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Résumé 
 

L'évaluation des pratiques agricoles est devenue un enjeu majeur en raison des préoccupations croissantes 
concernant la sécurité alimentaire mondiale et les effets négatifs de l'agriculture sur l'environnement. La 
méta-analyse est devenue une approche standard pour de telles évaluations basées sur des données 
expérimentales collectées à partir de travaux publiés. Elle fournit des informations synthétiques précieuses 
aux scientifiques et aux décideurs politiques sur la base de l'estimation de la taille d’effet moyen. Cependant, 
résumer de grandes quantités d'informations par une seule valeur d'effet moyen n'est pas toujours 
satisfaisant, en particulier lorsque nous considérons les pratiques agricoles et leurs impacts sur les 
rendements des cultures. Ces impacts varient considérablement en fonction d'un certain nombre de facteurs, 
notamment les propriétés du sol et les conditions climatiques locales. Nous présentons ici une Machine 
Learning Pipeline qui produit des cartes mondiales alimentées par des données décrivant la distribution 
spatiale de la productivité des pratiques agricoles. Notre approche couvre la sélection et la comparaison 
d'algorithmes issus du Machine Learning (ML), la formation du modèle, le réglage avec validation croisée, 
les tests et la projection globale des résultats. Nous démontrons sa pertinence à l'aide d'un jeu de données 
mondial que nous avons réalisé et qui compare les rendements des systèmes d'agriculture de conservation 
(CA) et de la technique culturale sans labour (NT) par rapport au travail du sol conventionnel (CT) avec un 
large éventail d'espèces de cultures, de pratiques agricoles, de caractéristiques du sol et de conditions 
climatiques pendant la saison de croissance des cultures. Cet ensemble de données contient 4403 
observations de rendement appariées entre 1980 et 2017 pour huit cultures de base majeures dans 50 pays. 
Ces données ont été collectées à partir de 413 articles publiés que nous avons identifiés par le biais d’une 
étude bibliographique et de la sélection d’articles. L'analyse de cet ensemble de données nous aide à mieux 
comprendre les principaux facteurs expliquant la variabilité de la productivité des CA et NT, et les 
conséquences de leur adoption sur le rendement des cultures. 

Grâce à ce Machine Learning Pipeline, divers modèles de classification, de régression et de régression 
quantile sont développés sur la base de 12 algorithmes ML couramment utilisés. Après avoir été testés, les 
modèles les plus précis sont utilisés pour cartographier la productivité des cultures de la CA et de ses 
variantes par rapport au CT à l'échelle mondiale dans différentes pratiques agricoles et conditions 
climatiques dans les scénarios passé (1981-2010), actuel (2011-2020) et futur (2051-2060). Les variations 
de la productivité de la CA et de la NT dans les régions géographiques et climatiques selon les scénarios 
climatiques passé, actuel et futur ont été illustrées sur des cartes mondiales. 

Nous identifions de grandes différences dans la probabilité de gains de rendement avec la CA entre les 
types de cultures, les pratiques agricoles, les zones climatiques et les régions géographiques. Nous montrons 
que les résidus de culture ont l’impact positif le plus fort sur la performance productive des systèmes de la 
CA et de la NT par rapport aux autres pratiques agricoles. Nos résultats montrent également que pour la 
plupart des cultures, la CA a donné de meilleurs résultats dans les régions continentales, sèches et tempérées 
que dans les régions tropicales. Dans les conditions climatiques futures, les performances de la CA 
devraient surtout augmenter pour le maïs par rapport aux zones tropicales, améliorant ainsi la compétitivité 
de la CA pour cette culture. Nous montrons également que la CA a de meilleures performances productives 
que la NT, et qu'elle a plus de 50% de chances de surpasser le CT dans les régions sèches du monde, en 
particulier avec des pratiques agricoles appropriées. En conclusion, la CA apparaît comme une pratique 
agricole durable si elle est ciblée sur des régions climatiques et des espèces de cultures spécifiques.  





 

 

Abstract 
 

Assessing agricultural practices has become a major issue due to growing concerns about global food 
security and the negative effects of agriculture on the environment. Meta-analysis has become a standard 
approach for such assessments based on experimental data collected from the published works. It provides 
valuable synthetic information to scientists and policy makers based on mean effect size estimation. 
However, summarizing large amounts of information by way of a single mean effect value is not always 
satisfactory, especially when considering agricultural practices and their impacts on crop yields. These 
impacts vary widely depending on a number of factors, including soil properties and local climate 
conditions. Here, we present a machine learning (ML) pipeline that produces data-driven global maps 
describing the spatial distribution of the productivity of farming practices. Our approach covers the 
selection and comparison of ML algorithms, model training, tuning with cross-validation, testing, and 
results global projection. We demonstrate its relevance using a global dataset we conducted which 
comparing the crop yields of conservation agriculture systems (CA) and no tillage systems (NT) vs. 
conventional tillage systems (CT) with a wide range of crop species, farming practices, soil characteristics 
and climate conditions over the crop growing season. This dataset contains 4403 paired yield observations 
between 1980 and 2017 for eight major staple crops in 50 countries. Analyzing this dataset can help us gain 
insight into the main drivers that can explain the variability of the productivity of CA and NT vs. CT and 
the consequence of their adoption on crop yields. 

Through this ML pipeline, various models for classification, regression and quantile regression are trained 
based on 12 mainstream ML algorithms. And through the model tuning and model testing, the most accurate 
models are selected and used to map the crop productivity of CA and NT vs. CT at the global scale under 
different farming practices and under the past (1981-2010), current (2011-2020) and future (2051-2060) 
climate conditions. The variations in the productivity of CA and NT vs. CT with different farming practices, 
and across geographical and climatical regions under the past, current and future climate scenarios were 
illustrated on the global maps. 

We reveal large differences in the probability of yield gains with CA and NT across crop types, agricultural 
management practices, climate zones, and geographical regions. We show for most crops, CA performed 
better in continental, dry and temperate regions than tropical ones. While under future climate conditions, 
the performance of CA is expected to mostly increase for maize over its tropical areas, improving the 
competitiveness of CA for this staple crop. Here we also show that CA has better productive performance 
than NT, and it stands a more than 50% chance to outperform CT in dryer regions of the world, especially 
with proper agricultural management practices. In conclusion, CA appears as a sustainable agricultural 
practice if targeted at specific climatic regions and crop species.  
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by the mean decrease in accuracy in ‘cforest’ model. Where ‘PB’ indicates precipitation balance over crop 
growing season; ‘Tmax’ indicates maximum temperature over crop growing season; ’Tave’ indicates 
average temperature over crop growing season; ‘Tmin’ indicates minimum temperature over crop growing 
season;  ‘Crop’ indicates the crop species; ’ST’ indicates soil texture; ‘SCNT’ indicates soil cover 
management under the variants of no tillage systems; ‘SCCT’ indicates soil cover management under CT 
systems; ‘RNT’ indicates crop rotation management under the variants of no tillage systems; ‘RCT’ 
indicates crop rotation management under CT systems; ‘FNT’ indicates management of crop fertilization 
under the variants of no tillage systems; ‘FCT’ indicates crop management of crop fertilization under CT 
systems; ‘WDNT’ indicates management of weed and pest control under the variants of no tillage systems; 
‘WDCT’ indicates crop management of weed and pest control under CT systems. ................................ 101 
Extended data figure 3  | The accumulated fraction of the cropping area in different level of change 
on the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) under different crops, 
climate models and RCP scenarios. The accumulated fraction of the cropping area in different level of 
change on the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) for different crops, 
climate models and RCP scenarios. The results are based on the average climate data in different RCP 
scenarios (RCP2.6, RCP 4.5, RCP 6.0, RCP8.5) in Ipsl-cm5a-lr model, and RCP 4.5 scenario in different 
climate models (Ipsl-cm5a-lr, Gfdl-esm2m, Hadgem2-es, Miroc5) for both current (2021-2020) and future 
(2051-2060) scenarios. .............................................................................................................................. 102 
Extended data figure 4 | Distributions of experiment site for each crop. This map and the corresponding 
dataset are presented in ref. 11, 42. This figure was generated by MATLAB R2020a (Version 9.8.0.1451342, 
https://fr.mathworks.com/products/matlab.html ). In this meta-dataset11, 4403 paired yield observations 
were extracted from NT and CT for 8 major crop species, including 370 observations for barley (232 
observations for spring barley and 138 for winter barley), 94 observations for cotton, 1690 observations for 
maize, 195 observation for rice, 160 observations for sorghum, 583 observations for soybean, 61 
observations for sunflower, 1250 observations for wheat (1041 observations for winter wheat and 209 
observations for spring wheat) in 50 countries from 1980 to 2017. ......................................................... 105 
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Chapter 1 General introduction 
1.1 Climate change and agriculture 
The world is facing increasing challenges under climate change 1. The global temperature has increased 
around 1 degree above pre-industrial levels due to human activities (Figure 1.1) and is likely to reach 1.5 
degree between 2030 and 2052 at current increasing rate 2 . The impact of climate change is multi-sectoral 
1. Evidences have shown an increase in the frequency and intensity of weather extremes, such as extreme 
heat waves, heavy precipitations, and droughts 2. The increasing warming also accelerates sea level rise and 
associated risks to the habitants and ecological systems in coastal areas 2 (Figure 1.2). The warming 
temperature also leads to the species loss and extinction, which decreases the biodiversity and resilience of 
ecosystem to climate change 2.  

 

Figure 1.1 | Evolution of land surface air temperature (LSAT) and global mean surface temperature 
(GMST) over the period of instrumental observations (IPCC 2019 3). 

Scientists attribute the observed global warming trend since mid of 20th century to anthropogenic 
greenhouse gases (GHGs) emission 4. Those emissions will also largely determine the level of global 
warming by the late 21st century or even beyond. As one of the main contributors to GHGs emission 3, 
agriculture, along with forestry and other land uses (AFOLU), contributes 23% of total anthropogenic 
emissions of CO2, CH4 and N2O in the year between 2007 and 2016 3. It is also a net source of CH4 and 
N2O 3. In 2010, the total non-CO2 GHGs emitted from agriculture sectors is around 5.2-5.8 gigatons (Gt) 
of CO2 equivalent, making up 10-12% of global anthropogenic emissions of GHGs 5–7. In the meanwhile, 
agriculture also plays an important role in atmosphere CO2 removal. It is reported that 11.2 ± 2.5 GtCO2 
yr-1 was removed through managed and unmanaged land 3. Thus, a range of adjustments in farming 
practices, such as using green fertilizer, reducing fossil fuel usage with no tillage, etc. can be undertaken to 
reduce the GHG emission from agricultural systems and mitigate climate change. 

Agriculture is also vulnerable to climate change8, actions need to be taken to increase the resilience of 
agriculture to climate change in order to ensure a stable global food supply. The changing climate pattern 
(Figure 1.3) is and will continue affecting the productivity and yield stability dramatically in some regions 
by decreasing availability of water resources, flooding, heat waves, etc. It will increase local and global 
food insecurity and force farmers to adjust the agronomic practices with current crop types or switch to 
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different crop types 8–10. It has been estimated that climate change already decreased the global yield of 
maize and wheat 11, however, there is still a wide gap in the understanding of its impacts related to food and 
resources, especially at the regional level. Thus, it is necessary and urgent to design or exam the “climate-
smart” agriculture systems to adapt climate change and ensure the food security.   

 

Figure 1.2 | Regional sea level change for RCP2.6, RCP4.5 and RCP8.5 in meters as used in this 
report for extreme sea level (ESL) events. The left column is for the time slice 2046–2065 and the right 
column for 2081–2100 (IPCC 2019 12). 
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Figure 1.3 | Projected changes in mean temperature (top) and mean precipitation (bottom) at 1.5°C 
(left) and 2°C (middle) of global warming compared to the pre-industrial period (1861–1880), and 
the difference between 1.5°C and 2°C of global warming (right) (IPCC 2018 13). 

1.2 Food security 
The world population is expected to increase to 9.7 billion in 2050 14, ensuring a stable food supply for 
global population would be a great challenge especially under the climate-related risks. Food security is 
fundamental to human existence and is one of the essential elements for global security and stability, 
economic growth, and poverty reduction 15. But our ability to increase the production in current agricultural 
systems is limited by land degradation, water scarcity, the increasing climate variability, and more and more 
frequent extreme events associated with climate change 16. 

Observed climate change already negatively affected the food systems and food security 17. Food production, 
prices, and stability (Figure 1.4) are affected by the changing climate, which increases the pressure on food 
resources, and makes millions of people, especially in underdeveloped countries, more vulnerable to hunger 
18. Thus, adaptation measures must be taken to reduce negative impacts of climate change on the food 
system and ecosystems, and to boost the existing agricultural systems a higher productivity with greater 
sustainability. 

 

 

Figure 1. 4 | Interlinkages between the climate system, food system, ecosystems (land, water, and 
oceans) and socio-economic system (IPCC 2019 17). 

1.3 Climate change mitigation and adaptation measures 
Continuing high level of GHGs emission will lead to further warming and climate changes, it will increase 
the likelihood of severe and irreversible impacts on human and ecosystems. Mitigating climate change and 
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reducing climate-related risks are imminent. There are multiple mitigation pathways (e.g., Table 1.1), such 
as Representative Concentration Pathways (RCPs) and shared socioeconomic pathways (SSPs), that are 
likely to limit warming to below 2°C relative to pre-industrial levels with a substantial reduction in GHGs 
emissions over the next few decades 19.  

Table 1. 1 | World population and temperature rise (relative to the pre-industrial baseline) projected 
by different demographic and climate scenarios around the year 2070 20. The RCPs was combined with 
the SSPs to simulate the emission scenarios with socioeconomic assumptions. 

Shared Socio-
economic 

Pathways (SSPs) 

World 
population 

growth 
[billion] 

World 
population 

[billion] 

Climate scenarios 

RCP 2.6 RCP 4.5 RCP 8.5 

Zero growth 0 7.26 1.06 ± 0.30 1.62 ± 0.42 2.37 ± 0.43 
SSP1 0.98 8.24 1.20 ± 0.34 1.84 ± 0.48 2.69 ± 0.49 
SSP2 2.20 9.46 1.38 ± 0.39 2.12 ± 0.55 3.09 ± 0.56 
SSP3 3.88 11.14 1.63 ± 0.46 2.49 ± 0.65 3.64 ± 0.66 
SSP4 2.20 9.46 1.38 ± 0.39 2.12 ± 0.55 3.09 ± 0.56 
SSP5 1.21 8.47 1.24 ± 0.35 1.89 ± 0.49 2.76 ± 0.50 

 

Anthropogenic GHGs emissions are mainly from energy, building, transportation, industry, and AFOLU 7. 
To reduce the GHGs emissions from those sectors, a lot of mitigation measures can be implemented, and 
some examples are listed here (Table 1.2). In energy sector, thermal energy could be replaced by renewable 
energy, nuclear energy, or bioenergy with carbon capture and storage (BECCS). In transportation, fossil 
fuel can be replaced with low-carbon fuels (e.g., electricity) and eco-driving should be promoted. In 
buildings, energy efficiency can be considered and integrated in building design and construction stage. In 
industry, green energy can be used in the production; Flue gas, wastewater and other emission should be 
strictly controlled. As for AFOLU, afforestation, reforestation, biochar, etc. should be implemented to 
increase the carbon pools. 

As for climate change adaption measures, it refers to the actions that can be taken to manage the risks or 
reduce the negative impacts of climate change7. Depending on the local condition, it often consists of 
vulnerability reduction, disaster risk management or proactive adaptation planning. There are limitations 
on its effectiveness, especially with greater magnitudes of climate change. Thus, climate adaptation and 
mitigation should be integrated in planning and decision-making stage to create climate-resilient pathways 
for sustainable development. 
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Table 1. 2 | Sectoral CO2 emission and examples for sectoral mitigation measures 7.  
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1.4 Land-based mitigation and adaptation measures 
Land plays a key role as both a source and a sink of GHGs and is very important in the exchange of water, 
energy, and aerosols between land and atmosphere. It is essential in human development and provides us 
key products and ecosystem services such as food, shelter and water 21. Land-based mitigation and 
adaptation measures refers to the mitigation and adaptation measures related to land use management. It 
also often associated with improving the land degradation and food security. Sustainable land management 
can reduce the negative impacts of climate change and provide a healthier and more sustainable local 
ecosystems 7. 

The IPCC special report on land 2 outlines several land-based mitigation measures with large potentials on 
carbon sequestration: reforestation and forest restoration, afforestation, agroforestry, conservation 
agriculture (CA), BECCS, and biochar. All these measures enhance the carbon sink and could be 
implemented in large scale and different climate conditions.  

In this thesis, we mainly focus on CA because it often has higher amounts of soil organic carbon (SOC) 
comparing with conventional tillage system, especially in the topsoil profile, while it can also sustain the 
crop long-term productivity and ensure the food stability and food security 16,22. 

 

1.5 Conservation agriculture as a land-based mitigation and adaption measure 
1.5.1 Introduction to conventional tillage system and conservation agriculture 
Conventional tillage-based intensive agricultural systems (CT) damage the soil structure, expose the soil to 
the wind and rain, and have caused the soil erosion, loss of biodiversity, water table decreasing, and high 
energy consumption 23. Large areas of agricultural land were abandoned over recent decades due to the land 
degradation and nutrient loss and created dysfunctional and degraded ecosystems. CT systems also have 
negative impacts on food production in a long run, and often have poor resilience to climate change. To 
ensure a sustainable production and ecosystem services of agricultural systems, CA was promoted to 
address those issues 24. 

 

Figure 1. 5 | Three principles of conservation agriculture 25. 
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Based on the definition of 26 (FAO), CA refers to a sustainable farming system that promotes minimum soil 
disturbance, in practical terms, farmers grow crops with no-tillage (NT); Maintains a permanent soil cover 
by crop residues or cover crops with a covered rate at least 30%; Diversifies crop species (Figure 1.5). It is 
often reported that decreasing the soil disturbance from tillage can improve soil structure, reduce soil 
erosion, and potentially decrease the SOC loss 16,23,27. Without machinery tillage practice, CA systems can 
have one quarter to one half lower energy consumption and lower CO2 emissions comparing with CT 
systems 28. The greater amount of residue retained on the bare soil indicates a greater amount of soil organic 
matter (SOM) input, which can potentially lead to greater SOC storage and better soil health 16. Those soil 
covers also protect the soil surface from wind and raindrops, decrease the soil erosion 27,29. Moreover, soil 
cover can also prevent the evaporation of soil water and increase the ability of soil water storage 30, which 
can potentially increase the crop production in dry regions. However, in some situations CA can still lead 
to a reduction in plant growth due to a lower soil temperature, weed and pest pressure from soil cover 16,31. 
As for crop rotation, it is often associated with the improvement in diversity of both fungal and bacterial 
populations 32–35. Although this may vary with different crop species involved in the crop rotation, most 
microbe groups are in greater abundance in CA than in CT systems 28.  

These above-mentioned benefits from the three principles of CA increase the resilience of CA against 
extreme climate events 16, such as drought and heat waves, which makes CA as a promising agricultural 
system that can mitigate and adapt the climate change and provide a sustainable food production25,36. 
Moreover, CA also brings economic benefits with the lower fossil fuel consumption and less labour work 
25. Thus, CA has been adapted to in many regions to improve the sustainability of local cropping system. It 
is reported that CA has been implemented on more than 180Mha (Figure 1.6) that makes around 12.5% of 
total arable land37. By 2015, CA is adapted in 78 countries for different cropping species, climate conditions 
and soil characteristics, large and small farm sizes 25,37. The leading countries on CA are the US, Brazil, 
Argentina, Australia, and Canada, while in recent years, the area under CA is rapidly increasing in Asia 37, 
especially in China due to the strong supporting from the government 25. (Table 1.3) The area under CA 
varies a lot for different crop species. It is reported that 38 the crops have been mostly produced under CA 
are soybean, followed by wheat and maize. These three crops are the most important agricultural goods, 
thus, the demands to reduce the operational costs is high 38. Peas and millet contributed a litter cropland to 
CA area because they are more drought resistant 39. 
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Figure 1. 6 | Global adaption area of CA in M ha of cropland 37.  

Table 1. 3 | The adaption area (unit in M ha) of conservation agriculture in the top 10 countries in 
2008/09, 2013/13, and 2015/16 37. 

Ranking in 
2015/16 

Country CA area in 
2008/09 

CA area in 
2013/14 

CA area in 
2015/16 

1 USA 26.5 35.6 43.2 
2 Brazil 25.5 31.8 32.0 
3 Argentina 19.7 29.2 31.0 
4 Australia 12.0 17.7 22.3 
5 Canada 13.5 18.3 19.9 
6 China 1.3 6.7 9.0 
7 Paraguay 2.4 3.0 3.0 
8 Kazakhstan 1.3 2.0 2.5 
9 Bolivia 0.7 0.7 2.0 

10 Uruguay 0.7 1.1 1.3 
 

1.5.2 The productive performance of conservation agriculture and the related data availability 
The impact of CA and its variants (e.g., NT system) on crop productivity is still hotly debated 40–42. A lot 
of experiments and studies have been conducted to assess the productivity of CA and its variant systems 
vs. CT systems under different farming practices, climate conditions, etc. Those experimental data offer an 
opportunity to identify the most efficient farming practices and climate conditions that can boost the 
performance of CA and its variants based on robust scientific evidence. In this context, meta-analysis has 
become a standard method for analysing experimental agricultural data from different publications, which 
summarizing the performance of different cropping systems by estimating the mean effect size based on 
random-effect model 43.  

Several meta-analyses have been conducted to study the performance of CA and its variants vs. CT systems 
(Table 1.6). It is shown that the performance of CA and NT systems varies a lot depending on crop species 
41,42,44,45, climate conditions 41,42,44–49, and farming practices including crop rotation, residue management, 
fertilizer input, etc 41,42,47,49–51 (Table 1.6).  Compared with CT, NT without crop rotation and without soil 
cover often results in a yield loss 41,42,45–47,50,52,53 (Table 1.6). It is reported that CA and NT systems perform 
better under dryer condition 40–42,44,48,54, and it has the worst performance in tropical regions comparing with 
other regions 40,41,54 (Figure 1.7). As for the farming practices, depending on the crop species, both crop 
rotation and soil cover often boost the performance of NT systems 40–42,44,45,50,51,54 (Figure 1.8a, b). The 
success of CA system also requires the inputs of fertilizer  40,47,50,51,54, herbicide and pesticide 40,49,54. 

These studies provide valuable insight into the overall performance of CA and NT systems compared with 
CT. However, the datasets used in these studies are often at a reginal scale and only collected limited 
number of agricultural management practices. The climate conditions in these datasets were usually 
represented by the mean aridity indexes, mean annual precipitation (MAP), mean annual temperature 
(MAT), which do not represent the intra- and inter-annual variability of climate conditions. Moreover, most 
of the experimental yield data contained in the datasets were before the year 2014, which is not up to date. 
Thus, an up-to-date dataset, with a broader range of farming practices and climate conditions are needed. 

In this thesis, we produced a global dataset 55 based on the literature searching in the early 2020, which 
included the latest experimental data of crop yield of CA and its variants vs. CT, a broader range of farming 
practices, including crop residue retention and soil cover, crop species, crop rotation and its sequence, 
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information about cover crops, crop irrigation, the type and amount of fertilizer applied, information related 
to weed and pest control, the year since NT implementation), soil characteristics, and climate conditions in 
the growing season (including precipitation, potential evapotranspiration, minimum air temperature, mean 
air temperature and maximum air temperature) at the year of experiment been conducted. The new global 
dataset enables us the ability of analyse how the productive performance of CA and its variant systems vary 
with climate variables and their intra-annual variabilities, and a broader range of farming practices.  

 

Table 1. 4 | List of meta-analyses available that studied the impact of CA and its variant systems on 
crop yield 

No. Author 
Publishing 

year 
Main focused 
crop species 

Main 
focused 
regions 

Climate 
variables 
included 

Main conclusions 

1 
An Van den 
Putte et al. 46 

2010 
Maize, 
cereals 

Europe 
Seasonal 

water 
balance 

 The yield of NT < CT. 
 NT performs worse under drier 

climatic conditions. 
 On clay and sandy soils, CA and 

NT perform better under drier 
climatic conditions 

2 
Leonard 

Rusinamhodzi 
et al. 50 

2011 Maize 
Southern 
Africa, 

America 

Mean annual 
precipitation 

(MAP) 

 The yield of maize is less in NT 
without (-) rotation (R) 
compared with CT but more 
with (+) rotation (R). 

 The success of CA required 
high input of nitrogen fertilizer. 

3 
Marc 

Corbeels et al. 
51 

2014 

Maize, 
soybean, 
sorghum, 

wheat 

Sub-
Saharan 
Africa 

Three classes 
of seasonal 

rainfall (low, 
medium, 

high) 

 Yield in NT + soil cover (SC) > 
NT + R + SC > NT. 

 Potential conflicts between crop 
residue retention and the feed 
for livestock. 

 The use of fertilizer enhances 
the crop productivity in CA 
system. 

4 
Chengyan 

Zheng et al. 44 
2014 

Maize, rice, 
wheat 

China 
MAP, MAT, 
Aridity index 

 Significant positive effects 
found of CA practices under 
relative dryer regions. 

 The impact of CA on crop yield 
is highly varied for different 
climates and crop types. 

 Yield in NT + SC > CT + SC. 
 

5 
Sylvie M. 

Brouder et al. 
52 

2014 
Maize, rice, 

cowpea, 
sorghum 

Sub-
Saharan 
African, 

Asia 

NA  Short-term yield of NT < CT. 

6 
Cameron M. 
Pittelkow et 

al. 41 
2015 

Maize, wheat, 
miscellaneous 

cereals, 
Global Aridity index  Maize yield of NT < CT in 

tropical regions. 
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legumes, rice, 
cotton, etc. 

 Yield of NT > CT in arid 
regions. 

 Productive performance of NT 
is affected by crop species, 
farming practices, and climate 
conditions. 

7 
Cameron M. 
Pittelkow et 

al. 42 
2015 

Maize, wheat, 
miscellaneous 

cereals, 
legumes, rice, 

cotton, etc. 

Global Aridity index 

 Yield of NT < CT 
 Yield of NT < NT+R < NT+SC 

< NT+R+SC (CA) 
 In dry regions, yield of CA > 

CT. 
 Number of years since NT/CA 

implementation will affect their 
performance. 

8 
Xin Zhao et 

al. 45 
2017 

Maize, rice, 
soybean, 

wheat, etc. 
China MAP, MAT 

 Yield of NT < CT 
 Yield of NT+SC > CT+SC 
 Productive performance of NT 

is highly affected by crop 
species and climates. 

9 
Peter R. 

Steward et al. 
48  

2018 Maize 

Regions 
between 

the 
latitude of 
-38 to 38 
degrees 

Precipitation 
balance, Heat 

stress risk 
 

 Maize yield in CA is better 
under the increasing drought 
severity or higher temperature. 

