N
N

N

HAL

open science

Contributions to graph-based hierarchical analysis for
images and 3D point clouds

Leonardo Gigli

» To cite this version:

Leonardo Gigli. Contributions to graph-based hierarchical analysis for images and 3D point clouds.
Image Processing [eess.IV]. Université Paris sciences et lettres, 2021. English. NNT : 2021UPSLMO029 .

tel-03512298

HAL Id: tel-03512298
https://pastel.hal.science/tel-03512298

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://pastel.hal.science/tel-03512298
https://hal.archives-ouvertes.fr

PSL

UNIVERSITE PARIS

THESE DE DOCTORAT

DE L'UNIVERSITE PSL

Préparée a MINES ParisTech

Contributions to graph-based hierarchical analysis for
images and 3D point clouds

Contributions a I'analyse hiérarchique basée sur des graphes pour les images et

les nuages de poins 3D

Soutenue par
Leonardo Gigli
Le 23 Mars 2021

Ecole doctorale n°621
Ingénierie des Systemes,
Matériaux, Mécanique, En-
ergétique

Spécialité
Morphologie
tique

mathéma-

pors

MINES
Tech*

PSL %

Composition du jury :

Sébastien LEFEVRE
Professeur, Université Bretagne-Sud

Pierre SOILLE

Scientific Officer HDR, Joint Research
Centre, European Commission
Antonio PLAZA

Full Professor, Universidad de Ex-

tremadura

Jesus ANGULO

Directeur de Recherche, MINES Paris-

Tech
Ravi KIRAN
Docteur Ingénieur, Navya

Benjamin PERRET
Professeur Associé, ESIEE Paris

Santiago VELASCO-FORERO
Chargé de Recherche, MINES ParisTech

Beatriz MARCOTEGUI
Professeur, MINES ParisTech

Président

Rapporteur

Rapporteur

Examinateur

Examinateur

Examinateur

Examinateur

Directeur de thése

po 4 PSL*

MINES
Tech *

Ph.D. Thesis

Contributions to graph-based hierarchical
analysis for images and 3D point clouds.

Ph.D. candidate: Leonardo Gigli

Advisors: Ph.D. Santiago Velasco-Forero
Prof. Beatriz Marcotegui

Acknowledgements

First and foremost, I want to thank my research advisors, Dr. Santiago Velasco-Forero and Prof. Beatriz
Marcotegui for having accepting me as a student and for the incredible opportunity they gave me to work
with them and to pursue the Ph.D. They guided me over the years on different topics of the research with a
lot of patience, trying to help me to move forward when I was stuck. I would also like to thank Dr. B Ravi
Kiran for the time spent helping me with numerous inspiring discussions and endless number of papers to
read, making me understand the importance of applications in our work. Furthermore, I want to express
my gratitude to Dr. Andrés Serna, who advised me in my first steps on the world of 3D point clouds
during my master and without whom I would never have known about the CMM, Center for Mathematical
Morphology.

Being part of the CMM has been an incredible, enriching experience. I would like to thank all the people
I met during these years: Samy, Etienne, Petr, Bruno, Francois, Jose, Michel, Jesus. A special thanks
goes to Anne-Marie for her help in dealing with the dreadful French bureaucracy and for organizing great
moments of conviviality at CMM every time. I want also want to thank all the students in Fontainebleau
with whom I shared this though but beautiful path: Eric, David, Amin, Theo, Elodie, Francois, Albane,
Robin, Kaiwen, Sebastian, Martin, Mateus, Tarek, Tristan, Zyad, Aurelien, Laure, Marine, Jean, Mike et
Ricardo.

Living abroad sometimes can be difficult and the distance from home can make us feel homesick.
Luckily, in these moments I could count on the support of a small Italian community that helped to feel
less missing from home. Thank you, Carlo, Sam, Sara, Paola, Marco, Ele, Yasmine, Annina, Fabio, Cinzia
and Cecilia.

Finally, I am grateful to my parents and my family because they are my first supporters. They push

me to do my best and grow as a man, even though this means moving away from them.

Last but not the least, I would like to thank my love Zoe, who supported me in this choice and moved

with me to Paris. Much of this achievement is thanks to your encouragement, especially in the hard times.

Abstract

Graphs are powerful mathematical structures representing a set of objects and the underlying links between
pairs of objects somehow related. They are becoming increasingly popular in data science in general
and in particular in image or 3D point cloud analysis. Among the wide spectra of applications, they are
involved in most of the hierarchical approaches. Hierarchies are particularly important because they allow
us to efficiently organize the information required and to analyse the problems at different levels of detail.
In this thesis, we address the following topics.

Many morphological hierarchical approaches rely on the Minimum Spanning Tree (MST). We propose
an algorithm for MST computation in streaming based on a graph decomposition strategy. Thanks to this
decomposition, larger images can be processed or can benefit from partial reliable information while the
whole image is not completely available.

Thanks to recent developments, LiDAR can acquire large-scale and precise 3D point clouds. Many
applications, such as infrastructure monitoring, urban planning, autonomous driving, precision forestry,
environmental assessment, to cite a few, are under development nowadays. We introduce a ground-
detection algorithm and compare it with the state of the art. Moreover, we study the impact of reducing
the point cloud density with low-cost scanners, in the context of an autonomous driving application.

In many hierarchical methods, similarities between points are given as input. However, the metric
used to compute similarities influences the quality of the results. Metric learning is a complementary
tool that helps to improve the quality of hierarchies. We demonstrate the capabilities of these methods
in two contexts. The first one, a texture classification of 3D surfaces, a task organized by SHREC’20
international challenge (ranked second). The second one learning the similarity function together with the
optimal hierarchical clustering, in a continuous feature-based hierarchical clustering formulation.

We conclude this thesis proposing a Graph Convolutional Layer in Max-Plus algebra that aims to be a
first step towards Morphological Convolutions on Graphs. The proposed convolution is also benchmarked
against state-of-the-art Graph Convolutional Layers. Results obtained are promising and prove that it is

worth investigating further.

Keywords: Graph Theory, Hierarchical clustering, Segmentation, Image processing, Machine
Learning, Point Clouds, Graph Neural Networks

Contents

List of Figures xi
List of Tables xix
Introduction 1
1 Graph Theory and Clustering 5
1.1 Graphtheory e e 5
1.1.1 Topological definitions on graphs 7

1.1.2 Trees, Forests and Spanning Trees 8

1.1.3 Algorithms to compute a Minimum Spanning Tree 10

1.2 Clusteringon graphs i e e e e e e e e 13
1.2.1 FlatClustering e e 13

1.2.2 Hierarchical Clustering 17

1.2.3 Evaluateaclustering e 22

1.3 MST applications to Image Segmentation 25
1.3.1 A-FlatZones e 25

1.3.2 Watershed Cuts e 26

1.3.3 (a—w) constrained connectivity 27

2 Point Clouds 29
2.1 Introduction L e e 29

22 PointClouds e e e 29

2.3 PointCloud Scanning L. 30
2.3.1 Photogrammetry e e 30

232 RGB-DCameras i e 30

2.3.3 Laser Scanner Technology 31

2.4 Point Cloud Processing e e 32
24.1 3DDataStructures e e e e e e e e 34

24.2 PFeature Extraction e 35

2.4.3 Point Cloud Projections 37

2.5 Point Cloud for Autonomous Drivingo 38

2.6 Databases e e 41

2.6.1 SemanticKITTI 41

viii Contents

2.6.2 ModelNet e 43

2.63 PartNet e 43

3 Ground and Road Detection 45

3.1 Introduction e e 45

3.2 Introduction to Ground Detection 46

3.3 Ground Detection on Point Clouds with heterogeneous density 47

3.4 Experiments on ground detection Lo Lo 56

3.5 Roaddetection 62

3.5.1 Motivation & Contributions L o 62

352 RelatedWork 63

3.6 Methodology 64

36,1 DNNmodels e 65

3.6.2 Sub-sampling point clouds to simulate low resolution 66

3.6.3 Surface normal extraction L. 66

3.7 Experiments & Analysis e 69

3.7.1 KITTIroad estimation benchmark 71

3.7.2 Semantic-KITTI 71

3.8 Conclusions L e e 73

4 Minimum Spanning Tree for data streams 75

4.1 Introduction e e e e e e 75

4.2 Streaming CONtEXL o v v v o i e e e e e e e e e e e e e e 75

4.3 Minimum Spanning tree of aflow of graphs. Lo 77

4.4 A divide and conquer implementation o oL 81

45 Benchmarks 82

4.6 Applicationto Image analysis. 87

4.6.1 A-quasi-flatzones 88

4.6.2 Watershedcuts L 89

4.6.3 (a,w)-constrained connectivity 90

477 Conclusions e 91

5 Metric Learning 93

5.1 Introduction to Metric Learning Lo oo 93
5.2 SHREC’20 track: Retrieval and classification of surface patches with similar geometric

relief 94

52.1 Dataset e 94

5.22 ProposedMethod 95

523 MEtriCs oo e 96

5.3 Learning Similarities and Hierarchies 98

5.3.1 Related Works e 99

5.3.2 Hyperbolic Hierarchical Clustering 100

5.3.3 Learning Similarities L 101

Contents

ix

5.3.4 Model Architecture e e

5.4 Experiments
5.4.1 Toy Datasets

54.2 ResultsonToy Datasetsoo...

5.5 Conclusions

6 Towards Morphological Convolutions on Graphs

6.1 Graph Neural Networks
6.1.1 MessagePassing
6.1.2 Convolutionongraph
6.1.3 Attentionon GNN
6.1.4 Graphpooling
6.2 Towards Morphological Graph Convolutions
6.2.1 MaxPlus Edge Convolution
6.2.2 Benchmarking MPEdge Convolutions

6.2.3 Conclusions

Conclusions

References

102
103
103
104
108

123
123
124
125
127
128
129
130
132
134

137

141

1.1

1.2
1.3

1.4

1.5
1.6

1.7
1.8

2.1
22

23
24
2.5

2.6

2.7

2.8
29

List of Figures

(Left) Map of Konigsberg showing the seven bridges connecting different areas of the city.
(Right) Graph modelling the seven bridges problem. A node is assigned to each district,
while the edges correspond to the bridges connecting two areas.
An example of undirected graph. Lo
Graph distances. Optimal path connecting v and v changes according to the distance that
we consider. In blue distance dy, in red shortest path distance d; and in green lowest path
diStance dog. -« v v v e e e e e e
An example of graph for which we can find multiple different Minimum Spanning Trees.
The graph in the row above is the input graph, while in the row below we illustrate three
different MSTs. We color them with red edges belonging toeach MST..
(Left) An example of hierarchical clustering and (Right) its dendrogram representation. .
An example of chaining effect. Distances between points in the sequence from A to
I are small. However, the distance between the first and the i-th element increases as
we navigate through the sequence. Single Linkage puts the entire sequence in the same
cluster. (Left) Input graph and (right) Single Linkage Hierarchy.
(Left) Single Linkage (Center) Complete Linkage (Right) Average Linkage
(Left) 4-connectivity (Center) 8-connectivity (Right) 6-connectivity

Point cloud representation of the Colosseum.
(a) Velodyne HDL-64E (b) Car and sensor platform used to record KITTI Dataset Bench-
mark. A 64 layers laser scanner has been installed on top of the car, along with 4 cameras.
(Source Geiger et al. (2012)). (c) Illustration of a scan obtained with a MLS platform. . .
Example of Octree decomposition (Image source Vo et al. (2015))
Example of space partition using a 2-D tree (Image source Wikipedia)
Planarity, linearity, eigentropy and change of curvature obtained on a point cloud of the
Fountain in Balgach in the Semantic3D Dataset Hackel et al. (2017).
Spherical Projection e
An example of projection of a point cloud onto images. (a, b) Two views of the same 3D
point cloud. (c) Image obtained after a Bird’s-eye View projection, (d) Image obtained
after a Spherical View projection. Some pixels are black because no point falls in.
Aeroplane e e e
An example that illustrates differences between Instance Segmentation, Semantic Seg-

mentation and Panoptic Segmentation Lo

xii List of Figures
2.10 Some examples of frames in SemanticKITTI. Source: Behley et al. (2019) 42
2.11 SemanticKITTI: Label distribution. Image Source: Behley et al. (2019) 42
2.12 Left: word cloud visualization of the ModelNet dataset based on the number of 3D

models in each category. Larger font size indicates more instances in the category. Right:
Examples of 3D chair models. Image Source Zhirong Wu et al. (2015). 43
2.13 Some shapes with fine-grained part annotations for the 24 object categories in PartNet.
Image Source Mo etal. (2019). e 43
2.14 Some annotations at three levels of segmentation in hierarchy. Image source Mo et al.
(2019). . o o o 44
3.1 A common pipeline for Object classification. Ground detection is the first step to achieve.
Once removed from the ground remaining objects can be more easily identified. 46
3.2 A zoom of the I,,,,, image. In this case, the car is driving through a narrow street, and
road in the front of the car is disconnected from the rear. In red, pixels in the closest ring
around the scanner detected as ground., 48
3.3 The hypothetical case of perfectly flat ground. The distances between points and the
scanner depend on the tangent of the inclination angle of the layer and the scanner height h. 50
34 Dartboard e 50
3.5 Interpolated image obtained on the frame 3721 in sequence 08 of SemanticKITTI dataset. 51
3.6 (a) Quasi-flat zones obtained with A = 0.2m. (b) Zoom around the car. Red pixels
represent the ground detected in the first step of the method. 52
3.7 (a) Results obtained projecting back ground-detected on I,,,,,.. We assign red colour to
the true positive, blue colour to true negative, and white colour to false negative. Without
propagating labels on I,,,;,,, we miss ground points close to vertical object. This issue is
mainly caused by the fact that we have chosen a gross resolution of 20cm for the xy-grid.
(b) Results obtained after the expansion of the detected ground before the projection. . . 53
3.8 The graph is obtained projecting points on the spherical grid S?. 54
3.9 An example of the graph built on the 3D point cloud. The colours of the points change
accordingtotheclass. L 54
3.10 Anexampleof scanner e e e e 54
3.11 Logistic function with varying values of parameters kand zg. 55
3.12 An example of the A-flat-zones with A = 0.20m. Different colours mean different con-
nected components. Please remark that function w allows to easily extract horizontal
surfaces, for example roads, terrain or roof of cars, while vertical objects are shattered in
MICIO COMPONENES. . .+ . v v v v bt e 56
3.13 The confusion matrices help to analyse the misclassifications between Ground and other
aggregated categories. (a) Naive RANSAC (b) BEV A-quasi flat zones (c) 3D A-quasi flat
zones + RANSAC (d) CSF (e) FCNN based approach. 58
3.14 Example 3D approach also fails to detect as ground a part of the sidewalk. Green points
are true positives, red ones are false positives, blue false negatives and grey ones are true
NEZALIVES. v v i e e e e e e e e e e e e e e e e 59
3.15 Quasi Flat Zones 60

List of Figures

xiii

3.16 A-flat-zones obtained by the method 3D A\-FZ + RANSAC. Each colour corresponds to a
different connected component. o s

3.17 In this example BEV A-FZ detects a stair nearby the road as ground. The A used in
this case is too big to catch the step. Green points are true positives, red ones are false
positives, blue false negatives and grey ones are true negatives.

3.18 BEV A-FZ considers as ground the biggest flat zone in the projection image. Sometimes
this method does not recover all the spots. In this example, it does not detect a piece of

the garden behind a bush because it is not connected with the road. Green points are true

positives, red ones are false positives, blue false negatives and grey ones are true negatives.

3.19 Predictions obtained by the four analysed methods. Green points are true positives, red
ones are false positives, blue false negatives and grey ones are true negatives. In this is an
example FCNN fails to detect all the points and in particular points on the terrain.

3.20 Overall methodology to evaluate the performance of road segmentation across different
resolutions. See Figures 3.22 for more details on the architectures used.

3.21 SV projection: two cropped images showing the difference between the standard projec-
tion, and our projection. e e

3.22 (a) LoDNN Architecture used on BEV images. (b-d) U-Net Architectures used on SV
IMAZES. . o o v v e e e e e e e e e e e e e

3.23 Plot containing the azimuths and vertical angles for a single pointcloud.

3.24 Relationship between adjacent pixels in the radial distance image Z and adjacent points in
the 3D space. Pixels p, p,, and py are associated to 3D points P, P, and Py. Since P, P,
and Py compose a local plane, we compute their 3D gradients as tangent vectors v, vg
from a radial distance value atp, p, andpg. L.

3.25 An example of features projected on the BEV in case of a 64 layers scanner. Surface
normals are computed on SV and projectedto BEV.o 0oL

3.26 A crop example of features projected on the SV in case of a 64 layers scanner. Surface
normals are estimated from radial distance image. The last image below is the ground
truthforthiscase.

3.27 KITTI Road Segmentation with BEV images: Precision-Recall Curve for various features
with and without sub-sampling. L oL

3.28 KITTI Road Segmentation with SV images: Precision-Recall Curve for various features
with and without sub-sampling. L

3.29 SemanticKITTI with SV images: Precision-Recall Curve for various features with and

without sub-sampling.

41 To=MST(Lp) inred and 7y = MST (Z,) in blue. E7; and E7; in bold and dashed,
edges linking common pixels (in emerald) and candidate to form cycles on the union of
thetwo MST.

4.2 (a) Example of a one-dimensional streaming of an image Z;. This can be seen as the
union of the two non-disjoint images Z;_1 and B;. Without loss of generality, they share
a column of pixels. (b) Example of a two-dimensional streaming of an image. In this case

the image is the union of tiles who share common boundaries.

