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Titre : Étude expérimentale et modélisation de métamatériaux pour les ondes à la 
surface de l’eau 

 
 
 
 
 
 
 
 
 
 
 
 
 

Résumé 
 

 
 
 
La thèse concerne l'étude des métamatériaux dans le contexte des ondes à la surface 
de l'eau. Cette étude s'appuie sur une expérience en laboratoire qui permet de mesurer 
précisément le champ des ondes.  

Dans la première partie, nous démontrons expérimentalement et 
numériquement que les métamatériaux peuvent être utilisés pour contrôler la 
propagation des ondes et les propriétés de résonance d'une cavité fermée, y compris le 
« cloaking » de ses modes propres. Le milieu anisotrope est conçu à partir de la théorie 
de la transformation des coordonnées et de l'homogénéisation d'un problème d’onde 
tridimensionnel. Ce milieu est constitué par un ensemble de plaques verticales dont 
l’espacement est très inférieur à la longueur d’onde. Cette structure impose une 
bathymétrie anisotrope qui influe sur la propagation des ondes différemment selon leur 
direction de propagation par rapport à ce milieu structuré. Trois cavités différentes, 
fabriquées par une imprimante 3D, sont testées et comparées au cas de référence avec 
bathymétrie sans structuration. La profilométrie par transformée de Fourier, ainsi que 
des capteurs de déplacement confocaux, sont utilisés pour les mesures de la déformation 
de la surface de l'eau résolues en temps et en espace. Les données expérimentales 
montrent une capacité remarquable du métamatériau à influer sur la propagation 
anisotrope des ondes à la surface de l'eau. 

La deuxième partie concerne les métamatériaux immergés entre deux eaux pour 
lesquels un modèle homogénéisé est proposé et la solution numérique par méthode 
modale est fournie. Les propriétés anisotropes d'une telle structure sont étudiées 
expérimentalement en utilisant la même technique. Une analyse basée sur le formalisme 
de Bloch-Floquet est effectuée pour vérifier la relation de dispersion de ce milieu prédite 
par la méthode d'homogénéisation.  



L'objectif principal de la troisième partie de cette thèse est d'étudier 
expérimentalement les états de bord topologiquement protégés dans un guide d'ondes 
à géométrie périodique en régime linéaire et non-linéaire. Une des représentations des 
états topologiques, fournie par le modèle Su-Schrieffer-Heeger (SSH), est appliquée 
pour décrire les phénomènes observés. Un guide d'ondes avec une largeur périodique 
est comparé au cas régulier d’un réservoir rectangulaire avec une largeur constante.  
Des capteurs de déplacement confocaux sont utilisés pour mesurer le champ d'onde 
très précisément. Les données expérimentales sont comparées aux résultats des 
simulations numériques 2D et à la prédiction du modèle SSH. Les résultats obtenus 
montrent que cette configuration très simple présente toutes les propriétés du modèle 
SSH avec un excellent accord. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mots clés : métamatériaux, mécanique des fluides, ondes, homogénéisation, modèle 
SSH, étude expérimentale 



Title: Experimental study and modeling of metamaterials for water surface waves 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
 

 
 
 
This thesis concerns the study of metamaterials for water surface waves. The study is 
based on a laboratory experiment which makes it possible to measure the wave field 
precisely. 

In the first part, we demonstrate experimentally and numerically that 
metamaterials can be used to control the wave propagation and resonance properties 
of a closed cavity, including the cloaking of its eigenmodes. The anisotropic medium is 
designed using coordinate transformation theory and the homogenization of a three-
dimensional linear water wave problem. This medium consists of a set of vertical plates 
whose spacing is much lower than the wavelength. This structure imposes an 
anisotropic bathymetry which influences the propagation of the waves differently 
according to their direction of propagation. Three different cavities manufactured by 
a 3D printer are tested and compared to the reference case with bathymetry without 
structuring. Fourier transform profilometry, as well as confocal displacement sensors, 
are used for measurements of water surface deformation resolved in time and space. 
Experimental data shows a remarkable ability of the metamaterial to influence the 
anisotropic propagation of waves on the water surface. 

The second part concerns the metamaterials submerged between two water 
layers for which a homogenized model is proposed, and the numerical solution by the 
modal method is provided. The anisotropic properties of such a structure are 
investigated experimentally using the same technique. An analysis based on the  
Bloch-Floquet formalism is performed to verify the dispersion relation of this medium 
predicted by the homogenization method. 

The main objective of the third part of this thesis is to experimentally study 
topologically protected edge states in a waveguide with periodic geometry in both 
linear and nonlinear regimes. One of the representations of topological states, provided 



by the Su-Schrieffer-Heeger (SSH) model, is applied to describe the observed 
phenomena. A waveguide with periodic width is compared to the regular case of a 
rectangular reservoir with constant width. Confocal displacement sensors are used to 
measure the wave field very precisely. The experimental data is compared with the 
results of the 2D numerical simulations and the prediction of the SSH model. The 
results obtained show that this very simple configuration presents all the properties of 
the SSH model with excellent agreement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: metamaterials, fluid mechanics, waves, homogenization, SSH model, 
experimental study 
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Introduction

“If you want to find the secrets of
the Universe, think in terms of
energy, frequency and vibration.”

Nikola Tesla

Everything appears to be in a constant state of motion, whether it is a particle, a
wave, or both at the same time. The idea of a wave per se is a universal, and thus
quintessential concept for every field of physics – starting from the scale of subatomic
particles that exhibit wave-like properties, through the propagation of light, sound,
water (Fig. 1a), or earthquakes to scales as big as that of the gravitational waves
that travel through spacetime. The advances in the field of wave physics from the
last century contribute to the constant development of humankind, whether it comes
to communication over a great distance, harvesting renewable energies, or inspecting
environments previously beyond the reach of a naked eye with examples as diverse as
visualizing our internal organs using ultrasound or capturing the image of the black
hole (Fig. 1b) by an international network of radio telescopes [2]. These analogies

Fig. 1 (a) Satellite imagery of water waves formed at the ocean surface by an internal
wave propagating deeper in the depths [1]. (b) An image of the black hole at the center
of galaxy M87 [2].
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allow to observe the same phenomena throughout different types of waves, but how far
can we push them, and what is the degree of universality between them?

A wave is a disturbance that propagates from the spot where it was created (source)
and carries energy at a certain distance but does not necessarily transfer any mass.
Sound and water waves are mechanical waves. They necessitate a medium to travel
through – a gas, a solid, or a liquid. The speed with which it travels depends on the
material characteristics of the medium. By changing the properties of the medium,
one can control the propagation of the wave. Since water waves are common and
readily visible due to their macroscopic scale, they are often studied to understand
the properties and phenomena of their other counterparts. On the other hand, many
challenges arise due to the inherent water waves complexities, such as nonlinear effects
revealed for large enough surface elevation gradient or its dispersive behavior varying
with depth. In this thesis, we focus on an experimental study of water surface waves.

A medium, through which the wave propagates, with specially designed unique
patterns or structures, is called a metamaterial – from the Greek µϵτά-, meaning
beyond, higher or changed, altered. These specially engineered material properties cause
the wave to interact with the metamaterial in ways not commonly found in nature.
However, some links can be found, through which fascinating phenomena emerge when
it comes to the naturally periodic media. One of the examples illustrates the occurrence
of flow control through an array of unique structures on a shark’s skin [3]. It consists
of millions of microscopic scales (Fig. 2a). Where control of the water flow adjacent to
the predator’s body is essential, i.e., around the gills and at the trailing edge of the
dorsal fin, the scales can move. The size of the scales corresponds to the size of the

Fig. 2 (a) Close-view image of denticles from the surface of the mid-body region in
a bonnethead shark Sphyrna tiburo [3]. (b) Details of typical denticle structure with
the three surface ridges and three posteriorly pointing prongs. Such denticle structure
appears on the body, fins, and tail [3]. (c) Whole specimen of Morpho rhetenor butterfly
[4]. (d) Transmission electron microscope image showing cross-section of a scale of
Morpho rhetenor [5].
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boundary layer. It has been shown that the scales indeed do delay the flow separation,
and the usefulness of similar structures is being investigated in aviation [6].

Another example could involve the phenomenon of iridescence which consists in the
fact that certain surfaces progressively change their color as the angle of the incident
light wave changes. This extraordinary quality is attributable to the microstructure
that interferes with light and can be found, i.e., in bird feathers, certain minerals, or
butterfly wings (Fig. 2d). It is therefore evident that by modifying the medium at the
wavelength scale, new material properties are found that allow intricate control of the
wave propagation.

The concept of designing metamaterials exhibiting peculiar behavior has always been
attracting the attention of the scientific and engineering community. Metamaterials,
originally used in electromagnetism [7, 8] gained their worldwide interest especially
when it was shown that they can be used to make objects invisible [9, 10]. The principle
of cloaking using the metamaterial, being one of the most fascinating applications,
is based on the fact that the Helmholtz and Maxwell equations preserve their form
when undergoing coordinate transform. It has been shown that not only the perfect
transmission of the wave through the scatterer can be achieved, but also the scattered
field around the object can be canceled, thus making the object fully undetectable.

During the last two decades, attempts to translate these peculiar properties have
been made for other fields of physics [11, 12]. A substantial interest has been developed
in controlling acoustic [13–17], elastic [18–21], and seismic waves [22–26] using meta-
materials. They have been also employed to control water wave propagation, for which
some of the applications include cloaking [27–30], focusing [31], or guiding the energy
flow [32, 33]. As a result, metamaterials for water waves can be beneficial for coastal
engineering when it comes to wave-free zones, shore protection, energy harvesting, or
designing wakeless watercrafts.

Water wave metamaterials usually consist of the periodic structure at a subwave-
length scale allowing to obtain new global properties. It can be summarized that to
obtain the aforementioned special properties, one can use submerged or surface piercing
pillars, holes in the seabed, or varying depth. Designing such structures would not have
been possible if it had not been for special mathematical tools that allow to reduce
complicated hydrodynamical problems into ones that are easier to approach and solve.
Here, the homogenization technique [34–37] is of a significant importance and
helps, under certain assumptions to replace the original heterogeneous microstructure
with a comparable continuum. An array of heterogeneous thin plates are commonly
employed to manufacture water wave metamaterials [38, 39]. To avoid complicated
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analysis involving an explicit representation of all heterogeneities due to the array of
plates, the model of heterogeneous thin structures can be reduced using homogenization
techniques.

Traditionally, as mentioned before, metamaterials are studied as a subwavelength
structure. This assumption, essential for the homogenization technique, is necessary
to obtain the effective model of the heterogeneous problem. Nonetheless, the exotic
behavior of the wave can be acquired when the size of the structure is comparable to
the wavelength [40, 41]. One of the approaches corresponds to the theory of topological
insulators [42, 43] and is studied in this thesis.

The main objective of this thesis is to investigate both experimentally and theoreti-
cally the possible advances in the design of metamaterials for water surface waves.

Organization of the manuscript

The main body of this thesis consists of six chapters and is organized as follows.
Chapter 1 describes the theoretical foundation essential for the study of water

surface wave systems. First, the mathematical description of linear water wave theory
is specified, and the water wave dispersion relation is derived. Then, the notion of the
propagating and evanescent mode is introduced in the case of a wave in a waveguide.
Later on, we show the usefulness of the cavity eigenmodes when it comes to determining
the solution of the Helmholtz equation, and a definition of cavity resonance is given.
Finally, the last section of this chapter provides the comprehensive derivation of the
effective model for the one-dimensional wave equation and the two-dimensional shallow
water equation by means of the asymptotic homogenization technique for a stratified
medium.

Chapter 2 briefly overviews two experimental techniques used throughout the
presented research in order to measure the wavefield accurately. The Fourier transform
profilometry method that allows for high-resolution space-time resolved measurement
of the water surface elevation is presented. Moreover, we demonstrate the principle
of confocal chromatic measuring, on which confocal displacement sensors used in our
experiment are based.

Chapter 3 concentrates on the experimental study of the metamaterial for water
waves, which consists of the stratified structure at a subwavelength scale, and is placed
at the bottom of the cavity (metabathymetry). The metamaterial cavities of irregular
shape are designed and manufactured using the 3D printing technique. Owing to the
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geometric transformation theory and the homogenization method, we are able to cloak
the deformation of the cavities and make this deformation invisible for water waves.

Chapter 4 presents the homogenized model for the submerged plates array serving
as a metamaterial for water surface waves. This approach, different from the one given
in Chapter 3, allows to abandon shallow water approximation and gain considerable
advantages in metamaterial design. The robustness of such a medium is studied
experimentally, and its anisotropic capacities are investigated. Bloch-Floquet analysis
is performed to compare the band structure of the submerged metamaterial to the
dispersion relation obtained through the homogenization technique.

Chapter 5 focuses on the experimental investigation of the periodic structure
comparable to the size of the wavelength and developed owing to the theory of
topological insulators. The direct mapping between the one-dimensional Su-Schrieffer-
Heeger model and the periodic water waveguide is shown. The presence of localized
zero-energy edge modes is confirmed and studied both in the linear and nonlinear
regimes.

Chapter 6 summarizes the obtained results. Main conclusions from the presented
work are formed, and possibilities of further research opened by this study are offered.





Chapter 1

Theoretical background

1.1 Linear wave theory

In general, the motion of the fluid related to wave propagation can be described by the
Navier-Stokes equation

ρ

(
∂u
∂t

+ u · ∇u
)

= ρg − ∇p+ µ△u, (1.1)

where ρ stands for the density of the fluid, u = [u(x, t) v(x, t) w(x, t)] is a three-
dimensional velocity field (x = [x y z]), ∇p denotes the pressure gradient, and µ

identifies dynamic viscosity. The vector of external forces g usually contains the
gravitational acceleration and is of the form g = [0 0 − g] (Fig. 1.1). This nonlinear
equation (1.1) mathematically represents the general case of the viscous, compressible
fluid flow that is nonstationary and undergoes external forces. The nabla ∇ and
Laplace operator △ are defined as

∇ =
[
∂

∂x

∂

∂y

∂

∂z

]
and △ ≡ ∇ · ∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (1.2)

However, many assumptions can be used to considerably simplify the Navier-Stokes
equation when it comes to the scale of the experimental laboratory setting. The
linear wave theory, widely known as the Airy wave theory, is usually used to describe
surface waves [44]. Many approaches scrupulously derive the linearized theory of water
waves [45–47]. Below, we give the main points and relations that are used extensively
throughout this thesis.
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We choose z as the vertical axis, where z = 0 represents the undisturbed free
surface (Fig. 1.1) that is bounded by the impervious bed with a constant depth z = −h.
The surface elevation is denoted as ζ(x, y, t), where x and y stand for the horizontal
coordinates. We assume that the fluid lying above z = 0 (i.e., air) has a density much
lower than water ρ. Thus the influence of this fluid on the motion of the water can be
neglected.

We consider the fluid to be inviscid (µ = 0) and irrotational, meaning that there is
no vorticity in the fluid, and the fluid velocity satisfies

∇ × u = 0. (1.3)

This assumption allows to introduce the scalar velocity potential ϕ

u = ∇ϕ. (1.4)

The compressibility of water can be neglected, thus the continuity equation takes forms

∇ · u = 0. (1.5)

Plugging (1.4) into (1.5), we conclude that the velocity potential ϕ satisfies the Laplace
equation

△ϕ = 0 in Ω, (1.6)

where Ω denotes the domain occupied by the fluid. The Euler equations, which
represent the momentum conservation of a nonviscous fluid, allow the pressure in the
fluid to be determined. Setting the pressure to be constant on a free surface and

Fig. 1.1 Scheme of the water wave system.
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linearizing around the mean level z = 0 as well as assuming a small gradient of surface
elevation, we obtain the dynamic free surface boundary condition

∂ϕ

∂t
= −gζ at z = 0. (1.7)

In a similar fashion, a linearized version of the kinematic free-surface condition of
the surface is obtained. It links the vertical component of the velocity field with the
vertical displacement on the mean water surface as follows

∂ϕ

∂z
= ∂ζ

∂t
at z = 0. (1.8)

These two above conditions (1.7) and (1.8) can be merged into

∂2ϕ

∂t2
= −g∂ϕ

∂z
at z = 0, (1.9)

and thus eliminate ζ. Another condition implies no flow through the impervious bottom

n · ∇ϕ = 0 at z = −h, (1.10)

which in our case reduces to

∂ϕ

∂z
= 0 at z = −h. (1.11)

The above approach is often transformed into the frequency domain. The advantage
of getting rid of the time dependence is that we are also getting rid of the additional
initial conditions that would have to be imposed. We benefit from the fact that the
governing equations and boundary conditions for ϕ are linear, so if needed, any time
domain solution can be obtained by inverse Fourier transform of the problem’s solution
in the frequency domain. Hence, we write

ϕ(x, t) = Re
[
φ(x)e−iωt

]
, (1.12)

ζ(x, y, t) = Re
[
η(x, y)e−iωt

]
, (1.13)
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where φ and η are now complex functions that depends on the frequency ω. The
problem, following (1.6), and (1.9), now reduces to

△φ = 0 in Ω, (1.14)
∂ϕ

∂z
= ω2

g
φ at z = 0, (1.15)

∂ϕ

∂z
= 0 at z = −h. (1.16)

Also, the vertical displacement can be expressed by the velocity potential (1.7)

η(x, y) = iω
g
φ(x, y, 0). (1.17)

Ultimately, it can be shown that the velocity potential that satisfies the above conditions
is exponentially decaying in the direction of increasing depth. For the propagating
wave with an amplitude A, and whose wavenumber k = [kx ky], the potential is of the
form

φ = igA
ω

cosh k(z + h)
cosh kh ei(kxx+kyy), (1.18)

where k = |k|, and the relation between the frequency ω and the wavenumber k coming
from (1.15) is

ω2 = gk tanh kh. (1.19)

1.2 Dispersion relation for water waves

The relation (1.19) obtained in the previous section is called the dispersion relation for
water waves

ω2 = gk tanh(kh). (1.20)

The phase velocity of the wave is defined as cp = ω/k, whereas group velocity cg =
∂ω/∂k. Thus, using the dispersion relation, we have

cp =
√
gk tanh kh

k
and cg =

√
gk tanh kh

2k

(
1 + 2kh

sinh 2kh

)
. (1.21)
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However, for shallow water waves (kh ≪ 1) the dispersion relation can be simplified to

ω =
√
ghk. (1.22)

When it comes to shallow water waves described by the dispersion relation (1.22),
the angular frequency ω is directly proportional to the wavenumber k. It yields
that the group velocity and phase velocity are equal, thus the wave is nondispersive
(∂cp/∂ω = 0). For the deep water regime kh ≫ 1, we have

ω =
√
gk, (1.23)

with the phase velocity cp = g/ω, and cg = cp/2 which shows the dispersive character
of the wave (cp ̸= cg).

1.3 Waves in a channel

Assuming harmonic regime with the time dependence chosen as e−iωt and constant
water depth, the surface elevation η satisfies the homogenous Helmholtz equation

△η + k2η = 0, (1.24)

with the boundary conditions on both walls of the channel (Fig. 1.2)

∂η

∂y

∣∣∣∣∣
y=0

= ∂η

∂y

∣∣∣∣∣
y=w

= 0. (1.25)

The wavenumber k is given through dispersion relation (1.19). The wavefield can be
decomposed as follows

η(x, y) =
∑

n

fn(x)gn(y), (1.26)

Fig. 1.2 Scheme of the waveguide of the width w with impermeable boundary conditions
at the wall.
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assuming gn forms an orthonormal basis. Owing to the separation of variables, gn has
to satisfy

g′′
n + k2gn = 0, (1.27)

g′
n(0) = g′

n(w) = 0, (1.28)

where g′ = dg/ dy, which yields an infinite set of modes of the form

gn = An cosαny, where αn = nπ

w
, n = 0, 1, 2, . . . (1.29)

Projecting the Helmholtz equation (1.24) on the basis
∫ w

0 gmgn dy = δmn we have
∫ w

0
gm

∑
n

[
f̈ngn + (k2 − α2

n)fngn

]
dy = 0, (1.30)

where ḟ = df/ dx, and which gives

f̈n + (k2 − α2)fn = 0. (1.31)

The solution of the above equation can be expressed as

fn = aneiknx + bne−iknx, where k2
n = k2 − α2

n, (1.32)

and where an, bn stand for the complex amplitudes of the right and left going waves
respectively. Ultimately, the sought wavefield is given by

η(x, y) =
∑

n

An

(
aneiknx + bne−iknx

)
cosαny. (1.33)

This approach lets us recognize two different kind of modes. For k2 − (nπ/w)2 > 0 we
have a propagating mode with

kn =
√
k2 −

(
nπ

w

)2
. (1.34)

On the other hand for (nπ/w)2 − k2 > 0, the wavenumber kn becomes imaginary, thus
the wavefield is exponentially decaying and the mode is evanescent with

kn = i
√(

nπ

w

)2
− k2. (1.35)
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The above analysis allows, in some cases, to proceed with the introduction of a
one-dimensional model. The usefulness of this approach will be shown later in this
work to perform the reduction of the model from two-dimensional to one-dimensional.

1.4 Cavity: resonance and modes

Similarly, as in Section 1.3, we assume harmonic regime with the time dependence e−iωt

and constant water depth. The surface elevation η satisfies the Helmholtz equation

△η + k2η = 0, (1.36)

where the wavenumber k is given through dispersion relation (1.19). The Helmholtz
equation (1.36) has to be supplied with boundary conditions. In general for water
waves, boundary conditions are of Neumann type (∂nη = 0) and are applied in order
to simulate a vertical hard wall or the impermeable seabed. Nonetheless, one can
also apply Dirichlet (η = 0) or mixed boundary conditions depending on the physical
problem.

The usual modes are solutions of the homogeneous Helmholtz equation (1.36). In
the case of a closed cavity, the wave is unable to escape the cavity and the boundary
conditions select a set of discrete frequencies kn and eigenmodes ηn that satisfy

△ηn + k2
nηn = 0, (1.37)

with ∂nηn = 0 at the boundary, where n is the normal to the boundary and n is the
number of the mode. The set of modes ηn provides an orthonormal basis with the
property

(ηm|ηn) = δnm, (1.38)

where the scalar product is defined as (f |g) =
∫
f(x)g(x)dx. The benefits of the modes

can now be shown when one wants to solve the Helmholtz equation in the same cavity
with a source s(x)

△η + k2η = s(x). (1.39)
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The wavefield η can be expanded on the mode basis as

η(x) =
∑

n

cnηn(x). (1.40)

Substituting this expansion to the wave equation and using the orthonormality (1.38),
the coefficients cn can be expressed as follows

cn = (s|ηn)
k2 − k2

n

. (1.41)

Assuming that the projection of the source term (s|ηn) is not zero, when k ≈ kn, the
solution is given mainly by the mode ηn. It can be seen that the inherent character
of the modes allows to find a set of functions that are independent of the source, and
they predict the form of the wave when the imposed frequency is close to a resonance
frequency.

1.5 Homogenization technique

Homogenization techniques serve as the foundation for replacing the actual heteroge-
neous microstructure with an analogous continuum, which helps to study the mechanical
properties of metamaterials. Heterogeneous thin plates are commonly employed in
state-of-the-art applications requiring unusual mechanical and thermal properties. Such
structures include, e.g., a wide range of composite thin sheets and panels, which are
widely used in the aerospace and automotive industries, where the need for increased
lightness and strength is always desired. In our situation, they are used to provide a
medium for controlling the propagation of water waves. To avoid the costly calculations
involving an explicit representation of all heterogeneities, modeling heterogeneous thin
structures necessitates homogenized models.

1.5.1 Homogenization of 1D wave equation

We begin with a generalized case of a 1D wave equation that shows the concept of
the homogenization method. We assume a medium with periodically varying material
parameters a(x) and b(x) with a period h (Fig. 1.3a), and introduce the one-dimensional
wave equation as  (a(x)η′(x))′ + k2b(x)η(x) = 0

η(x), a(x)η′(x) ∈ C0,
(1.42)
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where k is the wavenumber and f ′ = df/dx. It is worth noticing that for constant
values of parameters a(x) = a1 and b(x) = b1 the equation (1.42) takes a trivial form

η′′(x) + k̃2η(x) = 0, (1.43)

where the new wavenumber is defined as k̃ = k
√
b1/a1.