 The performance of CA is 
affected by soil moisture and 
heat stress, and this impact is 
affected by soil clay content. 

10 
T.M. Kiran 

Kumara et al. 
47 

2019 
Maize, rice, 

wheat  
South Asia 

Climate 
types, MAP 

 Yield in NT < CT 
 Irrigation, soil cover, inputs of 

nitrogen are crucial in 
improving the performance of 
CA. 

11 
T.M. Kiran 
Kumara et 

al.56 
2020 

Maize, rice, 
wheat  

South Asia 
Climate 

types, MAP 

 Yield of wheat, maize, legumes 
and oilseeds in CA > CT, while 
yield of rice in CA < CT. 

12 
Marc 

Corbeels et al. 
49 

2020 
Maize, 

sorghum, 
wheat, etc. 

Sub-
Saharan 
Africa 

Average 
temperature 

and 
precipitation 

in the 
growing 
season 

 Yield of CA > CT 
 The best performance of CA 

occurred when the rainfall is 
low, and the herbicides are 
applied. 

13 
Awais 

Shakoor et al. 
53 

2021 
Barley, 

maize, rice, 
wheat 

Europe, 
China 

Climate 
types 

 Yield of NT > CT. 
 Yield of NT < CT in fine soil, 

while yield of NT > CT in 
coarse soil. 

 Yield of NT < CT when soil 
C:N ratio <=10, while yield of 
NT > CT when soil C:N ratio > 
10. 
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Figure 1. 7 | Yield impacts of no-till relative to conventional tillage in tropical, subtropical, and 
temperate latitudes 41. The number of observations and total number of studies included in each category 
are displayed in parentheses. Error bars represent 95% confidence intervals. Significant differences by 
latitude categories are indicated by p-values based on randomization tests. 

 

Figure 1. 8 | The influence of crop rotation and residue management practices on the yield impacts 
of no-till relative to conventional tillage for different crop categories 41. Misc. cereals include barley, 
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millet, oat, rye, sorghum, tef, and triticale. The number of observations and total number of studies included 
in each category are displayed in parentheses. Error bars represent 95% confidence intervals. Significant 
differences by crop rotation and residue management are indicated by p-values based on randomization 
tests. Note, several categories did not contain sufficient observations and were excluded from further 
analyses. n.s. = non-significant. 

1.5.3 Meta-analysis and its limitation in agricultural sector 
Meta-analysis is defined as a statistical analysis that collect the results of individual studies for the purpose 
of integrating the findings from the experiments conducted in, sometimes, very distant geographic regions 
57,58. Meta-analysis can be used to estimate the mean size of a treatment effect (e.g., with vs. without tillage) 
on a variable of interest (e.g., crop yield) 57,59 and to reveal the relationship between a response variable and 
one or more explanatory variables 57,60,61. A well-designed meta-analysis is an excellent tool to analyse such 
large experimental datasets and can highlight the correlations between studies or variables that may not be 
readily apparent. However, this approach also has several limitations 62–64. One of them is that, although 
mean effect sizes can summarize experiments conducted in contrasting conditions and estimate the average 
performance of a practice or system, they do not provide a detailed description of the variability induced 
by local conditions 65–67. This is an important limitation for its application in agricultural sectors since the 
crop yields are highly dependent on the climate conditions 41,42,68, soil characteristics 24,69,70, farming 
practices 24,40–42,71, which often vary in time and space. This makes it hard to use a meta-analysis to predict 
the crop production accurately for a given geographical region. 

In this thesis, to map the productive performance of CA and its variant systems vs. CT systems accurately 
at the global scale, and to estimate how climate variables and farming practices will affect the performance 
of CA and NT systems, we develop a machine learning pipeline (Figure 3.1) to compare different machine 
learning (ML) algorithms and use these trained ML models to predict, analyse and map the performance of 
CA and its variant systems vs. CT systems based on the farming practices, soil and climate conditions based 
on a global dataset of crop yield of CA and its variant systems vs. CT systems. This pipeline can be easily 
adapted to analyse a diverse of outcomes, these may involve the effects of crop management practices on 
soil organic carbon dynamics, greenhouse gas emissions, biodiversity, etc. for different types of cropping 
systems, such as organic agriculture or agroforestry, and thus provide valuable information on the local 
performance of sustainable farming practices together with a global perspective. The maps created from 
this ML pipeline can provide detailed geographical information about the performance of one system 
compared to a reference. 

1.5.4 Machine learning algorithm and its application in agricultural sector 
Machine learning is a very important component of data science and artificial intelligence (AI). It uses the 
data to train a ML model to uncover key insights within the data 72, and it becomes more accurate and 
effective as the increase of size of training dataset. In this thesis we will mainly use supervised learning, 
which is a branch of machine learning. It is defined by its use of labelled datasets to train models that to 
make accurate classifications or predictions. When input data is fed into the model, it adjusts the weights 
to fit the model appropriately, and tunes the model hyperparameters through cross-validation process to 
avoid overfitting or underfitting. Some methods often used in supervised learning include neural networks, 
random forest, generalized linear regression, support vector machine, etc. 73. 

In order to meet the global food demand in the future sustainably, it is very necessary for us to increase 
crop production while conserving the environment. ML technology can optimize the farming practices and 
significantly reduce the yield loss and the running cost of a farm. For example, it can be used to analyse the 
experimental data and local weather patterns to find out the most suitable crops for planting. Combining 
with the data from soil, temperature and humidity sensors, it can help us determine the exact amount of 
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irrigation, fertilizer, pesticide and herbicide needed for crops at different growing stages, which could 
minimize the resources used in agricultural activities while maximum the crop yield. Besides optimizing 
the farming practices, in agriculture sector, ML can be also used in weed and disease detection, yield 
prediction based on weather forecast, global food price prediction based on global yield prediction, which 
could help us match the crop supply with demand and manage the risk. 

In this thesis, ML is used to analyse the global crop yield data from conservation agriculture (CA) and 
conventional tillage (CT). We identified preferable and unpreferable regions and climate conditions for CA 
implementation and analysed the performance of CA and its variant systems under different farming 
practices. We also predicted the change of this performance in the future under the trend of global warming.  

 

1.6 Summary of research questions  
In this thesis, with the dataset we collected and the ML pipeline we created, we would like to address these 
questions: 

 Concerning of the method, will the machine learning pipeline give us more valuable information 
than meta-analysis? Which machine learning algorithm is more suitable to analyse the crop yield 
dataset? 

 Regarding to the performance of different farming systems, does CA performs better than NT 
systems? And can CA and NT systems outperform CT systems in terms of yield production? 

 For farming practices, how farming practices affect the productive performance of CA and NT 
systems? What should be done in order to boost the performance of CA and NT systems? 

 Regarding to the crop species, which crop species is more suitable to grow in CA and NT systems? 
 For climate conditions, how climate variables affect this performance? What condition is preferable 

for the implementation of CA and NT systems? And how this performance will change under 
climate change. 

 

1.7 Structure of the papers 
 In chapter 2, we presented a global dataset of crop yield that compares CA and NT systems vs. CT 

systems. 
 In chapter 3, we introduced a machine learning pipeline which can train, tune, test and compare 

different ML models to predict the productive performance of CA and NT systems vs. CT systems, 
and map this performance at a global map. 

 In chapter 4, we studied how this performance vary with different farming practices, assessed the 
geographical regions that preferred by CA and NT systems, and estimated the performance of CA 
and NT systems under past scenario (mean climate conditions between 1981 to 2010). 

 In chapter 5, we focused on the performance and performance change of CA and NT systems vs. 
CT systems under current scenario (mean climate conditions between 2011 to 2020) and future 
scenario (mean climate conditions between 2051 to 2060). 

 In chapter 6 and 7, we summarized our work during the thesis, discussed about the research 
questions proposed in last section, the limitations of this work and the outlooks of future study. 
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Chapter 2 A global crop yield meta-dataset of conservation agriculture vs. conventional 
tillage 
 

This chapter is published in Scientific Data, 8, 33 (2021), and can be accessed through this link 
https://doi.org/10.1038/s41597-021-00817-x. In this chapter, we presented a global dataset of crop yield of 
no tillage systems versus conventional tillage systems under different farming practices, climate conditions 
and soil characteristics.  

This dataset can be accessed through the link: https://doi.org/10.6084/m9.figshare.12155553.  
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2.1 Abstract 
No tillage (NT) is often presented as a means to grow crops with positive environmental externalities, such 
as enhanced carbon sequestration, improved soil quality, reduced soil erosion, and increased biodiversity. 
However, whether NT systems are as productive as those relying on conventional tillage (CT) is a 
controversial issue, fraught by a high variability over time and space. Here, we expand existing datasets to 
include the results of the most recent field experiments, and we produce a global dataset comparing the 
crop yields obtained under CT and NT systems. In addition to crop yield, our dataset also reports 
information on crop growing season, management practices, soil characteristics and key climate parameters 
throughout the experimental year. The final dataset contains 4403 paired yield observations between 1980 
and 2017 for eight major staple crops in 50 countries. This dataset can help to gain insight into the main 
drivers explaining the variability of the productivity of NT and the consequence of its adoption on crop 
yields. 

2.2 Background & Summary 
Often featured among promising climate change mitigation measures, NT systems, including conservation 
agriculture (CA), contributes to environmental preservation and sustainable agricultural production12. NT 
is expected to mitigate soil degradation, improve soil structure and water retention properties3–5. Several 
studies indicate that this cropping system can provide a large range of positive environmental externalities 
such as increased biodiversity, enhanced carbon sequestration and improved soil quality through an increase 
in soil organic matter6–10. However, the productivity of NT systems compared to conventional cropping 
systems is still controversial. Since the productivity of NT depends on several interacting factors such as 
climatic conditions11, soil characteristics1,12, and other agricultural management activities13–19, the potential 
of NT to increase agricultural productivity remains highly uncertain.  

Several studies1,12,20–22  have been conducted to synthetize the current evidence on the productivity in NT 
systems. Some of these studies relied on global datasets including results of field experiments comparing 
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NT and CT cropping systems over a large range of soil and climate conditions. However, these datasets do 
not include the most recent published experiments, and provide no or limited information on soil 
characteristics, climate variables, and management practices. In particular, information on fertilizer inputs, 
weed and pest control, and intra- and inter- annual climatic variability are frequently missing. Other studies 
comparing NT and CT rely on a limited number of experiments, are only conducted at a regional scale, or 
did not make their data fully available23–25. Thus, a global dataset reporting findings from the most recent 
field experiments and including information about a wide range of climatic parameters, soil characteristics 
and agricultural management practices is still lacking. 

To address this gap, we present an updated and extended dataset comparing CT and NT productivity 
including the most recently published experimental studies, and a detailed description of their 
environmental characteristics and management practices. Our dataset contains 4403 paired (NT vs. CT) 
yield observations collected between 1980 and 2017 for eight major staple crops in 50 countries. For each 
experiment, we provide information on soil texture, pH, the year and month of crop planting and harvesting, 
the location of the experiment, fertilization, weed and pest control practices, crop type, crop rotation, crop 
residue management, and crop irrigation. Besides soil characteristics and information on management 
practices, we also report a large range of climate variables derived from several external databases. These 
include precipitation, potential evapotranspiration, average temperature, maximum temperature, and 
minimum temperature during the crop growing season. This dataset can prove useful to disentangle the 
effects of soil, climate and agronomic drivers of crop yields when comparing NT with CT systems. 

2.3 Methods 
2.3.1 Data collection 
The literature search was done in February 2020 using the following keywords ‘Conservation agriculture / 
No-till / No tillage / Zero tillage’ & ‘Yield / Yield change’ in the websites ‘ScienceDirect’, ‘Science Citation 
Index (web of science)’. A total of 1012 potentially relevant papers were identified by reviewing the title 
and abstract, and these papers were then screened according to the procedure summarized in Figure 2.1. 
Papers not reporting yield data for CT and NT systems were excluded, as well as papers reporting 
experiments on reduced tillage (RT) systems. Papers reporting only mean yield data across different years 
or sites were also excluded. We then checked whether information on fertilization, weed and pest control, 
crop irrigation, crop rotation and crop residue management were reported for both CT and NT practices. 
After these screening and selection steps, all relevant data were manually extracted from the selected papers, 
including general information about the paper, location and year of the experiment, the number of years 
under NT when the crop was sown, soil characteristics, crop growing season, crop type, crop management 
practices and crop yield of CT and NT. However, due to a large number of missing data, the crop growing 
season, climatic variables and soil characteristics were finally collected through several external databases 
(Table 2.1). The growing season information was generated from a crop calendar database26,27 based on the 
crop type and the locations of the experiments reported in the papers. The precipitation, average temperature 
in the growing season were extracted from the UDel_AirT_Precip data provided by NOAA/OAR/ESRL 
PSL28. The maximum and minimum air temperature during the growing season were generated from CPC 
Global Temperature data provided by NOAA/OAR/ESRL PSL 29 and the potential evapotranspiration data 
over the growing season were extracted from GLEAM database30,31. Soil textures were collected from the 
HWSD database32 using the locations of the experimental sites reported in the selected papers (see Table 
2.1 for additional details). The experiments for which it was not possible to obtain the requested information 
from the external databases were excluded. The final dataset includes the results extracted from 413 papers 
(published between 1983 to 2020), 4403 paired yield observations from NT and CT for 8 major crop species, 
including 370 observations for barley (232 observations for spring barley and 138 for winter barley), 94 
observations for cotton, 1690 observations for maize, 195 observations for rice, 160 observations for 
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sorghum, 583 observations for soybean, 61 observations for sunflower, 1250 observations for wheat (1041 
observations for winter wheat and 209 observations for spring wheat) in 50 countries from 1980 to 2017 
(Figure 2.2). 

 

Figure 2.1 | Flow chart of paper collection and selection. 



A global crop yield meta-dataset of conservation agriculture vs. conventional tillage 

45 
 

 

 

 

Figure 2.2 | Distribution of experimental sites. The size of the circle indicates the number of observations, and the colors indicates the crop 
species. 
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Table 2.1 | Metadata of the dataset  

Category Column Data collected Units Notes Source / Formula 
I. General 

information 
of the paper 

A Author   

Paper 
 

B Journal   
C Publish year   

II. 
Experiment 
information 

D Country of experimental site   
E Location of experimental site   
F Latitude of experimental site Degree  
G Longitude of experimental site Degree  
H Soil type or texture   
I Surface pH of experimental site   
J Number of experiment replications   

K Crop type  

Including 8 crops: barley (spring 
& winter barley), cotton, maize, 
rice, sorghum, soybean, 
sunflower, wheat (spring & 
winter wheat). 

L Initial year of NT practice Year 
If not mentioned in the paper, 
then this is assumed to be the 
initial year of the experiment. 

M Crop sowing year  Year  
N Crop harvesting year Year  
O Years since NT started Year  𝑌𝑒𝑎𝑟 − 𝑌𝑒𝑎𝑟 , + 1 

P 
Crop planting month and 

harvesting month 
Month 

Crop growing season reported in 
the paper. 

Paper 
 

III. 
Information 

about 
agricultural 

management 
activities 

Q 
Crop rotation with at least 3 crops 

involved in CT practice 
 

Here we set crop rotation as 
“Yes” only when the crop 
species (including the cover 
crops) involved in the crop 
rotation sequence is more than 2 
species in accordance with the 
FAO’s definition of 
Conservation Agriculture. More 
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details about the crop sequence 
can be found in column S. 

R 
Crop rotation with at least 3 crops 

involved in NT practice 
 

Two categories: “Yes”, “No”. 

S Details of crop rotation sequence   

T Cover crop before sowing  
Set to “Yes” if a cover crop is 
present in the experiment 

U Soil cover in CT practice  

Four categories: “Yes”, “No”, 
“Mixed”, “Not reported”. Here 
we set soil cover as “Yes” when 
more than 30% of the soil is 
covered even after tillage, or 
when plastic/residue mulch 
exists. We set soil cover as 
“Mixed” for yield data 
corresponding to the average 
yields of both categories “Yes” 
and “No”. 

V Soil cover in NT practice  

Four categories: “Yes”, “No”, 
“Mixed”, “Not reported”. Here 
we set soil cover as “Yes” only 
when more than 30% of the soil 
is covered in current cropping 
season and residues from 
current cropping season are 
retained. We set soil cover as 
“Mixed” for yield data 
corresponding to the average 
yields of both categories “Yes” 
and “No”. 

W 
Details of residue management of 

previous crop in CT practice 
 

 

X 
Details of residue management of 

previous crop in NT practice 
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Y 
Weed and pest control in CT 

practice 
 

Three categories: “Yes”, “No”, 
“Not reported”. 

Z 
Weed and pest control in NT 

practice 
 

Three categories: “Yes”, “No”, 
“Not reported”. 

AA 
Details of weed and pest control in 

CT practice 
 

 

AB 
Details of weed and pest control in 

NT practice 
 

 

AC Field fertilization in CT practice  

Four categories: “Yes”, “No”, 
“Mixed”, “Not reported”. We 
set field fertilization as “Mixed” 
for yield data corresponding to 
the average yields of both 
categories “Yes” and “No”. 

AD Field fertilization in NT practice  

Four categories: “Yes”, “No”, 
“Mixed”, “Not reported”. We 
set field fertilization as “Mixed” 
for yield data corresponding to 
the average yields of both 
categories “Yes” and “No”. 

AE N input  

Four categories: “Yes”, “No”, 
“Mixed”, “Not reported”. We 
set N input as “Mixed” for yield 
data corresponding to the 
average yields of both 
categories “Yes” and “No”. 

AF 
N input in details with the unit kg 

N ha -1 
 

 

AG Details about field fertilization   

AH Crop irrigation in CT practice  

Four categories: “Yes”, “No”, 
“Mixed”, “Not reported”. We 
set crop rotation as “Mixed” for 
yield data corresponding to the 
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average yields of both 
categories “Yes” and “No”. 

AI Crop irrigation in NT practice  

Four categories: “Yes”, “No”, 
“Mixed”, “Not reported”. We 
set crop rotation as “Mixed” for 
yield data corresponding to the 
average yields of both 
categories “Yes” and “No”. 

AJ 
Details of water applied in CT 

practice 
 

Water applied in the field with 
the unit mm/ha/year 

AK 
Details of water applied in CT 

practice 
 

Water applied in the field with 
the unit mm/ha/year 

IV. Other 
detailed 

information 
AL 

More detailed information about 
the experiment setting and the 

agricultural activities 
 

 

V. 
Information 
about crop 

yield 

AM Crop yield under CT practice kg/ha  
AN Crop yield under NT practice kg/ha  

AO Relative yield change  
 𝑌𝑖𝑒𝑙𝑑 − 𝑌𝑖𝑒𝑙𝑑

𝑌𝑖𝑒𝑙𝑑
 

AP Yield increase with NT practice?  
Yes = yield increased with NT  
No = yield not increased with 
NT 

 

AQ Outlier of crop yield in CT practice  
Set to “Yes” if it is an outlier for 
corresponding crop species 

 

AR Outlier of crop yield in NT practice  
Set to “Yes” if it is an outlier for 
corresponding crop species 

 

VI. 
Information 

from external 
databases: 
climatic 

variables and 
soil texture  

AS Crop growing season start month Month 

Crop growing season was 
extracted from the external crop 
calendar databases of spring 
barley, winter barley, cotton, 
maize, rice, sorghum, soybean, 
sunflower, spring wheat and 
winter wheat based on the crop 
type and location  

University of Wisconsin-
Madison26,27 
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AT Crop growing season end month Month 

Crop growing season were 
extracted from the external crop 
calendar databases of spring 
barley, cotton, maize, rice, 
sorghum, soybean and winter 
wheat based on the crop type 
and location 

University of Wisconsin-
Madison26,27 

AU 
Precipitation over the growing 

season 
mm 

Precipitation was extracted from 
the external database based on 
the location, year of the 
experiment and crop growing 
season from the external 
database. The precipitations in 
each month were added 
together. 

NOAA/OAR/ESRL PSL28 

AV 
Potential evapotranspiration over 

the growing season 
mm 

Potential evapotranspiration 
was extracted from the external 
database based on the location, 
year of the experiment and crop 
growing season from the 
external database. The potential 
evapotranspiration rates in each 
month were added together. 

GHENT university/ESA 
GLEAM30,31 

AW Precipitation balance mm 
Indicated the amount of 
available water in the growing 
season for rainfed field 

𝑃 − 𝐸 

AX 
Average air temperature during the 

growing season 
℃ 

Average temperature was 
extracted from the external 
database based on the location, 
year of the experiment and crop 
growing season from the 
external database. The 
temperature in each month were 
averaged. 

NOAA/OAR/ESRL PSL28 
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AY 
Maximum air temperature during 

the growing season 
℃ 

Maximum temperature was 
extracted from the external 
database based on the location, 
year of the experiment and crop 
growing season from the 
external database. The 
temperatures in each month of 
the growing season were 
compared, the maximum one 
was recorded. 

NOAA/OAR/ESRL PSL29 

AZ 
Minimum air temperature during 

the growing season 
℃ 

Minimum temperature was 
extracted from the external 
database based on the location, 
year of the experiment and crop 
growing season from the 
external database. The 
temperatures in each month of 
the growing season were 
compared, the minimum one 
was recorded. 

NOAA/OAR/ESRL PSL29 

BA Soil texture  

Soil texture was extracted from 
the external database based on 
the location of the experiment 
from the external database.  
Categories included in this 
database: Sandy Loam; Loam; 
Silt Loam; Sandy Clay Loam; 
Clay Loam; Sandy Clay; Clay 

The University of Tokyo32 
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2.3.2 Data records 
All data are available on the figshare repository33, which can be accessed through the link: 
https://doi.org/10.6084/m9.figshare.12155553. Four files are provided: 

1. “Database.csv” includes the data. 
2. “Summary of the database.docx”, includes the summary of dataset which explains the definition or 

assumption for each column in the dataset. 
3. “List of references.docx” reports the references of the studies from which data were extracted. 
4. “Code.zip”, includes all the codes used in this study. 

Table 2.1 shows the metadata of our dataset. Six main categories of data are provided: 

Category I covers authors, publishing journal and the publishing year. 

Category II reports general information about the experiments, including country, location (villages or 
cities), latitude, longitude of experiment site, soil type and pH at experimental sites, number of replicates,  
crop types, the initial year of NT practice, crop planting/harvesting month/year, and the period since the 
initial year of NT practice.  

Category III covers information about agricultural management activities under both NT and CT systems 
(data availabilities of those activities were shown in Figure 2.3):  

 Crop rotation with at least 3 crops involved (based on the crop rotation principle of CA defined by 
FAO 34): “Yes”, “No”, “Not reported”. The details of crop sequence are also provided . 

 Soil cover: “Yes”, “No”, “Mixed”, “Not reported”. Details of residue management for the previous 
crops are also provided .  

 Weed and pest control: “Yes”, “No”, “Mixed”, “Not reported”.  
 Field fertilization: “Yes”, “No”, “Mixed”, “Not reported”. The details of N input and other fertilizer 

input are also provided . 
 Crop irrigation: “Yes”, “No”, “Mixed”, “Not reported”. The details of the amount of water applied 

are also provided. 

Category IV contains detailed information about the experiment site, experiment setting, management 
activities, depending on the papers, it may also include the type and quantity used of fertilizer, herbicide, 
or pesticide. 

Category V corresponds to data related to crop yield. It includes the paired crop yields under CT (𝑌𝑖𝑒𝑙𝑑 ) 

and NT (𝑌𝑖𝑒𝑙𝑑 ) systems. The relative yield changes is defined as . The column “Yield 

increase with NT” reports whether the differences between 𝑌𝑖𝑒𝑙𝑑  and 𝑌𝑖𝑒𝑙𝑑  are positive or negative 
( “Yes” indicates that crop yield is increased with NT practice, while “No” indicates that yield is not 
increased).  

Category VI includes data extracted from the external databases, including crop growing season, climate 
variables (including precipitation, potential evapotranspiration, minimum/average/maximum temperature) 
during the growing season, and soil texture.  

Crop growing season is defined by a start month and end month, which were extracted from the external 
crop calendar databases 26 of spring barley, winter barley, cotton, maize, rice, sorghum, soybean, sunflower, 
spring wheat and winter wheat based on the crop type and study sites. Data on the crop calendar corresponds 
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to averaged data and does not change intra-annually, thus the growing season extracted may be different 
from the actual growing season.  

The climatic variables from the external databases are: 

 Accumulated precipitation (P) during the growing season (sum of monthly precipitations during 
the growing season),  

 Accumulated potential evapotranspiration (E) (sum of monthly evapotranspiration rates during the 
growing season), 

 Precipitation balance (PB), defined as PB = P – E12,  
 Average air temperature (Tave) during the growing season, 
 Maximum air temperature (Tmax): the maximum value among the daily temperatures in the 

growing season,  
 Minimum air temperature (Tmin): the minimum value among the daily temperatures in the growing 

season.  

Soil texture was extracted from an external database based 32 on the experiments’ locations. In total seven 
texture classes were included: sandy loam, loam, silt loam, sandy clay loam, clay loam, sandy clay and clay. 

 

2.4 Technical Validation 
To ensure the reliability of the information collected from the papers, we carefully checked and compared 
all the collected data with the original paper several times. Quality control of the database was conducted 
based on outlier detection. For each crop, the outliers of crop yield in CT system and NT system were 
identified based on the Interquartile Rule35 outlier detection method. For each crop species, an interquartile 
range (IQR) is defined as the difference between the first and third quartile of crop yield, and a threshold is 
calculated by adding 1.5 IQR to the third quartile. Any yield data beyond this threshold is flagged as an 

outlier for the crop species considered. The ratio of crop yield in NT and CT systems  were also 

calculated. All outliers and all the observations with a ratio higher than 2 were checked and compared with 
the values reported in the original papers one more time.  

