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Abstract

Graphs are powerful mathematical structures representing a set of objects and the underlying links between
pairs of objects somehow related. They are becoming increasingly popular in data science in general
and in particular in image or 3D point cloud analysis. Among the wide spectra of applications, they are
involved in most of the hierarchical approaches. Hierarchies are particularly important because they allow
us to efficiently organize the information required and to analyse the problems at different levels of detail.
In this thesis, we address the following topics.

Many morphological hierarchical approaches rely on the Minimum Spanning Tree (MST). We propose
an algorithm for MST computation in streaming based on a graph decomposition strategy. Thanks to this
decomposition, larger images can be processed or can benefit from partial reliable information while the
whole image is not completely available.

Thanks to recent developments, LiDAR can acquire large-scale and precise 3D point clouds. Many
applications, such as infrastructure monitoring, urban planning, autonomous driving, precision forestry,
environmental assessment, to cite a few, are under development nowadays. We introduce a ground-
detection algorithm and compare it with the state of the art. Moreover, we study the impact of reducing
the point cloud density with low-cost scanners, in the context of an autonomous driving application.

In many hierarchical methods, similarities between points are given as input. However, the metric
used to compute similarities influences the quality of the results. Metric learning is a complementary
tool that helps to improve the quality of hierarchies. We demonstrate the capabilities of these methods
in two contexts. The first one, a texture classification of 3D surfaces, a task organized by SHREC’20
international challenge (ranked second). The second one learning the similarity function together with the
optimal hierarchical clustering, in a continuous feature-based hierarchical clustering formulation.

We conclude this thesis proposing a Graph Convolutional Layer in Max-Plus algebra that aims to be a
first step towards Morphological Convolutions on Graphs. The proposed convolution is also benchmarked
against state-of-the-art Graph Convolutional Layers. Results obtained are promising and prove that it is
worth investigating further.

Keywords: Graph Theory, Hierarchical clustering, Segmentation, Image processing, Machine
Learning, Point Clouds, Graph Neural Networks
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Introduction

Motivation

Data are ubiquitous. Industries as social media, telecommunication, health-care to mention a few, every
day produce a gargantuan amount of data. In 2018, the annual report of cloud software firm DOMO
estimated that 2.5 quintillion (1018) bytes of data are created each day and that the 90% had been
created in less than two years. Thus, finding new ways on how to treat and analyze this great amount
of information is a major challenge for many years now. When dealing with a collection of objects or
things, the first step to achieve an understanding is to categorize them into classes/groups based on their
similarities. For this reason, graphs are particularly interesting because they allow modeling relationships
between different items. Indeed, graphs are the tool used throughout the thesis. Namely, this thesis
proposes to investigate the following areas of applications.

The first application we put our interest in is point cloud processing. In particular we focus on the
case of scans from road environments. Normally, this kind of scan is characterized by a high variation
of point density. A common workflow proposed for Dynamic Object Detection and Tracking is to find
and remove the ground from the scene as the first step. Once removed the ground from the scene, other
objects can be identified as isolated components of the scene. However, state of the art algorithms for
ground detection such as those based on λ-flat zones are conceived to be used on scans with a uniform
point density. This lead us to look for simple interpolation methods able to cope with ground detection in
the new setting. Another topic that we have explored is related to low-resolution scanners. Recent lidar
development has permitted to reduce the costs of production of these sensors. Nonetheless, costs for
a high-resolution scanner still remain too high to be employed on a large scale application. Moreover,
current research benchmarks rely on datasets acquired using high-resolution scanners. Motivated by this
challenge, we considered the problem of road detection as a case study. Our goal is to study the effect of
reducing the resolution of the scanner on road detection task.

In Remote sensing applications, most of the classical Image Processing algorithms cannot be applied
in context like streaming. In order to treat the great amount of data, methods cannot wait until the stream
is complete, but instead it is necessary to decompose the images in strips or tiles. In this context, the
decision taken on a given tile may be influenced by information from other tiles, some of them not
received yet. The minimum spanning tree (MST) is involved in many remote sensing applications, as a
fundamental step of morphological-based image segmentation methods. Therefore, the computation of a
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MST in streaming is one of the problems we are going to tackle.

Along with these applications, during the thesis, we put our interest on Hierarchical Clustering (HC).
HC is a powerful tool in data analysis mainly because it returns a nested partition of the observed data.
This kind of representation has become increasingly popular over the last decades because it allows to
model data at different levels of scale and semantics. HC methods have been applied to a wide range
of data, such as images, videos, and text. In computer vision for example, these have been employed
for object detection, image filtering, multi-scale image segmentation, and image characterization and
understanding. The main strategies to implement a HC are to use either a divisive (top-down) approach
or an agglomerative (bottom-up) approach. In recent years, a discrete optimization framework for
similarity-based hierarchical clustering has been proposed by Dasgupta (2016). Later on, some continuous
relaxations of this cost function have been proposed and stochastic gradient descend algorithm can
be used to find solutions. The general definition of these problems assumes as input a graph and a
similarity-matrix representing relationships between nodes, and the optimization is done on a fixed graph.
We investigate a generalization of the problem to a family of data sampled from a fixed distribution. Our
idea is to explore if it does exist a family of hierarchies associated to the distribution. To achieve this goal,
we also look for an optimal metric function that may measure distances between the points. Hence, we
combine metric learning with the continuous optimization framework to extend the formulation to cases
in which the number of nodes in the graph is not fixed, and the similarities between points are not known
a priori.

Finally, in the last part we focus on Graph Neural Networks (GNN). Recent years a great effort has
been put on generalising deep learning architectures, and in particular Convolutional Neural Networks
(CNN), beyond the Euclidean domain, and GNN has emerged as new frontier. The basic mechanism
behind Graph Convolutional Layers is called Message Passing, that is composed by two steps: aggregate
and update. When we apply a convolution on a given node, in the first step, a filter is applied to features of
neighboring nodes. The result is then aggregated using a permutation invariant function (e.g. maximum,
minimum, average, etc.). In the second step the features are updated using an activation function. We
propose a novel permutation invariant function defined using morphological dilation/erosion operator.

Thesis overview

The list hereby contains a summary of the different chapters.
Chapter 1 starts with a review of graph theory, recalling the definitions of connectivity and paths on

graphs. These concepts are fundamental to introduce the minimum spanning tree (MST) that we will use
throughout all the thesis. The second part is a short overview on clustering in which we recall the most
important methods that produce either flat or hierarchical clustering.

Chapter 2 contains a general introduction to point clouds analysis. The main challenge with this
kind of data is its inherent lack of structure. We describe the principal strategies to acquire and handle
point clouds, illustrating also some possible applications. The chapter ends with a description of some
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benchmark datasets for the segmentation task.

Chapter 3 is divided into two parts and focuses on two problems related to point cloud processing.
Ground detection and Road Detection. In the first, we review and propose two λ-flat zones based
algorithms for ground detection and we compare them against the current state of the art. In the
second part, we study the effect of subsampling points for the task of road detection. The goal is to
understand the reliability of current deep learning methods on point clouds captured with low-resolution
scanners. The partial results of this chapter have been presented in the conference paper Gigli et al. (2020a)

Chapter 4 tackles the problem of finding and updating an MST in streaming. We consider the case of
an image that arrives via a stream decomposed in blocks of fixed size. The solution proposed, relies on a
decomposition of the MST in two parts, stable and unstable. The stable part is made of edges that we can
prove will belong to the final MST. The unstable part is made of edges that are not stable, and we need to
keep them in memory to update the MST in the successive iterations. This decomposition reduces the
memory footprint and permits to treat images of greater size compared to a naive algorithm that treats the
entire image in one iteration. The main results of this chapter are part of the journal paper Gigli et al.
(2020b)

Chapter 5 is divided into two parts in which we discuss two applications of deep metric learning. In
the first part, we present the solution proposed to the SHREC’20 contest on retrieval of surface patches
with similar geometric relief. In particular, our solution uses a Siamese Neural Network to approximate a
similarity function between geometric reliefs. The second part concentrates on Hierarchical Clustering
(HC). In recent years a theory for objective-based HC has been proposed. In the classical setting, a
similarity function is given as an input element of the problems. We put ourselves in a semi-supervised
setting and investigate the case in which we learn at the same time a good similarity function between the
points and an optimal hierarchical clustering. The main findings of the first part of this chapter have been
published in the journal paper Moscoso Thompson et al. (2020)

Chapter 6 is about Graph Neural Networks (GNN). It starts recalling the basic facts on GNN,
illustrating the Message Passing mechanism that is the key tool to define Convolutional Neural Networks
on Graphs. We use this same mechanism to define Convolutions in Max-Plus algebra that aim to be a first
attempt towards Morphological Convolutions on Graphs.
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1 Graph Theory and Clustering

Resumé

Dans ce chapitre, nous introduisons les principaux concepts de la théorie des graphes. Après avoir
introduit les définitions de base, nous allons passer à l’introduction d’un objet fondamental tout au long de
la thèse, l’arbre couvrant de poids minimal. Cet objet est utilisé dans de nombreux domaines de l’analyse
des données et également de l’analyse des images. La deuxième partie du chapitre est consacrée au
problème du clustering des données. En particulier, un résumé de l’état de l’art des algorithmes pour le
regroupement et le clustering hiérarchique est donné.

1.1 Graph theory

Graphs were firstly introduced by Leonhard Euler in the solution of the notable Königsberg’s Seven
Bridges problem (Biggs et al., 1986). The city of Könisberg (now Kaliningrad), shown in Figure 1.1, is
crossed by the Pregel river, and at that time different part of the city are connected by seven bridges. The
question was to prove if it could exist a path through the city crossing all the bridges once and only once.
In Euler (1741) the non-existence of such a path is proven, laying the foundations of graph theory. Euler
observed that the only important feature of a route was the sequence of the bridge crossed. For this reason,
any other path entirely contained in each land mass is irrelevant and can be discarded. Thus, the proposed
solution represents each land mass as a single abstract point (or vertex) and each bridge connecting two
different sizes of the river with an arc (or edge). The resulting mathematical structure is a Graph.

Thanks to this simple and intuitive definition, graphs are particularly useful mathematical objects
that are used to model different kinds of relations and processes in different areas of the sciences such as
physics, biology, mathematics and computer science. In the following pages we present the basic objects
of graph theory. For a broader introduction to graph theory, please refer to Jungnickel (2013).

Definition 1.1 (Graph). A graph G is an ordered couple (V,E), where V = {v1, . . . ,vn} is the set of
vertices of the graph and E ⊆ V ×V is the set of edges of the graph. We say that G is undirected when
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Figure 1.1 (Left) Map of Königsberg showing the seven bridges connecting different areas of the city.
(Right) Graph modelling the seven bridges problem. A node is assigned to each district, while the edges
correspond to the bridges connecting two areas.

Figure 1.2 An example of undirected graph.

we consider the couples (vi,vj) ∈ E as unordered pairs. Furthermore, given a couple u,v ∈ V of nodes,
we say that v is an adjacent vertex of u if (u,v) ∈ E.

Since in our cases graphs will be undirected, from now on, we consider every graph as undirected. It
is possible to give a weight to each edge to model the importance of some connection in comparison to
others.

Definition 1.2 (Weighted Graph). A weighted graph G is a triple (V,E,w) where the couple (V,E) is a
graph and w : E→ R is a weight function defined over the set of edges.

Note that, given a graph G = (V,E), such that |E| = m, the set {w : E → R} of all possible
weight functions over G is isomorphic to Rm. A weight function can also be seen as a vector of
w = (w1, . . . ,wm) ∈ Rm, where wi is the weight of edge ei, for all 1≤ i≤m.

Definition 1.3 (Sub-Graph). Let G = (V,E) be a graph. A subgraph G′ = (V ′,E′) of G, we write G′ ⊆ G,
is a graph such that V ′ ⊆ V and E′ ⊆E∩ (V ′×V ′). If V ′ = V , we say that G′ spans all the vertices of G.

Definition 1.4 (Graph Union). Let G1 = (V1,E1,w1) and G2 = (V2,E2,w2) two weighted undirected
graphs, such that

w1
∣∣
E1∩E2

≡ w2
∣∣
E1∩E2

,

where w
∣∣
E

is the restriction of the function w to the set E. We call G1∪G2, the weighted undirected graph
G = (V,E,w) with V = V1∪V2, E = E1∪E2, and for all e ∈ E:
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w(e) =

w1(e) if e ∈ E1,

w2(e) if e ∈ E2.

Definition 1.5. Given a weighted graph G = (V,E,w) and a subset E′ ⊆ E of the edges, we call G−E′

the graph (V,E \E′,w) obtained by removing the edges E′ from G.

We can now move on showing two main ways to represent a graph. The first is a collection of
adjacency lists, that is used to represent a finite graph. The second is the adjacency matrix.

Definition 1.6 (Adjacency-list representation). The adjacency-list representation of a graph G = (V,E),
is an array A of length |V |. Each element of the array A corresponds to a node u ∈ V and A[u] is a list of
all the vertices adjacent to u.

Definition 1.7 (Adjacent-Matrix representation). The adjacent matrix representation of a graph G =
(V,E), is a matrix A ∈ R|V |×|V |, such that

A[u][v] = auv =

1 if (u,v) ∈ E

0 otherwise

The adjacent-list representation is particularly useful for sparse graphs, that are graphs in which
|E| ≪ |V |2. In this case, the adjacency list is more space-efficient than an adjacency matrix because its
space usage is proportional to the number of edges in the graph, while an adjacency matrix store space is
proportional to the square of the number of vertices. However, also compressed representations of sparse
matrices exist, and they use adjacency lists in their implementation.

1.1.1 Topological definitions on graphs

Graphs are particularly attractive also because they intrinsically contain topological properties. Namely, it
is intuitive to define graph objects as paths and cycles or determine when a graph is connected.

Definition 1.8 (Path on a graph). We call walk a finite or infinite sequence of edges of the graph which
joins a sequence of vertices. A walk is a sequence of edges (ei)i∈I , for which there is a sequence of
vertices (vi)i∈I such that ei = (vi,vi+1) for each i ∈ I. The sequence (vi)i∈I is the vertex sequence of
the walk. If I is a finite set then the walk is said to be finite walk. A trail is a walk in which all edges are
distinct. A path is a trail in which all vertices are distinct.

Definition 1.9 (Cycle). Given a graph G = (V,E), a simple cycle is a finite non-empty trail (e1, . . . ,en)
in which the only repeated vertices are the first and the last, that is (v1 = v,v2, . . . ,vn = v).

Definition 1.10 (Connected Graph). We say that a graph G is connected if for every two vertices u,v ∈ V

it is possible to find a path Π from u to v.

Another equivalent definition of connected graph is the following.

Property 1.11. A graph G = (V,E) is connected if and only if for every couple of subsets V1,V2 ⊆ V ,
such that V1∪V2 = V and V1∩V2 = ∅, there must exist at least one edge e = (u,v) ∈E such that u ∈ V1

and v ∈ V2.
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Definition 1.12 (Connected component). Let G = (E,V ) be a graph, a connected component of G is
subgraph G′ that is connected and is maximal for this property. In other words, for any other connected
subgraph F ⊆ G, such that G′ ⊆F then G′ = F .

Please remark that any graph G can always be written as a disjoint union of its connected components.

Definition 1.13 (Graph Cut). Given a graph G, a graph cut is a partition S = {V1,V2} of vertex set V

into two disjoint non-empty subsets. We call cocycle the set E(S) of edges in E having one endpoint in
V1 and the other in V2.

Given a path π we are now interested in defining its length. A natural definition could be the number
of edges composing the path. In case of a weighted graph, this could be the sum of the weights of the
edges in the path. However, there is a more general definition that includes both.

Definition 1.14 (Generalized Path Length). Let G = (V,E,w) a weighted graph. The n-generalized
length of a path π is defined as

Ln(π) = n

√∑
e∈π

wn
e , (1.1)

where we = w(e) is the weight of edge e. In particular


L0(π) =

∑
e∈π 1

L1(π) =
∑

e∈π we

L∞(π) = maxe∈π we = limn→∞ n
√∑

e∈π wn
e

(1.2)

Remark 1.15. Remember that as we said before a weight function w : E → R can also be seen as a
vector of Rm, whose component wi = w(ei) is the value of the function at edge ei. Similarly, a path
π = {v0, . . . ,vl} can be associated to a projection function π :Rm→Rl, π(w) = (w1, . . . ,wl) that projects
the vector w on the subspace of the edges belonging to the path. With this in mind, let ∥ · ∥ be a norm on
Rm and let w be a fixed weight function, then the length of the path π can be defined as the length of the
vector ∥π(w)∥ in Rl. Thus, it is possible to exploit this relation to make a correspondence between Lp

norms on Rm and the previously defined path length Lp.

Using the above definition we can define a distance on G.

Definition 1.16 (Distance on graph). Given u,v ∈ V , let Πv
u be the set of all possible paths from u to v.

The general n-distance dn over G is defined as

dn(u,v) = min
π∈Πv

u

Ln(π), (1.3)

for every u,v ∈ V . For n = 1, d1 is also called the shortest path distance, while d∞ is also known as
lowest path distance.

1.1.2 Trees, Forests and Spanning Trees

Definition 1.17 (Tree and Forest). A tree is a connected graph G, that does not contain any cycle. A graph
F that contains no cycles is called a Forest. Each connected sub-graph of the forest is a tree.
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Figure 1.3 Graph distances. Optimal path connecting u and v changes according to the distance that we
consider. In blue distance d0, in red shortest path distance d1 and in green lowest path distance d∞.

We are reminded that Theorem 1.2.8 in (Jungnickel, 2013) proves that any tree G with n nodes
contains exactly n−1 edges.

Definition 1.18 (Spanning Tree). Let G = (V,E) be a connected graph. A subgraph T = (V ′,E′)⊆ G is
a spanning tree for G if T is a tree and V ′ = V . More generally, a spanning forest F for a graph G is a
forest that spans all the nodes of the graph G, and such that each tree T ⊆ F in the forest is a spanning
tree for a connected component in G.

Proposition 1.19. Let T1 = (V1,E1) and T2 = (V2,E2) two trees with n1 = |V1| and n2 = |V2| nodes
respectively. Let G = T1 ∪T2 the union of the two trees, such that k = |V1 ∩V2|. Then the number of
simple cycles in G is k−h−1, where h is the number of edges in common between the two trees.

Proof. The number of edges in T1 is n1−1, while the number of edges in T2 is n2−1. Thus, the number
of edges in G is:

n1−1+n2−1−h = n1 +n2−h−2.

We can observe that G contains a spanning tree with n1 +n2−k−1 edges. So, the number of cycles in G
corresponds to the number of edges to remove in order to obtain a tree and is

(n1 +n2−h−2)− (n1 +n2−k−1) = k−h−1.

Definition 1.20 (Minimum Spanning Tree). Let G = (V,E,w) be a connected weighted graph. A
Minimum Spanning Tree (MST) of a G is a subgraph T = (V ′,E′,w) such that:

i) T is a tree

ii) T spans all the vertices of G, i.e. V = V ′

iii) the sum of its weights
∑

e∈E′ w(e) is minimum among all the possible spanning trees.

Let now review three well-known characterizations of the minimum spanning tree. The proofs for
these theorems can be found in (Jungnickel, 2013, Chapter 4). Before, we remember that given a spanning
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tree T = (V,E′) of a connected graph G = (V,E), each time that we add any edge e ∈ E \E′ to the
spanning tree, this generates a cycle. We indicate this cycle as CT (e).

Theorem 1.21. Let G = (V,E,w) a weighted connected graph. A spanning tree T = (V,E′,w) is a
minimum spanning tree for G if and only if for every e ∈ E \E′

w(e)≥ w(e′), ∀e′ ∈ CT (e).

In words, this first theorem says that if we add an edge to a MST, then this is the heaviest edge of the
cycle that it generates. The vice versa is also true. The following characterization of MSTs is based on
graph cuts.

Theorem 1.22. Let G = (V,E,w) a weighted connected graph. A spanning tree T of G is a MST if and
only if for each edge e in T

w(e)≤ w(e′) for every edge e′ ∈ E(ST (e)),

where ST (e) is the graph cut obtained removing the edge e from T .

Finally, another characterization that can be derived from Theorem 1.21 states that every path
connecting two vertices in the MST is the shortest path in the sense of d∞ distance previously defined.
The proof can be found in (Chao, 1986).

Theorem 1.23. Minmax path Let G = (V,E,w) a weighted connected graph. A spanning tree T =
(V,E′,w) is minimum if and only if for all couple of vertices u,v ∈ V , the path π∗ connecting u,v in T is
such that

π∗ = argmin
π∈Πv

u

L∞(π), (1.4)

where Πv
u is the set of all paths in G from u to v.

Remark that in general for a weighted graph G exists multiple minimum spanning trees, as shown in
Figure 1.4. Nonetheless, it is easy to prove that if all the weights of a graph are distinct, then its minimum
spanning tree is unique.

1.1.3 Algorithms to compute a Minimum Spanning Tree

We move on recalling the most common algorithms to find a MST of a graph, that are (Kruskal, 1956),
Prim [(Dijkstra, 1959; Jarník, 1931; Prim, 1957)] and (Borůvka, 1926).

Borůvka’s algorithm

The first algorithm that we present is (Borůvka, 1926) in 1926. This was the first presented algorithm
developed to solve the problem of finding a MST of a connected graph. It iteratively constructs the MST
using the fact that the smallest weight edge incident on any vertex v must be in the MST. This statement
is justified by Theorem 1.22, observing that the minimum edge e incident to v respects w(e)≤ w(e′) for
all edges in E(S), where S is the partition S = {{v},V \{v}}. At each step the algorithm takes for each
node v its smallest edges incident that does not generate cycles and add it to the MST. Successively, the



1.1 Graph theory 11

Figure 1.4 An example of graph for which we can find multiple different Minimum Spanning Trees. The
graph in the row above is the input graph, while in the row below we illustrate three different MSTs. We
color them with red edges belonging to each MST.

connected vertices in the MST are contracted together to form a supervertex. Two distinct supervertices
are linked together in the graph using the smallest edge in the cocycle between the two supervertices. The
process is then iterated on the newly defined graph, until all the nodes in the MST are connected, and only
one supervertex remains. Concerning the time complexity of the algorithm, remark that at each step of the
loop Borůvka reduces the number of nodes by a factor of at least two. Hence the while loop is executed at
most O(logn) times. In each iteration, all the contraction can be done in O(m) time. In total the method
has a running time of O(m logn). A parallel version of this algorithm has been proposed by (Sun Chung
and Condon, 1996).

Procedure 1 Borůvka’s Algorithm

Input: A weighted, undirected graph G = (V,E,w)
Output: A minimum spanning tree T

1: procedure BORŮVKA

2: T ← ∅
3: while |T |< |V |−1 do:
4: F ← a forest consisting of the smallest edge incident to each vertex in G
5: G ← G \F
6: T ← T ∪F

Kruskal’s Algorithm

Kruskal algorithm creates a forest where each vertex in the graph is initially a separate tree. It then sorts
all the edges of the graph in an increasing order. Successively it starts iterating over the sorted edges. For
each edge (u,v), it checks if vertices u and v belong to different trees. If so, it adds (u,v) to the forest,
combining two trees into a single tree. It proceeds until all the edges have been processed.

Sorting the edges in non-decreasing order takes O(m logm), where m is the number of edges. The
total running time of determining if the edge joins two distinct trees in the forest is O(mα(m,n)) time,
where α is the functional inverse of Ackermann’s function, and n is the number of vertices. Therefore, the
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Procedure 2 Kruskal’s Algorithm

Input: A weighted, undirected graph G = (V,E,w)
Output: A minimum spanning tree T

1: procedure KRUSKAL

2: Sort the edges in E in non-decreasing order by weight.
3: T ← ∅
4: Create one set for each vertex.
5: for all edge (u,v) in the sorted order do:
6: x← FIND(u)
7: y← FIND(v)
8: if x ̸= y then
9: T ← T ∪{(u,v)}

10: UNION(x,y)

asymptotic running time of Kruskal’s algorithm is O(m logm), which is the same as O(m logn) since
logm = Θ(logn) by observing that m≤ n(n−1)

2 , and m = Ω(n).

Prim’s Algorithm

This algorithm has been introduced in (Jarník, 1931) and later rediscovered and republished in (Prim,
1957) and (Dijkstra, 1959). Differently from Kruskal, this algorithm works considering nodes of the graph
instead of iterating over edges. In fact, it builds the MST starting from a random vertex v and assigning
it to a subset of nodes V ′ ⊆ V . At each step it adds the smallest edge e in the cocycle E({V ′,V \V ′})
and adds to V ′ the end point of the edge e not belonging to it. The method stops when V ′ = V . As in
Borůvka, the optimality of the MST is guaranteed by the Theorem 1.22.

Procedure 3 Prim’s Algorithm

Input: A weighted, undirected graph G = (V,E,w)
Output: A minimum spanning tree T

1: procedure PRIM

2: T ← ∅
3: v an arbitrary vertex in V
4: V ′←{v}
5: while |V ′|< |V | do:
6: Find e = (v′,u′) the smallest edge such that v′ ∈ V ′ and u′ ∈ V \V ′

7: T ← T ∪ (v′,u′)
8: V ′← V ′∪{u′}

The most time-consuming step in Prim’s algorithm is the research for the smallest edge in the graph
cut. A naive implementation at each step finds the smallest edge looking in the adjacency list of the graph.
In this way each iteration costs O(m) yielding to a total cost of O(mn). By using Fibonacci heaps, Prim’s
algorithm can run in O(m+n logn) time.
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1.2 Clustering on graphs

Clustering is an unsupervised learning task in which the goal is to group together similar points of data
and separate different ones. Formally, given a set of elements X = {x1, . . . ,xN}, a partition of the set X

is a family (Xi)i of disjoint subsets of X that covers the entire set. In other words:

• Xi ⊆X for every i,

• Xi∩Xj = ∅ each time that i ̸= j,

•
⋃

i Xi = X .

Thus finding a clustering of a set X is to find a partition S = {Xi}1≤i≤N such that in each subset Xi

elements are homogeneous and dissimilar from elements in other subsets. In (Murphy, 2012, Chapter 25)
the author distinguishes clustering problems in two families based on the input data type. The first is
called similarity-based clustering in which a distance/similarity matrix of size N ×N is passed as input
to the algorithm. While, the second is called feature-based clustering and the input to the algorithm is a
N×F feature matrix, also called design matrix. Another distinction made is based on output of clustering
algorithms. We distinguish between flat-clustering algorithms that return a separation in K groups of
the input data and hierarchical-clustering algorithms that return a nested-partition of data. Finding a
flat clustering is usually faster (O(NF )) compared to a hierarchical clustering (O(N2 logN)). However,
finding a flat clustering generally needs to define the number K of clusters to identify. On the contrary,
hierarchical clustering is a richer representation that can be viewed as a hierarchy of partitions. Two
strategies are used in hierarchical clustering algorithms, that are agglomerative clustering and divisive
clustering. Agglomerative clustering or bottom-up approaches begin assigning each element in a singleton
and iteratively merge clusters together until a stop criterion is satisfied. Divisive clustering or top-down
approaches start assigning all the elements to the same cluster and iteratively split the clusters until a stop
criterion is met. Clustering algorithms can be either deterministic, either probabilistic. In the following,
we review some classical clustering methods. For further about clustering algorithms, the reader may refer
to (Murphy, 2012, Chapter 25) and to Xu and Wunsch (2005) and Xu and Tian (2015).

1.2.1 Flat Clustering

As said before, the aim of flat clustering is to split the input set X into K distinct groups such that similar
objects are grouped together while dissimilar are separated. Among different approaches that have been
proposed over the years, we divide between probabilistic approaches and deterministic ones. Hereby we
summarize the main clustering algorithms, reviewing pros and cons.

Mixture Models

The first algorithm we present uses a probabilistic approach. The method assumes that the observed data
are generated by K different probability distributions. For this reason, let us consider hidden variables to
model the correlation between data. For example, for each element xi, let zi a hidden variable that takes
values in the set [K] = {1, . . . ,K}, and use a categorical distribution to model way zi takes values in [K].
That is p(zi) = Cat(π), where π = (π1, . . . ,πK) and πk is the probability of seeing element k. Hence the
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distribution of observed data can be written as

p(xi|θ) =
K∑

k=1
p(xi|zi = k,θ)p(zi = k) =

K∑
k=1

πkpk(xi|θ), (1.5)

where pk is the k’th base distribution for the observation, and θ is the vector of parameters of the
distributions. Please remark that the quantity p(xi|zi = k,θ) represents the probability that xi belongs
to cluster k. Probably, the most common among mixture models is represented by Gaussian Mixture
Model, in which the pk base distribution are multivariate Gaussians with mean µk and covariance matrix
Σk. Thus the model has the form

p(xi|µ,Σ) =
K∑

k=1
πkN (xi|µk,Σk),

The method aims to maximize the log likelihood

ℓ(θ) =
N∑

i=1
logp(xi|θ) =

N∑
i=1

log
[∑

zi

p(xi,zi|θ)
]
. (1.6)

The problem in the equation above is that the log cannot be pushed inside the sum. The solution has
been proposed by the Expectation Maximization algorithm (EM) (Dempster et al., 1977; McLachlan and
Krishnan, 2008; Meng and Van Dyk, 1997). The idea of the algorithm is that if the zi are known then the
parameters can be computed maximizing the complete data log-likelihood

ℓc(θ) =
N∑

i=1
logp(xi,zi|θ).

Viceversa, if parameters are known the values of zi can be computed by maximizing the log-likelihood
over all the possible values of zi. Thus EM algorithm is an iterative algorithm, in which each iteration is
composed in two steps called E step and M step. In the E step we compute the probabilities of hidden
values zi given the parameters θ(t), while in the M step we use the just computed values of zi to find
a better estimate θ(t+1) for the parameters of the models. More in details in the expectation step the
expected complete data log likelihood is computed using parameters at time t:

Q(θ,θ(t)) =E[ℓc(θ)|D,θ(t)] = E
[∑

i

logp(xi,zi|θ)
]

=
∑

i

E
[
log
[ K∏

k=1
(πkpk(xi|θ))I(zi=k)

]]
=
∑

i

∑
k

rik logπk +
∑

i

∑
k

rik logpk(xi|θ),
(1.7)

where rik = p(zi = k|xi,θ
(t)) is the influence of cluster k to point xi. In the M step, the goal is to find a

new estimated value θ(t+1) optimizing the Q function with respect to θ

θ(t+1) = argmax
θ

Q(θ,θ(t)).
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K-means

K-means algorithm is an iterative algorithm that aims to divide data in K clusters. An important
assumption made in k-means clustering is that the shape of the clusters is convex. The goal of the method
is to find a partition S = {X1, . . . ,XK} such that

argmin
S

K∑
k=0

∑
x∈Xk

∥x−µk∥2, (1.8)

where µk is the mean of points in Xk. Basically, the goal is to find the partition that minimizes the
intra-cluster variation. Despite its formulation seems simple, the problem is indeed NP-complex. However,
the algorithm proposed by Lloyd (1982) finds an approximate solution even though it doesn’t guarantee a
convergence through the optimal solution. This algorithm, better known as naive k-means, starts placing
randomly the k centroids µ

(0)
1 , . . . ,µ

(0)
K on the space, and in each iteration t it executes the two following

steps:

1. (Assignement) For each point xi, it computes the closest mean point µ
(t)
k and it assigns xi to cluster

Xk.

2. (Update) It updates the position of the centroids using the observations assigned to each cluster

µ
(t+1)
k = 1

|Xk|
∑

x∈Xk

x.

The stop criterion for the method is when assignments no longer changes. The running time of each itera-
tion is O(NKD), but it can be accelerated using the triangular inequality (He et al., 2010). Nonetheless,
the initialisation of the centroids plays a key role in the quality of the solutions and several strategies have
been developed such as k-means++ proposed by (Arthur and Vassilvitskii, 2007). Finally, we remark that
the above algorithm can be seen as a special case of EM algorithm. In fact, if we consider an Isotropic
Gaussian Mixture Model in which the distributions have all the same covariance matrix and assume that
πk = 1/K is fixed, then the only parameters of the model to estimate are the Gaussian’s centers µk.

Graph cut approaches

Graph Cuts is a wide family of approaches to clustering. These methods build a weighted undirected
graph G whose vertices are observed data. Connection between vertices of the graph can be either already
defined a priori or each point can be connected to its closest neighbors. Moreover edge weights are
assigned either using the similarity matrix or using a distance between points. In both cases a N ×N

weight matrix W (wij)1≤i,j≤N is defined. The idea of Graph Cut methods is to find a cut that is minimal
in some sense. For example, if the weights represent similarities between data, we can look for a partition
S = {V1, . . . ,VK} that minimizes the cut weight

cut(S) = cut(V1, . . . ,VK) = 1
2

K∑
i=1

W (Vi,V i), (1.9)
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where V is the complementary of set V and W (Vi,V i) =
∑

u∈Vi

∑
v∈V i

w(u,v). Among all methods
belonging to this family of methods, we review Spectral Clustering and Minimum Spanning Trees based
graph cuts.

