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Résumé

Dans un contexte stratégique, l’information (qui sait quoi et avant qui) joue un rôle crucial.
Dans cette thèse, nous considérons des modèles de théorie des jeux avec information et nous
présentons un nouveau modèle, qui ne repose pas sur les arbres. En effet, d’une part, ne
pas se contraindre avec un arbre peut s’avérer intéressant pour modéliser l’information et,
d’autre part, il existe des exemples de jeux qui peuvent être joués mais ne peuvent pas être
écrits sur un arbre. Le manuscrit est en deux parties.

Dans la première partie, nous nous concentrons sur trois modèles où le concept d’information
est présent : le modèle d’arbre extensif de Kuhn (K-modèle), le modèle d’arbre infini d’Alós-
Ferrer et Ritzberger (AFR-modèle) et le modèle de Witsenhausen (W-modèle). Alors
qu’un arbre est donné à la fois dans les K- et AFR-modèles comme une des primitives,
dans le W-modèle il s’agit plutôt d’un objet qui peut éventuellement être induit par une
structure d’information adéquate. Nous montrons, d’une part, que les W-modèles finis
et causaux peuvent être plongés dans les AFR-modèles et, d’autre part, qu’une classe
restreinte d’AFR-modèles finis peut être plongée dans les W-modèles. En outre, nous
traduisons les définitions de mémoire parfaite et de mémoire des informations passées dans
le langage du W-modèle, puis nous formulons des conjectures sur leurs relations avec les
structures d’information correspondantes dans l’AFR-modèle.

Dans la deuxième partie, nous discutons des W-jeux. Lorsqu’ils sont équipés de joueurs
et de relations de préférence, les trois modèles ci-dessus deviennent des jeux. Nous intro-
duisons les W-jeux, c’est-à-dire les W-modèles avec une partition de l’ensemble des agents
en des ensembles d’agents exécutants des joueurs et où chaque joueur est muni d’une re-
lation de préférence (par exemple, une fonction de gain et une croyance). Nous donnons
une définition de l’équilibre de Nash pour les W-jeux. Enfin, pour une sous-classe de jeux
de type Principal-Agent, que nous appelons W-jeux avec Agent suffisamment informé,
nous fournissons des conditions sous lesquelles un équilibre de Nash peut être obtenu par
récurrence rétrograde.

En conclusion, nous discutons de plusieurs pistes ouvertes, telles que l’extension à des
ensembles ou à des joueurs infinis et l’étude des équilibres parfaits en sous-jeux pour les
W-jeux.
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Abstract

In a strategic context, information (who knows what and before whom) plays a crucial
role. In this thesis, we consider game theory models with information, and we present a
new model which does not rely on trees. Indeed, on the one hand, working without a tree
proves interesting in the context of modelling information and, on the other hand, there
are examples of games that can be played but cannot be written on a tree. The manuscript
is in two parts.

In the first part, we focus on three models where the concept of information is present:
Kuhn extensive tree model (K-model), Alós-Ferrer and Ritzberger infinite tree model
(AFR-model) and Witsenhausen model (W-model). Whereas a tree is given in both K-
and AFR-models among the primitives, in the W-model it is rather an object that can
possibly be induced by a proper information structure. We prove that, on the one hand,
causal and finite W-models can be embedded into AFR-models and, on the other hand,
that a restricted class of finite AFR-models can be embedded into W-models. Moreover,
we translate definitions of perfect recall and memory of past information into the language
of W-model, and we formulate conjectures relating them to the corresponding information
structures in the AFR-model.

In the second part, we discuss W-games. When supplied with players and preferences,
any of the three above models becomes a game. We introduce W-games, that is, W-models
with a partition of the set of agents into sets of players’ representative agents, supplying
each player with a preference relation (for instance, a payoff function and a belief). We give
a definition of the Nash equilibrium for W-games. Then, for a subclass of Principal-Agent
games that we call Enough Informed Agent W-games, we provide conditions under which
a Nash equilibrium can be obtained by backward induction.

In conclusion, we discuss several open leads, such as extension to infinite sets or players
and the study of subgame perfect equilibrium in W-games.
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Chapter 1

Introduction

1.1 Context of the thesis

This manuscript presents the research that I have done during three years of PhD, from
October 2017 to October 2020, under the supervision of Michel De Lara and in close
collaboration with Jean-Philippe Chancelier. I was financed by École Nationale des Ponts
et Chaussées and joined Centre d’Enseignement et de Recherche en Mathématiques et
Calcul Scientifique (CERMICS).

In this thesis, we consider Game Theory models with information.

1.2 Game Theory models with information

In this thesis, we focus on three Game Theory models, namely, K-, AFR- and W-models,
but the global picture is broader. Indeed, there are three approaches in the existing liter-
ature to model the tree structure in extensive form games.

• Set-tree formulation in games was initiated by von Neumann and Morgenstern in [36]
and then extensively developed by Alós-Ferrer and Ritzberger in [2, 3] (AFR-model
as in Definition 2.15). A recent approach of Streufert, the so-called choice-set model
(CS-model, see Section 2 in [34]), is yet another set-tree formulation

• Graph-tree formulation in games is pioneered by Kuhn in [18] and developed by Selten
in [31] (K-model as in Definition 2.4). By far, this is the most widely used way to
speak of extensive form games in the existing literature.

• Sequence-tree formulation in games is initiated by Harris in [12] and generalized by
Osborne and Rubinstein in [23] (so-called OR-model, see Definition 200.1 in §11.1.2
of [23]).

The first embedding of a tree model of one type into another was made by Alós-Ferrer
and Ritzberger (see [2] or Example 6.5 in [3]). The authors showed that the sequence-tree

7
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OR-model is a particular case of so-called simple trees model (ST-model, another graph-
tree model introduced by Alós-Ferrer and Ritzberger that is proved to be equivalent to
the AFR-model as in Definition 2.15, see Theorems 6.1, 6.2 in [3]). The first equivalence
between sequence- and graph-trees appeared in [17], where the authors proved that the
OR-model is equivalent to the KS-model by giving an explicit method to transform a
sequence-tree into a graph-tree and vice versa.

Finally, Streufert built, in a series of articles [33, 34], a complete chain of equivalences
between the existing tree models (KS-, AFR-, OR, CS-models and simple trees, see Fig-
ure 1.2 taken from [34] illustrating the so-called Selten’s horse tree structure) and went
further classifying them using the machinery of category theory. Besides, the CS-model
is a relaxation of the OR-model. Informally speaking, the main idea of the sequence-tree
OR-model is that each node is a sequence of past choices, where the choices themselves
are abstract and form the underlying set. In the CS-model, each node is an (unordered)
set of past choices rather than sequence as in the OR-model. Pretty formal and technical
proofs of equivalences between primitives of each model with a corresponding equivalent
element of the chain can be also found in [34]. This shows that all the five extensive forms
with the trees of three types introduced above are of roughly equal generality.

Figure 1.1: Five equivalent tree forms of the Selten’s “horse” taken from [34]. The dashed
lines here define the only non-singleton information set in each model.

In the following Table 1.1, we compare six Game Theory models and give references
where the corresponding equivalences were proved. Five of the six models listed in the
Table 1.1 were proved to be equivalent in a series of papers, namely, [3, 17, 34], published
in recent years. One of the contributions of this thesis is adding the W-model to this chain
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of equivalences, by showing equivalence between a certain subclass of W-models and the
AFR-model in Chapters 3 and 4.

CS-model OR-model K-model ST-model AFR-model W-model
Year 2018 1994 1953 2016 2005 1971

Nodes choice sets
choice
sequences

abstract abstract outcome sets (no tree)

Choices abstract abstract abstract node sets outcome sets outcome sets

Information node sets
sets of
sequences

node sets node sets node sets
outcome
σ-fields

Number of
primitives

2 primitives 4 primitives 4 primitives 2 primitives 2 primitives 2 primitives

Number of
axioms

4 axioms 2 axioms 4 axioms 4 axioms 2 axioms 1 axiom

Equivalence

ORtoCS [34]
Theorem 3.1
CStoOR [34]
Theorem 3.2

KtoOR [17]
Theorem 4.1
ORtoK [17]
Theorem 4.2

STtoK [34]
Theorem 5.1
KtoST [34]
Theorem 5.2

AFRtoST [3]
Theorem 6.1
STtoAFR [3]
Theorem 6.2

WtoAFR
Chapter 3
AFRtoW
Chapter 4

Table 1.1: Six models in Game Theory.

In most applications of extensive form games, players are required to enjoy both the
memory of past information and actions. This condition, known as perfect recall, was
introduced by Kuhn in [18] as “equivalent to the assertion that each player is allowed by
the rules of the game to remember everything he knew at previous moves and all of his
choices at those moves”. This condition is a strong one, not reflecting the capabilities of
real players in complex strategic settings. A big advantage of the W-model is that many
classical information patterns, such as perfect recall, imperfect memory of past actions,
imperfect memory of past information, can be expressed in a short and clear way in terms
of W-model. This clarity is achieved thanks to the information structure of the agents being
defined as σ-fields over the underlying set of outcomes (configurations). In Chapter 5, we
translate definitions of perfect recall and memory of past information into the language
of W-model and formulate conjectures relating them to the corresponding information
structures of the AFR-model.

When supplied with players and preferences, any of the three above models becomes
complete and is traditionally called a game in the literature. To this end, in Chapter 6,
we introduce W-games, that is, W-models with a partition of the set of agents into sets
of players’ representative agents, supplying each player with a preference relation (for
instance, a payoff function and a belief). We give a definition of the Nash equilibrium for
W-games in Chapter 6. We finish by introducing the concept of subsystem.

Then, in Chapter 7, we develop a particular case of W-games, so-called Principal-Agent
models where there are two decision-makers — that are both players, as in Game Theory,
and agents, as in the W-model.
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There are two main strands in the existing literature about the Principal-Agent mod-
els: the first is devoted to finding Nash equilibria in various Principal-Agent games (see,
for example, [20]) and the second is devoted to establishing conditions under which an
equilibrium exists (by whether imposing restrictions on the primitives of the model, for
example, see [8,11,14,16], or imposing restrictions on the allowed mechanisms, for example,
see [6, 13, 24, 25, 28] with the most general framework given in [15]). Existence conditions
are outside the scope of this thesis, in Chapter 7, we concentrate on the conditions under
which a solution of a Principal-Agent game is yielded as a result of backward induction
assuming that the solution exists.

1.3 Outline of the thesis

1. In Part I, we focus on existing models with information and prove equivalence between
them.

• In Chapter 2, we give exposition of three game theory models with information,
namely, the classical Kunh’s extensive tree model (K-model), the Alós-Ferrer,
Ritzberger infinite tree model (AFR-model), which is a generalization of the
first and, finally, the Witsenhausen intrinsic model (W-model), which is the
main topic of this thesis.

• In Chapter 3, we establish a one-way implication between the W- and AFR-
models; we construct the primitives of the latter out of the primitives of the
first and deduce the axioms imposed on the primitives of the AFR-model.

• In Chapter 4, we go in the opposite direction constructing primitives of the
W-models out of the primitives of the AFR-model in the spirit of Chapter 3.

• In Chapter 5, we discuss different information structures and the way they are
expressed in the language of the three models. We cover classical information
patterns, such as perfect recall and perfect memory of past information. As we
show, the W-model allows for precise and concise descriptions of many classical
information patterns from Game Theory.

2. In Part II, we develop the so-called W-games in Intrinsic Form, that is, W-models
equipped with a partition of the agents into players, where each player is endowed
with either a preference relation or a payoffs function and a belief probability distri-
bution.

• In Chapter 6, we introduce a number of essential concepts, namely, W-game,
Nash equilibrium, subsystems, which will be used later in Chapter 7 to define
a subclass of the Principal-Agent game and in Chapter 8 when speaking of the
future avenues of research.

• In Chapter 7, for a subclass of Principal-Agent games, namely, the so-called
Enough informed Agent W-games, we provide conditions under which a Nash
equilibrium of this game can be obtained by backward induction.
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3. In Conclusion, we give possible avenues of research not developed in this thesis:
among these are clarifying the notions of mixed and behavioral strategies in the W-
model, proving an analogue of the Kuhn’s theorem about the equivalence of mixed
and behavioral strategies and introducing the notion of subgames, subgame perfect
equilibrium and backward induction. Also, there is a transversal avenue of research
in developing the W-model for a non-finite number of agents.
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Part I

Information Models for Game Theory
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Chapter 2

Game theory models with
information

2.1 Introduction

In our exposition of game theory models, we focus on the representation of information,
leaving aside preferences and beliefs, that will be considered in Part II. We will stick to
the following roadmap:

• in Section 2.2 we introduce the Kuhn’s extensive tree model,

• in Section 2.3 we introduce the Alós-Ferrer, Ritzberger infinite tree model,

• in Section 2.4 we introduce the Witsenhausen intrinsic model,

• in Section 2.5 we illustrate the models on advanced examples, expressing the concepts
of forgetfulness and absent-mindedness.

2.2 Kuhn’s tree model (K-model)

Here, we present the classical Kuhn’s tree model (K-model) or model in extensive form
as four objects (aside of the mixed strategy prescribed to Nature and the payoff function)
with four axioms imposed on them. In this exposition, we rely on [22] and on the original
paper of Selten [31]. We also illustrate the model on simple examples. To this end,

• in §2.2.1 we give basics on graph theory and introduce the main notations in order
to work with trees afterwards,

• in §2.2.2 we introduce the basic objects of the K-model,

• in §2.2.3 we give the definition of the K-model, listing the basic objects defined above
and the axioms imposed on them,

15
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• in §2.2.4 we define the K-strategies,

• in §2.2.5 we illustrate the K-model on simple examples.

2.2.1 Prerequisites: basics on graph theory and notations

A finite directed graph is a couple (V,E), where

• V is a finite set, whose elements are called vertices,

• E ⊂ V × V is a finite set of couples of vertices, whose elements are called (directed)
edges ; for any directed edge e ∈ E there is a unique couple of vertices v, v′ ∈ V ,
giving the two ends of the edge, such that e = (v, v′).

Let v and v′ be two vertices in a graph (V,E). A path from v to v′ is a finite sequence
(v1, v2, . . . , vi, vi+1, . . . , vN+1) of vertices, with v1 = v and vN+1 = v′, such that for any two
vertices vi, vi+1 with consecutive indices, there is an edge ei ∈ E, such that ei = (vi, vi+1).
A path is called a simple path if all vertices in the sequence (v1, v2, . . . , vi, vi+1, . . . , vN+1)
are distinct, that is, vj 6= vk for every i 6= j, 1 ≤ i ≤ N + 1. A path from v1 to vN+1 can
be also written as a sequence of edges as follows(

(v1, v2), (v2, v3), . . . , (vi, vi+1), . . . , (vN , vN+1)
)

= (e1, e2, . . . , ei, . . . , eN) .

We will employ the following two distinct notations for the path from vertex v to vertex v′:
(v, v′)V stands for the path written as a subset of vertices V and (v, v′)E stands for the
path written as a subset of edges E.

Definition 2.1. A tree is a triple T = (V,E, v0), where (V,E) is a connected acyclic
directed graph with a specific vertex v0 ∈ V called the root of the tree.

Definition 2.1 implies that every path in a tree is a simple path as there are no cycles.
Therefore, as we consider trees in the manuscript, by “path” we will always mean “simple
path” since the two notions coincide in this context. Moreover, for every vertex v ∈ V of
the tree V , there is a unique path from the root v0 to the vertex v, denoted by (v0, v)V (if
represented by vertices) or by (v0, v)E (if represented by edges).

2.2.2 Primitives of the K-model

What we will call a K-model is made of four basic objects (primitives)(
(V,E, v0), (X i)i∈P0 , (I

i)i∈P ,
{
Ci,G

}
i∈P,
G∈Ii

)
.

Before providing a formal definition of a K-model in §2.2.3, we now give descriptions
of these primitives.
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2.2.2.1 The game tree

The first basic object of the K-model is a tree (V,E, v0) as defined in Definition 2.1.

Definition 2.2. Given a tree (V,E, v0), for any vertex v ∈ V , we define the set of edges
emanating from the vertex v by

Ev = {e ∈ E | ∃v′ ∈ V such that e = (v, v′)} ⊂ E . (2.1a)

A vertex is a leaf or a terminal point if there are no directed edges emanating from it. The
set of terminal points with such property is called the set of leaves and is formally defined
as

Z = {v ∈ V | Ev = ∅} . (2.1b)

The set of all vertices that are not leaves is called the set of moves and is denoted by

X = V \ Z . (2.1c)

For any leaf z ∈ Z, the unique path

wz = (v0, z)V (2.1d)

from the root to leaf z is called a play.

There is a one-to-one correspondence between the set of plays and the set of leaves.

2.2.2.2 The players partition

In Definition 9.2, we recall that a partition of a set S is a subset Π ⊂ 2S made of subsets
℘ (℘ ∈ Π) of S that are nonempty, two by two disjoint, and whose union is S. To denote
that Π is a partition, we use the notation

(
∀Π ⊂ 2S

)
S =

⊔
℘∈Π

℘ ⇐⇒


S =

⋃
℘∈Π

℘,

℘ ∩ ℘′ = ∅ , ∀℘ 6= ℘′,

℘ 6= ∅ , ∀℘ ∈ Π .

(2.2)

Let P0 be a finite set representing all players, where 0 ∈ P0 is the Nature player
(Nature has no preferences, hence is a singular player) and P = P0 \ {0} is the (finite) set
of individual players.

The second basic object of the K-model is a given partition {X i}i∈P0
of the set X of

moves in Equation (2.1c), named the players partition and written as

X =
⊔
i∈P0

X i, (2.3)

where the set X i of moves is called player i’s player set.
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2.2.2.3 The information partition

For player i ∈ P0, the third basic object of the K-model is the so-called information
partition I i ⊂ 2X

i
of each player set X i, written as

X i =
⊔
G∈Ii

G . (2.4)

An element G ∈ I i of this partition is called information set of the player i.
In the K-model, we define the K-information structure ΞK as a collection of all infor-

mation sets of the players
ΞK =

{
G ∈ I i

∣∣ i ∈ P} . (2.5)

2.2.2.4 The choice partition

For any individual player i ∈ P and any information set G ∈ I i of the player i, we define
the set of edges emanating from the atom G, by

EG =
⋃
v∈G

Ev ⊂ E , (2.6)

where the set Ev of edges emanating from a given vertex v ∈ V is defined in Equation (2.1a).

Definition 2.3. For any player i ∈ P and any information set G ∈ I i of the player i, the
choice partition assigned to the information set G of the player i is a partition of the set
EG of edges emanating from the information set G (as defined in (2.6)) that we denote
Ci,G ⊂ 2EG, that is,

EG =
⊔

c∈Ci,G
c . (2.7)

An element c ∈ Ci,G of the choice partition assigned to the information set G of the player i,
that is, a subset c ⊂ EG, is called a choice assigned to the information set G of the player i.

A choice c ∈ Ci,G assigned to the information set G of the player i, is called an eligible
choice if it contains exactly one edge from the set Ev of edges emanating from any vertex
v ∈ G. Written formally,

∀i ∈ P , ∀G ∈ I i , c ∈ Ci,G is eligible ⇐⇒ ∀v ∈ G , |c ∩ Ev| = 1 , (2.8)

where |·| denotes the cardinal of a finite set.

2.2.3 Definition of the K-model (4 basic objects, 4 axioms)

Now, we are ready to formally define the K-model, which is the information part of the
celebrated Kuhn extensive form in Game Theory.

Definition 2.4. A K-model
(

(V,E, v0), {X i}i∈P0
, {I i}i∈P0

,
{
Ci,G

}
i∈P0,

G∈Ii

)
consists of four

basic objects, namely,
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(K-BO1) a finite tree (V,E, v0),

(K-BO2) a player partition of the set X of moves, {X i}i∈P0
, as in Equation (2.3),

(K-BO3) an information partition of each element of the player partition, {I i}i∈P0
, as in

Equation (2.4),

(K-BO4) a choice partition
{
Ci,G

}
i∈P0,

G∈Ii
, as in Equation (2.7),

and the following four axioms imposed on them:

(K-Axiom1) for the Nature player, each information set is a singleton, that is,

I0 =
{
{x0}

∣∣x0 ∈ X0
}

and X0 =
⊔
x0∈I0
{x0} ,

(K-Axiom2) for any player i ∈ P and any i’s information set G ∈ I i, any play in Equa-
tion (2.1d) intersects G at most once; formally speaking, for any player i ∈ P, any
leaf z ∈ Z and any information set G ∈ I i of the player i, if wz ∩G 6= ∅, then wz ∩G
is a singleton, where the corresponding play wz is as in (2.1d), that is,(

∀i ∈ P , ∀G ∈ I i , ∀z ∈ Z
) ∣∣(v0, z)V ∩G

∣∣ ≤ 1 ,

(K-Axiom3) for any player i ∈ P and any information set G ∈ I i of the player i, the
number of emanating edges (as defined in (2.1a)) is the same at every vertex of this
atom, that is, for any v, v′ ∈ G, |Ev| = |Ev′|,

(K-Axiom4) For any player i ∈ P, any information set G ∈ I i of the player i, any choice
c ∈ Ci,G assigned to the information set G ∈ I i of the player i is eligible as defined
in (2.8).

2.2.4 K-strategies

Now that information and choices have been properly defined in (2.4) and (2.7) respectively,
we can turn to the notion of K-strategies.

For any player i ∈ P , we define the set of all choices available to i by

Ci =
{
c ∈ Ci,G

∣∣G ∈ I i} , (2.9)

where the information partition I i of the player i has been defined in Equation (2.4), and
the choice partition Ci,G assigned to the information set G of the player i has been defined
in Equation (2.7).
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Definition 2.5. A pure K-strategy of a player i ∈ P is a mapping si : X i → Ci from
the player’s moves X i in (K-BO2) of Definition 2.4 and (2.3) (vertices where the player
is active) into the player’s choices Ci in Equation (2.17b) (actions the player takes), such
that

• for any move v ∈ X i, and for the unique information set G ∈ I i such that v ∈ G
(existence and uniqueness result from I i being a partition of the set X i of moves of
the player i as in (2.4)), the choice si(v) is such that si(v) ∈ Ci,G,

• we have si(v) = si(v′) for any v′ ∈ G.

A profile of pure strategies is an element of

s =
{
si
}
i∈P ∈

∏
i∈P

Si ,

where Si is the set of pure K-strategies of the player i.

The following proposition is well-known, see, for example, [22, p.45, §3.3]. We give its
proof for the sake of completeness.

Proposition 2.6. In a finite K-model as in Definition 2.4, any profile s = {si}i∈P of pure
K-strategies, as in Definition 2.5, induces a unique leaf z(s) (or, equivalently, a unique
play wz(s) as in (2.1d)).

Proof. We suppose given a profile s = {si}i∈P of pure K-strategies, as in Definition 2.5.
For the root vertex v0, there exists a unique player i(v0) ∈ P , such that v0 ∈ X i(v0), by the
players partition in (K-BO2) of Definition 2.4 and (2.3). Take the image of the strategy
si(v0)(v0) ∈ Ci(v0),{v0} of this chosen player1. By (K-Axiom4) of Definition 2.4, any choice
is eligible as in (2.8), that is, si(v0)(v0) ∩Ev0 = (v0, v1) ∈ Ev0 and the vertex v1 is uniquely
defined (as the edge (v0, v1) is uniquely defined), where Ev0 is the set of edges emanating
from the root vertex v0 as in (2.1a). Thus, the first step of the algorithm results in the
vertex v1.

Let the Step k of the algorithm results in a vertex vk. If the vertex vk is a leaf, the
algorithm stops. Else, there exists a unique player i(vk) ∈ P , such that vk ∈ X i(vk), by the
players partition in (K-BO2) of Definition 2.4 and (2.3), and the unique information set
Gvk ∈ I i(vk), such that vk ∈ Gvk by the information partition in (K-BO3) of Definition 2.4
and (2.4). Take the image of the strategy si(vk)(vk) ∈ Ci(vk),Gvk of this chosen player. By
(K-Axiom4) of Definition 2.4, any choice is eligible as in (2.8), that is, si(vk)(vk) ∩ Evk =
(vk, vk+1) ∈ Evk and the vertex vk+1 is uniquely defined2, where Evk is the set of edges
emanating from the root vertex vk as in (2.1a). Thus, the Step k of the algorithm results
in the vertex vk+1.

As the tree is finite, the process terminates at some point giving a unique vertex z(s),
which is a leaf.

This finishes the proof.
1the set Ci(v0),{v0} of choices of the player i(v0) at information set {v0} is well-defined as the root vertex

forms a singleton information set {v0} by (K-Axiom2) of Definition 2.4
2as the edge (vk, vk+1) is uniquely defined
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2.2.5 Examples

To illustrate the K-formalism presented above, we present three examples with two players:
first, playing simultaneously (§2.2.5.1); second, one playing after another (§2.2.5.2); third,
after the Nature’s move (§2.2.5.3). At this stage, we keep the examples simple for the sake
of comparison between the K-model and the other two models (AFR and W) to come.

2.2.5.1 Two players playing simultaneously

Here, we give what certainly is the most simple (interesting) example of game (without
payoffs, as in this whole Part I). There are two players playing simultaneously, each of them
making a decision among two possible options, irrespective of the other player decision.
This example describes a simultaneous move game on a two by two square in strategic
form, and covers a whole range of classical examples of games: matching pennies, battle
of the sexes, stag hunt, hawk and doves, chicken game, . . . . The only difference between
them is the payoff structure (that we do not elaborate in this Part I).

The story of Alice and Bob. As this simple model (a game without payoffs) will serve
as a prototype to illustrate the three K-, AFR- and W-models, we formulate it as a short
story common to all three forthcoming mathematical formulations:

• Alice chooses between “Top” and “Bottom” (T and B for short);

• Bob chooses between “Left” and “Right” (L and R for short);

• Both Alice and Bob choose simultaneously, irrespective of the other.

Mathematical formulation of the story of Alice and Bob (traditional notations
of the K-model). Now, we propose a relevant mathematical formulation of the above
story, in the language of the K-model, especially of Definition 2.4.

Player 1
v0

v1

z3

e3

z4

e4

e1

v2

z5

e5

z6

e6

e2

Player 2

Figure 2.1: Two players playing simultaneously (K-model)

The following is the list of the primitives of a K-model (see also Figure 2.1).
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• The set of vertices
V = {v0, v1, v2, z3, z4, z5, z6} .

• The set of edges

E = {(v0, v1)︸ ︷︷ ︸
e1

, (v0, v2)︸ ︷︷ ︸
e2

, (v1, z3)︸ ︷︷ ︸
e3

, (v1, z4)︸ ︷︷ ︸
e4

, (v2, z5)︸ ︷︷ ︸
e5

, (v2, z6)︸ ︷︷ ︸
e6

} .

With the set V of vertices and the set E of edges, choosing the vertex v0 as the root,
we define the basic object (K-BO1) of Definition 2.4.

• The set of edges determines

1. the set of moves X = {v0, v1, v2} by (2.1c)
(as Ev0 = {e1, e2}, Ev1 = {e3, e4} and Ev2 = {e5, e6}),

2. the set of leaves Z = {z3, z4, z5, z6} by (2.1b)
(as Ez3 = Ez4 = Ez5 = Ez6 = ∅).

• The set of players is P = {1, 2} (Player 1 is playing at the root followed by Player 2),
and we partition the set X of moves into players’ moves as

X = X1 tX2, where X1 = {v0}, X2 = {v1, v2} .
With this partition, we define the basic object (K-BO2) of Definition 2.4.

• We define the players’ information partitions of players’ sets of moves by

I1 =
{
{v0}

}
, I2 =

{
{v1, v2}

}
.

With this partition, we define the basic object (K-BO3) of Definition 2.4.

• We define the players’ choice partitions by

C1 =
{
{e1}, {e2}

}
, C2 =

{
{e3, e5}, {e4, e6}

}
.

With this partition, we define the basic object (K-BO4) of Definition 2.4.

The four Axioms in Definition 2.4 are easily seen to be satisfied.

(K-Axiom1) Satisfied automatically as there is no Nature player.

(K-Axiom2) The set of leaves Z = {z3, z4, z5, z6} defines four plays wz3 , wz4 , wz5 , wz6 as
in (2.1d). It is immediately seen that each play intersects information sets {v0} and
{v1, v2} at most once.

(K-Axiom3) The Axiom follows immediately for the information set {v0} as it is a sin-
gleton. For the other infomation set {v1, v2}, by construction of the sets Ev1 and Ev2
of emanating edges from vertices v1 and v2 respectively, we have that |Ev1| = |Ev2|.

(K-Axiom4) By construction of the choices in C1 and C2, we immediately have that each
choice of the players is eligible.
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Mathematical formulation of the story of Alice and Bob (with notations com-
mon to all three K-, AFR- and W-models). Finally, we can give names for the
players’ choices. We choose Alice as the first (row) player, and we set {e1} = T (“Top”)
and {e2} = B (“Bottom”); we choose Bob as the second (column) player, and we set
{e3, e5} = L (“Left”) and {e4, e6} = R (“Right”).

The set of basic object of this example is given by

(K-BO1) the game tree (V,E, v0),

(K-BO2) the players partition X1 and X2,

(K-BO3) the players’ information partitions I1 and I2,

(K-BO4) the players’ choice partitions C1 = {T,B} and C2 = {L,R}.

2.2.5.2 Two ordered players

Here, we let Player 1 play first, and Player 2 makes his or her decision knowing the Player
1’s action.

Player 1
v0

v1 Player 2

z3

e3

z4

e4

e1

v2Player 2

z5

e5

z6

e6

e2

Figure 2.2: Two ordered players (K-model)

In this example, most of the objects coincide with the previous model in §2.2.5.1; how-
ever, as the information structure is nontrivial, we explicitly write the players’ information
and choice partitions.

• The players’ information partitions of players’ sets of moves are

I1 =
{
{v0}

}
, I2 =

{
{v1}, {v2}

}
.

With this partition, we define the basic object (K-BO3) of Definition 2.4.

• The players’ choice partitions are

C1 =
{
{e1}, {e2}

}
, C2 =

{
{e3}, {e5}, {e4}, {e6}

}
.

With this partition, we define the basic object (K-BO4) of Definition 2.4.

The four Axioms in Definition 2.4 are easily seen to be satisfied.
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2.2.5.3 Two ordered players with Nature

Here, Nature plays at the root and then Player 1 makes his or her action knowing the
Nature’s move; Player 2 knows both the Nature’s move and the one of the Player 1.

Nature
v0

e1 e2
v1 Player 1

e3 e4

v2

e5 e6
v4 Player 2

z9

e9

z10

e10

v5

z11

e11

z12

e12

v6

z13

e13

z14

e14

v3

z7

e7

z8

e8

Figure 2.3: Two ordered players with Nature (K-model)

The following is the list of the primitives of a K-model.

• The set of vertices V = {v0, v1, v2, v3, v4, v5, v6, z7, z8, z9, z10, z11, z12, z13, z14} .

• The set of edges

E =
{

(v0, v1)︸ ︷︷ ︸
e1

, (v0, v2)︸ ︷︷ ︸
e2

, (v1, v3)︸ ︷︷ ︸
e3

, (v1, v4)︸ ︷︷ ︸
e4

, (v2, v5)︸ ︷︷ ︸
e5

, (v2, v6)︸ ︷︷ ︸
e6

, (v3, z7)︸ ︷︷ ︸
e7

, (v3, z8)︸ ︷︷ ︸
e8

,

(v4, z9)︸ ︷︷ ︸
e9

, (v4, z10)︸ ︷︷ ︸
e10

, (v5, z11)︸ ︷︷ ︸
e11

, (v5, z12)︸ ︷︷ ︸
e12

, (v6, z13)︸ ︷︷ ︸
e13

, (v6, z14)︸ ︷︷ ︸
e14

}
.

With the set V of vertices and the set E of edges, choosing the vertex v0 as the root,
we define the basic object (K-BO1) of Definition 2.4.

• The set of edges determines

1. the set of moves X = {v0, v1, v2, v3, v4, v5, v6},
2. the set of leaves Z = {z7, z8, z9, z10, z11, z12, z13, z14}.

• The set of moves X is partitioned into players’ moves as follows

X = X0 tX1 tX2, where X0 = {v0}, X1 = {v1, v2}, X2 = {v3, v4, v5, v6} .

With this partition, we define the basic object (K-BO2) of Definition 2.4.
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• The players’ information partitions of players’ sets of moves are

I0 =
{
{v0}

}
, I1 =

{
{v1}, {v2}

}
, I2 =

{
{v3}, {v4}, {v5}, {v6}

}
.

With this partition, we define the basic object (K-BO3) of Definition 2.4.

• The players’ choice partitions are

C0 =
{
{e1}, {e2}

}
,

C1 =
{
{e3}, {e4}, {e5}, {e6}

}
,

C2 =
{
{e7}, {e8}, {e9}, {e10}, {e11}, {e12}, {e13}, {e14}

}
.

With this partition, we define the basic object (K-BO4) of Definition 2.4.

The four Axioms in Definition 2.4 are easily seen to be satisfied.

2.3 Alós-Ferrer, Ritzberger infinite tree model (AFR-

model)

The extensive decision problem (EDP) by Alós-Ferrer and Ritzberger (short, AFR) is
certainly the most general way of speaking about so-called extensive form games in the
modern literature. The authors develop the refined-partitions approach of von Neumann
and Morgenstein. This framework covers continuous and differential games, and requires
two primitive objects and four axioms. Despite of its generality, some problems arise when
it comes to define strategies on an EDP. In order to have well-defined strategies, the authors
restrict their framework to “discrete” trees on which every vertex has a distinct immediate
predecessor, thus satisfying three “desiderata” that are, in their own words:

(A0) every play can be induced by some strategy profile,

(A1) every strategy profile induces some (unique) play,

(A2) the play induced by a given strategy profile is unique.

They call this restricted framework discrete extensive forms (DEF). It requires the same
two primitive objects as EDP, but only two axioms instead of four.

In this manuscript, we present the discrete extensive form that we refer to as the AFR-
model (we also consider a version of it, called Nature-rooted AFR-model). For this end,

• in §2.3.1 we give basics on set theory, which is the language the authors are using to
describe their model,

• in §2.3.2 we introduce the basic objects of the AFR-model,
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• in §2.3.3 we give the definition of the AFR-model, listing the basic objects defined
above and the axioms imposed on them,

• in §2.3.4 we define the AFR-strategies,

• in §2.3.5 we illustrate the AFR-model on simple examples.

2.3.1 Prerequisites: set theory basics

A preordered set is a pair (N,�) consisting of a nonempty set N and a reflexive and
transitive binary relation � on N . A preordered set (N,�) for which the relation � is
antisymmetric is called a partially ordered set or poset. A nonempty subset c ⊂ N is a
chain if, for all x, y ∈ c, eiher x � y or y � x, i.e. if the preorder on c induced by � is
complete (on c).

Given a preordered set (N,�) and an element x ∈ N , we define the up-set ↑x and the
down-set ↓x by

↑x =
{
y ∈ N

∣∣ y � x
}

and ↓x =
{
y ∈ N

∣∣x � y
}
. (2.10)

With this, we will present a notion of tree that is more general than the one in Definition 2.1.

Definition 2.7. A tree is a poset (N,�) such that, for any x ∈ N , the upset ↑ x, as
in (2.10), is a chain, and there is a distinguished vertex x0, called root, with the property
that x0 � x for any x ∈ N .

Elements of a tree are called vertices. A vertex x ∈ N of a tree is called a finite vertex
if ↑x\{x} has a minimum, that is, there exists an element v ∈↑x\{x}, such that, for any
v′ ∈↑x \ {x}, we have that v′ � v. The set of all finite vertices of a tree (N,�) is denoted
by

F (N) =
{
x ∈ N

∣∣ ↑x \ {x} has a minimum
}
. (2.11a)

On the set F (N) of finite vertices, supplied with the root x0, we define the general parent
mapping by

p : F (N) ∪ {x0} → F (N) ∪ {x0} s.t.

{
p(x) = min (↑x \ {x}) , ∀x ∈ F (N) ,

p(x0) = x0 .
(2.11b)

For any vertex v ∈ N , we define the set of children of the vertex v by

p−1(v) =
{
v′ ∈ N

∣∣ p(v′) = v
}
⊂ N . (2.11c)

A vertex z ∈ N is called a leaf if the set of children of the vertex z is empty, and Z ⊂ N
is the set of leaves, that is,

z ∈ Z ⇐⇒ p−1(z) = ∅ , (2.11d)

where the set p−1(z) of children vertices is defined in Equation (2.11c).

Note that the root x0 is, formally speaking, not a finite vertex as the set ↑ x0 \ {x0}
is empty. When the set V is finite, the tree in Definition 2.7 is equivalent to the one in
Definition 2.1.
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2.3.2 Primitives of the AFR-model

To define an AFR-model, one needs an underlying set W of plays. Then, an AFR-model
is made of two basic objects

(
(V,⊃), {Ci}i∈P

)
defined on the underlying set W of plays.

Here, we give descriptions of them; then we will give a definition with the list of two axioms
imposed on them.

2.3.2.1 Game tree

A game tree belongs to a special class of trees, among those presented in §2.3.1. We need
a definition.

Definition 2.8. Let W be a set. A W-poset is a poset (partially ordered set) (V,⊃), where
V ⊂ 2W \ ∅ is made of nonempty subsets of W and the binary relation ⊃ is set inclusion.
A W-poset (V,⊃) is rooted if {W} ∈ V .

As V ⊂ 2W, the W-poset V inherits from 2W several set operations on the subsets of W.
Thus, for any two elements v, v′ ∈ V , their difference v \ v′ ⊂ W makes sense as a subset
of W (though v \ v′ may or may not be in V ). The same holds true for their intersection
v ∩ v′ and their union v ∪ v′.

The first element of an AFR-model is a discrete game tree.

Definition 2.9. A game tree is a rooted W-poset (V,⊃), whose elements are called vertices,
that satisfies the following two properties:

(GT1) A subset c ⊂ V is a chain if and only if there exists a play w ∈ W such that, for
any vertex v ∈ c, we have w ∈ v,

(GT2) If w,w′ ∈W with w 6= w′, then there exist two distinct vertices v, v′ ∈ V such that
w ∈ v \ v′ and w′ ∈ v′ \ v.

A game tree (V,⊃) is up-discrete if all nonempty chains in V have maxima. A game tree
(V,⊃) is down-discrete if the chain ↑ v \ {v} has an infimum in Z ∩ (↑ v \ {v}) for all
non-root vertices v ∈ V \{W}, where the set Z of the terminal leaves is defined in (2.11d).
A game tree (V,⊃) is discrete if it is up-discrete and down-discrete.

We will need the following result, valid on discrete game trees, which significantly relies
on [3, Theorem 6.1].

Proposition 2.10. Let (V,⊃) be a discrete game tree. Then, for any finite vertex v ∈ F (V )
in Equation (2.11a), the upset ↑v is a finite set (that is, the cardinal |↑v| < +∞ is finite)
and has the expression

↑v = {v}t ↑p(v) . (2.13a)

Morever, we have
↑v =

{
v, p(v), p2(v), . . . , p|↑v|−1(v)

}
, (2.13b)

where p|↑v|−1(v) = {W}.
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Proof. Let a finite vertex v ∈ F (V ) be given.

I We start by proving (2.13a) in two steps.

• First, we show that ↑ v ⊃ {v}∪ ↑ p(v), for any finite vertex v ∈ F (V ). Indeed, on
the one hand, we have that v ∈↑ v by (2.10) and, on the other hand, the inclusion v ⊂
p(v) (as p(v) ∈↑ v \ {v} ⊂↑ v by (2.11b)) implies that ↑ p(v) ⊂↑ v by (2.10). Here, we
restrict ourselves to non-root finite vertices as, formally speaking, ↑ {W} = {W}, thus,
↑{W} \ {W} = ∅. As, on a game tree, the root vertex is the only one to coincide with its
parent, we conclude that ↑v ⊃ {v}t ↑p(v), for any finite vertex v ∈ F (V ).

• Second, we show that ↑v ⊂ {v}t ↑p(v), for any finite vertex v ∈ F (V ). We write

↑v = {v} t
(
↑v \ {v}

)
= {v} t

{
v′ ∈

(
↑v \ {v}

) ∣∣ v′ ⊃ min
(
↑v \ {v}

)}
(by definition of the minimum of a poset)

⊂ {v} t
{
v′ ∈ V

∣∣ v′ ⊃ min
(
↑v \ {v}

)}
(as
(
↑v \ {v}

)
⊂ V )

= {v} t ↑p(v) , (by definition of the parent as in (2.11b))

which proves the inverse inclusion, and, thus, gives (2.13a).

I Finally, we deduce (2.13b) as a corollary of representation (2.13a). For any finite vertex
v ∈ F (V ) and any index k, such that pk(v) 6= {W}, we write

↑v = {v}t ↑p(v) (by (2.13a))

= {v} t {p(v)}t ↑p2(v) (by (2.13a) applied for p(v))

=
⊔

`∈{0,...,k−1}
p`(v)t ↑pk(v) ,

by repeatedly applying (2.13a) for v = p`{v}, where ` ∈ {0, . . . , k − 1} and k is such that
pk(v) 6= {W}.

As, for any finite vertex v ∈ F (V ), the upset ↑v is a finite set, that is, |↑v| < +∞, by
the item (d) on page 136 in the proof of [3, Theorem 6.1] and {W} ∈↑ v, for any vertex

v ∈ V , then there exists k̃, such that pk̃(v) = {W}. Setting n = min
{
k
∣∣ pk(v) = {W}

}
,

we conclude that

↑v =
⊔

`∈{0,...,n}
p`(v) ,

where n = |↑v| − 1. This gives (2.13b) and ends the proof.

The following definition is a particular case of the discrete tree that will be used in
Chapters 3 and 4 to establish equivalences between the AFR- and W-models.

Definition 2.11. A finite game tree is a game tree (V,⊃) such that the set of vertices V
is finite (that is, finite cardinal |V | < +∞).
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Note that any finite game tree is a particular case of a discrete game tree.
The following property, for a poset to be a tree, holds true [3, Lemma 2.1]: a poset

(N,�) is a tree if and only if, for all x, y, z ∈ N ,

if y � x and z � x then z � y or y � z .

This property, rewritten in set-theoretic terms, has the following alternative translation
for W-posets; it will be widely used in the sequel.

Definition 2.12. A W-poset (V,⊃) satisfies trivial intersection (in short, TrIP) if, for
all v, v′ ∈ V

if v ∩ v′ 6= ∅ then v ⊃ v′ or v′ ⊃ v . (2.14)

In Definition 2.9, condition (GT1) is equivalent to TrIP in Equation (2.14), and condi-
tion (GT2) is called irreducibility.

In a game tree, vertices that are properly followed by other vertices are called moves,
and the set of moves is denoted by

X =
{
v ∈ V

∣∣ ↓v \ {v} 6= ∅} . (2.15)

Vertices that are not followed by any vertex are called terminal vertices and denoted by

Z = V \X . (2.16)

The authors show [3, Lemma 4.1, Item (b)] that a vertex v ∈ V is terminal if and only
if there is w ∈W such that v = {w} or, in other words, if and only

Z =
{
{w}

}
w∈W .

