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Abstract

In the cytoplasm of a biological cell there are a myriad of di�erent proteins, lipids and
enzymes, each of them performing di�erent tasks. Therefore, the spatial organisation
of these chemical species is crucial for the functioning of a cell. Order can emerge
in many ways but, in living beings, it often appears as a consequence of free-energy
expenditure. Hence, in this thesis, we study how order and organisation can emerge
from the interplay between physical interactions and free-energy consumption, both
analysing particular examples that arise in cell biology and constructing a more abstract
framework for reaction-di�usion systems in the presence of interactions.

In the �rst part of this thesis, we explore, from a theoretical perspective, two pro-
cesses where the intracellular medium is patterned and organised, whose common fea-
ture is the fact that they both stem from the collective behaviour of a large number of
molecules. First, we develop a model for protein aggregation which studies the e�ect of
intracellular obstacles on the coagulation kinetics. Our predictions are then successfully
compared with experimental data.

The other example refers to the compaction and location of the bacterial chromo-
some. We suggest that the chromosome segregates from the rest of the cytoplasm, be-
cause of steric interactions between DNA and the intracellular crowders, by means of a
mechanism reminiscent of liquid-liquid phase separation. Also, our study indicates that
spatial localisation within the cell is dictated by non-equilibrium transcription of mR-
NAs (which are part of the crowding e�ect). Our model successfully reproduces much
of the phenomenology observed in Escherichia coli cells, for example, the positioning of
the chromosome at di�erent stages of the cell cycle.

Building on these examples, in the second part of the thesis, we construct a thermo-
dynamically consistent framework to mathematically describe chemical reaction net-
works in non-ideal solutions. This framework allows us to generalise the results from
the classical theory of ideal networks, and aids in elucidating the connection between
non-equilibrium chemical reactions and phase separation for a large class of networks,
known as complex-balanced networks. Given that complex balance can be fully deter-
mined from the topology of the network, we analyse how this topological property of the
network can constrain the dynamics of the solution, and what behaviour we can expect
when complex balance is broken.

We conclude by discussing how the two approaches used here are related and the
contribution each of them can have for the advancement of biophysics.
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Résumé

La cellule est l’élément de base composant tous les êtres vivants sur Terre. À l’intérieur
de chaque cellule, dans le cytoplasme, il y a une myriade de constituants tels que des
protéines, des lipides et des enzymes. Chacune de ces molécules joue un rôle bien spé-
ci�que au sein de la cellule, ce qui requiert un contrôle précis de leur position spatiale.
L’organisation intracellulaire est donc essentielle.

Pour parvenir à cette organisation spatiale détaillée, les êtres vivants ont recours à
stratégies diverses. D’un côté, la mise à pro�t des interactions entre les constituants
de la cellule peut créer de l’ordre sans nécessiter de dépense énergétique, mais cela ne
peut créer qu’une organisation statique. D’un autre côté, il existe d’autres stratégies qui
sont plus dynamiques mais qui nécessitent une dépense d’énergie (techniquement, une
dépense d’énergie libre) qui peut, parfois, être très importante.

L’une des caractéristiques des organismes vivants est la dépense continue d’énergie.
Par conséquence, pour comprendre comment l’auto-organisation des organismes vi-
vants émerge, il est nécessaire de comprendre comment cette dépense énergétiquemod-
i�e les lois physiques que nous connaissons pour les systèmes à l’équilibre thermody-
namique.

Il y a donc deux grands axes de recherche dans cette thèse, chacun d’entre eux étant
représenté dans une des parties de cette thèse. Dans la première partie, nous proposons
une explication théorique pour deux processus où le milieu intracellulaire est organisé
spatialement sous forme de motifs. Ces processus découlent tous deux du comporte-
ment collectif des molécules. Dans la deuxième partie, nous construisons un cadre ther-
modynamique pour décrire les réseaux de réactions chimiques dans des solutions non
idéales, c’est-à-dire des solutions avec des interactions entre solutés. Cette approche
nous permet d’obtenir des résultats très généraux pour les modèles de solutions non
idéales avec des réactions chimiques hors équilibre thermodynamique. Cette classe de
modèles peut décrire une grande variété de phénomènes dans les cellules biologiques.

Première partie

Cette partie est consacrée à l’analyse théorique des deux processus au cours desquels le
milieu intracellulaire s’organise et des motifs spatiaux peuvent apparaître. Dans un pre-
mier temps, nous développons unmodèle qui a pour but d’étudier l’impact de l’encombrement
stérique intracellulaire sur la cinétique d’agrégation des protéines (Chapitre 1). Dans un
deuxième temps (Chapitre 2), nous étudions la compaction et la localisation spatiale du
chromosome de la bactérie Escherichia coli (E. coli).
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Encombrement stérique et agrégation de protéines

Dans l’environnement intracellulaire, le cytosquelette et d’autres grands obstacles en-
travent considérablement la di�usion des particules. Cependant, la manière dont ces
obstacles a�ectent les particules dépend de la taille de chacune d’entre elles. Certains
obstacles, comme le cytosquelette, n’a�ectent que les particules de plus de 35-50 nm
[Luby-Phelps et al., 1987, Etoc et al., 2018], un seuil parfois appelé "taille des pores du
cytoplasme". Pour ce type de particule (taille d’environ 50nm ou plus), le cytosquelette
ou d’autres obstacles de grande taille ralentissent fortement la di�usion des particules et
peuvent a�ecter de nombreux processus ; c’est le cas de l’agrégation des protéines.

Nous étudions, d’un point de vue théoriquemais complété par des expériences, com-
ment ce type d’encombrement stérique modi�e la cinétique d’agrégation des protéines
à l’intérieur de la cellule. Nous développons un modèle mathématique pour rendre
compte de ces deux coe�cients de di�usion très di�érents et, par comparaison avec les
données expérimentales, nous trouvons comment l’encombrement stérique conditionne
le nombre et la taille des agrégats des protéines. En�n, nous calculons approximative-
ment la taille critique des agrégats au-delà de laquelle ils sont piégés dans le cytoplasme
cellulaire, et nous constatons qu’elle est proche de la taille du pore du cytoplasme, ce qui
est en accord avec notre modèle.

Le nucléoïde chez E. coli

L’organisation intracellulaire des bactéries est un cas d’étude très intéressant, car au-
cune membrane ne sépare les di�érentes parties de la cellule. Cependant, les bactéries
présentent un très haut degré d’organisation intracellulaire. Le cas du chromosome de
la bactérie E. coli, qui est situé dans une région au centre de la cellule que nous ap-
pelons le nucléoïde, est particulièrement spectaculaire. En outre, le nucléoïde contrôle
et organise spatialement de nombreux processus cellulaires. Par exemple, il découple
spatialement la transcription et la traduction en protéines car les ribosomes, lorsqu’ils
sont �xés à l’ARN messager (ARNm), sont exclus du nucléoïde à cause des interactions
stériques [Sanamrad et al., 2014]. Finalement, la position du nucléoïde change beau-
coup au cours du cycle cellulaire : Quand il n’y a qu’un seul chromosome, il est situé
très précisément à la moitié de la cellule, mais juste avant la division cellulaire, les deux
chromosomes se positionnent à un quart et trois quarts de la cellule (le long de l’axe
principal de la cellule) [Wu et al., 2019].

Pour tenter d’expliquer ces phénomènes, nous avons développé unmodèle qui prend
en compte les interactions stériques entre le chromosome et les «crowders» de grande
taille comme les ribosomes ou les polysomes (ARNm avec un ou plusieurs ribosomes
attachés). Même s’il y a d’autres e�ets a�ectant potentiellement la taille et l’emplacement
du nucléoïde, notre hypothèse de base est que, pour un grand nombre des cas ex-
périmentaux, l’e�et dominant est l’encombrement stérique. Notre modèle montre que
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l’encombrement stérique (couplé à des e�ets intrinsèquement hors équilibre thermody-
namique, comme la transcription et la traduction en protéines) peut expliquer l’apparition
du nucléoïde (par un mécanisme similaire à celui de la démixtion de deux liquides). Le
modèle peut également expliquer pourquoi la taille de nucléoïde augmente lorsque la
transcription d’ARNm est arrêtée et diminue lorsque la traduction en protéines est ar-
rêtée. D’autre part, selon notre modèle, le positionnement central du chromosome, et
à 1/4 et 3/4 pour cellules plus grandes, est une conséquence directe de la transcription
des ARNm: les ARNm participent à l’encombrement stérique et donc altèrent la pres-
sion osmotique dans les di�érentes zones de la cellule, créant des forces qui pussent le
nucléoïde au centre (ou à 1/4 et 3/4, en fonction de la taille du cellule).

En�n, comme tous les autres modèles, le nôtre présente également des limites. L’une
de ces limites est l’hypothèse d’homogénéité dans la direction radiale de la cellule, ce
qui implique que le système soit e�ectivement unidimensionnel et facilite les calculs.
Néanmoins, dans certains cas, l’homogénéité radiale est rompue (notamment si le nu-
cléoïde se contracte radialement), ce qui peut avoir des conséquences importantes sur le
positionnement du nucléoïde. Par conséquent, nous prédisons, comme conséquence de
notre modèle, que si une perturbation contracte le nucléoïde radialement, elle déstabilise
également son positionnement.

Deuxième partie

Dans l’analyse précédente, nous avons considéré quelques exemples de phénomènes au
sein des cellules qui ont pour point commun de provenir des aspects non idéaux des so-
lutions, notamment l’encombrement stérique et la démixtion des liquides. D’autre part,
nous avons vu que des phénomènes hors équilibre thermodynamique (particulièrement
des réactions chimiques) contribuent à l’organisation cellulaire. Donc, dans la deuxième
partie de cette thèse, nous construisons un cadre thermodynamique général pour décrire
les réseaux de réactions chimiques au sein des solutions non idéales.

Cette approche, à la fois générale et thermodynamiquement cohérente, nous permet
de généraliser certains résultats de la théorie des réseaux de réactions chimiques idéales
tels que les fonctions de Lyapunov (fonctions qui sont minimisées par la dynamique du
système) pour les réseaux de type «complex balanced» [Horn and Jackson, 1972]. Ce
dernier type de réseau o�re un cadre moins restrictif que les réseaux de type «detailed
balanced» (qui sont des systèmes à l’équilibre thermodynamique) et, selon la théorie clas-
sique de réseaux de réactions chimiques, les réseaux de type «complex balanced» peuvent
être caractérisés par leur topologie [Feinberg, 1972]. D’autre part, ce cadre nous permet
de formaliser des liens entre les réactions chimiques hors équilibre et les séparations de
phase (ou démixtions) pour des réseaux de ce type, pour lesquelles nous pouvons obtenir
des diagrammes de phase complets en minimisant leur fonction de Lyapunov. Il est im-
portant de noter que cette classe de réseaux peut être identi�ée uniquement à partir de la
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topologie des réseaux, et que l’existence d’une fonction de Lyapunov est indépendante
de la cinétique particulière ou de l’énergie libre de chaque système.

Finalement, nous montrons que cette topologie peut contraindre la dynamique des
solutions et leur stabilité. En fait, nous montrons que, pour les réseaux de type «com-
plex balanced» avec des interactions locales, l’apparition de «non-equilibrium pattern-
ing» (motifs dus à des réactions chimiques hors équilibre) est interdite. À l’inverse,
notre théorie prédit que lorsque le réseau n’est plus de type «complex balanced», des
dynamiques plus exotiques peuvent apparaître, comme celles de type «Ostwald ripen-
ing arrest».

Conclusion

En résumé, cette thèse a présenté deux approches di�érentes de la même probléma-
tique, à savoir l’organisation intracellulaire en présence d’e�ets hors équilibre thermo-
dynamique. Dans la première partie, nous avons étudié quelques exemples d’un point de
vue plutôt e�ectif, ce qui nous a permis d’analyser de manière simple quelques proces-
sus cellulaires et de faire des prédictions qui peuvent être validées expérimentalement.
Dans la deuxième partie, en revanche, nous avons utilisé une approche plus générale et
abstraite, pour étudier le comportement d’une très grande classe de modèles qui pour-
raient être utiles pour la modélisation de l’auto-organisation cellulaire. Cependant, cette
abstraction a rendu plus di�cile la validation de la théorie et nous n’avons pas réussi à
décrire certains phénomènes très complexes comme celui du «non-equilibrium pattern-
ing». Néanmoins, pour faire progresser la biophysique théorique, une intégration de ces
deux approches sera nécessaire, ainsi qu’une synergie réussie entre théorie et expéri-
ences.
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Preface

Science is an essentially anarchic enterprise: theoretical
anarchism is more humanitarian and more likely to
encourage progress than its law-and-order alternatives.
[...]
And is it not clear that successful participation in a process
of this kind is possible only for a ruthless opportunist who
is not tied to any particular philosophy and who adopts
whatever procedure seems to �t the occasion?

P. K. Feyerabend,
Against Method, 1975

1



2 Preface

According to the second law of thermodynamics, the entropy of the universe always increases
or remains constant [Pippard, 1964]. Informally, entropy is often associated with disorder; fact
that, together with the second law of thermodynamics, makes surprising the existence of living
beings – creatures known for an almost incredible degree of order and self-organisation, among
other characteristics.

This apparent paradox is resolved by noting that, while the entropy of the entire universe
must always increase, it may decrease locally. In living organisms, this local decrease in entropy is
typically achieved by the consumption of energy (more precisely, free-energy1) and the increase
of entropy in the surrounding environment, mostly in the form of heat and mass �ows from the
organism towards the environment. In this process, the main quantity of interest is the free-
energy, provided it can be meaningfully de�ned, because it expresses the maximum amount of
energy available to do work [Kondepundi and Prigogine, 2015]. Hence, in an alternative perspec-
tive, this free-energy expenditure is used to produce work that can counteract locally the entropic
forces that tend towards disorder. Combining theses two ideas, we are led to another seemingly
contradictory thought: Free-energy consumption contributes to the increase of entropy but it can
also be used to produce work that acts against the entropic forces. Therefore, the crucial concept
is that living beings funnel their entropy increase towards their environment, while keeping an
ordered internal state2.

In living beings, the energy expenditure required to maintain homeostasis (the state of steady
internal conditions in living beings), can be related to metabolism. However, an energy-consuming
metabolism is not the only characteristic of the living [Nelson, 2004]. The ability to reproduce is
also widely considered as a hallmark of life. But energy consumption is also central to reproduc-
tion [England, 2013] and, more generally, to the key idea of evolution: natural selection (though
the explicit connection, in this case, remains unclear).

In the context of a cell (which is the setting that will occupy us for the rest of this work), free
energy ismost commonly stored in the form of a chemical potential di�erence between Adenosine
Triphosphate (ATP) and Adenosine Diphosphate (ADP), often referred to as the energy currency
of the cell [Phillips et al., 2012]. Indeed, ATP is a high-energy but stable molecule – it typically
does not hydrolyse spontaneously in an aqueous solution [Westheimer, 1987] – that can be used
to drive chemical reactions or as a source of work.

Therefore, it seems clear now that one of the characteristics of life is its ability to maintain
itself away from thermodynamic equilibrium. However, our comprehension of non-equilibrium
thermodynamics is far from complete. Mostly due to the pioneering work of L. E. Boltzmann
and J. W. Gibbs, for over a century we have had a good understanding of the thermodynamics of
systems at equilibrium [Gibbs, 1879]. Slowly, progress was made, by L. Onsager and I. Prigogine
among others, regarding the behaviour of systems near equilibrium, within the framework of Lin-
ear Irreversible Thermodynamics (LIT) [Onsager, 1931, Glansdor� and Prigogine, 1954]. More
recently, a new area of research has emerged that focuses on the thermodynamic properties of

1Energy, according to the �rst law of thermodynamics, is conserved if heat is taken into account [Pippard, 1964]
and, thus, cannot be “consumed”.

2In the context of chemical reaction networks, a more rigorous statement of these arguments will be presented in
Part II of this thesis.
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small (molecular) stochastic systems far away from equilibrium [Jarzynski, 1997, Crooks, 1999,
Seifert, 2005, Sekimoto, 2010], which has also enabled some progress in the understanding of
chemical reaction networks at the macroscopic scale [Rao and Esposito, 2016]. As a result, sys-
tems inherently out of equilibrium, such as living beings, are starting to be understood at the
microscopic scale; but there are still plenty of open questions at the macroscopic scale, due to,
among other reasons, the spectacular complexity of living beings and the emergent behaviour
that arises at larger length-scales [Anderson, 1972].

Nevertheless, order – a central concept to this thesis – can also exist at thermodynamic equi-
librium, as is the case, at the atomic scale, in certain metallic alloys [Ashcroft and Mermin, 1976];
or, at the mesoscopic scale, in colloidal suspensions with an interplay between short- and long-
range interactions [Campbell et al., 2005, Tarzia and Coniglio, 2006]. In these cases, the system
is considered to be in contact with a thermal reservoir, which allows for the energy exchange be-
tween the system and the environment, and enables the appearance of order by minimising the
free energy of the system. Therefore, a balance between the energy of the system and its entropy
appears, and order is produced when the system is capable of minimising its energy and lower its
entropy while increasing that of the bath, ensuring that the overall entropy of the universe is still
increasing.

Thus, there is not a single universal source of order in nature. While living beings seem to
prefer the dissipation of free energy to maintain their ordered structures, there are other mecha-
nisms by which order emerges without the need of dissipative structures. Then, several questions
relevant to the topic of this thesis emerge: To which extent does organisation and morphogenesis
within living beings require the consumption of free energy? Which tasks could be accomplished
without dissipation?

Far from answering these questions, we will content ourselves by describing the interplay
that can appear when both sources of order act simultaneously. On the one hand, we consider
passive mechanisms (no free energy is consumed), which, for the remainder of this work, are
the interactions between solutes in a solution. On the other hand, we take into account active
processes that do require free-energy dissipation. The types of active processes that we consider
in this thesis are chemical reactions driven by a free-energy di�erence between fuel and waste
components (e.g., in the context of a biological cell, the chemical potential di�erence between
ATP and ADP).

Much of this thesis is hence devoted to the study of the rich phenomenology that can arise
from the crosstalk between these two mechanisms. The system that we bear in mind through-
out this work is that of a solution, which is not necessarily dilute, where interactions between the
solutes may arise; and fuelled chemical reactions take place, driving the solution out of thermo-
dynamic equilibrium. In contrast, much of the theoretical work in chemical reaction networks
has considered only ideal solutions, which assumes that solutes are dilute and interactions among
them, negligible. However, order can also emerge when these interactions are taken into account,
as explained above, and the interplay between passive and active ordering mechanisms can give
rise to novel self-organised structures. We believe that this point of view provides a more realistic,
yet still oversimpli�ed, description of the cytoplasm of a cell, given that it is often crowded with
macromolecules [Roberts et al., 2002, Hö�ing and Franosch, 2013] and can even segregate some
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of its components in droplet-like condensates as a consequence of the interactions among solutes
[Brangwynne et al., 2009]. This type of solutions, hereafter termed as non-ideal solutions, are
the cornerstone of this work.

Finally and on a more personal note, despite this introduction, which may give the impression
of a well-planned research agenda undertaken during these 3 years and 3 months, most of this
thesis is the result of ruthless opportunism. Rather than following a plan, the work behind the ma-
jority of the di�erent chapters in this thesis was undertaken in a fairly anarchic way, with chance
and curiosity playing a major role. While the topics treated here revolve around the same con-
cepts and I have tried to construct a coherent line of thought throughout the di�erent parts of this
thesis, traces of this unplanned opportunism can be observed in the text that follows.



Part I:

Intracellular organisation from molecu-
lar collective processes

Thermodynamic equilibrium may be characterized by the
minimum of the Helmholtz free energy de�ned usually by:
F = E − TS.
Are most types of “organisations” around us of this
nature? It is enough to ask such a question to see that the
answer is negative. Obviously in a town, in a living
system, we have a quite di�erent type of functional order.

I. R. Prigogine,
Nobel Lecture, 1977
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The advances in microscopy and quantitative measurements in cell biology has allowed to ob-
tain huge amounts of quantitative data from experiments. This data, while intriguing and often
spectacular, is not very informative by itself and it only attains its entire potential when placed
within a theoretical framework, when confronted with hypotheses and ideas. Traditionally these
frameworks where developed by biologists and were fundamentally qualitative or descriptive.
However, as more quantitative data is produced, there seems to be a need for a robust mathemati-
cal framework that can make the most of such experimental output. In developing an appropriate
quantitative theory, the ideas of theoretical physics, while not always directly applicable, can be of
great help.

The �rst part of this thesis is devoted to the mathematical modelling of two processes that
control the spatio-temporal organisation in biological cells, which is established at the cellular scale
by the collective behaviour of particles at the molecular scale. First, we describe mathematically a
case of protein aggregation process whose dynamics are slowed down for large agglomerates due to
the presence of intracellular obstacles. Our theoretical predictions are compared with experiments
performed with an optogenetic protein. In the second half of this part, we model the bacterial
nucleoid (that is, the part of a bacterial cell in which the chromosome is located) and explain its
size and positioning. As mentioned in the Preface, our approach has two main ingredients: we
consider the e�ect of crowders and steric interactions and the consequences of non-equilibrium
processes in the cell, such as, transcription and translation. In line with the idea pioneered by I.
Prigogine [Prigogine, 1977, Kondepundi and Prigogine, 2015], these non-equilibrium processes are
the source of order in the system and result in what he called dissipative structures.

Ideally, these two examples could be modelled starting from a common theoretical framework
that applies to all dissipative structures. However, in practice, the particular details of each system
make it a very challenging task and often it is best to explore particular models for each of the
processes separately.

Nevertheless, the modelling of these two systems has a number of common features. One of
them is the fact that their time evolution is derived from physical principles, such as, Fick’s law of
di�usion or excluded-volume e�ects. Speci�cally, in both cases, the e�ect of intracellular obstacles
modulates the dynamics and localisation of the di�erent objects in the system. In the cytoplasm
of an eukaryotic cell, there seems to be a well de�ned mesh size due to the cytoskeleton and
other intracellular obstacles [Luby-Phelps et al., 1987, Etoc et al., 2018], which in turn, as we will
prove, regulates the size and growth of protein aggregates. In the bacterial nucleoid there is also a
characteristic mesh size [Xiang et al., 2021], but in this case formed by the folded chromosome.
This mesh size controls, among other things, the spatial location of translation within the cell, as
messenger RNAs (mRNAs) with one or several translating ribosomes attached are excluded from
the nucleoid to a great extent [Sanamrad et al., 2014], probably due to their size being larger than
the mesh size of the nucleoid.

As mentioned above, both systems are out of thermodynamic equilibrium, as is usual in living
beings, which are characterised by, among other features, their continuous free-energy consump-
tion. However, these two systems are out of thermodynamic equilibrium in di�erent ways. While
the protein aggregation system is out of equilibrium because their initial condition is not an equi-
librium state, the bacterial nucleoid is out of equilbrium since there is a continuous expenditure
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of free energy to maintain a non-equilibrium steady-state. Therefore, in our �rst example we
study the relaxation dynamics towards equilibrium of protein aggregates and, in the second one,
the characteristics of the non-equilibrium steady state. Finally, both processes control the spatial
organisation on the cell but they do so in di�erent ways: The dynamics of protein aggregation
determine, as a function of time, the number and size of the aggregates, while in the bacterial cell
the rate of transcription can control the non-equilibrium steady-state and, thus, the positioning of
the nucleoid and the localisation of the di�erent components of the transcriptional-translational
machinery.

Given the di�erences between the processes studied in this part of the thesis, the mathematical
formalism used in each chapter is markedly di�erent from the ones used in the other chapters.
While in the second chapter (regarding the bacterial nucleoid) the analysis takes explicitly into
account the types of interactions present in the system and it was mostly limited to its steady
state, in the �rst chapter (about protein aggregation) we have resorted to a simpli�ed kinetic de-
scription of the system to study its time evolution in an analytically tractable way. These two
approaches can be seen as two faces of the processes that living beings use to control their internal
self-organisation: Time dependent processes, like growth or coalescence (e.g. [Wang et al., 2008,
Al Jord et al., 2021]), and patterned non-equilibrium steady-states ([Murray and Sourjik, 2017]
or [Halatek and Frey, 2018]). Taken together, they enable the spatial organisation of biological
cells with an impressive degree of complexity.
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Chapter 1

Protein aggregation in cells

Protein aggregation is a process which spans multiple orders of magnitude both in time and
space1: From nucleation, when a couple of monomers of a given chemical species of interest
bind together to initiate the process, to the formation of large clusters containing up to mil-
lions of monomers each [Zidar et al., 2018]. Protein aggregation is a widely studied topic in
molecular and cell biology due to its connections with numerous diseases and disorders, such as,
Alzheimer’s and Huntington’s disease [Selkoe, 2004]. In these diseases, large micron-sized ag-
gregates appear in cells which are often associated with the loss of function of the proteins involved
[Ross and Poirier, 2004]. However, most importantly, protein aggregation has also been linked
with the creation of toxic intermediate-size aggregates that interact inappropriately with func-
tional cellular components [Knowles et al., 2014]. Furthermore, protein aggregates have been
shown to exclude chromatin and disrupt the expression of certain genes, and the aggregate size
appears to play an important role in this process [Li et al., 2016].

Thus, protein aggregation can be seen as a self-assembly process where monomers aggregate
to form typically �brillar structures, with important consequences for cell physiology. However,
since toxic intermediates can be created in the process, the �nal assembly of the system (a single
large and inert aggregate, if we are considering irreversible aggregation) is not as important as its
time evolution towards this �nal state. Therefore, here we analyse a process where the kinetics
are crucial for its understanding and the �nal steady state is not as informative as the trajectory
followed towards it. More precisely, we consider a process where aggregation is always thermody-
namically favoured but can be kinetically arrested, due to the presence of intracellular obstacles.

In this chapter, we �rst introduce the physico-chemical basis of the process of protein aggre-
gation, describing the di�erent kinetics that may arise in this type of systems and motivating our
research. Then we proceed to brie�y describe the experiments performed and the mathematical
modelling of the process. Finally we compare the output of these two approaches and present the
consequences of our research.

1The work presented in this chapter has been published inBiophysical Journal, Ref. [Miangolarra et al., 2021a]. The
present chapter is therefore largely based on that reference. The experiments described in this chapter were performed
by Aléria Duperray-Susini and Mathieu Coppey.

9
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1.1 Physical origin of protein aggregation

Most proteins in the cell have a stable folded conformation which allows them to appear in a
soluble form in the cytoplasm. However, certain proteins do not fold into a globular and soluble
structure and, among them, a certain subset is prone to aggregation [Knowles et al., 2014].

Typically, a seed or nucleation event (which gathers a number of proteins to create an oligomer
or nucleus of the aggregate) is needed to start the process, after which the protein oligomers grow
and become large aggregates [Narayanan et al., 2019]. This is due to the shape of the free energy
of the oligomer: If the free energy of the oligomer as a function of its size in monomers (N ) has a
single maximum atN = N∗, thenN∗ is the critical size of the nucleus and determines the smallest
growth-competent unit [Šarić et al., 2016]. Therefore, there is a free-energy barrier to form a
nucleus of sizeN∗, after which the growth of the aggregate is thermodynamically favoured. While
the nucleation step can be reversed (small oligomers may be created and afterwards dissolved,
especially if the concentration of the protein of interest is not high enough), once large aggregates
are formed we can normally consider the aggregation process to be irreversible to a great extent.
It is in this later stage of the process that we will focus our e�orts.

Given the importance of the kinetics in protein aggregation, a plethora of mathematical mod-
els have been developed, depending on the particular features of the aggregating system. For
example, for �brillar assemblies, good agreement was found between the experimental data and a
mathematical model considering the elongation and fragmentation of �brils in only one dimen-
sion [Knowles et al., 2009]. Here, however, we will not focus on the shape of the aggregate but
on how its overall size and di�usivity a�ects its growth, as discussed below.

Di�usion-limited irreversible aggregation in the cell

We have already established that, due to energetic considerations, once a large enough protein
oligomer has been nucleated, it will continue to grow spontaneously and irreversibly, provided the
right conditions are met, i.e. the solution is supersaturated [Narayanan et al., 2019]. However,
the kinetics of this growth are still very informative and important from the biological point of
view as they determine the speed at which these aggregates will grow, their size and their number.
Indeed, if the kinetics are slow enough, aggregation may never happen in a biologically relevant
timescale, while if they are fast enough, few of the toxic intermediate-sized oligomers will exist
(as they will soon become large and potentially inert [Knowles et al., 2014]). As stressed above, it
is not only the �nal state that matters but also the time evolution of the process.

There are twomain factors controlling the timescale over which protein aggregates grow. One
of them is the binding a�nity, that is, provided two particles meet, how energetically favoured is
their binding and, thus, how likely they are to bind. The other factor is the di�usion coe�cient,
which determines the frequency with which particles bump into each other. If the limiting factor
for the aggregation process is the binding a�nity of the particles, we talk about reaction-limited
aggregation, while if the limiting factor is the di�usivity of the particles then the process is termed
di�usion-limited aggregation.

In this chapter, we consider, from the theoretical viewpoint, a di�usion-limited irreversible
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aggregation process. As a result, the speed at which particles di�use andmeet entirely regulates the
speed of the aggregation process. This theoretical approach is complemented by an experimental
study (carried out by Aléria Duperray-Susini and Mathieu Coppey) which uses an optogenetic
protein that upon blue light exposure oligomerises (CRY2olig). Given that, under frequent blue
light exposure, the fragmentation of a cluster is strongly suppressed, one may view this process
as an irreversible, out-of-equilibrium aggregation, which leads to the formation of increasingly
large clusters. In other words, irreversibility stems from a negligible fragmentation or dissolution
rate of the aggregates, at least in the timescale of the experiments [Taslimi et al., 2014]. The role
of di�usion is also crucial, because it sets the speed at which the aggregation process unfolds: ag-
gregation processes in the cellular cytoplasm are in�uenced by the presence of physical obstacles
which alter the di�usion dynamics of growing aggregates within the cell [Wojcieszyn et al., 1981,
Hö�ing and Franosch, 2013]. In particular, in Ref. [Etoc et al., 2018], it was shown that, for
quasi-spherical nanoparticles in HeLa cells, the di�usivity drops by two or three orders of magni-
tude as the diameter of the nanoparticle is increased from 50 to 75 nm, due to steric interactions
between the particle and the cytosolic meshwork of the cell. Particles above this threshold –
which is sometimes referred to as the pore size of the cytoplasm – experience almost no di�usion
[Luby-Phelps et al., 1987].

Thus, in view of these facts, we developed a theoretical and analytically tractable model with as
few as two free parameters to mathematically describe an aggregation process where agglomerates
of di�erent sizes have very di�erent di�usivities. In collaboration with experiments, the model
allows to validate the picture of two di�erent timescales controlling large aggregate number and
size. Overall, the successful integration and feedback between theory and experiments led to
quantitative predictions and their veri�cation, like the critical size above which an aggregate can
be thought of as “trapped” in the cytoplasm.

For irreversible aggregation processes, the only possible steady-state is the one where all pro-
teins form a single cluster. However, this is rarely the case in biological cells, as the cytoplasm typ-
ically exhibits multiple protein or enzymes clusters scattered all over its volume [An et al., 2008,
Narayanan et al., 2019]. Therefore, the physical mechanisms which set the cluster number and
size still remain a subject of investigation [Buchner et al., 2013, Castellana et al., 2014], and could
have important biological consequences.

In the rest of the chapter, we address the problem of di�usion-limited irreversible aggre-
gation processes in cells, both theoretically and experimentally. We found that two timescales
control aggregation processes: One related to the fast di�usion of small clusters, and the other
one, slower, potentially related to the hindered di�usion due to the presence of intracellular ob-
stacles. By matching theoretical predictions with experimental results, we estimated the threshold
between these two timescales. However, on long timescales a di�usive-like movement can be ob-
served even for large aggregates, which was related to �uctuations that stem from the incoherent
e�ect of a network of active forces in the cell [Guo et al., 2014], such as the rearrangement of
the cytoskeleton and endomembranes. Therefore, large aggregates, with a radius comparable or
larger than this threshold, can be thought of as being strongly con�ned, and subject to a dramatic
hindrance in the di�usivity which may have an important e�ect on the aggregation dynamics.
Consequently, the slow timescale above is likely to be determined by active �uctuations that a�ect
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Figure 1.1: Experimental system stud-
ied and theoretical model. (A) Fluores-
cent images of a cell expressing CRY2olig
and activated with blue light every 2 min.
The cell shows many small clusters by
t = 3 min, which then mature and coalesce
over time. (B) Cartoon depicting the main
ingredients of the model. Left: a density
ρ of monomers that can freely di�use and
aggregate fast. Middle: N(t0) larger clus-
ters of size ∼ m∗ are trapped in the cy-
toskeleton. Right: N(tf) large clusters are
only able to move and further aggregate
when the remodelling of the cytoskeleton
sets them free.

the dynamics of intracellular objects larger than the typical pore size of the cytoplasm. Overall,
our results shed light into the interplay between aggregation processes, and the dynamics of the
crowded environment in the cell cytoplasm.

1.2 Experimental setup

The experimental system under study is an optogenetic protein CRY2olig, which oligomerises
upon blue light [Park et al., 2017], fused to the �uorescent tag mCherry, that is transfected into
RPE1 cells (retina pigmented epithelium 1, mammalian cells). An important feature of this op-
togenetic protein is the persistence of its oligomerised state even in the dark, with a half life of
around 23 mins [Taslimi et al., 2014].

Twenty-four hours after transfection, cells are exposed to blue light: this blue-light exposure
can be regarded as an out-of-equilibrium process, which triggers protein oligomerisation. The
period at which cells are exposed to blue light is 120s, which is signi�cantly lower than the half life
of the oligomerised state in the absence of light stimulation (23 mins), allowing us to consider the
aggregation process as irreversible. The dynamics of these protein clusters are then followed for
one hour as shown in Figure 1.1 A: From the images we extracted initial protein concentrations,
�nal concentration of clusters and its size. For details regarding the experimental setup and image
analysis, please see Appendix A.

The number of monomers cannot be determined directly from these images as there is a
constant relating arbitrary intensity units and the actual concentration in each pixel. An estimate
of this constant was obtained by imaging droplets with known concentration of mCherry (the
�uorescent tag used in the experiments) and comparing both images.

Qualitatively, we were able to distinguish two di�erent dynamical regimes. The �rst one is
a regime characterised by rapid di�usion and aggregation of small oligomers, see Fig. 1.1 A,
which takes place right after the blue light is switched on, and lasts for a time lapse of the order
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of minutes which is short compared to the imaging time of 1 hr. The second regime is char-
acterised by larger clusters which exhibit slower di�usion or almost no di�usion, resulting in a
slower aggregation process. Presumably, the lack of di�usion is produced by the obstacles in
the cytoplasm, which trap large aggregates. Hence, any di�usion or movement of these large
clusters could be widely attributed to movements and remodelling of the cytoplasmic structure
[Guo et al., 2014, Etoc et al., 2018]. These features are summarised in Figure 1.1 B. A similar
drop in the di�usivity between large protein aggregates and monomers was also observed in Ref.
[Li et al., 2016].

The analysis of these images allowed us to obtain the cluster-size distribution, the cluster
concentration and the mean cluster size as functions of the initial protein concentration, which
are shown in Fig. 1.2.

1.3 Modelling the dynamical aggregation process

The theoretical basis of irreversible aggregation processes was introduced by von Smoluchowski
over a century ago, and it can be summarised into his well-known equation for the coagulation
kinetics [Krapivsky et al., 2010]:

dci(t)
dt

= 1
2
∑
j+k=i

kj,kcj(t)ck(t)− ci(t)
∑
k

ki,kck(t), (1.1)

where ci(t) refers to the concentration of clusters with i monomers, and ki,j is the aggregation
rate constant (also known as aggregation kernel) between two clusters of mass i and j. The rate of
aggregation kj,kcj(t)ck(t) is given by the law of mass action. Upon an appropriate choice of the
aggregation kernel ki,j , Eq. (1.1) can adequately describe di�usion-limited aggregation processes.

