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Résumé

Cette thèse est motivée par la modélisation mathématique de l’hétérogénéité des contacts dans les
populations humaines et son impact sur la dynamique et le contrôle d’une maladie transmissible.

La première partie de la thèse porte sur l’étude d’unmodèle SIS (Susceptible/Infected/Susceptible)
déterministe en dimension infinie qui prend en compte l’hétérogénéité des contacts dans une
population de grande taille. Grâce aux propriétés monotones que vérifient les solutions de ces
équations différentielles, nous prouvons un résultat qui, comme pour les modèles en dimension
finie, donne le comportement en temps long de la proportion d’infectés. En effet, le nombre de
reproduction de base ℜ0, défini comme le rayon spectral d’un opérateur à noyau, détermine s’il
existe un équilibre endémique stable (ℜ0 > 1) ou si toutes les solutions convergent vers l’état
d’équilibre sans individus infectés (ℜ0 ≤ 1).

Nous formalisons et étudions ensuite le problème de distribution optimale d’un vaccin qui
immunise complètement les individus qui le reçoivent. Quand on suppose que les contacts sont
homogènes et que ℜ0 > 1, il suffit de vacciner une proportion 1 − 1/ℜ0 de la population atteindre
l’immunité de groupe et éradiquer la maladie selon le théorème du seuil. Dans les modèles hété-
rogènes, ce théorème reste vrai mais avec une meilleure répartition des doses, on peut espérer
atteindre l’immunité de groupe à moindre coût. Ainsi, nous étudions le problème où l’on cherche
à minimiser à la fois le coût de la vaccination et une fonction perte qui peut être soit le nombre
de reproduction effectif, soit la proportion totale d’infectés dans l’état endémique. En prouvant la
continuité de ces deux fonctions pertes par rapport à une certaine topologie bien choisie, nous
obtenons l’existence de stratégies Pareto optimales. Nous montrons également que si le nombre de
reproduction de base est strictement supérieur à 1, alors la stratégie qui consiste à vacciner selon
le profil des susceptibles dans l’état endémique est critique au sens où elle conduit à un nombre
de reproduction effectif égal à 1.

Enfin, nous étudions les propriété du nombre de reproduction effectif et le problème de mini-
misation bi-objectif associé. Nous démontrons une généralisation de la conjecture de Hill-Longini
sur la concavité et la convexité du nombre de reproduction effectif ainsi que d’autres résultats
théoriques sur cette fonction perte. Ces derniers seront ensuite illustrés par de nombreux exemples.
En particulier, les trois questions suivantes nous guideront notre analyse.

- Est-il possible de toujours vacciner optimalement quand les doses de vaccins ne sont dispo-
nibles qu’au fur et à mesure?

- Quel est l’effet de l’assortativité (propension des individus à créer des liens avec des individus
aux caractéristiques communes) sur le profils des vaccination optimale?

- Que se passe-t-il quand tous les individus de la population ont le même nombre de contacts ?

Mots-Clés : Équation différentielle en dimension infinie, Équilibre endémique, Modèle SIS, Nombre
de reproduction, Opérateur à noyau, Problème d’optimisation bi-objectif, Problème d’optimisation
sous contraintes, Rayon spectral, Stabilité d’un équilibre, Stratégie de vaccination.
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Abstract

This thesis is motivated by the mathematical modelling of heterogeneity in human contacts and
the consequences on the dynamic and the control of contagious diseases.

In the first part of the thesis, we introduce and study an infinite-dimensional deterministic SIS
(Susceptible/Infected/Susceptible) model which takes into account the heterogeneity of contacts
within a large population. Thanks to the monotonic properties of the flow of these equations,
we prove a result on the long-time behavior of the proportion of infected people. The basic
reproduction number ℜ0, defined as the spectral radius of a kernel operator, determines whether
there exists a stable endemic equilibrium (ℜ0 > 1) or if all the solutions tends to the disease-free
equilibrium (ℜ0 ≤ 1).

