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A B S T R A C T

A textured solid infused with a liquid comprises a class of materials
in between a liquid and a solid. Unlike classical solids, these materials
typically exhibit extraordinarily little adhesion, due to the marginal
role of pinning sites. Their liquid-like nature, owing to the trapped
infusion, also makes them exceptionally slippery to drops of other
non-miscible liquids. In this thesis, we experimentally investigate the
original spreading, adhesion and frictional behaviour of these spe-
cial materials, the physics of which we capture with the construction
of scaling laws, wherever possible. In the first section, we show that
infused solids, despite their celebrated slipperiness, slow down the
spreading of a water drop in comparison to classical solids. The sit-
uation, however, is opposite for viscous drops, where spreading can
be substantially enhanced by slip at the oil/drop interface. In both
cases, we find that the laws of spreading on infused solids preserve
the structure of the laws established on bare solids, even if the speed
can be tuned by the viscosity ratio of the drop and infused oil. In
the second section, we demonstrate that contrary to the vanishing lat-
eral adhesion of these materials, their vertical adhesion is remarkably
high. The dynamical adhesion of these solids can be utilized to create
a viscous tweezer for water droplets. Finally in the third section, we
discuss the friction properties of liquid-infused solids towards solid
beads, and describe in particular how these rolling spheres drag a tail
behind them.
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R É S U M É

Un solide texturé infusé est un matériau ambigu, sa surface étant mi-
solide, mi-liquide. En conséquence, ces matériaux présentent générale-
ment une adhérence extraordinairement faible qui les rend spéciale-
ment glissants pour des gouttes (d’un autre liquide) qu’on y dépose.
Nous étudions dans cette thèse quelques comportements originaux
de ces surfaces en termes de mouillage, d’adhésion et de friction –
à la fois d’un point de vue expérimental et en loi d’échelle, quand
c’est possible. Chaque fois que c’est possible. Dans la première sec-
tion, nous montrons que les solides infusés, supposés ultra-glissants,
ralentissent pourtant l’étalement d’une goutte d’eau par rapport aux
solides classiques. La situation est opposée pour des gouttes visqueu-
ses, dont l’étalement peut être nettement accéléré par le glissement à
l’interface huile/goutte. Dans les deux cas, nous constatons que les
lois d’étalement sur les solides infusés conservent la structure des
lois établies sur les solides nus, avec des aménagements fonctions des
viscosités des deux liquides en jeu. Dans la deuxième section, nous
montrons que, contrastant avec l’adhésion horizontale ultra-faible de
ces matériaux, leur adhérence verticale peut être élevèe et servir à cap-
turer un liquide par viscosité (pince visqueuse). Dans la troisième sec-
tion enfin, nous discutons des propriétés de friction de billes solides
dévalant sur des surfaces infusées et décrivons en particulier com-
ment ces sphéres roulantes engendrent une traı̂née visqueuse derrière
elles.
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1
R U N AWAY C Y C L O N E

Calcutta, 1896.
The capital of the British colonial empire in the East - ’The City of
Dreadful Night’ to Rudyard Kipling, the scribe of the British Empire,
’La Cité de la Joie ’ to French author Dominique Lapierre - inhabited
by the European imperialists - the British, the French, the Dutch, with
Afghan fruit-sellers, Cantonese carpenters, opium traders, Armenian
businessmen, Polish priests, and the Bengalis - a native bourgeois in-
telligentsia igniting a Renaissance in Bengal influenced by European
ideas of liberalism and the Bengali proletariat dying of the Plague of
1896 and bullets of the Europeans, resurrecting in class-consciousness
- a city brewing with political unrest about to witness a series of
bombings by young radicals, to be hanged, shot and killed during
the partitioning of Bengal - a city at the crossroads of tectonic politi-
cal and cultural revolutions, breaking colonial myths of Orientalism -
where Bengali Shakespearean theater artists had taken to streets after
the burning of the Chowringhee Theater, where the Bengali working
class had exploded on the streets in the Jute Mill Strikes of 1896 - to
that city of 1896, returns home a young Bengali, finishing his doctoral
studies in London [1–3].

He writes in Bengali what would be the first piece of science fiction
in India - ’Polatok Toophan’ that translates to ’Runaway Cyclone’ in
English and ’Cyclone en Fuite’ in French. First published in 1896, this
colonial-era science fiction by a non-western author is set in colonial
Calcutta and told from the perspective of a local Calcuttan.

The story begins with the meteorological office warning the peo-
ple of Bengal about an imminent cyclone threatening to devastate the
city of Calcutta. However, on the fateful night, as the petrified pop-
ulace of Bengal awaits with bated breath, the cyclone vanishes. The
meteorologists and physicists worldwide - all stand stupefied, strug-
gling to find a scientific rationale to explain the mysterious disap-
pearance of the foretold cyclone. Soon, the European and American
physicists start heatedly debating on the mysterious disappearance.
An unnamed scientist who ’once published an article in Nature’ pro-
poses that ’the cyclone must have been whisked away by the attrac-
tion of an invisible passing asteroid’. A German professor presents
’a theoretically dense article on the Runaway cyclone phenomenon’ at
the British Association convention at Oxford that in truth does little
to explain why the cyclone disappeared at all.

The story now goes back in time to two different points - one, mo-
ments before the cyclone hits, where a ship is asail on the Bay of

3



4 runaway cyclone

Bengal and a balding man standing on its deck, and the other an in-
definite time before the cyclone, when an English man boards a ship
with a lion, to reach the shores of India and start his own circus. The
English man arrives in India only to find his woes know no end as
the star of his circus - the lion has lost all its mane during the voyage,
courtesy an unknown ’microbial disease’. The lion, he laments, now
looks no different from a ’hairless street dog’. Desperate and devas-
tated, the English man tries everything and when all else fails, he
visits an Indian holy man, where the English man’s unending antics
to prove his devotion earns him a bottle of hair oil from the monk
for his lion. The hair oil incidentally not only grows back the lion’s
mane and saves the English man’s circus, it then finds its way onto
the shelves of shops and in advertisements in print describing its
miraculous hair-recovery properties. A young girl buys this hair-oil
and packs it in the bag of her balding father, about to go travelling on
a ship - as recommended by his doctor for a change of air.

This brings us to moments before the cyclone hits, when the bald-
ing man stands on the deck of the ship. Holding the bottle of hair oil
in his hand, he suddenly remembers having read somewhere in some
scientific article that oil can calm waves on the surface of water. As
the waves bellowed, he throws the bottle of hair oil - which from the
Indian monk to the English man to the hairless lion to the young girl
to the balding man now falls on the waves of the sea. As the first drop
of oil touches the waters, it spread across almost instantaneously, al-
most like a miracle - stilling all the waves of the ocean - creating the
calm of a storm that was to be, but never was.

The story ends with the line -

’Who would know how many millions of lives
were saved by a mere bottle of hair oil!’

Not aliens or time machines or extraordinary voyages or the mod-
ern Prometheus1, what marks the beginning of science fiction in India
is a bottle of hair oil. However, it is not just a bottle of hair oil, the
short story also has hidden within it the idea of sensitivity to initial
conditions - the idea that characters in a complex system may not
know how small changes at their end may affect someone else some-
where or trigger a series of events that may drastically alter the global
outcome, influencing everyone’s lives - what lies at the heart of Ed-
ward Lorenz’s celebrated talk, eighty years later - ’Does the flapping
of a butterfly’s wing in Brazil set off a tornado in Texas?’2

1 To give a timeline, H. G. Wells published ’The Time Machine’ in 1895, and ’The War
of the Worlds’ in 1898, Jules Verne published ’Voyage au centre de la Terre’ in 1864,
and Mary Shelley’s ’Frankenstein’ is in 1818.

2 Interestingly, Lorenz had previously used seagulls instead of butterflies in his discus-
sions on sensitivity. Nevertheless, in science fiction, the ’Butterfly Effect’ is typically
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Coming back to the hair oil, sadly a bottle of hair oil cannot stop a
cyclone. It can, however, calm the ripples on a water surface, spread-
ing molecularly thin on it - a real physical phenomenon that inspired
this story. In the spirit of the chain of causal links from the story, we
can now go back in time to trace the origins of this phenomenon -
to London in early 1890-s where the author was a student of Lord
Rayleigh, who was then experimenting on the effect of oil spreading
on water, even performing public demonstrations of the same, devel-
oping his famous 1892 lecture series3 inspired by Thomas Young’s
Course of Lectures on Natural Philosophy of 1807, from where this effect
can be traced back to a fleet of 96 ships sailing across the Atlantic
in 1757. And, in one of those ships was Benjamin Franklin, who no-
ticed that the cooks had been emptying greasy water onto the sea
and this had stilled the waves in the water between adjacent ships4

[5]. Franklin verified this effect in an experiment at the Clapham pond
in the 1770-s, and in one of his letters to William Brownrigg, dated
November 7, 1773, he wrote

’But (oil) when put on water it spreads instantly many feet around, be-
coming so thin as to produce the prismatic colors, for a considerable space,
and beyond them so much thinner as to be invisible, except in its effect of
smoothing the waves.’

From Franklin to Young to Rayleigh, across a hundred years and
ten thousand miles, the story of the calming of waves by the pouring
of oil reached Calcutta in 1896 - with Sir Jagadis Chandra Bose, who
alongside being a remarkable physicist, botanist and thinker, was also
an exceptional storyteller and the writer of the first science fiction in
India, ’Polatok Toophan’.

We would not be stilling any waves in this work, but we will see
how oil, water and solids can come together to exhibit some original
phenomena. This thesis is written in the spirit of Bose - the remark-
able experimentalist and author that he was - who did not merely
still the waves, who annihilated cyclones.

attributed to Ray Bradbury’s 1952 short story, ’A Sound of Thunder’ where the death
of a butterfly alters timelines and brings fascism. ’Polatok Toophan’ predates ’A Sound
of Thunder’ by 56 years [4].

3 We would be remiss here if we do not mention the contribution of Agnes Pockels, a
German woman who had been denied schooling and yet had been experimenting all
by herself with oil films since 1881. She made her first observations while washing
dishes in her kitchen and wrote a letter to Lord Rayleigh with her observations in
1891, which he subsequently published in Nature.

4 Franklin is only a thousand years too late to be the first one to make this observation,
the first recorded observation being that of Pliny the Elder, a Naturalist who died in
the eruption of Mount Vesuvius in 79 AD.
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a) b)

c)

Figure 1: He who annihilated cyclones. a) Sir Jagadis Chandra Bose at the
Sorbonne University in 1926, giving a series of lectures on the ner-
vous system of plants. b) Cover of the original print of Runaway
Cyclone in Bengali, first written in 1896, as published by Bangiya
Bigyan Porishad. The heading reads Polatok Toophan phonetically in
Bengali. c) The original letter of Benjamin Franklin to his friend
William Brownrigg dated November 7, 1773, in which he mentions
his observation of the stilling of the ocean waves by greasy water.







Part I

H E M I - S O L I D , H E M I - L I Q U I D





2
A C L A S S O F N E W M AT E R I A L S

In this chapter, we describe what is a liquid-infused solid - its histor-
ical development and properties. In the process, we also touch upon
various discoveries in the field of capillarity and how that helps us
understand these special materials.1

Sketched maps of Calcutta and Paris circa 1890 with two strips of paper cut out in the shape
of the rivers Ganges and Seine, and placed over the sketch. When the two strips are infused

with an aqueous solution of red and green dye, we see a liquid-infused Ganges and a
liquid-infused Seine running through the cities of Calcutta and Paris.

1 Acknowledgements to Aditya Jha for several pictures, and sugar cubes for Joachim
Delannoy.
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10 a class of new materials

2.1 solids , liquids and liquid-infused solids

For more than half a century, a Korean man in Paris obsessively
painted water drops, and water drops alone - drops that were static or
in a run, drops that were in a crowd or had been shunned. In January
2021, he passed away. We begin our discussion with two creations of
’the man who painted water drops’ - Kim Tschang-yeul.

Figure 2: The man who painted water drops. Two creations of Kim Tschang-
yeul (1929-2021), who painted only water drops in different forms
and abstractions for fifty-two years. Left: Waterdrop, painted with
Indian ink and oil on wood. Right: Five Drops, painted with tinfix
and oil on canvas.

In Fig. 2, we see two of his paintings. On the left, we see a painting
of a single drop, set against a red background, its shape, shade and
lighting tell us that it is in equilibrium on a wall. On the right, we see
dynamics - a painting of five drops, set against an ochre background,
the blurriness of each reflective of the quick pace of the race they are
engaged in, each one leaving a trail behind with the remains of itself.
Both of these configurations are hidden in the myriad everyday obser-
vations of ours of water drops interacting with solid surfaces, where
we notice that, generally speaking, some drops run while some drops
stay where they are ’happy’ in their being. The scientific reasoning be-
hind this difference in behavior of drops on solids often lies in their
material conditions - the surface of the solid is not ’perfectly flat’.

The backdrop of the painting here serves as an example of a clas-
sical solid that is ’rough’. Said differently, any generic solid, even a
chemically homogeneous one, is physically heterogeneous - its sur-
face has ’bumps’ and ’troughs’, which is why even a flat solid is
not ’perfectly flat’. The scale of such roughness on typical solids may
range from the order of tens of nanometers to hundreds of microns,
the smoothest surface discovered till date being freshly cleaved mica
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where asperities are of the order of a single nanometer[6]. A con-
sequence of the inescapable existence of roughness on solids is that
droplets may get pinned on these asperities, and not move even when
driven by a force like gravity, as we see in Kim’s painting.

θ1

θ2

Figure 3: Pinning. Sketch of a liquid front moving on a generic solid sur-
face. The physical heterogeneities at the solid surface allow for a
multiplicity of angles, denoted here by θ1 and θ2 to be exhibited
at the contact line, which remains ’pinned’ locally at these defects.

A liquid interface on the other hand is atomically smooth. Thus, a
drop of oil on an air-water interface has no possibility of being pinned
and if pushed, would move ’freely’. There could, of course, be other
sources of dissipation as viscosity of the drop and the medium but
the onset of motion of the drop would not be inhibited by pinning
defects, as is the case on a solid.

To understand the nature of pinning on classical solids and how
to minimize them has been one of the most ponderous quests in the
field of soft matter. One may even say that a solid with no pinning
whatsoever is equivalent to the holy grail in the field of surface sci-
ences. To this end, if one were to pour some liquid (say, oil) on a Similar other two

attempts at the
’grail’ have been
Leidenfrost surfaces
and superhydro-
phobic surfaces.

solid, then deposit a drop of an immiscible liquid (water) on it, it
could be argued that the drop would not ’feel’ any pinning defects,
making it seem that achieving the grail was apparently quite trivial,
after all! Alas! The above solution, although remarkably simple and
not without merits, is truly no solution at all, the biggest caveat being
that in this case it is not only the drop that is ’free’ to move, but the
film too, that is free to flow. Furthermore, the deposited drop would
be partially submerged in the film, and the situation would be anal-
ogous to that of a liquid on a liquid (immiscible), with barely any
signature of the solid at all.

However, if we could ’lock’ the film or suffuse it into the solid in a
microscopically thin layer so that it would be just enough to minimize
the pinning defects but not enough to freely flow, to not completely
overfill and have liquid over the solid yet allow the possibility of the
drop to slip on the solid below, then in principle we could have a
material that is truly ambiguous between a solid and a liquid. But,
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Solid Liquid Liquid-infused 
Solid

Figure 4: Three Classes of Materials. Left to right - a classical solid, a clas-
sical liquid, and a liquid-infused solid.

is such a solid possible? How does one even ’lock’ a microscopically
thin layer of liquid on top of a solid?
It is.
And, the specific process in which a microscopic layer of liquid is
preserved on top of a solid is called hemi-wicking. In the subsequent
sections, we discuss how to make these surfaces, their original prop-
erties and historically how they came to be, and also the physics and
details of hemi-wicking. But, first we give the definition of a liquid-
infused surface -

A liquid-infused solid is a class of materials
that are hemi-solid and hemi-liquid

and created by hemi-wicking.

It is imperative that we define ’hemi-wicking’ now, but before that
we must meet wicking and wetting - the Remus and Romulus of Capil-
larity.

2.2 wicking and wetting

2.2.1 Wicking

We start with a cup of coffee. If we bring a cube of sugar in contact
with the coffee, we immediately observe that the coffee invades into
the solid, percolating through the porous network of the sugar cube,
as seen by the distinctive change of color (Fig. 5). This invasion of the
liquid into a solid is called wicking.

A necessary condition for imbibition is that the solid must be porous,
or must have a network of capillaries within. A second condition is
that the liquid must have an affinity for the solid. In other words, if a
drop of the liquid were deposited on the surface of a non-porous ver-
sion of the solid, it makes a contact angle θ that is less than π/2. The
first condition of a network of capillaries also requires the dimension
of the capillaries to be necessarily smaller than a critical size κ−1, also
called the capillary length.

The capillary length is a threshold length, beyond which gravity
becomes dominant. This can be visually observed by placing drops
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1 cm

Figure 5: Sugar Cubes and Coffee. A classical example of wicking is a
sugar cube brought in contact with coffee. Inset shows snapshots
at 0.3 s intervals after contact. The distinctive change in color
shows the front of the liquid (coffee) that wicks through the three-
dimensional porous medium of the sugar cube.

of different volumes on a flat solid surface, as shown in Fig 6, where
drops of volumes 5µL, are placed on a superhydrophobic surface. We
observe from the experimental image that as the droplet volume in-
creases, its shape transitions from that of a spherical to a puddle. In
other words, the height of the drop increases with volume until a cer-
tain size of the drop, where it saturates. This is because there are two
antagonistic forces here at play - capillarity, which wants to minimize
the surface energy γA of the drop, where γ is the surface tension of
the liquid and A is the surface area, and hence favors the drop being
spherical (as a sphere has the minimum surface area for a fixed vol-
ume), and gravity, which flattens the drop. The capillary length can
be estimated by comparing the Laplace pressure γ/κ−1, where γ is
the surface tension of the liquid with the hydrostatic pressure ρgκ−1,
where ρ is the density of the liquid and g is the acceleration due to
gravity. A balance of the two yields the threshold length to be

κ−1 = (γ/ρg)1/2 (1)

For water, γ = 72 mN/m, and ρ = 997 kg/m3, which gives the
capillary length to be κ−1 ≈ 2.7 mm. For a drop, it can be shown
that beyond a volume Ω > κ−3, the height of the puddle becomes
a constant at h ≈ κ−1

√
2(1− cos θe), where θe is the equilibrium

contact angle of the liquid on the solid. The millimetric magnitude
of capillary length of water implies that there are six orders of mag-
nitude from the atomic scale to κ−1 where surface forces dominate.
This has far reaching consequences from dictating the size of rain to
the flow in our veins, which have also allowed us to engineer on mi-
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3 mm

Figure 6: Capillary Length. Coffee drops of volumes Ω = 5µL, 10µL, 50µL,
100µL and 500µL deposited on a superhydrophobic surface. The
bigger, the darker, but also the flatter.

croscopic scales such that there are macroscopic manifestations - a
liquid-infused solid being one of the many such examples.

Back to the imbibition, we have established that a necessary (not
sufficient) criterion for imbibition is that the solid must be porous
and the pores must have a dimension less than κ−1 that is ≈ 2.7 mm
for water. In this sense, a simplified version of coffee wicking into a
sugar cube is coffee rising up a capillary. In Figure 7, a thin capillary
tube of 250µm is gently brought in contact with a cup of coffee, when
we see the coffee quickly invades into the capillary and subsequently
slows down to come to an equilibrium at a height of ∼ 4mm.

Now that we stand at the footsteps of the founding experiment of
capillarity, we would be remiss if we did not take a short historical
detour.

2.2.1.1 The Age of Enlightenment:

The phenomenon of wicking has been known to humans, in some
shape or form, for millennia - as long as humans have known how
to make oil wicks, in lamps, lanterns and torches. This can be traced
back to at least the Iron Age ∼ 700BC, when the Inuits as well as the
Chinese were lighting oil lamps with fibrous wicks to illuminate their
parts of the world [7, 8].

However, the distillation of the phenomena of wicking into an ex-
periment of capillary rise in a narrow tube did not happen until
Robert Boyle’s experiment on capillary rise in 1682 [9]. Although,
mentions of the capillary rise appear even in da Vinci’s writings (as
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1 mm

Figure 7: Capillary Rise of Coffee. A narrow capillary tube of 250µm ra-
dius gently touches the top of a cup of coffee. We see the coffee
quickly rises up the tube and then slows down to finally equilibri-
ate at a height above 3mm. Successive snapshots are at an interval
of 0.2 s.

possible mechanisms of mountain springs), Hardy’s account on the
history of capillarity distinguishes Boyle’s experiment as the starting
point on the study of surface energies and short-range forces[10, 11].
Boyle’s experiment greatly enthused seventeenth and eighteenth cen-
tury philosophers as evident in the words of the astronomer Joseph
Jérôme Lefrançois de Lalande: [10]

’Many phenomena are regarded as allied to those of capillary tubes ... e.g. By ’law’, de Lalande
refers here to general
attraction of matter,
that had been
previously debated
for long.

the suction of sugar and of sponges, the origin of springs in elevated sites;
the secretions in the human body seem to be due to the same cause ...

Capillary tubes put into our hands an obvious example of the generality of
this law, which is the keystone of physical science.’

Of the many investigators of the time, the person often forgotten
who made seminal contributions to the understanding of capillary
rise is Francis Hauksbee (1713). He was even forgotten by his col-
league of Newton, in the passage of OpticKs where he describes cap-
illary rise. [12]. Hauksbee was an experimentalist par excellence who
showed through his experiments that the phenomenon of capillary
rise in narrow confinements is not specific to a particular solid or a
liquid, neither is it driven by the presence of air, as it occurs in a
vacuum too. Furthermore, the height of the rise is the same in two
tubes of the same diameter, even if one of them has a wall that is ten
times thicker - proving that the attraction between liquids and solids
is dictated by the area of surfaces.
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Figure 8: Hawksbee and Chinese Oil Lamps. Left: The double-barrelled
air pump of Francis Hauksbee (1705) which he used to perform
experiments on capillary rise in vacuum. Reproduced from Francis
Hauksbee’s Physico-Mechanical Experiments (London, 1719) [13]. Right:
the largest excavated Chinese oil lamp dating back to the Sixteen
Kingdoms, Former Liang dynasty (314-76 AD). The lamp is four foot
high with three tiers and twelve branches. The curved end of each
branch has an oil tray with a wooden wick extending from it. Re-
produced from China: Dawn of a Golden Age, 200-750 AD [7].

However it was not until a century later that a complete under-
standing was developed with Laplace (1806). We may succinctly de-
scribe it here as follows.

If γ, γsv, and γsl be the surface energies of the coffee (liquid) with
respect to air, solid with respect to air and solid with respect to coffee
and R the radius of the capillary, then we may write the energy of the
system when the liquid has invaded into the capillary by an extent
h as E = −2πrh(γsv − γsl) + (1/2)πr2h2ρg, where the first term rep-
resents the gain in surface energy and the second term corresponds
to the loss in gravitational potential energy, and we have ignored the
contributions of the meniscus, which is valid when h ≫ R. We now
substitute γsv − γsl by γ cos θ0, that we can obtain from a balance
of the surface tension forces at the contact line. This relation is also
known as the Young’s Equation, which we discuss in the next subsec-
tion. Minimizing E with respect to h gives us

H = 2γ cos θ0/ρgR, (2)
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where H is sometimes known as the Jurin’s height. Equation 2 re-
veals that firstly, all of Hawksbee’s observations hold - there is no
influence of air, pressure, thickness of walls, and the height varies
as R−1. We also note that for capillaries of the size of tens of mi-
crons, water may rise to ∼ 1m on perfectly wetting solids (θ0 ≈ 0). In
the context of a porous medium the radius would be replaced by the
smallest pore radius. Furthermore, the limiting height is only a conse-
quence of vertical capillaries. For a horizontal capillary, the imbibition
is unbounded (the limit g→ 0 in Equation 2).

2.2.1.2 Dynamics

While an understanding of the statics and energetics of wicking devel-
oped in 1806, the dynamics would not be laid down until a hundred
years later in 1906 by J. M. Bell and F. K. Cameron. Unfortunately,
Bell and Cameron’s contributions are often forgotten in the light of
the works of R. Lucas and E. W. Washburn who independently de-
scribed the dynamics a decade later [14–16]. The impregnating flow
has a Poiseuille nature which leads to a viscous friction that scales
as F ∼ ηVz, where z is the length of imbibition. The driving force
being given by F ∼ γR cos θ, when gravity can be neglected (z ≪ H)
a balance of the two gives us the Washburn’s law, rather the Bell-
Cameron-Luas-Washburn’s Law

z ∼ (γR cos θ/η)1/2 t1/2 (3)

The law reveals that the dynamics of wicking is ’diffusive’ in nature,
that is z ∼ t1/2. The 1/2 law also tells us that the invasion of the
liquid is fast in the beginning and becomes slower and slower as
time progresses, as the front moves further and further away from
the source. In the case of porous materials, Washburn’s law can be
used to determine a mean pore size or porosity of the material.

Another observation regarding the Washburn’s law is that diverges
at short times, as t→ 0. This was brought to attention in the 1990-s by
David Quéré, where he noted that the singularity can be resolved by
considering inertia which becomes dominant at such scales. The iner- The divergence was

first remarked on by
C. H. Bosanquet in
1923 soon after
Washburn published
the dynamical law of
imbibition [17].

tia of the liquid scales as ρR2zV which when balanced by capillarity
we get the inertial law of imbibition at small time as

z ∼ (γ cos θ/ρR)1/2t, (4)

which gives a speed ∼ 10 cm/s for millimetric tubes. Such a law
would be dominant up to a time scale τ ∼ ρR2/η, which also can
be looked upon as the time required for the flow to form a viscous
boundary layer across the tube. Once the boundary layer has invaded
the tube, the dynamics crosses over to the Washburnian regime, or
comes to rest, depending on the properties of the liquid and the solid
used.
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θ0 → 0 θ0 < π/2
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θ0 > π/2 θ0 → π

Figure 9: Wetting. a) A classical example of wetting: a drop of coffee de-
posited on a glass plate. Inset shows a zoom-in of the contact line,
that exhibits a contact angle θ. The three surface tension forces
acting at the contact line are sketched on the experimental image.
b) The three cases of wetting categorized by the Young contact an-
gle - complete wetting, partial wetting, poor wetting and non-wetting
(from left to right).

2.2.2 Wetting

If a drop of coffee were to spill onto a glass plate, it would spread
out on the surface in the form a spherical cap and come to rest at
its equilibrium contact angle θ0 (Fig. 9). This is called wetting, more
specifically partially wetting as the contact angle θ0 is less than π/2.

The key difference between wicking and wetting is that, for wetting,
the solid must have the impenetrability condition, that is it must be
non-porous. As we will see, classical solids may be non-porous, but
they are never ’perfectly flat’, which consequently affects the contact
angle θ0 .

In 1805, in one of the series of founding articles that marked the
beginning of the field of wetting, Thomas Young proposed a relation-
ship between the contact angle and the surface tension of the three
media, now famous as Young’s Equation, based on which successive
ideas on wetting developed [18]. The Young relation can be derivedCuriously, Young

never explicitly
wrote the equation

in his original article
of 1805 [18].

by considering a force balance at the contact line, where the three in-
terfaces - liquid-air, liquid-solid and solid-air meet. Thus, three forces
of capillarity γ, the surface tension of liquid with respect to air, γls,
the surface tension of solid with respect to the liquid and γsv, the
surface tension of solid with respect to vapor, act on this line, parallel
to the three interfaces, along with an additional vertical reaction force
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FR by the solid to maintain equilibrium. A balance of the horizontal
components of the force yields

γ cos θ0 = γsv − γsl. (5)

A natural conclusion that follows from Equation 5 is that fixing the
three media that meet at a contact line should fix the contact angle
too. Sadly that holds only for the academic example of a perfectly
flat, physically and chemically homogeneous surface, as was consid-
ered by Young. As discussed before real solids are characterized by
pinning defects, that allow a drop to exhibit a range of contact an-
gles while remaining in equilibrium. The difference between the max-
imum and the minimum of these angles, ∆θ = θa − θr, is called
contact angle hysteresis and is a measure of the defects on the surface.

The existence of pinning diminishes the applicability of the Young
relation for real surfaces. Nevertheless, for the ideal case of a solid
with no pinning, important limits can be drawn from Equation 5.
First, the surface tension values being independent of each other, it is
possible that (γsv − γsl)/γ is greater than 1. This corresponds to the
case of complete wetting. In other words, as put by Marangoni, physi-
cally the relation γsv > γ+γsl means that a high energy solid prefers
to lower its surface energy by completely covering itself with a low-
energy liquid, a typical example being a drop of silicone oil deposited
on a glass plate in air.

The converse case where the two fluids are switched - a bubble of
air approaching a glass slide surrounded by a medium of silicone oil,
demonstrates non-wetting, where in Equation 5, (γsv−γsl)/γ is lesser
than - 1. In both the cases of perfect wetting and non-wetting, we see the
contact line vanishes because Equation 5 does not allow a solution for
the equilibrium angle θ0.

However, the non-wetting limit of θ0 → π cannot be achieved for a
water drop on a solid in air. The chemical limit of hydrophobicity is
θ0 ≈ 120◦ (for fluorinated materials such as Teflon), which is far from
180◦.

The 1990-s would see a series of breakthroughs in approaching the
limit of non-wetting beyond the chemical limit. This in conjunction
with the quest to create a solid with no pinning would be become
one of the driving forces of the research in the 90-s, and thereafter.

2.2.2.1 The ’Rough’ 90-s.

Three key events marked a change in the course of wettability re-
search which led to the discovery of superhydrophobicity.

First, in 1996-1997, the Kao Group from Japan showed that if a sur-
face be made sufficiently rough, then the limit of 120◦ can be broken.
In a series of experiments they showed different chemical processes



20 a class of new materials

a) b) c) 10 μm

Figure 10: Foundation of Superhydrophobicity. a) The 1996 experimental
image of a pearl drop, as reported by the Kao group - Onda,
Shibuichi, Satoh and Tsujii in Langmuir. b) The 1997 SEM images
of hierarchical structures on lotus and taro leaves by Neinhuis
and Barthlott in Planta. c) The 1999 image of lab-made patterns
leading to pearl drops by Bico and Quéré in Europhys. Lett..

in which this may be achieved, one of which is anode oxidation of
an aluminum surface, followed by a chemical vapor deposition with
fluorinated silanes. Such a chemical process created fractal-like rough
surfaces where deposited water drops looked like pearls with angles
as high as 174◦.

Second, in 1997 Neinhuis and Barthlott reported that water drops
exhibit contact angles larger than 150◦ on a plethora of natural biolog-
ical surfaces like lotus and eucalyptus. These surfaces are wax-coated
(hence, hydrophobic chemically) and then functionalized by bumps
of the scale of ∼ 10µm, which are further decorated with hairs, typi-
cally ∼ 1µm creating a hierarchically rough surface which allows the
contact angle to be far beyond the chemical limit. Such functional-
ized surfaces are not limited to just leaves but are also seen on water
strider legs and butterfly wings.

Third, in 1999, José Bico and David Quéré showed that by building
micrometric posts on a hydrophobic solid, one can induce superhy-
drophobicity - jump from a contact angle of 110◦ on a bare silicon
wafer to 160◦ on the textured surface. By controlling the spacing of
the pillars, and pillar dimensions from 100 nm to 100µm, the extent
of superhydrophobicity may be tuned as desired. The different limits
and physics of obtaining non-wetting may now be studied in detail.

In one word, what these three works brought to the world of wet-
ting is texture.

Physically, the effect of a (hydrophobic) texture may be explained as
follows: a drop sitting on top of a hydrophobic surface decorated withThere exists a second

state, called the
Wenzel state where

the drop is stuck
inside the texture

and exhibits a much
larger hysteresis and

relatively smaller
contact angle than

what is observed in
the Cassie state.

texture (known as Cassie state) is sitting on part-air (where θ→ 180◦),
part-solid (where 90◦ < θ ⩽ 120◦), which leads to an averaging of
the contact angle that allows θ to exceed the chemical limit. Further-
more, the solid-liquid contact becomes minimal because the drop is
sitting on pillar tops and is very spherical, leading to a significant
decrease in pinning and thus, hysteresis. Said differently, roughness -
the very property of classical solids that makes pinning its signature,
can be used to minimize pinning itself, if one decorates the defects
on the solid appropriately. The effect of texture on contact angle can
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a) b) 

Figure 11: Cassie and Bheeshma. a) Schematic of a Cassie state, where a drop
sits on top of the texture of a hydrophobic solid. The Cassie state
is also reminiscent of the death of the near-immortal character of
Bheeshma in the Indian epic Mahabharata. In his dying moments
during the battle of Kurukshetra, Bheeshma lay on a bed of arrows
much like a Cassie drop, as we see in this painting by Aniket Mitra
in b) [23].

be captured as a function of the roughness and solid fraction by min-
imizing he surface energy in conjunction with the Young’s relation,
which was first derived by Cassie and Wenzel in 1930-s and 40-s, in
their work on apparent contact angle [19–22].

2.2.3 Hemi-wicking

In the last section, we noted that the addition of texture on a hy-
drophobic solid renders it superhydrophobic. It becomes natural to
now ask what would happen if the textured surface is brought in con-
tact with a wetting liquid, like silicone oil which is wets hydrophobic
solids. Figure 12 shows a schematic of such a situation where a hy-
drophobic (that is, oleophilic) solid decorated with texture is brought
into contact with an unbounded reservoir of oil.

This leads to the oil invading through the roughness, in a two-
dimensional wicking (hence, the name hemi-wicking). This is shown
in Figure 13 where a textured solid with 90µm high pillars is brought
in contact with a reservoir of silicone oil of viscosity η = 19 mPa-s.
Successive snapshots reveal how the oil wicks through the texture in
such a way that at the end of the filmification, a distinct meniscus can
be seen between the texture, as are the pillar tops.

We now discuss the specific conditions for such filmification. Let
r be the roughness of the textured surface and ϕs the solid fraction.
This means r is the ratio of the true surface area over the apparent
surface area of the solid, and ϕs is the ratio of the surface area of the
pillar tops over the apparent solid surface area. Therefore, we have
r > 1 and ϕs < 1. If we consider the case where only the cavities
are filled, but the pillar tops remain emerged in a situation of partial
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Figure 12: Hemiwicking Schematic of hemiwicking or rough wetting. A tex-
tured solid is brought in contact with a reservoir of wetting liq-
uid. The liquid invades into the roughness, in a two-dimensional
wicking phenomenon.

wetting, the variation in energy dE (per unit width) corresponding to
the progression of the film by a length dx can be expressed as

dE = (γsl − γsv)(r−ϕs)dx+ γ(1−ϕs)dx, (6)

where we neglect both gravity and the curvature of the film in be-
tween the texture, a reasonable assumption given the film and the
reservoir have the same curvature as the pressure is constant inside
the liquid. The first term on the left hand side corresponds to the fill-
ing of the cavities whereas the second term corresponds to creating
new liquid-air interfaces. The criterion for hemiwicking would cor-
respond to a lowering of surface energy by the filling of the texture.
Using Young’s relation, it follows that hemiwicking would occur if
θ < θc, where

θc = (1−ϕs)/(r−ϕs) (7)

We may now test Equation 7 to see if we can recover its different
limits. First, for a three-dimensional porous medium, r → ∞. This
gives us θc = π/2, which agrees with the necessary criterion for three
dimensional wicking previously discussed: θ < π/2. Second, for com-
plete wetting on a flat surface, ϕs = 1, which gives us θc = 0. This
corresponds to cosθ > 1, that is γsv > γsl + γ which is indeed the
Marangoni condition for perfect wetting.

