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sans les personnes que je souhaite remercier sur ces quelques pages.

Tout d’abord, je souhaite remercier les membres de mon jury de thèse, Jacqueline
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la vérité, et mon but est de lui poser les bonnes questions pour la découvrir. Grâce à
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questionnements, je te remercie pour le temps que tu as pris pour moi. Ton intuition et
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Et puis finalement il y a la nouvelle équipe de CHADOQ: Guillaume Bornet, Gabriel

Emperauger et Cheng Chen. J’espère vous avoir transmis la joie de travailler sur cette

expérience, mais aussi l’envie de toujours obtenir les meilleurs résultats. En particulier
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Chapter 1
Introduction

Quantum physics is now a well-established theory and over the recent decades, the

field has evolved towards using its laws for more applied studies. This evolution

was triggered by our technical ability to isolate and control individual quantum

objects, such as charged particles [Dehmelt, 1990; Paul, 1990] or photons [Haroche,

2013], and also the isolation of neutral atoms from laser-cooled gas [Phillips, 1998].

It allowed experimentalists to verify the fundamental concepts enunciated by the

founders of quantum physics, amongst which the most counter-intuitive example

might be entanglement: if we consider two entangled quantum objects, measuring

the properties of the first object instantaneously affects the property measured on

the second object. This gives rise to intriguing properties such as the non-locality of

quantum physics. Entanglement was measured for the first time by Aspect, Grangier,

and Roger [1982] with correlated pairs of photons, and revisited later with various

quantum objects such as two interacting ions [Schmidt-Kaler et al., 2003].

These pioneering experiments triggered a huge interest into the use of these

fundamental laws for practical applications. For instance, at the single-particle level,

the coherent manipulation of the isolated quantum objects allows for the local probing

of external fields, leading to the development of quantum sensors [Kitching, Knappe,

and Donley, 2011]. In particular, the use of atomic clocks improved the precision

of global navigation satellite systems. In the field of quantum computing, state

superposition and entanglement could be used to enable operations impossible with

classical algorithms, which would speed up the calculations leading to a quantum

advantage with respect to classical computers. Over the last few years, huge efforts

towards demonstrating such an advantage have been deployed [Arute et al., 2019].

Although the fundamental laws of quantum physics are now settled, there remain

many open questions regarding their impact on a wide variety of strongly-correlated sys-

tems, ranging from high-energy physics to magnetic materials. In the latter case, these

laws play an important role in high-temperature superconducting materials [Keimer

et al., 2015], or topological insulators governed by the quantum Hall effect [Klitzing,

Dorda, and Pepper, 1980]. The modeling and simulation of these materials are difficult
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to perform due to entanglement. In practice, the number of parameters which needs to

be taken into account to exactly simulate the system grows exponentially with the

number of particles, making it intractable when the number of particles is higher than

∼ 40.

Another approach to understand and model these phenomena is to use a quantum

simulator. This concept, originally introduced by Richard Feynman [Feynman, 1982],

consists of using an artificial quantum system to understand the behavior of a real

material. This approach recently became possible with state-of-the-art experimental

apparatuses [Georgescu, Ashhab, and Nori, 2014]. Their growing level of control

and the versatility in the type of interactions they can implement (including purely

mathematically-conceived interactions which would not exist in nature) allows physicists

to use these simulators “as if” they were performing simulations on a classical computer.

In this thesis, I describe our quantum simulator, and report the quantum simulation

experiments realized during my PhD. They were performed on a platform based on

neutral 87Rb atoms, trapped in configurable arrays of micrometer-sized optical tweezers,

and interacting via highly-excited states known as Rydberg states. In this introduction,

I first briefly motivate quantum simulation in the frame of condensed-matter physics,

then give an overview of the various synthetic platforms. I finally focus on our Rydberg

quantum simulator, and give the outline of this thesis.

1.1 Quantum simulation using synthetic platforms

In order to motivate the interest for quantum simulation, let us take the example of

quantum magnetism in condensed-matter physics, which is relevant for our platform

(see below). To understand the intriguing features of condensed-matter systems such as

superconductivity, one would ideally like to be able to vary the system’s parameters in

order to assess their contribution to the observed features. However, condensed-matter

systems are usually limited in the number of tunable parameters. For example, one

cannot vary the spin of the electrons in the material. A usual approach to try to

understand the macroscopic properties of these materials is to model them from

a microscopic perspective, and numerically study the emergent properties of these

models. In order to simplify the problem, we consider that a material can be described

as an ensemble of electrons with spin degrees of freedom σ = ↓, ↑ localized at the

nodes of a crystalline structure. The simplest way to model the behavior of those

electrons [Hubbard and Flowers, 1963] is to consider that they can hop between nearby

nodes with a strength −t, with an energy cost U for two electrons to be on the same

12



1.2 A wide variety of synthetic platforms

node. This simple model leads to the Fermi-Hubbard Hamiltonian written as:

Ĥ = −t
∑
(i,j),σ

(
ĉi,σ ĉ

†
j,σ + ĉ†i,σ ĉj,σ

)
+ U

∑
i

n̂i,↑n̂i,↓. (1.1)

where the first sum runs over neighboring lattice sites (i, j), ĉσ and ĉ†σ are the fermionic

annihilation and creation operators, and n̂σ = c†σcσ. Although this model is a crude

approximation of real materials, it is nonetheless extremely hard to solve. There is

therefore no point in proposing more elaborate models, if this one is already not

solved. For example, one does not know whether the ground state of the model exhibits

superconductivity when the number of spins ↑ and ↓ is not equal.
It turns out however that this Hamiltonian can be readily implemented using a

gas of ultracold fermionic atoms placed in optical lattices (see below). Hence, by

measuring the ground state of this synthetic atomic system, one can hope to answer

the question of the existence of superconductivity for the Fermi-Hubbard model.

Furthermore, the values of t and U can be varied over a wide range of parameters,

allowing investigations into their effect on the system. Synthetic platforms can even

replace fermions by bosons and probe the effect of the fermionic nature of the electrons

on superconductivity by comparing the results obtained for bosons and fermions.

In this thesis, I will perform the quantum simulation of spin-1/2 models. These

models are relevant to describe, for example, insulating magnetic materials, for which

the energy cost of having two electrons on the same node of the crystalline structure

is large, which translates, in our simple model, to the condition t≪ U . Under this

assumption, the above model can be rewritten as:

Ĥ =
∑
(i,j)

Jx(σ
x
i σ

x
j + σy

i σ
y
j ) + Jzσ

z
i σ

z
j with Jx,z ∝

t2

U
, (1.2)

where σx,y,z are the usual Pauli matrices acting on the spin-1/2 particles. These spin

models have various names depending on Jx and Jz: for Jx ≠ Jz, this Hamiltonian is

referred to as the anisotropic Heisenberg model, and for Jx = 0, the model is known as

the Ising model.

1.2 A wide variety of synthetic platforms

In order to be a useful quantum simulator, a synthetic platform has to fulfill several

constraints. First, it needs to handle an ensemble of particles in a controlled geometrical
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configuration, mimicking the structure of the studied material. Second, the interactions

of those particles with their environment and between themselves must be controllable.

Third, the experimentalists must have the ability to initialize the system in specific

states, and also measure the relevant quantity describing its evolution. A wide variety

of platforms fulfill those three points to a certain extent, which I briefly present now.

Ultracold quantum gases of atoms and molecules. As mentioned above, one

synthetic platform which implements various Hamiltonians of interest for condensed-

matter physics relies on degenerate quantum gases of atoms. To get the particles

in a controlled spatial configuration, experimentalists mostly use periodic trapping

potentials, coming from standing waves of off-resonant light, known as optical lat-

tices [Bloch, 2005]. The lattice is filled by making the degenerate gas undergo a

phase transition from a superfluid to a Mott insulator [Greiner et al., 2012]. This

platform has the ability to measure the system’s state at the single-atom level using a

“quantum gas microscope” [Bakr et al., 2010]. The hopping of the atoms from one

lattice site to another one naturally implements the model described in Equation 1.1.

The parameters of the Hamiltonian are tuned by varying the lattice depth, and the

geometry is tuned (to a certain extend) by playing on the relative phase and amplitude

of the beams generating the optical lattice. Many models have been explored with this

platform, which has allowed for the study of e.g. topology [Atala et al., 2013], band

structures [Tarruell et al., 2012], or antiferromagnetism [Simon et al., 2011; Mazurenko

et al., 2017].

This approach has also been demonstrated with polar molecules, where the dipole-

dipole interaction implements spin models [Zhou, Ortner, and Rabl, 2011; Yan et al.,

2013].

Trapped ions. Most trapped ion-based platforms rely on the trapping of individual

ions into linear Paul traps [Raizen et al., 1992]. These implement spin Hamiltonians,

in which the spin-spin interactions are engineered using a laser coupling between

the internal states of the ions and the collective vibrational modes of the ionic

crystals [Cirac and Zoller, 1995]. The platform exhibits very high fidelity in single- or

two-qubit operations [Blatt and Wineland, 2008], which allows for the engineering of

arbitrary spin Hamiltonians [Lanyon et al., 2011; Kokail et al., 2019].

Superconducting circuits. The platforms presented above use “real” objects, i.e.

atoms, molecules or ions, to perform quantum simulation. Here, the quantum object
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is materialized by a Josephson junction, which can be engineered to behave as an

“artificial atom” [Nakamura, Pashkin, and Tsai, 1999]. The spin-spin interactions

are engineered using either the exchange of microwave photons in a cavity [Wallraff

et al., 2004], or by coupling circuits for example by mutual inductances [Chen et al.,

2014]. An interesting asset of this platform is the fact that the interactions do not

rely on geometrical arrangement, but on inter-connecting wiring. Their potential

integrability and on-chip compactness makes them promising candidates for the future

of quantum information [Devoret and Schoelkopf, 2013]. As for the trapped ions,

this platform exhibits very high fidelity in single- and two-qubit operations, and can

engineer arbitrary spin Hamiltonians [Salathé et al., 2015].

Other types of platforms engineering “artificial atoms”, such as polaritons in micro-

cavities [Carusotto and Ciuti, 2013] or electron spins in quantum dots [Vandersypen

et al., 2017], are also promising candidates towards the study of many-body physics.

Challenges. All of these platforms (including ours) face two key challenges. First,

quantum simulation becomes interesting when the number of interacting particles

becomes intractable to numerical simulations. Nowadays, the limit in the (approximate)

simulation of a system’s dynamics is a few hundreds of particles. Second, the output

of the simulators has to be ascertainable. These conditions means that these platforms

need (i) high-quality control over the parameters governing the interactions of, at

least, ∼ 100− 1000 particles, and (ii) a way to assess the quality of the results. The

solutions to these challenges are different for each platform, as they rely on various

technologies.

1.3 Rydberg quantum simulators

I now turn to Rydberg quantum simulators. The first proposals suggesting Rydberg

atoms for quantum gates [Jaksch et al., 2000; Lukin et al., 2001] relied on a mechanism

known as Rydberg blockade, discussed in Chapter 5, which prevents the simultaneous

excitation of several nearby atoms to the Rydberg states. This was first demonstrated in

2004 in dilute cold gases [Löw et al., 2012]. In order to implement the Rydberg blockade

in a more controlled environment, our team at the Institut d’Optique combined this

idea with the individual trapping of neutral atoms in micrometer-sized optical dipole

traps, also known as optical tweezers. This technology was pioneered by Philippe

Grangier [Schlosser et al., 2001]. It led to the observation of the Rydberg blockade

between two atoms [Gaëtan et al., 2009], jointly with the group of Mark Saffman in a
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similar setup [Urban et al., 2009]. These two teams then demonstrated the generation

of entangled states [Wilk et al., 2010], and the realization of the two-qubit C-NOT

gate [Isenhower et al., 2010].

Evolution of the platform. Since these first experimental demonstrations, arrays

of Rydberg atoms evolved towards a promising platform for quantum simulation

experiments [Weimer et al., 2010]. The versatility of geometries of optical tweezers

arrays [Nogrette et al., 2014] combined with the first implementations of the van der

Waals and resonant dipole-dipole interactions, and Förster resonances [Browaeys,

Barredo, and Lahaye, 2016] between a few atoms showed that various Hamiltonians

could be implemented using a Rydberg simulator.

Initially, tweezers platforms suffered from the stochastic loading of the optical

tweezers by single atoms, with filling fraction 1/2. An important breakthrough was

the development of techniques to assemble chosen patterns [Barredo et al., 2016]. This

allowed the group to perform quantum simulation with up to ∼ 40 atoms [de Léséleuc

et al., 2018b; Lienhard et al., 2018]. They observed, for example, the emergence of

antiferromagnetism in the quantum Ising model, although this was limited by the

system’s coherence. When comparing the results to classical computing, this limited

coherence combined with the relatively low number of atoms meant that the system’s

evolution could still be simulated numerically. In parallel, the group of Mikhail Lukin

also started a Rydberg quantum simulator, and studied the quantum Ising model in

1D with impressive results.

This was the status when I arrived in the lab, in March 2018. During the three

years of my PhD, we pushed the platform to ∼ 200 atoms, and increased the system’s

coherence by one order of magnitude. Thanks to those upgrades, we were able to

investigate the quantum Ising model in a regime for which classical simulations are

extremely difficult to perform, bringing the platform one step closer to its original

purpose. We also showed the implementation of (i) the Heisenberg model with tunable

anisotropy and (ii) complexed-value interactions on few-body systems, thus further

increasing the class of models we can simulate.

Improving the simulator’s performances. Another important aspect we achieved

was to improve the reliability of the setup, and to extend the automation of the various

experimental procedures. These improvements allow the simulator to acquire data in a

quasi-continuous way. We now realize ∼ 1 million experiments each month when we

perform quantum simulation, see Figure 1.1 a). This improvement, combined with the
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Figure 1.1: Evolution of our Rydberg quantum simulator over the last years. Tem-

poral evolution per month of a) the number of experiments and b) the corresponding

number of involved single atoms. We now realize ∼ 1 million experiment per month when

we perform quantum simulation. The number of manipulated atoms increased by ∼ 3

orders of magnitude in five years.

capability to work with a constantly increasing number of atoms, led to an increase by

∼ 3 orders of magnitude in the number of manipulated single atoms (per month)

over the last five years, see Figure 1.1 b). In particular, during the period which

corresponds to the large-scale quantum simulation of the Ising model, we manipulated

∼ 100 million atoms per month. During the three years of my PhD, we performed

∼ 30 million experiments which involved the individual trapping and the manipulation

of ∼ 800 million atoms.

Thesis outline. I start this manuscript with an overview of the technical improve-

ments we achieved during my PhD (Part I). After describing the various manipulations

we can perform on the individually trapped atoms (Chapter 2), I focus on the technical

improvements which allowed us to increase the system’s coherence (Chapter 3), and

the number of atoms we can manipulate (Chapter 4). These improvements led to the

large scale quantum simulation of antiferromagnetism in the quantum Ising model,

reported in Part II. I first detail how this model is implemented using the van der
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Waals interaction by focusing on the example of a 1D chain (Chapter 5). I then

probe the model in square lattices (Chapter 6) and triangular lattices (Chapter 7) by

exploring the model’s phase diagram and the corresponding phase transitions. In Part

III, I report on the implementation of new types of Hamiltonians using the resonant

dipole-dipole interaction between Rydberg atoms. I start with the engineering of

complex-valued interactions (Chapter 8), then present the engineering of Heisenberg

Hamiltonians with tunable anisotropy (Chapter 9).
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This chapter gives an overview of the experimental apparatus and describes the

main techniques we routinely use to manipulate the atoms. The chapter is structured

as follows:

r I start with a brief explanation on how we create arrays of single atoms in optical

tweezers. I will detail how we produce large arrays in Chapter 4.

r I then present the various manipulations we can perform on the atoms. I will

describe in detail the Rydberg excitation in Chapter 3.
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r Finally, I present the way we control the electromagnetic environment experienced

by the atoms.

Many of the techniques which I present here were already implemented when I arrived

in the lab. However, we managed to improve some of them either by increasing the

speed at which we can perform them, or by improving their efficiency. I will thus detail

the improvements made during my PhD.

2.1 Arrays of single atoms in optical tweezers

In this section, I will give a brief description of how, starting with one gram of solid

rubidium (Rb), we end up with hundreds of single 87Rb atoms held in optical tweezers

separated by tens of micrometers in arbitrary 2D geometries. More detail can be found

is the theses of Lucas Béguin [2013] and Sylvain de Léséleuc [2018].

2.1.1 Trapping and observing a single atom in an optical tweezers

In order to trap and observe a single atom, the first step is to produce a cold cloud of

Rb atoms which is used as a reservoir to load the optical tweezers. Creating a cold

cloud of Rb atoms requires an ultra high vacuum system to isolate the Rb atoms from

their environment. The experimental setup is continually pumped with ion pumps,

reaching pressures as low as a few 10−11 millibars. The setup is divided into three

parts (see Figure 2.1):

r The rubidium oven. A heating belt is used to heat the rubidium to a typical

temperature of 60◦C to create a vapour. The design of the oven is made such

that only the atoms which are quasi-collimated along the y direction flow out of

the oven.

r The Zeeman slower. At the output of the oven, the atoms are slowed down

using a Zeeman slower to a speed of ∼ 10m/s.

r The science chamber. After the Zeeman slower, the atoms enter the main

chamber in which we perform the experiments. They are first trapped in a

Magneto-Optical Trap (MOT), then in the tweezers arrays created by an

Aspherical Lens (AL) with large numerical apperture. A second AL is used

to collimate the light after the tweezers arrays, used to perform various optics

alignments.
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ux
uy

uz

Figure 2.1: Overview of the experimental apparatus. Adapted from the thesis of

Lucas Béguin [2013]. The apparatus consists of three parts: the oven (left) producing the

rubidium vapor, the Zeeman slower (center) slowing down the atoms, and the science

chamber (right) in which they are trapped.

Characteristics of the MOT. The MOT is created using six independent counter-

propagating beams. The ALs are placed inside the vacuum chamber at a distance of

10 millimeters from the atoms position, which leads to a geometrical constraint on the

generation of the MOT: the beams in the (x, y) equatorial plane cross with an angle of

∼ 60◦. The MOT beams are detuned from the (5S1/2,F = 2)→ (5P3/2,F
′ = 3) by

∼ −5Γ5P = −2π× 30MHz (see Figure 2.2 a)), with Γ5P the lifetime of the 5P3/2 level.

The presence of the nearby F ′ = 2 level imposes the need of a repumper, resonant

with the transition (5S1/2,F = 1)→ (5P3/2,F
′ = 2). Each MOT beam has a power

∼ 0.7mW with a typical waist of ∼ 2 mm, which gives a saturation of the transition

of ∼ 3. We use a pair of coils mounted on the lens holders to generate the magnetic

quadrupole. We obtain an atomic cloud with a typical size of hundreds of micrometer,

containing ∼ 107 atoms. The temperature of the atoms in the MOT is ∼ 120µK.

These atoms will be used as a reservoir to fill the optical tweezers traps.

Optical tweezers. An optical tweezers is a laser beam tightly focused down to a

waist of ∼ 1µm, which is done using the AL, with a numerical aperture of 0.5 and
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Figure 2.2: Trapping a single atom. a) Sketch of the levels involved in the trapping

and cooling. b) When an atom enters the optical tweezers, the friction force exerted by the

MOT results in the atom being trapped inside the tweezers. c) Sketch of the collisional

blockade: when a second atom enters the tweezers, a light-assisted collision expels both

atoms from the tweezers.

a focal length f = 10mm. The intensity profile I of the tweezers follows, to a good

approximation, a Gaussian profile:

I(r, z) =
I0

1 + z2

z2r

e
−2 r2

w0(1+z2/z2r ) , (2.1)

with w0 = 1.1µm the waist of the tweezers, zr =
πw2

0

λ
= 4.4µm its Rayleigh range for

λ = 850 nm and I0 =
2P
πw2

0
the peak intensity. The power P of the optical tweezers

is a few milliwatts. The optical tweezers is linearly polarized and red-detuned from

the 5S − 5P transitions. The ground-state levels of an atom entering the tweezers

are thus light-shifted towards lower energies, by the same amount for all the Zeeman

sublevels mF . The atom feels a potential U , expressed as [Grimm, Weidemüller, and

Ovchinnikov, 2000]:

U(r, z,F ) =
U0(F )

1 + z2

z2r

e
−2 r2

w0(1+z2/z2r ) . (2.2)

In the limit where the tweezers’ detuning is large compared to the ground-state

hyperfine splitting and assuming the 5P1/2 and 5P3/2 levels to have the same linewidth,

the expression of U0 reads:

U0(F ) =
~Γ2

5P I0
8Isat

(
1

3∆1/2(F )
+

2

3∆3/2(F )

)
, (2.3)
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Figure 2.3: Observing the fluorescence of a single atom. a) Trace of the collected

fluorescence from the tweezers region recorded on the EMCCD camera. We see two regimes

which correspond to having one or zero atoms in the tweezers. We never encounter double

step events that would indicate the presence of two atoms. b) Typical histogram of the

fluorescence collected from the tweezers position.

with ∆ the tweezers’ detuning and Isat the saturation intensity. The typical value of

the trap depth is U0 ≃ h× 20MHz ≃ kB × 1mK. The atoms in the MOT thus have a

temperature which is typically ∼ 10 times smaller than the depth of the tweezers. The

tweezers potential being conservative, we need a friction force to keep the atom inside

the tweezers: it is provided by the MOT lasers, sketched in Figure 2.2 b) and detailed

for example in the thesis of Benôıt Darquié [2005].

Collisional blockade. One specificity of the tweezers is the fact that it contains

at most one atom, due to the collisional blockade [Schlosser et al., 2001; Schlosser,

Reymond, and Grangier, 2002], sketched in Figure 2.2 c). If an atom enters in an

already filled tweezers, the two atoms are close enough to create a loosely-bound

molecule via photo-association induced by the MOT light. The rapid decay of the

molecule releases a large amount of kinetic energy to the two atoms which ejects both

of them from the trapping region. The arrival of an atom in a tweezers therefore either

fills (if the tweezers is empty) or empties (if the tweezers is filled) the trap. The filling

fraction of the tweezers is thus 1/2.

Observing a single atom. To observe the atom trapped in the tweezers, we collect

the scattered light induced by the MOT lasers using the same AL that creates the

tweezers. A dichroic mirror separates the scattered light at 780 nm from the tweezers

light at 850 nm. An optical setup images the focal plane of the AL onto an EMCCD
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camera with a typical averaging time of 20ms. When looking at the fluorescence

coming from the position of the tweezers, we obtain traces as shown in Figure 2.3 a) in

which we observe two fluorescence levels: (i) a low level which corresponds to an empty

tweezers, and (ii) a high level which corresponds to having one atom in the tweezers.

The presence of an atom in the tweezers is detected using an automatically adjustable

threshold level in between the two regimes, which accounts for long-term fluctuations

of both the background light and the scattered light. A typical histogram of the

fluorescence is shown in Figure 2.3 b). The two levels are separated enough to avoid

any substantial detection errors.

2.1.2 Arrays of single atoms

Having given an overview of how we trap and observe a single atom in a tweezers, I

now present the way we produce fully-loaded arrays of single atoms. As discussed

above, the filling fraction of a given trap is 1/2 due to the collisional blockade. To

circumvent this, we use a rearrangement technique which allows us to deterministically

load the tweezers with single atoms. I start by explaining how we produce arrays of

optical tweezers, then present the assembling technique.

Tweezers arrays. The production of tweezers arrays have been demonstrated using

various techniques:

r Instead of using a single lens which focuses the tweezers beam, one can use

an array of microlenses [Schäffner et al., 2020]. Each microlens focuses a small

portion of the light, thus resulting in an array of tweezers. The limitation of this

method is its flexibility: changing the geometry of the tweezers array requires

changing the microlens array.

r The use of multiple beams generated by a acousto-optic deflectors [Endres et al.,

2016] driven by multiple radiofrequency tones.

r The use of holographic techniques to modify the phase of the tweezers beam

[Bergamini et al., 2004]. The light pattern in the focal plane of the lens is given

by the Fourier transform of the tweezers beam, making it possible to create an

array of tweezers by imprinting the correct phase pattern on the beam. This

approach was developed by our group at Institut d’Optique and is thus the one

used on the experiment.
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Figure 2.4: Observing the fluorescence of a 27 × 27 array. a) Sketch of the setup

used to observe the fluorescence of the atoms, illustrated here on a 27× 27 = 729 tweezers

array. b) Average fluorescence image of the atoms in the tweezers array. c) Fluorescence

images of the atoms using the EMCCD camera.

We use a Spatial Light Modulator (SLM) to modify the phase of the light. As

the light pattern in the focal plane of the AL is the Fourier transform of both the

phase and the amplitude of the light, it is impossible to rigourously produce arbitrary

intensity patterns by only modifying the phase. To circumvent this issue, we use an

optimization process based on the Gerchberg-Saxton (GS) algorithm [Gerchberg and

Saxton, 1972], described in Section 4.1.1, to create the arrays.

Arrays of single atoms. Combining the use of the SLM and the GS algorithm [No-

grette et al., 2014], we are able to create arrays of up to ∼ 1000 traps. We use the

EMCCD camera to observe the fluorescence of the atoms in the tweezers (see the

setup sketch in Figure 2.4 a)), illustrated here on the example of a target 27× 27

array, see Figure 2.4 b). Each bright dot is a single atom loaded in a tweezers. We

show an average fluorescence image in order to see all the atoms on a single image.

We also show three examples of images recorded with the EMCCD camera, see

27



Chapter 2: Overview of the experimental apparatus

Figure 2.4 c). As the filling fraction of the tweezers is 1/2, we observe that: (i)

approximately half of the tweezers are filled, and (ii) the position of the atoms in the

array is random. The latter property is detrimental for the many-body experiment we

perform, as we wish to work with fixed interactions between the atoms, hence with a

fixed atomic configuration. The simplest solution is to wait until the array is fully

filled. The probability pN to have an array of N traps fully filled scales as pN ∼ 0.5N ,

which is a possible solution only for small number of atoms. Two ways to overcome

this problem have been explored: (i) by increasing the tweezers’ filling fraction by

manipulating the light-assisted collisions between pairs of trapped atoms [Brown et al.,

2019; Grünzweig et al., 2010], and (ii) by re-arranging the atoms in the array to work

with a fixed configuration. We use the latter solution, which I now describe.

Assembling atoms in tweezers arrays. Once the atoms are in the tweezers, we

reorder them into a targeted configuration, a process which we call the atom-by-atom

assembly. As half of the traps are filled with atoms due to the collisional blockade

mechanism (see Section 2.1.1), we need to generate 2N traps in order to assemble an

array of N atoms. Different techniques exist to rearrange atoms in tweezers arrays:

r By loading the atoms into the SLM traps and dynamically changing the SLM

pattern to reach the desired configuration. The assembling of up to 21 atoms in

3D has been demonstrated [Song et al., 2021].

r Using an Acousto-Optic Deflector (AOD) driven by multitones to generate

multiple tweezers and dynamically changing the frequencies. The assembling of

up to 51 atoms has been demonstrated [Bernien et al., 2017].

r Using a SLM to create the tweezers and a single moveable tweezers (MT) driven

by two AODs. The MT rearranges the atoms between the tweezers. This is the

technique we use, for which the assembly of up to 209 atoms has been achieved,

detailed in Section 4.2.

r Using a SLM and a 1D array of MTs generated by two AODs (actually a variant

of the previous method). The atoms are assembled row by row. The assembly of

up to 256 atoms has been demonstrated by the group of M. Lukin [Ebadi et al.,

2021].

To assemble the atoms into a targeted configuration, we add, onto the static traps

generated by the SLM, a moveable tweezers (MT) generated by two orthogonal AODs.

A sketch of the setup is shown in Figure 2.5 a). The power and position of the MT is
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Figure 2.5: Assembling arrays of tweezers. a) Sketch of the setup. b) Procedure used

to transfer an atom from an initial trap to a target trap. We shine the MT with a depth

of ∼ 10mK, move the MT from the initial to the target trap, and swith off the MT. c)

Overview of the assembling process, illustrated on an assembled 209-atom array. We take

a first image of the initial configuration, compute and execute the rearrangement using the

MT, and record an image of the atoms after assembling.

set by the radiofrequency (rf) power and frequency used to drive the AODs. The rf is

set by two Arduino Due micro-controllers. To move an atom from an initial trap to a

target trap, we use the following procedure, summarized in Figure 2.5 b):

r We start by focusing the MT onto the initial trap with low power. We then

ramp up the MT power to a trap depth of ∼ 10mK in 300− 500µs, which is 10

times higher than the trap depth of the SLM traps. The atom is thus transferred

into the MT.

r We then move the MT from the initial trap to the target trap at a speed of

100 nm/µs.

r We ramp down the MT power to zero in 300−500µs. The atom is thus transferred

into the target trap.

The duration of each step is set to optimize the efficiency of the process, and is larger

than the typical oscillation period of the atom in the tweezers. The typical efficiency
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Figure 2.6: A typical experimental sequence. a) Overview of a typical experimental

sequence. The duration of each operation is indicative and depends on the conducted

experiment. b) Fluorescence images of the initial (left), assembled (centre) and final (right)

configurations of an experiment conducted in the study of the transverse field Ising model

(see Chapter 6).

of this process is ∼ 99% [Barredo et al., 2016], allowing for the assembly of hundreds

of atoms with high fidelity.

At each repetition of the experiment, the initial position of the atoms is different.

We thus need to calculate in real time the moves required to assemble the targeted

configuration. To do so, we (i) take an image of the initial configuration, (ii) measure

the atoms position and (iii) calculate the moves to reach the targeted configuration.

We devised an algorithm (see Section 4.2.2) which optimizes the number of moves

and the travelling distance of the MT, whilst keeping a relatively short calculation

time. We take another image of the atoms after the assembling process allowing

us to post-select the experiments for which the assembling process worked without

producing any defect. The process is summarized in Figure 2.5 c) with the example of

a 209-atom assembled array.
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2.2 Ground-state atom manipulations

2.1.3 A typical experimental sequence

The typical experimental steps, described in Figure 2.6 a), are the following:

r Loading the tweezers array. We start by loading the tweezers from the MOT

and take an image of the initial configuration. We then rearrange the atoms and

take an image of the new position of the atoms. This step duration is ∼ 300ms.

The example of a 10× 10 array is shown in Figure 2.6 b).

r Ground-state atom manipulation. We cool the atoms and prepare them into

a specific internal ground-state by optical pumping in ∼ 50ms, see Section 2.2.

r Many-body experiment. We transfer the atoms into specific Rydberg states

(see Section 2.3) and let them interact under the dipole-dipole interaction.

Thanks to the strong interactions between Rydberg atoms which govern the

evolution of the system, this step takes typically 5µs, much shorter than the

other steps.

r Final image. We take a last image to measure the presence and absence of the

atoms, which is directly linked to their internal states at the end of the previous

step, as detailed in Section 2.3.2.

The duration of a complete experiment is thus typically ≤ 500ms, which allows for fast

repetition rates, above 2 Hz. The step durations given here are indicative and depend

on the conducted experiment. Every measured quantity is related to the presence

or the absence of the atom in the final image (see more detail in Section 2.3.2). To

reconstruct the probability of presence of the atom in the tweezers patom, we repeat

the same sequence 100− 1000 times.

2.2 Ground-state atom manipulations

This section presents the various manipulations we routinely perform on the individually-

trapped ground-state atoms. These operations have two main goals: (i) reducing the

atomic temperature which allows us to perform experiments on longer timescales (see

Section 2.3), and (ii) to optically pump the atoms into a specific ground state in view

of transferring the atoms into their Rydberg states (see Section 2.3.1).
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Figure 2.7: Cooling atoms in the twezeers. a) Sketch of the release-and-recapture

experiment: we switch off the tweezers for a variable amount of time. The recapture

probability depends on the atom temperature in the tweezers. b) Experimental results for

three different temperatures, obtained after the different cooling steps described below. c)

Sketch of the polarization gradient cooling created by the MOT beams with opposite

polarization. The final temperature of the atoms is set by the amplitude of the potential,

which gives kBT ∼ Ω2/δ. d) Summary of the manipulations used to cool the atoms, with

the corresponding temperatures.

2.2.1 Cooling the atoms in the tweezers

Due to the repulsive ponderomotive potential described in Section 2.3.2 which is applied

by the tweezers on the Rydberg atoms, the tweezers are off during the many-body

experiments. As the atom have a finite temperature hence a finite velocity, there is a

probability that the atom leaves the trapping region during the many-body experiment,

and is thus lost. In this subsection, I describe the techniques we use to cool the atoms

in order to extend the time during which we can perform experiments without losing

the atoms.

The release-and-recapture experiment. The standard technique to measure the

temperature of an atom trapped in an optical tweezers is to do a release-and-recapture

experiment: we first load an atom in the optical tweezers, switch it off (typically for a
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2.2 Ground-state atom manipulations

few microseconds) and then switch it on again. When switching off the tweezers, the

atom moves and eventually gets out of the trapping region, and is thus not recaptured.

We repeat this experiment for different release times and obtain the curves shown in

Figure 2.7 b) for three different temperatures of the atoms, obtained after the different

cooling steps which are described below. Knowing the trapping volume and performing

simulations of the release-and-recapture experiment for different temperatures (dashed

lines) [Tuchendler et al., 2008], we extract the atom temperature. The curve shown for

T = 100µK corresponds to the initial temperature of the atoms in the tweezers.

As can be seen in Figure 2.7 b), the recapture probability stays at ∼ 1 for a few

microseconds, and then start to decrease. This feature corresponds to the early times

in which the atom explores the tweezers region. The losses become important after

∼ 2µs for T = 100µK, whereas they remain negligible for more than 20µs when

T = 3µK, showing the importance of cooling the atoms. We use two techniques to

cool the atoms: Sisyphus cooling and ramping down of the tweezers trap depth.

Sisyphus cooling using the MOT light. The Sisyphus cooling is a technique which

allows atoms to reach sub-Doppler temperature. Its principle, based on polarization

gradient [Wineland, Dalibard, and Cohen-Tannoudji, 1992], is sketched in Figure 2.7

c). We perform the Sisyphus cooling for a typical duration of 10ms. The temperature

of the atoms after Sisyphus cooling is kBT ∼ Ω2/δ, with Ω the Rabi frequency of the

MOT beams and δ their detuning from the (5S,F = 2)→ (5P ,F ′ = 3) transition. We

increase the detuning and decrease the power in the MOT laser during this step to

further lower the temperature. A limitation of the technique is the presence of a residual

magnetic field. Before I started my PhD, the cooling was limited to temperatures of

∼ 40µK. A careful compensation of the magnetic field (see Section 2.4.1) allowed us

to reach a temperature of 20µK.

Adiabatic ramping down of the tweezers trap depth. To further reduce the

temperature, we add a second stage of cooling consisting of adiabatically ramping down

the tweezers trap depth. We can decrease the trap depth without losing the atoms, as

its initial value is ∼ 1mK and the temperature of the atoms after Sisyphus cooling is

∼ 20µK. The probability Pl for the atom to be in the tweezers level |l⟩ follows the
Boltzmann law Pl ∼ e−El/kT , with El = l~ω, ω being the oscillation frequency of the

atom in the tweezers. By adiabatically ramping down the trap depth, the probability

Pl, and hence the ratio ω/T , remains constant. As ω decreases, T must also decrease

and the atoms are cooled. In practice, we decrease the trap depth to ∼ 20µK in 15 ms,
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which is slow compared to the inverse of the lowest oscillation frequency ω∥ = 20 kHz,

leading to a temperature of the atoms T = 3µK.

A summary of the methods detailed in this subsection is presented in Figure 2.7

d). Starting with atoms at T = 100µK, we first decrease the MOT light power and

increase its detuning to optimise the Sisyphus cooling. We then adiabatically ramp

down the power in the tweezers, reaching a temperature of T = 3µK. To further

reduce the atom temperature, we are in the process of implementing Raman sideband

cooling [Kaufman, Lester, and Regal, 2012] in order to transfer the atoms into the

tweezers motional ground state.

2.2.2 Internal states manipulations

The atoms in the MOT are distributed among the Zeeman sublevels of the F = 2

state. However, we need to prepare them into a specific ground state to efficiently

transfer them into their Rydberg states (see Section 2.3.1). We use optical pumping to

initialize the atoms in |g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
.

Hyperfine-level selective push-out beam. In order to measure the optical pumping

efficiency, we use a detection method which allows us to discriminate between F = 1

and F = 2 of the 5S1/2 manifold, which I present now. The push-out beam is derived

from a 780 nm laser, σ+ polarized, and set on resonance on the closed transition

F = 2→ F ′ = 3. When the push-out beam is applied, atoms in F = 2 are heated and

eventually expelled from the tweezers, whereas atoms in F = 1 are not affected and

thus remain in the tweezers. The push-out beam duration is typically hundreds of

microseconds. Its efficiency is higher than 99% and limited by non-resonant coupling

to the F ′ = 2 state.

Optical pumping. We prepare the atoms in |g⟩ by optical pumping. The optical

pumping beam comes from a 795 nm laser on resonance with the F = 2→ F ′ = 2

transition. Its σ+ polarization ensures that |g⟩ is a dark state, as shown in Figure 2.8

a). As the atoms may also decay to F = 1, we use a repumper to bring them back

into the F = 2 manifold. The quality of the σ+ polarization of the optical pumping is

critical. If the polarization is not perfect, |g⟩ is not a true dark state leading to a finite

probability η that the atoms do not end up in |g⟩ after the optical pumping procedure.

Before my PhD, the finite optical pumping efficiency implied that η ∼ 1 − 5%. In

order to reduce η, we implemented a more precise method to set the polarization,
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Figure 2.8: Optical pumping optimization. a) Principle of the optical pumping tech-

nique. Using a pure σ+ beam at 795 nm combined with a repumper, the system is pumped

into the |g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
state. b) Sketch of the experiment used to optimize

the optical pumping polarization. After pumping the atoms in |g⟩, we let the optical

pumping beam alone for variable depumping times. If the optical pumping is not perfectly

polarized, the atoms eventually decay to the F = 1 state and are detected using the

push-out beam. c) Experimental results of the above experiment before (green) and after

(orange) optimizing the optical pumping polarization.

described in the Thesis of Adam Kaufman [2015] and presented in Figure 2.8 b):

r We apply optical pumping and the repumper to reach the targeted state

|g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
. This requires that the optical pumping beam is

already well polarized.

r Once the atoms are in |g⟩, we shine for a varying duration the optical pumping

beam without the repumper. If the beam is not perfectly polarized, the atoms

are eventually depumped into F = 1.

r We switch off the optical pumping and measure the population in F = 1 using

the push-out beam.

An imperfect optical pumping polarization results in a finite population in F = 1.

We therefore minimize the population in F = 1 by precisely controlling the angle of
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Figure 2.9: Ground-Rydberg spectroscopy using a two-photon transition. a) Sketch

of the Rydberg excitation scheme. We use a two photon scheme with 6P3/2 as intermediate

state to reach the Rydberg manifold. b) Typical spectrum of the |g⟩ →
⏐⏐75S1/2,mJ = 1/2

⟩
transition. We measure the probability to excite the atoms into the Rydberg state Pr as a

function of the laser detuning from the transition. The solid curve is a fit using the Rabi

formula. c) Ground-Rydberg transition frequency as a function of n for the nS series. The

solid line is a fit using the Rydberg formula.

the waveplates. Figure 2.8 c) shows the result of this experiment before (green) and

after (orange) optimization using the present technique. We derive the value of η by

extrapolating the results for the typical optical pumping time of 500µs and extract

η ≃ 0.5%. This remaining finite value of η is believed to come from an imperfect

alignment of the optical pumping beam with respect to the magnetic field.

2.3 Excitation and manipulation of atoms in their Rydberg states

We now move on to the various manipulations related to the Rydberg states. I will

start by giving an overview of how we excite the atoms to their Rydberg states, then

explain how we detect and trap the Rydberg atoms, and finally describe the basic

tools we use to manipulate the states of the atoms in the Rydberg manifold.
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2.3.1 Excitation to the Rydberg states

Once the atoms are initialized in |g⟩, we use two lasers with different wavelengths to

transfer them into a chosen Rydberg state |r⟩. We use two schemes: a two-photon

transition driving a Rabi oscillation, or a STImulated Raman Adiabatic Passage

(STIRAP). The driving of ground-Rydberg Rabi oscillations is detailed in Chapter 3.

Two-photon scheme. The transition wavelength between |g⟩ and |r⟩ is 297 nm,

which is challenging to achieve in an efficient way using a single laser (see Section 3.1).

Instead, we use a two-photon scheme to reach the Rydberg state (see Figure 2.9 a))

involving two lasers at 420 nm and 1013 nm, detuned with respect to the 6P3/2 state

(see Section 3.2). We use M-Squared Titanium:Sapphire lasers with wavelengths 420

nm and 1013 nm, described in detail in Section 3.2.1 and Section 3.2.2.

The selection rules on dipole matrix elements imply that the reachable Rydberg

states are nS or nD, n being the principal quantum number. A typical spectrum of

the |g⟩ →
⏐⏐75S1/2,mJ = 1/2

⟩
transition is presented in Figure 2.9 b). The solid curve

is a fit to the data using the Rabi formula. We repeat this experiment for the typical

nS Rydberg states we use, ranging from 60 to 100 and measure the ground-Rydberg

transition frequency, see Figure 2.9 c). The solid line is a fit to the data using the

Rydberg formula:

En,S = EI −
13.6 eV

(n− δS)2
, (2.4)

with δS ≃ 3.13 the quantum defect for nS states and EI the ionization threshold. We

set EI as a free parameter and measure EI = h× 1010.022(7)THz, in good agreement

with accurate measurements EI = h× 1010.024THz [Lee et al., 1978].

STIRAP excitation. The STIRAP technique [Vitanov et al., 2017] is an adiabatic

transfer of the atoms from the ground state to the Rydberg state without populating

the intermediate state, thus limiting the influence of spontaneous emission from the

intermediate state (see Section 3.3.2). Here, the two lasers are resonant with the 6P3/2

state. The temporal pulse sequence is presented in Figure 2.10 a): we shine both lasers

using a Gaussian shape, starting with the 1013 nm laser. To minimize the excitation

time, we remove the parts during which only one laser is on (grey area). With the

typical durations we use, the atoms are excited in ∼ 800 ns.

The main advantage of the STIRAP lies in its insensitivity to many parameters,

illustrated here in Figure 2.10 b) by measuring the Rydberg excitation probability P75S

as a function of the lasers detuning from the |g⟩ →
⏐⏐75S1/2,mJ = 1/2

⟩
transition. We
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Figure 2.10: STIRAP excitation. a) Time profile of the laser pulses. We first shine the

1013 nm laser coupling the intermediate state to the Rydberg state, and then shine the

420 nm laser. b) Rydberg excitation probability P75S as a function of the detuning, with a

π-pulse (green) and the STIRAP (orange). Although the π-pulse is more efficient, the

STIRAP efficiency is much broader which makes it very convenient on a daily use.

compare the results for the STIRAP (orange), and the 2-photon excitation scheme

(green) using the same Rabi frequencies. The solid lines are: (i) a Gaussian fit for

the STIRAP, and (ii) the fitted Rabi formula for the π-pulse. As the STIRAP is an

adiabatic process, its efficiency is constant over a range of detuning of 5− 10MHz.

Another appealing feature lies in its large insensitivity to the exact value of the lasers

Rabi frequencies. The STIRAP remains efficient even though the Rabi frequencies

fluctuate on a daily basis. We use the STIRAP insensitivity to homogeneously excite

arrays with sizes comparable to the excitation lasers waists [de Léséleuc, 2018].

De-excitation to the ground state. For the many-body experiment presented in

Part III in which we use several Rydberg states, we use the ability to selectively de-

excite a specific Rydberg state back to the ground state. We take advantage of the short

lifetime of the 6P3/2 level to de-excite the atoms in nS by simply shining the 1013 nm

laser on resonance (see Figure 2.11 a)). We drive a Rabi oscillation with Ω1013 ≫ Γ6P ,

leading to a decay rate ∝ Γ6P/2. To assess the speed at which the de-excitation occurs,

we measure the probability Pr to find the atom in |r⟩ =
⏐⏐60S1/2,mJ = 1/2

⟩
(the

detection method is detailed below) as a function of the de-excitation time tdeexc, as

shown in Figure 2.11 b). The solid line is a fit to the data by a damped sine of the form

A cos2(Ω1013tdeexc/2)e
−tdeexc/τeff, with Rabi frequency Ω1013 = 40MHz and effective

lifetime τeff = 35(1)ns. The effective lifetime is compatible with the 6P3/2 lifetime

considering the multiple decay channels through the 6P3/2 state. The de-excitation

process is nearly over after ∼ 100 ns. We set a duration tdeexc = 300 ns to make sure

the atoms decayed back to the ground state.
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Figure 2.11: De-excitation of the Rydberg atoms. a) Sketch of the involved levels.

We shine the 1013 nm laser on resonance with the |r⟩ → 6P3/2 transition. The atoms

quickly decay back to the ground state due to the short lifetime of the 6P3/2 state. b)

Probability Pr to measure the atom in |r⟩ =
⏐⏐60S1/2,mJ = 1/2

⟩
as a function of the

de-excitation time tdeexc. The solid line is a fit to the data by a damped sine of the

form A cos2(Ω1013tdeexc/2)e
−tdeexc/τeff , with Rabi frequency Ω1013 = 40MHz and effective

lifetime τeff = 35(1) ns.

2.3.2 Ponderomotive potential for Rydberg detection and Rydberg trapping

Due to the (repulsive) ponderomotive potential exerted by the tweezers onto the

Rydberg atoms, the atoms are not trapped during the quantum simulation experiments.

As the atoms have a finite temperature (see Section 2.2.1), the Rydberg experiments’

duration is limited to ∼ 10− 20µs before the atoms start to leave the trapping region,

and are thus lost. A solution to extend the experiments’ duration is to trap the

Rydberg atoms. In this subsection, I detail the effect of the tweezers’ ponderomotive

potential on the Rydberg atoms, and explain how we trap them. The results presented

here are published in Barredo et al. [2020].

Ponderomotive potential and Rydberg state detection. We consider the Rydberg

atom as an approximately free electron around the ionic core. A free electron placed in

an oscillating electric field E⃗ of frequency ω feels a ponderomotive potential [Younge

et al., 2010] Up expressed as:

Up =
e2

4mω2
E2, (2.5)

with m and e the mass and the charge of the electron. As this potential is repulsive, the

Rydberg atoms are expelled from the tweezers. We use the ponderomotive potential

as an asset for the detection: when we switch back on the tweezers, the Rydberg
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Figure 2.12: Trapping Rydberg atoms using bottle beam traps. a) Effect of the

ponderomotive poential. When the atom is in a Rydberg state, the tweezers is repulsive

and the atom leaves the trapping region. b) To trap the Rydberg atoms, we place them

in a dark region surrounded by light. c) The SLM phase pattern is divided into two

regions, π-phase shifted one from each other. Each region create tweezers which interferes

destructively, giving rise to a dark region surrounded by light. The last image shows the

measured intensity profile of the BoB trap.

atoms are expelled and lost (see Figure 2.12 a)), whilst the ground-state atoms are

recaptured. This method allows for detection efficiencies above 95% (see Section 3.3.1).

Rydberg trapping using a bottle-beam trap. In order to trap the Rydberg atoms,

we place them into hollow traps, i.e., dark spots surrounded by light (see Figure 2.12

b)). Thanks to the ponderomotive potential, the Rydberg atoms stay in the dark spots

and are thus trapped.

To produce the hollow traps, we use a second SLM and create ’Bottle-Beam traps’

(BoB traps) [Ozeri, Khaykovich, and Davidson, 1999; Xu et al., 2010]. The phase

pattern of the second SLM is the same as the tweezers SLM, with an extra π phase

added to half of the phase pattern, as shown in Figure 2.12 c). At the focal point of

the lens, the field diffracted by the two parts interfere destructively, thus producing a

dark spot instead of a maxima of light. The image on the right of Figure 2.12 c) is the

real, measured intensity profile, which looks like a bottle with caps on both sides,

hence its name of “bottle-beam trap”.
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Figure 2.13: Demonstration of Rydberg trapping. a) Experimental procedure. We

switch off the tweezers, excite the atom to the Rydberg state |r⟩, and switch on the BoB

trap for various durations tBoB. We then de-excite the atom back to the ground state and

trap it back in the regular tweezers. b) Recapture probability as a function of the BoB trap

duration (purple) and in free-flight (red), with |r⟩ =
⏐⏐75S1/2,mJ = 1/2

⟩
. The Rydberg

atoms are kept for longer times in the BoB trap, demonstrating Rydberg trapping. The

solid line is an exponential fit to the data, from which we extract the 75S lifetime. c) We

repeat the experiment for various nS Rydberg states and report their lifetime in the BoB

trap. for n ∼ 60− 90, the BoB lifetime matches the Rydberg lifetime.

Measurement of Rydberg lifetime. To demonstrate the trapping of Rydberg atoms

using the BoB trap, we perform the following experiment, described in Figure 2.13 a):

r We initialize the atom into the |g⟩ state, switch off the tweezers, and shine the

Rydberg excitation lasers to reach the |r⟩ state.

r We apply the BoB trap for varying durations tBoB.

r We switch off the BoB trap, de-excite the atoms to the ground state, switch the

tweezers on again and measure the recapture probability.