2.3.2.2 The system of choices

The second primitive object of the AFR-model is a so-called system of collections of choices
indexed by the set P of AFR-players.

Definition 2.13. For any player i ∈ P, a nonempty collection

Ci ⊂ 2W (2.17a)

of subsets of plays is called a collection of choices of the player i. Any element c ∈ Ci of
this collection, that is, a subset c ⊂W of the underlying set W of plays, is called a choice
of the player i.

We also define a system C of collections of choices as follows

C =
{
Ci
}
i∈P , with Ci ⊂ 2W , ∀i ∈ P . (2.17b)

In the AFR-model, a choice of a player combines both what the player knows at the
moment of making an action, and the action made. We introduce the following mapping
in order to map a given choice to the (unique) information set this choice is attached to.
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Definition 2.14. For any subset W ⊂W of plays, let

↑W =
{
v ∈ V

∣∣ v ⊃ W
}

and ↓W =
{
v ∈ V

∣∣ v ⊂ W
}
. (2.18a)

be the upset and the downset of the set W respectively. Then, we define the immediate
predecessor mapping P as

P : 2W → 2V (2.18b)

W ⊃ W 7→
{
v′ ∈ V

∣∣ ∃v∈↓W, ↑v′ =↑v\ ↓W} ⊂ V . (2.18c)

For any choice c ∈ C, we define the information set to which the choice c is assigned by

P (c) ⊂ V . (2.19a)

We also define the AFR-information structure ΞAFR as a collection of all information sets
as in (2.19a) to which some choice c ∈ C is assigned, that is,

ΞAFR =
{
P (c)

∣∣ c ∈ C} ⊂ 2V . (2.19b)

As each choice c ∈ C is a subset of plays, and as its image under the immediate
predecessor mapping P (c) yields the corresponding information set (a subset of vertices)
this choice is assigned to, we can draw a parallel between the objects of the K- and AFR-
models. Indeed, in the K-model (see Definition 2.4), choices are primitives constructed out
of the tree and information partition, as each choice is an element of the partition of the
set of edges emanating out of the corresponding information set. Thus, in the K-model,
first come information sets, second come choices. By contrast, in the AFR-model, we see
that choices come first, and that information sets come second (they are not listed among
the primitives, but are a derived object).

2.3.3 Definition of the AFR-model (2 basic objects, 2 axioms)

Now, we are ready to formally define the AFR-model, which is the most general extension
of the Kuhn extensive form in Game Theory.

Definition 2.15. An AFR-model (T, C) consists of two basic objects, namely

(AFR-BO1) a discrete game tree T = (V,⊃) (as in Definition 2.9),

(AFR-BO2) a system C = {Ci}i∈P of collections of choices (as in (2.17b) in Defini-
tion 2.13)

and the following two axioms imposed on them

(AFR-Axiom1) For any player i ∈ P and any two choices c, c′ ∈ Ci of the player, if
P (c) ∩ P (c′) 6= ∅ and c 6= c′ then P (c) = P (c′) and c ∩ c′ = ∅,
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(AFR-Axiom2) For any move x ∈ X, the set of the children vertices of the move x (as
in (2.11c)) is given by

p−1(x) =
{
x ∩

(
∩i∈J(x) c

i
) ∣∣∣ {ci}

i∈J(x)
∈
∏
i∈J(x)

Ai(x)
}
,

where the immediate predecessor mapping P is defined in (2.18b), the parent mapping p is
defined in (2.11b), Ai(x) =

{
c ∈ Ci

∣∣x ∈ P (c)
}

is the set of choices available to player i
at a move x for all i ∈ P, and J(x) =

{
i ∈ P

∣∣Ai(x) 6= ∅
}

is the set of so-called players
active at move x (that is required to be nonempty for all x ∈ X).

When listing the basic objects of an AFR-model in Definition 2.15, neither the Nature
player nor the sample set are defined explicitly. Most of the models of extensive form
games [18, 19, 21] have, among the axioms imposed on their basic objects, one explicitly
saying that each information set of the Nature player is a singleton, i.e. the Nature player
has perfect information.

To prepare future results in Chapters 3 and 4, we introduce a subclass of AFR-models,
as in Definition 2.15. In this subclass,

• only one player is active at each move, which is reflected in (AFR-Axiom1’), the
original (AFR-Axiom-1) in Definition 2.15 is formulated for i = j,

• for any move, the set of children in (AFR-Axiom2’) is also rewritten as there is only
one player active at each move,

• the Nature player acts once and for all, at the root of the tree, which is reflected in
the third added axiom (AFR-NR) below (“NR” for “Nature rooted”).

We call such form a Nature-rooted AFR-model (NRAFR). Under the restricted assumption
that only one player is active at any move, (AFR-Axiom1) and (AFR-Axiom2) are both
equivalent to (AFR-Axiom1’) and (AFR-Axiom2’).

Definition 2.16. A Nature-rooted AFR-model (T, C) consists of two basic objects, as in
Definition 2.15, and the following three axioms imposed on them:

(AFR-Axiom1’) For any players i, j ∈ P and any choices c ∈ Ci, c′ ∈ Cj of the players,
if P (c) ∩ P (c′) 6= ∅ and c 6= c′ then i = j, P (c) = P (c′) and c ∩ c′ = ∅,

(AFR-Axiom2’) For any move x ∈ X, the set of the children vertices of the move x (as
in (2.11c)) is given by

p−1(x) =
{
x ∩ c

∣∣ c ∈ Ai(x)(x)
}
, (2.20)

where the parent mapping p has been defined in Equation (2.11b), the player i(x) ∈ P
is such that {i(x)} = J(x), as the set J(x) of players active in the move x, defined
in (AFR-Axiom2), is reduced a singleton by (AFR-Axiom1’), and the set Ai(x)(x) of
actions of the player i(x) in the move x is given by

Ai(x)(x) =
{
c ∈ Ci(x)

∣∣x ∈ P (c)
}
. (2.21)
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(AFR-NR) For any choice c ∈ C0 of Nature, its immediate predecessors are reduced to
the root, that is, P (c) = {W},

where P is the immediate predecessor mapping as in (2.18b).

2.3.4 AFR-strategies

Now that information and choices have been properly defined in (2.19b) and in (2.17a) of
Definition 2.13 respectively, we turn to the notion of AFR-strategies.

For each player i ∈ P , we define the set X i of the moves of the player i by

X i =
{
x ∈ X

∣∣∃c ∈ Ci : x ∈ P (c)
}
, (2.22a)

which induces a partition

X =
⊔
i∈P

X i , (2.22b)

by (AFR-Axiom1’) in Definition 2.16.

Definition 2.17. For each player i ∈ P, a pure AFR-strategy of the player i is a mapping
si : X i → Ci, from player’s moves as in (2.22a) to player’s choices as in (2.17a), that
satisfies

(si)−1(c) = P (c) for any c ∈ si(X i) .

A pure AFR-strategy profile is an element

s =
{
si
}
i∈P ∈ S =

∏
i∈P

Si ,

where Si is the set of pure AFR-strategies of the player i.

In this framework, unlike the most general one of EDP discussed in the introduction of
§2.3, it can be proved that each strategy induces a unique play [3, Theorem 5.4]. For the
purpose of a more precise statement, we introduce, for every strategy profile s ∈ S, the
correspondence Rs : W⇒W (“R” for “reaching”) defined by

Rs(w) = ∩
{
si(x)

∣∣w ∈ x ∈ X , i ∈ J(x)
}
, (2.23)

where J(x) is the set of players active in move x as in Definition (2.15).

Proposition 2.18. In an AFR-model as in Definition 2.15, the two following properties
hold true.

(A1) For very strategy profile s ∈ S, there is some play w ∈W such that w ∈ Rs(w).

(A2) If, for every strategy profile s ∈ S, there is a play w ∈W such that w ∈ Rs(w), then
the mapping Rs in Equation (2.23) has no other fixed point and Rs(w) = {w}.

The detailed proof of this statement can be found in [3, Theorem 5.4].
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2.3.5 Examples

To illustrate the AFR-formalism presented above, we present three examples with two play-
ers: first, playing simultaneously (§2.3.5.1); second, one playing after another (§2.3.5.2);
third playing after the Nature’s move (§2.3.5.3).

These three examples are the same as in §2.2.5 to make the comparison between the
K-formalism and the AFR-formalism (and the W-formalism to come) easier.

2.3.5.1 Two players playing simultaneously

As in §2.2.5.1, we give one of the simplest and the most common examples with two players
playing simultaneously or, making two decisions irrespective of each other.

Figure 2.4: Two players playing simultaneously (AFR-model)

Mathematical formulation of the story of Alice and Bob (traditional notations
of the AFR-model). The following is the list of the primitives of an AFR-model.

• Set of plays
W = {TL, TR,BL,BR} .

• Set of vertices

V =
{
{TL, TR,BL,BR}︸ ︷︷ ︸

root

, {TL, TR}, {BL,BR}︸ ︷︷ ︸
non-root moves

, {TL}, {TR}, {BL}, {BR}︸ ︷︷ ︸
leaves

}
⊂ 2W .

With the set V of vertices, we define the basic object (AFR-BO1) of Definition 2.15.

• Choices of the players (collections of nonempty union of vertices)

C1 = {cT , cB}, C2 = {cL, cR}, where

cT = {TL, TR}, cB = {BL,BR},
cL = {BL, TL}, cR = {TR,BR} .

With the collection C = {Ci}i=1,2 of choices, we define the basic object (AFR-BO2)
of Definition 2.15.
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These choices define the following information sets of each player:

Player 1: P (cT ) = P (cB) =
{
{TL, TR,BL,BR}

}
⊂ V,

Player 2: P (cL) = P (cR) =
{
{TL, TR}, {BL,BR}

}
⊂ V .

The two Axioms in Definition 2.15 are easily seen to be satisfied. Indeed,

(AFR-Axiom1) Satisfied automatically for Player 1 (respectively, Player 2) as the choices
cT and cB (respectively, cL and cR) are disjoint.

(AFR-Axiom2) As there is only one player active at each vertex, (AFR-Axiom2) in Def-
inition 2.15 is replaced by (AFR-Axiom2’) in Definition 2.16, which is immediately
satisfies for all three moves. We check illustrate it for {TL, TR}.

p−1({TL, TR}) =
{
{TL}, {TR}

}
(by definition of the set of children as in (2.11c))

=
{
{TL, TR} ∩ cL, {TL, TR} ∩ cR

}
.

(by construction of the choices cL and cR)

Mathematical formulation of the story of Alice and Bob (with notations com-
mon to all three K-, AFR- and W-models). Finally, we can give names for the
players’ choices. We choose Alice as the first (row) player, and we set cT = T (“Top”) and
cB = B (“Bottom”); we choose Bob as the second (column) player, and we set cL = L
(“Left”) and cR = R (“Right”).

The set of basic object of this example is given by

(AFR-BO1) the set V of vertices,

(AFR-BO2) the collections of the choices of the players C1 = {T,B}, C2 = {L,R}.

2.3.5.2 Two ordered players

We consider the tree in Figure 2.2 described using the formalism of Kuhn as in §2.2.5.2
and rewrite it as a poset, where each vertex corresponds to the set of plays that pass by it
and where every upset is a chain (totally ordered by inclusion).

The following is the list of the primitives of an AFR-model.

• Set of plays
W = {TL, TR,BL,BR} .

• Set of vertices

V =
{
{TL, TR,BL,BR}︸ ︷︷ ︸

root

, {TL, TR}, {BL,BR}︸ ︷︷ ︸
moves

, {TL}, {TR}, {BL}, {BR}︸ ︷︷ ︸
leaves

}
⊂ 2W .

With the set V of vertices, we define the basic object (AFR-BO1) of Definition 2.15.
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{
TL,TR,
BL,BR

}

{TL, TR}

{TL} {TR}

{BL,BR}

{BL} {BR}

Figure 2.5: Two players playing simultaneously (AFR-model)

• Choices of the players (collections of nonempty unions of vertices)

C1 = {cT , cB}, C2 = {cTL, cBL , cTR, cBR}, where

cT = {TL, TR}, cB = {BL,BR},
cBL = {BL}, cTL = {TL}, cTR = {TR}, cBR = {BR} .

With the collection C = {Ci}i=1,2 of choices, we define the basic object (AFR-BO2)
of Definition 2.15.

These choices define the following information sets:

Player 1: P (cT ) = P (cB) =
{
{TL, TR,BL,BR}

}
⊂ V,

Player 2: P (cL) = P (cR) =
{
{TL, TR}, {BL,BR}

}
⊂ V .

The two Axioms in Definition 2.15 are easily seen to be satisfied.

2.3.5.3 Two ordered players with Nature

We consider the tree in Figure 2.3 described using the formalism of Kuhn as in §2.2.5.3.
and rewrite it as a poset, where each vertex corresponds to the set of plays that pass by it
and where every upset is a chain (totally ordered by inclusion).

The following is the list of the primitives of an AFR-model.

• Set of plays

W = {ω+TL, ω+TR, ω+BL, ω+BR,ω−TL, ω−TR, ω−BL, ω−BR} .



36 CHAPTER 2. GAME THEORY MODELS WITH INFORMATION

• Set of vertices

V =
{
{ω+TL, ω+TR, ω+BL, ω+BR,ω−TL, ω−TR, ω−BL, ω−BR}︸ ︷︷ ︸

root, move of the Nature

,

{ω+TL, ω+TR, ω+BL, ω+BR}, {ω−TL, ω−TR, ω−BL, ω−BR}︸ ︷︷ ︸
moves of Player 1

,

{ω+TL, ω+TR}, {ω+BL, ω+BR}, {ω−TL, ω−TR}, {ω−BL, ω−BR}︸ ︷︷ ︸
moves of Player 2

,

{ω+TL}, {ω+TR}, {ω+BL}, {ω+BR}, {ω−TL}, {ω−TR}, {ω−BL}, {ω−BR}︸ ︷︷ ︸
leaves

}
⊂ 2W .

With the set V of vertices, we define the basic object (AFR-BO1) of Definition 2.15.

• Choices of the players (collections of nonempty unions of vertices)

C0 =
{
{ω+TL, ω+TR, ω+BL, ω+BR}, {ω−TL, ω−TR, ω−BL, ω−BR}

}
,

C1 =
{
{ω+TL, ω+TR}, {ω+BL, ω+BR}, {ω−TL, ω−TR}, {ω−BL, ω−BR}

}
,

C2 =
{
{ω+TL}, {ω+TR}, {ω+BL}, {ω+BR}, {ω−TL}, {ω−TR}, {ω−BL}, {ω−BR}

}
.

With the collection C = {Ci}i=1,2 of choices, we define the basic object (AFR-BO2)
of Definition 2.15.

The two Axioms in Definition 2.15 are easily seen to be satisfied.

2.4 Witsenhausen intrinsic model (W-model)

After the K- and AFR-models, we finally present the Witsenhausen’s intrinsic model [37,
38], that we call W-model. This W-model enables what certainly is the most general
representation of the information available to so-called agents and of its relative influence
on the other agents’ decisions. Originally, Witsenhausen introduced this model for control
theory issues [37, 38]. The connection with games was briefly discussed in his paper [37]
but, to our knowledge, has not been developed since. To present the main object of our
research,

• in §2.4.1 we introduce the basic objects of the W-model,

• in §2.4.2 we give the definition of the W-model listing the basic objects defined above
and the axiom imposed on them,

• in §2.4.3 we define the W-strategies,

• in §2.4.4 we define configuration orderings and causality discussing in the end solv-
ability under causality,

• in §2.4.5 we illustrate the W-model on simple examples.
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2.4.1 Primitives of the W-model

A W-model is a collection
(
A, (Ω,F), {Ua,Ua}a∈A , {Ia}a∈A

)
.

The W-model [37, 38] consists of a finite set of agents, of a collection of decision sets,
with a corresponding collection of σ-fields, and of a single sample set equipped with a
σ-field, and representing uncertainties, or states of Nature. This model does not suppose
any temporal ordering of decisions, in particular, there is no tree structure a priori given.

2.4.1.1 Agent’s action set and the sample space of Nature

In the W-model, the introduction of σ-fields from the start is the key to handle information.
We refer the reader to §9.1 for background on partitions and partition fields, σ-fields and
algebras, as they are widely used afterwards,

As the first primitive, Witsenhausen introduces the following elements

• a finite set A, whose elements are called agents ; each agent a ∈ A is supposed to
make one decision ua ∈ Ua where the set Ua is the set of decisions for agent a,

• for each agent a ∈ A, a σ-field Ua on the set Ua of decisions,

• a set Ω, the sample space or Nature set, which represents all uncertainties (any ω ∈ Ω
is called a state of Nature),

• a σ-field F on the sample space Ω.

The notion of agent is not present in the K- and AFR-models, whereas it is central in
the W-model. Loosely speaking, if an individual is taking an action today and an action
tomorrow, he is to be represented by two agents, as, first, he or she may have different
information before taking the actions and, second, because decision sets of today and
tomorrow may differ. In the same vein, an individual who makes a sequence of decisions
– one for each period t = 0, 1, 2, . . . , T−1 – is represented by T agents, labelled t =
0, 1, 2, . . . , T−1.

The configuration space is the product space (called hybrid space by Witsenhausen,
hence the H notation)

H = Ω×
∏
a∈A
Ua , (2.24a)

equipped with the product configuration field

H = F ⊗
⊗
a∈A

Ua . (2.24b)

For the following exposition, we will need a bit of notations. For any subset B ⊂ A of
agents, and the complementary set of agents

− B = A \ B (2.25)
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we define the corresponding product sets of actions 3

UB =
∏
a∈B
Ua , U−B =

∏
a∈−B

Ua , (2.26a)

the following control field

UB =
⊗
a∈B

Ua ⊗
⊗
b∈−B
{∅,Ub} ⊂

⊗
a∈A

Ua , (2.26b)

and the following configuration field

HB = F ⊗ UB = F ⊗
⊗
a∈B

Ua ⊗
⊗
b∈−B
{∅,Ub} ⊂ H . (2.26c)

In the sequel, we will often use the special cases when B = A in Equation (2.26a) and
(2.26b), that is,

UA = UA =
∏
a∈A
Ua , UA =

⊗
a∈A

Ua , HA = F ⊗ UA = H , (2.26d)

when B = {a} is a singleton

U{a} = Ua , U{a} = Ua ⊗
⊗
b∈−{a}

{∅,Ub} ⊂ UA , H{a} = F ⊗ U{a} ⊂ H , (2.26e)

where −{a} = A \ {a} by (2.25), and when, analogously,

U−{a} =
∏

a∈−{a}
Ua , U−{a} =

⊗
b∈−{a}

Ub⊗{∅,Ua} ⊂ UA , H−{a} = F⊗U−{a} ⊂ H . (2.26f)

2.4.1.2 The information fields

As the second primitive, Witsenhausen introduces the information field of each agent a ∈ A
as a σ-field

Ia ⊂ H , ∀a ∈ A . (2.27)

This representation means that the information of agent a may depend on the states of
Nature and on all agents’ decisions (including itself in case of self-information, as we will
define below).

The W-information structure ΞW is given by the collection of the information fields of
all agents, that is,

ΞW = {Ia}a∈A . (2.28)

An example is given in Figure 2.6.

Remark 2.19. Analogously to the K- and AFR-information structures, as defined in (2.5)
and in (2.19b) respectively, we derive the collection of all atoms of the agents

Ξ′W = {G}G∈Ia
a∈A

.

3The upper bar stands for “reduced” sets, that are not subsets of H.
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(ω−,uT ,uR) (ω−,uT ,uL)

(ω+,uT ,uL)(ω+,uT ,uR)

(ω−,uB ,uR) (ω−,uB ,uL)

(ω+,uB ,uR) (ω+,uB ,uL)

(H,H)

•

••

•

• •

• •

(ω−,uT ,uR) (ω−,uT ,uL)

(ω+,uT ,uL)(ω+,uT ,uR)

(ω−,uB ,uR) (ω−,uB ,uL)

(ω+,uB ,uR) (ω+,uB ,uL)

Ia ⊂ H

•

••

•

• •

• •

Figure 2.6: Example of configuration set H, configuration field H

and information subfield Ia (represented by a partition) in a W-model

2.4.2 Definition of the W-model (2 basic objects, 1 axiom)

Now, we give the following definition of the W-model.

Definition 2.20. A W-model
(
A, (Ω,F), {Ua,Ua}a∈A , {Ia}a∈A

)
consists of two basic ob-

jects, namely,

(W-BO1a) a sample space (Ω,F) equipped with a σ-field,

(W-BO1b) a collection {Ua,Ua}a∈A of agents’ actions sets equipped with σ-fields, where
the set A of agents is finite,

(W-BO2) a collection {Ia}a∈A of agents’ information subfields of the configuration field H

in Equation (2.24b),

and one axiom imposed on them

(W-Axiom1) for all agent a ∈ A, the absence of self-information holds true, namely,

Ia ⊂ H−{a} = F ⊗ U−{a} , (2.29)

where the subfields H−{a} and U−{a} are defined in Equation (2.26f).

Possibly, the axiom of absence of self-information can be replaced by the stronger axiom
of solvability (Definition 2.22) or the even stronger axiom of causality (Definition 2.24),
both to be discussed later.

2.4.3 W-strategies

Now that the underlying space of configurations has been built in (2.24b) out of the agents’
action sets and of the sample set, and that the agents’ information σ-fields are given on
the corresponding configuration σ-field in (2.24b), we turn to the notion of strategy.

In the Witsenhausen framework, strategies are carried by the agents, and make reference
to their information field.
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Definition 2.21. A pure W-strategy of agent a ∈ A

λa : (H,H)→ (Ua,Ua) (2.30a)

is a mapping from the underlying set H of configurations into the set Ua of actions of the
agent a, which is measurable w.r.t. the information field Ia of the agent a, that is,

λ−1
a (Ua) ⊂ Ia . (2.30b)

We denote by Λa the set of all pure W-strategies of the agent a ∈ A. A pure W-strategy
profile λ is an element of the following set

λ = {λa}a∈A ∈
∏
a∈A

Λa = Λ . (2.31)

Condition (2.30b) expresses the property that the admissible W-strategy of agent a
may only depend upon the information Ia available to the agent.

2.4.4 Solvability, causality

Now, we speak of solvability (§2.4.4.1), configuration orderings and causality (§2.4.4.2), and
we finish by the algorithm that provides, under causality, a unique outcome (configuration),
for any given pure W-strategy profile and any given state of Nature (§2.4.4.3).

2.4.4.1 Solvability

Witsenhausen defines the property of solvability as follows.

Definition 2.22 ( [38]). The solvability property holds true for the W-model (as in Def-
inition 2.20) when, for any pure W-strategy profile λ = {λa}a∈A ∈

∏
a∈A λa (as in Defini-

tion 2.21) and any state of nature ω ∈ Ω, there exists one, and only one, decision profile
u = {ub}b∈A ∈ UA, which is a solution of the closed-loop equations

u = λ(ω, u) , (2.32a)

that is,

∀ω ∈ Ω , ∃!u = {ub}b∈A ∈ UA s.t. ua = λa
(
ω, {ub}b∈A

)
, ∀a ∈ A , (2.32b)

where UA is defined in Equation (2.26d). Denoting Mλ(ω) this unique u ∈ UA, we obtain
a mapping Mλ : Ω→ UA. Thanks to the mapping Mλ we define the solution mapping

Sλ : Ω→ H (2.32c)

by
Sλ(ω) = (ω, u) ⇐⇒ u = λ(ω, u) , (2.32d)

that is, Sλ(ω) =
(
ω,Mλ(ω)

)
, ∀ω ∈ Ω.
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2.4.4.2 Configuration orderings and causality

In his articles [37,38], Witsenhausen introduces a notion of causality which will prove to be
useful to compare his model with the K- and AFR-models. In a causal system, agents are
ordered, one playing after the other with available information depending only on agents
acting earlier, but the order may depend upon the configuration.

To properly define causality, we will now outline a series of notations and definitions,
that will prove quite convenient to handle, in a compact way, causal systems.

Configuration orderings. For k ∈ {1, . . . , |A|}, let Σk denote the set of k-orderings,
that is, injective mappings from {1, . . . , k} to the finite set A of agents:

Σk =
{
κ : {1, . . . , k} → A

∣∣κ is an injection
}
. (2.33a)

Notice that Σ|A| is the set of total orderings of agents in A, that is, bijective mappings from
{1, . . . , |A|} to A. We extend this definition to the case of k = 0 by formally setting

Σ0 = {∅} . (2.33b)

We define the set of all orderings by

Σ =
⋃

k∈{0,...,|A|}
Σk . (2.33c)

For any k ∈ {1, . . . , |A|}, we define the cardinal |κ| of any ordering κ ∈ Σk by

|κ| = k ∈ {1, . . . , |A|} , ∀κ ∈ Σk , (2.33d)

and the set Σ(≥k) of orderings with cardinal greater or equal than k by

Σ(≥k) =
⋃
`≥k

Σ` ⊂ Σ . (2.33e)

For any k ∈ {1, . . . , |A|}, any ordering κ ∈ Σk, and any integer ` ≤ k, the projection of
the ordering κ on the first ` components is well defined

κ|{1,...,`} =
(
1 7→ κ(1), . . . , ` 7→ κ(`)

)
∈ Σ` . (2.33f)

For any k ∈ {1, . . . , |A|}, there is a natural mapping ψk

ψk : Σ(≥k) → Σk (2.33g)

κ 7→ κ|{1,...,k}

which is the restriction, as defined in Equation (2.33f), of any ordering κ ∈ Σ(≥k) defined
in Equation (2.33e) to the domain set {1, . . . , k}.
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For any k ∈ {1, . . . , |A|}, and any partial k-ordering κ ∈ Σk, we define the range ‖κ‖
of the ordering κ by

‖κ‖ =
{
κ(1), . . . , κ(k)

}
⊂ A , ∀κ ∈ Σk , (2.33h)

the last element κ? of the ordering κ as the agent

κ? = κ(k) ∈ A , ∀κ ∈ Σk , (2.33i)

the restriction κ− of the ordering κ to the first k − 1 elements by

κ− = ψk−1(κ) =
(
1 7→ κ(1), . . . , k − 1 7→ κ(k − 1)

)
∈ Σk−1 , ∀κ ∈ Σk , (2.33j)

where κ− = ∅ when k = 1, by the convention (2.33b), and where the restriction mapping
ψk−1 is defined in Equation (2.33g). With the notations introduced above, any nonempty
ordering κ ∈ Σ \ {(∅)}, can be written as

κ = (κ−, κ?) , ∀κ ∈ Σ \ {(∅)} , (2.33k)

and, for any nontotal ordering κ ∈ Σ \ Σ|A|, we have

(κ, a)− = κ and (κ, a)? = a , ∀κ ∈ Σ \ Σ|A| , ∀a ∈ A \ ‖κ‖ . (2.33l)

Definition 2.23. A configuration ordering is a mapping ϕ : H→ Σ|A| from configurations
towards total orderings: along each configuration h ∈ H, the agents are ordered by the total
ordering ϕ(h) ∈ Σ|A|.

With any configuration-ordering ϕ and any partial ordering κ ∈ Σ, we associate the
subset Hϕ

κ ⊂ H of configurations given by

Hϕ
κ =

{
h ∈ H

∣∣∣ψ|κ|(ϕ(h)
)

= κ
}

=
(
ψ|κ| ◦ ϕ

)−1
({κ}) , ∀κ ∈ Σ . (2.34)

By convention, we put Hϕ
∅ = H.

The set Hϕ
κ contains all the configurations such that the agent κ(1) = ψ1(κ) is acting

first, the agent κ(2) =
(
ψ2(κ)

)?
is acting second,. . . , the last agent κ? is acting at stage |κ|.

Finally, we give two more notations that are used later in Chapter 3.
For any configuration ordering ϕ : H → Σ|A|, and any k ∈ {1, . . . , |A|}, we define the

following set ψk
(
ϕ(H)

)
⊂ Σk of k-orderings compatible with the configuration ordering ϕ

by
ψk
(
ϕ(H)

)
=
{
κ ∈ Σk

∣∣∃h ∈ H , κ = ψk
(
ϕ(h)

)}
⊂ Σk , (2.35a)

and we extend the definition to the case k = 0 by formally setting ψ0

(
ϕ(H)

)
= ϕ(H),

where
ϕ(H) =

{
ρ ∈ Σ|A|

∣∣∃h ∈ H , ρ = ϕ(h)
}
⊂ Σ|A| . (2.35b)

Then, the set Σϕ ⊂ Σ of all orderings compatible with the configuration ordering ϕ is given
by

Σϕ =
⋃

0≤k≤|A|
ψk
(
ϕ(H)

)
⊂ Σ . (2.35c)
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Causality. Now, we introduce the notion of causality following the exposition [37] of
Witsenhausen. Before this, we need to fix some notations.

Let a partial ordering κ ∈ Σ be given. Replacing in Equation (2.26a) and in Equa-
tion (2.26b) the subset of agents B by ‖κ‖ defined in Equation (2.33h) and ‖κ−‖ defined
in Equation (2.33j), we obtain the following product sets of agents given together with the
generic elements and subfields of UA and H:

u‖κ−‖ ∈ U‖κ−‖ =
∏

a∈‖κ−‖
Ua , (2.36a)

u‖κ‖ ∈ U‖κ‖ =
∏
a∈‖κ‖

Ua = U‖κ−‖ × Uκ? , (2.36b)

U‖κ‖ =
⊗
a∈‖κ‖

Ua ⊗
⊗

b∈−‖κ‖
{∅,Ub} ⊂ UA , (2.36c)

U‖κ−‖ =
⊗

a∈‖κ−‖
Ua ⊗

⊗
b∈−‖κ−‖

{∅,Ub} ⊂ U‖κ‖ , (2.36d)

H‖κ‖ = F ⊗ U‖κ‖ ⊂ H , (2.36e)

H‖κ−‖ = F ⊗ U‖κ−‖ ⊂ H‖κ‖ . (2.36f)

After having fixed the notations, we turn to the formal definition of causality.

Definition 2.24. ( [37]) A W-model (as in Definition 2.20) is causal if there exists (at
least one) configuration-ordering ϕ from H towards Σ|A| (as in Definition 2.23), with the
property that

Hϕ
κ ∩G ∈ H‖κ−‖ , ∀G ∈ Iκ? , ∀κ ∈ Σ , (2.37)

where the field H‖κ−‖ is defined in Equation (2.36f) and the “last” agent κ? is defined in
Equation (2.33i).

In other words, when the first agents are known and given by κ−, the information Iκ?

of the last agent κ? depends at most on the decisions of the predecessor agents κ− and
Nature.

We propose the following definition.

Definition 2.25. We say that a mapping ϕ : H → Σ|A| from configurations towards total
orderings is a causal configuration-ordering if Equation (2.37) holds true.

With this definition of causal configuration-ordering, the Definition 2.24 of a causal
W-model is one for which there exists (at least one) causal configuration-ordering.

In the sequel, we will make use of the following characterization of the sets Hϕ
κ of

configurations defined, for any nonempty ordering κ ∈ Σ \ {(∅)}, in Equation (2.34).
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Proposition 2.26. If a configuration-ordering ϕ : H → Σ|A| is causal (as in Defini-
tion 2.24), then for any κ ∈ Σ \ Σ1, the corresponding set Hϕ

κ of configurations is an
element of the field H‖κ−‖ defined in Equation (2.36f), hence, is a cylinder of the form

Hϕ
κ = Hϕ

κ × U−‖κ−‖ , ∀κ ∈ Σ \ Σ1 , (2.38a)

where
Hϕ

κ ⊂ Ω× U‖κ−‖ , ∀κ ∈ Σ \ Σ1 , (2.38b)

and, for any 1-ordering (a) ∈ Σ1, where (a) denotes the partial 1-ordering (1 7→ a) ∈
ψ1

(
ϕ(H)

)
the corresponding set Hϕ

(a) is a cylinder of the form

Hϕ
(a) = Ωa × UA , ∀(a) ∈ Σ1 , (2.38c)

where
Ωa ⊂ Ω . (2.38d)

Proof. For any causal configuration-ordering ϕ : H → Σ|A| and ordering κ ∈ Σ \ Σ1 (the
proof for any 1-ordering (a) ∈ Σ1 is analogous), the corresponding set Hϕ

κ defined in
Equation (2.34) is an element of F⊗U‖κ−‖ by taking G = H in Equation (2.37), where the
field U‖κ−‖ is defined in Equation (2.36d), thus, Hϕ

κ is a cylinder of the form

Hϕ
κ = Hϕ

κ × U−‖κ−‖ , where Hϕ

κ ⊂ Ω× U‖κ−‖ , ∀κ ∈ Σ \ Σ1 .

This finishes the proof.

2.4.4.3 Solvability for pure W-strategies under causality

Finally, we discuss solvability for pure W-strategies under causality. In what follows, we
give the algorithm yielding, for any given pure W-strategies profile, a unique outcome
under causality.

Algorithm 2.27 (Solving the closed-loop equations). Let a causal W-model as in Defini-
tion 2.20 and a profile λ ∈ Λ of W-strategies as in (2.31) be given. For any ω ∈ Ω, the
unique solution to the closed-loop equations u = λ(ω, u) in (2.32a) that is,

∀ω ∈ Ω , ∃!u = {ub}b∈A ∈ UA s.t. ua = λa
(
ω, {ub}b∈A

)
, ∀a ∈ A , (2.39)

is given by the following algorithm.

Step 1 The first agent and his decision are determined uniquely by ω as follows.

a) There is a unique agent a1 ∈ A such that

(ω, u) ∈ Hϕ
(a1) , ∀u ∈ UA , (2.40a)

where (a1) denotes the partial 1-ordering (1 7→ a1) ∈ ψ1

(
ϕ(H)

)
and Hϕ

(a1) is

defined in (2.34).
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b) There is a unique decision ûa1 ∈ Ua1 such that

ûa1 = λa1(ω, u) , ∀u ∈ UA . (2.40b)

Then, at the end of Step 1 of the algorithm, we obtain the 1-ordering (a1) ∈ Σ1 and
the sequence (ω, ûa1) ∈ Ω× Ua1.

Step (k+1) Let Step k of the algorithm result in a partial ordering κ ∈ Σk and a sequence
(ω, û‖κ‖) = (ω, ûκ(1), ûκ(2), . . . , ûκ(k)) ∈ Ω× U‖κ‖.
Then, the agent ak+1 and his decision are determined uniquely as follows.

a) There is a unique agent ak+1 such that

(ω, û‖κ‖) ∈ H
ϕ

(κ,ak+1) , (2.41a)

where the (k + 1)-ordering (κ, ak+1) belongs to ψk+1

(
ϕ(H)

)
and Hϕ

(κ,ak+1) is

defined in (2.34).

b) There is a unique decision ûak+1
∈ Uak+1

such that

ûak+1
= λak+1

(ω, û‖κ‖, u−‖κ‖) , ∀u−‖κ‖ ∈ U−‖κ‖ . (2.41b)

Then, at the end of Step k + 1 of the algorithm, we obtain the partial (k + 1)-
ordering (κ, ak+1) ∈ Σk+1 and the sequence

(ω, û‖(κ,ak+1)‖) =
(
ω, ûκ(1), ûκ(2), . . . , ûκ(k), ûak+1

)
∈ Ω× U‖κ‖ × Uak+1

.

Proof. Let ω ∈ Ω be given.

Step 1. First, we prove Item a in Step 1. We write the set of configurations as

Ω× UA = H =
⊔

(a)∈ψ1(ϕ(H))

Hϕ
(a) (by (3.50b) for k = 1)

=
⊔

(a)∈ψ1(ϕ(H))

Ωa × UA . (as Hϕ
(a) =

⊔
(a)∈ψ1(ϕ(H)) Ωa × UA by (2.38c))

As no set is empty, cancelling UA on both sides yields the following partition of the
sample space

Ω =
⊔

(a)∈ψ1(ϕ(H))

Ωa .

Therefore, there is a unique agent a1 ∈ A such that ω ∈ Hϕ

(a1) ⊂ Ω. Then, as Hϕ
(a1)

is a cylinder of the form Ωa1 × UA by (2.38c), we deduce that (ω, u) ∈ Hϕ
(a1) for any

u ∈ UA.
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Second, we prove Item b in Step 1. We fix some u ∈ UA. There is a unique atom
G ∈ Ia1 such that (ω, u) ∈ G (by Definition 9.2 of the atoms of an information
partition). From the Definition 2.24 of a causal ordering, and especially (2.37), we
have that

Hϕ
(a1) ∩G ∈ F ⊗

∏
a∈A
{∅,Ua} .

Therefore, (ω, u) ∈ Hϕ
(a1) ∩ G, for any u ∈ UA, hence (ω, u) ∈ G, for any u ∈ UA.

Because the strategy λa1 of the agent a1 is Ia1-measurable, it is constant on the
atom G ∈ Ia1 , hence λa1(ω, u) = λa1(ω, u), for any u ∈ UA. This is why we can set

ûa1 = λa1(ω, u) , ∀u ∈ UA .

Step (k+1) First, we prove Item a in Step (k + 1). Let Step k of the algorithm result in
a partial ordering κ ∈ Σk and a sequence (ω, û‖κ‖) ∈ Ω× U‖κ‖.
For κ ∈ Σk, we write the corresponding subset of configurations Hϕ

κ as

Hϕ

κ × U−‖κ‖ = Hϕ
κ (as Hϕ

κ = Hϕ

κ × U−‖κ‖ by (2.38a))

=
⊔

κ′∈ψk+1(ϕ(H))

(κ′)−=κ

Hϕ
κ′ (by (3.50c))

=
⊔

κ′∈ψk+1(ϕ(H))

(κ′)−=κ

Hϕ

κ′ × U−(κ′)−︸ ︷︷ ︸
=U−‖κ‖

, (as Hϕ
κ′ = Hϕ

κ′ × U−(κ′)− by (2.38a))

where, for any (k+1)-ordering κ′ ∈ ψk+1

(
ϕ(H)

)
, the corresponding set Hϕ

κ′ is a subset

of Ω× U‖κ‖. As no set is empty, cancelling U−‖κ‖ on both sides yields the following
partition

Hϕ

κ =
⊔

κ′∈ψk+1(ϕ(H))

(κ′)−=κ

Hϕ

κ′ .

Therefore, there is a unique (k+ 1)-ordering κ′ ∈ Σk+1, hence, a unique agent ak+1 ∈
A\‖κ‖, such that (ω, û‖κ‖) ∈ H

ϕ

κ′ ⊂ Ω×U‖κ‖, where (κ′)− = κ and (κ′)? = ak+1. Thus,
this unique (k+ 1)-ordering κ′ is of the form (κ, ak+1) ∈ Σk+1. Then, as Hϕ

(κ,ak+1) is a

cylinder Hϕ

(κ,ak+1) × U−‖κ‖ by (3.50b), we deduce that (ω, û‖κ‖, u−‖κ‖) ∈ Hϕ
(κ,ak+1) for

any u−‖κ‖ ∈ U−‖κ‖, hence, there is a unique agent ak+1 such that (ω, û‖κ‖) ∈ H
ϕ

(κ,ak+1)

and (2.41a) is proved.

Second, we prove Item b in Step (k + 1). We fix some u−‖κ‖ ∈ U−‖κ‖. There is a
unique atom G ∈ Iak+1

such that (ω, û‖κ‖, u−‖κ‖) ∈ G. From the Definition 2.24 of a
causal ordering, and especially (2.37), we have that

Hϕ
(κ,ak+1) ∩G ∈ F ⊗ U‖κ‖ .
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Therefore, (ω, û‖κ‖, u−‖κ‖) ∈ Hϕ
(κ,ak+1)∩G, for any u−‖κ‖ ∈ U−‖κ‖, hence (ω, û‖κ‖, u−‖κ‖) ∈

G, for any u−‖κ‖ ∈ U−‖κ‖. Because the strategy λak+1
of the agent ak+1 is Iak+1

-

measurable, it is constant on the atomG, hence λak+1
(ω, û‖κ‖, u−‖κ‖) = λak+1

(ω, û‖κ‖, u−‖κ‖),

for any u−‖κ‖ ∈ U−‖κ‖. This is why we can set

ûak+1
= λak+1

(ω, ûκ, u−‖κ‖) , ∀u−‖κ‖ ∈ U−‖κ‖ .

This ends the proof.

2.4.5 Examples

To illustrate the W-formalism presented above, we give here three examples with two play-
ers: first, playing simultaneously (§2.4.5.1); second, one playing after another (§2.4.5.2);
third playing after the Nature’s move (§2.4.5.3).

These three examples are the same as in §2.2.5 and §2.3.5 to make the comparison
between the K-formalism, the AFR-formalism and the W-formalism easier.

2.4.5.1 Two unordered players (trivial information)

Mathematical formulation of the story of Alice and Bob (traditional notations
of the W-model). The simplest model with two agents is the following situation: two
agents a (Alice) and b (Bob) having two actions each

Ua = {uT , uB}, Ub = {uL, uR} . (2.42)

With the control sets Ua and Ub we define the basic object (W-BO1) in Definition 2.20.
Thus, the configuration space consists of four elements

H = {uT , uB} × {uL, uR} , (2.43)

and no information about each other’s decisions (see Figure 2.7)

Ia = Ib = {∅,Ua} ⊗ {∅,Ub} ,
which can be interpreted as them playing simultaneously. With the information fields Ia
and Ib we define the basic object (W-BO2) in Definition 2.20.

The (W-Axiom1) in Definition 2.20 is easily seen to be satisfied from the way the
information fields Ia and Ib are defined: Ia ⊂ H−{a} and Ib ⊂ H−{b}.

Mathematical formulation of the story of Alice and Bob (with notations com-
mon to all three K-, AFR- and W-models). Finally, we can give names for the
players’ actions that are common to all three models. We choose Alice as the first (row)
player, and we set uT = T (“Top”) and uB = B (“Bottom”); we choose Bob as the second
(column) player, and we set uL = L (“Left”) and uR = R (“Right”).

The set of basic object of this example is given by

(W-BO1) the control sets Ua = {T,B} and Ub = {L,R} of the agents,

(W-BO2) the (trivial) information fields Ia = Ib =
{
∅, {T,B} × {L,R}

}
of the agents.
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(uB, uR) (uB, uL)

(uT , uL)(uT , uR)

Ia

•

••

•
(uB, uR) (uB, uL)

(uT , uL)(uT , uR)

Ib

• •

••

Figure 2.7: Atoms of the information fields of the agents a and b playing simultaneously

2.4.5.2 Two ordered players (without Nature)

As in the previous example, there are two agents a (Alice) and b (Bob) and no Nature.
having two possible actions each (see (2.45)) and the underlying configuration space consists
of four elements (see (2.46)).

Suppose that Bob’s information field is trivial (Bob knows nothing of Alice’s decisions),
that is,

Ib =
{
∅, {uT , uB}} ⊗ {∅, {uL, uR}

}
,

and that Alice knows what Bob does (Alice can distinguish between uL and uR)

Ia =
{
∅, {uT , uB}} ⊗ {∅, {uL}, {uR}, {uL, uR}

}
.

With the information fields Ia and Ib we define the basic object (W-BO2) in Definition 2.20.