The crop yield values reported in our dataset are consistent with results of previous published studies. 
Comparing crop yield data of NT and CT, the adoption of NT practice overall leads to a yield decrease 
(Figure 2.4a). A similar trend of crop production decrease with NT was reported in previous studies1,12,20,36. 
We also find that the combination of NT with crop rotation and soil cover (known as CA) trends to increase 
crop yield compared to NT practice without rotation and soil cover (Figure 2.4a), which is also in line with 
previous studies1,16,37. Further analysis conducted on each crop confirms that NT tends to decrease the yield 
of maize1, rice 21, and wheat1 (Figure 2.4b). The productivity of NT is found higher under dry conditions 
compared with wetter conditions (Figure 2.4c), and similar trends were reported in previous studies1,12.  
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Figure 2.3 | Data availability and break-down of the different crop management practices and NT implementation periods reported in the 
dataset.  
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Figure 2.4 | Comparison of crop yield between NT and CT systems. The boxplots indicate the distributions (min, 1st quartile, median, 3rd quartile, 
max) of the log yield ratio of NT to CT. The mean log yield ratios of NT to CT were calculated based on a linear mixed effect model and marked as 
the red diamonds in the boxplots. Statistical tests were conducted to test the significance of the estimated values, *** indicates P-value < 0.001, ** 
indicates P-value < 0.01, * indicates P-value < 0.05, · indicates P-value < 0.1. Plot (a) shows the mean log ratios for different types of NT systems 
vs. CT systems. 𝑁𝑇  represents all the experiments involving NT systems in the dataset, 𝑁𝑇  represents the NT systems without crop 
rotation and without soil cover, and 𝑁𝑇  represents the CA systems or NT systems with both crop rotation and soil cover. Plot (b) shows the 
mean log ratios for different crop species. S. indicates spring, while W. indicates winter Plot (c) shows the mean log ratios for different levels of 
PBs, corresponding to different level of water stress. 
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3.5 Usage notes 
Our dataset can be used to analyze the factors influencing the productivity of NT (or CA) vs. CT. It is 
possible to train machine learning models to predict the probability of yield increase with NT (or CA) 
system (e.g.  Appendix A figure 1 and  Appendix A figure 2) or the range of yield changes resulting based 
on the soil type, climate and agronomic inputs provided by this dataset. Global maps of probability of yield 
increase with NT (or CA) or the range of yield changes can be generated based on the outputs of machine 
learning models trained with our dataset and enable policymakers or agricultural advisors to identify the 
most promising regions for CA implementation. Details of how to train machine leaning models with our 
dataset are provided in  Appendix A. 

The crop yield data for 2018 and later can be extracted from the identified papers, but since some key 
climatic variables are missing in the external database for this time period (in particular, evapotranspiration), 
those data are not listed in the dataset provided. We will update the dataset once we have the latest data 
access to the missing climate variables. 

Importantly, our dataset could be easily updated using data produced by new experiments. We welcome 
anyone interested to share data or papers not included in this meta-database to send them to the 
corresponding author (YS, yang.su@inrae.fr). We will maintain and add the new observations in the future 
to expand our dataset with the latest experimental data. 

 

2.6 Code Availability 
Scripts using the R and MATLAB programming language are provided to produce figures and extract data 
from external databases. The code is available from the corresponding author upon request. 
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Chapter 3 A machine learning pipeline to map the performance of cropping systems on a 
global scale 
 

This chapter is submitted to journal. In this chapter, we presented a machine learning pipeline that can train, 
tune, test and compare different machine learning models based on the dataset collected from published 
papers. We use the dataset presented in chapter 2 to illustrate the effectiveness of this machine learning 
pipeline, we compared 12 machine learning algorithms in its classification, quantitative prediction, and 
quantile regression ability. The best models were used to map the performance of CA and NT systems 
versus CT systems at the global scale. 
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3.1 Abstract 
Assessing agricultural practices has become a major issue due to growing concerns about global food 
security and the negative effects of agriculture on the environment. Meta-analysis has become a standard 
approach for such assessments based on experimental data. It provides valuable synthetic information to 
scientists and policy makers based on mean effect size estimation. However, summarizing large amounts 
of information by way of a single mean effect value is not always satisfactory, especially when considering 
agricultural practices. Indeed, their impacts on crop yields vary widely depending on a number of factors, 
including soil properties and local climate conditions. Here, we present a machine learning pipeline that 
produces data-driven global maps describing the spatial distribution of the productivity of farming practices. 
Our approach covers model selection, training, cross-validation, testing, and global projection. We 
demonstrate its relevance using a recent global dataset comparing the crop yields of conservation 
agriculture (CA) vs. conventional tillage (CT). Various models for classification, regression and quantile 
regression are trained based on 12 mainstream machine learning algorithms. After testing, the most accurate 
models are used to map the crop productivity of CA vs. CT at the global scale. The performance of CA vs. 
CT is characterized by a strong spatial variability, and the probability of obtaining a yield gain with CA is 
highly dependent on geographical locations. This result demonstrates that our approach is much more 
informative than simply presenting average effect sizes produced by standard meta-analyses, and paves the 
way for such probabilistic, spatially-explicit approaches in many other fields of research. 

 

3.2 Main 
Increasing food production and its stability over time becomes more difficult due to the negative effects of 
climate change on agricultural systems 1,2. The development of sustainable cropping systems, such as 
conservation agriculture (CA), has been proposed as a path to increase food security 3, preserve biodiversity 
4,5, and increase the resilience of agriculture to climate change6,7. Numerous experiments have been 
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conducted to compare the productivity of different farming practices or cropping systems under a diversity 
of soil and climate conditions. The wealth of experimental data available offers an opportunity to identify 
the most efficient practices and systems based on robust scientific evidence. In this context, meta-analysis 
has become a standard method for analyzing experimental agricultural data and estimating mean effect 
sizes as a way of summarizing the performances of cropping systems. Specifically, several meta-analyses 
were conducted during the past decade to estimate the average performances of CA compared to CT 8–10 
showing conflicting results on the relative performance of CA vs. CT. Although meta-analysis is a powerful 
tool to analyze large experimental datasets, this approach has several limitations 11–13. One of them is that 
while mean effect sizes can summarize experiments conducted in contrasting conditions and account for 
the average performance of a practice or system, they summarize but do not provide a detailed description 
of the variability induced by local conditions 14–16. This is an important limitation for the analysis of 
agricultural production because crop yields are highly dependent on the local climate conditions 8,9,17, soil 
characteristics 18–20, and agricultural management practices 8,9,18,21,22, which often vary in time and space. 
This makes it hard for standard meta-analyses to provide accurate predictions for a given geographical 
region.  

To gain further insight and overcome this limitation, we define a new approach to analyze large 
experimental agricultural datasets based on standard machine learning algorithms. These algorithms have 
proven their usefulness over the last few years and are now widely used in numerous areas to process and 
analyze complex and high-dimensional data 23. We have relied on these algorithms to develop a machine 
learning pipeline (Figure 3.1) to standardize the process of comparing the performance of different cropping 
systems and mapping them at the global scale.  The proposed framework includes several steps covering 
algorithms selection, model training, model hyperparameter tuning by cross-validation, model testing, and 
global projection.  

The value of this pipeline is illustrated using a recent global crop yield dataset 24 comparing cropping 
systems under CA and CT. Twelve different machine learning algorithms (See Appendix B table 1 for the 

details) are trained to analyze the yield ratio  of CA vs. CT  as a function of climate variables, 

geolocations, soil characteristics, crop management practices. A first series of models are trained to classify 

yield gain > 1  versus yield loss < 1 , namely random forest25 (RF), random forest with 

spatial correlations26 (RF with spaMM), gradient boosting 27,28 (GBM), extreme gradient boosting 27–29 
(XGBOOST), artificial neural networks with different number of hidden layers 30,31 (ANNs), k-nearest 
neighbors 32 (KNN), support vector machines 33 (SVM), naïve bayes 32,34 (NB), and generalized linear 
model35 (GLM). A second series of models are trained for quantitatively predicting the ratio of relative 

yield change  , namely RF, RF with spaMM, GBM, XGBOOST, ANNs, KNN, SVM, and 

GLM. Finally, a third series of models are trained to predict quantiles of this relative yield change, namely 
quantile regression forest 36 (QRF), quantile regression gradient boosting 27,28 (QRGBM), quantile 
regression neural networks 37,38 (QRNN). Thus, these models predict the ranges of relative yield change for 
different probability coverages. 

The models’ hyperparameters are tuned using a cross-validation procedure and the models are subsequently 
tested using an independent testing dataset (Figure 3.1). Classification models are tested based on the area 
under the receiver operating characteristics curve (AUC) 39. AUC corresponds to the probability that a 
classifier can rank a positive instance (yield gain in this case) higher than a negative one (yield loss), thus, 
a higher AUC indicates a superior classification performance by the model 22,39. Quantitative predictions 
are assessed using the coefficient of determination or R squared (𝑅 ), which estimates how well the 
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predictions approximate the observations. Higher 𝑅  values indicate a better fit of the model 40. Ranges of 
values derived from the predicted quantiles are evaluated by computing an error score (ES), defined based 
on the area between the curve of coverage rates (CRs) for all prediction intervals and 1:1 line. Smaller ES 
indicates better model interval prediction ability. See Method section for the details of ES. 

The best models are then used for classification (yield gain vs. loss), for quantitative prediction (ratio of 
relative yield change of CA vs. CT), and for computing intervals (intervals of relative yield change ratios). 
Model outputs are mapped at the global scale with climate data over the 1981-2010 time slice at a spatial 
resolution of 0.5° latitude × 0.5° longitude. Details of model setting are available in Appendix B Table 
5.  
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Figure 3.1 | Machine learning pipeline of predicting performance of cropping systems and comparing 
different algorithms. 

Results 

RF, GBM, and XGBOOST show better classification performance (with AUC values equal to 0.790, 0.786, 
0.783, respectively), while the more traditional algorithms GLM and NB have lower performance (with 
AUC values of 0.644 and 0.647, respectively) (Figure 3.2, Appendix B table 2). With ANN, the best 
classification accuracy was obtained using 2 hidden layers, with an AUC value of 0.752 (Figure 3.2, 
Appendix B table 2).  

 

Figure 3.2 | Comparison of different classification algorithms based on AUC. Plot a shows the AUC of 
the final testing model of different algorithms. Plot b shows the ROC curve of the best (RF) and the worst 
(GLM) algorithms. 

As regards regression models, the 𝑅  of all algorithms are smaller than 0.6 (Figure 3.3a, Appendix B table 
3), revealing moderate explanatory powers. Among these algorithms, the best performance is achieved by 
RF, with a 𝑅  equal to 0.52, while GLM has the worst performance, with a 𝑅  equal to 0.12 (Figure 3.3a, 
Appendix B table 3). Figure 3.3b and 3.3c show the scatterplot of observations versus predictions of relative 
crop yield change from the RF and GLM models, respectively. The results show that GLM predictions are 
poorly related to observations, while RF is able to explain a substantial fraction of the total variability. 

For range regression models, different rankings are obtained depending on whether outliers in the dataset 
were included or not (Figure 3.4). With outliers included, the best performance is obtained with QRF 
(ES=1.73%), while QRGBM performs better when the outliers were filtered (ES =1.38%). QRNN performs 
better with one than with two hidden layers, but never outperforms QRF and QRGBM (with ES equals to 
5.35% and 15.69% without and with outliers, respectively). 
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Figure 3.3 | Comparison of different regression algorithms based on 𝑹𝟐. Plot a shows the R^2 in the 
final testing step for the various algorithms after model tunning. The number after ANN indicates the 
number of hidden layers in the neural networks. Plots b and c are the scatterplots of observations and 
predictions of relative crop yield change from the best (RF) and the worst (GLM) algorithms, respectively. 
All the models were trained with the training dataset in which the outliers (data points outside the 95% 
confidence interval) were filtered. 

The productivity of CA vs. CT systems for spring barley was mapped at the global scale. To reveal the 
differences among models, we mapped this performance based on the results obtained with the best (RF) 
and the worst algorithms (GLM). Results obtained with both algorithms show that - with fertilizer inputs 
and an appropriate control of weeds and pests - the probability of yield gain with CA vs. CT is higher than 
0.5 in western North America, central Asia, and many regions in the east and central Africa, while the 
probability is lower in eastern North America and Europe (Figure 3.5a, Figure 3.5b). However, there are 
many inconsistencies in the predictions of the two algorithms in other regions. For example, according to 
RF, the use of CA instead of CT would most likely lead to yield loss (probability of yield gain is lower than 
0.5) in South America, and in most of the regions in eastern and southern Asia, while opposite results are 
provided by GLM in those regions (Figure 3.5a, Figure 3.5b, respectively). This contradiction reveals that 
the choice of an inappropriate model (such as GLM, here) would lead to wrong conclusions, highlighting 
the importance of the model selection step in our procedure. This is confirmed by the relative yield changes 
of CA vs. CT mapped with the RF and GLM models in Figure 3.5. According to RF, yield gains are 
expected when shifting from CT to CA in western North America, central Asia, and many regions in the 
east and central Africa, while yield losses are predicted in most part of Europe (Figure 3.5c). This is in line 
with the results from RF classification model (Figure 3.5a). Conversely, according to the results of the 
GLM regression model, yield gains are predicted in eastern North America and Europe, while yield losses 
are predicted in central Asia (Figure 3.5d), which is not consistent with the GLM classification model 
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(Figure 3.5b) and RF models (Figure 3.5a, 3.5c). Here again, the use of an inaccurate model like GLM 
would lead to misleading conclusions.  

 

Figure 3.4 | Comparison of different range regression algorithms based on ES. Plot a shows the error 
score in the final testing step for the various algorithms after model tunning. Plots b and c show the actual 
coverage rates for all the prediction intervals of the best (QRF) and worst algorithm (QRNN2). The number 
after QRNN indicates the number of hidden layers in the quantile regression neural networks. All the 
models were trained both with and without the outliers (outside 95% confidence interval) in the original 
dataset filtered to check if the algorithms can handle outliers. 

The predicted ranges (10th percentile and 90th percentile) of relative yield change of CA vs. CT are shown 
in Appendix B Fig. 1. We show that there is 10% chance that the relative yield change of CA vs. CT will 
be higher than 0.45 in western North America, southern South America, eastern and central Africa 
(Appendix B Figure 1b), while there is 10% chance that relative yield changes be lower than 0.35 in part 
of western North America, central Asia, and northern China (Appendix B Figure 1a). The uncertainty is 
higher in western North America, reflected by the broader yield gain range (between the 10th and 90th 
percentile predictions) in this region. 

The Shapley value, which is the average marginal contribution of a feature value across all possible 
coalitions 41, is calculated for precipitation balance (PB) and years since no tillage was implemented 
(NTyear) to assess how PB and NTyear would affect the performance of CA. We show that a relative lower 
PB or a longer period of no tillage implementation is likely to improve the performance of CA compared 
to CT (Appendix B Figure 2, Appendix B Figure 3, respectively). 
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Figure 3.5 | Global projection of best and worst algorithms for classification and regression. Plot a 
and b show the maps of probability of yield gain with CA vs. CT based on RF and GLM algorithms, 
respectively. Regions with a probability of yield gain lower than 0.5 were highlighted in red. Plot c and d 
show the maps of relative yield change with CA vs. CT based on RF and GLM algorithms, respectively. 
Regions with negative relative yield change were marked in red. 

3.3 Discussion 
In this study, we trained a broad set of machine learning (ML) models for different purposes: classification, 
quantitative prediction, and range prediction. This is the first time that 12 ML algorithms are implemented 
and compared in an application dealing with a major, global issue for agriculture. The worldwide maps 
obtained with the most accurate algorithms reveal a strong geographical variation of the probability of yield 
gain with CA, and the relative yield change resulting from its adoption over conventional tillage. This result 
shows that the mere presentation of an average effect size - as often done in standard meta-analyses - does 
not provide sufficient information on the performance of one cropping system compared to another. 
Contrary to standard meta-analyses, our approach can be used to describe the variability of this relative 
performance and to identify geographical areas where one cropping system outranks the other with a higher 
spatial resolution.  This is an important advantage in a context where the choice of cropping systems should 
be adapted to the local context to provide optimal performance. Here, the global maps generated from our 
pipeline indicate that CA can be competitive in western North America and central Asia, in particular in 
dry regions. This result is consistent with recent studies 8,9,22.  

Our comparative analysis show that, RF has the best performance for both classification and quantitative 
prediction, followed by GBM, XGBOOST, ANNs, SVM, and KNN, while GLM and NB have the worst 
performance compared to other algorithms. Other studies from agriculture-related sectors also reported 
similar trend in the performance of machine learning algorithms. For example, Cao et al. 42 reported that 
RF had better performance than ANNs in wheat yield prediction. Folberth et al. 43 disclosed that RF and 
XGBOOST had similar performance for downscaling crop yields from model outputs. Rahmati et al. 44 

revealed that RF had better classification ability than SVM when predicting agricultural droughts in 
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Australia. Dubois et al. 45 reported that RF and SVM had better quantitative prediction ability than ANNs 
for forecasting short-term soil moisture. In other fields, Uddin et al. 46 unveiled that in disease detection, 
RF had the highest chance to show excellent classification capability (with an AUC over 0.8), followed by 
SVM, NB, ANNs, KNN. However, RF is not systematically ranked first in previous studies 47–49 and the 
performance of different algorithms may shift depending on the type of applications. It is therefore essential 
to evaluate a range of different candidate algorithms for each application, and not to systematically rely on 
the same approach. Our methodological framework appears very useful in this context because it allows 
the comparison of several algorithms on an objective basis.  
Concerning interval prediction, David et al. 50 reported that the performance of different algorithms varies 
depending on the quantiles considered. This highlights the importance of evaluating these algorithms for a 
wide range of quantiles. In this perspective, we used a new error score (ES) (See method section for more 
details) which is capable of assessing any quantile regression model over the whole range of quantiles. This 
criterion can be used to select algorithms performing well over a large range of quantiles and not only for 
specific quantile values.  

In this study, we prove that the experimental data collected from published studies can be used to conduct 
more complex analyses via machine learning techniques than those done in standard meta-analyses, usually 
based on linear models. The maps created from the machine learning pipeline we proposed here provides 
detailed geographical information about the performance of one system compared to a reference, and this 
pipeline can be easily adapted to analyze a diversity of outcomes. These may involve the effects of crop 
management practices on soil organic carbon dynamics, greenhouse gas emissions, biodiversity, etc. for 
different types of cropping systems, such as organic agriculture or agroforestry, and thus provide valuable 
information on the local performance of sustainable farming practices together with a global perspective.     

3.4 Methods 
3.4.1 Dataset establishment 
The literature search was conducted in February 2020 using the keywords ‘conservation agriculture or no-
till or no tillage or zero tillage and ‘yield or yield change’ in the websites ‘ScienceDirect’ and ‘Science 
Citation Index’. The details of the paper screening and data collection procedure were described in previous 
publications 22,24. The final dataset includes 4403 paired yield observations for no tillage (NT) and CT under 
different farming practices for 8 major crop species, which were extracted from 413 papers (published 
between 1983 to 2020). It includes 370 observations for barley, 94 observations for cotton, 1690 
observations for maize, 195 observations for rice, 160 observations for sorghum, 583 observations for 
soybean, 61 observations for sunflower, 1250 observations for wheat. The experimental sites cover 50 
countries from 1980 to 2017. 

3.4.2 Model training 

In classification models, pairs of yield data were used to compute the yield ratio    
. Data were 

then categorized in two categories corresponding to either yield gain or yield loss. These categories were 
then predicted from inputs describing climate conditions over crop growing season (precipitation balance, 
minimum temperature, average temperature, and maximum temperature), soil texture, agricultural 
management practices (crop rotation, soil cover, fertilization, weed and pest control, irrigation and CA/NT 
implementation year) and location (latitude and longitude) using different machine learning algorithms. 
Results were used to map the probability of yield gain with CA vs. CT (probability of yield ratio > 1). Note 
that CA is defined as NT with soil cover and with crop rotation based on the FAO’s definition51. 

In regression models and range regression models, pairs of yield data were used to compute the relative 

yield change     
. These relative yield changes were then related to the inputs listed 
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above. The models were used to predict the conditional mean of relative yield change with regression 
models, and the conditional quantiles of relative yield change with quantile regression models. 

As shown in Figure 3.1, all the models were trained based on the 80% of the dataset. The brief description 
of algorithms and packages used were listed Appendix B Table 1. 

3.4.3 Model tuning with 10-fold cross-validation 
The hyperparameters of all algorithms except GLM were tuned using 10-fold cross-validation and grid 
search52.The settings of the grid search are presented in Appendix B table 6. For each hyperparameter 
setting in the grid search, the 10-fold cross-validation was implemented to calculate AUC 39 for 
classification models and 𝑅  40 in regression models, respectively. Model settings with the highest AUC 
and 𝑅  were selected for the model testing step. 

 For quantile regression, cross-validation was implemented to calculate the coverage rate (CR) of the 80% 
prediction interval (the interval between 10% quantile and 90% quantile) for all the hyperparameters setting 
in the grid search (Appendix B Figure 4). The model with the CR value closest to 0.8 was selected as the 
final model setting used in the model testing step. 

For GLM, the final model was selected with a stepwise algorithm53 implemented using the step function 
(from ‘stats’ package, version 4.0.4 in R) run with AIC54.  

3.4.4 Model testing 
The performances of the trained algorithms were determined using an independent testing dataset including 
20% of the total number of data (Figure 3.1) with the criteria AUC 39 and 𝑅  40 for classification models 
and regression models, respectively. For quantile regression models, the criterion used to assess the final 
model performance was the error score (ES). In previous studies 55–57, quantile regression models were 

assessed by comparing the coverage rate (CR) of the range of values defined by the quantiles from  and 

1 −  to its nominal target value (𝛼). In these studies, this assessment was done for a limited number of 

values ( 𝛼 ) (sometimes, a single one). Here, we generalized this approach by plotting CR vs. its 
corresponding 𝛼 for all values of 𝛼 between 0 and 1, then compared the resulting curve to the reference line 
(1:1 line) as shown in Figure 3.4b. The ES was then defined by Formula 1 and represents the area between 
the curve of CRs vs. 𝛼 and the 1:1 line, then divided by 0.5, which serves here as a benchmark. This value 
of 0.5 is indeed reached when the CR is independent from 𝛼 . The criterion ES measures the overall 
performance of the model over all quantiles. 

𝐸𝑟𝑟𝑜𝑟 𝑆𝑐𝑜𝑟𝑒 =
𝐴𝑟𝑒𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝑜𝑓 𝐶𝑅𝑠 𝑣𝑠. ∝  𝑎𝑛𝑑 1: 1 𝑙𝑖𝑛𝑒 

0.5 
 × 100%             (1) 

 

The final performance of those algorithms was presented in Appendix B Table 2 – 4. 

3.4.5 Global projection 
The algorithms with the best final model performance were selected to do global projection, the model 
setting for global projection was presented in Appendix B table 5. To predict the global productivity of CA 
vs. CT, the trained models were fed by the numerical explanatory variables, such as climatic variables, 
latitude, longitude, number of years since NT implementation, and categorical explanatory variables, 
including crop types, soil textures, agricultural management practices.  

The model outputs included the probabilities of yield gain with CA vs. CT for the classification models, 
the relative yield change with CA vs. CT for regression models, and the 10th and 90th  percentiles of relative 
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yield change for the range regression models. The results indicated the CA productivity at the global scale 
under the averaged climate conditions of the 1981-2010 time slice. All maps in the paper were generated 
with MATLAB R2020a (Version 9.8.0.1451342, https://fr.mathworks.com/products/matlab.html ). 
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Chapter 4 The productive performance of conservation agriculture under past climate 
conditions (1981-2010)  
 

This chapter is published in Scientific Reports, 11, 3344 (2021), and can be accessed through this link: 
https://doi.org/10.1038/s41598-021-82375-1. In the chapter, we trained the classification and quantile 
regression model based on the random forest and quantile regression forest model, which are the best 
models selected through the machine learning pipeline presented in chapter 3. Here we mapped the 
probability of yield increase with CA systems and the range of yield change at global scale, and how they 
vary with different farming practices under the mean climate condition between 1981 to 2010. 
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4.1 Abstract 
Conservation Agriculture (CA) has been promoted to mitigate climate change, reduce soil erosion, and 
provide a variety of ecosystem services. Yet, its impacts on crop yields remains controversial. To gain 
further insight, we mapped the probability of yield gain when switching from conventional tillage systems 
(CT) to CA worldwide.  Relative yield changes were estimated with machine learning algorithms trained 
by 4403 paired yield observations on 8 crop species extracted from 413 publications.  CA has better 
productive performance than no-till system (NT), and it stands a more than 50% chance to outperform CT 
in dryer regions of the world, especially with proper agricultural management practices. Residue retention 
has the largest positive impact on CA productivity comparing to other management practices. The variations 
in the productivity of CA and NT across geographical and climatical regions were illustrated on a global 
map. CA appears as a sustainable agricultural practice if targeted at specific climatic regions and crop 
species.  

4.2 Introduction 
Conservation Agriculture was originally designed to decrease soil erosion while sustaining crop 
productivity in the long run 1. It consists of three principles: preserving a permanent soil cover, minimizing 
soil disturbance (going as far as NT), and diversifying crop species (at least three crops involved) 2. CA 
system provides positive environmental externalities such as increased biodiversity, enhanced carbon 
sequestration and improved soil quality through an increase in soil organic matter3,4, and is expected to 
enhance soil fertility, soil structure and water retention properties over time 5–7, thereby CA could increase 
crop yields in particularly in regions experiencing water scarcity 8. Nonetheless, its impacts on crop yield 
remains controversial. It is also reported that CA may lead to a yield reduction 1,9 especially when the 
principles of Conservation Agriculture are only partially applied (e.g. in NT system without soil cover or 
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without rotation) 1,9,10. Further analyses were conducted to reveal how the productive performance of CA 
and NT system varies as the function of several interacting factors such as agricultural management 
practices 1,9,11, soil characteristics11, crop species1,12 and climatic conditions1,9,11,13. However, the dataset 
used in those analyses only provide no or limited information on soil characteristics, climate variables, and 
management practices. In particular, information on fertilizer inputs, weed and pest control, and intra- and 
inter- annual climatic variability were frequently missing. To date, a comprehensive synthesis of the 
productivity of CA and NT system at the global scale, including multiple crops, a wider range of climatic 
parameters on yields, and a map showing the local productivity of CA and NT vs. CT at the global scale, is 
still lacking. 

In this paper, we compared the productive performance of CA and NT vs. CT under different climate 
conditions and different agricultural managements based on a new, global dataset14. This dataset contains 
yield comparisons of NT vs. CT, and CA vs. CT, where CA was defined as NT with crop rotation and soil 
cover based on the FAO’s definition15. In contrast with previous papers, we used here a probabilistic 
approach to analyze the dataset. Machine learning models 16,17 were built to estimate the probability that 
CA (and NT) can outperform CT, and to compute plausible ranges of relative yield change when shifting 
CT to CA (or NT) system for eight major crops, including spring barley, cotton, maize, rice, sorghum, 
soybean, sunflower, and winter wheat. Unlike previous studies, we included a wider range of climate drivers 
(with their inter- and intra-annual variabilities) in the model predicting the impact of CA and NT on crop 
yields, rather than relying on aridity indices or broad climate zones. This provided further insight into the 
effects of climate on the comparison with conventional agricultural systems.  

4.3 Data collection and analysis 
A systematic literature review was performed in February of 2020 (see Appendix C1). We collected the 
papers cited in above mentioned meta-analyses 1,9,11, supplemented them by the most recently published 
experimental studies. The yield data of NT and CT, details of experimental site and agricultural 
management practices were extracted from those papers, with a broader set of climatic parameters from 
external databases. In the end, 4403 paired yield comparisons between NT ( or CA when NT is implemented 
with soil cover, and crop rotation which involves at least three crops species) and CT were collected from 
413 papers, along with the information of crop types, years and locations of the experiments, and the 
detailed agricultural management practices such as crop irrigation, field fertilization, the control of weed 
and pest, crop rotation, the management of crop residue and soil cover. Additional data were extracted from 
several external databases, including crop growing season 18,19, soil texture 20 and climate factors such as 
precipitation balance (precipitation21 – potential evapotranspiration22,23), minimum temperature24, average 
temperature21, maximum temperature24  throughout the growing season in a particular year. The 
observations covered 50 countries (See Appendix C2) and 8 crops. Pairs of yield values were used to 

compute the yield ratios of CA (or NT) to CT  (  )  and the relative yield change ratios 

 (  )  
.  