The results of an experiment involving the 75S1/2 state are shown in Figure 2.13

b). We perform the experiment with (purple) and without (red) the BoB trap. We

observe that at long times, the recapture probability is higher using the BoB trap,

demonstrating Rydberg trapping. The decay of the recapture probability decreases

exponentially (solid line) with tBoB, which is expected due to the finite Rydberg

lifetime: when the atom naturally decays to another Rydberg state, we don’t bring it
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Figure 2.14: Rabi oscillations between Rydberg states. a) Sketch of the levels. We

first initialize the atoms into nS, then use microwave field to couple to a nP Rydberg

state. b) Rabi oscillations between the two Rydberg states 60S and 60P . After 72 cycles

we observe no appreciable damping, demonstrating the long coherence time of the system.

A magnification of the beginning and the end of the oscillation is shown.

back to the ground state with the de-excitation pulse and the atom is thus lost. We

extract from the fit the lifetime of the Rydberg atom in the BoB trap. We perform

this experiment for various nS states and measure the lifetime of the atoms in the

BoB trap, shown in Figure Figure 2.13 c). The dashed line represents the theoretical

values of the lifetimes at 300 K [Beterov et al., 2009]. We observe a good agreement

with the theory for n ∼ 60− 90, which shows that the trapping lifetime is limited

by the Rydberg lifetime. For n ≥ 90, the lifetime of the atoms in the BoB is lower

than the Rydberg lifetime. This lower lifetime is analyzed in detail in the thesis of

Vincent Lienhard [2019], and is mainly due to the size of the Rydberg atom which is

comparable to the trapping volume.

The Rydberg trapping could be used to study many-body physics for extended

duration. However, the gain in time is not drastic as the system is still limited by the

Rydberg lifetime. This technique is of high interest for longer Rydberg lifetime, e.g. in

cryogenic environment [Schymik et al., 2021], or using circular Rydberg states for

which 2D confinement has been demonstrated [Cortiñas et al., 2020].
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2.3.3 Microwave manipulation of Rydberg states

Once the atoms are in a specific nS state, we use a microwave field to transfer them

towards nearby nP states. This ability will be of great importance when using the

resonant dipole-dipole interaction between Rydberg states, as discussed in Part III.

Microwave transitions between Rydberg states. For the range of principal quan-

tum numbers n we use, the nS → nP transition frequency is in the 1 − 20GHz

range, which is accessible with common microwave synthesizers. The synthesizer is

connected to an antenna placed on top of the experimental chamber, which produces a

microwave field with Rabi frequency ΩMW and frequency fMW, (see Figure 2.14 a)).

The microwave transitions between Rydberg states have two assets:

r The strong dipole coupling between Rydberg states allows for Rabi frequencies

up to 20 MHz with microwave power in the range ∼ 1− 100mW.

r The low intrinsic noise of microwave synthetisers combined with the extended

lifetime of the Rydberg states allow for coherence of the Rabi oscillations over

long timescales.

An example of a Rabi oscillation is presented in Figure 2.14 b). We use the Rydberg

states
⏐⏐60S1/2,mJ = 1/2

⟩
and

⏐⏐60P3/2,mJ = 3/2
⟩
, with ΩMW = 2π × 18MHz and

fMW = 17176MHz. We measure the probability P60S for the atom to be in the 60S1/2

state (using the de-excitation technique presented above) as a function of the microwave

pulse area. We observe no appreciable damping of the oscillation after 72 cycles,

showing the long coherence time of the system. The solid line is a fit to the data by a

sine function. To appreciate the matching of the fit, we show a magnification of the

beginning and the end of the Rabi oscillation.

Although the system is highly coherent, the use of microwaves has several short-

comings:

r The control over the polarization of the microwave is challenging. Even though

the polarization at the output of the antenna is linear, the multiple reflections

from the metallic vacuum chamber scrambles the polarization at the position of

the atoms.

r The microwave wavelength is ∼ 1 cm, which implies that the excitation is global.

To excite specific atoms in the array, we combine the microwaves with an

addressing beam.
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Figure 2.15: Selective excitation using an addressing beam. a) Sketch of the levels.

We consider two atoms. The first one is addressed by a 1013 nm beam which light-shifts

by δls the nS level. The microwave field is thus not resonant with this atom. b) Sketch of

the experimental sequence using the light-shift to prepare the two-atom state (nS,nP ). c)

Sketch of the experimental sequence using the Autler-Townes effect to prepare the two

atom state (nP ,nS).

We use a second antenna placed along the Zeeman axis to have some flexibility on the

polarization: as the polarization balance of the antennas are different, we use the one

whose polarization favors the targeted transition. A solution to set the polarization

could be to use both microwave antennas at the same time and adjust the relative

phase of the driving field.

Selective excitation using single-site addressing. We combine the global mi-

crowave field with a local addressing laser field to transfer specific atoms from the nS

state to the nP state. The single-site addressing is a 1013 nm laser focused down on

the atoms by the aspherical lens, which allows us to shift the nS → nP transition

frequency of a specific atom. We explored two ways of proceeding:

r By setting the 1013 nm laser far-detuned from the 6P3/2 → nS transition by

∆addr and using a Rabi frequency Ωaddr ≪ ∆addr, we light-shift the nS state

of one atom by δls = Ω2
addr/4∆addr (see Figure 2.15 a)) [de Léséleuc et al.,

2017]. The microwave field is thus out of resonance for the addressed atom. The

experimental preparation is sketched in Figure 2.15 b).

r By setting the 1013 nm laser on resonance with the 6P3/2 → nS, we split the
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Figure 2.16: Characterization of the addressing. a) Sketch of the optical setup. We

use a dichroic mirror to combine the addressing beam with the assembler. We put an iris of

diameter η = daddr/dmax on the SLM phase pattern to increase the waist of the addressing

tweezers. b) Measurement of the addressing tweezers waist wη using the de-excitation

technique. We show the results for two irises: η = 0.4 (green) and η = 0.6 (red). c)

Measurement of the addressing Rabi frequency using the Autler-Townes effect described

in Section 3.2.2. We measure the probability Pg′ to find the atom depumped in F = 1,

gathered under the notation |g′⟩. The experiment is performed with (green) and without

(blue) the addressing.

nS level using the Autler-Townes effect described in Section 3.2.2. To avoid

de-excitation of the atoms, we first transfer both atoms into the nP state, then

transfer them back in presence of the addressing beam, as sketched in Figure 2.15

c). The microwave field is out of resonance for the addressed atom.

Arbitrary addressing using a SLM. During my PhD, we extended the use of these

techniques to an arbitrary number of addressed atoms. To do so, we use a second SLM

to generate an array of addressing tweezers at 1013 nm, combined with the optical

path of the moving tweezers using a dichroic mirror (see Figure 2.16 a)). The phase

pattern of the addressing SLM is calculated using the GS algorithm, described in

Section 4.1.1. To reduce position mismatch between the addressing array and the

atom array, the waist wη of the addressing tweezers is enlarged by applying an iris of
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diameter daddr onto the SLM. We define the normalized diameter η = daddr/dmax, with

dmax the diameter of the 1013 nm laser. I briefly describe now how we determined the

waist and the Rabi frequency of the addressing tweezers array.

To measure the waist of the addressing laser beams, we initially prepare the atoms in

|r⟩ =
⏐⏐75S1/2,mJ = 1/2

⟩
and apply the addressing on resonance with the |r⟩ → 6P3/2

transition for a duration tdeexc to de-excite the atoms. The Rabi frequency is set such

that Ωaddr ≤ Γ6P . Under these conditions, the probability Pr to find the atom in the

Rydberg state evolves as Pr ∝ e−Ω2
addrtdeexc/Γ6P . We set Ωaddrtdeexc ≪ 1 such that the

de-exciting rate can be considered as ∝ Ω2
addr/Γ6P . We measure Pr as a function of the

tweezers position. As the signal is ∝ Ω2, we directly measure the intensity profile of

the addressing tweezers. The results are presented in Figure 2.16 b) for two diameters

of the iris η = 0.4 (green), which gives w0.4 = 3.4(2)µm and η = 0.6 (red), which gives

w0.6 = 1.8(1)µm. In the following, we fix the iris diameter to be η = 0.6, such that the

waist is about twice the one of the tweezers.

To measure the Rabi frequency of the addressing beam, we perform an experiment

based on the Autler-Townes effect described in Section 3.2.2. We probe the |g⟩ → 6P3/2

transition using the 420 nm laser, and measure the splitting of the 6P3/2 level due

to the addressing beam by a quantity ~Ωaddr, as presented in Figure 2.16 c). We

perform the experiment with two atoms: one with (green) and one without (red) the

addressing beam, allowing to probe the free-space transition and the line split by

the Autler-Townes effect. We extract a Rabi frequency Ωaddr = 2π × 15(1)MHz when

using a power of 9 mW and a waist of 1.8 µm.

2.4 Control of the electromagnetic environment

The Rydberg atoms are sensitive to both magnetic and electric fields. It is thus

essential to control the electromagnetic environment in order to manipulate them

accurately.

2.4.1 Magnetic field

We use two types of coils to control the magnetic field: the compensation coils

which cancel the ambient magnetic field, and the quantization coils which define

the quantization axis. The quantization coils are placed inside the vacuum chamber,

on the lenses holder. When performing an experiment, we switch from an anti-
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Figure 2.17: Magnetic field compensation using Sisyphus cooling. a) Sketch of the

experiment. We vary the magnetic field compensation value during the Sisyphus cooling,

then release the atoms for 20µs and measure the recapture probability. b) Evolution of the

recapture probability as a function of the current through the z compensation coils. The

solid line is a Gaussian fit to the data from which we extract Ioptz = 0.59(3)A.

helmholtz configuration to generate the quadrupole field for the MOT, to a Helmholtz

configuration producing a magnetic field in the range Bz ∼ 0 − 50G along the z

direction contained in the atomic plane.

Magnetic field compensation. We use three pairs of coils placed outside of the

vacuum chamber to cancel the magnetic fields in the three directions of space. Various

techniques allow us to compensate the magnetic fields. Before I started my PhD, they

relied on spectroscopy. These methods are time consuming, as numerous spectra have

to be recorded to reach cancellation of the magnetic field. During my PhD, we were

able to accelerate the process by using the temperature of the atoms as an observable.

As briefly explained in Section 2.2.1, the Sisyphus cooling is more efficient if all the

Zeeman sublevels are degenerate, meaning that the magnetic field is canceled. The

experiment, sketched in Figure 2.17 a), is the following: we vary the current going

through the compensation coils during the Sisyphus cooling and measure the recapture

probability after opening the tweezers for 20µs: the lower the temperature, the higher

the recapture probability is. The results for the compensation coils along z are shown

in Figure 2.17 b). The solid line is a fit to the data by a Gaussian function, from which

we extract the current which minimizes the atom temperature.

A new quantization axis. As will be discussed in Chapter 8, the interactions between

two Rydberg atoms depend on the relative orientation of the magnetic field with

respect to the inter-nuclear axis. Depending on the many-body experiment we perform,

we either use a magnetic field in (z direction), or perpendicular to (x direction) the
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Figure 2.18: Characterization of the quantization coils along the x axis. a) Sketch

of the levels. b) Spectra of the |g⟩ →
⏐⏐5P1/2,F = 2,mF = 2

⟩
transition for different

values of the current through the coils. c) Measurement of the differential Zeeman shift as

a function of the current. The dashed line is a fit to the data with a slope of −0.73MHz/A

from which we derive α = 0.78G/A.

atomic plane. The latter was implemented during my PhD. We added an extra pair of

coils outside the vacuum chamber along the aspherical lenses axis. The ratio α between

the value of the magnetic field and the intensity going through the coils Bx = αIx,

which can be calculated using the Biot-Savart law, is measured via the spectroscopy of

the |g⟩ →
⏐⏐5P1/2,F = 2,mF = 2

⟩
, sketched in Figure 2.18 a). Initializing the atoms in

|g⟩, we shine the 795 nm laser and measure the probability Pg′ to find the atom in

depumped in the F = 1 states, gathered under the notation |g′⟩, using the push-out

beam. Typical spectra for various currents are shown in Figure 2.18 b). The transition

frequency changes by δeZ − δgZ due to the Zeeman effect which shifts the levels by

δgZ/(2π) = 1.4×Bx for |g⟩ and δeZ/(2π) = 0.46×Bx for
⏐⏐5P1/2,F = 2,mF = 2

⟩
. We

measure (δeZ−δgZ)/(2π) = −0.94×Bx for different values of the current, see Figure 2.18

c). The dashed line is a linear fit to the data with a slope of −0.75MHz/A, from

which we derive α = 0.78G/A. These coils allow for magnetic field values in the range

Bx ∼ 0− 50G.

Rotation of the quantization axis. To perform quantum simulation with a quan-

tization axis perpendicular to the atom array, along x, we need to pump the atom
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Figure 2.19: Rotation of the quantization axis. a) Starting with the magnetic field

in the atomic plane along z, we rotate it perpendicular to the array, along x, in 25 ms.

b) Initializing the atoms in
⏐⏐5S1/2,F = 2,mz = 2

⟩
, we flip the magnetic field along x̂.

The atoms remain in the highest energy state, i.e., in mx = 2 if Bx ≥ 0, or mx = −2
if Bx ≤ 0. c) Sketch of the levels involved in the Ramsey experiment. We apply two

microwave π/2-pulses separated by 0.5µs, with a detuning δR(B). d) P75S as a function

of the rotation time. The probability evolves due to the dependence of δR on the value of

the magnetic field. After ∼ 25ms, the magnetic field is stabilized.

into the |g⟩ =
⏐⏐5S1/2,F = 2,mx = 2

⟩
state. However, as the optical pumping beam

propagates along z, we cannot use it when the magnetic field is along x. To solve this

issue, we start by pumping the atoms into
⏐⏐5S1/2,F = 2,mz = 2

⟩
with the magnetic

field along z. We then rotate the magnetic field by switching on Bx while switching off

Bz, as sketched in Figure 2.19 a). As the atoms are initialized into the highest energy

state, they follow the rotation of the magnetic field by remaining in the highest energy

state, i.e,
⏐⏐5S1/2,F = 2,mx = 2

⟩
if Bx > 0 and

⏐⏐5S1/2,F = 2,mx = −2
⟩
if Bx < 0

(see Figure 2.19 b)). The same reasoning applies if the atoms are initialized in the

lowest energy state by inverting the direction of Bz. Using this method, we can reach

both stretched states in both magnetic field directions without the need to change the

polarization of the optical pumping laser. This feature will be used in Section 8.3.

The duration of the magnetic field rotation is limited by eddy currents in the copper

gaskets used to seal the vacuum window. We measure their influence using Ramsey

interferometry on the
⏐⏐75S1/2,mJ = 1/2

⟩
→
⏐⏐75P3/2,mJ = −1/2

⟩
transition at a
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Figure 2.20: Electrodes configuration. Adapted from the Thesis of Lucas Béguin [2013]

a) Sketch of the electrodes mounted on the aspherical lens holders. We use eight electrodes

to control the electric field in the three directions of space. b) The system can be seen as

a pair of electrodes along each direction with the applied voltage ±Vi/2 along the three

directions i ∈ [x, y, z].

microwave frequency 8.3GHz, as depicted in Figure 2.19 c). Setting the microwave-field

detuning at a value δR from the transition, we fix the delay between the microwave π/2

pulses to be 0.5µs and vary the time at which we start the Ramsey experiment, see

Figure 2.19 d). The probability P75S to find the atom in
⏐⏐75S1/2,mJ = 1/2

⟩
evolves

with the time at which we perform the Ramsey experiment due to the dependence of

δR on the magnetic field. The results show that the magnetic field has stabilized after

a rotation time of 25 ms.

2.4.2 Electric field

The electric field is controlled using eight electrodes placed on the lens holders inside

the vacuum chamber (see Figure 2.20 a)). The system is equivalent to a pair of

electrodes along each direction of space, see Figure 2.20 b). The relation between the

applied voltage and the produced electric field (set by the effective distance between the

electrodes) can be found in previous theses [Béguin, 2013; Ravets, 2014]. To produce

an electric field Ei in the direction i ∈ [x, y, z], we apply voltages (−Vi/2;Vi/2) on the

respective pair of electrodes. Doing so, the electric field is more homogeneous over

the atomic array than applying the voltages (0;Vi) (more detail can be found in the

Thesis of Vincent Lienhard [2019]).
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Figure 2.21: Cancellation of the electric field. a) Levels involved in the electric field

cancellation experiment. b) We record the transition frequency for different potentials

applied to the z electrodes Vz. The solid line is a fit to the data by a parabolic function

from which we extract the electric field compensation value V opt
z = 11.0(2)mV. c) Sketch

of the Ramsey experiment. We apply two microwave π/2-pulses separated by tR = 0.5µs,

with a detuning δR = δ0 + (δPS − δSS ). d) P75S probability as a function of Vz. The solid

line is a fit to the data with a function of the form A cos(2πtRδR), from which we extract

V opt
z = 32.38(3)mV.

Cancellation of the electric field. The main purpose of the electrodes is to cancel

the electric field E, as it mixes Rydberg states of different parity and prevents us from

defining a pure two-level system. We cancel E by varying the voltage applied to the

electrodes and measuring the corresponding Stark shift. We perform the experiment

using microwaves between two Rydberg states, here between the
⏐⏐75S1/2,mJ = 1/2

⟩
and the

⏐⏐75P3/2,mJ = −1/2
⟩
states. The electric field produces a Stark shift on the

transition frequency which evolves as δPS − δSS = −(αP − αS)E2, with δiS = −αiE2

where αi is the polarizability of state i = {S,P} (see Figure 2.21 a)). Before I started

my PhD, the cancellation was performed via spectroscopy. A typical evolution of the

transition frequency with the z potential Vz is presented in Figure 2.21 b). The solid

line is a fit to the data by a parabolic function, from which we extract the cancellation

voltage V opt
z = 11.0(2)mV. This experiment is time consuming as each data point is a
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Figure 2.22: Application of a controlled Stark shift. a) Levels involved in the experi-

ment. b) Typical spectra of the ground-Rydberg transition obtained for various values of

Ex. We measure the probability Pg to find the atom in |g⟩. The solid lines are Gaussian

fits to the data. c) Evolution of the Stark shift δS as a function of Ex. The solid line is a

fit to the data using a parabolic function, from which we extract the 60S1/2 polarizability

α60S = 140MHz/(V/cm)2.

full spectrum. The precision on V opt
z is limited by power broadening of the microwave

field, giving typical uncertainties in residual electric field ∼ 130µV/cm.

We improved the electric field cancellation technique during my PhD. We now use a

Ramsey interferometry experiment by applying two microwave π/2 pulses separated

by tR = 0.5µs. We set a detuning δR = δ0 + δPS − δSS with δ0 = 1MHz (see Figure 2.21

c)). We vary the voltage applied to the electrodes and measure P75S at the end of the

Ramsey experiment, as presented in Figure 2.21 d) for Vz, which evolves as:

P75S = A cos
(
2πtR(δ0 − (αP − αS)E2)

)
+B. (2.6)

The solid line is a fit to the data using the above function with E = Vz − V opt
z , from

which we extract V opt
z = 32.38(3)mV. This method is more precise as the measurement

is not affected by power broadening, giving typical uncertainties in residual electric

field ∼ 20µV/cm. The two experiments presented in Figure 2.21 were performed with

one month interval, which is the typical duration between two cancellation calibrations,

thus explaining the different values obtained for the electric field cancellation.
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High electric field. The electrodes are also used to apply a controlled Stark shift to

the Rydberg states, which will be used in Section 8.3. We demonstrate its implemen-

tation on the spectroscopy of the |g⟩ →
⏐⏐60S1/2,mJ = 1/2

⟩
transition (sketched in

Figure 2.22 a)) for various values of Ex, see Figure 2.22 b). We show in Figure 2.22

c) the evolution of δS as a function of Ex. The solid line is a fit to the data using

a parabolic function (as expected for the Stark effect δS = α60SE2
x), from which we

extract α60S = 140MHz/(V/cm)2.

We observe in Figure 2.22 b) that the Rydberg excitation probability decreases

when Ex increases, which is due to:

r The mixing of the targeted S state with the nearby P states.

r The sensitivity to fluctuations in the electric field value, which scale linearly

with Ex.

For these reasons, we limit ourselves to Stark shifts δS ≤ 25MHz, i.e. Ex ∼ 0.4V/cm

here, as we observe that the loss in Rydberg excitation efficiency is negligible.

2.5 Conclusion

In this chapter, I have presented an overview of the various operations we perform on

the atoms, starting with a hot vapour of Rubidium until the Rydberg excitation of

individually trapped atoms. In particular, I focused on the improvements made during

my PhD. These improvements allow us (i) to perform the various calibrations faster

and (ii) to improve the fidelity of the various operations. Combined, these induce

a higher quality of the results when performing quantum simulation. In the next

two chapters, I will come back to the detail of the major improvements I had on

the apparatus: improving the coherence of the Rydberg excitation (Chapter 3) and

extending the number of atoms (Chapter 4).
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Exciting the atoms into their Rydberg states is key step, as it is the tool which

allows us to implement interactions between the atoms, hence studying many-body

physics. One of the important contributions to the setup I made during my PhD was to

improve the Rydberg excitation by changing the way we excite the atoms, both on the

atomic physics side and on the technical side with the use of a new laser technology.

The change was triggered by the analysis of the previous setup imperfections carried

out by de Léséleuc et al. [2018a], and the successful implementation of the new setup

in the group of M. Lukin. The change of setup was done in the middle of my PhD. I

thus worked on the platform with both setups for the same amount of time.

A way to assess the quality of both the efficiency and the coherence of the Rydberg

excitation is to perform Rabi oscillations between the ground state and a Rydberg

state. In this chapter, I will first present the main concepts related to the Rydberg

excitation. I will then explain the changes I made on the setup, and finally study the

limitations of the new system.



Chapter 3: Improved excitation to Rydberg states

3.1 Excitation to Rydberg states

The wavelength of the transition from the ground state to the Rydberg states is 297

nm [Thoumany et al., 2009]. A laser source operating at this wavelength has to fulfill

two requirements:

r Due to the limited lifetime of the Rydberg states (∼ 100µs), the targeted Rabi

frequencies are & 1MHz to avoid decoherence effects.

r Considering the size of our 2D atomic arrays, the laser waists we are aiming for

is ∼ 100µm.

The required laser power is thus in the range of & 1W to fulfill these conditions.

However, single-mode highly coherent lasers delivering such power are not common,

even though its implementation has been demonstrated in optical lattices [Zeiher et al.,

2016]. The solution to avoid using this wavelength is to use a two-photon transition to

reach the Rydberg states.

3.1.1 Two-photon transition

We use a two-photon scheme to reach the Rydberg states. In our first implementation

of the Rydberg excitation laser system, we used the 5P1/2 as an intermediate state,

which involved diode lasers with wavelengths 795 nm and 474 nm. This setup is

described in detail in the previous theses of the group. In order to improve our ability

to drive the ground-Rydberg transition, we decided to modify our excitation scheme.

We performed two changes: a different choice of the intermediate level and a change of

the laser technology. These allowed us to increase the coherence and the efficiency of

the Rydberg excitation, which is discussed below. We chose the
⏐⏐6P3/2,F = 3,mF = 3

⟩
as an intermediate level (see Figure 3.1 a)), with lasers at 420 nm and 1013 nm.

The two lasers are counter-propagating and parallel to the magnetic field. Using

these lasers, we can excite the atoms into the Rydberg states
⏐⏐nS1/2,mJ = 1/2

⟩
or⏐⏐nD5/2,mJ = 5/2

⟩
.

Limitations of two-photon transitions. There are two drawbacks associated to the

use of two-photon transitions compared to single-photon transitions:

r The two lasers have to be locked in phase in order to coherently drive the

Rydberg excitation.
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1013 nm

420 nm

Energy
a) b)

420 nm

1013 nm

Figure 3.1: The “new” excitation scheme. a) Levels involved in the Rydberg excita-

tion scheme, with
⏐⏐6P3/2,F = 3,mF = 3

⟩
as intermediate state. Using two lasers with

wavelengths 420 nm and 1013 nm, we reach the Rydberg states nS1/2 and nD5/2. b)

Optical setup sketch.

r As the intermediate state has a shorter lifetime than the typical Rabi oscillation

duration, the atom decays to the ground state with a finite probability instead of

going in the Rydberg state. The lifetime of the intermediate level is τ6P = 113 ns,

corresponding to a linewidth Γ6P = 2π × 1.2MHz.

We explored two ways to avoid the intermediate state population: (i) driving Rabi

oscillations with a large detuning from the intermediate state, and (ii) using stimulated

Raman adiabatic passage, described in Section 2.3.1. I will focus on the first method

in this Chapter.

3.1.2 Rabi oscillations with large single-photon detuning

The most common approach to reach a Rydberg state |r⟩ starting with atoms in |g⟩ is
to perform two-photon transitions with a large single-photon detuning ∆ from the

intermediate state |p⟩. The relevant Hamiltonian describing the system is

H =
Ωgp

2
(|g⟩ ⟨p|+ |p⟩ ⟨g|) + Ωpr

2
(|p⟩ ⟨r|+ |r⟩ ⟨p|)−∆ |p⟩ ⟨p| − δ0 |r⟩ ⟨r| , (3.1)
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Figure 3.2: Comparison of the Rabi oscillations obtained with the previous and the

new laser setups. We show a sketch of the involved levels and the corresponding typical

Rabi oscillation obtained for a) |r⟩ =
⏐⏐60S1/2,mJ = 1/2

⟩
using the previous scheme, and

b) |r⟩ =
⏐⏐75S1/2,mJ = 1/2

⟩
using the new setup. We observe that both the contrast and

the damping are significantly improved. Solid lines are fits to the data with damped sines.

with Ωgp, Ωpr the single-photon Rabi frequencies of the |g⟩ → |p⟩ and |p⟩ → |r⟩
transitions, and δ0 the two-photon detuning from the Rydberg state. In the regime

where ∆≫ Ωgp, Ωpr, Γ6P , we can adiabatically eliminate the intermediate level and the

problem reduces to a two-level system. The system is well described by the effective

Hamiltonian

Heff =
~Ω
2
(|r⟩ ⟨g|+ |g⟩ ⟨r|) + ~δ |r⟩ ⟨r| , (3.2)

where we define the effective Rabi frequency and detuning by:

Ω =
ΩgpΩpr

2∆
and δ = δ0 +

Ω2
gp − Ω2

pr

4∆
. (3.3)

The second term in δ comes from the light shift induced by the two lasers. As

mentioned above, we want to drive the excitation with Ω/(2π) ∼ 1MHz to avoid

decoherence. In order to fulfill this condition and ∆≫ Ωgp, Ωpr, Γ6P , we typically use

Ωgp/(2π) ∼ 50− 100MHz, Ωpr/(2π) ∼ 25− 50MHz, and ∆/(2π) ∼ 500− 1000MHz.
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3.2 Changing the excitation scheme to the Rydberg states

Experimental realization. We initialize all the atoms in the ground state |g⟩ =⏐⏐5S1/2,F = 2,mF = 2
⟩
using the optical pumping technique described in Section 2.2.2.

We then switch off the tweezers, shine the two lasers for a few microseconds and switch

back on the tweezers. Atoms in the ground state are recaptured, whereas atoms in the

Rydberg states are expelled from the tweezers region and lost (see Section 2.3.2).

After 20 ms, we switch on the MOT lasers to observe the scattered light from the

atoms. If the atom is present at the end of the experiment, we infer that the atom

was in the ground state after the Rydberg excitation. If the atom is absent at the

end of the experiment, we infer that the atom was in the Rydberg state. The various

mechanisms leading to detection errors are discussed below.

Figure 3.2 presents two typical Rabi oscillations using a) the previous excitation

scheme with |r⟩ =
⏐⏐60S1/2,mJ = 1/2

⟩
and b) the new excitation scheme with |r⟩ =⏐⏐75S1/2,mJ = 1/2

⟩
. The parameters are ∆/(2π) = 700MHz, Ωpr/(2π) = 50MHz and

a) Ωgp/(2π) = 90MHz, b) Ωpr/(2π) = 50MHz. The solid line is a fit to the data using

a damped sine. For a frequency of ∼ 2MHz, we went from a 1/e coherence time of

∼ 1µs to a coherence time ∼ 25µs1. The contrast is also improved. I now describe in

detail the implementation of the new laser system.

3.2 Changing the excitation scheme to the Rydberg states

In this section, I first briefly motivate our choice for the new excitation scheme, then

present the new setup. As discussed above, we now use lasers with wavelengths 420

nm and 1013 nm, going through the 6P3/2 level. This change in laser wavelengths is

motivated by the intermediate state lifetime: the 6P3/2 lifetime is 113 ns, whereas

it is 28 ns for the 5P1/2. We thus gain a factor four in lifetime, which thus reduces

the effect of spontaneous emission from the intermediate state by a factor four (see

Section 3.3.2). We also changed the laser technology in order to solve the laser phase

noise issue [de Léséleuc et al., 2018a], which I now briefly discuss.

Reduction of the lasers phase noise. In the previous setup, we used Toptica Diode

Lasers with typical natural linewidths ∼ 1MHz [Henry, 1982] stabilized onto an

ultrastable cavity. The feedback loop which stabilizes the laser’s frequency produces a

noise at a typical frequency of ∼ 1MHz, a so-called “servo bump”, which corresponds

to the typical ground-Rydberg Rabi frequency. This “servo bump” induces decoherence

1This coherence time, extracted using the fit to the data, is too large to be observable due to the
fact that the atom drifts away, as not trapped in the tweezers.
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in the Rabi oscillations (detailed in the thesis of Sylvain de Léséleuc [2018]). Two ways

of circumventing this phase noise have been explored on other platforms: (i) using

an extra filtering cavity [Levine et al., 2018] and (ii) using Rabi frequencies in the

∼ 10MHz range [Madjarov et al., 2020], which is hard to achieve for large arrays due

to limited power.

The approach we chose is to directly solve the issue at its source by using a

laser technology which has a low phase noise at ∼ 1MHz: Titanium Sapphire lasers

(TiSaph). The natural linewidth of these lasers is ≪ 1MHz, which allows us, in

principle, to drive the transition without the need of actively stabilizing the laser’s

frequency. We however stabilize it (using an ultrastable cavity) to avoid long term

frequency drifts. The stabilization is performed in a mechanical way using piezos with

a bandwidth of ∼ 10 kHz, preventing any “servo bumps”.

A sketch of the 420 nm and 1013 nm lasers optical setup is presented in Figure 3.3,

which I now detail.

3.2.1 420 nm excitation laser

Optical setup. We start from a M-Squared SolTis TiSaph laser emitting light at

840 nm, pumped by an M-Squared Equinox (532 nm). A small portion of the light is

injected in a ultra low expansion (ULE) cavity to stabilize the laser in frequency. The

cavity is a replica of the one described in the thesis of Sylvain Ravets [2014]. It has a

finesse F ≃ 20000 and a free spectral range of 1.5GHz. The light at the output of

the TiSaph is frequency doubled using an M-Squared ECD-X doubling cavity. The

amount of power after the doubling cavity is ∼ 1.5W. We use fused-silica optics where

possible to avoid damage induced by such high power of near UV light. The laser

beam goes through:

r A double-pass Acousto-Optic Modulator (AOM) used to dynamically shape the

amplitude and the frequency of the light, discussed in Section 6.2.2.

r A free-space Electro-Optic Modulator (EOM) with extinction ratio ∼ 1/100 and

a fast switch time (∼ 10 ns), used to produce sharp pulses.

r A polarization-maintaining fiber which brings the light to the experimental

chamber. The maximum power we obtain on the atoms is 350 mW.

We then collimate the laser with a 1/e2 radius w420 = 250µm.
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Figure 3.3: Overview of the new Rydberg setup. (only relevant optics are shown).

After doubling the frequency of 840 nm light, the 420 nm goes through an AOM in

double-pass configuration, an EOM, and is coupled into a polarization maintaining fiber. It

brings the light to the experimental chamber as a collimated beam with a 1/e2 radius

w420 ≃ 250µm. After being amplified, the 1013 nm light goes through an AOM, is

reflected by a computer-controlled mirror and is focused on the atoms down to a waist

w1013 ≃ 130µm. Both lasers are stabilized in frequency on an ultrastable cavity.

Probing the transition to the intermediate state. We probe the 5S1/2 → 6P3/2

transition using the following experiment (see Figure 3.4 a)): we initialize the atoms in⏐⏐5S1/2,F = 2,mF = 2
⟩
, and shine the 420 nm laser as a weak probe (Ω420 ≃ Γ6P ).

When the laser is on resonance, the atoms are transferred into the 6P3/2 states, and

then decay back to the ground states, both to F = 1 and F = 2. We measure the

population in the F = 1 states using the push-out beam described in Section 2.2.2.

Figure 3.4 b) shows a typical spectrum of the 6P3/2 hyperfine structure. The energy

spacing is consistent with previous measurements [Glaser et al., 2020].

We observe the (6P3/2,F
′ = 3)→ (5S1/2,F = 1) transition, which is not intuitive

as the selection rules prevent atoms in (6P3/2,F
′ = 3) from decaying directly to

(5S1/2,F = 1). However, the atoms can decay back to the ground state by a multi-step

process, presented in Figure 3.4 c) with the corresponding transition wavelengths.

There are three possible routes: (6P → 5S), (6P → 6S → 5P → 5S) and (6P →
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Figure 3.4: Observing the hyperfine structure of the 6P3/2 state. a) Sketch of the

levels involved. b) Population in F = 1 as a function of the laser detuning from the

(5S1/2,F = 2)→ (6P3/2,F
′ = 3) transition. We observe three peaks corresponding to

three hyperfine levels of the 6P3/2. c) and d) Decay channels from the 6P to the ground

state, with the relevant levels and their lifetimes, transition wavelengths and (approximate)

branching ratios.

4D → 5P → 5S). The associated branching ratios, presented in Figure 3.4 d), are

∼ Γ6P/4, ∼ Γ6P/2 and ∼ Γ6P/4 [Safronova, Williams, and Clark, 2004], and the level

lifetimes are τ6S = 45 ns and τ4D = 90 ns [Marek and Munster, 1980]. This multi-step

mechanism allows atoms from F ′ = 3 to decay to F = 1, and will be taken into

account in the simulations of the Rabi oscillation.

3.2.2 1013 nm excitation laser

Optical setup. The 1013 nm laser is also a M-Squared SolTis laser pumped by an

M-Squared Equinox. A small fraction of the light is sent into the ultrastable cavity
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Figure 3.5: Autler-Townes effect. a) Principle of Autler-Townes splitting. b) Results

of the experiment with (circle) and without (square) the 1013 nm laser. We measure

the population in |g′⟩ as a function of the detuning ∆. We observe the splitting of the

|p⟩ level by Ω1013. c) Results of the experiment for atoms separated by 20µm. d) By

measuring Ω1013 for different positions of the atoms, we estimate the waist of the laser

w1013 ≃ 130µm.

for frequency stabilization. The maximum laser output power is ∼ 850mW. As this

transition has a small dipole matrix element, we want the highest power possible on

the atoms. To do so, we use this light to seed an AzurLight fiber amplifier2 delivering

up to ∼ 10W. The amplified light is sent on the atoms in free space, and we use an

AOM to switch on and off the beam. The beam is focused on the atoms with a 1/e2

beam radius waist w1013 ≃ 130µm. In these conditions, we reach the 75S1/2 level with

Ω1013/(2π) = 50MHz.

As the amplifier output is two meters away from the atoms and w1013 is relatively

small, we have to realign the laser on a daily basis. We realign the laser using a

computer-controlled mirror mount placed on piezo actuators, by maximizing the

splitting of the |p⟩ level due to the Autler-Townes effect, described below.

2The fiber amplifier is composed of three pump diodes combined with an Ytterbium doped fiber.
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Figure 3.6: A closer look at the first period. a) First period of a Rabi oscillation

involving the 75S level with contrast ∼ 97%. b), c) Focus on the π and 2π excitation time.

Due to the initialization, the detection errors and the remaining damping, we recapture

2.5% of the atoms after a π-pulse and 98% after a 2π-pulse.

Autler-Townes splitting. In order to measure the Rabi frequency Ω1013 of the laser,

we use the Autler-Townes effect, whose principle is summarized in Fig 3.5 a). When

the 1013 nm light is resonant with the Rydberg state |r⟩, the intermediate state |p⟩ is
split into the symmetric and antisymmetric |p⟩ ± |r⟩ superposition of these levels. The

level energies are located at ±~Ω1013/2 from the laser-free transition. The experiment

is the following: we initialize the atoms in |g⟩ and set the 1013 nm light on resonance

with the |p⟩ → |r⟩ transition. We perform spectroscopy by shining the 420 nm laser as

a weak probe (Ω420 ≃ Γ6P ) and scanning its detuning ∆. The atoms in |g⟩ are excited

when the 420 nm light is resonant, and eventually decay to F = 1 manifold, gathered

under the notation |g′⟩. We use the push-out beam to measure the population in |g′⟩.
We extract the |p⟩ state splitting from this spectroscopy (see Figure 3.5 b)), which

gives Ω1013.

Doing this experiment with atoms located at different positions as shown in Figure 3.5

c), we map the spatial distribution of the 1013 nm laser Rabi frequency. As Ω ∝ (1/w),

the spatial distribution of Ω directly gives the waist of the laser which we extract from

Figure 3.5 d). We use this experiment to center the 1013 nm laser on the array.

3.3 Limitations of the system

In this section, we assess the limitations of the Rydberg excitation by analyzing

the various mechanisms leading to the damping and the finite contrast of the Rabi

oscillations.
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3.3.1 Finite contrast of the oscillations

The contrast of the Rabi oscillations is highlighted in Figure 3.6 a) for which we focus

on the first period. We obtain a contrast of ≃ 97%, which is improved compared to

the ∼ 90% contrast with the previous setup (see Figure 3.2) thanks to a reduction of

the State Preparation And Measurement (SPAM) errors. This reduction of the SPAM

errors have two origins: (i) recent technical improvements described in Chapter 2 which

are not related to the new laser system, and (ii) improvements which are directly

related to the new laser system (see below). I now describe the mechanisms leading to

the finite contrast, and how we reduced their impact on the system.

Ground-state preparation. The contrast of the oscillation is directly limited by the

initialization efficiency in the |g⟩ state. The deficiency of the initialization η has two

origins: the imperfect optical pumping procedure (see Section 2.2) and the Raman

scattering induced by the tweezers (see Section 4.1.2). The typical values for the

previous excitation scheme were in the range η = 2−5%. During my PhD, we improved

the efficiency of the optical pumping (see Section 2.2.2) to reach ∼ 99.5%. The Raman

scattering increases the initialization deficiency by ∼ 0.2%, such that we typically

obtain η ∼ 0.7%.

Ground-state detection. As we switch off the tweezers during the Rydberg exci-

tation, the atom has a finite probability ε to escape the trapping region due to its

temperature. An atom leaving the trapping region will be interpreted as a Rydberg

atom, resulting in a detection error. During my PhD, we decreased the atom tempera-

ture, leading to a reduction in the typical value of ε from ε = 0.02 to ε = 0.005. The

remaining value of ε = 0.005 mainly comes from background-gas collisions and losses

due to the MOT cooling light. Figure 3.6 c) shows a magnification after one period:

∼ 2% of the atoms are lost, which comes both from ε and the remaining damping of

the oscillation.

Rydberg-state detection. The Rydberg state detection method relies on the pon-

deromotive potential the tweezers applies to the atom, (see Section 2.3.2). For the

tweezers depth we use, the typical escape time is ∼ 20µs. However, the Rydberg atom

has a probability ε′ to decay back to the ground state before leaving the trapping

region. The atom is thus recaptured and interpreted as being in the ground state,

resulting in a detection error. This error is dominated by the Rydberg state lifetime

at 0K (for fixed trap parameters), and thus scales as n−3. We measure ε′ = 0.05 for
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Figure 3.7: Errors induced by the detection process. Starting from a filled tweezers,

we switch it off and shine the Rydberg excitation lasers. P̃g and P̃r are the real probabilities

for the atom to be in |g⟩ and |r⟩. We infer the state of the atom by measuring the

probability Pg (Pr) to recover (lose) the atom at the end of the experiment. Two types of

error are possible: there is a probability ε for the atom to leave the trapping region, and a

probability ε′ that a Rydberg atom decays back to |g⟩ before being expelled. By following

the different paths leading to Pg and Pr, one can recover the coupled equations (3.4) with

η = 0.

n ∼ 60 [de Léséleuc et al., 2018a]. Thanks to the increased Rabi frequency of the new

setup we now use higher Rydberg states, here n = 75, implying ε′ = (75/60)3 ≃ 0.025.

Using Figure 3.6 b) and taking into account the remaining damping of the oscillation,

we measure ε′ ≃ 0.02, consistent with the scaling of ε′ and with numerical simulations

of the detection error.

Extracting the real excitation probability. The physical processes at the origin of

the ε and ε′ errors are summarized in Figure 3.7. To extract the real probabilities P̃r

and P̃g to find the atom in |r⟩ and |g⟩ from the measured ones Pr and Pg, we use the

coupled equations

Pg = η(1− ε) + (1− η)(1− ε)[P̃g + ε′P̃r],

Pr = ηε+ (1− η)[εP̃g + (1− ε′ + εε′)P̃r].
(3.4)

We calibrate independently the errors and use these coupled equations in our simulations

to extract the real excitation probabilities.

Conclusions and prospects for further improvement. We divided by ∼ 5 the

imperfection in the initialization η, and by two the values of ε and ε′. By calibrating
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these errors and using the coupled equations (3.4), we extract a detection-error free

probability P̃r ≃ 99% to reach the Rydberg state. The remaining percent lies in the

imperfect initialization and the residual damping.

We here give a few ideas to further decrease their values:

r The remaining part of ε mainly comes from background-gas collision. A better

vacuum would reduce its value. This can be achieved by placing the setup in a

cryogenic environment which would have the additional benefit of suppressing

the Rydberg states decay due to black-body radiation, hence increasing the

Rydberg lifetime by a factor ∼ 2− 3. As demonstrated in Schymik et al. [2021],

this solution leads to ∼ 1000 times better vacuum, thus reducing the error by a

factor 1000.

r We can reach even higher Rydberg states to decrease ε′. However, the Rydberg

states sensitivity to static electric fields (scaling as n7) combined with the small

dipole matrix element (scaling as n3/2) limit the achievable Rydberg states to

n ∼ 90.

r Another idea to decrease ε′ is to ionize the Rydberg atoms, e.g., by applying a

strong electric field [Löw et al., 2012], or by using microwaves [Sirko et al., 1994].

The successful implementation of the fast auto-ionization of Rydberg atom using

the second electron of alkali-earth atoms has been demonstrated [Madjarov

et al., 2020].

3.3.2 Damping of the oscillations

Even though the coherence time of the Rabi oscillation has been largely increased, we

still observe a finite damping. In this subsection, I present the main effects leading to

the observed damping and compare the results to simulations taking into account

those effects.

Doppler effect. As the atoms have a finite temperature T , for each realization

of the experiment their velocity v, hence the frequency of the lasers seen by the

atoms, changes. The velocity distribution is described by a Gaussian distribution

with standard deviation ∆v =
√

kBT
m

where m is the mass of the atom. As the

two beams are counter-propagating, the effective wavevector seen by the atoms is

keff = 2π
λgp
− 2π

λpr
≃ 8.7× 106m−1. The laser detuning seen by the atom is thus a random

67



Chapter 3: Improved excitation to Rydberg states

variable with a centered Gaussian probability distribution of standard deviation

δ = keff∆v ≃ 2π × 40 kHz for the typical atom temperature T = 10µK. This value is

three times as small as for the previous setup [de Léséleuc et al., 2018a]. We take

into account the Doppler effect in the simulations by averaging the results over 1000

realizations with the corresponding random distribution of detuning.

Spontaneous emission from the intermediate state. The fundamental limitation

on the coherence of two-photon processes is spontaneous emission from the intermediate

state, which has an effective decay rate:

Γeff = Γp ×
Ω2

gp + Ω2
pr

4∆2
, (3.5)

where Γp is the linewidth of the intermediate state. This formula indicates that: (i)

one should aim for the highest intermediate state lifetime possible and (ii) for a fixed

value of ∆, the maximum number of oscillations within a time 1/Γeff is achieved when

Ωgp = Ωpr. The optimal effective Rabi frequency is thus Ω = Ω2
pr/(2∆).

The spontaneous emission populates other ground states than |g⟩, gathered under

the notation |g′⟩. Atoms in |g′⟩ do not participate to the coherent excitation but

are still recaptured, leading to an asymmetric damping. To model the influence of

spontaneous emission, we include this extra-level and solve the optical Bloch equations

for the density matrix ρ:
dρ

dt
=

1

i~
[H, ρ] + L[ρ] (3.6)

with H the Hamiltonian described in Eq (3.2) and L the dissipator operator which

has the Lindblad form:

L[ρ] =
∑
i=g,g′

Γi

2
(2 |i⟩ ⟨i| ρ |p⟩ ⟨i| − |p⟩ ⟨p| ρ− ρ |p⟩ ⟨p|), (3.7)

where the value of Γi depends on the intermediate state linewidth and the Clebsch-

Gordon coefficients associated to the various decay channels. As pointed out in

Section 3.2.1, an atom placed in the intermediate state can decay to the 5S states via

three channels: (6P → 5S), (6P → 6S → 5P → 5S) and (6P → 4D → 5P → 5S).

To simplify the simulation, we suppose that the three-step decaying routes are

two-step processes (see Figure 3.8 a)), i.e., in the route 6P → 6S → 5P → 5S

(6P → 4D → 5P → 5S), the atom only goes through an effective level |pS⟩ (|pD⟩). The
lifetime of these effective levels is the sum of the level lifetimes: τpS = τ6S + τ5P = 71 ns

and τpD = τ4D + τ5P = 116 ns. The branching ratios are calculated by considering each
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Figure 3.8: Levels used in the simulations and influence of the Rydberg lifetime.

a) Energy levels and their connections used in the simulation. b) Effect of the Rydberg

lifetime on the Rabi oscillations. The parameters are Ω420 = Ω1013 = 2π × 50MHz and

∆/(2π) = 700MHz. We show the results for the relevant level 75S and for a relatively

low Rydberg state 45S. Its effect starts to play a role at longer times, highlighted in c)

which shows a magnification of b) at long times. Using the 75S level, we estimate a loss

in contrast of ∼ 2% after 6µs.

possible decay routes (including Zeeman sublevels).

Rydberg lifetime. Even though the Rydberg lifetime is large compared to the typical

Rabi oscillations duration, we include it in the simulations (see Figure 3.8 a)) as the

measured coherence time is now tens of microseconds. To simulate its effect accurately,

we distinguish between two decay channels:

r The Rydberg atom decays directly to a low-n, short-lifetime state which quickly

decays back to the ground state. The corresponding decay rate is approximately

given by the decay rate at 0K, Γr(T = 0K). To simplify the simulation, we

consider that the atom only decays to |g′⟩. The atom is thus recaptured at the

end of the experiment and does not participate in the Rabi oscillation.

r The atom decays to nearby long-lived Rydberg state due to the black-body

radiations. The corresponding decay rate is Γr(T = 300K)− Γr(T = 0K). We
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group these Rydberg states into a single state |r′⟩. We neglect the decay of

atoms from |r′⟩ during the Rabi oscillation. |r′⟩ is detected as a Rydberg state

and does not participate in the Rabi oscillation.

In order to assess the effect of the Rydberg state lifetime on the damping of the Rabi

oscillation, we perform the simulations (see Figure 3.8 b)) for the 75S (blue) level with

lifetime τ75S(300K) = 175µs and the 45S (red) with lifetime τ45S(300K) = 47µs. The

simulation parameters are the typical experimental one: Ω420 = Ω1013 = 2π × 50MHz

and ∆/(2π) = 700MHz. The simulations include the initialization and detection

imperfections, the Doppler effect, and the spontaneous emission from the intermediate

state. Although being negligible at short times, the effect of the Rydberg lifetime

starts to play a role after 6µs (see Figure 3.8 c)). We estimate a contrast loss of ∼ 2%

after 6µs using the 75S due to the finite Rydberg lifetime. Though this effect is not

drastic, it starts to play a role and should then be included in the simulations.