However, the kernel typically does not take account of the e�ect of obstacles or pores, such
as the ones found in the cytoplasm of a cell [Luby-Phelps et al., 1987, Etoc et al., 2018]. To
take account of this e�ect, we leverage the insights from the experiments (previously described in
Section 1.2) to build a kernel ki,j based on the separation of the two timescales involved in the
aggregation process: On the one hand, there is a fast aggregation timescale (characterised by a
rate α), involving monomers and small clusters that di�use rapidly, and which ultimately leads to
the formation of larger agglomerates. On the other hand, there is a slow aggregation timescale
(with characteristic rate β) that comprises aggregates larger than the pore size of the cytoplasm.
The threshold between these two timescales is the time, t0, beyond which all clusters are larger
than the pore size of the cytoplasm. We denote bym∗ the cluster mass at which the agglomerate
attains the size of the pore of the cytoplasm and barely di�uses, see Fig. 1.1.

The objective of our model is to examine the e�ect of a sharp drop in di�usivity with particle
size and, therefore, we neglect other hydrodynamic e�ects, such as size-dependent di�usivity.
These assumptions are supported by the conclusions of Ref. [Etoc et al., 2018] where it was
found that most of the drop in di�usivity with particle size takes place in a narrow window of size
and other variations in di�usivity are small in comparison to this drop. In addition, this simple
timescale-separation assumption allows to keep the complexity of the model low, while capturing
the essence of the dynamics.



14 Chapter 1. Protein aggregation in cells

1.3.1 Fast-aggregation timescale

For the fast-aggregation timescale, we choose the following kernel for the Smoluchowski coagu-
lation equation:

kj,k = α [θ(m∗ − j) + θ(m∗ − k)] , (1.2)

where α is a fast aggregation rate constant, and is assumed to be much larger than the rate constant
associated with the slow aggregation timescale β, and θ(x) is the Heaviside step function. Since,
within this timescale, clusters with mass larger than m∗ do not di�use, they do not contribute
to the aggregation kernel (1.2). In addition, we will assume that, by the time all clusters are of
mass m∗ or larger, the contribution of the slow process to the clustering dynamics is negligible,
therefore e�ectively decoupling the timescales involved in the problem.

For the kernel of the type of Eq. (1.2), the following change of variables is known to simplify
the Smoluchowski equation [Leyvraz, 2003]:

ϕi(t) = ci(t)/N(t), dτ = N(t)dt (1.3)

where N(t) =
∑
i ci(t) and ϕi(t) represents for the fraction of clusters that is of size i, which

yields the following form for the Smoluchowski equations:

dϕi(τ)
dτ

= α

[ ∑
j+k=i

ϕj(τ)ϕk(τ)θ(m∗ − j)− ϕi(τ)θ(m∗ − i)
]
. (1.4)

An important feature of Eq. (1.4) is its recursive structure, i.e., the equation for ϕi only depends
on ϕj for j < i. One can prove inductively that the solution for the mobile clusters (ϕi for i ≤ m∗)
is given by:

ϕi(τ) =
i∑

k=1
(−1)k−1e−kατ

(
i− 1
k − 1

)
, (1.5)

where we have assumed that only monomers are present at t = 0, which mathematically it means
that ϕi(0) = δi,1 (also known as monodisperse initial condition).

Proof of the solution (1.5)

Given that Eq. (1.4) is a recursive equation for ϕi, in what follows we will attempt an inductive
proof of the solution for any ϕi with i ≤ m∗, for which the Heaviside step function is equal to
one. We will show that, for i ≤ m∗, if the ansatz (1.5) holds for ϕ1, · · · , ϕi−1, then it holds for ϕi
as well. To achieve this, we insert the ansatz (1.5) in Eq. (1.4), where we evaluate

i−1∑
j=1

ϕj(τ)ϕi−j(τ) =

i−1∑
j=1

j∑
n1=1

i−j∑
n2=1

(−1)n1+n2−2e−(n1+n2)τα
(
j − 1
n1 − 1

)(
i− j − 1
n2 − 1

)
=

i−1∑
j=1

i∑
s=2

s−1∑
n2=1

(−1)s−2e−sτα
(

j − 1
s− n2 − 1

)(
i− j − 1
n2 − 1

)
, (1.6)
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where, in the last equality, we have made the change of variable s = n1 + n2. Now we can apply
Vandermonde’s identity: (

m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
, (1.7)

which yields
i−1∑
j=1

ϕj(τ)ϕi−j(τ) =
i−1∑
j=1

i∑
s=2

(−1)s−2e−sτα
(
i− 2
s− 2

)

=(i− 1)
i∑

s=2
(−1)s−2e−sτα

(
i− 2
s− 2

)
. (1.8)

Equation (1.4) for ϕi, i ≤ m∗ now reads, assuming the ansatz (1.5) for ϕj , j < i,

dϕi(τ)
dτ

= α(i− 1)
i∑

s=2
(−1)s−2e−αsτ

(
i− 2
s− 2

)
− αϕi(τ) (1.9)

which can be rewritten as follows

d(ϕi(τ)eατ )
dτ

= α(i− 1)
i∑

s=2
(−1)s−2e−α(s−1)τ

(
i− 2
s− 2

)
(1.10)

and solved by direct integration along with the monodisperse initial conditions (which make the
constant from the integration vanish), yielding

ϕi(τ) =
i∑

s=1
(−1)s−1e−sατ

(
i− 1
s− 1

)
, (1.11)

thus proving that if the ansatz (1.5) holds for ϕ1, · · · , ϕi−1, then it holds for ϕi as well. It can
easily be checked that the ansatz (1.5) is a solution of Eq. (1.4) for i = 1, 2 or 3 and, thus, it will
hold for all integer i such that 0 < i ≤ m∗.

Alternatively, Eq. (1.11) can be recast into the form:

ϕi(τ) = (1− e−ατ )i

eατ − 1 (1.12)

by the binomial theorem.

Evolution of the number of clusters

The number of clusters as a function of our rescaled time τ , during the fast aggregation timescale,
can be obtained �rst by summing Eq. (1.1) over all i > 0 with the kernel (1.2):∑
i

dci(t)
dt

=

α
1
2

∑
i,j+k=i

cj(t)ck(t) [θ(m∗ − j) + θ(m∗ − k)]− α
∑
i,k

ci(t)ck(t) [θ(m∗ − i) + θ(m∗ − k)] =

α
∑

i,j+k=i
cj(t)ck(t)θ(m∗ − j)− 2α

∑
i

ci(t)
m∗∑
k

ck(t) =

− αN(t)
m∗∑
j=1

cj(t). (1.13)
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and then by using the change of variables (1.3), which yields the equation for the cluster concen-
tration in the rescaled time τ

dN(τ)
dτ

= −αN(τ)
m∗∑
i=1

ϕi(τ). (1.14)

Using the so-called hockey-stick identity:(
m∗

n

)
=

m∗−n∑
k=0

(
k + n− 1
n− 1

)
, (1.15)

after inserting the solution (1.5) into Eq. (1.14) we obtain

dN(τ)
dτ

=− αN(τ)
m∗∑
i=1

i∑
j=1

(−1)j−1e−jατ
(
i− 1
j − 1

)

=− αN(τ)
m∗∑
j=1

m∗−j∑
î=0

(−1)j−1e−jατ
(
î+ j − 1
j − 1

)

=− αN(τ)
m∗∑
j=1

(−1)j−1e−jατ
(
m∗

j

)
, (1.16)

where, in the second equality, the following change of variable has been performed: i = î + j to
alter the order of summation and, in the third equality, the hockey-stick identity has been used.
The solution to Eq. (1.16) is

N(τ) = N(0) exp


[
m∗∑
k=1

(−1)k−1

k
e−kυα

(
m∗

k

)]τ
0

 , (1.17)

where the brackets denote the di�erence between their argument evaluated at υ = τ , and at υ = 0.
In the limit τ → ∞, which is equivalent to the concentration of clusters after the fast aggre-

gation timescale has �nished, the result is:

N(τ →∞) = N(0) exp
{
−

m∗∑
k=1

(−1)k−1

k

(
m∗

k

)}
, (1.18)

which can be rewritten in a way that makes it more explicit the dependency onm∗:

N(τ →∞) = N(0)
m∗

exp
{
−

m∗∑
k=1

(−1)k−1

k

(
m∗

k

)
+ logm∗

}
. (1.19)

We can identify
m∗∑
k=1

(−1)k−1

k

(
m∗

k

)
(1.20)

as the m∗-th harmonic number, Hm∗ , which diverge logarithmically as m∗ → ∞. The Euler-
Mascheroni constant, γ, is the di�erence between the n-th harmonic number and the logarithm
of n in the limit where n→∞:

γ = lim
n→∞

[
n∑
k=1

(−1)k−1

k

(
n

k

)
− logn

]
. (1.21)
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Hence, Eq. (1.19), in the largem∗ limit, can be recast as

N(τ →∞) m
∗→∞= N(0)

m∗
e−γ . (1.22)

It is worth noticing that in the large-time limit the results only depend on the critical cluster
massm∗. Thus, Eq. (1.22) is independent of the fast aggregation constant α, which implies that,
for the model to be consistent, we only need that the timescale separation hypothesis α � β is
satis�ed.

By using Eq. (1.22), we obtain the fraction, Ñ , of clusters left in the system after the fast
aggregation process has �nished

Ñ(t0) = N(t0)
N(0) = e−γ

m∗
. (1.23)

In Eq. (1.23) we have used that m∗ is large, which is justi�ed by the fact that we expect m∗ to be
of the order of 102 or 103, and even form∗ = 102 the error due to this approximation is less than
1%. We will now make use of Eq. (1.23) as the initial condition of the slow-timescale dynamics.

1.3.2 Slow-aggregation timescale

Minutes after the start of the aggregation process, the fast aggregation process is �nished (around
time t ∼ t0). Based on the experiments, we assumed t0 to be small compared to the �nal time
of the experiment tf = 1 hr, which allows us to neglect it and assume that the slow-aggregation
timescale lasts for 1 hr (and not tf − t0).

To describe the slow-aggregation regime t > t0, we write a Smoluchowski coagulation equa-
tion with ki,j = β, where β is the slow-aggregation rate. The solution in this case was �rst given by
von Smoluchowski [Krapivsky et al., 2010]. Starting from the Smoluchowski coagulation equa-
tion (1.1), with the kernel kj,k = β:

dci(t)
dt

= β

2
∑
j+k=i

cj(t)ck(t)− βci(t)
∑
k

ck(t), (1.24)

we sum over all i and rewrite the constraint on the summation j + k = i with a Kronecker delta,
yielding

∑
i

dci(t)
dt

=β

2
∑
i,j,k

δj+k,icj(t)ck(t)−
∑
i

βci(t)
∑
k

ck(t)

=β

2
∑
j,k

cj(t)ck(t)−
∑
i

βci(t)
∑
k

ck(t), (1.25)

and with the de�nition N(t) =
∑
i ci(t) we obtain

dN(t)
dt

= −β2N(t)2. (1.26)

The solution to this equation is

N(t) = 1
βt/2 + C

, (1.27)
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Figure 1.2: Experimental data and �ts to the theoretical model. Results obtained for di�erent cells 1 hr
after the beginning of the aggregation process. In (A) and (B) we plot the cluster concentration and mean
cluster size as functions of the protein density ρmeasured in each cell, respectively. Grey dots correspond to
results for individual cells, black squares to the average over 20 cells, and error bars to standard deviations.
Blue lines correspond to least-square �ts of the theoretical expressions for the cluster concentration and
cluster size, that is, Eqs. (1.28) and (1.29). The orange dashed lines correspond to the predictions for a
passive cytoskeleton, i.e., in the absence of an active dynamics (β = 0). (C) Cluster-size probability density
function (PDF) for di�erent protein concentrations: Low (below 300 monomers/µm3), medium (between
300 and 600 monomers/µm3) and high (above 600 monomers/µm3). The black dashed line corresponds
to the estimate of the cluster-mass threshold between timescales,m∗, inferred from (A) and (B).

where, imposing the initial condition N(0) = ρÑ(t0) with ρ is the initial density of monomers,
C takes the value (ρÑ(t0))−1. Integrating Eq. (1.26) from t = 0 to tf we obtain

N(tf) = ρÑ(t0)
ρÑ(t0)tfβ/2 + 1

. (1.28)

Equation (1.28) has two unknown parameters: β and Ñ(t0) which can be estimated from the
experimental data. In particular, Ñ(t0) can be obtained from relation (1.23), which implies that
it is fully determined by the size at which the aggregate attains a size comparable to the pore of
the cytoplasm (m∗). Furthermore, using the relationship ρ = N(tf)〈m(tf)〉 (where 〈m(tf)〉 stands
for the mean cluster mass at time tf ), one can estimate the mean cluster mass at the end of the
experiment as a function of the density of protein:

〈m(tf)〉 = ρ tfβ/2 + Ñ(t0)−1. (1.29)

In this chapter, equations (1.28) and (1.29), for the slow timescale, and Eq. (1.23) for the fast
one, constitute our main theoretical results.

1.4 Comparison with experiments and conclusions

In order to test the model, we �t Eqs. (1.28) and (1.29) to the experimental data for the mean
cluster mass and cluster density at the end of the experiment (for details on the �tting procedure,
see Appendix A.3). Results are shown in Figure 1.2 A and B. The �t yields β = 9.6 hr−1 µm3
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and Ñ(t0) = 1.4 × 10−3. Using Eq. (1.23), one obtains a value of m∗ = 390 monomers for the
mass threshold above which clusters are expected to be trapped in the cytoplasm.

The experimental data also allowed us to quantify the cluster-size distribution, shown in Fig.
1.2 C. Our estimate of m∗ is close to the peak of the cluster-size distribution: This result is
consistent with the assumptions in the model, where the aggregation process is slowed down for
clusters of mass abovem∗.

We can also assess the consistency of our result with other experimental data by estimating the
pore size of the cytoplasm from the prediction form∗. To this end, we can utilise the framework
of di�usion-limited cluster aggregation (DLCA) [Kolb et al., 1983]. This theory assumes that
clusters di�use freely and bind to each other as soon as they come to contact. If the bonds created
by each binding event are rigid and maintain their shape the resulting structure would be a very
sparse fractal aggregate. However, inmany cases thismay not be true and the bondsmay rearrange
to make a more compact structure.

Taking into account this rearrangement, it has been suggested from numerical simulations that
the fractal dimension of theDLCA clusters is approximately df = 2.18 [Meakin and Jullien, 1988],
i.e., (

Rm∗

r0

)df
∼ m∗ (1.30)

where Rm∗ is the radius of an aggregate of massm∗ and r0 = 2.5 nm is the radius of an individual
CRY2olig monomer, that is, the average size of a protein containing∼ 500 residues, which allows
us to obtain a characteristic radius of the aggregate Rm∗ . This radius stands for the typical size
of the aggregates, and it does not strictly represent the radius of an aggregate, nor implies that
the aggregate has spherical shape. Unlike other aggregating proteins that tend to form �brils
[Qiang et al., 2017], it is unclear the geometry of the structures formed by CRY2olig, which is
why our estimate does not include any structural information about the aggregate other than the
assumption that monomers bind to each other as soon as they come into contact.

Therefore, we obtain for the radius of an aggregate of mass m∗: Rm∗ ∼ 39 nm. It should be
noted that these calculations are correct up to a constant that we cannot determine: Nevertheless,
our estimates are coherent with the threshold found in Ref. [Etoc et al., 2018], where they set the
threshold between di�using and non-di�using particles to be between 25 and 37.5 nm.

Finally, this estimate of the size, together with the good agreement between functional form
predicted by the theory and the experimental data, allows us to validate the picture of two di�erent
timescales setting the number and size of large protein aggregates, to a great extent. It is possible
to re�ne this model by choosing more complex kernels ki,j for the Smoluchowski coagulation
equation in order to explain the cluster-size distribution, but this simple model with only two free
parameters (m∗ and β) already captures much of the dynamics and the empirical results.

Conclusion and outlook

In this chapter, we have studied di�usion-limited aggregation of CRY2olig protein in mammalian
cells, combining an experimental and a theoretical approach.

Our main result is the identi�cation of two di�erent timescales in the aggregation process:
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On the one hand, there exists a short timescale where small clusters can freely di�use and ag-
gregate, leading to the formation of larger agglomerates. On the other hand, later on, large ag-
gregates barely di�use or do so very slowly. Based on previous work [Luby-Phelps et al., 1987,
Guo et al., 2014, Etoc et al., 2018], this e�ect could be largely due to con�nement of the aggre-
gates within the cytoskeleton and other cytosolic obstacles. As a result, large clusters cannot di�use
nor aggregate, unless the con�ning obstacles move or rearrange on a longer timescale. The pre-
dicted threshold between the two timescales corresponds to cluster sizes of ∼ 400 monomers, or
∼ 39 nm of radius, which roughly corresponds to the cytosolic pore size [Etoc et al., 2018].

Our model yields a quantitative estimate of the aggregation rate, β, relative to the long time
scale: This rate would characterise the incoherent dynamics of an intracellular network of active
forces, such as molecular motors [Guo et al., 2014], which could thus be regarded as an active
stirring of the aggregates.

In addition, our analysis demonstrates that clustering of CRY2olig in mammalian cells is
markedly di�erent from aggregation in a passive material with a �xed pore size, where the dy-
namics of the aggregation process would halt as soon as the aggregates’ size reaches the pore size.
This comparison was made in Fig. 1.2 A and B, where the orange dashed lines represent the
predictions for a passive material with the same pore size as that of the cells in our experiment
(β = 0), while solid blue lines represent our model prediction, which includes the active stirring
of clusters.

The ideas developed in this study can be generalised to a variety of biological systems that
reach a steady state driven by non-equilibrium processes, such as synthesis, degradation, tra�c
or recycling of proteins [Turner et al., 2005]. In addition, the mechanisms identi�ed here could
be extended to the kinetics of other intracellular phenomena, such as liquid-liquid phase separa-
tion [Garcia-Jove Navarro et al., 2019]. Indeed, systems under binodal phase separation might
exhibit as well two timescales in their coarsening dynamics. The fast timescale rate, α, would
represent the di�usion-limited coalescence of droplets in the early kinetics. On the other hand,
as droplets grow and di�usion slows down, the main driving force of coarsening would presum-
ably be Ostwald ripening, whose details could be taken into account by a parameter, or function,
equivalent to the slow aggregation rate, β. Given that there is a free-energetic cost for a droplet
to deform around a network of obstacles [Shin et al., 2018], the e�ect of obstacles in di�usion
would become important only for droplets with a characteristic radius Rm∗ or larger. Thus, we
expect the value of Rm∗ for this case to be similar to the one predicted by our analysis.

Here, we have focused our analysis on the kinetics of protein aggregation and found that
these kinetics too can in�uence patterns of spatial localisation in cells, such as the size of protein
aggregates. Therefore, this mechanism, by which the dynamics are arrested to a large extent, also
plays an important role in setting the spatial organisation at the scale of the cell, at least in cases
where the processes are slow compared to the timescales of interest in cells and, thus, a steady-
state is never reached. In the following chapter we will study the converse case: that of a system
that does reach a non-equilibrium steady state which organises the intracellular medium.



Chapter 2

Intracellular bacterial organisation: the
nucleoid

Living systems show a high degree of organisation at multiple scales, from the molecular one to
the macroscopic scales of organisms and ecosystems1. The study of self-organisation and pat-
terning in living beings has attracted much attention from a variety of scienti�c communities,
from molecular and developmental biology to physics, chemistry and applied mathematics. A
seminal contribution from the latter �eld is the morphogenetic mechanism based on reaction-
di�usion systems proposed by A. M. Turing in 1952 [Turing, 1952]. Nevertheless, in recent
years, many other self-organisation mechanisms have been proposed such as mechano-chemical
feedbacks [Boocock et al., 2021], growth-related patterning [Wang et al., 2008] and liquid-liquid
phase separation (LLPS) [Brangwynne et al., 2009]. In this chapter we will focus on the spatial
organisation of bacteria, which usually lack membrane-enclosed organelles yet achieve a striking
degree of organisation.

A notable example of spatial organisation in bacterial cells is that of their DNA: Despite the
absence of a nuclear membrane, in many bacteria such as Escherichia coli (E. coli), the chromosome
is not randomly spread throughout the intracellular space, but is markedly localised [Lewis, 2004,
Bakshi et al., 2012], and forms a compact structure.

The E. coli chromosome is a circular double stranded DNAmolecule of around 4.6×106 base
pairs, ∼1.5 mm of contour length, with a persistence length of ∼ 50nm. Therefore, if the chro-
mosome behaved as a random coil it would occupy a volume of ∼ 500µm3 [Verma et al., 2019].
However, the typical E. coli cell is a few micrometers in length (a volume of ∼ 2µm3), which
means that the chromosome has to be highly compacted to �t into the cell. In fact, not only does
the chromosome �t into an E. coli cell but it does not even �ll it completely, as it localises to a
particular region of the cell – the nucleoid [Lewis, 2004, Surovtsev and Jacobs-Wagner, 2018].

The localisation and degree of con�nement of the nucleoid varies with growth rate and among
bacterial species [Gray et al., 2019]. This organisation and localisation of the chromosome has

1The work presented in this chapter has been published in Proceedings of the National Academy of Sciences of
the USA, Ref. [Miangolarra et al., 2021b]. The present chapter is therefore largely based on that reference. The work
was done in collaboration with Ned S. Wingreen and Sophia Hsin-Jung Li.
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been shown to play an important role in many biological processes, including transcription via the
distribution of RNA polymerases [Weng et al., 2019], translation via the localisation of mRNAs
and ribosomes [Sanamrad et al., 2014], and the positioning and di�usion of protein aggregates
[Coquel et al., 2013].

In this chapter, we aim at theoretically describing the E. coli nucleoid, its formation, com-
paction and localisation at the various stages of the cell cycle. In order to do that, we will construct
a mechanism reminiscent of LLPS, based on the steric interactions present in the crowded cyto-
plasm and including the non-equilibrium e�ects of transcription and translation, which demon-
strates that localisation patterns on the cellular scale emerge spontaneously frommicroscopic fea-
tures on a molecular scale. In particular, we show that the segregation of the nucleoid from mR-
NAs and ribosomes can be understood in terms of excluded-volume e�ects only, which implies
that it is a consequence of equilibrium statistical physics, as in classical phase separations. In addi-
tion, our analysis shows that other dynamical features, such as nucleoid positioning, can be driven
by the synthesis and degradation of mRNAs, making it a purely non-equilibrium feature. Fi-
nally, we compare these results with experimental data obtained from cells growing �lamentously
[Wu et al., 2019], either with or without chromosome replication, providing important physical
and mechanistic insights.

2.1 Characteristics of the nucleoid: Compaction and localisation

Despite the importance of chromosome localisation, the physical causes and regulatory mech-
anisms of its con�nement are still largely unknown. One of the causes of the compaction of
the nucleoid could be the fact that the cytoplasm acts as a poor solvent for the chromosome
[Xiang et al., 2021], but many other factors could also a�ect nucleoid compaction, like nucleoid-
associated proteins that modify the folding conformation of the chromosome [Dorman, 2013].

The prokaryotic nucleoid is not as structured as its eukaryotic counterpart. Nevertheless,
there are still a wide variety of proteins and enzymes that regulate certain aspects of it. One of
them is the histone-like nucleoid-structuring protein H-NS that drives the formation of loops
between the sites to which it binds [Dame et al., 2020], e�ectively bridging between di�erent
locations in the chromosome. While H-NS primarily bridges between chromosome regions and
controls loops, other nucleoid-associated protein bend the DNA, such as HU or Fis (factor for
inversion stimulation) and have also been related to compaction of certain regions of the nucleoid
[Remesh et al., 2020].

Furthermore, Dps (a nucleoid-associated protein whose expression increases drastically in
stationary phase E. coli cells) is also known to cause global nucleoid compaction by unespeci�-
cally binding to the DNA in a cooperative manner [Almiron et al., 1992, Janissen et al., 2018].
In contrast, the protein MatP binds speci�cally to a motif called matS localised speci�cally in
the Ter region of the chromosome, compacting and organising this part of the genome only
[Mercier et al., 2008].

Finally, the supercoiling of the chromosome can be altered by the action of topoisomerases
(enzymes that break and rejoin DNA strands) [Dame et al., 2020]. For example, the enzyme
gyrase has been shown to control supercoiling of the DNA plectoneme, which has been linked to
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nucleoid compaction [Stuger et al., 2002].

However, there are also physical forces that compact the nucleoid. It is often suggested that
crowding agents in the cytoplasm exert a force against the chromosome which is a crucial factor
for the compaction of the nucleoid [Cabrera et al., 2009, Zhang et al., 2009, Yang et al., 2020].
More generally, when an E. coli cell is lysed, their intracellular components spread across the so-
lution and, in particular, its chromosome was observed to expand abruptly [Pelletier et al., 2012],
implying that it is mostly repulsive forces who hold the together nucleoid within the cell. Overall,
this suggest that repulsive interactions like steric or excluded-volume e�ects are crucial for nu-
cleoid compaction – an insight that we will leverage in the following for the theoretical modelling
of the nucleoid.

Regarding the localisation of the nucleoid within the cell, various studies have shown that,
while the nucleoid is located at the center of the cell before chromosome replication, during and
after replication the daughter chromosomes move out of the centre [Joshi et al., 2011], typically
localizing at 1/4 and 3/4 positions on the long cell axis [Wu et al., 2019]. Indeed, this positioning
is very robust and occurs for a very wide range of cell lengths [Wu et al., 2019], but it can be
perturbed – or even destroyed – by treating the cells with several drugs, such as kasugamycin, due
to yet unknown reasons [Xiang et al., 2021]. Moreover, the general mechanism underpinning
this localisation pattern remains unclear and has been hypothesised to require an active process
[Joyeux, 2019].

2.2 Modelling the nucleoid

Previous theoretical e�orts to explain the compaction and localisation of the nucleoid have been
mostly based on Monte Carlo simulations [Mondal et al., 2011, Joyeux, 2019]. It was found that
excluded-volume e�ects between DNA and polysomes (mRNAs bound to multiple ribosomes)
may account for segregation of the nucleoid from the rest of the cytoplasm [Mondal et al., 2011].

By contrast, in this section, we develop a statistical-physics description of the spatial locali-
sation of the molecular components of the E. coli transcriptional-translational machinery (TTM)
– composed of DNA, mRNAs, and ribosomes – and identify a set of physical mechanisms un-
derlying their localisation patterns. Unlike previous studies, we leverage semi-analytical methods,
i.e., the virial expansion, which allow us to tackle the complexity of the system, and reduce it to a
set of computationally tractable reaction-di�usion equations.

We thus describe the dynamics of the E. coli TTM by means of a minimal non-equilibrium
statistical physics model. The model includes steric interactions only – mathematically described
by hard-core interacting potentials – because our aim is to provide a minimal framework that
can capture the phenomenology of the bacterial nucleoid. Other interactions may be taken into
account, such as weak van der Waals forces among macromolecules, the e�ects of nucleoid-
associated proteins or e�ective attractive interactions between ribosomes and DNA, due to ri-
bosomes which bind nascent mRNAs linked to DNA. However, there is evidence suggesting
that excluded-volume e�ects are the key players in the formation and morphology of the nu-
cleoid [Yang et al., 2020, Zhang et al., 2009], and that interactions between the chromosome
and the cytoplasmic components are essentially repulsive [Pelletier et al., 2012]. Given that in-
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teractions are repulsive, to a �rst approximation, they can be modelled by hard-core potentials
[Andersen et al., 1971] and if there were any attractive interactions, provided these are not dom-
inant, they could e�ectively be taken into account by modifying the steric-interaction parameters
(radius or length of particles). Indeed, as shown in the rest of this chapter, steric interactions alone
can account for many distinct aspects of nucleoid behavior.

Apart from the inter-particle potentials, we also consider inherently non-equilibrium e�ects,
namely, transcription and translation. In a simpli�ed approach, transcription is modelled by a
rate of synthesis of mRNAs linear with the concentration of DNA. Transcription is described by
the binding and unbinding of ribosomes to bare mRNAs or polysomes. Finally, we also include
the degradation of mRNAs in the model as a linear term in the dynamical equations, see Eqs.
(2.1-2.3).

By observing that E. coli cells have an approximately cylindrical shape and symmetry, we re-
duce the three-dimensional cytoplasm to a single dimension along the long cell axis (see Fig. 2.1 A
and B) and describe the TTM in terms of the one-dimensional concentrations of DNA segments,
mRNAs, and ribosomes. Implicitly, this assumes that the cell is homogeneous in the radial di-
rection, a hypothesis whose consequences will be assessed in the discussion section (Section 2.5).
Within this homogeneity approximation, we denote by cDNA(x, t) the concentration of DNA plec-
toneme segments at position x along the long cell axis and time t, by ρn(x, t) that of polysomes
composed of an mRNA and n ribosomes, and by cF(x, t) that of freely di�using ribosomes, see
Fig. 2.1 A and B. We then consider the reaction-di�usion equations for these concentrations,
where we incorporate the di�usion currents and the chemical reactions, i.e., ribosome-mRNA
binding and unbinding, mRNA synthesis and degradation:

∂tcDNA(x, t) =− ∂xJDNA(x, t), (2.1)

∂tρn(x, t) =− ∂xJn(x, t)− koncF(x, t)ρn(x, t)− ko� nρn(x, t) + koncF(x, t)ρn−1(x, t)
+ ko�(n+ 1)ρn+1(x, t) + α cDNA(x, t)δn,0 − βρn(x, t), (2.2)

∂tcF(x, t) =− ∂xJF(x, t)− koncF(x, t)
∑
n

ρn(x, t) + ko�
∑
n

nρn(x, t) + β
∑
n

nρn(x, t).

(2.3)

In Eqs. (2.1-2.3), JDNA, Jn, and JF denote the particle currents (derived in Subsections 2.2.1
and 2.2.3), kon and ko� the rate constants for ribosome binding and unbinding due to completion
of translation, respectively, α the rate at which mRNAs are created locally by transcription, and
β the mRNA degradation rate. We assume no-�ux (Neumann) boundary conditions for all the
components of the TTM at x = ±` where ` is the cell half-length.

Regarding the steric interactions, as shown in Fig. 2.1 A and B, we consider ribosomes as
spheres of radius R and, because mRNAs and polysomes with n ribosomes are roughly globular
polymer coils, we also approximate them as spheres of radius R0 and Rn, respectively. Because
the E. coli DNA has a branched, plectonemic structure with a well-de�ned persistence length and
transverse radius [Odijk, 2000], we consider the chromosome as a set of cylindrical segments,
where the length of each segment (L, the Kuhn length) corresponds to twice the persistence length
[Rubinstein and Colby, 2003]. For the sake of computational tractability, we treat the DNA seg-
ments as disconnected, as shown in Fig. 2.1 B.
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Figure 2.1: Sketch of the model for the
nucleoid. (A) Cartoon of an E. coli cell
and its transcriptional-translational ma-
chinery, where the horizontal axis is the
single dimension we consider. Blue coils
represent mRNAs in polysomes, the red
coil denotes the DNA plectoneme and ri-
bosomes are shown in black. Blow-ups:
polysome composed of an mRNA and n
ribosomes with gyration radius Rn (left)
and plectonemic structure of the DNA
with persistence length L (right). (B)
Schematic of the components underlying
the reaction-di�usion model, where the
DNA plectoneme is represented by a set of
disjoint cylinders, and polysomes and free
ribosomes by spheres.

2.2.1 Equilibrium free energy of an interacting inhomogeneous gas

Our model for the nucleoid assumes that all particles interact through hard-core potentials (also
known as excluded-volume interactions) and the expression for the particle currents J must be
obtained for such system. In order to do that we �rst need to compute the free energy of the
system at thermodynamic equilibrium.

We use the virial expansion, �rst developed by Onnes [Onnes, 1902] over a century ago,
to compute the free energy of a gas of interacting particles. Here we limit ourselves to state
the result for hard-sphere potentials to second and third order in the expansion, and refer the
interested reader to classical statistical-physics textbooks, e.g., [Huang, 1987, Pathria, 1996], for
a complete explanation of the procedure, or to Appendix B.1 for a brief summary.

Free energy of a binary mixture of hard spheres

We �rst limit ourselves to a binary mixture of hard spheres and later we will include the e�ect of
DNA cylinders. We consider NA and NB particles of species A and B, which are hard spheres
with radii RA, RB and di�usion coe�cients DA, DB, respectively, con�ned in a volume V. The
hard-sphere potential Vij between the ith and jth particle is zero if the distance between particles
is larger than the sum of their radii, and in�nity otherwise. Then, the free energy of the system,
up to second order in the virial expansion (third viral coe�cients) is

F =− kBT logZ

= kBT
∑

a=A,B
Na log NaΛ3

a

V
− kBT log

[
1−

∑
a=A,B

Na(Na − 1)
2V B(2)

aa −
NANB

V
B

(2)
AB

−
∑
a=A,B

Na(Na − 1)(Na − 2)
6V2 B(3)

aaa −
∑
a6=b

Na(Na − 1)Nb

2V2 B
(3)
aab

]
, (2.4)
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where Z is the partition function as de�ned in equilibrium statistical physics, kB is the Boltzmann
constant, Λa is the thermal de Broglie wavelength of species a and the ith virial coe�cients B(i)

ab

are given by:

B
(2)
ab = 4π

3 (Ra +Rb)3, (2.5)

B
(3)
abc = 16π2

9
[
R3
bR

3
c + 3RaR2

bR
2
c(Rb +Rc) +R3

a(Rb +Rc)3 + 3R2
aRbRc(R2

b + 3RbRc +R2
c)
]
.

(2.6)

By assuming that the volume is large, we can approximate the free energy as

F ' kBT

[∑
a

Na log NaΛ3
a

V
+
∑
a=A,B

Na(Na − 1)
2V B(2)

aa + NANB

V
B

(2)
AB

+
∑
a=A,B

Na(Na − 1)(Na − 2)
6V2 B(3)

aaa +
∑
a6=b

Na(Na − 1)Nb

2V2 B
(3)
aab

]
, (2.7)

where we have used the Taylor expansion of the logarithm.

Now we consider an in�nitesimal distance dx, in which there are dNa molecules of each
species, with one-dimensional concentration ca(x) = dNa/dx. The volume of each of these
in�nitesimal slices of the system is dV = σ dx, where σ is the cross section of the system. Then,

F0 =
∫ `

−`
dF0

'
∫ `

−`
kBTdx

{ ∑
a=A,B

ca(x)
[
log ca(x) + log Λ3

a

σ

]
+

∑
a,b=A,B

B
(2)
ab

[ca(x)]2

2σ

+
∑

a,b,c=A,B

B
(3)
abc

ca(x)cb(x)cc(x)
6σ2

}
, (2.8)

where we have approximated Na− 1 with Na, which yields substantial simpli�cation of the func-
tional form of the free energy. In what follows we drop the term log Λ3

a/σ because it only changes
the chemical potential by a constant and will not alter the results. As a result, the logarithms with
dimensional arguments remain.

