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And, to crown the Herakleitean dialectic, indetermin-
ism, by means of particular stochastic functions, took on
color and structure, giving rise to generous possibilities
of organization.

— Iannis Xenakis, Formalized Music
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échanger sur les sujets de cette thèse ou d’autres, et qui rendent le monde de la
recherche si plaisant, L. Ridgway Scott, Augusto Gerolin, Daniela Vögler, Tony
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ta passion, rigueur, volonté et le Cuarenta y Tres, Marie, Charlotte et Bianca, chez
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Titre : Étude d’approximations de problèmes de transport optimal et application
à la physique

Résumé : Le transport optimal (TO) a de nombreuses applications; mais son
approximation numérique est complexe en pratique. Nous étudions une relaxation
du TO pour laquelle les contraintes marginales sont remplacées par des contraintes
de moments (TOCM), et montrons la convergence de ce dernier vers le problème OT.
Le théorème de Tchakaloff nous permet de montrer qu’un minimiseur du problème
TOCM est une mesure discrète chargeant un nombre fini de points, qui, pour les
problèmes multimarginaux, est linéaire en le nombre de marginales, ce qui permet de
contourner le fléau de la dimension. Cette méthode est aussi adaptée aux problèmes
de TO martingale. Dans certains cas importants en pratique, nous obtenons des
vitesses de convergence en O(1/N) ou O(1/N2), où N est le nombre de moments,
ce qui illustre leur rôle.

Nous présentons un algorithme, basé sur un processus de Langevin sur-amorti
contraint, pour résoudre le problème TOCM. Nous prouvons que tout minimiseur
local du problème TOCM en est un minimiseur global. Et illustrons l’algorithme
sur des exemples de larges problèmes TOCM symétriques.

Dans la seconde partie de la thèse, nous étendons une méthode (E. Cancès et
L.R. Scott, SIAM J. Math. Anal., 50, 2018, 381–410) pour calculer un nombre
arbitraire de termes dans la série asymptotique de l’interaction de van der Waals
entre deux atomes d’hydrogène. Ces termes sont obtenus en résolvant un ensemble
d’EDP de Slater–Kirkwood modifiées. La précision de cette méthode est montrée
par des exemples numériques et une comparaison avec d’autres méthodes issues de
la littérature. Nous montrons aussi que les états de diffusion de l’atome d’hydrogène
ont une contribution majeure au coefficient C6 de la série de van der Waals.

Mots-clefs : Transport Optimal, Transport Optimal multimarginal, Transport
Optimal martingale, Processus de Langevin sur-amorti contraint, coefficients de
dispersion de van der Waals, schéma de Galerkin.
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Title: Study of approximations of optimal transport problems and application to
physics

Abstract: Optimal Transport (OT) problems arise in numerous applications. Nu-
merical approximation of these problems is a practical challenging issue. We inves-
tigate a relaxation of OT problems when marginal constraints are replaced by some
moment constraints (MCOT problem), and show the convergence of the latter to-
wards the former. Using Tchakaloff’s theorem, we show that the MCOT problem is
achieved by a finite discrete measure. For multimarginal OT problems, the number
of points weighted by this measure scales linearly with the number of marginal laws,
which allows to bypass the curse of dimension. This method is also relevant for
Martingale OT problems. In some fundamental cases, we get rates of convergence
in O(1/N) or O(1/N2) where N is the number of moments, which illustrates the
role of the moment functions.

We design a numerical method, built upon constrained overdamped Langevin
processes, to solve MCOT problems; and proved that any local minimizer to the
MCOT problem is a global one. We provide numerical examples for large symmet-
rical multimarginal MCOT problems.

We extend a method (E. Cancès and L.R. Scott, SIAM J. Math. Anal., 50, 2018,
381–410) to compute more terms in the asymptotic expansion of the van der Waals
attraction between two hydrogen atoms. These terms are obtained by solving a set
of modified Slater–Kirkwood PDE’s. The accuracy of the method is demonstrated
by numerical simulations and comparison with other methods from the literature.
We also show that the scattering states of the hydrogen atom (the ones associated
with the continuous spectrum of the Hamiltonian) have a major contribution to the
C6 coefficient of the van der Waals expansion.

Keywords: Optimal Transport, Multimarginal Optimal Transport, Martingale
Optimal Transport, Constrained Overdamped Langevin process, van der Waals dis-
persion coefficients, Galerkin scheme.
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Résumé substantiel:

Le travail de cette thèse se concentre sur deux problèmes rencontrés en chimie quan-
tique, et plus spécifiquement pour des applications concernant les calculs de structure
électronique des molécules.

Une première partie de ce travail concerne des résultats théoriques sur une
méthode pour calculer la fonctionnelle de Levy-Lieb dans la limite des électrons
strictement corrélés (SCE) en Théorie de la Fonctionnelle de Densité (DFT). Pour
une densité électronique donnée, la limite SCE de la fonctionnelle de Levy-Lieb est
un problème de transport optimal multimarges symétrique avec un coût de Coulomb,
où le nombre de marginales est égal au nombre d’électrons dans le système, qui
peut être très large dans les applications considérées. Une des contributions de
cette thèse est l’étude théorique et numérique d’une méthode numérique pour la
résolution de ce problème de transport optimal, qui consiste en la relaxation des
contraintes marginales en un nombre fini de contraintes de moments. En particulier,
nous prouvons que les minimiseurs de ce problème approché existent et que certains
d’entre eux peuvent être écrits comme chargeant un nombre fini de points, qui crôıt
linéairement avec le nombre de marginales. Ceci est exploité pour la conception
d’algorithmes efficaces pour la résolution de ce problème approché et des résultats
numériques illustrent la performance de l’algorithme proposé, qui utilise un proces-
sus de Langevin sur-amorti contraint. La méthode numérique proposée peut être
utilisée pour résoudre d’autres types de problèmes de transport optimal multimarges
ainsi que des problèmes de transport optimal martingale venant d’applications fi-
nancières.

Une seconde contribution de cette thèse s’intéresse à une méthode de pertur-
bations et un développement en série asymptotique afin de calculer la fonction
d’onde électronique dans l’approximation de Born-Oppenheimer de deux atomes
d’hydrogène à grande distance. Ce travail étend un article de É. Cancès et L.R. Scott
[78] et fournit une méthode itérative pour calculer les coefficients de dispersion de
l’interaction de van der Waals à un ordre arbitraire pour deux atomes d’hydrogène.

Transport Optimal La théorie du transport optimal a été d’abord formulée par
Monge en 1781 dans [260]. Son intérêt a été croissant dans le seconde moitié du
XXe siècle après l’introduction de sa formulation relaxée par Kantorovich dans [189]
et sa résolution numérique par la programmatin linéaire par Dantzig [115, 116].
Depuis la fin du XXe siècle, des progrès ont été fait dans l’étude de ses propriétés
mathématiques par Brenier [57, 59], Gangbo [149] et McCann [150, 151], et de ses
connections avec l’équation de Monge-Ampère (voir Caffarelli dans [72, 73, 74]). Les
travaux suivants, incluant ceux de Otto [187, 264], Caffarelli [71], Villani [318, 319],
Ambrosio et Savaré [12] et Figalli [135, 137, 138] ont encore développé cette théorie.

Transport Optimal multimarges Soit M ∈ N∗ et pour tout 1 ≤ i ≤ M ,
soit Xi = Rdi avec di ∈ N∗. Nous considérons M mesures de probabilité µ1 ∈
P(X1), ..., µM ∈ P(XM) et une fonction de coût semi-continue inférieurement c :
X1 × ...×XM → R+ ∪ {∞}.

Le problème de transport optimal multimarges est défini par

I∗ = inf
π∈Π(µ1,...,µM )

{∫
X1×...×XM

c(x1, ..., xM)dπ(x1, ..., xM)

}
, (1)
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où

Π(µ1, ..., µM) = {π ∈ P(X1 × ...×XM)

t.q.∀1 ≤ i ≤M,

∫
X1×···×Xi−1×Xi+1×···×XM

dπ = dµi

}
.

Un tel problème apparâıt en chimie quantique, objet de l’application de cette
thèse ainsi qu’en mécanique des fluides [43] et en science des données [232].

D’un point de vue théorique, ces problèmes ont été grandement étudiés par les
mathématiciens [49, 161, 274], avec la caractérisation de mesures optimales [152,
258, 259, 270], si elles peuvent être de type Monge [195, 269] ou non [141]. Il y a
aussi des études de ce problème (1) pour des coûts particuliers [158], dans le cas
symétrique [162] ou son utilisation comme métrique [254].

Des extensions du problème (1) comme le transport optimal multimarges partiel
[198], avec un nombre infini de marginales [271] ou sur une variété Riemanienne
[196] ont aussi été étudiées, ainsi que ses connections avec des systèmes d’équations
[208, 163], les couplages multi-agents [273] and et les effets de quantification [53].

Transport Optimal martingale Nous introduisons dans ce paragraphe le trans-
port optimal martingale dans le cas avec deux marginales. Nous supposons que
X = Y = Rd avec d ∈ N∗, et considérons deux mesures de probabilités µ, ν ∈ P(Rd)
telles que ∫

Rd
|y|dν(y) <∞

et µ est plus petite que ν dans l’ordre convexe, i.e.∫
Rd
ϕ(x)dµ(x) ≤

∫
Rd
ϕ(y)dν(y), (2)

pour toute fonction convexe ϕ : Rd → R positive et intégrable par rapport à µ et
ν. Cette dernière condition est équivalente, d’après le théorème de Strassen [311], à
l’existence d’un coupage martingale entre µ et ν, i.e.

∃π ∈ Π(µ, ν), ∀x ∈ Rd,

∫
Rd
ydπ(x, y) = x.

Le problème de transport optmal martingale consiste alors en la résolution du
problème de minimisation

inf
π∈Π(µ,ν)

∀x∈Rd,
∫
Rd ydπ(x,y)=x

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
, (3)

oùs c : Rd×Rd → R+ ∪{∞} est une fonction de coût semi-continue inférieurement.

Ces problèmes sont difficiles à résoudre d’un point de vue numérique car leur
discrétisation par les méthodes classiquement utilisées pour les problèmes de trans-
port optimal à deux marginales ont une complexité exponentielle en le nombre de
marginales.
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Partie I : Étude de l’approximation de problèmes de transport opti-
mal par des problèmes de transport avec contraintes de moments Une
première contribution de cette thèse a été d’introduire une relaxation du problème
de transport optimal multimarges (1) ou martingale (3) pour laquelle les con-
traintes marginales et martingales sont relaxées en des contraintes de moments.
Plus précisément, pour chaque loi marginale µi, nous choisissons N fonctions tests
φ

(i)
n : Xi → R (1 ≤ i ≤ M , 1 ≤ n ≤ N), le problème de transport optimal approché

par des contraintes de moments s’écrit alors

IN = inf
π∈Π(µ1,...,µM ;(φ

(1)
n )1≤n≤N ,...,(φ

(M)
n )1≤n≤N )

{∫
X1×...×XM

c(x1, ..., xM)dπ(x1, ..., xM)

}
,

(4)
où

Π
(
µ1, ..., µM ; (φ(1)

n )1≤n≤N , . . . , (φ
(M)
n )1≤n≤N

)
={

π ∈ P(X1 × ...×XM) t.q.∀1 ≤ i ≤M, ∀1 ≤ n ≤ N,∫
X1×···×XM

φ(i)
n (xi)dπ(x1, . . . , xM) =

∫
Xi
φ(i)
n dµi

}
.

Nous prouvons le théorème suivant

Théorème 0.1. Sous des hypothèses appropriées sur les fonctions tests et des con-
traintes techniques additionnelles, nous avons que

IN −→
N→+∞

I(ν).

De plus, il existe au moins un minimiseur πN ∈ P(X1 × · · · × XM) à (4) qui s’écrit

πN =
K∑
k=1

wkδ(xk1 ,...,x
k
M )

pour un certain 1 ≤ K ≤ NM+2, et certains wk ≥ 0 et (xk1, . . . , x
k
M) ∈ X1×· · ·×XM

pour tout 1 ≤ k ≤ K.

L’existence de ce minimiseur discret chargeant un faible nombre de points est
intéressant d’un point de vue numérique car cela permet de concevoir une méthode
numérique qui peut calculer une approximation du transport optimal multimarges
avec un nombre de scalaires qui crôıt linéairement avec le nombre de lois marginales,
ce qui casse le fléau de la dimension posé par les problèmes multimarges.

Nous établissons de plus qu’une telle relaxation s’applique aussi à la contrainte
martingale du transport optimal multimarges martingale et avons dans ce cas des
résultats de convergence analogues. Enfin, ce problème approché a un intérêt parti-
culier en finance dans la mesure où les fonctions de moments permettent de prendre
seulement en compte l’information disponible sur les mesures de probabilité con-
sidérées.

De plus, nous étudions aussi pour des classes particulières de fonctions tests,
dans certains cas fondamentaux, la vitesse de convergence du problème approché
(4) vers (1), illustrant l’influence du choix des fonctions tests sur l’approximation.
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Calculs de structure électronique de molécules Dans l’approximation de
Born-Oppenheimer, une molécule est un système composé de

• M ∈ N∗ noyaux qui sont connsidérés comme des particules ponctuelles clas-
siques et dont les positions sont notées R1, · · · , RM ∈ R3 et leur charge
électrique Z1, · · · , ZM ∈ N∗;

• N électrons qui sont modélisés comme des particules quantiques et dont l’état
est décrit par une fonction

ψ :

{
R3N → C

(x1, . . . , xN) 7→ ψ(x1, . . . , xN),

appelée fonction d’onde du système d’électrons.

Afin d’alléger les notations, nous omettons les variables de spin. En effet, dans
les deux parties de cette thèse, ou bien la dépendance en le spin peut être séparé
de celle en les positions (seconde contribution), ou bien elle disparâıt dans la limite
semiclassique considérée (troisième contribution).

L’interprétation physique d’une fonction d’onde ψ est la suivante: étant donné un
ensemble A ⊂ R3N ,

∫
A
|ψ|2 représnete la probabilité que les positions des N électrons

appartiennent à l’ensemble A. En particulier, ceci implique que ‖ψ‖2
L2(R3N ) = 1. De

plus, la fonction d’onde ψ est antisymétrique par rapport à ses variables. C’est une
conséquence du fait que les électrons sont des fermions. Plus précisément, en notant
SN l’ensemble des permutations de l’ensemble {1, . . . , N}, nous avons que pour tout
p ∈ SN et tout (x1, . . . , xN) ∈ R3N ,

ψ(xp(1), . . . , xp(N)) = ε(p)ψ(x1, . . . , xN),

où ε(p) est la signature de p.

L’énergie E[ψ] d’un système de N électrons dont l’état est décrit par une fonction
d’onde ψ dans la molécule décrite ci-dessus est la somme de trois contributions :

• l’énergie cinétique:

T [ψ] :=
1

2

∫
R3N

|∇ψ|2;

• l’énergie de Coulomb associée aux interactions entre les électrons et les noyaux :

Cnuc[ψ] :=

∫
R3N

(
N∑
i=1

Vnuc(xi)

)
|ψ(x1, . . . , xN)|2 dx1 · · · dxN ,

where, for all x ∈ R3,

Vnuc(x) := −
M∑
k=1

Zk
|x−Rk|

;

• l’énergie de Coulomb associée aux interactions entre les électrons :

Celec[ψ] :=

∫
R3N

c(x1, . . . , xN)|ψ(x1, . . . , xN)|2 dx1 . . . dxN ,

où pour presque tout (x1, . . . , xN) ∈ R3N ,

c(x1, . . . , xN) =
∑

1≤i<j≤N

1

|xi − xj|
.
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Calculer l’état fondamental des électrons dans la molécule revient à calculer la
fonction d’onde ψ0 qui minimise l’énergie du système parmi toutes les fonctions
d’onde admissibles. Plus précisément, notons

A :=
{
ψ ∈ L2(R3N), ∇ψ ∈ L2(R3N)3N , ψ antisymmetric, ‖ψ‖L2(R3N ) = 1

}
l’ensemble de fonctions d’ondes associées à un système de N electrons avec une
énergie cinétique finie. Alors, nous avons que

U(R1, · · · , RM) = min
ψ∈A

T [ψ] + Cnuc[ψ] + Celec[ψ], (5)

où nous avons signalé la dépendance de la valeur de cet infimum en la position des
noyaux de la molécule R1, · · · , RM . Soit H := −1

2
∆ +

∑N
i=1 Vnuc(xi) + c(x1, · · · , xN)

que l’on appelle opérateur de Schrödinger à plusieurs corps. L’opérateur H est
auto-adjoint, borné inférieurement, et opérateur sur

L2
antisym(R3N) := {ψ ∈ L2(R3N), ψ antisymmetric}

avec pour domaine

H2
antisym(R3N) := {ψ ∈ H2(R3N), ψ antisymmetric}.

Notons aussi

H1
antisym(R3N) := {ψ ∈ H1(R3N), ψ antisymmetric}.

Dans le cas où U(R1, · · · , RM) := inf σ(H) est une valeur propre discrète de H
(ce qui arrive par exemple quand la molécule est neutre ou chargée positivement
d’après le théorème de Zhislin [326]), il existe au moins un minimiseur ψ0 à (5), et
tout minimiseur est nécessairement un vecteur propre de H associé à la valeur propre
U(R1, · · · , RM). Ainsi, résoudre le problème de Schrödinger électronique revient à
résoudre un problème aux valeurs propres linéaire de grande dimension de la forme

Hψ0 = U(R1, · · · , RM)ψ0. (6)

Seconde contribution de cette thèse : interactions de van der Waals
entre deux atomes d’hydrogène Bien que pour de grandes valeurs de N et
M des approximations et des méthodes numériques sont nécessaires pour évaluer
U(R1, · · · , RM), pour de petits systèmes, des techniques analytiques peuvent per-
mettre de résoudre l’équation de Schrödinger.

C’est le cas lorsque l’on considère les intéractions électroniques en entre deux
atomes hydrogène à grande distance. Ces interactions sont appelées interactions
de van der Waals, sont attractives et jouent un rôle important dans les systèmes
en phase condensée tels que les molécules biologiques [21, 288] ou les matériaux 2D
[153]. Étudiées depuis 1873 [317], elles ont d’abord été comprises mathématiquement
par London [238]. Dans le cas de deux atomes d’hydrogène, Slater et Kirkwood [309]
ont amené une équation aux dérivées partielles qui permet de calculer les coefficients
de dispersion de l’énergie dans la limite des grandes distances (qui décrôıt en−C6/R

6

au premier ordre, où R est la distance entre les noyaux). Cancès et Scott dans [78]
ont modifié leur technique et ont prouvé que le problème qu’ils ont proposé est bien
posé et à l’aide d’une approximation de Galerkin ont calculé le coefficient C6.

Une extension de la technique de Cancès et Scott a été étudiée pendant cette
thèse afin de calculer les coefficients de dispersion de van der Waals a n’importe
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quel ordre. Cette technique repose sur une méthode de perturbation afin d’analyser
le développement en série asymptotique de l’attraction de van der Waals ainsi que
sur une séparation des interactions entre une partie radiale et une partie angulaire
ce qui ramène le problème original en six dimensions à des équations aux dérivées
partielles en deux dimensions. Les coefficients de dispersion peuvent enfin être
calculés récursivement par des approximations de Galerkin; les valeurs calculées avec
cette méthode sont en accord avec celles de [204, 265] pour lesquelles les auteurs ont
utilisé d’autres techniques.

Theorie de la fonctionnelle de la densité La grande dimensionalité de l’équation
(6) la rend difficile à résoudre d’un point de vue numérique par des méthodes stan-
dard dans le cas où N est grand, en particulier pour des systèmes d’électrons forte-
ment corrélés où les interactions coulombiennes entre les noyaux jouent un rôle
important.

Le principe de la Théorie de la Fonctionnelle de la Densité (DFT), et de tous
les modèles qui en sont dérivés est une reformulation du problème (5) où la densité
(et non plus la fonction d’onde) est la variable principale. Le principal avantage de
cette méthode est que le problème est maintenant formulé sur le domaine R3 plutôt
que R3N .

La justification théorique des modèles de DFT a été introduite par Hohenberg et
Kohn [182], puis par Levy [225] et complétée par Lieb [229]. En effet, le théorème
de Hohenberg-Kohn [182] dit que l’énergie de la densité électronique de l’état fon-
damental du problème électronique (5) peut être trouvée en résolvant un problème
de la forme

U(R1, · · · , RM) = inf

{
F (ρ) +

∫
R3

ρV, ρ ∈ L1(R3),

∫
R3

ρ = N

}
,

où F est une fonctionnelle de la densité électronique ρ. Plus précisément, la DFT
repose sur le calcul suivant [182, 229]:

U(R1, · · · , RM) = inf {〈ψe, HV ψe〉, ψe ∈ A}

= inf

{
inf {〈ψe, H1ψe〉, ψe ∈ A, ρψe = ρ}+

∫
R3

ρV, ρ ∈ IN
}

= inf

{
FLL(ρ) +

∫
R3

ρV, ρ ∈ IN
}
,

où IN est l’ensemble des densités électroniques associées à des fonctions d’onde
admissible et qui peut s’écrire [229]

IN =

{
ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
R3

ρ = N

}
.

et où
FLL(ρ) := inf {〈ψe, H1ψe〉, ψe ∈ A, ρψe = ρ}

est appelée la fonctionnelle de Levy-Lieb. Cette fonctionnelle est universelle au sens
où elle ne dépend pas du système moléculaire étudié (qui n’intervient qu’à travers
le potentiel V et le nombre d’électrons N). De façon équivalente, la fonctionnelle
de Levy-Lieb peut être réécrite

FLL(ρ) := {T [ψ] + Celec[ψ], ψ ∈ A, ρψ = ρ} .
Cette théorie est attrayante, toutefois en pratique, le calcul exact de FLL(ρ) est hors
de portée dans la mesure où il nécessite la résolution d’un problème aussi complexe
que le problème de Schrödinger électronique original.
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Limite semi-classique de la fonctionnelle de Levy-Lieb L’une des approxi-
mations, suggérée par des chimistes théoriques dans [302, 304], consiste à regarder
la limite semi-classique où celle des électrons strictement corrélés (SCE) de la fonc-
tionnelle de Levy-Lieb, afin de l’utiliser pour concevoir des modèles approchant la
DFT pour les systèmes fortement corrélés. Cette limite semi-classique est la limite
lorsque α tend vers 0 de la fonctionnelle Fα

LL définie comme suit pour tout ρ ∈ IN
et 0 < α ≤ 1:

Fα
LL(ρ) := {αT [ψ] + Celec[ψ], ψ ∈ A, ρψ = ρ} .

Dans cette limite semi-classique, l’influence du terme d’énergie cinétique T [ψ] est
alors négligé par rapport aux contributions dues au terme d’interactions coulom-
biennes électron-électron Celec[ψ]. Il a été rigoureusement prouvé par une série de
travaux [106, 107, 226] que la limite lorsque α tend vers 0 de la fonctionnelle Fα

LL(ρ)
s’écrit comme un problème de transport optimal multimarges avec coût de Coulomb.
Plus précisément, pour tout ρ ∈ IN , notons νρ la mesure de probabilité sur R3

définie par dνρ(x) := ρ(x)
N
dx et Psym(R3N) l’ensemble des mesures de probabilité

symétriques sur R3N . Pour tout γ ∈ Psym(R3N), notons µγ la mesure de probabilité
sur R3 définie comme la marginale de γ, i.e.

dµγ(x) :=

∫
(x2,...,xN )∈R3(N−1)

dγ(x, x2, . . . , xN).

Des travaux de Buttazzo, De Pascale et Gori Giorgi [67], Cotar, Friesecke et
Klüppelberg [106] pour des preuves pour N = 2 et avec Mendl et Pass [142], Bindini
et De Pascale [50] étendus par Lewin [226] pour N ≥ 2 dans le cas des états mixes
fermioniques et Cotar, Friesecke et Klüppelberg [107] pour N ≥ 2, ont prouvé, en
utilisant un lissage approprié des plans de transport que dans la limite semi-classique

lim
α→0

Fα
LL(ρ) = I(νρ),

où pour toute mesure de probabilité ν sur R3,

I(ν) := inf
γ ∈ Psym(R3N),

µγ = ν

∫
R3N

c dγ. (7)

Troisième contribution de cette thèse : Développement d’un nouvel algo-
rithme numérique pour des problèmes de transport optimal multimarges
symétriques Une troisième contribution de cette thèse est de proposer et analyser
d’un point de vue mathématique une nouvelle méthode pour approcher le problème
de transport optimal multimarges symétrique (7). Dans cette approche, nous con-
sidérons toujours l’espace d’états continus R3, mais les contraintes marginales appa-
raissant dans (7) sont relaxées en un nombre fini de contraintes de moments. C’est
un cadre dans lequel les résultats introduits en première contribution s’appliquent
et peuvent être symétrisés, permettant des gains de complexités additionnels.

Par simplicité, nous présentons nos résultats ci-après dans le cas où le support
de la mesure ν est inclus dans un ensemble compact Y ⊂ R3. Soit (fm)m∈N∗ ⊂ C(Y ),
vérifiant l’hypothèse de densité naturelle suivante

∀f ∈ C(Y ), inf
gM∈Span{f1,...,fM}

‖f − gM‖L∞ −→
M→+∞

0,
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et considérons le problème de transport optimal approché avec contraintes de mo-
ments

IM(ν) := inf
γ ∈ Psym(R3N),
∀1 ≤ m ≤M,∫

R3N

(
1
N

∑N
i=1 fm(xi)

)
dγ(x1, . . . , xN) =

∫
R3 fm dν

∫
R3N

c dγ. (8)

Nous avons prouvé le théorème suivant, où P(R3N) est l’ensemble des mesures de
probabilités sur R3N (non nécessairement symétriques).

Théorème 0.2. Sous les hypothèses précédentes, nous avons que

IM(ν) −→
M→+∞

I(ν).

De plus,

IM(ν) = inf
γ ∈ P(R3N),
∀1 ≤ m ≤M,∫

R3N

(
1
N

∑N
i=1 fm(xi)

)
dγ(x1, . . . , xN) =

∫
R3 fm dν

∫
R3N

c dγ, (9)

et il existe au moins un minimiseur γM ∈ P(R3N) à (9) qui s’écrit

γM =
K∑
k=1

wkδ(xk1 ,...,x
k
N )

pour un certain 1 ≤ K ≤M + 2, et certains wk ≥ 0 et (xk1, . . . , x
k
N) ∈ Y N pour tout

1 ≤ k ≤ K. De plus,

γMsym =
1

N !

∑
p∈SN

K∑
k=1

wkδ(xk
p(1)

,...,xk
p(N)

),

la version symétrisée de γM , est un minimiseur de (8).

Le théorème 0.2 établit deux choses : (i) il est possible de retirer la contrainte
de symétricité de la mesure γ dans le problème (8) pour calculer IM(ν); (ii) il existe
un minimiseur de (9) qui s’écrit comme une mesure discrète chargeant un faible
nombre de points (moins de M+2), et un minimiseur à (8) peut être obtenu comme
le symétrisé de cette mesure discrète. En particulier, ceci signifie qu’il est suffisant
d’identifier au plus O(NM) scalaires pour calculer γM . Ceci suggère que considérer
le problème d’optimisation suivant pour le calcul de IM(ν), puisque

IM(ν) = min
(wk)1≤k≤M+2 ∈ RM+2

+ ,∑M+2
k=1 wk = 1,(

xk1, . . . , x
k
N

)
∈ Y N , ∀1 ≤ k ≤M + 2,∑M+2

k=1 wk

(
1
N

∑N
i=1 fm(xki )

)
=
∫
R3 fm dν

M+2∑
k=1

wkc(x
k
1, . . . , x

k
N). (10)

L’utilisation de cette structure parcimonieuse pour la conception de méthode
numériques pour la résolution de (8) a été l’objet de cette thèse. Nous prouvons
en particulier que tout minmiseur local de (10) en est un minimseur global . De
plus, la méthode numérique proposée pour la résolution de ce problème utilise un
processus de Langevin sur-amorti contraint, et cela permet de résoudre un problème
de transport optimal multimarges symétrique ayant 100 marginales, ce qui est plus
large que l’état de l’art pour ce type de problèmes.

xiv
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Introduction
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1.1 Introduction

The work of this thesis focuses on two mathematical problems arising from quantum
chemistry, and more specifically from applications concerning electronic structure
calculations of molecules.

A first part of this work concerns some theoretical results about a numerical
method for computing the so-called strictly correlated electrons (SCE) limit of the
so-called Levy-Lieb functional in Density Functional Theory (DFT). For a given
electronic density, the SCE limit of the Levy-Lieb functional gives rise to a symmetric
multi-marginal optimal transport problem with Coulomb cost, where the number of
marginal laws is equal to the number of electrons in the system which can be very
large in relevant applications. One contribution of this thesis is the theoretical and
numerical study of a numerical method for the resolution of this optimal transport
problem, which consists in relaxing the marginal constraints into a finite number
of moment constraints. In particular, it is proved that minimizers to the resulting
approximate optimization problem exist and that some of them can be written as
discrete measures charging a low number of points, which scales linearly with the
number of electrons. This can be exploited for the design of efficient algorithms
for the resolution of such approximate problems. Numerical results illustrate the
performance of the proposed numerical method, which makes use of constrained
overdamped Langevin dynamics. The proposed numerical method can be used for
the resolution of other types of multi-marginal optimal transport problems, including
problems with martingale constraints arising from finance applications.

A second contribution of the thesis focuses on a perturbation method and asymp-
totic expansion to compute the electronic wavefunction in the Born-Oppenheimer
approximation of two hydrogen atoms at large distance. This work extends an article
by E. Cancès and R. L. Scott [78], and provides an iterative method to compute van
der Waals dispersion coefficients up to an arbitrary order for two hydrogen atoms.

This introductory chapter is structured as follows: an introduction on optimal
transport theory, its applications and existing numerical methods in the general
case is given in Section 1.2. Section 1.3 presents an introduction on electronic
structure calculation problems for molecules in quantum chemistry, in particular for
the electronic Schrödinger many-problem together with its link to van der Waals
interactions, and the Density Functional Theory. In this section are also presented
the links between optimal transport problems and the SCE limit of the so-called
Levy-Lieb functional, together with the main contributions of this thesis.

1.2 Introduction to optimal transportation

Optimal transport theory has been first formulated by Monge in 1781 in [260]. Its
interest has been increasing in the second half of XXth century after the introduction
of its relaxed formulation by Kantorovich in [189] and its numerical solution by
linear programming by Dantzig [115, 116]. From the end of the XXth century,
progress was made in the study of its mathematical properties by Brenier [57, 59],
Gangbo [149] and McCann [150, 151], and of its connection with Monge-Ampère
equation (see Caffarelli in [72, 73, 74]). Latter works including the one of Otto [187,
264], Caffarelli [71], Villani [318, 319], Ambrosio and Savaré [12] and Figalli [12, 137,
138] developped this theory further.

Optimal transport has a wide range of applications, and we refer the reader to
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the review articles [283, 284]. Different points of views can be cast on this family of
problems, depending on the types of applications one considers.

First, a “transport” point of view allows computing given a starting distribution
and an end distribution, a way of transporting the first one on the last one which
is optimal relative to some physical cost or constraints. This can be leveraged in
the planning of cities [69, 80] and urban network [68], the study of crowd motion
[65, 216, 293] as well as in fluid mechanics [39, 43, 56, 58, 60, 61] or propagation
through porous media [87] and even for the reconstruction of initial conditions of
the universe [62, 144].

A second point of view on optimal transport is to consider this theory as a
mean to compute metrics between two probability distributions (for instance the
Wasserstein distance). This approach is used in computer vision and image analysis
[23, 131, 176, 203, 241, 242, 282, 289, 294, 298], signal analysis [202, 315], shape
matching or reconstruction [117, 132, 239, 312] and data science and machine learn-
ing (for instance for linguistics or Wasserstein Generative Adversarial Networks)
[20, 155, 183, 277, 295].

A third field of applications is economics, which often makes use of the dual
formulation of optimal transport as an equilibrium state that maximizes the interest
of two (or more) actors [81, 82, 94], and econometrics [146, 147].

Section 1.2.1 contains an introduction to the mathematical properties of two-
marginal optimal transport problems. In this thesis, we will focus more specifically
on applications stemming from quantum chemistry and finance, where multimarginal
optimal transport and martingale optimal transport naturally arise. Hence, Sec-
tion 1.2.2 will be devoted to the presentation of such problems, together with the
existing numerical methods used to compute a numerical approximation of their
solutions.

1.2.1 Two-marginal optimal transport problem

We begin by presenting definitions and mathematical properties related to the study
of two-marginal optimal transport problems, following results from [11, 318, 319,
291].

1.2.1.1 Monge and Kantorovich formulation

For any Polish space Z, (i.e. complete and separable metric space), let us denote
by P(Z) the set of probability measures on Z, and by Cb(Z) the set of continuous
bounded functions on Z.

Let us consider two probability measures µ ∈ P(X ) and ν ∈ P(Y), where X and
Y are Polish spaces.

Definition 1.1 (Push-forward measure). Let T : X → Y be a measurable map.
Then, the push-forward measure of µ by T (denoted T#µ) in P(Y) is defined by

T#µ(A) = µ(T−1(A)) for every measurable set A ⊂ Y. (1.1)

In addition, let c : X × Y → R+ ∪ {+∞} be a lower semi-continuous function.
The function c will be called hereafter a cost function. For a given cost function c,
the Monge formulation of optimal transport reads as

find T ∗ : X → Y a measurable map s.t. T ∗ ∈ arg min
T :X→Y measurable

T#µ=ν

∫
X
c(x, T (x))dµ(x).

(1.2)
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This problem can be interpreted as follows: the map T ∗ encodes a displacement of
some mass distributed according to the probability measure µ to match the distri-
bution of mass given by ν in such a way that it generates the lowest displacement
cost relative to c.

In general, Problem 1.2 is not well-posed as there may not exist any minimizer
T ∗, depending on the choice of c, µ and ν.

Let us denote the set of couplings measures on X × Y between µ and ν by

Π(µ, ν) :=

{
π ∈ P(X × Y) |

∫
X
dπ = dν,

∫
Y
dπ = dµ

}
. (1.3)

The Kantorovich formulation of optimal transport then reads as

find π∗ ∈∈ Π(µ, ν) s.t. π∗ ∈ arg min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y). (1.4)

The measure π∗ can be seen as a coupling measure between µ and ν which encodes
correlations between two random variables whose marginal laws are given respec-
tively by µ and ν which, integrated against c, have the lowest cost.

Theorem 1.1. Let X and Y be Polish spaces, µ ∈ P(X ), ν ∈ P(Y), c : X × Y →
R+∪{+∞} be a lower semi-continuous cost function, then (1.4) admits at least one
solution.

Note that in some cases, solutions to (1.4) can be obtained from solutions to (1.2).
If there exists T : X → Y a measurable map such that dπ∗(x, y) = dµ(x)⊗ δT (x)(y)
where π∗ is a solution to (1.4), we say that π∗ is a Monge minimizer to (1.4).

In the case when c(x, y) = h(x − y) with h a strictly convex function, µ and ν
are probability measures on a compact subset Ω ⊂ Rd, µ is absolutely continuous
and ∂Ω is negligible, then the minimizer of (1.4) is unique and of Monge form.

1.2.1.2 Wasserstein distance

Optimal transport is a natural way to define metrics between probability measures,
such as the Wasserstein distance introduced below.

Definition 1.2 (Wasserstein distance). Let 1 < p < +∞. The Wasserstein distance
to the power p between µ and ν is defined as

Wp(µ, ν) =

(
min

π∈Π(µ,ν)

∫
X×Y
|x− y|pdπ(x, y)

)1/p

.

For any φ ∈ Cb(X ) and ψ ∈ Cb(Y), let us denote by

φ⊕ ψ :

{
X × Y → R,
(x, y) 7→ φ(x) + ψ(y).

1.2.1.3 Dual formulation

The dual formulation of the Kantorovich formulation (1.4) reads as

find (φ∗, ψ∗) ∈ Cb(X )× Cb(Y) s.t. (φ∗, ψ∗) ∈ arg max
φ∈Cb(X ), ψ∈Cb(Y)

φ⊕ψ≤c

∫
X
φ dµ+

∫
Y
ψdν.

(1.5)
Any solution (φ∗, ψ∗) ∈ Cb(X )×Cb(Y) to (1.4) is called a set of Kantorovich poten-
tials.

The following theorem states some theoretical properties of the dual problem (1.4).
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Theorem 1.2 (From [291, Theorem 1.39 and 1.42]). Let X and Y be Polish spaces.

• If c : X × Y → R ∪ {+∞} is l.s.c. and bounded from below, then there exists
a supremum value to (1.5); besides, it is equal to the minimal value of (1.4).

• If c : X ×Y → R is uniformly continuous and bounded, then the optimal value
of (1.5) is equal to the optimal value of (1.4); besides, there exists maximizers
to (1.5). Moreover, for any π∗ solution of (1.4) and any (φ∗, ψ∗) solution to
(1.5), it necessarily holds that

φ∗(x) + ψ∗(y) = c(x, y) π∗-a.e. on X × Y (1.6)

Let us mention here that numerous works are related to regularity properties of
transport maps [26, 194, 235], Kantorovich potentials [240, 281], c-cyclical mono-
tonicity [89], optimality [280] and duality [30, 31, 32, 191, 281]

1.2.1.4 Extensions of the two-marginal optimal transport problem

Let us briefly mention here some works on extensions or particular aspects of the two-
marginal optimal transport problems introduced in the preceding sections: optimal
transport theory on Riemanian or non-compact manifolds [129, 139, 250]; study of
particular cost functions (e.g. the determinant [85] or repulsive costs [104, 123]);
problems with unequal dimensions [263]; unbalanced optimal transport [54, 96, 97];
partial transport problem [134]; dynamical formulation [186, 212, 213]; transport
with obstacle problem [75].

Second, studies involving extensions of the Wasserstein distance [79, 90] or in
the Wasserstein space [249, 292] such as the problem of finding barycenters in the
Wasserstein space [2].

Let us also mention studies involving relaxations of optimal transport such as the
entropic relaxation and some statistical properties [95, 124, 133, 136, 199, 201, 231]
or its use to approximate Wasserstein gradient flows [276] or Schrödinger problem
[248].

Last, let us mention the link between optimal transport and PDE’s [127] and
analytical problems such as the Schrödinger problem [221, 222], Cournot-Nash equi-
libria [51].

1.2.2 Multimarginal and martingale optimal transport

In this section are introduced multimarginal and martingale optimal transport and
optimal transport problems, which are the main focus of this thesis.

Multimarginal optimal transport Let M ∈ N∗ (where N∗ denotes the set of
positive integers {1, 2, 3, . . .}) and for all 1 ≤ i ≤ M , let Xi = Rdi with di ∈ N∗.
We consider M probability measures µ1 ∈ P(X1), ..., µM ∈ P(XM) and a lower semi
continuous cost function c : X1 × ...×XM → R+ ∪ {∞}.

The multimarginal optimal transport problem is defined as follows

inf
π∈Π(µ1,...,µM )

{∫
X1×...×XM

c(x1, ..., xM)dπ(x1, ..., xM)

}
, (1.7)
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where

Π(µ1, ..., µM) = {π ∈ P(X1 × ...×XM)

s.t.∀1 ≤ i ≤M,

∫
X1×···×Xi−1×Xi+1×···×XM

dπ = dµi

}
.

Such multi-marginal optimal transport problems arise in quantum chemistry
applications which will be detailed in the next section. Let us mention here that it
also appears in fluid mechanics [43] and data science [232].

From a theoretical point of view, such problems have received a lot of atten-
tion from mathematicians [49, 161, 274], with some characterization of its optimal
measures [152, 258, 259, 270], whether they can be of Monge form [195, 269] or not
[141]. There are also studies of problem (1.7) for some particular costs [158], the
symmetric case [162] or its use as a metric [254].

Extensions of problem (1.7) such as partial multimarginal optimal transport
[198], with an infinite number of marginal laws [271] or on a Riemanian manifold
[196] have also been studied, as well as connections with systems of equations [208,
163] or multi-agent matching [273] and quantization effects [53].

Martingale optimal transport In this paragraph, we introduce martingale op-
timal transport in the two marginal case. Let us assume that X = Y = Rd with
d ∈ N∗, and consider two probability measures µ, ν ∈ P(Rd) such that∫

Rd
|y|dν(y) <∞

and µ is lower than ν for the convex order, i.e.∫
Rd
ϕ(x)dµ(x) ≤

∫
Rd
ϕ(y)dν(y), (1.8)

for any convex function ϕ : Rd → R non-negative or integrable with respect to µ and
ν. This latter condition is equivalent, by Strassen’s theorem [311], to the existence
of a martingale coupling between µ and ν, i.e.

∃π ∈ Π(µ, ν), ∀x ∈ Rd,

∫
Rd
ydπ(x, y) = x.

The original martingale optimal transport then consists in the resolution of the
minimization problem

inf
π∈Π(µ,ν)

∀x∈Rd,
∫
Rd ydπ(x,y)=x

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
, (1.9)

with c : Rd × Rd → R+ ∪ {∞} being a l.s.c. cost function.

Financial application of multimarginal and martingale optimal transport
Considering an asset with a price St at time t. An option on this asset is a tradable
product which gives a payoff λ(ST ) at time T (called maturity) to its owner. Typical
options are calls (λ : s 7→ (s −K)+) or puts (λ : s 7→ (K − s)+) traded for various
values of K (called strike) at fixed maturities (T1 < T2 < . . . ). Knowing the price of
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such options for any value of K is equivalent to knowing the probability distribution
of the price of the asset at time T .

Thus, the modeling of the price of any financial product based on the asset must
be in accordance with its option prices, and, under a no-arbitrage assumption, must
follow a martingale. Recent works [27, 125, 128, 145] then used martingale optimal
transport to provide model-free bounds on the considered financial product, which
was used recently for VIX options [120, 173, 174]. This financial application led
to several theoretical studies of martingale optimal transport [29, 181], its dual-
ity [33, 35, 93], martingale transport plans [119, 160] and its link with Skorokhod
embeddings [25, 28, 172].

Numerical methods using sampling techniques [5, 6], entropic regularization and
the Sinkhorn algorithm [118, 171, 247] have been used. However, those techniques
might struggle in the case of multimarginal martingale optimal transport, i.e. when
taking into account two or more maturities.

1.2.3 Numerical methods for optimal transportation

Several numerical methods have been introduced to solve optimal transport prob-
lems [224, 277], often in view of some particular applications. We summarize in this
section the most widely used methods, and highlight the advantages and drawbacks
of them, in particular with respect to the resolution of multimarginal or martingale
optimal transport problems. Methods dedicated to the resolution of optimal trans-
port problems stemming from quantum chemistry applications will be detailed in a
forthcoming section.

In order to solve optimal transport problems involving discrete distributions,
linear programming methods naturally arise such as the simplex [4], the Hungarian
method [207] or the Auction algorithm [47, 70] or related improved linear program-
ming methods [164]. The sparsity and the ordered structure of the minimas for
particular cost function and particular space dimension, can be used in order to im-
prove the complexity of the algorithms through the resolution of local subproblems
[296, 299, 300] or via the use of proximal splitting [267], or solving local versions of
the dual problem [253].

Semi-discrete optimal transport, for which only one marginal law is discrete, is
another numerical approach and can be used for applications in dimension 2 or 3
[45, 177, 197, 215, 223, 252].

Differential methods using PDE’s [176], gradient flows [19, 36, 175], Lagrangian
method [184], its connection with fluid mechanics [37] or Newton method, and lever-
aging the connection between optimal transport and the Monge-Ampère equation
[44, 234, 236, 294]) have also been studied to solve L2 optimal transport with two
marginal laws; the extension of these methods to unbalanced optimal transport has
been considered in [38, 237].

Last but not least, let us mention the Sinkhorn algorithm (and some variants,
such as Greenkhorn) [41, 83, 111, 154, 233, 297] which relies on the use of an en-
tropic regularization of optimal transport which yields a strictly convex problem and
which is very efficient to solve discrete two marginal relaxed optimal transport. This
method can be adapted to unbalanced optimal transport problems [305]. Although
data science and image processing [310] behaves nicely regarding the relaxation, it
has to be noted that the speed of convergence of this class of algorithms decreases
as the relaxation parameter goes to zero [200, 206, 306]. Let us mention the compu-
tation of Wasserstein barycenters as a multimarginal optimal transport application
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for which the Sinkhorn algorithm is also efficient [112] and for which ad hoc meth-
ods also exist [101]. The use of the Sinkhorn algorithm for multimarginal optimal
transport can also be analysed thanks to the multimarginal Schrödinger problem
[84]. A study on some other regularization methods for optimal transport can also
be found in [130].

Let us comment on the limitations of the aforementioned methods with respect
to multimarginal optimal transport applications. In this context, the size of the
resulting discrete optimal transport problems typically scales exponentially with
the number of marginal laws. The semi-discrete methods make a crucial use of the
two marginal structure and henceforth are not easily applicable to multimarginal
problems. The differential methods mentioned above relies on results specific to the
two marginal case. Lastly, the Sinkhorn algorithm relies on the computation of a
cost matrix on a tensorized discretization grid. Although multimarginal problems
[232] can be efficiently solved by means of these approaches, their complexity still
scales exponentially with the number of marginal laws, making it not transferable
to large systems.

1.3 Electronic structure calculations for molecules

and main contributions of the thesis

The aim of this section is to give an introduction to ab initio modeling in quantum
chemistry, more precisely electronic structure calculations of molecules, in particular
to the many-body Schrödinger problem and Density Functional Theory. We refer
to [77, 185, 268] for a more complete introduction.

1.3.1 The many-body Schrödinger electronic problem

In this section, we will make the use of atomic units so that

me = 1, e = 1, ~ = 1,
1

4πε0
= 1, (1.10)

where me is the mass of an electron, e is the elementary charge, ~ is the reduced
Planck’s constant, and ε0 is the dielectric permittivity of the vacuum.

In the Born-Oppenheimer approximation, a molecule is a system composed of

• M ∈ N∗ nuclei, which are considered as classical point-like particles, whose po-
sitions are denoted by R1, . . . , RM ∈ R3 and electrical charges by Z1, . . . , ZM ∈
N∗;

• N electrons, which are modeled as quantum particles, and whose state is
described by a function

ψ :

{
R3N → C

(x1, . . . , xN) 7→ ψ(x1, . . . , xN),

called the wavefunction of the system of electrons.

Note that, in order to lighten notations, spin variables are omitted, since in
the two part of this thesis, either the spin dependency can be separated from the
treatment of the positions one (Part II), or it disapears in the semiclassical limit
considered (Part I).
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The physical interpretation of a wavefunction ψ is the following: given A ⊂ R3N ,∫
A
|ψ|2 represents the probability that the positions of the N electrons belong to the

set A. In particular, this implies that ‖ψ‖2
L2(R3N ) = 1. In addition, the wavefunction

ψ is antisymmetric with respect to its variables. This is a consequence of the fact
that the electrons are fermionic particles. More precisely, denoting by SN the set of
permutations of the set {1, . . . , N}, it holds that for all p ∈ SN and all (x1, . . . , xN) ∈
R3N ,

ψ(xp(1), . . . , xp(N)) = ε(p)ψ(x1, . . . , xN),

where ε(p) denotes the signature of p.

The energy E[ψ] of a system of N electrons whose state is described by a wave-
function ψ in the molecule described above is the sum of three contributions:

• the kinetic energy:

T [ψ] :=
1

2

∫
R3N

|∇ψ|2;

• the Coulomb energy associated to the interactions between the electrons and
the nuclei:

Cnuc[ψ] :=

∫
R3N

(
N∑
i=1

Vnuc(xi)

)
|ψ(x1, . . . , xN)|2 dx1 · · · dxN ,

where, for all x ∈ R3,

Vnuc(x) := −
M∑
k=1

Zk
|x−Rk|

;

• the Coulomb energy associated to the interactions between the electrons:

Celec[ψ] :=

∫
R3N

c(x1, . . . , xN)|ψ(x1, . . . , xN)|2 dx1 . . . dxN ,

where for almost all (x1, . . . , xN) ∈ R3N ,

c(x1, . . . , xN) =
∑

1≤i<j≤N

1

|xi − xj|
.

Computing a ground state of the electrons in the molecule amounts to computing
a wavefunction ψ0 among all admissible wavefunctions which minimize the energy
of the system. More precisely, let us denote by

A :=
{
ψ ∈ L2(R3N), ∇ψ ∈ L2(R3N)3N , ψ antisymmetric, ‖ψ‖L2(R3N ) = 1

}
the set of wavefunctions associated to a system of N electrons with finite kinetic
energy. Then, it holds that

U(R1, . . . , RM) = min
ψ∈A

T [ψ] + Cnuc[ψ] + Celec[ψ], (1.11)

where we have highlighted the dependence of this infimum value with respect to the
positions of the nuclei of the molecule R1, . . . , RM . Let H := −1

2
∆+

∑N
i=1 Vnuc(xi)+
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c(x1, . . . , xN) be the so-called many-body Schrödinger operator. The operator H is
a self-adjoint, bounded from below, operator on

L2
antisym(R3N) := {ψ ∈ L2(R3N), ψ antisymmetric}

with domain

H2
antisym(R3N) := {ψ ∈ H2(R3N), ψ antisymmetric}.

We also denote by

H1
antisym(R3N) := {ψ ∈ H1(R3N), ψ antisymmetric}.