Machine learning models, namely random forest and quantile regression forest were developed to analyse 
the database. The inputs of both models were the climatic conditions throughout growing season, crop type, 
soil texture, and the agricultural management practices. The output of the random forest model was the 
probability yield gain of CA (or NT) vs. CT (yield ratio > 1). The performance of this model was assessed 
by estimating the area under the ROC curve by leave-one-out cross validation (LOOCV) (AUC=0.786, see 
Appendix C3). The output of quantile regression forest model was the 1st and 3rd quartile of relative yield 
change ratios, corresponding to levels of losses and gains achieved in 25% and 75% of the cases. The 
performance of this model was assessed using a specific LOOCV procedure to check that the proportion of 
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yield ratio in the observation within the predicted intervals defined by the two quartiles (25th and 75th 

quantiles) was close to 50% (51.3%, see Appendix C4) 25.  

To predict the global performance of CA (and NT) vs. CT, the two trained machine learning models were 
supplemented with global climate data (the average of 1981-2010), agricultural management practices (NT: 
without crop rotation and without soil cover, CA: with crop rotation and with soil cover), the masks of crop 
presence 26, irrigation 26 and soil texture20. Details of model setting are available in Appendix C5. Model 
results were then projected on map. 

4.4 Results 
The functional relationship among the probability of yield gain from CA (and NT) vs. CT, the climatic 
factors, the agricultural management practices were demonstrated through partial dependence plot 27,28. The 
results showed that CA has better performance than NT due to the positive effects of soil cover and crop 
rotation on crop yield (Figure 4.1a, b). Fertilizer application increased the productivity of CA and NT 
systems as well (Figure 4.1c). The probability of yield gain from CA was slightly higher with weed and 
pest control under the dry condition, while there was no significant effect of weed and pest control on NT 
system (Figure 4.1d). Irrigation improved the performance of NT system, but decreased the competitiveness 
of CA vs. CT (Figure 4.1e). Our results also showed that both CA and NT practices were likely to result in 
a better productivity in regions where water stress prevails compared to wetter conditions (Figure 4.1). Here 
we defined a relatively dry region (region #1) and a relatively wet region (region #2) based on the 
precipitation balance: region #1 indicates that the accumulated precipitation balance throughout the 
growing season is lower than 0 mm, while region #2 indicates a positive balance. Further analyses on the 
probability of yield increase and 1st and 3rd quartile of relative yield change for different crops in relatively 
dry (region #1) and wet (region #2) regions also showed that, in general, CA outperformed NT, and that 
CA and NT have better performance in regions that were relatively dry (Figure 4.2d, Appendix C8d, C11d, 
C14d, C16d, C19d, C22d, C25d). For winter wheat, the mean probability of yield gain with CA vs. CT is 
56% and 47% in region #1 and region #2, respectively (Figure 4.2b); The plausible range of yield change 
when shifting from CT to CA in region #1 is from -0.11 to 0.51, and -0.2 to 0.17 for region #2 (Figure 4.2d). 
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Figure 4.1 | Impact of crop management practices on CA performance, shown in 1-D partial dependence plot of the probability of yield gain 
as a function of precipitation balance (mm). The tick marks on the x-axis showed the distributions of observations of precipitation balance in the 
dataset. 
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Figure 4.2 | Productivity of Conservation Agriculture for winter wheat in a relatively dry (region #1) and a relatively wet (region #2) region. 
(a) Illustration of the two regions on a global map with the two different colors showed in the sub-legend of plot a, while the blank area indicated 
the non-cropping region of winter wheat. (b) The probability of winter wheat yield gain (CA and NT vs. CT). (c) Wheat cropping density 26 on global 
map, the yellow shades indicated the higher density, and vice versa. The yellow color in this map indicated the crop density is equal or higher than 
20% of maximum density in the cell of 0.5° latitude × 0.5° longitude at the global scale. (d) The 1st and 3rd quartiles of winter wheat relative yield 
change under CA and NT vs. CT practice in the two regions, and the x axis tick label in plot d: R1, R2 indicated the two different regions, and the 
left part of plot d indicated the yield change ratios at the 1st quartile, while the right part were the yield change ratios at 3rd quartile. The colors in 
plot a, b and d indicated the same regions. In plot b and d, the mean value of relative yield change in its region is marked by the red diamond, while 
the median value is depicted by the red horizontal line.  
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Probabilities of yield gain show important geographical variations. CA, in particularly when associated 
with fertilization and weed and pest control, is likely to lead to a yield gain compared to CT in North-
western America for spring barley (Appendix C9a, b), maize (Figure 4.4a, b), sorghum (Appendix C20a, 
b), sunflower (Appendix C26a, b) and winter wheat (Figure 4.3a, b); In Pakistan and the west of India for 
spring barley (Appendix C9a, b), cotton (Appendix C12a, b), maize (Figure 4.4a, b), sorghum (Appendix 
C20a,b) and winter wheat (Figure 4.3a, b); In north of China for cotton (Appendix C12a, b), sorghum 
(Appendix C20a, b), sunflower (Appendix C26a, b), and winter wheat (Figure 4.3a, b). On the other hand, 
CA, especially without fertilization and the control of weed and pest, has lower probability of yield gain in 
tropical region for rice (Appendix C17a, b), sorghum (Appendix C20a, b), soybean (Appendix C23a, b), 
sunflower (Appendix C26a, b); In south of China for sorghum (Appendix C20a, b), soybean (Appendix 
C23a, b), winter wheat (Figure 4.3a, b); In North-eastern America, and Europe for spring barley (Appendix 
C9a, b), maize (Figure 4.4a, b), soybean (Appendix C23a, b), and winter wheat (Figure 4.3a, b). 

Here we showed that, with proper management, CA has a 25% chance of producing large yield gains (more 
than 30%) compared to CT in most of the Africa for spring barley (Appendix C10b), cotton (Appendix 
C13b), maize (Appendix C15b), sorghum (Appendix C21b), soybean (Appendix C24b), sunflower 
(Appendix C27b), winter wheat (Figure 4.5b); In some part of South America for spring barley (Appendix 
C10b), cotton (Appendix C13b), maize (Appendix C15b), sorghum (Appendix C21b), soybean (Appendix 
C24b), sunflower (Appendix C27b), winter wheat (Figure 4.5b); In some part of Southeast of the US for 
spring barley (Appendix C10b), maize (Appendix C15b), sorghum (Appendix C21b), soybean (Appendix 
C24b), sunflower (Appendix C27b). Conversely, NT has a 75% chance of increasing yield by more than 
5% for winter wheat in northeast of China (figure 4.5c).  

However, even with proper agricultural management practices, there is a 75% chance that NT will lead to 
a yield decrease in some part of the tropical regions for cotton (Appendix C13d), maize (Appendix C15d), 
rice (Appendix C18d), sorghum (Appendix C21d), soybean (Appendix C24d), and sunflower (Appendix 
C27d); In some part of China for rice (Appendix C18d), sorghum (Appendix C21d), soybean (Appendix 
C24d), and sunflower (Appendix C27d); In eastern EU for maize (Appendix C15d), sorghum (Appendix 
C21d), and soybean (Appendix C24d); And in North-eastern America for maize (Appendix C15d). 
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Figure 4.3 | Probability of yield gain with CA and NT vs. CT winter wheat. Only the cropping regions were presented. The different colors 
indicated different probabilities of yield gain from CA and NT comparing to CT system. The greener color indicated a higher probability of yield 
gain. +/- F indicated NT or CA and CT with/without field fertilization. +/- WD indicated NT or CA and CT with/without weed and pest control.  
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Figure 4.4 | Probability of yield gain with CA and NT vs. CT maize. Only the cropping regions were presented. The different colors indicated 
different probabilities of yield gain from CA and NT comparing to CT system. The greener color indicated a higher probability of yield gain. +/- F 
indicated NT or CA and CT with/without fertilization. +/- WD indicated NT or CA and CT with/without weed and pest control. 
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Figure 4. 5 | Relative yield change probability (1st and 3rd quartile estimate) of shifting CT to CA/NT for winter wheat, with fertilization and 
weed and pest control (+F+WD). There was a 75% chance that the relative yield change will be higher than the ratio shown on the map in plot a 
and c, and conversely a 25% chance that the relative change will be lower. There was a 75% chance that the relative yield change will be lower than 
the ratio shown on the map in plot b and d, and conversely a 25% chance that the relative change will be higher. The colors indicated different levels 
of yield change ratio, and the reddish colors indicated the negative yield change or yield loss.  
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4.5 Discussion 
As the probabilities and plausible ranges of yield gain and loss with CA and NT systems have not been 
mapped in previous meta-analyses 1,9,11, our results bring meaningful and novel information to policymakers 
and agricultural extension services. In this study, we were able to identify the regions that have higher or 
lower probability of yield gain from shifting CT to CA and NT for eight major field crops. The magnitude 
of these gains was assessed, as well as the potential yield losses. 

Although based on an expanded dataset, our study has several limitations. Most of the data collected 
pertains to humid climates rather than arid regions. Crop irrigation was considered only as a categorical 
variable here due to a lack of global data on this practice, but still proved meaningful in terms of yield 
impacts. Finally, to deal with missing climate and soil data in the selected papers, we used climate and soil 
data from external databases on a systematic basis. Consequently, crop growing season, precipitation, 
potential evapotranspiration, minimum temperature, average temperature, maximum temperature 
throughout the growing season, and soil texture may not always match local records. However, the use of 
external databases allowed us to analyse the effects of the inter-annual and intra-annual climate variabilities 
on CA and NT productivity.  

Our study revealed large differences in the likelihood of yield gains associated with the adoption of CA (or 
NT) across crops, crop management practices, geographical regions, and climatic conditions. Based on our 
results, NT appeared more likely to increase yields in dry conditions compared to wet conditions, especially 
when it combined with soil cover. The potential benefits of such practice are well known.  

The layer of crop residues retained on the soil surface in no-till systems reduces soil evaporation and water 
runoff 29,30, fosters the build-up of organic matter in soils 31, preserves soil water resources for crops 32, 
increases soil water retention capacity and mitigates drought effects 33–35. These factors all contribute to 
increase the probability of yield gain. Conversely, in humid regions, the comparative advantages of CA or 
NT with soil cover were no longer evident and can even be detrimental in the case of soils prone to 
waterlogging 1. In some other conditions, such as winter crop in cold region, we did notice that not covering 
the soil increased the chance of yield gain compared to continuous soil cover. We showed that winter wheat 
in northeast of China, NT has better performance than CA, this might be because the soil cover reduced the 
mean soil temperature36, which delayed the crop establishment and growth4,37,38. However, it is also reported 
that residue cover could decrease the rate of soil temperature change 36, increase the minimum soil 
temperature in extreme cold conditions 39–41, and provide a buffer layer that can increase the crop resistance 
to the increasing climate variability and the occurrence of extreme events 4. Therefore, soil cover reduces 
the risk of crop failure and increased yield stability. The fact that soil cover management had the largest 
positive impact on the productivity of NT, compared to other management practices including crop rotation 
and the control of weed and pest, was also reported in previous studies1,42. Despite the recognized positive 
effects of residue cover and crop rotation, these two practices were not always implemented with NT 
systems43.  

Our results also showed that, with integrated weed and pest management, CA systems tend to perform 
slightly better than without (Figure 4.1d), which might indirectly suggest that the crop residue cover used 
in CA may increase the weed or pest pressure in dry conditions 44,45.  While in humid condition, CA might 
have a slightly higher probability of yield gain in the absence of weed control. This may be due to a greater 
competition for water resources between crops and weeds when weeds were not controlled 46,47, leading to 
dryer conditions and to an increased probability of yield gain with CA. Our results showed again that CA 
and NT had a higher probability of yield gain under fertilized conditions 1.  
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Overall, we showed that CA has a better productivity than NT, especially when combined with the proper 
agronomical practices of fertilization and integrated weed and pest management. Therefore, we recommend 
that NT systems should be implemented with soil cover, crop rotation (thus following the definition of 
Conservation Agriculture by the FAO), crop fertilization, integrated weed and pest management, and all 
the other good agronomic practices like good seed, water management. Although CA may not always 
outperform CT concerning on crop yield, CA can provide a range of ecosystem services far beyond biomass 
production, those ecosystem services included improve the soil health, reduce the soil erosion risk, etc. 48, 
while the present traditional tillage systems are resulting in serious land degradation, which will increase 
the risk of food insecurity in the future, and it will increase emissions and reduce carbon sinks49. Therefore, 
CA is a promising practice that can be promoted to sustain the long-term food production. 
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Chapter 5 The productive performance of conservation agriculture under climate change  
 

This chapter is published in Nature Climate Change (2021) and can be accessed through this link: 
https://doi.org/10.1038/s41558-021-01075-w. In the chapter, we trained the classification model based on 
the random forest which the best classification model based on the machine learning pipeline presented in 
chapter 3. Here we mapped the productive performance of CA and NT systems vs. CT systems at global 
scale, and how this performance change under climate change (current scenario: 2011 – 2020, future 
scenario: 2051-2060). 
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5.1 Abstract 
Conservation agriculture (CA) is being promoted as a set of management practices that can sustain crop 
production while providing positive environmental benefits. However, its impact on crop productivity is 
hotly debated, and how this productivity will be affected by climate change remains uncertain. Here we 
compared the productivity of CA systems and their variants based on no tillage (NT) vs. conventional tillage 
(CT) systems for 8 major crop species under current and future climate conditions using a probabilistic 
machine-learning approach at the global scale. We reveal large differences in the probability of yield gains 
with CA across crop types, agricultural management practices, climate zones, and geographical regions. 
For most crops, CA performed better in continental, dry and temperate regions than tropical ones. Under 
future climate conditions, the performance of CA is expected to mostly increase for maize over its tropical 
areas, improving the competitiveness of CA for this staple crop.  

5.2 Main 
Conservation agriculture is a crop production system based on three principles: minimum soil disturbance 
(going as far as NT), permanent soil cover with crop residues, and diversified crop rotation (with at least 
three crop species involved) 1. In compliance with sustainability goals, CA is designed to sustain crop 
production on the long-term while improving crop resilience to climate change and protecting the 
environment. Benefits of CA have been demonstrated in terms of enhancing soil carbon sequestration, 
improving soil quality, reducing soil erosion, and increasing biodiversity2,3. However, since crop yield 
depends on many interacting factors including local climate conditions4, soil characteristics5, and 
management practices6, it is difficult to assess the potential of CA to increase agricultural productivity. 
Besides CA (as defined according to the above principles, which follow the Food and Agriculture 
Organization’s (FAO) approach of CA7 ), this issue also applies to its variants such as NT without crop 
rotations and soil cover, NT with soil cover but no rotation, and NT with rotation but no soil cover. Based 
on the findings of recent meta-analyses 5,6,8, these systems are likely to lead to a yield reduction6 compared 
to CT, except for regions facing water limitations. However, the heterogeneity of the experimental results 
on CA (and their variants) vs. CT is very large, and their outcome varies as a function of climate conditions6 
and management practices6,8,9. The studies of Pittelkow et al. 6,8 relied on a synthetic aridity index to 
characterize the characteristics of climate, which makes it hard to analyze the response of CA productivity 
to inter-annual weather variability or to predict the impact of future changes in climate. To date, a 
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comprehensive, global synthesis of the impact of climate change on the productivity of CA with respect to 
CT systems is still lacking. 

Here, we compared the crop yields of CA systems (and their variants) vs. CT under current and future 
climate conditions based on a new, global database 10,11 of paired yield observations of CA (and their 
variants) vs. CT. This dataset includes the most recently published experimental studies on this topic, a 
detailed description of agricultural management practices (including crop irrigation, fertilization, weed and 
pest control, soil cover management and crop rotation), and a broad set of climatic variables from external 
databases, such as precipitation (P) 12 , minimum air temperature (Tmin) 13,  average air temperature (Tave) 
12, maximum air temperature (Tmax) 13 and potential evapotranspiration (E) 14,15 over the crop growing 
seasons 16. As an indicator of water availability for crops, the precipitation balance (PB) was defined as (P 
– E) over the growing season5.  

A machine learning model based on random forest 17 was trained and cross-validated based on 4403 paired 
yield data of CA (and its variants) vs. CT from the dataset. The model was used to map the probability of 

yield gain from CA like systems vs. CT systems, i.e.   > 1 , considering different 

agricultural management practices successively (with/without soil cover, rotation, weed and pest control, 
irrigation, fertilization). The analysis was conducted at a spatial resolution of 0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ×

0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 based on current (2011-2020) and future (2051-2060) average climate conditions for eight 
major crops worldwide (spring barley, cotton, maize, rice, sorghum, soybean, sunflower, and winter wheat). 
For each crop, maps were then produced and compounded to derive the accumulated fractions of the 
cropping area achieving a given yield gain probability of CA vs. CT under current climate conditions. 
Similarly, the accumulated fractions of the cropping area achieving a given level of change in this 
probability under future climate conditions were calculated. These fractions show the proportions of 
cropping area with low to high probabilities of yield gain from CA vs. CT, and with low to high changes 
for this probability under climate change. Both proportions were computed at the global scale and across 
different climate zones18. The results were used to evaluate the impact of crop management practices on the 
performance of CA, to identify the favorable and unfavorable climate zones for CA, and to assess the 
climate change impact on the productivity of CA in different climate zones. The details of model setting 
for global projection are explained in the Methods section and further detailed in Appendix D table 1. 

Our results show that, under current climate conditions, NT (in the absence of soil cover and rotation) is 
associated with a very low probability of yield gain compared to CT (Appendix D figure 1.a4-h4, Appendix 
D figure 1.a5-h5). CA shows better performance than NT due to the presence of soil cover and use of crop 
rotation but does not systematically outperform CT (Appendix D figure 1.a1-h1, Appendix D figure 1.a4-
h4). With well managed field fertilization and integrated weed and pest control, CA stands high chances of 
outperforming CT except in tropical regions (Figure 5.1, Appendix D figure 1.a2-h2). The performance of 
CA is also slightly improved in non-irrigated fields, except in tropical regions (Figure 6.1, Extended data 
figure 1).  

For most of the studied crops, the overall probability of yield gain from CA is higher in continental, dry, 
and temperate regions than in tropical regions (Figure 5.1a, Figure 7.1d-g, Appendix D figure 1.a2-g2). The 
probability of yield gain with CA is particularly low for rice. For this crop, the probability of yield 
increase/gain is lower than 0.5 (which indicates a higher probability of yield loss) over about 60% of its 
global cropping area, and in about 85% of its cropping area in the tropics (Figure 5.1d, Appendix D figure 
1.d2).
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Figure 5.1 | Accumulated fraction of cropping area as a function of the probability of yield gain with CA (+F+WD) vs. CT-R-SC (+F+WD) 
for eight major crops (a-h) and different climate zones. The results are based on the average climate conditions over 2021-2020 simulated by the 
Ipsl-cm5a-lr climate model and RCP 4.5 scenario.
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Figure 5.2 | Accumulated fractions of the cropping area for different levels of change in the probability of yield gain with CA (+F+WD) vs. 
CT-R-SC (+F+WD). The results are based on the mean climate conditions in 2021-2020 for the current scenario and 2051-2060 for the future 
scenario (Ipsl-cm5a-lr climate model and RCP 4.5 scenario). Change of probability corresponds to the difference between the probability under 
future climate and the probability under current climate. 
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For several crops and climate regions, the estimated effect of climate change on the probability of yield 
increase with CA is relatively moderate. Over approximately half of the cropping areas, a decrease of up to 
10% in this probability is expected, while in the other half an increase of up to 15% may be anticipated 
(Figure 5.2). However, in some important cases the effect of climate change is stronger, especially for maize 
in tropical regions where the probability of yield gain with CA increases in about 70% of the cropping area. 
Besides, for more than 20% of the maize cropping area in this climate zone, the increase on the probability 
of yield increase is higher than 10% (Figure 5.2c). An increase in yield gain is also expected for more than 
60% of the cropping area for rice in dry regions and for soybean in tropical regions (Figure 5.2d, Figure 
5.2f). This fraction rises to more than 70% of the cropping area for sorghum in continental regions (Figure 
5.2e).  

Probabilities of yield gain with CA show important geographical variations under both current and future 
climate conditions for maize (Figure 5.3, Figure 5.4) but also for other crop species (Appendix D figure 2). 
Yield gains with CA systems and their variants are more likely in relatively higher latitude regions (> 40 
Deg.) than lower latitudinal bands for barley, cotton, rice, sorghum, soybean, and sunflower (Appendix D 
figure 3), in line with the results showed on Figure 5.1. CA systems and their variants perform better in 
northwestern America, northwestern India, northern sub-Saharan Africa, and southern Russia than in 
northeastern America, western and central Europe, and central part of sub-Saharan Africa (Figure 5.3, 
Appendix D figure 2). For maize, in the absence of fertilizer inputs and integrated weed and pest control, 
the probability of yield gain from CA is higher than 0.5 in dry areas of western US, southern Russia, 
northern India, and North China Plain. The yield gain probability drops to 0.4 in the Laurentian Plateau of 
Canada, northcentral and northeastern US, and part of western and central Europe (Figure 5.3b). For other 
crop species, CA has a higher chance to lead to a yield loss compared to CT in the tropical regions 
(Appendix D figure 2.a2-h2), southern China (Appendix D figure 2.e2-h2), northeastern America, western 
and central Europe (Appendix D figure 2.a2, Appendix D figure 2.e2, Appendix D figure 2.f2, Appendix 
D figure 2.h2). Conversely, when implemented with field fertilization and integrated weed and pest control, 
CA has a higher chance to outperform CT in the major cropping areas for barley, sunflower and wheat 
(Appendix D figure 2.a1, Appendix D figure 2.g1-h1; Appendix D figure 5). 

Our results also show that soil cover has a stronger (and positive) effect on yield gain probability than other 
management practices such as fertilizer inputs, weed and pest control, and crop rotation. Thus, without soil 
cover, NT systems show a lower probability of yield gain than full-blown CA (Appendix D figure 2), which 
in line with the input importance ranking obtained with our model (Extended data figure 2). Note that, 
although management practices have a substantial impact on yield gain probabilities, they have limited 
influences on the geographical variations of these probabilities (Appendix D figure 1, Appendix D figure 
2). 

The maps reporting the differences of yield gain probabilities between current (2010-2020) and future 
(2051-2060) climate conditions (see Appendix D table 1 for projection details, see Figure 5.5 and Appendix 
D figure 4 for results) reveal important geographical disparities in the effects of climate change on the odds 
of yield gain with CA systems and their variants, and we have noticed that climate change could have a 
positive effect in some regions for certain crop species. However, although the probability of yield gains 
with CA systems and their variants vs. CT systems tended to increase under future climate scenarios, it 
remained below 0.5 in many regions. Under climate change scenario RCP 4.5, the probability of yield gain 
is expected to increase in most of the northcentral and northeastern US for barley, maize, sorghum, soybean, 
and sunflower(Appendix D figure 4.a1, Figure 5.5a, Appendix D figure 4.e1-g1); In most of the central-
western region in Brazil together with the Amazon basin, western Africa, and Asia-Pacific for maize, rice, 
and soybean (Figure 5.5a, Appendix D figure 4.d1, Appendix D figure 4.f1); In many parts of India for 
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cotton, maize, rice, sorghum, soybean, sunflower (Appendix D figure 4.b1, Figure 5.5a, Appendix D figure 
4.d1-g1); In most of Europe for barley, maize, sorghum, soybean, sunflower and wheat (Appendix D figure 
4.a1, Figure 5.5a, Appendix D figure 4.e1-h1); In northeastern China for rice, sorghum (Appendix D figure 
4.d1-e1). Conversely, the overall performance of CA will decrease in the future in most temperate regions 
in South America, including Uruguay, southern Brazil, and northern Argentina for barley, cotton, rice, 
sorghum, and sunflower (Appendix D figure 4.a1-b1, Appendix D figure 4.d1-e1, Appendix D figure 4.g1); 
In the south of Russia and northwest of Asia for barley, cotton, soybean, sunflower (Appendix D figure 
4.a1-b1, Appendix D figure 4.e1, Appendix D figure 4.g1);  In southern China for cotton, maize, rice, 
sorghum, sunflower (Appendix D figure 4.b1, Figure 5.5a, Appendix D figure 4.d1-e1, Appendix D figure 
4.g1). Crop management practices have limited influence on the estimated impact pattern of climate change 
on yield gain probability (Appendix D figure 1).  