Spectral Clustering Spectral Clustering (von Luxburg, 2007) uses spectral graph analysis to solve the
normalized-cut problem defined as:

min
S

Ncut(S) = min
S

1
2

K∑
i=1

W (Vi,V i)
vol(Vi)

= min
S

K∑
i=1

cut(Vi,V i)
vol(Vi)

, (1.10)

where vol(V ) =
∑

v∈V di and di =
∑N

j=1 wij . Note that the quantity to minimize takes small values if the
quantities vol(Vi) are not small. Thus the objective function favours "balanced" partitions compared to
splittings containing small components. (Jianbo Shi and Malik, 2000) proposed a solution to a relaxed
version of the problem above that analyses the eigenvalues of the normalized graph Laplacian. Here,
we briefly describe the solution for the case K = 2. Let define the degree of a vertex vi as the quantity
di =

∑N
j=1 wij and let D = diag(d1, . . . ,dN ) be the degree matrix. The unnormalized graph Laplacian is

the matrix defined as L = D−W . Let now consider the cluster indicator vector f defined as

fi =


√

vol(A)
vol(A) if vi ∈A

−
√

vol(A)
vol(A) if vi ∈A,

(1.11)

where the partition is S = {A,A}. It easy to prove that (Df)T 1N = 0, fT Df = vol(V ) and fT Df =
vol(V )Ncut(A,A), where V is the set of vertices of the graph. Thus the (1.10) is equivalent to

minimize
A

fT Lf

subject to (Df)⊥ 1N

fT Df = vol(V ).

(1.12)

The problem can be relaxed allowing f to take real values. Moreover replacing g = D1/2f the problem
becomes

minimize
g∈Rn

gT D−1/2LD−1/2g

subject to g ⊥D1/21N

∥g∥2 = vol(V ).

(1.13)

The solution of the problem is the second generalized eigenvector of Lu = λDu. For the general problem
with K clusters, the solution are the first K generalized eigenvectors u1, . . . ,uk of the generalized
eigenproblem Lu = λDu. Finally to find assignments into clusters, k-mean algorithm is used on the rows
of matrix U = [u1, . . . ,uk] ∈ RN×k whose columns are the first k eigenvectors. For a further reading on
spectral graph theory the reader may refer to (Chung, 1997). The main advantage of Spectral clustering
method compared to k-means is that it also works to separate non convex sets. Nonetheless, finding
the first K eigenvalues of a the Graph Laplacian takes O(N3) and this can be a problem when dealing
with big datasets. (Yan et al., 2009) proposed a framework for fast approximate spectral clustering that
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speedups the computation showing a little degradation in clustering accuracy, while (Naumov and Moon,
2016) proposed a parallel version of spectral clustering that runs on GPU.

MST based Graph cuts Minimum Spanning Tree can be used to extract a flat clustering. One simple
approach consists in sorting the edges of the MST in decreasing order and removing the k−1 heaviest
edges. In fact, a new connected component is created each time an edge is removed from the MST.
(Asano et al., 1988; Xu et al., 2001) uses this approach showing that the obtained partition is the one
that minimizes the L∞ diameter of the clusters. Recall that the diameter of a graph is the longest
maxu,v∈V d(u,v) distance between any two vertices u,v of the graph. Moreover, (Felzenszwalb and
Huttenlocher, 2004) proposes an efficient segmentation algorithm based on MST and a region comparison
predicate that evaluates if there is evidence of a boundary. Finding the MST is a way faster compared to
the spectral clustering methods and this represents the great advantage of this kind of approach compared
with spectral clustering. One limitation of this second type of method is that often the obtained solution
contains small components that are not relevant.

1.2.2 Hierarchical Clustering

Hierarchical clustering algorithms return a more sophisticated information compared to flat clustering.
The goal is to compute a family of nested hierarchical partitions of the input data. Let start introducing a
formal definition of a Hierarchical Clustering.

Definition 1.24 (Partial Ordering). A partially ordererd set is a couple (X ,⪯), where a set X and ⪯ is a
binary relation over X , that satisfy

1. (Reflexivity) a⪯ a for all a ∈ X

2. (Antisimmetry) if a⪯ b and b⪯ a then a = b

3. (Transitivity) if a⪯ b and b⪯ c then a⪯ c

Note that not for all pairs of elements (a,b) ∈ X ×X , it holds a⪯ b or b⪯ a. When one of the two holds
we say that elements are comparable, otherwise we say that they are incomparable.

Definition 1.25 (Refinement). Let X be any set and let S = {X1, . . . ,Xk} and T = {Y1, . . .Yh} two
partitions of X . We say that S is a refinement of T if for any Xi ∈ S it exists Yj ∈ T such that Xi ⊆ Yj ,
and we write S ⪯ T . Note that ⪯ is a partial ordering on the set of all possible partitions of X .

Definition 1.26 (Hierarchical Clustering). A Hierarchical ClusteringH of a set X is a set {S0, . . . ,Sn}
of partitions of X such that

1. S0 = {X}

2. Sn = X

3. Si ⪯ Si−1 for all i = 0, . . . ,n−1.

A hierarchical clustering is often represented using a tree called Dendrogram. The root node of
the dendrogram corresponds to the trivial clustering {X}, while the leaves of the tree are the clusters
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{xi} composed of a single element. Each internal node corresponds to a cluster C that is the union of
its children {C1, . . . ,Cm}. Carlsson and Mémoli (2010) formally define a Dendrogram as pairs (X,λ),
where X is the input set of observed data and λ : [0,∞)→P(X). The function λ is used to represent the
clustering at different levels of the tree. The function has the following properties

1. λ(0) = {{x1}, . . . ,{xn}}.

2. ∃t0, s.t. λ(t) = λ(t0) = {X} for all t≥ t0.

3. if r ≤ s, then λ(r) refines λ(s).

4. ∀r∃ϵ > 0 s.t. λ(r) = λ(t) for all t ∈ [r,r + ϵ]

The first condition means that the lowest value is mapped to the finest clustering possible composed
by singletons. The second means that for t large enough the decomposition becomes trivial. The third
assures that the partitions obtained are indeed nested, and the fourth condition is a technical condition
due to the fact that the set of points in which the partition changes is finite. In Figure 1.5 we illustrate an
example of hierarchical clustering of a set and its dendrogram representation. Remark that cutting the
dendrogram at any height induces a flat clustering of the input data. As said before, there are two strategies

Figure 1.5 (Left) An example of hierarchical clustering and (Right) its dendrogram representation.

to implement hierarchical clustering algorithms, which are agglomerative and divisive. In agglomerative
algorithms, each observation forms a singleton, and we merge clusters iteratively starting from the most
similar. At each step, in fact, the two closest clusters are merged together. There exist many criteria to
define similarities between clusters. Changing the criterion used to merge groups at any level leads to
different hierarchies. In the following, we review the most common.

Single Linkage

In Single Linkage (SL) the distance between two clusters C1,C2 is defined as the minimum distance of
any two points of each cluster. Formally

dSL(C1,C2) = min
x∈C1,y∈C2

d(x,y). (1.14)

Note that each time that we combine two clusters in Single Linkage, we merge them via the light-
est weight connecting the two clusters. It can be proven that this is equivalent to compute the MST
of the underlying complete graph and build the hierarchy iteratively merging the closest nodes on the MST.
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Figure 1.6 An example of chaining effect. Distances between points in the sequence from A to F are
small. However, the distance between the first and the i-th element increases as we navigate through the
sequence. Single Linkage puts the entire sequence in the same cluster. (Left) Input graph and (right)
Single Linkage Hierarchy.

This criterion is local in the sense that it puts the attention only on the area where two clusters become
close without taking into account global information about the two clusters. Thus, the two clusters may
contain really different objects to each other and these would be neglected. This phenomenon is called
chaining effect. For example, we could have a long sequence of data (x1, . . . ,xn) as in Figure 1.6, that
are two-by-two very similar, but the difference between the first and the i-th element increases as we
navigate through the sequence. However, single linkage looks at the local distance between clusters and
aggregates all the elements of the sequence in the same cluster generating a heterogeneous group. One
way to circumvent this effect is to use a distance function that integrates some notion of density in the
definition rather than use only local geometric information.

Complete Linkage

In Complete Linkage (CL) the distance between two clusters is defined as the distance between the two
most distant pairs:

dCL(C1,C2) = max
x∈C1,y∈C2

d(x,y) (1.15)

Conversely from Single Linkage, Complete Linkage forms more compact clusters. In fact, if we consider
the diameter dC of a group C defined as the maximum distance between any couple of pairs, i.e. dC =
maxx,y∈Cd(x,y), then it is straightforward that Complete Linkage form clusters with small diameter.

Average Linkage

Average Linkage (AL) measures the average distance between all couples of each cluster, that is

dCL(C1,C2) = 1
n1n2

∑
x∈C1

∑
y∈C2

d(x,y), (1.16)

where n1 and n2 are respectively the number of points in C1 and C2. Average Linkage is a sort of
compromise between Single Linkage and Complete Linkage. Generally, clusters obtained are relatively
compact and far apart.

Ward’s minimum variance Method

In Ward’s minimum variance Method at each step the goal is to merge the two clusters that leads to
the minimum increase in the total within-cluster variance after merging. For the euclidean distance the
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Figure 1.7 (Left) Single Linkage (Center) Complete Linkage (Right) Average Linkage

within-cluster variance WC of a cluster C is defined as:

WC =
∑
x∈C

∥x−µ∥2,

where µ = 1
nC

∑
x∈C x is the cluster centroid. After each merging step the distances between clusters must

be updated. This can be achieved using the Lance-Williams algorithm that uses a recursive formula to
update distances between clusters at each step. In particular at the first step all the distances are initialized
using the euclidean distance between points. Then, given a couple Ci, Cj of clusters merged the formula
used to update distances with any other cluster Ck is

d(Ci∪Cj ,Ck) = ni +nk

ni +nj +nk
d(Ci,Ck)+ nj +nk

ni +nj +nk
d(Cj ,Ck)− nk

ni +nj +nk
d(Ci,Cj). (1.17)

Axiomatic Approaches to Clustering

Kleinberg (2002) proposed to study the clustering problem using an axiomatic approach. In particular,
given a set X of n≥ 2 points, the author define the process of clustering elements of X as a function f

that takes a distance function d : X×X → R+ defined on X and returns a partition S of X . Moreover,
the author identified the following three desirable properties for a clustering function:

• Scale invariance: the clustering function should not be sensitive to changes in the unit of distance
measurements. Formally, for any distance function d and any α > 0, we have

f(d) = f(α ·d),

where α ·d(xi,xj) = αd(xi,xj), for any xi,xj ∈X .

• Richness: the output of a clustering function should be rich. Let Γ(X) be the set of all possible
partitions of the set X , and let Range(f) be the image set of the clustering function f . The
Range(f) should coincide with the set of all partitions Γ(X) of X . In other words, f should be a
surjective function.

• Consistency: a clustering function should be consistent with transformations the metric d. For
example, if we shrink distances between points in a cluster and expand distances between points in
different clusters, we expect that f returns the same partition. Formally, let S be a partition of X ,
we say that a metric d′ : X×X → R+ is an S-transformation of d if:

1. d′(xi,xj)≤ d(xi,xj), for any xi,xj ∈X belonging to the same cluster of S,

2. d′(xi,xj)≥ d(xi,xj), for any xi,xj ∈X belonging to different clusters of S.
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The consistency property says that given d and d′ two distance functions on X , if f(d) = S and d′

is an S-transformation of d, then f(d′) = S.

Then the author proved that no clustering scheme satisfying these conditions can exist.

Theorem 1.27. For each n≥ 2, there is no clustering function f that satisfies Scale-Invariance, Richness
and Consistency.

Later on, Zadeh and Ben-David (2012) relaxed the richness condition, to a K-richness condition.
Basically, this condition states that the clustering function f should cover the set of all possible partitions
of X in K clusters. The argument carried by the authors for this condition is that in many algorithms the
number of clusters K is required as input. In addition, the authors proposed to include a further condition

• Order Consistency: for any couple of distances d and d′, if the order of couples of points in d is
the same as the order of couples in d′, then f(d) = f(d′).

The authors proved that Single Linkage is the only clustering method that has all the listed properties.

Theorem 1.28. Single Linkage is Consistent, K-Rich, Scale-Invariant and Order-Consistent.

Single Linkage, ultrametrics and stability

We conclude this section on Hierarchical clustering showing two interesting properties about single-
linkage. The first is about a link between single linkage clustering and ultrametric distance. This link has
been established in the works of Johnson (1967) and Jardine et al. (1967). However, in the following we
will refer to the result shown by Carlsson and Mémoli (2010). Let start introducing the definitions of
metric space and ultrametric distance.

Definition 1.29 (Ultrametric). Let X be a set, a metric over X is a function d : X×X→R+ that satisfies

1. d(x,y) = 0 if and only if x = y, (identity of indiscernible)

2. d(x,y) = d(y,x), (symmetry)

3. d(x,y)≤ d(x,z)+d(y,z), (triangular inequality)

for all x,y,z ∈X . An ultrametric is a metric function u : X×X → R+ that satisfies also the following
ultrametric inequality:

u(x,y)≤max{u(x,z),u(y,z)}, for all x,y,z ∈X.

An ultrametric space is a particular metric space in which all triangles are isosceles.

Remark 1.30. Given a metric space (X,d) there is a canonical way to construct an ultrametric u from d:

u(x,y) := min
{

max
i=0,...,k−1

d(xi,xi+1), s.t. x = x0, . . . ,xk = y

}
.

Such ultrametric u is sometimes known as sub-dominant ultrametric, and it has the property that if u′ ≤ d

is any other ultrametric on X , then u′ ≤ u.
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The first result we report is (Carlsson and Mémoli, 2010, Theorem 9) and it states that dendrograms
and ultrametrics are equivalent.

Theorem 1.31. Given a finite set X , there is a bijection Ψ : D(X)→ U(X), between the collection
D(X) of all dendrograms over X and the collection U(X) of all ultrametrics over X such that for any
dendrogram λ ∈ D(X), the ultrametric Ψ(λ) over X generates the same hierarchical decomposition as
λ, that is:

for each r ≥ 0,x,y ∈B ∈ λ(r) ⇐⇒ Ψ(λ)(x,y)≤ r.

Furthermore, this bijection is given by

Ψ(λ)(x,y) = min{r ≥ 0 | x,y belong to the same element of the partition in λ(r)}.

The Theorem above allows us to represent dendrograms as ultrametric spaces and vice versa. In this
way, any hierarchical clustering method can be represented as a map from finite metric spaces into finite
ultrametric spaces. In this regard, the authors prove that the ultrametric produced by Single Linkage
Hierarchical Clustering on a metric space (X,d) coincides with the subdominant ultrametric of distance d.

The second result proved by Carlsson and Mémoli (2010) that we mention is the stability to perturba-
tions of single-linkage. To evaluate the effect of perturbations on dataset and compare two hierarchies, they
make use of the Gromov-Hausdorff distance, that measures how far two compact metric spaces are from
being isometric. They prove that single-linkage, differently from average-linkage and complete-linkage, is
the only hierarchical method that is stable and continuous in the sense of the Gromov-Hausdorff distance.
This means that for any small perturbation of the input data, the hierarchies obtained with the single
linkage clustering for the original and the perturbed data are at small distance from one another.

1.2.3 Evaluate a clustering

An important aspect is how to evaluate the quality of a partition returned by any algorithm. Since clustering
is an unsupervised task, often there does not exist some ground truth label for the observed data. Thus,
the goal of the metrics proposed is to compare two different partitions. However, in our experiments we
will always evaluate a predicted clustering against a ground truth label. In this section we recall the most
common scores used to compare clustering methods.

Rand Index

Introduced by Rand (1971), the Rand Index computes a similarity score between the two partitions by
considering all pairs of samples and counting pairs that are assigned to the same or different clusters in
both clusterings. In other words, given two partitions S = {X1, . . . ,Xk} and T = {Y1, . . . ,Yh} of the
same dataset of N points, the following quantities are computed

• True Positive (TP): the number of pairs of elements that are in the same subset in S and in the same
subset in T

• True Negative (TN): the number of pairs that are in different subsets in S and in different subsets in
T
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• False Positive (FP): the number of pairs that are in different subsets in S but in the same subset in T

• False Negative (FN): the number of pairs that are in the same subset in S but in different subsets in
T

Then Rand Index RI(S,T ) between the two clustering is defined as:

RI(S,T ) = TP +TN

TP +FP +FN +TN
, (1.18)

that is the fraction of coinciding decisions between the two clusterings, and it holds 0≤RI(S,T )≤ 1.
Note that the normalization quantity in the previous equation is equal to

(n
2
)
. However, other normalization

factors has been discussed, as the one defined by Hubert and Arabie (1985) that defined the Adjusted Rand
Index ARI . This last is the corrected-for-chance version of the Rand index. Such a correction for chance
establishes a baseline by using the expected similarity of all pair-wise comparisons between clusterings
specified by a random model:

ARI(S,T ) = index− expected index
max index− expected index

. (1.19)

In practice given the two partitions S and T , the Adjusted Rand Index is computed using the contingency
table:

S⧹
T Y1 Y2 · · · Yh sums

X1 n11 n12 · · · n1h a1

X2 n21 n22 · · · n2h a2
...

...
...

. . .
...

...
Xk nk1 nk2 · · · nkh ak

sums b1 b2 · · · bh

,

where nij = |Xi∩Yj | is the number of objects in common between sets Xi and Yj . The Adjusted Rand
Index is

ARI(S,T ) =

∑
ij

(nij

2
)
−
[∑

i

(ai
2
)∑

j

(bj

2
)]

/
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2
)

1
2

[∑
i
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2
)
+
∑

j

(bj
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−
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j

(bj

2
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/
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2
) (1.20)

Purity

Purity metric is a so-called external criterion of cluster quality, that is it evaluates how well a given
partition S matches some gold standard classes that are given along with data. Thus let S = {X1, . . . ,Xk}
the partition computed by the algorithm and let {C1, . . . ,Cm} possible classes. Let nij the number of
objects in cluster i that belong to class j and let ni the number of objects in cluster Xi. The purity of a
cluster Xi is defined as pi = maxj nij/ni, that is the empirical probability of the most frequent class in
cluster i. The overall purity of a clustering is defined as

P (S,C) = 1
N

∑
i

nipi = 1
N

∑
i

max
j

nij . (1.21)
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When comparing two partitions with the same number of clusters, in which one of the two is the ground
truth and the other is the predicted partition, purity measures the accuracy of the prediction up to a
permutation of the labels.

Mutual Information

The last way to measure cluster quality is Mutual information. Given random variables X,Y , mutual
information is defined as

MI(X,Y ) =
∫ ∫

p(X,Y )(x,y) log
(

p(X,Y )(x,y)
pX(x)pY (y)

)
dxdy,

where p(X,Y ) is the joint probability density function of X and Y and pX and pY are marginal probability
density functions of variables X and Y respectively. Now let S = {X1, . . . ,Xk} and T = {Y1, . . . ,Yh}
two partitions we can define pS,T (i, j) = |Xi∩Yj |

N , the probability that a random observed data is in cluster
i in the first partition and in cluster j in the second. Moreover let pS(i) = |Xi|

N , the probability that an
object belongs to cluster Xi, and pT (j) = |Yi|

N the probability that an object belongs to class j. Thus
mutual information between the two partitions is the quantity defined as

MI(S,T ) =
∑

i

∑
j

p(S,T )(i, j) log
(

p(S,T )(i, j)
pS(i)pT (j)

)
(1.22)

This quantity is bounded by 0≤MI(S,T )≤min{H(S),H(T )}, where H(S) and H(T ) are respectively
the entropy of S and T defined as

H(S) =
∑

i

pS(i) logpS(i)

and
H(T ) =

∑
j

pT (j) logpT (j).

Since mutual information achieves high scores when one of the two partitions is made of lots of small
clusters the compensation for this is the normalized mutual information

NMI(S,T ) = MI(S,T )
1/2(H(S)+H(T )) . (1.23)

Another variation of mutual information is the Adjusted Mutual Information (AMI) (Vinh et al., 2010),
that similarly to Adjusted Rand Index, correct the scores using the expected mutual information between
two random assignments

AMI(S,T ) = MI(S,T )−E{MI(S,T )}
max(H(S),H(T ))−E{MI(S,T )} . (1.24)

The AMI holds one when the two partitions are identical and zero when the MI between the two partitions
is equal the expected value due to chance.
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1.3 MST applications to Image Segmentation

We conclude this chapter discussing Graph Clustering applications to Image Analysis, and specifically to
Image Segmentation. A natural way to build a graph from an image I is to consider each pixel p of the
image as a vertex of the graph and use edges to link adjacent pixels. The graph is known also as pixel
adjacency graph. Pixels’ adjacency mostly used in literature are three (see Figure 1.8):

• 4-connectivity: in which each pixel is connected with the closest top-bottom-left-right pixels. This
creates a regular grid over the image.

• 8-connectivity: each pixel is connected with all the 8 surrounding pixels.

• 6-connectivity: each pixel is connected with the pixels in order to form a hexagonal grid. In practice,
this connectivity is harder to implement with respect two the two above.

Figure 1.8 (Left) 4-connectivity (Center) 8-connectivity (Right) 6-connectivity

Each connectivity implicitly defines a different topology on the graph. Moreover, the number of edges
in the graph is affected by this choice. Since the complexity of many algorithms depends on the
number of edges in the graph this imply that also run time is affected by choice of connectivity. In
our case we will use the 4-connectivity. Commonly, the weight function w : E → R on the edges
measures the dissimilarity between two connected pixels. For example, in the case of gray-scale images
a simple weight function is the one that measures intensity differences between neighboring pixels, i.e.
w(e) = w(vi,vj) = |I(pi)−I(pj)| for each e = (vi,vj) ∈E, where I(pi) is the intensity of pixel pi. The
goal in image segmentation is to split the input image in several regions each one possibly containing
a different object. An example of image segmentation task is to separate the object portrayed in the
foreground of the image from the background. Among the great variety of existing approaches, hereby we
review three methods that use graphs and in particular the MST to achieve the task.

1.3.1 λ-Flat Zones

Segmenting an image, we generally aim to group together homogeneous zones of the image. λ-flat zones
(also referred to α connected components) uses this principle to achieve the segmentation. Without loss
of generality, we can assume that the weights are ranged in the set {0, . . . , |E|− 1} ⊂ N. In fact, it is
always possible to find a one-to-one correspondence from the set {W (e)|e∈E} to the set {0, . . . , |E|−1}.
Given an integer λ ∈ {0, . . . , |E|−1} we can extract from the graph G a subgraph Gλ = (V,Eλ,W ) such
that Eλ = {e ∈ E|W (e) < λ}, that is the graph Gλ is obtained from G removing all the edges whose
weight is equal or greater than λ. The set Pλ = {C0, . . . ,Cnλ

} made of all connected components of
Gλ is a partition of the set of nodes V . The connected components are also called lambda-quasi-flat
zones, since the variation between two neighbouring nodes in a connected component does not exceed
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λ. Remark that if λ1 ≤ λ2, then the partition obtained using λ1 is finer than the one obtained using
λ2. That is, for each connected component C ∈ Pλ1 it exists a connected component C′ ∈ Pλ2 such that
C ⊆ C′. In that case, we write Pλ1 ⪯ Pλ2 to indicate that partition Pλ1 is finer than partition Pλ2 . By
making varying the values of lambdas from zero to |E|−1 we obtain a sequence of partitions such that
P0 = V ⪯ . . .⪯ P|edges|−1 = {V }, that is the λ-quasi-flat zone hierarchy. It turns out that we obtain the
same result thresholding the edges of the minimum spanning tree of G. λ-flat zone hierarchy returns is
equal to single linkage hierarchy when applied on the image graph. Indeed, Cousty et al. (2018) shows
the equivalence between MST, quasi-flat zones hierarchy and saliency map of an image.

1.3.2 Watershed Cuts

Probably the most popular algorithm know in this domain is Watershed (Beucher and Lantuéjoul, 1979).
The idea is to model the image as topographic relief and to flood the surface with water from the minima
of the image. Each time the water coming from two different sources meet a barrier is created preventing
the two regions to merge. Applying this transformation to image gradient the contours of the image will
correspond to watershed lines while homogeneous zones of the image will correspond to catchment
basins. This approach leads to an over segmentation of the input image because an image may contain
several regional minima. To better control the process, one solution is to flood from a fixed number of
markers chosen among the image pixels (Meyer and Beucher, 1990). Moreover, (Meyer, 1994) establish a
link between Minimum Spanning Forest and Watershed algorithms with markers. This lead to Watershed
Cuts (Cousty et al., 2009) that we will describe better later on. Angulo and Jeulin (2007) propose to
randomly select the markers and generate a random segmentation rather than using deterministic markers.
The idea is that repeating this process multiple times, we can evaluate the strength of the contours of
the image. Stronger contours appear more frequently because there are many possible configurations
of markers which select them. Finally, it is worth to cite (Couprie et al., 2011) that proposed Power
Watershed a framework that unify watershed with markers, graph cuts, random walker and shortest path
algorithm using the same formulation.

The watershed cut (Cousty et al., 2009) is the version on graph of the Watershed algorithm with
markers. It needs a set M = {p0, . . . ,pk} of pixels as markers. At the end of the process each marker will
be contained in a different region of the segmented image. Basically, the method takes as input a weighted
graph G = (V,E,W ) and a set M of markers and proceeds in the following way:

1. add to the set of nodes V a special node z called well, that is V ′ = V ∪{z}

2. for each marker p, add an edge (p,z) to the set of edges E, whose weight is m− 1 (with m =
min
e∈E

W (e)), i.e. E′ = E∪{(p,z)|p ∈M}

3. compute a minimum spanning tree T ′ of the graph G′ = (V ′,E′,W ′)

4. return the connected components C0, . . . ,Ck, of the subgraph F ⊆ T ′ restricted only to nodes in V .

Remark that the connected components are the regions of our segmentation and that a marker is contained
in each of them. In fact, each marker p is connected in G′ to the well z with an edge whose weight
is minimum. Necessarily those edges will be in the minimum spanning tree T ′ of the extended graph
G′, and for this reason, each path in the MST that connects two markers must pass by the well node z.
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We conclude that in the subgraph F ⊆ T ′ restricted to nodes V , two markers must belong to different
connected components.

1.3.3 (α−ω) constrained connectivity

Introduced by Soille (2008) this method extends the concept of λ-quasi-flat zones and tackles the problem
of chaining-effect Soille (2011). In fact, it can happen that distinct objects in the image are separated by
one or more transitions going in steps having an intensity height less than or equal to λ. It follows that those
objects fall in the same λ-quasi-flat zone even though they are distinct. Essentially, the idea proposed is to
introduce a connectivity index to measure the degree of connection of a connected component. Briefly, let
I be a greyscale image, and consider a λ-quasi-flat zone C. We define the range of the quasi-flat zone R(C)
as the most significant difference of intensity among two pixels in C, i.e., R(C) = maxp,q∈C |I(p)− I(q)|.
In the original paper (Soille, 2008) proposed to use the range of a connected component as a measure of
connection, but it could be any predicate with a non-decreasing property on λ-quasi-flat zones such as
area or volume of λ-quasi-flat zones. However, here-under we recall its original definition. Given a pixel
p, the (α,ω)-connected component of p is the largest λ-quasi-flat zone containing p such that λ≤ α and
with a range less than ω,

(α,ω)−CC(p) = max
λ

{
λ−CC(p) | λ≤ α and R(λ−CC(p))≤ ω

}
where λ−CC(p) is the λ-quasi flat zone that contains p. Moreover, two pixels p and q are (α,ω)-

connected if and only if q ∈ (α,ω)−CC(p). It turns out that the relation “is (α,ω)-connected" is an
equivalence relation and thus it generates a unique partition of the image definition domain.





2 Point Clouds

Resumé

Le chapitre commence par une présentation de la définition des nuages de points 3D ainsi que des
technologies existantes pour l’acquisition de données 3D. Par la suite, nous présentons les techniques
courantes de traitement et d’analyse des nuages de points ainsi que les bases de données les plus utilisées
dans l’état de l’art.

2.1 Introduction

Point clouds are a well-known data format in the domain of 3D vision since the 70s, but it is from
the advancements in hard drive storage and computational capabilities during the end of the 90s that
point clouds have seen a large diffusion on application domains as civil engineering, cultural heritage
maintenance or robotics. In recent years further improvements in laser technology have made it possible to
build precise and increasingly less expensive high-resolution sensors. Thanks to these sensors it is possible
to obtain precise 3D models of the scanned objects/environments. This chapter is an introductory chapter
to point clouds. We start with an abstract definition of point clouds presenting also the main properties.
Successively, we move on talking about sensors technology and commonly used data-structures that allow
us to handle and visualize point clouds. Finally, we conclude by introducing some popular datasets.

2.2 Point Clouds

A point cloud is a finite set of points P = {pn ∈ R3 | 1≤ n≤N}, where N is the cardinality of the set
P . An intuitive way to imagine a point cloud, is as a set of points that sample the surface of an object. For
example, Figure 2.1 shows a point cloud representing the Colosseum.

A vector of features vn ∈Rd can be associated to each point pn ∈ P in the point cloud. In some cases
these features are the colour of the object’s surface or the normal vector to the surface. In the basic setting,
when no further information is available, point coordinates are used as features vectors. Despite their
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Figure 2.1 Point cloud representation of the Colosseum.

simplicity in definition, point clouds are a particularly challenging data during processing. First, point
clouds are not always regularly sampled over the entire object or scene. In real cases one of the issues to
face is the variation of density of points across different regions of the scene. Second, point coordinates are
not defined on a regular grid, as pixels of an image, but instead are spread over a continuous interval. Thus
spacing between points is not always fixed and, contrary to image pixels, distance between neighbouring
points can vary. Finally, a point cloud is nothing but a set of points, and it is often stored as a list of
coordinates in a file. As a set, the order in which the points are stored doesn’t change the represented
scene. This means that a point cloud with N points has N ! equivalent representations. Designing an
algorithm to process a point cloud requires considering all these aspects, and as we will see in this chapter
several approaches have been developed during the years to face these properties.

2.3 Point Cloud Scanning

In this section we present three techniques to capture a 3D point cloud. For each technique, we discuss
the principles and the main fields of applications.

2.3.1 Photogrammetry

3D point clouds of a given object can be generated from a collection of overlapping images or video
sequences. The methods are based on detecting and matching features and recovering extrinsic camera
calibration information. The main advantage of this kind of technique is that camera are really cheap,
easy to use and provide colour information. Unfortunately, the recovered 3D information is not as precise
as the one that we obtain with other active sensors as for example LiDAR.

2.3.2 RGB-D Cameras

RGB-D images are a particular format of images with four channels. The first three are the regular RGB
colour channels and the fourth contains depth information. Starting from an RGB-D image it is possible to
obtain a 3D point cloud. Using the depth information along with the intrinsic parameters of the camera it is
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possible to associate to each pixel a point in the 3D environment. The resolution of the point cloud is thus
correlated with the resolution of the camera. Thanks to the cheaper cost compared with more sophisticated
sensors, modern RGB-D cameras (such as Kinect, Real Sense and Apple depth cameras) have seen a large
diffusion in recent years. Many applications relying on these cameras exist in different domains, such as
3D scene reconstruction, augmented reality or Interactive 3D modelling of indoor environments.

2.3.3 Laser Scanner Technology

LiDAR (Light Detection And Ranging) technology is the method used for measuring distances by
illuminating the target with lasers light and measuring the reflection with a sensor. The backscattered laser
light is collected with a receiver and the distance to the point is then calculated either by time-of-flight or
continuous wave (CW) modulation range measurement techniques. Time-of-flight principle is used to
measure the distance of a scanned object from the scanner. Basically, the sensor measures the time that
the laser takes to travel from the scanner to the object and go back to the receiver. Knowing that light
waves travel with a finite and constant velocity in a given medium, we can estimate the distance ρ of the
scanned object thanks to the formula

ρ = c

ν

τ

2 ,

where c is the speed of light in a vacuum, ν is the refractive index for the light waves that travel in air
and τ is the time-of-flight. Concerning a CW scanner a continuous signal is emitted and its travel time
can be inferred considering the phase difference between the emitted and the received signal and the
period of that signal. Along with distance, vertical inclination and azimuth angle of the laser are used to
reference the 3D position of the acquired point with respect to the scanner position. For further details on
the principles of laser scanning, please refer to the great book of Vosselman (2011).