In the case when U(R1, . . . , RM) := inf σ(H) is a discrete eigenvalue of H (which
occurs for instance when the molecule is neutral or positively charged from Zhis-
lin’s theorem [326]), there exists at least one minimizer ψ0 to (1.11), and any mini-
mizer is necessarily an eigenvector of H associated to the eigenvalue U(R1, . . . , RM).
Thus, solving the electronic Schrödinger problem amounts to solving a linear high-
dimensional eigenvalue problem of the form

Hψ0 = U(R1, . . . , RM)ψ0. (1.12)

1.3.2 First contribution of the thesis: Van der Waals inter-
action between two hydrogen atoms

Although for large values of N and M approximations and numerical techniques
must be used in order to evaluate U(R1, . . . , RM), for small systems analytical tech-
niques can provide a way of solving Schrödinger equation.

This is the case for instance when considering the electronic interaction between
two hydrogen atoms in the dissociation limit. In this asymptotic regime, the in-
teraction between the two hydrogen atoms is called the van der Waals interaction.
It is attractive and plays a crucial role in systems in the condensed phase such as
biological molecules [21, 288] or 2D materials [153]. Studied from 1873 [317], van der
Waals interaction has first been mathematically understood by London [238]. Its
rigorous mathematical foundations have been investigated in the pioneering work
by Morgan and Simon [261], inspired by the one of Ahlrichs in [3], and later by
Lieb and Thiring [230], followed by many authors (see in particular [13, 205] and
references therein). For H+

2 , the expansion of the interaction energy as a function
of the distance R between the nuclei is a diverging series — yet Borel summable, as
predicted in [63] and later proved by [100, 114, 168]. Recent articles have studied
this expansion for collection of atoms [14, 18], with terms up to 1/R9 [22], molecules
[15, 16] and its differentiability [17]. In the case of two hydrogen atoms, Slater
and Kirkwood [309] provided a PDE, which allows to compute the first dispersion
coefficient of the energy in the dissociation limit (which scales like −C6/R

6, with
R the distance between the nuclei). Cancès and Scott in [78], modified their tech-
nique, proved the well-posedness of the problem they proposed and used a Galerkin
approximation to compute the C6 coefficient.

An extension of the technique by Cancès and Scott has been studied during this
thesis, and is presented in Chapter 4 in order to compute van der Waals dispersion
coefficients up to any order. The technique relies on a perturbation method in
order to analyse the asymptotic expansion of the van der Waals attraction and on
a separation between radial and angular interactions which brings the original six-
dimensional problem to the study of two-dimensional PDE’s. Dispersion coefficients
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can then be computed recursively by Galerkin approximations; values were found
following this approach in accordance with the ones in [204, 265], where the authors
used other techniques.

1.3.3 Density Functional Theory

The high-dimensional character of equation (1.12) makes it very difficult to solve
from a numerical point of view with standard numerical methods in the case when N
is large, especially for strongly correlated systems where the Coulombic interactions
between the nuclei play a significant role.

The principle of Density Functional Theory (DFT), and of all the models which
are derived from it, is the reformulation of problem (1.11) with the density (and not
anymore the wavefunction) as the main variable. The key advantage of this method
is that problems are then formulated over the domain R3 instead of R3N .

Theoretical justification of DFT models has been introduced by Hohenberg and
Kohn [182], followed by Levy [225] and completed by Lieb [229]. We refer the reader
to the review chapter [228]. Indeed, the Hohenberg-Kohn theorem [182] states that
the energy and the electronic density of the ground state of the electronic problem
(1.11) can be found by solving a problem of the form

U(R1, . . . , RM) = inf

{
F (ρ) +

∫
R3

ρV, ρ ∈ L1(R3),

∫
R3

ρ = N

}
,

where F is a functional of the electronic density ρ.

Let us rewrite H under the following form

H = HV = H0 +
N∑
i=1

Vnuc(xi),

where

H0 := −
N∑
i=1

1

2
∆xi +

∑
1≤i<j≤N

1

|xi − xj|
, (1.13)

in order to highlight the dependence of the Hamiltonian on the potential Vnuc. The
minimization problem (1.11) can then be rewritten as

U(R1, . . . , RM) = inf {〈ψe, HV ψe〉, ψe ∈ A} . (1.14)

We also denote by

IN := {ρ, ∃ψe ∈ A, ρψe = ρ}
the set of all electronic densities associated with some admissible wavefunction,
where the density ρψe associated to the wavefunction ψe is defined for x ∈ R3

ρψe(x) = N

∫
R3(N−1)

|ψe(x, x2, . . . , xN)|2dx2 . . . dxN .

It is proved in [229] that IN can be characterized equivalently as

IN =

{
ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
R3

ρ = N

}
.

11



DFT relies on the following elementary calculus [182, 229]:

U(R1, . . . , RM) = inf {〈ψe, HV ψe〉, ψe ∈ A}

= inf

{
inf {〈ψe, H0ψe〉, ψe ∈ A, ρψe = ρ}+

∫
R3

ρV, ρ ∈ IN
}

= inf

{
FLL(ρ) +

∫
R3

ρV, ρ ∈ IN
}
,

where
FLL(ρ) := inf {〈ψe, H0ψe〉, ψe ∈ A, ρψe = ρ}

is called the Levy-Lieb functional. It is universal in the sense that it does not
depend on the molecular system under consideration (which only comes into play
through the potential V and the number of electrons N). Equivalently, the Levy-
Lieb functional can be rewritten as

FLL(ρ) := {T [ψ] + Celec[ψ], ψ ∈ A, ρψ = ρ} .

This is a very appealing theory, but unfortunately, the exact computation of FLL(ρ)
is out-of-reach since it requires the resolution of a problem almost as complex as the
original electronic Schrödinger problem.

In practice then, approximations of the functional FLL are used, which gives rise
to a wide zoology of DFT models.

1.3.4 Semi-classical limit of the Levy-Lieb functional

One of these approximations, which was suggested by theoretical chemists in [302,
304], consists in looking to the semi-classical or strongly correlated electrons (SCE)
limit of the Levy-Lieb functional, with a view to use it in order to design approximate
DFT models for strongly correlated systems. This semi-classical limit is the limit
as α goes to 0 to the functional Fα

LL defined as follows for ρ ∈ IN and 0 < α ≤ 1:

Fα
LL(ρ) := {αT [ψ] + Celec[ψ], ψ ∈ A, ρψ = ρ} .

In this semi-classical limit, the influence of the kinetic term T [ψ] is then neglected
in front of the contributions due to the electron-electron Coulombic interaction term
Celec[ψ]. It has been rigorously proven in the series of works [106, 107, 226] that the
limit as α goes to 0 of the functional Fα

LL(ρ) reads as a symmetric multi-marginal
optimal transport problem with Coulomb cost. More precisely, for all ρ ∈ IN , let
us denote by νρ the probability measure on R3 defined by dνρ(x) := ρ(x)

N
dx and by

Psym(R3N) the set of symmetric probability measures on R3N . For all γ ∈ Psym(R3N),
we denote by µγ the probability measure on R3 defined as the marginal of γ, i.e.

dµγ(x) :=

∫
(x2,...,xN )∈R3(N−1)

dγ(x, x2, . . . , xN).

With work of Buttazzo, De Pascale and Gori Giorgi [67], Cotar, Friesecke and
Klüppelberg [106] for proofs for N = 2 and with Mendl and Pass [142] , Bindini and
De Pascale [50] extended by Lewin [226] for N ≥ 2 in the fermonic mixed-states
case and Cotar, Friesecke and Klüppelberg [107] for N ≥ 2, it is proved, using
appropriate smoothing of transport plans, that in the semi-classical limit

lim
α→0

Fα
LL(ρ) = I(νρ),
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where for all probability measure ν on R3,

I(ν) := inf
γ ∈ Psym(R3N),

µγ = ν

∫
R3N

c dγ. (1.15)

A different (but closely related) approach to this limit also exists through density
scaling [91]. The asymptotic expansion to the next orders of Fα

LL(ρ) with respect to
α has been studied in [167, 170].

This problem has been well studied in the recent years. Although some Monge
maps can be exhibited in spherically symmetric cases (which are close to optimality
[105, 303]), there exists when N ≥ 3 in general some non-Monge minimizers [272]
concentrated on higher dimensional submanifolds (non-necessary unique), and the
minimizer is unique and non-Monge when N =∞ [108]. Let us mention as studied
subjects the continuity of multimarginal optimal transport and of its maps (with
studies with repulsive costs other than the Coulombic one) [66, 66, 102, 104], duality
theory [103, 121, 157], relaxation [156, 159]. Let us also note [52, 109, 169, 209, 255]
as other works on the subject.

The SCE formulation of DFT has also already been applied to model quantum
systems [110, 165, 244, 246, 256], and appears in the study of uniform electron gas
[227]; comparisons with other DFT methods can be found in [166, 243, 245].

A classical way to approximate the problem (1.15) is to use a (fixed) discrete
state space {y1, . . . , yM} ⊂ R3 for some M ∈ N∗ and compute an approximation of
a solution γ to (1.15) under the form

γ ≈
∑

1≤m1,...,mN≤M

λm1,...,mN δ(ym1 ,...,ymN )

where the MN real coefficients (λm1,...,mN )1≤m1,...,mN≤M have to be determined. This
leads to a very high-dimensional linear optimization problem.

1.3.5 Numerical methods for the resolution of (1.15)

The challenges raised by multimarginal optimal transport with a Coulombic cost
led to the development of dedicated numerical methods which are exposed in this
section.

First, let us mention the work of Mendl and Lin [251], which, using the Kan-
torovich dual formulation computes the SCE limit for atoms and small molecules.
Let us also note the work of Chen, Friesecke and Mendl [92] in the 2 electrons case
which uses a smart meshing method to compute precisely a minimizer for the SCE
formulation of DFT for the H2 molecule. Nenna in [42, 262] uses the Sinkhorn al-
gorithm to solve a relaxed multimarginal optimal transport problem for atoms, up
to N = 3 electrons in the radially symmetric case. However, in the duality case,
checking the inequality constraint is not easy and in the two later methods, scaling
to more electrons is not easy either.

In more recent works by Friesecke and Vögler [143, 320] and Khoo, Ying, Lin
and Lindsey [192, 193], numerical methods on finite state space break the curse
of dimensionality, with complexity growing linearly with the number of electrons.
Note that, for some particular multimarginal problems (Wasserstein barycenters),
this linear complexity had been showed [86].
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1.3.6 Second contribution of the thesis: moment constrained
approximation of multi-marginal optimal transporta-
tion problems

A second contribution of the thesis is to propose and analyze from a mathematical
point of view an alternative approach in order to approximate the symmetric optimal
transport problem (1.15). In this approach, we still consider a continuous state space
R3, but the marginal contraint appearing in (1.15) is relaxed into a finite number
of moment constraints. For the sake of simplicity, let us present our results here in
the case when the support of the measure ν is included in a compact set Y ⊂ R3.
Let (fm)m∈N∗ ⊂ C(Y ), satisfying the following natural density assumption

∀f ∈ C(Y ), inf
gM∈Span{f1,...,fM}

‖f − gM‖L∞ −→
M→+∞

0,

and consider the approximate moment constrained optimal transport problem

IM(ν) := inf
γ ∈ Psym(R3N),
∀1 ≤ m ≤M,∫

R3N

(
1
N

∑N
i=1 fm(xi)

)
dγ(x1, . . . , xN) =

∫
R3 fm dν

∫
R3N

c dγ. (1.16)

It is proved in Chapter 2 where P(R3N) denotes the set of (not necessarily symmet-
ric) probability measures on R3N .

Theorem 1.3. Under the preceding assumptions, it holds that

IM(ν) −→
M→+∞

I(ν).

Besides, it holds that

IM(ν) = inf
γ ∈ P(R3N),
∀1 ≤ m ≤M,∫

R3N

(
1
N

∑N
i=1 fm(xi)

)
dγ(x1, . . . , xN) =

∫
R3 fm dν

∫
R3N

c dγ, (1.17)

and there exists at least one minimizer γM ∈ P(R3N) to (1.17) which reads as

γM =
K∑
k=1

wkδ(xk1 ,...,x
k
N )

for some 1 ≤ K ≤ M + 2, and for some wk ≥ 0 and (xk1, . . . , x
k
N) ∈ Y N for all

1 ≤ k ≤ K. Besides,

γMsym =
1

N !

∑
p∈SN

K∑
k=1

wkδ(xk
p(1)

,...,xk
p(N)

),

the symmetrized version of γM , is a minimizer to (1.16).

Theorem 1.3 states two things: (i) it is possible to drop the symmetry constraint
of the measure γ in problem (1.16) to compute IM(ν); (ii) there exists a minimizer of
(1.17) which reads as a discrete measure which charges a low number of points (less
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than M + 2), and a minimizer to (1.16) can be obtained as the symmetrized version
of this discrete measure. In particular, this means that it is sufficient to identify
at most O(NM) scalars to compute γM . This suggests considering the following
optimization problem for the computation of IM(ν), since

IM(ν) = min
(wk)1≤k≤M+2 ∈ RM+2

+ ,∑M+2
k=1 wk = 1,(

xk1, . . . , x
k
N

)
∈ Y N , ∀1 ≤ k ≤M + 2,∑M+2

k=1 wk

(
1
N

∑N
i=1 fm(xki )

)
=
∫
R3 fm dν

M+2∑
k=1

wkc(x
k
1, . . . , x

k
N). (1.18)

The use of this sparse structure for the design of efficient numerical methods for the
resolution of (1.16) is the object of Chapter 3. It is proved in particular that any
local minimizer to (1.18) is actually a global minimizer. In addition, the numerical
method proposed for the resolution of this problem builds on the use of constrained
overdamped Langevin processes.

Let us stress on the fact that the theorems and results presented in Chapter 2 and
Chapter 3 can be extended to general multi-marginal optimal transport problems,
as well as martingale optimal transport problems, and thus can be used, in addition
to the quantum chemistry applications highlighted in this section, for the financial
applications mentioned in Section 1.2.2.
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Part I

Moment Constrained Optimal
Transport

17





Chapter 2

Moment Constrained Optimal
Transport

This chapter is an article written with Aurélien Alonsi, Virginie Ehrlacher and
Damiano Lombardi and published in Mathematics of Computations [8].

Abstract

Optimal Transport (OT) problems arise in a wide range of applications,
from physics to economics. Getting numerical approximate solutions of these
problems is a challenging issue of practical importance. In this work, we in-
vestigate the relaxation of the OT problem when the marginal constraints
are replaced by some moment constraints. Using Tchakaloff’s theorem, we
show that the Moment Constrained Optimal Transport problem (MCOT) is
achieved by a finite discrete measure. Interestingly, for multimarginal OT
problems, the number of points weighted by this measure scales linearly with
the number of marginal laws, which is encouraging to bypass the curse of
dimension. This approximation method is also relevant for Martingale OT
problems. We show the convergence of the MCOT problem toward the cor-
responding OT problem. In some fundamental cases, we obtain rates of con-
vergence in O(1/N) or O(1/N2) where N is the number of moments, which
illustrates the role of the moment functions. Last, we present algorithms ex-
ploiting the fact that the MCOT is reached by a finite discrete measure and
provide numerical examples of approximations.

2.1 Introduction

The aim of this paper is to investigate a new direction to approximate optimal trans-
port problems [291, 319]. Such problems arise in a variety of application fields rang-
ing from economics [82, 146] to quantum chemistry [108] or machine learning [277]
for instance. The simplest prototypical example of optimal transport problem is the
two-marginal Kantorovich problem, which reads as follows: for some d ∈ N∗, let µ
and ν be two probability measures on Rd and consider the optimization problem

inf

∫
Rd×Rd

c(x, y) dπ(x, y) (2.1)

where c is a non-negative lower semi-continuous cost function defined on Rd × Rd

and where the infimum is taken over the set of probability measures π on Rd × Rd

with marginal laws µ and ν.
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The most straightforward approach for the resolution of problems of the form
(2.1) consists in introducing discretizations of the state spaces, which are fixed a
priori. More precisely, N points x1, · · · , xN ∈ Rd are chosen a priori and fixed,
marginal laws µ and ν are approximated by discrete measures of the form µ ≈∑N

i=1 µiδxi and ν ≈∑N
i=1 νiδxi with some non-negative coefficients µi and νi for 1 ≤

i ≤ N . An optimal measure π minimizing (2.1) is then approximated by a discrete
measure π ≈ ∑1≤i,j≤N πijδxi,xj where the non-negative coefficients (πij)1≤i,j≤N ∈
RN2

+ are solution to the optimization problem

inf
∑

1≤i,j≤N

πijc(x
i, xj) (2.2)

and satisfy the following discrete marginal constraints:

∀1 ≤ i, j ≤ N,

N∑
j=1

πij = µi and
N∑
i=1

πij = νj.

This boils down to a classical linear programming problem, which becomes compu-
tationally prohibitive when N is large.

Several numerical methods have already been proposed in the literature for the
resolution of optimal transport problems at a lower computational cost. Most of
them rely on an a priori discretization of the state spaces as presented above. One
of the most successful approach consists in minimizing a regularized cost involving
the Kullback-Leibler divergence (or relative entropy) via iterative Bregman projec-
tions: the so-called Sinkhorn algorithm [41, 262, 306]. Let us also mention other
approaches such as the auction algorithm [48], numerical methods based on Laguerre
cells [148], multiscale algorithms [252, 296] and augmented Lagrangian methods us-
ing the Benamou-Brenier dynamic formulation [39, 40].

In this work, we are also interested in studying multi-marginal and martingale-
constrained optimal transport problems.

Multimarginal optimal transport problems arise in a wide variety of contexts [291,
319], like for instance the computation of Wasserstein barycenters [2] or the approx-
imation of the correlation energy for strongly correlated systems in quantum chem-
istry [102, 108, 304]. Such problems read as follows: let M ∈ N∗ and µ1, · · · , µM be
M probability measures on Rd and consider the optimization problem

inf

∫
(Rd)M

c(x1, · · · , xM) dπ(x1, · · · , xM) (2.3)

where c is a lower semi-continuous cost function defined on (Rd)M and where the
infimum runs on the set of probability measures π on (Rd)M with marginal laws given
by µ1, · · · , µM . Approximations of such multi-marginal problems on discrete state
spaces can be introduced similar to (2.2), leading to a linear programming problem
of size NM . For large values of M , such discretized problems become intractable
numerically. The most successful method up to now for solving such problems, which
avoids this curse of dimensionality, is based on an entropic regularization together
with the Sinkhorn algorithm [41, 262].

Constrained martingale transport arise in problems related to finance [28]. Few
numerical methods have been proposed so far for the resolution of such problems.
In [5, 6], algorithms using sampling techniques preserving the convex order is pro-
posed, which enables then to use linear programming solvers. Algorithms making
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use of an entropy regularization and the Sinkhorn algorithm have been studied
in [118, 171].

In this paper, we consider an alternative direction to approximate optimal trans-
port problems, with a view to the design of numerical schemes. In this approach,
the state space is not discretized, but the approximation consists in relaxing the
marginal laws constraints (or the martingale constraint) of the original problem into
a finite number of moment constraints against some well-chosen test functions. More
precisely, in the case of Problem (2.1), let us introduce some real-valued bounded
functions φ1, · · · , φN defined on Rd, which are called hereafter test functions, and
consider the approximate optimal transport problem, called hereafter the Moment
Constrained Optimal Transport (MCOT) problem:

inf

∫
Rd×Rd

c(x, y) dπ(x, y)

where the infimum is taken over the set of probability measures π on Rd × Rd

satisfying for all 1 ≤ i, j ≤ N ,∫
Rd×Rd

φi(x) dπ(x, y) =

∫
Rd
φi(x) dµ(x) and

∫
Rd×Rd

φj(y) dπ(x, y) =

∫
Rd
φj(y) dν(y).

The aim of this paper is to study the properties of this alternative approxima-
tion of optimal transport problems, and its generalization for multi-marginal and
martingale-constrained optimal transport problems. A remarkable feature of this
approximation is that it circumvents the curse of dimensionality with respect to the
number of marginal laws in the case of multimarginal optimal transport problems.
Note that in the martingale constrained case, our method enables to consider the
original formulation of the financial problem that has moment constraints (see for
instance Example 2.6 of [180]), which is not the case of the previous methods.

Our first contribution in this paper is to characterize some minimizers of the
MCOT problem. Using Tchakaloff’s theorem, we prove that, under suitable as-
sumptions, there exists at least one minimizer which is a discrete measure charging
a finite number of points. Interestingly, in the multi-marginal case, the number of
charged points scales at most linearly in the number of marginals. In the particular
case of problems issued from quantum chemistry applications, due to the inherent
symmetries of the system, the number of charged points is independent of the num-
ber of marginals, and only scales linearly with the number of imposed moments.
This formulation of the multimarginal optimal transport problem thus does not suf-
fer from the curse of dimensionality. The result obtained in the quantum chemistry
case is close in spirit to the one of [143] where the authors studied a multimarginal
Kantorovich problem with Coulomb cost on finite state spaces.

These considerations motivate us to consider a new family of algorithms for the
resolution of multi-marginal and martingale constrained optimal transport problems,
in which an optimal measure is approximated by a discrete measure charging a
relatively low number of points. The points and weights of this discrete measure
are then optimized in order to satisfy a finite number of moment constraints and to
minimize the cost of the original optimal transport problem.

Of course, another interesting issue consists in determining how the choice of
the particular test functions influences the quality of the approximation with re-
spect to the exact optimal transport problem. In this paper, we prove interesting
one-dimensional results in this direction. More precisely, for piecewise affine test
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functions defined on a compact interval, and for the two-marginal optimal trans-
port problems involved in the computation of the W2 or the W1 distance between
two sufficiently regular measures, the convergence of the approximate optimal cost
with respect to the optimal cost scales like O

(
1
N2

)
where N is the number of test

functions. These results indicate that the choice of appropriate test functions has
an influence on the rate of convergence of the approximate problem to the exact
problem. Besides, there is very few results, up to our knowledge, concerning the
speed of convergence of approximations of optimal transport problems. The study
of these rates of convergence for more general set of test functions and of optimal
transport problems is an interesting issue which is left for future research.

The article is organized as follows. Some preliminaries, including the Tchakaloff
theorem, are recalled in Section 2.2. In Section 2.3, we introduce the approximate
MCOT problem and prove under suitable assumptions that one of its minimizers
reads as a discrete measure whose number of charged points is estimated depending
on the number of moment constraints and on the nature of the optimal transport
problem considered. Under additional assumptions, we prove that the MCOT prob-
lem converges to the exact optimal transport problem as the number of test functions
grows in Section 2.4. Rates of convergence of the approximate problem to the exact
problem depending on the choice of test functions are proved in Section 2.5. Fi-
nally, algorithms which exploits the particular structure of the MCOT problem are
proposed in Section 2.6 and tested on some numerical examples.

2.2 Preliminaries

2.2.1 Presentation of the problem and notation

We begin this section by recalling the classical form of the 2-marginal optimal trans-
port (OT) problem, which will be the prototypical problem considered in this paper,
and introduce the notation used in the sequel.

Let dx, dy ∈ N∗. We assume that X ⊂ Rdx (resp. Y ⊂ Rdy) is a Gδ-set, i.e. a
countable intersection of open sets. This property ensures by Alexandroff’s lemma
(see e.g. [9], p. 88) that X (resp. Y) is a Polish space for a metric which is equivalent
to the original one on Rdx (resp. Rdy). In particular, X can either be a closed or an
open set of Rdx .

Let µ ∈ P(X ) and ν ∈ P(Y) be probability measures on X and Y and let us
define

Π(µ, ν) :=

{
π ∈ P(X × Y) :

∫
X

dπ(x, y) = dν(y),

∫
Y

dπ(x, y) = dµ(x)

}
,

the set of probability couplings between µ and ν. We consider a non-negative cost
function c : X × Y → R+ ∪ {+∞}, which we assume to be lower semi-continuous
(l.s.c. ). The Kantorovich optimal transport (OT) problem with the two marginal
laws µ and ν associated to the cost function c is the following minimization problem:

I = inf

{∫
X×Y

c(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
. (2.4)

Under our assumptions, it is known (see e.g. Theorem 1.7 in [291]) that there exists
π∗ ∈ Π(µ, ν) such that I =

∫
X×Y c(x, y)dπ∗(x, y). Problem (2.4) will be referred

hereafter as the exact OT problem, with respect to the approximate problem which
we define hereafter.
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The aim of this paper is to study a relaxation of Problem (2.4) with a view
to the design of numerical schemes to approximate the exact OT problem. More
precisely, the approximate problem considered in this paper consists in relaxing the
marginal constraints into a finite number of moments constraints. Let M,N ∈ N∗
and (φm)1≤m≤M ⊂ L1(X , µ;R) (respectively (ψn)1≤n≤N ⊂ L1(Y , ν;R)) measurable
real-valued functions that are integrable with respect to µ (resp. ν). The functions
(φm)1≤m≤M and (ψn)1≤n≤N will be called test functions hereafter. We define for such
families of functions

Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N) :=

{
π ∈ P(X × Y) : (2.5)

∀1 ≤ m ≤M, 1 ≤ n ≤ N,

∫
X×Y
|φm(x)|+ |ψn(y)|dπ(x, y) <∞,∫

X×Y
φm(x)dπ(x, y) =

∫
X
φm(x)dµ(x),

∫
X×Y

ψn(y)dπ(x, y) =

∫
X
ψn(y)dµ(x)

}
,

which is the set of probability measures on X × Y that have the same moments as
µ and ν for the test functions. We are then interested in the moment constrained
optimal transport (MCOT) problem, which we define as the following minimization
problem :

IM,N = inf

{∫
X×Y

c(x, y)dπ(x, y) : π ∈ Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N)

}
. (2.6)

Since Π(µ, ν) ⊂ Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N), we clearly have IM,N ≤ I. In this
paper, we are interested in the following question.

• Is the infimum of the MCOT problem attained by some probability measure
π∗ ∈ Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N)?

• Under which assumptions does it hold: IM,N →
M,N→+∞

I? Can the speed of

convergence be estimated?

For simplicity, we will assume that M = N in the whole paper, and we will
denote for 1 ≤ m,n ≤ N :

µ̄m :=

∫
X
φmdµ and ν̄n :=

∫
Y
ψndν. (2.7)

For all x ∈ X (respectively for all y ∈ Y), we define φ(x) := (φ1(x), ..., φN(x)) ∈
RN (respectively ψ(y) := (ψ1(y), ..., ψN(y)) ∈ RN) and Φ(x) := (1, φ(x)) ∈ RN+1

(respectively Ψ(y) := (1, ψ(y)) ∈ RN+1).

2.2.2 Tchakaloff’s theorem

In this section, we present a corollary of the Tchakaloff theorem which is the back-
bone of our results concerning the existence of a minimizer to the MCOT problem.
A general version of the Tchakaloff theorem has been proved by Bayer and Teich-
mann [24] and Bisgaard [46]. The next proposition is a rather immediate conse-
quence of Tchakaloff’s theorem, see Corollary 2 in [24]. We recall first that
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Theorem 2.1. Let π be a measure on Rd concentrated on a Borel set A ∈ F , i.e.
π(Rd \ A) = 0. Let N0 ∈ N∗ and Λ : Rd → RN0 a Borel measurable map. Assume
that the first moments of Λ#π exist, i.e.∫

RN0

‖u‖dΛ#π(u) =

∫
Rd
‖Λ(z)‖dπ(z) <∞,

where ‖ · ‖ denotes the Euclidean norm of RN0. Then, there exist an integer 1 ≤
K ≤ N0, points z1, ..., zK ∈ A and weights p1, ..., pK > 0 such that

∀1 ≤ i ≤ N0,

∫
Rd

Λi(z)dπ(z) =
K∑
k=1

pkΛi(zk),

where Λi denotes the i-th component of Λ.

We recall here that Λ#π is the push-forward of π through Λ, and is defined as
Λ#π(A) = π(Λ−1(A)) for any Borel set A ⊂ RN0 . Let us note here that even if π is
a probability measure, we may have

∑K
k=1 pk 6= 1. In the sequel, we will apply this

proposition to functions Λ such that the constant 1 is a coordinate of Λ, which will
ensure

∑K
k=1 pk = 1.

Let us remark that the number of points K needed may be significantly smaller
than N0. Lemma A.1 gives, for any N ∈ N∗, an example with N0 = 2N + 1 and
K = N + 1.

Last, let us mention that Theorem 2.1 is a consequence of Caratheodory’s the-
orem [287, Corollary 17.1.2] applied to

∫
RN0

udΛ#π(u) which lies in the (convex)
cone induced by spt(Λ#π), the support of the measure Λ#π.

2.2.3 An admissibility property

A natural requirement for the MCOT Problem (2.6) to make sense is to assume that
it has finite value. This is precisely our definition of admissibility.

Definition 2.1 (Admissibility). Let µ ∈ P(X ), ν ∈ P(Y) and a l.s.c. cost function
c : X × Y → R+ ∪ {∞}. Then, a set of test functions ((φm)1≤m≤N , (ψn)1≤n≤N) ∈
L1(X , µ;R)N × L1(Y , ν;R)N is said to be admissible for (µ, ν, c) if

∃γ ∈ Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N),

∫
X×Y

c(x, y)dγ(x, y) <∞. (2.8)

Thanks to Tchakaloff’s theorem, the admissibility can be checked on finite prob-
ability measure as stated in the next Lemma.

Lemma 2.2. Let µ ∈ P(X ), ν ∈ P(Y) and c : X × Y → R+ ∪ {+∞} a l.s.c.
function. A set ((φm)1≤m≤N , (ψn)1≤n≤N) ∈ L1(X , µ;R)N × L1(Y , ν;R)N is admis-
sible for (µ, ν, c) if, and only if, there exist weights w1, . . . , w2N+1 ≥ 0 and points
(x1, y1), . . . , (x2N+1, y2N+1) ∈ X × Y such that

2N+1∑
k=1

wkδ(xk,yk) ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N) and
2N+1∑
k=1

wkc(xk, yk) <∞.

In particular, if c is finite valued (i.e. c : X × Y → R+), any set of test functions
((φm)1≤m≤N , (ψn)1≤n≤N) ∈ L1(X , µ;R)N ×L1(Y , ν;R)N is admissible for (µ, ν, c) in
the sense of Definition 2.1.
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Proof. Let Λ : X × Y → R2N+1 be defined by Λm(x, y) = φm(x) and Λm+N(x, y) =
ψm(y) for m ∈ {1, . . . , N}, Λ2N+1(x, y) = 1. Let A = {(x, y) ∈ X × Y : c(x, y) =
+∞}. Since the set of test function is admissible, there exists a probability measure
γ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N) such that

∫
X×Y c(x, y)dγ(x, y) < ∞. In partic-

ular, γ(A) = 0. We can thus apply Theorem 2.1, which gives the implication. The
reciprocal result is obvious.

Last, when c is finite valued (A = ∅), any γ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N)
satisfies γ(A) = 0 and the claim follows by using again Theorem 2.1.

2.3 Existence of discrete minimizers for MCOT

problems

2.3.1 Two-marginal case

When Definition 2.1 is satisfied, in order to have the existence of a minimizer for
the MCOT problem, we make two further assumptions.

• We assume that the test function are continuous.

• We add to the MCOT problem (2.6) a moment inequality constraint.

The additional moment constraint will ensure the tightness of a minimizing sequence
satisfying the moment equality and inequality constraints, while the continuity of
the test functions will ensure that any limit satisfies the moment constraints. Our
main result is stated in Theorem 2.3 thereafter.

Theorem 2.3. Let µ ∈ P(X ), ν ∈ P(Y) and c : X × Y → R+ ∪ {+∞} a l.s.c.
function. Let Σµ ⊂ X ,Σν ⊂ Y be Borel sets such that µ(Σµ) = ν(Σν) = 1. Let N ∈
N∗ and let ((φm)1≤m≤N , (ψn)1≤n≤N) ∈ L1(X , µ;R)N ×L1(Y , ν;R)N be an admissible
set of test functions for (µ, ν, c) in the sense of Definition 2.1. We assume that

1. For all n ∈ {1, . . . , N}, the functions φn and ψn are continuous.

2. There exist θµ : R+ → R+ and θν : R+ → R+ two non-negative non-decreasing
continuous functions such that θµ(r) −→

r→+∞
+∞ and θν(r) −→

r→+∞
+∞, and such

that there exist C > 0 and 0 < s < 1 such that for all 1 ≤ n ≤ N , and all
(x, y) ∈ X × Y,

|φn(x)| ≤ C(1 + θµ(|x|))s and |ψn(y)| ≤ C(1 + θν(|y|))s. (2.9)

For all A > 0, let us introduce

INA = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )∫
X×Y (θµ(|x|)+θν(|y|))dπ(x,y)≤A

∫
X×Y

c(x, y)dπ(x, y). (2.10)

Then, there exists A0 > 0 such that for all A ≥ A0, INA is finite and is a minimum.
Moreover, for all A ≥ A0, there exists a minimizer πNA for Problem (2.10) such that
πNA =

∑K
k=1 pkδxk,yk , for some 0 < K ≤ 2N + 2, with pk ≥ 0, xk ∈ Σµ and yk ∈ Σν

for all 1 ≤ k ≤ K.

Remark 2.1. Let us make here a few remarks:
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(i) When I defined by (2.4) is finite and

A′0 =

∫
X
θµ(|x|)dµ(x) +

∫
Y
θν(|y|)dν(y) <∞,

we have for all A ≥ A′0, INA ≤ I <∞.

(ii) When the functions φm and ψn are bounded continuous (which holds automat-
ically when X and Y are compact), Assumption (2.9) is obviously satisfied.

(iii) When X and Y are compact sets, we can then take the positive constant C =
max1≤n≤N(max(‖φn‖∞, ‖ψn‖∞)) and θµ = θν = 0, and therefore we get for all
A > 0, INA = IN with

IN = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∫
X×Y

c(x, y)dπ(x, y).

(iv) An alternative statement of Theorem 2.3 that avoids imposing the constraint∫
X×Y(θµ(|x|) + θν(|y|))dπ(x, y) ≤ A can be obtained under stronger assump-

tions on the test functions and on the cost. More precisely, such a result can
be obtained if the test functions are assumed to be compactly supported. The
precise statement of this result is given in Section A.2.1 of Appendix A.2.

Proof of Theorem 2.3. Let us introduce the function

Λ :


X × Y → R2N+2

(x, y) 7→


φ(x)
ψ(y)

1
c(x, y)

 (2.11)

and let us denote by Λi the ith component of Λ for all 1 ≤ i ≤ 2N+2. By assumption
there exists γ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N) such that

∫
X×Y c(x, y)dγ(x, y) <∞.

We apply Theorem 2.1 with N0 = 2N +2 and get that there exist K ∈ {1, . . . , 2N +
2}, x1, ..., xK ∈ X , y1, ..., yK ∈ Y and weights w1, ..., wK ∈ R∗+ such that

∫
X×Y

Λ(x, y)dγ(x, y) =
K∑
k=1

wkΛ(xk, yk). (2.12)

Denoting by γ̃ :=
∑K

k=1wkδxk,yk , we have that∫
X×Y

(θµ(|x|) + θν(|y|)) dγ̃(x, y) <∞.

We thus get that, for all A ≥ A0 :=
∫
X×Y(θµ(|x|) + θν(|y|))dγ̃(x, y), INA is finite,

since we have γ̃ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N).

Let us now assume that A ≥ A0 and let us prove that this infimum is a minimum.
Let (πl)l∈N be a minimizing sequence for the minimization problem (2.10). We first
prove the tightness of this sequence. For M1,M2 > 0, let us introduce the compact
sets

K1 = {x ∈ X , s.t. |x| ≤M1} , K2 = {y ∈ Y , s.t. |y| ≤M2} .
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Then, we have

πl((K1 ×K2)c) =

∫
X×Y

1(x,y)6∈K1×K2dπl(x, y) ≤
∫
X×Y

1x 6∈K1 + 1y 6∈K2dπl(x, y)

≤
∫
X×Y

θµ(|x|)
θµ(M1)

+
θν(|y|)
θν(M2)

dπl(x, y) ≤ A

min(θµ(M1), θν(M2))
,

which implies the tightness of the sequence (πl)l∈N. We can thus extract a subse-
quence that weakly converges. For notational simplicity, we still denote (πl)l∈N this
subsequence, and there exists π∞ ∈ P(X × Y) such that πl −−−⇀

l→∞
π∞.

Since c and Θ : X × Y 3 (x, y) 7→ θµ(|x|) + θν(|y|) are non-negative lower
semi-continuous functions, using [291][Lemma 1.6], we have∫

X×Y
c(x, y) dπ∞(x, y) ≤ lim inf

l→+∞

∫
X×Y

c(x, y) dπl(x, y) = INA .∫
X×Y

(θµ(|x|) + θν(|y|)) dπ∞(x, y) ≤ lim inf
l→+∞

∫
X×Y

(θµ(|x|) + θν(|y|)) dπl(x, y) ≤ A.

Besides, using (2.9), we obtain that for all 1 ≤ m,n ≤ N ,

max

(∫
X×Y
|φm(x)| dπl(x, y),

∫
X×Y
|ψn(y)| dπl(x, y)

)
≤ C(1 + A). (2.13)

Therefore, we get from (2.13) and the continuity of φm and ψn that∫
X×Y

φm(x) dπ∞(x, y) = lim
l→+∞

∫
X×Y

φm(x) dπl(x, y) = µ̄m,∫
X×Y

ψn(x) dπ∞(x, y) = lim
l→+∞

∫
X×Y

ψn(x) dπl(x, y) = ν̄n.

This shows that π∞ satisfies the constraints of Problem (2.10) and thus that

INA ≤
∫
X×Y

c(x, y)dπ∞(x, y).

Thus, INA =
∫
X×Y c(x, y)dπ∞(x, y) and π∞ is a minimizer of Problem (2.10).

Last, we apply Theorem 2.1 to the measure π∞ and the application Λ defined
in (2.11) and get the existence of πNA .

Example 2.1 below shows that the MCOT problem may not be a minimum if we
remove the constraint

∫
X×Y(θµ(|x|) + θν(|y|))dπ(x, y) ≤ A.

Example 2.1. Let

c :

{
R× R → R+

(x, y) 7→ (x− y)2 + ϕ(|x|) + ϕ(|y|),

where for r ∈ R+, ϕ(r) = 10≤r≤1r + 11<re
1−r. Let us consider the MCOT problem

with the test functions φ1 = ψ1 = x 7→ x,

I = inf
π∈P(R×R)∫
R xdπ(x,y)=1∫
R ydπ(x,y)=1

{∫
R×R

c(x, y)dπ(x, y)

}
.
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The sequence defined for l ∈ N∗ by πl =
(
1− 1

l

)
δ(0,0)+

1
l
δ(l,l) is a minimizing sequence

since
∫
R×R xdπl(x, y) =

∫
R×R ydπl(x, y) = 1, c ≥ 0 and∫
R×R

c(x, y)dπl(x, y) =
2

l
e1−l −−−→

l→∞
0.

Hence, I = 0. Now, since ϕ(r) > 0 for r > 0, the only probability measure
π ∈ P(R× R) such that

∫
cdπ = 0 is δ(0,0). Since this probability measure does not

satisfy the constraints (
∫
R×R xdδ(0,0)(x, y) =

∫
R×R ydδ(0,0)(x, y) = 0), this shows that

I is not a minimum.

Let us also note here that the test functions (φm)1≤m≤N and (ψn)1≤n≤N are
needed to be continuous to guarantee the existence of a minimum in Theorem 2.3
as Example 2.2 shows.

Example 2.2. Let X = Y = [0, 1], dν(x) =
(

1
2
1(0, 1

2
)(x) + 3

2
1( 1

2
,1)(x)

)
dx, dµ(x) =

dx and c(x, y) = (y − x)2. Let N = 4, φ1 = 1[0, 1
4

], φm = 1(m−1
4
,m
4

] for 2 ≤ m ≤ 4

and ψm = φm for 1 ≤ m ≤ 4, so that

µ̄1 = µ̄2 = µ̄3 = µ̄4 =
1

4
, ν̄1 = ν̄2 =

1

8
and ν̄3 = ν̄4 =

3

8
.

For l ∈ N, l > 4, let

γl =
1

8
δ 1

8
, 1
8

+
1

8
δ 1

4
− 1
l
, 1
4

+ 1
l

+
1

4
δ 1

2
− 1
l
, 1
2

+ 1
l

+
1

8
δ 5

8
, 5
8

+
1

8
δ 3

4
− 1
l
, 3
4

+ 1
l

+
1

4
δ 7

8
, 7
8
. (2.14)

For all l > 4, γl satisfies the constraints of the MCOT problem, and∫ 1

0

∫ 1

0

|x− y|2dγl(x, y) =

(
1

8
+

1

4
+

1

8

)
4

l2
=

2

l2
−−−−→
l→+∞

0.

Thus, the infimum value of the associated MCOT problem is 0. Now, let π ∈ P(X ×
Y) be such that

∫
cdπ = 0. We have π({(x, y) ∈ X × Y : y = x}) = 1 and thus

∀m,
∫
X×Y

φm(x) dπ(x, y) =

∫
X×Y

φm(y) dπ(x, y).

Therefore, we cannot have the left hand side equal to µ̄m and the right hand side
equal to ν̄m, which shows that there does not exist any minimizer to the MCOT
problem.

2.3.2 Multimarginal and martingale OT problem

In this section, two important extensions of the previous problem are introduced,
the multimarginal problem and the martingale problem. As for Problem (2.10),
several formulations and refinements can be established. We only keep here the
more general ones for conciseness.

2.3.2.1 Multimarginal problem

The propositions introduced until now for two marginal laws can be extended to
an arbitrary (finite) number of marginal laws. The proof can be straightforwardly
adapted from the one of Theorem 2.3. For all 1 ≤ i ≤M , we consider Xi = Rdi with
di ∈ N∗ or more generally a Gδ-set Xi ⊂ Rdi . We consider M probability measures
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µ1 ∈ P(X1), ..., µM ∈ P(XM) and a l.s.c. cost function c : X1×...×XM → R+∪{∞}.
We consider the following multimarginal optimal transport problem

I = inf
π∈Π(µ1,...,µM )

{∫
X1×...×XM

c(x1, ..., xM)dπ(x1, ..., xM)

}
, (2.15)

where Π(µ1, ..., µM) = {π ∈ P(X1 × ...×XM) s.t.∀1 ≤ i ≤M,
∫
Xi dπ = dµi}.

In order to build the moments constrained optimal transport problem, we in-
troduce, for each i, Ni ∈ N∗ test functions (φin)1≤n≤Ni ∈ L1(Xi, µi;R)Ni . We
say that this set of test functions is admissible for (µ1, . . . , µM , c) if there exists
γ ∈ P(X1 × ...×XM) such that

∀i ∈ {1, . . . ,M},∀n ∈ {1, . . . , Ni},
∫
X1×...×XM

φin(xi)dγ(x1, . . . , xM) =

∫
Xi
φin(x)dµi(x)

and
∫
X1×...×XM

c(x1, . . . , xM)dγ(x1, . . . , xM) < ∞. We can now state the analog of
Theorem 2.3 for the multimarginal case.

Theorem 2.4. For i ∈ {1, . . . ,M}, let µi ∈ P(Xi) and Σµi ⊂ Xi a Borel set
such that µi(Σµi) = 1. We assume that c : X1 × ... × XM → R+ ∪ {∞} is a
l.s.c. cost function, and that the set of test functions φin ∈ L1(Xi, µi;R) for i ∈
{1, . . . ,M} and n ∈ {1, . . . , Ni} is admissible for (µ1, . . . , µM , c). We make the
following assumptions.

1. For all i and n, the function φin is continuous.

2. For all i, there exists θi : R+ → R+ a non-decreasing continuous function such
that θi(r) →

r→+∞
+∞ and such that there exist C > 0 and 0 < s < 1 such that

for all 1 ≤ n ≤ Ni, we have

∀x ∈ Xi, |φin(x)| ≤ C(1 + θi(|x|))s. (2.16)

We note N = (N1, . . . , NM), X = X1×· · ·×XM and consider the following problem

INA = inf
π∈P(X )

∀i,n,
∫
X φ

i
n(xi)dπ(x1,...,xM )

=
∫
Xi
φin(x)dµi(x)∫

X
∑M
i=1 θi(|xi|)dπ(x1,...,xM )≤A

{∫
X
c(x1, ..., xM)dπ(x1, ...xM)

}
. (2.17)

Then, there exists A0 > 0 such that for all A ≥ A0, INA is finite and is a minimum.
Moreover, for all A ≥ A0, there exists a minimizer πN

A for the problem (2.10) such
that πN

A =
∑K

k=1 pkδxk1 ,...,xkM , for some 0 < K ≤ ∑M
i=1Ni + 2, with pk ≥ 0 and

xki ∈ Σµi for all 1 ≤ i ≤M and 1 ≤ k ≤ K.

Remark 2.2. An interesting point to remark in Theorem 2.4 is that the number of
weighted points of the discrete measure πN

A is linear with respect to the number of
moment constraints. In particular, if we take the same number of moments Ni = N
for each marginal, the number of weighted points is equal to 2 +MN and thus grows
linearly with respect to M . Since each point has dM coordinates, the dimension of
the discrete measure is in O(M2). For this reason, the development of algorithms
for minimizing πN

A by using finite discrete measures may be a way to avoid the curse
of dimensionality when M is getting large.
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We make here a specific focus on the multimarginal optimal transport problem
which arises in quantum chemistry applications [304, 108]. In this particular case,
the multi-marginal optimal transport of interest reads as (2.15), with X1 = · · · XM =
R3, N1 = · · · = NM = N for some N ∈ N∗, µ1 = · · · = µM = µ for some µ ∈ P(R3)
and c is given by the Coulomb cost

c(x1, · · · , xM) :=
∑

1≤i<j≤M

1

|xi − xj|
.

The integer M represents here the number of electrons in the system of interest.
The inherent symmetries of the system yield interesting consequences for the MCOT
problem (2.17), which are summarized in the following proposition.

Proposition 2.5. Let M ∈ N∗, N ∈ N∗, µ ∈ P(X ) and Σµ ⊂ X a Borel set
such that µ(Σµ) = 1. We assume that c : XM → R+ ∪ {∞} is a symmetric l.s.c.
cost function. More precisely, we denote by SM the set of permutations of the set
{1, · · · ,M} and assume that

∀σ ∈ SM , c(xσ(1), · · · , xσ(M)) = c(x1, · · · , xM), for almost all x1, · · · , xM ∈ X .

For all 1 ≤ n ≤ N , let φn ∈ L1(X , µ;R). We define φin := φn for all 1 ≤ i ≤ M
and assume the set of test functions φin for n ∈ {1, . . . , N} and i ∈ {1, · · · ,M} is
admissible for (µ, . . . , µ, c). We make the following assumptions.

1. For all n, the function φn is continuous.

2. There exists θ : R+ → R+ a non-decreasing continuous function such that
θ(r) −→

r→+∞
+∞ and such that there exist C > 0 and 0 < s < 1 such that for all

1 ≤ n ≤ N , we have

∀x ∈ X , |φn(x)| ≤ C(1 + θ(|x|))s. (2.18)

We consider the following problem

INA = inf
π∈P(XM )

∀n,i,
∫
XM φn(xi)dπ(x1,...,xM )

=
∫
X φn(x)dµ(x)∫

XM
∑M
i=1 θ(|xi|)dπ(x1,...,xM )≤A

{∫
X
c(x1, ..., xM)dπ(x1, ...xM)

}
. (2.19)

Then,

INA = inf
π∈P(XM )

∀n,
∫
XM ( 1

M

∑M
i=1 φn(xi))dπ(x1,...,xM )

=
∫
X φn(x)dµ(x)∫

XM
∑M
i=1 θ(|xi|)dπ(x1,...,xM )≤A

{∫
X
c(x1, ..., xM)dπ(x1, ...xM)

}
, (2.20)

and there exists A0 > 0 such that for all A ≥ A0, INA is finite and is a minimum.
Moreover, for all A ≥ A0, there exists a minimizer πNA for the problem (2.20) such
that πNA =

∑K
k=1 pkδxk1 ,...,xkM , for some 0 < K ≤ N + 2, with pk ≥ 0 and xki ∈ Σµ for

all 1 ≤ i ≤M and 1 ≤ k ≤ K. Besides, the symmetric measure

πNsym,A :=
1

M !

∑
σ∈SM

K∑
k=1

pkδxk
σ(1)

,...,xk
σ(M)

(2.21)

is a minimizer to (2.19) and (2.20).
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Proof. It is obvious that the right hand side of (2.20) is smaller than the right hand
side of (2.19). By using the same arguments as in the proof of Theorem 2.3, there ex-
ists A0 > 0 such that for all A ≥ A0 the infimum of (2.20) is finite, is a minimum that
is attained by some discrete probability measure πNA =

∑K
k=1 pkδxk1 ,...,xkM , for some

0 < K ≤ N+2 with xki ∈ Σµ for all 1 ≤ i ≤M and 1 ≤ k ≤ K. Then, since c is sym-
metric and the set of constraints is also symmetric, we get that πNsym,A also realizes
the minimum. Besides, it satisfies

∫
XM φn(xi)dπ

N
sym,A(x1, ..., xM) =

∫
X φn(x)dµ(x)

for all n, i, which shows that it is also the minimizer of (2.19).