To assess the model sensitivity to climate models and climate change scenarios, we plotted the fractions of 
global cropping areas corresponding to increasing levels of yield gain probability (from -0.1 to 0.2) for four 
different climate models and RCP scenarios (Extended data figure 3). The choice of the climate models had 
very little impact on the results (Extended data figure 3i-p), although the results obtained with Hadgem2-
es, and Ipsl-cm5a-lr are somewhat more extreme than those obtained with Gfdl-esm2m and Miroc5. The 
sensitivity to the climate change scenarios was more important (Extended data figure 3a-h). Although the 
main conclusions remain similar across all RCP scenarios, the stronger changes in yield gain probability 
are obtained under RCP 8.5 compared to RCP 6.0, RCP 4.5, and RCP 2.6 (Extended data figure 3a-h). In 
particular the changes of yield gains become larger for maize and rice under RCP 8.5.  
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Figure 5.3 | Probability of yield gain with CA systems (a, b) and NT variants (c, d) vs. CT without soil cover (-SC) and without crop rotation 
(-R) for maize under current climate conditions (average climate conditions over 2011-2020 simulated by the Ipsl-cm5a-lr climate model 
and for the RCP 4.5 scenario). Regions with a probability of yield gain lower than 0.5 were highlighted in red (and in blue shades when the 
probability was higher). Non-cropping region indicated both the regions without maize crops and regions where climate data were unavailable. Plot 
a compares the performance of CA (+F+WD) vs. CT-R-SC (+F+WD); Plot b compares the performance of CA (-F-WD) vs. CT-R-SC (-F-WD); 
Plot c compares the performance of NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD); Plot d compares the performance of NT-R-SC (-F-WD) vs. CT-
R-SC (-F-WD).
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Figure 5. 4 | Probability of yield gain with CA systems (a, b) and NT variants (c, d) vs. CT without soil cover (-SC) and without crop rotation 
(-R) for maize under future climate conditions (average climate conditions over 2051-2060 simulated by the Ipsl-cm5a-lr climate model and 
for the RCP 4.5 scenario). Regions with a probability of yield gain lower than 0.5 were highlighted in red (and in blue shades when the probability 
was higher). Non-cropping region indicated both the regions without maize crops and regions where climate data were unavailable. Plot a compares 
the performance of CA (+F+WD) vs. CT-R-SC (+F+WD); Plot b compares the performance of CA (-F-WD) vs. CT-R-SC (-F-WD); Plot c compares 
the performance of NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD); Plot d compares the performance of NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD).
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Figure 5.5 | The change of probability of yield gain with CA systems (a, b) and NT variants (c, d) vs. CT without soil cover (-SC) and without 
crop rotation (-R) for maize under climate change (future vs. current). regions with a decreasing trend were depicted in red, while those 
with an increase in yield gain probability were depicted in blue. The results are based on the average climate conditions over 2011-2020 (current) 
and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and for the RCP 4.5 scenario. Non-cropping region indicated both the regions 
without maize crops and regions where climate data were unavailable. Plot a shows the change of probability of yield gain with CA (+F+WD) vs. 
CT-R-SC (+F+WD) under climate change; Plot b shows the change of probability of yield gain with CA (-F-WD) vs. CT-R-SC (-F-WD) under 
climate change; Plot c shows the change of probability of yield gain with NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) under climate change; Plot 
d shows the change of probability of yield gain with NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) under climate change.
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Extended data figure 1 | Accumulated fraction of the cropping area as a function of the probability of yield gain under CA (+ F+WD -
Irrigation) vs. CT-R-SC (+F+WD -Irrigation) systems in different climate regions. Accumulated fraction of the cropping area as a function of 
the probability of yield gain under CA (+F+WD - Irrigation) vs. CT-R-SC with fertilization (+F) and weed and pest control (+ WD) without irrigation 
(-Irrigation) for eight major crops (a-h) and different climate zones. The results are based on the average climate conditions over 2021-2020 simulated 
by the Ipsl-cm5a-lr climate model and RCP 4.5 scenario. 
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Extended data figure 2 | Relative importance ranking of the model inputs. The importance was defined by the mean decrease in accuracy in 
‘cforest’ model. Where ‘PB’ indicates precipitation balance over crop growing season; ‘Tmax’ indicates maximum temperature over crop growing 
season; ’Tave’ indicates average temperature over crop growing season; ‘Tmin’ indicates minimum temperature over crop growing season;  ‘Crop’ 
indicates the crop species; ’ST’ indicates soil texture; ‘SCNT’ indicates soil cover management under the variants of no tillage systems; ‘SCCT’ 
indicates soil cover management under CT systems; ‘RNT’ indicates crop rotation management under the variants of no tillage systems; ‘RCT’ 
indicates crop rotation management under CT systems; ‘FNT’ indicates management of crop fertilization under the variants of no tillage systems; 
‘FCT’ indicates crop management of crop fertilization under CT systems; ‘WDNT’ indicates management of weed and pest control under the variants 
of no tillage systems; ‘WDCT’ indicates crop management of weed and pest control under CT systems. 
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Extended data figure 3  | The accumulated fraction of the cropping area in different level of change on the probability of yield gain under 
CA (+F+WD) vs. CT-R-SC (+F+WD) under different crops, climate models and RCP scenarios. The accumulated fraction of the cropping area 
in different level of change on the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) for different crops, climate models and RCP 
scenarios. The results are based on the average climate data in different RCP scenarios (RCP2.6, RCP 4.5, RCP 6.0, RCP8.5) in Ipsl-cm5a-lr model, 
and RCP 4.5 scenario in different climate models (Ipsl-cm5a-lr, Gfdl-esm2m, Hadgem2-es, Miroc5) for both current (2021-2020) and future (2051-
2060) scenarios.  



The productive performance of conservation agriculture under climate change 
 

103 
 

5.3 Discussion 
Compared to previous studies on the productivity of CA5,6,8,19, this is the first time that the probabilities of 
yield gain resulting from a shift from CT to several variants of CA systems have been mapped for current 
and future climate scenarios. Thus, our results offer meaningful and new information for policymakers, 
agricultural extension services and farmers. Relying on a global experimental dataset, we were able to 
identify favorable and unfavorable climate conditions and geographical regions for the implementation of 
CA systems for eight major staple crops under current and future climate conditions. Some of the most 
promising geographical regions in our analysis had also been identified in previous studies19, but we were 
able to report information on yield gains as probabilities instead of simpler increase or decrease categories. 
More importantly, we addressed the impacts of future climate change scenarios and different agricultural 
management practices on the performance of CA systems and their geographical patterns.  

However, there are also limitations in our study. Due to the lack of global quantitative data on crop irrigation, 
this study was taken into account in our models as a categorical variable. Although a large part of the data 
considered in this study was collected under humid climate conditions, a significant proportion was 
obtained in dry regions under rainfed or irrigated conditions. In this study, climate and soil data were 
extracted from external databases and not from the collected articles because these data were missing or 
not reported consistently in the individual articles. Consequently, these data might not always match 
experimental records. The use of external databases has the added benefit of helping us understand how 
inter- and intra-annual climate variability affects the productivity of CA systems and their variants vs. CT. 
It is also required to predict the performance of these systems under future climate conditions. Data 
availability may affect model accuracy. Due to the limited number of observations for these crops, the 
conclusions obtained for rice and sunflower are more uncertain compared to other crops (Appendix D figure 
7). Despite these limitations, the results of our model assessment via the cross-validation are overall 
satisfactory (See Methods and Appendix D figure 7). 

We showed that soil cover has a strong positive effect on probability of yield gain. Without soil cover, NT 
systems are likely to lead to a yield loss compared to CT (Appendix D figure 2.a3-h3). Soil cover reduces 
soil evaporation and surface runoff and maintains a high level of soil moisture content 20–28, thus increasing 
the competitiveness of CA systems especially for dryer climate conditions29–34. Therefore, keeping the soil 
covered by crop residues appears to be an important factor for the success of CA systems. However, in 
practice, maintaining crop residues might be challenging in some regions, such as Africa, where the crop 
residues are used to feed livestock 35. In such situations, a possible solution would be to rely on alternative 
sources of plant materials, e.g. residues from cover crops, grass, leaf litter from trees, sawdust, etc. 35. 
Without soil cover, NT has low chance to entail yield gains compared to CT. Under future climate scenarios, 
the performance of NT is expected to improve in the north of sub-Saharan Africa for maize (Figure 5.5c) 
and sorghum (Appendix D figure 4.e1), but the probability will remain lower than or close to 0.5. 

Although less influential, other farming practices appear to increase the probability of yield gain of CA, in 
particular fertilization and weed and pest control. Thus, for most crops, CA with field fertilization and weed 
and integrated pest control outperformed CT in continental, dry and temperate regions, but proved less 
suitable in tropical regions (Appendix D figure 1.a1-h1, Appendix D figure 2.a1-h1). This overall pattern 
is in line with previous work 6, and our results are also consistent with the study of Corbeels et al. (2020) 36 
who showed that higher productive performance of CA systems in Africa can be expected when CA 
principles are implemented concomitantly in combination with herbicide application, especially for maize 
(Appendix D figure 2.c1). However, we also need to note that part of the regional variability in the 
performance of CA and NT might be related to the diversity of farm characteristics in the different regions 
under consideration, in particular the level of mechanization and size of farm. 
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In addition to increasing crop yield, CA systems can potentially improve biodiversity, increase the soil 
organic matter, and bring about positive environmental externalities such as reduced soil erosion, improved 
soil quality and enhanced carbon sequestration 2,3,37. Moreover, CA could improve the resilience of cropping 
systems towards the changing climate and increase the stability of crop yields38,39.  Although several 
variants of CA systems may be associated with a high probability of yield loss in many regions, we also 
showed that, under future climate conditions and with good agricultural management practices, the relative 
productive performance of CA is expected to increase for several crop species. This is especially true for 
maize in tropical regions, which further strengthens the competitiveness of CA for this staple crop. Thus, 
our results support the idea that CA will be a relevant option for cropping systems in the future, capable of 
ensuring a long-term, sustainable agricultural production for some key cropping areas40,41.  

5.4 Methods 
5.4.1 Data collection  
The literature search was done in February 2020 using the following keywords ‘Conservation agriculture / 
No-till / No tillage / Zero tillage’ & ‘Yield / Yield change’ in the websites ‘ScienceDirect’ and ‘Science 
Citation Index (web of science)’. We also collected the papers cited in previous meta-analyses 5,6,8, 
supplemented them by the most recently published experimental studies. A total of 1012 potentially relevant 
papers were identified by reviewing the title and abstract, these papers were then screened according to the 
procedure summarized in Appendix D figure 6. More details about this screening and selection procedure 
were presented in previous studies 11,42. In the end, 422 papers were retained (published between 1983 to 
2020). From these papers, we were able to extract 4403 paired yield observations from NT and CT for 8 
major crop species, including 370 observations for barley (232 observations for spring barley and 138 for 
winter barley), 94 observations for cotton, 1690 observations for maize, 195 observation for rice, 160 
observations for sorghum, 583 observations for soybean, 61 observations for sunflower, 1250 observations 
for wheat (1041 observations for winter wheat and 209 observations for spring wheat) in 50 countries from 
1980 to 2017 (Extended data figure 4). We also retrieved from the papers the information of crop type, year 
and location of the experiments, and agricultural management activities for both NT and CT systems, 
including crop irrigation (yes vs. no), the field fertilization (yes vs. no) and the details of the type and 
amount of fertilizer used, integrated weed and pest control (yes vs. no) and the type of herbicide and 
pesticide used, crop rotation (yes vs. no) and details of crop sequence and information of cover crops, soil 
cover (yes vs. no) and the details of residues retention from previous crops or cover crops. Based on this 
information, we were able to define CA as the combination of NT with soil cover and rotation and to 
distinguish this system from other variants (NT without soil cover and rotation, NT with rotation but without 
soil cover, NT with soil cover but without rotation). Additional data were extracted from several external 
databases, pertaining to crop growing season 16, soil texture 43 and climate factors such as precipitation (P) 
12, minimum temperature (Tmin) 13,  average temperature (Tave) 12, maximum temperature (Tmax) 13 and 
potential evapotranspiration (E) 14,15 in the growing season 16 in the particular year of the experiment, and 
the precipitation balance (PB) was defined as precipitation minus total evapotranspiration, which indicated 
the water availability in the growing season. These data were obtained at a spatial resolution of 
0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 , and if the source data were in a finer spatial resolution, they were 
downscaled to  the resolution of 0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒.
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Extended data figure 4 | Distributions of experiment site for each crop. This map and the corresponding dataset are presented in ref. 11, 42. This 
figure was generated by MATLAB R2020a (Version 9.8.0.1451342, https://fr.mathworks.com/products/matlab.html ). In this meta-dataset11, 4403 
paired yield observations were extracted from NT and CT for 8 major crop species, including 370 observations for barley (232 observations for 
spring barley and 138 for winter barley), 94 observations for cotton, 1690 observations for maize, 195 observation for rice, 160 observations for 
sorghum, 583 observations for soybean, 61 observations for sunflower, 1250 observations for wheat (1041 observations for winter wheat and 209 
observations for spring wheat) in 50 countries from 1980 to 2017. 
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5.4.2 Model training and cross-validation 
The machine learning algorithm random forest 17 was trained to analyze the yield ratios of NT vs. CT as the 
function of climatic variables, crop types, soil textures, and agricultural management activities. The climatic 
variables during the growing season such as PB, Tmin/Tave/Tmax were defined as numerical inputs, while 
crop type, soil texture, and agricultural management activities including crop irrigation, field fertilization, 
integrated weed and pest control, crop rotation and soil cover management were defined as categorical 
inputs. The model output was expressed as the probability of yield gain from NT vs. CT. When training, 
each tree in a random forest learns from a random sample of the data points. the samples are drawn with 
replacement (bootstrapping), only a subset of all the inputs is considered for splitting each node in each 
decision tree. Predictions are made by averaging the predictions of all decision trees 44. The performance 
of the algorithm was assessed by estimating the area under the ROC curve by leave-one-out cross validation 
(LOOCV). The procedure and results of cross-validation are presented in detail in Appendix D figure 7 and 
in ref.42 .Since crop rotation, soil cover management and other agricultural management practices were 
included as model inputs, it is possible to map the probability of yield gain for CA (NT with crop rotation 
and soil cover) and variants systems (NT partly or not implemented with crop rotation and soil cover) vs. 
CT. Maps were generated for all crop species at a spatial resolution of 0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒. 

5.4.3 Global projection 
The fitted random forest model was used to estimate the probability of yield gain from CA system and their 
variants vs. CT without crop rotation (-R) and without soil cover (-SC) for each grid cell located in cropping 
regions under current (2011-2020) and future (2051-2060) climate scenarios. This variant of CT was chosen 
as a baseline comparator because it prevails in the training dataset 10,11. The monthly-average values of the 
climatic variables (PB, Tmin/Tave/Tmax) were calculated in each grid cell over the two time periods 
considered, and then these data were used to calculate the climatic variables during the growing season 
based on the crop calendar database16 (assume no change in current and future scenario). All the climatic 
data in both current and future scenarios were obtained from four climate models: Gfdl-esm2m, Hadgem2-
es, Ipsl-cm5a-lr, and Miroc5, and 4 RCP scenarios: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. This results 
in 32 combinations (4 climate models × 4 RCP scenarios × 2 periods). We mainly focused on the Ipsl-
cm5a-lr model and RCP 4.5 scenario in the baseline simulations, because of their importance and similar 
role in the protocol of ISIMIP2b project45. However, results from all combinations were analyzed and 
shown in Extended data figure 3. All the climatic data can be downloaded through the website of Lawrence 
Livermore National Laboratory 46.  

We did not change the categorical inputs describing cropping practices between current and future scenarios. 
The global soil texture was set based on HWSD dataset43. To compare the performance across different 
cropping systems, we mapped the probability of yield gain, and the change of yield gain probability under 
climate change with the systems of CA (+F+WD) vs. CT-R-SC (+F+WD), CA (-F-WD) vs. CT-R-SC (-F-
WD), NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD), NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD), NT-R-
SC (-F-WD) vs. CT-R-SC (-F-WD),  where +/- R indicated crop rotation set as “yes” / “no”, +/- SC 
indicated soil cover set as “yes” / “no”, +/- F indicated fertilization set as “yes” / “no”, and +/- WD indicated 
weed and pest control set as “yes” / “no”. As for crop irrigation, it was set based on the crop irrigation mask 
from MIRCA2000 dataset 47. When more than 50% of the area in a grid cell were under rainfed conditions 
for a given crop in the MIRCA2000 database, this cell was then considered as non-irrigated for this crop, 
and vice versa. See Appendix D table 1 for the details of model settings. The model outputs were mapped 
at a spatial resolution of 0.5° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 × 0.5° 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 based on the MIRCA2000 crop mask database47. 
Accumulated area fractions under different levels of yield gain probability and different levels of 
probability change between current and future scenarios were computed at the global scale and in different 
climate regions.  
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5.4.4 Climate regions  
The “global” indicated the global cropping region for each crop25. According to the Köppen-Geiger 
classification 18 and its nomenclature (Appendix D figure 8). The “tropical climate” included the regions 
with the climate types Af, Am, As, Aw 18. The “dry climate” included the regions with the climate types 
BWk, BWh, BSk, BSh 18. The “temperate climate” included the regions with the climate types Cfa, Cfb, 
Cfc, Csa, Csb, Csc, Cwa, Cwb, Cwc 18. The “continental climate” included the regions with the climate 
types Dfa, Dfb, Dfc, Dfd, Dsa, Dsb, Dsc, Dsd, Dwa, Dwb, Dwc, Dwd 18. 
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Chapter 6 General discussion 
The world is facing new challenges under the changing climate, the increasing pressure on land and 
resources, and the growing food demanding. There are persistent difficulties in achieving a climate secure 
future 1,2. Given these challenges related to climate change, food insecurity and ecosystem instability, the 
livelihoods of millions of people in developing countries are at risk. Achieving food security and 
maintaining ecosystem resilience to climate change are therefore prominent priorities. There is a wide gap 
in the understanding of climate change impacts related to agricultural production and food, especially at the 
regional level. Therefore, ensuring food security is challenging, and climate change makes it even more 
difficult, in turn affecting the achievement of Sustainable Development Goals (SDGs).  

This thesis has shed light upon some concept farming systems, i.e., conservation agriculture and its variant 
systems, to achieve climate mitigation and adaptation. Through the machine learning pipeline, the 
productive performance of CA (and its variants) vs. CT under past, current and future climate were assessed 
and mapped. The preferable geographical regions, climate conditions and farming practices for CA (and its 
variants) implementation were identified, which could help the researchers to have a further understanding 
on how climate change affect the performance of CA and CT systems. The maps could also help 
policymakers to select the regions with high probability of yield increase to promote CA system. 

6.1 Practical value of this machine learning pipeline and how to adapt it into other type of cropping 
systems 
Machine learning is the science of making computer acts without being explicitly programmed. In the past 
decade, machine learning algorithms have been utilized in self-driving car, speech recognition, web search, 
and to process and analyze complex and high-dimensional data 3. In this thesis, we proved that the data 
collected from the publications are capable of doing more complex analyses than standard meta-analysis, 
e.g., through machine learning approaches. Meta-analysis refers to the statistical analysis of a large 
collection of analysis or experimental results from individual studies for the purpose of integrating the 
findings 4, it has been widely used in agronomic data analysis, and a well-designed meta-analysis can 
provide valuable synthetic information to scientists and policy makers based on mean effect size estimation. 
However, summarizing large amounts of information by way of a single mean effect value is not always 
satisfactory, especially when considering agricultural practices. To overcome this disadvantage of meta-
analysis and gain further insight in the hidden relationship among the data, in chapter 3, we presented a 
machine learning pipeline, that train the machine learning models for different usage, including predicting 
the probability yield increase or decrease (classification), predicting the conditional mean of yield change 
(regression), and estimating the range of yield change (quantile regression). Through this pipeline, we also 
compared and mapped the productive performance of different cropping systems.  

In general, to use this machine learning pipeline to train the machine learning model that can predict the 
performance of different cropping systems at the global scale, we need to prepare a training dataset that 
contained the target variable, e.g., crop yield, of target cropping systems, e.g., CA vs. CT; The locations of 
experimental site, e.g., latitude and longitude; The farming practices used in the experiment, e.g., the 
management of crop residue, rotation, irrigation, fertilizer, pesticide, herbicide, etc. And to ensure the 
consistency among the experimental records, we suggest that the local climate conditions at that year or 
growing season could be collected from the external datasets based on the locations, such external datasets 
include the products of Coupled Model Intercomparison Project Phase 6 (CMIP6) which can be accessed 
through Lawrence Livermore National Laboratory 5.  

The amount of data needed and the requirement of its distribution for this pipeline to train a good model 
with high accuracy are unknown. But based on the results of this thesis, we suggest that the larger amount 
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of the data could potentially give a better performance of model, and as for the distribution of the data, we 
are able to train the model with good performance with unbalanced dataset, because this pipeline can 
compare different machine learning algorithms and find the best algorithms and their hyperparameters to 
reach a high accuracy. 

And to use the trained model from this machine learning pipeline to predict and project the differences 
between cropping systems on a global map, we need to prepare to gridded dataset that can be sent to the 
trained model for prediction. It should contain the gridded climate data at global scale, farming practices, 
and other variables that are the inputs in the trained model. Here the gridded climate data can be also gain 
from the products of CMIP6, the performance of different cropping systems under different time-slices can 
be discussed here (past, current and future scenario). By defining different scenarios of farming practices 
used in the experiment, the impact of different farming practices on the performance of cropping systems 
can be also assessed, e.g., with vs. without crop rotation, with vs. without crop residue retention etc. 

This pipeline can be easily adapted in many other studies and can be used to analyze a diversity of outcomes. 
These may involve the effects of crop management practices on crop yield, soil organic carbon dynamics, 
greenhouse gas emissions, biodiversity, etc. for different types of cropping systems, such as conservation 
agriculture, organic agriculture or agroforestry, thus, provide valuable information on the local performance 
of sustainable farming practices together with a global perspective. And what we need to prepare to adapt 
this pipeline to those studies is to collect the data from the published studies or find the dataset that contains 
the target variable of target cropping systems, locations, and other farming practices as described above. 
As for the prediction and projection stage, what we mainly need to do is to define different scenarios of 
climate conditions and farming practices to study the impact of climate and farming practices on the 
performance of cropping systems.  

Concerning the first research question proposed in this thesis, here, based on the crop yield dataset of CA 
and its variants vs. CT systems presented in chapter 2 and the machine learning pipeline described in chapter 
3, we trained and compared 12 different machine learning algorithms through this pipeline to assess the 
performance of CA and its variants vs. CT. We identified that random forest algorithm is best algorithm for 
this study. And we mapped the performance of CA and its variants vs. CT systems at the global scale based 
on the results from this algorithm. Those maps provide more detailed geographical information than mean 
effect size in standard meta-analysis, which is very important in the analysis of agricultural production as 
it is highly dependent on the local climate conditions 6–8, soil characteristics 9–11, and agricultural 
management practices 7–9,12,13, that often vary in time and space. And it proves that machine learning pipeline 
indeed give us more valuable information than meta-analysis. 

6.2 The productive performance of conservation agriculture  
Concerning the other research questions about the performance of CA and its variants vs. CT systems, 
based on the maps generated from this ML pipeline, in this thesis, we do reveal large differences in the 
productive performance associated with the adoption of CA and its variants across crops, farming practices, 
geographical regions, and climatic conditions.  

We show that CA has a better performance than NT, especially when combined with the proper agronomical 
practices (Appendix D figure 1, Appendix D figure 2). We reveal that soil cover has a stronger positive 
effect on this performance than other management practices such as fertilizer inputs, weed and pest control, 
and crop rotation (Appendix D figure 1, Appendix D figure 2). Therefore, keeping the soil covered by crop 
residues appears to be an important factor for the success of CA systems. However, in practice, maintaining 
crop residues might be challenging in some regions, such as Africa, where the crop residues are used to 
feed livestock 14,15. In such situations, a possible solution would be to rely on alternative sources of plant 
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materials, e.g., residues from cover crops, grass, leaf litter from trees, sawdust, etc. 14. Although less 
influential, our results show that other farming practices, such as the management of fertilization and the 
control of weeds and pests, can also boost the probability of yield gain of CA and its variants 7,8,16–19. 

As for the impact of climate variables affect the productive performance, our results show that CA and its 
variants have better productive performance under relatively dry conditions (Figure 4.1), and this is 
consistent with previous work 6–8,17,20,21. We reveal the spatial variance of the performance of CA. The 
overall performance of CA is better in continental, dry, and temperate regions than in tropical regions 
(Figure 5.1a, Figure 5.1d-g, Appendix D figure 1.a2-g2, Appendix D figure 2.a1-h1). This pattern is also 
in line with previous work 7.  

This productive performance also varies from different crop species. In this thesis, we show that the 
performance of CA and its variants are particularly poor for rice. For this crop, the probability of yield 
increase is lower than 0.5 (which indicates a higher probability of yield loss) over about 60% of its global 
cropping area, and in about 85% of its cropping area in the tropics (Figure 5.1d, Appendix D figure 1.d2). 

The productive performance change of CA and its variants under climate change also show important 
geographical variations, but the magnitude of this change is relatively moderate. Over approximately half 
of the cropping areas, a decrease of up to 10% in this probability is expected, while in the other half an 
increase of up to 15% may be anticipated (Figure 5.2). However, in some important cases the effect of 
climate change is stronger, especially for maize in tropical regions where the probability of yield gain with 
CA increases in about 70% of the cropping area. Besides, for more than 20% of the maize cropping area in 
this climate zone, the increase on the probability of yield increase is higher than 10% (Figure 5.2c). An 
increase in yield gain is also expected for more than 60% of the cropping area for rice in dry regions and 
for soybean in tropical regions (Figure 5.2d, Figure 5.2f). This fraction rises to more than 70% of the 
cropping area for sorghum in continental regions (Figure 5.2e).  

Although several variants of CA systems may be associated with a high probability of yield loss in many 
regions, we show that, under future climate conditions and with good agricultural management practices, 
the relative productive performance of CA is expected to increase for several crop species. This is especially 
true for maize in tropical regions, which further strengthens the competitiveness of CA for this staple crop. 
Thus, in this thesis, we support the idea that CA will be a relevant option for cropping systems in the future, 
capable of ensuring a long-term, sustainable agricultural production for some key cropping areas 22,23. 

6.3 Conservation agriculture from a sustainability perspective 
In addition to the potential benefits CA can bring in food security, it is also proved that CA can reduce soil 
erosion and improve soil structure and soil quality, which is essential for a sustainable production. In CA 
systems, crop residues reduce the risk of crop failure and increased yield stability since it could decrease 
the rate of soil temperature change 24, increase the minimum soil temperature in extreme cold conditions 25–

27, and provide a buffer layer that can increase the crop resistance to the increasing climate variability and 
the occurrence of extreme events 28. It is also reported that the residues retained on the soil surface reduce 
soil evaporation and water runoff 29,30, increase soil water content 31, soil water retention capacity and 
mitigates drought effects 32–34, and increase soil organic matter 35. These factors all contribute to increase 
the probability of yield gain. Therefore, CA reduces the risk of crop failure and increased yield stability. 

CA and NT systems have been proposed to ensure a more sustainable land use, however, the increased 
weed pressure is often an impediment to their adoption 36. It is reported that the demand of herbicides 
increases in CA and NT systems comparing with CT systems 37,38. To limit the over-reliance of herbicides 
for weed control in CA and NT systems, several alternative methods have been proposed, including manual 
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and hoe weeding, etc. 39. Such alternative methods could reduce the herbicides usage in CA and NT systems, 
but also increase the time and labor demands by up to 50% 40. Thus, sustainable weed managements are 
needed in CA systems. Designing a proper crop rotation in CA systems could be a successful approach to 
reduce weed pressure. Weeds are often associated with specific crop species. By changing the sequence of 
crop species can reduce the chances of the infestation of particular weed, thus, reduce the weed pressure 
41,42. Soil cover during fallowing is also key to suppress different weeds by impeding light and air 43,44. Thus, 
we recommend that NT systems should be implemented with proper agricultural management practices, 
such as permanent soil cover, dynamic crop rotation, crop fertilization, weed and pest control, and all the 
other good agricultural management practices like seed selection, irrigation management.  

6.4 Novelty of this thesis 
We conducted a new global dataset of crop yield of CA systems and its variants versus CT systems under 
a wide range of farming practices, soil characteristics and climate conditions over the growing season in 
different experimental years. The inclusion of climate variables from external datasets allows us to analyze 
the effects of the intra-annual climate variabilities on the productive performance of CA and its variants. 
And it is also the first time that the performance of conservation agriculture is discussed under the future 
climate.  