However, with a periodically varying medium, we can use the homogenization
technique to simplify the problem. The periodic material parameters a and b cause the
solution to have superimposed small perturbations that are negligible (Fig. 1.3b) yet
make the equation more cumbersome to solve. Thus, we derive the equation satisfied by
large scale variation (λ) with effective, constant parameters. We consider low frequency
regime where

λ = 2π
k

≫ h, (1.44)

and we define the small parameter

ϵ = kh ≪ 1. (1.45)

Fig. 1.3 (a) Periodically varying medium with material properties changing periodically
with a period h. (b) Large scale variation λ (blue dashed curve) and variation of an
actual field with a superimposed small perturbation h (plain black curve).
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For simplicity, let us put the system in nondimensional form by introducing x = kx (a(x)η′(x))′ + b(x)η(x) = 0
η(x), a(x)η′(x) ∈ C0,

(1.46)

and now f ′ = df/dx. This procedure lets us eradicate the wavenumber k. The
parameters a(x) and b(x) are now periodic over x with period ϵ. Let us rewrite the
problem, imposing 

u(x) = a(x)η′(x)
u′(x) + b(x)η(x) = 0
u(x), η(x) ∈ C0.

(1.47)

Now, we introduce two scales for homogenization. First, we associate the macroscopic
scale x with the wavelength and the microscopic scale

ξ = x

ϵ
= x
h
. (1.48)

We use expansions1


η = ∑

n
ϵnηn = η0(x, ξ) + ϵη1(x, ξ) + ϵ2η2(x, ξ) + ϵ3η3(x, ξ) + . . .

u = ∑
n
ϵnun = u0(x, ξ) + ϵu1(x, ξ) + ϵ2u2(x, ξ) + ϵ3u3(x, ξ) + . . . ,

(1.49)

with the terms ηn and un being periodic with respect to ξ with period 1 on the interval
ξ ∈ (0, 1). After changing the coordinates, the differential operator becomes

df(x, ξ)
dx = ∂f(x, ξ)

∂x
+ ∂ξ

∂x

∂f(x, ξ)
∂ξ

=⇒ f ′ = ∂f

∂x
+ 1
ϵ

∂f

∂ξ
. (1.50)

Substituting (1.49) into (1.47) and having in mind that a and b depend only on
microscopic scale ξ, we obtainu

0 + ϵu1 + ϵ2u2 + . . . = a(ξ)
(

∂
∂x

+ 1
ϵ

∂
∂x

)
(η0 + ϵη1 + ϵ2η2 + . . .)(

∂
∂x

+ 1
ϵ

∂
∂x

)
(u0 + ϵu1 + ϵ2u2 + . . .) + b(ξ)(η0 + ϵη1 + ϵ2η2 + . . .) = 0.

(1.51)

1For ηn and un, n is the index placed at the top for clarity of writing. For the parameter ϵn, n is
its power.



1.5 Homogenization technique 31

We can now write the equations for each order of the parameter ϵ. At the order O(−1)
we have

ϵ−1

 a(ξ)∂η0

∂ξ
= 0

∂u0

∂ξ
= 0

=⇒

 η
0 = η0(x)
u0 = u0(x),

(1.52)

from which we deduce that at the dominant order η0 and u0 do not see the variation
due to the microstructure, i.e., depends only on x. At the order O(0) however, we have

ϵ0

u
0 = a(ξ)

(
∂η0

∂x
+ ∂η1

∂ξ

)
∂u0

∂x
+ ∂u1

∂ξ
+ b(ξ)η0 = 0.

(1.53)

Now averaging (1.53) over ξ ∈ (0, 1) and taking advantage of the fact that u0, η0 are
independent of ξ (1.52) and u1(x, ξ) is periodic, we can write

∫ 1

0

(
∂u0

∂x
+ ∂u1

∂ξ
+ b(ξ)η0

)
dξ =

= ∂u0(x)
∂x

+
∫ 1

0

∂u1

∂ξ
dξ + η0(x)

∫ 1

0
b(ξ) dξ =

= ∂u0(x)
∂x

+
[
u1(x, 1) − u1(x, 0)

]
︸ ︷︷ ︸
=0, periodic over ξ∈(0,1)

+
∫ 1

0
b(ξ) dξ =

= ∂u0(x)
∂x

+ ⟨b(ξ)⟩η0(x),

where ⟨f⟩ =
∫ 1

0 f dξ. Eventually

∂u0(x)
∂x

+ ⟨b⟩η0(x) = 0. (1.54)

Continuing averaging (1.53) we have

u0(x)
∫ 1

0

1
a(ξ) dξ =

∫ 1

0

(
∂η0

∂x
+ ∂η1

∂ξ

)
dξ =

= ∂η0(x)
∂x

+
∫ 1

0

∂η1

∂ξ
dξ =

= ∂η0(x)
∂x

+
[
η1(x, 1) − η1(x, 0)

]
︸ ︷︷ ︸
=0, periodic over ξ∈(0,1)

.
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Hence, we obtain

u0(x) =
〈1
a

〉−1 ∂η0(x)
∂x

. (1.55)

Substituting (1.55) into (1.54) and coming back to the original variables with dimensions
we obtain an effective problem at the dominant order on η(x)

η′′ + ⟨a−1⟩⟨b⟩k2η = 0 . (1.56)

1.5.2 Homogenization of 2D shallow water equation

Having shown the idea of homogenization technique for the 1D case for the wave
equation, we can now proceed with two-scale homogenization of the 2D shallow water
equation with a stratified medium. The goal of this section is to transform the shallow
water equation into its anisotropic form with constant effective parameters hx and hy,
i.e.,

∇ · [h(x, y)∇η] + ω2

g
η = 0 homogenization−−−−−−−−→ ∇ ·

hx 0
0 hy

∇η

+ ω2

g
η = 0.

This approach allows to design a metamaterial structure, i.e., a periodic array of strati-
fied plates, that create the anisotropy needed to control the water wave propagation.
In this particular case we introduce h1 and h2 as alternating water depths along x (Fig.
1.4).

Fig. 1.4 Alternating water depths h1 and h2.
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Let us rewrite the problem according to the previous assumptions in the similar
fashion as in the previous Section 1.5.1


u = h(x)∇η
∇ · u + ω2

g
η = 0

u, η ∈ C0,

(1.57)

where u = [ux uy]T .
Introducing the microscopic scale ξ = x/ϵ, where ϵ ≪ 1 and the wavelength is of

the order λ = O(1), we shall adjust the differential operators

∇ → ∇ + ex

ϵ

∂

∂ξ
,

∇ · u → ∇ · u + 1
ϵ

∂ux

∂ξ
,

(1.58)

where ex denotes a unit vector along x axis. We use expansions2


η = ∑

n
ϵnηn = η0(x, y, ξ) + ϵη1(x, y, ξ) + ϵ2η2(x, y, ξ) + ϵ3η3(x, y, ξ) + . . .

u = ∑
n
ϵnun = u0(x, y, ξ) + ϵu1(x, y, ξ) + ϵ2u2(x, y, ξ) + ϵ3u3(x, y, ξ) + . . . ,

(1.59)
where ηn = ηn(x, y, ξ) and un = un(x, y, ξ) are periodic functions over an interval
ξ ∈ (0, 1). Substituting (1.59) to (1.57) and making use of (1.58) we getu0 + ϵu1 + ϵ2u2 + . . . = h(ξ)

(
∇ + ex

ϵ
∂
∂ξ

)
(η0 + ϵη1 + ϵ2η2 + . . .)

∇ · (u0 + ϵu1 + ϵ2u2 + . . .) + 1
ϵ

∂
∂ξ

(u0
x + ϵu1

x + ϵ2u2
x . . .) + ω2

g
(η0 + ϵη1 + . . .) = 0.

(1.60)
It is straightforward to verify that at the order O(−1) we have

ϵ−1

h(ξ)ex
∂η0

∂ξ
= 0

∂u0
x

∂ξ
= 0

=⇒

 η
0 = η0(x, y)
u0

x = u0
x(x, y).

(1.61)

It allows to conclude that at the dominant order η0 and u0
x do not see the variation of

the microstructure, i.e., depend only on the macroscopic x and y. At the order O(0),
2For ηn and un, n is the index placed at the top for clarity of writing. For the parameter ϵn, n is

its power.
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we get

ϵ0

u0 = h(ξ)
(
∇η0 + ex

∂η1

∂ξ

)
∇ · u0 + ∂u1

x

∂ξ
+ ω2

g
η0 = 0,

(1.62)

which can be rewritten as

ϵ0


u0

x = h(ξ)
(

∂η0

∂x
+ ∂η1

∂ξ

)
u0

y = h(ξ)∂η0

∂y

∂u0
x

∂x
+ ∂u0

y

∂y
+ ∂u1

x

∂ξ
+ ω2

g
η0 = 0.

(1.63)

Now averaging (1.63) over ξ ∈ (0, 1), taking advantage of the fact that u0
x, η0 are

independent of ξ (1.61), η1 is periodic, and dividing by h(ξ) we can write

u0
x(x, y)

∫ 1

0

1
h(ξ) dξ =

∫ 1

0

(
∂η0

∂x
+ ∂η1

∂ξ

)
dξ =

= ∂η0(x, y)
∂x

+
∫ 1

0

∂η1

∂ξ
dξ =

= ∂η0(x, y)
∂x

+
[
η1(x, y, 1) − η1(x, y, 0)

]
︸ ︷︷ ︸

=0, periodic over ξ∈(0,1)

,

u0
y(x, y) =

∫ 1

0

(
h(ξ)∂η

0

∂y

)
dξ =

= ∂η0(x, y)
∂y

∫ 1

0
h(ξ) dξ.

Ultimately it gives

u0
x = ⟨h−1⟩−1∂η

0

∂x
,

u0
y = ⟨h⟩∂η

0

∂y
.

(1.64)

By substituting (1.64) into averaged (1.63) and having in mind that
∫ 1

0 ∂u
1
x/∂ξ dξ = 0,

by periodicity, we obtain

∂

∂x
⟨h−1⟩−1∂η

0

∂x
+ ∂

∂y
⟨h⟩∂η

0

∂y
+ ω2

g
η0 = 0, (1.65)
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that can be written as

∇ ·

⟨h−1⟩−1 0
0 ⟨h⟩

∇η0

+ ω2

g
η0 = 0, (1.66)

where the volume average ⟨h⟩ =
∫ 1

0 h dξ = θh1 + (1 − θ)h2, θ being the filling fraction
of the layers. The equation (1.66) is the effective equation at the dominant order for
a stratified medium (Fig. 1.4) that eventually allows to design it for a desired degree
of anisotropy.

This classical approach, based on the two-dimensional shallow water equation, is
advantageous in various contexts. However, it has been shown that it cannot account
for the three-dimensional near field effects of the stratified medium [48]. To accurately
catch these effects, the homogenization of a three-dimensional problem has to be used
[49, 50]. This issue is addressed later in Chapter 3.





Chapter 2

Experimental methods

Experimental studies of water wave phenomena require appropriate equipment and
measurement techniques. The accurate reconstruction of free surface displacement,
which reveals the inherent characteristics of the flow, is crucial.

In the last decades many techniques have been developed based on, inter alia
determination of the wave gradient [51, 52], diffusing light photography [53], optical
flow method [54], and many others. Unfortunately, each of these methods suffers
from certain limitations and cannot always be applied to the study of water waves,
especially for systems with variable bathymetry that we study in this thesis. The major
drawbacks include, i.e., the measurement in only a few points, the intrusive character
of the method, the complicated multi-camera system, or the need for integration of
the wave’s gradient field that might lead to error accumulation.

Precise measurements of free surface deformation on a laboratory scale necessitate
methods that are nonintrusive and offer high temporal and spatial resolution. Here, we
present two techniques that are used throughout this thesis and allow to reconstruct
the wavefield efficiently and, most importantly, with high accuracy.

2.1 Fourier transform profilometry

A Fourier transform profilometry technique (FTP) allows to recover full three-dimensional
wavefield. Originally used to retrieve the shape of solid bodies [55, 56], it was later on
employed to the fluid surface deformation reconstruction [57]. The principle of this
technique is fairly straightforward. The fringe pattern of known properties is projected
onto the surface using a video projector that is placed above at a distance L and whose
optical axis is perpendicular to the flat reference surface (Fig. 2.1). First, the reference
image is taken by a camera whose optical axis is parallel to the one of the projector,
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cameraprojector

water + TiO2

Fig. 2.1 Typical experimental setup needed for FTP measurements.

and the distance between them is known (D). The intensity of the reference image I0

can be represented by

I0(x, y) = A(x, y) (kPx+ φ0(x)) +B(x, y), (2.1)

where kP = 2π/λP with λP being the wavelength of the projected pattern. A(x, y)
and B(x, y) represent the undesirable variation of the image intensity usually coming
from the inhomogeneous illumination of the measured surface or the locally decreased
reflectivity of the surface itself. In order to get rid of these, another image IB is taken,
where instead of the fringe pattern, the homogenous background is projected

IB(x, y) = B(x, y). (2.2)

Later on, the deformed surface is examined, which results in the deformation of the
projected fringes and can be mathematically described as

I(x, y) = A(x, y) (kPx+ φ(x)) +B(x, y). (2.3)

The difference of the measured phases ∆φ = φ(x) − φ0(x) contains the information
about the out-of-plane deformation of the surface and shall be extracted from the
registered images. To do so, we perform a Hilbert transform of the recorded images I0
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Fig. 2.2 Synthetic recovery of the phase difference. (a) Reference image I0. (b) Image
of a deformed surface I. (c) Recovered phase difference ∆φ.

and I, from which the background intensity IB is subtracted

H(I0 − IB) = A(x, y) exp[i(kPx+ ϕ0(x))], (2.4)
H(I0 − IB) = A(x, y) exp[i(kPx+ ϕ(x))], (2.5)

where i is the imaginary unit. Now, it is straightforward to obtain the phase difference
∆φ by taking the imaginary part of the following expression

ln[H(I0 − IB) · H∗(I0 − IB)] = ln |A|2 + i∆φ. (2.6)

This approach allows to obtain ∆φ and fully weed out the unwanted intensity variations
A(x, y) and B(x, y). The next step is to find the direct relation between the phase
difference ∆φ and the surface elevation η(x, y). This problem can be addressed
using geometrical optics. Ultimately, we obtain the so-called phase-to-height ratio
[58, 59, 56, 60]

η(x, y) = ∆φL
∆φ− kPD

, (2.7)

from which the desired surface deformation is obtained. A synthetic example for a
phase difference recovery is shown in Fig. 2.2. Here, the coefficients A = 1 and B = 0.
The warp of the fringes due to the deformed surface is clearly visible (Fig. 2.2b). The
imposed phase difference (Fig. 2.2c) matches exactly the recovered one.

When it comes to the application of this technique to the water surface waves
measurements, particular difficulty arises since it requires diffusive reflection of light on
the liquid surface. We shall ensure the reflectivity of the inherently transparent water
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surface without changing its physical properties that could have a detrimental effect
on the studied phenomena. It has been shown that the use of titanium dioxide (TiO2)
as a pigment allows to avoid undesirable effects, especially the increase of attenuation
that happens using other pigments or paint [61]. Sedimentation of the titanium dioxide
particles is relatively slow unless they aggregate. When the surface is measured, this
phenomenon could lead to the change of the plane in which the measurement is taken.
To prevent the sedimentation and aggregation of the particles, we use clean deionized
water.

In order to calibrate the method, we use a triangular wedge of known dimensions
(Fig. 2.3). This way, we can verify the measured parameters L, D, and kP . To translate
the pixels into meters, we take a picture of a 1 × 1 cm2 grid placed at the level of the
reference plane. The spatial and temporal resolution of the method depend solely on
the camera parameters. Typically, we use the image resolution of 2048 × 2048 px2, with
the resulting pixel size of 0.25 mm/px. The usual camera frame rate is set to 50 fps
and corresponds to a sufficient number of points recorded in the time domain for a
water surface wave of a given frequency.
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Fig. 2.3 The top panel represents typical images from the FTP technique (an example
for a calibration wedge). The bottom panel shows corresponding intensity profiles
through the centerline.



2.2 Confocal chromatic measuring 41

2.2 Confocal chromatic measuring

For even more precise measurements, confocal displacement sensors are used. Even
though one sensor allows to measure the displacement at one point at a time, it
offers a significant advantage compared to the previously described Fourier transform
profilometry technique. Thanks to the confocal chromatic measuring principle, the
sensor is able to measure the distance of a transparent object, in our case - the water
surface. That is why the fluid does not have to be dyed in any way. Notably, compared
to FTP, titanium dioxide does not have to be used. Moreover, sensors of this type
are capable of detecting several layers of transparent material. In our experiments,
this possibility is acknowledged to measure not only the vertical displacement of a free
surface but also to determine with very high precision the water depth or thickness of a
fluid layer which is of great importance when it comes to the repeatability of successive
measurements.

The principle of confocal chromatic measurement is based on emitting a white
polychromatic beam onto the target surface. Owing to a system of multiple optical
lenses, the white light is dispersed into monochromatic beams (Fig. 2.4) by controlled
chromatic deviation, which is assigned to each wavelength. Only the light at wavelengths
that are perfectly focused on a target surface is used for the measurement. Reflected
beams pass through an optical fiber to a spectrometer, then are split by wavelength
and focused onto a CMOS image sensor. Furthermore, due to the fact that the emitter
and receiver are arranged in the same axis, shadowing is avoided, which is a major
drawback of regular laser triangulation sensors.

In our experiments two sensor heads Keyence CL-P070 are used along with the
controller and optical unit [62]. This system allows to measure the distance or depth
up to 70 mm and its resolution is equal to 0.25µm.

sensor head

short 
range

medium 
range

long
range

Fig. 2.4 Simplified scheme of the confocal chromatic measuring principle.





Chapter 3

Metabathymetry. Regular modes in
irregular cavities

3.1 Motivation

It has been shown that water wave metamaterials can be used to redirect the wave and
create reflectionless waveguide [32, 39]. However, the presented approach is limited
by the degree of the deformation of the channel. The higher the deformation, the
less effective the metamaterial structure becomes. Recent developments in the field
have led to the conclusion that water wave metamaterials can produce a much higher
level of anisotropy than predicted by the usual approach found in related problems for
electromagnetic or acoustic waves [48]. Less attention has been devoted to sloshing
dynamics, where resonance properties of a cavity strongly depend on its geometry
yielding phenomena such as high spots [63, 64].

We benefit from these findings to create a metamaterial cavity whose deformation is
invisible for the water wave even for a high degree of the bend (Fig. 3.1). To establish
the effectiveness of the cloaking, we study the eigenmodes and eigenfrequencies of
the cavity before and after the deformation, expecting that the behavior of the wave
remains unchanged. In this case, the periodic, subwavelength structure that serves as
a medium in which the water wave propagates (metamaterial) is put at the bottom
of the cavity to change its shape (bathymetry) (Fig. 3.2). That is how the term
metabathymetry is conceived to describe this particular ensemble of layered plates.

Mathematical approaches to metamaterial design vary significantly throughout
the disciplines and the category of waves it serves. In this chapter we benefit from
the coordinate transformation theory [9, 65] and the homogenization of the fully
three-dimensional water wave problem [48, 36, 66].
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Fig. 3.1 Example of a rectangu-
lar cavity eigenmode (left) and its
equivalent in a irregular cavity with
and without cloaking (right).

Fig. 3.2 Top view of the deformed
cavity with metabathymetry.
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3.2 Geometric transformation of shallow water equa-
tion

Situations in fluid dynamics where the horizontal length scale is much greater than the
vertical length scale are common, so the shallow water equations are widely applicable,
e.g., they are used with Coriolis forces in atmospheric and oceanic modeling, as a
simplification of the primitive equations of atmospheric flow. In our case, assuming
harmonic regime, we can write that

∇ · (h∇η) + ω2

g
η = 0, (3.1)

where h = h(x, y) stands for slowly varying water depth (where the wavelength λ ≫ h),
η is the vertical displacement of a free surface, ω is the angular frequency, and g is
the gravitational acceleration. We assume the shallow water limit (kh0 ≪ 1), where
the wavenumber k is given through the dispersion relation ω2 = gh0k

2. However,
in the case of periodic metabathymetry we cannot assume that the bathymetry is
slowly varying. The homogenization technique for this problem is presented in the
next sections. First, let us show that the shallow water equation under the change of
coordinates preserves its form, i.e., of Helmholtz type, which is a crucial condition to a
successful design of the metabathymetry. We consider the two dimensional shallow
water equation in the form

∇ · (h∇η) + γη = 0
n · ∇η = 0 on ∂Ω, (3.2)

defined in the virtual space (X, Y ), where γ = ω2/g denotes a constant introduced
for clarity of writing, ∂Ω is the boundary, n stands for the vector normal to it, and
∇ = [∂/∂X ∂/∂Y ]T . Multiplying the equation by an arbitrary test function ψ ∈ H1,
we can obtain a variational (weak) formulation of the problem:∫

Ω
∇ · (h∇η)ψ dX dY +

∫
Ω
γηψ dX dY = 0.

Using Green’s first identity we obtain

−
∫

Ω
(h∇η)T ∇ψ dX dY +

∫
∂Ω

n · (h∇η)T ψ dS +
∫

Ω
γηψ dX dY = 0.
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Taking advantage of the homogenous boundary condition (3.2), we can eliminate the
boundary term and simply write that

−
∫

Ω
(h∇η)T ∇ψ dX dY +

∫
Ω
γηψ dX dY = 0. (3.3)

Now, by changing variables from virtual (X, Y ) to real (x, y) space, the gradient
operator ∇ = [∂/∂X ∂/∂Y ]T becomes

∂

∂X
= ∂x

∂X

∂

∂x
+ ∂y

∂X

∂

∂y
,

∂

∂Y
= ∂x

∂Y

∂

∂x
+ ∂y

∂Y

∂

∂y
.

Defining the Jacobian of the above transformation as

J =
 ∂x

∂X
∂y
∂X

∂y
∂X

∂y
∂Y

 ,
we can write that

∇ = JT ∇xy, where ∇xy = [∂/∂x ∂/∂y]T .

Then, knowing that

dx = ∂x

∂X
dX + ∂y

∂X
dY,

dy = ∂x

∂Y
dX + ∂y

∂Y
dY,

we can define the relation between the products of exact differentials in real and virtual
space using properties of exterior (wedge) product

dx ∧ dy =
(
∂x

∂X
dX + ∂y

∂X
dY

)
∧
(
∂x

∂Y
dX + ∂y

∂Y
dY

)
,

which after reduction becomes

dX ∧ dY = dx ∧ dy
det J

. (3.4)
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On combining this result (3.4) with (3.3) and again integrating by parts, we conclude
that

∫
Ω

(
∇xy ·

(
JhJT

det J
∇xyη

)
+ γη

det J

)
ψ dx dy −

∫
∂Ω

n ·
(

JhJT

det J
∇xyη

)
ψ dS = 0.

Since ψ ∈ H1 is an arbitrary function, we can choose ψ such that it is equal to zero in
the bulk and nonzero on the border or vice versa. Having in mind that γ = ω2/g, this
fact allows to write

∇xy ·
(

JhJT

det J
∇xyη

)
+ ω2

g det J
η = 0,

n ·
(

JhJT

det J
∇xyη

)
= 0 on ∂Ω, (3.5)

which shows the invariant quality of the form of the shallow water equation to the
change of coordinates.