Laser scanners use LiDAR sensors to scan the surrounding environment. Objects hit by the lasers will
be in the generated point cloud. The position of points is referenced with respect to the position of the
scanner. In case of multiple scans in different positions a global reference needs to be determined in order
to include all the scans in a global frame. Two strategies exist to achieve this last task. The first uses other
sensors to correct referencing the scanners positions. The second is in the post-processing phase, and is a
fundamental problem in 3D vision and photogrammetry called Point Cloud Registration. Along with the
position of the points, laser scanners measure also the intensity of the backscattered light. When correctly
calibrated, the intensity value depends on the kind of material hit by the laser and this information can be
useful in the classification of different objects.

Point clouds acquisition systems can be divided into three main groups. Terrestrial Laser Scanner
(TLS), Mobile Laser Scanner (MLS) and Aerial Laser Scanner (ALS). This classification is based on the
platform on which the system is installed and on the type of sensors employed.

Terrestrial Laser Scanners: are fixed high-resolution scanners typically installed on a tripod or
other kind of support. Modern TLSs can acquire over one million points per second at a range that can
vary from around 200 meters up to one kilometer. Normally, a single scan takes a few minutes to be
acquired and thus the resulting point clouds contain billions of points. In the last years, these scanners are
also equipped with camera sensors in order to add colour information. They are typically employed in
civil engineering to generate precise 3D models of buildings or civil infrastructures used for example in
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quality inspection, construction progress tracking, construction safety management, building renovation
and heritage maintenance.

Aerial Laser Scanners: are generally installed on aircraft or on Unmanned Aerial Vehicles (UAV).
The generated scans have in general higher spatial resolution than radars. These scanners are employed to
obtain virtual city models or digital terrain models (DTM) of certain areas.

Mobile Laser Scanners: are generally mounted on top car, van or other kind of vehicles along with
other sensors as for example cameras, Global Positioning System (GPS) and Inertial Moving Unit (IMU).
It scans while the vehicle is moving in the traffic. IMU and GPS are used to reference the different scan to
a global reference system. These scanners have lower resolution than TLS, but the acquisition process
is faster compared to TLS and operation can be done inside the vehicle. The main applications are in
Mobile Mapping System for Intelligent Transportation System and in Intelligent Vehicles Technologies as
for example Autonomous Cars.

For a more in-depth review on applications of Laser Scanner Technologies, please refer to (Soilán
et al., 2019). In our work, we focus on point cloud applications for Autonomous Driving. MLS employed
in these cases use multiple laser beams to scan the environment around the vehicle. Generally, the lasers
are installed on a shaft, as the teeth of a comb, and the laser spins around the shaft axis during the capture.
Rotating around its axis the scanner acquires points in the 360 degree field-of-view around it. In modern
research, one of the most employed scanners is Velodyne HDL-64E (see Figure 2.2a), that has 64 laser
beams. It scans up to 2.2 millions 3D points per second at a range of 120 meters.

2.4 Point Cloud Processing

In the previous section we have reviewed modern technologies to acquire point clouds. Recent years,
mainly thanks to the reduction of production costs of the scanners, have seen large employment of these
sensors. 3D data are useful because they provide a more complete information on the surrounding
environment compared to images. On the contrary, due to their properties, point clouds require defining
geometrical structures in order to navigate and visualize the point cloud.

First of all we need to define neighbourhoods. In literature, there are two main approaches to define a
neighbourhood of a point p in a point cloud P . The first is the so called ϵ-neighbourhood. Let ϵ be a real
positive number, we define the ϵ-neighbourhood of the point p as the set

Nϵ(p) = {q ∈ P | d(p,q)≤ ϵ}

of points of P closer than ϵ to p with respect to a given distance metric d. Usually, this metric is the
Euclidean norm, and in this case, the neighbourhood Nϵ(p) is a sphere centred in p. For this reason, this
kind of neighbourhood is also called spherical neighbourhood.
However, other kinds of metrics are also used. For example, let H be a plane and πH the projection on H .
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(a) (b)

(c)

Figure 2.2 (a) Velodyne HDL-64E (b) Car and sensor platform used to record KITTI Dataset Benchmark.
A 64 layers laser scanner has been installed on top of the car, along with 4 cameras. (Source Geiger et al.
(2012)). (c) Illustration of a scan obtained with a MLS platform.

Consider the distance function
dH(p,q) = ∥πH(p)−πH(q)∥2

as the distance between the projected points. In this second case neighbourhoods Nϵ(p) are cylinders
centred in p whose central axis has the same direction of the normal to the plane H , and are called
cylindrical neighbourhood.

The second strategy is to fix an integer k and consider for each point p its closest k neighbours.
This entails that the cardinality of the neighbourhood is fixed by k, and does not depend on the point p

or on the local density of the point cloud. For this reason, this kind of neighbourhood are particularly
useful when point cloud density is heterogeneous. This neighbourhood is known in literature as k-Nearest
Neighbourhood (k-NN).
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2.4.1 3D Data Structures

In order to compute the neighbourhoods previously defined, we need data-structures that efficiently
organize the point cloud and that can guarantee fast access to points. Hereby we present two fundamental
data-structures introduced to visualize structures in 3D computer graphics. Both belong to binary space
partitioning (BSP) methods, that are methods to recursively subdivide and organize the space in disjoint
convex sets using hyperplanes. In this way it is possible to move through different parts of the 3D space
navigating among the branches of these trees. The two most commonly used data structures in this field
are Octrees and k-D trees.

Octrees

The Octree is a tree data structure useful for space indexing, streaming and data compression, introduced
by Meagher (1980). It is an extension of the binary tree to the 3D space. The root of the tree represents
and stores information about the bounding box of the entire 3D space aligned to X,Y,Z axis. Using the
middle point inside this box and three planes orthogonal to the standard base vectors x̂, ŷ, ẑ, the bounding
box is divided into eight parts called octants. Each octant is associated to one child of the node, and this
subdivision pattern is recursively applied to every internal child until a minimal bounding box size or a
minimum number of points is obtained at the leaf level. Finally, the leaves of the octree store the points
of the point cloud contained in the bounding box associated with them. This splitting scheme implicitly
defines the location of every internal node by its level and its position in the octree. Figure 2.3 from Vo
et al. (2015) illustrates an example of a two level octree and shows how the space is decomposed at each
level. Burstedde et al. (2011) developed p4rest a software library that enables the dynamic management
of a forest of octrees.

Figure 2.3 Example of Octree decomposition (Image source Vo et al. (2015))
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k-D trees

k-D trees, introduced by Friedman et al. (1977), is a space partitioning data structure meant to organize
points in a general k dimensional data space. Basically, it is a binary tree in which each internal node
defines a cutting hyperplane that splits the space in two parts along one specific coordinate. Points to the
left of the hyperplane are represented by the left subtree, while points to the right are stored in the subtree
rooted at the right child of the node. The splitting value is set as the median of the distribution of the point
coordinates values along the chosen direction. The hyperplane direction is chosen accordingly to the level
of depth of the node. The leaf nodes of the trees are k-dimensional points. Nanoflann Blanco and Rai
(2014) is a library written in C++ that allows to efficiently build k-D trees.

Figure 2.4 Example of space partition using a 2-D tree (Image source Wikipedia)

2.4.2 Feature Extraction

Since, their first applications in the field of civil engineering to generate Building Information Model (BIM)
of physical infrastructures, the employment of automatic procedures for the analysis of the point clouds has
been necessary to deal with the massive amount of data. This has opened a wide range of problems to solve
for example 3D reconstruction, geometric modelling, object recognition, semantic segmentation. In all
these problems, feature extraction has played a fundamental role in development of the proposed solutions.
In the next lines we review some geometrical features that can be computed starting from a raw point cloud.

A general point cloud can also be seen as a set of sampled points over a given surface S . Hoppe et al.
(1992) proposed a method to estimate tangent plane of the local surface at a given point P in the point
cloud, that is based on PCA of the local neighbourhood of the point. Given a point p = (x,y,z)T ∈ R3 in
a point cloud P , letNϵ(p) be its ϵ-neighbourhood as defined in Section 2.4. Let pi = (xi,yi,zi)T ∈Nϵ(p)
points in the neighbourhood, and p̄ = 1

n

∑n
i=1 pi, the centre of gravity of Nϵ(p) that is made of n

points. Given M = (p1− p̄, . . . ,pn− p̄), the 3D covariance matrix, also known as 3D structure tensor, is
defined as C = 1

nMT M . The eigenvectors and eigenvalues of the matrix C describe the directions and
the magnitude that maximize the variation of data. In particular, since C is a symmetric and positive
semidefinite matrix, and it always exists a matrix U , such that C = UT ΛU , where Λ is a diagonal matrix
and UT U = UUT = I . The column vectors of the matrix U are the eigenvectors of the matrix C, while
the values λ1 ≥ λ2 ≥ λ3 > 0 in the diagonal of the matrix Λ are the associated eigenvalues. The first
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TABLE 2.1
LIST OF GEOMETRICAL FEATURES.

Features Definitions

Planarity λ2−λ3
λ1

Linearity λ1−λ2
λ1

Sphericity λ3
λ1

Eigentropy −
∑

λi log(λi)

Omnivariance (
∏

λi)
1
3

Change of curvature λ3
λ1+λ2+λ3

represents the directions that maximize the variation of data, while the seconds represent the magnitude
of variation. In particular, the eigenvectors associated to the biggest two eigenvalues also span the least
square best fitting plane toNϵ(p). Hence, the third eigenvector is the normal to the estimated local tangent
plane. Later on, Demantké et al. (2012), used spectral information on the 3D structure tensor to retrieve
local shape information on a point cloud. Since the eigenvalues describe the magnitude of variation along
specific directions, they derived linearity, planarity and sphericity features of the local neighbourhood
analysing ratio among them. The definition of these features is shown in Table 2.1, while Figure 2.5
illustrates how these features highlight different parts of the point cloud according to the local geometry.

Weinmann et al. (2015), did the same analysis using the k-NN of each point. Moreover, they also
proposed other features to describe the geometrical structure of the local neighbourhoods, as for example
Eigentropy. This last is used to measure the disorder of points in a 3D covariance ellipsoid, and it is used
to find the optimal value of k that defines the neighbourhood size. The optimal value corresponds to the
respective k with minimal eigentropy.

The size of the neighbourhood influences the quality of geometrical descriptors. Thus, either we use ϵ

neighbourhood or k-NN, an important focus is to put on how to find the optimal size of the neighbourhood
(and necessarily of ϵ or k). On the one hand, if the neighbourhood is too small, the descriptors are fast
to compute, but they do not really capture the local geometry. On the other hand, if the neighbourhood
is too big the entire process could be too costly and important details may be missing. To deal with this
problem, Hackel et al. (2016) and Thomas et al. (2018) proposed to use a multi-scale approach. The first
used k-NN to define neighbourhoods, while the second used ϵ neighbourhoods. Their solution is based on
iterative subsampling of the point cloud, using a voxel-grid filter. The space is firstly divided in voxels
of a minimal size, and points in each voxel are replaced with their centroid. Then geometrical features
are computed using centroids as points. This strategy induces a feature normalization avoiding a great
disparity in the number of points or in the point distance according to point density heterogeneity. This
process is iterated increasing the size of the voxels of a factor of 2 at each step and computing the features
for each step, until a maximum size is reached. This strategy allows to introduce an intrinsic feature
normalization, to reduce the memory footprint and to obtain multi-scale information.
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(a) Planarity (b) Linearity

(c) Eigentropy (d) Change of curvature

Figure 2.5 Planarity, linearity, eigentropy and change of curvature obtained on a point cloud of the
Fountain in Balgach in the Semantic3D Dataset Hackel et al. (2017).

2.4.3 Point Cloud Projections

Another way to extract features from a point cloud consists in mapping the points to pixels of a grid
defined on a 2-dimensional manifold, such as a sphere, a cylinder or a plane. The main advantage behind
this approach is that it allows working on structured data as images, and to reuse all the tools developed for
image analysis. The critical step is the choice of the resolution of the grid, that must be chosen carefully
to have a good detail of information in the resulting image. In fact, if the grid is too coarse, several points
may be projected on the same pixel causing a loss of information, and on the contrary a too fine resolution
leads to an image full of empty valued pixels. In the following we recall two kinds of projection that we
use later on in Chapter 3.

Bird Eye View

In the Bird’s-eye View projection, the input point cloud is projected over a regular grid defined over a
plane parallel to the x,y plane. To associate each point p = (x,y,z) ∈ R3, to a pixel p = (u,v) ∈ Z2, a
spatial resolution need to be defined. This resolution defines the size of each pixel. We call ∆x and ∆y

respectively the height and the width of each pixel. Thus, assuming that the x,y axes are oriented in the
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same direction of the u,v axis, the pixel p is obtained using the following formulau = ⌊(x−x0)∆x⌋,

v = ⌊(y−y0)∆y⌋,

where x0,y0 are respectively the minimum values x and y of the points. An example of this projection is
shown in Figure 2.7c.

Spherical View

In the Spherical View projection, the points are projected over a spherical grid. Assuming the reference
centred at the scanner position, the projection map is defined using spherical coordinates


ρ =

√
x2 +y2 +z2,

φ = atan2(y,z),

θ = arccos(z/ρ),

The grid is built dividing the azimuth and vertical axis. The spatial resolution ∆φ and ∆θ define the size
of the pixel. The pixel coordinates (u,v) are defined asu = ⌊φ∆φ⌋,

v = ⌊θ∆θ⌋.

Figure 2.6 schematizes the mapping from points to pixels while in Figure 2.7d we illustrate an example of
the spherical view projection.

Figure 2.6 Spherical Projection

2.5 Point Cloud for Autonomous Driving

In general, autonomous systems (AS) are characterized by the capability of taking decisions independently
by the human interface while facing uncertainty. Autonomous Driving are particular AS that have been
developed in the domain of transport. They use sensor systems to capture the surrounding environment
and use artificial intelligence to analyse information and take decisions in a continuously changing
environment as a substitute for human judgment (Taeihagh and Lim, 2019). The society of automotive
engineers (SAE) categories AV based on five levels of automation

• Level 1 (Driver Assistance) The driver and the automated system share control of the vehicle.
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(a) 3D point cloud (b) 3D point cloud

(c) Bird’s-eye View projection

(d) Spherical View projection

Figure 2.7 An example of projection of a point cloud onto images. (a, b) Two views of the same 3D point
cloud. (c) Image obtained after a Bird’s-eye View projection, (d) Image obtained after a Spherical View
projection. Some pixels are black because no point falls in.

• Level 2 (Partial Automation) The automated system takes full control of the vehicle: accelerating,
braking, and steering. The driver must monitor the driving and be prepared to intervene immediately
at any time if the automated system fails to respond properly.

• Level 3 (Conditional Automation) The driver can safely turn their attention away from the driving
tasks, e.g. the driver can text or watch a movie. The vehicle will handle situations that call for an
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immediate response, like emergency braking. The driver must still be prepared to intervene within
some limited time, specified by the manufacturer, when called upon by the vehicle to do so.

• Level 4 (High Automation) As level 3, but no driver attention is ever required for safety, e.g. the
driver may safely go to sleep or leave the driver’s seat. Self-driving is supported only in limited
spatial areas (geo-fenced) or under special circumstances. Outside these areas or circumstances,
the vehicle must be able to safely abort the trip, e.g. park the car, if the driver does not take back
control. An example would be a robotic taxi or a robotic delivery service that only covers selected
locations in a specific area.

• Level 5 (Full Automation) No human intervention is required at all. An example would be a robotic
taxi that works on all roads all over the world, all year around, in all weather conditions.

LiDAR sensors acquire crucial 3D information that is more precise compared to images. In order to
navigate correctly through traffic and to take accurate decision, perception module of an AS must be able
to perform the following tasks on 3D point clouds.

3D Object classification Given a set of different point clouds X = {P1, . . . ,Pn} and their labels
Y = {y1, . . . ,yn}, belonging to different categories (e.g. mug, table, car or aeroplane), we look for a
function f : X → Y , that correctly assigns each point cloud to its category. For example, we want to
associate at the point cloud in Figure 2.8 the category Aeroplane.

Figure 2.8 Aeroplane

3D Object detection Given an arbitrary point cloud, this task aims to find and locate instances of objects
belonging to specific classes (e.g. Cars, Pedestrian, Cyclists) and return bounding boxes of the retrieved
objects. A bounding box is described as a tuple of parameters (x,y,z,h,w, l,θ,c), where (x,y,z) are the
coordinates of the box centre, (h,w, l) are respectively the height, width and length of the box, θ is the
object orientation of the object, and c corresponds to the class of the contained object.

Semantic Segmentation Point cloud segmentation is the task of clustering an input point cloud in
disjoint regions where each region is predicted with a semantic label, such as ground, building, car and so
on. From a mathematical point of view, given a point cloud P = {p1, . . . ,pn} the goal is to fit a function
f at each point p that assigns the label y of the corresponding region, that is y = f(p). Along with
Semantic Segmentation other two kinds of segmentation problems exists in literature, that are Instance
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Segmentation (Guo et al., 2020) and Panoptic Segmentation (Sirohi et al., 2021). The first aims to locate
and separate the instances of a given category of object (e.g. car) in a given point cloud. The main
difference with object detection task is that the objective is to return labels for points and not bounding
boxes. Instead, Panoptic Segmentation can be seen as a combination of Semantic Segmentation and
Instance Segmentation. The goal is to split the point cloud in different semantic regions and for each
category separate different instances present in the scene. Figure 2.9 illustrates the difference between
these three kinds of problems.

Figure 2.9 An example that illustrates differences between Instance Segmentation, Semantic Segmentation
and Panoptic Segmentation

2.6 Databases

In this section, we report a list of some popular point clouds datasets.

2.6.1 SemanticKITTI

SemanticKITTI has been introduced by Behley et al. (2019) as a new benchmark for LiDAR based
semantic segmentation. It is built upon the KITTI Vision Odometry Benchmark Geiger et al. (2012) and it
provides dense point-wise annotations. It is made of 22 sequences. The authors have proposed a split of
sequences in three groups to be used for supervised learning approaches. The first 11 sequences are meant
to be used as training set and the last 10 to use as test set. Finally, they propose to use sequence 08 as
validation set. Totally the dataset contains around 43k annotated scans. The scans have been collected
in different environments such as city centres, country sides or highways and provide a wide range of
different situation in which a car drives. Moreover, the scans have always been collected in perfect weather
conditions and on flat zones and this makes this dataset a perfect benchmark to test semantic segmentation
algorithms. The points are divided in 28 classes. In this great variety of classes there is also a distinction
between moving and non-moving objects. The main classes contained in the dataset are:

• Car (Moving / Not Moving)

• Bicycle
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• Bus (Moving / Not Moving)

• Motorcycle

• Truck (Moving / Not Moving)

• Person

• Bicyclist (Moving / Not Moving)

• Motorcyclist (Moving / Not Moving)

• Road

• Parking

• Sidewalk

• Building

• Fence

• Lane-marking

• Vegetation

• Trunk

• Terrain

• Traffic-sign

Figure 2.10 illustrates two frames of contained in SemanticKITTI, while Figure 2.11 shows the overall
distribution of classes.

Figure 2.10 Some examples of frames in SemanticKITTI. Source: Behley et al. (2019)

Figure 2.11 SemanticKITTI: Label distribution. Image Source: Behley et al. (2019)
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2.6.2 ModelNet

ModelNet is a dataset introduced by Zhirong Wu et al. (2015). The full dataset is a collection of almost
151k CAD models belonging to 660 unique object categories, among the most common object categories
in the world. There exist also two variants of this dataset respectively restricted to 40 and 10 categories.
The first is called ModelNet40 while the second ModelNet10. In Figure 2.12 some CAD examples of
chairs contained in ModelNet40 are depicted.

Figure 2.12 Left: word cloud visualization of the ModelNet dataset based on the number of 3D models
in each category. Larger font size indicates more instances in the category. Right: Examples of 3D chair
models. Image Source Zhirong Wu et al. (2015).

2.6.3 PartNet

The PartNet dataset Mo et al. (2019) is a benchmark that contains fine-grained and hierarchical instance-
level part segmentation annotation for about 26k shapes with over 500k part instances from 24 object
categories. Some examples of fine-grained segmentation and of hierarchical decompositions are respec-
tively shown in Figures 2.13 and 2.14. The categories have been selected from ShapeNetCore Chang et al.
(2015), and respects the following requirements:

1. are mostly seen in indoor scenes,

2. contain interesting intra-class variation

3. provide a huge number of parts

The median number of parts per object is 14 and a maximum number of 230,

Figure 2.13 Some shapes with fine-grained part annotations for the 24 object categories in PartNet. Image
Source Mo et al. (2019).
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Figure 2.14 Some annotations at three levels of segmentation in hierarchy. Image source Mo et al. (2019).
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Resumé

Le chapitre est divisé en deux parties. La première partie se concentre sur le problème de l’identification
des sols dans le contexte d’un nuage de points obtenu à l’aide d’un scanner Velodyne monté sur une
voiture. La contribution innovante de cette partie est constituée de deux algorithmes de détection des sols
par l’utilisation de zones quasi plates. Pour évaluer l’efficacité de ces méthodes, une comparaison avec
l’état actuel de la technique est également présentée. La deuxième partie se concentre sur le problème de
la détection des routes, toujours dans le même contexte. En particulier, une analyse des performances des
méthodes actuelles de détection par réseaux neuronaux sur des scanners à basse résolution est développée.
Pour améliorer les performances de ces méthodes, l’utilisation d’informations géométriques telles que la
normale à la surface est proposée. Les résultats obtenus montrent que l’utilisation de ces caractéristiques
permet d’améliorer la détection, notamment dans le cas de scanners à basse résolution.

3.1 Introduction

Ground detection is a fundamental problem to solve for several applications such as 3D modelling process
and mobile robot navigation. Our interest in ground detection is motivated by the fact that once removed
the ground from the scene, other objects can be identified as isolated components of the scene. Indeed,
this strategy is employed in many object detection or object classification algorithms. Interestingly,
ground detection is also of interest in the case of Digital Surface Models obtained by radar interferometry,
LIDAR, or photogrammetry. Indeed, these techniques provide an estimation of the height of any object
above the ground such as vegetation (trees etc.) and buildings rather than the ground elevation. The latter
elevation is needed for many applications such as those related to hydrology or civil engineering. Note
that in this case (apart from LIDAR), the input data are provided as a raster (2.5 D) and not 3D point
cloud.

This chapter is divided into two parts. In the first part, we discuss various approaches for the ground
detection task. To be specific, we compare several state-of-the-art methods like RANSAC, λ-flat zones,
and Convolutional Neural Network (CNN) methods. For each of them, we use different point cloud
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representations. In some cases, we will project on 2.5D images, in some others, we can directly work
with a 3D representation.

In the second part of the chapter, we focus on road detection. The main motivation is to evaluate
the effect of subsampling the number of layers of the scanner. Until these days, a significant majority
of the state-of-the-art algorithms in the context of self-driving car applications, have been tested on
scenes acquired using high-resolution scanners such as Velodyne HDL-64E. Despite that, the use of this
kind of scanners in a real-world scenario is limited due to their considerable costs of production. Even
though these costs are decreasing, the employment of high-resolution scanners on a car still remains too
expensive. On the other hand, low-resolution scanners are more competitive but provide a smaller amount
of information compared to a high-resolution device. For this reason, we analyse the effect of the reduced
resolution on a fundamental task such as road detection.

3.2 Introduction to Ground Detection

A common approach in 3D object detection and 3D object classification approaches is to detect the ground
as the first step (Roynard et al., 2016; Serna and Marcotegui, 2013, 2014). The idea is motivated by the
fact that once removed the ground from the scene, all the other objects in the scene appear as different
connected components. The pipeline is illustrated in Figure 3.1, then continues analysing and classifying
the remaining components.

(a) Input Point Cloud (b) Ground Detection (c) Removed Ground

Figure 3.1 A common pipeline for Object classification. Ground detection is the first step to achieve.
Once removed from the ground remaining objects can be more easily identified.

Many approaches for ground detection have been proposed in the literature during the previous
decade. A simple attempt to solve this problem is to model the ground as a flat surface and carry out a
planar approximation using RANSAC paradigm introduced by Fischler and Bolles (1981). Examples of
RANSAC based approaches are Gallo et al. (2011); Oniga et al. (2007); Schnabel et al. (2007). Even
though those methods are robust to outliers, the assumption of a unique flat ground is not realistic even in
the urban context. To solve this problem, Hernandez and Marcotegui (2009); Serna and Marcotegui (2013)
proposed to use λ-flat zones to detect the ground in dense point clouds. The method projects the point
cloud on a regular grid parallel to the xy plane placed at the lowest value of z coordinate, and storing for
each grid cell the value of the minimal elevation among all projected points on the same pixel. This is the
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BEV described in section 2.4.3. Once obtained the projected images the segmentation via λ-flat zones is
carried out to obtain the ground. Similarly, Roynard et al. (2016) project points on a discrete horizontal
grid and the z value with the highest value in the histogram is selected as ground seed. Then a region
growing approach is used to detect the ground. Both methods are very similar: lambda flat zone and region
growing approaches rely on the same hypothesis of smooth height variation. The unique difference is the
initialization step. These methods were proposed for a mobile mapping application with a relative density
homogeneity. Unfortunately, this assumption does not hold for standard autonomous driving applications.
In that case, the scanner is mounted on top of the car and the axis of the scanner is orthogonal to the
ground. The resulting point density decreases with the distance from the scanner. In this kind of scenario,
it is not possible to find a good resolution value. In fact, a sufficiently high resolution disconnects object
profiles in the projected image. On the other hand, a low resolution accumulates too many points in pixels
closer to the scanner where the point cloud density is high and aggregating information we risk to cancel
out small objects that we need to detect, such as people or bicycles. In Section 3.3 we present a method
that copes with this problem and accurately interpolates missing information. A more recent method has
been introduced by Zhang et al. (2016). Their idea is to turn upside down the point cloud and let drop a
cloth to the inverted surface from above. The ground is then detected analysing the intersections between
the nodes of the cloth and the inverted point cloud. Finally, in recent years several CNN-based methods
have been introduced in the more general problems of semantic segmentation of a 3D point cloud (Hu
et al., 2020; Landrieu and Simonovsky, 2018; Thomas et al., 2019). Concerning the ground detection
task Velas et al. (2018) propose to project the point cloud using a spherical view (see section 2.4.3) and
generate 2D images containing range, z and laser intensity values. The resulting images are then used to
train a Fully Convolutional Neural Network (FCNN) to obtain a binary segmentation. Finally, the labels
are back projected to 3D points. This kind of approach has been also used by Behley et al. (2019) and
Milioto et al. (2019) to carry out a semantic segmentation of the scene.

3.3 Ground Detection on Point Clouds with heterogeneous density

We now present two novel methods that use λ-flat zones to detect ground on Point Clouds with heteroge-
neous density. The two methods differ on data representation used. The first method is based on the work
of Hernandez and Marcotegui (2009) that we discussed above, and aims to solve the problems deriving
from the high variation of point density in the scene. The second method works directly on 3D point
clouds, defining a graph and successively extracting λ-flat zones.

On BEV images

Hereunder, we present a method based on the work of Hernandez and Marcotegui (2009). As we said
hitherto, the critical issue that we experience represents the variation of point density. In fact, in these
point clouds, the density decreases with the distance to the scanner. This means that projecting the points
on a squared grid defined over the xy plane, the pixels far from the scanner have a higher probability to be
empty. This causes a problem of connection between peripheral pixels. We have considered two strategies
to address this issue. The first and the simplest approach is to reduce the grid resolution. In this way,
the surface of each element of the grid is bigger, and this increases the probability that at least one point
falls in. The main drawback is that the projection could merge information relative to different objects
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Detected ground after rst step

Position of the scanner
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Figure 3.2 A zoom of the Imax image. In this case, the car is driving through a narrow street, and road
in the front of the car is disconnected from the rear. In red, pixels in the closest ring around the scanner
detected as ground.

in places where the point cloud density is high. Thus, we need to find a trade-off between the amount
of information merged and the number of pixels reconnected. Unfortunately, we found out that this first
approach is not sufficient to solve the connection problem and for this reason, we moved on to the second
solution. It consists of splitting the xy grid as a particular polar grid, that we will introduce later on, and
interpolate values in each circular sector. The method uses the following BEV images:

• Imin that stores the minimal elevation (vertical distance from each 3D point to the projection plane)
among all projected points on the same pixel,

• Imax that stores the maximal elevation among all the projected points on the same pixel,

• Iacc that stores the number of points projected on each pixel.

To obtain these images we use a resolution of 5 pixels/m for the xy grid, that is, the size of the pixel side
is 20 cm. Along with this, the BEV images are 8-bit encoded images and the resolution used for the
elevation is 10 levels-of-gray/m. Given the importance of the task we aim to solve, for security reasons,
we prefer a high precision-score in our detection rather than a high recall. This means that false negatives
are preferred to false positives. For this reason, differently from the original work in which the Imin image
was used, we interpolate and segment the Imax image. This gives us higher confidence in the detected
ground. The method can be divided into the following steps:

1. identify the ground around the scanner,

2. build a polar grid and interpolate values,

3. compute λ-flat zones and extract ground on BEV image,

4. back project ground label from BEV image to 3D points.

1. Identify the ground around the scanner The first step is to retrieve the part of the ground closest
to the car. The goal is to reconnect the road in front of the car with the one behind. In the original method,
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the ground is identified as the biggest λ-flat zone found after segmenting the image. In situations where
the car is navigating through narrow streets, this assumption may not be verified, just because the ground
in front of the car could not be connected with the ground in the rear, as shown in Figure 3.2. In the
proposed example, pixels in the sides of the car represent either a wall or other cars, the ground in the
front is isolated from the one behind. To solve this problem, we detect the ground among the pixels in the
closest ring around the car. These pixels will be used later on as markers to detect which λ-flat zones that
belong to the ground and merge them together.

We start identifying the void pixels around the scanner using a morphological reconstruction by
dilation. We use as marker image f :

f(x,y) =

255 if (x,y) = (x0,y0),

0 otherwise.

where (x0,y0) is the pixel corresponding to the position of the scanner in the image. Furthermore, we use
as mask image g:

g(x,y) =

255 if Iacc(x,y) = 0,

0 otherwise.

Thus, the image Ic containing the identified circle is obtained as Ic = Rδ
g(f). Then, we detect among the

points in the closest ring around the car those belonging to the ground. To achieve this, we first locate the
ringR around the car applying a morphological external gradient defined as:

Ir = δB(Ic)− Ic,

where B is a structuring element of size 5×5. The ring is the setR= {(x,y) | Ir(x,y) = 255}. Then we
compute

z = min
(x,y)∈R

Imax(x,y),

the smallest z value in Imax on the setR. Finally, we assign as ground only the pixels in the ringR such
that |Imax−z|< 0.5m. In Figure 3.2 we mark in red the resulting detected ground.

2. Build Dart Board and Interpolate image In the second step, we interpolate information contained
in the Imax image. This is a necessary step in the method because it fills information on void pixels.
Namely, we define another grid, and then we map pixels of Imax image onto its elements. To better explain
our choice, let us analyse how points are spatially located in an ideal environment where the ground is a
plane orthogonal to the axis of the scanner. As said before, the scanner has several lasers, called layers,
that acquire points around the car. In this setting, the scanner has 64 layers and the inclination angle of
each layer is fixed. During the acquisition phase, the scanner spins around its vertical axis. Looking at
points for a fixed yaw angle as in Figure 3.3, we can see that the distance of the points from the scanner
grows with the tangent of the vertical angle of the layers. Thus, in this context, a polar grid on the xy

plane, where the length of intervals in the radial axis increases with a tangential trend, would be better
suited than the Euclidean grid to prevent disconnections.
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Figure 3.3 The hypothetical case of perfectly flat ground. The distances between points and the scanner
depend on the tangent of the inclination angle of the layer and the scanner height h.

To define the intervals in the radial axis, let first consider l1, . . . , ln layers in the scanner directed
towards the ground, and let 0 ≤ φ1 ≤ . . . ≤ φn ≤ π

2 the respective inclination angles of the layers.
Furthermore, let h be the distance between the scanner and the ground. In the hypothesis of an ideal
environment, we can estimate the radial distances ri of the scanned points as:

ri = h · tan(φi), ∀i = 1, . . . ,n.

Hence, we split the radial axis with intervals [ri, ri+1), for i = 0, . . . ,n+1, where r0 = 0, and rn+1 =∞.
In this way, the profile of the ground in the grid remains connected because for each cell we have at least
one point that falls in. Differently from the radial axis, we choose 0≤ θ1 ≤ . . .≤ θm ≤ 2π angle to evenly
split the polar axis. Thus, each element S of the dartboard is defined as the set of pixels in the product
[ri, ri+1)× [θj ,θj+1). Figure 3.4 shows the dartboard obtained for the setup used in KITTI Benchmark
(Geiger et al., 2012) where the scanner has been placed at height of h = 1.73m. As the reader can see,
the length of the circular sectors along the radial axis increases moving away from the center of the grid,
where the scanner is placed.