As for the methods we used in this thesis, we developed a machine learning pipeline to analyze these data 
collected from the published papers, which is able to map and compare different cropping systems at the 
global scale based on machine learning algorithms. And it is also the first time 12 machine learning 
algorithms were compared based on the same dataset for different usages: classification, quantitative 
prediction and quantile regression. In classification, we use the probabilistic approach to analyze the dataset, 
instead of predicting the categories of yield increase or decrease. In quantile regression, we created a new 
approach, error score, to evaluate the overall performance of the model’s interval prediction ability for all 
quantiles, which is more comprehensive than traditional coverage rate.  

In this thesis, through the machine learning pipeline, we mapped the productivity of CA and its variants 
under different climate scenarios and different farming practices. The maps give us a better understanding 
in geographical variety of the performance of CA and its variants under different local conditions and help 
us identify the regions that have higher or lower probability of yield gain from shifting CT to CA and its 
variants for eight major field crops, which bring meaningful and novel information to policymakers and 
agricultural extension services. 

6.5 Limitations 
This thesis has several limitations. First, the data is unbalanced in this dataset. Most of the data collected 
pertains to humid climates rather than arid climates, which might cause the model has higher accuracy in 
humid regions than arid regions. The number of yield observations for different crop species are also very 
different, which may be linked to the different accuracies for different crop species. As mentioned in chapter 
2, 4403 paired yield observations are recorded in the final dataset, and among those observations, there are 
1690 observations for maize and 1041 observations for winter wheat, while there are only 195 observations 
for rice and 61 observations for sunflower. The model accuracies for different crop species are shown in 
Appendix D Figure 7. As shown in the results, the AUC of maize and wheat are 0.797 and 0.766, 
respectively, while the accuracies of rice and sunflower are 0.696 and 0.64, respectively. It may suggest 
that a larger number of observations can contribute positively to a higher model accuracy. But it does not 
mean that a smaller number of observations cannot train a model with high accuracy, for instance cotton, 
the number of observations of cotton yield is quite limited, but it still has a good model performance.  
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As for farming practices, crop irrigation was considered only as a categorical variable here due to a lack of 
global data on this practice, even though it still proved meaningful in terms of yield impacts. The type of 
fertilizer, herbicide and pesticide applied is not included in the model, the usage of fertilizer, herbicide and 
pesticide is not quantified, in this thesis, we consider them as categorical variables (with / without the usage 
of fertilizer, herbicide and pesticide). The area that covered by crop residues, and the amount of residues 
left on the field, and the type of residues are not considered in this study, while may potentially have a high 
impact on the crop yield. In this study, the soil is considered as covered as long as the area of the field is 
covered by at least 30% of the total area. Including the quantitative values of farming practices might 
increase the model accuracy.  

Finally, to deal with missing climate and soil data in the selected papers, we used climate and soil data from 
external databases on a systematic basis. Consequently, crop growing season, precipitation, potential 
evapotranspiration, minimum temperature, average temperature, maximum temperature throughout the 
growing season, and soil texture may not always match local records. The mismatch of the records and 
external databases from the climate models may increase the model uncertainty, especially for the instance 
of outliers. The climate condition we discussed in this thesis is the mean or accumulated condition over the 
crop growing season, comparing with previous studies 7,8 which use the average climate condition over 
years, it helps us to reveal the impact of intra-annual and part of inter-annual variability of climate 
conditions on crop yield. However, besides the mean or accumulated climate condition over the crop 
growing season, the distributions of those variables in the crop growing season also have a large impact on 
the crop yield. For example, a low temperature during the plant’s germination stage might damage the 
cytoplasmic membranes of seeds that rich in protein 45, in turn affecting the yield. Thus, the crop yield may 
be very different even when the average temperature in two sites is the same. Therefore, the results showed 
in the thesis might not be as accurate as the analysis that uses the daily or monthly climate variables and 
cannot fully reveal the impact of inter-annual variability of climate variables on crop yield. 

6.6 Perspectives 
There are still a lot of knowledge gaps related to CA and NT systems that are worth to be addressed in 
future studies.  

6.6.1 Proposal 1: The impact of different type of soil covers on crop yield and soil organic carbon 
In this thesis we show that soil cover is important to boost the productive performance of CA system, 
however, maintaining crop residues as soil cover might be challenging in some regions, such as southern 
Africa, where the crop residues are usually used as the feed of livestock 14,15,46. In such situation, a possible 
solution would be to rely on alternative sources of plant materials, e.g., residues from grass, leaf litter from 
trees, sawdust, bark mulch, etc. 14,46. Few studies have been conducted to study the impact of different type 
of soil covers on crop yield and soil organic carbon, thus, experiments can be designed to compare and 
analyze the potentials of different type of soil covers in boosting the crop yield and soil organic carbon 
sequestration. 

6.6.2 Proposal 2: The impact of NT system on soil temperature  
Soil temperature is also one of the most important environmental factors that can affect the plant 
development and growth 47,48, control the biological and biochemical reactions in the soil, and in turn 
affecting the organic matter formation and decomposition, and fertilizer efficiency 47–50. A higher level of 
soil organic matter and organic carbon content will improve the soil structure, reduce the erosion, increase 
the potential crop productivity, and mitigate the climate change 51–53.  

NT practice will change the soil structure, soil water content, soil oxygen content and heat conductivity 54,55, 
resulting in a different soil oxygen content, moisture, temperature at different levels of soil depth, which 



General discussion 

116 
 

will change the decomposition rate of soil organic matter. There are several experiments conducted to study 
how NT will affect the soil temperature at regional scale 56–60, the data can be extracted from such 
publications to analyze and map how this impact varies with different soil characteristics and air 
temperatures. It is important to map the impact of NT on soil temperature at the global scale in both current 
and future climate conditions since it can have a big influence on crop growth and decomposition rate of 
soil organic matter in some regions and is very important to achieve the local SDGs.  

6.6.3 Proposal 3: The economic viability of CA and NT systems at the global scale 
Conservation agriculture is economically attractive because it demands less labor and machinery inputs 61,62, 
however, the yearly productivity from CA varies a lot under different local climate conditions, soil 
characteristics, and farming practices 7,8,13,46, therefore, the economic viability of CA remains uncertain. 
The implementation of CA is depending on its economic viability because it is one of the main concerns of 
farmers when considering whether they should adapt CA systems to replace the CT systems. The local 
government might provide subsidies to promote CA systems, however, this varies dramatically in different 
regions with different policies. Moreover, the market price for agricultural products also varies a lot 
depending on the food demands and supply in that year, which makes it hard to estimate accurately the 
economic viability of CA systems at the global scale.  

The models generated from this thesis can be used to predict the productive performance of CA and its 
variant systems vs. CT systems under different farming practices and climate conditions in different years, 
thus, it is possible to estimate the economic viability and reduce its uncertainty when combining with the 
price data of global agricultural production trade.  

6.6.4 Proposal 4: Compare the results from data-driven models and knowledge-driven models 
Data-driven models and knowledge-driven models are complementary. The using of complex functions to 
fit data enables data-driven machine learning models to achieve a relatively higher accuracy, but one of 
major limitations is the difficulty to explain the results 63. While the knowledge-driven models are 
developed based on the scientifically and biologically meaningful hypotheses that are examined by many 
experiments. Such hypotheses greatly simplified the learning process and can achieve a reasonable 
performance, but the parameter calibration can be challenging due to the complex structures of these 
models64.  

In this thesis, we trained a lot of data-driven models that are capable of predicting the crop yield under CA 
and NT systems vs. CT systems for different crop species and at the global scale. To know the more about 
the regional prediction performance, or to explain the results for a specific region, we can compare the 
results from those data-driven models to knowledge-driven models. And we can also use the results from 
the data-driven models to calibrate the knowledge-driven models if we want to apply the knowledge-driven 
models to the regions with limited experimental observations. 
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Chapter 7  General conclusion 
 

In this thesis, we proved that the experimental data collected from the publications are capable of doing 
more complex analyses, e.g., through machine learning approaches, than simply meta-analysis. We 
designed a machine learning pipeline that can be used to analyze the impacts of different cropping systems, 
such as agroforestry, organic agriculture, etc., on crop yield, soil organic carbon, greenhouse gas emission, 
biodiversity, etc. Our machine learning pipeline offers an opportunity to compare, analyze and map these 
the performance of these cropping systems under different geographical regions, climate zones, and 
different farming practices, which can help the researchers and policymakers to have further understanding 
of them, and in turn enhance their adaption based on the local conditions. 

In this thesis, we discussed the productive performance of CA and NT systems vs. CT systems under 
different farming practices and climate scenarios. Our results showed that CA performed better than NT 
practices, and keeping the soil covered is the most effective farming practice that can boost the performance 
of NT system. Thus, we highly recommend that no-till practice should be always integrated with soil cover 
and crop rotation. Although less influential, other farming practices also appear to increase the productive 
performance of CA, in particular fertilization and weed and pest control. Thus, we suggest that field 
fertilization, weed and pest control should be incorporated in CA system.  Here, we provided the maps that 
revealed the performance of CA and NT systems vs. CT systems at different geographical regions, the 
suitable regions for the implementation of CA and NT systems can be identified. We proved that CA and 
NT systems have better performance in dryer regions, and we showed that tropical regions are less suitable 
for their implementation, however, for some crop species, such as maize, under future climate conditions, 
the performance of CA is expected to increase in this area, which improves the competitiveness of CA and 
NT systems for this staple crop. 

We confirm that CA is one of the promising cropping systems that can ensure a long-term sustainable crop 
production and increase the food stability under climate change. Although CA may not always outperform 
CT concerning of crop yield, CA can provide a range of ecosystem services far beyond biomass production, 
those ecosystem services include improving the soil health, reducing the soil erosion risk, etc., while the 
present traditional tillage systems are causing serious land degradation, which will increase the risk of food 
security in the future, and increase emissions and reduce carbon sinks. Therefore, CA is a promising practice 
that can be promoted to sustain the long-term food production, while conserve the environment. 
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Appendix A figure 1 | Probability of yield increase of winter barley under NT vs. CT practice in the average climate conditions of 1981-
2010.
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Appendix A figure 2 | Probability of yield increase of winter barley under CA vs. CT practice in the average climate conditions of 1981-
2010. 
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Method to train machine learning models based on our dataset 

The machine learning algorithms, e.g. random forest, can be trained based on the 4403 paired crop yield 
observations collected from papers 1-413. It can be used to analyze the yield ratios of NT vs. CT as the 
function of climatic variables, crop types, soil textures, and agricultural management activities. And this 
can be done in R software with the package “randomForest”. To train the model, set the climatic variables 
during the growing season such as PB, Tmin/Tave/Tmax as numerical predictor variables; Set crop type, 
soil texture, and agricultural management activities including crop irrigation, field fertilization, control of 
pests and weeds, crop rotation and soil cover as categorical predictor variables; Set the column AP (Yield 
increase with NT) as response variable. When training, each tree in a random forest learns from a random 
sample of the data points, the samples are drawn with replacement (bootstrapping), only a subset of all the 
inputs are considered for splitting each node in each decision tree. Predictions are made by averaging the 
predictions of all decision trees. 

The sample code for training the random forest model is available in “Code.zip” in figshare repository 
provided in the main manuscript. When setting the “proximity” as Ture, the model output is the probability 
of yield gain from NT vs. CT.  

   

Method to producing the global maps of NT (or CA) vs. CT practices on our dataset 

After the training the random forest model, supply the trained model the global climate variables and soil 
texture, plus the self-defined agricultural management activities, then the model can be used to predicting 
the performance of NT (or CA, when set with crop rotation and soil cover) vs. CT at the global scale under 
different agriculture management activities. 

The sample codes for using the random forest model to predict (in R software) and map (MATLAB) the 
global performance of NT (or CA) vs. CT are available in “Code.zip” in figshare repository provided in the 
main manuscript. More codes can be requested by sending email to corresponding author. 
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Appendix B table 1 | Description of the machine learning algorithms used in this study 

 
Machine learning 

algorithms 
Used in the 

models 

R packages used 
to train the 

model 

Brief description 

1 Random forest (RF) 
Classification (C) 
& regression (R) 

ranger  
(version 0.12.1) 

The random forest algorithm is a 
community-based algorithm that 

performs classification or 
regression tasks based on decision 

trees 1.  

2 
Random forest with 
spatial correlations  
(RF with spaMM) 

C & R 
ranger (version 

0.12.1) & spaMM 
(version 3.6.0) 

RF outputs are used as inputs in 
spaMM in order to take spatial 
correlation into account using 

Matern correlation matrix and a 
generalized linear mixed model 2. 

3 
Gradient boosting 

(GBM) 
C & R 

gbm  
(version 2.1.8) 

GBM produces a strong learner in 
the form of an ensemble of weak 

learners fitted using a gradient 
descent optimization algorithm  3. 

4 
Extreme gradient 

boosting 
(XGBOOST) 

C & R 
xgboost 

(version 1.3.2.1) 

The XGBoost algorithm is an 
algorithm based on the decision 

tree approach and uses a gradient 
boosting system 4. 

5 
Artificial neural 

networks 
(ANN) 

C & R 
RSNNS 

(version 0.4-12) 

Artificial neural networks are 
computational systems developed 
which are inspired from neurons 
in the human brain and from the 
connections established by these 

neurons 5.  

6 
Support vector 

machine 
(SVM) 

C & R 
e1071 

(version 1.7-5) 

The SVM algorithm is a 
discriminatory classification 

algorithm that attempts to make 
classification by producing a line, 

plane, or hyperplane that 
separates points at two or more 
dimensions from each other 6,7.  

7 
K-nearest neighbor 

(KNN) 
C & R 

caret 
(version 6.0-86) 

The k-Nearest Neighbor 
algorithm performs classification 
and regression tasks based on lazy 

learning 8.  

8 
Generalized linear 

model 
(GLM) 

C & R 
stats 

(version 4.0.4) 

The generalized linear model 
handles probability distributions 

from the exponential family (e.g., 
binomial) and is widely used for 
classification. Its parameters are 

estimated using iteratively 
reweighted least squares method 

for maximum likelihood 
estimation s 9.  

9 
Naïve Bayes 

(NB) 
C 

e1071 
(version 1.7-5) 

Naïve Bayes is a conditional 
probability model in which 
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posterior is calculated as 
likelihood times prior then 

divided by normalization factor 10. 

10 
Quantile regression 

forest 
(QRF) 

Quantile 
regression (Q) 

quantregForest 
(version 1.3-7) 

Quantile random forests estimate 
conditional quantiles of response 
variables, which provides more 

information than conditional 
mean alone 11. 

11 
Quantile regression 
gradient boosting 

(QRGBM) 
Q 

gbm  
(version 2.1.8) 

Quantile regression gradient 
boosting model is obtained from 
gradient boosting machines with 

quantile loss functions 12. 

12 
Quantile regression 

neural network 
(QRNN) 

Q 
qrnn 

(version 2.0.5) 

Quantile regression neural 
network is an extension of linear 

quantile regression with an 
artificial neural network, which is 

capable of probabilistic 
predictions of mixed discrete-

continuous variables 13,14. 
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Appendix B table 2 | Performance of classification models 

 Algorithms 
CV 

AUC 
Test AUC 

1 Random forest (RF) 78.4% 79% 

2 
Random forest with spatial correlation 

(RF with spaMM) 
77.3% 78.9% 

3 

Generalized linear model 
(GLM) 

 
Use step function to find the best model 

NA 64.4% 

4 
Gradient boosting  

(GBM) 
77.1% 78.6% 

5 
Extreme gradient boosting 

(XGBOOST) 
77.3% 78.3% 

6.1 
Artificial neural network 

(ANN with 1 hidden layer) 
72.9% 74.4% 

6.2 
Artificial neural network 

(ANN with 2 hidden layers) 
73.6% 75.2% 

6.3 
Artificial neural network 

(ANN with 3 hidden layers) 
74.1% 72.0% 

6.4 
Artificial neural network 

(ANN with 4 hidden layers) 
73.8% 73.8% 

6.5 
Artificial neural network 

(ANN with 5 hidden layers) 
73.4% 72.7% 

7 
Support-vector machines 

(SVM) 
68.8% 72.7% 

8 
Naive Bayes 

(NB) 
60.8% 64.7% 

9 
k-nearest neighbours 

(KNN) 
72.6% 73.3% 
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Appendix B table 3 | Performance of regression models. Outliers out of 95% confidence interval were 
excluded. 

 Algorithms CV R^2  Test R^2 
1 Random forest (RF) 0.4937 0.5197 

2 Random forest with spatial correlation 
(RF with spaMM) 

0.4547 0.5154 

3 Generalized linear model 
(GLM) 

 
Use step function to find the best model 

NA 0.1186 

4 Gradient boosting  
(GBM) 

0.4841 0.4754 

5 Extreme gradient boosting 
(XGBOOST) 

0.4704 0.4673 

6.1 Artificial neural network 
(ANN with 1 hidden layer) 

0.2842 0.3022 

6.2 Artificial neural network 
(ANN with 2 hidden layers) 

0.3033 0.3265 

6.3 Artificial neural network 
(ANN with 3 hidden layers) 

0.3098 0.3831 

6,4 Artificial neural network 
(ANN with 4 hidden layers) 

0.3164 0.26477 

6.5 Artificial neural network 
(ANN with 5 hidden layers) 

0.3043 0.2993 

7 Support-vector machines 
(SVM) 

0.3818 0.4536 

8 k-nearest neighbours 
(KNN) 

0.3224 0.3619 
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Appendix B table 4 | Performance of range regression models 

Models/packages 
With/Without 
outlier filter 

CV CR 
80% 

Test CR 
80% 

Test 
area of CR 

curve 
above 1:1 

line 

Test 
area of CR 

curve below 
1:1 line 

Test Error 
Score 

Quantile 
regression forest 

(QRNN) 
With 81.57% 81.61% 0.0031 0.0056 1.73% 

Quantile 
regression forest 

(QRNN) 
Without 80.90% 81.19% 0.0129 0.0023 3.04% 

Quantile 
regression GBM 

(QRGBM) 
With 80.01% 80.36% 0.0014 0.0114 2.56% 

Quantile 
regression GBM 

(QRGBM) 
Without 79.99% 78.45% 0.0011 0.0059 1.38% 

Quantile 
regression neural 
network with 1 

hidden layer 
(QRNN) 

With 78.53% 76.84% 0.0051 0.0203 5.07% 

Quantile 
regression neural 
network with 1 

hidden layer 
(QRNN) 

Without 78.31% 77.31% 0.0057 0.021 5.35% 

Quantile 
regression neural 
network with 2 
hidden layers 

(QRNN2) 

With 73.06% 72.87% 0.0097 0.0504 12.02% 

Quantile 
regression neural 
network with 2 
hidden layers 

(QRNN2) 

Without 68.47% 66.02% 0.0082 0.0707 15.79% 
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Appendix B table 5 | Model setting for global projection 

Model input 
Setting (for each grid cell and 

each crop) 
Source 

Precipitation  
 Mean precipitation in the 

growing season of 1981-2010  

National Oceanic and 
Atmospheric Administration 

(NOAA)15 

Evapotranspiration 
Mean potential 

evapotranspiration in the 
growing season of 1981-2010 

Data from GLEAM (Global 
Land Evaporation Amsterdam 

Model) 16,17 

Precipitation balance 
Precipitation - 

Evapotranspiration 

 National Oceanic and 
Atmospheric Administration 

(NOAA)15 

Average temperature 
Mean average temperature in 
the growing season of 1981-

2010 

 National Oceanic and 
Atmospheric Administration 

(NOAA)15,18 

Maximum temperature 
Mean maximum temperature 

in the growing season of 
1981-2010 

 National Oceanic and 
Atmospheric Administration 

(NOAA)18 

Minimum temperature 
Mean minimum temperature 

in the growing season of 
1981-2010 

The University of Tokyo19 

Soil texture HWSD data 
University of Wisconsin-

Madison20,21 

Crop growing season 
Month of planting to 
harvesting in the crop 

calendar dataset for each crop 
Goethe University22 

Crop mask MIRCA2000 data Goethe University22 
Irrigation mask MIRCA2000 data  

Crop type Spring barley  
Fertilizer utilization in CA Yes   
Fertilizer utilization in CT Yes   

Control of weed and pest in CA Yes  
Control of weed and pest in CT Yes  

Crop rotation in CA Yes  
Crop rotation in CT No  

Soil cover in CA Yes  
Soil cover in CT No Goethe University22 

Crop irrigation in CA Based on crop irrigation mask Goethe University22 

Crop irrigation in CT Based on crop irrigation mask 
National Oceanic and 

Atmospheric Administration 
(NOAA)15 

NT implementation year 
5 years  

(the median value of NTyear 
in the dataset) 

 

Latitude 
Latitude of the grid cell in the 

global map 
 

Longitude 
Longitude of the grid cell in 

the global map 
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Appendix B table 6 | Settings for model grid searching 

 Algorithms Grid search setting  

1 Random forest (RF) 

 
mtry in (2,3,4,5,6,7,8,9,10,11) 
ntree in (300,400,500,600,700,800,900,1000) 
 

2 
Random forest with spatial correlation 

(RF with spaMM) 

 
mtry in (2,3,4,5,6,7,8,9,10,11) 
ntree in (300,400,500,600,700,800,900,1000) 
 

3 
Generalized linear model 

(GLM) 
Use stepwise algorithm 23 based on step function for 
model selection 

4 
Gradient boosting  

(GBM) 

 
ntree in (100,500,1000,2000,3000) 
 shrinkage in (0.001,0.01,0.1,1) 
 fraction in (0.1,0.5,1) 
 depth in (1,5,10) 
 node in (10, 30, 50) 
model in ("bernoulli") for classification 
model in ("tdist","gaussian") for regression 
 

5 
Extreme gradient boosting 

(XGBOOST) 

 
max_depth in (3,5,7,9,11,13,15) 
eta in (0.001,0.01,0.05,0.1,0.5) 
nround in (50,100,500,1000) 
 

6.1 
Artificial neural network 

(ANN with 1 hidden layer) 

 
layer 1 in (from 2 to 51) 
decay in (0.0001,0.001,0.01) 
 

6.2 
Artificial neural network 

(ANN with 2 hidden layers) 

 
layer 1 in (15,20,15,30,35,40,45,50) 
layer 2 in (2,3,4,5,6,7,8,9,10,11) 
 

6.3 
Artificial neural network 

(ANN with 3 hidden layers) 

 
layer1 in (35,40,45,50) 
layer2 in (12,14,16,18,20,22,24,26,28,30) 
layer3 in (2,3,4,5,6,7,8,9,10) 
 

6.4 
Artificial neural network 

(ANN with 4 hidden layers) 

 
layer1 in (35,40,45,50) 
layer2 in (22,25,28) 
layer3 in (12,14,16,18,20) 
layer4 in (2,4,6,8,10) 
 

6.5 
Artificial neural network 

(ANN with 5 hidden layers) 

 
layer1 in (35,40,45,50) 
layer2 in (25,28) 
layer3 in (15,18) 
layer4 in (8,10,12) 
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layer5 in (2,4,6) 
 

7 
Support-vector machines 

(SVM) 

 
gamma in (0.0005,0.001,0.01,0.05,0.1,0.5) 
cost in (from 1 to 20) 
 

8 
Naive Bayes 

(NB) 
laplace in (from 0 to 20) 

9 
k-nearest neighbours 

(KNN) 

 
k in (from 1 to 20) 
l in (from 0 to (k-1)) 
 

10 
Quantile regression forest 

(QRF) 

 
mtry in (2,3,4,5,6,7,8,9,10,11,12,13,14,15) 
ntree in (300,400,500,600,700,800,900,1000,2000,5000) 
 

11 
Quantile regression GBM 

(QRGBM) 

 
ntree in (100,500,1000,2000,3000) 
 shrinkage in (0.001,0.01,0.1,1) 
 fraction in (0.1,0.5,1) 
 depth in (1,5,10) 
 node in (10, 30, 50) 
model in (“quantile”) 
 

12.1 
Quantile regression neural network 

(QRNN) 
layer 1 in (from 2 to 51) 

12.2 
Quantile regression neural network 

(QRNN2) 

 
layer 1 in (15,20,15,30,35,40,45,50) 
layer 2 in (2,3,4,5,6,7,8,9,10,11) 
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Appendix B Figure 1 |  Maps of relative barley yield change of different quantiles. There was a 90% chance that the relative yield change will 
be higher than the ratio shown on the map in plot a, and conversely a 10% chance that the relative change will be lower. The maps were generated 
with MATLAB R2020a (Version 9.8.0.1451342, https://fr.mathworks.com/products/matlab.html ). 
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Appendix B figure 2 | Shapley value of precipitation balance (PB). Plots a and b show that a lower PB contributes to a higher Shapley value, 
while indicates what CA has better performance when PB is lower or when climate is drier. Plots were generated based on the results from R package 
iml (version 0.10.1) and fastshap (version 0.0.5).
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Appendix B figure 3 | Shapley value of NT implementation year (NTyear). Plots a and b show that a larger value of NTyear contributes to a 
higher Shapley value, while indicates what CA has better performance when the period of NT implementation is longer. Plots were generated based 
on the results from R package iml (version 0.10.1) and fastshap (version 0.0.5). 
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Appendix B figure 4 | Interval prediction performance of quantile regression forest (QRF) with 
outliers when prediction interval is 80% (the range between 10% quantile and 90% quantile). This 
performance was evaluated by computing the proportion of data within the prediction intervals estimated 
by the model. When this proportion is close to the expected coverage probability, the intervals calculated 
by the quantile regression forest can be considered accurate. Model hyperparameters were tuned by 10-fold 
cross-validation. The final model was then used to compute the 10th and 90th percentiles of the relative yield 
change based on the independent testing dataset (20% of the whole dataset, Figure 1). The proportion of 
data within the prediction intervals was computed and compared to its expected value, 80% in this case. 
The vertical grey bars with two black dots correspond to the intervals defined by the 10th and 90th percentiles 
and the points correspond to observed relative yield changes. Data within the intervals are in green and data 
outside are in red.   
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Appendix C1 | Flow chart of literature search and data collection 

 

 

 

Paper excluded (n= 347) 

Reasons for exclusion 

 Papers without yield data for CA 
and/or CT  

 Papers only provide mean yield 
data instead of the yield data for 
each year or each location 

Literature search was done in 
February 2020 based on the keywords 

‘Conservation agriculture / No-till / 
No tillage/ Zero tillage’ & ‘Yield / Yield 

change’ in the websites 
‘ScienceDirect’ and ‘Web of science’  

Paper screened according to 
data availability in external 

databases 
(n = 550) 

Paper excluded (n = 137) 

Reasons for exclusion 

 No such crops in the crop calendar 
database 

 Crops without enough data 
 For the recorded location and 

experiment year, climatic information 
and/or soil type not available in the 
external database  

Paper screened according 
to yield data availability 

(n = 1012) 

Papers excluded (n = 115) 

Reasons for exclusion 

 Without precise experiment year  
 Without precise experiment 

location 
 Without providing any of the 

agricultural practice information 
related to fertilizer, pesticide, 
herbicide utilization, crop rotation 
and residue management  

 

Studies included in our 
dataset 

(n = 413) 

Paper screened at the full-
text level 
(n = 665) 

 

Additional papers 
identified through meta-

analyses 
(n = 682) 

Papers after duplicates removed 
(n = 1012) 

Papers identified 
through literature 

search 
(n =   423) 
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Appendix C2 | Locations of experiments included in the dataset 
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Appendix C3 | Ability of the random forest model to discriminate between yield ratio (CA and 
CA like systems vs. CT) higher and lower than one. ROC curves were computed by leave one out 
cross validation (LOOCV). Cross-validation procedure: One yield ratio (and its associated set of 
inputs) was removed from the dataset at each iteration of the LOOCV, and the rest of the dataset was 
used to train the random forest model. The trained model was then used to compute the probability of 
yield gain from the input data of the removed yield ratio. This procedure was repeated for all yield ratios.  
The R package “randomForest” was used. “randomForest” is a standard package for implementing 
ensemble of regression trees and is very robust 1. The probabilities of yield gain computed by the 
package were used to compute the Area under the ROC curve (AUC) with the R package “pROC”. 
AUC is equal to the probability that the classifier (here the output of the random forest algorithm) will 
rank a random pair of positive (ratio>1) and negative (ratio<=1) cases correctly 2, so a higher AUC 
means a better model classification performance. Here we see that AUC of “randomForest” is 78.6%, 
which indicates that the probability that random forest model can classify a pair of observed “yield gain” 
and “yield loss” correctly is 78.6%. 
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Appendix C4 | Ability of quantile regression forests model to predict the level of yield change from shifting CT to CA or CA like systems. 
Result based on leave one out cross validation (LOOCV) and the coverage probability. Cross-validation procedure: The performance of the quantile 
regression forest (based on “ranger” package in R) was evaluated by computing the proportion of data within the prediction intervals estimated by 
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the model. When this proportion is close to the expected coverage probability, the intervals calculated by the quantile regression forest can be 
considered accurate. This approach was implemented here by LOOCV. One relative yield change data (and its associated set of inputs) was thus 
removed from the dataset at each iteration of the LOOCV, and the rest of the dataset was used to train quantile regression forest model. The trained 
model was then used to compute the 25th and 75th percentiles of the relative yield change from the input values of the removed data. This procedure 
was repeated for all relative yield change data, and the proportion of data within the prediction intervals was computed and compared to its expected 
value, i.e. 50%. In S4, the vertical grey bars with two black dots correspond to the intervals defined by the 25th and 75th percentiles and the points 
correspond to observed relative yield changes. Data within the intervals are in green and data outside are in red.  
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Appendix C5 | Model setting for global projection of probability of yield grain and of the 1st and 3rd 
quartiles of relative yield change. 