Power fluctuations. Another major limitation of the excitation setup is the fluctu-

ations of laser power. The power fluctuations during the experiment are measured

to be negligible compared to shot-to-shot fluctuations, i.e., at each repetition of the

experiment. We thus only take the latter into account. The 1013 nm amplifier has an

active feedback stabilization of the output power and its shot-to-shot fluctuations are

measured to be negligible. The main element causing shot-to-shot power fluctuations

is the fiber which couples the 420 nm laser to the atoms, due to beam pointing

instabilities before the fiber. The fluctuations follow a Gaussian distribution with

standard deviation ∼ 1% of the mean value. As a consequence, for each realization of

the experiment, the Rabi frequency is slightly different. In order to obtain the Rabi

oscillations shown in Figure 3.2, we typically repeat ∼ 100 times the experiment. This

leads to a damping even though the underlying mechanism is coherent. Figure 3.9

a) shows a simulation of the Rabi oscillation including the decoherence mechanisms

described above. We compare situations for which the 420 nm laser power follows a

Gaussian distribution with standard deviations of 0% (purple line, no fluctuations), 1%

(blue line, measured one) and 3% (red line) of the mean value. The resulting damping

dominates the other damping sources, and even strongly increases the damping by a

factor ∼ 10 when considering 3% of standard deviation as compared to 1%. Note that

contrarily to the other sources of damping described above, power fluctuations lead to

a Gaussian damping of the Rabi oscillations.
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Figure 3.9: Effect of power fluctuations and comparison to the experiment. a)

Effect of power fluctuations for various standard deviations. We observe a characteristic

Gaussian damping of the oscillations. Its effect plays a major role in the damping of the

oscillations when considering realistic standard deviations in the order of a few percent of the

mean value. b) A typical experiment for which the power fluctuations were independently

measured to be ∼ 1% of the mean value. The complete simulation matches well the

experiment. Taking into account only the Doppler effect and the spontaneous emission

from the intermediate state show discrepancy after ∼ 3µs.

Comparison between experiment and simulations. We finally compare the exper-

imental results with the simulations. Figure 3.9 b) shows a typical Rabi oscillation with

Ω420 = Ω1013 = 2π× 50MHz and ∆/(2π) = 700MHz. We consider two simulations: (i)

a simulation including the effects describing the previous setup [de Léséleuc et al.,

2018a] (purple) which ignores the power fluctuations and the Rydberg lifetime, and

(ii) a simulation including them (blue). We conclude that:

r At short times (< 2.5µs), both simulations match the data, which validates the

approach used to describe the Rabi oscillations of the previous scheme: as the

oscillations could not last more than a few microseconds, it was not necessary to

take into account the Rydberg lifetime and the power fluctuations.
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r At longer times, we observe a discrepancy for the simulation used to describe the

previous Rabi oscillations. Including power fluctuations and Rydberg lifetime in

the simulations leads to a good agreement with the data, indicating that the

evolution of the system is well understood.

The characteristic Gaussian damping of the Rabi oscillations confirms that power

fluctuations dominate the damping. Although reducing the power fluctuations would

increase the quality of the Rabi oscillations, its effect is negligible in the many-body

experiment: we use quasi-adiabatic sweeps to drive the many-body systems for which

the exact value of the Rabi frequency is not critical.

Prospects for further improvements. In order to reduce the power fluctuations, a

solution would be to apply a feedback on the laser power, e.g. by monitoring the rf

power sent to the AOM. To reduce the spontaneous emission, a solution is to increase

the single-photon Rabi frequencies, such that for the same effective Rabi frequency we

use a larger single-photon detuning. Increasing the single-photon Rabi frequencies can

be done by increasing the laser power, e.g. by using an even more powerful amplifier,

or to focus the lasers down to the atoms using spherical lenses.

To get rid of spontaneous emission from the intermediate state, the ideal solution

would be to drive a single photon ground-Rydberg transition to reach nP states using

a laser at 297 nm. Its successful implementation in the frame of quantum simulation

has been achieved in the group of I. Bloch [Hollerith et al., 2019]. Single-photon

ground-Rydberg excitation using single atoms held in tweezers arrays have been

achieved with other atomic species, such as 133Cs [Jau et al., 2016], and 88Sr [Madjarov

et al., 2020].

3.4 Conclusion

In this chapter, I presented the new Rydberg excitation scheme. I explained how the

new laser setup allowed us to increase both the contrast and the coherence of the Rabi

oscillations. We obtain a very good agreement between our simulations and the data

by including all of the described effects, showing that we understand the system’s

limits.

The improved coherence turned out to be crucial for the study of the transverse field

Ising model: as compared to first investigations conducted by Lienhard et al. [2018], we

are now in a regime in which decoherence effects are not predominant (see Chapter 6).
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3.4 Conclusion

This gave us the ability to explore quantum magnetism in frustrated geometries (see

Chapter 7). When performing many-body physics using the dipole-dipole interaction

between Rydberg states (see Part III), the enhanced contrast of the Rabi oscillations

results in a better initialization of the atoms in the Rydberg states, hence in more

contrasted observations.
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In this chapter, I focus on the production of large 2D assembled arrays. The aim of

quantum simulation is to mimic the behavior of real materials. To do so, we need to

work with a number of atoms large enough such that the effect of the finite system

size is negligible. Reaching a large number of atom is not a trivial task, as we need

to rearrange them to work with a fixed configuration. Before I started my PhD, the

limit was N ∼ 60, but in practice the largest quantum simulation experiments were

performed with with N = 49 atoms [de Léséleuc et al., 2018b]. Technical improvements

allowed us to extend this number to N ∼ 200, with our largest many-body study

involving N = 196 atoms (see Chapter 6). This extension in the number of atoms

induces an increase of the system’s Hilbert space size by a factor 2196/249 ∼ 1044,

putting the platform at a level for which numerical simulations of the system’s evolution

is not easily tractable. These improvements consisted of:

r Producing arrays containing up to ∼ 700 traps, with area ∼ 130× 130µm2.

r Optimizing the rearrangement process by increasing its efficiency and scalability.

One of my major contributions was to implement these improvements on the apparatus.
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4.1 Arrays with hundreds of traps

The maximum number of tweezers usable to trap atoms is limited by three factors:

r Our ability to produce tweezers arrays with homogeneous trap depth, which is

limited by the procedure to generate the traps combined with the optical setup

imperfections.

r As the amount of power required to trap the atoms scales linearly with the

number of tweezers, we are eventually limited by the available laser power.

r The limited field of view in the focal plane of the Aspherical Lens (AL) imposes

a boundary on the size of the arrays.

I detail how we addressed these issues in this section.

4.1.1 Generating homogeneous arrays

We use an optimization algorithm to generate the tweezers arrays based on the

Gerchberg-Saxton (GS) algorithm [Gerchberg and Saxton, 1972], presented in the

previous theses of the group [Labuhn, 2016; de Léséleuc, 2018]. I here give a brief

overview of the algorithm. The Spatial Light Modulator (SLM) imprints a phase

pattern φSLM(y, z) on the trapping beam ASLM = AeiφSLM(y,z). The optical setup is

designed such that the field at the position of the AL is AAL = ASLM.

Gerchberg-Saxton algorithm. The aim is to produce an array of N tweezers. To

calculate the field producing such array, we use the reverting principle of light and

consider the tweezers as emitters. The corresponding field Aem at the position of the

AL is:

Aem =
∑
t

Ate
iφt(y,z)+θt , (4.1)

with At the amplitude and φt(y, z) the phase of the field emitted by tweezers t,

t ∈ [1,N ], and θt an offset phase. We thus need to produce a field ASLM = Aem in

order to create the target array. The aim is to have the exact same amplitudes for

each trap At = A, such that each tweezers share the same properties. However, this

also requires control over the amplitude of the field. As the SLM only modifies the

phase of the field, it is impossible to rigorously produce the target field. To circumvent

this issue, we use the GS algorithm which acts on (At, θt) to create the target array by
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Figure 4.1: Trap power equalization using a camera. a) Sketch of the Gerchberg-

Saxton optimization algorithm. The feedback loop uses a camera placed after the vacuum

chamber. b) Images of a 18× 18 array from the trap camera before (left) and after (right)

the power equalization, with the corresponding traps intensity histograms.

only modifying the phase of the light. The algorithm, sketched in Figure 4.1 a), is a

closed-loop optimization process [Spalding, Courtial, and Leonardo, 2008] taking as a

starting point:

φ0
SLM = arg(Aem), (4.2)

with equal amplitudes A0
t = A and random phases θ0t . The algorithm then enters the

optimization loop, in which it calculates the trap intensity Vt of each trap t using the

diffraction formula:

Vt =

∫∫
ei[φSLM(y,z)−φt(y,z)]dydz. (4.3)

The algorithm tries to find the trap phase θt that maximizes the intensity of the traps,

whilst equalizing the traps intensity by adjusting At. The number of steps is typically

∼ 10. Using a Graphics card to run the calculation, we reach a computation time of

∼ 10 s for ∼ 1000 traps.

Feedback loop using a camera. We measure the traps intensity using a camera

placed at the exit of the vacuum chamber, which is called the trap camera in the

following. After the traps generation using the GS algorithm, the power in the tweezers

is not homogeneous (see Figure 4.1 b)) because of imperfections in the optical setup

which are not taken into account in the diffraction formula. The distribution of the trap
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intensity displays a Gaussian shape, with relative standard deviation σI/⟨I⟩ ∼ 20%. To

solve this issue, we add an extra step to the GS algorithm consisting of measuring the

real traps intensity It after the vacuum chamber, from which we extract the weight of

the traps Areal
t =

√
It. We run the GS algorithm with the initial condition A0

t = Areal
t ,

and repeat ∼ 10 times the process to reach inhomogeneities of σI/⟨I⟩ ∼ 3%. We have

to repeat the equalization procedure every month due to long term misalignment of

the optical setup.

The feedback using the camera introduces a bias: it corrects the intensity profile on

the camera placed after the vacuum chamber, and not directly in the atomic plane.

The bias is supposed to be negligible as the camera is optically conjugated with the

atomic plane. However, imperfections of the optical components placed between the

atoms and the camera distort the light field. Having a trap power equalized on the

camera, we observe two phenomena on the atoms :

r A global gradient in trap depth of ∼ 50 kHz/µm in the left-right direction, which

has to be compared to the average trap depth U/h ≃ 20MHz.

r ∼ 1− 5% of the tweezers have ∼ 20% lower trap depth, with random positions.

This shows that equalizing the trap power on the camera placed after the vacuum

chamber is not the correct observable to have tweezers with equal trap depth inside

the vacuum chamber.

In-situ feedback loop. To avoid the introduction of a bias, we devised an alternative

version of the feedback loop to directly equalize the traps power at the position of the

atoms. The conditions are the following: having the MOT light on, we let the atoms

enter and leave the traps over a duration of 10 seconds, a long time compared to the

average loading time (500 ms). The feedback is then performed on the filling fraction

pt of the atoms in the tweezers (see Figure 4.2 a)) as follows:

r If pt is low, the trap depth is not high enough to keep the atoms in the tweezers.

r If pt is high, the trap is deep enough. Due to the collisional blockade, the

maximum value of pt is 0.5.

We now use as the normalized trap weight At = 2pt. The traps intensity after

equalization, measured on the trap camera, is shown in Figure 4.2 b) for a 14× 29

array with size 130× 140µm2. We observe a strong intensity inhomogeneity with a

gradient along the d̂ direction, whereas the traps are equalized in the atomic plane.
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Figure 4.2: Trap power equalization using the atom fluorescence. a) The feedback

loop uses as a signal the atom fluorescence by measuring the averaged probability of

having an atom in the trap. b) Image of an equalized 14× 29 array using the trap camera,

with the corresponding histogram of the trap intensity. We observe a strong intensity

inhomogeneity along the d̂ direction, whereas the traps are equalized in the atomic plane.

Difficulties of the method and prospects for improvements. This method is

challenging to perform for several reasons:

r The algorithm can diverge: if there is too much power in a trap, the fluorescence

signal is small due to the strong light shift applied by the tweezers. The

optimization loop thus considers that the trap has low power and will thus

increase it.

r The equalization procedure can be unstable: as the method relies on observing

the loading of atoms in the tweezers, variations of loading rate and background

light can lead to wrong evaluations of pt.

r The equalization procedure can be inaccurate: the algorithm attributes the same

weight for all the traps displaying pt = 0.5 and pt = 0, whereas their trap depth

may not be equal. We perform the method with a low average power to be in a

regime where the traps are barely trapping atoms.

Despite these shortcomings, we were able to equalize arrays with up to ∼ 700 atoms.

To further improve the method, we could apply the following procedure: starting at
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low trap power, we would increase it until observing the fluorescence of the atoms

in the tweezers. The optimization loop observable would therefore be related to the

moment at which the traps start to be filled. This improvement would avoid the

divergence and the accuracy issues, and is currently being implemented in the lab.

4.1.2 Increasing the number of traps

As the required laser power scales linearly with the number of atoms, the total available

laser power limits the number of tweezers. When I started my PhD, the maximum

number of traps we could reliably produce was ∼ 200. I will now explain how we

pushed this number to ∼ 700 during my PhD.

Increasing the trap power. The trapping laser is a M-Squared Titanium-Sapphire

(TiSaph) laser. Due to the optical components on the beam path, the power in front

of the vacuum chamber is only ∼ 30% of its value at the laser output. When I started

my PhD, the output TiSaph power was ∼ 3.5W and the wavelength was 852 nm,

corresponding to ∼ 1W before the vacuum chamber. As the power required to trap an

atom (measured before the chamber) at 852 nm is ∼ 5mW, the resulting maximum

number of traps is ∼ 200.

During my PhD, we changed the TiSaph pumping laser, from a Verdi V12 to a

Verdi G18. The output power of the pump went from 12W to 18W, allowing for

powers up to ∼ 6W at the output of the TiSaph, corresponding to an increase of

∼ 70% of the number of traps. We also changed the trapping wavelength to 821 nm.

A change in the trapping wavelength. The tweezers trap depth is given by the

light shift U/h applied to the atom, which is U/h ≃ 20MHz to trap an atom in our

experiment. The tweezers are far-detuned by ∆t from the 5S1/2 − 5P1/2 transition to

avoid strong Raman scattering (see below). The tweezers light-shift reads:

U/~ = Ω2
t

(
1

∆t

+
1

∆t +∆P

)
, (4.4)

with ∆P the frequency difference between the 5P1/2 and the 5P3/2 levels and Ωt

the tweezers’ Rabi frequency (considered to be the same for both levels). Keeping

U fixed, we decreased the power required to trap the atoms by changing ∆t. We

changed the trapping wavelength from 852 nm (∆t ≃ 2π × 25.2THz) to 821 nm

(∆t ≃ 2π × 11.9THz) to divide by two the trapping power, i.e. ∼ 2.5mW, allowing us
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Figure 4.3: Raman scattering. a) Sketch of the Raman scattering by the tweezers beam,

which depumps the atoms from |g⟩ to other ground states. b) Sketch and results of the

experiment measuring the Raman scattering rate RRaman. After pumping the atoms in |g⟩,
we let the tweezers on for a variable Raman scattering duration. Atoms in |g⟩ are then

excited to a Rydberg state. The solid line is a fit to the data using a linear function from

which we extract RRaman ≃ 3 photon/s using the tweezers at 821 nm, consistent with the

calculated value.

to double the number of traps using the same amount of total power. Following this

argument, we could be tempted to further reduce ∆t to increase the number of atoms.

We are, however, eventually limited by inelastic scattering of the tweezers’ light which

heats the atom at a rate U̇ = 2REr, with R ≃ 100 photon/s the scattering rate at

821 nm, and Er ≃ 300nK the recoil energy. The typical holding time of the atom in

the tweezers is at most ∼ 50ms. The corresponding heating is thus ∼ 3µK, far from

being enough to expel the atom out of the tweezers. The actual issue is the Raman

scattering, which I now describe.

Raman scattering. The Raman scattering process, detailed in the thesis of Jérôme

Beugnon [2007] and firstly observed in Cline et al. [1994], is a phenomenon which

transfers the atoms from one ground state to another one. In order to efficiently excite

the atoms into their Rydberg states, we initialize them in |g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
using optical pumping (see Section 2.2.2). Due to the Raman scattering, the atoms are

depumped from |g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
, inducing a reduction of the Rydberg

excitation efficiency. The Raman scattering corresponds to the scattering from the

tweezers with a change of internal atomic state: the atom is (incoherently) transferred

into (F = 1,mF = 1), or (F = 2,mF = 1) (see Figure 4.3 a)). Other states are not
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reachable as the tweezers are linearly polarized. The scattering rate is given by:

RRaman ∝
⏐⏐⏐⏐ 1∆t

− 1

∆t +∆P

⏐⏐⏐⏐2 . (4.5)

By decreasing ∆t, we calculate an increase of the Raman scattering from RRaman ≃ 0.3

photon/s (852 nm) to RRaman ≃ 3 photon/s (821 nm).

We measure RRaman using the tweezers at 821 nm by performing the following

experiment, presented in Figure 4.3 b): we initialize the atoms in |g⟩ using the optical

pumping, and leave the tweezers on for a variable Raman scattering duration tR

before Rydberg excitation. The probability pR for the atom to be affected by Raman

scattering over a duration tR, and thus depumped out of |g⟩, is pR = 1− e−tRRRaman .

The experiment is performed with tRRRaman ≪ 1, such that pR ≃ 1− tRRRaman. We

measure the Rydberg excitation efficiency which is directly linked to the |g⟩ state
population (up to detection errors, see Section 3.3.1). The solid line is a linear fit to

the data from which we extract RRaman ≃ 3 photon/s, in good agreement with the

calculated value.

The typical time between the initialization into |g⟩ and the Rydberg excitation

is tR = 20ms due to the adiabatic ramping down of the trap power, detailed in

Section 2.2.1. Using tweezers at 852 nm, we obtain pR ≃ 0.02%, which is negligible

compared to other sources of errors (see Section 3.3.1). Now using tweezers at 821 nm,

pR ≃ 0.2%, comparable to the optical pumping imperfection. These values take into

account the adiabatic ramping down of the traps power which decreases RRaman.

Prospects for further improvements. If the Rydberg excitation would happen

directly after the initialization in |g⟩, the Raman scattering would not impact the

system and we could further decrease the twezeers detuning. We could excite the atoms

to their Rydberg states directly after the optical pumping stage which initializes the

atoms into |g⟩. Another solution would be to improve the optical setup by free-space

coupling the laser to the atoms, which would allow us to double the number of tweezers.

However using the current technologies, it seems hard to achieve more than thousands

of tweezers, as the required power scales linearly with the number of traps.

4.1.3 Extending the size of the arrays

For the many-body experiments presented in this thesis, the typical distance between

the atoms is ∼ 10 − 20µm. The size of hundreds-trap arrays is thus in the range
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Before vacuum chamber After vacuum chamber
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Figure 4.4: Field of view of the aspherical lenses. Images of a 23× 23 array with a

distance of 20µm between the traps, before (left) and after (right) the vacuum chamber.

The white cross represents the center of the AL field of view.

∼ 100− 150µm, which is an issue as the field of view of the Aspherical Lenses (AL) is

limited. In the thesis of Lucas Béguin [2013], the field of view is defined as the radius

rFoV for which the Strehl ratio is S(rFoV) = 0.8, which gives rFoV ≃ 50µm, smaller

than the typical size of the arrays we use in this thesis. In this section, I describe the

effects of the field of view on the tweezers, and how we compensated those effects (up

to a certain radius) during my PhD.

Field of view of the aspherical lenses. A tweezers away from the optical axis

exhibits aberrations with two qualitatively different behaviors:

r Close to the optical axis (≤ 50µm), the tweezers peak intensity Ipeak(r) decreases

linearly as Ipeak(r) = I0(1 − αr) [Béguin, 2013] with r its distance from the

optical axis, and I0 the peak intensity on the optical axis. The tweezers waist is

not affected.

r Far from the optical axis (defined below), aberrations strongly modify the light

shape, which can no longer be considered as Gaussian, thus preventing atoms

from being trapped.

The tweezers peak intensity reduction is not critical, as this reduction can be compen-

sated for by performing the equalization procedure presented in Section 4.1.1. The
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Figure 4.5: Effect of aberrations correction on the tweezers profile. Tweezers profiles

in its radial (left panels) direction y at the AL focal point, in the axial (center panels)

direction x along the optical axis, and in the (y,x) plane (right images). The profiles are

recorded a) without and b) with corrections of the aberrations.

problematic part is far from the optical axis: every tweezers do not share the same

properties, leading to, e.g., inhomogeneous atom temperatures, or a breaking of the

collisional blockade in the extreme case.

We measure the effect of the AL field of view on the tweezers shape by creating

a 23 × 23 array with a distance of 20µm between the tweezers, giving an area of

440 × 440µm2, see Figure 4.4 a). We measure, from the array after the vacuum

chamber (see Figure 4.4 b)), a region with radius ∼ 110µm for which the tweezers

shape is not strongly modified. This experiment also allows us to center the array onto

the AL optical axis, as the optical axis is positioned at the center of the field of view

(white cross in Figure 4.4 b)). To center the array, we apply a global phase grating on

the SLM.
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4.1 Arrays with hundreds of traps

Correction of the aberrations using a Shack-Hartmann We correct for the aber-

rations using the SLM following a procedure decribed in detail in the thesis of

Henning Labuhn [2016]. When I started my PhD, we were using a Shack-Hartmann

(SH) device placed after the vacuum chamber, where the beam is collimated by the

second AL, to measure the aberrations. Due to the aberrations, the wavefront is not

flat and the SH measures its distortion and quantifies it using the Zernike polynomi-

als [Love, 1997]. Figure 4.5 presents the impact of aberrations correction on a tweezers

positioned 25µm away from the AL optical axis. We record the tweezers’ intensity

profile (solid lines) after the vacuum chamber a) without and b) with aberrations

correction along various directions:

r In the focal plane of the tweezers (left panels), along the radial direction y.

The tweezers is a Gaussian (dashed line) in both cases, giving similar waists:

w = 0.99(1)µm without correction and w = 0.95(1)µm with. The difference

between the two profiles is the absence of residual intensity maxima around

±2µm from the tweezers center in the aberrations-corrected case, which induces

a higher peak intensity.

r In the axial direction (center panels), recorded by using electro-tunable lenses

[de Léséleuc, 2018; Barredo et al., 2018] to change the distance x between the

tweezers focal point and the camera plane. The solid line is the measured intensity

at axial position x. Without aberrations correction, we observe a substantial

deviation from the expected Lorentzian profile (dashed line). The aberrations

correction strongly reduces the extracted Rayleigh range: xR = 5.1(2)µm without

to xR = 3.3(1)µm with correction.

r In the (y,x) plane (right images) by stacking radial profiles along y for various

axial positions x. The corrected tweezers displays a smaller area due to the

Rayleigh range reduction.

In-situ correction of the aberrations. Correcting for aberrations after the vacuum

chamber is not ideal, as the second AL also introduces aberrations which we correct

for whereas they are not present in the atomic plane. To circumvent this issue, we

follow the approach of the in-situ trap power equalization and use as an observable

the fluorescence signal from the atoms. As discussed above, the major effect of the

aberrations (in the field of view) is to reduce the tweezers trap depth. We use this as

an asset for aberration correction by performing the following experiment: having

the MOT light on, we let the atoms enter and leave the traps. The tweezers trap
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Chapter 4: Large arrays of assembled atoms

power is chosen such that the probability to have an atom in the tweezers pt is low.

The aberrations are corrected when pt increases. The gain in power with aberration

corrections depends on the size of the array. For typical arrays presented in this thesis,

aberrations correction allows us to reduce by ∼ 20% the total power required to trap

the atoms.

Prospects for further improvements. To my knowledge, there is no simple solution

to extend the size of the arrays above the AL field of view with the current setup. One

solution, which requires changing the entire setup, would be to use a high numerical

aperture microscope for which the typical field of view is ∼ 1mm. As its working

distance is short (cm range) and as placing it under vacuum would be technically

extremely challenging, it would be necessary to switch the vacuum system for a glass

cell. This option will be developed in the group in the coming years.

4.2 Assembling hundreds-atom arrays

As the filling fraction of a tweezers is ∼ 0.5, we rearrange the atoms to reach a

desired configuration by superimposing onto the static traps generated by the SLM, a

moveable tweezers (MT) generated by two orthogonal AODs. The MT rearranges the

atoms between the static traps. The various devices used to perform the rearrangement

are described in the thesis of Sylvain de Léséleuc [2018]. Before I started my PhD,

the maximum number of atoms was N ∼ 60 due to the limited efficiency of the

assembling process, induced by (i) the fidelity of rearranging one atom and (ii) the

process duration, due to the lifetime of the atoms in the tweezers. We improved these

two limiting factors during my PhD. We pushed the number of traps to ∼ 700, as

described above. A comparison between the previous assembling efficiency [Barredo

et al., 2016] and the current one is shown in Figure 4.6: we measure the probability

Pfill to perfectly assemble arrays with various traps number N , in square (square

markers) and triangular (triangle markers) geometries. Images of the largest arrays

for both are shown. The solid lines are fits to the data using a function derived

below (Equation (4.11)). We obtain a strong increase of Pfill: the production of arrays

containing N = 100 atoms increased from Pfill ∼ 0.5% to Pfill = 25%. This section

presents the various improvements leading to this increase of Pfill.
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Figure 4.6: Comparison of the assembling success probability. Assembling success

probability Pfill as a function of the atom number N , before (red) and after (grey) the

various optimizations detailed in this section. The square and triangular markers represent

arrays with square and triangular geometries. Image of the largest assembled array for both.

4.2.1 Analysis of the assembling efficiency

I detail here the various processes limiting the assembling efficiency, and derive the

probability Pfill of assembling successfully a given array as a function of the number of

atoms N .

Moving an atom. To move an atom from an initial trap to a target trap, we use

the following procedure, already described in Section 2.1.2:

r We start by focusing the MT onto the initial trap with negligible power. We then

ramp up the MT power to a trap depth of ∼ 10mK in 300− 500µs, which is 10

times higher than the trap depth of the static trap. The atom is thus transferred

into the MT.

r We then move the MT from the initial static trap to the target trap at a speed

of 100 nm/µs.

r We ramp down the MT power to zero in 300−500µs. The atom is thus transferred

into the target trap.

We will call this process a move in the following. The duration of each step is set to

optimize the move fidelity ηm, and is much longer than the typical oscillation period of
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Figure 4.7: Inhomogeneous loading efficiency. Loading efficiency per trap after the

rearrangement process of a 14× 14 array with 10µm between the traps.

the atom in the tweezers. The resulting typical move duration is tm ≃ 1ms. The finite

efficiency of the process has two main origins: (i) the optical quality of both the static

traps and the MT, and (ii) an imperfect matching between the MT and the static

traps. I start by describing the latter.

Moving tweezers accuracy. We use a camera placed after the vacuum chamber to

place the MT onto the static traps [de Léséleuc, 2018]. We record the MT position for

various values of the rf frequency driving the MT AODs, and also record the position

of the static traps. By matching both, we obtain the frequencies at which we have to

drive the AODs to target a given trap. However, we observed that the array moves on

the camera, on timescales of ∼ 1 s and on distances ∼ 25% of the tweezers waist. Its

possible origin is the air flow in the lab, which induces fluctuations of the air refractive

index. The matching between the MT and the static trap is thus inaccurate. We partly

solved this issue during my PhD by averaging over ∼ 100 images the position of the

array. Another uncertainty comes from the fact that the position matching is not

performed directly on the atoms, which could be done by looking at their fluorescence

inside the MT and the static traps.

Inhomogeneous assembling efficiency on large arrays. The assembling efficiency

is inhomogeneous when rearranging large arrays, as shown in Figure 4.7 in which

we look at the probability pt of loading the traps after the assembling process, for

a 14× 14 array, with a distance of 10µm between the traps. For most of the traps,

pt ∼ 98.5%. However, some specific traps have a smaller loading efficiency, which has

two origins:
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Figure 4.8: Lifetime of an atom in a tweezers. a) Survival probability of an atom held

in a tweezers for various trapping durations. The solid line is a fit to the data using an

exponential function, from which we extract τvac = 21(2) s. b) Two mechanisms limit the

assembling efficiency: the atom lifetime and the move fidelity.

r Close to the array center, we measure pt ∼ 97% for a few traps. This lower

probability could come from an imperfect equalization of the static trap power

(see Section 4.1.1), resulting in a trap depth lower than the rest of the array.

This low trap depth could lead to losses when transferring atoms using the MT.

r Far from the array center: due to the limited field of view of the AL, the MT

far from the optical axis exhibits strong aberrations which affect its shape and

induce defocusing. The matching between MT and static traps is thus less good,

which induces a loss in the move fidelity ηm. As the MT aberrations cannot be

compensated, it is important to center the array on the aspherical lenses optical

axis to minimize the aberrations (see Section 4.1.3).

The AL field of view strongly limits the assembled arrays area. In order to illustrate

this on an example, let us consider a square lattice. As the required number of traps is

2N to assemble N atoms, the array area is twice as big compared to the assembled

one. For the 14× 14 assembled array shown here, we would need an initial array area

of 190× 190µm2, which is out of the AL field of view (see Section 4.1.3) and thus

impossible to realize. To solve this issue, we use arrays for which the 2N traps have

the same area as the target array, by placing the traps which are not assembled in

between the target ones (see Section 4.2.3). In the following, we will suppose that ηm

is homogeneous over the array.
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Chapter 4: Large arrays of assembled atoms

Lifetime of an atom in a tweezers. The main limitation in the assembling efficiency

is the lifetime τvac of the atoms in the tweezers, which is dominated by background-gas

collisions. We measure the atom lifetime by varying the trapping duration and looking

at the survival probability of the atoms in the tweezers, see Figure 4.8 a). The solid line

is a fit to the data using an exponential function, from which we extract τvac = 21(2) s.

We define the probability ε(t) that the atom leaves the tweezers region after a duration

t as ε(t) = 1− e−t/τvac . This error is negligible on a single move: ε ≃ 5×10−5. However,

the atom lifetime becomes predominant when working with large arrays, as described

below.

Probability to successfully assemble an array. Now that we have described the

two processes leading to the limited assembling efficiency (move fidelity and lifetime of

an atom in a tweezers), we derive the formula giving the success probability Pfill of

assembling an array of N atoms. We consider an initial array of 2N traps and a target

array of N traps. We suppose that the assembling process has a duration ttot.

We first focus on moving a single atom, as depicted in Figure 4.8 b). The probability

P 1
fill of successfully rearranging the atom at the end of the assembling process is limited

by: (i) the single move fidelity ηm, and (ii) the atom lifetime, with the associated

probability for the atom to be still in the tweezers at the end of the assembling process

1− ε(ttot). We thus obtain the success probability P 1
fill of moving the atom at the end

of the assembling process:

P 1
fill = ηme

−ttot/τvac . (4.6)

We now move on to the entire array assembling probability P arr
fill . To simplify the

calculations, we consider that the move fidelity is homogeneous. Half of the atoms are

initially held in the target array as the loading probability of a tweezers is ∼ 0.5. We

consider a perfect assembler algorithm, for which the number of moves Nm is equal to

the number of atoms missing in the target array: Nm = N/2. The influence of the

assembler algorithm is discussed below. The atoms initially held in the target tweezers

can also be lost due to their lifetime with a probability ε(ttot), such that:

P arr
fill =

[
P 1
fill

]N/2 ×
[
e−ttot/τvac

]N
= ηN/2

m e−Nttot/τvac . (4.7)

For a perfect assembler algorithm which instantaneously calculates the required moves

to assemble an array, the total assembling time is ttot = (N/2)tm with tm the move
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4.2 Assembling hundreds-atom arrays

duration. The formula thus reads:

P arr
fill = ηN/2

m e−
N2

2τvac
tm . (4.8)

In the limit ηm = 1, Pfill decreases in a Gaussian fashion with N . The typical number

of atoms Nc for which Pfill = 1/e2, i.e., the number of atoms we can reasonably

successfully assemble due to the atom lifetime is Nc =
√
2τvac/tm ≃ 300. We can find

this result using the following reasoning: the lifetime of a configuration with N atoms

is tarr = τvac/N , and we need a time ttot to assemble the array. The number of atoms

we can reasonably assemble is when tarr = ttot, giving τvac/N = (N/2)tm.

Influence of the assembler algorithm. In the above calculation, we neglected two

things: (i) we also have to calculate the moves to reach the target configuration which

takes a time tcalc, and (ii) the number of moves Nm = Nextra +N/2 can be higher than

N/2 due to geometrical constraints described below. The values of tcalc and Nextra

depend on the moves computation algorithm, which is the topic of the next section.

Considering these two points, the Equation (4.7) reads:

Pfill = ηNm
m e

N
τvac

(Nmtm+tcalc), (4.9)

which can be written as

Pfill = P arr
fill × ηNextra

m e
N

τvac
(Nextratm+tcalc), (4.10)

with P arr
fill given by Equation (4.8). This shows the importance of having an optimized

algorithm for the moves computation. The scaling of Nextra and tcalc with N is derived

below.

4.2.2 A new rearrangement algorithm

Now that I have introduced the importance of having an optimized algorithm for the

assembler, I briefly describe the change of algorithm done during my PhD, which was

one of the PhD project of Kai Nicklas-Schymik [Schymik et al., 2020].

Two types of moves. The way we assemble the atoms drastically affects the

performance of the moves computation algorithm. I thus briefly discuss it here. We

distinguish two possibilities: moving the atoms in between the static traps, and
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moving them along the traps. These two approaches are detailed in the thesis of

Sylvain de Léséleuc [2018]. Whilst moving the atoms in between the static traps

avoid encountering atoms on the path, we prefer to move the MT along the traps.

When performing many-body experiment, we are in a situation for which the minimal

distance between the atoms is ∼ 5µm. The aberrations on the MT leads to a spread

of intensity at ∼ 2.5µm from the tweezers focal point (see Section 4.1.3): when the

MT travels in between the traps, the MT light affects the surrounding static traps. In

the following, we will consider that the MT moves along the static traps. This means

that when moving one atom from a source trap S to a target trap T , it might happen

that the MT has to cross a filled trap F . The process would result into a collision,

thus a loss of both atoms. To perform the (S → T ) move, we split it into two moves

and first do (F → T ), then (S → F ). An optimized algorithm aims at reducing as

much as possible these events.

“Shortest-move first” algorithm. When I started my PhD, we were using a

moves computation algorithm which we named the “shortest-move first” algo-

rithm [de Léséleuc, 2018], which works as follows: at each repetition of the experiment,

the algorithm (i) looks at the position of the N atoms in the array, (ii) calculates the

N2 distances D between each atom and each target trap (including D = 0), and (iii)

creates the list L of moves to perform, ordering them by increasing D. The moves

involving traps or atoms already involved in a previous move are not added to L.
The algorithm does not take into account the fact that some assembled atoms may

block the path for others, as sketched in Figure 4.9 a) on the simplest case of two

atoms in a 1D chain of four traps: the number of moves calculated by the algorithm is

three, whereas the assembling could be intuitively done with two moves. To measure

the algorithm computation efficiency, we compute the number of moves Nm for the

typical array shape we use (see Section 4.2.3) as a function of the number of atoms N ,

see Figure 4.9 c) (red markers). The displayed data are extracted from simulations

(performed by Kai-Niklas Schymik et al. [2020]) of 1000 random initial configurations.

The dashed line is a linear fit to the data, from which we extract a typical evolution of

the number of moves Nm ≃ 0.85N . The computation time scales as tcalc ∝ N2, with

typical value tcalc ∼ 100ms for N ∼ 200.

Linear sum assignment problem and post-processing. In order to improve both

the number of moves and the calculation time, we now use an optimization algorithm

based on Linear Sum Assignment Problem (LSAP) [Crouse, 2016]. The LSAP algorithm
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Figure 4.9: Moves computation algorithms. Moves computation using a) the ’shortest-

moves first’ algorithm, and b) the LSAP algorithm on two simple examples. c) Number

of moves Nm as a function of the number of atoms N for the two algorithms with the

typical array geometries we use (see Section 4.2.3). The markers are data extracted from a

simulation of the computed moves over 1000 initial, random configurations of the atoms

position. The dashed lines are linear fits to the data, from which we extract Nm ≃ 0.85N

for the shortest-moves first algorithm (red), and Nm ≃ 0.64N for the LSAP algorithm

(blue). The dark line represents the minimum number of moves Nm = N/2.

cost function that needs to be minimized is the total rearrangement distance L =
∑

li,

with li the length of move i. To reduce the events in which we have to move an atom

along filled traps, inducing an increase of Nm, we post-process the moves calculated by

the algorithm in the following way: (i) we split the calculated moves to avoid collisions,

(ii) reorder the moves by increasing length, and (iii) merge the moves for which their

target trap is the same as the initial trap of another move. The post-processing is

illustrated on an example in Figure 4.9 b). Using this algorithm, we find Nm ≃ 0.64N

(see Figure 4.9 c), blue markers), and the computation time scales as N2, with typical

value tcalc ∼ 10ms for N ∼ 200.

Effect of the algorithm on the assembling efficiency. As we have now calculated

the scaling of Nm and tcalc for both algorithms, the Equation (4.10) can be written

including them:

Shortest-move algorithm: Pfill = η0.85Nm e
0.85N2

τvac
tm+100 (N/200)2

τvac .

LSAP algorithm: Pfill = η0.64Nm e
0.64N2

τvac
tm+10 (N/200)2

τvac .
(4.11)
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Figure 4.10: Use of ’compact’ arrays. Histograms of the assembling probability of a

10× 10 array with a) a regular square lattice and b) a ’compact’ array. The insets show

the target traps (green) and the non-assembled traps (red).

As a reminder: ηm is the fidelity of a move, tm its duration and τvac the atom lifetime

in the tweezers. Changing the algorithm reduced the required number of moves by

∼ 30%, and divided by ∼ 10 the computation time1: for N = 200 and ηm = 0.98, Pfill

is increased by a factor ∼ 8 using the LSAP algorithm. The fits to the data of Pfill

presented in this chapter are performed using the above equation, with only fitting

parameter ηm.

4.2.3 Increasing the assembling efficiency

Whilst the optimization of the moves computation algorithm improved the assembler

efficiency, we also added two other important improvements during my PhD, which I

describe now.

Minimizing the distance between the traps. This point was already partly moti-

vated in Section 4.2.1: in order to reduce the MT traveling distance and the size of

the arrays, we place the traps which are not assembled in between the target traps.

It also reduces the number of moves: the events for which the atoms have to be

moved twice are rare since the MT can travel in between the target traps. The gain in

assembling efficiency is demonstrated on a 10× 10 array, with a distance of 10µm

between the target traps, see Figure 4.10. We assemble the array using a) a regular

square lattice and b) a ’compact’ array, for which we double the number of traps along

one direction (see inset). We show the histogram of the number of vacancies, i.e. the

number of target traps which are not filled after the assembling process. The mean

filling probability is ∼ 75% with the square lattice and ∼ 96% using a compact array.

1The values given here are the ones obtained on the specific computer used to calculate the moves.
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Figure 4.11: Use of two rearrangement cycles. a) Sketch of the experimental protocol.

We perform two rearrangement cycles, taking an image of the atoms position after each of

them. After the first cycle, the target array is almost filled, shown on the example of a

10 × 10 array in which only one atom is missing (white circle). b) Success probability

Pfill as a function of the atom number N after the first, and after the second cycle. The

solid lines are fits to the data using Equation (4.10) with the move fidelity ηm as a free

parameter. c) Histogram of the number of vacancies in the target array after the first cycle

(dark grey), and after the second cycle (light grey).

Second rearrangement cycle. The implementation of a second rearrangement cycle,

sketched in Figure 4.11 a), consists of the following: we rearrange the atoms twice

and take an image of the atoms after each cycle. Considering the high assembling

efficiency, the second cycle mainly aims at filling the few remaining holes in the target

array, shown on the example of a 10× 10 array in which only one atom is missing

(white circle) after the first cycle. We show in Figure 4.11 b) the gain in assembling

efficiency by comparing the probability Pfill to successfully assemble the target array

as a function of the atom number N after the first cycle (dark), and after the second

cycle (grey). The solid lines are fits to the data using Equation (4.11), from which we

extract ηm = 96.5(1)% after the first cycle, and ηm = 98.0(2)% after the second. The

fit matches better for the first cycle than the second, as Equation (4.11) is derived

assuming only one set of moves.

For the largest array considered here with N = 196, Pfill is ∼ 10 times higher after

two cycles than after one. To understand in more detail the second rearrangement

cycle effect, we show in Figure 4.11 c) the histogram of the number of vacancies
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Figure 4.12: Prospects for further improvements. Assembling success probability Pfill

as a function of the atom number N . We perform the fit to the data using Equation (4.10)

with the move fidelity ηm as a free parameter, from which we extract ηm = 98.7(1)%.

We also show the results of Equation (4.10) with: an ideal algorithm (dark dashed line),

perfect moves (red dashed line) and the combination of both (green line).

in the N = 196 array, after one (dark) and two (grey) cycles. We observe a shift

of the distribution towards lower number of vacancies (from seven to four), whilst

the distribution width remains the same, thus increasing the probability of having

zero vacancies Pfill. Analyzing these results, one could be tempted to add other

rearrangement cycles to further shift the vacancies distribution towards zero. However,

we observed that increasing further the number of cycles does not improve the results

for two reasons: (i) each cycle is time consuming, and the system is eventually limited

by the atom lifetime, and (ii) taking many images of the atoms induce losses, with a

finite probability to misinterpret the position of the atoms.

As we now use two assembly cycles, we need more than 2N traps to have enough

atoms for the second rearrangement cycle. We typically use arrays with ∼ 2.2N traps,

such that ∼ 1.1N atoms are initially loaded. The assembling probability is increased

at the expense of decreasing the maximum value of N . It is not a limit here, as the

maximum number of traps is ∼ 700 (see Section 4.1.2).

Conclusions and prospects for further improvements. I briefly summarize the

improvements made on the assembler efficiency described in this section:

r By changing the moves computation algorithm, we reduced by ∼ 30% the

number of moves required to assemble the target array, and divided by ∼ 10 the

computation time.
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r By carefully matching the MT position onto the static traps, using ’compact’

arrays and two rearrangement cycles, we increased the single move fidelity from

ηm = 95.6(3)% to ηm = 98.7(1)%.

There are two ways to further improve the assembling efficiency: increasing the moves

fidelity, and using a better moves computation algorithm. To check their effect on the

assembling efficiency, we use Equation (4.10) in various conditions, see Figure 4.12.

We show the results of the assembling success probability Pfill as a function of N

with: (i) an ideal algorithm (Nm = N/2 and tcalc = 0) but the current moves fidelity

(dark dashed line), (ii) perfect moves (ηm = 1) but using the current algorithm (red

dashed line), and (iii) an ideal algorithm and perfect moves (green line). We conclude

that to increase the assembling efficiency of arrays in the range N ∼ 200− 250, the

improvements should be focused on the moves fidelity. To reach N ≥ 300, we need to

improve both, which is challenging as the move fidelity and the algorithm optimality

decrease with N .

4.3 Conclusion

In this chapter, I presented the way we increased the number of available atoms to

perform many-body physics, by improving two points: the ability to trap atoms in

large arrays, and the efficiency of the rearrangement process. These improvements

allowed us to probe the transverse field Ising model in a regime where the boundaries

are not dominating the properties of the system, especially with triangular arrays

(see Chapter 7). Increasing the number of atoms to N ∼ 200 also allows us to enter

in a regime for which numerical simulations of the system’s evolution is extremely

challenging. This make our platform a possible route to study many-body phenomena

which cannot be easily grasped by numerical simulations, which is eventually one goal

of quantum simulation.
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In this chapter, I explain how we use the van der Waals interaction between Rydberg

atoms to: (i) entangle two atoms and (ii) implement the transverse field Ising model.

The quantum simulation of the transverse field Ising model is one of the main projects

conducted during my PhD. Here, I give an overview of the model’s main features for the

simplest case of a 1D chain of N atoms. I briefly explain how we experimentally probe

these features, and demonstrate that the platform can be readily used to investigate

the model in 2D geometries, which will be the topic of Chapter 6 and Chapter 7.

5.1 Van der Waals interaction between two Rydberg atoms and en-

tanglement

In this section, I detail the effect of the van dar Waals interactions on two Rydberg

atoms, and demonstrate their entanglement. The entanglement of two atoms via this

interaction in views of realizing quantum gates [Jaksch et al., 2000; Lukin et al.,

2001] has been extensively studied during the last decades [Saffman, Walker, and
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Figure 5.1: Van der Waals interaction between two atoms. a) Sketch of the two-atom

levels. The resonant dipole-dipole interaction between |r1, r2⟩ and |r2, r1⟩ induces an energy

shift U on the |r1, r1⟩ state, and −U on the |r2, r2⟩ state. b) Sketch of the ground-Rydberg

spectroscopy involving two interacting atoms with inter-atomic distance R = 10µm.

The involved levels are |g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
and |r⟩ =

⏐⏐75S1/2,mJ = 1/2
⟩
. c)

Probability to excite one (red) or both (green) atoms into |r⟩ as a function of the laser’s

detuning δ from the single atom transition frequency. The solid lines are fits to the data

using Gaussian functions, from which we extract U/h ≃ 2MHz.

Mølmer, 2010; Browaeys, Barredo, and Lahaye, 2016; Browaeys and Lahaye, 2020].

These quantum gates are key ingredients for building digital quantum computers. The

creation of such quantum computers is an active field of research in superconducting

circuits [Arute et al., 2019] and ion-based [Blatt and Wineland, 2008] platforms. Digital

quantum computation proved to be an efficient method for simulating the dynamics of

many-body quantum systems [Lanyon et al., 2011; Smith et al., 2019]. One challenge

these quantum computers face is the fidelity of the quantum gates, which is directly

limited by the entanglement fidelity. The realization of quantum gates using the van

dar Waals interaction is out of the scope of this thesis. However, we present here a

method to measure a lower bound of the entanglement fidelity [Madjarov et al., 2020],

and show that we obtain entanglement fidelities close to those obtained using similar

platforms, indicating that our experiment could be used to realize quantum gates.
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5.1 Van der Waals interaction between two Rydberg atoms and entanglement

5.1.1 Van der Waals interaction

The van der Waals interaction arises from the dipole-dipole interaction Vddi between

Rydberg atoms (discussed in Chapter 8). We consider two atoms placed at a distance

R in a state |r1, r1⟩ with energy Er1,r1 , and nearby Rydberg states |ri, rj⟩ with energy

Eri,rj . The two atoms in the |r1, r1⟩ state are not coupled via the dipole-dipole

interaction at first order. This can be understood in a semi-classical picture: as the

two atoms are in the same state, there is no rigid dipole associated to these atoms,

hence no coupling between them.

The dipole-dipole interaction instead acts on the |r1, r1⟩ state at the second order:

consider the superposition of the states |r1, ri⟩ and |ri, r1⟩, with ri having a different

parity to r1. The atoms now exhibit a rigid dipole and are thus coupled via the

dipole-dipole interaction. This coupling acts on the |r1, r1⟩ state at the second order

and shifts its energy by:

U =
∑
i,j

| ⟨rirj|Vddi |r1r1⟩ |2
Eri,rj − Er1,r1

= C6/R
6, (5.1)

where the sum runs over all the nearby |ri, rj⟩ states, and C6 is the van der Waals

coefficient. We neglect here the possibility for |r1, r1⟩ to be degenerated in energy with

another Rydberg pair state, which would give rise to Förster resonances [Gallagher,

1988; Walker and Saffman, 2005; Ravets et al., 2014].

The arising of the van der Waals interaction from the resonant dipole-dipole

interaction is summarized in Figure 5.1 a), in which we consider only two Rydberg

states |r1, r1⟩ and |r2, r2⟩.

Measurement of the Van der Waals interaction. We show the effect of the van der

Waals interaction on the simplest case of two atoms by performing a ground-Rydberg

spectroscopy (see Figure 5.1 b)), setting an inter-atomic distance R = 10µm, and

using |g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
as the ground state and |r⟩ =

⏐⏐75S1/2,mJ = 1/2
⟩

as the Rydberg state. We measure the single (red) and double (green) excitation

probabilities into |r⟩ as a function of the laser’s detuning δ, see Figure 5.1 c). The van

der Waals interaction has two effects:

r When setting the excitation laser on resonance with the single atom transition

(δ = 0), the single excitation probability is maximum. Both atoms cannot

be excited at the same time as |rr⟩ is shifted in energy due to the van der

Waals interaction. This phenomenon is called the Rydberg blockade and allows
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Figure 5.2: Entanglement using the blockade mechanism. a) Two-atom level energies

as a function of the inter-atomic distance R. Exciting both atoms to their Rydberg state is

impossible for R < Rb. b) 2-atom ground-Rydberg Rabi oscillation involving the Rydberg

state |r⟩ =
⏐⏐75S1/2,mJ = 1/2

⟩
. We show the average Rydberg excitation probability Pr

for R > Rb (blue), and the single excitation probability Pgr+Prg for R < Rb (purple). The

solid lines are fits to the data using a sine function, from which we extract an enhancement

of the Rabi frequency by a factor 1.42(2) ≃
√
2.

excitation of the atoms to the entangled state (|rg⟩+ |gr⟩)/
√
2, as discussed

below.

r When the laser’s detuning matches half the interaction energy δ = U/(2h), the

double excitation probability is maximum as we couple to the |rr⟩ state. We

measure U/h ≃ 2MHz, compatible with the expected C6 ≃ 1947MHz.µm6 for

75S [Šibalić et al., 2017].

Tunability of the interaction. The van der Waals interaction strongly varies with

the principal quantum number n and the inter-atomic distance R, as U ∝ n11/R6.

Considering the typical parameters we use n ∼ 60− 90 and R ∼ 5− 40µm, we can

vary U on seven orders of magnitude. We use this asset to easily tune the system

from a predominant interaction strength to a negligible one, as performed in the next

subsection.