60

61

61

69

xiv

List of Figures

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1

52

53

54

5.5

5.6

In black the edge e, while in blue the edges in MST (G;—1 — Eg,_,), inred edges coming
from Eg, ,. In particular, the dashed red edges are edges initially in Eg, , but not in
MST (Eg, ;UByL). . oo e e e e 81
An example of stable + unstable decomposition of minimum spanning tree. The green
graph is the forest F; that contains only stable edges, while the red graph is Eg, that
contains only unstable edges. (b-c) Pixels without edges are stable, so it is possible to
store that part of the graph and do not need to consider in following intervals. 82
Steps of Procedure 7. a) It first splits top-down the input image until an atomic block size
is reached. Then it computes an MST for each tile. b) Finally, it merges bottom-up the
MSTs of tiles, decomposing at each time edges of an MST between stable and unstable.
In figure, we draw in blue stable edges and in red unstableones. 83
Runtime of Procedure 5, Procedure 6 and brute-force algorithm on a (12000 x 47196)
pixels image of Planet Mars’ surface. oL, 83
Runtime of Procedures 5 and 6 with different block sizes. We used blocks of 12000 x 4000,
12000 x 8000 and 12000 x 12000 pixels. L oL o 85
Image used to validate streaming version of the segmentation methods. The image has
been split in three blocks (see blue dashed lines) and the blocks stream from left to right.
As explained in Section 4.2 two consecutive blocks share a column of pixels. In red, the
pixels used as markers for watershed-cut. 88
An example of one level of A-quasi-flat zones in streaming, with A = 10 for image in Fig.
4.8. Black pixels in Figures (a) and (b) are those that do not have a stable label in that
Ieration. oL e e e 89
Watershed cuts in streaming for image in Fig. 4.8. Red pixels in the images are the markers
of the segmentation. Black pixels in Figures (a) and (b) are the connected components
that do not have a stable label in that iteration. 90
An example of («,w)-constrained connectivity in streaming, with & = 10 and w = 150
for image in Fig. 4.8. Black pixels in Figures (a) and (b) are those that do not have a
stable label in that iteration. L oL 91

Left: Base model on which reliefs are applied. Center: the 11 textures used as height-
fields on the base model (brighter colours for higher values). Right: Some examples of
the final models of the dataset. (Image source Moscoso Thompson et al. (2020)) 94
The pipeline for extraction of images first select a neighbourhood on a mesh, then check
if the neighbourhood satisfies the flatness criteria and finally project it on an image. . . . 95
Our network consists of a batch input layer and a deep CNN which results in the image
embedding by using a triplet loss during training. L. 96
Geodesics on the Poincaré Disk are either segments of circles orthogonal to the boundary
of the ball as for the case of points P and () or straight lines passing through the origin as
forthe case of points P and Q'. 101
A sketch of a tree embedded in the Poincaré disk. Red curves connecting the dots are
geodesics of the space. 102
Example of circles that can be generated varying noise value. 103

List of Figures

XV

5.7
5.8

59

5.10

5.11

5.12

5.13

5.14

Different samples of moons obtained increasing noise value.
Blob Dataset is generated sampling points from nine different Gaussians centered on
a regular grid having all the same standard deviation. Figure shows Gaussians that we
obtain using different values for standard deviation.
Anisotropic Dataset is generated sampling points from nine different anisotropic Gaussians
centered on a regular grid. The samples shown have been obtained using different values
for standard deviation.
Varied Dataset is generated sampling points from nine different Gaussians centered on a
regular grid. Gaussians used in this case have different standard deviation.
Effect of noise on predictions in the circle database. The model used for prediction is a
MLP trained using a dataset without noise. From top to bottom, each row is a case with an
increasing level of noise. In the first column the input points, while in the second column
we illustrate hidden features. Points are colored according to ground truth. The third
column illustrates the hidden features after projection to Poincaré Disk. Fourth column
shows predicted labels, while the fifth column shows associated dendrograms. Colors in
the last three columns are assigned according to predicted labels.
Effect of noise on predictions in circle database. The model used for prediction is a
DGCNN trained using a dataset without noise. From top to bottom, each row is a case
with an increasing level of noise. In the first column the input points, while in the second
column we illustrate hidden features. Points are colored according to ground truth. The
third column illustrates the hidden features after projection to Poincaré Disk. Fourth
column shows predicted labels, while the fifth column shows associated dendrograms.
Colors in the last three columns are assigned according to predicted labels.
Robustness to noise of models on Circles. We compare trained models against classical
methods as Single Linkage, Average Linkage, Complete Linkage and Ward’s Method. The
models used have been trained on a dataset without noise. Test sets used to measure scores
contain 20 samples each. Plots show mean and standard deviation of scores obtained.
During the experiments on this dataset MLP has shown a higher robustness to noise
compared with DGCNN. Among classical methods only single linkage perform well on
these samples.
Moons dataset. The model used is a MLP trained on samples without noise. From
top to bottom, each row is a case with an increasing level of noise. In the first column
the input points, while in the second column we illustrate hidden features. Points are
colored according to ground truth. The third column illustrates the hidden features after
projection to Poincaré Disk. Fourth column shows predicted labels, while the fifth column
shows associated dendrograms. Colors in the last three columns are assigned according to
predicted labels.

104

xvi

List of Figures

5.15

5.16

5.17

5.18

5.19

5.20

Moons dataset. The model used for prediction is a DGCNN trained on samples without
noise. From top to bottom, each row is a case with an increasing level of noise. In the first
column the input points, while in the second column we illustrate hidden features. Points
are colored according to ground truth. The third column illustrates the hidden features
after projection to Poincaré Disk. Fourth column shows predicted labels, while the fifth
column shows associated dendrograms. Colors in the last three columns are assigned
according to predicted labels.
Robustness to noise of models on Moons. We compare trained models against classical
methods as Single Linkage, Average Linkage, Complete Linkage, Ward’s Method. The
models used have been trained on a dataset without noise. Test sets used to measure scores
contain 20 samples each. Plots show mean and standard deviation of scores obtained.
During the experiments on these datasets MLP has shown a higher robustness to noise
compared with the othermodels. L.
Blobs dataset. The model used for prediction is a MLP trained on samples with standard
deviation value at 0.08. From top to bottom, each row is a case with an increasing value
of standard deviation. In the first column the input points, while in the second column
we illustrate hidden features. Points are colored according to ground truth. The third
column illustrates the hidden features after projection to Poincaré Disk. Forth column
shows predicted labels, while the fifth column show associated dendrograms. Colors in
the last three columns are assigned according to predicted labels.
Blobs dataset. The model used for prediction is a DGCNN trained on samples with
standard deviation value at 0.08. From top to bottom, each row is a case with an increasing
value of standard deviation. In the first column the input points, while in the second
column we illustrate hidden features. Points are coloured according to the ground truth
labels. The third column illustrates the hidden features after projection to Poincaré
Disk. Fourth column shows predicted labels, while the fifth column show associated
dendrograms. Colors in the last three columns are assigned according to predicted labels.
Robustness to noise of models on Blobs. We compare trained models against classical
methods as Single Linkage, Average Linkage, Complete Linkage and Ward’s Method.
The models used have been trained on a dataset with Gaussian’s standard deviation fixed
at 0.08. Test sets used to measure scores contain 20 samples each. Plots show mean and
standard deviation of scores obtained. During the experiments on these datasets MLP
has shown a higher robustness to noise compared with DGCNN. In this case classical
methods show better performances compared to trained models.
Anisotropic dataset. The model used for prediction is a MLP trained on samples with
standard deviation value at 0.08. From top to bottom, each rows is a case with an
increasing value of standard deviation. In the first column the input points, while in the
second column we illustrate hidden features. Points are colored based on ground truth.
The third column illustrate the hidden features after projection to Poincaré Disk. Forth
column shows predicted labels, while the fifth column show associated dendrograms.

Colors in the last three columns are assigned according to predicted labels.

114

116

List of Figures

xvii

5.21

5.22

5.23

5.24

6.1

6.2

6.3

6.4

6.5

Anisotropic dataset. The model used for prediction is a DGCNN trained on samples
with standard deviation value at 0.08. From top to bottom, each rows is a case with an
increasing value of standard deviation. In the first column the input points, while in the
second column we illustrate hidden features. Points are colored according to ground truth.
The third column illustrate the hidden features after projection to Poincaré Disk. Forth
column shows predicted labels, while the fifth column show associated dendrograms.
Colors in the last three columns are assigned according to predicted labels.
Robustness to noise of models on Anisotropic dataset. We compare trained models
against classical methods as Single Linkage, Average Linkage, Complete Linkage and
Ward’s Method. The models used have been trained on a dataset with Gaussian’s standard
deviation fixed at 0.08. Test sets used to measure scores contain 20 samples each. Plots
show mean and standard deviation of scores obtained. During the experiments on these
datasets MLP has shown a higher robustness to noise compared with DGCNN.
Varied dataset. (a) The model used for prediction is a MLP, while (b) the model used for
prediction is a DGCNN. In the first column the input points, while in the second column
we illustrate hidden features. Points are colored according to ground truth labels. The
third column illustrates the hidden features after projection to Poincaré Disk. Fourth
column shows predicted labels, while the fifth column show associated dendrograms.
Colors in the last three columns are assigned according to predicted labels.
The choice of value for margin « plays an important role for the quality of the results. . .

A Deep Graph Network takes as input a graph and produces for each node a hidden
representation. Such node representations can be aggregated to generate a representation
for the entire graph. Image source Bacciuetal. (2020)
Left: Attention Mechanism a(W h;, W h;) implemented as a feedforward neural network.
Right: A schematic illustration representing the self-attention mechanism for a single
node v; having as feature vector h;. (Image source Velickovic et al. (2018))
An example of multidimensional dilation on a graph in which we make vary the number of
neighbours that we take into account. The input nodes are points aligned on a circle. In the
first row, we show the input graphs. In each case, we increase the number of neighbours,
k, that we consider building the graph. The second row illustrates input points (red) and
output points (blue). The third row illustrates the absolute values of weights used for each
example. The weight matrices have size k x 2. To build the matrices W, we stacked the
same vector w € RF twice.
Samples images and super-pixels graph. Nodes correspond to superpixels of images
obtained using SLIC Algorithm. In MNIST, graphs have at most 75 nodes, while at most
150 nodes in CIFAR-10. (Image Source Dwivedi et al. (2020))
The architecture of the model used for the tests. The Conv step is set according to the
GNNclassanalysed. e

xviii List of Figures
6.6 Accuracy during training. Colours are assigned according to the GNN. Each curve
corresponds to a different run. (a) MNIST: On average, accuracy of MPEdge layers is
higher compared to EdgeConv layers. (b) CIFAR10: in this case, the accuracy of MPEdge
layers is comparable with EdgeConv layer. 134
6.7 Accuracy scores on test sets (Higher is better). Each dot is a differentrun. 135
6.8 Mean Time per epoch (Lower is better). Each dot is a different run. DynamicEdgeConv
and MPDynEdge are slower because they update the k-NN graph after each convolution. 135
6.9 (a) Scan at time ¢ and (b) the successive frame at time ¢+ 1. (c) We can image the two
scans as two successive frames of a pelicular film. 139
6.10 Framework that we want to explore is composed of two neural networks (cyan blocks).

The first embeds input points into an hidden space H. The optimization of the parameters
of the first network is done using a triplet loss. Triplets are generated using labels Y.
The second network embed hidden features to Poincaré Disk. In this case parameters are
optimized using HypHC Loss defined in Chami et al. (2020). 140

2.1

3.1
32

33

34
3.5

5.1

52

53

6.1

List of Tables

List of geometrical features. 36
List of the SemanticKITTI classes belonging to each category that we identified. 57
Quantitative results obtained on sequence 08 of SemanticKITTI dataset for the ground

detectiontask e 57
Characteristics of different LIDARs. The prices are representative. 63
Results obtained on the test set of the KITTI road segmentation dataset in the BEV and SV. 72
Results obtained on the test set of the Semantic-KITTI datasetinthe SV. 73

Nearest Neighbourhood, First Tier, Second Tier, mAP, nDGC, e-measure and AUC value
of all the submitted runs. Values go from 0, to 1. The higher the value is, the better the
method performs. (Source Moscoso Thompson et al. (2020)) 98
Two levels of difficulty used to generate the datasets. In the easier level, the noise used is
lower thaninthe harder. 106
Scores obtained by MLP and DGCNN on five Toy Datasets: Circles, Moons, Blobs,
Anisotropic, Varied. In each dataset the models have been tested on the same test set
containing 200 samples. In circles and moons, dataset samples in the test set have been
generated using a noise values that varies from 0.0 up to 0.16. In Blobs and Anisotropic
datasets samples in the test set have been produced fixing to 0.16 the value of standard
deviation for Gaussian distributions. To generate a test set for Varied dataset we kept the

same standard deviation for Gaussians as train and validationset. 108

Comparison with state-of-the-art convolution layers on graph classification task. We used

the multi-label classification accuracy as an evaluation metric. Best models in Red. . . . 134

Introduction

Motivation

Data are ubiquitous. Industries as social media, telecommunication, health-care to mention a few, every
day produce a gargantuan amount of data. In 2018, the annual report of cloud software firm DOMO
estimated that 2.5 quintillion (10'®) bytes of data are created each day and that the 90% had been
created in less than two years. Thus, finding new ways on how to treat and analyze this great amount
of information is a major challenge for many years now. When dealing with a collection of objects or
things, the first step to achieve an understanding is to categorize them into classes/groups based on their
similarities. For this reason, graphs are particularly interesting because they allow modeling relationships
between different items. Indeed, graphs are the tool used throughout the thesis. Namely, this thesis

proposes to investigate the following areas of applications.

The first application we put our interest in is point cloud processing. In particular we focus on the
case of scans from road environments. Normally, this kind of scan is characterized by a high variation
of point density. A common workflow proposed for Dynamic Object Detection and Tracking is to find
and remove the ground from the scene as the first step. Once removed the ground from the scene, other
objects can be identified as isolated components of the scene. However, state of the art algorithms for
ground detection such as those based on A-flat zones are conceived to be used on scans with a uniform
point density. This lead us to look for simple interpolation methods able to cope with ground detection in
the new setting. Another topic that we have explored is related to low-resolution scanners. Recent lidar
development has permitted to reduce the costs of production of these sensors. Nonetheless, costs for
a high-resolution scanner still remain too high to be employed on a large scale application. Moreover,
current research benchmarks rely on datasets acquired using high-resolution scanners. Motivated by this
challenge, we considered the problem of road detection as a case study. Our goal is to study the effect of

reducing the resolution of the scanner on road detection task.

In Remote sensing applications, most of the classical Image Processing algorithms cannot be applied
in context like streaming. In order to treat the great amount of data, methods cannot wait until the stream
is complete, but instead it is necessary to decompose the images in strips or tiles. In this context, the
decision taken on a given tile may be influenced by information from other tiles, some of them not
received yet. The minimum spanning tree (MST) is involved in many remote sensing applications, as a

fundamental step of morphological-based image segmentation methods. Therefore, the computation of a

2 Introduction

MST in streaming is one of the problems we are going to tackle.

Along with these applications, during the thesis, we put our interest on Hierarchical Clustering (HC).
HC is a powerful tool in data analysis mainly because it returns a nested partition of the observed data.
This kind of representation has become increasingly popular over the last decades because it allows to
model data at different levels of scale and semantics. HC methods have been applied to a wide range
of data, such as images, videos, and text. In computer vision for example, these have been employed
for object detection, image filtering, multi-scale image segmentation, and image characterization and
understanding. The main strategies to implement a HC are to use either a divisive (top-down) approach
or an agglomerative (bottom-up) approach. In recent years, a discrete optimization framework for
similarity-based hierarchical clustering has been proposed by Dasgupta (2016). Later on, some continuous
relaxations of this cost function have been proposed and stochastic gradient descend algorithm can
be used to find solutions. The general definition of these problems assumes as input a graph and a
similarity-matrix representing relationships between nodes, and the optimization is done on a fixed graph.
We investigate a generalization of the problem to a family of data sampled from a fixed distribution. Our
idea is to explore if it does exist a family of hierarchies associated to the distribution. To achieve this goal,
we also look for an optimal metric function that may measure distances between the points. Hence, we
combine metric learning with the continuous optimization framework to extend the formulation to cases
in which the number of nodes in the graph is not fixed, and the similarities between points are not known

a priori.

Finally, in the last part we focus on Graph Neural Networks (GNN). Recent years a great effort has
been put on generalising deep learning architectures, and in particular Convolutional Neural Networks
(CNN), beyond the Euclidean domain, and GNN has emerged as new frontier. The basic mechanism
behind Graph Convolutional Layers is called Message Passing, that is composed by two steps: aggregate
and update. When we apply a convolution on a given node, in the first step, a filter is applied to features of
neighboring nodes. The result is then aggregated using a permutation invariant function (e.g. maximum,
minimum, average, etc.). In the second step the features are updated using an activation function. We

propose a novel permutation invariant function defined using morphological dilation/erosion operator.

Thesis overview

The list hereby contains a summary of the different chapters.

Chapter 1 starts with a review of graph theory, recalling the definitions of connectivity and paths on
graphs. These concepts are fundamental to introduce the minimum spanning tree (MST) that we will use
throughout all the thesis. The second part is a short overview on clustering in which we recall the most

important methods that produce either flat or hierarchical clustering.

Chapter 2 contains a general introduction to point clouds analysis. The main challenge with this
kind of data is its inherent lack of structure. We describe the principal strategies to acquire and handle

point clouds, illustrating also some possible applications. The chapter ends with a description of some

Introduction 3

benchmark datasets for the segmentation task.

Chapter 3 is divided into two parts and focuses on two problems related to point cloud processing.
Ground detection and Road Detection. In the first, we review and propose two A-flat zones based
algorithms for ground detection and we compare them against the current state of the art. In the
second part, we study the effect of subsampling points for the task of road detection. The goal is to
understand the reliability of current deep learning methods on point clouds captured with low-resolution

scanners. The partial results of this chapter have been presented in the conference paper Gigli et al. (2020a)

Chapter 4 tackles the problem of finding and updating an MST in streaming. We consider the case of
an image that arrives via a stream decomposed in blocks of fixed size. The solution proposed, relies on a
decomposition of the MST in two parts, stable and unstable. The stable part is made of edges that we can
prove will belong to the final MST. The unstable part is made of edges that are not stable, and we need to
keep them in memory to update the MST in the successive iterations. This decomposition reduces the
memory footprint and permits to treat images of greater size compared to a naive algorithm that treats the
entire image in one iteration. The main results of this chapter are part of the journal paper Gigli et al.
(2020b)

Chapter 5 is divided into two parts in which we discuss two applications of deep metric learning. In
the first part, we present the solution proposed to the SHREC 20 contest on retrieval of surface patches
with similar geometric relief. In particular, our solution uses a Siamese Neural Network to approximate a
similarity function between geometric reliefs. The second part concentrates on Hierarchical Clustering
(HC). In recent years a theory for objective-based HC has been proposed. In the classical setting, a
similarity function is given as an input element of the problems. We put ourselves in a semi-supervised
setting and investigate the case in which we learn at the same time a good similarity function between the
points and an optimal hierarchical clustering. The main findings of the first part of this chapter have been

published in the journal paper Moscoso Thompson et al. (2020)

Chapter 6 is about Graph Neural Networks (GNN). It starts recalling the basic facts on GNN,
illustrating the Message Passing mechanism that is the key tool to define Convolutional Neural Networks
on Graphs. We use this same mechanism to define Convolutions in Max-Plus algebra that aim to be a first
attempt towards Morphological Convolutions on Graphs.

List of Pubblications

This thesis has led the following publications

International conferences

* Gigli, Leonardo, Santiago Velasco-Forero, and Beatriz Marcotegui. "On minimum spanning tree
streaming for image analysis." 2018 25th IEEE International Conference on Image Processing
(ICIP). IEEE, 2018.

4 Introduction

* Gigli, Leonardo, et al. "Road Segmentation on low resolution Lidar point clouds for autonomous

vehicles." XXIV International Society for Photogrammetry and Remote Sensing Congress. 2020.

Journal Papers

* Gigli, Leonardo, Santiago Velasco-Forero, and Beatriz Marcotegui. "On minimum spanning tree

streaming for hierarchical segmentation." Pattern Recognition Letters 138 (2020): 155-162.

* Thompson, Elia Moscoso, et al. "SHREC 2020: Retrieval of digital surfaces with similar geometric
reliefs." Computers & Graphics 91 (2020): 199-218.

Graph Theory and Clustering

Resumé

Dans ce chapitre, nous introduisons les principaux concepts de la théorie des graphes. Apres avoir
introduit les définitions de base, nous allons passer a I’introduction d’un objet fondamental tout au long de
la these, I’arbre couvrant de poids minimal. Cet objet est utilisé dans de nombreux domaines de I’analyse
des données et également de 1’analyse des images. La deuxieme partie du chapitre est consacrée au
probléme du clustering des données. En particulier, un résumé de 1’état de I’art des algorithmes pour le

regroupement et le clustering hiérarchique est donné.

