons ainsi conclure que la chiralité générée par les ligands de type (R)-MeOBIPHEP et les ligands (R, S)-BiaxPhos est préférentiellement la configuration S dans les processus cycloisomérisation et domino des énynes-1,6 catalysés par l'or. En comparant les temps de rétention en HPLC ou SFC, l'induction asymétrique par d'autres systèmes chiraux pourrait également être déduite dans ces transformations. (**Schéma 91**)

Schéma 91

Les réactions d'hydroxy/alcoxycyclisation des énynes via la voie 6-*endo* ont donc été étudiées en version racémique et asymétrique. Comparé avec le processus de cycloisomérisation, cette transformation s'est avérée généralement plus efficace en termes de réactivité et chimiosélectivité. Les éthers ont été obtenus exclusivement en présence du [XPhosAu(MeCN)]SbF₆ dans le DCM avec des rendements excellents jusqu'à 99% et ces composés ont pu également être post-fonctionnalisés pour générer des dérivés polycycliques. En version asymétrique, les complexes d'or de type BiaxPhos ont conduit à des *ee* de 48% à 86%. Nous avons observé un meilleur *ee* de 91% en présence du catalyseur (*R*)-DTB-MeOBIPHEP-(AuCl)₂. Les deux exemples (**Entrée 2, Tableau 12; Entrée1, Tableau 16**) font partie des quelques exemples pour lesquels le ligand DTB-MeOBIPHEP surpasse l'efficacité de son congénère DTBM-MeOBIPHEP,⁶⁴ probablement à cause d'une torsion différente du ligand.¹⁰² En outre, il reste encore une zone d'ombre pour ce type de complexes d'or bimétalliques. En effet, même si nous avons déterminé le sens de l'énantiosélectivité, nous n'avons à ce jour pas pu identifier un (ou des) intermédiaire(s) possible(s) en raison de la présence d'un deuxième centre d'or dont le rôle reste à clarifier.

Une stratégie par génération des diastéréoisomères en présence d'un alcool chiral au cours de la réaction nous a permis d'identifier la configuration absolue des éthers formés et donc la stéréosélectivité des procédés de cycloisomérisation et d'hydroxy/alcoxycyclisation.

Malgré ces résultats encourageants, les complexes IPy ont toujours montré une faible réactivité dans ce processus domino. Afin de valoriser ces complexes IPy, nous nous sommes orientés vers d'autres transformations des énynes (arylation/cyclisation, cyclisation oxydative, réaction de Prins) dans les paragraphes suivants.

¹⁰² E. M. Barreiro, E. V. Boltukhina, A. J. P. White, K. K. M. Hii, Chem. Eur. J. 2015, 21, 2686.

VI. Réaction domino des énynes-1,6 via la voie 5-exo

1. Version racémique

Les nucléophiles dans la réaction domino précédente étaient limités aux dérivés oxygénés. Les tentatives d'addition des nucléophiles carbonés ou azotés tels que le *N*-méthylindole, le TMSCF₃ et l'aniline sur l'ényne **10** n'ont conduit à aucun produit désiré (**Schéma 92**).

En outre, les réactivités des complexes d'or IPy ne sont pas idéales ni dans la cycloisomérisation, ni dans la réaction domino de l'ényne **10**. Nous avons donc orienté nos recherches vers les énynes-1,6 portant un groupement cinnamyle et un alcyne vrai, qui pourraient cycliser par la voie 5-*exo* en présence des nucléophiles oxygénés et carbonés. Ces transformations ont été décrites en présence des ligands de type phosphines et NHCs, et de très bonnes énantiosélectivités ont été obtenues en version asymétrique.^{57-61,70} Par conséquent, nous nous sommes intéressés à l'activité des complexes IPy dans ces transformations 5-*exo*.

Les complexes IPy ont été évalués en employant les composés aromatiques riche en carbone comme le *N*-méthylindole et le 1,3,5-triméthoxybenzène pour la réaction domino des énynes-1,6 liés par un lien malonate de diisopropyle et de bisphénylsulfonyle. Ces combinaisons ont été choisies en raison des bons excès énantiomériques obtenus en version asymétrique dans notre équipe. En particulier, une forte dépendance de la substitution des énynes avait été démontrée et la présence de groupements volumineux avait donné les meilleurs résultats.⁵⁸

Le premier exemple a été réalisé à partir de l'ényne **82-1** et le *N*-méthylindole. Un excellent rendement isolé de 95% a été obtenu dans le cas du complexe **179** en seulement 45 minutes avec une charge de catalyseur de 3% molaire. Des conversions

faibles à modérées ont été observées en présence du catalyseur **180** et des complexes ioniques **186**, **178**. (Schéma 93)

Schéma 93

De la même manière, pour la réaction d'arylation/cyclisation entre l'ényne soufré **82-2** et le 1,3,5-triméthoxybenzène, le complexe **179** a fourni le produit **255** avec 87% de rendement en une heure, alors que le complexe ionique **186** n'a donné que 69% de conversion après 90h. (**Schéma 94**)

Schéma 94

La faible réactivité du complexe **186** pourrait s'expliquer par la plus faible électrophilie (**Schéma 80**), qui évolue expérimentalement vers des nanoparticules noires d'or (0). Les stabilités et les propriétés électroniques des complexes d'or **179** et **180** pourraient expliquer la différence d'activité significative entre les deux dérivés (rendement de 50% contre 95%). L'activité du complexe **179** nous a incité à étudier plus en détails ses propriétés dans les processus d'alcoxylation/cyclisation et d'arylation/cyclisation.

Nous avons donc réalisé une étude plus poussée en faisant varier les substrats et les nucléophiles avec 1 mol% de charge catalytique. Le DCM a été utilisé dans le cas de l'ényne azoté dû à des problèmes de solubilité dans l'éther. L'addition d'alcools et d'aromatiques a conduit aux hétérocycles fonctionnalisés avec des rendements allant de 71% à 99%. De manière remarquable, la réaction d'hydroarylation/cyclisation a pu être réalisée à une échelle de 1 gramme (3 mmol) et en présence de seulement 0.25 mol% de catalyseur d'or, conduisant à l'hétérocycle **257** avec un rendement de 87%. Ce résultat correspond à une diminution de la charge de catalyseur de plus de 4 fois par rapport à notre travail et de 10 fois par rapport aux études antérieures. ^{57-61,70} (**Schéma 95**)

Afin d'évaluer l'efficacité remarquable observée du complexe **179**, nous avons effectué une comparaison avec les complexes d'or commerciaux: IMesAuCl, IPrAuCl et Ph₃PAuCl. Dans tous les cas, l'efficacité du complexe **179** a été supérieure par rapport aux autres complexes en termes de rendement, de sélectivité ou de cinétique. Des

conversions faibles ou modérées ont été observées dans le cas des catalyseurs IMesAuCl ou de IPrAuCl. Le calcul des TOFs (Turnover Frequency) nous a permis de quantifier les performances des complexes. Notamment, l'hétérocycle fonctionnalisé **257** a été obtenu avec un TOF = 400 h⁻¹ en présence du complexe **179** (**Entrée 3**), ce qui correspond à une valeur supérieure de plus de 8 fois à celle en présence du complexe IPrAuCl (**Entrée 5**). De même, dans le cas de **256**, le TOF a été calculé à 207 h⁻¹ avec 0.3 mol% du complexe **179**, comparativement à 35 h⁻¹ en présence de IPrAuCl (**Entrées 6, 8**). (**Tableau 17**)

Entrée	produits	[Au]	t (h)	Rdt (%) ^a	TOF (h ⁻¹) ^b
1	TsN H Ph	179	48	71	2.1
2	258	IMesAuCl	46	(7) ^c	0.2
3	OMe	179	0.25	84	400
4	MeO H TsN Ph	IMesAuCl	46	(27) ^c	0.6
5	257	IPrAuCl	1	(52) ^c	52
	H OMe	179	1	(62)°	207
7	TsN	IMesAuCl	22	94	4.5
8	256	IPrAuCl	1	(35) ^c	35
9	N T T	179	28	75	3.6
10	PhO ₂ S PhO ₂ S PhO ₂ S	IPrAuCl	48	79	2.1
11	260	Ph ₃ PAuCl	23	58	4.4
12	PhO ₂ S PhO ₂ S	179	4	87	25
13	262	IPrAuCl	47	65	2.1
14	N	179	3	82	33
15	/PrO ₂ C /PrO ₂ C	IPrAuCl	27	43(44)°	1.6
16	254	Ph ₃ PAuCl	22	75(88) ^c	4

17		179	23	88	4.3
18	<i>i</i> PrO ₂ C Ph	IPrAuCl	27	35(50)°	1.9
19	264	Ph ₃ PAuCl	2.4	(11) ^c	4.6

^a rendement isolé, ^b TOF = Conv.(%)/[la charge catalytique(mol%) × temps (h)], ()^c conversion, ^d 0.3 mol% de [Au], Entrées 1-8 dans le DCM, Entrée 9-19 dans le Et₂O

Tableau 17

Ayant mis au point un système catalytique efficace pour la réaction d'hydroarylation / cyclisation et d'alcoxylation/cyclisation des énynes-1,6 via la voie 5-*exo* mettant en jeu le complexe IPy neutre, nous nous sommes ensuite tournés vers l'étude en version asymétrique.

2. Catalyse asymétrique

En présence du complexe 18 (R)-DTBM-MeOBIPHEP-(AuCl)2, notre équipe avait observé les excès énantiomériques de 94% et 95% avec 85% et 94% de rendement pour les composés 254 et 255 respectivement^{58b} (Entrées 1, 4). Le complexe ionique 187, comme ses analogues achiraux 186 et 178, a conduit à une conversion faible à modeste et souvent évolué vers la formation de nanoparticules noires d'or (0), les produits isolés ayant un excès faible de 5% à 15% (Entrées 2, 5). Le complexe méthylé 183 a conduit à un excès de 55% pour le produit 254, qui a été isolé avec 88% de rendement après 6h (Entrée 3). Ce complexe a aussi donné 15% d'ee et une conversion de 45% pour le composé 255 (Entrée 6). La réaction d'alcoxylation/cyclisation de l'ényne azoté 84 en présence du complexe 183, a fourni l'hétérocycle 259 avec 59% d'ee et un excellent rendement en un peu plus d'une heure en présence d'alcool allylique comme nucléophile (Entrée 8). (Tableau 18) Sachant que seulement deux exemples énantiosélectifs concernant l'ényne azoté 84 ont été décrit dans la littérature, en utilisant l'eau^{58b} et l'acide acétique⁶¹ pour conduire aux hétérocycles correspondants avec 23% et 59% d'ee respectivement, et le fait que peu de transformations ait été décrite pour l'ényne azoté selon la voie 5-exo, nous a incités à étudier plus en détails l'efficacité du complexe 183 et à tenter d'améliorer l'énantiosélectivité dans les processus d'alcoxylation/cyclisation et d'arylation/cyclisation.

^a rendement isolé, ^b déterminé par HPLC/SFC, ()^c conversion, ^d 3 mol% de AgOTf.

Tableau 18

Nous avons tout d'abord fait varier le co-catalyseur pour étudier l'effet des contre-ions (**Tableau 19**). En une heure, 53% à 59% d'excès ont été observés avec des rendements excellents de 95-99% en présence de OTf, NTf_2^- , SbF_6^- et BF_4^- (**Entrées 1-4**). Cette réaction a ensuite été réalisées dans différents solvants, un *ee* de 61% a été observé dans le DCE (**Entrée 5**). Le CDCl₃ a conduit à l'hétérocycle **259** avec 65% d'*ee* (**Entrée 6**). Aucune transformation n'a été observée dans l'acétonitrile, probablement dû à l'occupation du site de coordination par l'acétonitrile (**Entrée 7**). Un *ee* de 50% a été observé dans le nitrométhane avec une conversion de 65% en 3 heures (**Entrée 8**). Le solvant PhCl conduit à 66% d'*ee* mais la réaction a été plus lente (**Entrée 9**). Dans le toluène, 67% d'*ee* ont été obtenus avec un temps de réaction de 1.5h. La baisse de la température à 0°C a permis d'améliorer légèrement l'excès à 70% avec 97% de rendement en 21 heure (**Entrées 10, 11**). Les excès énantiomériques ont donc varié de 50% à 70%, les solvants ont affecté plutôt la cinétique de la réaction que l'énantiosélectivité. Par ailleurs, l'influence des contre-ions s'est révélée presque négligeable.

TsN	/-== \	183 2.5 m AgX 2.5 m alcool allyliqu	ol% iol% ie 3 éq. ┣ TsN		Me	
	Ph	Solvant (0.1M	М), t.a.	M	\sim	│ │ │ │ N _¶ ∖N _\ ∕
	84			259	Ph	Ö Ph 183
_	Entrée	Solvant	AgX	t (h)	Rdt (%) ^a	<i>ee</i> (%) ^b
_	1		AgOTf	1.2	99	59
	2	DCM	AgNTf ₂	1	97	54
	3	DCM	AgSbF ₆	1	98	53
	4		AgBF ₄	1	95	57
-	5	DCE	AgOTf	1.5	(93) ^c	61
	6	CDCl ₃	AgOTf	3	(94) ^c	65
	7	MeCN	AgOTf	5	n.d.	-
	8	MeNO ₂	AgOTf	3	(65) ^c	50
	9	PhCl	AgOTf	5.3	(67) ^c	66
	10	Tol	AgOTf	1.5	(88) ^c	67(-) ^d
	11 ^e	Tol	AgOTf	21	97	70

^a rendement isolé, ^b déterminé par HPLC, ()^c conversion, ^d l'activité optique, mésurée par polarimètre, « - » signifie lévogyre. ^e à 0°C, n.d. : non détecté

Tableau 19

Les analogues du complexe **183** en modifiant le groupement diisopropylphényle ont ensuite été étudiés. Le complexe **184** portant le groupement mésityle a conduit au composé **259** avec 39% d'*ee* et 99% de rendement en 40 min. Le temps de réaction est réduit significativement par rapport à celui en présence du complexe **183** (21h, **Entrée 11**, **Tableau 19**), ce qui pourrait être expliqué par l'encombrement moins volumineux autour de l'or du groupement mésityle, ce qui rend la catalyse plus efficace mais moins stéréosélective. En revanche, le complexe **185** portant le groupement 2,5-CHPh₂-4-MeC₆H₂, qui est beaucoup plus encombré que les deux autres, n'a conduit à aucun produit à 0°C. Pourtant, le retour à t.a. a permis d'obtenir le composé **259** avec 94% de rendement mais seulement 8% d'*ee*. Le centre d'or pourrait être moins « exposé » dans ce cas. Ces observations suggèreraient que l'introduction de la chiralité des complexes IPy pourrait être affectée non seulement par le groupement barbiturique chiral, mais également par le groupement aromatique au niveau de l'imidazole. (**Schéma 96**)

En vue d'étudier l'énantiosélectivité et l'efficacité du complexe **183**, nous avons ensuite testé plusieurs combinaisons d'énynes-1,6 et de nucléophiles. Notamment, les processus d'alcoxylation/cyclisation et d'arylation/cyclisation de l'ényne-1,6 azoté en présence des nucléophiles de type alcools et aromatiques riches en électrons, ont été réalisés et ont conduit aux hétérocycles **256**, **258**, **259** avec 70-71% d'*ee* et avec 85-97% de rendement. Pour le dérivé **254**, le toluène a permis d'obtenir un excès similaire (56%) que celui dans l'éther mais une conversion seulement de 59%. Pour les composés **260-262**, les excès de 43-48% ont été observés en présence du méthanol, de l'alcool allylique et du *N*-méthylindole et 15% d'*ee* pour le dérivé **255**. Les conversions sont généralement incomplètes dans le cas de l'ényne soufré. (**Schéma 97**)

Schéma 97

3. Détermination de la stéréosélectivité des processus domino

Compte tenu des résultats très prometteurs dans ce processus domino, il nous a semblé important de déterminer les configurations absolues induites par les complexes chiraux. Ce travail avait été tenté dans notre équipe mais n'avait pas conduit à des résultats concluants.¹⁰³ A l'aide de la méthodologie développée dans la section V-4, nous avons effectué une réaction en présence de l'alcool (*R*)-4-bromo-*a*-méthylbenzylique commercial pour générer des diastéréoisomères au cours de la réaction. Les deux diastéréoisomères **266** ont été isolés avec 56% de rendement global et un *dr* de 1 :1 en présence de IPrAuNTf₂ (**Schéma 98**).

¹⁰³ C.-M. Chao, Nouvelles réactions à économie d'atomes : Synthèse de carbo- et d'hétérocycles fonctionnalisés par cycloisomérisations d'énynes catalysées par des complexes d'or et de platine, Doctorat de l'Université Pierre et Marie Curie, Paris VI, **2009**.

Schéma 98

Malgré de nombreux efforts, nous n'avons réussi à cristalliser qu'un seul diastéréoisomère **266-dia-1**. L'analyse par diffraction de RX a montré qu'il y avait quatre molécules indépendantes de même configuration absolue dans une maille. Elles ont été identifiées comme étant des conformères avec des torsions différentes qui ont co-cristallisé ensemble. En conséquence, c'est aussi la flexibilité de la molécule qui en a fait le processus de cristallisation difficile. Les interactions de type « π stacking » sont observées dans deux directions avec quatre aromatiques par groupe dans cette maille (marqué par les carrés bleus et les ronds oranges), qui sont une interaction secondaire essentielle pour former ce cristal. (**Schéma 99**, *Apprendix iv*)

Schéma 99

Ainsi, les deux centres crées du composé **266**-*dia*-**1** ont les configurations absolues R, et donc le diastéréoisomère **266**-*dia*-**2** possède deux centres de S. L'utilisation du complexe **183** a conduit à un excès diastéréoisomérique de 66% avec le diastéréoisomère **266**-*dia*-**2** en majoritaire (**Schéma 100**). Les deux diastéréoisomères ont été isolés avec 72% de rendement. Cette valeur de *de* est tout à fait en accord avec l'excès énantiomérique observé précédemment dans le cas de l'alcool allylique comme nucléophile (**Entrée 10, Tableau 19**). Nous avons donc pu déterminer la stéréosélectivité de la transformation domino des énynes-1,6 en présence du complexe **183**, comme donnant préférentiellement les hétérocycles de configuration (*S*, *S*).

Du point de vue du mécanisme, il est possible d'envisager une espèce cyclopropylcarbène **A**, proposé par le groupe d'Echavarren, ou un état de transition concerté **B**, proposé par Fürstner et Morency.¹⁰⁴ Le modèle de Fürstner nous semble plus probable en raison que ce processus est *anti* diastéréosélectif.⁷⁰ L'intermédiaire cyclopropylcarbène **A** ne permet pas d'expliquer la diastéréosélectivité car le produit *syn* serait potentiellement favorisé par une attaque du côté le moins encombré (flèche sombre en pointillé, **Schéma 101**). En revanche, le modèle de Fürstner place le complexe et le nucléophile de manière éloignée. En passant par un état de transition de type enveloppe **B**, une réaction concertée permettrait de former deux nouvelles liaisons et le cycle à cinq. Dans notre cas, la liaison formée entre le nucléophile et le substrat se situerait préférentiellement sur la face *si* de l'alcène en présence du catalyseur **183** et

¹⁰⁴ A. Fürstner, L. Morency, Angew. Chem. Int. Ed. 2008, 47, 5030.

conduirait donc à l'héterocycle 266 et ses analogues 256, 259 possédant deux centres *S.* (Schéma 101)

Nous avons donc modélisé trois conformations critiques pour expliquer le sens d'énantiosélectivité (Schéma 102).¹⁰⁵ Au regard du complexe d'or, la stéréoinduction serait générée par les groupements chiraux (*S*)-CH(CH₃)Ph qui pourraient créer une cavité avec le noyau barbiturique, ce qui permettrait ainsi une coordination spécifique et stéréocontôlée du substrat. La fonction alcyne du substrat s'insérerait dans cette cavité en plaçant les autres groupements et le nucléophile avec un encombrement stérique minimal (A, B, C). Selon une perspective de vue au-dessus du complexe, les deux groupements phényles pourraient tourner indépendamment à l'avant et à l'arrière de la molécule, comme deux portes à l'état fermé ou ouvert (A', B', C'). Les calculs DFT ont montré que le conformère C' présentant un groupement phényle à l'avant en état de « porte fermée » et celui à l'arrière en état de « porte ouverte » était le plus stable, en présentant un écart d'énergie de 11.8 kJ/mol par rapport à l'énergie du conformère A'. Le nucléophile pourrait donc s'additionner via la « porte ouverte », selon un état de transition en accord avec les travaux de Fürstner, sur la face *si* de l'alcène, ce qui conduirait préférentiellement au produit de configuration (*S*,*S*).

¹⁰⁵ Calculs de DFT réalisés par le Dr. Fabien Fontaine-Vive (ICN).

Schéma 102

4. Post-fonctionnalisation d'un dérivé azoté

L'hétérocycle **259** obtenu précédemment (**Entrée 11**, **Tableau 19**) a été transformé en un dérivé bicyclique **267** en présence du catalyseur de Grubbs II. Le produit a été isolé avec 74%, tout en concervant l'excès énantiomérique de 70% du produit de départ (**Schéma 103**).

Schéma 103

Nous avons donc montré que les complexes IPy ont une réactivité excellente pour les réactions domino des énynes-1,6 via la voie 5-*exo*. Les nucléophiles carbonés et oxygénés sont compatibles avec les énynes liés par un atome d'azote ou de carbone.

Les rendements excellents jusqu'à 99% ont été obtenus en présence du complexe **179**. Notamment, l'efficacité de ce complexe a été quantifiée par le TOF et TON et un TOF de 8 fois plus élevé que celui des complexes NHC commerciaux a été observé dans certains cas.¹⁰⁶ En outre, un TON de 7600 a également été observé dans une réaction d'hydroamination intermoléculaire d'alcynes avec les dérivés de l'aniline.¹⁰⁷ En version asymétrique, nous avons observé de bons *ee* de 70-71% dans le cas d'un ényne azoté en présence du complexe **183** avec les nucléophiles de type alcools et le *N*méthylindole. La stratégie développée dans la partie **V-4** nous a permis de déterminer le sens de l'énantiosélectivité à travers la détermination de la configuration absolue de l'énantiomère majoritaire. Une approche asymétrique a donc ensuite été proposée en considérant un mécanisme concerté et la conformation du catalyseur.

Ayant ces résultats encourageants, nous avons ensuite étudié les réactivités des complexes IPy dans la réaction de cyclisation oxydative d'ényne en présence du diphénylsulfoxyde.

VII. Réaction de cyclisation oxydative des énynes-1,6

1. Version racémique

En 2007, le groupe de Toste a rapporté le premier exemple de la réaction de cyclisation oxydative des énynes-1,6 en présence du diphénylsulfoxyde comme oxydant.⁶² Puis tard en 2011, l'équipe de Shi a développé cette réaction en version asymétrique avec leurs complexes d'or (I) NHC atropoisomériques, 3.5-70% d'*ee* ont été observés.⁶¹ Les énynes utilisés dans leur article étaient de façon limitée fonctionnalisés par une chaîne allyle monosubstituée de stéréochimie *E*. Nous avons donc dans un premier temps étudié la généralité de cette transformation en utilisant des énynes-1,6 diversement substitués dans des conditions racémiques en présence de cinq catalyseurs commerciaux. Pour établir rapidement une tendance de réactivité des complexes d'or, nous avons adopté la même démarche fructueuse précédente, à savoir une étude en chimie combinatoire à l'échelle de 0.03 mmol de substrats.

¹⁰⁶ Le travail de notre collaborateur à Toulouse : Y. Tang, I. Benaissa, M. Huynh, L. Vendier, N. Lugan,

S. Bastin, P. Belmont, V. César, V. Michelet, Angew. Chem. Int. Ed. 2019, 58, 7977.

¹⁰⁷ Idir Benaissa, Doctorant de l'Université de Toulouse (2016-2019).

Une représentation schématique des résultats obtenus est décrite ci-dessous en fonction des rendements déterminés par spectroscopie RMN ¹H (**Schéma 104**). L'ényne **84** a conduit aux meilleurs résultats en présence des complexes NHC. Les complexes [XPhosAu(MeCN)]SbF₆ et Ph₃PAuNTf₂ ont une faible réactivité dans quasiment tous les cas, ce qui suggérerait que le caractère σ -donneur des NHCs jouerait un rôle important sur la cyclisation oxydative, probablement en raison de la stabilisation des intermédiaires carbéniques rendant ensuite l'attaque du diphénylsulfoxyde favorisée (**Schéma 39**).

Les rendements RMN ont été déterminés en présence de la 2,3,4-trichloropyridine comme étalon interne.

Schéma 104

L'ényne **196** a conduit à l'aldéhyde correspodant **268** avec 37-60% de rendement RMN, pourtant, le dérivé du bicyclo[4.1.0]heptène a également été observé. Des mélanges ont été obtenus à partir l'ényne **197** portant les groupements *gem* diméthyles. Notamment, en présence des complexes [XPhosAu(MeCN)]SbF₆ et Ph₃PAuNTf₂, le produit cycloisomérisé **269** de type 6-*endo* a été détecté avec des rendements de RMN de 68%

et 39% respectivement. L'ényne possédant un lien malonate **82** a conduit à 34-70% de l'aldéhyde désiré et l'ényne portant le groupement vinyle **195** a donné divers produits avec 9-20% de l'aldéhyde observé. Ces quelques résultats ont donc mis en évidence que cette réaction a donc une forte dépendance des substrats. (**Schéma 104**)

D'après le mécanisme proposé par Shi,⁶¹ la réaction est totalement diastéréosélective et conduit à la formation des trois centres stéréogènes contigüs (Schéma 39). La configuration E du groupement cinnamyle conduit à une position *cis* pour le groupement phényle et l'aldéhyde formé. En partant de l'ényne 198 portant un groupement cyclohexène de configuration Z, nous avons donc espéré observer l'aldéhyde *trans*. En outre, comme l'ényne de départ possède un centre stéréogène, l'aldéhyde serait formé sous deux formes en deux stéréoisomères *endo/exo*.

Néanmoins, un seul composé *trans* **271** a été obtenu avec 56% de rendement en présence du IPrAuNTf₂. L'expérience RMN NOESY 1D sélective nous a permis de déterminer la stéréochimie du dérivé synthétisé comme étant *endo*. En irradiant le

proton de pont ($\delta = 2.34$ ppm, dd), un effet NOE est observé avec les protons de l'aldéhyde ($\delta = 8.58$ ppm, s), du cyclopropane ($\delta = 1.76$ ppm, ddd) et du cyclohexane ($\delta = 4.32$ ppm) (Spectre bleu, **Schéma 105**), ce dernier signal n'apparaissant pas si les deux protons ne sont pas du même côté. Cela indique une configuration *endo* du cyclohexane et ce processus oxydatif pourrait même contrôler les quatre centres stéréogènes de manière diastéréosélective.

Nous avons ensuite examiné la réactivité des énynes en substituant l'acétylène par un phényle pour voir si cette transformation était encore réalisable. Les énynes **200** et **209** ont conduit aux bicyclo[4.1.0]heptènes **225** et **272** sans traces des cétones attendues (**Entrées 1, 2**). La cétone désirée a été observée seulement dans le cas de l'ényne **201** en chauffant la réaction à 50°C (**Entrée 3**). Le facteur thermodynamique semble critique dans ce cas car aucune transformation n'a été observée à température ambiante. Cela pourrait être expliqué par la diminution de l'entropie de l'ényne de départ (degré de liberté de la conformation) et donc la réaction aurait besoin d'une température plus élevée pour que l'énergie de Gibbs soit négative ($\Delta G=\Delta H-T\Delta S < 0$). Ces résultats ont donc montré que la cyclisation oxydative ne se limite pas aux énynes-1,6 portant un alcène *E* et peut également être réalisés pour dans le cas d'un ényne-1,6 substitué en position de l'alcyne vrai. (**Tableau 20**)

^a rendement RMN, en utilisant la 3,4,5-trichloropyridine comme étalon interne, ^b rendement isolé.

Tableau 20

Sachant que les ligands NHC atropoisomériques de Shi et les complexes NHC commerciaux (Schéma 104) ont bonne activité catalytique dans ce processus oxydatif, il était intéressant d'étudier les activités de nos complexes IPy. Le modèle choisi est l'oxydation de l'ényne-1,6 84. En présence de 2.5 mol% du complexe 179, l'aldéhyde a été isolé avec 72% de rendement. La diminution de la quantité catalytique à 1 mol% a permis d'atteindre une conversion de 85% et un rendement RMN de 76% (Entrées 1, 2). Comparé avec le complexe 179, les autres complexes IPy ont nécessité plus de temps, puisque les conversions et les rendements RMN étaient plus faibles (Entrées 1-5). Ces résultats, encore une fois, ont confirmé les hypothèses et les conclusions faites pour la réactivité des complexes IPy (Schémas 79, 80). Le complexe C d'or (III) a été aussi employé avec 2.5 mol% de charge, 68% de rendement RMN a été observé (Entrée 6). (Tableau 21)

TsN		Ph ₂ SO	[A AgS	u] x mol% bF ₆ y mol%		HO — Ph
· · · · ·	Ph	1.5 éq.	DCE	E (0.1M), t.a.	H	
	84				90	
Entrée	[Au]	x/y	/	t (h)	Conv. (%)	Rdt (%) ^a
1	179	2.5/2	2.5	18	100	72 ^b
2	179	1/1	l	24	85	76
3	180	1/1	l	47	63	51
4	186	1/2	2	47	45	41
5	178	1/2	2	47	37	36
6°	181	2.5/2	2.5	25	100	68

^a rendement RMN, en utilisant la 3,4,5-trichloropyridine comme étalon interne, ^b rendement isolé, ^c AgNTf₂

Tableau 21

2. Version asymétrique

Compte tenu des résultats précédents, nous nous sommes intéressés à la version asymétrique de cette réaction, un excès énantiomérique maximal de 43% avec 99% de rendement pour l'aldéhyde **90** a été décrit par l'équipe de Shi en présence du complexe chiral axial (*aS*)-**91 (Entrée 1**).⁶¹ Après l'optimisation des conditions en faisant varier différents paramètres, les auteurs ont trouvé que le solvant PhCl permettrait d'atteindre 66% d'*ee* à 0°C, l'aldéhyde était observé avec 25% rendement (**Entrée 3**). Pourtant, plus de 99% d'aldéhyde a été isolé avec 63% d'*ee* à 10°C (**Entrée 3**). Ce changement

brutal de la réactivité en fonction de la température a révélé que cette transformation oxydative était sous contrôle thermodynamique. Nous avons choisi les conditions optimisées du groupe de Shi pour examiner les énantiosélectivités induites par les complexes chiraux IPy. Le complexe méthylé **183** portant un groupement diisopropylphényle a fourni l'aldéhyde **90** avec 47% de rendement et 45% d'*ee* (Entrée **5**). L'énantiosélectivité est diminuée en employant le catalyseur **184** substitué par un mésityle, 23% d'excès ont été observés avec 67% de rendement isolé (Entrée **6**). Le complexe **185** portant le groupement 4-Me-2,6-(CHPh₂)₂C₆H₂ a conduit au produit quasiment racémique avec 37% de rendement (Entrée **7**). Ces observations sont en accord avec les résultats obtenus dans la réaction domino (Schéma 96) et renforcerait la conclusion que les groupements aromatiques des complexes IPy auraient un effet important sur l'induction asymétrique. Le complexe ionique chiral **187** a conduit au composé racémique avec une conversion de 64% (Entrée **8**). (Tableau 22)

TsN	₩ Ph	[Au] AgSbl 1.5 e PhCl (2.5 mol% ⁷ ₆ 2.5 mol% éq. Ph ₂ SO 0.1M), T(°C)	TsN H 90		IAU NHAC		N-An N-An O Au I Ph
						(aS)- 91	183-	185
	Entr	ée	[Au]	T (0°C)	t (h)	Rdt (%) ^a	<i>ee</i> (%) ^b	
	1 ^{c,}	d		t.a.	2	>99	43	
	2°		(aS) 01	t.a.	4	91	60	
	3°		(<i>us</i>)-91	10	12	>99	63	
	4°	;		0	90	25	66	
	5		183	t.a.	23	47	45	
	6		184	t.a.	90	67(79) ^e	23	
	7		185	t.a.	90	37 ^e	<5	
	8 ^{d,}	.f	187	t.a.	72	51(64) ^e	0	

^a rendement isolé, ^b déterminé par HPLC, ^c 5 mol% de [Au] et [Ag], ^d dans le DCE, ^e rendement RMN, en utilisant la 3,4,5-trichloropyridine comme étalon interne, ^f 5 mol% de [Ag].

Tableau 22

D'autres complexes chiraux ont été également testés comme le complexe **18** souvent utilisé précédemment, le (*R*)-DTBM-MeOBIPHEP-(AuCl)₂. Nous avons fait varier les sels d'argent à température ambiante, les réactions étant totales en 1-3 h dans le DCE. Le meilleur résultat a été observé en présence de AgNTf₂ avec 29% d'*ee* et 82% de rendement isolé (Entrées 1-3, Tableau 23). Il est intéressant de noter qu'en présence d'un rapport [Au]/AgNTf₂ de 2/1, l'excès a été légèrement amélioré à 34% (Entrée 4). L'abaissement de la température à -10°C a permis d'obtenir l'aldéhyde avec 46% d'*ee*, mais seulement 50% de rendement (Entrée 5). Dans les conditions optimisées de Shi, seulement 6% de rendement en aldéhyde ont été observés avec de nombreux de sousproduits à 10°C dans le PhCl (Entrée 6). Néanmoins, le retour à la température ambiante a conduit au produit 90 avec 53% d'*ee* et 70% de rendement isolé (Entrée 7). Le fait du changement brutal de la réactivité en fonction de la température s'est apparu encore une fois dans ce type de transformation (Entrées 6, 7, Tableau 22; Entrées 3, 4, Tableau 22).

TsN		18 2.5 mol% AgX 5 mol% 1.5 éq. Ph ₂ SO	→ TsN		MeO MeO	PAr ₂ AuCl PAr ₂ AuCl
	Ph	Solvant, t.a.		Ч Н		<u>ب</u>
	84			90	Ar = 4-MeO-3 1	8,5-(<i>t</i> -Bu) ₂ C ₆ H ₂ 8
	Entrée	AgX	Solvant	t (h)	Rdt (%) ^a	<i>ee</i> (%) ^b
	1	AgSbF ₆		4	72°	+16
	2	AgNTf ₂		1	82	+29
	3	AgOTf	DCE	3	69	+24
	4 ^d	AgNTf ₂		2	76°	+34
	5 ^e	AgNTf ₂		21	50	+46(-) ^g
	6 ^f	AgSbF ₆		24	6°	/
	7	AgSbF ₆		1.5	70	-53(+) ^g
	8 ^d	AgSbF ₆		2	68°	-36
	9	AgNTf ₂	PhCI	1	77	-32
	10 ^h	AgSbF ₆		17	33°	0
	11 ⁱ	AgSbF ₆		4	70°	-56
	12 ⁱ	AgSbF ₆	PhCF ₃	3	51°	-43
	13 ⁱ	AgSbF ₆	PhF	3	38°	-39

^a rendement isolé, ^b déterminé par HPLC, le signal « +/- » représente $tr_1 > tr_2 / tr_2 > tr_1$, ^c rendement RMN, en utilisant la 3,4,5-trichloropyridine comme étalon interne, ^d 2.5 mol% de [Ag], ^e à -10°C, ^f à 10°C, ()^g l'activité optique, mésurée par polarimètre, « + » signifie dextrogyre et « - » signifie lévogyre. ^h complexe **190** (*R*, *S*)-BiaxPhos(AuCl)₂, ⁱ complexe **188** (*R*)-DTB-MeOBIPHEP(AuCl)₂.

Tableau 23

A l'opposé de l'entrée 4, l'utilisation de 2 fois moins de co-catalyseur a réduit l'ee à 36% (Entrée 8). L'utilisation de AgNTf₂, qui a conduit au meilleur excès dans le DCE n'a fourni que 32% d'ee dans le PhCl (Entrée 9). L'emploi du complexe 190 (R, S)-BiaxPhos-(AuCl)₂ a conduit au composé racémique avec 33% de rendement (Entrée 10). Le complexe 188 a fourni 56% d'ee dans le PhCl (Entrée 11). Les autres solvants aromatiques ont conduit à l'aldéhyde 90 avec des ee de 39-43% et des rendements plus faibles par rapport à celui dans le PhCl (Entrées 12, 13). De manière surprenante, nous avons également mis en évidence que les solvants jouaient un rôle important et intéressant au niveau de l'énantiosélectivité. D'après analyse en SFC, l'énantiosélectivité obtenue en présence des dérivés (R)-MeOBIPHEP dans le PhCl est entièrement inversée par rapport à celle obtenue dans le DCE (Entrées 1-5 vs. 7-9, 11-13, Tableau 23). L'analyse des pouvoirs rotatoires a également confirmé cette inversion de l'énantiosélectivité (Entrées 5, 7). Cette forte dépendance du solvant pourrait être expliquée par l'effet secondaire entre les molécules de solvant et le complexe, ce qui pourrait générer deux espèces intermédiaires chirales différentes.¹⁰⁸ Les entrées 4 et 8 suggéreraient également des intermédiaires différents, probablement avec un effet coopératif des deux centres métalliques dans le solvant aromatique. (Tableau 23)

Les complexes 18 et 183 ont été ensuite employés pour l'ényne 198. Sachant que cette transformation est totalement diastéréosélective (Schéma 105) et en partant de l'ényne 198 racémique, nous pouvions envisager un dédoublement cinétique, comme cela a été décrit récemment par le groupe de Toste.³⁷ Les énantiosélectivités des complexes chiraux ont été alors caractérisées par le facteur de sélectivité *s* dans la réaction de dédoublement cinétique énantioconvergente. Ce facteur peut être calculé à partir de la conversion (*c*) et l'excès énantiomérique du produit formé (*ee*) d'après la formule cidessous :¹⁰⁹

$$s = \frac{log[1 - c(1 + ee)]}{log[1 - c(1 - ee)]}$$

Le complexe **18** (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ a conduit à 23% de conversion et 26% d'*ee*, ce qui résulterait à un facteur de sélectivité s = 1.8 (**Entrée 1**). En présence

¹⁰⁸ Exemple de réaction énantiodivergente en fonction du solvant catalysée par le complexe (S)-DTBM-SEGPHOS-(AuCl)₂ : M.-A. Abadie, X. Trivelli, F. Medina, N. Duhal, M. Kouach, B. Linden, E. Génin, M. Vandewalle, F. Capet, P. Roussel, I. Del Rosal, L. Maron, F. Agbossou-Niedercorn, C. Michon, *Chem. Eur. J.* 2017, *23*, 10777.

¹⁰⁹ J. M. Keith, J. F. Larrow, E. N. Jacobsen, Adv. Synth. Catal. 2001, 343, 5.

 TsN	+ }>	Ph ₂ SO 1.5 éq.	[Au] 2.5 mol% AgSbF ₆ 2.5 -5 mol% PhCl. 50°C	TsN H	CHO TsN +	
(+/-)- 1	98		·	271	19	/ 8
Entrée	[Au]	t (h)	Conv. _{aldéhyde} (%) ^a	<i>ee</i> (%) ^b	<i>ee</i> (%) ^b récupéré	S
1	18	43	23	26	9	1.8
2	183	28	31	47	11	34

du complexe **183**, 47% d'excès ont été observés pour l'aldéhyde **271** et un facteur de *s* = 3.4 a donc été déterminé (**Entrée 2**). (**Tableau 24**)

^a déterminé par RMN ¹H, ^b déterminé par HPLC/SFC.

3. Détermination de la stéréosélectivité

De façon différente de la stratégie précédente, nous avons envisagé d'introduire directement un centre chiral sur l'ényne **198**. Puis en condition racémique, cet ényne serait transformé en l'énantiomère possédant le même stéréocentre du produit de départ et les autres centres stéréogènes seraient ensuite déduits grâce à la diastéréosélectivité de ce processus. L'analyse en HPLC/SFC nous permettrait d'identifier chaque isomère avec leurs configurations absolues. En comparant avec le spectre HPLC obtenu dans les conditions asymétriques, la stéréoinduction serait donc déterminée.

L'ényne **198** chiral a donc été préparé à partir du dérivé **194** du (*R*)-cyclohex-2-en-1-ol cmmercial (**272**) par une réaction de Mitsunobu. Une inversion de Walden (S_N2) conduit à l'ényne possédant un centre *S* (*S*/*R* = 88/12). (**Schéma 106**)

En présence du complexe IPrAuNTf₂ et le diphénylsulfoxyde, l'aldéhyde **271** a été obtenu avec 70% de rendement en gardant ce ratio de 88/12. Nous pouvons ainsi déduire que le pic avec le temps de rétention à 13.2 min dans les conditions HPLC

optimisées (Chiralcel AD, *n*-hexane / *i*-PrOH = 70 :30, débit : 0.7 mL / min) est l'énantiomère (R, R, S, R) et l'autre à 15.7 min est (S, S, R, S). Comparé avec le résultat de l'**entrée 2** (**Tableau 24**), l'énantiomère préférentiel est donc le dérivé de configuration (R, R, S, R) en présence du complexe **183** (Schéma 107). Ce résultat pourrait être généralisé sur ce type de processus en considérant que le groupement cyclohexène aurait un effet stérique sur l'approche asymétrique au vu du squelette contraint de la molécule.

Schéma 107

Nous avons donc démontré que la réaction de cyclisation oxydative des énynes conduisait à de très bons résultats en présence d'un groupement cinnamyle sur la chaîne latérale lorsque les autres fonctionnalisations en alcène ou alcyne fournissent les produits cycloisomérisés. Cette transformation très dépendante des substrats, s'est également avérée sensible à la température. Les études préliminaires montrent que les complexes NHC sont plus actifs que les complexes phosphines en termes de réactivité et de chimiosélectivité. En présence du complexe **179**, l'aldéhyde **90** a été isolé avec 72% de rendement. En version asymétrique, un ee de 45% a été observé en présence du complexe **183**. Comparé avec les résultats décrits dans la littérature, même si l'enantiosélectivité n'excède pas celle avec le ligand NHC atropoisomérique, elle pourrait être améliorable en modifiant le squelette du complexe. Particulièrement, les ee de 46%(-) et 53%(+) ont été observés respectivement dans le DCE et le PhCl en présence du complexe (*R*)-DTBM-MeOBIPHEP-(AuCl)₂. L'énantiodivergence observée impliquerait deux intermédiaires différents en fonction du solvant, ce qui a

rarement été observé et devra être approfondie. La détermination du sens de l'énantiosélectivité à travers la détermination de la configuration absolue a aussi été réalisée grâce à ce processus diastéréosélectif contrôlant quatre stéréocentres à partir d'un ényne chiral.

Nous avons donc étudié et développé différents systèmes catalytiques pour les réactions concernant les énynes-1,6 en présence de nucléophiles oxygénés, carbonés et d'un oxydant. Un ényne peut aussi réagir selon un processus de type Prins en présence d'un aldéhyde. Malgré plusieurs exemples décrits dans littérature, aucune transformation asymétrique n'a été décrite à notre connaissance. Nous allons donc présenter dans le paragraphe suivant l'état de l'art de ce type de transformation puis nos résultats en version racémique et asymétrique.

VIII. Les réactions de Prins

1. Etat de l'art

Le groupe de Helmchen a décrit pour la première fois, l'addition intermoléculaire de composés carbonylés sur des énynes possédant un alcène monosubstitué, réaction correspondant à une réaction de Prins catalysée par un complexe d'or.¹¹⁰ En présence du système catalytique Ph₃PAuCl/AgSbF₆ et de l'*o*-nitrobenzaldéhyde, la cyclisation de l'ényne disulfoné **273** conduit à l'obtention du composé tricyclique **274** avec un rendement de 66%. Le mécanisme proposé ferait intervenir une première étape de formation puis d'isomérisation du carbène **273a** en intermédiaire **273b**. L'addition du dérivé carbonylé sur le carbone lié au complexe métallique conduirait au cyclopentène **273c**. Puis une addition de l'alcène sur l'aldéhyde (ou la cétone) résulterait en la formation du bicycle **273d**, lequel conduirait de manière totalement diastéréosélective au tricycle **274**. (**Schéma 108**)

Schéma 108

La substitution de la double liaison carbone-carbone de l'ényne joue également un rôle important, puisque l'addition intermoléculaire de composés carbonylés sur des énynes-1,6 carbonés possédant un alcène trisubstitué conduit à des bicycles pyraniques insaturés.¹¹¹ En présence de 2 mol% du complexe [IPrAu(PhCN)]SbF₆ et à basse température, l'addition d'un aldéhyde aromatique 3,4-diméthoxylé sur l'ényne **167**

¹¹⁰ M. Schelwies, A. L. Dempwolff, F. Rominger, G. Helmchen, *Angew. Chem. Int. Ed.* **2007**, *46*, 5598. Revue de la réaction de Prins, voir : I. M. Pastor, M. Yus, *Curr. Org. Chem.* **2007**, *10*, 925

¹¹¹ A. Escribano-Cuesta, V. López-Carrillo, D. Janssen, A. M. Echavarren, Chem. Eur. J. 2009, 15, 5646.

conduit à la formation du composé **275** avec un très bon rendement de 85% (**Schéma 109**). Le mécanisme postulé proposerait l'addition directe de l'aldéhyde sur le cyclopropane du carbène **167a**. La cyclisation de Prins qui s'effectue sur l'oxonium **167b** conduirait au cation tétrahydropyranyle **167c**. L'élimination du complexe métallique permettrait de former le bicycle insaturé **275**. La substitution de la fonction alcène modifierait ainsi la réactivité de l'ényne puisque l'étape d'isomérisation du carbène **273a** (**Schéma 108**) n'aurait pas lieu. En revanche, l'intermédiaire **167c** serait à même de libérer une molécule d'acétone par l'ouverture du cycle à six et formation du composé de type métathèse **276**. (**Schéma 109**)

Une cyclisation de Prins d'ényne-1,6 277 intégrée dans un squelette indolique a été

également décrite.¹¹² De la même manière, la réaction conduit à la formation des dérivés indoliques tétracycliques **278** avec des rendements de 20-70% en présence du complexe d'or **279** (Schéma 110).

¹¹² P. Pérez-Galán, H. Waldmann, K. Kumar, *Tetrahedron* 2016, 72, 3647.

La cyclisation de Prins a également pu être réalisée en version intramoléculaire puisque la cyclisation de l'ényne-1,6 **280**, portant sur l'alcène un substituant carbonylé, a conduit au dérivé tricyclique insaturé **281** avec 79% de rendement en présence de 3 mol% de chlorure d'or (I) à température ambiante (**Schéma 111**).¹¹³

Schéma 111

Les résultats obtenus précédemment ont pu être transposés à l'addition de dérivés carbonés sur des énynes-1,5 trisubstitués. Le composé sulfoné **282** est cyclisé, en présence de deux équivalents d'aldéhyde et 5 mol% du complexe [IPrAu(PhCN)]SbF₆, en un mélange 1/1 des épimères bicycliques insaturés **283-1** et **283-2** avec un rendement global de 78% (**Schéma 112**).¹¹¹

En 2010, les équipes de Ma et Echavarren ont réussi à synthétiser la (-)-englérine A indépendamment en employant la réaction de Prins catalysée par l'or. ¹¹⁴ La (-)-englérine A, extraite de l'écorce de *Phyllanthus engleri*, est décrit comme un agoniste puissant et sélectif des canaux calciques avec une activité cytotoxique sélective pour

¹¹³ E. Jiménez-Núñez, C. K. Claverie, C. Nieto-Oberhuber, A. M. Echavarren, *Angew. Chem. Int. Ed.* **2006**, *45*, 5452.

¹¹⁴ a) Q. Zhou, X. Chen, D. Ma, *Angew. Chem. Int. Ed.* 2010, *49*, 3513. b) K. Molawi, N. Delpont, A. M. Echavarren, *Angew. Chem. Int. Ed.* 2010, *49*, 3517. Autre exemple: K. C. Nicolaou, Q. Kang, S. Y. Ng, D. Y.-K. Chen, *J. Am. Chem. Soc.* 2010, *132*, 8219.

les cellules cancéreuses rénales et plusieurs autres cellules cancéreuses.¹¹⁵ Dans l'article de Ma, les substrats utilisés **284** possèdent deux centres stéréogènes qui contrôlent la formation de trois nouveaux centres chiraux (**284a**). L'attaque du vinyle d'or sur l'oxonium **284b** conduit à la formation de **285** qui possède le squelette de l'englérine A avec 48% du rendement. Cette synthèse totale de la (-)-englérine A a été réalisée en 15 étapes avec 8.1% de rendement global (**Schéma 113**).

D'après ces exemples, la réaction de Prins des énynes catalysée par des complexes d'or a montré une grande diversité et les applications potentielles d'accès aux composés naturels ou pharmaceutiques en constituant des squelettes poly-hétérocycliques en une seule étape. Néanmoins, les transformations asymétriques restent inexploitées. Ayant synthétisé de nombreux ényne-1,6 azotés et carbonés, nous avons étudié leur réactivité et la généralité de ce type de transformation, les résultats sont présentés dans la section suivante.