As an application, we formalize and study the problem of optimal allocation strategies for a
vaccine that completely immunize from the disease those who received it. When we suppose that
the contacts in the population are homogeneous, the threshold theorem states that the incidence of
the infection will decrease if the proportion of vaccinated persons in the population is at least equal
to 1 − 1/ℜ0. In inhomogeneous models, this theorem remains true but with a better allocation
of vaccine doses, we can hope for reaching herd immunity at lower cost. Hence, we study the
problem where one tries to minimize simultaneously the cost of the vaccination, and a loss that
may be either the effective reproduction number, or the overall proportion of infected individuals
in the endemic state. By proving the continuity of these two loss functions, we obtain the existence
of Pareto optimal strategies. We also show that vaccinating according to the profile of the endemic
state is a critical allocation, in the sense that, if the initial reproduction number is larger than 1,
then this vaccination strategy yields an effective reproduction number equal to 1.

The last part of the thesis is a detailed study of the effective reproduction number and the
bi-objective minimization problem associated. We prove a generalization of the Hill-Longini
conjecture on the concavity and convexity of the effective reproduction number along with other
theoretical results on this loss function. We then illustrate with multiple examples those properties.
In particular, we investigate the three following questions.

- Is it possible to always vaccinate optimally when the vaccine doses are given one at a time?

- What is the effect of assortativity (the tendency to have more contacts with similar individ-
uals) on the shape of optimal vaccination strategies?

- What happens when every individuals have the same number of neighbors?

Keywords: Bi-objective optimization problem, Constrained optimization problem, Endemic equi-
librium, Equilibrium stability, Infinite-dimensional differential equation, Kernel operator, SIS
model, Reprocuction number, Spectral radius, Vaccination strategy.
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2 I.1 Bref historique de la modélisation mathématique des épidémies

I.1 Bref historique de la modélisation mathématique des épidé-
mies

Dans cette première section, nous présentons une série de modèles fondateurs en épidémiologie qui
illustrent comment la compréhension que nous avons de la dynamique des maladies transmissibles
a évolué au cours de l’histoire. Nous nous intéresserons en particulier à la modélisation des effets
de la vaccination.

I.1.1 Les origines : Bernoulli et l’étude de la variolisation

L’histoire de la modélisation des maladies transmissibles1 remonte aux travaux de Daniel Bernoulli
qui montre mathématiquement en 1760 les bénéfices de l’inoculation malgré les risques liés à cette
pratique. Revenons rapidement ici sur le modèle de Bernoulli et le contexte dans lequel a il a été
publié. Nous commençons par une présentation rapide de la variole. Pour plus de détails, nous
renvoyons le lecteur à la monographie Smallpox and its Eradication [59] qui retrace l’histoire de
cette maladie et en donne la description clinique.

La variole, aussi appelée petite vérole, est une maladie virale fortement contagieuse vraisem-
blablement apparue au ive millénaire avant Jésus Christ en Inde ou en Égypte. Elle se transmet
principalement par voie respiratoire rapprochée (postillons, aérosols). La variole se caractérise
par des éruptions cutanées, l’apparition de pustules sur le corps et une forte fièvre. Au cours de
l’histoire, de nombreuses vagues épidémiques ont touché durement la plupart des civilisations
humaines jusqu’à l’éradication de la maladie en 1980 grâce à la vaccination. Au xvii ie siècle, on
estime à plus de 400 000 le nombre de victimes de la variole chaque année en Europe.

En mars 1718, la femme de l’ambassadeur d’Angleterre en Turquie, Lady Mary Mortley Mon-
tagu, inquiète des ravages de la variole qui a déjà emporté son frère, décide de faire inoculer son
fils à Constantinople. Cette technique importée de Chine et relativement répandue dans l’empire
Ottoman consiste à introduire dans les plaies un morceau de coton imbibé de pus variolique prélevé
sur des malades. Suite au succès de l’opération, elle fait varioliser sa fille 3 ans plus tard alors
qu’elle est de retour à la cour royale d’Angleterre. La technique va peu à peu se populariser en
Angleterre puis dans le reste de l’Europe malgré les vives controverses qu’elle suscite.