In this example, the agents are naturally ordered: Bob plays first, Alice plays second.
Had the order been inverted, then there would have been a sort of paradox – Alice would
play first, before Bob, and would know Bob’s action that has not been yet taken by him.

(uB, uR) (uB, uL)

(uT , uL)(uT , uR)

Ia

•

••

•
(uB, uR) (uB, uL)

(uT , uL)(uT , uR)

Ib

• •

••

Figure 2.8: Atoms of the information fields of the ordered agents a and b (without Nature)

The (W-Axiom1) in Definition 2.20 is easily seen to be satisfied from the way the
information fields Ia and Ib are defined: Ia ⊂ H−{a} and Ib ⊂ H−{b}.
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2.4.5.3 Two ordered players (with Nature)

In this example, there are two agents a (Alice) and b (Bob) and two states of Nature
Ω = {ω−, ω−} (say, heads or tails). As in the previous examples, agents have two possible
actions each (see (2.45)). Thus, the configuration space consists of eight elements:

H = {ω+, ω−} × {uT , uB} × {uL, uR} .
We consider the following information structure:

Ib =

Bob knows Nature’s move︷ ︸︸ ︷{
∅, {ω+}, {ω−}, {ω+, ω−}

}
⊗

Bob does not know what Alice does︷ ︸︸ ︷{
∅, {uT , uB}

}
⊗{∅,Ub} , (2.44a)

Ia =
{
∅, {ω+}, {ω−}, {ω+, ω−}

}︸ ︷︷ ︸
Alice knows Nature’s move

⊗{∅,Ua} ⊗
{
∅, {uL}, {uR}, {uL, uR}

}︸ ︷︷ ︸
Alice knows what Bob does

. (2.44b)

With the information fields Ia and Ib we define the basic object (W-BO2) in Definition 2.20.
Again, here agents are naturally ordered: Bob plays first, Alice plays second.

(ω−,uB ,uR) (ω−,uT ,uR)

(ω+,uT ,uR)(ω+,uB ,uR)

(ω−,uB ,uL) (ω−,uT ,uL)

(ω+,uB ,uL) (ω+,uT ,uL)
Ia

•

••

•

• •

• •

(ω−,uB ,uR) (ω−,uT ,uR)

(ω+,uT ,uR)(ω+,uB ,uR)

(ω−,uB ,uL) (ω−,uT ,uL)

(ω+,uB ,uL) (ω+,uT ,uL)
Ib

•

••

•

• •

• •

Figure 2.9: Atoms of the information fields of the ordered agents a and b (with Nature)

The (W-Axiom1) in Definition 2.20 is easily seen to be satisfied from the way the
information fields Ia and Ib are defined: Ia ⊂ H−{a} and Ib ⊂ H−{b}.

2.5 Advanced examples: forgetfulness and absent-mindedness

Here, we illustrate K-, AFR- and W-models on more advanced examples of absent-mindedness
(§2.5.1) and of forgetfulness (§2.5.2). Besides illustrating the formalism of each model, this
§2.5 prepares the discussion about information structures and possible classifications in
Chapter 5.

2.5.1 Absent-mindedness

We now present a classic example dubbed the paradox of the absent minded driver by
Piccione and Rubinstein who introduced it in [27].
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As the story goes, a tired driver plans the trip back home on a highway with two
exits. During the course of the game, he gets to take an action at most twice from the
two-element action set {S, T}, where “S” stands for “Stay” (on the highway) and “T”
stands for “Turn” (off the highway). Taking the first exit ends up in a bad neighbourhood,
whereas the second exit is the one the driver would like to take, leading to the sweet home.
In order to arrive there, the driver needs to stay at the first exit and turn at the second. If
both exits are ignored, the driver ends up at a hotel. The absent-mindedness of the driver
is rooted in the fact that both of the exits from the highway are indistinguishable for him.

2.5.1.1 Absent-mindedness in the K-model

We model the absent-minded driver situation in the K-model as follows.

v0

z1

bad
neighbourhood

e1

v1

z2

sweet
home

e3

z3

expensive
hotel

e4

e2

Figure 2.10: Absent-mindedness in the K-model

The following is the list of primitives.

• Set of vertices V = {v0, v1, z1, z2, z3}.

• Set of edges E =
{

(v0, z1)︸ ︷︷ ︸
e1

, (v0, v1)︸ ︷︷ ︸
e2

, (v1, z2)︸ ︷︷ ︸
e3

, (v1, z3)︸ ︷︷ ︸
e4

}
.

• Set of player’s moves X = {v0, v1} and the set of leaves Z = {z2, z3}.

• Player’s information partition I = {v0, v1}.

• Set of choices C =
{
{e1, e3}, {e2, e4}

}
.

The model per se violates (K-Axiom2) in Definition 2.4 stating that no play can cross
any information set more than once. Indeed, the play wz2 = {v0, v1, z2}, as defined in (2.1d),
crosses the only information set I = {v0, v1} twice (i.e., at two vertices):

wz2 ∩ I = {v0, v1, z2} ∩ {v0, v1} = {v0, v1} ⊂ V .

Making relation to the general description of the model, we give names to the choices
{e1, e3} = T and {e2, e4} = S of the player.
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As presented above, the absent-minded driver model violates one of the axioms of the
K-model. Despite of this, it can be depicted as the following extensive form game in
Figure (2.10). In the literature (see, for example, [10]), extensive forms modelling absent-
minded players are sometimes called non-Kuhn trees.

2.5.1.2 Absent-mindedness in the AFR-model

Straightforward embedding of the absent-minded driver example using the language of the
AFR-model will, as in §2.5.1.1, end up in violating one of the two axioms of the AFR-model
in Definition 2.15, namely, (AFR-Axiom1) that builds information sets from choices and
imposes a condition that choices available simultaneously cannot intersect.

There is a player that has two decision locii and two possible decisions at each of the
points: turn (T) or stay (S). Denote three possible outcomes as w1, w2 and w3. The tree
structure is shown in Figure 2.11 followed by the list of objects.

{w1, w2, w3}

{w1}

T

{w2, w3}

{w2}

T

{w3}

S

S

Figure 2.11: Absent-mindedness in the AFR-model

The following is the list of primitives of an AFR-model.

• Set of plays
W = {w1, w2, w3} .

• Set of vertices

V =
{
{w1, w2, w3}︸ ︷︷ ︸

root

, {w2, w3}︸ ︷︷ ︸
move

, {w1}, {w2}, {w3}︸ ︷︷ ︸
leaves

}
⊂ 2W .

• Choices of the player

C = {cT , cS}, where

cT = {w1, w2}, cS = {w1, w3} .

These two choices define an information set

P (cT ) = P (cS) =
{
{w1, w2, w3}, {w2, w3}

}
,
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but, as cT ∩ cS = w1 and cT 6= cS, it violates (AFR-Axiom 1) in Definition 2.15.
So, the straightforward embedding of the absent minded driver into AFR-model fails

because of the (AFR-Axiom 1) ruling out the absent-mindedness.

2.5.1.3 Absent-mindedness in the W-model

We will build here a W-model with two agents having a certain information structure that
proves to be equivalent to the absent minded driver problem; this approach coincides with
the one proposed by Gilboa. In his paper [10], he replaced the absent-minded player by
two agents and added a move of Nature at the root that determines which of the two
agents moves first. In Figure 2.12 is the illustration of the absent-minded driver problem
(as in [10]) on a tree and with fictive moves added.

Nature

ωa ωb
agent a

Ta Sa

agent b

Sb Tb

Sb Tb Sa Ta
Sa TaSb Tb

Figure 2.12: Absent-mindedness on the tree with two symmetric agents and added fictive
vertices

Coming back to the absent minded driver example in the W-model, assume that the
player is represented by two agents, a and b, having two actions Turn (T) or Stay (S) each
indexed according to the agent’s name:

Ua = {Ta, Sa}, Ub = {Tb, Sb}.

Also, there is Nature taking its actions in the set Ω = {ωa, ωb}, which selects an agent that
will move first.

The configuration space is then given by

H = Ω× Ua × Ub = {ωa, ωb} × {Ta, Sa} × {Tb, Sb}.

The main idea behind the AM-property is that, at some point, an absent-minded player
loses the public clock. This can be easily seen through the prism of agents representing
him: neither agent a nor agent b know the order in which they got to take actions, i.e. each
of them lacks knowledge about the Nature’s move. The only thing an agent knows is that
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(ωb,Ta,Tb) (ωb,Sa,Tb)

(ωa,Sa,Tb)(ωa,Ta,Tb)

(ωb,Ta,Sb) (ωb,Sa,Sb)

(ωa,Ta,Sb) (ωa,Sa,Sb)
Ia

•

••

•

• •

• •

(ωb,Ta,Tb) (ωb,Sa,Tb)

(ωa,Sa,Tb)(ωa,Ta,Tb)

(ωb,Ta,Sb) (ωb,Sa,Sb)

(ωa,Ta,Sb) (ωa,Sa,Sb)
Ib

•

••

•

• •

• •

Figure 2.13: Atoms of the information fields of the absent-minded player’s agents

if he got to play, had the other agent acted before, this other agent chose the action “Stay”.
This ambiguity can be expressed through the following agents’ information partition fields:

Ia =
{
∅,

agent a makes a move︷ ︸︸ ︷
{ωa} × Ua × Ub︸ ︷︷ ︸

agent a is whether
the first one to act

∪{ωb} × {Sb} × Ua︸ ︷︷ ︸
or he acts second after
agent b has chosen S

,

agent a does not make a move︷ ︸︸ ︷
{ωb} × {Tb} × Ua︸ ︷︷ ︸

agent b chose T
and finished the game

,W
}
,

Ib =
{
∅, {ωb} × Ua × Ub ∪ {ωa} × {Sa} × Ub, {ωa} × {Ta} × Ub,W

}
.

2.5.2 Forgetfulness

The second advanced example is the so-called imperfect recall of past actions, when a player
makes one decision followed by another and forgets the one made first.

The story behind this example is as follows. A player makes two consecutive decisions,
first is needed to choose between “Top” and “Bottom”, and afterwards between “Left” and
“Right”, but the outcome at the first stage is being forgotten.

2.5.2.1 Forgetfulness in the K-model

This example is a particular case of the example with two unordered players (playing
simultaneously) in §2.2.5.1,

• The set of vertices V = {v0, v1, v2, z3, z4, z5, z6}.

• The set of edges E = {(v0, v1)︸ ︷︷ ︸
e1

, (v0, v2)︸ ︷︷ ︸
e2

, (v1, z3)︸ ︷︷ ︸
e3

, (v1, z4)︸ ︷︷ ︸
e4

, (v2, z5)︸ ︷︷ ︸
e5

, (v2, z6)︸ ︷︷ ︸
e6

} .

With the set V of vertices and the set E of edges, choosing the vertex v0 as the root,
we define the basic object (K-BO1) of Definition 2.4.

• The set of edges determines
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1. the set of moves X = {v0, v1, v2} by (2.1c)
(as Ev0 = {e1, e2}, Ev1 = {e3, e4} and Ev2 = {e5, e6}),

2. the set of leaves Z = {z3, z4, z5, z6} by (2.1b)
(as Ez3 = Ez4 = Ez5 = Ez6 = ∅).

• The set of players is a singleton P = {1} and we partition the set X of moves into
players’ moves is trivial

X1 = X .

With this partition, we define the basic object (K-BO2) of Definition 2.4.

• We define the player’s information partition of (player’s) set of moves by

I =
{
{v0}, {v1, v2}

}
.

With this partition, we define the basic object (K-BO3) of Definition 2.4.

• We define the player’s choice partitions by

C =
{
{e1}, {e2}, {e3, e5}, {e4, e6}

}
.

With this partition, we define the basic object (K-BO4) of Definition 2.4.

The four Axioms in Definition 2.4 are easily seen to be satisfied.

Player
v0

v1

z1

e3

z2

e4

e1

v2

z3

e5

z4

e6

e2

Player

Figure 2.14: Forgetfulness in the K-model

The forgetfullnes of the player is cyphered in the information structure. As vertices in
the information set {v1, v2} are indistinguishable for the player, and their parent vertex,
the root v0, forms the other (singleton) information set, then the edges (v0, v1) and (v0, v2),
which represent the actions made in the information set {v0}, are indistinguishable for the
player as well. Thus, the player in the second information set {v1, v2} has no memory of
the (past) action made in the information set {v0}.

To draw a parallel with the main storyline, we name the player’s choices as follows

{e1} = T , {e2} = B , {e3, e5} = L , {e4, e6} = R .
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2.5.2.2 Forgetfulness in the AFR-model

To model forgetfulness in the AFR-model, we take the simplest case of two players playing
simultaneously and having two actions each. Seen as one player, the following exposition
will explain why this united player has no memory of the past actions.

The following is the list of the primitives of an AFR-model.

• Set of plays
W = {TL, TR,BL,BR} .

• Set of vertices

V =
{
{TL, TR,BL,BR}︸ ︷︷ ︸

root

, {TL, TR}, {BL,BR}︸ ︷︷ ︸
non-root moves

, {TL}, {TR}, {BL}, {BR}︸ ︷︷ ︸
leaves

}
⊂ 2W .

• Choices of the player

C = {cT , cB, cL, cR}, where

cT = {TL, TR}, cB = {BL,BR},
cL = {BL, TL}, cR = {TR,BR} .

These choices define the following information sets of the player:

P (cT ) = P (cB) =
{
{TL, TR,BL,BR}

}
⊂ V , P (cL) = P (cR) =

{
{TL, TR}, {BL,BR}

}
⊂ V .

The two Axioms in Definition 2.15 are easily seen to be satisfied.

Forgetfullnes of the player is cyphered in the system of choices, namely, in the infor-
mation sets the choices are assigned to. In this model, the player has two information
sets

{
{TL, TR,BL,BR}

}
and

{
{TL, TR}, {BL,BR}

}
. When choosing between cT =

{TL, TR} and cB = {BL,BR} that are assigned to the information set
{
{TL, TR,BL,BR}

}
,

by doing so, the player decides, which outcomes to discard: if the choice cT is selected, then
the discarded outcomes are BL and BR that constitute the other choice cB assigned to
the same information set

{
{TL, TR,BL,BR}

}
, and vice versa. Suppose, the choice cT is

taken. When it comes to choosing between cL = {BL, TL} and cR = {TR,BR} assigned
to the other information set

{
{TL, TR}, {BL,BR}

}
, we notice that each of them contains

one outcome that was supposed to be discarded upon making the choice cT at the previous
step. Thus, at the second information set

{
{TL, TR}, {BL,BR}

}
, the player does not

remember the choice that was made at the first information set
{
{TL, TR,BL,BR}

}
.

2.5.2.3 Forgetfulness in the W-model

In the W-formalism, the simplest example of a forgetful player can be given by two agents
a and b representing the player and having two possible actions each, thus, the underlying
configuration space consists of four elements.
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As in §2.4.5.1, the agents have no information about each other’s decisions. The fact
that the agents belong to the same player can be represented by them having the same
criterion.

Stated formally, the control sets of the agents a (Alice) and b (Bob) are

Ua = {uT , uB}, Ub = {uL, uR} . (2.45)

With the control sets Ua and Ub we define the basic object (W-BO1) in Definition 2.20.
Thus, the configuration space consists of four elements

H = {uT , uB} × {uL, uR} , (2.46)

and no information about each other’s decisions (see Figure 2.7)

Ia = Ib = {∅,Ua} ⊗ {∅,Ub} .

With the information fields Ia and Ib we define the basic object (W-BO2) in Definition 2.20.
The forgetfulness in this framework can be interpreted as, say, Bob playing second after

Alice playing first, without knowing the outcome of her action. Once the two agents belong
to the same player, the player can be seen as a forgetful one, once the second agent of the
player has no information about the action made by the first.

2.6 Conclusion

The AFR-model is a powerful generalization of the K-model, obtained by extending the
notion of tree to possibly uncountable or continuous decision-makers and actions. Both
the K- and AFR-models require basic objects and axioms that are rather technical.

The W-model is not an extension of the AFR-model as it does not rely on a tree
structure. The basic objects display a precise and concise description and the axiomatics is
limited and transparent — except with the notion of causality, which is technical, and close
to the notion of tree. By contrast with the AFR-model, the W-model is defined with a finite
number of agents — whereas the AFR-model was originally developed to handle countable
and partly uncountable and continuous decision-makers (like in continuous, stochastic and
differential games).

Now, in Chapters 3 and 4, we will discuss connections between the three models we
have presented.



Chapter 3

From W-model to AFR-model

3.1 Introduction

In this Chapter 3, we show that a causal W-model with complete π-fields, as described in
§2.4.2, can be embedded into an AFR-model, as described in §2.3.3. For this purpose, we
will stick to the following roadmap.

• In Section 3.2, we give general results about two tree structures in partial orderings,
build the set of plays on which all subsequent constructed objects are supported, a
set of so-called WtoAFR-vertices supported on this set of plays. We prove that the
set of WtoAFR-vertices is ordered by set inclusion, thus, possesses a tree structure,
which yields the so-called WtoAFR-tree, the first primitive of an AFR-model,

• In Section 3.3, we build the collection of so-called WtoAFR-choices, which is the
second primitive of an AFR-model, and prove that, for the constructed primitives,
the two AFR-axioms hold true,

• In Section 3.4, we construct AFR-strategies, as defined in §2.3.4, from W-strategies,
as defined in Section 2.4.3,

• In Section 3.5, we state and prove technical results used in the previous sections.

In the end of this introductory Section 3.1, we state the summarizing Theorem 3.1,
which is the main result of this Chapter 3.

Theorem 3.1. Let be given

• a set A of agents, each agent a ∈ A having a set of actions Ua equipped with complete
partition field Ua and Nature taking actions in the sample space Ω equipped with
complete partition field F,

• an information π-field Ia ⊂ H for each agent a ∈ A,

• a causal configuration ordering ϕ : H→ Σ as in (2.37).

57
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For any partition A =
⊔
i∈P Ai of the agents into players, we construct an AFR-model as

in Definition 2.15 with

• the set P of AFR-players,

• the set W = H of plays,

• the WtoAFR-tree (V,⊃), where the set V of WtoAFR-vertices is defined in (3.20d),

• the collection Ci = {Ca}a∈Ai of WtoAFR-choices of the player i ∈ P, where for
any representative agent a ∈ Ai of the player i, the corresponding partition Ca of
WtoAFR-choices is as in (3.29).

The constructed objects satisfy (AFR-Axiom1’) and (AFR-Axiom2’) stated in Definition 2.16.

Proof. The theorem is a consequence of Propositions 3.14 and 3.18.

3.2 WtoAFR-tree

In this Section 3.2, we give some general results about tree structures in partial orderings,
namely,

• in §3.2.1, we introduce an order relation � on the set Σ of orderings (from integers
towards agents), and we prove that the poset (Σ,�) is a tree,

• in §3.2.2, we prove that the Σ|A|-poset
(
{Σκ}κ∈Σ\Σ|A| ,⊃

)
is a tree,

• in §3.2.3, we build the set of plays on which all subsequent constructed objects are
supported and the set of so-called WtoAFR-vertices supported on this set of plays.
We prove that the set of WtoAFR-vertices is ordered by set inclusion, thus, possesses
a tree structure, which yields the so-called WtoAFR-tree, the first primitive of an
AFR-model.

Some of the results proved in this Section 3.2 rely on technical results postponed to Sec-
tion 3.5.

3.2.1 The tree of partial orderings

We introduce a relation on the set Σ of partial orderings, defined in (2.33c). For any two
partial orderings κ, κ′ ∈ Σ,

κ′ � κ ⇐⇒
{
|κ′| ≤ |κ|
ψ|κ′|(κ) = κ′ ,

(3.1)
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where the cardinal |κ| is as in (2.33d) and the restriction mapping ψk is as in (2.33g) applied
for k = |κ′|. Thus, κ′ � κ means that κ′ is the restriction of κ to the first |κ′| integers. The
choice of notation may seem counterintuitive, but the logic is as follows: the “shorter” an
ordering is, the “bigger” it is. Indeed, the “shortest” empty ordering {(∅)} is then defined
as the “biggest” root vertex. Similarly, the set of the “longest” total orderings Σ|A| forms
the set of the “smallest” vertices, that is, leaves of the poset (Σ,�), which is proved to be
a tree in Proposition 3.2 .

Note that, κ− � κ, for any nonempty ordering κ ∈ Σ \ {(∅)}. Indeed, for any such
nonempty ordering κ, we have κ− = ψ|κ|−1(κ) = ψ|κ−|(κ), where the first elements κ− are
as in (2.33j). Combined with the fact that |κ−| ≤ |κ| and the Equivalence 3.1, we obtain
that

κ− � κ , ∀κ ∈ Σ \ {(∅)} . (3.2)

In the following Proposition 3.2, we show that (Σ,�) is a poset and, moreover, possesses
a tree structure.

Proposition 3.2. The set Σ of orderings as in (2.33c), supplied with the binary relation �
defined in (3.1), is

• a poset (Σ,�), that is, the binary relation � is reflexive, antisymmetric and transitive,

• a tree according to Definition 2.7, that is, for any vertex κ ∈ Σ, the upset

↑κ =
{
κ′ ∈ Σ

∣∣κ′ � κ
}

(3.3)

as in (2.10), is a chain.

Moreover, the image of any nonempty ordering κ ∈ Σ \ {(∅)} under the parent mapping p,
as in (2.11b), is κ− ∈ Σ|κ|−1, that is,

p(κ) = κ− , ∀κ ∈ Σ \ {(∅)} . (3.4)

Proof. The proof is in three points.
I First, we prove that the set Σ supplied with the binary relation � is a poset.

Reflexivity. We prove that for any κ ∈ Σ, the relation κ � κ holds true.

ψ|κ|(κ) = κ|{1,...,|κ|}
(by definition of the restriction mapping ψk, as in (2.33g) applied for k = |κ|)

= κ
(by projection on the first components as in (2.33f) applied for ` = |κ|)

Thus, by definition of the relation � as in (3.1), κ � κ.
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Antisymmetry. We prove that, for any κ, κ′ ∈ Σ, such that κ 6= κ′ and that κ � κ′, then
necessarily we have that κ′ 6� κ.

The proof is by contradiction. For this purpose, we suppose that κ′ � κ holds true
together with κ � κ′ and κ 6= κ′. From (3.1), we have simultaneously that |κ′| ≤ |κ|
and |κ| ≤ |κ′|, thus, |κ′| = |κ|. Then, we write

κ′ = ψ|κ′|(κ) (by definition of the relation � as in (3.1), as κ′ � κ)

= ψ|κ|(κ) (as |κ′| = |κ|)
= κ , (by projection on the first ` components as in (2.33f) applied for ` = |κ|)

which contradicts the assumption κ 6= κ′.

Transitivity. We consider three orderings κ, κ′, κ′′ ∈ Σ, such that κ′′ � κ′ and κ′ � κ.
We prove that κ′′ � κ.

By definition of the relation � as in (3.1), we have |κ′′| ≤ |κ′| ≤ |κ|, thus, |κ′′| ≤ |κ|.
Then,

κ′′ = ψ|κ′′|(κ
′) (by definition of the relation � as in (3.1), as κ′′ � κ′)

= ψ|κ′′|
(
ψ|κ′|(κ)

)
(by definition of the relation � as in (3.1), as κ′ � κ)

= ψ|κ′′|(κ) . (by Lemma 3.27 applied for k′′ = |κ′′| and k′ = |κ′|)

I Second, we prove that the poset (Σ,�) is a tree. To this end, we show that, for any
element κ ∈ Σ, the upset ↑κ, as defined in (3.3), is a chain. For this purpose, we consider
two orderings κ′, κ′′ ∈↑κ and we prove that either κ′ � κ′′ or κ′′ � κ′. We assume without
loss of generality that |κ′′| ≤ |κ′|.

As κ′, κ′′ ∈↑κ =
{
κ′′′ ∈ Σ

∣∣κ′′′ � κ
}

by definition (3.3), and as κ′′′ � κ =⇒ |κ′′′| ≤ |κ|
by definition (3.1), then |κ′′| ≤ |κ′| ≤ |κ| and we have that

κ′′ = ψ|κ′′|(κ) (by definition of the binary relation � as in (3.1), as κ′′ � κ)

� ψ|κ′|(κ) (by (3.47c) in Lemma 3.27 applied for k′′ = |κ′′| and k′ = |κ′|)
= κ′ . (by definition of the binary relation � in (3.1), as κ′ � κ)

I Third, for any κ ∈ Σ \ {(∅)}, we prove Equation (3.4). We write

p(κ) = min
(
↑κ \ {κ}

)
(by definition of the parent mapping p as in (2.11b))

= min
({
κ′ ∈ Σ

∣∣κ′ � κ
}
\ {κ}

)
(by definition of the upset ↑κ as in (3.3))

= min
{
κ′ ∈ Σ

∣∣κ′ � κ−
}

as κ′ � κ ⇐⇒ κ′ = κ or κ′ � κ− by (3.7), to be found in the postponed Lemma 3.4

= κ− . (as κ− ∈
{
κ′ ∈ Σ

∣∣κ′ � κ−
}

and κ− is a lower bound)

This ends the proof.
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The Figure 3.1 is a tree representation of the poset (Σ,�) for the set A = {a, b, c} of
agents. The empty ordering Σ0 = (∅) as in (2.33b) is the root of the tree. Focusing on
the lower part of Figure 3.1, we can observe that any total ordering in Σ3 is the only child
vertex of the corresponding parent. In fact, we will now establish in Corollary 3.3 that all
trees (Σ,�) have the property that the set of only children coincides with the set of total
orderings. In other words, the parents of total orderings are the only parents to have an
only child; informally speaking, total orderings are the only vertices that have no “sibling”
vertices. This property plays its role in the sequel.

(∅)

(a)

(ab)

(abc)

(ac)

(acb)

(b)

(ba)

(bac)

(bc)

(bca)

(c)

(cb)

(cba)

(ca)

(cab)

Figure 3.1: Example of a tree (Σ,�) of orderings in a three agents case

Corollary 3.3. The poset (Σ \ Σ|A|,�) is a tree.
Moreover, for any nonempty ordering κ ∈ Σ\{(∅)}, the set p−1(κ−) of children vertices

(as in (2.11c)) of κ− is a singleton iff κ ∈ Σ|A|, that is,

p−1(κ−) = {κ} ⇐⇒ κ ∈ Σ|A| . (3.5)

Proof. The set (Σ \ Σ|A|,�) is deduced from the tree (Σ,�) by removing the leaves. It is
readily checked that the resulting set is a poset and also a tree.

• In order to prove Equivalence (3.5), we establish yet another useful relation: for any
nontotal ordering κ ∈ Σ \ Σ|A|, the set of children vertices, as in (2.11c), is given by

p−1(κ) =
{

(κ, a)
∣∣ a ∈ A \ ‖κ‖} ⊂ Σ|κ|+1 . (3.6)

By Equation (3.4), we have that κ′ ∈ p−1(κ) =⇒ κ′− = p(κ′) = κ. We get that |κ′| =
|κ|+ 1 by definition (2.33j) of κ′−. Thus, we have obtained the inclusion p−1(κ) ⊂ Σ|κ|+1,
for any partial ordering κ ∈ Σ \ Σ|A|. Then, to prove the equality in Equation (3.6), we
now show two inclusions.

On the one hand, we show that
{

(κ, a)
∣∣ a ∈ A \ ‖κ‖} ⊂ p−1(κ). For any agent a ∈

A\‖κ‖, the corresponding ordering (κ, a) is a mapping (κ, a) : {1, . . . , |κ|+ 1} → A, which
is an injection and hence belongs to Σ|κ|+1. Moreover, we have

p
(
(κ, a)

)
= (κ, a)− (by (3.4))

= κ . (by (2.33l))
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Thus, we have obtained that
{

(κ, a)
∣∣ a ∈ A \ ‖κ‖} ⊂ p−1(κ).

On the other hand, we show that p−1(κ) ⊂
{

(κ, a)
∣∣ a ∈ A \ ‖κ‖}. We write

p−1(κ) ⊂
{
κ′ ∈ Σ|κ|+1

∣∣ p(κ′) = κ
}

by definition of the set p−1(κ) of children vertices as in (2.11c) and the fact that, for any
nontotal ordering κ ∈ Σ \ Σ|A|, p−1(κ) ⊂ Σ|κ|+1

=
{
κ′ ∈ Σ|κ|+1

∣∣κ′− = κ
}

as, for any κ′ ∈ Σ|κ|+1, we have κ′ ∈ Σ\{(∅)}, and thus Equation (3.4) gives that p(κ′) = κ′−

=
{

(κ, a) ∈ Σ|κ|+1
∣∣ (κ, a) : {1, . . . , |κ|+ 1} → A is an injection

}
(by definition of the set Σk of k-orderings as in (2.33a) applied for k = |κ|+ 1)

=
{

(κ, a) ∈ Σ|κ|+1
∣∣ a ∈ A \ ‖κ‖} ,

(as, if a ∈ ‖κ‖, then the mapping (κ, a) : {1, . . . , |κ|+ 1} → A is not an injection)

which proves the inverse inclusion and, thus, the equality in Equation (3.6).

• Now, we prove Equivalence (3.5).

(⇐) We consider a total ordering κ ∈ Σ|A|. Then κ− ∈ Σ \ Σ|A| and using (3.6), we
obtain that

p−1(κ−) =
{

(κ−, a)
∣∣ a ∈ A \ ‖κ−‖} .

As κ− ∈ Σ|A|−1 by (2.33j), then A\‖κ−‖ is reduced to a singleton. Therefore, p−1(κ−) is also
reduced to a singleton and since κ? ∈ A\‖κ−‖ we obtain the equality p−1(κ−) = {(κ−, κ?)}.
We therefore obtain that p−1(κ−) = {κ}.

(⇒) Assume that p−1(κ−) = {κ} for some κ ∈ Σ \ {(∅)}. Then, κ− ∈ Σ \ Σ|A| and
by (3.6), we have {

(κ−, a)
∣∣ a ∈ A \ ‖κ−‖} = {κ} .

Thus, A \ ‖κ−‖ is a singleton, which is only possible when |κ−| = |A| − 1, that is, when
|κ| = |A|. Thus, we have that κ ∈ Σ|A|.

This ends the proof.

We finish this §3.2.1 by establishing an, already used and extensively used in the sequel,
equivalence between any two orderings related through the binary relation �.

Lemma 3.4. For any two partial orderings κ, κ′ ∈ Σ, we have the following equivalence

κ′ � κ ⇐⇒ κ′ = κ or
(
κ′ � κ− and κ 6= {(∅)}

)
. (3.7)

Proof. We consider two partial orderings κ, κ′ ∈ Σ. We prove the two implications of the
Equivalence (3.7).

I (⇐) We suppose that κ′ = κ or that
(
κ′ � κ− and κ 6= {(∅)}

)
, and we consider the two

possible cases one by one. If κ′ = κ, we trivially have that κ′ � κ′ = κ by reflexivity of the
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relation � established in Proposition 3.2. If κ′ � κ− and κ 6= {(∅)}, we get that κ′ � κ,
by transitivity of the relation �, established in Proposition 3.2, because κ− � κ by (3.2)
since κ ∈ Σ \ {(∅)}.
I (⇒) We suppose that κ′ � κ. Then, we get that |κ′| ≤ |κ|, by definition of the relation
� as in (3.1), and we consider the two possible cases |κ′| = |κ| or |κ′| < |κ| one by one. If
we suppose that |κ′| = |κ|, then we have that

κ′ = ψ|κ′|(κ) (by definition of the relation � as in (3.1))

= ψ|κ|(κ) (as |κ′| = |κ| by assumption)

= κ ,

and we obtain that κ′ = κ. If we suppose that |κ′| ≤ |κ| − 1, then we have that κ 6= {(∅)}
since |κ| ≥ 1, and we have that

κ′ = ψ|κ′|(κ) (by definition of the relation � as in (3.1))

� ψ|κ|−1(κ) (by postponed (3.47c) applied for k′ = |κ| − 1 and k′′ = |κ′|)
= κ− , (by (2.33j))

and we get that κ′ � κ−.

This ends the proof.

3.2.2 The Σ|A|-poset tree of total orderings

For any partial ordering κ ∈ Σ, we define the following subset Σκ ⊂ Σ|A| of total orderings
coinciding with κ on the first {1, . . . , |κ|} elements by1

Σκ =
{
ρ ∈ Σ|A|

∣∣ψ|κ|(ρ) = κ
}
⊂ Σ|A| , ∀κ ∈ Σ . (3.8)

The main result of this §3.2.2 is the following Proposition 3.5.

Proposition 3.5. The mapping

Σ \ Σ|A| → {Σκ}κ∈Σ\Σ|A| , Σ \ Σ|A| 3 κ 7→ Σκ ⊂ Σ|A| , (3.9)

where the subset Σκ of total orderings is defined in (3.8), is an order isomorphism between
the poset (Σ \ Σ|A|,�) and the Σ|A|-poset

(
{Σκ}κ∈Σ\Σ|A| ,⊃

)
.

As a consequence, the Σ|A|-poset
(
{Σκ}κ∈Σ\Σ|A| ,⊃

)
is a tree and, for any nonempty

and nontotal ordering κ ∈ Σ \ {(∅) ∪ Σ|A|}, the parent of the corresponding vertex Σκ is
given by the vertex Σκ−, that is,

p(Σκ) = Σκ− , ∀κ ∈ Σ \ {(∅) ∪ Σ|A|} . (3.10)

1Notice the lower index for orderings, and the upper index for cardinals.
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Proof. The proof is in three steps.

I First, we show that the mapping defined in (3.9) is an order morphism between the
poset (Σ \ Σ|A|,�) and the Σ|A|-poset

(
{Σκ}κ∈Σ\Σ|A| ,⊃

)
, that is, that we have(

∀κ, κ′ ∈ Σ \ Σ|A|
)

κ′ � κ ⇐⇒ Σκ′ ⊃ Σκ . (3.11)

We prove the two implications of the Equivalence (3.11).

(⇒) We consider two nontotal orderings κ, κ′ ∈ Σ\Σ|A|, such that κ′ � κ, and we show
that Σκ′ ⊃ Σκ. For any total ordering ρ ∈ Σκ, we have that

ψ|κ′|(ρ) = ψ|κ′|
(
ψ|κ|(ρ)

)
by (3.47b) since κ′ � κ =⇒ |κ′| ≤ |κ|, by definition of the relation � as in (3.1)

= ψ|κ′|(κ) (as ψ|κ|(ρ) = κ by (3.8) since ρ ∈ Σκ)

= κ′ . (as κ′ � κ by definition of the relation � in (3.1))

Thus, we have obtained that ρ ∈ Σκ′ , as ψ|κ′|(ρ) = κ′. Hence the inclusion Σκ′ ⊃ Σκ is
proved.

(⇐) We consider two nontotal orderings κ, κ′ ∈ Σ \ Σ|A| such that Σκ′ ⊃ Σκ and we
show that κ′ � κ.

From Σκ′ ⊃ Σκ, we deduce that |Σκ′ | = (|A| − |κ′|)! ≥ |Σκ| = (|A| − |κ|)!, hence that
|κ′| ≤ |κ|. Then, for any total ordering ρ ∈ Σκ ⊂ Σ|A|, we have that

ψ|κ′|(κ) = ψ|κ′|
(
ψ|κ|(ρ)

)
(as κ = ψ|κ|(ρ) by (3.8) since ρ ∈ Σκ)

= ψ|κ′|(ρ) (by (3.47b) since |κ′| ≤ |κ|)
= κ′

because ρ ∈ Σκ and Σκ′ ⊃ Σκ imply that ρ ∈ Σκ′ , hence that ψ|κ′|(ρ) = κ′ by (3.8). As
we had |κ| ≥ |κ′|, and as we have obtained that ψ|κ′|(κ) = κ′, we conclude that κ � κ′ by
definition of the relation � in (3.1).

I Second, we show that the mapping (3.9) is a bijection. As it is surjective by definition,
there remains to show that it is injective. Now, if Σκ′ = Σκ, we deduce from (3.11) that
both κ′ � κ and κ � κ′, hence that κ′ = κ by antisymmetry of the relation �.

I Third, we prove the two remaining points. As, by Corollary 3.3, the poset (Σ\Σ|A|,�) is
a tree, its image by the order isomorphism (3.9) is a tree as an order isomorphism preserves
chains. As a consequence, the Σ|A|-poset

(
{Σκ}κ∈Σ\Σ|A| ,⊃

)
is a tree. Equation (3.10) is

a straightforward consequence of (3.4) thanks to the order isomorphism (3.9). Indeed, as
the minimum of a finite set is preserved under an order isomorphism, then the minimum
operation commutes with the order isomorphism, which gives the result.

This ends the proof.
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We give the following useful Corollary 3.6.

Corollary 3.6. For any two partial orderings κ, κ′ ∈ Σ, such that |κ′| ≤ |κ|, we have the
following equivalence

Σκ = Σκ′ ⇐⇒ κ = κ′ or
(
κ ∈ Σ|A| and κ′ = κ−

)
. (3.12)

Proof. We prove the two implications of the Equivalence (3.12). We consider κ, κ′ ∈ Σ
such that |κ′| ≤ |κ|.

(⇐) Suppose that κ = κ′ or
(
κ ∈ Σ|A| and κ′ = κ−

)
.

If κ = κ′, we obviously get that Σκ = Σκ′ .
It is readily observed that, if κ ∈ Σ|A|, we have that Σκ = Σκ− , because the last value

κ(|κ|) is uniquely determined by κ− (with
{
κ(|κ|)

}
= A \ ‖κ−‖). Therefore, we get that

κ ∈ Σ|A| and κ′ = κ− jointly imply that Σκ = Σκ′ .

(⇒) Suppose that Σκ = Σκ′ . We consider three cases, namely,
(
κ ∈ Σ|A| and κ′ = κ−

)
or
(
κ ∈ Σ|A| and κ′ = κ

)
or
(
κ 6∈ Σ|A| and κ′ = κ

)
.

If κ 6∈ Σ|A|, then κ′ 6∈ Σ|A| since |κ′| ≤ |κ|. As, by Proposition 3.5, the mapping
Σ \ Σ|A| 3 κ 7→ Σκ is bijective, we deduce from Σκ = Σκ′ that κ = κ′.

If κ ∈ Σ|A|, we have that Σκ = Σκ− , as seen just above. There are two subcases.
If κ′ ∈ Σ|A|, we have that Σκ′ = Σκ′− , and therefore that Σκ− = Σκ = Σκ′ = Σκ′− . Now, as
κ− 6∈ Σ|A| and κ′− 6∈ Σ|A|, we deduce that κ− = κ′−, as shown above. Since κ ∈ Σ|A| and
κ′ ∈ Σ|A|, we obtain that κ = κ′.
If κ′ 6∈ Σ|A|, we have that Σκ− = Σκ = Σκ′ . Now, as κ− 6∈ Σ|A| and κ′ 6∈ Σ|A|, we deduce
that κ− = κ′, as shown above.

This ends the proof.

In Figure (3.2), we give an example of a Σ3-poset
(
{Σκ}κ∈Σ\Σ3 ,⊃

)
, which is the image

of the poset in Figure (3.1) under the order isomorphism (3.9), supplied with the elements
{Σρ}ρ∈Σ3 , where

Σ3 = {(abc), (acb), (bac), (bca), (cba), (cab)} .
Notice that Σ(ac) = Σ(acb) = (acb), by (3.12), and analogous relations hold for the other

five total orderings in Σ3. Hence, we observe that, for any total ordering ρ ∈ Σ3, the
corresponding set Σρ coincides with the set Σρ− , and there are no other vertices with such
property by Corollary 3.6. That is, had we added the singletons {Σρ}ρ∈Σ3 as potential leaf
vertices, they would have duplicated some in the tree constructed in Proposition 3.5.

Finally, we prove the following useful implication that will be used for the proof of
Proposition 3.14.

Lemma 3.7. Let a causal ordering ϕ : H → Σ|A| as in (2.37) be given. For any two
orderings κ, κ′ ∈ Σ, we have the following implication(

∀κ, κ′ ∈ Σ
)

κ′ � κ⇒ Hϕ
κ′ ⊃ Hϕ

κ . (3.13)



66 CHAPTER 3. FROM W-MODEL TO AFR-MODEL

Σ

Σ(a)

Σ(ab)

=

Σ(abc)

Σ(ac)

=

Σ(acb)

Σ(b)

Σ(ba)

=

Σ(bac)

Σ(bc)

=

Σ(bca)

Σ(c)

Σ(cb)

=

Σ(cba)

Σ(ca)

=

Σ(cab)

Figure 3.2: Σ3-poset ({Σκ}κ∈Σ\Σ3 ,⊃), which is the image in leaves of the poset in Fig-
ure (3.1)

tree
Σ-poset and Σ|A|-poset “image in leaves” WtoAFR-tree

(Σ,�) ({Σκ}κ∈Σ ,⊃) (V,⊃)

moves
{
κ
∣∣κ ∈ Σ \ Σ|A|

} {
Σκ

∣∣κ ∈ Σ(≥|A|−2)
} {

xκ,hκ−
∣∣κ ∈ Σ

}
leaves

{
ρ
∣∣ ρ ∈ Σ|A|

} {
{κ}

∣∣κ ∈ Σ|A|−1
} {

{h}
∣∣h ∈ H}

upset ↑κ =
{
κ′ ∈ Σ

∣∣κ′ � κ
}
↑Σκ =

{
Σκ′
∣∣κ′ � κ

}
(3.25), (3.26)

parent p(κ) = κ− p(Σκ) = Σκ− (3.27)

Table 3.1: Comparison table between three trees

Proof. We consider two orderings κ, κ′ ∈ Σ, such that κ′ � κ, and we show that Hϕ
κ′ ⊃ Hϕ

κ .
For any configuration h ∈ Hϕ

κ , we have that

ψ|κ′|
(
ϕ(h)

)
= ψ|κ′|

(
ψ|κ|
(
ϕ(h)

))
by (3.47b) since κ′ � κ =⇒ |κ′| ≤ |κ|, by definition of the relation � as in (3.1)

= ψ|κ′|(κ) (as ψ|κ|
(
ϕ(h)

)
= κ by (2.34) since h ∈ Hϕ

κ)

= κ′ . (as κ′ � κ by definition of the relation � in (3.1))

Thus, for every h ∈ Hϕ
κ , we have that ψ|κ′|

(
ϕ(h)

)
= κ′, which implies that h ∈ Hϕ

κ , hence
the inclusion Hϕ

κ′ ⊃ Hϕ
κ is proved.

3.2.3 Constructing WtoAFR-tree

Besides the two trees (Σ,�) and
(
{Σκ}κ∈Σ\Σ|A| ,⊃

)
discussed in §3.2.1 and §3.2.2 re-

spectively, there is yet another poset closely related to these two, namely, the H-poset(
{Hϕ

κ}κ∈Σϕ ,⊃
)
, where the set Σϕ ⊂ Σ is defined in (2.35c). We prove in Lemma 3.7 one

useful implication for the H-poset
(
{Hϕ

κ}κ∈Σϕ ,⊃
)
. In this §3.2.3, we are going to con-

struct the WtoAFR-tree as a refinement of the H-poset
(
{Hϕ

κ}κ∈Σϕ ,⊃
)

by intersecting
it with the so-called vertex partition. In Table 3.1, we draw a comparison between these
trees.
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We call set of WtoAFR-plays the underlying set of plays for the WtoAFR-model given
by

W = H . (3.14)

From now on, in this Chapter 3, we will work with the set H of configurations instead of
the set W of plays. Stating the main results requires a bit of notations.