Remark 2.3. Proposition 2.5 is particularly interesting for the design of numerical
schemes for the resolution of multimarginal optimal transport problems with Coulomb
cost arising in quantum chemistry applications. Indeed, the latter read as (2.19) and
the number of charged points of the minimizer πNA of (2.20) only scales at most like
N+2, and that the dimension of the optimal discrete measure is in dM(N+2). This
result states that such formulation of the multimarginal optimal transport problem
does not suffer from the curse of dimensionality. Let us mention that this result
is close in spirit to the recent work [143], where multimarginal optimal transport
problems with Coulomb cost are studied on finite state spaces.

2.3.2.2 Martingale OT problem

In this paragraph, we assume X = Y = Rd with d ∈ N∗, and consider two probability
measures µ, ν ∈ P(Rd) such that∫

Rd
|y|dν(y) <∞

and µ is lower than ν for the convex order, i.e.∫
Rd
ϕ(x)dµ(x) ≤

∫
Rd
ϕ(y)dν(y), (2.22)

for any convex function ϕ : Rd → R non-negative or integrable with respect to µ and
ν. This latter condition is equivalent, by Strassen’s theorem [311], to the existence
of a martingale coupling between µ and ν, i.e.

∃π ∈ Π(µ, ν), ∀x ∈ Rd,

∫
Rd
ydπ(x, y) = x.

The original martingale optimal transport consists then in the minimization problem

inf
π∈Π(µ,ν)

∀x∈Rd,
∫
Rd ydπ(x,y)=x

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
, (2.23)

with c : Rd×Rd → R+∪{∞} being a l.s.c. cost function. This problem has recently
got a great attention in mathematical finance since the work of Beiglböck et al. [27],
because it is related to the calculation of model-independent option price bounds on
an arbitrage free market.

We consider a set of test functions (φm)1≤m≤N ∈ L1(Rd, µ;R)N and (ψn)1≤n≤N ∈
L1(Rd, ν;R)N , and the following problem:

IN = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∀x∈Rd,
∫
Rd ydπ(x,y)=x

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
.
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Suppose for simplicity that there exist some minimizer to this problem π∗. Then, by
using Theorem 5.1 in Beiglböck and Nutz [34] that is an extension of Tchakaloff’s
theorem to the martingale case, there exists a probability measure π̃∗ weighting at
most (d+ 2N + 2)2 points such that π̃∗ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N),

∀x ∈ Rd,

∫
Rd
ydπ̃∗(x, y) = x

and ∫
Rd×Rd

c(x, y)dπ̃∗(x, y) =

∫
Rd×Rd

c(x, y)dπ∗(x, y) = IN .

However, the minimization problem for IN still has the martingale constraints. To
get a problem that is similar to the MCOT, we then relax in addition the martingale
constraint. This constraint is equivalent to have∫

Rd×Rd
f(x)(y − x)dπ(x, y) = 0,

for all bounded measurable functions f : Rd → R, and also for all function f : Rd →
R such that

∫
Rd |xf(x)|dµ(x) <∞. Then, it is natural to consider N ′ test functions

χl : Rd → R, 1 ≤ l ≤ N ′, such that∫
Rd
|xχl(x)|dµ(x) <∞, (2.24)

and then to consider the following minimization problem

IN,N
′
= inf

π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∀l,
∫
Rd×Rd yχl(x)dπ(x,y)=

∫
Rd xχl(x)dµ(x)

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
. (2.25)

We will say that the test functions (φm)1≤m≤N , (ψn)1≤n≤N and (χl)1≤l≤N ′ are admis-
sible for the martingale problem of (µ, ν, c) if IN,N

′
<∞. Similarly to Theorem 2.3,

we get the following result.

Theorem 2.6. Let µ ∈ P(Rd), ν ∈ P(Rd) and c : Rd × Rd → R+ ∪ {+∞} a l.s.c.
function. Let Σµ,Σν ⊂ Rd be Borel sets such that µ(Σµ) = ν(Σν) = 1. Let N ∈
N∗ and let (φm)1≤m≤N ∈ L1(Rd, µ;R)N , (ψn)1≤n≤N ∈ L1(Rd, ν;R)N and (χl)1≤l≤N ′

satisfying (2.24) be an admissible set of test functions for the martingale problem of
(µ, ν, c). We make the following assumptions.

1. For all n ∈ {1, . . . , N}, l ∈ {1, . . . , N ′}, the functions φn, ψn and χl are
continuous.

2. There exist θµ : R+ → R+ and θν : R+ → R+ two non-negative non-decreasing
continuous functions such that θµ(r) −→

r→+∞
+∞ and θν(r) −→

r→+∞
+∞, and such

that there exist C > 0 and 0 < s < 1 such that for all 1 ≤ n ≤ N , 1 ≤ l ≤ N ′,
and all (x, y) ∈ Rd × Rd,

|φn(x)|+ |ψn(y)|+ |yχl(x)| ≤ C(1 + θµ(|x|) + θν(|y|))s. (2.26)

For all A > 0, let us introduce

IN,N
′

A = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∀l,
∫
Rd×Rd yχl(x)dπ(x,y)=

∫
Rd xχl(x)dµ(x)∫

Rd×Rd (θµ(|x|)+θν(|y|))dπ(x,y)≤A

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
. (2.27)
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Then, there exists A0 > 0 such that for all A ≥ A0, IN,N
′

A is finite and is a minimum.

Moreover, for all A ≥ A0, there exists a minimizer πN,N
′

A for Problem (2.27) such

that πN,N
′

A =
∑K

k=1 pkδxk,yk , for some 0 < K ≤ 2N + N ′ + 2, with pk ≥ 0, xk ∈ Σµ

and yk ∈ Σν for all 1 ≤ k ≤ K.

The proof of Theorem 2.6 follows exactly the same line as the proof of Theo-
rem 2.3, since the relaxation of the martingale moment constraints only brings new
moment constraints. Let us stress that the minimizer πN,N

′

A does not satisfy in gen-
eral the martingale constraint. Also, we do not impose in Theorem 2.6 to have (2.22),
i.e. µ smaller than ν for the convex order. In fact, the admissibility condition already
ensures that IN,N

′
<∞ and thus, by using Theorem 2.1 that IN,N

′

A <∞ for A large
enough. Nonetheless, if we assume in addition that µ smaller than ν for the convex
order and that I, the infimum of Problem 2.23, is finite, then we have IN,N

′

A < ∞
and IN,N

′

A ≤ I for any A ≥
∫
Rd×Rd(θµ(|x|) + θν(|y|))dπ1(x, y), where π1 ∈ Π(µ, ν) is

such that
∫
Rd ydπ1(x, y) = x and

∫
Rd×Rd c(x, y)dπ1(x, y) ≤ I + 1.

2.4 Convergence of the MCOT problem towards

the OT problem

The aim of this section is to prove that when the number of test functions N → +∞,
the minimizer of the MCOT problem converges towards a minimizer of the OT
problem, under appropriate assumptions and up to the extraction of a subsequence.

2.4.1 Convergence for two-marginal (or multi-marginal) Op-
timal Transport problems

Let us consider two sequences of continuous real-valued test functions (φm)m∈N∗ and
(ψn)n∈N∗ defined on X (resp. Y) and make the following assumptions.

Let us first assume that there exist continuous non-decreasing non-negative func-
tions θµ : R+ → R+ and θν : R+ → R+ such that

θµ(|x|) −−−−−→
|x|→+∞

+∞ and θν(|y|) −−−−−→
|y|→+∞

+∞ (2.28)

and ∫
X
θµ(|x|)dµ(x) <∞ and

∫
Y
θν(|y|)dν(y) <∞. (2.29)

In the sequel, we set

A0 :=

∫
X
θµ(|x|)dµ(x) +

∫
Y
θν(|y|)dν(y). (2.30)

We assume moreover that there exist sequences (sµm)m∈N∗ , (s
ν
n)n∈N∗ ∈ (0, 1)N

∗
and

(Cµ
m)m∈N∗ , (C

ν
n)n∈N∗ ∈ (R∗+)N

∗
such that

∀m ∈ N∗, ∀x ∈ X , |φm(x)| ≤ Cµ
m(1 + θµ(|x|))sµm , (2.31)

∀n ∈ N∗, ∀y ∈ Y , |ψn(y)| ≤ Cν
n(1 + θν(|y|))s

ν
n . (2.32)

33



Last, we assume that the probability measures µ and ν are fully characterized by
their moments:

∀η ∈ P(X ),

(
∀m ∈ N∗,

∫
X
φm(x)dη(x) = µ̄m

)
=⇒ η = µ, (2.33)

∀η ∈ P(Y),

(
∀n ∈ N∗,

∫
Y
ψn(x)dη(x) = ν̄n

)
=⇒ η = ν. (2.34)

We consider the optimal cost for the OT problem (2.4) that we restate here for
convenience

I = inf
π∈Π(µ,ν)

{∫
X×Y

c(x, y)dπ(x, y)

}
, (2.35)

and for all N ∈ N∗, we define the N th MCOT problem,

INA0
= min

π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )∫
X×Y (θµ(|x|)+θν(|y|))dπ(x,y)≤A0

{∫
X×Y

c(x, y)dπ(x, y)

}
. (2.36)

Theorem 2.7. Let µ ∈ P(X ) and ν ∈ P(Y) satisfying (2.29) for some continuous
non-decreasing functions θµ : R+ → R+ and θν : R+ → R+ satisfying (2.28). Let c :
X ×Y → R+∪{+∞} a l.s.c. function. Let (φm)m∈N∗ ⊂ L1(X , µ;R) and (ψn)n∈N∗ ⊂
L1(Y , ν;R) be continuous functions satisfying (2.31), (2.32), (2.33) and (2.34). Let
us finally assume that I, defined by (2.35) is finite.

Then, for all N ∈ N∗, there exist at least one minimizer for Problem (2.36) and

INA0
−→

N→+∞
I.

Besides, from every sequence (πN)N∈N∗ such that for all N , πN ∈ P(X × Y) is
a minimizer for (2.36), one can extract a subsequence which converges towards a
minimizer π∞ ∈ P(X × Y) to problem (2.35).

Proof. From Theorem 2.3 and Remark 2.1 (i), We know that there exists at least
one minimizer πN ∈ P(X × Y) to (2.36). Since we have

∀N,
∫
X×Y

(θµ(|x|) + θν(|y|))dπN(x, y) ≤ A0,

and (2.28), we get that the sequence (πN)N∈N∗ is tight. Thus, up to the extraction
of a subsequence, still denoted (πN)N∈N∗ for the sake of simplicity, there exists a
measure π∞ ∈ P(X ×Y) such that πN −−−−⇀

N→∞
π∞ tightly. With the same argument

as in the proof of Theorem 2.3, we get that for all m,n ∈ N∗,∫
X×Y

φm(x)dπ∞(x, y) = µ̄m and

∫
X×Y

ψn(x)dπ∞(x, y) = ν̄n.

Then, Properties (2.33) and (2.34) give π∞ ∈ Π(µ, ν). Therefore,∫
X×Y

c(x, y)dπ∞(x, y) ≥ I. (2.37)

On the other hand, note that (INA0
)N∈N is a non-decreasing sequence and that for all

N ∈ N∗, INA0
≤ I. Thus, there exists I∞ ≤ I such that INA0

−−−→
N→∞

I∞. Furthermore,

since c is a non-negative semi-lower continuous function, using [291][Lemma 1.6], we
deduce that∫

X×Y
c(x, y)dπ∞(x, y) ≤ lim inf

N→+∞

∫
X×Y

c(x, y)dπN(x, y) = I∞ ≤ I.

Hence
∫
X×Y c(x, y)dπ∞(x, y) = I which concludes the proof since π∞ ∈ Π(µ, ν).

34



Remark 2.4. Let us make a few remarks:

(i) A result analogous to Theorem 2.7 can be easily obtained for general multi-
marginal optimal transport problems. The extension to martingale optimal
transport problems is less obvious and is the object of Section 2.4.2.

(ii) Assuming that X and Y are compact subsets of Rdx and Rdy , a result analogous
to Theorem 2.7 that holds without the additional moment constraint and for
possibly discontinuous test functions can be proved. More precisely, considering
two sequences of bounded measurable real-valued test functions (φm)m∈N∗ ⊂
L∞(X ) and (ψn)n∈N∗ ⊂ L∞(Y) that satisfy

∀f ∈ C0(X ), inf
vN∈Span{φm, 1≤m≤N}

‖f − vN‖∞ −→
N→+∞

0 (2.38)

and
∀f ∈ C0(Y), inf

vN∈Span{ψn, 1≤n≤N}
‖f − vN‖∞ −→

N→+∞
0, (2.39)

it is easy then to see that the properties (2.33) and (2.34) are satisfied for any
µ ∈ P(X ) and ν ∈ P(Y). The precise statement and proof of this result is
given in Section A.2.2 of Appendix A.2.

(iii) The result of Theorem 2.7 can be seen as a Γ-convergence result, see Braides [55]
for an introduction to this theory. Let us define for π ∈ P(X × Y), Fn(π) =∫
X×Y c(x, y)dπ(x, y) if π ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N) (resp. F∞(π) =∫
X×Y c(x, y)dπ(x, y) if π ∈ Π(µ, ν)) and Fn(π) = +∞ (resp. F (π) = +∞)

otherwise. Let us define K = {π ∈ P(X×Y),
∫
X×Y(θµ(|x|)+θν(|y|))dπ(x, y) ≤

A0}. We can then check that on K, the sequence (Fn) Γ-converges to F∞ by
using that π 7→

∫
X×Y c(x, y)dπ(x, y) is l.s.c. for the weak convergence and

properties (2.31), (2.31), (2.33) and (2.34), as in the proof of Theorem 2.7.
Then, since K is tight and thus a relatively sequentially compact set, we get
the claim by Proposition 1.18 [55].

2.4.2 Convergence for Martingale Optimal Transport prob-
lems

In this subsection, we study the convergence of IN,N
′

A defined by (2.25) when the
number of test functions for the martingale condition N ′ → +∞ towards the fol-
lowing minimization problem:

IN,mgA = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∀x∈Rd,
∫
Rd ydπ(x,y)=x∫

X×Y (θµ(|x|)+θν(|y|))dπ(x,y)≤A

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
. (2.40)

This convergence is particularly interesting for the practical application in finance:
the marginal laws µ, ν are in general not observed and market data only provide
some moments. For d = 1, market data give the prices of European put (or
call) options that corresponds to φm(x) = (Km − x)+ and ψn(y) = (K ′m − y)+.
We consider for simplicity a non-negative underlying asset with zero interest rates.
Then, by taking θµ(|x|) = θν(|x|) = |x|, we have from the martingale assumption∫
X×Y(|x| + |y|)dπ(x, y) = 2S0, where S0 > 0 is the current price of the underlying

asset. Then, a natural choice would be to take A0 = 2S0. Therefore, the conver-
gence stated in Proposition 2.8 gives a way to approximate option price bounds
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by taking into account that only some moments are known, while the few existing
numerical methods for Martingale Optimal Transport in the literature assume that
the marginal laws are known [5, 6, 171].

Proposition 2.8. Let µ ∈ P(Rd) lower than ν ∈ P(Rd) for the convex order and
c : Rd × Rd → R+ ∪ {+∞} a l.s.c. function. We assume |x| ≤ θµ(|x|), |y| ≤ θν(|y|)
and suppose A0 <∞ with A0 defined by (2.30). We assume that the test functions
(χl, l ∈ N∗) are bounded and such that for any function f : Rd → R continuous with
compact support, we have

inf
g∈Span{χl, 1≤l≤N ′}

‖f − g‖∞ −→
N ′→+∞

0. (2.41)

Let the assumptions of Theorem 2.6 hold for any N ′ ≥ 1. Then, we have IN,N
′

A0
−→

N ′→+∞

IN,mgA0
<∞.

Proof. Since A0 < ∞, any martingale coupling between µ and ν satisfies the con-
straints of IN,N

′

A0
. By using Tchakaloff’s theorem and the fact that c is finite-valued,

we get that IN,N
′

A0
is finite for any N ′ and is attained by a measure denoted by πN

′

according to Theorem 2.6. Similarly, using Tchakaloff’s theorem for the martingale
case, Theorem 5.1 [34], we get that IN,mgA0

<∞. Note that from the inclusion of the

constraints, we clearly have I
N,N ′1
A0

≤ I
N,N ′2
A0

≤ IN,mgA0
for N ′1 ≤ N ′2. We can then repeat

the arguments in the proof of Theorem 2.7 to get that (πN
′
) is tight and any limit π∞

of a weakly converging subsequence satisfies IN,mgA0
=
∫
Rd×Rd c(x, y)dπ∞(x, y).

The only thing to prove is that
∫
Rd×Rd(y−x)f(x)dπ∞(x, y) = 0 for any function

f : Rd → R continuous with compact support. Let ε > 0. By assumption, there
exists M ∈ N∗ and λ1, . . . , λM ∈ R such that supx∈Rd |f(x) −∑M

l=1 λlχl(x)| ≤ ε.
Therefore, for N ′ ≥M , we have∣∣∣∣∫

Rd×Rd
f(x)(y − x)dπN

′
(x, y)

∣∣∣∣ =

∣∣∣∣∣
∫
Rd×Rd

(
f(x)−

M∑
l=1

λlχl(x)

)
(y − x)dπN

′
(x, y)

∣∣∣∣∣
≤ ε

∫
Rd×Rd

|y − x|dπN ′(x, y) ≤ εA0,

by using the triangle inequality and the fact that |x| ≤ θµ(|x|), |y| ≤ θν(|y|). We
conclude then easily letting N ′ →∞.

Let us mention that we can obtain using similar arguments that IN,mgA0
and IN,N

′

A0

converge towards (2.23) as N and N ′ go to infinity. Note that the convergence of
IN,mgA0

is implictly used in the literature on robust finance: it is usually assumed to
know marginal laws while in practice market data only provide some moments.

2.5 Rates of convergence for particular sets of test

functions

Throughout this section, we assume that

X = Y = [0, 1]

and for all N ∈ N∗, we define the intervals

TN1 =

[
0,

1

N

]
, ∀2 ≤ m ≤ N, TNm =

(
m− 1

N
,
m

N

]
. (2.42)
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We investigate in this section the rate of convergence of IN defined by

IN = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

{∫
X×Y

c(x, y)dπ(x, y)

}
(2.43)

towards I defined by (2.35), when the test functions are piecewise constant (resp.
piecewise linear) on TNm . We obtain, under suitable assumptions a convergence rate
of O(1/N) (resp. O(1/N2)). This shows, as one may expect, the importance of the
choice of test functions to approximate the Optimal Transport problem.

Note that, as studied in Appendix A.2, the compactness of X and Y allows to
define Problem (2.43) with no inequality constraint (contrary to (2.10)), and that,
despite non-continuous test functions, such MCOT problems are well defined and
under appropriate assumptions converge towards the OT problem.

2.5.1 Piecewise constant test functions on compact sets

In this section, we assume that the cost function c : [0, 1]2 → R+ is Lipschitz:

|c(x, y)− c(x′, y′)| ≤ K max(|x− x′|, |y − y′|). (2.44)

We define, for π ∈ P([0, 1]2), I(π) =
∫
X×Y c(x, y)dπ(x, y) and

I = inf
π∈Π(µ,ν)

I(π). (2.45)

We introduce the piecewise constant test functions

∀N ≥ 1, 1 ≤ m ≤ N, φNm = 1TNm ,

and consider the MCOT problem:

IN = inf
π∈Π(µ,ν;(φNm)1≤m≤N ,(φ

N
n )1≤n≤N )

{∫
[0,1]2

c(x, y)dπ(x, y)

}
. (2.46)

Then, Theorem 2.9 establishes the rate of convergence of the sequence (IN)N∈N∗ to
I as N increases.

Theorem 2.9. Let µ, ν ∈ P([0, 1]) and c : [0, 1]2 → R+ a Lipschitz function with
Lipschitz constant K > 0. Then, for all N ∈ N∗,

IN ≤ I ≤ IN +
K

N
. (2.47)

Remark 2.5. Let us note that we are not exactly in the framework of Section 2.4,
since the test functions depends on N . However, we have

Span
{
φNm, 1 ≤ m ≤ N

}
⊂ Span

{
φ2N
m , 1 ≤ m ≤ 2N

}
and thus Proposition A.4 gives for any L ∈ N∗,

IL2k −→
k→+∞

I.

Before proving Theorem 2.9, we state a result which bounds the distance between
an MCOT optimizer and the minimizer of the OT problem (2.45). We define,
for p ≥ 1, the Wp-Wasserstein distance between η1, η2 ∈ P(Rd) as W p

p (η1, η2) =
infπ∈Π(η1,η2)

∫
Rd×Rd ‖x1 − x2‖ppdπ(x1, x2), i.e. we take the ‖‖p-norm for Wp.
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Proposition 2.10. Let p > 1. Let µ ∈ P([0, 1]). If µN ∈ P([0, 1]) is such that∫ 1

0
φNm(x)dµN(x) =

∫ 1

0
φNm(x)dµ(x) for all m ∈ {1, . . . , N}, then

Wp(µ, µ
N) ≤ 1

N
.

Let us assume besides that the cost function satisfies c(x, y) = H(y − x) with H :
R → R+ strictly convex. There exists then a unique minimizer of (2.45) which we
denote by π∗.
Let πN ∈ Π(µ, ν; (φNm)1≤m≤N , (φ

N
n )1≤n≤N), µN and νN the marginal laws of πN and

assume that ∫
[0,1]2

c(x, y)dπN(x, y) = min
π∈Π(µN ,νN )

∫
[0,1]2

c(x, y)dπ(x, y).

Then, we have Wp(π
N , π∗) ≤ 21/p

N
, where Wp is defined using the ‖‖p norm on R2.

Proof. For η ∈ P(R), we define F−1
η (u) = inf{x ∈ R : η((−∞, x]) ≥ u}, that

coincides with the usual inverse when Fη is increasing continuous. Let p > 1. By
Theorem 2.9 [291], we have

W p
p (µ, µN) =

∫ 1

0

|F−1
µ (u)− F−1

µN
(u)|pdu

=

∫ Fµ(0)

0

|F−1
µ (u)− F−1

µN
(u)|pdu+

N∑
m=1

∫ Fµ(mN )

Fµ(m−1
N )
|F−1
µ (u)− F−1

µN
(u)|pdu.

If Fµ
(
m
N

)
= Fµ

(
m−1
N

)
, we clearly have

∫ Fµ(mN )
Fµ(m−1

N )
|F−1
µ (u) − F−1

µN
(u)|pdu = 0. Other-

wise, we have FµN
(
m−1
N

)
= Fµ

(
m−1
N

)
< Fµ

(
m
N

)
= FµN

(
m
N

)
, and therefore

∀u ∈
(
Fµ

(
m− 1

N

)
, Fµ

(m
N

))
, F−1

µ (u), F−1
µN

(u) ∈
[
m− 1

N
,
m

N

]
.

This gives |F−1
µ (u)− F−1

µN
(u)| ≤ 1/N . Since Fµ(0) = FµN (0), we get that F−1

µ (u) =

F−1
µN

(u) = 0 for u ∈ (0, Fµ (0)). We finally get W p
p (µ, µN) ≤ N−p.

Now, let U ∼ U([0, 1]) be a uniform random variable on [0, 1]. Still by Theo-
rem 2.9 [291], we have (F−1

µ (U), F−1
ν (U)) ∼ π∗ and (F−1

µN
(U), F−1

νN
(U)) ∼ πN . This

gives a coupling between π∗ and πN , and thus

W p
p (πN , π∗) ≤ E[|F−1

µN
(U)− F−1

µ (U)|p] + E[|F−1
νN

(U)− F−1
ν (U)|p] ≤ 2

Np
.

In order to prove Theorem 2.9, let us introduce the following auxiliary problem.
For all N ∈ N∗, let us define

Π̄N(µ, ν) :=

{
(π̄m,n)1≤m,n≤N | ∀1 ≤ m,n ≤ N, π̄m,n ≥ 0,

∀m,
N∑
n=1

π̄m,n = µ(TNm ), ∀n,
N∑
m=1

π̄m,n = ν(TNn )

}
and

JN := inf
π̄∈Π̄N (µ,ν)

N∑
m,n=1

c

(
m− 1

2

N
,
n− 1

2

N

)
π̄m,n. (2.48)
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Let us introduce the following applications:

D : Π(µ, ν) → Π̄N(µ, ν)
π 7→ (π(TNm × TNn ))1≤m,n≤N

(2.49)

and
J : Π̄N(µ, ν) → R+

π̄ 7→ ∑N
m,n=1 c

(
m− 1

2

N
,
n− 1

2

N

)
π̄m,n.

(2.50)

Lemma 2.11. Let N ∈ N∗. We have

∀π ∈ P([0, 1]), |I(π)− J(D(π))| ≤ K

2N
. (2.51)

Besides, we have

IN ≤ JN ≤ IN +
K

2N
. (2.52)

Proof of Lemma 2.11. Let π ∈ P([0, 1]2). Then, we write

I(π) =

∫
[0,1]2

c(x, y)dπ(x, y) =
N∑

m,n=1

∫
TNm×TNn

c(x, y)dπ(x, y)

=
N∑

m,n=1

c

(
m− 1

2

N
,
n− 1

2

N

)
Dmn(π)

+
N∑

m,n=1

∫
TNm×TNn

(
c(x, y)− c

(
m− 1

2

N
,
n− 1

2

N

))
dπ(x, y),

and get |I(π)− J(D(π))| ≤ K
2N

since |c(x, y) − c
(
m− 1

2

N
,
n− 1

2

N

)
| ≤ K

2N
for (x, y) ∈

TNm × TNn .
Let N ∈ N∗. For all π̄ ∈ Π̄(µ, ν), defining π :=

∑N
m,n=1 π̄mnδm− 1

2
N

,
n− 1

2
N

, one obtains

that π ∈ P([0, 1]2), D(π) = π̄ and I(π) = J(π̄); this implies that IN ≤ JN .
Conversely, if π ∈ Π(µ, ν; (φNm)1≤m≤N , (φ

N
n )1≤n≤N) is chosen to satisfy I(π) ≤

IN + ε for some ε > 0, one gets JN ≤ J(D(π)) ≤ I(π) + K
2N

= IN + K
2N

+ ε. Letting
ε→ 0 provides the wanted result.

We also need the following auxiliary lemma.

Lemma 2.12. For all π̄ ∈ Π̄N(µ, ν), there exists π̄∗ ∈ Π(µ, ν) such that π̄ = D(π̄∗).i

Proof of Lemma 2.12. Let π̄ ∈ Π̄(µ, ν). We define π̄∗ by

dπ̄∗(x, y) = dµ(x)
N∑
m=1

1TNm (x)
N∑
n=1

π̄m,n∑N
n′=1 π̄m,n′

1TNn (y)dν(y)

ν(TNn )
.

Since
∑N

n′=1 π̄m,n′ = µ(TNm ) and
∑N

m=1 π̄m,n = ν(TNn ), we have∫
X

dπ̄∗(x, y) =
N∑
m=1

µ(TNm )
N∑
n=1

π̄m,n
µ(TNm )

1TNn (y)dν(y)

ν(TNn )

=
N∑
n=1

(
N∑
m=1

π̄m,n

)
1TNn (y)dν(y)

ν(TNn )
=

N∑
n=1

1TNn (y)dν(y) = dν(y).

iIn the literature, π̄∗ is called the block approximation of π̄ [83, Definition 2.9].
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Also, we have
∫
Y dπ̄∗(x, y) = dµ(x)

∑N
m=1 1TNm (x)

∑N
n=1

π̄m,n∑N
n′=1 π̄m,n′

= dµ(x), which

gives π̄∗ ∈ Π(µ, ν). Last, we have∫
TNm×TNn

dπ̄∗(x, y) = µ(TNm )
π̄m,n∑N

n′=1 π̄m,n′
= π̄m,n,

which precisely gives π̄ = D(π̄∗).

We are now in position to give the proof of Theorem 2.9.

Proof of Theorem 2.9. The inclusion Π(µ, ν) ⊂ Π(µ, ν; (φNm)1≤m≤N , (φ
N
n )1≤n≤N) gives

IN ≤ I.
Lemma 2.12 implies that for all π̄ ∈ Π̄N(µ, ν), there exists π̄∗ ∈ Π(µ, ν) such that

D(π̄∗) = π̄, and we get by Lemma 2.11 |J(π̄)− I(π̄∗)| ≤ K
2N

. Let now π̄ ∈ Π̄N(µ, ν)
such that J(π̄) ≤ JN+ε for some ε > 0. Then one gets that JN+ K

2N
+ε ≥ I (π̄∗) ≥ I.

Letting ε go to zero yields that

I ≤ JN +
K

2N
. (2.53)

Furthermore, Lemma 2.11 gives JN ≤ IN + K
N

and thus I ≤ IN + K
N

.

Remark 2.6. Theorem 2.9 can be easily extended to higher dimensions and to the
multi-marginal case. Let us assume that c : ([0, 1]d)M → R+ is such that

|c(x1, . . . , xM)− c(x′1, . . . , x′M)| ≤ K max
i∈{1,...,M}

‖xi − x′i‖∞.

For N ∈ N∗ and m ∈ {1, . . . , N}d =: EN , we consider the test function φNm(x) =∏d
i=1 φ

N
mi

(xi) for x ∈ [0, 1]d. Then, with

I = inf
π∈Π(µ1,...,µM )

∫
([0,1]d)M

c(x1, . . . , xM)dπ(x1, . . . , xM)

and

IN = inf
π:∀m,k,

∫
([0,1]d)M

φNm(xk)dπ(x1,...,xM )=µmk

{∫
([0,1]d)M

c(x1, . . . , xM)dπ(x1, . . . , xM)

}
,

where ∀m, k, µm
k =

∫
[0,1]d

φNm(x)dµk(x), we get similarly (it is straightforward to

generalize Proposition 2.10, and we can extend the result of Lemma 2.12 by induction
on M)

IN ≤ I∗ ≤ IN +
K

N
.

Since the number of moments (i.e. of test functions) involved in the computation of
IN is MNd, we see that the storage complexity of getting an approximation of I∗

with a given error is exponential in d but, in view of Remark 2.2 (resp. 2.3), only
quadratically (resp. linearly) dependant on M .

2.5.2 Piecewise affine test functions in dimension 1 on a
compact set

The test functions considered are discontinuous piecewise affine functions, identical
on each space. For all N ∈ N∗ and all 1 ≤ m ≤ N , let us define the following
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discontinuous piecewise affine functions

φNm,1(x) =

{
N
(
x− m−1

N

)
if x ∈ TNm ,

0 otherwise,

φNm,2(x) =

{
1−N

(
x− m−1

N

)
if x ∈ TNm ,

0 otherwise,

and for all i = 1, 2,

µ̄Nm,i :=

∫
X
φNm,i dµ and ν̄Nm,i :=

∫
Y
φNm,i dν.

Lemma 2.13. Let µ1, µ2 ∈ P([0, 1]). Let N ∈ N∗ and let us assume that for all
1 ≤ m ≤ N and i = 1, 2,∫

[0,1]

φNm,i(x)dµ1(x) =

∫
[0,1]

φNm,i(x)dµ2(x).

Then, denoting by F1 : [0, 1] → [0, 1] (resp. F2 : [0, 1] → [0, 1]) the cumulative
distribution function of µ1 (resp. µ2), one gets that

∀1 ≤ m ≤ N,

∫
TNm

F1(x)dx =

∫
TNm

F2(x)dx, (2.54)

and
∀1 ≤ m ≤ N, F1

(m
N

)
= F2

(m
N

)
. (2.55)

Proof. We have φm,1 + φm,2 = 1TNm and thus, for 2 ≤ m ≤ N , F1

(
m
N

)
− F1

(
m−1
N

)
=

F2

(
m
N

)
− F2

(
m−1
N

)
. Since F1(1) = F2(1) = 1, this gives (2.55). Now, let l = 1, 2.

An integration by parts yields for 1 ≤ m ≤ N∫
[0,1]

φNm,1(x)dµl(x) =

∫ m
N

m−1
N

(x− m− 1

N
)dµl(x)

=
1

N
Fl

(m
N

)
−
∫ m

N

m−1
N

Fl(x)dx

Using (2.55), this gives (2.54).

Let us remark that we may have F1(0) 6= F2(0) under the assumptions of
Lemma 2.13, since µ1 and µ2 may charge differently 0.

Let us now explain with a rough calculation why considering these test functions
may lead to a convergence rate of O(1/N2) when c is C1 with a Lipschitz gradient.
Let

IN = inf
π∈Π(µ,ν;(φNm,i),(φ

N
n,i))

{∫
X×Y

c(x, y)dπ(x, y)

}
. (2.56)

We have IN ≤ I and, for any π ∈ Π(µ, ν; (φNm,i), (φ
N
n,i)),

I(π) =
N∑

m,n=1

∫
TNm×TNn

c

(
m− 1

2

N
,
n− 1

2

N

)
+ ∂xc

(
m− 1

2

N
,
n− 1

2

N

)
(x− m− 1

2

N
)

+ ∂yc

(
m− 1

2

N
,
n− 1

2

N

)
(y − m− 1

2

N
)dxdy +O(1/N2)
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Thus, we have

I(π) =
N∑

m,n=1

(
c− 1

2
∂x −

1

2
∂y

)(
m− 1

2

N
,
n− 1

2

N

)
π1
mn (2.57)

+ ∂xc

(
m− 1

2

N
,
n− 1

2

N

)
π2
mn + ∂yc

(
m− 1

2

N
,
n− 1

2

N

)
π3
mn +O(1/N2),

with the notations π1
mn = π(TNm × TNn ), Nπ2

mn =
∫
TNm×TNn

φNm,1(x)dπ(x, y) and

Nπ3
mn =

∫
TNm×TNn

φNm,1(y)dπ(x, y). We can thus consider the linear programming

problem of minimizing the right-hand-side of (2.57) under the constraints
∑

n π
1
mn =

µ̄Nm,1+µ̄Nm,2,
∑

m π
1
mn = ν̄Nm,1+ν̄Nm,2,

∑
n π

2
mn = µ̄Nm,1/N ,

∑
m π

3
mn = ν̄Nm,1/N and πimn ≥

0. Suppose for simplicity that we can find a minimum (π∗,imn) to this discrete problem.
If we could find (similarly as Lemma 2.12) π∗ ∈ Π(µ, ν) such that π∗,1mn = π∗(TNm ×
TNn ), Nπ∗,2mn =

∫
TNm×TNn

φNm,1(x)dπ∗(x, y) and Nπ∗,3mn =
∫
TNm×TNn

φNm,1(y)dπ∗(x, y), we

would get then
I ≤ IN +O(1/N2).

Unfortunately, such a result is not obvious. Besides, we see from this derivation that
the smoothness of the cost function plays an important role.

Let us recall that for p ≥ 1, the Wp-Wasserstein distance at the power p,
W p
p (µ, ν), corresponds to the cost function c(x, y) = |x − y|p. In the following,

we prove convergence results with rate O(1/N2) for c(x, y) = |x − y| and c(x, y) =
|x − y|2. In the first case, the cost function is not smooth on the diagonal, and we
need to impose an extra condition on µ and ν to get this rate. We first state a first
result, which is already interesting, but will be not sufficient to prove the desired
convergence. Its proof is postponed to Appendix A.1.

Proposition 2.14. Let µ1, µ2 ∈ P([0, 1]) be two probability measures with cumula-
tive distribution functions F1 and F2, respectively, such that F1, F2 ∈ C2([0, 1]). Let
us assume that for all 1 ≤ m ≤ N and i = 1, 2,∫

[0,1]

φNm,i(x)dµ1(x) =

∫
[0,1]

φNm,i(x)dµ2(x).

Then,

W1(µ1, µ2) ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N2
. (2.58)

In addition, let m1 := minu∈[0,1] F
′
1(u) and m2 = minu∈[0,1] F

′
2(u) and let us assume

that m1 > 0 and m2 > 0. Then, for all p > 1, we have

Wp(µ1, µ2) ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N2
(p!)

1
p

(
5

2

(
1

m1

+
1

m2

)) p−1
p

. (2.59)

Remark 2.7. The result of Proposition 2.14 can be extended through the triangle
inequality in order to treat regular measures with different piecewise affine moments.
Indeed, for p ≥ 1:

Wp(µ, ν) ≤ Wp(µ, µ̃) +Wp(µ̃, ν̃) +Wp(ν̃, ν),

thus
|Wp(µ, ν)−Wp(µ̃, ν̃)| ≤ Wp(µ, µ̃) +Wp(ν̃, ν). (2.60)

Thus, using Proposition 2.14, one gets that for µ, ν two measures with cumulative
distribution functions F and G, respectively, such that F,G ∈ C2([0, 1]) and µ̃, ν̃
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two measures with cumulative distribution functions F̃ and G̃, respectively, such
that F̃ , G̃ ∈ C2([0, 1]); If µ and µ̃ (respectively ν and ν̃) have the same 2N piecewise
affine moments of step 1/N , then

|W1(µ, ν)−W1(µ̃, ν̃)| ≤ ‖F
′′‖∞ + ‖F̃ ′′‖∞ + ‖G′′‖∞ + ‖G̃′′‖∞

3N2
. (2.61)

Besides, if mµ = minu∈[0,1] F
′(u), mµ̃ = minu∈[0,1] F̃

′(u), mν = minu∈[0,1]G
′(u) and

mν̃ = minu∈[0,1] G̃
′(u), are positive, one has for all p ∈ N∗,

|Wp(µ, ν)−Wp(µ̃, ν̃)|

≤ ‖F
′′‖∞ + ‖F̃ ′′‖∞

3N2

(
5

2

(
1

mµ

+
1

mµ̃

)) p−1
p

(p!)
1
p

+
‖G′′‖∞ + ‖G̃′′‖∞

3N2

(
5

2

(
1

mν

+
1

mν̃

)) p−1
p

(p!)
1
p . (2.62)

Unfortunately, Proposition 2.14 cannot be extended to non-smooth measures, as
Example 2.3 below shows. However, the O(1/N2) convergence obtained in Remark
2.7 may stay true even for non-smooth measures µ̃ and ν̃. This is important in
our context to treat the case where µ̃ and ν̃ are not smooth since the solution of
the MCOT problem may typically be a discrete measure that match respectively
the moments of µ and ν. We tackle this issue for W1 and W2 in the two following
paragraphs.

Example 2.3. In Proposition 2.14, if one of the measures (let us say µ̃) is not reg-
ular enough, then the convergence in O(1/N2) may not be true, as shown thereafter.

We consider µ ∼ U([0, 1]) and

µ̃N =
1

N

N∑
i=1

δ 1
2N

+ i−1
N
.

Then, for all 1 ≤ m ≤ N , we have

F̃
(m
N

)
=
m

N
= F

(m
N

)
,

and ∫
TNm

F̃ =
m− 1

N2
+

1

2N

1

N
=

∫
TNm

F.

However, we have

W1(µ, µ̃N) = N

∫ 1/N

0

∣∣∣∣u− 1

2N

∣∣∣∣ du = 2N

(
1

2N

)2
1

2
=

1

4N
.

2.5.2.1 Convergence speed for W1

Proposition 2.15. Let µ, ν, µ̃, ν̃ ∈ P([0, 1]). Let us assume that µ and ν are ab-
solutely continuous with respect to the Lebesgue measure and let us denote by ρµ
and ρν their density probability functions. Let us denote by Fµ, Fν, Fµ̃ and Fν̃ the
cumulative distribution functions of µ, ν, µ̃ and ν̃ respectively. Let N ∈ N∗. Let us
assume that

∀1 ≤ m ≤ N,

∫
TNm

Fµ =

∫
TNm

Fµ̃ and

∫
TNm

Fν =

∫
TNm

Fν̃ . (2.63)
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Let us assume in addition that the function Fµ−Fν changes sign at most Q times for
some Q ∈ N. More precisely, denoting by G := Fµ − Fν, we assume that there exist
x0 = 0 < x1 < x2 < · · · < xQ < xQ+1 = 1 ∈ [0, 1] such that for all 1 ≤ q ≤ Q+ 1,

∀x, y ∈ [xq−1, xq], G(x)G(y) ≥ 0, (2.64)

and for all 1 ≤ q ≤ Q,

∀x ∈ [xq−1, xq], ∀z ∈ [xq, xq+1], G(x)G(z) ≤ 0. (2.65)

Let us also assume that ρµ − ρν ∈ L∞([0, 1], dx;R). Then,

W1(µ, ν) ≤ W1(µ̃, ν̃) + 2‖ρµ − ρν‖∞
Q

N2
. (2.66)

Note that we only assume regularity of the measures µ, ν, not of µ̃, ν̃. The
assumption that Fµ − Fν changes sign at most Q times is related to the fact that
c(x, y) = |x− y| is not smooth on the diagonal: an optimal coupling is given by the
inverse transform coupling, and F−1

µ − F−1
ν changes sign at most Q times as well.

Last, remarkably, we do not need for this result to assume Fµ(m/N) = Fµ̃(m/N)
and Fν(m/N) = Fν̃(m/N). Thus, it is sufficient to work with continuous piecewise
affine test functions.

More precisely, for all N ∈ N∗, let us define

∀x ∈ [0, 1], ψN1 (x) =

{
1−Nx if x ∈ TN1
0 elsewhere,

and for all 2 ≤ m ≤ N ,

ψNm(x) =


N
(
x− m−2

N

)
if x ∈ TNm−1

1−N
(
x− m−1

N

)
if x ∈ TNm

0 elsewhere.

We can check by integration by parts that
∫

[0,1]
ψN1 (x)dµ(x) = N

∫
TN1

Fµ(x)dx and∫
[0,1]

ψNm(x)dµ(x) = N
∫
TNm

Fµ(x)dx − N
∫
TNm−1

Fµ(x)dx for 2 ≤ m ≤ N . Therefore,

we get

∀m ∈ {1, . . . , N},
∫

[0,1]

ψNm(x)dµ(x) =

∫
[0,1]

ψNm(x)dµ̃(x)

⇐⇒ ∀m ∈ {1, . . . , N},
∫
TNm

Fµ(x)dx =

∫
TNm

Fµ̃(x)dx. (2.67)

Last, let us remark that ψN1 = φN1,2 and ψNm = φNm−1,1 − φNm,2 for 2 ≤ m ≤ N so that

Span
{
ψNn , 1 ≤ n ≤ N

}
⊂ Span

{
φNn,1, φ

N
n,2, 1 ≤ n ≤ N

}
and

Π(µ, ν; (φNn,l), (φ
N
n,l)) ⊂ Π(µ, ν; (ψNn ), (ψNn )).

Corollary 2.16. Let µ, ν ∈ P([0, 1]). Let us assume that µ and ν are absolutely
continuous with respect to the Lebesgue measure and let us denote by ρµ and ρν
their density probability functions. Let Fµ and Fν be their cumulative distribution
functions. For all N ∈ N∗, let us define

IN = inf
π∈Π(µ,ν;(ψNm)1≤m≤N ,(ψ

N
n )1≤n≤N )

{∫
[0,1]2
|x− y|dπ(x, y)

}
. (2.68)

There exists a minimizer for (2.68). Let us assume in addition that the function Fµ−
Fν changes sign at most Q times for some Q ∈ N (in the sense of Proposition 2.15)
and that ρµ − ρν ∈ L∞([0, 1], dx;R). Then,

IN ≤ W1(µ, ν) ≤ IN + 2‖ρµ − ρν‖∞
Q

N2
(2.69)
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In fact, looking at the proof of Proposition 2.15, it even is sufficient to assume
that ρµ−ρν is bounded on a neighborhood of the points at which Fµ−Fν changes sign.
For simplicity of statements, we have assumed in Proposition 2.15 and Corollary 2.16
that ρµ − ρν is bounded on [0, 1].

Proof of Corollary 2.16. From the inclusion Π(µ, ν) ⊂ Π(µ, ν; (ψNm)1≤m≤N , (ψ
N
n )1≤n≤N),

we clearly have IN ≤ W1(µ, ν). Using Theorem 2.3 together with Remark 2.1 (ii)-
(iii), since the functions ψNm are continuous on [0, 1] for all 1 ≤ m ≤ N , there exists
πN ∈ Π(µ, ν; (ψNm)1≤m≤N , (ψ

N
n )1≤n≤N) which is a minimizer to Problem (2.68). Let

us denote by µ̃ and ν̃ the marginal laws of πN . First, we remark that

IN =

∫ 1

0

|x− y|dπN(x, y) ≥ min
π∈Π(µ̃,ν̃)

{∫ 1

0

|x− y|dπ(x, y)

}
= W1(µ̃, ν̃).

Second, using the fact that

Π(µ̃, ν̃) ⊂ Π(µ̃, ν̃; (ψNm)1≤m≤N , (ψ
N
n )1≤n≤N) = Π(µ, ν; (ψNm)1≤m≤N , (ψ

N
n )1≤n≤N),

we obtain

IN =

∫ 1

0

|x− y|dπN(x, y) = min
π∈Π(µ̃,ν̃;(ψNm)1≤m≤N ,(ψNn )1≤n≤N )

{∫ 1

0

|x− y|dπ(x, y)

}
≤ min

π∈Π(µ̃,ν̃)

{∫ 1

0

|x− y|dπ(x, y)

}
= W1(µ̃, ν̃).

Thus, IN = W1(µ̃, ν̃). Besides, we have for all 1 ≤ m ≤ N ,∫
[0,1]

ψNm(x)dµ̃(x) =

∫
[0,1]

ψNm(x)dµ(x),

∫
[0,1]

ψNm(y)dν̃(y) =

∫
[0,1]

ψNm(y)dν(y),

and we therefore get (2.63) from (2.67). We can thus apply Proposition 2.15 and
get the desired result.

Proof of Proposition 2.15. Let 1 ≤ m ≤ N . If for all 1 ≤ q ≤ Q, xq /∈ TNm , then
Fµ−Fν remains non-negative or non-positive on TNm . Thus, using (2.63), we deduce
that ∫

TNm

|Fµ − Fν | = ε

∫
TNm

(Fµ − Fν)

= ε

∫
TNm

(Fµ̃ − Fν̃) =

∣∣∣∣∫
TNm

(Fµ̃ − Fν̃)
∣∣∣∣ ≤ ∫

TNm

|Fµ̃ − Fν̃ | ,

where ε = 1 if Fµ − Fν ≥ 0 on TNm and ε = −1 if Fµ − Fν ≤ 0 on TNm . On the other
hand, if there exists 1 ≤ q ≤ Q, such that xq ∈ TNm , one gets∫

TNm

|Fµ − Fν | =
∫
TNm

(Fµ − Fν) + 2

∫
TNm

(Fµ − Fν)−

=

∫
TNm

(Fµ̃ − Fν̃) + 2

∫
TNm

(Fµ − Fν)−

≤
∫
TNm

|Fµ̃ − Fν̃ |+ 2

∫
TNm

(Fµ − Fν)−

≤
∫
TNm

|Fµ̃ − Fν̃ |+ 2‖ρµ − ρν‖∞
1

N2
,
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since for x ∈ TNm , Fµ(x)− Fν(x) =
∫ x
xq
ρµ − ρν and |x− xq| ≤ 1/N .

Thus, as there are at most Q intervals of that last type, we get∫ 1

0

|Fµ − Fν | ≤
∫ 1

0

|Fµ̃ − Fν̃ |+ 2‖ρµ − ρν‖∞
Q

N2
,

i.e. W1(µ, ν) ≤ W1(µ̃, ν̃) + 2‖ρµ − ρν‖∞ Q
N2 .

2.5.2.2 Convergence speed for W2

Proposition 2.17. Let µ, ν, µ̃, ν̃ ∈ P([0, 1]). Let us assume that µ(dx) = ρµ(x)dx
and ν(dx) = ρν(x)dx with ρµ, ρν ∈ L∞([0, 1], dx;R+). Let us denote by Fµ, Fν,
Fµ̃ and Fν̃ the cumulative distribution functions of µ, ν, µ̃ and ν̃ respectively. Let
N ∈ N∗. Let us assume that

∀1 ≤ m ≤ N,Fµ

(m
N

)
= Fµ̃

(m
N

)
and Fν

(m
N

)
= Fν̃

(m
N

)
, (2.70)

∀1 ≤ m ≤ N,

∫
TNm

Fµ =

∫
TNm

Fµ̃ and

∫
TNm

Fν =

∫
TNm

Fν̃ . (2.71)

Then,

W 2
2 (µ, ν) ≤ W 2

2 (µ̃, ν̃) +
7

3

‖ρµ‖∞ + ‖ρν‖∞
N2

. (2.72)

This proposition plays the same role as Proposition 2.15 for W1. Again, the
important point is that no regularity assumption is made on µ̃ and ν̃. We note
that we no longer have restriction on the number of points where Fµ − Fν changes
sign, which is related to the fact that c(x, y) = (x − y)2 is smooth. Contrary to
Proposition 2.15, we need here the condition (2.70).

Corollary 2.18. Let µ, ν ∈ P([0, 1]). Let us assume that µ(dx) = ρµ(x)dx and
ν(dx) = ρν(x)dx with ρµ, ρν ∈ L∞([0, 1], dx;R+). Let Fµ and Fν be their cumulative
distribution functions. For all N ∈ N∗, let us define

IN = inf
π∈Π(µ,ν;(φNm,l)1≤m≤N

1≤l≤2

,(φNm,l)1≤m≤N
1≤l≤2

)

{∫
[0,1]2

(x− y)2dπ(x, y)

}
. (2.73)

Then,

IN ≤ W 2
2 (µ, ν) ≤ IN +

7

3

‖ρµ‖∞ + ‖ρν‖∞
N2

. (2.74)

We omit the proof of Corollary 2.18 since it follows the same line as the one of
Corollary 2.16. The only difference is that we do not know here if the infimum is
a minimum and have to work for an arbitrary ε > 0 with the probability measure
π ∈ Π(µ, ν; (φNm,l)1≤m≤N

1≤l≤2
, (φNm,l)1≤m≤N

1≤l≤2
) such that

∫
[0,1]2

(x− y)2dπ(x, y) ≤ IN + ε. Let

us also mention here that we can use Proposition 2.10 to bound the distance between
an MCOT minimizer and an OT minimizer since φm,1 + φm,2 = 1TNm .