Model input 
Setting (for each grid cell and 

each crop) 
Source 

Precipitation  
 Mean precipitation in the 

growing season of 1981-2010  

National Oceanic and 
Atmospheric Administration 

(NOAA)3 

Evapotranspiration 
Mean potential 

evapotranspiration in the 
growing season of 1981-2010 

Data from GLEAM (Global 
Land Evaporation Amsterdam 

Model) 4,5 

Average temperature 
Mean average temperature in 
the growing season of 1981-

2010 

 National Oceanic and 
Atmospheric Administration 

(NOAA)3 

Maximum temperature 
Mean maximum temperature in 

the growing season of 1981-
2010 

 National Oceanic and 
Atmospheric Administration 

(NOAA)3,6 

Minimum temperature 
Mean minimum temperature in 

the growing season of 1981-
2010 

 National Oceanic and 
Atmospheric Administration 

(NOAA)6 
Soil texture HWSD data The University of Tokyo7 

Crop growing season 
Month of planting to 

harvesting in the crop calendar 
dataset for each crop 

University of Wisconsin-
Madison8,9 

Crop mask MIRCA2000 data Goethe University10 
Irrigation mask MIRCA2000 data Goethe University10 

Crop type 
Spring barley, cotton, maize, 

rice, sorghum, soybean, 
sunflower, winter wheat 

 

Fertilizer utilization in NT/CA Yes (+F) or No (-F)  
Fertilizer utilization in CT Yes (+F) or No (-F)  

Control of weed and pest in 
NT/CA 

Yes (+WD) or No (-WD)  

Control of weed and pest in CT Yes (+WD) or No (-WD)  

Crop rotation in NT/CA 

With crop rotation for CA, 
without crop rotation for NT 

by default. In Figure 6.1b, NT 
(+/- R) indicated NT 

with/without crop rotation. 

 

Crop rotation in CT Without crop rotation  

Soil cover in NT/CA 

With soil cover for CA, 
without soil cover for NT by 

default. In Figure 6.1a, NT (+/- 
SC) indicated NT with/without 

soil cover. 

 

Soil cover in CT Without soil cover  

Crop irrigation in NT/CA 
Based on crop irrigation mask 

by default. In figure 6.1e, 
NT/CA/CT (+/- Irrigation) 

Goethe University10 
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indicated NT/CA/CT 
with/without irrigation. 

Crop irrigation in CT 

Based on crop irrigation mask 
by default. In figure 6.1e, 
NT/CA/CT (+/- Irrigation) 

indicated NT/CA/CT 
with/without irrigation 

Goethe University10 
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Appendix C6 | Flow chart showing the algorithm of making one-dimensional partial dependence plot. 
Here, x1 represented precipitation balance (PB). The ranges of PB values were divided into 200 values and 
the probability of yield gain resulting from CA or NT vs. CT was calculated using the random forest model 
for all combinations of the other input variables included in the dataset. The resulting probabilities were 

 

Define 200 equally spaced values between the lower and upper bounds of x1  

x1 (level 1, level 2, level 3, …, level 200) 

Combine each level of x1 with all existing combinations of inputs as predictors 

              Level 1:  

Pair 1: x1 (level 1) & (x2(1), x3(1), …, x16 (1)) 

Pair 2: x1 (level 1) & (x2(2), x3(1), …, x16 (1)) 

… 

Pair n: x1 (level 1) & (x2(n), x3(1), …, x16 (1)) 

               Level 2: … 

 

 

Model 

Compute the prediction for each pair of predictors, and calculate the median value  

Y(level 1) = median (pair 1 to pair n for level 1 of x1) 

… 

Y(level 200) = median (pair 1 to pair n for level 200 of x1) 

 

Plot Y as the function of x1  
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then averaged for each level of PB, and the medians were plotted in a one-dimensional plot. The default 
setting of different crop systems is, NT: without crop rotation and without soil cover; CA: with crop rotation 
and with soil cover; CT: without crop rotation and without soil cover. And in Figure 6.1a NT: without crop 
rotation but with soil cover; In Figure 6.1b NT: with crop rotation but without soil cover. As for other crop 
managements such as fertilization, what is compared in this paper is CA with fertilization or NT with 
fertilization vs. CT with fertilization. 
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Appendix C7 | Relative importance ranking of the model inputs. The importance was defined by the mean decrease of Gini impurity in random 
forest model or quantile regression forest model.



Appendix C 

187 
 

 

Appendix C8 | Productive performance of CA and NT vs. CT for spring barley in relatively dry and relatively wet regions. Productivity of Conservation 
Agriculture for spring barley in a relatively dry (region #1) and a relatively wet (region #2) region. (a) Illustration of the two regions on a global map with the 
two different colors showed in the sub-legend of plot a, while the blank area indicated the non-cropping region of spring barley. (b) The probability of spring 
barley yield gain (CA and NT vs. CT). (c) Barley cropping density on global map, the yellow shades indicated the higher density, and vice versa. The yellow 
color in this map indicated the crop density is equal or higher than 20% of maximum density in the cell of 0.5° latitude ×0.5° longitude at the global scale. (d) 
The 1st and 3rd quartiles of spring barley relative yield change under CA and NT vs. CT practice in the two regions, and the x axis tick label in plot d: R1, R2 
indicated the two different regions, and the left part of plot d indicated the yield change ratios at the 1st quartile, while the right part were the yield change ratios 
at 3rd quartile. The colors in plot a, b and d indicated the same regions. In plot b and d, the mean value of relative yield change in its region is marked by the 
red diamond, while the median value is depicted by the red horizontal line.  
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Appendix C9 | The probability of yield gain of spring barley with CA and NT vs. CT practice.  Probability of yield gain with CA and NT vs. CT spring 
barley. Only the cropping regions were presented. The different colors indicated different probabilities of yield gain from CA and NT comparing to CT system. 
The greener color indicated a higher probability of yield gain. +/- F indicated NT or CA and CT with/without field fertilization. +/- WD indicated NT or CA 
and CT with/without weed and pest control.
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Appendix C10 | The relative yield change of spring barley with CA and NT vs. CT practice. Relative yield change probability (1st and 3rd quartile estimate) 
of shifting CT to CA/NT for spring barley, with field fertilization and weed and pest control (+F+WD). There was a 75% chance that the relative yield change 
will be higher than the ratio shown on the map in plot a and c, and conversely a 25% chance that the relative change will be lower. There was a 75% chance 
that the relative yield change will be lower than the ratio shown on the map in plot b and d, and conversely a 25% chance that the relative change will be higher. 
The colors indicated different levels of yield change ratio, and the reddish colors indicated the negative yield change or yield loss.  
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Appendix C11 | Productive performance of CA and NT vs. CT for cotton in relatively dry and relatively wet regions. Productivity of Conservation 
Agriculture for cotton in a relatively dry (region #1) and a relatively wet (region #2) region. (a) Illustration of the two regions on a global map with the two 
different colors showed in the sub-legend of plot a, while the blank area indicated the non-cropping region of cotton. (b) The probability of cotton yield gain 
(CA and NT vs. CT). (c) Cotton cropping density on global map, the yellow shades indicated the higher density, and vice versa. The yellow color in this map 
indicated the crop density is equal or higher than 20% of maximum density in the cell of 0.5° latitude ×0.5° longitude at the global scale. (d) The 1st and 3rd 
quartiles of cotton relative yield change under CA and NT vs. CT practice in the two regions, and the x axis tick label in plot d: R1, R2 indicated the two 
different regions, and the left part of plot d indicated the yield change ratios at the 1st quartile, while the right part were the yield change ratios at 3rd quartile. 
The colors in plot a, b and d indicated the same regions. In plot b and d, the mean value of relative yield change in its region is marked by the red diamond, 
while the median value is depicted by the red horizontal line.  
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Appendix C12 | The probability of yield gain of cotton with CA and NT vs. CT practice. Probability of yield gain with CA and NT vs. CT cotton. Only the 
cropping regions were presented. The different colors indicated different probabilities of yield gain from CA and NT comparing to CT system. The greener 
color indicated a higher probability of yield gain. +/- F indicated NT or CA and CT with/without field fertilization. +/- WD indicated NT or CA and CT 
with/without weed and pest control.  
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Appendix C13 | The relative yield change of cotton with CA and NT vs. CT practice. Relative yield change probability (1st and 3rd quartile estimate) of 
shifting CT to CA/NT for cotton, with field fertilization and weed and pest control (+F+WD). There was a 75% chance that the relative yield change will be 
higher than the ratio shown on the map in plot a and c, and conversely a 25% chance that the relative change will be lower. There was a 75% chance that the 
relative yield change will be lower than the ratio shown on the map in plot b and d, and conversely a 25% chance that the relative change will be higher. The 
colors indicated different levels of yield change ratio, and the reddish colors indicated the negative yield change or yield loss.
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Appendix C14 | Productive performance of CA and NT vs. CT for maize in relatively dry and relatively wet regions. Productivity of Conservation 
Agriculture for maize in a relatively dry (region #1) and a relatively wet (region #2) region. (a) Illustration of the two regions on a global map with the two 
different colors showed in the sub-legend of plot a, while the blank area indicated the non-cropping region of maize. (b) The probability of maize yield gain 
(CA and NT vs. CT). (c) Maize cropping density on global map, the yellow shades indicated the higher density, and vice versa. The yellow color in this map 
indicated the crop density is equal or higher than 20% of maximum density in the cell of 0.5° latitude ×0.5° longitude at the global scale. (d) The 1st and 3rd 
quartiles of maize relative yield change under CA and NT vs. CT practice in the two regions, and the x axis tick label in plot d: R1, R2 indicated the two different 
regions, and the left part of plot d indicated the yield change ratios at the 1st quartile, while the right part were the yield change ratios at 3rd quartile. The colors 
in plot a, b and d indicated the same regions. In plot b and d, the mean value of relative yield change in its region is marked by the red diamond, while the 
median value is depicted by the red horizontal line.   



Appendix C 

194 
 

 

Appendix C15 | The relative yield change of maize with CA and NT vs. CT practice. Relative yield change probability (1st and 3rd quartile estimate) of 
shifting CT to CA/NT for maize, with field fertilization and weed and pest control (+F+WD). There was a 75% chance that the relative yield change will be 
higher than the ratio shown on the map in plot a and c, and conversely a 25% chance that the relative change will be lower. There was a 75% chance that the 
relative yield change will be lower than the ratio shown on the map in plot b and d, and conversely a 25% chance that the relative change will be higher. The 
colors indicated different levels of yield change ratio, and the reddish colors indicated the negative yield change or yield loss.  
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Appendix C16 | Productive performance of CA and NT vs. CT for rice in relatively dry and relatively wet regions. Productivity of Conservation 
Agriculture for rice in a relatively dry (region #1) and a relatively wet (region #2) region. (a) Illustration of the two regions on a global map with the two 
different colors showed in the sub-legend of plot a, while the blank area indicated the non-cropping region of rice. (b) The probability of rice yield gain (CA 
and NT vs. CT). (c) Rice cropping density on global map, the yellow shades indicated the higher density, and vice versa. The yellow color in this map indicated 
the crop density is equal or higher than 20% of maximum density in the cell of 0.5° latitude ×0.5° longitude at the global scale. (d) The 1st and 3rd quartiles of 
rice relative yield change under CA and NT vs. CT practice in the two regions, and the x axis tick label in plot d: R1, R2 indicated the two different regions, 
and the left part of plot d indicated the yield change ratios at the 1st quartile, while the right part were the yield change ratios at 3rd quartile. The colors in plot 
a, b and d indicated the same regions. In plot b and d, the mean value of relative yield change in its region is marked by the red diamond, while the median 
value is depicted by the red horizontal line.  
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Appendix C17 | The probability of yield gain of rice with CA and NT vs. CT practice. Probability of yield gain with CA and NT vs. CT rice. Only the 
cropping regions were presented. The different colors indicated different probabilities of yield gain from CA and NT comparing to CT system. The greener 
color indicated a higher probability of yield gain. +/- F indicated NT or CA and CT with/without field fertilization. +/- WD indicated NT or CA and CT 
with/without weed and pest control.  
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Appendix C18 | The relative yield change of rice with CA and NT vs. CT practice. Relative yield change probability (1st and 3rd quartile estimate) of 
shifting CT to CA/NT for rice, with field fertilization and weed and pest control (+F+WD). There was a 75% chance that the relative yield change will be higher 
than the ratio shown on the map in plot a and c, and conversely a 25% chance that the relative change will be lower. There was a 75% chance that the relative 
yield change will be lower than the ratio shown on the map in plot b and d, and conversely a 25% chance that the relative change will be higher. The colors 
indicated different levels of yield change ratio, and the reddish colors indicated the negative yield change or yield loss.   
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Appendix C19 | Productive performance of CA and NT vs. CT for sorghum in relatively dry and relatively wet regions. Productivity of Conservation 
Agriculture for sorghum in a relatively dry (region #1) and a relatively wet (region #2) region. (a) Illustration of the two regions on a global map with the two 
different colors showed in the sub-legend of plot a, while the blank area indicated the non-cropping region of sorghum. (b) The probability of sorghum yield 
gain (CA and NT vs. CT). (c) Sorghum cropping density on global map, the yellow shades indicated the higher density, and vice versa. The yellow color in this 
map indicated the crop density is equal or higher than 20% of maximum density in the cell of 0.5° latitude ×0.5° longitude at the global scale. (d) The 1st and 
3rd quartiles of sorghum relative yield change under CA and NT vs. CT practice in the two regions, and the x axis tick label in plot d: R1, R2 indicated the two 
different regions, and the left part of plot d indicated the yield change ratios at the 1st quartile, while the right part were the yield change ratios at 3rd quartile. 
The colors in plot a, b and d indicated the same regions. In plot b and d, the mean value of relative yield change in its region is marked by the red diamond, 
while the median value is depicted by the red horizontal line.  
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Appendix C20 | The probability of yield gain of sorghum with CA and NT vs. CT practice. Probability of yield gain with CA and NT vs. CT sorghum. 
Only the cropping regions were presented. The different colors indicated different probabilities of yield gain from CA and NT comparing to CT system. The 
greener color indicated a higher probability of yield gain. +/- F indicated NT or CA and CT with/without field fertilization. +/- WD indicated NT or CA and 
CT with/without weed and pest control.  
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Appendix C21 | The relative yield change of sorghum with CA and NT vs. CT practice. Relative yield change probability (1st and 3rd quartile estimate) 
of shifting CT to CA/NT for sorghum, with field fertilization and weed and pest control (+F+WD). There was a 75% chance that the relative yield change will 
be higher than the ratio shown on the map in plot a and c, and conversely a 25% chance that the relative change will be lower. There was a 75% chance that the 
relative yield change will be lower than the ratio shown on the map in plot b and d, and conversely a 25% chance that the relative change will be higher. The 
colors indicated different levels of yield change ratio, and the reddish colors indicated the negative yield change or yield loss.  
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Appendix C22 | Productive performance of CA and NT vs. CT for soybean in relatively dry and relatively wet regions. Productivity of Conservation 
Agriculture for soybean in a relatively dry (region #1) and a relatively wet (region #2) region. (a) Illustration of the two regions on a global map with the two 
different colors showed in the sub-legend of plot a, while the blank area indicated the non-cropping region of soybean. (b) The probability of soybean yield gain 
(CA and NT vs. CT). (c) Soybean cropping density on global map, the yellow shades indicated the higher density, and vice versa. The yellow color in this map 
indicated the crop density is equal or higher than 20% of maximum density in the cell of 0.5° latitude ×0.5° longitude at the global scale. (d) The 1st and 3rd 
quartiles of soybean relative yield change under CA and NT vs. CT practice in the two regions, and the x axis tick label in plot d: R1, R2 indicated the two 
different regions, and the left part of plot d indicated the yield change ratios at the 1st quartile, while the right part were the yield change ratios at 3rd quartile. 
The colors in plot a, b and d indicated the same regions. In plot b and d, the mean value of relative yield change in its region is marked by the red diamond, 
while the median value is depicted by the red horizontal line.   
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Appendix C23 | The probability of yield gain of soybean with CA and NT vs. CT practice. Probability of yield gain with CA and NT vs. CT soybean. Only 
the cropping regions were presented. The different colors indicated different probabilities of yield gain from CA and NT comparing to CT system. The greener 
color indicated a higher probability of yield gain. +/- F indicated NT or CA and CT with/without field fertilization. +/- WD indicated NT or CA and CT 
with/without weed and pest control.  
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Appendix C24 | The relative yield change of soybean with CA and NT vs. CT practice. Relative yield change probability (1st and 3rd quartile estimate) of 
shifting CT to CA/NT for soybean, with field fertilization and weed and pest control (+F+WD). There was a 75% chance that the relative yield change will be 
higher than the ratio shown on the map in plot a and c, and conversely a 25% chance that the relative change will be lower. There was a 75% chance that the 
relative yield change will be lower than the ratio shown on the map in plot b and d, and conversely a 25% chance that the relative change will be higher. The 
colors indicated different levels of yield change ratio, and the reddish colors indicated the negative yield change or yield loss.   
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Appendix C25 | Productive performance of CA and NT vs. CT for sunflower in relatively dry and relatively wet regions. Productivity of Conservation 
Agriculture for sunflower in a relatively dry (region #1) and a relatively wet (region #2) region. (a) Illustration of the two regions on a global map with the two 
different colors showed in the sub-legend of plot a, while the blank area indicated the non-cropping region of sunflower. (b) The probability of sunflower yield 
gain (CA and NT vs. CT). (c) Sunflower cropping density on global map, the yellow shades indicated the higher density, and vice versa. The yellow color in 
this map indicated the crop density is equal or higher than 20% of maximum density in the cell of 0.5° latitude ×0.5° longitude at the global scale. (d) The 1st 
and 3rd quartiles of sunflower relative yield change under CA and NT vs. CT practice in the two regions, and the x axis tick label in plot d: R1, R2 indicated 
the two different regions, and the left part of plot d indicated the yield change ratios at the 1st quartile, while the right part were the yield change ratios at 3rd 
quartile. The colors in plot a, b and d indicated the same regions. In plot b and d, the mean value of relative yield change in its region is marked by the red 
diamond, while the median value is depicted by the red horizontal line.  
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Appendix C26 | The probability of yield gain of sunflower with CA and NT vs. CT practice. Probability of yield gain with CA and NT vs. CT sunflower. 
Only the cropping regions were presented. The different colors indicated different probabilities of yield gain from CA and NT comparing to CT system. The 
greener color indicated a higher probability of yield gain. +/- F indicated NT or CA and CT with/without field fertilization. +/- WD indicated NT or CA and 
CT with/without weed and pest control.  
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Appendix C27 | The relative yield change of sunflower with CA and NT vs. CT practice. Relative yield change probability (1st and 3rd quartile estimate) 
of shifting CT to CA/NT for sunflower, with field fertilization and weed and pest control (+F+WD). There was a 75% chance that the relative yield change will 
be higher than the ratio shown on the map in plot a and c, and conversely a 25% chance that the relative change will be lower. There was a 75% chance that the 
relative yield change will be lower than the ratio shown on the map in plot b and d, and conversely a 25% chance that the relative change will be higher. The 
colors indicated different levels of yield change ratio, and the reddish colors indicated the negative yield change or yield loss.  
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Appendix C28 | Methods 

Database establishment 

The literature search was done in February 2020 using the following keywords ‘Conservation 
agriculture / No-till / No tillage / Zero tillage’ & ‘Yield / Yield change’ in the websites ‘ScienceDirect’, 
‘Science Citation Index (web of science)’. A total of 1012 potentially relevant papers were identified 
by reviewing the title and abstract, and these papers were then screened according to the procedure 
summarized in S1. Papers not reporting yield data for CT and NT systems were excluded, as well as 
papers reporting experiments on reduced tillage (RT) systems. Papers reporting only mean yield data 
across different years or sites were also excluded. We then checked whether information on fertilization, 
weed and pest control, crop irrigation, crop rotation (at least three crops involved based on the definition 
of CA by FAO 11) and crop residue management were reported for both CT and NT practices. After 
these screening and selection steps, all relevant data were manually extracted from the selected papers, 
including general information about the paper, location and year of the experiment, the number of years 
under NT when the crop was sown, soil characteristics, crop growing season, crop type, crop 
management practices and crop yield of CT and NT. However, due to a large number of missing data, 
the crop growing season, climatic variables and soil characteristics were finally collected through 
several external databases. The growing season information was generated from a crop calendar 
database 3 based on the crop type and the locations of the experiments reported in the papers. The 
precipitation, average temperature in the growing season were extracted from the UDel_AirT_Precip 
data provided by NOAA/OAR/ESRL PSL12. The maximum and minimum air temperature during the 
growing season were generated from CPC Global Temperature data provided by NOAA/OAR/ESRL 
PSL 6 and the potential evapotranspiration data over the growing season were extracted from GLEAM 
database12. Soil textures were collected from the HWSD database 7 using the locations of the 
experimental sites reported in the selected papers. The experiments for which it was not possible to 
obtain the requested information from the external databases were excluded. The final dataset includes 
the results extracted from 413 papers (published between 1983 to 2020), 4403 paired yield observations 
from NT and CT for 8 major crop species, including 370 observations for barley (232 observations for 
spring barley and 138 for winter barley), 94 observations for cotton, 1690 observations for maize, 195 
observation for rice, 160 observations for sorghum, 583 observations for soybean, 61 observations for 
sunflower, 1250 observations for wheat (1041 observations for winter wheat and 209 observations for 
spring wheat) in 50 countries from 1980 to 2017 (Appendix C2). 

Analysis 

Pairs of yield data were used to compute two types of effect size, namely yield ratio    
 and 

relative yield change ratio     
. The category of the yield gain and loss were then 

related to the inputs of climatic conditions, soil data, and agricultural management practices using a 
random forest algorithm in order to map the probability of yield gain with CA and NT vs. CT 
(probability that yield ratio > 1). Relative yield changes were related to the same input data using 
quantile regression forest to estimate the 25th and 75th percentiles of relative yield change in different 
climatic conditions.  

The R package “randomForest” (version 4.6 - 14) was used to train the random forest model to analyse 
the yield ratios of CA or NT vs. CT as the function of climatic variables, crop types, soil textures, and 
agricultural management practices. To do so, set the climatic variables throughout the growing season 
such as PB, Tmin/Tave/Tmax as numerical explanatory variables; Set crop type, soil texture, and 
agricultural management activities including crop irrigation, field fertilization, control of pests and 
weeds, crop rotation and soil cover as categorical explanatory variables; Set the category of yield change 

(yield ratio  >1 or <=1) as response variable. The sample code for training the random forest 
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model is available in “Code.zip” in figshare repository provided in the main manuscript. When setting 
the “proximity” as Ture, the model output is the probability of yield gain from NT vs. CT. As for the 
quantile regression model, the R package “ranger” (version 0.11.2) was used to train a quantile 
regression forest model to analyse relative yield change of shifting from CT to CA or NT as the same 
explanatory variables as random forest.  Both random forest model and quantile regression forest model 
were tree-based ensemble machine learning method using multiple deep decision trees to improve the 
accuracy and stability of their predictions12. These methods did not make assumptions on the 
distributions of the input data and were able to deal with high-dimensional data. The importance ranking 
of the inputs were derived using the mean decrease of Gini impurity index 13(results available in 
Appendix C7).  

Global projection of yield gain probability and relative yield change ratio 

To predict the global productivity of CA and NT vs. CT, the trained machine learning models were fed 
by the numerical explanatory variables, such as climatic variables, and categorical explanatory variables, 
including crop types, soil textures, agricultural management practices. The details of the model input 
settings were available in Appendix C5. The global climatic variables were based on the latest NCEI’s 
three-decade averaged climatic conditions14, also called “1981-2010 U.S. Climate Normals”. The 
growing season information for each crop was defined as the period between seeding month and 
harvesting month from the crop calendar database8,9. Mean precipitation and average temperature were 
calculated throughout the growing season for all the years from 1981 to 2010 using the global 
precipitation and air temperature database3. A similar approach was implemented for maximum and 
minimum temperature6, and potential evapotranspiration4,5. As for the categorical explanatory variables, 
the global soil texture input data came from HWSD database15, the crop irrigation input data was based 
on the irrigation mask from MIRCA2000 database10, in each grid cell, crop irrigation was marked as 
yes if irrigation was the dominated practices in this region. Crop rotation and soil cover were set as “yes” 
for CA, and “no” for NT. Crop fertilization and integrated weed and pest control were set as “yes” for 
the scenario (+F+WD), while “no” for the scenario (-F-WD). 