1.1 Graph theory

Graphs were firstly introduced by Leonhard Euler in the solution of the notable Konigsberg’s Seven
Bridges problem (Biggs et al., 1986). The city of Konisberg (now Kaliningrad), shown in Figure 1.1, is
crossed by the Pregel river, and at that time different part of the city are connected by seven bridges. The
question was to prove if it could exist a path through the city crossing all the bridges once and only once.
In Euler (1741) the non-existence of such a path is proven, laying the foundations of graph theory. Euler
observed that the only important feature of a route was the sequence of the bridge crossed. For this reason,
any other path entirely contained in each land mass is irrelevant and can be discarded. Thus, the proposed
solution represents each land mass as a single abstract point (or vertex) and each bridge connecting two
different sizes of the river with an arc (or edge). The resulting mathematical structure is a Graph.
Thanks to this simple and intuitive definition, graphs are particularly useful mathematical objects
that are used to model different kinds of relations and processes in different areas of the sciences such as
physics, biology, mathematics and computer science. In the following pages we present the basic objects

of graph theory. For a broader introduction to graph theory, please refer to Jungnickel (2013).

Definition 1.1 (Graph). A graph G is an ordered couple (V, E), where V = {vy,...,v,} is the set of
vertices of the graph and ¥ C V' x V is the set of edges of the graph. We say that G is undirected when

6 Graph Theory and Clustering

Figure 1.1 (Left) Map of Konigsberg showing the seven bridges connecting different areas of the city.
(Right) Graph modelling the seven bridges problem. A node is assigned to each district, while the edges
correspond to the bridges connecting two areas.

Vg U7

’

U3

U1

Vs (%S

Figure 1.2 An example of undirected graph.

we consider the couples (v;,v;) € E as unordered pairs. Furthermore, given a couple u,v € V' of nodes,

we say that v is an adjacent vertex of u if (u,v) € E.

Since in our cases graphs will be undirected, from now on, we consider every graph as undirected. It
is possible to give a weight to each edge to model the importance of some connection in comparison to
others.

Definition 1.2 (Weighted Graph). A weighted graph G is a triple (V, E,w) where the couple (V, E) is a
graph and w : £ — R is a weight function defined over the set of edges.

Note that, given a graph G = (V, E), such that |E| = m, the set {w : E — R} of all possible
weight functions over G is isomorphic to R™. A weight function can also be seen as a vector of

w = (wi,...,wy) € R™, where wj is the weight of edge e;, forall 1 <i <m.

Definition 1.3 (Sub-Graph). Let G = (V, E) be a graph. A subgraph G’ = (V' E’) of G, we write G’ C G,
is a graph such that V' C V and E' C EN (V' x V'). If V! =V, we say that G’ spans all the vertices of G.

Definition 1.4 (Graph Union). Let G; = (Vi, Eq,w;) and Gy = (Va, E2, ws) two weighted undirected
graphs, such that
w1 ‘ElﬂEg = w2 ’ElﬁEg’

where w| 1 18 the restriction of the function w to the set £. We call G1 U Go, the weighted undirected graph
G=(V,E,w)withV =V,UV,, E=F{UFE5, and foralle € E:

1.1 Graph theory 7

{wl(e) ifee Eq,
w(e) =
wa(e) ife€ Es.

Definition 1.5. Given a weighted graph G = (V, E,w) and a subset E’ C F of the edges, we call G — E’
the graph (V, E'\ E’,w) obtained by removing the edges F’ from G.

We can now move on showing two main ways to represent a graph. The first is a collection of

adjacency lists, that is used to represent a finite graph. The second is the adjacency matrix.

Definition 1.6 (Adjacency-list representation). The adjacency-list representation of a graph G = (V, E),
is an array A of length |V|. Each element of the array A corresponds to a node u € V and A[u] is a list of

all the vertices adjacent to u.

Definition 1.7 (Adjacent-Matrix representation). The adjacent matrix representation of a graph G =
(V,E), is a matrix A € RIVI*IVI such that

1 if (u,v) € FE

0 otherwise

Alu][v] = ayy = {

The adjacent-list representation is particularly useful for sparse graphs, that are graphs in which
|E| < |[V|2. In this case, the adjacency list is more space-efficient than an adjacency matrix because its
space usage is proportional to the number of edges in the graph, while an adjacency matrix store space is
proportional to the square of the number of vertices. However, also compressed representations of sparse

matrices exist, and they use adjacency lists in their implementation.

1.1.1 Topological definitions on graphs

Graphs are particularly attractive also because they intrinsically contain topological properties. Namely, it

is intuitive to define graph objects as paths and cycles or determine when a graph is connected.

Definition 1.8 (Path on a graph). We call walk a finite or infinite sequence of edges of the graph which
joins a sequence of vertices. A walk is a sequence of edges (e;);cz, for which there is a sequence of
vertices (v;);ez such that e; = (v;,v;41) for each i € Z. The sequence (v;);c7 is the vertex sequence of
the walk. If 7 is a finite set then the walk is said to be finite walk. A trail is a walk in which all edges are
distinct. A path is a trail in which all vertices are distinct.

Definition 1.9 (Cycle). Given a graph G = (V, E'), a simple cycle is a finite non-empty trail (eg,...,e,)
in which the only repeated vertices are the first and the last, that is (v = v, va,...,v, =).

Definition 1.10 (Connected Graph). We say that a graph G is connected if for every two vertices u,v € V
it is possible to find a path II from u to v.

Another equivalent definition of connected graph is the following.

Property 1.11. A graph G = (V, E) is connected if and only if for every couple of subsets V1,Vo CV,
such that Vi UV, =V and Vi NV, = (), there must exist at least one edge e = (u,v) € E such that uw € V}
and v € V5.

8 Graph Theory and Clustering

Definition 1.12 (Connected component). Let G = (E, V') be a graph, a connected component of G is
subgraph G’ that is connected and is maximal for this property. In other words, for any other connected
subgraph F C G, such that G’ C F then G’ = F.

Please remark that any graph G can always be written as a disjoint union of its connected components.

Definition 1.13 (Graph Cut). Given a graph G, a graph cut is a partition S = {V},Va} of vertex set
into two disjoint non-empty subsets. We call cocycle the set E(S) of edges in E having one endpoint in
V1 and the other in V5.

Given a path 7 we are now interested in defining its length. A natural definition could be the number
of edges composing the path. In case of a weighted graph, this could be the sum of the weights of the
edges in the path. However, there is a more general definition that includes both.

Definition 1.14 (Generalized Path Length). Let G = (V, E,w) a weighted graph. The n-generalized

length of a path 7 is defined as
Ly(m) = o> wr, (1.1)
ecT

where w. = w(e) is the weight of edge e. In particular

= ZEEW 1
= ecr We (1.2)

LOO(W) = MaXecq We = hmn—>oo Y Zeeﬂ' w?

Remark 1.15. Remember that as we said before a weight function w : £ — R can also be seen as a
vector of R™, whose component w; = w(e;) is the value of the function at edge e;. Similarly, a path
7 = {wvp,...,v;} can be associated to a projection function 7 : R™ — R, 7(w) = (w1, ...,w;) that projects
the vector w on the subspace of the edges belonging to the path. With this in mind, let || - || be a norm on
R™ and let w be a fixed weight function, then the length of the path 7 can be defined as the length of the
vector || (w)|| in R!. Thus, it is possible to exploit this relation to make a correspondence between L,

norms on R™ and the previously defined path length L,,.

Using the above definition we can define a distance on G.

Definition 1.16 (Distance on graph). Given u,v € V, let I, be the set of all possible paths from u to v.

The general n-distance d,, over G is defined as

dp(u,v) = Jrelhr%i L, (), (1.3)

for every u,v € V. For n = 1, d; is also called the shortest path distance, while d, is also known as

lowest path distance.

1.1.2 Trees, Forests and Spanning Trees

Definition 1.17 (Tree and Forest). A tree is a connected graph G, that does not contain any cycle. A graph

F that contains no cycles is called a Forest. Each connected sub-graph of the forest is a tree.

1.1 Graph theory 9

Figure 1.3 Graph distances. Optimal path connecting v and v changes according to the distance that we
consider. In blue distance dy, in red shortest path distance d; and in green lowest path distance d .

We are reminded that Theorem 1.2.8 in (Jungnickel, 2013) proves that any tree G with n nodes
contains exactly n — 1 edges.

Definition 1.18 (Spanning Tree). Let G = (V, E)) be a connected graph. A subgraph 7 = (V' E') C G is
a spanning tree for G if T is a tree and V' = V. More generally, a spanning forest F for a graph G is a
forest that spans all the nodes of the graph G, and such that each tree 7 C F in the forest is a spanning

tree for a connected component in G.

Proposition 1.19. Let 71 = (V1, Ey) and Ty = (Va, E2) two trees with ny = |V1| and ng = |Va| nodes
respectively. Let G = T1 U Ty the union of the two trees, such that k = |V, N\'Va|. Then the number of

simple cycles in G is k —h — 1, where h is the number of edges in common between the two trees.

Proof. The number of edges in 77 is ny — 1, while the number of edges in 73 is no — 1. Thus, the number
of edges in G is:
n—1l4+ny—1—h=ny+n,—h—2.

We can observe that G contains a spanning tree with n; +ng —k — 1 edges. So, the number of cycles in G

corresponds to the number of edges to remove in order to obtain a tree and is
(n+na—h—2)—(n1+ne—k—1)=k—h—1.

O

Definition 1.20 (Minimum Spanning Tree). Let G = (V, E,w) be a connected weighted graph. A
Minimum Spanning Tree (MST) of a G is a subgraph 7 = (V’, E',w) such that:

i) 7 is atree

ii) 7 spans all the vertices of G, i.e. V =1

iii) the sum of its weights }_ . w(e) is minimum among all the possible spanning trees.

Let now review three well-known characterizations of the minimum spanning tree. The proofs for

these theorems can be found in (Jungnickel, 2013, Chapter 4). Before, we remember that given a spanning

10 Graph Theory and Clustering

tree 7 = (V, E’) of a connected graph G = (V, E), each time that we add any edge e € E'\ E’ to the

spanning tree, this generates a cycle. We indicate this cycle as C'r(e).

Theorem 1.21. Let G = (V, E,w) a weighted connected graph. A spanning tree T = (V,E' w) is a
minimum spanning tree for G if and only if for every e € E\ E’

w(e) >w(e'), Ve € Cr(e).

In words, this first theorem says that if we add an edge to a MST, then this is the heaviest edge of the
cycle that it generates. The vice versa is also true. The following characterization of MSTs is based on
graph cuts.

Theorem 1.22. Let G = (V, E,w) a weighted connected graph. A spanning tree T of G is a MST if and
only if for each edge e in T

w(e) <w(e’) forevery edge € € E(St(e)),

where S (e) is the graph cut obtained removing the edge e from T.

Finally, another characterization that can be derived from Theorem 1.21 states that every path
connecting two vertices in the MST is the shortest path in the sense of d, distance previously defined.
The proof can be found in (Chao, 1986).

Theorem 1.23. Minmax path Let G = (V, E,w) a weighted connected graph. A spanning tree T =
(V, E',w) is minimum if and only if for all couple of vertices u,v € V, the path 7 connecting u,v in T is
such that

7" = argmin Lo (1), (1.4)
welly,

where 117 is the set of all paths in G from u to v.

Remark that in general for a weighted graph G exists multiple minimum spanning trees, as shown in
Figure 1.4. Nonetheless, it is easy to prove that if all the weights of a graph are distinct, then its minimum

spanning tree is unique.

1.1.3 Algorithms to compute a Minimum Spanning Tree

We move on recalling the most common algorithms to find a MST of a graph, that are (Kruskal, 1956),
Prim [(Dijkstra, 1959; Jarnik, 1931; Prim, 1957)] and (Bortvka, 1926).

Boruvka’s algorithm

The first algorithm that we present is (Bortivka, 1926) in 1926. This was the first presented algorithm
developed to solve the problem of finding a MST of a connected graph. It iteratively constructs the MST
using the fact that the smallest weight edge incident on any vertex v must be in the MST. This statement
is justified by Theorem 1.22, observing that the minimum edge e incident to v respects w(e) < w(e’) for
all edges in E(.S), where S is the partition S = {{v},V \ {v}}. At each step the algorithm takes for each

node v its smallest edges incident that does not generate cycles and add it to the MST. Successively, the

1.1 Graph theory 11

3
1 2
4 3 5
2 1
3

Figure 1.4 An example of graph for which we can find multiple different Minimum Spanning Trees. The
graph in the row above is the input graph, while in the row below we illustrate three different MSTs. We
color them with red edges belonging to each MST.

connected vertices in the MST are contracted together to form a supervertex. Two distinct supervertices
are linked together in the graph using the smallest edge in the cocycle between the two supervertices. The
process is then iterated on the newly defined graph, until all the nodes in the MST are connected, and only
one supervertex remains. Concerning the time complexity of the algorithm, remark that at each step of the
loop Bortivka reduces the number of nodes by a factor of at least two. Hence the while loop is executed at
most O(logn) times. In each iteration, all the contraction can be done in O(m) time. In total the method
has a running time of O(mlogn). A parallel version of this algorithm has been proposed by (Sun Chung
and Condon, 1996).

Procedure 1 Bortivka’s Algorithm

Input: A weighted, undirected graph G = (V, E, w)
Output: A minimum spanning tree 7
1: procedure BORUVKA

2: T+ 0
3: while |7] < |V|—1 do:
4 F' < aforest consisting of the smallest edge incident to each vertex in G
5: G+ G\F
6: T+ TUF
Kruskal’s Algorithm

Kruskal algorithm creates a forest where each vertex in the graph is initially a separate tree. It then sorts
all the edges of the graph in an increasing order. Successively it starts iterating over the sorted edges. For
each edge (u,v), it checks if vertices u and v belong to different trees. If so, it adds (u,v) to the forest,
combining two trees into a single tree. It proceeds until all the edges have been processed.

Sorting the edges in non-decreasing order takes O(mlogm), where m is the number of edges. The
total running time of determining if the edge joins two distinct trees in the forest is O(ma(m,n)) time,

where « is the functional inverse of Ackermann’s function, and n is the number of vertices. Therefore, the

12 Graph Theory and Clustering

Procedure 2 Kruskal’s Algorithm

Input: A weighted, undirected graph G = (V, E,w)
Output: A minimum spanning tree 7
1: procedure KRUSKAL

2 Sort the edges in E' in non-decreasing order by weight.
3: T+ 0

4: Create one set for each vertex.

5: for all edge (u,v) in the sorted order do:

6: x < FIND(u)

7: y <+ FIND(v)

8: if x # y then

9: T« TU{(u,v)}
10: UNION (z,y)

asymptotic running time of Kruskal’s algorithm is O(mlogm), which is the same as O(mlogn) since

logm = ©(logn) by observing that m < @, and m = Q(n).

Prim’s Algorithm

This algorithm has been introduced in (Jarnik, 1931) and later rediscovered and republished in (Prim,
1957) and (Dijkstra, 1959). Differently from Kruskal, this algorithm works considering nodes of the graph
instead of iterating over edges. In fact, it builds the MST starting from a random vertex v and assigning
it to a subset of nodes V/ C V. At each step it adds the smallest edge ¢ in the cocycle E({V',V\V'})
and adds to V"’ the end point of the edge e not belonging to it. The method stops when V' = V. As in
Bortvka, the optimality of the MST is guaranteed by the Theorem 1.22.

Procedure 3 Prim’s Algorithm

Input: A weighted, undirected graph G = (V, E, w)
Output: A minimum spanning tree 7
1: procedure PRIM

T+ 0

v an arbitrary vertex in V'

V' {v}

while |V'| <|V] do:
Find e = (v/,u) the smallest edge such that v € V' and v/ € V' \ V’
T+ TU)
V'« V'U{u}

The most time-consuming step in Prim’s algorithm is the research for the smallest edge in the graph
cut. A naive implementation at each step finds the smallest edge looking in the adjacency list of the graph.
In this way each iteration costs O(m) yielding to a total cost of O(mn). By using Fibonacci heaps, Prim’s

algorithm can run in O(m +nlogn) time.

1.2 Clustering on graphs 13

1.2 Clustering on graphs

Clustering is an unsupervised learning task in which the goal is to group together similar points of data
and separate different ones. Formally, given a set of elements X = {z1,...,2x}, a partition of the set X

is a family (X;); of disjoint subsets of X that covers the entire set. In other words:

e X; C X forevery i,
* X;NX; = (each time that i # j,

Thus finding a clustering of a set X is to find a partition S = { X, }1<;<n such that in each subset X;
elements are homogeneous and dissimilar from elements in other subsets. In (Murphy, 2012, Chapter 25)
the author distinguishes clustering problems in two families based on the input data type. The first is
called similarity-based clustering in which a distance/similarity matrix of size N x N 1is passed as input
to the algorithm. While, the second is called feature-based clustering and the input to the algorithm is a
N x F feature matrix, also called design matrix. Another distinction made is based on output of clustering
algorithms. We distinguish between flat-clustering algorithms that return a separation in K groups of
the input data and hierarchical-clustering algorithms that return a nested-partition of data. Finding a
flat clustering is usually faster (O(INF')) compared to a hierarchical clustering (O(N?1log N)). However,
finding a flat clustering generally needs to define the number K of clusters to identify. On the contrary,
hierarchical clustering is a richer representation that can be viewed as a hierarchy of partitions. Two
strategies are used in hierarchical clustering algorithms, that are agglomerative clustering and divisive
clustering. Agglomerative clustering or bottom-up approaches begin assigning each element in a singleton
and iteratively merge clusters together until a stop criterion is satisfied. Divisive clustering or top-down
approaches start assigning all the elements to the same cluster and iteratively split the clusters until a stop
criterion is met. Clustering algorithms can be either deterministic, either probabilistic. In the following,
we review some classical clustering methods. For further about clustering algorithms, the reader may refer
to (Murphy, 2012, Chapter 25) and to Xu and Wunsch (2005) and Xu and Tian (2015).

1.2.1 Flat Clustering

As said before, the aim of flat clustering is to split the input set X into K distinct groups such that similar
objects are grouped together while dissimilar are separated. Among different approaches that have been
proposed over the years, we divide between probabilistic approaches and deterministic ones. Hereby we

summarize the main clustering algorithms, reviewing pros and cons.