Proof of Proposition 2.17. From Lemma B.3 [188], we have

W 2
2 (µ, ν) =

∫ 1

0

∫ 1

0

1x<y([Fµ(x)− Fν(y)]+ + [Fν(x)− Fµ(y)]+)dxdy

=
N∑
k=1

N∑
l=k+1

∫
TNk

∫
TNl

([Fµ(x)− Fν(y)]+ + [Fν(x)− Fµ(y)]+)dxdy

+
N∑
k=1

∫
TNk

∫
TNk

1x<y([Fµ(x)− Fν(y)]+ + [Fν(x)− Fµ(y)]+)dxdy.
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The two terms [Fµ(x)− Fν(y)]+ and [Fν(x)− Fµ(y)]+ can be analyzed in the same
way by exchanging µ and ν, and we focus on the first one. Thus, we consider
for k ≤ l the term αkl :=

∫
TNk

∫
TNl

1x<y[Fµ(x) − Fν(y)]+dxdy and denote α̃kl =∫
TNk

∫
TNl

1x<y[Fµ̃(x)− Fν̃(y)]+dxdy.

• If Fµ(k/N) ≤ Fν((l − 1)/N), then from (2.70), we have also Fµ̃(k/N) ≤ Fν̃((l −
1)/N) (note that if l = 1, Fν̃(0) ≥ 0 = Fν(0)). Thus, αkl = α̃kl = 0.
• If Fν(l/N) ≤ Fµ((k − 1)/N), then from (2.70), we have also Fν̃(l/N) ≤ Fµ̃((k −
1)/N), and using (2.71) we get for k < l

αkl =

∫
TNk

∫
TNl

Fµ(x)− Fν(y)dxdy =

∫
TNk

∫
TNl

Fµ̃(x)− Fν̃(y)dxdy = α̃kl.

For k = l, we have by using (2.71) and Lemma A.1 for the inequality

αkk =

∫
TNk

(∫ x

k−1
N

Fµ −
∫ k

N

x

Fν

)
dx

=

∫
TNk

(∫ x

k−1
N

Fµ +

∫ x

k−1
N

Fν

)
dx− 1

N

∫
TNk

Fν

≤
∫
TNk

(∫ x

k−1
N

Fµ̃ +

∫ x

k−1
N

Fν̃

)
dx− 1

N

∫
TNk

Fν̃ +
‖ρµ‖∞ + ‖ρν‖∞

6N3

= α̃kk +
‖ρµ‖∞ + ‖ρν‖∞

6N3
.

•We now consider the case where Fµ(k/N) > Fν((l−1)/N) and Fν(l/N) > Fµ((k−
1)/N). We can thus find x0 ∈ TNk and y0 ∈ TNl such that Fµ(x0) = Fν(y0). We
then have ∀x ∈ TNk , y ∈ TNl , |Fµ(x)−Fν(y)| ≤ |Fµ(x)−Fµ(x0)|+ |Fν(y0)−Fν(y)| ≤
‖ρµ‖∞|x− x0|+ ‖ρν‖∞|y − y0|, and thus using that

∫
TNk
|x− x0|dx ≤ 1

2N2 ,

αkl ≤
‖ρµ‖∞ + ‖ρν‖∞

2N3
≤ α̃kl +

‖ρµ‖∞ + ‖ρν‖∞
2N3

.

For 1 ≤ k ≤ N , we note {lk, lk + 1, , . . . , lk + nk − 1} ⊂ {1, . . . , N} the set of l
such that Fµ((k − 1)/N) < Fν(l/N) and Fµ(k/N) > Fν((l − 1)/N). We necessarily
have lk+1 ≥ lk + nk − 1 since Fν((lk + nk − 2)/N) < Fµ(k/N) < Fν(lk+1/N).
Therefore, there is at most one element overlap between two consecutive sets, and
thus

∑N
k=1 nk ≤ 2N .

Combining all cases, and taking into account the contribution of the symmetric
term [Fν(x)− Fµ(y)]+ in the integral, we finally get

W 2
2 (µ, ν) ≤ W 2

2 (µ̃, ν̃) + 2

(
N
‖ρµ‖∞ + ‖ρν‖∞

6N3
+ 2N

‖ρµ‖∞ + ‖ρν‖∞
2N3

)
,

which gives (2.72)

2.6 Numerical algorithms to approximate opti-

mal transport problems

This section presents the implementation of two algorithms for the approximation of
the Optimal Transport cost. Both algorithms rely on Theorem 2.3, i.e. that the opti-
mum of the MCOT problem is attained by a finite discrete measure

∑2N+2
k=1 pkδ(xk,yk).

The two algorithms corresponds to the following choices:
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1. piecewise constant test functions,

2. (regularized) piecewise linear test functions.

In the first case, the precise positions (xk, yk) are useless to satisfy the moment
constraints: only matters in which cell (xk, yk) belongs. Thus, the optimization
problem is essentially discrete on a (large) finite space, for which Metropolis-Hastings
algorithms are relevant. In the second case, we implement a penalized gradient
algorithm to optimize the positions (xk, yk) and the weights pk.

The goal of these numerical tests is only illustrative to see the potential relevance
of this approach. We do not claim that these algorithms are more efficient than other
existing methods in the literature, and the improvement of our algorithms is left for
future research.

2.6.1 Metropolis-Hastings algorithm on a finite state space

We expose in the following the principles of the Metropolis-Hastings algorithm used
to compute an approximation of the OT cost. For simplicity, we do so in the case
of two one-dimensional marginal laws. However, the algorithm principles can be
adapted to solve a Multimarginal MCOT problem with marginal laws defined on
spaces of any finite dimension.

2.6.1.1 Description of the algorithm

For this algorithm, we consider the framework of Subsection 2.5.1, i.e. N piecewise
constant functions φNm = 1TNm , 1 ≤ m ≤ N , and the MCOT problem (2.46). As
mentioned above, if (xk, yk) belongs to the cell TNi × TNj , its position in this cell
does not matter for the moment constraints. We can therefore assume that the
position minimizes the cost in this cell. For c(x, y) = |y − x|2, this amounts to take

c (xk, yk) = c̃(i, j) with c̃(i, j) =


c
(
i
N
, j+1
N

)
if i > j

c
(
i
N
, j
N

)
if i = j

c
(
i+1
N
, j
N

)
if i < j.

We consider then 2N + 2 distinct cells TNik × TNjk , k ∈ {1, . . . , 2N + 2}. The
weights associated to each cell is determined as the solution of the linear optimization
of the cost associated under the constraint that the weights satisfy the moments
constraints:

(p1, ..., p2N+2) = arg min
pk≥0,

∑2N+2
k=1 pk=1

∀1≤m≤N,
∑2N+2
k=1 pk1ik=m=µ̄m

∀1≤n≤N,
∑2N+2
k=1 pk1jk=n=ν̄n

2N+2∑
k=1

pkc̃ (ik, jk) . (2.75)

Note that this set of constraints may be void. To start with an initial configuration
(ik, jk)1≤k≤2N+2 that allows the existence of weights which satisfy the constraints, we
use the inverse transform sampling between the distributions given by (µ̄k)1≤k≤N and
(ν̄k)1≤k≤N on {1, . . . , N}. This gives in fact the optimal solution (pk, (ik, jk))1≤k≤2N+2

for (2.46) satisfying in particular the constraints. Since we want here to test the
relevance of the Metropolis-Hastings algorithm in this framework, we do not want
to start from the optimal solution: thus, we consider a random permutation σ on
{1, . . . , N} and then the inverse transform sampling between the distributions given
by (µ̄k)1≤k≤N and (ν̄σ(k))1≤k≤N on {1, . . . , N}. This gives a configuration that satisfy
the constraints and is not a priori optimal.
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We now have to specify how the Markov chain defining the algorithm moves from
one state (ik, jk)1≤k≤2N+2 to another. Let us denote by N(ik, jk) = {(ik+1, jk), (ik−
1, jk), (ik, jk + 1), (ik, jk − 1)} the neighboring cells of (ik, jk) and

FN(ik, jk) = N(ik, jk) ∩ ({1, . . . , N}2 \ (∪k′ 6=k{(ik′ , jk′)}),

the neighboring cells that are free, i.e. that are not in the current configuration.
We choose randomly and uniformly a cell l ∈ {1, . . . , 2N + 2}. If FN(il, jl) = ∅,
we pick randomly another one. This rejection method amounts to choose randomly
and uniformly a cell l among those such that FN(il, jl) 6= ∅. Then, we select (i′l, j

′
l)

uniformly on FN(il, jl) and set (i′k, j
′
k) = (ik, jk) for k 6= l, and we accept the new

configuration (i′k, j
′
k)1≤k≤2N+2 only if it allows to satisfy the constraints and with an

acceptance ratio described in Algorithm 1. In practice, we run this algorithm with
K ≥ 2N + 2 cells, in order to increase the chance that the new configuration is
compatible with the constraints.

Algorithm 1 Metropolis-Hastings algorithm

Fix a temperature β ∈ R+ and take 2N + 2 ≤ K ≤ N2.
Initialize cells (ik, jk)1≤k≤K and compute the actual optimal cost cactual =∑K

k=1 pkc̃ (ik, jk).
for a given number of steps do

Choose randomly a particle 1 ≤ l ≤ K such that FN(il, jl) 6= ∅.
Compute nactual = Card(FN(il, jl)) the number of free cells near (il, jl).
Choose randomly a new cell (i′l, j

′
l) in FN(il, jl).

if the configuration (i′k, j
′
k)1≤k≤2N+2 allows to satisfy the constraints then

Compute cnewpos the optimal cost associated to the configuration
(i′k, j

′
k)1≤k≤2N+2.

Compute nnewpos, the number of free cells near (i′l, j
′
l) in the new configuration.

Move the particle l with probability min

(
1,
e−cnewpos/β

e−cactual/β
nactual

nnewpos

)
. This prob-

ability is the acceptance ratio of the Metropolis-Hastings algorithm, as ex-
plained in Section 2.2 of [122].
Update the value of cactual to cnewpos if the move is accepted.

end if
end for
return the lowest cost encountered throughout the loop.

The state space of the Markov Chain describing Algorithm 1 is the set of K
distinct elements of {1, . . . , N}2. Note that we can go from any points (i, j) to
(i′, j′) with at most 2N − 2 moves (a move consists in adding or removing one to
one of the coordinate). If we ignore the problem of satisfying the constraints, we
can therefore go from a configuration (ik, jk)1≤k≤2N+2 to another one (i′k, j

′
k)1≤k≤2N+2

with at most K(2N − 2) moves, which let think that the Doeblin condition may be
satisfied. This would ensure theoretically the convergence of the algorithm converges
towards the infimum

inf
π∈Π(µ,ν;(φNm)1≤m≤N ,(φ

N
n )1≤n≤N )

∫ 1

0

∫ 1

0

c(x, y)dπ(x, y), (2.76)

and that the convergence is exponentially fast (see e.g. Section 2 of [122]).
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2.6.1.2 Numerical examples

We tested the algorithm for the marginal laws with probability density functions

ρµ(x) = 3x21[0,1](x), ρν(y) = (2− 2y)1[0,1](y), (2.77)

and the quadratic cost c(x, y) = |x− y|2.
We consider a number of particles K = 3N + 2 in order at each step to have

more freedom among the configurations which satisfy the constraints. We present
two minimizations:

• N = 20 and β = 0.000075

• N = 60 and β = 0.00002.

The evolution of the configurations through the iterations are represented for
N = 20 and N = 60 in Figure 2.2. The darker the cell, the more weight it has. In
green (Figures 2.2.6 and 2.2.12) are represented the optimal configuration for the
given number of moment constraints. The convergence of the numerical cost for
each minimization is represented in Figure 2.1. The pink line represents the cost
of the Optimal Transport problem we approximate, the dark blue line the one of
the cost of the current configuration and the light blue one the minimum numerical
cost encountered during the minimization. The green line is the cost of the optimal
configuration for the given number of moment constraints, that we aim to compute.

(1) N = 20. (2) N = 60.

Figure 2.1: Cost in function of the number of iterations for Metropolis-Hastings
algorithm and piecewise constant test functions (N = 20 and N = 60).

2.6.2 Gradient on a penalized functional

2.6.2.1 Principles

We make use of Theorem 2.3 by searching optima of the MCOT problem with N
test functions on each space by looking for an optimal probability measure which is
finitely supported on at most 2N+2 points (note that in the multimarginal case, we
can look similarly for measures supported onDN+2 points). This algorithm consists
in penalizing moments constraints of the MCOT problem for N differentiable test
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(1) N = 20, iteration 0. (2) N = 20, iteration 2000. (3) N = 20, iteration 4000.

(4) N = 20, iteration 6000. (5) N = 20, iteration 10000. (6) N = 20, optimal config.

(7) N = 60, iteration 0. (8) N = 60, iteration 3000. (9) N = 60, iteration 20000.

(10) N = 60, iter. 60000. (11) N = 60, iter. 100000. (12) N = 60, optimal config.

Figure 2.2: Particles and weights configurations during the optimization using a
Metropolis-Hastings algorithm with piecewise constant test functions (N = 20 and
N = 60) for the marginal laws of (2.77) and a quadratic cost.
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functions on each space ((φm)1≤m≤N and (ψn)1≤n≤N) and then using a gradient-type
algorithm to compute the optimum.

For the sake of simplicity, we consider the case of two marginal laws where the
cost function c is assumed to be differentiable. Let us write the position of the
2N + 2 particles by ((xk, yk))1≤k≤2N+2 and their weights by (pk)1≤k≤2N+2. Then, it
is natural to consider the minimization of

2N+2∑
k=1

pkc(xk, yk)+
1

η

 N∑
m=1

(
2N+2∑
k=1

pkφm(xk)− µ̄m
)2

+
N∑
n=1

(
2N+2∑
k=1

pkψn(yk)− ν̄n
)2
 ,

for some small parameter η > 0 and under the constraints pk ≥ 0,
∑2N+2

k=1 pk = 1.
To avoid the handling of these latter constraints, we prefer to consider weights
pk = eak∑2N+2

k=1 eak
for some ak ∈ R. Although the latter weights cannot be equal to

zero, the previous minimization problem is equivalent to minimize

F (x1, ..., x2N+2, y1, ..., y2N+2, a1, ..., a2N+2)

=
2N+2∑
k=1

eak∑2N+2
l=1 eal

c(xk, yk) +
1

η

 N∑
m=1

(
2N+2∑
k=1

eak∑2N+2
l=1 eal

φm(xk)− µ̄m
)2

+
N∑
n=1

(
2N+2∑
k=1

eak∑2N+2
l=1 eal

ψn(yk)− ν̄n
)2
 , (2.78)

since some particles can have the same positions as other ones. For a fixed value of
η > 0, we use a projected gradient algorithm (see e.g. Algorithm 1.3.16 of [279]),
to ensure that (xk, yk) ∈ [0, 1]2 for all k, together with a line search method. We
implement alternated gradient steps as follows: first, a gradient step is performed on
the coefficients (ak)1≤k≤2N+2 with (xk, yk)1≤k≤2N+2 fixed; second, a gradient step is
done on the positions (xk)1≤k≤2N+2 with the other variables fixed; lastly, a gradient
step is done on the positions (yk)1≤k≤2N+2 with the other variables fixed. This
procedure is repeated until the norm of the projected gradient is below some error
threshold. The convergence of this algorithm is ensured by Wolfe theorem (see
Theorem 1.2.21 of [279]).

The example computations exposed thereafter use two sets of test functions: reg-
ularized continuous piecewise affine functions and Gaussian test functions. Remark
that we do not use discontinuous piecewise affine test functions, for which we have
rates of convergence for W1 and W2. We make this choice because the gradient
algorithm that we describe above has better numerical properties for continuously
differentiable test functions.

In the MCOT formulation (2.6) with M = N , minimizers of MCOT problems
are the same if we consider test functions (φ̄m)1≤m≤N and (ψ̄m)1≤m≤N such that
Span((φ̄m)1≤m≤N) = Span((φm)1≤m≤N) and Span((ψ̄m)1≤m≤N) = Span((ψm)1≤m≤N).
However, in the penalized version of the problem (2.78), the choice of the test func-
tions has a strong impact on the convergence of the gradient algorithms. It appears
that considering positive part functions (which are convex functions) greatly im-
proves the efficiency of the procedure with respect to classical hat functions, even if
both spans are identical.

Thus, for the numerical examples in 1D, we use the functions for ε > 0 and for
all N ∈ N∗,

∀x ∈ [0, 1], ϕN0 (x) =


−
(
x− 1

N

)
if x− 1

N
≤ −ε

1
4ε

(
x− 1

N
− ε
)2

if − ε ≤ x− 1
N
≤ ε

0 if x− 1
N
≥ ε,

(2.79)
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and for all 1 ≤ m ≤ N ,

∀x ∈ [0, 1], ϕNm(x) =


0 if x− m−1

N
≤ −ε

1
4ε

(
x− m−1

N
+ ε
)2

if − ε ≤ x− m−1
N
≤ ε

x− m−1
N

if x− m−1
N
≥ ε;

(2.80)

which are a regularization of the functions, for all N ∈ N∗, and 1 ≤ m ≤ N,(
· − 1

N

)−
and

(
· − m− 1

N

)+

. (2.81)

The vector space spanned by the restriction to [0, 1] of the latter functions (defined
in (2.81)) is the same as the one spanned by the classical continuous piecewise affine
functions (i.e. the functions ψNm introduced in Section 2.5.2.1). We also use Gaussian
test functions in the 1D numerical examples defined by, for all 0 ≤ m ≤ N ,

∀x ∈ [0, 1], ϕG,Nm (x) = exp

(
−(x− m

N
)2

2
(

1
1.8N

)2

)
. (2.82)

For the example in dimension 2, for N ∈ N∗, we use the following (N + 1)2 test
functions defined as follows: for all 1 ≤ m,n ≤ N and (x, y) ∈ [0, 1]2,

ϕNm,n(x, y) = ϕ2N
m+n−1

(
x+ y − ϕ̃Nm−n+1(x− y)− ϕ̃Nn−m+1(y − x)

2

)
(2.83)

where for all q ∈ Z,

∀x ∈ [0, 1], ϕ̃Nq (x) =

{
ϕNq (x) if 1 ≤ q ≤ N,
0 otherwise,

(2.84)

and

ϕN0,0(x, y) = ϕN1,1

(
1

N
− x, 1

N
− y
)
. (2.85)

For 1 ≤ m,n ≤ N , we set

ϕNm,0(x, y) = ϕNm,1

(
x,

1

N
− y
)

and ϕN0,n(x, y) = ϕN1,n

(
1

N
− x, y

)
. (2.86)

Those functions (plotted in Figure 2.3) are a regularization of the continuous non-

negative functions GN
m,n(x, y) =

(
min

(
x− m−1

N
, y − n−1

N

))+
with 1 ≤ m,n ≤ N ,

GN
0,0(x, y) =

(
min

(
1
N
− x, 1

N
− y
))+

, GN
0,m(x, y) =

(
min

(
x− m−1

N
, 1
N
− y
))+

, and

GN
n,0(x, y) =

(
min

(
1
N
− x, y − n−1

N

))+
. The vector space spanned by the restriction

to [0, 1]2 of functions (GN
m,n)0≤m,n≤N is the same as the one spanned by the classical

continuous piecewise affine functions associated to the mesh illustrated in Figure 2.4.
We use such regularized functions, instead of classical piecewise affine finite elements,
for differentiability and efficiency purposes, by analogy with observations in the 1D
case.

2.6.2.2 1D numerical example

Convergence of the algorithm We tested the algorithm for the marginal laws
with densities ρµ and ρν defined in Equation (2.77), the quadratic cost function
c(x, y) = |y − x|2 and a fixed penalization coefficient 1/η. The exact optimal trans-
port map between µ (abscissa) and ν (ordinate) is represented by the red line on
the graphs of Figure 2.7. We present four minimizations:
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(1) ϕ6
4,2 (2) ϕ6

0,0

(3) ϕ6
2,0 (4) ϕ6

0,4

Figure 2.3: Examples of unscaled functions used for the 2D numerical example as
defined in (2.83), (2.84), (2.85) and (2.86) for N = 5 (out of 36 test functions in
total).

Figure 2.4: Mesh of piecewise affine functions on [0, 1]2.
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• Regularized continuous piecewise affine functions (2.80)

– N = 10 and 1/η = 100,

– N = 40 and 1/η = 25.

• Gaussian test functions (2.82)

– N = 10 and 1/η = 100,

– N = 20 and 1/η = 100.

Once each minimization process has converged, in the regularized continuous piece-
wise affine functions case, the cost for N = 10 is 0.17764 and the one for N = 40 is
0.17785; in the case with Gaussian test function, the cost for N = 10 is 0.17857 and
the cost for N = 20 is 0.17915. The cost of the optimal transport problem is roughly
equal to 0.18444. The convergence of the numerical cost for each case in function
of the number of iterations of the gradient algorithm is plotted in Figures 2.5 and
2.6, where the pink line indicates the exact cost of the optimal transport problem
that we approximate. The evolution of the configurations through the iterations
are represented in each case in the graphs of Figure 2.7. The darker the particle
(xk, yk), the larger its weight pk (note that at iteration 0, all the particles have the
same weight 1/N , and we use a darker color to make them visible).

We note on the examples in the regularized continuous piecewise affine functions
case (see Figure 2.7) that the particles (xk, yk) tend to cluster in some places. This is
due to the fact that the cost function is convex and that the test functions are (up to
the regularization) locally linear. In contrast, this phenomenon is not observed with
Gaussian test function where many particles have a significant weight. Nonetheless,
as far as the approximation of the cost is concerned, both choices of test functions
lead to a similar accuracy: on our example, the Gaussian test functions lead to a
slightly better approximation of the cost.

(1) N = 10. (2) N = 40.

Figure 2.5: Cost in function of the number of iterations in the gradient algorithm
for regularized continuous piecewise affine test functions.

2.6.2.3 2D numerical example

We consider two normal marginal laws in R2: µ ∼ N2(mµ,Σµ) and ν ∼ N2(mν ,Σν),
with

mµ =

(
0
0

)
, Σµ =

(
1 0
0 1

)
, mν =

(
1
1

)
, Σν =

(
1 0.7

0.7 1

)
, (2.87)
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(1) N = 10. (2) N = 20.

Figure 2.6: Cost in function of the number of iterations in the gradient algorithm
for Gaussian test functions.

and the quadratic cost function. In this case, it is known that the optimal cost is
given by |mµ −mν |2 + Tr(Σµ + Σν − 2(Σ

1/2
µ ΣνΣ

1/2
µ )1/2) and the optimal transport

map is given by x 7→ mν + Σ
−1/2
µ (Σ

1/2
µ ΣνΣ

1/2
µ )1/2Σ

−1/2
ν , see e.g. [126]. In Figures

2.8.1 and 2.9, the density of µ (resp. ν) is plotted with different shades of red (resp.
blue). We consider regularized piecewise linear test functions on [−4, 4]2 obtained
by rescaling the functions (2.83), (2.84), (2.85) and (2.86) on [0, 1]2.

We represent several iterations of the optimization for N = 36 and 1/η = 2 in
Figure 2.9, where the green arrows represent the transport map computed by the
algorithm from µ (red) to ν (blue). The greener the arrow, the more weight it has.

We represent the configuration of particles at convergence on Figure 2.8.1 where
each particle consists in a red dot linked to a blue dot. The bigger are the dots, the
more mass is transported. The green dots represent the location where the red dot
would have been transported if the particle were on the transport plan. Convergence
of the cost is represented in Figure 2.8.2 where the pink line represents the cost of
the Optimal Transport problem we approximate.

2.6.2.4 Martingale Optimal Transport numerical example

We tested the algorithm for the marginal laws µ and ν being respectively the uniform
random variables on [1

4
, 3

4
] and [0, 1], with the cost c(x, y) = |y − x|3. Note that∫

|y−x|2dπ(x, y) =
∫
|y|2dν(y)−

∫
|x|2dµ(x) = 1/16 for any martingale coupling π.

By Jensen’s inequality, we have
∫
|y−x|3dπ(x, y) ≥ (1/16)3/2 = (1/4)3 and therefore

dπ(x, y) = dµ(x)(1
2
dδx+1/4(y) + 1

2
dδx−1/4(y)) is an optimal martingale coupling and

the equality condition in Jensen’s inequality shows that this is the unique optimal
martingale coupling.

The two lines y = x + 1/4 and y = x − 1/4 characterizing the optimal martin-
gale coupling are represented by the red lines on Figure 2.11. We have made one
minimization with N = 10 and 1/η = 60, and N ′ = 10 continuous piecewise affine
moment constraints for the martingale constraint, see Problem (2.25). The evolu-
tion of the configurations through the iterations are represented in Figure 2.11. The
darker the particle (xk, yk), the larger the value of its weight pk. The convergence of
the numerical cost is illustrated in Figure 2.10, where the pink line represents the
cost of the exact Martingale Optimal Transport problem we approximate.
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(1) RCPA, N = 10, iter. 0. (2) RCPA, N = 10, iter. 26. (3) RCPA, N = 10, iter. 301.

(4) RCPA, N = 40, iter. 0. (5) RCPA, N = 40, iter. 101. (6) RCPA, N = 40, iter. 501.

(7) Gauss, N = 10, iter. 0. (8) Gauss, N = 10, iter. 201. (9) Gauss, N = 10, iter. 4201.

(10) Gauss, N = 20, iter. 0. (11) Gauss, N = 20, iter. 201. (12) Gauss, N = 20, iter. 4201.

Figure 2.7: Particles and weights configurations during the optimization using a
gradient-type procedure with regularized continuous piecewise affine (RCPA) test
functions and Gaussian test functions (Gauss) for the marginal laws (2.77) and a
quadratic cost.
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(1) Transport map at convergence. (2) Cost convergence.

Figure 2.8: Cost convergence and approximation of the transport plan at conver-
gence.

(1) iteration 50. (2) iteration 150. (3) iteration 1200.

Figure 2.9: Convergence for two 2D marginal laws with 36 test functions on each
set for a quadratic cost.

Figure 2.10: Cost in function of the number of iterations in the gradient algorithm.
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(1) iteration 0. (2) iteration 61. (3) iteration 601.

Figure 2.11: Convergence with 10 test functions on each set for c(x, y) = |y − x|3
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Appendix A

Appendix of Chapter 2

A.1 Technical proofs of Section 2.5

Proof of Proposition 2.14.

Proof. Let us first prove (2.58). Lemma 2.13 implies that

∀1 ≤ m ≤ N,

∫
TNm

F1(x)dx =

∫
TNm

F2(x)dx (A.1)

and

∀1 ≤ k ≤ N, F1

(
k

N

)
= F2

(
k

N

)
. (A.2)

Then, using a Taylor expansion, as F1, F2 ∈ C2([0, 1]), we get that for all 1 ≤ m ≤ N ,
all u ∈ TNm , and all l = 1, 2,∣∣∣Fl(u)− Fl

(m
N

)
− F ′l

(m
N

)(
u− m

N

)∣∣∣ ≤ ‖F ′′l ‖∞
2

(
u− m

N

)2

. (A.3)

Integrating over TNm , one gets∣∣∣∣∫
TNm

Fl(u)du− Fl
(m
N

) 1

N
+ F ′l

(m
N

) 1

2N2

∣∣∣∣ ≤ ‖F ′′l ‖∞6N3
.

This implies, using (A.1) and (A.2), that∣∣∣F ′1 (mN )− F ′2 (mN )∣∣∣ ≤ ‖F ′′1 ‖∞ + ‖F ′′2 ‖∞
3N

. (A.4)

Thus, using (A.3), for all l = 1, 2 and u ∈ TNm ,

Fl(u) = Fl

(m
N

)
+
(
u− m

N

)
F ′l

(m
N

)
+ ϕl(u),

where |ϕl(u)| ≤ ‖F ′′l ‖∞
2

(
u− m

N

)2
. Then, using (A.4), one gets that for all u ∈ TNm ,

|F1(u)− F2(u)| ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N

(m
N
− u
)

+
‖F ′′1 ‖∞ + ‖F ′′2 ‖∞

2

(
u− m

N

)2

.

(A.5)

Integrating over TNm yields that∫
TNm

|F1(u)− F2(u)| du ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N3
. (A.6)
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Using the fact that

W1(µ1, µ2) =

∫
[0,1]

|F1(u)− F2(u)| du =
N∑
m=1

∫
TNm

|F1(u)− F2(u)| du,

we obtain that

W1(µ1, µ2) ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N2
.

Let us now prove (2.59). The main result needed is the expression of the Wasser-
stein distance in term of the cumulative distribution functions (cdf) and not their
inverse (see [188] Lemma B.3), which holds for p > 1,

W p
p (F,G) = p(p− 1)

∫
R2

1{x<y}
(
[G(x)− F (y)]+ + [F (x)−G(y)]+

)
(y − x)p−2dxdy

(A.7)
because the reasoning of the beginning of this proof introduced a control on the
norm between the cdf of the marginal law and the cdf of a marginal law satisfying
the same moments.

Then, one can proceed with the following induction. Suppose that we know for
p ∈ N∗ that

W p
p (µ, µ̃) ≤

(
‖F ′′‖∞ + ‖F̃ ′′‖∞

3N2

)p(
5

2

(
1

mµ

+
1

mµ̃

))p−1

p!, (A.8)

which holds for p = 1. Then,

W p+1
p+1 (µ, µ̃)

= (p+ 1)p

∫
R2

1{x<y}

([
F (x)− F̃ (y)

]+

+
[
F̃ (x)− F (y)

]+
)

(y − x)p−1dxdy

= (p+ 1)p

∫ 1

0

(∫ 1

x

([
F̃ (x)− F (y)

]+

+
[
F (x)− F̃ (y)

]+
)

(y − x)p−1dy

)
dx

= (p+ 1)p

∫ 1

0

(∫ 1

x

[
F (x)− F̃ (y)

]+

(y − x)p−1dy

+

∫ 1

x

[
F̃ (x)− F (y)

]+

(y − x)p−1dy

)
dx.

Let us treat the first term of the sum, as the second one can be treated symmetrically.
If F (x) ≥ F̃ (x), we can define yx = F̃−1 (F (x)) and because F̃ : [0, 1]→ [F̃ (0), 1] is
continuous increasing, and we have

∫ 1

x

[
F (x)− F̃ (y)

]+

(y − x)p−1dy =

∫ yx

x

(
F (x)− F̃ (y)

)
(y − x)p−1dy

≤ 1

p

∣∣∣F (x)− F̃ (x)
∣∣∣ (yx − x)p.
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Thus, by using (A.3), we get∫ 1

0

∫ 1

x

[
F (x)− F̃ (y)

]+

(y − x)p−1dydx

≤ 1

p

∫ 1

0

1{F (x)≥F̃ (x)}

∣∣∣F (x)− F̃ (x)
∣∣∣ (yx − x)pdx

≤ 1

p

N∑
m=1

∫
TNm

1{F (x)≥F̃ (x)}

∣∣∣F (x)− F̃ (x)
∣∣∣ (yx − x)pdx

≤ 1

p

N∑
m=1

∫
TNm

(
‖F ′′‖∞ + ‖F̃ ′′‖∞

3N

(m
N
− x
)

+
‖F ′′‖∞ + ‖F̃ ′′‖∞

2

(
x− m

N

)2
)

× 1{F (x)≥F̃ (x)}(yx − x)pdx

≤ 5

6p

‖F ′′‖∞ + ‖F̃ ′′‖∞
N2

∫ 1

0

1{F (x)≥F̃ (x)}(F̃
−1 (F (x))− F−1 (F (x)))pdx

≤ 5

6p

‖F ′′‖∞ + ‖F̃ ′′‖∞
N2

∫ 1

F (0)

1{u≥F̃ (F−1(u))}

(
F̃−1(u)− F−1(u)

)p du

F ′(F−1(u))

≤ 5

6p

‖F ′′‖∞ + ‖F̃ ′′‖∞
N2

1

minu∈[0,1] F ′(F−1(u))

∫ 1

0

∣∣∣F̃−1(u)− F−1(u)
∣∣∣p du,

where we used the formula bounding the difference between the cdf (A.5).
Therefore, as mµ > 0 and mµ̃ > 0, and using the symmetry of the formula (A.7),

one gets

W p+1
p+1 (µ, µ̃) ≤ 5(p+ 1)

2

‖F ′′‖∞ + ‖F̃ ′′‖∞
3N2

(
1

mµ

+
1

mµ̃

)
W p
p (µ, µ̃). (A.9)

Hence, using the induction hypothesis (A.8), we obtain that (A.8) holds for p + 1,
which gives the claim.

Lemma A.1. Let µ ∈ P([0, 1]) and Fµ its cumulative distribution function. Let
N ∈ N∗. Then, for any 1 ≤ m ≤ N , we define xNm ∈ TNm by

xNm =


m

N
if Fµ

(
m
N

)
= Fµ

(
m−1
N

)∫
TNm

Fµ + m−1
N
Fµ
(
m−1
N

)
− m

N
Fµ
(
m
N

)
Fµ
(
m
N

)
− Fµ

(
m−1
N

) if Fµ
(
m
N

)
> Fµ

(
m−1
N

)
,

and µ̂N = Fµ(0)δ0 +
∑N

m=1(Fµ
(
m
N

)
−Fµ

(
m−1
N

)
)δxm. Then, we have for all 1 ≤ m ≤

N ,

Fµ̂N
(m
N

)
= Fµ

(m
N

)
,

∫
TNm

Fµ̂N =

∫
TNm

Fµ, ∀x ∈ TNm ,
∫ x

m−1
N

Fµ ≥
∫ x

m−1
N

Fµ̂N .

Besides, if µ(dx) = ρµ(x)dx with a ρµ ∈ L∞([0, 1], dx;R+) and µ̃ ∈ P([0, 1]) is such
that Fµ̃

(
m
N

)
= Fµ

(
m
N

)
and

∫
TNm

Fµ̃ =
∫
TNm

Fµ, we have∫
TNm

(∫ x

m−1
N

Fµ

)
dx ≤

∫
TNm

(∫ x

m−1
N

Fµ̃

)
dx+

‖ρµ‖∞
6N3

(A.10)

Proof. If Fµ
(
m
N

)
> Fµ

(
m−1
N

)
, we have

1

N
Fµ

(
m− 1

N

)
≤
∫
TNm

Fµ <
1

N
Fµ

(m
N

)
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since Fµ is non-decreasing and right-continuous. Therefore, there is a unique xNm ∈
TNm such that(

xNm −
m− 1

N

)
Fµ

(
m− 1

N

)
+
(m
N
− xNm

)
Fµ

(m
N

)
=

∫
TNm

Fµ,

which is precisely the definition of xNm. By construction, we have Fµ̂N
(
m
N

)
= Fµ

(
m
N

)
and the previous equation gives∫

TNm

Fµ̂N =

∫ xNm

m−1
N

Fµ

(
m− 1

N

)
dx+

∫ m
N

xNm

Fµ

(m
N

)
dx =

∫
TNm

Fµ

when Fµ
(
m
N

)
> Fµ

(
m−1
N

)
(this identity is obvious if Fµ

(
m
N

)
= Fµ

(
m−1
N

)
). Last, since

for x ∈ TNm , Fµ
(
m−1
N

)
≤ Fµ(x) ≤ Fµ

(
m
N

)
, we get that x 7→

∫ x
m−1
N

(Fµ − Fµ̂N ) is non-

decreasing on [m−1
N
, xNm], non-increasing on [xNm,

m
N

] and vanishes for x ∈ {m−1
N
, m
N
}:

it is therefore non-negative on TNm .
Now, let us assume that µ has a bounded density probability function ρµ. We

have

x ∈
[
m− 1

N
, xNm

]
,

∫ x

m−1
N

(Fµ − Fµ̂N ) =

∫ x

m−1
N

∫ z

m−1
N

ρµ(u)dudz ≤ ‖ρµ‖∞
2

(x− m− 1

N
)2,

x ∈
[
xNm,

m

N

]
,

∫ x

m−1
N

(Fµ − Fµ̂N ) = −
∫ m

N

x

(Fµ − Fµ̂N )

=

∫ m
N

x

∫ m
N

z

ρµ(u)dudz ≤ ‖ρµ‖∞
2

(
m

N
− x)2,

and therefore∫
TNm

(∫ x

m−1
N

(Fµ − Fµ̂N )

)
dx ≤ ‖ρµ‖∞

6

[(
xNm −

m− 1

N

)3

+
(m
N
− xNm

)3
]
≤ ‖ρµ‖∞

6N3
.

(A.11)

Now, we observe that we either have
∫
TNm

(∫ x
m−1
N
Fµ

)
dx ≤

∫
TNm

(∫ x
m−1
N
Fµ̃

)
dx or∫

TNm

(∫ x
m−1
N
Fµ

)
dx ≥

∫
TNm

(∫ x
m−1
N
Fµ̃

)
dx ≥

∫
TNm

(∫ x
m−1
N
Fµ̂N

)
dx. In the first case,

the claim is obvious. In the second one, we then have∫
TNm

(∫ x

m−1
N

Fµ

)
dx ≤

∫
TNm

(∫ x

m−1
N

Fµ̃

)
+

∫
TNm

(∫ x

m−1
N

(Fµ − Fµ̂N )

)
,

and we get the result using (A.11).

A.2 Refinements of Theorem 2.3 and Theorem 2.7

We prove in this section some additional results which may be seen as refinements
of Theorem 2.3 and Theorem 2.7.

A.2.1 Existence of discrete minimizers for MCOT problems:
case of compactly supported test functions

As announced in Remark 2.1 (iv), an alternative statement of Theorem 2.3 which
avoids imposing the constraint

∫
X×Y(θµ(|x|) + θν(|y|))dπ(x, y) ≤ A can be obtained
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under stronger assumptions on the test functions and the cost. In all Subsec-
tion A.2.1, we consider the case

X = Rdx and Y = Rdy ,

for some dx, dy ∈ N∗, and assume that the cost c is continuous and satisfies:

∀x ∈ X , c(x, y) −→
|y|→+∞

+∞, ∀y ∈ Y , c(x, y) −→
|x|→+∞

+∞, (A.12)

∃(xn) ∈ X N, (yn) ∈ YN, |xn| → +∞, |yn| → +∞ and c(xn, yn) = 0. (A.13)

This condition is satisfied for example when dx = dy and c(x, y) = H(|x− y|), with
H continuous satisfying H(0) = 0 and H(r) →

r→+∞
+∞. We assume also that the

test functions φm, ψn, 1 ≤ m,n ≤ N are continuous with compact support, and
define their compact support as follows

SX := {x ∈ X , ∃1 ≤ m ≤ N, φm(x) 6= 0},
SY := {y ∈ Y , ∃1 ≤ n ≤ N, ψn(y) 6= 0}.

Let M = maxx,y∈SX×SY c(x, y) and let us define

S̃X = {x ∈ X : ∃y ∈ SY , c(x, y) ≤M + 1} (A.14)

S̃Y = {y ∈ Y : ∃x ∈ SX , c(x, y) ≤M + 1} (A.15)

together with

K =
(
SX × S̃Y

)
∪
(
S̃X × SY

)
.

It can be easily seen that S̃X (resp. S̃Y) is a compact set that contains SX (resp.
SY), and thus the set K is compact. Then, from (A.13), we take an arbitrary point
(x̄, ȳ) /∈ K such that c(x̄, ȳ) = 0, and we define

K̄ = K ∪ {(x̄, ȳ)}. (A.16)

Lemma A.2. Let K ∈ N∗, and for all 1 ≤ k ≤ K, xk ∈ X , yk ∈ Y, pk ≥ 0 such
that

∑K
k=1 pk = 1. If γ =

∑K
k=1 pkδxk,yk ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N) then there

exist K points (x̃k, ỹk) ∈ K̄ for 1 ≤ k ≤ K such that the discrete probability measure
γ̃ =

∑K
k=1 pkδx̃k,ỹk ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N) and

K∑
k=1

pkc(x̃k, ỹk) =

∫
X×Y

c(x, y)dγ̃(x, y) ≤
∫
X×Y

c(x, y)dγ(x, y) =
K∑
k=1

pkc(xk, yk).

Proof. Consider a measure γ =
∑K

k=1 pkδxk,yk satisfying the assumptions of Lemma A.2.

We construct γ̃ =
∑K

k=1 pkδx̃k,ỹk using the following procedure.

Case 1. If (xk, yk) ∈ K, then we define (x̃k, ỹk) = (xk, yk).

Case 2. If xk /∈ SX and yk /∈ SY , then we define (x̃k, ỹk) = (x̄, ȳ).

Case 3. Let us suppose xk ∈ SX and yk /∈ S̃Y (the case yk ∈ SY and xk 6∈ S̃X is
treated symmetrically). By definition of S̃Y , we have

∀x ∈ SX , c(x, yk) > M + 1.
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In particular, we have c(xk, yk) > M + 1. Let y∗ ∈ SY . Then,

c(xk, y
∗) ≤ max

x,y∈SX×SY
c(x, y) = M

Let yλ := (1 − λ)y∗ + λyk for λ ∈ [0, 1]. As c is continuous, there exists
λ∗ such that c(xk, yλ∗) = 2M+1

2
. Then, yλ∗ /∈ SY because 2M+1

2
> M , and

yλ∗ ∈ S̃Y . Then, we define (x̃k, ỹk) = (xk, yλ∗).

This construction preserves the points in the supports SX and SY , and the points
outside the supports are replaced by other points outside the supports. Thus, we
have

∀1 ≤ m ≤ N,
K∑
k=1

pkφm(x̃k) =
N∑
k=1

pkφm(xk)

∀1 ≤ n ≤ N,
K∑
k=1

pkψn(ỹk) =
N∑
k=1

pkψn(yk),

and the moment constraints are satisfied by γ̃. In addition, it is clear that the cost
does not change in Case 1 and is lowered in Cases 2 and 3.

Proposition A.3. Let us assume that X = Rdx, Y = Rdy and c : Rdx × Rdy → R+

is continuous and satisfies (A.12), (A.13).

Let us assume that for all 1 ≤ m,n ≤ N , φm and ψn are compactly supported real-
valued continuous functions defined on Rd. Then, there exists at least one minimizer
to the minimization problem

IN = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∫
X×Y

c(x, y)dπ(x, y). (A.17)

Moreover, there exists K ∈ N such that K ≤ 2N + 2, and for all 1 ≤ k ≤ K,
(xk, yk) ∈ K̄, pk ≥ 0 such that

∑K
k=1 pk = 1 such that π̃ :=

∑K
k=1 pkδxk,yk is a

minimum.

Proof. Let us consider a minimizing sequence (πl)l∈N for Problem (A.17). For all
l ∈ N, we will denote by γl a finite discrete measure which has the same cost and
same moments than πl, with at most 2N+2 points, which exists thanks to Theorem
2.1, and the fact that the test functions are compactly supported. Then, using
Lemma A.2, for all l ∈ N, one can define a measure γ̃l which satisfies the moment
constraints, has a support contained in the set K̄ defined in (A.16), and such that,∫

X×Y
c(x, y)dγ̃l(x, y) ≤

∫
X×Y

c(x, y)dγl(x, y).

Thus, (γ̃l)l∈N is a minimizing sequence. Besides, (γ̃l)l∈N is tight since the support of
γ̃l is included in the compact set K̄ for all l ∈ N. Then, following the same lines as
in the proof of Theorem 2.3, one can extract a weakly converging subsequence, the
cost of the limit of which is equal to IN . The fact that there exists a finite discrete
measure charging at most K ≤ 2N + 2 points can be deduced from Theorem 2.1,
following the same lines as in the proof of Theorem 2.3.
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A.2.2 Convergence of the MCOT problem towards the OT
problem: bounded test functions on compact sets

We now assume that X and Y are compact subsets of Rdx and Rdy . As announced
in Remark 2.4 (ii), we state a result analogous to Theorem 2.7 which holds without
the additional moment constraint and for possibly discontinuous test functions. We
consider two sequences of bounded measurable real-valued test functions (φm)m∈N∗ ⊂
L∞(X ) and (ψn)n∈N∗ ⊂ L∞(Y) that satisfy

∀f ∈ C0(X ), inf
vN∈Span{φm, 1≤m≤N}

‖f − vN‖∞ −→
N→+∞

0 (A.18)

and

∀f ∈ C0(Y), inf
vN∈Span{ψn, 1≤n≤N}

‖f − vN‖∞ −→
N→+∞

0. (A.19)

It is easy then to see that the properties (2.33) and (2.34) are satisfied for any
µ ∈ P(X ) and ν ∈ P(Y). For any N ≥ 1, we consider the following MCOT
problem:

IN = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

{∫
X×Y

c(x, y)dπ(x, y)

}
. (A.20)

Proposition A.4. Let us assume that X and Y are compact sets and let µ ∈ P(X )
and ν ∈ P(Y). Let (φm)m∈N∗ ⊂ L∞(X ) and (ψn)n∈N∗ ⊂ L∞(Y) satisfying (A.18)
and (A.19). Let us assume that I < +∞. Then, it holds that IN ≤ I and

IN −−−→
N→∞

I.

Moreover, from every sequence (πN)N∈N such that for all N ∈ N∗, the measure
πN ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N) satisfies∫

X×Y
c(x, y) dπN(x, y) ≤ IN + εN , (A.21)

with εN −→
n→+∞

0, one can extract a subsequence which converges towards a measure

π∞ ∈ P(X × Y) which is a minimizer to Problem (2.35).

Remark A.1. From Theorem 2.1, there exists 0 ≤ KN ≤ 2N + 2, x1, · · · , xKN ∈
X , y1, · · · , yKN ∈ Y and w1, · · · , wKN ≥ 0 such that γN :=

∑KN
k=1wkδ(xk,yk) ∈

Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N) and∫
X×Y

c(x, y) dγN(x, y) =

∫
X×Y

c(x, y) dπN(x, y) ≤ IN + εN . (A.22)

In other words, any sequence (πN)N∈N∗ satisfying the assumptions of Proposition A.4
can be chosen as a discrete measure charging at most 2N + 2 points.

Proof of Proposition A.4. Since X and Y are compact, the sequence (πN) is tight,
and we can assume, up to the extraction of a subsequence, that it weakly converges
to π∞. For N ∈ N∗ ∪ {∞}, we denote the marginal laws of πN respectively by
dµN(x) :=

∫
Y dπN(x, y) and dνN(y) :=

∫
X dπN(x, y). For f ∈ C0(X ), it holds that∫

X
fdµN −−−→

N→∞

∫
X
fdµ∞.
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Let ε > 0. Using the density condition (A.18), one can find M ∈ N∗ and λ1, ..., λM ∈
R such that supx∈X

∣∣∣f(x)−∑M
i=1 λiφi(x)

∣∣∣ ≤ ε. Thus,∣∣∣∣∣
∫
X
fdµ−

M∑
i=1

λiµi

∣∣∣∣∣ ≤ ε (A.23)

and for K > M ,
∣∣∣∫X fdµK −∑M

i=1 λi
∫
X φidµ

K
∣∣∣ ≤ ε, i.e.∣∣∣∣∣

∫
X
fdµK −

M∑
i=1

λiµi

∣∣∣∣∣ ≤ ε. (A.24)

Then, (A.23) and (A.24) imply that
∣∣∫
X fdµK −

∫
X fdµ

∣∣ ≤ 2ε, and taking K →∞
leads to ∣∣∣∣∫

X
fdµ∞ −

∫
X
fdµ

∣∣∣∣ ≤ 2ε. (A.25)

As (A.25) holds for any ε > 0, one gets that for any f ∈ C0(X ),∫
X
fdµ∞ =

∫
X
fdµ,

which yields that µ∞ = µ. Similarly, we have ν∞ = ν. Therefore, π∞ ∈ Π(µ, ν) and∫
X×Y

c(x, y)dπ∞(x, y) ≥ I. (A.26)

Now, we use the same arguments as in the proof of Theorem 2.7 to deduce that∫
X×Y c(x, y)dπ∞(x, y) ≤ I, which gives the result.
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Chapter 3

Constrained overdamped Langevin
dynamics for symmetric
multimarginal optimal
transportation

This chapter is an article written with Aurélien Alonsi and Virginie Ehrlacher and
submitted to Mathematical Models and Methods in Applied Sciences [7].

Abstract

The Strictly Correlated Electrons (SCE) limit of the Levy-Lieb functional
in Density Functional Theory (DFT) gives rise to a symmetric multi-marginal
optimal transport problem with Coulomb cost, where the number of marginal
laws is equal to the number of electrons in the system, which can be very
large in relevant applications. In this work, we design a numerical method,
built upon constrained overdamped Langevin processes to solve Moment Con-
strained Optimal Transport (MCOT) relaxations (introduced in Chapter 2
and in A. Alfonsi, R. Coyaud, V. Ehrlacher and D. Lombardi, Math. Comp.
90, 2021, 689–737) of symmetric multi-marginal optimal transport problems
with Coulomb cost. Some minimizers of such relaxations can be written as dis-
crete measures charging a low number of points belonging to a space whose di-
mension, in the symmetrical case, scales linearly with the number of marginal
laws. We leverage the sparsity of those minimizers in the design of the numer-
ical method and prove that any local minimizer to the resulting problem is
actually a global one. We illustrate the performance of the proposed method
by numerical examples which solves MCOT relaxations of 3D systems with
up to 100 electrons.