5.1.2 Entangling two atoms using the van der Waals interaction

We use the van der Waals interaction to entangle two atoms. The aim is to transfer the

system into the state (|rg⟩+ |gr⟩)/
√
2. We thus set the excitation lasers on resonance

104



5.1 Van der Waals interaction between two Rydberg atoms and entanglement

with the single atom ground-Rydberg transition frequency, and use a Rabi frequency

Ω. Depending on the distance R between the atoms, thus on the value of U , the system

exhibits two regimes: (i) if U ≪ Ω, the interactions can be neglected and the system’s

behavior is identical to the single atom case, and (ii) if U ≫ Ω, the |rr⟩ state is not

reachable, and the excitation lasers couple the atoms to the state (|rg⟩+ |gr⟩)/
√
2.

The boundary between the two regimes is the distance Rb for which U(Rb) = Ω,

also called the “Rydberg blockade radius”. This wording is slightly misleading, as for

R ∼ Rb there is a finite probability to populate the |rr⟩ state. In order to entangle

the two atoms, we will use R < Rb. The excitation laser thus couples the |gg⟩ state to

the (|rg⟩+ |gr⟩)/
√
2 state. This results in an enhancement of the Rabi frequency by a

factor
√
2, which we measure on the experiment.

Measurement of the
√
2 enhancement. In order to observe these two regimes

experimentally, we drive Rabi oscillations between |g⟩ and |r⟩ =
⏐⏐75S1/2,mJ = 1/2

⟩
with a Rabi frequency Ω/(2π) = 1.3MHz, see Figure 5.2 b). The corresponding Rydberg

blockade radius is Rb ≃ 10µm. We perform the experiment: (i) with R = 30µm

(U/h = 3kHz) and show the average Rydberg excitation probability Pr (blue), and

(ii) with R = 6µm (U/h = 42MHz) and show the single excitation probability

Pgr + Prg (purple). We measure an enhancement of the oscillation frequency by a

factor 1.42(2) ≃
√
2 in the blockade regime, proving that the |gg⟩ state is coupled to

(|rg⟩ + |gr⟩)/
√
2 as expected. We apply a π-pulse to produce the entangled state.

However, due to the various limitations of the platform, the produced state is not

exactly |W ⟩ = (|gr⟩+ |rg⟩)/
√
2, which we now quantify.

Entanglement fidelity. As can be observed in Figure 5.2 b), the contrast of the

oscillation is finite due to the various state preparation and detection errors described

in Section 3.3.1. These limit the entanglement fidelity F , defined as the overlap

between the prepared state with density matrix ρ and |W ⟩ = (|gr⟩+ |rg⟩)/
√
2. The

entanglement fidelity is an important quantity to measure, as it directly limits the

fidelity of Rydberg-blockade-based quantum gates. The entanglement of two atoms

through the van der Waals interaction has already been implemented 10 years ago

in the group [Wilk et al., 2010], and a fidelity F = 0.75 was obtained. As many

technological advances have been realized since then, it is interesting to compare the

fidelity with the current one. F can be written as:

F =
1

2
(ρgr,gr + ρrg,rg + 2|ρgr,rg|) , (5.2)
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ρi,j being the density matrix elements with (i, j) ∈ {gg, gr, rg, rr}. Measuring F

requires having access to the coherence term ρgr,rg, which is non trivial to measure as

high fidelity single-qubit rotations have to be performed [Roos et al., 2004]. Even

though the machine is in principle capable of doing so, we use a method detailed

in Madjarov et al. [2020], which gives a lower bound for F by simply measuring the

population terms ρi,i. We use

Tr(ρ2) =
∑
i,j

|ρi,j|2 =
∑
i

ρ2i,i +
∑
i ̸=j

|ρi,j|2. (5.3)

As Tr(ρ) =
∑

i ρi,i = 1, the above equation can be rewritten as:

Tr(ρ2) =
∑
i

ρi,i

(
1−

∑
j ̸=i

ρj,j

)
+
∑
i ̸=j

|ρi,j|2. (5.4)

By isolating the terms involving |ρgr,rg|2 = |ρrg,gr|2 and ρgr,grρrg,rg in the above sums,

we obtain

Tr(ρ2)− 1 = 2|ρgr,rg|2 − 2ρgr,grρrg,rg +
∑

i ̸=j,(i,j)̸=(gr,rg)

(
|ρi,j|2 − ρi,iρj,j

)
. (5.5)

Using the Cauchy inequality: |ρi,j|2 ≤ ρi,iρj,j for each term of the above sum, we

obtain:

|ρgr,rg|2 ≥
1

2

(
Tr(ρ2)− 1

)
+ ρgr,grρrg,rg. (5.6)

We thus obtain a lower bound for |ρgr,rg| as a function of Tr(ρ2). We use another lower

bound to determine the value of Tr(ρ2):

Tr(ρ2) ≥
∑
i

ρ2i,i. (5.7)

This lower bound seems extremely strong, as we totally lose the coherence parts. In

order to reduce the imprecision of this lower bound, we measure
∑

i ρ
2
i,i when the

coherence terms are the lowest, i.e. when the atoms are in the |gg⟩ state. We measure∑
i ρ

2
i,i after one period of the Rabi oscillation and not directly after the initialization

to make sure that we do not overestimate the value of this sum. The resulting formula

is:

F ≥ 1

2

⎛⎝ρgr,gr + ρrg,rg + 2

√
(
∑
i

ρ2i,i − 1)/2 + ρgr,grρrg,rg

⎞⎠ . (5.8)
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Quantity Measured value
At π pulse ρgr,gr 0.48(1)

ρrg,rg 0.48(1)
At 2π pulse ρgg,gg 0.964(5)

ρgr,gr 0.006(2)
ρrg,rg 0.013(3)
ρrr,rr 0.008(2)

Table 5.1.: Population probabilites. The values are extracted from Figure 5.2 b).

The values of the various terms involved in the calculation of F are derived from

Figure 5.2 b), and given in Table 5.1. We derive from this measurement an entanglement

fidelity F ≥ 0.92(2). Considering the uncertainties, we conclude that the entanglement

fidelity is at least F ≥ 0.9, which is close to the ones obtained with the same type

of platform in recent works [Graham et al., 2019; Levine et al., 2019]. The fidelity

measured here does not take into account the fact that we imprint the phase of the

laser on the prepared state, which we now discuss.

Phase factor. When we drive the Rabi oscillation to prepare the |W ⟩ state, we imprint

the laser’s phase onto the prepared state, which can be written as (|rg⟩+ eiφ |gr⟩)/
√
2,

where the phase factor φ = kr arises from the difference in position r between the two

atoms. This phase has no impact on the measured populations: Pgr = | ⟨gr| eiφ |gr⟩ |2 =
1. However, as F = |(1 + eiφ)/2|2, it has an impact on the entanglement fidelity. Due

to shot-to-shot fluctuations of the atoms position (see Section 6.2.2), at each repetition

of the experiment r changes. The typical variation ∆r of the inter-atomic distance is

larger than the laser’s wavelength λ, such that k∆r > 1 which implies ⟨eiφ⟩ ∼ 0. We

thus obtain F = 1/2: the produced states behave in the same way as a statistical

mixture of |gr⟩ and |rg⟩. This phase issue can be solved by applying a π-pulse towards

another ground state |g′⟩ after preparing the |W ⟩ state [Wilk et al., 2010]. As the

difference in λ between the two pulses is negligible, the imprinted phase during the

second π-pulse cancels the phase factor.

5.2 Implementation and exploration of the transverse field Ising model

We use the van der Waals interaction between Rydberg atoms to implement the

Transverse Field Ising (TFI) model. This model has been experimentally investigated

on many synthetic platforms: using ultracold atoms in optical lattices [Simon et al.,
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2011; Meinert et al., 2013] excited to Rydberg states [Schauß et al., 2012; Guardado-

Sanchez et al., 2018]; trapped ions [Blatt and Roos, 2012; Monroe et al., 2021]; and

superconducting circuits [Song et al., 2017; King et al., , 2018]. Over recent years, its

implementation has been demonstrated using Rydberg tweezers arrays in 1D [Bernien

et al., 2017; Omran et al., 2019], 2D [Lienhard et al., 2018] and 3D [Song et al.,

2021] geometries. However, these works used relatively small system sizes, and with a

limited coherence. We revisited the model in 2D on large arrays with an improved

coherence [Scholl et al., 2021a]. The team of M. Lukin explored the model in a similar

configuration in a companion publication [Ebadi et al., 2021].

I explain here how we implement this model by considering the simplest case of

the nearest-neighbor 1D TFI model. I derive the main features of the model and

describe the experiments we conducted during my PhD. The study of the model in 2D

geometries is the subject of Chapter 6 and Chapter 7.

5.2.1 Nearest-neighbor transverse field Ising model on a 1D chain

We consider a 1D chain of N spin-1/2 with states denoted as |↓⟩ and |↑⟩, interacting
with a strength U . The chain is placed in a magnetic field. Considering a magnetic

field component along the spin direction B∥ (longitudinal field) and the component

transverse to the spin direction B⊥ (transverse field), the Hamiltonian HTFI of the

TFI model is:

HTFI = B⊥

N∑
i=1

σx
i +B∥

N∑
i=1

σz
i + U

N−1∑
i=1

σz
i σ

z
i+1, (5.9)

where σx and σz are the usual Pauli matrices. The different terms of HTFI can be

understood as follows:

r The transverse field B⊥ changes the spin states and favors their alignment on

the transverse direction |→⟩ = (|↑⟩+ |↓⟩)/
√
2.

r The longitudinal field B∥ changes the states energy. Depending on its sign, an

alignment of the spins along |↑⟩ or |↓⟩ is favored.

r The effect of the interactions depend on the sign of U : if U < 0, the interactions

favor the alignment of the spins (ferromagnetic ordering), whereas if U > 0 the

interactions favor the anti-alignment of the spins (antiferromagnetic ordering).

In the following, and for the rest of this thesis, we will always study systems

with U > 0, which corresponds to antiferromagnetic ordering. As opposed to the
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ferromagnetic case, the TFI model with U > 0 features geometric frustration e.g. in

triangular lattices, which we will be studied and discussed in Chapter 7.

Mapping of the Rydberg platform onto the TFI model. The repulsive van der

Waals interaction naturally implements the interaction term of the TFI model: there is

an energy cost U = C6/R
6 > 0 associated to having two atoms separated by R in the

|r⟩ state. We map the ground and Rydberg states onto the spin states: |g⟩ ≡ |↓⟩ and
|r⟩ ≡ |↑⟩. The excitation laser implements the transverse and longitudinal magnetic

fields: the laser Rabi frequency Ω flips the spins, depending on its detuning δ. Defining

the operator ni = (1 + σz
i )/2 acting on atom i, we obtain the Hamiltonian in the

rotating wave approximation:

HRyd =
~Ω
2

N∑
i=1

σx
i − ~δ

N∑
i=1

ni +
∑
i<j

C6

R6
i,j

ninj, (5.10)

where Ri,j is the distance between atoms i and j. There are two differences between

HRyd and HTFI:

r The interaction energy decreases as 1/R6, and is thus acting beyond nearest

neighbors. We set a distance a between the atoms such that the nearest neighbor

interaction energy U = C6/a
6 > 0 is U ∼ Ω. In these conditions, the next-nearest

neighbor interaction energy is U/64≪ Ω, δ and the long-range interaction is

negligible. In the following, we will consider the interactions as only acting on

the nearest neighbors.

r As the van der Waals interaction and the detuning act on the system via the n

operator rather than via σz, HRyd = HTFI+N~(U−2δ)/4+U
∑

i σ
z
i . The second

term is diagonal and can be thus ignored. The third term act as a longitudinal

field: in our implementation, B∥ ≡ U − ~δ. This effect changes the position of

the phases in the system’s phase diagram (without changing their nature) which

is described below (see Figure 5.4).

Due to these differences, the van der Waals interaction implements an “Ising-like”

Hamiltonian. We will see in the following that the features of both Hamiltonians

are the same (see Figure 5.4) in our range of parameters. The effect of long-range

interactions in 2D is actually not negligible and is discussed in Section 6.1.1.
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Figure 5.3: Energy diagram for two atoms. a) Energy diagram for Ω = 0. The

antiferromagnetic states |↑↓⟩ and |↓↑⟩ are the ground states of the system for 0 < ~δ < U .

b) Energy diagram for ~Ω = 0.5U . The degeneracy for δ = 0 and ~δ = U is lifted.

5.2.2 Exploration of the phase diagram

An important question regarding the study of a model is to determine the ground

states of the system depending on the Hamiltonian parameter, i.e. to determine the

system’s phase diagram. In the case of the nearest-neighbor 1D TFI model considered

here, the phase diagram was calculated analytically 70 years ago in the thermodynamic

limit [Lieb, Schultz, and Mattis, 1961]. Studying this model is thus of limited interest.

However, showing that we can implement the model, and that we have the ability

to observe its features allows us to benchmark the platform, which is the first step

towards the implementation of more interesting Hamiltonians. In this section, I present

the basic features of the TFI model, and how we measure them. I will present the

exploration of the TFI model in 2D geometries (for which our implementation is not

analytically solved) in Chapter 6 and Chapter 7.

Ground states for two atoms. To characterize the TFI model phase diagram, let

us start with the simplest case of two spins (denoted as 1 and 2) and in the absence of

transverse field. The corresponding Hamiltonian is:

H = −~δ(n1 + n2) + Un1n2. (5.11)

The spectrum as a function of δ is shown in Figure 5.3 a). The system’s ground state

displays two behaviors depending on δ:

r For ~δ < 0 (~δ > U), the ground state is |↓↓⟩ (|↑↑⟩), and the spins align along

the effective longitudinal field. This behavior is the signature of a paramagnet
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(PM).

r For 0 < ~δ < U , the ground states are (|↑↓⟩ and |↓↑⟩ (blue line). Even in the

presence of a moderate effective longitudinal field, the spins are anti-aligned.

The system behaves as an antiferromagnet (AF).

We now add the transverse field, see Figure 5.3 b) for ~Ω = 0.5U . The ground state

degeneracy at δ = 0 and ~δ = U is lifted: an energy gap Egap appears between the

ground state and the first excited state, minimal for ~δ = 0.5U with value Egap ∼ ~Ω/2.
In the limit ~Ω≫ U , the system’s ground state is |←←⟩ = (|↑↑⟩+|↓↓⟩−(|↑↓⟩+|↓↑⟩))/2.
The spins align along the effective transverse field, which is again a PM behavior.

From the above analysis with two atoms, we conclude that there are two possible

ground state behaviors in the implemented TFI model in 1D: (i) paramagnetic (PM)

ground states, for which the spins align along the effective magnetic field, and (ii)

antiferromagnetic (AF) ground states, for which the spins are anti-aligned. The

delimitation between the two phases, i.e. the critical line, is derived below.

Phase diagram. We now move on to the study of a 1D chain of N spins. The

system’s ground states determined for two spins remain the same when considering

N spins. For Ω = 0, the PM phase ground states are |↓↓ ... ↓↓⟩ (for δ < 0) and

|↑↑ ... ↑↑⟩ (for ~δ > 2U), and the AF phase ground states are |↑↓ ... ↑↓⟩ and |↓↑ ... ↓↑⟩
(considering N even). The critical points are δc = 0 and ~δc = 2U in a 1D chain: as

each spin has two neighbors, the interaction energy felt by one spin is 2U . Determining

the position of the critical line for Ω ̸= 0 is not a trivial task. We determine it using

simulations involving up to N = 14 in periodic boundary conditions. We locate the

values (Ωc, δc) for which the energy gap Egap between the ground state and the first

excited state is minimal. The critical line position depends on the number of atoms, as

shown in Figure 5.4 a) for ~Ωc = 0.16U . We use an exponential function to fit the

data (solid line), and extract the value of δc for N →∞ in order to draw the phase

diagram of an infinite system.

The obtained phase diagram is shown in Figure 5.4 c). The markers are the values

of (Ωc, δc) determined using the simulation presented above. The solid line is a

phenomenological fit to the data using a biquadratic function. The critical line follows

a ’dome’ shape, with its apex located at (~Ωc = 0.5U , ~δc = U). We compare the

implemented phase diagram to the one of the original TFI Hamiltonian HTFI described

in Equation (5.9) (see Figure 5.4 d)). Both phase diagrams are similar: they display

the same phases with the same corresponding ground states. The only difference is
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Figure 5.4: Phase diagram of the nearest-neighbor transverse field Ising model in

1D. a) Value of δc as a function of N , for ~Ωc = 0.16U . The solid line is a fit to the

data using an exponential function, from which we extract ~δc/U(N →∞) = 0.13(1). b)

Scaling of Egap as a function of N , for ~Ω = 0.25U . The solid line is a fit to the data

using the function Egap = A/N , with A a fitting parameter. c,d) Phase diagrams of c) the

implemented Hamiltonian HRyd and of d) the transverse field Ising model HTFI. The blue

line represent the critical line between the PM and the AF phases. The only difference is

the position of the AF phase.

the position of the AF phase. This difference in position comes from the van der

Waals interaction which acts on the system via the n operator rather than via σz, as

discussed in Section 5.2.1. Other phases exist in HRyd when considering the long-range

interactions beyond nearest-neighbors and setting Ω, δ ≪ U [Bernien et al., 2017],

which is out of the scope of the works conducted in this thesis.

Experimental implementation. In order to show that we can implement and explore

the TFI model, we prepare the ground states of its various phases. The PM phase

ground state for δ < 0 is already initially prepared: the starting point of the experiment

is the state |↓↓ ... ↓↓⟩, which is produced using the optical pumping procedure described

in Section 2.2. The challenge is thus to prepare the AF phase ground state. To do so,

we dynamically tune the Hamiltonian parameters δ and Ω to transfer the system from

its initial PM ground state into the AF phase.
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5.2 Implementation and exploration of the transverse field Ising model

Typical sweep parameters. We use the following procedure to reach the AF phase.

We start in the PM phase with δ < 0 such that the initial state is the ground state of

the system. We then vary the parameters of the Hamiltonian δ and Ω (see Figure 5.5

b)) whilst trying to remain in the system’s ground state in the following way:

r We start by increasing Ω, keeping δ < 0 fixed. It lifts the degeneracy of the

levels at δ = 0 by a quantity Egap ∝ Ω. We aim for Ω > Ωc.

r We then vary the detuning to reach 0 < ~δ < 2U , keeping Ω fixed. At this point,

we are in the PM phase above the AF phase.

r We finish by linearly reducing Ω down to 0 at a rate Ω̇. We cross the critical

line during this step, which can be seen as a Landau-Zener transition with a

probability Pcross = exp[−πE2
gap/~2Ω̇] for the system to be transferred to excited

states.

We will refer to this process as a sweep in the following.

The corresponding path in the phase diagram is summarized in Figure 5.5 a) (red

arrow). In order to remain in the system’s ground state, we aim for Pcross ≪ 1, which

means Ω̇ ≪ E2
gap/~2. This condition (which is an adiabaticity criteria) is hard to

fully achieve in practice as: (i) the size of the gap at the critical line decreases as

Egap ∝ 1/N (see Figure 5.4 b)) and (ii) we are limited in the sweep duration. A

detailed analysis of the optimal sweep durations is presented in Section 6.2.1.

Effect of the two-photon transition. As discussed in Chapter 3, the Rydberg

excitation is performed using a two photon transition of wavelengths 420 nm and

1013 nm, with effective ground-Rydberg Rabi frequency Ω = Ω420Ω1013/(2∆), ∆ being

the single-photon detuning from the intermediate state, and Ω420, Ω1013 the Rabi

frequencies of the 420 nm and 1013 nm lasers. In order to dynamically tune Ω and δ,

we keep Ω1013 constant and vary both Ω420 and δ using an acousto-optic modulator

(see Section 3.2.1). As Ω420 is varied, the value of δ changes due to the varying

light-shift induced by the two photon transition as Ω2
420/(4∆) (see Section 3.1.2).

We compensate this effect by measuring the real temporal evolution of Ω420 with

a photodiode, calculating the corresponding value of the light-shift and changing δ

accordingly.

Experimental results. We perform the sweep presented above on a chain of N = 47

atoms (see Figure 5.5 d)). The chain is twisted due to the limited field of view of the
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Figure 5.5: Antiferromagnetic ordering on a 47-atom line. a) Path in the phase

diagram followed in the experiment, with b) the corresponding temporal evolution of Ω and

δ. c) State histogram after the sweep. The prominent peak corresponds to the ground state

of the AF phase |↑↓ ... ↓↑⟩. d) Rydberg density ⟨ni⟩ along the chain. e) Correlations C(k)

between two spins separated by a distance of k sites. We observe the alternation of the

correlation sign, characteristic of antiferromagnetic ordering. f) Decay of the correlations

shown in semi-log scale. The dashed is a fit to the data using an exponential function,

from which we extract a correlation length lcorr = 4.4(3) a.

optical setup (see Section 4.1.3). We use |r⟩ =
⏐⏐75S1/2,mJ = 1/2

⟩
with an inter-atomic

distance a = 10µm, leading to U/h ≃ 2MHz. The sweep parameters (see Figure 5.5

b)) are the following: we start with an initial detuning δi/(2π) = −4MHz and ramp up

the Rabi frequency up to Ωmax/(2π) = 2MHz in 0.5µs. We then sweep the detuning

to δf/(2π) = 2MHz in 0.5µs. As we cross the critical line during the last step, we

slowly decrease the Rabi frequency down to 0 in 5µs.

We perform this sweep on the experiment, and measure the state of the system

at the end of the process. We typically repeat ∼ 1000 times the experiment, and
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5.3 Conclusion

reconstruct the corresponding state histogram after the sweep, see Figure 5.5 c). Out

of the 247 ∼ 1014 possible states, we obtain one prominent peak with probability

∼ 3.5%, which corresponds to the AF phase ground state |↑↓ ... ↓↑⟩. This shows that
we efficiently probe the AF phase of the TFI model in 1D. Due to (i) the imperfect

adiabaticity of the driving and (ii) the state preparation and detection errors, we

prepare various states at the end of the sweep which are not the AF phase ground

state. Even though these states are not the AF ground state, they still exhibit strong

antiferromagnetic ordering. To confirm this, we measure the Rydberg density of each

atom ⟨ni⟩ = (1 + ⟨σz
i ⟩)/2, see Figure 5.5 d): ⟨ni⟩ = 1 (⟨ni⟩ = 0) if the atom is in the

|↑⟩ (|↓⟩) state. We observe the alternance between up spins (blue) and down spins

(red) along the chain, characteristic of antiferromagnetic ordering. We also compute

the normalized connected correlations C(k) defined as:

C(k) =
4

Nk

∑
i

⟨nini+k⟩ − ⟨ni⟩⟨ni+k⟩, (5.12)

with Nk the number of pairs separated by a number of sites k. The value is ±1 for

fully correlated pairs, and 0 if uncorrelated. The results are shown in Figure 5.5 e).

We observe the sign alternance of C(k), which is characteristic of antiferromagnetic

ordering: two spins separated by an even (odd) number of sites k are positively (anti-)

correlated. As we do not systematically prepare the perfect antiferromagnetic state, the

correlations do not extend over the whole chain. The correlations decay exponentially

(see Figure 5.5 f)) with a typical correlation length lcorr = 4.4(3) a. This value indicates

the mean number of sites for which the antiferromagnetic ordering is maintained

before a defect occurs, i.e., two consecutive spins in the same state.

5.3 Conclusion

In this chapter, I presented the use of the van der Waals interaction to (i) entangle

two atoms with a fidelity F > 0.9, and (ii) implement the Transverse Field Ising (TFI)

model. I presented the model’s main features on the example of a 1D chain by deriving

the corresponding phase diagram. I explained how we experimentally explore the

phase diagram, and demonstrated this in the case of a 47-atom chain by preparing the

ground state of the antiferromagnetic phase.

The results presented here show that we are able to explore the TFI model phase

diagram. In the two next chapters, I will focus on the exploration of the model in square
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and triangular geometries, for which the phase diagram is not known analytically.

In particular, we will characterize the dynamical growth of the antiferromagnetic

ordering during the sweep, close to and after the critical line. The triangular geometry

displays high geometric frustration, a phenomenon which is hard to study numerically.

This implies that the nature of the various phases composing the phase diagram are

not exactly known. We will show that we are able to observe the emergent features of

geometric frustration using our Rydberg quantum simulator.
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In this chapter, I will focus on the quantum simulation of the 2D transverse field

Ising model in square arrays. The model is not analytically solved: its properties, such

as the position of its various phases or the value of its critical exponents, are only

known through approximate numerical calculations. I will show here that our platform

is capable of probing and studying these features in large systems, demonstrating that

quantum simulation using Rydberg arrays is now at a level which is comparable to

numerical simulations.

This model has already been successfully implemented in our group by Lienhard

et al. [2018]. The main features of the model, such as the short time expansion of



Chapter 6: Transverse field Ising model on square lattices

antiferromagnetic ordering, have been observed. However, decoherence effects limited

the possible studies. The improvements presented in Chapter 3 drastically increased

the system’s coherence and allowed us to revisit the model. As synthetic platforms are

subject to numerous limitations, an important aspect of quantum simulation is the

ability to assess the quality of the simulator’s output. In this spirit, we compare the

experimental results in systems with up to 100 atoms with approximated numerical

methods, and show that we understand the output of the platform on such large

systems. This benchmark allows us to trust the various studies I present in this

chapter: (i) probing the system’s phase diagram, (ii) a comparison of the results with

classical thermal equilibrium and (iii) a study of the dynamical evolution of the system

at a phase transition. The simulations and theoretical concepts discussed here were

developed by the team of A. Laüchli. Part of the results presented here are published

in Scholl et al. [2021a].

6.1 Exploration of the phase diagram

We consider N atoms placed on a square lattice with spacing a, and coupled by

the (repulsive) van der Waals interaction. The atoms are initially prepared in the

|↓⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
state, and are coupled to the Rydberg state |↑⟩ =⏐⏐75S1/2,mJ = 1/2

⟩
via a laser field with Rabi frequency Ω and detuning δ. In these

conditions, the implemented Hamiltonian HRyd reads:

HRyd =
~Ω
2

N∑
i=1

σx
i − ~δ

N∑
i=1

ni +
∑
i<j

C6

R6
i,j

ninj, (6.1)

where n = (1+ σz)/2 is the Rydberg operator, σx and σz are the usual Pauli matrices,

Ri,j is the distance between atom i and j and C6 ≃ 1942GHz.µm6 is the van der

Waals coefficient. Ω and δ act as effective transverse and longitudinal fields (see

Section 5.2.1). We set a = 10µm, leading to a nearest-neighbor interaction energy

U ≃ 1.87MHz (see Section 6.2.2).

The first step to characterize the model is to determine its various ground states

depending on the Hamiltonian parameters, i.e. to explore its phase diagram. We start

by drawing the phase diagram for an infinite system, then show how we experimentally

probe its various phases, and finally explore the phase diagram in finite-size systems.
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6.1 Exploration of the phase diagram

6.1.1 Phase diagram for an infinite system

We first consider the case of an infinite system, and suppose that the interactions

only act between the nearest neighbors. The effects of both the finite size and the

interactions beyond nearest neighbors are discussed below. Under these assumptions,

the phase diagram is similar to the one in 1D presented in Section 5.2. The phase

diagram exhibits two phases [Lienhard et al., 2018]: a paramagnetic (PM) phase

for which the spins align onto the effective magnetic field, and an antiferromagnetic

(AF) phase for which the spins are anti-aligned. In the absence of transverse field

(Ω = 0), the extension of the AF phase is set by the total interaction strength felt

by one atom, here 4U as each atom has four neighbors. The AF phase extends over

0 < ~δ < 4U . For Ω > 0, the critical line follows a ’dome’ shape, with its apex

located at (~Ωc ≃ 1.52U , ~δc = 2U). The value of Ωc is estimated from Monte-Carlo

simulations [Blöte and Deng, 2002].

Effect of long-range interactions. Due to the 1/R6 decay of the van der Waals

interaction, the interactions extend beyond the nearest neighbors, such that the phase

diagram exhibits crystalline phases when considering Ω, δ ≪ U/~, recently observed

in Ebadi et al. [2021]. In the present thesis, we will always remain in the regime

Ω, δ ∼ U/~, in which those phases can be neglected. Even in this regime, the long-range

interactions modify the boundaries of the AF phase: the distance to the next-nearest

neighbor is
√
2a leading to an interaction strength U/8, which is not negligible. As

the width of the AF phase at Ω = 0 is given by the total interaction energy felt by

one spin i, Um = U
∑

j ̸=i 1/|i− j|6, the long-range interaction modifies the width of

the AF phase. Considering the 1/R6 decay, we obtain Um ≃ 4.66U , the extension of

the AF phase is thus 0 < ~δ . 4.66U . The size of the AF phase in Ω is also altered

by the long range interactions, with its apex located at (~Ωc ≃ 1.25U , ~δc ≃ 2.33U).

The value of Ωc is estimated from Monte-Carlo simulations including the long-range

interactions [Fey, Kapfer, and Schmidt, 2019]. The corresponding phase diagram of

HRyd is drawn in Figure 6.1 a). We now explore the phase diagram experimentally.

6.1.2 Reaching and characterizing the antiferromagnetic phase

We experimentally explore the model’s phase diagram in the same spirit as performed

in Section 5.2.2. The starting point of the experiment is the state |↓↓ ... ↓↓⟩, which is

the ground state of the PM phase for δ < 0. In order to probe the phase diagram of
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Figure 6.1: Reaching the antiferromagnetic phase of the TFI model on a square.

Infinite size phase diagram of HRyd. The red line represents the path followed to reach the

AF phase. b) Time evolution of Ω and δ. c) State histogram after the sweep for a 8× 8

array. The two prominents peaks are the AF phase ground states, with their corresponding

fluorescence images. The missing atoms are in the |↑⟩ state while the detected atoms are

in the |↓⟩ state. d) Probability to obtain one of the AF ground state PAF as a function of

the number of atoms N . The probability evolution is well fitted by a function of the type

AN (1− e−BN ) (see text), consistent with the scaling of the energy gap Egap ∝ 1/
√
N .

HRyd, we sweep Ω and δ over time, starting in the PM phase (δ < 0) and reaching the

AF phase (see Figure 6.1 a)). We aim at adiabatically driving the system such that

it remains in the instantaneous ground state at all time. However, the energy gap

Egap between the ground state and the first excited state vanishes when crossing the

critical line, scaling here as 1/
√
N [Schuler et al., 2016]. In order to limit the transfer

to high excited states, the sweeps are designed such that we cross the critical line as

slowly as possible, but keeping them short enough to avoid strong decoherence effects

(see Section 6.2.1). The typical sweep parameters, presented in Figure 6.1 b), are the

following:

r We start with a detuning ~δi = −4U , deep in the PM phase. We ramp up the

Rabi frequency to reach ~Ωm = 1.1U in 0.5µs.

r We then sweep the detuning to reach ~δf = U in 1µs.

r We finally decrease the Rabi frequency down to zero in 4.5µs. This step is longer

than the others to cross the critical line as slowly as possible.

120



6.1 Exploration of the phase diagram

We perform this sweep and measure the state of the atoms at the end of the procedure.

We repeat the process typically ∼ 1000 times, and obtain the state histogram presented

in Figure 6.1 c) for an 8× 8 array. Out of the 264 ∼ 2× 1019 possible states, we observe

two prominent peaks corresponding to the two AF ground states. The insets are real

images of the atom fluorescence. The missing atoms are in the |↑⟩ state, and the

detected atoms are in the |↓⟩ state. We obtain a probability PAF ≃ 2.5% to prepare

one of the AF ground states. These results show that, starting in the PM phase, we

are capable of preparing the AF phase ground states, hence of exploring the TFI

model. Owing to the experimental imperfections (see Section 6.2.2) and the scaling

of the energy gap, the state preparation becomes more challenging with increasing

system size. We observe this experimentally by measuring PAF for different system

sizes comprising N atoms, see Figure 6.1 d). The solid line is a fit to the data using

a function of the form: PAF = AN(1− e−BN), which phenomenologically takes into

account (i) the detection errors which scale as AN , and (ii) the scaling of the energy

gap at the critical line Egap ∝ 1/
√
N combined with the finite probability to cross the

energy gap following the Landau-Zener formula, which gives (1− e−BN).

At the end of the sweep, most of the prepared state are not the AF ground states.

However, these states are expected to be weakly excited states, and thus to exhibit

strong AF ordering. To characterize their AF ordering, we compute the various

quantities presented in Figure 6.2 for two system sizes: a 6× 6 and a 14× 14 array. I

now present these various quantities.

Staggered magnetization. We first compute the order parameter of the PM to AF

phase transition, which is the normalized staggered magnetization mstag = ⟨|nA −
nB|⟩/(N/2), giving the difference in the number of Rydberg excitations on the two

sublattices A and B, defined in Figure 6.2 a). The two perfect AF states correspond to

one of the two sublattices being fully excited, such that mstag = 1. We visualize the

shot-wise contributions to mstag using a 2D histogram of the probability P (nA,nB) of

number of excitations nA and nB of the two sublattices A and B. The two ground

states appear as points at (N/2, 0) and (0,N/2). The results are shown in Figure 6.2

b) for the 6× 6 array and the 14× 14 array. For both systems, we observe the presence

of points along the diagonal, highlighting that the average Rydberg density is ∼ 50%.

For the 6× 6 array, we observe a conglomeration of points around the two corners

belonging to ground states, which is expected as PAF ≃ 15%. The elongated histogram

for the 14× 14 array pointing towards perfect AF ordering indicates that we prepare

strongly AF ordered states, even for such large systems.
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Figure 6.2: Characterization of the antiferromagnetic ordering for 6×6 and 14×14

arrays. a) Sketch of the bipartite square lattice. When a perfect antiferromagnetic ordering

is obtained, each atom in |↑⟩ (missing atoms in the pictures) lies on sublattice A or

sublattice B. b-d) Experimental results using the sweep described in Figure 6.1 for a 6× 6

and a 14× 14 array. We characterize the AF ordering of the obtained states by looking at:

b) the 2D histogram of the number of Rydberg excitations on the two sublattices, c) the

correlation map and d) the 1D correlations. We extract from the latter results a correlation

length lcorr ≃ 16 a for the 6× 6 array, and lcorr = 5.5(1) a for the 14× 14 array.
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6.1 Exploration of the phase diagram

Connected spin-spin correlations. The second observable we compute is the nor-

malized connected spin–spin correlation function, defined as:

C(k, l) =
4

Nk,l

∑
i,j

⟨ninj⟩ − ⟨ni⟩⟨nj⟩, (6.2)

where the sum runs over all pairs of atoms i and j separated by ke1 + le2, with

e1, e2 denoting the two vectors of the underlying lattice, k and l are two integer

numbers, and Nk,l being the number of such pairs. The values of C(k, l) are ±1 for

the AF ground states. The C(k, l) correlation maps of the 6 × 6 and the 14 × 14

arrays are shown in Figure 6.2 c). In both cases, we observe the alternation of positive

correlations (red) and negative correlations (blue), characteristic of antiferromagnetic

ordering. We also compute the corresponding 1D correlations (−1)|k|+|l|C(k, l), see

Figure 6.2 e). We observe an exponential decay of the correlations, from which we

extract a typical correlation length lcorr ≃ 16 a for the 6× 6 array and lcorr = 5.5(1) a

for the 14× 14 array, a being the lattice spacing. For the 6× 6 array, the correlation

length is larger than the system side length, meaning that on average the produced

AF state is close to being a perfect AF state.

Conclusion. The results presented here show that we are able to produce highly AF

ordered states on system sizes as large as N = 196. As expected from the scaling of the

energy gap, the quality of the prepared AF ordering decreases with N . Nevertheless,

even on the largest array, we obtain strong AF ordering. This shows our ability to

probe the TFI model phase diagram, which we now explore in more details.

6.1.3 Exploration of the phase diagram in finite-size systems

I now present our experimental exploration of the phase diagram. As the phase diagram

only exhibits two phases and the initial state is the ground state of the PM phase, we

will probe the AF phase. The AF phase presented in the phase diagram of Section 6.1.1

is calculated for an infinite system size. We show here that the finite size affects the

shape of the AF region. The phase diagram is altered due to: (i) the limited number

of atoms and (ii) the open boundaries. The limited number of atoms reduces the

extension of the AF phase in Ω, whilst the open boundaries reduce the extension of

the AF phase in δ. We now show these two effects.
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Figure 6.3: Effect of open boundaries on a 10 × 10 array. a) Parameters of the

performed experiment in the phase diagram. We vary the final detuning δf. b) mstag as a

function of δf. The quality of the prepared antiferromagnet drastically varies depending on

the final detuning, and is maximum for U < ~δf < 2U . c) Rydberg density per atom for

~δf = 2.14U and ~δf = 3.74U . Due to edge effects, the Rydberg density in the corners and

on the sides is higher than in the bulk. d) Mean Rydberg density ⟨n⟩ as a function of δf.

⟨n⟩ is not constant in the AF ground state (dashed line). e) Influence of the edge effects

on the phase diagram. As the atoms in the corner and on the side have fewer neighbors

than in the bulk, the width of the AF phase depends on the atom position.

Width of the AF phase. We start by characterizing the width of the AF phase,

i.e. its extension in δ. The experimental procedure is the following. We consider a

10× 10 array, and use the sweep timings described in Figure 6.1 b). We set ~δi = −4U ,

~Ωm ≃ 1.25U , and vary the final detuning δf (see Figure 6.3 a)). For an infinite system,

the quality of the prepared AF ordering would not depend on the final detuning.

However, for the array considered here, we observe that the value of mstag varies inside

the AF phase (see Figure 6.3 b)) and is maximum in the range U < ~δf < 2U . By

comparing the value of mstag between the whole system (green) and its bulk (red), we

observe a substantial difference for ~δf > 2U , indicating that boundary effects play a

role in the reduction of mstag.
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In order to understand why the AF ordering is low for 2U < ~δf, we look at

the Rydberg density map ⟨ni⟩ for two values of final detuning: ~δf = 2.14U and

~δf = 3.74U , see Figure 6.3 c). In the bulk of the system, the Rydberg density is

∼ 50%, which is expected from AF ordered states. However, in the corners and the

sides of the system, the Rydberg density is large (⟨ni⟩ ∼ 0.9), which thus reduces

the value of mstag as both sublattices are filled. Due to this high value of ⟨ni⟩ on the

edges, the average Rydberg density ⟨n⟩ is not constant in the whole AF phase, see

Figure 6.3 d). We also compute the value of ⟨n⟩ in the system’s ground state (dashed

line) [Lienhard et al., 2018]. The atoms at the boundaries are more easily excited to

the Rydberg state when δf increases, leading to three density plateaus. In the region

0 < ~δf < 2.1U , ⟨n⟩ = 0.5 and the ground state behaves the same as the infinite

system ground state. For ~δf > 2.1U , ⟨n⟩ > 0.5: the ground state of the system is not

AF ordered on the whole array. This means that the actual width of the AF phase,

considering the entire array, is 0 < ~δf < 2.1U at Ω = 0.

This variation of Rydberg density in the AF phase is due to the open boundaries.

The following heuristic argument explains the effect of boundaries on the phase

diagram. We divide the system into three parts: the corners, the edges and the bulk.

We draw the corresponding phase diagram for each “sub-system”. The atoms on the

edges have fewer neighbors, meaning that the total interaction energy felt by these

atoms is lower than 4.66U : ∼ 3.3U for the atoms on the side, and ∼ 2.1U for the

atoms in the corners. The “width of the AF phase” thus depends on the considered

atom in the cluster, as sketched in Figure 6.3 d): for 3.3U < ~δf < 4.6U , only the bulk

atoms are in the AF phase, while the boundaries are in the PM phase. In practice, we

choose 0 < ~δf < 2.1U such that all the atoms are in the AF phase and the boundary

effects thus have a limited impact.

Height of the AF phase. Now that we have characterized the width of the AF

phase, we move on to the study of the height of the phase, i.e., the highest value

Ωc of the critical line. We start in the PM phase with initial detuning ~δi = −2U ,

and use as final detuning ~δf ≃ 2U to end up close to the center of the AF phase.

The path followed in the phase diagram is summarized in Figure 6.4 a). We vary the

maximum Rabi frequency Ωm and measure the corresponding value of mstag obtained

at the end of the sweep. Depending on the value of Ωm, the critical line is crossed

while sweeping δ (Ωm < Ωc), or while decreasing Ω (Ωm > Ωc). The sweep timings are

shown in Figure 6.4 b): we ramp up the Rabi frequency in 0.5µs, then slowly sweep

the detuning in 4µs, and finally rapidly ramp down the Rabi frequency in 0.5µs. The
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Figure 6.4: Measuring the height of the AF phase. a) Parameters of the experiment

in the phase diagram. We vary the maximum Rabi frequency Ωm. b) Sweep parameters. c)

mstag as a function of Ωm for an 8× 8 array. The AF ordering is the highest for Ωm ∼ Ωc.

The solid line is a fit to the data using a Gaussian function, from which we extract

~Ωc = 0.89(5)U , far from the value for an infinite system ~Ωc ≃ 1.25U . d) Value of Ωc

as a function of N determined using the present method. The solid line is a fit to the

data using an exponential function of the form: A(1− e−B(N+N0)) from which we extract

~Ωc(N →∞) = 1.2(1)U , consistent with the value obtained in Fey, Kapfer, and Schmidt

[2019].

results of the experiment for an 8× 8 array are presented in Figure 6.4 c). We observe

two different regimes:

r For small values of Ωm, mstag increases when increasing Ωm. In this regime,

the critical line is crossed while sweeping δ. The increase of mstag is due to

the increase of the energy gap with Ωm (see Section 5.2.2), inducing a higher

probability to cross the gap without populating highly excited states.

r For high values of Ωm, mstag decreases when increasing Ωm. In this regime, the

critical line is crossed while sweeping Ω. The speed at which the critical line is

crossed increases when increasing Ωm, inducing a higher probability to populate

highly excited states, hence reducing mstag.

The bound between the two regimes is indicative of the value of Ωc. We use a fit

to the data with a Gaussian function to extract its value. For the 8 × 8 array, we
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obtain ~Ωc = 0.9(1)U , which is far from the expected value for an infinite system

~Ωc ≃ 1.25U . We repeat this experiment for various number of atoms N and measure

the corresponding value of Ωc, see Figure 6.4 d). We observe an increase of Ωc with N ,

showing that the value of Ωc depends on the system size. We extrapolate the value of

Ωc for an infinite system by fitting the data with an exponential function of the form:

A(1 − e−B(N+N0)), from which we extract ~Ωc(N → ∞) = 1.2(1)U . The obtained

value is consistent with the numerical results obtained via Monte-Carlo simulations

in Fey, Kapfer, and Schmidt [2019]. The dependency of Ωc with N is also observed

on the numerical simulations of the 1D chain presented in Section 5.2.1. We have

numerically checked (using exact diagonalization) on a 4× 4 array that the results

of the above experiment are the same in open boundary conditions and periodic

boundary conditions, indicating that edge effects are not impacting the value of Ωc.

We could not come up with an intuitive explanation for the dependency of Ωc with N

as it is already not trivial to understand why ~Ωc ≃ 1.25U for an infinite system.

Conclusions. In this section, we experimentally explored the phase diagram of the

AF phase. As our systems have finite sizes, we observed two phenomena: (i) due to the

open boundaries, the width of the AF phase is reduced to 0 < ~δ < 2.1U and (ii) due

to the limited number of atoms, the extension of the AF phase in Ω is reduced. The

above experiment indicates that the extension of the AF phase in Ω is close to the

infinite system one for N ∼ 200, which is experimentally accessible as demonstrated

earlier. Regarding the boundaries effect, a solution to get closer to the infinite system

would be to apply local light-shifts on the edge atoms using the addressing technique

presented in Section 2.3.3. The value of the light-shift would be the missing interaction

energy: 2.5U for the corner atoms and 1.3U for the side atoms. This technique was

used in Omran et al. [2019] to prepare GHZ states on a 1D chain. Its extension to

large 2D arrays would be however more demanding as one would need to light-shift all

of the atoms on the edges.

6.2 Benchmarking of the results and current limitations

In the previous section, I showed that we are able to probe the phase diagram of HRyd,

and prepare highly ordered AF states on systems with up to N = 196 atoms. In order

to (i) build trust in our exploration of the HRyd phase diagram (including the results

presented above) and (ii) understand what are the current limitations of the driving,

we need to compare the outcome of the apparatus with simulations. However, for such
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large number of atoms, it is not easy to check the validity of the experimental results

with simulations. To overcome this problem, we first benchmark our results with

exact simulations on a 4× 4 array. We compare the results to simulations including

decoherence effects, from which we extract the range of optimal timings to perform

the sweeps. For larger arrays, the exact diagonalization of the system is not possible

anymore. We compare the experimental results to Matrix Product States (MPS)

simulations on arrays up to N = 100 atoms and identify the various limitations in the

preparation of the AF ground states. The simulations were performed by the team of

A. Läuchli.

6.2.1 Optimal sweep duration

We first investigate the duration of the sweeps. As discussed above, the optimal timing

is a trade off between (i) crossing the critical line slowly enough to avoid populating

excited states and (ii) being fast enough to avoid strong decoherence effects. To

determine a range of optimal durations, we first focus on the preparation of AF order

in a 4× 4 array, and compare the experimental results with simulations. We then give

more details on the origin of the decoherence in the system, and show its effect on the

example of a 10× 10 array.

Varying the sweep duration on a 4× 4 array. The 4× 4 array can be simulated

by solving the Schrödinger Equation (SE). The simulations were performed by the

group of A. Läuchli. The simulations take into account the detection errors (see

Section 6.2.2). We assess the adiabaticity of the drive by performing three sweeps of

durations 2.5µs, 4µs and 8µs. The parameters of the sweeps, shown in Figure 6.5 a),

are as follows: at a detuning ~δi = −4U , Ω is linearly increased from 0 to ∼ 0.75U .

We then linearly sweep the detuning to ∼ U while keeping Ω constant, and finally

decrease Ω to 0. We use as observables the average Rydberg density ⟨n⟩ and the

staggered magnetization mstag, see Figure 6.5 b) and c). We measure these quantities

for various times toff throughout the sweep by rapidly switching off the excitation

lasers in ∼ 50 ns. For the shortest sweep, we observe experimentally oscillations in the

evolution of ⟨n⟩, a feature showing that we fail to adiabatically drive the system. This

is confirmed by the value of mstag at the end of the sweep (about 0.5) which would be

1 if the sweep were adiabatic. As the sweep time increases, the oscillatory behaviour is

reduced and the value of mstag increases.

We observe a good agreement between experiment and simulation using the SE
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Figure 6.5: Benchmarking of the sweeps duration on a 4× 4 array. Time evolution

of a) Ω and δ, b) the Rydberg density and c) the staggered magnetization for three distinct

sweeps of durations 2.5µs (left), 4µs (middle) and 8µs (right) on the 4× 4 array. The

solid (dashed) line is the simulation of the Schrödinger (Lindblad master) equation. We

need to take into account the decoherence to simulate accurately the longest sweep.

(solid line), especially in the evolution of ⟨n⟩, for the shortest sweeps. The discrepancy

is larger for the longest sweep, indicating that decoherence has an important role. To

study this effect, we solve the Lindblad Master Equation (ME) (see Section 3.3.2)

using a single atom decoherence rate γ = 0.05µs−1, measured on single-atom ground-

Rydberg Rabi oscillations. These numerical results (dashed line) agree closely with the

experimental data, indicating that decoherence at the single-particle level is sufficient

to describe the system.

We conclude from this study that the optimized sweep duration is ∼ 6 – 7.5µs.

Effect of the intermediate state lifetime. As discussed in Section 3.3.2, the main

contribution to the measured value of γ is the spontaneous emission rate Γ from the
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Figure 6.6: Effect of the intermediate state lifetime on a 10× 10 array. a) Influence

of the spontaneous emission from the intermediate state. b) We measure mstag as a

function of the intermediate detuning ∆, and show c) the corresponding correlations for

∆ = 2π × 500MHz and ∆ = 2π × 1GHz. The quality of the prepared antiferromagnet

strongly depends on ∆, showing the importance of the spontaneous emission on the

driving’s coherence.

intermediate state, given by:

Γ = Γ6P
Ω2

1013 + Ω2
420

4∆2
, (6.3)

with Ω1013 and Ω420 the Rabi frequencies of the 1013 nm and the 420 nm excitation

lasers, Γ6P the decay rate of the intermediate level, and ∆ the single photon detuning

(see Figure 6.6 a)). To limit the effect of spontaneous emission, we work in the regime

∆≫ Ω420, Ω1013, Γ6P , for which the effective Rabi frequency connecting the ground

state to the Rydberg state is Ω = Ω1013Ω420/2∆ (see Chapter 3).

We probe the effect of spontaneous emission on the preparation of AF ordered

states on a 10× 10 array. We use the sweep parameters described in Figure 6.1 b),

and sketched in Figure 6.6 a). We measure the value of mstag at the end of the sweep

for various values of ∆, see Figure 6.6 b). To keep the same sweep parameters for all

of the experiments, we change the value of Ω420 while keeping Ω1013/(2π) = 37MHz

fixed. We observe that the value of mstag increases when increasing ∆. This result is
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expected from the above equation, which can be rewritten as:

Γ

Γ6P

=
Ω2

1013

4∆2
+

Ω2

Ω2
1013

. (6.4)

The spontaneous emission rate decreases when ∆ increases. This equation shows that

for a fixed sweep, the smallest spontaneous emission rate is obtained for the highest

values in Rabi frequencies and ∆.