The quantity dF0/dx in Eq. (2.8) is the free-energy density of the system assuming that the
concentrations are uniform along the x axis, where this condition is denoted by the subscript
‘0’. If we assume that the local free energy density of an inhomogeneous system f = dF/dx, is
a function of the uniform free-energy density and of the derivatives of the concentration, i.e.,
f = f(f0,∇ca,∇2ca...), then we can expand it around f0, considering the concentration and its
derivatives as independent variables, as follows [Cahn and Hilliard, 1958]:

f = f0 +
∑
a

γa
d2ca
dx2 + kBT

2σ
∑
a,b

κab
dca
dx

dcb
dx

, (2.9)

where κab are the Cahn-Hilliard coe�cients, which account for spatial inhomogeneities in the
concentrations and set the free energy cost of concentration gradients in the system. The second
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term in the right-hand side of Eq. (2.9) does not contribute to the total free energy of the sys-
tem: when spatially integrated, this term vanishes because of the Neumann (no �ux) boundary
conditions. Then, the total free energy is

F =
∫ `

−`
dF

=
∫ `

−`
dF0 + kBT

2

∫ `

−`

∑
a,b

κab
dca
dx

dcb
dx

dx, (2.10)

and the chemical potential for, e.g., species A reads

µA(x) = δF

δcA(x)

= kBT

[
1 + log cA(x) +

∑
a=A,B

ca(x)B(2)
a,A + 1

2
∑

a,b=A,B

B
(3)
a,b,Aca(x)cb(x)−

∑
a=A,B

κa,A
d2ca
dx2

]
.

(2.11)

For future convenience, we de�ne νa as the non-ideal contribution (which stems from steric in-
teractions) to the chemical potential of each species, e.g., species A:

νA(x) =
∑
a=A,B

ca(x)B(2)
a,A + 1

2
∑

a,b=A,B

B
(3)
a,b,Aca(x)cb(x)−

∑
a=A,B

κa,A
d2ca
dx2 (2.12)

Free energy of the full TTM

We will now apply the ideas discussed above to the model for the TTM. In particular, we will
use the virial expansion discussed for the binary mixture of hard spheres to obtain an expression
for the free energy of the TTM. However, there is an important di�erence that needs to be taken
into account: not all the particles are spheres, because the DNA segments are considered to be
cylinders of length L and radius ρ.

In addition, a DNA segment does not interact with another DNA segment in the same way in
which it would interact with a polysome or ribosome. In fact, two overlapping DNA plectonemes
may be nested into each other, as discussed in Ref. [Mondal et al., 2011]. To model this nesting,
while we use the radius ρ to describe overlaps between a DNA cylinder and ribosomes or mR-
NAs in the virial expansion, we use a smaller, e�ective radius ρ′ < ρ for overlaps between two
DNA cylinders. We base the value of ρ′ on the hard-sphere model for DNA used for numerical
simulations in Ref. [Mondal et al., 2011], where each plectoneme segment is represented as a
sequence of four bond beads and two node beads, and all beads have radius ρ. In the simulations,
whenever a DNA segment collides with a particle which is not a DNA segment, none of the beads
are allowed to overlap with the particle. On the other hand, whenever two DNA segments collide,
node beads cannot overlap with each other, but bond beads can, according to the picture above.
Given that the two node beads are located at the vertices which connect segments, each node bead
contributes half of its volume to each plectoneme segment. The volume that a DNA segment ex-
cludes to other DNA segments, which we denote by πρ′2L, is thus the volume of one node bead,
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Figure 2.2: Steric interactions of DNA
segments. Hard-core interactions between
DNA segments (red cylinders) and ribo-
somes or polysomes (black spheres). DNA
segments interact with each other through
a cylinder of radius ρ′, while they interact
with polysomes and ribosomes with a radius
ρ > ρ′, satisfying Eq. (2.13).

i.e., one �fth of the volume πρ2L that the segment excludes to particles other than DNA. As a
result, we obtain the relation

ρ′ = ρ/
√

5 (2.13)

between ρ and ρ′. See Fig. 2.2 for a sketch of this interactions.

Moreover, ρ′ being an e�ective parameter, it also includes e�ects from the nucleoid-associated
proteins that control chromosome folding at the molecular scale, as discussed in Section 2.1. Be-
cause nucleoid size can be a�ected by varying the concentration and functionality of these proteins
and enzymes, in theory it should be possible to modulate the value of ρ′ to e�ectively account for
these biochemical perturbations, at least in a phenomenological manner. Provided repulsive in-
teractions are still dominant, even if there are molecular or enzymatic e�ects in the compaction
of the nucleoid, viewing the interactions within the cell as purely steric may help to obtain a more
holistic view of nucleoid organisation, since we can integrate many di�erent phenomena into a
single parameter. Moreover, as long as the interactions are mostly repulsive, approximating these
by a hard-core potential is theoretically well-grounded [Andersen et al., 1971].

Given the shapes of the particles discussed above, the functional form of the contributions
of steric e�ects to the virial expansion B(i)

ab for ribosomes and mRNAs remains the same as for
hard spheres, but the interaction of other species with DNA, and of DNA with itself, is di�erent
as we are considering DNA to be a set of disjoint cylinders. The second virial coe�cient for two
cylinders is [Herold et al., 2017]

B
(2)
DNA DNA = 2πρ′

[
Lρ′ + 1

2(L+ ρ′)(L+ πρ′)
]
, (2.14)

and the virial coe�cient between one cylinder and a sphere with radius Rn can be computed by
performing integrals of the form (B.4) and yields

B
(2)
DNAn = Lπ(Rn + ρ)2 + 2πRn

(
ρ2 + πρRn

2 + 2
3R

2
n

)
, (2.15)

where the subscript ‘DNA’ stands for a DNA cylinder, and n for a sphere of radius Rn.

Before we present the expressions for the third virial coe�cients for cylinders, let us de�ne

uij = I(qi ∩ qj), (2.16)
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where qi denotes the degrees of freedom which specify the position and orientation of a particle,
i.e., the position of its center of mass and the Euler angles de�ning the particle orientation. In
addition, qi ∩ qj in Eq. (2.16) stands for the condition that particles i and j overlap, i.e., their
hard-core potential is nonzero, and the indicator function I is equal to one if the condition in its
argument is satis�ed, and zero otherwise.

The third virial coe�cients for interactions that involve cylinders are given by the following
integral expressions:

B
(3)
Dnm =

∫
drnDdrmDu

z
Dmu

z
Dnunm, (2.17)

B
(3)
D D′ n = 1

8π2

∫
drD DdrDndrD′ nd(cos θ′D)d(cos θD′)d(cos θn)dφDdφD′dφnu

z
D D′u

z
DnuD′ n, (2.18)

B
(3)
DD′D′′ = 1

8π2

∫
drDD′drD′D′′drDD′′d(cos θD)d(cos θD′)d(cos θD′′)dφDdφD′dφD′′u

z
DD′u

z
DD′′uD′D′′ ,

(2.19)

where the subscripts label di�erent cylinders, ‘D’ is a shorthand for DNA, n and m label the
spheres, and vectors rij denote the relative position between the centers of mass of particles i and
j. In addition, the superscript z means that the axis of cylinder D is parallel to the z axis, so as
to leverage spherical symmetry, and θ, φ are the polar and azimuthal angles, respectively. While
some simpli�cations of those integrals are possible, there is no known analytical form for these
virial coe�cients [Straley, 1973], and we obtained them by numerical integration. Nevertheless,
this numerical integration is much less computationally costly than the simulations performed
in Refs. [Mondal et al., 2011, Joyeux, 2019], as it only needs to be performed once for �xed
parameters.

Then, the total free energy of the system is:

F

kBT
=
∫ `

−`
dx

[ ∑
a=F,n,DNA

B
(2)
DNA,a

σ
cDNA(x)ca(x) +

∑
a,b=DNA,F,n

B
(3)
DNA,a,b

2σ2 ca(x)cb(x)cDNA(x)
]

+
∫ `

−`
dx

(
dF0
kBT

+
∑

a,b=DNA,F,n

κab
2
dca
dx

dcb
dx

)
, (2.20)

where the sums run over the chemical species denoted by F, DNA and all polysome species, which
we denote by ‘n’ in the sums. Note that F0 has the same structure as Eq. (2.8): in fact, its form
does not change because it involves only species of spherical particles. The di�erence between F0

in Eq. (2.20) and F0 in Eq. (2.8) is in the summation indices, which now span over all polysome
species and free ribosomes, which are all modelled as spheres.

The free energy of the system should include an entropic term related to the DNA conforma-
tion, but, since this term is small compared with the steric interactions, we neglect it for simplicity
(a more detailed explanation is given in Section 2.2.2). The steric interactions have been written
explicitly for theDNA segments, and the Cahn-Hilliard terms are analogous to those in Eq. (2.10),
except for the numerical values of the coe�cients κab, which depend on the particle geometry.

In principle, the Cahn-Hilliard coe�cients κab in Eq. (2.20) can be computed by leveraging
hard-core interactions as shown in Ref. [Ilker and Joanny, 2020]. However, for our purposes it is
enough to observe that the Cahn-Hilliard terms re�ect the cost of concentration gradients related
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to species a and b. It follows that κab is an intrinsic feature of the particles of species a and b:
Because κab has the dimension of the cube of a length, it must be proportional to a product of
the linear sizes of the particles of species a and b. In addition, the relation of the Cahn-Hilliard
coe�cients to di�erentials of concentrations over in�nitesimal length scales indicates that κab is
physically related to short rather than long length scales. We thus assume that κab equals the
minimum between the volume of species a and that of species b.

2.2.2 DNA free energy

When deriving the particle currents, the quantity of interest is the free energy of the particles. For
independent spherical particles (ribosomes and polysomes), the entropic term in the free energy
is included in the virial expansion. However, for the DNA plectoneme the situation is di�erent:
Due to the lack of connectivity between the DNA “cylinders” in the model, we do not obtain the
correct entropic term from the virial expansion.

In our model of DNA composed by disconnected cylindrical segments, the energetic part
of the free energy is given by the interactions between DNA segments, encoded by the virial-
expansion terms, see Subsection 2.2.1. Here, we argue that the entropic part of the real free
energy can be neglected, because it is much smaller than the virial terms.

The main contribution is related to the free-energetic cost of con�ning an ideal polymer. This
entropic cost is given by [Edwards and Freed, 1969, De Gennes, 1979]:

S ' −kB
NDNAL

2

L2
n

, (2.21)

where Ln is the typical lengthscale on which the polymer is con�ned and NDNA is the number of
DNA segments. In the case of the nucleoid, Ln ∼ 1µm and NDNA = 6× 103.

By inserting the numerical values of the parameters we obtain an entropic contribution to the
free energy of the order of 103 kBT and a contribution from the virial terms of order

kBT
N2

DNAB
(2)
DNA,DNA

2Vn
∼ 104 kBT, (2.22)

where Vn ∼ L3
n is the typical volume of a nucleoid. Therefore, there is a di�erence of one order

of magnitude between the entropic and the virial term and, for the sake of simplicity, in this work
we neglect the entropic contribution to the free energy, and thus to the current of DNA segments.

Auxiliary entropy

In our analysis of Eqs. (2.1) to (2.3), we will �rst determine the steady state of the system in
the absence of reaction and non-equilibrium terms, by numerically minimising the total free
energy (2.20). These pro�les are then used as initial conditions to integrate forward in time the
reaction-di�usion Eqs. (2.1) to (2.3), which include both reaction and non-equilibrium terms, see
Subsection 2.2.5 for details on the numerical methods to solve Eqs. (2.1) to (2.3). At the free-
energy minimum, the DNA concentration is nonzero in the nucleoid, while it vanishes outside
the nucleoid. Given that these equilibrium pro�les are entered as initial conditions in Eqs. (2.1)
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to (2.3), the vanishing concentration above causes numerical instabilities when these equations
are numerically integrated forward in time, and can lead to negative concentrations in the non-
equilibrium steady state [Shampine et al., 2005]. To overcome this issue, we included a small,
additional entropic term in the free energy (2.20). Therefore, this additional terms is included
solely for the stability of the numerical methods used. For details about this term see Appendix
B.2, and for a comparison between the magnitude of the real free energy and the auxiliary one
see Fig. B.1.

2.2.3 Particle currents

We can now work out the currents by considering Fick’s law of di�usion [Crank, 1979], namely,

Ja(x) = − Da

kBT
ca(x)∂xµa, (2.23)

whereDa is the di�usion constant, which is given by Einstein-Smoluchowski-Sutherland relation
[Dill and Bromberg, 2012]

Da = ζakBT, (2.24)

and ζa is the mobility of species a.

In Eq. (2.23) the chemical potential µa is obtained from the derivative of the equilibrium free
energy, see Eq. (2.11). We are thus constructing a hydrodynamic theory where we only consider
variations in the slow modes, e.g. concentration di�erences along the cell, implicitly assuming
that �uctuations in the fast modes are quickly thermalised and equilibrated, thus locally obeying
equilibrium statistical physics with a well de�ned local temperature, pressure and chemical po-
tential. This is known as the assumption of local equilibrium [Kondepundi and Prigogine, 2015]
and is the starting point of the Linear Irreversible Thermodynamics framework used to derive
these currents [Groot and Mazur, 1983].

Particle current for hard spheres

By substituting the expression (2.11) for the chemical potential in Eq. (2.23), we obtain the current
for hard sphere particles, e.g. free ribosomes:

JF(x) = −DF

{
∂xcF(x) + cF(x)

∑
a=F,DNA,n

B
(2)
a,F∂xca(x)

+ cF(x)
2

∑
a,b=F,DNA,n

B
(3)
a,b,F[∂xca(x)cb(x) + ca(x)∂xcb(x)]− cF(x)

∑
a=F,DNA,n

κa,F
d3ca
dx3

}
(2.25)

Similarly, we obtain the current for the rest of the spherical species (mRNAs and polysomes).

Particle current for the full TTM

Proceeding along the lines of the case for hard spheres, we obtain theDNA current fromEq. (2.23),
using the free energy (2.20) and the auxiliary free energy (B.15):

JDNA(x) = −cDNA(x)DDNA [∂xνDNA(x) + ∂xµaux(x)] , (2.26)
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where νDNA is the excluded-volume term analogous to that in Eq. (2.12), which stems from the
fact that the chemical potential of DNA segments does not have entropic contribution. The term
µaux is the derivative of the auxiliary free energy (B.13) with respect to the DNA concentration,
cDNA(x), and its contribution to the current reads

∂xµaux(x) = Kauxe
−DauxcDNA(x)/〈cDNA(x)〉∂xcDNA(x)

{
1

cDNA(x)

(
1−Daux

cDNA(x)
〈cDNA(x)〉

)

+Daux log[σcDNA(x)]− Daux

〈cDNA(x)〉

[
1 + log[2`σcDNA(x)]

(
1−Daux

cDNA(x)
〈cDNA(x)〉

)]}
.

(2.27)

Combining the results obtained for hard spheres, Eqs. (2.8) and (2.25), with those for the
full TTM, Eqs. (2.20) and (2.26), we obtain the currents in Eqs. (2.1) to (2.3). Making use of
Eqs. (2.25) and (2.26) and of the virial coe�cients previously derived, the currents for DNA,
ribosomes and polysomes are fully de�ned.

For completeness, the currents for ribosomes and polysomes are

JF(x) =− DF

kBT
cF(x)∂xµF, (2.28)

Jn(x) =− Dn

kBT
ρn(x)∂xµn, (2.29)

respectively, where the chemical potentials are

µF(x) = log cF(x) +
∑

a=F,DNA,n

ca(x)B(2)
a,F + 1

2
∑

a,b=F,DNA,n

B
(3)
a,b,Fca(x)cb(x)−

∑
a=F,DNA,n

κa,F
d2ca
dx2 ,

(2.30)
for free ribosomes, and

µn(x) = log ρn(x) +
∑

a=F,DNA,n

ca(x)B(2)
a,n + 1

2
∑

a,b=F,DNA,n

B
(3)
a,b,nca(x)cb(x)−

∑
a=F,DNA,n

κa,n
d2ca
dx2 ,

(2.31)
for polysomes.

2.2.4 Model parameters

We �x the model parameters from experiments as follows. First, we consider the parameters
on a molecular scale: The radius and length of DNA cylinders are ρ = 10 nm and L = 200 nm
[Odijk, 2000,Mondal et al., 2011], respectively, whereL/2 is approximately the persistence length
of a DNA plectoneme2 [Cunha et al., 2001, Odijk, 2000].

We take the ribosome radius to be R = 10 nm [Mondal et al., 2011], and the radius of a
ribosome-free mRNA to be R0 = 20 nm [Kaczanowska and Rydén-Aulin, 2007]. The radius Rn

2In the literature, there is a large variability in the value for the persistence length of the DNA plectoneme,
from the 30-50 nm suggested by [Verma et al., 2019, Xiang et al., 2021] to the 75-100 nm used by [Odijk, 2000,
Mondal et al., 2011]. We take 100 nm, because this is the value used in the simulations of Ref. [Mondal et al., 2011].
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of an mRNA loaded with n ribosomes is estimated as the sum of the volume of a bare mRNA
and n times the volume of a ribosome, i.e., 4/3π(R3

0 + nR3) yielding Rn = (R3
0 + nR3)1/3.

We estimated the di�usion constant of the di�erent species as follows: DF = 0.4µm2/s for
ribosomes, and Dn = 5 × 10−2µm2/s for bare mRNAs and polysomes [Bakshi et al., 2012,
Sanamrad et al., 2014]. For DNA segments it is harder to obtain an estimate based on experi-
mental data. We therefore estimate their di�usion coe�cient as follows: We assume that the drag
coe�cient on the nucleoid as a whole is low enough for the nucleoid to relax relatively rapidly
to mechanical equilibrium (for details, see Appendix B.4) and, given that DNA segments have a
linear dimension similar to that of polysomes, we assume that their di�usion coe�cients will also
be similar. Therefore, we take DDNA = 10−2 µm2/s, a value for the di�usion coe�cient of DNA
segments which allows the nucleoid to react rapidly to perturbations, but is still not larger than
the di�usion coe�cient of polysomes.

The parameters relative to the cellular scale are the total number of ribosomes per cellNF, the
cell half-length `, both of which will be varied, and the radius of the cellular cross section, which
is held constant. Because a central aim is to compare to the experiments in [Wu et al., 2019],
we are interested in values for a doubling time of ∼ 2 hr as in that study. We thus interpolated
experimental data points for di�erent growth rates, to obtain the parameter values for the de-
sired growth rate (see Appendix Sections B.5 and B.7) and obtained a total number NF ∼ 7300
ribosomes, a cross-sectional radius Rcell ≈ 0.4µm, and a cell half-length ` ∼ 0.9µm for a
reference cell. In addition, the total mRNA concentration for the reference cell was �xed at
ρtot =

∑
n ρn = 2400µm−3 [Bartholomäus et al., 2016]. The total number of DNA cylinders for

the reference cell was taken to be NDNA ∼ 6700 segments [Mondal et al., 2011]. When analysing
di�erent situations of biological interest, these parameters may be varied, particularly the overall
concentrations of DNA segments, ribosomes, and mRNAs.

Finally, we set the reaction constants for the ribosome binding and unbinding to kon = 6 ×
10−4µm/s, koff = 2.5 × 10−2/s [Castellana et al., 2016]. The mRNA degradation rate β = 3 ×
10−3/s corresponds to anmRNAhalf life of∼ 5 min [Bernstein et al., 2004], and themRNA syn-
thesis rate α is estimated from the global steady-state condition of Eq. (2.2), αNDNA = βNmRNA

[Castellana et al., 2016], where NmRNA is the total number of mRNA molecules in the cell, i.e.,
ρtot times the cell volume.

2.2.5 Numerically solving Eqs. (2.1) to (2.3)

Due to the complexity and nonlinearity of Eqs. (2.1) to (2.3), in order to solve them we need to
resort to numerical methods. We will solve these equations in two stages: First we will minimise
the free energy of the system to obtain an equilibrium steady state - which is not yet a solution
to Eqs. (2.1) to (2.3) - and then we will integrate forward in time Eqs. (2.1) to (2.3) using the
equilibrium steady state as initial condition, in order to obtain a non-equilibrium steady state.

This technique for solving the equations re�ects the two types of e�ects we are considering.
On the one hand, we have interactions that do not require any source of external work and, thus,
in the absence of any other e�ect, relax to thermodynamic equilibrium. This implies that their
steady state can be found by minimising their free energy [Pippard, 1964]. On the other hand,
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when integrating forward in time, we are adding intrinsically non-equilibrium e�ects (since tran-
scription and translation require the cell to consume free energy), which lead the system to a non-
equilibrium steady state. Below we argue why a minimisation of the free energy yields a steady
state. For further details on the numerical methods used and, in particular, for the integration in
time of Eqs. (2.1) to (2.3) from an equilibrium steady state, see Appendix B.6.

Free-energy minimum and equilibrium steady state

The di�usion equations for the mixture of hard spheres discussed in Section 2.2.3 (that is, in the
absence of any non-equilibrium contribution) read

∂tca(x, t) = −∂xJa(x, t), (2.32)

where a stands for each of the di�usive species involved.

The steady state of Eq. (2.32) combined with no-�ux boundary conditions, and with a con-
straint which �xes the total number of particles to a given value (Na) for each species yields the
following set of relations:

−∂xJa(x, t) = 0, Ja(±`, t) = 0, (2.33)∫ `

−`
dx ca(x, t) = Na. (2.34)

We will show that Eqs. (2.33) and (2.34) are tantamount to �nding the minimum of the free
energy with the constraint (2.34), i.e.,

min
{ca}

F (2.35)

subject to Eq. (2.34), (2.36)

where F is now considered to be a functional of the concentration pro�les ca(x), as discussed in
Section 2.2.1, and is minimised with respect to the concentration pro�les of all species a.

The Lagrange function of the minimisation problem given by Eqs. (2.35) and (2.36) reads

L= F −
∑
a

λa

[∫ `

−`
dx ca(x)−Na

]
, (2.37)

where λa are the Lagrange multipliers. First, the stationarity condition ofLwith respect to ca(x)
is given by

0 = δL

δca(x)

= δF

δca(x) − λa

=µa(x)− λa, (2.38)

where in the third line we used the de�nition of the chemical potential, see the �rst line of
Eq. (2.11). By taking the derivative of Eq. (2.38) with respect to x and using Eq. (2.23), we
obtain Ja(x) = 0 for all x, which is equivalent to Eq. (2.33). Second, the stationarity condition
of Lwith respect to λa yields Eq. (2.34). As a result, the minimisation problem (2.35), (2.36) is
equivalent to conditions (2.33) and (2.34).
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2.3 Nucleoid formation and size

So far we have described the model we will be working with and we now turn to analyse the
features of it. The �rst characteristic of the model we study is whether it gives rise to a nucleoid
segregated from the crowders (mRNA and ribosomes) and its size.

A system that relaxes to thermodynamic equilibrium at constant volume and in thermal con-
tact with a constant temperature bath, minimises its free energy F = U − TS, where T is the
temperature of the bath [Pippard, 1964]. In certain cases, the way a system minimises its free-
energy implies segregating some components of the mixture from others. This is the case of the
mixture of DNA and crowders (mRNAs and ribosomes) which we are considering here, where,
as it will be shown below, the DNA demixes from ribosomes and mRNAs. This phenomenon is
known as phase separation and the region of space to which the DNA localises after the segrega-
tion can be identi�ed with the bacterial nucleoid. Intuitively, in our model for the nucleoid, phase
separation is a consequence of the tendency of the system to reduce its interaction energy (and,
thus, its overall free energy), which is achieved by segregating plectonemic DNA from polysomes
and ribosomes. However, it can also be viewed as steric interactions giving rise to depletion forces
[Asakura and Oosawa, 1954], which drive the phase separation of the nucleoid.

In this section we will give a brief introduction to phase-separation phenomena and anal-
yse the equilibrium behaviour of the model. We will then numerically solve Eqs. (2.1) to (2.3),
which include non-equilibrium transcription and translation, and compare these solutions with
analytical estimates for the nucleoid size.

2.3.1 Segregation of DNA and crowders

Given a certain set of overall particle number constraints [e.g. the type of constraint introduced
by Eq. (2.34)], the fact that the system relaxes to a free-energy minimum implies that, at that
minimum, the Hessian matrix of the system

Hi,j = ∂2F

∂xi∂xj
, (2.39)

where xi are the degrees of freedom and F is the free energy of the system, has only positive
eigenvalues. If we constrain the system to be homogeneous and �nd that one or more eigenvalues
of the Hessian matrix are negative, then the homogeneous con�guration is unstable: focusing
on the case of phase separation, this means that the system will demix into two or more distinct
phases. This phenomenon is known as spinodal decomposition. In other words, whether spinodal
decomposition occurs depends on the curvature of the free-energy function [De Gennes, 1979].

We now consider a simpli�ed version of the free energy density (2.20) of the model:

f

kBT
=cF log cF +

∑
n

ρn log ρn +B
(2)
F,F
c2

F

2 +
∑
n

B
(2)
n,FcFρn

+ 1
2
∑
n,n′

B
(2)
n,n′ρn′ρn +B

(2)
F,DNAcFcDNA +

∑
n

B
(2)
n,DNAcDNAρn + 1

2c
2
DNAB

(2)
DNA,DNA, (2.40)

where we have assumed the system is homogeneous and we have only kept the second order
virial coe�cients for simplicity. Given the total concentrations of ribosomes (cF,tot), mRNA (ρtot)
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Figure 2.3: Phase diagram for the simpli�ed
free energy (2.40). Phase diagram of the free
energy (2.40) as a function of the total mRNA
concentration ρtot and the radius by which DNA
segments interact with other DNA segments ρ′.
The shaded region represents the region of the
phase diagram where the homogeneous solution
is stable and the white one where it is unsta-
ble (region where spinodal decomposition takes
place). The approximation of the boundary
(black line) was obtained from the best �t to an
exponential function.
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and DNA segments [cDNA,tot, to distinguish from the position dependent DNA density cDNA(x)],
we can obtain the number of free ribosomes and polysomes in a homogeneous system from the
kinetics of ribosome binding and unbinding, see Eqs. (2.1) to (2.3):

cF = cF,tot

1 + ρtot
kon
ko�

, ρ0 = ρtot exp

− cF,tot
ko�
kon

+ ρtot

 and ρn = 1
n!ρ0

(
koncF

ko�

)n
, (2.41)

where, in order to obtain these analytic results, we have assumed that there is no upper bound on
the amount of ribosomes that can bind to an mRNA [Castellana et al., 2016], which is justi�ed
if the amount of ribosomes that can bind an mRNA is large enough. Substituting these relations
in the free energy (2.40), we can obtain the spinodal region of the phase diagram by evaluating
the eigenvalues of the Hessian matrix as functions of the concentrations and parameters of the
system. If we choose the parameters as Section 2.2.4, but vary the total mRNA concentration ρtot
and the radius by which DNA segments interact with other DNA segments ρ′ (which are the two
most relevant parameters for the phase behaviour of the system under consideration), we obtain
the phase diagram shown in Fig. 2.3.

While the phase diagram Fig. 2.3 provides an estimate for the parameter region where phase
separation takes place, the correspondence with the full model is not exact for a number of reasons.
First, it is a simpli�ed free energy where only second virial coe�cients have been used for sim-
plicity, as opposed to the full model, which includes also third-order virial coe�cients. Second,
the phase diagram is based on equilibrium thermodynamics, which need not apply to the non-
equilibrium model de�ned by Eqs. (2.1) to (2.3). In this sense, we have obtained the equilibrium
phase diagram that is conceptually closest to the non-equilibrium system which we are model-
ing, because the phase diagram incorporates non-equilibrium e�ects from ribosome binding and
unbinding, as imposed by Eqs. (2.41). Nevertheless, our phase diagram cannot incorporate the
e�ects that may arise from mRNA synthesis and degradation, such as the centering and splitting
of the nucleoid that, as it will be shown later, are consequence of transcription. Therefore, the
phase diagram Fig. 2.3 is a qualitatively good approximation to the true non-equilibrium dynam-
ics (e.g. it predicts phase separation for the parameter ranges explored numerically later in the
text) but it is not exact.
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Estimate for the spinodal decomposition within the nucleoid

Here, we will consider a further simpli�ed version of the free energy of the system to estimate the
values of the parameters needed to drive spinodal decomposition within the nucleoid, a quantity
that will be useful later for the understanding of the splitting of the nucleoid.

We consider the simple case of only two species: DNA segments and bare mRNAs, with the
following free energy

F = ρ0 log ρ0 + 1
2B

(2)
00 ρ

2
0 +B

(2)
0DNAcDNAρ0 + 1

2c
2
DNAB

(2)
DNADNA. (2.42)

Setting all parameters as explained in Section 2.2.4, we can obtain the eigenvalues of the Hessian
matrix with respect to these two variables (cDNA and ρ0) and when any of the two eigenvalues
becomes negative, spinodal decomposition occurs. Thus, we �nd that the concentration ofmRNA
required at the center of the nucleoid to drive the splitting of the nucleoid is ρ∗0 ' 2500µm−1 (for
the typical DNA-segment concentration within the nucleoid of cDNA ' 6000µm−1, see below and
Fig. 2.4 A).

Again, we note that this is not an exact approach and is probably an overestimate of the re-
quired mRNA density at the center of the nucleoid. The fact that we only consider bare mRNA
and not larger polysomes will cause some of this overestimate. Moreover, considering only second
virial coe�cients will also cause overestimation of the required mRNA concentration.

2.3.2 Nucleoid size in the presence of non-equilibrium processes

In order to better understand the compaction of the nucleoid, we solved the one-dimensional
reaction-di�usion Eqs. (2.1) to (2.3). To compare the predictions of our model with experimental
data, in what follows we consider two scenarios for how the concentrations of themolecular species
scale with cell length.

Filamentous growth

In �lamentous growth, the total number of DNA segments, mRNAs, and ribosomes is propor-
tional to the cell length. Given that one of the primary aims of our analysis is to compare results
with the data of Ref. [Wu et al., 2019], which was obtained for slowly growing cells, the cell length
is kept �xed, which yields a substantial computational simpli�cation. For each cell length, we �rst
determined the equilibrium steady state of the system by minimising the free energy (2.20), and
then numerically integrated the reaction-di�usion Eqs. (2.1) to (2.3) forward in time to reach a
non-equilibrium steady state. The results are shown in Fig. 2.4 for di�erent cell lengths, up to
the cell length at which the nucleoid spontaneously splits into two lobes, and for di�erent total
mRNA densities. The cell length at which the nucleoid spontaneously splits into two lobes is eas-
ily identi�able because, when the splitting takes place, the DNA concentration at midcell drops to
a value close to zero, comparable to the DNA concentration at the cell poles.

While the non-equilibrium chemical reactions are responsible for the splitting of the nucleoid
(as it will be argued in Section 2.4.1), the minimisation of the free energy can account for the
existence of a phase-separated nucleoid in the cell due to the steric interactions that give rise to
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Figure 2.4: Steady-state concentration pro�les for E. coli growing �lamentously. (A) Concentrations
along the long axis of the cell of DNA, cDNA(x) (red), and free ribosomes, cF(x) (black), and polysomes
ρn(x) with the mRNA loading number n indicated by the colour bar. Each panel corresponds to a di�erent
cell half-length `, marked on the top of the panel, with total mRNAdensity ρtot = 2400µm−1. (B) Nucleoid
length versus cell length, 2`, for di�erent values of the total mRNA density, ρtot. For each value of ρtot

the nucleoid length is shown up to the cell length at which the nucleoid splits into two lobes. Red data
points were obtained from the numerical solution of the entire model while the grey lines are the analytical
estimates. The inset depicts on a log-log plot the power-law relationship between the length at which
the nucleoid splits and the rate of mRNA synthesis αcDNA, where cDNA is the average DNA concentration
along the nucleoid at steady state. The triangle represents the scaling obtained from the simpli�ed model
of Eq. (2.49).
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Figure 2.5: Steady-state concentration pro�les, for single-chromosome �lamentous growth. (A) Con-
centrations of DNA, cDNA(x), free ribosomes cF(x), and polysomes ρn(x), shown as in Fig. 2.4 A. (B)
Nucleoid length and standard deviation as a function of cell length from Ref. [Wu et al., 2019] (red) and
from the model (black). We found agreement up to cell lengths of around 9µm, after which the prediction
of the model deviates from the experimental data.

depletion forces [Asakura and Oosawa, 1954], see Fig B.4 for results obtained in the same way
as in Fig. 2.4 but in the absence of non-equilibrium e�ects. Importantly, neglecting the non-
equilibrium e�ects did not yield a substantial change in nucleoid size.

Furthermore, we observe that the con�guration that minimises the free energy excludes ri-
bosomes, mRNAs, and polysomes from the nucleoid to di�erent degrees. For example, the free
ribosome concentration is higher at the periphery than within the nucleoid by a factor of ∼ 3
while for a polysome with 3 bound ribosomes the ratio rises to ∼ 40, which is consistent with
experimental observations that polysomes are much more excluded from the nucleoid than are
ribosomes [Sanamrad et al., 2014]. As a rule of thumb, we �nd that the larger the macromolec-
ular complex is, the more excluded it will be from the nucleoid.

The relation between nucleoid and cell length appears to be roughly linear up until the cell
length at which the nucleoid begins to split in two, see Fig. 2.4 A and B. Moreover, as shown in
Fig. 2.4 B, the higher the total mRNA density, the smaller the nucleoid, implying that a high
mRNA density increases the osmotic pressure on the nucleoid, thus making it shrink. In Section
2.3.3 we will make a more formal statement of this observation and we will use it to estimate the
nucleoid size analytically.

Single chromosome �lamentous growth

So far we have analysed the scaling of nucleoid size with cell size by assuming that the number of
DNA segments is proportional to cell length. We now study another case of biological interest,
namely, that of a cell with a �xed amount of DNA and varying cell size. This scenario was re-
cently analysed in a dynamic imaging study of the E. coli chromosome [Wu et al., 2019], where
the initiation of DNA replication and cell division were halted, yielding a single chromosome in
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a �lamentously growing cell. We model this scenario by �xing the number of DNA segments,
but allowing the cell size to vary. In addition, the mRNA and ribosome number are no longer
proportional to cell length: based on the data in [Kohram, 2021], we assume that the total con-
centrations of mRNAs and ribosomes decrease linearly with cell length (ρtot ∝ a − b `, where a
and b are constants), approaching zero at 30µm – see Appendix B.9 for details.

Results are shown in Fig. 2.5: the model again predicts a roughly linear scaling of the nucleoid
size with respect to cell length, while the DNA-segment concentration decreases with cell size.
This indicates that the decrease in DNA-segment concentration with cell size is balanced by the
decrease of mRNA and ribosome concentrations, so as to keep nucleoid size a linear function
of cell size. This can be seen clearly in Fig. 2.5 A where the concentrations of all components
of the TTM decrease as the cell size increases. While the model prediction for nucleoid versus
cell length agrees reasonably well with experiments [Wu et al., 2019] for cell lengths smaller than
∼ 10µm (Fig. 2.5 B), there is a discrepancy for larger cells , see Section 2.5 for further discussion
on these results.

Finally, in Fig. B.5, we show an alternative case in which the mRNA and ribosome concen-
trations are kept constant instead of decreasing with cell size. This yields a predicted nucleoid
length very small compared to the experimental data, even for short cells, lending support to the
results of Ref. [Kohram, 2021] and the scaling proposed above.

2.3.3 Analytical estimates of the nucleoid size

As seen above, the nucleoid segregates from the rest of the cytoplasm. The nucleoid size at steady
state (provided that the nucleoid is single lobed) is set by the mechanical balance of osmotic pres-
sures between the nucleoid and the peripheral cytoplasm. These pressures solely stem from the
entropy and steric interactions of the components of the mixture, making the nucleoid size a
consequence of equilibrium physics, which is in line with the conclusions of the previous section.