2. Résultats en version racémique

Nous avons dans un premier temps employé les énynes avec un lien azoté dans les conditions décrites par l'équipe d'Echavarren en présence du complexe d'or cationique [IPrAu(MeCN)]BF₄.¹¹¹ Le composé de type métathèse **286** a été obtenu avec 70% de rendement à partir de l'ényne **197** et le *p*-anisaldéhyde en présence du complexe

¹¹⁵ a) R. Ratnayake, D. Covell, T. T. Ransom, K. R. Gustafson, J. A. Beutler, *Org. Lett.* 2009, *11*, 57. b)
Y. Akbulut, H. J. Gaunt, K. Muraki, M. J. Ludlow, M. S. Amer, A. Bruns, N. S. Vasudev, L. Radtke, M. Willot, S. Hahn, et al., *Angew. Chem. Int. Ed.* 2015, *54*, 3787.

[IPrAu(MeCN)]BF₄ (Entrée 1). Cela suggère que l'intermédiaire 197a a été formé mais qu'il est instable et donc une molécule d'acétone a été éliminée facilement. Des mélanges complexes ont été observés dans le cas des énynes 196 et 195, ce qui impliquerait que les substitutions *gem* des alcènes sont essentielles pour stabiliser l'intermédiaire 197a (Entrées 2,3). La substitution de l'alcyne par un groupement phényle a conduit au dérivé bicyclo[4.1.0]heptène 17, alors que l'ényne 10 a fourni le diène-1,3 de type métathèse avec 27% de rendement (Entrées 4, 5). Cette transformation pourrait potentiellement constituer une alternative pour la synthèse de diènes-1,3 poly-fonctionnalisés. Néanmoins, les produits de Prins n'ayant pas été observé dans le cas d'ényne azoté, nous nous sommes donc tournés vers la réactivité des énynes-1,6 carbonés. (Tableau 25)

^a rendement isolé, ^b à t.a., n.i. : non isolé.

Tableau 25

La réproductibilité de la réaction de l'ényne 167 a conduit aux résultats décrits,¹¹¹ à savoir à la formation du produit 288 de type Prins accompagné du diène 289 de type métathèse avec un ratio de 69/31 (Entrée 1). La variation du substituant de l'alcyne par un phényle (121) n'a donné que le composé 122 de type Friedel-Crafts avec 83% de rendement (Entrée 2). Lorsque cette position est substituée par un méthyle, un mélange complexe a été observé (Entrée 3). (Tableau 26)

^a rendement isolé, ^b déterminé par RMN ¹H.

Tableau 26

Lorsque cette réaction a été réalisée à température ambiante, le diène-1,3 **290** issu du processus de cycloisomérisation a aussi été observé avec un pourcentage de 42% par rapport aux produits d'addition de l'aldéhyde (**Entrée 2**). L'utilisation des autres complexes tel que [XPhosAu(MeCN)]SbF₆ et Ph₃PAuNTf₂ a conduit à une sélectivité envers le produit **289** de type métathèse (**Entrées 3, 4**). Divers aldéhydes ont été ensuite testés en présence du complexe [IPrAu(MeCN)]BF₄. Le pipéronal et le *p*-tolualdéhyde ont conduit à une sélectivité similaire avec le *p*-anisaldéhyde (**Entrées 5, 6** vs. **1**). Le 2,4,6-Me₃C₆H₂CHO a conduit au produit de Prins **295** et son dérivé diène-1,3 **296** avec un ratio de 88/12 (**Entrée 7**). Puis le 1-méthylindole-3- carboxaldéhyde a conduit au composé **297** avec quelques traces du diène-1,3 (**Entrée 8**). Lorsque l'aldéhyde porte le groupement électroattracteur, seul le diène **290** a été observé, ce qui peut être

expliqué par une faible nucléophilie de l'aldéhyde conduisant à une attaque défavorable sur l'intermédiaire carbénique (Entrée 9). La tentative de réaliser une réaction d'aza-Prins en présence d'une aldimine n'a conduit qu'au diène 290 (Entrée 10). (Tableau 27)

MeO ₂ C MeO ₂ C		$\label{eq:rho} $$ {\rm rAu(MeCN)]BF_4$} $$ 2 \mbox{ mol}\% $$ {\rm MeO_2C}$ $$ 2 \mbox{ eq.} {\rm ArCHO}$$ {\rm MeO_2C}$ $$ {\rm DCM, -40^{\circ}C}$ $$ {\rm MeO_2C}$ $$ {\rm DCM, -40^{\circ}C}$ $$ {\rm Ar}$ = 4-MeOC_6H_4$ $$ $$ 3,4-OCH_2OC_6H_3$ $$ $$ 4-MeC_6H_4$ $$ $$ $$ $$ 2,4,6-Me_3C_6H_2$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	a 288 291 293 295 297	Ar + MeO ₂ C b 289 292 294 296 298	Ar MeO ₂ C + MeO ₂ C c 290
	Entrée	Ar	t (h)	a/b/c ^a	Rdt (%) ^b
	1		10 min	69/31, trace c	70
	2°	4 MaOC H	15 min	39/19/42	n.i.
	3 ^d	4-1/10006114	0.5	41/59, trace c	n.i.
	4 ^e		2	49/51, trace c	(86) ^f
	5	3,4-OCH ₂ OC ₆ H ₃	2.3	63/27/6	91
	6	4-MeC ₆ H ₄	3.3	60/31/9	71
	7	2,4,6-Me ₃ C ₆ H ₂	3.5	88/12, trace c	83
	8	N Me	3.5	a, trace b et c	64(71) ^f
	9	$4-NO_2C_6H_4$	23	0/0/100	n.i.
	10	NTs	4	0/0/100	n.i.

^a déterminé par RMN ¹H, ^b rendement isolé global (**a+b+c**), ^c à t.a., ^d en présence de [XPhosAu(MeCN)]SbF₆, ^e en présence de PPh₃AuNTf₂, ()^f conversion, n.i. : non isolé

Tableau 27

Parallèlement, les complexes IPy ont été testés dans ce type de transformation. Le complexe **179**, qui présente une excellente réactivité dans les cas précédents, n'a conduit qu'à une conversion de 52% après 5 h et une proportion de 23/77 pour le produit **288** et le diène de type métathèse **289** (**Entrée 1**). Le complexe ionique **186** a permis d'obtenir les produits avec une proportion similaire à celle observée en présence de [IPrAu(MeCN)]BF₄, mais avec seulement 44% de conversion (**Entrée 2**). Une réactivité faible a été observée en présence du complexe **178** (**Entrée 3**). Le complexe **181** d'or (III) a fourni une proportion de 51/20/29 (**288/289/290**) (**Entrée 4**). (**Tableau 28**)

MeO ₂ C	E [Au] 2 AgNTf ₂ 2 éq. 4-Me0 — DCM,	mol% 2 mol% DC_6H_4CHO -40°C	NeO ₂ C	Ar MeO ₂ C	Ar MeO ₂ 0	
167			288 Ar = 4-Me	28 28 OC ₆ H ₄	9	290
	Entrée	[Au]	t (h)	288/289/290 ª	Conv. (%) ^a	
	1	179	5	23/77, trace c	52	
	2 ^b	186	24	69/31, trace c	44	
	3 ^b	178	19	-	<5	
	4	181	23	51/20/29	100	

^a déterminé par RMN ¹H.

Tableau 28

En général, les complexes IPy sont beaucoup moins efficaces que le catalyseur $[IPrAu(MeCN)]BF_4$ en terme de temps de réaction et de conversion. Au vu de ces résultats modestes, nous n'avons donc pas poursuivi l'étude de la réaction de Prins avec les complexes IPy et nous nous sommes tournés vers la catalyse énantiosélective.

3. La réaction Prins en version asymétrique

Nous avons réalisé quelques essais en présence du complexe **18** (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ et un complexe atropoisomère bimétallique de type carbène, ce dernier ayant été généreusement donné par le groupe de Toste. Ce type de complexe a été employé dans les réactions énantiosélectives d'hydroazidation et d'hydroamination des allènes.¹¹⁶ Les composés de Prins ont été isolés avec 27-39% de rendements. Les excès énantiomériques de 48% et 53% ont été observés respectivement lorsque le *p*anisaldéhyde a été employé (**Entrées 1, 3**). Puis le 1-méthylindole-3- carboxaldéhyde a conduit au composé de Prins **297** avec 69% d'*ee* en présence du catalyseur (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (**Entrée 2**). (**Tableau 29**)

¹¹⁶ D. A. Khrakovsky, C. Tao, M. W. Johnson, R. T. Thornbury, S. L. Shevick, F. D. Toste, *Angew. Chem. Inter. Ed.* **2016**, *55*, 6079.

MeO ₂ C MeO ₂ C	$= \begin{bmatrix} [Au] 1 \mod \% \\ AgNTf_2 2 \mod \% \end{bmatrix} MeO_2$	C A	r + MeC MeO	0 ₂ C	Ar + MeO ₂ C MeO ₂ C	
167	DCM, -40°C Ar = 4-MeOC ₆ H ₄ <i>N</i> -méthylindol	a 288 le 297		b 289 298		с 290
Entrée	[Au]	Ar	t (h)	a/b/c ^a	Rdt (%) ^b	<i>ee</i> (%) ^c
1	Meo PAr ₂ AuCl	4- MeOC ₆ H ₄	2	72/19/9	27	48
2 ^d	MeO PAr ₂ AuCl 18 Ar = 3,5- <i>t</i> Bu-4-MeOC ₆ H ₂	N Me	20	60/22/18	35	69
3	N HN AuCl Ph 299	4- MeOC ₆ H ₄	16	49/20/31	39(89) ^e	53

^a déterminé par RMN ¹H. ^b rendement isolé du composé **a**, ^c déterminé par HPLC, ^d à t.a. ()^e converison totale.

Tableau 29

Etant les premiers exemples de la catalyse asymétrique pour les réactions Prins de l'ényne, ces résultats préliminaires avec 48-69% d'*ee* nous encourage à poursuivre sur cette voix, pour améliorer la chimiosélectivé et l'énantiosélectivité. Néanmoins, concernant les complexes IPy, la réaction de Prins ne semble pas être une réaction adoptée en terme de réactivité. Nous n'avons donc pas poursuivi ce travail au cours de cette thèse car nous nous sommes également intéressés à la réactivité des systèmes carbonyl-ynes. Nous allons donc présenter dans le chapitre suivant les réactions d'hydroarylation/cyclisation des *ortho*-alcynyl arylaldéhydes catalysées par divers complexes d'or et leur version asymétrique.

Chapitre III :

Synthèse et réactivité des carbonyl-ynes

Dans le cadre de l'étude des *ortho*-alkynyl arylaldéhydes, il n'existe que deux exemples énantiosélectifs catalysés par l'or (I) et l'or (III) en présence des nucléophiles oxygénés.^{38,74} Les nucléophiles tels que les alcynes terminaux,¹¹⁷ les phosphites,¹¹⁸ les dérivés azotés,¹¹⁹ les méthylènes activés¹²⁰ et les allyl silanes,¹²¹ ont également été développés en présence de divers métaux de transition (Au, Ag, Pd, Cu...). En 2014, notre équipe en collaboration avec celle du Pr. Belmont, a rapporté que l'utilisation de AgOTf permettait un procédé domino d'hydroarylation/cyclisation¹²² en additionnant divers nucléophiles aromatiques (**Schéma 114**). Ces résultats nous ont incités à étudier cette transformation en présence des complexes d'or, dans la mesure où ces deux métaux viennent du même groupe (IB) et parfois présentent une réactivité similaire. En outre, aucune transformation énantiosélective de ce processus domino d'hydroarylation /cyclisation in'avait été décrite à notre connaissance, nous nous sommes donc intéressés également à la version asymétrique, nos résultats seront présentés dans le paragraphe suivant.

I. Synthèse des ortho-alkynyl arylaldéhydes

La synthèse des *ortho*-alkynyl arylaldéhydes **302-309** a été réalisée par un couplage de Sonogashira (**Voie A**, **Schéma 115**). Le 2-bromobenzaldéhyde a été mis à réagir avec

¹¹⁷ X. Yao, C. J. Li, Org. Lett. 2006, 8, 1953.

¹¹⁸ X. Yu, Q. Ding, W. Wang, J. Wu, Tetrahedron Lett. 2008, 49, 4390.

¹¹⁹ a) G. Dyker, D. Hildebrandt, J. Liu, K. Merz, *Angew. Chem. Int. Ed.* **2003**, *42*, 4399. b) M. E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang, Y. Chen, *J. Org. Chem.* **2015**, *80*, 11360.

¹²⁰ A. B. Beeler, S. Su, C. A. Singleton, Jr. J. A. Porco, J. Am. Chem. Soc. 2007, 129, 1413.

¹²¹ a) N. Asao, C. S. Chan, K. Takahashi, Y. Yamamoto, *Tetrahedron*, 2005, 61, 11322. b) S. Bhunia,

K.-C. Wang, R.-S. Liu, Angew. Chem., Int. Ed. 2008, 47, 5063.

¹²² a) G. Mariaule, G. Newsome, P. Y. Toullec, P. Belmont, V. Michelet, Org. Lett. 2014, 16, 4570. b)

Pour une application aux 2-alkynylquinoline-3-carbaldéhydes, voir : A. Bontemps, G. Mariaule, S. Desbène-Finck, P. Helissey, S. Giorgi-Renault, V. Michelet, P. Belmont, *Synthesis* **2016**, *48*, 2178.

différents alcynes terminaux commerciaux pour conduire à divers aldéhydes **302-309** avec de bons rendements (66-97%). Pour les dérivés acétyléniques fonctionnalisés par des groupements aromatiques autres qu'un phényle, un second couplage de Sonogashira du 2-éthynylbenzaldéhyde **310**, qui a été obtenu par déprotection du 2-((triméthylsilyl)éthynyl)benzaldéhyde **309**, a été réalisé en présence de divers iodoaryles portant des groupements trifluorométhyle, méthoxy, bromure et méthyle. Les *ortho*-alcynyl benzaldéhydes ont été obtenus avec 52-70% de rendement (**Voie B**, **Schéma 115**).

Ayant préparé les *ortho*-alcynyl benzaldéhydes **302-314**, nous nous sommes alors intéressés à leur réactivité en présence de complexes d'or.

II. Hydroarylation/cyclisation des o-alcynylbenzaldéhydes

1. Catalyse en version racémique

Les nucléophiles aromatiques que nous avons sélectionnés sont le *N*-méthylindole (N1), le triméthoxybenzène (N2), la *N*,*N*-diméthylaniline (N3) et le *N*-méthylpyrrole (N4). Les réactions d'hydroarylation/cyclisation ont été réalisées en présence du complexe Ph₃PAuNTf₂ (1 mol%) dans le DCE à 50°C. Les substrats **302-305**, **307**, **311-313** ont réagi avec le *N*-méthylindole (N1), l'addition se faisant en position 3 de l'indole. Les dérivés fonctionnalisés **315-322** ont été isolés avec des rendements allant de 8% à 56% (**Entrées 1-8**). En présence du triméthoxybenzène, aucun produit désiré n'a été détecté, et dans la plupart des cas, une dégradation importante des aldéhydes de départ a été observée (**Entrées 9-12**). La réactivité du nucléophile N3, qui avait été peu étudiée précédemment, ¹²² s'est avérée faible par rapport à N1 et a conduit aux dérivés **323-326** avec des rendements isolés de 13-50% (**Entrées 13-16**). En présence du *N*méthylpyrrole N4, la fonctionnalisation s'est fait exclusivement en position α du pyrrole. Les hétérocycles **327-333** ont été obtenus avec des rendements faibles à modestes (5% - 40%) (**Entrées 17-23**). (**Tableau 30**)

Ar

		O + ArH	$\frac{Ph_{3}PAuNTf_{2} 1 mol\%}{DCE, 50^{\circ}C}$		C R	
Entrée	aldéhydes	R	Ar	t (h)	Rdt (%) ^a	produits
1	302	Ph		5	40(72) ^b	315
2	303	CH ₂ OH		5	18	316
3	304	C(CH ₃) ₂ OH		1	56	317
4	305	CH ₂ OCH ₃		5	26	318
5	311	$4-CF_3C_6H_4$	nfr	5	37	319
6	312	4-MeOC ₆ H ₄	N1	5	8	320
7	313	$3-BrC_6H_4$		5	36(82) ^b	321
8	307	CH ₂ OBn		1.5	35(84) ^b	322
9	302	Ph	QMe	7	n.d.	-
10	304	C(CH ₃) ₂ OH		5	n.d.	-
11	305	CH ₂ OCH ₃	MeO	6	n.d.	-
12	311	4-CF ₃ C ₆ H ₄	N2	5	n.d.	-

13	302	Ph	l	5	33(68) ^b	323
14	304	C(CH ₃) ₂ OH	N N	24	13(64) ^b	324
15	311	4-CF ₃ C ₆ H ₄	2	6	50	325
16	313	3-BrC ₆ H ₄	N3	24	32(91) ^b	326
17	302	Ph		5	17(51) ^b	327
18	303	CH ₂ OH		4	5(20) ^b	328
19	304	C(CH ₃) ₂ OH	N_	48	17(41) ^b	329
20	311	$4-CF_3C_6H_4$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	40	330
21	312	4-MeOC ₆ H ₄	N4	4.5	10(57) ^b	331
22	313	$3-BrC_6H_4$		4	17(46) ^b	332
23	307	CH ₂ OBn		0.7	17(100) ^b	333

^a rendement isolé, ()^b converison, n.d. : non détecté.

Tableau 30

La comparaison des résultats obtenus par les substrats 302, 311, 312 portant un aryle groupement montre le électroattracteur favorise la réaction que d'hydroarylation/cyclisation et conduit aux meilleurs résultats (Entrées 1, 4, 5; 13, 15; 17, 20, 21, Tableau 30). Dans le cas des substrats portant les groupements aliphatiques, les meilleurs résultats ont été obtenus avec le substrat 304 substitué par des gem méthyles, ce qui peut être rationnalisé par une plus grande stabilité observée expérimentalement de cet aldéhyde (Entrées 3, 14, 19, Tableau 30). La réactivité des nucléophiles aromatiques N1-N4 peut être corrélée avec une échelle de nucléophilie- π dans le cadre des réactions de type Friedel-Crafts. Les arènes présentent une large gamme de nucléophilie- π telle qu'elle est caractérisée par les valeurs N décrites par Mayr (Schéma 116).¹²³ Le *N*-méthylindole a conduit à une meilleure réactivité dans notre cas, ce qui est en accord avec sa nucléophilie la plus élevée.

Schéma 116

¹²³ M. F. Gotta, H. Mayr, J. Org. Chem. 1998, 63, 9769.

Cependant, la chimiosélectivité a pu être modifiée selon les conditions employées. Sachant que l'argent peut catalyser cette réaction,¹²² dans le contexte de sélectionner un autre co-catalyseur pour éviter l'induction du sel d'agent, nous avons observé qu'en présence du NaBARF et Ph₃PAuCl à 50°C, les produits d'addition de deux noyaux indoliques **334** et **335** ont été observés (**Entrées 1, 2**). La diminution de la température à t.a. a conduit à l'héterocycle **317** avec 58% de rendement (**Entrée 3**). (**Tableau 31**)

^a déterminé par ¹H RMN, ^b rendement isolé, ^c rendement et conversion par rapport au nucléophile (en défaut).

Tableau 31

Nous avons ensuite réalisé un test en mélangeant l'hétérocycle **317** et un équivalent de *N*-méthylindole dans les conditions de l'**entrée 2** (Ph₃PAuCl, NaBARF, DCE, 50°C, **Tableau 31**) pour vérifier si les composés **334** et **335** sont issus d'une addition nucléophile supplémentaire sur le composé **317**. En fait, aucune transformation n'a été observée, ce qui implique que les composés **334** et **335** sont probablement formés directement à partir de l'aldéhyde initial **304**. (Schéma 117)

Schéma 117

Du point de vue du mécanisme, les produits **334** et **335** peuvent être obtenus selon deux voies différentes. Les nucléophiles sont additionnés successivement sur l'aldéhyde par conduire au composé C avec la fonction alcyne intouchée (Voie 1, Schéma 118). La cétone est supposée être formé via l'intermédiaire 6-*endo*, l'attaque d'un second

nucléophile favoriserait l'ouverture du cycle et conduirait à la formation d'un énol F, après tautomérisation et protodémétallation, la molécule G serait formée. (Voie 2, Schéma 118). Ces deux composés impliquent que les deux modes d'activation sur le carbonyle et sur l'alcyne seraient possibles en employant les complexes d'or(I) (Schéma 52). Néanmoins, la proportion entre 334 et 335 (18/82) suggérerait d'une façon attendue, que l'activation sur l'alcyne est prédominante en présence du Ph₃PAu⁺ (Entrée 2, Tableau 31).

Schéma 118

Ayant obtenu ces dérivés 1*H*-isochromènes et leurs conditions de séparation optimisées en HPLC/SFC, nous nous sommes donc tournés vers la version asymétrique en présence de divers complexes d'or chiraux.

2. Catalyse en version asymétrique

La combinaison de l'aldéhyde **304** et le *N*-méthylindole a été choisie comme le modèle en raison d'une réactivité excellente et moins de dégradation par rapport aux autres résultats obtenus dans la partie précédente. Dans le cadre d'une collaboration avec le groupe du Pr. L. Slaughter, nous avons testé dans un premier temps leurs catalyseurs d'or **234**, **350**, **336-340** dans les conditions décrites pour la réaction énantiosélective d'acétalisation/cyclisation en présence du LiNTf₂ comme co-catalyseur.⁷⁴ Les conversions varient de 30% à 40% après 7 heures en faveur du produit désiré **317**. Néanmoins, quel que soit le catalyseur, l'excès énantiomérique maximal n'est que de 8% (**Schéma 119**).

Schéma 119

Nous avons ensuite tenté d'augmenter l'énantiosélectivité de cette réaction en utilisant le complexe **18** (*R*)-DTBM-MeOBIPHEP-(AuCl)₂. En présence du LiNTf₂ comme cocatalyseur, une faible conversion a été observée (**Entrée 1**). L'utilisation du NaBARF a permis d'activer le catalyseur. Les excès énantiomérique de 37-46% ont été observés dans le DCE, le DCM et le toluène (**Entrées 2-4**). Puis dans le chloroforme, le produit a été isolé avec 61% de rendement et un meilleur *ee* de 51% (**Entrée 5**). L'emploi du tétrachlorométhane a conduit à un excès de 14% et un rendement de 80% (**Entrée 6**). Aucune transformation n'a été observée dans l'acétonitrile, le dioxane et le diméthylformamide (**Entrées 7-9**). (**Tableau 32**)

4	Tol	2	56	41
5	CHCl ₃	1.6	61	51
6	CCl ₄	4.5	80	14
7	MeCN	28	n.d.	/
8	Dioxane	28	n.d.	/
9	DMF	28	n.d.	/

_

^a rendement isolé, ^b déterminé par HPLC/SFC, ^c en présence 2 mol% LiNTf₂, ()^d, conversion, n.d. : non détecté.

Tableau 32

Les variations des substrats et nucléophiles ont été ensuite testés dans le chloroforme. En présence du *N*-méthylindole, un excès de 50% a été observé pour le dérivé **319**. Les aldéhydes portant le phényle et le 3-MeC₆H₄ ont conduit aux dérivés **302** et **341** avec des *ee* de 17% et 36% respectivement. Les aldéhydes portant une chaîne aliphatique ont conduit aux dérivés **322**, **342** et **343** avec des excès de 4% à 15%. Nous avons également fait varier les nucléophiles pour les substrats **304**, **311** portant les *gem*-diméthyles et 4-CF₃C₆H₄, les dérivés isochromènes **324**, **325** racémiques ont été obtenus en présence de *N*,*N*-diméthylaniline. Le *N*-méthylpyrrole n'a conduit qu'à *ee* faible de 5% pour le composé **330**. (**Schéma 120**)

Nous avons observé que l'énantiosélectivité a une forte dépendance vis-à-vis de l'aldéhyde et des nucléophiles. Le *N*-méthylindole a permis d'induire une énantiosélectivité modeste, nous avons donc ensuite tester les dérivés du *N*-méthylindole **344**, possédant un substituant méthyle, phényle, brome ou nitrile. Néanmoins, de façon très surprenante, les hétérocycles **345-350** ont été obtenus avec 45-73% de rendement et des excès énantiomériques très faibles (*ee* : 0 - 5%) (**Schéma 121**).

Pour les deux combinaisons ayant conduit à des *ee* proches de 50% (**317**, **319**), nous avons également tester nos complexes IPy chiraux. Le complexe ionique **187** a conduit aux *ee* de 4% et 11% respectivement (**Entrées 1, 2**). Dans le cas de l'aldéhyde portant le groupement 4-CF₃C₆H₄, le produit **351** substitué par deux noyaux indoliques a été formé de manière exclusive en présence du complexe **183** (**Entrée 3**). (**Tableau 33**)

СНС	+	[A NaB C	u] x mol% ARF y mol% DCl ₃ , t.a.				
304, 311			R = 0	(CH2)-OH ·	a 317		b 334
			R = 4	-CF ₃ C ₆ H ₄ :	319		351
Entrée	R	[Au]	x/y	t (h)	a/b ^a	Rdt (%) ^b	ee (%) ^c
1	C(CH ₃) ₂ OH	187	3/6	22	100/0	(76) ^d	4
2 ^e	$4-CF_3C_6H_4$	187	3/6	16	38/62	53	11
3	$4-CF_3C_6H_4$	183	2/2	2	0/100	n.i.	/

^a déterminé par ¹H RMN ^b rendement isolé, ^c déterminé par HPLC/SFC, ()^d conversion, ^e à 0°C, n.i. : non isolé.

Tableau 33

Les complexes du groupe de F. D. Toste ont été également testés dans ces deux cas. Le complexe **299** portant les phényles a conduit à l'hétérocycle **317** racémique avec 62% de rendement (**Entrée 1**). Le complexe **352** portant deux groupements de 3,5-(CF₃)₂C₆H₃ a fourni le composé **319** avec 45% de rendement et 26% d'*ee* lorsque seulement 5% d'*ee* ont été observés en utilisant le complexe **353** portant deux groupements de 3,5-(*t*Bu)₂C₆H₃ (**Entrées 2, 3**). (**Tableau 34**)

^a rendement isolé, ^b déterminé par HPLC.

Tableau 34

Bien que les rendements faibles à modestes ont été obtenus pour les dérivés 1Hisochromènes, nous avons démontré que les réactions d'hydroarylation / cyclisation des *o*-alcynyl arylaldéhydes pouvaient également être catalysées par les complexes d'or(I) en présence des nucléophiles aromatiques riches en électrons. Une vingtaine de nouveaux composés 1*H*-isochromènes, y compris ceux en version asymétrique, ont été synthétisés et caractérisés. La réactivité est corrélée avec la nucléophilie- π des aromatiques et les dérivés du *N*-méthylindole ont conduit aux meilleurs résultats. L'étude des sous-produits indique que l'or présente une propriété carbophile (π -acide de Lewis) et oxophile dans ce type de processus. En version asymétrique, un excès maximal de 51% a été observé en présence du catalyseur (*R*)-DTBM-MeOBIPHEP-(AuCl)₂. Cependant, l'énantiosélectivité a une forte dépendance aux substrats et aux nucléophiles. En vue de cette difficulté rencontrée, nous avons orienté nos recherches vers une autre série de carbonyle-ynes qui sont intégré dans un squelette de type indole.
III. Réactivité des 1-(alcynyl-1-yl)-1H-indole-2-carbaldéhydes

Cette partie de notre travail a été réalisée en collaboration avec A. Dupeux (Etudiant de Master, Sorbonne Université, 2018-2019), dans le but de synthétiser des dérivés indoles polycycliques potentiellement bioactifs, ¹²⁴ d'étudier les transformations des carbonyle-ynes via des cyclisations 6-*exo* /7-*endo* et d'enrichir la chimie de l'indole associé à la catalyse à l'or.¹²⁵

Les 1-(alcynyl-1-yl)-*1H*-indole-2-carbaldéhydes **354** que nous avons étudiés et leurs analogues de type pyrroles ont été décrits récemment par le groupe de Kumar pour une réaction domino catalysée par l'argent.¹²⁶ Suite à la formation *in situ* d'une énamine entre l'aldéhyde de départ et l'aniline externe **355**, une autre liaison C–N et une liaison C–O / C–N sont ensuite formées pour constituer deux nouveaux cycles. Les dérivés hétérocycliques **356** ont été obtenus avec des rendements allant de 35% à 82%. D'après les auteurs, ces composés présentent une activité inhibitrice prometteuse contre les cellules de leucémie et de cancer du sein. Nous nous sommes intéressés à la réactivité des dérivés **354** en présence d'or et de nucléophiles oxygénés.

¹²⁴ a) H. Duckert, V. Pries, V. Khedkar, S. Menninger, H. Bruss, A. W. Bird, Z. Maliga, A. Brockmeyer,
P. Janning, A. Hyman, S. Grimme, M. Schurmann, H. Preut, K. Hubel, S. Ziegler, K. Kumar, H.
Waldmann, *Nat. Chem. Biol.* 2012, *8*, 179. b) H. Waldmann, L. Eberhardt, K. Wittstein, K. Kumar, *Chem. Commun.* 2010, 4622. c) I. R. Jr. Correa, A. Noren-Muller, H. D. Ambrosi, S. Jakupovic, K.
Saxena, H. Schwalbe, M. Kaiser, H. Waldmann, *Chem. Asian J.* 2007, *2*, 1109. d) H. Dueckert, V.
Khedkar, H. Waldmann, K. Kumar, *Chem. Eur. J.* 2011, *17*, 5130. e) V. Eschenbrenner-Lux, P. Kuchler,
S. Ziegler, K. Kumar, H. Waldmann, *Angew. Chem., Int. Ed.* 2014, *53*, 2134. f) A. Danda, K. Kumar, H.

¹²⁵ V. Pirovano, Eur. J. Org. Chem. 2018, 1925.

¹²⁶ K. S. Kumar, N. P. Kumar, B. Rajesham, G. Kishan, S. Akula, R. K. Kancha, New J. Chem. 2017, 42, 34.

1. Synthèse des 1-(alcynyl-1-yl)-1*H*-indole-2-carbaldéhydes

La préparation des 1-(alcynyl-1-yl)-*1H*-indole-2-carbaldéhydes se fait en quatre étapes à partir du *1H*-indole-2-carboxylate d'éthyle **357**. L'alkylation de l'ester a été réalisée en milieu basique avec le bromure de propargyle. L'ester obtenu **358** a été ensuite réduit en alcool primaire **359** par LiAlH₄. Le MnO₂ activé a permis d'oxyder l'alcool en l'aldéhyde **360**. Ces trois étapes ont conduit à un rendement global de 79%. Les dérivés carbonyl-ynes **360-363** portant différents groupements aromatiques (Ph, 4-MeOC₆H₄, 4-CF₃C₆H₄) ont été obtenus avec des rendements allant de 31% à 86% par un couplage de Sonogashira à partir de l'aldéhyde **360**. (**Schéma 123**)

Schéma 123

2. Réactions des 1-(alcynyl-1-yl)-1H-indole-2-carbaldéhydes

De manière similaire à ce qui a été développé dans la partie sur les *o*-alcynyl arylaldéhydes, le substrat **361** a été engagé dans la réaction d'acétalisation/cyclisation catalysées en présence du catalyseur [IPrAu(MeCN)]BF₄ et 2 équivalents de méthanol. Deux composés principaux ont été obtenus avec un ratio de 80/20 et des rendements de 39% et 10% respectivement. Des analyses RMN ¹H et ¹³C ont permis d'identifier les structures de ces composés. Le composé **364** est issu de la voie de cyclisation 6-*exo*, alors que le diastéréoisomère unique **365** porte une fonction carbonyle et les groupements méthoxyle et phényle sur deux carbones contigüs dans le cycle à 6 chaînes. En théorie, le *gem* couplage est plus grand dans les cyclohexanones que dans les cyclohexanes, ce qui concorde avec l'effet π -accepteur sur ²J. Les constantes de couplage vicinal en α et β du groupe carbonyle sont influencées par l'effet du carbone sp². En particulier, la constante ³J_{ax-eq} est supérieure (typiquement 4-6 Hz) à la constante

 ${}^{3}J_{eq-eq}$ (typiquement 2-3 Hz).¹²⁷ Dans notre cas, le squelette indolique intègre deux atomes sp² en plus et donc la conformation du cycle à six est moins de type « chaise » que les conformations classiques. Une modélisation basique des configurations avec Chem3D montre que l'angle des protons adjacents (les protons en jaune) est autour de 45° dans le cas du dérivé *cis*, et les angles d'environ 180° ou 70° dans le cas du *trans*. Selon l'équation de Karplus, nous pouvons calculer les constantes de couplage ${}^{3}J$ théoriques pour ce squelette spécifique. Expérimentalement, nous avons observé un couplage *gem* ${}^{2}J$ de 19.0 Hz et un couplage ${}^{3}J$ de 2.8 Hz, cette dernière constante correspondant plutôt à une conformation *trans* en plaçant les groupements phényle et méthoxy en position axiale pour un encombrement stérique minimal. (**Schéma 124**)

Schéma 124

L'étude suivante a montré que le ratio de l'acétal 6-*exo* et la cétone pourrait être influencé par la concentration et la température. L'augmentation de la concentration a favorisé la formation de la cétone **b** (Entrées 1-3). A -20°C, une sélectivité exclusive

¹²⁷ M.F. Grenier-Loustalot, A. Lectard, F. Metras, Org. Magn. Reson., 1977, 10, 92.

vers l'acétal **a** et moins de dégradations ont été observés. Les acétals **364**, **366** et **368** ont été isolés avec des rendements allant de 61% à 96% (Entrées 4-6). Nous avons également réalisé un test pour le substrat **368** à température ambiante avec une concentration de 0.05M, à l'inverse de l'observation faite à l'entrée 1, la cétone **369** a été obtenue avec une conversion totale en 12 h (Entrée 7). (Tableau 35)

	N [IPrAu(MeCN)]BF ₄ 2 mc MeOH 2 éq. , DCE	DI%	OMe -N Ar	+	OMe N Ar
361-363		Ar = Ph 4-Me 4-CF	ОС ₆ Н ₄ ₃ С ₆ Н ₄	a 364 366 368		b 365 367 369
Entrée	Ar	Conc. (M)	t (h)	T (°C)	a/b ^a	Rdt (%) ^b
1	Ph	0.05	2	t.a.	80/20	49°
2	Ph	0.1	2	t.a.	0/100	33
3	Ph	0.2	2	t.a.	0/100	33
4	Ph	0.05	12	-20	100/0	96
5	$4\text{-}CF_3C_6H_4$	0.05	12	-20	100/0	61
6	4-MeOC ₆ H ₄	0.05	12	-20	100/0	73
7	$4-CF_3C_6H_4$	0.05	12	t.a.	0/100	40

^a déterminé par ¹H RMN ^b rendement isolé, ^c rendement total

Tableau 35

Afin d'élucider le mécanisme de la formation de la cétone, nous avons réalisé cette transformation en présence de méthanol deutéré, un mélange des composés **365-1** et **365-2** a été obtenu avec une proportion de 4 :1 (**Schéma 125**). Le produit majoritaire **365-1** impliquerait que la cétone est probablement issue du réarrangement de l'acétal 6-*exo* qui a été deutero-démétallé. Le composé minoritaire **365-2** pourrait provenir d'un transfert-1,4 de deutérium.

Schéma 125

L'acétal **366** a également été engagé seul sans catalyseur et en présence du complexe [IPrAu(MeCN)]BF₄. Aucun réarrangement ne s'est produit sans or et ce n'est qu'en présence du catalyseur que la cétone **367** est observée (**Schéma 126**). Cela pourrait donc confirmer notre hypothèse que la cétone proviendrait de l'acétal et que le réarrangement nécessiterait la présence d'un catalyseur d'or, cela pourrait également expliquer la formation exclusive de la cétone **369** à l'**entrée 7** (**Tableau 35**).

Nous pourrions donc proposer un mécanisme par une voie 6-enolendo-*exo*-trig¹²⁸ pour les cétones. L'activation de l'alcyne par le complexe d'or conduirait, de façon classique, à l'intermédiaire **C**. Une addition de l'alcool sur l'oxonium évoluerait vers l'acétal **E** après protodémétallation. A ce stade, en tant qu'acide de Lewis, l'or pourrait favoriser une ouverture de l'acétal **E** et former un énolate d'or carbocationique (intermédiaire **F**). L'attaque de l'énolate sur le carbocation (6-enolendo-*exo*-trig) conduirait finalement à la cétone **G** après démétallation. La diastéréosélectivité *trans* pourrait être induite à cette dernière étape en plaçant l'or et l'alcoxy en position *anti* pour générer le moins d'encombrement possible. (**Schéma 127**)

¹²⁸ S. J. Meek, F. Pradaux, D. R. Carbery, E. H. Demont, J. P. A. Harrity, J. Org. Chem. 2005, 70, 10046.

Schéma 127

De manière inattendue, nous avons observé une réactivité originale pour construire un squelette de dihydropyrido[1,2-*a*]indolone dans un processus d'acétalisation /cyclisation des 1-(alcynyl-1-yl)-1*H*-indole-2-carbaldéhydes. Les acétals ont été également obtenus via la voie 6-*exo* avec un rendement jusqu'à 96%. L'étude du mécanisme a montré que l'acétal pouvait être précurseur de la cétone via une voie 6-enolendo-*exo*-trig en présence d'acide de Lewis. La formation du carbocation pourrait présager d'une perte de l'énantiosélectivité. Nous n'avons de ce fait et par manque de temps pas été plus loin dans ce projet, le travail étant actuellement poursuivi par A. Dupeux en thèse.

Conclusion générale

Au cours de ce travail, nous nous sommes intéressés au développement des réactions de cycloisomérisation et domino des énynes-1,6 et des carbonyl-ynes en version racémique et énantiosélective, en présence de systèmes catalytiques mettant en jeu des complexes d'or de type phosphine et NHC. Une attention particulière a été menée dans l'utilisation de complexes d'or à base de la plateforme imidazopyridine (IPy).

Nous avons dans un premier temps réalisé la synthèse d'une variété d'énynes-1,6 azotés, oxygénés et carbonés de type ester ou disulfone. Les dérivés diènes-1,4 ont été obtenus avec des rendements allant de 73% à 96% dans la cycloisomérisation 6-endo des énynes-1,6 azotés portant une disubstitution *gem* sur l'alcène. La fonctionnalisation de ces substrats a été également étudiée dans le cadre des réactions d'alcoxycyclisation, réactions domino mettant en jeu la cyclisation 6-endo des énynes et l'addition des alcools. Les éthers ont été isolés avec 63-99% de rendement en présence du complexe [XPhosAu(MeCN)]SbF₆. En version asymétrique, les complexes d'or biphosphines atropoisomériques de type (*R*)-MeOBIPHEP-(AuCl)₂ et de type (*R*,*S*)-BiaxPhos-(AuCl)₂ permettent d'accéder à des excès énantiomériques de 66-94% pour les diènes-1,4 et les éthers. La configuration absolue du centre crée de ces dérivés a ensuite été déterminée comme étant *S* à partir des ligands (*R*)-MeOBIPHEP et (*R*,*S*)-BiaxPhos par une stratégie de génération des diastéréoisomères au cours de la réaction en présence d'un alcool chiral comme nucléophile. (**Schéma 128**)

Schéma 128

Les transformations 5-*exo* des énynes-1,6 portant un groupement cinnamyle ont également été étudiées en présence des nucléophiles carbonés ou oxygénés, et d'un oxydant. L'addition diastéréosélective des nucléophiles/oxydant a permis de préparer

une gamme de carbo- et d'hétérocycles avec de très bons rendements de 71%-99%. Le système catalytique employant les complexes d'or IPy a été évalué par la méthode de Gutmann-Beckett et son efficacité quantifiée avec les TOF et TON. Comparé avec les complexes d'or NHC classiques, les complexes IPy neutres se sont révélés avoir des propriétés électroniques similaires mais une réactivité beaucoup plus efficace que celle du complexe IPrAuCl par exemple. Une version énantiosélective a été étudiée en présence des complexes IPy chiraux. Le système **183**/AgOTf a permis d'induire des énantiosélectivités allant jusqu'à 71% dans la réaction d'hydroarylation/cyclisation et d'alcoxylation/cyclisation. Les configurations absolues ont également été déterminées comme étant (S, S) à l'aide de la stratégie générant des diastéréoisomères. Un modèle d'induction de la chiralité a ainsi été proposé. L'activité du complexe chiral a aussi été étudiée dans la cyclisation oxydative induisant des énantiosélectivités jusqu'à 45%. (**Schéma 129**)

Schéma 129

La réaction de Prins en présence des aldéhydes a également été étudiée pour les énynes-1,6 azotés et carbonés de type esters. Une sélectivité exclusive envers les dérivés diènes-1,3 de type métathèse a été observée pour les énynes azotés. Les aldéhydes riches en électrons se sont révélés compatibles avec les conditions réactionnelles et ont conduit au produit de Prins dans le cas d'un ényne carboné. Une version asymétrique a été mise au point avec le système catalytique (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ /AgNTf₂, et a conduit à des excès énantiomériques jusqu'à 69%. (**Schéma 130**)

Schéma 130

Une seconde partie concernant les substrats carbonyl-ynes a également été abordée dans le cadre de la réaction domino en présence des nucléophiles de type aromatiques ou alcools. Nous avons préparé deux séries de carbonyl-ynes : les *ortho*-alkynyl arylaldéhydes et les 1-(alcynyl-1-yl)-1*H*-indole-2-carbaldéhydes. Le complexe PhP₃AuNTf₂ s'est révélé efficace dans la réaction d'hydroarylation/cyclisation des *o*-alkynyl arylaldéhydes mais avec des rendements faibles à modestes. En version asymétrique, le système (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ /NaBARF s'est avéré compatible avec une gamme de combinaisons des substrats et nucléophiles aromatiques, mais les dérivés 1*H*-isochromènes ont été obtenus avec des excès énantiomériques très variables (0-51%). Une nouvelle réactivité conduisant à des dérivés de type dihydropyrido[1,2-*a*]indolones a été observée dans le cas des 1-(alcynyl-1-yl)-1*H*-indole-2-carbaldéhydes, et un mécanisme de réarrangement via une voie 6-enolendo-*exo*-trig a été proposé. (**Schéma 131**)

Schéma 131

Partie expérimentale (Experimental part)

The International Union of Pure and Applied Chemistry chemical nomenclature (IUPAC) is used for the denomination of the various synthesized compounds.

Purification and analysis methods:

Solvents and starting materials

The reagents are commercially available from Acros, Aldrich, Alfa-Aesar, TCI, Strem and Fluorochem. Unless indicated otherwise, they are used without further purification. All air or moisture sensitive reactions were carried out with dry glassware, anhydrous solvents and under an inert atmosphere (nitrogen or argon). Dichloroethane (DCE) and Et₃N were distilled under Ar atmosphere over CaH₂ and KOH, respectively. Toluene, dichloromethane (DCM), Et₂O, tetrahydrofurane (THF) and dimethylformamide (DMF) were dried and deoxygenated employing a PS-MD-5 system of Innovative Technology. The quality of solvents used for extraction and purification are "synthesis grade". The other solvents or commercial reagents were, if necessary, purified according to methods described in the literature.¹²⁹

Chromatography

The thin layer chromatography (TLC) was performed on ready-for-use silica plates: silica gel 60F₂₅₄ art. 5554 on aluminum support (Merck). The products were eluted with a mixture of petroleum ether / pentane / cyclohexane / toluene / dichloromethane and ethyl acetate / diethyl ether / methanol in varying proportions. The migration products were visualized with UV light (254 nm) and / or developed with KMnO₄, Kagi-Mosher or diiodine.¹³⁰ The separations by chromatography were carried out according to the method described by Still¹³¹ on silica gel 0.040-0.063 mm art. 11567 (Merck).

Analysis

¹²⁹ Perrin, D. D.; Armarego, W. L. F. Purification of laboratory chemicals 3rd edition, Pergamon Press, Oxford, **1988**.

¹³⁰ KMnO₄: Purple solution consisting of potassium permanganate (3 g), potassium carbonate (20 g), acetic acid (0.25 mL) in water (300 mL). Kagi-Mosher: pale yellow solution composed of *p*-anisaldehyde (5 mL), sulfuric acid (8 mL), acetic acid (2 mL) and water (5 mL) in ethanol (200 mL). Diiodide: dispersion of diiodine on silica 0.040-0.063 mm.

¹³¹ W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923–2925.

Nuclear Magnetic Resonance Spectrometry (NMR)

The proton nuclear magnetic resonance (¹H NMR) spectra were recorded at 300 MHz or 400 MHz respectively on Bruker AV 300 or AV 400 instruments in deuterated chloroform. The chemical shifts (δ) are expressed in parts per million (ppm) relative to tetramethylsilane (TMS) as external reference. The carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded at 75 MHz or 100 MHz respectively on Bruker AV 300 or AV 400 instruments in deuterated chloroform. The chemical shifts (δ) are reported in parts per million (ppm) relative to the center line of the triplet at 77.16 ppm for deuterochloroform. ¹³C NMR experiments were routinely run with broadband decoupling. The phosphorus nuclear magnetic resonance (³¹P NMR) spectra were recorded at 162 MHz on a Bruker AV 400 apparatus in deuterated chloroform. The chemical shifts (δ) are expressed in parts per million (ppm) relative to the center line of the triplet at 77.16 ppm for deuterochloroform. ¹³C NMR experiments were routinely run with broadband decoupling. The phosphorus nuclear magnetic resonance (³¹P NMR) spectra were recorded at 162 MHz on a Bruker AV 400 apparatus in deuterated chloroform. The chemical shifts (δ) are expressed in parts per million (ppm) relative to an 85% solution of phosphoric acid as external reference.

The multiplicity of signals is indicated as follows: s = singlet, sl = broad singlet, d = doublet, dl = broad doublet, t = triplet, q = quadruplet, quint = quintuplet, sext = sextuplet, hept = heptuplet, m = multiplet. The coupling constants *J* are expressed in Hz.

Mass spectrometry

The mass spectra were recorded by the mass spectrometry laboratory at the Ecole Nationale Supérieure de Chimie de Paris by direct introduction on a Nermag R10-10C spectrometer in chemical ionization (CI) or electronic impact (EI). Eletrospray analyzes (ESI) were performed on an API 3000 PE Sciex instrument. The results are expressed as a function of the m/z ratio. High resolution mass spectroscopy (HRMS) analyses for new compounds were performed by Institut de Recherches Servier, using a DFS instrument (Thermo Scientific) coupled to gas chromatography as inlet method, and by Institut de Chimie de Nice using a Thermo Vanquish UHPLC-Q-Exactive Focus Mass Spectrometer equipped with H-ESI source operated in a positive mode.

HPLC/SFC

The enantiomeric excesses were determined by high performance liquid chromatography (HPLC) analyzes on a Waters 600 instrument, connected to a Waters 486 UV detector with adjustable wavelength (215 or 254 nm) and an autosampler Waters 717 equipped with chiral columns Daicel Chiralcel OD-H, OJ and Chiralpak AD-H, AS-H, IA, IB, IC, ID and IE. The signal is recorded and analyzed on a computer equipped with Millenium[®] software. The solvents used are of HPLC quality.

A HPLC/SFC hybrid system from JASCO[®] was also used for enantiomeric separations, connected by a SFC autosampler (AS-4350), a photo diode array detector (MD-4010) with variable wavelength from 200 nm to 900 nm, a CO₂ pump (PU-4380), a RHPLC pump (PU-4180), a column oven (CO-4060) equipped with chiral columns Daicel Chiralcel OD, OX, OZ and Chiralpak AD-H, AD, IA, and IF, a control box (LC-NetII/ADC) and a back pressure regulator (BP-4340). The signal is recorded and analyzed on a computer equipped with ChromNav[®] software.

X-Ray Diffraction

The crystallographic analyses by X-ray diffraction were provided by Dr. Michel Giorgi from Aix-Marseille University.