3.3 Cavity design and homogenization

Let us consider the 2D SWE in a virtual space (X, Y )

∇XY · (h0∇XY η) + ω2

g
η = 0,

n · ∇XY η = 0 on ∂Ω, (3.6)

where h0 is the reference water depth, η is the vertical displacement of a free surface,
ω is the angular frequency, g is the gravitational acceleration, ∂Ω is the boundary, n
is the vector normal to it, and ∇XY = (∂/∂X, ∂/∂Y )T . We assume shallow water
limit (kh0 ≪ 1), where the wavenumber k is given through the dispersion relation
ω2 = gh0k

2. Now, applying geometrical transformation from virtual (X, Y ) to real
(x, y) space, as shown in Section 3.2, we obtain

∇ ·
(

Jh0JT

det J
∇η

)
+ ω2

g det J
η = 0,

n ·
(

Jh0JT

det J
∇η

)
= 0 on ∂Ω, (3.7)
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z`
<latexit sha1_base64="E9biITRVhKbeRnM8CrQWjgNqRjU=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRViyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDpA2PKA==</latexit><latexit sha1_base64="E9biITRVhKbeRnM8CrQWjgNqRjU=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRViyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDpA2PKA==</latexit><latexit sha1_base64="E9biITRVhKbeRnM8CrQWjgNqRjU=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRViyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDpA2PKA==</latexit><latexit sha1_base64="E9biITRVhKbeRnM8CrQWjgNqRjU=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRViyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDpA2PKA==</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

'
<latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit>

Lx
<latexit sha1_base64="mIE5qVU1mZX77HaiUjAUI3CFHhE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ER0XxAcoS9zV6yZG/v2J0Tw5GfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRtdTv/XItRGxesBxwv2IDpQIBaNopfvb3lOvXHGr7gxkmXg5qUCOeq/81e3HLI24QiapMR3PTdDPqEbBJJ+UuqnhCWUjOuAdSxWNuPGz2akTcmKVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugwv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadEo2BG/x5WXSPKt6btW7O6/UrvI4inAEx3AKHlxADW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kDNESNuw==</latexit><latexit sha1_base64="mIE5qVU1mZX77HaiUjAUI3CFHhE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ER0XxAcoS9zV6yZG/v2J0Tw5GfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRtdTv/XItRGxesBxwv2IDpQIBaNopfvb3lOvXHGr7gxkmXg5qUCOeq/81e3HLI24QiapMR3PTdDPqEbBJJ+UuqnhCWUjOuAdSxWNuPGz2akTcmKVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugwv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadEo2BG/x5WXSPKt6btW7O6/UrvI4inAEx3AKHlxADW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kDNESNuw==</latexit><latexit sha1_base64="mIE5qVU1mZX77HaiUjAUI3CFHhE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ER0XxAcoS9zV6yZG/v2J0Tw5GfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRtdTv/XItRGxesBxwv2IDpQIBaNopfvb3lOvXHGr7gxkmXg5qUCOeq/81e3HLI24QiapMR3PTdDPqEbBJJ+UuqnhCWUjOuAdSxWNuPGz2akTcmKVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugwv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadEo2BG/x5WXSPKt6btW7O6/UrvI4inAEx3AKHlxADW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kDNESNuw==</latexit><latexit sha1_base64="mIE5qVU1mZX77HaiUjAUI3CFHhE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ER0XxAcoS9zV6yZG/v2J0Tw5GfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRtdTv/XItRGxesBxwv2IDpQIBaNopfvb3lOvXHGr7gxkmXg5qUCOeq/81e3HLI24QiapMR3PTdDPqEbBJJ+UuqnhCWUjOuAdSxWNuPGz2akTcmKVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugwv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadEo2BG/x5WXSPKt6btW7O6/UrvI4inAEx3AKHlxADW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kDNESNuw==</latexit>

Ly
<latexit sha1_base64="oBxG3Srbh2qrKr1p7VTXmXweYqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFa0ttKFstpt26WYTdidCCP0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBIYdB1v53Syura+kZ5s7K1vbO7V90/eDRxqhlvsVjGuhNQw6VQvIUCJe8kmtMokLwdjK+nfvuJayNi9YBZwv2IDpUIBaNopfvbftav1ty6OwNZJl5BalCg2a9+9QYxSyOukElqTNdzE/RzqlEwySeVXmp4QtmYDnnXUkUjbvx8duqEnFhlQMJY21JIZurviZxGxmRRYDsjiiOz6E3F/7xuiuGlnwuVpMgVmy8KU0kwJtO/yUBozlBmllCmhb2VsBHVlKFNp2JD8BZfXiaPZ3XPrXt357XGVRFHGY7gGE7BgwtowA00oQUMhvAMr/DmSOfFeXc+5q0lp5g5hD9wPn8ANciNvA==</latexit><latexit sha1_base64="oBxG3Srbh2qrKr1p7VTXmXweYqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFa0ttKFstpt26WYTdidCCP0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBIYdB1v53Syura+kZ5s7K1vbO7V90/eDRxqhlvsVjGuhNQw6VQvIUCJe8kmtMokLwdjK+nfvuJayNi9YBZwv2IDpUIBaNopfvbftav1ty6OwNZJl5BalCg2a9+9QYxSyOukElqTNdzE/RzqlEwySeVXmp4QtmYDnnXUkUjbvx8duqEnFhlQMJY21JIZurviZxGxmRRYDsjiiOz6E3F/7xuiuGlnwuVpMgVmy8KU0kwJtO/yUBozlBmllCmhb2VsBHVlKFNp2JD8BZfXiaPZ3XPrXt357XGVRFHGY7gGE7BgwtowA00oQUMhvAMr/DmSOfFeXc+5q0lp5g5hD9wPn8ANciNvA==</latexit><latexit sha1_base64="oBxG3Srbh2qrKr1p7VTXmXweYqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFa0ttKFstpt26WYTdidCCP0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBIYdB1v53Syura+kZ5s7K1vbO7V90/eDRxqhlvsVjGuhNQw6VQvIUCJe8kmtMokLwdjK+nfvuJayNi9YBZwv2IDpUIBaNopfvbftav1ty6OwNZJl5BalCg2a9+9QYxSyOukElqTNdzE/RzqlEwySeVXmp4QtmYDnnXUkUjbvx8duqEnFhlQMJY21JIZurviZxGxmRRYDsjiiOz6E3F/7xuiuGlnwuVpMgVmy8KU0kwJtO/yUBozlBmllCmhb2VsBHVlKFNp2JD8BZfXiaPZ3XPrXt357XGVRFHGY7gGE7BgwtowA00oQUMhvAMr/DmSOfFeXc+5q0lp5g5hD9wPn8ANciNvA==</latexit><latexit sha1_base64="oBxG3Srbh2qrKr1p7VTXmXweYqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFa0ttKFstpt26WYTdidCCP0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBIYdB1v53Syura+kZ5s7K1vbO7V90/eDRxqhlvsVjGuhNQw6VQvIUCJe8kmtMokLwdjK+nfvuJayNi9YBZwv2IDpUIBaNopfvbftav1ty6OwNZJl5BalCg2a9+9QYxSyOukElqTNdzE/RzqlEwySeVXmp4QtmYDnnXUkUjbvx8duqEnFhlQMJY21JIZurviZxGxmRRYDsjiiOz6E3F/7xuiuGlnwuVpMgVmy8KU0kwJtO/yUBozlBmllCmhb2VsBHVlKFNp2JD8BZfXiaPZ3XPrXt357XGVRFHGY7gGE7BgwtowA00oQUMhvAMr/DmSOfFeXc+5q0lp5g5hD9wPn8ANciNvA==</latexit>

0
<latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit>

↵
<latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit><latexit sha1_base64="JtDqaCSYHdUsArJlViGZOYtHm8o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJfROJsmY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSgQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVqyhpUCaXbERomuGQNy61g7UQzjCPBWtH4dua3npg2XMkHO0lYGONQ8gGnaJ3U7KJIRtgrV/yqPwdZJUFOKpCj3it/dfuKpjGTlgo0phP4iQ0z1JZTwaalbmpYgnSMQ9ZxVGLMTJjNr52SM6f0yUBpV9KSufp7IsPYmEkcuc4Y7cgsezPxP6+T2sF1mHGZpJZJulg0SAWxisxeJ32uGbVi4ghSzd2thI5QI7UuoJILIVh+eZU0L6qBXw3uLyu1mzyOIpzAKZxDAFdQgzuoQwMoPMIzvMKbp7wX7937WLQWvHzmGP7A+/wBi4GPGA==</latexit>

x`
<latexit sha1_base64="ZJMi6qT89farjP4T9WOVd9ywMv0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRVDyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDoPuPJg==</latexit><latexit sha1_base64="ZJMi6qT89farjP4T9WOVd9ywMv0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRVDyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDoPuPJg==</latexit><latexit sha1_base64="ZJMi6qT89farjP4T9WOVd9ywMv0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRVDyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDoPuPJg==</latexit><latexit sha1_base64="ZJMi6qT89farjP4T9WOVd9ywMv0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRVDyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDoPuPJg==</latexit>

y`
<latexit sha1_base64="9XpQ00+fClK6UjYaVa4BIldGuGs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt2swm7GyGE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7T6g0j+WDyRL0IzqSPOSMGiu1s0EfhRhUa27dnYOsEq8gNSjQHFS/+sOYpRFKwwTVuue5ifFzqgxnAqeVfqoxoWxCR9izVNIItZ/Pr52SM6sMSRgrW9KQufp7IqeR1lkU2M6ImrFe9mbif14vNeG1n3OZpAYlWywKU0FMTGavkyFXyIzILKFMcXsrYWOqKDM2oIoNwVt+eZW0L+qeW/fuL2uNmyKOMpzAKZyDB1fQgDtoQgsYPMIzvMKbEzsvzrvzsWgtOcXMMfyB8/kDooSPJw==</latexit><latexit sha1_base64="9XpQ00+fClK6UjYaVa4BIldGuGs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt2swm7GyGE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7T6g0j+WDyRL0IzqSPOSMGiu1s0EfhRhUa27dnYOsEq8gNSjQHFS/+sOYpRFKwwTVuue5ifFzqgxnAqeVfqoxoWxCR9izVNIItZ/Pr52SM6sMSRgrW9KQufp7IqeR1lkU2M6ImrFe9mbif14vNeG1n3OZpAYlWywKU0FMTGavkyFXyIzILKFMcXsrYWOqKDM2oIoNwVt+eZW0L+qeW/fuL2uNmyKOMpzAKZyDB1fQgDtoQgsYPMIzvMKbEzsvzrvzsWgtOcXMMfyB8/kDooSPJw==</latexit><latexit sha1_base64="9XpQ00+fClK6UjYaVa4BIldGuGs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt2swm7GyGE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7T6g0j+WDyRL0IzqSPOSMGiu1s0EfhRhUa27dnYOsEq8gNSjQHFS/+sOYpRFKwwTVuue5ifFzqgxnAqeVfqoxoWxCR9izVNIItZ/Pr52SM6sMSRgrW9KQufp7IqeR1lkU2M6ImrFe9mbif14vNeG1n3OZpAYlWywKU0FMTGavkyFXyIzILKFMcXsrYWOqKDM2oIoNwVt+eZW0L+qeW/fuL2uNmyKOMpzAKZyDB1fQgDtoQgsYPMIzvMKbEzsvzrvzsWgtOcXMMfyB8/kDooSPJw==</latexit><latexit sha1_base64="9XpQ00+fClK6UjYaVa4BIldGuGs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt2swm7GyGE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7T6g0j+WDyRL0IzqSPOSMGiu1s0EfhRhUa27dnYOsEq8gNSjQHFS/+sOYpRFKwwTVuue5ifFzqgxnAqeVfqoxoWxCR9izVNIItZ/Pr52SM6sMSRgrW9KQufp7IqeR1lkU2M6ImrFe9mbif14vNeG1n3OZpAYlWywKU0FMTGavkyFXyIzILKFMcXsrYWOqKDM2oIoNwVt+eZW0L+qeW/fuL2uNmyKOMpzAKZyDB1fQgDtoQgsYPMIzvMKbEzsvzrvzsWgtOcXMMfyB8/kDooSPJw==</latexit>

h+
<latexit sha1_base64="3zHGybB1jTSz6DrS30yBdSGSLnw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoMgCMvORrN6C3rxGNHEQLKG2ckkGTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7gkRwpR3nw8otLC4tr+RXC2vrG5tbxe2dhopTSVmdxiKWzYAoJnjE6pprwZqJZCQMBLsNhhcT//aeScXj6EaPEuaHpB/xHqdEG+l6cHfUKZYc28Vu2asgxy6fnFVc1xAPu9jDCNvOFCWYo9Ypvre7MU1DFmkqiFIt7CTaz4jUnAo2LrRTxRJCh6TPWoZGJGTKz6anjtGBUbqoF0tTkUZT9ftERkKlRmFgOkOiB+q3NxH/8lqp7p36GY+SVLOIzhb1UoF0jCZ/oy6XjGoxMoRQyc2tiA6IJFSbdAomhK9P0f+k4drYsfHVcal6Po8jD3uwD4eAwYMqXEIN6kChDw/wBM+WsB6tF+t11pqz5jO78APW2ydJuI3M</latexit><latexit sha1_base64="3zHGybB1jTSz6DrS30yBdSGSLnw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoMgCMvORrN6C3rxGNHEQLKG2ckkGTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7gkRwpR3nw8otLC4tr+RXC2vrG5tbxe2dhopTSVmdxiKWzYAoJnjE6pprwZqJZCQMBLsNhhcT//aeScXj6EaPEuaHpB/xHqdEG+l6cHfUKZYc28Vu2asgxy6fnFVc1xAPu9jDCNvOFCWYo9Ypvre7MU1DFmkqiFIt7CTaz4jUnAo2LrRTxRJCh6TPWoZGJGTKz6anjtGBUbqoF0tTkUZT9ftERkKlRmFgOkOiB+q3NxH/8lqp7p36GY+SVLOIzhb1UoF0jCZ/oy6XjGoxMoRQyc2tiA6IJFSbdAomhK9P0f+k4drYsfHVcal6Po8jD3uwD4eAwYMqXEIN6kChDw/wBM+WsB6tF+t11pqz5jO78APW2ydJuI3M</latexit><latexit sha1_base64="3zHGybB1jTSz6DrS30yBdSGSLnw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoMgCMvORrN6C3rxGNHEQLKG2ckkGTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7gkRwpR3nw8otLC4tr+RXC2vrG5tbxe2dhopTSVmdxiKWzYAoJnjE6pprwZqJZCQMBLsNhhcT//aeScXj6EaPEuaHpB/xHqdEG+l6cHfUKZYc28Vu2asgxy6fnFVc1xAPu9jDCNvOFCWYo9Ypvre7MU1DFmkqiFIt7CTaz4jUnAo2LrRTxRJCh6TPWoZGJGTKz6anjtGBUbqoF0tTkUZT9ftERkKlRmFgOkOiB+q3NxH/8lqp7p36GY+SVLOIzhb1UoF0jCZ/oy6XjGoxMoRQyc2tiA6IJFSbdAomhK9P0f+k4drYsfHVcal6Po8jD3uwD4eAwYMqXEIN6kChDw/wBM+WsB6tF+t11pqz5jO78APW2ydJuI3M</latexit><latexit sha1_base64="3zHGybB1jTSz6DrS30yBdSGSLnw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoMgCMvORrN6C3rxGNHEQLKG2ckkGTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7gkRwpR3nw8otLC4tr+RXC2vrG5tbxe2dhopTSVmdxiKWzYAoJnjE6pprwZqJZCQMBLsNhhcT//aeScXj6EaPEuaHpB/xHqdEG+l6cHfUKZYc28Vu2asgxy6fnFVc1xAPu9jDCNvOFCWYo9Ypvre7MU1DFmkqiFIt7CTaz4jUnAo2LrRTxRJCh6TPWoZGJGTKz6anjtGBUbqoF0tTkUZT9ftERkKlRmFgOkOiB+q3NxH/8lqp7p36GY+SVLOIzhb1UoF0jCZ/oy6XjGoxMoRQyc2tiA6IJFSbdAomhK9P0f+k4drYsfHVcal6Po8jD3uwD4eAwYMqXEIN6kChDw/wBM+WsB6tF+t11pqz5jO78APW2ydJuI3M</latexit>h�

<latexit sha1_base64="GFfQeI4YLT0RvuiUvwajwqh7jlw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4cchIp49d0Y3LivYB7VgyadqGZjJDkhHK0E9w40IRt36RO//GzLSCih64cDjnXu69x484UxqhDyu3srq2vpHfLGxt7+zuFfcP2iqMJaEtEvJQdn2sKGeCtjTTnHYjSXHgc9rxp5ep37mnUrFQ3OpZRL0AjwUbMYK1kW4md2eDYgnZbq2C6lWYElSulDPium4dOjbKUAJLNAfF9/4wJHFAhSYcK9VzUKS9BEvNCKfzQj9WNMJkise0Z6jAAVVekp06hydGGcJRKE0JDTP1+0SCA6VmgW86A6wn6reXin95vViPal7CRBRrKshi0SjmUIcw/RsOmaRE85khmEhmboVkgiUm2qRTMCF8fQr/J+1z20G2c10uNS6WceTBETgGp8ABVdAAV6AJWoCAMXgAT+DZ4taj9WK9Llpz1nLmEPyA9fYJeuuN7g==</latexit><latexit sha1_base64="GFfQeI4YLT0RvuiUvwajwqh7jlw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4cchIp49d0Y3LivYB7VgyadqGZjJDkhHK0E9w40IRt36RO//GzLSCih64cDjnXu69x484UxqhDyu3srq2vpHfLGxt7+zuFfcP2iqMJaEtEvJQdn2sKGeCtjTTnHYjSXHgc9rxp5ep37mnUrFQ3OpZRL0AjwUbMYK1kW4md2eDYgnZbq2C6lWYElSulDPium4dOjbKUAJLNAfF9/4wJHFAhSYcK9VzUKS9BEvNCKfzQj9WNMJkise0Z6jAAVVekp06hydGGcJRKE0JDTP1+0SCA6VmgW86A6wn6reXin95vViPal7CRBRrKshi0SjmUIcw/RsOmaRE85khmEhmboVkgiUm2qRTMCF8fQr/J+1z20G2c10uNS6WceTBETgGp8ABVdAAV6AJWoCAMXgAT+DZ4taj9WK9Llpz1nLmEPyA9fYJeuuN7g==</latexit><latexit sha1_base64="GFfQeI4YLT0RvuiUvwajwqh7jlw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4cchIp49d0Y3LivYB7VgyadqGZjJDkhHK0E9w40IRt36RO//GzLSCih64cDjnXu69x484UxqhDyu3srq2vpHfLGxt7+zuFfcP2iqMJaEtEvJQdn2sKGeCtjTTnHYjSXHgc9rxp5ep37mnUrFQ3OpZRL0AjwUbMYK1kW4md2eDYgnZbq2C6lWYElSulDPium4dOjbKUAJLNAfF9/4wJHFAhSYcK9VzUKS9BEvNCKfzQj9WNMJkise0Z6jAAVVekp06hydGGcJRKE0JDTP1+0SCA6VmgW86A6wn6reXin95vViPal7CRBRrKshi0SjmUIcw/RsOmaRE85khmEhmboVkgiUm2qRTMCF8fQr/J+1z20G2c10uNS6WceTBETgGp8ABVdAAV6AJWoCAMXgAT+DZ4taj9WK9Llpz1nLmEPyA9fYJeuuN7g==</latexit><latexit sha1_base64="GFfQeI4YLT0RvuiUvwajwqh7jlw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4cchIp49d0Y3LivYB7VgyadqGZjJDkhHK0E9w40IRt36RO//GzLSCih64cDjnXu69x484UxqhDyu3srq2vpHfLGxt7+zuFfcP2iqMJaEtEvJQdn2sKGeCtjTTnHYjSXHgc9rxp5ep37mnUrFQ3OpZRL0AjwUbMYK1kW4md2eDYgnZbq2C6lWYElSulDPium4dOjbKUAJLNAfF9/4wJHFAhSYcK9VzUKS9BEvNCKfzQj9WNMJkise0Z6jAAVVekp06hydGGcJRKE0JDTP1+0SCA6VmgW86A6wn6reXin95vViPal7CRBRrKshi0SjmUIcw/RsOmaRE85khmEhmboVkgiUm2qRTMCF8fQr/J+1z20G2c10uNS6WceTBETgGp8ABVdAAV6AJWoCAMXgAT+DZ4taj9WK9Llpz1nLmEPyA9fYJeuuN7g==</latexit>

Lx
<latexit sha1_base64="mIE5qVU1mZX77HaiUjAUI3CFHhE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ER0XxAcoS9zV6yZG/v2J0Tw5GfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRtdTv/XItRGxesBxwv2IDpQIBaNopfvb3lOvXHGr7gxkmXg5qUCOeq/81e3HLI24QiapMR3PTdDPqEbBJJ+UuqnhCWUjOuAdSxWNuPGz2akTcmKVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugwv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadEo2BG/x5WXSPKt6btW7O6/UrvI4inAEx3AKHlxADW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kDNESNuw==</latexit><latexit sha1_base64="mIE5qVU1mZX77HaiUjAUI3CFHhE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ER0XxAcoS9zV6yZG/v2J0Tw5GfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRtdTv/XItRGxesBxwv2IDpQIBaNopfvb3lOvXHGr7gxkmXg5qUCOeq/81e3HLI24QiapMR3PTdDPqEbBJJ+UuqnhCWUjOuAdSxWNuPGz2akTcmKVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugwv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadEo2BG/x5WXSPKt6btW7O6/UrvI4inAEx3AKHlxADW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kDNESNuw==</latexit><latexit sha1_base64="mIE5qVU1mZX77HaiUjAUI3CFHhE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ER0XxAcoS9zV6yZG/v2J0Tw5GfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRtdTv/XItRGxesBxwv2IDpQIBaNopfvb3lOvXHGr7gxkmXg5qUCOeq/81e3HLI24QiapMR3PTdDPqEbBJJ+UuqnhCWUjOuAdSxWNuPGz2akTcmKVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugwv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadEo2BG/x5WXSPKt6btW7O6/UrvI4inAEx3AKHlxADW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kDNESNuw==</latexit><latexit sha1_base64="mIE5qVU1mZX77HaiUjAUI3CFHhE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ER0XxAcoS9zV6yZG/v2J0Tw5GfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRtdTv/XItRGxesBxwv2IDpQIBaNopfvb3lOvXHGr7gxkmXg5qUCOeq/81e3HLI24QiapMR3PTdDPqEbBJJ+UuqnhCWUjOuAdSxWNuPGz2akTcmKVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugwv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadEo2BG/x5WXSPKt6btW7O6/UrvI4inAEx3AKHlxADW6gDg1gMIBneIU3RzovzrvzMW8tOPnMIfyB8/kDNESNuw==</latexit>