Furthermore, Equation 7 may not only be utilized to design tex-
tured surfaces that can be hemi-wicked, we may also probe the ques-
tion of hemiwicking into a disordered rough surface, where ϕs is
phenomenological. A sufficient condition for imbibition into a generic
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Figure 13: Timelapse of Hemiwicking. Successive snapshots of imbibition
of silicone oil of viscosity η = 19 mPa-s, when a textured solid
with pillars of height h = 90µm is brought in contact with a
reservoir of the same. At the end of the hemiwicking process, the
spaces between the pillars are filled with oil which have a distinct
meniscus, and the pillar tops are free. This is the signature of
a perfectly infused surface, which is not overfilled. Images by
Daniel Beilharz.

rough surface is cosθ > 1/r. Said differently, the limit ϕs ≪ 1 greatly
simplifies the case of hemiwicking into disordered rough surface.

The phenomenon of rough wetting was first shown by José Bico
and David Quéré in 2001, where they laid out these conditions for
hemiwicking [24]. The dynamics of hemiwicking can be obtained by
balancing capillary forces with viscous dissipation which leads to a
Washburnian diffusive law analogous to Equation 3 with an added
prefactor of (cos θ/ cos θc− 1)1/2. Subsequent works revealed various
other features of hemiwicking like how morphology of texture can
influence the diffusivity or lead to polygonal spreading [25–29].

Now that we have discussed hemiwicking, we come to liquid-infused
solids: how to construct them, manipulate them and what is special
about them. In the subsequent sections, we also give a brief synopsis
of what has been done and what is to be done.
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2.3 the liquid-infused solid

b)

a)

Figure 14: Remus and Romulus. a) Schematic of a wetting drop being de-
posited on a textured solid, which leads to a simultaneous wick-
ing and wetting with two distinct fronts. b) A milimetric drop of
silicone oil of viscosity η = 19 mPa-s deposited on an oleophilic
textured solid with hp = 36µm, pitch p = 15µm and solid frac-
tion ϕ = 23%. Snapshots taken at 4 second intervals. Images by
Daniel Beilharz [30].

If wicking and wetting be the Romulus and Remus of capillarity,
Figure 14 illustrates the building of Rome - the liquid-infused solid.
When a drop of wetting liquid is deposited on a textured surface,
(hemi)wicking and wetting can be seen simultaneously in action, as
the liquid infuses and spreads across the solid. However, if the vol-
ume of the deposited liquid is more than the volume that can be
contained within the texture, then the solid at the end of the process
would be submerged in liquid. In this context, the death of Remus,
that is the wetting front is important to ensure that the solid is per-
fectly infused and not overfilled.

Let us first look at Figure 14, where a millimetric drop of silicone oil
is deposited on a textured surface with a solid fraction ϕ = 23% and
hp = 36µm and pitch p = 15µm. We see that the drop takes a ’fried
egg’ like shape where there are two distinct fronts - a hemiwicking
front within the texture which is faster and a wetting front of the
drop spreading on top of the textured suffused with the liquid. The
extent of the liquid at the top is also eventually being fed into the
wicking inside the texture. This leads to the radius of the wetting
front increases and then decreases until it vanishes at a certain point,
where only the wicking front remains.

However there is no volume constraint on the drop in this exper-
iment, implying that the texture at the end might be overfilled with
the liquid, as shown in Figure 15. A simple solution to ensure that is
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Perfectly InfusedOverfilled

Figure 15: Overfilled and Perfectly Infused Textured Solids Left: Sketch of
an overfilled textured solid, which is functionally not too different
from a flat solid with a thin film on it. Right: Sketch of a perfectly
infused textured solid, created by hemiwicking.

to bring the textured surface in contact with the reservoir vertically, in
which case, only the hemiwicking front exists from the beginning to
the end, as shown in Figure 12. The solid we construct in this process
is hemi-solid, hemi-liquid, an ambiguous material between a liquid
and a solid.

The ambiguity of such a solid is best noted by just depositing a
drop of immiscible liquid on it. We illustrate this is Figure 16, where
a 4 µL drop of water is deposited on a textured surface, that has been
perfectly infused with silicone oil. We see that the drop is hemispheri-
cal with a contact angle larger than 90

◦, as expected on a hydrophobic
surface. But the drop has a tiny meniscus, that is typically not visible
on macroscopic scale. As shown in the inset, confocal microscopy
reveals that there exists a meniscus or wetting ridge of ∼ 30µm sur-
rounding the drop. for a drop sitting atop a solid with a thin film,
or an overfilled liquid-infused solid, this meniscus is much larger,
typically ∼ 100µm [31]. A large meniscus is also a way of roughly
estimating whether the texture is overfilled or not.

2.3.1 Two methods of preparation.

In this section, we mention two more ways in which a perfectly in-
fused textured surface can be made, where hemiwicking is not directly
used. The first method has been described by Seiwert et al. [32] and
is used by some researchers. The second method is novel.

• The Landau-Levich-Derjaguin (LLD) Method.

When a flat plate is immersed in a liquid bath and drawn out at
a constant speed U, a thin film deposits on its surface. In 1942-
43, Landau and Levich, and Derjaguin separately showed that
when a solid is coated in this manner, the thickness h of the
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Figure 16: A drop on an Infused Solid A 4µL water drop on a perfectly in-
fused solid. The meniscus is difficult to see on a macroscopic scale
for perfectly infused solids. Inset shows a representative confocal
microscopy image which reveals the meniscus in detail, outlined
in yellow. Scale bar corresponds to 20µm. Confocal microscopy
image reproduced from the thesis of Armelle Keiser, taken by
Philipp Baumli and Anke Kaltbeitzel at Max Planck Institute for
Polymer Research at Mainz.

entrained thin film in such a process (also called dip-coating)The LLD law can be
derived by balancing

of viscous
dissipation in the

dynamic meniscus
with the capillary

forces, in
conjunction with a

matching of the
dynamic meniscus

with the static
meniscus

is given by hLLD ≈ 0.94κ−1Ca2/3, where Ca = ηU/γ is the
capillary number, that is less than 1 [33, 34].

Seiwert et al. in 2010 showed that when the same coating exper-
iment is performed with a textured surface of pillar height hp,
the law is modified as [32]

h ≈ hp U < U∗

h ≈ hLLD U > U∗

This critical velocity is given by U∗ ∼ (γ/η)(hpκ)
3/2, below

which the entrained film thickness is independent of the draw-
ing speed and equal to the pillar size, hp (see Figure 17 ). For
typical values of hp ∼ 10µm, η ≈ 10mPa-s, γ ≈ 20mN/m (sil-
icone oil), we get U∗ ∼ 1mm/s. This is very helpful to design
a workable range of drawing speeds at which we can make in-
fused solids, more efficiently on an industrial scale.

• Capillary Suction for Perfect Infusions

We propose here a novel way to get rid of the excess on an
overfilled textured solid. This means the first step is to overfill,
which can be by spincoating or just deposition. We demonstrate
this in Figure 18, where we deliberately take a textured surface
overfilled with 9mPa-s silicone oil, unevenly distributed all over
the surface. A thin capillary tube is now brought in contact with
the over-infused solid from the top. Immediately, a capillary rise
happens within the tube, creating an annular zone around the
capillary tube (dotted red circle), which is perfectly infused, and
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Figure 17: Making of a Liquid-infused Solid. Two approaches to make
a liquid-infused solid: a) hemiwicking (Washburn), and b) dip-
coating (Landau-Levich-Derjaguin). c). Coating thickness normal-
ized by the capillary length plotted against the capillary number,
Ca = ηU/γ. Full symbols represent experiments on a flat plate,
open symbols represent experiments on a textured solid. Straight
line represents LLD law and the line through open symbols rep-
resents Seiwert’s model. Reproduced from [32].

looks like a small ’hydraulic jump’. The rise can be predicted by
Hawksbee’s law of capillary rise, Eq. 2 and the maximal radius
Rp of the zone of perfect infusion can be obtained by equating
the volume of the capillary rise, κ−2R, R being the radius of the
capillary tube and the volume drained out, (h0 − hp)R2p, where
h0 is the initial thickness before the capillary tube is brought
into contact. This gives Rp as

Rp ∼ κ−1
√
R/(h0 − hp) (8)

Typical values of R ∼ 250µm and h0 − hp ∼ 10µm predict mil-
limetric lengths of zone of perfect infusion, as can be seen in
Figure 18. In order to scale up this process, we would need
an array of periodically spaced capillary tubes that are brought
into contact with the over-infused surface and removed after
capillary suction is complete.

Note that this is just a variant of putting a piece of paper (porous
medium) on the over-infused surface to imbibe out the excess.
The critical difference being that papers and wipes when brought
in contact with liquid-infused solids, almost always leave fi-
brous residues, which are extremely difficult to remove. These
residues get stuck between the texture, sometimes partially stick-
ing out, breaking the homogeneity of the surface and creating
defects on the infused surface. A glass capillary tube, in this
regard, is clean and has no such concerns.
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5 mm

Figure 18: Capillary Suction for Perfect Infusions. A capillary tube of
250µm radius is brought in contact with a textured solid (with
h = 20 ± 5µm, diameter d = 18µm, spacing p = 15µm and frac-
tion ϕ = 23 − 25% that is overfilled and unevenly coated with
excess oil. This leads to a capillary rise of the excess liquid front
into the capillary, creating an annular region of perfectly infused
hemi-solid. Inset shows successive snapshots of the process. The
first frame corresponds to the capillary tube coming into contact
with the over-filled texture. Subsequent snapshots show how the
capillary rise within the tube (white arrow) leads to the growth
of an annular region of perfectly infused solid (marked in dotted
red circle).

2.3.2 Historical Development

The first mention of a class of materials with properties in between
solid and liquid, that can be prepared by hemiwicking can be found
in the article Non-sticking Drops by David Quéré in 2005, where such
hemi-wicked solids are referred to as slippery composite surfaces, with
a short note on their slipperiness and marginal pinning properties.
However, it was finally in 2011, when two articles published back to
back by the Aizenberg group and the Quéré group elaborated on the
potential applications in anti-icing and resistance to damage and the
physics of creating such surfaces [37, 38]. The Aizenberg group also
highlighted a naturally occurring liquid-infused surface - the pitcher
plant of genus Nepenthes that has a curiously designed peristome (the
rim at the top of the pitcher), functionalized with grooves, infused
with a mixture of water and nectar, and the ants ’that step on it to slide
from the rim into the digestive juices at the bottom’ (see Figure 19) [37].
This was followed by the Varanasi group identifying twelve different
thermodynamic states of water drops on liquid-infused solids for sta-
bility of films on infused solids and the combinations of solid and
liquid that lead to stable films for robust liquid infused solids [39].
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b)a)

Figure 19: Curiosity killed the ant. a) A curious black ant at the rim of
a pitcher plant (Picture by Ray Reinhard) [35] b) A yellow ant
Anoplolepis gracillipes climbs up the infused rim of Nepethes sens-
ing some sugar at the bottom of the pitcher. Curious, he ’looks
down’ and plop he falls! (Images by AntsCanada). [36]

All of these works highlighted the slippery nature of infused solids,
where lateral adhesion, that is the force required to move a drop of
water on top it was negligible. This adhesion can be measured by
performing a classical roll-off angle experiment, where a millimetric
drop of water (typically 20µL) is placed on a solid surface, the incli-
nation of which is increased until the drop rolls off. The adhesion of
two surfaces can be compared by comparing the roll-off angles of the
two surfaces for a fixed volume of the drop. For Glaco treatment,

dip-coat your
textured surface
with the Glaco
solution, dry the
surface and then
heat at 150◦ for half
an hour. Repeat the
process three times
to get fresh hot
nanorough
microtextured
superhydrophobic
surfaces, right off the
oven.

Our common observations of raindrops stuck on windowpanes
tells us even a vertical wall sometimes is not enough to detach the
drops off the surface. For liquid-infused solids, the roll-off angle α is
lower than regular surfaces, close to 10◦, which shows that pinning
defects are lower than on classical solids. However, the finite value of
α is indicative of solid-liquid contact with pining at the pillar tops.
This too may be minimized with a hierarchical roughness on the tex-
ture, which can be achieved by dip-coating the textured surface with
Glaco solution (Glaco Mirror Coat Zero fournie par Soft99 Co), that
leaves a coating of hydrophobic nanoparticles - Glaco beads of a few
tens of nanometers on the surface [41]. When the textured surface is
now brought in contact with an oil reservoir, oil wicks through the
nanoroughness at the top as well, and this nanometrically thin film
on top the pillars is stabilized by a positive disjoining pressure [42].
A direct consequence of this can be seen in the roll-off angle which
becomes immeasurable, indicating a vanishing lateral adhesion.
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Figure 20: Hierarchical Liquid-Infused Solid. a) SEM images of a glaco-
treated textured solid reveals evidence of nanoscale roughness
on microtexture. Successive zoom-ins have scale bars correspond-
ing to to 20µm, 2µm and 20nm. Images taken by Florian Geyer.
Schematic of liquid-infused solid with bare pillar tops (b) and
with glaco particles (c), which allows a nanometrically thin oil
to be stable on the pillar tops. d) Roll-off angle of a 20µL water
drop plotted against solid fraction of the infused solid. Blue and
red data points correspond to with and without glaco-treatement.
The existence of the nanometric oil film is evidenced in the α ≈ 0◦
roll-off angle for blue data points. Reproduced from the thesis of
Armelle Keiser [40].

The spectacular effect of hierarchy, texture and hemiwicking on ad-
hesion is shown in Figure 4, where we plot the roll-off angle of a 20µL
water drop against the solid fraction of the infused textured solids on
which the drop is placed. We see that the roll-off angle for a liquid-
infused solid without Glaco treatment (red circles), while low (∼ 10◦),
it increases as we increase the solid fraction. This means the depin-Philippe Bourrianne

and Timothée
Mouterde

experimentally
visualized this with

a fluorescent protein:
BSA (Bovine Serum

Albumin) that
adheres to a solid

surface upon direct
contact. Further

details in the thesis
of Philippe

Bourrianne [43].

ning force originates from the solid-liquid contact itself, the more the
contact the larger the adhesion. Conversely, on a Glaco-treated liquid
infused surface, the roll-off angle is zero (blue circles), deviations be-
ing immeasurable with our present experimental set-up. This reveals
that the hierarchical roughness has stabilized a ∼ 10nm oil film on
top, minimizing solid-liquid contact so much so that pinning defects
have been suppressed.

The lack of pinning can be further illustrated by the disappearance
of the coffee stain effect: when a millimetric water drop with colloidal
suspensions, like a coffee drop placed on a solid evaporates, it leaves
behind an annular residue like a coffee stain. This happens for two
reasons - the contact line is pinned and evaporation is maximal at the
contact line inducing a flow that brings the solute towards the pinned
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Figure 21: Cleaning dusts and coffee stains. Left: A 20µL drop of deposited
on a liquid-infused solid, coated by silica particles of 200−500µm
radii, kept at an angle α = 20◦, cleans the surface taking the
particles away. Right: A 5mm coffee drop evaporates off to leave
a coffee stain (left), a consequence of the pinning of contact line,
whereas on the liquid-infused solid, the coffee drop evaporates to
a much smaller cluster of particles, because the contact line can
move and shrink (right). Reproduced from [38].

contact line, that is left behind as a residue at the end. Lafuma et al.
showed that a coffee drop evaporating on an infused surface does not
show a coffee stain, precisely because the contact line is de-pinned
(see Figure 21) [38].

2.3.3 Highlights of the last decade

A plethora of applications of the slipperiness and minimal adhesion
of liquid-infused solids were identified in the last decade, alongside
characterizations of these composite solids and their behavior in dif-
ferent limits. A non-exhaustive list is summarized below:

• Applications

– In the context of applications, the Aizenberg group de-
scribed anti-icing and biofouling properties of liquid-infused
surfaces [44–47]. They have also subsequently reported in-
fused solids that have tunable transparency and wettability
properties and functionalizations that lead to self-regulated
secretions to keep the infusion intact.[48–54].

– The Varanasi group has made a company based on liquid-
infused solids called LiquiGlide that helps in increasing ef-
ficiency and decreasing waste in packaging industries. For
instance, ketchup bottles typically have ketchup adhering
to the inside walls of the bottle, but an infused surface
enable the removal of even tiny quantities of extremely
viscous non-Newtonian liquids as ketchup. The Varanasi
group and subsequently others showed that droplet con-
densation can be enhanced by liquid-infused surfaces, be-
cause these surfaces can shed off the condensate, thus al-
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lowing for more condensation to happen on the surface it-
self. The condensate distribution and menisci-driven drop
propulsion have also been investigated. [55–58].

– Anti-frosting properties of infused solids were also dis-
cussed [59]. Rykaczewski et al. performed direct observa-
tions of oil cloaking the frost via Cryo-FIB/SEM images
[60]. Irajizad et al. in this context also developed a ferrofluid-
infused magnetic slippery surfaces for icephobicity [61].

• The Wetting Ridge

– Butt, Vollmer and co-workers performed direct experimen-
tal visualization of the shape of the wetting ridge at the ad-
vancing end and receding of the contact line of a drop mov-
ing on a liquid-infused surface. They further showed that
the size of the wetting ridge strongly depends on the thick-
ness of the lubricating film, when the film is thin and for
excess lubrication (overfilled textures), the wetting ridge is
macroscopically thick and insensitive to film thickness [31,
62].

– An apparent contact angle is difficult to define for drops on
infused solids, because the three phase contact line (height
of the wetting ridge) is strongly dependent on the thick-
ness of infusion (or overinfusion), as well as the cloaking
possibilities of the oil. This was discussed by Sempreborn
et al. [63]. Sadullah et al. has performed numerical simula-
tions on the wetting ridge and showed its contribution in
the dissipation mechanisms of the moving drop [64].

• Drop Impact

– Weber number is defined as We = ρV2R/γ, where ρ is the
density, V the impact velocity R the characteristic length
and γ the surface tension. Drop impact studies have re-
vealed broadly two regimes: at low Weber number We, air-
film bouncing is observed, but at high We, the air film rup-
tures and the drop contacts the infused solid, spreading
on it. This high impact spreading is typically independent
of the oil viscosity. However, the retraction dynamics has
been found to be strongly influenced by the viscosity of the
infusion, the higher the viscosity, the slower the receding.
[65–67]

• Depletion dynamics and Replenishment

– Dynamic destabilization and shearing off of the infusion
and tricks to effectively preserve the film using patterned
wettability have been studied by the Howard Stone group
[68–71].
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Figure 22: Friction of Rolling DropsLeft: Tracer particles in a drop travel-
ling down an inclined plane reveal rolling motion. Experiments
by Armelle Keiser. Right: Confocal microscopy reveals the menis-
cus deforms at higher velocities.[40, 73].

– Addition of small amounts of charged surfactant and oil
drops in flow cells have also been proposed to replenish
textured surfaces with depleted infusions.[72]

• Friction

– In 2017, both Dan Daniel et al. and Keiser et al. indepen-
dently performed experimental investigations on water drops
moving on infused solids, and showed infused surfaces not The two

experimental setups
were different, the
former comprising a
drop on an infused
solid placed on a
moving stage, with
the drop in contact
with a cantilever
whose deflection
gave the force. The
latter set-up was an
inclined plane, on
which a water drop
would be deposited,
the drop would run
for a millimeter
before reaching a
terminal velocity.

only affects lateral adhesion but also significantly impacts
the friction forces. [74, 75]

They further observed that drops on infused solids do not
slide, but roll. For drops which are less viscous than the
infused liquid, the dissipation is dominated in the menis-
cus surrounding the drop. The meniscus is dynamically
deformed during the motion, the extent of deformation
depending on the speed of the drop (see Figure 22). Fi-
nally, at sufficiently high speeds, the rolling motion of the
drops draws in a thin film of oil between the drop and the
texture, on which the drops slip (or oleoplane). This shows
that even when dissipation in the drop is marginal, there
are multiple sources of dissipation: the lubricating film, the
front and the back end of the menisci which have different
geometries for the oil-water-solid and oil-air-solid contact.
Despite multiple sources of dissipation, Keiser et al.in 2020

showed , the friction force has a universal scaling form,
where it as V2/3, where V is the terminal velocity. [76]



34 a class of new materials

Leidenfrost Superhydrophobic Liquid-Infused

Figure 23: Three attempts at the grail. Left: A millimetric Leidenfrost
droplet (from the thesis of Dan Soto), middle: from left to right -a
drop gently deposited on to a superhydrophobic surface exhibit-
ing a Cassie state and a drop impacted on the surface impales
into the texture to a Wenzel state with a smaller contact angle.
Right: A drop on a liquid-infused solid. Inset shows a meniscus,
as seen in a confocal microscope. Experiments done by Armelle
Keiser and Florian Geyer [40].

2.4 three attempts at the ’grail’ .

This brings us to now, to the moment when the work done in this
thesis began in October 2017. By then, the three attempts at the grail
of no pinning had been made - a Leidenfrost solid, a superhydrophobic
solid, and a liquid-infused solid.

The first - a Leidenfrost solid - only works at very high tempera-
tures > 160◦C, where a deposited water drop sits on a cushion of its
own vapor, preventing contact. While the non-contact of Leidenfrost
is the most true of all three, and in this sense, depinning forces are re-
ally zero, but the Leidenfrost state is a transient one and it ends with
the death of the drop. Furthermore, the Leidenfrost state does not oc-
cur at normal temperatures, making it exotic and observable only if
the plate is far beyond the boiling point and the liquid volatile.

The second - a superhydrophobic solid - works at all temperatures.
The Cassie state where the drop sits atop pillar tops is known to be
metastable with little but finite adhesion. However, recently discov-
ered nanocone surfaces have exhibited adhesion forces that are van-
ishingly small [77]. In this sense, a nanocone superhydrophobic solid
is a true challenger of a liquid-infused solid, and constitutes a bench-
mark for comparison.

The third - the liquid-infused solid - shows real promises. The adhe-
sion forces for glaco-treated infused surfaces, are immeasurably small.
They do not require a special temperature to function. Their other
original features need to now be found out and compared against the
superhydrophobic surfaces to get a measure of how they fare.

It is important (and interesting) to contextualize what my predeces-
sors in this lab have done on this topic so that I have an understand-
ing of where I am and how I have contributed. José Bico, a doctoral
student in this lab, two decades ago, discovered hemiwicking. Aurélie
Lafuma, a postdoc soon after studied the first liquid-infused solid
and the conditions for making it. Jacopo Seiwert, thereafter showed
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how to dipcoat a textured solid such that it is perfectly infused with-
out hemiwicking. And finally my direct predecessor Armelle Keiser
found out the laws of friction on infused solids.

I present to you the laws of spreading on infused solids.
And some other things.

2.5 aims of this thesis

This thesis has three parts and aims to ask three original questions,
hitherto unaddressed regarding liquid-infused solids.

1. The first is a simple and fundamental one - what happens at
short times when a drop first touches an infused solid. We
study the question of spreading on infused solid in two limits:
one where the viscosity of the spreading drop is always lower
than that of the infusion (water spreading), and second, where
the viscosity of the spreading drop is always higher (glycerol
spreading). Both of these questions have been experimentally
investigated and models have been made that capture the ob-
served behavior.

In the course of investigating this problem, we also go through
the spreading laws on ’bare’ solids, for which we develop scal-
ing arguments to recover laws that have been derived more rig-
orously in previous works. Furthermore, as an auxiliary exper-
iment, necessary to delve into for physical insight, we experi-
mented with large puddles of water spreading on ’bare’ solids.
This too has become a problem in its own right, with novel ob-
servations.

2. In the second part, we delve in the vertical adhesion of infused
surfaces. While the lateral adhesion of infused surfaces have
been exhaustively shown to be of a negligible magnitude, no
question has been asked in the context of the vertical adhesion
of infused solids. We make adhesion force measurements on
these solids and build a model to capture the adhesion forces
as well as the behavior of capillary springs on infused solids.

Subsequently, we report experiments with a ’viscous tweezer’,
where a drop is placed between two liquid-infused solids (the
top one being more viscous than the bottom), separated at a
constant speed. We show that depending on the speed, the drop
ends up at the top or the bottom. This section is primarily ex-
perimental, that elaborates on the difficulties of the experiment
and the nuances of the phenomenon.

3. In the third part, we probe solid friction on liquid-infused solids
- we show experimental results of a sphere rolling down an in-
fused textured solid. We discuss different regimes we observe -



36 a class of new materials

rolling, walking, bouncing, and the tale of a curious ’tail’ that
the sphere drags along. This part too is primarily experimental,
with an attempt to understand the walking of ants on Nepenthes
with our experimental observations. Our experimental observa-
tions tell us that contrary to the general belief that ants walking
on the nectar-infused rim of the Nepenthes ’slip and fall’, the
ants are stuck on the rim due to the viscous infusion, and in an
attempt to un-stick themselves from the rim, they fall. In other
words, the pitcher plant is not slippery but sticky to the ants.







Part II

S P R E A D I N G





3
D R O P S S P R E A D I N G O N I N F U S E D S O L I D S

In this chapter, we wish to ask a simple fundamental question: what
happens when a drop of water first contacts an infused solid? As dis-
cussed in the previous chapter, liquid-infused soilds are ambiguous
materials which are hemi-solid, hemi-liquid. A drop of water placed
on a silicone oil-infused surface is thus ‘confused’ - on one hand the
drop ‘feels’ the solid because it cannot penetrate it, on the other hand
it also ‘feels’ the infused liquid on which it can slip. To answer what
happens when a drop touches such a special material, we first dis-
cuss the case of a droplet contacting a ‘bare’ solid and then come to
our case of interest. In the process, we would also go through the
historical arc of works relevant to both and how they converge to the
particular question we wish to answer.

39
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3.1 drops on ‘bare’ solids

3.1.1 History of Spreading and Coalescence

What happens when a drop contacts a solid has been the subject of
many investigations, ranging from static considerations (what is the
final state of the liquid?) to dynamic questions (how does the liquid
reach equilibrium?) [78–80]. For the common case of water droplets
with millimetric size R placed on solids they partially wet, the com-
bination of limited spreading and low liquid viscosity η makes the
dynamical resistance dominated by inertia [81–84], a regime followed
by a relaxation toward equilibrium where both pinning and viscous
forces can play a role − a short process on the whole, typically at
the scale of a few milliseconds: seen with our naked eye, water drops
deposited on plastic quasi-instantaneously form spherical caps. How-
ever when a drop contacts a philic surface, it spreads out thin and
keeps spreading ‘indefinitely’ until it becomes molecularly thin (see
Fig.24).

t >> 0t < 0

R
r

q

y

V

x

Figure 24: Tanner Sketch. Sketch of a droplet contacting a flat philic solid
and spreading thin.

3.1.1.1 Tanner

Historically, the late stage of spreading of a droplet on a solid is the
regime that was investigated first - in 1979, L. H. Tanner showed that
in the late time regime, the (apparent) contact line radius r of the
drop grows as t1/10 [85]. The dynamics of such late stage spreading
is slow and dominated by viscous dissipation close to the moving
contact line, as shown in the zoom-in of the contact line in the sketch
of Figure 24. The viscous stress can be expressed as ηV/y where V
is the velocity of the growing contact and y is the height of free in-
terface from the solid at a distance x from the contact line. The form
of the viscous stress itself reveals that it diverges as we approach the
contact line, x→0. This singularity can be regularized by introducing
a molecular cut-off length when integrating the dissipation force per
unit length which yields Fη ∼

∫
(ηV/y)dx ∼ (ηV/θ)

∫
dx/x, where θ is

the dynamic contact angle which is a function of V . With the introduc-
tion of a molecular cut-off length a of the order of 1 nm, the integral∫
dx/x when β = ln(R/a) of the order 10 (the upper limit of x is the
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size of the drop R, typically 1 mm). This viscous force is balanced with
the uncompensated Young force per unit length γ(1− cos θ)∼γθ2 for
small angles, where γ is the surface tension of the liquid with re-
spect to air. Such a balance yields the Cox-Voinov law θ3∼Ca, where
Ca = ηV/γ, also called the capillary number [86, 87]. For the case of a
droplet of volume Ω that has spread out thin to size r, we may write
Ω∼r3θ. Plugging this in θ3∼ηV/γ, and integrating over time we get

r∼

(
γΩ3t

η

)1/10

(9)

This is the famous Tanner’s Law [85]. The Cox-Voinov law, more
strictly, reads as law θ3 − θ30∼Ca, where θ0 is the equilibrium contact
angle. This description of evaluating the dissipation near the contact
line also known as the wedge dissipation or line dissipation, surpris-
ingly has been found to hold true for θ as large as 120

◦.
Although Tanner’s Law concerns the later stages of spreading (min-

utes or longer for millimetric droplets), it fails to capture the dynam-
ics in the very early stages, owing to the very different geometry
that the contact has and the flow it consequently creates. These early
dynamics are typically in the order of a millisecond or less for a mil-
limetric water droplet. Naturally, experimental investigations on the
first steps of spreading of a drop on a solid had to wait until the
advent of the high speed camera. It was not until 2004 when Anne-
Laure Biance with a camera of 9000 frames per second conducting
experiments with a water droplet being brought to contact with a hy-
drophilic surface showed that the size of the contact grew as t1/2 in
the very early time regime [81]. Curiously, the growth law that the
authors derived in this case was the same as observed in case of co-
alescence of two drops. It is as though a mirror-plane symmetry of
the substrate had been invoked for the flow. To understand why such
an analogy should at all be valid, despite the fact that the substrate
changes the boundary condition from a continuity of shear stress (for
coalescence) to a no-slip boundary condition at the solid-liquid inter-
face, it would help to go through the history of the development of
coalescence models, before we re-build the model of spreading on a
‘bare’ solid.

3.1.1.2 Coalescence: From Frenkel to Eggers-Lister-Stone

The first work on coalescence of two (viscous) drops is by Yakov II’ich
Frenkel in 1945 in the article ‘Viscous Flow of Crystalline Bodies under
the Action of Surface Tension’, which is now considered as the starting
point of the physical theory of sintering[88, 89]. Sintering is the phe-
nomenon of fusing loose powdered solid particles into a solid mass
by heat or applied pressure - something which apparently has noth-
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Figure 25: Frenkel Sketch. a) Sketch of two identical drops of radius R ap-
proaching each other, coalescing and merging into one larger
drop, as imagined by Frenkel in the context of viscous sintering.
b) Schematic of a Hertz contact of a sphere and a plane. The de-
formation region shown in blue dotted line has a height δ and a
lateral extent r.

ing to do with liquids or coalescence. However, it is Frenkel’s conjec-
ture that ‘Surface stress can cause viscous flow in crystal materials;
and sintering of crystal materials can be explained by that phenom-
ena’ and the model he proposed thereafer in his article that makes it
relevant to coalescence studies.

Fig.25 shows a sketch of the steps involved in the process of viscous
sintering as imagined by Frenkel - two identical spherical droplets of
radius R approach each other, form a zone of contact of size r and
then finally merge into a larger single drop. Frenkel assumed that the
spheres touch in a Hertzian contact (drawn in Fig.25b) which corre-
sponds to a slightly deformed sphere, that is r≪R, when intersecting
with a plane, the deformation being of a size δ≪ r. The size of δ can
be evaluated by writing down the Pythagorian relation for the trian-
gle shown in Fig.25b: (R− δ)2 + r2 = R2, which gives the Hertz Law
of contact:

δ ∼ r2/R (10)

Frenkel’s argument for the rate of viscous energy dissipated during
coalescence can be written in a scaling fashion as η(δ̇/R)2R3, where
δ̇ is the flow rate along the axis joining the two spheres. The surface
energy per unit time that compensates for this dissipation is given by
γRδ̇. A balance between the two gives δ̇∼γ/η, which when combined
with the Hertz Law gives the growth law of the contact as

r ∼

√
γR

η
t1/2 (11)

However, while Frenkel’s work is of unquestionable significance,
his arguments regarding the flow and consequently his law are not
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true. Mired in controversies from the beginning, the incorrect descrip-
tion of Frenkel lies in his assumption that two spheres are in a state
of uniform deformation when he integrates over the entire volume of
the spheres to obtain the dissipation function. This was corrected by
Hopper who gave a solution for inviscid coalescence of two viscous
cylinders [90–93].

Finally, in 1999, building up on Hopper’s solution to two-dimensional
coalescence, Eggers, Lister, and Stone developed a theoretical solution
to the problem of two spherical drops coalescing, where the external
fluid also has a finite viscosity [94]. They predicted that there were
two early time regimes: a viscosity-dominated one where the ‘neck’
of contact grows as r ∼ (γ/η) t ln(γ t/ηR) and an inertia-dominated
one where the growth law follows r ∼ (γR/ρ)1/4t1/2.

This began what may be called a ’hunt’ to observe the two laws
in coalescence experiments. The early 2000-s also saw the dawn of
high speed cameras which for the first time allowed sub-milisecond
resolution in experiments, making them ideal for studying the early
time dynamics hitherto impossible in coalescence experiments. First,
the inertial law was verified in experiments where even the prefac-
tor matched from potential flow calculations, but then for the viscous
regime the r ∼ t ln t law was never found − experimentally it was
observed to be one of constant velocity [95–101]. Logarithmic correc-
tions in time are arguably quite weak, and understandably so have
never been experimentally verified in coalescence experiments.

3.1.1.3 Spreading: From Biance to Eddi-Snoeijer

As mentioned before, the story of early time spreading begins in 2004,
when Anne-Laure Biance and co-workers did the first experiment of
early stages of spreading by contacting a water drop with a solid
(hydrophilic in her case), and discovered the same inertial law as seen
in coalescence: r∼(γR/ρ)1/4 t1/2 [81].

A direct observation that follows from this law is the lack of θ in
the growth law - the wettability of the substrate seems to have no
contribution in the initial steps of spreading. However, in 2008, Bird,
Mandre and Stone proposed that for a partially wetting substrate,
when a droplet first comes into contact with the solid the contact
grows as r ∼ tα where α = f(θ0), θ0 being the equilibrium contact
angle, and α → 1/2, when θ0 → 0 [82]. It must be mentioned here
that the temporal resolution in all of these studies was limited: the
1/2-law in time was observed on only one decade which is from 0.1-1
ms.