Optical rotation

The optical rotation was measured on an Anton Paar[®] MCP-100 polarimeter at 589 nm $(l = 0.5 \text{ dm}, 20^{\circ}\text{C}).$

General experimental procedures:

General procedures for the preparation of 1,6-enynes:

Procedure [A]: Alkylation

The 4-methyl-*N*-(prop-2-yn-1-yl) benzenesulfonamide (1 equiv.) and the corresponding alkenyl bromide (1.5-3 equiv.) were added to a suspension of K_2CO_3 (1.5-2 equiv.) in acetone or acetonitrile. The reaction mixture was stirred at room temperature or 60°C overnight and was monitored by TLC. After completion of the reaction, the mixture was filtered through Celite[®] and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

Procedure [B]: Alkylation

The NaH (1.1 equiv.) and the alkenyl or alkynyl bromide (1.1 equiv.) were added to a solution of malonate derivative (1 equiv.) in THF or DMF at 0 °C. The reaction mixture was stirred at room temperature and was monitored by TLC. After completion of the reaction, the mixture was quenched by $Na_2SO_4 \cdot 10H_2O$ and filtered through Celite[®] and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

Procedure [C]: Sonogashira coupling

The enyne bearing terminal alkyne (1 equiv.), $PdCl_2(PPh_3)_2$ (2 mol%) and CuI (1 mol%) were suspended in 3:1 of dry toluene and Et₃N (0.25M) under argon atmosphere. Then the corresponding iodoarene (1-1.2 equiv.) was added and the mixture was stirred at room temperature until the enyne was consumed (monitored by TLC). After completion of the reaction, the mixture was quenched with an aqueous NH₄Cl saturated solution (30 mL). The biphasic mixture was extracted with EtOAc (3 x 30 mL) and the combined organic layer was washed with brine (25 mL). After drying with MgSO₄ and filtration, the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

General procedures for gold-catalyzed reactions of 1,6-enynes:

Procedure [D]: Cycloisomerization

In a screw-capped vial, a mixture of gold pre-catalyst (1-3 mol%) and silver salts (1-6 mol%) in dry solvent was stirred under argon atmosphere for 10 min to generate active catalytic species. Then the 1,6-enyne (0.1-0.5 mmol, 1 equiv.) was added. In the case of ready-for-use catalysts, the gold catalyst was directly added into the solution of 1,6-enyne. The reaction mixture was monitored by TLC until completion or no further evolution. The mixture was filtered through a short pad of silica with petroleum ether / EtOAc (1:1) as eluting solvent and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

Procedure [E]: Domino cyclization / nucleophilic addition

A mixture of gold pre-catalyst (0.3-3 mol%) and silver salt (0.3-6 mol%) in dry solvent was stirred under argon atmosphere at room temperature for 10 min to generate active catalytic species. Then the catalytic mixture was added to a screw-capped vial containing aromatic nucleophile or alcohol (1.1-80 equiv.) and 1,6-enyne (0.1-0.5 mmol, 1 equiv.). In the case of ready-for-use catalysts, the gold catalyst was directly added into the solution of 1,6-enyne and nucleophile. The reaction mixture was monitored by TLC until completion or no further evolution. The mixture was filtered through a short pad of silica with petroleum ether / EtOAc (1:1) as eluting solvent and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

Procedure [F]: Oxidative cyclization

Under nitrogen atmosphere, silver salt (1-5 mol%), gold complex (1-2.5 mol%) and dry DCE (0.1 M) were added to a screw-capped vial. After stirring for 10 mins, Ph₂SO (1.5-2 equiv.) and 1,6-enyne (0.2-0.3 mmol, 1 equiv.) were added to the catalytic mixture. The reaction mixture was monitored by TLC until completion or no further evolution. The mixture was filtered through a short pad of silica with petroleum ether / EtOAc (1:1) as eluting solvent and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

Procedure [G]: Prins reaction

A solution of 1,6-enyne (0.3-0.5 mmol, 1 equiv.) and the corresponding aldehyde (2-5 equiv.) in dry CH_2Cl_2 (0.1 M) was cooled to -40°C and the gold complex (2 mol%) was added after 15 min (silver salt if necessary). The solution was kept at -40°C and monitored by TLC until completion of reaction or no further evolution. 1 mL solution of Et₃N in hexane (0.1 M) was added to deactivate gold species at -40°C. Then the mixture was filtered through a short pad of silica with petroleum ether / EtOAc (1:1) as eluting solvent and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

Experimental data:

Gold phosphine complexes:

18		(<i>R</i>)-DTBM-MeOBIPHEP-(AuCl)2 ¹³²
		Chemical Formula: C ₇₄ H ₁₀₄ Au ₂ Cl ₂ O ₆ P ₂
ſ		Molecular Weight: 1616.42
MeO	PAr ₂ AuCl	Aspect: white solid
MeO	PAr ₂ AuCl	$R_f = 0.33$ (pentane / acetone, 90/10; diiodine; UV)
Ļ		³¹ P NMR (121 MHz, CDCl ₃) δ 22.4.
Ar = 4-Me	eO-3,5-(<i>t</i> -Bu) ₂ C ₆ H ₂	Ligand : ³¹ P NMR (121 MHz, CDCl ₃) δ -15.0.
188		(<i>R</i>)-DTB-MeOBIPHEP-(AuCl)2 ^{64,132b}
ſ	\frown	Chemical Formula: C70H98Au2Cl2O2P2
MeO	PAr₂AuCl	Molecular Weight: 1498.33
MeO	PAr ₂ AuCl	Aspect: white solid
Ļ		³¹ P NMR (121 MHz, CDCl ₃) δ 23.0
Ar = 3	3,5-(<i>t-</i> Bu) ₂ C ₆ H ₃	Ligand: ³¹ P NMR (121 MHz, CDCl ₃) δ -13.2
189		(<i>R</i> , <i>S</i>)-PPF-P ^t Bu ₂ -(AuCl) ₂ ^{58a}
		Chemical Formula: C ₃₂ H ₄₁ Au ₂ Cl ₂ FeP ₂
		Chemical Formula: C ₃₂ H ₄₁ Au ₂ Cl ₂ FeP ₂ Molecular Weight: 1008.31
		Chemical Formula: C ₃₂ H ₄₁ Au ₂ Cl ₂ FeP ₂ Molecular Weight: 1008.31 Aspect: orange solid
Ŭ ₽	PtBu ₂ PPh ₂ AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV)
⊕ Fe-€	PtBu ₂ PPh ₂ AuCl AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76.
⊕ Fe-€	PtBu ₂ PPh ₂ AuCl AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76. Ligand: ³¹ P NMR (162 MHz, CDCl ₃) δ 49.7, -26.1.
⊕ Fe - €	PtBu ₂ AuCl AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76. Ligand: ³¹ P NMR (162 MHz, CDCl ₃) δ 49.7, -26.1.
Fe 190	PtBu ₂ PPh ₂ AuCl AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76. Ligand: ³¹ P NMR (162 MHz, CDCl ₃) δ 49.7, -26.1. (<i>R</i> , <i>S</i>)-BiaxPhos-(AuCl) ₂
Fe 190	PtBu ₂ PPh ₂ AuCl AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76. Ligand: ³¹ P NMR (162 MHz, CDCl ₃) δ 49.7, -26.1. (<i>R</i>, S)-BiaxPhos-(AuCl)_2 Chemical Formula: $C_{45}H_{40}Au_2Cl_2OP_2$
Fe 190	PtBu ₂ PPh ₂ AuCl AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76. Ligand: ³¹ P NMR (162 MHz, CDCl ₃) δ 49.7, -26.1. (<i>R</i>, S)-BiaxPhos-(AuCl)_2 Chemical Formula: $C_{45}H_{40}Au_2Cl_2OP_2$ Molecular Weight: 1123.59
P e ↓ 190	PtBu ₂ PPh ₂ AuCl AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76. Ligand: ³¹ P NMR (162 MHz, CDCl ₃) δ 49.7, -26.1. (<i>R</i>, <i>S</i>)-BiaxPhos-(AuCl)₂ Chemical Formula: $C_{45}H_{40}Au_2Cl_2OP_2$ Molecular Weight: 1123.59 Aspect: white solid
190	PtBu ₂ PPh ₂ AuCl AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76. Ligand: ³¹ P NMR (162 MHz, CDCl ₃) δ 49.7, -26.1. (<i>R</i>, <i>S</i>)-BiaxPhos-(AuCl)₂ Chemical Formula: $C_{45}H_{40}Au_2Cl_2OP_2$ Molecular Weight: 1123.59 Aspect: white solid ³¹ P NMR (162 MHz, CDCl ₃) δ 31.0, 22.8.
Fe 190	PtBu ₂ PPh ₂ AuCl AuCl PPh ₂ AuCl	Chemical Formula: $C_{32}H_{41}Au_2Cl_2FeP_2$ Molecular Weight: 1008.31 Aspect: orange solid $R_f = 0.17$ (Petroleum ether / EtOAc, 8/2; diiodine; UV) ³¹ P NMR (162 MHz, CDCl ₃) δ 86.9, 20.76. Ligand: ³¹ P NMR (162 MHz, CDCl ₃) δ 49.7, -26.1. (<i>R, S</i>)-BiaxPhos-(AuCl) ₂ Chemical Formula: $C_{45}H_{40}Au_2Cl_2OP_2$ Molecular Weight: 1123.59 Aspect: white solid ³¹ P NMR (162 MHz, CDCl ₃) δ 31.0, 22.8. Ligand : ³¹ P NMR (162 MHz, CDCl ₃) δ -6.9, -14.9.

¹³² A. S. K. Hashmi, M. Hamzic, F. Rominger, J. W. Bats, Chem. Eur. J. 2009, 15, 13318. .

The mixture of the phosphine ligand (1 equiv.) and (tht)AuCl (2 equiv.) in dry CH_2Cl_2 was stirred under argon atmosphere for 30 min to generate the gold complex. The consumption of ligands was monitored by TLC. After completion of the reaction, the solvent was evaporated under reduced pressure. The crude product was washed with *n*-hexane and purified by silica gel flash chromatography if necessary.

The single crystal of complex **190** was obtained in DCM/*n*-hexane (HPLC quality) by using a combined method of slow evaporation and vapor diffusion. ¹³³ Crystallographic structural data: see appendix.

¹³³ a) *Crystals and Crystal Growing*, Alan Holden and Phylis Singer, Anchor Books-Doubleday, New York, **1960** b) *The Growth of Single Crystals*, R. A. Laudise, Solid State Physical Electronics Series, Nick Holonyak, Jr. *Editor*, Prentice-Hall, Inc., **1970** c) *Fundamentals of Analytical Chemistry*, 3rd. edition, Saunders Golden Sunburst Series, Holt, Rinehart and Winston, Philadelphia ,**1976**. d) *X-ray Structure Determination A Practical Guide*, 2nd edition, George H. Stout and Lyle H. Jensen, John Wiliey & Sons, New York, **1989**.

194	4-Methyl-N-(prop-2-yn-1-yl)benzenesulfonamide
	Chemical Formula: C ₁₀ H ₁₁ NO ₂ S
/=	Molecular Weight: 209.26
TsHŃ	Aspect: yellow solid
	$R_f = 0.24$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

The TsCl (10 g, 52.5 mmol, 1 equiv.) was dissolved in the mixture of Et₃N (18 mL, 2.5 equiv. M = 101.19, d = 0.726) and 50 mL CH₂Cl₂, then propargylamine (3.4 mL, 52.5 mmol, 1 equiv. M = 55.08, d = 0.86) was added dropwise. The reaction mixture was stirred at room temperature for 2 h for completion of the reaction. Then the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography to give the **194** as a yellow solid (10.2 g, 93%). The spectral data were in accordance with literature.³⁹

195	N-Allyl-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide	
		Chemical Formula: C ₁₃ H ₁₅ NO ₂ S
TsN	/	Molecular Weight: 249.33
		Aspect: white solid
	•	$R_f = 0.68$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

Starting from 10 g (47.8 mmol, 1 equiv. M = 209.26) of **194**, 6.2 mL (72 mmol, 1.5 equiv. M = 120.98, d = 1.398) of allyl bromide and following the general experimental procedure **[A]** using 10 g K₂CO₃ (1.5 equiv. M = 138.2) in 60 mL acetone at room temperature for 24 h, enyne **195** was obtained as a white solid (11.9 g, 99%). The spectral data were in accordance with literature.⁴⁰

196	(E)-N-(But-2-en-1-yl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide	
		Chemical Formula: C ₁₄ H ₁₇ NO ₂ S
TsN	Molecular Weight: 263.36	
	_//	Aspect: white solid
		$R_{f} = 0.64$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

Starting from 10 g (47.8 mmol, 1 equiv. M = 209.26) of **194**, 7.2 mL (72 mmol, 1.5 equiv. M = 135.00, d = 1.34) of 1-bromobut-2-ene (E/Z = 4:1) and following the general experimental procedure [A] using 10 g K₂CO₃ (1.5 equiv. M = 138.2) in 60 mL acetone

at room temperature for 18 h, enyne **196** was obtained as a white solid (10.8 g, 86%). The spectral data were in accordance with literature.¹³⁴

197	4-Methyl-N-(3-methylbut-2-en-1-yl)-N-(prop-2-yn-1-	
		yl)benzenesulfonamide
		Chemical Formula: C ₁₅ H ₁₉ NO ₂ S
TsN		Molecular Weight: 277.38
		Aspect: white solid
	/	$R_f = 0.56$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

Starting from 10 g (47.8 mmol, 1 equiv. M = 209.26) of **194**, 8 mL (72 mmol, 1.5 equiv. M = 149.03, d = 1.29) of 1-bromo-3-methylbut-2-ene and following the general experimental procedure **[A]** using 10 g K₂CO₃ (1.5 equiv. M = 138.2) in 60 mL acetone at room temperature for 18 h, enyne **197** was obtained as a white solid (12.2 g, 92%). The spectral data were in accordance with literature.³⁹

84	N-Cinnamyl-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide	
		Chemical Formula: C ₁₉ H ₁₉ NO ₂ S
TsN		Molecular Weight: 325.43
	Ph	Aspect: white solid
		$R_f = 0.5$ (Petroleum ether / EtOAc, 85/15; Kagi-Mosher; UV)

Starting from 2 g (9.6 mmol, 1 equiv. M = 209.26) of **194**, 2.1 g (10.5 mmol, 1.1 equiv. M = 197.08) of cinnamyl bromide and following the general experimental procedure **[A]** using 4 g K₂CO₃ (3 equiv. M = 138.2) in 10 mL acetonitrile at reflux for 3 h, enyne **84** was obtained as a white solid (3 g, 96%). The spectral data were in accordance with literature.^{58b}

¹³⁴ C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren, *Chem. Eur. J.* **2006**, *12*, 1677.

Starting from 10 g (47.8 mmol, 1 equiv. M = 209.26) of **194**, 7.1 mL (62.1 mmol, 1.3 equiv. M = 161.04, d = 1.4) of 3-bromocyclohexene and following the general experimental procedure **[A]** using 10 g K₂CO₃ (1.5 equiv. M = 138.2) in 60 mL acetone at room temperature for 24 h, enyne **198** was obtained as a white solid (12.2 g, 88%). The spectral data were in accordance with literature.¹³⁵

SFC: Chiralcel AD-H, 150 bar, 15% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 225$ nm. Retention time: 2.5 (*R*) and 2.8 (*S*) min.

Starting from 2 g (9.6 mmol, 1 equiv. M = 209.26) of **194**, 2.85 mL (14.3 mmol, 1.5 equiv. M = 217.15, d = 1.094) of geranyl bromide and following the general experimental procedure **[A]** using 2.7 g K₂CO₃ (2 equiv. M = 138.2) in 15 mL acetone at room temperature for 2 h, enyne **199** was obtained as a yellow oil (2.8 g, 85%). The spectral data were in accordance with literature.¹¹³

Starting from 4 g (16 mmol, 1 equiv. M = 249.33) of enyne **195**, 2.15 mL (19 mmol, 1.2 equiv. M = 204.01, d = 1.831) of iodobenzene and following the general experimental procedure **[C]** using 100 mg [PdCl₂(PPh₃)₂] (2 mol%) and 20 mg CuI (1 mol%) in 45 mL Tol/Et₃N (2:1) at room temperature for 3 h, enyne **16** was obtained as a white solid (4.4 g, 85%). The spectral data were in accordance with literature.⁴⁰

¹³⁵ M. Mori, T. Hirose, H. Wakamatsu, N. Imakuni, Y. Sato, *Organometallics* 2001, 20, 1907.

200		(<i>E</i>)- <i>N</i> -(But-2-en-1-yl)-4-methyl- <i>N</i> -		
	(3-phenylprop-2-yn-1-yl)benzenesulfonamide			
		Chemical Formula: C ₂₀ H ₂₁ NO ₂ S		
TsN	—−Ph	Molecular Weight: 339.45		
//		Aspect: white solid		
		$R_f = 0.44$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)		

Starting from 3.9 g (14.8 mmol, 1 equiv. M = 263.26) of enyne **196**, 2 mL (17.8 mmol, 1.2 equiv. M = 204.01, d = 1.831) of iodobenzene and following the general experimental procedure **[C]** using 90 mg [PdCl₂(PPh₃)₂] (2 mol%) and 25 mg CuI (1 mol%) in 40 mL Tol/Et₃N (2:1) at room temperature for 17 h, enyne **200** was obtained as a white solid (4.3 g, 86%). The spectral data were in accordance with literature.³⁹

Starting from 2 g (7.2 mmol, 1 equiv. M = 277.38) of enyne **197**, 1 mL (8.6 mmol, 1.2 equiv. M = 204.01, d = 1.831) of iodobenzene and following the general experimental procedure **[C]** using 50 mg [PdCl₂(PPh₃)₂] (2 mol%) and 10 mg CuI (1 mol%) in 20 mL Tol/Et₃N (2:1) at room temperature for 18 h, enyne **10** was obtained as a white solid (1.8 g, 71%). The spectral data were in accordance with literature.³⁹

201	<i>N</i> -(C	N-(Cyclohex-2-en-1-yl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)	
benzenesulfonamide		benzenesulfonamide	
	Ph	Chemical Formula: C ₂₂ H ₂₃ NO ₂ S	
TsN	-7	Molecular Weight: 365.49	
	>	Aspect: white solid	
		$R_f = 0.45$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)	

Starting from 4.3 g (14.9 mmol, 1 equiv. M = 277.38) of enyne **198**, 2 mL (17.9 mmol, 1.2 equiv. M = 204.01, d = 1.831) of iodobenzene and following the general experimental procedure **[C]** using 90 mg [PdCl₂(PPh₃)₂] (2 mol%) and 25 mg CuI (1

mol%) in 45 mL Tol/Et₃N (2:1) at room temperature for 18 h, enyne **201** was obtained as a white solid (3.97 g, 73%). The spectral data were in accordance with literature.¹³⁶

202	(E)-N-(3,7-Dimethylocta-2,6-dien-1-yl)-4-methyl- N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide		
- N	Ph	Chemical Formula: C ₂₆ H ₃₁ NO ₂ S	
		Molecular Weight: 421.60	
		Aspect: brown solid	
	<u>}</u>	$R_{f} = 0.56$ (Petroleum ether / EtOAc, 85/15; Kagi-	
	/	Mosher; UV)	

Starting from 1.25 g (3.6 mmol, 1 equiv. M = 345.5) of enyne **199**, 0.45 mL (4.0 mmol, 1.2 equiv. M = 204.01, d = 1.831) of iodobenzene and following the general experimental procedure **[C]** using 50 mg [PdCl₂(PPh₃)₂] (2 mol%) and 7 mg CuI (1 mol%) in 12 mL Tol/Et₃N (2:1) at room temperature for 18 h, enyne **202** was obtained as a brown solid (1.11 g, 73%).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.31 – 7.17 (m, 5H), 7.04 (d, J = 7.9 Hz, 2H), 5.16 (t, J = 7.3 Hz, 1H), 5.04 (t, J = 6.0 Hz, 1H), 4.28 (s, 2H), 3.89 (d, J = 7.3 Hz, 2H), 2.32 (s, 3H), 2.15 – 1.96 (m, 4H), 1.68 (s, 6H), 1.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 142.7, 136.2, 132.0, 131.5, 129.6, 128.4, 128.2, 128.0, 123.9, 122.5, 118.1, 85.5, 82.4, 44.2, 39.8, 36.3, 26.3, 25.9, 21.5, 17.8, 16.3.

203	4-Methyl-N-	-(3-methylbut-2-en-1-yl)- <i>N</i> -(3-(4-(trifluoromethyl)phenyl)
		prop-2-yn-1-yl)benzenesulfonamide
		Chemical Formula: C ₂₂ H ₂₂ F ₃ NO ₂ S
TsN		Molecular Weight: 421.48
		Aspect: pale yellow solid
,		$R_f = 0.55$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)

Starting from 2 g (7.2 mmol, 1 equiv. M = 277.38) of enyne **197**, 2.78 g (10 mmol, 1.2 equiv. M = 272.01) of 4-iodobenzotrifluoride and following the general experimental procedure **[C]** using 60 mg [PdCl₂(PPh₃)₂] (2 mol%) and 16 mg CuI (1 mol%) in 21

¹³⁶ A. Fürstner, K. Majima, R. Martín, H. Krause, E. Kattnig, R. Goddard, C. W. Lehmann, *J. Am. Chem. Soc.* **2008**, *130*, 1992.

mL Tol/Et₃N (2:1) at room temperature for 2 h, enyne **203** was obtained as a white solid (2.7 g, 80%). The spectral data were in accordance with literature.¹³⁷ **HRMS (EI)** m/z calc. for C₂₂H₂₂F₃NO₂S [M+H]⁺ 422.1402 found: 422.1390.

204	N-(3-(4-Methoxyphenyl)prop-2-yn-1-yl)-4-methyl-		
	N-(3-methylbut-2-en-1-yl)benzenesulfonamide		
TsNOMe		Chemical Formula: C ₂₂ H ₂₅ NO ₃ S	
		Molecular Weight: 383.51	
		Aspect: yellow pale solid	
\rightarrow		$R_{f} = 0.28$ (Petroleum ether / EtOAc, 85/15; Kagi-Mosher;	
		UV)	

Starting from 3 g (10.8 mmol, 1 equiv. M = 277.38) of enyne **197**, 2.78 g (10 mmol, 1.1 equiv. M = 234.03) of 4-iodoanisole and following the general experimental procedure **[C]** using 75 mg [PdCl₂(PPh₃)₂] (2 mol%) and 19 mg CuI (1 mol%) in 30 mL Tol/Et₃N (2:1) at room temperature for 18 h, enyne **204** was obtained as a pale yellow solid (2.536 g, 61%). The spectral data were in accordance with literature.³⁹

205	N-(3-(Benzo[d][1,3]dioxol-5-yl)prop-2-yn-1-yl)-4-methyl-N-	
		(3-methylbut-2-en-1-yl) benzenesulfonamide
		Chemical Formula: C ₂₂ H ₂₃ NO ₄ S
		Molecular Weight: 397.49
TsN	<u>``</u> /	Aspect: white solid
		$R_f = 0.27$ (Petroleum ether / EtOAc, 90/10; Kagi-Mosher;
		UV)

Starting from 3.3 g (12 mmol, 1.2 equiv. M = 277.38) of enyne **197**, 2.5 g (10 mmol, 1 equiv. M = 248.02) of 5-iodo-1,3-benzodioxole and following the general experimental procedure **[C]** using 95 mg [PdCl₂(PPh₃)₂] (1.4 mol%) and 20 mg CuI (1 mol%) in 30 mL Tol/Et₃N (2:1) at room temperature for 18 h, enyne **205** was obtained as a white solid (3.014 g, 76%).

¹**H NMR (300 MHz, CDCl**₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.3 Hz, 2H), 6.66 (d, *J* = 8.0 Hz, 1H), 6.57 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.41 (d, *J* = 1.5 Hz, 1H), 5.98 – 5.87

¹³⁷ X.-H. Hao, P. Gao, X.-R. Song, Y.-F. Qiu, D.-P. Jin, X.-Y. Liu, Y.-M. Liang, *Chem. Commun.* **2015**, *51*, 6839.

(m, 2H), 5.15 (t, *J* = 7.3 Hz, 1H), 4.23 (s, 2H), 3.85 (d, *J* = 7.3 Hz, 2H), 2.36 (s, 3H), 1.73 (s, 3H), 1.67 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 148.0, 147.3, 143.4, 139.0, 136.3, 129.5, 127.9, 126.1, 118.2, 115.6, 111.5, 108.3, 101.4, 85.3, 80.6, 44.2, 36.4, 26.0, 21.5, 18.0.

Starting from 2 g (7.2 mmol, 1 equiv. M = 277.38) of enyne **197**, 0.964 mL (7.56 mmol, 1.05 equiv. M = 282.91, d = 2.219) of 1-bromo-3-iodobenzene and following the general experimental procedure **[C]** using 50 mg [PdCl₂(PPh₃)₂] (2 mol%) and 10 mg CuI (1 mol%) in 20 mL Tol/Et₃N (2:1) at room temperature for 18 h, enyne **206** was obtained as a pale yellow solid (2.5 g, 80%). The spectral data were in accordance with literature.¹³⁷

207	4-M	ethyl-N-(3-methylbut-2-en-1-yl)-N-(pent-4-en-2-yn-1-yl)
		benzenesulfonamide
		Chemical Formula: C ₁₇ H ₂₁ NO ₂ S
	″	Molecular Weight: 303.42
	7	Aspect: yellow oil
/	\rightarrow	$R_f = 0.55$ (Petroleum ether / EtOAc, 90/10; Kagi-Mosher; UV)

Starting from 2 g (7.2 mmol, 1 equiv. M = 277.38) of enyne **197**, 8.7 mL (8.7 mmol, 1.2 equiv. 1 mol/L) of bromoethene and following the general experimental procedure **[C]** using 100 mg [PdCl₂(PPh₃)₂] (2 mol%) and 14 mg CuI (1 mol%) in 21 mL Tol/Et₃N (2:1) at 50°C for 16 h, enyne **207** was obtained as a yellow oil (1.51 g, 69%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 5.49 (ddt, *J* = 17.2, 11.3, 1.6 Hz, 1H), 5.35 (dd, *J* = 11.3, 2.3 Hz, 1H), 5.29 (dd, *J* = 17.2, 2.3 Hz, 1H), 5.16 – 5.07 (m, 1H), 4.16 (d, *J* = 1.6 Hz, 2H), 3.79 (d, *J* = 7.3 Hz, 2H), 2.41 (s, 3H), 1.72 (s, 3H), 1.66 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.4, 139.1, 136.2, 129.5, 128.0, 127.2, 118.1, 116.5, 84.1, 83.2, 77.4, 44.2, 36.4, 26.0, 21.6, 18.0.

208	4-Methyl-N-(3-methylbut-2-en-1-yl)-N-(4-methylpent-4-en-2-yn-1-y	
		Benzenesulfonamide
		Chemical Formula: C ₁₈ H ₂₃ NO ₂ S
TsN	≡{(Molecular Weight: 317.45
	λ	Aspect: yellow oil
,	<u>}</u>	$R_f = 0.53$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)

Starting from 555 mg (2 mmol, 1 equiv. M = 277.38) of enyne **197**, 213 µL (2.4 mmol, 1.2 equiv. M = 120.98, d = 1.362) of 2-bromoprop-1-ene and following the general experimental procedure **[C]** using 28 mg [PdCl₂(PPh₃)₂] (2 mol%) and 4 mg CuI (1 mol%) in 8 mL Tol/Et₃N (2:1) at 50°C for 1.5 h, enyne **208** was obtained as a yellow oil (511 mg, 80%).

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 5.17 – 5.07 (m, 2H), 4.96 (sl, 1H), 4.18 (s, 2H), 3.81 (d, J = 7.3 Hz, 2H), 2.41 (s, 3H), 1.73 (d, J = 0.5 Hz, 3H), 1.68 (s, 3H), 1.63 (t, J = 1.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.3, 139.0, 136.1, 129.5, 127.9, 126.0, 121.9, 118.1, 86.6, 81.3, 44.1, 36.3, 26.0, 23.0, 21.5, 17.9

MS (CI): calc. for C₁₈H₂₃NO₂S: 317, found: 318 [M+H⁺] and 335 [M+NH₄⁺].

209 <i>N</i> -Cinnar	N-Cinnamyl-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide	
/Ph	Chemical Formula: C ₂₅ H ₂₃ NO ₂ S	
TsN	Molecular Weight: 401.52	
Ph	Aspect: yellow solid	
	$R_f = 0.5$ (Petroleum ether / EtOAc, 85/15; Kagi-Mosher; UV)	

Starting from 1 g (3.2 mmol, 1 equiv. M = 325.43) of enyne **84**, 0.4 mL (3.5 mmol, 1.1 equiv. M = 204.01, d = 1.831) of iodobenzene and following the general experimental procedure **[C]** using 45 mg [PdCl₂(PPh₃)₂] (2 mol%) and 6 mg CuI (1 mol%) in 18 mL Tol/Et₃N (2:1) at room temperature for 24 h, enyne **209** was obtained as a yellow solid (1.05 g, 82%).The spectral data were in accordance with literature.¹³⁸

¹³⁸ T. Nishimura, Y. Maeda, T. Hayashi, Org. Lett. 2011, 13, 3674.

210	Ethyl 2-cyclohexylideneacetate	
	Chemical Formula: C ₁₀ H ₁₆ O ₂ Molecular Weight: 168.24 Aspect: colorless oil	

To a suspension of NaH (800 mg, 60% dispersion in mineral oil, 20 mmol) in THF (100 mL) was added triethyl phosphonoacetate (4.0 mL, 20 mmol, M = 224.19). The bubbling mixture was stirred for one hour, then cyclohexanone (1.72 mL, 16 mmol, M = 98.15) was added. The reaction was stirred for 18 h, then diluted with 150 mL Et₂O and washed with saturated aqueous NaHCO₃ (100 mL). The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated in vacuum. The product was isolated by flash chromatography as a clear oil (2.54 g, 94%). The spectral data were in accordance with literature.¹³⁹

211	2-Cyclohexylideneethan-1-ol	
	Chemical Formula: C ₈ H ₁₄ O	
ОН	Molecular Weight: 126.20	
	Aspect: colorless oil	
	$R_f = 0.38$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher)	

To a suspension of LiAlH₄ (684 mg, 18 mmol, 1.2 equiv.) in 30 mL THF was added a solution of ethyl 2-cyclohexylideneacetate (2.5 g, 15 mmol, M = 168.24) in 20 mL THF at 0°C. The bubbling mixture was stirred for 30 min, then quenched by Na₂SO₄·10H₂O and filtered through a short pad of silica and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography to afford the alcohol as a clear oil (1.0 g, 53%). The spectral data were in accordance with literature.¹³⁹

¹³⁹ R. J. Comito, F. G. Finelli, D. W. C. MacMillan, J. Am. Chem. Soc. 2013, 135, 9358.

1.55 mL of diisopropyl azodicarboxylate (7.9 mmol, 1.1 equiv. M = 202.21, d = 1.027) was added dropwise to a mixture of 2-cyclohexylideneethan-1-ol (1 g, 7.9 mmol, 1.1 equiv. M = 126.20), **194** (1.5 g, 7.2 mmol, 1 equiv. M = 209.26), and PPh₃ (2.07 g, 7.9 mmol, 1.1 equiv. M = 262.29) in 60 mL THF at 0 °C, and then the resulting mixture was warmed to room temperature and further stirred for 12 h. The reaction mixture was concentrated in vacuum, and the residue was purified by column chromatography on silica gel to afford enyne **212** (1.76 g, 77%) as a white solid. The spectral data were in accordance with literature.⁹⁰

213	<i>N</i> -(2-Cyclohexylideneethyl)-4-methyl- <i>N</i> -(3-phenylprop-2-yn-1-yl)	
		benzenesulfonamide
	<u></u> —Ph	Chemical Formula: C ₂₄ H ₂₇ NO ₂ S
TsN		Molecular Weight: 393.55
		Aspect: white solid
		$R_f = 0.53$ (Petroleum ether / EtOAc, 90/10; Kagi-Mosher;
		UV)

Starting from 1.7 g (5.36 mmol, 1 equiv. M = 317.45) of enyne **212**, 0.66 mL (5.9 mmol, 1.2 equiv. M = 204.01, d = 1.831) of iodobenzene and following the general experimental procedure **[C]** using 75 mg [PdCl₂(PPh₃)₂] (2 mol%) and 10 mg CuI (1 mol%) in 18 mL Tol/Et₃N (2:1) at room temperature for 16 h, enyne **213** was obtained as a white solid (1.234 g, 58%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.78 (d, J = 8.2 Hz, 2H), 7.34 – 7.19 (m, 5H), 7.04 (d, J = 8.0, 2H), 5.12 (t, J = 7.5 Hz, 1H), 4.29 (s, 2H), 3.89 (d, J = 7.5 Hz, 2H), 2.32 (s, 3H), 2.24 – 2.14 (m, 2H), 2.11 (sl, 2H), 1.60 – 1.43 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 147.3, 143.4, 136.2, 131.5, 129.5, 128.4, 128.2, 128.0, 122.4, 114.7, 85.4, 82.2, 43.3, 37.3, 36.2, 28.9, 28.7, 28.1, 26.7, 21.5.

HRMS (EI) m/z calc. for C₂₄H₂₇NO₂S [M+H]⁺ 394.1841 found: 394.1834.

In a flame dried round-bottom flask, phenylpropiolic acid (731 mg, 5 mmol, 1 equiv. M = 146.15) was dissolved in 10 mL dry THF (0.5 M) under argon and tosyl isocyanate (1.73 mL,15 mmol, 3 equiv. M = 149.03, d = 1.29) was added to the solution. After being stirred at room temperature for 10 mins under the inter N₂ was disconnected and Et₃N (1 equiv.) was added drop-wise to the open flask, allowing the release of the formed CO₂. After being stirred for 1h at room temperature, 1.73 mL of 1-bromo-3-methylbut-2-ene (15 mmol, 3 equiv. M = 149.03, d = 1.29) and extra Et₃N (3 equiv.) were sequentially added and the mixture was stirred overnight. After the starting material was consumed completely, the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel to afford the enynamide as a white solid (1.15 g, 63%). The spectral data were in accordance with literature.

215		(3-((3-Methylbut-2-en-1-yl)oxy)prop-1-yn-1-yl)benzene
	⊡_Ph	Chemical Formula: C ₁₄ H ₁₆ O
0		Molecular Weight: 200.28
│		Aspect: colorless oil
,		$R_f = 0.89$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

NaH (440 mg, 60% dispersion in mineral oil, 1.1 equiv.) was dissolved in 15 mL DMF at 0°C, then 3-phenylprop-2-yn-1-ol (1.25 mL, 10 mmol, 1 equiv. M = 132.16, d = 1.06) was added dropwise. After 30 min, 1-bromo-3-methylbut-2-ene (1.27 mL, 11 mmol, 1.1 equiv. M = 149.03, d = 1.29) was added and the reaction mixture was stirred at room temperature and was monitored by TLC. After completion of the reaction, the mixture was quenched by Na₂SO₄·10H₂O and filtered through a short pad of silica and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography (Petroleum ether / EtOAc, 97/3) to give the enyne **215** as a colorless oil (1.348 g, 67%). The spectral data were in accordance with literature.³⁹

14	(3-(Cinnamyloxy)prop-1-yn-1-yl)benzene	
/	Ph Chemical Formula: C ₁₈ H ₁₆ O	
Q	Molecular Weight: 248.33	
P	h Aspect: yellow oil	
	$R_f = 0.57$ (Petroleum ether / Et ₂ O, 9/1; Kagi-Mosher; UV)	

Starting from 1.25 mL 3-phenylprop-2-yn-1-ol (10 mmol, 1 equiv. M = 132.16, d = 1.06), 2.1 g (10.5 mmol, 1.05 equiv. M = 197.08) of cinnamyl bromide, following the above experimental procedure for enyne **215** using 440 mg NaH (60% dispersion in mineral oil, 1.1 equiv.) in 15 mL THF for 1 h, enyne **14** was obtained as a yellow oil (2.16 g, 87%). The spectral data were in accordance with literature.⁴⁰

Starting from 10 mL (87 mmol, 1.3 equiv. M = 132.11, d = 1.15) dimethyl malonate and 7.75 mL (67 mmol, 1 equiv. M = 149.03, d = 1.29) 1-bromo-3-methylbut-2-ene, following the general experimental procedure [A] using 13.8 g K₂CO₃ (1 equiv. M =138.2) in 70 mL acetone at room temperature for 4 h, the product **216** was obtained as a colorless oil (11.63 g, 87%). The spectral data were in accordance with literature.¹⁴⁰

Starting from 10.3 g (51.4 mmol, 1 equiv. M = 200.23) dimethyl 2-(3-methylbut-2-en-1-yl)malonate and 6.3 mL (56.5 mmol, 1.1 equiv. M = 118.96, d = 1.335) propargyl bromide solution (80 wt.% in toluene), following the general experimental procedure [**B**] using 2.2 g NaH (60% dispersion in mineral oil, 1.1 equiv.) in 150 mL THF for 2 h, enyne **167** was obtained as a colorless oil (12.1 g, 99%). The spectral data were in accordance with literature.¹¹¹

¹⁴⁰ B. M. Trost, N. R. Schmuff, M. J. Miller, J. Am. Chem. Soc. 1980, 102, 5979.

Starting from 1.27 g (6.3 mmol, 1 equiv. M = 200.23) dimethyl 2-(3-methylbut-2-en-1-yl)malonate and 0.83 mL (9.5 mmol, 1.5 equiv. M = 132.99, d = 1.519) 1-bromobut-2-yne, following the general experimental procedure **[B]** using 277 mg NaH (60% dispersion in mineral oil, 1.1 equiv.) in 20 mL THF for 1 h, enyne **217** was obtained as a colorless oil (1.48 g, 93%). The spectral data were in accordance with literature.¹⁴¹

121		Dimethyl 2-(3-methylbut-2-en-1-yl)-2-
		(3-phenylprop-2-yn-1-yl)malonate
MeO₂C.	Ph	Chemical Formula: C ₁₉ H ₂₂ O ₄
MeO ₂ C	×	Molecular Weight: 314.38
	<u>}</u>	Aspect: colorless oil
	,	$R_f = 0.71$ (Toluene / Et ₂ O, 95/5; Kagi-Mosher; UV)

Starting from 2.4 g (10 mmol, 1 equiv. M = 238.28) of enyne **167**, 1.34 mL (12 mmol, 1.2 equiv. M = 204.01, d = 1.831) of iodobenzene and following the general experimental procedure **[C]** using 100 mg [PdCl₂(PPh₃)₂] (2 mol%) and 20 mg CuI (1 mol%) in 30 mL Tol/Et₃N (2:1) at room temperature for 18 h, enyne **121** was obtained as a colorless oil (2.59 g, 82%). The spectral data were in accordance with literature.⁷⁰

218	Diisopropyl 2-(3-methylbut-2-en-1-yl)malonate	
		Chemical Formula: C ₁₂ H ₁₈ O ₄
iPrO-C-		Molecular Weight: 226.27
1020	CO₂ <i>i</i> Pr	Aspect: colorless oil
		$R_f = 0.53$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher)

Starting from 3 mL (16 mmol, 1 equiv. M = 188.22, d = 0.991) diisopropyl malonate and 1.57 mL (17.6 mmol, 1.1 equiv. M = 118.96, d = 1.335) propargyl bromide solution (80 wt.% in toluene), following the general experimental procedure **[B]** using 420 mg NaH (60% dispersion in mineral oil, 1.1 equiv.) in 50 mL THF for 3 h, the product **218**

¹⁴¹ B. L. Ashfeld, K. A. Miller, A. J. Smith, K. Tran, S. F. Martin, J. Org. Chem. 2007, 72, 9018.

was obtained as a colorless oil (2.44 g, 67%). The spectral data were in accordance with literature.^{58b}

219	(But-3-yne-1,1-diyldisulfonyl)dibenzene	
		Chemical Formula: C ₁₆ H ₁₄ O ₄ S ₂
PhO ₂ S—	/─≡	Molecular Weight: 334.40
11020	SO ₂ Ph	Aspect: yellow solid
		$R_f = 0.35$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

Starting from 4.74 g (16 mmol, 1 equiv. M = 296.36) bis(phenylsulfonyl)methane and 1.57 mL (17.6 mmol, 1.1 equiv. M = 118.96, d = 1.335) propargyl bromide solution (80 wt.% in toluene), following the general experimental procedure **[B]** using 420 mg NaH (60% dispersion in mineral oil, 1.1 equiv.) in 30 mL DMF at 70°C for 20 min, the product **219** was obtained as a yellow solid (4.8 g, 90%). The spectral data were in accordance with literature.¹⁴²

Starting from 2.44 g (10.8 mmol, 1 equiv. M = 226.27) diisopropyl 2-(3-methylbut-2en-1-yl)malonate and 2.2 g (11.3 mmol, 1.1 equiv. M = 197.08) of cinnamyl bromide, following the general experimental procedure **[B]** using 300 mg NaH (95%, 1.1 equiv.) in 20 mL THF for 2 h, enyne **82-1** was obtained as a colorless oil (3.67 g, 99%). The spectral data were in accordance with literature.^{58b}

82-2	(E)-(1-Phenylhept-1-en-6-yne-4,4-diyldisulfonyl)dibenzene	
PhO ₂ S		Chemical Formula: C ₂₅ H ₂₂ O ₄ S ₂
		Molecular Weight: 450.57
P10 ₂ 5	Ph	Aspect: yellow foam
		$R_f = 0.36$ (Petroleum ether / Et ₂ O, 9/1; Kagi-Mosher; UV)

¹⁴² J. Ramón Rodríguez, L. Castedo, J. L. Mascareñas, J. Org. Chem. 2000, 65, 2528.

Starting from 700 mg (2.1 mmol, 1.05 equiv. M = 334.4) (but-3-yne-1,1diyldisulfonyl)dibenzene and 394 mg (2 mmol, 1 equiv. M = 197.08) of cinnamyl bromide, following the general experimental procedure **[B]** using 55 mg NaH (95%, 1.1 equiv.) in 4 mL DMF for 3 h, enyne **82-2** was obtained as a yellow fibre (658 mg, 73%). The spectral data were in accordance with literature.^{58b}

Starting from 35 mg (0.1 mmol, 1 equiv. M = 353.48) of enyne **10**, following the general experimental procedure **[D]** using 3.7 mg (*R*)-DTB-MeOBIPHEP-(AuCl)₂ (2.5 mol%) and 2 mg AgNTf₂ (5 mol%) in 1 mL CDCl₃ at room temperature for 48 h, diene **11** was obtained as a white solid (18.6 mg, 53%). The spectral data were in accordance with literature.³⁹

SFC: Chiralcel IA, 150 bar, 10% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 8.2 and 17.9 min.

 $[\alpha]_{D^{20}}$: +159.4 (DCM, c = 1) at 94% *ee*

220	4-(4-Methoxyphenyl)-3-(prop-1-en-2-yl)-1-tosyl-				
	1,2,3,6-tetrahydropyridine				
		Chemical Formula: C ₂₂ H ₂₅ NO ₃ S			
TsN		Molecular Weight: 383.51			
		Aspect: white solid			
/		$R_{f} = 0.33$ (Petroleum ether / EtOAc, 85/15; Kagi-			
		Mosher; UV)			

Starting from 115 mg (0.3 mmol, 1 equiv. M = 383.5) of enyne **204**, following the general experimental procedure **[D]** using 12.1 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (2.5 mol%) and 8.2 mg AgNTf₂ (7 mol%) in 2 mL CDCl₃ at 40°C for 54 h, diene **220** was obtained as a white solid (82.5 mg, 72%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.62 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.8 Hz, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 5.88 (t, *J* = 3.4 Hz, 1H), 4.81 (s, 1H), 4.71 (s, 1H), 3.91 (dd, *J* = 17.1, 3.3 Hz, 1H), 3.70 (s, 3H), 3.57 (dd, *J* = 11.5, 3.3 Hz, 1H),

3.40 (dt, *J* = 17.1, 3.4 Hz, 1H), 3.27 (s, 1H), 2.85 (dd, *J* = 11.5, 4.3 Hz, 1H), 2.35 (s, 3H), 1.68 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 159.1, 143.9, 143.6, 137.1, 133.6, 132.5, 129.7, 127.9, 126.9, 119.4, 115.1, 113.8, 55.4, 47.5, 45.4, 45.1, 21.6, 21.4.

SFC: Chiralcel OD-H, 150 bar, 10% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 5.8 and 6.7 min.

MS (CI): calc. for $C_{22}H_{25}NO_3S$: 383, found: 384 [M+H⁺].

Starting from 120 mg (0.3 mmol, 1 equiv. M = 383.5) of enyne **205**, following the general experimental procedure **[D]** using 12.1 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (2.5 mol%) and 8.2 mg AgNTf₂ (7 mol%) in 2 mL CDCl₃ at room temperature for 48 h, diene **221** was obtained as a white solid (60.4 mg, 50%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 6.81 – 6.71 (m, 3H), 5.94 – 5.89 (m, 3H), 4.89 (t, *J* = 1.5 Hz, 1H), 4.78 (s, 1H), 3.97 (dd, *J* = 17.0, 3.5 Hz, 1H), 3.62 (dd, *J* = 11.6, 3.5 Hz, 1H), 3.53 – 3.43 (m, 1H), 3.29 (sl, 1H), 2.93 (dd, *J* = 11.6, 4.3 Hz, 1H), 2.43 (s, 3H), 1.74 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 147.8, 147.1, 143.8, 143.7, 137.4, 134.4, 133.7, 129.8, 127.9, 120.2, 119.4, 115.2, 108.2, 106.4, 101.2, 47.5, 45.4, 45.3, 21.6, 21.3.

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 22.7 and 57.2 min.

HRMS (EI) m/z calc. for C₂₂H₂₃NO₄S [M+H]⁺ 398.1426 found: 398.1419.

Starting from 95 mg (0.22 mmol, 1 equiv. M = 432.38) of enyne **206**, following the general experimental procedure **[D]** using 7.4 mg Ph₃AuPNTf₂ (5 mol%) in 2 mL CH₂Cl₂ at room temperature for 68 h, diene **222** was obtained as a pale yellow solid (69 mg, 73%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.40 (s, 1H), 7.33 (d, *J* = 7.9 Hz, 3H), 7.20-7.12 m, 2H), 6.04 (t, *J* = 3.5 Hz, 1H), 4.89 (s, 1H), 4.76 (s, 1H), 3.99 (dd, *J* = 17.2, 3.2 Hz, 1H), 3.62 (dd, *J* = 11.7, 3.5 Hz, 1H), 3.51 (d, *J* = 17.2 Hz, 1H), 3.32 (sl, 1H), 2.96 (dd, *J* = 11.7, 4.3 Hz, 1H), 2.43 (s, 3H), 1.74 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.8, 143.3, 142.1, 136.7, 133.5, 130.4, 129.9, 129.8, 128.9, 127.8, 124.5, 122.6, 122.4, 115.5, 47.3, 45.3, 45.0, 21.6, 21.3.

HRMS (EI) m/z calc. for C₂₁H₂₂BrNO₂S [M+H]⁺ 432.0633 found: 432.0627.

Starting from 152 mg (0.36 mmol, 1 equiv. M = 421.48) of enyne **203**, following the general experimental procedure **[D]** using 9 mg Ph₃PAuCl(5 mol%) and 6.5 mg AgOTf (7 mol%) in 2.5 mL CH₂Cl₂ at room temperature for 7 h, the dienes **223**, **224** were obtained in mixture as a pale yellow solid (100 mg, 66%).

¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, J = 8.2 Hz, 2+0.6H, **a**+**b**), 7.54 (d, J = 8.2 Hz, 2+0.6H, **a**+**b**), 7.46 – 7.28 (m, 4+1.2H, **a**+**b**), 6.49 (s, 0.3H₆, **b**), 6.15 (t, J = 3.4 Hz, 1H₁, **a**), 4.91 (t, J = 1.5 Hz, 1H₂, **a**), 4.82 (s, 0.3H₅, **b**), 4.79 (s, 1H₂, **a**), 4.76 (s, 0.3H₅, **b**), 4.19 (d, J = 14.2 Hz, 0.3H, **b**), 4.03 (dd, J = 17.1, 3.0 Hz, 1H₄, **a**), 3.94 (dd, J = 14.2, 1.5 Hz, 0.3H, **b**), 3.64 (dd, J = 11.7, 3.4 Hz, 1H₃, **a**), 3.57 (dt, J = 17.1, 3.0 Hz, 1H₄, **a**), 3.03 (dd, J = 11.7, 4.3 Hz, 1H₃, **a**), 2.45 (s, 3+0.9H, **a**+**b**), 1.76 (s, 3H, **a**), 1.73 (s, 0.9H, **b**).

¹³C NMR (75 MHz, CDCl₃) δ 143.9 (b), 143.8, 143.4 (b), 143.3, 143.0 (b), 141.3 (b), 136.9, 133.5, 129.8, 129.6 (b), 129.2 (b), 128.6 (b), 127.9 (b), 127.8, 126.1, 125.4, 125.3, 123.9 (b), 123.2, 115.6(CH₂), 113.8 (b, CH₂), 54.1 (b, CH₂), 53.7 (b, CH₂), 48.4 (b), 47.4 (CH₂), 45.4 (CH₂), 45.0, 21.6, 21.2, 20.9 (b).

SFC: Chiralcel IA, 150 bar, 10% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 4.2 (b), 5.4 (b), 5.9 (a) and 9.5 (a) min.