Ly
<latexit sha1_base64="oBxG3Srbh2qrKr1p7VTXmXweYqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFa0ttKFstpt26WYTdidCCP0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBIYdB1v53Syura+kZ5s7K1vbO7V90/eDRxqhlvsVjGuhNQw6VQvIUCJe8kmtMokLwdjK+nfvuJayNi9YBZwv2IDpUIBaNopfvbftav1ty6OwNZJl5BalCg2a9+9QYxSyOukElqTNdzE/RzqlEwySeVXmp4QtmYDnnXUkUjbvx8duqEnFhlQMJY21JIZurviZxGxmRRYDsjiiOz6E3F/7xuiuGlnwuVpMgVmy8KU0kwJtO/yUBozlBmllCmhb2VsBHVlKFNp2JD8BZfXiaPZ3XPrXt357XGVRFHGY7gGE7BgwtowA00oQUMhvAMr/DmSOfFeXc+5q0lp5g5hD9wPn8ANciNvA==</latexit><latexit sha1_base64="oBxG3Srbh2qrKr1p7VTXmXweYqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFa0ttKFstpt26WYTdidCCP0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBIYdB1v53Syura+kZ5s7K1vbO7V90/eDRxqhlvsVjGuhNQw6VQvIUCJe8kmtMokLwdjK+nfvuJayNi9YBZwv2IDpUIBaNopfvbftav1ty6OwNZJl5BalCg2a9+9QYxSyOukElqTNdzE/RzqlEwySeVXmp4QtmYDnnXUkUjbvx8duqEnFhlQMJY21JIZurviZxGxmRRYDsjiiOz6E3F/7xuiuGlnwuVpMgVmy8KU0kwJtO/yUBozlBmllCmhb2VsBHVlKFNp2JD8BZfXiaPZ3XPrXt357XGVRFHGY7gGE7BgwtowA00oQUMhvAMr/DmSOfFeXc+5q0lp5g5hD9wPn8ANciNvA==</latexit><latexit sha1_base64="oBxG3Srbh2qrKr1p7VTXmXweYqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFa0ttKFstpt26WYTdidCCP0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBIYdB1v53Syura+kZ5s7K1vbO7V90/eDRxqhlvsVjGuhNQw6VQvIUCJe8kmtMokLwdjK+nfvuJayNi9YBZwv2IDpUIBaNopfvbftav1ty6OwNZJl5BalCg2a9+9QYxSyOukElqTNdzE/RzqlEwySeVXmp4QtmYDnnXUkUjbvx8duqEnFhlQMJY21JIZurviZxGxmRRYDsjiiOz6E3F/7xuiuGlnwuVpMgVmy8KU0kwJtO/yUBozlBmllCmhb2VsBHVlKFNp2JD8BZfXiaPZ3XPrXt357XGVRFHGY7gGE7BgwtowA00oQUMhvAMr/DmSOfFeXc+5q0lp5g5hD9wPn8ANciNvA==</latexit><latexit sha1_base64="oBxG3Srbh2qrKr1p7VTXmXweYqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFa0ttKFstpt26WYTdidCCP0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBIYdB1v53Syura+kZ5s7K1vbO7V90/eDRxqhlvsVjGuhNQw6VQvIUCJe8kmtMokLwdjK+nfvuJayNi9YBZwv2IDpUIBaNopfvbftav1ty6OwNZJl5BalCg2a9+9QYxSyOukElqTNdzE/RzqlEwySeVXmp4QtmYDnnXUkUjbvx8duqEnFhlQMJY21JIZurviZxGxmRRYDsjiiOz6E3F/7xuiuGlnwuVpMgVmy8KU0kwJtO/yUBozlBmllCmhb2VsBHVlKFNp2JD8BZfXiaPZ3XPrXt357XGVRFHGY7gGE7BgwtowA00oQUMhvAMr/DmSOfFeXc+5q0lp5g5hD9wPn8ANciNvA==</latexit>

0
<latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit>

X
<latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit><latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit><latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit><latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit>

Y
<latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit>

(a)
<latexit sha1_base64="n0kiYe3Vk54ukV3OShxrr+ilFZI=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZhV2NumVym7VnYEuEy8nZZKj3it9dfsxTyNQyCUzpuO5CfoZ0yi4hEmxmxpIGB+xAXQsVSwC42eziyf01Cp9GsbalkI6U39PZCwyZhwFtjNiODSL3lT8z+ukGF75mVBJiqD4fFGYSooxnb5P+0IDRzm2hHEt7K2UD5lmHG1IRRuCt/jyMmmeVz236t1dlGvXeRwFckxOSIV45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/TryQqQ==</latexit><latexit sha1_base64="n0kiYe3Vk54ukV3OShxrr+ilFZI=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZhV2NumVym7VnYEuEy8nZZKj3it9dfsxTyNQyCUzpuO5CfoZ0yi4hEmxmxpIGB+xAXQsVSwC42eziyf01Cp9GsbalkI6U39PZCwyZhwFtjNiODSL3lT8z+ukGF75mVBJiqD4fFGYSooxnb5P+0IDRzm2hHEt7K2UD5lmHG1IRRuCt/jyMmmeVz236t1dlGvXeRwFckxOSIV45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/TryQqQ==</latexit><latexit sha1_base64="n0kiYe3Vk54ukV3OShxrr+ilFZI=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZhV2NumVym7VnYEuEy8nZZKj3it9dfsxTyNQyCUzpuO5CfoZ0yi4hEmxmxpIGB+xAXQsVSwC42eziyf01Cp9GsbalkI6U39PZCwyZhwFtjNiODSL3lT8z+ukGF75mVBJiqD4fFGYSooxnb5P+0IDRzm2hHEt7K2UD5lmHG1IRRuCt/jyMmmeVz236t1dlGvXeRwFckxOSIV45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/TryQqQ==</latexit><latexit sha1_base64="n0kiYe3Vk54ukV3OShxrr+ilFZI=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZhV2NumVym7VnYEuEy8nZZKj3it9dfsxTyNQyCUzpuO5CfoZ0yi4hEmxmxpIGB+xAXQsVSwC42eziyf01Cp9GsbalkI6U39PZCwyZhwFtjNiODSL3lT8z+ukGF75mVBJiqD4fFGYSooxnb5P+0IDRzm2hHEt7K2UD5lmHG1IRRuCt/jyMmmeVz236t1dlGvXeRwFckxOSIV45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/TryQqQ==</latexit>

(b)
<latexit sha1_base64="mDF3pIt8zg/HJLOYfx4mhcdUPbk=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZpXgbNIrld2qOwNdJl5OyiRHvVf66vZjnkagkEtmTMdzE/QzplFwCZNiNzWQMD5iA+hYqlgExs9mF0/oqVX6NIy1LYV0pv6eyFhkzDgKbGfEcGgWvan4n9dJMbzyM6GSFEHx+aIwlRRjOn2f9oUGjnJsCeNa2FspHzLNONqQijYEb/HlZdI8r3pu1bu7KNeu8zgK5JickArxyCWpkVtSJw3CiSLP5JW8OcZ5cd6dj3nripPPHJE/cD5/AFBCkKo=</latexit><latexit sha1_base64="mDF3pIt8zg/HJLOYfx4mhcdUPbk=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZpXgbNIrld2qOwNdJl5OyiRHvVf66vZjnkagkEtmTMdzE/QzplFwCZNiNzWQMD5iA+hYqlgExs9mF0/oqVX6NIy1LYV0pv6eyFhkzDgKbGfEcGgWvan4n9dJMbzyM6GSFEHx+aIwlRRjOn2f9oUGjnJsCeNa2FspHzLNONqQijYEb/HlZdI8r3pu1bu7KNeu8zgK5JickArxyCWpkVtSJw3CiSLP5JW8OcZ5cd6dj3nripPPHJE/cD5/AFBCkKo=</latexit><latexit sha1_base64="mDF3pIt8zg/HJLOYfx4mhcdUPbk=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZpXgbNIrld2qOwNdJl5OyiRHvVf66vZjnkagkEtmTMdzE/QzplFwCZNiNzWQMD5iA+hYqlgExs9mF0/oqVX6NIy1LYV0pv6eyFhkzDgKbGfEcGgWvan4n9dJMbzyM6GSFEHx+aIwlRRjOn2f9oUGjnJsCeNa2FspHzLNONqQijYEb/HlZdI8r3pu1bu7KNeu8zgK5JickArxyCWpkVtSJw3CiSLP5JW8OcZ5cd6dj3nripPPHJE/cD5/AFBCkKo=</latexit><latexit sha1_base64="mDF3pIt8zg/HJLOYfx4mhcdUPbk=">AAAB8XicbVBNS8NAEN34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxjdTP3WI2gjYnWP4wT8iA2UCAVnaKWHLsITZpXgbNIrld2qOwNdJl5OyiRHvVf66vZjnkagkEtmTMdzE/QzplFwCZNiNzWQMD5iA+hYqlgExs9mF0/oqVX6NIy1LYV0pv6eyFhkzDgKbGfEcGgWvan4n9dJMbzyM6GSFEHx+aIwlRRjOn2f9oUGjnJsCeNa2FspHzLNONqQijYEb/HlZdI8r3pu1bu7KNeu8zgK5JickArxyCWpkVtSJw3CiSLP5JW8OcZ5cd6dj3nripPPHJE/cD5/AFBCkKo=</latexit>

(c)
<latexit sha1_base64="Quy+1ickKOEYBNqPn9Z0KClO49U=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbTbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ilhy7yJ8wq7GzSK5XdqjsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbxhJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDKz8TKkmRKzZfFKaSYEym75O+0JyhHFtCmRb2VsKGVFOGNqSiDcFbfHmZNM+rnlv17i7Ktes8jgIcwwlUwINLqMEt1KEBDBQ8wyu8OcZ5cd6dj3nripPPHMEfOJ8/UciQqw==</latexit><latexit sha1_base64="Quy+1ickKOEYBNqPn9Z0KClO49U=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbTbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ilhy7yJ8wq7GzSK5XdqjsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbxhJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDKz8TKkmRKzZfFKaSYEym75O+0JyhHFtCmRb2VsKGVFOGNqSiDcFbfHmZNM+rnlv17i7Ktes8jgIcwwlUwINLqMEt1KEBDBQ8wyu8OcZ5cd6dj3nripPPHMEfOJ8/UciQqw==</latexit><latexit sha1_base64="Quy+1ickKOEYBNqPn9Z0KClO49U=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbTbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ilhy7yJ8wq7GzSK5XdqjsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbxhJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDKz8TKkmRKzZfFKaSYEym75O+0JyhHFtCmRb2VsKGVFOGNqSiDcFbfHmZNM+rnlv17i7Ktes8jgIcwwlUwINLqMEt1KEBDBQ8wyu8OcZ5cd6dj3nripPPHMEfOJ8/UciQqw==</latexit><latexit sha1_base64="Quy+1ickKOEYBNqPn9Z0KClO49U=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbUDbbTbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ilhy7yJ8wq7GzSK5XdqjsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbxhJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDKz8TKkmRKzZfFKaSYEym75O+0JyhHFtCmRb2VsKGVFOGNqSiDcFbfHmZNM+rnlv17i7Ktes8jgIcwwlUwINLqMEt1KEBDBQ8wyu8OcZ5cd6dj3nripPPHMEfOJ8/UciQqw==</latexit>

x`
<latexit sha1_base64="ZJMi6qT89farjP4T9WOVd9ywMv0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRVDyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDoPuPJg==</latexit><latexit sha1_base64="ZJMi6qT89farjP4T9WOVd9ywMv0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRVDyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDoPuPJg==</latexit><latexit sha1_base64="ZJMi6qT89farjP4T9WOVd9ywMv0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRVDyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDoPuPJg==</latexit><latexit sha1_base64="ZJMi6qT89farjP4T9WOVd9ywMv0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmaZmRVDyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98RG24kvd2lGKY0L7kMWfUOqnx1O2gEN1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuLsrV6zyOAhzDCZxBAJdQhVuoQR0YPMAzvMKbp7wX7937mLeuePnMEfyB9/kDoPuPJg==</latexit>

Fig. 3.3 (a) The cavity in the virtual space (X, Y ), i.e., before coordinate transformation
with width Lx and height Ly. (b) The cavity in the real space (x, y), i.e., after
coordinate transformation with bending angle φ, with a local coordinate system of the
metabathymetry with a rotation angle α (note a misprint in [32]). (c) Section scheme
of the metabathymetry. The subwavelength structure consists of periodic layers with
thickness θℓ, water depths h+ and h−, and periodicity ℓ.

where J stands for the Jacobian matrix of the transformation, and now ∇ = (∂/∂x, ∂/∂y)T .
The 2D SWE preserves its form, i.e., of Helmholtz type. Due to the fact that g is
not tunable in conventional conditions, we need a volume preserving (nonmagnetic)
transformation (det J = 1). We choose a simple shear deformation of the cavity, which
leads to the change of coordinates x = X, y = tanφX +Y , and whose Jacobian matrix
is

J =
 1 0
tanφ 1

 . (3.8)

By changing the coordinates (Fig. 3.3), the anisotropy is introduced (3.7) and
has to be realized in practice. To do so, we insert a particularly oriented anisotropic
medium (with an angle α) with different effective water depths in x and y directions,
i.e., hx and hy. We obtain

∇ ·
(
RαhRT

α ∇η
)

+ ω2

g
η = 0, where h =

hx 0
0 hy

 , (3.9)

and Rα is the conventional rotation matrix with a rotation through an angle α with
respect to x axis (Fig. 3.3b).
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Fig. 3.4 Effective parameters hx, hy as
functions of the angle φ.
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Fig. 3.5 Angle of rotation α as a function
of the angle φ.

Now, by identifying (3.7) and (3.9), and having in mind the geometry of the cavity
(3.8), we obtain explicit formulae for the water depths hx, hy, and the rotation angle α
as functions of bending angle φ and the reference water depth h0. Hence, the depths
hx, hy, and the angle α are such that (note a misprint in [32])

hx = h0

2 (2 + tan2 φ − tanφ
√

2 + tan2 φ),

hy = h0

2 (2 + tan2 φ + tanφ
√

2 + tan2 φ),

tan 2α = − 2/ tanφ. (3.10)

It has been shown that the effective anisotropy, being the result of the presence of
the metabathymetry, cannot be inferred from the shallow water equation even in the
shallow water regime, as 3D effects affect the flow over a rapidly varying bathymetry
due to the strong impact of the evanescent field [36, 48, 49]. Thus, the modelling,
which predicts that the effective water depth tensor is related to the arithmetic and
geometric averages (Section 1.5.2) of the actual water depths

hx = ⟨h−1⟩−1, hy = ⟨h⟩, (3.11)

underestimates the degree of the anisotropy due to the metabathymetry (⟨h⟩ =
θh− + (1 − θ)h+, where θ is the filling fraction of the layers, Fig. 3.3). To properly
model the aforementioned effects, the homogenization of the full 3D linear water
wave problem must be used. Considering harmonic regime with time dependence eiωt,
assuming that the fluid is inviscid and incompressible, and knowing that the flow is
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irrotational, the velocity potential ϕ(xℓ, yℓ, zℓ) satisfies

△ϕ = 0,
∂ϕ

∂zl

= ω2

g
ϕ at zl = 0,

n · ∇ϕ = 0 on Γ, (3.12)

where Γ is the nonflat bottom, n is the vector normal to it, and zl = 0 corresponds to
the unperturbed free surface. Following the homogenization process as presented in
[48–50] we obtain the cell problem defined with respect to undimensionalized variables

(xr, zr) =
(
xℓ

ℓ
,
zℓ

ℓ

)
, (3.13)

defined at the microscopic scale ϵ = ω
√
ℓ/g ≪ 1. Thus, the potential Φ in the unit cell

Y (Fig. 3.6) satisfies

△Φ = 0,
∂Φ
∂zr

= 0 at zr = 0,

n · ∇Φ = 0 on Γ, (3.14)

Φ
(1

2 , zr

)
= Φ

(
−1

2 , zr

)
+ 1,

∂Φ
∂xr

(1
2 , zr

)
= ∂Φ
∂xr

(
−1

2 , zr

)
.

As shown in [48–50], the effective water depths hx and hy derived from a fully three
dimensional problem (3.14) are of the form

hx = ℓ
∫

Y

∂Φ
∂xr

dY, hy = ⟨h⟩, (3.15)

where ℓ is the periodicity of the metabathymetry and Y is a unit cell with only one
layer of the structure. Comparing (3.11) to (3.15), it comes into view that only hx

is affected by 3D near field effects. It has been shown that hx in (3.15) might be
much smaller than ⟨h−1⟩−1 predicted by 2D approach. As a consequence, the resulting
anisotropy can be much larger than the one predicted by the classical homogenization
of layered media.

The determination of hx (3.15) is done by solving a cell problem of the homogenized
three dimensional water wave problem (3.14). The solution can be provided by using
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Fig. 3.6 Three dimensional structure of the metabathymetry in (xℓ, yℓ, zℓ) coordinate
system and a zoom on the two-dimensional unit cell Y in (xr, zr) coordinates.

the modal method, whose principle is based on matching eigenfunction expansions.
The corresponding example of the implementation of the modal method is described
in detail in Appendix A.

3.4 Determination of real water depths

The method presented in previous sections allows to calculate the effective parameters
for already existing geometry: h∗

x and h∗
y. This direct approach (Fig. 3.7) does not

cause major problems when specifying the anisotropy produced by such a system, and
it is straightforward to obtain the effective parameters. However, in our case, the values
of hx and hy are already known (3.10) and are defined by the reference water depth
h0 and the bending angle of the cavity φ. With such assumptions, there are infinitely
many geometries that realize the desired anisotropy. That is why we need to come up
with an idea and additional assumptions to solve the inverse problem. Therefore, we
use optimization routine for obtaining h± = [h+ h−]T

min
h±∈R2

∣∣∣∣∣∣
∣∣∣∣∣∣f(ℓ, θ,h±) −

h∗
x

h∗
y

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

subject to h+ − h− ≥ 0, (3.16)
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where f(ℓ, θ,h±) is a function whose output is a vector [hx hy]T and is simply the
solution of the system using the modal method presented in Appendix A [48]. Here,
the periodicity ℓ and the filling fraction θ are constant.

An example of the optimization routine for the cavity with the bending angle
φ = 30◦, being the solution of the problem (3.16) is presented in Fig. 3.8. Here, the
periodicity ℓ and the filling fraction θ are constant and set to ℓ = 0.005 m, θ = 0.2. In
order to solve this problem of optimization with constraints, we use the Nelder-Mead
simplex search method [67] available in Matlab Optimization Toolbox. The starting
point is chosen randomly from the region where h+ > h−. Ultimately, we end up with
a value of the real water depths h+ and h− for a given value of the filling fraction θ

and periodicity ℓ. The dependence of the real water depths on these two parameters
(θ, ℓ) is shown in Fig. 3.9. We can see that the thicker the layers, the greater the water
depth h+ needs to be to achieve the desired anisotropy which suggests that the layers
should be as thin as possible. The periodicity ℓ does not significantly change the values
of the real water depths. However, we have to keep in mind that even a small decrease
in h− can be detrimental to wave generation. For that, we need a fluid layer thick
enough to produce quality water waves in the cavity using the wavemaker.

h+
<latexit sha1_base64="3zHGybB1jTSz6DrS30yBdSGSLnw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoMgCMvORrN6C3rxGNHEQLKG2ckkGTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7gkRwpR3nw8otLC4tr+RXC2vrG5tbxe2dhopTSVmdxiKWzYAoJnjE6pprwZqJZCQMBLsNhhcT//aeScXj6EaPEuaHpB/xHqdEG+l6cHfUKZYc28Vu2asgxy6fnFVc1xAPu9jDCNvOFCWYo9Ypvre7MU1DFmkqiFIt7CTaz4jUnAo2LrRTxRJCh6TPWoZGJGTKz6anjtGBUbqoF0tTkUZT9ftERkKlRmFgOkOiB+q3NxH/8lqp7p36GY+SVLOIzhb1UoF0jCZ/oy6XjGoxMoRQyc2tiA6IJFSbdAomhK9P0f+k4drYsfHVcal6Po8jD3uwD4eAwYMqXEIN6kChDw/wBM+WsB6tF+t11pqz5jO78APW2ydJuI3M</latexit><latexit sha1_base64="3zHGybB1jTSz6DrS30yBdSGSLnw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoMgCMvORrN6C3rxGNHEQLKG2ckkGTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7gkRwpR3nw8otLC4tr+RXC2vrG5tbxe2dhopTSVmdxiKWzYAoJnjE6pprwZqJZCQMBLsNhhcT//aeScXj6EaPEuaHpB/xHqdEG+l6cHfUKZYc28Vu2asgxy6fnFVc1xAPu9jDCNvOFCWYo9Ypvre7MU1DFmkqiFIt7CTaz4jUnAo2LrRTxRJCh6TPWoZGJGTKz6anjtGBUbqoF0tTkUZT9ftERkKlRmFgOkOiB+q3NxH/8lqp7p36GY+SVLOIzhb1UoF0jCZ/oy6XjGoxMoRQyc2tiA6IJFSbdAomhK9P0f+k4drYsfHVcal6Po8jD3uwD4eAwYMqXEIN6kChDw/wBM+WsB6tF+t11pqz5jO78APW2ydJuI3M</latexit><latexit sha1_base64="3zHGybB1jTSz6DrS30yBdSGSLnw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoMgCMvORrN6C3rxGNHEQLKG2ckkGTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7gkRwpR3nw8otLC4tr+RXC2vrG5tbxe2dhopTSVmdxiKWzYAoJnjE6pprwZqJZCQMBLsNhhcT//aeScXj6EaPEuaHpB/xHqdEG+l6cHfUKZYc28Vu2asgxy6fnFVc1xAPu9jDCNvOFCWYo9Ypvre7MU1DFmkqiFIt7CTaz4jUnAo2LrRTxRJCh6TPWoZGJGTKz6anjtGBUbqoF0tTkUZT9ftERkKlRmFgOkOiB+q3NxH/8lqp7p36GY+SVLOIzhb1UoF0jCZ/oy6XjGoxMoRQyc2tiA6IJFSbdAomhK9P0f+k4drYsfHVcal6Po8jD3uwD4eAwYMqXEIN6kChDw/wBM+WsB6tF+t11pqz5jO78APW2ydJuI3M</latexit><latexit sha1_base64="3zHGybB1jTSz6DrS30yBdSGSLnw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoMgCMvORrN6C3rxGNHEQLKG2ckkGTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7gkRwpR3nw8otLC4tr+RXC2vrG5tbxe2dhopTSVmdxiKWzYAoJnjE6pprwZqJZCQMBLsNhhcT//aeScXj6EaPEuaHpB/xHqdEG+l6cHfUKZYc28Vu2asgxy6fnFVc1xAPu9jDCNvOFCWYo9Ypvre7MU1DFmkqiFIt7CTaz4jUnAo2LrRTxRJCh6TPWoZGJGTKz6anjtGBUbqoF0tTkUZT9ftERkKlRmFgOkOiB+q3NxH/8lqp7p36GY+SVLOIzhb1UoF0jCZ/oy6XjGoxMoRQyc2tiA6IJFSbdAomhK9P0f+k4drYsfHVcal6Po8jD3uwD4eAwYMqXEIN6kChDw/wBM+WsB6tF+t11pqz5jO78APW2ydJuI3M</latexit>

h�
<latexit sha1_base64="GFfQeI4YLT0RvuiUvwajwqh7jlw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4cchIp49d0Y3LivYB7VgyadqGZjJDkhHK0E9w40IRt36RO//GzLSCih64cDjnXu69x484UxqhDyu3srq2vpHfLGxt7+zuFfcP2iqMJaEtEvJQdn2sKGeCtjTTnHYjSXHgc9rxp5ep37mnUrFQ3OpZRL0AjwUbMYK1kW4md2eDYgnZbq2C6lWYElSulDPium4dOjbKUAJLNAfF9/4wJHFAhSYcK9VzUKS9BEvNCKfzQj9WNMJkise0Z6jAAVVekp06hydGGcJRKE0JDTP1+0SCA6VmgW86A6wn6reXin95vViPal7CRBRrKshi0SjmUIcw/RsOmaRE85khmEhmboVkgiUm2qRTMCF8fQr/J+1z20G2c10uNS6WceTBETgGp8ABVdAAV6AJWoCAMXgAT+DZ4taj9WK9Llpz1nLmEPyA9fYJeuuN7g==</latexit><latexit sha1_base64="GFfQeI4YLT0RvuiUvwajwqh7jlw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4cchIp49d0Y3LivYB7VgyadqGZjJDkhHK0E9w40IRt36RO//GzLSCih64cDjnXu69x484UxqhDyu3srq2vpHfLGxt7+zuFfcP2iqMJaEtEvJQdn2sKGeCtjTTnHYjSXHgc9rxp5ep37mnUrFQ3OpZRL0AjwUbMYK1kW4md2eDYgnZbq2C6lWYElSulDPium4dOjbKUAJLNAfF9/4wJHFAhSYcK9VzUKS9BEvNCKfzQj9WNMJkise0Z6jAAVVekp06hydGGcJRKE0JDTP1+0SCA6VmgW86A6wn6reXin95vViPal7CRBRrKshi0SjmUIcw/RsOmaRE85khmEhmboVkgiUm2qRTMCF8fQr/J+1z20G2c10uNS6WceTBETgGp8ABVdAAV6AJWoCAMXgAT+DZ4taj9WK9Llpz1nLmEPyA9fYJeuuN7g==</latexit><latexit sha1_base64="GFfQeI4YLT0RvuiUvwajwqh7jlw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4cchIp49d0Y3LivYB7VgyadqGZjJDkhHK0E9w40IRt36RO//GzLSCih64cDjnXu69x484UxqhDyu3srq2vpHfLGxt7+zuFfcP2iqMJaEtEvJQdn2sKGeCtjTTnHYjSXHgc9rxp5ep37mnUrFQ3OpZRL0AjwUbMYK1kW4md2eDYgnZbq2C6lWYElSulDPium4dOjbKUAJLNAfF9/4wJHFAhSYcK9VzUKS9BEvNCKfzQj9WNMJkise0Z6jAAVVekp06hydGGcJRKE0JDTP1+0SCA6VmgW86A6wn6reXin95vViPal7CRBRrKshi0SjmUIcw/RsOmaRE85khmEhmboVkgiUm2qRTMCF8fQr/J+1z20G2c10uNS6WceTBETgGp8ABVdAAV6AJWoCAMXgAT+DZ4taj9WK9Llpz1nLmEPyA9fYJeuuN7g==</latexit><latexit sha1_base64="GFfQeI4YLT0RvuiUvwajwqh7jlw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4cchIp49d0Y3LivYB7VgyadqGZjJDkhHK0E9w40IRt36RO//GzLSCih64cDjnXu69x484UxqhDyu3srq2vpHfLGxt7+zuFfcP2iqMJaEtEvJQdn2sKGeCtjTTnHYjSXHgc9rxp5ep37mnUrFQ3OpZRL0AjwUbMYK1kW4md2eDYgnZbq2C6lWYElSulDPium4dOjbKUAJLNAfF9/4wJHFAhSYcK9VzUKS9BEvNCKfzQj9WNMJkise0Z6jAAVVekp06hydGGcJRKE0JDTP1+0SCA6VmgW86A6wn6reXin95vViPal7CRBRrKshi0SjmUIcw/RsOmaRE85khmEhmboVkgiUm2qRTMCF8fQr/J+1z20G2c10uNS6WceTBETgGp8ABVdAAV6AJWoCAMXgAT+DZ4taj9WK9Llpz1nLmEPyA9fYJeuuN7g==</latexit>