To get a better idea of the difference in the results quality, we show the obtained

correlations for ∆/(2π) = 500MHz and ∆/(2π) = 1GHz. The corresponding decay

rates are Γ ≃ 0.04µs−1 and Γ ≃ 0.03µs−1. We observe that between the two

experiments, the correlation length is increased by a factor 3, whereas Γ is only

increased by 30%, showing the strong effect of decoherence on the system. For the

results presented in this chapter, the typical parameters we use are Ω1013 = 50MHz,

Ω420 = 60MHz and ∆ = 700MHz.

6.2.2 Experimental imperfections

Besides decoherence effects, the experiment is subjected to various imperfections. The

good agreement between the simulations which only included the detection errors

and the results on the 4× 4 array presented above shows that those imperfections

did not need to be considered for such small array. However, we will see in the next

section that their contribution is major to understand and accurately simulate the

experimental results on large arrays. I describe here those imperfections and how we

implement them in simulations.

Detection errors. As discussed in Section 3.3.1, the probability to misinterpret a

|↓⟩ as a |↑⟩ atom is ε ≃ 1%. The value is measured by performing the experimental

sequence without the excitation lasers. The probability to misinterpret a |↑⟩ as a |↓⟩
atom is inferred from simulations using the experimental parameters [de Léséleuc et al.,

2018a] to be ε′ ≃ 3%. This effect is taken into account in simulations by including a

probability to misinterpret the atom state at the end of the system’s dynamics.

Residual disorder in atomic position. The finite temperature (10µK) of the atoms

in the tweezers leads to shot-to-shot fluctuations in the atoms position, with a standard

deviation of σr = 170 nm in the plane of the array and σz = 1µm in the transverse

direction. This results in a variation of the interatomic distance, as shown in Figure 6.7
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Figure 6.7: Interatomic distance fluctuations and deviation from linear sweeps. a)

Histograms of the interatomic distance and the corresponding interaction energy. b) Due

to non-linearities in the AOM used to perform the sweeps, the variations of Ω and δ (solid

lines) are not linear (dashed lines).

a) in the case of two atoms. The mean interatomic distance is slightly higher than

the set value a = 10µm as the atom position also fluctuates out of the atomic plane.

The interaction energy U is thus varying across the array, following a non-Gaussian

distribution with mean value U/h ≃ 1.87MHz. This effect is included in simulations

by repeating the simulation with randomly assigned atom positions chosen from the

distribution shown in Figure 6.7 a).

Exact sweep shape. The sweeps are performed by dynamically driving an Acousto-

Optic Modulator (AOM) in double-pass configuration (see Section 3.2.1), used to

shape the 420 nm Rabi frequency Ω420 and the detuning δ. The 1013 nm laser is

kept at a constant Rabi frequency during the whole sweep duration. As we drive a

two-photon transition, the atoms experience a changing light shift as Ω420 is swept.

We counteract this effect by changing δ accordingly. The measured value of Ω is

shown in Figure 6.7 b) as a solid line. We observe a deviation from a linear evolution

(dashed line), which we attribute to non-linear effects in the AOM, as we dynamically

drive the rf power on timescales close to the band pass of the AOM. The light-shift

correction takes into account this deviation from a linear evolution. This effect is

included in the simulations by using the actual measured time evolution of Ω and δ
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Figure 6.8: Influence of the finite-size excitation lasers. a) The width of the arrays

is comparable to the waist of the excitation laser beam, resulting in a spatial variation of

Ω and δ column by column. b) Effect of the fields inhomogeneity on the AF preparation

demonstrated by considering two rectangular clusters: an 8× 12 array and a 12× 8 array.

We show the correlations maps and c) the corresponding correlation lengths. For the

8× 12 array, the decay of the correlations is isotropic. For the 12× 8 array, we observe a

strong anisotropy due to the finite size of the excitation laser.

and using the expected formula giving the two photon transition induced light-shift

(Ω2
420 − Ω2

1013)/4∆ (see Section 3.1.2).

Finite size of the excitation laser beams. As the extension of the arrays is com-

parable to the size of the excitations beams, the atoms experience inhomogeneous

fields Ω and δ across the array. The effect is dominated by the 1013 nm laser, which

has a waist w ≃ 130µm (see Section 3.2.2). The inhomogeneity in δ is due to the
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inhomogeneous light-shift of the two-photon transition. As the laser propagates

vertically (see Figure 6.8 a)), the values of Ω and δ are different for each column. We

measure the inhomogeneities in Ω by performing single-atom Rabi oscillations, and the

inhomogeneities in δ by measuring the frequency of the transition at low Ω420. The

spatial distributions of Ω and δf are shown in Figure 6.8 a) in the case of a 10× 10

array. We include this effect in simulations by setting the experimentally measured

values of the field inhomogeneities.

To demonstrate the effect of the finite size of the excitation beams on the system, we

measure the quality of the AF ordering at the end of the sweep described in Figure 6.1

b) considering two rectangular geometries with the same number of atoms: an 8× 12

array with a width of 70µm and a 12× 8 array with a width of 110µm, see Figure 6.8

b). We show the correlations maps for both geometries and the corresponding 1D

correlations, in the vertical (l) direction and the horizontal (k) direction (see Figure 6.8

c)). For the 8× 12 array, the decay of the correlations is isotropic, with a measured

correlation length lcorr ≃ 11 a. However, for the 12 × 8 array, we observe a strong

anisotropy in the decay of the correlations: in the vertical direction, the correlation

length is the same as for the 8×12, and in the horizontal direction the correlation length

is lcorr = 4.4(2) a. This experiment shows the strong impact of fields inhomogeneity on

the preparation of AF ordered states.

The variations of Ω and δ throughout the array could be overcome by shaping the

excitation beams in a square shape (rather than a Gaussian shape) at the position of

the atoms, e.g. by using a spatial light modulator.

6.2.3 Benchmark of the results on large arrays

In this subsection, we compare the evolution of the AF ordering against simulations

for large arrays. The sweep parameters, described in Figure 6.7 b), are the following:

at a detuning ~δ = −4U , Ω is increased from 0 to ≃ 1.1U in 0.5µs. We then sweep

the detuning to ∼ U in 1µs while keeping Ω constant, and finally decrease Ω to 0 in

4.5µs. We perform this experiment for various sizes, from 6× 6 to 10× 10 arrays.

Considering the number of involved atoms, it is not possible to perform an exact

simulation of the system’s dynamics. We thus use an approximate numerical method

called Matrix Product States (MPS) [Schollwöck, 2011; Paeckel et al., 2019] and

simulate the dynamics of systems with up to N = 100 atoms. The MPS technique

relies on (i) the decomposition of the system’s state onto the product of matrices with

sizes much smaller than the Hilbert space, and (ii) the use of the time-dependent
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Figure 6.9: Benchmark of the AF ordering growth using MPS simulations. a)

Evolution of mstag throughout the sweep for the 10 × 10 array. The different lines

show successive additions of imperfections on the MPS simulations. Starting from the

programmed pulse shape without imperfections (blue), we include the real pulse shape

measured in the experiment (yellow), add the inhomogeneous fields (green), apply the

detection deficiency (red) and, finally, include the interaction disorder from fluctuations in

the atom positions. The grey lines show individual samples of atom positions and the black

line shows the sample average. b) Same as a) for 6× 6 and 8× 8 arrays.

variational principle applied to calculate the time-evolution of the decomposed state.

Originally designed to simulate dynamics in 1D systems, the MPS method have proven

to be reliable to simulate quasi-2D cylinders with finite extent in one direction or

finite 2D systems. Prominent examples, particularly related to the system discussed

here, include the computation of the phase diagram for Rydberg atoms arranged in

square and Kagome geometries [Samajdar et al., 2020, 2021]. The simulations were

performed by the group of A. Läuchli. The implementation of the MPS simulation for

our actual work is detailed in the supplementary informations in Scholl et al. [2021a].

Comparison to simulations using the staggered magnetization for various system

sizes. We first compare the results using the staggered magnetization mstag as an

observable, see Figure 6.9. We perform the MPS simulation without experimental

imperfections (blue line). We find good agreement with the experimental data over the

first 1.5µs, after which the simulation shows a kink, not observed in the experimental
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results. We also observe that mstag eventually saturates on the experiment at values

lower than the MPS, and that this effect worsens for larger systems. In order to

check whether the discrepancy between the MPS simulation and the data comes from

the experimental imperfections detailed above, we include in the simulations these

imperfections. We add the imperfections one by one to appreciate their contribution:

we perform the simulations using the experimentally measured sweep shape (yellow),

add the inhomogeneous fields δ and Ω (green), the detection errors (red) and, finally,

the shot-to-shot fluctuations of the interaction energies caused by the fluctuating

atom positions (black). The grey lines show the full dynamics simulations for various

atom positions. The imperfections are not able to explain the overshoot of mstag

at intermediate times. However, at later times, we observe better agreement for all

system sizes. For the 6× 6 array and the 8× 8 array, each imperfection has a small

contribution, which tends to decrease the final value of mstag. For the 10× 10 array,

the largest contribution to the disagreement with the MPS results (considering the

real sweep shape) is the inhomogeneity of the fields. This is not surprising as the waist

of the 1013 nm laser is comparable to the size of the array.

Comparison with the correlation maps and staggered magnetization histograms

on the 10× 10 array. To further compare the MPS calculations to the experimental

results, we show the correlation maps and the staggered magnetization histograms for

various time steps toff in the sweep on the 10 × 10 array, see Figure 6.10. In order

to compare the results and considering the fact that the correlation maps display a

symmetry along the horizontal axis, the upper part of each map show the experimental

results, whereas the lower part show the MPS results. The same technique is used

for the staggered magnetization histograms. The correlation maps show that the

correlations start to develop at 1.3µs, and are growing from nearest neighbor across

the array. By 3.7µs, the expected correlation pattern fills the entire array, and from

then on, the strength of the correlations continues to increase. The corresponding mstag

histograms show the growth in the number of Rydberg excitations as the distribution

of points moves from about (0, 0) to higher values of nA+nB. As the correlations begin

to grow across the array, we see that the distribution of points stretches along the

diagonal. After 3.7µs, the points start to conglomerate around the corners (N/2, 0)

and (0,N/2). The MPS results show qualitative agreement throughout the sweep

for both observables, with slight differences appearing at times that correspond to

disagreements in Figure 6.9.
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6.2 Benchmarking of the results and current limitations

Figure 6.10: Comparison of the correlations maps and the staggered magnetization

histogram between the MPS simulation and the data. The MPS simulation takes

into account all the experimental imperfections described above.

Conclusion. The comparisons conducted above confirm that the dynamical evolution

of the atomic system is well approximated by the MPS calculations for all observables.

This indicates that we understand and have good control over our platform. The

remaining discrepancy at long times could come from residual effects of decoherence

due to spontaneous emission from the intermediate state or atomic motion, not taken

into account in the MPS simulations, that start to play a role for timings around

6µs. The discrepancy at short time could come from a slight mismatch in the sweep

timings, in particular the evolution of δ, which is hard to measure.

As discussed above, we can perform this experiment on sizes as large as N = 196,

however for such size the MPS calculations becomes intractable. We enter a regime in

which exploring the TFI model with our platform is faster than with simulations,
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Chapter 6: Transverse field Ising model on square lattices

which is eventually one aim of quantum simulation. To assess this, we compare the

computation time of the MPS simulation for the 10× 10 array and the experimental

data acquisition. The MPS computation is ∼ 14 days, whereas the data acquisition

took ∼ 10 hours (taking into account the various calibrations).

6.3 Comparison with classical thermal equilibrium

In the previous section, I showed that the dynamics of the system is well described by

HRyd for sweeps that are short enough and taking into account the various imperfections

of the experimental setup. As the transverse field term in Ω does not commute with

the interactions, the system evolution is quantum, with no classical analog. However,

at the beginning and at the end of the sweep, Ω = 0 and the quantum and classical

descriptions coincide. The Hamiltonian describing the system is:

Hclass = −~
N∑
i=1

δini +
∑
i<j

C6

R6
i,j

ninj, (6.5)

where we take into account the field inhomogeneity δi (see Section 6.2.2). It is thus

interesting to check whether the states at the end of the sweep can be described by a

classical thermal equilibrium, i.e. if performing a quantum process eventually leads

to a classical thermal distribution of states. The results are compared to Metropolis

Monte Carlo simulations, performed by the team of A. Läuchli. We use Monte Carlo

simulations because they accurately describe the system’s ground states, and their

computational cost is low compared to other methods. The results are averaged over

500 individually equilibrated samples of random atom positions, and take into account

detection errors. We first extract the hypothetical temperature Thyp of the system,

then compare the experimental results to the classical thermal equilibrium. We will

restrict to the study of the 10× 10 array, although the conclusions we will come to are

true for all sizes we used.

6.3.1 Extracting a classical temperature

To assign a hypothetical temperature Thyp, we match the classical Ising energy Eclass

of the final state |Ψ⟩ of the experimental data and the Monte Carlo simulations. Its

expression is:

Eclass = ⟨Ψ|Hclass |Ψ⟩ (6.6)
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6.3 Comparison with classical thermal equilibrium

We focus on the classical energy for two reasons: (i) the energy is the variable conjugate

of temperature in thermodynamics and (ii) we can measure the Ising energy on the

experiment.

Measuring the classical Ising energy on the experiment. We measure the value

of Eexp
class on the experiment by analyzing the snapshots for each run of the experiment.

In our implementation, the missing atoms are in the Rydberg states. We measure Eclass

by identifying (i) the number of missing atoms, which gives the energy associated to

the longitudinal field −~∑N
i=1 δini and (ii) the relative positions of the missing atoms,

which gives the energy associated to the interactions
∑

i<j
C6

R6
i,j
ninj. An example is

provided in Figure 6.11 a) for the 10× 10 array. The first image show the lowest energy

state (for the detuning considered here): half of the atoms (50) are in the Rydberg

state, and each of them are separated by a ground state atom. In the second image:

(i) we count only 49 atoms in the Rydberg states, and (ii) there are 4 pairs of adjacent

Rydberg atoms. We perform this analysis for each run of the experiment, and measure

the resulting mean value of Eclass.

Classical Ising energy in Monte Carlo simulations. To extract Eclass as a func-

tion of the temperature T via Monte Carlo simulations, we estimate the classical

thermodynamic partition function and compute the energy expectation value:

EMC
class(T ) =

∑
c

Hclass(c)e
−βHclass(T )/Z (6.7)

where the sum runs over all classical spin configurations c, β = 1/(kBT ) and Z =∑
c e

−βHclass(c). The hypothetical temperature Thyp at the end of the sweep is then

computed by matching the Monte Carlo and experimentally extracted Ising energies:

EMC
class(T ) ≡ Eexp

class. We obtain a hypothetical temperature Thyp = 0.3U , close to the

critical temperature Tc = 0.298(1)U , extracted from finite-size extrapolations using

the method described in Binder [1981]. The fact that the extracted temperature is

above the AF phase does not preclude the emergence of long-range order as: (i) the

system considered here is finite, and (ii) we will see below that the state of the system

after the sweep is not reproduced by thermal equilibrium.
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a) b)

Figure 6.11: Comparison of the cluster sizes histogram between the experimental

results and classical equilibrium on the 10×10 array. a) Fluorescence images measured

at the end of the sweep on a 10 × 10 array illustrating how we extract the largest AF

domains, here comprising 100 and 94 sites, indicated by the blue boundaries. b) Distributions

of smax at the end of the sweep (blue) compared with the classical equilibrium result

(yellow) with the corresponding hypothetical temperature Thyp.

6.3.2 Cluster size histogram

Now that we extracted the hypothetical temperature at the end of the sweep, we

compare the quantum evolution and the thermal equilibrium on the distribution of the

AF clusters [Stoli and Domb, 1979]. For each run of the experiment, we decompose the

snapshot into individual clusters obeying local AF ordering (see examples in Figure 6.11

a)). We count the number of atoms inside each individual cluster, and record the largest

size, smax. From the full set of snapshots, we reconstruct the probability distribution

P (smax), see Figure 6.11 b). For a perfectly AF-ordered state, this distribution presents

a single peak of unit probability at smax = N , while imperfect ordering shows up as a

distribution broadened towards smaller smax. We show the results at the end of the

sweep (blue) and the corresponding classical equilibrium distribution (yellow). We

observe that the distributions do not match. In particular, the probability of creating

larger ordered states is higher in the quantum real-time evolution than in the classical

equilibrium case. We observe the same feature in the case of the triangular lattice, see

Section 7.2.2. More than 27% of the shots in the experiment contain AF clusters of at

least 90 sites, that is, smax ≥ 90.

Conclusion. Our analysis reveals that despite residual imperfections, the experiment

(i) does not thermalize during the state preparation protocol, and (ii) we showed
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6.4 Dynamical growth of the correlation length

in the previous section that the system’s dynamics is well reproduced by a unitary

quantum mechanical real-time description. The classical equilibrium approach also

results in shorter correlation lengths than the one measured.

6.4 Dynamical growth of the correlation length

In this section, we look in more details at the dynamical growth of the correlation

length in the transition from the PM to the AF phase. As we deal with a second order

transition, at equilibrium and for an infinite system, one would expect a divergence of

the correlation length close to the critical line. In our case, because of the finite duration

of the sweep, crossing a critical point leads to finite correlations in the system, which

can be described by the quantum Kibble-Zurek (KZ) mechanism [Polkovnikov, 2005],

theoretically investigated in the TFI model in 1D [Zurek, Dorner, and Zoller, 2005;

Dziarmaga, 2005] and in 2D [Schmitt et al., 2021]. This mechanism yields a universal

scaling relation between the correlation length and the rate of the parameter change

across the phase transition, which has been experimentally measured in 1D [Keesling

et al., 2019], and in 2D [Ebadi et al., 2021] using a Rydberg quantum simulator.

The KZ mechanism takes place in a wide variety of physical systems and describes

the non-equilibrium dynamics in second-order phase transitions [del Campo and

Zurek, 2013]. The quantum KZ mechanism has also been observed in Bose-Einstein

condensates [Anquez et al., 2016]. This scaling allows us to extract the critical exponent

of the PM to AF transition, which had never been measured for the TFI model on a

square, and is only known through approximate calculations.

Here, we explore the dynamical growth of the correlation length in two ways:

r We fix the sweep parameters and measure the evolution of the correlation length

throughout the sweep. This is the approach we followed in Section 6.2.3 to

benchmark the experimental results against simulations.

r We vary the sweep duration and measure the correlation length after crossing

the phase transition.

I present here these two ways of probing the system. I will show that, on our platform,

the growth of the correlation length is compatible with the KZ mechanism for a

restricted range of parameters.
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Figure 6.12: Growth of the correlation length throughout the sweep. Sweep pa-

rameters a) in the phase diagram and b) as a function of time. c) Correlation length

as a function of Ω throughout the sweep, for various array sizes. The dashed lines are

phenomenological fits to the data using an arctangent function. The solid lines are fits to

the data using a function of the type A(Ω− Ωc)
−0.63, with A and Ωc as free parameters.

The shaded regions indicate the estimated position of the AF phase apex Ωmax
c (which is

not where we cross the critical line here), extracted from Figure 6.4.

6.4.1 Growth of the correlation length throughout the sweep

The sweep parameters, described in Section 6.2.3, are the following (see Figure 6.12 a)

and b)): at a detuning ~δ = −4U , Ω is increased from 0 to ≃ 1.1U in 0.5µs. We then

sweep the detuning to ∼ U in 1µs while keeping Ω constant, and finally decrease Ω to

0 in 4.5µs. We perform this experiment for various sizes, and record the growth of the

correlation length lcorr throughout the sweep, by rapidly switching off the excitation

lasers at various Ω during the system’s evolution, see Figure 6.12 c). We show the

results for the 6× 6, 8× 8 and 10× 10 arrays, and only for sweep timings toff > 1.5µs,

in which we decrease Ω. We observe a growth of lcorr for Ω close to the critical point,

and eventually lcorr saturates for low values of Ω. The solid line is a fit to the data

using the expected evolution of lcorr with respect to the KZ mechanism, which I now

briefly describe.

Evolution of the correlation length near the critical point. When the Rabi fre-

quency Ω is tuned close to its critical value Ωc with Ω > Ωc, the correlation length
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6.4 Dynamical growth of the correlation length

lcorr is expected to diverge algebraically with the critical exponent ν as

lcorr ∼ (Ω− Ωc)
−ν . (6.8)

The critical exponent for the transition considered here is the one of the (2+1)D Ising

model, which is not analytically known. Its value is estimated through simulations to

be ν ≃ 0.63 [Samajdar et al., 2020].

For Ω > Ωc, the solid line is a fit to the data using a function of the type A(Ω−Ωc)
−ν ,

with A and Ωc as free parameters. For all sizes, we observe that for low values of lcorr,

the growth agrees well with a potential divergence near the critical point. However, we

observe that the correlation length does not diverge and eventually saturates, which is

expected due to the finite duration of the sweep, according to the KZ mechanism.

Kibble-Zurek mechanism. As lcorr increases, the relaxation time τ of the system is

also expected to increase as:

τ ∼ (Ω− Ωc)
−zν , (6.9)

where z is the dynamical exponent which relates spatial with temporal critical

fluctuations, which in the case of the (2+1)D Ising universality class is z = 1 [Sachdev,

2011]. Close to the critical point, an infinite amount of time is required to drive

adiabatically the phase transition. As the system approaches the critical point, it

freezes due to the critical slowing down, resulting in a saturation of lcorr [Keesling

et al., 2019]. The growth of lcorr in a KZ mechanism can be summarized as follows: far

enough from the critical point, lcorr increases following a power law with the critical

exponent of the (2+1)D Ising model, until it freezes due to the finite duration of the

driving.

We indeed observe a freeze of lcorr on the data for Rabi frequencies ~Ω . 0.5U .

However between the two regimes expected in KZ mechanism, which are (i) a growth

of lcorr ∼ (Ω− Ωc)
−ν and (ii) a sudden saturation of lcorr, we observe an intermediate

regime, in which lcorr continues to grow, which would indicate that the system does

not completely follow a KZ mechanism.

6.4.2 Varying the speed at the phase transition

In order to further probe the KZ mechanism and extract the value of ν, we perform

another experiment in which we vary the sweep duration, and measure the corresponding

lcorr at the end of the sweep, similarly to the work conducted in Keesling et al. [2019].
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Figure 6.13: Evolution of the correlation length with the sweeping time for various

sweep shapes. a) We use three different sweep shapes to probe the correlation length

evolution. b) We vary the duration of the step corresponding to the crossing of the critical

line. Depending on the sweep, we either (i) vary the step duration of sweeping δ (green

and red), or (ii) we vary the step duration of decreasing Ω for the sweep with high Ω

(purple). c) Correlation length as a function of tsweep. The dashed lines are fits to the

data using a power law function. The solid line represents the expected evolution for a

Kibble-Zurek mechanism.

We consider a 10× 10 array. We perform this experiment by entering the AF phase in

three different ways, see Figure 6.13 a): (i) from the top while decreasing Ω (purple),

(ii) from the side while sweeping δ with ~Ωm = 0.5U (orange), and (iii) from the

side with ~Ωm = 0.25U (orange). In the first experiment, we vary the sweep duration

tsweep of the decrease of Ω, while in the two other experiments we vary the sweep

duration tsweep of δ, see Figure 6.13 b). The results are presented in Figure 6.13 c). We

observe that in the three cases, the evolution of lcorr reasonably follows a power law,

with various power law exponents µ. The black solid line is indicative of the expected

evolution for a KZ mechanism, which I now derive.

Dynamic Kibble-Zurek exponent. We derive here the evolution of lcorr as a function

of tsweep in the case of a system governed by the KZ mechanism. As the critical line

is crossed either by sweeping Ω or δ in the experiment, we define a general control
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6.4 Dynamical growth of the correlation length

parameter λ in the below derivation. We suppose that the phase transition is located

at λ = 0. In the performed experiment, the control parameter is linearly swept at a

varying speed v, such that we can write λ = vtsweep.

As described earlier, in a system governed by the KZ mechanism, the growth of lcorr

diverges algebraically with the critical exponent ν, until the system’s relaxation time

reaches: τ ∼ tsweep. The system’s evolution is then not adiabatic any longer and lcorr

freezes. We now derive the value of lcorr when the system freezes. Using Equation (6.9)

and considering that λ = vtsweep and τ ∼ tsweep, we can write λ ∼ vλ−zν . We thus

obtain the relation between λ and v:

v ∼ λ1+zν . (6.10)

By replacing λ in Equation (6.8), we obtain:

lcorr ∼ v−
ν

1+zν , (6.11)

which can be expressed as:

lcorr ∼ t
ν

1+zν
sweep = tµKZ

sweep, (6.12)

where we introduced the dynamic critical exponent µKZ = ν
1+zν

. In the case of the

(2+1)D Ising universality class considered here, µKZ ≃ 0.38.

Comparison of the critical exponents. Now that we derived the value of µKZ, we

come back to the experimental results of Figure 6.13 c). As tsweep is not varied over

more than a decade, we cannot really claim from these data that (i) lcorr follows as a

power law, and that (ii) we measure a value of the power exponent. It is experimentally

challenging to increase the range of tsweep, as (i) smaller values of tsweep would lead to

vanishing correlation lengths, and (ii) higher values of tsweep are prohibited due to the

limited coherence of the driving.

Nevertheless, we can still compare the experimental results with the expected

evolution for a KZ mechanism (black line). We observe that depending on the chosen

path to enter the AF region, we obtain results which are either (i) compatible with

the expected growth of lcorr following the KZ mechanism, when entering the AF region

while sweeping δ, and (ii) incompatible when entering from the apex of the AF region.

In the latter case, the growth of lcorr still follows a power law even though the power

exponent is not the expected one.

This discrepancy could be explained by the fact that the KZ mechanism is expected
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Figure 6.14: Power law exponent when entering the AF region from its apex for

various array sizes. a) Sweep path in the phase diagram and b) the corresponding time

evolution of Ω. We vary the sweeping time tsweep of Ω when crossing the critical line. c)

Results for the 6× 6 array. The dashed line is a fit to the data using a power law, from

which we extract the power exponent µ = 0.88(4). d) µ as a function of the number

of atoms N . The solid line is a phenomenological fit to the data using an exponential

decaying function, which would indicate that even for N →∞, the power law exponent is

far from µKZ ≃ 0.38.

to be valid only for a high number of particles, such that we have not considered here

big enough arrays. We show however in the following that the array size is not the

problem.

Size-dependent critical exponent. We measure the critical exponent as a function

of the array size N , when crossing the critical line from the AF region apex. The

sweeps parameters, shown in Figure 6.14 a) and b), were previously described. We vary

the sweep duration tsweep of the decrease of Ω. We perform the experiment on 4× 4,

6× 6, 8× 8 and 10× 10 arrays. For each size, the growth of lcorr follows reasonably well

a power law, as shown for the 6× 6 array in Figure 6.14 c). We observe a decrease of

the power law exponent with N . The solid line is a fit to the data using an exponential

function, from which we extract µ(N →∞) = 0.68(4), which is far from the expected

KZ exponent µKZ ≃ 0.38. These experiments would indicate that, even for N →∞,

the growth of lcorr is not following the KZ mechanism. This experiment should be

conducted on larger arrays to verify the observed scaling of µ with N .
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AF
PM

Figure 6.15: Qualitative difference between the two experiments: crossing the

critical line while sweeping δ or Ω. When crossing the critical line while sweeping δ

(red), the growth of the correlation length follows the Kibble-Zurek law. When crossing

the critical line while sweeping Ω (blue), the system experiences two divergences of lcorr:

at the critical point, and when Ω→ 0.

Entering the AF phase from the side or from the top. I discuss here another

explanation for the different measured exponents between sweeping δ or Ω to enter

the AF phase, sketched in Figure 6.15. For various δ, lcorr diverges at the critical point

and then saturates, according to the KZ mechanism. However, when sweeping Ω, lcorr

is expected to diverge twice:

r At Ω = Ωc, where the system experiences the KZ mechanism.

r At Ω = 0: the system’s ground states for Ω = 0 exhibits an infinite correlation

length.

In the experiments presented in this subsection, we always measured the value of lcorr

at Ω = 0. The evolution of lcorr might thus be related to both the growth of lcorr at

Ω = Ωc and at Ω = 0. In order to check this hypothesis, one should perform again the

above experiments and set the final value of Ω just below the critical value rather

than Ω = 0.

Conclusions. In this section, I presented an analysis of the correlation length growth

across the phase transition. We observe a growth which is compatible with a Kibble-

Zurek mechanism, also observed in Ebadi et al. [2021] for the same range of parameters.

We also observed that this compatibility strongly depends on the chosen parameters.

Recent numerical investigations show that the KZ mechanism in the 2D TFI model on a

square lattice is still debated [Schmitt et al., 2021]. Further experimental investigations

are required to understand under which assumptions the KZ mechanism describes the

system’s dynamics.
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6.5 Conclusion

In this chapter, I presented various experimental investigations of the 2D transverse

field Ising model in square geometry. I showed that we are able to produce highly

antiferromagnetically ordered states on arrays containing up to 196 atoms, which is

beyond what can be exactly simulated classically. We have validated the experimental

results with comprehensive numerical simulations up to computationally feasible sizes,

and showed that the results cannot be reproduced by thermal equilibrium. Finally, I

presented a study of the dynamical growth of the correlations in the system, showing

a compatibility with a Kibble-Zurek mechanism depending on the parameters. These

results demonstrate that our platform is now able to study quantum spin models in

regimes beyond those accessible via numerical investigations.
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In this chapter, I will focus on the quantum simulation of the 2D Transverse

Field Ising (TFI) model in triangular arrays. The model’s phase diagram is richer

than in the square lattice, and features strong geometric frustration. The effect of

geometric frustration on spin systems is an active research field both on the theoretical

side [Balents, 2010] and on the experimental side with its exploration on various

synthetic platforms, such as trapped ions [Kim et al., 2010], or ultracold atoms in

optical lattices [Becker et al., 2010; Jo et al., 2012]. The TFI model is not analytically

solved, and the system’s properties are only known through approximate calculations.

Furthermore, the strong geometric frustration exhibited by the model limits the

numerical methods which can be used to explore the system [Henelius and Sandvik,

2000]. In the spirit of what was presented in Section 5.2.2, I will start by giving

an intuition for the model’s phase diagram on the simplest case of 3 atoms. I will
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then explore experimentally the phase diagram, compare the results with simulations

involving up to N = 108 atoms, and study the dynamical growth of the correlations in

the system at the phase transitions. I will finish by showing first signatures of the

model’s highly frustrated phase. The experiments presented here are similar to the

one conducted for the 2D TFI model on the square lattice (see Chapter 6). Part of the

results presented in here are published in Scholl et al. [2021a].

7.1 Introduction to the triangular lattice phase diagram

We consider N atoms placed on a triangular lattice with spacing a, and coupled

by the (repulsive) van der Waals interaction. The atoms are initially placed in the

|↓⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
state, and are coupled to the Rydberg state |↑⟩ =⏐⏐75S1/2,mJ = 1/2

⟩
via a laser field with Rabi frequency Ω and detuning δ. In these

conditions, the implemented Hamiltonian HRyd reads:

HRyd =
~Ω
2

N∑
i=1

σx
i − ~δ

N∑
i=1

ni +
∑
i<j

C6

R6
i,j

ninj, (7.1)

where n = (1 + σz)/2 is the Rydberg density operator, σx and σz are the usual Pauli

matrices, Ri,j is the distance between atom i and j and C6 ≃ 1942GHz.µm6 is the

van der Waals coefficient. Ω and δ act as effective transverse and longitudinal fields

(see Section 5.2.1). We set a = 10µm, leading to a nearest-neighbor interaction energy

U ≃ 1.87MHz (see Section 6.2.2).

7.1.1 A three atom toy model

To characterize the system’s phase diagram, we start with the simplest case of three

spins placed on the vertices of an equilateral triangle with side length a.

Ground states without transverse field. The energy spectrum as a function of δ is

shown in Figure 7.1 a) in the absence of transverse field (Ω = 0). There exist three

different types of ground states depending on δ:

r For ~δ < 0 (~δ > 2U), the ground state is |↓↓↓⟩ (|↑↑↑⟩). The spins align along

the effective longitudinal field. This behavior is the signature of a paramagnet

(PM).
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Figure 7.1: Energy diagram for three atoms. a) Energy diagram for Ω = 0. There

exist two antiferromagnetic phases: (i) for 0 < ~δ < U , the ground states are two spins

down and one spin up, giving a Rydberg density of 1/3, and (ii) for 0 < ~δ < U , the

ground states are two spins up and one spin down, giving a Rydberg density of 2/3. b)

Energy diagram for ~Ω = 0.4U . The degeneracies at ~δ = 0, 1, 2U are lifted.

r For 0 < ~δ < U , the ground states are |↑↓↓⟩, |↓↑↓⟩ and |↓↓↑⟩ (red line). We

gather these states under the notation AF1/3. One spin is anti-aligned with

respect to the other ones. The system behaves as an antiferromagnet (AF), with

a Rydberg fraction equals to 1/3.

r For U < ~δ < 2U , the ground states are |↓↑↑⟩, |↑↓↑⟩ and |↑↑↓⟩ (blue line). We

gather these states under the notation AF2/3. As in the region 0 < ~δ < U , one

spin is anti-aligned with respect to the other ones. The system behaves as an

antiferromagnet (AF), with a Rydberg fraction equals to 2/3.

The system exhibits a peculiar behavior for ~δ = U , where the mean Rydberg fraction

is 1/2. The system cannot simultaneously minimize the interaction energy for each

pair, resulting in a “macroscopic” ground-state degeneracy: out of the 23 = 8 states, 6

are degenerate. This property is related to geometric frustration, which is discussed

below.

Effect of the transverse field. We now add the transverse field. The energy diagram

for ~Ω = 0.4U is presented in Figure 5.3 b). The ground state degeneracy at ~δ = 0,

~δ = U and ~δ = 2U is lifted, an energy gap Egap appears between the ground state

and the first excited state. In particular, at ~δ = U , the “macroscopic” ground-state

degeneracy is lifted. The ground state exhibits an interesting symmetry: ∀Ω ̸= 0,

the weights of the wavefunction on AF1/3 and AF2/3 are equal (in absolute value).

The ground state thus contains a superposition of AF1/3 and AF2/3. This property is
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Chapter 7: Transverse field Ising model on triangular lattices

related to a process called “Order By Disorder” (OBD) [Villain, J. et al., 1980], which

is discussed in Section 7.3.2.

In the limit ~Ω≫ U , the system’s ground state is |←←←⟩. The spins align along

the effective transverse field, which is again a PM behavior.

Conclusions. From the above analysis with three atoms, we conclude that there are

two possible ground state behaviors in the model: (i) paramagnetic (PM) ground states,

for which the spins align along the effective magnetic field, and (ii) antiferromagnetic

(AF) ground states, for which the spins are anti-aligned. The various ground states

of the model are thus very close to the one of the chain (see Section 5.2) and the

square lattice (see Section 6.1). However, the AF ground states are separated into two

phases, with Rydberg fractions 1/3 and 2/3. Frustration shows up for hδ = U where

the Rydberg fraction is 1/2.

7.1.2 Phase diagram of the infinite lattice

We now consider the case of an infinite triangular lattice, and first assume that the

interactions only act between the nearest neighbors. The effects of the interactions

beyond nearest neighbors are discussed below, and the effects of finite size are studied

in Section 7.2.1. The infinite triangular lattice exhibits three underlying sublattices,

sketched in Figure 7.2 a), referred in the following as sublattices A, B and C. The

system’s ground states are qualitatively the same as in the case of three spins. For

Ω = 0, the PM phase ground states are |↓↓ ... ↓↓⟩ and |↑↑ ... ↑↑⟩. The AF phase at 1/3

Rydberg density exhibits three degenerate ground states, corresponding to Rydberg

excitations on one of the three sublattices. The second AF phase with Rydberg density

2/3 is the “particle–hole” inverse, with two sublattices being fully excited and one

sublattice containing ground-state atoms. We refer to these two phases as the 1/3 and

the 2/3 phases in the following. In between these phases, at 1/2 filling, another phase

exists at finite Ω, stabilized by the OBD process [Moessner, Sondhi, and Chandra,

2000; Moessner and Sondhi, 2001; Isakov and Moessner, 2003]. We refer to this as the

OBD phase in the following, which is also called “clock phase” in the literature. The

characterization of the OBD will be discussed in Section 7.3.2.

Extension of the phases. In the absence of transverse field (Ω = 0), the extension

of the AF region is set by the total interaction strength Um felt by one atom. As

each atom has six neighbors, Um = 6U and the AF region extends over 0 < ~δ < 6U .
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Figure 7.2: Reaching the 1/3 antiferromagnetic phase of the TFI model on a

triangular lattice. a) Sketch of the tripartite triangular lattice. b) Phase diagram of the

infinite system, displaying four phases: a paramagnetic phase (PM), two antiferromagnetic

phases with 1/3 and 2/3 Rydberg density, and the order-by-disorder (OBD) phase. c)

Fluorescence images of a 147-atom array before (left) and after (right) performing the

sweep whose timings are displayed in the panel. The missing atoms are in the |↑⟩ state
while the detected atoms are in the |↓⟩ state. Almost all of the missing atoms belong to

one specific sublattice.

Inside the AF region, the 1/3 phase extends over 0 < ~δ < 3U and the 2/3 phase

over 3U < δ < 6U . For Ω > 0, the critical line follows a “dome” shape, with its apex

located at (~Ωc ≃ 0.82U , ~δc = 3U). The value of Ωc is estimated from Monte-Carlo

simulations [Isakov and Moessner, 2003].

Effect of long-range interactions. Due to the 1/R6 decay of the van der Waals

interaction, the interactions extend beyond the nearest neighbors. We obtain ~Um ≃
6.3U , such that the extension at Ω = 0 of the 1/3 phase is 0 < ~δ . 3.15U and the

2/3 phase is 3.15U . ~δ . 6.3U . The size of the AF region in Ω is also altered by the

long range interactions, with its apex located at (~Ωc ≃ 0.75U , ~δc ≃ 3.15U). The

value of Ωc including the long-range interactions has been calculated very recently

using Monte-Carlo simulations [Koziol et al., 2019]. The corresponding phase diagram

of HRyd is drawn in Figure 7.2 b).
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Chapter 7: Transverse field Ising model on triangular lattices

7.1.3 Experimental implementation

We explore the triangular phase diagram by considering hexagonal clusters of various

sizes, built shell by shell around a central three atom triangle (see Figure 7.2). We use

this shape because of its compactness: for the same number of atoms N , the width of

hexagonal clusters is smaller than the width of a triangle. The reduced width improves

the efficiency of the assembling process (see Section 4.2.1) and limits the imperfections

due to the finite size of the excitation beams (see Section 6.2.2). The number of ground

states in the 1/3 phase is lower using hexagonal clusters as compared to triangular

clusters (see Section 7.2.1).

Typical experimental sequence. As performed for the TFI in square lattices, we

probe the phase diagram of HRyd by sweeping Ω and δ over time, starting in the PM

phase (δ < 0) and reaching the AF phase (see red arrow in Figure 7.2 b)). We initialize

the system by optical pumping (see Section 2.2.2) in the state |↓↓ ... ↓↓⟩, which is

the ground state for δ < 0. We aim at adiabatically driving the system such that

it remains in the instantaneous ground state at all time. However, the energy gap

Egap between the ground state and the first excited state vanishes when crossing the

critical line. The PM to 1/3 phase is expected to be a first order transition [Janke and

Villanova, 1997], which implies Egap ∝ e−αN [Laumann et al., 2015]. In order to limit

the transfer to highly excited states, the sweeps are designed to cross as slowly as

possible the critical line, but keeping them short enough to avoid strong decoherence

effects (see Section 6.2.1). The typical sweep parameters, presented in Figure 7.2 c),

are the following:

r We start with a detuning ~δi = −4U , deep in the PM phase. We ramp up the

Rabi frequency to reach ~Ωm = U in 1.0µs.

r We then sweep the detuning to reach ~δf = 1.3U in 1.5µs.

r We finally decrease the Rabi frequency down to zero in 4.5µs. This step is longer

than the other to cross the critical line as slowly as possible.

We perform this sweep and measure the state of the atoms at the end of the procedure.

An example of fluorescence images for a 147-atom array before (left) and after (right)

the sweep is provided in Figure 7.2. The missing atoms in the image corresponds to

atoms in the |↑⟩ state while the detected atoms are in the |↓⟩ state (see Section 2.3.2).

Starting with a fully-loaded array of atoms in |↓⟩, we observe that ∼ 1/3 of the atoms
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7.1 Introduction to the triangular lattice phase diagram

are in the |↑⟩ state at the end of the sweep. The missing atoms are mainly positioned

on one of the three sublattices. This shows that we can produce highly AF ordered

states in the 1/3 phase.

We repeat the process typically ∼ 1000 times. To characterize the AF ordering

of the prepared states at the end of the sweep, we compute the various quantities

presented in Figure 7.3 for two system sizes: a 48-atom array and a 147-atom array. I

now present those various observables.

Staggered magnetization. The first observable is the order parameter of the PM

to AF phase transition, which is the normalized staggered magnetization mstag =

⟨|nA + nBe
2iπ/3 + nCe

4iπ/3|⟩/(N/3) [Isakov and Moessner, 2003], giving the difference

in the number of Rydberg excitations on the three sublattices A, B and C, defined

above. The three perfect AF states correspond to one of the three sublattices being

fully excited, such that mstag = 1. We visualize the shot-wise contributions to mstag in

the complex plane using a 2D histogram, see Figure 6.2 a). The three ground states

would appear as points on the hexagon vertices along the three directions nA,B,C .

For both systems, we observe a triangular distribution of mstag pointing towards the

three above-mentioned vertices. For the 48-atom array, we observe a conglomeration of

points around these three corners, which would indicate that the quality of the AF

ordering is higher for the 48-atom array than for the 147-atom array.

Connected spin-spin correlations. The second observable is the normalized con-

nected spin–spin correlation function, defined as:

Ck,l =
9

2Nk,l

∑
i,j

⟨ninj⟩ − ⟨ni⟩⟨nj⟩, (7.2)

where the sum runs over all pairs of atoms i and j separated by ke1 + le2, with e1,

e2 denoting the two vectors of the underlying lattice, k and l are two integer numbers,

and Nk,l being the number of such pairs. As compared to the square lattice case, the

maximum value of Ck,l is not the same for positive and negative correlations. We

choose the normalization factor 9/2 such that the perfect AF state would have Ck,l = 1

for correlated sites and Ck,l = −1/2 for anticorrelated sites. The Ck,l correlation maps

of the 48-atom array and the 147-atom array are shown in Figure 6.2 b). In both cases,

we observe a pattern characteristic of three-sublattice ordered states, where atoms

belonging to the same sublattice are positively correlated (red), and anticorrelated

(blue) otherwise. We also reconstruct the corresponding normalized 1D correlations
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Figure 7.3: Characterization of the 1/3 AF phase for the 48-atom and 147-atom

triangular arrays. We perform the sweep described in Figure 7.2 and characterize the AF

ordering of the obtained states by looking at: a) the staggered magnetization histograms

plotted in the complex plane, b) the correlations maps and c) the 1D correlations. We

extract from the latter results a correlation length lcorr ≃ 6 a for the 48-atom array, and

lcorr = 5.5(1) a for the 147-atom array.

C1D
k,l (see Figure 6.2 c)) in the following way: (i) if the two atoms belong to the same

sublattice, C1D
k,l = Ck,l and (ii) if the two atoms do not belong to the same sublattice,

C1D
k,l = −2Ck,l. This allows us to normalize the correlations for both correlated and

anti-correlated sites. In both cases, we observe an exponential decay of the correlations,

from which we extract a typical correlation length lcorr ≃ 6 a for the 48-atom array

and lcorr = 5.1(3) a for the 147-atom array, a being the lattice spacing. The correlation

lengths for both systems are very close, which is surprising considering the closing of

the energy gap with the number of atoms Egap ∝ e−αN . This could be due to (i) the

system’s boundaries (discussed below) and (ii) the fact that the exponential closure of

the gap is expected near the thermodynamic limit and might not be valid considering

the number of atoms we use, as discussed in Section 7.2.3.

Conclusion. The results presented above show that we are able to produce highly AF

ordered states on triangular lattices with system sizes as large as N = 147. Contrarily
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to what has been measured in the case of the square lattice (see Section 6.1.2), we

observe that the quality of the prepared AF ordering hardly depends on N .

Hence, we are able to probe the TFI model phase diagram on triangular lattices

with arrays containing up to N = 147 atoms, which we now explore in more detail.

7.2 Characterization of the 1/3 phase

In this section, we focus on the exploration and the characterization of the 1/3 phase.

The 1/3 phase is the analogue of the AF phase on the square lattice, where neighboring

sites cannot be excited simultaneously, leading to one of the three sublattices being

filled with Rydberg excitations. The investigations presented here are close to the

one performed in Chapter 6. We first detail the effect of the finite size, compare the

experimental results to simulations, and finally study the dynamical growth of the

correlations.

7.2.1 Finite-size effects

As discussed in Section 6.1.3, the finite size effects can be divided into two contributions:

(i) the limited number of atoms and (ii) the open boundaries. Their impact on the 1/3

phase is discussed now. We consider a 75-atom array.

Effect of open boundaries on the 1/3 phase. We explore the effect of open

boundaries on the 1/3 phase using the sweep described in Figure 7.4 a) and vary the

final detuning δf. For an infinite system, the AF ordering would not depend on the

final detuning (in the range 0 < ~δ < 3.15U). However, for the array considered here,

we observe that the value of mstag strongly varies inside the AF phase (see Figure 7.4

b)) and is maximum in the range 1.3U < ~δf < 2.2U . By comparing the value of mstag

between the whole system (green) and in the bulk (red), we observe a substantial

difference in mstag, indicating that boundary effects have an impact on the quality of

the AF ordering.

In order to understand why the AF ordering is low for ~δf > 2.2U , we compute the

mean Rydberg density ⟨n⟩ as a function of δf, see Figure 7.4 c). For an infinite system,

we would expect ⟨n⟩ = 1/3 in the whole phase (dashed line). We indeed observe a

plateau at 1/3, but its extension is limited to 0.8U . ~δf . 2.2U . For ~δf > 2.2U ,

⟨n⟩ > 1/3 which thus induces a reduction of mstag as at least two sublattices are filled.
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Figure 7.4: Effect of open boundaries on a 75-atom array. a) Parameters of the

experiment in the phase diagram and the corresponding temporal evolution of δ and Ω.

We vary the final detuning δf. b) mstag as a function of δf, considering the full system

(green) and only the bulk (red). The quality of the prepared antiferromagnet is maximum

for 1.3U < ~δf < 2U . The value of mstag is higher in the bulk, indicating that edge

effects reduce the value of mstag. c) Mean Rydberg density ⟨n⟩ as a function of δf. We

observe a plateau at ⟨n⟩ = 1/3 for 0.8U . ~δf . 2.2U . d) Rydberg density per atom for

~δf = 1.31U and ~δf = 2.62U . The Rydberg density on the edges is higher than in the

bulk. e) Sketch of the edge effects on the AF ground states. The number of ground states

is higher than 3, which reduces the value of mstag.
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As discussed in Section 6.1.3, the increase of Rydberg density in the AF phase is

due to the open boundaries. The atoms on the edges have less neighbors, meaning that

the total interaction energy Um felt by these atoms is lower than 6.3U : Um ≃ 4.2U for

the atoms on the side, and Um ≃ 3.1U for the atoms in the corners. As the extension

of the 1/3 phase is Um/2, the edges are in the 1/3 phase for ~δf . 2.1U . We check this

experimentally by looking at the Rydberg density map ⟨ni⟩ for two values of final

detuning: ~δf = 1.31U and ~δf = 2.62U , see Figure 6.3 d). In the bulk of the system,

⟨n⟩ ∼ 1/3 as expected. However, for ~δf = 2.62U the Rydberg density is large on the

edges (⟨ni⟩ ∼ 0.7). In the next subsections, we will remain in the region ~δf . 2.1U in

order to avoid this effect due to open boundaries.

The effect of open boundaries described above is the same as in the case of the

square lattice. However, another effect arises which only occurs for triangular lattices:

the number of ground states is increased by the open boundaries. An example is

provided in Figure 7.4 e), in which we show two ground states: (i) one in which the

sublattice A is fully filled, compatible with the infinite-system ground state, and (ii)

one in which the Rydberg excitations are in the left and right corners rather than

filling sublattice A. There is thus 4 possible ground states for each sub-lattice, giving a

total of 12 ground states instead of three. This induces a higher Rydberg fraction

in the corners, which we experimentally observe on the Rydberg density map for

~δf = 1.31U . The ground state multiplicity reduces the value of mstag: even if the

sweep were fully adiabatic, we would not obtain mstag = 1 due to edge effects.

Hexagonal clusters are more robust against open boundaries than other geometries.

As a comparison, the use of triangle clusters implies that (i) the corners get excited

for lower values of δf as they have only two nearest neighbors, and (ii) the number of

ground state at 1/3 filling is higher (at least 26 for all sizes, and 28 when considering

N = 36 [Lienhard et al., 2018]).