Motivated by the phase separation of the nucleoid and its exclusion of large components of
the cytoplasm, in order to estimate the size of this phase-separated nucleoid, we will consider
the cell to be divided by two movable walls into three compartments: A central one, the nu-
cleoid, composed exclusively of DNA segments3, and two lateral ones which include ribosomes
and polysomes. To reach mechanical stability, the compartments may expand or contract, mov-
ing the walls to an equilibrium position where their osmotic pressures are balanced. The particles
interact through steric interactions, described by the virial coe�cients. Therefore, we consider
the following free energy for the particles within the compartments:

Fi = Fideal + kBT
N2
i Bi

2Vi
, (2.43)

where i denotes the compartment and Ni the particle number, Bi the e�ective virial coe�cient
that accounts for the steric interactions among the particles within the compartment, Fideal is the
free energy of the ideal gas and Vi the compartment volume. Essesntially, we are coarse graining

3From the previous section, e.g. Fig 2.4, one can check that this is a good approximation. From the free-energetic
point of view, it makes sense to have a compartment enriched in DNA and depleted in crowders, since it decreases the
interaction energy due to the form of the inter-particle potentials considered.
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all the second virial coe�cients of the di�erent particle types that appear in the full free energy
(2.20) into a single one for the whole compartment Bi. Then, the osmotic pressure exerted by
the compartments is [De Gennes, 1979]

Pi =− ∂F

∂V

=kBTNi

Vi

(
1 + NiBi

2Vi

)
, (2.44)

where the �rst term stems from the entropic pressure of an ideal gas while the second one,
NiBi/Vi, comes from the steric interactions.

In what follows, we consider Eq. (2.44) in the nucleoid and in the pole compartments, and
estimate the respective values of the virial coe�cients in the nucleoid, Bn, and at the cell poles,
Bp.

In the nucleoid, DNA-DNA interactions dominate, yielding a value of Bn ' 6.4× 10−4µm3.
For the poles we provide an e�ective value of the virial coe�cient by assuming that all ribosomes
are bound to mRNAs, and are equally distributed among them, that is, the poles are occupied by
spheres all equal in size. Given that the ratio of ribosomes to mRNAs changes with the amount
of mRNA in the cell, the virial coe�cients depend on this last parameter. In the cases analysed
in Fig. 2.4 B, we obtain the following values for the virial coe�cients, using Eq. (2.5), for the
corresponding mRNA concentrations:

Bp(1500µm−1) = 4.3× 10−4µm3,

Bp(2400µm−1) = 3.7× 10−4µm3,

Bp(3000µm−1) = 3.5× 10−4µm3. (2.45)

By equating the pressures of the compartments, we obtain the equilibrium value for the vol-
umes of each compartment. For �lamentous growth, where the number of ribosomes, mRNAs,
and DNA segments scales linearly with size (Ni ∝ `), we obtain the solution for the nucleoid
size Vn = ϕV , where ϕ, the fraction of total volume occupied by the nucleoid, depends on the
concentration of mRNAs in the cell:

ϕ(1500µm−1) = 0.7,
ϕ(2400µm−1) = 0.61,
ϕ(3000µm−1) = 0.56. (2.46)

As shown in Fig. 2.4 B, these estimates (gray lines) are in good agreement with the numerical
solution of the full reaction-di�usion equations (red points).

Nevertheless, the cytoplasm of the cell may not be dilute enough to allow considering only
two terms in the virial expansion. The third virial coe�cient for the DNA-DNA interaction is
B

(3)
n ' 5× 10−8µm6 and for the polysomes:

Bp(1500µm−1) = 9.4× 10−8µm6,

Bp(2400µm−1) = 6.8× 10−8µm6,

Bp(3000µm−1) = 6× 10−8µm6. (2.47)
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If we add the third virial coe�cient, the fraction of total volume occupied by the nucleoid be-
comes:

ϕ(1500µm−1) = 0.69,
ϕ(2400µm−1) = 0.60,
ϕ(3000µm−1) = 0.55, (2.48)

values that are very close to those obtained with the second virial coe�cient alone. Therefore,
for simplicity, when comparing with the nucleoid size obtained by numerically solving Eqs. (2.1)
to (2.3) we use the value obtained from second order virial coe�cients only.

Overall, we �nd that the inclusion of steric terms in both the nucleoid and mRNA/ribosome
compartments makes the nucleoid swell compared to what its size would be with only entropic
terms (ideal gas contribution). This is due to the nature of the nucleoid, a long relatively sti� poly-
mer with little entropy per segment compared to ribosomes and mRNAs. Moreover, in Fig. 2.4
B we quantitatively compared the estimates made in this section (grey lines) with the results of the
numerical solution to the full model (red data points), which includes non-equilibrium e�ects, and
found good agreement between the two approaches; thus validating the idea of nucleoid size being
a consequence of equilibrium physics alone and that the e�ects of non-equilibrium transcription
and translation in nucleoid size are negligible, provided the levels of mRNA and ribosomes are
maintained. Therefore, nucleoid size is a consequence of steric interactions alone, which can
be parametrised by an e�ective osmotic pressure to which only large macromolecules contribute
(mostly mRNAs and polysomes), since they are the only ones excluded from the nucleoid.

2.4 Consequences of non-equilibrium transcription and translation in
intracellular spatial organisation

So far we have analysed the emergence, compaction and size of the nucleoid and concluded that
they are a consequence of steric interactions, i.e., mostly driven by processes that do not require
free-energy dissipation. In other words, they are passive mechanisms. In this section, we will
explicitly address the consequences of non-equilibrium transcription and translation in nucleoid
positioning, as a result of the particle currents that can be established at steady state.

Currents at steady state

When transcription and translation are taken into account new phenomena occur, particularly at
steady state. As seen previously in this chapter, integrating numerically Eqs. (2.1) to (2.3) up to
their non-equilibrium steady state yields a pro�le like the one shown in Fig. 2.6. However, in
Fig. 2.6, we stress the fact that there are di�usion currents sustained at steady state due to the
transcriptomic activity. Indeed, mRNAs are synthesised within the nucleoid with rate αcDNA(x),
hence their spatial distribution has a local maximum atmidcell. Then, mRNAs di�use towards the
poles (see �ux arrows in Fig. 2.6), since it is free-energetically favoured. Finally, mRNAs reach the
cell poles where, after a typical timescale ∼ β−1 = 5 min, they are degraded. Note that mRNAs
within the nucleoid have no or few ribosomes attached while at the poles they are heavily loaded
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Figure 2.6: mRNA �uxes at steady-state.
The plot depicts the concentration pro-
�les at the non-equilibrium steady state.
The blue arrows in the bottom depict the
steady-state �ux of mRNAs, Jρtot (the ar-
row length is proportional to the mRNA
current). At steady state, mRNAs are syn-
thesised within the nucleoid, wherein they
di�use before escaping to the poles (and are
ultimately degraded).
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Figure 2.7: Transcription splits the nu-
cleoid into two lobes located at 1/4 and
3/4 of the cell length. (A) Concentration
pro�les for a �lamentous cell, obtained
from the equilibrium pro�le at t = 0 by
integrating forward in time the reaction-
di�usion Eqs. (2.1) to (2.3) in the pres-
ence of the non-equilibrium processes
until t = 20 min and t = 40 min, for a cell
with a half-length ` = 4.95µm shown as
in Fig. 2.4 A. (B) Positions of the center
of mass of the left (dashed red curve) and
right (solid red curve) halves of the DNA
along the long axis of the cell as a frac-
tion of the total cell length, as functions
of time.

with them, creating a circulating current for ribosomes too [Castellana et al., 2016]. Altogether,
these processes lead to the steady-state distribution shown in Fig. 2.6. In Fig. 2.6 the arrows
depict the �ux of mRNAs, which is quanti�ed by Jρtot(x) =

∑
n Jn(x), with Jn(x) given by Eq.

(2.29).

These steady-state currents are at the heart of the spatial localisation of the bacterial nucleoid.

2.4.1 Nucleoid splitting

While the linear increase of nucleoid length with cell length is the result of equilibrium osmotic-
pressure balance, the splitting of the nucleoid is entirely due to non-equilibrium processes. In fact,
for cells with ρtot = 2400/µm and a half length of ∼ 4µm or larger, the equilibrium steady state
used as the initial condition for the reaction-di�usion equations yields a nucleoid with a single
lobe. By contrast, the nucleoid splits into two identical lobes positioned at 1/4 and 3/4 of the long
cell axis when the reaction-di�usion Eqs. (2.1) to (2.3) are integrated forward in time, see Fig.
2.7. Such 1/4 and 3/4 positioning of the daughter nucleoids has been ubiquitously observed in
experiments [Wu et al., 2019] and is reproduced by the model with a high degree of accuracy,
see Fig. 2.7 B.
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Scaling for the length at which the nucleoid splits

In what follows, we present a simple argument to explain the dependence of the length at which the
nucleoid splits with respect to the underlying parameters, e.g., the mRNA synthesis rate. We take
the nucleoid to be a region of length Lnucl with homogeneous DNA-segment concentration which
extends from x = −Lnucl/2 to x = Lnucl/2, with interfaces that are perfectly sharp. The mRNAs
synthesised within the nucleoid di�use until they reach the nucleoid boundaries and, because it is
free-energetically favourable, they then escape the nucleoid and not return. As a result, the steady-
state concentration of mRNAs within the nucleoid can be modeled by the following di�usion
equation with a uniform source term due to mRNA synthesis and absorbing boundary conditions,
which represent mRNAs escaping from the nucleoid:

Dn
∂2ρtot(x)
∂x2 + αcDNA = 0, ρtot

(
±Lnucl

2

)
= 0, (2.49)

where ρtot(x) is the total mRNA concentration at position x, Dn the mRNA di�usion constant
(as de�ned in Section 2.2.4), and αcDNA the rate of mRNA synthesis. The solution of the above
equation is ρtot(x) = (L2

nucl/4− x2)α cDNA/(2Dn), whose local maximum within the nucleoid at
x = 0 takes the value L2

nucl α cDNA/(8Dn).
We hypothesise that when the mRNA concentration at the center becomes larger than a given

threshold, ρ∗tot, spinodal decomposition takes place due to steric interactions betweenmRNAs and
DNA, causing the nucleoid to split into two lobes. We thus expect ρ∗tot to roughly correspond to
the spinodal line of the phase diagram, but, given the non-equilibrium nature of the systemmostly
due to mRNA synthesis, it could di�er from the equilibrium spinodal boundary. If we assume
the threshold ρ∗tot exactly corresponds to the spinodal threshold, then ρ∗tot ' 2.5 × 103 µm−1

(estimated in Section 2.3.1). However, we note that an mRNA concentration of ∼ 103 µm−1 to
drive the splitting of the nucleoid is in agreement with the observed behavior of the full model
(see Fig. 2.7) and, therefore, we can justify a posteriori the validity of the approximations.

Whatever value ρ∗tot takes (provided its dependency on α is negligible), this simple model
predicts a scaling for the critical length L∗nucl at which the nucleoid starts to divide of the form
L∗nucl ∝ (αcDNA)−1/2, obtained from equating the maximum of the mRNA concentration pro�le
to a �xed value ρ∗tot. To test the prediction of this simple model, we numerically obtained the
length at which the nucleoid divides for di�erent values of α, see the inset in Fig. 2.4 B, and
found a good agreement with the proposed scaling.

Nevertheless, our model is too simple to give a mechanistic explanation for nucleoid split-
ting: no connectivity between DNA segments or modelling of DNA replication is included in
the description. However, overall, the model does show that mRNA synthesis can control the
localisation of daughter nucleoids, once the nucleoid has been split in two.

2.4.2 Nucleoid centring

As observed in Ref. [Wu et al., 2019], a single bacterial nucleoid has a strong tendency to lo-
calise at midcell for all cell sizes. Following the recent suggestion that the central positioning of
the nucleoid is regulated by an active process [Joyeux, 2019], we investigated whether the non-
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equilibrium process of mRNA production, di�usion, ribosome binding, and mRNA degradation
can account for nucleoid centring.

We consider the case of a nucleoid that, due to a �uctuation, is not initially at the center of
the cell, and test whether the non-equilibrium e�ects in our model can push the nucleoid back to
the cell center. To model this, we use the steady-state pro�les obtained for �lamentous growth,
and shift the concentration pro�les towards the right cell pole. The resulting con�guration has a
nucleoid displaced from the center, and equal mRNA and ribosome concentrations on both sides
of the nucleoid. This concentration pro�le is used as the initial condition for Eqs. (2.1) to (2.3),
which we integrate forward in time in the presence of the non-equilibrium terms. As shown in
Fig. 2.8, the nucleoid is centred at midcell after ∼ 30 min.

The physical origin of this centring is mRNA synthesis within the nucleoid: The nascent
mRNAs di�use in the nucleoid until they reach one of its boundaries and then escape, with an
equal �ux to the left and right of the nucleoid. If the nucleoid is not centred, the accumulating
mRNAs occupy a greater fraction of the available volume on one side of the nucleoid and thus
create a higher osmotic pressure on that side. The resulting pressure di�erence ultimately drives
the nucleoid back to the center of the cell.

The rate at which the nucleoid moves towards the cell center depends on both the pressure
di�erence due to mRNA accumulation, and on the e�ective viscous drag experienced by the nu-
cleoid as a whole. The e�ective viscous drag, γ, is given by Fnucl = γ vnucl, where Fnucl is the force
applied on the nucleoid (here, the osmotic-pressure di�erence times the cross-section of the cell),
and vnucl is the velocity of the nucleoid. If γ is low, the nucleoid responds fast to any force applied
on it and thus quickly reaches a position of mechanical equilibrium, where the osmotic-pressure
di�erence vanishes. In this case, the centring process is only limited by the speed at which mR-
NAs accumulate on either side of the nucleoid, which sets the pressure di�erences. By assuming
this limit, we can to establish a lower bound for the time needed by the nucleoid to center.

The kinetics obtained in this low-drag limit are shown in Fig. 2.8B (grey line), and they are
given by an exponential relaxation with timescale β−1, set by the rate of mRNA degradation (see
below). As shown in the �gure, the nucleoid centring obtained from the full model lags behind the
lower bound, showing that there is a non-negligible contribution from drag on the nucleoid. As
shown in the inset, both the lower bound and the result from the full model show an exponential
relaxation of the nucleoid position for early times in the centring process.

Analytical estimates for the centring dynamics in the low-drag limit

The centring of the nucleoid can also be understood in terms of the simpli�ed compartment
model we used to estimate the nucleoid size. However, in order to explain the centring dynamics,
we need to modify the model and assume that the mRNA synthesised in the nucleoid can di�use
out of the nucleoid to the lateral compartments. If the nucleoid is not centred in the cell and the
synthesised mRNAs leave the nucleoid symmetrically to the left and right, then the mRNA den-
sity, and thus the osmotic pressure, will increase in the smaller polar compartment, thus pushing
the nucleoid towards the center. As a result, the force that we need to consider is the di�erence in
pressure between the poles times the cross section σ of the cell F = σ(PL − PR), where ‘L’ and
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Figure 2.8: Non-equilibrium processes
centre the nucleoid at midcell. (A) Con-
centration pro�les obtained by initially
shifting the steady-state pro�les towards the
right cell pole at t = 0, and then integrat-
ing forward in time the reaction-di�usion
Eqs. (2.1) to (2.3) in the presence of non-
equilibrium processes to t = 5 min and
t = 20 min, for a cell with half-length ` =
1.8µm, shown as in Fig. 2.4 A. (B) In red,
location of the center of mass of the nu-
cleoid along the long cell axis, as a function
of time. In gray, the analytical lower bound
obtained by neglecting nucleoid drag. Inset:
The quantities depicted are the same as in
B, but with the y-axis is in logarithmic scale.
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‘R’ denote the left and right pole, respectively. The dynamical equation for the position of the
center of mass of the nucleoid, which we denote by xn, is:

dxn
dt

= D

kBT
σ(PL − PR), (2.50)

whereD is a di�usion constant, not necessarily equal to the di�usion constant of DNA segments.
In fact, D is an e�ective di�usion coe�cient that includes collective e�ects of DNA segments
di�using together and potentially other biological e�ects.

We can provide a lower bound for the time it takes the nucleoid to center by assuming that the
drag is small, i.e. the centring of the nucleoid due to a di�erence in osmotic pressure is only limited
by the synthesis of mRNA. In this limit, the nucleoid moves fast enough to prevent a pressure
di�erence between the poles, that is, a quasi-static approximation of Eq. (2.50): dtxn = 0, which
implies PL = PR. Thus, the centring of the nucleoid is controlled by the rate at which the number
of polysomes in the lateral compartments change. In both compartments, the pressure is set by
the concentration of polysomes, whose number is set by the following di�erential equation:

dρtoti

dt
= αcDNA

2 − βρtoti , (2.51)

where ρtoti is the total mRNA concentration in compartment i and whose solution is

ρtoti = α cDNA

2β + Cie
−βt, (2.52)

where Ci is a constant that is set by initial conditions. In the case of the initial condition of Fig.
2.8, Ci takes the value CL ' +0.2αcDNA/β and CR ' −0.2α cDNA/β for the left and right
compartment, respectively, as the initial position of the centre of mass of the nucleoid is located
at +0.2/` and the amount of mRNA is directly proportional to the volume of each compartment.
Since PL = PR we have ρtot L/VL = ρtot R/VR. Assuming that the nucleoid does not change size
during this process, we obtain

VL = ρtot L
ρtot L + ρtot R

(V − Vn), (2.53)
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where V is the total volume of the cell, and Vn the volume of the nucleoid. In the previous
relation, the only term that is time-dependent is ρtot L since ρtot L + ρtot R is constant in time.
Therefore, the position of the nucleoid is set by VL, which depends only on ρtot L, which yields
the exponential relaxation with timescale β−1 mentioned above. This lower bound on the time
for centering is depicted in Fig. 2.8 B (grey line).

Validity of the one-dimensional model

In our analysis, we leveraged the cylindrical symmetry of the E. coli cell to reduce the number of
dimensions of the model to one, which, in the description of the centring dynamics of the nu-
cleoid, is crucial. The real system is three-dimensional and, as opposed to what has been assumed
before, it need not be homogeneous in the radial direction. This becomes particularly important
at midcell, where the nucleoid may not occupy the whole cellular cross section, potentially allow-
ing the di�usion of polysomes and ribosomes around the nucleoid: such di�usion could have an
important e�ect on the centring dynamics, as it would result in a decrease of the osmotic-pressure
di�erence between the poles and, therefore, a decrease of the centring force. Actually, it would
mean that the osmotic pressure di�erence can vanish without requiring the nucleoid to move,
thus disrupting the centring mechanism proposed above. However, the magnitude of this e�ect
depends on how fast polysomes can di�use around the nucleoid. If such di�usion around the
nucleoid is slow (due to, e.g., obstacles in the narrow channel between the membrane and the
nucleoid), the osmotic-pressure di�erence, and thus the centring force, will be sustained.

We now proceed to estimate the di�usive �ux around the nucleoid in the presence of a con-
centration gradient and assess the e�ect of this �ux in the centring dynamics. We assume that
the nucleoid is a cylinder of length Lnucl and radius R − L/2, where R is the cell radius and L
is the length of a DNA segment (we estimate the depletion zone between the membrane and
the nucleoid to have a width equal to the persistence length of a DNA plectoneme as this is
the lengthscale of the DNA-membrane interaction). The cross section available for di�usion is
σd = π[R2 − (R − L/2)2] ' πRL (neglecting terms of order L2). If we assume that the concen-
tration of mRNAs at one pole is c and that it is zero at the opposite pole, then the concentration
gradient is c/Lnucl, yielding for the total �ux across J the available cross section

J ' Dnc

Lnucl
πRL, (2.54)

where Dn is the di�usion coe�cient of mRNAs and polysomes.

Then, the characteristic timescale τ over which these concentration gradients will disappear
due to di�usion is

τ ∼ cVp
J

= RLpLnucl

DnL
, (2.55)

where Lp is the length of one of the polar regions (2` = 2Lp + Lnucl) and Vp = πR2Lp is its
volume. By substituting the values of these parameters given in Section 2.2.4, and assuming that
for our reference cell Lnucl ' 1µm and Lp ' 0.5µm, we obtain τ ∼ 20 s.

The value obtained for the di�usion timescale τ is lower than the typical timescale on which
synthesis and degradation of mRNAs (β−1) would set the osmotic-pressure di�erence at the
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poles. Therefore, most of the osmotic-pressure di�erence would be removed by di�usion, and
the resulting centering force exerted on the nucleoid would be small. However, when estimating
τ , we assumed that polysomes di�using through the narrow channel between the nucleoid and
the membrane have same di�usion coe�cient as for polysomes di�using at the poles. This as-
sumption is likely to be inaccurate, because in the channel there are more crowders or obstacles
than at the poles, including transertion e�ects – that is, the simultaneous transcription, trans-
lation and insertion of proteins into the membrane that tethers the nucleoid to the membrane
[Gorle et al., 2017]. Hence, the validity of the one-dimensional model depends on how fast dif-
fusion of mRNAs and polysomes occurs through the narrow channel between the nucleoid and
the membrane. For su�ciently slow di�usion in this region and a su�ciently narrow channel, the
corrections to the one-dimensional model (stemming from the nucleoid not occupying the whole
cross section) are negligible.

2.4.3 Perturbing the nucleoid

Until now we have analysed how the model behaves naturally, in the absence of stresses or per-
turbations. However, we can also probe how the model would respond to certain types of pertur-
bations and compare with experimental data. Usually, antibiotics are utilised to modify certain
essential functions in E. coli and observe the changes in the size and morphology of the nucleoid.
Examples of these perturbations are a halt of transcription with rifampicin and an arrest in trans-
lation by kasugamycin. Both scenarios are analysed below.

Halt in transcription

It has been shown experimentally that when transcription inE. coli is halted, e.g. by treatment with
rifampicin, the nucleoid expands [Cabrera et al., 2009, Bakshi et al., 2012]. From a point of view
where macromolecular crowding is critical for nucleoid compaction, the halt of mRNA synthesis
depletes polysomes, and thus results in a lower osmotic pressure on the nucleoid, allowing its
expansion. We tested this scenario with our model by using the non-equilibrium steady state
shown in Fig. 2.4 A as the initial condition for Eqs. (2.1) to (2.3), switching o� mRNA synthesis
(α = 0), and integrating forward in time. As shown in Fig. 2.9, the nucleoid expands and spreads
over most of the intracellular space. The nucleoid does not take over the entire cell because there
are pockets of free ribosomes at both cell poles, which prevent the DNA from occupying these
spaces.

The nucleoid reaches its expanded steady state in ∼ 30 min, which is in good agreement with
experimental data [Cabrera et al., 2009], see Fig. 2.9 B, despite the fact that parameters like
total cell length or growth rate used in our model may not match the (unreported) experimental
ones. The agreement is due to the fact that the expansion process is primarily driven by the
degradation of mRNAs, hence β is the most relevant parameter for this process. In Fig. 2.9 B
the bulk of the expansion happens in the �rst 10 min – a timescale consistent with the half-life of
mRNA (5 min) and with the experimental data. Therefore, the most relevant parameter for the
expansion process is the mRNA degradation rate and, given the quantitatively good behaviour of
the model, we conjecture that in the experiments by Cabrera and colleagues this parameter takes
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Figure 2.9: The nucleoid expands in the
absence of mRNA synthesis. (A) Steady-
state pro�le including mRNA synthesis (t =
0) and pro�les obtained by integrating for-
ward in time from the steady-state pro�le
at t = 0 in the absence of mRNA synthe-
sis (t = 4 mins and t = 20 mins), for a cell
with half length ` = 3.6µm. The concen-
tration pro�les are shown as in Fig. 2.4 A.
(B) Fraction of the cell volume occupied by
the nucleoid, as a function of time (com-
puted as the fraction of length along the axis
of the cell with a DNA segment concentra-
tion cDNA > 1000 µm−1). The turquoise
data points were obtained from Cabrera et
al. [Cabrera et al., 2009], for the case of a
cell treated with rifampicin (which blocks
mRNA transcription).

a similar value to the one used here (which was obtained from Ref. [Bernstein et al., 2004]).

Halt in translation

It has been shown that, after inhibition of translation with antibiotics such as kasugamycin or chlo-
ramphenicol, the nucleoid contracts [Bakshi et al., 2014]. We therefore tested our model to see if
it can explain the contraction of the nucleoid after treatment with kasugamycin. Kasugamycin is
known to reduce the abundance of polysomes by inhibiting translation initiation and to substan-
tially compact the nucleoid [Xiang et al., 2021]. Hence, to reproduce the e�ect of kasugamycin in
the model we set the rate of ribosome binding to polysomes to zero (kon = 0) and integrate foward
in time from the non-equilibrium steady state shown in Fig. 2.4 A. The results are reported in
Fig. 2.10. There is a signi�cant contraction of the nucleoid after∼ 2min, which is consistent with
the timescale on which ribosomes unbind from polysomes k−1

o� = 40 s. Nevertheless, the contrac-
tion of the nucleoid in the model is smaller than the one reported in Ref. [Xiang et al., 2021],
potentially re�ecting the e�ect of transertion on nucleoid size [Bakshi et al., 2014], which is not
taken into account in our model. However, the fact that the model predicts a contraction of the
nucleoid if ribosomes stop binding to mRNAs suggests that the steric interaction of bare mRNAs
with the DNA is enough to compact the nucleoid and that polysomes are not required for nucleoid
compaction, which helps explain recent observations [Xiang et al., 2021].

It was also noted that treatment with kasugamicin seems to destabilise the positioning mecha-
nism of daughter nucleoids and cause their coalescence [Xiang et al., 2021]. Given that treatment
with kasugamicin decreases the width of the nucleoid [Bakshi et al., 2014], this will increase the
di�usion of crowders around the nucleoid, implying that our one-dimensional model may not be
valid anymore, in accordance with the �ndings of the previous section. Therefore, the position-
ing mechanisms suggested in this chapter may be less e�ective after treatment with kasugamicin
and could eventually cause the coalescence of two daughter nucleoids. As argued below, further
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Figure 2.10: The nucleoid contracts in
the absence of translation initiation. (A)
Steady-state pro�le including translation
initiation (t = 0) and pro�les obtained by
integrating forward in time from the steady-
state pro�le at t = 0 in the absence of ribo-
some binding (kon = 0 for panels t = 2mins
and t = 10mins). (B) Time evolution of the
fraction of the cell volume occupied by the
nucleoid, shown as in Fig. 2.9B.
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research should include a more comprehensive description of the radial degrees of freedom in
the spatial organisation of E. coli to better understand this kind of perturbations and the general
mechanisms of self-organisation.

2.5 Discussion of the results

In this chapter, we investigated the physical origins of the intracellular localisation of DNA, mes-
senger RNAs (mRNAs), and ribosomes in bacteria. This is a topic of general interest due to
its far-reaching consequences, such as, the spatial organisation of transcription and translation
[Gray et al., 2019,Weng et al., 2019], chromosome positioning and segregation [Wu et al., 2019,
Joshi et al., 2011], and a wide range of cellular processes regulated by the nucleoid that excludes
many macromolecules from the volume which it occupies [Coquel et al., 2013].

Based on steric interactions among DNA, mRNAs and ribosomes, we developed a holistic
model for the spatial organisation of the bacterial nucleoid, which is intuitive and can quantita-
tively describe the behaviour of the nucleoid and account for experimentally tested perturbations.
The model predicts the formation of a phase-separated nucleoid, whose size is in agreement with
experimentalmeasurements [Wu et al., 2019] for cells smaller than 10µm (Fig. 2.5). Beyond this
cell length, our model is no longer accurate, for reasons that may include the lack of connectiv-
ity among modeled DNA segments, uncertainties in the concentration of crowders, and molec-
ular components which have not been explicitly incorporated in the model, such as nucleoid-
associated proteins [Dame et al., 2020] or topoisomerases [Stuger et al., 2002] (see Section 2.1).

Moreover, the model highlights the importance of transcription and translation in regulat-
ing the size of the nucleoid. On the one hand, it can account for nucleoid expansion as a result
of a halt in mRNA synthesis, demonstrating that the progressive degradation of crowders could
be the physical cause of the expansion. Indeed, the timescales on which such expansion hap-
pens matches the ones observed experimentally [Cabrera et al., 2009], and coincides with the
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timescales of mRNA turnover. On the other hand, halting translation (by precluding ribosomes
from binding to polysomes or mRNAs) further compacts the nucleoid because bare mRNAs are
still large enough to sterically compact the nucleoid and the number of free ribosomes is increased.

Our results also underline the role of non-equilibrium e�ects in the regulation of nucleoid
position. The nucleoid is known to localise at midcell [Wu et al., 2019], and we demonstrate that
the synthesis of mRNAs and their expulsion from the nucleoid caused by steric e�ects can give rise
to this positioning – see Fig. 2.8. In fact, a perturbation from the central position of the nucleoid
induces an osmotic-pressure di�erence between the two cell poles, which pushes the nucleoid
back to midcell. The timescale for this centring depends on both the time it takes to establish an
osmotic-pressure di�erence, which is set by the mRNA turnover time, and the drag experienced
by the nucleoid. This dragmay be underestimated in ourmodel, because we do not include e�ects
that could slow down nucleoid centering, e.g. the transient attachment of the nucleoid to the
membrane by proteins that are simultaneously being transcribed, translated, and inserted into the
membrane, also known as transertion [Gorle et al., 2017]. Furthermore, our model shows that
non-equilibrium e�ects are responsible for the ubiquitous nucleoid splitting and localisation at 1/4
and 3/4 positions along the long cell axis. Indeed, the synthesis of mRNAs within the nucleoid,
without additional active processes, is a robust mechanism to make the daughter nucleoids localise
at 1/4 and 3/4 positions, as observed experimentally [Wu et al., 2019].

Turing patterns at the cellular scale [Wu et al., 2016] also display features, such as, the emer-
gence of a characteristic lengthscale, that could seem similar to the ones produced by our model,
in view of Fig. 2.11. These non-equilibrium patterns have been used to investigate many biologi-
cal features on a cellular and sub-cellular scale, such as the positioning of protein clusters in E. coli
[Murray and Sourjik, 2017]. However, unlike Turing patterns, our model predicts a phase sepa-
ration due exclusively to steric interactions, and in the absence of non-equilibrium e�ects, see Fig.
2.7 A, upper pannel. The patterns reported here are more closely related to the ones produced
by other models with an interplay between an equilibrium free energy and non-equilibrium dy-
namics, e.g., the formation of FtsZ rings in bacteria [Shlomovitz and Gov, 2009], or other non-
equilibrium phase-separation models [Li and Cates, 2020], such as models of growing droplets
[Zwicker et al., 2017]. Nevertheless, our model provides a conceptually simpler framework to
produce these patterns. In fact, unlike a model of physically growing droplets, our analysis in-
volves a conserved order parameter – the total number of DNA segments – and the e�ect of
non-equilibrium terms – mRNA production and degradation – is limited to nucleoid reshaping
and repositioning. Despite its simplicity, our model produces a number of experimentally ob-
served patterning e�ects, such as nucleoid centering at midcell, splitting and positioning of sister
lobes during cell division.

In addition, this patterning is not limited to nucleoid splitting into two sister lobes, because
our model predicts that the nucleoid can split into more than two lobes, whose size is given by a
characteristic length and whose position is tightly controlled, as can be seen in Fig. 2.11. Exper-
imentally, in long �lamentously growing cells (where cell division is inhibited but DNA replica-
tion is allowed to continue), nucleoids are observed at tightly controlled positions and distances
[Wehrens et al., 2018], forming a very similar pattern to the one obtained here, albeit with a
shorter characteristic length. In Ref. [Wehrens et al., 2018] a separate nucleoid appears every
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Figure 2.11: Steady-state pro�les for �lamentously growing cells. Steady-state pro�les of the concen-
trations of the components of the E. coli transcriptional-translational machinery (TTM) for �lamentously
growing cells with mRNA concentration ρtot = 2400µm−1. Colours represent di�erent chemical species
of the TTM, as in Fig. 2.4 A, and each of the panels corresponds to a di�erent cell length (as indicated
within each panel). To enable comparison between di�erent panels, the lengthscale in all panels was kept
constant. As in Fig. 2.7, for cells larger than ∼ 8µm the nucleoid splits in two lobes. Furthermore, for
cells around ∼ 16µm the nucleoid has three distinct lobes, suggesting that this may be a pattern with a
characteristic length that exists also for longer cells.
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∼ 2.25µm the cell grows in length. This value is roughly half of the one predicted by this model,
possibly due to uncertainties in the parameters such as the di�usion coe�cient of mRNAs within
the nucleoid.

Given its generality, our analysis is not necessarily restricted to the nucleoid of prokaryotic
cells [Cohan and Pappu, 2020]. For instance, division of certain phase-separated condensates has
been experimentally related to non-equilibrium processes, as is the case for the ParABS partition
system, which creates phase-separated condensates of DNA and ParB around parS sites, whose
division is controlled by the activity of ParB’s ATPase activity on ParA [Guilhas et al., 2020]. The
activity-driven nucleoid division described in our model may thus constitute a general strategy
employed by cells to control the structure and positioning of membraneless compartments.

Future directions: Extensions and experimental tests

Our work implies that steric interactions make the bacterial cytoplasm an e�ectively poor sol-
vent for the chromosome, as recently indicated by experiments [Xiang et al., 2021]. However,
steric interactions may not be the only contribution to the poor-solvent quality of the cytoplasm.
Other types of intermolecular interactions [Odijk, 1998] or the e�ect of nucleoid-associated pro-
teins [Dame et al., 2020] could also a�ect the solvent quality of the cytoplasm and, therefore,
the organisation of the nucleoid in the cell. Notably, certain proteins or enzymes, such as Dps
[Janissen et al., 2018] and DNA gyrase [Stuger et al., 2002], have been shown to modify the
compaction of the nucleoid. Given that the radii of the steric interactionmight be an e�ective one,
phenomenologically, one could account for perturbations where these molecules are involved by
varying the parameter ρ′ (see Section 2.2.1) and reduce it to account for their presence. Still,
for future studies, both theoretical and experimental, research into these other regulators of the
nucleoid size could yield a more complete picture of its organisation, and improve the accuracy
of the results presented here.

Another of the limitations of this study is the reduction from the three dimensions of an E.
coli cell to the single one considered here. In reducing the system to one dimension, we tac-
itly assumed that the nucleoid occupies the whole cross-section. While normally the nucleoid
does spread over most of the cross-section, upon treatment by kasugamycin and chlorampheni-
col the width of the nucleoid decreases [Bakshi et al., 2014] with two important consequences:
Since the nucleoid does not occupy the whole cross-section, the osmotic pressures in di�erent
regions of the cells can be equilibrated without the need for lateral displacement of the nucleoid,
which removes the mechanism that positions the nucleoid at midcell (or 1/4 and 3/4 for daugh-
ter nucleoids). In addition, if the nucleoid does not occupy the whole cross-section of the cell,
mRNAs might be able to escape radially from the nucleoid, which can induce a deviation from
the scaling found in Eq. (2.49) for the length at which the nucleoid splits. Indeed, previously
separated daughter nucleoids have been observed to coalesce upon treatment with kasugamycin
and chloramphenicol [Schaechter and Laing, 1961, Xiang et al., 2021] and we hypothesise that
the decrease in nucleoid width induced by these drugs destabilises the positioning of daughter nu-
cleoids. Then, if the nucleoids come into contact due to �uctuations, they are driven to coalesce
by short-range depletion interactions due to ribosomes, mRNAs, and any remaining polysomes.
Therefore, we expect that exploring the three-dimensional dynamics of the system might explain
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several phenomena that for the moment remain unaccounted for.

Moreover, the present work has been devoted to the physical principles governing the global
organisation and positioning of the bacterial nucleoid. However, the nucleoid also has a rich
internal dynamics [Fisher et al., 2013]. Given that the DNA plectoneme persistence length is
close to the cell radius, future studies may investigate whether orientational order emerges, and
whether it has implications for intra-nucleoid organisation.