3.1 Introduction

Optimal transport (OT) problems [291, 319] appear in numerous application fields
such as data science [277], finance [27], economics [82, 146, 147] or physics [318].
Hence an increasing interest in developing efficient numerical methods for this types
of problems among the applied mathematics community.

In this article, we specifically focus on multi-marginal symmetric optimal trans-
portation problems arising from quantum chemistry. Density Functional Theory
(DFT) [268] is one of the most popular theories in quantum chemistry in order to
compute the ground state of electrons within a molecule. It is exact in principle,
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due to the Hohenberg-Kohn theorem, up to the knowledge of the Levy-Lieb func-
tional, which is unfortunately not computable in practice. Hence, a wide zoology
of electronic structure models have been developped in the chemistry community
where approximations of this Levy-Lieb functional are computed [228]. Actually, it
has been recently proved [50, 66, 67, 106, 107, 142, 226] that the semi-classical limit
of this Levy-Lieb functional is the solution of a symmetric multi-marginal optimal
transport problem which we state now.

For all p ∈ N∗ (where N∗ denotes the set of positive integers {1, 2, 3, . . .}), we
denote by P (Rp) the set of probability measures on Rp. For d ∈ N∗, for all µ ∈ P(Rd)
and M ∈ N∗ a fixed number of marginal laws (the number of electrons in DFT), we
will denote the set of M -couplings for µ by

Π(µ;M) :=

{
π ∈ P

(
(Rd)M

)
: ∀1 ≤ m ≤M,

∫
(Rd)M−1

dπ(x1, . . . , xM) = dµ(xm)

}
.

(3.1)
Let c : (Rd)M → R+∪{+∞} be a M -symmetric (i.e. such that for all (x1, · · · , xM) ∈(
Rd
)M

, c(x1, . . . , xM) = c(xσ(1), . . . , xσ(M)) for σ ∈ SM a M -permutation) non-
negative lower semi-continuous (l.s.c.) function. The function c is called hereafter
the cost function. Then, the multimarginal symmetric optimal transport problem
associated to µ, M and c is defined as

I(µ) = inf
π∈Π(µ;M)

∫
(Rd)M

c(x1, . . . , xM)dπ(x1, . . . , xM). (3.2)

In DFT applications, the cost c is defined as the Coulomb cost c(x1, . . . , xM) =∑
m1<m2

1
|xm1−xm2 |

. Then, this multimarginal symmetric optimal transport problem

allows to compute the interaction energy between electrons, given an electronic
density (equal to Mµ), in the Strictly Correlated Electrons (SCE) limit – bringing
interest in numerical methods for large multimarginal systems.

A straightforward discretization of problem (3.2) (using a discretization of the
state space Rd with a discrete d dimensional grid for instance) leads to a linear
programming problem, whose size scales exponentially with M . Hence, for large
values of M , specific numerical methods have to be used in order to circumvent the
curse of dimensionality. Hence, new application or efficiency oriented approaches
have been developed for such problems, using entropic relaxation and the Sinkhorn
algorithm [41, 42], dual formulations of the problem [251] or sparsity structure of
the minimizers of the discrete problems [143, 320], which can be combined with a
semidefinite relaxation [192, 193].

In Chapter 2, the authors considered a relaxation of the optimal transport prob-
lem (Moment Constrained Optimal Transport – MCOT) which boils down to con-
sidering a particular instance of Generalized Moment Problem [179, 210, 211]. The
idea of the proposed approach is to change the discretization approach in the sense
the state space Rd is not discretized anymore, but the marginal constraints in (3.2)
are relaxed into a finite number of moment constraints. Taking advantage of the
M -symmetry of the problem, it was proved in Proposition 2.5 that some minimizers
of the obtained relaxed problems could be written as discrete measures charging a
low number of points which scales independently of M .

Thus, a natural idea inspired from this result is to restrict the minimization set
considered in the MCOT problem to the set of probability measures of (Rd)M which
can be written as discrete measures charging a low number of points and satisfying
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the associated moment constraints. The resulting problem, called hereafter the
particle problem, amounts to optimize the positions of the points and the weights
charging the associated Dirac measuresi. In principle, the low number of points
needed to obtain a representation of a minimizer to the MCOT problem should help
in tackling the curse of dimensionality. However, the non-convexity of the particle
problem remains a numerical challenge.

One of the first contribution of this paper is to prove that, despite the non-
convexity of the obtained particle problem, any of its local minimizers are actually
global minimizers. Besides, we prove that the set of local minimizers, which is
hence identical to the set of global minimizers, is polygonally connected. This first
result is stated in Section 3.2 of the article.

The second contribution of the paper is to propose a numerical scheme in order to
find an optimum solution to the particle problem. The numerical method builds on
the use of a constrained overdamped Langevin process projected on a submanifold
defined by the constraints of the problem, in the spirit of [99, 217, 218, 219, 220, 324].
Such processes are actually already used in the context of molecular dynamics (for
which the constraint is defined through the use of a so-called reaction coordinate
function). We give in this paper some elements of theoretical analysis justifying the
interest of such processes for the resolution of multi-marginal optimal transportation
problems and outline the link between such constrained overdamped Langevin pro-
cesses and entropic regularization of optimal transport problems. This is the object
of Section 3.3. Finally, we present the numerical scheme we consider in this article
in Section 3.4 and the numerical results obtained with this approach in Section 3.5.
Proofs of our main theoretical results are postponed until Section 3.6.

We want here to stress on the fact that this numerical scheme enabled us to
obtain approximations of solutions to (3.2) for very high-dimensional problems, for
instance in cases where d = 3 and M = 100. Such a method thus appears to be a
very promising approach in order to solve large-scale problems in DFT for systems
involving a large number of electrons.

Let us point out here that algorithms based on constrained overdamped Langevin
dynamics can also be used in principle for the resolution of general multimarginal
optimal transport problems and multimarginal martingale optimal transport prob-
lems, as there exist an MCOT approximation for both types of problems (see Section
2.3.2). In these cases, the number of marginal constraints to be imposed scales lin-
early in M ii, hence the practical implementation of the numerical method proposed
in this paper is more intricate than in the symmetric case studied here, where the
number of constraints is independant of M .

iNote that we use, in this article, the term particle to designate a Dirac measure (seen in the
minimization problem as a vector in R+ × (Rd)M accounting for a nonnegative weight and the
coordinates of a point in (Rd)M ), and not with the physics meaning that encompasses electrons
– the electronic density of which, in the DFT application, would correspond in this article to M
times the marginal law µ.

iiIn the case of multimarginal martingale optimal transport, if there is no assumption of Marko-
vian relationship between the marginal laws, the scaling in the number of constraints for the
approximation of the martingale constraints may be exponential in M .
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3.2 Mathematical properties of MCOT particle

problems

We recall in this section the MCOT problem which was introduced in Chapter 2,
together with the associated particle problem. We also state here our first theoretical
results which describe the set of minimizers associated to the particle problem.

3.2.1 MCOT and particle problems

As introduced in Chapter 2, the Moment Constrained Optimal Transport (MCOT)
problem is a particular case of Generalized Moment Problem [211] which may be seen
as a relaxation of optimal transport where the marginal constraints are alleviated
and replaced by a finite number of moment constraints. In the following, we restrain
our analysis to symmetrical multimarginal optimal transport for the sake of clarity
but let us mention here that the results presented here can be extended to general
multimarginal optimal transport, as well as martingale optimal transport.

Let d ∈ N∗, µ ∈ P(Rd), M ∈ N∗ and c : (Rd)M → R+ ∪ {+∞} be a lower semi-
continuous symmetric function. The MCOT problem is a relaxation of the optimal
transport problem (3.2) which we present now. Let N ∈ N∗ and let us consider a
set (φn)1≤n≤N ⊂ L1(Rd, µ;R) of N continuous real-valued functions, integrable with
respect to µ and called hereafter test functions. For all 1 ≤ n ≤ N , let us denote by

µn =

∫
Rd
φn(x)dµ(x), (3.3)

the moments of µ, by

Π(µ; (φn)1≤n≤N ;M) :=

{
π ∈ P

(
(Rd)M

)
: (3.4)

∀1 ≤ n ≤ N,

∫
(Rd)M

M∑
m=1

|φn(xm)|dπ(x1, . . . , xM) <∞,

∫
(Rd)M

(
1

M

M∑
m=1

φn(xm)

)
dπ(x1, . . . , xM) = µn

}
,

the set of probability measures on (Rd)M for which the mean of the moments against
the test functions of the marginal laws are equal to the one of µ, and by

ΠS(µ; (φn)1≤n≤N ;M) :=

{
π ∈ P

(
(Rd)M

)
: (3.5)

∀1 ≤ n ≤ N,

∫
(Rd)M

M∑
m=1

|φn(xm)|dπ(x1, . . . , xM) <∞,

∀1 ≤ m ≤M,

∫
(Rd)M

φn(xm)dπ(x1, . . . , xM) = µn

}

the set of probability measures on (Rd)M that have, for each marginal law, the same
moments as µ against the test functions.

For technical reasons linked to the fact that the optimal problem is defined on the
unbounded state space Rd, we assume in addition that there exists a non-decreasing
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non-negative continuous function θ : R+ → R+ satisfying θ(r) −−−−→
r→+∞

+∞ and for

which there exists C > 0 and 0 < s < 1 such that for all 1 ≤ n ≤ N and all x ∈ Rd,

|φn(x)| ≤ C(1 + θ(|x|))s. (3.6)

We finally choose a positive real number A > 0 satisfying A ≥ A0 :=
∫
Rd θ(|x|)dµ(x).

Then, the MCOT problem is defined by

IN := inf
π∈ΠS(µ;(φn)1≤n≤N ;M)

1
M

∫
(Rd)M

∑M
m=1 θ(|xm|)dπ(x1,...,xM )≤A

∫
(Rd)M

c(x1, . . . , xM)dπ(x1, . . . , xM).

(MCOTS)
Under appropriate assumptions on the family of test functions (φn)1≤n≤N , it is
proved in Chapter 2 that the value of IN can be made arbitrarily close to I as
N , the number of test functions, goes to infinity. Besides, converging subsequences
of minimizers to (MCOTS) necessarily converge to some minimizer of (3.2). This
is the reason why (MCOTS) can be seen as a particular discretization approach for
the numerical approximation of Problem (3.2).

Remark 3.1. It is proved in Chapter 2 that the value of IN does not depend on the
value of A provided that A satisfies A ≥ A0.

Using the symmetry of the cost c and the marginal constraints, it can be easily
checked that IN is also equal to

IN = inf
π∈Π(µ;(φn)1≤n≤N ;M)

1
M

∫
(Rd)M

∑M
m=1 θ(|xm|)dπ(x1,...,xM )≤A

∫
(Rd)M

c(x1, . . . , xM)dπ(x1, . . . , xM).

(MCOT)
Then, from Proposition 2.5 there exists at least one minimizer to problem (MCOT),

which can be written as

πN =
K∑
k=1

wkδ(xk1 ,...,xkM), (3.7)

for some 0 < K ≤ N + 2, with wk ≥ 0 and xkm ∈ Rd for all 1 ≤ m ≤ M and
1 ≤ k ≤ K. Besides, the symmetrized measure associated to πN , which is defined
by

πNS :=
1

M !

∑
σ∈SM

K∑
k=1

wkδ(xk
σ(1)

,...,xk
σ(M)

) (3.8)

where SM is the set of permutations of {1, · · · ,M}, is a minimizer to (MCOTS).

The proof of this result makes use of Tchakaloff’s theorem [24, Corollary 2], which
is recalled in Theorem 3.4 in Section 3.6.1. Note that since Π(µ; (φn)1≤n≤N ;M) ⊂
Π(µ;M), when I is finite, it naturally holds that IN ≤ I <∞.

These theoretical results naturally lead us to consider an optimization problem
similar to (MCOT) but where the optimization set is reduced to the set of measures
of Π(µ; (φn)1≤n≤N ;M) which can be written as discrete measures under the form
(3.7) for some K ∈ N∗. This naturally leads to the following optimization problem,
which we call hereafter the MCOT particle problem with K particles:

INK := inf
(W,Y )∈UNK

K∑
k=1

wkc
(
Xk
)
, (MCOTK)

73



where

UNK :=

{
(W,Y ) ∈ RK

+ ×
(
(Rd)M

)K
, W = (wk)1≤k≤K , Y = (Xk)1≤k≤K , (3.9)

K∑
k=1

wk = 1,
K∑
k=1

wkϑ(Xk) ≤ A, ∀1 ≤ n ≤ N,
K∑
k=1

wkϕn(Xk) = µn

}
,

with, for all X = (x1, · · · , xM) ∈ (Rd)M and all 1 ≤ n ≤ N ,

ϑ(X) :=
1

M

M∑
m=1

θ (|xm|)) and ϕn(X) :=
1

M

M∑
m=1

φn(xm). (3.10)

In view of Proposition 2.5 we have INK = IN as soon as K ≥ N + 2.

A few remarks are in order at this point.

Remark 3.2. (i) Considering problem MCOTK as a starting point for a numer-
ical scheme seems very appealing, especially in contexts when M is large. In-
deed, in principle, the resolution of (MCOTK) only requires the optimization
of at most K(M + 1) scalars, thus would require the resolution of an optimiza-
tion problem defined on a continuous optimization set involving a number of
parameters which only scales linearly with respect to the number of marginal
laws. Thus, gradient-based algorithms are natural to consider for the numerical
resolution of (MCOTK), at least for differentiable test functions.

(ii) Problem MCOTK is highly non-convex, whereas the original MCOT prob-
lem (MCOT) reads as a (high-dimensional) linear problemiii. This definitely
makes the numerical resolution of (MCOTK) a challenging task. This is the
reason why we consider in this article randomized versions of gradient-
based algorithms for the resolution of (MCOTK). Nevertheless, strikingly, we
prove in this article that, despite the lack of convexity, any local minimizers to
the MCOT particle problem (MCOT) are actually global minimizers, provided
that K ≥ 2N + 6. This is the object of Section 3.2.2 to state this result and
further mathematical properties of the set of minimizers to (MCOTK).

The main focus of this article is to propose numerical schemes relying on stochas-
tic versions of gradient-based algorithms in order to find minimizers to the MCOT
particle problem. Such numerical schemes actually make use of constrained over-
damped Langevin processes, which are usually encountered in the context of molec-
ular dynamics simulations [218, 219]. In Section 3.3, we relate such stochastic pro-
cesses with MCOT problems and entropic regularizations of the latter.

In numerical tests, and especially in the 3D case, the schemes proposed in this
article perform better when using a large number of particles K, with weights wk
assumed to be fixed and equal to 1

K
which are not optimized upon. That is why

we introduce here the resulting optimization, called the MCOT fixed-weight particle
problem with K particles, which reads as follows:

JNK := inf
Y :=(Xk)

1≤k≤K
∈((Rd)M )K ,

∀1≤n≤N, 1
K

∑K
k=1 ϕn(Xk)=µn,

1
K

∑K
k=1 ϑ(Xk)≤A

K∑
k=1

1

K
c
(
Xk
)
. (MCOTK -fixed weight)

iiiMore generally, any non-linear minimization problem can be reframed as a linear minimization
problem in a much larger space (the measure space), as minx∈Rd c(x) = minP

∫
Rd c(y)dP(y).
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Remark 3.3. (i) Let us stress on the fact that the existence of a solution to
(MCOTK -fixed weight) is not guaranteed in general. This stems from the
fact that there may not exist a set of points Y =

(
Xk
)

1≤k≤K satisfying the

constraints of problem (MCOTK -fixed weight). However, for all N,K ∈ N∗,
it always holds that JNK ≥ INK .

Let however consider (W,Y ) ∈ UNN+2 a minimizer of (MCOTK) and assume
that the cost c and the test functions φn are bounded. Then, by rounding the
weights wk to a multiple of 1/K, and then by using ` copies of particles with

weight `/K, we can construct Ỹ =
(
X̃k
)

1≤k≤K
such that

1

K

K∑
k=1

ϕn(X̃k) ≈ µn +O
(

1

K

)
.

Thus, Ỹ satisfies the moment constraints of problem (MCOTK -fixed weight)
up to an error of order O

(
1
K

)
and achieves a cost that is also O

(
1
K

)
away

from the optimal cost achieved by (W,Y ).

Furthermore, in the limit K →∞ optima of problems (MCOTK -fixed weight)
(with an accepted error O

(
1
K

)
on the constraints) converge to the optimum of

the problem (MCOT).

(ii) Yet, in the numerical experiments in the fixed weight case in 3D, the conver-
gence in K appears to be faster than O

(
1
K

)
and even low values of K can give

sharp approximations of the optimum of (MCOT).

3.2.2 Properties of the set of minimizers of the particle
problem

The aim of this section is to present the first main theoretical result of this paper,
which states some mathematical properties on the set of minimizers of the particle
problem MCOTK .

For any (W,Y ) ∈ RK
+ × ((Rd)M)K , we define by

I(W,Y ) :=
K∑
k=1

wkc(X
k),

where W := (wk)1≤k≤K and Y := (Xk)1≤k≤K . Problem (MCOTK) can then be
equivalently rewritten as

INK = inf
(W,Y )∈UNK

I(W,Y ). (3.11)

We begin this section by Theorem 3.1, which states that for any two elements
of UNK , there exists a continuous path with values in UNK which connects these two
elements, and such that I monotonically varies along this path.

Theorem 3.1. Let us assume that K ≥ 2N + 6. Let (W0, Y0), (W1, Y1) ∈ UNK .
Then, there exists a continuous application ψ : [0, 1] → UNK made of a polygonal
chain such that ψ(0) = (W0, Y0), ψ(1) = (W1, Y1) and such that the application
[0, 1] 3 t 7→ I(ψ(t)) is monotone.
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In order to explain the main ideas of the proof of Theorem 3.1, let us remark
that, using Tchakaloff’s theorem (recalled in Section 3.6.1), for any measure π ∈
Π(µ; (φn)1≤n≤N ;M), satisfying, ∫

(Rd)M
ϑdπ ≤ A, (3.12)

and charging K ≥ 2N + 6 points, one can find a measure π̃ ∈ Π(µ; (φn)1≤n≤N ;M)
charging N + 3 points, whose support is included in the one of π, and having the
same cost and the same moment against ϑ. Then, the segment ((1− t)π + tπ̃)t∈[0,1]

is included in Π(µ; (φn)1≤n≤N ;M), charges at most 2N +6 points and keeps the cost
and the moment against ϑ constant. Besides, let π̃0, π̃1 ∈ Π(µ; (φn)1≤n≤N ;M) be two
measures with support on at most N+3 points, and such that for i = 0, 1, π̃i satisfies
(3.12). Then, the segment ((1− t)π̃0 + tπ̃1)t∈[0,1] is included in Π(µ; (φn)1≤n≤N ;M),
satisfies the inequality constraint (3.12) for all t ∈ [0, 1], charges at most 2N + 6
points, and the cost varies linearly along it. By identifying (W0, Y0) with π0 (resp.
(W1, Y1) with π1), one can join π0 to π1 by segments (with appropriately defined
intermediate measures π̃0 and π̃1) satisfying the constraints, and along which the
cost varies linearly. The adaptation of these ideas to vectors (W0, Y0), (W1, Y1) ∈ UNK ,
which requires to take into account the displacement of the positions between Y0

and Y1 as well as the ordering of the coordinates, is the object of Section 3.6.2.
A direct consequence of Theorem 3.1 is then Corollary 3.2 which states that any

local minimizer to problem (3.11) (or equivalently problem MCOTK) is actually a
global minimizer as soon as K ≥ 2N + 6. In addition, the set of minimizers forms
an polygonally connected (and thus arc-connected) set.

Corollary 3.2. Let us assume that K ≥ 2N + 6. Then, any local minimizer of
the MCOT particle problem (MCOTK) is actually a global minimizer. Besides, the
set of (local or global) minimizers of the MCOT particle problem (MCOTK) is an
polygonally connected subset of RK

+ × ((Rd)M)K.

3.3 Overdamped Langevin processes for MCOT

particle problems

The motivation of this section is twofold: first, the numerical method used in this ar-
ticle for the resolution of the particle problems (MCOTK) and (MCOTK -fixed weight)
can be seen as a time discretization of constrained overdamped Langevin dynamics,
which are usually encountered in molecular dynamics simulation; second, we draw
here a link, on the formal level, between the long-time and large number of particles
limit of these processes and a regularized version of the MCOT problem (MCOT)
using the so-called Kullback-Leibler entropy regularization, very similar to the regu-
larization which is at the core of the Sinkhorn algorithm for the resolution of optimal
transportation problem [277].

The objective of Section 3.3.1 is to recall some fundamental properties of general
constrained overdamped Langevin processes. Then, in Section 3.3.2, we consider
specific processes which are related to the MCOT problem presented in Section 3.2.

3.3.1 Properties of general constrained overdamped Langevin
processes
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3.3.1.1 Definition

Let p ∈ N∗. Let us first introduce unconstrained overdamped Langevin processes in
the state space Rp. Let (Ω,F ,P) be a probability space. An overdamped Langevin
stochastic process is a stochastic process (Yt)t≥0 solution to the following stochastic
differential equation

dYt = −∇V (Yt) dt+ β dWt,

where V : Rp → R is a smooth function, called hereafter the potential function of the
overdamped Langevin process, β > 0 is a positive coefficient which is proportional to
the square root of the temperature of the system in molecular dynamics (β =

√
2T̄

with T̄ the temperature), and (Wt)t≥0 is a p-dimensional Brownian motion.

Constrained overdamped Langevin processes are overdamped Langevin processes
whose trajectory is enforced to be included into a given submanifold. In the sequel,
we assume that the submanifold is characterized as the zero isovalued set of a given
smooth function Γ : Rp → Rq for some q ∈ N∗, so that the corresponding submani-
fold is defined by

M = {Y ∈ Rp,Γ(Y ) = 0}.
We assume in the sequel that the submanifoldM is arc connected. In addition, let
us assume that there exists a neighborhood W of M such that, for all Y ∈ W ,

G(Y ) := ∇Γ(Y )T∇Γ(Y ) ∈ Rq×q (3.13)

is an invertible matrix, where ∇Γ(Y )i,j = ∂iΓj for 1 ≤ i ≤ p and 1 ≤ j ≤ q. These
two assumptions on the function Γ, together with the implicit function theorem,
imply that M is a regular (p− q)-dimensional submanifold.

A constrained overdamped Langevin process [218, Section 3.2.3] is a Rp-valued
stochastic process (Yt)t≥0 that solves the stochastic differential equation{

dYt = −∇V (Yt) dt+ βdWt +∇Γ(Yt)dΛt,

Γ(Yt) = 0,
(3.14)

where β > 0, (Wt)t≥0 is a p-dimensional Brownian process and (Λt)t≥0 is a q-
dimensional stochastic adapted stochastic process, which ensures that Yt belongs
to the submanifold M almost surely for all t ∈ R+. More precisely, Λt is the
Lagrange multiplier associated to the constraint Γ(Yt) = 0 and is defined by

dΛt = G−1(Yt)


∇Γ(Yt)

T∇V (Yt)−
β2

2


∑p

i=1 ∂
2
i Γ1(Yt)
...∑p

i=1 ∂
2
i Γq(Yt)


 dt− β∇Γ(Yt)

TdWt

 .
(3.15)

Thus, if we define P (y) = Id−∇Γ(y)TG−1(u)∇Γ(y) the projection operator, we get

dYt = P (Yt)[−∇V (Yt) + βdWt]−
β2

2
∇Γ(Yt)

TG−1(Yt)


∑p

i=1 ∂
2
i Γ1(Yt)
...∑p

i=1 ∂
2
i Γq(Yt)

 dt.

Let us assume in addition that

Z :=

∫
Rp
e
− 2V (Y )

β2 dσM(Y ) < +∞, (3.16)
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where dσM is the surface measure (induced by the Lebesgue measure in Rp, see
[218, Remark 3.4] for a precise definition) on the submanifold M. Let us introduce
the probability measure η ∈ P(Rp) defined by

dη(Y ) :=
1

Z
e
− 2V (Y )

β2 | detG(Y )|−1/2dσM(Y ). (3.17)

Under suitable assumptions, [218, Proposition 3.20] states that η is the unique
equilibrium distribution of the stochastic process Yt solution to the constrained
overdamped Langevin dynamics (3.14) and that

Yt weakly converges to η as t→ +∞. (3.18)

3.3.1.2 Long-time and large number of particles limit

We recall here some results proved in [290, Section 2.3 and Proposition 5.1], where
the authors consider the so-called large-particle limit of constrained overdamped
Langevin dynamics subject to average moment constraints. The objective of the
work [290] was to study the properties of the constrained overdamped Langevin
process in a large number of particles limit and to show the convergence towards η
of the invariant distribution of the approximating particle system when the number
of particles K →∞.ivMore precisely, from now on, let us consider p′ = Kp for some
K ∈ N∗. We define for any K ∈ N∗ the potential function V K and the constraint
function ΓK by:

∀Y = (Xk)1≤k≤K ∈ (Rp)K , V K(Y ) :=
1

K

K∑
k=1

V
(
Xk
)

and ΓK(Y ) :=
1

K

K∑
k=1

Γ
(
Xk
)
.

We then consider the following constrained overdamped Langevin process (Y K
t )t≥0

that is assumed to be solution to the stochastic differential equation{
dY K

t = −∇V K(Y K
t ) dt+ βdWK

t +∇ΓK(Y K
t )dΛK

t ,

ΓK(Y K
t ) = 0,

(3.19)

where (WK
t )t≥0 is aKp-dimensional Brownian process and (ΛK

t )t≥0 is a q-dimensional
stochastic adapted stochastic process, which ensures that Y K

t satisfies the constraint
ΓK(Y K

t ) = 0 almost surely. The process Y K is usually called a particle system: each
coordinate Xk for 1 ≤ k ≤ K is seen as a particle. The large number of particles
limit consists in considering the limit as K goes to infinity of the stochastic process
(Y K

t )t≥0.

It follows from (3.18) that, under suitable assumptions, as t goes to ∞, the law
of the process Y K

t converges to the probability measure ηK ∈ P
(
(Rp)K

)
defined for

all Y K = (X1, · · · , XK) ∈ (Rp)K by

dηK(Y K) =
1

ZK

(
ΠK
k=1e

− 2V (Xk)

β2

)
dσMK (Y K), (3.20)

where
MK :=

{
Y K ∈ (Rp)K , ΓK(Y K) = 0

}
,

ivWe use here the notation K for the number of particles in view of the use of the Langevin
dynamics to solve (MCOTK) problems, from Section 3.3.2, for which K ≥ 2N +6. Yet, the results
recalled in Section 3.3.1.2 are general and unrelated to MCOT applications.
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ZK :=

∫
(Rp)K

e
− 2VK (YK )

β2 dσMK (Y K),

and
GK(Y K) := ∇ΓK(Y K)T∇ΓK(Y K) ∈ Rq×q.

For 1 ≤ k ≤ K,
(
Xk
t

)
t≥0

is a p-dimensional stochastic process. Let us denote by

ζKt ∈ P(Rp) the law of the first particle X1
t . Then, the symmetry of the functions

V K and ΓK implies that ζKt weakly converges in law when t→∞ to the probability
measure ζK∞ defined for all X ∈ Rp by

dζK∞(X) =

∫
(Rp)K−1

dηK(X,X2, · · · , XK). (3.21)

Under appropriate assumptions on V and Γ which we do not detail here [290,
Proposition 5.1], the sequence

(
ζK∞
)
K∈N∗ weakly converges in P(Rp) as K goes to

infinity to a probability measure π∗β ∈ P(Rp) which is the unique solution to

π∗β := arg min
π∈P(Rp)∫
Rp Γ dπ=0

∫
Rp

ln

(
dπ(X)

(Z∞)−1e
− 2V (X)

β2 dX

)
dπ(X), (3.22)

where Z∞ :=
∫
Rp e

− 2v(X)

β2 dX. In other words, π∗β is thus a probability measure on
Rp, which is absolutely continuous with respect to the Lebesgue measure and which
is solution to

π∗β := arg min
π∈P(Rp)∫
Rp Γ dπ=0

∫
Rp
V (X) dπ(X) +

β2

2

∫
Rp

ln

(
dπ(X)

dX

)
dπ(X). (3.23)

3.3.2 Application to MCOT problems

The aim of this section is to illustrate the link between the MCOT problems pre-
sented in Section 3.2 and the constrained overdamped Langevin processes intro-
duced in Section 3.3.1. We start by considering the fixed weight MCOT particle
problem (MCOTK -fixed weight), before considering the MCOT particle problem
with adaptive weights (MCOT).

3.3.2.1 Fixed-weight MCOT particle problem

We first draw the link between constrained Langevin overdamped dynamics and the
fixed weight MCOT particle problem (MCOTK -fixed weight). Then, for all K ∈
N∗, let us consider (Y K

t )t≥0 a constrained overdamped Langevin process solution
to the stochastic differential equation (3.19) with p = dM , q = N , V = c and
Γ = (ϕ1 − µ1, · · · , ϕN − µN) where for all 1 ≤ n ≤ N , ϕn is defined by (3.10).

Then, the stochastic dynamics (3.19) can be viewed as a randomized version of
a constrained gradient numerical method for the resolution of problem (MCOTK

-fixed weight), where for all t ≥ 0, Y K
t = (X1

t , · · · , XK
t ) ∈ ((Rd)M)K and where for

all 1 ≤ k ≤ K,

Xk
t =

(
xk1,t, · · · , xkM,t

)
∈
(
Rd
)M

.

Note that it is not clear in general that V and Γ satisfy the regularity assumptions
which ensure the convergence results stated in Section 3.3.1.2 to hold true. But, for-
mally, assuming that the long-time limit and large number of particles convergence
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holds nevertheless, the associated measure π∗β solution (3.23) can be equivalently
rewritten as

π∗β := arg min
π∈P((Rd)M)

∀1≤n≤N,
∫
(Rd)M ϕn dπ=µn

J (π), (3.24)

where

J (π) :=

∫
(Rd)M

c (X) dπ(X) +
β2

2

∫
(Rd)M

ln

(
dπ(X)

dX

)
dπ(X).

Recall that π∗β is the large number of particles limit of the long-time limit of
the law of one particle associated to the constrained overdamped Langevin process.
Notice that π∗β can be equivalently seen as the solution of an entropic regularization

of the MCOT problem (MCOT), where the term
∫

(Rd)M
ln
(
dπ(X)
dX

)
dπ(X) can be

identified as the Kullback-Leibler entropy of the measure π with respect to the
Lebesgue measure. Thus, Problem 3.24 is close to the entropic regularization of
optimal transport problems used in several works [41, 118, 262, 277], in particular
for the so-called Sinkhorn algorithm [41].

Let us point out here that, at least on the formal level, we expect the family
(π∗β)β>0 to weakly converge to a minimizer of (MCOT) as β goes to 0 (a similar
result is proven in [83, Theorem 2.7]).

3.3.2.2 Adaptive-weight MCOT particle problem

A similar link can be drawn between constrained Langevin overdamped dynamics
and the MCOT particle problem (MCOTK) with adaptive weights.

In order to fit in the framework of the constrained Langevin overdamped dy-
namics, without any positivity constraint, let us introduce a continuous surjective
function f : R → R+, which we call hereafter a weight function. We assume that
f satisfies the following assumption: there exists an interval I ⊂ R such that the
Lebesgue measure of I is equal to 1 and such that

∫
I
f = 1. A simple choice of ad-

missible weight function can be given by f(a) = a2 for all a ∈ R with I = (1
2
, 251/3

2
).

Then, for all K ∈ N∗, let us consider
(
Y
K

t

)
t≥0

a constrained overdamped

Langevin process solution to the stochastic differential equation (3.19) with p =
dM + 1, q = N + 1, and where for all X = (a,X) ∈ R× (Rd)M , V (X) = f(a)c(X)
and Γ(X) = (f(a)− 1, f(a)ϕ1(X)− µ1, · · · , f(a)ϕN(X)− µN). Then, the stochas-
tic dynamics (3.19) can be viewed as a randomized version of a constrained gradient
numerical method for the resolution of the optimization problem

inf
(A,Y )∈VNK

K∑
k=1

f(ak)c
(
Xk
)
, (3.25)

where

VNK :=

{
(A, Y ) ∈ RK ×

(
(Rd)M

)K
, A = (ak)1≤k≤K , Y = (Xk)1≤k≤K , (3.26)

K∑
k=1

f(ak) = 1,
K∑
k=1

f(ak)ϑ(Xk) ≤ A, ∀1 ≤ n ≤ N,

K∑
k=1

f(ak)ϕn(Xk) = µn

}
,

which is equivalent to problem (MCOTK) using the surjectivity of f .
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Note that the choice of the function f can influence the dynamics as it regulates
both the way the brownian motion W affects the weights, and the balance, in the
minimization of V and in the enforcement of the constraint Γ(X) = 0N , between a
displacement of particles and a change in weights.

Here again, it is not clear in general that V and Γ satisfies the regularity as-
sumptions which ensures the convergence results stated in Section 3.3.1.2 to hold
true. But, using formal computations, we can consider the associated measure
πa
β ∈ P

(
R× (Rd)M

)
solution to

πa
β := arg min

π∈P(R×(Rd)M)∫
a∈R

∫
X∈(Rd)M f(a) dπ(a,X)=1

∀1≤n≤N,
∫
a∈R

∫
X∈(Rd)M f(a)ϕn(X) dπ(a,X)=µn

J (π), (3.27)

where

J (π) :=

∫
a∈R

∫
X∈(Rd)M

f(a)c (X) dπ(a,X)+
β2

2

∫
a∈R

∫
X∈(Rd)M

ln

(
dπ(a,X)

dadX

)
dπ(a,X).

Let us introduce now πa
β ∈ P

(
(Rd)M

)
defined by

dπa
β(X) =

∫
a∈R

f(a) dπa
β(a,X).

Then πa
β satisfies the constraints of problem (3.24) and

J (πa
β) =

∫
X∈(Rd)M

c(X) dπa
β(X) +

β2

2

∫
a∈R

∫
X∈(Rd)M

ln

(
dπa

β(a,X)

dadX

)
dπa

β(a,X).

Notice that, as a consequence, problem (3.27) may be seen as a second kind of
entropic regularization of (MCOT) and that πa

β is expected to be an approximation
of some minimizer to (MCOT) as β goes to 0.

Let us notice here that the assumption made on f ensures that, for all π ∈
P
(
(Rd)M

)
, there exists a probability measure π ∈ P

(
R× (Rd)M

)
such that

dπ(X) =

∫
a∈R

f(a) dπ(a,X).

Indeed, defining dπ(a,X) := 1I(a) da⊗ dπ(X) yields the desired result. Besides, we
easily check that J (π) = J (π), which leads immediately to J (πa

β) ≤ J (π∗β) from
the optimality of πa

β.

3.4 Numerical optimization method

We present in this section the numerical procedure we use in our numerical tests to
compute approximate solutions to the particle problems with fixed weights (MCOTK

-fixed weight) or adaptive weights (MCOTK) for a fixed given K ∈ N∗. Note that
(MCOTK -fixed weight) can be equivalently rewritten as

JNK := inf
Y K∈((Rd)M )K ,

ΓK(Y K)=0,

ΘK(Y K)≤A

V K(Y K), (3.28)
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where V K and ΓK are defined in Section 3.3.2.1, and where

ΘK :

{
((Rd)M)K 7→ R

Y := (X1, · · · , XK) → 1
K

∑K
k=1 ϑ(Xk).

Besides, problem (MCOTK) can be rewritten equivalently as

INK := inf
Y
K∈(R×((Rd)M ))

K

Γ
K

(Y
K

)=0,

Θ
K

(Y
K

)≤A

V
K

(Y
K

), (3.29)

where V
K

and Γ
K

are defined in Section 3.3.2.2, and where

Θ
K

:

{
(R× (Rd)M)K 7→ R

Y := ((a1, X1), · · · , (aK , XK)) → 1
K

∑K
k=1 f(ak)ϑ(Xk).

For the sake of simplicity, we restrict the presentation here to the method used
for the resolution of (3.28), since the method used for the resolution of (3.29) follows
exactly the same lines.

3.4.1 Time-discretization of constrained overdamped Langevin
dynamics

The numerical procedure considered in this paper consists in a time discretization
of the dynamics (3.14) with an adaptive time step and noise level. The main idea
of the algorithm is the following: let (Wn)n∈N be a sequence of iid normal vectors of
dimension dMK. At each iteration n ∈ N∗ of the procedure, starting from an initial
guess Y K

0 ∈ MK for n = 0, a new approximation Y K
n+1 ∈ MK is computed as the

projection in some sense of Y K
n+1/2 := Y K

n −∇V K(Y K
n )∆tn + βn

√
∆tnWn ontoMK ,

where ∆tn > 0 is the time step and βn > 0 is the noise level at iteration n. Precisely,
the next iterate Y K

n+1 is computed as Y K
n+1/2 +∇ΓK(Y K

n ) ·ΛK
n+1 where ΛK

n+1 ∈ RN is

a Lagrange multiplier which ensures that the constraint ΓK(Y K
n+1) = 0 is satisfied.

The complete resulting procedure is summarized in Algorithm 2.

We discuss here three main difficulties about the algorithm we propose:

• the initialization step which consists in finding an element Y K
0 ∈MK ;

• the choice of the values of the time step ∆tn and noise level βn at each iteration
of the algorithm;

• the practical method used in order to compute a projection of Y K
n+1/2 onto the

submanifoldMK , and in particular the value of the Lagrange multiplier ΛK
n+1.

The procedure chosen to adapt the time step and noise level is discussed in Sec-
tion 3.4.2. The algorithm used to compute a projection of Y K

n+1/2 onto the subman-

ifoldMK and the value of the Lagrange multiplier ΛK
n+1 is detailed in Section 3.4.3.

Finally, the initialization procedure used to compute a starting guess Y K
0 ∈ MK is

exaplined in Section 3.4.4.
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Algorithm 2 Constrained Overdamped Langevin Algorithm

Input Y K
0 ∈MK , ∆t0 > 0, β0 > 0, τ0 > 0, iconst ∈ N∗, imax ∈ N∗, NoiseDecrease :

R+ × N→ R+, nmax ∈ N∗
Fix n = 0, ΛK

0 = 0.
Define (Wn)n∈N a sequence of i.i.d. normal vectors of the same dimension as Y K

0 .

while n ≤ nmax do
AdaptTimeStep(Y K

n ,Λ
K
n ,∆tn, βn, τn)

Y K
n+1/2 := Y K

n −∇V K(Y K
n )∆tn + βn

√
∆tnWn

if Projection(Y K
n+1/2,∇ΓK(Y K

n ),ΛK
n , imax) succeeds then

Y K
n+1,Λ

K
n+1, in ← Projection(Y K

n+1/2,∇ΓK(Y K
n ),ΛK

n , imax)
if in ≤ iconst then
τn+1 ← 2τn

end if
βn+1 ← NoiseDecrease(βn, n)
∆tn+1 ← ∆tn; τn+1 ← τn
n← n+ 1

else
τn ← τn/2

end if
end while
return min(V K(Y K

n ), 0 ≤ n ≤ nmax)

3.4.2 Time step and noise level adaptation procedure

Two remarks are in order to motivate the procedure we propose here:

(i) the computation of the Lagrange multiplier ΛK
n+1 at each iteration n of the

algorithm and of the resulting value of Y K
n+1 must be fast (as it is executed at

each step).

(ii) the time-step ∆tn must be:

(a) small enough for the procedure that computes the Lagrange multiplier to
be well-defined,

(b) large enough for the total number of iterations needed to observe conver-
gence to be reasonable. In practice, nmax was chosen to be of the order of
20000 in the numerical experiments presented in Section 3.5.

To address item (i), we use a Newton method similar to the one proposed in [219,
220] to enforce the constraints and compute the Lagrange multiplier ΛK

n+1 which is
summarized in Algorithm 4 and detailed in Section 3.4.3. This method is observed
to converge fast if the value Y K

n+1/2 is close enough to the submanifold MK . The
tolerance threshold allowed at each step on the satisfiability of the constraints is
given by τn > 0, the value of which is also adapted at each step. Its precise value is
inferred as follows: if the Newton method converges fast enough (i.e. if the number
of iterations needed to ensure convergence in is lower than some fixed value iconst),
then the value of τn is multiplied by 2. On the other hand, if the Newton method
does not converge in a maximum number of iterations (given by imax), then τn is
divided by 2. This step may involve a new time-step computation for iteration n,
which we detail below.
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The time-step ∆tn is adapted (in order to answer item (ii)) through Algorithm 3
(AdaptTimeStep subprocedure). It is increased at each step n if the constraints
are satified up to a tolerance threshold lower than τn (in order to answer (iib)).
Otherwise, the time-step is divided by 2 as many times as needed for Y K

n+1/2 to

satisfy the constraints defining the submanifold up to a tolerance lower than τn (in
order to satisfy item (iia)).

Moreover, the noise-level βn is decreased at each iteration n at a rate inspired
from Robbins-Siegmund Lemma [266, Theorem 6.1] for non-constrained stochastic
gradient optimization, using the NoiseDecrease function in Algorithm 2. This is
managed through the NoiseDecrease function. In the numerical experiments pre-
sented in Section 3.5, we used two possible choices of NoiseDecrease function defined
respectively by (β, n) 7→ β (noise level unchanged) and (β, n) 7→ √

n
n+1

β (slow de-
crease of the noise level: note that this is the relative decrease, so that after n steps,
the noise is β0/

√
1 + n).

Algorithm 3 AdaptTimeStep subprocedure

Input: Y K , Λ, ∆t, β, τ , n
if ‖ΓK(Y K −∇V K(Y K)2∆t+Wn

√
2∆tβ)‖ ≤ τ then

∆t← 2∆t;
else

while ‖ΓK(Y K −∇V K(Y K)∆t+Wn

√
2∆tβ)‖ ≥ τ do

∆t← ∆t/2; Λ← Λ/2
end while

end if

3.4.3 Projection method

As mentioned earlier, to compute Y K
n+1 ∈ MK and ΛK

n+1 from Y K
n+1/2, we use a

Newton method similar to the one proposed in [219, 220]. We refer the reader
to [220, Section 2.2.2] for theoretical considerations on such projections.

More precisely, the procedure reads as follows: given Y K
n , Y

K
n+1/2 ∈ ((Rd)M)K ,

the aim of the Newton procedure is to find a solution ΛK
n+1 ∈ RN to the equation

ΓK
(
Y K
n+1/2 +∇ΓK(Y K

n ) · ΛK
n+1

)
= 0.

We numerically observe that this Newton procedure only converges in cases when
Y K
n+1/2 and Y K

n are close enough to the manifold MK . Provided that Y K
n belongs

to MK , Y K
n+1/2 can be made arbitrarily close to the submanifold provided that the

value of the time step ∆tn is chosen small enough. We also refer the reader to [279,
Theorem 1.4.1] for theoretical conditions which guarantee the convergence of this
Newton procedure.

This projection procedure, together with the routine for the adaptation of the
error tolerance τn on the satisfiability of the constraints, is summarized in Algo-
rithm 4. Note that this Newton algorithm requires the inversion of matrices of the
form

∇ΓK(Y K
n+1/2 +∇ΓK(Y K

n ) · Λ)T · ∇Γ(Y K
n )

for Λ ∈ RN and that we cannot theoretically guarantee the invertibility of this
matrix in general. In practice, it naturally depends significantly on the choice of
test functions (φn)1≤n≤N .
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Algorithm 4 Projection subprocedure (Newton method)

Input: Y K
n+1/2, ∇ΓK(Y K

n ), ΛK
n , imax

i = 0, Λ′0 ← Λn

while ‖ΓK(Y K
n+1/2 +∇ΓK(Y K

n ) · Λ′i)‖ > 10−16 and i ≤ imax do

Λ′i+1 ← Λ′i −
(
∇ΓK(Y K

n+1/2 +∇ΓK(Y K
n ) · Λ′i)T · ∇Γ(Y K

n )
)−1

· ΓK((Y K
n+1/2 +

∇ΓK(Y K
n ) · Λ′i)

i← i+ 1
end while
if ‖ΓK(Y K

n+1/2 +∇ΓK(Y K
n ) · Λ′i)‖ ≤ 10−16 then

return Y K
n+1/2 +∇ΓK(Y K

n ) · Λ′i, Λ′i, i
else

return Projection failure.
end if

3.4.4 Initialization procedure

Algorithm 2 is initialized with an initial guess Y K
0 which is assumed to belong to

the constraints submanifold MK . In practice, finding an element which belongs to
this submanifold is a delicate task, especially when the number of test functions
is large. Indeed, as mentioned in the preceding section, the Newton procedure
described in Section 3.4.3 only converges if the starting point of the algorithm is
sufficiently close to the manifold MK . This is the reason why this initialization
step is rather performed using a method inspired from [324, Section 5 example 3].
A Runge-Kutta 3 (Bogacki-Shampine) numerical scheme [285, (5.8-42)] is used in
order to discretize the dynamics

d

dt
Y K(t) = F (Y K(t))

starting from a random initial state Y K(t = 0) = Y K,0 ∈
(
(Rd)M

)K
, where F is

defined as

∀Y K ∈
(
(Rd)M

)K
, F (Y K) = −

∥∥ΓK
(
Y K
)∥∥2

2

∇ΓK(Y K) · ΓK(Y K)

‖∇ΓK(Y K) · ΓK(Y K)‖2
2

. (3.30)

We observe that such a numerical procedure is more robust than a Newton algorithm,
even if it can converge very slowly.

Let us mention here that, in the case of the particle problem (3.29) with adaptive
weights, an additional step may be used prior to such a Runge-Kutta method, which
consists in using a Carathéodory-Tchakaloff subsampling procedure. Carathéodory-
Tchakaloff subsampling [278, 313] has been introduced to compute low nodes cardi-
nality cubatures.

In our context, this method can be adapted to find a low nodes cardinality start-

ing point, as close as possible to the constraints submanifold MK
. More precisely,

the method works as follows: we fix a value K∞ � K and compute (X1, · · · , XK∞)
iid samples of random vectors according to the probability law µ. A Non-Negative
Least Squares (NNLS) is then used to find a sparse solution to the optimization
problem

w∗ ∈ arg min
w∈RK∞+

‖Φw − µ̄‖2 , (3.31)
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where Φ := (Φn,k)1≤n≤N+1,1≤k≤K∞ ∈ RN×K∞ , µ = (µ1, · · · , µN , 1) ∈ RN+1 and

∀1 ≤ k ≤ K∞, ∀1 ≤ n ≤ N, Φn,k = ϕn(Xk) and ΦN+1,k = 1.

By Kuhn-Tucker conditions for the NNLS problem [214, Theorem (23.4)], there
exists a solution w∗ := (w∗k)1≤k≤K∞ ∈ RK∞

+ to (3.31) such that #J ≤ N + 1
with J := {1 ≤ k ≤ K∞, w

∗
k > 0}. Common algorithms such as the Lawson-Hanson

method [214, Theorem (23.10)] enable to compute such a sparse solution. Let us
point out that any solution w∗ to (3.31) then satisfies

N∑
n=1

∣∣∣∣∣∑
k∈J

w∗kϕn(Xk)− µ̄n
∣∣∣∣∣
2

≤
N∑
n=1

∣∣∣∣∣ 1

K∞

K∞∑
k=1

ϕn(Xk)− µ̄n
∣∣∣∣∣
2

. (3.32)

In practice, in the case when #J ≤ K, the positions and weights returned by
the Carathéodory-Tchakaloff Subsampling procedure are subdivided and randomly
perturbed with a small amount of noise.

3.4.5 Test functions scaling

From a numerical perspective, the MCOT approximation of an OT problem is never
exactly computed. In particular, constraints are never exactly satisfied, but rather

up to a machine precision ε : ‖ΓK(Y
K

)‖∞ ≤ ε for Y
K ∈ (R× ((Rd)M)K numerically

satisfying the constraints. Hence, replacing Γ
K

by D ·ΓK in the optimization proce-
dure, for D a non-singular diagonal matrix, can change the numerical solution. We
discuss hereafter of a way of choosing an appropriate scaling D.

Let Y
K,∗

be a minimizer of (3.29)

Y
K,∗ ∈ arg min

Y
K∈(R×((Rd)M ))

K

Γ
K

(Y
K

)=0,

Θ
K

(Y
K

)≤A

V
K

(Y
K

),

let Y
K ∈ (R× ((Rd)M)K , and let us assume that f and c are C2. Then,

V
K

(Y
K,∗

) = V
K

(Y
K

) +∇V K
(Y

K,∗
)T · (Y K,∗ − Y K

) +O
(
α2
)

Γ
K

(Y
K,∗

) = Γ
K

(Y
K

) +∇Γ
K

(Y
K,∗

)T · (Y K,∗ − Y K
) +O

(
α2
)
,

where α = ‖Y K,∗ − Y K‖2.

As Y
K,∗

is a minimizer, Γ
K

(Y
K,∗

) = 0N , and there exists λ∗ ∈ RN such that

∇V K
(Y

K,∗
) = ∇Γ

K
(Y

K,∗
) · λ∗.