Location of the 1/3 phase in the phase diagram. Now that we discussed the

effect of open boundaries on the AF ordering at the end of the sweep, we move to

the study of the critical line position. In the case of the square lattice, we observed

that the apex of the critical line Ωmax
c strongly depends on the number of atoms N

(see Section 6.1.3), and estimated that Ωmax
c is close to the infinite-system one for

N ∼ 200. We show here that the triangular lattice does not seem to behave in the

same way. The critical line apex for N = 75 is already close to the infinite-system one,

located at ~Ωmax
c ≃ 0.75U [Koziol et al., 2019].

In order to estimate the position of the critical line, we perform the same sweeps as
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Figure 7.5: Location of the 1/3 phase for the 75-atom array. a) Parameters of the

performed experiment in the phase diagram and the corresponding temporal evolution of δ

and Ω. We vary the final detuning δf and measure mstag for various times toff throughout

the sweep. b-c) mstag as a function of Ω and δ in 2D and in 3D. The solid line is a fit of the

critical line using a biquadratic function. We observe a good agreement with the expected

apex of the AF phase ~Ωc ≃ 0.75U [Koziol et al., 2019]. The dashed line is indicative of

the position of the critical line which separates the 1/3 phase from the order-by-disorder

phase (probed in Section 7.3.2).

described above (see Figure 7.5 a)). We measure mstag for various values of Ω(toff)

throughout the sweeps by rapidly switching off the excitation lasers at various times

toff. We repeat this process for various δf. We thus obtain the value of mstag in the

phase space (Ω, δ). The results are presented in Figure 7.5 b) as a 2D plot and c) as

a 3D plot. This experiment maps the 1/3 phase in the phase diagram: the value of

mstag in the PM is low (white), and high in the 1/3 phase (blue). The solid line is a

fit of the critical line position using a biquadratic function, which is performed by

(i) fixing ~Ωmax
c = 0.75U at ~δmax

c = 3.15U , (ii) fixing ~Ωc = 0 for ~δc = 0, and (iii)

fitting the data where mstag ≃ 0.2. We use a biquadratic function because it describes

well the numerically calculated position of the critical line in the 1D TFI model, see

Section 5.2.2. This fit describes well the boundaries of the 1/3 phase, which would

indicate that the value of Ωmax
c is already close to the one of the infinite system for

N = 75. This is also confirmed by performing the experimental protocol we used for
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the square lattice, described in Section 6.1.3, from which we obtain ~Ωmax
c ≃ 0.70(5)U .

The dashed line is indicative of the position of the critical line which separates the 1/3

phase from the order-by-disorder phase (probed in Section 7.3.2).

Comparison with the square lattice. The results presented in this subsection are

close to the one derived for the square lattice in Section 6.1.3. The boundaries reduce

the range in δf over which we obtain strong AF ordering. However, there are two

differences with the square lattice case: (i) the boundaries effect on the 1/3 phase

impacts more the quality of the prepared AF because it induces an increase in the

number of AF ground states and (ii) the critical line position is close to the infinite

system already for N = 75. We now compare the experimental results to simulations.

7.2.2 Comparison with simulations

I showed above that we are able to probe the 1/3 phase, and prepare highly AF

ordered states on systems with up to N = 147 atoms. In order to benchmark the

validity of the results, we compare the experimental results with simulations, as we did

in square lattices (see Section 6.2). We compare the experimental results to Matrix

Product States (MPS) simulations on arrays with up to N = 108 atoms. We also

compare the results to classical Monte Carlo (MC) simulations, and show that the

results are not reproduced by thermal equilibrium. The simulations were performed by

the team of A. Läuchli.

Comparison with MPS simulations. We first compare the experimental data to

MPS simulations on the growth of AF ordering throughout the sweep for a 75-atom

array. The sweep parameters (see Figure 7.6 a)) are the following. At a detuning

~δ = −4U , Ω is increased from 0 to ~Ωm ≃ U in 1µs. We then sweep the detuning

to ∼ 1.3U in 1.5µs while keeping Ω constant, and finally decrease Ω to 0 in 5µs.

We measure mstag throughout the sweep by rapidly switching off the excitation

lasers at various times toff. The results are presented in Figure 7.6 b). We compare

the experimental results to two types of MPS simulation: with (real) and without

(programmed) taking into account the various experimental imperfections described in

Section 6.2.2. The experimental imperfections are: the finite detection efficiencies, the

shot-to-shot fluctuation of the interatomic distances, the finite size of the excitation

beams and the exact sweep shape. We observe the growth of the AF ordering both

in the experiment and the simulations, which agree well during the first 5µs of the
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Figure 7.6: Comparison of the AF ordering growth between experiment and MPS

simulations on the 75-atom array. a) Parameters of the experiment in the phase diagram

and the corresponding temporal evolution of δ and Ω. b) Growth of AF ordering throughout

the sweep. We show the results of MPS simulations without (dashed line) and with (grey

lines) experimental imperfections for which 50 disorder instances are shown, with their

average shown in black. The purple thick line represents the numerically calculated position

of the critical line. c) Staggered magnetization histogram at the end of the sweep. The

upper half of the histogram shows the experimental results, and the lower half shows the

analogous MPS results.

sweep. After this, the experimental results plateau at a lower value of mstag than

expected from the MPS. The inclusion of experimental imperfections decreases the

final value of mstag; however, there is still a discrepancy with the experimental results.

A possible explanation could be that the MPS simulation does not take into account

the residual decoherence of the excitation lasers, which starts to play a role for timings

∼ 6µs, as shown in Section 6.2.1.

We compare the prepared states at the end of the sweep between the MPS simulation

and the experiment by computing the staggered magnetization histogram, see Figure 7.6

c). As the histogram displays a symmetry along the horizontal axis, we compare the

results on the same histogram, where the upper part shows the experimental results

and the lower part shows the MPS results. We observe a good agreement, although

there is a higher accumulation of points at the corners in the MPS results, which
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a) b)

Figure 7.7: Comparison between experiment and simulations at the end of the

sweep for the 108-atom array. a) Staggered magnetization histogram at the end of the

sweep presented in Figure 7.6. The upper half of the histogram shows the experimental

results, and the lower half shows the analogous MPS (left) and MC (right) results. b)

Histogram of |mstag| ×N/3 for the experiment (blue) and the MC simulation (yellow).

corresponds to a higher value of mstag.

We run the same type of comparison for a 108-site array, see Figure 7.7 a). We

observe the same features as in the 75-atom array: there is a higher accumulation of

points at the corners in the MPS results.

Comparison with classical Monte-Carlo simulations. At the end of the sweep,

Ω = 0, such that the quantum and classical descriptions coincide (see Section 6.3).

In order to check whether the states at the end of the sweep can be described by a

classical thermal equilibrium, i.e. if performing a quantum process eventually leads

to a classical thermal distribution of states, we compare the experimental results to

classical Monte Carlo (MC) simulations. The simulations were performed by the team

of A. Läuchli. As performed with square arrays, we assign a temperature Thyp to the

prepared states by matching the classical Ising energy between the MC simulation

and the experiment (see Section 6.3.1). We obtain Thyp = 0.32U , and compare the

experiment and the corresponding MC simulation on the staggered magnetization

histogram, see Figure 7.7 a). Contrarily to the comparison with MPS simulations, here

we observe that the prepared states are more elongated towards the corners than the

MC simulation.

In order to confirm the higher AF ordering on the experiment as compared to

the results of MC simulations, we compute the 1D distribution of |mstag| ×N/3, see

Figure 7.7. For a perfectly AF ordered state, this distribution presents a single peak

of unit probability at |mstag| ×N/3 = N/3, while imperfect ordering shows up as a
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distribution broadened towards smaller |mstag| ×N/3. We show the results at the end

of the sweep (blue) and the corresponding classical equilibrium distribution (yellow).

We observe that the distributions do not match. In particular, the probability of

creating larger ordered states is higher in the quantum real-time evolution than in the

classical equilibrium case. We observed the same feature in the case of the square

lattice, see Section 6.3.2.

7.2.3 Dynamical growth of the correlation length

In this subsection, we look in more detail at the dynamical growth of the correlation

length in the transition from the PM to the 1/3 phase. The PM to 1/3 phase transition

is believed to belong to the (2+1)D 3-state Potts model universality class, which

is a weakly first order transition [Blöte and Swendsen, 1979; Janke and Villanova,

1997], recently confirmed by numerical studies of the 2D quantum Ising model in

triangular geometries [Da Liao et al., 2021]. We thus expect a discontinuity in the order

parameter at the phase transition. However, as can be observed in Figure 7.6 b), we do

not observe such discontinuity. This is expected for weakly first order transition: the

discontinuity only forms very slowly with system size, and for the typical system sizes

considered here, we expect the transition to behave similarly to a second order phase

transition. In particular, the correlation length is expected to diverge algebraically

close to the critical line.

Here, we experimentally verify this by measuring the growth of the correlation

length close to the phase transition. We start by fixing the sweep parameters and

measure the evolution of the correlation length throughout the sweep. We then check

whether the Kibble-Zurek mechanism applies to this phase transition by varying the

sweep duration and measuring the correlation length after crossing the transition. The

conducted experiments are similar to the one described in Section 6.4. We perform the

experiments on a 75-atom array.

Growth of the correlation length throughout the sweep. We first look at the

growth of the correlation length throughout the sweep described in Figure 7.8 a). We

compute the correlation length lcorr as a function of Ω for timings toff > 2.5µs, in which

we decrease Ω. The results are presented in Figure 7.8 b). For Ω > Ωc, we observe the

growth of lcorr, which eventually saturates for Ω < Ωc. If the phase transition were
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Figure 7.8: Growth of the correlation length on the 75-atom array. a) Experimental

parameters sketched in the phase diagram. b) Measurement of the static exponent. We

measure lcorr throughout the sweep. The solid line is fit to the data using a function of the

form: A(Ω−Ωc)
−ν , from which we extract ν = 0.62(4). c) Measurement of the dynamical

exponent. We measure lcorr for various durations tsweep of the ramping down of Ω. The

dashed line is a fit to the data using a power law, from which we extract µ = 0.40(2).

second order, we would expect a growth of lcorr near the critical point of the form:

lcorr ∼ (Ω− Ωc)
−ν , (7.3)

where ν is the critical static exponent of the phase transition. Before saturation, the

data are compatible with an algebraic evolution of the correlation length: the solid

line is a fit to the data of the form A(Ω−Ωc)
−ν , with A, Ωc and ν as free parameters.

We observe a good agreement between the data and the fit, from which we extract a

critical exponent ν = 0.62(4). The saturation point is compatible with the numerically

calculated value of the critical point ~Ωc ≃ 0.4U . These results indicate that the

transition behaves as if it was second order, which might be related to the finite size of
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the system.

For Ω < Ωc, we observe that lcorr saturates. This behavior, also observed in the

case of the square lattice (see Section 6.4.1), can be related to the Kibble-Zurek (KZ)

mechanism described in Section 6.4.2. We now experimentally investigate its validity.

Varying the speed at the phase transition. We use the sweep described in Figure 7.8

c) to probe the validity of the KZ mechanism. We vary the switching off time of

Ω, tsweep, and measure the corresponding value of lcorr at the end of the sweep, as

described in Section 6.4. If the system follows the KZ mechanism, lcorr and tsweep are

related by:

lcorr ∼ t
ν

1+zν
sweep = tµKZ

sweep, (7.4)

with z the dynamical exponent which relates spatial with temporal critical fluctuations.

This formula is derived in Section 6.4.2. The results are presented in Figure 7.8 c). We

observe an increase of lcorr with tsweep compatible with a power law, from which we

extract the dynamic exponent µ = 0.40(2). If the system follows the KZ mechanism

and considering the extracted value of the static exponent ν = 0.62(4) and z = 1, we

should obtain µKZ = 0.38(3). This value is in agreement with the measured dynamic

exponent µ, which would indicate that the system follows a KZ mechanism.

Conclusion. Even though the PM to 1/3 phase transition is expected to be first

order, the experiments presented here indicate that: (i) the behavior of the system

near the critical point is the same as for a second order phase transition, and (ii)

the growth of the correlations seems to follows a KZ mechanism. Note that these

conclusions should be considered with caution. First, these conclusions are valid for

the specific 75-atom triangular array presented here. We have not checked how the

system behaves for other system sizes. Second, the range over which we can tune the

parameters is restricted (the reasons are discussed in Section 6.4.2). The measured

power exponents might thus be valid only for this specific range. However, we can

claim that our experimental results are compatible with a second order transition

governed by the KZ mechanism for our specific system.

7.3 Exploration of the phase diagram

Now that we showed our ability to accurately study the 1/3 phase, we focus on

the exploration of the other phases. In particular, we are interested in probing the
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Figure 7.9: Preparation of the 2/3 phase on the 108-atom array. a) Parameters of

the sweep used to prepare the 2/3 phase, in the phase diagram and the corresponding

temporal evolution. b-c) Characterization of the prepared state at the end of the sweep.

We show b) the 1D correlations from which we extract lcorr = 2.6(2) a (with a the lattice

spacing), and c) the staggered magnetization histogram, which is compared to the results

of MPS simulations.

properties of the OBD phase, which exhibits strong geometric frustration. We first

probe the 2/3 phase, then present a first attempt to observe the features of the OBD

phase.

7.3.1 Preparation of the 2/3 phase

In this subsection, I show that we are able to prepare AF ordered states belonging to

the 2/3 phase. We use the following sweep. At a detuning ~δi = −4U , Ω is increased

from 0 to ~Ωm = U in 1.0µs. We then sweep the detuning to ~δf = 4U in 1.5µs while

keeping Ω constant, and finally decrease Ω to 0 in 5µs (see Figure 7.9 a)). In order

to characterize the prepared 2/3 phase, we compute the staggered magnetization

histogram at the end of the sweep, see Figure 7.9 b). Perfectly ordered AF states

exhibit two sublattices filled with Rydberg excitations, which would correspond to

points on the three hexagon vertices in the opposite directions as nA,B,C . We observe a

triangular distribution pointing towards these three vertices, showing that we indeed

prepare states which belong to the 2/3 phase. We obtain a good agreement between
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Figure 7.10: Influence of edge effects on the 2/3 phase. a) Rydberg density per atom

at the end of the sweep described in Figure 7.9. b-d) We only consider the atoms in the

bulk and compute b) the correlations map, c) the staggered magnetization histogram

and d) the 1D correlations, from which we extract lcorr = 3.4(3) a (with a the lattice

spacing). We observe a stronger AF ordering when considering the system’s bulk, showing

the impact of edge effects on the system.

the data and the MPS results, taking into account the experimental imperfections

described in Section 6.2.2 (detection errors, finite size of the excitation beams and

shot-to-shot fluctuations in the atomic positions).

As compared to the 1/3 phase, here the triangle (both in the simulation and in

the experiment) does not reach the vertices of the hexagon, which indicates that the

quality of the prepared AF ordering is lower than in the 1/3 phase. This is confirmed

by computing the 1D correlations, see Figure 7.9 c). We obtain lcorr = 2.6(2) a (a is

the lattice spacing), which has to be compared to lcorr ≃ 6 a for the 1/3 phase. This

difference in the quality of AF ordering is partly due to edge effects, which we now

discuss.

Influence of edge effects. As discussed in Section 7.2.1, one effect of system’s

boundaries is to induce a high Rydberg filling on the system’s boundaries. The mean
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interaction energy Um felt by the atoms on the sides is Um ≃ 4.2U . In order to remain

in the 2/3 phase for all the atoms, the final detuning should remain low ~δf < 4.2U

(see Section 6.1.3 for an heuristic argument on the square lattice). In our experiments

dealing with the square lattice and the 1/3 phase, we always targeted low final detuning

to avoid filling the edges with Rydberg atoms. However, as the 2/3 phase only exists

at high final detuning, we are always in the regime ~δf ≃ Um, meaning that the atoms

on the edges are highly filled with Rydberg excitations. This reduces the maximal

possible extent of the staggered magnetization distribution, as the three sublattices are

equivalently filled with Rydberg atoms on the boundaries. We experimentally check

this fact by computing the Rydberg density map ⟨ni⟩ at the end of the sweep, see

Figure 7.10 a). The boundaries are highly excited (⟨ni⟩ > 0.9), whereas the Rydberg

density of the system’s bulk is ⟨ni⟩ ∼ 2/3, as expected for the 2/3 phase.

In order to show that the system’s bulk is strongly AF ordered, we compute the

various observables characterizing AF ordering by only considering the 75 atoms

inside the bulk, see Figure 7.10 b-d). We now observe on the staggered magnetization

histogram that the triangular distribution extends close to the hexagon vertices, in a

similar fashion as for the 1/3 phase. We extract a correlation length lcorr = 3.4(3) a.

This shows that the edge effects strongly reduce the quality of the prepared AF

ordering.

Conclusion. We showed that we are able to prepare ordered states belonging to the

2/3 phase. However, the ordering is weaker than in the case of the 1/3 phase, which

is partly explained by the edge effects. The lower ordering can also be explained by

the sweep timings. We use the same timings as for the preparation of the 1/3 phase.

However, the range over which δ is swept is ∼ 50% higher to prepare the 2/3 phase.

This results in sweeping the detuning ∼ 50% faster, inducing a higher probability to

cross the gaps, hence reducing the adiabaticity of the driving.

7.3.2 Probing the order-by-disorder phase

Now that we observed the main features of the 1/3 and the 2/3 phases, we focus on the

1/2 region, located at ~δOBD ≃ 3.15U . In this region, the system is highly frustrated:

at Ω = 0, the ground state is massively degenerated, leading to a finite entropy even

at zero temperature [Wannier, 1950]. The massive degeneracy can be heuristically

understood as follows. As ⟨n⟩ = 0.5, every triangular plaquette of the lattice has one

atom in the |↓⟩ state, and one in the |↑⟩ state. The orientation of the third atom is
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Figure 7.11: Paramagnet to OBD phase transition on the 108-atom array. a)

Parameters of the experiment. b) Evolution of lcorr throughout the sweep. The solid line is

a fit to the data using of function of the form A(Ω−Ωc)
−0.67, showing that the growth of

the correlation length is compatible with the expected critical exponent ν ≃ 0.67.

left undetermined, leading to ∼ 2N/3 degenerate ground states [Menu, 2020].

The application of a longitudinal field δ ̸= δOBD lifts the degeneracy, and chooses

either the 1/3 (δ < δOBD) or the 2/3 phase (δ > δOBD) as the system’s ground state.

The transverse field is expected to act in a similar way by lifting the degeneracy

through the “Order-By-Disorder” (OBD) mechanism [Villain, J. et al., 1980], which

was first introduced to explain how the disorder caused by thermal fluctuations lead

to an ordered phase. This OBD mechanism is expected to also apply for the quantum

fluctuations induced by Ω. The ground state is expected to be a combination of the

1/3 and the 2/3 phase ground states [Menu, 2020].

The precise characteristics of the OBD phase are not well known, especially

considering the long-range interactions and the limited system size used in the

experiment. Here, we show that despite all the experimental imperfections, we obtain

some experimental guesses that we probe the OBD phase. We first investigate the

system’s behavior at the phase transition, then characterize the obtained states. The

experiments presented below are performed on the 108-atom array.

Paramagnet to OBD phase transition. In order to characterize the OBD phase,

we first study the system’s behavior near the critical line. Here, the transition is
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expected to be second order [Moessner, Sondhi, and Chandra, 2000; Moessner and

Sondhi, 2001] and to belong to the universality class of the (2+1)D classical XY model.

Interestingly enough, the transition does not belong to the Ising universality class. We

can give an intuitive argument to this. The classical XY model can be seen as the

classical version of the Ising model, in which the spins orientation can be continuously

varied. In the OBD phase, the spins orientation is partly undetermined, which can

thus be interpreted as a potential continuous variation of the spin orientation. The

critical exponent of the (2+1)D classical XY model universality class is ν ≃ 0.67, and

is estimated from Monte-Carlo simulations [Plumer and Mailhot, 1995].

In order to probe this phase transition, we measure the growth of the correlation

length throughout the sweep described in Figure 7.11 a), similar to the ones described

above. We set a final detuning ~δf = 3.1U , in between the 1/3 and the 2/3 phases.

The results are presented in Figure 7.11 b). For Ω > Ωc, we observe a growth of lcorr

which is consistent with the expected critical exponent (solid line). The correlation

length saturates for ~Ωc ≃ 0.75U , consistent with the expected position of the critical

line [Koziol et al., 2019]. This experiment shows that: (i) we enter in an AF ordered

phase and (ii) the growth of lcorr is consistent with the expected PM to OBD phase

transition.

Characterization of the OBD phase. We now characterize the prepared state at

the end of the sweep. As shown in Figure 7.11 b), the correlation length inside the

phase is weak (lcorr ≃ 1.5 a). As discussed in Section 7.3.1, the system’s boundaries

strongly reduce the AF ordering when considering high final detunings. In order to

mitigate their impact, we only consider the 45 atoms inside the system’s bulk by

removing the two outer shells. We compute the 1D correlations and the corresponding

2D correlations map, see Figure 7.12 a). We now observe strong AF ordering in the

bulk, with a correlation length lcorr = 3.0(3) a, close to the one obtained in the 2/3

phase (for the same array). This long range AF ordering is expected in the OBD

phase [Moessner, Sondhi, and Chandra, 2000; Moessner and Sondhi, 2001].

In order to further characterize the prepared states, we compute the corresponding

staggered magnetization histogram, see Figure 7.12 b). As a comparison, we also

show the ones obtained for the 1/3 and 2/3 phases, considering only the bulk of the

108-atom array. As compared to the other phases, the OBD histogram is isotropic and

spreads towards high values of |mstag| in all directions. Even though the distribution is

isotropic, we observe strong AF ordering, a feature which is expected for the OBD

phase. Numerical studies [Da Liao et al., 2021] show that the OBD ground states
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should exhibit a circle in the magnetization histogram. Although we do not observe

the expected behavior, the histogram points towards a circular shape. The fact that

the histogram points towards the expected ground state behavior also happens for the

1/3 and 2/3 phases: if we were preparing their ground states, we would observe three

peaks located on the hexagon vertices. However, we observe triangles pointing towards

these vertices, which is enough to claim observing the 1/3 and 2/3 phases. In the

OBD phase, we observe an isotropic distribution, with maxima of probability located

at high value of |mstag|. These maxima are close to form a circle, and is thus very

indicative of preparing the OBD phase.

Numerical simulations performed by the team of A. Laüchli suggest that observing

a circle would be reachable by reducing the experimental imperfections (presented in

Section 6.2.2), keeping the same sweep parameters.

Conclusions. In this subsection, I presented the experiment we conducted towards

the observation of the OBD phase. Although its signatures are not clear both on the

experimental side and on the numerical side (considering our implementation of the

TFI model), we were able to show that: (i) we observe a transition from the disordered

PM phase to an AF ordered phase in a consistent way with the PM to OBD phase

transition and (ii) the characteristics of this phase are different from the 1/3 and 2/3

phases, which is proved by the isotropic staggered magnetization histogram, a feature

expected for the OBD phase. Exploring in more detail this phase will be the subject

of future work.

7.4 Conclusion

In this chapter, I presented the various experimental investigations we performed

on the 2D transverse field Ising model in triangular arrays. I showed that we are

able to produce highly antiferromagnetically ordered states on arrays containing

up to 147 atoms, which is beyond what can be exactly simulated classically. We

explored all the (nearest-neighbor) phases of the model, and studied the dynamical

growth of the correlations in the system, showing a compatibility with a Kibble-Zurek

mechanism. The above results demonstrate the preparation of the 1/3 and 2/3 phases

using a synthetic quantum many-body system, which had never been achieved to that

extent. In particular, we probed the highly frustrated OBD phase which has not been

experimentally observed so far. We obtained first signatures of this phase, showing

that its observation and study is reachable using a Rydberg quantum simulator.
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Figure 7.12: Probing the OBD phase on the 108-atom array. We only consider the

bulk of the array. a) Correlation length and correlation map in the OBD phase. We extract

a correlation length lcorr = 3.0(3) a, showing that the prepared states are AF ordered. b)

Bulk staggered magnetization histogram for the 1/3 phase (left), the OBD phase (middle)

and the 2/3 phase (right). The histogram of the OBD phase is isotropic with an important

extension towards high values of |mstag|. These features are expected in the OBD phase.
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In this chapter, I explain how we use the dipole-dipole interaction between Rydberg

atoms to implement two models. I first show the implementation of the XX model on

two atoms, characterized by

HXX =
∑
i,j

Jij(σ
x
i σ

x
j + σy

i σ
y
j ), (8.1)

where σx,y are the usual Pauli matrices acting on the spin-1/2 states denoted as |↓⟩
and |↑⟩. This model is also known as the “XY model” in the literature. As compared

to the Ising case, the model is in a sense more quantum, as there are no classical

configurations for the system’s ground states. The model’s properties, such as its phase

diagram and the corresponding nature of the quantum phase transitions for various

geometries are an active research field [Balents, 2010; Radgohar and Montakhab, 2018;
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Knolle and Moessner, 2019]. Studying those properties, as performed in Chapter 6 and

Chapter 7 for the 2D transverse field Ising model, is however out of the scope of this

thesis.

Instead, we focus on the exploration of transport phenomena: in the XX model, the

interaction term leads to the hopping of spin excitations between sites. Transport

properties of spin excitations are actively studied, both experimentally and theoretically

in various models [Cheneau et al., 2012; Bertini et al., 2021]. This transfer of excitations

driven by the interactions may also occur in biological systems, which makes the

XY model relevant to study photochemistry or photosynthesis [Collini, 2013]. The

exploration of transport dynamics in many-body systems will be studied in Chapter 9.

In the present chapter, I also show the implementation of density-dependent and

complex hopping of spin excitations between sites on the minimal setup of three

atoms, which mimics the dynamics of charged particles in a magnetic field [Dalibard

et al., 2011; Aidelsburger, Nascimbene, and Goldman, 2018] with the prospective view

of studying topological properties of matter, such as the quantum Hall effect [Klitzing,

Dorda, and Pepper, 1980]. The results presented here are the first step towards an

implementation on large systems, which will be the subject of future works.

8.1 Dipole-dipole interaction and mapping to the XX model

The dipole-dipole interaction between two Rydberg atoms placed at positions r1 and

r2, with electric dipoles operators d̂1 and d̂2, is expressed as:

V̂ddi =
d̂1 · d̂2 − 3

(
d̂1 · n

)(
d̂2 · n

)
4πϵ0R3

, (8.2)

with R = |r2 − r1| the distance between the atoms, and n = (r2 − r1)/R the unit

vector defining the internuclear axis.

We consider in this manuscript the interaction between Rydberg states belonging to

the nS1/2 and nP3/2 manifolds. The interaction strength between these states depends

on the relative orientation of the magnetic field with respect to the internuclear

axis. We used this property to engineer anisotropic interaction energies in previous

works [de Léséleuc et al., 2019]. In this thesis, we will study 2D systems with isotropic

interactions, which is achieved when the magnetic field is perpendicular to the atomic

array. I thus write the above expression in this case, explain its various terms and

show that we can map the system onto the XX Hamiltonian.
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a) b)

Atom 1

Atom 2

Energy

Ini�al state

Atom 1 Atom 2

‘Spin exchange’ ‘Spin orbit’

Figure 8.1: Illustration of the dipole-dipole interaction in the presence of a mag-

netic field perpendicular to the atomic plane. a) We consider two atoms and their

nS1/2 and nP3/2 manifolds. The magnetic field is perpendicular to the atomic plane, and

the internuclear axis has an angle φ with the x direction. b) Effect of the various terms of

V̂ddi illustrated on the
⏐⏐nP3/2,mJ = −1/2

⟩
⊗
⏐⏐nS1/2,mJ = 1/2

⟩
state.

Dipole-dipole interaction in a perpendicular magnetic field. We consider two

atoms placed in the (x, y) plane, and submitted to a static magnetic field Bz along

the z direction (see Figure 8.1 a)). The unit vector defining the internuclear axis is

n = (cosφ, sinφ, 0), with φ the angle between the internuclear axis and the x direction.

In this basis, the dipole-dipole interaction can be written using the components of the

dipole operator d̂x, d̂y and d̂z:

V̂ddi =
1

4πϵ0R3

[
d̂z1d̂

z
2 +

1

2

(
d̂+1 d̂

−
2 + d̂−1 d̂

+
2

)
− 3

2

(
d̂+1 d̂

+
2 e

−2iφ + d̂−1 d̂
−
2 e

2iφ
)]

, (8.3)

with d̂±j = ∓(d̂yj ± id̂zj)/
√
2 for atom j. The action of these five terms is sketched in

Figure 8.1 b) on the example of the
⏐⏐nP3/2,mJ = −1/2

⟩
⊗
⏐⏐nS1/2,mJ = 1/2

⟩
state.

These terms can be classified as follows:

r The first three terms couple states which conserve the total internal angular

momentum of the two atoms. In particular, the terms d̂+1 d̂
−
2 + d̂−1 d̂

+
2 couple states

which are degenerate in energy. These latter terms exchange the state of the

atoms, and will be referred as the “spin exchange” terms in the following.

r The last two terms describe the spin-orbit coupling: those couple two-atom

states with different internal angular momentum. The conservation of the total

angular momentum requires that these terms exhibit a phase e±2iφ. These terms
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will be used in Section 8.3 to implement an effective spin-1/2 Hamiltonian with

density-dependent, complex interactions.

In the presence of the typical magnetic field Bz ∼ 30− 50G we apply, only the spin

exchange terms are resonant. The other terms are out of resonance by µ/h ∼ 100MHz,

two orders of magnitude higher than the typical interaction energy ⟨V̂ddi/h⟩ ∼ 1MHz

for typical experimental parameters R = 10µm and n ∼ 60. We will thus consider in

this section and in Section 8.2 that these terms are negligible. The application of a

controlled, strong electric field (see Section 2.4.2) allows us to bring the spin-orbit

terms close to resonance, as discussed in Section 8.3.1.

Mapping to the XX model. As we now only consider the “spin exchange” term of

the dipole-dipole interaction, we can restrict ourselves to a qubit basis and set as an

example the spin-1/2 states |↓⟩ =
⏐⏐nS1/2,mJ = 1/2

⟩
and |↑⟩ =

⏐⏐nP3/2,mJ = 1/2
⟩
. By

defining the interaction energy J = | ⟨↑| d+ |↓⟩ |2/(8πϵ0R3) = C3/(2R
3), we obtain the

XX Hamiltonian:

HXX = J(σ+
1 σ

−
2 + σ−

1 σ
+
2 ) =

J

2
(σx

1σ
x
2 + σy

1σ
y
2), (8.4)

where σx,y are the usual Pauli matrices acting on the spin-1/2 states |↓⟩ and |↑⟩.
We now present our experimental implementation of HXX, and characterize its main

features.

8.2 Implementation of the XX model with two atoms

In this section, we consider the simplest case of two atoms. I first give an overview of

the experimental sequence when working with the XX model, then present the effect

of the dipole-dipole interaction on the system’s spectroscopy, and finally study two

features of the model: the oscillation of the magnetization along the y axis, and the

coherent exchange of an ↑ excitation between the two Rydberg atoms. These latter

experiments will be revisited beyond two atoms in Chapter 9.

Experimental sequence. In order to implement the XX model in the conditions

described above, we need to (i) initialize the atoms in a specific Rydberg state |↓⟩, (ii)
apply a magnetic field perpendicular to the atomic plane and (iii) isolate one Rydberg

state in both the nS and nP manifolds. These operations were described in Chapter 2.

I briefly summarize them here:
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8.2 Implementation of the XX model with two atoms

r Rydberg state initialization. We first place the atoms in the state |g⟩ =⏐⏐5S1/2,F = 2,mF = 2
⟩
through optical pumping (see Section 2.2). We then use

the stimulated Raman adiabatic passage technique presented in Section 2.3.1 to

transfer them into |↓⟩.

r Magnetic field rotation. During the optical pumping stage, the magnetic

field is in the atomic plane. We rotate the magnetic field after optical pumping

as described in Section 2.4.1.

r Isolating two Rydberg states. We set a strong magnetic field Bz ≃ 30−50G

(see Section 2.4.1) in order to isolate two Rydberg states.

In order to read the system’s state, we selectively transfer the atoms from the |↓⟩ state
back to the ground state using the de-excitation technique presented in Section 2.3.1.

8.2.1 Microwave spectroscopy

In this subsection, we show the effect of the resonant term of the dipole-dipole interac-

tion on the spectroscopy of two atoms. We consider the states |↓⟩ =
⏐⏐60S1/2,mJ = 1/2

⟩
and |↑⟩ =

⏐⏐60P3/2,mJ = −1/2
⟩
, see Figure 8.2 a).

Single atom spectroscopy. As discussed in Section 2.3.3, the transition frequency

fMW with n ∼ 60 − 90 is fMW ∼ 1 − 20GHz, which is accessible to microwave

synthesizers. We use here a magnetic field Bz ≃ 53G. In order to check the splitting

of the levels induced by the Zeeman effect, we perform a broad spectroscopy of all

the accessible levels of the 60P3/2 manifold, see Figure 8.2 b). The splitting of the

mJ levels is ∆/(2π) ≃ 100MHz, as expected from the applied magnetic field. The

splitting is two orders of magnitude higher than any interaction energies. We can thus

safely assume that only the “spin-exchange” terms of the dipole-dipole interaction will

contribute to the interactions.

Two atom spectroscopy. We now perform the spectroscopy with two atoms sep-

arated by R = 10µm. The results are presented in Figure 8.2 d). We show (i) the

single-excitation probability P↑↓ + P↓↑ for the atoms to be in the |↑↓⟩ or |↓↑⟩ state
(blue), and (ii) the double excitation probability P↑↑ for the atoms to be in the |↑↑⟩
state (red). The single-excitation transition is shifted from the double-excitation

transition by the dipole-dipole interaction: the degeneracy of the |↓↑⟩ and |↑↓⟩ states is
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Figure 8.2: Measurement of the interaction energy via spectroscopy. a) Structure

of the single-atom levels. b) Probability P (60P3/2) to measure the atom in one of the

60P3/2 states as a function of the detuning δMW from the |↓⟩ → |↑⟩ transition. The
application of a magnetic field Bz ≃ 53G allows us to detune the nearby states by

∆/(2π) ≃ 100MHz. c) Sketch of the two-atom states. The dipole-dipole interaction

lifts the degeneracy of the |↑↓⟩ and |↓↑⟩ states by 2J . d) Single-excitation (blue) and

double-excitation (red) probabilities as a function of the detuning from the single atom

resonance. The microwaves couple to the |↑↑⟩ state and the (|↑↓⟩+ |↓↑⟩)/
√
2 state. Their

difference in energy gives J/h = 0.72(4)MHz, consistent with C3 ≃ 1.5GHz.µm3 [Weber

et al., 2017] and R = 10µm.

lifted by an energy 2J (see Figure 8.2 c)). We measure the shift in transition frequency

and obtain the interaction energy: J/h = 0.72(4)MHz. This value is consistent with

numerical calculations: for the levels considered here, C3 ≃ 1.5GHz.µm3 [Weber et al.,

2017] which leads to J/h = C3/(2R
3) ≃ 0.75MHz.

Microwave coupling. The dipole-dipole interaction gives rise to the two entangled

eigenstates |+⟩ = (|↑↓⟩+ |↓↑⟩)/
√
2 and |−⟩ = (|↑↓⟩−|↓↑⟩)/

√
2. Here, we briefly discuss

the microwave coupling to these two states. The |↓↓⟩ → |+⟩ coupling is enhanced by a

factor
√
2, as the contribution from both the |↑↓⟩ and |↓↑⟩ states are adding up. We

qualitatively observe this feature by observing the relative height of the two peaks in

the spectrum. On the contrary, the |↓↓⟩ → |−⟩ coupling vanishes: due to the minus
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8.2 Implementation of the XX model with two atoms

sign, the contribution from both the |↑↓⟩ and |↓↑⟩ states cancels. We indeed observe

the absence of signal at −J . This vanishing coupling to the |−⟩ state implies that the

adiabatic preparation of XY antiferromagnets on square lattices using microwaves is

challenging, which is discussed in detail in the thesis of Vincent Lienhard [2019].

8.2.2 Oscillation of the magnetization

In this subsection, we study the effect of HXX on the atoms magnetization. We consider

the states |↓⟩ =
⏐⏐90S1/2,mJ = 1/2

⟩
and |↑⟩ =

⏐⏐90P3/2,mJ = 3/2
⟩
, and set a distance

R = 30µm between the two atoms, leading to an interaction energy J/h ≃ 0.9MHz

(see Figure 8.3 a)). As the XX Hamiltonian conserves the number of excitations, the z

magnetization ⟨σz⟩ is constant. We show here that after magnetizing the system along

the y axis, the y-magnetization evolves under HXX.

Experimental sequence. The experimental sequence is sketched in Figure 8.3 b).

After initializing the atoms in the |↓↓⟩ state using the STimulated Raman Adiabatic

Passage (STIRAP) technique, we apply a strong microwave π/2-pulse (with a Rabi

frequency ΩMW/(2π) ≃ 7.2MHz) in order to prepare the fully magnetized state along

the y axis:

|→→⟩y =
1

2
(|↓⟩+ i |↑⟩)⊗ (|↓⟩+ i |↑⟩) = 1

2
[|↓↓⟩ − |↑↑⟩+ i(|↑↓⟩+ |↓↑⟩)] . (8.5)

We then let the system freely evolve under HXX for a duration tint, and finally measure

the magnetization along the y axis ⟨σy⟩ by applying a second microwave π/2-pulse

and a de-excitation pulse (see Section 2.3.1) to read the system’s state in the z basis.

Oscillation of the y magnetization. We measure ⟨σy⟩ for various tint and observe an

oscillation of ⟨σy⟩, see Figure 8.3 c). The solid line is a fit to the data using a damped

sine function, from which we extract an oscillation frequency J/h = 0.91(1)MHz,

consistent with the expected interaction energy J/h ≃ 0.9MHz. This magnetization

oscillation is expected in the XX model. The prepared state, (|↓↓⟩− |↑↑⟩+ i
√
2 |+⟩)/2,

is composed of three eigenstates with different eigenenergies: |↓↓⟩ and |↑↑⟩ are
located at zero energy, whilst |+⟩ has an eigenenergy J . The state thus evolves as

(|↓↓⟩ − |↑↑⟩ + eiJtint/~i
√
2 |+⟩)/2 and ⟨σy⟩ oscillates. The natural evolution of the

system’s magnetization is an important feature of the XX model, and will be studied

in a 2D many-body system in Section 9.2.
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Figure 8.3: Oscillation of the magnetization along y. a) Sketch of the single-atom

levels. b) Sketch of the experimental sequence. We prepare the |→→⟩y state using a

π/2 microwave pulse, let the system evolve under HXX for a duration tint, then read

the system’s state using a second a π/2 microwave pulse and a de-excitation beam (see

Section 2.3.1). c) Magnetization along the y axis ⟨σy⟩ as a function of tint. The solid line is

a fit to the data using a damped sine function from which we extract J/h = 0.91(1)MHz.

8.2.3 Coherent exchange of a spin excitation

The last feature of the model we experimentally demonstrate here is the coherent

exchange of a ↑ spin excitation between the two atoms. We perform the experiment in

the same conditions as above, see Figure 8.4 a). We start by preparing the system

in the |↑↓⟩ state, observe the coherent exchange and discuss the various limits in

the system’s coherence and the contrast in the exchange. We finally discuss the link

between this experiment and the Bose-Hubbard model for hard-core bosons.

Experimental sequence. We prepare the state |↑↓⟩ following the procedure sketched

in Figure 8.4 b). We excite the atoms to the |↓↓⟩ state using the STIRAP technique,

then apply a microwave π-pulse to transfer the atoms to the |↑↑⟩ state. We use

ΩMW ≃ 2π × 18MHz≫ J to avoid populating the |+⟩ state. In order to selectively

transfer a single atom back to the |↓⟩ state, we use a single-site addressing beam

at 1013 nm (see Section 2.3.3) which shifts the |↑⟩ → |↓⟩ transition by an energy

δaddr ∼ 2π × 20MHz for only one atom. We then apply a second π-pulse with the

condition ΩMW ≃ 2π × 2MHz≪ δaddr to avoid the transfer of the addressed atom.

Once the system is in |↑↓⟩, we switch off the addressing and let the system evolve under

184



8.2 Implementation of the XX model with two atoms

a) b)

e)

0.0 0.5 1.0 1.5 2.0 2.5
Interaction time tint (µs)

0.0

0.5

1.0

P
ro
b
ab
ili
ti
es P|↓↑〉 P|↑↓〉

0 1 2 3 4 5
Interaction time tint (µs)

0.0

0.5

1.0

P
|↓
↑〉

Simulation

Time

Tweezers

STIRAP

addressing

microwave

Tweezers

de-exc

Energy

addressing
c)

ST
IR

A
P

d) Atom 1 Atom 2

-pulses

Figure 8.4: Coherent transfer of an ↑ excitation between two Rydberg atoms. a)

Sketch of the single-atom levels. b) Sketch of the experimental sequence. We prepare the

|↑↓⟩ state using a single-site addressing beam (see Section 2.3.3), let the system freely

evolve for a duration tint, then read the system’s state using a de-excitation beam (see

Section 2.3.1). c) Probability for the atoms to be in the |↑↓⟩ state (purple) and in the

|↓↑⟩ state (red) as a function of tint. The system oscillates between these two states. The

solid lines are fits to the data using damped sine functions. d) The oscillation can be

seen as a coherent transfer of the ↑ excitation between the two atoms. e) Comparison of

the experimental results of c) with simulations, including longer times. The black line

is a simulation taking into account the finite efficiency of the |↑↓⟩ preparation and the

shot-to-shot fluctuations of the atom positions.

HXX for a duration tint. We then rapidly de-excite the atoms in |↓⟩ back to the ground

state in ∼ 50 ns (see Section 2.3.1) to freeze the dynamics and read the system’s state.

We perform the experiment for various tint, and measure the populations in |↑↓⟩ and
|↓↑⟩, see Figure 8.4 c).

Spin-exchange. We observe an oscillation between the |↑↓⟩ and the |↓↑⟩ state,
which is expected in the XX model. As the initial state is |↑↓⟩ = (|+⟩ + |−⟩)/

√
2,

and the (|+⟩ , |−⟩) states have eigenergies (J ,−J), the system evolves as (|+⟩ +
ei2Jtint/~

√
2 |−⟩)/

√
2. In particular, for tint = h/(4J), the system’s state is (|+⟩ −
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|−⟩)/
√
2 = |↓↑⟩. The system thus oscillates between |↑↓⟩ and |↓↑⟩ at a frequency 2J/h.

We experimentally check that we obtain the correct oscillation frequency by fitting the

data using damped sine functions (solid lines). We extract an oscillation frequency

2J/h = 1.85(1)MHz, in good agreement with J/h = 0.91(1)MHz determined above

with the magnetization oscillation experiment.

Analysis of the contrast and the damping. We briefly discuss here the finite

contrast of the oscillation and its damping. The contrast is limited by the efficiency of

the |↑↓⟩ state preparation, with typical values P↑↓ ∼ 0.7. The major limitation is the

Rydberg excitation efficiency. For the experiment conducted here, the efficiency of the

STIRAP technique is ∼ 0.92 per atom, which gives P↓↓ ∼ 0.85. The first microwave

pulse is close to be perfect, however we observed that the second one (in presence of

the addressing) has a finite efficiency, and the fidelity of the preparation is ∼ 0.95 per

atom. Adding the detection errors to misinterpret the states of the atoms ε ∼ 0.02

and ε′ ∼ 0.02 (see Section 3.3.1), we obtain P↑↓ ∼ 0.7.

We now analyze the damping of the spin-exchange experiment. In order to appreciate

the damping, we show in Figure 8.4 e) the results presented above of P↓↑ over an

extended duration (the conclusions obtained here are the same for P↑↓). The black

line is a simulation taking into account (i) the finite efficiency of the preparation and

(ii) the shot-to-shot fluctuations of the interatomic distance (see Section 6.2.2). We

observe that the damping is well reproduced by the simulation, showing that other

sources of decoherence are negligible.

These results show that, for the simplest case of two atoms, we are able to observe

the interaction-induced transport dynamics of an ↑ excitation. The extension of this

experiment to the many-body case is the subject of Section 9.2.

Link to the Bose-Hubbard model. This experiment can be seen as a particle (a

↑ excitation) hopping between two sites (the two Rydberg atoms), with a hopping

strength 2J (see Figure 8.4 d)). We define the states |0⟩ = |↓⟩, |1⟩ = |↑⟩, the bosonic

annihilation and creation operators b†i |0⟩ = |1⟩ and bi |1⟩ = |0⟩ for site i ∈ [1, 2].

However, as a Rydberg atom can only carry a single ↑ excitation, the operators

verify the relation (b†)2 = b2 = 0. This property is referred as the hard-core boson

constraint. We used this feature to prepare a symmetry protected topological phase in

1D, described in detail in the thesis of Sylvain de Léséleuc [2018]. The Hamiltonian

then reads:

HBH = 2J(b†1b2 + b†2b1), (8.6)
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where 2J is the tunneling strength. This Hamiltonian describes the Bose-Hubbard

model in the limit where the on-site interaction energy is infinite. We will use this

description in terms of bosonic operators in the next section.

Conclusion. In this section, I presented the two main features of the XX model we

will study on many-body systems in Chapter 9. I showed that we can accurately

observe these features, and link the spin-exchange experiment to the Bose-Hubbard

model for hard-core bosons.

8.3 Implementation of a density-dependent Peierls phase with three

atoms

In this section, I explain how we go beyond this hopping of excitations and engineer

complex hopping amplitudes between Rydberg atoms using the spin-orbit coupling of

the dipole-dipole interaction (see Equation (8.3)). The discussions and experimental

protocols presented here are, most of them, also presented in the thesis of Vincent Lien-

hard [2019]. However, after his pioneering work, we modified the parameters of the

experiments to obtain more convincing data, published in [Lienhard et al., 2020],

which I show here.

Motivations. One of the current challenges of quantum simulators is to investigate

the interplay between the non-trivial topology of a band-structure and the interactions

between the particles [Bergholtz and Liu, 2013; Cooper, Dalibard, and Spielman, 2019].

The topology of a band-structure can be studied from the single-particle transport

properties of the system. The signature of topological properties for finite-size systems

is the existence of chiral edge modes, characterized by the circular motion of the

particle along the edges of the system, in a preferential direction (this feature is also

known as the “bulk-edge” correspondence). The systems hosting chiral edge modes are

called topological insulators, as they are conducting on the edges but insulating in the

bulk. They trigger a lot of interest due to their unique transport properties [Moore,

2010; Wang, Dou, and Zhang, 2010].

Experimental realization on synthetic platforms. One way to engineer such topo-

logical band structures is to implement an effective magnetic field for the hopping

particles, which can be simulated by implementing complex hopping amplitudes
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teiϕ between the sites of an array, characterized by a Peierls phase ϕ [Hofstadter,

1976; Jaksch and Zoller, 2003; Dalibard et al., 2011; Goldman and Dalibard, 2014].

A particle circulating around a closed loop then acquires a phase analog to the

Aharonov-Bohm phase, which is proportional to the enclosed magnetic flux [Aharonov

and Bohm, 1959]. Effective magnetic fields and complex-valued hopping amplitudes

have been implemented on ultra-cold atom-based platforms [Aidelsburger et al.,

2011; Galitski and Spielman, 2013; Zhai, 2015], by using laser-assisted tunneling

in an optical superlattice [Aidelsburger et al., 2011], high-frequency driving of a

lattice [Kolovsky, 2011; Jotzu et al., 2014; Wang et al., 2020], and implementing

synthetic dimensions [Mancini et al., 2015; Stuhl et al., 2015]. Alternative platforms

have also emerged such as superconducting qubits where complex-valued hopping

amplitudes were demonstrated [Roushan et al., 2017], and photonic [Ozawa et al., 2019]

or phononic [Liu, Chen, and Xu, 2020] systems operating so-far in the non-interacting

regime.

Outline. Here, I present the experimental realization of Peierls phases using the

intrinsic spin-orbit coupling present in dipolar exchange interactions between Rydberg

atoms, initially proposed theoretically [Peter et al., 2015; Kiffner, O’Brien, and Jaksch,

2017; Weber et al., 2018]. I first explain how we experimentally implement these

complex hopping amplitudes using three Rydberg levels in a V-structure. Operating

at the single-particle level, I explain how we can use this complex hopping to observe

a chiral motion on a minimal setup of three atoms. I finally show how this complex

hopping is modified by the presence of other particles, thus creating a density-dependent

hopping. The majority of the results were presented here are published in Lienhard

et al. [2020], and the text here is adapted from this publication.

8.3.1 Spin-orbit coupling in a V-structure and effective model

We use the intrinsic spin-orbit coupling of the dipole-dipole interaction: d̂+1 d̂
+
2 e

−2iφ +

d̂−1 d̂
−
2 e

2iφ (see Equation (8.3)) to implement a complex hopping. This term couples

two-atom states with different total internal angular momentum. We thus need

to work with three Rydberg states in a V-structure. Here, we choose the states

|0⟩ =
⏐⏐60S1/2,mJ = 1/2

⟩
, |−⟩ =

⏐⏐60P3/2,mJ = −1/2
⟩
and |+⟩ =

⏐⏐60P3/2,mJ = 3/2
⟩
,

see Figure 8.5 a).