As outlined above, our model (like every model) has certain limitations. Therefore, an im-
portant part of building a theory is knowing when it will collapse and will be no longer accurate
or able to explain the observations. The grounds for this testing must also be laid.

In the case of the present theory for the organisation of the bacterial nucleoid, the one-
dimensional assumption, which turns out to be crucial for nucleoid positioning, is one its lim-
its, as mentioned above. Yet, its consequences are not restricted to the coalescence of daughter
nucleoids, as a substantial decrease in the radius of the nucleoid should enable the di�usion of
macromolecules around it, destabilising too the centring mechanism. Therefore, if the nucleoid
shrinks in the radial dimension, while the average position of the nucleoid may still be the centre4,
there should be larger �uctuations in the position of the nucleoid. These should be measurable
by the second moment of the distribution of the nucleoid position, if measurements of enough
resolution can be made for a large enough number of cells and long enough times, and treatment
by kasugamycin (or erythromycin [Sanamrad et al., 2014]) should result on an increase of the
variance of the position.

However, treating the cells with kasugamycin induces a large perturbation in the metabolism
of a cell, since not only does it make the nucleoid shrink but it also halts translation, with the
widespread consequences this may carry. Thus, alternative approaches that may yield similar
outcomes should also be envisaged. In particular, quantitative measurements of the nucleoid in
stationary phase E. coli could be a good candidate.

When nutrients are scarce and cannot sustain exponential growth, E. coli cells enter stationary
phase and stop reproducing [Nyström, 2004, Santos et al., 2005]. Upon cessation of growth, the
synthesis of Dps is induced [Almiron et al., 1992], which compacts the nucleoid at least in the
longitudinal direction [Janissen et al., 2018]. If a radial contraction of the nucleoid was also mea-
sured, then, according to our theory, there should be a destabilising e�ect in the central location of
the nucleoid in stationary phase (larger dispersion of the measured positions even if the average is
still at midcell). Moreover, stationary phase cells are often associated with a slower transcriptomic
activity, which should further amplify the instability of nucleoid location.

Therefore, quantitative assessment of the stationary-phase E. coli nucleoid compaction and
positioning could also be used to compare with the theory exposed here and explore its limitations.
However, care should be taken when extrapolating the results obtained here to the stationary-
phase nucleoid, since the highly expressed Dps protein would increase the attractive interac-
tions between DNA segments (in a phenomenon akin to other protein-DNA co-condensations
[Quail et al., 2021]) and, eventually, it may outcompete repulsive interactions, thus invalidat-
ing the picture based on excluded-volume interactions proposed here [Andersen et al., 1971].

4Even a completely random positioning within a cell would yield midcell as the average position.
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Hence, further work may be needed before applying this framework to certain scenarios like
stationary-phase E. coli.
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Part II:

A theoretical framework for non-ideal
chemical reaction networks

Most of an organism, most of the time, is developing from
one pattern into another, rather than from homogeneity
into a pattern. One would like to be able to follow this
more general process mathematically also. The di�culties
are, however, such that one cannot hope to have any very
embracing theory of such processes, beyond the statement
of the equation.

A. M. Turing,
The chemical basis of morphogenesis, 1952
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The examples exposed in the �rst part of this thesis highlight the importance of interactions
between solutes in the cell cytoplasm. These interactions give rise to emergent behaviour like
phase-separated organelles (e.g. the nucleoid in certain bacterial cells, see Chapter 2) or control
the size of protein aggregates, as found in the �rst chapter. Nonetheless, Part I was devoted to two
particular examples and one would like to have a theory as general as possible for a wide variety of
processes, to increase our understanding of them and be able to distinguish between the generic
properties of these mechanisms and the details of each one of them.

An umbrella under whichmany of these processes can be described is that of reaction-di�usion
equations. More precisely, we will consider a network of chemical reactions that is driven out of
equilibrium to represent the reactions that may happen in the cytoplasm of a cell. In addition,
di�usion must be taken into account if we aim at explaining the spatial organisation within a cell.
However, unlike classical reaction-di�usion systems, which are assumed to be ideal (i.e. solutions
with non-interacting solutes), we need to consider interactions between the components of the
solution to better account for the complex dynamics of the crowded cytoplasm and, thus, build
more realistic models that describe better the physical reality of a cell. Altogether, the framework
we aim at building may be termed non-ideal reaction-di�usion systems.

Beyond the examples of Part I, it is becoming increasingly clear that, in general, the cytoplasm
of a cell does not behave like an ideal solution [Zielinski et al., 2017]. There is a plethora of in-
teractions between the solutes that take place within the cytoplasm, mostly involving proteins and
other macromolecules, but also ions. Some of the most common interactions that are relevant
in the cellular cytoplasm are steric or crowding e�ects – see Part I and Refs. [Zhou et al., 2008,
Mitchison, 2019] – and electrostatic interactions (e.g. [Fall and Keizer, 2001,Wang et al., 2018]).
Arguably, the most striking phenomenon caused by these interactions is the emergence of phase-
separated condensates within the cytoplasm, also known as membraneless organelles particu-
larly in the cell biology literature, which are now widely studied [Li et al., 2012, Su et al., 2016,
Brangwynne et al., 2009]. The composition of these membraneless organelles is di�erent to that
of the cytoplasm, as they are typically enriched in a certain type of molecules while they exclude
others [Ditlev et al., 2018]. Moreover, it has been hypothesised that they spatially control bio-
chemical reactions [Banani et al., 2017], by modulating their rates and speci�city within the con-
densate. In this sense, the nucleoid described in Chapter 2 shares all of the properties described
here for membraneless organelles, since it controls the spatial distribution of transcription and
translation, and it excludes large macromolecules from its volume.

Therefore, phase separation phenomena play an important role in the internal spatial organ-
isation of cells and their regulation is crucial for many cellular functions. One of the ways cells
can dynamically control the appearance of membraneless organelles (and its composition or func-
tion) is through chemical reactions, notably post-translational modi�cations like phosphorylation
[Tsang et al., 2019, Kim et al., 2019] or methylation [Nott et al., 2015]. However, phase separa-
tion is also triggered by changes in the environment [Franzmann et al., 2018, Lyon et al., 2021],
establishing them as potential sensing and regulatory mechanisms.

From the theoretical perspective, the interplay between interactions within the solution and
non-equilibrium chemical reactions has also been widely studied. However, most of these e�orts
[Huberman, 1976, Glotzer et al., 1995, Wurtz and Lee, 2018, Li and Cates, 2020] were based
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on e�ective reaction-di�usion models that, while they can describe patterning and other non-
equilibrium phenomena in a simple way, they lack thermodynamic consistency, as they treat
chemical reactions as ideal – by modelling their dynamics with mass-action kinetics (MAK) –
while the interaction-in�uenced di�usion that drives phase-separation is not, and there is no ex-
plicit non-equilibrium driving. Conversely, a thermodynamically consistent description would re-
quire that, in the same way in which di�usion is governed by a free energy (that takes into account
the interactions), the dynamics of chemical reactions must also re�ect this free-energetic depen-
dency. Early progress at addressing non-ideal reaction-di�usion systems in a thermodynamically
consistent model was limited to a linear stability analysis for the dynamics of binary solutions
[Carati and Lefever, 1997]. More recently, some works have aimed at establishing a determinis-
tic theory for non-ideal chemical reaction networks (CRNs) [Avanzini et al., 2021] and exploring
minimal examples for pattern formation [Bazant, 2013, Kirschbaum and Zwicker, 2021] but the
link between non-equilibrium CRNs and phase-separation has not yet been elucidated in full
generality.

In this part, we aim at building a thermodynamically consistent framework for interacting
reaction-di�usion systems that, thus, may exhibit phase-separation at steady state. Therefore,
a complete theory of non-ideal CRNs is necessary and here previous e�orts are complemented
by analysing the behaviour of non-ideal CRNs in the stochastic limit and exploring the con-
sequences of the topology of the network. We do so by �rst constructing a framework which
satis�es that, in the absence of explicit non-equilibrium driving, the system relaxes to thermody-
namical equilibrium (Chapter 3). This enables us to naturally adapt and generalise results from the
well-established theory of ideal CRNs, explore the connection between non-equilibrium CRNs
and phase separation, and obtain Lyapunov functionals for a particular class of CRNs, known as
complex-balanced (Chapter 4).

A. M. Turing already stated the di�culty of building a general theory for patterning pro-
cesses and, here, we will fail in doing so, as the applicability of most of our results is limited to
complex-balanced networks. However, important consequences can be derived from these types
of networks, see Chapter 5, where we also discuss on the implications of considering more general
networks.
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Chapter 3

Introduction to the description and
thermodynamics of Chemical Reaction
Networks

We will now take the approach of the formal kineticist1 and de�ne the chemically reacting systems
in terms of elementary reactions. An elementary reaction is a chemical reaction with no hidden
intermediate steps [Kondepundi and Prigogine, 2015], that is, the most basic unit of a chemical
transformation2, which is de�ned by a set of stoichiometric coe�cients and a rule relating reaction
rates to composition (as well as other physical variables), which for ideal solutions usually is the
law of mass action kinetics [Horn and Jackson, 1972]. But, most importantly, the driving force of
elementary reactions (whether in or out of thermodynamic equilibrium) is their free energies of
reaction or a�nity (no matter how complex these free energies may be), provided a sort of local
equilibrium can be de�ned [Kondepundi and Prigogine, 2015].

Therefore, the thermodynamically consistent approach to chemical reaction networks (CRNs)
in non-ideal solutions must be built upon the concept of elementary reactions because it is only
by taking into account every process happening in the system that the laws of themodynamics can
be recovered for CRNs, even when these are driven out of thermodynamic equilibrium. Once
the dynamics of a CRN have been written down in a thermodynamically consistent way, we will
be able to properly de�ne thermodynamic quantities, such as entropy production or work; and
extend to non-ideal solutions results that are well-known for ideal CRNs.

In order to construct a thermodynamically consistent framework for non-ideal CRNs we will
impose two conditions:

• A CRN must relax to thermodynamic equilibrium in the absence of external work.

1“The formal kineticist, on the other hand, takes a macroscopic viewpoint and his primitive concept is the elemen-
tary reaction.” F. Horn and R. Jackson, General Mass Action Kinetics, 1972.

2Accordig to the IUPAC’s Gold Book, an elementary reaction is “a reaction for which no reaction intermediates
have been detected or need to be postulated in order to describe the chemical reaction on a molecular scale. An
elementary reaction is assumed to occur in a single step and to pass through a single transition state.” In practice,
however, the timescales of relaxation of any additional transition states and any intermediate metastable states must be
taken into account for a practical but meaningful de�nition of elementary reaction.
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• The external work done on the CRN must be speci�ed explicitly.

Here we will restrict ourselves to CRNs where a subset of chemical species is chemostatted, that is,
kept at a certain chemical potential as a consequence of external work. However, more complex
procedures can be devised to keep a CRN out of thermodynamic equilibrium.

Finally, in the rest of this work, we will use the word equilibrium to refer to thermodynamic
equilibrium. Conversely, we will call steady state the state of a system with vanishing time deriva-
tives3.

3.1 Description of Chemical Reaction Networks

We start by describing a CRN comprisingN di�erent chemical species andM di�erent reversible
reaction pathways. The requirement that every reaction is reversible is a requirement for the
thermodynamic consistency of our description of the CRN if all of the reaction a�nities are �nite.
In full generality, a reaction ρ belonging to the CRN can be speci�ed as follows:∑

i

rρiXi �
∑
i

sρiXi, (3.1)

whereXi denotes the di�erent species labeled with the subindex i. In the rest of the document the
indices i and j will be reserved for chemical species. The matrix rρi denotes the stoichiometry of
the forward reaction (speci�es number of reactants of type i required by the reaction ρ) and sρi that
of the backwards reaction (products of type i produced by the reaction ρ). Note that, given that
the reactions are taken to be reversible, the distinction between reactants and products is arbitrary.
Therefore, vρi = sρi − r

ρ
i is the net amount of i species created or destroyed along the forward

direction of the reaction ρ (denoted as +ρ). We also de�ne the vectors vρ = (vρ1 , · · · , v
ρ
N ), rρ =

(rρ1, · · · , r
ρ
N ) and sρ = (sρ1, · · · , s

ρ
N ) for compactness, which are vectors carrying the information

of the type and number of species involved in ρ as net change, reactants or products, respectively.
Even more compact, we de�ne the matrices V = (v1, · · · ,vM ), R = (r1, · · · , rM ) and S =
(s1, · · · , sM ), whose elements are vρα, r

ρ
α and sρα, respectively. We �nally de�ne the notion of

complex z, which is the set (number and type) of particles that take part in a chemical reaction as
reactants (z = rρ) or products (z = sρ). A single complex z may appear in more than one reaction
within the network.

Example 1 Let us consider the following CRN:

A+B � C,

B � D, (3.2)

whose stoichiometric matrices for the forward and backward reactions are

R =
(

1 1 0 0
0 1 0 0

)
, S =

(
0 0 1 0
0 0 0 1

)
, (3.3)

3This distinction has been made to avoid confusion with the jargon used in the mathematical literature where an
equilibrium point in a dynamical system refers to a point in the system with vanishing time derivatives, independently
of any thermodynamic considerations.
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where each column denotes a particular species and each row a particular reaction of our CRN. Each of
the rows in these two matrices corresponds to the vectors rρ (for the matrix R) and Sρ (for the matrix s).
There are, therefore, four complexes in this network, two reactant complexes and two product complexes. �

3.1.1 Stochastic Chemical Master Equation

If the solutes in a dilute4 solution di�use fast (with respect to the typical timescale of chemical
reactions) the system may be viewed as well-mixed and can, therefore, be described in terms
of a single homogeneous concentration of each of the species across the entire system. In this
case a state of the system (number and type of particles) is completely determined by the vector
n = (n1, · · · , nN ) where ni is the number of particles of type i. CRNs where the copy numbers of
certain species are low can show large �uctuations and high stochasticity. To describe a stochastic
system, each of the states of the system n will have an associated probability measure P (n, t) at
each instant of time t. The dynamics for the probabilities of states of homogeneous CRNs is
given by the Chemical Master Equation (CME) which we write explicitly taking into account the
reversibility of all reactions [Gillespie, 1992]:

∂P (n, t)
∂t

=
∑
ρ

f+ρ(n−vρ)P (n−vρ)+
∑
ρ

f−ρ(n +vρ)P (n +vρ)−
∑
ρ

[f+ρ(n)+f−ρ(n)]P (n),

(3.4)
where the summations over ρ run over all the reactions in the CRN and the rate of the transitions
in the network is given by the propensity function fρ. In ideal dilute solutions and for elementary
reactions, the propensity function fρ takes the form

f+ρ(n) = k+ρ
∏
i

ni!
(ni − rρi )!

, and f−ρ(n) = k−ρ
∏
i

ni!
(ni − sρi )!

, (3.5)

which is known as mass-action kinetics (MAK) for the stochastic CME. In the following section we
develop a generalisation of this propensity function for non-ideal systems based on the detailed-
balance condition.

In most cases, the dynamics of the CRN will tend to a stationary distribution in the long-time
limit. If this is the case, the steady state of the dynamics of the network will be de�ned by a zero
time derivative of P (n, t) and will therefore satisfy the following relation:

∑
ρ

f+ρ(n− rρ)P (n− rρ) +
∑
ρ

f−ρ(n− sρ)P (n− sρ) =
∑
ρ

(f+ρ(n) + f−ρ(n))P (n). (3.6)

In general, it is not possible to obtain an analytical form for the steady-state distribution of the
CME. However, for a broad class of steady states its probability distribution can be constructed
analytically, as it will be shown in the following chapter.

4The diluteness condition has been introduced to ensure that, for the moment, interactions between solutes will
not be strong enough to cause inhomogeneities in the solution. Afterwards, we will see that phase separation can occur
in the presence of interactions between solutes and, thus, the system cannot be described by a single homogeneous
concentration.
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3.1.2 Deterministic description of a Chemical Reaction Network

For large particle numbers, by taking the averages of eq. (3.4) andmakingmean-�eld assumptions
– that is, assuming vanishing correlations – one can derive a set of equations for the concentra-
tions in the macroscopic limit, that is, when ni/V = ci, for both ni and V large. T. G. Kurtz
[Kurtz, 1972] showed that these two approaches are indeed equivalent in the large volume limit,
at least for MAK. In this limit, the state of the system is fully speci�ed by a set of concentra-
tions (c1, · · · , cN ) and one obtains the following classical set of equations for the dynamics of the
concentrations ci in a CRN [Schnoerr et al., 2017]:

∂ci
∂t

=
∑
ρ

vρi (J+ρ − J−ρ), (3.7)

where the currents J still need to be determined. For the classical case of MAK, in the determin-
istic description, the currents take the form

J+ρ = k+ρ
∏
i

c
rρi
i , and J−ρ = k−ρ

∏
i

c
sρi
i . (3.8)

While both the deterministic and stochastic descriptions refer to the same system, the former
one is only accurate for large particle numbers, also known as the thermodynamic limit, where
�uctuations are negligible.

3.2 Thermodynamical constraints on the dynamics of Chemical Re-
action Networks

In the previous section we introduced the general description of CRNs, both at the stochastic and
deterministic level, but, in both cases, a choice for the propensity functions or currents must be
made. For ideal solutions, the most common choice is MAK, as outlined above. However, here
we are considering solutes that interact among themselves, which are, therefore, not ideal. In this
section, our aim is to specify the propensity functions or currents for non-ideal systems by assum-
ing that, if there is no explicit non-equilibrium driving, the system must relax to thermodynamic
equilibrium.

3.2.1 Stochastic dynamics

At thermodynamic equilibrium, detailed balance must necessarily hold for every reaction ρ, in
order to ful�ll the second law of thermodynamics. Detailed balance implies that the probability
�ux across a reaction ρ in the forward direction must equal the probability �ux in the backward
direction, thus preserving time reversal symmetry in the system and precluding from systemati-
cally extracting work from the �uctuations in the system [Sekimoto, 2010]. Mathematically, for
stochastic systems, detailed balance takes the following form

P eq(n)f+ρ(n) = f−ρ(n + vρ)P eq(n + vρ), (3.9)
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where the equilibrium probability distribution P eq(n) for closed stochastic systems (no energy or
matter5 exchanged with the environment) is given by the canonical Boltzmann distribution:

P eq(n) = 1
Z
e−βF (n), (3.10)

β being the inverse of temperature times the Boltzmann constant, F (n) theHelmholtz free energy
of the system at state n and Z a normalisation factor, known as the partition function in the
statistical physics literature. Importantly, the free energy F that appears in Eq. (3.10) is not
necessarily an ideal free energy but can be as complex as needed and include interactions between
the di�erent constituents of the system.

Detailed balance, as expressed in Eq. (3.9), yields the following constraint for the propensity
functions:

f+ρ(n)
f−ρ(n + vρ) = P eq(n + vρ)

P eq(n) = e−β[F (n+vρ)−F (n)], (3.11)

implying that the reaction rates do depend on the interactions within the system through the
changes in free energy provoked by the reaction. Then, we can choose the following functional
form for the propensities fρ:

f+ρ(n) = kρe
β[F (n)−F (n−rρ)], f−ρ(n + vρ) = kρe

β[F (n+vρ)−F (n+vρ−sρ)], (3.12)

where kρ is the reaction constant, which has to be equal for both the forward and the back-
ward reaction6. This is a di�erence with the usual MAK description, where the dependency
of the rates on the standard-state chemical potential of the species (the part of the chemical
potential that does not depend on the state of the system n) is hidden in the rate constants
[Kondepundi and Prigogine, 2015, Rao and Esposito, 2016]. This form for the propensity func-
tions satis�es Eq. (3.11) and means the rate of the reactions is a function of the free energy of the
reactant complex.

Note that, while we impose detailed-balance conditions to the rates at equilibrium, this does
not mean they are only valid for the equilibrium state, it only ensures that the system relaxes
to equilibrium in the absence of external driving or work. By doing so, we found a functional
form for the propensity functions (3.12) that we will consider to be valid even if the system is
not at thermodynamic equilibrium. This is inspired by the fact that rates of the form of MAK
are thought to be an accurate description of reactions both at equilibrium and far away from
equilibrium [Groot and Mazur, 1983].

Mass Action Kinetics can be derived from an ideal free energy

The form (3.12) for the propensity functions is not unique but is particularly appealing given that
it reduces to MAK for ideal systems. In an ideal system, at least in a lattice model for the solution

5We have used a canonical Boltzmann distribution for the argument, which implicitly assumes that total number
of particles �xed. However, a generalisation can be obtained for a system in equilibrium with a particle reservoir by
using the grand-canonical distribution instead.

6Note that this is not themost general form of the propensity functions. Amore general expression will be presented
later in Section 3.2.3.
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(see Appendix C.1) with total volume V =
∑
i ni, the free energy is

Fid =
∑
i

niµ
0
i + β−1

(∑
i

log(ni!)− log(V !)
)
, (3.13)

where µ0
i is the standard-state chemical potential of species i. Then, the rates take the following

form:

f+ρ(n) = kρe
β[F (n)−F (n−rρ)] = kρe

β
∑

i
rρi µ

0
i
(V −

∑
i r
ρ
i )!

V !
∏
i

ni!
(ni − rρi )!

, (3.14)

where (V −
∑
i r
ρ
i )!/V ! can be approximated by V −

∑
i
rρi . After rede�ning

k+ρ = kρ
exp(β

∑
i r
ρ
i µ

0
i )

V
∑

i
rρi

, (3.15)

we �nd that the propensity functions (3.12) for an ideal free energy matches the propensity func-
tion for stochastic MAK, Eq. (3.5). Note that, after rede�ning the reaction constant k+ρ, the
forward and backward reaction constants are no longer equal.

Example 2 Let us consider the second reaction in Eq. (3.2):

B � D (3.16)

Then the propensity functions, according to Eq. (3.12), are

f+ρ(n) = kρ exp(β[F (n)− F (n− rρ)]) f−ρ(n) = kρ exp(β[F (n)− F (n− sρ)]). (3.17)

Let us now de�ne the chemical potential of the i-th species for stochastic (small) systems as follows:

µi(n) = F (n)− F (n− ei), (3.18)

where ei is the unit vector with all entries zero except for the i-th entry that is 1. Then, the propensity
functions of unimolecular reactions (like B � D) can be written as

f+ρ(n) = kρ exp[βµB(n)] f−ρ(n) = kρ exp[βµD(n)], (3.19)

which, again, reduces to mass action kinetics for unimolecular reactions if we consider an ideal system. �

3.2.2 Deterministic dynamics

In systems with large particle numbers, where a deterministic description, as the one presented in
Section 3.1.2, is accurate, one can adapt the rates (3.12) obtained for the stochastic system to this
macroscopic limit. When the particle numbers n are large the di�erences in free energies that
appear in the rates (3.12) can be expanded in Taylor series and rewritten as

F (n)− F (n− rρ) '
∑
i

rρi µi, (3.20)

where µi is the standard chemical potential of species i, µi = ∂f(c)/∂ci, and f(c) is the free
energy of the system per unit volume in the deterministic notation. Eq. (3.20) becomes exact in
the limit when n→∞, while rρ remains �nite.
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Therefore, the currents in a deterministic and non-ideal CRN, whose dynamics are given by
Eq. (3.7), can be written as

J+ρ = kρe
β
∑

i
rρi µi , J−ρ = kρe

β
∑

i
sρi µi , (3.21)

which is an expression conceptually similar to those given by other approaches to build ther-
modynamically consistent descriptions for deterministic non-ideal CRNs [Avanzini et al., 2021,
Bazant, 2013].

Once again, the currents (3.21) match their ideal MAK counterpart (3.8) if the chemical po-
tentials used in the rates are those of an ideal solution, i.e., µi = β−1 log ci + µ0

i . In this case, we
obtain, e.g. for the forward reaction,

J+ρ = kρe
β
∑

i
rρi µi = k+ρ

∏
i

c
rρi
i , (3.22)

which matches the deterministic MAK, Eq. (3.8), and where k+ρ = kρ exp(β
∑
i r
ρ
i µ

0
i ).

In Sections 3.2.1 and 3.2.2, we have written the chemical reaction rates for both stochastic
and deterministic systems in terms of their free energies. Given that one of the aims of the work
presented here is to describe CRNs in phase-separating systems, in Appendix C.1 we brie�y re-
view the Flory-Huggings or regular solution theory with interactions, widely used to model phase
separation, in order to obtain free energies and chemical reaction rates (stochastic and determinis-
tic) for phase-separating solutions, results that will be used in the following chapter. In Appendix
C.2, we show how to obtain the non-ideal chemical reaction rates from activity coe�cients, more
common in the chemistry literature.

3.2.3 On the rate constant

Until now we have assumed kρ to be a constant of the reaction and completely insensitive to any
change of state in the system. However, in full generality, this constant could depend on the state
of the system, as the system is part of the environment the reaction takes place in. These e�ects
can be disregarded for most cases in ideal or dilute solutions, but in non-ideal ones these e�ects
may not be negligible, particularly in the case of phase separation, where there could be two (or
more) very di�erent environments where the chemical reaction takes place, thereby accelerating
it or slowing it down. Nevertheless, detailed balance, Eq. (3.11), must continue to hold. This
means that the forward reaction constant for a state n must be equal to the backward reaction
constant for a state n+vρ. One way to ensure this equality while keeping the state-dependency of
the reaction constants is to make kρ a function of the state after subtracting the reactant complex,
that is n− rρ for the forward case and n+ vρ− sρ for the backward one. Noting that the detailed-
balance equality is still satis�ed by virtue of n− rρ = n+vρ− sρ, we can write down the following
more general rates:

f+ρ(n) = kρ(n− rρ)eβ(F (n)−F (n−rρ)), f−ρ(n + vρ) = kρ(n+vρ− sρ)eβ(F (n+vρ)−F (n+vρ−sρ)).

(3.23)
From a physical perspective, this means that the rate constant can only be dynamically a�ected
by the entire system except for the complex that takes part in the reaction.
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Figure 3.1: Reaction free energy landscape for a chemical reaction in two di�erent phases. The hor-
izontal dimension is the reaction coordinate and the vertical one speci�es the height of the reaction free
energy landscape F 0 (which is equal to F except for the fact that it does not include the entropic term∏
i logni!, as is customary [Kondepundi and Prigogine, 2015]). For each phase there are two minima in

the free energy landscape corresponding to whether the reaction has occurred (right-hand minimum) or
not (left-hand one). The free energy of the system (F ) speci�es the free energy of the system before the
reaction happens [F 0(n)] and after [F 0(n + vρ)] but it does not determine the height of the reaction free
energy barrier ∆F ∗. Thus, how ∆F ∗ depends on the environement can be crucial for the behaviour of
the CRN. The subscripts specify to which of the phases the value of the variable refers to.

In analogy with the classical transition state theory, we can think of the microscopic mecha-
nism of a reaction as a di�usion process in a reaction free-energy landscape in the reaction coor-
dinates [Kondepundi and Prigogine, 2015, Hänggi et al., 1990], see Fig. 3.1. Then, the value of
the rate constant depends on the height of the free energy barrier ∆F ∗ of the reaction. While the
free energies of the reactants and products (the stable states in the reaction landscape) have free
energies de�ned by F , this is no longer the case for the height of the barrier ∆F ∗. For systems
where more than one phase coexist, how the height of the barrier (and, thus, the value of kρ)
depends on which phase the reaction takes place in can be crucial for the behaviour of the CRN.
Fig. 3.1 graphically summarises the arguments given in this section and it highlights the e�ect
a di�erent phase or environment can have in the reaction free-energy landscapes and, thus, on
the reaction constants kρ. Note that, setting a value of the barrier imposes a relation between the
forward and backward reactions and is therefore equivalent to requiring detailed balance to hold
at equilibrium.

3.2.4 Rates for non-equilibrium systems

Until now we have considered the rates or propensity functions of chemical reactions that, even if
they are not at thermodynamic equilibrium, they will eventually relax to such a state as a conse-
quence of the functional form of these rates. However, we are not interested in systems that relax
to equilibrium but in systems that, like living beings, dissipate free-energy to maintain themselves
away from thermodynamic equilibrium.

Let us consider that a certain subset of the N species of the system are connected to di�erent
particle reservoirs (chemostats) that will keep their concentration constant. Then, in general, the
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system will not relax to equilibrium due to the work done on the system by the chemostats. In
this case, the space of possible states of the system is reduced toN ′ dimensions (as the chemostat-
ted species have their concentrations �xed) and the thermodynamic constraint on the propensity
functions, Eq. (3.9), takes the following form:

f+ρ(n)
f−ρ(n + vρ) = e

−β(F (n+vρ)−F (n)+
∑

j
vρj µj) (3.24)

where, now, n is a vector that only encodes the particle number of the N ′ non-chemostatted
species, F in the �rst term in the exponential also refers to the free energy of non-chemostatted
species and the summation over j runs only over the chemostatted species. The second term
(
∑
j v

ρ
jµj) speci�es the chemical work done by the chemostats (with chemical potentials �xed at

µj) when a reaction ρ occurs, which pushes the system out of equilibrium. Here, an approximation
has been made by which the chemostatted species are ideal (no interactions with the rest of the
chemical species) and abundant, hence, their free energy change can be replaced by the sum of
chemical potentials, as is done for deterministic CRNs, see Eq. (3.20), and we are able to neglect
�uctuations around their chemostatted values. Therefore, the system is now fully speci�ed by
a vector n that includes the particle numbers of the non-chemostatted species only. Finally, as
discussed in Section 3.2.3, the rate constants may have state dependencies and the rates including
the contributions from the chemostats can take the following form

f+ρ(n) = k̃ρgρ(n− rρ)eβ[F (n)−F (n−rρ)+
∑

j
rρjµj ],

f−ρ(n + vρ) = k̃ρgρ(n + vρ − sρ)eβ[F (n+vρ)−F (n+vρ−sρ)+
∑

j
sρjµj ], (3.25)

where
∑
j r

ρ
jµj and

∑
j s

ρ
jµj include the contribution of the chemostats for the forward and back-

ward reactions, respectively. For the sake of clarity, in the remainder of the text, we will reserve
the index j to denote the chemostatted species and the index i to denote the rest of chemical
species (non-chemostatted). Finally, k̃ρ is constant and any state dependency kρ may have is ab-
sorbed into the function gρ. We note that a similar, and equally general, form for the kinetics has
been used in other contexts, such as the modelling of molecular motors [Jülicher et al., 1997].

Analogously, in the deterministic limit, the above propensity functions become the following
currents

J+ρ(c) = k̃ρgρ(c)eβ[
∑

i
rρi µi+

∑
j
rρjµj ],

J−ρ(c) = k̃ρgρ(c)eβ[
∑

i
sρi µi+

∑
j
sρjµj ], (3.26)

where, µi is the chemical potential of the non-chemostatted species and is thus a dynamic variable,
while µj corresponds to the chemical potential of chemostatted species and is therefore �xed.

3.3 Thermodynamics of Chemical Reaction Networks

Until now we have mostly considered the dynamics of non-ideal CRNs, but for the rest of the
chapter we will focus on their energetics and review certain thermodynamic relationships valid for
stochastic systems far away from equilibrium. These relationships will be useful in the following
chapter, as they will shed light into the thermodynamic interpretations of the results obtained
there.
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3.3.1 Thermodynamics of closed Chemical Reaction Networks

In this section we consider a closed stochastic non-ideal CRN. This implies that the system, if
prepared in an arbitrary state, will always relax to its equilibrium state, since it is not connected to
any chemostat or any other source of work. Therefore, we can de�ne a thermodynamic potential
[Rao and Esposito, 2018]

G(n, t) = kBT logP (n, t) + F (n) (3.27)

whose average value, taken over the probabilities P (n, t), acts as a Lyapunov function of the sys-
tem and takes its minimum value at thermodynamical equilibrium. Thus, G can be called the
stochastic free energy of the system, as it includes a contribution from the probability P of the
system being at state n and time t.

Then, entropy of the system is [Schmiedl and Seifert, 2007]

S(n, t) =− ∂G(n, t)
∂T

=− kB logP (n, t) + s(n), (3.28)

where s(n) = −∂F (n)/∂T . The enthalpy is thus H(n) = G(n, t) + TS(n, t).
In closed solutions, the change in enthalpy across a reaction ρ – i.e. the di�erence in enthalpy

after reaction ρ occurs – is the heat �ow from (or to) the thermal reservoir the system is in contact
with:

∆ρH(n) = H(n + vρ)−H(n) = −Qenv
ρ , (3.29)

which can be seen as a statement of the �rst law of thermodynamics for closed systems at constant
volume [Pippard, 1964].

Likewise, the change in the entropy of the system across a reaction ρ in a closed system takes
the following form:

∆ρS(n, t) = S(n + vρ, t)− S(n, t)

= −kB log P (n + vρ, t)
P (n, t) + ∆ρH(n)−∆ρF (n)

T

= −
∆ρG(n, t) +Qenv

ρ

T
, (3.30)

where, in all cases, ∆ρ stands for the di�erence between the state functions after and before the
reaction ρ. Finally, the changes in the entropy of the thermal reservoir due to a reaction ρ oc-
curring in a closed system are given by the exchanged heat [Kondepundi and Prigogine, 2015,
Rao and Esposito, 2016]:

∆ρS
env =

Qenv
ρ

T
. (3.31)

Therefore, taking into account both the entropy of the system and that of the environment, the
total entropy production across a reaction is

∆ρS
tot = ∆ρS(n, t) + ∆ρS

env = −∆ρG(n, t)
T

. (3.32)
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A full stochastic trajectory is completely determined by the occurrence of a set of chemical
reactions {ρk} at times {tk}. The trajectory can then be encoded in the instantaneous current for
each of the reactions during the dynamics [Rao and Esposito, 2018]:

jρ(n, τ) =
∑
k

δρ,ρkδn,ntk δ(τ − tk), (3.33)

whose probability can be obtained from the CME (3.4).

For a trajectory described by Eq. (3.33) – which follows the dynamics of the CME (3.4) –
entropy production can be written as [Seifert, 2005, Rao and Esposito, 2018]

∆Stot[nt] =
∫ t

0
dτ

[
∂P (n, τ)
∂τ

+
∑
n,ρ

(∆ρS(n) + ∆ρS
env)jρ(n, τ)

]
= −∆G[nt]

T
, (3.34)

where

∆G[nt] =
∫ t

0
dτ

[
∂P (n, τ)
∂τ

+
∑
n,ρ

∆ρG(n, t)jρ(n, τ)
]

(3.35)

is the change in free energy along the stochastic trajectory and we use [nt] to denote a full stochastic
trajectory from τ = 0 to time τ = t. The two previous equations are di�erences of a state variable
along a trajectory that depends on the stochastic occurrences of chemical reactions and the changes
in probabilities, these last ones obtained from solving the CME. We emphasise that the previous
relations hold only for closed systems, where the entropy production is, indeed, given by the
change in free energy, and a generalisation to open non-equilibrium systems will be exposed
later.

Finally, it can be proved that the average total entropy di�erence along a trajectory is always
positive [Seifert, 2005]

〈∆Stot〉 ≥ 0, (3.36)

which is a statement of the second law of thermodynamics. This also implies that the average
stochastic free energy G decreases during a trajectory, as expected in closed systems where no
work is being done.

3.3.2 Non-equilibrium thermodynamics of Chemical Reaction Networks

Here we consider a CRN as in the previous section but that has been pushed out of equilibrium
by placing it in contact with di�erent particle reservoirs, at given chemical potentials. In this case,
there are energy �uxes �owing through the network that require a free-energy expenditure to be
maintained, which, as noted in the Preface, is a hallmark of living beings.