225	7-Methyl-6-phenyl-3-tosyl-3-azabicyclo[4.1.0]hept-4-ene		
/=		Chemical Formula: C ₂₀ H ₂₁ NO ₂ S	
TsN	\sum_{n}	Molecular Weight: 339.45	
	H	$R_f = 0.45$ (Petroleum ether /EtOAc: 9/1; Kagi-Mosher; UV)	

Starting from 102 mg (0.3 mmol, 1 equiv. M = 339.45) of enyne **200**, following the general experimental procedure **[D]** using 11 mg Ph₃PAuCl (5 mol%) and 7.9 mg AgOTf (7 mol%) in 2.5 mL CH₂Cl₂ at room temperature for 17 h, the bicyclo[4.1.0]heptene **225** was observed in full conversion. The spectral data were in accordance with literature.³⁹

Starting from 59 mg (0.15 mmol, 1 equiv. M = 393.55) of enyne **213**, following the general experimental procedure **[D]** using 5.5 mg Ph₃PAuNTf₂ (5 mol%) in 1.5 mL CH₂Cl₂ at room temperature for 18 h, diene **226** was obtained as a white solid (55.8 mg, 95%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.21 – 7.13 (m, 5H), 5.94 (t, *J* = 3.3 Hz, 1H), 5.39 (sl, 1H), 3.87 (dd, *J* = 17.0, 2.6 Hz, 1H), 3.53 – 3.42 (m, 2H), 3.16 (sl, 1H), 2.88 (dd, *J* = 11.5, 4.3 Hz, 1H), 2.35 (s, 3H), 1.92 – 1.77 (m, 4H), 1.55 – 1.31 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 143.6, 140.1, 137.8, 136.0, 133.8, 129.7, 128.3, 127.8, 127.3, 126.1, 125.8, 120.8, 47.6, 45.4, 45.3, 27.4, 25.4, 23.0, 22.3, 21.6.
227	4-Phenyl-3-(prop-1-en-2-yl)-3,6-dihydro-2 <i>H</i> -pyran
	Chemical Formula: C ₁₄ H ₁₆ O
Ó́F	Ph Molecular Weight: 200.28
	= Aspect: yellow oil
	$R_f = 0.67$ (Petroleum ether / EtOAc, 85/15; Kagi-Mosher; UV)

Starting from 100 mg (0.5 mmol, 1 equiv. M = 200.28) of enyne **215**, following the general experimental procedure **[D]** using 12.4 mg Ph₃PAuCl (5 mol%) and 9 mg (7 mol%) AgOTf in 3.4 mL CH₂Cl₂ at room temperature for 30 min, the diene **227** was obtained as a yellow oil (12 mg, 12%). The spectral data were in accordance with literature.³⁹

122	Dimethyl 4,4-dimethyl-1,3,3a,4-tetrahydro-2 <i>H</i> -cyclopenta[<i>b</i>]		
		naphthalene-2,2-dicarboxylate	
		Chemical Formula: C ₁₉ H ₂₂ O ₄	
MeO ₂ C MeO ₂ C		Molecular Weight: 314.38	
		Aspect: colorless oil	
		$R_f = 0.57$ (Petroleum ether / EtOAc, 9/1; Kagi-	
		Mosher; UV)	

Starting from 94.3 mg (0.3 mmol, 1 equiv. M = 314.38) of enyne **121**, following the general experimental procedure **[D]** using $11 \text{mg Ph}_3\text{PAuNTf}_2(5 \text{ mol}\%)$ in 2 mL CH₂Cl₂ at room temperature for 17 h, the cyclized product **122** was obtained as a colorless oil (82 mg, 87%). The spectral data were in accordance with literature.⁷⁰

Starting from 92 mg (0.2 mmol, 1 equiv. M = 421.6) of enyne **202**, following the general experimental procedure **[D]** using 7.4 mg Ph₃PAuNTf₂ (5 mol%) in 2 mL CH₂Cl₂ at

room temperature for 21 h, the two dienes **228** and **229** were obtained in mixture as a yellow solid (27 mg, 29%).

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2+4H, **a+b**), 7.25 (d, J = 8.3 Hz, 2+4H, **a+b**), 7.21 – 7.13 (m, 5+10H, **a+b**), 5.97 (t, J = 3.3 Hz, 1H₁, **a**), 5.93 (t, J = 3.3 Hz, 2H₂, **b**), 5.22 (t, J = 10.2 Hz, 2H₆, **b**), 4.97 (sl, 1H₃, **a**), 4.88 (t, J = 10.0 Hz, 2H₅, **b**), 4.84 (s, 1H₄, **a**), 4.76 (s, 1H₄, **a**), 3.94 (dd, J = 17.0, 2.6 Hz, 1H, **a**), 3.80 (d, J = 17.0, 2.4 H, **b**), 3.56 – 3.29 (m, 2+8H, **a+b**), 3.02 (dd, J = 11.5, 4.3 Hz, 2H, **b**), 2.76 (dd, J = 11.5, 4.3 Hz, 1H, **a**), 2.52 (m, 1+2H, **a+b**), 2.36 (s, 3+6H, **a+b**), 2.12 – 1.93 (m, 4H, **a**), 1.57 (s, 3+6H, **a+b**), 1.51(s, 6H, **b**), 1.45 (s, 3+6H, **a+b**).

17	6-Phenyl-3-tosyl-3-azabicyclo[4.1.0]hept-4-ene		
		Chemical Formula: C ₁₉ H ₁₉ NO ₂ S	
TsN	⁻ Ph	Molecular Weight: 325.43	
		Aspect: white crystal	
		$R_f = 0.30$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)	

Starting from 97.6 mg (0.3 mmol, 1 equiv. M = 325.43) of enyne 16, following the general experimental procedure [D] using 8.8 mg 179 (4 mol%) and 4.6 mg AgNTf₂ (4 mol%) in 3 mL toluene at 100°C for 46 h, bicyclo[4.1.0]heptene 17 was obtained as a white crystal (82 mg, 84%), as well as the diene 230 (15 mg, 15%). The spectral data of 17 were in accordance with literature.⁴¹

230	(E)-3-Benzylidene-4-methylene-1-tosylpyrrolidine		
		Chemical Formula: C ₁₉ H ₁₉ NO ₂ S	
TsN		Molecular Weight: 325.43	
	1	Aspect: white crystal	
		$R_f = 0.19$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)	

¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.28 – 7.14 (m, 5H), 5.43 (s, 1H), 5.14 (s, 1H), 5.03 (s, 1H), 4.31 (s, 2H), 4.16 (s, 2H), 2.40 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.7 (C_q), 143.1 (C_q), 140.2 (C_q), 138.5 (C_q), 134.3 (C_q), 130.0 (2C_{Ar}), 128.4 (4C_{Ar}), 128.0 (CH), 127.7 (2C_{Ar}), 124.2 (CH), 116.1 (CH₂), 55.7 (CH₂), 54.8 (CH₂), 21.7 (CH₃).

15	6,7-Diphenyl-3-oxabicyclo[4.1.0]hept-4-ene		
		Chemical Formula: C ₁₈ H ₁₆ O	
o(Ph	Molecular Weight: 248.33	
	Ph H	Aspect: colorless oil	
		$R_f = 0.66$ (Petroleum ether / Et ₂ O, 9/1; Kagi-Mosher; UV)	

Starting from 50 mg (0.2 mmol, 1 equiv. M = 248.33) of enyne 14, following the general experimental procedure [D] using 4.4 mg 179 (3 mol%) and 1.5 mg AgOTf (3 mol%) in 1 mL toluene at room temperature for 3 h, bicyclo[4.1.0]heptene 15 was obtained as a colorless oil (37 mg, 74%). The spectral data were in accordance with literature.⁴⁰

231	4-Phenyl-5-(prop-1-en-2-yl)-1-tosyl-5,6-dihydropyridin-2(1 <i>H</i>)-one		
		Chemical Formula: C ₂₁ H ₂₁ NO ₃ S	
		Molecular Weight: 367.46	
		Aspect: white solid	
	\succ	$R_f = 0.18$ (Petroleum ether / EtOAc, 85/15; Kagi-Mosher; UV)	

Starting from 73.5 mg (0.2 mmol, 1 equiv. M = 367.46) of enynamide **214**, following the general experimental procedure **[D]** using 5 mg Ph₃PAuCl (5 mol%) and 3.4 mg AgSbF₆ (2.5 mol%) in 2 mL CH₂Cl₂ at room temperature for 26 h, diene **231** was obtained as a white solid (22.8 mg, 31%), as well as the Friedel-Crafts product **232** (21.8 mg, 30%). The spectral data were in accordance with literature.⁹⁵

Starting from 73.5 mg (0.2 mmol, 1 equiv. M = 367.46) of enynamide **214**, following the general experimental procedure **[D]** using 3.9 mg AgNTf₂ (5 mol%) in 2 mL CH₂Cl₂ at room temperature, the Friedel-Crafts product **232** was obtained as a white solid (71 mg, 97%). The structure was determined by the X-Ray diffraction of the analogue compound which is substituted a bromide on *para* position of phenyl.¹⁴³

¹⁴³ The crystal was obtained by X. Chen (Université Côte d'Azur, Ph. D. candidate).

¹**H NMR (400 MHz, CDCl₃)** δ 8.00 (d, J = 8.4 Hz, 2H), 7.38 – 7.14 (m, 7H), 4.19 (t, J = 9.8 Hz, 1H), 3.79 (dd, J = 9.8, 8.0 Hz, 1H), 3.10 (ddd, J = 9.8, 8.0, 3.4 Hz, 1H), 2.44 (s, 3H), 1.46 (s, 3H), 0.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.2, 145.3, 145.2, 135.3, 131.8, 131.2, 130.9, 130.7, 129.9, 129.8, 128.1, 127.1, 124.0, 46.2, 41.0, 36.8, 24.8, 21.9, 21.7.

HRMS (EI) m/z calc. for C₂₁H₂₁NO₃S [M+H]⁺ 368.1320, found: 368.1312.

236	3-(2-Methoxypropan-2-yl)-4-phenyl-1-tosyl-1,2,3,6-	
		teti anyui opyi iune
	\	Chemical Formula: C ₂₂ H ₂₇ NO ₃ S
TsN	}—Ph	Molecular Weight: 385.52
/	\sum	Aspect: white solid
	OMe	$R_f = 0.28$ (Petroleum ether / EtOAc, 85/15; Kagi-Mosher; UV)

Starting from 70.7 mg (0.2 mmol, 1 equiv. M = 353.48) of enyne **10** and 40.5 µL MeOH (1 mmol, 5 equiv. M = 32.04, d = 0.792), following the general experimental procedure **[E]** using 8 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (2.5 mol%) and 5.4 mg AgNTf₂ (7 mol%) in 2 mL CDCl₃ for 21 h, the ether **236** was obtained as a white solid (54 mg, 70%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.64 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 7.23 – 7.06 (m, 5H), 5.69 (t, J = 3.3 Hz, 1H), 4.25 (d, J = 11.5 Hz, 1H), 4.04 (dd, J = 17.2, 3.7 Hz, 1H), 3.21 (dt, J = 17.2, 3.3 Hz, 1H), 2.99 (s, 3H), 2.89 (s, 1H), 2.41 (dd, J = 11.5, 3.7 Hz, 1H), 2.35 (s, 3H), 1.22 (s, 3H), 0.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.7, 143.4, 138.7, 132.7, 129.7, 128.3, 127.9, 127.1, 126.4, 124.2, 77.9, 49.0, 45.5, 45.3, 44.2, 26.0, 22.5, 21.6.

SFC: Chiralcel AD-H, 150 bar, 15% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 6.3 and 10.2 min.

HRMS (EI) *m/z* calc. for C₂₂H₂₇NO₃S [M+H]⁺ 386.1790, found: 386.1780.

Starting from 70.7 mg (0.2 mmol, 1 equiv. M = 353.48) of enyne 10, following the general experimental procedure [D] using 9.5 mg [XPhosAu(MeCN)]SbF₆(5 mol%) in 2 mL MeOH at room temperature for 32 h, the product 237 was obtained as a colorless oil (9.3 mg, 12%), as well as the ketone 238 (4.5 mg, 6%) and the ether 236 (40 mg, 52%) were obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.18 (m, 7H), 5.06 (t, *J* = 6.9 Hz, 1H), 5.01 (t, *J* = 6.8 Hz, 1H), 3.99 (d, *J* = 6.8 Hz, 2H), 3.77 (d, *J* = 6.9 Hz, 2H), 3.41 (s, 3H), 2.36 (s, 3H), 1.60 (s, 3H), 1.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.4, 143.1, 137.7, 136.7, 135.0, 129.7 (2C), 128.6, 128.5 (2C), 127.4 (2C), 126.6 (2C), 119.4, 108.7, 58.6, 45.2, 42.7, 26.0, 21.6, 18.0.

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.62 – 7.39 (m, 3H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.03 (t, *J* = 7.1 Hz, 1H), 3.82 (d, *J* = 7.1 Hz, 2H), 3.49 – 3.33 (m, 4H), 2.43 (s, 3H), 1.63 (s, 3H), 1.62 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 198.7, 143.4, 137.6, 136.7, 134.7, 133.5, 129.8(2C), 128.8(2C), 128.2(2C), 127.4(2C), 119.1, 47.0, 43.3, 39.3, 25.9, 21.7, 18.0.

Starting from 35 mg (0.1 mmol, 1 equiv. M = 353.48) of enyne **10** and 29 µL ethanol (0.5 mmol, 5 equiv. M = 46.07, d = 0.789), following the general experimental procedure **[E]** using using 3.7 mg (*R*)-DTB-MeOBIPHEP-(AuCl)₂ (2.5 mol%) and 2 mg AgNTf₂ (5 mol%) in 1 mL CDCl₃ at room temperature for 48 h,, the ether **239** was obtained as a white solid (28.2 mg, 71%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.63 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.21 – 7.00 (m, 5H), 5.67 (t, J = 3.3 Hz, 1H), 4.23 (dd, J = 11.6, 1.0 Hz, 1H), 4.03 (dd, J = 17.1, 3.8 Hz, 1H), 3.29 – 3.06 (m, 3H), 2.90 (sl, 1H), 2.42 (dd, J = 11.6, 3.8 Hz, 1H), 2.35 (s, 3H), 1.23 (s, 3H), 0.86 (s, 3H), 0.78 (t, J = 6.9 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.6, 139.1, 132.9, 129.7, 128.2, 127.9, 126.9, 126.5, 123.9, 77.7, 56.1, 46.0, 45.3, 44.4, 26.2, 23.2, 21.6, 15.7.

SFC: Chiralcel AD, 150 bar, 15% MeOH, flow rate 3.0 mL / min, UV wavelength: λ = 220 nm. Retention time: 4.2 and 7.3 min.

HRMS (EI) m/z calc. for C₂₃H₂₉NO₃S [M+H]⁺ 400.1946, found: 400.1940. [α] $_{D^{20}}$: +194.5 (DCM, c = 1.5) at 91% *ee*+

240	3-(2-(Allyloxy)propan-2-yl)-4-phenyl-1-tosyl-1,2,3,6-		
		tetrahydropyridine	
	λ	Chemical Formula: C ₂₄ H ₂₉ NO ₃ S	
TsN	Ph	Molecular Weight: 411.56	
/	- 0	Aspect: white solid	
		$R_f = 0.33$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)	

Starting from 70.7 mg (0.2 mmol, 1 equiv. M = 353.48) of enyne **10** and 68 µL allyl alcohol (1 mmol, 5 equiv. M = 58.08, d = 0.854), following the general experimental procedure **[E]** using 8 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (2.5 mol%) and 5.4 mg AgNTf₂ (7 mol%) in 2 mL toluene at room temperature for 105 h,, the ether **240** was obtained as a white solid (46.6 mg, 57%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.31 – 7.14 (m, 5H), 5.76 (t, *J* = 3.3 Hz, 1H), 5.61 (ddt, *J* = 17.2, 10.5, 5.3 Hz, 1H), 5.09 (ddd, *J* = 17.2, 3.5, 1.7 Hz, 1H), 5.03 – 4.94 (m, 1H), 4.35 (dd, *J* = 11.7, 1.1 Hz, 1H), 4.12 (dd, *J* = 17.2, 3.5 Hz, 1H), 3.88 – 3.71 (m, 2H), 3.29 (dt, *J* = 17.2, 2.6 Hz, 1H), 3.01 (sl, 1H), 2.50 (dd, *J* = 11.7, 4.0 Hz, 1H), 2.43 (s, 3H), 1.34 (s, 3H), 0.95 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.7, 143.5, 138.9, 135.9, 132.8, 129.7, 128.3, 127.9, 127.1, 126.5, 124.1, 115.5, 78.3, 62.5, 46.2, 45.3, 44.4, 26.3, 23.1, 21.6.

SFC: Chiralcel AD-H, 150 bar, 15% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time : 2.8 and 5.5 min.

HRMS (EI) *m/z* calc. for C₂₄H₂₉NO₃S [M+H]⁺412.1946, found: 412.1940.

241	3-(2-(Benzyloxy)propan-2-yl)-4-phenyl-1-tosyl-1,2,3,6-		
		tetrahydropyridine	
TeN	Ph	Chemical Formula: C ₂₈ H ₃₁ NO ₃ S	
OBn	\searrow	Molecular Weight: 461.62	
		Aspect: white solid	
	OBI	$R_f = 0.57$ (Petroleum ether / EtOAc, 88/12; Kagi-	
		Mosher; UV)	

Starting from 70.7 mg (0.2 mmol, 1 equiv. M = 353.48) of enyne **10** and 103 µL benzyl alcohol (1 mmol, 5 equiv. M = 108.14, d = 1.044), following the general experimental procedure **[E]** using 8 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (2.5 mol%) and 5.4 mg AgNTf₂ (5 mol%) in 2 mL CDCl₃ at room temperature for 113 h, the ether **241** was obtained as a white solid (50 mg, 54%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.40 – 7.17 (m, 10H), 7.14 (d, *J* = 6.4 Hz, 2H), 5.82 (t, *J* = 3.3 Hz, 1H), 4.47 (d, *J* = 11.8 Hz, 1H), 4.38 (dd, *J* = 27.3, 11.0 Hz, 2H), 4.19 (dd, *J* = 17.2, 3.6 Hz, 1H), 3.34 (dt, *J* = 17.2, 2.5 Hz, 1H), 3.10 (sl, 1H), 2.52 (dd, *J* = 11.8, 3.6 Hz, 1H), 2.45 (s, 3H), 1.48 (s, 3H), 1.07 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 143.7, 143.5, 139.5, 138.9, 132.8, 129.7, 128.4, 128.2, 127.9, 127.6, 127.1, 127.1, 126.5, 124.3, 78.7, 63.5, 46.6, 45.4, 44.5, 26.2, 22.9, 21.6. SFC: Chiralcel AD-H, 150 bar, 15% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 6.3 and 10.2 min.

HRMS (EI) *m/z* calc. for C₂₈H₃₁NO₃S [M+H]⁺ 462.2103, found: 462.2091.

Starting from 70.7 mg (0.2 mmol, 1 equiv. M = 353.48) of enyne **10** and 108 µL H₂O (6 mmol, 30 equiv. M = 18, d = 1), following the general experimental procedure [E] using 9.5 mg [XPhosAu(MeCN)]SbF₆ (5 mol%) in 2 mL dioxane at room temperature for 96 h, the alcohol **242** was obtained as a white solid (62 mg, 83%) and the diene **11** (3.5 mg, 5%) was also obtained.

¹**H NMR (400 MHz, CDCl₃)** δ 7.65 (d, J = 8.2 Hz, 2H), 7.33 – 7.12 (m, 7H), 5.75 (t, J = 3.3 Hz, 1H), 4.22 (d, J = 11.9, 1H), 4.10 (dd, J = 17.2, 3.7 Hz, 1H), 3.25 (dt, J =

17.2, 2.5 Hz, 1H), 2.84 (s, 1H), 2.46 (dd, *J* = 11.9, 3.7 Hz, 1H), 2.37 (s, 3H), 1.92 (br, 1H), 1.17 (s, 3H), 1.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.0, 142.6, 138.7, 132.4, 129.9, 128.7, 127.9, 127.7, 126.5, 123.6, 74.0, 47.4, 45.7, 45.5, 30.3, 28.6, 21.7.

SFC: Chiralcel OD-H, 150 bar, 5% MeOH, flow rate 3.0 mL / min, UV wavelength: λ = 255 nm. Retention time: 17.1 and 19.0 min.

243	3-(2-(Allyloxy)propan-2-yl)-1-tosyl-4-vinyl-1,2,3,6- tetrahydropyridine		
		Chemical Formula: C ₂₀ H ₂₇ NO ₃ S	
J = 3.4 Hz		Molecular Weight: 361.50	
		Aspect: yellow oil	
	\sim \times \sim \ll	$R_f = 0.5$ (Petroleum ether / EtOAc, 90/10; Kagi-	
		Mosher; UV)	

Starting from 300 mg (1 mmol, 1 equiv. M = 303.42) of enyne **207** and 680 µL allyl alcohol (10 mmol, 10 equiv. M = 58.08, d = 0.854), following the general experimental procedure [E] using 19 mg [XPhosAu(MeCN)]SbF₆ (2 mol%) in 10 mL CH₂Cl₂ at room temperature for 71 h, the ether **243** with 6-membered ring was obtained as a yellow oil (214.6 mg, 59%), as well as the ether **244** with 5-membered ring (47 mg, 13%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 6.24 (dd, J = 17.3, 11.0 Hz, 1H), 5.93 (ddt, J = 17.3, 10.5, 5.3 Hz, 1H), 5.78 (t, J = 3.4 Hz, 1H), 5.36 – 5.21 (m, 2H), 5.12 (ddd, J = 10.5, 3.1, 1.4 Hz, 1H), 4.94 (d, J = 11.0 Hz, 1H), 4.14 (dd, J = 11.7, 1.7 Hz, 1H), 4.03 (dd, J = 17.8, 3.4 Hz, 1H), 3.99 – 3.88 (m, 2H), 3.24 (d, J = 17.8 Hz, 1H), 2.59 (sl, 1H), 2.41 (s, 3H), 2.35 (dd, J = 11.7, 3.9 Hz, 1H), 1.34 (s, 3H), 1.22 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.7, 139.1, 136.8, 136.2, 132.7, 129.7, 127.9, 122.8, 115.7, 113.1, 78.3, 62.6, 45.1, 44.8, 44.3, 25.6, 23.2, 21.6.

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 6.41 (dt, J = 17.0, 10.5 Hz, 1H), **6.02 (d, J = 11.0 Hz, 1H)**, 5.79 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H), 5.20 (dd, J = 17.0, 1.7 Hz, 1H), 5.17 – 5.04 (m, 3H), 4.02 (d, J = 13.8 Hz, 1H), 3.84 (ddt, J = 18.4, 5.3, 1.5 Hz, 1H), 3.80 – 3.70 (m, 3H), 3.13 (dd, J = 10.0, 7.4 Hz, 1H), 3.03 (d, J = 7.4 Hz, 1H), 2.41 (s, 3H), 1.16 (s, 3H), 1.08 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.6, 137.9, 135.8, 133.9, 133.5, 129.8, 129.7, 127.9, 127.8, 127.0, 118.2, 115.7, 77.9, 62.9, 53.7, 49.8, 49.7, 24.0, 22.6, 21.7.

Starting from 190.5 mg (0.6 mmol, 1 equiv. M = 317.45) of enyne **208**2 and 204 µL allyl alcohol (3 mmol, 5 equiv. M = 58.08, d = 0.854), following the general experimental procedure **[E]** using 28 mg [XPhosAu(MeCN)]SbF₆ (5 mol%) in 6 mL CH₂Cl₂ at room temperature for 48 h, the ether **245** was obtained as a yellow oil (144 mg, 64%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 5.92 (ddd, J = 22.4, 10.5, 5.3 Hz, 1H), 5.72 (t, J = 3.4 Hz, 1H), 5.30 (dd, J = 17.2, 1.7 Hz, 1H), 5.11 (dd, J = 10.5, 1.5 Hz, 1H), 4.91 (s, 1H), 4.79 (s, 1H), 4.22 (dd, J = 11.6, 1.5 Hz, 1H), 4.02 (dd, J = 17.4, 3.5 Hz, 1H), 3.92 (qd, J = 12.2, 5.3 Hz, 2H), 3.21 (d, J = 17.4 Hz, 1H), 2.71 (s, 1H), 2.42 (s, 3H), 2.33 (dd, J = 11.6, 3.9 Hz, 1H), 1.81 (s, 3H), 1.32 (s, 3H), 1.20 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.0, 143.6, 140.0, 136.2, 132.7, 129.7, 127.9, 121.2, 115.6, 112.2, 78.4, 62.7, 45.0, 44.3, 44.3, 25.2, 23.0, 21.7, 21.6.
MS (Cl): calc. for C₂₁H₂₉NO₃S: 375, found: 376 [M+H⁺]

The Grubbs II catalyst (3.4 mg, 2 mol%) was added into the solution of 72 mg (0.2 mmol, 1 equiv. M = 361.5) of diene **243** in 20 mL CH₂Cl₂ at room temperature for 18 h, the bicyclic product **246** was obtained as a white solid (50 mg, 75%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.06 (d, J = 11.0 Hz, 1H), 5.79 – 5.69 (m, 1H), 5.68 (s, 1H), 4.39 (d, J = 17.5 Hz, 1H), 4.09 – 3.95 (m, 2H), 3.57 (dd, J = 12.1, 1.8 Hz, 1H), 3.23 (d, J = 17.5 Hz, 1H), 2.67 (sl, 1H), 2.59 (dd, J = 12.1, 4.8 Hz, 1H), 2.42 (s, 3H), 1.38 (s, 3H), 1.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.8, 134.9, 132.6, 132.4, 131.4, 129.8, 127.9, 124.2, 78.6, 60.9, 46.6, 44.9, 44.6, 25.4, 24.2, 21.7.

247	3-(Prop-1-en-2-yl)-1-tosyl-4-vinyl-1,2,3,6-tetrahydropyridine	
		Chemical Formula: C ₁₇ H ₂₁ NO ₂ S
TsN	//	Molecular Weight: 303.42
Aspect: o		Aspect: colorless oil
/		$R_f = 0.67$ (Petroleum ether / EtOAc, 85/15; Kagi-Mosher; UV)

Starting from 250 mg (0.82 mmol, 1 equiv. M = 303.42) of enyne **207**, following the general experimental procedure **[D]** using 30.4 mg Ph₃PAuNTf₂ (5 mol%) in 8 mL CH₂Cl₂ at room temperature for 24 h, diene **247** was obtained as a colorless oil (168 mg, 67%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.66 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.21 (dd, J = 17.5, 10.9 Hz, 1H), 5.73 (t, J = 3.4 Hz, 1H), 5.11 (d, J = 17.5 Hz, 1H), 4.98 (d, J = 10.9 Hz, 1H), 4.92 (s, 1H), 4.76 (s, 1H), 3.98 (dd, J = 17.5, 3.8 Hz, 1H), 3.66 (dd, J = 11.6, 3.4 Hz, 1H), 3.33 (d, J = 17.5 Hz, 1H), 3.08 (s, 1H), 2.71 (dd, J = 11.6, 3.4 Hz, 1H), 2.42 (s, 3H), 1.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.9, 143.6, 137.0, 136.3, 133.5, 129.7, 127.8, 124.0, 114.3, 113.4, 47.3, 45.1, 42.6, 21.6, 21.4.

Starting from 95 mg (0.3 mmol, 1 equiv. M = 317.45) of enyne **208**, following the general experimental procedure **[D]** using 11 mg Ph₃PAuNTf₂ (5 mol%) in 3 mL

CH₂Cl₂ at room temperature for 24 h, diene **248** was obtained as a colorless oil (63 mg, 66%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.60 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 5.74 (t, J = 3.5 Hz, 1H), 4.87 (s, 1H), 4.83 (s, 2H), 4.64 (s, 1H), 3.95 (dd, J = 17.5, 4.0 Hz, 1H), 3.61 (dd, J = 11.4, 3.5 Hz, 1H), 3.29 (d, J = 17.5 Hz, 1H), 3.08 (sl, 1H), 2.63 (dd, J = 11.4, 3.5 Hz, 1H), 2.36 (s, 3H), 1.77 (s, 3H), 1.72 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.6, 143.6, 141.1, 137.7, 133.5, 129.9, 129.7, 127.9, 120.3, 114.0, 112.8, 77.5, 77.2, 76.8, 47.5, 45.2, 43.4, 21.7, 21.6, 20.8.

249	Dimethyl 4-(prop-1-en-2-yl)-2-tosyl-1,2,3,4,6,8a-	
		hexahydroisoquinoline-7,8-dicarboxylate
		Chemical Formula: C ₂₃ H ₂₇ NO ₆ S
MeO ₂ C	CO ₂ Me	Molecular Weight: 445.53
	\mathbf{Y}	Aspect: yellow solid
TsN >=-/	/	$R_{f} = 0.25$ (Petroleum ether / EtOAc, 85/15; Kagi-
*		Mosher; UV)
		$R_f = 0.21$ (Petroleum ether / EtOAc, 85/15; Kagi-
		Mosher; UV)

61 mg (0.2 mmol, 1 equiv. M = 303.42) of enyne **247** and dimethyl acetylenedicarboxylate (DMAD) (113 mg, 0.8 mmol, 4 equiv. M = 142.11, d = 1.156) were added in 2 mL toluene at 100°C for 29 h, the Diels-alder products **249** were obtained as a yellow solid (61.5 mg, 69%).

Diastereoismer-1:

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 5.34 (s, 1H), 5.02 (s, 1H), 4.64 (s, 1H), 4.13 – 4.05 (m, 1H), 3.95 – 3.88 (m, 1H), 3.85 (s, 3H), 3.75 (s, 3H), 3.31 (dd, J = 11.1, 4.3 Hz, 1H), 3.00 – 2.91 (m, 2H), 2.77 (d, J = 10.3 Hz, 1H), 2.42 (s, 3H), 2.30 (t, J = 11.4 Hz, 1H), 2.15 (t, J = 11.1 Hz, 1H), 1.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 167.6, 143.8, 142.3, 134.9, 134.2, 133.9, 132.53, 129.9, 127.6, 115.4, 113.3, 52.7, 52.5, 51.8, 51.5, 48.2, 39.0, 28.3, 23.1, 21.7. Diastereoismer-2:

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.53 (s, 1H), 5.20 (s, 1H), 5.05 (s, 1H), 4.16 (d, J = 11.5 Hz, 1H), 4.04 – 3.96 (m, 1H), 3.83 (s, 3H), 3.75 (s, 3H), 3.49 (dt, J = 14.9, 5.8 Hz, 1H), 3.02 – 2.93 (m, 2H), 2.82 (s, 1H), 2.42 (s, 3H), 2.30 (dd, J = 11.5, 4.0 Hz, 1H), 2.01 (t, J = 10.8 Hz, 1H), 1.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 167.7, 143.8, 142.0, 133.9, 133.7, 133.1, 132.7, 129.8, 127.8, 118.8, 114.0, 52.7, 52.6, 51.8, 49.8, 48.3, 35.1, 28.1, 22.4, 21.7.

253-dia-1 (R)-3-(2-((R)	(<i>R</i>)-3-(2-((<i>R</i>)-1-(4-Bromophenyl)ethoxy)propan-2-yl)-4-phenyl- 1-tosyl-1,2,3,6-tetrahydropyridine	
TsN (R) Ph	Chemical Formula: $C_{29}H_{32}BrNO_3S$ Molecular Weight: 554.54 Aspect: pale yellow solid $R_f = 0.31$ (Tol / CH ₂ Cl ₂ , 7/1; Kagi-Mosher; UV)	

Starting from 106 mg (0.3 mmol, 1 equiv. M = 353.48) of enyne **10** and 68 μ L (*R*)-4bromo- α -methylbenzyl alcohol (0.45 mmol, 1.5 equiv. M = 201.06, d = 1.322), following the general experimental procedure **[E]** using 14 mg [XPhosAu(MeCN)]SbF₆ (5 mol%) in 3 mL CH₂Cl₂ at room temperature for 22 h, the (*R*, *R*)-**253** (*dia*-1) was obtained as a pale yellow solid (47 mg, 28%), as well as the pale yellow solid (*S*, *R*)-**253** (*dia*-2) (50 mg, 30%, *dr* = 1:1).

¹**H NMR (400 MHz, CDCl**₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.23 – 7.06 (m, 5H), 7.03 (d, J = 8.4 Hz, 2H), 5.71 (t, J = 3.0 Hz, 1H), 4.41 (q, J = 6.4 Hz, 1H), 4.22 (d, J = 12.0 Hz, 1H), 4.02 (dd, J = 17.2, 3.8 Hz, 1H), 3.21 (dt, J = 17.2, 3.0 Hz, 1H), 2.94 (sl, 1H), 2.46 (dd, J = 12.0, 3.8 Hz, 1H), 2.35 (s, 3H), 1.01 (s, 3H), 0.98 (s, 3H), 0.81 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.5, 143.9, 143.7, 139.1, 132.6, 131.3 (2C), 129.8 (2C), 128.1 (2C), 128.0 (2C), 127.6 (2C), 126.9, 126.6 (2C), 123.8, 120.3, 79.8, 68.6, 47.6, 45.4, 44.6, 26.0, 25.0, 24.8, 21.7.

HRMS (EI) *m/z* calc. for C₂₉H₃₂BrNO₃S [M+H]⁺ 554.1365, found: 554.1341.

Crystallographic structural data: see appendix. The single crystal was obtained in DCM/heptane (HPLC quality) by using a combined method of slow evaporation and vapor diffusion.¹³³

253-dia-2	(S)-3-(2-((R)-1-(4-Bromophenyl)ethoxy)propan-2-yl)-4-phenyl-	
		1-tosyl-1,2,3,6-tetrahydropyridine
т		Chemical Formula: C ₂₉ H ₃₂ BrNO ₃ S
1.		Molecular Weight: 554.54
(R)	Ph	Aspect: pale yellow solid
	0~ \	R _f = 0.25 (Tol / CH ₂ Cl ₂ , 7/1; Kagi-Mosher; UV)
Br		

¹**H NMR (400 MHz, CDCl**₃) δ 7.58 (d, J = 8.3 Hz, 2H), 7.29 – 7.07 (m, 9H), 6.86 (d, J = 8.4 Hz, 2H), 5.69 (t, J = 3.0 Hz, 1H), 4.53 (q, J = 6.4 Hz, 1H), 4.30 (d, J = 11.3 Hz, 1H), 4.02 (dd, J = 17.2, 3.8 Hz, 1H), 3.16 (dt, J = 17.2, 3.0 Hz, 1H), 2.91 (sl, 1H), 2.35 (s, 3H), 2.23 (dd, J = 11.3, 3.8 Hz, 1H), 1.31 (s, 3H), 1.22 (d, J = 6.4 Hz, 3H), 0.61 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.3, 143.7, 143.2, 138.5, 132.5, 131.2 (2C), 129.8 (2C), 128.4 (2C), 127.9 (2C), 127.7 (2C), 127.2 (2C), 126.5, 124.4, 120.3, 79.8, 69.5, 46.8, 45.5, 44.5, 27.8, 26.5, 23.2, 21.7.

HRMS (EI) *m/z* calc. for C₂₉H₃₂BrNO₃S [M+H]⁺ 554.1365, found: 554.1362.

Crystallographic structural data: see appendix. The single crystal was obtained in MeOH/hexane and MeOH/heptane (HPLC quality) by using a combined method of slow evaporation and vapor diffusion.¹³³

254	Diisopropyl 3-((1-methyl-1 <i>H</i> -indol-3-yl)(phenyl)methyl)-	
		4-methylene-cyclopentane-1,1-dicarboxylate
		Chemical Formula: C ₃₀ H ₃₅ NO ₄
n L		Molecular Weight: 473.61
лаа Н	Ŷ	Aspect: orange oil
iPrO ₂ C	✓ Ph	$R_f = 0.22$ (Petroleum ether / EtOAc, 90/10; Kagi-Mosher;
11020	N N	UV)

Following the procedure [E], starting from enyne 82-1 (68.5 mg, 0.2 mmol, 1 equiv.), *N*-methylindole (78.7 mg, 0.6 mmol, 3 equiv.), gold catalyst 183 (4.7 mg, 2.5 mol%) and AgOTf (1.3 mg, 2.5 mol%) in 1 mL Et₂O (0.2 M) for 6h, carbocycle 254 was isolated in 88% yield (83.3 mg). The spectral data were in accordance with literature.^{58b} HPLC: Chiralcel AD, *n*-hexane / *i*-PrOH (98:2), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 8.0 and 8.9 min. [α] p^{20} : +4.5 (DCM, c = 3) at 55% *ee*

255	(3-Methylene-4-(phenyl(2,4,6-trimethoxyphenyl)methyl) cyclopentane-1,1-disulfonyl)dibenzene	
	ОМе	Chemical Formula: C ₃₄ H ₃₄ O ₇ S ₂
		Molecular Weight: 618.76
Me	OMe	Aspect: white solid.
PhO ₂ S	Ph	$R_f = 0.32$ (Petroleum ether / EtOAc, 7/3; Kagi-
PhO ₂ S´ \	M	Mosher; UV)

Following the procedure **[E]**, starting from carbon-tethered 1,6-enyne **82-2** (90 mg, 0.2 mmol, 1 equiv.), 1,3,5-trimethoxybenzene (101 mg, 0.6 mmol, 3 equiv), gold catalyst **179** (4.4 mg, 3 mol%) and AgOTf (1.5 mg, 3 mol%) in 1.2 mL Et₂O (0.2 M), carbocycle **255**was isolated in 87% yield (107.8 mg). The spectral data were in accordance with literature.^{58b}

¹**H NMR (400 MHz, CDCl₃)** δ 8.09 (d, J = 7.4 Hz, 2H), 7.89 (m, d, J = 7.4 Hz, 2H), 7.61-7.36 (m, 8H), 7.17 (t, J = 7.4 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 6.09 (s, 2H), 4.51 (d, J = 1.7 Hz, 1H), 4.48 (d, J = 10.9 Hz, 1H), 4.21 (d, J = 1.7 Hz, 1H), 4.19 – 4.10 (m, 1H), 3.82 (sl, 6H), 3.79 (s, 3H), 3.34 – 3.16 (m, 2H), 2.52 (dd, J = 15.4, 10.5 Hz, 1H), 2.24 (dd, J = 15.4, 10.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 160.0, 148.7, 143.8, 136.7, 136.6, 134.6, 134.5, 131.5, 131.4, 128.7, 128.7, 128.5, 127.7, 125.6, 113.3, 108.9, 91.3, 90.3, 55.8, 55.4, 43.2, 43.2, 39.7, 37.0.

HPLC: Chiralcel AD, *n*-hexane / *i*-PrOH (80:20), flow rate 1.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 17.0 and 22.8 min.

Following the procedure **[E]**, starting from nitrogen-tethered 1,6-enyne **84** (65 mg, 0.2 mmol, 1 equiv.), MeOH (24.3 μ L, 0.6 mmol, 3 equiv), gold catalyst **183** (4.7 mg, 2.5 mol%) and AgOTf (1.3 mg, 2.5 mol%) in 2 mL toluene (0.1 M) at 0°C for 22h, heterocycle **256** was isolated in 91% yield (64.9 mg). The spectral data were in accordance with literature.¹⁴⁴

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time : 10.7 and 13.2 min. [α] p^{20} : -52.7 (DCM, c = 1) at 71% ee

¹⁴⁴ L. Charruault, V. Michelet, R. Taras, S. Gladiali, J.-P. Genêt, Chem. Commun. 2004, 850.

257	3-Methylene-4-(phenyl(2,4,6-trimethoxyphenyl)methyl)-1-		
-	tosylpyrrolidine		
	OMe	Chemical Formula: C ₂₈ H ₃₁ NO ₅ S	
		Molecular Weight: 493.62	
MeO	OMe	Aspect: white solid	
	Ph	$R_f = 0.23$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher;	
	4	UV)	

Following the procedure [E], starting from nitrogen-tethered 1,6-enyne **84** (1.0054 g, 3.09 mmol, 1 equiv.), 1,3,5-trimethoxybenzene (1.5670 g, 9.32 mmol, 3 equiv), gold catalyst **179** (5.7 mg, 0.25 mol%) and AgOTf (2.0 mg, 0.25 mol%) in 30 mL CH₂Cl₂ (0.1 M), heterocycle **257** was isolated in 87% yield (1.3217 g). The spectral data were in accordance with literature.¹⁴⁵

Following the procedure [E], starting from nitrogen-tethered 1,6-enyne **84** (67.7 mg, 0.2 mmol, 1 equiv.), *N*-methylindole (75 μ L, 0.6 mmol, 3 equiv.), gold catalyst **183** (4.7 mg, 2.5 mol%) and AgOTf (1.3 mg, 2.5 mol%) in 2 mL toluene (0.1 M) at 0°C for 48h, heterocycle **258** was isolated in 85% yield (81.2 mg). The spectral data were in accordance with literature.¹⁴⁶

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (9:1), flow rate 1.0 mL / min, UV wavelength: $\lambda = 220$ nm. Retention time: 15.7 and 19.3 min.

 $[\alpha]_D^{20}$: +42.0 (DCM, c = 0.5) at 71% *ee*

¹⁴⁵ L. Leseurre, C.-M. Chao, T. Seki, E. Genin, P. Y. Toullec, J.-P. Genêt, V. Michelet, *Tetrahedron* **2009**, *65*, 1911.

¹⁴⁶ P. Y. Toullec, E. Genin, L. Leseurre, J.-P. Genêt, V. Michelet, Angew. Chem. Int. Ed. 2006, 45, 7427.

259	3-(Allylox	y(phenyl)methyl)-4-methylene-1-tosylpyrrolidine
		Chemical Formula: C ₂₂ H ₂₅ NO ₃ S
	н	Molecular Weight: 383.51
TsN	Ph	Aspect: white solid
L	4	$R_{f} = 0.48$ (Toluene /Petroleum ether / EtOAc, 5/4/1;
		Kagi-Mosher; UV)

Following the procedure **[E]**, starting from nitrogen-tethered 1,6-enyne **84** (65 mg, 0.2 mmol, 1 equiv.), allyl alcohol (40.8 μ L, 0.6 mmol, 3 equiv), gold catalyst **183** (4.7 mg, 2.5 mol%) and AgOTf (1.3 mg, 2.5 mol%) in 2 mL toluene (0.1 M) at 0°C for 21h, heterocycle **259** was isolated in 97% yield (74.2 mg). The spectral data were in accordance with literature.¹⁴⁷

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 8.7 and 10.4 min. [α] p^{20} : -45.3 (DCM, c = 2) at 67% ee

Following the procedure **[E]**, starting from carbon-tethered 1,6-enyne **82-2** (102.7 mg, 0.23 mmol, 1 equiv.), *N*-methylindole (90 mg, 0.68 mmol, 3 equiv.), gold catalyst **179** (1.8 mg, 1 mol%) and AgOTf (0.6 mg, 1 mol%) in 1.2 mL Et₂O (0.2 M), carbocycle **260** was isolated in 75% yield (100 mg). The spectral data were in accordance with literature.¹⁴⁵

HPLC: Chiralcel AD, *n*-hexane / *i*-PrOH (80:20), flow rate 1.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 11.3 and 18.0 min.

¹⁴⁷ C.-M. Chao, P. Y. Toullec, V. Michelet, *Tetrahedron Lett.* 2009, 50, 3719.

261	(3-((Allyloxy)(phenyl)methyl)-4-methylenecyclopentane-	
		1,1-disultonyl)dibenzene
	0~//	Chemical Formula: C ₂₈ H ₂₈ O ₅ S ₂
PhO₂S、		Molecular Weight: 508.65
PhO ₂ S		Aspect: pale yellow solid.
		$R_f = 0.56$ (Toluene / EtOAc, 9/1; Kagi-Mosher; UV)

Following the procedure [E], starting from carbon-tethered 1,6-enyne 82-2 (90 mg, 0.2 mmol, 1 equiv.), allylic alcohol (40.8 μ L, 0.6 mmol, 3 equiv), gold catalyst 183 (4.7 mg, 2.5 mol%) and AgOTf (1.3 mg, 2.5 mol%) in 2 mL toluene at 0°C for 120h, carbocycle 261 was isolated in 85% yield (86.5 mg). The spectral data were in accordance with literature.⁵⁷

HPLC: Chiralcel AD, *n*-hexane / *i*-PrOH (80:20), flow rate 1.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 14.4 and 16.5 min. $[\alpha]p^{20}: -24.6$ (DCM, c = 4) at 43% ee

Following the procedure [E], starting from carbon-tethered 1,6-enyne 82-2 (107.4 mg, 0.24 mmol, 1 equiv.), MeOH (29.0 μ L, 0.72 mmol, 3 equiv), gold catalyst 179 (1.8 mg, 1 mol%) and AgOTf (0.6 mg, 1 mol%) in 1.2 mL Et₂O (0.2 M), carbocycle 262 was isolated in 87% yield (100.5 mg). The spectral data were in accordance with literature.¹⁴⁸

HPLC: Chiralcel AD, *n*-hexane / *i*-PrOH (80:20), flow rate 1.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 11.3 and 18.0 min.

¹⁴⁸ Méndez, M.; Muñoz, M. P.; Echavarren, A. M. J. Am. Chem. Soc. 2000, 122, 11549.

263	Diisopropyl 3-((allyloxy)(phenyl)methyl)-4-	
	met	hylenecyclopentane-1,1-dicarboxylate
		Chemical Formula: C ₂₄ H ₃₂ O ₅
	Molecular Weight: 400.52	
iPrO ₂ C	Ph	Aspect: colorless oil
iPrO ₂ C	L	$R_f = 0.54$ (Petroleum ether / CH_2Cl_2 / Et_2O , 6/3/1;
		Kagi-Mosher; UV)

Following the procedure [E], starting from carbon-tethered 1,6-enyne 82-1 (108.1 mg, 0.32 mmol, 1 equiv.), allylic alcohol (61.2 μ L, 0.9 mmol, 3 equiv), gold catalyst 179 (2.2 mg, 1 mol%) and AgOTf (0.8 mg, 1 mol%) in 2 mL Et₂O (0.2 M), carbocycle 263 was isolated in 89% yield (110 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.37 – 7.24 (m, 5H), 5.85 (m, 1H), 5.21 (dd, J = 17.2, 1.6 Hz, 1H), 5.11 (dt, J = 6.1, 3.1 Hz, 1H), 5.08 – 4.93 (m, 2H), 4.89 (s, 1H), 4.45 (s, 1H), 4.33 (d, J = 6.2 Hz, 1H), 3.92 (ddd, J = 12.9, 3.5, 1.4 Hz, 1H), 3.74 (dd, J = 12.9, 5.9 Hz, 1H), 2.95 (dt, J = 23.5, 6.2 Hz, 2H), 2.82 (d, J = 15.8 Hz, 1H), 2.45 (dd, J = 13.3, 8.0 Hz, 1H), 2.32 (dd, J = 13.5, 8.7 Hz, 1H), 1.23 (d, J = 6.2 Hz, 6H), 1.17 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 148.8, 141.0, 135.0, 128.2, 127.6, 127.4, 116.5, 108.6, 83.2, 69.8, 68.8, 68.7, 58.8, 49.5, 42.1, 35.3, 21.7, 21.6, 21.6, 21.5.

HRMS (EI) m/z calc. for C₂₄H₃₂O₅ [M]⁺ 400.2244, found: 400.2259.

Following the procedure [E], starting from carbon-tethered 1,6-enyne 82-1 (108.1 mg, 0.32 mmol, 1 equiv.), MeOH (36.3 μ L, 0.9 mmol, 3 equiv), gold catalyst 179 (2.2 mg, 1 mol%) and AgOTf (0.8 mg, 1 mol%) in 2 mL Et₂O (0.2 M), carbocycle 264 was isolated in 88% yield (104 mg).

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 - 7.26 (m, 5H), 5.01 (m, 2H), 4.89 (s, 1H), 4.44 (s, 1H), 4.15 (d, *J* = 6.2 Hz, 1H), 3.20 (s, 3H), 2.90 (m, 3H), 2.43 (m, 1H), 2.28 (m, 1H), 1.23 (t, *J* = 5.9 Hz, 6H), 1.17 (dd, *J* = 6.2, 3.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 148.8, 140.8, 128.3, 127.6, 127.4, 108.5, 85.8, 68.8, 68.7, 58.8, 57.2, 49.6, 42.0, 35.3, 21.7, 21.6, 21.6, 21.5.

HRMS (EI) m/z calc. for C₂₂H₃₀O₅ [M]⁺ 374.2088, found: 374.2078.

HPLC: Chiralcel OX, *n*-hexane / *i*-PrOH (97:3), flow rate 0.6 mL / min, UV wavelength: $\lambda = 206$ nm. Retention time: 8.8 and 11.8 min.