<̀latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit><latexit sha1_base64="NiCNFQINCFG5T4iOY+JPxVaf5XA=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOph0L0qzW/7s9BVklQkBoUaParX71BzFKJyjJBjekGfmLDjGrLmcBZpZcaTCib0BF2HVVUogmz+a0zcuaUARnG2pWyZK7+nsioNGYqI9cpqR2bZS8X//O6qR1ehxlXSWpRscWiYSqIjUn+OBlwjcyKqSOUae5uJWxMNWXWxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8edJ78d69j0VryStmjuEPvM8fDWaOOw==</latexit>

✓`
<latexit sha1_base64="RyY9cu6d/Ppf+NQ7SFPjlUV0KmI=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gObUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE45vZ37nCbQRiXrASQpBzIZKRIIztNKjjyNA5oOU/WrNrbtz0FXiFaRGCjT71S9/kPAsBoVcMmN6nptikDONgkuYVvzMQMr4mA2hZ6liMZggn188pWdWGdAo0bYU0rn6eyJnsTGTOLSdMcORWfZm4n9eL8PoOsiFSjMExReLokxSTOjsfToQGjjKiSWMa2FvpXzENONoQ6rYELzll1dJ+6LuuXXv/rLWuCniKJMTckrOiUeuSIPckSZpEU4UeSav5M0xzovz7nwsWktOMXNM/sD5/AGv3pDp</latexit><latexit sha1_base64="RyY9cu6d/Ppf+NQ7SFPjlUV0KmI=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gObUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE45vZ37nCbQRiXrASQpBzIZKRIIztNKjjyNA5oOU/WrNrbtz0FXiFaRGCjT71S9/kPAsBoVcMmN6nptikDONgkuYVvzMQMr4mA2hZ6liMZggn188pWdWGdAo0bYU0rn6eyJnsTGTOLSdMcORWfZm4n9eL8PoOsiFSjMExReLokxSTOjsfToQGjjKiSWMa2FvpXzENONoQ6rYELzll1dJ+6LuuXXv/rLWuCniKJMTckrOiUeuSIPckSZpEU4UeSav5M0xzovz7nwsWktOMXNM/sD5/AGv3pDp</latexit><latexit sha1_base64="RyY9cu6d/Ppf+NQ7SFPjlUV0KmI=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gObUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE45vZ37nCbQRiXrASQpBzIZKRIIztNKjjyNA5oOU/WrNrbtz0FXiFaRGCjT71S9/kPAsBoVcMmN6nptikDONgkuYVvzMQMr4mA2hZ6liMZggn188pWdWGdAo0bYU0rn6eyJnsTGTOLSdMcORWfZm4n9eL8PoOsiFSjMExReLokxSTOjsfToQGjjKiSWMa2FvpXzENONoQ6rYELzll1dJ+6LuuXXv/rLWuCniKJMTckrOiUeuSIPckSZpEU4UeSav5M0xzovz7nwsWktOMXNM/sD5/AGv3pDp</latexit><latexit sha1_base64="RyY9cu6d/Ppf+NQ7SFPjlUV0KmI=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gObUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE45vZ37nCbQRiXrASQpBzIZKRIIztNKjjyNA5oOU/WrNrbtz0FXiFaRGCjT71S9/kPAsBoVcMmN6nptikDONgkuYVvzMQMr4mA2hZ6liMZggn188pWdWGdAo0bYU0rn6eyJnsTGTOLSdMcORWfZm4n9eL8PoOsiFSjMExReLokxSTOjsfToQGjjKiSWMa2FvpXzENONoQ6rYELzll1dJ+6LuuXXv/rLWuCniKJMTckrOiUeuSIPckSZpEU4UeSav5M0xzovz7nwsWktOMXNM/sD5/AGv3pDp</latexit>
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Fig. 3.7 The diagram of direct and inverse problem in calculating the anistropy coming
from a layered structure.
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Fig. 3.8 An example of the minimization process (3.16) to find the real water depths
h+, h− (ℓ = 0.005 mm, θ = 0.2).
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Fig. 3.9 Water depths h+, h− as a function of the filling fraction θ for different values
of the periodicity ℓ (φ = 30◦).
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Fig. 3.10 (a) Metamaterial cavity used in experiments. The view from above with a
coordinate system in the real space (x, y, z). (b) Section view with a local coordinate
system used for metabathymetry design (xℓ, yℓ, zℓ).

3.5 Experimental setup

Three metamaterial cavities with bending angles φ1 = 15◦, φ2 = 30◦, and φ3 = 45◦

are designed and manufactured using rapid prototyping technique. Three reference
cavities with flat bathymetry and of the same deviation angles φ1, φ2 and φ3 are
also built. The dimensions of the cavities are constant and set to Lx = 200 mm and
Ly = 300 mm. This fact allows to preserve the same volume throughout all cavities.
The reference water depth is chosen as h0 = 10 mm as a trade-off between staying close
to the shallow-water regime and undesirable attenuation caused by a bottom friction
for small water depths. The parameters hx, hy, h+, h−, and α are calculated for each
of the three systems based on the routine presented before, and they are summarised
in Table 3.1. Considering wavemaker constraints (h− ≥ 3 mm) and rigidity limitations
of the 3D printed structure (θℓ ≥ 1 mm) we choose θ = 0.2, and ℓ = 5 mm.

The wave generator (point source) excites a system with a chirp signal whose
frequency spectrum ranges from 0.3 Hz to 1.5 Hz. This range allows to recover the first
five eigenmodes of the cavity. The partially immerged point source, creating a circular,
linear wave, is placed in one of the corners of the cavity. The corner is chosen based on
the shape of the eigenmodes so that it can be excited in the cavity. Occasionally the
position of the source has to be changed since placing it in the node of the eigenmode
would make it unfeasible to recover. The region where the wavemaker is placed is
sufficiently cut out from the measurements so that the near-field effects are negligible.
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To quantify the wavefield, we use the Fourier transform profilometry (FTP) tech-
nique [58] as well as confocal displacement sensors (2 lasers Keyence CL-P070). FTP
is a technique that uses a fringe pattern projection on a measured surface. In our case,
the water is painted with titanium dioxide (TiO2) so that its surface becomes diffusive
and ready for a fringe projection, whereas the change of physical properties of the
painted water, including viscosity, is insignificant [61]. A high-resolution video projector
EPSON EH-TW9200W is used to project the fringe pattern, and a high-speed camera
Photron FASTCAM Mini WX100 records the deformation of the surface with an
accuracy of more than 0.1 mm. Confocal displacement sensors allow us to measure the
amplitude of the wave in the maxima of eigenmodes with much higher accuracy than
FTP and with pure, transparent water confirming the results of the FTP technique.
Using these methods, we obtain the space-time resolved measurements η(x, y, t) that
are later transformed into the frequency domain, resulting in the complex wavefield
η̃(x, y, ω), to extract eigenfrequencies and eigenmodes.

Table 3.1 Cavities dimensions and design parameters.

φ [◦] 15 30 45
α [◦] -41.18 -36.95 -31.72

hx [mm] 7.66 5.66 3.82
hy [mm] 13.06 17.68 26.18
h+ [mm] 14.56 20.83 31.92
h− [mm] 7.07 5.07 3.23
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Fig. 3.11 Metamaterial cavity filled with water painted with titanium dioxide. The
circular wavemaker in the corner produces the wave. The fringe pattern is projected
onto the water surface and is necessary for FTP measurements.
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Determination of eigenmodes and eigenvalues

Chirp signal
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Fig. 3.12 (a) Example of the chirp signal s(t) generated by the wavemaker. (b)
Corresponding frequency spectrum of the signal.

Instead of measuring the system’s response by exciting frequencies one by one, we use
the chirp signal, whose wide frequency spectrum allows to recover all desired data with
only one longer measurement. The signal sent to the motor is of the form

s(t) = A cosϕ(t), (3.17)

where ϕ̇ = ω = 2πf(t). Assuming the linear change in frequency of the signal in time,
i.e., f(t) = f0 + kt, where k = (f1 − f0)/(t1 − t0), we evaluate the phase ϕ(t) using

ϕ = 2π
∫ t

0
f(τ)dτ. (3.18)

The example of the signal and its spectrum is given in Fig. 3.12 for the frequency
range f0 = 0.5 Hz, f1 = 2.5 Hz and the time duration t1 − t0 = 40 s.

Mesh

Throughout the experiments in the rectangular cavity, it is noticeable that eigenfre-
quencies do not exactly match the predicted theoretical values (Fig. 3.13a) with an
error up to 5% (Fig. 3.13b). However acceptable this error might be, we are able
to reduce it by adding the mesh to the horizontal walls on every four sides of the
cavity. The culprit of this behavior seems to be the meniscus [68] that deforms the
wavefield by attaching the contact line to the wall. The meniscus changes the contact
line, and the wave can be immobilized at the wall when the amplitude is small. By
adding the mesh, we get rid of the undesirable wetting properties of the cavity’s walls.
This method allows a contact line to slide freely and now satisfy the homogenous
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Neumann boundary condition assumed theoretically. With this approach, we are able
to significantly reduce the error that now does not exceed 0.77% and is in the noise
range.
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Fig. 3.13 (a) Measured eigenvalues with and without mesh over the dispersion relation.
(b) Ratio of measured fM and theoretical fT eigenvalues for seven first eigenmodes N .

Determination of eigenmodes

The selection of eigenfrequencies from the experiments is made by finding the local
maxima of |η̃(x, y, ω)| obtained by using Fourier transform of the original signal. Based
on the reasoning presented in Section 1.4 we expect the eigenmodes to appear near
the resonance frequencies of the cavity. That is why we assume that the peaks of
the spectrum are equivalent to cavity eigenfrequencies. We measure the signal (sA)
using confocal displacement sensors in a few points of the cavity where the maximal
amplitude is expected (Fig. 3.14a). We then extract the spectra (sP ) and average
them (ŝP )

ŝP (f) = 1
N

N∑
n=1

(
1
T

∫ T

0
sn

A(t)ei2πft dt
)
, (3.19)

with T = 1/f , and N denotes a number of points. Then, the eigenmodes are chosen
as the real part of η̃(x, y, ω) at the given eigenfrequencies using FTP technique. The
example for a rectangular cavity with flat bathymetry is presented in Fig. 3.14.
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Fig. 3.14 (a) Measured signal in one point of the cavity. (b) Corresponding spectrum
with identified eigenvalues and its measured eigenmodes using FTP method.
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3.6 Experimental results

All of the five eigenmodes recovered in this experiment for the angles φ = 15◦, φ = 30◦,
and φ = 45◦ are reported in Fig. 3.15, 3.16, and 3.17 respectively. The higher
modes were difficult to achieve for several reasons. First of all, as we increase the
frequency, the eigenvalues become closer to each other, including degenerate cases, and
are problematic if not impossible to distinguish experimentally. Moreover, when it
comes to higher frequencies, dispersion and dissipation play a significant role in the
water wave experiments, questioning the shallowness of the system and measurement
techniques capacities, as the amplitude of the wave becomes extremely small. Please
note that increasing the amplitude and the frequency of a water wave in our system
would result in a nonlinear problem, which is not studied in this thesis.

The real part of the wavefield for the fifth eigenmode, i.e., the one whose frequency
is the highest in the set of the measurements, is presented in Fig. 3.18 for rectangular
reference cavity and the cavities with the bending angles φ of 0◦, 15◦, 30◦ and 45◦.
In the reference cavities without the metabathymetry the effect of the difference in
geometry is clearly visible. The eigenmodes change their shape significantly with respect
to the angle φ. The change in the position of nodes and maxima is easily noticeable.
Introducing metabathymetry has an anticipated consequence. The eigenmode pattern
remains the same throughout the measurements, even for the highest angle φ = 45◦.
It is worth mentioning that in this case, i.e., the mode with the highest frequency and
the highest bending angle, the pattern remains the same, even though the shallow
water approximation here is questionable (h+ = 31.92 mm) and the friction of the
metamaterial structure becomes more and more significant (h− = 3.23 mm). This
manifests a significant improvement and the benefit of using the homogenization of a
fully three-dimensional linear water wave problem in comparison to previous works
where 2D homogenization was used [32].
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Fig. 3.15 The comparison of the real part of the measured wavefield η̃(x, y, ω) using
FTP and the numerical prediction both for the cavities with the metabathymetry and
the flat bottom for the first five eigenmodes and the lowest bending angle φ = 15◦.
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Fig. 3.16 The comparison of the real part of the measured wavefield η̃(x, y, ω) using
FTP and the numerical prediction both for the cavities with the metabathymetry and
the flat bottom for the first five eigenmodes and the bending angle φ = 30◦.
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Fig. 3.17 The comparison of the real part of the measured wavefield η̃(x, y, ω) using
FTP and the numerical prediction both for the cavities with the metabathymetry and
the flat bottom for the first five eigenmodes and the greatest bending angle φ = 45◦.
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Fig. 3.18 (a) Experimental results for the real part of the fifth eigenmode η̃(x, y, ω)
measured with the FTP technique for different bending angles φ. The wavefields for
the flat bathymetry (top blue) and the results with the presence of the metabathymetry
(bottom purple). (b) Experimental (symbols) and numerical (plain lines) values of
eigenfrequencies as a function of the bending angle φ. Results are shown for the
anisotropic bathymetry (purple) and the flat bathymetry (blue).

Comparing the experimental results with the numerical prediction, obtained by
solving (3.9) using the Finite Element Method, we observe an excellent agreement of
the eigenmodes. In order to quantitatively describe the difference between them, we
introduce a pattern error defined as

ϵP ≡
∫∫

A |ηS(x, y, ω) − η̂(x, y, ω)|2 dA∫∫
A |ηS(x, y, ω)|2 dA , (3.20)

where ηS is the normalized wavefield predicted numerically, η̂ denotes the normalized
wavefield measured in the experiments, and A is the area of the cavity. The nor-
malization is accomplished by rescaling the wavefield amplitude so that it satisfies
the following condition

∫∫
A |η(x, y, ω)|2 dA = 1. The error increases both with the

increasing angle φ and the frequency ω. However, in all of the cases, it does not exceed
ϵP = 5.2%.

The summary of all the experimental values of the eigenfrequencies compared to
the numerical predictions is shown in Fig. 3.18b. The horizontal axis represents the
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angle of the cavity deformation φ and the vertical axis - the frequency f . Consecutive
lines correspond to the eigenvalues of the cavity with a bending angle φ. It can be seen
that the use of the metabathymetry allows having a constant value of eigenfrequencies
(purple symbols), hence meeting our goal and preserving the resonance properties of
the deformed cavities as predicted with coordinate transformation theory.

The efficiency of the metabathymetry is quantified by the eigenfrequency error
defined as

ϵF = |fS − f |
|fS|

, (3.21)

where fS is the predicted eigenfrequency, and f stands for the eigenfrequency measured
using confocal displacement sensors. This error is always smaller than the pattern
error ϵP , and its value varies from 1.4% to 3.1%.

3.7 Conclusions

The metabathymetry allows to retrieve the properties of a regular cavity in a shifted
geometry. The example of one of the eigenmodes is reported in Fig. 3.18a for different
angles φ. We are also able to maintain the same set of eigenfrequencies for the cavities
with changed geometry (Fig. 3.18b).

The presented experiments show the robustness of the homogenization of the three-
dimensional water wave problem and the coordinate transformation theory in designing
metamaterials for water waves. The designed metabathymetry can be used for the
control of water cavity resonance and the propagation of the wave inside of it. The
efficiency of the anisotropic medium is shown using space-time resolved measurements
of the full water wavefield. Very good agreement with numerical prediction is achieved.



Chapter 4

Submerged metamaterials and their
anisotropic capacities

In Chapter 3 we evaluated the problem of designing the metabathymetry - metamaterial
structure attached to the bottom of the fluid container. This approach works very
well if the shallow water approximation is satisfied. However, for greater water depths,
this assumption is violated. It is natural to think about a structure that would not
necessitate being attached to the bottom of the tank and would be independent of how
deep the container is. That is why we propose a possible solution to this problem that
involves submerged metamaterials.

In this chapter, we study both theoretically and experimentally the array of plates
put between two layers of liquid. Moreover, the homogenized model of such a structure
is shown, and its robustness is verified experimentally.

4.1 Homogenization and dispersion relation

In the bulk, the single submerged plate satisfies the problem

△ϕ = 0, (4.1)

where the boundary conditions are given by

∂ϕ

∂n
= 0 on walls, (4.1a)

∂ϕ

∂z
= ω2

g
ϕ at z = 0. (4.1b)
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Fig. 4.1 (a) Scheme with dimensions of submerged metamaterials. (b) System with
defined regions (layers) with the homogenized layer corresponding to the metamaterial
structure.

After homogenization at the dominant order of the metamaterial structure (Fig.
4.1b), we can write corresponding equations in layers 1, 2, 3, where 2 is the homogenized
layer. Defining a fraction of fluid between the metamaterial as ϑ, we have

△ϕ1 = 0, (4.2)

∇ ·




0 0 0
0 ϑ 0
0 0 ϑ

∇ϕ2

 = 0, (4.3)

△ϕ3 = 0. (4.4)

Due to the homogenized model, we shall ensure the continuity of the potential ϕ and
its horizontal derivative. At each layers’ boundary, we write

at z = 0 ∂ϕ1

∂z
= ω2

g
ϕ1, (4.5a)

at z = −d1
∂ϕ1

∂z
= ϑ

∂ϕ2

∂z
, ϕ1 = ϕ2, (4.5b)

at z = −d2 ϑ
∂ϕ2

∂z
= ∂ϕ3

∂z
, ϕ2 = ϕ3, (4.5c)

at z = −d3
∂ϕ3

∂z
= 0. (4.5d)
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Owing to the separation of variables we can rewrite the problem (4.2) and its
solutions as

∂2φ1

∂z2 − k2φ1 = 0 =⇒ φ1 = a1ekz + b1e−kz,

∂2φ2

∂z2 − k2
yφ2 = 0 =⇒ φ2 = a2ekyz + b2e−kyz, (4.6)

∂2φ3

∂z2 − k2φ3 = 0 =⇒ φ3 = a3ekz + b3e−kz,

where the wavenumber k =
√
k2

x + k2
y. For the sake of the simplicity of calculations we

rewrite boundary conditions (4.5) as follows

at z = 0 ∂zφ1

φ1
= ω2

g
, (4.7a)

at z = −d1
∂zφ1

φ1
= ϑ

∂zφ2

φ2
, (4.7b)

at z = −d2
∂zφ2

φ2
= 1
ϑ

∂zφ3

φ3
, (4.7c)

at z = −d3 ∂zφ3 = 0, (4.7d)

where ∂z = ∂/∂z. Starting with the boundary condition at the bottom (4.7d), and
substituting (4.6), we obtain

∂zφ3

φ3
= k tanh(k(z + d3)). (4.8)

On combining this result with the matching condition at z = −d2, we deduce that

∂zφ2

φ2

∣∣∣∣∣
z=−d2

= 1
ϑ
k tanh(kh3). (4.9)

Continuing this bottom-up approach, we can write similarily for (4.7c) and (4.7b),
and ultimately using (4.7a), we obtain the dispersion relation for the homogenized
submerged metamaterial structure

ω2

g
= k

tanh (kh1) + ϑ
k
ky

tanh(kyh2)+ k
ϑky

tanh(kh3)

1+tanh(kyh2) k
ϑky

tanh(kh3)

1 + tanh (kh1) ϑ
k
ky

tanh(kyh2)+ k
ϑky

tanh(kh3)

1+tanh(kyh2) k
ϑky

tanh(kh3)

. (4.10)
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Fig. 4.2 The dispersion relation coming from the homogenized model (4.10) for sub-
merged metamaterial (a) and the resulting anisotropy (b).

4.2 Bloch-Floquet analysis

In order to further investigate the dispersive characteristics of the submerged metama-
terials, we perform the Bloch-Floquet analysis of the system with the support of the
modal method presented in Appendix A. This analysis is carried out in a symmetric
unit cell whose dimensions are (−ℓ/2, ℓ/2) × (−d3, 0) (Fig. 4.3a). We benefit from the
approach presented in [48] where a similar calculation was done for the plate array
situated at the bottom (as in Chapter 3).

To evaluate the Bloch-Floquet spectrum, we solve the full 3D problem (4.1) in the
unit cell. Since the geometry is independent of y, we can proceed with the reduction
of the model to two dimensions. Thus, following Bloch’s theorem, we obtain

ϕ(x+ ℓ, y, z) = eikxℓϕ(x, y, z), (4.11)
∂ϕ

∂x
(x+ ℓ, y, z) = eikxℓ∂ϕ

∂x
(x, y, z), (4.12)

where a dependence along y takes form eikyℓ. We start with computing the scattering
matrix S using the modal method, akin to the one shown in Appendix A. Due to the
invariance of the geomtry along y axis we can write

ϕ(x, y, z) = eikyℓϕ̃(x, z). (4.13)



4.2 Bloch-Floquet analysis 71

Fig. 4.3 (a) Scheme of the symmetric unit cell with dimensions of submerged meta-
material structure. (b) System with defined regions used to solve the full 3D problem
using Bloch-Floquet analysis and the modal method. A+ and A− stand for the vectors
of the outgoing and ingoing waves respectively at x = −ℓ/2. B+ and B− denote the
vectors of the outgoing and ingoing waves respectively at x = ℓ/2.