Figure 3.4 Dartboard

Once generated the dartboard, we employ it to interpolate information on void pixels in the Imax

image and obtain the interpolated image Îmax. First of all, we identify the center of the dartboard with the
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(a) Example of Imax (b) Interpolated image Îmax on the dartboard

Figure 3.5 Interpolated image obtained on the frame 3721 in sequence 08 of SemanticKITTI dataset.

position (x0,y0) of the scanner in the image. Then for each pixel x,y in the Euclidean grid we compute
its polar coordinates r,θ as: r =

√
(x−x0)2 +(y−y0)2,

θ = arctan((y−y0)/(x−x0)).

The coordinates (r,θ), determine a circular sector S in the polar grid. In this way, we map each element
in the Imax domain to an element in the dartboard. Now, let us define the image Î in which we assign, for
each circular sector S in the dartboard, the minimum value of the Imax image among all pixels in S. In
formula, the image Î is defined as:

Î(S) = min
(x,y)∈S

Imax(x,y).

Since Î could not contain information relative to vertical objects, we need to recover it. Therefore, we
compute the max between values in Imax and Î , and obtain the final interpolated image Îmax. In other
words, for each pixel (x,y) in the image domain, we assign

Îmax(x,y) = max(Imax(x,y), Î(x,y)),

i.e. only empty pixels are interpolated. In Figure 3.5 we illustrate an example of an image Îmax obtained
interpolating values from Imax image using dartboard grid in Figure 3.4. Note how peripheral pixels that
were disconnected in the Imax image are reconnected in the Îmax.

3. Compute λ-flat zones and extract ground on BEV image After having interpolated the Imax

image, we compute λ-flat zones on the Îmax image. Similarly to Hernandez and Marcotegui (2009), we
use λ = 0.20m as a discrimination value to separate the pavement from other objects. An example of the
obtained λ-flat zones is illustrated in Figure 3.6a. Note that in the proposed example, the car is navigating
through a narrow street and the road is divided into two main λ-flat zones. To merge the two connected
components, we use the marker that we have extracted in the first part of the method. Figure 3.6b shows a
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(a)

g

(b)

Figure 3.6 (a) Quasi-flat zones obtained with λ = 0.2m. (b) Zoom around the car. Red pixels represent
the ground detected in the first step of the method.

zoom of the obtained segmentation around the car. The red ring in the center of the image is the ground
marker detected at the beginning of the method. In fact, we label as ground all the λ-flat zones whose
intersection with the detected ground marker is not empty. Thanks to this, we can reconnect the various
connected components. At the end of this step, the method returns a binary label BEV image Ig, whose
non-zero pixels represent the detected ground so far.

4. Back project labels Finally, the detected ground pixels must be projected back to 3D point clouds.
As we said at the beginning of this section, we use the Imax image values to extract the ground. This
differs from the original method, in which the authors used Imin image. Even though the two approaches
seem similar, there is a significant difference between the two that we need to consider before the back
projection of the labels. In fact, using the Imax images does not allow detecting points close to vertical
objects. The reader may refer to Figure 3.7a as an example. Projecting back labels detected on Imax, we
miss ground points close to vertical objects (white points in figure). The cause is that ground points fall
in the same pixels of vertical objects, so z values contained in the Imax image refer to vertical objects.
In our particular case, this effect is accentuated by the gross resolution (20cm) that we have set to avoid
disconnections. This effect is proportional with the resolution of the xy grid (the coarser the resolution,
the higher the effect). To solve the problem, we use Imin image to expand the ground detected before
projecting it back.

First of all we compute λ-flat zones on Imin image, using a value λ = 10 cm. Then, let us define Īg

the extended ground image as:
Īg(C) = max

(x,y)∈C
Ig(x,y),

for each quasi flat zone C obtained from Imin. Intuitively, we propagate ground labels on λ-flat zones
computed on the Imin image. In this way, we assign as ground pixels containing both ground points and
points belonging to vertical objects. Hence, during the back projection, we need to separate this last group
of points. To achieve this, let us consider F = {(x,y)|Ig(x,y) = 1} a subset of the image domain made
by pixels initially marked as ground, and let us consider F̄ = {(x,y)|Ig(x,y) = 0∧ Īg(x,y) = 1} a subset
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(a) (b)

Figure 3.7 (a) Results obtained projecting back ground-detected on Imax. We assign red colour to the
true positive, blue colour to true negative, and white colour to false negative. Without propagating labels
on Imin, we miss ground points close to vertical object. This issue is mainly caused by the fact that we
have chosen a gross resolution of 20cm for the xy-grid. (b) Results obtained after the expansion of the
detected ground before the projection.

of the image domain made by pixels where the ground label has been extended. Let p be a point and let
(xp,yp) the pixel in the image domain where p is projected. If (xp,yp) ∈ F ∪F̄ then the point p may
belong to the ground. To decide if p belongs to the ground or not, we consider the difference between
its elevation and the corresponding value in Imin image, i.e. |pz− Imin(xp,yp)|. Two different threshold
values, respectively δF = 20 cm and δF̄ = 5 cm, are defined according to whether an object has been
detected in the pixel initially detected as ground (F) or not (F̄). If so, the tolerance is lower in order to
prevent the inclusion of the lower part of the object into the ground. The label l(p) assigned to the point p

is:

l(p) =


1 if (xp,yp) ∈ F ∧|pz− Imin(xp,yp)| ≤ δF ,

1 if (xp,yp) ∈ F̄ ∧ |pz− Imin(xp,yp)| ≤ δF̄ ,

0 otherwise.

In Figure 3.7b we illustrate ground detected after this operation of propagating the labels over the Imin

image.

On 3D point clouds

In this section, we avoid the use of a BEV image, that squeezes a part of the information available during
projection. In this case, a graph is defined directly on the 3D point cloud. The nodes of the graph G
are the 3D points. The most popular ways to connect the points are based on how neighbourhoods are
often defined in the context of 3D point clouds. These are k-NN and ϵ-ball. In the first case, each point
is connected with its first k nearest neighbours, while in the second case, each point is connected with
any other point closer than ϵ. Clearly, the choice of the neighbourhood should be based on the specific
application. As aforementioned, in the case studied, the scanner is placed on the top of a car, and it spins
around its axis. Hence, another definition of neighbourhoods could be inherited from this configuration.
In the proposed solution, we consider the spherical projection. Essentially, each point is projected in the
spherical grid (Section 2.4.3) and then connected to every other point projected in neighbouring pixels.
Intuitively, this is a way to pull back the 4-connection defined on the spherical image to the 3D point
cloud. In Figure 3.8 we show the way we establish the connections using spherical projection.
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Figure 3.8 The graph is obtained projecting points on the spherical grid S2.

(a) Input point (b) 3D graph

Figure 3.9 An example of the graph built on the 3D point cloud. The colours of the points change
according to the class.

Unfortunately, this kind of connection suffers from occlusion effects. In fact, it could happen that
one vertical object in the foreground occludes objects in the background, blocking connections between
points in the background objects. We try to mitigate this effect adding to this graph also the k-NN graph.
Moreover, we prevent connections with outliers removing all edges longer than five meters. In Figure 3.9
we illustrate an example of the 3D graph obtained starting from an input point cloud.

Figure 3.10 An example of scanner

Once determined the graph G = (V,E), we need to define a weight function w : E→ R, that we can
use to split points on the ground from others. Since, we are going to extract λ-flat zones on the weighted
graph (G,w), we look for a w that assigns a high value to edges connecting ground and not-ground nodes.
In the previous case, we measured the difference along the z coordinate between two pixels. This time we
cannot adopt the same approach. In fact, looking at a vertical profile, as in Figure 3.10, we observe that a
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slow variation along z appears when the laser hits vertical objects. Consequently, if we used a weight
function that takes into account only the difference in the elevation between two points, then there would
be no λ value that splits the ground from the rest. For this reason, we propose to include into the weight
function information related to both elevation z of the points and the local horizontality of the surface. Let
introduce the function w using the example in Figure 3.10. Assume that p,q ∈ P are two neighbouring
points and let np,nq ∈ S2, the corresponding vectors normal to the local scanned surface at point p and q.
Furthermore, let us assume that p belongs to the ground while q represents a point on a wall. In order to
assign a considerable value to the edge (p,q), we can look at the ratio r(p) = pz

|⟨np,ẑ⟩| . This ratio goes to
infinity as ⟨np, ẑ⟩ goes to zero. To eliminate the problem of defining the ratio when ⟨np, ẑ⟩= 0, we can
apply a logistic function f(x;k,x0) = 1

1−exp(−k(x−x0)) , to the value |⟨np, ẑ⟩|. In Figure 3.11, we illustrate
how the logistic function changes when we alter the parameters k or x0.
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Figure 3.11 Logistic function with varying values of parameters k and x0.

Thus, we define the weight function w(p,q) =
∣∣∣ pz

f(|⟨np,ẑ⟩|) −
qz

f(|⟨nq ,ẑ⟩|)

∣∣∣. The main idea behind, is that
if the points p,q both belong to a horizontal surface, then the weight of the edge (p,q) is proportional to
the difference between the elevation of the two points. This is a nice property of w that will be useful later
on during the choice of the λ. On the contrary, if one of the two belongs to a vertical surface, then the
weight becomes high.

The consecutive step is to compute λ flat zones of the weighted graph (G,w). In our experiments, we
choose a value of λ = 0.20m. As introduced before, our choice is because, given two points p,q lying on
a horizontal surface, w assigns to (p,q) a weight proportional to the difference in the elevation of the two
points. Accordingly, assuming the ground as a horizontal surface, we have chosen a threshold comparable
with the height of a step. In Figure 3.12 we show an example of λ-flat zones obtained. The weighted
function defined above groups together points belonging to big flat horizontal surfaces, while vertical
objects are shattered in small connected components. At this point, we have to analyse the obtained
cluster in order to merge connected components belonging to the ground. So, we first sort the connected
components by cardinality in decreasing order. Then, we assume that the biggest connected component
belongs to the ground. This assumption is motivated by the fact that normally the ground is the biggest
scanned horizontal object in a scene, and the great majority of points belong to it. After that, we iterate
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Figure 3.12 An example of the λ-flat-zones with λ = 0.20m. Different colours mean different connected
components. Please remark that function w allows to easily extract horizontal surfaces, for example roads,
terrain or roof of cars, while vertical objects are shattered in micro components.

over the other connected components starting from the second to the smallest and at each time we measure
if the ground and the connected component are compatible. We use RANSAC algorithm to fit a plane
touching both the ground and the component. If more than half of the points in the candidate connected
component are inliers for the fitted plane, then we mark the component as compatible with the ground,
otherwise we discard it. Only at the end of all the iterations, the components compatible with the ground
are added to the ground.

3.4 Experiments on ground detection

We compare our two previously proposed methods against two state-of-the-art algorithms and a naive
RANSAC method that we implemented. We test the methods on the Semantic KITTI dataset (Behley
et al., 2019) that we introduced in Section 2.6.1. We include RANSAC in the analysis as a baseline
benchmark. The first method we pick is CSF (Zhang et al., 2016) because it proved great adaptability to a
wide range of different environments, either urban and rural. In addition, we use an FCNN method similar
to the one proposed in Velas et al. (2018). The main difference with the original is the network used.
Instead of employing the architecture proposed by the authors, we use a U-Net architecture Ronneberger
et al. (2015), for its great versatility to different applications. To train and validate the U-Net model, we
select one scan over ten in the sequences from 0 to 10 except for the sequence 08. We adopt this last
sequence as a test set for all the methods. The split between training and test has been done following
directives in Behley et al. (2019).

Since the dataset does not contain an explicit ground class, we derived it by aggregating multiple
classes. Furthermore, to have an overview of classification errors made in the predictions, we created a
total of eight categories aggregating all classes. The categories that we created are Ground, Building,
Vehicles, Cycles, Person, Vegetation, Fixed-Objects, and Moving Objects. In Table 3.1 we list for each
category all the classes composing it.

We use the following metrics to benchmark our experiments:

• Precision: P = T P
T P +F P

• Recall: R = T P
T P +F N
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TABLE 3.1
LIST OF THE SEMANTICKITTI CLASSES BELONGING TO EACH CATEGORY THAT WE

IDENTIFIED.

Ground Building Vehicles Cycles Person Vegetation Fixed-Objects Moving-Objects
Road
Parking
Sidewalk
Other-
Ground
Lane-
Marking
Terrain

Building
Fence
Other-
Structure

Car
Bus
On-
Rails
Truck
Other-
Vehicle

Bike
Motorbike
Cyclist
Motor-
cyclist

Person Vegetation
Trunk

Pole
Traffic-
sign
Other-
Object

Mov-Car
Mov-Cyclist
Mov-Person
Mov-Motor-
cyclist
Mov-On-rails
Mov-Bus
Mov-Truck
Mov-Other-
vehicle

• Accuracy: A = T P +T N
T P +T N+F P +F N

• F1 Score : F1 = 2∗ P ∗R
P +R

• Intersection over Union (IoU) also called Jaccard Index: IoU(A,B) = |A∪B|
|A∩B|

where, TP,TN,FP,FN indicate respectively the number of true positives, true negatives, false
positives and false negatives, and A,B are any two sets. The sets used to compute the Jaccard Index are
the set of predictions and the ground truth. In all the cases, the scores have been measured using the
predictions on the 3D point clouds. In Table 3.2 we list the scores obtained by the methods.

TABLE 3.2
QUANTITATIVE RESULTS OBTAINED ON SEQUENCE 08 OF SEMANTICKITTI DATASET FOR

THE GROUND DETECTION TASK

Method F1 Recall Precision Accuracy IoU
RANSAC 0.922 0.917 0.927 0.930 0.856
CSF (Zhang et al., 2016) 0.937 0.976 0.900 0.940 0.881
BEV λ-FZ (This Thesis) 0.945 0.960 0.930 0.949 0.895
3D λ-FZ + RANSAC (This Thesis) 0.936 0.930 0.943 0.943 0.880
FCNN (Velas et al., 2018) 0.951 0.921 0.982 0.957 0.907

We divide the table in two parts. In the first we list the unsupervised methods and in the second
we report the only supervised approach. From the results, we can see that all the methods analysed
achieve great performances, and the FCNN achieve the highest score in almost all the metrics. Note that
our proposed BEV λ-FZ method shows a good trade off between precision and recall, and among the
unsupervised methods is the one with the highest Jaccard Index. Moreover, this method needs just few
parameters to work and this makes it much easier to explain why it fails compared to FCNN. Along with
these metrics, we analyse the confusion matrix to evaluate which categories are confused with the ground.
For this reason, in Figure 3.13 we show the confusion matrices of all the approaches. Clearly, the returned
prediction is binary, and the points predicted as not-ground are classified as “other". Looking at the
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matrices, we can see that the vegetation is, in general, the class with the highest rate of points classified as
ground. This can be explained by the fact that in this category there are low plants and separating them
from terrain with propagation approaches is cumbersome.

(a) RANSAC (b) BEV λ-FZ (c) 3D λ-FZ + RANSAC

(d) CSF (e) FCNN

Figure 3.13 The confusion matrices help to analyse the misclassifications between Ground and other
aggregated categories. (a) Naive RANSAC (b) BEV λ-quasi flat zones (c) 3D λ-quasi flat zones +
RANSAC (d) CSF (e) FCNN based approach.

Let now analyse qualitatively the results and see some examples in which our proposed methods fail.
To visualize the predictions in the following figures, we use the colour code hereby:

1. Green means True Positive

2. Red means False Positive

3. Blue means False Negative

4. Gray means True Negative

Let start presenting an example in which the 3D-FZ method fails. In Figure 3.14 we illustrate the
predictions achieved by our two methods. Note that the approach on the 3D graph does not detect a part of
the sidewalk (center image). To find what causes the problem, let us analyse Figure 3.15, which shows the
λ-flat zones of the 3D graph. Note that, although the sidewalk is virtually flat, it is segmented into three
parts. The over-segmentation is generated by the weight function that takes high values even when there
are minor changes of orientation between neighbouring points. This happens because we want to limit the
chaining effect produced when measuring only the difference along the z coordinates of two points. In
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this case, the merging step misses identifying these points as ground. Moreover, in the aforementioned
example, we can see that the weight function we employed does not completely prevent the chaining
effect. Take for example the three steps detected as ground in the top of Figures 3.14a and 3.14b. Looking
at Figure 3.15 once again, we can observe that the steps are in the same quasi-flat zone of the road, and
this is clearly caused by the chaining effect. The identical thing happens in Figure 3.17, in which we
illustrate the prediction carried out by our BEV approach. Here the stairs are classified as ground because
the λ used is too large to detect the steps. A second example with stairs is illustrated in Figure 3.17,
where we also show the predictions carried out by CSF and U-Net. In any case, it is not straightforward to
prevent this kind of error. Using a smaller value of λ could circumvent it, but at the same time, we risk
cutting off some other zones on the ground. Finally, the last example that we describe is the one in Figure
3.18. Here, the BEV λ-FZ does not detect a zone of the garden. The error is caused by the fact that the
zone is disconnected from the other ground by a bush. Recall that our method labels as ground all the
λ-flat zones whose intersection with the ground marker around the car is not empty. Hence, in this case,
the garden cannot be detected as ground because it is not contained in any λ-flat zone connected with the
ground marker. From the application point of view, the bush would prevent the car from reaching this
ground zone. Thus, missing it is not critical for the application. Nonetheless, from our experience, this
kind of missing detection happens only in isolated zones of the scene that cannot be easily reached. This
is confirmed also by the high recall rate of the method, as shown in Figure 3.19.

(a) BEV λ-FZ (b) 3D λ-FZ + RANSAC

Figure 3.14 Example 3D approach also fails to detect as ground a part of the sidewalk. Green points are
true positives, red ones are false positives, blue false negatives and grey ones are true negatives.
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Figure 3.15 Quasi Flat Zones

Figure 3.16 λ-flat-zones obtained by the method 3D λ-FZ + RANSAC. Each colour corresponds to a
different connected component.

(a) BEV λ-FZ (b) 3D λ-FZ + RANSAC

(c) CSF (d) FCNN

Figure 3.17 In this example BEV λ-FZ detects a stair nearby the road as ground. The λ used in this
case is too big to catch the step. Green points are true positives, red ones are false positives, blue false
negatives and grey ones are true negatives.
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(a) BEV λ-FZ (b) 3D λ-FZ + RANSAC

(c) CSF (d) FCNN

Figure 3.18 BEV λ-FZ considers as ground the biggest flat zone in the projection image. Sometimes this
method does not recover all the spots. In this example, it does not detect a piece of the garden behind a
bush because it is not connected with the road. Green points are true positives, red ones are false positives,
blue false negatives and grey ones are true negatives.

(a) BEV λ-FZ (b) 3D λ-FZ + RANSAC

(c) CSF (d) FCNN

Figure 3.19 Predictions obtained by the four analysed methods. Green points are true positives, red ones
are false positives, blue false negatives and grey ones are true negatives. In this is an example FCNN fails
to detect all the points and in particular points on the terrain.
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3.5 Road detection

Modern day LIDARs are multi-layer 3D laser scanners that enable a 3D-surface reconstruction of large-
scale environments. They provide precise range information while poorer semantic information as
compared to colour cameras. They are thus employed in obstacle avoidance and SLAM (Simultaneous
localization and Mapping) applications. The number of layers and angular steps in elevation & azimuth of
the LIDAR characterizes the spatial resolution. With the recent development in the automated driving
(AD) industry, the LIDAR sensor industry has gained increased attention. LIDAR scan-based point cloud
datasets for AD such as KITTI usually were generated by high-resolution LIDAR (64 layers, 1000 azimuth
angle positions (Fritsch et al., 2013)), referred to as a dense point cloud scans. In the recent nuScenes
dataset for multi-modal object-detection a 32-Layer LIDARs scanner has been used for acquisition (Caesar
et al., 2020). Another source of datasets are large-scale point clouds which achieve a high spatial resolution
by aggregating multiple closely spaced point clouds, aligned using the mapping vehicle’s pose information
obtained using GPS-GNSS based localization and orientation obtained using inertial moment units (IMUs)
(Roynard et al., 2018). Large-scale point clouds are employed in the creation of high-precision semantic
map representation of environments and have been studied for different applications such as detection
and segmentation of urban objects (Serna and Marcotegui, 2014). We shall focus on the scan-based point
cloud datasets in our study.

Road segmentation is an essential component of autonomous driving tasks. In complement with
obstacle avoidance, trajectory planning and driving policy, it is a key real-time task to extract the drivable
free space as well as determine the road topology. Recent usage and proliferation of Deep Neural Networks
(DNN) for various perception tasks in point clouds has opened up many interesting applications. A few
applications relating to road segmentation include, binary road segmentation (Caltagirone et al., 2017)
where the goal is to classify the point cloud set into road and non-road 3D points. Ground extraction (Velas
et al., 2018) regards the problem of obtaining the border between the obstacle and the ground. Finally,
a recent benchmark for semantic segmentation of point clouds was released with the Semantic-KITTI
dataset by Behley et al. (2019). In Rangenet++ Milioto et al. (2019) evaluate the performance of U-Net &
Darknet architectures for the task of semantic segmentation on point clouds. This includes the road scene
classes such as pedestrians, cars, sidewalks, vegetation, road, among others.

3.5.1 Motivation & Contributions

We first observe that different LIDAR sensor configurations produce different distributions of points in
the scanned 3D point cloud. The configurations refer to, LIDAR position & orientation, the vertical field-
of-view (FOV), angular resolution and thus number of layers, the elevation and azimuth angles that the
lasers scan through. These differences directly affect the performance of deep learning models that learn
representations for different tasks, such as semantic segmentation and object detection. Low-resolution 16
layer LIDARs have been recently compared with 64 layer LIDARs (del Pino et al., 2018) to evaluate the
degradation in detection accuracy, especially w.r.t distance. From Table 3.3 we observe that the HDL-64
contains 4x more points than VLP-16. This increases the computational time & memory requirements
(GPU or CPU) to run the road segmentation algorithms. Thus, it is a computational challenge to process a
large amount of points in real-time.
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TABLE 3.3
CHARACTERISTICS OF DIFFERENT LIDARS. THE PRICES ARE REPRESENTATIVE.

LIDAR Velodyne HDL-64 Velodyne HDL-32 Velodyne VLP-16

Azimuth
[0◦,360◦)
step 0.18◦

[0◦,360◦)
step 0.1◦−0.4◦

[0◦,360◦)
step 0.2◦

Elevation
[−24.3◦,2◦]

step 1-32 : 1/3◦

step 33-64 : 1/2◦

[−30.67◦,+10.67◦]
1.33◦ for 32 layers

[−15◦,15◦]
2◦ for 16 layers

Price (as reviewed on 2019) ∼ 85 k$ ∼ 20 k$ ∼ 4 k$
Effective Vertical FOV [+2.0◦,−24.9◦] [−30.67◦,+10.67◦] [+15.0◦,−15.0◦]

Angular Resolution (Vertical) 0.4◦ 1.33◦ 2.0◦

Points/Sec in Millions ∼ 1.3 ∼ 0.7 ∼ 0.3
Range 120m 100m 100m
Noise ±2.0cm ±2.0cm ±3.0cm

The objective of this study is to examine the effect of reducing spatial resolution of LIDARs by
subsampling a 64-scanning layers LIDAR on the task of road segmentation. This is done to simulate the
evaluation of low-resolution scanners for the task of road segmentation without requiring any pre-existing
datasets on low-resolution scanners. The key contribution and goal of our experiment are: First, to evaluate
the impact of the point cloud’s spatial resolution on the quality of the road segmentation task. Secondly,
determine the effect of subsampling on different point cloud representations, namely on the Bird Eye
View (BEV) and Spherical View (SV), for the task of road segmentation. For BEV representation we use
the existing LoDNN (LIDAR Only Deep Neural Networks) architecture (Caltagirone et al., 2017), while
for SV we use a simple U-net architecture. Figure 3.20, provides a global overview of the methodology
used. Finally, we propose to use surface point normals as complementary features to the ones already
used in current state-of-the-art research. Results are reported on the KITTI road segmentation benchmark
(Fritsch et al., 2013), and the newly introduced Semantic KITTI dataset by Behley et al. (2019).

3.5.2 Related Work

LoDNN (Caltagirone et al., 2017) is a Fully Convolutional Network (FCN) based binary segmentation
architecture, with encoder containing sub-sampling layers, and decoder with up-sampling layers. The
architecture is composed of a core context module that performs multi-scale feature aggregation using
dilated convolutions. In the class of non-deep learning methods, Chen et al. (2017) build a depth image in
spherical coordinates, with each pixel indexed by a set of fixed azimuth values (ϕ) and horizontal polar
angles (θ), with intensity equal to the radial distances (r). Authors assume for a given scanner layer (a
given ϕ) all points belonging to the ground surface shall have the same distance from the sensor along the
x axis.

Lyu et al. (2019) propose a FCN based encoder-decoder architecture with a branched convolutional
block called the ChipNet block. It contains filters with (1×1×64×64, 3×3×64×64, 3×3×64×64)
convolutional kernels in parallel. They evaluate the performance of road segmentation on Ford dataset and
KITTI benchmark on a Field-Programmable Gate Array (FPGA) platform. The work closest to our study
is by del Pino et al. (2018), where they compare a high-resolution 64-layer LIDAR with a low-resolution
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system, 16-layer LIDAR, for the task of vehicle detection. They obtain the low resolution 16-layer scans
by sub-sampling the 64-layer scans. The results demonstrate that their DNN architecture on low resolution
outperforms their geometric baseline approach. They also report similar tracking performance w.r.t their
high-resolution HDL-64 sensor at close range.

Additionally, Jaritz et al. (2018) study joint sparse-to-dense depth map completion and semantic
segmentation using NASNet architectures. They work with varying densities of points reprojected into
the Front View (FV) image, that is the image domain of the camera sensor. Authors achieve an efficient
interpolation of depth to the complete FOV using features extracted using early and late fusion from the
RGB-image stream.

3.6 Methodology

Figure 3.20 Overall methodology to evaluate the performance of road segmentation across different
resolutions. See Figures 3.22 for more details on the architectures used.

In our study, each LIDAR scan is projected on an image. The two projections we consider are the
Bird’s-eye View (BEV) and Spherical View (SV) introduced in section 2.4.3. Concerning BEV images,
we define a grid of 20 meters wide, y ∈ [−10,10], and 40 meters long, x ∈ [6,46], as in Caltagirone
et al. (2017). This grid is divided into cells of size 0.10×0.10 meters. Within each cell, we evaluate six
features: number of points, mean reflectivity, and mean, standard deviation, minimum, and maximum
elevation. Each point cloud is thus projected and encoded in a tensor of 400×200×6, where 400,200
are the BEV image height and width. We refer to the set of these six features as BEV Classical Features
(see Figure 3.25).

Regarding the SV grid, the size of the cells is generally chosen according to the Field Of View (FOV)
of the scanner. For instance, Behley et al. (2019) project point clouds to 64×2048 pixel images by varying
the azimuth angle (θ) and vertical angle (φ) into two evenly discretized segments. In our case, we use a
slightly different version of the SV. Instead of evenly dividing the vertical angle axis and associating a
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point to a cell according to its vertical and azimuth angles, we retrieve for each point the scanner layer
that acquired it, and we assign the cell according to the position of the layer in the laser stack and the
value of the azimuth angle. Basically, for a scanner with 64 layers, we assign the point x to a cell in row i

if x has been acquired by the i-th layer starting from the top. We decided to use this approach because in
the scanner the layers are not uniformly spaced and using standard SV projection causes different points
to collide on the same cell and strips of cells are empty in the final image as illustrated in Figure 3.21. A
similar approach to ours has also been used in Triess et al. (2020). In subsection 3.6.2, we describe how
we associate each point to the layer that captured it. However, we underline that our method relies on the
way the points are ordered in the point cloud array.

Finally, following Velas et al. (2018), in each grid cell we compute the minimum elevation, mean
reflectivity and minimum radial distance from the scanner. This information is encoded in a three-channel
image. Since these three features are already used in the state of the art for the ground segmentation task,
in SV we refer to SV Classical Features, as the set of SV images composed by minimum elevation, mean
reflectivity and minimum radial distance.

Standard Projection

Our Projection

Figure 3.21 SV projection: two cropped images showing the difference between the standard projection,
and our projection.

Once extracted these feature maps we use them as input to train DNNs for binary segmentation. We
trained LoDNN model for the case of BEV projection, and U-Net model in the case of SV projection.

3.6.1 DNN models

The LoDNN architecture from Caltagirone et al. (2017) is a FCN designed for semantic segmentation,
it has an input layer that takes as input the BEV images, an encoder, a context module that performs
multi-scale feature aggregation using dilated convolutions and a decoder which returns confidence map for
the road. Instead of Max Unpooling layer1 specified in Caltagirone et al. (2017), we use a deconvolution
layer (Zeiler et al., 2010). Other than this modification, we have followed the author’s implementation of
the LoDNN. The architecture is reported in Figure 3.22a.

The U-Net architecture (Ronneberger et al., 2015), is a FCN designed for semantic segmentation.
In our implementation of U-Net, the architecture is made of three steps of downsampling and three

1In the context of DNN, a layer is a general term that applies to a collection of ’nodes’ operating together at a specific depth
within a neural network. In the context of LIDAR scanners, the number of scanning layer refers to the number of laser beams
installed in the sensor.
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steps of upsampling. During the downsampling part, a 1× 2 Max Pooling layer is used to reduce the
features spatial size. In order to compare the different cases (64/32/16 scanning layers) among them,
the 64 scanning layers ground truth is used for all the cases. For this purpose, an additional upsampling
layer of size 2×1 is required at the end of the 32-based architecture and two upsampling layers at the
end of the 16. In fact, the size of SV images for the 32 scanning layer is 32×2048. Thus, without an
additional upsampling layer, we would obtain an output image whose size is 32×2048. Similarly, for the
16 scanning layer, we add two upsampling layers of size 2×1 to go from 16×2048 to 64×2048 pixels
output images. Figures 3.22b, 3.22c & 3.22d illustrate the three architectures used.

In both cases, a confidence map is generated by each model. Each pixel value specifies the probability
of whether the corresponding grid cell of the region belongs to the road class. The final segmentation is
obtained by thresholding at 0.5 the confidence map.

3.6.2 Sub-sampling point clouds to simulate low resolution

As far as we know, currently there are no dataset available containing scans of the same environment
taken simultaneously with scanners at different resolutions. Thus, we simulated the 32 and 16 layer scans
removing layers from 64 scans. To achieve this, we first need to associate each point within each 64 scan
to the scanning layer it was captured from. We exploit the special ordering in which point clouds have
been stored within the KITTI datasets. Figure 3.23 shows the azimuth and polar angles of the sequence
of points of a single scan. We observe that the azimuth curve contains 64 cycles over 2π degrees, while
the polar curve globally increases. Thus, a layer corresponds to a round of 2π degrees in the vector of
azimuths. Scanning layers are stored one after another starting from the uppermost layer to the lowermost
one. As we step through sequentially 2π in the azimuth angle (two zero crossings), we label each point to
be within the same layer. Once retrieved the layers, we can obtain a 32 scan removing one layer out of
two from the 64 scan, and obtain a 16 scan removing three layers out of four. The size of SV input images
changes when we remove layers. We move from 64×2048 pixels for a 64 layer scanner to 32×2048
pixels for the 32 layer and to 16×2048 pixels for the 16 layer.

3.6.3 Surface normal extraction

Along with features used in the state of the art, we estimate surface normals from the image containing
radial distances in the SV. Our method is inspired by the work of Nakagawa et al. (2015) where the authors
estimate surface normals using depth image gradients. Let p = (φ,θ) a couple of angles in the spherical
grid and let R be the image containing the radial distances. We can associate to p a point P in the 3D
space using the map Ψ : [0,2π)× [0,π]→ R3 defined as

Ψ(φ,θ) =


x = R(φ,θ)cos(φ)sin(θ),

y = R(φ,θ)sin(φ)sin(θ),

z = R(φ,θ)cos(θ).

(3.1)

Now, let pφ = (φ+∆φ,θ) and pθ = (φ,θ +∆θ) respectively the vertical and the horizontal neighbouring
cells. They have two corresponding points Pφ and Pθ in the 3D space, as well. Since P , Pφ and Pθ

compose a local 3D plane, we can estimate the normal vector ∂Ψ
∂φ ×

∂Ψ
∂φ at P using the two vectors vφ,vθ
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(a) LoDNN Architecture by authors Caltagirone et al. (2017) in our experiments on BEV.
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(b) U-Net architecture used for the 64 layer scanner.
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(c) U-Net architecture used for the 32 layer scanner.
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(d) U-Net architecture used for the 16 layer scanner.

Figure 3.22 (a) LoDNN Architecture used on BEV images. (b-d) U-Net Architectures used on SV images.
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Figure 3.23 Plot containing the azimuths and vertical angles for a single point cloud.