Eventually, in 2012, Antonin Eddi, Jacco Snoeijer and co-workers
with a camera of 600,000 frames per second, showed that when a
droplet contacts a solid, in the early time regime, the contact grows as
t1/2, irrespective of the material properties of the substrate − whether
the surface be perfectly wetting, partially wetting, chemically pat-



44 drops spreading on infused solids

terned with anisotropic wetting properties or even soft, the contact
always grows as t1/2 [83, 84]. In this regard, the law is universal, and
the reason for its universality is that its origin is geometric and not
material - it is a consequence of only the sphere-plane geometry ofThe reason for the

apparent r ∼ tα

behavior observed in
[82] could now be

understood as a
regime where the

radius was
transitioning from a

t1/2 law to
equilibrium: a

crossover regime,
where scaling laws

do not hold.

the contact. Fig.26 shows a representative illustration of a classical
spreading experiment and the temporal evolution of the contact line
of the spreading that shows different regimes as observed in time and
as discovered historically.

Eddi, Snoeijer and co-workers subsequently also showed that the
spreading-coalescence analogy can be extended further even for vis-
cous drops, where spreading follows the same law as for viscous
coalescence - r∼(γ/η) t ln(γ t/ηR), for η>10mPa-s [102].

The discovery of these two laws in the context of spreading shows
that the spreading-coalescence analogy is indeed very strong and for
some reason does not care about the change in the boundary condi-
tion. In the next subsection, we we will derive these laws based on
physical arguments and try to understand why the analogy holds.
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Figure 26: Early Time Spreading. a) Timelapse of a water droplet of 1

mm radius being gently deposited on a hydrophilic surface and
spreading subsequently. Scale bar represents 500µm. b) Tempo-
ral evolution of the growing contact line, solid line follows t1/2

and dotted line follows t1/10.
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3.1.2 The Model for Spreading on a ‘Bare’ Solid

e
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Figure 27: First Contact. Schematic of a spherical viscous drop (in blue)
touching a flat solid. Close-up of the cuspoidal region reveals
that the tip of the physical cusp is not a region of infinite cur-
vature, rather is a hemi-toroidal region surrounding the contact
line of size ϵ. The tip contains air that has been evacuated out
from in between the water and the solid as a consequence of con-
tact (striped region). This hemi-toroidal cusp moves at a speed V ,
as the droplet spreads progressively. The blue dashed line is the
outline of the drop before contact.

The heart of the problem lies in the realization that the initial con-
tact of a spherical viscous drop and a flat solid establishes a singu-
larity. As sketched in Fig.27, a cuspoidal region forms upon contact
where the solid/liquid contact propagates, as it does in the proximal
situation of two coalescing viscous drops [94]).The cusp is regular-
ized by surface tension, so that it ends with a tip of finite radius (as
seen in Fig.27).

This tip contains the air displaced by water due to contact with the
solid (drawn in orange in the Fig.27), which provides an estimate for
its characteristic size ϵ. The height δ of the air gap right before contact
is given the geometric Hertz law, r2/R, so that the corresponding
volume of air Ω∼r2δ scales as r4/R. We can equate this volume with
the amount of air in the hemi-toroidal region of the cusp, ϵ2r, which
yields an estimate of the size of the cusp as

ϵ ∼ r3/2/R1/2 (12)

Also, if we look at the four length scales at play here: ϵ, δ, r, and R,
we note their hierarchy at all times δ < ϵ < r < R. The singularity we
alluded to before can now be mathematically stated: when t→0, that
is, r→0, the Laplace pressure in the cusp γR1/2/r3/2 diverges.

The inertial term for this propagating cuspoidal region, at any
point of time t would be ρΩV/t, as Ω is the volume of liquid being
reorganized. Writing V ∼r/t, we get
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Fi ∼ ρ(r2δ)(V2/r) ∼ ρr3V2/R (13)

In order to write the dissipation term for the flow near the contact
region, we first note that the cusp that forms here is reminiscent of
the cusp that develops between two counter-rotating cylinders par-
tially immersed in a bath, also known as the Joseph-Nelson-Renardy-
Renardy cusp, named after the people who took the first experimental
picture of such a cusp in 1990 in a four-roll mill apparatus (see Fig.28).
However, a four-roll mill is not necessary to see the cusp, even a sin-
gle rotating cylinder that is partially immersed in a liquid that is
sufficiently viscous can show a cusp-formation, as shown in the beau-
tiful images of the cusp taken by Elise Lorenceau in Fig.28c. In fact, a
careful observer can find free-surface cusps in everyday flows as a jet
impinging on a bath - while for water, slight perturbations can lead to
air entrainment, but for liquids 100 more viscous than water or more,
the point where the jet meets the bath, a cusp develops. If the velocity
of the jet is increased beyond a threshold value then it entrains a thin
film of air, as shown first by Lin and Donnelly in 1966[106].

What we wish to remark here is that all these cusps (the Lin-Donnelly
cusp, the Joseph-Nelson-Renardy-Renardy cusp and the cusp that
forms at the initial contact between a drop and a solid or between
two drops) are the same, in the sense that the forces and the flows
around the cusp that sustain and regularize it with a tip are the same.
However, while the Lin-Donnelly and the Joseph-Nelson-Renardy-
Renardy cusp are static in shape for a fixed speed of impingement
of jet or rotation of the cylinder, the Cusp in Spreading/Coalescence
is not: as the contact region grows, the speed of the growth keeps
decreasing, and when the velocity decreases sufficiently, the contact
does not remain cuspoidal anymore. Nevertheless, the physical argu-
ments for flow around a cusp should hold for all of these problems.

The tip of these cusps can be looked upon as a thin hemi-cylinder,
which in the case of spreading is rather a hemi-toroid. In this sense,
we can now imagine the problem has now been reduced to the classi-
cal problem of a cylinder falling in a viscous medium. Said differently,
two dimensional cusps are but Stokesian cylinders, in the context of
the flows they give rise to and the viscous drag they ‘feel’ (Fig.29).
The viscous drag per unit length on such an expanding ‘hemi-toroid’
of length 2πr, which is of the order of r and radius ϵ is given by
Stokes’ law,

Fη ∼ ηVr/ ln(r/ϵ) ∼ ηVr/ ln(R/r), (14)

where the last part follows from Equation 3.6.
The contact region is driven by Laplace pressure which scales as

∆p ∼ γ(1/ϵ+ r) ∼ γ/ϵ, because ϵ<r. Integrating over the area ϵr, we
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Figure 28: a-c) The Joseph-Nelson-Renardy-Renardy Cusp: One of the first
experimental images of a cusp on the free surface of a liquid, as
reported by Joseph, Nelson, Renardy and Renardy in 1991. Re-
produced here from [103], in a) shows, we see a cylinder of ra-
dius 1.25 cm, rotating at 27 rpm in a bath of polyox η ≈ 6 Pa-s.
b) Moffat’s schematic of the development of a cusp because of
two counter-rotating cylinders below the free interface of a liquid
[104]. c) Experiments of Lorenceau et al.: Development of growth
of a cusp with increasing speed of rotation of the cylinder: 6, 10,
17, and 30 cm/s (left to right). The lower liquid is a silicon oil of
viscosity η≈1 Pa-s and the upper fluid is air. Scale bar represents
1 cm. Reproduced here from [105]. d-f) The Lin-Donnelly Cusp:
d) Schematic of the cusp - a liquid jet of viscosity η surrounded
by a fluid of viscosity η ′ impinges on a bath of the same liquid.
When V<Vc, a cusp forms. When V>Vc, a thin film of air is en-
trained, as shown by the original schematic of Lin and Donnelly
from 1966 [106], reproduced in e). Experimental images of the air
entrainment as obtained by Reyssat and Quéré. [107].
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Figure 29: Two dimensional cusps as Stokesian cylinders. a) The Cusp
of Spreading (or Coalescence) b) The Joseph-Nelson-Renardy-
Renardy Cusp c) The Stokesian Cylinder: A cylinder falling in
a viscous medium, perpendicular to its axis of symmetry.

can write the driving force Fγ ∼ ∆pϵr ∼ γ r. Thus, we can write the
balance of forces as Fi + Fη ∼ Fγ, that is

ρr3V2/R+ ηVr/ ln(R/r) ∼ γr. (15)

This is the growth equation of the contact zone, with all its terms,
in the limit where t < (ρR3/γ)1/2 , ηR/γ, the capillary-inertial and
visco-capillary time scale respectively.

We can now identify, within the sphere-plane geometry of the prob-
lem, two distinct regimes: a) a viscous regime where Fη > Fi and b)
an inertial regime where Fi>Fη. A balance of inertia and capillarity
yields a diffusion-like law

r ∼

(
γR

ρ

)1/4

t1/2, (16)

where we can call (γR/ρ)1/2 the effective diffusivity.
On the other hand, a balance of friction with the driving surface

tension provides a relationship between the contact velocity and size,
V ∼ (γ/η) ln(r/ϵ) ∼ (γ/η) ln(R/r). Writing r/R = r∗, this leads to the
integration

∫r∗
0 dr

∗/ ln r∗ ∼ −γt / ηR. The left hand side of this equa-A proof of
limx→0 Li (x)∼

x/ ln x is given in
the Appendix.

tion is a special function called the logarithmic integral function Li (x),
and it can be shown that Li (x) can be approximated as x/ ln x at small
x. It follows that

r ∼

(
γ t

η

)
ln
R

r
(17)

which allows us to substitute the r in the logarithm and to deduce
Eggers’ Law of viscous coalescence: r ∼ (γ/η) t ln(t/τ), plus logarith-
mic corrections, where τ=ηR/γ.

But which regime comes first? Experimentally, we see that for any
drop (water or more viscous) spreading on a surface, the velocity
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is the maximum at the smallest times, where we are only limited
by the temporal resolution in our experiments, and the velocity de-
creases as the contact grows. It is natural to infer from this that iner-
tia dominates in the earliest time scales which is then subsequently
slowed down by viscosity until equilibrium, for partially wetting sub-
strates, or in the case of a perfectly wetting surface the drop transi-
tions to a thin radially spreading geometry where it follows Tanner’s
Law. However, the viscous dissipation which slows down the inertial
regime is not the same as the viscous regime we have identified here,
one which specifically relates to the cuspoidal geometry that exists at
early times.

In order to determine the order of the regimes, we compare the
viscous force with the inertial term to find out when the former dom-
inates over the latter, that is when ηVr/ ln(R/r)>ρr2δV2/r, which can
be re-written as δ<η/ρV ln(R/r). From Eggers’ Law, we know that in
the viscous regime V ∼ (γ/η) ln(R/r) which when plugged in to the
previous relation, we get δ < η2/ργ ln2(R/r). Substituting δ with the
Hertz relation δ ∼ r2/R, we obtain

r <
η

√
ργ
R1/2 ln

R

r
. (18)

The above inequality showing the existence of maximal radial length
for the viscous regime implies the viscous regime exists at the small-
est length scales, followed by the inertial regime. For a millimetric
drop of water with η∼10−3 mPa-s, ρ∼103 kg/m3 and γ∼72 mN/m,
we get r < 1µm. Optical resolutions in experiments are limited to
micron length. This is precisely why the viscous regime in water has
never been seen optically. With submicrometric resolution by conduc-
tivity measurements, a constant velocity regime has been reported
but the resolution has not been enough for experimental observa-
tions of logarithmic corrections [97]. The lowest value of viscosity
where the viscous regime persists for r > 1µm is η > 10mPa-s (for
R≈ 500µm), and indeed the viscous regime was experimentally ob-
served for all water-glycerol mixtures with η greater than 10mPa-s
[102].

It is necessary to underline here how special this is that a viscous
regime precedes an inertial one. Typically, in fluid flows, inertia goes
as 1/t2 and thus naturally precedes viscous friction that has a scaling
1/t in time. However, implicit in this statement is the assumption of
a similar length scale at play in different directions. This is precisely
where geometry becomes very important, as we see in the case of our
cuspoidal geometry, where inertia follows a viscous regime.

Equation 18 may also be re-written in a non-dimensional form
r/R ∼ Oh, where we neglect the logarithmic term that scales as 1 and
Oh = η/(ργR)1/2 represents the Ohnesorge number that compares
viscous forces with inertia in a capillarity-dominated flow. We now
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take a step back and re-write Equation 18 in δ as it helps in making
some important revelations, specially in the context of the boundary
condition. Such a formulation reads as

δ < η2/ργ. (19)

We note that the term on the right hand side of the equation repre-
sents a viscous length scale ζ that naturally emerges from this prob-
lem. As previously noted, the hierarchy of length scales in the prob-
lem is δ < ϵ < r < R, where r is the length scale in the direction of
the flow (horizontal) and in the direction normal to the flow (verti-
cal), ϵ represents the size of the cusp and δ the scale in which mass
is re-organized as the cuspoidal contact moves, and it is this δ that
appears on the length on the left hand side of the equation. Equa-
tion 19 thus reveals that when δ is smaller than the boundary layer
thickness ζ ∼ η2/ργ, we are in the viscous regime. For glycerol, with
a viscosity of η ∼ 1.4 Pa-s, ζ≈ 2.5cm, that is larger than the capillary
length! This means that for a millimetric glycerol drop, the entirety
of early time spreading is viscous and follows Egger’s Law. However,
for water ζ ∼ 14 nm, which is why the flow within the region of δ
beyond ζ turns inviscid and can be solved in the framework of Euler
equations.

It is not that the no-slip boundary condition is violated, rather that
there exists a thin boundary layer of the order of tens of nanometers
beyond which the flow is inertial. This is precisely why the spreading-
coalescence analogy holds, despite the difference in boundary condi-
tions.
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3.2 water drops on infused solids

‘The Foot of Water on Rome’ by Benôıt Pype
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In this section, we revisit this classical problem of drop spreading
by considering the case of water on textured solids infused by oil. We
know that these so-called LIS have special dynamical properties, in
particular because the liquid trapped in the texture lends them liquid-
like properties, with little adhesion towards water and the possibility
to promote slip [31, 37–39]. Conversely, LIS are known to generate
a non-negligible friction when drops move on them (under the ac-
tion of gravity, for instance), owing to the existence of a stationary
meniscus of lubricant around the moving drop [11-12]. We wonder
here whether liquid spreading on such surfaces obeys the universal
contact law expressed by Eq. (3.1) or if it is affected by the special
properties of these materials.

3.2.1 Fabrication

Capturing the early dynamics of a solid/liquid contact requires si-
multaneous side and top (or bottom) views, which necessitates the
use of transparent LIS [108]. Such materials are made in a few steps.
We first start by spin-coating a layer of SU-8 resin on a clean, dehy-
drated silicon wafer; the resin thickness is controlled by the speed of
rotation. We then shine UV-light through a mask comprising square
arrays of circular pillars. Thereafter a PDMS counter-mold of the SU-
8 texture is made and we achieve a mold of this counter-mold with
a transparent optical adhesive (NOA, Norland Optical Adhesive) on
a glass slide, which results in a transparent microtextured surface
[50, 108].. We finally infuse it with silicone oil, whose optical index is
comparable to that of the resin, leading to a better transparency.

Just infusing oil inside the texture does not provide slippery sur-
faces, due to the presence of edges at the pillar tops [41]. This can be
fixed by adding a second scale of roughness, that is, by drawing the
textured substrate from a solution of hydrophobic nanobeads (Glaco
Mirror Coat, Soft 99) [73]. The solvent is subsequently evaporated by
drying at 70

◦C for 30 min and the beads (∼30 nm) then coat both the
substrate and the pillars without altering transparency. The process is
repeated three times to ensure uniformity of the nanobeads coating.
After contacting oil, the doubly-textured surfaces are impregnated
both between the pillars and within the nanobead cavities, which
ensures that we do not over-infuse the material, yet make it highly
slippery for water (roll-off angle of ∼ 1◦ for 20µL drops). Infusion it-
self is performed by keeping the substrate vertical and bringing it in
contact with the reservoir of silicone oil, so that the oil wicks in only
within the texture.
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Figure 30: Schematic of Experiment. Left to right: Sideview sketch of our
experimental setup - a water droplet sitting on a superhydropho-
bic solid; the drop is brought in contact (at t = 0) with the infused
surface on the top; zoom-in on the liquid bridge with radius r
that develops upon contact; top view sketch of the liquid bridge
seen through the transparent infused material.
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Figure 31: Orientation Test. a) Comparison between a classical spreading
experiment done by depositing a droplet of R = 1 mm from a
needle onto a hydrophilic surface at the bottom and a droplet
sitting on a hydrophobic surface contacting a hydrophilic surface
at the top. Successive snapshots are at 0.1 ms intervals. Scale bar
represents 500µm. b) Nondimensionalized radius r/R of the two
experiments plotted against nondimensionalized time t/τ, where
τ = (ρR3/γ)1/2. Circles with black borders represent top contact
and circles with red border represent bottom contact. The two
data sets collapse on each other, which reveals that there is no ori-
entational dependence on the way the experiment is performed.
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3.2.2 The Experiment

The principle of the spreading experiment is schematized in Fig.30.
Our substrates (top of the figure) are decorated with micro-pillars
with density ϕ=23− 25%, height h=20± 3µm, lateral size d=18µm
and spacing p = 15µm. The lubricant is a silicone oil with surface
tension γo = 20mN/m and viscosity ηo ranging from 5 mPa-s to
100 mPa-s. Millimeter-sized drops (in blue in the figure) are made of
water, with surface tension γ = 72mN/m and viscosity η = 1mPa-
s<< ηo. We start by placing a drop on a Glaco-treated superhy-
drophobic glass slide (dark grey in the figure), which preserves its
sphericity and allows us to study spreading without impact, as it
would necessarily happen if the drop were directly released on the in-
fused material. Instead, we approach at a very small speed (about 50

µm/s) the transparent infused material from the top, with its infused
side facing downward. Two high-speed cameras placed above and be-
low image the contact with simultaneous top-down (with 400,000 fps)
and side-views (with 5000 fps), using respective backlighting at the
bottom and on the side. For the purposes of analyzing the early time
evolution of the solid/liquid radius, we exclusively use the topdown
data which is less prone to error than sideview, as has been shown in
previous works.

Classically, all droplet spreading experiments have been done by
depositing the droplet gently onto a surface from a needle. We wanted
to be sure that the spreading behavior has no orientational effects. So,
we performed the droplet spreading experiment by the classical depo-
sition method, then repeated it in the way it is schematized in Fig.30.
Fig.31 shows the snapshots of spreading in the two methods for a 1

mm droplet on a hydrophilic surface. Fig. 31 shows that both the data
collapse with no discernible difference.

Back to the case on infused surfaces, each experiment is repeated
multiple times for droplet volumes ranging from 1µL to 40 µL and
for seven oil viscosities, namely 5, 9, 19, 48, 96, 485 and 970 mPa-s. A
separate set of experiments is also performed with the same set-up,
yet replacing the infused surface by silanized hydrophobic glass of
similar wetting properties, so as to extract the original contribution
of infusion in the contact dynamics. We provide in the figure three
top-views of the growing contact at early times and graphs of the
evolution of the water contact radius with R=0.65±0.05 mm.

Top view images reveal unusual features, in the context of spread-
ing drops. Our main observation is the loss of universality: even at
very short time, where inertia is expected to dominate viscous effects,
the dynamics depends on the viscosity of the oil infusing the texture:
the more viscous the oil, the slower the spreading. Other original be-
haviors are evidenced by the plot of the contact radius r as a function
of time shown in Fig.32. The data at low oil viscosity are close to
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Figure 32: Experimental Results. a) Time-lapse topdown images of the
growing water bridge on the surface of a LIS, right after the con-
tact of a water drop (radius R = 0.65 mm) with a LIS, for four
different oil viscosities: ηo = 5 , 19 and 96 mPa-s, from top to
down. b) Evolution of the radius r of the liquid bridge forming
between water and its substrate, as a function of time t, either on
a hydrophobic solid (grey data) or on a LIS with ηo = 5 , 9 , 19 ,
48 , 96 , 485 , and 970mPa-s.
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Figure 33: Log-Log r− t plot Temporal evolution of the radius r of the liquid
bridge forming between water and its substrate in logarithmic
scales, which reveals a diffusive-type behaviour for all the LIS.
Error bars in time correspond to one standard deviation equal
to the inverse of the frames per second and error bars in length
correspond to one standard deviation equal to one-pixel size.

that on a solid, while water spreads slower on the more viscous oil, a
case we could have thought solid-like. The influence of the viscosity
is also noticeable in some details of the spreading: on the less viscous
oil, equilibrium is approached with oscillations of the contact radius,
a consequence of the high degree of slip on such a surface; this ef-
fect is suppressed at larger oil viscosity, but spreading with the more
viscous oils takes place in a visibly step-like fashion, each step be-
ing fixed by the characteristic spacing p+ d= 33µm of the subjacent
network. Finally, all data become similar at ‘long’ times, the wetting
properties of silicone oil being nearly independent of the oil viscosity,
and comparable to that of silanized solid surfaces.

Despite differences between the dynamics, a common scaling emerg-
es when plotting the LIS-data in a logarithmic graph (inset in Fig.32).
In a range larger than two decades in time, all data follow a diffusive-
type dynamics (solid lines in Fig. 33), an observation that concerns
most of the spreading, apart from the crossover toward equilibrium
at large time. Such dynamics was established for the spreading of
non-viscous liquids on regular solids (Equation 16) and found to be
universal − which it is here from the exponent point of view, but not
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for the ‘Diffusivity’D. This raises a stimulating question: how can the
oil viscosity modify the dynamics without affecting its scaling?

3.2.3 The Model

The Driving Force. We first discuss the force driving the spreading.
As water advances on the LIS, the nature and areas of the interfaces
change, and multiple cases are possible, depending for instance on
the possibility that oils cloaks the water drop, or not − but none of
them affect the scaling form of the interfacial driving force, Fd. For
the sake of simplicity, we consider here that water mainly moves on
oil, a reasonable statement in the presence of an infused subtexture:
the top surface of a highly slippery solid is essentially oily. In the
first steps of the spreading and as sketched in Fig.30, the spherical
drop of water (radius R) develops a ‘foot’ of radius r that propagates
radially. Laplace pressure is unbalanced in the bridge whose edges
suck the drop with a pressure scaling as γR/r2, denoting γ as the
surface tension of water, or as the sum of water/oil and oil tensions
(of magnitude comparable to γw) if the bridge is covered by oil, as
assumed in Fig.30. Once integrated over the bridge edge area rδ ∼

r3/R, this pressure yields a spreading force,

Fd ∼ γr, (20)

a usual fact in wetting.
Meniscus Dissipation. The force(s) resisting spreading are less ob-

vious to establish. We already mentioned the role of inertia, most of-
ten dominant at short time, and leading to a diffusive-type dynamics
for the bridge expansion (Eq. (3.2)). However, such dynamics is inde-
pendent of the oil viscosity. For drops moving on infused surfaces, it
is generally assumed that the dominant viscous dissipation occurs in
the oil meniscus drawn by the water contact line. The corresponding
‘line friction’ per unit length scales as β(ηoV/θ), where β is a numeri-
cal factor accounting for the singular dissipation in the liquid wedge,
close to the line [73]. The dynamic contact angle θ is given by the
Cox-Voinov Law θ3 ∼ ηV/γ. When plugged in the previous formula,
and after integrating the force over the contact line, we get a friction
scaling as γor β(ηoV/γo)2/3. Its balance with the spreading force γr
yields a constant speed of spreading inversely proportional to the oil
viscosity − two facts inconsistent with the observations, where we
report neither a linear relation between the bridge size and time nor
the strong dependency on the oil viscosity expected from the latter
argument.

Film Dissipation. A second source of dissipation arises from the
slip of water bridge on the subjacent oil. The presence of this oil may
indeed induce the slip of water, (instead of the usual no-slip bound-
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Figure 34: Slip. a) Schematic of velocity profile on a liquid-infused surface,
where Vs denoted the slip velocity at the water-oil interface and V
the velocity beyond the boundary layer. b) VS/V is plotted against
ηηo/ργh reveals two different regimes of slip velocity. The ab-
scissa can also be expressed as OhDOho(R/h), which when less
than 1, we are in a pure slip regime on LIS, and when greater
than 1, the slip velocity decreases as (1+OhDOho(R/h))

−1.

ary condition used if the substrate were solid), as schematized in Fig.
34. Denoting that the slip velocity at the oil/water interface as Vs,
we may now write the continuity of the shear stress condition at the
water-oil interface as η(V − Vs)/ζ ∼ ηVs/h, where ζ is the boundary
layer within the drop. We have previously discussed the characteris-
tics of this thin viscous layer in the Section 3.1.2, in particular that ζ
is typically of the order of η2/ργ, which is ∼ 14 nm for water. Sub-
stituting for ζ in the continuity equation, we can now write the slip
velocity as

Vs ∼ V/(1+ ηηo/ργh). (21)

The above equation reveals that there exists a critical oil viscosity,
η∗o which transitions the slip velocity from a pure slip to vanishing
slip regime. This value can be stated as:

η∗o = ργh/η. (22)

When the viscosity of our infusion ηo < η∗o, we have pure slip, that
is Vs ∼ V and when ηo > η∗o, the slip velocity scales as Vs ∼ η∗oV/ηo,
that is inversely proportional to the oil viscosity. In other words, Vs

quickly vanishes in comparison to V at sufficiently large oil viscosities.
For our problem of spreading of water, η ∼ 1 mPa-s, ρ ∼ 103 kg/m3,
γ ∼ 70 mN/m and height of texture as h = 20± 3µm, we find this
critical oil viscosity to be η∗o ∼ 100 mPa-s.
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The corresponding viscous force is Ff ∼ (ηoVs/h)r
2. Substituting

for Vs, we get

Ff ∼ ηoVr
2/(1+ ηηo/ργh)h (23)

The viscous force too would have two regimes dictated by the value
of oil viscosity. If the oil is less viscous, ηo < η∗o, we find a dissipa-
tion force proportional to ηo, that is, Ff ∼ (ηoV/h)r

2 and for large oil
viscosities, ηo < η∗o, we find that the dissipation becomes indepen-
dent of the oil viscosity itself: Ff ∼ (ργhV/η)r2, which is indicative of
the fact that the slip velocity vanishes on sufficiently viscous oils, as
noted before.

Nevertheless, in both the regimes of dissipation, the force scales as
r2. Thus a balance with the driving force γr yields a diffusive-type
law r2 ∼Dt, where for low viscosities, ηo < η∗o, we expect the diffu-
sivity to be D1 = γh/ηo, logically a kind of a Washburnian Law of
a liquid with viscosity ηo impregnating a material with a roughness
with height h [16]; for high oil viscosities, ηo > η∗o, the diffusivity
would be D2 = η/ρ, which is in fact the momentum diffusivity of
water that represents the diffusion of a boundary layer. If we plot
the ‘diffusivity’ D of the spreading as a function of the oil viscosity
(Fig.35a), we observe that D decreases with ηo for all tested volumes.
The function D (ηo) seems to follow not two, but three successive
regimes: while it tends to plateau at large ηo beyond η∗o = 100 mPa-s,
for ηo < η∗o we see D (ηo) approach another plateau at the smallest
oil viscosities, and it is between 10 < ηo < 100 mPa-s, that we see
D decreases with ηo, even though the variation remains weaker than
predicted by the scaling D1∼1/ηo.

We can also plot, at fixed viscosity, how D varies with the drop vol-
ume Ω (Fig.35b). Again, we note a clear separation of regimes based
on the magnitude of the oil viscosity: for viscosities less than 100mPa-
s, large drops spread slightly quicker than small ones, D roughly
tripling when the volume is multiplied by a factor 40, whereas for
η > 100mPa-s,D becomes independent of the volumeΩ. This corrob-
orates our expectation from the form of D2 = η/ρ which predicts the
diffusivity to be independent of volume and oil viscosity, although
the average of the experimentally measured D (Ω) for η > 100 mPa-s
that comes out to be 28.2±6.8mm2/s, one order of magnitude higher
than η/ρ. On the other hand, D1 = γh/ηo does not capture the size
dependence and predicts a stronger variation in ηo than observed.
We discuss further these different behaviors.

Meniscus or Film? We described two sources of viscous dissipa-
tion in the oil, occurring respectively in the meniscus and in the film.
For a water drop moving on a LIS (owing to gravity, for instance),
the friction in the meniscus generally exceeds that in the film, for
two reasons. On the one hand, the stationary oil meniscus joins the
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Figure 35: Diffusivities. a) Effective diffusivity for water drops as a function
of the viscosity ηo of the infusing oil, at a fixed drop volume
(Ω = 1µL , circles; Ω = 4µL , squares; Ω = 10µL , diamonds;
Ω=25µL , triangles; Ω=40µL , asterisks). The diffusivities were
extracted from a fit of r2 = 2Dt in the respective r− t plots. b)
Effective diffusivity for water drops as a function of the drop
volume Ω at a fixed ηo, viscosities varying from ηo = 5mPa-s to
ηo=970 mPa-s. Gray data points correspond to the case of ’bare’
hydrophobic solid. The dotted lines in both a) and b) serve as a
guide for the eye.

substrate with an acute angle, which accentuates the dissipation; on
the other hand, the speed (typically 0.1 to 10 mm/s) is much smaller
than in our experiments of spreading, and the slip is then negligible
at the water/oil interface, thus minimizing the film friction [73, 75,
76]. In the case of spreading, we note that the oil meniscus is not
stationary (it gradually builds when the bridge propagates), and it
does not meet the substrate with an acute angle (beginning of the
contact). Moreover, the liquid bridge grows at a large speed, typically
1 to 10 cm/s, compared to that of gravity-driven drops. It is known
that at speeds greater than 1 cm/s, even gravity-driven drops exhibit
a dynamically deformed meniscus and a completely different friction
scaling, the physics of which has not yet been appropriately captured
[73]. Thus, for the case of spreading, there is no reason to believe a
priori that the meniscus force would exceed the film friction. We can
go further by comparing their amplitude.

Because the classical scaling of meniscus friction corresponds to
acute angles, it overestimates (by far) the dissipation in an obtuse
wedge. However, even if we consider this scaling and compare it to
the expression in the film, we find that the film friction dominates
only when the contact line radius r is larger than a distance scaling
as βh3/2γ1/2/(ηoD)1/2. For making the latter expression more ex-
plicit, we take the inertial diffusivity (γR/ρ)1/2 as a scale for D, so
that the previous relation can be re-written as r2>β2h2(γo/γ)

1/2/ψ

where we introduce ψ =Oho(R/h), denoting Oho ∼ ηo/(ργR)
1/2 as

the Ohnesorge number of the oil. For our range of oil viscosities and
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droplet sizes, ψ is of order unity, so that the film friction should dom-
inate the meniscus friction for a contact size r larger than a few times
h, the typical distance where we start our measurements.

Alternative Argument. An alternative way to approach the com-
parison between meniscus and film dissipation is to ask whether the
meniscus have enough time to form. The water ’foot’ or bridge of the
drop grows to a length r in time t ∼ r/V . The time to form a meniscus
around this circular foot of size r is given by tm ∼ r/(γow/ηo), where
γow is the surface tension of oil with respect to oil and γow/ηo is the
typical speed Vm at which the meniscus builds [109]. A meniscus can
successfully form around the foot if the time tm to form the menis-
cus, is smaller than the time t to grow the foot. In other words, the
criterion for a meniscus can be written as

V < Vm ∼ γow/ηo (24)

Experimentally, the maximum velocity we see is close to 1 m/s
(at the earliest times). For γow ≈ 50 mN/s, Vm > 1m/s as long as
ηo ⩽ 50mPa-s. This means upto viscosities of 50mPa-s, the meniscus
does not form and hence the question of meniscus dissipation does
not arise. However, for higher viscosities this is not as trivial as Vm

is less than 1 m/s: this means as the contact grows with decreasing
velocity, it reaches a critical contact size when the condition V < Vm

is satisfied, only beyond this length would we see a t1/2 behavior.
Indeed, in experiments with ηo > 100 mPa-s, we see this length to
be 30-50µm, beyond which a t1/2 behavior prevails, an exponent that
the meniscus force would not have allowed for.

Inertia. Another source of resistance being inertia, we can finally
compare the film friction to the inertial force. The volume of the mass
re-organized being r2δ, the inertial resistance scales as

Fi ∼ ρr
3V2/R. (25)

In order to see how Fi compares with Ff, we look at Figure 36,
where we see a schematic of the variation of the two forces with re-
spect to the oil-viscosity. The inertial force is constant in ηo, but Ff
increases with ηo initially and then becomes constant. The inertial
force dominates over film dissipation when ρr3V2/R > (ηoV/h)r

2, a
condition that can be re-written as rV > ηoR/ρh. We further this by
noting that the diffusivity rV is necessarily less than that on a solid,
Do ∼ (γR/ρ)1/2. This in conjunction with the previous inequality
gives us (γR/ρ)1/2 > ηoR/ρh. From this we observe that there exists
a critical oil viscosity, η∗∗o below which the infused surface behaves as
a ‘bare’ solid, which is given by

η∗∗o = (ργh2/R)1/2 (26)
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Figure 36: Transition Points. Schematic of the variation of inertial force Fi
(red line) and dissipation force in the film Ff (blue line) with oil
viscosity ηo. The grey arrows show the evolution of the total force
Fi + Ff, which essentially follows the larger of the two forces. The
intersection of the blue and the red line mark the first transition
called i and the turning of Ff from increasing to a constant marks
the next transition, called ii.

This criterion is shown in Figure 36 as the intersection of the red
(Fi) and blue (Ff) curves, marked as transition i. For a millimetric Alternatively, higher

pillars of the order of
100µm may be used
which can push η∗∗o
to 10 mPa-s.

water drop of water on our pillars of height h = 20µm, we get
η∗∗o = 1 mPa-s. Silicone oils of 1 mPa-s are extremely volatile and
not conducive for experimentation as they create underfilled patches
in the infused solid. So, we did the next best thing - experiments with
ηo = 5 mPa-s and compared it with that of a ’bare’ hydrophobic sur-
face for a droplet of R = 687± 27µm. The diffusivity for the infused
surface came out to be D = 70± 3 mm2/s which is within 10% of
the diffusivity of the ’bare’ solid Do = 76± 8 mm2/s. Thus in our
experimental regime, we approach η∗∗o , but never go below it.

As marked in Figure 36, the second point of transition ii corre-
sponds to η∗o = ργh/η, as we obtained from Equation 22. This tran-
sition be directly observed in our experiments. In this regard, in Fig-
ure 36, we can mark our experimental parameter space as the entire
region beyond i, for the region below i, we have one data point corre-
sponding to a ‘bare’ solid, where Ff is naturally zero.

It is also interesting to point out here that dividing Fi by the vis-
cous force, Ff in the film, for the region below ii, generates a kind
of Reynolds number, Re = ρrVh/ηoR, which also shows that inertia
can dominate viscosity (Re≫1) at low ηo, a limit in which rV would
approach Do and viscous effects just become a perturbation of the
inertial regime, as suggested by Figure 32. Then, the number Re sim-



64 drops spreading on infused solids

ply reduces to 1/ψ, where ψ=Oh(R/h), a quantity of order unity (as
mentioned earlier): even at early times, viscous effects can perturb
the inertial spreading and reveal an influence of the subjacent layer
of oil.