Therefore, the reservoirs are exerting a work on the system and a restatement of the �rst law
of thermodynamics, Eq. (3.29), is needed to account for it. Across a reaction ρ there will be now
two di�erent terms that contribute to the change in enthalpy [Rao and Esposito, 2018]

∆ρH(n) = −Qenv
ρ −Qchem

ρ +W chem
ρ , (3.37)

where W chem
ρ =

∑
j µjv

ρ
j is the work made by the chemostats across reaction ρ, and Qchem

ρ =
−T

∑
j sjv

ρ
j is the heat exchanged with the chemostats, with hj − Tsj = µj being the enthalpic
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(hj) and entropic (sj) part of the chemostatted chemical potentials µj , respectively. This is an
expression of the �rst law of thermodynamics for a system at constant volume on which work is
being done by placing it in contact with chemostats at di�erent chemical potentials. The decom-
position of the heat the system exchanges follows from the identi�cation of work performed in
the system asW chem

ρ =
∑
j µjv

ρ
j , which is a meaningful and intuitive de�nition, particularly if we

keep in mind the canonical view of how a biological cell stores energy: in the form of a chemical
potential di�erence between ATP and ADP.

As before, let us now consider the changes in the entropy of the system across a reaction ρ,
which, unlike before, may be driven by the work performed by the chemostats:

∆ρS(n, t) = −kB log P (n + vρ, t)
P (n, t) + ∆ρH(n)−∆ρF (n)

T

= −
∆ρG(n, t) +Qenv

ρ +Qchem
ρ −W chem

ρ

T
. (3.38)

Similarly, the entropy change of the thermal bath is

∆ρS
env =

Qenv
ρ +Qchem

ρ

T
. (3.39)

These two relations now include contributions from the chemostats, both in the form of heat and
work.

Then, the total entropy production along a stochastic trajectory for a CRN on which chemical
work is being exerted is given by [Rao and Esposito, 2018]

∆Stot[nt] =
∫ t

0
dτ

[
∂P (n, τ)
∂τ

+
∑
n,ρ

(∆ρS(n) + ∆ρS
env)jρ(n, τ)

]
= −∆G[nt]−W chem[nt]

T

(3.40)
where, unless speci�ed, di�erences in state variables (Stot and G) are taken along a full trajectory
and not only across a single reaction andW chem[nt] is the total chemical work performed along the
trajectory. Again, one can prove that the average entropy production is positive [Seifert, 2005,
Rao and Esposito, 2018],

〈∆Stot〉 ≥ 0, (3.41)

even in the presence of external work. This yields a bound for the work required to transform a
system from one state to another, which reminiscent of the inequalities obtained from equilibrium
thermodynamics:

〈W chem〉 ≥ 〈∆G〉. (3.42)

However, 〈∆G〉 need not be evaluated at thermodynamic equilibrium but can correspond to any
non-equilibrium steady state which requires free-energy dissipation in order to be maintained.

A re�nement of these ideas can be found in [Rao and Esposito, 2018], obtained by separating
reversible from irreversible work sources. However, for our purposes, the bounds stated in this
section are enough and will be applied in the next chapter.
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The role of complex balance in
Reaction-Di�usion networks

For over a century it has been known that if for each reaction ρ the backward and forward rates
are equal, then the steady state of a CRN with MAK satis�es the thermodynamic equilibrium
condition [Lewis, 1925]. However, the steady state of a CRN with MAK need not be the point of
thermodynamic equilibrium, as pointed out �rst by R. Wegscheider in 1902 and later, in a more
general way, by L. Onsager in 1931 [Onsager, 1931].

Nevertheless, a formalism akin to that of equilibrium thermodynamics can emerge, for MAK
but also for more general kinetics, in the sense of being able to de�ne a function whose value is
minimised by the kinetics of the system and relating its minimum value with the steady state of
the system. This is de�nitely the case for complex-balanced systems, as it will be shown below.

4.1 De�nition of complex and complex-balanced network

In the previous chapter, we de�ned a complex as the set of chemical species (with their respective
particle numbers) that take part in reaction, either as a reactant or as a product. Its most general
expression is the vector

z = (z1, · · · , zi, · · · ) (4.1)

where the index i runs over all chemical species and zi is an integer coe�cient that speci�es the
number ofmolecules of the speciesXi that appear in the complex z. Then, any CRN (as described
in Section 3.1) can be represented as a graph whose nodes represent the complexes that take part
in the reactions and there is an edge between two complexes if and only if the reaction zm � zn
exists, where zm and zn denote two di�erent complexes (see e.g. Fig 4.1).

In a deterministic CRN, whose kinetics are given by Eq. (3.7), the rate of creation of the complex
z is de�ned as

J+z =
∑

ρ:sρ=z
J+ρ +

∑
ρ:rρ=z

J−ρ (4.2)

where the subscript ρ : sρ = z indicates that the sum is taken over the reactions ρ whose product
complex equals the complex z and similarly for ρ : rρ = z, which denotes that that the sum is
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Figure 4.1: Graphical representation of CRNs dis-
cussed in Section A hierarchy of steady states. The
CRN has 6 complexes each of them represented in
one of the nodes of the network: A, B, C, A+D, E
and B + D. The �ve reactions present in the CRN
are numbered.

taken over those reactions whose reactant complex equals the complex z. Analogously, we can
de�ne the rate of annihilation of the complex z as

J−z =
∑

ρ:sρ=z
J−ρ +

∑
ρ:rρ=z

J+ρ. (4.3)

Then, a deterministic network is said to have a complex-balanced steady state if its steady state
satis�es the condition that the creation rate and the annihilation rate of each complex are equal
[Horn and Jackson, 1972]. Mathematically, this means that

J+z = J−z ∀ z. (4.4)

We have de�ned complex-balancing only for a deterministic network but below we will see how
this condition will also a�ect the stochastic dynamics.

A hierarchy of steady-states

Given the de�nitions above, a complex-balanced steady state is only a subset of all the steady
states a general CRN can have. However, complex-balanced steady states are still a broad class of
steady states which includes, but is not restricted to, detailed-balance steady states.

Therefore, we can order these types of steady states in terms of their generality:

1. The most restrictive condition we can impose to a steady state is that of detailed balance:

J+ρ = J−ρ ∀ ρ, (4.5)

condition that corresponds to a system at thermodynamic equilibrium and implies that the
rate of the forward reaction equals the rate of the backward reaction, for every reaction ρ.

2. More general than detailed-balanced steady states are complex-balanced steady states, which
satisfy that ∑

ρ:sρ=z
J+ρ +

∑
ρ:rρ=z

J−ρ =
∑

ρ:sρ=z
J−ρ +

∑
ρ:rρ=z

J+ρ ∀ z, (4.6)

which implies that the creation rate and the annihilation rate of each complex are equal.
In the example of Fig. 4.1, it corresponds to having the net rate (J+ρ − J−ρ) in reaction 1
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equal to those of 2 and 3, and, thus, reactions 4 and 5 have to be detailed balanced (zero
net rate for each reaction). While it is not the case for the CRN in Fig. 4.1, there are CRN
topologies that only accept complex-balanced steady states, as we will see in the Section 4.2.

3. Finally, we have the most general class of steady states, which is just de�ned by vanishing
time derivatives of the dynamical equation (3.7); condition that, by splitting it into the
contributions of each complex z, can be recast into

∑
m

zmi

 ∑
ρ:sρ=zm

J+ρ +
∑

ρ:rρ=zm
J−ρ

 =
∑
m

zmi

 ∑
ρ:rρ=zm

J+ρ +
∑

ρ:sρ=zm
J−ρ

 ∀ i, (4.7)

where m is an index that labels each of the complexes in the network and the integer zmi
represents its components. Then, there are no longer constraints between the net rates of
each reaction [other than those imposed by Eq. (3.7)]. For Fig. 4.1, this implies that there
can appear cycles at steady state where, for example, the species A is created by reaction
1 but annihilated by reaction 4, which breaks complex balance. A generic steady state can
allow cycles that cannot be visualised directly from the network representation of the CRN
in terms of complexes (such as the graphical representation in Fig. 4.1), while a complex
balanced steady state only allows cycles that can be directly visualised from the network
representation of a CRN in terms of complexes.

From this hierarchical classi�cation, it can be clearly seen that detailed balancing (4.5) implies
complex balancing (4.6) and that complex balancing (4.6) implies the system is at steady state
(4.7). However, the converse is not true. Indeed, a steady state (4.7) does not necessarily have to be
complex balanced (4.6) and a complex-balanced steady state (4.6) is more general than a detailed-
balanced one (4.5). Therefore, complex balance is a less restrictive constrain than detailed balance,
but it is still less general than a fully generic steady state. Moreover, a complex-balanced network
need not be at thermodynamic equilibrium and can sustain net currents at steady state.

Complex balance in networks with mass action kinetics

As a particular case of especial importance, we give the explicit condition for complex-balancing
in a network with MAK. The dynamics of a deterministic and ideal CRN [Eqs. (3.7) and (3.8)],
with state independent rate constants, can be written as

∂ci
∂t

=
∑
ρ

vρi

(
k+ρ

∏
i

c
rρi
i − k−ρ

∏
i

c
sρi
i

)
, (4.8)

where the non-equilibrium contribution of the chemostats has been absorbed into the rate con-
stants k+ρ and k−ρ. A deterministic and ideal CRN has a complex balanced steady state if for
each complex z [Anderson et al., 2010]:∑

ρ:sρ=z

(
k+ρ

∏
i

(cSSi )r
ρ
i − k−ρ

∏
i

(cSSi )s
ρ
i

)
=

∑
ρ:rρ=z

(
k+ρ

∏
i

(cSSi )r
ρ
i − k−ρ

∏
i

(cSSi )s
ρ
i

)
, (4.9)

where cSSi is the steady-state concentration of species i1.
1This expression di�ers from the one given in Ref. [Anderson et al., 2010] due to the explicit consideration that

every reaction can happen in both senses, to better illustrate the alignment with thermodynamic principles.



76 Chapter 4. Complex balance in reaction networks

4.2 Review of results for complex-balanced systems

In this section we review well-known results from the literature of ideal CRNs, which we will later
generalise to non-ideal networks.

It was �rst realised half a century ago that CRNs that relax to complex-balanced steady states
have a certain number of useful properties. In the seminal work by F. Horn and R. Jackson in
1972, they showed that if a deterministic CRN with MAK accepts a complex-balanced steady
state (i.e. Eq. (4.9) is ful�lled) then the system is quasi-thermodynamic, which they de�ned as a
system that minimises a pseudo-Helmholtz function [Horn and Jackson, 1972]:

L=
∑
i

ci
(
log ci − log cSSi − 1

)
, (4.10)

where cSSi is the steady-state concentration of species i. The choice of terminology was due to
the fact that Horn and Jackson were looking for CRNs that satis�ed a formalism similar to that of
equilibrium thermodynamics, where the minimum of a free energy determines the equilibrium
point of a system. Indeed, they found the functionL, whoseminimum speci�es the steady state of
the system, but this function is not necessarily equal to the equilibrium free energy. This is due to
the fact that, as pointed out byWegscheider and Onsager among others, for a CRN with MAK to
relax to equilibrium there are some constraints the rate constants must satisfy, which relate them
to the standard-state chemical potentials of the species, as in Eq. (3.15). However, to minimise a
pseudo-Helmholtz function like Eq. (4.10), these constraints are not needed and, therefore, it may
correspond to a MAK system out of thermodynamic equilibrium.

Shortly thereafter, M. Feinberg showed that, just by examining the topology of the network,
one can know if the steady state of the network must be complex balanced [Feinberg, 1972].
Given a CRN, one can de�ne the de�ciency of the network, δ, which is given by

δ = C − L− S (4.11)

where C is the number of complexes in the network, L is the number of linkage classes or con-
nected components in the network and S is the dimension of the stoichiometric subspace, which
amounts to the number of degrees of freedom in the dynamics. If δ = 0, then the system nec-
essarily has a complex-balanced steady state. Therefore, we can assess whether a MAK system
will have a pseudo-Helmholtz function as a Lyapunov function only from looking at the topology
of the network. Moreover, the de�ciency of a network has an interpretation in terms of cycles:
it gives the number of cycles that can exist at steady state but cannot be directly visualised from
looking at the network graph in terms of the complexes. In other words, it gives the number of
emergent or hidden cycles of a CRN [Polettini et al., 2015].

Example 3 To illustrate the concept of de�ciency we discuss the CRNs depicted in Fig. 4.2.

First, we compute the de�ciency δ of the CRN on the left of Fig. 4.2, which corresponds to a simple
enzyme kinetics model with a substrate S, a product P , an enzyme E and an enzyme-substrate complex
ES. This CRN has 6 complexes C (including the empty complex ∅ that represents exchanges with particle
reservoirs) and two connected components L. Finally, the dimension of the stoichiometric subspace S is 3,
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Figure 4.2: Graphical representation of CRNs discussed in Example 3. The left CRN has de�ciency
δ = 1 and the right one is zero-de�cient δ = 0. Therefore, the network on the right will necessarily have a
complex-balanced steady state but this is not the case for the left-hand one.

since the number of enzymes E and enzyme-substrate complexes ES is always conserved. Then de�ciency
δ = C − L− S = 1, which means that:

1. The steady state of this network need not be complex balanced.

2. There is one emergent cycle that is not represented graphically in the network representation of the
complexes (see Fig. 4.2, left CRN). This emergent cycle is: the extraction of a substrate particle S
from the particle reservoir, its binding to the enzyme to form a ES complex, conversion to a product
P and �nal withdrawal of the product P from the system to the particle reservoir.

The second CRN (right CRN of Fig. 4.2) is zero-de�cient. It has 5 complexes C, 2 linkage classes
L and a stoichiometric subspace, S, of 3 (since there are two conservation laws: D + B + C is constant
and the total mass of the system is also constant since there is no exchange with particle reservoirs). Then
δ = C −L− S = 0 which means that the steady state of this network is necessarily complex balanced and
thus, if the kinetics are MAK, it has a Lyapunov function of the form (4.10). �.

More recently, it was found by D. F. Anderson, G. Craciun and T. D. Kurtz that, in the
stochastic description, the steady-state probability distribution of a complex-balanced CRN with
MAK can be written as a product of independent Poisson distributions [Anderson et al., 2010].
Under this constraint, the steady-state distribution πCB of the network with dynamics (3.4) and
propensity functions (3.5) is given by

πCB(n) =
M∏
i=1

(cSSi )ni
ni!

e−c
SS
i , (4.12)

where cSSi are the steady-state solutions of the complex-balanced networks in the deterministic
limit [this is, Eqs. (3.7) and (3.8)]. Note that the expression (4.12) for the steady-state probability
distribution is valid only for vectors n satisfying all the conservation laws the CRN may have,
otherwise, its value is zero. This distribution includes the equilibrium distribution of the CRN
(the Boltzmann distribution for an ideal system), but is not limited by thermodynamic equilibrium
and may be applied to cases far from equilibrium. Furthermore, they also proved a more general
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result for propensity functions of the form

f+ρ(n) = k+ρ
θ(n)

θ(n− rρ) , (4.13)

which, in complex-balanced systems, yields a steady-state distribution with the following form
[Anderson et al., 2010]:

πCB(n) = M

θ(n)
∏
i=1

(cSSi )ni , (4.14)

whereM is a normalisation constant and θ is a function that maps the vector of integer numbers
n into a single real-valued positive number.

To conclude with this review of the literature, recently D. F. Anderson and T. D. Nguyen
genralised the Lyapunov function of complex-balanced MAK systems [Eq. (4.10)] to networks
with product-form stationary distributions [Anderson and Nguyen, 2019]. In the following, we
will further generalise some of these results and will give an interpretation of them in terms of
thermodynamic quantities.

4.3 Complex-balanced steady-state distributions

Closely inspecting Eqs. (4.13) and (4.14) and identifying θ(n)with the Boltzmann factor e−βF (n),
one can already get a hint of the connection with the thermodynamical constraints imposed on
the propensity functions fρ in the previous chapter. In this section, we will look at a slight gen-
eralisation of the probability distribution (4.14), by considering a complex-balanced CRN, with
propensity functions given by Eq. (3.25). However, in the following, we will assume that the func-
tion gρ in Eq. (3.25) is the same for all reactions, that is, gρ = g. Therefore, we do not require that
the function g is a constant, but we do need the fact that the rate constants of all reactions depend
on the state n in the same way, which implies that g for all reaction must be the same function.
This simpli�cation allows us to prove the result and the consequences of relaxing this hypothesis
will be examined in the following Chapter 5.

Under these conditions, we claim that, for complex-balanced CRNs the steady-state solution
of the stochastic dynamics (3.4) with the propensity functions (3.25) takes the form:

πCB(n) = e−β[F (n)+
∑

i
µ̃ini]

Z
, (4.15)

where µ̃i are parameters that will depend on the chemostats to which the system is connected
(and that push the system out of equilibrium) and the reaction constants of the CRN. In fact,
the parameter µ̃i is related to cSSi in the previous section, but we have changed its form to better
illustrate its thermodynamic meaning. Importantly, these µ̃i parameters can be obtained from
the ideal and deterministic CRN, greatly simplifying the task of obtaining analytically the steady-
state distribution of the system. By analogy with equilibrium statistical physics, we denote by Z
the normalisation factor of the probability distribution.

The strategy we will follow to prove the result is similar to that used by Anderson, Craciun and
Kurtz in Ref. [Anderson et al., 2010], where the key point is to simplify the complex-balanced
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steady-state relation until we obtain that of a deterministic CRN modelled with MAK, given in
Eq. (4.9). Then, we will be in a position to compare our parameters µ̃i to the steady-state concen-
trations of the chemical species in the deterministic MAK case and write down the full probability
distribution at steady state for complex-balanced non-ideal networks.

4.3.1 Proof

TheCME (3.4), with rates of the form (3.25) and gρ = g for all reactions ρ, at steady state becomes∑
ρ

k̃ρg(n− sρ)eβ[F (n−vρ)−F (n−sρ)+
∑

j
rρjµj ]P (n− vρ) +

∑
ρ

k̃ρg(n− rρ)eβ[F (n+vρ)−F (n−rρ)+
∑

j
sρjµj ]P (n + vρ) =

∑
ρ

(
k̃ρg(n− rρ)eβ[F (n)−F (n−rρ)+

∑
j
rρjµj ] + k̃ρg(n− sρ)eβ[F (n)−F (n−sρ)+

∑
j
sρjµj ]

)
P (n).

(4.16)

Dividing the previous expression by P (n) and inserting an ansatz for the solution of the form
(4.15) we obtain:

∑
ρ

k̃ρ

{
g(n− sρ)eβ[F (n)−F (n−sρ)+

∑
i
vρi µ̃i+

∑
j
rρjµj ] + g(n− rρ)eβ[F (n)−F (n−rρ)−

∑
i
vρi µ̃i+

∑
j
sρjµj ]

}

=
∑
ρ

k̃ρ

{
g(n− rρ)eβ[F (n)−F (n−rρ)+

∑
j
rρjµj ] + g(n− sρ)eβ[F (n)−F (n−sρ)+

∑
j
sρjµj ]

}
. (4.17)

We can write this relation in terms of a summation over each of the complexes z separately∑
z

∑
ρ:sρ=z

k̃ρg(n− sρ)eβ[F (n)−F (n−sρ)+
∑

i
vρi µ̃i+

∑
j
rρjµj ]+

∑
z

∑
ρ:rρ=z

k̃ρg(n− rρ)eβ[F (n)−F (n−rρ)−
∑

i
vρi µ̃i+

∑
j
sρjµj ] =

∑
z

 ∑
ρ:rρ=z

k̃ρg(n− rρ)eβ[F (n)−F (n−rρ)+
∑

j
rρjµj ] +

∑
ρ:sρ=z

k̃ρg(n− sρ)eβ[F (n)−F (n−sρ)+
∑

j
sρjµj ]

 ,
(4.18)

where the subscript ρ : sρ = z denotes that the sum runs only over all reactions ρ whose prod-
uct complex sρ equals the complex z. Until now we are considering an arbitrary steady state.
Introducing the complex balance constraint, we can impose that, separately, the �uxes across all
complexes vanish (that is J+z = J−z ∀ z), which, can be rewritten in the following form, given
that the complex z is �xed:

g(n− z)eβ[F (n)−F (n−z)]

 ∑
ρ:sρ=z

k̃ρe
β[
∑

i
vρi µ̃i+

∑
j
rρjµj ] +

∑
ρ:rρ=z

k̃ρe
β[−
∑

i
vρi µ̃i+

∑
j
sρjµj ]

 =

g(n− z)eβ[F (n)−F (n−z)]

 ∑
ρ:rρ=z

k̃ρe
β
∑

j
rρjµj +

∑
ρ:sρ=z

k̃ρe
β
∑

j
sρjµj

 . (4.19)
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Then, Eq. (4.18) will be satis�ed if for each complex, z, Eq. (4.19) is sati�ed. We can now divide
both sides by g(n− z) exp(β[F (n)− F (n− z)]) to obtain

∑
ρ:sρ=z

k̃ρe
β[
∑

i
(zi−rρi )µ̃i+

∑
j
rρjµj ] +

∑
ρ:rρ=z

k̃ρe
β[−
∑

i
(sρi−zi)µ̃i+

∑
j
sρjµj ]

=
∑
ρ:rρ=z

k̃ρe
β
∑

j
rρjµj +

∑
ρ:sρ=z

k̃ρe
β
∑

j
sρjµj , (4.20)

where we have substituted vρ = sρ − rρ and, according to each of the sums, one of this terms can
be replaced by the complex z. Finally, given that z is �xed in the previous equation, we can divide
the whole expression by exp(β

∑
i ziµ̃i), yielding∑

ρ:sρ=z
k̃ρe

β[−
∑

i
rρi µ̃i+

∑
j
rρjµj ] +

∑
ρ:rρ=z

k̃ρe
β[−
∑

i
sρi µ̃i+

∑
j
sρjµj ] =

∑
ρ:rρ=z

k̃ρe
β[
∑

j
rρjµj−

∑
i
zρi µ̃i] +

∑
ρ:sρ=z

k̃ρe
β[
∑

j
sρjµj−

∑
i
zρi µ̃i]. (4.21)

At this point, if we make the following de�nitions:

cSSi = exp(−β(µ̃i + µ0
i )), (4.22)

k+ρ = k̃ρ exp(β[
∑
i

rρi µ
0
i +

∑
j

rρjµj ]), (4.23)

k−ρ = k̃ρ exp(β[
∑
i

sρiµ
0
i +

∑
j

sρjµj ]), (4.24)

then we recover the complex balance condition (4.9) for an ideal and deterministic network.
Hence, a CRN for which the deterministic steady-state is complex balanced, accepts a steady-
state solution of the form (4.15) for its stochastic and non-ideal version. The parameters µ̃i that
appear in the steady-state distribution can be obtained using Eq. (4.22) and solving the ideal and
deterministic CRN for the steady state concentrations (cSSi ), with rates constants as speci�ed in
Eqs. (4.23) and (4.24), where the standard-state chemical potentials and non-equilibrium con-
tributions from the chemostats have been absorbed into the rate constants, as is customary in
MAK.

Therefore, the steady-state distribution of a non-ideal complex-balanced CRN has the form
of an e�ective Boltzmann distribution, where the standard-state chemical potentials µ0

i are shifted
by an amount µ̃i. Physically, it is interesting the fact that, for complex-balanced steady states, the
free-energetic contribution decouples from the non-equilibrium terms, embodied in the shifted
chemical potentials µ̃. This may not be true for more general steady-states.

This result is similar to Theorem 6.6 of Ref. [Anderson et al., 2010], whose main result is
the probability distribution (4.14), but here we have generalised it slightly to include rates of the
form (3.25), which includes the function g that could be of interest in phase-separated systems
as it modulates the rates depending on the environment. Moreover, our approach clari�es the
thermodynamic origin of the rates (3.25) and the steady-state distribution (4.15), as is shown in
the next subsection.
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Figure 4.3: Graphical representation of the CRN used in Examples 4 and 5. These two CRNs are
necessarily complex balanced (δ = 0 in both cases). Unimolecular networks (as the one on the right) are
always complex balanced. In the case of the left-hand side network, despite the presence of a bimolecular
complexA+D, the network is still complex balanced, since all theA orD particles are created or destroyed
through the complex A + D, hence, in this case, the steady-state condition implies the complex-balance
condition (4.9). The left CRN corresponds to the one used in Example 4; the right one corresponds to
Example 5.

Example 4 Let us consider the following CRN (see Fig. 4.3 for a graphical representation):

A+D � B B � C C � A+D, (4.25)

with a free energy taken from a regular solution theory (see Appendix C.1). Given that the number of
particles is not conserved, for simplicity, we assume that the solvent volume is conserved and allow the total
volume to vary (alternatively, we could have chosen A and D particles as occupying half the volume as C
or B). Thus, V = N + nsol + nD, where N is the number of conserved particles N = nA + nB + nC

and nsol is the number of solvent particles. Moreover, given any initial condition, the variable nD will
always be ensalved to the variable nA as they are both created and annihilated together, keeping constant
the initial particle di�erence between the two. For simplicity, we assume that the system is driven out of
equilibrium solely by imposing a non-equilibrium chemical potential di�erence ∆µneq = log(5/2)β−1 in
the transition from C to A + D, which is equivalent to assuming that the reaction C � A + D actually
is C + E � A + D + F , where E and F are chemostatted species with chemical potentials satisfying
µE − µF = log(5/2)β−1.

We assume all the reaction constants are equal to each other and note that the network is necessarily
complex-balanced: unimolecular reactions are always complex balanced and here particlesA andD are only
created or destroyed via the complex A+D, therefore the steady-state condition yields that the creation and
annihilation rates of the complexA+D must be equal. Equivalently, one could compute the de�ciency of the
network and check that δ = 0, hence the steady state must be complex balanced. Then, the steady-state of the
CRN (4.25), modelled stochastically with dynamics (3.4) and propensity functions (3.25), can be obtained
from the following deterministic rate equations (that include entropic terms and the non-equilibrium driving,
but not any other term of the free energy):

dnA
dt

= nB + 2.5nC − 2nAnD
dnB
dt

= nC + nAnD − 2nB
dnC
dt

= nB + nAnD − 3.5nC .
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Figure 4.4: Steady-state probability distributions for Example 3. Marginal probability distribution (A)
and conditional probability distribution (B) for Example 3 at steady state. The blue triangles are the prob-
abilities obtained from a Gillespie simulation and the red line is the analytical solution given by Eq. (4.26).

Taking as initial conditions N = 40 and nA − nD = 5, the solution of the above system at steady-state
is nSSA ' 8.1, nSSB ' 19.1, nSSC ' 12.7 and nSSD ' 3.1. Identifying, nSSi = e−βµ̃i , we get the values of
shifted non-equilibrium chemical potentials and we can obtain a full steady-state probability distribution

πCB(n) = e−β[F (n)+
∑

i
µ̃ini]

Z
, (4.26)

once the free energy F has been speci�ed and the normalisation constant Z computed. Note that there are
two conservation laws (N = 40 and nA−nD = 5), and four chemical species, hence, in practice, πneq(n)
is a distribution with only two independent variables.

Let us consider the following regular solution free energy, that comprises standard-state chemical po-
tentials (taken with respect to that of species B), interactions (parametrised by χ) and entropic terms:

F (nA, nB, nC , nD) = β−1 [log(nA!nB!nC !nD!nsol!)− log V !]

+ nAµ
0
A + nCµ

0
C + nDµ

0
D + χ

nAnC
V

, (4.27)

where V = nA + nB + nC + nD + nsol and nsol is the number of solvent molecules. For the parameters
χ = 10β−1 and µ0

A = µ0
C = µ0

D = log(2)β−1, we obtain the steady-state probability depicted in Fig.
4.4, that matches closely the one obtained from a simulation of the same CRN using the Gillespie algorithm
[Gillespie, 1977]. Simulations were started in parallel from random poissonian initial conditions (provided
they satisfy the constraints above) and the samples were obtained after allowing the simulations to relax to
the steady state. �

4.3.2 Thermodynamic interpretation of µ̃

The direct consequence of the non-equilibrium driving of the complex-balanced CRN is the ap-
pearance of a term µ̃ in the stationary distribution (4.15). E�ectively, this term shifts the standard-
state chemical potential µ0 by a constant. However, the thermodynamic implications of this shift
in the standard-state chemical potentials can be further clari�ed.
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As shown in Section 3.3.2, one can bound the work required to make a non-equilibrium
transformation of the system by the di�erence in free energies between these non-equilibrium
states. Here, we consider a simpler case of obtaining a non-equilibrium complex-balanced steady
state from an initial equilibrium state, by connecting the system to several chemostats. Then, in
the stochastic description, the average work required to do that is bounded by

〈W chem〉 ≥ 〈Gf 〉 − 〈Geq〉, (4.28)

where G is the stochastic free energy de�ned by Eq. (3.27).

At equilibrium, the probability distribution is just the canonical distribution (or grand-canonical
distribution in case the particle numbers are not conserved), which is, up to a normalisation con-
stant (the partition function Z), the exponential of the free energy F . Thus, from Eq. (3.27),
Geq = −kBT logZ, as expected from equilibrium statistical physics and where Z is the equilib-
rium partition function. However, for a non-equilibrium complex-balanced state,

〈GCB〉 =
∑
n
πCB(n)

∑
i

µ̃ini − kBT logZCB

=
∑
i

µ̃i〈ni〉 − kBT logZCB, (4.29)

where ZCB is the complex-balanced normalisation constant, which is not necessarily equal to the
equilibrium partition function Z, and 〈ni〉 is the average number of i particles, according to the
complex-balanced distribution πCB.

Therefore, the work required for such a transformation is bounded by

〈W chem〉 ≥
∑
i

µ̃i〈ni〉f + kBT log Z

ZCB
, (4.30)

where 〈ni〉f is the average number of particles i at the �nal non-equilibrium complex-balanced
steady state. In the previous relation, the ratio of partition functions is reminiscent of the equilib-
rium bound for a process, which is only attained if the transformation is fully reversible (∆Stot =
0) during the transformation. However, the appearance of the

∑
i µ̃i〈ni〉f is exclusively due to the

non-equilibrium work performed on the system, since µ̃i = 0 in the absence of such work.

Thus, this inequality suggests a thermodynamic interpretation of the shifted chemical poten-
tials µ̃, since the bound depends crucially on them and is the only inherently non-equilibrium
contribution to the bound.

4.4 Lyapunov function for complex-balanced steady states

Under fairly general conditions, the logarithm of the steady-state probability distribution in the
stochastic model is a Lyapunov function of the deterministic one, provided an appropriate scaling
is used to bridge between the di�erent volume and particle-number scales [Ge and Qian, 2016].
In particular, this has been shown for ideal and complex-balanced CRNs [Anderson et al., 2015].
Here, we show that in non-ideal complex-balanced CRNs the following function is minimised by
the dynamics

L(c) = − lim
V→∞

1
V

log(πCB(n)) = β

(
f(c) +

∑
i

µ̃ici

)
+ log(Z)/V, (4.31)
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where ci = ni/V and f(c) = F (n)/V . Indeed, this approach generalises to a certain extent
the results of Anderson and Nguyen [Anderson and Nguyen, 2019] for product-form stationary
states of CRNs. We abuse slightly the terminology by calling this function a Lyapunov function
as we do not prove it is strictly positive or bounded from below, we will only prove that it is
minimised by the dynamics. Nevertheless, the fact that this function is minimised is su�cient for
our purposes.

Since the normalisation constant Z does not depend on time (it only depends on the non-
equilibrium steady state), the time derivative of the Lyapunov function can be written as

dL

dt
=
∑
i′

∂L

∂ci′

∂ci′

∂t

=β
∑
i′

(µi′ + µ̃i′)
[∑
ρ

vρi′kρg(c)(eβ[
∑

i
rρi µi+

∑
j
rρjµj ] − eβ[

∑
i
sρi µi+

∑
j
sρjµj ])

]
, (4.32)

where we have used Eq. (3.7) with currents given by Eq. (3.26). Note we have used two di�erent
dummy indices, i and i′, to make it clear to which sum each variable corresponds to. We can
recast the previous expression into

dL

dt
=
∑
ρ

∑
i′

kρg(c)(µi′ + µ̃i′)(sρi′ − r
ρ
i′)e

β[
∑

i
rρi (µi+µ̃i)−

∑
i
rρi µ̃i+

∑
j
rρjµj ]

+
∑
ρ

∑
i′

kρg(c)(µi′ + µ̃i′)(rρi′ − s
ρ
i′)e

β[
∑

i
sρi (µi+µ̃i)−

∑
i
sρi µ̃i+

∑
j
sρjµj ], (4.33)

by adding and subtracting the µ̃-terms in the arguments of the exponential functions. We now
can repeatedly apply the inequality2 ea(b − a) ≤ eb − ea to the sums of chemical potentials to
arrive at:

dL

dt
≤
∑
ρ

kρg(c)eβ[
∑

j
rρjµj−

∑
i
rρi µ̃i]

[
eβ
∑

i
(µi+µ̃i)sρi − eβ

∑
i
rρi (µi+µ̃i)

]
+
∑
ρ

kρg(c)eβ[
∑

j
sρjµj−

∑
i
sρi µ̃i]

[
eβ
∑

i
(µi+µ̃i)rρi − eβ

∑
i
sρi (µi+µ̃i)

]
. (4.34)

This previous expression can now be separated in terms of the di�erent complexes in the system:

dL

dt
≤

∑
z
g(c)

{ ∑
ρ:sρ=z

kρe
β[
∑

j
rρjµj−

∑
i
rρi µ̃i+

∑
i
(µi+µ̃i)sρi ] −

∑
ρ:rρ=z

kρe
β[
∑

j
rρjµj−

∑
i
rρi µ̃i+

∑
i
rρi (µi+µ̃i)]

+
∑
ρ:rρ=z

kρe
β[
∑

j
sρjµj−

∑
i
sρi µ̃i+

∑
i
(µi+µ̃i)rρi ] −

∑
ρ:sρ=z

kρe
β[
∑

j
sρjµj−

∑
i
sρi µ̃i+

∑
i
sρi (µi+µ̃i)]

}
,

(4.35)

where, invoking complex balancing as in the previous section and dividing by exp[β
∑
i zi(µi +

2The inequality stems from 1 +x ≤ ex, ∀x ∈ R and setting x = b−a. We use it by identifying (for the �rst term)
a =

∑
i
(µi + µ̃i)rρi and b =

∑
i
(µi + µ̃i)sρi (and conversely for the second).
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µ̃i)], we have an equality for each complex z∑
ρ:sρ=z

kρe
β[
∑

j
rρjµj−

∑
i
rρi µ̃i] −

∑
ρ:rρ=z

kρe
β[
∑

j
rρjµj−

∑
i
rρi µ̃i] +

∑
ρ:rρ=z

kρe
β[
∑

j
sρjµj−

∑
i
sρi µ̃i] −

∑
ρ:sρ=z

kρe
β[
∑

j
sρjµj−

∑
i
sρi µ̃i] = 0, (4.36)

equality that is given by the complex-balance condition for deterministic MAK networks [Eq.
(4.9)] together with Eqs. (4.22) to (4.24). Summing over all complexes yields the desired in-
equality:

dL

dt
≤ 0, (4.37)

and, thus,L is minimised (or remains unchanged) along a trajectory for a deterministic complex-
balanced non-ideal CRN.

Therefore, unlike in Section 2.2.5 where we minimised the free energy F since we were
looking for the equilibrium state, here we minimise the function L that includes the free energy
density f and the standard-state chemical potentials µ0

i have been shifted by µ̃i due to the work
performed on the system by the chemostats. Consequently, the CRN does not relax to thermo-
dynamic equilibrium and, at steady state, is able to sustain chemical currents.