Now, we shall consider the mode expansion outside the boundary, with ingoing
(A+, B−) and outgoing (A−, B+) waves (Fig. 4.3b)

ϕ̃(x, z) =
∑

n

(
A+

n eikn(x+ℓ/2) + A−
n e−ikn(x+ℓ/2)

)
φn(z) for x ≤ − ℓ

2 , (4.14)

ϕ̃(x, z) =
∑

n

(
B+

n eikn(x−ℓ/2) +B−
n e−ikn(x−ℓ/2)

)
φn(z) for x ≥ ℓ

2 . (4.15)

The normalized transverse functions adapted to the boundary conditions (4.1a), (4.1b)
are of the form

φn = Nn cosh(Kn(z + d)), (4.16)

where the normalization factor is

Nn =
[
d

2(sinhc(2Knd) + 1)
]− 1

2

. (4.17)
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The transverse functions satisfy the boundary conditions provided that Kn satisfies
the dispersion relation for water waves

ω2

g
= Kn tanh(Knd). (4.18)

The relation between wavenumbers comes from ϕ satisfying the Laplace equation (4.1)
and reads

k2
n = K2

n − k2
y. (4.19)

Similar procedure is applied to the regions α ∈ (−ℓ/2,−θℓ/2) × (−d3, 0), β ∈
(−θℓ/2, θℓ/2)×(−d1, 0), γ ∈ (θℓ/2, ℓ/2)×(−d3, 0), and δ ∈ (−θℓ/2, θℓ/2)×(−d3,−d2),
where expansions of ϕα, ϕβ, ϕγ, and ϕδ are written using corresponding bases φα

n, φβ
n,

φγ
n, and φδ

n. Subsequently, the mode matching of ϕ and ∂xϕ is performed at the
junctions x = ±ℓ/2 and x = ±θℓ/2 as in (A.20). An example of the solution ϕ for the
unit cell is presented in Fig. 4.4 for d1 = 0.005, d2 = 0.055, d3 = 0.1, θ = 1/6 and
ℓ = 0.012. This approach allows the relations of ingoing (A+

n , B−
n ) and outgoing (A−

n ,
B+

n ) waves to be found1. Hence, we obtain
A−

B+

 = S

A+

B−

 , where S =
R T

T R

 , (4.20)

with R and T being the reflection and transmition matrices. Let us rewrite the system
(4.20) as

M1

A+

A−

 = M2

B+

B−

 , (4.21)

where

M1 =
 T 0

−R I

 , M2

I −R
0 T

 . (4.22)

1For the sake of clarity of writing we identify the vector of the components of ingoing and outgoing
waves as A± = A±

n and B± = B±
n .
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0.20 0.65 -0.25 0.25 -0.50 0.50

Fig. 4.4 (a) Solution ϕ(x, 0, z) in the unit cell and its horizontal (b) and vertical (c)
derivatives.

Using the expansions of ϕ and following the Bloch-Floquet condition (4.11) we
deduce that B+

B−

 = µ

A+

A−

 , (4.23)
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with µ(ω, ky) = eikxℓ. On combining this result with (4.23), we conclude that

M1

A+

A−

 = µM2

A+

A−

 . (4.24)

The above eigenvalue problem (4.24) eventually allows to obtain the Bloch-Floquet
wavenumber kxℓ as a function of ω and kyℓ in the first Brillouin zone (−π, π). The
example of this approach is shown in Fig. 4.5 where the band structure is calculated
and compared to the homogenized model from Chapter 4.1 for d1 = 0.005, d2 = 0.055,
d3 = 0.1, θ = 1/6 and ℓ = 0.012.

The homogenized model is able to reproduce the band structure with good accuracy
for low frequencies. However, the higher the frequency, the more visible the differences
are. In Fig. 4.5a, we can see that the homogenized model underestimates the value of
the wavenumber kx. Introducing the anisotropy value as

A =
(
kx

ky

)2

, (4.25)

it is noticeable that the anisotropy is the highest for one particular frequency (Fig.
4.5b). The homogenized model seems to overestimate the anisotropic capacities of
the submerged structure. This behavior may be attributed to the limitations of the
dominant order homogenization and possibly be explained by performing higher order
homogenization. Interestingly enough, our model can predict the frequency for which
maximum anisotropy occurs as reported in Fig. 4.5b.

In Fig. 4.5c, we show the dispersion relation of the homogenized model (4.10) and
compare it to the Bloch-Floquet prediction (white dashed lines, Fig. 4.5d). First of
all, it is clearly visible that the stratified submerged medium is able to produce a high
degree of anisotropy for low frequencies. When frequency increases, the degree of the
anisotropy decreases, which translates to the fact that the metamaterial structure is no
longer at the subwavelength scale and it cannot support relatively small wavelengths.
Consequently, it is inevitable to admit that the presented metamaterial structure can
be designed and optimized for a narrowband frequency spectrum.
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Fig. 4.5 (a) Nondimensional wavenumbers kxℓ (blue) and kyℓ (orange) over the nondi-
mensional frequency ω

√
d3/g obtained both from the homogenized model (plain lines)

and the Bloch-Floquet analysis (dashed lines). (b) Comparison of the anisotropy of
the submerged metamaterials as a function of the nondimensional frequency ω

√
d3/g

predicted by the homogenized model (dashed lines) and the Bloch-Floquet analysis
(plain lines). (c) The dispersion relation given by the homogenized model as a function
of nondimensional wavenumbers kxℓ and kyℓ. (d) Zoom of the dispersion relation from
the homogenized model (4.10) with the band structure obtained by Bloch-Floquet
analysis (white dashed lines).
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4.3 Experimental setup

The anisotropy of the submerged metamaterials is studied experimentally in order
to verify both the numerical prediction given by Bloch-Floquet analysis and the
homogenized model. With the aim of quantifying the wavefield, the Fourier transform
profilometry technique is employed.

The experimental setup consists of a high-definition videoprojector and a camera
with the temporal resolution set as 50 frames per second and whose spatial resolution
is 2048 × 2048 px2. Both are suspended on an aluminium profile at the height of
L = 1000 mm over a water tank with dimensions 600 × 1760 mm2. The distance
between the lenses of the camera and the videoprojector is equal to D = 400 mm.

The submerged metamaterial structure (Fig. 4.6) is designed to be of total width and
length of Lx = Ly = 590 mm to fit the water tank both parallelly and perpendicularly.
The structure is manufactured using 48 laser-cut plexiglass plates of height h2 = 50 mm
and thickness θℓ = 2 mm, where the periodicity ℓ = 12 mm and the filling fraction
θ = 1/6. Further thinning of the plates would make them too flexible and therefore
not rigid enough to withstand forces generated by the water waves. The periodicity
ℓ = 12 mm is chosen to be sufficiently smaller than the typical wavelength comparable
to the size of the tank. Meeting the experimental constraints such as the depth of the
tank (120 mm), or the dispersion relation of water waves, leaves us with placing the
plates at the height of h3 = 45 mm. Such a structure is verified numerically and should
be able to produce anisotropy of the order A ≈ 5.

Fig. 4.6 (a) Side view of the metamaterial structure manufactured using laser-cut
plexiglass and its dimensions. (b) View from the above of the metamaterial structure
with its total width and length.
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The region of interest is of the size 512×335 mm2 which corresponds to the resolution
of the image 2048 × 1340 px2 with a pixel size of 0.25 mm/px. The obtained image
represents the area of the tank entirely covered with the metamaterial structure.

The wavemaker with a circular end of diameter ϕsource = 40 mm is placed at the
center of the region of interest (Fig. 4.7). The tip of the wavemaker is connected to
the motor with an aluminum rod to diminish the shadow and, therefore, maximize the
measurement area. The linear motor realizes vertical sinusoidal motion with a frequency
range of fsource ∈ [2, 7] Hz and typical amplitude of Asource ∈ [1, 3] mm creating a source
of the circular wave for our system. The wavefield is measured frequency by frequency
with a step of ∆f = 0.5 Hz.

4.4 Experimental results

The Fourier transform profilometry technique provides the space-time resolved mea-
surements of the free surface elevation η(x, y, t) and can detect waves whose amplitude
is as small as 0.1 mm. The wavefield measured at each frequency is later transformed
in the frequency domain using Fourier transform as follows

η̂(x, y, f) = 1
T

∫ T

0
η(x, y, t)e−i2πft dt, (4.26)

where T = 1/f . The temporal signal starts usually 2 s before the emission of the wave
by the source and ends when the wave reaches the closest boundary of the water tank.
This is to avoid the reflection in the measurement region that could make the data
treatment more cumbersome.

The complex fields of η̂(x, y, f) at the fundamental frequency are computed and
presented in Fig. 4.8 and Fig. 4.9. The fundamental frequency is chosen as one that
presents a maximum in the spectrum and corresponds to the frequency of the source
with a negligible error smaller than 0.3%. The contribution of the higher harmonics is
also negligible and usually of the order of 2-4% when it comes to the first harmonic
(2f0). The maximum amplitude of the wave near the source depends on the water depth
h1 that varies throughout the experiments but usually is in the range of 0.5 − 5 mm.

In order to examine the anisotropic behavior of the submerged metamaterial
structure, the measurements are performed for three different water depths h1: 2 mm,
5 mm, and 10 mm. The water depths h2 and h3 are constant and equal to 50 mm and
45 mm, respectively.
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Fig. 4.7 Experimental setup. The circular wavemaker is placed in the middle of the
region of interest creating the wave. The fringe pattern is projected on the surface to
allow Fourier transform profilometry measurements.
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The real parts of the complex fields η̂(x, y, f) for three different water depths h1

are reported in Fig. 4.8 for the frequencies f : 2 Hz, 3 Hz, and 4 Hz and in Fig. 4.9 for
the frequencies f : 5 Hz, 6 Hz, and 7 Hz. It can be clearly seen that the submerged
metamaterial medium is able to produce the anticipated anisotropy. This effect is
evident for low frequencies and small water depth h1.

In order to examine the anisotropic behavior of the structure more quantitatively,
we measure the wavelength in x and y direction. We benefit from previously obtained
complex wavefields to obtain λx measured at η̂(x, y = 0) and λy measured at η̂(x = 0, y).
The wavelength is calculated in two ways. First, we measure the distance between two
peaks of the waves as presented in the (Fig. 4.10). The second approach consists of
the fitting of the wave with the Hankel function of the first kind defined as

H
(1)
0 (kxx) = J0(kxx) + iY0(kxx), (4.27)

where J0 stands for the Bessel function of the first kind, and Y0 denotes the Bessel
function of the second kind. In general, they are defined by

Jν(kxx) =
(
kxx

2

)ν ∑
n

(−(kxx)2/4)n

n!Γ(ν + n+ 1) , Yν(kxx) = lim
ν→µ

Jµ(kxx) cos(µπ) − J−µ(kxx)
sin(µπ) ,

(4.28)

where Γ is the Gamma function and the wavenumber kx = 2π/λx. A similar approach
is adopted for the wavelength λy. In our case, the Bessel functions are of order 0. Using
these two methods to obtain the wavelengths, we can define the errorbar in Fig. 4.11,
where we present the ensemble of the experimental data. When it comes to calculating
the anisotropy

A =
(
kx

ky

)2

=
(
λy

λx

)2

, (4.29)

we must evaluate the value of the error mentioned above according to the error
propagation theory. The error of the value of the anisotropy ϵA can be calculated as

ϵA

A
= 2

√√√√(ϵλx

λx

)2
+
(
ϵλy

λy

)2

. (4.30)

This leaves us with quite considerable uncertainty concerning the value of anisotropy.
However, its mean value corresponds very well to the value predicted by the Bloch-
Floquet analysis.



80 Submerged metamaterials and their anisotropic capacities

Fig. 4.8 Real part of η̂(x, y, f) for different water depths h1 (2 mm, 5 mm, 10 mm -
from left to right) and varying frequency f (2 Hz, 3 Hz, 4 Hz - from top to bottom).
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Fig. 4.9 Real part of η̂(x, y, f) for different water depths h1 (2 mm, 5 mm, 10 mm -
from left to right) and varying frequency f (5 Hz, 6 Hz, 7 Hz - from top to bottom).
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Fig. 4.10 The colormap shows the real part of η̂(x, y, f) from the experimental mea-
surement for f = 6 Hz and h1 = 2 mm. The plots show the horizontal and vertical
profiles for x = 0 mm and y = 0 mm respectively with the best fits of Hankel function
H0(kxx) and H0(kyy) (orange curves).
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Fig. 4.11 Experimental values (symbols) for the wavelengths λx (orange), λy (blue)
and resulting anisotropy A (purple) compared to the prediction of homogenized model
(plain curves) and Bloch-Floquet analysis (dashed lines). The data is presented for
different water depths h1: 10 mm (left), 5 mm (center), 2 mm (right).

All the experimental values of λx, λy, and the resulting anisotropy are reported in
Fig. 4.11. Under the scrutiny of the experimental data, it is evident that the anisotropy
increases with decreasing water depth h1. As expected, experiments confirm the
decrease of the anisotropy for higher frequencies. The highest value of the anisotropy
is obtained for the lowest water depth h1 = 2 mm and reaches A = 4. The anisotropic
behavior is still visible even for higher frequencies. For the water depth of h1 = 10 mm,
the anisotropic capacity of the metamaterial is still noticeable for low frequencies to
disappear almost completely for higher ones.

The Bloch-Floquet analysis is able to predict very well the anisotropic characteris-
tics of the submerged metamaterials. Even though the homogenized model slightly
underestimates the value of the wavelength λx (perpendicular to the direction of the
metamaterial structure) it represents a useful alternative to predict maximal anisotropy
efficiently.
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4.5 Conclusions

The homogenized model for submerged water-wave metamaterials presented in this
chapter offers a valuable tool when it comes to metamaterial design. It can accurately
foresee the anisotropic capacities of such a structure, particularly the frequency band
for which maximal anisotropy is manifested. This result is verified using Bloch-Floquet
analysis that can further and more precisely determine the dispersion relation for
submerged metamaterials. The experimental data confirm with a very good agreement
the theoretical analysis.

In order to further improve the homogenized model, higher order homogenization
can be done to explain the discrepancies between the model and the actual behavior of
the system. Since it has been seen that we can expect high anisotropy for thin fluid
layers (h1 → 0), it might also be advantageous to consider replacing the layer with an
effective boundary condition [69] that could possibly compensate for the differences
between the presented homogenized model and the actual metamaterial structure.



Chapter 5

Su-Schrieffer-Heeger model for
water waves in a periodic channel

Conventionally, metamaterials are considered as artificially structured media, with a
unit cell whose dimensions are much smaller than the wavelength. This subwavelength
condition, much needed in the context of the homogenization process, plays a crucial
role in obtaining the approximation of the effective medium. However, it is also possible
to design a structure where the peculiar behavior of the wave can be observed even
though its length is comparable or even greater than the size of the unit cell [40, 41].
In this chapter, we focus on such structure for water waves developed owing to the
theory of topological insulators.

The study of topological insulators was set in motion after the discovery of the
quantum Hall effect [70, 71]. Since then, it has been investigated and realized for
the wave systems in various contexts, inter alia, in acoustics [72–75], photonics [76–
79], phononics [80–82], or mechanics [83–86]. A fundamental feature of topological
metamaterials is the presence of edge modes, i.e., topologically protected modes
localized on the boundaries.

Undoubtedly, one of the simplest and most famous representations of the topological
states is given by the Su-Schrieffer-Heeger model (SSH) [87, 42], whose properties
generated a lot of interest in acoustic [88–90] or water wave system [91]. However, to
benefit from the SSH model, these approaches usually use coupled resonator systems
or band structure analysis thanks to the Zak phase.

Our study uses a different, more direct approach to describe a water wave system
using the SSH model. A periodic water wave channel with alternating cells of two
different widths and equal lengths is studied, allowing to map the 1D SSH model onto
our system straightforwardly.
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5.1 Model reduction. From 2D Helmholtz equation
to SSH model

The infinite water wave channel with periodically varying width w1, w2 and the length
of a cell d is considered as shown in Fig. 5.1a. The free surface elevation of the wave
η(x, y) with time harmonic dependence chosen as e−iωt satisfy the two-dimensional
Helmholtz equation with the homogenous Neumann boundary condition corresponding
to vanishing normal velocity on the walls

△η + k2η = 0, (5.1)
∂η

∂n
= 0 on walls, (5.2)

where n is a vector normal to the boundaries of the channel and the wavenumber k
satisfies the dispersion relation for water waves ω2 = gk tanh(kh), where g denotes the
gravitational acceleration, ω stands for the angular frequency, and h is a depth of the
channel. Further reduction of the 2D Helmholtz equation is obtained by assuming
that the wavelengths are sufficiently large (low frequencies). Assuming the cut-off as
k < π/w2 (Section 1.3), preventing the propagation of the transverse modes, we can

2D continuous

1D continuous

1D discrete

Fig. 5.1 (a) Scheme of the two-dimensional water wave periodic channel consisting of
the cells with different widths w1, w2 and the length d. (b) One-dimensional continuous
approximation leaves us with η depending only on x. On the axis, we identify points
corresponding to the change of the channel widths. (c) Scheme of the one-dimensional
discrete SSH model corresponding to the water wave channel.
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proceed with the one-dimensional, continuous wave equation

η′′ + k2η = 0, (5.3)

where now η = η(x) depends only on the horizontal direction x. There are two types
of cross sections: P and Q; section P occurs where w1 → w2; section Q occurs where
w2 → w1. At each cross section, where the width of the channel is changing, we must
ensure the continuity of the free surface elevation and its derivative (flow rate) with
the jump conditions

[η] = 0, (5.4)
[wη′] = 0, (5.5)

where [f ] = f+ − f− describes the difference at each cross section from the right side
limit (f+) and the left side limit (f−). Having reduced the two-dimensional continuous
model into the one-dimensional continuous, we can proceed with a further reduction
to the one-dimensional discrete description. Owing to the known analytical solution
to the equation (5.3) with the condition (5.4) we derive the relationship between the
neighboring points (here for sections Q)

η(xQ
n ) = η(xP

n ) cos kd+ η′(xP +
n )
k

sin kd, (5.6)

η(xQ
n−1) = η(xP

n ) cos kd− η′(xP −
n )
k

sin kd. (5.7)

Multiplying equation (5.6) by w2, equation (5.7) by w1 and summing them, we obtain

w2η(xQ
n ) + w1η(xQ

n−1) = (w1 + w2)η(xP
n ) cos kd+ sin kd

k

(
w2η

′(xP +
n ) − w1η

′(xP −
n )

)
︸ ︷︷ ︸

=0, by continuity (5.5)

.

(5.8)

As shown above, taking advantage of the condition (5.5) we can eliminate the derivatives
at given points. Following the same approach for the sections P we have

w2η(xP
n ) + w1η(xP

n+1) = (w1 + w2)η(xQ
n ) cos kd+ sin kd

k

(
−w2η

′(xQ−
n ) + w1η

′(xQ+
n )

)
︸ ︷︷ ︸

=0, by continuity (5.5)

.

(5.9)
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We introduce the coupling coefficients s and t as

s = w1

w1 + w2
and t = w2

w1 + w2
. (5.10)

They depend only on the geometry of the system, are positive, and their sum is equal
to unity

s+ t = 1. (5.11)

Now, identifying E ≡ cos kd, and for the sake of simplicity writing that

Qn ≡ η(xQ
n ) and Pn ≡ η(xP

n ), (5.12)

we can ultimately describe our system by

sQn−1 + tQn = EPn, (5.13)
tPn + sPn+1 = EQn. (5.14)

which in fact corresponds to the eigevalue problem

HX = EX, (5.15)

where

H =



. . . . . .

. . . 0 s

s 0 t

t 0 s

s 0 . . .
. . . . . .


and X =



...
Qn−1

Pn

Qn

Pn+1
...


. (5.16)

The above representation of our system directly matches the SSH model. Moreover,
the pseudoenergy E(k) = cos kd is analogous to its SSH model counterpart. Since the
SSH Hamiltonian H depends exclusively on the geometry, the eigenfrequencies k are
directly given by the eigenvalues of H.
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Fig. 5.2 The dispersion relation of the SSH model (5.19). (a) Pseudoenergy E as a
function of the Bloch wavenumber q for s = 1/3. (b) The unwound dispersion relation
- undimensionalized wavenumber k over the Bloch wavenumber q for s = 1/3.

In order to find the dispersion relation of the system, we assume the Bloch wave
solution given by

Pn = P eiqn and Qn = Qeiqn, (5.17)

where q is the Bloch wavenumber. By substituting (5.17) into (5.13) and (5.14), we
end up with an eigenvalue problem 0 se−iq + t

seiq + t 0

P
Q

 = E

P
Q

 . (5.18)

This 2 × 2 Hamiltonian matrix of the periodic one-dimensional SSH system allows to
find directly the dispersion relation of the system

E = cos kd = ±
√
s2 + 2st cos q + t2. (5.19)

Owing to the chiral symmetry [42], the dispersion relation is symmetric around E = 0
(Fig. 5.2a) that can be unwound as kd = (m+ 1/2)π (m = 0, 1, 2 . . . ) (Fig. 5.2b).

Moreover, it appears that the first zero energy mode (E = 0) occurs when the
wavelength λ is four times larger than the length of the segment d. It can be easily
derived as E = 0 → kd = π/2 → λ = 4d.
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5.2 Numerical illustration

To further illustrate the usefulness of the SSH model for water waves, we consider a
finite channel with 2N = 14 segments and its symmetric analog with 2N + 1 = 15
segments. The channel is closed on both ends, which is accounted for by the homogenous
Neumann boundary condition on each wall, where normal velocity vanishes. This fact
can be represented by changing the first and last equation and introducing so-called
ghost nodes: G0 ≡ Q0 at the beginning of the channel, and G1 ≡ QN at the end, that
satisfy EG0 = P1, and EG1 = PN for the case with even number of segments (2N).
The Hamiltonian and the vector of unknowns of the eigenvalue problem HX = EX
then becomes

H =



0 1 0 . . . . . . . . . 0
s 0 t

...
0 t 0 s

...
... . . . . . . . . . ...
... t 0 s 0
... s 0 t

0 . . . . . . . . . . . . 1 0


and X =



G0

P1

Q1
...

QN−1

PN

G1


. (5.20)

Similarly, we can obtain the Hamiltonian H for the case with an odd number of
segments. The eigenvalues obtained from the SSH model for the case with an even
number of segments is shown in Fig. 5.3a and for the case with an odd number of
segments is reported in Fig. 5.3b (for all possible values of s and t = 1 − s). Due to
the recurrent nature of the model (5.13, 5.14) it is straightforward to obtain an explicit
form of the zero energy mode localized at the edge for the system (5.20)

Pn

Qn

 = c

0
1

(−s

t

)n

, (5.21)

where c is the normalization constant.
Parallelly to this analysis, we numerically solve the full two-dimensional eigenvalue

problem corresponding to the even and odd case separately

△η = −k2η, (5.22)
∂η

∂n
= 0 on walls. (5.23)
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The solution is obtained using Finite Element Method for w1 = 0.05, w2 = 0.1, d = 0.1,
L = 1.4 (L being the total length of the channel), and is shown in Fig. 5.3a for the
case with an even number of segments, and in Fig. 5.3b for the case case with an
odd number of segments. It can be clearly seen that for an even number of segments
(2N = 14, Fig. 5.3a) the system hosts one localized mode with zero energy. For s < t

the edge wave is localized on the left side of the channel (Fig. 5.4a) and vice versa, for
s > t the mode is localized on the right side (Fig. 5.4c). This behavior can be easily
explained when we look again at the form of the edge wave (5.21) derived from the
SSH model. It appears that only the edge segments where w1 < w2 are able to host
the edge wave.

Analyzing the case where we have an odd number of segments (2N + 1 = 15, Fig.
5.3a), we see that for s < t, our system can host two zero energy modes - one localized
at the left end and the other localized at the right end. For s > t, the edge mode
disappears, as our system is unable to host the localized edge wave since on both ends
we have segments with w1 > w2. It is worth mentioning that for s = t, we obtain the
case where the channel is rectangular, thus the localization of the zero energy mode
does not occur (Fig. 5.4b).