Equation of Motion. We may now construct our equation of mo-
tion of the contact line with all the dominant forces at play which
reads as Fi + Ff ∼ Fd. Substituting for each force from Equations 20,
23 and 25 and dividing by Fd ∼ γr, we get:

ρ

γR
V2r2 +

ηo

γh

(
1+ ηoη

ργh

) Vr − 1 ∼ 0 (27)

The first thing we note in the above equation is that the entire equa-
tion, as a quadratic in Vr, preserves t1/2 kinetics in all its branches of
solutions. We substitute Vr as D and re-write equation 27 succinctly
in terms of ψ = Oho(R/h) and OhD = η/(ργR)1/2, as

D2 +
ψ

1+ψOhD
DD0 −D

2
o ∼ 0 (28)

We identify two limits of the above equation: one, when when
ψOhD ≫ 1. In this case a comparison of the inertial and the vis-
cous term shows that the inertial term can dominate over the viscous
term only if D/Do > 1/OhD, which is equivalent to η > ργR, a condi-
tion always satisfied for millimetric water drops. This gives a solution
D ∼ OhDDo ∼ η/ρ.

In the opposite case of ψOhD ≪ 1, we can write a general solution
to Equation 28 as

D∼Do((4+ψ
2)1/2 −ψ)/2, (29)

which itself has two asymptotic limits: at small ψ, Equation 29 re-
duces to D∼Do, that is, the behavior expected when inertia is domi-
nant − a logical result since ψ was found to correspond to the inverse
of the Reynolds number of this problem; at large ψ, the solution tends
towards D ∼ Do/ψ ∼ D∗, the case where the effect of viscosity be-
comes dominant. These asymptotic laws are drawn with dotted lines
in Fig.37, where we add both the solution of Equation 29 (solid line)
and our data for Ω=1µL and Ω=4µL.

In Fig.37, the measured diffusivity is normalized by the inertial dif-
fusivityDo and plotted as a function of ψ. We restrict the comparison
between experiments and model for microlitric drops: a drop with a
volume larger than 10µL has a size comparable or larger than the cap-
illary length, so that gravity effects also matter: the force driving the
motion becomes a combination of surface and gravitational effects,
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Figure 37: Theory and Results. Non-dimensionalized effective diffusivity
plotted against ψ. The solid line is a fit to Eq. 29. The dashed
line corresponds to D/D0 = 0.1.

and the liquid shape deviates from a sphere, so that our geometric
arguments (for deriving Do) become questionable. As predicted by
the model, we obtain in Fig.37 a collapse of all data upto ηo = 100

mPa-s on the same curve when plotted as a function of ψ, this curve
itself being well fitted by the solution of Equation 29. The oil viscosity
is present in the Ohnesorge number Oho (to which it is proportional),
while the effect of the drop volume is included both in Do and in ψ.
The latter parameter being of order unity in our experiments, most
data lie in the cross-over regime between the inertial and viscous
ones (ψ ≪ 1 and ψ ≫ 1, respectively). The fit provides the numer-
ical coefficients ignored in our scaling arguments: as seen from the
asymptotic behaviors, D/Do tends towards 0.36 at small ψ, in close
agreement with the value found on a solid (Fig.35); at large ψ, the
fit is D/Do=2.5/ψ, where the numerical factor remains to be under-
stood from a complete calculation of the dissipation in the oil film.
Beyond ηo = 100 mPa-s, which here corresponds to ψ > 10, we see
all of the data collapse on a fixed value of D/Do = 0.1, which also
reveals that the pre-factor in front of ψOhD in Equation 28 is 9.5.

Thus, in Fig.37, we see a revelation of three regimes: one approach-
ing the ’bare’ solid as ψ << 1, the second is a regime of pure slip,
where we see a mixture of inertia and viscous dissipation in the in-
fused film within the textures − this regime begins at ψ > 1 and with
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Figure 38: Phase Map. Phase Map of different regimes of spreading on
a liquid-infused surface: ψ = Oho(R/h) plotted against OhD,
where Oho = ηo/(ργR)

1/2 and OhD = η/(ργR)1/2. The dark
blue shaded region corresponds to OhD > 10−2, that is ηD > 10

mPa-s, where drops do not spread diffusively. The solid line cor-
responds to the criterion ψ ∼ 0.1OhD, below which spreading is
a pure slip phenomenon on LIS, and above which there is no slip.
For the former, we approachD ∼ Do/ψ; for the latter, the diffusiv-
ity is that of momentum diffusivity for the drop, η/ρ. The dashed
line corresponds to ψ = 1, below which spreading on an infused
surface is equivalent to spreading on a ’bare’ solid, whereD ∼ Do.
These give us three distinct diffusive regimes within the diffusive
regime itself. In our experiments, we take a water drop of fixed ra-
dius, which fixes the abscissa value; by changing the viscosity of
the infusion, we move along the ordinate and transition from one
phase to another. b) Sketch of a plot of nondimensionalized diffu-
sivity versus ψ = Oho(R/h), as seen in Fig.37, showing the three
distinct regimes of diffusivity as we increase ψ. At the lowest val-
ues, we approach the case of spreading on ’bare’ solid, then with
increasing ψ we sharply decrease to approach Do/ψ, until we
reach a critical ψ, for sufficiently viscous liquids where the slip
velocity essentially goes to zero, and we get a diffusive regime,
only a function of the drop characteristics.

increasing ψ, the diffusivity was approaching a Washburnian hemick-
ing regime, but was cut short by the limiting criterion ofψ = 0.1/OhD,
beyond which the infused surface is so viscous that the slip velocity
vanishes, and we see the contact grow in the same way boundary
layer does. We use these three criteria for transition to construct the
phase space in ψ and OhD in Fig. 38a. The dark blue shaded region
where OhD > 10−2 corresponds to the condition of η > 10mPa-s
where spreading is non-diffusive in nature and follows Egger’s Law
(Equation 17). Our experimental phase space is limited to 10−3 <

OhD < 10−2, where for a fixed abscissa OhD, that is a water drop
of a fixed size, we travel along the ordinate ψ by changing the vis-
cosity of the infused liquid, thus successively passing through three
regimes. Fig.37b shows the same in D/Do −ψ phase space.
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3.2.4 Conclusion

A water drop spreading on a LIS reaches its equilibrium very quickly,
a consequence of the combination of partial wetting and low water
viscosity. Inertia is thus a priori expected to be the dominant resistance
to spreading, as observed for water contacting a hydrophobic solid.
However, the oil contained in the LIS is found to affect significantly
the spreading dynamics: the contact between water and its substrate
develops slower than that on a solid, the slowing down being an
increasing function of the oil viscosity ηo − which we show to be due
to an additional friction at the water/oil interface.

LIS are often viewed as slippery surfaces, which they are from the
adhesion point of view, but not necessarily from the friction point of
view. Three regimes of spreading were identified as a function of the
viscosity of the infusion, which remarkably preserve the scaling of
the contact with time, despite their different physics - at low viscosi-
ties the spreading behavior asymptotically approaches that of a ’bare
solid’; at intermediate viscosities, (ργh2/R)1/2 < η < ργh/η the drop
spreads with pure slip on the infused surface; for very high viscosi-
ties, η > ργh/η, drops spread on the infused liquid with a vanishing
slip velocity, which we could model. We could deduce from the cal-
culation simple scaling laws for the spreading time in the three limits
of oil viscosity. In the first case, the spreading time τ scales as R2/Do,
that is, as (ρR3/γ)1/2, the usual inertio-capillary time of a drop. In
the second limit, τ scales as R2/D∗, that is, as ηoR2/γh. This time
scale, now a function of ηo, is not the trivial viscous time ηoR/γ of
relaxation of a drop driven by surface tension; rather, it includes the
texture thickness, showing that the spreading of water on a viscous
LIS results from an interplay between the drop relaxation and the
film response. In the third limit, τ scales as ρR2/η, where the LIS is
so viscous the drop does not ‘feel’ it - its spreading time has not sig-
nature of the oil viscosity; it is the same as time to form a viscous
boundary layer within the drop.

We end by highlighting that typical phenomena in fluid flows have
inertia and friction exhibit different scalings in time, which help dif-
ferentiate the regimes in which they dominate and crossover to the
other. What we saw here was a unique example of a fluid dynamical
problem where inertial and viscous frictional forces (of two differ-
ent kinds) betrayed the same scaling in time (when balanced with
capillarity), in not one but three successive regimes which one can
transition through by changing a single non-dimensional parameter:
ηo/(ργR)

1/2 × R/h.
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A natural question that follows from the previous section is what
happens in the opposite limit of a viscous liquid (such as glycerol)
spreading on a non-viscous LIS, a case where the kinetics could ben-
efit from the lubricating effect of the subjacent layer. As discussed in
the Section 3.1.2, the growth of the contact of a viscous drop on a
‘bare’ solid substrate is governed by a balance between the friction
force on the expanding ‘hemi-toroid’ of air Fη ∼ηVr/ ln(R/r) and the
driving force Fγ∼γr, which results in the Eggers’ Law -

r=Ao(γ/η)t ln(R/r) (30)

where Ao is a prefactor which has no dimensions. Although the
theoretical prediction of Ao for coalescence of two identical drops
in a medium of non-zero viscosity is 1/4π [94], the experimentally
determined value of Ao previously has been close to 1 [102].

Our objective here is to test the validity of this law, and to under-
stand how it is modified by the presence of lubricating layer: if our
arguments are correct, Eggers’ law should be universal (since it is
mostly dictated by the geometry, and its consequences on hydrody-
namics), but the coefficient A be impacted by the change of boundary
condition – at least if the lubricating layer is chosen with a viscosity
smaller than that of glycerol.

3.3.1 Experiments

To do so, we design an experiment where we bring a 1µL-drop of
glycerol in contact with either a solid or with a so-called LIS, namely
a textured solid infused with a silicone oil, the same way as we did in
the experiments with water in the previous Section 3.2. As a bench-
mark for comparison, we use a hydrophobic solid. Figure 39 shows
top-down images of how the contact line of a glycerol drop grows
when brought in contact with a hydrophobic solid and for infused
surfaces with oil viscosities of ηo = 9, 96 and 970mPa-s. We observe
from the images that for the case of ηo = 9 mPa-s, the glycerol drop
spreads much faster than that on a solid. With increasing viscosity,
the rate of growth becomes slower and slower, and for ηo = 970 mPa-
s, the contact spreads almost the same way as it does on a solid.

In order to make our understanding more quantitative, we know
plot the temporal evolution of the radius of contact in Fig. 40. The
first observation we make is that all the glycerol drop spreading on
hemi-solid or solid surfaces follow Eggers’ law (Equation 30), but
on hemi-solids, the drop spreads faster, the fastest being on the LIS
with the lowest viscosity of infusion, which in our experiments is
η0 = 4.6 mPa-s (Fig. 40). For this viscosity, we see that the contact
grows to a radius 100µm in 0.3 ms which is nearly six times less than
the time it takes to spread the same extent on a hydrophobic solid,
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Figure 39: Timelapse. Time-lapse top-down images of the growing contact
of a 1µL glycerol drop on the surface of a LIS for three different
oil viscosities: ηo =9, 96 and 970 mPa-s, and also on a ‘bare’ hy-
dropobic solid. We see that in comparison to the spreading on a
solid, spreading on LIS is faster - the fastes being on the lowest
viscosity
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Figure 40: r-t plots. Temporal evolution of the contact line radius when a
1µL glycerol drop touches a LIS infused with different oil viscosi-
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a ‘bare’ hydrophobic solid. Error bars in time correspond to one
standard deviation equal to the inverse of the frames per second
and error bars in length correspond to one standard deviation
equal to one-pixel size. Solid lines are fits to the Equation 30. b)
Non-dimensionalized radius r/R plotted against At/τ, for differ-
ent values of ηo.
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thus demonstrating the spectacular effect of lubrication engendered
by the infused surface. Furthermore, the lubricating nature of the in-
fusion decreases with increasing viscosity and for η0 = 970 mPa-s we
see that the r−t plot is very close to the case of glycerol spreading
on a hydrophobic surface itself. The solid lines in Fig. 40 are fits to
(Equation 30), where a different A is chosen for a different ηo. The
inset of Fig. 40 shows that the r− t curves can be collapsed when the
nondimensionalized radius r/R is plotted against At/τ, the value of
A being only a function of ηo. This shows that indeed all the curves
follow and preserve the same law Equation 30 and are thus governed
by the same physical mechanisms at play. Moreover, there exists a
unique A for every ηo, that can collapse all the curves.

3.3.2 The Model

The natural question that follows from this is how does the lubricat-
ing effect of the infused oil modify the dissipation and generate a
slip that preserves the nature of the law of spreading on a solid. Said
differently, how does the dissipation of the infused oil get absorbed
within the prefactor A itself.

Herein, we note as the contact grows, there would be an oil menis-
cus that would form around the ‘foot’ or the ‘cusp’ of the contact, as
shown in Fig. 41, which would grow at a typical speed of γog/ηo
for ηo > 10mPa-s where γog = γg − γo, which is the surface ten-
sion of silicone oil with respect to glycerol [109]. This speed is faster
than the typical spreading velocity of the foot in the initial stages
γ/η, as η > ηo. Note that this is precisely what was not happening
for the case of a water drop spreading on the infused surface, as η
of water was strictly less than ηo always. The existence of a meniscus
immediately tempts us to consider the dissipation in the corner of
oil, which would scale as Fo ∼γorϕβ(ηoV/γo)

2/3, as we know from
Tanner’s Law and as discussed in the previous Section 3.2. Balancing
the Stokesian dissipation and the line friction with the driving force
we get -

ηVr/ ln(R/r) +β(ηoV/γo)2/3γorϕ ∼ γr (31)

The above equation can be re-written as

V

(
1+

η
2/3
o γ1/3

ηV1/3
βϕ ln

(
R/r
))

∼
γ

η
ln
(
R/r
)

(32)

Since the experimental curves all preserve the logarithmic law, it
implies that Fη and Fγ give us the dominant scale of the velocity and
that Fo is, in fact, a perturbation to that solution. In other words, the
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Figure 41: Sketch of Contact Zone. Top: A viscous drop touches a ‘bare
solid’ to forms a cuspoidal contact where a ‘hemi-toroid’ of air is
pushed out. Below: A viscous drop touching an infused surface
forms a cuspoidal contact which has a meniscus formed within.
A further zoom shows the meniscus has a dynamic contact angle
θ where wedge friction dominates.
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pre-factor multiplied to V on the left hand side of the Equation 32 is
predominantly 1 − a rough estimate of its deviation from 1 can be
obtained by plugging in γ/η for V . This would give us a solution of
the form r = Aγ/η ln(R/r), where

A =
a

1+ b(ηo/η)2/3
, (33)

where a and b are pre-factors that should be independent of ηo and
R. However, this argument has its weaknesses - for example, we take
b to be a constant where it has the term ln2/3(R/r) which we take
to be a constant. This can only be defended by saying that ln(R/r)
is of the order of 1 with its largest value being 3 corresponding to
r ∼ 1µm which is the optical resolution of our experiments and the
fact that it is raised to the power 2/3 decreases its value further in
comparison to the driving force term where it is raised to the power of
1. Nevertheless, whether such a crude approximation can capture the
primary features of our observation would illuminate us regarding
the limitations of our approximations.

In Fig. 42 we plot that A values against ηo/η for two different vol-
umes of drops 1µL and 4µL. The data points reveal that there is
no effect of R on A, in this limit where we are below the capillary
length. Next, we see that the A values decrease from A = 7.3± 0.3 for
ηo = 4.5 mPa-s to A = 1.9± 0.3 for ηo = 970 mPa-s, the latter value
being very close to what we see on a ‘bare’ hydrophobic solid where
Ao = 1.4 ± 0.2. The solid line corresponds to a fit to Equation 61

with a = 7.5 and b = 3.6. We also note that as ηo/η approaches 1,
A ∼ (ηo/η)

−2/3. However, it must be kept in mind that our approx-
imation of plugging in γ/η to obtain A = f(ηo/η) holds only in the
limit ηo > η.

We must now rationalize the values of a and b to see if our model
is is consistent. The theoretical value of b ∼ βϕ(γo/γ)

1/3 ln2/3 R/r,
where β ∼ 10 and ϕ = 23− 25%. This yields a prefactor of 1.2 between
the experimental and theoretical values of b. The value of a = 7.5
might appear to be inconsistent with the idea

Regarding the value of a = 7.5, we note that it is far from is far
from Ao, but there is no inconsistency here. It must be emphasized
that although it might appear that setting b = 0 does not help us re-
cover the case of spreading on a ‘bare’ solid, because that requires an
added condition ϕ = 1. The absence of the latter condition in conjun-
tion with b = 0 essentially takes us to a the case of a textured solid.
However a glycerol drop when brought in contact with a textured
solid would also impregnate and wick inside the textures, along side
spreading, which is not accounted for in our model because on a
hemisolid, the drop cannot penetrate within. Hence, b = 0 and ϕ ̸= 0
is corresponds to the hypothetical case of a textured solid, on which a
drop can spread but not penetrate, say a textured solid infused with



76 drops spreading on infused solids

ho / hD

A

1 mL

4 mL

1

10

0.0001 0.001 0.01 0.1 1 10

2/3

Figure 42: Model and Results. A values plotted against nondimensional-
ized oil viscosities ηo/ηD, for two different volumes of drops -
1µL and 4µL. Note that A is independent of droplet volume and
only a function of ηo/ηD. The shaded region corresponds to the
values of A corresponding to experiments on a ‘bare’ hydropho-
bic solid with error, which is 1.4±0.2. Error bars are obtained
from multiple trials of each experiment. The solid line is a fit to
Equation 61 with a = 7.5 and b = 3.6.
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an oil of zero viscosity − a limit we approach as we decrease ηo/η,
which is fundamentally different from a flat ‘bare’ solid. Hence, the
value of a = 7.5 being different from Ao = 1.4±0.2 is not inconsistent.
Said differently, as we decrease ηo/η, and in the process decrease the
contribution of dissipation from the liquid-liquid contact increases
in the contact area, and all that remains is the contribution of dissipa-
tion from the solid-liquid contact, but the solid liquid contact is lesser
than that on a flat ‘bare’ solid, which is why the friction is lesser than
what would be on a bare solid. This is precisely why a is expected to
be larger than Ao, because A is representative in a sense of how fast
the drop spreads on the surface. Therefore, the value of a too should
vary with ϕ, however that is beyond the scope of the present study.

A glycerol drop spreading on a solid is slow − viscosity domi-
nates, capillarity drives and inertia is dead. However, when placed
on an infused surface, glycerol drops are accelerated in comparison
− the infused oil of lower viscosity forms a meniscus around the
drop decreasing its friction, the texture too contributes by decreasing
the glyceol-solid contact, minimizing the friction further. Typically a
micro-liter glycerol drop spreads on a solid in about a second, but on
an infused surface with ηo = 5 mPa-s, the glycerol drop spreads in
a few milliseconds. In the opposite limit, where ηo = η, the spread-
ing time is the same as that on a solid. We could describe the entire
picture of this unique spreading behavior with simple scaling laws.

3.4 conclusion

Thus, we see liquid infused surfaces have a unique unifying trait in
the context of spreading of drops - these hemisolids preserve the na-
ture of the law of spreading as observed on solids, but dramatically
change the amplitude of it. If a low-viscosity drop as water spreads on
a LIS infused with an oil of higher viscosity, then spreading is slowed
down - the more viscous the oil, the slower the spreading, the fastest
being that on a ‘bare solid’. But, if a drop of high-viscosity as glycerol
spreads on low viscosity LIS, the drop is accelerated in comparison
to how it spreads on ‘bare solid’. It would however be interesting
to see what happens when a viscous drop as glycerol spreads on a
hemisolid which is infused with an even higher viscosities − a regime
not investigated here.





4
L A R G E D R O P S S P R E A D I N G O N I N F U S E D S O L I D S

In this chapter, we ask what happens when a large drop or a puddle
of water touches an infused surface. We proceed by first asking this
question for a ‘bare’ solid. In the process, we find some original fea-
tures of puddles touching a ‘bare’ solid surface. We contrast this with
the character of spreading, as we find on infused solids.

79
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4.1 large drops and puddles on ‘bare’ solids

In the last chapter, we saw that when a droplet of a low viscosity
liquid (η < 10 mPa-s) as water touches a ‘bare’ solid, its contact first
grows as r2 ∼ Dt, where D ∼

√
γR/ρ. However the two necessary

conditions that must be fulfilled for this law to be valid are:
i) Geometry: the drop must be spherical, in other words, its radius

R ∼ Ω1/3 must be less than κ−1, where κ−1 =
√
γ/ρg ∼ 3 mm for

water, and
ii) Time: the time t elapsed from the point of first contact must be

less than the capillary inertial time scale τ =
√
ρR3/γ ∼ 1 ms for

water.
The first condition is necessary because the very origin of the diffu-

sive nature of inertial spreading - the ‘Hertz Contact’ - is true only for
a sphere-plane geometry. The second condition ensures that capillar-
ity and inertia will be the only dominant antagonistic forces dictating
the dynamics of the contact.
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Figure 43: All the Laws. Phase Map of a drop spreading on a flat solid:
nondimensionalized radius of the drop R/κ−1 plotted against
nondimensionalized time t/τ, where τ is the capillary inertial
time scale and κ−1 is the capillary length.

In light of this, we can now ask what happens when we violate
these conditions. Fig. 43 shows a phase map where the dimension-
less radii R/κ−1 is plotted against t/τ which reveals that differentTanner’s original

experiment was with
Silicone oil, not

water.

regimes that emerge based on the constraints of geometry and time.
Historically, the first of these four regimes, in the chronology of dis-
coveries was by L. H. Tanner in 1979 and it corresponds to the case
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Figure 44: The Puddle and the Drop. a) Topdown timelapse of the grow-
ing contact line when a 1µL and a 4 mL drop first touches a
hydrophilic glass slide/plate from the top. For the 1µL drop, we
see the first position at 28µs, and successive positions are at 86µs
intervals, and for the 4 mL, successive positions are tracked at an
interval of 1.56 ms from time t = 0. Scale bars for 1µL and 4 mL
drop represent 100µm and 1 mm respectively. b) When the radial
positions from the experimental micrographs of a) are plotted
against time, we see the contact of 1µL drop grows as t1/2 (dot-
ted line), while the contact for the 4 mL drop grows as t1 (solid
line).
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of R/κ−1 ≪ 1 and t/τ ≫ 1, that is when a small drop of a few mi-
croliters of water is deposited on a perfectly wetting surface and we
measure the radial extent of its spread in the order of minutes or more
[85]. In this regime, surface tension is balanced by the ‘line friction’,
and the contact line grows as r ∼ (γΩ3t/η)1/10. The regime that was
discovered after Tanner’s was by Huppert in 1982: this corresponds
to case of R/κ−1 ≫ 1 and t/τ ≫ 1 - something we will see if we
pour a large puddle of water of hundreds of mililiters and see how
it spreads in a duration of minutes or more [110, 111] This regimeSeminal

contributions in
gravity currents

were also made by
von Kármán and
Brooke Benjamin

before.

also known as the regime of gravity currents is where gravity domi-
nates over capillarity and is balanced by the bulk dissipation which
dominates over line friction to yield the law r ∼ (ρgΩ3t/η)1/8. The
third regime that was found by Biance et al. corresponds to the case
of a drop of a few microliters of water spreading in a duration of less
than a milisecond: R/κ−1 ≪ 1 and t/τ≪ 1 [81]. We have extensively
discussed this regime in the previous chapter.

The only regime that remains to be looked into thus is the fourth
one: R/κ−1 ≫ 1 and t/τ ≪ 1, that is what happens in the very first
moments of a puddle touching a solid. Naturally, a puddle cannot
be deposited on a solid surface without impact, owing to its weight.
So we place a puddle on a superhydrophobic surface and bring a flat
hydrophilic glass plate in contact with it from the top ‘gently’, akin
to the setup we had in our previous experiments on spreading on in-
fused surfaces. We do simultaneous topdown and sideview imaging
with a high speed camera of 4000 frames per second for the puddle
experiments and 400,000 frames per second for the droplet experi-
ment.

Fig. 44a shows a timelapse of the topdown view of a 1 µL droplet
and a 4 mL puddle immediately after contact is established, and Fig.
44a shows the temporal evolution of the contact line radius on a log-
log plot. We immediately note a striking difference between the two
cases: while for the droplet, the ‘foot’ of contact grows diffusively, as
t1/2, for the puddle we report a constant velocity of 0.9 m/s. Further-
more, unlike the case of the droplet, the contact line for the puddle
starts to destabilize with a wavelength of roughly 2− 3 mm.

More features of the nature of the contact for the puddle can be
seen in Fig. 45 where a 6 µL puddle looks from the side and the top
and how the contact grows after contact is established. The topdown
images reveals that that the contact is not at the center, rather near
the periphery of the puddle − a generic feature of the puddle-plane
contact. This is a signature of the existence of a ‘dimple’ of air: as
the air film gets squeezed between the top of the puddle and the flat
solid, a dimple forms − the thickness of such dimples are known to
be the maximum at the center and the minimum at the periphery,
where the film is the most prone to rupture [112].
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Figure 45: The Puddle. Top: Sideview and topdown images of a 6 mL pud-
dle on a superhydrophobic surface brought in contact with a hy-
drophilic glass plate from the top. Bottom: a rotated reslice of
the spread from the point of contact, which essentially is radius
plotted against time, but in pixels. Scale bars represent 1 cm.



84 large drops spreading on infused solids

Following the rupture, the air film ‘dewets’ to a millimetric size in
miliseconds at a constant speed. While a 1 µL droplet too reaches a
millimetric size in miliseconds but not at a constant speed: in fact, by
the time the 1 µL droplet reaches millimetric dimensions, its velocity
is near zero. Conversely, for a puddle, the speed is 1 m/s when the
contact line has grown to a milimeter in size − such fast motion of
the contact line at millimetric scales can destabilize the contact line
and occasionally air bubbles are captured as seen in Fig. 46.
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a)

b)

Figure 46: Bubbles. Topdown view of a puddle contacting a hydrophilic
glass plate reveals that contact line can destabilize (dotted circle)
to capture multiple bubbles, as observed in two different trials.
Scale bars represent 5 mm.

However in the present study we would not concentrate on the
capturing of the bubble, rather the transtion to a t1 law for puddles
from a t1/2 law as observed for droplets. The inertial law as given by
Equation 16 can be written in a nondimensionalized form as
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r/Rc ∼ (t/τ)1/2 (34)

where τ is the capillary inertial time scale. In Fig.47 a, we plot the
radius of the contact line r nondimensionalized by the local radius
of curvature Rc at the point of first contact (obtained from sideview
images) against time t, normalized by the capillary inertial time scale
τ, for different drop volumes ranging from 1 µL to 4 mL, which in
terms of the radius of curvature varies from 600µm to 17.2 cm.

The first thing we note from the figure is that apart from the case
of Rc = 17.2 cm, the nondimensionalized contact size of all the other
drops collapses on the same line at long times. This line drawn in
dotted grey corresponds to Equation 34 with a prefactor of 1.3, which
is the same as obtained in previous spreading experiments [84]. Next
we see that while for small droplets, the data follows Equation 34

from the earliest times, for Rc greater than 2 mm, there is a consistent
deviation from the 1/2 - law at the early times, and finally for 4 mL,
the exponent is 1. In Fig.47b, we remove the 4 mL data and the error
bars and zoom in to show the consistent deviation from the 1/2 - law
as observed with increasing volumes. We do so because while for the
4 mL puddle we see a clear t1 behavior, all the drops smaller than
this volume showed an early deviation from the 1/2 - law, but not a
t1 law, and it is possible that the reason for the deviation is not the
same as that of constancy of speed for the 4 mL case.
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Figure 47: Deviation from the 1/2 Law. a) Nondimensionalized radius of
the contact line r/Rc where Rc is the local radius of curvature
Rc at the point of contact plotted against non dimensionalized
time t/τ, where τ =

√
ρR3c/γ is the capillary inertial time scale

for different drop volumes ranging from 1 µL to 4 mL. Error bars
correspond to the pixel size and frames per second of experimen-
tal video. b) The same plot zoomed in without the 4 mL and error
bars to show the deviation from the t1/2 law at early times.

This brings us to the real question - why does the r − t plot for
larger droplets deviate from the 1/2- law at early times? One could
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Figure 48: Drop to Puddle. a) Schematic showing how the geometry of the
drop changes from a spherical cap to a puddle with flat top, as
we increase the volume. b) Two different types of contact between
the drop and the flat solid.

imagine the loss of sphericity of a large drop to be a reason for this.
To elaborate, as the droplet volume increases, the drop flattens and
transitions from a sphere to a puddle, which means the radius of cur-
vature is larger at the top and smaller near the periphery (as sketched
in Fig. 48). Such a flattening of the drop at the top could possibly
weaken the Hertz Law, and consequently the 1/2 - law. It is also
tempting to argue along this line because consistent deviations are
observed for Rc equal to 2 mm or greater, which is not too far from
the capillary length.

We can test the sphericity argument with a simple experiment. We
take two droplets of different volumes but the same radius of curva-
ture: a 4 µL droplet on a hydrophilic surface and a 100 µL drop on a
hydrophobic surface, both of whom have a radius of curvature larger
the capillary length. As seen in Fig. 49a, the 4 µL drop on the hy-
drophilic surface spreads out thin to become a perfect spherical cap
(dotted red line) with a radius of curvature Rc = 3.9 mm everywhere,
whereas the 100 µL drop on the hydrophobic surface is flattened with
a radius of curvature Rc = 3.9 mm at the top. A hydrophilic glass
slide is brought in contact with both of them from the top and the
growth of the ’foot’ of liquid contact that forms is tracked. If loss of
sphericity is the reason for the deviation at early times, then the 4 µL
droplet should not deviate from the 1/2 - law at early times, but the
100µL should. However, in Fig. 49b where we plot r/Rc against t/τ,
we see that both deviate and deviate identically. This means that not
only is gravitational flattening not the reason for the deviation, the ex-
tent of deviation from the 1/2 - law depends on the very value of the
local radius of curvature at the point of contact, and not whether its
magnitude is relatively greater or smaller than the capillary length.

This tempts us to wonder if the deviations are a signature of an
even earlier viscous regime. As discussed in the previous chapter, the
point of first contact of a droplet and a flat substrate represents a sin-
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Figure 49: Influence of Sphericity. a) Two drops with the same local radius
of curvature at the top Rc = 3.9 mm contact a flat hydrophilic
plate from above. Left: 4µL droplet on a hydrophilic plate. Right:
100µL drop on a hydrophobic plate. Dotted lines show a circle
with Rc = 3.9 mm which perfectly fits the 4µL drop everywhere,
but does so only locally for the 100µL drop.

gularity: a cusp where the capillary stresses diverge and the dynam-
ical law of spreading becomes r ∼ γ/ηt ln(R/r)[94, 102]. This viscous
regime supposedly gives way to the inertial one where the radius
grows diffusively. However, for the case of water no experiment to
date has been able to find the existence of a viscous regime preceding
the inertial one, because its viscosity is η = 1 mPa-s is too low for any
experimentally detectable viscous regime, if one existed. The viscous
regime has been experimentally observed, but only for η > 10 mPa-s
where the 1/2 - law has been swallowed up by entirely the viscous
regime [102]. Perhaps what we see here is the remnant of a viscous
regime crossing over to an inertial one, which is why the data points
in the early times fit neither t ln t nor t1/2, rather somewhere in the
transition, where no scaling law holds.

This can be tested: the crossover from the r ∼ γ/ηt ln(Rc/r) to
r ∼ (γRc/ρ)

1/4t1/2 would happen at a crossover length r∗ and time
t∗ which satisfies both the equations. Eliminating t∗ from the two
equations and solving for r∗, we get the crossover length as

−(r∗/Rc) ln(r∗/Rc) ∼ Oh (35)

where Oh = η/
√
ργRc, and is also known as the Ohnesorge Num-

ber. Now, for the function f(x) = −x ln x, where 10−3 < x < 0.1, f(x)
is of the order of x as ln x is a much weaker function in x. Dropping
ln(Rc/r∗) and rearranging the terms we get

r∗ ∼ (η/
√
ργ)R

1/2
c (36)



88 large drops spreading on infused solids

10

100

1000

10000

0.1 1 10 100

𝑟
∗
(μ
m
)

𝑅𝑐 (mm)

2

1

Figure 50: Crossover. Experimentally obtained crossover lengths of the con-
tact plotted against the local radius of curvature at the top of the
drop. Dotted line is a fit to Equation 36 with a prefactor of 87.
Black and red circles correspond to experiments where the bot-
tom substrate is hydrophilic and superhydrophobic respectively.
The gray shaded region does not follow the Equation 36.
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The pre-factor for the above equation is expected to be 1.32/Aoβ,
where 1.3 is the prefactor of the diffusive law (Equation 34), Ao is the
prefactor of the viscous law given by Equation 30 and β = ln(R/r) is
of the order 1 (a value close to 3). In Fig. 50, we plot crossover lengths
obtained from spreading experiments against the local radius of cur-
vature at the point of contact. In these experiments, the top surface
was hydrophilic but the bottom substrate was either superhydropho-
bic or hydrophilic, the drops being more flattened for the former case
for the same volume. We observe that beyond 2 mm, the data can
indeed be fairly captured by Equation 36 with a prefactor of 87. How-
ever, below Rc = 2 mm, shaded in grey, we see that the data quickly
falls below the theoretical prediction of r∗. Both of these observations
need to be commented on. We first address our experimentally ob-
tained pre-factor. The viscous law in Equation 30:

r=Ao(γ/η)t ln(R/r) (37)

has a prefactor Ao theoretically predicted to be 1/4π by Eggers,
Lister and Stone for the case of coalescence in a medium of non-zero
viscosity [94]. However, for the case of spreading of a droplet, Eddi,
Winkels and Snoeijer showed that the value of Ao curiously was not
a constant, rather varied as

√
η [102]. They showed that the value

of Ao changes from 13/4π to 1/4π for η varying from 1120 mPa-s
to 11.5 mPa-s. While it still remains a mystery why Ao is at all a
function of η, but what we can say more boldly is that for a given
viscosity, Ao is constant and Eggers’ Law is valid. Now, there exists
no experimentally reported value of Ao for water, because for water
no viscous regime has yet been observed. However, if we were to
extrapolate from the Ao values for different η as obtained by Eddi
and coworkers, we obtain Ao = 0.3/4π, which should give us a pre-
factor of the order of 10 for the crossover equation, consistent with
what we see.

The second observation we make is that below Rc = 2 mm, shaded
in gray, the data quickly fall below the theoretical prediction of r∗. It
is not entirely clear why this is so. Presumably for smaller droplets
there is not experimental resolution to get a large enough deviation
from which a crossover length can be extrapolated. This is also not
incongruous with the fact that previous studies experimenting with 1

mm droplets have never observed any signature of the viscous regime
for water. In this regard, the 2 mm cut-off appears to stem from an
experimental limitation rather than a deviation owing to a different
physics, although this needs to be further investigated.