Mixture Models

The first algorithm we present uses a probabilistic approach. The method assumes that the observed data
are generated by K different probability distributions. For this reason, let us consider hidden variables to
model the correlation between data. For example, for each element x;, let z; a hidden variable that takes
values in the set [K] = {1,..., K}, and use a categorical distribution to model way z; takes values in [K].
That is p(z;) = Cat(n), where m = (71,...,7x) and 7y, is the probability of seeing element k. Hence the

14 Graph Theory and Clustering

distribution of observed data can be written as
K K
p(xil0) =D plwilzi =k, 0)p(zi = k) = > mepr(wi]6), (1.5)
k=1

where py, is the k’th base distribution for the observation, and 6 is the vector of parameters of the
distributions. Please remark that the quantity p(x;|z; = k,0) represents the probability that x; belongs
to cluster k. Probably, the most common among mixture models is represented by Gaussian Mixture
Model, in which the py, base distribution are multivariate Gaussians with mean pj, and covariance matrix
Y. Thus the model has the form

K
p(@ilp, 2) =Y mpN (i, B,

k=1

The method aims to maximize the log likelihood

N N
:Zlogp(:z:iW) :Zlog{Zp(xi,ziW)] (1.6)
=1 i=1 Zi

The problem in the equation above is that the log cannot be pushed inside the sum. The solution has
been proposed by the Expectation Maximization algorithm (EM) (Dempster et al., 1977; McLachlan and
Krishnan, 2008; Meng and Van Dyk, 1997). The idea of the algorithm is that if the z; are known then the

parameters can be computed maximizing the complete data log-likelihood

N
0) = logp(xi,zl6).

i=1
Viceversa, if parameters are known the values of z; can be computed by maximizing the log-likelihood
over all the possible values of z;. Thus EM algorithm is an iterative algorithm, in which each iteration is
composed in two steps called E step and M step. In the E step we compute the probabilities of hidden
values z; given the parameters (*), while in the M step we use the just computed values of z; to find
a better estimate 0(*+1) for the parameters of the models. More in details in the expectation step the

expected complete data log likelihood is computed using parameters at time ¢:

Q(G,G(t)) =E[(.(0)|D, e(t) [Zlogp iUz,ZZW} ZE[log{ﬁ (mpr(240)) Zz—k)H
k=1

—ZZW log mx, + erlk log px(z:]0),

1.7

where 7, = p(z; = k|z;, G(t)) is the influence of cluster k to point x;. In the M step, the goal is to find a

new estimated value (1) optimizing the Q function with respect to 0

0+ = argmax Q(6,00).
0

1.2 Clustering on graphs 15

K-means

K-means algorithm is an iterative algorithm that aims to divide data in K clusters. An important
assumption made in k-means clustering is that the shape of the clusters is convex. The goal of the method
is to find a partition S = {X71,..., Xk} such that

argmmz Z |z — prl|?, (1.8)

k=0xeX})

where p, is the mean of points in Xj. Basically, the goal is to find the partition that minimizes the

intra-cluster variation. Despite its formulation seems simple, the problem is indeed NP-complex. However,

the algorithm proposed by Lloyd (1982) finds an approximate solution even though it doesn’t guarantee a

convergence through the optimal solution. This algorithm, better known as naive k-means, starts placing
(0) (0)

randomly the k centroids 17 7, ...,y on the space, and in each iteration ¢ it executes the two following

steps:

(t)

1. (Assignement) For each point x;, it computes the closest mean point .~ and it assigns x; to cluster
Xk

2. (Update) It updates the position of the centroids using the observations assigned to each cluster

) _ |1 >
a:eXk
The stop criterion for the method is when assignments no longer changes. The running time of each itera-
tion is O(N K D), but it can be accelerated using the triangular inequality (He et al., 2010). Nonetheless,
the initialisation of the centroids plays a key role in the quality of the solutions and several strategies have
been developed such as k-means++ proposed by (Arthur and Vassilvitskii, 2007). Finally, we remark that
the above algorithm can be seen as a special case of EM algorithm. In fact, if we consider an Isotropic
Gaussian Mixture Model in which the distributions have all the same covariance matrix and assume that

7, = 1/ K is fixed, then the only parameters of the model to estimate are the Gaussian’s centers .

Graph cut approaches

Graph Cuts is a wide family of approaches to clustering. These methods build a weighted undirected
graph G whose vertices are observed data. Connection between vertices of the graph can be either already
defined a priori or each point can be connected to its closest neighbors. Moreover edge weights are
assigned either using the similarity matrix or using a distance between points. In both cases a N x N
weight matrix W (w;;)1<; j<n is defined. The idea of Graph Cut methods is to find a cut that is minimal
in some sense. For example, if the weights represent similarities between data, we can look for a partition

S ={Vi,...,Vk} that minimizes the cut weight

cut(S) = cut(Vi,..., Vi) ZW Vi, V), (1.9)
z 1

16 Graph Theory and Clustering

where V' is the complementary of set V and W (V;,V;) = > ,cv: >vev, w(u,v). Among all methods
belonging to this family of methods, we review Spectral Clustering and Minimum Spanning Trees based

graph cuts.

Spectral Clustering Spectral Clustering (von Luxburg, 2007) uses spectral graph analysis to solve the

normalized-cut problem defined as:

. VuV V
mblnNcut mln Z vol(V; Zl Y (1.10)

where vol(V) =", oy d; and d; = Zévzl wj;. Note that the quantity to minimize takes small values if the
quantities vol(V;) are not small. Thus the objective function favours "balanced" partitions compared to
splittings containing small components. (Jianbo Shi and Malik, 2000) proposed a solution to a relaxed
version of the problem above that analyses the eigenvalues of the normalized graph Laplacian. Here,
we briefly describe the solution for the case K = 2. Let define the degree of a vertex v; as the quantity
d; = Z _ w;j and let D = diag(d;,...,dy) be the degree matrix. The unnormalized graph Laplacian is

the matrix defined as L = D — W. Let now consider the cluster indicator vector f defined as

i fuicA

_fvol(4) ..
vol(A) ifvi € 4,

Ji= (1.11)

where the partition is S = {4, A}. It easy to prove that (Df)T1y =0, fTDf =vol(V) and fTDf =
vol(V)Ncut(A, A), where V is the set of vertices of the graph. Thus the (1.10) is equivalent to

mingnize frLf
subjectto (Df) L1y (1.12)
fIDf =vol(V).

The problem can be relaxed allowing f to take real values. Moreover replacing g = D'/ f the problem

becomes
minimize gTDfl/zLDfl/Qg
geR?
subjectto ¢ L D'/?1y (1.13)

lg* = vol(V).

The solution of the problem is the second generalized eigenvector of Lu = ADwu. For the general problem
with K clusters, the solution are the first K generalized eigenvectors u,...,ur of the generalized
eigenproblem Lu = ADu. Finally to find assignments into clusters, k-mean algorithm is used on the rows
of matrix U = [u1,...,ux] € RV*¥ whose columns are the first k& eigenvectors. For a further reading on
spectral graph theory the reader may refer to (Chung, 1997). The main advantage of Spectral clustering
method compared to k-means is that it also works to separate non convex sets. Nonetheless, finding
the first K eigenvalues of a the Graph Laplacian takes O(N?) and this can be a problem when dealing
with big datasets. (Yan et al., 2009) proposed a framework for fast approximate spectral clustering that

1.2 Clustering on graphs 17

speedups the computation showing a little degradation in clustering accuracy, while (Naumov and Moon,

2016) proposed a parallel version of spectral clustering that runs on GPU.

MST based Graph cuts Minimum Spanning Tree can be used to extract a flat clustering. One simple
approach consists in sorting the edges of the MST in decreasing order and removing the & — 1 heaviest
edges. In fact, a new connected component is created each time an edge is removed from the MST.
(Asano et al., 1988; Xu et al., 2001) uses this approach showing that the obtained partition is the one
that minimizes the L., diameter of the clusters. Recall that the diameter of a graph is the longest
max, ycv d(u,v) distance between any two vertices u,v of the graph. Moreover, (Felzenszwalb and
Huttenlocher, 2004) proposes an efficient segmentation algorithm based on MST and a region comparison
predicate that evaluates if there is evidence of a boundary. Finding the MST is a way faster compared to
the spectral clustering methods and this represents the great advantage of this kind of approach compared
with spectral clustering. One limitation of this second type of method is that often the obtained solution

contains small components that are not relevant.

1.2.2 Hierarchical Clustering

Hierarchical clustering algorithms return a more sophisticated information compared to flat clustering.
The goal is to compute a family of nested hierarchical partitions of the input data. Let start introducing a

formal definition of a Hierarchical Clustering.

Definition 1.24 (Partial Ordering). A partially ordererd set is a couple (X, <), where a set X and < is a
binary relation over X, that satisfy

1. (Reflexivity) a = aforalla € X

2. (Antisimmetry) ifa <bandb <athena=2»5

3. (Transitivity) if a <band b < cthena < ¢

Note that not for all pairs of elements (a,b) € X x X, it holds a < b or b < a. When one of the two holds

we say that elements are comparable, otherwise we say that they are incomparable.

Definition 1.25 (Refinement). Let X be any set and let S = {X1,...,Xx} and T' = {Y1,... Y} two
partitions of X. We say that S is a refinement of T if for any X; € S it exists Y; € 1" such that X; C Y},
and we write S < T'. Note that < is a partial ordering on the set of all possible partitions of X.

Definition 1.26 (Hierarchical Clustering). A Hierarchical Clustering H of a set X is a set {Sy,..., S, }
of partitions of X such that

1. So={X}

2. 5, =X

3. SZ jSi_l foralli:O,...,n—l.

A hierarchical clustering is often represented using a tree called Dendrogram. The root node of
the dendrogram corresponds to the trivial clustering { X }, while the leaves of the tree are the clusters

18 Graph Theory and Clustering

{z;} composed of a single element. Each internal node corresponds to a cluster C' that is the union of
its children {C1,...,C), }. Carlsson and Mémoli (2010) formally define a Dendrogram as pairs (X, A),
where X is the input set of observed data and A : [0,00) — P(X). The function A is used to represent the
clustering at different levels of the tree. The function has the following properties

L. N0) = {{z1},-.-, {zn}}

2. Jto, s.t. A(t) = A(tg) = {X } forall t > ¢.
3. if r < s, then \(r) refines A(s).

4. Yrie > 0s.t. \(r) = A(t) forall ¢ € [r,r +¢€]

The first condition means that the lowest value is mapped to the finest clustering possible composed
by singletons. The second means that for ¢ large enough the decomposition becomes trivial. The third
assures that the partitions obtained are indeed nested, and the fourth condition is a technical condition
due to the fact that the set of points in which the partition changes is finite. In Figure 1.5 we illustrate an
example of hierarchical clustering of a set and its dendrogram representation. Remark that cutting the

dendrogram at any height induces a flat clustering of the input data. As said before, there are two strategies

Figure 1.5 (Left) An example of hierarchical clustering and (Right) its dendrogram representation.

to implement hierarchical clustering algorithms, which are agglomerative and divisive. In agglomerative
algorithms, each observation forms a singleton, and we merge clusters iteratively starting from the most
similar. At each step, in fact, the two closest clusters are merged together. There exist many criteria to
define similarities between clusters. Changing the criterion used to merge groups at any level leads to

different hierarchies. In the following, we review the most common.

Single Linkage

In Single Linkage (SL) the distance between two clusters C7,Cs is defined as the minimum distance of

any two points of each cluster. Formally

dsr(Ch,C2) = i d . 1.14

sp(Cr,Co) = _min d(z,y) (1.14)
Note that each time that we combine two clusters in Single Linkage, we merge them via the light-
est weight connecting the two clusters. It can be proven that this is equivalent to compute the MST
of the underlying complete graph and build the hierarchy iteratively merging the closest nodes on the MST.

1.2 Clustering on graphs 19

A HEERERE
ABCDUEVFGH

Figure 1.6 An example of chaining effect. Distances between points in the sequence from A to I are
small. However, the distance between the first and the i-th element increases as we navigate through the
sequence. Single Linkage puts the entire sequence in the same cluster. (Left) Input graph and (right)
Single Linkage Hierarchy.

This criterion is local in the sense that it puts the attention only on the area where two clusters become
close without taking into account global information about the two clusters. Thus, the two clusters may
contain really different objects to each other and these would be neglected. This phenomenon is called
chaining effect. For example, we could have a long sequence of data (z1,...,z,) as in Figure 1.6, that
are two-by-two very similar, but the difference between the first and the i-th element increases as we
navigate through the sequence. However, single linkage looks at the local distance between clusters and
aggregates all the elements of the sequence in the same cluster generating a heterogeneous group. One
way to circumvent this effect is to use a distance function that integrates some notion of density in the

definition rather than use only local geometric information.

Complete Linkage

In Complete Linkage (CL) the distance between two clusters is defined as the distance between the two
most distant pairs:

dor(Ch,C2) :xegllfgéczd(%y) (1.15)

Conversely from Single Linkage, Complete Linkage forms more compact clusters. In fact, if we consider
the diameter d¢ of a group C' defined as the maximum distance between any couple of pairs, i.e. dg =
mazxy yecd(z,y), then it is straightforward that Complete Linkage form clusters with small diameter.

Average Linkage

Average Linkage (AL) measures the average distance between all couples of each cluster, that is

>N d(zy), (1.16)

zeChyelCy

1

dcr(C1,02) = o

where n1 and no are respectively the number of points in C'y and C5. Average Linkage is a sort of
compromise between Single Linkage and Complete Linkage. Generally, clusters obtained are relatively

compact and far apart.

Ward’s minimum variance Method

In Ward’s minimum variance Method at each step the goal is to merge the two clusters that leads to

the minimum increase in the total within-cluster variance after merging. For the euclidean distance the

20 Graph Theory and Clustering

U V U |4 U V

Figure 1.7 (Left) Single Linkage (Center) Complete Linkage (Right) Average Linkage

within-cluster variance W of a cluster C is defined as:

Weo = |lz—ull?,
zeC

where p = % > _»cc ¥ is the cluster centroid. After each merging step the distances between clusters must
be updated. This can be achieved using the Lance-Williams algorithm that uses a recursive formula to
update distances between clusters at each step. In particular at the first step all the distances are initialized
using the euclidean distance between points. Then, given a couple C;, C; of clusters merged the formula

used to update distances with any other cluster C}, is

M o O+ —9 T g0, 0p) - ——

a(C;uC;,Cp) = ——— —_— E—
(CiU G5, Ch) n;+n;+nyg n; +nj+nyg n; +nj+ng

d(C;,Cy). (1.17)

Axiomatic Approaches to Clustering

Kleinberg (2002) proposed to study the clustering problem using an axiomatic approach. In particular,
given a set X of n > 2 points, the author define the process of clustering elements of X as a function f
that takes a distance function d : X x X — R defined on X and returns a partition .S of X. Moreover,

the author identified the following three desirable properties for a clustering function:

* Scale invariance: the clustering function should not be sensitive to changes in the unit of distance

measurements. Formally, for any distance function d and any « > 0, we have

f(d) = f(e-d),

where a- d(z;,x5) = ad(x;,4), for any x;,2; € X.

* Richness: the output of a clustering function should be rich. Let I'(X) be the set of all possible
partitions of the set X, and let Range(f) be the image set of the clustering function f. The
Range(f) should coincide with the set of all partitions I'(X) of X. In other words, f should be a

surjective function.

* Consistency: a clustering function should be consistent with transformations the metric d. For
example, if we shrink distances between points in a cluster and expand distances between points in
different clusters, we expect that f returns the same partition. Formally, let S be a partition of X,
we say that a metric d’ : X x X — R is an S-transformation of d if:

1. d'(xj,xj) < d(z;,z;), for any x;,2; € X belonging to the same cluster of S,

2. d'(x;,z;) > d(z;,x;), for any z;,z; € X belonging to different clusters of S.

1.2 Clustering on graphs 21

The consistency property says that given d and d’ two distance functions on X, if f(d) = S and d’
is an S-transformation of d, then f(d') = S.

Then the author proved that no clustering scheme satisfying these conditions can exist.

Theorem 1.27. For each n > 2, there is no clustering function f that satisfies Scale-Invariance, Richness

and Consistency.

Later on, Zadeh and Ben-David (2012) relaxed the richness condition, to a K -richness condition.
Basically, this condition states that the clustering function f should cover the set of all possible partitions
of X in K clusters. The argument carried by the authors for this condition is that in many algorithms the

number of clusters K is required as input. In addition, the authors proposed to include a further condition

* Order Consistency: for any couple of distances d and d', if the order of couples of points in d is
the same as the order of couples in d’, then f(d) = f(d').

The authors proved that Single Linkage is the only clustering method that has all the listed properties.

Theorem 1.28. Single Linkage is Consistent, K-Rich, Scale-Invariant and Order-Consistent.

Single Linkage, ultrametrics and stability

We conclude this section on Hierarchical clustering showing two interesting properties about single-
linkage. The first is about a link between single linkage clustering and ultrametric distance. This link has
been established in the works of Johnson (1967) and Jardine et al. (1967). However, in the following we
will refer to the result shown by Carlsson and Mémoli (2010). Let start introducing the definitions of

metric space and ultrametric distance.
Definition 1.29 (Ultrametric). Let X be a set, a metric over X is a function d : X x X — R, that satisfies

1. d(z,y) =0 if and only if x = y, (identity of indiscernible)

2. d(z,y) = d(y,z), (symmetry)
3. d(x,y) < d(z,z)+d(y, z), (triangular inequality)

for all z,y,z € X. An ultrametric is a metric function v : X x X — R that satisfies also the following

ultrametric inequality:
u(z,y) <max{u(z,z),u(y,z)}, forall z,y,z € X.

An ultrametric space is a particular metric space in which all triangles are isosceles.

Remark 1.30. Given a metric space (X, d) there is a canonical way to construct an ultrametric u from d:

u(z,y) = min {i_éna}]g_ld(xi,xiﬂ), st.x=x0,...,T = y} .

Such ultrametric u is sometimes known as sub-dominant ultrametric, and it has the property that if v/ < d

is any other ultrametric on X, then v’ < u.

22 Graph Theory and Clustering

The first result we report is (Carlsson and Mémoli, 2010, Theorem 9) and it states that dendrograms

and ultrametrics are equivalent.

Theorem 1.31. Given a finite set X, there is a bijection V : D(X) — U(X), between the collection
D(X) of all dendrograms over X and the collection U(X) of all ultrametrics over X such that for any
dendrogram A € D(X), the ultrametric V(\) over X generates the same hierarchical decomposition as
A that is:

foreachr >0,z,y € Be \(r) < V(\)(z,y) <r.

Furthermore, this bijection is given by
U(A)(z,y) = min{r > 0 | z,y belong to the same element of the partition in \(r)}.

The Theorem above allows us to represent dendrograms as ultrametric spaces and vice versa. In this
way, any hierarchical clustering method can be represented as a map from finite metric spaces into finite
ultrametric spaces. In this regard, the authors prove that the ultrametric produced by Single Linkage

Hierarchical Clustering on a metric space (X, d) coincides with the subdominant ultrametric of distance d.

The second result proved by Carlsson and Mémoli (2010) that we mention is the stability to perturba-
tions of single-linkage. To evaluate the effect of perturbations on dataset and compare two hierarchies, they
make use of the Gromov-Hausdorff distance, that measures how far two compact metric spaces are from
being isometric. They prove that single-linkage, differently from average-linkage and complete-linkage, is
the only hierarchical method that is stable and continuous in the sense of the Gromov-Hausdorff distance.
This means that for any small perturbation of the input data, the hierarchies obtained with the single

linkage clustering for the original and the perturbed data are at small distance from one another.

1.2.3 Evaluate a clustering

An important aspect is how to evaluate the quality of a partition returned by any algorithm. Since clustering
is an unsupervised task, often there does not exist some ground truth label for the observed data. Thus,
the goal of the metrics proposed is to compare two different partitions. However, in our experiments we
will always evaluate a predicted clustering against a ground truth label. In this section we recall the most

common scores used to compare clustering methods.