Thus,

V
K

(Y
K,∗

)− V K
(Y

K
) = (Y

K,∗ − Y K
)T · ∇Γ

K
(Y

K,∗
) · λ∗ +O

(
α2
)

= −Γ
K

(Y
K

) · λ∗ +O
(
α2
)
.

(3.33)

Therefore, if Y
K

is a numerical solution, under the hypothesis that for all 1 ≤
n ≤ N , Γ

K
(Y

K
)n = ±ε, the numerical error on the optimal cost is minimized if

there exists a ∈ R such that for all 1 ≤ n ≤ N , λ∗n = ±a – which is the condition
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for choosing an appropriate scaling D. In practice, although the value of such a λ∗

might not be known exactly, it might be of the same magnitude as a solution to

arg min
λ∈RN

∥∥∥∇Γ
K

(Y
K

) · λ−∇V K
(Y

K
)
∥∥∥2

2
,

if Γ
K

(Y
K

) is well-conditioned.
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3.5 Numerical tests

The aim of this section is to illustrate the results obtained via the numerical pro-
cedure described in Section 3.4 for the resolution of the particle problems (3.29)
and (3.28) in different test cases.

Section 3.5.1 is devoted to results obtained in cases where d = 1 and Section 3.5.2
contains numerical results obtained in examples where d = 3. The experiments pre-
sented in this section have been implemented in python 3 using scipy and numpy
modules, and tested on a server with an Intel Xeon processor with 32 cores (hyper-
threaded) and 192 Go RAM.

3.5.1 One-dimensional test cases (d = 1)

3.5.1.1 Theoretical elements

In the case where d = 1, the solution to the optimal transport problem (3.2) is
analytically known in the case when c is a symmetric repulsive cost from [102,
Theorem 1.1]. For sake of completeness, we recall their result for the cost function
that we consider in our numerical experiments.

Theorem 3.3 (Colombo, De Pascale, Di Marino, 2015). Let ε ≥ 0 and c : RM →
[0,+∞] be the cost defined by

∀x1, · · · , xM ∈ R, c(x1, . . . , xM) =
∑

1≤i,j≤M,i6=j

1

ε+ |xi − xj|
. (3.34)

Let µ be an non atomic probability measure on R such that

min
π∈Π(µ;M)

∫
RM

c(x1, . . . , xM)dπ(x1, . . . , xM) < +∞. (3.35)

Let −∞ = d0 < d1 < · · · < dM = +∞ be such that

µ([di, di+1]) =
1

M
, i = 0, . . . ,M − 1. (3.36)

Let T : R→ R be the unique (up to µ-null sets) function increasing on each interval
[di, di+1], i = 0, . . . ,M − 1 and such that

T#(1[di,di+1]µ) = 1[di+1,di+2]µ, i = 0, . . . ,M − 2

T#(1[dM−1,dM ]µ) = 1[d0,d1]µ.
(3.37)

Then T is an admissible map for

inf
T :R→RBorel, T#µ=µ, T (M)=Id

∫
R
c(x, T (x), . . . , T (M−1)(x))dµ(x), (3.38)

where T (i) =

i times︷ ︸︸ ︷
T ◦ · · · ◦ T .

Moreover, the only symmetric optimal transport plan is the symmetrization of
the plan induced by the map T .

We make use of Theorem 3.3 to compare the exact solution of problem (3.2)
together with the approximation given by the numerical procedure described in
Section 3.4 to solve the MCOT particle problems with fixed or adaptive weights.
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Figure 3.1: Densities of the marginal laws tested for 1D numerical tests.

3.5.1.2 Marginals, test functions, cost and weight functions

Marginals. The numerical experiments in this section were realized with three
different marginal laws, which are respectively denoted by µ1, µ2 and µ3 and defined
by

dµ1(x) :=
1

2
1[−1,1](x) dx, (3.39)

dµ2(x) :=

[
π

10
cos

(
5π

2
x

)
+ 0.46

]
1[−1,1](x) dx, (3.40)

dµ3(x) :=

[
0.13π cos

(
13π

2
x

)
+ 0.48

]
1[−1,1](x) dx. (3.41)

The densities of µ1, µ2, µ3 are plotted in Figure 3.1.

Test functions. The test functions (φn)1≤n≤N used are Legendre Polynomials
with the following scaling

φn =

√
2n+ 1

2

n+ 1
Pn, (3.42)

where Pn is the Legendre Polynomial of degree n. As the marginal laws considered
have their support in [−1, 1], we chose the Legendre polynomials for their orthog-
onality property. Besides, by using polynomials, the matrix ∇Γ(X) is related to a
Vandermonde matrix, the invertibility of which (crucial to enforce the constraints by
Algorithm 4 or the Runge-Kutta method) is ensured as long as particles are spread
on more than N locations. In view of Section 3.4.5, the scaling between the polyno-
mials comes from the assumption of an L2 convergence of the function

∑N
n=1 λnφn

as N goes to +∞.

Cost. We use in all experiments the regularized Coulomb cost function (3.34) with
ε = 10−1.

Weight functions. Two different choices of weight functions f are studied in the
numerical experiments presented below: the squared weight function f : R 3 a 7→ a2

and the exponential weight function f : R 3 a 7→ e−a. Although we do not have
strong criteria to chose a weight function, the intuition behind the squared weight
function is that it can behave well regarding the enforcement of the constraints
by a Newton method, given that Γ is then a polynomial. The intuition behind the
exponential weight function is that it could slow down the cancellation of the weights
of the particles, keeping alive more degrees of freedom for the optimization process.
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Figure 3.2: Evolution of ‖ΓK(Y K
m )‖∞ for different weight functions as a function of

the number of iterations m of the Runge-Kutta 3 procedure. Tests were performed
with M = 5, K = 10000. Blue curves uses fixed weights, orange curves uses an
exponential weight function and green curves a squared weight function. No marker
is for N = 10, a diamond marker for N = 20 and a “+” marker for N = 40.
Caratheodory-Tchakaloff subsampling gave initial values of 1.11 × 10−16 ( 3.83 ×
10−16, 3.02 × 10−16) for µ2, N = 10 (resp. N = 20, N = 40) and 3.33 × 10−16 (
1.28× 10−16, 4.66× 10−16) for µ3, N = 10 (resp. N = 20, N = 40).

3.5.1.3 Initialization step – Figure 3.2

The aim of Figure 3.2 is to plot the decrease of ‖ΓK(Y K
m )‖∞ as a function of the

number of iterations of the Runge-Kutta 3 method presented in Section 3.4.4, in
a test case where M = 5. We numerically observe here that, as expected, as N
increases, the number of iterations needed by the Runge-Kutta procedure to reach
convergence increases.vBesides, we observe that the additional degrees of freedom of
the cases using weight functions allow a faster initial optimization – yet not heavily
pronounced, as well as an initialization slightly faster for the squared weight function
compared to the exponential one.

3.5.1.4 Decrease of the cost function – Figures 3.3, 3.4 and 3.5

The aim of Figures 3.3, 3.4 and 3.5 is to plot the evolution of V K(Y K
n ) (or V

K
(Y

K

n ))
as a function of n the number of iterations of the constrained overdamped Langevin
algorithm presented in Section 3.4 for various values of N , various weight functions,
values of β0 and NoiseDecrease functions, and using or not a subsampling at ini-
tialization. We observe in Figure 3.3 that decreasing the noise as the squareroot
of the number of iterations n converges faster than keeping it constant, and that
keeping β0 = 0 is the fastest. In Figure 3.4 we remark that the higher N the slower
the optimization (with the particular case of µ3, N = 20 with the squared weight
function which does not converge in 20000 iterations), and that cases initialized by
Caratheodory-Tchakaloff subsampling tend to start with a higher cost. In Figure
3.5, we observe that with K = 10000 particles, considering fixed or variable weights
does not strongly change the speed of convergence (but for the case µ3, N = 20 with

vThe problem of finding common roots of polynomials is linked with Bezout’s theorem. The
complexity of such problems have been studied in [307, 308].
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the squared weight function mentioned above). However, using variable weights
with K = 100 particles seems to be the fastest set of parameters.
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Figure 3.3: Evolution of the cost as a function of the number of iterations n for
various weight functions and values of β0, for µ2 and µ3. Tests were performed with
M = 5, N = 20, K = 10000 and ∆t0 = 10−3. Blue curves are for β0 = 10−1.5,
orange curves for 10−3.5, green curves for 10−5.5 and purple curves for β0 = 0. Solid
lines have a decrease of the noise in the squareroot of time whereas dotted lines with
a “+” marker have no decrease of the noise.
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Figure 3.4: Evolution of the cost as a function of the number of iterations n for
various weight functions and values of N , for µ2 and µ3. Tests were performed with
M = 5, β0 = 0, K = 10000 and ∆t0 = 10−3. Blue curves for N = 10, green curves
for N = 20 and red curves for N = 40. Dotted lines correspond to tests initialized by
Caratheodory-Tchakaloff subsampling whereas tests solid lines correspond to tests
initialized by Runge-Kutta 3 method.
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Figure 3.5: Evolution of the cost as a function of the number of iterations n for
various weight functions, for µ2 and µ3. Tests were performed with M = 5, N = 20,
β0 = 0 and ∆t0 = 10−3. Blue curves uses fixed weights, orange curves uses an
exponential weight function and green curves a squared weight function. K =
10000 particles for solid lines and K = 100 particles for dotted lines. Optimization
following a Caratheodory-Tchakaloff subsampling at initialization uses “+” markers.
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Figure 3.6: Lowest cost value reached during optimization by the constrained over-
damped Langevin algorithm in function of the β0, for various weight functions,
values of K and choices of NoiseDecrease functions. The purple line corresponds to
the optimal transport cost. The marginal law is µ2, N = 20, M = 5, ∆t0 = 10−3.

93



3.5.1.5 Minimal values of cost – Figure 3.6

The goal of Figure 3.6 is to compare the minimal values of the cost obtained by the
algorithm for different parameters together with its analytic value. We observe that
considering adaptive weights enables to reach lower optimal costs than with fixed
weights, but the relative difference between the approximate minimal cost values is
lower than 0.1%. When the noise level decreases in the square root of the number
of iterations a lower optimal cost can be reached compared to a constant noise level.
In the variable weights cases, the lower K the lower the optimal cost, but when
the optimization starts with a Tchakaloff subsampling solution, for which the lowest
cost reached is 0.3% higher than with the Runge-Kutta 3 method.

3.5.1.6 Optimal position of particles – Figures 3.7, 3.8 and 3.9

The aim of Figures 3.7, 3.8 and 3.9 is to plot the positions of the particles obtained
by the numerical procedure presented in Section 3.4 for respectively µ1, µ2 and µ3

and different values of K, N , β0, initialization methods, and in fixed and variable
weights cases. We numerically observe that the obtained particles are located close
to the support of the exact optimal transport plan, and that the higher the value of
N the more precise the approximation of this transport map is (see Theorem 2.7)
Also, when K = 10000 and even more when β0 = 103.5, particles are more spreaded
around the transport map.

(1) N = 10 (2) N = 20 (3) N = 40

Figure 3.7: Optimal transport with µ1 and M = 5, ∆t0 = 10−3. In each plot, on the
main graph 1

M(M−1)

∑K
k=1

∑M
m6=m′=1wkδxkm,xkm′

is represented by blue particles. The

darker the heavier the particle. Particles have some transparency which allows to
see more clearly areas of high concentration. Red curves represent the functions T i

for i ∈ {1, . . . ,M − 1} defined in Theorem 3.3. The higher the density the darker.
On side graphs are represented in blue a weighted histogram of the particles, in
red the marginal law and in green a normal kernel density estimate based on the
weighted particles (with a bandwidth rule based on Scott’s rule with d = 0).
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(1) N = 20, β0 =
0, K = 10000, fixed
weights

(2) N = 20, β0 =
10−3.5, K = 10000,
fixed weights

(3) N = 40, β0 =
0, K = 10000, fixed
weights

(4) N = 40, β0 =
10−3.5, K = 10000,
fixed weights

(5) N = 20, β0 = 0,
K = 10000, squared
weights

(6) N = 20, β0 =
10−3.5, K = 10000,
squared weights

(7) N = 40, β0 = 0,
K = 10000, squared
weights

(8) N = 40, β0 =
10−3.5, K = 10000,
squared weights

(9) N = 20, β0 =
0, K = 100, squared
weights

(10) N = 20, β0 =
10−3.5, K = 100,
squared weights

(11) N = 40, β0 =
0, K = 100, squared
weights

(12) N = 40, β0 =
10−3.5, K = 100,
squared weights

(13) N = 20, β0 = 0,
K = 10000, squared
weights, with initial
subsampling

(14) N = 20, β0 =
10−3.5, K = 10000,
squared weights, with
initial subsampling

(15) N = 40, β0 = 0,
K = 10000, squared
weights, with initial
subsampling

(16) N = 40, β0 =
10−3.5, K = 10000,
squared weights, with
initial subsampling

Figure 3.8: Optimal transport with µ2 and M = 5, ∆t0 = 10−3. In each plot, on the
main graph 1

M(M−1)

∑K
k=1

∑M
m 6=m′=1wkδxkm,xkm′

is represented by blue particles. The

darker the heavier the particle. Particles have some transparency which allows to
see more clearly areas of high concentration. Red curves represent the functions T i

for i ∈ {1, . . . ,M − 1} defined in Theorem 3.3. The higher the density the darker.
On side graphs are represented in blue a weighted histogram of the particles, in
red the marginal law and in green a normal kernel density estimate based on the
weighted particles (with a bandwidth rule based on Scott’s rule with d = 0).
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(1) N = 20, β0 = 0,
K = 10000, fixed

(2) N = 20, β0 =
10−3.5, K = 10000,
fixed

(3) N = 40, β0 = 0,
K = 10000, fixed

(4) N = 40, β0 =
10−3.5, K = 10000,
fixed

(5) N = 20, β0 = 0,
K = 10000, squared

(6) N = 20, β0 =
10−3.5, K = 10000,
squared

(7) N = 40, β0 = 0,
K = 10000, squared

(8) N = 40, β0 =
10−3.5, K = 10000,
squared

(9) N = 20, β0 = 0,
K = 100, squared

(10) N = 20, β0 =
10−3.5, K = 100,
squared

(11) N = 40, β0 = 0,
K = 100, squared

(12) N = 40, β0 =
10−3.5, K = 100,
squared

(13) N = 20, β0 = 0,
K = 10000, squared,
with initial subsam-
pling

(14) N = 20, β0 =
10−3.5, K = 10000,
squared, with initial
subsampling

(15) N = 40, β0 = 0,
K = 10000, squared,
with initial subsam-
pling

(16) N = 40, β0 =
10−3.5, K = 10000,
squared, with initial
subsampling

Figure 3.9: Optimal transport with µ3 and M = 5, ∆t0 = 10−3. In each plot, on the
main graph 1

M(M−1)

∑K
k=1

∑M
m6=m′=1wkδxkm,xkm′

is represented by blue particles. The

darker the heavier the particle. Particles have some transparency which allows to
see more clearly areas of high concentration. Red curves represent the functions T i

for i ∈ {1, . . . ,M − 1} defined in Theorem 3.3. The higher the density the darker.
On side graphs are represented in blue a weighted histogram of the particles, in
red the marginal law and in green a normal kernel density estimate based on the
weighted particles (with a bandwidth rule based on Scott’s rule with d = 0).
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3.5.2 Three-dimensional test cases (d = 3)

3.5.2.1 Tests design

The numerical experiments were realized with four different marginal laws that are
named afterwards as follows:

µ1 ∼ N (03, Id3) , (3.43)

µ2 ∼
2

3
N (03,

 1 0.5 0.75
0.5 2 1.5
0.75 1.5 3

) +
1

3
N (

2
2
2

 ,

 1 0.8 0.22
0.8 2 1.8
0.22 1.8 3

), (3.44)

µ3 ∼
1

10
N (03, C) +

1

5
N (

4
0
0

 , C) +
1

5
N (

8
0
0

 , C) +
1

5
N (

12
0
0

 , C)

+
1

5
N (

16
0
0

 , C) +
1

10
N (

20
0
0

 , C), with C =

 1 0.5 0.75
0.5 2 1.5
0.75 1.5 3

 ,

(3.45)

µ4 ∼ U (B(0, 1)) . (3.46)

And, for i = 1, 2, 3, 4, using as test functionsvitensor products of 1D orthonormal
polynomials (P µi,j

l )1≤j≤3,
l∈N

, defined as, for j = 1, 2, 3, l ∈ N,

degree
(
P µi,j
l

)
= l, ∀l′ < l,

∫
R3

P µi,j
l (xj)P

µi,j
l′ (xj)dµi(x1, x2, x3) =

1

(l + 1)2
δl,l′ .

(3.47)

As for a finite number of multivariate polynomials (and under a suitable control
of mixed derivatives), the hyperbolic cross [113] seems to behave better than using
all polynomials up to a given degree, we used, for a number of test functions N
appropriately chosen, the polynomials P µi,1

l1
⊗ P µi,2

l2
⊗ P µi,3

l3
, where

(l1 + 1)(l2 + 1)(l3 + 1) ≤ LN , (3.48)

where LN is defined such that #{(l1, l2, l3)|(l1 + 1)(l2 + 1)(l3 + 1) ≤ LN} = N . The
map between maximum degree of the polynomials (LN−1) and N is shown in Table
3.1.

LN − 1 6 7 8 9 10 11
N 28 38 44 53 56 74

Table 3.1: Map between the maximum degree of 1D polynomials and the number
of test functions using hyperbolic cross in 3D.

In the numerical examples presented afterwards, as all weights are fixed to 1
K

,
there is no need to use the polynomial of degrees (l1, l2, l3) = (0, 0, 0), hence values
of N decreased by 1 compared to the values of Table 3.1.

viThese polynomials were chosen after a few numerical tests on some optimization procedures for
their better convergence properties than the polynomials they were compared to. Their tensorised
form both eases the computation of the moments and allows some parallelisation. Note also that the
matrix ∇ΓK(Y K) is a multivariate Vandermonde matrix. We checked numerically its invertibility
throughout the optimization process.
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Remark 3.4. One of the main advantages of using sums of Normal functions (or
a uniform measure on a ball) as marginal laws and polynomials as test functions is
that their exists in that case close formulas for the computation of the moments (see
Appendix B.1). From our experiments in dimension 1, the precision of the com-
putation of the moments is important both for the solution of the MCOT problem
to be well-defined (and thus for the algorithm to converge) – numerically computed
moments, though not exact, must allow the existence of Y K ∈ ((Rd)M)K such that
‖ΓK(Y K)‖∞ ≤ ε for ε the machine-precision; and for the convergence as N increases
of the MCOT cost towards the OT cost – numerically computed moments not precise
enough might hide this convergence. Numerical quadratures in 3D could be imple-
mented for dealing with more general marginal laws and test functions, however,
their computation and convergence speed put it beyond the scope of this article.

Mean-Covariance. Tests were also performed using as test functions the mean
and covariance matrix for µ1 and µ2, in order to notice on examples how much those
test functions do constrain an optimal transport problem. Note that this problem
of optimal transport when the mean and covariance structure are given may be
interesting per se, when only partial information on the distribution is known. We
have indicated in Table 3.2 the optimal costs obtained with our algorithm for µ1 and
µ2 with mean-covariance constraints (N = 9) and with many moment constraints
(N = 52). We observe on our examples a relative difference around 15-20%.

µ1, M = 10 µ1, M = 100 µ2, M = 10 µ2, M = 100
N = 9 10.65 1395 8.007 1074
N = 52 12.50 1599 9.107 1201

Table 3.2: Optimal value of the cost obtained for µ1 and µ2 with mean-covariance
constraints (N = 9) and with many moment constraints (N = 52).

Cost. In order to avoid too high values of the cost function, we used in all ex-
periments a regularized Coulomb cost c(x1, . . . , xM) =

∑M
m 6=m′=1

1
ε+|xm−xm′ |

, with

ε = 10−3 and ∀i = 1, . . . ,M, xm ∈ R3.

Fixed weights. After several tests comparing fixed and variable weights (with
various weight functions), we observe that in dimension 3, for the marginal laws con-
sidered, both initialization and optimization using variable weights were much slower
than using fixed weights. Therefore, all following tests have been performed using
fixed weights. Heuristically, when using variable weights, some particles tend to have
large weights and are strongly constrained while other ones become lightweight and
do not move much since the gradient on positions is proportional to weights.

3.5.2.2 Initialization and constraints enforcement – Figure 3.10

Initialization was performed by a sampling K particles according to the marginal
law, and then using the Runge-Kutta method showed in Section 3.4.4 to bring the
particles on the submanifold of the constraints MK . This method has been tested
for various values of N and K, presented respectively in Figures 3.10.

As N increases (Figure 3.10), the submanifold of the constraints becomes harder
to reach using the Runge-Kutta method (similarly to the 1D case)vii, and large
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values of N (LN ≥ 11) could not be attained in the time of the numerical experiment
(remind that the number of computations involved at each iteration grows linearly
with N). In the case of each marginal laws (µ1 and µ2) for which the tests have been
performed, despite the assymmetry of µ2, the dependence on N of the convergence
speed appears to be similar.

Note also that as we use symmetrised test functions (regarding the marginal laws)
with fixed weights, the number of independant coordinates involved in the Runge-
Kutta method to satisfy the constraints is linear in KM (M being the number
of marginal laws). Thus, solving the problem of finding a starting point on the
submanifold with 100 marginal laws and 103 particles is numerically the same as
the one with 10 marginal laws and 104 particles. Although in the case where weights
are variable this remark can not be applied, as coordinates on different marginal laws
of the same particle share the same weight, increasing the number of marginal laws
relaxes the problem of finding a starting point on the submanifold.

3.5.2.3 Optimization procedure – Figures 3.11, 3.12, 3.13 and 3.14

The aim of Figures 3.11 and 3.12 is to plot the evolution of V K(Y K
n ) as a function

of n the number of iterations of the constrained overdamped Langevin algorithm
presented in Section 3.4 for various values of N and values of β0. As we observed
(Figure 3.11), and similarly to the tests in dimension 1, that tests with β0 = 0
converges faster than β0 > 0, we kept β0 = 0 for all the other tests. The convergence
of the cost for various values of N and K, various number of marginal laws and for
µ1 and µ2 is presented in Figure 3.12. And a presentation of how particles move
during the optimization procedure can be seen in Figures 3.13 and 3.14.

On all subgraphs of Figure 3.12, one can observe that the optimization procedure
reaches a cost close to the optimal one for the MCOT problem in 50-200 iterations,
when K is large enough for a given N (e.g. K = 1000 is sufficient when N = 27 but
not when N = 43). As N increases the value of the optimal costs does as well, which
is expected, as MCOT problems get more and more constrained. As K increases,
the value of the cost computed converges towards the MCOT cost. Indeed, the
slight decrease of the computed MCOT cost at the 20000th iteration as K increases
that can be observed in Table 3.3 from K = 320 to K = 10000 suggests that their
exists K0 ∈ N such that for K ≥ K0, the gain in an increase in K reflects weakly
on the MCOT cost computed.

On Figures 3.13 and 3.14 is plotted the evolution of some symmetrized visualiza-
tions of the process during the optimization for an MCOT problem on µ1. Although
at each iteration it satisfies the moment constraints, it deviates from a Normal
sample rapidly and tends to concentrate on some points (a bit like in Tchakaloff’s
theorem and Theorem 2.3).

3.5.2.4 Minimas – Figures 3.15, 3.16, 3.17 and 3.18

As K increases, the symmetrized minimizers of Figures 3.15 and 3.16 tends to be
visually more and more concentrated on some particular points. According to Table
3.3, higher values of K tends to have lower costs.

Some symmetrized visualizations of minimizers for MCOT problems for the non-
symmetrical measures µ2 and µ3 are presented in Figures 3.17 and 3.18. In those
cases, the 1D couplings obtained on each axis (X, Y or Z) are not the same (Figure

viiSimilarly to Footnote v, the problem of finding particles satisfying the constraints is linked
with the multivariate Bezout’s theorem [307, 308].
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(4) µ2, M = 100

Figure 3.10: Evolution of ‖ΓK(Y K
m )‖∞ for values of N ranging from 27 to 52 and

K between 1000 (dotted lines) and 10000 (solid lines) as a function of the number
of iterations m of the Runge-Kutta 3 procedure. ∆t0 = 10−4. Blue curves are for
N = 27, orange ones for N = 37, green ones for N = 43, red ones for N = 52 and
pink ones for N = 73.

3.17). A higher number of marginal laws M seems to spread more the particules,
although their 1D coupling still shows particles highly concentrated around a few
values in the considered examples. Higher values of N increases the concentration of
the particles around fewer values in the µ3 examples. The planar representation of
the minimizers for large M (Figure 3.18), shows that particules are not distributed
spatially as a Normal function and tend to concentrate on some 1D curves (for the
considered 2D projections) with a higher spreading than for lower values of M .

3.5.2.5 Optimization for µ4 - Figure 3.19

Optimal transport for µ4 with a large number of electrons is of theoretical interest
as it might provide approximations for a uniform electronic density in a large space
[227]. Numerical results for its MCOT relaxation with M = 100 and N = 52 are
presented in Figure 3.19. Although the cost has been optimized (Figure 3.19.1), it
is only 3% lower than the initial uniform sampling (after a Runge-Kutta 3 initial-
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Figure 3.11: Evolution of the cost as a function of the number of iterations n for
various values of β0. The marginal law is µ2, β0 varies from 0 to 1 and the other
parameters are ∆t0 = 10−4, noise level decreases as the squareroot of the number of
iterations, N = 27, M = 10, K = 160.

K 40 80 160
cost 12.2558198 12.1747815 12.1457150

lower cost 12.1981977 12.0864398 12.0862042

K 320 1000 10000
cost 12.0916662 12.0821615 12.0785749

lower cost 12.0855486 12.0821615 12.0785745

Table 3.3: Values of the regularized Coulomb cost (see here-named paragraph in
Section 3.5.2.1) for the MCOT problem with µ1, M = 10, N = 27, ∆t0 = 10−4,
β0 = 0 and K ranging from 40 to 10000. The cost line corresponds to the value of
the regularized cost associated to the minimizing process at iteration 20000 (which
also corresponds to the minimizers represented in the graphs of Figures 3.15 and
3.16). The lower cost line corresponds to the lower value of the regularized cost
encountered by the minmizing process before or at iteration 20000 for each value of
K.
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(3) µ1, M = 100
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(4) µ2, M = 100

Figure 3.12: Evolution of the cost as a function of the number of iterations n for
various values of N and K from 1000 (dotted lines) to 10000 (solid lines). ∆t0 =
10−4, β0 = 0. Blue curves are for N = 27, orange ones for N = 37, green ones for
N = 43, red ones for N = 52 and pink ones for N = 73. On Figures 3.12.1 and
3.12.3, “+” signs are added to better distinguish overlaid curves.
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(a1) plane XY, iteration 1

(a2) plane XY, iteration 30

(a3) plane XY, iteration 50

(b1) X axis, iteration 1

(b2) X axis, iteration 30

(b3) X axis, iteration 50

(c1) radial, iteration 1

(c2) radial, iteration 30

(c3) radial, iteration 50

Figure 3.13: Transport along optimization for µ1, M = 10, K = 10000, N = 27,
β0 = 0, ∆t0 = 10−4. In figures of column (a) is showed 1

MK

∑K
k=1

∑M
m=1 δxkm,1,xkm,2

.

In figures of column (b) is showed 1
M(M−1)K

∑K
k=1

∑M
m6=m′=1 δxkm,1,xkm′,1

. In figures of

column (c) is showed 1
M(M−1)K

∑K
k=1

∑M
m6=m′=1 δ|xkm|,|xkm′ |

, where |xkm| =
√∑3

i=1(xkm,i)
2.

The evolution of the corresponding cost can be seen in Figure 3.12.1.
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(a4) plane XY, iteration 100

(a5) plane XY, iter. 1000

(a6) plane XY, iter. 20000

(b4) X axis, iteration 100

(b5) X axis, iteration 1000

(b6) X axis, iteration 20000

(c4) radial, iteration 100

(c5) radial, iteration 1000

(c6) radial, iteration 20000

Figure 3.14: Transport along optimization for µ1, M = 10, K = 10000, N = 27,
β0 = 0, ∆t0 = 10−4. In figures of column (a) is showed 1

MK

∑K
k=1

∑M
m=1 δxkm,1,xkm,2

.

In figures of column (b) is showed 1
M(M−1)K

∑K
k=1

∑M
m 6=m′=1 δxkm,1,xkm′,1

. In figures of

column (c) is showed 1
M(M−1)K

∑K
k=1

∑M
m 6=m′=1 δ|xkm|,|xkm′ |

, where |xkm| =
√∑3

i=1(xkm,i)
2.

The evolution of the corresponding cost can be seen in Figure 3.12.1.
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(a1) plane XY, K=40

(a2) plane XY, K=80

(a3) plane XY, K=160

(b1) X axis, K=40

(b2) X axis, K=80

(b3) X axis, K=160

(c1) radial, K=40

(c2) radial, K=80

(c3) radial, K=160

Figure 3.15: Optimal transport with µ1, M = 10, N = 27, β0 = 0 and ∆t0 = 10−4,
for K = 40, 80, 160. In figures of column (a) is showed 1

MK

∑K
k=1

∑M
m=1 δxkm,1,xkm,2

.

In figures of column (b) is showed 1
M(M−1)K

∑K
k=1

∑M
m6=m′=1 δxkm,1,xkm′,1

. In figures of

column (c) is showed 1
M(M−1)K

∑K
k=1

∑M
m6=m′=1 δ|xkm|,|xkm′ |

, where |xkm| =
√∑3

i=1(xkm,i)
2.

Corresponding costs can be found in Table 3.3.
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(a4) plane XY, K=320

(a5) plane XY, K=1000

(a6) plane XY, K=10000

(b4) X axis, K=320

(b5) X axis, K=1000

(b6) X axis, K=10000

(c4) radial, K=320

(c5) radial, K=1000

(c6) radial, K=10000

Figure 3.16: Optimal transport with µ1, M = 10, N = 27, β0 =
0 and ∆t0 = 10−4, for K = 320, 1000, 10000. In figures of col-
umn (a) is showed 1

MK

∑K
k=1

∑M
m=1 δxkm,1,xkm,2

. In figures of column (b) is

showed 1
M(M−1)K

∑K
k=1

∑M
m 6=m′=1 δxkm,1,xkm′,1

. In figures of column (c) is showed

1
M(M−1)K

∑K
k=1

∑M
m 6=m′=1 δ|xkm|,|xkm′ |

, where |xkm| =
√∑3

i=1(xkm,i)
2. Corresponding costs

can be found in Table 3.3.
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(a1) µ2, X axis, M = 10, N = 27

(a2) µ2, X axis, M = 100, N =

27

(a3) µ3, X axis, M = 100, N =

27

(a4) µ3, X axis, M = 100, N =

52

(b1) µ2, Y axis, M = 10, N =

27

(b2) µ2, Y axis, M = 100, N =

27

(b3) µ3, Y axis, M = 100, N =

27

(b4) µ3, Y axis, M = 100, N =

52

(c1) µ2, Z axis, M = 10, N = 27

(c2) µ2, Z axis, M = 100, N =

27

(c3) µ3, Z axis, M = 100, N =

27

(c4) µ3, Z axis, M = 100, N =

52

Figure 3.17: Optimal transport for µ2 and µ3, M = 10, 100, N = 27, 52, β0 = 0, K =
10000 and ∆t0 = 10−4 In figures of column (a) is showed 1

MK

∑K
k=1

∑M
m=1 δxkm,1,xkm,2

.

In figures of column (b) is showed 1
M(M−1)K

∑K
k=1

∑M
m6=m′=1 δxkm,1,xkm′,1

. In figures of

column (c) is showed 1
M(M−1)K

∑K
k=1

∑M
m6=m′=1 δ|xkm|,|xkm′ |

, where |xkm| =
√∑3

i=1(xkm,i)
2.

In order to better distinguish between areas of low and high particles density, plots
are represented as 2D histograms.
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(1) µ2, plane XY, M = 10, N = 27 (2) µ2, plane XY, M = 100, N = 27

(3) µ3, plane XY, M = 100, N = 27

(4) µ3, plane XY, M = 100, N = 52

Figure 3.18: Optimal transport for µ2 and µ3, M = 10, 100, N = 27, 52, β0 = 0,
K = 10000 and ∆t0 = 10−4 In each graph, minimizers are represented as

1
MK

∑K
k=1

∑M
m=1 δxkm,1,xkm,2

. In order to better distinguish between areas of low and

high particles density, plots are represented as 2D histograms.
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ization). Although the 1D marginal laws seem well approximated (Figures 3.19.2
and 3.19.3), planar and radial graphs (Figures 3.19.2 and 3.19.4) show that particles
are concentrated on two spheres (of radius 0.6 and 1 respectively). Most of the
transport takes place inside and between those two spheres.

100 101 102 103 104

number of iterations

4.95 × 103

4.975 × 103

5 × 103

5.025 × 103

5.05 × 103

5.075 × 103

5.1 × 103
co

st

(1) Cost as a function of n
(2) plane XY

(3) X axis (4) radial

Figure 3.19: Evolution of the cost as a function of the number of iteration n (Figure
3.19.1) and optimal transport with µ4, M = 100, N = 52, K = 10000 β0 = 0
and ∆t0 = 10−4. In Figure 3.19.2 is showed 1

MK

∑K
k=1

∑M
m=1 δxkm,1,xkm,2

. In Fig-

ure 3.19.3 is showed 1
M(M−1)K

∑K
k=1

∑M
m6=m′=1 δxkm,1,xkm′,1

. In Figure 3.19.4 is showed

1
M(M−1)K

∑K
k=1

∑M
m6=m′=1 δ|xkm|,|xkm′ |

, where |xkm| =
√∑3

i=1(xkm,i)
2. In order to better

distinguish between areas of low and high particles density, plots are represented as
2D histograms.
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3.6 Proof of Theorem 3.1

The aim of this section is to gather the proofs of our main theoretical results.

3.6.1 Tchakaloff’s theorem

We present here a corollary of the so-called Tchakaloff theorem which is the backbone
of our results concerning the theoretical properties of the MCOT particle problem.
A general version of the Tchakaloff theorem has been proved by Bayer and Teich-
mann [24]. Theorem 3.4 is an immediate consequence of Tchakaloff’s theorem, see
Corollary 2 in [24].

Theorem 3.4. Let π be a measure on Rd concentrated on a Borel set A ∈ F , i.e.
π(Rd \ A) = 0. Let N0 ∈ N∗ and Λ : Rd → RN0 a measurable Borel map. Assume
that the first moments of Λ#π exist, i.e.∫

RN0

‖u‖dΛ#π(u) =

∫
Rd
‖Λ(z)‖dπ(z) <∞,

where ‖ · ‖ denotes the Euclidean norm of RN0. Then, there exist an integer 1 ≤
K ≤ N0, points z1, ..., zK ∈ A and weights p1, ..., pK > 0 such that

∀1 ≤ i ≤ N0,

∫
Rd

Λi(z)dπ(z) =
K∑
k=1

pkΛi(zk),

where Λi denotes the i-th component of Λ.

We recall here that Λ#π is the push-forward of π through Λ, and is defined as
Λ#π(A) = π(Λ−1(A)) for any Borel set A ⊂ RN0 .

Last, let us mention that Theorem 3.4 is a consequence of Caratheodory’s the-
orem [287, Corollary 17.1.2] applied to

∫
RN0

udΛ#π(u) which lies in the (convex)
cone induced by spt(Λ#π), the support of the measure Λ#π.

3.6.2 Proof of Theorem 3.1

We denote here by SK the set of permutations of the set {1, · · · , K}.
Lemma 3.5. Let (W,Y ) ∈ UNK be such that there exists k′ such that wk′ = 0.
Then for any permutation σ ∈ SK, there exists a polygonal map ψ : [0, 1] → UNK
such that ψ(0) = (W,Y ), ψ(1) = (W σ, Y σ) and I(ψ(t)) is constant, where Y σ :=
(Xσ(k))1≤k≤K ∈ ((Rd)M)K and W σ := (wσ(k))1≤k≤K ∈ (R+)K.

Proof. For (W,Y ) and (W ′, Y ′), we will denote [(W,Y ), (W ′, Y ′)] the segment map
t ∈ [0, 1] 7→ [(1− t)W + tW ′, (1− t)Y + tY ′] and we will construct ψ as the concate-
nation of segments that are clearly in UNK and leaves I constant.

It is sufficient to prove this result for transpositions i.e. for σ such that there
exist i1 < i2 such that σ(i1) = i2, σ(i2) = i1 and σ(i) = i for i 6∈ {i1, i2}. We
distinguish two cases.

• k′ ∈ {i1, i2}, say k′ = i2. We then define Y1 = (Xk
1 )1≤k≤K by Xk′

1 = X i1 and
Xk

1 = Xk for k 6= k′ and consider the segment [(W,Y ), (W,Y1)]. We then set
wk
′

1 = wi1 , wi11 = 0 and wk1 = wk for k 6∈ {k′, i1} (note that W1 = W σ) and
consider the segment [(W,Y1), (W1, Y1)]. Last, we define Y2 = (Xk

2 )1≤k≤K as
X i1

2 = Xk′ and Xk
2 = Xk

1 for k 6= i1 (note that Y2 = Y σ) and consider the
segment [(W1, Y1), (W1, Y2)].
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• k′ 6∈ {i1, i2}. First, we define Y1 = (Xk
1 )1≤k≤K by Xk′

1 = X i1 and Xk
1 =

Xk for k 6= k′ and consider the segment [(W,Y ), (W,Y1)]. We then set
wk
′

1 = wi1 , wi11 = 0 and wk1 = wk for k 6∈ {k′, i1} and consider the seg-
ment [(W,Y1), (W1, Y1)]. Then, we define Y2 = (Xk

2 )1≤k≤K as X i1
2 = X i2 and

Xk
2 = Xk

1 for k 6= i1, and consider the segment [(W1, Y1), (W1, Y2)]. We the set
wi12 = wi2 , wi22 = 0 and wk2 = wk1 for k 6∈ {i1, i2}, and consider the segment
[(W1, Y2), (W2, Y2)]. Now, we define Y3 = (Xk

3 )1≤k≤K by X i2
3 = X i1 , Xk

3 = Xk
2

for k 6= i2 and consider the segment [(W2, Y2), (W2, Y3)]. Then, we define
wi23 = wk

′
2 = wi1 , wk

′
3 = 0 and wk3 = wk2 for k 6∈ {i2, k′} (note that W3 = W σ)

and consider the segment [(W2, Y3), (W3, Y3)]. Last, we set Y4 = (Xk
4 )1≤k≤K

with Xk′
4 = Xk′ and Xk

4 = Xk
3 for k 6= k′ (note that Y4 = Y σ) and finally

consider the segment [(W3, Y3), (W3, Y4)], which gives the claim.

Proof. For i = 0, 1, let Wi := (wk,i)1≤k≤K ∈ RK
+ , Yi = (Xk

i )1≤k≤K ⊂ (Rd)M and

πi :=
∑K

k=1wk,iδXk
i
∈ P

(
(Rd)M

)
. Note that, for i = 0, 1, the support of πi is

included in the discrete set {Xk
i , 1 ≤ k ≤ K}.

For i = 0, 1, using Theorem 3.4 with π = πi and Λ : (Rd)M → RN+3 the map
defined such that, for all X ∈ (Rd)M ,

Λn(X) = ϕn(X), ∀1 ≤ n ≤ N,

ΛN+1(X) = 1, ΛN+2(X) = c(X) and ΛN+3(X) = ϑ(X),

it holds that there exists a subset J i ⊂ {1, · · · , K} such that Ki := #J i ≤ N + 3,
and weights (w̃ij)j∈Ji ⊂ R+ such that

∀1 ≤ n ≤ N,
∑
j∈Ji

w̃ijϕn(Xj
i ) =

∫
(Rd)M

ϕn dπi =
K∑
k=1

wk,iϕn(Xk
i ) = µn, (3.49)

∑
j∈Ji

w̃ij =

∫
(Rd)M

dπi =
K∑
k=1

wk,i = 1, (3.50)

∑
j∈Ji

w̃ijc(X
j
i ) =

∫
(Rd)M

c dπi =
K∑
k=1

wk,ic(X
k
i ) = I(Wi, Yi), (3.51)

∑
j∈Ji

w̃ijϑ(Xj
i ) =

∫
(Rd)M

ϑ dπi =
K∑
k=1

wk,iϑ(Xk
i ) ≤ A. (3.52)

Without loss of generality, by using Lemma 3.5, we can assume that J0 = J1, K0K
where K0 ≤ N + 3 and that J1 = JK −K1 + 1, KK where K −K1 + 1 ≥ N + 4.

We then define the weights W̃0 := (w̃0
1, · · · , w̃0

K0
, 0, · · · , 0) ∈ RK

+ and W̃1 :=
(0, · · · , 0, w̃1

K−K1+1, · · · , w̃1
K) ∈ RK

+ . Let us first define the applications

ψ1 :

[
0,

1

5

]
3 t 7→

(
W0 + 5t(W̃0 −W0), Y0

)
and

ψ5 :

[
4

5
, 1

]
3 t 7→

(
W1 + 5(1− t)(W̃1 −W1), Y1

)
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so that ψ0(0) = (W0, Y0), ψ0(1/5) = (W̃0, Y0), ψ1(1) = (W1, Y1), ψ1(4/5) = (W̃1, Y1).
Then, ψ0 and ψ1 are continuous applications and identities (3.49)-(3.50)-(3.51)-
(3.52) implies that for all t ∈ [0, 1/5] (respectively all t ∈ [4/5, 1]), ψ0(t) ∈ UKN
and I(ψ0(t)) = I(W0, Y0) (respectively ψ1(t) ∈ UKN and I(ψ1(t) = I(W1, Y1)).

We then define Ỹ :=
(
X1

0 , · · · , XK0
0 , 0, · · · , 0, XK−K1+1

1 , · · · , XK
1

)
∈ ((Rd)M)K .

We then introduce the continuous applications

ψ2 :

[
1

5
,
2

5

]
3 t 7→

(
W̃0, Y0 + 5(t− 1/5)Ỹ

)
and

ψ4 :

[
3

5
,
4

5

]
3 t 7→

(
W̃1, Y1 + 5(4/5− t)Ỹ

)
.

It thus holds that ψ2(1/5) = (W̃0, Y0) and ψ2(2/5) = (W̃0, Ỹ ). Similarly, ψ4(4/5) =

(W̃1, Y1) and ψ4(3/5) = (W̃1, Ỹ ). Let us point out here that, by the definition of

Ỹ , for any t ∈
[

1
5
, 2

5

]
, the K0 first components of ψ2(t) are equal to X1

0 , · · · , XK0
0 .

Thus, since W̃0 := (w̃0
1, · · · , w̃0

K0
, 0, · · · , 0) ∈ RK

+ , this implies that for all t ∈
[

1
5
, 2

5

]
,

ψ2(t) ∈ UKN and in addition,

I(ψ2(t)) = I(W̃0, Y0) = I(W̃0, Ỹ ) = I(W0, Y0).

Similarly, for any t ∈
[

3
5
, 4

5

]
, ψ4(t) ∈ UKN and in addition,

I(ψ4(t)) = I(W̃1, Y1) = I(W̃1, Ỹ ) = I(W1, Y1).

Notice that in particular, I remains constant along the paths in UKN given by the
applications ψ1, ψ2, ψ4 and ψ5.

Last, we introduce the application

ψ3 :

[
2

5
,
3

5

]
3 t 7→

(
W̃0 + 5(t− 2/5)W̃1, Ỹ

)
which is continuous and such that ψ3(2/5) = (W̃0, Ỹ ) and ψ3(3/5) = (W̃1, Ỹ ). Using
similar arguments as above, it then holds that for all t ∈ [2/5, 3/5], ψ3(t) ∈ PKN and

I(ψ3(t)) = I
(
W̃0, Ỹ

)
+ 5(t− 2/5)I

(
W̃1, Ỹ

)
= I (W0, Y0) + 5(t− 2/5)I (W1, Y1) .

This implies that I monotonically varies along the path given by the application ψ3.

We finally consider the application ψ : [0, 1]→ (R+)K ×
(
(Rd)M

)K
defined by

∀t ∈ [0, 1], ψ(t) =


ψ1(t) if t ∈ [0, 1/5],
ψ2(t) if t ∈ [1/5, 2/5],
ψ3(t) if t ∈ [2/5, 3/5],
ψ4(t) if t ∈ [3/5, 4/5],
ψ5(t) if t ∈ [4/5, 1].

Gathering all the results we have obtained so far, it then holds that ψ is continuous,
that for all t ∈ [0, 1], ψ(t) ∈ UKN and that the application I ◦ ψ is monotone. Hence
the desired result.
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Appendix B

Appendix of Chapter 3

B.1 Moments computation in Normal case

Recall that for N ∼ N (0, 1),

E (Np) =

{
0 if p is odd
σp(p− 1) if p is even.

(B.1)

For a 3D multivariate Normal random variable

X ∼ N

0
0
0

 ,

 σ2
1 ρ1,2σ1σ2 ρ1,3σ1σ3

ρ1,2σ1σ2 σ2
2 ρ2,3σ2σ3

ρ1,3σ1σ3 ρ2,3σ2σ3 σ2
3

 ,

X =

G1

G2

G3

 where cov(G1, G2) = ρ1,2σ1σ2, cov(G1, G3) = ρ1,3σ1σ3, cov(G2, G3) =

ρ2,3σ2σ3 and G1, G2 and G3 are not independent. Using N1, N2, N3 ∼ N (0, 1)
independent normal random variables, one has

G1 = σ1N1 (B.2)

G2 = σ2

(
ρ1,2N1 +

√
1− ρ2

1,2N2

)
(B.3)

G3 = σ3

(
ρ1,3N1 + ρ2,3N2 +

√
1− ρ2

1,3 − ρ2
2,3N3

)
(B.4)

such that

Var(G2) = σ2
2 Var(G3) = σ2

3 (B.5)

E (G1G2) = ρ1,2σ1σ2 E (G1G3) = ρ1,3σ1σ3 (B.6)

E (G2G3) = ρ2,3σ2σ3 (B.7)
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Then the (k, l,m)-th moment can be computed as

E
(
Gk

1G
l
2G

m
3

)
= E

(
σk1N

k
1 σ

l
2

(
ρ1,2N1 +

√
1− ρ2

1,2N2

)l
×σm3

(
ρ1,3N1 + ρ2,3N2 +

√
1− ρ2

1,3 − ρ2
2,3N3

)m)
= σk1σ

l
2σ

m
3 E

(
Nk

1

l∑
i=0

(
l
i

)
ρi1,2N

i
1

(√
1− ρ2

1,2

)l−i
N l−i

2

×
m∑
j=0

(
m
j

)
ρj1,3N

j
1

(
ρ2,3N2 +

√
1− ρ2

1,3 − ρ2
2,3N3

)m−j)

= σk1σ
l
2σ

m
3

l∑
i=0

(
l
i

)
ρi1,2

(√
1− ρ2

1,2

)l−i m∑
j=0

(
m
j

)
ρj1,3

× E

(
Nk+i+j

1 N l−i
2

m−j∑
h=0

(
m− j
h

)
ρh2,3N

h
2

(√
1− ρ2

1,3 − ρ2
2,3

)m−j−h
Nm−j−h

3

)

= σk1σ
l
2σ

m
3

l∑
i=0

(
l
i

)
ρi1,2

(√
1− ρ2

1,2

)l−i m∑
j=0

(
m
j

)
ρj1,3

m−j∑
h=0

(
m− j
h

)
× ρh2,3

(√
1− ρ2

1,3 − ρ2
2,3

)m−j−h
E
(
Nk+i+j

1 N l−i+h
2 Nm−j−h

3

)
(B.8)
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Chapter 4

Van der Waals interactions
between two hydrogen atoms: The
next orders

This chapter is an article written with Éric Cancès and L. Ridgway Scott and sub-
mitted to Communications in Mathematical Sciences [76].

Abstract

We extend a method (E. Cancès and L.R. Scott, SIAM J. Math. Anal., 50,
2018, 381–410) to compute more terms in the asymptotic expansion of the van
der Waals attraction between two hydrogen atoms. These terms are obtained
by solving a set of modified Slater–Kirkwood partial differential equations.
The accuracy of the method is demonstrated by numerical simulations and
comparison with other methods from the literature. It is also shown that the
scattering states of the hydrogen atom, that are the states associated with the
continuous spectrum of the Hamiltonian, have a major contribution to the C6

coefficient of the van der Waals expansion.

4.1 Introduction

Van der Waals interactions, first introduced in 1873 to reproduce experimental re-
sults on simple gases [317], have proved to also play an essential role in complex
systems in the condensed phase, such as biological molecules [21, 288] and 2D mate-
rials [153]. The quantum mechanical origin of the dispersive van der Waals interac-
tion has been elucidated by London in the 1930s [238]. The rigorous mathematical
foundations of the van der Waals interaction have been investigated in the pioneer-
ing work by Morgan and Simon [261], inspired by the one of Ahlrichs in [3], and later
by Lieb and Thiring [230], followed by many authors (see in particular [13, 205] and
references therein). For H+

2 , the expansion of the interaction energy as a function
of the distance R between the nuclei is a diverging series – yet Borel summable, as
predicted in [63] and later proved by [100, 114, 168]. Recent articles have studied
this expansion for collection of atoms [14, 18], with terms up to 1/R9 [22], molecules
[15, 16] and its differentiability [17].