En France, la variolisation est introduite par le docteur Théodore Tronchin qui inocule son
fils et les enfants du Duc d’Orléans en 1756. Charles Marie de la Condamine, célèbre savant
français, fera campagne pour son usage généralisé dans plusieurs memoranda. Cependant de
nombreux médecins et scientifiques de l’époque s’opposent à cette pratique en raison de ses
risques. Ses détracteurs l’accusent aussi de provoquer des épidémies, les personnes inoculées étant
contagieuses.

Poussé par son ami Pierre Louis Moreau de Maupertuis, Daniel Bernoulli, neveu de Jacques
Bernoulli et professeur de physique à l’université de Bâle, s’intéresse à ces controverses et tente
d’y apporter une réponse mathématique. En 1760, il envoie à l’Académie des Sciences de Paris un
manuscrit dont l’objectif est de calculer le gain d’espérance de vie en cas de variolisation de toute
la population. Le 16 avril, son manuscrit est présenté en lecture publique et ne sera publié qu’en
1766 [16]. Nous reprenons ci-dessous le modèle de Bernoulli revisité par Dietz et Heesterbeek et
présenté sous un formalisme moderne [44].

La population est structurée par âge et est divisée en deux catégories : les individus susceptibles
et les individus infectés ou inoculés qui sont désormais immunisés. Le taux de mortalité des
individus d’âge 𝑎 hors variole est noté 𝜈(𝑎). La force d’infection 𝜆(𝑎) (en anglais infection force) est
définie comme le taux de contamination des susceptibles et dépend de leur âge. Enfin, on note 𝑐(𝑎)
la probabilité de mourir en attrapant la variole à l’âge 𝑎. Ainsi, un individu d’âge 𝑎 guérira de la
variole et en sera immunisé avec une probabilité 1 − 𝑐(𝑎). La probabilité 𝑢(𝑎) pour un nouveau-né

1On parle plus communément de modélisation mathématique des maladies infectieuses mais cette terminologie est
imprécise. En effet, certaines maladies comme le tétanos sont bien infectieuses mais ne peuvent pas être transmises.
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Figure I .1 : Evolution de la probabilité de survie des individus avec et sans la variole.

de vivre jusqu’à l’âge 𝑎 sans avoir attrapé la variole vérifie l’équation différentielle :

d𝑢
d𝑎

= −(𝜆(𝑎) + 𝜈(𝑎))𝑢, (I.1)

avec pour condition initiale : 𝑢(0) = 1. La probabilité 𝑤(𝑎) pour un nouveau né de vivre jusqu’à
l’âge 𝑎 en ayant attrapé la variole est donnée par la dynamique :

d𝑤
d𝑎

= (1 − 𝑐(𝑎))𝜆(𝑎)𝑢(𝑎) − 𝜈(𝑎)𝑤. (I.2)

À la naissance, le nouveau né n’est pas contaminé et donc 𝑤(0) = 0. Notons Λ et 𝑀 les primitives
de 𝜆 et 𝜈 respectivement s’annulant en 0. En intégrant ces équation linéaires, nous obtenons que
la probabilité de survie jusqu’à l’âge 𝑎, ℓ(𝑎) = 𝑢(𝑎) + 𝑤(𝑎), s’exprime ainsi :

ℓ(𝑎) = ℓ0(𝑎) (e−Λ(𝑎) + ∫
𝑎

0
(1 − 𝑐(𝑡))𝜆(𝑡)e−Λ(𝑡)d𝑡) , (I.3)

où et ℓ0 est la probabilité de survie d’un individu jusqu’à l’âge 𝑎 en l’absence de variole :

ℓ0(𝑎) = e−𝑀(𝑎). (I.4)