Figure 3.24 Relationship between adjacent pixels in the radial distance image I and adjacent points in the
3D space. Pixels p, pφ and pθ are associated to 3D points P , Pφ and Pθ. Since P , Pφ and Pθ compose a
local plane, we compute their 3D gradients as tangent vectors vφ, vθ from a radial distance value at p, pφ

and pθ.

spanning the local surface containing P , Pφ and Pθ, as in Figure 3.24. We compute vφ using the values
of the radial distance image I at pixels p, pφ as

vφ(φ,θ) =


dφI(φ,θ)cos(φ)sin(θ)+I(φ,θ)cos(φ)cos(θ)
dφI(φ,θ)sin(φ)sin(θ)+I(φ,θ)sin(φ)cos(θ)

dφI(φ,θ)cos(θ)−I(φ,θ)sin(θ)


where

dφI(φ,θ) =I(φ+∆φ,θ)−I(φ,θ)
∆φ

=I(pφ)−I(p)
∆φ

≈ ∂I
∂φ

(φ,θ).
(3.2)

Similarly vθ is obtained using values at p and pθ as:

vθ(φ,θ) =


dθI(φ,θ)cos(φ)sin(θ)−I(φ,θ)sin(φ)sin(θ)
dθI(φ,θ)sin(φ)sin(θ)+I(φ,θ)cos(φ)sin(θ)

dθI(φ,θ)cos(θ)


where

dθI(φ,θ) =I(φ,θ +∆θ)−I(φ,θ)
∆θ

=I(pθ)−I(p)
∆θ

≈ ∂I
∂θ

(φ,θ).
(3.3)
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The approximated normal vector is n = vφ×vθ. Once the surface point normals are estimated in the
SV, we get them back to 3D-cartesian coordinates, and subsequently project them onto the BEV. This adds
three supplementary channels to the input images. Figure 3.26 shows the results obtained on SV image
with 64 layer. For each pixel we mapped the coordinates (x,y,z) of the estimated normals to the RGB
color map, so x→R, y→G and z→B. Please remark that a FCN can not extract this kind of features
through convolutional layers starting from SV classic features. In fact, to extract this kind of information
using convolution the FCN should be aware of the position of the pixel inside of the image, i.e. know
the angles (φ,θ), but this would break the translational symmetry of convolutions. This enforces prior
geometrical information to be encoded in the features maps that are the input of the DNN. Finally, we
also remark that the normal feature maps are computationally efficient since it is a purely local operation
in the spherical coordinates.
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Figure 3.25 An example of features projected on the BEV in case of a 64 layers scanner. Surface normals
are computed on SV and projected to BEV.

3.7 Experiments & Analysis

The binary road segmentation task is evaluated on two datasets : 1. the KITTI road segmentation Fritsch
et al. (2013), 2. Semantic-KITTI dataset Behley et al. (2019). The input information to the DNNs comes
purely from point clouds and no camera image information was used. The BEV and SV representations
were used over the point clouds from KITTI road-dataset, while only the SV representation over Semantic-
KITTI. The BEV ground truth information for semantic-KITTI did not currently exist at the time of
writing this thesis, and thus no evaluation was performed. The projection of the 3D labels to BEV image
in semantic-KITTI produced sparsely labelled BEV images and not a dense ground truth as compared to
the BEV ground truth in Figure 3.25. The SV ground truth images have been generated by projecting 3D
labels to 2D pixels. We consider a pixel as road if at least one road 3D point is projected on the pixel.
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Figure 3.26 A crop example of features projected on the SV in case of a 64 layers scanner. Surface
normals are estimated from radial distance image. The last image below is the ground truth for this case.

Training : Adam optimizer with initial learning rate of 0.0001 is used to train the models. The models
were trained using an Early-Stopping. We used the Focal loss with gamma factor of γ = 2 Lin et al.
(2017), thus the resulting loss is L(pt) =−(1−pt)γ log(pt), where

pt =

p if y = 1,

1−p otherwise.

The focal loss was useful in the KITTI Road segmentation benchmark. The road class was measured to be
around 35% of the train and validation set, in the BEV, while around 5% for the SV. This drastic drop in
the road class in SV is due to the restriction of the labels to the camera FOV. While for Semantic-KITTI
we observed lesser level of imbalance between road and background classes.

Metrics : Along with Precision, Recall and F1 scores defined in Section 3.4, we also measured the
Average Precision that is defined as

AP =
∑

n

Pn(Rn−Rn−1) (3.4)

where, P = T P
T P +F P R = T P

T P +F N and Pn, Rn are precision and recall at n-th threshold. In all the cases,
the scores have been measured on the projected images, and we report them in Table 3.4.

Evaluating different resolutions: When subsampling point clouds, the input SV image size changes
accordingly. For example, after the first subsampling, the input SV image now has a size of 32×2048.
In order to get a fair comparison, the evaluation of all results is made at the original full resolution at
64×2048. In such a case, the number of layers in the U-Net architectures has been increased to up-sample
the output segmentation map to the full resolution. This leads to 3 different architectures for 16, 32 and 64
layers, see Figures 3.22b, 3.22c & 3.22d. Three different models were trained on the different SV images.
In the Semantic KITTI dataset, the evaluation has been done over the road class. The BEV image on the
other hand remains the same size with subsampling. Though, subsampling in BEV introduces more empty
cells as certain layers disappear.
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3.7.1 KITTI road estimation benchmark

The KITTI road segmentation dataset consists of three categories: urban unmarked (UU), urban marked
(UM), and urban multiple marked lanes (UMM). Since the test dataset’s ground truth is not publicly
available, 289 training samples from the dataset are split into training, validation and test sets for the
experiments. Validation and test sets have 30 samples each and the remaining 229 samples are taken as
training set.

Ground truth annotations are represented only within the camera perspective for the training set.
We use the ground truth annotations provided by authors Caltagirone et al. (2017) in our experiments.
The BEV ground truth was generated over the xy-grid within [−10,10]× [6,46] with squares of size
0.10×0.10 meters.

Figures 3.27, 3.28 illustrate the Precision-Recall (PR) curves obtained on BEV images and SV images.
The performance metrics for the different resolutions (64/32/16 scanning layers) of the scanners are
reported, for both the classical and classical-with-normal features. At full resolution, the classic features
obtain state-of-the-art scores as reported by authors Caltagirone et al. (2017). In Table 3.4, we observe
that with subsampling and reduction in the number of layers, there is a degradation in the AP along
with metrics. With the addition of the normal features, we observe an improvement in AP across all
resolutions/number of layers.
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Figure 3.27 KITTI Road Segmentation with BEV images: Precision-Recall Curve for various features
with and without sub-sampling.

3.7.2 Semantic-KITTI

The Semantic-KITTI dataset is a recent dataset that provides a pointwise label across the different
sequences from KITTI Odometry dataset, for various road scene objects, road, vegetation, sidewalk and
other classes. The dataset was split into train and test datasets, considering only the road class. To reduce
the size of the dataset, and temporal correlation between frames, we sampled one in every ten frames over
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Figure 3.28 KITTI Road Segmentation with SV images: Precision-Recall Curve for various features with
and without sub-sampling.

TABLE 3.4
RESULTS OBTAINED ON THE TEST SET OF THE KITTI ROAD SEGMENTATION DATASET IN

THE BEV AND SV.

KITTI Road-Seg, BEV AP F1 Recall Precision
Classical (64) (Caltagirone et al., 2017) 0.981 0.932 0.944 0.920
Classical + Normals (64) 0.983 0.935 0.945 0.926
Classical (32) 0.979 0.920 0.926 0.914
Classical + Normals (32) 0.984 0.934 0.937 0.930
Classical (16) 0.978 0.918 0.920 0.915
Classical + Normals (16) 0.981 0.927 0.936 0.919
KITTI Road-Seg, SV AP F1 Recall Precision
Classical (64) 0.960 0.889 0.914 0.889
Classical + Normals (64) 0.981 0.927 0.926 0.929
Classical (32) 0.965 0.896 0.915 0.878
Classical + Normals (32) 0.981 0.927 0.928 0.927
Classical (16) 0.960 0.888 0.900 0.875
Classical + Normals (16) 0.974 0.906 0.914 0.899

the sequences 01-10 excluding the sequence 08, over which we reported our performance scores. The
split between training and test has been done following directives in Behley et al. (2019).

With the decrease in vertical angular resolution by subsampling the original 64 layers SV image, we
observe a minor but definite drop in the binary road segmentation performance (in various metrics) for
sparse point clouds with 32 and 16 scanning layers. This decrease is visible both in Table 3.5 but also in
the Precision-Recall curve in Fig. 3.29. With the addition of our normal features to the classical features
we do observe a clear improvement in performance across all resolutions (16, 32 and 64 scanning layers).
Geometrical normal features channel as demonstrated in Fig. 3.26 show their high correlation w.r.t the
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road class region in the ground-truth. Road and ground regions represent surfaces which are low elevation
flat surfaces with normal’s homogeneously pointing in the same directions.

TABLE 3.5
RESULTS OBTAINED ON THE TEST SET OF THE SEMANTIC-KITTI DATASET IN THE SV.

Semantic KITTI-SV AP F1 Rec Prec
Classical (64) 0.969 0.907 0.900 0.914
Classical + Normals (64) 0.981 0.927 0.927 0.927
Classical (32) 0.958 0.897 0.902 0.892
Classical + Normals (32) 0.962 0.906 0.906 0.906
Classical (16) 0.944 0.880 0.879 0.882
Classical + Normals (16) 0.948 0.889 0.894 0.883

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Recall

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Pr
ec

isi
on

SemanticKITTI - SV - Precision Recall Curve

Classic
Classic + Normals
Classic (32)
Classic + Normals (32)
Classic (16)
Classic + Normals (16)

Figure 3.29 SemanticKITTI with SV images: Precision-Recall Curve for various features with and
without sub-sampling.

3.8 Conclusions

In the first part of this chapter, we have shown two novel λ-flat-zones based algorithms for Ground
Detection. The first works projecting points on a BEV, while the second builds a graph connecting
points in the 3D space and using normals to assign weights. Moreover, we have compared our methods
with two state-of-the-art methods (CSF and FCNN) and a naive RANSAC on the SemanticKITTI
dataset. Results show that our methods are comparable with other two state-of-the-art algorithms,
even though FCNN is more precise. In our opinion, the few parameters used and the greater intelli-
gibility in case of error compared to FCNN make our algorithms good candidates for potential applications.

Concerning the second part, in this study we evaluate the effect of subsampled LIDAR point clouds
on the performance of prediction for segmentation of road class. This is to simulate the evaluation of
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low-resolution scanners for the task of road segmentation. As expected, reducing the point cloud resolution
reduces the segmentation performances. Given the intrinsic horizontal nature of the road, we propose to
use estimated surface normals. These features cannot be obtained by a FCN using Classical Features as
input. We demonstrate that the use of normal features increases the performance across all resolutions
and mitigates the deterioration in performance of road detection due to subsampling in both BEV and SV.
Features based on normal information encode planarity of roads and are robust to subsampling.



4 Minimum Spanning Tree for data streams

Resumé

L’arbre couvrant de poids minimal (ACM) est l’une des structures de données les plus populaires utilisées
pour extraire des informations hiérarchiques des images. Ce chapitre traite de la construction de ACM en
streaming pour les images. Tout d’abord, nous nous concentrons sur le problème du calcul d’un ACM de
l’union de deux graphes avec une intersection non vide, puis nous montrons comment notre solution peut
être appliquée au streaming d’images. La solution proposée repose sur la décomposition des données en
deux parties. L’une est enregistrable et ne changera pas dans le futur. Elle peut être stockée ou utilisée pour
des traitements ultérieurs. L’autre, instable, nécessite des informations supplémentaires avant de devenir
stable. L’exactitude de l’algorithme proposé a été prouvée et confirmée dans le cas de la segmentation
morphologique d’images de télédétection.

4.1 Introduction

The minimum spanning tree (MST) is one of the most popular data structure used to extract hierarchical
information from images. This chapter addresses MST construction in streaming for images. First, we
focus on the problem of computing a MST of the union of two graphs with a non-empty intersection.
Then we show how our solution can be applied to streaming images. The proposed solution relies on
the decomposition of the data in two parts. One stable that does not change in the future. This can be
stocked or used for further treatments. The other unstable needs further information before becoming
stable. The correctness of proposed algorithm has been proven and confirmed in the case of morphological
segmentation of remote sensing images.

4.2 Streaming context

Let us start introducing the context and the mathematical elements we are going to deal with. Given an
image I , we can associate to it a 4-connected weighted graph G = (V,E,W ), with nodes V = {p1, . . . ,pn}
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being all image pixels and edges E = {e1, . . . ,em} between neighbouring pixels, and weighting edges
by color/intensity differences. For example, if we assume I to be a greyscale image we can define
W (e) = |I(p)− I(q)|, where e = (p,q) and I(p) is the image intensity at pixel p.

Briefly, a MST of a graph G is a subgraph T that spans all the nodes of G. It contains no cycle and
such that the sum of the weights of its edges is minimal. Prim and Kruskal are the most well-known
algorithms (Wu and Chao, 2004) to extract a MST from a graph G. The Kruskal method runs in
O(|E| log(|V |)) time in the worst case, where | · | is the function that measures the cardinality of a set.
Whilst the implementation of Prim that uses Fibonacci heap runs in O(|E|+ |V | log(|V |)). In the case of
graph associated to images, (Bao et al., 2014) developed a Prim-based algorithm. The authors propose a
method to compute a MST for a 8-bit depth that runs in O(|V |) time. Furthermore, Prim and Kruskal
algorithms have been applied also for clustering identification problems. See (Kim, 2009) for further
details. However, in this context the biggest challenge is the processing of huge data volumes. To solve
this problem, (Olman et al., 2009) proposed a parallel Prim-based algorithm to construct a MST. Similarly
to the methods we present later, their method split data in disjoint chunks. Extract a MST for each chunk
and a MST for bipartite graphs between two neighbouring chunks. Then merge all the MSTs together and
finally extract a MST of the complete data set from this union. Unlike the previous case, our methods split
the data in non-disjoint chunks. This give us as main advantage, the footprint of memory is reduced. The
graphs are decomposed between a stable and an unstable part. The first belongs to the final MST. So, it
can be stored, and it is not modified any more. From the second we have to extract the remaining of the
final MST. In this way, a streaming application can use data on the fly based on stable regions and the
footprint of memory is reduced. Therefore, bigger data sizes can be processed.

In this chapter, we focus our attention on streaming applications. Let us introduce the streaming
image problem. Consider the simple case of an image I decomposed in two blocks B1,B2 and sent one
after another. Let B1 be the first block arriving. Suppose that we compute its MST. The question is, how
to compute the MST for the whole image, I = B1∪B2, when B2 arrives and exploit the information
extracted from B1? Before tackling this problem, basic definitions from graph theory and notation used in
this chapter will be given.

Definition 4.1 (Graph Union). Let G1 = (V1,E1,W1) and G2 = (V2,E2,W2) two weighted undirected
graphs, such that

W1
∣∣
E1∩E2

≡W2
∣∣
E1∩E2

,

where W
∣∣
E

is the restriction of the function W to the set E. We call G1∪G2, the weighted undirected
graph G = (V,E,W ) with V = V1∪V2, E = E1∪E2, and for all e ∈ E:

W (e) =

W1(e) if e ∈ E1,

W2(e) if e ∈ E2.
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Figure 4.1 T0 =MST (I0) in red and T1 =MST (I1) in blue. ET0 and ET1 in bold and dashed, edges
linking common pixels (in emerald) and candidate to form cycles on the union of the two MST.

Definition 4.2. Given a weighted graph G = (V,E,W ) and a subset E′ ⊆E of the edges, we call G−E′

the graph (V,E \E′,W ) obtained by removing the edges E′ from G.

Furthermore,MST (·) indicates the function that returns a minimum spanning tree of G. E(G) is the
set of all edges in G. In order to simplify the notation, from now on we treat both images and graphs as
the same objects.

Finally, we come back to our question. Let Gt, a graph streaming over time. This is, at each interval t

a new block of the complete graph Bt = (Vt,Et,Wt) arrives. So it holds:

Gt =
t⋃

s=0
Bs.

Assume that at time t−1 the intersection between Gt−1 and the new block Bt is known and it is never
empty. In this context, we address the problem of updating the MST of the graph Gt−1 each time that
a block Bt arrives. In particular, we show two algorithms capable to build a MST of the graph Gt, that
exploit information coming from time t−1.

We conclude this section showing how this formulation can be applied to a stream of images. Let It

be an image streaming over time. Without loss of generality, assume that new pixels come from one side
of the image, for example the right side of the image. If Bt is the new block at time t, for t = 0, . . . ,T , we
have It = It−1∪Bt. The last column of It−1 is also the first column of Bt, as in Figure 4.2a.

For other streaming configurations, as for example a 2D tiling, the only difference is that the common
pixels should be along the common tiling boundaries, as in Figure 4.2b.

Figure 4.1 illustrates the union of two minimum spanning trees.

4.3 Minimum Spanning tree of a flow of graphs.

We introduce two methods to compute a MST for streaming by examining the case of the union G of two
MSTs T0 and T1, as shown in Figure 4.1. In order to extract a MST from the graph G we need to locate all
the cycles contained in it. Then, remove the heaviest edges from them. Therefore, as first step, we need to
find edges forming cycles in G. Please remark that all cycles contained in the union pass through the pixels
in the common intersection between the two trees at least twice. To simplify our explanation, from now on
we will refer to this common intersection as frontier. Indeed, it is straightforward to prove that a cycle in
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(a) 1-D streaming (b) 2-D streaming

Figure 4.2 (a) Example of a one-dimensional streaming of an image It. This can be seen as the union of
the two non-disjoint images It−1 and Bt. Without loss of generality, they share a column of pixels. (b)
Example of a two-dimensional streaming of an image. In this case the image is the union of tiles who
share common boundaries.

G is generated each time the two trees do not share an edge in the frontier. When this happens, we can find
two different paths to join two vertices in the frontier. Without loss of generality, let u,v be two vertices
in the frontier. Let’s assume that e = (u,v) ∈ T0 but e ̸∈ T1. Since T1 is connected we can find a different
path π = {v0 = u, . . . ,vn = v} in T1 that joins u and v. Thus π∪{e} is a cycle in G. Generalizing this
idea, we can retrieve all the cycles looking for the subgraph G′ made by the union of the subgraph ET0

and ET1 that contains all the paths in T0 and T1 that link any two vertices of the frontier. In Figure 4.1
we draw the edges that belong to G′ = ET0 ∪ET1 with bold and dashed lines respectively. Since we are
working with trees, it turns out it is easier to find all the paths from any node in the frontier N to a special
node r marked as root. To do so, we mark one node in the frontier as root of the MST and traverse the
tree twice. The first time, we traverse the tree in a top-down fashion using the depth-first-search-algorithm
to build the vector of predecessors. The second time, the tree is traversed from bottom-up. This allows
us to store all the edges in paths from the root to any other node in the frontier. We call this procedure
find_unstable_edges. See the pseudo-code in Procedure 4. The name of this last procedure will be clearer
in the next section. Its main purpose is to identify the edges in the tree that may possibly generate a cycle
in the following iterations.

Procedure 4 find_unstable_edges

Input: A minimum spanning tree T , root node r and the list of nodes N = [n1, . . . ,nh]⊂N in the frontier
Output: E list of edges linking r to another frontier node N .

1: procedure FIND_UNSTABLE_EDGES

2: // each node in the graph is identified by a number n ∈ N
3: E←∅ // edges to return
4: V ← (False, . . . ,False) // visited nodes
5: // p[n] : predecessor map of tree nodes. p[r] =−1.
6: p← depth_first_order(T , r)
7: for n ∈N do
8: while p[n] >= 0 & V [n] == False do
9: E← E∪{(n,p[n])}

10: V [n] = True
11: n← p[n]

• Streaming Spanning Tree v1: At the step t, the graph G made by the union ofMST (Gt−1) and
MST (Bt) may contain cycles. The idea is to identify all the edges that may cause cycles using the
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Procedure 4 on both graphsMST (Gt−1) andMST (Bt). Let EGt−1 and EBt be all the paths in
MST (Gt−1) andMST (Bt) respectively connecting any two nodes in the frontier Nt.

The method computesMST (EGt−1 ∪EBt), and finally it returns:

MST (Gt) = (MST (Gt−1)−EGt−1)∪ (MST (Bt)−EBt)∪MST (EGt−1 ∪EBt)

• Streaming Spanning Tree v2: At step t, we consider the graph G made by the union of
MST (Gt−1) and Bt. As in v1, we consider the graph EGt−1 composed of the paths inMST (Gt−1)
that link any two vertices of the common frontier because they may possibly generate cycles in
G. Instead of computing a MST for the newly arrived Bt. We compute a MST of Bt combined
with the candidate edges to form cycles of the previous step. The result is added toMST (Gt−1)
without the candidate edges to form cycles.

MST (Gt) = (MST (Gt−1)−EGt−1)∪MST (EGt−1 ∪Bt)

Please remark that graphMST (Gt−1) contains edges coming from Bs, ∀s = 0, . . . , t−1. Thus the
subgraph EGt−1 could contain edges that belong to any previous block. Procedures 5 and 6 show the
pseudo-code for the two methods.

Procedure 5 Streaming Spanning Tree v1

Input: A streaming graph Gt

Output: A MST for the graph Gt

1: procedure STREAMING_SPANNING_TREE_V1
2: T0←MST (G0)
3: // N1 frontier with block B1, r1 ∈N1
4: EG0 = find_unstable_edges(T0, r1,N1)
5: F0←T0−EG0

6: T0← F0∪EG0

7: while a new block Bt arrives do:
8: Tt←MST (Bt)
9: // Nt frontier with Tt, rt ∈Nt

10: EBt ← find_unstable_edges(Tt, rt,Nt)
11: Ft←Tt−EBt

12: T ←MST (EGt−1 ∪EBt)
13: Tt← Ft−1∪Ft∪T
14: // Fetching EGt for next iteration
15: // Nt+1 frontier with block Bt+1, rt+1 ∈Nt+1
16: EGt ← find_unstable_edges(Tt, rt+1,Nt+1)
17: Ft←Tt−EGt

In order to prove the correctness of our methods, we prove the following theorem.

Theorem 4.3. All the proposed methods return a minimum spanning tree for the graph Gt, for each t.

Proof. We only prove that the second method returns a MST. The goal is to show that the graph

Tt = (MST (Gt−1)−EGt−1)∪MST (EGt−1 ∪Bt)
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Procedure 6 Streaming Spanning Tree v2

Input: A streaming graph Gt

Output: A minimum spanning tree MST for the graph Gt

1: procedure STREAMING_SPANNING_TREE_V2
2: T0←MST (B0)
3: // N1 frontier with block B1, r1 ∈N1
4: EG0 = find_unstable_edges(T0, r1,N1)
5: F0←T0−EG0

6: T0← F0∪EG0

7: while a new block Bt arrives do:
8: Tt← Ft−1∪MST (EGt−1 ∪Bt)
9: // Fetching EGt for next iteration

10: // Nt+1 frontier with block Bt+1, rt+1 ∈Nt+1
11: EGt ← find_unstable_edges(Tt, rt+1,Nt+1)
12: Ft←Tt−EGt

returned by Procedure 6 at time t respects the following three properties: 1) Tt is connected, 2) Tt is a
spanning tree, 3) the sum of all weights

∑
e∈Et

we, is minimal.
First of all, we prove that Tt is connected.
We show that for any u,v ∈ Gt there exists a path π = {v0 = u, . . . ,vn = v} contained in Tt. Let now

consider
T ′

t =MST (Gt−1)∪MST (EGt−1 ∪Bt)⊇ Tt.

By construction T ′
t is connected since is the union of two connected graphs with a non-empty intersection.

For this reason, it is possible to find a path π = {v0 = u, . . . ,vn = v} contained in T ′
t .

Using the fact that T ′
t ⊇ Tt, we can conclude that either π ⊆ Tt or it must exist an edge e = (vi,vi+1)

such that e ̸∈E(Tt). In this last case, by construction e ∈EGt−1 , but e ̸∈MST (Gt−1)−EGt−1 . However,
sinceMST (EGt−1 ∪Bt) is a connected tree, we can find another path π1 = {w0 = vi, . . . ,wm = vj} ⊆
MST (EGt−1 ∪Bt) and thus in Tt. Repeating this procedure for all the edges e = (vi,vi+1) of the path π

not in E(Tt), we can build a path π′ from u to v entirely contained in Tt. Therefore, Tt is connected.
Second, we prove that Tt is a tree by contradiction. Let’s assume that Tt contains cycles. Thus,

suppose that ∃v ∈ V (Gt) and a path π = {v0 = v, . . . ,vn = v} that is a cycle in Tt.
By definition of Tt it is straightforward that such a cycle cannot be contained entirely inMST (Gt−1)−

EGt−1 nor inMST (EGt−1 ∪Bt), since they are respectively a forest and a tree. So, the cycle π must
pass through the nodes and edges of both graphs. In particular, it must cross at least twice the frontier
between Gt−1 and Bt. By definition, all paths in Gt−1 linking two nodes of the frontier are included in
EGt−1 . Therefore,MST (Gt−1)−EGt−1 cannot contain such edges. As a consequence, Tt has no cycles.

Finally, we prove the third property by contradiction. We define the cost of a graph G as the sum
of its weights cost(G) =

∑
e∈E(G) we. So, let suppose that Tt is not minimal. Then there exists e ∈ Gt

s.t. Tt ∪{e} contains a spanning tree T such that cost(T ) < cost(Tt). Remark that, by definition of
Tt, the edge e cannot belong to E(EGt−1 ∪Bt). Otherwise, the edge e would be contained also in
MST (EGt−1 ∪Bt), which is a contradiction. Let now consider e′ the edge in Tt replaced by e in T .
Since the two trees differ only by the two edges, it holds we < we′ . Two cases are possible:

1. e′ is an edge originally inMST (Gt−1),
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Figure 4.3 In black the edge e, while in blue the edges in
MST (Gt−1−EGt−1), in red edges coming from EGt−1 .
In particular, the dashed red edges are edges initially in
EGt−1 but not inMST (EGt−1 ∪Bt).

2. e′ is an edge originally in the new block Bt, this is, e′ ∈ E(MST (EGt−1 ∪Bt))∩E(Bt), as in
Figure

Both cases lead to a contradiction. In fact, suppose that e′ was originally in MST (Gt−1), then
MST (Gt−1)∪{e} contains a cycle that pass through e and e′. If we < we′ MST (Gt−1) had chosen e

instead of e′ but it is not the case. On the other hand, if e′ is contained inMST (EGt−1 ∪Bt)∩Bt, then we
can find e′′ that belongs to EGt−1 but not inMST (EGt−1 ∪Bt), such that Tt∪{e′′} has a cycle containing
e′ and e′′ (see red dashed line in figure 4.3). Since e′′ is not contained inMST (EGt−1∪Bt) we can deduce
that we′′ ≥ we′ , and thus we′′ > we. As in the previous case, this lead to a contradiction because it implies
thatMST (Gt−1)∪{e}, with e ∈ Gt−1 contains a MST T ′ such that cost(T ′) < cost(MST (Gt−1)).

We conclude this section showing an interesting insight of the proposed methods that will be useful
for possible applications. As the reader may have already noticed, at the end of each iteration t, we
decompose theMST (Gt) in two disjoint parts: a) EGt , a graph made of all edges inMST (Gt) that may
form cycles when the new block arrives. b) Ft = Tt−EGt , a forest made by all the rest of the graph. The
first graph, is indeed made by edges that we call unstable. Mostly because we could eliminate some of
them in the next step t+1. The second graph is made by edges that we call stable, since they will belong
to all MSTs from now on. This is important for two reasons. 1) At each step, the memory footprint is
reduced by discarding edges that are no longer necessary to compute further MSTs. 2) The stable edges
can be used for further tasks, as we will see below. In Figure 4.4, we report an example that shows the
evolution of the stable + unstable decomposition of minimum spanning trees through the time. In green,
we represent the forest Ft over time, while in red the graph EGt .

4.4 A divide and conquer implementation

After having proved the correctness of proposed procedures, let move on showing a divide and conquer
algorithm to compute in parallel MST based on Procedure 5. As before, we introduce our method using
an example. Let I an image as in the left of Figure 4.5. Our a strategy is similar to Merge Sort Algorithm
(Cormen, 2009, Chapter 2). The method is divided in three phases: divide, conquer and combine. In the
divide phase, it recursively splits the input image into four tiles until an atomic size (defined by the user)
is reached. Also in this case, the overlap region between the four parts is not empty. In particular, two
blocks on the same line shares a column while the intersection between blocks on the same file is a row as
illustrated in Figure 4.2b. Then in the conquer phase, a MST is computed for each atomic tile. Moreover,
the edges of each MST are divided in stable and unstable. Finally, in the combine phase, a strategy as in
Procedure 5 is used to recursively merge the MSTs of four tiles from the bottom to the top. Namely, at
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(a) t = 0 (b) t = 1

(c) t = 2

Figure 4.4 An example of stable + unstable decomposition of minimum spanning tree. The green graph
is the forest Ft that contains only stable edges, while the red graph is EGt that contains only unstable
edges. (b-c) Pixels without edges are stable, so it is possible to store that part of the graph and do not need
to consider in following intervals.

each step, the method extracts a MST from the union of the unstable edges in the four tiles. Successively,
this last tree is decomposed in stable+unstable edge and stable edges are added to stable edges already
found in the four tiles. Finally, the stable/unstable decomposition is returned for the consecutive step. In
Procedure 7, we show the pseudo-code.

4.5 Benchmarks

We conducted our experiments on a high-resolution image taken from the site http://www.gigapan.com/.
The image is (12000×47196) pixels high-resolution photo of Planet Mars’ surface1. The CPU of the
machine used for the tests is Intel 3.00 GHz Xeon with 32 GB RAM. We considered the case as shown in
Section 4.2 where blocks of an image stream horizontally.

As first benchmark, we measured how long our methods took to build the MST for the complete
image, and we compared this against the brute-force method, that is the method that load in memory all
the image and then compute the MST using Kruskal approach. We make the image stream in blocks Bt

of size 12000×4000 pixels, and at each interval t we measure the time the algorithms take to compute
MST (It). In Figure 4.6, we report the results. During the experiment, we remarked that the brute-force
method is faster compared to our algorithms until the image size reaches the limit to fit entirely in RAM.
In our machine, we tested this limit at around 240 megapixels (Mpx). After that, the brute-force method

1http://www.cmm.mines-paristech.fr/~gigli/mars.jpg

http://www.gigapan.com/
http://www.cmm.mines-paristech.fr/~gigli/mars.jpg
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(a)

(b)

Figure 4.5 Steps of Procedure 7. a) It first splits top-down the input image until an atomic block size
is reached. Then it computes an MST for each tile. b) Finally, it merges bottom-up the MSTs of tiles,
decomposing at each time edges of an MST between stable and unstable. In figure, we draw in blue stable
edges and in red unstable ones.

needs to use swap memory, and its runtime grows until the image size reaches around 380 Mpx, when
the image size makes the program crash. On the contrary, thanks to the stable + unstable decomposition
that reduces the memory footprint of Procedures 5 and 6, the execution times of our methods grow
quasi-linearly with the image size, and they can treat images of bigger sizes.
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Figure 4.6 Runtime of Procedure 5, Procedure 6 and brute-force algorithm on a (12000×47196) pixels
image of Planet Mars’ surface.
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Procedure 7 Parallel MST
Input: An input Image I , size (n0,m0) of the atomic element
Output: A MST for the image I

1: procedure PARALLEL_MST(I,n0,m0)
2: // Get size of input image
3: n,m← I .shape
4: if n < n0 or m < m0 then
5: T ←MST (I)
6: // the frontier is made of pixels on the border ∂I of the image
7: EI ← find_unstable_edges(T , rI ,∂I)
8: FI ←T −EI // Decomposing T between stable and unstable edges
9: else

10: // split the image in four tiles
11: Itl, Itr← I[0 : n/2+1,0 : m/2+1], I[0 : n/2+1,m/2 : m]
12: Ibl, Ibr← I[n/2 : n,0 : m/2+1], I[n/2 : n,m/2 : m]
13: // recursively call the function on each tile
14: Etl,Ftl← parallel_mst(Itl,n0,m0)
15: Etr,Ftr← parallel_mst(Itr,n0,m0)
16: Ebl,Fbl← parallel_mst(Ibl,n0,m0)
17: Ebr,Fbr← parallel_mst(Ibr,n0,m0)
18: TI ←MST (Etl∪Etr ∪Ebl∪Ebr)
19: EI ← find_unstable_edges(T , rI ,∂I)
20: FI ← (T −EI)∪ (Ftl∪Ftr ∪Fbl∪Fbr)
21: return EI ,FI

Furthermore, in order to better understand how the size of the blocks Bt affects the runtime, we
measured the execution times of our methods with different sizes for streaming blocks that are 12000×
4000, 12000× 8000 and 12000× 12000 pixels. We report the results obtained in Figure 4.7. As the
reader can see, Procedure 6 performs better than Procedure 5 in the general case. Moreover, we noted an
improvement in the execution times to treat the entire image when we use block sizes of 12000×8000
pixels compared with block size of 12000×4000 pixels. This is because, using bigger blocks, we reach
the entire image dimensions in fewer iterations, and we spend less time updating the MSTs. Nevertheless,
using blocks of bigger sizes also increases the quantity of memory needed at each iteration and thus
increases the risk to use swap memory that slows down the overall execution time. For this reason, in the
case of Procedure 6 we do not remarked the same improvement when we use blocks size of 12000×12000
pixels compared with the ones of 12000×8000 pixels. Thus, the ideal block size should be a trade-off
between the footprint of the block Bt and the number of iterations needed to treat the entire image.