In a recent paper [78], a new numerical approach was introduced to compute
the leading order term −C6R

−6 of the van der Waals interaction between hydrogen
atoms separated by a distance R. Here we extend that approach to compute higher
order terms −CnR−n, n > 6. The coefficients Cn have been computed by various
methods. On the one hand, both [275] and [98] apparently failed to include key
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components in the computation of C10, computing only one component out of three
that we derive here. On the other hand, our result differs by approximately 200%
and agrees with [265]. One of the objects of this paper is to clarify this discrepancy.

The computation of the expansion coefficients can also be derived through tech-
niques using polarizabilities [265] which is exact but might involve slightly different
numerical computations than the perturbation method used here. In order to get
the right values, one has to use a high enough order of perturbation theory. Com-
putations using up to the second order [10, 88, 314] fail for C12, C14 and C16 (with
errors of approximately 1%, 5%, and 10%) for which computations up to the fourth
order [257] are needed. The third order [323] is sufficient for C11, C13 and C15. More-
over, the polarizabilities method can be derived also for other atoms than hydrogen
as well as for three-body interaction [88]. A comparison of the numerical results is
explored in Section 4.3.1.

One can also compute the expansion coefficients using basis states as in [140].
However, this leads to a substantial error even for C6. The discrepancy observed
between the basis states method and the other methods can be interpreted as the
missing contribution to the energy from the continuous spectrum.

The perturbation method of [309] is remarkable because, in the case of two
hydrogen atoms, the problem splits, for any of the Cn terms, exactly into terms
constituted of an angular factor and a function of two one-dimensional variables
(the underlying problem is six-dimensional). The first term in this expansion has
been examined in [78] and gave a value of C6 agreeing with [265]. This article extends
this analysis and allows computation of all Cn. The linearity and the nature of the
angular parts allows treatment of these problems separately in a way analogous to
the first term of the expansion. Although the partial differential equations (PDE)
defining the functions of these two variables are not solvable in closed form, they
are nevertheless easily solved by numerical techniques.

In Section 4.2, we present an extended and modified version of Slater and Kirk-
wood’s derivation [309], in order to manipulate more suitable family of PDEs for
theoretical analysis and numerical simulation. These modified Slater–Kirkwood
PDEs are well posed at all orders and, when their unique solutions are multiplied
by their respective angular factor, the resulting function, after summation of the
terms, solves the triangular systems of six-dimensional PDEs originating from the
Rayleigh–Schrödinger expansion. We finally check that the so-obtained perturba-
tion series are asymptotic expansions of the ground state energy and wave function
(after applying some “almost unitary” transform) of the hydrogen molecule in the
dissociation limit. In Section 4.3, we use a Laguerre approximation [301, Section
7.3] to compute coefficients up to C19, given that C6 has been computed in [78]. Our
approach also allows us to evaluate the respective contributions of the bound and
scattering states of the Hamiltonian of the hydrogen atom to the C6 coefficient of
the van der Waals interaction. Numerical simulations show that the terms in the
sum-over-states expansion coupling two bound states only contribute to about 60%.
The mathematical proofs are gathered in Section 4.4. Lastly, some useful results
on the multipolar expansion of the hydrogen molecule electrostatic potential in the
dissociation limit and on the Wigner (2n + 1) rule used in the computations are
provided in the Appendix.

4.2 The hydrogen molecule in the dissociation limit

As usual in atomic and molecular physics, we work in atomic units: ~ = 1 (reduced
Planck constant), e = 1 (elementary charge), me = 1 (mass of the electron), ε0 =
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1/(4π) (dielectric permittivity of the vacuum). The length unit is the bohr (about
0.529 Ångstroms) and the energy unit is the hartree (about 4.36× 10−18 Joules).

We study the Born-Oppenheimer approximation of a system of two hydrogen
atoms, consisting of two classical point-like nuclei of charge 1 and two quantum
electrons of mass 1 and charge −1. Let r1 and r2 be the positions in R3 of the two
electrons, in a cartesian frame whose origin is the center of mass of the nuclei. We
denote by e the unit vector pointing in the direction from one hydrogen atom to the
other, and by R the distance between the two nuclei. We introduce the parameter
ε = R−1 and derive expansions in ε of the ground state energy and wave function.
Note that in [78], we use instead ε = R−1/3. The latter is well-suited to compute the
lower-order coefficient C6, but the change of variable ε = R−1 is more convenient to
compute all the terms of the expansion.

Since the ground state of the hydrogen molecule is a singlet spin state [178], its
wave function can be written as

ψε(r1, r2)
| ↑↓〉 − | ↓↑〉√

2
, (4.1)

where ψε > 0 is the L2-normalized ground state of the spin-less six-dimensional
Schrödinger equation

Hεψε = λεψε, ‖ψε‖L2(R3×R3) = 1, (4.2)

where for ε > 0, the Hamiltonian Hε is the self-adjoint operator on L2(R3×R3) with
domain H2(R3 × R3) defined by

Hε = −1

2
∆r1 −

1

2
∆r2 −

1

|r1 − (2ε)−1e| −
1

|r2 − (2ε)−1e|
− 1

|r1 + (2ε)−1e| −
1

|r2 + (2ε)−1e| +
1

|r1 − r2|
+ ε,

where ∆rk is the Laplace operator with respect to the variables rk ∈ R3. The first
two terms of Hε model the kinetic energy of the electrons, the next four terms the
electrostatic attraction between nuclei and electrons, and the last two terms the
electrostatic repulsion between, respectively, electrons and nuclei. The ground state
of Hε is symmetric (ψε(r1, r2) = ψε(r2, r1)) so that the wave function defined by
(4.1) does satisfy the Pauli principle (the anti-symmetry is entirely carried by the
spin component). It is well-known [14, 18, 78, 261] that

λε = −1− C6ε
6 + o

(
ε6
)
.

The computation of λε (and ψε) to higher order by a modified version of the Slater–
Kirkwood approach, is the subject of this article.

4.2.1 Perturbation expansion

The first step is to make a change of coordinates. Introducing the translation oper-
ator

τεf(r1, r2) = f(r1 + (2ε)−1e, r2 − (2ε)−1e) = f(r1 + 1
2
Re, r2 − 1

2
Re), R = ε−1,

the swapping operator C and the symmetrization operator S defined by

Cφ(r1, r2) = φ(r2, r1), S =
1√
2

(I + C),
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where I denotes the identity operator, as well as the “asymptotically unitary” op-
erator

Tε = Sτε. (4.3)

It is shown in [78] that
HεTε = Tε

(
H0 + Vε

)
, (4.4)

where H0 is the reference non-interacting Hamiltonian

H0 = −1

2
∆r1 −

1

|r1|
− 1

2
∆r2 −

1

|r2|
,

and Vε the correlation potential

Vε(r1, r2) = − 1

|r1 − ε−1e| −
1

|r2 + ε−1e| +
1

|r1 − r2 − ε−1e| + ε. (4.5)

The linear operator Tε is “asymptotically unitary” in the sense that for all f, g ∈
L2(R3 × R3), 〈

Tεf, Tεg
〉

=
〈
f, g
〉

+
〈
Cf, τε/2g

〉
−→
ε→0

〈
f, g
〉
.

It follows from (4.4) that if (λ, φ) is a normalized eigenstate of H0 +Vε, that is (λ, φ)
satisfies

(H0 + Vε)φ = λφ, ‖φ‖L2(R3×R3) = 1,

then
HεTεφ = λTεφ.

In addition, we know from Zhislin’s theorem [78, 325] that both Hε and H0 +Vε have
ground states, that their ground state eigenvalues are non-degenerate, and that their
ground state wave functions are (up to replacing them by their opposites) positive
everywhere in R3×3. Since Tε preserves positivity, we infer that Hε and H0 +Vε share
the same ground state eigenvalue λε and that if φε is the normalized positive ground
state wave function of H0 + Vε, then ψε := Tεφε/‖Tεφε‖L2(R3×R3) is the normalized
positive ground state wave function of Hε.

The next step is to construct for ε > 0 small enough the ground state (λε, φε) of
H0 +Vε by the Rayleigh–Schrödinger perturbation method from the explicit ground
state

λ0 = −1, φ0(r1, r2) = π−1e−(|r1|+|r2|), (4.6)

of H0. Using a multipolar expansion, we have

Vε(r1, r2) =
+∞∑
n=3

εnB(n)(r1, r2), (4.7)

where homogeneous polynomial functions B(n), n ≥ 3 are specified below (see equa-
tion (4.14)), the convergence of the series being uniform on every compact subset of
R3 × R3. Assuming that λε and φε can be Taylor expanded as

λε = λ0 −
+∞∑
n=1

Cnε
n and φε =

+∞∑
n=0

εnφn, (formal expansions) (4.8)

(we use the standard historical notation −Cn instead of λn for the coefficients of
the eigenvalue λε) inserting these expansions in the equations (H0 + Vε)φε = λεφε,
‖φε‖L2(R3×R3) = 1, and identifying the terms of order n in ε, we obtain a triangu-
lar system of linear elliptic equations (Rayleigh–Schrödinger equations). The well-
posedness of this system is given by the following lemma, whose proof is postponed
until Section 4.4.2.
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Lemma 4.1. The triangular system

∀n ≥ 1, (H0 − λ0)φn = −
n∑
k=3

B(k)φn−k −
n∑
k=1

Ckφn−k, (4.9)

〈
φ0, φn

〉
= −1

2

n−1∑
k=1

〈
φk, φn−k

〉
, (4.10)

where we use the convention
∑n

k=m · · · = 0 if m > n, has a unique solution
((Cn, φn))n∈N∗ in (R×H2(R3×R3))N

∗
. In particular, we have (C1, φ1) = (C2, φ2) = 0

and C3 = C4 = C5 = 0. In addition, the functions φn are real-valued.

Note that (C1, φ1) = (C2, φ2) = 0 directly follows from the fact that the first non-
vanishing term in the expansion (4.7) of Vε is ε3B(3). The formal expansions (4.8)
are in fact asymptotic expansions as established in the following theorem, in which
the second inequality of (4.12) has been proved to hold for H+

2 in [261, Theorem
3.5]. Its proof is provided in Section 4.4.2.

Theorem 4.2. Let ψε ∈ H2(R3 × R3) be the positive L2(R3 × R3)-normalized ground
state of Hε and λε the associated ground-state energy:

Hεψε = λεψε, ‖ψε‖L2(R3×R3) = 1, ψε > 0 a.e. on R3 × R3. (4.11)

Let (φ0, λ0) be as in (4.6), ((Cn, φn))n∈N∗ the unique solution of (4.9) in (R×H2(R3×
R3))n∈N∗, and Tε the “almost unitary” symmetrization operator defined in (4.3).
Then, for all n ∈ N, there exists εn > 0 and Kn ∈ R+ such that for all 0 < ε ≤ εn,∥∥ψε − ψ(n)

ε

∥∥
H2(R3×R3)

≤ Knε
n+1,

∣∣λε − λ(n)
ε

∣∣ ≤ Knε
n+1,

∣∣λε − µ(n)
ε

∣∣ ≤ Knε
2(n+1),

(4.12)

where

ψ(n)
ε :=

Tε
(
φ0 +

∑n
k=3 ε

kφk
)

‖Tε (φ0 +
∑n

k=3 ε
kφk)‖L2(R3×R3)

, λ(n)
ε := λ0−

n∑
k=6

Ckε
k, µ(n)

ε = 〈ψ(n)
ε |Hε|ψ(n)

ε 〉.

Let us point out that in view of the last two bounds in (4.12), the series expansion

of µ
(n)
ε in ε up to order (2n+1), which can be computed from the φk’s for 0 ≤ k ≤ n,

is given by

µ(n)
ε = λ0 −

2n+1∑
k=6

Ckε
k +O(ε2n+2).

Therefore, the knowledge of the φk’s up to order n allows one to compute all the
Ck’s up to order (2n+ 1) (Wigner’s (2n+ 1) rule).

Remark 4.1 (van der Waals forces). It follows from the Hellmann-Feynman theorem
that the van der Waals force Fε acting on the nucleus located at (2ε)−1e is given by

Fε =

∫
R3

(r− (2ε)−1e)

|r− (2ε)−1e|3ρε(r) dr with ρε(r) = 2

∫
R3

|ψε(r, r′)|2 dr′ (electronic density).

Introducing the approximation F
(n)
ε of Fε computed from ψ

(n)
ε as

F(n)
ε =

∫
R3

(r− (2ε)−1e)

|r− (2ε)−1e|3ρ
(n)
ε (r) dr with ρ(n)

ε (r) = 2

∫
R3

|ψ(n)
ε (r, r′)|2 dr′,

121



we obtain from the Cauchy-Schwarz inequality, the Hardy inequality in R3, and
(4.12) that

|Fε − F(n)
ε | ≤ 8‖ψε − ψ(n)

ε ‖H1(R3×R3)‖ψε + ψ(n)
ε ‖H1(R3×R3) ≤ K ′nε

n+1

for some constant K ′n ∈ R+ independent of ε and ε small enough. Since F
(n)
ε can be

Taylor expanded at ε = 0, we obtain that the force Fε satisfies for all n ≥ 6

Fε = −
(

n∑
k=6

nCnε
n+1

)
e +O(εn+1).

This extends the result Fε = −6C6ε
7e + O(ε8) proved in [17, Theorem 4] for any

two atoms with non-degenerate ground states, to arbitrary order in the simple case
of two hydrogen atoms.

4.2.2 Computation of the perturbation series

The coefficients B(n) are obtained by a classical multipolar expansion, detailed in
Appendix C.1 for the sake of completeness. Using spherical coordinates in an or-
thonormal cartesian basis (e1, e2, e3) of R3 for which e3 = e, so that

ri = ri
(

sin(θi) cos(φi)e1 + sin(θi) sin(φi)e2 + cos(θi)e
)
,

cos(θi) = ri · e, and ri = |ri|, i = 1, 2,
(4.13)

it holds that for all n ≥ 3,

B(n)(r1, r2) =
∑

(l1,l2)∈Bn

rl11 r
l2
2

∑
−min(l1,l2)≤m≤min(l1,l2)

Gc(l1, l2,m)Y m
l1

(θ1, φ1)Y −ml2
(θ2, φ2), (4.14)

=
∑

(l1,l2)∈Bn

rl11 r
l2
2

∑
−min(l1,l2)≤m≤min(l1,l2)

Gr(l1, l2,m)Yml1 (θ1, φ1)Yml2 (θ2, φ2), (4.15)

where (Y m
l )l∈N, m=−l,−l+1,··· ,l−1,l and (Yml )l∈N, m=−l,−l+1,··· ,l−1,l are respectively the com-

plex and real spherical harmonics , and where

Bn = {(l1, l2) : l1 + l2 = n− 1, l1, l2 6= 0} = {(l, n− 1− l) : 1 ≤ l ≤ n− 2} .
(4.16)

The coefficients Gc(l1, l2,m) and Gr(l1, l2,m) are respectively given by

Gc(l1, l2,m) := (−1)l2
4π(l1 + l2)!(

(2l1 + 1)(2l2 + 1)(l1 −m)!(l1 +m)!(l2 −m)!(l2 +m)!
)1/2

,

(4.17)

Gr(l1, l2,m) := (−1)mGc(l1, l2,m).

Both expansions (4.14) and (4.15) are useful: (4.14) will be used in the proof of
Theorem 4.4 to establish formula (4.26), which has a simpler and more compact
form in the complex spherical harmonics basis. On the other hand, (4.15) allows
one to work with real-valued functions.

One of the main contributions of this article is to show that the functions φn,
hence the real numbers λn, can be obtained by solving simple 2D linear elliptic
boundary value problems on the quadrant

Ω = R∗+ × R∗+,
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extending the technique of Slater and Kirkwood for C6 [309], modified in [78]. For
each angular momentum quantum number l ∈ N, we denote by

κl(r) =
l(l + 1)

2r2
− 1

r
− 1

2
λ0 =

l(l + 1)

2r2
− 1

r
+

1

2
, (4.18)

and we consider the boundary value problem: given f ∈ L2(Ω){
find T ∈ H1

0 (Ω) such that

−1

2
∆T (r1, r2) + (κl1(r1) + κl2(r2))T = f(r1, r2) in D′(Ω).

(4.19)

It follows from classical results on the radial operator −1
2
d2

dr2
+ κl on L2(0,+∞)

with form domain H1
0 (0,+∞) encountered in the study of the hydrogen atom (see

Section 4.4.1 for details) that for all l1, l2 ∈ N, (l1, l2) 6= (0, 0), the problem (4.19)
is well posed in H1

0 (Ω). For l1 = l2 = 0, this problem is well-posed in

H̃1
0 (Ω) =

{
v ∈ H1

0 (Ω) :

∫
Ω

v(r1, r2)e−r1−r2 r1r2 dr1dr2 = 0

}
,

provided that the compatibility condition∫
Ω

f(r1, r2)e−r1−r2 r1r2 dr1dr2 = 0 (4.20)

is fulfilled. Problem (4.19) is useful to solve the Rayleigh–Schrödinger system (4.9)-
(4.10) thanks to the following lemma, proved in Section 4.4.1. We denote by

φ⊥0 :=
{
ψ ∈ L2(R3 × R3) :

〈
φ0, ψ

〉
= 0
}
.

Note that the condition (4.20) is equivalent to
〈
φ0,

f(r1,r2)
r1r2

〉
= 0.

Lemma 4.3. Let l1, l2 ∈ N, m1,m2 ∈ Z such that −lj ≤ mj ≤ lj for j = 1, 2, and
f ∈ L2(Ω). Consider the problem of finding ψ ∈ H2(R3 × R3) ∩ φ⊥0 solution to the
equation

(H0 − λ0)ψ = F with F :=
f(r1, r2)

r1r2

Y m1
l1

(θ1, φ1)Y m2
l2

(θ2, φ2). (4.21)

1. If (l1, l2) 6= (0, 0), then the unique solution to (4.21) in H2(R3 × R3) is

ψ =
T (r1, r2)

r1r2

Y m1
l1

(θ1, φ1)Y m2
l2

(θ2, φ2), (4.22)

where T is the unique solution to (4.19) in H1
0 (Ω);

2. If (l1, l2) = (0, 0), and if the compatibility condition (4.20) is satisfied, then
the unique solution to (4.21) in H2(R3 × R3) ∩ φ⊥0 is

ψ =
1

4π

T (r1, r2)

r1r2

,

where T is the unique solution to (4.19) in H̃1
0 (Ω).
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In addition, if f decays exponentially at infinity, then so does T , hence ψ, in the
following sense: for all 0 ≤ α <

√
3/8, there exists a constant Cα ∈ R+ such that

for all η > α, l1, l2 ∈ N, m1,m2 ∈ Z such that −lj ≤ mj ≤ lj for j = 1, 2, and all
f ∈ L2(Ω)

‖eα(r1+r2)T‖H1(Ω) ≤ Cα‖eη(r1+r2)f‖L2(Ω), (4.23)

‖eα(|r1|+|r2|)ψ‖L2(R3×R3) ≤ Cα‖eη(|r1|+|r2|)F‖L2(R3×R3), (4.24)

‖eα(|r1|+|r2|)ψ‖H1(R3×R3) ≤ Cα(1 + 4l1(l1 + 1) + 4l2(l2 + 1))1/2‖eη(|r1|+|r2|)F‖L2(R3×R3).
(4.25)

Lastly, if f is real-valued, then so is T .

The properties of the functions φn upon which our numerical method is based,
are collected in the following theorem, proved in Section 4.4.2.

Theorem 4.4. Let ((Cn, φn))n∈N∗ be the unique solution in (R×H2(R3×R3))n∈N∗
to the Rayleigh–Schrödinger system (4.9). Then, φ1 = φ2 = 0, Cn = 0 for 1 ≤ n ≤ 5
and for each n ≥ 3, there exists a positive integer Nn such that

φn =
∑

(l1,l2)∈Ln

1

r1r2

 min(l1,l2)∑
m=−min(l1,l2)

T
(n)
(l1,l2,m)(r1, r2)Y m

l1
(θ1, φ1)Y −ml2

(θ2, φ2)

 , (4.26)

where Ln is a finite subset of N2 with cardinality Nn < ∞, where T
(n)
(l1,l2,m) is the

unique solution to (4.19) in H1(Ω) (or in H̃1(Ω) if l1 = l2 = 0) for f = f
(n)
(l1,l2,m),

where f
(n)
(l1,l2,m) is a real-valued function that can be computed recursively from the

T
(n′)
(l′1,l

′
2,m
′)’s, for n′ < n (as in (4.71)). Moreover, there exists αn > 0 such that

‖eαn(r1+r2)T
(n)
(l1,l2)‖H1(Ω) <∞, (4.27)

‖eαn(|r1|+|r2|)φn‖H1(R3×R3) <∞. (4.28)

The number Nn = |Ln| (number of terms in the expansion) for 6 ≤ n ≤ 9 are
displayed in Table 4.1, whose construction rules are given in the proof of Theorem 4.4
(see Section 4.4.2). For 3 ≤ n ≤ 5, Ln = Bn, where the latter set is defined in (4.16),
and Nn = |Bn| = n−2. For general n, Bn ⊂ Ln. For n ≥ 6, additional terms appear,
as indicated in Table 4.1.

n Nn pairs of angular momentum quantum numbers (l1, l2) in Ln\Bn

6 8 (0,2;0,2)
7 13 (0,2;1,3), (1,3;0,2)
8 18 (0,2;0,2,4), (1,3;1,3), (0,2,4;0,2)
9 27 (0,2;1,3,5), (1,3;0,2,4), (1,3,5;0,2), (0,2,4;1,3), (1,3;1,3)

Table 4.1: Additional spherical harmonics appearing in each φn for 6 ≤ n ≤ 9. Nn

is the number of terms in the spherical harmonics expansion (4.26). The condensed
notation (l1, l

′
1; l2, l

′
2) (resp. (l1, l

′
1; l2, l

′
2, l
′′
2) or (l1, l

′
1, l
′′
1 ; l2, l

′
2)) stands for the four

(resp. six) pairs (l1, l2), (l′1, l2), (l1, l
′
2), etc.

Table 4.1 can be read using the following rule: for a given n, if (l1, l2) ap-
pears in the corresponding row of the table, then there may exist m such that
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Y m
l1

(θ1, φ1)Y −ml2
(θ2, φ2) might appear with a non-zero function T

(n)
(l1,l2,m) in the spher-

ical harmonics expansion (4.26) of φn. Conversely, if a given (l1, l2) does not appear

in the table, then
〈
φn,

v(r1,r2)
r1r2

Y m1
l1

(θ1, φ1)Y m2
l2

(θ2, φ2)
〉

= 0, for all m1,m2 and all

v ∈ L2(Ω). The relative complexity of Table 4.1 is due to fact the first term in the
right-hand side of (4.9) is a sum of bilinear terms in B(k) and φn−k. The angular
parts of both B(k) and φn−k are finite linear combinations of angular basis functions
Y m
l1
⊗ Y −ml2

. When multiplied, they give rise to a still finite but longer linear com-
bination of Y m

l1
⊗ Y −ml2

’s (see (4.69)). By contrast, the corresponding table for the

B(n)’s is quite simple, since all the rows have the same structure: for all n ≥ 3, we
have

n | n− 2 | (k, n− k) for 1 ≤ k ≤ n− 2. (4.29)

From (φk)0≤k≤n, we can obtain the coefficients λj up to j = 2n+1 using Wigner’s
(2n+1) rule. Another, more direct, way to compute recursively the λn’s is to take the
inner product of φ0 with each side of (4.9) and use the fact that 〈φ0, (H0−λ0)φn〉 =
〈(H0 − λ0)φ0, φn〉 = 0. Since (C1, φ1) = (C2, φ2) = 0, we thus obtain

Cn = −
n−3∑
k=3

〈
φ0,B(k)φn−k

〉
−

n−3∑
k=3

Ck
〈
φ0, φn−k

〉
, (4.30)

where we use the convention
∑n

k=m ... = 0 if m > n. It follows that C3 = C4 = C5 =
0.

Using (4.14), (4.26) and the orthonormality properties of the complex spherical
harmonics, the terms

〈
ψ0,B(k)φn−k

〉
in (4.30) can be written as〈

φ0,B(k)φn−k
〉

=
〈
B(k)φ0, φn−k

〉
=

〈 ∑
(l1,l2)∈Bk

rl11 r
l2
2

min(l1,l2)∑
m=−min(l1,l2)

Gc(l1, l2,m)Y m
l1

(θ1, φ1)Y −ml2
(θ2, φ2)π−1e−(r1+r2),

∑
(l′1,l

′
2)∈Ln−k

1

r1r2

min(l′1,l
′
2)∑

m′=−min(l′1,l
′
2)

T
(n−k)

(l′1,l
′
2,m
′)(r1, r2)Y m′

l′1
(θ1, φ1)Y −m

′

l′2
(θ2, φ2)

〉

= −
∑

(l1,l2)∈Ln−k∩Bk

min(l1,l2)∑
m=−min(l1,l2)

β
(n−k)
(l1,l2,m)t

(n−k)
l1,l2,m

, (4.31)

where

β
(n)
(l1,l2,m) := −π−1Gc(l1, l2,m) (4.32)

t
(n)
(l1,l2,m) :=

∫
Ω

rl1+1
1 rl2+1

2 e−(r1+r2)T
(n)
(l1,l2,m)(r1, r2) dr1 dr2, (4.33)

with the convention that t
(n)
(l1,l2,m) = 0 if (l1, l2) /∈ Ln. In view of Table 4.1, we see in

particular that since the sum in (4.31) is empty〈
φ0,B(k)φn

〉
= 0 ∀ k, n = 3, 4, 5, k 6= n, (4.34)

and that many other vanish, e.g.〈
φ0,B(3)φ6

〉
= 0,

〈
φ0,B(4)φ5

〉
= 0,

〈
φ0,B(5)φ4

〉
= 0,

〈
φ0,B(6)φ3

〉
= 0. (4.35)

Additional pairs k, n can be examined by comparing the sets Bk and Ln−k.
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Furthermore, if the chosen numerical method to solve the boundary value prob-
lem (4.19) giving the radial function T n−kl′1,l

′
2,m
′ is a Galerkin method using as basis

functions of the approximation space tensor products of 1D Laguerre functions (that

are, polynomials in r times e−r), then the computation of t
(n)
l1,l2,m

can be done ex-
plicitly, at least for the approximate solution [301, Section 7.3]. Using the fact that

φ0 = 4e−(r1+r2)Y 0
0 (θ1, φ1)Y 0

0 (θ2, φ2), (4.36)

we then have〈
φ0, φn

〉
=

〈
4e−(r1+r2)Y 0

0 (θ1, φ1)Y 0
0 (θ2, φ2),

∑
(l′1,l

′
2)∈Ln

1

r1r2

min(l′1,l
′
2)∑

m′=−min(l′1,l
′
2)

T
(n)

(l′1,l
′
2,m
′)(r1, r2)Y m′

l′1
(θ1, φ1)Y −m

′

l′2
(θ2, φ2)

〉
= 4t

(n)
(0,0,0).

(4.37)

As a consequence,
〈
φ0, φn

〉
= 0 if (0, 0) /∈ Ln, so that in particular〈

φ0, φ3

〉
=
〈
φ0, φ4

〉
=
〈
φ0, φ5

〉
= 0. (4.38)

Then, Cn can be computed from (4.30) as

Cn =
n−3∑
k=3

∑
(l1,l2)∈Ln−k
l1+l2=k−1
l1,l2 6=0

min(l1,l2)∑
m=−min(l1,l2)

β
(n−k)
(l1,l2,m)t

(n−k)
(l1,l2,m) − 4

n−3∑
k=6

Ckt
(n−k)
(0,0,0). (4.39)

4.2.3 Practical computation of the lowest order terms

We detail in this section the practical computation of φ3 (already done in [78]), φ4

and φ5, as well as Cn for n ≤ 11. Recall that φ1 = φ2 = 0, and Cn = 0 for n ≤ 5.

Computation of φ3. We have

B(3) = r1r2

(
1∑

m=−1

Gc(1, 1,m))Y m
1 (θ1, φ1)Y −m1 (θ2, φ2)

)
, (4.40)

(H0 − λ0)φ3 = −B(3)φ0, (4.41)〈
φ0, φ3

〉
= 0, (4.42)

with Gc(1, 1,m) = −π
3
(8− 4|m|) and therefore

(H0 − λ0)φ3 = −r1r2e
−(r1+r2)

(
1∑

m=−1

π−1Gc(1, 1,m)Y m
1 (θ1, φ1)Y −m1 (θ2, φ2)

)
,〈

φ0, φ3

〉
= 0.

As a consequence, using Lemma 4.3, it holds that L3 = {(1, 1)},

φ3 =
T

(3)
(1,1)(r1, r2)

r1r2

(
1∑

m=−1

α
(3)
(1,1,m)Y

m
1 (θ1, φ1)Y −m1 (θ2, φ2)

)
, (4.43)
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where α
(3)
(1,1,m) = −π−1Gc(1, 1,m) = −1

3
(8 − 4|m|) and where T

(3)
(1,1) ∈ H1

0 (Ω) can be
numerically computed by solving the 2D boundary value problem

−1

2
∆T

(3)
(1,1) + (κ1(r1) + κ1(r2))T

(3)
(1,1) = r2

1r
2
2e
−(r1+r2) in Ω

with homogeneous Dirichlet boundary conditions.

Computation of φ4. To compute the next order, we first expand B(4) as

B(4) = r1r
2
2

1∑
m=−1

Gc(1, 2,m)Y m
1 (θ1, φ1)Y −m2 (θ2, φ2)

+ r2
1r2

2∑
m=−2

Gc(2, 1,m)Y m
1 (θ1, φ1)Y −m2 (θ2, φ2),

with Gc(1, 2, 1) = Gc(1, 2,−1) = 4π/
√

5, Gc(1, 2, 0) = 4π
√

3/
√

5, Gc(2, 1,m) =
−Gc(1, 2,m). From (4.9)-(4.10), we get

(H0 − λ0)φ4 = −B(3)φ1 − B(4)φ0,〈
φ0, φ4

〉
= 0,

since φ1 = φ2 = 0 and Ck = 0 for 1 ≤ k ≤ 5. We therefore have L4 = {(1, 2), (2, 1)}
and

φ4 =
T

(4)
(1,2)(r1, r2)

r1r2

1∑
m=−1

α
(4)
(1,2,m)Y

m
1 (θ1, φ1)Y −m2 (θ2, φ2)

+
T

(4)
(2,1)(r1, r2)

r1r2

1∑
m=−1

α
(4)
(2,1,m)Y

m
2 (θ1, φ1)Y −m1 (θ2, φ2),

where α
(4)
(l1,l2,m) = −π−1Gc(l1, l2,m), T

(4)
(2,1) ∈ H1

0 (Ω) solves

−1

2
∆2T

(4)
(2,1)(r1, r2) + (κ2(r1) + κ1(r2))T

(4)
(2,1) = r3

1r
2
2e
−r1−r2 in Ω, (4.44)

and T
(4)
(1,2)(r1, r2) = T

(4)
(2,1)(r2, r1). A representation of T

(4)
(2,1) can be seen in Figure 4.1.

Computation of φ5. We have

B(5) = r1r
3
2

1∑
m=−1

Gc(1, 3,m)Y m
1 (θ1, φ1)Y −m3 (θ2, φ2)

+ r2
1r

2
2

2∑
m=−2

Gc(2, 2,m)Y m
2 (θ1, φ1)Y −m2 (θ2, φ2)

+ r3
1r

1
2

1∑
m=−1

Gc(3, 1,m)Y m
3 (θ1, φ1)Y −m1 (θ2, φ2),

and

(H0 − λ0)φ5 = −B(5)φ0,〈
φ0, φ5

〉
= 0,
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Figure 4.1: Shape of T
(4)
(2,1) 1 and T

(4)
(2,1)(r1, r2)/(r1r2) 2, using the Laguerre function

approximation scheme [301, Section 7.3].

since φ1 = φ2 = 0 and Ck = 0 for 1 ≤ k ≤ 5. We thus have L5 = {(1, 3), (2, 2), (3, 1)}
and

ψ(5) =
T

(5)
(1,3)(r1, r2)

r1r2

1∑
m=−1

α
(5)
(1,3,m)Y

m
1 (θ1, φ1)Y −m3 (θ2, φ2)

+
T

(5)
(2,2)(r1, r2)

r1r2

2∑
m=−2

α
(5)
(2,2,m)Y

m
2 (θ1, φ1)Y −m2 (θ2, φ2)

+
T

(5)
(3,1)(r1, r2)

r1r2

1∑
m=−1

α
(5)
(3,1,m)Y

m
3 (θ1, φ1)Y −m1 (θ2, φ2), (4.45)

where α
(5)
(l1,l2,m) = −π−1Gc(l1, l2,m), T

(5)
(1,3) ∈ H1

0 (Ω) solves

−1

2
∆2T

(5)
(1,3)(r1, r2) + (κ1(r1) + κ3(r2))T

(5)
(1,3) = r2

1r
4
2e
−(r1+r2), (4.46)

T
(5)
(2,3) ∈ H1

0 (Ω) solves

−1

2
∆2T

(5)
(2,2)(r1, r2) + (κ2(r1) + κ2(r2))T

(5)
(2,2) = r3

1r
3
2e
−(r1+r2), (4.47)

and T
(5)
(3,1)(r1, r2) = T

(5)
(1,3)(r2, r1).

Computation of λn for 6 ≤ n ≤ 11. Let us define for n = 3, 4, 5,

β
(n)
(l1,l2) := −π−1

min(l1,l2)∑
m=−min(l1,l2)

α
(n)
(l1,l2,m)Gc(l1, l2,m)

t
(n)
(l1,l2) :=

∫
Ω

rl1+1
1 rl2+1

2 e−(r1+r2)T
(n)
(l1,l2)(r1, r2) dr1 dr2,

with the convention that β
(n)
(l1,l2) = t

(n)
(l1,l2) = 0 if (l1, l2) /∈ Ln. From (4.30) and the

fact that Cn = 0 for 3 ≤ n ≤ 5, we obtain, using (4.31), (4.38), (4.39), Table 4.1,
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and the symmetries of the coefficients β
(n)
(l1,l2) and t

(n)
(l1,l2),

C6 = −
〈
φ0,B(3)φ3

〉
= β

(3)
(1,1)t

(3)
(1,1), (4.48)

C7 = −
〈
φ0,B(3)φ4

〉
−
〈
φ0,B(4)φ3

〉
= 0,

C8 = −
〈
φ0,B(3)φ5

〉
−
〈
φ0,B(4)φ4

〉
−
〈
φ0,B(5)φ3

〉
= −

〈
φ0,B(4)φ4

〉
= β

(4)
(1,2)t

(4)
(1,2) + β

(4)
(2,1)t

(4)
(2,1) = 2β

(4)
(1,2)t

(4)
(1,2),

C9 = −
〈
φ0,B(3)φ6

〉
−
〈
φ0,B(4)φ5

〉
−
〈
φ0,B(5)φ4

〉
−
〈
φ0,B(6)φ3

〉
− C6

〈
φ0, φ3

〉
= 0,

C10 = −
7∑

k=3

〈
φ0,B(k)φ10−k

〉
−

7∑
k=6

Ck
〈
φ0, φ10−k

〉
= −

〈
φ0,B(5)φ5

〉
= β

(5)
(1,3)t

(5)
(1,3) + β

(5)
(2,2)t

(5)
(2,2) + β

(5)
(3,1)t

(5)
(3,1) = 2β

(5)
(1,3)t

(5)
(1,3) + β

(5)
(2,2)t

(5)
(2,2), (4.49)

C11 = −
8∑

k=3

〈
φ0,B(k)φ11−k

〉
−

8∑
k=6

Ck
〈
φ0, φ11−k

〉
= −

〈
φ0,B(4)φ7

〉
−
〈
φ0,B(5)φ6

〉
=

1∑
m=−1

[
β

(7)
(1,2,m)t

(7)
(1,2,m) + β

(7)
(2,1,m)t

(7)
(2,1,m)

]
+

2∑
m=−2

β
(6)
(2,2,m)t

(6)
(2,2,m). (4.50)

As α
(n)
(l1,l2,m) = −π−1Gc(l1, l2,m) for n = 3, 4, 5, (l1, l2) ∈ Ln and −min(l1, l2) ≤ m ≤

min(l1, l2), we obtain, using (4.17), that

(
α

(n)
(l1,l2,m)

)2
=

16 ((l1 + l2)!)2

(2l1 + 1)(2l2 + 1)(l1 −m)!(l1 +m)!(l2 −m)!(l2 +m)!
,

and therefore

β
(3)
(1,1) =

1∑
m=−1

(α
(3)
(1,1,m))

2 =
16

9
+

64

9
+

16

9
=

32

3
,

β
(4)
(1,2) = β

(4)
(2,1) =

1∑
m=−1

(α
(4)
(1,2,m))

2 =
16

5
+ 3× 16

5
+

16

5
= 16,

β
(5)
(1,3) = β

(5)
(3,1) =

1∑
m=−1

(α
(5)
(1,3,m))

2 =
64

3
, β

(5)
(2,2) =

2∑
m=−2

(α
(5)
(2,2,m))

2 =
224

5
,

so that

C6 =
32

3
t
(3)
(1,1), C7 = 0, C8 = 32t

(4)
(1,2), C9 = 0, C10 =

128

3
t
(5)
(1,3) +

224

5
t
(5)
(2,2).

(4.51)

It is optimal to use (4.51) to compute C6, C8, C10 since only φn is needed to compute
C2n. On the other hand, computing C11 using (4.50) requires computing φ6 and φ7,
and it is therefore preferable to use Wigner’s (2n + 1) rule that allows computing
C11 from φ3, φ4 and φ5.

Computation of higher-order terms. For n ≥ 6, the right-hand side of (4.9)
contains terms of the form B(k)φn−k with k ≥ 3 and n− k ≥ 1. The computation of
φn therefore requires solving 2D boundary value problems of the form

−1

2
∆T + (κl1(r1) + κl2(r2))T = r

l′1
1 r

l′2
2 T

(n−k)

(l′′1 ,l
′′
2 ,m

′′)
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for some (l1, l2) ∈ Ln, l′1 + l′2 = k − 1, (l′′1 , l
′′
2) ∈ Ln−k and −min(l′′1 , l

′′
2) ≤ m′′ ≤

min(l′′1 , l
′′
2). The right-hand side of this equation is not explicit, but the above equa-

tion can nevertheless be solved numerically since T
(n−k)

(l′′1 ,l
′′
2 ,m

′′) has been previously com-

puted numerically during the calculation of φn−k. An analogous procedure was used
by Morgan and Simon for H+

2 and can be found in the Appendix of [261].

4.3 Numerical results

4.3.1 Comparison between different approaches

The following tables contain the results of the approximated values of the Cn co-
efficients computed by Ovsiannikov and Mitroy [265], by Choy [98], by Pauling
and Beach [275], and by the techniques described in this paper. The latter con-
sist in solving recursively the Modified Slater–Kirkwood boundary value problems
of type (4.9) using a Galerkin scheme in finite-dimensional approximation spaces
constructed from tensor products of 1D Laguerre functions with degrees lower of
equal to k. With basic double-precision floating-point arithmetics, the latter ap-
proach is numerical stable up to k = 11 and provides results with excellent precision
(relative error lower than 10−9). It is well-known that the conditioning of spectral
methods for PDEs using orthogonal polynomial spaces grows exponentially. How-
ever, in the present case, the entries of the Galerkin matrix are square roots of
rational numbers so that arbitrary precision can be obtained using symbolic compu-
tation. The method of Choy [98] is based on the Slater–Kirkwood algorithm [309],
whereas the method of Pauling and Beach [275] is different. Although Slater and
Kirkwood are referenced in [275], Pauling and Beach were motivated by a method
of S. C. Wang [322].

Method C6 C8 C10 C11

[275] 6.49903 124.399 1135.21
[98] 6.4990267 124.3990835 1135.2140398

This work 6.49902670540 [78] 124.399083 3285.82841 -3474.89803
[265] 6.499026705406 124.3990835836 3285.828414967 -3474.898037882

Table 4.2: Comparison of the coefficients C6 to C11 between various papers and the
basis states method and our method based on numerical solutions of boundary value
problems of type (4.19) in tensor products of Laguerre functions up to degree 11
(for which round-off error is suitably controlled). These results agree at least to 9
digits with the results in [88, 257, 265, 314, 323].

The discrepancy between the Choy [98] and Pauling–Beach [275] results (who
agree to the digits given) and the other methods for C10 has the following origin.
According to (4.49), we have

C10 = 2β
(5)
(1,3)t

(5)
(1,3) + β

(5)
(2,2)t

(5)
(2,2).

It appears that Choy in [98], who also was guided by [309], only computed the
second term

β
(5)
(2,2)t

(5)
(2,2) = 1135.214 . . . (4.52)
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Method C12 C13 C14 C15

This work 122727.608 -326986.924 6361736.04 -28395580.6
[265] 122727.6087007 -326986.9240441 6361736.045092 -28395580.6

Table 4.3: Comparison of the Cn coefficients C12 to C15 between [265] and our
method based on numerical solutions of boundary value problems of type (4.19) in
tensor products of Laguerre functions up to degree 11 (for which round-off error
is suitably controlled). These results agree at least to 9 digits with the results
in [257, 265, 323] for C13 and C15 and [257, 265] for C12 and C14.

Method C16 C17 × 10−9 C18 × 10−10 C19 × 10−11

This work 441205192 -2.73928165 3.93524773 -3.07082459
[265] 441205192.2739 -2.739281653140 3.93524773346 -3.07082459389

Table 4.4: Comparison of the Cn coefficients C16 to C19 between [265] and our
method based on numerical solutions of boundary value problems of type (4.19) in
tensor products of Laguerre functions up to degree 11 (for which round-off error
is suitably controlled). These results agree at least to 9 digits with the results
in [257, 265].

4.3.2 Role of continuous spectra in sum-over-state formulae

It follows from (4.41), (4.42) and (4.48) that the leading coefficient C6 of the van
der Waals expansion can be written as

C6 = 〈B(3)φ0, (H0 − λ0)−1
φ⊥0
B(3)φ0〉,

where (H0−λ0)−1
φ⊥0

is the inverse of the restriction to H0−λ0 to the invariant subspace

φ⊥0 (which is well-defined since λ0 is a non-degenerate eigenvalue of the self-adjoint
operator H0. This expression is sometimes wrongly rewritten as a sum-over-state
formula

C6 =
∑
j

|〈ψj,B(3)ψ0〉|2
Ej − E0

(wrong), (4.53)

with ψ0 := φ0, E0 := λ0 = −1, where the ψj’s form an orthonormal family of excited
states of H0 associated with the eigenvalues Ej. This is not possible because H0

has a non-empty continuous spectrum. Using (4.53) with a sum running over the
excited states of H0 (and omitting an integral over the scattering states of H0) leads
to an error that we are going to estimate. We have

C ′6 :=
∑
j

|〈ψj,B(3)ψ0〉|2
Ej − E0

= −〈B(3)φ0, φ3,pp〉,

where φ3,pp is the projection of φ3 on the Hilbert space spanned by the eigenfunctions
of H0. Recall that the eigenvalues and associated eigenfunctions of the hydrogen
atom Hamiltonian h0 := −1

2
∆− 1

|r| , which is a self-adjoint operator on L2(R3), are
of the form

εn = − 1

2n2
, ψn,l,m(r) = ϕn,l(r)Y

m
l (θ, φ), n ∈ N∗, 0 ≤ l ≤ n− 1, −l ≤ m ≤ l,

(4.54)
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with

ϕn,1 =

√(
2

n

)3
(n− 2)!

2n(n+ 1)!

(
2r

n

)
L

(3)
n−2

(
2r

n

)
e−r/n, (4.55)

where the associated Laguerre polynomials of the second type L
(m)
n , n,m ∈ N, are

defined from the Laguerre polynomial Ln and are given by

L(m)
n (x) = (−1)m

dmLn+m

dxm
(x) =

1

n!

n∑
k=0

n!

k!

(
n+m
n− k

)
(−x)k. (4.56)

The eigenvalues and associated eigenfunctions of H0 are therefore given by

En1,n2 = εn1 + εn2 = − 1

2n2
1

− 1

2n2
2

, Ψn1,l1,m1;n2,l2,m2 = ψn1,l1,m1 ⊗ ψn2,l2,m2 ,

for nj ∈ N∗, 0 ≤ lj ≤ nj−1, −lj ≤ mj ≤ lj. Note that φ0 = Ψ1,0,0;1,0,0. We therefore
have

C ′6 =
∑

(n1,n2)∈(N∗×N∗)\{(1,1)}

n1−1∑
l1=0

n2−1∑
l2=0

l1∑
m1=−l1

l2∑
m2=−l2

|〈Ψn1,l1,m1;n2,l2,m2 ,B(3)ψ0〉|2
εn1 + εn2 + 1

,

Using (4.40) and the L2(S2)-orthonormality of the spherical harmonics, we get

〈Ψn1,l1,m1;n2,l2,m2 ,B(3)ψ0〉 = π−1Sn1Sn2

1∑
m=−1

Gc(1, 1,m)δl1,1δl2,1δm,m1δ−m,m2 ,

where

Sn :=

∫ +∞

0

r3e−rφn,1(r) dr = 8n3 (n− 1)n−3

(n+ 1)n+3

√
(n+ 1)!

(n− 2)!
. (4.57)

The latter expression is derived in Appendix C.3. We finally obtain

C ′6 = π−2

1∑
m=−1

|Gc(1, 1,m)|2
∑

n1,n2≥2

S2
n1
S2
n2

1− 1
2n2

1
− 1

2n2
2

=
32

3

∑
n1,n2≥2

S2
n1
S2
n2

1− 1
2n2

1
− 1

2n2
2

.

(4.58)
Summing up the terms of the above series for n1, n2 ≤ 300 (note that Sn ∼n→∞

8
e2n3/2 ), we obtain the approximate value

C ′6 ' 3.923

which shows that the continuous spectrum plays a major role in the sum-over-state
evaluation of the C6 coefficient of the hydrogen molecule (recall that C6 ' 6.499).

4.4 Proofs

We now establish the results stated above, starting from Lemma 4.3.

4.4.1 Proof of Lemma 4.3

Recall that the Hydrogen atom Hamiltonian h0 = −1
2
∆ − 1

|r| introduced in the

previous section is a self-adjoint operator on L2(R3) with domain H2(R3), and that
its ground state is non-degenerate:

h0ψ1,0,0 = −1

2
ψ1,0,0 with ψ1,0,0 = ϕ1,0(r)Y 0

0 (θ, φ) = π−1/2e−r, ‖ψ1,0,0‖L2(R3) = 1.
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Since H0 = h0 ⊗ 1L2(R3) + 1L2(R3) ⊗ h0, H0 is a self-adjoint operator on L2(R3 ×R3)
with domain H2(R3 × R3) and it also has a non-degenerate ground state

H0φ0 = λ0φ0 with φ0 = ψ1,0,0⊗ψ1,0,0 = π−1e−(r1+r2), ‖φ0‖L2(R3×R3) = 1 and λ0 = −1.

Given (α, F ) ∈ R × L2(R3 × R3), the problem consisting of seeking (µ,Ψ) ∈ R ×
H2(R3 × R3) such that

(H0 − λ0)Ψ = F − µφ0, 〈φ0,Ψ〉 = α, (4.59)

is well-posed and its unique solution is given

Ψ = (H0 − λ0)|−1
φ⊥0

Πφ⊥0
F + αφ0, µ = 〈φ0, F 〉,

where (H0 − λ0)|−1
φ⊥0

is the inverse of H0 − λ0 on the invariant subspace φ⊥0 and

Πφ⊥0
F := F −〈φ0, F 〉φ0 the orthogonal projection of F on φ⊥0 . Consider the unitary

map
U : L2(Ω)⊗ L2(S2)⊗ L2(S2)→ L2(R3 × R3) ≡ L2(R3)⊗ L2(R3)

induced by the spherical coordinates defined for all f ∈ L2(Ω), l1, l2 ∈ N, −lj ≤
mj ≤ lj by

(U(f ⊗ s1 ⊗ s2))(r1, r2) =
f(|r1|, |r2|)
|r1| |r2|

s1

(
r1

|r1|

)
s2

(
r2

|r2|

)
.