À partir de ce modèle, Bernoulli veut calculer le gain d’espérance de vie obtenu en cas d’éradi-
cation de la variole (par l’inoculation de toute la population). Pour cela, il s’appuie sur les travaux
d’Edmond Halley. En analysant les données démographiques de la ville de Breslau de 1687 à 1691,
cet astronome anglais a estimé la quantité ℓ(𝑎), pour des âges 𝑎 compris entre 0 et 83 ans [73].
N’ayant aucune donnée sur l’incidence de la variole et son taux de létalité, Bernoulli suppose
simplement que 𝜆 et 𝑐 sont constants et égaux à 1/8. En utilisant l’Équation (I.3), il compare dans
un tableau les valeurs de ℓ0 et de ℓ pour des valeurs de 𝑎 comprises entre 0 et 25 ans. Nous avons
tracé les courbes correspondantes dans la Figure I.1 que nous avons étendues à toute la plage d’âge
donnée dans la table de Halley. Finalement, Bernoulli estime, par intégration, que l’espérance de
vie progresserait de 3 ans et 2 mois en cas d’éradication de la variole.

Au-delà de leur intérêt historique, les travaux de Bernoulli nous montrent que, dès le départ, la
modélisation mathématique des maladies transmissibles a été utilisée pour essayer d’apporter une
justification rigoureuse à l’application d’une politique sanitaire. Avec la pandémie de Covid-19 qui
sévit aujourd’hui, il est désormais acquis que la modélisation mathématique tient une place très
importante dans la protection des populations contre les maladies contagieuses.
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I.1.2 Les travaux fondateurs de Kermack et McKendrick

Le modèle de Bernoulli est révolutionnaire pour l’époque mais il suppose que la force d’infection
𝜆 ne dépend que de l’âge de l’individu ce qui ne permet pas de modéliser un certain nombre de
phénomènes qui apparaissent dans la dynamique des maladies transmissibles (vagues épidémiques,
croissance exponentielle du nombre de cas à l’apparition d’une nouvelle infection). Au début du
xxe siècle, le médecin et épidémiologiste écossais McKendrick s’inspire de la loi d’action de
masse qui stipule que deux réactifs chimiques réagissent à une vitesse proportionnelle à leur
concentration. En supposant que les individus d’une population sont comme les particules d’un
gaz qui se déplacent aléatoirement dans l’espace et que les collisions entre les individus sains et
les individus infectés aboutissent à des infections, il propose de considérer une force d’infection
de la forme 𝜆 = 𝐾𝐼, où 𝐾 est une constante appelée le taux de transmission de la maladie et 𝐼
est la proportion d’individus infectés. Nous renvoyons à [78] pour une chronologie détaillée de
l’introduction du principe d’action de masse en épidémiologie.

Dans leur article de 1927 [95], McKendrick et le biochimiste écossais Kermack proposent de di-
viser la population en classes épidémiologiques et de décrire leurs évolutions grâce à des équations
différentielles – la force d’infection étant donnée par le principe d’action de masse. Cette approche
fut ensuite étendue dans deux autres articles scientifiques quelques années plus tard [96, 97]. Dans
leur premier article, Kermack et McKendrick présentent un système d’équations différentielles qui
est maintenant bien connu sous le nom de modèle SIR (de l’anglais Susceptibles/Infected/Recovered).
Ils supposent que la population est divisée en trois compartiments : les personnes susceptibles
(ou sensibles), les personnes infectées et les personnes guéries. La proportion d’individus de la
population dans chacune de ces trois classes est notée 𝑆, 𝐼 et 𝑅 respectivement. L’évolution de ces
quantités au cours du temps est alors donnée par les équations :

⎧
⎪

⎨
⎪
⎩

d𝑆
d𝑡 = −𝐾𝑆𝐼 ,

d𝐼
d𝑡 = 𝐾𝑆𝐼 − 𝛾 𝐼 ,

d𝑅
d𝑡 = 𝛾𝐼 ,

(I.5)

En effet, rappelons que la force d’infection – définie comme le taux de contamination des suscep-
tibles – est donnée à chaque instant par 𝜆(𝑡) = 𝐾𝐼 (𝑡) selon la loi d’action de masse. Ainsi, la dérivée
par rapport au temps du nombre de nouvelles infections divisée par le nombre total d’individus
dans la population au temps 𝑡 est égale à 𝜆(𝑡)𝑆(𝑡) = 𝐾𝑆(𝑡)𝐼 (𝑡). On fait également l’hypothèse que
les individus infectés guérissent à vitesse 𝛾 et qu’une fois guéris, ils sont définitivement immunisés
contre la maladie.