Time Complexity

Let now evaluate the time complexity of the Procedure 6. Let G = (V,E) be a connected graph, and
assume that we split it in blocks G = ∪T

t=0Bt, where Bt = (Vt,Et) are blocks as shown in Section
4.3. Moreover, let |V | = N , |E| = M and |Vt| = nt, |Et| = mt. Finally, let EBt = (Ṽt, Ẽt) the graphs
containing all the vertices and edges appearing in the unstable paths inMST (∪t

s=0Bs) for t≥ 0. We
define |Ṽt|= νt and |Ẽt|= µt for all t≥ 0 and ν−1 = µ−1 = 0.
With f(N,M) we indicate the time complexity of our method to compute the finalMST (G). For the
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Figure 4.7 Runtime of Procedures 5 and 6 with different block sizes. We used blocks of 12000×4000,
12000×8000 and 12000×12000 pixels.

moment let call A the algorithm used to compute any MST of a connected graph, and let c(n,m) its
complexity, where n,m are respectively the number of vertices and the number of edges in the graph.
From now on, when we write f(G), we mean f(N,M).
At time t = 0 the complexity is f(n0,m0) = c(n0,m0). At time t = 1, we have

f(B0∪B1) = f(n0 +n1,m0 +m1) = c(n0,m0)+O(n0)+ c(B1∪EB0)

= c(n0,m0)︸ ︷︷ ︸
cost t = 0

+ O(n0)︸ ︷︷ ︸
cost to find |EB0 |

+c(n1 +ν0,m1 +µ0)︸ ︷︷ ︸
MST new part

where O(n0) is the time spent to find unstable paths in EB0 , and c(n1 +ν0,m1 +µ0) it is obviously the
time spent to update the MST for the new part. In fact, to find paths that make EB0 we navigate the tree
twice, so the cost is O(n0).
The cost at time t = 1, can be bounded from below and from above by

c(n0,m0)+O(n0)+ c(n1,m1)≤ f(B0∪B1)≤ c(n0,m0)+O(n0)+ c(n1 +n0,m1 +n0),

where the lower bound represents the best case in which EB0 ⊂ B1, and the upper bound is the worst
case where EB0 =MST (B0). The worst case is whenMST (B0) has a comb shape facing the frontier.
Please remark that in the worst case EB0 has n0−1 edges. At time t = 2 the time is:

f(∪2
t=0Bt) =c(n0,m0)+O(n0)+ c(n1 +ν0,m1 +µ0)︸ ︷︷ ︸

cost update t = 1

+O(n0 +n1)+ c(n2 +ν1,m2 +µ1)︸ ︷︷ ︸
cost update t = 2

,
(4.1)
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where we are assuming no optimization in the process of finding the unstable edges composing EB1 . The
above Equation 4.1 can be rewritten as

f(∪2
t=0Bt) = c(n0,m0)+ c(n1 +ν0,m1 +µ0)+ c(n2 +ν1,m2 +µ1)+O(2n0 +n1)

Now, it is easy to generalize our cost for time t = T :

f(G) = f(∪T
t=0Bt) =

T∑
t=0

c(nt +νt−1,mt +µt−1)+O
(T −1∑

t=0
(T − t)nt

)
.

So f(N,M) is bounded by the following two quantities:

T∑
t=0

c(nt,mt)+O
(T −1∑

t=0
(T − t)nt

)
︸ ︷︷ ︸

best case: EBt ⊂ Bt+1 ∀t

≤ f(N,M)≤
T −1∑
t=0

c(
t∑

s=0
ns,mt +

t−1∑
s=0

ns)+O
(T −1∑

t=0
(T − t)nt

)
︸ ︷︷ ︸

worst case: EBt = MST (∪t
s=0Bs) ∀t

.

(4.2)
Assuming that we are splitting uniformly the graph using blocks all of the same size, i.e. nt = n, and
mt = m ∀t, we can further develop the equation 4.2.

T∑
t=0

c(n,m)+O
(T −1∑

t=0
(T − t)n

)
≤ f(N,M)≤

T∑
t=0

c(
t∑

s=0
n,m+

t−1∑
s=0

n)+O
(T −1∑

t=0
(T − t)n

)
,

that becomes,

(T +1)c(n,m)+O
(
n

T (T +1)
2

)
≤ f(N,M)≤

T∑
t=0

c((t+1)n,m+ tn)+O
(
n

T (T +1)
2

)
.

Since in our case we used Kruskal as algorithmA to compute the MST, then c(n,m) = O(m log(m)) and
we can develop both upper bound and lower bound expressions. Let start with the lower bound:

(T +1)c(n,m)+O
(
n

T (T +1)
2

)
= O((T +1)m log(m))+O

(
n

T (T +1)
2

)
= O

((T +1)
2 (2m log(m)+nT )

)
.

(4.3)

On the other hand, we can rewrite the upper bound as:

T∑
t=0

c((t+1)n,m+ tn)+O
(
n

T (T +1)
2

)
= O

( T∑
t=0

(m+ tn) log(m+ tn)
)
+

O
(
n

T (T +1)
2

)
.

(4.4)
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Observe that the first sum in the r.h.s. in Equation 4.4 can be rewritten as by:

T∑
t=0

(m+ tn) log(m+ tn) = m log(m)+
T∑

t=1
log((m+ tn)(m+tn))

= m log(m)+ log
( T∏

t=1
(m+ tn)(m+tn)

)
= m log(m)+ log(H(m+nT )),

(4.5)

Where H(·) is the Hyperfactorial function defined as H(n) =
∏n

k=0 kk. Thus, the cost f(N,M) is
bounded by

O
((T +1)

2 (2m log(m)+nT )
)
≤ f(N,M)≤O

(
m log(m)+ log(H(m+nT ))+n

T (T +1)
2

)
Finally, we can approximate N ≈ nT and obtain

O
((T +1)

2 (2m log(m)+N)
)
≤ f(N,M)≤O

(
m log(m)+ log(H(m+N))+ N(T +1)

2
)
.

However, the term
∑T

t=0(m + tn) log(m + nt) in Equation 4.5 can be further expanded. In fact, let
at = log(m+nt) and bt = m+nt, then using summation by parts we can write

T∑
t=0

(m+ tn) log(m+nt) =
T∑

t=0
atbt = aT

T∑
t=0

bt−
T −1∑
t=0

(at+1−at)
( t∑

s=0
bs

)

= log(m+nT )
T∑

t=0
(m+nt)−

T −1∑
t=0

log
(
1+ 1

m
n + t

)( t∑
s=0

(m+ns)
)

= (T +1)
2 log(m+nT )(2m+nT )−

T −1∑
t=0

t+1
2 log

(
1+ 1

m
n + t

)
(2m+nt)

≤ (T +1)
2 log(m+nT )(2m+nT ).

(4.6)

Please remark that this last upper bound is indeed large, but we use it in order to keep the formula simple
and have a final explanation. Thus, using the approximation N ≈ nT we can rewrite our bounds as

O
((T +1)

2 (2m log(m)+N)
)
≤ f(N,M)≤O

((T +1)
2

(
log(m+N)(2m+N)+N

))
.

Even though the equation above does not look intuitive we can try to get out some understanding from the
two bounds. In the best case we can see that the complexity is the same as applying Kruskal T +1 times,
one on each block, plus the total time spent looking for the unstable graphs, that is O((T + 1)N). The
complexity of worst-case scenario is upper bounded by the cost of applying Kruskal T + 1 times on a
graph with m+N edges plus the time spent looking for the unstable graphs.

4.6 Application to Image analysis

In this section, we introduce three applications of our algorithm to image segmentation. In particular,
we exploited the stable + unstable decomposition of our methods to implement a streaming version of
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λ-quasi-flat zones (Najman et al., 2013)(Zanoguera and Meyer, 2002), watershed-cuts (Cousty et al.,
2009) and constrained connectivity (Soille, 2008) for Remote Sensing images. We have introduced these
methods in Section 1.3. To achieve our goal, we use slightly different versions of Procedures 5 and 6,
that each time t return the stable forest Ft and the unstable graph EGt . Remember that the MST for the
graph Gt can be obtained asMST (Gt) = ∪t

s=0Fs∪EGt . In order to validate the streaming versions of
the previously mentioned methods, we applied them to the case of horizontal streaming as described in
Section 4.2. We report in Figure 4.8 the image used for our experiments, that we split in three blocks. The
blue dashed lines represent the frontiers between two consecutive blocks, while red pixels are the markers
used for the watershed-cuts.

Figure 4.8 Image used to validate streaming version of the segmentation methods. The image has been
split in three blocks (see blue dashed lines) and the blocks stream from left to right. As explained in
Section 4.2 two consecutive blocks share a column of pixels. In red, the pixels used as markers for
watershed-cut.

4.6.1 λ-quasi-flat zones

Let explain how to compute a level of the λ-flat zone hierarchy in a streaming fashion using the example
in Figure 4.8. At time t = 0 we getMST (G0) = F0 ∪EG0 . Now, removing the edges inMST (G0)
larger than λ, we obtain C(0)

0 , . . . ,C(0)
n0 connected components. We call unstable connected component a

region C containing nodes on the frontier. On the contrary, we classify as stable connected component a
region C that does not contain any node in the frontier.
In fact, it is straightforward that a connected component containing nodes on the frontier can change in
the following iteration, for example it can expand and include nodes of future blocks. We conclude that,
at each time t, we can assign a label only to stable connected components. Conversely, we need to keep in
memory the stable edges contained in unstable connected components. We call residual graph R0, the
graph made by nodes contained in unstable connected components and stable edges contained in them at
time t = 0. Thank to this decomposition, to get the connected components in future intervals of time, we
do not need the entireMST (Gt), but is sufficient to consider the graph Rt−1∪Ft∪EBt and threshold
edges larger than λ from it. To summarize, at each time t we do:

1. Consider the graph Gt = Rt−1∪Ft∪EBt where Rt−1 is the residual graph obtained at previous
step.

2. Threshold all edges in Gt larger than a given λ, obtaining C(t)
0 , . . . ,C(t)

nt connected components.
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3. Assign a label only to components C(t)
j whose pixels are not in the frontier. In Figure 4.9 these

regions are represented by non-black colors. Mark as unstable connected components the regions
C(t)

j containing nodes in the frontier. In Figure 4.9 (a,b) these regions are the black pixels.

4. Assign to Rt the stable edges contained in unstable connected components at iteration t.

Figure 4.9 reports the result of the procedure above applied on Figure 4.8.

4.6.2 Watershed cuts

It is possible to derive a streaming version of the watershed cuts like we did to get λ-quasi-flat zones.
Once again we use the example in Figure 4.8 to illustrate it. At time t = 0, we obtain the segmentation
as connected components of subgraph F ′ ⊆MST (G′

0) as just seen. Also in this case, we split these
regions between unstable and stable based on the criteria of whether they contain frontier nodes or not.
Successively, we assign a label only to stable connected components, and we retrieve the residual graph
R0, that is the graph composed by the nodes in the unstable connected components with stable edges.
Similarly to the previous subsection, to get the connected components in future intervals of time, we do
not need the entireMST (G′

t), but is sufficient to consider the graph Rt−1∪F′
t∪E′

B′
t
. To summarize,

let Gt a streaming of graph. At each time t we do:

1. Consider the graph G′
t = Rt−1∪F′

t∪EB′
t
, where Rt−1 is the residual graph obtained at previous

step.

(a) t = 0 (b) t = 1

(c) t = 2

Figure 4.9 An example of one level of λ-quasi-flat zones in streaming, with λ = 10 for image in Fig. 4.8.
Black pixels in Figures (a) and (b) are those that do not have a stable label in that iteration.
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(a) t = 0 (b) t = 1

(c) t = 2

Figure 4.10 Watershed cuts in streaming for image in Fig. 4.8. Red pixels in the images are the markers
of the segmentation. Black pixels in Figures (a) and (b) are the connected components that do not have a
stable label in that iteration.

2. Compute C(t)
0 , . . . ,C(t)

nt connected components of the subgraph obtained removing well z and its
connections from G′

t.

3. Assign a label exclusively to components C(t)
j whose pixels are not in the frontier. In Figure 4.10

these components are non-black regions of the image. Mark as unstable connected components the
regions C(t)

j that contain at least one node in the frontier. In Figure 4.10 (a,b): these regions are
black pixels.

4. Assign Rt as the graph made by nodes in unstable connected components at iteration t with stable
edges.

4.6.3 (α,ω)-constrained connectivity

Lastly, let discuss how a streaming version of MST can be used to obtain the (α,ω)-constrained connec-
tivity for a stream of images. We implemented it in a straightforward manner. Basically, at each interval
t we first compute the stable α-quasi-flat zones of the image It as in the previous subsection, and then
for each stable α connected components we extract the (α,ω) connected components contained in it. In
Figure 4.11, we report the result obtained on the test image in 4.8.
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(a) t = 0 (b) t = 1

(c) t = 2

Figure 4.11 An example of (α,ω)-constrained connectivity in streaming, with α = 10 and ω = 150 for
image in Fig. 4.8. Black pixels in Figures (a) and (b) are those that do not have a stable label in that
iteration.

4.7 Conclusions

This chapter introduced two methods for the computation of a minimum spanning tree for graph streaming.
We have shown empirically that their execution time grows quasi-linearly with image size. Finally, we
have shown how to apply these methods to segmentation tasks. In particular, how they can be used to
extract a level of λ-quasi-flat-zones hierarchy for image streaming. The main advantage of our proposed
algorithm is that at each time the MST is decomposed in two parts. The stable part can be stored or used
in further tasks. As shown in the case of segmentation. The second one, the unstable, is kept in memory.
Since it may contain edges that could be removed from MST as future information arrives. Thanks to this
decomposition, we can reduce the memory necessary to compute the MST and treat images of bigger
sizes.





5 Metric Learning

Resumé

L’une des principales limites des techniques d’apprentissage supervisé est le grand nombre d’étiquettes
nécessaires pour former un modèle. Dans de nombreuses applications, il est plus facile de définir des
relations entre des paires/triplets d’objets que d’attribuer une étiquette à chaque échantillon. Dans ces
cas, il n’est pas possible de détecter des objets en utilisant une perte de classification. L’apprentissage
de métriques aborde le problème du regroupement en mappant les données dans un espace d’intégration.
Dans cet espace, les objets similaires sont cartographiés près les uns des autres, tandis que les objets
dissemblables sont cartographiés loin les uns des autres. Ce chapitre est divisé en deux parties. Nous
commençons par une application pratique de l’apprentissage de métriques. Nous nous attaquons au
problème proposé comme piste sur la recherche et la classification de surfaces dans le cadre du concours
SHREC’20 par des chercheurs de l’IMATI CNR et de l’Université de Vérone. Nous illustrons la solution
que nous avons soumise à la compétition, et qui s’est classée en deuxième position. Dans la deuxième
partie du chapitre, nous nous concentrons sur l’apprentissage de métriques pour le clustering hiérarchique.
Dans la formulation classique du problème, les similarités entre les points sont fixes alors qu’elles
représentent un élément clé pour la qualité des résultats. Nous proposons une version étendue du problème
d’optimisation continue introduit par Chami et al. (2020) qui vise à trouver à la fois une fonction de
similarité optimale entre les points et un clustering hiérarchique optimal.

5.1 Introduction to Metric Learning

A great limitation of supervised learning techniques is given by the great number of labels needed to train
a model. In many applications, it is easier to define relationships between pairs/triplets of objects than
assign a label to each sample. In these cases, it is not possible to detect objects using a classification loss.
Metric Learning addresses the clustering problem by mapping data into an embedding space. In this space,
similar objects are mapped close to each other while dissimilar objects are mapped far apart. This chapter
is divided in two parts. We start with a practical application of metric learning. Namely, we tackle the
problem proposed as a track on retrieval and classification of surfaces in the SHREC’20 competition by
researchers of IMATI CNR and University of Verona. We illustrate the solution that we submitted to the
competition, and that ranked second place. In the second part of the chapter, we focus on metric learning
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Figure 5.1 Left: Base model on which reliefs are applied. Center: the 11 textures used as height-fields
on the base model (brighter colours for higher values). Right: Some examples of the final models of the
dataset. (Image source Moscoso Thompson et al. (2020))

for hierarchical clustering. In the classical formulation of the problem, similarities between points are
fixed even though they represent a key element for the quality of the results. We propose an extended
version of the continuous optimization problem introduced by Chami et al. (2020) that aims to find at the
same time an optimal similarity function between the points and an optimal hierarchical clustering.

5.2 SHREC’20 track: Retrieval and classification of surface patches with
similar geometric relief

The aim of this SHREC’20 track was to evaluate the performance of automatic algorithms for the retrieval
and classification of relief patterns on the surface of 3D models. The goal was to estimate the similarity
between two objects based only on the patterns on their surfaces, without considering their global shape.
In the following subsection, we describe the dataset used for the contest and our proposed solution. Please
refer to Moscoso Thompson et al. (2020) for the full track report of the challenge.

5.2.1 Dataset

The dataset used is made of 220 mesh surfaces, each one characterized by different relief patterns. The
entire dataset has been generated starting from 20 base models that represent several objects like pots,
goblets or mugs and from a set of 11 different 3D textures selected from the free dataset Texture Haven1

as illustrated in Figure 5.1. The resulting surfaces are oriented and the topology of models can contain
holes or handles. The challenge is to distinguish different objects from relief of textures rather than the
shape of models.

1https://texturehaven.com/

https://texturehaven.com/
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5.2.2 Proposed Method

Since the goal is to estimate the similarity between two objects without taking into account the global
shape, we considered extracting from each object a set of images containing only the local texture. In
this context, each object is represented as a triangle mesh S ⊂ R3. Along with the mesh, we define the
graph GS = (V,E) associated to the mesh S , that is the graph whose nodes are the points {x1, . . .xn} of
the mesh, and an edge between the nodes xi and xj exists if and only if the two points are the vertices
of the same triangle in the mesh. Thus, given a surface S ⊂ R3, our method starts sampling a subset
of points {x1, . . . ,xm} ∈ S on the surface using Poisson Disk Sampling Yuksel (2015). Then for each
point xi, we use the geodesic distance defined over the graph GS to identify a local neighbourhood.
To be more precise, the geodesic distance d(xi,xj) between two nodes xi and xj of a graph is the
length of the shortest path connecting them. Thus, given r > 0, the local neighbourhood is defined as
Nr(xi) = {xj ∈ V | d(xi,xj) ≤ r}. Our goal is to project the local neighbourhood over a plane and
obtain an elevation image. For this reason, we aim to select only those neighbours that are as flat as
possible, and discard the others. We use covariance-based features to estimate the flatness of the local
neighbourhood. Those features are derived from the eigenvalues λ1 ≥ λ2 ≥ λ3 ∈ R of the neighbourhood
covariance matrix defined as:

cov(Nr(xi)) = 1
|Nr(xi)|

∑
x∈Nr(xi)

(x− x̄)(x− x̄)T ,

and x̄ is the centroid of the neighbourhood Nr(xi). The following criteria are used to estimate if the
neighbourhood is flat enough:

1. criterion on the planarity: λ2−λ3
λ1
≥ 0.5,

2. criterion on the change of curvature: λ3
λ1+λ2+λ3

≤ 0.03.

The two values have been chosen empirically after some tests over different objects. Once the neighbour-
hood has been validated by our criteria we project it over the tangent space of the surface at xi. A regular
grid is defined over the tangent space, and each element of the grid corresponds to a pixel of the image.
The intensity values of the image correspond to the distance between the point projected over the element
and the tangent plane.

Figure 5.2 The pipeline for extraction of images first select a neighbourhood on a mesh, then check if the
neighbourhood satisfies the flatness criteria and finally project it on an image.

The patches generated have different sizes, thus in our experiments we tested two different strategies
to uniform all the patch size. The first consists in cropping all the patches to the size of the smallest patch,
while the second we pad all to the size of the biggest patch. To conclude, at the end of the first part for
each surface Si we have obtained a set of images {I1, . . . , Imi}, where i = 1, . . . ,220.
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Learning the embedding

In the second part, we aim to learn a similarity function between images using a Siamese neural network
with the Triplet Loss. The architecture is composed of three CNNs sharing the same weights. In our case
as CNN we choose VGG16 Simonyan and Zisserman (2015), without the fully connected layers. The
CNNs work in parallel taking as input a triplet of images and generating comparable feature vectors, as
shown in Figure 5.3. The Triplet Loss minimizes the distance between an anchor and a positive, both of
which have the same identity, and maximizes the distance between the anchor and a negative of a different
identity, i.e. an image from a different object Chechik et al. (2010).

Figure 5.3 Our network consists of a batch input layer and a deep CNN which results in the image
embedding by using a triplet loss during training.

Finally we define the distance ∆ between two objects Si and Sj as the minimum distance between
any couple of images belonging to the two surfaces:

∆(Si,Sj) = min
k,h∈{1,...,mi}×{1,...,mj}

δ(Ih, Ik),

where δ(Ih, Ik) is the similarity function learned by the Siamese neural network.

5.2.3 Metrics

To evaluate the results the following metrics have been used:

• Nearest Neighbor (NN): It measures the percentage of the closest matches that belongs to the same
class as the query element. Basically it measures how well a naive nearest neighbor classifier would
perform.

• First Tier (FT) and Second Tier (ST): These scores measure the percentage of the models in the
query’s class that appears within the top-K matches. The value of K depends on the size of the
query’s class. Namely, for the First Tier K = |C|−1, where |C| is the number of elements that
belong to the class C, while for the Second Tier K = 2(|C|−1). The First Tier expresses the recall
of the retrieved elements of the same class.
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• Normalized Discounted Cumulative Gain (DCG): This metric put higher scores to correct results in
the top of the list than correct results in the bottom of the ranked list. The idea behind this score is
that a user is more likely to consider elements near the front of the list than elements in the end. To
the ranked list R is associated a list G, where the element Gi = 1 if the element Ri belong to the
correct class and 0 otherwise. Discounted Cumulative Gain for query of element q is then defined
as follows:

DGCq =
|R|∑
i=1

Gi

log2 i+1

The value is then normalized with respect to the ideal outcome of that query to obtain the normalized
Discounted Cumulated Gain (nDCG) of that query.

• Precision and Recall Precision is the fraction of retrieved items that are relevant to the query, or in
other words the percentage of objects that belong to the same class of the query element. Recall is
the fraction of the relevant documents that are successfully retrieved. Plotting the precision value
with respect to the recall we obtain the so-called precision-recall curve. This curve gives us a visual
understanding of the results. The higher is the integral of this curve the better is our prediction. This
integral is called Area Under Curve (AUC) and is among the metrics used to evaluate the quality of
the results.

• mAP@k This metric is mean Average Precision with the number of nearest neighbours for each
sample set to k. For a single query is defined as follows:

mAP@k = 1
k

k∑
i=1

P (i),

where

P (i) =

precision at i if the ith retrivial is correct,

0 otherwise.

The number k of neighbours considered is 32.

• e-Measure (e): Similarly as mAP@k e-Measure considers the first k retrieved elements for each
query, and it is defined as

e = 1
1
P + 1

R

,

where P and R are respectively precision and recall values over those results. Also in this case the
number of neighbours is fixed to 32.

For the challenge, we submitted two different runs. The main differences between the two runs is the
strategy used to uniform the patch images and the use of data augmentation.

In the first run, in fact, we crop all the patches to the size of the smallest patch that is 231× 231
pixels. For each patch, crops are computed so that there is the minimum number of void pixels in each
image. No data augmentation is used in this run. While in the second run we pad with zeros-values
all the patches to the size of the biggest patch that is 836×836. Furthermore, during training we used
data augmentation rotating input images with random angles and also flipping vertically and horizon-
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tally. We think that both these changes contributed to achieve a better performance as reported in Table 5.1.

Along with our methods, in Table 5.1 we also report the score obtained by the method that won the
competition, named Deep Feature Ensamble (DFE). This last method is composed of two steps. In the
first step, it extracts images from 3D object transforming the object into a new 3D coordinate system so
that the object stands vertically across the y-axis for the ease of rendering and successively extracting the
largest inscribed square of the object on the 2D image. After this step, each 3D object has one representing
a 2D square image. In the second step, the authors propose an approach similar to ours, using pretrained
deep learning models, such as ResNet (He et al., 2016), to extract feature vectors from images. After
extracting features, each object it is represented as a feature vector and a metric learning approach it used
to optimize the parameters of the network and to compute similarities between objects.

TABLE 5.1
NEAREST NEIGHBOURHOOD, FIRST TIER, SECOND TIER, MAP, NDGC, E-MEASURE AND

AUC VALUE OF ALL THE SUBMITTED RUNS. VALUES GO FROM 0, TO 1. THE HIGHER THE

VALUE IS, THE BETTER THE METHOD PERFORMS. (SOURCE MOSCOSO THOMPSON ET AL.
(2020))

Method NN FT ST mAP@32 nDCG e AUC
Our (run 1) 0.900 0.836 0.990 0.868 0.941 0.686 0.974
Our (run 2) 0.982 0.887 0.992 0.912 0.968 0.690 0.978

DFE (winner) 0.982 0.920 1.000 0.930 0.974 0.715 0.987

5.3 Learning Similarities and Hierarchies

Let now move on to Similarity-based Hierarchical Clustering. This is a classical unsupervised learning
problem and alternative solutions have been proposed during the years. Hierarchical clustering methods
such as Complete Linkage, Ward’s Method or λ-flat zones hierarchies that we have introduced in Section
1.2.2 are conceivable solutions to the problem. Dasgupta (2016) firstly formulated this problem as a
discrete optimization problem. Given a similarity graph G, that is a graph whose weights represent
similarities between vertices of the graph, the author proposes a cost function to evaluate a hierarchical
tree T defined over the set of nodes V of the graph as

CG(T ) =
∑

(i,j)∈E

wij |leaves(T [i∨ j])|, (5.1)

where i∨ j is the Least Common Ancestor (LCA) between leaves nodes i and j in the hierarchical tree T ,
and |leaves(T [i∨ j])| is the number of leaves contained in the subtree rooted at i∨ j. The intuition behind
this formulation is that a good hierarchy merges the most similar points before in the hierarchy and the
dissimilar one later on. Successively Wang and Wang (2020) have shown that the cost function can be
rewritten as

CG(T ) =
∑

(ijk)∈V 3

[wij +wjk +wik−wijk(T )]+2
∑

(i,j)∈E

wij , (5.2)
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where
wijk(T ) = wij1[{i, j|k}]+wjk1[{j,k|i}]+wik1[{i,k|j}], (5.3)

and the relation {i, j|k} holds in T if the LCA i∨ j is a proper descendant of the LCA i∨ j∨k. Note that
for a binary tree T , only one term in the Equation 5.3 is non-zero. The main issue with this approach is that
finding an optimal hierarchy T ∗ that minimizes cost in the Equation 5.1 is NP-Complex (Dasgupta, 2016,
Th. 10). For this reason, several continuous approximations of the Dasgupta’s cost function have been
proposed in recent years. However, in the formulation of the problem, the input set and the similarities
between points are fixed elements. Thus, any change in the input set entails a reinitialization of the
problem and a new solution must be found. In addition to this, we underline that the similarity function
employed is a key component for the quality of the solution. For these reasons, we are interested in an
extended formulation of the problem in which we assume as input a family of point sets, all sampled from
a fixed distribution. Our goal is to find at the same time a “good” similarity function on the input space
and optimal hierarchical clustering for the point sets. The solution proposed will be validated on a Toy
Dataset containing five different kinds of distributions.

5.3.1 Related Works

Our work is inspired by Chierchia and Perret (2020) and Chami et al. (2020) where for the first time
continuous frameworks for hierarchical clustering have been proposed. Both papers assume that a
given weighted-graph G = (V,E,W ) is given as input. The authors of the first paper aim to find
the best ultrametric that optimizes a given cost function. Basically, they exploit the fact that the set
W = {w : E→ R+} of all possible functions over the edges of G is isomorphic to the euclidean subset
R|E|

+ and thus it makes sense to “take a derivative according to a given weight function". Along with this,
they show that the min-max operator function ΦG :W →W , defined as

(∀w̃ ∈W,∀exy ∈ E) ΦG(w̃)(exy) = min
π∈Πxy

max
e′∈π

w̃(e′), (5.4)

where Πxy is the set of all paths from vertex x to vertex y, is sub-differentiable. As insight, the min-max
operator basically maps any function w ∈W to its associated subdominant ultrametric on G . These two
key elements are combined to define the following minimization problem overW

w∗ = argmin
w̃∈W

J(ΦG(w̃),w), (5.5)

where the function J is a differentiable loss function to optimize. In particular, since the metrics w̃ are
indeed vectors of R|E|, the authors propose to use the L2 distance as a natural loss function. Furthermore,
they come up with other regularization functions, such as a cluster-size regularization, a triplet loss, or a
new differentiable relaxation of the famous Dasgupta’s cost function Dasgupta (2016). The contribution
of Chami et al. (2020) is twofold. On the one hand, inspired by the work of Monath et al. (2019), they
propose to find an optimal embedding of the graph nodes into the Poincaré Disk, observing that the
internal structure of the hierarchical tree can be inferred from leaves’ hyperbolic embeddings. On the
other hand, they propose a direct differentiable relaxation of the Dasgupta’s cost and prove theoretical
guarantees in terms of clustering quality of the optimal solution for their proposed function compared
with the optimal hierarchy for the Dasgupta’s function.
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As said before, both approaches assume a dataset D containing n data points and pairwise similarities
(wij)i,j∈[n] between points are known in advance. Even though this is a very general hypothesis, unfortu-
nately, it does not include cases where part of the data is unknown yet or the number of points cannot be
estimated in advance, as for example point-cloud scans. In the following section, we investigate a way
to extend the works above to our case. To be specific, we cannot assume any more that a given graph
is known in advance, and thus we cannot work on the earlier defined set of functionsW , but we would
rather look for optimal embeddings of the node features. Before describing the problem, let us review
hyperbolic geometry and hyperbolic hierarchical clustering.

5.3.2 Hyperbolic Hierarchical Clustering

The Poincaré Ball Model (Bn,gB) is a particular hyperbolic space, defined by the manifold Bn = {x ∈
Rn | ∥x∥< 1} equipped with the following Riemannian metric,

gBx = λ2
xgE , where λx := 2

1−∥x∥2 ,

where gE = In is the Euclidean metric tensor. The distance between two points in the x,y ∈ Bn is given
by,

dB(x,y) = cosh−1
(

1+2 ∥x−y∥22
(1−∥x∥22)(1−∥y∥22)

)
. (5.6)

It is thus straightforward to prove that the distance of a point to the origin is do(x) := d(o,x) =
2tanh−1(∥x∥2). Finally, we remark that gBx defines the same angles as the euclidean metric. The
angle between two vectors u,v ∈ TxBn \{0} is defined as

cos(∠(u,v)) = gBx (u,v)√
gBx (u,u)

√
gBx (v,v)

= ⟨u,v⟩
∥u∥∥v∥

,

and gB is said to be conformal to the Euclidean metric. In our case, we are going to work on the Poincaré
Disk, that is n = 2. The interested reader may refer to (Brannan et al., 2012, Chapter 6) for a wider
discussion on Hyperbolic Geometry. Please remark that the geodesic between two points in this metric
is either segments of circles orthogonal to the boundary of the ball or straight lines that go through the
origin, as shown in Figure 5.4.

The intuition behind the choice of this particular space is motivated by the fact that the curvature of the
space is negative and geodesic coming out from a point has a "tree-like" shape (see Figure 5.5). Moreover,
Chami et al. (2020) proposed an analogy of the Least Common Ancestor (LCA) in the hyperbolic space.
Given two leaf nodes i, j of a hierarchical T , the LCA i∨ j is the closest node to the root r of T on the
shortest path πij connecting i and j. In other words,

i∨ j = argmin
k∈πij

dT (r,k),

where dT (r,k) measures the length of the path from the root node r to the node k. Similarly, the hyperbolic
lowest common ancestor between two points zi and zj in the hyperbolic space is defined as the closest
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Figure 5.4 Geodesics on the Poincaré Disk are either segments of circles orthogonal to the boundary of
the ball as for the case of points P and Q or straight lines passing through the origin as for the case of
points P ′ and Q′.

point to the origin in the geodesic path, denoted zi⇝ zj , connecting the two points:

zi∨zj := argmin
z∈zi⇝zj

d(o,z).