Rand Index

Introduced by Rand (1971), the Rand Index computes a similarity score between the two partitions by
considering all pairs of samples and counting pairs that are assigned to the same or different clusters in
both clusterings. In other words, given two partitions S = {X1,..., X} and T' = {Y1,..., Y3} of the
same dataset of [V points, the following quantities are computed

¢ True Positive (TP): the number of pairs of elements that are in the same subset in .S and in the same
subset in T’

* True Negative (TN): the number of pairs that are in different subsets in S and in different subsets in
T

1.2 Clustering on graphs 23

* False Positive (FP): the number of pairs that are in different subsets in S but in the same subset in T’
* False Negative (FN): the number of pairs that are in the same subset in .S but in different subsets in
T

Then Rand Index RI(S,T) between the two clustering is defined as:

TP+TN
RI(S,T 1.18
(5,T) = TP+FP+FN+TN’ (1.18)

that is the fraction of coinciding decisions between the two clusterings, and it holds 0 < RI(S,T") < 1.
Note that the normalization quantity in the previous equation is equal to (). However, other normalization
factors has been discussed, as the one defined by Hubert and Arabie (1985) that defined the Adjusted Rand
Index ARI. This last is the corrected-for-chance version of the Rand index. Such a correction for chance
establishes a baseline by using the expected similarity of all pair-wise comparisons between clusterings

specified by a random model:

index — expected index

ARI(S,T) = (1.19)

max index — expected index

In practice given the two partitions S and 7', the Adjusted Rand Index is computed using the contingency
table:

S\T Yi Y - Y, |sums
X1 |ni1 niz - map | @
Xo |no1 nog cc+ nop | ag
;
Xk | k1 k2 o Mg | ag
sums | by by - by

where n;; = | X; NYj| is the number of objects in common between sets X; and Y. The Adjusted Rand

Index is

S () =[S 5 ()]/6)
Um@+x,®]- [<>zj<’;f>}<>

ARI(S,T) = (1.20)

Purity

Purity metric is a so-called external criterion of cluster quality, that is it evaluates how well a given
partition S matches some gold standard classes that are given along with data. Thus let S = {X7,..., X}
the partition computed by the algorithm and let {C1,...,C,, } possible classes. Let n;; the number of
objects in cluster 7 that belong to class j and let n; the number of objects in cluster X;. The purity of a
cluster X; is defined as p; = max; n;;/n;, that is the empirical probability of the most frequent class in

cluster 7. The overall purity of a clustering is defined as

1 1
NZnipi:Nijaxnij. (1.21)

24 Graph Theory and Clustering

When comparing two partitions with the same number of clusters, in which one of the two is the ground
truth and the other is the predicted partition, purity measures the accuracy of the prediction up to a

permutation of the labels.

Mutual Information

The last way to measure cluster quality is Mutual information. Given random variables X, Y, mutual

information is defined as

MI(X.)Y) = //P(X,Y)(Jﬂay) log (W) dzdy,

where p(xy is the joint probability density function of X and Y and px and py are marginal probability
density functions of variables X and Y respectively. Now let S = {X1,..., X} and T'= {Y7,...,Y}}
two partitions we can define ps (i,) = W, the probability that a random observed data is in cluster

i in the first partition and in cluster j in the second. Moreover let pg(i) = | 1' , the probability that an

object belongs to cluster X;, and pr(j) = % the probability that an object belongs to class j. Thus

mutual information between the two partitions is the quantity defined as

ZZPST i,J) log< (())(j)> (1.22)

i)pr(j)

This quantity is bounded by 0 < M I(S,T) <min{H (S), H(T')}, where H(S) and H (T') are respectively
the entropy of S and T" defined as

ZPS)logps (i)

and
ZPT)logpr (7).

Since mutual information achieves high scores when one of the two partitions is made of lots of small

clusters the compensation for this is the normalized mutual information

MI(S,T)
1/2(H(S)+H(T))

NMI(S,T)= (1.23)
Another variation of mutual information is the Adjusted Mutual Information (AMI) (Vinh et al., 2010),
that similarly to Adjusted Rand Index, correct the scores using the expected mutual information between

two random assignments

MI(S,T)—E{MI(S,T)}

AMI(S,T) = o (S) H(T)) — B{QMI(S.)T

(1.24)

The AMI holds one when the two partitions are identical and zero when the MI between the two partitions

is equal the expected value due to chance.

1.3 MST applications to Image Segmentation 25

1.3 MST applications to Image Segmentation

We conclude this chapter discussing Graph Clustering applications to Image Analysis, and specifically to
Image Segmentation. A natural way to build a graph from an image 7 is to consider each pixel p of the
image as a vertex of the graph and use edges to link adjacent pixels. The graph is known also as pixel
adjacency graph. Pixels’ adjacency mostly used in literature are three (see Figure 1.8):

* 4-connectivity: in which each pixel is connected with the closest top-bottom-left-right pixels. This
creates a regular grid over the image.
* 8-connectivity: each pixel is connected with all the 8 surrounding pixels.

* G-connectivity: each pixel is connected with the pixels in order to form a hexagonal grid. In practice,
this connectivity is harder to implement with respect two the two above.

Figure 1.8 (Left) 4-connectivity (Center) 8-connectivity (Right) 6-connectivity

Each connectivity implicitly defines a different topology on the graph. Moreover, the number of edges
in the graph is affected by this choice. Since the complexity of many algorithms depends on the
number of edges in the graph this imply that also run time is affected by choice of connectivity. In
our case we will use the 4-connectivity. Commonly, the weight function w : £ — R on the edges
measures the dissimilarity between two connected pixels. For example, in the case of gray-scale images
a simple weight function is the one that measures intensity differences between neighboring pixels, i.e.
w(e) = w(vi,v;) = |Z(pi) —Z(p;)| for each e = (v;,v;) € E, where Z(p;) is the intensity of pixel p;. The
goal in image segmentation is to split the input image in several regions each one possibly containing
a different object. An example of image segmentation task is to separate the object portrayed in the
foreground of the image from the background. Among the great variety of existing approaches, hereby we

review three methods that use graphs and in particular the MST to achieve the task.

1.3.1)\-Flat Zones

Segmenting an image, we generally aim to group together homogeneous zones of the image. A-flat zones
(also referred to o connected components) uses this principle to achieve the segmentation. Without loss
of generality, we can assume that the weights are ranged in the set {0,...,|F|— 1} C N. In fact, it is
always possible to find a one-to-one correspondence from the set {1V (¢e)|e € E'} to the set {0,...,|F|—1}.
Given an integer A € {0,...,|E| — 1} we can extract from the graph G a subgraph G, = (V, E\, W) such
that £y = {e € E|W(e) < A}, that is the graph G is obtained from G removing all the edges whose
weight is equal or greater than A\. The set P\ = {Cy,...,C,, } made of all connected components of
G is a partition of the set of nodes V. The connected components are also called lambda-quasi-flat

zones, since the variation between two neighbouring nodes in a connected component does not exceed

26 Graph Theory and Clustering

A. Remark that if A; < Ag, then the partition obtained using A; is finer than the one obtained using
A2. That is, for each connected component C € P, it exists a connected component C’ € Py, such that
C C (. In that case, we write Py, < Py, to indicate that partition Py, is finer than partition Py,. By
making varying the values of lambdas from zero to | E| — 1 we obtain a sequence of partitions such that
Py=V = ... 2 Plgges|—1 = {V'}, that is the \-quasi-flat zone hierarchy. It turns out that we obtain the
same result thresholding the edges of the minimum spanning tree of G. A-flat zone hierarchy returns is
equal to single linkage hierarchy when applied on the image graph. Indeed, Cousty et al. (2018) shows
the equivalence between MST, quasi-flat zones hierarchy and saliency map of an image.

1.3.2 Watershed Cuts

Probably the most popular algorithm know in this domain is Watershed (Beucher and Lantuéjoul, 1979).
The idea is to model the image as topographic relief and to flood the surface with water from the minima
of the image. Each time the water coming from two different sources meet a barrier is created preventing
the two regions to merge. Applying this transformation to image gradient the contours of the image will
correspond to watershed lines while homogeneous zones of the image will correspond to catchment
basins. This approach leads to an over segmentation of the input image because an image may contain
several regional minima. To better control the process, one solution is to flood from a fixed number of
markers chosen among the image pixels (Meyer and Beucher, 1990). Moreover, (Meyer, 1994) establish a
link between Minimum Spanning Forest and Watershed algorithms with markers. This lead to Watershed
Cuts (Cousty et al., 2009) that we will describe better later on. Angulo and Jeulin (2007) propose to
randomly select the markers and generate a random segmentation rather than using deterministic markers.
The idea is that repeating this process multiple times, we can evaluate the strength of the contours of
the image. Stronger contours appear more frequently because there are many possible configurations
of markers which select them. Finally, it is worth to cite (Couprie et al., 2011) that proposed Power
Watershed a framework that unify watershed with markers, graph cuts, random walker and shortest path

algorithm using the same formulation.

The watershed cut (Cousty et al., 2009) is the version on graph of the Watershed algorithm with
markers. It needs a set M = {py,...,px} of pixels as markers. At the end of the process each marker will
be contained in a different region of the segmented image. Basically, the method takes as input a weighted

graph G = (V, E, W) and a set M of markers and proceeds in the following way:

1. add to the set of nodes V' a special node z called well, thatis V' =V U {z}

2. for each marker p, add an edge (p,z) to the set of edges E, whose weight is m — 1 (with m =

minW (e)), ie. E' = EU{(p,z)lp € M}

3. compute a minimum spanning tree 7" of the graph G’ = (V' E/, W)

4. return the connected components Cy, . . ., Cy, of the subgraph F C 7 restricted only to nodes in V.

Remark that the connected components are the regions of our segmentation and that a marker is contained
in each of them. In fact, each marker p is connected in G’ to the well z with an edge whose weight
is minimum. Necessarily those edges will be in the minimum spanning tree 7' of the extended graph

G’, and for this reason, each path in the MST that connects two markers must pass by the well node z.

1.3 MST applications to Image Segmentation 27

We conclude that in the subgraph F C T restricted to nodes V/, two markers must belong to different

connected components.

1.3.3 (o —w) constrained connectivity

Introduced by Soille (2008) this method extends the concept of A-quasi-flat zones and tackles the problem
of chaining-effect Soille (2011). In fact, it can happen that distinct objects in the image are separated by
one or more transitions going in steps having an intensity height less than or equal to A. It follows that those
objects fall in the same A-quasi-flat zone even though they are distinct. Essentially, the idea proposed is to
introduce a connectivity index to measure the degree of connection of a connected component. Briefly, let
I be a greyscale image, and consider a A-quasi-flat zone C. We define the range of the quasi-flat zone R(C)
as the most significant difference of intensity among two pixels in C, i.e., R(C) = max, 4cc |I(p) — I(q)|.
In the original paper (Soille, 2008) proposed to use the range of a connected component as a measure of
connection, but it could be any predicate with a non-decreasing property on A-quasi-flat zones such as
area or volume of A-quasi-flat zones. However, here-under we recall its original definition. Given a pixel
p, the (c,w)-connected component of p is the largest A-quasi-flat zone containing p such that A < « and

with a range less than w,

(a,w) — CC(p) = mfmx{)\ _CC(p) | A< aand RO —CC(p)) < w}

where A — C'C(p) is the A-quasi flat zone that contains p. Moreover, two pixels p and ¢ are (o, w)-
connected if and only if ¢ € (a,w) — CC(p). It turns out that the relation “is («,w)-connected" is an
equivalence relation and thus it generates a unique partition of the image definition domain.

Point Clouds

Resumé

Le chapitre commence par une présentation de la définition des nuages de points 3D ainsi que des
technologies existantes pour I’acquisition de données 3D. Par la suite, nous présentons les techniques
courantes de traitement et d’analyse des nuages de points ainsi que les bases de données les plus utilisées

dans 1’état de ’art.

2.1 Introduction

Point clouds are a well-known data format in the domain of 3D vision since the 70s, but it is from
the advancements in hard drive storage and computational capabilities during the end of the 90s that
point clouds have seen a large diffusion on application domains as civil engineering, cultural heritage
maintenance or robotics. In recent years further improvements in laser technology have made it possible to
build precise and increasingly less expensive high-resolution sensors. Thanks to these sensors it is possible
to obtain precise 3D models of the scanned objects/environments. This chapter is an introductory chapter
to point clouds. We start with an abstract definition of point clouds presenting also the main properties.
Successively, we move on talking about sensors technology and commonly used data-structures that allow

us to handle and visualize point clouds. Finally, we conclude by introducing some popular datasets.

2.2 Point Clouds

A point cloud is a finite set of points P = {p, € R? | 1 <n < N}, where N is the cardinality of the set
P. An intuitive way to imagine a point cloud, is as a set of points that sample the surface of an object. For
example, Figure 2.1 shows a point cloud representing the Colosseum.

A vector of features v,, € R? can be associated to each point p,, € P in the point cloud. In some cases
these features are the colour of the object’s surface or the normal vector to the surface. In the basic setting,

when no further information is available, point coordinates are used as features vectors. Despite their

30 Point Clouds

Figure 2.1 Point cloud representation of the Colosseum.

simplicity in definition, point clouds are a particularly challenging data during processing. First, point
clouds are not always regularly sampled over the entire object or scene. In real cases one of the issues to
face is the variation of density of points across different regions of the scene. Second, point coordinates are
not defined on a regular grid, as pixels of an image, but instead are spread over a continuous interval. Thus
spacing between points is not always fixed and, contrary to image pixels, distance between neighbouring
points can vary. Finally, a point cloud is nothing but a set of points, and it is often stored as a list of
coordinates in a file. As a set, the order in which the points are stored doesn’t change the represented
scene. This means that a point cloud with IV points has N! equivalent representations. Designing an
algorithm to process a point cloud requires considering all these aspects, and as we will see in this chapter
several approaches have been developed during the years to face these properties.

2.3 Point Cloud Scanning

In this section we present three techniques to capture a 3D point cloud. For each technique, we discuss

the principles and the main fields of applications.

2.3.1 Photogrammetry

3D point clouds of a given object can be generated from a collection of overlapping images or video
sequences. The methods are based on detecting and matching features and recovering extrinsic camera
calibration information. The main advantage of this kind of technique is that camera are really cheap,
easy to use and provide colour information. Unfortunately, the recovered 3D information is not as precise

as the one that we obtain with other active sensors as for example LiDAR.

2.3.2 RGB-D Cameras

RGB-D images are a particular format of images with four channels. The first three are the regular RGB
colour channels and the fourth contains depth information. Starting from an RGB-D image it is possible to
obtain a 3D point cloud. Using the depth information along with the intrinsic parameters of the camera it is

2.3 Point Cloud Scanning 31

possible to associate to each pixel a point in the 3D environment. The resolution of the point cloud is thus
correlated with the resolution of the camera. Thanks to the cheaper cost compared with more sophisticated
sensors, modern RGB-D cameras (such as Kinect, Real Sense and Apple depth cameras) have seen a large
diffusion in recent years. Many applications relying on these cameras exist in different domains, such as

3D scene reconstruction, augmented reality or Interactive 3D modelling of indoor environments.

2.3.3 Laser Scanner Technology

LiDAR (Light Detection And Ranging) technology is the method used for measuring distances by
illuminating the target with lasers light and measuring the reflection with a sensor. The backscattered laser
light is collected with a receiver and the distance to the point is then calculated either by time-of-flight or
continuous wave (CW) modulation range measurement techniques. Time-of-flight principle is used to
measure the distance of a scanned object from the scanner. Basically, the sensor measures the time that
the laser takes to travel from the scanner to the object and go back to the receiver. Knowing that light
waves travel with a finite and constant velocity in a given medium, we can estimate the distance p of the
scanned object thanks to the formula -

pP= Pk
where c is the speed of light in a vacuum, v is the refractive index for the light waves that travel in air
and 7 is the time-of-flight. Concerning a CW scanner a continuous signal is emitted and its travel time
can be inferred considering the phase difference between the emitted and the received signal and the
period of that signal. Along with distance, vertical inclination and azimuth angle of the laser are used to
reference the 3D position of the acquired point with respect to the scanner position. For further details on
the principles of laser scanning, please refer to the great book of Vosselman (2011).

Laser scanners use LiDAR sensors to scan the surrounding environment. Objects hit by the lasers will
be in the generated point cloud. The position of points is referenced with respect to the position of the
scanner. In case of multiple scans in different positions a global reference needs to be determined in order
to include all the scans in a global frame. Two strategies exist to achieve this last task. The first uses other
sensors to correct referencing the scanners positions. The second is in the post-processing phase, and is a
fundamental problem in 3D vision and photogrammetry called Point Cloud Registration. Along with the
position of the points, laser scanners measure also the intensity of the backscattered light. When correctly
calibrated, the intensity value depends on the kind of material hit by the laser and this information can be
useful in the classification of different objects.

Point clouds acquisition systems can be divided into three main groups. Terrestrial Laser Scanner
(TLS), Mobile Laser Scanner (MLS) and Aerial Laser Scanner (ALS). This classification is based on the

platform on which the system is installed and on the type of sensors employed.

Terrestrial Laser Scanners: are fixed high-resolution scanners typically installed on a tripod or
other kind of support. Modern TLSs can acquire over one million points per second at a range that can
vary from around 200 meters up to one kilometer. Normally, a single scan takes a few minutes to be
acquired and thus the resulting point clouds contain billions of points. In the last years, these scanners are
also equipped with camera sensors in order to add colour information. They are typically employed in

civil engineering to generate precise 3D models of buildings or civil infrastructures used for example in

32 Point Clouds

quality inspection, construction progress tracking, construction safety management, building renovation

and heritage maintenance.

Aerial Laser Scanners: are generally installed on aircraft or on Unmanned Aerial Vehicles (UAV).
The generated scans have in general higher spatial resolution than radars. These scanners are employed to

obtain virtual city models or digital terrain models (DTM) of certain areas.

Mobile Laser Scanners: are generally mounted on top car, van or other kind of vehicles along with
other sensors as for example cameras, Global Positioning System (GPS) and Inertial Moving Unit (IMU).
It scans while the vehicle is moving in the traffic. IMU and GPS are used to reference the different scan to
a global reference system. These scanners have lower resolution than TLS, but the acquisition process
is faster compared to TLS and operation can be done inside the vehicle. The main applications are in
Mobile Mapping System for Intelligent Transportation System and in Intelligent Vehicles Technologies as

for example Autonomous Cars.

For a more in-depth review on applications of Laser Scanner Technologies, please refer to (Soildn
et al., 2019). In our work, we focus on point cloud applications for Autonomous Driving. MLS employed
in these cases use multiple laser beams to scan the environment around the vehicle. Generally, the lasers
are installed on a shaft, as the teeth of a comb, and the laser spins around the shaft axis during the capture.
Rotating around its axis the scanner acquires points in the 360 degree field-of-view around it. In modern
research, one of the most employed scanners is Velodyne HDL-64E (see Figure 2.2a), that has 64 laser

beams. It scans up to 2.2 millions 3D points per second at a range of 120 meters.

2.4 Point Cloud Processing

In the previous section we have reviewed modern technologies to acquire point clouds. Recent years,
mainly thanks to the reduction of production costs of the scanners, have seen large employment of these
sensors. 3D data are useful because they provide a more complete information on the surrounding
environment compared to images. On the contrary, due to their properties, point clouds require defining

geometrical structures in order to navigate and visualize the point cloud.

First of all we need to define neighbourhoods. In literature, there are two main approaches to define a
neighbourhood of a point p in a point cloud P. The first is the so called e-neighbourhood. Let € be a real

positive number, we define the e-neighbourhood of the point p as the set

Ne(p) ={qeP|d(p,q) <e}

of points of P closer than e to p with respect to a given distance metric d. Usually, this metric is the
Euclidean norm, and in this case, the neighbourhood N, (p) is a sphere centred in p. For this reason, this
kind of neighbourhood is also called spherical neighbourhood.