Il apparaît que la quantité 𝑆 + 𝐼 + 𝑅 est conservée au cours du temps et égale à 𝑆(0) + 𝐼 (0) +
𝑅(0) = 1. Cela est cohérent avec le modèle qui suppose que chaque individu peut être classé
dans exactement un compartiment épidémiologique à tout instant 𝑡. On ne peut pas résoudre
analytiquement le système (I.5). On peut néanmoins montrer que le système converge en temps
long vers un équilibre (𝑆∞, 0, 𝑅∞) qui est l’unique solution de l’équation implicite :

𝑆∞ = 1 − 𝑅∞ = 𝑆(0)e−ℜ0(𝑅∞−𝑅(0)), (I.6)

où ℜ0, le nombre de reproduction de base, est défini par la formule :

ℜ0 =
𝐾
𝛾
⋅ (I.7)

Il correspond au nombre moyen de cas directement générés par un individu infecté au cours de sa
maladie dans une population où toutes les autres personnes sont sensibles à l’infection. Siℜ0 ≤ 1, le
nombre d’infectés dans la population décroît pour toute condition initiale (𝑆(0), 𝐼 (0), 𝑅(0)) ∈ [0, 1]3
telle que 𝑆(0)+ 𝐼 (0)+𝑅(0) = 1. Siℜ0 > 1 et la quantité de susceptible est suffisamment grande (i.e.,
𝑆(0) ≥ 1 − 1/ℜ0), alors le nombre d’infectés croît au début de l’épidémie. Pour beaucoup d’autres
modèles comme le modèle SIS (Susceptible/Infected/Susceptible) défini ci-dessous, la valeur que
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prend le nombre de reproduction de base a une importance encore plus grande car elle détermine
si l’infection est endémique ou si elle régresse jusqu’à son éradication totale.

Certaines maladies ne confèrent pas une protection aux personnes ayant déjà attrapé la maladie.
Si l’on suppose que les individus infectés ne sont pas immunisés une fois qu’ils sont guéris mais
qu’ils redeviennent susceptibles, alors il ne reste plus que deux compartiments dans la population
et on obtient le modèle SIS :

{

d𝑆
d𝑡 = −𝐾𝑆𝐼 + 𝛾 𝐼 ,

d𝐼
d𝑡 = 𝐾𝑆𝐼 − 𝛾 𝐼 .

Une nouvelle fois, la quantité 𝐼 + 𝑆 est conservée au cours du temps et égale à 1 et donc on
peut réécrire la dynamique de l’épidémie en donnant seulement l’évolution de la proportion de
personnes infectées :

d𝐼
d𝑡

= (1 − 𝐼 )𝐾𝐼 − 𝛾 𝐼 . (I.8)

Pour ce modèle, il est possible de résoudre ces équations analytiquement. Si ℜ0 est différent de 1,
alors on a la formule :

𝐼 (𝑡) =
ℜ0 − 1

ℜ0 + ((1 − ℜ0)/𝐼 (0) − ℜ0)e(1−ℜ0) 𝑡/𝛾
⋅

Siℜ0 est égale à 1, alors la proportion d’individus infectés dans la population au temps 𝑡 est donnée
par l’équation :

𝐼 (𝑡) =
1

(1/𝐼 (0)) + 𝑡/𝛾
⋅

Ainsi, le comportement en temps long de la dynamique de l’épidémie est déterminé par la valeur
que prend le nombre de reproduction.

Régime sous-critique Si ℜ0 < 1, 𝐼 (𝑡) converge à une vitesse exponentielle vers le seul équilibre
𝐼 = 0, qu’on appelle état d’équilibre sans infection.