The slight difference between eigenvalues obtained by the SSH model and the
numerical solution can be explained by the fact that one-dimensional approximation is
not able to account for the actual widths of the channel. However, the one-dimensional
approximation is still satisfactorily accurate as long as the aspect ratio of the segments
is small enough and the wavelength is large compared to the width of the channel.
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Fig. 5.3 The eigenvalues of the channel with (a) an even number of segments (2N = 14)
and (b) an odd number of segments (2N + 1 = 15) obtained by the SSH model (plain
curves) and the numerical simulation (dashed curves) as a function of the parameter s.
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Fig. 5.4 The amplitude of the edge mode defined as the absolute value of the free surface
elevation A = |η(x, y)| for different values of the coupling coefficient: (a) s = 1/3,
(b) s = 1/2, and (c) s = 2/3. The comparison between the SSH model prediction
(symbols) and the numerical simulation using Finite Element Method (plain curves).
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5.3 Experimental setup

The experimental setup is based on a periodic channel (Fig. 5.5a) of the length
L = 140 cm and periodically varying width w1 = 5 cm and w2 = 10 cm that corresponds
to s = 1 − t = 1/3. The channel consists of 14 segments of the length d = 10 cm. The
height of the channel is equal to 5 cm so that it can accommodate the layer of water
of the depth h = 2 cm that is constant throughout the experiments. The aspect ratio
of the cells is small enough to accurately mimic the characteristics of the SSH model,
as shown in the previous section. On the other hand, it has to be sufficiently big in
order to avoid the detrimental effects of the meniscus that forms on the walls of the
channel and whose size is of the order of 2 mm. Its presence in the channel with a
small aspect ratio could lead to the undesirable shift in eigenfrequencies of the channel
[92]. The reference rectangular channel of the same length and width w = 5 cm is also

Fig. 5.5 (a) The photo of the periodic channel with dimensions. The wavemaker is
placed at the left end of the channel (top view). (b) The picture of the left end of
the channel with the wavemaker and the two confocal displacement sensors suspended
above the channel.
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manufactured in order to verify the regular modes of a straight cavity (s = t).
The realization of the point source is done by placing the wavemaker consisting of

the linear motor with cylindrical tip (Fig. 5.5b) of the diameter ϕs = 2 cm and that
is placed on the left end of the channel in the segment of smaller width, 0.5 cm from
the wall. The wavemaker realises vertical sinusoidal motion of the amplitude range
As ∈ [0.5 mm, 15 mm] and the frequency up to fs = 2.5 Hz, which corresponds to the
cut-off needed by the one-dimensional approximation.

Two confocal displacement sensors are placed above the channel (Fig. 5.5b) and
are separated by the interval of 10 cm, corresponding to the length of the segment,
allowing to measure at two cross sections simultaneously to facilitate the measurements.
The sensors are connected to the trolley to quickly change its position and measure at
different points along the channel.

5.4 Experimental results

The confocal displacement sensors provide the signal with an acquisition frequency of
1 kHz. The source is positioned at the left end of the channel where the maximum
amplitude of the edge mode is expected.

5.4.1 Linear regime

The wavemaker realizes the vertical pseudoperiodic motion corresponding to the chirp
signal (Section 3.5), whose length is t = 60 s and whose frequency spectrum varies
from 0.1 to 2.5 Hz so that the first cut-off frequency is fully covered. The spectrum is
measured every 2.5 cm. We report in Fig. 5.6a the average of all measured spectra for
the periodic channel with s = 1/3. The edge mode is visible at fE = 1.097 Hz which
corresponds to kd = π/2 and is represented by the most prominent resonance peak
surrounded by the large band gap. Vertical dashed lines correspond to the eigenvalues
given by the numerical solution of the two-dimensional Helmholtz eigenproblem (5.23)
and are in excellent agreement with the experimental results.

A similar procedure is done for the rectangular channel (s = 1/2). We can see that
resonance modes are now equally spaced (Fig. 5.6b) and follow the regular modes of the
rectangular cavity as expected (kL = mπ with m = 1, 2, . . . ). The comparison between
the experimental values (dots), one-dimensional prediction by the SSH model (plain
curves), and the two-dimensional eigenproblem solved numerically (dashed curves) is
shown in Fig. 5.6c. Local maxima obtained experimentally for s = 1/3 (blue dots)
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Fig. 5.6 (a) Averaged spectrum of the free-surface elevation for s = 1/3 (blue curve)
with a 2D numerical prediction (dashed lines). (b) Averaged spectrum of the free-
surface elevation for s = 1/2 (orange curves) with a numerical prediction (dashed lines).
(c) Comparison of the 1D (plain lines) and the 2D (dashed lines) prediction of the
eigenvalues with the experimental values for s = 1/3 (blue dots) and s = 1/2 (orange
dots).

and s = 1/2 (orange dots) are reported. An excellent agreement of theoretical and
experimental results is obtained with a slight difference between 1D and 2D models
coming from the geometry’s aspect ratio.

The ensemble of the experimental results is presented in Fig. 5.7b and is compared
to the numerical simulation using Finite Element Method Fig. 5.7a. The simulation is
carried out as follows. We solve the two-dimensional Helmholtz equation with a source
term s(x, y)

△η + k2η = s(x, y), (5.24)
∂η

∂n
= 0 on walls. (5.25)

for wavenumbers k = κ+ iβ, where the imaginary part of the wavenumber accounts
for the viscous attenuation in the bulk and is given by Stokes equation

β = 4κ2µω

ρg + 3γκ2 , (5.26)

where µ denotes dynamic viscosity, ρ is water density, g stands for the gravitational
acceleration, and γ is the surface tension. The source is modelled as a Gaussian bell of
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Fig. 5.7 (a) The absolute value of the free surface elevation obtained using Finite
Element Method. (b) Experimental results for s = 1/3.

the form

s(x, y) = 1
2πσxσy

exp
[
−
(

(x− x0)2

2σ2
x

+ (y − y0)2

2σ2
y

)]
, (5.27)

where σx = σy = w1/30, x0 = d/2, and y0 = w2/2. The profile of the wave is obtained
by averaging the result along the y axis and is presented in Fig. 5.7a for different
frequencies f = ω/2π, where ω2 = gk tanh(kh).

The edge mode localized at the left side of the channel is clearly visible and
corresponds very well to the numerical simulation. It is surrounded by the band gap
after which we see the bulk modes of the channel. The profile of the absolute value
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Fig. 5.8 The edge mode localized at the left side of the channel obtained experimentally
(blue dots), by 2D simulation (plain curve), and by the SSH model (5.21) (pink
symbols).
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of the free surface elevation for the edge mode is presented in Fig. 5.8. An excellent
agreement is obtained between the experiment and both 2D and 1D SSH prediction.

5.4.2 Nonlinear regime

With increasing amplitude of the source, i.e., the wave’s amplitude, the appearance of
secondary peaks around the resonance peak of the edge mode is observed. To further
investigate this phenomenon, the dependence of the spectrum on the amplitude is
studied. Since we are no longer in the linear regime, the approach using a chirp signal
that benefits from the linear properties of the Fourier transform can no longer be used.
Therefore, the point source realizes vertical sinusoidal motion with the frequency fs

and the amplitude As. Two sets of measurements are studied for different values of fs

and As. Both of them are focused around the frequency of the edge mode. The first
set is done for

As ∈ [0.5, 0.6, 0.7, . . . , 1.9, 2.0, 2.5, . . . , 4.5, 5, 6, . . . , 9, 10] mm, (5.28)
fs ∈ [1.040, 1.160]Hz, ∆fs = 0.002 Hz,

and the second set

As ∈ [0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 2.0, 2.5, 5, 10, 15] mm, (5.29)
fs ∈ [0.900, 1.200] Hz, ∆fs = 0.003 Hz.
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Fig. 5.9 (a) The example of the experimental measurement for As = 2.5 mm, fs =
1.065 Hz and (b) corresponding spectrum.
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For each amplitude of the source As, the amplitude of the wave is registered using
a confocal displacement sensor at x/d = 4. The signal of the length t = 20 s is
measured for a given frequency fs, then the frequency is increased by ∆fs, and the
stationary state of the wave is anticipated before registering the next signal. Usually
it takes around 80 s to measure one signal for the pair (As, fs). Due to the time
consuming procedure, an automatic script is put in place that changes both As and fs

and registers the signals. To avoid the change of the water properties, the channel is
covered with a transparent foil preventing the surface from being polluted, and also to
suppress the evaporation that would result in decreasing the water depth and therefore
changing the resonant frequencies. The example of the measurement for one pair of
(As, fs) = (2.5 mm, 1.065 Hz) is shown in Fig. 5.9. The signal is carefully trimmed to
obtain an integer number of periods to extract the exact values of its spectrum.

The determination of the resonance curves is done by extracting the values of the
fundamental frequency, first five harmonics (f0, . . . , f5) and its amplitudes (A0, . . . , A5)
(Fig. 5.10). One measurement for the pair of (As, fs) represents one point on the
resonance curve.
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Fig. 5.10 The determination of the resonance curves. The resonance curve of (a) the
fundamental frequency A0(f0) and (c) the first harmonic A1(f1) for As = 2.5 mm. (b)
The spectrum of the the measurement for (As, fs) = (2.5 mm, 1.065 Hz) from which
the values of the frequencies (f0, . . . , f5) and the amplitudes (A0, . . . , A5) are extracted.
The example shows the position of (f0, A0) (red triangle) and (f1, A1) (yellow triangle)
on the corresponding resonance curves (a) and (c) respectively.



5.4 Experimental results 99

We report in Fig. 5.11 three different regimes of the resonant behavior of the edge
mode for As = 0.7 mm (Fig. 5.11a), As = 2.5 mm (Fig. 5.11b), and As = 15 mm (Fig.
5.11c). As the driving frequency fs corresponds almost exactly to the fundamental
frequency f0 and the harmonics (f1 = 2f0, f2 = 3f0, . . . ) (with an error smaller than
1%, inset Fig. 5.11a) we compare them on the same horizontal axis fs.

We can see that for As = 0.7 mm we obtain only one resonant peak of the edge
mode, and the contribution of higher harmonics is relatively small (less than 20 %).
For the amplitude of the source of As = 2.5 mm (Fig. 5.11b) secondary peaks around
the main resonant peak of the edge mode appear (first bifurcation). The contribution
of the harmonics becomes more important. It seems that the peak on the right side
of the peak of the fundamental frequency (blue curve) of the edge mode corresponds
to the maximum of the second harmonic (yellow curve). On the other hand, the left
side peak correlates with the maximum of the first harmonic (orange curve). With
further increase of the amplitude As we can observe the emergence of two more peaks
(second bifurcation) reported in Fig. 5.11c where the resonant curves for As = 15 mm
are shown. The amplitudes of the first and second harmonic are now higher than the
fundamental frequency amplitude.

Experimental measurements show the existence of strong nonlinear interactions near
the resonant frequency of the edge mode. Similar behavior for the rectangular channel
was obtained experimentally and described theoretically in [93–95]. The apparent
energy transfer between the fundamental frequency and the harmonics can be obtained
using the approach presented in [96].

To further investigate the emergence of the resonant peaks around the edge mode,
we introduce the Ursell number as follows

U = Asλ
2

h3 , (5.30)

where λ = 4d stands for the wavelength of the edge mode and h denotes the water
depth. The ensemble of the measurements is shown in Fig. 5.12 for the range (5.29)
and in Fig. 5.13 for the range (5.30). It appears that the first bifurcation, where
two secondary peaks emerge, happens when the Ursell number U ≈ 25. The peaks
are placed almost symmetrically at around ±5%fE away from the main resonance of
the edge mode (fE). The second bifurcation, i.e., when two additional peaks arise
at approximately ±10%fE away from the original edge mode resonance, occurs at
U ≈ 100.
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Fig. 5.11 Resonant curves of the fundamental frequency A0(fs) (blue curve), the first
harmonic A1(fs) (orange curve), the second harmonic A2(fs) (yellow curve), the third
harmonic A3(fs) (purple curve), and the fourth harmonic A4(fs) (green curve) for
(a) As = 0.7 mm, (b) As = 2.5 mm, and (c) As = 15 mm. The inset of (a) shows the
relation between the driving frequency fs and the measured fundamental frequency f0.
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Fig. 5.12 (a) Resonant curves for the set of measurements (5.29) for the fundamental
frequency. (b) The measured amplitude of the normalized fundamental frequency
f0/fE as a function of the Ursell number U . (c) The measured amplitude of the first
harmonic f1/2fE as a function of the Ursell number U . (d) The measured amplitude of
the second harmonic f2/3fE as a function of the Ursell number U . (e) The measured
amplitude of the third harmonic f3/4fE as a function of the Ursell number U . (f) The
measured amplitude of the fourth harmonic f4/5fE as a function of the Ursell number
U . The inset shows the region around the edge mode peak, where the measurements
are carried out.
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Fig. 5.13 (a) Resonant curves for the set of measurements (5.30) for the fundamental
frequency. (b) The measured amplitude of the normalized fundamental frequency
f0/fE as a function of the Ursell number U . (c) The measured amplitude of the first
harmonic f1/2fE as a function of the Ursell number U . (d) The measured amplitude of
the second harmonic f2/3fE as a function of the Ursell number U . (e) The measured
amplitude of the third harmonic f3/4fE as a function of the Ursell number U . (f) The
measured amplitude of the fourth harmonic f4/5fE as a function of the Ursell number
U . The inset shows the region around the edge mode peak, where the measurements
are carried out.
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Subsequently, the form of the resonant modes near the edge mode is studied. The
amplitude is measured at x/d ∈ [2, 3, ..., 9]. In the regime where the first bifurcation
occurs, for U = 50, we can observe two secondary peaks (orange and yellow triangles)
around the main edge mode peak (blue triangle) (Fig. 5.14a1). It appears that the
form of the mode still accurately follows the SSH prediction (5.21) and is immune to
the slight change of the frequency, which is reported in Fig. 5.14a2. We also show the
prediction of the edge mode form obtained by using the two-dimensional numerical
simulation of the Helmholtz equation. Similarly, in the regime where the second
bifurcation occurs, two additional peaks emerge (U = 300, Fig. 5.14b1), and the modes
preserve their form following almost exactly the form of the edge mode (red squares)
(Fig. 5.14a2).
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Fig. 5.14 (a1) The spectrum for U = 50. The main resonant peak of the edge mode is
shown (blue triangle), as well as corresponding secondary peaks on the right (yellow
triangle) and left (orange triangle). (a2) The modes for the main peak (blue symbols)
and secondary peaks (yellow and orange symbols). The prediction of the 1D SSH model
(red squares) and 2D Helmholtz equation (plain black curves). (b1) The spectrum
for U = 300. The main resonant peak (yellow triangle), corresponding secondary
peaks (purple and blue triangle), and two additional peaks (green and orange triangles,
respectively). (b2) The form of the edge mode for the main peak (yellow symbols),
secondary peaks (purple and blue symbols), and two additional peaks (green and
orange symbols).
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5.5 Conclusions

The main objective of the presented work is to experimentally investigate the topologi-
cally protected edge states and band gaps in a water waveguide with periodic geometry.
One of the representations of the topological states provided by the Su-Schrieffer-Heeger
model is applied to describe the observed phenomena. A waveguide with step periodic
width (s = 1/3) and corresponding rectangular tank with constant width (s = 1/2)
are manufactured and examined using confocal displacement sensors allowing the
measurement of water free surface elevation. Two-dimensional numerical simulations
are carried out in order to verify the SSH model and experimental data. The obtained
results show that this very simple setup exhibits all the properties of the SSH model
with an excellent agreement to the water wave systems.

Moreover, the system is also studied in the nonlinear regime, where two bifurcation
regimes are found. The first bifurcation corresponds to the emergence of two secondary
resonances around the primary edge wave resonance for Ursell number U > 25. The
second bifurcation, with the appearance of two additional peaks around the main edge
mode resonance, is recognized for U > 100. It is shown that the edge mode is immune
to these subresonances and preserves its form even for a high degree of nonlinearity.
This phenomenon, intuitively interpreted as energy transfer between the fundamental
frequency and harmonics, needs further theoretical study to be fully understood.



Chapter 6

Conclusions and perspectives

6.1 Summary and conclusions

In this thesis, we have presented various experimental aspects of wave propagation
on the water surface. We have obtained the control of the water wave propagation
through specially designed structures. We have shown several types of these structures
that have been studied both theoretically and experimentally. First, we presented
the way of controlling the wave by the array of vertical plates changing the shape
of the bathymetry. Next, our attention focused on a similar stratified structure, but
it was submerged between two layers of water this time. Both systems mentioned
above had a characteristic length, i.e., spacing between the plates, much lower than
the wavelength. Ultimately, we evaluated the unusual properties of the channel with
periodically varying width and constant depth. In contrast to the previous ones, this
setup had a characteristic length (length of the cell) comparable to the size of the
wavelength.

Metabathymetry

In the first experimental part of this thesis (Chapter 3), we have shown the array of
plates connected to the bottom of the tank to influence the water wave propagation.
The wave, ”feeling” different water depths in different directions, was able to change
its behavior to our wish.

We have chosen to study this kind of structure in the context of the cavity eigenmodes
and eigenfrequencies. The specially designed metamaterial bathymetry allowed to
preserve the regular, rectangular cavity properties in a deformed geometry. We have



106 Conclusions and perspectives

maintained both the eigenmodes’ shape and the eigenfrequencies’ values even for a
high degree of deformation.

We have shown the advantages of the homogenization of the three-dimensional
water wave problem over the two-dimensional approach. The presented experiments
have shown that the homogenization of the three-dimensional water wave problem
combined with coordinate transformation theory led to the successful design of the
metabathymetry. The robustness of the anisotropic medium has been shown using
space-time resolved measurements of the entire water wavefield. The applications of
such a structure include shore protection, or creating a wave-free region by deviating
the wave.

Submerged metamaterials

In Chapter 4, we have shown the ability of the submerged array of vertical plates,
surrounded by two layers of liquid to provide an anisotropic medium for water wave
propagation. We have established the dispersion relation for such a medium by using
the homogenized model, a practical tool for designing the metamaterial structure. It
could accurately predict the frequency band for which maximal anisotropy occurred.

This relation has been verified using Bloch-Floquet formalism and has shown a
good agreement when foreseeing where the maximal anisotropy takes place. However,
the obtained dispersion relation overestimates the degree of anisotropy.

We have performed an experimental study of such submerged structures for several
different configurations. The measured wavefields have proved that an anisotropic
behavior indeed occurs and obeys the developed theoretical model.

SSH model for water waves

The primary purpose of Chapter 5 was to investigate topologically protected edge
states and bandgap in a waveguide with periodically varying width. One of the
topological state representations provided by the Su-Schrieffer-Heeger model has been
employed to describe the behavior of the water wave in such a medium. A rectangular
waveguide with constant width and a tank with periodically varying width have been
manufactured and inspected with a confocal displacement sensor by measuring the
surface deformation.

The obtained experimental data has been compared with the results of the 2D
numerical simulations and the prediction given by the SSH model. The results have
shown that this uncomplicated setup presents all the properties of the SSH model with
excellent agreement.
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In addition, the system has been examined in a nonlinear regime where we have
found two bifurcation regimes. The first bifurcation corresponds to the appearance
of two secondary resonances around the original edge wave resonance. The second
bifurcation, where two additional peaks appear, has also been recognized. We have
seen that the shape of the edge mode is unaffected by these subresonances and retains
its shape despite the nonlinearity of the wave.

6.2 Future works

The presented research opens a wide range of possibilities for the continuation of the
development of metamaterials for water surface waves.

When it comes to the second project concerning submerged metamaterials (Chapter
4), higher-order homogenization can be done to improve the homogenized model and
explain the differences between the model and the system’s actual behavior. Since
it has been shown that high anisotropy can be expected for a thin fluid layer, it
can be considered to replace the layer with effective boundary conditions that would
compensate for the discrepancies between the presented homogenization model and
the actual metamaterial structure.

Detailed attention should be paid to describe theoretically the bifurcations found
for a system described in the third project (Chapter 5), where the waveguide with
periodically varying width is studied. More numerical and theoretical work is needed
to fully understand and explain this phenomenon in a nonlinear regime.





Appendix A

Modal method for the unit cell of
the metabathymetry

In the bulk, the single step satisfies the problem

△ϕ = 0, (A.1)

where the boundary conditions are given by

∂ϕ

∂n
= 0 on Γ, (A.1a)

∂ϕ

∂z
= ω2

g
ϕ at z = 0. (A.1b)

Fig. A.1 (a) Step scheme with regions. (b) Step scheme with reflected and transmitted
waves in corresponding regions.
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We can write the solution of the problem (A.1) in each region α, β, and γ as

ϕα(x, z) =
∑

n

fα
n (x)φα

n(z),

ϕβ(x, z) =
∑

n

fβ
n (x)φβ

n(z), (A.2)

ϕγ(x, z) =
∑

n

fγ
n (x)φγ

n(z),

where fn is a function along x direction and φn is a transverse function that forms a
complete set of orthonormal basis

0∫
−h

φnφmdz = δnm. (A.3)

In order to derive the tranverse functions φn for all the regions α, β, and γ, we use the
boundary conditions (A.1a) and (A.1b), which yields

∂φn

∂n

∣∣∣∣∣
Γ

= 0, ∂φn

∂z

∣∣∣∣∣
z=0

= ω2

g
φn, (A.4)

and for every region separately it becomes

∂φα
n

∂z

∣∣∣∣∣
z=h+

= 0, ∂φα
n

∂z

∣∣∣∣∣
z=0

= ω2

g
φα

n,

∂φβ
n

∂z

∣∣∣∣∣
z=h−

= 0, ∂φβ
n

∂z

∣∣∣∣∣
z=0

= ω2

g
φβ

n, (A.5)

∂φγ
n

∂z

∣∣∣∣∣
z=h+

= 0, ∂φγ
n

∂z

∣∣∣∣∣
z=0

= ω2

g
φγ

n.

The transverse functions satisfying the conditions (A.5) are

φα
n = Nα

n cosh(Kα
n (z + h+)),

φβ
n = Nβ

n cosh(Kβ
n (z + h−)), (A.6)

φγ
n = Nγ

n cosh(Kγ
n(z + h+)).

The above normalized transverse functions adapted to the boundary conditions of the
Neumann type at z = h− or z = h+, and of the Robin type at z = 0 satisfy (A.5) with
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the dispersion relation of the water waves

ω2 = gKn tanh(Knh). (A.7)

In order to calculate the normalization factor Nn we use (A.3) for n = m

0∫
−h

φ2
ndz = 1, (A.8)

and substitute the transverse functions (A.6). It yields

0∫
−h

N2
n cosh2(Kn(z + h))dz = 1. (A.9)

Solving (A.9) we obtain

Nn =
√

4Kn

2Knh+ sinh(2Knh) =
[
h

2 (sinhc(2Knh) + 1)
]− 1

2

. (A.10)

Now we need to find fn. To do it we use (A.1)

△
(∑

n

fn(x)φn(x)
)

= 0. (A.11)

After derivation

∂2fn

∂x2 φn + fn
∂2φn

∂z2 = 0. (A.12)

Taking into account (A.6) we know that

∂2φn

∂z2 = K2
nφn, (A.13)

so (A.12) becomes

∂2fn

∂x2 +K2
nfn = 0, (A.14)

whose solution is

fn = AneiKnx +Bne−iKnx. (A.15)
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Having derived the functions φn and fn we are able to construct the form of the solution
based on the assumption of reflected and transmitted waves (Fig. A.1b)

ϕα(x, z) = eiKα
0 xφα

0 (z) +
∑

n

Rne−iKα
n xφα

n(z),

ϕβ(x, z) =
∑

n

AneiKβ
nxφβ

n(z) +
∑

n

Bne−iKβ
n(x−ℓ)φβ

n(z), (A.16)

ϕγ(x, z) =
∑

n

TneiKγ
n(x−ℓ)φγ

n(z).

In order to calculate the unknowns Rn, An, Bn, and Tn we impose matching
boundary conditions at the limits of the regions α, β, and γ where we want continuity
of ϕ and ∂ϕ/∂x, i.e. at x = 0

ϕα(0, z) = ϕβ(0, z), (A.17a)
∂ϕα

∂x

∣∣∣∣∣
x=0

= ∂ϕβ

∂x

∣∣∣∣∣
x=0

, (A.17b)

and at x = ℓ

ϕβ(ℓ, z) = ϕγ(ℓ, z), (A.18a)
∂ϕβ

∂x

∣∣∣∣∣
x=ℓ

= ∂ϕγ

∂x

∣∣∣∣∣
x=ℓ

. (A.18b)

Projecting (A.17a) on z ∈ (−h+, 0) at x = 0 we obtain (in region β)

0∫
−h−

ϕαφα
mdz =

0∫
−h−

ϕβφβ
mdz. (A.19)

Substituting (A.16)

0∫
−h−

φα
0φ

β
mdz +

∑
n

Rn

0∫
−h−

φα
nφ

β
mdz =

∑
n

An

0∫
−h−

φβ
nφ

β
mdz +

∑
n

BneiKβ
nℓ

0∫
−h−

φβ
nφ

β
mdz.