Nevertheless, the most important conclusion we can draw from Fig.
50 is that just by increasing the size of the drop of water, one can make
an otherwise ‘invisible’ early viscous regime ‘visible’, not entirely but
just enough to see the transition to the inertial regime that starts to oc-
cur at millimetric length scales. Hidden within the crossover relation,
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Figure 51: Diffusivity. a) Diffusivity values plotted against the volume
of the drop spreading. Red data points corresond to a super-
hydrophobic bottom surface (SHPB), blue correspond to hy-
drophobic (HPB), purple corresponds to a drop deposited from
a needle and black corresponds to a hydrophilic bottom sur-
face (HPL). Solid lines are fits to Ω1/6. b) Diffusivity plotted
against the radius of curvature at the point of contact collapses
all the data on the same curve. Solid line follows the equation
D = 0.8(γRc/ρ)1/2.

as described by Equation 36, also is the resolution to an older ques-
tion regarding the no-slip boundary condition in the inertial law. We
had pointed out that the no-slip boundary condition is not violated
in the inertial regime because there exists a boundary layer of size
η2/ργ which must be less than the extent of the Hertz contact δ. This
viscous length η2/ργ is tens of nanometers for water, which remains
the same even for drops as large as hundreds of microliters. What
changes is that, thanks to the Hertz Law, δ ∼ r2/Rc, by increasing Rc
to milimeters, we can push the crossover length scale to hundreds of
microns, where it can be easily detected.

This reveals that the inertial law, originally derived for a spherical
drop, is amazingly resilient to changes in volume. In Fig. 51a, we plot
the experimentally obtained values of diffusivity for volumes varying
from 1 µL to 1 mL, where the red, blue and black data points corre-
spond to the bottom surface being superhydrophobic, hydrophobic
and hydrophilic respectively, and contact is established from the top
with a hydrophilic surface; the purple data correspond to the classical
case where a drop is deposited from a needle onto a hydrophilic sur-
face. We see that the black data points and the rest form two separate
data sets, which is expected because drops sitting on the hydrophilic
surface are substantially thinner in comparison to the non-wetting
substrates, thus while in both cases the volume would scale asΩ ∼ R3c,
the prefactor would be smaller for the thinner droplet. Consequently,
the diffusivity values are expected to scale as R1/2c , that isΩ1/6 with a
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larger prefactor for the thinner drops, which is indeed what we see in
Fig. 51a. Such a scaling should hold upto a volume Ω∗ ∼ κ−3 ∼ 10µL.
We see that for the case of drops on superhydrophobic surfaces this
relationship holds upto 300µL, beyond which while diffusivity val-
ues can be obtained even for larger volumes - even for the case of a
1 mL puddle, these diffusivity values strongly deviate from a 1/6 -
slope, increasing sharply with Ω, almost with an exponent 1. How-
ever, when plotted with respect to the local radius of curvature, all the
data points collapse on a single curve that follows D = 0.8(γRc/ρ)1/2,
as seen in Fig. 51b. This plot shows concretely that even when the
drop is far from a spherical cap, as long as the drop has a uniform
curvature locally at the point of contact, the Hertz Law is valid and
so is the inertial law.

Yet, this remarkable resilience of the regime of ‘diffusive’ inertia,
too must end. When gigantic puddles of 1 mL to 0.1 L are brought in
contact with a hydrophilic surface from the top, the ‘foot’ of contact
grows, not as t1/2, rather at a constant speed of 0.9± 0.1 m/s. These
are puddles where the radius of curvature at the point of contact is 10

centimeters or larger - which is so flat it is experimentally extremely
difficult to measure Rc, also because the first point of contact is un-
known - typically at the edge, because of the dimple formation in the
air film. Nevertheless the constancy of speed at very early times is
observed repeatably. This constant speed regime typically exists for
a few miliseconds after contact during which the contact line grows
to the size of a few milimeters - beyond which the contact line starts
destabilizing (not necessarily capturing bubbles) and eventually slow-
ing down. Beyond 10 ms usually multiple surface waves start ineract-
ing creating a complicated dynamic. We therefore limit ourselves only
to the initial regime, where the speed is constant.

The constancy of speed suggests that the Hertz criterion has fi-
nally been broken, in other words, the contact has transitioned from
a sphere-plane to a plane-plane. Fig. 52a shows a schematic of a con-
stant air film of thickness e, dewetting at a speed V , as a liquid ‘foot’
of the same volume replaces it. The inertia of the liquid ‘foot’ is given
by ρr2e(V2/r). The driving force is the uncompensated Young force
given by γr(cos θA − cosθ), where θA is the advancing contact angle
and θ is the dynamic contact angle with which the bridge grows. This
gives us a constant velocity that can be written as

V ∼

(
γ(cos θA − cosθ)

ρe

)1/2

(38)

The above equation is remarkably similar to the law of inertial
dewetting where we have the converse case - a thin metastable film
of water with air on one side and a (preferably non-wetting) solid on
the other, in which case dewetting speed is given by
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VDW =

(
γ(cos θ− cosθR)

ρe

)1/2

(39)

where θR is the receding angle on the surface [113, 114]. It is nec-This law of inertial
dewetting is a

variant of the Culick
Law derived by F. E.

C. Culick in 1960
[115] in the context

of bursting soap
films where he

showed that the
velocity of rupture is
a constant and equal
to (2γ/ρe)1/2; this
is in fact a limiting
case of Equation 39

with θ = 0 and
θR = π .

essary that we rationalize why the dewetting of an air film in water
and dewetting of a water film in air have almost identical speeds. The
answer to this can realized by looking at the two sketches in Fig. 52a
and b which show the two cases of dewetting of water and air re-
spectively. First, in the case of dewetting of an air film, a bridge of
water forms with the volume r2e and an equivalent volume of dis-
placed air collects in a rim at the periphery of moving contact line.
However the density of air ρa being far less than that of water, the
inertial contribution of the rim ρar

2eV2/r is negligible relative to that
of the bridge. Conversely, in the case of dewetting of a water film, the
bridge has negligible inertia as it is made of air, but the rim where an
equivalent volume of water collects has the dominant contribution in
inertia. Thus despite the fact the film and the medium are the exact
opposite, in both the cases, the inertial term ρr2eV2/r contains the
density of water ρ and the volume of the bridge r2e. For the case of
dewetting of water, naturally the receding angle θR appears in the un-
compensated Young force, and in the case of dewetting of air, water
is advancing, and hence we see the advancing angle θA. Thus, quite
surprisingly, the dewetting of an air film and a water film of a given
thickness have the same characteristic velocity.

a) c)
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Figure 52: The Fourth Regime. a) Schematic of an air film of constant film
thickness e dewetting at a speed V and being replaced by a liquid
bridge of water of the same size. b) Schematic of the opposite
phenomenon: a film of water of constant thickness e dewetting
at a speed V . c) Experimentally obtained velocities for spreading
of puddle volumes ranging from 1 mL to 0.1 L plotted against
their respective volumes. Dotted line represents 0.9 m/s. Error
bars correspond to one standard deviation obtained from at least
three trials.
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For the case of a hydrophilic plate, θA → 0, and while the dynamic
contact angle cannot be visualized from the sideview of the puddle
experiments because of the uncertainty of where the contact happens,
it can be for a droplet as can be seen in Fig. 26. Dynamic angles in the
inertial regime are close to π/2 for water. This makes (cos θA − cosθ)

close to 1, further simplifying Equation 38. Previous works impacting
drops have reported that the air cushion ruptures when it thins to a
critical thickness at the edge of the dimple [112]. Although we do not
control the air film thickness but we see a constant speed in different
experiments which seem to imply the same - the existence of a critical
thickness. For our experimentally measured speed of 0.9± 0.1 m/s as
seen in Fig. 52c for droplet volumes ranging from 1 mL to 100 mL
on hydrophilic plates, we obtain a thickness e of the order of tens
of microns. However, further work needs to be done to obtain direct
evidence of this.

Equation 38 can now be integrated in time to obtain the dynamical
law of growth in the fourth regime of the phase space Fig. 43:

r ∼

(
γ

ρe

)1/2

t1 (40)

There is another interesting observation regarding the transition
from the t1/2 to a t1 law which we can trigger by increasing drop size.
The Reynolds Number in the diffusive inertial regime is Re = ρVr/η,
where Vr = D = (γRc/ρ)

1/2, which gives us Re = (ργRc)
1/2/η =

1/Oh. The maximum size of the radius of curvature for which we
could observe the diffusive regime was Rc ∼ 1 cm, and for Rc of
the order of 10 cm or larger we saw the constant velocity regime.
Plugging in Rc ∼ 1 cm, we get Re ∼ 100. Had the diffusive inertial
regime persisted up until Rc ∼ 10 cm, we would have obtained a Re
of the order of 1000, which does not happen and it is precisely at this
critical Reynolds Number, we switch to a constant velocity regime
v ∼ (γ/ρe)1/2 which is 1 m/s. Now, in the constant velocity regime,
the Reynolds number Re = ρVr/η is not a constant, rather increases
as the contact size r grows up until millimetric lengths beyond which
it slows down. Therefore the maximum Re in the dewetting air regime
corresponds to r ∼ 1 mm and V ∼ 1 m/s, which again gives us Re ∼

100. This means that the moving contact line for the case of spreading
of water resists going to Re ∼ 1000, and switches regimes to stay
below this threshold.

As a final illustration of this transition t1/2 to a t1 Law we briefly This little
experiment was done
together with Bachar
Obeid and Aditya
Jha.

summarize a separate experiment where this can be seen in the same
drop itself, unlike the previous experiments. We take a generic Petri
dish made of plastic (hence, hydrophobic) of radius 6.8 cm, and de-
posit inside a puddle of 17 mL exhibiting an equatorial radius Rc of
5.4 cm. We now gently bring it in contact with the sidewall of the
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Figure 53: Puddle Touching a Sidewall. a) Schematic of a topdown view of
a puddle of equatorial radius Rc placed in a petri dish of radius
Rp, gently touching the sidewall. b) Topdown experimental im-
ages of a puddle of Rc = 5.4 cm touching the side-wall, forming
a liquid ‘foot’ and spreading. c) Looking into the puddle through
the transparent wall of the petri dish, where contact is established.
High speed images of this sideview show the contact grows in a
family of puddle-shapes.)

petri dish - Fig. 54a shows a definition sketch of the geometry and b
shows a topdown view of the contact. In Fig. 54c we see a timelapse
of the successive growth of the contact over 40 miliseconds, which
reveals that the contact grows in a family of puddle-like shapes.

In our previous experiments of touching a puddle from the top was
a means to transition from a sphere-plane to a plane-plane contact.
Touching a puddle from the side is a toroid-plane contact if Re ≪ Rp,
where there are two radii of curvature at the point of contact - the
equatorial radius Re and the vertical radius of curvature which scales
as κ−1; also Re > κ−1 because it is a puddle. Our illustration, how-
ever, corresponds to the case where Re ∼ Rp which makes the con-
tact a plane-plane one in the horizontal direction, with a constant air
film thickness, while the contact in the vertical direction remains the
same. Said differently, we expect the vertical growth to be diffusive
y2 ∼ Dyt, where Dy should scale as

√
γκ−1/ρ and the horizontal

growth to be constant in velocity. This is indeed what we see in Fig.
54b where the vertical growth of the contact follows t1/2, while the
lateral growth has a constant speed. The empty black circles track
the position of the vertical growth from the bottom of the meniscus
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Figure 54: Transition in the same drop. a) Timelapse of successive sideview
contours of the contact line after a puddle touches a side-wall.
ym represents the size of the radius of curvature of the corner of
the petri dish, in this case 150µm. When the puddle approaches
the side-wall, it first forms a tiny meniscus climbing this corner,
and then progresses to spread more ‘globally’ in the lateral and
vertical direction. b) Temporal evolution of the lateral and vertical
spreads show two different regimes existing in the same drop: the
vertical growth grows diffusively, while the horizontal growth is
a constant.
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(the very base of the drop). The black data points take the top of the
meniscus as the starting point. The gray shaded region has a different
dynamics owing to the climbing of the meniscus at the corner, how-
ever this does not affect the approach to the 1/2 law at later times.
The red data points track the horizontal extent of the contact from
the first point of contact, starting at the top of the meniscus. Both the
vertical and horizontal spread eventually deviate from their respec-
tive t1/2 and t1 behavior at later times to equilibriate (not captured
in the plot).

While both the regimes are observed in the same drop here, the
speed horizontally V ≈ 0.4 m/s and the diffusivity D ≈ 135 mm2/s
are both lower than their expected values, something that needs to
be developed further. This work is still ongoing, hence a detailed
analysis is beyond the scope of the present writing.
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4.2 large drops on infused solids
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0 
µm

ba

400 µm

Figure 55: Generation of Waves. a) Timelapse of a topdown images of
a 25 µL drop contacting a hemisolid infused with silicone oil
ηo = 10 mPa-s. Black lines correspond to successive contours of
the spreading drop at every 0.5 ms which have been overlayed on
a snapshot of spreading at 2 ms from start. b) A spatio-temporal
diagram of the spread obtained by taking a reslice along the red
dotted line as show in a. The streaks in the diagram are a sig-
nature of waves emitted continuously by the spreading contact
line.

Large drops spread on infused surfaces with some striking dissimi-
larities with the case of spreading on ‘bare’ hydrophobic surfaces. We
begin by illustrating the differences with the case of a 25 µL drop (ra-
dius of curvature 2 mm) spreading on a liquid infused surface which
is infused with silicone oil ηo = 10 mPa-s.

Fig. 55a shows a timelapse of the spreading contact line of such a
drop with the successive topdown contours at 0.5 ms intervals over-
layed on top of a snapshot of spreading at 2 ms from start. What we
immediately note is that the contact line is not circular as in the case
of a ‘bare’ solid, rather square-ish. In fact, the growing contact line
actually transitions from a circle to a square around r = 100µm and
back to a circle when it comes to an equilibrium, at its equilibrium
radius, in this case 2 mm, at late times. The transition from a circle
to a square tempts us to think that the drop can ‘feel’ the textures
underneath, and what we see in the square-ish is a footprint of the
lattice of the texture underneath.

To test this hypothesis, we look at the spatio-temporal diagram
(r− t plot) in Fig. 55b, which corresponds to a reslice taken along the
dotted red line in Fig. 55a. The spatio-tempral diagram reveals that
the entire growth happens in a step like fashion, where at constant
spatial intervals or steps, it has a ‘jump’ or a quick motion in r. When
we measure the lengths of this constant spatial interval or step size,
we find it to be equal to the sum of the inter-pillar distance and the



4.2 large drops on infused solids 99

0

1

2

3

0 1 2 3 4 5
0

10

20

30

40

0 1 2 3 4 5

t (ms)t (ms)

W
av

e 
Ve

lo
ci

ty
 (m

/s
)

St
ep

 s
iz

e 
(µ

m
)

ba

Figure 56: Wave Characteristics. a) Experimentally obtained wave velocities
from the spreading a 25 µL drop contacting a hemisolid infused
with silicone oil ηo = 10 mPA-s plotted against time. b) Step
size of emmission of waves plotted against time to determine the
interval at which the waves are emitted.

diameter of each pillar, that is p+ d = 35µm, thus proving the drop
can indeed sense the texture underneath, which makes the contact
line create a footprint of the lattice. We discuss the mechanism for
this soon after, but before that we address another crucial feature of
the spatio-temporal diagram we see in Fig. 55b − the streaks that
emanate at every step.

What are these streaks? These streaks are waves generated at ev-
ery ‘step’ which corresponds to the contact line touching the texture.
These waves are not on the infused surface, which is textured, rather
these are capillary waves generated on the surface of the drop. The
first capillary wave that emanates at t = 0, upon first contact, is ob-
served even in the case of a drop touching a ‘bare’ solid surface. The The magnitude of the

wave velocities
remain the same
even when the
viscosity of the
infusion is five times
more, that is
ηo = 50 mPa-s.

subsequent capillary waves are a signature of spreading on a perfectly
infused solid. In Fig. 56, we plot the velocity of these waves, obtained
from the slope of the streaks in the spatiotemporal diagram against
time, which reveals that the magnitude of the wave velocity beyond
2 ms is a constant and equal to 1m/s. Between 1ms and 2ms it de-
creases from 1.8m/s to 1m/s and before 1ms there is not enough
experimental resolution to say convincingly whether the magnitude
of the velocity is any higher.

What we can say more boldly is that the waves generated on the
surface of the drop are also reflected in the r− t plot of the growing
contact line as quick ‘jumps’ occurring at distinct intervals, in be-
tween the intervals the contact line moving at a much slower velocity.
The magnitude of time intervals between successive ‘jumps’, which
are also the points of emission of the waves, keeps increasing in time,
although the interval in length (step size) remains constant (Figure
56b). The mechanism of generation of waves essentially bleeds into
our previous discussion on why a timelapse of the growing contact
revealed a footprint of the lattice underneath.
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Figure 57: Classical r-t plots. a) Temporal evolution of the size of the contact
for drops of increasing volumes contacting a liquid infused sur-
face, infused with with silicone oil ηo = 10 mPa-s. b) The same
plot for only 2µL. Dotted lines represent three different regimes:
constant speed: r ∼ t, diffusive inertial: r ∼ t1/2 and equilibrium:
r ∼ R.

Before we proceed to understand the mechanism of these ’jumps’,
we note in Fig. 57 that these ’jumps’ and step-like progression is a
generic feature that can be seen in the r− t plots of a growing contact
line, when a drop touches an infused surface. The steps are particu-
larly distinct for larger drops as for 25µL, however even for a drop
as small as 2µL, a careful look reveals the step like features within it,
which all correspond to a size of p+d = 35µm. So, it becomes natural
to ask what is the mechanism that governs this ’jumps’.

In order to understand the mechanism, we take a closer look of the
contact line when it undergoes one such ‘jump’. Fig. 58 shows such
a representative case for a 25 µL drop spreading on a 10 mPa-s LIS.
We look at the contact line, which is distinctively square-ish, at 3.4 ms
after contact, when it is at a distance of 790 µm from the centre and
about to perform the ‘jump’. The inset shows how in the subsequent
0.5 ms, the front first progresses a length p + d = 35µm and then
subsequently zips perpendicular to the progression.

Fig. 58 b shows a schematic of this zipping process, which can be
summarized as follows:

i) The contact line is initially at the end of an array of pillars.
ii) A bridge grows across the oil channel. This happens typically

at the mid-point on the contact line, that is the point on the contact
line which is at the least distance from the first point of contact of the
drop with the surface. The formation of this bridge is accompanied
with invading into the adjacent cell in the next array of pillars.

iii) Once one unit cell across the channel has been filled (of length
p), the liquid starts zipping along multiple unit cells along the chan-
nel, coming to a ’momentary rest’ at the end of an array of pillars.
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iv) Another bridge grows across the next oil channel, and the pro-
cess continues.

The extent to which the front zips along the channel before the next
bridge grows depends on the distance of channel from the centre of
the contact − the larger the distance, the longer the zip or the longer
time taken for the next bridge to form.

400 µm

a b

Figure 58: Zipping. a) A topdown snapshot, 3.4 ms after a 25 µL drop has
contacted a LIS with ηo = 10 mPa-s: inset zoomed in shows how
in the subsequent four frames, 0.125 ms each, where we see the
contact zips through in the direction shown by the black arrows
in inset. The red dotted line represents the line along which one
needs to take a reslice to obtain a spatio-temporal diagram of
zipping, along a specific channel. b) Schematic of the zipping
process.

This phenomenon is called ’zipping’ and has been observed before,
not in the context of spreading on liquid infused surfaces but Cassie
to Wenzel transitions liquid invades into the texture, replacing air
and does so array by array [116, 117]. It has also been observed in
hemiwicking processes where liquid invades a forest of micropillars.
A key difference in the zipping that we observe in our case is that the
water front that is zipping is not replacing the oil underneath, rather
zipping above the oil as hemiwicking through a forest of circular pil-
lar tops. We know that no oil was replaced, because that would create
a significant adhesion of the drop to the surface, but we measured a
near-zero roll off angle after the spreading process was complete.

We now look at the zipping characteristics for three different chan-
nels at a distance of x = 0µm, 212µm and 671µm from the centre.
All of them correspond to a 25 µL drop spreading on a 10 mPa-s
LIS. In Fig. 59 we their respective spatio-temporal diagrams and r− t
plots on a log-log scale. In all three plots, we see an initial regime
tentatively appears to be of constant velocity r = Vzt where Vz is
the initial zipping velocity, followed by a diffusive regime r2 = 2Dt,
followed by a final third regime of equilibrium. A fit through the ini-
tial regime reveals an initial velocity of Vz = 1.5 m/s, although for
x = 0 channel, it looks more of a deviation from a subsequent diffu-
sive regime than a constant velocity regime. However, for zipping in
the other channels, the velocity seems to be indeed constant in the
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early times, particularly for the channel that is farthest from the cen-
tre. Conversely, the diffusive regime for zipping in the central channel
exists for more than a decade before transitioning to equilibrium, and
is less and less clear and convincing for zipping in the other channels,
the most deviant being again the one which is farthest from the cen-
tre.
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Figure 59: Zipping Reslices. Top: Zipping reslices taken along different
inter-pillar channels (dotted red-line in Fig. 58) at distance x =

0µm, 212µm and 671µm from the center. Below: Corresponding
r− t plots where dashed line is an initial linear fit representing a
possible constant velocity regime and dotted line is a subsequent
fit to r2 = 2Dt, representing a possible diffusive regime.

We first note that the case of zipping through the channel at the
centre is a special one as it is also the case of spreading of the the
drop after contacting the infused surface. In this regard, the channels
farthest from the centre (the channel x = 671µm in Fig. 59) are the
more ideal for studying the process as it does not have any contri-
butions from the out of equilibrium contact of the drop, as it would
have for the channels closer to the centre. From the r− t plot of zip-
ping in the x = 671µm channel, we see that we do not have sufficient
evidence to claim that there exists a diffusive regime. However, the
evidence of a constant velocity regime is far more convincing, that is,
the existence of a constant initial zipping speed Vz. The zipping ve-
locity Vz also manifests itself in the r− t plot of the contact line of the
drop spreading on the infused surface as the ’jumps’ that appear at
different steps, and Vz remains a constant and equal to 1.5 m/s even
when the global speed V has almost come to zero, which would cor-
respond to the last channel the liquid zips through before the entire
drop equilibriates.
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This helps build a simple criterion for the circle to square transition
of the contact line when a drop spreads on an infused surface − when
the global speed is less than the zipping speed, the contact line is no
longer circular. It is tempting to postulate the zipping speed as a
balance of inertia ρV2

z and the Laplace pressure that builds between
two pillars γ/p, which gives us Vz ∼ (γ/ρp)1/2 ∼ 1 m/s for our pitch
p = 15µm. The global dynamics follows the law Vr ∼ D, which can be
used to find the radial length at which the circle to square transition
sets in at the length rsq which follows the condition

rsq > D(ρp/γ)1/2 (41)

We know that D itself is a function of the drop size, oil viscosity,
pillar height, surface tension of the oil, surface tension and density of
the drop, and if the infusion is too viscous, D is a function of the vis-
cosity of the drop. But for the limiting case of low ηo, D approaches
the diffusivity of spreading on a solid, that is (γR/ρ)1/2, which gives
us a much simpler limiting condition of

rsq > (Rp)1/2 (42)

For R ∼ 1mm, this gives us a rsq ∼ 100µm. Indeed we see typical
circle to square transitions for ηo = 5mPa-s and ηo = 10mPa-s hap-
pen when the contact has grown to 100µm size. However, both the
Equations 41 and 42 remain to be systematically tested.

We end this section by giving an example of when even an infused
surface does not show these ‘steps’. Fig. 60a and b show a comparison
between two timelapse images of a 25 µL drop contacting a ηo = 10

mPa-s LIS one which is perfectly infused (Fig. 60a) and one which is
overfilled with an excess of ∼ 5µm (Fig. 60b). We see that all the steps
and all the jumps have disappeared − the contours are perfect circles.
A mere 5µm overfilling on a LIS with 20µm high pillars is enough
to make the textures invisible to the drop. This means that the step-
like characteristic of the spatio-temporal diagram or the emission of
waves is a signature of a perfectly infused surface and not an over-
filled one.

Fig. 60c compares the temporal evolution of the growing contact
a 25 µL touching a ‘bare’ hydrophobic surface, a perfectly infused
surface with ηo = 10 mPa-s and an overfilled LIS with ηo = 10 mPa-s.
We see that overfilled textures can engender such a high degree of slip
that the drop spreads on it faster than it can on a ’bare’ hydrophobic
surface! The perfectly infused surface in this regard is the slowest and
also has all the step-like features previously discussed. Finally, on a
log-log plot, we see that the r− t plot of spreading on a hydrophobic
surface has an early deviation from the t1/2, which not linear rather a
signature of an earlier viscous regime, we discussed. For the cases of
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overfilled and perfectly infused textures deviations are stronger and
closer to a constant velocity, implying a more complex mechanism,
not necessarily a zipping speed.
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Figure 60: The Overfilled and The Perfectly Infused. a) Timelapse of a top-
down images of a 25 µL drop contacting a ηo = 10 mPa-s LIS
which is perfectly infused b) The same for textures overfilled with
an excess of ∼ 5µm. Note the contours in b) are perfectly circular,
denoting the drop does not feel the textures underneath at all.
b) r− t plot of a 25 µL contacting a ‘bare’ hydrophobic surface
(black circles), a perfectly infused surface with ηo = 10 mPa-s
(blue circles) and an overfilled LIS with ηo = 10 mPa-s (red cir-
cles). c) The same plot in a log-log plot. Dashed line represents a
fit to t1/2 and solid line is a fit to t1.







Part III

A D H E S I O N





5
C A P I L L A RY S P R I N G S

A drop of water between two fingers - an apparently simple little
system, rich in its many implications - forms a ’capillary spring’,
which attracts the two fingers with a typical force equivalent to its
own weight. However, when squeezed to the order of microns, this
force can be almost 100 times its own weight! Such is the exemplary
effect of the force of adhesion generated by capillary springs that
transforms flour to dough to make the very baguette we eat, that
functionalizes the insect’s feet and makes it climb up the wall - a mi-
crocosm of all of which is this drop of water between two fingers.
In this chapter, we study the characteristics of such a spring - not
between two fingers, rather between a liquid-infused surface and a
’bare’ hydrophobic surface. Thereafter, we measure the vertical ad-
hesion of infused solids and see that unlike its lateral adhesion, the
vertical adhesion is far from negligible.

1.

‘Capillary Springs’ by Benôıt Pype

1 The experiments of this chapter were performed at Max-Planck-Institut for Polymer
research Mainz, in collaboration with Doris Vollmer and Abhinav Naga, and initial
discussions with Armelle Keiser.
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5.1 force measurements
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Figure 61: Schematic of Set-up. A sketch of our experimental set-up. The
top surface is a silanized hydrophobic plate, whereas the bottom
plate is a liquid-infused surface. The drop in blue is water and
the meniscus in yellow is oil. The spring pulls the plate with a
reaction force F, which is seen in the tensiometer.

Liquid-infused surfaces are celebrated for their slipperiness and ex-
tremely low adhesion. Such low adhesion is in the context of lateral
motion, rather onset of motion - a hallmark of minimal pinning de-
fects. While the lateral adhesion is near-zero, the vertical adhesion of
these special surfaces is far from zero, in fact quite high - almost ten
times its own weight, for a 1µL drop - as we will see in this chapter.
We are interested here in characterizing this adhesion force - finding
out its maximum value and dependence on viscosity, if any.

In order to measure the adhesion we build the experimental set-up
as shown in Figure 61 where a droplet of volume ranging from 0.2µL
to 16µL is first placed on a liquid-infused surface, and then brought
into contact with a hydrophobic surface (silanized silicon wafer) at
the top, to form of capillary bridge. The top surface is attached to
a force tensiometer which gives us a measurement of the force with
which the plate is pulled by the drop, as we bring the bottom sur-
face down at a constant velocity U. Owing to the hydrophobic nature
of both the top and bottom plates, the drop always adopts a con-
vex shape. In the notation followed in this thesis, convex means the
drop curves outward (that is has a bulge), and convex means the drop
curves or caves inward.

We performed three different kinds of adhesion experiments we
perform, which we discuss now. The first experiment is with constant
pulling speed U = 10µm/s, but different droplet volumes Ω = 0.2µL,
0.4µL, 1µL, 2µL, 6µL, 10µL and 16µL. The top surface is hydropho-
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Figure 62: A Typical Force Measurement. A force versus inter-plate dis-
tance curve for a droplet of volume Ω = 2µL and pulling speed
U = 10µm/s. The top surface is hydrophobic and the bottom sur-
face is a LIS with ηo = 9mPa-s. The force curve shows five dis-
tinct stages before ’capture’ - where the drop detaches completely
from the bottom surface and adheres to the top. Snapshots of the
different stages are shown on the side as inset.

bic and the bottom surface is an infused surface with ηo = 9mPa-s.
The experiment begins when the drop is just below the top surface
and has not yet contacted the top surface, where-after the bottom
plate would be moved up to bring the drop in contact and then pulled
down until the point of detachment. Meanwhile, we make force mea-
surements at an interval of 0.2 s for the entire duration until droplet
has detached from either of the two surfaces, which gives us a typical
force versus time curve. Such a plot can be converted subsequently
into a F versus L plot, where L is the inter-plate distance.

In Figure 62, we see a typical force curve, corresponding to an
experiment with a droplet of volume Ω = 2µL and pulling speed
U = 100µm/s where the viscosity of infusion of the bottom infused
surface is ηo = 9mPa-s. The force curve shows 6 different regimes,
the corresponding droplet shapes for which are shown in the inset.

1. First Contact: The droplet first contact the top plate, and trans-
forms from a hemisphere to a quasi-cylindrical capillary bridge
of height L0 = 717µm. We see a sudden rise in the attractive
force with which the drop pulls the top plate, and the adhesion
force reaches a value of F0 = 74 µN, in a span of 0.4 s. Why the
force would be attractive is not immediately obvious, because
the drop clearly exhibits a convex shape. We discuss this soon
after. The force F0 is also called the snap-in force in the litera-
ture.
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2. Compression beyond L0: The drop is now compressed by 80µm
in a span of 20 ms, which in the force curve registers as a
linear decrease in the adhesion force, reaching a minimum of
F = 55µN.

3. Elongation to L0: The drop is now elongated back to its initial
value of separation, L0 = 717µm, corresponding to which we
see an increase in the adhesion force, revealing the spring-like
nature of the capillary bridge. Curiously the forces registered
during elongation are higher than their corresponding values
during compression, eventually manifesting a value of 100µN
at L0 = 700µm, which is 26µN higher than F0. This shows that
this ’liquid spring’ is not a reversible one.

4. Saturation: We now further elongate the bridge to 1246µm, that
is close to double that of its initial length at a constant speed of
U = 100µm/s. Here we note that during the entire process of
elongation beyond L0, the adhesion force remained nearly con-
stant, decreasing only marginally (less than one-fifth of its peak
value) at a meagre rate of 0.03µN/µm. We call this saturation
zone - the shape of the drop in this regime changes from a quasi-
cylinder to a quasi-’bottom-up truncated cone’ where R2 < R1.

5. Pinch-off: The drop when further elongated pinches off at the
bottom surface within a span of milliseconds, in other words
at the same spring length. The adhesion force plummets down
rapidly.

6. Capture: The drop now sticking to the top surface, we register
the dead weight of the drop.

Regimes II and III help in characterizing the capillary spring we
form bounded by an infused surface on one end with the possibility
of slip, and a regular hydrophobic surface on the other. Regime IV is
the ’true’ adhesion test, where we find the maximum adhesion force.

When we look at the force versus time curves for different volumes
plotted together, as in Fig. 63a, we see that all the curves are similar
only increasing in amplitude, with the increase in volume, which we
also observe when we plot the maximum adhesion force against the
volume in Fig. 63b. Except for Ω = 16µL for all the other volumes,
the drop completely detaches off the infused surface and is stuck to
the top, which registers as a dead weight, seen in the horizontal line
at the end of each curve at late times. For Ω = 16µL, the drop when
sufficiently elongated breaks close to the top due to its weight, thus
resulting in a final force which is near zero.

A second experiment is now performed by fixing the drop vol-
ume at Ω = 2µL, and changing the pulling speed - for five differ-
ent speeds U = 10µm/s, 50µm/s, 100µm/s, 500µm/s, 1000µm/s.
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Figure 63: Force Characteristics. a) Adhesion force measurements a LIS in-
fused with silicone oil of viscosity ηo = 9mPa-s plotted against
time, for volumes Ω = 0.2µL (green circles), Ω = 0.4µL (yel-
low circles), Ω = 1µL (orange circles), Ω = 2µL (red circles),
Ω = 6µL (blue circles),Ω = 10µL (purple circles), andΩ = 16µL
(black circles). b) The maximum adhesion force obtained from
the previous curves plotted against their respective volumes. c)
Maximum adhesion force measured with a Ω = 0.2µL plotted
against different pulling velocities. Black circles correspond to
ηo = 9710mPa-s and red circles correspond to ηo = 9mPa-s.
For ηo = 9mPa-s, at all velocities we observe depositions. How-
ever, for ηo = 9710mPa-s , for U = 50µm/s and U = 100µm/s,
both capture and deposition are observed; for larger values, only
depositions are observed.

Such a force curve looks similar to the typical one shown in Fig. 61.
The maximum adhesion forces, when plotted against pulling speeds
were also were found to be independent of velocity, and equal to
Fmax = 102µN, thus revealing that LIS with ηo = 9mPa-s have no
viscous effects on their vertical adhesion forces, even when drops
on such surfaces are detached at speeds as high as 1mm/s. So, we
tried the same experiment (at different speeds) with an surface in-
fused with a viscosity 1000 times higher - ηo = 9, 710mPa-s, to look
for viscous effects. In this series of experiments, with U = 10µm/s
and U = 50µm/s, the drop always detached off the infused sur-
face at the bottom, registering similar maximum forces as before
(Fmax = 101µN and Fmax = 99 µN respectively). However, in the
case of U = 100µm/s and U = 500µm/s, in some trials, drops de-
tach from the bottom and in some cases they detached off the top
regular hydrophobic surface. The measured adhesion forces are only
marginally higher (Fmax = 106µN, but more importantly not chang-
ing with whether drop detaches of the bottom or the top. Finally, for
U = 1000µm/s, drops always detached from the bottom surface, reg-
istering an adhesion force of Fmax = 116µN. So, while we can say
that viscous effects do start manifesting themselves at pulling speeds
of 1mm/s for ηo = 9, 710mPa-s, these effects are marginal and the in-
crease in the force is by less than 2%. Hence, vertical adhesion forces
can be said to be independent of the viscosity of infusion and pulling
speeds. We demonstrate this in Fig. 63c, where we plot the maximum
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adhesion forces for the two different viscosities against the pulling
speeds and show that the forces are constant
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Figure 64: Adhesion with Both Plates Infused. a) A typical force versus
inter-plate distance curve for a droplet of volume Ω = 2µL sand-
wiched between two infused surfaces with viscosity of the infu-
sion of the bottom surface ηo = 9mPa-s and the viscosity of the
infusion of the top surface ηo = 9710mPa-s. b) The maximum
adhesion force plotted against pulling speed for eight different
volumes Ω = 1µL, 4µL, 6µL, 8µL, 10µL, 12µL, 14µL and 16µL.
For every volume exceptΩ = 16µL, the maximum adhesion force
is independent of velocity. Furthermore, some of these velocities
lead to complete detachment from the bottom surface or detach-
ment from the top surface, without significant manifestation in
the adhesion force.