265	Diisopropyl 3-((benzyloxy)(phenyl)methyl)-	
	4- m	nethylenecyclopentane-1,1-dicarboxylate
		Chemical Formula: C ₂₈ H ₃₄ O ₅
	H ∎ OBn	Molecular Weight: 450.58
iPrO ₂ (Ph	Aspect: white solid
	·	$R_{\rm f} = 0.35$ (Petroleum ether / EtOAc, 85/15; Kagi-
		Mosher; UV)

Following the procedure **[E]**, starting from carbon-tethered 1,6-enyne **82-1** (106.7 mg, 0.31 mmol, 1 equiv.), benzyl alcohol (93.2 μ L, 0.9 mmol, 3 equiv), gold catalyst **179** (2.2 mg, 1 mol%) and AgOTf (0.8 mg, 1 mol%), carbocycle **265** was isolated in 83% yield (116.3 mg).

¹**H NMR (400 MHz, CDCl**₃) δ 7.31 – 7.12 (m, 10H), 4.93 (hept, J = 6.2 Hz, 2H), 4.80 (s, 1H), 4.38 (d, J = 11.8 Hz, 1H), 4.35 – 4.26 (m, 2H), 4.18 (d, J = 11.8 Hz, 1H), 2.96 – 2.82 (m, 2H), 2.81 – 2.68 (m, 1H), 2.41 (dd, J = 13.4, 8.3 Hz, 1H), 2.27 (dd, J = 13.4, 8.3 Hz, 1H), 1.14 (d, J = 6.2 Hz, 6H), 1.10 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 171.3, 148.7, 140.9, 138.6, 128.4, 128.3, 127.7, 127.7, 127.6, 127.5, 108.7, 83.6, 70.8, 68.9, 68.7, 58.9, 49.5, 42.2, 35.5, 21.7, 21.7, 21.6, 21.6.

HRMS (EI) m/z calc. for C₂₈H₃₄O₅ [M]⁺ 450.2401, found: 450.2390.

266- <i>dia</i> -1	(<i>R</i>)-3-((<i>R</i>)-((<i>R</i>))-1-(4-Bromophenyl)ethoxy)(phenyl)methyl)- 4-methylene-1-tosylpyrrolidine
		Chemical Formula: C ₂₇ H ₂₈ BrNO ₃ S
	h =	Molecular Weight: 526.49
		Aspect: colorless oil
	' ^{II} Br	$R_f = 0.31$ (Cyclohexane / EtOAc, 92/8; Kagi-
		Mosher; UV)

Starting from 96.7 mg (0.3 mmol, 1 equiv. M = 325.43) of enyne **84** and 45.6 μ L (*R*)-4-bromo- α -methylbenzyl alcohol (0.45 mmol, 1 equiv. M = 201.06, d = 1.322), following the general experimental procedure [**E**] using 13 mg IPrAuNTf₂ (5 mol%) in 3 mL CH₂Cl₂ at room temperature for 1 h, the (*R*, *R*, *R*)-**266** was obtained as a colorless oil (46.5 mg, 30%), as well as (*S*, *S*, *R*)-**266**. (39.8 mg, 26%, *dr* = 1:1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.69 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.39 – 7.29 (m, 5H), 7.14 (dd, J = 7.6, 1.7 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 4.66 (d, J = 1.9 Hz, 1H), 4.12 (q, J = 6.5 Hz, 1H), 3.99 (d, J = 1.9 Hz, 1H), 3.90 (d, J = 8.4 Hz, 1H), 3.63 (sl, 2H), 3.60 (dd, J = 9.6, 4.5 Hz, 1H), 3.31 (dd, J = 9.6, 7.1 Hz, 1H), 2.93 (sl, 1H), 2.46 (s, 3H), 1.27 (d, J = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.8, 143.4, 141.9, 139.8, 132.5, 131.8, 129.7, 128.6, 128.5, 128.3, 128.1, 128.0, 121.6, 110.1 (CH₂), 79.0, 77.5, 77.2, 76.8, 73.9, 52.6 (CH₂), 50.9 (CH₂), 50.0, 24.3, 21.7.

Crystallographic structural data: see appendix. The crystal was obtained in MeOH/heptane (HPLC quality) by using a combined method of slow evaporation and vapor diffusion.¹³³

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.38 – 7.19 (m, 7H), 7.12 – 7.09 (m, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 4.79 (d, *J* = 1.8 Hz, 1H), 4.38 (d, *J* = 8.0 Hz, 1H), 4.30 (q, *J* = 6.4 Hz, 1H), 4.24 (d, *J* = 1.8 Hz, 1H), 3.90 (dd, *J* = 13.7, 1.6 Hz, 1H), 3.76 (dd, *J* = 9.7, 3.6 Hz, 1H), 3.68 (d, *J* = 13.7 Hz, 1H), 3.19 (dd, *J* = 9.7, 6.9 Hz, 1H), 2.92 (sl, 1H), 2.45 (s, 3H), 1.37 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.8, 143.7, 143.1, 139.9, 132.8, 131.3, 129.8, 128.2, 128.1, 128.0, 127.9, 127.8, 121.0, 110.2 (CH₂), 79.9, 77.5, 77.2, 76.8, 74.4, 52.5 (CH₂), 50.7, 50.6 (CH₂), 21.7, 21.5.

267 (3aR,4R)-4-Phenyl-2-tosyl-1,2,3,3a,4,6-hexahydropyrano[3,4-c]pyrrole TsN $\stackrel{\text{Ph}}{\overline{\cdot}}$ Chemical Formula: C₂₀H₂₁NO₃S Molecular Weight: 355.45 Aspect: white solid R_f = 0.27 (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

The Grubbs II catalyst (3.4 mg, 2 mol%) was added into the solution of 74.2 mg (0.2 mmol, 1 equiv. M = 383.51) of heterocycle **259** in 20 mL CH₂Cl₂ at room temperature for 18 h, the bicyclic product **267** was obtained as a white solid (52 mg, 75%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.38 – 7.23 (m, 5H), 7.19 (dd, *J* = 6.9, 2.9 Hz, 2H), 5.78 (s, 1H), 4.93 (d, *J* = 6.5 Hz, 1H), 4.08 (td, *J* = 4.3, 2.9 Hz, 2H), 4.05 – 3.97 (m, 1H), 3.89 – 3.79 (dt, *J* = 12.8, 1.2 Hz, 1H), 3.28 – 3.17 (t, *J* = 8.7, 1H), 2.89 (sl, 1H), 2.66 (dd, *J* = 11.1, 9.4 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.7, 138.2, 134.8, 133.9, 129.9, 128.6, 128.0, 127.5, 126.5, 120.1, 75.2, 63.0, 51.1, 49.4, 40.6, 21.6.

SFC: Chiralcel IA, 150 bar, 15% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 5.1 and 7.0 min.

HRMS (EI) m/z calc. for C₂₀H₂₁NO₃S [M+H]⁺ 356.1320, found: 356.1311. [a] p^{20} : -84.3 (DCM, c = 3) at 70% ee

90	6-Phenyl-3-tosyl-3-azabicyclo[3.1.0]hexane-1-carbaldehyde	
	сно	Chemical Formula: C ₁₉ H ₁₉ NO ₃ S
TsN	Ph	Molecular Weight: 341.43
	К Н	Aspect: white solid
		$R_f = 0.38$ (Petroleum ether / EtOAc: 8/2; Kagi-Mosher; UV)
		Purification: toluene /petroleum ether / EtOAc: 6/3/1

Starting from 97.6 mg (0.3 mmol, 1 equiv. M = 325.43) of enyne **84** and 91 mg diphenyl sulfoxide (0.45 mmol, 1.5 equiv. M = 202.27), following the general experimental procedure **[F]** using 5.5 mg IPy-Au(I) complex (2.5 mol%) and 2.5 mg AgSbF₆ (2.5 mol%) in 3 mL PhCl at room temperature for 1.5 h, the aldehyde **90** was obtained as a white solid (71.7 mg, 70%). The spectral data were in accordance with literature.⁶¹

HPLC: Chiralcel AD, *n*-hexane / *i*-PrOH (70:30), flow rate 0.7 mL / min, UV wavelength: $\lambda = 215$ nm. Retention time: 21.3 and 36.7 min. $[\alpha]_{D^{20}}$: +42.7 (DCM, c = 1) at 53% ee

3-(Propan-2-ylidene)-1-tosyl-1,2,3,6-tetrahydropyridine
Chemical Formula: C ₁₅ H ₁₉ NO ₂ S
Molecular Weight: 277.38
$R_f = 0.52$ (Petroleum ether / EtOAc: 8/2; Kagi-Mosher; UV)

Starting from 8.3 mg (0.03 mmol, 1 equiv. M = 277.38) of enyne **197** and 9.1 mg diphenyl sulfoxide (0.045 mmol, 1.5 equiv. M = 202.27), following the general experimental procedure **[F]** using 1.4 mg [XPhosAu(MeCN)]SbF₆(5 mol%) in 0.3 mL CDCl₃ at room temperature for 4 h, the diene **269** was observed in 68% conversion. The spectral data were in accordance with literature.¹⁴⁹

270	Diisopropyl-1-formyl-6-phenylbicyclo[3.1.0]hexane-3,3-dicarboxylate		
сно		Chemical Formula: C ₂₁ H ₂₆ O ₅	
		Molecular Weight: 358.43	
iPrC iPrC	P ₂ C Ph	Aspect: colorless oil	
	H	$R_f = 0.26$ (Petroleum ether / EtOAc: 9/1; Kagi-Mosher;	
		UV)	

Starting from 68.5 mg (0.2 mmol, 1 equiv. M = 342.44) of enyne **82-1** and 61 mg diphenyl sulfoxide (0.3 mmol, 1.5 equiv. M = 202.27), following the general experimental procedure [F] using 8.7 mg IPrAuNTf₂ (5 mol%) in 2 mL DCE at room temperature for 7 h, the aldehyde **270** was obtained as a colorless oil (45 mg, 63%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.70 (s, 1H), 7.43 – 7.10 (m, 5H), 5.03 (hept, *J* = 6.3 Hz, 2H), 2.99 (d, *J* = 14.6 Hz, 1H), 2.90 – 2.73 (m, 3H), 2.66 (d, *J* = 14.6 Hz, 1H), 2.56 (d, *J* = 12.8 Hz, 1H), 1.24 (d, *J* = 6.3 Hz, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 199.1, 171.8, 170.6, 134.8, 129.0, 128.8, 127.3, 69.6, 69.5, 61.6, 48.1, 39.0, 35.5, 34.4, 32.8, 21.6.

¹⁴⁹ C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas, A. M. Echavarren, *Angew. Chem. Int. Ed.* **2004**, *43*, 2402.

271	1-Tos	yloctahydro-2a <i>H</i> -cyclopropa[<i>cd</i>]indole-2a-carbaldehyde
		Chemical Formula: C ₁₆ H ₁₉ NO ₃ S
	СНО	Molecular Weight: 305.39
TsN		Aspect: white solid
,,,		$R_{\rm f}$ = 0.25 (toluene /petroleum ether/EtOAc: 6/3/1; Kagi-
		Mosher; UV)

Starting from 102 mg (0.315 mmol, 1.05 equiv. M = 289.39) of enyne **198** and 60.7 mg diphenyl sulfoxide (0.3 mmol, 1 equiv. M = 202.27), following the general experimental procedure **[F]** using IPrAuNTf₂ (5 mol%) in 3 mL DCE at 50°C for 4 h, the aldehyde **271** was obtained as a white solid (51 mg, 56%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.58 (s, 1H, CHO), 7.72 (d, J = 8.3 Hz, 2H, H_{Ar}), 7.30 (d, J = 8.3 Hz, 2H, H_{Ar}), 4.38 – 4.24 (m, 2H, -NC H_2 - and -NCHC-), 3.48 (d, J = 12.2 Hz, 1H, -NC H_2 -), 2.41 (s, 3H, C H_3), 2.34 (dd, J = 8.7, 7.0 Hz, 1H, -NCHCH-), 2.11 – 1.92 (m, 3H, H_{Cy}), 1.79 (ddd, J = 8.7, 6.5, 1.7 Hz, 1H, -CH₂CHCCHO-), 1.56 – 1.46 (m, 2H, H_{Cy}), 1.45 – 1.34 (m, 1H, H_{Cy}).

¹³C NMR (101 MHz, CDCl₃) δ 196.7 (CHO), 143.6 (*Cq*_{Ar}), 135.7 (*Cq*_{Ar}), 129.9 (2C, *CH*_{Ar}), 127.2 (2C, *CH*_{Ar}), 56.2 (-NCHC-), 47.0 (-NCH₂-), 46.8 (*Cq*CHO), 32.1 (-NCHCH-), 28.1 (*C*H_{2Cy}), 25.7 (-CH₂CHCCHO-), 21.6 (*C*H₃), 17.6 (*C*H_{2Cy}), 15.5 (*C*H_{2Cy}).

Seletive 1D NOESY : See Schéma 105

HPLC: Chiralcel AD, *n*-hexane / *i*-PrOH (70:30), flow rate 0.7 mL / min, UV wavelength: $\lambda = 225$ nm. Retention time: 13.2 (*R*, *R*, *S*, *R*) and 15.7 (*S*, *S*, *R*, *S*) min. **HRMS (EI)** *m*/*z* calc. for C₁₆H₁₉NO₃S [M+H]⁺ 306.1164, found: 306.1154.

272		6,7-Diphenyl-3-tosyl-3-azabicyclo[4.1.0]hept-4-ene
		Chemical Formula: C ₂₅ H ₂₃ NO ₂ S
	Ph	Molecular Weight: 401.52
		Aspect: white solid
	∎ °Pn H	$R_{\rm f}$ = 0.63 (toluene /petroleum ether/EtOAc: 6/3/1; Kagi-
		Mosher; UV)

Starting from 120 mg (0.3 mmol, 1 equiv. M = 401.52) of enyne **209** and 91 mg diphenyl sulfoxide (0.45 mmol, 1.5 equiv. M = 202.27), following the general experimental procedure [**F**] using IPrAuNTf₂ (5 mol%) in 3 mL DCE at 50°C for 1 h,

the bicyclo[4.1.0]heptene **272** was observed in full conversion and a NMR yield of 50%. The spectral data were in accordance with literature.¹³⁸

273	Phenyl(1-tosyloctahydro-2aH-cyclopropa[cd]indol-2a-yl)methanone	
	O,	Chemical Formula: C ₂₂ H ₂₃ NO ₃ S
	Ph	Molecular Weight: 381.49
TsŅ		Aspect: pale yellow solid
		$R_{f} = 0.4$ (toluene /petroleum ether /EtOAc: 6/3/1; Kagi-
		Mosher; UV)

Starting from 110 mg (0.3 mmol, 1 equiv. M = 365.49) of enyne **201** and 91 mg diphenyl sulfoxide (0.45 mmol, 1.5 equiv. M = 202.27), following the general experimental procedure **[F]** using IPrAuNTf₂ (5 mol%) in 3 mL DCE at 50°C for 20 h, the aldehyde **273** was obtained as a white solid (56.7 mg, 50%).

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.48 (m, 5H), 7.44 (d, J = 7.4 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 4.40 – 4.32 (m, 1H), 3.92 (q, J = 12.1 Hz, 2H), 2.61 (dd, J = 8.8, 7.1 Hz, 1H), 2.42 (s, 3H), 2.10 – 1.96 (m, 3H), 1.63 – 1.48 (m, 3H), 1.47 – 1.36 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 143.6, 137.3, 135.6, 132.7, 129.9 (2C), 128.7 (2C), 127.9 (2C), 127.0 (2C), 56.3, 51.1, 44.2, 31.5, 30.0, 27.8, 21.6, 17.9, 15.4. HRMS (EI) *m/z* calc. for C₂₂H₂₃NO₃S [M+H]⁺ 382.1477, found: 382.1468.

Starting from 138.7 mg (0.5 mmol, 1 equiv. M = 277.38) of enyne **197** and 121.5 μ L 4-anisaldehyde (1 mmol, 2 equiv. M = 136.15, d = 1.119), following the general experimental procedure **[G]** using 7.1 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 5 mL DCM at -40°C, the 1,3-diene **286** was obtained as a white solid (160 mg, 90%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.31 (m, 4H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.63 (d, *J* = 16.4 Hz, 1H), 6.27 (d, *J* = 16.4 Hz, 1H), 5.61 (s, 1H), 4.31 (s, 2H), 4.20 (s, 2H), 3.79 (s, 3H), 2.40 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 159.7, 143.5, 137.4, 134.2, 130.9, 129.8, 129.2, 127.8, 127.5, 122.2, 119.5, 114.2, 55.3, 55.2, 53.8, 21.5.
MS (Cl): calc. for C₂₀H₂₁NO₃S: 355, found: 356 [M+H⁺].

Starting from 106 mg (0.3 mmol, 1 equiv. M = 353.48) of enyne **10** and 73 µL 4anisaldehyde (0.6 mmol, 2 equiv. M = 136.15, d = 1.119), following the general experimental procedure **[G]** using 4.3 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 3 mL DCM at room temperature for 23 h, the 1,3-diene **287** was obtained as a white solid (35 mg, 27%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.40 – 7.23 (m, 5H), 7.13 – 6.97 (m, 4H), 6.90 (d, J = 8.7 Hz, 2H), 6.17 (s, 1H), 5.57 (t, J = 3.7 Hz, 1H), 4.36 (d, J = 1.1 Hz, 2H), 4.06 (d, J = 3.7 Hz, 2H), 3.84 (s, 3H), 2.43 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 159.1, 143.6, 140.7, 139.9, 134.8, 130.4, 129.9, 129.7, 129.6, 129.2, 128.9, 128.2, 128.0, 127.5, 122.9, 114.1, 55.4, 45.9, 45.2, 21.6.

Starting from 119 mg (0.5 mmol, 1 equiv. M = 238.28) of enyne 167 and 121.5 µL 4anisaldehyde (1 mmol, 2 equiv. M = 136.15, d = 1.119), following the general experimental procedure [G] using 7.1 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 5 mL DCM at -40°C, the prins product 288 was obtained as a colorless oil (99 mg, 53%), as well as the 1,3-diene 289 (28 mg, 18%) and the cycloisomerized product 290 (5 mg, 4%). The spectral data were in accordance with literature.¹¹¹ **HPLC:** Chiralcel IC, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 12.1 and 15.4 min. **MS (CI):** calc. for C₂₁H₂₆O₆: 374, found: 317 [M+H⁺-acetone].

The spectral data were in accordance with literature.¹¹¹

MS (CI): calc. for $C_{18}H_{20}O_5$: 316, found: 317 [M+H⁺] and 334 [M+NH₄⁺].

The spectral data were in accordance with literature.¹⁵⁰

Dimethyl 3-(benzo[d][1,3]dioxol-5-yl)-1,1-dimethyl-3,5,7,7a-	
ocyclopenta[<i>c</i>]pyran-6,6(1 <i>H</i>)-dicarboxylate	
Chemical Formula: C ₂₁ H ₂₄ O ₇	
Molecular Weight: 388.42	
Aspect: colorless oil	
$R_{f} = 0.20$ (Petroleum ether / EtOAc, 85/15; Kagi-	
Mosher; UV)	

¹⁵⁰ C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren, *Chem. Eur. J.* **2006**, *12*, 1677.

Starting from 119 mg (0.5 mmol, 1 equiv. M = 238.28) of enyne 167 and piperonal (150 mg, 1 mmol, 2 equiv. M = 150.13), following the general experimental procedure [G] using 7.1 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 5 mL DCM at -40°C, the prins product 291 was obtained as a colorless oil (123.5 mg, 64%), as well as the 1,3-diene 292 (35.5 mg, 22%) and the cycloisomerized product 290 (6.5 mg, 5%).

¹H NMR (300 MHz, CDCl₃) δ 6.88 – 6.67 (m, 3H), 5.92 (s, 2H), 5.48 (sl, 1H), 4.93 (sl, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 3.16 (d, *J* = 17.4 Hz, 1H), 2.96 (dd, *J* = 17.4, 2.1 Hz, 1H), 2.72 – 2.47 (m, 2H), 1.81 (t, *J* = 12.1 Hz, 1H), 1.34 (s, 3H), 1.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 172.3, 147.8, 147.2, 137.1, 135.8, 120.8, 120.3, 108.1, 108.1, 101.0, 74.5, 73.2, 58.1, 53.0, 52.9, 47.5, 38.7, 36.2, 29.5, 18.9. MS (Cl): calc. for C₂₁H₂₆O₆: 388, found: 331 [M+H⁺-acetone].

¹H NMR (300 MHz, CDCl₃) δ 6.93 (d, J = 1.5 Hz, 1H), 6.84 – 6.70 (m, 3H), 6.36 (d, J = 16.1 Hz, 1H), 5.95 (s, 2H), 5.65 (sl, 1H), 3.76 (s, 6H), 3.23 (sl, 2H), 3.15 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 172.6, 148.3, 147.4, 139.8, 131.9, 129.9, 126.8, 122.9, 121.5, 108.5, 105.6, 101.2, 59.0, 53.0, 41.2, 39.9. MS (Cl): calc. for C₁₈H₁₈O₆: 330, found: 331 [M+H⁺].

Starting from 119 mg (0.5 mmol, 1 equiv. M = 238.28) of enyne 167 and the 4methylbenzaldehyde (120 mg, 1 mmol, 2 equiv. M = 120.15), following the general experimental procedure [G] using 7.1 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 5 mL DCM at -40°C, the prins product was obtained as a colorless oil (76.6 mg, 43%), as well as the 1,3-diene **294** (29.3 mg, 20%) and the cycloisomerized product **290** (9 mg, 8%). The spectral data were in accordance with literature.¹¹¹

MS (CI): calc. for C₂₁H₂₆O₅: 357, found: 301 [M+H⁺-acetone] and 376 [M+NH₄⁺].

The spectral data were in accordance with literature.¹¹¹ **MS (CI):** calc. for $C_{18}H_{20}O_4$: 300, found: 301 [M+H⁺].

Starting from 119 mg (0.5 mmol, 1 equiv. M = 238.28) of enyne **167** and the 2,4,6-trimethylbenzaldehyde (148 mg, 1 mmol, 2 equiv. M = 148.2), following the general experimental procedure **[G]** using 7.1 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 5 mL DCM at -40°C, the prins product **295** was obtained as a colorless oil (141 mg, 73%), as well as the 1,3-diene **296** (16.4 mg, 10%). The spectral data were in accordance with literature.¹¹¹

296	Dimethyl (E)-3-(2,4,6-trimethylstyryl)		
	(cyclopent-3-ene-1,1-dicarboxylate	
		Chemical Formula: C ₂₀ H ₂₄ O ₄	
		Molecular Weight: 328.41	
MeO ₂ C		Aspect: white solid	
MeO ₂ C	IJ I	$R_{\rm f}$ = 0.42 (Petroleum ether / EtOAc, 8/2; Kagi-	
		Mosher; UV)	

The spectral data were in accordance with literature.¹¹¹

297	Dimethyl-1,1-dimethyl-3-(1-methyl-1 <i>H</i> -indol-2-yl)-3,5,7,7a-		
	tetrahydro	cyclopenta[c]pyran-6,6(1 <i>H</i>)-dicarboxylate	
		Chemical Formula: C ₂₃ H ₂₇ NO ₅	
	N	Molecular Weight: 397.47	
MeO ₂ C		Aspect: orange oil	
MeO ₂ C	τ× ^o	$R_{f} = 0.17$ (Petroleum ether / EtOAc, 7/3; Kagi-	
	Н/ \	Mosher; UV)	

Starting from 119 mg (0.5 mmol, 1 equiv. M = 238.28) of enyne **167** and the 1-methyl-1*H*-indole-2-carbaldehyde (159 mg, 1 mmol, 2 equiv. M = 159.19), following the general experimental procedure **[G]** using 7.1 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 5 mL DCM at -40°C for 16 h, the prins product **297** was obtained as an orange oil (127 mg, 64%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.9 Hz, 1H), 7.19 – 7.05 (m, 2H), 7.05 – 6.96 (m, 1H), 6.94 (s, 1H), 5.56 (sl, 1H), 5.27 (sl, 1H), 3.69 (s, 3H), 3.66 (s, 3H), 3.61 (s, 3H), 3.10 (d, J = 17.3 Hz, 1H), 2.89 (dd, J = 17.3, 2.1 Hz, 1H), 2.65 (sl, 1H), 2.47 (dd, J = 12.6, 7.9 Hz, 1H), 1.25 (s, 3H), 1.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 172.4, 137.6, 137.0, 127.3, 126.7, 121.8, 120.1, 120.0, 119.1, 114.8, 109.3, 74.1, 66.6, 58.1, 53.0, 52.9, 47.5, 38.6, 36.2, 32.7, 29.6, 18.9. HPLC: Chiralcel OD, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 225$ nm. Retention time: 8.8 and 10.6 min.

General procedures for the preparation of *o*-alkynyl benzaldehydes:

Procedure [H]: Sonogashira coupling

In a sealed flask the 2-bromobenzaldehyde (1 equiv.), $PdCl_2(PPh_3)_2$ (2 mol%) and CuI (1 mol%) were suspended in 3:1 of dry toluene and Et₃N (0.25M) under argon atmosphere at room temperature. Then the corresponding terminal alkyne (1.2 equiv.) was added and the mixture was stirred at 50 °C until the 2-bromobenzaldehyde was consumed (monitored by TLC), usually overnight (16 h). The dark heterogeneous mixture was cooled down to room temperature and quenched with NH₄Cl saturated solution (30 mL). The biphasic mixture was extracted with EtOAc (3 x 30 mL) and then the combined organic layer was washed with brine (25 mL). After drying with MgSO₄ and filtration, the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

Procedure [I]: Deprotection of trimethylsilyl group and Sonogashira coupling

The 2-((trimethylsilyl)ethynyl)benzaldehyde (1 equiv.) and K₂CO₃ (5 mol%) were stirred under argon atmosphere at room temperature in dry MeOH (0.25 M). After 15 minutes, TLC showed that the deprotection was accomplished: at this point it is important to note that as soon as the reaction was finished, it was required to do the work-up of the reaction mixture to avoid the formation of further non-desired addition products, *i.e.* addition of MeOH. The solvent was removed under reduced pressure, extracted from DCM/H₂O several times, washed with brine, dried the organic phase with MgSO₄, filtered and evaporated. The obtained 2-ethynylbenzaldehyde was used without further purification. In a round-bottom flask the corresponding iodoarene (1.1 equiv.), [PdCl₂(PPh₃)₂] (2 mol%) and CuI (1 mol%) were suspended in 3:1 of dry toluene and Et₃N (0.25M) under argon at room temperature. Then 2ethynylbenzaldehyde (1 equiv.) was added and the mixture was stirred at room temperature until it was consumed (monitored by TLC). The heterogeneous mixture was quenched with NH₄Cl saturated solution (30 mL). The biphasic mixture was extracted with EtOAc (3 x 30 mL) and then the combined organic layer was washed with brine (25 mL). After drying with MgSO₄ and filtration, the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography.

Procedure for Au-catalyzed reaction of carbonyl-ynes:

Procedure [J]: Domino cyclization / nucleophilic addition

In a screw-capped vial, a mixture of gold precatalyst (1-5 mol%) and NaBARF (1-5 mol%) in dry DCE or CHCl₃ was stirred under argon atmosphere for 10 min to generate active catalytic species. Then the nucleophile (1-5 equiv.) and carbonyl-yne (1 equiv.) were added. The reaction mixture was monitored by TLC until completion or no further evolution. The mixture was filtered through a short pad of silica and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography if necessary.

Experimental data:

The product **302** was obtained following the general procedure **[H]** starting from 2bromoarylaldehyde (3 g, 16.2 mmol) and ethynylbenzene (2.14 mL, 19.5 mmol) after flash column chromatography (petroleum ether / diethyl ether 90/10) as a brown oil (2.58 g, 77%). The spectral data were in accordance with literature.¹²²

303	2-(3-Hydroxyprop-1-yn-1-yl)benzaldehyde	
~ ~	<	Chemical Formula: C ₁₀ H ₈ O ₂
	[×] 0	Molecular Weight: 160.17
	🔍 _он	Aspect: orange oil
	~	$R_f = 0.53$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

The product **303** was obtained following the general procedure **[H]** starting from 2bromoarylaldehyde (2 g, 10.8 mmol) and prop-2-yn-1-ol (0.77 mL, 13.0 mmol) after flash column chromatography (petroleum ether / ethyl acetate 85/15) as an orange oil (1.22 g, 71%). The spectral data were in accordance with literature.¹⁵¹

¹⁵¹ K. R. Roesch, R. C. Larock, J. Org. Chem. 2002, 67, 86.

304	2-(3-Hydroxy-3-methylbut-1-yn-1-yl)benzaldehyde	
\langle	\sim	Chemical Formula: C ₁₂ H ₁₂ O ₂
	、 、	Molecular Weight: 188.23
		Aspect: yellow oil
	ОН	$R_f = 0.51$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)

The product **304** was obtained following the general procedure **[H]** starting from 2bromoarylaldehyde (3 g, 16.2 mmol) and 2-methylbut-3-yn-2-ol (1.89 mL, 19.5 mmol) after flash column chromatography (petroleum ether / ethyl acetate 80/20) as a yellow oil (2.75 g, 90%). The spectral data were in accordance with literature.¹⁵¹

The product **305** was obtained following the general procedure **[H]** starting from 2bromoarylaldehyde (3 g, 16.2 mmol) and 3-methoxyprop-1-yne (1.60 mL, 19.5 mmol) after flash column chromatography (petroleum ether / ethyl acetate 85/15) as a brown oil (2.03 g, 72%). The spectral data were in accordance with literature.¹²²

The product **306** was obtained following the general procedure **[H]** starting from 2bromoarylaldehyde (2 g, 10.8 mmol) and ethynylcyclohexane (1.7 mL, 13 mmol, d = 0.828) after flash column chromatography (petroleum ether / ethyl acetate 95/5) as a colorless oil (2.024 g, 88%). The spectral data were in accordance with literature.^{121b}

307		2-(3-(Benzyloxy)prop-1-yn-1-yl)benzaldehyde
~ ^		Chemical Formula: C ₁₇ H ₁₄ O ₂
	0	Molecular Weight: 250.30
	∠OBn	Aspect: brown oil
	~	$R_f = 0.42$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)

The product **307** was obtained following the general procedure **[H]** starting from 2bromoarylaldehyde (3 g, 16.2 mmol) and benzyl 2-propynyl ether (2.85 g, 19.5 mmol) after flash column chromatography (petroleum ether / ethyl acetate 8/2) as a brown oil (2.68 g, 66%). The spectral data were in accordance with literature.¹⁵²

308	2-(3-Phenylprop-1-yn-1-yl)benzaldehyde	
		Chemical Formula: C ₁₆ H ₁₂ O
	[©] 0	Molecular Weight: 220.27
	PhPh	Aspect: brown oil
	~	$R_f = 0.60$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)

The product **308** was obtained following the general procedure **[H]** starting from 2bromoarylaldehyde (3 g, 16.2 mmol) and 3-phenyl-1-propyne (2.42 mL, 19.5 mmol, d = 0.934) after flash column chromatography (petroleum ether / ethyl acetate 9/1) as a brown oil (2.79 g, 78%). The spectral data were in accordance with literature.¹⁵³

The product **309** was obtained following the general procedure **[H]** starting from 2bromoarylaldehyde (6 g, 32.4 mmol) and ethynyltrimethylsilane (3.82 g, 38.9 mmol) after flash column chromatography (petroleum ether / ethyl acetate 97/3) as a pale yellow solid (6.36 g, 97 %). The spectral data were in accordance with literature. ¹²²

¹⁵² S. Obika, H. Kono, Y. Yasui, R. Yanada, Y. Takemoto, J. Org. Chem. 2007, 72, 4462.

¹⁵³ E. Tomás-Mendivil, J. Starck, J.-C. Ortuno, V. Michelet, Org. Lett. 2015, 17, 6126.

311	2-((4-(Trifluoromethyl)phenyl)ethynyl)benzaldehyde
~ ~		Chemical Formula: C ₁₆ H ₉ F ₃ O
0		Molecular Weight: 274.24
	\checkmark	Aspect: pale yellow crystal
	CE	$R_f = 0.39$ (Petroleum ether / EtOAc, 97/3; Kagi-Mosher;
	013	UV)

The product **311** was obtained following the general procedure **[I]** starting from 2ethynylbenzaldehyde (617 mg, 4.74 mmol) and 1-iodo-4-(trifluoromethyl)benzene (1.42 g, 5.21 mmol) after flash column chromatography (petroleum ether / ethyl acetate 95/5) as a pale yellow crystal (811 mg, 62 %). The spectral data were in accordance with literature. ¹²²

The product **312** was obtained following the general procedure **[I]** starting from 2ethynylbenzaldehyde (800 mg, 6.15 mmol) and 4-iodoanisole (1.582 g, 6.76 mmol) after flash column chromatography (petroleum ether / ethyl acetate 95/5) as pale yellow solid (845 mg, 58 %). The spectral data were in accordance with literature.¹⁵³

313		2-((3-Bromophenyl)ethynyl)benzaldehyde
\diamond		Chemical Formula: C ₁₅ H ₉ BrO
)	Molecular Weight: 285.14
	S Br	Aspect: yellow solid
	ŢŢ	$R_f = 0.59$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher;
	\sim	UV)

The product **313** was obtained following the general procedure **[I]** starting from 2ethynylbenzaldehyde (951 mg, 7.3 mmol) and 1-bromo-3-iodobenzene (2.26 g, 8.0 mmol) after flash column chromatography (petroleum ether / ethyl acetate 90/10) as a white solid (1.44 g, 70 %). The spectral data were in accordance with literature.¹⁵³

314	2-(o-tolylethynyl)benzaldehyde	
		Chemical Formula: C ₁₆ H ₁₂ O
		Molecular Weight: 220.27
		Aspect: yellow solid
/		$R_f = 0.63$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher; UV)

The product **314** was obtained following the general procedure **[I]** starting from 2ethynylbenzaldehyde (1.28 g, 9.8 mmol) and 2-iodotoluene (2.35 g, 10.8 mmol) after flash column chromatography (petroleum ether / ethyl acetate 90/10) as a yellow solid (1.12 g, 52 %). The spectral data were in accordance with literature.¹⁵⁴ **MS (CI):** calc. for $C_{16}H_{12}O$: 220, found: 221 [M+H⁺].

Starting from 100 mg (0.48 mmol, 1 equiv. M = 206.24) of *o*-alkynylbenzaldehyde **302** and *N*-methylindole (60 µL, 0.48 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 7.7 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 8.5 mg NaBARF (2 mol%) in 1.4 mL CHCl₃ at room temperature for 24 h, the 1*H*-isochromene derivative **315** was obtained as an orange solid (52 mg, 32%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.56 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.24 – 6.99 (m, 9H), 6.90 (d, *J* = 7.1 Hz, 1H), 6.60 (s, 1H), 6.59 (s, 1H), 6.39 (s, 1H), 3.55 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 152.7, 137.6, 135.0, 132.1, 130.6, 129.6, 128.7, 128.3, 127.9, 127.2, 126.4, 125.6, 125.3, 123.8, 122.0, 120.2, 119.7, 113.9, 109.5, 100.8, 74.0, 32.9.

HPLC: Chiralcel IB, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 7.2 and 8.0 min.

¹⁵⁴ J. Li, E. Chin, A. S. Lui, L. Chen, *Tetrahedron Letters* 2010, 51, 5937.

316	(1-(1-Methyl-1 <i>H</i> -indol-3-yl)-1 <i>H</i> -isochromen-3-yl)methanol	
		Chemical Formula: C ₁₉ H ₁₇ NO ₂
N		Molecular Weight: 291.35
		Aspect: orange oil
	~ φ	$R_f = 0.12$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher;
	ОН	UV)

Starting from 100 mg (0.62 mmol, 1 equiv. M = 160.17) of *o*-alkynylbenzaldehyde **303** and *N*-methylindole (78.1 µL, 0.62 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 4.6 mg PPh₃AuNTf₂ (1 mol%) in 7.8 mL DCE at 50°C for 5 h, the 1*H*-isochromene derivative **316** was obtained as an orange oil (33 mg, 18%).

¹**H NMR (300 MHz, CDCl**₃) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.35 – 7.23 (m, 3H), 7.20 – 7.06 (m, 3H), 6.96 (d, *J* = 7.5 Hz, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 5.96 (s, 1H), 4.07 (s, 2H), 3.71 (s, 3H), 1.84 (sl, 1H).

¹³C NMR (**75 MHz, CDCl**₃) δ 154.6, 137.7, 131.2, 130.2, 129.6, 128.2, 126.8, 126.6, 125.3, 123.6, 122.2, 120.1, 119.9, 113.7, 109.7, 101.4, 74.3, 62.7, 32.9.

Starting from 100 mg (0.53 mmol, 1 equiv. M = 188.23) of *o*-alkynylbenzaldehyde **304** and *N*-methylindole (66.3 μ L, 0.53 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 8.6 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 9.6 mg NaBARF (2 mol%) in 1.5 mL CDCl₃ (0.35 M) at room temperature for 1.6 h, the 1*H*-isochromene derivative **317** was obtained as an orange oil (103 mg, 61%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.80 (d, *J* = 7.9 Hz, 1H), 7.42 – 7.06 (m, 6H), 6.97 (d, *J* = 7.3 Hz, 1H), 6.67 (s, 1H), 6.60 (s, 1H), 6.05 (s, 1H), 3.69 (s, 3H), 2.23 (sl, 1H), 1.36 (s, 3H), 1.29 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 160.2, 137.5, 131.5, 129.9, 129.5, 128.1, 126.9, 126.3, 125.1, 123.7, 122.1, 119.9, 119.7, 113.7, 109.5, 97.8, 73.9, 71.2, 32.8, 27.6.
HPLC: Chiralcel IE, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 11.8 and 14.2 min. **HRMS (EI)** *m/z* calc. for C₂₁H₂₁NO₂ [M+H]⁺ 320.1651, found: 320.1643.

Starting from 100 mg (0.57 mmol, 1 equiv. M = 174.20) of *o*-alkynylbenzaldehyde **305** and *N*-methylindole (71.9 µL, 0.57 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 4.4 mg PPh₃AuNTf₂ (1 mol%) in 7 mL DCE (0.08 M) at 50°C for 5 h, the 1*H*-isochromene derivative **318** was obtained as a brown oil (44.8 mg, 26%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.64 (d, J = 7.9 Hz, 1H), 7.31 – 7.10 (m, 4H), 7.10 – 6.93 (m, 3H), 6.84 (d, J = 7.3 Hz, 1H), 6.65 (s, 1H), 6.46 (s, 1H), 5.89 (s, 1H), 3.82 (q, J = 13.4 Hz, 2H), 3.63 (s, 3H), 3.19 (s, 3H).

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 9.3 and 13.5 min.

Starting from 100 mg (0.365 mmol, 1 equiv. M = 274.24) of *o*-alkynylbenzaldehyde **311** and *N*-methylindole (45.7 μ L, 0.365 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 5.9 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 6.5 mg NaBARF (2 mol%) in 1 mL CDCl₃ (0.36 M) at room temperature for 2 h, the 1*H*-isochromene derivative **319** was obtained as a yellow power (84.4 mg, 57%). ¹**H NMR (300 MHz, CDCl₃)** δ 7.90 (d, *J* = 7.9 Hz, 1H), 7.75 (d, *J* = 8.5 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.39 – 7.15 (m, 6H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.76 (s, 1H), 6.66 (s, 1H), 6.58 (s, 1H), 3.69 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 151.0, 138.5, 137.7, 131.5, 130.7, 129.7, 128.3, 127.2, 127.1, 125.6, 125.4, 125.3, 125.2, 124.2, 122.2, 120.1, 119.9, 113.8, 109.7, 102.7, 74.1, 32.9.

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 215$ nm. Retention time: 7.8 and 9.6 min.

HRMS (EI) m/z calc. for C₂₅H₁₈F₃NO [M+H]⁺ 406.1419, found: 406.1411.

320	3-(3-(4-Methoxyphenyl)-1 <i>H</i> -isochromen-1-yl)-1-methyl-1 <i>H</i> -indole		
N-J		Chemical Formula: C ₂₅ H ₂₁ NO ₂	
		Molecular Weight: 367.45	
	`O	Aspect: orange solid	
		$R_f = 0.35$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher;	
	OMe	UV)	

Starting from 100 mg (0.42 mmol, 1 equiv. M = 236.27) of *o*-alkynylbenzaldehyde **312** and *N*-methylindole (53.0 µL, 0.42 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 3.1 mg PPh₃AuNTf₂ (1 mol%) in 5 mL DCE (0.08 M) at 50°C for 5 h, the 1*H*-isochromene derivative **320** was obtained as an orange solid (11.7 mg, 8%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.88 (d, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 9.0 Hz, 2H), 7.37 – 7.05 (m, 7H), 6.99 (d, *J* = 7.7, 1H), 6.81 (d, *J* = 9.0 Hz, 2H), 6.69 (s, 1H), 6.68 (s, 1H), 6.37 (s, 1H), 3.77 (s, 3H), 3.69 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 160.2, 152.7, 132.5, 130.4, 129.5, 128.1, 127.8, 127.2, 127.1, 126.0, 125.2, 123.5, 122.0, 120.2, 119.7, 113.8, 109.6, 99.3, 74.0, 55.4, 32.9.

Starting from 100 mg (0.35 mmol, 1 equiv. M = 285.14) of *o*-alkynylbenzaldehyde **313** and *N*-methylindole (44.0 µL, 0.42 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 2.6 mg PPh₃AuNTf₂ (1 mol%) in 4.4 mL DCE (0.08 M) at 50°C for 5 h, the 1*H*-isochromene derivative **321** was obtained as a yellow power (52.1 mg, 36%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.88 (d, *J* = 7.8 Hz, 1H), 7.83 (t, *J* = 1.8 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.41 – 7.09 (m, 8H), 7.03 (dd, *J* = 7.5, 0.5 Hz, 1H), 6.72 (s, 1H), 6.71 (s, 1H), 6.51 (s, 1H), 3.70 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 151.1, 137.6, 137.2, 131.7, 131.4, 130.6, 129.8, 129.6, 128.5, 128.3, 127.0, 126.9, 125.3, 124.0, 122.6, 122.2, 120.2, 119.8, 113.7, 109.6, 101.9, 74.2, 32.9.

322	3-(3-((Benzyloxy)methyl)-1 <i>H</i> -isochromen-1-yl)-1-methyl-1 <i>H</i> -indole	
N		Chemical Formula: C ₂₆ H ₂₃ NO ₂
		Molecular Weight: 381.48
		Aspect: orange solid
	O OBn	$R_f = 0.33$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher;
	ý V	UV)

Starting from 100 mg (0.4 mmol, 1 equiv. M = 250.30) of *o*-alkynylbenzaldehyde **307** and *N*-methylindole (50.2 µL, 0.4 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 6.5 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 7.1 mg NaBARF (2 mol%) in 1.2 mL CHCl₃ at 0°C for 23 h, the 1*H*-isochromene derivative **322** was obtained as an orange solid (50.4 mg, 33%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.42 – 7.06 (m, 11H), 6.97 (d, *J* = 7.5 Hz, 1H), 6.73 (s, 1H), 6.59 (s, 1H), 6.03 (s, 1H), 4.40 (s, 2H), 4.02 (sl, 2H), 3.70 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 152.9, 138.2, 137.6, 131.2, 130.3, 129.5, 128.5, 128.4, 128.2, 127.9, 127.6, 127.0, 126.5, 125.3, 123.4, 122.1, 120.5, 119.7, 114.0, 109.5, 102.7, 74.1, 72.3, 69.5, 32.9.

HPLC: Chiralcel IB, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 14.1 and 27.5 min, ee = 15%.

<i>N,N-</i> Dimethyl-4-(3-phenyl-1 <i>H</i> -isochromen-1-yl)aniline	
N	Chemical Formula: C ₂₃ H ₂₁ NO
	Molecular Weight: 327.43
	Aspect: yellow oil
Ť	$R_f = 0.73$ (Petroleum ether / EtOAc, 8/2; Kagi-
OPh	Mosher; UV)
	N,N-Din

Starting from 100 mg (0.48 mmol, 1 equiv. M = 206.24) of *o*-alkynylbenzaldehyde **302** and *N*,*N*-dimethylaniline (61.0 µL, 0.48 mmol, 1 equiv. M = 121.1, d = 0.956), following the general experimental procedure **[J]** using 3.7 mg PPh₃AuNTf₂ (1 mol%) in 6 mL DCE (0.08 M) at 50°C for 5 h, the 1*H*-isochromene derivative **323** was obtained as a yellow oil (51.9 mg, 33%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.63 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.28 – 7.00 (m, 8H), 6.75 (d, *J* = 7.5 Hz, 1H), 6.62 (d, *J* = 8.8 Hz, 2H), 6.38 (s, 1H), 6.12 (s, 1H), 2.85 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 152.7, 150.7, 134.8, 132.1, 131.2, 129.2, 128.8, 128.3, 128.1, 127.7, 126.5, 125.6, 125.4, 123.8, 112.2, 101.0, 80.3, 40.6.

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 6.3 and 6.9 min.

MS (ESI): calc. for $C_{23}H_{21}NO$: 327, found: 328 [M+H⁺].

Starting from 100 mg (0.53 mmol, 1 equiv. M = 188.23) of *o*-alkynylbenzaldehyde **304** and *N*,*N*-dimethylaniline (67.2 μ L, 0.53 mmol, 1 equiv. M = 121.19, d = 0.956), following the general experimental procedure **[J]** using 8.6 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 9.4 mg NaBARF (2 mol%) in 1.5 mL CHCl₃ at room temperature for 2 h, the 1*H*-isochromene derivative **324** was obtained as a yellow oil (64 mg, 39%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 – 7.17 (m, 3H), 7.17 – 6.99 (m, 2H), 6.77 (d, *J* = 7.4 Hz, 1H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.09 (s, 1H), 6.00 (s, 1H), 2.97 (s, 6H), 2.17 (sl, 1H), 1.39 (s, 3H), 1.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.3, 150.6, 131.5, 130.5, 129.4, 128.0, 127.2, 126.3, 125.4, 123.6, 112.0, 97.9, 80.4, 71.1, 40.5, 27.8, 27.3.

HPLC: Chiralcel IE, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 10.9 and 12.5 min.

MS (ESI): calc. for C₂₀H₂₃NO₂: 309, found: 310 [M+H⁺].

Starting from 100 mg (0.365 mmol, 1 equiv. M = 274.24) of *o*-alkynylbenzaldehyde **311** and *N*,*N*-dimethylaniline (46.3 μ L, 0.365 mmol, 1 equiv. M = 121.19, d = 0.956), following the general experimental procedure **[J]** using 5.9 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 6.5 mg NaBARF (2 mol%) in 1 mL CHCl₃ at room temperature for 24 h, the 1*H*-isochromene derivative **325** was obtained as a pale yellow solid (83 mg, 58%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.71 (d, *J* = 8.5 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.23 – 7.02 (m, 5H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.60 (d, *J* = 8.8 Hz, 2H), 6.46 (s, 1H), 6.15 (s, 1H), 2.85 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 150.9, 150.6, 138.1, 131.3, 131.2, 130.0, 129.1, 128.2, 127.1, 125.6, 125.2, 124.1, 116.7, 112.7, 112.1, 102.8, 80.2, 40.6.

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 6.1 and 8.0 min.

MS (ESI): calc. for C₂₄H₂₀F₃NO: 395, found: 396 [M+H⁺].

Starting from 100 mg (0.35 mmol, 1 equiv. M = 285.14) of *o*-alkynylbenzaldehyde **313** and *N*,*N*-dimethylaniline (44.4 µL, 0.35 mmol, 1 equiv. M = 121.19, d = 0.956), following the general experimental procedure **[J]** using 2.6 mg PPh₃AuNTf₂ (1 mol%) in 4.4 mL DCE (0.08 M) at 50°C for 24 h, the 1*H*-isochromene derivative **326** was obtained as a pale yellow solid (45.3 mg, 32%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (t, *J* = 1.8 Hz, 1H), 7.55 (ddd, *J* = 7.9, 1.6, 1.0 Hz, 1H), 7.32 (ddd, *J* = 7.9, 2.0, 1.0 Hz, 1H), 7.22 - 6.96 (m, 6H), 6.75 (d, *J* = 7.7 Hz, 1H), 6.63 (d, *J* = 8.9 Hz, 2H), 6.39 (s, 1H), 6.11 (s, 1H), 2.87 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 151.1, 150.7, 136.9, 131.6, 131.6, 131.3, 129.8, 129.3, 128.2, 127.3, 126.9, 125.6, 124.0, 123.8, 122.7, 112.2, 102.0, 80.4, 40.6.

327]	l-Methyl-2-(3-phenyl-1 <i>H</i> -isochromen-1-yl)-1 <i>H</i> -pyrrole
/=	= <u>`</u> .	Chemical Formula: C ₂₀ H ₁₇ NO
	N_	Molecular Weight: 287.36
	Ļ o	Aspect: brown oil
	Ph	$R_f = 0.65$ (Petroleum ether / EtOAc, 85/15; Kagi-Mosher; UV)

Starting from 100 mg (0.48 mmol, 1 equiv. M = 206.24) of *o*-alkynylbenzaldehyde **302** and *N*-methylpyrrole (43.0 µL, 0.48 mmol, 1 equiv. M = 81.12, d = 0.914), following the general experimental procedure **[J]** using 3.5 mg PPh₃AuNTf₂ (1 mol%) in 6 mL DCE (0.08 M) at 50°C for 5 h, the 1*H*-isochromene derivative **327** was obtained as a brown oil (23.1 mg, 17%).