4.5 Lyapunov functionals for spatially heterogeneous solutions

To be able to describe phase-separating systems we need to take into account the spatial degrees
of freedom. In the deterministic description, concentrations are now a function of space, ci(x),
within a volume Ω and the free energy is a functional of these concentrations, F [c(x)].

The time derivative of the concentration �elds ci(x) is given by the following reaction-di�usion
equation

dci(x)
dt

= −∇ · Ji +
∑
ρ

vρi (J+ρ − J−ρ), (4.38)

where the �rst term in the right-hand side (RHS) of the equation corresponds to di�usion and
the second one to the chemical reactions. As in the linear irreversible thermodynamics frame-
work [Groot and Mazur, 1983, Kondepundi and Prigogine, 2015], the driving force of the di�u-
sion current Ji is the gradient of chemical potentials ∇µi. More precisely, the di�usion currents
take the following form Ji = −

∑
j Mij∇µj , where Mij is the mobility matrix. We assume no-

�ux boundary conditions Ji|x=∂Ω = 0 for the non-chemostatted species, where ∂Ω denotes the
boundaries of the volume Ω.

We now proceed to show that the Lyapunov function obtained above for a complex-balanced
CRN is also a Lyapunov functional if we consider the di�usion of solutes and solvent within the
solution. Then, the time evolution of the functional

∫
L(x)dx becomes∫

dL

dt
dx =

∑
i

∫
dx

dL

dci

dci
dt

=
∑
i

∫
dxβ(µi(x) + µ̃i)

[
−∇ · Ji +

∑
ρ

vρi (J+ρ − J−ρ)
]
, (4.39)
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where µi(x) = δF [c(x)]/δci(x) is the local chemical potential and, in the second equality, Eq.
(4.38) has been used. From the results in the previous section, we know that the contribution of
the second term in the square brackets of the RHS of the equation to the time derivative of L
is negative, since it corresponds to the chemical reactions. Therefore, to prove that

∫
L(x)dx is

minimised by the dynamics is su�cient to show that the contribution of the �rst term in the RHS
is also negative.

We note that the contribution of di�usion to the time evolution of L can be written as∑
i

∫
dx (µi(x) + µ̃i)∇ · Ji =

∑
i

∫
dx [∇ · {(µi(x) + µ̃i)Ji} − ∇(µi(x) + µ̃i) · Ji] . (4.40)

For the �rst term, we have that∫
dx∇ · {(µi(x) + µ̃i)Ji} =

∫
∂Ω
dS(µi(x) + µ̃i)Ji · n̂ = 0, (4.41)

where n̂ is the verctor normal to the surface ∂Ω. In the �rst equality we have used the divergence
theorem and, in the second one, the fact that we are considering no-�ux boundary conditions,
although it may be generalised to other appropriate boundary conditions. Regarding the second
term in Eq. (4.40), we have that

−∇(µi(x) + µ̃i) · Ji = −∇µi(x) · Ji = Ṡdi� ≥ 0, (4.42)

where Ṡdi� is the entropy production rate due to di�usion. In the �rst equality we have used
the fact that µ̃i are constants (hence ∇µ̃i = 0). Then, we can identify the remaining terms
as the entropy production due to the di�usion process, which necessarily has to be greater or
equal to zero, provided the Onsager reciprocal relations for the mobility matrix Mij are met
[Groot and Mazur, 1983, Kondepundi and Prigogine, 2015].

We �nally obtain that ∫
dL

dt
dx ≤ 0, (4.43)

as both the contribution from chemical reactions and from di�usion are negative. Thus, a non-
ideal complex-balanced reaction-di�usion system will minimise the functional

∫
Ldx, which we

can now use to obtain information about the steady state, as done with the free energy F for
systems that relax to thermodynamic equilibrium.

Example 5 Let us now consider the following CRN (see Fig. 4.3 for a graphical representation):

A� B B � C C � A, (4.44)

with a free energy taken from a regular solution theory, as before. Again, for simplicity, we assume that the
system is driven out of equilibrium solely by imposing a non-equilibrium chemical potential di�erence ∆µ
for the transition from C to A.

We take all the reaction constants equal to each other and note that the network is necessarily complex-
balanced because all chemical reactions are unimolecular. Then, the steady-state of the CRN (4.44), mod-
elled stochastically with dynamics (3.4) and propensity functions (3.25), can be obtained from the following



4.6. Phenomenology of a complex-balanced mixture 87

deterministic rate equations (that include entropic terms and the non-equilibrium driving, but not any other
term of the free energy):

dcA
dt

= cB + e−β∆µcC − 2cA
dcB
dt

= cC + cA − 2cB
dcC
dt

= cB + cA − (1 + e−β∆µ)cC.

The solution of the above system at steady state is

cSSA = cSSC

(1
2 + e−β∆µ

) 2
3

cSSB = cSSC

[(1
2 + e−β∆µ

) 1
3 + 1

2

]
.

Identifying, cSSi = e−βµ̃i , and noting that we can express them with respect to that of species C, we get
the values of shifted non-equilibrium chemical potentials µ̃i and we can obtain the Lyapunov function of the
system

L(c) = βf(c)− cA log
[(

1 + 2e−β∆µ
) 1

3

]
− cB log

[1
2 +

(1
2 + e−β∆µ

) 1
3

]
− logZ, (4.45)

where the non-equilibrium partition function has not been explicitly computed but, since it is a constant term
along the dynamics, it will not alter the location of the minima of L in the space of concentrations c.

Let us consider the following regular solution free energy in the deterministic limit, that comprises
interaction and entropic terms and includes Cahn-Hilliard terms in order to model smoothly the potentially
non-uniform system:

f(cA, cB, cC) = β−1 ∑
α=A,B,C

cα log cα + χ22c
2
A + χ12cAcB +

∑
i,i′

κi,i′(∇ci∇ci′), (4.46)

where χ22 = −2, χ12 = −7 and κi,i′ are the Cahn Hilliard coe�cients [Cahn and Hilliard, 1958],
which, as introduced in Section 2.2.1, set the free-energetic cost of interfaces and their width. This free
energy and the reaction-di�usion equation (4.38) can describe the dynamics of the system, which minimise
its Lyapunov functional (4.45), as seen in the Figure 4.5 for a one dimensional system. In particular, the
upper panel shows that the Lyapunov functional (4.45) is minimised by the numerical time evolution of the
reaction-di�usion system, the middle panel shows the concentration pro�les at steady state and the lower
panel the net chemical current from species C to A at steady state as a function of the position x. �

4.6 Phenomenology of a complex-balanced mixture

Since the Lyapunov functional for complex-balanced systems found in the previous section is
minimised by the dynamics, it carries plenty of information about the steady-state in which the
macroscopic system will settle. The phase diagram of a mixture, in the case of phase separation,
states whether for a certain parameter set the steady state of the system is homogeneous or there
are multiple di�erent phases. Thus, the phase diagram follows from the Lyapunov functional
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Figure 4.5: The Lyapunov function of a complex-balanced CRN is minimised by its dynamics. Nu-
merical results for the CRN (4.44) obtained from perturbing a homogeneous solution and integrating Eq.
(4.38) forward in time until it reaches a steady state. Top panel: evolution of the value of the Lyapunov
functional with time. This functional is minimised with the dynamics but it does not attain the value 0 for
two reasons: First, the constant term − log(Z) has been neglected. Second, the dynamics may not have
reached the global minimum of L but only a local one. Middle panel: Steady-state con�guration of the
system, displaying the volume fractions of each species as a function of the spatial coordinate φ(x). In this
case, the system reaches at a steady state where there is phase separation. Lower panel: Net reaction �ux at
steady state for the third reaction in the CRN (4.44) as a function of the spatial coordinate, showing that
the system is not detailed-balanced. Note that, while in the upper panel, the horizontal dimension refers to
time, it is no longer the case for the lower ones, where it represents the space in a one-dimensional system.
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(4.31) in the same way it would do for a classical free energy: the phase coexistence lines are
obtained from the minimisation of Lwith the appropriate constraints (particle conservation, in
most of the cases we consider).

4.6.1 Phase diagram of a non-ideal complex-balanced solution

In this section we will consider a non-ideal solution with the CRN (4.44) in the deterministic limit,
and obtain its phase diagram. Therefore, we need to minimise the Lyapunov functional found in
Example 5 subject to the particle conservation constraint V φN =

∫
dx[φA(x) + φB(x) + φC(x)],

where φi(x) are the continuous volume fraction �elds of each of the species at point x in space (as
is customary when discussing phase separation) and φN is the overall volume fraction of solutes.
Then, the Lagrangian that needs to be minimised is

L =
∫
dxL(φ)− λ

(
V φN −

∫
dx [φA(x) + φB(x) + φC(x)]

)
, (4.47)

where λ is the Lagrange multiplier associated with the conservation of solute particles. If we
assume the bulk free energy of the homogeneous phases is large compared to the free-energetic
cost of the interfaces, then we can drop the continuity of the concentration �elds in space and
have a simpler description of the system only in terms of two homogeneous but di�erent phases.
Considering a �nite interface would, in general, yield a small correction to the phase diagram that
we �nd below. Then, we need to minimise the following Lagrangian:

L = V (1)L(φ(1)) + (V − V (1))L(φ(2))

− λ
[
V φN − V (1)(φ(1)

A + φ
(1)
B + φ

(1)
C )− (V − V (1))(φ(2)

A + φ
(2)
B + φ

(2)
C )
]
, (4.48)

where the superscripts (1) and (2) stand for the di�erent phases, V (1) is the volume of one of the
phases, and we recall that L is the one obtained in Example 5. For simplicity, we consider the
following free energy

f(φ) =
∑
α

φα log φα − χφ2
A. (4.49)

Minimisation of the Lagrangian (4.48), yields the phase diagram in Fig. 4.6 (for details on
the minimisation, see Appendix C.3). Regions 2 and 3 in the phase diagrams correspond to parts
of the parameter space where phase separation occurs, as it can be seen from the concentration
pro�les of the upper panels, while in regions 1 and 4 the homogeneous con�guration is stable.
These results are reminiscent of equilibrium phase diagrams but we recall that here there are net
chemical �uxes being maintained at steady state due to the non-equilibrium driving. In fact, from
the form of the free energy (4.49), we see that species A drives phase separation. Thus, since the
overall concentrations are modulated by the non-equilibrium work ∆µ, whether the steady state
displays one phase or a coexistence of phases also depends on the value of ∆µ.

4.6.2 General features of the steady state

As seen above, the phenomenology of a complex-balanced system does not change much with
respect to a non-ideal solution in equilibrium, but the non-equilibrium terms canmove the system
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Figure 4.6: Phase diagrams for a chemically reactive non-ideal mixture. Lower panels: Phase diagrams
obtained by minimisation of Eq. (4.48) as a function of total solute fraction φN and interaction parameter
χ or non-equilibrium driving ∆µ (as de�ned in Example 5). The color code indicates the amount of A
particles along the phase coexistence lines (volume fraction). Upper panels: Each of the panels has associated
a number which states their corresponding point in the phase diagrams. These panels depict the steady-
state volume fraction pro�les of the system in a one dimensional space, x, from 0 to L. These results
were obtained by numerically integrating in time the reaction-di�usion equations, as in Fig. 4.5, with the
parameters set by their point in the phase diagram. Note that, in the upper panels, the width of the interface
is �nite to ease the numerical integration, unlike in the lower panels, where the phase diagram was obtained
for vanishing interfaces.
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across the phase diagram, enabling the switching on and o� of phase separation. This can be
clearly seen from the minimisation of L [Eq. (4.47)] that involves taking functional derivatives
with respect to the volume fractions φi(x):

δL

δφi(x) = µi(x) + µ̃i − λ = 0, (4.50)

which implies that the chemical potential is homogeneous (since µ̃i and λ are constants) as it
would be the case for a mixture at thermal equilibrium [cf. Section 2.2.5, and, in particular Eq.
(2.38)]. Hence, if we de�ne non-equilibrium patterning as the type of steady-state patterning
characterised by displaying di�usion currents, it is excluded for solutions driven out of equilibrium
by a complex-balanced CRN since there cannot be any di�usion currents at steady state (the
driving force of the di�usion currents ∇µi = 0). Nevertheless, as shown in Example 5, the
system can sustain local chemical currents at steady state, due to the chemical work supplied
by the chemostats. However, these chemical currents do not couple to the di�usion process to
produce di�usion currents at steady state.

One of the consequences of our analysis is the fact that breaking complex-balance is a min-
imal requirement for non-equilibrium pattern formation in non-ideal solutions with local inter-
actions, at least when modelled in a thermodynamically consistent way, which generalises pre-
vious considerations [Carati and Lefever, 1997, Kirschbaum and Zwicker, 2021]. Nevertheless,
patterning in non-ideal mixtures can be achieved by the addition of surfactants or long-range
interactions, which can yield states of suppressed Ostwald ripening [Tarzia and Coniglio, 2006,
Pham et al., 2010].

Our analysis highlights the fact that in non-ideal media complex balance (as de�ned in the pre-
vious chapters) can be broken in two di�erent ways. Breaking complex balance can be achieved
by a suitable CRN topology, e.g. [Carati and Lefever, 1997], but, in a system that exhibits coex-
istence between two di�erent phases, one can also break complex balance by allowing the rates
of the reactions to depend on their local environment in di�erent ways (for example, in Ref.
[Kirschbaum and Zwicker, 2021] they found a patterned steady-state by allowing one reaction
to depend on the concentration of an enzyme that localises preferentially at one of the phases).
Here, to prove the form of the steady-state distribution and the Lyapunov function for complex-
balanced systems, we assumed that, even if the reaction were allowed to depend on their envi-
ronment via a function gρ, this function had to be the same for all reactions. Hence, if di�er-
ent reactions have di�erent gρ-functions, our results may not hold and, as demonstrated in Ref.
[Kirschbaum and Zwicker, 2021], patterning may occur.

In biological cells, phase separation has been hypothesised to perform many functions, such
as, accelerating biochemical reactions within the condensate irrespective of the rate of the reaction
in the dilute phase [Lyon et al., 2021]. Our work also implies that, in order to accelerate a reaction
only in one of the phases, breaking complex balance is necessary. Indeed, in a complex-balanced
system, the chemical potential of every species is the same in both phases (in the condensate and
outside it and, in fact, according to Eq. (4.50), it is perfectly homogeneous across space). Then,
given that the force driving the chemical reactions are the chemical potentials, the reaction rates
in both phases are related, making it impossible to regulate the rates of chemical reactions in each
phase independently and suggesting that breaking complex balance in one of the twoways outlined
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above is crucial. However, there are other functions that phase separation in biological cells can
perform with complex-balanced CRNs or even at thermodynamic equilibrium, like sequestration
of molecules or noise bu�ering [Klosin et al., 2020].

Complex balance is known to be a key feature of the CRN that determines not only its be-
haviour [Anderson et al., 2010] but also its thermodynamic properties [Polettini et al., 2015].
Here, we have further stressed the connection between the topology of the CRN and the ther-
modynamically consistent structure of the physical system to generalise results from ideal CRNs
and explore non-equilibrium thermodynamics of complex-balanced non-ideal CRNs. However,
for non-complex-balanced systems little is known still and, given our results, further research re-
garding the behaviour of this type of networks will be of the utmost importance both from the
physical and the biological point of view. Some steps in this direction will be taken in the chapter
that follows.



Chapter 5

Beyond complex balancing?

In this work we have shown that for chemically-reactive non-ideal solutions we can obtain re-
sults analogous to those of ideal CRNs, provided the system is modelled in a thermodynamically
consistent way. This implies that the rates of the chemical reactions will be a�ected by the inter-
actions between the species in the system and, therefore, MAK is no longer a valid description for
the dynamics of the CRN. In the previous chapter, generalising MAK for a non-ideal solution,
we obtained the steady-state probability distribution for a stochastic complex-balanced CRN and
the Lyapunov function of its deterministic counterpart, which speci�es the phase diagram of the
system.

Our results are of particular importance for non-equilibrium phase-separating systems, where
a wide variety of non-equilibrium behaviour can arise [Weber et al., 2019]. However, they were
limited to a class of CRNs known as complex-balanced and, as discussed above, many of the in-
herently non-equilibrium phenomena can only occur for systems that are not complex balanced.
Examples of these are: the modulations of reaction rates in one phase (e.g. a phase-separated con-
densate in a cell) independently of the rest of the system [Lyon et al., 2021] or non-equilibrium
patterning [Carati and Lefever, 1997]. Thus, going beyond complex-balanced networks seems
imperative to understand the phenomenology non-ideal solutions may present in biological cells.

This is a very challenging task and, in the present chapter, we will limit ourselves to analysing
a particular example and provide directions towards which future research should be directed.

5.1 Patterning when complex balance is broken

As an example of behaviour that can arise when complex balance is broken, we consider a simpli-
�ed version of the model analysed in Ref. [Kirschbaum and Zwicker, 2021]: A ternary mixture
(two chemical species and a solvent) where the two chemical species are exchanged via chemical
reactions of the form A� B.

First we will consider the equilibrium behaviour of the system. Afterwards, we will compare
it to its behaviour out of thermodynamic equilibrium while restricted to complex-balanced net-
works. Finally, we will explore the e�ects of breaking complex balance out of equilibrium.
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Equilibrium behaviour of the mixture

Let us assume that the system is not chemically reactive and is well described by the following
equilibrium free energy density

f

kBT
= cA log(cA)− cA + cB log(cB)− cB − χc2

A + κ

2
(
|∇cA|2 + |∇cB|2

)
, (5.1)

where κ are the Cahn-Hilliard coe�cients that penalise the creation of interfaces. The eigenvalues
of the Hessian matrix of the free energy density yield the stability of the homogeneous solution
and can be used to obtain the parameter region for spinodal decomposition (see Chapter 2, Sec-
tion 2.3.1). Considering a homogeneous system (where ∇ci = 0), we obtain that the smallest
(most negative) eigenvalue of the Hessian matrix is given by

λ− = 1
cA
− 2χ, (5.2)

which controls the stability of the system and, hence, whether spinodal decomposition occurs.
Therefore, when 2χ > 1

cA
, the homogeneous con�guration of the system is unstable and spinodal

decomposition will occur.

Complex-balanced behaviour

Let us now consider the case of the exchange A � B that can happen via two di�erent reaction
pathways: one with a non-equilibrium contribution from the chemostats ∆µ and the other one
without any external work. Then, one can write the resulting reaction di�usion-equations for the
system:

∂cA
∂t

=DA∇2µA + k1(eβ(µB+∆µ) − eβµA) + k2(eβµB − eβµA) (5.3)

∂cB
∂t

=DB∇2µB − k1(eβ(µB+∆µ) − eβµA)− k2(eβµB − eβµA), (5.4)

where µA = δf/δcA and µB = δf/δcB are the chemical potentials of species A and B, respec-
tively. A concentration homogeneous pro�le is a steady-state solution to Eqs. (5.3) and (5.4),
provided the chemical potentials satisfy

eβµA = k1e
β∆µ + k2
k1 + k2

eβµB . (5.5)

In order to analyse the stability of this solution we perform a Linear Stability Analysis (LSA)
(for an introduction to LSA see e.g. [Kondepundi and Prigogine, 2015]). Brie�y, we consider
small deviations from this homogeneous solution (δcA) and analyse them in Fourier space to �nd
if these perturbations decay back to the homogeneous solution or they are ampli�ed and the
system becomes unstable. To linear order in δcA and δcB , in Fourier space we have

∂δcA
∂t

=− k2DAδµA + k1(eβ(µB+∆µ)δµB − eβµAδµA) + k2(eβµBδµB − eβµAδµA) (5.6)

∂δcB
∂t

=− k2DBδµB − k1(eβ(µB+∆µ)δµB − eβµAδµA)− k2(eβµBδµB − eβµAδµA), (5.7)
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where k is the Fourier wave number and δµA = δcA
[

1
cA
− 2χ+ κk2

]
, δµB = δcB

[
1
cB

+ κk2
]
.

Solving this linear system, amounts to �nding the eigenvalues and eigenvectors of the Jacobian
matrix; the stability of the homogeneous solution being ensured if, for every k, both eigenvalues
are negative.

The sign of the determinant encodes information about the sign of the eigenvalues, since it
is equal to their product. Thus, in order to assess the stability of the homogeneous system, we
analyse the sign of the determinant of the Jacobian matrix (J ) of the system de�ned by Eqs. (5.6)
and (5.7). To uncover the behaviour of the system, we simplify the super�uous parameters as
follows: DA = DB = 1. Then, for small wave numbers (k → 0, long-wavelength perturbation)
the determinant takes the form

det(J) = 2(1− 2χc0
A)(k1 + k2e

β∆µ)
c0
A

k2 + O(k4), (5.8)

where the superscript ‘0’ indicates the value of the homogeneous concentrations. By inspection,
one can see that the change of sign in the determinant corresponds to the spinodal condition for
equilibrium systems (5.2), because k1 and k2 are strictly non-negative. When the determinant
changes sign, one of the eigenvalues of J also changes sign, marking the threshold for stability,
which matches the stability condition for the mixture at equilibrium. This is in line with the
�ndings of Chapter 4 where we saw that the Lyapunov functional of complex-balanced solutions
is close to that of a system at thermodynamic equilibrium and cannot sustain di�usion currents at
steady state.

Non-complex-balanced behaviour

Finally, if we assume one of the reaction pathways considered above is sensitive to changes in
the environment (as discussed in Section 3.2.3) complex balance is broken. We can describe this
situation by the following version of the previous reaction-di�usion equations

∂cA
∂t

=DA∇2µA + k1g(cA)[eβ(µB+∆µ) − eβµA ] + k2(eβµB − eβµA) (5.9)

∂cB
∂t

=DB∇2µB − k1g(cA)[eβ(µB+∆µ) − eβµA ]− k2(eβµB − eβµA), (5.10)

where we have included the function g(cA) to represent the variation of the rate constant of the
�rst reaction with the environment of the reaction and, in particular, with the concentration of
species A.

Carrying out a similar LSA with further simpli�cations to neatly observe the e�ect of breaking
complex balance (k1 = k2 = 1), one �nds, for the value of the determinant of the Jacobian matrix
for small k

det(J) = (1 + eβ∆µ)(4− 8χc0
A) + c0

Ag
′(c0

A)(1− eβ∆µ)
2c0
A

k2 + O(k4), (5.11)

where g′(c0
A) is the derivative of g with respect to cA evaluated at cA = c0

A. Thus, the sign of
the determinant for small k is no longer set by the equilibrium spinodal decomposition as there
is a contribution from the derivative of g, the function that describes how the rate of a chemical
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Figure 5.1: LSA for complex-balanced
and non-complex-balanced networks.
Largest eigenvalue (evaluated at the wave
number k that maximises it) for each of
the values of a homogeneous c0

A. The
eigenvalues λ+ are compared with the
equilibrium spinodal condition λ− (solid
green line). λ− crosses 0 at the same point
where the g′(ca) = 0 line becomes positive
(solid blue line), proving that for complex-
balanced systems, despite being out of
equilibrium, their stability is still given by
the equilibrium spinodal condition. The
parameters are set as in Section 5.1, with
∆µ = 5kBT , c0

B = 1 and g(c0
A) = 1.
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reaction changes with the environment. It should be noted that, in order to have the stability
modi�ed by non-equilibrium e�ects as found here, two conditions are necessary: ∆µ 6= 0 and
g′(c0

A) 6= 0 (and not equal for every reaction in the network). The �rst one implies that the
system is not at thermodynamic equilibrium and the second one gives a local measure of how
the rate of one of the chemical reactions changes due to the environment it take place in. If any
of these conditions is not respected, then the stability of the system would be determined by the
equilibrium spinodal condition, as for the complex-balanced or equilibrium case.

Note that here we have only analysed the stability of the system for small k or, in other words,
long wavelength perturbations. In order to examine it with more generality, numerically, the
value of the largest eigenvalue (with any wavelength) for each parameter set was obtained, see Fig.
5.1. As it can be seen from the �gure, the complex-balanced (g′(c0

A) = 0, solid blue line) eigen-
values yield the same condition for the instability as for spinodal decomposition at equilibrium
λ−, Eq. (5.2). This suggest that more exotic behaviour could appear for non-complex-balanced
solutions, such as Ostwald ripening arrest for non-complex-balanced systems, as found in Ref.
[Kirschbaum and Zwicker, 2021].

Therefore, we have given minimum conditions for non-equilibrium patterning to appear –
complex balance must be broken – but not a su�cient condition. Further e�orts will be required
in order to give general and su�cient conditions for non-equilibrium patterning to appear and
characterise the phenomenology that may arise.

5.2 Perspectives

It is therefore necessary to go beyond complex-balancing in order to be able to explain non-
equilibrium phenomena such as patterning, which are ubiquitous in living beings.

A small step in this direction could be the analysis of networks that we will call weakly non-
complex-balanced. This is a network whose topology is not limited to a complex-balanced net-
work (that is, its de�ciency δ is not 0). However, if the reactions that break the complex-balance
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constraint are slow when compared to the rest, then one would expect that the complex-balanced
behaviour still dominates the dynamics but, arguably, with a small deviation due to these slow
reactions. However, how large could this deviation be and what would its functional form be
remains unclear.

Hence, we suggest a series expansion around the complex-balanced steady state to address this
problem. Plenty of series expansions have been devised to analyse the steady-state behaviour of
systems out of equilibrium (recently, e.g. [Freitas et al., 2021]). Nevertheless, most of this expan-
sions take as a starting point the state of the system at thermodynamic equilibrium which means
that, in principle, they cannot account for phenomena happening far away from equilibrium. In
contrast, in this case, the expansion would not be based in the equilibrium steady state but in
the complex-balanced one, which can be arbitrarily far away from equilibrium. Thus, we would
be limited by the topology of the network and the timescales of the reactions rather than by the
distance to thermodynamic equilibrium.

In practice, this would mean to obtain the steady-state distribution for the closest complex-
balanced network and then add perturbatively the e�ects of the slow reactions that break complex
balance, where the expansion parameter would be the ratio between the reaction constant of the
fast reactions and the slow ones. This could be done in an analogous way to other expansions
(e.g. [Proesmans et al., 2016, Freitas et al., 2021]) but taking as an ansatz the complex-balanced
steady state plus a correction, that is, an exponential with argument β[F (n) +

∑
i µ̃ini + g(n)],

where g(n) quanti�es the deviation from complex balance and could be obtained to di�erent
orders in the ratio of reaction constants.

Apart from increasing our understanding of general reaction networks, this expansion would
also have consequences from the practical point of view. In real biological systems, it is seldom the
case that the full reaction networks are known with great precision. Therefore, it might occur that
a CRN which, to the best of our knowledge, is complex balanced, in reality it is not so, because
there could be slow or rare reactions taking place that are hard to measure or identify. Then, this
expansion would provide a means by which the results presented here could be robustly applied
to complex biological settings, where deviations from complex-balancing, even if unidenti�ed,
may occur.

Finally, it would still be a challenge to �nd Lyapunov functionals even for the weakly non-
complex-balanced case, if they exist [Ge and Qian, 2016]. This is because arguments like the
ones given in Section 4.5 are unlikely to hold for more complex steady states. In fact, any de-
viation from a Boltzmann distribution other than a linear one at the level of the exponential of
particle numbers (which is the case of complex-balanced networks) would invalidate the proof of
the Lyapunov functional for the di�usion process, at least as performed here. Thus, in the future,
new arguments to �nd Lyapunov functionals will need to be devised, in order to obtain a more
general understanding of non-equilibrium patterning events. But, for the moment, to the best of
my knowledge, these more general Lyapunov functionals remain unknown.
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Conclusion

For a theory that has been well corroborated can only be
superseeded by one of a higher level of universality; that is,
by a theory that is better testable and which, in addition,
contains the old, well corroborated theory [...].

K. R. Popper
The Logic of Scienti�c Discovery, 1959
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The present work has been devoted to the study of theoretical biophysics and, in particular,
patterning and self-organisation processes in non-equilibrium solutions. This topic has been anal-
ysed from two di�erent perspectives, embodied by each of the two major parts of this manuscript.

In Part I, we theoretically addressed two examples of processes that organise the intracellular
space in di�erent ways: one that sets the size and number of large protein aggregates and another
one which explains the appearance of a nucleoid in bacteria and its localisation within the cell.

To a great extent, the scienti�c knowledge is built upon confrontation between hypotheses and
facts, or, in this case, between theoretical predictions and quantitative measurements. Proceeding
in accordance with these ideas, analysis of microscopy images were performed to confront the ag-
gregation model. We found good agreement between the model and the experimental data and
hypothesised that such a timescale separation could in�uence many other intracellular phenom-
ena that involve large agglomerates or structures, such as phase-separated droplets. Regarding
the modelling of the bacterial nucleoid, our results were compared with the existing empirical
evidence and additional measurements were suggested for several perturbations of the bacterial
nucleoid, which should further validate the theory or force us to modify it, or even fully discard
it.

In contrast, the objective of Part II was markedly di�erent. In a purely theoretical endeavour,
its aim was to understand the behaviour of reaction-di�usion models in the most general way pos-
sible, both from the dynamical-system perspective (for example, what kind of behaviour can we
expect from the reaction-di�usion equations at steady state) and from the thermodynamical point
of view (e.g. how does thermodynamics constrain the form of the reaction-di�usion equations).
We achieved a detailed characterisation of a large class of CRNs known as complex-balanced, for
which we ruled out the presence of di�usion currents at steady state (and, hence, non-equilibrium
patterning cannot exist for these networks) and obtained a Lyapunov functional for these systems
with a clear thermodynamic interpretation. In doing so, results that had been obtained for speci�c
networks (e.g. [Bazant, 2013, Kirschbaum and Zwicker, 2021]) were generalised, but the result-
ing theory is not general enough to explain how non-equilibrium patterning arises in non-ideal
solutions.

However, it remains unclear what are the repercussions of the results obtained in Part II for
complex biological systems. Clearly, this is the price one has to pay for constructing such an ab-
stract and general theory: it is still far away frommaking concrete falsi�able hypothesis, especially
in relation to biological systems. The applicability of these results is also limited by their heavy
dependency on the topology of the CRN, which is well de�ned from a mathematical point of
view but in real living beings it might be hard to obtain in full detail. In particular, let us assume
that, for a certain process in a given organism, molecular biologists have managed to discover the
main players and their interactions. However, one cannot expect that this network is completely
isolated from the rest of the organism nor that all chemical reactions have been discovered, no
matter how weak or slow they are. Then, if the known network were complex-balanced but there
were still some hidden nodes that break this complex-balancing, in view of Part II, what can we
say about the system? Chapter 5 hints at how progress in this direction may be achieved, which
may enable the robust application of these results in biological systems.

Nevertheless, the utility of this theory does not lie as much in its predictive power as in the
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order that it introduces in the plethora of results that have been obtained for particular models:
this abstract approach enables the identi�cation of a large class of networks that, even if driven out
of equilibrium, still have many of the features associated to systems relaxing to thermodynamic
equilibrium. From the theoretical point of view, it aids in relating network topologies to the
phenomenology of non-ideal solutions out of thermodynamic equilibrium and has the potential
to help in the construction of future models because it has increased, in an intuitive way, our
understanding of the behaviour that these models may exhibit.

The original motivation for the work undertaken in Part II is the existence of e�ective reaction-
di�usion models for non-ideal solutions that, while they are not thermodynamically consistent
in the sense of Part II (chemical reactions and di�usion do not stem from a single free en-
ergy), have achieved a remarkable accuracy in describing experimental observations (e.g. Ref.
[Zwicker et al., 2014]). Even the model for the nucleoid presented in Chapter 2 lacks thermo-
dynamic consistency according to Part II, yet it is a simple model that can recapitulate plenty of
the experimentally observed phenomena and produce new hypotheses, which may or may not
be con�rmed. Both are simple but e�ective models that could be thought of as coarse-grained
models, where the microscopic details have been integrated out or absorbed into certain param-
eters, and that display this paradoxical behaviour under certain approximations (in the sense of
an apparent lack of thermodynamic consistency in the dynamics). To the best of my knowl-
edge, there is no systematic way to obtain these e�ective models from a coarse-graining proce-
dure that starts from microscopic and thermodynamically consistent models. This class of ac-
tive matter models are not limited to reaction-di�usion systems [Li and Cates, 2020] but also en-
compasses systems with non-reciprocal interactions [Saha et al., 2020] or self-propelled particles
[Tailleur and Cates, 2008]. In some cases, attempting a coarse-graining procedure may not even
make sense (e.g. for self-propelled particles it seems an overwhelming task) but, in others, I expect
it to greatly increase our understanding of systems out of thermodynamic equilibrium, if such a
mechanism could be devised. From our results, it seems clear that inherently active patterning
phenomena as the one described in Ref. [Li and Cates, 2020], Ref. [Zwicker et al., 2014], or Ref.
[Saha et al., 2020] cannot arise from the coarse graining of a complex-balanced CRN1, but, by
no means this implies that these e�ective models cannot be obtained starting from more general
networks.

Each of the parts of this thesis represents two orthogonal approaches to theoretical biophysics.
A modelling approach to theoretical biophysics utilises e�ective representations of processes while
retaining their physical interpretation and eases the obtention of clear falsi�able predictions. This
enables rapid rejection of the model if the hypotheses are proven wrong and advancement in the
theoretical and empirical understanding of the system under consideration. Conversely, we have
also undertaken a more abstract approach, aiming at deciphering the generalities of a certain class
of reaction-di�usion systems, which enables the extraction of general features of a wide variety of
models in an intuitive way. However, as we have seen above, the drawback of this type of general
intuitive understanding is the di�culty in testing such a theory in real systems and the limitations
when trying to explain complex emergent phenomena like non-equilibrium patterning.

1Note that, since patterning can also emerge at thermodynamic equilibrium, we are only referring to patterning
that arises as a consequence free-energy dissipation and that it would not exist in the absence of this dissipation.
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Therefore, to make further progress in the understanding of the physics underpinning bi-
ological systems, both approaches will be needed: general results that set the main lines of the
behaviour of non-equilibrium systems and particular models that yield concrete refutable hy-
potheses regarding the functioning of biological cells or organisms. Ideally, eventually these two
approaches would be linked by a rigorous coarse-graining procedure that, in an understandable
way, explains the functioning and self-organisation of the living from physical principles. Tackling
the complexity of the living and comprehending the emergent phenomena in biological systems
will require theoretical e�orts at every scale, and a successful integration of theoretical predictions
and experimental results that enables the empirical testing of general and abstract theories.
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Appendix A

Supplementary Information for the
aggregation model

A.1 Experimental Procedures

I include this section of the Appendix for completeness yet it is not my own work but that of
my collaborators, as the experiments were carried out exclusively by Aléria Duperray-Susini and
Mathieu Coppey.

A.1.1 Cell culture

The immortalized hTERTRPE1 cells (Human Retinal Pigmented Epithelium) were cultivated in
DMEMF12without Phenol Red (Gibco, Life Technologies) supplemented with 10% Fetal Bovine
Serum (FBS) without antibiotic, hereafter called the growth medium. They were maintained at
37◦C in humidi�ed atmosphere with 5% CO2, tested and certi�ed as mycoplasma free.

A.1.2 Transitory cells transfection by Cry2Olig-mCherry

RPE1 cells were detached by trypsin and centrifuged for 3 min, 100 g at room temperature to
eliminate it. The pellet was kept and resuspended on growth medium. They were transfected
on suspension by jetPrime (Polyplus transfection), with 1µg of DNA plasmid vector Cry2Olig-
mCherry (purchased from Addgene, number 60032), and then platted on �uorodishes. Accord-
ing to the recommendation of manufactory, the medium was replaced after four hours by a fresh
one. From there, the manipulation of cells was done in the complete dark.