A final third experiment is performed by replacing the top regu-
lar hydrophobic surface with an infused surface with viscosity η1 =

9710 mPa-s, the bottom surface being a LIS infused with η2 = 9710mPa-
s, to see if the maximum adhesion force has much more of a ’viscous
effect’ if both surfaces are viscous. We skip the ’spring test’ (Regime
II and III), concentrating just on the maximum adhesion force. Figure
64 show that a typical force curve in this case too exhibits a saturation
zone (which is more constant than with a hydrophobic top), which is
saturated at Fmax. These adhesion forces for a given volume were
found to be independent of velocity, but an increasing function of
the volume, as shown in Fig. 64b. Typically, for a given volume, the
experiments at lower pulling speeds led to detachment from the bot-
tom and higher pulling speeds led to detachment from the bottom,
but no general co-relation was found between a distinctive change
in the adhesion force triggered by which surface the drop detached
from. Although viscosity does not manifest itself in the magnitude of
the vertical adhesion force, it does appear to decide which surface the
drop detaches from, thus recasting this set-up as a viscous tweezer,
actuated by velocity. The subsequent chapter is dedicated entirely to
our observations on this tweezer.
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Figure 65: Definition Sketch of a Capillary Bridge. An axisymmetric cap-
illary bridge between two parallel plates, where ϕ denotes the
running slope at an arbitrary section AB, denoted by the dotted
line. Along the line AB, the radial distance from the z−axis is r.
For the convex-most section, r = rm and ϕ = π/2. For the top
plate, r = r0 and ϕ = ϕ0. Note that ϕ0 = π− θ0.

What is the adhesion force exerted by a capillary bridge on the top
plate?

To answer this, let us consider a generic axisymmetric capillary
bridge of height L, made of a liquid with surface tension γ. As shown
in the definition sketch in Figure 65, we take the origin of our axis at
the center of the bridge. Any point on the interface is at a distance r
from the z− axis of symmetry, and has a running slope ϕ. For the The convex-most

section of the bridge,
where ψ = π/2 is
called the ’haunch’
in the literature
sometimes. When
the bridges are
concave, it is called a
’neck’.

top-plate, z = L/2, r = r0 and ϕ = ϕ0, and for the convex-most
section, r = rm and ψ = π/2.

We follow here the arguments of Kralchevsky and Nagayama and
build upon them [118].

First, we look at the force at the convex-most section of the drop,
that is we cut the drop by an imaginary plane z = 0 and ask what
would be the force exerted by the bottom half on the top half. Axial
symmetry implies that the net adhesion force is along the z− axis,
be it attractive or repulsive. It is important to realize that there are
two forces here. First, there is a force with which the contact line
pulls the the top part, which is Fc = γ2πrm. This is separate from a
second force which comes from the Laplace pressure ∆P within the
drop with which the drop pushes the top plate upwards with a force
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FL = ∆P πr2m. A summation of these two forces gives us the force
exerted by the bottom half of the drop on the top half as

Fm = γ2πrm − ∆P πr2m (43)

The above equation reveals that the contact line pulls the drop (first
term on the left hand side), the Laplace pressure pushes the plate
(the second term). Hence, one cannot a priori say whether force is
attractive or repulsive.

Despite that, we claim that the force we have obtained in Equation
43 is also the force on the top plate, in fact it is the same as the force
we would have obtained by cutting the drop along any arbitrary cross-
section AB. In order to prove this, we first write down the force at any
any arbitrary cross-section as

F(ψ) = γ2πr sinψ − ∆P πr2, (44)

which can be obtained by performing a force balance across AB
similar to what we did for z = 0.

Next, we write the Laplace pressure as

∆P = γ
d(r sinϕ)
rdr

, (45)

where tanϕ = dz/dr. The integration of Equation 45 from rm to
any arbitrary position r gives us

γ(r sinϕ− rm) =
1

2
∆P(r2 − r2m), (46)

The above equation when compared to Equation 44 and Equation
43 reveals a unique property of the capillary bridge: F(ψ) − Fm = 0,
where F(ψ) is the force across any arbitrary cross-section of the drop.

In other words, while forces at any cross-section of the drop can
be obtained by a force balance, the integration of the Laplace Equa-
tion promises that these forces will all be the same. Furthermore, the
Laplace pressure can be different from one point to the other on the
bridge because the radii of curvature can be, and in general are, dif-
ferent at different points on the bridge, but the integration of the
Laplace Equation guarantees that the force will be the same at all of
these points.

This beautiful property of a capillary bridge suddenly allows us
to write the equation of the force in a form where we can interpret
it physically in its different limits. This form can be obtained when
we substitute the Laplace pressure in Equation 43 as γ(1/rm+ 1/Rm),
where rm and Rm are the two principal radii of curvature at z = 0,
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and utilize the relation F(ψ) − Fm = 0 to write the adhesion force on
the top plate as

F = πγ rm(1− rm/Rm). (47)

We can also nondimensionalize Equation 47 by dividing both sides
by πγ|Rm|, which gives us

F

πγ|Rm|
=
rm

|Rm|

(
1−

rm

Rm

)
. (48)

The above equation to construct a phase map in Fig. 66 where the
ordinate represents the force exerted by capillary bridge and the ab-
scissa represents the morphology of the different bridges. There exist
interesting limits to Eq. 47 (interchangeable with Equation 48) which
we discuss now in conjunction with the phase map.

• Onset of a repulsive force: The onset is marked in Figure 66 as
’sphere’; it is the point where the solid black curve intersects the
x−axis and plunges down.

We note that the force predicted by Equation 47 has two an-
tagonistic terms - the first term is necessarily attractive, which
comes from the contact line and the second, a contribution of
the Laplace pressure which may or may not be attractive de-
pending on the shape, and ratio of its two principal radii of cur-
vature. We note that although concavity, that is Rm < 0, implies
that the force is necessarily attractive, convexity is not enough
for the net adhesion force to be repulsive. The critical condition
for the net force to be repulsive, F < 0 is when RM < rm.

Hence, for a family of convex shapes between a cylinder and
a sphere, the adhesion force exerted by the capillary bridge is
attractive. Mathematically, this can be written as +∞ > Rm >

rm, where the two limits on the left and the right are a cylinder
and a sphere respectively. These two points are represented in
Figure 66 and the intermediary region is shaded in blue. This
phase space corresponds to ridges that are convex but exhibit a
positive force.

• Sphere and Cylinder: The limit of a sphere (RM = rm), rather
truncated sphere, is where the Laplace pressure force is equal
in magnitude to the contact line force 2πγrm, thus balancing
each other to give a zero force. On the other hand, the limit of
a cylinder Rm → ∞ is where the Laplace pressure force ∆Pπr2m
is half the magnitude of the contact line force but repulsive in
nature. As a consequence, we get an adhesion force which is of
the same magnitude as the Laplace pressure force but attractive
in nature.
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• Zero Laplace Pressure: We may also consider a case where
Rm = −rm, which corresponds to zero Laplace pressure. This is
the case where one can happily integrate Equation 45 a second
time, to obtain an analytical solution to the shape of the capil-
lary bridge - which in this case is a catenoid. For this special
shape, the force we find from Equation 47 is 2πγrm, just that of
the contact line. The point of catenoid is represented in Figure
66 as a black circle on the red solid curve marked ’catenoid’.

• Negative Laplace Pressure: This brings us to the final regime of
negative Laplace pressure which corresponds to the most com-
mon case of a drop squeezed between two fingers. We see this
regime when Rm is negative with a magnitude larger than rm.
This regime in the phase space corresponds to the region to the
left of the point marked ’catenoid’.

Cylinder

Catenoid

C O N C A V E

C O N V E X

1
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2

1−1−2 2
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𝑟𝑚/𝑅𝑚
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Figure 66: Phase Diagram of Capillary Bridges. F/πγ|Rm| plotted against
rm/Rm creates a phase map of all capillary bridges where the
y-axis represents the force exerted by the capillary bridge - its
magnitude and sign, whereas the abcissa represents the shape
morphologies of the bridges. Solid lines follow Equation 48. The
gray shaded region corresponds to convex bridges, and the white
region corresponds to concave bridges. The blue-striped region
corresponds to convex bridges that exhibit a positive force.

It is necessary that we answer where exactly does the material or
the substrate contribute to the adhesion, if it is all dictated by shapes
and surface tension. The answer to this is hidden in the question itself
- the shape of the capillary bridge. The substrate fixes the boundary
condition which allows only a certain range of morphologies; and
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while the volume of the capillary bridge does change the adhesion
force, for a fixed volume the shape, hence the force, is fixed by the
surface. For example, a hydrophilic surface will only allow concave
bridges, its contact angle fixing the maximum force that the liquid
bridge can exert for a fixed volume. Conversely, a superhydrophobic
surface, in a Cassie state typically exhibits repulsive forces, that is in
the phase map of Fig. 66 lies to the right of the black circle marked
sphere, where F < 0. However, even superhydrophobic surfaces may
also exhibit attractive forces where they are within the blue-striped
region in the vicinity of rm/RM = 1. Such values are typically of
the order of 1µN as shown by Ras and coworkers on butterfly wings
[119]. On liquid-infused solids, we see that this force is 100 times
more, showing LIS have very high vertical adhesion, in comparison
to classical non-wetting solids.

Our experimental results lie in the blue-striped region in the phase
map that represent bridges that are convex but exhibit a positive force
- in fact we right after contact the value of rm/Rm in our experiments
is close to 0.5, where the adhesion force for convex drops is maximal.
We now discuss and model our different regimes.

5.3 back to regimes

Now that we have established that convex bridges can exert attrac-
tive forces, the positive snap-in force we see upon contact is not a
surprise. We can be more quantitative here and use equation Equa-
tion 47 to evaluate the snap-in force F0. Every single term on the left
hand side of the above equation can be evaluated by measuring the
principal radii of curvature and contact angle from the experimental
image and the corresponding adhesion force can be checked. We do
so in Figure 67, where we plot direct measurements of the adhesion
force against the values we obtain using Equation 47. The data points
fall on the solid line following x = y, showing the predicted and
measured values are in agreement. It must be mentioned here that
there exists a cloaking layer of oil on the water drop. This necessitates
that the surface tension value to be to be used here in Equation47 is
γ = γo + γow, where γo is the surface tension of oil with respect to
air and γow is the surface tension value of oil with respect to water.

In the plot shown in Figure 67, the first data point is the red closed
circle which corresponds to the snap-in force F0 = 74µN right after
contact at the equilibrium length of the bridge L0. This is followed by
a compression (Regime II) shown by a red arrow where the minimum
force reached at the end of the compression regime is F = 55µN, de-
noted by a white circle with red border. The bridge is subsequently
extended to L0 (Regime III) which gives a higher force than before
F = 100µN, denoted by a white circle with black border. Further elon-
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gation leads to an increase and subsequent decrease in the force until
detachment (Regimes IV-VI).
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Figure 67: Forces Predicted and Measured Experimentally measured adhe-
sion force plotted against predicted values of the force from Equa-
tion 47, when the corresponding rm and Rm as obtained from
experimental images are plugged in. Solid line follows x = y.
The first data point is the red closed circle corresponding to the
snap-in force F0 = 74µN at equilibrium length L0. Red arrow
indicates subsequent compression which leads to the minimum
force F = 55µN (white circle, red border) at the end of the com-
pression regime. Black arrow indicates elongation back to L0, and
dashed gray arrow arrow denotes elongation beyond L0 until de-
tachment. White circle, black border shows that the force is higher
when the bridge is extended back to L0. Error bar corresponds to
measurement error in obtaining the radii of curvature from ex-
periments.

The most important inference we can draw from this plot is that
Equation 47 can capture the forces in the capillary bridge, irrespective
of the nature or magnitude of its extension or compression. We will
now move onto specific regimes where we will make a model for the
spring constant in Regime II and the maximum adhesion force, as
seen in Regime IV.

5.3.1 Regime II and III - Spring Constants

We begin by reminding the reader that Regimes II and III correspond
to compression beyond the equilibrium length of the bridge L0, and
elongation back to L0. In this sense, these two regimes are more a test
of the ’spring’-like nature of the capillary bridge rather than its adhe-
sion, which would be Regime IV, discussed subsequently. The behav-
ior of the spring would, however, depend on the boundary conditions
of the capillary bridge, in this case fixed on one side by an infused sur-
face (hydrophobic) with minimal pinning and a hydrophobic surface
with the possibility of pinning. Indeed our experimental observations



5.3 back to regimes 119

show that the the differences in the possibilities of pinning become
absolutely key in explaining and understanding our results.

a)   Regime II: Compression b)   Regime III: Elongation
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Figure 68: Compression and Elongation. a) and b) Snapshots correspond-
ing to the experiment corresponding to force curve in Figure
62, where a capillary bridge of volume Ω = 2µL between a
hydrophobic top plate and a bottom infused surface with vis-
cosity ηo = 9mPa-s, is separated at a constant pulling speed
U = 10µm/s, by bringing down the bottom surface. a) and b)
correspond to Compression (Regime II) and Elongation (Regime
III) regimes. The length of the liquid bridge at the start and end
are the same and equal to L0 = 717µm, as formed when the drop
is first brought into contact with the top to form the bridge. c) The
corresponding force diagram reveals that during the compression
regime the force decreases from F0 = 74µN to F = 53µN almost
linearly, but during elongation the force increases to F = 103µN,
showing the spring is not reversible. d) The temporal evolution
of the top contact line during the two regimes. e) The temporal
evolution of the contact angle at the top plate during the two
regimes. d) and e) reveal that compression is a constant contact
angle regime, whereas elongation is a pinned contact line regime
in the context of the top plate.

We begin our experiment with a capillary bridge of volume Ω =

2µL placed on a liquid-infused surface with ηo = 9mPa-s in contact
with a silanized hydrophobic surface from he top, which transformed
the hemispherical drop into a quasi-cylindrical bridge of length L0 =

717µm. Our region of interest is when the capillary bridge was first
compressed beyond L0 at a constant rate of 10µ/s for 20 s. We ob-
served that first, the force of the capillary spring, decreased due to com-
pression, and secondly this decrease was linear. When the drop was
now elongated at the same speed for the same duration, the forces
registered were higher than what they were during the compression
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stage for every length of the bridge, reaching a value of F = 100µN at
L0 = 700µm, which was 26µN higher than F0.Strictly speaking, it

does not preserve
top-down symmetry
because the contact

angle at the top is
θ1 ≈ 108◦, whereas
θ2 is closer to 102◦.

The reasons for the differences in the capillary spring-force become
clearer when we look at the experimental images corresponding to
the compression and elongation regimes, as shown in Figure 71. Al-
though the length of the bridge, the compression/elongation speed
and duration of compression/elongation are the same, its effect on
the morphology of the drop is not. As the drop gets compressed, we
see in Figure 71 it not only preserves its radial symmetry but also
a top-down symmetry. In other words, the contact angle at the top
remains the same as the drop gets squished and so does it at the
bottom.

However, when the drop is elongated, the drop breaks this ’top-
down symmetry’. This is because the while the contact line at the
bottom recedes owing to infused nature of the bottom surface, the
contact line at the top is pinned, as shown in Figure 71d, where we
plot the radius of the top contact line R1 with respect to time. When
we plot the contact angle at the top θ1 with respect to time, we note
that it is constant during the compression stage (Regime II), which is
in accordance with a linear increase in R1 as seen in Figure 71d, but
θ1 decreases linearly in the elongation phase in accordance with our
observation of a constant R1.

This shows us that the break in top-down symmetry is introduced
precisely by the regular silanized hydrophobic surface which has pin-
ning defects. On the bottom surface, the contact line can advance and
recede at the same angle because of its negligible hysteresis. However,
it cannot do so on the top plate - during the compression stage, the
top contact line advances with an advancing contact angle of ≈ 108◦,
but when it has to recede the angle must first come down and reach
its receding value for this surface, which in this case is ≈ 89◦ for our
surface. In the process, the entire elongation phase becomes a pinned
contact line regime, whereas the compression phase is a constant con-
tact angle regime, with regards to the top surface.

But how do we explain the decrease in the spring-force with the
length of the spring? Let us look at the Equation 47 again:

F = πγ rm(1− rm/Rm).

It is true that rm increases, when L decreases. However, that is
not enough to comment on why dF/dL should be positive, because
it would also depend on how Rm changes with L. This is where we
see that while Equation 47 by itself is sufficient to comment on the
positive and repulsive nature of the force based on the shape, to know
how the force changes with length, we need to know the constraints.
As already noted, the droplet in the compression regime preserves
its radial as well top-down symmetry. We can be more specific here.
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L/2

θ1 − π/2

Figure 69: The Liquid Spring. Definition sketch of a liquid bridge during
compression. The red circle has a radius of curvature Rm. We note
that a right-angled triangle forms at the center of the red circle
with the L/2 and Rm as two of its sides, and an angle θ1 − π/2

between the horizontal and the Rm.

We can use this top-down symmetry to realize that a right-angled
triangle can be constructed with the center of the circle with radius
of curvature Rm where L/2 and Rm are two of its sides, as shown
in Figure 69. The angle at the center is θ1 − π/2 which we have seen
experimentally to be a constant and a necessity for the preservation
of top-down symmetry. We may now relate Rm, L and θ1 as

L/2 ∼ Rm(θ1 − π/2) (49)

Next, we can use volume conservation to write

πr2mL ∼ Ω, (50)

to the first order. Using Eq. 50 and Eq. 49, we can now substitute
for rm and Rm in Equation 47, to write an equation of F in terms of L
as

F ∼ πγ

√
Ω

πL

(
1− 2

(
θ1 − π/2

)√Ω
L3/2

)
(51)

The first thing we note about the above equation is that it is highly
nonlinear, with the possibility of the force being negative or repulsive
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if L < 22/3(θ1 −π/2)2/3Ω1/3, which is identical to the criterion rm <

Rm, as follows from Equation 47, and a condition we satisfy in our
experiment where rm/Rm = 0.52 in the beginning of compression.
However this form of the criterion highlights more the contribution
of wettability. In other words, θ1 ≈ θ2 from top-down symmetry, so
we can write this criterion as

L < 22/3(θ2 − π/2)
2/3Ω1/3 (52)

The above form of the criterion for the onset of a repulsive force
reveals that the larger the contact angle θ1, the larger the maximum
length of the spring corresponding to a repulsive force. Said differ-
ently, for large θ1 as in the case of superhydrophobic surfaces, the
length of the bridge would have to be increased to get an attractive
force, if one can be achieved at all. Conversely, for hydrophobic sur-
faces where θ2 is close to π/2, the drop would have to be squeezed
substantially to reach a regime where the force can be attractive. We
can now differentiate F with respect to L, which gives us

dF

dL
∼ −πγ

√
Ω

2
√
πL3/2

(
1− 8

(
θ1 − π/2

)√Ω
L3/2

)
(53)

It follows from the above equation that dF/dL > 0when L < 24/3(θ1−
π/2)2/3Ω1/3. This means our drop of Ω = 2µL and δ = 74µm, we
would need to squeeze the drop L < 1mm to be in a regime where
the adhesion force is an increasing function of its length. Using Equa-
tion 49 and Equation 50 we can rewrite this criterion as rm/Rm > 1/4.
This condition in conjunction with Equation47 gives the criterion for
convex capillary springs to exhibit a positive force,that is also an in-
creasing function of the length of the spring.

1 > rm/Rm > 1/4, (54)

Note that the right hand side condition of the equation only holds
if the elongation or compression of a spring preserves top-down sym-
metry along with radial. We would also like to comment here on the
numerical value 1/4, which is not an empirical finding. It is a con-
sequence of the specific scaling of the force F ∼ 1/

√
L− 1/L2, where

we can understand the 1/
√
L term physically as a consequence of

the volume constraint and the 1/L2 term as a consequence of no pin-
ning when the contact lines at the top and bottom are moving at the
same angle. It follows that dF/dL ∼ 1/2L3/2(1− 4/L3/2), which gives
us L∗ ∼ (1/4)2/5 as the critical L∗ where it turns negative. Dividing
Equation 49 by Equation 50 for this critical length already gives us
the relation r∗m/R∗m ∼ (L∗)2/5 = 1/4.
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Figure 70: Spring constant and Hysteresis. ∆F = F − F0 plotted against
∆L = L − L0 for three different experiments with Ω = 2µL
at different pulling speeds U = 10µm/s (black curve), and
U = 50µm/s (yellow curve) U = 100µm/s (red curve). The
linearity of the spring corresponds to a spring constant of 0.11

µN/µm. The grey data points correspond to an elongation curve
for U = 10µm/s. The curves together provide a measure of
spring hysteresis.

Our experiments clearly lie within the 1 > rm/Rm > 1/4, which
is why we see a decrease in the force as the length of the bridge
decreases. Furthermore, given that our textures are of the order of
20µm, our infused surface would not even be geometrically flat at
that scale, so other effects would possibly take over. Nevertheless,
the limit is not an unfeasible one - it is possible to imagine surfaces
with sub-micron textures and slightly larger volumes of drops ∼ 10µL
which would allow for a convex capillary spring where the force
would be a decreasing function of its length.

We now finally move our attention to the fact that the spring con-
stant, k, which is dF

dL in the vicinity of L0. This is given as

k (L0) ∼ −πγ

√
Ω

2πL
3/2
0

(
1− 2

(
θ1 − π/2

)4√Ω
L
3/2
0

)
(55)

Note that our spring is only compressed to about 0.2 of its size
and despite its nonlinear nature, the deformation and spring-force is
well captured by Equation 55 in Figure 70 where we plot ∆F = F− F0
against ∆L = L−L0 for three different experiments that have the same
droplet volume of Ω = 2µL but different pulling speeds U = 10µm/s
(black curve), and U = 50µm/s (yellow curve) U = 100µm/s (red
curve). Our experimentally obtained spring constant is k = 0.11µN/µm
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and the prediction by Equation 55 is k = 0.23µN/µm. This means
Equation 55 has a pre-factor of 0.5 in front of it. Equation 55 not only
captured the physics of the problem and correct scaling, could also
predict the functional relationship between F and L. Finally, the gray
data points in Figure 70 correspond to the elongation regime where
the forces are always higher than their corresponding compression
values, thus giving us a hysteresis curve.

5.3.2 Regime IV - Maximum Adhesion Force

Classical Adhesion tests are done with a more or less pinned con-
tact line at the top and the test surface at the bottom. In this regard,
Regime IV is the true Adhesion test, whereas Regime II and III were
more of a measure of the capillary spring one may form with infused
solid on one side.

a)   Regime IV: Saturation b)   Regime V: Pinch-off
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Figure 71: Regimes IV, V and VI. Snapshots corresponding to Regimes IV,
V and VI of the experiment where the drop is extended beyond its
equilibrium length L0 = 717µm. The droplet volume is Ω = 2µL
and pulling speed U = 10µm/s. The top surface is hydrophobic
and the bottom surface is a LIS with ηo = 9mPa-s. Regime VI is
the saturation zone where the force does not substantially change
upon elongation. Regime VII is where the force quickly falls off
as the bottom contact line quickly recedes to pinch-off. Regime VI
corresponds to complete detachment where the drop is sitting at
the top. d) Temporal evolution of the top contact line R1 (yellow),
bottom contact line R2 (black) and the azimuthal radius of curva-
ture at the point where ψ = π/2, rm (gray data points). e) L/Rc
plotted against time shows that we have L/Rc ∼ 1 in Regimes IV
and V.
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In this regime, we elongate the capillary bridge beyond L0 upto a
length L = 1246µm at the same constant speed of U = 10µm/s. The
force remains constant at Fmax = 116µN, decreasing only marginally
at a small rate of 0.03µN/µm, which separates it from the previous
regime where the force was increasing with length. However, there
are two more crucial differences from the previous regime of elonga-
tion. First, as seen in the experimental images of Fig. 71a, the convex-
most part of the drop is at the very top. In other words, rm = R1,
which we see quantitatively in 71d. Second, Rm in this regime scales
as the length of the bridge, as revealed by 71d where we plot L/Rm
against time. This enables us to substitute rm and Rm in Equation 47

and rewrite it as

F ∼ πγR1(1− R1/L) (56)

This is where we recall Plateau’s criterion for droplet break up.
For a cylindrical liquid bridge with contact lines of radii R1 and R2,
we can define an aspect ratio λ = L/2R, where R = (R1 + R2)/2 is
the mean radius. Plateau’s criterion states that a liquid cylinder be-
comes unstable when λc = π, when R1 = R2. Subsequently, Meseguer
showed that for bridges with unequal R1 and R2, λc lies between π
and π/2, the latter criterion being for the limiting case of a cone. We
discuss this criterion in greater detail in the subsequent chapter, but
can already use it to say that the capillary bridge in our experiment
becomes unstable at the end of the Regime IV, where it is still within
the saturation zone. We can use this to argue that Fmax is reached in
the limit where

R1/L ∼ 1/λc. (57)

Furthermore, we can write in this limit the volume of the bridge as
Ω ∼ πLR21 which in conjunction with the previous argument, gives us
an equation of R1 in terms of λc as

rm ∼ (Ω/πλ2c)
1/3 (58)

Equation 57, Equation 58 and Equation 56 can be combined to write
the equation for the maximum adhesion force as

Fmax ∼ πγ(Ω/πλ2c)
1/3(1− 1/λc) (59)

Dividing the above equation by the weight of the drop gives us
Fw ∼ ρgΩ gives us

F∗max = A (Ω∗)−2/3 , (60)
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where F∗max = Fmax/Fw and Ω∗ = Ω/κ−3 and A is given by

A ∼ (π2/λ2c)
1/3(1− 1/λc), (61)

and λc has a value close to π/2.

0.1

1

10

100

0.001 0.01 0.1 1 10

Ω∗

𝐹 𝑚
𝑎
𝑥

∗

− 2/3

Figure 72: Maximum Adhesion Force. Maximum adhesion force normal-
ized by the weight of the drop Fmax/Fw plotted against the
volume of the drop, red data points indicate experiments with
a hydrophobic surface on the top and LIS with ηo = 9 mPa-s,
whereas black data points correspond to experiments with LIS
on both sides with top viscosity being η1 = 9710mPa-s, while
the bottom is η2 = 9 mPa-s. The red data points collapse on the
red dotted line which follows the Equation 60, corresponding to
A = 1.9. The black data points are bounded by the red dotted line
and the black dotted line which follows Equation 60, correspond-
ing to A = 0.82. Note that the for drops of volumes 1µL or less,
the maximum adhesion force is more than 10 times its weight.

We test equation 60 in Figure 72 where we plot our experimen-
tally measured F∗ values against Ω∗ for experiments with drop vol-
umes varying from 0.2µL to 16µL, all pulled at the same speed
U = 10µm/s and the bottom surface infused with ηo = 9mPa-s.
We find that indeed that the maximum adhesion force varies as Ω∗

raised to the power −2/3, as captured by the red dotted line which
follows Equation 60 with a value of A = 1.9. which corresponds to a
prefactor of 1.6 in Equation 61.

Fig. 72 also shows that the maximum adhesion force is not only
always greater than the weight of the drop for drops upto 16µL, it
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can be the order of ten times or higher for drops when the volume is
less than or equal to 1µL. Such high increase in adhesion force with
volume is courtesy the −2/3 dependence with volume, which owes
its origin to the contact line at the top being pinned and at the bottom
being free - a consequence of the infused nature of the surface.

We also show here that if the ’pinned’ nature of the contact line
at the top is removed, by replacing the hydrophobic surface with an
infused surface with η1 = 9710mPa-s, the maximum adhesion forces
are lower than that measured with hydrophobic surfaces by about
25% for small volumes in the vicinity of Ω = 1µL, and approach the
ones obtained with ’pinned’ contact lines at the top at larger volumes.
The exception again is at 16µL where gravitational effects might in-
duce large variations in the drop shape and adhesion measurements.

5.4 conclusion

Unlike other non-wetting materials as superhydrophobic surfaces that
typically exhibit a repulsive force in Cassie state, liquid-infused solids
are materials with high vertical adhesion - the adhesion force is at-
tractive and its magnitude is eight times the weight of the drop, for a
1µL drop. Textured materials infused with silicone oil, courtesy their
hydrophobic nature with a contact angle in the vicinity of π/2, en-
able the construction a convex bridge that is more cylindrical than
spherical, thus generating an attractive adhesion force. This makes
liquid infused solids a truly unique class of solids, which have neg-
ligible lateral adhesion, tunable dynamical friction and high vertical
adhesion. Thus, liquid infused solids contrast spectacularly with their
non-wetting cousin - a superhydrophobic surface, which has compar-
atively higher lateral adhesion, negligible vertical adhesion in Cassie
state and a very low friction which cannot be tuned as much.





6
V I S C O U S T W E E Z E R

In this chapter, we discuss the physics of a curious little viscous
tweezer1: an elementary system consisting of a millimetric water droplet
placed between two surfaces, infused with oils of different viscosities.
We find that if the upper plate viscosity is greater, then by pulling the
upper plate at sufficiently high velocities it is possible to detach the
droplet completely off the bottom plate; the captured droplet can be
subsequently deposited on the lower plate by bringing it in contact
and pulling the plates apart slowly. This chapter is primarily experi-
mental, where we elaborate on the complexities of the problem with
experimental evidence and lay out a pathway for possible solutions
in future work.

1 This phenomenon was first observed by Armelle Keiser, who did the initial experi-
ments. The project was done in collaboration with her.

129
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6.1 plateau cylinders

A drop of water held between two fingers, when pulled slowly apart,
breaks. But, exactly at what length does it break?

In 1845, Belgian physicist Joseph Plateau asked this question. More
precisely, he asked why is a cylindrical liquid interface unstable. He
realized that it is necessary to remove gravity from the problem, to
probe the question experimentally and he devised an absolutely inge-
nious method to do so. In a tank of water-alcohol mixture where the
alcohol creates a density stratification, he deposited an oil droplet,
which came to an equilibrium at a position where the density was
matched. As a consequence, the drop was now effectively in a zero-The cylinder actually

breaks into at least
three parts, where
the third part is a

tiny satellite droplet
in the middle.

gravity condition, or in other words, having an infinite capillary length.
He now held the drop at its two side by hoops of the same diameter
to form a liquid cylinder and slowly pulled them apart until the cylin-
der broke into two. Plateau discovered a curious result: the ratio of the
length of the liquid cylinder to its diameter, at the point of break-up was
always π.

a b

R(x)R0
dS

x

R

L

Figure 73: Plateau Cylinder. a) Plateau’s original drawings of his set-up
with two hoops. Inset shows his sketch of a deformed liquid cylin-
der, before break-up. b) Definition sketch of a generic deformed
liquid cylinder of length L, mean radius R0.

We can understand the Plateau criterion by considering a generic
liquid cylinder of length L and initial radius R0, whose deformed
interface may be written to the first order in the perturbation ϵ as
R(x) = R∗ + ϵ cosqx, where R∗ is the mean radius and q = 2π/L is
the wave number, and the deformation is maximum at the beginning
and the end. The relationship between the mean radius and the initial
radius can be established by equating the volume of the perturbed
cylinder with that of the unperturbed state: Ω = πR20L =

∫
πR2(x)ds,
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where ds = dx(1 + 1/2(dR/dx)2) is a differential length along the
interface. This gives the mean radius as

R∗ = R0 − ϵ
2/4R0 (62)

The initial surface energy of the cylinder is given by E0 = γ2πR0L,
whereas the surface energy of the perturbed cylinder can be written
as E =

∫
γ2πR(x)ds, which upon integration across one wavelength

gives us γ2πR∗L(1+ ϵ2q2/4). Substituting for the mean radius using
Equation 62, we can now write the difference in surface energy be-
tween the perturbed and unperturbed state, to the first order as

∆E = E0
ϵ2q2

4

(
1−

1

q2R20

)
(63)

The liquid cylinder would become unstable and break up when
the deformed state is energetically more favorable than the initial,
that is when ∆E < 0, which from Equation 63 we see, is satisfied
when q = 2π/L < 1/R0. If we now define the ratio of the length of
the liquid cylinder to its diameter as λ = L/2R0, the critical value of
this ratio λc where the instability sets in can be written as

λc = π, (64)

which was the original observation of Joseph Plateau.
We now revisit the original problem of Plateau by removing its clas-

sical constraint: the pinned contact line. We replace the two bound-
aries of the liquid cylinder by two liquid-infused surfaces which makes
the contact lines free to move.
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6.2 the experiment

η1

η2

U

R1

R2
L

Figure 74: Schematic of Tweezer. A sketch of our experimental set-up,
where a drop of water (in blue) is placed between two liquid-
infused surfaces, the viscosity of the infused oil at the top η1
being greater than that infused at the bottom. The plates are sep-
arated typically by moving the bottom plate at a constant speed
U until the drop detaches from the bottom or the top. Inset shows
that the existence of an oil meniscus and texture in which the oil
is infused..

The aim of the experiment is to capture a water drop by utilizing
the viscosity of an infused solid. Thus, for a water drop sandwiched
between two liquid infused solids, the upper viscosity η2 should be
much greater than that at the bottom η1. The bottom plate is then
moved down at a constant speed U until the drop detaches from
the top or the bottom. If the drop detaches from the bottom - it is a
’capture’, and if it detaches from the top, it is a ’deposition’.

Fig. 74 shows a definition sketch of our experimental set-up. For
a typical experiment, we start at a shape where the two contact line
radii R1 and R2 are close in magnitude (R1 is typically slightly smaller
than R2) and L is typically 1.5 times the size of the drop. As we in-
crease the separation length L, we observe that both the contact lines
at the top and the bottom recede, owing to the slippery nature of the
two surfaces. If the pulling speed is sufficiently high U > Ucr, then
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the drop completely detaches off from the bottom and is captured at
the top surface. However, for the case ofU < Ucr, we see that the drop
pinches off close to the top surface and deposits at the bottom, leav-
ing a tiny satellite drop at the top. In Fig. 75, we see a representative
case of a 4µL drop between two infused surfaces of η1 = 9, 710 mPa-s
and η2 = 9 mPa-s and initial radii R1 = 850µm and R2 = 693µm
and initial distance of separation L = 1.2mm. A timelapse is shown
for the cases of two different pulling speeds of U = 200µm/s and
U = 400µm/s, where the former velocity corresponds to deposition
on the bottom plate and latter corresponds to a capture of the drop
on the top plate. This highlights the very unique property of this sys-
tem that it can be actuated by velocity to switch between capturing
and depositing drops, thus behaving as a ’viscous tweezer’.

0 𝑠 1.3 𝑠 2.1 𝑠 3.1 𝑠 3.9 𝑠 5.0 𝑠 5.6 𝑠 5.9 𝑠 6.0 𝑠

0 𝑠 0.5 𝑠 0.9 𝑠 1.4 𝑠 1.8 𝑠 2.4 𝑠 2.7 𝑠 2.7 𝑠 2.9 𝑠

Regime I Regime II Regime III Regime IV

Regime I Regime II Regime III Regime IV

𝑈 = 200 μm/s

1 mm

𝑈 = 400 μm/s

a)

b)

Figure 75: Capture and Deposition Snapshots of a 4µL drop sandwiched be-
tween two infused surfaces of η1 = 9710 mPa-s and η2 = 9mPa-s,
one pulled at a speed of U = 200µm/s which leads to a deposi-
tion and the other corresponding to U = 400µm/s which leads to
a capture.