Régime critique Si ℜ0 = 1, alors 𝐼 (𝑡) converge encore vers 𝐼 = 0 mais pas exponentiellement
vite. L’état d’équilibre sans infection est encore l’unique équilibre.

Régime sur-critique Si ℜ0 > 1, alors le point fixe 𝐼 = 0 devient instable et un autre équilibre
𝐺 = 1 − 1/ℜ0 apparaît. Il est dit endémique car il correspond à la situation où la maladie
devient persistante dans la population. L’état d’équilibre endémique est globalement stable
au sens où pour toute condition initiale 𝐼 (0) > 0, 𝐼 (𝑡) converge vers 𝐺.

Supposons que ℜ0 > 1 et que l’on dispose d’un vaccin qui immunise les individus contre
l’infection à 𝑡 = 0. Il y a désormais une nouvelle classe épidémiologique dans notre population : les
personnes vaccinées dont la proportion – qui reste constante au cours du temps – est notée 𝑉. Le
taux de contamination des susceptibles est toujours égal à 𝐾𝐼 mais, maintenant, 𝑆(𝑡) = 1 − 𝐼 (𝑡) − 𝑉.
Ainsi, la nouvelle dynamique de la proportion d’individus infectés est alors donnée par :

d𝐼
d𝑡

= (1 − 𝑉 − 𝐼 )𝐾𝐼 − 𝛾 𝐼 . (I.9)

En divisant l’équation précédente par 1 − 𝑉, on retombe sur l’Équation (I.8) où 𝐾 est remplacé par
𝐾(1 − 𝑉 ) :

d𝐽
d𝑡

= (1 − 𝐽 )𝐾(1 − 𝑉 )𝐽 − 𝛾𝐽 , (I.10)

le nombre 𝐽 = 𝐼/(1−𝑉 ) correspondant à la proportion d’infectés dans la population non-vaccinée.
On en déduit la formule du nouveau nombre de reproduction ℜ𝑒 que l’on qualifie d’effectif :

ℜ𝑒 =
𝐾(1 − 𝑉 )

𝛾
⋅ (I.11)
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Maladie Transmission ℜ0 Seuil d’immunité de groupe
Rougeole Aérosols 12-18 92-95%

Coqueluche Aérosols 12-17 92-94%
Varicelle Aérosols 10-12 90-92%
Diphtérie Gouttelettes respiratoires 6-7 83-86%
Rubéole Gouttelettes respiratoires 6-7 83-86%

Poliomyélite Voie fécale-orale 5-7 80-86%
Variole Gouttelettes respiratoires 5-7 80-86%
Oreillons Gouttelettes respiratoires 4-7 75-86%

Table I .1 : Nombres de reproduction estimés et seuils de l’immunité grégaire pour des maladies
transmissibles pouvant être prévenues par vaccination [61].

Supposons que le nombre de reproduction de baseℜ0 est strictement supérieur à 1. Pour que le
nombre de reproduction effectif soit inférieur à 1, c’est-à-dire pour pouvoir mettre fin à l’épidémie,
il faut vacciner au moins une proportion 𝑉 ≥ 1 − 1/ℜ0 d’individus. Ce résultat constitue ce qu’on
appelle parfois le théorème de seuil qui a été formulé pour la première fois par Smith en 1970
[141] et Dietz en 1975 [43]. Il s’agit d’une formulation mathématique du phénomène d’immunité
de groupe (aussi appelé immunité grégaire) en épidémiologie. En vaccinant un individu, non
seulement on le protège directement mais on protège également indirectement les personnes en
contact avec lui car il ne pourra plus leur transmettre la maladie. Ainsi, on peut espérer éradiquer
une maladie sans pour autant avoir à immuniser toute la population.