¹H NMR (300 MHz, CDCl₃) δ 7.61 (dd, J = 8.1, 1.7 Hz, 2H), 7.35 – 7.13 (m, 5H), 7.07 (d, J = 7.3 Hz, 2H), 6.77 (d, J = 7.6 Hz, 1H), 6.65 – 6.57 (m, 1H), 6.41 (s, 1H), 6.33 (s, 1H), 5.96 (dd, J = 3.5, 2.7 Hz, 1H), 5.80 (dd, J = 3.5, 1.7 Hz, 1H), 3.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 151.8, 134.5, 132.0, 129.6, 129.3, 128.7, 128.3, 128.3, 126.6, 125.0, 124.9, 124.4, 123.8, 111.7, 106.6, 101.0, 73.5, 34.9. MS (ESI): calc. for C₂₀H₁₇NO: 287, found: 288 [M+H⁺].

328	(1-(1-Methyl-1 <i>H</i> -pyrrol-2-yl)-1 <i>H</i> -isochromen-3-yl)methanol	
N_		Chemical Formula: C ₁₅ H ₁₅ NO ₂
		Molecular Weight: 241.29
	\downarrow_{0}	Aspect: yellow oil
	ОН	$R_f = 0.65$ (Petroleum ether / EtOAc, 85/15; Kagi-
		Mosher; UV)

Starting from 100 mg (0.62 mmol, 1 equiv. M = 160.17) of *o*-alkynylbenzaldehyde **303** and *N*-methylpyrrole (55.4 µL, 0.62 mmol, 1 equiv. M = 81.12, d = 0.914), following the general experimental procedure **[J]** using 4.6 mg PPh₃AuNTf₂ (1 mol%) in 7.8 mL DCE (0.08 M) at 50°C for 4 h, the 1*H*-isochromene derivative **328** was obtained as a yellow oil (7.7 mg, 5%).

¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.08 (m, 2H), 7.05 (d, J = 7.5 Hz, 1H), 6.81 (d, J = 7.5 Hz, 1H), 6.72 – 6.63 (m, 1H), 6.29 (s, 1H), 6.05 – 6.02 (m, 1H), 5.93 (s, 1H), 5.85 (dd, J = 3.6, 1.8 Hz, 1H), 4.11 (d, J = 5.7 Hz, 2H), 3.67 (s, 3H), 1.69 (sl, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 131.0, 129.3, 129.1, 128.4, 126.7, 125.0, 124.6,

123.6, 111.7, 106.6, 101.7, 73.5, 62.6, 34.9.

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 10.5 and 15.0 min.

Starting from 100 mg (0.365 mmol, 1 equiv. M = 274.24) of *o*-alkynylbenzaldehyde **311** and *N*-methylpyrrole (32.4 μ L, 0.365 mmol, 1 equiv. M = 81.12, d = 0.914), following the general experimental procedure **[J]** using 5.9 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 6.5 mg NaBARF (2 mol%) in 1 mL CDCl₃ at 0°C for 5 h, the 1*H*-isochromene derivative **330** was obtained as a pale yellow solid (88 mg, 68%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.20 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.11 – 7.04 (m, 2H), 6.78 (dd, *J* = 7.9, 0.9 Hz, 1H), 6.60 (dd, *J* = 2.4, 1.9 Hz, 1H), 6.47 (s, 1H), 6.34 (s, 1H), 5.94 (dd, *J* = 3.6, 2.7 Hz, 1H), 5.75 (dd, *J* = 3.6, 1.9 Hz, 1H), 3.65 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.1, 137.9, 131.3, 129.4, 129.3, 128.5, 127.3, 125.3, 125.2, 125.1, 125.0, 124.6, 124.2, 111.9, 106.7, 102.9, 73.5, 34.9.

HPLC: Chiralcel IE, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 254$ nm. Retention time: 5.6 and 6.4 min, 25% ee.

MS (APCI): calc. for $C_{21}H_{16}F_3NO$: 355, found: 356 [M+H⁺].

Starting from 100 mg (0.42 mmol, 1 equiv. M = 236.27) of *o*-alkynylbenzaldehyde **312** and *N*-methylpyrrole (37.5 µL, 0.42 mmol, 1 equiv. M = 81.12, d = 0.914), following the general experimental procedure **[J]** using 3.1 mg PPh₃AuNTf₂ (1 mol%) in 5 mL DCE (0.08 M) at 50°C for 4.5 h, the 1*H*-isochromene derivative **331** was obtained as a yellow solid (13.2 mg, 10%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.63 (d, J = 9.0 Hz, 2H), 7.30 – 7.23 (m, 1H), 7.16 – 7.07 (m, 2H), 6.87 (d, J = 9.0 Hz, 2H), 6.82 (d, J = 7.2 Hz, 1H), 6.69 (dd, J = 2.5, 2.0 Hz, 1H), 6.37 (s, 2H), 6.05 (dd, J = 3.6, 2.7 Hz, 1H), 5.90 (dd, J = 3.6, 1.8 Hz, 1H), 3.82 (s, 3H), 3.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.2, 151.9, 132.3, 129.6, 129.1, 128.3, 127.2, 126.5, 126.1, 124.8, 124.4, 123.5, 113.7, 111.6, 106.6, 99.4, 73.5, 55.3, 35.0.

HPLC: Chiralcel IE, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 215$ nm. Retention time: 5.6 and 6.2 min.

MS (APCI): calc. for C₂₁H₁₉NO: 317, found: 318 [M+H⁺].

Starting from 100 mg (0.35 mmol, 1 equiv. M = 285.14) of *o*-alkynylbenzaldehyde **313** and *N*-methylpyrrole (31.0 µL, 0.35 mmol, 1 equiv. M = 81.12, d = 0.914), following the general experimental procedure **[J]** using 2.6 mg PPh₃AuNTf₂ (1 mol%) in 4.4 mL DCE (0.08 M) at 50°C for 4 h, the 1*H*-isochromene derivative **332** was obtained as a yellow solid (22.3 mg, 17%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.74 (s, 1H), 7.53 (dd, J = 7.9, 1.6 Hz, 1H), 7.34 (dd, J = 7.9, 1.9 Hz, 1H), 7.26 – 7.03 (m, 4H), 6.77 (d, J = 7.2 Hz, 1H), 6.66 – 6.59 (m, 1H), 6.40 (s, 1H), 6.33 (s, 1H), 5.97 (dd, J = 3.5, 2.7 Hz, 1H), 5.79 (dd, J = 3.5, 1.7 Hz, 1H), 3.66 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.2, 136.6, 131.5, 129.8, 129.4, 129.3, 128.5, 127.9, 127.0, 125.0, 124.6, 124.1, 123.4, 122.6, 111.9, 106.7, 102.1, 73.5, 34.9.

Starting from 100 mg (0.4 mmol, 1 equiv. M = 250.3) of *o*-alkynylbenzaldehyde **307** and *N*-methylpyrrole (35.5 µL, 0.4 mmol, 1 equiv. M = 81.12, d = 0.914), following the general experimental procedure **[J]** using 3 mg PPh₃AuNTf₂ (1 mol%) in 5 mL DCE (0.08 M) at 50°C for 40 min, the 1*H*-isochromene derivative **333** was obtained as a yellow oil (30 mg, 23%).

¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.12 (m, 7H), 7.06 (d, J = 7.4 Hz, 1H), 6.91 (d, J = 7.4 Hz, 1H), 6.62 (sl, 1H), 6.32 (s, 1H), 6.01 – 5.97 (m, 1H), 5.96 (s, 1H), 5.68 (dd, J = 3.4, 1.6 Hz, 1H), 4.26 (s, 2H), 4.09 (d, J = 13.4 Hz, 1H), 3.95 (d, J = 13.4 Hz, 1H), 3.70 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃) δ 151.4, 138.3, 131.1, 130.0, 129.1, 128.4, 127.9, 127.7, 126.8, 125.3, 124.5, 123.7, 111.7, 106.5, 104.1, 73.0, 71.4, 69.4, 34.8.

HPLC: Chiralcel IB, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 225$ nm. Retention time: 6.2 and 7.5 min.

334	4-(2-(Bis(1-methyl-1 <i>H</i> -indol-3-yl)methyl)phenyl)- 2-methylbut-3-yn-2-ol	
		Chemical Formula: C ₃₀ H ₂₈ N ₂ O
N		Molecular Weight: 432.57
		Aspect: red solid
	Ŵ_Ń	$R_{f} = 0.44$ (Petroleum ether / EtOAc, 8/2; Kagi-
	—— (он	Mosher; UV)

Starting from 100 mg (0.53 mmol, 1 equiv. M = 188.23) of *o*-alkynylbenzaldehyde **304** and *N*-methylindole (66.3 µL, 0.53 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using Ph₃PAuCl (5 mol%) and NaBARF (5 mol%) in 6.6 mL DCE (0.08 M) at room temperature for 3 h, the product **334** was obtained as a red solid (12.7 mg, 11%), as well as the product **335** (65.6 mg, 55%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.49 (d, *J* = 7.7 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.30 – 7.14 (m, 6H), 7.12 – 7.03 (m, 2H), 6.57 (d, *J* = 0.8 Hz, 2H), 6.41 (s, 1H), 3.70 (s, 6H), 1.66 (sl, 1H), 1.40 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 146.6, 137.5, 132.2, 128.9, 128.5, 128.4, 128.3, 127.7, 126.0, 122.4, 121.6, 119.8, 118.8, 117.8, 109.3, 98.7 (C_{sp}), 81.0 (C_{sp}), 65.5, 37.6, 32.8, 31.3.

MS (ESI): calc. for C₃₀H₂₈N₂O: 432, found: 455 [M+Na⁺].

335	1-(2-(Bis(1-methyl-1 <i>H</i> -indol-3-yl)methyl)phenyl)- 3-hydroxy-3-methylbutan-2-one	
	/ N	Chemical Formula: C ₃₀ H ₃₀ N ₂ O ₂
		Molecular Weight: 450.58
		Aspect: red solid
		$R_f = 0.33$ (Petroleum ether / EtOAc, 8/2; Kagi-
Ń		Mosher; UV)
	ОСОН	

¹**H NMR (300 MHz, CDCl₃)** δ 7.41 (d, *J* = 7.8 Hz, 2H), 7.33 – 7.07 (m, 8H), 7.02 (s, 2H), 6.36 (d, *J* = 0.7 Hz, 2H), 5.82 (s, 1H), 3.94 (s, 2H), 3.67 (s, 6H), 3.53 (s, 1H), 1.26 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 212.3 (CO), 142.9, 137.5, 132.4, 131.0, 128.8, 127.4, 127.3, 126.3, 121.6, 120.0, 118.9, 117.1, 109.1, 53.4, 39.8 (CH₂), 36.5, 32.7, 26.7.

Starting from 100 mg (0.45 mmol, 1 equiv. M = 220.27) of *o*-alkynylbenzaldehyde **314** and *N*-methylindole (57.0 µL, 0.45 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 7.3 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 8 mg NaBARF (2 mol%) in 1 mL CHCl₃ at room temperature for 24 h, the 1*H*-isochromene derivative **341** was obtained as a pale yellow solid (64.8 mg, 41%). ¹H NMR (**300 MHz, CDCl₃**) δ 7.76 (d, *J* = 7.9 Hz, 1H), 7.43 – 7.05 (m, 10H), 6.97 (d, *J* = 8.1 Hz, 1H), 6.95 (s, 1H), 6.68 (s, 1H), 6.13 (s, 1H), 3.76 (s, 3H), 2.35 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 155.2, 137.6, 137.0, 135.5, 132.3, 130.6, 130.4, 129.7, 129.4, 128.7, 128.1, 127.2, 126.5, 125.6, 125.3, 123.4, 122.1, 120.4, 119.7, 113.5, 109.5, 104.7, 74.3, 33.0, 20.8.

SFC: Chiralcel OD-H, 150 bar, 10% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 8.8 and 10.3 min.

HRMS (EI) m/z calc. for C₂₅H₂₁NO [M+H]⁺ 352.1701, found: 352.1692.

Starting from 100 mg (0.47 mmol, 1 equiv. M = 212.29) of *o*-alkynylbenzaldehyde **306** and *N*-methylindole (58.8 µL, 0.47 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 7.3 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 8 mg NaBARF (2 mol%) in 1.3 mL CHCl₃ at room temperature for 24 h, the 1*H*-isochromene derivative **342** was obtained as a yellow oil (27.4mg, 17%).

¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 7.9 Hz, 1H), 7.38 – 6.98 (m, 6H), 6.89 (d, J = 7.4 Hz, 1H), 6.79 (s, 1H), 6.46 (s, 1H), 5.72 (s, 1H), 3.74 (s, 3H), 2.14 – 1.95 (m, 1H), 1.94 – 1.58 (m, 5H), 1.40 – 1.06 (m, 5H).

¹³C NMR (75 MHz, CDCl₃) δ 162.0, 137.6, 132.4, 130.1, 129.2, 128.0, 127.2, 125.6, 125.1, 122.8, 122.0, 120.6, 119.5, 114.2, 109.4, 98.4, 73.9, 42.2, 32.9, 30.8, 30.6, 26.3, 26.3.

HPLC: Chiralcel IA, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 225$ nm. Retention time: 4.9 and 9.0 min.

Starting from 100 mg (0.45 mmol, 1 equiv. M = 220.27) of *o*-alkynylbenzaldehyde **308** and *N*-methylindole (56.3 µL, 0.45 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using 7.3 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 8 mg NaBARF (2 mol%) in 1.3 mL CHCl₃ at room temperature for 72 h, the 1*H*-isochromene derivative **343** was obtained as a yellow solid (110.9 mg, 70%).

¹**H NMR (300 MHz, CDCl**₃) δ 7.74 (d, *J* = 7.9 Hz, 1H), 7.40 – 7.07 (m, 10H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 7.5 Hz, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 5.70 (s, 1H), 3.71 (s, 3H), 3.49 (d, *J* = 2.4 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 156.2, 137.6, 137.5, 132.0, 129.7, 129.3, 129.2, 128.2, 128.0, 127.0, 126.4, 125.9, 125.2, 123.0, 122.0, 120.4, 119.6, 114.1, 109.4, 102.0, 74.2, 40.5, 32.8.

SFC: Chiralcel AD-H, 150 bar, 10% MeOH, flow rate 3.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 6.1 and 7.1 min.

Starting from 100 mg (0.53 mmol, 1 equiv. M = 188.13) of *o*-alkynylbenzaldehyde **304** and 1,2-dimethylindole (77 mg, 0.53 mmol, 1 equiv. M = 145.21), following the general experimental procedure **[J]** using 8.6 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 9.4 mg NaBARF (2 mol%) in 1.5 mL CHCl₃ at room temperature for 7 h, the 1*H*-isochromene derivative **345** was obtained as a yellow foam (79.6 mg, 45%).

¹H NMR (300 MHz, CDCl₃) δ 7.36 – 6.94 (m, 7H), 6.65 (d, J = 7.6 Hz, 1H), 6.40 (s, 1H), 6.05 (s, 1H), 3.75 (s, 3H), 2.40 (s, 3H), 2.30 (sl, 1H), 1.44 (d, J = 6.2 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 162.4, 137.1, 136.3, 132.4, 130.7, 128.1, 126.5, 125.1, 123.5, 121.2, 119.6, 108.9, 98.0, 75.3, 71.4, 29.7, 28.3, 27.3, 10.9.

HPLC: Chiralcel IB, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 220$ nm. Retention time: 7.5 and 21.8 min.

HRMS (EI) m/z calc. for C₂₂H₂₃NO₂ [M+H]⁺ 334.1807, found: 334.1799.

Starting from 100 mg (0.53 mmol, 1 equiv. M = 188.13) of *o*-alkynylbenzaldehyde **304** and 1-methyl-2-phenyl-1*H*-indole (110 mg, 0.53 mmol, 1 equiv. M = 207.27), following the general experimental procedure **[J]** using 8.6 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 9.4 mg NaBARF (2 mol%) in 1.5 mL CHCl₃ at room temperature for 7 h, the 1*H*-isochromene derivative **346** was obtained as a white foam (128.7 mg, 61%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.59 (d, J = 7.9 Hz, 1H), 7.54 – 6.99 (m, 11H), 6.84 (d, J = 7.5 Hz, 1H), 6.20 (s, 1H), 6.07 (s, 1H), 3.75 (s, 3H), 2.43 (sl, 1H), 1.49 (s, 6H).

¹³C NMR (**75** MHz, CDCl₃) δ 162.4, 141.2, 137.8, 132.3, 130.9, 130.6, 128.7, 128.6, 127.9, 126.3, 125.2, 123.3, 122.2, 121.8, 120.0, 110.4, 109.6, 97.9, 75.8, 71.2, 31.0, 28.4, 27.3.

HPLC: Chiralcel IC, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 220$ nm. Retention time: 6.0 and 7.1 min.

HRMS (EI) m/z calc. for C₂₇H₂₅NO₂ [M+H]⁺ 396.1964, found: 396.1957.

347	1-Methyl-2-phenyl-3-(3-(4-(trifluoromethyl)phenyl)-		
	1 <i>H</i> -isochromen-1-yl)-1 <i>H</i> -indole		
		Chemical Formula: C ₃₁ H ₂₂ F ₃ NO	
Ph		Molecular Weight: 481.52	
		Aspect: white solid	
		$R_{f} = 0.29$ (Petroleum ether / EtOAc, 9/1; Kagi-Mosher;	
	CF3	UV)	

Starting from 100 mg (0.36 mmol, 1 equiv. M = 274.24) of *o*-alkynylbenzaldehyde **311** and 1-methyl-2-phenyl-1*H*-indole (75.6 mg, 0.36 mmol, 1 equiv. M = 207.27), following the general experimental procedure **[J]** using 5.9 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 6.5 mg NaBARF (2 mol%) in 1.5 mL CHCl₃ at room temperature for 7 h, the 1*H*-isochromene derivative **347** was obtained as a white solid (110 mg, 63%).

¹**H NMR (300 MHz, CDCl**₃) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.67 – 7.40 (m, 9H), 7.38 – 7.04 (m, 5H), 6.89 (d, *J* = 7.4 Hz, 1H), 6.64 (s, 1H), 6.33 (s, 1H), 3.76 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 152.8, 141.6, 138.2, 137.9, 132.2, 131.4, 131.0, 130.7, 128.8, 128.7, 128.1, 127.2, 126.5, 125.5, 125.3, 123.9, 122.3, 122.0, 120.0, 110.3, 109.7, 102.9, 75.8, 31.1.

SFC: Chiralcel OD-H, 150 bar, 10% MeOH, flow rate 4.0 mL / min, UV wavelength: $\lambda = 255$ nm. Retention time: 6.5 and 7.6 min.

HRMS (EI) m/z calc. for C₃₁H₂₂F₃NO [M+H]⁺ 482.1732, found: 482.1719.

348	2-(1-(5-Bromo-1-methyl-1 <i>H</i> -indol-3-yl)-		
	1 <i>H</i> -isochromen-3-yl)propan-2-ol		
		Chemical Formula: C ₂₁ H ₂₀ BrNO ₂	
Br		Molecular Weight: 398.30	
		Aspect: pale yellow foam	
		$R_f = 0.25$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher;	
	ОН	UV)	

Starting from 100 mg (0.53 mmol, 1 equiv. M = 188.13) of *o*-alkynylbenzaldehyde **304** and 5-bromo-1-methyl-1*H*-indole (111 mg, 0.53 mmol, 1 equiv. M = 210.07), following the general experimental procedure **[J]** using 8.6 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 9.4 mg NaBARF (2 mol%) in 1.5 mL CHCl₃ at room temperature for 7 h, the 1*H*-isochromene derivative **348** was obtained as a pale yellow foam (136.5 mg, 65%).

¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 1.9 Hz, 1H), 7.36 – 7.06 (m, 5H), 6.90 (d, *J* = 6.8 Hz, 1H), 6.63 (s, 1H), 6.48 (s, 1H), 6.01 (s, 1H), 3.68 (s, 3H), 2.00 (sl, 1H), 1.32 (s, 3H), 1.25 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 160.2, 136.2, 131.5, 130.7, 129.6, 128.6, 128.3, 126.5, 125.1, 123.9, 122.5, 113.5, 113.3, 111.1, 97.9, 73.7, 71.3, 33.1, 27.8, 27.7.

HPLC: Chiralcel IB, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 220$ nm. Retention time: 8.6 and 15.5 min.

MS (CI): calc. for C₂₁H₂₀BrNO₂: 397 and 399, found: 398 and 400 [M+H⁺]. **HRMS (EI)** *m/z* calc. for C₂₁H₂₀BrNO₂ [M+H]⁺ 398.0755, found: 398.0752.

349	3-(3-(2-Hydroxypropan-2-yl)-1 <i>H</i> -isochromen-1-yl)		
	-1-methyl-1 <i>H</i> -indole-6-carbonitrile		
	CN	Chemical Formula: C ₂₂ H ₂₀ N ₂ O ₂	
		Molecular Weight: 344.41	
		Aspect: white solid	
		$R_{f} = 0.30$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher;	
		UV)	
	`OH		

Starting from 100 mg (0.53 mmol, 1 equiv. M = 188.13) of *o*-alkynylbenzaldehyde **304** and 1-methyl-1*H*-indole-6-carbonitrile (83 mg, 0.53 mmol, 1 equiv. M = 156.18), following the general experimental procedure **[J]** using 8.6 mg (*R*)-DTBM-

MeOBIPHEP-(AuCl)₂ (1 mol%) and 9.4 mg NaBARF (2 mol%) in 1.5 mL CHCl₃ at room temperature for 22.5 h, the 1*H*-isochromene derivative **349** was obtained as a white solid (133.3 mg, 73%).

¹**H NMR (300 MHz, CDCl**₃) δ 7.80 (d, *J* = 8.3 Hz, 1H), 7.64 (s, 1H), 7.36 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.32 – 7.05 (m, 3H), 6.89 (d, *J* = 7.0 Hz, 1H), 6.82 (s, 1H), 6.53 (s, 1H), 6.02 (s, 1H), 3.75 (s, 3H), 1.99 (sl, 1H), 1.30 (s, 3H), 1.21 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 160.1, 136.4, 133.2, 131.4, 130.0, 129.2, 128.5, 126.5, 125.0, 124.0, 122.7, 120.9, 115.0, 114.6, 104.8, 98.0, 73.3, 71.2, 33.2, 27.7.

HPLC: Chiralcel IB, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 220$ nm. Retention time: 19.7 and 38.3 min.

HRMS (EI) m/z calc. for C₂₂H₂₀N₂O₂ [M+H]⁺ 345.1603, found: 345.1594.

350	1-Methyl-3-(3-(4-(trifluoromethyl)phenyl)-1 <i>H</i> -isochromen-1-yl)-		
	1 <i>H</i> -indole-6-carbonitrile		
\	CN	Chemical Formula: C ₂₆ H ₁₇ F ₃ N ₂ O	
		Molecular Weight: 430.43	
		Aspect: white solid	
		$R_f = 0.44$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher;	
		UV)	
CF3			

Starting from 137 mg (0.5 mmol, 1 equiv. M = 274.24) of *o*-alkynylbenzaldehyde **311** and 1-methyl-1*H*-indole-6-carbonitrile (78 mg, 0.53 mmol, 1 equiv. M = 156.18), following the general experimental procedure **[J]** using 8 mg (*R*)-DTBM-MeOBIPHEP-(AuCl)₂ (1 mol%) and 8.8 mg NaBARF (2 mol%) in 1.5 mL CHCl₃ at room temperature for 22.5 h, the 1*H*-isochromene derivative **350** was obtained as a white solid (156.7 mg, 73%).

¹**H NMR (300 MHz, CDCl₃)** δ 7.90 (dd, *J* = 8.3, 0.6 Hz, 1H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.64 (s, 1H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.40 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.34 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.30 – 7.15 (m, 2H), 6.98 (d, *J* = 7.4 Hz, 1H), 6.85 (s, 1H), 6.71 (s, 1H), 6.58 (s, 1H), 3.74 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 150.8, 138.1, 136.6, 133.2, 131.3, 130.0, 129.9, 128.7, 127.4, 125.4, 125.2, 124.5, 122.8, 121.0, 120.6, 114.9, 114.7, 104.9, 102.8, 73.5, 33.2. HPLC: Chiralcel IB, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 220$ nm. Retention time: 16.8 and 20.7 min.

HRMS (EI) m/z calc. for C₂₆H₁₇F₃N₂O [M+H]⁺ 431.1371, found: 431.1362.

351	3,3'-((2-((4-(Trifluoromethyl)phenyl)ethynyl)phenyl)methylene)	
		bis(1-methyl-1 <i>H</i> -indole)
		Chemical Formula: C ₃₄ H ₂₅ F ₃ N ₂
		Molecular Weight: 518.58
		Aspect: red solid
	Ń,	$R_{\rm f}$ = 0.34 (Petroleum ether / EtOAc, 8/2; Kagi-
		Mosher; UV)

Starting from 137 mg (0.5 mmol, 1 equiv. M = 274.24) of *o*-alkynylbenzaldehyde **311** and *N*-methylindole (62.6 µL, 0.5 mmol, 1 equiv. M = 131.18, d = 1.048), following the general experimental procedure **[J]** using Ph₃PAuCl (2 mol%) and NaBARF (2 mol%) in 3.3 mL CDCl₃ (0.15 M) at room temperature for 2 h, the product **351** was observed in full conversion.

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, *J* = 7.6, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.33 – 7.12 (m, 10H), 7.00 (d, *J* = 7.4 Hz, 2H), 6.54 (s, 2H), 6.49 (s, 1H), 3.66 (s, 6H).

The ethyl 1*H*-indole-2-carboxylate (5 g, 26.5 mmol, 1 equiv. M = 189.21) and the propargyl bromide (4.4 mL, 30 mmol, 1.5 equiv. M = 118.96, d = 1.335) were added to a suspension of Cs₂CO₃ (13 g, 30 mmol, 1.5 equiv. M = 325.82) in 50 mL DMF. The reaction mixture was stirred at 65°C and was monitored by TLC. After completion of the reaction (4 h), the mixture was filtered through Celite[®] and the solvents were evaporated under reduced pressure. The product **358** was isolated by flash chromatography as a pale yellow solid (5.54 g, 92%). The spectral data were in accordance with literature.¹⁵⁵

¹⁵⁵ S. Taskaya, N. Menges, M. Balci, *Beilstein J. Org. Chem.* 2015, 11, 897.

359	(1-(Prop-2-yn-1-yl)-1 <i>H</i> -indol-2-yl)methanol		
		Chemical Formula: C ₁₂ H ₁₁ NO	
	Molecular Weight: 185.23		
	Aspect: yellow solid		
		R _f =0.24 (Petroleum ether / EtOAc, 8/2; Kagi-Mosher; UV)	

To a suspension of LiAlH₄ (1 g, 25.8 mmol, 1.1 equiv.) in 40 mL THF was added a solution of ethyl 1-(prop-2-yn-1-yl)-1*H*-indole-2-carboxylate **358** (5.34 g, 23.5 mmol, M = 227.26) in 20 mL THF at 0°C. The bubbling mixture was stirred for 30 min, then quenched by Na₂SO₄·10H₂O and filtered through a short pad of silica and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography to afford the alcohol **359** as a yellow solid (4.11 g, 95%). The spectral data were in accordance with literature.¹⁵⁶

360	1-(Prop-2-yn-1-yl)-1 <i>H</i> -indole-2-carbaldehyde			
		Chemical Formula: C ₁₂ H ₉ NO		
	Molecular Weight: 183.21			
	N N	Aspect: brown solid		
		$R_f = 0.68$ (Petroleum ether / EtOAc, 8/2; Kagi-Mosher;		
		UV)		

The (1-(prop-2-yn-1-yl)-1*H*-indol-2-yl)methanol **359** (3.69 g, 20 mmol, 1 equiv. M = 185.23) was added to a suspension of MnO₂ (17.4 g, 200 mmol, 10 equiv. M = 86.94) in 50 mL DCM. The reaction mixture was stirred at room temperature and was monitored by TLC. After completion of the reaction, the mixture was filtered through Celite[®] and the solvents were evaporated under reduced pressure. The product was isolated by flash chromatography as a brown solid (3.30 g, 90%). The spectral data were in accordance with literature.¹⁵⁷

¹⁵⁶ X. Jiang, J. Yang, F. Zhang, P. Yu, P. Yi, Y. Sun, Y. Wang, Adv. Synth. Catal. 2016, 358, 2678.

¹⁵⁷ S. Guven, M. S. Ozer, S. Kaya, N. Menges, M. Balci, Org. Lett. 2015, 17, 2660.

The iodobenzene (0.97 mL, 8.7 mmol, 1.1 equiv. M = 204.01, d = 1.831), $[PdCl_2(PPh_3)_2]$ (2 mol%) and CuI (1 mol%) were added in 3:1 of dry toluene and Et₃N (0.25M) under argon. Then the 1-(prop-2-yn-1-yl)-1*H*-indole-2-carbaldehyde **360** (1.45 g, 7.9 mmol, 1 equiv. M = 183.21) was added and the mixture was stirred at room temperature until it was consumed (monitored by TLC). The heterogeneous mixture was quenched with NH₄Cl saturated solution and was extracted with EtOAc. The combined organic layer was washed with brine. After drying with MgSO₄ and filtration, the solvents were evaporated under reduced pressure. The product **361** was isolated by flash chromatography as a brown solid (1.31 g, 64%). The spectral data were in accordance with literature.¹⁵⁷

The 4-iodoanisole (2.57 g, 11 mmol, 1.1 equiv. M = 234.03), $[PdCl_2(PPh_3)_2]$ (2 mol%) and CuI (1 mol%) were added in 3:1 of dry toluene and Et₃N (0.25M) under argon. Then the 1-(prop-2-yn-1-yl)-1*H*-indole-2-carbaldehyde **360** (1.83 g, 10 mmol, 1 equiv. M = 183.21) was added and the mixture was stirred at room temperature until it was consumed (monitored by TLC). The heterogeneous mixture was quenched with NH₄Cl saturated solution and was extracted with EtOAc. The combined organic layer was washed with brine. After drying with MgSO₄ and filtration, the solvents were evaporated under reduced pressure. The product **362** was isolated by flash chromatography as a brown solid (0.91 g, 31%). The spectral data were in accordance with literature.¹⁵⁷

363	1-(3-(4-(Trifluoromethyl)phenyl)prop-2-yn-1-yl)-			
	1 <i>H</i> -indole-2-carbaldehyde			
~	0	Chemical Formula: C ₁₉ H ₁₂ F ₃ NO		
	<i>Y</i>	Molecular Weight: 327.31		
N	~	Aspect: yellow solid		
		$R_{\rm f}$ = 0.50 (Petroleum ether / EtOAc, 85/15; Kagi-		
		Mosher; UV)		

The 4-iodobenzotrifluoride (2.99 g, 11 mmol, 1.1 equiv. M = 272.01), $[PdCl_2(PPh_3)_2]$ (2 mol%) and CuI (1 mol%) were added in 3:1 of dry toluene and Et₃N (0.25M) under argon. Then the 1-(prop-2-yn-1-yl)-1*H*-indole-2-carbaldehyde **360** (1.83 g, 10 mmol, 1 equiv. M = 183.21) was added and the mixture was stirred at room temperature until it was consumed (monitored by TLC). The heterogeneous mixture was quenched with NH₄Cl saturated solution and was extracted with EtOAc. The combined organic layer was washed with brine. After drying with MgSO₄ and filtration, the solvents were evaporated under reduced pressure. The product **363** was isolated by flash chromatography as a yellow solid (2.81 g, 86%).

¹**H NMR (400 MHz, CDCl₃)** δ 9.92 (s, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.61 (dd, *J* = 8.5, 0.7 Hz, 1H), 7.53 - 7.48 (m, 3H), 7.45 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 0.7 Hz, 1H), 7.26 - 7.22 (m, 1H), 5.70 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 182.8, 140.2, 134.6, 132.1, 127.5, 126.7, 125.2, 125.1, 123.7, 121.6, 118.8, 110.9, 86.2, 82.9, 34.7.

364	(Z)-3-Benzylidene-1-methoxy-3,4-dihydro-1H- [1,4]oxazino[4,3-a]indole				
OMe N	Chemical Formula: C ₁₉ H ₁₇ NO ₂				
	Molecular Weight: 291.35				
		Aspect: yellow oil			
	Ph	$R_f = 0.67$ (Toluene; Kagi-Mosher; UV)			

Starting from 90.9 mg (0.35 mmol, 1 equiv. M = 259.31) of carbonyl-yne **361** and 28 μ L methanol (0.70 mmol, 2 equiv. M = 32.04, d = 0.792), following the general experimental procedure **[J]** using 5 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 7 mL DCE at -20°C for 12 h, the oxazinoindole derivative **364** was obtained as a yellow oil (98 mg, 96%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (dd, *J* = 7.6, 3.2 Hz, 3H), 7.36 – 7.31 (m, 3H), 7.29 – 7.11 (m, 3H), 6.56 (s, 1H), 6.14 (s, 1H), 5.70 (s, 1H), 5.28 (s, 1H), 4.99 – 4.89 (m, 2H), 3.58 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.8, 135.2, 135.0, 131.3, 128.5, 128.4, 127.6, 126.4, 122.4, 121.6, 120.2, 108.9, 107.8, 98.7, 96.6, 56.2, 43.7.

Starting from 90.9 mg (0.35 mmol, 1 equiv. M = 259.31) of carbonyl-yne **361** and 28 μ L methanol (0.70 mmol, 2 equiv. M = 32.04, d = 0.792), following the general experimental procedure **[J]** using 5 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 3.5 mL DCE at room temperature for 2 h, the pyridoindole derivative **365** was obtained as a yellow oil (33.6 mg, 33%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (d, J = 7.8 Hz, 1H), 7.33 – 7.16 (m, 6H), 6.87 (dd, J = 7.2, 2.1 Hz, 2H), 6.67 (s, 1H), 4.87 (d, J = 2.7 Hz, 1H), 4.86 (d, J = 19.0 Hz, 1H) 4.69 (d, J = 19.0 Hz, 1H), 4.28 (d, J = 2.7 Hz, 1H), 3.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 202.8, 136.3, 133.8, 131.1, 129.0, 128.1, 127.8, 122.6, 121.3, 120.5, 109.1, 104.0, 75.6, 59.2, 55.9, 50.7.

HPLC: Chiralcel OD, *n*-hexane / *i*-PrOH (90:10), flow rate 1.0 mL / min, UV wavelength: $\lambda = 240$ nm. Retention time: 10.8 and 13.2 min.

Starting from 40.5 mg (0.14 mmol, 1 equiv. M = 289.33) of carbonyl-yne **362** and 11.4 μ L methanol (0.28 mmol, 2 equiv. M = 32.04, d = 0.792), following the general experimental procedure **[J]** using 2 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 2.8 mL DCE

at -20°C for 12 h, the oxazinoindole derivative **366** was obtained as a yellow oil (33 mg, 73%).

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.9 Hz, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.28 – 7.22 (m, 1H), 7.13 (m, 1H), 6.88 (d, J = 8.9 Hz, 2H), 6.54 (s, 1H), 6.12 (s, 1H), 5.66 (s, 1H), 4.91 (d, J = 1.8 Hz, 2H), 3.80 (s, 3H), 3.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 142.0, 135.3, 131.4, 129.8, 128.0, 127.8, 122.4, 121.6, 120.2, 113.8, 108.9, 107.8, 98.7, 96.6, 56.1, 55.3, 43.8.

The oxazinoindole derivative **366** (24 mg, 0.07 mmol, M = 321.38) was dissolved in 1.5 mL DCE and 1 mg of [IPrAu(MeCN)]BF₄(2 mol%) was added in the solution. The mixture was stirring at room temperature for 7 h, and the pyridoindole derivative **367** was observed in full conversion.

¹**H NMR (200 MHz, CDCl₃)** δ 7.68 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.24 – 7.14 (m, 1H), 6.84 – 6.73 (m, 2H), 6.70– 6.63 (m, 3H), 4.87 (d, J = 19.0 Hz, 1H), 4.83 (d, J = 2.8 Hz, 1H), 4.67 (d, J = 19.0 Hz, 1H), 4.22 (d, J = 2.8 Hz, 1H), 3.67 (s, 3H), 3.31 (s, 3H).

¹³C NMR (50 MHz, CDCl₃) δ 202.9, 159.0, 136.2, 131.3, 128.9, 128.1, 125.7, 122.6, 121.3, 120.5, 114.4, 109.0, 103.9, 75.6, 58.3, 55.8, 55.1, 50.5.

368	(Z)-1-Methoxy-3-(4-(trifluoromethyl)benzylidene)-3,4-				
	dihydro-1 <i>H</i> -[1,4]oxazino[4,3- <i>a</i>]indole				
	_	Chemical Formula: C ₂₀ H ₁₆ F ₃ NO ₂			
	0	Molecular Weight: 359.35			
		Aspect: yellow oil			
	CF3	$R_f = 0.54$ (Petroleum ether / EtOAc, 9/1; Kagi-			
		Mosher; UV)			

Starting from 114.7 mg (0.35 mmol, 1 equiv. M = 327.31) of carbonyl-yne **363** and 28 μ L methanol (0.70 mmol, 2 equiv. M = 32.04, d = 0.792), following the general experimental procedure **[J]** using 5 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 7 mL DCE at

-20°C for 12 h, the oxazinoindole derivative **368** was obtained as a yellow oil (77 mg, 61%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.18 – 7.11 (m, 1H), 6.58 (s, 1H), 6.16 (s, 1H), 5.68 (s, 1H), 4.97 (d, J = 5.2 Hz, 2H), 3.59 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.2, 138.6, 135.2, 130.9, 128.4, 127.6, 125.2, 125.2, 122.6, 121.7, 120.4, 110.9, 108.8, 105.9, 99.0, 96.8, 56.3, 43.6.

Starting from 114.7 mg (0.35 mmol, 1 equiv. M = 327.31) of carbonyl-yne **363** and 28 μ L methanol (0.70 mmol, 2 equiv. M = 32.04, d = 0.792), following the general experimental procedure **[J]** using 5 mg [IPrAu(MeCN)]BF₄ (2 mol%) in 7 mL DCE at at room temperature for 12 h, the pyridoindole derivative **369** was obtained as a yellow oil (51 mg, 40%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.68 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.23 – 7.18 (m, 1H), 7.00 (d, *J* = 8.3 Hz, 2H), 6.69 (s, 1H), 4.87 (d, *J* = 2.8 Hz, 1H), 4.87 (d, *J* = 19.1 Hz, 1H), 4.72 (d, *J* = 19.1 Hz, 1H), 4.33 (d, *J* = 2.8 Hz, 1H), 3.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 202.0, 137.7, 136.3, 130.6, 128.3, 128.0, 126.0, 125.9, 122.9, 121.4, 120.8, 109.0, 104.2, 94.9, 75.2, 58.9, 55.9, 50.7.

Appendix

Table 1 Crystal data and structure refinement for biaxphosaucl2.

Identification code	biaxphosaucl2
Empirical formula	$C_{91.5}H_{79.67}Au_4Cl_7O_{2.33}P_4$
Formula weight	2376.39
Temperature/K	180.01(10)
Crystal system	triclinic
Space group	P1
a/Å	11.1324(3)
b/Å	13.1724(4)
c/Å	17.7356(4)
$\alpha/^{\circ}$	73.712(2)
β/°	82.221(2)
$\gamma/^{\circ}$	66.138(2)
Volume/Å ³	2282.28(11)
Z	1
$\rho_{calc}g/cm^3$	1.729
µ/mm ⁻¹	6.729
F(000)	1142.0
Crystal size/mm3	$0.18 \times 0.036 \times 0.036$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/	^o 5.574 to 57.042

Index ranges	$\textbf{-14} \leq h \leq 14, \textbf{-17} \leq k \leq 17, \textbf{-23} \leq \textbf{l} \leq \textbf{23}$
Reflections collected	34098
Independent reflections	$34098 [R_{int} = ?, R_{sigma} = 0.0672]$
Data/restraints/parameters	34098/882/839
Goodness-of-fit on F ²	1.035
Final R indexes [I>=2o (I)]	$R_1 = 0.0365, wR_2 = 0.0907$
Final R indexes [all data]	$R_1 = 0.0482, wR_2 = 0.0972$
Largest diff. peak/hole / e Å-3	1.75/-1.29
Flack parameter	-0.022(4)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for biaxphosaucl2. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
Aul	2441.1(5)	8535.6(4)	1945.4(3)	22.62(19)
Au2	4074.5(5)	5194.2(5)	1345.5(4)	30.7(2)
Cl1	4436(4)	7732(4)	2512(3)	36.2(11)
Cl2	5535(4)	5917(4)	633(3)	52.6(15)
P1	503(4)	9225(4)	1381(3)	22.1(9)
P2	2578(4)	4508(4)	1962(3)	25.9(10)
01	3060(9)	6596(10)	4405(7)	39(3)
C1	712(10)	8886(10)	431(5)	28(3)
C2	1803(10)	7944(9)	303(6)	51(5)
C3	2017(10)	7692(9)	-426(7)	53(5)
C4	1141(12)	8382(11)	-1027(6)	53(4)
C5	50(11)	9325(10)	-898(6)	52(5)
C6	-164(9)	9577(9)	-169(7)	47(4)
С9	-319(9)	12633(8)	999(8)	42(4)
C10	-1668(9)	13134(6)	889(8)	48(5)
C11	-2366(7)	12453(8)	926(8)	45(5)
C12	-1716(8)	11269(8)	1073(7)	32(4)
C7	-367(8)	10768(6)	1183(7)	26(3)
C8	331(7)	11449(8)	1147(7)	32(4)
C13	-649(7)	8612(9)	1969(5)	25(3)
C14	-1529(9)	8458(10)	1570(5)	30(3)
C15	-2518(9)	8126(10)	1983(6)	36(3)
C16	-2626(8)	7947(10)	2795(6)	39(4)
C17	-1746(9)	8102(10)	3195(5)	36(4)
C18	-757(8)	8434(9)	2781(5)	22(2)
C24	1187(8)	7543(6)	3628(6)	22(2)
C23	2114(7)	7599(7)	4050(6)	24(3)

C22	2023(8)	8654(8)	4118(6)	35(3)	C55	7937(9)	-4821(6)	8493(8)	43(4)
C21	1005(9)	9653(6)	3764(7)	30(3)	C56	8792(6)	-4257(8)	8369(8)	48(5)
C20	78(7)	9597(6)	3342(6)	27(3)	C57	8299(7)	-3069(8)	8223(8)	36(4)
C19	169(7)	8542(8)	3274(6)	24(3)	C52	6949(8)	-2446(6)	8199(7)	25(3)
C27	1916(9)	4930(8)	2876(5)	26(3)	C62	3818(8)	349(9)	6186(4)	27(3)
C26	1852(8)	5981(7)	2934(5)	21(3)	C61	2615(6)	476(10)	6576(6)	35(4)
C25	1286(8)	6372(6)	3600(5)	20(2)	C60	2542(6)	200(10)	7392(6)	36(4)
C30	784(9)	5712(8)	4207(5)	27(3)	C59	3673(8)	-202(9)	7819(5)	29(3)
C29	848(9)	4661(7)	4148(5)	36(3)	C58	4876(6)	-330(9)	7430(5)	21(3)
C28	1414(9)	4270(6)	3483(6)	32(3)	C63	4949(6)	-54(9)	6613(5)	28(3)
C31	-1137(16)	10696(14)	3053(11)	37(4)	C67	8525(7)	-132(8)	5315(6)	27(3)
C32	4091(15)	6671(17)	4758(12)	51(5)	C68	7569(8)	901(7)	5416(6)	29(3)
C33	126(17)	6106(14)	4945(9)	38(4)	C69	6396(7)	925(6)	5814(6)	24(2)
C34	1150(8)	5024(10)	1363(6)	29(3)	C64	6181(7)	-84(8)	6111(6)	23(2)
C39	1361(8)	5166(13)	556(7)	69(7)	C65	7138(9)	-1117(6)	6009(6)	31(3)
C38	303(12)	5575(14)	67(5)	72(6)	C66	8310(8)	-1141(7)	5611(6)	31(3)
C37	-967(9)	5842(12)	385(7)	48(4)	C70	5371(7)	2070(6)	5855(6)	26(2)
C36	-1178(7)	5700(11)	1192(7)	47(4)	C75	4662(9)	2790(9)	5190(5)	33(3)
C35	-119(9)	5291(11)	1681(6)	45(4)	C74	3730(9)	3870(8)	5214(5)	45(4)
C41	4545(8)	2336(9)	2356(8)	37(4)	C73	3507(8)	4232(6)	5903(6)	36(3)
C40	3214(9)	2934(6)	2207(7)	28(3)	C72	4216(8)	3512(8)	6569(5)	22(2)
C45	2406(7)	2341(8)	2260(7)	38(4)	C71	5147(7)	2432(7)	6544(4)	24(3)
C44	2930(9)	1149(8)	2463(7)	37(4)	C76	6925(18)	-2230(14)	6199(11)	44(4)
C43	4261(10)	551(6)	2612(8)	48(5)	C77	8960(16)	1948(18)	4838(12)	50(5)
C42	5069(7)	1145(9)	2559(8)	50(5)	C78	4907(17)	2397(15)	4440(10)	45(4)
Au3	7846.7(5)	-151.7(4)	7484.9(3)	22.61(19)	C79	2779(9)	3356(10)	8072(6)	29(3)
Au4	5811.5(5)	3240.3(5)	8130.4(4)	26.1(2)	C84	1963(11)	3053(12)	7729(5)	45(5)
C13	9368(3)	626(4)	6967(3)	31.6(11)	C83	1107(11)	2594(13)	8196(7)	62(6)
Cl4	7702(4)	2451(4)	8807(3)	42.6(13)	C82	1066(11)	2438(13)	9006(7)	56(5)
P3	6344(4)	-880(4)	8022(3)	23.9(9)	C81	1882(12)	2741(14)	9349(5)	71(6)
P4	3947(4)	3932(4)	7485(3)	25.6(10)	C80	2738(11)	3200(12)	8882(6)	56(6)
02	7696(10)	1935(10)	5147(7)	37(3)	C86	1789(8)	6013(8)	7115(8)	37(4)
C46	5795(10)	-583(9)	8979(5)	28(3)	C85	3130(8)	5479(6)	7248(7)	31(3)
C51	5828(12)	400(9)	9106(6)	53(5)	C90	3873(6)	6135(8)	7176(8)	34(4)
C50	5431(13)	658(9)	9830(7)	65(6)	C89	3275(9)	7324(8)	6970(8)	48(5)
C49	5001(12)	-68(11)	10429(5)	46(4)	C88	1934(9)	7858(6)	6836(7)	41(4)
C48	4968(11)	-1051(10)	10303(6)	51(5)	C87	1191(7)	7203(8)	6909(8)	49(5)
C47	5365(11)	-1309(8)	9578(7)	35(3)	Cl5	9761(5)	3363(5)	6209(4)	68.7(16)
C53	6094(6)	-3010(8)	8322(8)	43(5)	Cl6	7019(7)	4863(6)	6101(6)	113(3)
C54	6587(8)	-4197(8)	8469(8)	39(4)	C91	8080(19)	3558(19)	6452(15)	74(7)

Cl7	7427(10)	5100(8)	3651(8)	68(3)
C18	6945(10)	3784(8)	2792(6)	57(2)
C92	6460(40)	4690(40)	3290(30)	80(14)
O4	4850(50)	4110(80)	9670(40)	150(30)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for biaxphosaucl2. The Anisotropic								
displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.								
Atom	U11	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂		