The evolution of the contact line radii R1 and R2 with time reveal
four regimes for U < Ucr, as seen in in Fig. 76 :

i) Initial ’re-organization’: where the asymmetry in R1 and R2 is
removed and they become of a similar magnitude.

ii) Constant Velocity Regime: where the two contact lines move at
the same speed which in this case is V1 = V2 = 52µ/s, shown in gray
shaded region in Fig. 76. This constant velocity regime persists for a
few seconds up until the cylinder reaches a length of 2.2 mm.
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iii) Pinch-off: in this regime, the velocities quickly become differ-
ent from each other, V1 increasing sharply being in the vicinity of
the formation of a neck that decreases the value of R1, whereas V2

transiently going to zero, as it is far from the neck.
iv) Deposition: Following the pinch-off, V2 increases quickly and

R2 goes to a value close to its initial. The drop has now been deposited
at the bottom and a small satellite drop of 300µm radius hangs from
the top.
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Figure 76: Capture and Deposition Temporal evolution of the contact line
radii R1 (red circles) and R2 (black circles) corresponding to ex-
perimental images of Fig. 75: a 4µL drop between two liquid
infused surfaces of η1 = 9710 mPa-s and η2 = 9mPa-s, one
pulled at a speed of U = 200µm/s (deposition) and the other at
U = 400µm/s (capture). The shaded region represents a constant
velocity regime - a hallmark of deposition cases.

For the case of U > Ucr, we again see the four regimes, with one
critical distinction: the missing constant velocity regime. The four
regimes are:

i) Initial ’re-organization’: where the asymmetry in R1 and R2 is
removed and they become of a similar magnitude.

ii) V1 < V2 Regime: where the top contact line moves substan-
tially slower in comparison to the bottom one, we see V1 = 79µm/s
is almost half the receding velocity of the bottom contact line, V2 =

162µm. Unlike the previous case, we see that R1 and R2 become in-
creasing dissimilar until the length of the drop reaches 2.2mm.

iii) Pinch-off: The bottom contact line quickly speeds up, whereas
the top contact line halts transiently. This regime is faster than the
pinch-off regime in the previous case, of the order of 10 ms in com-
parison to the 100ms for U < Ucr. This is because pinch-off position
is practically at the bottom surface which directly affects R2, whereas
the neck, in the previous case, formed at a distance of 300µm from
the top surface, thus R1 was less affected by the necking process com-
paratively.
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iv) Capture: Following the pinch-off there remains, at times, a tiny
satellite drop of the order of 10µm at the bottom too. But, ’practically’
the drop has been detached completely off the surface. In this regard,
captures are clean, but depositions are not.

However, the important distinction between the two cases is the
Regime ii: the middle regime, before pinch-off, which ends at the
same length of the drop, whether the drop is symmetrical with R1 ≈
R2 (for U < Ucr), or asymmetric with R1 > R2 (for U < Ucr) but
decides that at the point the drop becomes unstable.

6.3 reproduciblility and the critical velocity.

The previous discussion was indicative of the existence of a critical
pulling speed Ucr, separating captures from deposition. In this dis-
cussion, we elaborate further on the nature and existence of such a
speed.
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Figure 77: Phase Map. A phase map of capture and deposition where
pulling speeds U are plotted against the volume of the drop Ω
for η1 = 9710 mPa-s and η2 = 9mPa-s. Red circles represent
captured drops, while black crosses represent depositions. The
dotted line is a guide for the eye, showing the transition.

We first perform the experiments by fixing the volume Ω, and the
two viscosities of infusion η1 and η2 and pull the lower plate at differ-
ent speeds U. We repeat the experiments for a given volume multiple
times, on some occasions about a hundred times for the determina-
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tion of this threshold speed. Then we change the volume and do the
same. In Figure 77, we create a phase map where the pulling speed U
is plotted against Ω for experiments performed with η1 = 9, 710 mPa-
s and η2 = 9 mPa-s; red circles denote capture, while black crosses
represent deposition. The dotted line is a guide for the eye for broadly
separating the ’capture’ and ’deposition’ regimes.

While the plot clearly reveals that the capturing speed increases
with increasing volumes, we note that there exists a big region of
overlap: speeds spanning across a decade, for instance for Ω = 16µL,
where the drop is sometimes captured and sometimes deposited, mak-
ing the definition of Ucr ambiguous We demonstrate this further in
Figure 78 where we show reproducibility maps for three representa-
tive volumes of Ω = 2µL, Ω = 4µL and Ω = 16µL, where we plot the
pulling speed against the trial number, with red circles representing
capture and black crosses representing deposition. Each single trial
represents a new drop, data points connected by dotted line repre-
sent experiments performed on the same set of surfaces. Experiments
were performed for different surfaces of the same infusion (to check
for possible defects), and with a new drop every time. Experiments
with the same drop show much more deviation and hence were re-
moved from the figure.

Figure 78 reveals the extent of the overlap, shown in the shaded
region, and how it persisted despite changes in volume and surfaces.
The red dotted line indicates UC, the minimum pulling speed corre-
sponding to which captures are observed but no depositions in any trial.
The dotted black line represents UD which is the maximum pulling
speed corresponding to which depositions are observed but no cap-
tures in any trial. If the transition were clean, then there would have
been no overlap and we could have written Ucr = UC = UD, where
Ucr is the critical speed for transitions. However, we see from Fig. 78

that transitions are far from clean. For Ω = 2µL, UD = 20µ/s and
UC = 100µ/s, which is five times mores. These speeds increases to
UD = 80µ/s and UC = 400µ/s for Ω = 4µL and to UD = 300µ/s and
UC = 3600µ/s for Ω = 16µL.

It is not entirely clear why this variation is so pronounced. How-
ever, what we can say is that the overlap has a volumetric effect, as is
indicative from the increase in the ratio of UC/UD from 5 to 12 when
the volume is increased from Ω = 2µL to Ω = 16µL. One possible
mechanism in which volumetric effects might pronounce the overlap
is small degrees of over or under-infusion, which could strongly affect
the dissipation mechanisms in the two menisci. Larger drops have a
larger menisci compounding this effect and creating reproducibility
issues. urthermore, gravitational effects also become non-negligible
for drops larger than Ω > 6µL, corresponding to which the Bond
number Bo = ρgR2/γ becomes greater than 1. Further still, the initial
aspect ratio when pulling begins might have some effect. Although
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Figure 78: Reproducibility Map. Pulling speeds plotted against trial num-
ber for experiments done with three different volumes Ω = 2µL,
Ω = 4µL and Ω = 16µL. Red circles denote a capture and black
crosses denote failures. Shaded region shows the range of veloci-
ties where both captures and deposits were observed.
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this value λ0 = L0/(R1 + R2) was typically between 0.5 to 0.8, its ef-
fect on Ucr and the transition have not been looked into. We remark
on them in the subsequent section.
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Figure 79: Viscous Origin. The minimum pulling velocity where captures
are observed without depositions in any trial, plotted against the
viscosity of infusion of the top plate, η1. The viscosity of infusion
of the bottom plate is fixed at η2 = 9mPa-s. Red circles represent
1µL and black represent 2µL.

Nevertheless, with such large fluctuations over hundreds of experi-
ments, it becomes natural to ask how does one define a critical speed.
We note that despite the zone of overlap, where both captures and
depositions are observed, there appears to exist, for all the cases, an
upper bound of the pulling speed for depositions (red dotted line).
If we were to define the threshold speed for capture Ucr as this
speed which we have previously called UC (the minimum value of
the pulling speed at which captures are observed but no depositions
for at least 20 trials), then we can plot this speed against η1, for a
fixed volume and fixed η2 = 9mP-s, and test its dependence on vis-
cosity. In Fig. 79, we do so for volumes of 1 and 2µL, and we see that
Ucr increases with decreasing viscosities. More specifically, there is
an inverse proportionality represented by the black lines which are
fits with a −1 slope, revealing that η1UCr is a constant. This confirms
that the captures indeed have a viscous origin. The viscosities of the
drop η = 1mPa-s and the infusion of the bottom surface η2 = 9mPa-s,
being significantly lower than that at the top, at least by factor of 10,
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the viscous dissipation in the infused oil of the top surface is what
dominates.

Nevertheless, we must be careful here as such an inference would
not hold for UD (black dotted line in Fig. 78 or in the entire zone of
overlap where we see both captures and depositions happening for
different trials. This seems to be strongly indicative of the fact that the
pulling speed is perhaps is not the correct variable here to understand
the transition from deposition to capture, as the dependence of the
transition with the pulling speed seems to be quite fragile.

Perhaps, a better variable to understand the transition is the aspect
ratio λc of the drop where the transition happens, as originally ob-
served by Plateau. This would be more true for cases where gravity
is not important, that is for Ω < 6µL, and in a regime where inertia is
also removed, which would be satisfied as long as our pulling speeds
as less than

√
gR, which is of the order of 10cm/s - a condition natu-

rally satisfied in our experiments. Thus the question becomes rather
of the stability of the drop, dictated directly by its geometry - which
also reminds us of a point we made at the end of the Section 6.1: the
viscous tweezer is essentially a Plateau cylinder with its classical con-
straint of pinned contact line removed. Indeed, despite the ambiguity
in the critical velocity of capture, what we have observed to be true
through the hundreds of experiments performed is that the contact
lines at the top and the bottom both were always free to move.

6.4 tweezers as plateau cylinders

We now shift our gaze to the stability of a drop placed between two
infused surfaces, as its length is increased.

Plateau’s original problem constituted a cylinder of equal radii. In
our case, however the radii R1 and R2 are different and free to move,
two steps away from Plateau. So, we look for a problem that is be-
tween Plateau and our problem - the stability of truncated cone - in
other words, a capillary bridge of unequal radii but pinned contact
lines, which was analyzed by Jose Meseguer theoretically in 1983.

We first define a mean radius is defined as R = (R1 + R2)/2 which
would be used for the determination of λ as L/2R, at the point of
break-up. Note that λ captures the extension of the drop. Next, we
define a variable that captures the asymmetry of the drop as H =

(1−w2)/(1+w2), where w = R1/R2. The elegance of this variable
is that it is an even function of R1/R2 and always lies within −1 and
1, where H = 0 corresponds to a liquid cylinder, H = 1 and H =

−1 correspond to an upright and upside down cone. Performing a
stability analysis on a capillary bridge with unequal radii, Meseguer
showed that the drop becomes unstable when

λc = π
(
1− (3/2)4/3(H/2π)2/3

)
. (65)
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Figure 80: Plateau Instability. a) A Plateau-Meseguer phase space where λ
is plotted against H. Any capillary bridge with fixed contact lines
when extended starts from a fixed value of H and moves verti-
cally as shown by dotted lines until they cross the solid black line
and become unstable. Black lines are a solution to Equation 65.
H = 0 is the classical solution for a liquid cylinder as given by
Plateau which shows λc = π. The two other limits correspond
to H = 1 and H = −1 which denote a cone and an inverted
cone respectively. Red dotted line corresponds to an experiment
performed with a 2µL capillary bridge with pinned contact lines
and H = −0.83. When extended, it started with its initial value of
λ0 = 1.4 and moved along fixed the fixed value of H = −0.83, de-
noted by the red dotted line and because unstable and broke right
after crossing the black line. The blue striped region is unstable,
where bridge breaks into two drops, whereas the white region
below is where the bridges are stable. b) λc plotted against H
for experiments done with volumes Ω = 1µL, 2µL, 4µL and 6µL
with the two infused surfaces at the top and bottom having vis-
cosities with η1 = 9710mPa-s and η2 = 9mPa-s. The velocities are
different for each volume to see the switch between capture and
deposit. For instance, the data points corresponding to Ω = 2µL
are for speeds U = 20µm/s (deposition), U = 50µm/s (capture)
and U = 100µm/s (capture).
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There are quite a few remarks to be made about this variable. First,
Equation 65 shows that λc is an even function of H, as seen in Figure
80. We note that when H = 0, we recover from Meseguer’s criterion
the classical solution for a liquid cylinder as given by Plateau, that is
λc = π. Equation 65 also shows that in the limiting case of a cone,
where one of the radii tends to zero, λc approaches π/2, thus reveal-
ing that π/2 < λc < π. These two bounds may be physically under-
stood in the following way - while for a cylinder or equal radii, the
two ends can hold one wavelength, leading to the aspect ratio of π at
the point of instability, for the case of unequal radii, only a smaller
proportion of the wavelength can be contained, which is fixed by the
magnitude of the two radii. Also, the pinch-off point in the case of
equal radii happens at the mid-point of the length of the liquid col-
umn, whereas for unequal radii, the pinch-off point is pushed further
and further towards the smaller radius. In the limiting case of a cone,
the pinch-off point goes to the end which has the tip of the cone,
that intuitively means it can contain only one half of the wavelength,
making the aspect ratio π/2.

In Figure 80a, we plot λ versus H to create a phase map of sta-
ble and unstable capillary bridges. We first show that in a λ − H
phase space, any capillary bridge with fixed contact lines when ex-
tended starts moves vertically at a constant H as shown by dotted
lines until they cross the solid black line which is a solution to Equa-
tion 65, which also divides the phase space into stable and unstable
bridges (blue stripes). The red dotted line corresponds to an exper-
iment performed with a 2µL capillary bridge with pinned contact
lines R1 = 633µm and R2 = 193µm, which gives H = −0.83. When
extended, it started with its initial value of λ0 = 1.4 and moved along
fixed the fixed value of H = −0.83, denoted by the red dotted line
and because unstable and broke right after crossing the black line.

Our experiments in this section deal with drops of volumes vol-
umes Ω = 1µL, 2µL, 4µL and 6µL (such that Bo < 1), bounded by
surfaces infused with η1 = 9710mPa-s and η2 = 9mPa-s, and pulled
at different speeds until detachment. We can now extract the L, R1
and R2 from the last frame before pinch-off and determine the corre-
sponding λc and H and plot them against each other for experiments
with different volumes (less than 6µL) and at different speeds. Fig.
80b) shows the plot of λc vs Hwith the black solid line corresponding
to Equation 65. The shaded region shows the unstable region which
is above the theoretical prediction of stability.

We immediately observe all our data points, irrespective of the na-
ture of the break-up: capture or deposition, are in the unstable regime
as predicted by the Plateau-Meseguer line: they are below the value
of π, which is for a perfect Plateau cylinder and above the stability
line for a liquid cylinder with unequal but pinned contact line radii.
This is not trivial because morphologically we are far from a cylin-
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Figure 81: Plateau-Meseguer Maps. λ−H evolution for experiments done
with two drop volumes: Ω = 4µL (a) and Ω = 4µL. In both cases,
the drops are bounded by surfaces infused with η1 = 9710mPa-s
and η2 = 9mPa-s, and pulled at different velocities. Black and
grey circles denote trajectories that lead to a capture, while red
and pink circles represent trajectories leading to a capture. Or-
ange and green shaded regions correspond to capture and de-
position, bounded by the black and red solid lines which are a
solution to Equation 65.

der and far from a cone, yet the stability can be captured by Equa-
tion 65. The data points corresponding to deposition (H¿0) are closer
to the Plateau-Meseguer line, which means that the critical length
at which the drop becomes unstable is indeed close to the length
at which pinch-off happens, where we did our measurements. Con-
versely, for the capture cases the data points are further from the
Plateau-Meseguer line, denoting the drop became unstable at a length
before the pinch-off occurred.

This can be further investigated as the phase space of λ −H can
be used to see the entire evolution of the drop shape, where both λ
and H are free to evolve, unlike the case of a liquid cylinder with
pinned contact lines, where the value of H is fixed. We can analyze
such Plateau-Meseguer Maps for different velocities to see precisely
where the instability sets in.

In Figure 81a, we plot show the entire evolution of λ − H dur-
ing the course of a pulling experiment, where the volume is fixed
at Ω = 4µL, the viscosities of infusion are η1 = 9710mPa-s and
η2 = 9mPa-s. We plot the trajectories corresponding to three different
speeds of U = 100µm/s (black circles), U = 200µm/s (gray circles)
and U = 400µm/s (red circles), where the first two lead to eventual
depositions, whereas the last one is a capture.
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All the trajectories begin with a positive value of H, indicating R1 is
slightly smaller than R2 and a typical starting value of λ0 = 0.7− 0.8 -
close to the aspect ratio one obtains when a hemisphere transforms to
a cylinder preserving the volume and height: (3/8)1/2. As the pulling
begins, we see all the trajectories falling on the same curve initially
where λ increases due to elongation and H decreases and becomes
slightly negative - this is the initial re-organization regime, we had
previously noted. Following this, we see that for the two trajectories
corresponding to deposition λ increases with a fixed H, whose abso-
lute value is less than 0.1, implying R2 is smaller than R1, but the
difference is less than 10%. In this regard the trajectory correspond-
ing to the maximum velocity, U = 200µm/s is more spectacular - the
climb at constant H continues for λc ≈ 2.4, when it sharply turns to
the right into the deposition regime. For a lower speed U = 100µm/s,
the climb is of a smaller height, but the general nature of the trajec-
tory is the same. However, for a higher speedU = 400µ/s (red circles),
we see a marked difference - the ’climb’ never happens: following the
initial re-organization, the trajectory monotonously moves towards a
lower and lower value of H and finally into the ’capture’ zone. Said
differently, dλ/dH is never greater than zero. Furthermore, the trajec-
tory corresponding to U = 400µm/s leaves the others at a value of
lambda less than π/2.

For Ω = 2µL, as in Figure 81b, we plot trajectories for U = 20µ/s
(black circles, deposition), U = 50µm/s (red circles, capture) and
U = 100µm/s (pink circles, capture). Here, too observe the same fea-
tures manifest again: a) corresponding to the maximum velocity for
deposition, there is a ’climb’ with constant H, which turns at a λ close
to 2.4, as seen in experiments with the previous volume and b) for the
trajectories corresponding to capture, general deviations from the de-
position curves start happening before λ = π/2, and dλ/dH < 0.

To summarize, the most important conclusion we draw from this
section is that

a) When a liquid cylinder is pulled in such a way that its contact
lines are free to move, the drop self-selects two contact line radii at
the point of instability which follows the same solution as a drop with
unequal but pinned contact lines - in this regard, the drops are still
Plateau cylinders.

b) There exists a λturning for all the deposition cases, which corre-
sponds to the value of λ at which the λ−H curve first starts moving
away from the from the vertical ’climb’ into the first quadrant (said
differently, where dλ/dH ⩾ 0), and λturning peaks for the maximum
velocity of pulling corresponding to deposition.

What we must ask now is if this λturning depends on what the
initial value of the aspect ratio, λ0 was when the experiment was
started. In other words, we wish to know if the initial values of L, R1
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and R2 influence the transition, not in terms of the velocity of capture,
but in terms of the λturning.
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Figure 82: Compression Test. a) Snapshots of a drop of Ω = 4µL between
two infused surfaces, with η1 = 9710mPa-s and η2 = 9mPa-s,
when pulled at U = 100µm/s. b) The snapshots of another ex-
periment with same drop and surfaces, initially pulled at U =

100µm/s and suddenly changed to U = 3.3mm/s. c) λ−H plot
of the two experiments. d) R1 − R2 plotted against time for the
two experiments. The flat dotted line represents constancy in time
and the other dotted line represents a linearity in time: a constant
V2− V1 regime.

Fig. 82 shows such an experiment where a Ω = 4µL drop is com-
pressed initially to λ0 = 0.35, half the value at which previous ex-
periments were done, and then the bottom plate was pulled at U =

100µm/s - a speed at which we have seen deposition previously.
When we look at the λ−H plot of this experiment (black circles in
Fig 82d), we see that the curve has a ’climb’ identical to the previous
experiments that started at a higher value of λ0 and led to deposi-
tion. When we repeat the experiment with an even lower starting
value, λ0 = 0.15, we see the trajectory again following the ’climb’
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in a manner that is indistinguishable from the former curve When
we suddenly change the velocity at λ = 1.2 from U = 100µm/s to
U = 3.3m/s, we see that the λ − H curve immediately leaves the
vertical ’climb’ and starts becoming increasingly asymmetric with
the magnitude of H increasing and eventually goes into the ’capture’
regime.

The difference between the capture and deposition cases becomes
particularly distinct when we plot R1 − R2 against t for the two ex-
periments, black circles representing a deposition and red circles a
capture. The first experiment which led to the deposition has an en-
tire middle regime where R1 − R2 is constant in time, shown by the
dotted black line, implying V1 = V2 and this is the ’climb’. For the sec-
ond experiment, we see that as long as the velocity is U = 100µm/s,
R1 − R2 is not only constant in time, its value is the same as that
of the previous experiment, where the starting values of R1 and R2
were smaller. However, when the pulling speed is suddenly increased
to U = 3.3mm/s, a new regime kicks in where R1 − R2 evolves lin-
early in time. In fact, a close attention to Fig. 82b reveals that the top
contact line on the more viscous surface has stopped moving in this
regime, that is V1 ≈ 0; only R2 decreases in time linearly until the
pinch-off regime sets in.

This helps establish the important conclusion that there exists a
peak value of λturning, which is λ∗ ≈ 2.4, where the transition hap-
pens, and this peak value is independent of λ0. Furthermore, as seen
in Figure 81a, for a fixed λ0, λturning increases with U, for deposition
cases, but for fixed U, λturning increases with decreasing λ0, as seen
in Figure 82.

This implies that a better method to study the transition would be
at a value of λ0 which is in the vicinity of λ∗, and then do experiments
at different U to determine the critical velocity of the transition from
deposition to capture, Ucr for a fixed η1. This would remove any
dependency of λ0, which in experiments previously done were not
accounted for, possibly creating the large dispersion in the critical
velocity. However, that remains as the future scope of this work.

6.5 conclusion

The most important conclusion of the viscous tweezer experiments
is to demonstrate that liquid-infused surfaces which are celebrated
for their slipperiness, can be ’sticky’ as well. A water drop placed
between two infused surfaces, the top one being more viscous, when
separated can lead to a capture or deposition of the drop. Such a
transition is not triggered by the contrasting wettabilities, which is
the same for both the surfaces, rather the contrasting viscosities.

Defining a critical pulling speed corresponding to a capture proved
to be difficult as there exists a large range of pulling speeds where
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Figure 83: Regimes. Schematic sketches of V1 and V2 behave in the three
regimes of the experiment: U≪ Ucr, U ∼ Ucr and U≫ Ucr

both captures and depositions were observed. Nevertheless, the char-
acteristics of the drop dynamics corresponding to capture and depo-
sition have been identified, as shown in Fig83, where for U ≪ Ucr,
there exists a regime where both the top and the bottom contact line
recede at constant speeds. Conversely, when U ≫ Ucr, the contact
line does not move - exhibits a kind of ’viscous arrest’. The physics of
this ’viscous arrest’ have to be further investigated.

Although the relationship of ’capture’ and ’deposition’ has been
difficult to establish with the pulling speeds, the stability of the drop -
which includes both capture and deposition cases could be explained
by the Plateau instability for drops with unequal radii. In this regard,
necessary conditions for capture and depositions can be written in
terms λ and H as:

- Capture corresponds to a case where there exists no λ correspond-
ing to which dλ/dH ⩾ 0.

- Deposition corresponds to a case, where there exists some λ for
which dλ/dH ⩾ 0.

For the case of deposition, the first value of λ where dH/dλ ⩾ 0,
is called λturning, the maximum value of which corresponds to the
maximum velocity where a deposition is observed, and comes out
to be 2.4. This is where we believe the dynamics comes in. Previous
criteria based on dλ/dH do not have any dynamics in them, which
sets in only at λturning. Experiments for velocity transitions need to
be performed at λ0 = λturning to shed light to this hypothesis.

Finally, we conclude with a general guideline for viscous tweezers
with water droplets from 2 − 6µL: a deposition is always ensured
for U < 10µm/s and a capture is always ensured if U ≳ 1000µm/s.
Further work remains to be done to make a model for the ’viscous
arrest’ - to predict the transition between the capture and deposition.
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7
S P H E R I C A L A N T S

As a first step towards understanding ants walking on the pitcher
plant Nepenthes, we study in this descriptive chapter the friction on a
sphere rolling down a liquid-infused solid. We identify three distinct
regimes of motion - sticking, rolling and bouncing - determined by the
existence of a symmetric meniscus, a tail or asymmetric meniscus
and the breaking of the tail. Based on experimental observations, we
propose that contrary to the general conception, ants on the pitcher
plants do not appear to necessarily slip and fall; rather they struggle
to un-stick themselves from the viscous nectar-infused peristome and
fall in the process.1.

‘I heard there was food, but they gave me a tail!’ by Benôıt Pype

1 The original conception of rolling spherical beads comes from Armelle Keiser.
149
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7.1 nepenthes and the ant

7.1.1 The Rainmaker

Figure 84: The Nepenthes Left: L’histoire de la Grande Isle Madagascar by
Étienne de Flacourt, where we find the first record of the Ne-
penthes dating back to 1658. Right: Depictions o flora of Madagas-
car in the book which also describe report pitcher plants, which
Étienne de Flacourt believed contained ’a good half-glass’ of rain-
water. [120, 121]

In 1658, French colonial governor Étienne de Flacourt published
what would be the first record of a pitcher plant in his book L’histoire
de la Grande Isle Madagascar, where he describes the flora and fauna of
Madagascar in great detail [120].

In the section on the Nepenthes, he narrates that the people of the
island of Madagascar believed that if one were to pick up the ’flower’
of the pitcher plant, that is the pitcher itself, then rain was inevitable.
He writes [120]

I and all the other Frenchmen
did pick them, but it did not rain.

After rain these flowers are full of water,
each one containing a good half-glass.

Nepenthes has also
been called

monkey-cups
because of the belief
that monkeys drink
from the pitcher of

pitcher plants. This,
also, is not true.

We have come a long way since, not only in the context of Nepenthes
not being rain-makers, but also in identifying the real specialty of
Nepenthes - its carnivorous nature. Etienne Flacourt’s argument that
the pitcher contains rain water is only partially true. It is primarily
digestive juices mixed with rain-water, where ants and other insects
that fall into the pitcher are digested.
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Figure 85: Pitcher Plant. a) A pitcher plant with a black ant on its peris-
tome (Picture by Ray Reinhard) [35]. b) and c) Close-up reveals
there are hierarchical grooves on the surface with the smaller
scale grooves at a distance of 50µm distance between each other.
Reproduced from [122]

In the subsequent section, we describe how the Nepenthes captures
ants using its specialized slippery peristome.

7.1.2 The Ant-killer

The peristome or rim of the pitcher plant is decorated with grooves,
which are infused with a nectar-water mixture. Figure 85 shows a
close-up of the grooves on the peristome, where we can see the two
scales of grooves: the bigger scale is a set of grooves half a millimeter
wide and high and the smaller hierarchical scale is a set of grooves
that are 50µm in height and spacing.

The generally perception or hypothesis regarding the ant-capturing
mechanism is that the grooves are rendered slippery by the mixture
of nectar and water, which fill the grooves. A typical ant senses the
nectar and climbs up the peristome from outside, but as it tries to
probe the inside of the pitcher, it falls off the precipice of the peris-
tome into the digestive juices of the pitcher. The hypothesis here is
that the peristome is slippery which makes the ant slip and fall.

In Figure 86, we provide two instances of ants being captured by
the pitcher plant - one, where the ant tries to climb down the inside of
the peristome into the pitcher, and the other where the ant has fallen
off and is trying to climb up the inside of the peristome. In both cases,
we see the ant’s legs eventually lose contact with the nectar-infused
peristome and falls.

However, we wish to point out here that there is no strong evi-
dence from the images based on which we can say that ants on the
Nepenthes necessarily ’slip and fall’. The ants typically fall off the rim
where the slope is practically vertical, which reveals the significant
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Grabbing on to Climb Down

Grabbing on to Climb Up

Figure 86: Two kinds of fall. Top: Two instances of a yellow ant Anoplolepis
gracillipes standing on the peristome, trying to climb down to
probe the inside of the pitcher, and falling down in the process.
Down: A yellow ant Anoplolepis gracillipes, that previously fell off
the precipice of the inside of the peristome, tries to climb up but
eventually falls. [36]

adhesion that prevents ants from sliding off the rim at smaller slopes.
This also might seem in apparent opposition to our previously em-
boldened statement of infused surfaces having negligible adhesion.
All of this needs elucidation, or in other words, we must ask what is
the mechanism of ants falling off the peristome of the Nepenthes into
its pitcher.

The postulate of ’slipperiness’ of the peristome of the Nepenthes
as presented in [37] was utilized to essentially extend this argument
to droplets sliding off infused surfaces. While the analogy serves to
highlight the ’slipperiness’ of infused surfaces, there is a critical dif-
ference between the two cases, the former being that of solid friction
and adhesion on infused surfaces, whereas the latter corresponds to
lateral adhesion and friction of liquid drops on infused solids. While
an infused solid may have negligible lateral adhesion for water drops,
its lateral adhesion for solids may be significantly high, to the point
that it might not be ’slippery’ at all.
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Figure 87: Sperical Ants to Rolling Stones. Left to right: An ant on the
peristome of the Nepenthes, about to fall, a sketch of a sphere
on an infused solid with a meniscus at the bottom and a sphere
rolling down a flat solid with a thin film on it, also known as the
Rolling Stones problem [123].

To this end, as a first approach to understand the mechanism of
ants falling off the peristome of the Nepenthes, we study the friction
of solid spheres on infused solids which mimick the peristome of the
Nepenthes. In this sense, we may say that while ants are not water
drops, they perhaps can be approximated as spheres, at least for the
region of contact of the legs with the infused solids. This immediately
becomes reminiscent of an older problem known as Rolling Stones by
José Bico and others, where a solid sphere is rolled down a flat solid
which has a thin film of oil on it [123]. A natural question might be The Rolling Stones

problem has been
notoriously difficult
to model in the
literature. Although
experimental data
gives empirical laws,
but the complexity of
the flow in the
meniscus has eluded
modelling by the
most brilliant minds.

that if we are willing to approximate ants as spheres, then why not
approximate the nectar-infused peristome as solid with a thin film
on it as in the Rolling Stones problem. In other words, is the half
solid, half liquid nature of an infused solid necessary in making a
first model of how ants walk on peristome. The answer is yes, and in
fact that is what makes all the difference - in the subsequent section
we elaborate on this.

Figure 87 shows the three problems of ants walking on Nepenthes,
spheres rolling on infused solids and spheres rolling down solids
covered with a thin film, our claim being the first problem can be
reduced to the second, but not the third.

7.2 the physical experiments

In accordance with the morphology of a typical peristome of a pitcher
plant, we fabricate 50µm high SU-8 pillars on a silicone wafer2, where Typical nectar-water

mixtures are
∼ 10− 100mPa-s

the grooves are also separated by a 50µm distance. The textured sur-
face is glaco-treated and infused with silicone oil. A polystyrene bead
of diameter 3.2mm and weight 23mg is used for experiments.

2 Courtesy: Armelle Keiser.
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Figure 88: The Foot of the Spherical Ant. a) A polystyrene bead placed
on an infused solid, develops a meniscus at the point of contact.
Inset shows the meniscus in better detail. The diameter of this
meniscus is l. b) Sketch of a sphere on an infused solid, inclined
at an angle α, with all the forces acting upon the sphere shown in
gray arrows. l is the diameter of the annular ring of a meniscus
that the sphere develops. c) mg sinα plotted against normal force
N for spheres of different materials and sizes. The black solid line
follows Equation 67 with µ = 0.04.

7.2.1 Lateral Adhesion

We start with the solid infused with η = 9mPa-s and place the
polystyrene bead on it. The bead touches the infused solid and draws
up a symmetrical meniscus around its region of contact at the bottom
(see Figure 88). We now tilt the infused solid with the bead on top of
it by an angle α = 5◦ with the horizontal. We observe that the bead
remains stuck at the top of it just as before, without any change what-
soever. This already shows that the lateral adhesion of infused solids
to other solids as polystyrene is non-negligible and higher than it is
for water drops.

We keep increasing the angle of inclination until the bead rolls
off. For polystyrene bead, the roll-off angle was typically around 8◦.This experiment was

performed with the
wonderful prépa

student
Marc-Antoine

Ourradour

There are two possibilities for generating adhesion in this system -
one, the solid sphere itself has asperities and thus the silicone oil
would have some hysteresis on it. Second, the infused solid itself be-
ing a half-solid, the contact between the sphere and the solid part
of the infused solid may give rise to Coulombic friction between the
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two. In order to simplify the problem as well as to remove hysteritic
problems, we glaco-treat the sphere and also run it down the infused
surface a few times so that it has a precursor layer of oil on it, and
then perform the roll-off experiment.

Having minimized hysteresis of the sphere, the major contributor
of the adhesion should be the Coulombic friction. If this be true, then
a plot of the driving force mg sinα against the normal force N should
reveal a constant friction coefficient µ, typically less than 0.1. Indeed
we obtain a friction co-efficient µ ≈ 0.04, when we make the said
plot in Figure 88. The experiments correspond to spheres of differ-
ent sizes (radius ranges between 0.7mm and 3.5mm) and different
materials - aluminum, brass, copper, chrome steel and polystyrene.
Although it is true that different materials have different µ, we see
that the Coulombic friction approach captures all of the data fairly
well, perhaps because Glaco on all surfaces makes them similar in
nature.

We briefly discuss the model and the normal force here. The forces
acting on the sphere are mg sinα down the incline, a friction force f
up the incline, mg cosα perpendicular to the incline (downwards), a
normal reaction force N perpendicular to the incline (upwards) and
a force Fc ∼ γl exerted by the capillary bridge or meniscus which is
perpendicular to the incline (downwards). The equilibrium perpen-
dicular to the incline gives us

N ∼ mg cosα+ γl (66)

If the coeffecient of friction be µ, then we can write f = µN and
substituting this for the equilibrium along to the incline, we get

mg sinα ∼ µ(mg cosα+ γl) (67)

The above equation fits the data in Figure 88 for µ = 0.04.
The simple adhesion test of the infused solid reveals important dif-

ferences in the behavior of solids and liquids on infused solids. While
water drops on infused solids roll off at angles that are immeasur-
able, even a 7◦ tilt may not be able to roll off a polysterene sphere
on the same infused solid. In fact, the adhesion force exerted by in-
fused solids on solid spheres is typically 1/10−th of the weight of the
sphere, which is substantially higher than lateral adhesion for water
(near-zero). Furthermore, the adhesion force of the solid sphere on an
infused solid is also higher than what the sphere would experience
on a ’bare’ solid - a polystyrene bead on a silicone wafer starts to roll
off before 3◦, but on an infused solid can go up to 7◦. This is because
of the existence of the meniscus, which pulls the sphere with an ex-
tra force γl, than increases the normal reaction and consequently the
friction force, or lateral adhesion force (as velocity is zero here).
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Figure 89: Appearance and Disappearance of the Tail A polystyrene bead
of 3.2 mm diameter placed on a micro-grooved surface infused
with silicone oil of η = 9mPa-s. The bead is kicked with a stick
and on the left we see a chronophotography of the sphere move
and slow down and come to rest. Insets show the deformation of
the meniscus as it transitions from symmetric to asymmetric to
symmetric again.
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Figure 90: Dynamical Regimes. a) Size of the meniscus (end to end) as a
function of time. The dashed black line corresponds to the mini-
mum meniscus size. b) Distance traversed by the sphere, x with
respect to time. The dashed black line in b) corresponds to the dis-
tance where the sphere would have come to stop, had the walking
regime not initiated. The color codes red, gray, yellow and green
denote the contact regime, constant velocity regime, the slowing
down regime and the walking regime, respectively.
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7.2.2 The Kick

From the last section, we see that the spherical ant, without even mov-
ing, has started to ’feel’ that the infused solid is not slippery, rather
sticky. To test how sticky it is in the ’stuck’ phase, that is when the
inclination is low enough, we perform another simple test. At an in-
clination angle where the bead is stuck (α = 5◦), we give the bead a
’kick’ with a stick and see what happens. For instance, it is possible
that the sphere has high lateral adhesion but low dynamical friction,
in which case once it has been kicked to overcome the adhesion bar-
rier, the sphere would just keep rolling.