Thanks to this definition, it is possible to decode a hierarchical tree starting from leaf nodes embedding
into the hyperbolic space. The decoding algorithm uses a union-find paradigm, iteratively merging the
most similar pairs of nodes based on their hyperbolic LCA distance to the origin. Finally, Chami et al.
(2020) also proposed a continuous version of Dasgupta’s cost function. Let Z = {z1, . . . ,zn} ⊂ B2 be an
embedding of a tree T with n leaves, they define their cost function as:

CHYPHC(Z;w,t) =
∑
ijk

(wij +wik +wjk−wHYPHC,ijk(Z;w,t))+
∑
ij

wij , (5.7)

where
wHYPHC,ijk(Z;w,t) = (wij ,wik,wjk) ·στ (do(zi∨zj),do(zi∨zk),do(zj ∨zk))⊤,

and στ (·) is the scaled softmax function στ (w)i = ewi/τ /
∑

j ewj/τ . Note that this formulation is similar
to the one proposed by Wang and Wang (2020) and reported in Equation 5.3.

5.3.3 Learning Similarities

To introduce our problem, we consider the example of k continuous random variables that take values
over an open set Ω⊂ Rd. Let Xt = {x(t)

1 , . . . ,x
(t)
nt } a set of points obtained as realization of the k random

variables at step t. Moreover, we assume to be in a semi-supervised setting. Without loss of generality,
we expect to know the associated labels of the first l points in Xt, for each t. Each label takes value in
[k] = {1, . . . ,k}, and indicates from which random variable the point has been sampled. In our work, we
aim to obtain at the same time a good similarity function δ : Ω×Ω→ R+ that permits us to discriminate
the points according to the distribution they have been drawn and an optimal hierarchical clustering for
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Figure 5.5 A sketch of a tree embedded in the Poincaré disk. Red curves connecting the dots are geodesics
of the space.

each set Xt. Our idea to achieve this goal, is to combine the continuous optimization framework proposed
by Chami et al. (2020) along with deep metric learning to learn the similarities between points. Hence, we
look for a similarity function δθ : Ω×Ω→ R+ such that

min
θ,Z∈Z

CHYPHC(Z;δθ, τ)+Ltriplet(δθ;α). (5.8)

The second term of the equation above is the margin triplet loss defined as

Ltriplet(δθ;α) =
∑

i

max(δθ(ai,pi)− δθ(ai,ni)+α,0), (5.9)

where ai is the anchor input, pi is the positive input of the same class as ai, ni is the negative input of a
different class from ai and α > 0 is the margin between positive and negative values.

5.3.4 Model Architecture

As explained before, we aim to learn a similarity function and at the same time find an optimal embedding
for a family of point sets into the hyperbolic space, which implicitly encodes a hierarchical structure. To
achieve this, our idea is to model the function δθ using a neural network whose parameters we fit in order
to optimize the loss function defined in Equation (5.8). Our implementation consists of a neural network
NNθ that carries out a mapping NNθ : Ω→ R2. The similarity function δθ is thus written as

δc
θ(x,y) = cos(∠(NNθ(x),NNθ(y))), (5.10)

We use the cosine similarity for two reasons. The first comes from the intuition that points belonging
to the same cluster will be forced to have small angles between them. As a consequence, they will be
merged earlier in the hierarchy. The second reason regards the optimization process. Since the hyperbolic
metric is conformal to the Euclidean metric, the cosine similarity allows us to use the same the RAdam
(Riemannian Adam) optimizer (Bécigneul and Ganea, 2019) in Equation (5.8). Once computed the
similarities, the points are all normalized at the same length to embed them into the Hyperbolic space.
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The normalization length is also a trainable parameter of the model. In other words, to map the hidden
features z = NNθ(x) ∈ R2 to B2, we do φz

∥z∥ , where φ is a trainable parameter initialized at φ = 0.001.
A wider family of solutions to the problem are architectures made by two components. The first part acts
as feature extraction NNf

θ : Ω→H. A natural choice would beH⊂ Rd, where d is the dimension of the
feature space. In this hidden space, we compute similarities between points similarly to Equation (5.10).
The second part NNe

θ :H→ B2 aims to embed from the hidden space to the Hyperbolic Space. The idea
behind this second approach is to disentangle the two components in Equation (5.8) and to optimize each
loss in separated spaces. The implementation of this second solution is beyond the purpose of this thesis.
We conclude this section discussing the properties that we need for our neural network. The list of
characteristics will guide us during the choice of the model. Similarly to PointNet Charles et al. (2017), a
basic property we would like the model to have is to be independent of the number of points in the sample
and to be invariant to permutations. Furthermore, we would like the model to be robust to noise.

We have selected two architectures. The first is a Multi-Layer-Perceptron (MLP) because it has the
basic properties, while the second uses Dynamic-Edge-Convolutions proposed by Wang et al. (2019b). In
particular we have chosen:

1. MLP composed of four hidden layers,

2. DGCNN, a model composed of three layers of DynamicEgdeConv.

Ideally, the perfect model should also be invariant to any rigid action applied to the points in the space,
such as translations or rotations, but we leave this issue for future works.

5.4 Experiments

5.4.1 Toy Datasets

In this section we report our experiments on synthetic datasets generated using Python Scikit-Learn
Library Pedregosa et al. (2011). Inspired by the work of Chierchia and Perret (2020) we took into account
five samples generators in Scikit-Learn to produce the following five datasets.

Circles

In each sample of this dataset the points are aligned along two concentric circles centered at the origin. It
is possible to control the ratio between the two circumferences and the noise of the distributions. In Figure
5.6 we illustrate different samples obtained changing the value of the noise, while the ratio between the
radii of the two circles is fixed.
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Figure 5.6 Example of circles that can be generated varying noise value.
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Moons

The moons dataset is similar to the circle case. This time the points are aligned along four different moon
shaped forms. Also in this case we can add noise in the sampling. Figure 5.7 shows different kinds of
realisation that we obtain by changing the value of noise.
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Figure 5.7 Different samples of moons obtained increasing noise value.

Blobs

In this dataset points are drawn from nine different Gaussians distributions whose centers are placed on a
regular two-dimensional grid over the square [−1,1]× [−1,1]⊂R2 having all the same isotropic variance
as illustrated in the bottom right plot of Figure 5.8.
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Figure 5.8 Blob Dataset is generated sampling points from nine different Gaussians centered on a regular
grid having all the same standard deviation. Figure shows Gaussians that we obtain using different values
for standard deviation.

Anisotropic

The anisotropic dataset is similar to blob dataset, but we replace isotropic variances with anisotropic
variances, see Figure 5.9. The anisotropy has been obtained applying a rigid transformation of the plane.

Varied

Similar as blobs dataset but in this case, each Gaussian has a different value for standard deviation as
illustrated in Figure 5.10. During the implementation of this dataset we decided to fix the values of the
standard deviations. This means that in this case the Gaussian distributions are fixed.

5.4.2 Results on Toy Datasets

Architectures: The architectures we test are MLP and DGCNN. The dimension of hidden layers is
64. After each Linear layer, we apply a LeakyReLU defined as LeakyReLU(x) = max{x,ηx} with a
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Figure 5.9 Anisotropic Dataset is generated sampling points from nine different anisotropic Gaussians
centered on a regular grid. The samples shown have been obtained using different values for standard
deviation.
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Figure 5.10 Varied Dataset is generated sampling points from nine different Gaussians centered on a
regular grid. Gaussians used in this case have different standard deviation.

negative slope η = 0.2. In addition, we use Batch Normalization (Ioffe and Szegedy, 2015) to speed up
and stabilize convergence.

Experiments setup: For each dataset we generate, the training set is made of 100 samples and the
validation set of 20 samples. The test set contains 200 samples. In addition, each sample in the datasets
contains a random number of points that may vary from 200 to 300 and the labels are known only for the
30% of the points in each sample. In Circle and Moons datasets increasing the value of noise makes the
clusters mix with each other and thus the task of detection becomes more difficult. Similarly, in Blobs
and Anisotropic we can increase the value of standard deviation to make the problem harder. Finally, for
Varied dataset, we train and test the models because the Gaussians are fixed. Our goal is to explore how
the models embed the points and separate the clusters. Moreover, we want to investigate the robustness of
the models to noise. For this reason, in these datasets, we set up two different levels of difficulty according
to the noise/standard deviation used to generate the sample as summarized in Table 5.2. In Circles and
Moons datasets, the easiest level is represented by samples without noise, while the harder level contains
samples whose noise value varies up to 0.16. In Blobs and Anisotropic datasets, we chose two different
values of Gaussian standard deviation to generate the sample. In the easiest level, the standard deviation
value is fixed at 0.08, while in the harder level is at 0.16. For each level of difficulty, we trained the models
and compared the architectures. In addition, we used the harder level of difficulty to test all the models.
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TABLE 5.2
TWO LEVELS OF DIFFICULTY USED TO GENERATE THE DATASETS. IN THE EASIER LEVEL,

THE NOISE USED IS LOWER THAN IN THE HARDER.

Level of Difficulty Dataset Noise/Std used to generate samples

Easy

Moons 0.0
Circles 0.0
Blobs 0.08

Anisotropic 0.08

Hard

Circles 0.0−0.16
Moons 0.0−0.16
Blobs 0.16

Anisotropic 0.16

Metrics: Let k the number of clusters that we want to determine. For the evaluation, we consider the
flat cut of the hierarchy that leads to k, and we measure the quality of the predictions using Average Rand
Index (ARI), Purity, and Normalized Mutual Information Score (NMI). We have introduced these metrics
previously in Section 1.2.3. In addition, we also navigate the hierarchy to find the number of clusters that
maximize the Average Rand Index. Our goal is to test the ability of the two types of architectures selected
to approximate the similarity function in Equation (5.10).

Visualize the embeddings: Let first discuss the results obtained on Circles and Moons. In order to
understand and visualize how similarities are learned, we first trained the architectures at the easiest level
of Table 5.2. Figures 5.11, 5.12, 5.14 and 5.15 illustrate the predictions carried out by models trained using
samples without noise. Each row in the figures illustrates the model’s prediction on a sample generated
with a specific noise value. The second column from the left of sub-figures depicts hidden features in the
feature spaceH⊂R2. The color assigned to hidden features depends on points’ labels in the ground truth.
The embeddings in the Poincaré Disk (third column from the left) are obtained by normalizing the features
to a learned scale as explained in Section 5.3.4. Furthermore, the fourth column of sub-figures shows the
prediction obtained by extracting flat clustering from the hierarchy decoded from leaves embedding in
the Poincaré Disk. Here, colors assigned to points come from predicted labels. The number of clusters
is chosen in order to maximize the average rand index score. It is interesting to remark how differently
the two architectures extract features. Looking at the samples without noise, it is straightforward that
hidden features obtained with MLP are aligned along lines passing through the origin. Especially in
the case of Circles (Figure 5.11), hidden features belonging to different clusters are mapped to opposite
sides with respect to the origin, and after rescaling hidden features are clearly separated in the hyperbolic
space. Indeed, picking cosine similarity in Equation 5.10 we were expecting this kind of solution. On the
other hand, the more noise we add, the closer to the origin hidden features are mapped. This leads to a
less clear separation of points on the disk. Unfortunately, we cannot find a clear interpretation of how
DGCNN maps points to hidden space. However also in this case, the more noise we add, the harder it is
to discriminate between points of different clusters.
During the experiments on Blobs and Anisotropic datasets, we conducted a similar analysis, in order to
grasp how the models extract the hidden features. Also in this case, we first trained models at the easiest
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level of Table 5.2, and tested on different values of noise. Figures 5.17, 5.18, 5.20 and 5.20 show how MLP
and DGCNN embed points. Similarly, Figure 5.23 shows the behaviour of the two models on a sample in
Varied dataset. This time, it is fascinating to see that both models act similarly. Indeed, in all three cases,
the two models align the hidden features along directions coming out from the origin. Additionally, as we
increase the standard deviation MLP pushes hidden features towards the origin, likewise, it does in Moons
and Circle datasets. As before this causes the clusters to overlap on the Poincaré Disk leading to a lesser
precise separation between diverse groups. Another insight to underline is that the margin value α in
Triplet Loss (5.9) plays an important role in the good convergence of the models. The shown results have
been achieved for α = 0.2. In Figure 5.24, we illustrate some predictions obtained MLP models trained
with different values of α. In those cases, we can clearly perceive how models make some clusters align
along the same direction in the hidden space. The value α = 0.2 has been chosen after several tests, trying
to avoid the alignment effect in the hidden space.

Comparison with classical HC methods: In Figures 5.13, 5.16, 5.19 and 5.22 we compare models
trained at easier level of Table 5.2 against classical methods such as Single/Complete/Average Linkage
and Ward’s method on Circles, Moons, Blobs and Anisotropic respectively. We report scores obtained at
different values of noise. For each level of noise, we generate a test set containing 20 samples. The lines
in the plots represent the average score obtained by the methods, while the bars represent scores’ standard
deviation. The plots show the degradation of the performance of models as we add noise to samples.

Results on Circles say that Single Linkage is the method that performs the best for small values of
noise. However, MLP shows better robustness to noise. For high levels of noise, MLP is the best method.
On the other hand, DGCNN exhibits a low efficacy also on low levels of noise. Other classical methods do
not achieve good scores on this dataset. A similar trend can also be observed in Moon dataset. Note that,
in this case, MLP is comparable with Single Linkage also on small values of noise, and its scores remain
good also on higher levels of noise. DGCNN and other classical methods perform worse even in this data
set. Results obtained by MLP and DGCNN on Blobs’ dataset are comparable with the classical methods,
even though the performances of models are slightly worse compared to classical methods for higher
values of noise. On the contrary, MLP and DGCNN achieve better scores on Anisotropic dataset com-
pared to all classical models. Overall, MLP models seem to act better than DGCNN ones in all the datasets.

Benchmark of the models: Table 5.3 reports the scores obtained by the trained models on each dataset.
Each line corresponds to a model trained either at an easier or harder level of difficulty of Table 5.2. The
test set used to evaluate the results contains 200 samples generated using the harder level of difficulty.
Scores obtained demonstrate that models trained at the harder levels of difficulty are more robust to noise
and achieve better results. As before, also in this case MLP is, in general, better than DGCNN in all the
datasets considered.
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TABLE 5.3
SCORES OBTAINED BY MLP AND DGCNN ON FIVE TOY DATASETS: CIRCLES, MOONS,
BLOBS, ANISOTROPIC, VARIED. IN EACH DATASET THE MODELS HAVE BEEN TESTED ON

THE SAME TEST SET CONTAINING 200 SAMPLES. IN CIRCLES AND MOONS, DATASET

SAMPLES IN THE TEST SET HAVE BEEN GENERATED USING A NOISE VALUES THAT VARIES

FROM 0.0 UP TO 0.16. IN BLOBS AND ANISOTROPIC DATASETS SAMPLES IN THE TEST SET

HAVE BEEN PRODUCED FIXING TO 0.16 THE VALUE OF STANDARD DEVIATION FOR

GAUSSIAN DISTRIBUTIONS. TO GENERATE A TEST SET FOR VARIED DATASET WE KEPT

THE SAME STANDARD DEVIATION FOR GAUSSIANS AS TRAIN AND VALIDATION SET.

Dataset k Noise/Cluster std Model Hidden Temp Margin Ari@k ± s.d Purity@k ± s.d Nmi@k ± s.d Ari ± s.d
Circles 2 0.0 MLP 64 0.1 1.0 0.871±0.153 0.965±0.0427 0.846±0.167 0.896±0.123
Circles 2 [0.0−0.16] MLP 64 0.1 1.0 0.919±0.18 0.972±0.0848 0.895±0.187 0.948±0.0755
Circles 2 0.0 DGCNN 64 0.1 1.0 0.296±0.388 0.699±0.188 0.327±0.356 0.408±0.362
Circles 2 [0.0−0.16] DGCNN 64 0.1 1.0 0.852±0.243 0.947±0.116 0.826±0.247 0.9±0.115
Moons 4 0.0 MLP 64 0.1 1.0 0.895±0.137 0.927±0.108 0.934±0.0805 0.955±0.0656
Moons 4 [0.0−0.16] MLP 64 0.1 1.0 0.96±0.0901 0.971±0.0751 0.972±0.049 0.989±0.017
Moons 4 0.0 DGCNN 64 0.1 1.0 0.718±0.247 0.807±0.187 0.786±0.191 0.807±0.172
Moons 4 [0.0−0.16] DGCNN 64 0.1 1.0 0.917±0.123 0.942±0.0992 0.941±0.0726 0.966±0.0455
Blobs 9 0.08 MLP 64 0.1 0.2 0.911±0.069 0.939±0.057 0.953±0.025 0.958±0.022
Blobs 9 0.16 MLP 64 0.1 0.2 0.985±0.0246 0.992±0.0198 0.99±0.0115 0.992±0.00821
Blobs 9 0.08 DGCNN 64 0.1 0.2 0.856±0.0634 0.891±0.0583 0.931±0.025 0.921±0.0401
Blobs 9 0.16 DGCNN 64 0.1 0.2 0.894±0.0694 0.92±0.0604 0.95±0.0255 0.948±0.0336
Aniso 9 0.08 MLP 64 0.1 0.2 0.86±0.0696 0.904±0.0631 0.922±0.0291 0.925±0.0287
Aniso 9 0.16 MLP 64 0.1 0.2 0.952±0.0503 0.968±0.044 0.972±0.0189 0.976±0.0133
Aniso 9 0.08 DGCNN 64 0.1 0.2 0.713±0.0835 0.793±0.0727 0.844±0.0401 0.795±0.0652
Aniso 9 0.16 DGCNN 64 0.1 0.2 0.84±0.0666 0.879±0.0595 0.922±0.0274 0.914±0.0436
Varied 9 - MLP 64 0.1 0.2 0.997±0.0057 0.999±0.00252 0.998±0.00448 0.998±0.00365
Varied 9 - DGCNN 64 0.1 0.2 0.98±0.0335 0.986±0.0298 0.989±0.0122 0.991±0.0102

5.5 Conclusions

In this chapter, we have studied the metric learning problem for the retrieval of 3D textured shapes and to
perform hierarchical clustering where the number of nodes per graph in the training set can vary. In the
first case, an original approach is proposed and compared against different methods. Our contribution
finished in the Top-3 over twenty solutions proposed by eight different teams in the international Shrec’20
challenge. In the second part, we have trained MLP and DGCNN architectures on five Toy datasets by
using our proposed protocol. The key point of the proposed framework is its ability to work on samples
with a varying number of points. The quantitative results show that overall MLP performs better than
DGCNN. The comparison with the classic methods proves the flexibility of the solution proposed to the
different cases analyzed, and the results obtained confirm higher robustness to noise. Finally, inspecting
the hidden features, we have perceived how MLP tends to project points along lines coming out from the
origin. To conclude, the results obtained are promising and we believe that it is worth testing this solution
also on other types of datasets such as 3D point clouds.
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Figure 5.11 Effect of noise on predictions in the circle database. The model used for prediction is a
MLP trained using a dataset without noise. From top to bottom, each row is a case with an increasing
level of noise. In the first column the input points, while in the second column we illustrate hidden
features. Points are colored according to ground truth. The third column illustrates the hidden features
after projection to Poincaré Disk. Fourth column shows predicted labels, while the fifth column shows
associated dendrograms. Colors in the last three columns are assigned according to predicted labels.
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Figure 5.12 Effect of noise on predictions in circle database. The model used for prediction is a DGCNN
trained using a dataset without noise. From top to bottom, each row is a case with an increasing level of
noise. In the first column the input points, while in the second column we illustrate hidden features. Points
are colored according to ground truth. The third column illustrates the hidden features after projection
to Poincaré Disk. Fourth column shows predicted labels, while the fifth column shows associated
dendrograms. Colors in the last three columns are assigned according to predicted labels.
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Figure 5.13 Robustness to noise of models on Circles. We compare trained models against classical
methods as Single Linkage, Average Linkage, Complete Linkage and Ward’s Method. The models used
have been trained on a dataset without noise. Test sets used to measure scores contain 20 samples each.
Plots show mean and standard deviation of scores obtained. During the experiments on this dataset MLP
has shown a higher robustness to noise compared with DGCNN. Among classical methods only single
linkage perform well on these samples.
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Figure 5.14 Moons dataset. The model used is a MLP trained on samples without noise. From top to
bottom, each row is a case with an increasing level of noise. In the first column the input points, while in
the second column we illustrate hidden features. Points are colored according to ground truth. The third
column illustrates the hidden features after projection to Poincaré Disk. Fourth column shows predicted
labels, while the fifth column shows associated dendrograms. Colors in the last three columns are assigned
according to predicted labels.
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Figure 5.15 Moons dataset. The model used for prediction is a DGCNN trained on samples without noise.
From top to bottom, each row is a case with an increasing level of noise. In the first column the input
points, while in the second column we illustrate hidden features. Points are colored according to ground
truth. The third column illustrates the hidden features after projection to Poincaré Disk. Fourth column
shows predicted labels, while the fifth column shows associated dendrograms. Colors in the last three
columns are assigned according to predicted labels.
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Figure 5.16 Robustness to noise of models on Moons. We compare trained models against classical
methods as Single Linkage, Average Linkage, Complete Linkage, Ward’s Method. The models used have
been trained on a dataset without noise. Test sets used to measure scores contain 20 samples each. Plots
show mean and standard deviation of scores obtained. During the experiments on these datasets MLP has
shown a higher robustness to noise compared with the other models.
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Figure 5.17 Blobs dataset. The model used for prediction is a MLP trained on samples with standard
deviation value at 0.08. From top to bottom, each row is a case with an increasing value of standard
deviation. In the first column the input points, while in the second column we illustrate hidden features.
Points are colored according to ground truth. The third column illustrates the hidden features after
projection to Poincaré Disk. Forth column shows predicted labels, while the fifth column show associated
dendrograms. Colors in the last three columns are assigned according to predicted labels.
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Figure 5.18 Blobs dataset. The model used for prediction is a DGCNN trained on samples with standard
deviation value at 0.08. From top to bottom, each row is a case with an increasing value of standard
deviation. In the first column the input points, while in the second column we illustrate hidden features.
Points are coloured according to the ground truth labels. The third column illustrates the hidden features
after projection to Poincaré Disk. Fourth column shows predicted labels, while the fifth column show
associated dendrograms. Colors in the last three columns are assigned according to predicted labels.
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Figure 5.19 Robustness to noise of models on Blobs. We compare trained models against classical
methods as Single Linkage, Average Linkage, Complete Linkage and Ward’s Method. The models used
have been trained on a dataset with Gaussian’s standard deviation fixed at 0.08. Test sets used to measure
scores contain 20 samples each. Plots show mean and standard deviation of scores obtained. During the
experiments on these datasets MLP has shown a higher robustness to noise compared with DGCNN. In
this case classical methods show better performances compared to trained models.
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Figure 5.20 Anisotropic dataset. The model used for prediction is a MLP trained on samples with
standard deviation value at 0.08. From top to bottom, each rows is a case with an increasing value of
standard deviation. In the first column the input points, while in the second column we illustrate hidden
features. Points are colored based on ground truth. The third column illustrate the hidden features after
projection to Poincaré Disk. Forth column shows predicted labels, while the fifth column show associated
dendrograms. Colors in the last three columns are assigned according to predicted labels.
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Figure 5.21 Anisotropic dataset. The model used for prediction is a DGCNN trained on samples with
standard deviation value at 0.08. From top to bottom, each rows is a case with an increasing value of
standard deviation. In the first column the input points, while in the second column we illustrate hidden
features. Points are colored according to ground truth. The third column illustrate the hidden features after
projection to Poincaré Disk. Forth column shows predicted labels, while the fifth column show associated
dendrograms. Colors in the last three columns are assigned according to predicted labels.
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Figure 5.22 Robustness to noise of models on Anisotropic dataset. We compare trained models against
classical methods as Single Linkage, Average Linkage, Complete Linkage and Ward’s Method. The
models used have been trained on a dataset with Gaussian’s standard deviation fixed at 0.08. Test sets used
to measure scores contain 20 samples each. Plots show mean and standard deviation of scores obtained.
During the experiments on these datasets MLP has shown a higher robustness to noise compared with
DGCNN.
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Figure 5.23 Varied dataset. (a) The model used for prediction is a MLP, while (b) the model used for
prediction is a DGCNN. In the first column the input points, while in the second column we illustrate
hidden features. Points are colored according to ground truth labels. The third column illustrates the
hidden features after projection to Poincaré Disk. Fourth column shows predicted labels, while the fifth
column show associated dendrograms. Colors in the last three columns are assigned according to predicted
labels.
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Figure 5.24 The choice of value for margin α plays an important role for the quality of the results.





6 Towards Morphological Convolutions on Graphs

Resumé

Ce chapitre se concentre sur les réseaux de neurones sur des graphes. Dans la première partie du chapitre,
nous donnons une introduction aux réseaux de neurones sur les graphes, en présentant les principaux
concepts et en résumant l’état actuel de l’art. Dans la deuxième partie, nous proposons une extension
d’un type particulier de couche sur les graphes, le Edge-Convolution, dans le cas de l’algèbre max-plus.
L’objectif est de proposer une version morphologique de l’opération de convolution sur les graphes.

6.1 Graph Neural Networks

The great breakthrough lead by Deep Neural Networks (DNN) and in the field of Computer Vision by
Convolutional Neural Network (CNN) has raised the question if it was possible to adapt these models
also to different domains rather than images Bronstein et al. (2017). Thanks to their great adaptability to
a wide range of applications, graphs have become an interesting field of study. First efforts to extend
mathematical tools as Fourier transform to the graph domain come from the field of graph signal
processing (Chung, 1997). Nonetheless, the first definition of a Graph Neural Network has been proposed
as a recurrent network (Scarselli et al., 2009). In the first part of the chapter, we review the state of the art
about Graph Neural Networks (GNN). The interested reader may refer to Bacciu et al. (2020) for an
introduction to GNN. In the second part, we propose a novel Morphological Convolution Layer.

From now on, we assume that a weighted graph G = (V,E,W ) is enriched with additional information
on both nodes and edges. In particular, let hv ∈ Rd1 be the feature vector associated to node v ∈ V and
hvw ∈ Rd2 be the feature vector associated to edge e = (v,w) ∈ E. Generally, Deep Graph Networks
(DGN) take as input a graph and generate a representation for each node v of the graph and in some cases
also a representation for the entire graph. Figure 6.1 illustrates a representation of a DGN.
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Figure 6.1 A Deep Graph Network takes as input a graph and produces for each node a hidden repre-
sentation. Such node representations can be aggregated to generate a representation for the entire graph.
Image source Bacciu et al. (2020)

6.1.1 Message Passing

The Message Passing mechanism is the building block for the construction of Graph Neural Networks.
It has been introduced by Gilmer et al. (2017), as a generalization of different definitions of context
information aggregation. At each layer ℓ ∈ {1, . . . ,L} of the network, Message Passing is made by two
functions, a message function Mℓ and a vertex update function Uℓ. The message function takes as input a
hidden vector hℓ

v for node v and aggregates local information as

mℓ+1
v = □

w∈N (v)
Mℓ(hℓ

v,hℓ
w,h(v,w)), (6.1)

where □ is any differentiable, permutation invariant function, such as sum, maximum, minimum and,
average. The function □ should be permutation invariant, mainly because in many cases there is not a
unique way to order edges. For this reason, we look for a function that is invariant to the order in which
the edges may appear. Once obtained the vector containing aggregated information, the update function
returns the new hidden feature vector hℓ+1

v as:

hℓ+1
v = Ul(hℓ

v,mℓ+1
v ). (6.2)

We remark that Message Passing only depends on the neighbourhood of the vertex v, thus is independent
of graph size. This make space/time complexity of this operation O(|E|), that reduces to O(|V |) for
sparse graphs. Later on, we will see how convolutions on a graph (Bruna et al., 2014; Defferrard et al.,
2016; Kipf and Welling, 2017; Wang et al., 2019b) are defined using this mechanism. In classification
problems, where the goal is to classify an input graph G, after L steps of message passing, a particular
function called READOUT is used to compute a feature vector for the whole graph. Specifically, the
readout function R is another permutation invariant function that takes as input the set of node feature
vector

hG = R({hL
v | v ∈ G}). (6.3)

Readout function operates on the set of nodes features vector and must be invariant to permutation in
order to be invariant by graph isomorphism.
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6.1.2 Convolution on graph

A first attempt to extend the concept of convolution on graph has been made using spectral methods Bruna
et al. (2014); Defferrard et al. (2016), mainly using the Graph Fourier Transform. Basically, let L be the
graph Laplacian matrix. Since L is symmetric positive semidefinite matrix it exists an orthonormal basis
of eigenvectors such that L = UΛUT , where U is the matrix of the eigenvectors and Λ is the diagonal
matrix of eigenvalues, that is Λ = diag([λ1, . . . ,λN ]). The eigenvectors of the Graph Laplacian are used
to compute the Graph Fourier Transform of a signal x ∈ RN on a graph as F(x) = UT x. Since there
does not exist a translation operator on the nodes’ domain, the convolution operator can be defined on
the Fourier domain using the Graph Fourier Transform. Given x,y ∈ RN two signals on the graph, the
convolution operator is defined as:

x∗y = F−1(F(x)⊙F(y)) = U((UT x)⊙ (UT y)), (6.4)

where ⊙ is the element-wise Hadamard product. Thus, a signal x is filtered by gθ as

gθ ∗x = gθ(L)x = Ugθ(Λ)UT x, (6.5)

where gθ(Λ) = diag(θ) and the parameter θ is a vector of Fourier coefficients. In order to avoid computing
the complete eigendecomposition of the matrix L, Bruna et al. (2014) propose to use the first k eigenvectors
of the matrix U since for practical reasons they are the ones that more influence the convolution. However,
this approach has two limitations. The first is that the filters are not localized in space and the second
is that their learning complexity scales with the dimension of the input graph, that is O(N). ChebNets
(Defferrard et al., 2016) proposes to use the truncated Chebyshev expansion (Hammond et al., 2011) to
overcome these issues. The idea is to rewrite the filtering operation as

gθ(L)x =
K−1∑
k=0

θkTk(L̃)x, (6.6)

where L̃ = 2
λmax

L− In is the scaled Laplacian and Tk(·) is the Chebyshev polynomial of order k, that
respects the following recurrent definition Tk(x) = 2xTk−1(x)−Tk−1(x) with T0 = 1 and T1 = x. This
approach solves the spatial problem because the convolution is a K order polynomial in the Laplacian,
and thus it depends only on nodes that are at maximum K steps away from the central node. Moreover, it
avoids computing the eigenvectors of the graph Laplacian and the complexity of evaluating a convolution
is reduced to O(K|E|). Finally, Kipf and Welling (2017) introduce the Graph Convolutional Network
(also known as Vanilla GCN), truncating the above expansion at the first term, assuming that λmax ≈ 2
and using the renormalization trick:

Hℓ+1 = σ(D̃−1/2ÃD̃−1/2HℓΘℓ), (6.7)

where Ã = A + IN , D̃ii =
∑

j Ãij . The feature vector at layer ℓ is Hℓ ∈ RN×dℓ , while at layer ℓ + 1 is
Hℓ+1 ∈RN×dℓ+1 . Finally, Θℓ ∈Rdℓ×dℓ+1 are shared trainable parameters of the network. Even though in
this definition of convolution only the closest neighbours of a node are considered, the K-localization can
be achieved by chaining K convolutional layers. Equation 6.7 can be rewritten using Message Passing
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functions as:
mℓ+1

v =
∑

w∈N (v)
Ãvw(deg(v)deg(w))−1/2hℓ

w, (6.8)

and the update function is
hℓ+1

v = σ(⟨θℓ,mℓ+1
v ⟩), (6.9)

where θℓ is the vector of parameters of the network. One property of this definition of convolution is
isotropy. Differently from convolutions on images, where we have a notion of up, down, left and right, in
the graph domain we do not have an explicit notion of direction and thus all the neighbours are treated
equally. Similar to Vanilla GCN, there exist two other isotropic definitions of convolution of graph, that
are Graph SAGE (Hamilton et al., 2018) and GraphConv (Morris et al., 2019). Both of them are inspired
by the Weisfeiler-Lehman (WL) isomorphism test, which is a classic algorithm to test if two graphs are
isomorphic. The idea is that if two graphs are isomorphic, then the features extracted by a network must
be the same on the two graphs. They propose to learn a set of functions that learn how to aggregate
information from a node’s local neighbourhood. Each layer is defined as

hℓ+1
v = σ

(
Θℓ

1hℓ
v + □

w∈N (v)
Θℓ

2hℓ
w

)
, (6.10)

where Θℓ
1,Θℓ

2 are trainable parameters, and□ can be a summation of a maximum of Θℓ
2hℓ

w or a Long-Short
Term Memory of hℓ

w (Hochreiter and Schmidhuber, 1997).