(A.20)
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This approach is performed similarly to match (A.17b), (A.18a), (A.18b). Projecting
(A.17b) on z ∈ (−h+, 0) at x = 0 we obtain (in region α)

0∫
−h+

∂ϕα

∂x
φα

mdz =
0∫

−h−

∂ϕβ

∂x
φα

mdz. (A.21)

Substituting (A.16)

Kα
0

0∫
−h−

φα
0φ

α
mdz −

∑
n

Kα
nRn

0∫
−h−

φα
nφ

α
mdz = (A.22)

=
∑

n

Kβ
nAn

0∫
−h−

φβ
nφ

α
mdz +

∑
n

Kβ
nBneiKβ

nℓ

0∫
−h−

φβ
nφ

α
mdz.

Projecting (A.18a) on z ∈ (−h+, 0) at x = ℓ we obtain (in region β)

0∫
−h−

ϕβφβ
mdz =

0∫
−h−

ϕγφβ
mdz. (A.23)

Substituting (A.16)

∑
n

AneiKβ
nℓ

0∫
−h−

φβ
nφ

β
mdz +

∑
n

Bn

0∫
−h−

φβ
nφ

β
mdz =

∑
n

Tn

0∫
−h−

φγ
nφ

β
mdz. (A.24)

Projecting (A.18b) on z ∈ (−h+, 0) at x = ℓ we obtain (in region γ)

0∫
−h+

∂ϕβ

∂x
φγ

mdz =
0∫

−h−

∂ϕγ

∂x
φγ

mdz. (A.25)

Substituting (A.16)

∑
n

Kβ
nAneiKβ

nℓ

0∫
−h−

φβ
nφ

γ
mdz −

∑
n

Kβ
nBn

0∫
−h−

φβ
nφ

γ
mdz =

∑
n

Kγ
nTn

0∫
−h−

φγ
nφ

γ
mdz. (A.26)

Knowing that Kα
n = Kγ

n , therefore φα
n = φγ

n, remembering that (A.3) and defining

Cnm ≜
0∫

−h−

φα
nφ

β
mdz, (A.27)
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we can write the matching conditions (A.20), (A.22), (A.24), and (A.26) as

C0m +
∑

n

RnCnm =
∑
N

Anδnm +
∑

n

BneiKβ
nℓδnm,

Kα
0 δ0m −

∑
n

Kα
nRnδnm =

∑
n

Kβ
nAnCmn −

∑
n

Kα
nBnCmn,∑

n

AneiKβ
nℓδnm +

∑
n

Bnδnm =
∑

n

TnCnm,∑
Kα

nAneiKβ
nℓCmn −

∑
n

Kβ
nCmn =

∑
n

Kα
nTnδnm.

or in a matrix form
−C I eiKβ

nℓI 0
Kα

n I Kβ
nCT −Kβ

neiKβ
nℓCT 0

0 eiKβ
nℓI I −C

0 Kβ
neiKβ

nℓCT −Kβ
nCT −Kα

n I




Rn

An

Bn

Tn

 =


C0m

Kα
0 δ0m

0
0

 (A.28)

The sought coefficients Rn, An, Bn, and Tn can be now calculated and inserted into
(A.16) to obtain the potential ϕ necessary to determine the parameter hx (3.15).

Fig. A.2 (a) Example of the solution to (A.28) for the velocity potential ϕ (A.16). (b)
Correspoding horizontal velocity ∂ϕ/∂x, whose integral provides hx (3.15)
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Institut Langevin, 1 rue Jussieu, 75005 Paris, France

2Institut Langevin, ESPCI, 1 rue Jussieu, 75005 Paris, France
3Laboratoire d’Acoustique de l’Université du Maine,
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We demonstrate experimentally and numerically that metamaterials can be used to control water
wave propagation and resonance properties of a closed cavity, including cloaking of its eigenmodes.
The anisotropic medium, designed using coordinate transformation theory and the homogenization
of a fully three-dimensional linear water wave problem, consists of bathymetry with a layered struc-
ture at a subwavelength scale. Three cavities with bending angles of 15◦, 30◦, and 45◦ were tested
and compared to a reference case with flat bathymetry. Fourier Transform Profilometry, as well as
confocal displacement sensors, are used for space-time resolved measurements of a water surface de-
formation. Experimental data show the capability of water-wave metamaterials to provide a robust
anisotropic medium for wave propagation.

The concept of designing materials that exhibit pecu-
liar behavior, which cannot be commonly found in na-
ture, has always been attracting the attention of the
scientific and engineering community. Metamaterials,
originally used in electromagnetism, during the last two
decades [1, 2] have been of a substantial interest in con-
trolling acoustic [3–7], elastic [8–11], and seismic waves
[12–16]. They have also been employed to control wa-
ter wave propagation, for which some of the applica-

FIG. 1: Example of an eigenmode in a regular cavity
(left) and in an irregular, shifted, cavity (right) without
cloaking for flat bathymetry and with cloaking thanks to a
metabathymetry.

tions include cloaking [17, 18], focusing [19], or guid-
ing the energy flow [20]. As a result, metamaterials can
be beneficial for coastal engineering when it comes to
wave-free zones, shore protection, energy harvesting, or
designing wake-less watercraft. Less attention has been
devoted to sloshing dynamics, where resonance proper-
ties of a cavity strongly depend on its geometry yield-
ing phenomena such as high spots [21, 22]. Mathemati-
cal approaches to metamaterial design vary significantly
throughout the disciplines and the category of waves it
serves. In this paper we benefit from the coordinate
transformation theory [23, 24] and the homogenization
of fully three-dimensional water wave problem [25, 26].
First, we take into account the coordinate transformation
theory (CTT), which is of great use with regard to water
waves. However, it has not been used yet in the context
of cavity resonance and eigenmodes cloaking (Fig. 1),
which we study in this paper experimentally (Fig. 3).
Although the dispersion, being an inherent property of
water waves, makes the CTT unavailable, we stay close
to a shallow water regime and consider our system dis-
persionless. This fact allows to use of the 2D shallow
water equation (2D SWE).

We start with the two-dimensional shallow-water equa-
tion (2D SWE) in a virtual space (X,Y )

∇XY · (h0∇XY η) +
ω2

g
η = 0,

∇XY η · n = 0 on ∂Ω, (1)

where h0 is the reference water depth, η stands for the
vertical displacement of a free surface, ω is the angular
frequency, g denotes the gravitational acceleration, ∂Ω
is the boundary, and n identifies the vector normal to it
and ∇XY = (∂/∂X, ∂/∂Y )T . We assume shallow wa-
ter limit (kh0 � 1), where the wavenumber k is given
through the dispersion relation ω2 = gh0k

2. Now, ap-
plying geometrical transformation from virtual (X,Y ) to
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FIG. 2: The cavity in virtual space (X,Y ) (a) and in the
real space (x, y) with bending angle ϕ (b). In (b) we show
the top view of the metabathymetry realizing the anisotropy,
an array of layers inclined by an angle α and in (c) the side
view.

real (x, y) space, e.g., by using the variational formula-
tion of the problem, we obtain

∇ ·
(
Jh0J

T

detJ
∇η
)

+
ω2

g detJ
η = 0,

n ·
(
Jh0J

T

detJ
∇η
)

= 0 on ∂Ω, (2)

where J stands for the Jacobian matrix of the tranfor-
mation, and now ∇ = (∂/∂x, ∂/∂y)T . The 2D SWE
preserves its form, i.e., is of Helmholtz type. Due to the
fact that g is not tunable in conventional conditions, we
need a volume preserving (nonmagnetic) transformation
(detJ = 1). We choose a simple shear deformation of the
cavity, which leads to the change of coordinates x = X,
y = tanϕX + Y , and whose Jacobian matrix

J =

[
1 0

tanϕ 1

]
. (3)

By changing the coordinates (Fig. 2), the anisotropy is
introduced (2) and has to be realized in practice. To do
so, we insert a particularly oriented anisotropic medium
(with an angle α) with different effective water depths in
x and y directions, i.e., hx and hy. We obtain

∇·
(
RαhR

T
α∇η

)
+
ω2

g
η = 0, where h =

[
hx 0
0 hy

]
, (4)

and Rα is the conventional rotation matrix with a rota-
tion through an angle α with respect to x axis (Fig. 2(b)).
Now, by identifying (2) and (4), and having in mind the
geometry of the cavity (3), we obtain explicit formulae
for the water depths hx, hy and the rotation angle α as
the functions of bending angle ϕ and the reference wa-
ter depth h0. Hence, the depts hx and hy are the roots
of h2 − (2 + tan2 ϕ)h0h + h20 = 0, where hx > hy and
tan 2α = −2/ tanϕ (note a misprint in [20]).

It has been shown that the effective anisotropy, being
the result of the presence of the metabathymetry, cannot

be inferred from the shallow water equation even in the
shallow water regime, as 3D effects affect the flow over
a rapidly varying bathymetry due to the strong effect of
the evanescent field [25–27]. Thus, the modeling, which
predicts that the effective water depth tensor is related
to the arithmetic and geometric averages of the actual
water depths

hx = 〈h−1〉−1, hy = 〈h〉, (5)

underestimates the degree of the anisotropy due to the
metabathymetry (〈h〉 = θh− + (1− θ)h+, where θ is the
filling fraction of the layers, Fig. 2). To properly model
the aforementioned effects, the homogenization of the full
3D linear water wave problem must be used. Considering
harmonic regime with time dependence eiωt, assuming
that the fluid is inviscid and incompressible, and know-
ing that the flow is irrotational, the velocity potential
φ(x`, y`, z`) satisfies

4φ = 0,

∂φ

∂zl
=
ω2

g
φ at zl = 0,

n · ∇φ = 0 on Γ, (6)

where Γ is the nonflat bottom, n is the vector normal
to it, and zl = 0 corresponds to the unperturbed free
surface.

As shown in [25, 27], the effective water depths hx and
hy derived from a fully three dimensional problem (6) are
of the form

hx = `

∫

Y

∂Φ

∂xr
dY, hy = 〈h〉, (7)

where Φ stands for the potential satisfied in the unit cell
Y , ` is the periodicity of the metabathymetry, Y denotes
a unit cell of the metabathymetry, and xr = xl/` [25].
Comparing (5) to (7), it comes into view that only hx
is affected by 3D near field effects. It has been shown
that hx in (7) might be much smaller than 〈h−1〉−1 pre-
dicted by 2D approach. As a consequence, the resulting

FIG. 3: (a) Metamaterial cavity used in the experiments.
The view from above with a coordinate system in real space
(x, y, z). (b) Section view with a local coordinate system used
for metabathymetry design (x`, y`, z`).
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FIG. 4: Experimental FTP measurements of the free surface
elevation of the fifth eigenmode η̃(x, y, ω) for bending angles
ϕ = 15◦, 30◦ and 45◦ for the flat bathymetry and for the
metabathymetry. The reference cavity for ϕ = 0◦ is shown
on the left panel.

anisotropy can be much larger than the one predicted by
the classical homogenization of layered media. Now, we
use the homogenization theory (7) that allows to calcu-
late real water depths h± = [h+ h−]T . However, this
approach needs already preset values of the real geome-
try. That is why we use optimization routine for obtain-
ing h±: minh±∈R2

∣∣∣∣f(`, θ, h+, h−)− [hx hy]T
∣∣∣∣, subject

to h+−h− ≥ 0, where f(`, θ, h+, h−) is a function whose
output are the values of hx and hy [25]. The periodicity
` and the filling fraction θ are constant.

Three metamaterial cavities with bending angles ϕ1 =
15◦, ϕ2 = 30◦ and ϕ3 = 45◦ were designed and manufac-
tured using a 3D printer. Three reference cavities with
flat bathymetry and of the same deviation angles ϕ1, ϕ2

and ϕ3 were also built. The dimensions of cavities were
constant and set as Lx = 200 mm and Ly = 300 mm,
which allowed to preserve the same volume throughout
the set of cavities. The reference water depth was cho-
sen as h0 = 10 mm as a trade-off between staying close to
shallow-water regime and undesirable attenuation caused
by a bottom friction for small water depths. For each of
three systems we calculate the parameters hx, hy, h+, h−

and α based on the routine presented before and are sum-
marised in Table I. Considering wavemaker constraints
(h− ≥ 3 mm) and rigidity limitations of the 3D printed
structure (θ` ≥ 1 mm) we chose θ = 0.2 and ` = 5 mm.

The wave generator (point source) excites a system
with a chirp signal whose frequency spectrum ranges from
0.3 Hz to 1.5 Hz. This range allows to recover the first
five eigenmodes of the cavity. The partially immerged
point source, creating a circular, linear wave, is placed
in one of the corners of the cavity. The corner is chosen
based on the shape of the eigenmodes so that it can be

FIG. 5: First 5 eigenmodes for ϕ = 45◦ – Wavefields
η̃(x, y, ω) from FTP measurements and from direct numer-
ics, for the metabathymetry and for the flat bottom.

excited in the cavity. Occasionally the position of the
source has to be changed since placing it in the node of
the eigenmode would make it unfeasible to recover. The
region where the wavemaker is placed is sufficiently cut
out from the measurements so that the near-field effects
are negligible.

In order to quantify the wavefield, we use the Fourier
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Transform Profilometry (FTP) technique [28] as well
as confocal displacement sensors (2 lasers Keyence CL-
P070). FTP is a technique that uses a fringe pattern
projection on a measured surface. In our case, the water
is painted with titanium dioxide (TiO2) so that its sur-
face becomes diffusive and ready for a fringe projection,
whereas the change of physical properties of the painted
water, including viscosity, is insignificant [29]. A high-
resolution video projector EPSON EH-TW9200W is used
to project the fringe pattern, and a high-speed camera
Photron FASTCAM Mini WX100 records the deforma-
tion of the surface with an accuracy of more than 0.1 mm.
Confocal displacement sensors allow us to measure the
amplitude of the wave in the maxima of eigenmodes with
much higher accuracy than FTP and with pure, transpar-
ent water confirming the results of the FTP technique.
Using these methods, we obtain the space-time resolved
measurements η(x, y, t) that are later transformed into
the frequency domain, resulting in the complex wavefield
η̃(x, y, ω), to extract eigenfrequencies and eigenmodes.
The selection of eigenfrequencies from the experiments is
done by finding the local maxima of |η̃(x, y, ω)| averaged
in space. Then, the eigenmodes are chosen as the real
part of η̃(x, y, ω) at the given eigenfrequency and some
of them are presented in Fig. 4 and Fig. 5.

The real part of the wavefield for the fifth eigenmode,
i.e., the one whose frequency is the highest in the set
of the measurements, is presented in Fig. 4 for rectan-
gular reference cavity and the cavities with the bending
angles ϕ of 0◦, 15◦, 30◦ and 45◦. In the reference cav-
ities without the metabathymetry the effect of the dif-
ference in geometry is clearly visible. The eigenmodes
change their shape significantly with respect to the an-
gle ϕ. The change in the position of nodes and max-
ima is easily noticeable. Introducing metabathymetry
has an anticipated consequence. The eigenmode pattern
remains the same throughout the measurements, even for
the highest angle ϕ = 45◦. It is worth mentioning that
in this case, i.e., the mode with the highest frequency
and the highest bending angle, the pattern remains the
same, even though the shallow water approximation here
is questionable (h+ = 31.92 mm) and the friction of the
metamaterial structure becomes more and more signifi-
cant (h− = 3.23 mm). This manifests a significant im-
provement and the benefit of using the homogenization
of a fully three-dimensional linear water wave problem in

TABLE I: Cavities dimensions and design parameters.

ϕ [◦] 15 30 45
α [◦] -41.18 -36.95 -31.72

hx [mm] 7.66 5.66 3.82
hy [mm] 13.06 17.68 26.18
h+ [mm] 14.56 20.83 31.92
h− [mm] 7.07 5.07 3.23

0 10 20 30 40 50 60

0.5

1

1.5

FIG. 6: Experimental (symbols) and numerical (plain lines)
values of the eigenfrequencies as a function of the bending
angle ϕ. Results are shown for the anisotropic bathymetry
(purple) and for the flat bathymetry (blue).

comparison to previous works where 2D homogenization
was used [20].

All the five eigenmodes recovered in this experiment
for the highest angle ϕ = 45◦ are reported in Fig. 5.
The higher modes were difficult to achieve for several
reasons. First of all, as frequency increases, the eigen-
values become closer to each other, including degenerate
cases, and are problematic if not impossible to distin-
guish experimentally. Moreover, when it comes to higher
frequencies, dispersion and dissipation play a significant
role in the water wave experiments, questioning the shal-
lowness of the system and measurement techniques ca-
pacities, as the amplitude of the wave becomes extremely
small. Please note that increasing the amplitude and the
frequency of a water wave in our system would result in a
nonlinear problem, which we do not study in this paper.

Comparing the experimental results with the numer-
ical prediction obtained by solving (4) using the Fi-
nite Element Method, we observe an excellent agree-
ment of the eigenmodes. In order to quantitatively
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describe the difference between them, we introduce
a pattern error defined as εP ≡

∫
A
|ηS(x, y, ω) −

η̂(x, y, ω)|2 dA/
∫
A
|ηS(x, y, ω)|2 dA, where ηS is the nor-

malized wavefield predicted numerically, η̂ denotes the
normalized wavefield measured in the experiments, and
A is the area of the cavity. The normalization is accom-
plished by rescaling the wavefield amplitude so that it
satisfies the following condition

∫
A
|η(x, y, ω)|2 dA = 1.

The error increases both with the increasing angle ϕ and
the frequency ω. However, in all of the cases, it does
not exceed εP = 5.2%. The summary of all the exper-
imental values of the eigenfrequencies compared to the
numerical predictions is shown in Fig. 6. The hori-
zontal axis represents the angle of the cavity deforma-
tion ϕ and the vertical axis - the frequency f . Consec-
utive lines correspond to the eigenvalues of the cavity
with a bending angle ϕ. It can be seen that the use of
the metabathymetry allows to have a constant value of
eigenfrequencies (pink dots), hence meeting our goal and
preserving the resonance properties of the deformed cav-
ities as predicted with coordinate transformation theory.
The efficiency of the metabathymetry is quantified by
the eigenfrequency error defined as εF = |fS − f |/|fS |,
where fS is the predicted eigenfrequency, and f stands
for the eigenfrequency measured using confocal displace-
ment sensors. This error is always smaller than the pat-
tern error εP , and its value varies from 1.4% to 3.1%.
The metabathymetry allows to recover the properties of
a regular cavity in a shifted geometry. The example of
one of the eigenmodes is reported in Fig. 4 for differ-
ent angles ϕ. We are also able to maintain the same set
of eigenfrequencies for the cavities with changed geom-
etry (Fig. 6). The presented experiments show the ro-
bustness of the homogenization of the three-dimensional
water wave problem and the coordinate transformation
theory in designing metamaterials for water waves. The
designed metabathymetry can be used for the control of
water cavity resonance and the propagation of the wave
inside of it. The efficiency of the anisotropic medium
is shown using space-time resolved measurements of the
full water wavefield. Very good agreement with numeri-
cal prediction is achieved.
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ABSTRACT 
 

This thesis concerns the study of metamaterials for water surface waves. The study is based on a laboratory experiment 
which makes it possible to measure the wave field precisely. In the first part, we demonstrate experimentally  
and numerically that metamaterials can be used to control the wave propagation and resonance properties of a closed 
cavity, including the cloaking of its eigenmodes. The anisotropic medium is designed using coordinate transformation 
theory and the homogenization of a three-dimensional linear water wave problem. This medium consists of a set  
of vertical plates whose spacing is much lower than the wavelength. This structure imposes an anisotropic bathymetry 
which influences the propagation of the waves differently according to their direction of propagation. Three different 
cavities manufactured by a 3D printer are tested and compared to the reference case with bathymetry without structuring. 
Fourier transform profilometry, as well as confocal displacement sensors, are used for measurements of water surface 
deformation resolved in time and space. Experimental data shows a remarkable ability of the metamaterial to influence 
the anisotropic propagation of waves on the water surface. The second part concerns the metamaterials submerged 
between two water layers for which a homogenized model is proposed, and the numerical solution by the modal method 
is provided. The anisotropic properties of such a structure are investigated experimentally using the same technique.  
An analysis based on the Bloch-Floquet formalism is performed to verify the dispersion relation of this medium predicted 
by the homogenization method. The main objective of the third part of this thesis is to experimentally study topologically 
protected edge states in a waveguide with periodic geometry in both linear and nonlinear regimes. One of the 
representations of topological states, provided by the Su-Schrieffer-Heeger (SSH) model, is applied to describe  
the observed phenomena. A waveguide with periodic width is compared to the regular case of a rectangular reservoir 
with constant width. Confocal displacement sensors are used to measure the wave field very precisely. The experimental 
data is compared with the results of the 2D numerical simulations and the prediction of the SSH model. The results 
obtained show that this very simple configuration presents all the properties of the SSH model with excellent agreement. 
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RÉSUMÉ 
 

La thèse concerne l'étude des métamatériaux dans le contexte des ondes à la surface de l'eau. Cette étude s'appuie sur 
une expérience en laboratoire qui permet de mesurer précisément le champ des ondes. Dans la première partie, nous 
démontrons expérimentalement et numériquement que les métamatériaux peuvent être utilisés pour contrôler  
la propagation des ondes et les propriétés de résonance d'une cavité fermée, y compris le « cloaking » de ses modes 
propres. Le milieu anisotrope est conçu à partir de la théorie de la transformation des coordonnées  
et de l'homogénéisation d'un problème d’onde tridimensionnel. Ce milieu est constitué par un ensemble de plaques 
verticales dont l’espacement est très inférieur à la longueur d’onde. Cette structure impose une bathymétrie anisotrope 
qui influe sur la propagation des ondes différemment selon leur direction de propagation par rapport à ce milieu structuré.  
Trois cavités différentes, fabriquées par une imprimante 3D, sont testées et comparées au cas de référence avec 
bathymétrie sans structuration. La profilométrie par transformée de Fourier, ainsi que des capteurs de déplacement 
confocaux, sont utilisés pour les mesures de la déformation de la surface de l'eau résolues en temps et en espace.  
Les données expérimentales montrent une capacité remarquable du métamatériau à influer sur la propagation 
anisotrope des ondes à la surface de l'eau. La deuxième partie concerne les métamatériaux immergés entre deux eaux 
pour lesquels un modèle homogénéisé est proposé et la solution numérique par méthode modale est fournie.  
Les propriétés anisotropes d'une telle structure sont étudiées expérimentalement en utilisant la même technique.  
Une analyse basée sur le formalisme de Bloch-Floquet est effectuée pour vérifier la relation de dispersion de ce milieu 
prédite par la méthode d'homogénéisation. L'objectif principal de la troisième partie de cette thèse est d'étudier 
expérimentalement les états de bord topologiquement protégés dans un guide d'ondes à géométrie périodique en régime 
linéaire et non-linéaire. Une des représentations des états topologiques, fournie par le modèle Su-Schrieffer-Heeger 
(SSH), est appliquée pour décrire les phénomènes observés. Un guide d'ondes avec une largeur périodique est comparé 
au cas régulier d’un réservoir rectangulaire avec une largeur constante.  Des capteurs de déplacement confocaux sont 
utilisés pour mesurer le champ d'onde très précisément. Les données expérimentales sont comparées aux résultats  
des simulations numériques 2D et à la prédiction du modèle SSH. Les résultats obtenus montrent que cette configuration 
très simple présente toutes les propriétés du modèle SSH avec un excellent accord. 
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