A.1.3 Quantitative estimation of �uorescent protein concentration

To estimate the concentration of proteins in cells using the �uorescent signal, we calibrated the in-
tensity on the camera using mCh-6His protein puri�ed at 4.19 mg/ml (a gift from El Marjou. A,
Platform of Curie Institute). We performed serial dilutions of the stock solution (1, 1:2, 1:4, 1:8,
1:10, 1:16, 1:32, 1:64, 1:100, 1:128, 1:1000) in the cell growth medium, and the medium alone
was used for background estimation. For each dilution, we put a drop of 10µl into a �uorodish
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and we imaged the drop using the exact same parameters as for the cell imaging experiments.
Two images were acquired at a focus right above the coverslip, as for cell imaging. We then quan-
ti�ed the average �uorescent intensity using Fiji. The total intensity of the image was background
subtracted and averaged over the size of the whole image. Data were plotted and gave rise to a
linear relationship between raw intensities of the images and concentrations of recombinant �u-
orescent proteins. We �tted data with a line and used the value of the slope to convert intensities
into concentrations.

A.1.4 Optogenetic experiments

All experiments were performed using 100x objectives (oil immersion, numerical aperture 1.4)
by Inverted Spinning Disk Confocal Roper/Nikon, EMCCD 512x512 evolve (pixel size: 16µm)
photometrics come from to Imaging Nikon Center (PICT-LM) in Curie Institute. Live imaging
was on normal growth condition and preserved by Life Imaging Service Yokogawa head: CSU-X1
integrated in Metamorph software by Gataca Systems. Twenty-four hours after transfection, cells
were kept at 37◦C and were imaged before any activation with blue light over 17 z-stack (0.5µm)
at 561 nm (0.134 mW). The same cells were imaged at the end of the activation routine using the
same 17 z-stacks while keeping the same focus. Optogenetic activations were performed every
two minutes for a total duration of one hour, using the laser blue light at 491 nm (0.506 mW). We
selected cells for further image quanti�cation based on their visible viability, on their presence in
the �eld of view at the end of the experiment (some cells escaped the �eld of view after one hour),
and on the absence of pixels saturation (very bright, saturated clusters could appear over the time
course of the experiment). All laser settings and parameters of the camera (time of exposition,
gain) were kept constant for all experiments and calibration of the concentration.

A.2 Image Analysis

The initial concentration of the protein is obtained from the cell image at the initial time, t = 0.
The cell is separated from the background and the intensity is computed as the average of the
intensity in the cell after subtracting the background intensity, using Matlab [MATLAB, 2018].
We estimated the volume of the cells by measuring the area of the cell just above the coverslide
and assuming an e�ective height such that the total intensity of the 3D �nal image equals the total
intensity of this 2D initial image times this e�ective height. This e�ective height parameter varies
from cell to cell and has a mean value of 1.1µm and a standard deviation of 0.4µm.

In order to quantify the size and frequency of the cluster at t = 1 hr, we smoothed the image
with a gaussian �lter, substracted the mean background intensity, located the local maxima of
intensity in the image, and performed a watershed transform to estimate the spatial extent of
each cluster [Meyer, 1994]. The size of the clusters is then determined by considering that the
cluster is composed of the pixels that have at least one �fth of the intensity of the maximum of
such cluster. In addition, we considered a bright spot to be a cluster only if the intensity of its
peak is at least 2000 arbitrary units above the background intensity—which corresponds to peaks
with at least ∼ 20 monomers. Once the clusters are located and their boundaries de�ned, we
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add up the total intensity of each of them, separately, to obtain an estimate of the mass of each
cluster, i.e., the total number of monomers in each of the clusters. This number might be slightly
underestimated due to a potential self-quenching e�ect of the �uorescent tag upon aggregation.

A.3 Parameter Fitting

The two datasets that we want to �t with Eqs. (1.28) and (1.29), i.e., cluster density and mean
cluster mass, have di�erent units and numerical values. In what follows, we will introduce a least-
square minimization such that, when minimising the squares to �nd the best �tting parameters,
both datasets are equally taken into account. To achieve this, we introduce

∑
i

{ 1
µ1

[f1(xi)− y(1)
i ]
}2

+
∑
i

{ 1
µ2

[f2(xi)− y(2)
i ]
}2
, (A.1)

where f1,2 are de�ned by Eqs. (1.28) and (1.29), the 2-tuples (xi, yi)(1,2) denote each of the
datapoints i of each dataset (1 or 2, cluster concentration or cluster size), and µ1,2 are the mean
values of the datapoints of each dataset: µ1,2 = M1,2

−1∑M1,2
i=1 y

(1,2)
i , M1,2 being the number of

datapoints.
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Appendix B

Supplementary Information and Figures
for the nucleoid model

B.1 Equilibrium free energy of an interacting system: the virial ex-
pansion

In this Appendix we brie�y explain how to obtain the equilibrium free energy of a binary gas of
hard spheres, as the one presented in Section 2.2.1 that yields Eq. (2.4). The model is composed
ofNA andNB particles of species A and B, which are hard spheres with radiiRA,RB, respectively,
con�ned in a volume V. We assume that the system has cylindrical symmetry, and thus V is
e�ectively one dimensional, so as to apply our �ndings to the model de�ned by Eqs. (2.1) to (2.3).

Without taking into account reaction processes, we work out the free energy from the partition
function

Z =
∫ (∏

i

dxidpi
)
e−βH(x,p) = Zideal

1
VN

∫ (∏
i

dxi
)
e−βVint(x), (B.1)

where x and p are the positions and momenta of the particles, Zideal is the partition function of
the system in the absence of excluded-volume interactions, i.e., an ideal gas [Huang, 1987]. In
order to compute this partition function we will resort to the virial expansion [Onnes, 1902]. We
introduce the Mayer function f :

f(xi, xj) = e−βVij(xi,xj) − 1, (B.2)

where Vij is the interaction potential between the ith and jth particle. Hence, the interaction term
can be expanded as follows

e
−β
∑

i<j
Vij(xi,xj) =

∏
i<j

e−βVij(xi,xj) =
∏
i<j

[1 + f(xi, xj)], (B.3)

where, assuming low density, we expect that, on average, f(xi, xj) is small compared to one. The
leading contribution in Eq. (B.3) is O(1)—the ideal gas—and the subleading one is O(f(xi, xj)),
which yields the second term in the virial expansion. Here we will also compute the third virial
term, O(f(xi, xj)2), because the density in our system is not low enough to allow us to safely
neglect three-particle interactions. As shown in Fig. B.2, in some cases the second virial term

117



118 Appendix B. The Bacterial Nucleoid

does not yield the phase separation in the presence of reaction and out-of-equilibrium terms,
while the addition of the third virial term provides such phase separation.

The second virial term consists of a summation of terms like the following

1
VN

∫ ∏
k

dxkf(xi, xj) = 1
V

∫
drije

−βVij(rij), (B.4)

where we have used the fact that the system is one dimensional and integrated out all spatial
variables except one, rij = xi − xj . The potential Vij depends on the relative position of species
i and j considered, and here is taken to be a hard-sphere potential, which is non-zero only when
the distance between two particles is smaller than the sum of their respective radii (Ri + Rj).
Mathematically, it takes the following form:

V (r1, r2) =
{

0 if |r1 − r2| ≥ Ri +Rj

∞ if |r1 − r2| < Ri +Rj
. (B.5)

For a given species i there are Ni(Ni − 1)/2 combinations of the Mayer f function: as a result

Na(Na − 1)
V

∫
drije−βVij(rij) = −Na(Na − 1)

2V
4π
3 (2Ra)3. (B.6)

Conversely, as far as the hard-sphere interaction between species A and B is concerned, we have
NANB terms, yielding

NANB
V

∫
drije−βVij(rij) = −NANB

V

4π
3 (RA +RB)3 ≡ −NaNb

V
B

(2)
AB. (B.7)

In general, the term B
(n)
ab , which enters the n-th order of the virial expansion for species a and b,

is known as virial coe�cient. With this new notation, the partition function to order O(f(xi, xj))
is

Z = Zideal

1−

 ∑
a=A,B

Na(Na − 1)
2V B(2)

aa + NANB

V
B

(2)
AB

 , (B.8)

where the partition function of an ideal gas of indistinguishable particles is

Zideal = VN∏
a=A,BNa!Λ3Na

a

, (B.9)

and Λa is the thermal de Broglie wavelength of species a.

The third virial coe�cient is obtained by adding up the contributions of the three-particle
interactions in Eq. (B.1), i.e., terms of the form∫

dxidxjdxkf(xi, xj)f(xj , xk)f(xk, xi). (B.10)

Proceeding along the same lines as for the �rst virial term, we count the number of times when
such a term appears in Z, which depends on the chemical species of the particles involved. For
clusters of three particles all of the same chemical species we have the following contribution:

−
∑
a=A,B

Na(Na − 1)(Na − 2)
6

160π2R6
a

3V2 = −
∑
a=A,B

Na(Na − 1)(Na − 2)
6V2 B(3)

aaa, (B.11)
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where the summation over a involves the di�erent chemical species A and B. If two particles
belong to the same species and a third particle to a di�erent species, we have∑

a6=b
−Na(Nb − 1)Nb

2
16π2

9V2 (8R3
aR

3
b + 15R2

aR
4
b + 6RaR5

b +R6
b) =

∑
a6=b
−Na(Nb − 1)Nb

2V2 B
(3)
abb.

(B.12)
These contributions are added up to the free energy of the system, to which higher order cor-
rections can be introduced by computing the integrals involving products of 4 or more Mayer f
functions.

Taking the logarithm of the partition function (B.8), once the third virial correction has been
added, yields the free energy (2.4) in the main text.

B.2 Auxiliary entropy

In our analysis, we �rst determine the steady state of the system in the absence of reaction and
out-of-equilibrium terms, by minimising the total free energy (2.20). These steady-state pro�les
will then be used as initial conditions to integrate forward in time the reaction-di�usion Eqs. (2.1)
to (2.3), which include both reaction and out-of-equilibrium terms. At the free-energyminimum,
the DNA concentration is nonzero in the nucleoid, while it vanishes outside the nucleoid. Given
that these equilibrium pro�les are entered as initial conditions in Eqs. (2.1) to (2.3), the vanishing
concentration above causes numerical instabilities when these equations are numerically inte-
grated forward in time, and can lead to negative concentrations in the out-of-equilibrium steady
state [Shampine et al., 2005]. To overcome this issue, we included a small, additional entropic
term in the free energy (2.20):

Faux = Kaux kBT

∫ `

−`
dx e−DauxcDNA(x)/〈cDNA(x)〉 cDNA(x)

NDNA
log [2`cDNA(x)] , (B.13)

where 〈cDNA(x)〉 = NDNA/(2`) is the average DNA concentration across the cell, and Kaux and
Daux are constants that we set to 0.2NDNA and 10, respectively, in order to obtain a negligible
auxiliary free energy in the nucleoid and a non-negligible one at the poles. The exponential term
in Eq. (B.13) is such that, if the coordinate x lies in the nucleoid bulk, then cDNA(x) is of the same
order of magnitude as 〈cDNA(x)〉 and thus, by choosing Daux su�ciently large, the contribution
to Faux vanishes. On the other hand, the exponential is approximately equal to one outside the
nucleoid, where cDNA(x) � 〈cDNA(x)〉, and Eq. (B.13) reproduces a term that resembles the
standard entropy of mixing of a polymer in the mean-�eld approximation

cDNA(x)
NDNA

log [2`cDNA(x)] , (B.14)

which dominates the integral in Faux.

In what follows, we will add Faux to the total free energy Eq. (2.20), by setting

F → F + Faux. (B.15)

As a result, theminimization of Eq. (2.20) tends to alsomaximize the entropy (B.14), thus spread-
ing out a fraction of DNA segments outside the nucleoid bulk. This procedure alters only slightly
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Figure B.1: DNA and auxiliary free energies. DNA and auxiliary free energies (FDNA and Faux, respec-
tively)for a cell of size 3.6µm at the out-of-equilibrium steady state. The DNA free energy only takes into
account the self-interaction terms of DNA cylinders, because the mean-�eld entropic term of the DNA
chain is neglected, see Section 2.2.2.

the free-energy minimum: As shown in Fig. B.1, the auxiliary free energy does not vanish out-
side of the nucleoid, but it is orders of magnitude smaller than the original free energy within the
nucleoid. Notwithstanding this, such a small free energy prevents numerical instabilities in the
integration of the reaction-di�usion equations.

B.3 E�ect of third-order virial terms

Finally, we can evaluate the e�ect of adding a third virial coe�cient in our model. In Fig. B.2,
we depict the equilibrium minimum of the free-energy and the out-of-equilibrium steady state,
to both second and third order in the virial expansion. There is a marked di�erence, particularly
for the out-of-equilibrium steady state, where, without a third order term, the phase-separated
nucleoid disappears due to the non-equilibrium synthesis of mRNA.

B.4 Estimate of the di�usion coe�cient of DNA

In order to assess the validity of the value for the di�usion coe�cient of DNA segments used in
the model, we estimated the drag force exerted on the nucleoid by the viscous �uid surrounding
it (which in the cell can be identi�ed with the cytoplasm).

We consider a cylindrical nucleoid with radius R−L/2, assuming that there is a gap of width
L/2 (the persistence length of DNA segments) in the radial direction between the nucleoid and
the plasma membrane. For a nucleoid moving as a whole with velocity vnucl, we assume the radial
velocity pro�le of the viscous �uid surrounding the nucleoid that decreases linearly from velocity
vnucl at the nucleoid to zero at the membrane. We thus have a velocity gradient in the radial
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Figure B.2: E�ect of third-order virial term. (A) Pro�les corresponding to the free-energyminimization
(top) and out-of-equilibrium steady state (bottom), obtained with the second virial coe�cients only, for a
cell length of 3.6µm for single-chromosome growth. As in the main text, concentrations of DNA, cDNA(x),
and free ribosomes, cF(x) are shown in red and black respectively and polysome concentrations ρn(x) are
also shown, where the mRNA loading number n is speci�ed by the color box. (B) Same quantities as in A,
with the third virial coe�cients.

direction
∆v
L

= 2vnucl
L

(B.16)

from the nucleoid to the membrane. Then, the shear force Fnucl exerted on the nucleoid is
[Lautrup, 2011]

Fnucl = Anucl ν∆v, (B.17)

where ν and Anucl are the viscosity of the �uid and the area of the nucleoid, respectively. For
the reference cell of length 1.8µm, the nucleoid will be around 1µm long and have a radius of
R − L/2, which gives an area for the nucleoid Anucl = 1.9µm2. We use the viscosity of water
ν ∼ 1 mPa · s, although the viscosity of the cytoplasm might be larger. The ratio between the
force Fnucl and the velocity of the nucleoid is de�ned as the drag coe�cient [Kubo et al., 2012]

γ = Fnucl

vnucl

= 2Anuclν

L

' 4.7kBT s/µm2. (B.18)

Given that the chromosome of the reference cell is composed ofNDNA segments, if one naively ig-
nores the hydrodynamic coupling between segments, one could infer that the drag coe�cient per
segment is γs = γ/NDNA. Then, by the �uctuation-dissipation relation, the di�usion coe�cient
of each DNA segment would be

D = kBT

γs
' 103 µm2/s, (B.19)

which is signi�cantly higher than the value used in the model. While this estimate is clearly an
oversimpli�cation, the overall low drag of the nucleoid suggests that processes where the di�usion
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coe�cient of segments could matter, i.e., nucleoid centering, are not limited by viscous drag (and,
hence, by the di�usion coe�cient), but by the osmotic-pressure di�erence.

Our actual choice of the di�usion coe�cient for the DNA segments is signi�cantly lower than
the value (B.19) obtained with this estimate to be consistent with themeasured di�usion coe�cient
of mRNAs that have a similar linear dimension while agreeing with the result of the estimate
(B.18), namely, that viscous drag should not limit the dynamics of the nucleoid. Both in the
centering dynamics and in the expansion of the nucleoid after halting transcription, the timescale
is set by the synthesis and degradation of mRNA (β−1), and not by the di�usion coe�cient.

B.5 Experimental Methods

I include this section of the Appendix for completeness yet it is not my own work but that of my
collaborators, as the experiments were carried out exclusively by Sophia Hsin-Jung Li.

In this study, we used E. coli wild type strain NCM3722. To achieve di�erent growth rates,
cells were cultured at 37◦C in chemostats and in batch. For slow growth rates (0.1 and 0.6
h−1), carbon-limiting chemostats with corresponding dilution rates were used, whereas for faster
growth, batch cultures with glucose minimal media (0.9 h−1) and de�ned rich media (1.7 h−1)
were employed. The chemostat (Sixfors, HT) volume was 300 mL with oxygen and pH probes to
monitor the culture. The pH was maintained at 7.2±0.1 and the aeration rate was set at 4.5 l h−1.
40 mM MOPS media (M2120, Teknova) was used with glucose (0.4 %, Sigma G8270), ammo-
nia (9.5 mM NH4Cl, Sigma A9434), and phosphate (1.32 mM K2HPO4, Sigma P3786) added
separately. For the de�ned rich media, additional Supplement EZ 5X and 10X ACGU Solu-
tion (Teknova) were added. In carbon-limiting chemostats, glucose concentration was reduced to
0.08 %. All the sample collection happened after chemostat cultures reached steady state or when
batch culture reached OD600 0.3.

To measure cell size, 750µL of culture was �xed with 250 µL 20% paraformaldehyde at room
temperature for 15 min, washed with PBS twice, and stored at 4◦C until imaging. Then, 1µL
of cells were placed on 1% low-melting agar pad (Calbiochem) made with PBS and imaged with
inverted Nikon90i epi�uorescent microscope equipped with a 100 × 1.4 NA objective (Nikon)
and Hamamazu Orca R2 CCD camera. NIS Elements software (Nikon) was used to automate
image acquisition for phase contrast images. Segmentation, quanti�cation of �uorescence inten-
sity, and cell-length measurements were further analyzed in MATLAB [MATLAB, 2018] using
customized programs.

To infer ribosome number per cell, cell number per OD600 and total RNA per OD600 were
measured separately. Cell number per OD600 was calculated by serial dilution and plating. To
measure total RNA, 1.5 mL of culture was pelleted by centrifugation for 1 min at 1.3 × 104 X g.
The pellet was frozen on dry ice and the supernatant was taken to measure absorbance at 600 nm
for cell loss. The pellet was then washed twice with 0.6 M HClO4 and digested with 0.3 M KOH
for 1 hour at 37◦C. The solution was then precipitated with 3 M HClO4 and the supernatant was
collected. The pellet was re-extracted again with 0.5 M HClO4. The supernatants were combined
and absorbance measured at 260 nm using Tecan In�nite 200 Pro (Tecan Trading AG, Switzer-
land). Total RNA concentration was determined by multiplying the A260 absorbance with 31
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(µg RNA/mL) as the extinction coe�cient.

B.6 Numerical methods

For both the minimisation of the free energy (2.20) and the time integration of the reaction-
di�usion Eqs. (2.1) to (2.3), numerical methods are required, as the equations are too complex to
be solved analytically. We discretise the spatial degrees of freedom of the system into a mesh that
satis�es:

2` = ∆xNd, (B.20)

where ∆x is the distance between two neighboring points and Nd is the number of points taken
to describe the concentration pro�le of each of the species in the system, which was set to Nd =
32, 64, depending on the desired accuracy.

Using this discretisation of space, we evaluated the spatial derivatives in Eq. (2.20), and ob-
tained a minimum of the free energy by using an algorithm for constrained gradient-based opti-
mization [Kraft, 1994]. We used the C implementation of the NLopt library [Johnson, 2007].

For the time integration with the non-equilibrium e�ects, we wrote down a set of ordinary
di�erential equations, where to each chemical species and each point in the mesh (de�ned by Eq.
B.20) corresponds a function of time, and such functions are coupled to neighboring points in
space through the discretized spatial derivatives, and to other chemical species through the local
chemical reactions. To solve this system we used an implementation of the backward di�erentia-
tion formula (BDF) method in Mathematica [Wolfram Research, Inc., 2018].

B.7 Parameter estimation from experimental data

Cell length, cross-sectional radius and number of ribosomes were inferred from experimental
measurements of E. coli colonies growing in di�erent chemostatted conditions (as explained in
Section B.5). The data yields the values of these parameters for di�erent growth rates. The
estimate of the number of ribosomes is derived from the total amount of 23S and 16S ribosomal
RNA (rRNA), considering that two-thirds of the total mass of a ribosome comes from rRNA
[Berg et al., 2002].

We analyzed twelve di�erent nutrient limitations, which correspond to four groups of simi-
lar growth rates: the parameters—cell length, cross-sectional radius, number of ribosomes, and
growth rate—were averaged across data points belonging to the same growth rate.

Finally, the values of the parameters above as functions of the growth rate were �tted with
an exponential by using the least-square method. The parameter values for a growth rate of
log(2)/2/hr, which corresponds to a doubling time of 2 hr, were obtained via interpolation, by
evaluating the exponential �t at the reference growth rate log(2)/2 hr−1, see Section 2.2.4. The
interpolations are shown in Fig. B.3, and the values of the corresponding parameters are given in
Section 2.2.4.
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Figure B.3: Experimental data and interpolation. (A) Ribosome number per cell as a function of
growth rate. Points correspond to experimental data, and solid curves to the exponential �t. The inferred
parameters for the desired growth rate (log(2)/2hr−1) are marked on each axis. (B) Same as A, for cell
cross-sectional radius. (C) Same as A, for half cell length.

B.8 Nucleoid size at thermodynamic equilibrium

In this section we depict the results obtained for the �lamentous growth scaling as in the main
text, Fig. 2.4, but in the absence of the out-of-equilibrium chemical reactions, i.e., for a passive
system (see Fig. B.4). The format of the Figure is the same as that of Fig. 2.4.

B.9 Single chromosome growth condition

B.9.1 Scaling of the concentration of chemical species for single-chromosome growth

In the single-chromosome case we assume that the concentration of mRNA and ribosomes scales
linearly with the growth rate and, based on the data of Ref. [Kohram, 2021], that the growth rate
of E.coli decreases linearly with cell length until it reaches zero at ∼ 20µm. In order to compare
the model predictions with the experimental data in Ref. [Wu et al., 2019], we assume the same
linear law, but with a slope such that the growth rate, g, reaches zero at 30µm, because in the data
of Ref. [Wu et al., 2019] cells appear to grow up to that length. In addition, we assume that the
mRNA degradation rate, β, decreases linearly in the same way the growth rate does, motivated
by the expectation that for slow growth it would be ine�cient to turn over mRNA quickly.

With the above considerations, we can write the following relations:

g(`) = g0 − a `, (B.21)

NmRNA(`) = 2`NmRNA0g(`), (B.22)

β(`) = β0(g0 − a `) (B.23)

where, for a cell that grows up to 30µm, a = g0/(15µm) and the constants g0, NmRNA0 , and β0

are set by observing that the values of their respective functions must match those of the reference
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Figure B.4: Equilibrium concentration pro�les for E. coli growing �lamentously. This �gure shows
the concentration pro�les and nucleoid lengths exactly as in Fig. 2.4 except that the non-equilibrium
terms in the equations have not been added. Therefore, this �gure represents the results of the model at
thermodynamnic equilibrium.

cell of the main text, see Section 2.2.4. Those are:

g(` = 0.9µm) = log(2)
2 hr−1, (B.24)

NmRNA(` = 0.9µm)
2`σ = 2400µm−3, (B.25)

β(` = 0.9µm) = 3× 10−3/s. (B.26)

Then, the mRNA synthesis rate, α(`), is �xed by the relation α(`)NDNA = β(`)NmRNA(`) see
the main text, Section 2.2.4, where NmRNA(`) and β(`) are given by Eqs. (B.22) and (B.23).

B.9.2 Results for constant RNA concentration

This �gure depicts the predicted nucleoid length for single-chromosome growth, as in Section
2.3.2 Single-chromosome growth, but keeping mRNA and ribosome concentration constant. As it
can be seen in Fig. B.5, the predicted nucleoid length is much smaller than the measured one,
which led us to conclude that mRNA and ribosome concentrations will fall with cell length in
single-chromosome �lamentously growing cells, which is consistent with the observed reduction
in growth rate in Ref. [Kohram, 2021].
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Figure B.5: Nucleoid size for single-chromosome �lamentous cells with constant mRNA concentration.
This Figure is analogous to Fig. 2.5 B in themain text. However, unlike the scaling of Section 2.3.2 Single-
chromosome �lamentous growth, here we consider cells which grow �lamentously with a single chromosome,
with constant mRNA and ribosome concentrations, independent of cell length. The predicted nucleoid
length is small compared to the experimentally measured length, even for small cells.



Appendix C

Supplementary Notes on non-ideal
Chemical Reaction Networks

C.1 Form of the propensity functions for a regular solution theory

We now consider a model of a solution based on a lattice where each chemical species (including
the solvent) occupies one lattice site, e�ectively neglecting any di�erences in molecular volumes.
Throughout most of this manuscript we will consider a free energy with virial coe�cients to cor-
rect for interactions among particles, where the non-ideality of the systems stems from.

In a lattice of size V (number of lattice sites) occupied by N di�erent species, provided that∑N
i=1 ni = V , the con�gurational entropy is given by

S = kB log Ω = kB log V !∏
i ni!

, (C.1)

where Ω is the number of microstates and kB is the Boltzmann constant. The internal free energy
of each species is given, as before, by the standard-state chemical potential µ0

α. Moreover, in this
regular solutionmodel, we take into account interactions among neighbouring sites, whose energy,
in a mean-�eld approximation with respect to space, is∑

α,β

χα,β
2V [nαnβ(1− δα,β) + nα(nα − 1)δα,β] =

∑
α,β

χα,β
2V [nαnβ − nαδα,β] (C.2)

where χα,β is the energy of the interaction between a particle α and a particle β but can also be
interpreted as a matrix of virial coe�cients.

Taken into account the previous considerations, the free energy for a homogeneous mixture
of chemical species in the regular solution model reads

F =U − TS

=β−1
[∑
α

log(nα!)− log(V !)
]

+
∑
α

µ0
αnα +

∑
α,β

χα,β
2V [nαnβ − nαδα,β] . (C.3)

With this expression of the free energy we can now derive an expression for the propensity
functions, as given in eq. (3.12). The forward (or backward) rates are a function of the free energy

127
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di�erence of the complex:

F (n)− F (n− rρ) =

∆Fid +
∑
α

rρα
∑
β

χα,β
V

nβ −
∑
α,β

χα,β
2V rρβr

ρ
α +

∑
α

χα,α
2V rρα (C.4)

where ∆Fid is the ideal part of the free energy di�erence of the complex, as given by eq. (3.14). In
the last line of eq. (C.4), only the �rst term in χα,β scales with the particle number, hence, in the
thermodynamic limit, the rest of the interacting terms are negligible. In general, the propensity
function in the stochastic system for an interacting regular solution is complicated, as seen in Eq.
(C.4), but for a unimolecular reaction it simpli�es to:

f+ρ(n) = kρe
β(F (n)−F (n−rρ)) = kρe

βµi = kρ
ni
V
e
β(µ0

i+
∑

j

χi,j
V
nβ)
, (C.5)

where i is the reactant of the reaction +ρ and the de�nition of chemical potential (3.18) has been
used.

In the thermodynamic limit, the deterministic rates can be written, according to eqs. (3.12)
and (C.4) as follows

J+ρ = k+ρ
∏
α

cr
ρ
α
α exp

∑
α,β

rραχα,βcβ

 , (C.6)

where the discrete particle numbers have been replaced with continuous concentrations and the
internal energy part of the chemical potential has been absorbed by the rate constant k+ρ. How-
ever, the rates (C.6) can be written in the more general form

J+ρ = kρ exp
(∑

α

rραµα

)
(C.7)

by identifying
µα = log cα + µ0

α +
∑
β

χα,βcβ. (C.8)

We note that reaction rates of this form have already been suggested in this deterministic limit in
the context of phase-separating battery materials [Bazant, 2013] and that a similar result for the
reaction rates can be derived from activity coe�cients (see Appendix C.2), which are common in
the chemistry literature.

C.2 Form of the reaction rates in the non-ideal solution theory

Chemists have been dealing for long with non-ideal solutions, such as the one we are attempting at
describing, and its chemical potential its typically written as [Kondepundi and Prigogine, 2015]

µα = µ0
α + log(γα(c)cα), (C.9)

where γα(c) is the activity coe�cient which, itself, can depend on the vector of concentrations of
the mixture c. Note that, if we identify γα(c) = exp

(∑
β χα,βcβ

)
we recover the regular solution

chemical potential in the thermodynamic limit eq. (C.8). Then, the reaction rate becomes

R+ρ = k+ρ
∏
α

(cαγα)r
ρ
αe−βµ

∗
, (C.10)
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where we have made explicit the height of the barrier, µ∗, and implicit the standard chemical
potentials of the reactants. µ∗ can be interpreted as the free energy of the activated complex (cf.
Fig. 3.1) and can be identi�ed with µ∗0 + log γ∗, that, after absorbing µ∗0 into the reaction constant
yields the rate [Madon and Iglesia, 2000]

R+ρ = k̃+ρ
γ∗

∏
α

(cαγα)r
ρ
α . (C.11)

This expression of the reaction rates from the point of view of non-ideal solutions has the ad-
vantage of providing an intuitive explanation for the e�ect of changes in concentrations on the
reaction rates. Changes in concentrations will a�ect the rates not only through changes in the
chemical potential of reactants and products but also, according to eq. (C.11), through the degree
of solvation of the activated complex ∗ [Madon and Iglesia, 2000], parametrised by γ∗. This in-
terpretation of the reaction rate gives an expression with a physical meaning for how the reaction
rate should vary with the environment in which the reaction takes place.

C.3 Minimisation of the Lagrangian to obtain the phase diagram

In order to �nd the steady state of the solution we need to minimise the Lyapunov functional
(or the Lagrangian, once particle conservation constraints are taken into account), Eq. (4.47).
Substantial simpli�cation is made by neglecting the contribution of the interfaces and considering
the system as two homogeneous phases, which implies that the actual function that needs to be
minimised is the Lagrangian (4.48).

First, we reduce the dimensionality of the problem by equating the derivatives of the La-
grangian with respect to the concentrations of the species:

∂L

∂φ
(k)
i

= ∂L

∂φ
(k)
i′

= 0, (C.12)

where i and i′ are any two given chemical species in the system, and (k) refers to the di�erent
phases in the system. In practice, this yields relationships of the analogous to the equality of
chemical potentials at equilibrium (which here include the shifted chemical potential term µ̃ due
to the non-equilibrium complex-balancing). For simple free energies like Eq. (4.49), we have

φB =φAe2χφA+µ̃A−µ̃B , (C.13)

φC =φAe2χφA+µ̃A−µ̃C , (C.14)

which reduces the problem to just three variables: φ(1)
A , φ

(2)
A and V (1).

We �nally need to enforce stationarity condition of the Lagrangian with respect to volume:

∂L

∂V (1) = 0, (C.15)

which, together with

∂L

∂φ
(1)
A

= 0, (C.16)

∂L

∂φ
(2)
A

= 0, (C.17)
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is a fully determined system for the unknown variables φ(1)
A , φ

(2)
A and V (1). However, the resulting

conditions are transcendental equations which, in general, have no explicit analytical solution.
Therefore, they need to be solved numerically. Even numerically, it is still a hard problem for
parameter sets near the critical point, which is why in Fig. 4.6 the density of data-points around
the critical point decreases.
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MOTS CLÉS

Physique statistique hors-équilibre, biologie cellulaire, organisation spatiale, démixtion, solutions non-idéales,
réseaux de réaction chimiques.

RÉSUMÉ

Le cytoplasme d’une cellule est constitué d’une myriade de macromolécules comme des protéines des lipides et des
enzymes. Chacune de ces molécules jouent un rôle bien spécifique au sein de la cellule, ce qui requiert un contrôle
précis de leurs position spatiale. Dans la première partie de cette thèse nous proposons une explication théorique à
deux processus où le milieu intracellulaire est organisé spatialement sous forme de motifs. Ces processus découlent
tous deux du comportement collectif de ces molécules. Nous développons dans un premier temps un modèle qui a pour
but d’étudier l’impact de l’encombrement stérique intracellulaire sur la cinétique d’agrégation de ces protéines. Nous
montrons ensuite que les prédictions de ce modèle corrèlent de manière satisfaisant avec les données expérimentales
de nos collaborateurs. Dans un deuxième temps, nous étudions la compaction et la localisation spatiale du chromosome
de la bactérie Escherichia coli (E. coli). Nous expliquons la condensation du chromosome par les répulsion stériques
entre l’ADN et d’autres macromolécules comme les ARNs messagers ou les ribosomes. Cette transition de phase
s’assimile d’un point de vue théorique à la démixtion entre deux liquides. La localisation particulière du genome d’E.
coli est quand-à-elle expliquée par l’activité transcriptomique des ARNs messagers. Cette hypothèse nous permet de
reproduire la signature spécifique du chromosome d’E. coli in vivo, situé à la moitié de la cellule avant la division du
chromosome et au 1/4 et au 3/4 après sa division. Dans la deuxième partie de cette thèse, nous construisons un cadre
thermodynamique pour décrire les réseaux de réactions chimiques au sein de solutions non idéales. Cette approche
nous permet de généraliser certains résultats de la théorie des réseaux de réactions chimiques idéales. De plus, ce
cadre aide à formaliser les connections entre les réactions chimiques hors-équilibre et les séparations de phase pour les
réseaux de type «complex-balanced». Ces derniers offrent un cadre moins restrictif à la théorie des réseaux de type
«detailed-balanced». Nous caractérisons les réseaux de type «complex-balanced» par leur topologie. Nous montrons
alors que cette topologie peut contraindre la dynamique des solutions. À l’inverse, notre théorie prédit que lorsque le
réseau n’est plus de type «complex-balanced» des dynamiques plus exotiques peuvent apparaître.

ABSTRACT

In the cytoplasm of a biological cell there are a myriad of different proteins, lipids and enzymes, each of them performing
different tasks. The spatial organisation of these chemical species is crucial for the correct functioning of a cell. In
the first part of this thesis we will explore, from a theoretical perspective, two processes where the intracellular medium
is patterned and organised, whose common feature is the fact that they both stem from the collective behaviour of a
large number of molecules. First, we develop a model for protein aggregation which studies the effect of intracellular
obstacles on the coagulation kinetics. Our predictions are then successfully compared with experimental data obtained
by our collaborators. The other example refers to the compaction and location of the bacterial chromosome. We suggest
that the chromosome segregates from the rest of the cytoplasm, because of steric interactions between DNA and the
intracellular crowders, by means of a mechanism reminiscent of liquid-liquid phase separation. Moreover, our study
indicates that spatial localisation of the chromosome within the cell is dictated by non-equilibrium transcription of mRNAs
(which are part of the crowding effect). Our model successfully reproduces the localisation pattern of the Escherichia
coli chromosome, which is positioned at the center of the cell before the division of the chromosome and at 1/4 and 3/4
of the cell after division. Building on these examples, in the second part of the thesis we construct a thermodynamically
consistent framework to mathematically describe chemical reaction networks in non-ideal solutions. This framework
allows us to generalise the results from the classical theory of ideal networks, and aids in elucidating the connection
between non-equilibrium chemical reactions and phase separation for a large class of networks, known as complex-
balanced networks. Complex-balanced networks are a class of chemical reaction networks that is less restrictive than
detailed-balanced ones. Given that complex balancing can be fully determined from the topology of the network, we
discuss how this topological property of the network can constrain the dynamics of the solution and what behaviour one
can expect when complex balancing is broken.

KEYWORDS

Non-equilibrium statistical physics, cell biology, spatial organisation, phase separation, non-ideal solutions,
chemical reaction networks.
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