First, we introduce the following list of notations that will be extensively used in the
sequel when speaking about moves and constructing the WtoAFR-tree.

Definition 3.8. For any nonempty subset B ⊂ A of agent, the projection projB from the
product configuration set H = Ω× UB × U−B to the product set UB of actions of agents in
B is defined by

projB : H→ UB (3.15a)

h =
(
ω, {ub}b∈A

)
7→ hB = uB = {ub}b∈B . (3.15b)

Then, for the empty ordering (∅) we define the projection by

proj(∅) : H→ Ω (3.16)

h =
(
ω, {ub}b∈A

)
7→ h(∅) = ω ∈ Ω .

Then, for any nonempty partial ordering κ ∈ Σ \ {(∅)}, the projection projκ from the
product configuration set H = Ω×U‖κ‖×U−‖κ‖ to the product set Ω×U‖κ‖ of Nature with
the actions of agents in ‖κ‖ is defined by

projκ : H→ Ω× U‖κ‖ (3.17a)

h =
(
ω, {ub}b∈A

)
7→ hκ =

(
proj(∅)(h)︸ ︷︷ ︸

ω

, proj‖κ‖(h)︸ ︷︷ ︸
u‖κ‖={ub}b∈‖κ‖

)
∈ Ω× U‖κ‖ , (3.17b)

where the range ‖κ‖ is as in (2.33h).

In the sequel, we will also make use of the following auxiliary coordinate mapping. For
any two orderings κ, κ′ ∈ Σ, such that κ′ � κ as in Equation (3.1), the following projection
is well-defined:

proj‖κ‖\‖κ′‖ : H→ U‖κ‖\‖κ′‖
h 7→ h‖κ‖\‖κ′‖ .

Indeed, as κ′ � κ, we immediately get that ‖κ′‖ ⊂ ‖κ‖ and proj‖κ‖\‖κ′‖ is the projection
defined in Equation (3.15) for B = ‖κ‖ \ ‖κ′‖.

For any configuration h ∈ H, we have

κ′ � κ⇒ hκ

3

Ω×U‖κ‖

= ( hκ′

3

Ω×U‖κ′‖

, h‖κ‖\‖κ′‖

3

U‖κ‖\‖κ′‖

) (3.18)



68 CHAPTER 3. FROM W-MODEL TO AFR-MODEL

where the longer κ-prefix hκ = (ω, u‖κ‖) ∈ Ω × U‖κ‖ has been factorized with the shorter

κ′-prefix hκ′ = (ω, u‖κ′‖) ∈ Ω×U‖κ′‖. By an abuse of notation, we will also denote by projκ′
any of the following projection mappings, when κ′ � κ:

projκ′ : Ω× U‖κ‖ → Ω× U‖κ′‖ (3.19a)(
ω, {ub}b∈‖κ‖

)
7→
(
ω, {ub}b∈‖κ′‖

)
. (3.19b)

Now, we are ready to define the candidate set of WtoAFR-vertices.

Definition 3.9. Let a causal configuration ordering ϕ : H → Σ|A| be given as in Defi-
nition 2.24. For any nonempty ordering κ ∈ Σ \ {(∅)} and any2 hκ− ∈ Ω × U‖κ−‖, as
in (3.17), we define,

xκ,hκ− = Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

)
⊂ H , (3.20a)

where the set Hϕ
κ of configurations is as in (2.34). Then, we define

X =
{
xκ,hκ− ∈ 2H

∣∣xκ,hκ− = Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

)
, s.t. xκ,hκ− 6= ∅

}
, (3.20b)

and
Z =

{
{h}

∣∣h ∈ H} . (3.20c)

Finally, define
V = X ∪ Z ∪ {H} . (3.20d)

First of all, in the following Lemmas 3.10 and 3.11, we give simple representations of
any element xκ,hκ− of the set X defined in (3.20b).

Lemma 3.10. Under the assumptions of Theorem 3.1, any element xκ,hκ− ∈ X, where the
set X is defined in (3.20b), is a cylinder of the form

xκ,hκ− =
(
Hϕ

κ ∩ {hκ−}
)
× U−‖κ−‖ , (3.21)

with Hϕ

κ ∩ {hκ−} nonempty, where the set Hϕ

κ is given by (2.38a).

Proof. Let xκ,hκ− as defined Equation (3.20a) be given. We write

xκ,hκ− = Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

)
(by definition of the element xκ,hκ− as in (3.20a))

=
(
Hϕ

κ × U−‖κ−‖
)
∩
(
{hκ−} × U−‖κ−‖

)
(under causality, as in (2.37), the set Hϕ

κ is a cylinder by (2.38a))

=
(
Hϕ

κ ∩ {hκ−}
)
× U−‖κ−‖ .

Since the elements of X satisfy Equation (3.20a), Equation (3.21) is valid for any xκ,hκ− ∈
X. This ends the proof.

2We do not use the notation hκ− , because the latter will be defined in (3.17) as the projection of a
configuration h ∈ H.
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Proof. For any element xκ,hκ− ∈ X, we write

xκ,hκ− = Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

)
(by definition of the element xκ,hκ− as in (3.20a))

=
(
Hϕ

κ × U−‖κ−‖
)
∩
(
{hκ−} × U−‖κ−‖

)
(under causality, as in (2.37), the set Hϕ

κ is a cylinder by (2.38a))

=
(
Hϕ

κ ∩ {hκ−}
)
× U−‖κ−‖ .

Since the elements of X satisfy Equation (3.20a), then Equation (3.21) is valid for any
xκ,hκ− ∈ X. As any element of X is nonempty by (3.20b), then xκ,hκ− 6= ∅, which implies

that Hϕ

κ ∩ hκ− is also nonempty. This ends the proof.

Lemma 3.11. For any xκ,hκ− ∈ X, we have that

xκ,hκ− =
{
h ∈ H

∣∣κ � ϕ(h) and hκ− = hκ−
}
. (3.22)

Proof.
• (⊂). Let xκ,hκ− ∈ X and h ∈ xκ,hκ− be given, noting that xκ,hκ− 6= ∅ when xκ,hκ− ∈ X.
By definition of the WtoAFR-move xκ,hκ− , as in (3.20a), we have that

xκ,hκ− = Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

)
. (3.23)

Thus, we have that h ∈ Hϕ
κ and by definition of the set Hϕ

κ of configurations, as in (2.34),
we have that ψ|κ| ◦ϕ(h) = κ, which implies the relation κ � ϕ(h) by definition of the order

�, as in (3.1). Now, using again Equation (3.23), we also have that h ∈ {hκ−} × U−‖κ−‖
which immediately gives the second restriction hκ− = hκ− .
• (⊃). Let be given κ ∈ Σ \ {(∅)}, hκ− ∈ Ω × U‖κ−‖ and h ∈ H such that κ � ϕ(h) and
hκ− = hκ− .

Using the fact that κ ∈ Σ \ {(∅)}, and that κ � ϕ(h), we have κ− � κ by (3.2) and,
thus, κ− � ϕ(h) by transitivity of the relation � established in Proposition 3.2. Now, we
write

{h} = Hϕ
ϕ(h) ∩ {h} (as, h ∈ Hϕ

ϕ(h), by definition of Hϕ
κ in (2.34))

= Hϕ
κ ∩ {h} (as κ � ϕ(h) implies Hϕ

κ ⊃ Hϕ
ϕ(h) by (3.13))

= Hϕ
κ ∩ {hϕ(h)} (as h = hϕ(h) for any h ∈ H)

= Hϕ
κ ∩

{
(hκ− , hA\‖κ−‖)

}
(by the factorization relation in (3.18) with κ− � ϕ(h))

= Hϕ
κ ∩

{
(hκ− , hA\‖κ−‖)

}
(using the assumption hκ− = hκ−)

⊂ Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

)
(as hA\‖κ−‖ ∈ U−‖κ−‖)

= xκ,hκ−

by definition of the WtoAFR-move xκ,hκ− as in (3.20a).
Thus, the Equation (3.22) is proved.
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In Lemma 3.12 we establish an equivalence between an inclusion between any two
WtoAFR-moves and some technical condition on the orderings and prefixes that define
them.

Lemma 3.12. For any two WtoAFR-moves xκ,hκ− , xκ′,hκ′− ∈ X, we have the following
equivalence (

κ′ � κ and hκ′− = projκ′−(hκ−)
)
⇐⇒ xκ′,h

κ′−
⊃ xκ,hκ− .

Proof.

• (⇒). Let be given κ′ � κ and hκ− ∈ Ω × U‖κ−‖. Let hκ′− ∈ Ω × U‖κ′−‖ be given by
hκ′− = projκ′−(hκ−). We have that

xκ,hκ− = Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

)
(using Equation (3.20a) defining xκ,hκ− )

⊂ Hϕ
κ′ ∩

(
{hκ−} × U−‖κ−‖

)
(since Hϕ

κ′ ⊃ Hϕ
κ when κ′ � κ by (3.13))

= Hϕ
κ′ ∩

(
{(projκ′−(hκ−), h‖κ−‖\‖κ′−‖)} × U−‖κ−‖

)
(by definition of projκ′−)

= Hϕ
κ′ ∩

(
{(hκ′− , h‖κ−‖\‖κ′−‖)} × U−‖κ−‖

)
(as hκ′− = projκ′−(hκ−))

= Hϕ
κ′ ∩

(
{hκ′−} × (h‖κ−‖\‖κ′−‖ × U−‖κ−‖)

)
⊂ Hϕ

κ′ ∩
(
{hκ′−} × U−‖κ′−‖

)
(as (h‖κ−‖\‖κ′−‖ × U−‖κ−‖) ⊂ U−‖κ′−‖)

= xκ′,h
κ′−

.

• (⇐). Let xκ,hκ− , xκ′,h
κ′−
∈ X by given with xκ,hκ− ⊂ xκ′,h

κ′−
. Consider h ∈ xκ,hκ− , then

we also have that h ∈ xκ′,h
κ′−

and by using the node caraterization given by Equation (3.22)
we have that both κ � ϕ(h) and κ′ � ϕ(h). Thus, by definition of an upset as in (3.3), we
deduce that κ, κ′ ∈↑

{
ϕ(h)

}
. As (Σ,�) is a tree by Proposition 3.2, the upset ↑

{
ϕ(h)

}
is

a chain and we obtain that whether κ′ � κ or κ � κ′.

First, we show that κ � κ′ implies that κ = κ′ and hκ− = hκ′− . We successively have that

projκ−hκ′− = projκ−hκ′− (we have that hκ′− = hκ′− by (3.22) as h ∈ xκ′,h
κ′−

)

= projκ−
(
hκ− , h‖κ−‖\‖κ′−‖

)
(by factorization (3.18) as κ � κ′)

= hκ− (by (3.19))

= hκ− . (we have that hκ− = hκ− by (3.22) as h ∈ xκ,hκ− )

Then, using the first part of the proof (⇒), we obtain that xκ,hκ− ⊃ xκ′,h
κ′−

. We therefore
have that xκ,hκ− = xκ′,h

κ′−
, which implies that κ = κ′ and hκ− = hκ′− by (3.24). Indeed,

since κ = κ′, we have therefore obtained that projκ′−(hκ−) = projκ−(hκ−) = hκ− = hκ′−
which gives the reverse implication in this first case.

Second, if κ′ � κ, then κ′− � κ− and then, for the κ−-prefix hκ− , the projection projκ′−hκ−
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as in (3.19) is well-defined. We have that

projκ′−hκ− = projκ′−hκ− (we have that hκ− = hκ− by (3.22) as h ∈ xκ,hκ− )

= projκ′−
(
hκ′− , h‖κ′−‖\‖κ−‖

)
(by factorization (3.18))

= hκ′− (by (3.19))

= hκ′− , (we have that hκ′− = hκ′− by (3.22) as h ∈ xκ′,h
κ′−

)

which proves that hκ′− = projκ′−(hκ−). Thus, the reverse implication is proved in this
second case.

This concludes the proof.

As an immediate corollary of Lemma 3.12 we give the following result.

Corollary 3.13. For any two WtoAFR-moves xκ,hκ− , xκ′,hκ′− ∈ X, we have the following
equivalence

xκ,hκ− = xκ′,h
κ′−
⇐⇒

(
κ = κ′ and hκ− = hκ′−

)
. (3.24)

Proof. The Equivalence 3.24 follows immediately by applying Equivalence 3.12 twice, first,
for xκ,hκ− ⊃ xκ′,h

κ′−
and, second, for xκ,hκ− ⊂ xκ′,h

κ′−
.

In this Chapter 3, we construct a WtoAFR-model thanks to causality and the con-
figuration ordering that it provides. The property of causality comes into play twice,
first, when we build a tree and, second, when we speak of choices and information of the
WtoAFR-model.

In Proposition 3.14, we prove that the H-poset (V,⊃) is a tree.

Proposition 3.14. Under the assumptions of Theorem 3.1, the H-poset (V,⊃) is a tree,
where the set V of so-called WtoAFR-vertices is defined in (3.20d) with the root vertex
{H}, the set X of so-called WtoAFR-moves as in (3.20a), and the set Z of so-called
WtoAFR-leaves as in (3.20c). We call the H-poset (V,⊃) the WtoAFR-tree.

Proof. In order to prove that (V,⊃) is a tree, we show that the upset of any candidate
WtoAFR-vertex, as defined in (3.20d), is a chain. Since the upset of the root vertex is
indeed a chain reduced to one vertex, it remains to consider the WtoAFR-moves and the
WtoAFR-leaves.
I We consider first the case of WtoAFR-moves. Let an ordering κ ∈ Σ \ {(∅)} and a
(κ−)-prefix hκ− ∈ Ω×Uκ− be given such that xκ,hκ− 6= ∅ giving a move xκ,hκ− ∈ X. Using
the definition of the upset of a vertex in (2.10) we have that

↑xκ,hκ− =
{
xκ′,h

κ′−
∈ X

∣∣xκ′,h
κ′−
⊃ xκ,hκ−

}
∪ {H} .

Which gives, using Lemma 3.12 that

↑xκ,hκ− =
{
xκ′,h

κ′−
∈ X

∣∣κ′ � κ and hκ′− = projκ′−(hκ−)
}
∪ {H} . (3.25)
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Now, using Equation (3.25), we prove that the upset of any WtoAFR-move is a chain.
To this end, we consider two moves xκ′,h

κ′−
, xκ′′,h

κ′′−
∈↑ xκ,hκ− and we show that either

xκ′,h
κ′−
⊃ xκ′′,h

κ′′−
or xκ′,h

κ′−
⊂ xκ′′,h

κ′′−
. If at least one of the two moves coincides with the

root vertex {H}, the desired inclusion follows immediately. Now, we suppose that the two
moves are distinct from the root vertex {H}. By the expression (3.25) of the upset ↑xκ,hκ− ,
we get that, on the one hand, κ′ � κ and hκ′− = projκ′−(hκ−), and, on the other hand,
κ′′ � κ and hκ′′− = projκ′′−(hκ−). Thus, κ′, κ′′ ∈↑κ by definition of the upset ↑κ as in (3.3).
As the upset ↑κ is a chain by Proposition 3.2, we can assume, without loss of generality,
that κ′ � κ′′ � κ and, thus, hκ′− = projκ′−(hκ′′−) by (3.19). Applying (3.12) for κ = κ′′, we
get that κ′ � κ′′ and hκ′− = projκ′−(hκ′′−) together imply the inclusion xκ′′,h

κ′′−
⊂ xκ′,h

κ′−
,

which proves that the upset ↑xκ,hκ− is a chain.

I Now, we consider the case WtoAFR-leaves. As a preliminary we prove that for any
h ∈ H the upset of a WtoAFR-leaf is given by the following expression

↑{h} = {h}∪ ↑xϕ(h),h
ϕ(h)−

. (3.26)

• (⊃). Using Lemma 3.11, we obtain that {h} ⊂ xϕ(h),h
ϕ(h)−

and therefore ↑xϕ(h),h
ϕ(h)−

⊂↑
{h} which added to the fact that we also have {h} ⊂↑ {h} and {H} ⊂↑ {h} gives that
{h}∪ ↑xϕ(h),h

ϕ(h)−
∪ {H} ⊂↑{h}.

• (⊂). By definition (3.20d) of V = X ∪Z ∪ {H} and as, for any h′ ∈ H such that h′ 6= h,
we have {h′}∩{h} = ∅ we have that ↑{h} ⊂ {h}∪X ′∪{H} where X ′ ⊂ X is the subset of
moves which contains {h}. Consider xκ,hκ− ∈ X ′, then, using Equation (3.22) we must have
that κ � ϕ(h) and hκ− = hκ− . Thus, we have that hκ− = hκ− = projκ−h = projκ−(hϕ(h)−),
where the last equality comes from Equation (3.19) using the fact that κ � ϕ(h). We
have therefore obtained that both κ � ϕ(h) and hκ− = projκ−(hϕ(h)−) which implies that
xκ,hκ− ⊃ xϕ(h),h

ϕ(h)−
and therefore xκ,hκ− ∈↑xϕ(h),h

ϕ(h)−
. We conclude that X ′ ⊂↑xϕ(h),h

ϕ(h)−

and therefore ↑{h} ⊂ {h}∪ ↑xϕ(h),h
ϕ(h)−

∪ {H} = {h}∪ ↑xϕ(h),h
ϕ(h)−

.

Now, using Equation (3.26), we conclude that ↑ {h} is a chain as we have already shown
that ↑xϕ(h),h

ϕ(h)−
is a chain itself and {h} belongs to every element of it by Lemma 3.12.

Thus, by showing that, for any WtoAFR-vertex v ∈ V as in (3.20d), the corresponding
upset is a chain, we have proved that (V,⊃) is a tree.

This finishes the proof.

Finally, in Proposition 3.15, for every WtoAFR-vertex, we give its image under the
parent mapping p defined in (2.11b).

Proposition 3.15. Under the assumptions of Theorem 3.1, for any nonroot WtoAFR-
vertex v ∈ V \ {H}, where the set V of WtoAFR-vertices is as in (3.20d), the image p(v)
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under the parent mapping p as in (2.11b), is given by

p(v) =


{H} , if v = x(a),h(∅) for some (a) ∈ Σ1 , h(∅) ∈ Ω ,

xκ−,h
(κ−)

− , if v = xκ,hκ− for some κ ∈ Σ(≥2), hκ− ∈ Ω× U‖κ−‖
and proj(κ−)−(hκ−) = h(κ−)− ,

xϕ(h),h
ϕ(h)−

, if v = {h} ∈ Z for some h ∈ H and projϕ(h)−h = hϕ(h)− .

(3.27)

We set, by definition, p({H}) = {H} for the sake of completeness.

Proof. We prove Equation (3.27) giving, for any nonroot WtoAFR-vertex, the image under
the parent mapping defined in (2.11b). We distinguish three cases, namely, WtoAFR-moves
of the first level, the rest of the WtoAFR-moves and the WtoAFR-leaves.

• We prove the first case in Equation (3.27).

For any agent a ∈ A and any (∅)-prefix h(∅) ∈ Ω, we write the upset of the corresponding
move x(a),h(∅) ∈ X as

↑x(a),h(∅) =
{
xκ′,h

κ′−

∣∣κ′ � (a) and projκ′−(h(∅)) = hκ′−
}
∪ {H}

(by the upset of any WtoAFR-move as (3.25))

= {x(a),h(∅)} ∪ {H} ,

as, by Lemma 3.4, κ′ � (a) implies that κ′ = (a) or κ′ � (a)− = (∅), and the latter implies
that κ′ = (∅) and then κ′− is not defined (see Equation (2.33j)). From this, the image of
move x(a),h(∅) under the parent mapping p follows immediately:

p(x(a),h(∅)) = min
(
↑x(a),h(∅) \ {x(a),h(∅)}

)
= min{H} = {H} .

• We prove the second case in Equation (3.27).

We consider a move xκ,hκ− ∈ X such that κ ∈ Σ(≥2) (thus, the existence of (κ−)
− ∈

Σ|κ|−2 is ensured). We have that

p(xκ,hκ− ) = min
(
↑xκ,hκ− \ {xκ,hκ−}

)
(by definition of the parent mapping p in (2.11b))

= min
({
xκ′,h

κ′−

∣∣κ′ � κ and projκ′−(hκ−) = hκ′−
}
∪ {H} \ {xκ,hκ−}

)
(by (3.25) that provides an expression of the upset ↑xκ,hκ− of a WtoAFR-move xκ,hκ− )

= min
({
xκ′,h

κ′−

∣∣κ′ � κ− and projκ′−(hκ−) = hκ′−
}
∪ {H}

)
(by (3.7) in Lemma 3.4)

= xκ−,h
(κ−)

− . (as xκ−,h
(κ−)

− ∈
{
xκ′,h

κ′−

∣∣κ′ � κ−
}
∪ {H} and is a lower bound)
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• We prove the third case in Equation (3.27). We have

p
(
{h}
)

= min
(
↑{h} \ {h}

)
(by definition of the parent mapping as in (2.11b))

= min ↑xϕ(h),h
ϕ(h)−

(by the expression (3.26) of the upset ↑{h})
= xϕ(h),h

ϕ(h)−
. (as xϕ(h),h

ϕ(h)−
∈↑xϕ(h),h

ϕ(h)−
and xϕ(h),h

ϕ(h)−
is a lower bound)

This ends the proof.

3.3 WtoAFR-choices

The system of choices C is one of the two basic objects in the AFR-model, as seen in
Section 2.3. Here, we construct choices from the agents’ action sets and information fields
{Ua, Ia}a∈A that are the basic objects of the W-model, as seen in Section 2.4. To this end,

• In §3.3.1, we define, for any agent a, the choice partition as the least upper bound of
two relevant partitions,

• In §3.3.2, we give details about the atoms of the information and choice partitions,

• In §3.3.3, we prove that the constructed primitives satisfy (AFR-Axiom1),

• In §3.3.4, we prove that the constructed primitives satisfy (AFR-Axiom2’).

3.3.1 Definition of the WtoAFR-choices

First, we introduce two equivalence relations on the set H of configurations and the parti-
tions that they induce. Second, we define choices as the intersection of the atoms of these
partitions (any choice constructed in such way is a subset of plays).

Definition 3.16. For any agent a ∈ A, we call

• the information relation of the agent a the equivalence relation Ia on the set H of
configurations as in (3.14) defined by(

∀h, h′ ∈ H
)

hIah
′ ⇐⇒ ∃ H ∈ Ia such that h, h′ ∈ H . (3.28a)

With the equivalence relation Ia as in (3.28a), we define the so-called information
partition H/Ia.

• the action relation of the agent a the equivalence relation Ua on the set H of config-
urations defined by (

∀h, h′ ∈ H
)

hUah
′ ⇐⇒ ha = h′a , (3.28b)
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where the projection from the set H of configurations to the set Ua of actions of the
agent a is defined3 by

proja : H→ Ua (3.28c)

h =
(
ω, {ub}b∈A

)
7→ ua .

With the equivalence relation Ua as in (3.28b), we define the so-called action parti-
tion H/Ua.

Definition 3.17. For any agent a ∈ A, we define the set of choices of the agent a by

Ca = H/Ia
∨
H/Ua , ∀a ∈ A , (3.29)

where the equivalence relations Ia and Ua are as in (3.28a) and (3.28b) respectively and
the least upper bound of two partitions in (9.6). By definition, the set Ca of choices is a
partition.

Note that, for any agent a ∈ A, the corresponding choice partition Ca is the smallest
partition among the ones that are finer (as defined in (9.5)) than both H/Ia and H/Ua.

Proposition 3.18. For any partition A =
⊔
i∈P Ai of the set of W-agents into players, the

collection

Ci = {Ca}a∈Ai , (3.30)

satisfies (AFR-Axiom1’) and (AFR-Axiom2’) stated in Definition 2.16, where, for every
representative agent a ∈ Ai of the player i, the choice partition Ca is as in (3.29) and the
WtoAFR-tree (V,⊃) is as in (3.20d). We call Ci the collection of WtoAFR-choices of the
player i.

The postponed Proposition 3.24 establishes that the collection Ci of WtoAFR-choices
satisfies (AFR-Axiom1’). The same goes with Proposition 3.25 and (AFR-Axiom2’).

3.3.2 Details about the information and choice partitions

In this §3.3.2, we introduce atoms of the information and choice partitions in §3.3.2.1, define
the auxiliary move equivalence and show that the WtoAFR-information atoms are made of
WtoAFR-moves in §3.3.2.2, and, finally, deduce a closed form of any WtoAFR-information
atom and choice in §3.3.2.3.

3projection proja is a particular case of the auxiliary coordinate mapping as in (3.15), namely, when
B = {a} for some agent a ∈ A. Here, we omit curly brackets of the singleton {a} in the subscript in order
to make notation less heavy
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3.3.2.1 Atoms of the information and choice partitions

In order to prove that, for any player i equipped with the set Ai of representative agents, the
collection Ci of WtoAFR-choices of the player i, as in (3.30), satisfies both AFR-axioms,
we need to detail what is an atom of the choice partition Ca introduced in (3.29) for any
agent a. As, for any agent a, the choice partition Ca is defined as the least upper bound
of partitions H/Ia and H/Ua, we first introduce the atoms of these two partitions.

For any agent a ∈ A,

• the partition H/Ia induced by the information relation Ia as in (3.28a) splits the
set H of configurations into subsets of configurations indistinguishable for the agent a,
namely,

H/Ia =
{
G
∣∣G ∈ Ia

}
, (3.31)

A generic information atom G ∈ H/Ia of this partition is a subset of configurations,
that is, G ⊂ H;

• the partition H/Ua induced by the action relation Ua as in (3.28b) splits the set H
of configurations into atoms comprised of subsets of configurations with the same
actions of W-agent a, namely,

H/Ua =
{

[ua]
∣∣ua ∈ Ua} , (3.32a)

where, for any ua ∈ Ua, a generic equivalence class [ua] ∈ H/Ua is given by

[ua] = Ω× {ua} × U−a . (3.32b)

For any information atom G ∈ H/Ia and any action ua ∈ Ua of the agent a inducing
the corresponding equivalence class [ua] ∈ H/Ua as in (3.32b), we define the corresponding
generic element cG,ua by

cG,ua = G ∩ [ua] . (3.33)

Lemma 3.19. For any agent a ∈ A, the set Ca of choices is given by

Ca =
{
cG,ua

∣∣G ∈ H/Ia , ua ∈ Ua} . (3.34a)

Moreover, the following mapping is an injection

i : H/Ia ×H/Ua → H/Ia
∨
H/Ua , (3.34b)

(G, ua) 7→ cG,ua = G ∩ [ua] .
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Proof. To prove (3.34a), we write

Ca = H/Ia
∨
H/Ua ,

(by definition of the set Ca of the WtoAFR-choices of the agent a as in (3.29))

=
{
G ∩K

∣∣G ∈ H/Ia , K ∈ H/Ua}
(by property of the least upper bound of two partitions in Equation (9.6))

=
{
G ∩ [ua]

∣∣G ∈ H/Ia , ua ∈ Ua} (by (3.32a))

=
{
cG,ua

∣∣G ∈ H/Ia , ua ∈ Ua} .
(by definition of the WtoAFR-choice of the agent a as in (3.33))

We now show that i : (G, ua) 7→ cG,ua is an injection.

For this purpose, we consider two information atoms G,G′ ∈ H/Ia and two actions
ua, u

′
a ∈ Ua of the agent a, such that i(G, ua) = i(G′, u′a) and we prove that G = G′ and

ua = u′a. Using the definition of the WtoAFR-choice of the agent a as in (3.33), we have

i(G, ua) = i(G′, u′a) ⇐⇒ cG,ua = cG′,u′a ⇐⇒ G ∩ [ua] = G′ ∩ [ua′ ] .

We consider a configuration h̃ ∈ G ∩ [ua].

On the one hand, as h̃ ∈ [ua], we have that h̃a = ua, where the projection proja : H→
Ua is as in (3.28c). On the other hand, as h̃ ∈ G′ ∩ [ua′ ], we get that h̃ ∈ [ua′ ] and h̃a = u′a.
From this follows that ua = u′a.

As h̃ ∈ G and h̃ ∈ G′, we get that G ∩G′ 6= ∅, hence that G = G′ as they are atoms of
the information partition H/Ia as in (3.32a).

This ends the proof.

In the following Proposition 3.23, postponed to §3.3.2.3, for any agent a, we establish
a closed form expression for any information atom G ∈ H/Ia in (3.39a) and, for any
action ua ∈ Ua of the agent a, a closed form expression for the corresponding choice cG,ua
in (3.39b). To this end, we introduce in §3.3.2.2 the sets of WtoAFR-moves of agents,
which partition the set X of WtoAFR-moves defined above in (3.20b). We show that each
information atom G ∈ H/Ia of the agent a is made out of WtoAFR-moves of agent a. This
result, proved in Proposition 3.22, is the main ingredient to get the representation (3.39a).

3.3.2.2 Auxiliary move equivalence

Before, in (3.20b), we have defined the set X of WtoAFR-moves. Here, by introducing
an auxiliary moves partition we will be more specific, defining for each agent a ∈ A, the
set Xa of WtoAFR-moves of the agent a, a subset of WtoAFR-moves X, where the agent
acts. We will show in Lemma 3.21 that the sets {Xa}a∈A form a partition of the set X of
WtoAFR-moves and prove in Proposition 3.22 that any information set of an agent is a
union of moves of this agent.



78 CHAPTER 3. FROM W-MODEL TO AFR-MODEL

Definition 3.20. For any agent a ∈ A, the move relation Mϕ
a of the agent a is defined on

the set H of configurations in the following way

(
∀h, h′ ∈ H

)
hMϕ

ah
′ ⇐⇒


∃κ ∈ Σϕ \ {(∅)} : κ? = a ,

hκ− = h′κ−

h, h′ ∈ Hϕ
κ ,

(3.35a)

where the set Σϕ of orderings is defined in (2.35c) and, for any nonempty ordering κ ∈
Σϕ \ {(∅)}, the last element κ? in (2.33i), for any configuration h ∈ H, the corresponding
κ−-prefix in (3.17), and the set Hϕ

κ in (2.34).

For any agent a ∈ A, we denote by Xa and we call set of WtoAFR-moves of the agent a
the partition4 of the set H of configurations induced by relation Mϕ

a :

Xa = H/Mϕ
a . (3.35b)

In the following Lemma 3.21, we give an explicit formula for the set of WtoAFR-
moves Xa of any agent a ∈ A defined in Equation 3.35b as an element of the partition of
the underlying set H of configurations and we show that the collection {Xa}a∈A of agents’
WtoAFR-moves forms a partition of the set X of WtoAFR-moves.

Lemma 3.21. The set X of WtoAFR-moves in Equation (3.20b) is partitioned as

X =
⊔
a∈A

Xa , (3.36a)

where, for any agent a ∈ A, the set of WtoAFR-moves Xa of the agent a is as in (3.35b).

Moreover, for any agent a ∈ A, the corresponding set Xa of WtoAFR-moves of the
agent a is given by

Xa =
{
xκ,hκ−

∣∣κ ∈ Σϕ \ {(∅)} , κ? = a , hκ− ∈ Ω× U‖κ−‖ , s.t. xκ,hκ− 6= ∅
}
, (3.36b)

where the WtoAFR-move xκ,hκ− is as in (3.20a).

Proof. The proof is in two steps. First, we prove Equation 3.36b. Let a ∈ A and x ∈ Xa

as defined in (3.35b) be given. Then, by (3.35a), there exist a nonempty partial ordering
κ ∈ Σϕ \ {(∅)}, such that κ? = a associated to the move x. Consider h ∈ x, then we
indeed have that hκ− ∈ Ω× U‖κ−‖. Now, for any configuration h′ ∈ x we have by (3.35a),
that κ � ϕ(h′) since h′ ∈ Hϕ

κ and h′κ− = hκ− thus we have that x = xκ,hκ− and thus x
belongs to the set defined by the right hand side of equation 3.36b. The converse inclusion
is immediate by considering the representation of the moves given in Equation (3.22).
Second, to prove partition in (3.36a), we write

4this definition precludes empty elements as a partition contains no empty elements
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X =
{
xκ,hκ−

∣∣κ ∈ Σϕ \ {(∅)} , hκ− ∈ Ω× U‖κ−‖ , s.t. xκ,hκ− 6= ∅
}

(by definition of the set X of WtoAFR-moves in (3.20b))

=
⊔
a∈A

{
xκ,hκ−

∣∣κ ∈ Σϕ \ {(∅)} , κ? = a , hκ− ∈ Ω× U‖κ−‖ , s.t. xκ,hκ− 6= ∅
}

(as, trivially, Σϕ \ {(∅)} =
⊔
a∈A
{
κ
∣∣κ? = a

}
)

=
⊔
a∈A

Xa . (by definition of WtoAFR-move as in (3.36b))

This ends the proof.

Note that Equation 3.36b can be rewritten as the following equivalence

x ∈ Xa ⇐⇒
{
∃κ ∈ Σϕ \ {(∅)} s.t. κ? = a ,

∃hκ− ∈ Ω× U‖κ−‖ s.t. x = xκ,hκ− 6= ∅ .
(3.37)

Proposition 3.22. Under the assumptions of Theorem 3.1, for any agent a ∈ A, we have
the implication (

∀h, h′ ∈ H
)

hMϕ
ah
′ ⇒ hIah

′ , (3.38a)

where the equivalence relations Mϕ
a and Ia are as in Equations (3.35a) and (3.28a) respec-

tively.
Thus, the moves partition H/Mϕ

a is finer than the information partition H/Ia, that is,

H/Ia � H/Mϕ
a (3.38b)

as in (9.5), and, for any move x ∈ H/Mϕ
a of the agent a and for any information atom

G ∈ H/Ia of the agent a,

x ∩G =

{
x , if x ⊂ G

∅ , else .
(3.38c)

Proof. Let an agent a ∈ A and two configurations h, h′ ∈ H, such that hMϕ
ah
′, be given.

Then, by definition of the moves equivalence relation Mϕ
a as in (3.35a), there exists a

nonempty ordering κ ∈ Σϕ \ {(∅)} such that κ? = a, h, h′ ∈ Hϕ
κ and hκ− = h′κ− . We prove

that hIah
′, where the information relation Ia is as in (3.28a), that is, we prove that there

exists an information atom G ∈ H/Ia such that h, h′ ∈ G.
Let Gh, Gh′ ∈ H/Ia be the information atoms containing configurations h and h′ respec-

tively (uniqueness of the atoms Gh and Gh′ follows as H/Ia is a partition of the underlying
set H of configurations). From causality, as in (2.37), as Gh ∈ Ia = Iκ? , we deduce that
Hϕ
κ ∩Gh ∈ H‖κ−‖ is a cylinder. Hence, by definition of the field H‖κ−‖ as in (2.36f), there

exists a set U ⊂ Ω× U‖κ−‖ such that

Gh ∩Hϕ
κ = U × U−‖κ−‖ .
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As h ∈ Gh and h ∈ Hϕ
κ by assumption, we get that h ∈ U × U−‖κ−‖ and hκ− ∈ U . As

hκ− = h′κ− , by assumption, we obtain that h′κ− ∈ U and, hence, that h′ ∈ Gh ∩Hϕ
κ . From

this follows that Gh∩Gh′ 6= ∅ and then that Gh = Gh′ , as both are atoms of the information
partition H/Ia. This proves that hIah

′.

This ends the proof.

3.3.2.3 Closed form representations of information atoms and choices

Now, we are ready to state and prove announced in §3.3.2.1 closed form representations of
information atoms and choices.

Proposition 3.23. Under the assumptions of Theorem 3.1, for any agent a ∈ A, any
information atom G ∈ H/Ia and any action ua ∈ Ua of the agent,

• the atom G has the following closed form

G =
⊔
x∈Xa:
x⊂G

x , (3.39a)

where Xa has been defined in (3.35b)

• the choice cG,ua ∈ H/Ia
∨
H/Ua, induced by the atom G ∈ H/Ia and the action

ua ∈ Ua as in Equation (3.33), has the following closed form

cG,ua =
⊔
x∈Xa:
x⊂G

(
x ∩ [ua]

)
, (3.39b)

where none of the above sets is empty because the following property holds true

x ∩ [ua] 6= ∅ , ∀x ∈ Xa , ∀ua ∈ Ua . (3.39c)

Proof. Let an agent a ∈ A, an information atom G ∈ H/Ia and an action ua ∈ Ua of the
agent be given.
I We prove Equation (3.39a). We write

G = H ∩G (as G ⊂ H)

=
( ⊔
x∈H/Mϕ

a

x
)
∩G (since H/Mϕ

a is a partition of H induced by relation Mϕ
a )

=
⊔

x∈H/Mϕ
a

(x∩G) 6=∅

(x ∩G) (using distributive property and removing empty sets)

=
⊔

x∈H/Mϕ
a :

x⊂G

x , (by 3.38c, (x ∩G) = x if x ⊂ G or (x ∩G) = ∅ if x 6⊂ G)
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which gives Equation (3.39a) using the equality Xa = H/Mϕ
a given by Equation (3.35b).

I We prove Equation (3.39b). We write

cG,ua = G ∩ [ua] (by definition of WtoAFR-choice cG,ua as in (3.33))

=
( ⊔
x∈Xa:
x⊂G

x
)
∩ [ua] (by partition of the atom G as in (3.39a))

=
⊔
x∈Xa:
x⊂G

(
x ∩ [ua]

)
. (distributive property)

I We prove Equation (3.39c). Let a move x ∈ Xa of agent a ∈ A be given. Then,
by definition of the WtoAFR-move as in (3.20a), there exists a nonempty ordering κ ∈
Σϕ \ {(∅)}, such that κ? = a, and some (κ−)-prefix hκ− ∈ Ω× U‖κ−‖ such that x = xκ,hκ−
and such that xκ,hκ− 6= ∅. Using Lemma 3.10 the move xκ,hκ− is a cylinder of the form

xκ,hκ− =
(
Hϕ

κ ∩ {hκ−}
)
×U−‖κ−‖ and therefore we have that Hϕ

κ ∩ hκ− 6= ∅. Now, we write

x ∩ [ua] = xκ,hκ− ∩ [ua]

= xκ,hκ− ∩
(
Ω× U‖κ−‖ × {ua} × U−‖κ‖

)
(by definition of the equivalence class [ua] ∈ H/Ua as in (3.32b))

=
((
Hϕ

κ ∩ {hκ−}
)
× U−‖κ−‖

)
∩
(

Ω× U‖κ−‖ × {ua} × U−‖κ‖
)

(by representation of the WtoAFF-move xκ,hκ− as in (3.21))

=
((
Hϕ

κ ∩ {hκ−}
)
× Ua × U−‖κ‖

)
∩
(

Ω× U‖κ−‖ × {ua} × U−‖κ‖
)

(as a = κ? /∈ ‖κ−‖ by (2.33j))

=
(
Hϕ

κ ∩ {hκ−}
)
× {ua} × U−‖κ‖ (as ua ∈ Ua and

(
Hϕ

κ ∩ hκ−
)
⊂ Ω× U‖κ−‖)

6= ∅ . (as it was noted above that Hϕ

κ ∩ hκ− 6= ∅)
This ends the proof.

3.3.3 WtoAFR-choices satisfy (AFR-Axiom1’)

We are going to prove that, for any player i ∈ P , the constructed set Ci of WtoAFR-choices
in Proposition 3.18, and the WtoAFR-tree (V,⊃), where the set V of vertices is defined
in Proposition 3.14, satisfy (AFR-Axiom1’) and (AFR-Axiom2’) stated in Definition 2.16.
Before doing this, we establish Proposition 3.32 that gives a closed form for the immediate
predecessor of any WtoAFR-choice.

We establish (AFR-Axiom1’) for WtoAFR-choices in the following Proposition 3.24
relying on postponed Proposition 3.32 to be found in §3.5.3, where we prove, for any
WtoAFR-choice cG,ua , the following result

P (cG,ua) =
{
x ∈ Xa

∣∣x ⊂ G
}
⊂ Xa ,

where the immediate predecessor mapping P is as in (2.18b).
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Proposition 3.24. For any partition A =
⊔
i∈P Ai of the set of W-agents into players, the

collection {Ci}i∈P satisfies (AFR-Axiom1’) stated in Definition 2.16, that is, for any two
choices c ∈ Ci and c′ ∈ Cj of the players,(
∀i, j ∈ P , ∀c ∈ Ci, c′ ∈ Cj

) (
P (c)∩P (c′) 6= ∅ , c 6= c′

)
⇒
(
i = j , P (c) = P (c′) , c∩c′ = ∅

)
,

(3.40)
where for every player i ∈ P, the corresponding collection Ci of choices is given in (3.30).

Proof. The proof is in two steps. Before proving the stronger (AFR-Axiom1’) stated in
Definition 2.16, we show that (AFR-Axiom1) in Definition 2.15 holds true, namely, for any
two choices c, c′ ∈ Ci of the player i,(

∀c, c′ ∈ Ci
) (

P (c) ∩ P (c′) 6= ∅ , c 6= c′
)
⇒
(
P (c) = P (c′) , c ∩ c′ = ∅

)
. (3.41)

I First, we prove (AFR-Axiom1) for a given player i ∈ P in two steps.

• For any representative agent a ∈ Ai of the player i we prove the restricted version of
(AFR-Axiom1) for the corresponding collection of choices Ca.

To this end, we consider two distinct WtoAFR-choices c 6= c′ ∈ Ca of the representative
agent a ∈ Ai. As WtoAFR-choices c, c′ ∈ Ca are atoms of the choice partition Ca as
in (3.29), then c 6= c′ implies c ∩ c′ = ∅.

By characterization (3.34a) of the set Ca of WtoAFR-choices of the agent a, the choices
c and c′ are uniquely determined by the corresponding information atoms G,G′ ∈ H/Ia of
the agent a and actions ua, u

′
a ∈ Ua of the agent a respectively, that is,

c = cG,ua , c′ = cG′,u′a .

We now prove that, if cG,ua 6= cG′,u′a and P (cG,ua)∩P (cG′,u′a) 6= ∅, then P (cG,ua) = P (cG′,u′a)
and cG,ua ∩ cG′,u′a = ∅.

By the image of a WtoAFR-choice under the immediate predecessor mapping P as
in (3.53), we write

P (cG,ua) =
{
x ∈ Xa

∣∣x ⊂ G
}
, P (cG′,u′a) =

{
x ∈ Xa

∣∣x ⊂ G′
}
.

Note that for any information atom G′′ ∈ H/Ia of the agent a, we have that P (cG′′,ua) =
P (cG′′,ua), for any two disjoint ua, ua ∈ Ua by (3.53).

As P (cG,ua) ∩ P (cG′,u′a) 6= ∅ by the assumption, there exists x̃ ∈ Xa such that x̃ ∈
P (cG,ua) ∩ P (cG′,u′a). As a consequence, we get that x̃ ⊂ G ∩ G′, hence that G ∩ G′ 6= ∅.
We deduce that G = G′, as they are atoms of the information partition H/Ia, which
immediately implies that P (cG,ua) =

{
x ∈ Xa

∣∣x ⊂ G
}

= P (cG′,u′a). This proves the
restricted version of (AFR-Axiom1) for the set Ca of choices of the agent a.