Atom	U11	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂	
Au1	20.3(3)	24.9(5)	21.3(5)	-1.6(4)	-1.8(3)	-9.7(3)	
Au2	28.4(3)	24.2(5)	34.7(5)	-2.5(4)	3.0(3)	-9.7(3)	
C11	22.7(18)	45(3)	39(3)	-2(2)	-6.3(17)	-14.7(19)	
Cl2	30(2)	39(3)	70(4)	8(3)	6(2)	-12(2)	
P1	21.7(17)	21(2)	23(2)	-5.2(19)	-1.9(16)	-7.5(16)	
P2	28.9(19)	20(2)	27(3)	-5(2)	1.8(17)	-9.8(18)	
01	32(5)	32(5)	46(7)	-1(5)	-17(4)	-8(4)	
C1	41(6)	20(7)	24(4)	-4(4)	-6(4)	-12(5)	
C2	65(8)	35(8)	32(7)	-11(7)	-6(6)	6(6)	
C3	69(9)	46(10)	36(7)	-18(6)	0(6)	-10(7)	
C4	70(9)	59(10)	36(8)	-17(7)	-4(6)	-25(7)	
C5	66(9)	60(10)	26(6)	-7(7)	-12(6)	-18(7)	
C6	51(8)	51(10)	29(5)	-8(6)	-15(6)	-7(6)	
C9	51(6)	22(5)	52(13)	-9(7)	-8(7)	-9(5)	
C10	50(6)	24(6)	63(14)	-15(8)	-7(7)	-3(5)	
C11	39(6)	27(5)	60(13)	-14(7)	-7(7)	1(4)	
C12	26(4)	27(5)	36(10)	-7(7)	-1(5)	-3(3)	
C7	27(4)	20(3)	25(9)	-5(5)	1(4)	-5(3)	
C8	36(5)	22(5)	35(11)	-2(6)	-4(6)	-11(4)	
C13	20(5)	20(7)	31(4)	-2(4)	-4(3)	-6(5)	
C14	32(6)	22(8)	37(6)	1(6)	-11(5)	-14(6)	
C15	33(6)	21(8)	50(6)	5(6)	-8(5)	-14(6)	
C16	29(6)	34(10)	49(6)	12(7)	-9(5)	-19(6)	
C17	23(5)	34(10)	43(6)	9(6)	-4(5)	-15(6)	
C18	18(4)	12(7)	31(4)	1(4)	-3(3)	-5(5)	
C24	18(4)	19(4)	25(7)	-2(4)	3(4)	-7(3)	
C23	21(5)	26(5)	24(7)	-3(4)	3(4)	-9(4)	
C22	33(6)	33(5)	43(10)	-12(5)	3(5)	-17(4)	
C21	36(6)	26(5)	34(8)	-12(6)	9(5)	-17(4)	
C20	29(5)	20(4)	32(8)	-11(5)	10(5)	-10(4)	
C19	22(4)	17(4)	32(6)	-6(4)	-2(4)	-6(3)	

C27	24(6)	17(5)	29(4)	-4(4)	3(4)	-2(5)
C26	18(6)	14(5)	21(5)	2(4)	0(4)	0(5)
C25	14(5)	16(4)	22(5)	1(4)	-1(4)	-3(4)
C30	32(7)	25(5)	24(5)	-4(4)	5(4)	-15(5)
C29	39(8)	34(6)	43(6)	-17(5)	23(6)	-26(6)
C28	40(8)	23(6)	35(6)	-10(5)	10(5)	-15(6)
C31	43(6)	24(6)	38(11)	-21(7)	2(6)	1(5)
C32	33(7)	57(12)	59(13)	-15(10)	-18(7)	-9(8)
C33	57(9)	32(8)	28(6)	-8(6)	15(6)	-25(8)
C34	35(4)	14(7)	40(5)	-9(6)	-7(4)	-7(5)
C39	59(7)	130(20)	40(5)	-22(8)	-3(4)	-53(10)
C38	65(7)	125(19)	46(7)	-25(10)	-9(5)	-52(9)
C37	61(6)	43(12)	55(7)	-10(8)	-11(6)	-33(8)
C36	36(5)	35(11)	57(8)	-15(8)	-13(5)	5(7)
C35	34(4)	42(12)	49(7)	-11(8)	-6(4)	-5(6)
C41	35(5)	26(5)	45(12)	-4(7)	-2(6)	-9(4)
C40	33(4)	21(3)	26(9)	-6(5)	7(5)	-8(3)
C45	35(6)	28(5)	49(12)	-6(7)	9(7)	-15(5)
C44	54(6)	27(5)	31(10)	-9(6)	2(6)	-18(5)
C43	54(6)	27(7)	56(14)	-7(8)	1(7)	-12(5)
C42	46(6)	25(5)	66(15)	-2(7)	-6(8)	-6(4)
Au3	19.6(3)	23.9(5)	23.6(5)	-1.9(4)	-2.1(3)	-9.9(3)
Au4	25.1(3)	21.4(5)	29.7(5)	-4.4(4)	-4.7(3)	-6.9(3)
C13	22.2(18)	36(3)	38(3)	-3(2)	-2.8(17)	-16.5(18)
Cl4	38(2)	34(3)	53(3)	3(2)	-23(2)	-14(2)
P3	20.0(17)	22(2)	29(2)	-4.5(19)	0.9(16)	-8.5(17)
P4	21.8(18)	24(2)	30(2)	-10(2)	-1.4(16)	-6.1(17)
02	33(5)	40(5)	35(7)	-5(5)	9(5)	-17(4)
C46	28(7)	19(6)	30(4)	-3(4)	0(4)	-6(6)
C51	106(14)	34(8)	30(7)	-9(7)	21(9)	-43(9)
C50	111(16)	59(11)	37(8)	-24(7)	25(8)	-46(11)
C49	57(10)	54(10)	28(8)	-17(7)	12(7)	-21(8)
C48	64(11)	60(10)	37(6)	-17(7)	12(7)	-31(9)
C47	47(8)	34(8)	31(5)	-5(5)	-1(5)	-25(7)
C53	33(5)	30(5)	66(14)	-7(8)	1(7)	-17(5)
C54	44(5)	30(5)	53(12)	-10(7)	-14(6)	-22(5)
C55	47(5)	28(6)	54(13)	-7(8)	-9(6)	-15(5)
C56	33(5)	25(5)	81(16)	-14(8)	-4(7)	-6(4)
C57	27(4)	26(5)	51(12)	-9(7)	4(5)	-8(4)
C52	27(4)	21(3)	26(9)	-3(5)	3(4)	-9(3)

C62	22(4)	25(9)	37(5)	-12(6)	-3(4)	-8(5)
C61	21(4)	29(10)	51(6)	-7(7)	0(4)	-8(6)
C60	18(4)	34(10)	52(6)	-8(7)	6(4)	-10(6)
C59	18(4)	25(9)	42(6)	-15(6)	11(4)	-6(5)
C58	17(3)	17(7)	30(4)	-8(5)	3(3)	-6(4)
C63	20(4)	34(9)	31(4)	-8(5)	1(3)	-11(5)
C67	27(5)	42(5)	14(8)	-15(5)	0(5)	-9(4)
C68	26(4)	37(5)	22(8)	-11(5)	7(5)	-12(4)
C69	23(4)	32(4)	15(7)	-7(4)	2(4)	-10(3)
C64	21(4)	32(4)	19(6)	-12(5)	-1(4)	-10(3)
C65	35(5)	32(5)	23(8)	-12(6)	4(5)	-6(4)
C66	32(5)	37(5)	22(8)	-18(6)	3(5)	-6(4)
C70	20(4)	31(4)	25(5)	-5(4)	4(4)	-9(4)
C75	31(6)	36(6)	29(5)	-1(4)	-3(4)	-13(4)
C74	50(8)	39(6)	28(5)	0(5)	-12(6)	-1(5)
C73	31(7)	38(7)	27(5)	1(4)	-6(5)	-5(5)
C72	20(5)	21(5)	24(4)	-2(4)	-1(3)	-10(4)
C71	17(5)	25(5)	27(5)	-4(4)	1(4)	-7(4)
C76	57(10)	33(6)	38(11)	-7(7)	-2(9)	-15(7)
C77	45(6)	75(13)	49(12)	-27(11)	19(8)	-40(8)
C78	51(10)	41(9)	30(6)	-4(6)	-10(6)	-7(8)
C79	20(5)	28(7)	34(5)	-11(5)	2(4)	-3(5)
C84	42(8)	67(13)	42(7)	-23(8)	10(6)	-34(9)
C83	49(10)	94(16)	54(8)	-10(9)	8(7)	-46(11)
C82	46(9)	68(15)	52(8)	-4(9)	7(7)	-32(10)
C81	61(10)	118(18)	47(7)	-12(9)	13(7)	-57(12)
C80	45(9)	103(16)	32(5)	-11(7)	3(5)	-44(10)
C86	31(4)	33(5)	43(11)	-13(7)	-5(6)	-6(4)
C85	30(4)	26(4)	34(9)	-12(5)	2(5)	-5(3)
C90	31(5)	28(5)	41(11)	-15(7)	1(6)	-7(4)
C89	43(5)	27(5)	69(14)	-18(7)	1(7)	-5(5)
C88	42(5)	29(6)	42(11)	-14(7)	5(6)	-3(5)
C87	40(6)	32(6)	64(14)	-12(7)	-2(8)	-3(4)
C15	66(3)	71(4)	64(4)	2(3)	5(3)	-36(3)
C16	81(4)	72(5)	148(8)	3(5)	-9(5)	-8(3)
C91	66(6)	55(9)	74(17)	2(10)	33(10)	-20(6)
Cl7	69(6)	22(5)	106(10)	-11(6)	-16(6)	-9(5)
C18	74(6)	50(6)	38(6)	-7(4)	0(5)	-18(5)
C92	80(20)	90(30)	100(30)	-50(30)	19(14)	-39(15)
04	100(40)	320(90)	140(50)	-150(60)	30(40)	-140(50)

Table 4 Bond Lengths for biaxphosaucl2.									
Atom	Atom	Length/Å	Atom	n Atom	Length/Å				
Aul	Cl1	2.273(4)	Au4	Cl4	2.272(4)				
Aul	P1	2.229(4)	Au4	P4	2.231(4)				
Au2	Cl2	2.274(4)	P3	C46	1.818(9)				
Au2	P2	2.227(4)	P3	C52	1.838(9)				
P1	C1	1.823(9)	P3	C58	1.838(7)				
P1	C7	1.814(9)	P4	C72	1.809(8)				
P1	C13	1.840(7)	P4	C79	1.828(8)				
P2	C27	1.825(8)	P4	C85	1.811(9)				
P2	C34	1.815(8)	02	C68	1.370(12)				
P2	C40	1.838(9)	02	C77	1.445(17)				
01	C23	1.356(12)	C46	C51	1.3900				
01	C32	1.428(17)	C46	C47	1.3900				
C1	C2	1.3900	C51	C50	1.3900				
C1	C6	1.3900	C50	C49	1.3900				
C2	C3	1.3900	C49	C48	1.3900				
C3	C4	1.3900	C48	C47	1.3900				
C4	C5	1.3900	C53	C54	1.3900				
C5	C6	1.3900	C53	C52	1.3900				
C9	C10	1.3900	C54	C55	1.3900				
C9	C8	1.3900	C55	C56	1.3900				
C10	C11	1.3900	C56	C57	1.3900				
C11	C12	1.3900	C57	C52	1.3900				
C12	C7	1.3900	C62	C61	1.3900				
C7	C8	1.3900	C62	C63	1.3900				
C13	C14	1.3900	C61	C60	1.3900				
C13	C18	1.3900	C60	C59	1.3900				
C14	C15	1.3900	C59	C58	1.3900				
C15	C16	1.3900	C58	C63	1.3900				
C16	C17	1.3900	C63	C64	1.524(8)				
C17	C18	1.3900	C67	C68	1.3900				
C18	C19	1.510(9)	C67	C66	1.3900				
C24	C23	1.3900	C68	C69	1.3900				
C24	C19	1.3900	C69	C64	1.3900				
C24	C25	1.516(9)	C69	C70	1.493(9)				
C23	C22	1.3900	C64	C65	1.3900				
C22	C21	1.3900	C65	C66	1.3900				
C21	C20	1.3900	C65	C76	1.517(17)				

C20	C19	1.3900	C70	C75	1.3900
C20	C31	1.541(17)	C70	C71	1.3900
C27	C26	1.3900	C75	C74	1.3900
C27	C28	1.3900	C75	C78	1.510(18)
C26	C25	1.3900	C74	C73	1.3900
C25	C30	1.3900	C73	C72	1.3900
C30	C29	1.3900	C72	C71	1.3900
C30	C33	1.529(16)	C79	C84	1.3900
C29	C28	1.3900	C79	C80	1.3900
C34	C39	1.3900	C84	C83	1.3900
C34	C35	1.3900	C83	C82	1.3900
C39	C38	1.3900	C82	C81	1.3900
C38	C37	1.3900	C81	C80	1.3900
C37	C36	1.3900	C86	C85	1.3900
C36	C35	1.3900	C86	C87	1.3900
C41	C40	1.3900	C85	C90	1.3900
C41	C42	1.3900	C90	C89	1.3900
C40	C45	1.3900	C89	C88	1.3900
C45	C44	1.3900	C88	C87	1.3900
C44	C43	1.3900	C15	C91	1.791(19)
C43	C42	1.3900	Cl6	C91	1.64(2)
Au3	Cl3	2.283(4)	Cl7	C92	1.65(4)
Au3	P3	2.232(4)	Cl8	C92	1.56(4)

Table 5 Bond Angles for biaxphosaucl2.

Atom Atom Atom			Angle/°	Atom Atom Atom			Angle/°
P1	Aul	Cl1	176.71(17)	P4	Au4	Cl4	177.21(17)
P2	Au2	Cl2	175.85(19)	C46	Р3	Au3	110.5(4)
C1	P1	Aul	110.3(4)	C46	P3	C52	105.4(5)
C1	P1	C13	106.7(5)	C46	P3	C58	107.4(5)
C7	P1	Aul	115.4(3)	C52	P3	Au3	113.9(3)
C7	P1	C1	105.4(6)	C52	Р3	C58	104.7(5)
C7	P1	C13	105.7(5)	C58	Р3	Au3	114.2(4)
C13	P1	Aul	112.7(3)	C72	P4	Au4	111.6(3)
C27	P2	Au2	114.4(3)	C72	P4	C79	106.7(5)
C27	P2	C40	106.5(5)	C72	P4	C85	106.8(5)
C34	P2	Au2	111.5(4)	C79	P4	Au4	110.0(4)
C34	P2	C27	104.5(5)	C85	P4	Au4	114.5(4)
C34	P2	C40	106.8(5)	C85	P4	C79	106.9(5)

C40	P2	Au2	112.5(3)	C68	02	C77	118.6(12)
C23	01	C32	116.8(12)	C51	C46	Р3	117.8(6)
C2	C1	P1	118.7(6)	C51	C46	C47	120.0
C2	C1	C6	120.0	C47	C46	Р3	122.2(6)
C6	C1	P1	121.3(6)	C50	C51	C46	120.0
C1	C2	C3	120.0	C51	C50	C49	120.0
C4	C3	C2	120.0	C50	C49	C48	120.0
C3	C4	C5	120.0	C49	C48	C47	120.0
C4	C5	C6	120.0	C48	C47	C46	120.0
C5	C6	C1	120.0	C54	C53	C52	120.0
C10	C9	C8	120.0	C53	C54	C55	120.0
C9	C10	C11	120.0	C54	C55	C56	120.0
C12	C11	C10	120.0	C57	C56	C55	120.0
C11	C12	C7	120.0	C56	C57	C52	120.0
C12	C7	P1	120.9(5)	C53	C52	Р3	121.6(5)
C8	C7	P1	119.1(5)	C57	C52	P3	118.4(5)
C8	C7	C12	120.0	C57	C52	C53	120.0
C7	C8	С9	120.0	C61	C62	C63	120.0
C14	C13	P1	117.8(5)	C60	C61	C62	120.0
C14	C13	C18	120.0	C61	C60	C59	120.0
C18	C13	P1	121.7(5)	C60	C59	C58	120.0
C13	C14	C15	120.0	C59	C58	Р3	118.3(5)
C14	C15	C16	120.0	C63	C58	Р3	121.7(5)
C17	C16	C15	120.0	C63	C58	C59	120.0
C16	C17	C18	120.0	C62	C63	C64	114.3(6)
C13	C18	C19	124.3(6)	C58	C63	C62	120.0
C17	C18	C13	120.0	C58	C63	C64	125.6(6)
C17	C18	C19	115.7(6)	C68	C67	C66	120.0
C23	C24	C19	120.0	02	C68	C67	124.1(7)
C23	C24	C25	118.3(6)	02	C68	C69	115.9(7)
C19	C24	C25	121.6(6)	C69	C68	C67	120.0
01	C23	C24	117.5(7)	C68	C69	C64	120.0
01	C23	C22	122.5(7)	C68	C69	C70	117.4(6)
C22	C23	C24	120.0	C64	C69	C70	122.4(6)
C23	C22	C21	120.0	C69	C64	C63	119.0(7)
C20	C21	C22	120.0	C69	C64	C65	120.0
C21	C20	C19	120.0	C65	C64	C63	120.7(7)
C21	C20	C31	118.5(8)	C64	C65	C76	124.0(9)
C19	C20	C31	121.0(8)	C66	C65	C64	120.0
C24	C19	C18	117.6(7)	C66	C65	C76	115.3(9)

C20 C	C19 C18	122.3(7) C	65 C66	6 C67	120.0		H6	-909.82	10220.87	-80.53	56
C20 C	C19 C24	120.0 C	75 C70	C69	119.5(7)		Н9	157.68	13098.37	974.23	51
C26 C	C27 P2	117.7(5) C	75 C70	C71	120.0		H10	-2111.89	13943.27	788.32	57
C26 C	C27 C28	120.0 C	71 C70	C69	120.5(7)		H11	-3287.07	12795.92	850.18	54
C28 C	C27 P2	122.2(5) C	70 C75	C78	120.0(9)		H12	-2192.68	10803.66	1097.93	39
C25 C	C26 C27	120.0 C	74 C75	C70	120.0		H8	1252.09	11106.08	1221.99	38
C26 C	C25 C24	118.4(7) C	74 C75	6 C78	120.0(9)		H14	-1454.49	8579.73	1014.4	36
C26 C	C25 C30	120.0 C	75 C74	C73	120.0		H15	-3119.14	8020.23	1710.05	43
C30 C	C25 C24	121.5(7) C	72 C73	C74	120.0		H16	-3302.06	7720.22	3077.78	47
C25 C	C30 C29	120.0 C	73 C72	P4	121.8(5)		H17	-1820.33	7979.72	3749.87	43
C25 C	C30 C33	122.4(8) C	71 C72	P4	118.2(5)		H22	2656.13	8692.92	4406.11	41
C29 C	C30 C33	117.5(8) C	71 C72	C73	120.0		H21	942.45	10373.95	3809.95	36
C28 C	C29 C30	120.0 C	72 C71	C70	120.0		H26	2195.08	6431.76	2519.62	25
C29 C	C28 C27	120.0 C	84 C79	P4	121.6(6)		H29	505.05	4209.66	4563.2	43
C39 C	C34 P2	117.5(6) C	84 C79	C80	120.0		H28	1457.21	3551.12	3443.05	38
C39 C	C34 C35	120.0 C	80 C79	P4	118.4(6)		H31A	-1595.74	10576.23	2671.91	55
C35 C	C34 P2	122.5(6) C	79 C84	C83	120.0		H31B	-858.34	11331.98	2802.75	55
C38 C	C39 C34	120.0 C	84 C83	C82	120.0		H31C	-1729.59	10877.45	3500.84	55
C37 C	C38 C39	120.0 C	81 C82	C83	120.0		H32A	4629.41	6973.1	4347.6	76
C38 C	C37 C36	120.0 C	82 C81	C80	120.0		H32B	4639.78	5907.7	5059.61	76
C37 C	C36 C35	120.0 C	81 C80) C79	120.0		H32C	3710.28	7185.07	5110.37	76
C36 C	C35 C34	120.0 C	85 C86	6 C87	120.0		H33A	159.35	6847.82	4918.47	57
C40 C	C41 C42	120.0 C	86 C85	5 P4	121.0(5)		H33B	588.98	5539.78	5410.01	57
C41 C	C40 P2	117.8(5) C	86 C85	C90	120.0		H33C	-791.86	6184.03	4981.02	57
C45 C	C40 P2	122.2(5) C	90 C85	5 P4	118.9(5)		H39	2228.84	4984.05	339.2	83
C45 C	C40 C41	120.0 C	89 C90	C85	120.0		H38	446.81	5671.99	-483.95	86
C40 C	C45 C44	120.0 C	90 C89	C88	120.0		H37	-1690.26	6120.89	51.11	58
C45 C	C44 C43	120.0 C	87 C88	C89	120.0		H36	-2045.3	5881.84	1409.32	56
C42 C	C43 C44	120.0 C	88 C87	C86	120.0		H35	-263.28	5193.89	2232.49	54
C43 C	C42 C41	120.0 C	l6 C91	C15	114.4(12)		H41	5096.91	2741.52	2320.09	44
P3 A	Au3 Cl3	178.09(18) C	18 C92	Cl7	125(3)		H45	1496.31	2749.61	2157.47	46
							H44	2377.94	743.92	2498.88	44
							H43	4619.06	-262.98	2750.9	58
Tabla (Undrogo	n Atom Coordinatos (Å v	104) and	Icotro	nia Displacement Peremo	tore	H42	5978.56	735.79	2661.51	60
$(\lambda^2 \times 10)$	³) for biav	n Atom Coorumates (A^ nhosaucl?	10 ⁻) and	Isotroj	pie Displacement Farame	ters	H51	6122.29	895.45	8696.68	64
Atom	y 101 01axj	· · · · ·			7 U(ea)	H50	5453.96	1329.64	9916.55	78
H2	x	2401.86	7472.27		712.72	1) 62	H49	4730.03	108.68	10923.99	55
н3		2762 59	7048.03		-514 57	63	H48	4674.43	-1546.49	10711.56	62
H4		1287.13	8210.19		-1524.83	64	H47	5342.75	-1980.7	9491.68	42
н5		-549.07	9796.61		-1307.81	63	H53	5171.62	-2583.54	8306.37	51
115		017.01	,,,o.01		-1507.01	05					

H54	6002.67	-4582.97	8553.22	46
H55	8274.03	-5632.88	8592.78	51
H56	9714.37	-4683.37	8385.49	57
H57	8883.35	-2683.95	8138.64	43
H62	3867.56	536.83	5628.21	33
H61	1841.99	750.68	6283.65	42
H60	1719.9	286.87	7658.03	43
Н59	3623.37	-390.78	8376.99	34
H67	9326.58	-148.47	5042.44	33
H66	8964.11	-1847.1	5541.78	37
H74	3246.24	4362.19	4759.21	54
H73	2870.41	4970.56	5919.87	44
H71	5631.65	1939.97	6998.95	28
H76A	6704.6	-2441.32	6759.98	66
H76B	7729.55	-2837.29	6072.08	66
H76C	6202.89	-2129.53	5888.6	66
H77A	9144.36	1739.2	4333.57	75
H77B	9642.94	1395.85	5209.28	75
H77C	8950.43	2717.58	4761.07	75
H78A	5805.48	2290.2	4244.09	67
H78B	4281.91	2976.37	4045.09	67
H78C	4793	1669.82	4545.52	67
H84	1991.22	3160.28	7175.48	54
H83	549.66	2387.38	7961.53	75
H82	481.05	2124.14	9325.09	67
H81	1854	2633.8	9902.61	85
H80	3295.57	3406.7	9116.57	68
H86	1280.81	5565.59	7164.85	44
H90	4789.31	5769.47	7266.63	41
H89	3782.56	7771.7	6919.92	58
H88	1524.93	8670.9	6695.68	49
H87	274.03	7567.87	6818.14	59
H91A	7876.19	3018.9	6249.66	89
H91B	7969.38	3357.43	7031.02	89
H92A	5961.58	4399.26	3747.89	96
H92B	5814.44	5391.2	2970.58	96
H4A	5568	3775.58	9437.85	229
H4B	4969.1	4571.18	9875.55	229

Table 7 Atomic Occupancy for biaxphosaucl2.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
Cl7	0.5	C18	0.5	C92	0.5
H92A	0.5	H92B	0.5	04	0.3333
H4A	0.3333	H4B	0.3333		

Crystal structure determination of [biaxphosaucl2]

Crystal Data for C_{91.5}H_{79.67}Au₄Cl₇O_{2.33}P₄ (M=2376.39 g/mol): triclinic, space group P1 (no. 1), a = 11.1324(3) Å, b = 13.1724(4) Å, c = 17.7356(4) Å, $a = 73.712(2)^{\circ}$, $\beta = 82.221(2)^{\circ}$, $\gamma = 66.138(2)^{\circ}$, V = 2282.28(11) Å³, Z = 1, T = 180.01(10) K, μ (MoK α) = 6.729 mm⁻¹, *Dcalc* = 1.729 g/cm³, 34098 reflections measured (5.574° $\leq 2\Theta \leq 57.042^{\circ}$), 34098 unique ($R_{int} = ?$, $R_{sigma} = 0.0672$) which were used in all calculations. The final R_1 was 0.0365 (I > 2 σ (I)) and wR_2 was 0.0972 (all data).

Table 1 Crystal data and structure refinement for vmd1.

Identification code	vmd1
Empirical formula	C29H32BrNO3S
Formula weight	554.52
Temperature/K	293
Crystal system	monoclinic

Space group	C2	C2	2322.2(8)	3872(5)	2648(3)	43.3(7)
a/Å	40.3336(13)	C3	2072.5(8)	6397(7)	1076(3)	54.2(8)
b/Å	6.2843(2)	C4	2421.7(9)	6007(6)	963(3)	49.5(8)
c/Å	13.0577(4)	C5	2716.6(8)	5145(5)	1737(2)	41.8(7)
$\alpha/^{\circ}$	90	C6	3054.2(9)	4948(6)	1540(3)	46.5(7)
β/°	113.499(4)	C7	3163.3(10)	6533(8)	1014(3)	66.2(10)
γ/°	90	C8	3481.1(12)	6361(10)	854(4)	77.7(11)
Volume/Å ³	3035.23(19)	С9	3698.1(12)	4639(9)	1225(4)	75.3(13)
Z	4	C10	3596.6(11)	3001(7)	1743(4)	69.2(11)
$\rho_{calc}g/cm^3$	1.213	C11	3273.4(10)	3182(6)	1902(3)	56.4(9)
µ/mm ⁻¹	1.450	C12	2911.9(8)	5979(5)	3824(2)	40.6(7)
F(000)	1152.0	C13	2851.6(10)	5391(6)	4863(3)	54.5(9)
Crystal size/mm ³	0.5 imes 0.14 imes 0.12	C14	2813.4(10)	8300(6)	3518(3)	55.2(9)
Radiation	MoKa ($\lambda = 0.71073$)	C15	3566.0(8)	6905(6)	4735(3)	50.8(8)
2@ range for data collection/°	6.108 to 57.192	C16	3709.9(13)	8223(8)	4021(4)	82.4(14)
Index ranges	$\text{-}53 \le h \le 49, \text{-}8 \le k \le 8, \text{-}15 \le l \le 17$	C17	3856.7(9)	5535(6)	5584(3)	48.3(8)
Reflections collected	22241	C18	3788.0(9)	3516(6)	5829(3)	55.8(9)
Independent reflections	$6544 \ [R_{int} = 0.0308, R_{sigma} = 0.0278]$	C19	4046.8(9)	2262(7)	6635(3)	60.4(9)
Data/restraints/parameters	6544/1/320	C20	4385.0(10)	3114(7)	7207(3)	63.5(10)
Goodness-of-fit on F ²	1.033	C21	4466.5(11)	5126(8)	6996(4)	77.1(12)
Final R indexes [I>=2o (I)]	$R_1 = 0.0372, wR_2 = 0.0891$	C22	4199.6(9)	6359(8)	6194(3)	70.9(10)
Final R indexes [all data]	$R_1 = 0.0498, \mathrm{w}R_2 = 0.0957$	C23	1373.9(9)	4922(5)	1612(3)	44.6(7)
Largest diff. peak/hole / e Å-3	0.26/-0.38	C24	1133.4(9)	5864(6)	656(3)	60.3(10)
Flack parameter	0.018(4)	C25	834.7(10)	4781(8)	-33(4)	72.5(11)

C26

C27

C28

C29

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for vmd1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x		У	z	U(eq)
Br1		4745.0(2)1	487.7(10)	8320.4(4)	101.4(2)
S1		1759.6(2)6	334.2(14)	2515.0(6)	48.31(19)
01		3285.7(6)	5561(3)	4012.8(18)	47.2(5)
O2		1853.3(7)	5550(4)	3627.5(19)	61.6(7)
O3		1687.4(7)	8546(4)	2277(2)	65.7(7)
N1		2095.0(7)	5735(4)	2179(2)	47.6(7)
C1		2712.4(8)	4408(5)	2839(3)	38.6(7)

Table 3 Anisotropic Displacement Parameters (Å $^2 \times 10^3$) for vmd1. The Anisotropic
displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.

763.0(10) 2742(7)

1009.4(10) 1808(7)

1314.5(10) 2889(5)

431.7(11) 1520(13)

Atom	U11	U ₂₂	U33	U ₂₃	U13	U12
Br1	62.8(3)	113.8(4)	96.5(4)	30.2(3)	-1.2(2)	15.9(3)
S1	48.3(4)	46.7(4)	45.6(4)	-2.2(4)	14.2(3)	8.2(4)

235(4)

1203(4)

1879(3)

-494(5)

64.7(11)

66.9(10)

56.6(9)

107.8(18)

01	40.7(11)	49.8(13)	44.4(12)	-4.9(10)	9.8(9)	-0.6(10)
02	64.1(15)	75.5(18)	42.2(13)	-3.7(12)	18.0(12)	13.7(12)
03	71.1(17)	42.2(14)	77.6(18)	-3.5(12)	23.2(14)	12.7(12)
N1	43.1(14)	51.3(17)	42.5(14)	7.2(12)	10.9(12)	9.1(12)
C1	40.9(16)	31.6(15)	41.1(17)	4.2(12)	14.1(13)	4.0(12)
C2	44.8(17)	37.2(16)	46.1(18)	-0.1(14)	16.1(14)	0.7(13)
C3	47.9(16)	66(2)	40.5(17)	14.4(18)	8.5(13)	8.2(19)
C4	54.0(18)	55(2)	35.5(16)	7.4(14)	13.5(14)	1.6(15)
C5	49.0(17)	38.6(16)	34.6(16)	1.0(13)	13.2(14)	0.0(14)
C6	49.1(18)	54.3(19)	32.7(16)	-3.7(14)	12.8(14)	2.0(16)
C7	74(2)	71(2)	64(2)	15(2)	37.3(19)	6(2)
C8	81(3)	86(3)	83(3)	7(3)	50(2)	-8(3)
C9	63(2)	107(4)	71(3)	-20(3)	43(2)	-10(3)
C10	61(2)	79(3)	70(3)	-3(2)	28(2)	12(2)
C11	59(2)	62(2)	51(2)	3.7(18)	24.7(18)	5.4(18)
C12	41.6(15)	42.7(19)	32.1(14)	0.6(12)	9.1(12)	4.6(13)
C13	52(2)	68(2)	41.8(18)	2.5(16)	16.3(16)	1.6(17)
C14	61(2)	41.7(18)	53(2)	-0.1(16)	13.0(17)	9.0(16)
C15	47.7(17)	52(2)	43.8(18)	-2.5(15)	9.0(14)	-3.0(15)
C16	79(3)	84(3)	71(3)	21(2)	16(2)	-22(3)
C17	42.4(17)	56(2)	44.4(17)	-3.3(15)	15.1(14)	-4.8(14)
C18	37.5(17)	62(2)	57(2)	2.5(18)	7.9(16)	-6.2(16)
C19	47.4(19)	60(2)	66(2)	10.7(18)	14.0(17)	-3.2(17)
C20	45.1(19)	82(3)	56(2)	7(2)	11.8(17)	5.4(19)
C21	44(2)	81(3)	83(3)	3(2)	1.1(19)	-10(2)
C22	50.5(19)	61(2)	83(3)	6(2)	8.0(18)	-16(2)
C23	42.9(17)	44.4(18)	47.1(18)	0.6(14)	18.7(14)	8.3(14)
C24	49.6(19)	63(3)	58(2)	8.9(17)	11.0(16)	3.2(16)
C25	49(2)	83(3)	68(3)	11(2)	4.4(19)	10(2)
C26	42.2(19)	72(3)	78(3)	-11(2)	21.2(19)	-1.4(17)
C27	62(2)	58(3)	86(3)	2(2)	34(2)	-3(2)
C28	62(2)	46(2)	57(2)	5.8(17)	18.3(18)	8.9(17)
C29	50(2)	122(4)	134(4)	-25(4)	18(3)	-18(3)

Tabl	Table 4 Bond Lengths for vmd1.								
Aton	n Atom	Length/Å	Atom	n Atom	Length/Å				
Brl	C20	1.893(4)	C9	C10	1.381(6)				
S 1	02	1.435(3)	C10	C11	1.405(5)				
S 1	03	1.429(3)	C12	C13	1.517(4)				
S1	N1	1.624(3)	C12	C14	1.523(5)				
S1	C23	1.770(3)	C15	C16	1.525(5)				
01	C12	1.451(4)	C15	C17	1.520(5)				
01	C15	1.425(4)	C17	C18	1.364(5)				
N1	C2	1.462(4)	C17	C22	1.392(5)				
N1	C3	1.467(4)	C18	C19	1.394(5)				
C1	C2	1.530(4)	C19	C20	1.376(5)				
C1	C5	1.518(4)	C20	C21	1.362(6)				
C1	C12	1.565(4)	C21	C22	1.399(6)				
C3	C4	1.494(5)	C23	C24	1.372(5)				
C4	C5	1.331(4)	C23	C28	1.370(5)				
C5	C6	1.488(4)	C24	C25	1.364(6)				
C6	C7	1.378(5)	C25	C26	1.389(6)				
C6	C11	1.380(5)	C26	C27	1.388(6)				
C7	C8	1.383(5)	C26	C29	1.506(6)				
C8	C9	1.354(7)	C27	C28	1.374(5)				

Table 5 Bond Angles for vmd1.

Atom Atom Atom		Angle/°	Atom	n Aton	n Atom	Angle/°
O2 S1	N1	106.37(14)	01	C12	C13	109.3(2)
O2 S1	C23	108.00(16)	01	C12	C14	111.3(3)
O3 S1	02	120.21(16)	C13	C12	C1	111.6(3)
O3 S1	N1	106.64(15)	C13	C12	C14	110.4(3)
O3 S1	C23	107.09(17)	C14	C12	C1	113.2(3)
N1 S1	C23	108.02(14)	01	C15	C16	108.2(3)
C15 O1	C12	120.1(2)	01	C15	C17	109.0(3)
C2 N1	S 1	121.6(2)	C17	C15	C16	112.5(3)
C2 N1	C3	114.9(3)	C18	C17	C15	121.9(3)
C3 N1	S1	117.9(2)	C18	C17	C22	117.4(4)

C2	C1	C12	115.6(2) C22	C17 C15	120.5(3)	H13B	2611.82	5799.7	4769.45
C5	C1	C2	108.2(3) C17	C18 C19	122.8(3)	H13C	3025	6119.83	5496.91
C5	C1	C12	113.0(2) C20	C19 C18	118.1(4)	H14A	2946.67	9186.11	4147.34
N1	C2	C1	108.9(3) C19	C20 Br1	119.8(3)	H14B	2559.01	8495.26	3316.42
N1	C3	C4	111.1(2) C21	C20 Br1	118.9(3)	H14C	2872.4	8681.42	2899.09
C5	C4	C3	125.7(3) C21	C20 C19	121.2(4)	H15	3465.15	7863.41	5129.33
C4	C5	C1	120.0(3) C20	C21 C22	119.3(4)	H16A	3828.11	7304.3	3683.92
C4	C5	C6	120.4(3) C17	C22 C21	121.0(4)	H16B	3879.46	9254.31	4481.65
C6	C5	C1	119.7(3) C24	C23 S1	120.3(3)	H16C	3512.72	8940.54	3447.43
C7	C6	C5	121.5(3) C28	C23 S1	119.6(3)	H18	3558.68	2950.41	5440.65
C7	C6	C11	117.6(3) C28	C23 C24	120.1(3)	H19	3992.35	888.3	6783.44
C11	C6	C5	120.9(3) C25	C24 C23	120.2(4)	H21	4697.24	5674.73	7381.14
C6	C7	C8	121.2(4) C24	C25 C26	120.8(4)	H22	4252.12	7750.39	6066.5
C9	C8	C7	120.9(4) C25	C26 C29	122.2(5)	H24	1174.24	7244.85	478.03
C8	С9	C10	119.7(4) C27	C26 C25	118.3(4)	H25	677.07	5415.46	-690.63
C9	C10	C11	119.1(4) C27	C26 C29	119.5(5)	H27	967.6	440.2	1395.51
C6	C11	C10	121.3(4) C28	C27 C26	120.6(4)	H28	1480.72	2240.27	2517.35
01	C12	C1	100.6(2) C23	C28 C27	120.0(4)	H29A	226.71	2456.92	-754.38

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for vmd1.

Atom	x	У	z	U(eq)
H1	2847.4	3067.43	3026.45	46
H2A	2237.37	2679.54	2137.5	52
H2B	2309.71	3476.27	3349.7	52
H3A	2013.39	7898.71	969.18	65
H3B	1880.8	5611.29	502.11	65
H4	2434.05	6401.78	292.4	59
H7	3020.54	7740.77	762.07	79
H8	3546.83	7444.39	486.68	93
Н9	3914.51	4559.76	1130.47	90
H10	3740.27	1793.51	1982.89	83
H11	3205.73	2089.4	2259.72	68
H13A	2879.82	3882.7	4981.88	82

Table 7 Solvent masks information for vmd1.

389.03

468.19

H29B

H29C

Number	Х	Y	Z	Volume	Electron count Content
1	0.000	-0.281	0.500	272.3	39.9?
2	0.500	-0.463	0.500	272.3	39.9?

382.89

942.35

-71.12

-1121.92

Crystallographic data for the compound 709dia2:

Table 1 Crystal data and structure refinement for vmd2.

Identification code	vmd2
Empirical formula	$C_{29}H_{32}BrNO_3S$
Formula weight	554.52
Temperature/K	293
Crystal system	orthorhombic
Space group	P212121
a/Å	6.3980(3)
b/Å	13.3420(5)
c/Å	31.5780(11)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	2695.56(19)
Z	4
$\rho_{calc}g/cm^3$	1.366

µ/mm ⁻¹	1.633
F(000)	1152.0
Crystal size/mm ³	$0.6\times0.26\times0.18$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	° 5.996 to 57.094
Index ranges	-8 \leq h \leq 8, -16 \leq k \leq 17, -42 \leq l \leq 40
Reflections collected	20812
Independent reflections	5733 [$R_{int} = 0.0321, R_{sigma} = 0.0294$]
Data/restraints/parameters	5733/0/320
Goodness-of-fit on F ²	1.019
Final R indexes [I>= 2σ (I)]	$R_1 {=} 0.0358, wR_2 {=} 0.0760$
Final R indexes [all data]	$R_1 {=} 0.0511, wR_2 {=} 0.0836$
Largest diff. peak/hole / e Å-	³ 0.15/-0.36
Flack parameter	-0.008(5)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for vmd2. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{Li} tensor.

Atom	x	У	z	U(eq)
Br1	-18.5(10)	6656.4(3)	2522.2(2)	105.6(2)
S1	5022.6(12)	4035.9(5)	5913.3(2)	44.69(18)
01	5569(3)	4401.6(14)	4109.2(6)	46.5(5)
O2	5855(4)	3065.4(15)	5822.1(7)	57.7(6)
O3	2860(3)	4146.1(19)	6010.0(7)	59.9(6)
N1	5458(4)	4736.7(17)	5501.8(7)	43.2(6)
C1	6753(4)	4858(2)	4780.3(8)	35.6(6)
C2	7302(5)	4567(2)	5235.6(9)	41.2(7)
C3	4769(6)	5782(2)	5524.8(9)	53.8(8)
C4	5174(5)	6327(2)	5120.9(9)	48.4(7)
C5	6043(4)	5947(2)	4778.0(8)	39.1(6)
C6	6340(5)	6571(2)	4392.1(9)	44.0(7)
C7	4805(6)	7244(2)	4266.0(10)	55.6(8)

C8	5078(8)	7834(2)	3907.2(11)	68.5(10)	C3	74(2)	47.9(15)	40.0(15)	-1.3(12)	5.2(16)
С9	6844(7)	7759(3)	3672.7(12)	66.3(11)	C4	60.5(19)	38.7(14)	46.0(16)	-3.2(12)	0.2(16)
C10	8380(6)	7110(3)	3792.4(11)	62.2(10)	C5	44.1(15)	35.6(14)	37.8(14)	-2.2(12)	-2.6(12)
C11	8148(5)	6512(2)	4150.0(10)	49.8(8)	C6	54.3(18)	36.4(15)	41.2(15)	-2.2(13)	-6.4(14)
C12	5212(4)	4136.2(19)	4544.9(8)	37.3(6)	C7	64(2)	49.2(16)	53.2(18)	6.3(14)	-3.5(18)
C13	2929(5)	4311(3)	4660.5(11)	53.9(8)	C8	92(3)	49.9(18)	64(2)	15.8(16)	-18(2)
C14	5816(5)	3047(2)	4625.7(10)	50.2(8)	С9	98(3)	50(2)	50(2)	9.0(17)	-14(2)
C15	4450(5)	3854(2)	3789.0(9)	44.5(7)	C10	75(2)	64(2)	47.7(19)	-3.0(17)	7.4(18)
C16	6021(6)	3240(3)	3534.8(11)	59.9(9)	C11	55.9(19)	47.5(17)	46.1(17)	-1.8(14)	-0.3(15)
C17	3310(5)	4571(2)	3502.8(9)	44.8(7)	C12	39.6(14)	38.3(13)	33.9(13)	-0.4(11)	2.0(12)
C18	1444(6)	4299(3)	3317.0(12)	67.4(10)	C13	42.9(17)	61(2)	58(2)	-8.2(17)	2.3(15)
C19	453(6)	4915(3)	3027.9(13)	77.4(11)	C14	65(2)	37.3(15)	48.1(17)	-0.7(13)	0.2(15)
C20	1333(6)	5811(3)	2923.8(10)	63.2(9)	C15	51.2(18)	44.3(15)	37.8(15)	-0.8(12)	-1.9(13)
C21	3192(7)	6104(3)	3101.4(12)	71.5(11)	C16	75(2)	51.6(18)	52.9(19)	-0.2(15)	0.0(18)
C22	4154(6)	5487(2)	3390.9(10)	60.4(9)	C17	45.1(16)	52.1(17)	37.3(15)	-5.6(13)	-0.4(14)
C23	6422(5)	4553(2)	6340.5(9)	40.2(6)	C18	55(2)	78(2)	69(2)	13(2)	-12.3(18)
C24	5499(5)	5291(2)	6587.2(9)	49.7(8)	C19	57(2)	99(3)	76(2)	10(2)	-23(2)
C25	6622(6)	5725(3)	6910.8(10)	55.6(8)	C20	77(2)	61(2)	51.8(19)	-10.4(17)	-20.5(18)
C26	8645(6)	5431(2)	6999.0(9)	52.8(8)	C21	99(3)	47.6(19)	68(2)	1.3(17)	-32(2)
C27	9541(5)	4687(3)	6749.7(10)	58.2(9)	C22	72(2)	49.9(18)	59(2)	-0.1(15)	-26.1(18)
C28	8453(5)	4254(2)	6419.8(10)	50.4(7)	C23	44.4(16)	40.9(15)	35.4(14)	6.6(12)	7.5(13)
C29	9855(7)	5912(3)	7353.0(11)	79.0(11)	C24	57(2)	53.9(17)	38.5(15)	1.9(13)	1.5(14)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for vmd2. The Anisotropic

displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U13	U ₁₂
Brl	147.5(5)	75.4(3)	93.8(3)	-5.9(2)	-68.6(3)	19.5(3)
S1	49.3(4)	43.1(4)	41.6(4)	0.0(3)	5.4(4)	0.4(4)
01	57.1(12)	48.7(11)	33.6(10)	2.0(8)	-2.6(9)	-18.7(10)
02	78.8(16)	36.9(10)	57.3(13)	-0.8(9)	5.9(12)	2.2(11)
O3	45.2(12)	72.6(15)	61.8(14)	-0.9(12)	10.1(10)	-5.9(12)
N1	51.5(15)	45.0(12)	33.1(12)	-1.1(10)	6.1(11)	10.8(11)
C1	32.6(13)	39.6(14)	34.6(14)	-1.2(12)	1.8(12)	3.8(12)
C2	41.5(15)	44.5(16)	37.5(15)	-4.2(13)	-2.2(13)	6.1(13)

C6	54.3(18)	36.4(15)	41.2(15)	-2.2(13)	-6.4(14)	-6.9(14)
C7	64(2)	49.2(16)	53.2(18)	6.3(14)	-3.5(18)	3.4(18)
C8	92(3)	49.9(18)	64(2)	15.8(16)	-18(2)	-2(2)
С9	98(3)	50(2)	50(2)	9.0(17)	-14(2)	-29(2)
C10	75(2)	64(2)	47.7(19)	-3.0(17)	7.4(18)	-31(2)
C11	55.9(19)	47.5(17)	46.1(17)	-1.8(14)	-0.3(15)	-11.6(15)
C12	39.6(14)	38.3(13)	33.9(13)	-0.4(11)	2.0(12)	-0.5(14)
C13	42.9(17)	61(2)	58(2)	-8.2(17)	2.3(15)	-5.0(15)
C14	65(2)	37.3(15)	48.1(17)	-0.7(13)	0.2(15)	-1.8(15)
C15	51.2(18)	44.3(15)	37.8(15)	-0.8(12)	-1.9(13)	-14.7(14)
C16	75(2)	51.6(18)	52.9(19)	-0.2(15)	0.0(18)	0.1(18)
C17	45.1(16)	52.1(17)	37.3(15)	-5.6(13)	-0.4(14)	-7.1(14)
C18	55(2)	78(2)	69(2)	13(2)	-12.3(18)	-21(2)
C19	57(2)	99(3)	76(2)	10(2)	-23(2)	-14(2)
C20	77(2)	61(2)	51.8(19)	-10.4(17)	-20.5(18)	8(2)
C21	99(3)	47.6(19)	68(2)	1.3(17)	-32(2)	-13(2)
C22	72(2)	49.9(18)	59(2)	-0.1(15)	-26.1(18)	-15.2(17)
C23	44.4(16)	40.9(15)	35.4(14)	6.6(12)	7.5(13)	3.2(13)
C24	57(2)	53.9(17)	38.5(15)	1.9(13)	1.5(14)	14.4(16)
C25	74(2)	55.8(19)	37.2(16)	-2.5(15)	4.6(16)	12.1(19)
C26	66(2)	60.1(19)	32.4(15)	10.6(14)	0.1(15)	-6.2(18)
C27	48(2)	75(2)	51.8(19)	8.7(17)	-1.3(16)	6.1(18)
C28	47.6(17)	54.9(18)	48.6(17)	0.1(15)	6.7(15)	11.2(16)
C29	92(3)	98(3)	47.2(19)	4.0(18)	-17(2)	-15(3)

17.9(19)

13.6(16)

0.9(13)

Table 4 Bond Lengths for vmd2.

Atom Atom		Length/Å	Atom Atom		Length/Å	
Brl	C20	1.904(3)	C9	C10	1.363(6)	
S 1	02	1.429(2)	C10	C11	1.391(5)	
S 1	03	1.425(2)	C12	C13	1.523(4)	
S 1	N1	1.625(2)	C12	C14	1.525(4)	
S1	C23	1.760(3) C15	C16	1.525(4)		
----	-----	--------------	-----	----------		
01	C12	1.439(3) C15	C17	1.505(4)		
01	C15	1.438(3) C17	C18	1.379(4)		
N1	C2	1.466(4) C17	C22	1.382(4)		
N1	C3	1.464(3) C18	C19	1.383(5)		
C1	C2	1.530(4) C19	C20	1.362(5)		
C1	C5	1.522(4) C20	C21	1.372(5)		
C1	C12	1.566(4) C21	C22	1.376(5)		
C3	C4	1.491(4) C23	C24	1.388(4)		
C4	C5	1.319(4) C23	C28	1.382(4)		
C5	C6	1.488(4) C24	C25	1.377(5)		
C6	C7	1.389(4) C25	C26	1.381(5)		
C6	C11	1.389(4) C26	C27	1.390(5)		
C7	C8	1.391(5) C26	C29	1.503(5)		
C8	С9	1.354(6) C27	C28	1.380(5)		

Table 5 Bond Angles for vmd2.

Aton	n Aton	n Atom	Angle/°	Atom Atom Atom			Angle/°
02	S 1	N1	107.23(12)	01	C12	C13	110.1(2)
02	S 1	C23	108.67(14)	01	C12	C14	110.7(2)
03	S 1	O2	119.90(15)	C13	C12	C1	113.3(2)
O3	S 1	N1	106.17(14)	C13	C12	C14	110.4(3)
03	S 1	C23	106.83(14)	C14	C12	C1	110.3(2)
N1	S 1	C23	107.47(13)	01	C15	C16	108.3(3)
C15	01	C12	117.9(2)	01	C15	C17	109.9(2)
C2	N1	S 1	120.51(19)	C17	C15	C16	110.2(2)
C3	N1	S 1	117.18(18)	C18	C17	C15	120.5(3)
C3	N1	C2	114.7(2)	C18	C17	C22	117.6(3)
C2	C1	C12	115.8(2)	C22	C17	C15	121.8(3)
C5	C1	C2	108.4(2)	C17	C18	C19	121.4(4)
C5	C1	C12	113.4(2)	C20	C19	C18	119.5(3)
N1	C2	C1	108.4(2)	C19	C20	Br1	119.5(3)
N1	C3	C4	111.7(2)	C19	C20	C21	120.6(3)
C5	C4	C3	126.1(3)	C21	C20	Br1	119.8(3)

C4	C5	C1	119.2(2) C20	C21	C22	119.3(3)
C4	C5	C6	120.8(3) C21	C22	C17	121.6(3)
C6	C5	C1	120.0(2) C24	C23	S1	119.5(2)
C7	C6	C5	120.4(3) C28	C23	S1	120.3(2)
C7	C6	C11	117.9(3) C28	C23	C24	120.2(3)
C11	C6	C5	121.7(3) C25	C24	C23	119.5(3)
C6	C7	C8	120.7(4) C24	C25	C26	121.3(3)
C9	C8	C7	120.5(4) C25	C26	C27	118.3(3)
C8	C9	C10	119.8(3) C25	C26	C29	120.7(3)
C9	C10	C11	120.9(4) C27	C26	C29	120.9(3)
C6	C11	C10	120.2(3) C28	C27	C26	121.3(3)
01	C12	C1	101.7(2) C27	C28	C23	119.3(3)

Table 6 Torsion Angles for vmd2.