In order to isolate this V-structure from the other states, we apply (i) a magnetic field

Bz ≃ −8.5G and (ii) an electric field Ez ≃ 0.4V/cm (see Section 2.4.2). Both fields are
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Figure 8.5: Spectroscopy of the V-structure. a) Sketch of the three levels used in this

work. The three levels in a V-structure (highlighted in black) involved in the implementation

of the complex interaction are: |0⟩ =
⏐⏐60S1/2,mJ = 1/2

⟩
, |+⟩ =

⏐⏐60P3/2,mJ = 3/2
⟩

and |−⟩ =
⏐⏐60P3/2,mJ = −1/2

⟩
. The energy difference µ between |+⟩ and |−⟩ is

controlled by DC magnetic Bz and electric fields Ez perpendicular to the atomic array. b)

Microwave spectroscopy with Bz ≃ −8.5G and Ez ≃ 0.4V/cmG, from which we extract

µ/h = −15.7(2)MHz.

perpendicular to the atomic array. The magnetic field lifts the degeneracy between all

the Zeeman sublevels, whilst the electric field allows us to shift the
⏐⏐60P3/2,mJ = 1/2

⟩
state away from the V-structure. We define the energy difference between the |+⟩ and
|−⟩ states: µ = E(|+⟩)− E(|−⟩). In the following, we intentionally set a relatively

high value for µ compared to the interaction energies, such that the spin-orbit coupling

is an off-resonant process and can be treated perturbatively (see below). The target

value for µ is not as high as in Section 8.2 to still see the effect of the spin-orbit

coupling term. A good control over the value of µ is thus required. We measure

µ/h = −15.7(2)MHz by performing microwave spectroscopy of the 60S1/2 → 60P3/2

transition, see Figure 8.5 b). In the following, we only consider the three states of the

V-structure.

Dipole-dipole interaction in the V-structure. We consider three Rydberg atoms

(denoted as 1, 2 and 3) arranged in an equilateral triangle with side length r12 = 11µm,

each of them displaying the V-structure described above, see Figure 8.6 a). For each

atom pair (i, j), the internuclear axis forms an angle φij with the x axis. The
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Hamiltonian describing the system is:

H =
∑
i ̸=j

(
a†i b†i

)( −tb we−i2φij

wei2φij −ta

)(
a2

b2

)
+
∑
i

µ

2

(
na
i − nb

i

)
, (8.7)

where the two bosonic operators a†i and b†i on site i are defined by a†i |0⟩ = |+⟩i,
b†i |0⟩ = |−⟩i, and na = a†a, nb = b†b. The hopping amplitudes are related to the dipole

matrix elements (see Equation (8.3)) by:

ta,b =
| ⟨±| d̂+ |0⟩ |2

8πϵ0r312
, w =

3 ⟨+| d̂+ |0⟩ ⟨0| d̂− |−⟩
8πϵ0r312

(8.8)

and na,b
i = |±⟩ ⟨±| are the excitation density operators. For the distance r12 = 11µm

between the atoms considered here, we measure ta/h ≃ 1.5MHz and tb/h ≃ 0.55MHz

by performing the spin-exchange experiment described in Section 8.2.3. These values

are in good agreement with theoretical calculations of the interaction energies [Weber

et al., 2017]. We then deduce w/h ≃ 2.7MHz using the above equations (see also

Figure 8.1).

The various terms of the Hamiltonian are sketched in Figure 8.6 b) and can be

understood as follows. Considering a |−⟩ excitation on site i and a vacancy |0⟩ on
site j, there are two ways for the excitation to hop to site j: (i) via a direct hopping

with amplitude −tb (diagonal term in the Hamiltonian), or (ii) the |−⟩ excitation is

annihilated from site i and a |+⟩ excitation is created on site j, with amplitude we−2iφij

(off-diagonal term in the Hamiltonian). As the internal momentum is increased by

two quanta, the orbital phase factor is e−2iφij . Because the |+⟩ and |−⟩ states are not

degenerated in energy, the latter process has a cost µ/h = −15.7(2)MHz. As µ≫ w,

the probability for the internal state-flipping process to happen is weak. This means

that a |−⟩ excitation only has a small probability of becoming a |+⟩ excitation. We use

this feature to derive an effective spin-1/2 Hamiltonian by adiabatically eliminating

the |+⟩ state, which gives rise to a complex hopping amplitude for the |−⟩ excitation.

Adiabatic elimination of the |+⟩ state and effective Hamiltonian. We now derive

the expression of the complex hopping amplitude of a |−⟩ excitation. For this

demonstration, we suppose that we prepare the system in the state |−00⟩. As the
internal state-flipping hopping is off-resonant, the |−⟩ excitation only has a small

probability of becoming a |+⟩ excitation. In addition, as the interaction conserves the

number of excitations, once the atoms are initialized in the |−00⟩ state, they mostly
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Figure 8.6: Spin-orbit coupling in a triangle and effective model. a) Experimental

configuration of three atoms arranged in an equilateral triangle. We consider for each of

them the |0⟩, |+⟩ and |−⟩ states. b) The two processes for a |−⟩ excitation to hop from

site i to site j: the |−⟩ excitation is annihilated on site i, and a |−⟩ (solid arrow) or a

|+⟩ (dashed arrow) excitation is created on site j. c) The hopping of a |−⟩ excitation
from |−00⟩ to |0−0⟩ can be seen, in an effective picture, as the sum of (i) the direct

hopping with amplitude −tb, and (ii) two virtual hoppings through |00+⟩ with amplitude

w2ei4π/3/µ. This leads to an effective complex hopping amplitude teiϕ. d) Calculated

evolution of the site probabilities after preparing |−00⟩, for the effective model with hopping

amplitude teiϕ with ϕ = π/6 (dashed lines), and for our experimental implementation

considering the V-structure (solid lines). The excitation does not spread as time flows, and

moves from site to site in a chiral way.
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remain in the one excitation subspace consisting of the states |−00⟩, |0−0⟩ and |00−⟩.
The hopping of a |−⟩ excitation from site 1 to 2, i.e., the change of the three-atom

state from |−00⟩ to |0−0⟩ (see Figure 8.6 c)), proceeds either by a direct hopping

with amplitude −tb, or by a second-order coupling via the intermediate state |00+⟩
consisting in two successive flips of the internal state. The latter has an amplitude

−w2 e2i(φ32−φ13)/µ, with φ32− φ13 = 2π/3. Consequently, the hopping amplitude −teiϕ
from site 1 to 2 is the sum of the amplitudes of these two processes

teiϕ = tb + ei4π/3
w2

µ
. (8.9)

The representation of the amplitudes in the complex plane is shown in Figure 8.6 c).

In this perturbative picture, the |+⟩ excitation is adiabatically eliminated, and the

problem reduces to the hopping of the |−⟩ = b†i |0⟩ excitation described by the effective

Hamiltonian

Heff = −t
3∑

i=1

[
eiϕb†i+1bi + e−iϕb†ibi+1

]
, (8.10)

with b4 ≡ b1. The Peierls phase ϕ can be interpreted as the result of an emergent

gauge field and the magnetic flux through the triangle is thus 3ϕ. Experimentally,

both the effective hopping amplitude t and the flux 3ϕ are controlled by the distance

between the atoms and the energy separation µ. For non-zero flux (modulo π), the

excitation exhibits a chiral motion when evolving in the triangle. In particular, for

3ϕ = ±π/2 [Roushan et al., 2017], the excitation hops sequentially from site to site

in a preferred direction. Figure 8.6 d) shows the expected motion: we plot the site

probabilities as a function of time (i) in the case of the complex hopping of a |−⟩
excitation described by the effective Hamiltonian (8.10) (dashed lines), and (ii) for

the three-level structure involving the |+⟩ state, governed by the Hamiltonian (8.7)

(solid lines). The fast oscillations exhibit a frequency close to µ/h, and result from the

non-perfect elimination of the |+⟩ state. We now present the experimental results.

8.3.2 Observation of chiral motion

Experimental sequence. To experimentally demonstrate the chiral motion of a

|−⟩ excitation resulting from the complex hopping of Equation (8.9), we perform

the sequence described in Figure 8.7 a). After initializing the atoms into |g⟩ =⏐⏐5S1/2,F = 2,mF = −2
⟩
using optical pumping, we rotate the magnetic field along Bz

(see Section 2.4.1). For Bz < 0 the resulting atomic state is thus
⏐⏐5S1/2,F = 2,mz = 2

⟩
.
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After switching off the dipole traps, we prepare the |000⟩ state in 2µs using a STImu-

lated Raman Adiabatic Passage (STIRAP) (see Section 2.3.1) via the intermediate state⏐⏐5P1/2,F = 2,mz = 2
⟩
(this experiment was performed with the previous excitation

scheme, see Chapter 3). Finally, we address atom 1 with a focused laser beam tuned

near the 6P3/2 − 60S1/2 transition (see Section 2.3.3), which light shifts the transition

frequency by ∼ 6MHz, and apply a 400 ns microwave π-pulse resonant with the

light-shifted |0⟩ → |−⟩ transition. This prepares a |−⟩ excitation on site 1.

After the preparation of the system in the state |−00⟩, we let it evolve under the

action of the dipole-dipole interaction for a time tint. We then apply a 400 ns read-out

pulse to de-excite the atoms in |0⟩ back to the 5S1/2 manifold, and switch on the dipole

traps again. Atoms in the 5S1/2 state are recaptured, whereas atoms still in Rydberg

states are lost (see Section 2.3.2). A final fluorescence image reveals, for each site, if

the atom is in the |0⟩ state (the atom is recaptured), or in another Rydberg state (the

atom is lost). Our detection method does not distinguish between these other Rydberg

states, including |+⟩ and |−⟩. We will denote the Rydberg states other than |0⟩ as a
single state |1⟩. As the |+⟩ subspace is hardly populated in our experiment, the loss of

an atom corresponds mainly to its detection in the |−⟩ state.

Chiral motion. The result of this first experiment is presented in Figure 8.7 b),

where we show the three-site probabilities to be in the states |100⟩, |010⟩ and |001⟩ as
a function of the interaction time tint. As expected, we observe a chiral motion of a

localized |−⟩ excitation in the counterclockwise direction 1→ 3→ 2→ 1. This is the

signature of an effective magnetic field acting on the hopping excitation, described by

the Peierls phases. The fact that the three probabilities do not sum to 1 comes from

the imperfect preparation of the state |100⟩ and detection errors.

To reverse the direction of motion, we reverse the sign of Bz after the optical

pumping stage. The initial atomic state is now
⏐⏐5S1/2,F = 2,mz = −2

⟩
. In this

configuration, following the Rydberg excitation, the V-structure in the Rydberg

manifold involves |0⟩ =
⏐⏐60S1/2,mJ = −1/2

⟩
, |+⟩ =

⏐⏐60P3/2,mJ = −3/2
⟩
, and |−⟩ =⏐⏐60P3/2,mJ = +1/2

⟩
. The value of µ remains unchanged, as the Stark shift only

depends on |mj|. The hopping of a |−⟩ to a |+⟩ excitation now corresponds to a

decrease of the internal momentum by two quanta: the orbital phase factor is thus e2iφij ,

and the sign of the Peierls phase is changed. Figure 8.7 c) shows the same three-site

probabilities as in Figure 8.7 c) for this opposite direction of Bz. As expected, we now

observe a chiral motion of the |−⟩ excitation in the clockwise direction 1→ 2→ 3→ 1.
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Figure 8.7: Observation of the chiral motion of a single |−⟩ excitation. a) Sketch
of the experimental sequence. We prepare the state |−00⟩ using a single-site addressing

which light-shifts atom 1, then apply the microwave field at the light-shifted transition. We

then let the system freely evolve for a duration tint, and finally lift the dynamics and read

the system’s state by de-exciting the atoms in |0⟩ to the ground state. b) and c) Evolution

of the three-site probabilities to be in the states |100⟩, |010⟩ and |001⟩ as a function of tint

for two opposite directions of Bz. The solid lines are simulations including experimental

errors in the preparation and the detection, as well as shot-to-shot fluctuations in the

atomic position (which lead to the observed damping of the oscillations).

Comparison to simulations. Finally, we compare the experimental data for the

chiral motion in both directions with a theoretical model solving the Schrödinger

equation for this three-atom system including all the Zeeman sublevels of the 60S1/2

and 60P3/2 manifold, and the full dipole-dipole interaction. The simulations were

performed by the team of H.P. Büchler. The simulations take into account the full

experimental protocol to prepare the |−00⟩ excitation: (i) the finite efficiency of the

STIRAP process of 83% and (ii) a leakage to the other states outside the V-structure of

5% when performing the microwave π-pulse. We also consider shot-to-shot fluctuations

of the positions of the atoms (see Section 6.2.2). Importantly, due to these fluctuations,

the atoms can also be positioned in such a way that the interatomic axis is not exactly

perpendicular to the quantization axis. In this case, the dipolar interaction can change
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the magnetic quantum number by one, provoking additional leakage to states outside

the V-structure. These experimental imperfections are responsible for the observed

damping of the dynamics.

These imperfections are included in the simulations by sampling over 500 different

realizations of the initial configuration of the triangles. Finally, detection errors are

included through a Monte Carlo sampling of the numerical results. In the simulations

we account for the fact that the detection scheme does not distinguish between states

other than |0⟩ by computing the probabilities P|100⟩, P|010⟩ and P|001⟩ as measured in

the experiment. In both situations, we obtain a good agreement with the model, which

reproduces the frequency, the amplitude and the damping of the chiral motion.

8.3.3 Tunability of the Peierls phase

Now that we observed the chiral motion of a |−⟩ excitation, we demonstrate the

control of the Peierls phase by tuning the geometry of the triangle, while keeping the

same value for µ. To do so, we study an isosceles triangle parametrized by the angle

γ, see Figure 8.8 a). In this configuration, the distance between sites 1 and 3 varies

with γ. The effective coupling, and hence the Peierls phase, is then different for each

link: the direct hoppings are t12 = t23 and t13 = κt12 with κ = 1/(2 cos[γ/2])3; the

virtual coupling are κw2eiγ/µ for the 1→ 2 and 2→ 3 couplings and w2e−2iγ/µ for

the 3→ 1 coupling. The variation of the gauge flux through the triangle, which is the

sum of the three Peierls phases, is represented in Figure 8.8 b) as a function of the

angle γ. It exhibits an almost linear dependence for γ ∈ [0◦, 90◦].

We show that we accurately control the gauge flux by observing the dynamics of

an initially prepared state |0−0⟩ for various angles γ, see Figure 8.8 c). For γ = 0◦,

the hopping is real and the propagation is symmetric, as performed in our very

first implementation of the coherent transfer of an excitation in a chain of three

atoms [Barredo et al., 2015]. Interestingly enough, the gauge flux also cancels for an

angle γ ≃ 75◦, which we observe experimentally. Depending on the value of γ, we can

force the excitation to propagate clockwise (γ = 45◦) or preferentially towards atom 1

(γ = 90◦).

In order to grasp these results under a single observable which characterizes the

preferential direction of the excitation, we compute the population imbalance between

site 1 and site 3, I = (P|100⟩ − P|001⟩)/(P|001⟩ + P|100⟩), at time tint = 0.4µs for various

angles γ, see Figure 8.8 d). We choose tint = 0.4µs as it corresponds to the excitation

mainly located on sites 1 and 3 for γ = 0◦. For a negative flux (modulo 2π) the

195



Chapter 8: Dipole-dipole interaction between a few Rydberg atoms

0.00 0.25 0.50 0.75 1.00 1.25
Interaction time tint (µs)

0.0

0.5

1.0

P
ro
b
ab
ili
ti
es

a)

d)

b)
1

2

3

0.00 0.25 0.50 0.75 1.00 1.25
Interaction time tint (µs)

0.0

0.5

1.0

P
ro
b
ab
ili
ti
es

0.00 0.25 0.50 0.75 1.00 1.25
Interaction time tint (µs)

0.0

0.5

1.0

P
ro
b
ab
ili
ti
es

0.00 0.25 0.50 0.75 1.00 1.25
Interaction time tint (µs)

0.0

0.5

1.0

P
ro
b
ab
ili
ti
es P|100〉 P|010〉 P|001〉

0 15 30 45 60 75 90
Angle γ (degrees)

−π

−3π/4

−π/2

−π/4

0

π/4

G
au
ge

flu
x

c)

0 15 30 45 60 75 90
Angle γ (degrees)

−0.5

0.0

0.5

Im
b
al
an
ce

I

Figure 8.8: Tunability of the Peierls phase. a) Tunable geometry used for this experi-

ment based on an isosceles triangle with r12 = r23 = 11µm. b) Calculated evolution of the

magnetic flux threading through the isosceles triangle as a function of γ. c) Evolution of

the system after preparing the state |0−0⟩ for various angles γ. We can tune the system

to observe (i) a symmetric propagation (γ = 0◦ and γ ≃ 75◦), (ii) a clockwise propagation

(γ = 45◦) or propagation preferentially towards atom 1 (γ = 90◦). d) We record the

imbalance I between the preferential propagation towards atom 1 (I > 0) or 3 (I < 0)

after tint = 0.4µs as a function of γ. The dashed line is the simulation.
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excitation propagates towards site 1, while it propagates towards site 3 for a positive

flux, as expected. The data are in good agreement with the simulation of the dynamics

of the system (dashed line).

8.3.4 The two excitation case

Now that we have described the dynamics of single-particle systems and shown a good

understanding and control over the Peierls phase, we move on to the study of the

dynamics of two excitations. For ensembles of two-level atoms in resonant interaction,

the excitations can be mapped onto hard-core bosons. A natural question to ask in

our present multi-level situation is the consequence of the hard-core constraint on the

dynamics of the |−⟩ excitations.
In order to explore this experimentally, we arrange the atoms in a equilateral triangle

and initialize the three-atom system with two |−⟩ excitations on sites 2 and 3, while

site 1 is in state |0⟩, thus preparing the three atom state |0−−⟩ (see Figure 8.9 a)).

To do so we again use the addressing laser on site 1, but tune the π microwave pulse

on resonance with the free space |0⟩ → |−⟩ transition. As we drive the microwaves on

two interacting atoms, the transition is harder to achieve as we need to fulfill the

condition ΩMW ≫ tb in order to efficiently populate the |↑↑⟩ state. We perform the π

rotation in 200 ns and light shift atom 1 by ∼ 35MHz.

In the case of hard-core bosons evolving with the Hamiltonian in Equation (8.10),

one would expect the hole (state |0⟩) to propagate in the opposite direction to the

single |−⟩ excitation case, as observed using superconducting circuits [Roushan et al.,

2017]. The result of our experiment is presented in Figure 8.9 b), where we use

the same parameters as for the single excitation experiment, i.e., a Peierls phase

ϕ = π/6. Remarkably, here we do not observe any chiral motion: the hole state |0⟩
propagates almost symmetrically towards sites 2 and 3, suggesting that the hopping

amplitude between sites is now real, and that the description of the dynamics by

the Hamiltonian (8.10) is no longer valid. The simulations (solid lines) validate this

observation. This indicates that the hard-core constraint between the excitations |−⟩
influences the induced Peierls phases.

Density-dependent hopping. To understand this, we come back to the hard-core

constraint in our system. Two particles, irrespective of their internal state |+⟩ or |−⟩,
can not reside on the same site. As a consequence, the effective hopping from site

1 to 2 is modified if an excitation is already present on site 3: this suppresses the
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Figure 8.9: Density-dependent hopping. a) The presence of a |−⟩ excitation on site 3

prevents the internal state-flipping process responsible for the complex hopping of the

|−⟩ excitation from 2 to 1: only the real coupling remains. b) Probability to be in the

doubly excited three-site states |011⟩ (targeted initial state), |101⟩ or |110⟩ as a function

of tint. The solid line is the simulation which takes into account experimental parameters,

including state preparation. c) Simulations in an ideal case including the three levels of the

V-structure. As displayed on the data, we observe a slow chiral motion towards populating

the |101⟩ state. This feature results from a fourth-order process via |0++⟩.

off-resonant process, which is at the origin of the complex hopping amplitude in the

single excitation case, leaving only the direct hopping described by −tb. Therefore, the
hard-core constraint generates a density-dependent hopping, where the phase of the

hopping amplitude, as well as its strength, depends on the occupation of the third

lattice site. The effective Hamiltonian describing this situation generalizes the one of

Equation (8.10) to the case of more than one |−⟩ excitation:

Hmany
eff = −t

3∑
i=1

[
eiϕ(1−ni+2)b†i+1bi +∆b†i+1bini+2 + h.c.

]
(8.11)

with ni+2 = b†i+2bi+2 the occupation of the third site and ∆ = (tb− t)/t. The first term

in the effective Hamiltonian shows that the Peierls phase is now density-dependent.

The second term describes a conventional correlated hopping, which does not modify
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the real or complex nature of the couplings between sites [Lienhard et al., 2020]. In

addition, the adiabatic elimination leads to two-body interactions terms ∝ (w2/µ)ninj ,

that do not play a role in an equilateral triangle and that we therefore drop.

Interpretation in terms of anyonic statistics. The influence of the density-dependent

Peierls phases on the hopping amplitudes has a simple interpretation in terms of

abelian anyonic particles in one-dimension in the absence of a magnetic field [Fradkin,

1991; Zhu and Wang, 1996; Kundu, 1999; Keilmann et al., 2011; Greschner and Santos,

2015]. Here, we obtain anyonic particles with a hard-core constraint and a statistical

angle 3ϕ. For this mapping, we use a particle-hole transformation and interpret a

single hole as an anyonic particle. In the absence of a gauge field, a single anyon (a

hole) exhibits a symmetric dynamics in a triangle, which is the result observed in

Figure 8.9 b). Now placing two anyons (two holes) in the triangle, we are back to the

case studied in Section 8.3.2, where we observe a chiral motion (see Figure 8.7 b) and

c)): in the anyon interpretation, this is due to the statistical phase under exchange

of the two anyonic particles or equivalently to the fact that one of the two anyonic

particles carries a magnetic flux for the other one. The value of this magnetic flux

through the triangle is the statistical phase of these anyons. The mapping onto anyons

can be made rigorous and is presented in the supplemental material of Lienhard et al.

[2020].

Fourth-order process. We still observe a residual asymmetry in the dynamics, see

Figure 8.9 b), which is also present in the simulation. This indicates that the complex-

valued hopping is not fully suppressed. Following the same effective Hamiltonian

approach as the one outlined in Section 8.3.1, the internal state-flipping hopping is

now a fourth-order process, see Figure 8.9 c). Considering the hopping from site 1

to site 2, the hole can directly hop with an amplitude −tb, or virtually go through

|++0⟩, leading to a total amplitude teiϕ = tb + w4/µ3e−4iπ/3. As w ≪ µ, the complex

part of this hopping is extremely small compared to the single particle case, thus

leading to the observed quasi-symmetric dynamics.

Extension towards larger number of atoms. I presented in this section our exper-

imental implementation of a complex, density-dependent hopping amplitude on the

minimal setup of three Rydberg atoms. These results are the first step towards its

implementation on large 2D arrays, in views of studying the topological properties

of such systems. As the hopping strongly depends on the actual system’s geometry
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(as demonstrated in Section 8.3.3), the extension of this work to large arrays is not

straightforward. However, the team of H.P. Büchler numerically showed that on a

honeycomb lattice, the chiral motion of an excitation along the system’s edges is

reachable using our platform [Weber et al., 2018]. The honeycomb lattice and its

connection to the Haldane model is discussed in detail in the Thesis of Vincent Lienhard

[2019].

8.4 Conclusion

In this chapter, I presented the implementation of two models using the dipole-dipole

interaction between Rydberg atoms. I started with the XX model on two atoms using

the resonant term of the dipole-dipole interaction. I presented two main features of the

model we will study in many-body systems in Chapter 9: the oscillation of the system’s

magnetization and the hopping of an excitation. I then presented the implementation

of a density-dependent, complex hopping using the spin-orbit coupling naturally

present in dipole-dipole interaction, by observing the characteristic chiral motion

of an excitation in a minimal setup of three Rydberg atoms. A simple explanation

of this chiral motion is achieved in the perturbative regime, where the spin-orbit

coupling gives rise to Peierls phases describing a homogenous magnetic field through

the triangle. Notably, the Peierls phase depends on the occupation of neighboring

sites and therefore naturally gives rise to a dynamical gauge field. Especially, we have

demonstrated in our minimal setup that this density-dependent Peierls phases can be

interpreted as particles with an anyonic exchange statistics. This leads to an intriguing

open question, whether the combination of such topological band structures with

the strong interactions between the bosonic particles can lead to the experimental

observation of integer or fractional Chern insulators.
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In this chapter, I present our engineering of XXZ Hamiltonians with tunable

anisotropies using the dipole-dipole interaction between Rydberg atoms. The XXZ

Hamiltonians model the behavior of a wide variety of systems: from the description of

quantum magnetism in various situations [Manousakis, 1991], to superfluidity [Hauke

et al., 2010], supersolidity [Ng and Lee, 2006; Heydarinasab and Abouie, 2018], or

valance-bond solids [Isakov et al., 2006]. In particular, the models exhibit the “spin-

liquid” phase [Anderson, 1987], which might play a role in high-Tc superconducting

materials [Barnes, 1991]. The model has been analytically solved 50 years ago [Yang

and Yang, 1966] in 1D and for nearest-neighbor interactions. However, its extension

to long-range interactions [Sandvik, 2010; Gong et al., 2016; Maghrebi, Gong, and

Gorshkov, 2017; Frerot, Naldesi, and Roscilde, 2017] and to higher dimensions [Yunoki,

2002; Yamamoto et al., 2017] is only known through approximate calculations. It is

thus interesting to study these models on synthetic quantum platforms.
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XXZ Hamiltonians have been implemented on various synthetic platforms, such as

polar molecules [Yan et al., 2013; Hazzard et al., 2014], ultracold atoms in optical

lattices [Jepsen et al., 2020], and superconducting circuits [Kounalakis et al., 2018].

Using the dipole-dipole interaction between Rydberg atoms, its implementation has

been demonstrated using Rydberg states with the same parity, with an anisotropy fixed

by the choice of the principal quantum number [Signoles et al., 2021]. Circular Rydberg

atoms also offer the promise of realizing the XXZ model with anisotropy tunable

by external electric and magnetic fields [Nguyen et al., 2018]. Here, we show that,

starting from the resonant dipole-dipole interaction which implements the XX model

(see Section 8.1), we can engineer XXZ Hamiltonians with tunable anisotropies using

a sequence of four microwave pulses. I first explain how the engineering implements

XXZ Hamiltonians, and benchmark the procedure on the simplest case of two atoms.

We then study various XXZ Hamiltonians by performing two different experiments:

the depolarization of an initially magnetized array, and the dynamics of 1D domain

wall systems in periodic and open boundary conditions. We compare our data with

numerical simulations and assess the residual limitations of the technique. Part of the

results presented here are submitted in Scholl et al. [2021b].

9.1 Microwave engineering of programmable XXZ Hamiltonians

The engineering is based on the combination of the resonant dipole-dipole interaction

between Rydberg atoms and a periodic driving of the system using microwave pulses,

which can be seen as a Floquet driving. Floquet engineering techniques [Goldman and

Dalibard, 2014], initially introduced in the context of NMR [Shirley, 1965; Vandersypen

and Chuang, 2005], has been used to explore new physical phenomena such as dynamical

phase transitions [Jurcevic et al., 2017], Floquet-prethermalization [Rubio-Abadal

et al., 2020; Peng et al., 2021], novel phases of matter [Kyprianidis et al., 2021] and

topological configurations [Aidelsburger et al., 2013; Meinert et al., 2016; Fläschner

et al., 2016; Eckardt, 2017; Schweizer et al., 2019; Wintersperger et al., 2020]. Here, we

apply those techniques to Rydberg atoms in tweezers arrays. I first derive the analytical

expression of the engineered XXZ Hamiltonians, then show its implementation on

the simplest case of two interacting atoms. I then discuss and quantify the current

technical limitations of the engineering on a single atom.
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Time

Figure 9.1: Pulse sequence. Sketch of the pulse sequence, composed of four π/2 pulses

with rotation axis (X,−Y ,Y ,−X) and delays τ1, τ2 and 2τ3 between the pulses. The

total sequence duration is tc = 2(τ1 + τ2 + τ3).

9.1.1 Pulse sequence

We consider an array of Rydberg atoms, each described as a two-level system with

states of opposite parity mapped onto pseudo-spin states: |nS⟩ = |↓⟩ and |nP ⟩ = |↑⟩.
As described in Section 8.1, the resonant dipole-dipole interaction gives rise to the XX

Hamiltonian:

HXX =
1

2

∑
i<j

Jij(σ
x
i σ

x
j + σy

i σ
y
j ). (9.1)

Here, Jij = C3(1− 3 cos2 θij)/(2r
3
ij), with rij the distance between atoms i and j, θij

their angle compared to the quantization axis, and σx,y
i the Pauli matrices for atom i.

Adding a resonant microwave field to couple the |↓⟩ and |↑⟩ states, the Hamiltonian

becomes, in the rotating-wave approximation:

Hdriven = HXX +
~Ω(t)
2

∑
i

cosφ(t)σx
i + sinφ(t)σy

i , (9.2)

where Ω(t) and φ(t) are the Rabi frequency and phase of the microwave field. We use

a sequence consisting of four π/2-pulses with constant phases φ = (0,−π/2, π/2, π)
separated by durations τ1, τ2 and 2τ3, shown in Figure 9.1. This (X,−Y ,Y ,−X)

sequence alternates between clockwise and counter-clockwise rotations in order to

limit the effect of imperfections in the engineering [Vandersypen and Chuang, 2005].

We define tc = 2(τ1 + τ2 + τ3) the total duration of the sequence, and consider in the

following that the duration of the pulses is negligible compared to tc. We repeat n

times this sequence to access timescales longer than tc in the dynamics.

The effect of this pulse sequence on the system can be intuitively understood as

follows. Before the first π/2-pulse, the atoms interact under the XX Hamiltonian
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for a duration τ1: H(t < τ1) = HXX. Then, the first π/2-pulse in the x-direction

rotates the spin frame: U †
xσ

yUx = σz, and U †
xσ

xUx = σx. This means that for a

duration τ2, the system evolves under the Hamiltonian: H(τ1 < t < τ1 + τ2) = HXZ =
1
2

∑
i<j Jij(σ

x
i σ

x
j + σz

i σ
z
j ). Then, the π/2-pulse in the y direction again transforms the

spin frame: U †
xU

†
yσ

yUyUx = σz and U †
xU

†
yσ

xUyUx = σy. The system thus evolves under

HYZ. Due to this rotation of the spin frame, the Hamiltonian changes after each

rotation (see the successive Hamiltonians in Figure 9.1), and eventually comes back to

HXY after the four pulses. The system thus evolves under a periodic, time-dependent

Hamiltonian. However, we can derive an effective time-independent Hamiltonian for

the system’s evolution using Average Hamiltonian Theory (AHT).

Average Hamiltonian theory. The AHT states that the system’s evolution operator

U during the pulse sequence can be written as U(tc) = e−iHavtc/~, where Hav is the

time-average Hamiltonian over one sequence. The system thus appears to evolve under

a time-independent Hamiltonian. We obtain Hav using a Magnus expansion of the

form Hav = H0 +H1 +O(h2/(Jmtc)
2), where we introduced the averaged interaction

energy Jm = 1/N
∑

i<j Jij, with N the total number of spins. The first two terms of

the Magnus expansion are:

H0 =
1

tc

∫ tc

0

H(t)dt, (9.3)

H1 =
−i
2tc

∫ tc

0

∫ t′

0

[H(t′),H(t)]dt′dt. (9.4)

As the performed pulse sequence is symmetric, all the odd orders of the expansion

(including H1) are zero. Under the assumption Jmtc/h≪ 1, we neglect the high order

terms of the Magnus expansion and the average Hamiltonian reduces to Hav = H0.

We will experimentally probe this condition on a many-body system in Section 9.2.

The expression of Hav is given by the time average of the successive Hamiltonians

during the sequence:

Hav =
1

2

∑
i<j

2Jij
tc

[(τ1 + τ2)σ
x
i σ

x
j + (τ1 + τ3)σ

y
i σ

y
j + (τ2 + τ3)σ

z
i σ

z
j ]. (9.5)

XXZ Hamiltonians. Hav is an XYZ Hamiltonian, whose coefficients are tunable by

simply varying the delays between the pulses. In this work, we restrict ourselves to

the case of the XXZ Hamiltonian which conserves the number of spin excitations by
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setting τ2 = τ3. The corresponding Hamiltonian is:

HXXZ =
1

2

∑
i<j

Jx
ij(σ

x
i σ

x
j + σy

i σ
y
j ) + Jz

ijσ
z
i σ

z
j , (9.6)

where Jx
ij = Jy

ij = 2Jij(τ1 + τ2)/tc and Jz
ij = 4Jijτ2/tc,. The anisotropy of the

Hamiltonian δ = Jz
ij/J

x
ij = 2τ2/(τ1 + τ2) is thus tunable in the range 0 < δ < 2. The

nearest-neighbor interaction energies Jx, Jz in the engineered XXZ model are related

to the natural nearest-neighbor interaction energy J :

Jx(δ) =
2J

2 + δ
and Jz(δ) =

2J δ

(2 + δ)
. (9.7)

9.1.2 Benchmark on two atoms

We now demonstrate the implementation of the XXZ Hamiltonian of Equation (9.6)

in the case of two interacting atoms. We observed on simulations that the high order

terms of the Magnus expansion are always zero for this specific case of two atoms,

which means that we do not need to fulfill the condition Jmtc/h≪ 1. We use this asset

to perform a single cycle, and vary the total duration tc of the sequence to observe the

system’s evolution. The extension to multiple cycles and their limits are discussed in

the next subsection.

We use the pseudo-spin states |↓⟩ =
⏐⏐90S1/2,mJ = 1/2

⟩
and |↑⟩ =

⏐⏐90P3/2,mJ = 3/2
⟩

separated by fMW/2π = 5.1GHz. The microwave field couples these states with a

Rabi frequency Ω/(2π) = 7.2MHz. The atoms are separated by 30µm, leading to a

natural interaction energy of J/h ≃ 930 kHz. We first check that we can faithfully

implement XXZ Hamiltonians by measuring the oscillation of the y magnetization (see

Section 8.2.2).

Benchmarking of the implementation on the magnetization oscillation. The

spectrum of the XXZ Hamiltonian for two atoms, sketched in Figure 9.2 a), consists of

two degenerate eigenstates |↓↓⟩ and |↑↑⟩ with energy Jz and two other eigenstates

|±⟩ = (|↑↓⟩ ± |↓↑⟩)/
√
2 with energy −Jz/2± Jx. To characterize the engineering of

the XXZ Hamiltonians using microwave pulses, we prepare the atoms in the state

|→→⟩y = (|↑↑⟩ − |↓↓⟩+ i
√
2 |+⟩)/2 following the procedure described in Figure 9.2 b)

and detailed in Section 8.2.2. We then apply the pulse sequence for a variable duration

tint = tc. This state evolves with time, and the total y-magnetization ⟨σy⟩ oscillates at
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b)
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Figure 9.2: Oscillation of the magnetization under XXZ Hamiltonians. a) Sketch

of the two-atom levels. b) Experimental procedure. We prepare the |→→⟩y state (see

Section 8.2.2), then let the system evolve whilst applying the pulse sequence with duration

tint to engineer various XXZ Hamiltonians. c) Oscillation of the y magnetization ⟨σy⟩ for
various XXZ Hamiltonians. We observe a slow-down of the frequency for δ ∼ 1. The solid

lines are fit to the data using damped sine functions. d) Oscillation frequency normalized

to the natural interaction energy (Jx − Jz)/J as a function of δ. The solid line is the

expected behavior for XXZ Hamiltonians.
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Figure 9.3: Dynamical tuning of the Hamiltonian and comparison to simulations.

a) Experimental sequence. We let the system evolve under the natural HXX, then switch

on the microwave engineering of HXXX. We then let the system again freely evolve under

HXX. b) Sketch of the two-atom levels. c) Magnetization oscillation without (green)

and with (red) microwave engineering of HXXX during the dynamics. d) Spin-exchange

experiment with microwave engineering of HXXX during the dynamics. We observe a slow

down of the oscillation frequency by a factor 2/3. The solid lines are simulations of the

Schrödinger equation, taking into account the microwave engineering.

a frequency |Jx − Jz|. We show the results of the experiment for various anisotropies

δ = 0, 0.33, 1.33, 1.8, see Figure 9.2 c). We observe a slow-down of the oscillation

frequency compared to the XX Hamiltonian. We measure the oscillation frequency

by fitting the data with damped sine functions, and plot them as a function of the

corresponding anisotropy δ, see Figure 9.2 d). We normalize the obtained frequencies

to the natural interaction energy J , measured by performing this experiment on

the XX Hamiltonian, without the pulse sequence. The solid line is the theoretical

prediction for XXZ Hamiltonians (derived from Equation (9.6)) without any fitting

parameter. We find an excellent agreement with the data, showing that the pulse

sequence faithfully implements the target XXZ Hamiltonian.

Dynamical tuning of the Hamiltonian. An asset of this engineering is the possibility

to dynamically change the engineered Hamiltonian during the system’s evolution. To

demonstrate this, we perform two experiments in which we change the Hamiltonian

during the evolution of the system, see Figure 9.3 a).

In a first experiment, we initialize the atoms in |→→⟩y, let them evolve under HXX

and apply the microwave pulse sequence between 0.8− 2.4 µs to engineer HXXX. As
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shown in Figure 9.3 b), ⟨σy⟩ is frozen during the application of the microwave pulses.

This is expected, as |↓↓⟩, |↑↑⟩ and |+⟩ are degenerate eigenstates of HXXX. After

2.4 µs, ⟨σy⟩ oscillates again, with no appreciable loss of contrast in the magnetization

oscillation compared to the case without any microwave pulses (green dots in Figure 9.3

b)). In order to show that we control the exact time at which the system switches

from one Hamiltonian to the other, we chose the duration of HXXX such that the

magnetization now oscillates out-of-phase as compared to the case without any

microwave pulses.

The second experiment we perform is the coherent exchange of an ↑ excitation
between the two atoms, described in Section 8.2.3. The hopping amplitude is given by

the difference in energy between the |+⟩ and |−⟩ states, equals to 2Jx (see Figure 9.3 c)).
This hopping strength does not depend on Jz, hence does not depend on the anisotropy

of the Hamiltonian. However, as the value of Jx depends on δ (see Equation (9.7)),

the hopping strength depends on the XXZ Hamiltonian in our implementation using

this microwave engineering. We perform the experiment by initializing the atoms in

|↑↓⟩, and measure the probability P↑↓ as a function of the interaction time tint, see

Figure 9.3 d). As done above, we first let the system evolve under HXX and we observe

an oscillation between |↑↓⟩ and |↓↑⟩ at a frequency 2J . We then engineer HXXX and

observe a reduction by a factor 0.65(2) of the oscillation frequency, in good agreement

with the expected factor of 2/3 for δ = 1 (see Equation (9.7)).

Comparison with simulations. Finally, we compare the results of the experiments

described above with the solution of the Schrödinger equation using the Hamiltonian

described in Equation (9.6). We include the imperfections measured on the experiment:

state preparation and measurement errors (SPAM) (see Section 8.2.3), and shot-to-

shot fluctuations of the interatomic distance (see Section 6.2.2). The results of the

simulations are shown as solid lines in Figure 9.3 c) and d), and are in good agreement

with the data. From this we conclude that the experimental imperfections are well

understood, and that in the case of two atoms, the engineered pulse sequence faithfully

implement the target Hamiltonian.

9.1.3 Current limitations

The above results were obtained using a single sequence of four pulses. However,

when moving to the many-body experiments, the Jmtc/h≪ 1 condition needs to be

fulfilled, and to access dynamics over timescales longer than tc we need to perform n
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times the pulse sequence. We will typically aim for Jmtc/h ∼ 0.1 in order to fulfill this

condition. As the relevant timescales is tint ∼ h/Jm to observe the system’s dynamics,

the required number of cycles is n ∼ 10. This means that we need to apply ∼ 40

pulses on the atoms. Any single-pulse imperfection (such as a mismatch with respect

to a π/2-pulse, or a residual detuning with the |↓⟩ → |↑⟩ transition) will thus strongly
impact the system. In this subsection, I briefly present the microwave setup we use,

then explain how we calibrate the pulses and benchmark their quality.

Microwave setup. We use a Tabor Electronics Arbitrary Waveform Generator

(AWG) to generate the microwave pulses. The AWG has a sampling rate of 5GS/s,

which allows us to design pulse sequences with a precision of ∼ 200 ps, which is

much smaller than the typical duration of the π/2-pulses, and the delay between the

pulses (∼ 20 ns). The pulses synthesized by the AWG have a frequency of ∼ 200MHz.

In order to reach the typical frequencies required to drive the |↓⟩ → |↑⟩ transition
(∼ 5 − 10GHz), we mix the AWG output with a Rhode and Schwartz microwave

synthesizer outputting a continuous wave in the range ∼ 5− 10GHz. The signal is

then sent to a microwave antenna placed on top of the experimental chamber.

Single atom calibrations. We calibrate the pulses parameters by considering a single

atom initially prepared in the |↓⟩ state, and perform the (X,−Y ,Y ,−X) sequence.

We set an equal delay between the pulses tc/4, see Figure 9.4 a). If the pulses were

perfect, we should recover the atom in the |↓⟩ state at the end of each cycle, see

Figure 9.4 b). We use this observable to calibrate the pulses: keeping constant the

pulse width, we vary the peak amplitude of the pulses and the microwave frequency in

order to maximize the probability P↓ to recover the atom in the |↓⟩ state at the end of

each cycle. After optimization, we obtain the typical data presented in Figure 9.4 c)

for tc = 300 ns. We observe that the pulses do not perfectly drive the system, which

we now discuss.

Calibration of the pulse error. In order to understand where this pulse error comes

from, we first compare the results of the above experiment for square pulses (purple)

and Gaussian pulses (red). We observe that the pulse error is stronger for square

pulses, which would indicate that the fast switch on/off of the pulses might be an

issue. This observation motivated the use of Gaussian pulses in all the many-body

experiment presented below. To further investigate this issue, we now fix the number of

cycles to n = 8 and measure P↓ as a function of tc, see Figure 9.4 d). The 1/e2 width
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Figure 9.4: Microwave pulse error on a single atom. a) Pulse sequence used for

this experiment. We set an equal delay between the pulses τ = tc/4. b) Bloch sphere

representation of the pulse sequence on the atom. The atom should be in |↓⟩ at the end of

each cycle if the sequence is perfect. c) Probability to find the atom in |↓⟩ as a function of

the number of cycles n for tc = 300 ns using square pulses (purple) and Gaussian pulses

(orange). The shaded region is a simulation taking into account an uncertainty in the

pulses θ = 6(1)% (see text). d) Probability to find the atom in |↓⟩ after n = 8 cycles as a

function of the cycle duration tc. We obtain better results for longer tc. The solid line is a

guide to the eye.

of the pulses is set to be 16.8 ns. We observe that the results are better for longer tc,

which indicates that having pulses too close from each other affects the pulse error.

For the rest of the chapter, we set tc = 300 ns, which is a suitable trade-off between (i)

fast enough cycles to fulfill the Jmtc/h≪ 1 condition (studied in Section 9.2) and (ii)

long enough cycles to limit the pulse errors. Further investigations would be required

to understand the origin of the phenomenon, such as directly measuring the microwave

field shone by the antenna.

To encompass these effects, we phenomenologically include an uncertainty in the

angle of rotation of the microwave pulse: for each pulse, we assign two values n1 and

n2 from a normal distribution centered around zero with a standard deviation ∆θ. We

then use these values to describe the rotation operator: if the desired rotation axis is
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x, the actual rotation is performed around the axis x′ such that

σx′
= (1− n2

1 − n2
2)

1/2σx + n1σ
y + n2σ

z. (9.8)

The shaded area in Figure 9.4 c) is a simulation taking into account a pulse uncertainty

∆θ = 0.06± 0.01, which closely matches the experimental results. We include this

pulse error in the following when comparing the results to simulations.

Conclusions. In this section, I showed that we are able to implement XXZ Hamilto-

nians with tunable anisotropies on two atoms, and dynamically change the engineered

Hamiltonian during the system’s evolution. I also showed on a single atom that the

implementation is not perfect due to microwave pulse errors. We will see next that this

imperfection is enough to closely match the data, indicating that solving this technical

issue would be enough to faithfully implement XXZ Hamiltonians on many-body

systems.

9.2 Freezing of the magnetization under the XXX Heisenberg Hamil-

tonian

In this section, we focus on the evolution of a magnetized state, as performed above for

two atoms. For this purpose, as was done in Geier et al. [2021] for a gas of cold atoms,

we engineer the XXX Heisenberg model for which the total magnetization is a conserved

quantity. The ability to freeze the magnetization of a system for a controllable time

provides a potential route towards dynamical decoupling and quantum sensing [Choi

et al., 2020]. We perform this experiment in 1D and 2D systems, and show that in

both cases we are able to engineer the XXX model and freeze the magnetization. We

also probe the effect of the Jmtc/h≪ 1 condition on the freezing of the magnetization.

Freeze of the magnetization on a 1D chain. We first consider a system consisting

of 10 atoms arranged in a circle (see Figure 9.5 a)) with a distance of a = 19µm

between the atoms. For this experiment and for the rest of the chapter, we use the

Rydberg states |↓⟩ =
⏐⏐75S1/2,mJ = 1/2

⟩
and |↑⟩ =

⏐⏐75P3/2,mJ = −1/2
⟩
, separated

by fMW = 8.5 GHz. In these conditions, the nearest neighbor interaction energy is

J/h ≃ 270 kHz and the mean interaction energy is Jm/h ≃ 0.6MHz. We initialize the

system in the |→→ · · · →⟩y state following the protocol described in Section 8.2.2.

We apply the driven Hamiltonian HXXX for 2µs, then switch off the drive and let the
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system evolve under HXX. We use tc = 200 ns, such that Jmtc/h ≃ 0.15. We measure

the three magnetization components ⟨σx,y,z⟩ (orange, green, purple, respectively) after
various evolution times tint, see Figure 9.5 a). We observe two behaviors depending on

the Hamiltonian:

r During the first 2µs, the three magnetization components ⟨σx,y,z⟩ are approxi-

matively constant. This is expected from the XXX Heisenberg Hamiltonian: as

the model exhibits a SU(2) symmetry, each magnetization component ⟨σx,y,z⟩
is conserved, hence the total magnetization. This shows that we faithfully

implement HXXX on this few-body system.

r After switching off the driving, we observe a decay of the y-magnetization towards

zero. This behavior is different from the two atom case, in which we observed an

oscillation of the magnetization (see Section 8.2.2). This demagnetization results

from the beating of all the eigenfrequencies of HXX for this many-atom system.

The fact that we accurately implement HXXX shows that setting Jmtc/h ≃ 0.15 is

enough to consider that the higher orders of the Magnus expansion (see Section 9.1.1)

have a negligible impact on the system.

Freeze of the magnetization on 2D arrays and probe of the Jmtc/h≪ 1 condition.

We now consider 2D arrays, and perform the same experiment as above. As the

number of neighbors is higher than in 1D, the value of Jm is higher for the same

nearest neighbor distance a, meaning that the Jmtc/h ≪ 1 condition is harder to

achieve. Here, we use tc = 300 ns and Gaussian microwave pulses with a 1/e2 width of

16.8 ns. We apply the driven Hamiltonian HXXX for 3µs, then switch off the drive

and let the system evolve under HXX. We measure ⟨σy⟩ for various tint and perform

the experiment with two different geometries: (i) a 32-atom array in a “diamond”

configuration (green) with a ≃ 27µm leading to J/h ≃ 120 kHz and Jmtc/h ≃ 0.2,

and (ii) a 36-atom square array (red) with a ≃ 20µm, leading to J/(2π) ≃ 270 kHz

and Jmtc/h ≃ 0.5. The dynamics is close to the one observed above for the 1D system.

The freezing is less efficient for the square array, which shows that the high order

terms of the Magnus expansion are not negligible and thus demagnetize the system, as

the implemented Hamiltonian is not completely HXXX. This latter experiment shows

the importance of the Jmtc/h≪ 1 condition on the engineered Hamiltonian.

In order to check the validity of our results, we compare the data of the “diamond”

configuration (Jmtc/h ≃ 0.2) with simulations using the Moving-Average-Cluster-

Expansion (MACE) method [Hazzard et al., 2014], which we now briefly discuss. The
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Figure 9.5: Freeze of the magnetization in the XXX Heisenberg model. After

initializing the system in the |→→ · · · →⟩y state following the protocol described in

Section 8.2.2, we engineer HXXX for a few microseconds, then let the system evolve under

the natural HXX Hamiltonian. We perform the experiment for various geometries with

different values of Jmtc/h: a) a 10-atom circle, and b) 2D arrays with two different values

of Jm. The solid line in b) is the results of MACE simulations, which agrees closely to the

experimental results.

simulations were performed by the team of M. Weidemüller.

Comparison of the results in the “diamond” configuration to MACE simulations.

As the ab-initio calculation of the dynamics is challenging for a 32-atom array, we

use a MACE method to simulate the system. This method consists of diagonalizing

clusters, here of 12 atoms, using the Schrödinger equation and averaging the results

over all 12-atom cluster configurations possible with 32 atoms. We include in the

simulation the various state preparation and detection errors (see Section 8.2.3) and

imperfections in the microwave pulses (see Section 9.1.3). The simulation, without

adjustable parameters, is in good agreement with the observed dynamics at all times.