• Second, we extend (AFR-Axiom1) to the whole set of WtoAFR-choices Ci = {Ca}a∈Ai
of the player i equipped with the set Ai of representative agents. For this purpose, we are
going to show that, for any two choices c, c′ ∈ Ci, their immediate predecessors P (c) and
P (c′) are always disjoint.
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Indeed, take any two agents a, b ∈ Ai and any choices ca ∈ Ca and cb ∈ Cb. By
characterization (3.34a) of the set of choices, there are ua ∈ Ua, Ga ∈ H/Ia and ub ∈ Ub,
Gb ∈ H/Ib such that ca = cGa,ua and cb = cGb,ub respectively.

By the image of a WtoAFR-choice under the immediate predecessor mapping p as
in (3.53), we write

P (cGa,ua) =
{
x ∈ Xa

∣∣x ⊂ Ga

}
, P (cGb,ub) =

{
x ∈ Xa

∣∣x ⊂ Gb

}
.

As before, we note that for any information atom G′′ ∈ H/Ia of the agent a, we have that
P (cG′′,ua) = P (cG′′,ua), for any two disjoint ua, ua ∈ Ua by (3.53). If P (cG,ua)∩P (cG′,u′a) 6= ∅,
then there is a move x ∈ X, such that x ∈ Xa and x ∈ Xb, thus, Xa ∩ Xb 6= ∅, which
implies that a = b as X =

⊔
a′∈AXa by (3.36a).

If a = b, the result is already proved in the first step of the proof, which establishes
(AFR-Axiom1) for the whole set Ci of WtoAFR-choices of the player i.

I Finally, we prove the restricted (AFR-Axiom1’).
Let any two players i, j ∈ P be given. Take any two choices c ∈ Ci and c′ ∈ Cj of

the players i and j respectively. By characterization (3.34a) of the set of choices, there are
ua ∈ Ua, Ga ∈ H/Ia for some representative agent a ∈ Ai of the player i and ub ∈ Ub,
Gb ∈ H/Ib for some representative agent b ∈ Aj of the player j such that c = cGa,ua and
c′ = cGb,ub respectively.

The rest of the proof repeats the previous step. If P (cGa,ua)∩P (cGb,ub) 6= ∅, then, a = b
and, thus, i = j as A =

⊔
i∈P Ai is assumed to be a partition.

This finishes the proof.

3.3.4 WtoAFR-choices satisfy (AFR-Axiom2’)

Now, we will establish the second and the last (AFR-Axiom2) that characterizes the inverse
of the parent mapping (2.11b). We will show that its restricted version holds true, namely,
(AFR-Axiom2’) as in (2.20) in Definition 2.16. It slightly differs from the one given in
the original AFR-setting as, in our setting, we let only one player be active at a non-leaf
vertex. Before stating Proposition 3.43, we formalize the notion of a player being active at
a WtoAFR-move.

For any WtoAFR-move x ∈ X and any player i ∈ P equipped with the set Ai of
representative agents, the player i is said to be active at the move x if

x ∈
⋃
a∈Ai

Xa . (3.42)

The following Proposition 3.25 relies on the postponed Lemmas 3.38 and 3.39 to be
found in §3.5.4 .

Proposition 3.25. For any WtoAFR-move x ∈ X and any player i ∈ P active at
the WtoAFR-move x as in (3.42), the condition (AFR-Axiom2’), as in (2.20) in Defi-
nition 2.16, holds true, that is,

p−1(x) =
{
x ∩ c

∣∣ c ∈ Ci : x ∈ P (c)
}
. (3.43)
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Proof. Let a player i ∈ P equipped with the set Ai of representative agents be given.
If the player i is active at a WtoAFR-move x ∈ X as in (3.42), there exists a unique
agent a = a(x) ∈ Ai, such that x ∈ Xa, by partition (3.36a) of the set X of WtoAFR-
moves in Lemma 3.21. Then, for this agent a we are going to prove that

p−1(x) =
{
x ∩ c

∣∣ c ∈ Ca : x ∈ P (c)
}
. (3.44)

For this purpose, we write

p−1(x) =
{
x ∩ [ua]

∣∣ua ∈ Ua}
(by definition of the set p−1(x) of children of the move x as in (3.57))

=
{
x ∩

(
G ∩ [ua]

) ∣∣∣ua ∈ Ua}
where G = G(x) is the unique information atom such that x ⊂ G; indeed, as shown in
Proposition 3.22, the moves partition Xa of the agent a defined in (3.35b) is finer than the
information partition H/Ia (where the relation Ia is defined in (3.28a)), so that, for any
move x ∈ Xa of the agent a, there exists a unique information atom G = G(x) such that
x ⊂ G

=
{
x ∩ cG,ua

∣∣ua ∈ Ua} (by definition of the WtoAFR-choice cG,ua as in (3.33))

=
{
x ∩ c

∣∣ c ∈ Ca such that c = cG,ua for some ua ∈ Ua
}

=
{
x ∩ c

∣∣ c ∈ Ca such that x ∩ c 6= ∅
}

(by (3.66) in Lemma 3.38)

=
{
x ∩ c

∣∣ c ∈ Ca such that x ∈ P (c)
}
, (by (3.67) in Lemma 3.39)

which gives the desired relation (3.44) and, thus, proves (3.43).

This ends the proof.

We have built the primitives of the AFR-model – the game tree and the collection of
players’ choices – out of the primitives of the W-model – sample space of Nature, action
sets of agents and the information partition of the agents. The existence of a causal
configuration ordering was a key element in that construction and in the obtention of the
two AFR-Axioms on the primitives.

We will elucidate in the following Section 3.4 how a W-strategy induces a so-called
WtoAFR-strategy.

3.4 WtoAFR-strategies

Strategies in the W-model are attached to the agents: as defined in Definition 2.21, for any
agent a ∈ A, a W-strategy λa : (H,H) → (Ua,Ua) is a mapping — from the underlying
set H of configurations, as in (2.24a), equipped with the complete π-field H, as in (2.24b),
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into the set Ua of actions of the agent a, equipped with the complete π-field Ua — with the
imposed condition, as in (2.30b), that the strategy is a measurable mapping with respect
to the information π-field Ia of the agent a, that is, λ−1

a (Ua) ⊂ Ia.
Strategies in the AFR-model are attached to the players: as defined in Definition 2.17,

for any player i ∈ P , an AFR-strategy si : X i → Ci is a mapping — from the set of
moves X i of the player i, as in (2.22a) into the set of choices Ci of the player i, as in §2.3.2.2
— with the imposed condition that the inverse strategy (si)−1 : Ci → 2X

i
acts on choices

as the immediate predecessor mapping, that is, (si)−1(c) = P (c) for any c ∈ si(X i) .

In this Section 3.4, we construct, from a W-strategy λa : H→ Ua (hence such that the
measurability condition as in (2.30b) holds true), a mapping sa : Xa → Ca such that the
measurability condition as in (2.17) holds true.

Proposition 3.26. For any agent a ∈ A, and any W-strategy λa : (H,H) → (Ua,Ua) of
the agent a, as in Definition 2.21, there exists a mapping

sa : Xa → Ca , (3.45a)

where the set Xa of WtoAFR-moves of the agent a is as in (3.35b) and the set Ca of
WtoAFR-choices of the agent a is as in (3.29), which is defined as the following composition

sa =
(
π−1
Mϕ
a
◦ πIa

)
◦
(
π−1
Ia
◦ λa, id

)
◦ i , (3.45b)

such that the Diagram (3.45c) commutes

H/Ia H/Ua ×H/Ia

H/Mϕ
a = Xa Ca = H/Ua

∨
H/Ia

(s̃a,id)

iπ−1

M
ϕ
a
◦πIa

sa

(3.45c)

where the injection i : H/Ia × H/Ua → H/Ia
∨
H/Ua is an intersection operation as

in (3.34b), and the auxiliary mapping s̃a = π−1
Ia
◦ λa is such that the Diagram (3.45d)

commutes

H Ua ≡ H/Ua

H/Ia

λa

π−1
Ia

s̃a=π−1
Ia
◦λa

(3.45d)

Thus defined, the mapping sa satisfies the following measurability constraint for an AFR-
strategy as in Definition 2.17

s−1
a (c) = P (c) , ∀ c ∈ Ca , (3.45e)

where P is the immediate predecessor mapping as in (2.18b). We call the mapping sa :
Xa → Ca a WtoAFR-strategy of the agent a.
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For any subset Ai ⊂ A of agents, we define

si : X i → Ci , s.t. ∀a ∈ Ai , (si)|Xa = sa : Xa → Ca , (3.45f)

where, X i =
⋃
a∈Ai Xa is the set of WtoAFR-moves of the player i, Ci = {Ca}a∈Ai is

the set of WtoAFR-choices of the player i, and, for any a ∈ Ai, the WtoAFR-strategy
sa : Xa → Ca of the agent a is as in (3.45a). Thus defined, the mapping si also satisfies
the following measurability constraint for an AFR-strategy as in Definition 2.17

(si)−1(c) = P (c) , ∀ c ∈ Ca , ∀ a ∈ Ai . (3.45g)

We call the mapping si : X i → Ci a WtoAFR-strategy of the player i equipped with the
set Ai of representative agents.

Proof. We build a WtoAFR-strategy in two steps.
As a first step, for any W-agent a ∈ A, and any W-strategy λa : (H,H) → (Ua,Ua)

as in (2.30a) such that the measurability constraint λ−1
a (Ua) ⊂ Ia, as in (2.30b), holds

true, we construct a mapping sa : Xa → Ca and show that the measurability condition as
in (3.45e) is satisfied for the mapping sa. As a second step, for any group of representative
W-agents Ai ⊂ A we build a player i ∈ P , endow the player i with a mapping si : Xi → Ci

and show that the measurability condition as in (3.45e) is satisfied for the mapping si.

I First, for any W-agent a ∈ A, and any measurable W-strategy λa : (H,H) → (Ua,Ua)
as in (2.30a), we construct the candidate WtoAFR-strategy sa : Xa → Ca for the agent a,
as in (3.45a), and show that the Diagram (3.45c) commutes.

By Lemma 9.3, we define an auxiliary mapping s̃a : H/Ia → Ua. We prove that the
Diagram (3.45d) commutes. Let an information atom G ∈ H/Ia of the agent a is given.
Then, we write

π−1
Ia

(G) =
{
h ∈ H

∣∣h ∈ G}
and, for any h ∈ π−1

Ia
(G), that is, for any h ∈ G, we have that λa(h) = ua, for some ua ∈ Ua,

as the W-strategy λa is constant on each information atom by the measurability condition
as in (2.30b).

With the help of the auxiliary mapping s̃a : H/Ia → Ua, we construct the candidate
WtoAFR-strategy sa : Xa → Ca from the set Xa of WtoAFR-moves of agent a as in (3.35b)
into the set of WtoAFR-choices Ca of the agent a, as in (3.29).

The Diagram (3.45c) commutes as, under the property of causality stated in (2.37), the
moves partition Xa = H/Mϕ

a as in (3.35b) is finer than the information partition H/Ia,
that is, H/Ia � H/Mϕ

a , by (3.38b), thus,(
π−1
Mϕ
a
◦ πIa

)
: H/Mϕ

a → H/Ia
x 7→ G , ∀ x ∈

{
x ∈ Xa

∣∣x ⊂ G
}

is well-defined. Thus, the candidate WtoAFR-strategy sa : Xa → Ca, is also well-defined
as the composition in (3.46)

sa =
(
π−1
Mϕ
a
◦ πIa

)
◦
(
π−1
Ia
◦ λa, id

)
◦ i , (3.46)
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where the injection i : H/Ia×H/Ua → H/Ia
∨
H/Ua is as in (3.34b). Indeed, following the

Diagram (3.45c) from the bottom left, then up, then right and then down, we see that the
mapping sa : Xa → Ca acts on any WtoAFR-move x ∈

{
x ∈ Xa

∣∣x ⊂ G
}

of the agent a
as the following chain

x
π−1

M
ϕ
a
◦πIa
7→ G

π−1
Ia
◦λa,id7→ G× ua i7→ cG,ua = G ∩ [ua] .

I Second, we prove the measurability condition (3.45e) for the candidate WtoAFR-strategy
sa : Xa → Ca constructed on the previous step.

Let a WtoAFR-choice c ∈ Ca of the agent a be given. By (3.34a), it is uniquely
determined by an information atom G′ ∈ H/Ia of the agent a and an action u′a ∈ Ua of
the agent a, that is, c = cG′,u′a . We prove that s−1

a (cG′,u′a) = P (cG′,u′a).
Following the Diagram (3.45c) from the bottom right, then up, then left and then down,

we see that the mapping s−1
a : 2Ca → 2Xa acts on the WtoAFR-choice cG′,u′a ∈ Ca of the

agent a as the following chain

cG′,u′a = G′ ∩ [ua′ ]
i−1

7→ G× ua
(
π−1
Ia
◦λa,id

)−1

7→ G′

(
π−1

M
ϕ
a
◦πIa
)−1

7→
{
x ∈ Xa

∣∣x ⊂ G′
}
.

On the other hand, the image of the WtoAFR-choice cG′,u′a under the immediate predecessor
mapping P is given by P (cG′,u′a) =

{
x ∈ Xa

∣∣x ⊂ G′
}

, by (3.53), which proves the
measurability condition s−1

a (cG′,u′a) = P (cG′,u′a).

I Finally, we check the measurability condition (3.45g) for the candidate WtoAFR-strategy
si : X i → Ci of the player i equipped with the set Ai ⊂ A of the representative agents, as
defined in (3.45f), where, X i =

⋃
a∈Ai Xa is the set of WtoAFR-moves of the player i and

Ci = {Ca}a∈Ai is the set of WtoAFR-choices of the player i.

Let a WtoAFR-choice c ∈ {Ca}a∈Ai of the player i be given. We show that there exists
a unique representative agent a ∈ Ai of the player i, such that (si)−1(c) = s−1

a (c).
Assume, that the WtoAFR-choice c ∈ {Ca}a∈Ai belongs to two representative agents

a, b ∈ Ai of the player i, that is, c ∈ Ca and c ∈ Cb, where the corresponding choice
partitions are as in (3.29). By characterization (3.34a) of the set of choices, there are
ua ∈ Ua, Ga ∈ H/Ia and ub ∈ Ub, Gb ∈ H/Ib such that c = cGa,ua and c = cGb,ub
respectively, that is, cGa,ua = c = cGb,ub . Then, we write{

x ∈ Xa

∣∣x ⊂ Ga

}
= P (cGa,ua)

(by the image of a WtoAFR-choice under the immediate predecessor mapping P as in (3.53))

= P (cGb,ub) (by the assumption that cGa,ua = c = cGb,ub)

=
{
x ∈ Xb

∣∣x ⊂ Gb

}
.

(by the image of a WtoAFR-choice under the immediate predecessor mapping P as in (3.53))

This immediately implies that Xa ∩ Xb 6= ∅, and a = b as Xa and Xb are partitions
by (3.35b). Thus, for any WtoAFR-choice c ∈ Ci of player i, there exists a unique repre-
sentative agent a ∈ Ai, such that c ∈ Ca, and (si)−1(c) = s−1

a (c).
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As the measurability condition for the WtoAFR-strategy sa : Xa → Ca of the agent a
is established on the previous step in (3.45e), we get that s−1

a (c) = P (c) and conclude

∀c ∈ Ci , ∃!a ∈ Ai , (si)−1(c) = s−1
a (c) ,

where, s−1
a (c) = P (c) by (3.45e).

This proves that the WtoAFR-strategy si : X i → Ci of the player i also satisfies the
measurability constraint for an AFR-strategy as in Definition 2.17.

This ends the proof.

3.5 Proofs and technicalities

To prove Theorem 3.1 — that is, to show that, for any player i ∈ P , the constructed set
Ci of WtoAFR-choices and the WtoAFR-tree (V,⊃) satisfy (AFR-Axiom1) and (AFR-
Axiom2’) — we need a bit of preparation. To this end,

• in §3.5.1, we prove Lemma 3.27 that has been used in §3.2.1 and §3.2.2,

• in §3.5.2, we give three partitions of the underlying set H of configurations and prove
that some relevant subsets of the set H are cylinders,

• in §3.5.3, we give postponed technical results used for the proof of Proposition 3.24,

• in §3.5.4, we give postponed technical results used for the proof of Proposition 3.25.

3.5.1 Lemma about restrictions of an ordering (§3.2.1, §3.2.2)

In this §3.5.1, we prove the result that has been used in §3.2.1 and §3.2.2, namely, we
establish technical relations for restrictions of partial orderings.

Lemma 3.27. For any two indices 0 ≤ k′′ ≤ k′ ≤ |A|, the composition ψk′′ ◦ ψk′ of the
restriction mappings, as in (2.33g), is well-defined as the mapping

(ψk′′ ◦ ψk′) : Σ(≥k′) → Σk′′ , (3.47a)

where the set of orderings Σ(≥k′) is as in (2.33e), and the composition ψk′′ ◦ ψk′ coincides
with ψk′′ : Σ(≥k′′) → Σk′′ restricted to Σ(≥k′), that is,

(ψk′′ ◦ ψk′)(κ) = ψk′′(κ) , ∀κ ∈ Σ(≥k′) . (3.47b)

Moreover, we have that

ψk′′(κ) � ψk′(κ) , ∀ 0 ≤ k′′ ≤ k′ ≤ |A| , ∀κ ∈ Σ(≥k′) . (3.47c)
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Proof. Let two indices k′ and k′′ be given such that 0 ≤ k′′ ≤ k′ ≤ |A|. First, we prove
that the composition in Equation (3.47a) is well-defined. Using Equation (2.33g), we have
that ψk′ : Σ(≥k′) → Σk′ and ψk′′ : Σ(≥k′′) → Σk′′ . Now, since k′′ ≤ k′ we have that
ψk′(Σ

(≥k′)) ⊂ Σk′ ⊂ Σ(≥k′′), the codomain of ψk′ is included in the domain of ψk′′ . Thus,
the composition ψk′′ ◦ ψk′ : Σ(≥k′) → Σk′′ is well defined.

Second, Equation (3.47b) follows from

(ψk′′ ◦ ψk′)(κ) =
(
κ|{1,...,k′}

)
|{1,...,k′′} (by (2.33g) applied for k = k′ and k = k′′)

= ψk′′(κ) . (by (2.33g) applied for k = k′′)

Third, we prove Equation (3.47c). Let κ ∈ Σ(≥k′) be given. Let κ′′ = ψk′′(κ) and
κ′ = ψk′(κ), we want to show that κ′′ � κ′. First, we have that |κ′′| = |ψk′′(κ)| = k′′ ≤
k′ = |ψk′(κ)| = |κ′|. Second, we successively have,

ψ|κ′′|(κ
′) = ψk′′(κ

′) (as |κ′′| = k′′)

= ψk′′
(
ψk′(κ)

)
(as κ′ = ψk′(κ))

= ψk′′(κ) (by (3.47b) as κ ∈ Σ(≥k′))

= κ′′ . (as κ′′ = ψk′′(κ))

We have thus obtained that κ′′ � k′ by Equation (3.1) which gives Equation (3.47c). This

ends the proof.

3.5.2 Partitions of the H of configurations and cylindric subsets

In this §3.5.2, we give three partitions of the underlying set H of configurations in (2.24a),
and we also prove that some relevant subsets of the set H are cylinders, because of the
causality assumption.

Lemma 3.28. Let be given two orderings κ, κ′ ∈ Σϕ \ {(∅)}, where the set Σϕ is defined
in (2.35c). Then we have the following implications:

Hϕ
κ ∩Hϕ

κ′ 6= ∅ =⇒ κ′ � κ or κ � κ′ , (3.48a)

Hϕ
κ ∩Hϕ

κ′ 6= ∅ and |κ′| = |κ| =⇒ κ = κ′ , (3.48b)

Hϕ
κ ∩Hϕ

κ′ 6= ∅ and κ? = κ′
?

=⇒ κ = κ′ , (3.48c)

Hϕ
κ ∩Hϕ

κ′ 6= ∅ and κ′ ∈ Σ|κ|+1 =⇒ κ = κ′
−
. (3.48d)

Proof.
• (3.48a). Assume that we have that Hϕ

κ ∩Hϕ
κ′ 6= ∅. For any configuration h ∈ Hϕ

κ ∩Hϕ
κ′ , we

have by (2.34) that ψ|κ|
(
ϕ(h)

)
= κ and, that ψ|κ′|

(
ϕ(h)

)
= κ′. Therefore, by definition of

the relation � as in (3.1), we have that κ � ϕ(h) and κ′ � ϕ(h). Thus, by definition (3.3)
of an upset, we deduce that κ, κ′ ∈↑

{
ϕ(h)

}
. As (Σ,�) is a tree by Proposition 3.2, the

upset ↑
{
ϕ(h)

}
is a chain and we obtain that whether κ′ � κ or κ � κ′.
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• (3.48b). Assume that we have that Hϕ
κ∩Hϕ

κ′ 6= ∅ and |κ′| = |κ|. Using Implication (3.48a)
we must have that κ � κ′ or κ′ � κ. Assume first that κ � κ′, then by lemma 3.4, κ � κ′

is equivalent to κ = κ′ or κ � κ′−. Since κ � κ′− is not possible by cardinality assumption
|κ′| = |κ| we have that κ = κ′. The second case κ′ � κ is treated exactly in the same way
and left to the reader.

• (3.48c). Assume that we have that Hϕ
κ ∩Hϕ

κ′ 6= ∅ and κ? = κ′?. Using Implication (3.48a)
we must have that κ � κ′ or κ′ � κ. Suppose, without loss of generality, that, κ′ � κ (the
reasoning for the case κ � κ′ is identical, one needs to swap κ and κ′ in what follows). By
Lemma 3.4, κ′ � κ is equivalent to κ′ = κ or κ′ � κ−. We prove that κ′ � κ− is impossible.

Suppose indeed that κ′ � κ− and denote by a ∈ A the common value of κ? = κ′?.
On the one hand, from κ? = κ′? = a, we would deduce that κ(|κ|) = κ′(|κ′|) = a. On
the other hand, from κ′ � κ, we would deduce that κ|1,...,|κ′| = κ′, hence that κ(|κ′|) = a.
Combining both results, we would get κ(|κ|) = κ(|κ′|) = a. But this is impossible because
κ′ � κ− =⇒ |κ′| ≤ |κ| − 1. Therefore, we have obtained that κ′ = κ,

• (3.48d) Assume that we have that Hϕ
κ∩Hϕ

κ′ 6= ∅ and κ′ ∈ Σ|κ|+1. Using Implication (3.48a)
we must have κ � κ′ since the other case κ′ � κ would imply that |κ′| ≤ |κ| which is not
compatible with κ′ ∈ Σ|κ|+1. Now, by lemma 3.4, κ � κ′ is equivalent to κ = κ′ or κ � κ′−,
but κ′ = κ is not possible by cardinality assumption. We therefore have κ � κ′− which
combined with the fact that

∣∣κ′−∣∣ = |κ′|−1 = |κ| implies again by Lemma 3.4 that κ = κ′−.

Lemma 3.29. For any agent a ∈ A, we have the following partition of the configuration
space H

H =
⊔

κ∈Σϕ\{(∅)}
κ?=a

Hϕ
κ , (3.49)

where the set Σϕ is defined in (2.35c).

Proof. Let h ∈ H be given, there always exists k ∈ {1, . . . , |A|} such that κ = ψk(ϕ(h))
with κ? = a. Thus, there always exists κ ∈ Σϕ \ {(∅)} such that κ? = a and h ∈ Hϕ

κ . We
therefore have that H =

⋃
κ∈Σϕ\{(∅)} ,κ?=aHϕ

κ . Moreover, when κ ∈ Σϕ \ {(∅)} we have that

Hϕ
κ 6= ∅. It remains to prove that we have a partition. For this purpose we show that if

two orderings κ, κ′ ∈ Σϕ \ {(∅)} are such that Hϕ
κ ∩Hϕ

κ′ 6= ∅ then we have that κ′ = κ and
hence that Hϕ

κ = Hϕ
κ′ . This statement is indeed a direct consequence of Implication (3.48c)

in Lemma 3.28.

This ends the proof.

Proposition 3.30. Let ϕ : H → Σ|A| be a configuration-ordering as in Definition 2.23.
The configuration space H in (2.24a) can be partitioned as

H =
⊔

ρ∈ϕ(H)

Hϕ
ρ . (3.50a)
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Moreover, for any k ∈ {1, . . . , |A|}, we have the following partition(
∀k ∈ {1, . . . , |A|}

)
H =

⊔
κ∈ψk(ϕ(H))

Hϕ
κ , (3.50b)

where, for any nontotal ordering κ ∈ Σϕ \ϕ(H) compatible with the configuration ordering
ϕ : H→ Σ|A|, the corresponding set Hϕ

κ defined in (2.34) can itself be partitioned in

Hϕ
κ =

⊔
κ′∈ψ|κ|+1(ϕ(H))

(κ′)−=κ

Hϕ
κ′ , (3.50c)

or, equivalently, in

Hϕ
κ =

⊔
ρ∈↓κ∩ϕ(H)

Hϕ
ρ . (3.50d)

Proof. In the formulas above, we have restricted the range of the partitions to κ ∈ ψk(ϕ(H))
to get rid of the possible empty sets in the family

{
Hϕ
κ

∣∣κ ∈ Σk

}
. Indeed, by definition, a

partition does not contain empty sets.

• We start by proving Equation (3.50b). Let k ∈ {1, . . . , |A|} be fixed. First, we show
that Hϕ

κ ∩Hϕ
κ′ 6= ∅ with κ, κ′ ∈ ψk(ϕ(H)) implies that κ = κ′. Indeed, this is an immediate

consequence of Implication (3.48b) in Lemma 3.28 as we have |κ| = |κ′| = k. Second, if
κ ∈ ψk(ϕ(H)), then there exists h ∈ H such that κ = ψk(ϕ(h)) and thus Hϕ

κ 6= ∅. We
therefore have obtained a partition

⊔
κ∈ψk(ϕ(H))Hϕ

κ included in H. Now, given h ∈ H, we

have that h ∈ Hκ with κ = ψk(ϕ(h)) and we conclude that the previous inclusion is an
equality, that is Equation (3.50b) is established.
• We prove Equation (3.50a). Equation (3.50a) is obtained from Equation (3.50b) by
considering the case k = |A| as we have that ψ|A|(ϕ(H)) = ϕ(H).
• We prove (3.50c). For any κ ∈ Σϕ \ ϕ(H) and the corresponding set of configurations
Hϕ
κ , we write

Hϕ
κ = Hϕ

κ ∩H
= Hϕ

κ ∩
⊔

κ′∈ψ|κ|+1(ϕ(H))

Hϕ
κ′ (by (3.50b) applied for k = |κ|+ 1 ∈ {2, . . . , |A|})

=
⊔

κ′∈ψ|κ|+1(ϕ(H))

(Hϕ
κ′ ∩Hϕ

κ) (distributive property)

=
⊔

κ′∈ψ|κ|+1(ϕ(H))

(κ′)−=κ

(Hϕ
κ′ ∩Hϕ

κ) (as, using (3.48d), Hϕ
κ′ ∩Hϕ

κ = ∅ when (κ′)− 6= κ)

=
⊔

κ′∈ψ|κ|+1(ϕ(H))

(κ′)−=κ

Hϕ
κ′ . (as Hϕ

κ′ ∩Hϕ
κ = Hϕ

κ′ by (3.13) since κ = (κ′)− � κ′)

This ends the proof.
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In the sequel, we will sometimes use the following reformulation of Equation (3.50c)
writing explicitly the “last” agents (as in Equation (2.33i)) in the index of the union

Hϕ
κ =

⊔
b∈−‖κ‖

(κ,b)∈ψ|κ|+1(ϕ(H))

Hϕ
(κ,b) . (3.51)

The last statement of this §3.5.2, is Corollary 3.31 giving a result analogous to Equa-
tion (3.51) taking into account the cylindric structure of the set Hϕ

κ of configurations.

Corollary 3.31. If a configuration-ordering ϕ : H→ Σ|A| is causal (as in Definition 2.24),
then, for any nonempty ordering κ ∈ Σϕ \ {(∅)}, we have the following partition

Hϕ

κ × Uκ? =
⊔

b∈−‖κ‖
(κ,b)∈ψ|κ|+1(ϕ(H))

Hϕ

(κ,b) , (3.52)

where, for any nonempty ordering κ ∈ Σϕ \ {(∅)}, the corresponding set Hϕ

κ ⊂ Ω× Uκ− is
as in (2.38a).

Proof. For any nonempty ordering κ ∈ Σϕ \ {(∅)}, we write

(Hϕ

κ × Uκ?)× U−‖κ‖ = Hϕ

κ × U−‖κ−‖
= Hϕ

κ (by the cylindrical factorization (2.38a) valid by causality)

=
⊔

b∈−‖κ‖
(κ,b)∈ψ|κ|+1(ϕ(H))

Hϕ
(κ,b) (by (3.51))

=
⊔

b∈−‖κ‖
(κ,b)∈ψ|κ|+1(ϕ(H))

(
Hϕ

(κ,b) × U−‖(κ,b)−‖
)

(by the cylindrical factorization (2.38a) valid by causality)

=
⊔

b∈−‖κ‖
(κ,b)∈ψ|κ|+1(ϕ(H))

(
Hϕ

(κ,b) × U−‖κ‖
)

(as, for b ∈ −‖κ‖, (κ, b)− = κ by (2.33l))

=
( ⊔

b∈−‖κ‖
(κ,b)∈ψ|κ|+1(ϕ(H))

Hϕ

(κ,b)

)
× U−‖κ‖ .

Cancelling out U−‖κ‖ on both sides of last equality gives Equation (3.52).

This ends the proof.
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3.5.3 Technical results used for the proof of (AFR-Axiom1)

Here, we give postponed technical results used for the proof of Proposition 3.24. The main
result of this §3.5.3 is the following Proposition 3.32 giving for any WtoAFR-choice cG,ua
as in (3.33) the image P (cG,ua) under the immediate predecessor mapping P as in (2.18b).
The proof relies on a sequence of lemmas that are stated and proved after the proposition.

Proposition 3.32. Let an agent a ∈ A be given. For any information atom G ∈ H/Ia
and any action ua ∈ Ua, the immediate predecessor P (cG,ua) of the corresponding choice
cG,ua, as in (3.33) is given by(

∀G ∈ H/Ia , ∀ua ∈ Ua
)

P (cG,ua) =
{
x ∈ Xa

∣∣x ⊂ G
}
, (3.53)

where the immediate predecessor mapping P is defined in (2.18b) and the set Xa of WtoAFR-
moves of the agent a is defined in (3.35b).

Proof. Let an agent a ∈ A, an information atom G ∈ H/Ia of the agent and an action
ua ∈ Ua of the agent be given.

By definition of the immediate predecessor mapping P , as in (2.18b) applied for W =
cG,ua , we have that

P (cG,ua) =
{
x ∈ V

∣∣ ∃v ∈↓cG,ua , ↑x =↑v\ ↓cG,ua
}
,

where the downset ↓cG,ua of the choice cG,ua is given by

↓cG,ua =
{
v ∈ V

∣∣ v ⊂ cG,ua
}
. (3.54)

I First, we prove in Lemma 3.35, that the downset ↓cG,ua is of the form

↓cG,ua =
⊔
x∈Xa:
x⊂G

↓
(
x ∩ [ua]

)
,

where, for any move x ∈ Xa and any action ua ∈ Ua, the corresponding element x∩ [ua] is
a vertex, that is, x ∩ [ua] ∈ V by Lemma 3.33.
I Second, we prove in Lemma 3.36 that the set of maximal elements max

(
↓cG,ua

)
of the

downset of the corresponding choice cG,ua is given by

max
(
↓cG,ua

)
=
{
x ∩ [ua]

∣∣x ∈ Xa , s.t. x ⊂ G
}
.

I Finally, in Lemma 3.37, we prove that

P
(
cG,ua

)
=
{
p(v)

∣∣ v ∈ max(↓cG,ua)
}
,

which immediately gives the desired relation (3.53) for any WtoAFR-move x ∈ Xa of the
agent a, we have that p(x ∩ [ua]) = x ∈ Xa by (3.57) in Lemma 3.34.

This finishes the proof.
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Now, we prove the five postponed lemmas that gave us the proof of Proposition 3.32.

In the following Lemma 3.33, for any information atom G ∈ H/Ia of the agent a, any
WtoAFR-move x ⊂ G, and any action ua ∈ Ua of the agent a, we describe explicitly a
generic building block (x ∩ [ua]) for the choice c ∈ Ca of the agent a.

Lemma 3.33. Let a causal configuration ordering ϕ : H→ Σ be given. For any nonempty
ordering κ ∈ Σϕ \ {(∅)} compatible with the causal configuration ordering ϕ, such that
κ? = a, any κ−-prefix hκ− ∈ Ω×U‖κ−‖, and any action ua ∈ Ua of the agent a, there exists
a unique agent b ∈ −‖κ‖, such that

xκ,hκ− ∩ [ua] =

{
x(κ,b),(hκ− ,ua) ∈ X , if κ /∈ ϕ(H) ,

(hκ− , ua) ∈ Z , if κ ∈ ϕ(H) .
(3.55)

As the agent b is uniquely determined by the WtoAFR-move x(κ,hκ− ) ∈ Xa and the action
ua ∈ Ua, we denote it by B(xκ,hκ− , ua), that is,

b = B(xκ,hκ− , ua) ⇐⇒ xκ,hκ− ∩ [ua] = x(κ,b),(hκ− ,ua) . (3.56)

Proof. I Let a move x ∈ Xa be given and x = xκ,hκ− for some nonempty ordering κ ∈
Σϕ \ {(∅)}, such that κ? = a, and for some κ−-prefix hκ− ∈ Ω× U‖κ−‖.
• First, if the ordering κ ∈ ϕ(H) is total, we write

xκ,hκ− ∩ [ua] = Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

)
∩ [ua]

(by definition of WtoAFR-move as in (3.20a))

= Hϕ
κ ∩

(
{hκ−} × Ua

)
∩ [ua]

(as κ? = a and, for any total ordering κ ∈ ϕ(H), κ? = −‖κ−‖ by (2.33j))

= Hϕ
κ ∩ {(hκ− , ua)} (as ua ∈ Ua and hκ− ∈ Ω× U−a)

= {(hκ− , ua)} . (as xκ,hκ− ∩ [ua] 6= ∅ by (3.39c))

• Second, if the ordering κ /∈ Σ|A| is nontotal, we write

xκ,hκ− ∩ [ua] =
(
Hϕ
κ ∩

(
{hκ−} × U−‖κ−‖

))
∩ [ua]

(by definition of WtoAFR-move as in (3.20a))

= Hϕ
κ ∩

(
{(hκ− , ua)} × U−‖κ‖

)
(as a = κ? /∈ ‖κ−‖ by (2.33j))

=
(
Hϕ

κ × Ua × U‖κ−‖
)
∩
(
{(hκ− , ua)} × U−‖κ‖

)
(as Hϕ

κ is a cylinder by (2.38a))

=
( ⊔

b∈−‖κ‖
(κ,b)∈ψ|κ|+1(ϕ(H))

Hϕ

(κ,b) ∩ {(hκ− , ua)}
)
× U−‖κ‖

(by partition of Hϕ

κ as in (3.52) applied for κ? = a)

=
(
Hϕ

(κ,B(xκ,h
κ−

,ua)) ∩ {(hκ− , ua)}
)
× U−‖κ‖
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where the agent B(xκ,hκ− , ua) ∈ −‖κ‖ is uniquely defined as (hκ− , ua) ∈ H
ϕ

κ and because

of the partition of the set Hϕ

κ given in (3.52), there is only one atom of this partition
containing the κ-prefix (hκ− , ua)

= Hϕ
(κ,B(xκ,h

κ−
,ua)) ∩

(
{(hκ− , ua)} × U−‖κ‖

)
(as Hϕ

(κ,B(xκ,h
κ−

,ua)) is a cylinder by (2.38a))

= x(κ,B(xκ,h
κ−

,ua)),(hκ− ,ua) . (by definition of WtoAFR-move as in (3.20a))

This finishes the proof.

Now, using the closed forms of a WtoAFR-atom and a WtoAFR-choice established in
Lemma 3.23, in the following Lemma 3.34, we deduce a closed form representation of the
set of children for any WtoAFR-move.

Lemma 3.34. Let a causal W-model as in Definition 2.24 be given. For any agent a ∈ A
and any WtoAFR-move x ∈ Xa of the agent a, as in (3.36b), the set p−1(x) of children
vertices of the move x, as in (2.11c), is given by

p−1(x) =
{
x ∩ [ua]

∣∣ua ∈ Ua} , (3.57)

where for any action ua ∈ Ua, the corresponding equivalence class [ua] ∈ H/Ua is defined
in (3.32b).

Proof. The proof is in two steps.
I (⊃). Let an agent a ∈ A and a WtoAFR-move x ∈ Xa of the agent a be given. We prove
that

{
x ∩ [ua]

∣∣ua ∈ Ua} ⊂ p−1(x). To obtain the inclusion we prove that p(x ∩ [ua]) = x.
As x ∈ Xa, then exists a nonempty ordering κ ∈ Σϕ \ {(∅)}, where κ? = a, and a κ−-prefix
hκ− ∈ Ω× U‖κ−‖, such that x = xκ,hκ− , by (3.36b) and xκ,hκ− 6= ∅ by (3.20b).

By Lemma 3.33, we need to consider two cases.

• If the ordering κ /∈ ϕ(H) is nontotal, we write

p
(
xκ,hκ− ∩ [ua]

)
= p
(
x(κ,B(xκ,h

κ−
,ua)),(hκ− ,ua)

)
(by the first case in (3.55))

= x(κ,B(xκ,h
κ−

,ua))−,(hκ− ,ua)
((κ,B(xκ,h

κ−
,ua))

−)
−

by the second case in (3.27), as the ordering κ ∈ Σϕ \ {(∅)} is assumed to be nonempty by
the assumption and, thus, (κ,B(xκ,hκ− , ua)) ∈ Σ(≥2)

= xκ,(hκ− ,ua)κ−

(as B(xκ,hκ− , ua) ∈ A, then (κ,B(xκ,hκ− , ua))
− = κ by (2.33l))

= xκ,hκ− (as κ− � (κ−, a), then projκ−(hκ− , ua) = hκ− by (3.19a))
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• If the ordering κ ∈ ϕ(H) is total, we write

p
(
xκ,hκ− ∩ [ua]

)
= p
(
(hκ− , ua)

)
(by the second case in (3.55))

= x(ϕ(hκ− ,ua)),h
(ϕ(h

κ− ,ua))
− (by the third case in (3.27) as (hκ− , ua) ∈ Z)

= xκ,hκ− (as κ? = a, then ϕ(hκ− , ua) = κ)

Thus, we have proved that p
(
xκ,hκ− ∩ [ua]

)
= xκ,hκ− .

I (⊂). Now, we prove the inverse inclusion.

First, we show that the elements of the set
{
x ∩ [ua]

∣∣ua ∈ Ua} form a partition of the
WtoAFR-move x ∈ Xa of the agent a, that is, x =

⊔
ua∈Ua

(
x ∩ [ua]

)
. This immediately

follows as H/Ua is a partition of the set H and, we write

x = x ∩H = x ∩
⊔

ua∈Ua
[ua] =

⊔
ua∈Ua

(
x ∩ [ua]

)
.

Assume that x′ ∈ p−1(x), then we have x′ ⊂ x =
⊔
ua∈Ua

(
x ∩ [ua]

)
. Using the fact

that x′ and x ∩ [ua] for ua ∈ Ua are tree nodes, there must exist u′a ∈ Ua such that
x′ ⊂ x ∩ [ua′ ]. We therefore have that x′ ⊂ x ∩ [ua′ ] ⊂ x. As we have assumed that
p(x′) = x and since x ∩ [ua′ ] 6= x we must have that x′ = x ∩ [ua′ ]. We therefore have that
p−1(x) ⊂

{
x ∩ [ua]

∣∣ua ∈ Ua}.

This finishes the proof.

In the following Lemma 3.35, we give a partition of the downset ↓cG,ua of the WtoAFR-
choice cG,ua .

Lemma 3.35. Let an agent a ∈ A be given. For any information atom G ∈ H/Ia and
any action ua ∈ Ua, the downset ↓ cG,ua of the corresponding WtoAFR-choice cG,ua is of
the form

↓cG,ua =
⊔
x∈Xa:
x⊂G

↓
(
x ∩ [ua]

)
. (3.58)

Proof. Let an agent a ∈ A be given. For any information atom G ∈ H/Ia and any action
ua ∈ Ua, consider the corresponding choice cG,ua as in (3.33) and prove that the downset
↓cG,ua is partitioned as in (3.58) in two steps. First, we show that the candidate atoms of
this partition are disjoint. Second, we show that they are maximal.

• For any WtoAFR-move x ∈ Xa of the agent a, such that x ⊂ G, we have that x∩ [ua] ⊂
cG,ua by representation of the choice cG,ua , as in (3.39b). Then, for any vertex v ∈↓

(
x∩[ua]

)
,

by definition of the downset as in (2.10), we have that v ⊂ x ∩ [ua] and, thus, v ⊂ cG,ua ,
which proves that

↓
(
x ∩ [ua]

)
⊂↓cG,ua , ∀ x ∈ Xa , x ⊂ G .
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Now, we show that, for any two distinct WtoAFR-moves x 6= x′ ∈ Xa of the agent a, and
any action ua ∈ Ua of the agent a, the corresponding downsets of the moves x ∩ [ua] and
x ∩ [ua′ ] are disjoint, that is,(

∀x 6= x′ ∈ Xa , ∀ua ∈ Ua
)

↓
(
x ∩ [ua]

)
∩ ↓
(
x′ ∩ [ua]

)
= ∅ . (3.59)

Take any two distinct WtoAFR-moves x, x′ ∈ Xa of the agent a. As Xa is a partition
of the underlying set H of configurations, as defined in (3.35b), then x ∩ x′ = ∅ and, thus,(
x ∩ [ua]

)
∩
(
x′ ∩ [ua]

)
= ∅.

Now, we prove that the downsets ↓
(
x ∩ [ua]

)
and ↓

(
x′ ∩ [ua]

)
are disjoint. As

(
x ∩

[ua]
)
∩
(
x′∩ [ua]

)
= ∅, then for any v ∈↓

(
x∩ [ua]

)
and any v′ ∈↓

(
x′∩ [ua]

)
we conclude that

v ∩ v′ = ∅ as, v ⊂↓
(
x ∩ [ua]

)
and v′ ⊂↓

(
x′ ∩ [ua]

)
by definition of the downset in (2.10).

This proves that ↓
(
x ∩ [ua]

)
∩ ↓
(
x′ ∩ [ua]

)
= ∅ and, thus, we have (3.59).