However, other kinds of metrics are also used. For example, let H be a plane and 7y the projection on H.

2.4 Point Cloud Processing 33

Velodyne HDL-64E Laserscanner

(c)

Figure 2.2 (a) Velodyne HDL-64E (b) Car and sensor platform used to record KITTI Dataset Benchmark.
A 64 layers laser scanner has been installed on top of the car, along with 4 cameras. (Source Geiger et al.
(2012)). (c¢) Nlustration of a scan obtained with a MLS platform.

Consider the distance function

du(p,q) = |mu(p) —7a(q)]2

as the distance between the projected points. In this second case neighbourhoods N (p) are cylinders
centred in p whose central axis has the same direction of the normal to the plane H, and are called
cylindrical neighbourhood.

The second strategy is to fix an integer k£ and consider for each point p its closest k& neighbours.
This entails that the cardinality of the neighbourhood is fixed by k, and does not depend on the point p
or on the local density of the point cloud. For this reason, this kind of neighbourhood are particularly
useful when point cloud density is heterogeneous. This neighbourhood is known in literature as k-Nearest
Neighbourhood (k-NN).

34 Point Clouds

2.4.1 3D Data Structures

In order to compute the neighbourhoods previously defined, we need data-structures that efficiently
organize the point cloud and that can guarantee fast access to points. Hereby we present two fundamental
data-structures introduced to visualize structures in 3D computer graphics. Both belong to binary space
partitioning (BSP) methods, that are methods to recursively subdivide and organize the space in disjoint
convex sets using hyperplanes. In this way it is possible to move through different parts of the 3D space
navigating among the branches of these trees. The two most commonly used data structures in this field

are Octrees and k-D trees.

Octrees

The Octree is a tree data structure useful for space indexing, streaming and data compression, introduced
by Meagher (1980). It is an extension of the binary tree to the 3D space. The root of the tree represents
and stores information about the bounding box of the entire 3D space aligned to X, Y, Z axis. Using the
middle point inside this box and three planes orthogonal to the standard base vectors &, 4, 2, the bounding
box is divided into eight parts called octants. Each octant is associated to one child of the node, and this
subdivision pattern is recursively applied to every internal child until a minimal bounding box size or a
minimum number of points is obtained at the leaf level. Finally, the leaves of the octree store the points
of the point cloud contained in the bounding box associated with them. This splitting scheme implicitly
defines the location of every internal node by its level and its position in the octree. Figure 2.3 from Vo
et al. (2015) illustrates an example of a two level octree and shows how the space is decomposed at each
level. Burstedde et al. (2011) developed p4rest a software library that enables the dynamic management

of a forest of octrees.

ro’t level 0

""" Notation

O. Q ...‘. Q level 1 O non-empty node

Q empty node
....O... ol M dmilish
BE5E BE 1 point list
(a) Octree hlerarchical structure v
, .
.J_ - Km'n
level 0 level 1 level 2 (c) Features of an octree
(b) Space decomposition leaf-node

Figure 2.3 Example of Octree decomposition (Image source Vo et al. (2015))

2.4 Point Cloud Processing 35

k-D trees

k-D trees, introduced by Friedman et al. (1977), is a space partitioning data structure meant to organize
points in a general k& dimensional data space. Basically, it is a binary tree in which each internal node
defines a cutting hyperplane that splits the space in two parts along one specific coordinate. Points to the
left of the hyperplane are represented by the left subtree, while points to the right are stored in the subtree
rooted at the right child of the node. The splitting value is set as the median of the distribution of the point
coordinates values along the chosen direction. The hyperplane direction is chosen accordingly to the level
of depth of the node. The leaf nodes of the trees are k-dimensional points. Nanoflann Blanco and Rai
(2014) is a library written in C++ that allows to efficiently build k-D trees.

10

X (z,if,& "(4,73'- (8,1)

0 2 4 6 8 10

Figure 2.4 Example of space partition using a 2-D tree (Image source Wikipedia)

2.4.2 Feature Extraction

Since, their first applications in the field of civil engineering to generate Building Information Model (BIM)
of physical infrastructures, the employment of automatic procedures for the analysis of the point clouds has
been necessary to deal with the massive amount of data. This has opened a wide range of problems to solve
for example 3D reconstruction, geometric modelling, object recognition, semantic segmentation. In all
these problems, feature extraction has played a fundamental role in development of the proposed solutions.

In the next lines we review some geometrical features that can be computed starting from a raw point cloud.

A general point cloud can also be seen as a set of sampled points over a given surface S. Hoppe et al.
(1992) proposed a method to estimate tangent plane of the local surface at a given point P in the point
cloud, that is based on PCA of the local neighbourhood of the point. Given a point p = (z,y,2)7 € R?in
a point cloud P, let V. (p) be its e-neighbourhood as defined in Section 2.4. Let p; = (z;, v, 2)" € N.(p)

points in the neighbourhood, and p = % » . pi, the centre of gravity of N.(p) that is made of n
points. Given M = (p; —p,...,pn — P), the 3D covariance matrix, also known as 3D structure tensor, is

defined as C' = %M T M. The eigenvectors and eigenvalues of the matrix C' describe the directions and
the magnitude that maximize the variation of data. In particular, since C' is a symmetric and positive
semidefinite matrix, and it always exists a matrix U, such that C' = U TAU, where A is a diagonal matrix
and UTU = UUT = I. The column vectors of the matrix U are the eigenvectors of the matrix C, while

the values A1 > A9 > A3 > 0 in the diagonal of the matrix A are the associated eigenvalues. The first

36 Point Clouds

TABLE 2.1
LIST OF GEOMETRICAL FEATURES.

Features Definitions
Planarity)‘2)\;1)‘“
Linearity ’\1/\;1)‘2
Sphericity %’
Eigentropy — > Ailog(A:)
Omnivariance (ITA) 3
Change of curvature Mﬁ

represents the directions that maximize the variation of data, while the seconds represent the magnitude
of variation. In particular, the eigenvectors associated to the biggest two eigenvalues also span the least
square best fitting plane to N, (p). Hence, the third eigenvector is the normal to the estimated local tangent
plane. Later on, Demantké et al. (2012), used spectral information on the 3D structure tensor to retrieve
local shape information on a point cloud. Since the eigenvalues describe the magnitude of variation along
specific directions, they derived linearity, planarity and sphericity features of the local neighbourhood
analysing ratio among them. The definition of these features is shown in Table 2.1, while Figure 2.5
illustrates how these features highlight different parts of the point cloud according to the local geometry.

Weinmann et al. (2015), did the same analysis using the k-NN of each point. Moreover, they also
proposed other features to describe the geometrical structure of the local neighbourhoods, as for example
Eigentropy. This last is used to measure the disorder of points in a 3D covariance ellipsoid, and it is used
to find the optimal value of k that defines the neighbourhood size. The optimal value corresponds to the
respective k with minimal eigentropy.

The size of the neighbourhood influences the quality of geometrical descriptors. Thus, either we use €
neighbourhood or £-NN, an important focus is to put on how to find the optimal size of the neighbourhood
(and necessarily of € or k). On the one hand, if the neighbourhood is too small, the descriptors are fast
to compute, but they do not really capture the local geometry. On the other hand, if the neighbourhood
is too big the entire process could be too costly and important details may be missing. To deal with this
problem, Hackel et al. (2016) and Thomas et al. (2018) proposed to use a multi-scale approach. The first
used k-NN to define neighbourhoods, while the second used e neighbourhoods. Their solution is based on
iterative subsampling of the point cloud, using a voxel-grid filter. The space is firstly divided in voxels
of a minimal size, and points in each voxel are replaced with their centroid. Then geometrical features
are computed using centroids as points. This strategy induces a feature normalization avoiding a great
disparity in the number of points or in the point distance according to point density heterogeneity. This
process is iterated increasing the size of the voxels of a factor of 2 at each step and computing the features
for each step, until a maximum size is reached. This strategy allows to introduce an intrinsic feature

normalization, to reduce the memory footprint and to obtain multi-scale information.

2.4 Point Cloud Processing 37

000 0250 0,500 0,750 1, A 000 0,250 0,5
R

(a) Planarity (b) Linearity

(c) Eigentropy (d) Change of curvature

Figure 2.5 Planarity, linearity, eigentropy and change of curvature obtained on a point cloud of the
Fountain in Balgach in the Semantic3D Dataset Hackel et al. (2017).

2.4.3 Point Cloud Projections

Another way to extract features from a point cloud consists in mapping the points to pixels of a grid
defined on a 2-dimensional manifold, such as a sphere, a cylinder or a plane. The main advantage behind
this approach is that it allows working on structured data as images, and to reuse all the tools developed for
image analysis. The critical step is the choice of the resolution of the grid, that must be chosen carefully
to have a good detail of information in the resulting image. In fact, if the grid is too coarse, several points
may be projected on the same pixel causing a loss of information, and on the contrary a too fine resolution
leads to an image full of empty valued pixels. In the following we recall two kinds of projection that we

use later on in Chapter 3.

Bird Eye View

In the Bird’s-eye View projection, the input point cloud is projected over a regular grid defined over a
plane parallel to the x,y plane. To associate each point p = (z,y,2) € R3, to a pixel p = (u,v) € Z2, a
spatial resolution need to be defined. This resolution defines the size of each pixel. We call Az and Ay

respectively the height and the width of each pixel. Thus, assuming that the x,y axes are oriented in the

38 Point Clouds

same direction of the u,v axis, the pixel p is obtained using the following formula

{u |(x —x0)Az],
v=|(y—vo0)Ay],

where z, yo are respectively the minimum values x and y of the points. An example of this projection is
shown in Figure 2.7c.
Spherical View

In the Spherical View projection, the points are projected over a spherical grid. Assuming the reference

centred at the scanner position, the projection map is defined using spherical coordinates

p=/x2+y2+22,
¢ = atan2(y,),
0 = arccos(z/p),

The grid is built dividing the azimuth and vertical axis. The spatial resolution Ay and A# define the size

of the pixel. The pixel coordinates (u,v) are defined as

u=|pAp],
v=[0A0].

Figure 2.6 schematizes the mapping from points to pixels while in Figure 2.7d we illustrate an example of
the spherical view projection.

Figure 2.6 Spherical Projection

2.5 Point Cloud for Autonomous Driving

In general, autonomous systems (AS) are characterized by the capability of taking decisions independently
by the human interface while facing uncertainty. Autonomous Driving are particular AS that have been
developed in the domain of transport. They use sensor systems to capture the surrounding environment
and use artificial intelligence to analyse information and take decisions in a continuously changing
environment as a substitute for human judgment (Taeihagh and Lim, 2019). The society of automotive
engineers (SAE) categories AV based on five levels of automation

* Level 1 (Driver Assistance) The driver and the automated system share control of the vehicle.

2.5 Point Cloud for Autonomous Driving 39

e, = “ﬂ\\\\\‘\“ r
TR m
Al WE T o i

r:jj}? L

#

SRS

%
LAY

(a) 3D point cloud (b) 3D point cloud

(c) Bird’s-eye View projection

(d) Spherical View projection

Figure 2.7 An example of projection of a point cloud onto images. (a, b) Two views of the same 3D point
cloud. (c) Image obtained after a Bird’s-eye View projection, (d) Image obtained after a Spherical View
projection. Some pixels are black because no point falls in.

* Level 2 (Partial Automation) The automated system takes full control of the vehicle: accelerating,
braking, and steering. The driver must monitor the driving and be prepared to intervene immediately

at any time if the automated system fails to respond properly.

* Level 3 (Conditional Automation) The driver can safely turn their attention away from the driving
tasks, e.g. the driver can text or watch a movie. The vehicle will handle situations that call for an

40 Point Clouds

immediate response, like emergency braking. The driver must still be prepared to intervene within

some limited time, specified by the manufacturer, when called upon by the vehicle to do so.

* Level 4 (High Automation) As level 3, but no driver attention is ever required for safety, e.g. the
driver may safely go to sleep or leave the driver’s seat. Self-driving is supported only in limited
spatial areas (geo-fenced) or under special circumstances. Outside these areas or circumstances,
the vehicle must be able to safely abort the trip, e.g. park the car, if the driver does not take back
control. An example would be a robotic taxi or a robotic delivery service that only covers selected

locations in a specific area.

* Level 5 (Full Automation) No human intervention is required at all. An example would be a robotic
taxi that works on all roads all over the world, all year around, in all weather conditions.

LiDAR sensors acquire crucial 3D information that is more precise compared to images. In order to
navigate correctly through traffic and to take accurate decision, perception module of an AS must be able
to perform the following tasks on 3D point clouds.

3D Object classification Given a set of different point clouds X = {Py,...,P,} and their labels
Y ={v1,...,yn}, belonging to different categories (e.g. mug, table, car or aeroplane), we look for a
function f : X —), that correctly assigns each point cloud to its category. For example, we want to

associate at the point cloud in Figure 2.8 the category Aeroplane.

Figure 2.8 Aeroplane

3D Object detection Given an arbitrary point cloud, this task aims to find and locate instances of objects
belonging to specific classes (e.g. Cars, Pedestrian, Cyclists) and return bounding boxes of the retrieved
objects. A bounding box is described as a tuple of parameters (z,y, z,h,w,l,0,c), where (x,y, z) are the
coordinates of the box centre, (h,w,l) are respectively the height, width and length of the box, 6 is the

object orientation of the object, and c corresponds to the class of the contained object.

Semantic Segmentation Point cloud segmentation is the task of clustering an input point cloud in
disjoint regions where each region is predicted with a semantic label, such as ground, building, car and so
on. From a mathematical point of view, given a point cloud P = {p1,...,p,} the goal is to fit a function
f at each point p that assigns the label y of the corresponding region, that is y = f(p). Along with

Semantic Segmentation other two kinds of segmentation problems exists in literature, that are Instance

2.6 Databases 41

Segmentation (Guo et al., 2020) and Panoptic Segmentation (Sirohi et al., 2021). The first aims to locate
and separate the instances of a given category of object (e.g. car) in a given point cloud. The main
difference with object detection task is that the objective is to return labels for points and not bounding
boxes. Instead, Panoptic Segmentation can be seen as a combination of Semantic Segmentation and
Instance Segmentation. The goal is to split the point cloud in different semantic regions and for each
category separate different instances present in the scene. Figure 2.9 illustrates the difference between

these three kinds of problems.

(a) image (b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 2.9 An example that illustrates differences between Instance Segmentation, Semantic Segmentation
and Panoptic Segmentation

2.6 Databases

In this section, we report a list of some popular point clouds datasets.

2.6.1 SemanticKITTI

SemanticKITTI has been introduced by Behley et al. (2019) as a new benchmark for LiDAR based
semantic segmentation. It is built upon the KITTI Vision Odometry Benchmark Geiger et al. (2012) and it
provides dense point-wise annotations. It is made of 22 sequences. The authors have proposed a split of
sequences in three groups to be used for supervised learning approaches. The first 11 sequences are meant
to be used as training set and the last 10 to use as test set. Finally, they propose to use sequence 08 as
validation set. Totally the dataset contains around 43k annotated scans. The scans have been collected
in different environments such as city centres, country sides or highways and provide a wide range of
different situation in which a car drives. Moreover, the scans have always been collected in perfect weather
conditions and on flat zones and this makes this dataset a perfect benchmark to test semantic segmentation
algorithms. The points are divided in 28 classes. In this great variety of classes there is also a distinction

between moving and non-moving objects. The main classes contained in the dataset are:

* Car (Moving / Not Moving)

* Bicycle

42 Point Clouds

* Bus (Moving / Not Moving)

* Motorcycle

* Truck (Moving / Not Moving)

* Person

* Bicyclist (Moving / Not Moving)
* Motorcyclist (Moving / Not Moving)
* Road

* Parking

* Sidewalk

* Building

* Fence

* Lane-marking

* Vegetation

* Trunk

* Terrain

* Traffic-sign

Figure 2.10 illustrates two frames of contained in SemanticKITTI, while Figure 2.11 shows the overall

distribution of classes.

Figure 2.10 Some examples of frames in SemanticKITTI. Source: Behley et al. (2019)

10° [Lignored for evaluation]
108

107

number of points

108

sidewalk
building
other-structure *
other-vehicle
vegetation
bicyclist
motorcyclist
other-object !

10°

ground structure vehicle nature human object

Figure 2.11 SemanticKITTI: Label distribution. Image Source: Behley et al. (2019)

2.6 Databases 43

2.6.2 ModelNet

ModelNet is a dataset introduced by Zhirong Wu et al. (2015). The full dataset is a collection of almost
151k CAD models belonging to 660 unique object categories, among the most common object categories
in the world. There exist also two variants of this dataset respectively restricted to 40 and 10 categories.
The first is called ModelNet40 while the second ModelNet10. In Figure 2.12 some CAD examples of
chairs contained in ModelNet40 are depicted.

e oot e brldgestoolvase & v
ceiing_lamp tube side. t‘;‘iﬁé"ch j Person'eEL I e &k FQ 2
airplane e fo”'"g‘dm' television brick gitar ﬁ % T YA)

stone DOC e 8 st armchalr tv_stand poolpanfum.m,e o os ®
lphonle)m*"“’ t lava ‘ T‘. LH :,: \; ><
ani - y

‘72 hoot n OWsofa hellcopter o B B B B
wardrobe. maS r“ -t “'f'"EEf sh OW conference_table > i 2 b %(“
decatralleFR') t monitor \ H .

penﬂmamlﬂu =N g ‘)

fhottleSWImmIng_pOO|g.s,r|ng§erll1(:)%|g “ h If ® ;‘5 B
cell_phone s I B W

aiing coffee table

filing_cabinet
night_stand fireplace

en Ces..pmachlne chést pot k
e tlag faucet t’a'““’y paro

workbench trackCg|
table trash_can rlver water ru
b e _satie |

ol gt e UORT sk

[anle
I
P gp =
R

-

Figure 2.12 Left: word cloud visualization of the ModelNet dataset based on the number of 3D models
in each category. Larger font size indicates more instances in the category. Right: Examples of 3D chair
models. Image Source Zhirong Wu et al. (2015).

2.6.3 PartNet

The PartNet dataset Mo et al. (2019) is a benchmark that contains fine-grained and hierarchical instance-
level part segmentation annotation for about 26k shapes with over 500k part instances from 24 object
categories. Some examples of fine-grained segmentation and of hierarchical decompositions are respec-
tively shown in Figures 2.13 and 2.14. The categories have been selected from ShapeNetCore Chang et al.
(2015), and respects the following requirements:

1. are mostly seen in indoor scenes,
2. contain interesting intra-class variation

3. provide a huge number of parts

The median number of parts per object is 14 and a maximum number of 230,

Wﬁoliiﬂ@ﬁﬁﬁ

Bowl Clock Dishwasher ~ Display Door Faucet Storage Furniture

QT@' 'W‘ A~ W v ‘

Keyboard Knife Laptop Lamp Microwave Mug Refrigerator Chalr Scissors Trash Can Vase Bottle

Figure 2.13 Some shapes with fine-grained part annotations for the 24 object categories in PartNet. Image
Source Mo et al. (2019).

44

Point Clouds

Coarse Fine-grained

PartNet Dataset

Figure 2.14 Some annotations at three levels of segmentation in hierarchy. Image source Mo et al. (2019).