The model outputs were the probabilities of yield gain with CA or NT vs. CT, and 25th and 75th 
percentiles of relative yield change, which indicated the CA or NT productivity at the global scale under 
the averaged climate condition of 1981-2010.  All maps in the paper were generated by MATLAB 
R2020a (Version 9.8.0.1451342, https://fr.mathworks.com/products/matlab.html ). 
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Appendix D table 1 | Model settings for global projection 

Category Model input 
Symbol 
in the 
model 

Type Setting Notes 

Climate 
variables 

Precipitation over the 
growing season 

 Quantitative 

Current: mean climate 
condition of 2011-2020; 

Future: mean climate condition 
of 2051-2060 

The current and future climatic data 1,2 are 
based on the climate models: “Gfdl-
esm2m”, “Hadgem2-es”, “Ipsl-cm5a-lr”, 
“Miroc5”, and the RCP scenarios: “RCP 
2.6”, “RCP 4.5”, “RCP 6.0”, “RCP 8.5”, 
the ensemble method is “r1i1p1”, the 
EWEMBI dataset (Observed atmospheric 
climate) was compiled to support the bias 
correction of climate input data. 

Potential 
evapotranspiration 
over the growing 

season 

 Quantitative 

Current: mean climate 
condition of 2011-2020; 

Future: mean climate condition 
of 2051-2060 

The current and future climatic data 1,2 are 
based on the climate models: “Gfdl-
esm2m”, “Hadgem2-es”, “Ipsl-cm5a-lr”, 
“Miroc5”, and the RCP scenarios: “RCP 
2.6”, “RCP 4.5”, “RCP 6.0”, “RCP 8.5”, 
the impact model is “Water_GAP2”, the 
EWEMBI dataset (Observed atmospheric 
climate) was compiled to support the bias 
correction of climate input data. 

Precipitation balance 
over the growing 

season 
PB Quantitative 

Precipitation – Potential 
evapotranspiration over the 

growing season 
 

Average temperature 
over the growing 

season 
Tave Quantitative 

Current: mean climate 
condition of 2011-2020; 

Future: mean climate condition 
of 2051-2060 

The current and future climatic data 1,2 are 
based on the climate models: “Gfdl-
esm2m”, “Hadgem2-es”, “Ipsl-cm5a-lr”, 
“Miroc5”, and the RCP scenarios: “RCP 
2.6”, “RCP 4.5”, “RCP 6.0”, “RCP 8.5”, 
the ensemble method is “r1i1p1”, the 
EWEMBI dataset (Observed atmospheric 
climate) was compiled to support the bias 
correction of climate input data. 
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Maximum 
temperature over the 

growing season 
Tmax Quantitative 

Current: mean climate 
condition of 2011-2020; 

Future: mean climate condition 
of 2051-2060 

The current and future climatic data 1,2 are 
based on the climate models: “Gfdl-
esm2m”, “Hadgem2-es”, “Ipsl-cm5a-lr”, 
“Miroc5”, and the RCP scenarios: “RCP 
2.6”, “RCP 4.5”, “RCP 6.0”, “RCP 8.5”, 
the ensemble method is “r1i1p1”, the 
EWEMBI dataset (Observed atmospheric 
climate) was compiled to support the bias 
correction of climate input data. 

Minimum 
temperature over the 

growing season 
Tmin Quantitative 

Current: mean climate 
condition of 2011-2020; 

Future: mean climate condition 
of 2051-2060 

The current and future climatic data 1,2 are 
based on the climate models: “Gfdl-
esm2m”, “Hadgem2-es”, “Ipsl-cm5a-lr”, 
“Miroc5”, and the RCP scenarios: “RCP 
2.6”, “RCP 4.5”, “RCP 6.0”, “RCP 8.5”, 
the ensemble method is “r1i1p1”, the 
EWEMBI dataset (Observed atmospheric 
climate) was compiled to support the bias 
correction of climate input data. 

Agricultural 
management 

activities 

Integrated weed and 
pest control 

WD Qualitative 
Yes for +WD 
No for -WD 

 

Field fertilization F Qualitative 
Yes for +F 
No for -F 

 

Soil cover 
management 

SC Qualitative 
Yes for +SC 
No for -SC 

CA: NT +R+SC 
Variants based on NT systems: NT -

R+SC / NT +R-SC / NT -R-SC 
CT: CT-R-SC 

Crop rotation R Qualitative 
Yes for +R 
No for -R 

CA: NT +R+SC 
Variants based on NT systems: NT -

R+SC / NT +R-SC / NT -R-SC 
CT: CT-R-SC 

Crop irrigation Irrigation Qualitative 

No changes in current and 
future; Yes/No depends on the 
condition of irrigation for most 
of the cropping area inside each 
grid cell. 

MIRCA2000 data from Goethe 
University 3 
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But when generating the maps 
in S3, crop irrigation in each cell 
was manually set as No to 
simulate the field without crop 
irrigation. 

Others 

Soil texture ST Qualitative 
No changes in current and 

future 
HWSD data from University of Tokyo 4 

Crop types Crop Qualitative 
Spring barley, cotton, maize, 

rice, sorghum, soybean, 
sunflower, winter wheat 

 

Crop growing season  Quantitative 
No changes in current and 

future 
Crop calendar data from University of 

Wisconsin-Madison 5 
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Appendix D figure 1 | Accumulated fraction of the cropping area as a function of the probability of yield gain under CA systems and NT 
variants vs. CT systems in different climate regions. The results are based on the average climate conditions over 2021-2020 simulated by the 
Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plots in row 1 show the accumulated fraction of cropping area as the function of probability of 
yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) systems in different climate regions. Plots in row 2 show the accumulated fraction of cropping 
area as the function of probability of yield gain under CA (-F-WD) vs. CT-R-SC (-F-WD) systems in different climate regions. Plots in row 3 show 
the accumulated fraction of cropping area as the function of probability of yield gain under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems in 
different climate regions. Plots in row 4 show the accumulated fraction of cropping area as the function of probability of yield gain under NT-R-SC 
(+F+WD) vs. CT-R-SC (+F+WD) systems in different climate regions. Plots in row 5 show the accumulated fraction of cropping area as the function 
of probability of yield gain under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems in different climate regions.
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Appendix D figure 2a | Maps of probability of yield gain under CA systems and NT variants vs. CT systems under current climate scenario 
– barley. Regions with a probability of yield gain lower than 0.5 are highlighted in red (and in blue shades when the probability is higher). The 
results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario.  Plot 
1 shows the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the 
probability of yield gain under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield 
gain under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain under 
NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain under NT-R-SC (-
F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. 
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Appendix D figure 2c | Maps of probability of yield gain under CA systems and NT variants vs. CT systems under current climate scenario 
– maize. Regions with a probability of yield gain lower than 0.5 are highlighted in red (and in blue shades when the probability is higher). The 
results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario.  Plot 
1 shows the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the 
probability of yield gain under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield 
gain under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain under 
NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain under NT-R-SC (-
F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. 
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Appendix D figure 2d | Maps of probability of yield gain under CA systems and NT variants vs. CT systems under current climate scenario 
– rice. Regions with a probability of yield gain lower than 0.5 are highlighted in red (and in blue shades when the probability is higher). The results 
are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario.  Plot 1 shows 
the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the probability of 
yield gain under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield gain under 
NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain under NT-R-SC 
(+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain under NT-R-SC (-F-WD) vs. 
CT-R-SC (-F-WD) systems under current climate conditions. 
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Appendix D figure 2e | Maps of probability of yield gain under CA systems and NT variants vs. CT systems under current climate scenario 
– sorghum. Regions with a probability of yield gain lower than 0.5 are highlighted in red (and in blue shades when the probability is higher). The 
results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario.  Plot 
1 shows the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the 
probability of yield gain under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield 
gain under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain under 
NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain under NT-R-SC (-
F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. 
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Appendix D figure 2f | Maps of probability of yield gain under CA systems and NT variants vs. CT systems under current climate scenario 
– soybean. Regions with a probability of yield gain lower than 0.5 are highlighted in red (and in blue shades when the probability is higher). The 
results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario.  Plot 
1 shows the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the 
probability of yield gain under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield 
gain under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain under 
NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain under NT-R-SC (-
F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. 
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Appendix D figure 2g | Maps of probability of yield gain under CA systems and NT variants vs. CT systems under current climate scenario 
– sunflower. Regions with a probability of yield gain lower than 0.5 are highlighted in red (and in blue shades when the probability is higher). The 
results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario.  Plot 
1 shows the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the 
probability of yield gain under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield 
gain under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain under 
NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain under NT-R-SC (-
F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. 
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Appendix D figure 2h | Maps of probability of yield gain under CA systems and NT variants vs. CT systems under current climate scenario 
– wheat. Regions with a probability of yield gain lower than 0.5 are highlighted in red (and in blue shades when the probability is higher). The 
results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario.  Plot 
1 shows the probability of yield gain under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the 
probability of yield gain under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield 
gain under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain under 
NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain under NT-R-SC (-
F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions. 
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Appendix D figure 3a | Probability of yield gain under CA systems and NT variants vs. CT systems as a function of latitude under current 
climate scenario - barley. This figure shows the variations of 1st quartile (red), median (black), and 3rd quartile (blue) yield gain probability under 
CA systems and their variants vs. CT systems as a function of latitude. The results are based on the average climate conditions over 2011-2020 
(current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows the probability of yield gain along latitude under CA (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the probability of yield gain along latitude under CA (-F-WD) vs. 
CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield gain along latitude under NT+R-SC (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain along latitude under NT-R-SC (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain along latitude under NT-R-SC (-F-WD) 
vs. CT-R-SC (-F-WD) systems under current climate conditions.
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Appendix D figure 3b | Probability of yield gain under CA systems and NT variants vs. CT systems as a function of latitude under current 
climate scenario - cotton. This figure shows the variations of 1st quartile (red), median (black), and 3rd quartile (blue) yield gain probability under 
CA systems and their variants vs. CT systems as a function of latitude. The results are based on the average climate conditions over 2011-2020 
(current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows the probability of yield gain along latitude under CA (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the probability of yield gain along latitude under CA (-F-WD) vs. 
CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield gain along latitude under NT+R-SC (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain along latitude under NT-R-SC (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain along latitude under NT-R-SC (-F-WD) 
vs. CT-R-SC (-F-WD) systems under current climate conditions.
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Appendix D figure 3c | Probability of yield gain under CA systems and NT variants vs. CT systems as a function of latitude under current 
climate scenario - maize. This figure shows the variations of 1st quartile (red), median (black), and 3rd quartile (blue) yield gain probability under 
CA systems and their variants vs. CT systems as a function of latitude. The results are based on the average climate conditions over 2011-2020 
(current) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows the probability of yield gain along latitude under CA (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 2 shows the probability of yield gain along latitude under CA (-F-WD) vs. 
CT-R-SC (-F-WD) systems under current climate conditions. Plot 3 shows the probability of yield gain along latitude under NT+R-SC (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 4 shows the probability of yield gain along latitude under NT-R-SC (+F+WD) 
vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 shows the probability of yield gain along latitude under NT-R-SC (-F-WD) 
vs. CT-R-SC (-F-WD) systems under current climate conditions.
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Appendix D figure 3d | Probability of yield gain under CA systems and NT variants vs. CT systems as a function of latitude under current climate 
scenario - rice. This figure shows the variations of 1st quartile (red), median (black), and 3rd quartile (blue) yield gain probability under CA systems and their 
variants vs. CT systems as a function of latitude. The results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-lr 
climate model and RCP 4.5 scenario. Plot 1 shows the probability of yield gain along latitude under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under 
current climate conditions. Plot 2 shows the probability of yield gain along latitude under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate 
conditions. Plot 3 shows the probability of yield gain along latitude under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. 
Plot 4 shows the probability of yield gain along latitude under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 
shows the probability of yield gain along latitude under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions.
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Appendix D figure 3e | Probability of yield gain under CA systems and NT variants vs. CT systems as a function of latitude under current climate 
scenario - sorghum. This figure shows the variations of 1st quartile (red), median (black), and 3rd quartile (blue) yield gain probability under CA systems and 
their variants vs. CT systems as a function of latitude. The results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-
lr climate model and RCP 4.5 scenario. Plot 1 shows the probability of yield gain along latitude under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under 
current climate conditions. Plot 2 shows the probability of yield gain along latitude under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate 
conditions. Plot 3 shows the probability of yield gain along latitude under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. 
Plot 4 shows the probability of yield gain along latitude under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 
shows the probability of yield gain along latitude under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions.
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Appendix D figure 3f | Probability of yield gain under CA systems and NT variants vs. CT systems as a function of latitude under current climate 
scenario - sorghum. This figure shows the variations of 1st quartile (red), median (black), and 3rd quartile (blue) yield gain probability under CA systems and 
their variants vs. CT systems as a function of latitude. The results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-
lr climate model and RCP 4.5 scenario. Plot 1 shows the probability of yield gain along latitude under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under 
current climate conditions. Plot 2 shows the probability of yield gain along latitude under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate 
conditions. Plot 3 shows the probability of yield gain along latitude under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. 
Plot 4 shows the probability of yield gain along latitude under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 
shows the probability of yield gain along latitude under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions.
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Appendix figure 3g | Probability of yield gain under CA systems and NT variants vs. CT systems as a function of latitude under current climate 
scenario - sunflower. This figure shows the variations of 1st quartile (red), median (black), and 3rd quartile (blue) yield gain probability under CA systems 
and their variants vs. CT systems as a function of latitude. The results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-
cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows the probability of yield gain along latitude under CA (+F+WD) vs. CT-R-SC (+F+WD) systems 
under current climate conditions. Plot 2 shows the probability of yield gain along latitude under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current 
climate conditions. Plot 3 shows the probability of yield gain along latitude under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate 
conditions. Plot 4 shows the probability of yield gain along latitude under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. 
Plot 5 shows the probability of yield gain along latitude under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions.
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Appendix D figure 3h | Probability of yield gain under CA systems and NT variants vs. CT systems as a function of latitude under current climate 
scenario - wheat. This figure shows the variations of 1st quartile (red), median (black), and 3rd quartile (blue) yield gain probability under CA systems and 
their variants vs. CT systems as a function of latitude. The results are based on the average climate conditions over 2011-2020 (current) simulated by Ipsl-cm5a-
lr climate model and RCP 4.5 scenario. Plot 1 shows the probability of yield gain along latitude under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under 
current climate conditions. Plot 2 shows the probability of yield gain along latitude under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate 
conditions. Plot 3 shows the probability of yield gain along latitude under NT+R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. 
Plot 4 shows the probability of yield gain along latitude under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems under current climate conditions. Plot 5 
shows the probability of yield gain along latitude under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under current climate conditions.



Appendix D 

230 
 

 

Appendix D figure 4a | Maps of the change of yield gain probability under CA systems and NT variants vs. CT systems under climate change – barley. 
Regions with a decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in blue. The results are based on the 
average climate conditions over 2011-2020 (current) and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows 
the change of yield gain probability under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under climate change. Plot 2 shows the change of yield gain probability 
under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change. Plot 3 shows the change of yield gain probability under NT+R-SC (+F+WD) vs. CT-
R-SC (+F+WD) systems under climate change. Plot 4 shows the change of yield gain probability under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems 
under climate change. Plot 5 shows the change of yield gain probability under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change.
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Appendix D figure 4b | Maps of the change of yield gain probability under CA systems and NT variants vs. CT systems under climate change – cotton. 
Regions with a decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in blue. The results are based on the 
average climate conditions over 2011-2020 (current) and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows 
the change of yield gain probability under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under climate change. Plot 2 shows the change of yield gain probability 
under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change. Plot 3 shows the change of yield gain probability under NT+R-SC (+F+WD) vs. CT-
R-SC (+F+WD) systems under climate change. Plot 4 shows the change of yield gain probability under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems 
under climate change. Plot 5 shows the change of yield gain probability under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change.
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Appendix D figure 4c | Maps of the change of yield gain probability under CA systems and NT variants vs. CT systems under climate change – maize. 
Regions with a decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in blue. The results are based on the 
average climate conditions over 2011-2020 (current) and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows 
the change of yield gain probability under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under climate change. Plot 2 shows the change of yield gain probability 
under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change. Plot 3 shows the change of yield gain probability under NT+R-SC (+F+WD) vs. CT-
R-SC (+F+WD) systems under climate change. Plot 4 shows the change of yield gain probability under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems 
under climate change. Plot 5 shows the change of yield gain probability under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change.



Appendix D 

233 
 

 

Appendix D figure 4d | Maps of the change of yield gain probability under CA systems and NT variants vs. CT systems under climate change – rice. 
Regions with a decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in blue. The results are based on the 
average climate conditions over 2011-2020 (current) and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows 
the change of yield gain probability under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under climate change. Plot 2 shows the change of yield gain probability 
under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change. Plot 3 shows the change of yield gain probability under NT+R-SC (+F+WD) vs. CT-
R-SC (+F+WD) systems under climate change. Plot 4 shows the change of yield gain probability under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems 
under climate change. Plot 5 shows the change of yield gain probability under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change.
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Appendix D figure 4e | Maps of the change of yield gain probability under CA systems and NT variants vs. CT systems under climate change – sorghum. 
Regions with a decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in blue. The results are based on the 
average climate conditions over 2011-2020 (current) and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows 
the change of yield gain probability under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under climate change. Plot 2 shows the change of yield gain probability 
under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change. Plot 3 shows the change of yield gain probability under NT+R-SC (+F+WD) vs. CT-
R-SC (+F+WD) systems under climate change. Plot 4 shows the change of yield gain probability under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems 
under climate change. Plot 5 shows the change of yield gain probability under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change.



Appendix D 

235 
 

 

Appendix D figure 4f | Maps of the change of yield gain probability under CA systems and NT variants vs. CT systems under climate change – soybean. 
Regions with a decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in blue. The results are based on the 
average climate conditions over 2011-2020 (current) and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows 
the change of yield gain probability under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under climate change. Plot 2 shows the change of yield gain probability 
under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change. Plot 3 shows the change of yield gain probability under NT+R-SC (+F+WD) vs. CT-
R-SC (+F+WD) systems under climate change. Plot 4 shows the change of yield gain probability under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems 
under climate change. Plot 5 shows the change of yield gain probability under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change.
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Appendix D figure 4g | Maps of the change of yield gain probability under CA systems and NT variants vs. CT systems under climate change – 
sunflower. Regions with a decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in blue. The results are based 
on the average climate conditions over 2011-2020 (current) and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 
1 shows the change of yield gain probability under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under climate change. Plot 2 shows the change of yield gain 
probability under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change. Plot 3 shows the change of yield gain probability under NT+R-SC (+F+WD) 
vs. CT-R-SC (+F+WD) systems under climate change. Plot 4 shows the change of yield gain probability under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) 
systems under climate change. Plot 5 shows the change of yield gain probability under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change.
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Appendix D figure 4h | Maps of the change of yield gain probability under CA systems and NT variants vs. CT systems under climate change – wheat. 
Regions with a decreasing trend are depicted in red, while those with an increase in yield gain probability are depicted in blue. The results are based on the 
average climate conditions over 2011-2020 (current) and over 2051-2060 (future) simulated by Ipsl-cm5a-lr climate model and RCP 4.5 scenario. Plot 1 shows 
the change of yield gain probability under CA (+F+WD) vs. CT-R-SC (+F+WD) systems under climate change. Plot 2 shows the change of yield gain probability 
under CA (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change. Plot 3 shows the change of yield gain probability under NT+R-SC (+F+WD) vs. CT-
R-SC (+F+WD) systems under climate change. Plot 4 shows the change of yield gain probability under NT-R-SC (+F+WD) vs. CT-R-SC (+F+WD) systems 
under climate change. Plot 5 shows the change of yield gain probability under NT-R-SC (-F-WD) vs. CT-R-SC (-F-WD) systems under climate change.
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Appendix D figure 5 | Maps of crop density. These cropping density maps were generated based on MIRCA2000 dataset 3 and were presented in ref. 6. The 
yellower shade indicates the higher density, and vice versa. To make the plots more contrast, the yellow color in the map is set to the crop density that equals 
to or is higher than 20% of maximum density worldwide. The unit for the color bar is [ha / 0.5° latitude ×0.5° longitude grid cell]. 
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Appendix D figure 6 | Flow chart of paper section. The search strategy is described in detail in ref. 
6,7. 

 

Paper excluded (n= 347) 

Reasons for exclusion 

 Papers without yield data for CA 
and/or CT  

 Papers only provide mean yield 
data instead of the yield data for 
each year or each location 

Literature search was done in 
February 2020 based on the keywords 

‘Conservation agriculture / No-till / 
No tillage/ Zero tillage’ & ‘Yield / Yield 

change’ in the websites 
‘ScienceDirect’ and ‘Web of science’  

Paper screened according to 
data availability in external 

databases 
(n = 550) 

Paper excluded (n = 137) 

Reasons for exclusion 

 No such crops in the crop calendar 
database 

 Crops without enough data 
 For the recorded location and 

experiment year, climatic information 
and/or soil type not available in the 
external database  
 

Paper screened according 
to yield data availability 

(n = 1012) 

Papers excluded (n = 115) 

Reasons for exclusion 

 Without precise experiment year  
 Without precise experiment 

location 
 Without providing any of the 

agricultural practice information 
related to fertilizer, pesticide, 
herbicide utilization, crop rotation 
and residue management  

 

Studies included in our 
dataset 

(n = 413) 

Paper screened at the full-
text level 
(n = 665) 

 

Additional papers 
identified through meta-

analyses 
(n = 682) 

Papers after duplicates removed 
(n = 1012) 

Papers identified 
through literature 

search 
(n =   423) 
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Appendix D figure 7 | Model cross-validation – leave one out cross validation (LOOCV). Leave 
one out cross-validation procedure: The details of this cross-validation procedure are presented in ref. 
6. One yield ratio (and its associated set of inputs) was removed from the dataset at each iteration of the 
cross-validation and used as testing sample. The rest of the dataset was used to train the random forest 
model. The trained model was then used to compute the probability of yield gain from the input data of 
the removed yield ratio. This procedure was repeated for all yield ratios. The R package “randomForest” 
was used to train the model. “randomForest” is a standard package for implementing ensemble of 
regression trees and is very robust 8. The probabilities of yield gain computed by the package were used 
to compute the Area under the ROC curve (AUC) with the R package “pROC”. AUC is equal to the 
probability that the classifier will rank a random pair of positive (yield ratio>1) and negative (yield 
ratio<=1) cases correctly 9, so a higher AUC means a better model classification performance. 
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Appendix D figure 8 | Koppen-Geiger climate regions10 used in this paper. The first part of the name indicates the main climates, A: equatorial; B: arid; C: 
warm temperate; D: snow; E: polar. The second part of the name indicates the precipitation conditions, W: desert; S: steppe; f: fully humid; s: summer dry; w: 
winter dry; m: monsoonal. The third part of the name indicates the temperatures, h: hot arid; k: cold arid; a: hot summer; b: warm summer; c: cool summer; d: 
extremely continental. While F indicates polar frost, T indicates polar tundra.
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Titre : Synthèse de données pour l’analyse des enjeux agricoles mondiaux : application pour évaluer la productivité 
de l'agriculture de conservation sous les climats actuels et futurs 

Mots clés : L'agriculture de conservation, Changement climatique, Rendement des cultures 

Résumé : Dans cette thèse, nous présentons un 
pipeline d'apprentissage machine (ML) qui produit des 
cartes mondiales générées par synthèse de données 
pour répondre aux enjeux agricoles mondiaux, tels que 
l'évaluation de la distribution spatiale de la productivité 
de l'agriculture de conservation (CA) par rapport au 
travail du sol conventionnel (CT) sous les climats actuels 
et futurs. Notre approche comporte la sélection et la 
comparaison d'algorithmes d'apprentissage 
automatique, l’entrainement du modèle, son 
optimisation avec validation croisée, les tests et la 
projection globale des résultats. Nous illustrons la 
démarche proposée à l'aide d'un jeu de données 
mondial pour comparer les rendements des systèmes 
d'agriculture de conservation (AC) et de non-travail du 
sol (NT) par rapport au travail du sol conventionnel (CT) 
avec un large éventail d'espèces de cultures, de 
pratiques agricoles, de caractéristiques du sol et de 
conditions climatiques pendant la saison de croissance 

des cultures. Grâce à ce pipeline, une série de modèles 
de classification, de régression et de régression quantile 
sont développés sur la base de 12 algorithmes ML 
courants. Les modèles les plus performants sont utilisés 
pour cartographier la productivité des cultures de l'AC et 
de ses variantes par rapport au CT à l'échelle mondiale 
pour différentes pratiques agricoles et conditions 
climatiques dans les scénarios passés (1981-2010), 
actuels (2011-2020) et futurs (2051-2060). Nous révélons 
de grandes différences dans la probabilité de gains de 
rendement avec l'AC entre les types de cultures, les 
pratiques de gestion agricole, les zones climatiques et les 
régions géographiques. Nous montrons que l'AC a plus 
de 50% de chances de surpasser le CT dans les régions 
sèches du monde, en particulier avec des pratiques de 
gestion agricole appropriées. En conclusion, l'AC 
apparaît comme une pratique agricole durable si elle est 
ciblée sur des régions climatiques et des espèces de 
cultures spécifiques. 

 

 

Title : Data-driven approach for addressing global agricultural issues: application to assess productivity of 
conservation agriculture under current and future climate 

Keywords : Conservation agriculture, Climate change, Crop yield 

Abstract : In this thesis, we present a machine learning 
(ML) pipeline that produces data-driven global maps to 
address the global agricultural issues, such as assessing 
the spatial distribution of the productivity conservation 
agriculture (CA) versus conventional tillage (CT) under 
current and future climate. Our approach covers the 
selection and comparison of ML algorithms, model 
training, tuning with cross-validation, testing, and results 
global projection. We demonstrate its relevance using a 
global dataset we conducted which comparing the crop 
yields of conservation agriculture (CA) and no tillage (NT) 
vs. conventional tillage (CT) systems with a wide range of 
crop species, farming practices, soil characteristics and 
climate conditions over crop growing season. Through 
this ML pipeline, various  

models for classification, regression and quantile 
regression are trained based on 12 mainstream ML 
algorithms. The models are used to map the crop 
productivity of CA and its variants vs. CT at the global scale 
under different farming practices and climate conditions in 
the past (1981-2010), current (2011-2020) and future 
(2051-2060) scenarios. We reveal large differences in the 
probability of yield gains with CA across crop types, 
agricultural management practices, climate zones, and 
geographical regions. We show that CA stands a more than 
50% chance to outperform CT in dryer regions of the world, 
especially with proper agricultural management practices. 
In conclusion, CA appears as a sustainable agricultural 
practice if targeted at specific climatic regions and crop 
species. 
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