• Finally, for any WtoAFR-move x ∈ Xa of the agent a, such that x ⊂ G, and any action
ua ∈ Ua of the agent a, we prove that(

∃v ∈ V , s.t. x ∩ [ua] ⊂ v ⊂ cG,ua
)
⇒ v = x ∩ [ua] . (3.60)

Take an WtoAFR-move x ∈ Xa of the agent a. Then, by (3.20b), there exists a nonempty
ordering κ ∈ Σϕ \ {(∅)}, κ? = a and a κ−-prefix hκ− ∈ Ω×U‖κ−‖, such that x = xκ,hκ− 6= ∅
by (3.36b).

Assume there is a WtoAFR-vertex v ∈ V such that v ⊃
(
xκ,hκ− ∩ [ua]

)
. We write

v ∈↑
(
xκ,hκ− ∩ [ua]

)
(by definition of the upset of a vertex as in (2.10), as v ⊂

(
xκ,hκ− ∩ [ua]

)
by the assumption)

=
(
xκ,hκ− ∩ [ua]

)
∪ ↑x .

(by representation of the upset as in (2.13a), as p
(
xκ,hκ− ∩ [ua]

)
= x by Lemma 3.34)

If v ∈↑xκ,hκ− , then, by definition of the upset in (2.10), we get that xκ,hκ− ⊂ v.
We write

xκ,hκ− =
(
Hϕ

κ ∩ {hκ−}
)
× U−‖κ−‖ (by representation of the WtoAFR-move as in (3.21))

=
(
Hϕ

κ ∩ {hκ−}
)
× Ua × U−‖κ‖ (as a = κ? /∈ ‖κ−‖ by (2.33j))

As xκ,hκ− ⊂ v, then there exists a configuration h̃ ∈ xκ,hκ− ⊂ v, such that h̃a = ũa 6= ua.
This contradicts the fact that v ⊂ cG,ua , as, for any h ∈ cG,ua , ha = ua, by definition of the
WtoAFR-choice of the agent a as in (3.33).

Thus, v =
(
xκ,hκ− ∩ [ua]

)
=
(
x ∩ [ua]

)
, which proves (3.60) and, thus, the representa-

tion (3.58).

This finishes the proof.

In the following Lemma 3.36, we give the expression for the set max
(
↓ cG,ua

)
of

maximal elements of the downset ↓cG,ua .
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Lemma 3.36. Let an agent a ∈ A be given. For any information atom G ∈ H/Ia and
any action ua ∈ Ua, the set of maximal elements max

(
↓ cG,ua

)
of the downset of the

corresponding choice cG,ua is given by

max
(
↓cG,ua

)
=
{
x ∩ [ua]

∣∣x ∈ Xa , s.t. x ⊂ G
}
. (3.61)

Proof. We prove Equation (3.61). We successively have

max
(
↓cG,ua

)
= max

( ⊔
x∈Xa:
x⊂G

↓
(
x ∩ [ua]

))
(by (3.58) in Lemma 3.35)

=
⊔
x∈Xa:
x⊂G

max
(
↓
(
x ∩ [ua]

))
(as, in the finite case, max commutes with partition)

=
⊔
x∈Xa:
x⊂G

(x ∩ [ua]) ,

as, for any WtoAFR-vertex v ∈ V , v ∈↓ v and for any v′ ∈↓ v, v′ ⊂ v by Definition 2.10,
thus, it immediately follows that max ↓ v = v. As, for any move x ∈ Xa and any action
ua ∈ Ua, the corresponding element x∩[ua] is a vertex, that is, x∩[ua] ∈ V by Lemma 3.33,
this gives the last equality and proves (3.61).

This finishes the proof.

Finally, in Lemma 3.37, we write the immediate predecessor image P (cG,ua) of the
WtoAFR-choice cG,ua in terms of the parent mapping p is as in (2.11b).

Lemma 3.37. Let an agent a ∈ A be given. For any information atom G ∈ H/Ia and
any action ua ∈ Ua, the immediate predecessor P

(
cG,ua

)
of the corresponding choice cG,ua

is given by
P (cG,ua) =

{
p(v)

∣∣ v ∈ max(↓cG,ua)
}
, (3.62)

where the parent mapping p is as in (2.11b).

Proof. By definition of the immediate predecessor mapping P , as in (2.18b) applied for
W = cG,ua , we have that

P (cG,ua) =
{
x ∈ V

∣∣ ∃v ∈↓cG,ua , ↑x =↑v\ ↓cG,ua
}
, (3.63)

where the downset ↓cG,ua of the choice cG,ua is given by (3.54).
The proof is in two steps. First, we show that

∀ x ∈ Xa , x ⊂ G =⇒ x 6⊂ cG,ua . (3.64)

Second, we prove (3.62).
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I Let a WtoAFR-choice cG,ua ∈ Ca of the agent a be given. First, we prove (3.64). For
any WtoAFR-move x ∈ Xa of the agent a, such that x ⊂ G, we write

x = xκ,hκ−

as any WtoAFR-move x ∈ Xa, is of the form x = xκ,hκ− , for some nonempty ordering

κ ∈ Σϕ \ {(∅)}, such that κ? = a, and a κ−-prefix hκ− ∈ U‖κ−‖, by (3.36b)

=
(
Hϕ

κ ∩ hκ−
)
× U−‖κ−‖ (by representation of the WtoAFR-move as in 3.21)

=
(
Hϕ

κ ∩ hκ−
)
× Ua × U−‖κ‖ . (as a = κ? /∈ ‖κ−‖ by (2.33j))

Thus, there exists a configuration h̃ ∈ xκ,hκ− , such that h̃a = ũa 6= ua. This proves that
xκ,hκ− 6⊂ cG,ua as cG,ua = G ∩ [ua], by definition of the WtoAFR-choice of the agent a as
in (3.33).

I Finally, we prove (3.62) in two substeps.

• (⊂) Any vertex v′ ∈ max(↓ cG,ua), is of the form v′ = x ∩ [ua] for some WtoAFR-move
x ∈ Xa of the agent a such that x ⊂ G, by (3.61).

We show that there exists a vertex v ∈↓ cG,ua , such that ↑ x =↑ v\ ↓ cG,ua , that is,
x ∈ P (cG,ua). Show that v = x ∩ [ua] gives the result. We write

↑
(
x ∩ [ua]

)
\ ↓cG,ua =

((
x ∩ [ua]

)
∪ ↑p

(
x ∩ [ua]

))
\ ↓cG,ua

(as, for any nonroot vertex v, representation ↑v = {v}∪ ↑p(v) holds by (2.13a))

=
((
x ∩ [ua]

)
∪ ↑x

)
\ ↓cG,ua (as p(x ∩ [ua]) = x, by (3.57))

=↑x ,

as
(
x ∩ [ua]

)
∈↓ cG,ua by assumption and x 6⊂ cG,ua by (3.64), thus, x /∈↓ cG,ua and neither

of the elements of the upset ↑x, as, for any x′ ∈↑x, we have the inclusion x ⊂ x′ by (2.10).
This proves that x ∈ P (cG,ua), and, thus,

{
p(v)

∣∣ v ∈ max(↓cG,ua)
}
⊂ P (cG,ua).

• (⊃) In order to prove the inverse inclusion, we take a vertex x̃ ∈ P (cG,ua) and we show
that there exists a vertex ṽ ∈ max ↓cG,ua such that p(ṽ) = x̃.

By definition of the immediate predecessor P (cG,ua) of the WtoAFR-choice cG,ua as
in (3.63), for x̃ ∈ P (cG,ua), there exists a vertex v ∈↓cG,ua , such that

↑ x̃ =↑v\ ↓cG,ua . (3.65)

As the downset ↓cG,ua of the WtoAFR-choice cG,ua is of the form

↓cG,ua =
⊔
x∈Xa:
x⊂G

↓
(
x ∩ [ua]

)
.

by (3.58), then, for v ∈↓ cG,ua , there exists a WtoAFR-move x ∈ Xa of the agent a, such
that x ⊂ G and v ∈↓

(
x ∩ [ua]

)
.
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We show that ↑ v\ ↓ cG,ua =↑ x, then, ↑ x =↑ x̃ and, thus, x = x̃ by (3.24). Then,
for
(
x ∩ [ua]

)
∈ max ↓ cG,ua (which holds true by (3.61)), we have that p

(
x ∩ [ua]

)
= x̃

by (3.57).
On the one hand, as v ∈↓

(
x∩ [ua]

)
, then v ⊂

(
x∩ [ua]

)
by definition of the downset of

a vertex as in (2.10). As p
(
x ∩ [ua]

)
= x by (3.57), then v ⊂ x (as, for any vertex v ∈ V ,

p(v) ∈↑ v by (2.11b) and, thus, v ⊂ p(v) by definition of the upset as in (2.10)), that is,
x ∈↑v.

On the other hand, x ∈ Xa and x ⊂ G, then, x 6⊂ cG,ua by (3.64) and, by definition of
the downset ↓cG,ua of the WtoAFR-choice cG,ua as in (3.54), x /∈↓cG,ua .

Then, we write

x ∈↑v\ ↓cG,ua (as x ∈↑v and x /∈↓cG,ua)
=↑ x̃ , (by assumption (3.65))

which implies that x̃ ⊂ x by definition of the upset if a vertex as in (2.10).
If x̃ ⊂

(
x ∩ [ua]

)
⊂ x, then x̃ ⊂ cG,ua , as

(
x ∩ [ua]

)
⊂ cG,ua by (3.61), that is,

x̃ ∈↓ cG,ua by definition of the downset ↓ cG,ua of the WtoAFR-choice cG,ua as in (3.54),
which contradicts (3.65) (x̃ ∈↑ x̃, but ↑ x̃∩ ↓cG,ua = ∅).

If
(
x ∩ [ua]

)
( x̃ ⊂ x, then, by definition of the upset of a vertex as in (2.10), x̃ ∈↑(

x ∩ [ua]
)
, and, as

(
x ∩ [ua]

)
6= x̃, then x̃ ∈↑

(
x ∩ [ua]

)
\
{(
x ∩ [ua]

)}
. At the same time,

p
(
x ∩ [ua]

)
= x by (3.57), that is,

x = min
(
↑
(
x ∩ [ua]

)
\
{(
x ∩ [ua]

)})
,

by definition of the parent as in (2.11b), then, as x̃ ⊂ x, we conclude that x̃ = x, which
proves the inverse inclusion and, thus, yields (3.62).

This ends the proof.

3.5.4 Technical results used for the proof of (AFR-Axiom2)

In this §3.5.4, we give two lemmas justifying the two last transitions in the proof of Propo-
sition 3.25.

Lemma 3.38. For any WtoAFR-move x ∈ Xa of the agent a, and the unique information
atom G ∈ H/Ia of the agent a containing it, that is, x ⊂ G, we have the following relation{

x ∩ c
∣∣ c ∈ Ca such that c = cG,ua for some ua ∈ Ua

}
(3.66)

=
{
x ∩ c

∣∣ c ∈ Ca such that x ∩ c 6= ∅
}
,

where, for any ua ∈ Ua, the WtoAFR-choice cG,ua is as in (3.33).

Proof. For any WtoAFR-move x ∈ Xa of the agent a, and the unique information atom
G ∈ H/Ia, such that x ⊂ G, we prove (3.66). The proof is in two step as we need to show
two inclusions.
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(⊂) As the WtoAFR-move x ∈ Xa of the agent a is a subset of G, that is, x ⊂ G, we
write

x ∩ cG,ua = x ∩
(
G ∩ [ua]

)
(by definition of the WtoAFR-choice c = cG,ua as in (3.33))

=
(
x ∩G

)
∩
(
x ∩ [ua]

)
6= ∅ . (as x ⊂ G and for any x ∈ Xa and u ∈ Ua, x ∩ [ua] 6= ∅ by (3.39c))

(⊃) As the WtoAFR-move x ∈ Xa of the agent a is a subset of G, that is, x ⊂ G and
assuming that x ∩ c 6= ∅, for some WtoAFR-choice c ∈ Ca of the agent a, we write

x ∩ c = x ∩ cG′,ua

as c ∈ Ca, then c = cG′,ua for some G′ ∈ H/Ia and ua ∈ Ua, by characterization (3.34a) of
the set Ca of WtoAFR-choices of the agent a

= x ∩
(
G′ ∩ [ua]

)
(by definition of the WtoAFR-choice c = cG,ua as in (3.33))

=
(
x ∩G′

)
∩
(
x ∩ [ua]

)
,

where x∩ [ua] 6= ∅ for any ua ∈ Ua by (3.39c), and, as x∩c 6= ∅ by assumption, we conclude
that x∩G′ 6= ∅. From this follows that x ⊂ G′ as H/Ia � H/Mϕ

a by (3.38b). At the same
time, x ⊂ G and, thus, G = G′ as they are atoms of the information partition H/Ia of the
agent a. This proves the inverse inclusion and, thus, the relation (3.66).

This finishes the proof.

Lemma 3.39. For any WtoAFR-move x ∈ Xa of the agent a, and the unique information
atom G ∈ H/Ia of the agent a containing it, that is, x ⊂ G, we have the following relation{

x ∩ c
∣∣ c ∈ Ca : x ∩ c 6= ∅

}
=
{
x ∩ c

∣∣ c ∈ Ca : x ∈ P (c)
}
, (3.67)

where the immediate predecessor P is as in (2.18b).

Proof. For any WtoAFR-move x ∈ Xa of the agent a, we prove (3.67).
(⊂) As, for a given WtoAFR-move x ∈ Xa, the unique information atom G ∈ H/Ia

containing it, and, for a given WtoAFR-choice c ∈ Ca, x∩ c 6= ∅, then, by (3.66), c = cG,ua
for some action ua ∈ Ua.

Moreover, as x ∩ c 6= ∅, then x ∩
(
G ∩ [ua]

)
6= ∅ by definition of the WtoAFR-choice

cG′,ua as in (3.33). As, for any x ∈ Xa and u ∈ Ua, x∩ [ua] 6= ∅ by (3.39c), then, x∩G 6= ∅
and x ⊂ G as H/Ia � H/Mϕ

a by (3.38b). At the same time, by (3.53) we have that

P (cG,ua) =
{
x′ ∈ Xa

∣∣x′ ⊂ G
}
,

hence we get x ∈ P (cG,ua), and the following inclusion is proved{
x ∩ c

∣∣ c ∈ Ca : x ∩ c 6= ∅
}
⊂
{
x ∩ c

∣∣ c ∈ Ca : x ∈ P (c)
}
.
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(⊃) For any choice c ∈ H/Ia
∨
H/Ua, there exists an information atom G′ ∈ H/Ia and

an action ua ∈ H/Ua, such that c = cG′,ua by characterization (3.34a) of the set Ca of
WtoAFR-choices of the agent a. Then, by (3.53), we get that

P (cG′,ua) =
{
x′ ∈ Xa

∣∣x′ ⊂ G′
}
.

As x ∈ P (c) by assumption, we get that x ⊂ G′. At the same time, we have that x ⊂ G,
which implies that G = G′ as they are both atoms of the partition H/Ia. Then, we write

x ∩ c = x ∩ cG,ua
= x ∩

(
G ∩ [ua]

)
(by definition of the WtoAFR-choice cG′,ua as in (3.33))

= x ∩ [ua] (as x ⊂ G)

6= ∅ , (as, for any x ∈ Xa and u ∈ Ua, x ∩ [ua] 6= ∅ by (3.39c))

which proves the inverse inclusion and, thus, the relation (3.67).

3.6 Example: absent-minded driver

The absent-minded driver example was thoroughly discussed in §2.5.1. Here, we are going
to build an equivalent AFR-model with a single player P =

{
{a, b}

}
, specifying its two

main objects: the set of vertices (V,⊃) and set C = Ca ∪ Cb of WtoAFR-choices of the
player respectively.

3.6.1 WtoAFR-tree

In the Gilboa’s doubling agent trick [10], Nature decides on the agents’ order in the initial
W-model

Ω = {ω+, ω−} ,
and the agents’ action sets are as follows

Ua = {Ta, Sa}, Ub = {Tb, Sb} ,
thus, the set H of configurations is

H = Ω× Ua × Ub = {ω+, ω−} × {Ta, Sa} × {Tb, Sb} ,
and, finally, the sef of agents’ orderings is

Σ = {(ab), (ba)}
The configuration ordering is then

ϕ(h) =

{
(a, b), if h ∈ {ω+} × Ua × Ub,
(b, a), if h ∈ {ω−} × Ua × Ub

and the set of WtoAFR-plays is given by the set H of configurations.
The following is the list of primitives of the constructed WtoAFR-model.



3.7. CONCLUSION 103

• Root {H},

• Vertices of level 1:{
{ω+} × {Sa, Ta} × {Sb, Tb} × {(ab)}, {ω−} × {Sa, Ta} × {Sb, Tb} × {(ba)}

}
• Vertices of level 2:{
{ω+}×{Sa}×{Sb, Tb}×{(ab)}, {ω+}×{Ta}×{Sb, Tb}×{(ab)}, {ω−}×{Sa, Ta}×
{Sb} × {(ba)}, {ω−} × {Sa, Ta} × {Tb} × {(ba)}

}
3.6.2 WtoAFR-choices and information sets

From the way the agents’ information partition fields were defined in §2.5.1.3, we deduce
the partitions of the set H of configurations.

H/Ia = {∅, {ω+}×Ua×Ub×{ab}∪{ω−}×Ua×{Sb}×{ba}, {ω−}×Ua×{Tb}×{ba},H} ,

and the information partition H/Ub of agent b is defined in the same way.
Then, we build the two auxiliary action-projection partitions:

H/Ua =
{

Ω× {Ta} × Ub,Ω× {Sa} × Ub
}
,

H/Ub =
{

Ω× Ua × {Tb},Ω× Ua × {Sb}
}
.

With these auxiliary partitions, the choices of the agents a and b are Ca = H/Ua
∨
H/Ia

and Ca = H/Ua
∨
H/Ia, respectively. The player represented by these two agents has the

following collection of choices:
C = Ca ∪ Cb .

3.7 Conclusion

In this Chapter 3, we have shown that a causal W-model with complete π-fields can be
embedded into an AFR-model. The embedding is performed thanks to the information
defined as a partition field of the underlying product set of configurations and the axiom
of causality imposed on the basic objects.

Here is a summary sketch of the embedding. We deduce the tree structure of the
AFR-model out of a causal configuration ordering of the W-model (assumed to exist by
the causality axiom). For this purpose, we take the set of configurations as the underlying
set of plays. The tree is being built in two steps: first, we define the so-called skeleton
poset of configurations; second, we refine the skeleton poset intersecting the vertices with
atoms of the so-called vertex partition. Finally, we define choices as the intersections of
the atoms of two π-fields: the information π-field, that is straightforwardly inherited from
the W-model, and the action π-field, obtained by projecting the set of configurations onto
the action set of each agent.
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Chapter 4

From AFR-model to W-model

4.1 Introduction

In this Chapter, we show that an AFR-model, as described in §2.3.3, can be embedded
into a causal W-model with partition-fields, as described in §2.4.2. We will stick to the
following roadmap.

• In Section 4.2, we construct the three primitives of a W-model from an AFR-model:

– a set of agents,

– actions sets, one for each agent, equipped with the complete π-field; a sample
space of Nature, equipped with the complete π-field; the product of the sample
space with the action sets forms the set of configurations, equipped with the
corresponding configuration product field,

– agent information π-fields that are subfields of the configuration product field.

• In Section 4.3, we construct W-strategies, as defined in §2.4.3, from AFR-strategies,
as defined in §2.3.4. We are leaving open the questions of causality and solvability of
the constructed model, see §9.2.1 and §9.2.2 of the Appendix respectively for more
details.

4.2 From AFR-primitives to W-primitives

Using two objects of the AFR-model the tree (V,⊃) supported on the set W of plays and
the collection of players’ choices C = {Ci}i∈P , we build a W-model first by constructing
agents together with their action sets and a sample space that corresponds to the set of
all possible uncertainties, thus yielding the underlying product set of configurations. Each
of the constructed set of actions and the sample space is equipped with the correspond-
ing complete π-field, which all together form a product configuration field. Each agent
information π-field is a subfield of the constructed configuration field.
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4.2.1 Recalls on AFR-primitives

Given below is the list of objects of the AFR-model as in §2.3.2: BO are basic objects
and CO are constructed ones and mappings defined on them. For the sake of clarity, we
assume that the AFR-model we are working with is finite.

(AFR-BO0) W is the underlying set of plays.

(AFR-BO1) (V,⊃) is a finite game tree with a finite set of vertices V ⊂ 2W (see Defini-
tion 2.11).

(AFR-BO2) Ci ⊂ 2W is the set of choices available to player i; each choice is a union of
vertices.

(AFR-CO1) P : 2W → 2V is the immediate predecessor mapping.

For a subset of plays W ⊂W, its set of immediate predecessors is P (W ) = {v ∈ V :
∃v′ ∈↓W : ↑v =↑v′\ ↓W} as in Definition 2.14. In the same vein can be defined the
immediate successor mapping P−1 : 2V → 2W

(AFR-CO2) X i = {v ∈ V | ∃ c ∈ Ci : v ∈ P (c)} is the set of moves (decision points) of
player i.

4.2.2 Constructing AFRtoW-primitives

As, in a W-model, we can say that the Nature player moves once and for all “before” the
agents, we will start from a Nature-rooted AFR-model (as in Definition 2.16) in order to
build an equivalent AFRtoW-model. We construct AFRtoW-objects in two steps: first, for
each individual player, we construct a set of so-called Selten-agents and their information
sets, roughly speaking, inhabiting each information set with a separate Selten-agent. In
fact, it is possible to do better than constructing agents in such a lavish way, and we will
define an equivalence relation on the set of Selten-agents and then “slice” each element of
this partition into AFRtoW-agents defining their action afterwards.

From now on, we write the set of players P0 = {0} ∪P , separating the Nature player 0
from the set of individual players P .

4.2.2.1 Constructing AFRtoW-agents, AFRtoW-action sets, AFRtoW-sample
space and AFRtoW-information π-fields

We start by defining agents, their action sets together with the sample space and the
product set of configurations.

• We define the set of AFRtoW-agents A by

A =
{
a
∣∣ a = P (c) , c ∈ Ci , i ∈ P

}
=
⋃
i∈P

P (Ci) . (4.1a)
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Also, for every player i ∈ P , we define the set Ai of representative AFRtoW-agents
of the player i by

Ai = P (Ci) . (4.1b)

• For the Nature player 0 and the collection C0 of Nature’s choices, the AFRtoW-
sample space Ω is defined by

Ω = C0 . (4.2)

• For any AFRtoW-agent a ∈ A, the set Ua of agent a’s actions is defined by

Ua = P−1(a) . (4.3)

• The set H of AFRtoW-configurations we defined by

H = Ω×
∏
a∈A
Ua = C0 ×

∏
i∈P

∏
a∈P (Ci)

P−1(a) . (4.4)

To define information, we need more notations.

• For any vertex v ∈ V , the set Av ⊂ A of agents that played before the vertex v was
reached we define by

Av =
{
a ∈ A

∣∣∃i′ ∈ P , a ∈ Ai′ , and ∃v′ ∈↑v \ {v} , v′ ∈ a
}
, (4.5)

where the upset ↑v ⊂ V is defined in (2.10).

For any vertex v ∈ V , we define the subset Hv ⊂ H of AFRtoW-configurations as
the following cylinder

Hv = {ω(v)} ×
∏
a∈Av
{ua(v)} ×

∏
b∈A\Av

Ub , (4.6)

where the set Av of agents is defined in (4.5) and where, for any agent a ∈ Av, there
is a unique action ua(v) ∈ Ua of the agent a containing the vertex v as in (4.10)
(the existence and uniqueness of such ua(v) is proved in the postponed Lemma 4.1)
and, analogously, ω(v) ∈ Ω is the unique element of the sample space containing the
vertex v, that is, characterized by v ⊂ ua(v) and v ⊂ ω(v) respectively.

• For any agent a ∈ A (which, as defined in (4.1a), is a set of vertices, that is, a ⊂ V )
we define the agent a’s AFRtoW-information π-field by

Ia =
{
∅,
⋃
v∈a

Hv,H \
⋃
v∈a

Hv,H
}
, (4.7)

where the set Hv of configurations is defined in (4.6).
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Note the information of a W-agent, in general, is richer than the one of a AFRtoW-
agent. Each AFRtoW-agent is endowed with a very special binary information partition –
the agent knows the information atom defining him and can only distinguish it from the
rest of the world.

We finish by giving the following postponed Lemma 4.1 that made it possible to
write (4.6).

Lemma 4.1. Let a Nature-rooted AFR-model be given as in Definition 2.16. For any
vertex v ∈ V and any move x ∈↑v \ {v},

• there is a unique AFRtoW-agent a(x) ∈ Av, where the set A of AFRtoW-agents is
as in (4.1a), such that x ∈ a(x), that is,(

∀v ∈ V , ∀x ∈↑v \ {v}
)

∃!a(x) ∈ Av , x ∈ a(x) , (4.8a)

and is characterized by

a(x) = P (c) , ∀c ∈ Ci(x) , x ∈ P (c) (4.8b)

and that satisfies

P−1
(
a(x)

)
=
{
c ∈ Ci(x)

∣∣P (c) = a(x)
}

=
{
c ∈ Ci(x)

∣∣x ∈ P (c)
}
. (4.8c)

• the set Ai(x)(x) of actions of the player i(x) active at the move x as in Definition 2.16,
coincides with the set Ua(x) of actions of the AFRtoW-agent a(x) active at the move x,
as defined in (4.3), that is,(

∀x ∈ X
)

Ai(x)(x) = Ua(x) , (4.9)

• for any AFRtoW-agent a ∈ Av, where the set Av is defined in (4.5), there exists a
unique action ua(v) ∈ Ua, such that v ⊂ ua(v), that is,(

∀v ∈ V , ∀a ∈ Av
)

∃!ua(v) ∈ Ua , v ⊂ ua(v) . (4.10)

Proof. The proof is in tree steps. Let a vertex v ∈ V and a move x ∈↑v \ {v} be given.

I It follows from (AFR-Axiom1’), as in Definition 2.16, that, for each player i ∈ P , the
corresponding set X i of moves, as defined in (2.22a), is partitioned by

X i =
⊔
a∈Ai

a , (4.11)

where the set Ai of representative AFRtoW-agents of the player i is defined in (4.1b).
Indeed, for any two representative AFRtoW-agents a, b ∈ Ai of the player i, there exist
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choices ca, cb ∈ Ci, such that a = P (ca) and b = P (cb) by (2.22a). If a ∩ b 6= ∅, that is,
P (ca) ∩ P (cb) 6= ∅, then, by (AFR-Axiom1’), we conclude that P (ca) = P (cb) and a = b.

Thus, for the move x ∈↑ v \ {v} ⊂ X, there exists a unique player i(x), such that
x ∈ X i(x) by (2.22b), and there exists a unique AFRtoW-agent a(x) ∈ Ai(x), such that
x ∈ a(x) by (4.11) applied for i(x).

I We write

Ai(x)(x) =
{
c ∈ Ci(x)

∣∣x ∈ P (c)
}

(by definition of the set Ai(x)(x) as in (2.21))

= P−1
(
a(x)

)
(by characterization of the agent a(x) as in (4.8c))

= Ua(x) . (by (4.3) applied for a(x))

I First, we show that p−1(x)∩ ↑ v is a singleton. Second, we use (AFR-Axiom2’) to
prove (4.10).
• Assume there are two vertices v′, v′′ ∈ p−1(x)∩ ↑v.

As v′, v′′ ∈↑ v, and ↑ v is a chain, then v′′ ⊃ v′ or v′ ⊃ v′′. Without loss of generality,
we assume that v′ ⊃ v′′, that is, v′ ∈↑v′′ by definition of the upset as in (2.10). We prove
that v′ 6= v′′ leads to a contradiction.

To this end, we write

v′ ∈↑v′′ \ {v′′} (as v′ ∈↑v′′, but v′ 6= v′′ by the assumption)

=↑x (by (2.13a) as x = p(v′′))

=↑v′ \ {v′} , (by (2.13a) as x = p(v′))

which brings us to a contradiction and proves that v′ = v′′. Thus, there exists a unique
v′ = v′(v) ∈ p−1(x), such that p−1(x)∩ ↑v = {v′(v)}.
• Finally, we write

p−1(x) =
{
x ∩ c

∣∣ c ∈ Ai(x)(x)
}

(by (AFR-Axiom2’) in Definition 2.16)

=
{
x ∩ ua(x)

∣∣ua(x) ∈ Ua(x)

}
,

where the agent a(x) ∈ Av is uniquely defined by (4.8a) and Ai(x)(x) = Ua(x) by (4.9).
On the one hand, we consider the vertex v′(v) ∈ p−1(x), which is uniquely defined

by p−1(x)∩ ↑ v = {v′(v)}, thus, v ⊂ v′(v). On the other hand, there exists unique
ua(x)(v

′) ∈ Ua(x), such that v′(v) = x∩ ua(x)(v
′) as p−1(x) =

{
x∩ ua(x)

∣∣ua(x) ∈ Ua(x)

}
, that

is, v′(v) ⊂ ua(x)(v
′).

As the vertex v′(v) is uniquely determined by v, we set ua(x)(v
′) = ua(x)(v) and conclude

that v ⊂ v′(v) ⊂ ua(x)(v). As the Nature player is listed in the set P of players, then,
automatically, there also exists unique element of the sample space ω(v) ∈ Ω such that
v ⊂ ω(v).

This finishes the proof.

We are leaving open the question of causality for the constructed AFRtoW-model. See
§9.2.1 of the Appendix for more details.
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4.3 AFRtoW-strategies

In this Section 4.3, we construct, from an AFR-strategy sa : Xa → Ca (hence, such that
the measurability condition as in Definition 2.17 holds true) a mapping λa : H→ Ua such
that the measurability condition as in (2.30b) holds true.

4.3.1 Building AFRtoW-strategies

Using partition (4.11), we can write any AFR-strategy si in §2.3.4 as a family of local
strategies attached to each AFRtoW-agent of the player i.

Proposition 4.2. Let i ∈ P be a player and si : X i → Ci be an AFR-strategy. Then,
there exists a family of mappings {si,a}a∈Ai, where si,a : X i → P−1(a) such that, for any
player i’s move x ∈ X i, there exists a AFRtoW-agent a ∈ Ai (containing the move x ∈ a),
and si(x) = si,a(x) ∈ P−1(a).

Proof. Let a move x ∈ X i be given. It directly follows from representation (4.11), that
there exists a unique AFRtoW-agent a = a(x) ∈ Ai containing it, that is, x ∈ a. On
the one hand, as the image of the move x under the AFR-strategy si of the player i is a
choice, that is, si(x) ∈ Ci, then, by (AFR-Axiom1’), there exists a unique AFRtoW-agent
a′ ∈ Ai, such that P

(
si(x)

)
∈ a′. On the other hand, by the measurability condition

in Definition 2.17, the action of the inverse mapping (si)−1 coincides with the immediate
predecessor mapping P action, giving

x ∈ (si)−1(si(x)) = P (si(x)) = a′ .

From this, it follows that x ∈ a ∩ a′ and a = a′ as they are atoms of the partition (4.11).
Thus, we set si,a = (si)|a, where

(si)|a : X i ∩ a→ P−1(a) .

This ends the proof.

Now we are ready to build AFRtoW-strategies from W-strategies.

Proposition 4.3. Let a player i ∈ P and an AFR-strategy si : X i → Ci be given. Then,
there exists a family of mappings (λa)a∈Ai, such that, for any agent a ∈ Ai,

λa = ia ◦ si,a , (4.12)

that is, such that the diagram in Figure (4.1) commutes, where ia maps every configuration
h ∈ Ha into the corresponding vertex v ∈ a that contains h and the local strategy si,a is
defined in Proposition 4.2.
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{
v
∣∣ v ∈ a} P−1(a)

Ha

si,a

ia
λa

Figure 4.1: Constructing the mapping λa

Proof. Let a player i ∈ P and a strategy si be given. For any i’s W-agent a ∈ Ai and
the corresponding local strategy si,a defined in Proposition 4.2, we build the AFRtoW-
strategy λa. First, we concentrate on the subset of histories Ha =

⋃
v∈G

Hv ⊂ H, where Hv

is defined in (4.6). The set Ha is the domain of the strategy λa we want to build. For
any configuration h ∈ Ha, there exists a unique v ∈ G such that h ∈ Hv (as any pair
of vertices v, v′ ∈ G is disjoint, then Ha =

⊔
v∈G

Hv). We denote this unique vertex for

each configuration h ∈ H as ia(h). Thus, ia : H → X i is defined and the composition
λa = ia ◦ si,a as well. As the local strategy si,a is constant for each move x ∈ a, then the
constructed strategy λa is constant for each configuration h ∈ Ha, thus, is Ia-measurable,
where the information π-field Ia is defined in (4.7).

This ends the proof.

We are leaving open the question of solvability for an AFRtoW-strategy. See §9.2.2 of
the Appendix for more details.

4.4 Conclusion

In this Chapter, we have shown that an AFR-model can be embedded into a causal W-
model with π-fields.

Here is a summary sketch of the embedding. We treat each information set of an
AFR-player as a so-called AFRtoW-agent, then build the corresponding action set and
information π-field thanks to the immediate predecessor mapping. The sample space of
the Nature is derived immediately out of the so-called Nature-rooted AFR-model, which
is a relaxation of the AFR-model in which Nature plays at the root once and for all.

The questions of causality and solvability of the constructed model are left open; two
conjectures are formulated in §9.2.1 and §9.2.2 of the Appendix respectively.
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Chapter 5

Classification of information
structures

5.1 Introduction

In this Chapter 5, we discuss classical information patterns in K-, AFR- and W-models.
We generalize definitions introduced by Witsenhausen in [38] and make conjectures on
their relations with the classical patterns from Game Theory, such as perfect recall and
memory of the past information.

5.2 Information structures in the K-model

The notion of perfect recall was introduced by Kuhn in [18] as “equivalent to the assertion
that each player is allowed by the rules of the game to remember everything he knew at
previous moves and all of his choices at those moves”.

This concept, expressed in the K-language – in terms of both vertices and edges – turns
out to be rather cumbersome and difficult to work with. It is expressed with a natural
order on the set of vertices V induced by the tree structure: vertex v precedes v′ (v > v′)
if there exists a path from v to v′. The root precedes any non-root vertex: v0 > v for any
non-root vertex v ∈ V \ {v0}.

The core idea of perfect recall is simple, namely, if a player has perfect recall, then
at each of his information sets he remembers what he knew and what he did in the past,
which is stated formally in the following way.

Definition 5.1. A player i ∈ P endowed with an information structure Ii is said to have
K-perfect recall if

∀G ∈ Ii , ∀v1, v2 ∈ G if ∃v′1 ∈ G′ ∈ Ii s.t. v′1 > v1 ,

then ∃v′2 ∈ G′ s.t. v′2 > v2 , ∃c ∈ Ci(G) s.t.

(v′1, v1)E ∩ Ev′1 ∈ c , (v′2, v2)E ∩ Ev′2 ∈ c ,

113
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where the choice c is eligible (see §2.2.2.4).

The Kuhn’s framework, besides formulating the notion of perfect recall in a cumbersome
way, does not really offer any other classification apart from the binary one – see Figure 5.1
– telling only if a player has or has not perfect recall.

Information patterns

PR ¬ PR ⊃ AM

Figure 5.1: K-classification of information patterns

The notion of perfect recall is especially useful for applications, say, it is a necessary
and sufficient condition for the Kuhn’s theorem to hold true (see, for instance, [3]).

There is a finer classification of imperfect recall in the K-model given by Bonanno in [7],
where the notion is decomposed into two independent properties: memory of past actions
and memory of past information, which coincides with the one given in Figure 5.2.

5.3 Information structures in AFR-model

As, in AFR-model, the information is ciphered inside the structure of choices, a possible
classification of the information structures can be expressed in terms of choices.

The following property proves to be equivalent to perfect recall of Kuhn (see Corollary
6.3 in [3] for details).

Definition 5.2. A player i ∈ P displays the choice trivial intersection property (C-TrIP
for short), if for any pair c, c′ of his choices in Ci, it holds that

if c ∩ c′ 6= ∅ then either c ⊂ c′ or c′ ⊂ c .

Before formulating an analogous property for information sets in the AFR-model, we
need a bit of preparations

Mapping an information set into a corresponding subset of plays is made by the mapping
W : 2V → 2W defined by

W(G) =
⋃
v∈G

v ⊂W , ∀G ⊂ V . (5.1)

The imageW(G) is called the image in plays of the subset G of vertices. As in the prequel,
for any player i ∈ P , the set of his informations sets is

P (Ci) =
{
P (c)

∣∣ c ∈ Ci
}
⊂ 2V .

Now, we take the image in plays of each information set yielding

W
(
P (Ci)

)
=
{
W
(
P (c)

) ∣∣ c ∈ Ci
}
⊂ 2W . (5.2)
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Definition 5.3. A player i ∈ P displays the information trivial intersection property (I-
TrIP), if for any pair W

(
P (c)

)
,W
(
P (c′)

)
of his information sets’ images in plays, it holds

that

if W
(
P (c)

)
∩W

(
P (c′)

)
6= ∅ then either W

(
P (c)

)
⊂ W

(
P (c′)

)
or W

(
P (c′)

)
⊂ W

(
P (c)

)
.

As it is shown in §6.4.2 of [3], C-TrIP implies I-TrIP. Thus, the AFR-classification –
see Figure 5.2 – is richer than the one of Kuhn.

Information patterns

C-TrIP no C-TrIP

I-TrIP no I-TrIP

Figure 5.2: AFR-classification of information patterns

This classification of information structures given in Figure (5.2) is equivalent to the
one of the AFR-model.

5.4 Information structures in the W-model

Using the W-model for information representation, Witsenhausen provided a typology
in [38]. Some elements of the typology concern a subset B of the agents A of a W-model
(station), whereas others concern the whole set A of agents (sequential and strictly classical
systems).

In this Section, we will generalize part of the typology — namely, station, sequential
and strictly classical systems — in two directions. On the one hand, we will provide new
definitions of sequential and strictly classical subsets of agents. On the other hand, we will
propose “localized” versions of the definitions of station, sequential and strictly classical
subsets of agents.

For the purpose of expliciting what we mean by “localization”, we recall the notion of
trace field.

Definition 5.4. For any field G over H and any (nonempty) subset H ⊂ H, we define the
trace field H ∩ G as the field over H given by

H ∩ G =
{
H ∩G

∣∣G ∈ G
}
⊂ 2H , (5.3)

that is, made of the traces on H of the elements of the field G.
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constant configuration
ordering ϕ : H→ Σ|A|

non-constant configuration
ordering ϕ : H→ Σ|A|

B = A
W-station
W-sequential
W-classical system

causality

B ( A W-perfect recall
W-information memory

Table 5.1: Extension of W-information patterns

Beware that H ∩ G is not a subfield of 2H (it does not contain H except when H = H),
but is a subfield of 2H .

We will need the following slight variation of the definition (2.33a) of configuration
orderings. For any subset B ⊂ A of agents, we denote by

ΣB =
{
% : {1, . . . , |B|} → B

∣∣ % is an injection
}

(5.4)

the set of (total) orderings of agents in B, that is, bijective mappings from {1, . . . , |B|}
to B.

5.4.1 Sequential systems and causality

In Witsenhausen’s formalism, a system is sequential [38] if there is a total ordering ρ ∈ Σ|A|

of agents A such that each agent is influenced at most by the previous agents, that is,

Iρ(1) ⊂ H(∅)

Iρ(2) ⊂ H‖ψ1ρ‖

. . .

Iρ(k) ⊂ H‖ψk−1ρ‖
(
k = 2, . . . , |A| − 1

)
. . .

Iκ? ⊂ H‖ψ|A|−1ρ‖ = H‖κ−‖ ,

where for any index k = 1, . . . , |A|, the corresponding field H‖ψk−1ρ‖ is as in (2.26c) applied
for the corresponding subset ‖ψk−1ρ‖ of agents.

A sequential system defined in such way is a particular case of causality as stated
in Definition 2.24, under the assumption of a constant configuration ordering ϕ : H →
Σ|A|. In Conjecture 5.5, we hypothesize the following six equivalent characterizations of
causality. Here, we reformulate the classical Definition 2.24 of causality given in §2.4.4.2,
for the subset Σϕ ⊂ Σ of orderings that are compatible with a given configuration ordering
ϕ : H→ Σ as defined in (2.35c), thus, incompatible orderings Σ \ Σϕ are eliminated from
consideration.

Conjecture 5.5. The following statements are equivalent.
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1. There exists (at least one) configuration-ordering ϕ from H towards Σ|A| (as in Def-
inition 2.23), with the property that(

∀κ ∈ Σϕ , ∀G ∈ Iκ?
)

Hϕ
κ ∩G ∈ H‖κ−‖ , (5.5)

where the field H‖κ−‖ is defined in Equation (2.36f), the “last” agent κ? is defined
in Equation (2.33i) and the subset Σϕ ⊂ Σ of orderings that are compatible with the
given configuration ordering ϕ : H→ Σ is as in (2.35c).

2. There exists a configuration-ordering ϕ : H→ Σ|A|, with the property that(
∀κ ∈ Σϕ

)
Hϕ
κ ∩ Iκ? ⊂ H‖κ−‖ , (5.6)

where the field H‖κ−‖ is defined in Equation (2.36f) and the “last” agent κ? is defined
in Equation (2.33i).

3. There exists a configuration-ordering ϕ : H→ Σ|A|, with the property that(
∀κ ∈ Σϕ

)
Hϕ
κ ∩ Iκ? ⊂ Hϕ

κ ∩H‖κ−‖ and Hϕ
κ ∈ H‖κ−‖ . (5.7)

4. There exists a configuration-ordering ϕ : H→ Σ|A|, with the property that(
∀k = 1, . . . , |A| , ∀ρ ∈ ϕ(H)

)
Hϕ
ψkρ
∩ Iρ(k) ⊂ Hϕ

ψkρ
∩H‖ψk−1ρ‖ and Hϕ

ψkρ
∈ H‖ψk−1ρ‖ ,

(5.8)

where for the empty ordering (∅) we set H(∅) = F ⊗⊗a∈A{∅,Ua}.

5. There exists a partition

H =
⊔
ρ∈Γ

Hρ , (5.9a)

where Γ ⊂ Σ|A| such that(
∀k = 1, . . . , |A| , ∀ρ ∈ Γ

)
Hρ ∩ Iρ(k) ⊂ Hρ ∩H‖ψk−1ρ‖ , (5.9b)

and (
∀κ ∈ ΣΓ

) ⋃
ρ∈↓κ∩Γ

Hρ ∈ H‖κ−‖ , (5.9c)

where the set ΣΓ of orderings is given by

ΣΓ =
⊔

k∈{1,...,|A|}
ψk(Γ) ⊂ Σ . (5.9d)
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6. There exists a partition like in (5.9a) with the property that, for any total ordering
ρ ∈ Γ, the set A of agents is a sequential system restricted to Hρ, for the total
ordering ρ, and that (5.9c) holds true.

We finish by giving the following definition of the so-called W-sequential system that
generalizes causality (originally defined for the whole set A of agents) to a case of a set
B ⊂ A of agents.