However, we see that the sphere after the ’kick’ has been imparted,
starts to roll, then gradually slows down and eventually comes to
rest. This is also accompanied with a deformation of the meniscus
(symmetrical) into a ’tail’ (asymmetric) which eventually transforms
back into its original state of symmetric meniscus as it comes to rest.

In Figure 90 we provide a chronophotography of the rolling sphere,
color-coded with the dynamical regimes that emerge, and in Figure
90 we see how the size l of the meniscus evolves with time in a) and
the displacement versus time plot of the sphere in b). We now discuss
these two figures together in tandem with the description of the five
regimes. These are as follows:

• Contact. The stick contacts the sphere and remains in contact
for 65ms, during which the sphere moves forward at a speed
of ≈ 1mm/s and the meniscus shifts in the direction opposite
to the direction of motion, forming a clear ’tail’. The end to end
size of the meniscus is l, originally close to 0.8mm, it increases
by 0.1mm during the duration of contact, which is the size of
the ’tail’.

• Constant Velocity. Right after losing contact, the sphere starts
rolling at a constant speed briefly for 0.4ms. In this duration,
the ’tail’ size decreases from 0.9mm to 0.7mm, although dx/dt
is constant. The tail has now become shorter.

• Slowing Down. The tail keeps a constant size for almost 0.3 s,
during which the velocity of the sphere decreases to near-zero,
as if the sphere is about to come to rest with the tail at one side.

• Walking Regime. The walking regime begins when the menis-
cus starts growing back in the direction of motion of the sphere,
and the sphere rolls and moves with pauses and rotations in be-
tween. The growth the meniscus length is continuous whereas
the translation of the sphere is step-like (Figure 90). This is be-
cause the silicone oil wicks through the bottom contact of the
sphere and the top of the grooves to reach the next set of grooves
to form a meniscus. In the process, the sphere translates slowly
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𝛼 = 7°

Figure 91: Dragging the Tail. A polystyrene bead of 4 mm radius on tex-
tured surface infused with silicone oil of viscosity η = 9mPa-s.
The bead starts to roll when α is beyond the critical angle. Inset
reveals that when the sphere rolls, there is a tiny tail, which it
drags as it moves

groove by groove, until the meniscus has grown enough to be
perfectly symmetric on both sides as it is in the very beginning
of the experiment. It then comes to rest.

One inference we draw from the above results is that even if the ball
is ’kicked’ to overcome the the lateral adhesion, or de-pinned, the fric-
tion of the system is high enough to bring it back to rest. This further
highlights the stickiness of the infused solid to the solid sphere.

7.3 rolling and bouncing

We now go back to the roll-off experiments but for inclination an-
gles larger than the roll-off angle, which for polystyrene beads corre-
sponds to αc = 7◦. For infused solids, with η = 9mPa-s, at α > αc,
the bead started rolling with a tail and did not reach terminal ve-
locity within the dimension of the infused solid ∼ 10cm, which also
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Figure 92: Rolling and Bouncing. A polystyrene bead of 23 mg and 3.2
mm radius is placed on micro-grooved solid, infused with sili-
cone oil of viscosity η = 96mPa-s. The infused solid is kept at
an inclination α > αc. x− t plot of the sphere at α = 10◦ a) and
at α = 25◦ b), which correspond to rolling and bouncing respec-
tively. c) Velocity plotted against time, for the case of bouncing
shows velocity increases linearly in time. The discontinuity in the
velocity plot denotes jumps, where the sphere detaches from the
infused solid.

implies that the terminal velocity U, if we had a large enough sample,
is larger than 10 cm/s.

In order to obtain smaller terminal velocities, or terminal veloci-
ties that may be attained within the length of the sample, we need
to increases the dissipation. So, we used a higher viscosity silicone
oil η = 96 mPa-s to infuse the textured solid. In this case, as we in-
creased α beyond αc, we registered a constant velocity of ∼ 10mm/s.
In this case the sphere rolled with a ’tail’ being dragged behind it.
However, when the slope was increased to 25◦ (occasionally also at
angles as low as 15◦), the ball started bouncing, with small jumps.
This becomes particularly evident when we look at x− t plot for the
two cases, as shown in Figure 92. The x − t plot corresponding to
small α is linear, denoting a constant speed (Figure 92 a)), whereas
the x− t plot corresponding to large α rather increases quadratically
in time. In Figure 92 c, we plot the velocity versus time and we note
that it has a step-like shape and is linearly increasing in time, imply-
ing a constant acceleration. The velocity versus time curve has two
parts: a slower step which is ’flatter’ in time - this corresponds to the
sphere in contact with the infused solid and rolling on it, and a faster
step where the sphere is detached from the infused solid is travelling
through air.

We plot the driving force F = mg sinα against the terminal velocity
U in Figure 93, for spheres rolled down parallel to the grooves (red)
as well as perpendicular to the grooves (black). We note that there
are three distinct regimes: stuck (gray), rolling (white) and bounc-
ing (blue). When comparing the black data points with the red, we
observe that to attain the same U, a larger driving force is required
to move the sphere perpendicular to the grooves in comparison to
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Figure 93: Force vs velocity. a) Driving force plotted against the terminal
velocity for spheres moving on an infused solid with η = 96mPa-
s. b) Driving force nondimensionalized by γκ−1 plotted against
Capillary number Ca = ηU/γ, where η is the viscosity of the oil
infused in the textured solid. Dotted lines are fits raised to an
exponent 1/3. Gray, white and blue shaded regions denote stuck,
rolling and bouncing.

moving it parallel to the grooves, which is expected. The dynamical
friction force in this case is ∼ 10µN and in the limit U goes to zero,
that is the stuck phase, F matches the lateral adhesion force measured
from roll-off experiments, which is ≈ 40µN for polystyrene beads.

The dotted lines represent a fit with an exponent 1/3. It is very
tempting to consider a Cox-Voinov framework here, where we say
that the dissipation is given by the integration of the wedge dissipa-
tion over the perimeter of the tail, that is F ∼ ηUl/θ. In the Cox-Voinov
framework, θ ∼ (ηU/γ)1/3. This would give the force to scale as
F ∼ (ηU/γ)2/3γl. Multiple problems arise now - firstly l is dynamical
and we do not know the relationship between l and U. Furthermore,
Landau-Levich-Derjaguin framework holds true only when Ca < 1.
Figure 93b reveals that the data points are very close to Ca = 1, and
all the forces in the rolling regime are larger than γκ−1, which means
the usual formulations are not applicable here as is. In order to make
a model for dynamical friction, we need more information about the
nature of the flow in the ’tail’. This roadblock is similar to that in the
Rolling Stones problem, where only empirical laws could be made.

Nevertheless, we can try to understand the rolling to bouncing tran-
sition, which is not observed in the Rolling Stones problem. The break-
ing of the the ’tail’ owes its origin to the hemi-solid nature of the
infused solid, and is thus observed only on infused solids but not on
flat solids with thin films on them. The critical velocity at which the
sphere must move to break the ’tail’ is γ/η ∼ 0.2m/s, which also cor-
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𝛼 = 7°

Figure 94: Breaking the Tail A polystyrene bead on a micro-grooved sur-
face infused with silicone oil of viscosity η = 4850mPa-s. At the
critical αc = 7◦, the starts to roll, but it does so by breaking the
tail. This happens by a process is akin to ’fibrillation’ where the
meniscus is divided into multiple capillary bridges which, as the
sphere rolls, move further and further away from the point of
contact of the sphere and the infused solid, until they all break
and the sphere rolls away. This sudden detachment may lead to
a loss of contact with the bottom surface. Note that now when
the sphere rolls, it moves faster than the time it would take for
the viscous infusion to form a tail. Dotted red lines represent the
contour of the sphere and the infused solid.
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responds to the Capillary number Ca > 1. We see this in Figure 93b,
but the question is why is this the criterion?

This is because for the tail to break, the sphere must move faster
than the tail can move or ’develop’ from the reservoir in the grooves.
For a viscous liquid, the rate at which a meniscus is formed is γ/η. It
follows that the rolling regime is limited to speeds of the order of γ/η.
If the sphere moves faster then the tail breaks starting from the point
of contact of the sphere with the flat infused solid, where a ’bubble’
develops, which is essentially a manifestation of the capillary bridge
not being able to match up to the speed of the sphere. The effect is
particularly spectacular for viscous infusions like η = 4850mPa-s as
we show in Figure 94.

The process of breaking looks reminiscent of ’fibrillation’ which
occurs when two plates attached with an adhesive are pulled apart. It
begins with the formation of ’bubble’ at the point of contact between
the sphere and the infused solid, which leads to the formation of a
capillary bridge travelling in a direction opposite to the direction of
motion of the sphere. Often there are multiple ’bubbles’, as we see
in Figure 94. But, eventually all these capillary bridges break as the
sphere rolls away.

The moment the ’tail’ breaks the sphere does not ’feel’ any ad-
hesion, because it is moving faster than the rate at which the tail
can form. This also means minimal dissipation, as the viscous tail
is where all the dissipation was concentrated before. So, we see the
sphere unboundedly accelerate. The breaking of the tail can cause
detachment from the solid itself as the corner of the grooves or mi-
nor imperfections and impurities can lift off the sphere which keeps
bouncing, and does not adhere to the surface anymore.

One last point that needs to be made is that the rolling regime is
quite narrow and vanishes for for higher viscosities. For η > 970mPa-
s, we see that the tail breaks immediately after α > αc. For lower
viscosities like η = 9mPa-s, the tail is intact but our experimental
limitation of the size of the sample did not allow us to experimen-
tally obtain the terminal velocities and get an force-velocity curve.
Nevertheless, our observations are quite general which may now be
extended to the walking of ants on the Nepenthes.

7.4 conclusion : life of a spherical ant

The life of a spherical ant on an artificial Nepenthes is quite sad and
sticky. There is nothing remotely slippery about it. The spherical ant,
firstly cannot even move, unless it exerts a force typically 1/10−th
its body weight and a velocity typically 1cm/s. Even when the ant
can move, it has a viscous ’tail’ of meniscus of nectar adhering to its
feet, making it sticky and difficult to move. The ant tries to detach its
legs from the viscous liquid, but if the local slope is too high, that is
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if the terminal velocity corresponding to the driving force is greater
than γ/η, then the ant falls. For a sphere of polystyrene, this slope is
α ≈ 25◦. For an ant on nectar-infused peristome, it may be different,
but experimental images of ants falling show that they fall close to
where the local slope of the rim is vertical, that is where the driving
force is maximized.

To cut a long story short, contrary to the general perception, ants
do not necessarily slip and fall on the nectar-infused peristome of the
Nepenthes. The ants find it difficult to move on the sticky peristome,
and in trying to un-stick themselves from the viscous menisci of nec-
tar and water, they break the ’menisci’ and lose adhesion and fall,
only to be digested by the clever Nepenthes.
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8
R A D I O Y E R E VA N

We begin the end to this thesis with a classic old Soviet joke from the
genre of Radio Yerevan.

A listener calls Radio Yerevan and asks “Is it true that Rabinovitch
won a new car on lottery?”. Radio Yerevan answers: “In principle yes,
it’s true, only it wasn’t a new car but an old bicycle, and he didn’t
win it but it was stolen from him.”1

In the context of liquid-infused surfaces (LIS), a listener may now
call Radio Yerevan and ask “Is it not true that LIS is just some liquid
put on a solid to make a slippery solid?”

And, Radio Yerevan would answer: “In principle yes, it’s true, only
the liquid is not on the solid, it is in the solid, and LIS is not usually
slippery - it is sticky, and also LIS is not really a solid, it is a hemi-
solid, hemi-liquid which may or may not be sticky or slippery or both
or neither.”

Indeed, while liquid-infused solids have been celebrated for their
legendary slipperiness for a decade now, in this thesis we saw that
these materials are far more ambiguous and being slippery is not nec-
essarily a signature of these materials. They can be sticky (for solids,
where lateral adhesion increases) or slippery (for liquid drops, where
lateral adhesion is negligible) or both (water drops on infused solids
with very high viscosity infusion: negligible adhesion, extremely high
friction) or neither (spheres rolling down infused solids after break-
ing their ’tail’).

We began this work by asking a simple question in the part called
Spreading- what happens, at short times, when a water drop touches
an infused solid. We found out that the spreading of a water drop
on an infused solid is slower than it is on a ’bare’ solid, although the
law of spreading curiously preserves the same scaling in time as on
a ’bare’ solid. We further showed that there exist three different t1/2

laws at low, intermediate and high viscosities, which emerge from
different modes of dissipation dominating over each other, and thus
each mode yielding a t1/2 law is special indeed. For viscous liquids
(as glycerol) spreading over infused solids (with lower viscosity), we
see that the spreading is faster than it is on ’bare’ solids. In this case,
the possibility of slip on infused solids can be truly harnessed as
the lower the viscosity of the infused liquid, the faster the spreading.
Through these two contrasting cases, we can see that whether an in-

1 This version of the joke is taken in the exact form it is narrated by Slovenian philoso-
pher Slavoj Žižek in many of his lectures.
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fused solid will enable motion on its surface or decelerate it depends
on the viscosity ratio of the drop spreading and infused liquid.

In the next part called Adhesion- we make direct measurements of
adhesion on infused solids and show that they have high vertical ad-
hesion. The adhesion force can be ten times the weight of the drop
with which the adhesion test is performed, if the drop volume is 1µL
or smaller. We also show that the viscous adhesion of infused solids
can be used to create a kind of ’viscous tweezer’ - where a water drop
is placed between two infused solids, the top being infused with a
much higher viscosity than the bottom one. This device can be actu-
ated with velocity to capture or deposit the water drop, sandwiched
between the two surfaces. Said differently, if the two plates are pulled
apart quickly, the drop is captured at the top plate, but if the plates
are pulled apart slowly, then the drop breaks close to the top and
deposits on the bottom plate. This section too demonstrates and elab-
orates on the ’sticky’ nature of infused solids, as we have seen in the
previous part.

Finally in the part called Friction - we take the famous example of
an ant falling off a nectar-infused rim of a pitcher plant, which is cel-
ebrated as an illustration of a naturally occurring infused solid (the
nectar-infused peristome) and their slipperiness. To test the general
postulate that ants on the Nepenthes slip and fall on nectar-infused
peristomes, we fabricated an artificial peristome, infused with sili-
cone oil of different viscosities, and rolled down solid spheres on
them at different angles to test their adhesion and friction. We found
that the lateral adhesion of infused solid with respect to the sphere is
significantly enhanced due to solid-solid contact and the existence of
the meniscus. This is the very opposite of what we observe for water
drops, where later adhesion vanishes for infused solids. Furthermore,
at higher inclinations, when the sphere rolls, it drags a tail behind,
at higher inclinations still, it breaks the tail and starts bouncing. Ex-
tending from our observations with the solid sphere, we posit that
contrary to the general perception that ants on the Nepenthes slip and
fall, ants are stuck in the viscous infused solid, and in trying to break
the viscous meniscus around their foot, they fall.

There, of course, remain a lot of unanswered questions that need
further investigation. For instance, the problem of ’viscous tweezer’
needs further elucidation, especially the mechanism of ’viscous arrest’
- when the two plates are separated very fast, the contact line of the
drop at the top (which is much more viscous than the bottom plate)
gets ’frozen’. Consequently, as the contact line at the bottom recedes
to zero, the drop is captured at the top. A better understanding of
the mechanism of ’viscous arrest’ would perhaps shed more light on
the problem. Another unfinished work is modelling the force versus
velocity curve in the rolling regime as observed for spheres rolling
down infused solids. The highly dynamical nature of the regime and
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lack of information about the flow geometry in the tail pose difficul-
ties that need be circumvented in clever ways.

Nevertheless, through the series of experimental works presented
in this thesis, we saw what a unique ambiguous material a liquid-
infused solid is! It is hemi-solid, hemi-liquid, sometimes slippery,
sometimes sticky, sometimes both, sometimes neither. Such are its
many original properties that the only true description of a liquid-
infused solid can perhaps be given only in the words of Radio Yerevan:

“In principle, yes.”
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∫
x / l n x

We wish to prove here that
∫
dx/ ln x ∼ x/ ln x for small x, where the

left hand side is also called the logarithmic integral function, Li(x) .

∫
dx

ln x
=

x

ln x
+

∫
dx

(ln x)2
(Integration by parts)

∫
dx

(ln x)2
=

x

(ln x)2
+

∫
2x

(ln x)3
.
1

x
dx (Integration by parts)

Adding the equations, and cancelling
∫
dx/(ln x)2 from both sides,

we get

∫
dx

ln x
=

x

ln x
+

x

(ln x)2
−

∫
dx

(ln x)3

∴
∫
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ln x
=
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1
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+
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+ ...

)

From the above expression it follows that for small x (as well as for
large x),

Li(x) =

∫
dx

ln x
→ x

ln x
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A bubble of a pure liquid is ephemeral. If one blows air bubbles in
pure water, the bubbles do not even last a second, but add a little bit
of surfactant, the lifetime of the bubble can be dramatically increased,
the extent of the increase depending on the quantity and nature of
the surfactant. However, addition of surfactants inevitably make the
system impure. Is it possible to have a way to not alter the ’purity’ of
the liquid, but increase the lifetime of the bubble?

H  O  T

Figure 95: The Experiment. Left: Schematic of the experiment. A bath,
roughly 5 cm deep, full of silicone oil, is kept on a hot plate. A sy-
ringe is used to blow a bubble within the oil. The buoyant bubble
emerges out from the bath, and is held in place by a copper wire.
c) Experimental image of a bubble on a silicone oil bath held in
place by the copper wire.

In an attempt to answer this question, we came up with a simple
idea - blowing bubbles into a hot bath. Perhaps a Marangoni flow
would make the ephemeral bubbles live longer.

Our experimental set-up comprises a bath of silicone oil that has
η = 96mPa-s at room temperature placed on hot plate set a fixed
temperature. The temperature at the interface of the bath is measured
with a separate thermocouple. We blow a bubble into the silicone
oil bath using a syringe. As the bubble detaches from the needle,
buoyancy makes its move up to the interface where we hold it in

1 The germ of this problem came from the observation of chimneys in Leidenfrost
drops in the experiments of Ambre Bouillant.
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Figure 96: Lifetime of a Bubble. Lifetime of bubbles (whose radius of curva-
ture is greater than 4mm) plotted against the temperature at the
interface reveals an increase by three orders of magnitude in life-
time, when the silicone oil is heated to 160◦C. The experiments
were done using silicone oil of viscosity η = 96mPa-s (at room
temperature)

place with a copper wire, as shown in Figure 95. We now observe the
bubble until it pops.

Bubbles which are the size of the capillary length or smaller tend
to live indefinitely, irrespective of the temperature of the bath tem-
perature. This is why we limit ourselves to bubbles whose radius of
curvature are greater than 4mm, to look at the effect of temperature
on big bubbles (larger than the capillary length ∼ 2mm). In Figure
96, we plot the lifetime of the bubbles versus the interface tempera-
ture. Despite the consistent scatter, a hallmark of the fragility of the
bubbles, the lifetime of the bubbles increase by three orders of mag-
nitude, when the temperature is increased from 40◦C to 160◦C. The
lack of data points below 40◦C is because it is extremely difficult to
generate a large bubble near room temperature. Nevertheless, the dra-
matic increase in the lifetime shows that indeed bubbles live longer
and longer on hotter and hotter baths.

In order to accurately measure the temperature differential ∆T be-
tween the top and the bottom of the bubble, we perform infra-red
imaging of the bubble, which gives us the temperature profile of the
bubble. We note that ∆T increases linearly with the interface temper-
ature (Figure 97). This means that the lifetime is also an increasing
function of ∆T , increasing by three orders of magnitude in lifetime
when ∆T is increased by a factor of 6, from 10◦C to 60◦C. The scatter
persists, nevertheless, as it does in Figure 96.
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Figure 97: Lifetime and Temperature gradient. Left: Temperature differen-
tial between the top and bottom of the bubble plotted against the
interface temperature reveals a linear relationship. Right: Lifetime
of the bubble plotted against the temperature differential reveals
a general increase by three orders of magnitude in lifetime, as ∆T
is increase by a factor of 6.

The next observation we make about the temperature distribution
in the bubble is that the temperature differential is independent of
the size of the bubble. This can be seen in Figure 97 where the tem-
perature gradient for bubbles with a fixed temperature differential
when plotted against the radius, we find an inverse proportionality.
We also note from Figure 97 that at higher temperature differentials,
it is possible to make larger and larger bubbles. For instance, with
a ∆T = 45◦C to 55◦C, we see that it is possible to make centimetric
bubbles, whereas for a ∆T < 15◦C, bubbles are typically 4mm in size.

This brings us to the most curious part of the heated bubble - its
cold ’cap’, that keeps dripping. In Figure 99, we show successive top-
down infra-red images of a heated bubble. The first frame shows that
bubble has a colder blue region on the top, surrounded by a hotter yel-
low region. A temperature profile taken along the dotted line reveals
the temperature is higher at the ends ≈ 95◦ and colder at the center
≈ 65◦. After 0.27 s, we see that a tongue of colder fluid drips down
from the top into the bath in the next 0.1 s. Four successive snapshots
are shown at 30ms interval to show the successive steps in the drip-
ping. The corresponding temperature profiles reveal a lowering of the
temperature in the region where the tongue flows down, and back to
the original thermal distribution, once dripping is complete.

The drip is not an isolated incident, it continues to happen peri-
odically. In this particular example, at an interval of 0.27 s the drips
would start to fall and falling time would be typically 0.1 s. The sum
of the two may be called the total dripping time τD ≈ 0.37 s.

The formation of the cold ’cap’ and the drip both are inextricably
related to the long life of the bubble. The temperature differential be-
tween the top and the bottom of the bubble sets up a surface tension
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Figure 98: Temperature gradient.a) Temperature gradients plotted against
the radius of the drop for experiments done at different temper-
atures from 40◦C to 160◦C. At first glance there appears to a lot
of scatter, but when we plot the data corresponding to a fixed
temperature differential 25◦C to 35◦C (black) and 45◦C to 55◦C
(yellow), we see that the temperature gradient is inversely pro-
portional to the radius (as shown by the dotted line fits which are
inversely proportional). This reveals that ∆T is independent of R.

gradient ∆γ, which generates a Marangoni flow across the bubble.
This flow is precisely what counters the gravitational drainage of the
bubble and increases its lifetime. However the flow also leads to an
accumulation of liquid at the top, which is colder than the bath tem-
perature. The copper wire also helps here is maintaining a colder tem-
perature, but the cap is observed even without the copper wire. The
accumulation happens around the copper wire thickening its menisci
with the bubble (distinctly visible in Figure 95). Once the accumulated
liquid is too heavy to remain adhered to the copper wire in an annu-
lar cap, it drips onto one side as a tongue of liquid. In the absence of
the copper wire, there is a continuous flow from the top down, and
the stream of cold liquid flowing down can be directly visualized in
an IR video. In this sense, the dripping effect which happens with
a very regular period is a direct consequence of the existence of the
copper wire. However, this has a great advantage, that we discuss
now.

A signature of the lifetime of a bubble is its fragility - its scatter.
This makes lifetime not a good reproducible physical parameter to
quantitatively demonstrate the effect of increase or decrease in the
lifetime. This is precisely where the dripping time τD serves as a great
substitute. The dripping time is the time in which the Marangoni
flow has accumulated at the top. The longer the dripping time, the
slower the Marangoni flow, the stronger the gravitational drainage,
the smaller the lifetime of the bubble. In other words, long-lived bub-
bles should have small dripping times.
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Figure 99: Drips and Temperature profile.IR imaging of a bubble on a sil-
icone oil at an interface temperature of 100◦C. Successive snap-
shots show the formation and drip of a colder ’cap’ of fluid from
the top. On the right, we have the corresponding temperature
profiles as measured across the dotted line.
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Figure 100: Dripping Time. Dripping time plotted against the interface tem-
perature. The dashed line follows a slope −5/3.

Let us now see if we can build a small model to predict the drip-
ping time. Given that there exists a thermally induced Marangoni
flow in the bubble, we can now argue that the bubble thickness is
bulit in a Landau-Levich-Derjaguin framework, which allows us to
write the thickness e of the bubble as eκ ∼ (∆γ/γ)2/3, where we
have replaced the velocity in the Capillary number by the Marangoni
velocity U ∼ ∆γ/η. The mass flow rate is given by ṁ ∼ ρ(Re)V ∼

ρRκ−1(∆γ/γ)2/3(∆γ/η). The maximum amount of liquid that can
accumulate at the top between the copper wire and the bubble is
M ∼ ρκ−3. Equating M/τD with ṁ, we get the dripping time as

τD ∼ (κ−2/R)(η/γ)(∆γ/γ)−5/3 (68)

As ∆γ ∝ ∆T , and from Figure 97, we know that in our experiments
∆T ∝ T , we can write ∆γ ∝ T . Substituting this relation in Equation 68

gives us τD ∝ T−5/3. Indeed, in Figure 100, we see that the lifetime
follows a −5/3 law in temperature. This gives us more confidence
in our original hypothesis - blowing bubbles into a hot bath may
increase the lifetime of bubbles.

In other words, Marangoni would not let a bubble die young!
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A cold surface in contact with the atmospheric air forms dew drops,
turning the surface opaque, if it is a transparent one. One of the quests
in the field of anti-fogging has been to create a surface where dew
drops are naturally removed or suppressed from coming into exis-
tence. In this context, a decade ago, it was shown that on superhy-
drophobic surfaces, dew drops may coalesce and eject spontaneously
[124]. Unfortunately jumping rates on typical superhydrophobic sur-
faces are very modest ∼ 1% of the entire droplet population, thus
making it not as ideal for anti-fogging characteristics.

However, more recently, Timothée Mouterde, in collaboration with
Thales teams, showed that on surfaces nanotextured by cones, also
called nanocone surfaces, the ejection rate typically reaches 90%, com-
pared to less than 1% when the surfaces are nanotextured by cylin-
ders of the same geometrical characteristics as the cones (identical
height and spacing, of the order of 100 nm) [77]. Such remarkable
ability to eject droplets in conjunction with really low nucleation rates
indeed makes nanocone surfaces a potentially a ’truly’ anti-fogging
material.

In this short note, we look at the nucleation characteristics of such
nanocone surfaces. In particular, we wish to ask two questions - first,
does a nanocone surface has a intrinsic set of nucleation sites - a
hydrophilic map of itself that it ’remembers’? If so, is it the memory of
the intrinsic hydrophilic map or the memory of the drop that has taken
off that stays with the nanocone surface?

We start the experiment by bringing the nanocone sample to a tem-
perature of 4◦C in 11 s, and the water nuclei formed are observed
after 55 s as shown in Figure 102, where the square has a side length
of 700µm. The observation time is chosen just before the first coales-
cence occurs. In this particular case, 1066 nuclei are observed, very
homogeneous in size (about 5µm in radius) and separated from each
other by an average distance of 22µm . Two experiments are then
conducted.

1 Other characters in the story are Timothée Mouterde, Pierre Lecointre, and Krishan
Bumma.
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a) b)

c)

Figure 101: Nanocone Solids. a) Top: SEM image of a nanocone surface
(sample C) where the cones are 115 nm high and spaced 52nm
apart. Below: AFM of nanotextures on cicada (Psaltoda claripen-
nis) wings shown by atomic force microscopy, adapted from
[125]. b) Perecntage of drops jumping off from the surface. b)
Temporal evolution of the percentage N of coalescences that suc-
cessfully result in droplet jumps for nanopillar surface (sample
A) and nanocone surface (sample C) (red squares). c) Breath fig-
ures on nanpillar (sample A) and nanocone surface (sample C)
under a microscope after 20 s, 5min, 10min, 20min, and 45min.
While the nanopillar surface (sample A) is gradually invaded
with dew drops that keep growing larger and larger due to the
lack of droplet departure, for the nanocone surface (sample C,) a
stationary state is reached after 10 minutes, because the droplet
jumping is compensated by the nucleation and growth of new
water nuclei. All figures are adapted from the work of Timothée
Mouterde et al. [77]
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100 µm

Figure 102: Nucleation. Experimental micrograph of a nanocone surface
55 s after nucleation at a temperature of 4◦C.

1) First, we consider a subpopulation of 150 nuclei and we plot
the number n of nuclei reappearing on these same sites throughout
a condensation experiment lasting about 30 minutes. Figure 6 shows
the recondensation histogram. We can see that the probability of hav-
ing at least one re-nucleation (n > 1) on a given site is 96%, a very
high percentage. These sites are often very active, since 35% of them
will give more than 10 re-nucleations. Thus, the initial nucleation map
or hydrophilic map (Figure 102) appears to be of primary importance
for understanding what happens next, and it confirms the idea that
observation over time is strongly correlated with the existence of such
a hydrophilic map of the sample.

It is instructive to compare these numbers to those related to a
site where a droplet appears ”extrinsically”: we have observed in our
videos about a hundred drops appearing suddenly, at a ”blank” loca-
tion on the sample, the result of a coalescence that propelled a droplet
parallel to the surface rather than perpendicularly. These droplets
stop at a certain location in the sample not defined by the hydrophilic
map, and they grow there before merging with their neighbor and tak-
ing off. However, the probability of re-nucleating at these locations is
only 7% (instead of 96% in Figure 103), showing that the presence of
”intrinsic” hydrophilic sites is more important than the ”memory” of
a drop that has taken off, and, one would assume, left behind a little
water acting as a hydrophilic site.
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Figure 103: Histogram of Re-nucleation.

2) In a second step, we continue the experiment of Figure 102 by
heating the sample at room temperature until the water nuclei dis-
appear, then by cooling it again either at the same temperature (here
2.4◦C), or lower, as in Figure 104 where we went down to 1.4◦C, tem-
perature at which the supercooling of water allows it to remain liquid.
The correlation between the two successive hydrophilic maps is thus
measured.

The representation convention is as follows: the black dots circled
in yellow are those where nucleation had taken place in Figure 102

and where nucleation is taking place again: the approximately 1, 000
sites revealed by Figure 102 are all, without exception, reactivated;
148 new sites also appear, a logical fact since the temperature was
lowered in this second experiment - a temperature that ”activated”
new nucleation sites. But the initial map remains largely in the major-
ity, the proportion of new sites being only 14%.

Doing the same experiment by going down to 5.1◦C, instead of2.4◦C
in Figure 102, activates 986 sites, a slightly lower but comparable fig-
ure; and warming and then cooling to this same 5.1◦C temperature
shows an almost absolute correlation, the number of sites being then
989 (with a complete overlap). Reheating then cooling to 4.6◦C (it is
not easy to achieve perfect temperature cycles) leads to the activation
of 1020 sites, a slightly higher number, with again an exact overlap of
the sites already activated.

These experiments thus confirm the prevalence of the initial hy-
drophilic map and justify its existence (this distribution could have
been random, and a new experiment would reveal a new distribution
de-correlated from the first one). It suggests that this map could be
used to drive the blast pattern, for example by encouraging nucle-
ation on points or areas that are non-hazardous for the user (sacrifi-
cial sites), allowing to minimize nucleation on other windows of the
sample.
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100 µm

Figure 104: Hydrophilic Map. A nanoncone surface is cooled to 4◦C and
dew drops appear. The surface is then subsequently heated up
to room temperature and cooled down to 1.4◦C, when dew
drops appear again. Black dots circled in yellow are those where
nucleation had taken place at 4◦C and where nucleation is tak-
ing place again at 1.4◦C, whereas yellow circles are where dew
drops nucleate at 1.4◦C, but had not at 4◦C.
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of friction laws on liquid-infused materials.” In: Phys. Rev. F
5.1 (2020), p. 014005.

[77] T. Mouterde, Gaélle Lehoucq, Stéphane Xavier, A. Checco, C.
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ABSTRACT 
 
A textured solid infused with a liquid comprises a class of materials in between a liquid and a 
solid. Unlike classical solids, these materials typically exhibit extraordinarily little adhesion, 
due to the marginal role of pinning sites. In this thesis, we experimentally investigate the 
original spreading, adhesion and frictional behaviour of these special materials, the physics of 
which we capture with the construction of scaling laws, wherever possible.  
 
In the first section, we show that infused solids, despite their celebrated slipperiness, slow 
down the spreading of a water drop in comparison to classical solids. The situation, however, 
is opposite for viscous drops, where spreading can be substantially enhanced by slip at the 
oil/drop interface. In the second section, we demonstrate that contrary to the vanishing lateral 
adhesion of these materials, their vertical adhesion is remarkably high. The dynamical 
adhesion of these solids can be utilized to create a viscous tweezer for water droplets. Finally 
in the third section, we discuss the friction properties of liquid-infused solids towards solid 
beads and describe in particular how these rolling spheres drag a tail behind them.  

MOTS CLÉS 
 
solides imprégnés de liquide, gouttes, mouillage, adhésion, friction 

RÉSUMÉ 
 
Un solide texturé infusé est un matériau ambigu, sa surface étant mi-solide, mi-liquide. En 
conséquence, ces matériaux présentent généralement une adhérence extraordinairement 
faible qui les rend spécialement glissants pour des gouttes (d'un autre liquide) qu’on y 
dépose. Nous étudions dans cette thèse quelques comportements originaux de ces surfaces 
en termes de mouillage, d’adhésion et de friction – à la fois d’un point de vue expérimental et 
en loi d’échelle, quand c’est possible.  
 
Dans la première section, nous montrons que les solides infusés, supposés ultra-glissants, 
ralentissent pourtant l'étalement d'une goutte d'eau par rapport aux solides classiques. La 
situation est opposée pour des gouttes visqueuses, dont l'étalement peut être nettement 
accéléré par le glissement à l'interface huile/goutte. Dans la deuxième section, nous 
montrons que, contrastant avec l’adhésion horizontale ultra-faible de ces matériaux, leur 
adhérence verticale peut être élevée et servir à capturer un liquide par viscosité (pince 
visqueuse).  Dans la troisième section enfin, nous discutons des propriétés de friction de 
billes solides dévalant sur des surfaces infusées et décrivons en particulier comment ces 
sphères roulantes engendrent une traînée visqueuse derrière elles. 

KEYWORDS 
 
Liquid-infused Solids, Drops, Spreading, Adhesion, Friction 
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