A B C D	Angle/°	A B	C D	Angle/°
Br1 C20 C21 C22	-180.0(3)	C5 C6	C11 C10	-179.6(3)
S1 N1 C2 C1	148.6(2)	C6 C7	C8 C9	0.4(5)
S1 N1 C3 C4	-177.4(2)	C7 C6	C11 C10	-0.3(4)
S1 C23C24C25	-177.4(2)	C7 C8	C9 C10	-1.0(5)
S1 C23 C28 C27	178.3(2)	C8 C9	C10C11	0.9(5)
01 C15C17C18	-148.6(3)	C9 C10	0C11C6	-0.3(5)
01 C15C17C22	36.4(4)	C11C6	C7 C8	0.3(5)
O2 S1 N1 C2	-31.0(2)	C12O1	C15C16	-113.1(3)
O2 S1 N1 C3	-178.9(2)	C12O1	C15C17	126.5(2)
O2 S1 C23C24	-156.6(2)	C12C1	C2 N1	-71.1(3)
O2 S1 C23C28	25.8(3)	C12C1	C5 C4	102.0(3)
O3 S1 N1 C2	-160.3(2)	C12C1	C5 C6	-78.2(3)
O3 S1 N1 C3	51.8(3)	C15O1	C12C1	177.8(2)
O3 S1 C23C24	-25.9(3)	C15O1	C12C13	-61.8(3)
O3 S1 C23 C28	156.5(2)	C15O1	C12C14	60.6(3)
N1 S1 C23 C24	87.6(2)	C15C17	7C18C19	-175.0(3)
N1 S1 C23 C28	-89.9(3)	C15 C17	7 C22 C21	174.4(3)
N1 C3 C4 C5	-0.1(5)	C16C1	5C17C18	92.1(4)
C1 C5 C6 C7	140.5(3)	C16C1	5C17C22	-82.9(4)

-0.1(6)	-40.2(4) C17 C18 C19 C20	C1 C5 C6 C11
-0.7(5)	32.8(4) C18 C17 C22 C21	C2 N1 C3 C4
179.5(3)	-28.0(4) C18 C19 C20 Br1	C2 C1 C5 C4
0.3(6)	151.8(2) C18 C19 C20 C21	C2 C1 C5 C6
-0.8(6)	-161.5(2) C19C20C21C22	C2 C1 C12O1
1.0(6)	80.4(3) C20C21C22C17	C2 C1 C12C13
0.3(5)	-44.0(3) C22 C17 C18 C19	C2 C1 C12C14
85.7(2)	-62.7(3) C23 S1 N1 C2	C3 N1 C2 C1
-62.2(3)	-0.9(5) C23 S1 N1 C3	C3 C4 C5 C1
-0.9(5)	179.3(3) C23 C24 C25 C26	C3 C4 C5 C6
0.8(4)	-39.7(4) C24 C23 C28 C27	C4 C5 C6 C7
0.6(5)	139.5(3) C24 C25 C26 C27	C4 C5 C6 C11
180.0(3)	57.5(3) C24 C25 C26 C29	C5 C1 C2 N1
0.5(5)	72.4(3) C25 C26 C27 C28	C5 C1 C12O1
-1.2(5)	-45.8(3) C26C27C28C23	C5 C1 C12C13
0.2(4)	-170.1(2) C28 C23 C24 C25	C5 C1 C12C14
-178.9(3)	179.6(3) C29 C26 C27 C28	C5 C6 C7 C8

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for vmd2.

Atom	x	у	τ	U(eq)
H1	8066.4	4837.92	4620.76	43
H2A	7709.62	3867.42	5247.55	49
H2B	8462.05	4970.35	5336.04	49
H3A	5499.19	6116.06	5753.96	65
H3B	3285.13	5800.95	5586.94	65
H4	4776.98	6996.61	5109.85	58
H7	3581.89	7300.87	4423.23	67
H8	4040.54	8284.73	3827.64	82
Н9	7007.33	8148.38	3430.7	80
H10	9598.89	7067.49	3632.91	75
H11	9207.34	6070.41	4227.18	60
H13A	2548.45	4988.06	4591.67	81
H13B	2738.37	4201.4	4958.42	81

H13C	2062.38	3855.17	4504.22	81
H14A	5031.2	2618.03	4440.37	75
H14B	5513.8	2876.63	4914.67	75
H14C	7282.27	2960.08	4572.87	75
H15	3441.59	3402.94	3924.16	53
H16A	7018.89	3681.65	3405.22	90
H16B	5300.04	2869.49	3319.04	90
H16C	6733.73	2783.39	3719.99	90
H18	839.85	3687.24	3387.65	81
H19	-803.91	4719.09	2905.4	93
H21	3795.62	6713.19	3026.83	86
H22	5402.75	5691.33	3514.39	72
H24	4130.87	5490.89	6534.34	60
H25	6006.45	6226.51	7073.04	67
H27	10898.32	4477.59	6806.47	70
H28	9080.59	3765.27	6252.54	60
H29A	9479.49	6607.19	7373.34	119
H29B	11324.81	5855.66	7296.85	119
H29C	9532.57	5580.93	7614.85	119

Table 1 Crystal data and structure refinement for vmdia1.

Identification code	vmdial
Empirical formula	$C_{108}H_{112}Br_4N_4O_{12}S_4\\$
Formula weight	2105.89

Temperature/K	295			N1	10033(3)	8751(2)	378.8(19)	68.5(9)
Crystal system	monoclinic			C1	8999(4)	8360(3)	218(3)	74.9(13)
Space group	P21			C2	8951(4)	8189(3)	-409(2)	67.0(11)
a/Å	12.6855(2)			C3	10112(4)	8266(3)	-496(2)	71.1(12)
b/Å	17.6991(2)			C4	10785(4)	8389(3)	69(3)	79.6(14)
c/Å	24.1466(3)			C5	10463(6)	8270(4)	-977(3)	93.3(18)
$\alpha/^{\circ}$	90			C6	8463(4)	7412(3)	-556(2)	60.9(10)
β/°	99.9340(10)			C7	8425(4)	7164(3)	-1164(2)	67.4(11)
$\gamma^{/\circ}$	90			C8	8948(5)	6536(4)	-1296(3)	84.2(15)
Volume/Å ³	5340.16(12)			C9	8898(8)	6317(5)	-1854(4)	113(3)
Z	2			C10	8315(9)	6724(6)	-2271(3)	122(3)
$\rho_{calc}g/cm^3$	1.310			C11	7760(8)	7333(7)	-2147(3)	126(3)
μ/mm^{-1}	3.041			C12	7808(6)	7567(4)	-1598(3)	97.1(19)
F(000)	2176.0			C13	6941(4)	6705(3)	-386(2)	68.3(11)
Crystal size/mm ³	$0.26 \times 0.24 \times 0.08$			C14	7446(4)	6323(3)	147(2)	63.0(10)
Radiation	$CuK\alpha$ ($\lambda = 1.54184$))		C15	7430(5)	6662(3)	664(2)	78.6(14)
2Θ range for data collection/	^o 6.224 to 142.096			C16	7917(6)	6335(4)	1162(3)	92.4(18)
Index ranges	$-15 \le h \le 14, -21 \le 1$	$k \le 21, -28 \le l \le 29$		C17	8406(5)	5650(4)	1134(3)	87.3(16)
Reflections collected	75847			C18	8455(5)	5296(3)	641(3)	85.9(15)
Independent reflections	$20275 [R_{int} = 0.0432]$	2, $R_{sigma} = 0.0265$]		C19	7969(4)	5636(3)	141(3)	73.8(12)
Data/restraints/parameters	20275/37/1197			C20	5741(4)	6830(4)	-424(3)	92.0(17)
Goodness-of-fit on F^2	1.025			C21	10083(5)	7858(4)	1705(3)	92.0(17)
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0515, wR_2 =$	0.1466		C22	10386(6)	7229(5)	2033(3)	105(2)
Final R indexes [all data]	$R_1 = 0.0604, wR_2 =$	0.1573		C23	11410(6)	6947(4)	2092(3)	92.5(18)
Largest diff. peak/hole / e Å	-3 0.69/-0.42			C24	12124(5)	7290(4)	1800(3)	88.9(16)
Flack parameter	-0.018(5)			C25	11831(5)	7925(4)	1483(3)	80.8(14)
				C26	10806(4)	8207(3)	1433(2)	71.8(12)
				C27	11733(8)	6259(6)	2451(4)	130(3)
Table 2 Fractional Atomic C	Coordinates (×10 ⁴) and	d Equivalent Isotropic	Displacement Parameters	Br2	2400.2(15)	7181.4(7)	8273.9(7)	182.1(7)
$(Å^2 \times 10^3)$ for vmdia1. U _{eq} is d	lefined as 1/3 of of the	e trace of the orthogona	alised U _{IJ} tensor.	S2	5035.6(12)	3518.3(7)	9244.7(6)	78.2(3)
Atomx	У	Ζ	U(eq)	04	2818(3)	5031(2)	10635.9(17)	79.1(9)
Br1 9054.9(10)	5183.6(7)	1820.8(4)	142.9(4)	05	4047(4)	3151(3)	9048(2)	106.5(15)
S1 10430.6(11)	9021.4(7)	1024.8(6)	74.8(3)	06	6011(4)	3131(3)	9237(2)	102.9(15)
O1 7406(2)	7441.8(18)	-424.8(15)	64.6(7)	N2	5024(3)	3749(3)	9895(2)	71.9(10)
O2 11364(4)	9464(2)	1022(2)	97.4(13)	C28	4035(4)	4025(3)	10063(3)	79.0(14)
O3 9522(4)	9343(3)	1206(2)	94.1(12)					

C29	4382(4)	4315(3)	10669(2)	68.8(12)	C58 4262(4)	1697(3)	4934(3)	79.6(14)
C30	5593(4)	4264(3)	10768(2)	73.5(12)	C59 4079(6)	1803(4)	3900(3)	101(2)
C31	5923(4)	4167(3)	10210(2)	73.6(13)	C60 6237(4)	2757(3)	4456(2)	65.0(11)
C32	6245(5)	4252(5)	11254(3)	98.1(19)	C61 5883(5)	3044(3)	3864(2)	73.2(13)
C33	3957(4)	5117(3)	10727(2)	64.1(10)	C62 5147(6)	3624(4)	3767(3)	100(2)
C34	4384(4)	5501(3)	11282(2)	74.1(12)	C63 4746(9)	3883(7)	3226(4)	141(4)
C35	4109(7)	5255(4)	11777(3)	101(2)	C64 5088(9)	3591(6)	2790(4)	128(3)
C36	4591(9)	5621(6)	12292(3)	123(3)	C65 5862(9)	3025(6)	2861(4)	128(3)
C37	5251(9)	6212(7)	12276(4)	129(3)	C66 6268(7)	2746(4)	3416(3)	99(2)
C38	5476(8)	6491(6)	11782(4)	124(3)	C67 7847(4)	3487(3)	4705(3)	87.7(17)
C39	5038(5)	6134(4)	11292(3)	91.8(17)	C68 7665(4)	3801(3)	5253(3)	81.5(16)
C40	2252(5)	5730(4)	10576(3)	87.4(17)	C69 7110(5)	4475(3)	5288(4)	97(2)
C41	2303(4)	6083(3)	10010(3)	75.3(14)	C70 6964(6)	4770(4)	5794(5)	112(3)
C42	1842(5)	5722(4)	9514(3)	86.2(16)	C71 7377(7)	4411(5)	6269(5)	114(3)
C43	1879(6)	6038(4)	8998(3)	95.1(17)	C72 7946(6)	3724(5)	6267(4)	108(2)
C44	2413(7)	6740(4)	8990(4)	105(2)	C73 8075(5)	3433(4)	5756(4)	98(2)
C45	2872(6)	7082(4)	9474(4)	106(2)	C74 9016(6)	3394(5)	4654(4)	117(3)
C46	2825(5)	6763(3)	9974(4)	96(2)	C75 4949(5)	1901(3)	6306(2)	72.4(12)
C47	1130(6)	5563(6)	10661(4)	123(3)	C76 5837(6)	2282(4)	6589(3)	94.3(18)
C48	5079(4)	4353(3)	8857(2)	67.7(11)	C77 5654(8)	2915(5)	6916(3)	109(2)
C49	4150(5)	4724(4)	8644(3)	85.7(15)	C78 4646(8)	3169(4)	6951(3)	104(2)
C50	4215(6)	5362(4)	8328(3)	104(2)	C79 3797(6)	2792(4)	6650(3)	86.7(16)
C51	5171(7)	5626(4)	8211(3)	99.0(19)	C80 3945(5)	2166(3)	6327(2)	75.2(13)
C52	6095(5)	5254(3)	8443(2)	79.9(13)	C81 4483(11)	3838(6)	7311(4)	155(4)
C53	6057(4)	4626(3)	8763(2)	72.3(12)	Br4 1504.2(15)	2884.3(8)	3470.3(6)	179.9(7)
C54	5220(12)	6321(6)	7848(6)	171(5)	S4 -438.2(13)	6585.7(8)	4029.4(10)	102.1(6)
Br3	7255.5(14)	4823.7(8)	6982.1(7)	182.5(7)	O10 2487(3)	5269(2)	5681.4(18)	82.4(10)
S3	5111.1(13)	1081.1(7)	5918.0(7)	83.9(4)	O11 498(5)	6908(3)	3876(3)	120.1(18)
07	7371(3)	2741(2)	4611.3(19)	80.0(10)	O12 -1405(5)	7009(3)	3952(3)	137(2)
08	6117(5)	751(3)	6148(2)	112.1(17)	N4 -143(4)	6413(3)	4696(3)	93.1(16)
09	4148(5)	653(3)	5879(2)	106.7(16)	C82 924(4)	6099(4)	4941(3)	90.2(18)
N3	5193(4)	1332(2)	5282(2)	75.6(11)	C83 853(5)	5934(3)	5550(3)	86.4(17)
C55	6145(4)	1727(4)	5168(3)	86.5(16)	C84 -349(5)	5964(4)	5569(4)	100(2)
C56	5866(4)	1947(3)	4548(3)	72.9(13)	C85 -922(5)	6027(4)	4976(4)	108(3)
C57	4664(4)	1833(3)	4395(3)	73.0(13)	C86 -783(8)	5991(6)	6020(5)	141(4)

C87 139	1(4)	5183(4	4)	5750(2)		77.4(13)	C5	92(4)	91(4)	109(5)	-13(3)	51(4)	-17(3)
C88 130	1(5)	4961(6	6)	6346(3)		110(2)	C6	58(2)	59(2)	69(3)	4.9(19)	19.5(19)	5.1(19)
C89 807	(7)	4302(7	7)	6450(4)		138(3)	C7	73(3)	66(3)	67(3)	-1(2)	24(2)	-4(2)
C90 696	(9)	4122(1	10)	6993(5)		178(4)	C8	97(4)	78(3)	84(3)	-7(3)	33(3)	4(3)
C91 109	2(11)	4590(1	12)	7433(5)		190(4)	С9	149(7)	94(5)	109(5)	-29(4)	61(5)	-7(5)
C92 157	4(11)	5249(1	12)	7330(4)		187(4)	C10	173(8)	132(7)	69(4)	-11(4)	41(5)	-21(6)
C93 171	4(8)	5440(9	9)	6786(4)		155(3)	C11	150(7)	156(8)	72(4)	15(5)	20(4)	-2(7)
C94 304	8(5)	4562(4	4)	5697(3)		88.7(17)	C12	112(5)	102(4)	80(4)	11(3)	23(3)	19(4)
C95 269	8(5)	4139(3	3)	5161(3)		82.6(16)	C13	61(3)	71(3)	76(3)	-11(2)	19(2)	-7(2)
C96 284	5(6)	4448(4	4)	4650(4)		101(2)	C14	55(2)	62(2)	75(3)	-4(2)	21(2)	-10.4(19)
C97 249	7(8)	4070(5	5)	4149(4)		114(3)	C15	88(3)	77(3)	76(3)	-8(3)	27(3)	2(3)
C98 199	3(8)	3388(5	5)	4167(4)		116(3)	C16	100(4)	107(5)	73(3)	-11(3)	23(3)	-20(4)
C99 182	6(7)	3058(4	4)	4645(4)		110(2)	C17	83(4)	85(4)	91(4)	17(3)	9(3)	-19(3)
C100 218	3(6)	3437(4	4)	5152(3)		94.7(18)	C18	78(3)	66(3)	113(5)	6(3)	15(3)	-8(3)
C101 423	3(5)	4753(6	6)	5810(4)		124(3)	C19	74(3)	63(3)	88(3)	-9(2)	26(2)	-11(2)
C102 -701	1(5)	5719(3	3)	3679(3)		87.4(16)	C20	56(3)	112(5)	107(4)	-2(4)	10(3)	-11(3)
C103 104	(5)	5340(3	3)	3514(3)		87.3(16)	C21	72(3)	98(4)	109(4)	7(4)	23(3)	2(3)
C104 -100	0(6)	4654(4	4)	3241(3)		95.6(18)	C22	88(4)	119(5)	110(5)	30(4)	25(4)	-18(4)
C105 -111	19(7)	4360(4	4)	3136(3)		100(2)	C23	92(4)	94(4)	87(4)	21(3)	2(3)	-14(3)
C106 -192	23(7)	4739(5	5)	3314(4)		112(2)	C24	72(3)	93(4)	99(4)	11(3)	5(3)	3(3)
C107 -172	28(6)	5416(4	4)	3592(4)		110(2)	C25	67(3)	81(3)	95(4)	10(3)	17(3)	-6(3)
C108 -134	46(10)	3626(5	5)	2808(5)		141(4)	C26	67(3)	67(3)	81(3)	-5(2)	12(2)	-4(2)
							C27	130(7)	119(6)	136(7)	56(5)	5(5)	-10(5)
Table 3 A	nisotropic Displace	ement Pa	rameters (Å ² ×10	0 ³) for vmdia1	. The Anisot	ropic displacement	Br2	261.8(17)	122.1(8)	193.6(12)	62.5(8)	127.1(12)	71.3(10)
factor exp	onent takes the for	m: $-2\pi^2[1]$	h ² a* ² U ₁₁ +2hka*	b*U ₁₂ +].			S2	92.4(9)	56.0(6)	93.1(9)	-5.5(6)	35.4(7)	3.0(6)
Atom U_{11}	U ₂₂		U ₃₃	U ₂₃	U ₁₃	U ₁₂	04	60.4(19)	82(2)	100(3)	-9.1(19)	27.2(17)	-3.5(16)
Br1 164	.9(9) 132.6(7	7)	115.1(6)	40.8(6)	-21.5(6)	-29.3(7)	05	130(4)	78(3)	118(3)	-30(2)	40(3)	-37(3)
S1 70.3	3 (7) 59.4 (6))	92.5(8)	-4.4(6)	7.6(6)	-2.0(5)	06	128(4)	77(2)	117(3)	15(2)	58(3)	38(2)
01 54.5	5(16) 64.6(17	7)	77(2)	-5.7(15)	19.4(14)	0.8(13)	N2	61(2)	70(2)	90(3)	0(2)	27(2)	-1.8(18)
O2 93(3	3) 73(2)		119(3)	6(2)	-5(2)	-22(2)	C28	60(3)	78(3)	103(4)	-20(3)	26(3)	-5(2)
O3 101	(3) 79(2)		100(3)	-20(2)	12(2)	12(2)	C29	67(3)	61(2)	85(3)	7(2)	31(2)	-1(2)
N1 58(2	2) 65(2)		83(3)	-0.6(19)	16.0(18)	1.4(17)	C30	66(3)	72(3)	84(3)	8(2)	17(2)	3(2)
C1 56(2	2) 77(3)		96(4)	-21(3)	25(2)	-4(2)	C31	57(3)	78(3)	91(3)	13(3)	27(2)	0(2)
C2 62(3	3) 60(2)		82(3)	-1(2)	21(2)	4(2)	C32	77(4)	124(6)	91(4)	7(4)	10(3)	16(4)
C3 73(3	3) 59(2)		88(3)	2(2)	33(3)	2(2)	C33	61(2)	69(3)	66(2)	0(2)	19.6(19)	-1(2)
C4 60(3	3) 80(3)		105(4)	11(3)	30(3)	3(2)							

~ ~ .			60 (8)				~ ~ ~						
C34	78(3)	78(3)	69(3)	0(2)	19(2)	12(2)	C63	164(9)	143(8)	119(7)	55(6)	35(6)	36(7)
C35	146(6)	91(4)	75(3)	15(3)	46(4)	17(4)	C64	153(8)	132(7)	100(6)	26(5)	27(5)	-3(6)
C36	179(9)	126(7)	73(4)	2(4)	46(5)	26(7)	C65	184(9)	114(6)	103(5)	-24(5)	73(6)	-53(7)
C37	155(8)	137(8)	90(5)	-28(5)	8(5)	8(7)	C66	125(5)	80(4)	102(5)	-12(3)	51(4)	-18(4)
C38	138(7)	128(7)	108(6)	-40(5)	30(5)	-31(5)	C67	66(3)	69(3)	130(5)	25(3)	23(3)	-10(2)
C39	91(4)	102(4)	84(4)	-18(3)	22(3)	-17(3)	C68	55(3)	58(3)	131(5)	9(3)	15(3)	-2(2)
C40	69(3)	97(4)	98(4)	-28(3)	20(3)	16(3)	C69	67(3)	60(3)	159(7)	5(4)	10(4)	1(2)
C41	53(2)	63(3)	108(4)	-18(3)	10(2)	6(2)	C70	86(4)	65(3)	186(9)	-18(5)	23(5)	-4(3)
C42	87(4)	72(3)	101(4)	-16(3)	19(3)	-11(3)	C71	91(5)	90(5)	164(8)	-39(5)	28(5)	-26(4)
C43	105(5)	80(4)	102(4)	-5(3)	23(4)	8(3)	C72	91(5)	97(5)	128(6)	-4(4)	-1(4)	-10(4)
C44	112(5)	83(4)	131(6)	19(4)	53(5)	36(4)	C73	78(4)	72(3)	140(6)	0(4)	7(4)	5(3)
C45	86(4)	61(3)	171(8)	4(4)	24(4)	4(3)	C74	79(4)	120(6)	161(7)	14(5)	46(4)	-22(4)
C46	67(3)	61(3)	154(7)	-21(4)	1(3)	1(2)	C75	80(3)	62(3)	77(3)	8(2)	18(2)	-5(2)
C47	78(4)	170(8)	129(6)	-16(6)	41(4)	19(5)	C76	86(4)	94(4)	103(4)	19(4)	15(3)	-8(3)
C48	68(3)	61(2)	76(3)	-11(2)	18(2)	5(2)	C77	136(7)	93(4)	88(4)	-6(4)	-5(4)	-29(5)
C49	69(3)	85(4)	103(4)	-4(3)	15(3)	11(3)	C78	143(7)	90(4)	76(4)	-5(3)	15(4)	1(4)
C50	88(4)	96(4)	125(5)	20(4)	13(4)	29(4)	C79	104(4)	85(4)	71(3)	-3(3)	16(3)	12(3)
C51	123(6)	75(3)	102(4)	13(3)	27(4)	15(4)	C80	87(3)	73(3)	66(3)	-2(2)	14(2)	0(3)
C52	87(4)	73(3)	82(3)	-5(3)	22(3)	-9(3)	C81	230(12)	114(7)	122(7)	-55(6)	27(7)	-2(7)
C53	71(3)	71(3)	74(3)	-7(2)	13(2)	5(2)	Br4	258.7(17)	130.2(8)	143.1(9)	-33.1(7)	12.8(9)	76.5(10)
C54	208(12)	121(7)	192(11)	78(8)	59(9)	29(8)	S4	80.6(9)	60.5(7)	153.5(16)	-4.6(8)	-12.9(9)	-2.4(6)
Br3	205.7(14)	153.4(10)	200.7(14)	-83.0(10)	70.0(11)	-56.8(10)	O10	56.6(18)	83(2)	109(3)	9(2)	17.8(17)	-10.7(17)
S3	103.0(10)	57.1(6)	103.3(10)	9.4(6)	50.2(8)	0.9(6)	011	113(4)	71(2)	166(5)	20(3)	-6(3)	-24(2)
07	63(2)	63.2(19)	120(3)	12.9(19)	31.6(19)	2.5(15)	012	104(3)	84(3)	199(6)	-24(3)	-39(4)	18(3)
08	134(4)	87(3)	126(4)	40(3)	53(3)	43(3)	N4	57(2)	68(3)	151(5)	-20(3)	10(3)	-1.6(19)
09	137(4)	73(2)	128(4)	-15(2)	74(3)	-31(3)	C82	50(3)	85(3)	139(5)	14(4)	25(3)	0(2)
N3	72(3)	64(2)	97(3)	-4(2)	35(2)	-0.6(19)	C83	65(3)	76(3)	123(5)	-27(3)	29(3)	-17(2)
C55	64(3)	89(4)	110(4)	32(3)	25(3)	3(3)	C84	67(3)	84(4)	158(7)	-36(4)	45(4)	-14(3)
C56	70(3)	56(2)	101(4)	8(2)	35(3)	2(2)	C85	55(3)	102(5)	171(7)	-56(5)	30(4)	-17(3)
C57	72(3)	56(2)	94(4)	3(2)	23(3)	-6(2)	C86	100(5)	147(8)	195(10)	-38(7)	76(6)	-6(5)
C58	66(3)	79(3)	100(4)	-9(3)	32(3)	-9(3)	C87	64(3)	87(3)	83(3)	-12(3)	19(2)	-19(3)
C59	97(4)	104(5)	101(5)	17(4)	17(4)	-28(4)	C88	72(3)	185(7)	73(3)	-15(4)	16(3)	-43(4)
C60	66(3)	54(2)	80(3)	0(2)	28(2)	-1(2)	C89	102(5)	214(8)	97(4)	32(5)	17(4)	-58(5)
C61	82(3)	62(3)	81(3)	1(2)	28(3)	-13(2)	C90	143(7)	279(11)	115(6)	43(7)	32(5)	-68(7)
C62	122(5)	87(4)	98(4)	23(3)	35(4)	23(4)	C91	167(8)	312(12)	93(5)	24(7)	26(5)	-52(8)
	X- 7	· 、 /	- < /	- <- /	- \ /			/	< · · ·	- <- /	N. 7	- <- /	- (")

C92 166(8)	302(12)	91(5)	-24(7)	15(5)	-49(8)
C93 130(6)	242(10)	92(4)	-34(6)	18(4)	-49(6)
C94 69(3)	87(4)	113(5)	31(4)	25(3)	3(3)
C95 70(3)	77(3)	107(4)	24(3)	33(3)	16(3)
C96 95(4)	92(4)	130(6)	28(4)	56(4)	11(3)
C97 140(6)	111(6)	103(5)	17(4)	56(5)	41(5)
C98 137(6)	89(5)	128(6)	2(4)	39(5)	53(5)
C99 121(6)	70(4)	141(7)	6(4)	27(5)	21(4)
C100 92(4)	77(4)	120(5)	25(4)	32(4)	14(3)
C101 65(4)	132(6)	168(8)	43(6)	3(4)	2(4)
C102 70(3)	66(3)	121(5)	-1(3)	3(3)	-9(3)
C103 92(4)	72(3)	97(4)	12(3)	12(3)	-14(3)
C104 115(5)	79(4)	97(4)	7(3)	31(4)	1(3)
C105 129(6)	78(4)	93(4)	-2(3)	20(4)	-28(4)
C106 104(5)	98(5)	131(6)	-13(4)	16(4)	-36(4)
C107 81(4)	94(4)	153(7)	-24(4)	14(4)	-15(3)
C108 198(10)	91(5)	134(7)	-31(5)	25(7)	-36(6)

Table 4 Bond Lengths for vmdia1.

Aton	n Aton	n Length/Å	Atom Atom Length/Å					
Br1	C17	1.908(6)	Br3	C71	1.900(9)			
S 1	02	1.421(5)	S3	08	1.427(6)			
S 1	03	1.420(5)	S3	09	1.427(5)			
S 1	N1	1.627(5)	S3	N3	1.620(5)			
S 1	C26	1.765(6)	S3	C75	1.759(6)			
01	C6	1.431(5)	07	C60	1.423(6)			
01	C13	1.442(6)	O7	C67	1.452(7)			
N1	C1	1.473(7)	N3	C55	1.461(7)			
N1	C4	1.459(7)	N3	C58	1.475(8)			
C1	C2	1.533(8)	C55	C56	1.529(9)			
C2	C3	1.530(7)	C56	C57	1.519(8)			
C2	C6	1.525(7)	C56	C60	1.537(6)			
C3	C4	1.494(9)	C57	C58	1.498(8)			
C3	C5	1.314(8)	C57	C59	1.294(9)			
C6	C7	1.525(7)	C60	C61	1.510(8)			

C7	C8	1.360(8)	C61	C62	1.380(9)
C7	C12	1.392(9)	C61	C66	1.368(9)
C8	C9	1.393(10)	C62	C63	1.395(12)
C9	C10	1.349(14)	C63	C64	1.311(15)
C10	C11	1.351(14)	C64	C65	1.392(15)
C11	C12	1.378(11)	C65	C66	1.437(13)
C13	C14	1.497(8)	C67	C68	1.491(10)
C13	C20	1.526(8)	C67	C74	1.518(9)
C14	C15	1.388(7)	C68	C69	1.395(8)
C14	C19	1.387(8)	C68	C73	1.396(10)
C15	C16	1.381(10)	C69	C70	1.372(13)
C16	C17	1.369(11)	C70	C71	1.337(14)
C17	C18	1.355(10)	C71	C72	1.414(12)
C18	C19	1.393(9)	C72	C73	1.372(12)
C21	C22	1.383(10)	C75	C76	1.386(9)
C21	C26	1.365(9)	C75	C80	1.367(8)
C22	C23	1.376(10)	C76	C77	1.414(12)
C23	C24	1.382(10)	C77	C78	1.371(13)
C23	C27	1.509(10)	C78	C79	1.365(11)
C24	C25	1.373(9)	C78	C81	1.506(11)
C25	C26	1.378(8)	C79	C80	1.386(9)
Br2	C44	1.895(8)	Br4	C98	1.910(10)
S2	05	1.420(5)	S4	011	1.423(6)
S2	06	1.417(5)	S4	012	1.422(6)
S2	N2	1.624(5)	S4	N4	1.617(7)
S2	C48	1.755(6)	S4	C102	1.755(6)
04	C33	1.432(6)	O10	C87	1.436(6)
04	C40	1.426(8)	O10	C94	1.437(8)
N2	C28	1.469(7)	N4	C82	1.489(8)
N2	C31	1.458(7)	N4	C85	1.460(10)
C28	C29	1.541(8)	C82	C83	1.517(10)
C29	C30	1.515(7)	C83	C84	1.535(8)
C29	C33	1.534(7)	C83	C87	1.533(9)
C30	C31	1.488(8)	C84	C85	1.494(13)
C30	C32	1.314(9)	C84	C86	1.302(13)

C33	C34	1.516(7)	C87 C88 1.51	5(9)						N1	C1	C2	103.6(4)	N3	C55	C56	104.3(5)
C34	C35	1.372(8)	C88 C89 1.36	8(14)						C3	C2	C1	104.0(4)	C55	C56	C60	110.7(5)
C34	C39	1.391(9)	C88 C93 1.38	9(13)						C6	C2	C1	110.7(4)	C57	C56	C55	105.0(4)
C35	C36	1.441(12)	C89 C90 1.38	0(13)						C6	C2	C3	114.2(4)	C57	C56	C60	114.1(4)
C36	C37	1.344(15)	C90 C91 1.37	(2)						C4	C3	C2	107.4(4)	C58	C57	C56	106.7(5)
C37	C38	1.366(14)	C91 C92 1.36	(2)						C5	C3	C2	127.1(6)	C59	C57	C56	128.5(6)
C38	C39	1.372(10)	C92 C93 1.39	9(16)						C5	C3	C4	125.4(6)	C59	C57	C58	124.7(6)
C40	C41	1.516(10)	C94 C95 1.494	4(10)						N1	C4	C3	102.2(4)	N3	C58	C57	101.9(4)
C40	C47	1.501(10)	C94 C101 1.51	9(9)						01	C6	C2	105.8(4)	07	C60	C56	105.4(4)
C41	C42	1.393(8)	C95 C96 1.392	2(9)						01	C6	C7	110.4(4)	07	C60	C61	112.2(4)
C41	C46	1.383(9)	C95 C100 1.402	2(10)						C7	C6	C2	115.4(4)	C61	C60	C56	113.7(4)
C42	C43	1.375(10)	C96 C97 1.38	6(13)						C8	C7	C6	121.7(5)	C62	C61	C60	119.5(5)
C43	C44	1.418(11)	C97 C98 1.37	0(13)						C8	C7	C12	118.3(6)	C66	C61	C60	122.1(6)
C44	C45	1.353(12)	C98 C99 1.34	3(12)						C12	C7	C6	119.9(5)	C66	C61	C62	118.4(6)
C45	C46	1.345(12)	C99 C100 1.40	1(12)						C7	C8	C9	120.8(7)	C61	C62	C63	122.0(8)
C48	C49	1.370(8)	C102 C103 1.33	9(10)						C10	C9	C8	120.0(7)	C64	C63	C62	120.3(10)
C48	C53	1.386(8)	C102 C107 1.39	0(9)						C9	C10	C11	120.0(7)	C63	C64	C65	120.6(9)
C49	C50	1.372(10)	C103 C104 1.38	5(10)						C10	C11	C12	121.0(8)	C64	C65	C66	119.6(7)
C50	C51	1.373(11)	C104 C105 1.37	7(11)						C11	C12	C7	119.7(7)	C61	C66	C65	119.0(8)
C51	C52	1.377(10)	C105 C106 1.35	1(12)						01	C13	C14	110.2(4)	07	C67	C68	110.7(5)
C51	C54	1.518(11)	C105 C108 1.52	3(10)						01	C13	C20	106.3(5)	07	C67	C74	106.0(6)
C52	C53	1.359(8)	C106 C107 1.37	5(11)						C14	C13	C20	113.1(5)	C68	C67	C74	114.5(6)
										C15	C14	C13	120.5(5)	C69	C68	C67	121.9(7)
Table	5 Bo	nd Angles for vm	idia1.							C19	C14	C13	121.4(5)	C69	C68	C73	117.6(7)
Atom	Atom	n Atom Angle/°	Aton	n Atom	n Atom	Angle/°				C19	C14	C15	118.0(5)	C73	C68	C67	120.5(6)
02	S1	N1 106.2(3)	08	S3	09	120.4(3)				C16	C15	C14	121.9(6)	C70	C69	C68	121.7(8)
02	S1	C26 107.9(3)	08	S3	N3	106.4(3)				C17	C16	C15	117.8(6)	C71	C70	C69	119.4(7)
O3	S1	O2 120.1(3)	08	S3	C75	108.0(3)				C16	C17	Brl	118.1(5)	C70	C71	Br3	120.9(7)
03	S1	N1 106.2(2)	O9	S3	N3	106.1(3)				C18	C17	Brl	119.0(5)	C70	C71	C72	121.9(9)
O3	S1	C26 108.1(3)	09	S3	C75	107.2(3)				C18	C17	C16	122.9(6)	C72	C71	Br3	117.1(8)
N1	S1	C26 107.7(2)	N3	S3	C75	108.1(2)				C17	C18	C19	118.8(6)	C73	C72	C71	117.9(8)
C6	01	C13 113.0(3)	C60	07	C67	113.4(4)				C14	C19	C18	120.6(5)	C72	C73	C68	121.4(7)
C1	N1	S1 120.4(4)	C55	N3	S3	120.0(4)				C26	C21	C22	119.8(6)	C76	C75	S3	120.3(5)
C4	N1	S1 119.9(4)	C55	N3	C58	106.9(4)				C23	C22	C21	121.0(6)	C80	C75	S3	119.8(4)
C4	N1	C1 106.9(4)	C58	N3	S3	118.9(4)				C22	C23	C24	118.6(6)	C80	C75	C76	119.9(6)

C22 C23 C27 120.7(7)	C75 C76 C77 117.6(7)	C38 C39 C34 122.6(7) C88 C93 C92 118.6(13)
C24 C23 C27 120.7(7)	C78 C77 C76 122.6(7)	O4 C40 C41 110.5(4) O10 C94 C95 110.0(5)
C25 C24 C23 120.4(6)	C77 C78 C81 121.1(9)	O4 C40 C47 106.8(7) O10 C94 C101 106.4(6)
C24 C25 C26 120.4(6)	C79 C78 C77 117.7(7)	C47 C40 C41 113.2(6) C95 C94 C101 113.8(7)
C21 C26 S1 119.9(5)	C79 C78 C81 121.2(9)	C42 C41 C40 120.6(5) C96 C95 C94 120.4(6)
C21 C26 C25 119.7(6)	C78 C79 C80 121.3(7)	C46 C41 C40 120.7(6) C96 C95 C100 117.8(7)
C25 C26 S1 120.4(4)	C75 C80 C79 120.8(6)	C46 C41 C42 118.7(7) C100 C95 C94 121.8(6)
O5 S2 N2 106.5(3)	O11 S4 N4 105.9(3)	C43 C42 C41 121.2(6) C97 C96 C95 121.0(7)
O5 S2 C48 108.3(3)	O11 S4 C102 108.9(4)	C42 C43 C44 117.3(7) C98 C97 C96 118.5(7)
O6 S2 O5 119.8(3)	O12 S4 O11 119.6(4)	C43 C44 Br2 116.3(7) C97 C98 Br4 117.8(7)
O6 S2 N2 106.7(3)	O12 S4 N4 106.1(4)	C45 C44 Br2 122.6(7) C99 C98 Br4 118.6(8)
O6 S2 C48 107.0(3)	O12 S4 C102 108.0(3)	C45 C44 C43 121.1(7) C99 C98 C97 123.6(9)
N2 S2 C48 108.1(2)	N4 S4 C102 107.8(3)	C46 C45 C44 120.6(7) C98 C99 C100 117.9(8)
C40 O4 C33 113.6(4)	C87 O10 C94 113.0(4)	C45 C46 C41 121.1(7) C99 C100 C95 121.2(7)
C28 N2 S2 120.1(4)	C82 N4 S4 120.3(5)	C49 C48 S2 120.0(5) C103 C102 S4 119.3(5)
C31 N2 S2 119.7(3)	C85 N4 S4 119.4(5)	C49 C48 C53 120.5(5) C103 C102 C107 120.3(6)
C31 N2 C28 108.4(4)	C85 N4 C82 106.4(6)	C53 C48 S2 119.5(4) C107 C102 S4 120.4(6)
N2 C28 C29 104.8(4)	N4 C82 C83 104.8(5)	C48 C49 C50 118.2(6) C102 C103 C104 119.5(6)
C30 C29 C28 104.3(4)	C82 C83 C84 104.4(6)	C49 C50 C51 122.3(6) C105 C104 C103 120.7(7)
C30 C29 C33 113.8(4)	C82 C83 C87 111.9(5)	C50 C51 C52 118.2(6) C104 C105 C108 120.3(9)
C33 C29 C28 110.3(4)	C87 C83 C84 114.3(5)	C50 C51 C54 121.4(8) C106 C105 C104 119.4(7)
C31 C30 C29 107.5(5)	C85 C84 C83 107.1(6)	C52 C51 C54 120.3(8) C106 C105 C108 120.3(8)
C32 C30 C29 127.3(6)	C86 C84 C83 126.3(9)	C53 C52 C51 120.7(6) C105 C106 C107 120.4(7)
C32 C30 C31 125.0(6)	C86 C84 C85 126.4(8)	C52 C53 C48 119.9(5) C106 C107 C102 119.7(8)
N2 C31 C30 102.4(4)	N4 C85 C84 102.9(5)	
O4 C33 C29 104.4(4)	O10 C87 C83 105.0(4)	Table 6 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for
O4 C33 C34 112.4(4)	O10 C87 C88 111.6(5)	vmdia1.
C34 C33 C29 114.7(4)	C88 C87 C83 115.0(6)	Atom x y z $U(eq)$
C35 C34 C33 121.5(6)	C89 C88 C87 120.6(7)	H1A 8409.77 8682.25 276.15 90
C35 C34 C39 118.7(6)	C89 C88 C93 120.2(8)	H1B 8979.14 7898.2 431.87 90
C39 C34 C33 119.8(5)	C93 C88 C87 119.2(9)	H2 8513.81 8573.64 -632.46 80
C34 C35 C36 118.4(8)	C88 C89 C90 119.9(11)	H4A 11045.75 7914.68 241.36 96
C37 C36 C35 119.9(7)	C91 C90 C89 120.7(13)	H4B 11389.21 8716.28 44.08 96
C36 C37 C38 122.0(8)	C92 C91 C90 119.6(11)	H5A 11184.68 8353.76 -983.6 112
C37 C38 C39 118.2(9)	C91 C92 C93 120.8(13)	H5B 9990.1 8187.72 -1311.13 112
		H6 8877.04 7037.42 -309.67 73

H8 9343.04	6249.66	-1011.01	101	H43 1566.94	5799.43	8666.32	114
Н9 9267.17	5890.66	-1939.62	135	H45 3223.61	7540.51	9459.47	127
H10 8295.56	6583.77	-2643.88	147	H46 3148.69	7003.65	10302.33	115
H11 7338.93	7599.73	-2435.19	151	H47A 818.47	5190.2	10393.64	184
H12 7429.99	7991.82	-1518.74	116	H47B 711.36	6017.62	10608.9	184
H13 7064.74	6398.15	-706.85	82	H47C 1143.55	5375.47	11035.28	184
H15 7081.96	7122.7	674.78	94	H49 3492.56	4548.91	8710.67	103
H16 7913.67	6572.72	1505.18	111	H50 3591.06	5625.17	8189.74	124
H18 8806.36	4835.83	636.71	103	H52 6752.95	5434.34	8380.08	96
H19 7995.61	5398.79	-200.19	89	H53 6685.79	4378.87	8917.82	87
H20A 5613.82	7120.37	-106.45	138	H54A 4712.98	6271.1	7505.77	256
H20B 5386.98	6350.18	-425.38	138	H54B 5927.43	6370.94	7761.43	256
H20C 5467.01	7097.36	-764.31	138	H54C 5051.13	6761.37	8048.03	256
H21 9388.69	8043.25	1669.44	110	H55A 6766.03	1398.97	5234.01	104
H22 9890.58	6993.35	2217.92	126	H55B 6289.19	2172.11	5403.92	104
H24 12807.51	7090.99	1817.85	107	H56 6225.33	1598.33	4325.93	87
H25 12327.37	8165.76	1302.1	97	H58A 4079.11	2167.31	5100.85	95
H27A 12288.06	6394.29	2757.82	195	H58B 3643.08	1366.19	4878.39	95
H27B 11992.38	5875.24	2227.69	195	H59A 3353.98	1690.95	3861.6	121
H27C 11125.2	6070.89	2595.82	195	H59B 4384.01	1894.07	3582.48	121
H28A 3515.35	3620.61	10051.36	95	H60 5947.85	3093.7	4715.22	78
H28B 3721.9	4429.79	9817.35	95	H62 4911.46	3848.62	4072.05	121
H29 4101.94	3977.3	10930.71	83	H63 4233.91	4263.76	3174.57	169
H31A 6014.99	4650.93	10036.24	88	H64 4811.22	3763.9	2431	153
H31B 6583.1	3880.79	10241.75	88	H65 6114.19	2829.17	2551.22	153
H32A 6974.52	4178.99	11265.68	118	H66 6785.27	2367.87	3468.74	118
H32B 5977.18	4317.68	11585.55	118	H67 7507.15	3822.56	4403.62	105
H33 4146.32	5427.88	10422.87	77	H69 6832.67	4731.05	4958.36	116
H35 3623.16	4862.18	11779.66	121	H70 6580.35	5215.28	5807.01	135
H36 4445.05	5448.5	12634.46	148	H72 8224.48	3478.45	6600.13	129
H37 5565.03	6437.3	12612.47	154	H73 8442.8	2980.33	5744.44	118
H38 5913.88	6911.59	11778.22	148	H74A 9375.22	3101.72	4965.85	175
H39 5183.52	6321.76	10953.75	110	H74B 9346.45	3881.97	4656.33	175
H40 2584.26	6075.58	10872.72	105	H74C 9066.99	3138.46	4309.16	175
H42 1503.25	5259.62	9533.27	103	H76 6527.38	2126.15	6563.88	113

H77 6239.84	3169.46	7115.73	130
H79 3106.15	2958.39	6661.46	104
H80 3352.94	1922.92	6121.7	90
H81A4197.17	3670.58	7633.42	233
H81B 3991.17	4185.05	7097.12	233
H81C 5155.78	4086.45	7433.06	233
H82A1486.31	6462.16	4915.54	108
H82B 1068.58	5639.89	4746.87	108
H83 1211.42	6342.25	5784.76	104
H85A-1097.18	5531.7	4813.51	130
H85B-1573.06	6320.29	4953.9	130
H86A-1518.25	6054.75	5989.22	170
H86B -356.66	5946.87	6372.79	170
H87 1066.58	4782.96	5495.62	93
H89 547	3976.69	6155.96	165
H90 348.82	3677.57	7061.97	213
H91 1032.13	4456.94	7798.42	228
H92 1813.16	5577.49	7626.09	225
H93 2076.17	5879.1	6719.3	185
H94 2880.09	4259.86	6010.33	106
H96 3181.84	4913.63	4644.1	122
H97 2604.07	4274.98	3808.09	136
H99 1483.34	2593.18	4639.95	132
H100 2077.71	3219.33	5488.4	114
H10A 4401.33	5061.17	5509.55	186
H10B 4643.59	4295.02	5832.2	186
H10C 4402.65	5023.22	6158.3	186
H103 794.14	5536.2	3582.61	105
H104 458.65	4389.58	3126.02	115
H106 -2611.87	4540.63	3248.22	134
H107 -2279.62	5669.73	3721.74	132
H10D-711.35	3465.06	2675.09	212
H10E -1910.63	3705.8	2494.16	212
H10F -1558.09	3243.88	3049.16	212

RÉSUMÉ

Ce manuscrit présente les développements des transformations énantiosélectives catalysées par l'or dans des réactions de cycloisomérisation d'énynes et de carbonyl-ynes, en présence ou en absence de nucléophiles externes. Une attention particulière a été menée dans l'utilisation de complexes d'or à base de la plateforme imidazopyridine (IPy).

La synthèse et l'étude de la réactivité en versions racémique et asymétrique des énynes-1,6 et d'o-alcynyl arylaldéhydes ont été réalisées en présence de ligands phosphines et IPy. Les nucléophiles de type alcools, aromatiques riches en électron, sulfoxyde, aldéhydes conduisent aux transformations domino d'alcoxylation /cyclisation, d'hydroarylation /cyclisation, de cyclisation oxydative et de Prins. Divers carbo- et hétérocycles ont été obtenus avec de bons à excellents rendements et une énantiosélectivité jusqu'à 94%.

MOTS CLÉS

[Mots clés en français] Catalyse, or, cycloisomérisation d'énynes, réaction domino, catalyse asymétrique, imidazopyridine

ABSTRACT

This manuscript presents the developments of gold-catalyzed enantioselective transformations such as cycloisomerization reactions of enynes and carbonyl-ynes, in the presence or absence of external nucleophiles. A special attention has been directed towards the interest of gold complexes based on the imidazopyridine platform (IPy).

The synthesis and the study of reactivity on racemic and asymmetric versions of 1,6enynes and *o*-alkynyl aryl-aldehydes were carried out in the presence of phosphine and IPy ligands. Nucleophiles such as alcohols, electron-rich aromatics, sulfoxide, aldehydes led to alkoxylation /cyclization, hydroarylation /cyclization, oxidative cyclization and Prins reaction. Various carbo- and heterocycles were obtained with good to excellent yields and enantioselectivities up to 94%.

KEYWORDS

[Mots clés en anglais] Catalysis, gold, cycloisomerization of enynes, domino reaction, asymmetric catalysis, imidazopyridine