Definition 5.6. A subset B ⊂ A of agents is said to be a W-sequential system if, for any
ordering κ ∈ Σ, such that, κ? ∈ B,(

∀κ ∈ Σ , κ? ∈ B
)

Hϕ
κ ∩ Iκ? ⊂ H‖κ−‖∩B , (5.10)

where the subset Hϕ
κ ⊂ H of configurations has been defined in (2.34), κ? in (2.33i), κ−

in (2.33j), ‖κ−‖ in (2.33h), and where the subfield H‖κ−‖∩B ⊂ H is as in (2.26c) applied
for ‖κ−‖ ∩ B.

5.4.2 Station and W-information memory

In Witsenhausen’s formalism, a station [37] is a subset of agents such that the set of
information fields of these agents is totally ordered under inclusion (i.e., nested). In other
words, a subset B of agents in A is a station iff there exists an ordering % ∈ ΣB of B such
that

I%(1) ⊂ · · · ⊂ I%(k) ⊂ I%(k+1) ⊂ · · · ⊂ I%(|B|) . (5.11)

Here, we propose a more general definition, namely, W-information memory which is
the main definition of this §5.4.2. W-information memory is conjectured to be equivalent
to an analogue of the I-TrIP of AFR in Conjecture 5.8.

Definition 5.7. Let a causal W-model with the configuration-ordering ϕ : H → Σ|A| be
given as in Definition 2.24. A subset B ⊂ A of agents is said to have W-information
memory if, for any ordering κ ∈ Σ, such that, κ? ∈ B,(

∀κ ∈ Σ , κ? ∈ B
)

Hϕ
κ ∩ I‖κ−‖∩B ⊂ Iκ? , (5.12a)

where the subset Hϕ
κ ⊂ H of configurations has been defined in (2.34), κ? in (2.33i), κ−

in (2.33j), ‖κ−‖ in (2.33h), and where

I‖κ−‖∩B =
∨

a∈‖κ−‖
a∈B

Ia . (5.12b)

The station of Witsenhausen is a particular case of Definition 5.7 for a constant con-
figuration ordering ϕ : H→ Σ|A| and B = A.

We finish by giving the following conjectured equivalence between W-information mem-
ory and I-TrIP.
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Conjecture 5.8. Let a W-model as in Definition 2.20 be given with a causal configuration
ordering ϕ : H→ Σ|A| as in (2.37). Then, for any set B ⊂ A of agents, the corresponding
collection ΞB of information sets given by

ΞB =
{
G ⊂ H

∣∣G is an atom of Ia , a ∈ B
}
, (5.13)

satisfies TrIP, (that is, for any two G,G′ ∈ ΞB, if G ∩ G′ 6= ∅, then G ⊂ G′ or G′ ⊂ G)
iff the set B of agents has W-information memory as in Definition 5.7.

5.4.3 Strictly classical system and W-perfect recall

Definition 5.9. A system is called classical if it is sequential and the set A of agents forms
a station.

Hence, in a classical system, there exists an ordering such that any agent is influenced
at most by the previous agents and knows what they know.

Here, following [38], we introduce the notion of strictly classical system.

Definition 5.10 ( [38]). A system is called strictly classical if there exists an ordering
(a1, . . . , a|A|) of agents A such that

Iak

∨
Uak ⊂ Iak+1

⊂ H{a1,...,ak} , ∀k = 1, . . . , |A| − 1 , (5.14)

where, for any agent a ∈ A, the choice subfield Ca ⊂ H is given by

Ca = Ia
∨

Ua (5.15)

Hence, in a strictly classical system, there exists an ordering such that any agent is
influenced at most by the previous agents, and knows what they know and the previous
agent’s decision.

The following Lemma gives a closed form expression for the information structure of a
strictly classical system.

Lemma 5.11. A system is strictly classical iff there exists an ordering (a1, . . . , a|A|) and
a sequence {Fak}k∈{1,...,|A|} of subfields of the sample field F such that

Fak ⊂ Fak+1
and Iak+1

= Fak+1
⊗

k⊗
l=1

Ual ⊗
|A|⊗

m=k+1

{∅,Uam} , ∀k = 1, . . . , |A| − 1 .

Proof. We proceed by induction. Apply (5.14) for k = 1:

Ia1

∨
U{a1} ⊂ Ia2 ⊂ F ⊗ Ua1 ⊗

|A|⊗
m=2

{∅,Uam} . (5.16)
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As agent a1 is the first to act, he knows at most the move of Nature, that is, there exists
a subfield Fa1 ⊂ F such that

Ia1 = Fa1 ⊗
|A|⊗
m=1

{∅,Uam} ,

which, combined with (5.16), implies that

Ia1

∨
U{a1} = Fa1 ⊗ Ua1 ⊗

|A|⊗
m=2

{∅,Uam} ⊂ Ia2 ⊂ F ⊗ Ua1 ⊗
|A|⊗
m=2

{∅,Uam} ,

and, thus, for agent a2 there exists a subfield Fa1 ⊂ Fa2 ⊂ F such that

Ia2 = Fa2 ⊗ Ua1 ⊗
|A|⊗
m=2

{∅,Uam} .

Assume now that the statement holds true for all agents a1, . . . , ak and there exists a
subfield Fak−1

⊂ Fak such that

Iak = Fak ⊗
k−1⊗
l=1

Ual ⊗
|A|⊗
m=k

{∅,Uam} ,

which, inserted into (5.14), yields

Iak

∨
U{ak} = Fak ⊗

k⊗
l=1

Ual ⊗
|A|⊗

m=k+1

{∅,Uam} ⊂ Iak+1
⊂ F ⊗

k⊗
l=1

Ual ⊗
|A|⊗

m=k+1

{∅,Uam}

Thus, for agent ak+1, there exists a subfield Fak ⊂ Fak+1
⊂ F such that

Iak+1
= Fak+1

⊗
k⊗
l=1

Ual ⊗
|A|⊗

m=k+1

{∅,Uam} .

This finishes the proof.

The following example motivates Definition 5.12. Consider the game with two agents a
and b as in §2.4.5.3 with the only difference that the order of agents depends on the move
of Nature. Information structure is given by

Ia =
{
∅, {ω+} ⊗ {∅,Ua} ⊗ {∅,Ub}, {ω−} ⊗ {∅,Ua} ⊗ {u+

b }, {ω−} ⊗ {∅,Ua} ⊗ {u−b },H
}
,

(5.17)

Ib =
{
∅, {ω−} ⊗ {∅,Ua} ⊗ {∅,Ub}, {ω+} ⊗ {u+

a } ⊗ {∅,Ub}, {ω+} ⊗ {u−a } ⊗ {∅,Ub},H
}
.
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The agents’ choice fields are given by

Ca = Ia
∨

Ua =
{
∅, {ω+} ⊗ Ua ⊗ {∅,Ub}, {ω−} ⊗ Ua ⊗ Ub,H

}
,

Cb = Ib
∨

Ub =
{
∅, {ω+} ⊗ Ua ⊗ Ub, {ω−} ⊗ {∅,Ua} ⊗ Ua,H

}
.

If we build the tree of this game as in §2.2.5.3 (see Figure 5.3), we notice that the player
represented by agents a and b has perfect recall in the sense of Definition 5.1. But, as we

Nature

ω+ ω−

agent a

u+
a u−

a

agent b

u+
b u−

bagent b

u+
b u−

b

agent a

u+
a u−

a

agent a

u+
a u−

a

agent b

u+
b u−

b

Figure 5.3: Perfect recall with non-nested agents’ information fields

can see, neither the fields Ia and Cb are nested, nor Ib and Ca. Despite of this fact, there
is still “local” nestedness. Consider the causal ordering ϕ : H→ Σ

ϕ(h) =

{
(ab) , if h ∈ H+ = {ω+} × Ua × Ub
(ba) , if h ∈ H− = {ω−} × Ua × Ub

(5.18)

induced by the information structure (5.17). The local nestedness holds when the fields
are projected on either of the two elements of the partition H = H+ tH−:

Ca ∩H+ ⊂ Ib ∩H+ , Cb ∩H− ⊂ Ia ∩H− .
In the following definition, we propose a generalization of Definition 5.10 in two direc-

tions: formulating it for a subset B ⊂ A of agents and allowing for the property to hold
locally.

Definition 5.12. We consider a causal W-model with the configuration-ordering ϕ : H→
Σ|A| as in Definition 2.24.

We say that a subset B ⊂ A of agents enjoys W-perfect recall if

Hϕ
κ ∩ C‖κ−‖∩B ⊂ Iκ? , ∀κ ∈ Σ , (5.19)

where the subset Hϕ
κ ⊂ H of configurations has been defined in (2.34), κ? in (2.33i), κ−

in (2.33j), ‖κ−‖ in (2.33h), and where

C‖κ−‖∩B =
∨

a∈‖κ−‖
a∈B

Ca , (5.20)

with the choice subfield Ca ⊂ H given by (5.15).
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We finish by giving the following conjectured equivalence between W-perfect recall and
C-TrIP.

Conjecture 5.13. Let a W-model as in Definition 2.20 be given with a causal configuration
ordering ϕ : H→ Σ|A| as in (2.37). Then, for any set B ⊂ A of agents, the corresponding
collection CB of information sets given by

CB =
{
G ⊂ H

∣∣G is an atom of Ca , a ∈ B
}
, (5.21)

satisfies TrIP, (that is, for any two c, c′ ∈ CB, if c ∩ c′ 6= ∅, then c ⊂ c′ or c′ ⊂ c) iff the
set B of agents enjoys W-perfect recall as in Definition 5.12.

5.4.4 Noncausal systems

One of the examples of a noncausal system is a so-called deadlock, where two agents
A = {a, b} have information fields given by:

Ia = {∅,Ua} ⊗ Ub ⊗ {∅,Ω} , Ib = Ua ⊗ {∅,Ub} ⊗ {∅,Ω} .

In noncausal systems, the decision process may have no solution, one solution, or multiple
solutions, which can be already seen in the simplest deterministic case with two agents a
and b having two-element action sets each Ua = {u+

a , u
−
a } and Ub = {u+

b , u
−
b }, thus, the

information fields are (see Figure 5.4)

Ia = {∅,Ua} ⊗ Ub , Ib = Ua ⊗ {∅,Ub} .

(u−a , u
−
b ) (u−a , u

+
b )

(u+
a , u

+
b )(u+

a , u
−
b )

Ia

•

••

•
(u−a , u

−
b ) (u−a , u

+
b )

(u+
a , u

+
b )(u+

a , u
−
b )

Ib

• •

••

Figure 5.4: Deadlock: information partitions of the agents a and b

For each agent, the choice field in (5.15) is given by the complete configuration field

Ca = Ia
∨

Ua = Ua ⊗ Ub = Cb .

The measurability condition imposed on the agents’ strategies implies that each agent
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(u−a , u
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b ) (u−a , u
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b )

(u+
a , u

+
b )(u+

a , u
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b )

Ca

•

••

•
(u−a , u

−
b ) (u−a , u

+
b )

(u+
a , u

+
b )(u+

a , u
−
b )

Cb

• •

••

Figure 5.5: Deadlock: choice partitions of the agents a and b

must choose one choice of each colour (see Figure 5.5). Thus, one can easily find the
strategies to guaranty two, one and zero solutions.

In his paper [37], Witsenhausen gives the following example of a noncausal solvable
system. Let the set of three agents A = {a, b, c} be equipped with the following action sets

Ua = Ub = Uc = {0, 1} ,

and there is no Nature. In this deterministic setting, the set H = {0, 1}3 of configurations
has 8 elements. The agents are equipped with the following information fields

Ia = σ(ub(1− uc)) =
{
∅,
{

(ua, ub, uc)
∣∣ub(1− uc) = 1

}
,
{

(ua, ub, uc)
∣∣ub(1− uc) = 0

}
,H
}
,

Ib = σ(uc(1− ua)) =
{
∅,
{

(ua, ub, uc)
∣∣uc(1− ua) = 1

}
,
{

(ua, ub, uc)
∣∣uc(1− ua) = 0

}
,H
}
,

Ic = σ(ua(1− ub)) =
{
∅,
{

(ua, ub, uc)
∣∣ua(1− ub) = 1

}
,
{

(ua, ub, uc)
∣∣ua(1− ub) = 0

}
,H
}
.
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Figure 5.6: Noncausal solvable system: information partitions of the three agents.

The W-strategies of the agents have the form

λa(ua, ub, uc) = λ̃a(ub(1− uc)) ,
λb(ua, ub, uc) = λ̃b(uc(1− ua)) ,
λc(ua, ub, uc) = λ̃c(ua(1− ub)) ,
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where λ̃a, λ̃b, λ̃c : {0, 1} → {0, 1}. Each agent a is endowed with 4 adapted strategies

λ̃Id,Id
a (ub, uc) =

{
0, if ub(1− uc) = 0

1, if ub(1− uc) = 1
λ̃Id,1−Id
a (ub, uc) =

{
0, if ub(1− uc) = 0

0, if ub(1− uc) = 1

λ̃1−Id,Id
a (ub, uc) =

{
1, if ub(1− uc) = 0

1, if ub(1− uc) = 1
λ̃1−Id,1−Id
a (ub, uc) =

{
1, if ub(1− uc) = 0

0, if ub(1− uc) = 1 .

Both agents b and c have four W-strategies each, which yields 43 = 64 different strategies
profiles λ = (λa, λb, λc).
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Figure 5.7: Noncausal solvable system: choice partitions of the three agents.

5.5 Conclusion

In this Chapter, we have presented classical information patterns from Game Theory and
gave extensions of the information patterns introduced by Witsenhausen in [38] generalizing
them in two directions: first, we have formulated these definitions for any subset of agents,
second, the definitions allow for non-constant configuration orderings.

We conjectured that the so-called W-information memory (respectively, W-perfect re-
call) is equivalent to the so-called I-TrIP (respectively, C-TrIP) introduced in [3].
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Chapter 6

W-games

6.1 Introduction

None of the three models seen in Chapter 2 is complete until we define individual players,
the players’ preferences (payoffs) and attitudes towards Nature (beliefs). In this Chapter 6,
we define W-games adding to the Definition 2.20 of the W-model, the partition of the set A
of agents into sets of representative agents of the players, and the collection of players’
preferences. Then, we discuss a special case of payoffs and beliefs. Also, we introduce a
number of essential concepts, which will be used later in Chapter 7 to define a subclass
of the Principal-Agent game and in Chapter 8 when speaking of the future avenues of
research. To this end,

• in Section 6.2 we give two definitions of the W-game and formulate a proper notion
of the Nash equilibrium for either of the two W-games,

• in Section 6.3, we define the concept of subsystem and establish a useful property of
co-cycle, a particular case of which is used later in Chapter 7.

6.2 Nash equilibrium in the W-game

In this Section 6.2, we give a definition of a W-game, which is a W-model as in Defini-
tion 2.20 with players and players’ preferences on the set of random variables as defined
in §6.2.1. Then, in §6.2.2, we define a W-game for the case of payoffs and beliefs. Both
definitions are followed by a corresponding notion of a Nash equilibrium.

Randomized strategies are easily defined over finite sets of strategies. Although, when
the sets of strategies are infinite, some delicate questions arise (see §5.2.1 in [3] or [4, 5]
for more details). Thus, we do not discuss the notions of mixed and behavioral strategies,
leaving them among the open questions.

127
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6.2.1 The general case with preferences over random variables

First, we define a W-game.

Definition 6.1. A W-game
((

(Ω,F), {Ua,Ua, Ia}a∈A
)
, {Ai}i∈P , {-i}i∈P

)
, with players’

preferences, is made of

• a W-model
(
(Ω,F), {Ua,Ua, Ia}a∈A

)
as in Definition 2.20, which is solvable as in

Definition 2.22,

• a partition A =
⊔
i∈P Ai of the W-agents, where each atom Ai is made of the execu-

tives of the so-called individual player i ∈ P,

• for each player i ∈ P, a preference relation -i on the set of measurable mappings
H : Ω→ H from (Ω,F) to the configuration space (H,H) as in (2.24a).

Second, we define the concept of Nash equilibrium for a solvable W-game with players’
preferences over random variables.

Definition 6.2. A pure strategy profile λ∗ = (λ∗i )i∈P ∈
∏
i∈P

ΛAi is a (Bayesian) Nash

Equilibrium if (
∀ i ∈ P , ∀ λi ∈ Λi

)
S(λi,λ∗−i)

-i S(λ∗i ,λ
∗
−i)

,

where, for any strategy profile λ ∈ ΛA, Sλ : Ω → H is a measurable solution map as
in (2.32d).

6.2.2 The special case of payoffs and beliefs

The preference relation -i in Definition 6.1 can be obtained from the numerical repre-
sentation EPi [ji ◦ H], for any measurable mapping H : Ω → H, any measurable function
ji : (H,H) → [0,+∞], and any probability distribution Pi : F → [0, 1] over the states
of Nature (Ω,F). This observation allows us to formulate the second definition of the
W-game.

Definition 6.3. A W-game
((

(Ω,F), {Ua,Ua, Ia}a∈A
)
, {Ai}i∈P , {ji}i∈P , {Pi}i∈P

)
, with

players’ criteria and beliefs, is made of

1. a W-model
(
(Ω,F), {Ua,Ua, Ia}a∈A

)
as in Definition 2.20, which is solvable as in

Definition 2.22,

2. a partition A =
⊔
i∈P Ai of the W-agents, where each atom Ai is made of the execu-

tives of the so-called individual player i ∈ P,

3. for each player i ∈ P,

• a criterion ji, which is a measurable function ji : (H,H)→ [0,+∞],
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• a belief Pi, which is a probability distribution Pi : F → [0, 1] over the states of
Nature (Ω,F).

As the W-model is solvable by assumption, for any admissible strategy λ ∈ ΛA, there is
a measurable solution map Sλ : Ω→ H. A composition of the solution map with a player
i’s criterion provides a random variable

ji ◦ Sλ : Ω→ R ,

which can be integrated w.r.t. the player’s belief Pi, yielding

EPi [ji ◦ Sλ] ∈ R ,

where EPi denotes the mathematical expectation w.r.t. the probability Pi on (Ω,F).
With all this in hand, we can equip every player i ∈ P with

• a strategy set made of pure strategies ΛAi =
∏

a∈Ai Λa,

• the player’s payoff from W-strategies to reals∏
i∈P

ΛAi 3 λ 7→ EPi [ji ◦ Sλ] . (6.1)

Finally, we define the concept of Nash equilibrium for a W-game with players’ criteria
and beliefs.

Definition 6.4. A pure strategy profile λ∗ = (λ∗i )i∈P ∈
∏
i∈P

ΛAi is a (Bayesian) Nash

Equilibrium if, for all players i ∈ P,

EPi [ji ◦ S(λ∗i ,λ
∗
−i)

] ≥ EPi [ji ◦ S(λi,λ∗−i)
] , ∀λi ∈ ΛAi . (6.2)

6.3 Subsystems in the W-model

In what follows, we will make the assumption that all the σ-fields contain the singletons.
The following definition is due to Witsenhausen (1975).

Definition 6.5. A nonempty subset of agents B ⊂ A is a subsystem if the information
field

IB =
∨
b∈B

Ib

at most depends on the decisions of the agents in B, that is,

IB ⊂ F ⊗ UB ⊗ {∅,U−B} = F ⊗ UB ⊗
⊗
c∈−B
{∅,Uc} ,

where −B denotes the complementary of the subset B as in (2.25).
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Thus, the information received by agents in the subsystem B depends upon states of
Nature and decisions of members of B only.

The next proposition shows that subsystems make it possible to decompose solution
maps.

Proposition 6.6. Let a W-model as in Definition 2.20 be given and a subset B ⊂ A of
agents form a subsystem as in Definition 6.5. Then, any W-strategy profile λ ∈ ΛA, can
be factorized as λ = (λB, λ−B) where

λB : Ω× UB × U−B → UB , λ−B : Ω× UB × U−B → U−B , (6.3a)

and there exists a unique reduced W-strategy profile λB =
{
λa
}
a∈B,where the corresponding

reduced strategy λa : Ω× UB → Ua, of any agent a ∈ B, is such that(
∀a ∈ B , ∀(ω, uB, u−B) ∈ Ω× UB × U−B

)
λa(ω, uB, uB) = λa(ω, uB) . (6.3b)

Moreover, if the W-model is solvable, for any profile of W-strategies λ = (λB, λ−B)
decomposed as in (6.3a), with solution map

S(λB,λ−B) : (Ω,F)→ (Ω× UB × U−B,F ⊗ UB ⊗ U−B) ,

there exist two reduced solution maps,

SλB : (Ω,F)→ (Ω×UB,F⊗UB) , Sλ−B : (Ω×UB,F⊗UB)→ (Ω×UB×U−B,F⊗UB⊗U−B) ,

which satisfy the following co-cycle property

S(λB,λ−B) = Sλ−B ◦ SλB . (6.4)

We do not give a proof of this Proposition, instead, we discuss of a particular case in
Proposition 7.4, to be found in Section 7.3, of a so-called Enough-informed Agent W-game,
where the Principal player is represented by one W-agent and forms a subsystem.

6.4 Conclusion

In this Chapter 6, we have formulated the notions of W-game, Nash equilibrium and
subsystems. Definitions of mixed and behavioral strategies in the W-model are left as
open questions. Another open question is to clarify the notion of subgames in the W-
model and connect it to the notion of subsystems. One this is done, we expect the notions
of subgame perfect equilibrium and backward induction to be formulated in the W-model.



Chapter 7

Principal-Agent models

7.1 Introduction

A branch of Economics studies so-called Principal-Agent models where there are two
decision-makers — that are both players, as in Game Theory, and agents, as in the Wit-
senhausen Intrinsic Model. There are two main strands in the existing literature about the
Principal-Agent models: the first is devoted to finding Nash equilibria in Principal-Agent
games (see, for example, [20]) and the second – establishing conditions under which an
equilibrium exists (by whether imposing restrictions on the primitives of the model, for
example, see [8,11,14,16], or imposing restrictions on the allowed mechanisms, for example,
see [6,13,24,25,28] with the most general framework given in [15]). Existence conditions are
outside the scope of the Thesis, in this Chapter 7, we concentrate on the conditions under
which a solution of a Principal-Agent game is yielded as a result of backward induction
assuming that it exists. For this purpose, we will stick to the following roadmap.

• In Section 7.2, we define the Principal-Agent W-game and illustrate it on classic
examples from Economics.

• In Section 7.3, we introduce the key concept of the so-called enough informed Agent,
give essential background on integrands to prove the two main results of this Chap-
ter 7.

In the rest of this Chapter 7, in order to distinguish a generic W-agent from the specific
Agent player in Principal-Agent models, we will employ the upper case for the latter.

7.2 Nash equilibrium in the Principal-Agent W-game

In this Section 7.2 we introduce the main objects, namely,

• in §7.2.1, we introduce the so-called Principal-Agent W-game, which is a particular
case of the W-model as defined in §2.4.2 and define the concept of Nash equilibrium
for a Principal-Agent W-game,
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• in §7.2.2, we illustrate different information structures of the Principal-Agent W-
model on classic examples from Economics.

7.2.1 Definition of the Principal-Agent W-game

In the W-model, we will represent a Principal-Agent model by the following two decision-
makers (or two W-agents)

• the Principal Pr (leader), who makes decisions uPr ∈ UPr, where the set UPr of
decisions is equipped with a σ-field UPr,

• the Agent Ag (follower), who makes decisions uAg ∈ UAg, where the set UAg of decisions
is equipped with a σ-field UAg,

and by

• Nature that selects ω ∈ Ω, where Ω is equipped with a σ-field F.

Thus, by (2.24a), we obtain the following configuration space H and configuration field H

H = Ω×
∏

a∈{Pr,Ag}
Ua , (7.1a)

H = F ⊗
⊗

a∈{Pr,Ag}
Ua . (7.1b)

Following the Definition 6.3 of a W-game, we define a Principal-Agent W-game as one
with two W-agents in the set A = {Pr, Ag}, and two players in the set P = {{Pr}, {Ag}}
made of the two atoms {Pr} and {Ag} of the complete partition of A. The two players
each have a belief, P{Pr} and P{Ag} over Nature, and a criterion, j{Pr} and j{Ag}, that they
aim at maximizing.

Definition 7.1. A Principal-Agent W-game is a collection(
(Ω,F), {Ua,Ua, Ia}a∈{Pr,Ag} ,A = {Pr} t {Ag},

{
ji
}
i∈{{Pr},{Ag}} ,

{
Pi
}
i∈{{Pr},{Ag}}

)
, (7.2)

which is made of

• a W-model
(

(Ω,F), {Ua,Ua, Ia}a∈{Pr,Ag}
)

, as in Definition 2.20, supposed to be solv-

able (hence that displays absence of self-information),

• the partition A = {Pr} t {Ag} of the W-agents into two players, {Pr} and {Ag},

• beliefs P{Pr} and P{Ag}, that are probability distributions over (Ω,F),

• criteria j{Pr} and j{Ag}, that are measurable functions (H,H)→ R, where the config-
uration space H equipped with the σ-field H are given in (7.1).
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The set of W-strategies for a Principal-Agent W-game is made of the two sets of W-

strategies, one per agent, of the underlying W-model
(

(Ω,F), {Ua,Ua, Ia}a∈{Pr,Ag}
)

, that

is,

ΛPr =
{
λPr : (H,H)→ (UPr,UPr)

∣∣λ−1
Pr (UPr) ⊂ IPr

}
, (7.3a)

ΛAg =
{
λAg : (H,H)→ (UAg,UAg)

∣∣λ−1
Ag (UAg) ⊂ IAg

}
. (7.3b)

By the solvability assumption, for any pure strategy profile λ = (λa)a∈{Pr,Ag} ∈
∏

a∈{Pr,Ag} Λa,

there exists a measurable solution mapping Sλ : (Ω,F)→ (H,H) by (2.32c), that is:

Sλ : (Ω,F)→ (H,H)

∀λ = {λa}a∈{Pr,Ag} ∈
∏

a∈{Pr,Ag}
Λa , ∀

(
ω, {ua}a∈{Pr,Ag}

)
∈ H ,

(
ω, {ua}a∈{Pr,Ag}

)
= Sλ(ω) ⇐⇒

{
uPr = λPr

(
ω, {ua}a∈{Pr,Ag}

)
,

uAg = λAg
(
ω, {ua}a∈{Pr,Ag}

)
.

(7.4)

Now we are ready to specify the concept of Nash equilibrium for a Principal-Agent
W-game.

Definition 7.2. A (pure) W-strategy profile λ? = {λ?a}a∈{Pr,Ag} ∈
∏

a∈{Pr,Ag} Λa is a Nash
equilibrium for the Principal-Agent game if and only if

EP{Pr}
[
j{Pr} ◦ S(λ?Pr,λ

?
Ag)

]
≥ EP{Pr}

[
j{Pr} ◦ S(λPr,λ?Ag)

]
, ∀λPr ∈ ΛPr , (7.5a)

EP{Ag}
[
j{Ag} ◦ S(λ?Pr,λ

?
Ag)

]
≥ EP{Ag}

[
j{Ag} ◦ S(λ?Pr,λAg)

]
, ∀λAg ∈ ΛAg . (7.5b)

7.2.2 Examples

Here below, we emphasize the information structure of Principal-Agent economic models
in the Witsenhausen framework.

7.2.2.1 Stackelberg leadership model

In the Stackelberg leadership model of game theory, the leader Pr observes at most (partly)
the state of Nature, which we model as

IPr ⊂ {∅,UAg}︸ ︷︷ ︸
Pr does not know

Ag’s action

⊗{∅,UPr} ⊗ F , (7.6a)

whereas the follower Ag may partly observe the action of the leader Pr, represented by

IAg ⊂ {∅,UAg} ⊗ UPr ⊗ F . (7.6b)
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As a consequence, the system is sequential with the Principal Pr as first W-agent (leader)
and the Agent Ag as second W-agent (follower).

As we will see in §7.3.1, the Stackelberg leadership model belongs to the class of so-called
enough informed Agent Principal-Agent W-games.

7.2.2.2 Hidden type and signalling

The Agent Ag knows the state of nature (her type), that is,

{∅,UAg} ⊗ {∅,UPr} ⊗ F︸︷︷︸
known inner type

⊂ IAg , (7.7a)

but the Principal Pr does not know the agent type, that is,

IPr ⊂ UAg ⊗ {∅,UPr} ⊗ {∅,Ω}︸ ︷︷ ︸
unknown Ag type

. (7.7b)

This formalism covers the market for lemons by Akerlof [1] and the costly signalling ex-
amples (peacock’s tail and diplomas on the job market by Spence [32]).

In the case where IAg = {∅,UAg} ⊗ {∅,UPr} ⊗ F, the system is sequential with the
Principal Pr as first W-agent (leader) and the Agent Ag as second W-agent (follower).

7.2.2.3 Hidden action

An insurance company (the Principal Pr) cannot observe the efforts of the insured (the
Agent Ag) to avoid risky behaviour. The firm faces the hazard that insured persons behave
“immorally” (playing with matches at home). Moral hazard or hidden action occurs when
the decisions of the Agent Ag are hidden to the Principal Pr, namely,

IPr ⊂ {∅,UAg}︸ ︷︷ ︸
hidden action

⊗{∅,UPr} ⊗ F . (7.8)

In case of moral hazard, the system is sequential with the Principal Pr as first W-agent,
(which does not preclude to choose the Agent Ag as first W-agent in some special cases, as
in a static team situation)

7.3 Enough informed Agent W-games

We now focus on a restricted class of Principal-Agent W-games and formulate conditions
under which a Nash equilibrium of a Principal-Agent game can be found as a result of
backward induction. To this end,

• in §7.3.1, we define the restricted class of the so-called Enough informed Agent W-
games,
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• in §7.3.2, we introduce technicalities, namely, lower semicontinuous integrands, the
conditional expectation and measurable selections of lower semicontinuous integrands,

• in §7.3.3 we state and prove the main results of this Chapter 7, namely, Proposi-
tion 7.13 and Theorem 7.14.

7.3.1 Definition of Enough informed Agent W-games

First, we define the restricted class of the so-called Enough informed Agent W-games,
which is extensively used in the sequel.

Enough informed Agent W-games.

Definition 7.3. We call Enough informed Agent W-game a collection (7.2) which is made
of

1. a W-model
(

(Ω,F), {Ua,Ua, Ia}a∈{Pr,Ag}
)

, as in Definition 2.20,

(a) such that all the σ-fields F and {Ua, Ia}a∈{Pr,Ag} contain the singletons,

(b) with the following information structure:

• the Principal knows at most the state of Nature, that is,

IPr ⊂ F ⊗ {∅,UPr} ⊗ {∅,UAg} , (7.9a)

• the Agent knows at least what the Principal knows and what the Principal
does, that is,

IPr
∨

UPr ⊂ IAg , (7.9b)

where UPr is a shorthand for {∅,Ω} ⊗ UPr ⊗ {∅,UAg},

2. the partition A = {Pr} t {Ag} of the W-agents into two players,

3. beliefs P{Pr} and P{Ag}, that are probability distributions over (Ω,F),

4. criteria j{Pr} and j{Ag} that are functions Ω× UPr × UAg → R.

By the information structure in Item 1b of Definition 7.3, the Principal plays first
by (7.9a), followed by the Agent player by (7.9b). This is write the configuration space H
and configuration field H in (7.1) under the form

H = Ω×
∏

a∈{Pr,Ag}
Ua = Ω× UPr × UAg ,

H = F ⊗
⊗

a∈{Pr,Ag}
Ua = F ⊗ UPr ⊗ UAg .
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In these two latter expressions, there is an abuse of notation in the sense that
∏

a∈{Pr,Ag}Ua
is identified with UPr × UAg, and the same for

⊗
a∈{Pr,Ag}Ua identified with UPr ⊗ UAg, to

stress the fact that the Principal plays before the Agent.

Proposition 7.4. An Enough informed Agent W-game is a Principal-Agent W-game, as
in Definition 7.1. In particular, there exist

1. reduced information fields IPr in (7.15a) and IAg in (7.16a), such that

IPr ⊂ F , IPr = IPr ⊗ {∅,UPr} ⊗ {∅,UAg} , (7.10a)

IAg ⊂ F ⊗ UPr , IAg = IAg ⊗ {∅,UAg} , (7.10b)

and that (
IPr ⊗ {∅,UPr}

)∨(
{∅,Ω} ⊗ UPr

)
⊂ IAg , (7.10c)

2. reduced W-strategy sets in (7.15c) and in (7.16c)

ΛPr =
{
µPr : (Ω,F)→ (UPr,UPr)

∣∣ (µPr)−1
(UPr) ⊂ IPr

}
, (7.11a)

ΛAg =
{
µAg :

(
(Ω× UPr), (F ⊗ UPr)

)
→ (UAg,UAg)

∣∣ (µAg)−1
(UAg) ⊂ IAg

}
, (7.11b)

3. reduction mappings in (7.15b) and in (7.16b), that are bijections

λPr ∈ ΛPr 7→ λPr ∈ ΛPr (7.12a)

λAg ∈ ΛAg 7→ λAg ∈ ΛAg (7.12b)

4. reduced solution maps in (7.15f) and in (7.16f), that are measurable mappings

SµPr : (Ω,F)→ (Ω× UPr,F ⊗ UPr)

ω 7→
(
ω, µPr(ω)

)
, ∀µPr ∈ ΛPr , (7.13a)

SµAg : (Ω× UPr,F ⊗ UPr)→ (Ω× UPr × UAg,F ⊗ UPr ⊗ UAg)

(ω, uPr) 7→
(
ω, uPr, µAg(ω, uPr)

)
, ∀µAg ∈ ΛAg , (7.13b)

such that the W-model in Definition 7.3 is solvable, with measurable solution map

S(λPr,λAg) : (Ω,F)→ (Ω× UPr × UAg,F ⊗ UPr ⊗ UAg) , (7.14a)

given, for any W-strategy profile λ = (λPr, λAg) ∈ ΛPr × ΛAg, by

S(λPr,λAg) = SλAg ◦ SλPr . (7.14b)

The proof of the Proposition is broken into a series of steps to be found here below.
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Reduced subfields, W-strategies and solutions map for the Principal Pr. We
define the reduced information field of the Principal Pr by

IPr =
{
G ∈ F

∣∣G⊗ {∅,UPr} ⊗ {∅,UAg} ∈ IPr
}
⊂ F . (7.15a)

Now, because IPr ⊂ F ⊗ {∅,UPr} ⊗ {∅,UAg} by (7.9a), we immediately obtain the equal-

ity (7.10a), namely IPr = IPr ⊗ {∅,UPr} ⊗ {∅,UAg}.
By (7.3a) and (7.9a), and because all the σ-fields F and {Ua, Ia}a∈{Pr,Ag} contain the

singletons by Item 1a in Definition 7.3, with any W-strategy λPr ∈ ΛPr for the Principal Pr,

we can associate a mapping, the reduced W-strategy λPr (of the Principal Pr), by

λPr : (Ω,F)→ (UPr,UPr) such that


λPr(ω) = λPr(ω, uPr, uAg) ,

∀(ω, uPr, uAg) ∈ Ω× UPr × UAg ,(
λPr
)−1

(UPr) ⊂ IPr .

(7.15b)

Indeed, if we had λPr(ω, uPr, uAg) 6= λPr(ω, u
′
Pr, u

′
Ag), we would have (ω, uPr, uAg) ∈ G =

λ−1
Pr

({
λPr(ω, uPr, uAg)

})
and (ω, u′Pr, u

′
Ag) ∈ G′ = λ−1

Pr

({
λPr(ω, u

′
Pr, u

′
Ag)
})

, with G∩G′ = ∅.
Now, since λPr ∈ ΛPr, the mapping λPr is IPr-measurable, so that G ∈ IPr and G′ ∈ IPr,
because by assumption in Item 1a in Definition 7.3, the σ-field IPr contain the singletons.
But since G ∈ IPr ⊂ F⊗{∅,UPr}⊗{∅,UAg}, G is a cylinder such that (ω, u′′Pr, u

′′
Ag) ∈ G, for

all (u′′Pr, u
′′
Ag). In particular, we get that (ω, u′Pr, u

′
Ag) ∈ G, and we arrive at a contradiction

because (ω, u′Pr, u
′
Ag) ∈ G′ and G ∩G′ = ∅ by definition of G and G′.

If we define the reduced W-strategy set (of the Principal Pr) by

ΛPr =
{
µPr : (Ω,F)→ (UPr,UPr)

∣∣ (µPr)−1
(UPr) ⊂ IPr

}
, (7.15c)

then it is easily seen that the following mappings are in bijection:

λPr ∈ ΛPr 7→ λPr ∈ ΛPr defined by (7.15b), (7.15d)

µPr ∈ ΛPr 7→ λPr ∈ ΛPr defined by λPr(ω, uPr, uAg) = µPr(ω) , (7.15e)

∀(ω, uPr, uAg) ∈ Ω× UPr × UAg .

We define the reduced solution map (of the Principal Pr) SµPr , for any µPr ∈ ΛPr, by

SµPr : Ω→ Ω× UPr , ω 7→
(
ω, µPr(ω)

)
. (7.15f)

By (7.15f), (7.15c) and (7.15a), the reduced solution map SµPr is F-measurable when µPr ∈
ΛPr, giving

SµPr : (Ω,F)→ (Ω× UPr,F ⊗ UPr) . (7.15g)
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Reduced subfields, W-strategies and solutions map for the Agent Ag. We define
the reduced information field of the Agent Ag by

IAg =
{
G ∈ F ⊗ UPr

∣∣G⊗ {∅,UAg} ∈ IAg
}
⊂ F ⊗ UPr . (7.16a)

By absence of self-information — namely, IAg ⊂ F ⊗ UPr ⊗ {∅,UAg} — we immediately
obtain the equality (7.10b), namely IAg = IAg ⊗ {∅,UAg}.

By (7.3b) and absence of self-information, and because all the σ-fields F and {Ua, Ia}a∈{Pr,Ag}
contain the singletons by Item 1a in Definition 7.3, with any W-strategy λAg ∈ ΛAg for the
Agent Ag, we can associate a mapping, the reduced W-strategy λAg (of the Agent Ag), by

λAg :
(
(Ω× UPr), (F ⊗ UPr)

)
→ (UAg,UAg) such that


λAg(ω, uPr) = λAg(ω, uPr, uAg) ,

∀(ω, uPr, uAg) ∈ Ω× UPr × UAg(
λAg
)−1

(UAg) ⊂ IAg .

(7.16b)
The proof follows the same lines than the proof in the Principal case.

If we define the reduced W-strategy set (of the Agent Ag) by

ΛAg =
{
µAg :

(
(Ω× UPr), (F ⊗ UPr)

)
→ (UAg,UAg)

∣∣ (µAg)−1
(UAg) ⊂ IAg

}
, (7.16c)

then it is easily seen that the following mappings are in bijection:

λAg ∈ ΛAg 7→ λAg ∈ ΛAg defined by (7.16b), (7.16d)

µAg ∈ ΛAg 7→ λAg ∈ ΛAg defined by λAg(ω, uPr, uAg) = µAg(ω, uPr) , (7.16e)

∀(ω, uPr, uAg) ∈ Ω× UPr × UAg .

We define the reduced solution map (of the Agent Ag) SµAg , for any µAg ∈ ΛAg, by

SµAg : Ω× UPr → Ω× UPr × UAg , (ω, uPr) 7→
(
ω, uPr, µAg(ω, uPr)

)
. (7.16f)

By (7.16f), (7.16c) and (7.16a), the reduced solution map SµAg is (F ⊗ UPr)-measurable,

when µAg ∈ ΛAg, giving

SµAg : (Ω× UPr,F ⊗ UPr)→ (Ω× UPr × UAg,F ⊗ UPr ⊗ UAg) . (7.16g)

The Agent knows at least what the Principal knows and what the Principal
does. We have

IPr
∨

UPr ⊂ IAg ⇐⇒ IPr
∨(
{∅,Ω} ⊗ UPr ⊗ {∅,UAg}

)
⊂ IAg

⇐⇒ IPr ⊂ IAg and {∅,Ω} ⊗ UPr ⊗ {∅,UAg} ⊂ IAg

⇐⇒ IPr ⊗ {∅,UPr} ⊗ {∅,UAg} ⊂ IAg ⊗ {∅,UAg}
and {∅,Ω} ⊗ UPr ⊗ {∅,UAg} ⊂ IAg ⊗ {∅,UAg} (by (7.10a) and (7.10b))

⇐⇒ IPr ⊗ {∅,UPr} ⊂ IAg and {∅,Ω} ⊗ UPr ⊂ IAg

⇐⇒
(
IPr ⊗ {∅,UPr}

)∨(
{∅,Ω} ⊗ UPr

)
⊂ IAg .

Thus, we have shown that the inclusion (7.9b) implies the inclusion (7.10c).
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Solvability and reduced solvability.

Lemma 7.5. For any W-strategy profile λ = (λPr, λAg) ∈ ΛPr × ΛAg, the corresponding
solution mapping Sλ = S(λPr,λAg) : Ω→ Ω× UPr × UAg is well-defined as in (2.32c) and has
the expression

S(λPr,λAg) = SλAg ◦ SλPr , (7.17)

where the reduced solution map SλAg has been defined in (7.16f), and the reduced solution

map S
λPr

in (7.15f). Moreover, the solution mapping S(λPr,λAg) : (Ω,F)→ (Ω×UPr×UAg,F⊗
UPr ⊗ UAg) is measurable.

Proof. Consider a W-strategy profile λ = (λPr, λAg) ∈ ΛPr × ΛAg. The closed-loop equa-
tion (2.32a) is here

uPr = λPr(ω, uPr, uAg) and uAg = λAg(ω, uPr, uAg)

⇐⇒ uPr = λPr(ω) and uAg = λAg(ω, uPr) (by (7.15b) and (7.16b))

⇐⇒ (ω, uPr) = S
λPr

(ω) and (ω, uPr, uAg) = SλAg(ω, uPr) (by (7.15f) and (7.16f))

⇒(ω, uPr, uAg) = SλAg
(
S
λPr

(ω)
)

= (SλAg ◦ SλPr)(ω) .

By definition (2.32c) of the solution mapping, this means that S(λPr,λAg) = SλAg ◦ SλPr .
Moreover, as just proved above, we have the following measurability properties

(Ω,F)
SµPr−→ (Ω× UPr,F ⊗ UPr) (7.18a)

(Ω× UPr,F ⊗ UPr)
SµAg−→ (Ω× UPr × UAg,F ⊗ UPr ⊗ UAg) . (7.18b)

By composition, we conclude that the solution mapping S(λPr,λAg) = SλAg ◦SλPr is measurable
since

(Ω,F)
SµPr−→ (Ω× UPr,F ⊗ UPr)

SµAg−→ (Ω× UPr × UAg,F ⊗ UPr ⊗ UAg) . (7.19)

7.3.2 Background on integrands

In what follows, we work on a product space Ω × U and consider a function f : Ω ×
U → R ∪ {+∞}. On the one hand, we need to define conditional expectations of f
on Ω, parametrically in u ∈ U. On the other hand, we need a measurable selection in
arg min
u∈U

f(ω, u). For this purpose, we introduce lower semicontinuous (l.s.c.) integrands

and normal integrands.
Recall that, in a probability space (Ω,F,P), a subset Ω′ of Ω is said to be P-negligible

if there exists Ω′′ ∈ F such that Ω′ ⊂ Ω′′ and P(Ω′′) = 0. A subfield G ⊂ F is said to be
P-complete if G contains all the P-negligible subsets.
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Conditional expectation of a lower semicontinuous integrand. We first introduce
lower semicontinuous integrands. Notice that all functions take their values in R∪ {+∞}.