Furthermore, we find that not taking into account the imperfections of the microwave

in the simulation would lead to a perfect freezing of the magnetization during the

application of the pulses: the observed residual decay of the magnetization during their

application is thus a consequence of the microwave imperfections. This indicates that

Jmtc/h ≃ 0.2 is enough to neglect the higher-order terms in the Magnus expansion.

We thus set Jmtc/h < 0.2 in the following in order to safely neglect the higher order of
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Chapter 9: Quantum simulation of programmable XXZ Hamiltonians

the Magnus expansion. Previously, the MACE method was only validated against

experiments using disordered ensembles with large numbers of atoms [Hazzard et al.,

2014; Signoles et al., 2021]. Here, the good agreement between data and simulation

observed in Figure 9.5 b) indicates that it is valid for ordered systems of mesoscopic

size as well.

Conclusions. In this section, I demonstrated our implementation of the XXX

Heisenberg Hamiltonian on 1D and 2D geometries by observing the freezing of the

system’s magnetization. I showed that (i) the magnetization along each spin component

is frozen, (ii) used this observable to probe the Jmtc/h ≪ 1 condition and found

suitable parameters to neglect the higher orders of the Magnus expansion, and (iii)

showed a good agreement between the data and numerical simulations using a method

which had never been performed on ordered systems. These results are the first step

towards a more complete study of the dynamics of magnetized systems under XXZ

Hamiltonians.

9.3 Dynamics of domain wall states in 1D systems

We now focus on the exploration of transport properties of spin excitations in 1D

systems governed by spin-1/2 XXZ Hamiltonians. These properties are actively studied,

both experimentally and theoretically [Gobert et al., 2005; Sirker, Pereira, and Affleck,

2009; Barmettler et al., 2009; Bertini et al., 2021]. For 1D systems, the behavior is

known to be highly dependent on the parameters of the Hamiltonians [Giamarchi,

2003]. Several experimental methods, involving the relaxation of spin-spiral states [Hild

et al., 2014; Jepsen et al., 2020] or the melting of initially prepared domain walls [Wei

et al., 2021; Joshi et al., 2021], enable the extraction of global transport behaviors

ranging from ballistic to localized ones as a function of the Hamiltonian parameters.

The study of transport dynamics in many-body system using single-atom resolution

techniques has been demonstrated with trapped ions [Richerme et al., 2014; Jurcevic

et al., 2014; Tan et al., 2021], or ultra-cold atoms in optical lattices [Fukuhara et al.,

2013].

Here, I describe our experimental investigations on the dynamics of Domain Wall

(DW) states. A DW is a state for which the spin-up atoms are bunched, such that a

wall separates spin-up atoms from spin-down ones. The evolution of such systems

depends on the anisotropy δ due to two competing effects: (i) a melting of the DW

caused by spin-flips with a rate 2Jx, and (ii) its maintaining due to an energy cost 2Jz
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9.3 Dynamics of domain wall states in 1D systems

to break the DW. In the case of a pure initial state, which is the relevant situation

for our experiment, for δ < 1, the DW should melt, with a magnetization profile

expanding ballistically in time [Collura, De Luca, and Viti, 2018; Misguich, Pavloff,

and Pasquier, 2019]. At the isotropic point (δ = 1), one expects a diffusive behaviour

with logarithmic corrections [Misguich, Mallick, and Krapivsky, 2017]. For δ > 1, the

magnetization profile is predicted to be frozen at long times [Gobert et al., 2005;

Mossel and Caux, 2010; Misguich, Pavloff, and Pasquier, 2019].

Here, we probe the emergence of these properties with few-body systems of 10

atoms. We will consider two cases: (i) a 1D chain with Periodic Boundary Conditions

(PBC), and (ii) a 1D chain with Open Boundary Conditions (OBC). We will show that

the system’s dynamics strongly depends on the geometry. I start by briefly explaining

the preparation of a DW state, then study the system’s evolution under various XXZ

Hamiltonians. I first describe the OBC case, then finally study the system’s evolution

in PBC.

9.3.1 Preparation of a domain wall state

We consider a 10-atom array arranged in a circle (OBC) and in a spiral (PBC)

(see Figure 9.6) with nearest-neighbor distance a = 19µm. We consider again the

Rydberg states |↓⟩ =
⏐⏐75S1/2,mJ = 1/2

⟩
and |↑⟩ =

⏐⏐75P3/2,mJ = −1/2
⟩
, such that

J/h = 270 kHz and Jm/h = 0.6MHz. We set tc = 300 ns leading to Jmtc/h ≃ 0.18,

which is low enough to neglect the high order terms of the Magnus expansion (see

Section 9.2).

Experimental sequence. The experimental sequence used in this section is sketched

in Figure 9.6 a). After initializing the atoms in |↓ ... ↓⟩ using the STImulated Raman

Adiabatic Passage (STIRAP) technique described in Section 2.3.1, we apply a first

microwave π-pulse with Rabi frequency ΩMW/(2π) ≃ 7MHz to bring the atoms

in |↑ ... ↑⟩. We then light-shift the |↑⟩ → |↓⟩ transition frequency by ∼ 15MHz

using an addressing beam close to resonance with the 6P3/2 → |↓⟩ transition. The
addressing beam is focused on five adjacent atoms using a spatial light modulator (see

Section 2.3.3). We combine this addressing technique with a second microwave π-pulse

on resonance with the free-space transition. The non-addressed atoms are transferred

to |↓⟩, thus preparing the |DW⟩ state.
After the preparation, we let the system evolve under HXXZ for a duration tint = ntc

by performing the microwave sequence n times. We then read the system’s state by
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Figure 9.6: Preparation of the domain wall state. a) Sketch of the experimental

sequences. After preparing the domain wall state |DW⟩ following the protocol described

in Section 8.2.3, we apply n times the pulse sequence to engineer HXXZ. We then lift

the system’s dynamics by applying a strong microwave pulse on resonance with the

|↑⟩ → 75D5/2 transition, and detect the atoms in |↓⟩ by de-exciting them back to the

ground state. b-c) State histograms at the end of the preparation for the PBC (b) and

OBC (c). Due to state preparation and detection errors, the probability PDW to obtain the

|DW⟩ state in both geometries is ∼ 33%. Other highly probable states (∼ 5%) are domain

wall states with lower (or higher) number of spin-up atoms.
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9.3 Dynamics of domain wall states in 1D systems

de-exciting the atoms in the |↓⟩ state back to the ground state (see Section 2.3.1).

The duration of the de-excitation process is typically ∼ 400 ns. In order to avoid any

interactions during this time, we freeze the system’s dynamics by applying a strong,

short microwave pulse of ∼ 40 ns on resonance with the |↑⟩ → 75D5/2 transition.

The |↓⟩ state and the 75D5/2 manifold are not coupled at first order via the dipole-

dipole interaction. We can thus consider the system as not evolving during the 400 ns

de-excitation pulse.

Dowain wall state preparation efficiency. We measure the atoms state at the end

of the preparation, and obtain the typical state histograms presented in Figure 9.6 b)

for the circle and c) for the spiral. In both cases, we obtain a probability to prepare the

perfect domain wall state of ∼ 33%. This value is explained by the finite efficiencies of

the various processes. First, the STIRAP efficiency is ∼ 95% per atom, leading to a

probability to correctly initalize the system in the Rydberg manifold P↓...↓ = 60%.

Second, the microwave pulse combined with the addressing beam has an efficiency of

∼ 95% per atom. Third, the detection errors with values ε ∼ 2.5% and ε′ ∼ 2.5% (see

Section 3.3.1) also reduces the DW probability. By adding all these errors, we obtain

the preparation efficiency presented above. We include the finite efficiency of these

operations in the numerical simulations. We observe on the histograms that other

prepared states with ∼ 5% probability are DW states with a higher (or lower) number

of spin-up atoms, and thus still contribute to the physics we wish to explore.

9.3.2 Dynamics in open boundary conditions

We now study the evolution of the system in OBC under HXXZ for various δ. As

discussed above, we expect to observe a melting of the domain wall for δ < 1,

and its freezing for δ > 1. We study these behaviors on three observables: (i) the

single-site z-magnetization ⟨σz⟩, (ii) the domain wall probability PDW and (iii) the

nearest-neighbor spin-spin correlations.

z-magnetization maps. We first look at the evolution of the single-site z-magnetization

⟨σz⟩. Due to our engineering of HXXZ, the hopping strength, hence the rate at which

the DW state might melt or be frozen, depends on the value of δ (see Equations (9.7)).

In order to accurately compare the various Hamiltonians, we therefore normalize the

time with respect to the hopping strength. As the hopping strength is 2Jx, we set
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Figure 9.7: Evolution of the z-magnetization per atom for various XXZ Hamilto-

nians in OBC. We show ⟨σz⟩ per atom as a function of the time normalized to the

hopping strength: t′int = (2Jx(δ))tint. The dashed line shows the light-cone ξ = ±t′int.
We qualitatively observe different system’s behaviors depending on the anisotropy δ:

a “ballistic” expansion of the DW following the light-cone for δ < 1 (left plots), a

“freeze” of the DW for δ > 1 (right plots). In the case δ = 1, we expect a “diffusive”

behavior [Misguich, Mallick, and Krapivsky, 2017].

t′int = (2Jx(δ))tint. The results are shown in Figure 9.7 with δ = 0, 0.5, 1, 1.5, 2 1. In

order to qualitatively appreciate the melting (and the freezing) of the domain wall,

we show the light-cone of the dynamics ξ = ±t′ [Collura, De Luca, and Viti, 2018;

Misguich, Pavloff, and Pasquier, 2019] (dashed grey lines). This light-cone indicates

the maximum rate at which the excitations can propagate, and thus the maximum

rate at which the DW spreads. This maximum rate is 2Jx and is achieved when the

system is governed by the XX model. We observe qualitatively different behaviors

depending on δ:

r For δ ≤ 1 (left plots), we observe the melting of the domain wall, resulting in an

approximately uniform magnetization profile at long times. The magnetization

profile grows ballistically in time by following the light-cone, as expected

numerically. The agreement between the light-cone which is valid for nearest-

neighbor interactions and the data indicates that the 1/r3 range of the interactions

has little effect in our few-body 1D system.

1Implementing HXX2X requires τ1 = 0. We therefore remove the X and −X pulses from the
sequence, with the exception of the first and final pulses.
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9.3 Dynamics of domain wall states in 1D systems

r For δ > 1 (right plots), we observe a retention of the domain wall at all times:

the magnetization profile does not evolve after t′int ∼ 0.5, indicating a freezing of

the system dynamics.

r At the isotropic point δ = 1 (central plot), the domain wall also melts as

predicted by numerical investigations [Misguich, Mallick, and Krapivsky, 2017].

The exact nature of the melting, supposed to exhibit a “diffusive” behavior,

would require a detailed study and is out of the scope of this manuscript.

The observation of these different transport behaviors for various δ, consistent with

numerical investigations, indicates that the Hamiltonian engineering provides a reliable

method to explore spin-transport physics in a versatile manner. We now confirm these

qualitative behaviors by looking at other observables.

Domain wall probability. We compute the probability P ini
DW to measure the initial

domain wall state as a function of t′int for various anisotropies δ. In order to partially

take into account the finite efficiency of the various processes, and reduce the effect

of the microwave pulse errors detailed in Section 9.1.3, we also include in P ini
DW the

probability to measure DW states with four and six spins-up atoms. The results are

presented in Figure 9.8 a) for δ = 0.5, 1, 1.5, 2. For all anisotropies, we observe a decay

of P ini
DW with t′int. P

ini
DW vanishes for δ < 1, whereas for δ > 1 there is a finite probability

to obtain DW states at long times, which is P ini
DW ∼ 10% for δ = 2. This once again

shows the melting of the DW for δ < 1, and its retention for δ > 1.

Number of spin-flips. The last observable we compute is the number of spin-flips

Nflip, where a flip is defined as two neighboring atoms in opposite spin states. This

quantity is related to the nearest-neighbor spin correlation function ⟨σz
i σ

z
i+1⟩ by:

Nflip =
∑
i

1− ⟨σz
i σ

z
i+1⟩

2
. (9.9)

Three examples of this observable are provided in Figure 9.8 b). Its minimum value

is Nflip = 1, and corresponds to the initial DW state. The highest value is Nflip = 9,

and corresponds to the antiferromagnetic state. An example of an uncorrelated state

is provided with Nflip = N/2 = 5. This observable thus characterizes the system’s

ordering: if Nflip ∼ 1, the system is close to a DW state as expected for δ > 1, whilst if

Nflip ∼ 5, the system is uncorrelated as expected for δ < 1.
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Figure 9.8: Evolution of the DW probability and the number of spin-flips for various

XXZ Hamiltonians in OBC. a) Evolution of the initial DW probability P ini
DW for various

anisotropies. P ini
DW does not vanish at long times for δ > 1. b) Number of spin flips Nflip

along the spiral for three examples: the initial DW with Nflip = 1, the antiferromagnetic

(AF) state with Nflip = 9 and an uncorrelated state with Nflip = 5. c) Evolution of Nflip

for various anisotropies. Shaded regions: results of the simulation using Hdriven, including

the 6± 1% fluctuations on the microwave rotation axis (see Section 9.1.3). Dashed lines:

results of the simulations using HXXZ. d) Nflip as a function of δ measured after n = 13

cycles. The value of Nflip is constant for δ < 1, then linearly decreases for δ > 1. The

dashed line is a guide to the eye.

We show the evolution ofNflip as a function of t′int in Figure 9.8 c). For all anisotropies,

we observe an increase of Nflip with time, which is expected considering that P ini
DW

decreases. For δ ≤ 1, Nflip approaches N/2, confirming the fact that the system

becomes fully uncorrelated. The value is not exactly N/2 due to the finite preparation

efficiency, which leads to fluctuations of the number of excitations. If the number of

excitations is different than N/2, the nearest-neighbor correlations are not zero (even

for an uncorrelated system) and Nflip < 5. The value of Nflip at long times is lower as

δ increases, meaning that the |↑⟩ excitations tend to remain bunched.

In order to assess in detail the system’s behavior at long times, we extract the value

of Nflip after n = 13 cycles as a function of δ, see Figure 9.8 d). We qualitatively

observe two behaviors. For δ ≤ 1, the value of Nflip is roughly constant, whereas for

δ > 1, its value decreases linearly with δ. In a perfect, infinite system, we would expect

a sharp cut at δ = 1, with Nflip = 1 for δ > 1. Here, we observe the emergence of this

behavior. These data thus show that we are able to almost continuously vary δ (up to
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the microwave generator time resolution) by varying the delay between the pulses, a

strong asset of this microwave engineering of XXZ Hamiltonians.

Comparison to simulations. We finally compare the experimental data of Figure 9.8

a) and c) with numerical simulations using both the time-dependent engineered

Hamiltonian Hdriven (shaded regions) and the target HXXZ Hamiltonian (dashed lines).

The simulations were performed by Hannah Williams and Löıc Henriet. In both

simulations, we include the finite efficiencies of the various processes described above,

the residual shot-to-shot fluctuations of the interatomic distances, and the microwave

imperfections discussed in Section 9.1.3. The data are well reproduced by the Hdriven

simulation, indicating that we reasonably understand the errors within the experiment.

However, the engineered Hamiltonian implements the target Hamiltonian less well

as δ increases. We numerically find that this mismatch between Hdriven and HXXZ is

explained by the microwave imperfections (see Section 9.1.3), as for the freezing of the

magnetization in Section 9.2. Further improvements to our microwave setup should

hence lead to a faithful implementation of the XXZ Hamiltonian.

Conclusions. In this subsection, I presented our study of the dynamics of domain wall

states under HXXZ in a 1D open chain of 10 atoms. By computing various observables,

we showed that (i) the domain wall melts for δ < 1 and (ii) is retained for δ > 1, as

expected from numerical investigations. In particular, the matching of our results

with numerical simulations including all the known errors shows that we accurately

understand the system’s evolution.

9.3.3 Dynamics in periodic boundary conditions

In this final subsection, we repeat the experiments presented above considering

a 10-atom circle exhibiting periodic boundary conditions. The system’s dynamics

behaves in a different way. For δ > 1, the initial DW is not retained, but delocalizes

over the circle. We first show this feature experimentally, and finally gives a simple

interpretation in a toy model.

Experimental observation of the delocalization. We use the same experimental

protocol as above and observe the dynamics of the DW state, now in PBC. We first

look at the z-magnetization ⟨σz⟩ per atom for δ = 0.5, 1, 1.5, 2, see Figure 9.9 a). For

δ ≤ 1, the results look similar to the OBC case, with a fast vanishing of the domain
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Figure 9.9: Delocalization of the domain wall in periodic boundary conditions. a)

z-magnetization ⟨σz⟩ per atom for various HXXZ. As opposed to the OBC case (see

Figure 9.7), the initial DW breaks even for δ > 1. b) Evolution of the initial DW probability

P ini
DW and the total DW probability P tot

DW for δ = 1.5. At long times, P ini
DW points towards

low values whereas P tot
DW ≃ 0.1: the DW delocalizes over the circle. c) Evolution of Nflip

for various anisotropies. Shaded regions: results of the simulation using Hdriven, including

the 6± 1% fluctuations on the microwave rotation axis (see Section 9.1.3). Dashed lines:

results of the simulations using HXXZ.

wall. However, the results are different than in OBC: for δ > 1, we qualitatively

observe that the z-magnetization points towards ⟨σz⟩ ∼ 0.5 for every atom. This

would indicate a melting of the DW.

In order to assess this, we focus on δ = 1.5 and compute domain wall probabilities,

see Figure 9.9 b). We compare the evolution of (i) the initial domain wall probability

P ini
DW (dark green) and (ii) the total domain wall probability P tot

DW (light green),

irrespective of its position. At short times, both probabilities matches as the prepared

DW states are mainly the initial one. We then observe at long times that P ini
DW decays

close zero, as expected considering the z-magnetization plots. However, we observe

that the total domain wall probability P tot
DW does not vanish with time and reaches

P tot
DW ≃ 0.1. This value is close to the one obtained in OBC for the initial domain

wall probability P ini
DW. These results show that the DW still exists in the system, but

delocalizes around the circle.

This observation is confirmed by the evolution of Nflip for the various anisotropies,

see Figure 9.9 c). As observed for the OBC case, the value of Nflip decreases with δ,

which once again indicates that the DW is preserved, even though it is delocalized
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Figure 9.10: Delocalization of the domain wall in periodic boundary conditions.

Sketch of the lowest energy levels for six atoms. When considering δ ≫ 1, two nearby DW

states in B are coupled via excitations hoppings through E1 and E2, which are ensembles at

an energy 2Jz where one excitation is detached from the DW. E1 and E2 are composed of

six coupled states in the same way as a free electron hopping on a benzene. The subspace

diagonalization is analytical and allows us to extract the coupling strength between B and

(E1, E2).

along the circle. We also compare these data to simulations as performed above. We

again obtain the same conclusions: the data agree well with the simulation of Hdriven,

and the discrepancy with HXXZ increases as δ increases. We numerically find that the

mismatch is due to the microwave pulse errors.

This delocalization of the DW in the PBC case can be understood in a perturbative

approach, which we now illustrate on a toy model of six atoms.

A toy-model for the delocalization of the domain wall. We consider the case

δ ≫ 1 and limit the interactions to nearest-neighbors. For N atoms arranged in a

circle, all N DW states obtained by rotation are degenerate. They are coupled together

by a re-arrangement of excitations, requiring N/2 spin-flips. Due to this coupling the

initial DW state is progressively transformed into a coherent superposition of all the

different domain-walls. This process is illustrated in Figure 9.10 for N = 6 atoms:

each DW state in B is coupled via spin-exchange to two states with a single detached

atom, one in each of the two subspaces E1 and E2 with energy 2Jz. These subspaces

are composed of six coupled states |p⟩ via spin-exchange in a cyclic fashion, which

is reminiscent of a free electron hopping on a benzene. The diagonalization of the

subspaces is analytical and gives the eigenstates:

|Ψk⟩ =
1√
6

∑
p

e−iπkp/3 |p⟩ , (9.10)
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with eigenenergies Ek = 2Jx cos(kπ/3). We treat perturbatively the coupling from

B to these subspaces. The coupling Jeff between two nearby DW states |DW1⟩ and
|DW2⟩ is:

Jeff =
∑
k

⟨DW1|HXXZ |Ψk⟩ ⟨Ψk|HXXZ |DW2⟩
2Jz − Ek

. (9.11)

By combining the two above equations, we obtain:

Jeff =
J2
x

6

∑
k

eikπ/3

2Jz − Ek

. (9.12)

The development of this expression to the first order in Jx/Jz gives Jeff ∼ J3
x/δ

2, and

its extension to N atoms is Jeff = 4Jx(2δ)
1−N/2. This exchange term vanishes with

N due to the number of spin-flips necessary for the propagation of the domain-wall

by one lattice site. However, at moderate system sizes as used here, the domain

wall delocalization is still expected, which we observe experimentally. As this DW

delocalization vanishes with N , this feature would not show up at the thermodynamic

limit. It would be thus interesting to repeat this experiment for various N , and observe

the localization of the DW also for periodic boundary conditions.

9.4 Conclusion

In this chapter, I presented our engineering of XXZ Hamiltonians with anisotropies

0 ≤ δ ≤ 2 using the resonant dipole-dipole interaction between Rydberg atoms

in arrays coupled to a resonant microwave field. We have studied two situations:

the Heisenberg model in 2D square arrays, where we demonstrated the ability to

dynamically freeze the evolution of a state with a given magnetization, and the

evolution of a domain wall in a 1D chain with open and periodic boundary conditions.

By comparing our results to numerical simulations, we infer the current limitations

as being due to the imperfections in the microwave pulses. Despite this limitation,

which we hopefully can solve by improving the microwave hardware, we were able

to observe all the qualitative features of the situations we explored. This highlights

the versatility of our platform, beyond the implementation of the natural Ising-like

or XX Hamiltonians. Future work could include the study of frustration in various

arrays governed by the Heisenberg model [Richter, Schulenburg, and Honecker, 2004],

or the study of domain wall dynamics for larger system size to confirm the various

delocalization scalings beyond the emergent behaviors studied here.
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Chapter 10
Conclusion

In this manuscript, I have presented the development of a quantum simulator of spin

systems based on assembled arrays of single Rydberg atoms. During the course of my

PhD, we have bridged the gap between proof-of-principle experiments with tens of

Rydberg atoms, and large-scale studies with hundreds of particles. We also extended

the class of models we can simulate.

Quantum Ising model. We demonstrated this large-scale quantum simulation on the

transverse field Ising model, a model which has been extensively studied theoretically,

but with very few experimental realizations in a pristine setting. The model can be

studied on the platform using the van der Waals interaction. Its demonstration was

the first project of the platform: it was implemented for the first time in 2013 with two

atoms [Béguin et al., 2013], and with three atoms the following year [Barredo et al.,

2014]. With experience gained on the van der Waals interaction, the team studied

the transverse field Ising model (for the first time with Rydberg atoms in tweezers

arrays) in 2016 with ∼ 10 atoms [Labuhn et al., 2016]. The team could observe the

emergence of anti-correlations, characteristic of antiferromagnetism. In this first study

however (i) the model was not implemented in a clean two-level system due to the

use of D states, and (ii) the geometrical configuration of the atoms was not fixed

as the assembler had not yet been implemented. These two issues were solved by a

proper tuning of the electric and magnetic fields [de Léséleuc et al., 2018b], and the

atom-by-atom assembler technique [Barredo et al., 2016]. These allowed the group to

revisit the model with up to 36 atoms in square and triangular geometries, by trying

to adiabatically prepare the ground states of the model’s various phases [Lienhard

et al., 2018]. They could observe the emergence of the phases features, but two critical

drawbacks were limiting the observations: (i) the relatively small number of atoms

which could be manipulated, and (ii) the restricted system’s coherence [de Léséleuc

et al., 2018a].

These two issues were addressed during my PhD (i) by improving the capabilities

of our machine to reach 200 atoms (Chapter 4), and (ii) by changing the Rydberg
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excitation scheme (Chapter 3). Many small improvements of the various manipulations

we perform on the atoms (Chapter 2) allowed us to obtain single-atom Rydberg

excitation with ∼ 99% efficiency, and two-atom entanglement fidelities above 90%

(Chapter 5). Benefiting from the experience of the group in the implementation of

the transverse field Ising model combined with these improvements, we were able to

adiabatically prepare the antiferromagnetic ground states of the model with 100 atoms

in a square geometry, and to observe long-range ordering on system sizes as large as

196 atoms (Chapter 6). This observation motivated various studies of the model. First,

we assessed the new limitations of the system by comparing the data with numerical

simulations involving up to 100 atoms, and concluded that the limiting factors are

now (i) the residual disorder of the atom position in the tweezers, (ii) the detection

errors and (iii) the driving field inhomogeneities. These insights help us devising the

next steps for improving the quantum simulation of the Ising model. Second, we

compared our results to numerical predictions relying on thermal equilibrium and

found that they cannot be explained by a thermal driving of the system, thus providing

a strong indication of its quantum nature. Third, we studied various quantum phase

transitions, and showed that depending on the parameters, the system could follow (or

not) the quantum Kibble-Zurek mechanism. Fourth, we probed a highly-frustrated

phase (Chapter 7), and could observe the emergence of its features for the first time in

a clean quantum system with hundreds of particles.

These experiments prove that quantum simulation with Rydberg atoms is now at a

level which is comparable to state-of-the-art numerical simulations.

Increasing the range of Hamiltonians. In parallel to the implementation of the

quantum Ising model, the group also studied the resonant dipole-dipole interaction

between Rydberg atoms, and demonstrated its implementation with three atoms in

2015 [Barredo et al., 2015]. This interaction gives rise to the XX model, and was

used to study a Symmetry Protected Topological (SPT) phase in 1D, which was the

first project I worked on when I arrived on the setup [de Léséleuc et al., 2019]. This

work demonstrated that we could perform quantum simulation in the frame of the

XX model, but also that good surprises could emerge from the experiment as the

preparation of the SPT phase was not anticipated when we started the project. In the

spirit of what have been performed by the group about the quantum Ising model, and

having demonstrated its successful large-scale and accurate implementation, we then

wanted to demonstrate the implementation of a wide variety of Hamiltonians. Here,

the implementations are proof-of-principle with few-body systems, but will lead in the
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near future to their large-scale implementation, as performed for the Ising model.

We first engineered a density-dependent, complex-valued interaction using the

intrinsic spin-orbit coupling of the dipole-dipole interaction (Chapter 8). In particular,

this Hamiltonian (which can be connected to the Haldane model) is expected to

feature topological properties, in views of studying the quantum Hall effect. We then

showed the implementation of tunable XXZ Hamiltonians by combining the XX

interaction with an external microwave field (Chapter 9). These models feature various

phenomena, such as superconductivity, superfluidity, or supersolidity [Manousakis,

1991; Ng and Lee, 2006; Hauke et al., 2010]. In both projects, we compared the results

to numerical simulations, and showed that we understand the current limitations.

These indicate the next improvements we need to perform towards the large-scale

quantum simulation of these models.

Prospective and new directions. Once the limiting factors in the implementation

of transverse field Ising model listed above are solved, the team will revisit the model’s

features for which we could observe a first signal: (i) the quantum Kibble-Zurek

mechanism in square lattices and especially its range of validity, (ii) the nature of the

various phase transitions in triangular lattices and (iii) a complete characterization of

the order-by-disorder phase. By combining our ability to study ground state physics in

large systems and our implementation of the XX model, the team will explore its

phase diagram and in particular the new types of liquid crystals the model exhibits.

They will also study topological properties of 2D systems using the intrinsic spin-orbit

coupling of the dipole-dipole interaction. The dynamics of out-of-equilibrium systems

governed by XXZ models will also be explored, beyond the emergent features of

few-body systems reported in this manuscript.

Beyond the exploration of fundamental many-body physics, the platform recently

became interesting at an industrial level, in views of developing quantum comput-

ing [Henriet et al., 2020], and solving optimization problems [Henriet, 2020].

The wide tunability of the implemented Hamiltonians combined with the geometrical

versatility of the platform allows us to study a large variety of many-body phenomena.

The demonstration of the large-scale quantum simulation of the Ising model shows

that the performances of the platform are now comparable to numerical simulations,

bringing Rydberg quantum simulators one step closer to the original purpose of

quantum simulation imagined by Richard Feynman.
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Appendix A
Résumé en Français

Maintenant que la physique quantique est une théorie bien établie, le domaine évolue

vers une utilisation pratique de ces lois pour des études appliquées. Cette évolution

est possible grâce aux avancées techniques qui ont permis d’isoler et de contrôler de

manière individuelle des particules quantiques. Grâce à ces avancées, des scientifiques

ont pu vérifier de manière expérimentale les concepts fondamentaux énoncés par les

fondateurs de la physique quantique, comme la superposition d’états ou l’intrication

de deux particules quantiques.

Ces expériences ont déclenché un grand intérêt dans l’utilisation de ces lois fonda-

mentales pour des applications pratiques. Par exemple, la manipulation cohérente de

particules uniques permet de mesurer avec grande précision des champs électriques

et magnétiques, ce qui a permis le développement de senseurs quantiques. En par-

ticulier, l’utilisation d’horloges atomiques a permis d’améliorer la précision de la

géo-localisation par satellite. Dans le domaine des calculs quantiques, la superposition

d’états et l’intrication peuvent être utilisés pour réaliser des opérations inaccessibles

aux ordinateurs classiques. Durant ces dernières années, un effort considérable a été

porté pour démontrer un avantage des calculs quantiques par rapports aux calculs

classiques.

Bien que les lois fondamentales de la physique soient établies, il reste beaucoup de

questions quant à leur impact sur une grande variété de systèmes fortements corrélés,

dans des domaines allant de la physique des hautes énergies aux matériaux magnétiques.

Dans ce dernier cas, ces lois jouent un rôle important dans la supraconductivité

à haute température, ou bien dans les isolants topologiques gouvernés par l’effet

Hall quantique. L’étude numérique de ces phénomènes est difficile à réaliser due à

la présence de fortes interactions entre les particules quantiques, ce qui induit de

fortes corrélations dans ces systèmes. En pratique, le nombre de paramètres qu’il

faut prendre en compte pour réaliser une simulation exacte du système évolue de

manière exponentielle avec le nombre de particules, ce qui rend les simulations exactes

irréalisables pour plus de 50 particules.
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Une autre approche pour étudier ces phénomènes est d’utiliser un simulateur

quantique. Ce concept, originellement introduit par Richard Feynman, consiste

à utiliser un système quantique artificiel pour comprendre le comportement de

matériaux réels. Cette approche est récemment devenue possible grâce à des techniques

expérimentales de pointe. Leur niveau de contrôle et la versatilité dans le type

d’interactions implémentées permettent aujourd’hui aux physiciens d’utiliser ces

simulateurs “comme si” ils réalisaient des simulations sur un ordinateur classique.

Dans ce manuscrit, je décris notre simulateur quantique, et expose les expériences

de simulation quantique que nous avons réalisé pendant ma thèse. Il existe plusieurs

manières de réaliser un simulateur quantique. Notre approche est basée sur des atomes

de rubidium piégés individuellements dans des matrices de pinces optiques à géométrie

variable, et excités vers des états de Rydberg pour permettre leur interaction. De

nos jours, les simulateurs quantique font face à trois enjeux clés. Premièrement, la

simulation quantique devient intéressante dès lors que le nombre de particules en

interaction dépasse ce qui peut être calculé classiquement. Cette limite est de l’ordre

d’une centaine de particules. Deuxièmement, les résultats du simulateur quantique

doivent être verifiables et sûrs, ce qui signifie que les diverses imperfections de ces

simulateurs doivent être calibrées avec précision. Troisièmement, les simulateurs doivent

être capables de simuler différents phénomènes de la physique, ce qui veut dire qu’ils

doivent être capables d’implémenter une grande variété de modèles.

Nous avons travaillé sur ces trois points pendant ma thèse, et cela constitue le plan

de mon manuscrit de thèse. En Partie I, j’explique comment nous pouvons manipuler

une centaine d’atomes avec grande précision. En Partie II, je réalise la simulation

quantique à large échelle du modèle d’Ising, et vérifie les résulats du simulateur sur un

système comprenant 100 particules. En Partie III, je présente de quelle manière nous

avons pu accrôıtre le nombre de modèles de spins que nous pouvons simuler avec notre

plateforme.

Partie I: Amélioration du dispositif expérimental

Chapitre 2 Ce chapitre décrit l’ensemble du dispositif expériemental composé

d’atomes individuels de rubidium, piégés dans leur état fondamental dans des matrices

de pinces optiques, et excités vers des états de Rydberg. Tout d’abord, je présente la

brique élémentaire de notre dispositif, à savoir le piégeage et l’imagerie d’un atome

unique dans une pince optique. J’explique ensuite de manière globale comment nous

produisons des matrices de pinces optique à géométrie variable, un point sur lequel je
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reviens dans le Chapitre 4. Je détaille ensuite les méthodes expérimentales que nous

utilisons de manière quotidienne, permettant de refroidir, manipuler et exciter les

atomes vers leurs états de Rydberg. Ce dernier point est traité en particulier dans le

Chapitre 4. Je termine par expliquer de quelle manière nous contrôlons précisément

l’environnement électromagnétique entourant les atomes.

Chapitre 3 Ce chapitre détaille la manière dont nous excitons les atomes vers les

états de Rydberg. Nous utilisons une transitions à deux photons avec un large désaccord

avec le niveau intermédiaire pour limiter la décohérence du système. Durant ma thèse,

nous avons remplacé le système laser pour obtenir de meilleurs résultats. Nous utilisons

à présent l’état 6P3/2 comme état intermédiaire plutôt que le 5P1/2, car celui-ci a

deux avantages: (i) un temps de vie quatre fois plus long, et (ii) les longueurs d’onde

qui lui sont associées sont plus favorables en terme de puissance laser. Nous avons

également changé de technologie laser, et utilisons maintenant des lasers à Titane

Saphire. Ces changements nous ont permis d’obtenir une cohérence au moins dix fois

supérieure au précédent système. J’explique également comment nous avons amélioré

l’efficacité de l’excitation vers les états de Rydberg pour atteindre 97%. Je termine ce

chapitre en comparant nos résultats expérimentaux avec des simulations incluant les

divers facteurs limitants. Nous obtenons un bon accord expérience/simulations, ce qui

indique que nous avons un bon contrôle sur les imperfections du système.

Chapitre 4 Ce chapitre présente une étude détaillée portant sur l’obtention de grandes

matrices d’atomes. Dans un premier temps, j’explique brièvement la technologie utilisée

pour générer des matrices de pinces optique. J’explique ensuite comment, durant ma

thèse, nous avons augmenté le nombre de pinces optiques tout en gardant un bon

contrôle sur leur qualité optique. Cet augmentation a été possible en particulier grâce

à la mise en place de diagnostics in situ directement sur les atomes, permettant un

contrôle amélioré de la qualité des pinces optiques. Dans un second temps, je présente la

méthode d’assemblage d’atomes nous permettant de contrôler la géométrie des atomes,

ici à deux dimensions. Je présente une étude détaillée des limites de cette technique

d’assemblage, et motive les changements réalisés durant ma thèse qui ont permis

d’augmenter d’un facteur quatre le nombre d’atomes qui nous pouvons manipuler: (i)

la mise en place d’un algorithme d’assemblage optimisé et (ii) l’utilisation de deux

cycles de réarrangement. Nous pouvons à présent contrôler environ deux cents atomes,

ce qui nous place dans le régime intéressant pour la simulation quantique pour lequel

les simulations classiques sont difficilement réalisables.
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Partie II: Simulation quantique de l’antiferromagnétisme du modèle

d’Ising

Chapitre 5 Ce chapitre est une introduction au modèle d’Ising. Je commence par

présenter l’interaction de van der Waals entre deux atomes de Rydberg, et explique

comment cette interaction permet de générer de l’intrication. Je présente des résultats

expérimentaux montrant une fidélité d’intrication supérieure à 90%, plaçant notre

plateforme à un niveau compétitif par rapport à ce qui a été démontré sur des

plateformes similaires. Je détaille ensuite comment l’interaction de van der Waals

implémente le modèle d’Ising en champ transverse. Je réalise ensuite une rapide étude

théorique du modèle d’Ising à une dimension en m’appuyant sur des simulations. Je

détaille les états fondamentaux du système en fonction des paramètres et présente

l’émergence d’antiferromagnétisme dans le modèle d’Ising. Je termine le chapitre en

présentant des résultats expérimentaux à 47 atomes montrant la préparation de cet

ordre antiferromagnétique, en considérant diverses observables caractéristiques qui

seront étudiées dans les deux prochains chapitres.

Chapitre 6 Ce chapitre détaille les travaux réalisés sur la simulation quantique à

large échelle du modèle d’Ising sur des réseaux carrés. Ce modèle n’est pas résolu

analytiquement, ce qui le rend intéressant à étudier avec notre simulateur quantique.

Je commence par présenter le diagramme des phases du modèle, et de quelle manière

nous explorons celui-ci sur des systèmes allant jusqu’à 196 atomes. J’étudie ensuite

en détail l’effet de la taille finie de notre système sur ce diagramme des phases. Je

montre que les propriétés du système dependent grandement de sa taille. En observant

l’évolution de ces propriétés en fonction de la taille du système, j’extrait les propriétés

à la limite thermodynamique et obtient des résultats cohérents avec ceux calculés par

des méthodes numériques. Je compare ensuite les résultats des nos expériences avec des

simulations réalisées par l’équipe de Andreas Laüchli, sur des systèmes comprenants

jusqu’à cent atomes. Nous obtenons un bon accord, ce qui permet d’avoir confiance en

les résultats donnés par le simulateur quantique. Ces résultats nous permettent aussi

d’indentifier quels sont les points à améliorer sur notre dispositif expérimental dans le

futur. Je compare ensuite nos résultats expérimentaux à des simulations classiques

à l’équilibre thermodynamique. Le désaccord entre les résultats expérimentaux et

les simulations montrent que nous n’obtenons pas un ensemble thermique, ce qui est

une indication forte de la nature quantique de nos résultats. Je termine le chapitre
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par une étude expérimentale d’une transition de phase quantique. En particulier,

nous explorons le régime de Kibble-Zurek, et montrons qu’en fonction des paramètres

choisis, nous obtenons des résultats en accord ou non avec ce régime.

Chapitre 7 Ce chapitre détaille les travaux réalisés sur la simulation quantique à

large échelle du modèle d’Ising sur des réseaux triangulaires. Ce modèle présente un

diagramme des phases plus riche que le réseau carré, avec notamment la présence

d’une phase géométriquement frustrée. Je commence le chapitre par donner une

image intuitive des différentes phases du modèle sur le cas le plus simple de trois

atomes en interaction. Je présente ensuite le diagramme des phases dans le cas d’un

système infini, et détaille de quelle manière nous explorons celui-ci. Je présente ensuite

une étude expérimentale détaillée impliquant jusqu’à 147 atomes d’une des phases

antiferromagnétique non frustrée du modèle, qui comprend: (i) une étude des effets de

la taille finie du système, (ii) une comparaison de nos résultats avec des simulations

classiques, et (iii) une étude d’une transition de phase. Ces résultats montrent que

nous sommes capables d’étudier le modèle d’Ising sur des réseaux triangulaires, donc

d’étudier la phase frustrée. Je termine le chapitre en présentant des premiers résultats

expérimentaux ayant pour objectif de caractériser cette phase frustrée. Nous observons

une transition de phase dont les caractéristiques mesurées sont cohérentes avec ce

qui est attendu théoriquement. Ces premiers résultats tendent à montrer que nous

pouvons étudier cette phase frustrée avec notre simulateur quantique.

Partie III: Ingénierie d’Hamiltoniens de spins en utilisant l’interaction

dipôle-dipôle entre atomes de Rydberg

Chapitre 8 Ce chapitre présente l’utilisation de l’interaction dipôle-dipôle entre

atomes de Rydberg pour implémenter deux modèles de spins: (i) le modèle XX et (ii)

une phase de Peierls induite par une interaction à valeur complexe. Je commence par

expliquer comment, à partir de l’expression générale de l’interaction dipôle-dipôle,

nous pouvons choisir judicieusement les paramètres excpérimentaux pour implémenter

l’un des deux modèles. Je détaille ensuite de manière expérimentale les caractéristiques

du modèle XX sur le cas le plus simple de deux atomes en interaction, et compare

nos résultats à des simulations pour identifier les facteurs limitants. Je présente

ensuite nos résultats concernant l’ingénierie d’une interaction à valeur complexe sur un

système comprenant trois atomes. Le terme complexe provient du couplage spin-orbite
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intrinsèque à l’interaction dipôle-dipôle, et se manifeste par la prise en compte de trois

états de Rydberg. La phase du couplage complexe est déterminée par la géométrie du

système, par la différence d’énergie entre les trois niveaux et par la présence d’autres

excitations dans le système. Je termine ce chapitre par l’implémentation et le contrôle

de ce couplage complexe, et je montre également que le système peut être interprété

en terme de particules anyoniques.

Chapitre 9 Ce chapitre présente l’ingénierie d’Hamiltoniens de Heisenberg à anisotropie

variable. Je commence par expliquer comment nous pouvons réaliser cette ingénierie

en combinant l’interaction dipole-dipole résonante à un champ micro-onde externe. Je

présente ensuite des résultats expérimentaux permettant de vérifier l’implémentation

correcte de ces modèles sur le cas le plus simple de deux atomes. Je détaille en-

suite l’implémentation de modèle de Heisenberg sur des sytèmes allant jusqu’à 64

atomes, et étudie expérimentalement les limites de l’ingénierie. Je finis par étudier

un système unidimensionnel composé de 10 atomes, dans lequel nous étudions la

propagation d’excitations de spins sous différents Hamiltoniens de Heisenberg. Nous

varions également les conditions aux limites (périodiques et ouvertes) et observons leur

impact sur la dynamique du système.
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V., and Lukin, M. D., “Quantum phases of matter on a 256-atom programmable

quantum simulator,” Nature 595, 227 (2021) [cited in pages 28, 108, 119, 141,

and 147].

Eckardt, A., “Colloquium: Atomic quantum gases in periodically driven optical lattices,”

Rev. Mod. Phys. 89, 011004 (2017) [cited in page 202].

Endres, M., Bernien, H., Keesling, A., Levine, H., Anschuetz, E. R., Krajenbrink, A.,

Senko, C., Vuletic, V., Greiner, M., and Lukin, M. D., “Atom-by-atom assembly of

defect-free one-dimensional cold atom arrays,” Science 354, 1024 (2016) [cited in

page 26].

Fey, S., Kapfer, S. C., and Schmidt, K. P., “Quantum criticality of two-dimensional

quantum magnets with long-range interactions,” Phys. Rev. Lett. 122, 017203

(2019) [cited in pages 119, 126, and 127].

Feynman, R. P., “Simulating physics with computers,” International Journal of

Theoretical Physics 21, 467 (1982) [cited in page 12].
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Browaeys, A., “Tunable two-dimensional arrays of single Rydberg atoms for realizing

quantum Ising models,” Nature 534, 667 (2016) [cited in page 225].

Lanyon, B. P., Hempel, C., Nigg, D., Müller, M., Gerritsma, R., Zähringer, F.,

Schindler, P., Barreiro, J. T., Rambach, M., Kirchmair, G., Hennrich, M., Zoller, P.,

Blatt, R., and Roos, C. F., “Universal digital quantum simulation with trapped

ions,” Science 334, 57 (2011) [cited in pages 14 and 102].

Laumann, C. R., Moessner, R., Scardicchio, A., and Sondhi, S. L., “Quantum

annealing: The fastest route to quantum computation?” The European Physical

Journal Special Topics 224, 75 (2015) [cited in page 154].

246

http://dx.doi.org/10.1146/annurev-conmatphys-031218-013401
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013401
http://dx.doi.org/10.1038/s41586-019-1177-4
http://dx.doi.org/10.1209/0295-5075/93/20003
http://dx.doi.org/10.1038/s41534-018-0088-9
http://dx.doi.org/10.1103/PhysRevB.100.144411
http://dx.doi.org/10.1103/PhysRevLett.83.1275
http://dx.doi.org/10.1126/science.abg8102
http://www.theses.fr/2014IOTA0019/document
http://dx.doi.org/10.1038/nature18274
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1140/epjst/e2015-02344-2
http://dx.doi.org/10.1140/epjst/e2015-02344-2


Bibliography

Lee, S. A., Helmcke, J., Hall, J. L., and Stoicheff, B. P., “Doppler-free two-photon

transitions to Rydberg levels: convenient, useful, and precise reference wavelengths

for dye lasers,” Opt. Lett. 3, 141 (1978) [cited in page 37].
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and Browaeys, A., “Accurate mapping of multilevel Rydberg atoms on interacting

spin-1/2 particles for the quantum simulation of Ising models,” Physical Review

Letters 120, 113602 (2018b) [cited in pages 16, 75, and 225].

Levine, H., Keesling, A., Omran, A., Bernien, H., Schwartz, S., Zibrov, A. S., Endres, M.,
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quantum simulator,” Nature Phys. 6, 382 (2010) [cited in page 16].

Wilk, T., Gaëtan, A., Evellin, C., Wolters, J., Miroshnychenko, Y., Grangier, P.,

and Browaeys, A., “Entanglement of two individual neutral atoms using Rydberg

blockade,” Phys. Rev. Lett. 104, 010502 (2010) [cited in pages 16, 105, and 107].

Wineland, D. J., Dalibard, J., and Cohen-Tannoudji, C., “Sisyphus cooling of a bound

atom,” J. Opt. Soc. Am. B 9, 32 (1992) [cited in page 33].
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Titre : Simulation quantique de modèles de spins avec des grandes matrices d’atomes de Rydberg  

Mots clés : pinces optique, modèles de spins, simulation quantique, problèmes à N corps 

Résumé : Des atomes individuels piégés dans des 

matrices de pinces optiques et excités vers des états 

de Rydberg forment une plateforme expérimentale 

prometteuse pour la simulation quantique de 

modèles de spins. Lors de cette thèse, nous avons 

d’abord perfectionné la plateforme en augmentant le 

nombre d’atomes manipulables d’une quarantaine à 

environ deux cents, et en améliorant d’un facteur dix 

la cohérence quantique du système. Nous avons 

ensuite revisité le modèle d’Ising en excitant de 

manière cohérente plus d’une centaine d’atomes 

depuis leur état électronique fondamental vers un 

niveau de Rydberg. Nous avons exploré avec notre 

simulateur quantique des phénomènes comme les 

transitions de phase quantiques ou la recherche des 

états fondamentaux du système. Les simulations 

numériques de ces phénomènes sont difficiles à 

réaliser compte tenu du nombre de particules, ce qui 

rapproche la plateforme de son but originel : il s‘agit 

d’un nouveau moyen d’étudier des systèmes  

complexes pour lesquels les simulations 

numériques sont limitées. Nous avons ensuite 

utilisé un autre régime d’interaction entre atomes 

de Rydberg pour implémenter de nouveaux 

modèles de spins permettant d’étudier une grande 

variété de phénomènes physiques. Nous nous 

sommes d’abord penchés sur la réalisation d’une 

interaction à valeur complexe en utilisant le 

couplage spin-orbite de l’interaction dipôle-dipôle. 

Cette interaction simule le mouvement d’une 

particule chargée dans un champ magnétique et 

permet d’étudier les propriétés topologiques de la 

matière comme l’effet Hall quantique. Nous avons 

ensuite implémenté le modèle d’Heisenberg avec 

une anisotropie variable en utilisant un champ 

micro-ondes externe. Ce modèle, très présent dans 

la description des matériaux magnétiques, permet 

aussi d’étudier des phénomènes comme la 

supraconductivité, la superfluidité ou la 

supersolidité. 

 

 

Title : Quantum simulation of spin models with large arrays of Rydberg atoms 

Keywords : optical tweezers, spin models, quantum simulation, many body problems 

Abstract : Single atoms trapped in optical tweezers 

arrays and excited to Rydberg states are a promising 

experimental platform for the quantum simulation of 

spin models. In this thesis, we first improved the 

platform by increasing the number of atoms from 

around forty to two hundred, and by improving the 

system’s coherence by a factor ten. We then revisited 

the Ising model by exciting coherently more than a 

hundred atoms from their ground state towards a 

Rydberg state. We explore with our quantum 

simulator the model’s features such as quantum 

phase transitions or the system’s ground states. The 

numerical simulations of these features are difficult 

to perform considering the high number of particles, 

bringing the platform one step closer from its 

original purpose: a new way to explore complex 

systems for which numerical simulations are hard 

to perform. We then used another type of 

interaction between Rydberg atoms to implement 

new types of spin models. We first implemented a 

complex-value interaction using the intrinsic spin-

orbit coupling of the dipole-dipole interaction. This 

interaction models the movement of a charged 

particle in a magnetic field, and allows to study 

topological properties such as the quantum Hall 

effect. We then implemented the Heisenberg 

model with tunable anisotropy using an external 

microwave field. This model describes magnetic 

materials, but also allows to study phenomena like 

superconductivity, superfluidity or supersolidity.   
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