Ground and Road Detection

Resumé

Le chapitre est divisé en deux parties. La premiere partie se concentre sur le probleme de 1’identification
des sols dans le contexte d’un nuage de points obtenu a 1’aide d’un scanner Velodyne monté sur une
voiture. La contribution innovante de cette partie est constituée de deux algorithmes de détection des sols
par I’utilisation de zones quasi plates. Pour évaluer I’efficacité de ces méthodes, une comparaison avec
I’état actuel de la technique est également présentée. La deuxieéme partie se concentre sur le probleme de
la détection des routes, toujours dans le méme contexte. En particulier, une analyse des performances des
méthodes actuelles de détection par réseaux neuronaux sur des scanners a basse résolution est développée.
Pour améliorer les performances de ces méthodes, 1’utilisation d’informations géométriques telles que la
normale a la surface est proposée. Les résultats obtenus montrent que ’utilisation de ces caractéristiques

permet d’améliorer la détection, notamment dans le cas de scanners a basse résolution.

3.1 Introduction

Ground detection is a fundamental problem to solve for several applications such as 3D modelling process
and mobile robot navigation. Our interest in ground detection is motivated by the fact that once removed
the ground from the scene, other objects can be identified as isolated components of the scene. Indeed,
this strategy is employed in many object detection or object classification algorithms. Interestingly,
ground detection is also of interest in the case of Digital Surface Models obtained by radar interferometry,
LIDAR, or photogrammetry. Indeed, these techniques provide an estimation of the height of any object
above the ground such as vegetation (trees etc.) and buildings rather than the ground elevation. The latter
elevation is needed for many applications such as those related to hydrology or civil engineering. Note
that in this case (apart from LIDAR), the input data are provided as a raster (2.5 D) and not 3D point

cloud.

This chapter is divided into two parts. In the first part, we discuss various approaches for the ground
detection task. To be specific, we compare several state-of-the-art methods like RANSAC, A-flat zones,

and Convolutional Neural Network (CNN) methods. For each of them, we use different point cloud

46 Ground and Road Detection

representations. In some cases, we will project on 2.5D images, in some others, we can directly work
with a 3D representation.

In the second part of the chapter, we focus on road detection. The main motivation is to evaluate
the effect of subsampling the number of layers of the scanner. Until these days, a significant majority
of the state-of-the-art algorithms in the context of self-driving car applications, have been tested on
scenes acquired using high-resolution scanners such as Velodyne HDL-64E. Despite that, the use of this
kind of scanners in a real-world scenario is limited due to their considerable costs of production. Even
though these costs are decreasing, the employment of high-resolution scanners on a car still remains too
expensive. On the other hand, low-resolution scanners are more competitive but provide a smaller amount
of information compared to a high-resolution device. For this reason, we analyse the effect of the reduced

resolution on a fundamental task such as road detection.

3.2 Introduction to Ground Detection

A common approach in 3D object detection and 3D object classification approaches is to detect the ground
as the first step (Roynard et al., 2016; Serna and Marcotegui, 2013, 2014). The idea is motivated by the
fact that once removed the ground from the scene, all the other objects in the scene appear as different
connected components. The pipeline is illustrated in Figure 3.1, then continues analysing and classifying

the remaining components.

(a) Input Point Cloud (b) Ground Detection (¢) Removed Ground

Figure 3.1 A common pipeline for Object classification. Ground detection is the first step to achieve.
Once removed from the ground remaining objects can be more easily identified.

Many approaches for ground detection have been proposed in the literature during the previous
decade. A simple attempt to solve this problem is to model the ground as a flat surface and carry out a
planar approximation using RANSAC paradigm introduced by Fischler and Bolles (1981). Examples of
RANSAC based approaches are Gallo et al. (2011); Oniga et al. (2007); Schnabel et al. (2007). Even
though those methods are robust to outliers, the assumption of a unique flat ground is not realistic even in
the urban context. To solve this problem, Hernandez and Marcotegui (2009); Serna and Marcotegui (2013)
proposed to use A-flat zones to detect the ground in dense point clouds. The method projects the point
cloud on a regular grid parallel to the zy plane placed at the lowest value of z coordinate, and storing for

each grid cell the value of the minimal elevation among all projected points on the same pixel. This is the

3.3 Ground Detection on Point Clouds with heterogeneous density 47

BEV described in section 2.4.3. Once obtained the projected images the segmentation via A-flat zones is
carried out to obtain the ground. Similarly, Roynard et al. (2016) project points on a discrete horizontal
grid and the z value with the highest value in the histogram is selected as ground seed. Then a region
growing approach is used to detect the ground. Both methods are very similar: lambda flat zone and region
growing approaches rely on the same hypothesis of smooth height variation. The unique difference is the
initialization step. These methods were proposed for a mobile mapping application with a relative density
homogeneity. Unfortunately, this assumption does not hold for standard autonomous driving applications.
In that case, the scanner is mounted on top of the car and the axis of the scanner is orthogonal to the
ground. The resulting point density decreases with the distance from the scanner. In this kind of scenario,
it is not possible to find a good resolution value. In fact, a sufficiently high resolution disconnects object
profiles in the projected image. On the other hand, a low resolution accumulates too many points in pixels
closer to the scanner where the point cloud density is high and aggregating information we risk to cancel
out small objects that we need to detect, such as people or bicycles. In Section 3.3 we present a method
that copes with this problem and accurately interpolates missing information. A more recent method has
been introduced by Zhang et al. (2016). Their idea is to turn upside down the point cloud and let drop a
cloth to the inverted surface from above. The ground is then detected analysing the intersections between
the nodes of the cloth and the inverted point cloud. Finally, in recent years several CNN-based methods
have been introduced in the more general problems of semantic segmentation of a 3D point cloud (Hu
et al., 2020; Landrieu and Simonovsky, 2018; Thomas et al., 2019). Concerning the ground detection
task Velas et al. (2018) propose to project the point cloud using a spherical view (see section 2.4.3) and
generate 2D images containing range, z and laser intensity values. The resulting images are then used to
train a Fully Convolutional Neural Network (FCNN) to obtain a binary segmentation. Finally, the labels
are back projected to 3D points. This kind of approach has been also used by Behley et al. (2019) and
Milioto et al. (2019) to carry out a semantic segmentation of the scene.

3.3 Ground Detection on Point Clouds with heterogeneous density

We now present two novel methods that use A-flat zones to detect ground on Point Clouds with heteroge-
neous density. The two methods differ on data representation used. The first method is based on the work
of Hernandez and Marcotegui (2009) that we discussed above, and aims to solve the problems deriving
from the high variation of point density in the scene. The second method works directly on 3D point
clouds, defining a graph and successively extracting \-flat zones.

On BEYV images

Hereunder, we present a method based on the work of Hernandez and Marcotegui (2009). As we said
hitherto, the critical issue that we experience represents the variation of point density. In fact, in these
point clouds, the density decreases with the distance to the scanner. This means that projecting the points
on a squared grid defined over the xy plane, the pixels far from the scanner have a higher probability to be
empty. This causes a problem of connection between peripheral pixels. We have considered two strategies
to address this issue. The first and the simplest approach is to reduce the grid resolution. In this way,
the surface of each element of the grid is bigger, and this increases the probability that at least one point

falls in. The main drawback is that the projection could merge information relative to different objects

48 Ground and Road Detection

Detected ground after first step

Void pixels around the scanner
Ring of ground pixels

Position of the scanner

Figure 3.2 A zoom of the I,,,, image. In this case, the car is driving through a narrow street, and road
in the front of the car is disconnected from the rear. In red, pixels in the closest ring around the scanner
detected as ground.

in places where the point cloud density is high. Thus, we need to find a trade-off between the amount
of information merged and the number of pixels reconnected. Unfortunately, we found out that this first
approach is not sufficient to solve the connection problem and for this reason, we moved on to the second
solution. It consists of splitting the zy grid as a particular polar grid, that we will introduce later on, and

interpolate values in each circular sector. The method uses the following BEV images:

* I,in that stores the minimal elevation (vertical distance from each 3D point to the projection plane)

among all projected points on the same pixel,
* Iq. that stores the maximal elevation among all the projected points on the same pixel,

* I, that stores the number of points projected on each pixel.

To obtain these images we use a resolution of 5 pixels/m for the xy grid, that is, the size of the pixel side
is 20 cm. Along with this, the BEV images are 8-bit encoded images and the resolution used for the
elevation is 10 levels-of-gray/m. Given the importance of the task we aim to solve, for security reasons,
we prefer a high precision-score in our detection rather than a high recall. This means that false negatives
are preferred to false positives. For this reason, differently from the original work in which the I,,,;,, image
was used, we interpolate and segment the I,,,,, image. This gives us higher confidence in the detected

ground. The method can be divided into the following steps:

1. identify the ground around the scanner,
2. build a polar grid and interpolate values,
3. compute A-flat zones and extract ground on BEV image,

4. back project ground label from BEV image to 3D points.

1. Identify the ground around the scanner The first step is to retrieve the part of the ground closest

to the car. The goal is to reconnect the road in front of the car with the one behind. In the original method,

3.3 Ground Detection on Point Clouds with heterogeneous density 49

the ground is identified as the biggest A-flat zone found after segmenting the image. In situations where
the car is navigating through narrow streets, this assumption may not be verified, just because the ground
in front of the car could not be connected with the ground in the rear, as shown in Figure 3.2. In the
proposed example, pixels in the sides of the car represent either a wall or other cars, the ground in the
front is isolated from the one behind. To solve this problem, we detect the ground among the pixels in the
closest ring around the car. These pixels will be used later on as markers to detect which A-flat zones that

belong to the ground and merge them together.

We start identifying the void pixels around the scanner using a morphological reconstruction by
dilation. We use as marker image f:

flz,y) = {255 i (@)= (@o,%0),

0 otherwise.

where (z0,%0) is the pixel corresponding to the position of the scanner in the image. Furthermore, we use

as mask image g:
255 if Iacc(l'ay) =0,
9(z,y) =

0 otherwise.

Thus, the image I, containing the identified circle is obtained as I, = Rg(f). Then, we detect among the
points in the closest ring around the car those belonging to the ground. To achieve this, we first locate the
ring R around the car applying a morphological external gradient defined as:

where B is a structuring element of size 5 x 5. The ring is the set R = {(z,y) | I (z,y) = 255}. Then we
compute

z= min I x,vy),
e Tmasly)

the smallest z value in I, on the set R. Finally, we assign as ground only the pixels in the ring R such

that | I;a0 — 2| < 0.5m. In Figure 3.2 we mark in red the resulting detected ground.

2. Build Dart Board and Interpolate image In the second step, we interpolate information contained
in the I,,,, image. This is a necessary step in the method because it fills information on void pixels.
Namely, we define another grid, and then we map pixels of 4, image onto its elements. To better explain
our choice, let us analyse how points are spatially located in an ideal environment where the ground is a
plane orthogonal to the axis of the scanner. As said before, the scanner has several lasers, called layers,
that acquire points around the car. In this setting, the scanner has 64 layers and the inclination angle of
each layer is fixed. During the acquisition phase, the scanner spins around its vertical axis. Looking at
points for a fixed yaw angle as in Figure 3.3, we can see that the distance of the points from the scanner
grows with the tangent of the vertical angle of the layers. Thus, in this context, a polar grid on the xy
plane, where the length of intervals in the radial axis increases with a tangential trend, would be better

suited than the Euclidean grid to prevent disconnections.

50 Ground and Road Detection

Figure 3.3 The hypothetical case of perfectly flat ground. The distances between points and the scanner
depend on the tangent of the inclination angle of the layer and the scanner height h.

To define the intervals in the radial axis, let first consider [y,...,[, layers in the scanner directed
towards the ground, and let 0 < 1 < ... <, < % the respective inclination angles of the layers.
Furthermore, let i be the distance between the scanner and the ground. In the hypothesis of an ideal

environment, we can estimate the radial distances r; of the scanned points as:
r; =h-tan(p;), Vi=1,...,n.

Hence, we split the radial axis with intervals [r;,7i4+1), fori =0,...,n+ 1, where 9 = 0, and r,, 41 = o0.
In this way, the profile of the ground in the grid remains connected because for each cell we have at least
one point that falls in. Differently from the radial axis, we choose 0 < 6y < ... <6, < 27 angle to evenly
split the polar axis. Thus, each element S of the dartboard is defined as the set of pixels in the product
[ri,7i41) % [0,0;4+1). Figure 3.4 shows the dartboard obtained for the setup used in KITTI Benchmark
(Geiger et al., 2012) where the scanner has been placed at height of h = 1.73m. As the reader can see,
the length of the circular sectors along the radial axis increases moving away from the center of the grid,

where the scanner is placed.

Figure 3.4 Dartboard

Once generated the dartboard, we employ it to interpolate information on void pixels in the I,

image and obtain the interpolated image I naz. First of all, we identify the center of the dartboard with the

3.3 Ground Detection on Point Clouds with heterogeneous density 51

(a) Example of Inax (b) Interpolated image Iinax on the dartboard

Figure 3.5 Interpolated image obtained on the frame 3721 in sequence 08 of SemanticKITTI dataset.

position (xg, o) of the scanner in the image. Then for each pixel x,y in the Euclidean grid we compute

its polar coordinates r, 6 as:

r=/(x—20)%+(y—vo)?
0 = arctan((y —yo)/(z — x0)).

The coordinates (r,6), determine a circular sector S in the polar grid. In this way, we map each element
in the [,,,4, domain to an element in the dartboard. Now, let us define the image [in which we assign, for
each circular sector S in the dartboard, the minimum value of the I,,,,,, image among all pixels in S. In
formula, the image I is defined as:

I(S) = min Ipg.(x,y).
(z,y)es
Since I could not contain information relative to vertical objects, we need to recover it. Therefore, we
compute the max between values in 1,4, and I , and obtain the final interpolated image fmaw. In other
words, for each pixel (x,y) in the image domain, we assign

A

Imax(xay) = maw(fmax(%y),f(%y)),

i.e. only empty pixels are interpolated. In Figure 3.5 we illustrate an example of an image Inaz Obtained
interpolating values from I,,,,, image using dartboard grid in Figure 3.4. Note how peripheral pixels that

were disconnected in the [, image are reconnected in the ;4.

3. Compute \-flat zones and extract ground on BEV image After having interpolated the [,,4,
image, we compute A-flat zones on the I'maz image. Similarly to Hernandez and Marcotegui (2009), we
use A = 0.20m as a discrimination value to separate the pavement from other objects. An example of the
obtained A-flat zones is illustrated in Figure 3.6a. Note that in the proposed example, the car is navigating
through a narrow street and the road is divided into two main A-flat zones. To merge the two connected

components, we use the marker that we have extracted in the first part of the method. Figure 3.6b shows a

52 Ground and Road Detection

(a)

Figure 3.6 (2) Quasi-flat zones obtained with A = 0.2m. (b) Zoom around the car. Red pixels represent
the ground detected in the first step of the method.

zoom of the obtained segmentation around the car. The red ring in the center of the image is the ground
marker detected at the beginning of the method. In fact, we label as ground all the A-flat zones whose
intersection with the detected ground marker is not empty. Thanks to this, we can reconnect the various
connected components. At the end of this step, the method returns a binary label BEV image I;, whose
non-zero pixels represent the detected ground so far.

4. Back project labels Finally, the detected ground pixels must be projected back to 3D point clouds.
As we said at the beginning of this section, we use the I,,,, image values to extract the ground. This
differs from the original method, in which the authors used I,,,;,, image. Even though the two approaches
seem similar, there is a significant difference between the two that we need to consider before the back
projection of the labels. In fact, using the I,,,,, images does not allow detecting points close to vertical
objects. The reader may refer to Figure 3.7a as an example. Projecting back labels detected on I,,4,, we
miss ground points close to vertical objects (white points in figure). The cause is that ground points fall
in the same pixels of vertical objects, so z values contained in the I,,,,, image refer to vertical objects.
In our particular case, this effect is accentuated by the gross resolution (20cm) that we have set to avoid
disconnections. This effect is proportional with the resolution of the xy grid (the coarser the resolution,
the higher the effect). To solve the problem, we use I,,,;, image to expand the ground detected before
projecting it back.

First of all we compute \-flat zones on I,,,;,, image, using a value A\ = 10 cim. Then, let us define I, g
the extended ground image as:

L,(C) = e Iy(a,y),

for each quasi flat zone C obtained from I,,,;,,. Intuitively, we propagate ground labels on A-flat zones
computed on the I,,,;, image. In this way, we assign as ground pixels containing both ground points and
points belonging to vertical objects. Hence, during the back projection, we need to separate this last group
of points. To achieve this, let us consider F = {(x,y)|l4(z,y) = 1} a subset of the image domain made

by pixels initially marked as ground, and let us consider F = {(z,y)|I,(z,y) = 0AI,(z,y) = 1} a subset

3.3 Ground Detection on Point Clouds with heterogeneous density 53

(b)

Figure 3.7 (a) Results obtained projecting back ground-detected on I,,,,,. We assign red colour to the
true positive, blue colour to true negative, and white colour to false negative. Without propagating labels
on I,in, we miss ground points close to vertical object. This issue is mainly caused by the fact that we
have chosen a gross resolution of 20cm for the zy-grid. (b) Results obtained after the expansion of the
detected ground before the projection.

of the image domain made by pixels where the ground label has been extended. Let p be a point and let
(xp,yp) the pixel in the image domain where p is projected. If (z,,y,) € F U F then the point p may
belong to the ground. To decide if p belongs to the ground or not, we consider the difference between
its elevation and the corresponding value in I,,,;, image, i.e. |p, — Ipmin(zp,yp)|. Two different threshold
values, respectively 6 = 20 cm and d 7 = 5 c¢m, are defined according to whether an object has been
detected in the pixel initially detected as ground (F) or not (F). If so, the tolerance is lower in order to
prevent the inclusion of the lower part of the object into the ground. The label /(p) assigned to the point p
is:
Lif (zp,yp) € F APz — Inin (2, yp)| < 0F,
llp)=11 if (Tp,yp) € FA 1Pz — Imin (%p, yp)| < 07,

0 otherwise.

In Figure 3.7b we illustrate ground detected after this operation of propagating the labels over the I,,,;y,

image.

On 3D point clouds

In this section, we avoid the use of a BEV image, that squeezes a part of the information available during
projection. In this case, a graph is defined directly on the 3D point cloud. The nodes of the graph G
are the 3D points. The most popular ways to connect the points are based on how neighbourhoods are
often defined in the context of 3D point clouds. These are £-NN and e-ball. In the first case, each point
is connected with its first £ nearest neighbours, while in the second case, each point is connected with
any other point closer than e. Clearly, the choice of the neighbourhood should be based on the specific
application. As aforementioned, in the case studied, the scanner is placed on the top of a car, and it spins
around its axis. Hence, another definition of neighbourhoods could be inherited from this configuration.
In the proposed solution, we consider the spherical projection. Essentially, each point is projected in the
spherical grid (Section 2.4.3) and then connected to every other point projected in neighbouring pixels.
Intuitively, this is a way to pull back the 4-connection defined on the spherical image to the 3D point
cloud. In Figure 3.8 we show the way we establish the connections using spherical projection.

54 Ground and Road Detection

R S? R

(a) Input point (b) 3D graph

Figure 3.9 An example of the graph built on the 3D point cloud. The colours of the points change
according to the class.