Since (Y m
l )l∈N,−l≤m≤l is an orthonormal basis of L2(S2), we have

L2(Ω)⊗ L2(S2)⊗ L2(S2) =
⊕
l1,l2∈N

l1⊕
m1=−l1

l2⊕
m2=−l2

Hm1,m2

l1,l2

where Hm1,m2

l1,l2
:= L2(Ω) ⊗ CY m1

l1
⊗ CY m2

l2
. It follows from classical results for

Schrödinger operators on L2(R3) with central potentials (see e.g. [286, Section
XIII.3.B]) that each Hm1,m2

l1,l2
is an invariant subspace for U∗H0U and that

U∗H0U|Hm1,m2
l1,l2

= Hl1,l2 ⊗ 1CYm1
l1

⊗ 1CYm2
l2

,

where the expression of Hl1,l2 can be derived by adapted the arguments in [78,
Section 3], that we do not detail here for the sake of brevity: Hl1,l2 is the self-adjoint
operator on L2(Ω) with form domain H0

1 (Ω) defined by

Hl1,l2 = −1

2
∆ + κl1(r1) + κl2(r2) + λ0. (4.60)

Note that the operator Hl1,l2 on L2(Ω) ≡ L2(0,+∞) ⊗ L2(0,+∞) can itself be
decomposed as

Hl1,l2 = hl1 ⊗ 1L2(0,+∞) + 1L2(0,+∞) ⊗ hl2 ≥ −
1

2(l1 + 1)2
− 1

2(l2 + 1)2
,

where for each l ∈ N, hl is the self-adjoint operator on L2(0,+∞) with form domain
H1

0 (0,+∞) defined by

hl := −1

2

d2

dr2
+
l(l + 1)

2r2
− 1

r
= −1

2

d2

dr2
+ κl −

1

2
.
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This well-known operator allows one to construct the bound-states of hydrogen
atom with orbital quantum number l. It satisfies hl ≥ − 1

2(l+1)2
and its ground state

eigenvalue − 1
2(l+1)2

is non-degenerate. It follows from this bound that

Hl1,l2 − λ0 = Hl1,l2 + 1 ≥ 3

8
for all (l1, l2) ∈ N2 \ {(0, 0}. (4.61)

Choosing α = 0 in (4.59) amounts to enforcing that the solution Ψ is in φ⊥0 . Taking

α = 0 and F = f(r1,r2)
r1r2

Y m1
l1

(θ1, φ1)Y m2
l2

(θ2, φ2) = U(f ⊗ Y m1
l1
⊗ Y m2

l2
), with f ∈

L2(Ω), it follows that (4.21) has a unique solution in H2(R3 × R3) if and only if
µ = 〈φ0, F 〉 = 0, that is

δ(l1,l2)=(0,0)

∫
Ω

f(r1, r2)e−(r1+r2)r1r2 dr1 dr2 = 0,

in which case the solution is given by Ψ = U(T ⊗ Y m1
l1
⊗ Y m2

l2
) where

T := (Hl1,l2 − λ0)−1f if (l1, l2) 6= (0, 0),

T := (H0,0 − λ0)|−1
(r1r2e−(r1+r2))⊥

f if (l1, l2) = (0, 0).

We therefore have

ψ =
T (r1, r2)

r1r2

Y m1
l1

(θ1, φ1)Y m2
l2

(θ2, φ2),

where T is the unique solution to (4.19) in H1
0 (Ω) if (l1, l2) 6= (0, 0) and T is the

unique solution to (4.19) in H̃1
0 (Ω) = H1

0 (Ω) ∩ (r1r2e
−(r1+r2))⊥ if (l1, l2) = 0.

The fact that if f decays exponentially at infinity, then so does T , hence ψ, is
a consequence of the following result, whose proof follows the same lines as in [78,
Section 3.3] where this result is established for the special case when (l1, l2) = (1, 1)
and f = r2

1r
2
2e
−(r1+r2).

Lemma 4.5. If the function f of (4.19) decays exponentially at infinity at a rate
η > 0, in the sense that

‖eη(r1+r2)f‖L2(Ω) <∞, (4.62)

then the unique solution T of (4.19) also decays exponentially at infinity. More
precisely, for all 0 ≤ α <

√
3/8, there exists a constant Cα ∈ R+ such that for all

η > α and all f ∈ L2(Ω) satisfying (4.62), it holds

‖eα(r1+r2)T‖H1(Ω) ≤ Cα‖eη(r1+r2)f‖L2(Ω). (4.63)

Proof. We limit ourselves to the case when (l1, l2) 6= (0, 0). The special case (l1, l2) =

(0, 0) can be dealt with similarly, by replacing H1
0 (Ω) by H̃1

0 (Ω). Let a be the
continuous bilinear form on H1

0 (Ω)×H1
0 (Ω) associated with the positive self-adjoint

operator Hl1,l2 − λ0:

∀u, v ∈ H1
0 (Ω), a(u, v) =

1

2

∫
Ω

∇u·∇v+

∫
Ω

(κl1(r1)+κl2(r2))u(r1, r2)v(r1, r2) dr1 dr2.

Recall that the continuity of a can be shown directly (without using the fact that
H1

0 (Ω) is the form domain of Hl1l2) as a straightforward consequence of the one-
dimensional Hardy inequality

∀g ∈ H1
0 (0,+∞),

∫ ∞
0

(g(r)/r)2dr ≤ 4

∫ ∞
0

g′(r)2 dr. (4.64)
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It follows from (4.61) that a ≥ 3
8

(in the sense of quadratic forms on L2(Ω)). For

0 ≤ α <
√

3/8, we introduce the continuous bilinear form aα on H1
0 (Ω) × H1

0 (Ω)
defined by

∀u, v ∈ H1
0 (Ω), aα(u, v) = a(u, v)−

∫
Ω

αu(r)

(
∂v

∂r1

(r) +
∂v

∂r2

(r)

)
dr−

∫
Ω

α2u(r)v(r)dr,

for which

∀v ∈ H1
0 (Ω), aα(v, v) = a(v, v)− α2‖v‖2

L2(Ω) ≥
(

3

8
− α2

)
︸ ︷︷ ︸

>0

‖v‖2
L2(Ω).

Using either the fact that κl(r) ≥ 1
4

(for l ≥ 1) or the Hardy inequality (4.64) (for
l = 0), we also have

∀v ∈ H1
0 (Ω), aα(v, v) = a(v, v)− α2‖v‖2

L2(Ω) ≥
1

4

∫
Ω

|∇v|2 − 2‖v‖2
L2 .

Since a ≥ 3
8

and aα ≥
(

3
8
− α2

)
> 0, the above bound implies that a and aα are

both continuous and coercive on H1
0 (Ω). The function T ∈ H1

0 (Ω) solution to (4.19)
is also the unique solution to the variational equation

∀w ∈ H1
0 (Ω), a(T,w) =

∫
Ω

fw.

Proceeding as in [78, Section 3.3], we obtain that for all u ∈ H1
0 (Ω) such that

eα(r1+r2)u ∈ H1
0 (Ω) and w ∈ C∞c (Ω), we have

aα(eα(r1+r2)u,w) = a(u, eα(r1+r2)w). (4.65)

Consider now f ∈ L2(Ω) satisfying (4.62) for some η > α. The function eα(r1+r2)f
is in L2(Ω), so that the problem of finding v ∈ H1(Ω) such that

∀w ∈ H1
0 (Ω), aα(v, w) =

∫
Ω

eα(r1+r2)fw

has a unique solution v, satisfying ‖v‖H1(Ω) ≤ Cα‖eα(r1+r2)f‖L2(Ω) ≤ Cα‖eη(r1+r2)f‖L2(Ω),
where Cα ≥ 1 is the ratio between the continuity constant and the coercivity con-
stant of aα. Let u = e−α(r1+r2)v ∈ H1

0 (Ω). In view of (4.65), we have

∀w ∈ C∞c (Ω), a(u, eα(r1+r2)w) = aα(v, w) =

∫
Ω

eα(r1+r2)fw = a(T, eα(r1+r2)w).

Hence, T = u and ‖eα(r1+r2)T‖H1(Ω) = ‖eα(r1+r2)u‖H1(Ω) = ‖v‖H1(Ω) ≤ Cα‖eη(r1+r2)f‖L2(Ω).

As a consequence, we have

‖eα(|r1|+|r2|)ψ‖L2(R3×R3) = ‖eα(r1+r2)T‖L2(Ω) ≤ ‖eα(r1+r2)T‖H1(Ω)

≤ Cα‖eη(r1+r2)f‖L2(Ω) = Cα‖eη(|r1|+|r2|)F‖L2(R6),

which proves (4.25). In addition, a simple calculation using (4.64) shows that for
all g ∈ H1

0 (Ω)∥∥∥∥ g

r1r2

⊗ Y m1
l1
⊗ Y m2

l2

∥∥∥∥2

H1(R3×R3)

= ‖g‖2
H1(Ω) + l1(l1 + 1)

∥∥∥∥ gr1

∥∥∥∥2

L2(Ω)

+ l2(l2 + 1)

∥∥∥∥ gr2

∥∥∥∥2

L2(Ω)

≤ (1 + 4l1(l1 + 1) + 4l2(l2 + 1))‖g‖2
H1 ,
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yielding

‖eα(|r1|+|r2|)ψ‖H1(R3×R3) ≤ (1 + 4l1(l1 + 1) + 4l2(l2 + 1))1/2‖eα(r1+r2)T‖H1(Ω)

≤ Cα(1 + 4l1(l1 + 1) + 4l2(l2 + 1))1/2‖eη(|r1|+|r2|)F‖L2(Ω).

Lastly, since Hl1,l2 is a real operator in the sense that Hl1,l2φ = Hl1,l2φ for all
φ ∈ D(Hl1,l2), it is obvious that T is real-valued, whenever f is.

4.4.2 Proof of Lemma 4.1 and Theorem 4.4

We have seen in the previous section that for each (α, F ) ∈ R×L2(R3×R3), (4.59)
has a unique solution (µ, ψ) in R×H2(R3 × R3). For n = 1, we have

(H0 − λ0)φ1 = −C1φ0,
〈
φ0, φ1

〉
= 0,

and it is clear that (C1, φ1) = (0, 0) is a solution, hence the solution, to this system.
Likewise, for n = 2, we have

(H0 − λ0)φ2 = −C1φ1 − C2φ0 = −C2φ2,
〈
φ0, φ2

〉
= −1

2

〈
φ1, φ1

〉
= 0,

so that (C2, φ2) = (0, 0). To prove that the Rayleigh–Schrödinger triangular system
(4.9)-(4.10) is well-posed and that φn is of the form (4.26), we proceed by induction
on n. It is proven in [78] that for n = 3,

φ3 =
T

(3)
(1,1)(r1, r2)

r1r2

1∑
m=−1

α
(3)
(1,1,m)Y

m
1 (θ1, φ1)Y −m1 (θ2, φ2),

with α
(3)
(1,1,m) = −πGc(1, 1,m) and ‖T (3)

(1,1)(r1, r2)eη
3
1,1(r1+r2)‖H1(Ω) =: C3

1,1 < ∞. Let

L3 = {(1, 1)} and assume that for some n ≥ 3 the following recursion hypotheses
are satisfied (this is the case for n = 3): for all 3 ≤ k ≤ n,

φk =
∑

(l1,l2)∈Lk

1

r1r2

 min(l1,l2)∑
m=−min(l1,l2)

T
(k)
(l1,l2,m)(r1, r2)Y m

l1
(θ1, φ1)Y −ml2

(θ2, φ2)

 , (4.66)

for some finite set Lk ⊂ N2 with cardinality Nk < ∞, where T
(k)
(l1,l2,m) is the unique

solution to (4.19) in H1(Ω) (or in H̃1(Ω) if l1 = l2 = 0) for f = f
(k)
(l1,l2,m) ∈ L2(Ω) and

that for all (l1, l2) ∈ Lk and −min(l1, l2) ≤ m ≤ min(l1, l2) there exists ηkl1,l2,m > 0
such that

‖T (k)
(l1,l2,m)(r1, r2)eη

k
l1,l2,m

(r1+r2)‖H1(Ω) =: Ck
l1,l2,m

<∞. (4.67)

From (4.14), the fact that φ1 = φ2 = 0 and the recursion hypothesis (4.66), we
obtain that for all 3 ≤ k ≤ n+ 1,

B(k)φn+1−k =
∑

l1+l2=k−1
l1,l2 6=0

∑
(l′1,l

′
2)∈Ln+1−k

min(l1,l2)∑
m=−min(l1,l2)

min(l′1,l
′
2)∑

m′=−min(l′1,l
′
2)

U
(
fm,m

′

n−k+1,l1,l′1,l2,l
′
2
⊗ Y m

l1
Y m′

l′1
⊗ Y −ml2

Y −m
′

l′2

)
, (4.68)

where
fm,m

′

j,l1,l′1,l2,l
′
2
(r1, r2) := Gc(l1, l2,m)rl11 r

l2
2 T

(j)

(l′1,l
′
2,m
′)(r1, r2).
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In addition, we have

Y m
l Y

m′

l′ =
l+l′∑

l′′=|l−l′|

ζm,m
′

l,l′,l′′Y
m+m′

l′′ where ζl,l′,l′′ = 0 if l + l′ + l′′ /∈ 2N, (4.69)

where the coefficients ζm,m
′

l,l′,l′′ ∈ R can be computed explicitly using Wigner’s 3-j
symbols [64, p. 146]:

ζm,m
′

l,l′,l′′ = (−1)m+m′

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

(
l l′ l′′

0 0 0

)(
l l′ l′′

m m′ −m−m′
)
.

This implies that

−
n+1∑
k=3

B(k)φn+1−k,−
n+1∑
k=1

Ckφn+1−k

=
∑

(l1,l2)∈Ln+1

1

r1r2

 min(l1,l2)∑
m=−min(l1,l2)

f
(n+1)
(l1,l2,m)(r1, r2)Y m

l1
(θ1, φ1)Y −ml2

(θ2, φ2)

 ,

(4.70)

for some Ln+1 ⊂ N2 with finite cardinality, where for (l1, l2) ∈ Ln+1, −min(l1, l2) ≤
m ≤ min(l1, l2),

f
(n+1)
(l1,l2,m) = −

n+1∑
k=3

[
CkT

(n−k+1)
(l1,l2,m) (r1, r2)

+
∑

m′+m′′=m

∑
l′1+l′2=k−1
l′1,l
′
2 6=0

min(l′1,l
′
2)≥|m′|

∑
(l′′1 ,l

′′
2 )∈Ln+1−k

min(l′′1 ,l
′′
2 )≥|m′′|

r
l′1
1 r

l′2
2 T

(n−k+1)

(l′′1 ,l
′′
2 ,m

′′)(r1, r2)Gc(l
′
1, l
′
2,m

′)ζm
′,m′′

l′1,l
′′
1 ,l1
ζm
′,m′′

l′2,l
′′
2 ,l2

]
,

(4.71)

is a linear combinations of the functions r
l′1
1 r

l′2
2 T

(j)

(l′′1 ,l
′′
2 ,m

′′) ∈ L2(Ω), 3 ≤ j ≤ n, l′′1 , l
′′
2 ∈

Lj, l′1 + l′2 + j ≤ n + 1, −min(l′′1 , l
′′
2) ≤ m′′ ≤ min(l′′1 , l

′′
2) and therefore satisfies in

view of (4.67)

‖f (n+1)
(l1,l2,m)(r1, r2)eξ

n+1
l1,l2,m

(r1+r2)‖H1(Ω) <∞ (4.72)

for some ξn+1
l1,l2,m

> 0. Therefore the problem consisting in seeking (Cn+1, φn+1) ∈
R×H2(R3 × R3) satisfying

(H0−λ0)φn+1 = −
n+1∑
k=3

B(k)φn+1−k,−
n+1∑
k=1

Ckφn+1−k,
〈
φ0, φn+1

〉
= −1

2

n∑
k=1

〈
φk, φn+1−k

〉
is well-posed and we deduce from Lemma 4.3 that

φn+1 :=
∑

(l1,l2)∈Ln+1

1

r1r2

 min(l1,l2)∑
m=−min(l1,l2)

T
(n+1)
(l1,l2,m)(r1, r2)Y m

l1
(θ1, φ1)Y −ml2

(θ2, φ2)

 ,

where T
(n+1)
(l1,l2,m) is the unique solution to (4.19) in H1(Ω) (or in H̃1(Ω) if l1 = l2 = 0)

for f = f
(n+1)
(l1,l2,m). In addition, it follows from (4.72) that (4.67) holds true for
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k = n + 1. Therefore, the Rayleigh–Schrödinger triangular system (4.9)-(4.10) is

well-posed and the T
(n)
(l1,l2,m)’s decay exponentially at infinity in the sense of (4.67).

From (4.66) we obtain that for αn = min (l1,l2)∈Ln
−min(l1,l2)≤m≤min(l1,l2)

(ηnl1,l2,m) > 0, we have

‖eαn(|r1|+|r2|)φn‖H1(R3×R3) ≤ Cn
∑

(l1,l2)∈Ln

min(l1,l2)∑
m=−min(l1,l2)

‖eαn(r1+r2)T
(n)
(l1,l2,m)‖H1(Ω)

≤ Cn
∑

(l1,l2)∈Ln

min(l1,l2)∑
m=−min(l1,l2)

‖eηn(l1,l2,m)
(r1+r2)

T
(n)
(l1,l2,m)‖H1(Ω) <∞,

for some Cn ∈ R+, so that φn decays exponentially at infinity in the sense of (4.28).
Lastly, we infer from Wigner’s (2n + 1) rule and the fact that φ1 = φ2 = 0, that
Cn = 0 for 1 ≤ n ≤ 5. This completes the proof of both Lemma 4.1 and Theorem 4.4.

Let us finally explain how to construct Table 4.1. We have already shown that
L3 = {(1, 1)}, and from (4.68)-(4.70) and the fact that φ1 = φ2 = 0, we see that

Ln+1 ⊂
(
n−2⋃
k=3

Mk,n+1−k

)⋃
Mn+1,0

⋃ ⋃
3≤k≤n−5 | Cn+1−k 6=0

Lk

 ,

where for k, n ≥ 3,

Mk,0 = {(l1, l2) ∈ N∗ × N∗ | l1 + l2 = k − 1} = {(1, k − 2), · · · , (k − 2, 1)},
Mk,n =

{
(l1, l2) ∈ N× N | ∃(l′1, l′2) ∈Mk,0, ∃(l′′1 , l′′2) ∈ Ln s.t.

|l′j − l′′j | ≤ lj ≤ l′j + l′′j , lj + l′j + l′′j ∈ 2N, j = 1, 2
}
.

Consequently, we have

L4 =M4,0;

L5 =M5,0;

L6 =M3,3 ∪M6,0 with M3,3 = {(0, 2; 0, 2)};
L7 =M3,4 ∪M4,3 ∪M7,0 with M3,4 =M4,3 = {(0, 2; 1, 3), (1, 3; 0, 2)};
L8 =M3,5 ∪M4,4 ∪M5,3 ∪M8,0 with

M3,5 =M5,3 = {(0, 2; 2, 4), (1, 3; 1, 3), (2, 4; 0, 2)},
M4,4 = {(0, 2; 0, 2, 4), (0, 2, 4; 0, 2), (1, 3; 1, 3)}

L9 =M3,6 ∪M4,5 ∪M5,4 ∪M6,3 ∪M9,0 ∪ L3 with

M6,3 (M3,6 = {(0, 2; 3, 5), (1, 3; 2, 4), (2, 4; 1, 3), (3, 5; 0, 2), (1, 3; 1, 3)},
M4,5 =M5,4

= {(0, 2; 1, 3, 5), (1, 3; 0, 2, 4), (2, 4; 1, 3), (1, 3; 2, 4), (0, 2, 4; 1, 3), (1, 3, 5; 0, 2)},

where we recall that (l1, l
′
1; l2, l

′
2) (resp. (l1, l

′
1; l2, l

′
2, l
′′
2), (l1, l

′
1, l
′′
1 ; l2, l

′
2)) stands for

the four (resp. six) pairs (l1, l2), (l′1, l2), (l1, l
′
2), etc. After eliminating redundancies,

we obtain Table 4.1.

4.4.3 Proof of Theorem 4.2

As in [78], we introduce the space

V =
{
v ∈ L2(R3 × R3) : v(r1, r2) = v(r2, r1) ∀r1, r2 ∈ R3

}
, (4.73)
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the functions ψ
(n)
ε ∈ V ∩H2(R3 × R3) normalized in L2(R3 × R3),

ψ(n)
ε := m(n)

ε Tε
(
φ(n)
ε

)
where φ(n)

ε := φ0+
n∑
k=3

εkφk and m(n)
ε =

∥∥Tε (φ(n)
ε

)∥∥−1

L2(R3×R3)
,

(4.74)
as well as the Rayleigh quotient

µ(n)
ε =

〈
ψ(n)
ε , Hεψ

(n)
ε

〉
(4.75)

and the approximation

λ(n)
ε = λ0 −

n∑
k=6

Cnε
n

of λε. When ε→ 0, we have Tε (φ0)→ 1 and therefore m
(n)
ε → 1. We know from [78,

Section 2.4] that there exists a constant C ∈ R+ such that for ε > 0 small enough

‖ψε − ψ(3)
ε ‖H2(R3×R3) ≤ Cε4, |λε − µ(3)

ε | ≤ Cε8, and |λε − λ(6)
ε | ≤ Cε7.

It follows from Theorem 4.4 that the φn’s are in H2(R3 × R3). Since Tε continuous
on this space, we obtain that for all n ≥ 3, there exists cn ∈ R, such that for ε > 0
small enough

‖ψε − ψ(n)
ε ‖H2(R3×R3) ≤ cnε

4.

We infer from [78, Lemma 2.2 and Appendix A] that there exists a constant C ∈ R+

such that for all n ≥ 3 there exists ε > 0 such that for all 0 < ε ≤ εn,

|λε − µ(n)
ε | ≤ C‖Hεψ

(n)
ε − µ(n)

ε ψ(n)
ε ‖2

L2(R3×R3), (4.76)

‖ψε − ψ(n)
ε ‖L2(R3×R3) ≤ C‖Hεψ

(n)
ε − µ(n)

ε ψ(n)
ε ‖L2(R3×R3) (4.77)

(the first estimate above follows from the Kato-Temple inequality [190]). To proceed

further, we need to evaluate the L2-norm of the residual r
(n)
ε := Hεψ

(n)
ε − µ(n)

ε ψ
(n)
ε .

We have

Hεψ
(n)
ε = m(n)

ε HεTε(φ(n)
ε ) = m(n)

ε Tε
[
(H0 + Vε)φ

(n)
ε )
]

= m(n)
ε Tε

[
(H0 + Vε)(φ0 +

n∑
k=3

εkφk)

]
,

and thus,

r(n)
ε = m(n)

ε Tε
[
(H0 + Vε)φ

(n)
ε − µ(n)

ε φ(n)
ε

]
= m(n)

ε Tε
[

(H0 + Vε)(φ0 +
n∑
k=3

εkφk)− (λ0 −
n∑
k=3

Ckε
k)(φ0 +

n∑
k=3

εkφk)

+ (λ(n)
ε − µ(n)

ε )φ(n)
ε

]

= m(n)
ε Tε

[(
H0 +

n∑
k=3

εkB(k)

)
(φ0 +

n∑
k=3

εkφk)− (λ0 −
n∑
k=3

Ckε
k)(φ0 +

n∑
k=3

εkφk)

+(λ(n)
ε − µ(n)

ε )φ(n)
ε + (Vε −

n∑
k=3

εkB(k))φ(n)
ε

]
.
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Using (4.9), we get

(H0 +
n∑
k=3

εkB(k))(φ0 +
n∑
k=3

εkφk)− (λ0 −
n∑
k=3

Ckε
k)(φ0 +

n∑
k=3

εkφk)

= εn
n∑
k=1

εk

(
n∑
j=k

B(j)φn+k−j +
n∑
j=k

Cjφn+k−j

)
.

(4.78)

Since B(j) are degree (j − 1) homogeneous functions (in cartesian coordinates) and
the φn’s decay exponentially in the sense of (4.28), there exists Kn ∈ R+ and εn > 0
such that for all 0 < ε ≤ εn,∥∥∥∥∥(H0 +

n∑
k=3

εkB(k))(φ0 +
n∑
k=3

εkφk)− (λ0 −
n∑
k=3

Ckε
k)(φ0 +

n∑
k=3

εkφk)

∥∥∥∥∥
L2(R3×R3)

≤ Knε
n+1.

(4.79)

It remains to bound ‖(Vε−
∑n

k=3 ε
kB(k))ψ

(n)
ε ‖L2(R3×R3). From (4.6), (4.28) and (4.74),

there exists εn > 0, αn > 0 and Mn ∈ R+ such that for all 0 < ε ≤ εn

‖eαn(|r1|+|r2|)φ(n)
ε ‖H1(R3×R3) ≤Mn.

Introducing
Ωε =

{
(r1, r2) ∈ R3 × R3 : |r1|+ |r2| < (2ε)−1

}
. (4.80)

and the potentials defined by

v(1)
ε (r1, r2) := |r1 − ε−1e|−1, v(2)

ε (r1, r2) := |r2 + ε−1e|−1, v(3)
ε (r1, r2) := |r1 − r2 − ε−1e|−1,

(4.81)

we have,

‖(Vε −
n∑
k=3

εkB(k))φ(n)
ε ‖L2(R3×R3) ≤ ‖(Vε −

n∑
k=3

εkB(k))φ(n)
ε ‖L2(Ωε) +

n∑
k=3

εk‖B(k)φ(n)
ε ‖L2(Ωcε)

+
3∑
j=1

‖v(j)
ε φ(n)

ε ‖L2(Ωcε)
+ ε‖φ(n)

ε ‖L2(Ωcε)
.

We first see that

‖φ(n)
ε ‖L2(Ωcε)

≤ e−αn(2ε)−1‖eαn(|r1|+|r2|)φ(n)
ε ‖L2(Ωcε)

≤Mne
−αn(2ε)−1

.

Next, as B(k) is a polynomial function, there exists a constant Bn such as for all
0 < ε ≤ εn,

n∑
k=3

εk‖B(k)φ(n)
ε ‖L2(Ωcε)

≤
n∑
k=3

εk‖B(k)e−αn(|r1|+|r2|)‖L∞(Ωcε)‖eαn(|r1|+|r2|)φ(n)
ε ‖L2(Ωcε)

≤Mn

n∑
k=3

εk‖B(k)e−αn(|r1|+|r2|)‖L∞(Ωcε) ≤ Bnε
3e−αn(2ε)−1

.

In addition, we have

3∑
j=1

‖v(j)
ε φ(n)

ε ‖L2(Ωcε)
≤

3∑
j=1

e−αn(2ε)−1‖v(j)
ε eαn(|r1|+|r2|)φ(n)

ε ‖L2(Ωcε)

≤
3∑
j=1

e−αn(2ε)−1‖v(j)
ε eαn(|r1|+|r2|)φ(n)

ε ‖L2(R3×R3)

≤ 8e−αn(2ε)−1‖eαn(|r1|+|r2|)φ(n)
ε ‖H1(R3×R3) = 8e−αn(2ε)−1

Mn,

140



where we have used the Hardy inequality in dimension 3

∀φ ∈ H1(R3),

∫
R3

|φ(r)|2
|r|2 dr ≤ 4

∫
R3

|∇φ(r)|2 dr

to show that for any ψ ∈ H1(R3 × R3),

‖v(j)
ε ψ‖2

L2(R3×R3) =

∫
R3

(∫
R3

|ψ(r1, r2)|2
|rj + (−1)jε−1e|2 drj

)
dr3−j

≤
∫
R3

4

(∫
R3

|∇rjψ(r1, r2)|2 drj
)
dr3−j ≤ 4‖∇rjψ‖2

L2(R3×R3),

for j = 1, 2, and

‖v(3)
ε ψ‖2

L2(R3×R3) =

∫
R3

∫
R3

|ψ(r1, r2)|2
|r1 − r2 − ε−1e|2 dr1 dr2

=
1

8

∫
R3

∫
R3

|ψ (r′1 + r′2, r
′
1 − r′2) |2

|r′2 − ε−1e|2 dr′1 dr
′
2

≤ 1

2

∫
R3

∫
R3

|(∇r1 −∇r2)ψ (r′1 + r′2, r
′
1 − r′2) |2 dr′1 dr′2

= 4‖(∇r1 −∇r2)ψ‖2
L2(R3×R3) = 8‖∇ψ‖2

L2(R3×R3).

From the multipolar expansion of Vε, we know that there exist cn ∈ R+∣∣∣∣∣Vε(r1, r2)−
n∑
i=3

εiB(i)(r1, r2)

∣∣∣∣∣ ≤ cnK
nεn+1, whenever |r1|+ |r2| ≤ K ≤ (2ε)−1.

(4.82)
Let us now show that (4.82) implies that there exists c̃n ∈ R+ such that for all
0 ≤ K ≤ (2ε)−1,

sup
|r1|+|r2|≤K

∣∣∣Vε(r1, r2)−
n∑
i=3

εiB(i)(r1, r2)
∣∣∣e−αn(|r1|+|r2|) ≤ c̃nε

n+1, (4.83)

This is immediate from (4.82) for K ≤ 1, taking c̃n = cn. Now we let K > 1. Then
(4.82) implies

sup
(K/2)≤(|r1|+|r2|)≤K

∣∣∣Vε(r1, r2)−
n∑
i=3

εiB(i)(r1, r2)
∣∣∣e−αn(|r1|+|r2|) ≤ cne

−αnK/2Knεn+1.

Applying this repeatedly for 2−jK replacing K until 2−jK < 1 yields (4.83), with

c̃n = cn sup
t≥0

tne−αnt/2.

Applying (4.83) for K = (2ε)−1 yields

‖(Vε −
n∑
k=3

εkB(k))e−αn(|r1|+|r2|)‖L∞(Ωε) ≤ c̃nε
n+1,

from which we obtain

‖(Vε −
n∑
k=3

εkB(k))φ(n)
ε ‖L2(Ωε)

≤ ‖(Vε −
n∑
k=3

εkB(k))e−αn(|r1|+|r2|)‖L∞(Ωε)‖eαn(|r1|+|r2|)φ(n)
ε ‖L2(Ωε)

≤ c̃nMnε
n+1.
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Finally, we get

‖(Vε −
n∑
k=3

εkB(k))φ(n)
ε ‖L2(R3×R3) ≤ c̃nMnε

n+1 + (8 + ε+Bnε
3)Mne

−αn(2ε)−1

, (4.84)

Together with (4.79), this proves that there exists c′′n ∈ R+ such that for all 0 < ε ≤
εn,

‖r(n)
ε ‖L2(R3×R3) = ‖Hεψ

(n)
ε − µ(n)

ε ψ(n)
ε ‖L2(R3×R3) ≤ c′′nε

n+1. (4.85)

It follows from (4.76)-(4.77) that for n ≥ 3 fixed, there exists C ∈ R+ such that for
all 0 < ε ≤ εn,

|λε − µ(n)
ε | ≤ Cε2(n+1) and ‖ψε − ψ(n)

ε ‖L2(R3×R3) ≤ Cεn+1. (4.86)

Then,

µ(n)
ε − λ(n)

ε

=
〈
ψ(n)
ε , Hεψ

(n)
ε − λ(n)

ε ψ(n)
ε

〉
= m(n)

ε

〈
ψ(n)
ε , Tε

[
(Vε −

n∑
k=3

εkB(k))φ(n)
ε + εn

n∑
k=1

εk
( n∑

j=k

B(j)φn+k−j +
n∑
j=k

Cjφn+k−j

)]〉
so that there exists a constant cn such that for 0 < ε ≤ εn,∣∣µ(n)

ε − λ(n)
ε

∣∣
≤ 2

∥∥∥∥(Vε −
n∑
k=3

εkB(k))φ(n)
ε + εn

n∑
k=1

εk
( n∑

j=k

B(j)φn+k−j +
n∑
j=k

Cjφn+k−j

)∥∥∥∥
L2(R3×R3)

≤ cnε
n+1.

The error bounds on the eigenvalue errors in (4.12) follow from (4.86) and the above
inequality.

Finally, the error ξ
(n)
ε = ψε − ψ(n)

ε , as defined in [78], satisfies

Hεξ
(n)
ε = λεψε −Hεψ

(n)
ε = λε − µ(n)

ε − r(n)
ε =: η(n)

ε .

From (4.85)-(4.86), there exists a constant cn ∈ R+ such that for all 0 < ε ≤ εn,

‖ξ(n)
ε ‖L2(R3×R3) ≤ cnε

n+1 and ‖η(n)
ε ‖L2(R3×R3) ≤ cnε

n+1.

In addition,

−1

2
∆ξ(n)

ε = −Wεξ
(n)
ε + η(n)

ε , (4.87)

where

Wε(r1, r2) := − 1

|r1 − (2ε)−1e| −
1

|r2 − (2ε)−1e| −
1

|r1 + (2ε)−1e|
− 1

|r2 + (2ε)−1e| +
1

|r1 − r2|
+ ε.

Proceeding as in [78, Section 2.4], we use the Hardy inequality in R3 and the Cauchy-
Schwarz inequality to obtain that

1

2
‖∇ξ(n)

ε ‖2
L2(R3×R3)

= 〈ξ(n)
ε ,−Wεξ

(n)
ε + η(n)

ε 〉
≤ (10‖∇ξ(n)

ε ‖L2(R3×R3) + ε‖ξ(n)
ε ‖L2(R3×R3) + ‖η(n)

ε ‖L2(R3×R3))‖ξ(n)
ε ‖L2(R3×R3),
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1

2
‖∆ξ(n)

ε ‖L2(R3×R3) = ‖ −Wεξ
(n)
ε + η(n)

ε ‖L2(R3×R3)

≤ 10‖∇ξ(n)
ε ‖L2(R3×R3) + ε‖ξ(n)

ε ‖L2(R3×R3) + ‖η(n)
ε ‖L2(R3×R3).

It follows from (4.87) that there exists a constant cn ∈ R+ such that for all 0 < ε ≤
εn, ‖∆ξ(n)

ε ‖L2(R3×R3) ≤ cnε
n+1, and thus ‖ξ(n)

ε ‖H2(R3×R3) ≤ cnε
n+1.
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Appendix C

Appendix of Chapter 4

C.1 Multipolar expansion of Vε

We start from the well-known multipolar expansion of 1
|r−Re| in terms of Legendre

polynomials

1

|r−Re| =
1

R

(
∞∑
k=0

Pk

(r · e
|r|
)( |r|

R

)k)
, for |r| < R, (C.1)

which is a straightforward consequence of the definition of Legendre polynomials via
their generating function [321]

∀ − 1 ≤ x ≤ 1,
(
1− 2xt+ t2

)−1/2
=
∞∑
k=0

Pk(x)tk, (C.2)

taking

−1 ≤ x =
r · e
|r| ≤ 1, t =

|r|
R
.

Since the Legendre polynomials are at most 1 in magnitude on the interval [−1, 1],
the sum in (C.2) converges absolutely for all |t| < 1, and∣∣∣ ∞∑

k=n

Pk(x)tk
∣∣∣ ≤ ∞∑

k=n

tk =
tn

1− t ≤ 2tn, for all |t| ≤ 1
2
.

Consequently,∣∣∣∣ 1

|r−Re| −
1

R

(
n−1∑
k=0

Pk

(r · e
|r|
)( |r|

R

)k)∣∣∣∣ ≤ 2
|r|n
Rn+1

, for all |r| ≤ R/2. (C.3)

Recalling that P0(x) = 1, P1(x) = x and

Vε(r1, r2) = − 1

|r1 − ε−1e| −
1

|r2 + ε−1e| +
1

|r1 − r2 − ε−1e| + ε.

with ε = R−1, we deduce from (C.3) that∣∣∣∣∣Vε(r1, r2)−
n∑
k=3

εkB(k)(r1, r2)

∣∣∣∣∣ ≤ 6Knεn+1, whenever |r1|+ |r2| ≤ K ≤ (2ε)−1,

(C.4)
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where the polynomial functions B(k) are given by

B(k)(r1, r2) := Pk−1

(
(r1 − r2) · e
|r1 − r2|

)
|r1 − r2|k−1 − Pk−1

(
r1 · e
|r1|

)
|r1|k−1

− Pk−1

(
−r2 · e
|r2|

)
|r2|k−1.

This proves (4.82). To derive the expression (4.14) for the B(k)’s, we first use the
identities

Pl(σ · σ′) =

(
4π

2l + 1

) l∑
m=−l

(−1)mY m
l (σ)Y m

l (σ′),

√
4π

2l + 1
Y m
l (e) = δm,0,

valid for all l ∈ N, −l ≤ m ≤ l, σ, σ′ ∈ S2 (recall that e is the unit vector of the
z-axis), and get

B(k)(r1, r2) :=

√
4π

2k − 1

(
Y 0
k−1

(
r1 − r2

|r1 − r2|

)
|r1 − r2|k−1

−Y 0
k−1

(
r1

|r1|

)
|r1|k−1 − Y 0

k−1

(
− r2

|r2|

)
|r2|k−1

)
.

We next use the addition formula [316] stating that for l ∈ N, r1, r2 ∈ R3,√
4π

2l + 1
Y 0
l

(
r1 − r2

|r1 − r2|

)
|r1 − r2|l

=
∑

l1+l2=l

min(l1,l2)∑
m=−min(l1,l2)

Gc(l1, l2,m)rl11 Y
m
l1

(
r1

|r1|

)
rl22 Y

−m
l2

(
r2

|r2|

)
,

where

Gc(l1, l2,m) = (−1)l2
4π

((2l1 + 1)(2l2 + 1))1/2

(
l1 + l2
l1 +m

)1/2(
l1 + l2
l1 −m

)1/2

,

= (−1)l2
4π(l1 + l2)!

((2l1 + 1)(2l2 + 1)(l1 +m)!(l2 +m)!(l1 −m)!(l2 −m)!)1/2
.

As for Gc(l, 0, 0) = Gc(0, l, 0) = 4π
(2l+1)1/2

and Y 0
0 = 1√

4π
, we finally obtain (4.14).

C.2 Wigner (2n + 1) rule

Using the notation in (4.74), we consider the Rayleigh quotients

µ(n)
ε = 〈ψ(n)

ε , Hεψ
(n)
ε 〉 and µ̃(n)

ε =

〈
φ

(n)
ε ,
(
H0 +

∑2n+1
i=3 εiB(i)

)
φ

(n)
ε

〉
‖φ(n)

ε ‖2
L2(R3×R3)

(recall that ‖ψ(n)
ε ‖L2(R3×R3) = 1). Let

η(n)
ε := (H0 + Vε)φ

(n)
ε , υ(n)

ε := (Vε −
2n+1∑
i=3

εiB(i))φ(n)
ε and ξ(n)

ε := (T ∗ε Tε − 1)φ(n)
ε .
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We deduce from the boundedness of the φn’s in H2(R3 × R3), the Hardy inequality
in R3, and the estimates (4.28) and (4.82), that there exist C ∈ R+, βn > 0 and
εn > 0 such that for all 0 ≤ ε ≤ εn

‖φ(n)
ε ‖L2(R3×R3) ≤ 2, ‖η(n)

ε ‖L2(R3×R3) ≤ C,

‖υ(n)
ε ‖L2(R3×R3) ≤ Cε2n+2, ‖ξ(n)

ε ‖L2(R3×R3) ≤ Ce−βnε,

proceeding as in the proof of (4.84) to establish the third inequality. It follows from
(4.12) and the above bounds that

µ̃(n)
ε = λε + µ̃(n)

ε − µ(n)
ε +O(ε2n+2)

= λε +

〈
φ

(n)
ε ,
(
H0 +

∑2n+1
i=3 εiB(i)

)
φ

(n)
ε

〉
‖φ(n)

ε ‖2
L2(R3×R3)

−
〈
T ∗ε Tεφ(n)

ε , (H0 + Vε)φ
(n)
ε

〉〈
T ∗ε Tεφ(n)

ε , φ
(n)
ε

〉 +O(ε2n+2)

= λε −
〈
φ

(n)
ε , υ

(n)
ε

〉〈
φ

(n)
ε , φ

(n)
ε

〉 +

〈
ξ

(n)
ε , η

(n)
ε

〉
−
〈
ξ

(n)
ε , φ

(n)
ε

〉〈
φ

(n)
ε , η

(n)
ε

〉〈
φ

(n)
ε , φ

(n)
ε

〉
+
〈
ξ

(n)
ε , φ

(n)
ε

〉 +O(ε2n+2)

= λε +O(ε2n+2) = −1−
2n+1∑
k=6

Ckε
k +O(ε2n+2).

Thus, the coefficients Ck for k ≤ 2n+1 can be computed from the Taylor expansion
of µ̃

(n)
ε up to order (2n+1), which only involves the φk’s for k ≤ n, and the B(k)’s for

k ≤ (2n+ 1). To obtain a computable expression of the coefficients C2n and C2n+1,
we first use Equation (4.9), which can be rewritten as

H0φk +
k∑
j=3

B(j)φk−j = −C0φk −
k∑
j=6

Cjφk−j = −
k∑
j=0

Cjφk−j, (C.5)

with C0 = 1 and Ci = 0 for i = 1, ..., 5, to get that for all n ≥ 1

ν(n)
ε : =

〈
φ(n)
ε ,

(
H0 +

2n+1∑
i=3

εiB(i)

)
φ(n)
ε

〉
= −

n∑
l=0

εl
l∑

i=0

〈
φi,

l−i∑
j=0

Cjφl−i−j
〉

+ εn
n∑
l=1

εl

(
−

n∑
i=l

〈
φi,

n+l−i∑
j=0

Cjφn+l−i−j
〉

+
l−1∑
i=0

〈
φi,

n∑
j=0

B(n+l−i−j)φj
〉)

+ ε2n+1

n∑
i=0

〈
φi,

n∑
j=0

B(2n+1−i−j)φj
〉

+O(ε2n+2).

(C.6)

In addition, we have

‖φ(n)
ε ‖2 =

〈 n∑
i=0

εiφi,
n∑
i=0

εiφj
〉

= 1 +
n∑
k=1

εk
k∑
i=0

〈
φi, φk−i

〉
+ εn

n∑
k=1

εk
n∑
i=k

〈
φi, φn+k−i

〉
,

and, using the relation
∑k

i=0

〈
φi, φk−i

〉
= 0 derived from (4.10), we get

‖φ(n)
ε ‖2 = 1 + εn

n∑
k=1

εk
n∑
i=k

〈
φi, φn+k−i

〉
. (C.7)

It follows from (C.6)-(C.7) that

µ̃(n)
ε =

ν
(n)
ε

‖φ(n)
ε ‖2

= −
2n+1∑
k=0

Ckε
k +O(ε2n+2),
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with

C2n =
〈
φn,

n∑
j=0

Cjφn−j
〉
−

n−1∑
i=0

〈
φi,

n∑
j=0

B(2n−i−j)φj
〉

−
n∑
k=1

(
n∑
i=k

〈
φi, φn+k−i

〉) n−k∑
i=0

〈
φi,

n−k−i∑
j=0

Cjφn−k−i−j
〉
,

and

C2n+1 = −
n∑
k=1

(
n∑
i=k

〈
φi, φn+k−i

〉) n+1−k∑
i=0

〈
φi,

n+1−k−i∑
j=0

Cjφn+1−k−i−j
〉

−
n∑
i=0

〈
φi,

n∑
j=0

B(2n+1−i−j)φj
〉
.

C.3 Computation of the integrals Sn in (4.57)

Recall that

Sn =

∫ +∞

0

r3e−rϕn,1(r)dr,

where

ϕn,1 =

√(
2

n

)3
(n− 2)!

2n(n+ 1)!

(
2r

n

)
L

(3)
n−2

(
2r

n

)
e−r/n,

where the associated Laguerre polynomials of the second kind L
(m)
n , n,m ∈ N, satisfy

the following properties [1, Section 22.2]:

• for all k, k′,m ∈ N,∫ ∞
0

xmL
(m)
k (x)L

(m)
k′ (x)e−x dx =

(k +m)!

k!
δk,k′ ; (C.8)

• for all γ ∈ C such that <(γ) > −1
2
, and m ∈ N,

e−γx =
+∞∑
k=0

γk

(1 + γ)k+m+1
L

(m)
k (x); (C.9)

• for all k,m ∈ N,

xL
(m+1)
k (x) = (k +m+ 1)L

(m)
k (x)− (k + 1)L

(m)
k+1(x). (C.10)

By a change of variable, we obtain

Sn =
n2

8

√
(n− 2)!

(n+ 1)!
In with In :=

∫ +∞

0

x4L
(3)
n−2e

−n−1
2
xe−x dx.
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Applying (C.9) for γ = n−1
2

and m = 4, then (C.10) for m = 3, and finally (C.8) for
m = 3, we obtain

In =

∫ +∞

0

x4L
(3)
n−2

(
+∞∑
k=0

25(n− 1)k

(n+ 1)k+5
L

(4)
k (x)

)
e−x dx

=

∫ +∞

0

x3L
(3)
n−2

(
+∞∑
k=0

25(n− 1)k

(n+ 1)k+5

(
(k + 4)L

(3)
k (x)− (k + 1)L

(3)
k+1(x)

))
e−x dx

=
+∞∑
k=0

25(n− 1)k

(n+ 1)k+5

(
(k + 4)

(k + 3)!

k!
δk,n−2 − (k + 1)

(k + 4)!

(k + 1)!
δk+1,n−2

)
=

25(n− 1)n−2

(n+ 1)n+3
(n+ 2)

(n+ 1)!

(n− 2)!
− 25(n− 1)n−3

(n+ 1)n+2
(n− 2)

(n+ 1)!

(n− 2)!

=
26n(n− 1)n−3

(n+ 1)n+3

(n+ 1)!

(n− 2)!
.

Finally, we get

Sn = 8n3 (n− 1)n−3

(n+ 1)n+3

√
(n+ 1)!

(n− 2)!
.
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Zürich. Birkhäuser Verlag, Basel, 2005.

151



[13] Ioannis Anapolitanos. On van der Waals forces. PhD thesis, University of
Toronto, 2011.

[14] Ioannis Anapolitanos. Remainder estimates for the long range behavior of
the van der waals interaction energy. In Annales Henri Poincaré, volume 17,
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[30] Mathias Beiglböck, Christian Léonard, and Walter Schachermayer. A general
duality theorem for the Monge-Kantorovich transport problem. Studia Math.,
209(2):151–167, 2012.
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theory and optimal transportation with coulomb cost. Communications on
Pure and Applied Mathematics, 66(4):548–599, 2013.

[107] Codina Cotar, Gero Friesecke, and Claudia Klüppelberg. Smoothing of
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[256] André Mirtschink, CJ Umrigar, John D Morgan III, and Paola Gori-Giorgi.
Energy density functionals from the strong-coupling limit applied to the anions
of the he isoelectronic series. The Journal of chemical physics, 140(18):18A532,
2014.

[257] James Mitroy and Michael WJ Bromley. Higher-order Cn dispersion coeffi-
cients for hydrogen. Physical Review A, 71(3):032709, 2005.

[258] Abbas Moameni. Multi-marginal Monge-Kantorovich transport problems: a
characterization of solutions. C. R. Math. Acad. Sci. Paris, 352(12):993–998,
2014.

[259] Abbas Moameni and Brendan Pass. Solutions to multi-marginal optimal trans-
port problems concentrated on several graphs. ESAIM Control Optim. Calc.
Var., 23(2):551–567, 2017.
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[305] Thibault Séjourné, Jean Feydy, François-Xavier Vialard, Alain Trouvé, and
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Résumé : Le transport optimal (TO) a de nombreuses applications; mais son
approximation numérique est complexe en pratique. Nous étudions une relaxation
du TO pour laquelle les contraintes marginales sont remplacées par des contraintes
de moments (TOCM), et montrons la convergence de ce dernier vers le problème OT.
Le théorème de Tchakaloff nous permet de montrer qu’un minimiseur du problème
TOCM est une mesure discrète chargeant un nombre fini de points, qui, pour les
problèmes multimarginaux, est linéaire en le nombre de marginales, ce qui permet de
contourner le fléau de la dimension. Cette méthode est aussi adaptée aux problèmes
de TO martingale. Dans certains cas importants en pratique, nous obtenons des
vitesses de convergence en O(1/N) ou O(1/N2), où N est le nombre de moments,
ce qui illustre leur rôle.

Nous présentons un algorithme, basé sur un processus de Langevin sur-amorti
contraint, pour résoudre le problème TOCM. Nous prouvons que tout minimiseur
local du problème TOCM en est un minimiseur global. Et illustrons l’algorithme
sur des exemples de larges problèmes TOCM symétriques.

Dans la seconde partie de la thèse, nous étendons une méthode (E. Cancès et
L.R. Scott, SIAM J. Math. Anal., 50, 2018, 381–410) pour calculer un nombre
arbitraire de termes dans la série asymptotique de l’interaction de van der Waals
entre deux atomes d’hydrogène. Ces termes sont obtenus en résolvant un ensemble
d’EDP de Slater–Kirkwood modifiées. La précision de cette méthode est montrée
par des exemples numériques et une comparaison avec d’autres méthodes issues de
la littérature. Nous montrons aussi que les états de diffusion de l’atome d’hydrogène
ont une contribution majeure au coefficient C6 de la série de van der Waals.

Abstract: Optimal Transport (OT) problems arise in numerous applications. Nu-
merical approximation of these problems is a practical challenging issue. We inves-
tigate a relaxation of OT problems when marginal constraints are replaced by some
moment constraints (MCOT problem), and show the convergence of the latter to-
wards the former. Using Tchakaloff’s theorem, we show that the MCOT problem is
achieved by a finite discrete measure. For multimarginal OT problems, the number
of points weighted by this measure scales linearly with the number of marginal laws,
which allows to bypass the curse of dimension. This method is also relevant for
Martingale OT problems. In some fundamental cases, we get rates of convergence
in O(1/N) or O(1/N2) where N is the number of moments, which illustrates the
role of the moment functions.

We design a numerical method, built upon constrained overdamped Langevin
processes, to solve MCOT problems; and proved that any local minimizer to the
MCOT problem is a global one. We provide numerical examples for large symmet-
rical multimarginal MCOT problems.

We extend a method (E. Cancès and L.R. Scott, SIAM J. Math. Anal., 50, 2018,
381–410) to compute more terms in the asymptotic expansion of the van der Waals
attraction between two hydrogen atoms. These terms are obtained by solving a set
of modified Slater–Kirkwood PDE’s. The accuracy of the method is demonstrated
by numerical simulations and comparison with other methods from the literature.
We also show that the scattering states of the hydrogen atom (the ones associated
with the continuous spectrum of the Hamiltonian) have a major contribution to the
C6 coefficient of the van der Waals expansion.
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