Definition 7.6. ( [35, Definition 1]) Let (Ω,F,P) be a complete probability space. Let
(U,B(U)) be a separable Banach space, equipped with its Borel σ-field. An extended real-
valued function f : Ω× U→ R ∪ {+∞} is said to be a F-lower semicontinuous integrand
if the function f is F ⊗ B(U)-measurable, and if

P
{
ω ∈ Ω

∣∣u ∈ U 7→ f(ω, u) is lower semicontinuous
}

= 1 .

In order to define the conditional expectation of a lower semicontinuous integrand with
respect to a P-complete subfield G ⊂ F, we introduce the notion of F-quasi integrable
function following [35] (see also [9, § 8.3.4.]).

Definition 7.7. ( [35, Definition 2]) Let a measurable space (Ω,F) and a separable Banach
space (U,B(U)), equipped with the Borel σ-field, be given. An extended real-valued function
f : Ω × U → R ∪ {+∞} is said to be F-quasi integrable w.r.t. to the probability P if
the function f is F ⊗ B(U)-measurable, and if there exists a sequence {α(n)}n∈N, with
α(n) ∈ L1(Ω,F,P,R), such that

P
{
ω ∈ Ω

∣∣∣α(n)(ω) ≤ inf
‖u‖≤n

f(ω, u) , ∀n ∈ N
}

= 0 .

With F-quasi integrable lower semicontinuous integrands, we can define conditional
expectations as follows.

Proposition 7.8. ( [35, Proposition 12]) Let (Ω,F,P) be a complete probability space. Let
(U,B(U)) be a separable Banach space, equipped with its Borel σ-field.

Let G be a P-complete subfield of F and f : Ω×U→ R∪ {+∞} be a F-lower semicon-
tinuous integrand (as in Definition 7.6) which is F-quasi integrable (as in Definition 7.7).

Then, there exists a G ⊗B(U)-measurable function fG : Ω×U→ R∪ {+∞}, such that

• the function fG : Ω× U→ R ∪ {+∞} is a G-lower semicontinuous integrand,

• for all G-measurable bounded mapping λ : Ω→ U, we have that

P
{
ω ∈ Ω

∣∣∣EP[f(·, λ(·)
)∣∣G](ω) = fG

(
ω, λ(ω)

)}
= 1 . (7.20)

The function fG : Ω×U→ R∪{+∞} is unique — in the sense that two candidates coincide
on a subset Ω′ × U where P

(
Ω′
)

= 1 — and called the G-conditional expectation of the
lower semicontinuous integrand f .
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It is an easy consequence of Proposition 7.8 that, under the same assumptions, for any
closed subset U of U, the function f + δΩ×U is a F-lower semicontinuous integrand which
is F-quasi integrable, and that

(f + δΩ×U)G = fG + δΩ×U . (7.21)

Under the assumptions of Proposition 7.8, and using [35, Lemme 6], if the function h :
Ω× U→ R ∪ {+∞} satisfies the same assumptions as the function f , then it holds that

f ≥ h⇒ fG ≥ hG . (7.22)

Measurable selection of a normal integrand. We give a formal definition of a normal
integrand following [26] (see also [30, Chapter 14, Section D] in the case of Rd spaces).

Notice that all functions take their values in R = R ∪ {+∞} ∪ {−∞}.

Definition 7.9. Let a measurable space (Ω,F) and a Borel space (U,B(U)) be given.

• A set-valued mapping F : Ω ⇒ U is said to be F-measurable if, for every open set
U ⊂ U, the inverse image satisfies:

F−1(U) =
{
ω ∈ Ω

∣∣F (ω) ∩ U 6= ∅
}
∈ F .

• An extended real-valued function f : Ω× U → R is said to be a normal integrand if
the epigraphical mapping

epi f : Ω⇒ U× R
ω 7→ epi f(ω, ·) =

{
(u, α) ∈ U× R

∣∣ f(ω, u) ≤ α
}

is closed-valued and F-measurable. When needed, we say that f is a F-normal inte-
grand.

Normal integrands and lower semicontinuous integrands are related as follows. When
U = Rd, any F-normal integrand is a F-lower semicontinuous integrand. To obtain the
reverse statement, we need more hypothesis.

Proposition 7.10. ( [30, Corollary 14.34]) Let f : Ω×Rd → R be a F-normal integrand.
Then, the function f : Ω × Rd → R is F ⊗ B(Rd)-measurable, and the function f(ω, ·) :
Rd → R is l.s.c., for any ω ∈ Ω.

Let f : Ω×Rd → R be such that the function f : Ω×Rd → R is F⊗B(Rd)-measurable,
and that the function f(ω, ·) : Rd → R is l.s.c., for any ω ∈ Ω. If (Ω,F) is complete w.r.t.
some σ-finite measure, then the function f is a F-normal integrand.

We will need the following measurable selection result.
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Proposition 7.11. ( [30, Theorem 14.37]) For any F-normal integrand f : Ω× Rd → R,
where Rd is equipped with the Borel σ-field, the function ω ∈ Ω 7→ infu∈Rd f(ω, u) is F-
measurable and the set-valued mapping ω ∈ Ω 7→ arg minu∈Rd f(ω, u) is closed-valued and
F-measurable.

In particular, therefore, the set Ω′ =
{
ω ∈ Ω

∣∣ arg minu∈Rd f(ω, u) 6= ∅
}

is F-measurable,
and, for each ω ∈ Ω′, it is possible to select a minimizing point λ?(ω) in such a manner
that the mapping ω ∈ Ω′ 7→ λ(ω) is F-measurable.

Measurable selection of a conditional expectation. Now, we establish the existence
of a measurable selection, with values in a compact subset of Rd, for the argmin of a
conditional expectation.

Lemma 7.12. Let U0 be a bounded and closed subset of Rd. Let h : Ω×U0 → R∪ {+∞}.
We define the function f : Ω× Rd → R ∪ {+∞} by

∀(ω, u) ∈ Ω× Rd , f(ω, u) =

{
h(ω, u) if u ∈ U0 ,

+∞ if u 6∈ U0 .
(7.23)

Suppose that (Ω,F,P) is a complete probability space, and let G be a P-complete subfield
of F. Suppose that the function h : Ω× U0 → R ∪ {+∞} is a F-normal integrand, and is
bounded below.

Then, the following statements hold true.

• The function f : Ω×Rd → R∪{+∞} in (7.23) is a F-lower semicontinuous integrand,
is F-quasi integrable (see Definition 7.7) and admits a G-conditional expectation fG :
Ω×Rd → R (see Proposition 7.8). Moreover, we have, for all G-measurable mapping
λ : Ω→ U0,

P
{
ω ∈ Ω

∣∣EP[h(·, λ(·)
)∣∣G](ω) = fG

(
ω, λ(ω)

)}
= 1 . (7.24a)

and
P
{
ω ∈ Ω

∣∣ fG(ω, u) = +∞ , ∀u 6∈ U0

}
= 1 , (7.24b)

• If, in addition, there exists u0 ∈ U0 such that h(·, u0) is P-integrable, then there exists
a G-measurable mapping λ? : Ω→ U0 such that

P
{
ω ∈ Ω

∣∣∣λ?(ω) ∈ arg min
u∈Rd

fG(ω, u)
}

= 1 . (7.24c)

Proof. By Proposition 7.10, when defined over Ω×Rd with values in R∪{+∞}, F-normal
integrands are F-lower semicontinuous integrands.
• First, we establish that the function f : Ω × Rd → R ∪ {+∞} in (7.23) is a F-normal
integrand, hence is a F-lower semicontinuous integrand.
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It is easily seen that

epi f(ω, ·) =
{

(u, α) ∈ Rd × R
∣∣ f(ω, u) ≤ α

}
=
{

(u, α) ∈ U0 × R
∣∣h(ω, u) ≤ α

}
= epih(ω, ·) .

Therefore, the epigraphical (set-valued) mappings epih : Ω ⇒ U0 × R and epi f : Ω ⇒
Rd × R differ only by their image sets, U0 × R or Rd × R. As U0 is a closed subset of Rd,
the closed subsets of U0×R coincide with the trace on U0 of the closed subsets of Rd×R,
hence are closed subsets of Rd × R.

As the function h : Ω×U0 → R∪{+∞} is a F-normal integrand, the function h(ω, ·) :
U0 → R is l.s.c., for any ω ∈ Ω, hence the set-valued mapping epih takes values in the
closed subsets of U0 × R, hence in the closed subsets of Rd × R. Therefore, the set-valued
mapping epi f is closed-valued.

Now, let H be an open subset of Rd × R. We have

epi f−1(H) =
{
ω ∈ Ω

∣∣ epi f(ω) ∩H 6= ∅
}

=
{
ω ∈ Ω

∣∣ epih(ω) ∩H 6= ∅
}

(as epi f(ω, ·) = epih(ω, ·), for all ω ∈ Ω)

=
{
ω ∈ Ω

∣∣ epih(ω) ∩
(
H ∩ (U0 × R)

)
6= ∅
}

(as epih(ω, ·) ⊂ U0 × R, for all ω ∈ Ω)

∈ F . (because H ∩ (U0 × R) is an open subset of U0 × R)

Therefore, the set-valued mapping epi f is F-measurable.
We conclude that the function f : Ω×Rd → R∪{+∞} in (7.23) is a F-normal integrand.

Second, we prove that the function f : Ω × Rd → R ∪ {+∞} in (7.23) is a F-lower
semicontinuous integrand, is F-quasi integrable and admits a G-conditional expectation
fG : Ω× Rd → R.

Since the function f : Ω × Rd → R ∪ {+∞} in (7.23) is a F-normal integrand, it is a
F-lower semicontinuous integrand by Proposition 7.10. Since the function h : Ω × U0 →
R ∪ {+∞} is bounded below, so is the function f : Ω×Rd → R ∪ {+∞} hence this latter
function is F-quasi integrable (see Definition 7.7). By Proposition 7.8, we get that the
function f : Ω× Rd → R ∪ {+∞} admits a G-conditional expectation fG : Ω× Rd → R.

Third, we show that (7.24a) holds true. But this is a straightforward consequence
of (7.20), of the very definition (7.23) of the function f : Ω × Rd → R ∪ {+∞}, and of
the fact that any G-measurable mapping λ : Ω → U0 induces a G-measurable mapping
λ : Ω→ Rd with values in the bounded and closed subset U0 of Rd.

Fourth, we show that (7.24b) holds true.
We define, for all n ∈ N?, Vn =

{
u ∈ Rd

∣∣ 1/n ≤ d(u, U0)
}

, which is nonempty and
closed. The sequence {Vn}n≥1 is increasing with n and such that

⋃
n≥1 Vn = U c

0 , the

complementary set of U0 in Rd, because U0 is closed. By the definition (7.23) of the function
f : Ω×Rd → R∪{+∞}, for all n ∈ N? we have +∞ = f(ω, u) ≥ n, for all (ω, u) ∈ Ω×Vn,



144 CHAPTER 7. PRINCIPAL-AGENT MODELS

that is, f + δΩ×Vn ≥ n + δΩ×Vn . By the two claims right after the Proposition 7.8, using
the fact that the set Vn is closed, we get that fG + δΩ×Vn ≥ n + δΩ×Vn , for all n ∈ N?,
where this inequality has to be understood as fG(ω, u) ≥ n for all (ω, u) ∈ Ωn × Vn where
P(Ωn) = 1. Therefore, on the set Ω′ =

⋂
n≥1 Ωn, of probability 1, we have fG(ω, u) ≥ n

for all (ω, u) ∈ Ω′ × Vn. As the sequence {Vn}n≥1 is increasing with n and such that⋃
n≥1 Vn = U c

0 , we obtain that fG(ω, u) = +∞ for all (ω, u) ∈ Ω′ × U c
0 .

We conclude that (7.24b) holds true.

• We prove (7.24c).
On the one hand, since the function fG : Ω × U0 → R ∪ {+∞} is a G-l.s.c. integrand,

the function fG(ω, ·) : U0 → R is l.s.c., for P-almost any ω ∈ Ω. As the set U0 is a bounded
and closed subset of Rd, it is compact, and we get that1

P
{
ω ∈ Ω

∣∣ fG(ω, ·) is l.s.c
}

= P
{
ω ∈ Ω

∣∣ arg min
u∈Rd

fG(ω, u) 6= ∅
}

= 1 .

On the other hand, by Proposition 7.11

Ω1 =
{
ω ∈ Ω

∣∣ arg min
u∈Rd

fG(ω, u) 6= ∅
}
∈ G .

Therefore, we get that P(Ω1) = 1. By the same Proposition 7.11, it is possible, for each
ω ∈ Ω1, to select a minimizing point λ?(ω) ∈ arg min

u∈Rd
fG(ω, u) in such a manner that the

mapping ω ∈ Ω1 7→ λ?(ω) is G-measurable. We take an element b in U0, and we define
λ?(ω) = b when ω 6∈ Ω1. Thus doing, the mapping λ? : Ω→ Rd is G-measurable.

We consider the two following G-measurable sets

Ω0 =
{
ω ∈ Ω

∣∣λ?(ω) 6∈ U0

}
and Ω∞ =

{
ω ∈ Ω

∣∣ fG(ω, u) = +∞ , ∀u 6∈ U0

}
,

that are such that Ω0 ⊂ Ω1 and that P(Ω∞) = 1 by (7.24b). We are going to show that
P(Ω0) = 0. On the one hand, when ω ∈ Ω0 ∩ Ω∞, we have that +∞ = fG

(
ω, λ?(ω)

)
,

by definition of Ω0 and of Ω∞. On the other hand, we have fG
(
ω, λ?(ω)

)
≤ fG(ω, u), for

all u ∈ Rd, by definition of the minimizing point λ?(ω), when ω ∈ Ω1. Therefore, as
Ω1 ⊃ Ω0 ⊃ Ω0 ∩ Ω∞, for all ω ∈ Ω0 ∩ Ω∞, we have that fG(ω, u) = +∞ for all u ∈ Rd,
hence in particular fG(ω, u0) = +∞ where u0 ∈ U0 is such that h(·, u0) is P-integrable, by
assumption in Item 7.12.

On the other hand, by (7.20) in Proposition 7.8, we get that

EP
[
f
(
·, u0

)∣∣G] = fG
(
·, u0

)
P− a.s.

By the definition (7.23) of the function f : Ω× Rd → R ∪ {+∞}, we have that f
(
·, u0

)
=

h(·, u0), and thus

EP
[
f
(
·, u0

)∣∣G] = EP
[
h
(
·, u0

)∣∣G] < +∞ P− a.s.

1In case dom fG(ω, ·) = ∅, hence fG(ω, ·) ≡ +∞, we take the convention that arg min
u∈Rd

fG(ω, u) = Rd.
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since h(·, u0) is P-integrable. Therefore, on the intersection of Ω0 ∩Ω∞ with a subset of Ω
of probability 1, we have both EP

[
f
(
·, u0

)∣∣G] = fG
(
·, u0

)
and EP

[
f
(
·, u0

)∣∣G] < +∞, hence
fG
(
·, u0

)
< +∞. We conclude that P(Ω0 ∩ Ω∞) = 0 and, as P(Ω∞) = 1, that P(Ω0) = 0.

Thus, we obtain that

Ωc
0 ∩ Ω1 =

{
ω ∈ Ω

∣∣λ?(ω) ∈ U0 ∩ arg min
u∈Rd

fG(ω, u)
}

and P(Ωc
0 ∩ Ω1) = 1 .

As the mapping λ? : Ω → Rd is G-measurable, as U0 is closed and as P
{
ω ∈ Ω

∣∣λ?(ω) ∈
U0

}
= 1, it is straightforward that the mapping λ? : Ω → U0 is G-measurable. Thus, we

have proved (7.24c).

This ends the proof.

7.3.3 Main result (backward induction for the Enough informed
Agent W-games)

Now, we are ready to state and prove the main result of this Section.

Proposition 7.13. Suppose given an Enough informed Agent W-game, as in Defini-
tion 7.3, with the additional following technical assumptions:

1. The space UAg is a nonempty bounded and closed subset of Rd, equipped with the Borel
σ-field UAg = B(UAg).

2. There exists a probability Q{Ag} on (Ω× UPr,F ⊗ UPr) such that,

(a) the probability space (Ω× UPr,F ⊗ UPr,Q{Ag}) is complete and the σ-field IAg is

Q{Ag}-complete,

(b) for any µPr ∈ ΛPr in (7.15c), the pushforward probability P{Ag} ◦ S
−1

µPr on (Ω ×
UPr,F ⊗ UPr) has a density (Radon-Nikodim derivative)

T µPr : Ω× UPr → R+ (7.25a)

w.r.t. the probability Q{Ag}, that is,

P{Ag} ◦ S
−1

µPr = T µPrQ{Ag} , (7.25b)

(c) the density T µPr in (7.25a) is measurable w.r.t.
(
IPr ⊗ {∅,UPr}

)∨ ({∅,Ω} ⊗
UPr

)
, where IPr is the reduced information field of the Principal Pr as defined

in (7.15a).

3. Regarding the criterion j{Ag} :
(
Ω × UPr × UAg,F ⊗ UPr ⊗ UAg

)
→ R of the Agent

player {Ag},
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(a) the function j{Ag} : Ω× UPr × UAg → R is bounded above,

(b) the function −j{Ag} : (Ω×UPr)×UAg → R is a F⊗UPr-normal integrand, as in
Definition 7.9.

Then, there exists a W-strategy λ?Ag ∈ ΛAg such that

EP{Ag}
[
j{Ag} ◦ S(λPr,λ?Ag)

]
≥ EP{Ag}

[
j{Ag} ◦ S(λPr,λAg)

]
, ∀λPr ∈ ΛPr , ∀λAg ∈ ΛAg , (7.26)

where the solution map S(λPr,λAg) is defined in (7.14a)– (7.14b).

Proof. By Proposition 7.10, when defined over (Ω× UPr)× Rd with values in R ∪ {+∞},
F-normal integrands are F-lower semicontinuous integrands.

• We introduce the function −{Ag} : (Ω× UPr)× Rd → R ∪ {+∞} by

− {Ag}
(
(ω, uPr), uAg

)
=

{
−j{Ag}(ω, uPr, uAg) if (ω, uPr, uAg) ∈ Ω× UPr × UAg ,

+∞ if (ω, uPr, uAg) ∈ Ω× UPr × (Rd\UAg) .

(7.27a)
The function −{Ag} indeed takes values in R∪{+∞}, as the function j{Ag} : Ω×UPr×UAg →
R is bounded above by assumption in Item 3a

By assumption in Item 3b, and by Lemma 7.12, the function −{Ag} : (Ω×UPr)×Rd →
R ∪ {+∞} in (7.27a) is a F ⊗ UPr-lower semicontinuous integrand, which is Q{Ag}-quasi

integrable. As IAg is Q{Ag}-complete by assumption in Item 2a, Lemma 7.12 asserts the

existence of a IAg-lower semicontinuous integrand

− ̂{Ag} : (Ω× UPr)× Rd → R ∪ {+∞} , (7.27b)

which is an IAg-conditional expectation of −{Ag}, in the sense that,

Q{Ag}
{

(ω, uPr) ∈ Ω×UPr

∣∣EQ{Ag}[−j{Ag}(·, λ(·)
)∣∣G](ω, uPr) = −̂{Ag}

(
(ω, uPr), λ(ω, uPr)

)}
= 1 ,

for all G-measurable mapping λ : Ω× UPr → UAg, by (7.24a). Therefore, for all µAg ∈ ΛAg,
it holds that

EQ{Ag}
[
j{Ag} ◦ SµAg

∣∣IAg] = ̂{Ag} ◦ SµAg , Q{Ag}-a.s. , (7.27c)

by using the expression SµAg = (IΩ×UPr
, µAg) for the reduced solution map SµAg in (7.16f).

By the one-to-one correspondence (7.16d), we associate with any W-strategy λAg ∈ ΛAg

the reduced strategy λAg : Ω × UPr → UAg such that λAg(ω, uPr) = λAg(ω, uPr, uAg), for all
(ω, uPr, uAg) ∈ Ω× UPr × UAg, by (7.16e). As a consequence, from (7.27c), we immediately
obtain that

EQ{Ag}
[
j{Ag} ◦ SλAg

∣∣IAg] = ̂{Ag} ◦ SλAg , Q{Ag}-a.s. , ∀λAg ∈ ΛAg . (7.27d)
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• By Lemma 7.12, we obtain the existence of a IAg-measurable mapping µ?Ag : Ω×UPr → UAg

such that
Q{Ag}(D

?
) = 1 , (7.28a)

where the F ⊗ UPr-measurable set D? is given by

D? =
{

(ω, uPr) ∈ Ω× UPr

∣∣µ?Ag(ω, uPr) ∈ arg max
uAg∈UAg

̂{Ag}
(
(ω, uPr), uAg

)}
.

As the mapping µ?Ag is IAg-measurable, it belongs to ΛAg in (7.16c). By the one-to-one

correspondence (7.16d), we associate with µ?Ag ∈ ΛAg the W-strategy λ?Ag ∈ ΛAg defined
by λ?Ag(ω, uPr, uAg) = µ?Ag(ω, uPr), for all (ω, uPr, uAg) ∈ Ω × UPr × UAg, by (7.16e). By

construction, the reduced W-strategy λ
?

Ag ∈ ΛAg is obviously the mapping µ?Ag, so that

D? =
{

(ω, uPr) ∈ Ω× UPr

∣∣ ̂{Ag}((ω, uPr), λ?Ag(ω, uPr)) ≥ ̂{Ag}
(
(ω, uPr), uAg

)
, ∀uAg ∈ UAg

}
.

(7.28b)
We define, for any λAg ∈ ΛAg,

D?λAg =
{

(ω, uPr) ∈ Ω× UPr

∣∣ (̂{Ag} ◦ S?λAg)(ω, uPr) ≥ (̂{Ag} ◦ SλAg)(ω, uPr)} . (7.28c)

By the expression SλAg = (IΩ×UPr
, λAg) for the reduced solution map SλAg in (7.16f), we get

that

D?λAg =
{

(ω, uPr) ∈ Ω× UPr

∣∣ ̂{Ag}((ω, uPr), λ?Ag(ω, uPr)) ≥ ̂{Ag}
(
(ω, uPr), λAg(ω, uPr)

)}
,

so that, by (7.28b), we obtain that D? ⊂ D?λAg , where Q{Ag}(D
?
) = 1 by (7.28a). As the

probability space (Ω×UPr,F⊗UPr,Q{Ag}) is complete by assumption in Item 2a, this gives

D?λAg ∈ F ⊗ UPr , Q{Ag}(D
?

λAg) = 1 , ∀λAg ∈ ΛAg . (7.28d)

We will prove, in two steps, that λ?Ag satisfies (7.26).

• By the one-to-one correspondence (7.15d), we associate with any W-strategy λPr ∈ ΛPr

the reduced strategy λPr : Ω→ ΛPr such that λPr(ω, uPr, uAg) = λPr(ω) for all (ω, uPr, uAg),

by (7.15e). By the assumption (7.25a), it holds that the pushforward probability P{Ag}◦S
−1

λPr

is absolutely continuous w.r.t. the probability Q{Ag}. Therefore, from (7.28d), we get

P{Ag}
(
S
−1

λPr(D
?

λAg)
)

=
(
P{Ag} ◦ S

−1

λPr

)
(D?λAg) = 1 , ∀λAg ∈ ΛAg , (7.29a)

where

S
−1

λPr(D
?

λAg) =
{
ω ∈ Ω

∣∣ (̂{Ag} ◦ S?λAg ◦ SλPr)(ω) ≥
(
̂{Ag} ◦ SλAg ◦ SλPr

)
(ω)
}

(by (7.28c))

=
{
ω ∈ Ω

∣∣ (̂{Ag} ◦ S(λPr,λ?Ag)

)
(ω) ≥

(
̂{Ag} ◦ S(λPr,λAg)

)
(ω)
}

(7.29b)
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by the expression (7.17) for the solution map S(λPr,λAg) = SλAg ◦ SλPr .
In the expression (7.29b) above, both functions ̂{Ag} ◦ S(λPr,λ?Ag)

and ̂{Ag} ◦ S(λPr,λAg) are

F-measurable. Indeed, as the integrand ̂{Ag} in (7.27b) is a IAg-normal integrand, it is a
(F⊗UPr)⊗UAg-normal integrand since IAg ⊂ F⊗UPr by (7.16a). Hence, the function ̂{Ag}

is F⊗UPr⊗UAg-measurable. Now, since S(λPr,λ?Ag)
is F-measurable by (7.14a), we conclude

that the function ̂{Ag} ◦ S(λPr,λ?Ag)
is F-measurable. The same holds true for ̂{Ag} ◦ S(λPr,λAg).

Moreover, both functions ̂{Ag} ◦ S(λPr,λ?Ag)
and ̂{Ag} ◦ S(λPr,λAg) are bounded above because

the function j{Ag} is bounded above by assumption in Item 3a, and by (7.22).

Thus, from (7.29a) and (7.29b), we deduce that

EP{Ag}
[
̂{Ag} ◦ S(λPr,λ?Ag)

]
≥ EP{Ag}

[
̂{Ag} ◦ S(λPr,λAg)

]
, ∀λPr ∈ ΛPr , ∀λAg ∈ ΛAg . (7.29c)

•We now prove that the Inequality (7.29c) is still valid when we replace the criterion ̂{Ag}

in (7.29c) by the original criterion j{Ag}. We proceed as follows:

EP{Ag}
[
j{Ag} ◦ S(λPr,λAg)

]

is well-defined, being bounded above because the function j{Ag} is bounded above by as-
sumption in Item 3a, and being F-measurable; indeed, on the one hand, the function
j{Ag} : (Ω × UPr) × UAg → R is a F ⊗ UPr-normal integrand, by assumption in Item 3b,
hence j{Ag} is F ⊗ UPr ⊗ UAg-measurable and, on the other hand, S(λPr,λAg) is F-measurable

by (7.14a), so that the function ̂{Ag} ◦ S(λPr,λAg) is F-measurable

= EP{Ag}
[
j{Ag} ◦ SλAg ◦ SλPr

]
(by (7.17))

= E
P{Ag}◦S

−1

λPr

[
j{Ag} ◦ SλAg

]
(pushforward measure under S

λPr
)

= EQ{Ag}

[
T λPr × (j{Ag} ◦ SλAg)

]
(by (7.25a), P{Ag} ◦ S

−1

λPr has density T λPr w.r.t. Q{Ag} on Ω× UPr)

= EQ{Ag}

[
EQ{Ag}

[
T λPr × (j{Ag} ◦ SλAg)

∣∣∣IAg]] (tower property)

= EQ{Ag}

[
T λPrEQ{Ag}

[
j{Ag} ◦ SλAg

∣∣∣IAg]]
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because, by assumption in Item 2c, the Radon-Nikodim derivative T λPr is(
IPr ⊗ {∅,UPr}

)∨ ({∅,Ω} ⊗ UPr

)
-measurable, hence IAg-measurable by (7.10c)

= EQ{Ag}

[
T λPr × (̂{Ag} ◦ SλAg)

]
(by (7.27d))

= E
P{Ag}◦S

−1

λPr

[
̂{Ag} ◦ SλAg

]
(by (7.25a), P{Ag} ◦ S

−1

λPr has density T λPr w.r.t. Q{Ag} on Ω× UPr)

= EP{Ag}
[
̂{Ag} ◦ SλAg ◦ SλPr

]
(pushforward measure under S

λPr
)

= EP{Ag}
[
̂{Ag} ◦ S(λPr,λAg)

]
. (by (7.17))

Therefore, the Inequality (7.29c) is still valid when we replace the function ̂{Ag} in (7.29c)
by the original criterion j{Ag}, giving thus (7.26).

This ends the proof.

In [39], Witsenhausen proves that, when the set UPr is countable, there exists a proba-
bility Q{Ag} on (Ω×UPr,F⊗UPr) such that Item 2b and Item 2c in Proposition 7.13 hold
true.

Theorem 7.14. Suppose given an Enough informed Agent W-game, as in Definition 7.3,
which satisfies the technical assumptions of Proposition 7.13, and let λ?Ag ∈ ΛAg be a W-
strategy for the Agent Ag such that (7.26) holds true.

Suppose also that the function j{Pr} : Ω× UPr × UAg → R is bounded above.
If there exists a W-strategy λ?Pr ∈ ΛPr for the Principal Pr such that

EP{Pr}
[
j{Pr} ◦ S(λ?Pr,λ

?
Ag)

]
≥ EP{Pr}

[
j{Pr} ◦ S(λPr,λ?Ag)

]
, ∀λPr ∈ ΛPr , (7.30)

then, the profile (λ?Pr, λ
?
Ag) constitutes a Nash equilibrium of the Principal-Agent W-game

as in Definition 7.2.

Proof. The Agent’s W-strategy λ
?

Ag : Ω × UPr → UAg is such that (7.5b) holds true for
any Principal’s W-strategy λPr ∈ ΛPr, hence for the specific strategy λ?Pr of the Principal,
giving

EP{Ag}
[
j{Ag} ◦ S(λ?Pr,λ

?
Ag)

]
≥ EP{Ag}

[
j{Ag} ◦ S(λ?Pr,λAg)

]
, ∀λAg ∈ ΛAg . (7.31)

Combined with the assumption (7.30), we get (7.5).

7.4 Conclusion

In this Chapter 7, we consider a subclass of Principal-Agent games, namely, the Enough
informed Agent W-games, and assuming the existence of the Nash equilibria of such game,
we provide technical conditions under which this solution can be yielded as a result of
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backward induction. Among these conditions, we assume that the action set of the Agent
is nonempty bounded and closed subset of Rd, that there exists a measurable density for
some probability distribution, and that the criterion of Agent is bounded, whereas the
negative criterion is a normal integrand. Note that when we do not assume that the set of
actions of the Agent is finite, the completeness of some subfield w.r.t. to some probability
is needed, which can be restrictive.

We leave open the question if the main result can be weakened by having assumptions
on the measurability of the criterions of Principal and Agent.
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Conclusion and Appendix
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Chapter 8

Conclusion

8.1 Contribution of this thesis

This thesis is a contribution to Game Theory with information. We have presented links
between different models of games with information, studied different information patterns
and given conditions under which some Principal-Agent games can be solved by backward
induction.

• In Chapter 2, we have presented connections and differences between three classes of
games with information.

• In Chapter 3, we have shown that the class of causal finite W-models can be embedded
into AFR-models.

• In Chapter 4, we have gone in the opposite direction, by showing that a restricted
class of so-called Nature-rooted finite AFR-models can be embedded into W-models.

• In Chapter 5, we have expressed classical information patterns in the framework of
the W-model.

• In Chapter 6, we have introduced W-games.

• In Chapter 7, we have studied a subclass of Principal-Agent games, namely, the
so-called Enough informed Agent W-games, and we have provided conditions under
which a Nash equilibrium can be obtained by backward induction.

8.2 Future avenues of research

Here, we recapitulate further possible work and questions that remain open.
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Developing the W-model beyond finite sets (Chapters 2, 3 and 4)

In both Chapters 3 and 4, the equivalence between AFR- and W-models is shown under
the assumptions of finiteness and completeness of the corresponding fields, although both
models allow for both countable and non-countable primitives. A transversal avenue of
research would be lifting the assumption of finiteness of the set of agents and the sets of
agents’ actions.

Besides, one could explore the equivalence between AFR- and W-models in the infinite
sets and players case. As in the most general case of the AFR-model, a strategy may not in-
duce a unique outcome, the same problem may arise for the infinte causal W-model. Then,
it can be studied if some restricted conditions may still grant the property of solvability.

Information structures (Chapter 5)

We conjectured that the so-called W-information memory (respectively, W-perfect recall)
is equivalent to the so-called I-TrIP (respectively, C-TrIP) introduced in [3].

Kuhn’s equivalence theorem (Chapter 6)

As said in the conclusion of Chapter 6, we leave it as an open question of how to define
mixed and behavioral strategies in the W-model. Once these notions are properly formu-
lated, one might be able to prove an analogue of the Kuhn’s theorem about the equivalence
between mixed and behavioral strategies under the assumption of perfect recall.

To this end, first, for any behavioral strategy and the corresponding probability distri-
bution over the set of outcomes that it induces, one needs to build a mixed strategy that
induces the same probability distribution. Second, in a similar way, for any mixed strategy
and the corresponding probability distribution, one can build a behavioral strategy giving
the same probability distribution over the set of outcomes. Once both steps are done, this
would yield an analogue of the Kuhn’s theorem. It is proved in [18,29] that, for any player,
mixed strategies are equivalent to behavioral strategies if and only if the player possesses
perfect recall. Thus, the analogue of perfect recall in the W-model stated in Chapter 5 will
be undoubtedly used in the proof of the Kuhn’s theorem.

Subgames and Backward Induction (Chapter 6)

As it was said in the conclusion of Chapter 6, we leave it as an open question to define
the notion of subgame in the W-model and to relate it to the notion of subsystem as in
Definition 6.5. Once subgames are properly defined, the concepts of backward induction
and subgame perfect equilibrium might possibly be formulated in the W-model.

Principal-Agent games (Chapter 7)

In Chapter 7, we considered a subclass of Enough informed Agent W-games, and assuming
the existence of the Nash equilibria of such game, we provided technical conditions under
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which an equilibrium can be found by backward induction. It remains an open question if
the assumptions could be weakened by imposing some extra assumptions, for instance, on
the measurability of the criterions j{Ag} and j{Pr} with respect to proper σ-fields related to
the information structure.

Another interesting avenue of research may be developing a multi-agent setting, where
both Principal and Agent players are each endowed with a group of representative W-
agents.
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Chapter 9

Appendix

9.1 Basics on partitions, σ- and π-fields

As in this manuscript, we describe the concept of information in the language of σ-, π-fields
and partitions, we present basic material following [9].

In Chapters 3 and 4, we work with finite sets when establishing equivalences between
the AFR- and W-models. In that finite sets case, the three (more and more restricted)
notions — algebra, σ-field, π-field — collapse into a single one. After formally defining
σ-field, we go on with detailing the notion of π-field (it should be remembered that all
notions below remain valid for algebras and σ-fields when the underlying set Ω is finite).

Algebras and σ-fields

A (Boolean) algebra on Ω is a subset G ⊂ 2Ω, containing Ω, and which is stable under
complementation and finite union (hence under finite intersection).

Less restricted than algebras, are σ-fields. A σ-field on Ω is a subset G ⊂ 2Ω, con-
taining Ω, and which is stable under complementation and countable union (hence under
countable intersection). Consider two σ-fields G and G ′. We say that the field G is finer
than the field G ′ if every element of G is included in an element of G ′. We also say that G ′
is a subfield of G.

π-fields and partitions

More restricted than σ-fields is the class of partition fields (or π-fields).
First, we define a π-field as a collection of subsets of a set S, which is stable under

arbitrary union and intersection (countable or not).

Definition 9.1. Let a set S be given. A partition field (or π-field) of the set S is a
nonempty collection G of subsets of S, that is, G ⊂ 2S, which is stable under complemen-
tation and unlimited union (hence, under unlimited intersection).

The complete π-field is made of all subsets of the set S.
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We say that a partition field G ′ is finer than a partition G if every element of G is also
an element of G ′, that is,

G ⊂ G ′ ⇐⇒ ∀ G ∈ G , G ∈ G ′ . (9.1)

After defining a restricted subclass of σ-fields, the so-called π-fields, we give some facts
about partitions that are closely related to π-fields.

Definition 9.2. Let a set S be given. A collection Π of subsets of the set S is a partition,
which we denote as

S =
⊔
G∈Π

G , (9.2)

if it consists of mutually disjoint nonempty subsets G (G ∈ Π) whose union is S:

Π ⊂ 2S s.t.


S =

⋃
G∈Π

G,

G ∩G′ = ∅ , ∀G 6= G′,

G 6= ∅ , ∀G ∈ Π .

(9.3)

An atom of partition Π is a nonempty subset G ∈ Π such that G′ ∈ Π and G′ ⊂ G imply
that G′ = ∅ or G′ = G.

Consider a partition Π = {G}G∈Π of a set S. Two elements of the set S are said to be
indistinguishable w.r.t. Π if they belong to the same element G ∈ Π of the partition. We
define the indistinguishability relation RΠ on the set S as follows:

sRΠs
′ iff ∃G ∈ Π s.t. s ∈ G and s′ ∈ G .

One can see that the equivalence classes S/RΠ of the underlying equivalence relation RΠ

are the elements of the partition Π:

S/RΠ = Π . (9.4)

On the other hand, the classes of any equivalence relation on S form a partition. Hence,
partitions Π on S are in one-to-one correspondence with equivalence relations R on S by
the mappings

Π 7→ RΠ and R 7→ S/R .

We say that a partition Π′ is finer than a partition Π if every element of Π′ is included
in an element of Π, that is,

Π � Π′ ⇐⇒ ∀ G′ ∈ Π′ , ∃ G ∈ Π , s.t. G′ ⊂ G . (9.5)

Consider two partitions Π and Π′ of a given set S. The least upper bound of the
partitions Π and Π′ is the partition given by

Π ∨ Π′ =
{
G′′ ⊂ S

∣∣G′′ 6= ∅ , ∃G ∈ Π , ∃G′ ∈ Π′ , G′′ = G ∩G′
}
. (9.6)

The following Lemma 9.3 is used in Section 3.4 when building WtoAFR-strategies.
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Lemma 9.3. Let two sets A and B with corresponding equivalence relations A and B, and
a mapping f : (A,A/A)→ (B,B/B) be given. We have the following equivalence(

f−1 (B/B) ⊂ A/A
)
⇐⇒

(
∃f̃ : A/A→ B such that f = f̃ ◦ πA

)
,

where f̃ : A/A→ B is such that the following diagram commutes

A B

A/A

πA

f

f̃
(9.7)

9.2 Additional material for Chapter 4

As we have left open two questions in Chapter 4, here we state both as conjectures and
propose a tentative way of solving them.

9.2.1 Conjecture: constructing a causal AFRtoW-ordering

Conjecture 9.4. Let a Nature-rooted AFR-model as in Definition 2.16 be given. Then
there exists an AFRtoW-ordering ϕ as in (9.11), which is causal as in Definition 2.25.

Tentative proof. The following, is a chain of conjectured technical steps of a tentative proof
of the conjecture.

• We consider the set Z of terminal vertices as in (2.16). With each terminal vertex z ∈ Z we
associate the set of configurations Hz as in (4.6). We conjecture that the family {Hz}z∈Z
is made of disjoint subsets of the set H of AFRtoW-configurations as defined in (4.4), that
is, (

∀z, z′ ∈ Z
)

Hz ∩Hz′ 6= ∅ ⇐⇒ z = z′ , (9.8)

where the set Hz of AFRtoW-configurations is defined in (4.6).

• For each terminal vertex z ∈ Z, we consider the upset ↑ z as in (2.10) and the set Az as
in (4.5) of agents who played before the vertex z was reached. As the tree (V,⊃) is finite
(see Definition 2.11), then each leaf z is a finite vertex, that is, z ∈ F (V ), where the set
F (V ) of finite vertices is defined in Equation (2.11a) Thus, for any z ∈ Z, the upset ↑z is
of the form (see Equation (2.13b))

↑z = {z, p(z), p2(z), . . . , p|↑z|−1(z)} .

As a consequence of (2.13a), we have the following chain of strict inclusions

z = p0(z)  p(z)  p2(z)  . . .  p|↑z|−1(z) = W ,



160 CHAPTER 9. APPENDIX

where p is the parent mapping as in (2.11b). This implies another chain of strict inclusions

Az ! Ap(z) ! Ap(z) ! . . . ! Ap|↑z|−1(z) = ∅ , (9.9)

by Equation (4.5). As in each non-terminal vertex there is only one AFR-player that is
active (see (AFR-Axiom1’) in Definition 2.16), for any two sets Ap|↑z|−(j+1)(z) and Ap|↑z|−j(z)
with consecutive numbers, where 1 ≤ j ≤ | ↑z|, we have that Ap|↑z|−(j+1)(z) \ Ap|↑z|−j(z) is a
singleton of A and we denote

{a(j)
z } = Ap|↑z|−(j+1)(z) \ Ap|↑z|−j(z) . (9.10)

Let a Nature-rooted AFR-model as in Definition 2.16 be given. We call AFRtoW-ordering
a mapping ϕ :

⊔
z∈Z

Hz → Σ|A| such that, for any terminal vertex z ∈ Z as in (2.16) and the

corresponding subset of AFRtoW-configurations Hz as in (4.6), we have(
∀h ∈ Hz

)
ϕ(h) =

(
a(1)
z , . . . , a(|↑z|−1)

z , κ
)
∈ Σ|A| , for some κ ∈ ΣA\Az , (9.11)

where, for any index 1 ≤ j ≤ | ↑z|, the corresponding agent a
(j)
z is defined in (9.10).

• Finally, we conjecture that the constructed ordering ϕ : H → Σ|A| is causal as in Defini-
tion 2.24.

This finishes the tentative proof. �

9.2.2 Conjecture: solvability for AFRtoW-strategies

In this §9.2.2 we state the second conjecture, namely, that the constructed AFRtoW-model
is solvable, that is, any AFRtoW-strategy as in §4.3 induces a unique outcome.

Conjecture 9.5. Any profile {λa}a∈A of AFRtoW-strategies induces a unique outcome on
the set

⊔
z∈Z

Hz of AFRtoW-configurations.

Tentative proof. The following, is a chain of conjectured technical steps of a tentative proof
of the conjecture.

• For any vertex v ∈ V , the corresponding set Hv of AFRtoW-configurations as in (4.6), is
partitioned by

Hv =
⊔

z∈Z∩↓v
Hz . (9.12)

• The following, is a simple corollary of the conjectured representation 9.12.

For any leaf z ∈ Z and any AFRtoW-agent b ∈ A \ Az,

Hb ∩Hz = ∅ ,

where Hb =
⋃
v∈bHv.
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Here, we give a short proof of this corollary. Let a leaf z ∈ Z and a AFRtoW-agent
b ∈ A \ Az be given. As b ∈ A \ Az, then ↑ z ∩ b = ∅ (by construction of the set Az of
AFRtoW-agents as in (4.5)). Then, we write

Hb ∩Hz =
(⋃
v∈b

Hv

)
∩Hz (by definition of the set Hb)

=
(⋃
v∈b

⊔
z∈Z∩↓v

Hz

)
∩Hz (as Hv =

⊔
z′∈Z∩↓vHz′ by (9.12))

=
⋃
v∈b

⊔
z′∈Z∩↓v

(Hz′ ∩Hz) (by associativity)

= ∅ ,

as, otherwise,for any vertex v ∈ b and for any leaf z′ ∈ Z∩ ↓ v, if Hz′ ∩ Hz 6= ∅, then
Hz′ = Hz (as they are atoms of the partition as in (9.8)), thus, z′ = z and z ∈ Z∩ ↓ v.
This implies that z ⊂ v and, thus, v ∈↑ z by definition of the upset as in (2.10). As a
consequence, ↑z ∩ b 6= ∅, which brings us to a contradiction.

This finishes the tentative proof. �
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