Unfortunately, this kind of connection suffers from occlusion effects. In fact, it could happen that
one vertical object in the foreground occludes objects in the background, blocking connections between
points in the background objects. We try to mitigate this effect adding to this graph also the k-NN graph.
Moreover, we prevent connections with outliers removing all edges longer than five meters. In Figure 3.9
we illustrate an example of the 3D graph obtained starting from an input point cloud.

n(q)

n(p)

Figure 3.10 An example of scanner

Once determined the graph G = (V, E), we need to define a weight function w : £ — R, that we can
use to split points on the ground from others. Since, we are going to extract A-flat zones on the weighted
graph (G, w), we look for a w that assigns a high value to edges connecting ground and not-ground nodes.
In the previous case, we measured the difference along the z coordinate between two pixels. This time we

cannot adopt the same approach. In fact, looking at a vertical profile, as in Figure 3.10, we observe that a

3.3 Ground Detection on Point Clouds with heterogeneous density 55

slow variation along z appears when the laser hits vertical objects. Consequently, if we used a weight
function that takes into account only the difference in the elevation between two points, then there would
be no A value that splits the ground from the rest. For this reason, we propose to include into the weight
function information related to both elevation z of the points and the local horizontality of the surface. Let
introduce the function w using the example in Figure 3.10. Assume that p,q € P are two neighbouring
points and let ny,n, € S 2, the corresponding vectors normal to the local scanned surface at point p and q.
Furthermore, let us assume that p belongs to the ground while ¢ represents a point on a wall. In order to
assign a considerable value to the edge (p,q), we can look at the ratio r(p) = ﬁ This ratio goes to

infinity as (n,, 2) goes to zero. To eliminate the problem of defining the ratio when (n,, 2) = 0, we can

apply a logistic function f(x;k,z0) j7» to the value |(np, 2)|. In Figure 3.11, we illustrate

_ 1
T 1—exp(—k(z—x0
how the logistic function changes when we alter the parameters k or xg.

Logistic function with varying values of k Logistic function with varying values of x0
1.0- — 1 1.0-
— 2
4
o8- — 8 0.8-
16
32
0.6- 0.6-
0.4- 0.4-
— 0.0
0.2- 0.2- — 0.2
0.4
— 0.6
0.0- 0.0- 0.8
0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 06 08 1.0

Figure 3.11 Logistic function with varying values of parameters & and .

Ng,2

Thus, we define the weight function w(p,q) = ‘ f(|<£;’2>‘) — f(qu) ‘ The main idea behind, is that
if the points p, ¢ both belong to a horizontal surface, then the weight of the edge (p, q) is proportional to
the difference between the elevation of the two points. This is a nice property of w that will be useful later
on during the choice of the A. On the contrary, if one of the two belongs to a vertical surface, then the

weight becomes high.

The consecutive step is to compute A flat zones of the weighted graph (G, w). In our experiments, we
choose a value of A = 0.20m. As introduced before, our choice is because, given two points p, g lying on
a horizontal surface, w assigns to (p,q) a weight proportional to the difference in the elevation of the two
points. Accordingly, assuming the ground as a horizontal surface, we have chosen a threshold comparable
with the height of a step. In Figure 3.12 we show an example of A-flat zones obtained. The weighted
function defined above groups together points belonging to big flat horizontal surfaces, while vertical
objects are shattered in small connected components. At this point, we have to analyse the obtained
cluster in order to merge connected components belonging to the ground. So, we first sort the connected
components by cardinality in decreasing order. Then, we assume that the biggest connected component
belongs to the ground. This assumption is motivated by the fact that normally the ground is the biggest

scanned horizontal object in a scene, and the great majority of points belong to it. After that, we iterate

56 Ground and Road Detection

Figure 3.12 An example of the A-flat-zones with A = 0.20m. Different colours mean different connected
components. Please remark that function w allows to easily extract horizontal surfaces, for example roads,
terrain or roof of cars, while vertical objects are shattered in micro components.

over the other connected components starting from the second to the smallest and at each time we measure
if the ground and the connected component are compatible. We use RANSAC algorithm to fit a plane
touching both the ground and the component. If more than half of the points in the candidate connected
component are inliers for the fitted plane, then we mark the component as compatible with the ground,
otherwise we discard it. Only at the end of all the iterations, the components compatible with the ground

are added to the ground.

3.4 Experiments on ground detection

We compare our two previously proposed methods against two state-of-the-art algorithms and a naive
RANSAC method that we implemented. We test the methods on the Semantic KITTT dataset (Behley
et al., 2019) that we introduced in Section 2.6.1. We include RANSAC in the analysis as a baseline
benchmark. The first method we pick is CSF (Zhang et al., 2016) because it proved great adaptability to a
wide range of different environments, either urban and rural. In addition, we use an FCNN method similar
to the one proposed in Velas et al. (2018). The main difference with the original is the network used.
Instead of employing the architecture proposed by the authors, we use a U-Net architecture Ronneberger
et al. (2015), for its great versatility to different applications. To train and validate the U-Net model, we
select one scan over ten in the sequences from 0 to 10 except for the sequence 08. We adopt this last
sequence as a test set for all the methods. The split between training and test has been done following
directives in Behley et al. (2019).

Since the dataset does not contain an explicit ground class, we derived it by aggregating multiple
classes. Furthermore, to have an overview of classification errors made in the predictions, we created a
total of eight categories aggregating all classes. The categories that we created are Ground, Building,
Vehicles, Cycles, Person, Vegetation, Fixed-Objects, and Moving Objects. In Table 3.1 we list for each
category all the classes composing it.

We use the following metrics to benchmark our experiments:

TP

¢ Precision: P = TPIFP

e Recall: R = TPTJF%

3.4 Experiments on ground detection

57

TABLE 3.1
L1ST OF THE SEMANTICKITTI CLASSES BELONGING TO EACH CATEGORY THAT WE
IDENTIFIED.
Ground | Building | Vehicles | Cycles Person | Vegetation | Fixed-Objects | Moving-Objects
Road Building | Car Bike Person | Vegetation | Pole Mov-Car
Parking | Fence Bus Motorbike Trunk Traffic- Mov-Cyclist
Sidewalk | Other- On- Cyclist sign Mov-Person
Other- Structure | Rails Motor- Other- Mov-Motor-
Ground Truck cyclist Object cyclist
Lane- Other- Mov-On-rails
Marking Vehicle Mov-Bus
Terrain Mov-Truck
Mov-Other-
vehicle

DA TP+TN
* Accuracy: A = rprNT FPTFN

e Fy Score : F} =2% 1511}%2

_ |AUB]
= JAnB|

* Intersection over Union (IoU) also called Jaccard Index: IoU(A, B)

where, T'P, TN, FP,FN indicate respectively the number of true positives, true negatives, false
positives and false negatives, and A, B are any two sets. The sets used to compute the Jaccard Index are
the set of predictions and the ground truth. In all the cases, the scores have been measured using the
predictions on the 3D point clouds. In Table 3.2 we list the scores obtained by the methods.
TABLE 3.2

QUANTITATIVE RESULTS OBTAINED ON SEQUENCE 08 OF SEMANTICKITTI DATASET FOR
THE GROUND DETECTION TASK

Method ‘ F; ‘ Recall ‘ Precision | Accuracy | IoU

RANSAC 0.922 | 0.917 | 0.927 0.930 0.856
CSF (Zhang et al., 2016) 0.937 | 0.976 | 0.900 0.940 0.881
BEV M\-FZ (This Thesis) 0.945 | 0.960 | 0.930 0.949 0.895
3D A\-FZ + RANSAC (This Thesis) | 0.936 | 0.930 | 0.943 0.943 0.880
FCNN (Velas et al., 2018) | 0.951 [0.921 | 0.982 0.957 0.907

We divide the table in two parts. In the first we list the unsupervised methods and in the second
we report the only supervised approach. From the results, we can see that all the methods analysed
achieve great performances, and the FCNN achieve the highest score in almost all the metrics. Note that
our proposed BEV A-FZ method shows a good trade off between precision and recall, and among the
unsupervised methods is the one with the highest Jaccard Index. Moreover, this method needs just few
parameters to work and this makes it much easier to explain why it fails compared to FCNN. Along with
these metrics, we analyse the confusion matrix to evaluate which categories are confused with the ground.
For this reason, in Figure 3.13 we show the confusion matrices of all the approaches. Clearly, the returned

prediction is binary, and the points predicted as not-ground are classified as “other”. Looking at the

58 Ground and Road Detection

matrices, we can see that the vegetation is, in general, the class with the highest rate of points classified as
ground. This can be explained by the fact that in this category there are low plants and separating them

from terrain with propagation approaches is cumbersome.

1.0 1.0

other Gy 0,89 0,11 other
vehicles| vehiclesi 0,03 vehicles|
0.8 0.8 0.8
cycles| cycles 0,08 cycles
person!| 06 person! 0,03 06 person!| 06
g 3 3
3 ground 3 ground 0,96 3 ground
[} [[}
2 building| 0.4 > building 0,03 0.4 2 building| 0.4
= [= =
vegetation| vegetation| 0,08 vegetation|
0.2 0.2 0.2
fix-objects fix-objects 0,05 fix-objects
moving-objects| moving-objects| 0,03 moving-objects|
0.0 0.0 0.0
other ground other ground other ground
Predicted label Predicted label Predicted label
(a) RANSAC (b) BEV A\-FZ (c) 3D A-FZ + RANSAC
other 0 other| o
vehicles vehicles|
0.8 0.8
cycles cycles|
person| 06 person| 06
2 2
8 ground 8 ground
£ building| 04] building| 0.4
= =

vegetation| vegetation

0.2 0.2

fix-objects fix-objects|

moving-objects

moving-objects|

0.0 0.0

other ground other ground
Predicted label Predicted label
(d) CSF (e) FCNN

Figure 3.13 The confusion matrices help to analyse the misclassifications between Ground and other
aggregated categories. (a) Naive RANSAC (b) BEV A-quasi flat zones (c) 3D A-quasi flat zones +
RANSAC (d) CSF (e) FCNN based approach.

Let now analyse qualitatively the results and see some examples in which our proposed methods fail.

To visualize the predictions in the following figures, we use the colour code hereby:

1. Green means True Positive
2. Red means False Positive
3. Blue means False Negative

4. Gray means True Negative

Let start presenting an example in which the 3D-FZ method fails. In Figure 3.14 we illustrate the
predictions achieved by our two methods. Note that the approach on the 3D graph does not detect a part of
the sidewalk (center image). To find what causes the problem, let us analyse Figure 3.15, which shows the
A-flat zones of the 3D graph. Note that, although the sidewalk is virtually flat, it is segmented into three
parts. The over-segmentation is generated by the weight function that takes high values even when there
are minor changes of orientation between neighbouring points. This happens because we want to limit the

chaining effect produced when measuring only the difference along the z coordinates of two points. In

3.4 Experiments on ground detection 59

this case, the merging step misses identifying these points as ground. Moreover, in the aforementioned
example, we can see that the weight function we employed does not completely prevent the chaining
effect. Take for example the three steps detected as ground in the top of Figures 3.14a and 3.14b. Looking
at Figure 3.15 once again, we can observe that the steps are in the same quasi-flat zone of the road, and
this is clearly caused by the chaining effect. The identical thing happens in Figure 3.17, in which we
illustrate the prediction carried out by our BEV approach. Here the stairs are classified as ground because
the X\ used is too large to detect the steps. A second example with stairs is illustrated in Figure 3.17,
where we also show the predictions carried out by CSF and U-Net. In any case, it is not straightforward to
prevent this kind of error. Using a smaller value of A could circumvent it, but at the same time, we risk
cutting off some other zones on the ground. Finally, the last example that we describe is the one in Figure
3.18. Here, the BEV A-FZ does not detect a zone of the garden. The error is caused by the fact that the
zone is disconnected from the other ground by a bush. Recall that our method labels as ground all the
A-flat zones whose intersection with the ground marker around the car is not empty. Hence, in this case,
the garden cannot be detected as ground because it is not contained in any A-flat zone connected with the
ground marker. From the application point of view, the bush would prevent the car from reaching this
ground zone. Thus, missing it is not critical for the application. Nonetheless, from our experience, this
kind of missing detection happens only in isolated zones of the scene that cannot be easily reached. This

is confirmed also by the high recall rate of the method, as shown in Figure 3.19.

(a) BEV \-FZ (b) 3D \-FZ + RANSAC

Figure 3.14 Example 3D approach also fails to detect as ground a part of the sidewalk. Green points are
true positives, red ones are false positives, blue false negatives and grey ones are true negatives.

60

Ground and Road Detection

Figure 3.15 Quasi Flat Zones

Figure 3.16)\-flat-zones obtained by the method 3D A-FZ + RANSAC. Each colour corresponds to a
different connected component.

(a) BEV \-FZ (b) 3D \-FZ + RANSAC
(¢) CSF (d) FCNN

Figure 3.17 In this example BEV A-FZ detects a stair nearby the road as ground. The A used in this
case is too big to catch the step. Green points are true positives, red ones are false positives, blue false
negatives and grey ones are true negatives.

3.4 Experiments on ground detection

61

(a) BEV \-FZ (b) 3D A\-FZ + RANSAC
(c) CSF (d) FCNN

Figure 3.18 BEV \-FZ considers as ground the biggest flat zone in the projection image. Sometimes this
method does not recover all the spots. In this example, it does not detect a piece of the garden behind a
bush because it is not connected with the road. Green points are true positives, red ones are false positives,
blue false negatives and grey ones are true negatives.

(a) BEV \-FZ (b) 3D A\-FZ + RANSAC
(¢) CSF (d) FCNN

Figure 3.19 Predictions obtained by the four analysed methods. Green points are true positives, red ones
are false positives, blue false negatives and grey ones are true negatives. In this is an example FCNN fails
to detect all the points and in particular points on the terrain.

62 Ground and Road Detection

3.5 Road detection

Modern day LIDARSs are multi-layer 3D laser scanners that enable a 3D-surface reconstruction of large-
scale environments. They provide precise range information while poorer semantic information as
compared to colour cameras. They are thus employed in obstacle avoidance and SLAM (Simultaneous
localization and Mapping) applications. The number of layers and angular steps in elevation & azimuth of
the LIDAR characterizes the spatial resolution. With the recent development in the automated driving
(AD) industry, the LIDAR sensor industry has gained increased attention. LIDAR scan-based point cloud
datasets for AD such as KITTI usually were generated by high-resolution LIDAR (64 layers, 1000 azimuth
angle positions (Fritsch et al., 2013)), referred to as a dense point cloud scans. In the recent nuScenes
dataset for multi-modal object-detection a 32-Layer LIDARSs scanner has been used for acquisition (Caesar
etal., 2020). Another source of datasets are large-scale point clouds which achieve a high spatial resolution
by aggregating multiple closely spaced point clouds, aligned using the mapping vehicle’s pose information
obtained using GPS-GNSS based localization and orientation obtained using inertial moment units (IMUs)
(Roynard et al., 2018). Large-scale point clouds are employed in the creation of high-precision semantic
map representation of environments and have been studied for different applications such as detection
and segmentation of urban objects (Serna and Marcotegui, 2014). We shall focus on the scan-based point
cloud datasets in our study.

Road segmentation is an essential component of autonomous driving tasks. In complement with
obstacle avoidance, trajectory planning and driving policy, it is a key real-time task to extract the drivable
free space as well as determine the road topology. Recent usage and proliferation of Deep Neural Networks
(DNN) for various perception tasks in point clouds has opened up many interesting applications. A few
applications relating to road segmentation include, binary road segmentation (Caltagirone et al., 2017)
where the goal is to classify the point cloud set into road and non-road 3D points. Ground extraction (Velas
et al., 2018) regards the problem of obtaining the border between the obstacle and the ground. Finally,
a recent benchmark for semantic segmentation of point clouds was released with the Semantic-KITTI
dataset by Behley et al. (2019). In Rangenet++ Milioto et al. (2019) evaluate the performance of U-Net &
Darknet architectures for the task of semantic segmentation on point clouds. This includes the road scene

classes such as pedestrians, cars, sidewalks, vegetation, road, among others.

3.5.1 Motivation & Contributions

We first observe that different LIDAR sensor configurations produce different distributions of points in
the scanned 3D point cloud. The configurations refer to, LIDAR position & orientation, the vertical field-
of-view (FOV), angular resolution and thus number of layers, the elevation and azimuth angles that the
lasers scan through. These differences directly affect the performance of deep learning models that learn
representations for different tasks, such as semantic segmentation and object detection. Low-resolution 16
layer LIDARSs have been recently compared with 64 layer LIDARs (del Pino et al., 2018) to evaluate the
degradation in detection accuracy, especially w.r.t distance. From Table 3.3 we observe that the HDL-64
contains 4x more points than VLP-16. This increases the computational time & memory requirements
(GPU or CPU) to run the road segmentation algorithms. Thus, it is a computational challenge to process a

large amount of points in real-time.

3.5 Road detection 63

TABLE 3.3
CHARACTERISTICS OF DIFFERENT LIDARS. THE PRICES ARE REPRESENTATIVE.

LIDAR | Velodyne HDL-64 | Velodyne HDL-32 | Velodyne VLP-16
. [0°,360°) [0°,360°) [0°,360°)
Azimuth step 0.18° step 0.1° —0.4° step 0.2°
. [—24.3°,2°] o | [=30.67°,410.67°] [—15°,15°]
Elevation step 1-32: 1/3 1.33° for 32 layers 2° for 16 layers
step 33-64 : 1/2° '
Price (as reviewed on 2019) ~ 85 k$ ~ 20 k$ ~ 4 k$
Effective Vertical FOV [+2.0°,—24.9°] [—30.67°,+10.67°] | [+15.0°,—15.0°]
Angular Resolution (Vertical) 0.4° 1.33° 2.0°
Points/Sec in Millions ~1.3 ~ 0.7 ~ 0.3
Range 120m 100m 100m
Noise +2.0cm +2.0cm +3.0cm

The objective of this study is to examine the effect of reducing spatial resolution of LIDARs by
subsampling a 64-scanning layers LIDAR on the task of road segmentation. This is done to simulate the
evaluation of low-resolution scanners for the task of road segmentation without requiring any pre-existing
datasets on low-resolution scanners. The key contribution and goal of our experiment are: First, to evaluate
the impact of the point cloud’s spatial resolution on the quality of the road segmentation task. Secondly,
determine the effect of subsampling on different point cloud representations, namely on the Bird Eye
View (BEV) and Spherical View (SV), for the task of road segmentation. For BEV representation we use
the existing LoODNN (LIDAR Only Deep Neural Networks) architecture (Caltagirone et al., 2017), while
for SV we use a simple U-net architecture. Figure 3.20, provides a global overview of the methodology
used. Finally, we propose to use surface point normals as complementary features to the ones already
used in current state-of-the-art research. Results are reported on the KITTI road segmentation benchmark
(Fritsch et al., 2013), and the newly introduced Semantic KITTI dataset by Behley et al. (2019).

3.5.2 Related Work

LoDNN (Caltagirone et al., 2017) is a Fully Convolutional Network (FCN) based binary segmentation
architecture, with encoder containing sub-sampling layers, and decoder with up-sampling layers. The
architecture is composed of a core context module that performs multi-scale feature aggregation using
dilated convolutions. In the class of non-deep learning methods, Chen et al. (2017) build a depth image in
spherical coordinates, with each pixel indexed by a set of fixed azimuth values (¢) and horizontal polar
angles (), with intensity equal to the radial distances (). Authors a