Edge Convolution

Another family of convolutions still based on the Message Passing technique are Edge Convolutions
(Atzmon et al., 2018; Wang et al., 2019b). Differently from the previous case, this second family is an
anisotropic version of convolution on graphs. In this particular class of convolutions, the update function
is such that hℓ+1

v = mℓ+1
v . In other words, Edge convolution is defined as

hℓ+1
v = □

w∈N (v)
Mℓ(hℓ

v,hℓ
w,h(v,w)). (6.11)

A first particular example of this class is PointNet Charles et al. (2017), that can be seen as a convolution on
a graph where the set of edges is empty, i.e. E = ∅ and the function Mℓ(hℓ

v,hℓ
w,h(v,w)) = Mℓ(hℓ

v). In this
case, the convolution encodes only global shape information and does not consider local neighbourhood
structure. Other examples use a notion of local patch on a graph, in which a convolution operation can be
defined (Atzmon et al., 2018; Monti et al., 2017; Simonovsky and Komodakis, 2017; Veličković et al.,
2018). In these cases, the convolution is defined as

hℓ+1
v =

∑
w∈N (v)

fθ(hℓ
w) ·g(u(hℓ

v,hℓ
w)), (6.12)

where fθ is a function in the parameters of the network often implemented as a MLP, g is a Gaussian
kernel and u computes the pairwise Euclidean distance. In their work Wang et al. (2019b) they propose
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for the case of a graph G that is the k−NN graph of a set of features X = {hℓ
1, . . . ,hℓ

n} ⊂ Rd

hℓ+1
v = max

w∈N (v)
ReLU(θm · (hℓ

w−hℓ
v)+ϕm ·hℓ

v), (6.13)

where the function inside ReLU can be implemented using a Multi-Layer Perceptron (MLP) and the
weights θm and ϕm are shared among the nodes. This last definition combines global shape structure
information captured by the vectors hℓ

v with the local neighbourhood information captured by hℓ
v−hℓ

w.

6.1.3 Attention on GNN

Another mechanism that allows the implementation of anisotropic convolutions is attention. This last one
has been introduced in the context of Natural Language Processing (NLP). In the context of NLP, attention
mechanism allows putting more importance on a certain relationship between two words in a sentence
or close context. The idea takes inspiration from human visual attention that focuses a certain region
on the foreground while perceiving the rest in the background in “low resolution”. When an attention
mechanism is used to compute a representation of a single sequence, it is commonly referred to as
self-attention. Among others, Vaswani et al. (2017) used self-attention in their Transformer Architecture,
obtaining state-of-the-art performances on the machine translation task. Taking inspiration from this last
work, Veličković et al. (2018) introduced an attention-based architecture called Graph Attention Network
(GAT) to perform node classification of graph structured data. The input of a layer is a set of node
features {h1, . . . ,hN} ∈ RD and the output is a new set of node features {h′

1, . . . ,h′
N} ∈ RD′

. Firstly, a
linear transformation W : RD→ RD′

is applied to every node. Then a shared self-attention mechanism
a : RD′×RD′ → R computes attention coefficients

cij = a(Whi,Whj),

for each edge eij ∈ E. The coefficient cij can be explained as the importance of node j’s features to node
i. In order to fair compare all the coefficients of the same node i these are renormalized using a softmax
function as follows:

αij = softmaxj(cij) = exp(cij)∑
vk∈N (vi) exp(cik)

Specifically, in the proposed implementation of GAT architecture, the self-attention function is imple-
mented as a feed-forward neural network, parametrized by a vector a⃗ ∈ RD′

and applying a LeakyReLU
non-linearity afterwards defined as LeakyReLU(x) := max(ϵx,x), where 0≤ ϵ≤ 1. Thus, the expanded
formulation of normalized self-attention coefficients is

αij =
exp

(
LeakyReLU

(
a⃗T [Whi∥Whj ]

))
∑

vk∈N (vi) exp
(

LeakyReLU
(
a⃗T [Whi∥Whk]

)) ,

where ∥ has to be meant as the concatenation operation. Finally, the new feature vectors are computed as

h′
i = σ

( ∑
vj∈N (vi)

αijWhj

)
,

where σ is a non-linear function. Figure 6.2 illustrates the self-attention mechanism for a single node.
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Figure 6.2 Left: Attention Mechanism a(Whi,Whj) implemented as a feedforward neural network.
Right: A schematic illustration representing the self-attention mechanism for a single node v1 having as
feature vector h1. (Image source Veličković et al. (2018))

Multi-headed attention is implemented using K different self-attention functions a1, . . . ,aK and then
concatenating the output features as follows:

h′
i =

∥∥∥K

k=1
σ
( ∑

vj∈N (vi)
αk

ijW khj

)
.

Please note that the output feature h′
i is a KD′ (rather than D′) dimensional vector for each node.

A similar strategy is employed by Wang et al. (2019a) in their proposed Graph Attention Convolution
(GAT). This architecture has been proposed to be used in the context of point cloud semantic segmentation
task. Nodes of the graph are points {p1, . . . ,pN} of the point cloud. In this version, also initial point
positions are used in the activation function and attention scores are computed component-wise, that
means that the components of an attention vector αij = (αij,1, . . . ,αij,D′) ∈ RD′

are computed as

αij,d =
exp

(
cij,d

)
∑

vk∈N (vi) exp
(
cik,d

) ,

and the features vector cij ∈ RD′
are obtained using a feedforward network Mα : R3+D → RD′

as
cij = Mα(∆pij∥∆hij). Compared to GAT, this strategy allows incorporating local spatial relationships
between neighbouring points. For the curious reader, Joshi (2020) proposes an interesting analogy between
Graph Neural Networks and Transformer architectures.

6.1.4 Graph pooling

Pooling is a widely used operation in CNN architectures. The image domain is partitioned in non-
overlapping rectangles, on which a non-linear aggregation function (e.g. max) is applied. The main
advantages of this operation are to reduce the size of the feature maps and to increase the receptive field
of the network. Different approaches to adapt this operation in the context of graphs have been proposed
during the years. Clearly, the main challenge comes from the fact that the underlying graph is not a regular
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grid. Among all the adopted strategies to tackle the problem, we distinguish between two. The first relies
on learning a soft-assignment matrix S ∈ R(N,k) where N is the number of nodes in the graph and k

is the number of nodes in the graph after the pooling. Methods that employ this kind of approach are
for example DiffPool (Ying et al., 2018), or MinCutPool (Bianchi et al., 2020). Both methods design
specific loss functions to find the optimal assignment. The main drawback of this kind of method is
that the number of nodes in the graph is fixed intentionally. The second approach is based on learning a
function to score nodes and then selecting the k most important nodes according to the scoring function,
as in Top-k pooling (Gao and Ji, 2021), or in SAG-Pool (Knyazev et al., 2019; Lee et al., 2019). A small
variation of this last approach is EdgePool Diehl (2019a,b) that aims to learn to score functions for the
edges that measure similarity between endpoint nodes. Successively, the edges are sorted by their score,
and then it contracts the edges with the highest score and whose endpoints have not yet been part of a
contracted edge.

6.2 Towards Morphological Graph Convolutions

In this section, we propose to extend the Edge-Convolution layer on the max-plus algebra. Our goal is to
propose a morphological version of Graph Convolutions. The first definitions of morphological operators
on graph have been proposed in Vincent (1989). Later Cousty et al. (2013) extended on subgraphs the
basic morphological operators. Another approach has been proposed by Velasco-Forero and Angulo
(2015), and Blusseau et al. (2018), that reviewed the morphological operators with the graph signal
processing approach and redefined dilation and erosion operators as max-plus version of convolution on
graphs. The developments that we propose in this chapter assume somehow that the reader is familiar
with the work of Velasco-Forero and Angulo (2015) and max-plus algebra. For this reason, we recall the
basic definitions that will be useful later on.

Definition 6.1 (Max-Plus Semi-ring). Let (Rmax,⊕,⊗) be the triple such that Rmax = R∪{−∞} and
⊕, ⊗ are two binary operations defined as x⊕ y = max(x,y) and x⊗ y = x + y. (Rmax,⊕,⊗) is an
idempotent semi-ring because it respects the following properties:

• The neutral element for ⊕ is −∞, and 0 is the neutral element for ⊗.

• Both operations are associative and commutative.

• It holds c⊗ (a⊕b) = c+max(a,b) = max(a+c,a+b) = (a⊗c)⊕ (b⊗c) for every triple a,b,c ∈
Rmax

• For every a ∈ Rmax it holds a⊗−∞=∞⊗a = a−∞=−∞.

• For every a ∈ Rmax it holds a⊕a = max(a,a) = a.

Definition 6.2 (Conservative Morphological Weight Matrix). A weight matrix W ∈Rn,m
max is a conservative

morphological weight matrix if −∞≤ wij ≤ 0 and wii = 0 for any 1≤ i≤ n and 1≤ j ≤m.

The conservative morphological weight matrix can be seen as the adjacent weight matrix of a weighted
graph G = (V,E), where wij = −∞ if (vi,vj) ̸∈ E. In this context, note that values w

(p)
ij in the power

matrix W p (intended in a max-plus sense) are greater than −∞ if and only if there exists in G a path from
vertex vi and vertex vj in at most p hops.
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Definition 6.3 (Dilation and erosion). Let h : V →Rmax a signal over the nodes of the graph. The dilation
δW of signal h on the graph G = (V,E):

δW (h)i =
N∨

j=1
hj +wi,j := (W ⊕h)i, (6.14)

where W is a conservative morphological weight matrix. The erosion is the dual adjoint operator of the
dilation and is defined as:

εW (h)i =
N∧

j=1
hj +W ∗[i, j] =

N∧
j=1

hj−wj,i := (W ∗⊖h)i, (6.15)

where W ∗ is the adjoint weight matrix defined as W ∗[i, j] =−W [j, i].

Remark that the definition of dilation and erosion above include transformations by flat, non-flat,
adaptive and non-local structuring elements. In the following section, our goal is to define a graph layer
that learns an optimal morphological weight matrix.

6.2.1 MaxPlus Edge Convolution

Sharing Morphological Weights

In the definition of dilation and erosion operators, we remark that the morphological weight matrix can be
seen as analogous in the max-plus sense of convolution filters. However, we have found the following
drawbacks with the above definition.

• The size of the matrix W depends on the size N = |V | of the input graph.

• An optimal W ∗ may not take into account local graph topology.

For this purpose, similarly to the classic case, we would like to learn a shared morphological weight
matrix. In order to simplify our problem, we decide to restrict ourselves to the case in which the graph G
is the k-NN graph of set of vertices V . Thanks to this hypothesis, we can reduce the representation of
the morphological weight matrix to a vector w = (w1, . . . ,wk) ∈ Rk of size k. In this case, the dilation
operator with a shared morphological weight w can be written as:

(w⊕h)i =
k∨

k′=1
hjk′ +wk′ , (6.16)

where {j1, . . . jk} is the set of indices of the k neighbours of the vertex vi.

Multidimensional Case

Since so far, we have contemplated only the case of a one-dimensional signal defined on the graph
nodes. In the general case, we need to treat multi-dimensional features vectors h ∈ RD. We can easily
extend the operators to the case of a signal h ∈ RD stacking D weights vectors and obtaining a matrix
W = [w1, . . . ,wD]. In this case, the operator δW : RD

max→ RD
max maps a D dimensional signal to another
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D dimensional signal, with the following expression:

δW (h)i,d =
k∨

k′=1
hjk′ ,d +wk′,d, (6.17)

where {j1, . . . jk} are indices of the k neighbours of the vertex vi and d is the d-th feature of the feature
vector, i.e. d ∈ {1, . . .D}. In Figure 6.3, we illustrate an example of dilation applied on a two-dimensional
graph. The signal is the vector of points coordinates, thus in this case is a two-dimensional vector. In
the example, we illustrate the effect of the number k of neighbours used to build the k-NN graph on
the output. The weight matrix used is obtained stacking the same vector twice, that is W = [w,w]. On
the second row, the plots show the input signal (red points) and the output signal (blue points). As the
reader can see, increasing the number k of neighbours makes the output signal to concentrate towards the
upper-right corner of the space.
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Figure 6.3 An example of multidimensional dilation on a graph in which we make vary the number of
neighbours that we take into account. The input nodes are points aligned on a circle. In the first row, we
show the input graphs. In each case, we increase the number of neighbours, k, that we consider building
the graph. The second row illustrates input points (red) and output points (blue). The third row illustrates
the absolute values of weights used for each example. The weight matrices have size k×2. To build the
matrices W , we stacked the same vector w ∈ Rk twice.

Defining the layer

Now we have all the elements to define a MaxPlus Edge Convolution (MPEdge) as a variation of edge
convolution on the max plus algebra. In a MPEdge transformation, we first apply an edge-convolution
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(a) MNIST (b) CIFAR10

Figure 6.4 Samples images and super-pixels graph. Nodes correspond to superpixels of images obtained
using SLIC Algorithm. In MNIST, graphs have at most 75 nodes, while at most 150 nodes in CIFAR-10.
(Image Source Dwivedi et al. (2020))

followed by a convolution on the max-plus algebra:

hℓ+1
v = σ

(
δΘℓ(f ℓ

θm,ϕm
(hℓ

v,hℓ
w−hℓ

v))
)

= σ

 ∨
w∈N (v)

f ℓ
θm,ϕm

(hℓ
v,hℓ

w−hℓ
v)+Θℓ

 , (6.18)

where Θℓ is the trainable morphological weight matrix and f ℓ
θm,ϕm

is the function used in Edge-Conv
(6.13), defined as:

f ℓ
θm,ϕm

(hℓ
v,hℓ

w−hℓ
v) = ReLU(θm · (hℓ

w−hℓ
v)+ϕm ·hℓ

v), (6.19)

where θm and ϕm are trainable parameters as well. The Edge-Conv is used to map an input feature vector
hℓ

v ∈ RF to an output h′ ∈ RD. Successively, we apply the multidimensional dilation operator δΘℓ to the
signal h′ of a permutation invariant aggregation function.

6.2.2 Benchmarking MPEdge Convolutions

Following the benchmark proposed in Dwivedi et al. (2020), we compared MPEdge against the state-
of-the-art on the task of graph classification. In the same manner, we trained and tested our models
on the SLIC super-pixels Achanta et al. (2012) versions of MNIST and CIFAR10 datasets. To build
these datasets, the original images are converted to graphs using super-pixels that are small regions of
homogeneous intensity in the images. Super-pixels are the nodes of the graph, and each node is connected
to its k nearest neighbours. Given xv, xw the 2-D coordinates of super-pixels v and w, their similarity is
defined as:

δ(v,w) = exp
(
−∥xv−xw∥2

σ2
x

)
, (6.20)

where σv is the scale parameter defined as the average distance xk of the k nearest neighbours for each
node. In our experiments, we chose k = 9. Graphs in MNIST dataset have at most 75 nodes. Input
vertex features are the coordinates of the super pixel and its mean intensity (2D coordinates + 1D intensity
= 3D features). Similarly, graphs in CIFAR10 have at most 150 nodes, while features used are the
super-pixels coordinates and the average super-pixel intensity in each channel (2D coordinates + 3D RGB
= 5D features). In Figure 6.4, we show a sample from MNIST and CIFAR10 respectively. For further
information about the datasets, the reader may refer to Appendix A.2 in Dwivedi et al. (2020).
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Experiment Setup: For the comparison we consider the following GNNs: GCN (Kipf and
Welling, 2017), GraphSAGE (Hamilton et al., 2018), GraphConv (Morris et al., 2019), Edge-
Conv/DynamicEdgeConv Wang et al. (2019b) and MPEdge. We also included as baseline the graph
agnostic MLP, which does not consider any connection between nodes, but it simply updates the nodes
features as hℓ+1

v = σ
(
W ℓhℓ

v

)
. We used the same architecture to test the different approaches. As shown

in Figure 6.5 the model has three Conv layers that are the GNN we analyse. After this step, a global max
pooling is applied, and the prediction is achieved using an MLP. The dimension of hidden features is fixed
at 128 in all the steps. For each model, we perform five runs with different seeds, and we evaluate the
multi-label classification accuracy on test and training sets. The results are averaged over the five runs. Re-
member that in DynamicEdgeConv the graph is updated after each convolution step. That means that the
set of k nearest neighbours of a node changes from layer to layer of the network. At each level, in fact, the
new set is computed using the node embeddings obtained after the convolution. Since MPEdge is based on
EdgeConv, we aim to explore if MPEdge can also benefit from the dynamic update of the graph. For this
reason, we consider two models. The first, called MPEdge, in which the connections between nodes are
fixed. The second, named MPDynEdge, updates the graph after each convolution as in DynamicEdgeConv.

Our goal is to examine the effects brought by the trainable morphological parameters on the
performance of the network. For this reason, we focus our study on EdgeConv, DynamicEdgeConv,
MPEdge and MPDynEdge. In Figure 6.6, we show the training accuracy of the models. Each curve
corresponds to a different run, while the colours refer to the GNN employed. As the reader can see, on the
MNIST dataset the MPEdge based models reach on average higher accuracy compared to EdgeConv
based models. At the same time, on CIFAR10, the two layers achieve comparable scores.

Figure 6.5 The architecture of the model used for the tests. The Conv step is set according to the GNN
class analysed.

The experiments in Table 6.1 evaluate the different GNNs for the graph classification task on MNIST
and CIFAR10. Results for MNIST show that all the models achieve high scores both in train and test
sets. The MPEdge convolutions perform a bit better compared to all the others. This is confirmed also
if we look at Figure 6.7a, which illustrates the accuracy scores obtained by the different GNN. Each
dot is a different run. Moving our analysis to CIFAR10, note that in this case, all the models overfit the
training set. In fact, there is a big gap between test and train accuracy. However, as said before, the results
obtained by MPEdge are comparable with EdgeConv. Test accuracy scores, shown in Figure 6.7b, does
not exhibit a model that clearly outperforms the other on CIFAR10. In this case, DynamicEdgeConv and
MPDynEdge reach the highest accuracy score. Overall, results suggest that morphological parameters
could be helpful to accentuate the anisotropic properties of the convolutions. At the same time, Figure 6.8
shows that MPEdge models are slower compared to all the other methods.
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Figure 6.6 Accuracy during training. Colours are assigned according to the GNN. Each curve corresponds
to a different run. (a) MNIST: On average, accuracy of MPEdge layers is higher compared to EdgeConv
layers. (b) CIFAR10: in this case, the accuracy of MPEdge layers is comparable with EdgeConv layer.

6.2.3 Conclusions

In this chapter, we have introduced a straightforward extension of edge convolution layer based on
principles of max-plus algebra. Despite its simplicity, the experiments performed on Graph Classification
task show that the proposed MPEdge convolution achieves comparable results and in the case of MNIST
better results than the state of the art. Results obtained are promising and in our opinion, it is worth doing
further tests of the MPEdge on other tasks such as link prediction or node classification in future works.
We should note that this is a first step in the way toward the use of more complex morphological operators
for graph processing in the context of deep learning.

TABLE 6.1
COMPARISON WITH STATE-OF-THE-ART CONVOLUTION LAYERS ON GRAPH

CLASSIFICATION TASK. WE USED THE MULTI-LABEL CLASSIFICATION ACCURACY AS AN

EVALUATION METRIC. BEST MODELS IN RED.

GRAPH CLASSIFICATION
MNIST CIFAR10

Model L #Param Test Acc ± s.d. Train Acc ± s.d. #Epoch Epoch/Total #Param Test Acc ± s.d. Train Acc ± s.d. #Epoch Epoch/Total
MLP 3 35594 0.951±0.001 0.955±0.001 123 17.5s/0.59hr 35850 0.586±0.002 0.620±0.004 120 19.3s/0.64hr

EdgeConv 3 68746 0.979±0.001 0.999±0.001 93 37s/0.95hr 69258 0.692±0.003 0.879±0.007 98 48.4s/1.32hr
DynEdgeConv 3 68746 0.969±0.015 0.989±0.022 73 62.6s/1.27hr 69258 0.709±0.004 0.868±0.014 100 78.8s/2.19hr

MPEdge 3 72202 0.982±0.001 0.999±0.002 95 39.7s/1.04hr 72714 0.692±0.002 0.872±0.023 80 51.4s/1.15hr
MPDynEdge 3 72202 0.980±0.001 0.999±0.001 81 66.5s/1.50hr 72714 0.710±0.004 0.851±0.026 89 82.6s/2.04hr

GCN 3 35594 0.914±0.002 0.924±0.002 130 27s/0.98hr 35850 0.507±0.004 0.534±0.007 129 29s/1.03hr
GraphConv 3 68746 0.973±0.001 0.989±0.002 115 20s/0.64hr 69258 0.657±0.005 0.750±0.009 137 22.5s/0.85hr
GraphSAGE 3 68746 0.976±0.000 0.993±0.002 117 20s/0.66hr 69258 0.673±0.004 0.787±0.012 115 22.6s/0.73hr
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Figure 6.7 Accuracy scores on test sets (Higher is better). Each dot is a different run.
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Figure 6.8 Mean Time per epoch (Lower is better). Each dot is a different run. DynamicEdgeConv and
MPDynEdge are slower because they update the k-NN graph after each convolution.





Conclusions

Conclusions

Hereunder, we list the contributions of this thesis followed by a discussion on future perspectives.

• Ground Detection. In the context of point cloud scanning from road environments, we have
discussed the importance of ground detection as the first step for more complex tasks as for example
object detection and tracking. The high variation of point cloud density represents an issue for
classical λ-flat zones based algorithm for ground detection. Therefore, we discussed two strategies
to cope with this problem. The first strategy aims to interpolate the information using a polar grid
defined on the BEV image. The second approach builds a graph on 3D using the inherent spherical
vision of the scanner. Moreover, it combines elevation and point normals to define a weight function
on the graph edges helpful to locate horizontal surfaces. The two methods have been tested against
the state-of-the-art methods on the SemanticKITTI dataset. For this study, we selected supervised
(U-Net) and unsupervised approaches such as RANSAC, CSF. The scores obtained by our methods
are comparable with the state-of-the-art. Even though U-Net performs the best in almost all metrics
considered, we believe that the low number of hyperparameters required and the interpretability
are the strong points of our approaches. Moreover, simpler hardware is required. This is also an
important advantage for mass market applications. Finally, it is worth noting a low percentage of
points from classes such as cars, pedestrians or buildings are misclassified as ground. The main
confusion of propagation methods remains between ground and low vegetation.

• Road Detection. We carried out a study on the performance of road detection on low-resolution
point clouds. Results have shown a reduction of the performances as expected. Given the intrinsic
flatness of the surface, we propose to integrate information with point normals. We use an extremely
simple normal calculation approach. It can be efficiently computed starting from the Spherical
View image with point radial information. We demonstrate that the use of normals increases the
performances in the full resolution case and mitigates the deterioration of the performances while
reducing the resolution.

• MST on Data Streams. We proposed two novel algorithms for the problem of compute and update
a MST for a stream of data. We consider the case of an image decomposed in tiles received over
the time. The proposed solutions are based on the decomposition of the edges of the graph in two
parts: stable and unstable. The stable part is composed of edges that will belong to the MST in the
future, whatever the content of upcoming tiles. On the other hand, the unstable part contains edges
that could be removed from MST as new information arrives. The advantage of this decomposition
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is the reduced memory footprint of the algorithm. This allows to treat images of bigger sizes
compared to the naive approach. The correctness of the proposed algorithms is proved in the case
of morphological segmentation of remote sensing images.

• Metric Learning for surface retrieval. We illustrate the solution submitted for the SHREC’20
Track: Retrieval and classification of the surface patches with similar geometric relief. The goal is
to estimate the similarities between two objects based only on the patterns on their surfaces, without
considering the global shape. Our idea is to look for points of the mesh where the curvature of the
object is almost flat, in order to extract a local patch that characterizes the texture of the surface.
For each object, we extract multiple patches. Successively, a siamese-network is trained to learn
similarities between different patches. Finally, the global similarity between two objects is defined
as the minimum value among all similarities between any two patches of the two objects. Our
solution was ranked second in the international challenge.

• Learning Similarity. In the context of Hierarchical Clustering (HC), we analyze the case in which
we have a collection of realizations of a random distribution, and we want to extract a hierarchical
clustering for each sample in the collection. The size of samples varies and is not known in advance.
Our idea to solve this problem takes into account the continuous relaxation formulation of the
Dasgupta functional proposed in Chami et al. (2020), that approximates a hierarchical tree via an
embedding of the input points into the Hyperbolic space B2. However, this formulation assumes to
know in advance the number of points and the pairwise-similarities between them. To overcome
this issue, the proposed solution aims to learn a similarity function on the input space along with the
embedding to the Hyperbolic space. Hence, a triplet loss term is added to the embedding loss. This
approach has been validated on five illustrative datasets. In addition, we carried out a comparison
with classical HC algorithms. The results obtained are promising and the proposed method showed
in many cases good robustness to noise and higher adaptability to different datasets compared with
the classical approaches.

• Morphological Convolutions. We proposed MPEC a first Morphological Convolutional Layer on
Graph Neural Network (GNN). The definition is based on EdgeConv, and it uses a morphological
weight matrix to implement a trainable permutation invariant aggregate function. The newly
proposed layer has been tested on two graph classification benchmarks against the state-of-the-art
GNNs. Overall the results are comparable with the state of the art and on MNIST dataset, MPEC
shows better performances.

Perspectives

In the following we list the perspectives based on the current work.

• Point Cloud Sampling A first direction could be to analyse the effect of temporal aggregation of
LIDAR scans on reduced spatial resolution due to subsampling the vertical angle. Furthermore,
in Spherical View we upsampled the information inside the network, just before the prediction
layer. It could be interesting to upsample the input Spherical View range images, and evaluate the
performance of the U-Net model on the original 64×2048 sized Spherical View range image. The
up-sampling can be trained end-to-end to achieve successful reconstruction of 64×2048 image
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from sub-sampled 32×2048 or 16×2048 images. We have focused our study on road segmentation
mainly to limit and understand the effect of subsampling on a geometrically simple case. Future
studies could evaluate performance of key classes such as cars, pedestrians, to determine the loss in
accuracy on account of subsampling of point clouds.

• λ-flat-zones on 3D graph In this method proposed in Section 3.3, in the weight function we
measure the ratio between the elevation of the point and the vertical orientation of its normal.
Thanks to this ratio horizontal surfaces are contained in big quasi flat zones, while vertical surfaces
are shattered in small components. However, we could integrate in the definition of the weight
function also information about local neighborhoods of the two points. Namely, it could be
interesting to integrate in the weight function information such as planarity, linearirty or sphericity.
Since, we use the PCA of the local neighborhood to estimate normals, we can obtain this information
without any extra computation cost. Moreover, another important step of the method is the merging
of quasi flat zones. Here, RANSAC algorithm is used to evaluate if two quasi flat zones are
comparable. Other criteria, based on the maximum, minimum and mean elevation of the two
components could be considered.

• Application of MST Streaming to Point Clouds from Road Enviromnents. In Chapter 4, we
have shown three applications of the algorithm for MST in streaming to segmentation of Remote
Sensing images. Morphological segmentation of point-clouds from road environments could be
another interesting application for this method. The approach could exploit the Spherical View
representation to temporally aggregate multiple scans. Using this representation, we can navigate
through the scans along the time as if we were unfolding a photographic film, where each frame
of the film corresponds to a single scan (Figure 6.9). In this context we could use for example the
streaming version of λ-flat-zone algorithm to find a segmentation of the scene.

(a) Scan at time t

(b) Scan at time t + 1

(c) Zoom on the frontier between t and t + 1.

Figure 6.9 (a) Scan at time t and (b) the successive frame at time t+1. (c) We can image the two scans
as two successive frames of a pelicular film.

• MST Streaming Using the algorithms introduced in Chapter 4, it could be possible to implement
streaming version of other morphological segmentation algorithms, such as for example Stochastic
Watershed (Angulo and Jeulin, 2007).
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Figure 6.10 Framework that we want to explore is composed of two neural networks (cyan blocks). The
first embeds input points into an hidden spaceH. The optimization of the parameters of the first network
is done using a triplet loss. Triplets are generated using labels Y . The second network embed hidden
features to Poincaré Disk. In this case parameters are optimized using HypHC Loss defined in Chami
et al. (2020).

• Learning similarities for HC In Section 5.3.4 of Chapter 5, we have discussed about a wider
family of solutions to our problem to investigate. This framework is composed of two neural
networks as shown in Figure 6.10. The first network NNΘf

: Ω→H acts as feature extractor. The
idea is to map input features into an hidden spaceH on which we look for the optimal similarity
function. The second network NNΘe :H→ B2 embed the hidden features into the Poincaré Disk.
The idea is to disentangle the two components of the loss function and optimize the two components
in each space.

• Learning similarities for HC The solution proposed in Chapter 5 could be applied to point clouds.
In particular, it could be interesting to integrate the proposed framework to already existing DNN
solutions for point cloud segmentation. In particular it could be interesting integrate our solution to
DGCNN (Wang et al., 2019b).

• Morphological Graph Network In Chapter 6, we proposed MPEdge, a first morphological graph
convolution. The test done on benchmark dataset for Graph classification are promising. Nonethe-
less, a wider test on other task such as node classification or link prediction should be performed.
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MOTS CLÉS

Théorie de graphes, Hiérarchies, Segmentation, Traitement d’images, Apprentissage.

RÉSUMÉ

Les graphes sont de puissantes structures mathématiques représentant un ensemble d’objets et les relations sous-jacentes
entre eux. Ils sont de plus en plus populaires, en particulier dans l’analyse hiérarchique des images ou des nuages
de points 3D. Les hiérarchies sont très répandues car elles nous permettent d’organiser efficacement l’information et
d’analyser les problèmes à différents niveaux de détail. Dans cette thèse, nous abordons les sujets suivants :

De nombreuses approches hiérarchiques morphologiques s’appuient sur l’arbre de poids minimum (MST). Nous proposons

un algorithme pour le calcul du MST en streaming reposant sur une stratégie de décomposition des graphes. Grâce à

cette décomposition, des images plus grandes peuvent être traitées ou peuvent bénéficier d’une information partielle fiable

alors que l’image entière n’est pas encore disponible. Les récents développements du lidar permettent d’acquérir des

nuages de points 3D précis et à grande échelle. De nombreuses applications, telles que la surveillance des infrastructures,

l’urbanisme, la conduite autonome, l’agriculture de précision, pour n’en citer que quelques-unes, sont en cours de

développement. Nous introduisons un algorithme de détection du sol et le comparons à l’état de l’art. L’impact de la

réduction de la densité des nuages de points avec des scanners à faible coût est étudié. Enfin, dans de nombreuses

méthodes hiérarchiques, les similarités entre les points sont données en entrée. Cependant, la métrique utilisée pour

calculer les similitudes influence la qualité des résultats. Nous abordons l’apprentissage de la métrique comme un outil

complémentaire qui contribue à améliorer la qualité des hiérarchies. Nous démontrons les capacités de ces méthodes

dans deux contextes. Le premier, une classification de la texture des surfaces 3D, classée deuxième dans une tâche du

défi international SHREC’20. Le second permet d’apprendre la fonction de similarité ainsi que la hiérarchie optimale, dans

une formulation continue dans l’espace des caractéristiques.

ABSTRACT

Graphs are powerful mathematical structures representing a set of objects and the underlying links between pairs of
objects somehow related. They are becoming increasingly popular in data science in general and in particular in image or
3D point cloud analysis. Among the wide spectra of applications, they are involved in most of the hierarchical approaches.
Hierarchies are particularly important because they allow us to efficiently organize the information required and to analyze
the problems at different levels of detail. In this thesis, we address the following topics.
Many morphological hierarchical approaches rely on the Minimum Spanning Tree (MST). We propose an algorithm for
MST computation in streaming based on a graph decomposition strategy. Thanks to this decomposition, larger images can
be processed or can benefit from partial reliable information while the whole image is not completely available.
Recent LiDAR developments are able to acquire large-scale and precise 3D point clouds. Many applications, such as in-
frastructure monitoring, urban planning, autonomous driving, precision forestry, environmental assessment, archaeological
discoveries, to cite a few, are under development nowadays. We introduce a ground detection algorithm and compare it
with the state of the art. The impact of reducing the point cloud density with low-cost scanners is studied, in the context of
an autonomous driving application.

Finally, in many hierarchical methods similarities between points are given as input. However, the metric used to compute

similarities influences the quality of the final results. We exploit metric learning as a complementary tool that helps to

improve the quality of hierarchies. We demonstrate the capabilities of these methods in two contexts. The first one,

a texture classification of 3D surfaces. Our approach ranked second in a task organized by SHREC’20 international

challenge. The second one learning the similarity function together with the optimal hierarchical clustering, in a continuous

feature-based hierarchical clustering formulation.

KEYWORDS

Graph Theory, Hierarchical clustering, Segmentation, Image processing, Machine Learning, Point Clouds
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