Le nombre 1 − 1/ℜ0 est appelé seuil d’immunité grégaire. L’objectif général des politiques
de santé publique est d’établir l’immunité de groupe au sein des populations en atteignant ce
seuil. C’est ce qui a été accompli au cours du xxe siècle, avec la vaccination de masse contre
la variole [59]. Le seuil d’immunité grégaire (situé aux environs de 80-85 %) a été ainsi atteint
dans la plupart des pays du monde, permettant d’éliminer cette maladie. Dans la Table I.1, nous
donnons les nombres de reproduction de base et les seuils d’immunité de groupe associés pour
des maladies pouvant être prévenues par vaccination [61]. Comme de nombreux facteurs peuvent
faire fluctuer ℜ0 (par exemple, la saison, la densité de population, etc), ces valeurs ne doivent pas
être considérées comme des constantes précises propres à chaque maladie mais plutôt comme
des grandeurs approximatives qui varient en fonction de l’environnement. Ajoutons à cela qu’en
pratique, aucun vaccin n’offre une protection complète contre un agent infectieux. Ainsi, pour
calculer la proportion de personnes à vacciner, il faut aussi estimer l’efficacité du vaccin en réalisant
des études sérologiques et cliniques. Notons qu’à part la poliomyélite qui est quasiment éradiquée
mondialement et la variole qui a totalement disparu, toutes les autres maladies de la Table I.1 sont
encore endémiques dans beaucoup de pays, y compris des pays développés.

I.1.3 L’hétérogénéité des contacts

Dans la loi d’action de masse, il est supposé que chacune des espèces réactives est répartie de
manière homogène dans le soluté. En épidémiologie, cette hypothèse ne semble pas refléter la
complexité des chaînes de contamination. Selon lemode de transmission de lamaladie, les collisions
que l’on évoquait plus haut entre les individus sains et les individus infectés sont de nature
différentes : relations sexuelles pour les infections sexuellement transmissibles, contacts rapprochés
pour les maladies se transmettant par voie aérienne, etc. Dans tous les cas, ces contacts ne sont
pas homogènes. Les chercheurs ont d’abord essayé de modéliser l’hétérogénéité spatiale [11, 94,
118] ou par âge [86] des populations. Ici, nous nous intéressons plutôt à une approche qui consiste
à diviser la population en groupes d’individus ayant des propriétés similaires. Ainsi, on peut
considérer toute sorte de groupes (sociaux, âge, spatiaux) en fonction de ce qui est adapté pour la
maladie considérée. Pour les épidémies de type SIS, ce modèle dit de métapopulation a été proposé
pour la première fois par Lajmanovich et Yorke en 1976 [102] pour étudier la propagation de la
gonorrhée. On suppose que la population est divisée en 𝑁 ≥ 2 groupes et l’on note 𝛾1, 𝛾2, …, 𝛾𝑁
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les taux de guérison des individus les composant. Le taux de transmission du groupe 𝑗 au groupe 𝑖
est noté 𝐾𝑖,𝑗 pour 1 ≤ 𝑖, 𝑗 ≤ 𝑁. La dynamique de la proportion d’individus infectés dans le groupe
𝑖 ∈ {1, … , 𝑁 } est alors donnée par l’équation :

d𝐼𝑖
d𝑡

= (1 − 𝐼𝑖)
𝑁−1
∑
𝑗=0

𝐾𝑖,𝑗𝐼𝑗 − 𝛾𝑖𝐼𝑖. (I.12)

Ainsi, le modèle de Lajmanovich et Yorke suppose que le groupe 𝑖 possède son propre taux de
guérison 𝛾𝑖 et sa propre force d’infection 𝜆𝑖 où 𝜆𝑖 est égal à une combinaison linéaire des proportions
d’infectés dans chaque groupe. Il est relativement courant de décomposer la matrice des taux de
transmission de la manière suivante 𝐾 = Diag(𝛽)×𝑀 ×Diag(𝜃), où 𝛽 et 𝜃 sont des vecteurs donnant
respectivement la susceptibilité et l’infectiosité des individus des différentes sous-populations et,
pour 𝑖, 𝑗 ∈ {1, 2, … , 𝑁 }, le coefficient𝑀𝑖,𝑗 est égal à la fréquence de contacts d’un individu du groupe
𝑗 avec les individus du groupe 𝑖.

Le système (I.12) ne peut pas être résolu analytiquement. Lajmanovich et Yorke arrivent
cependant à montrer que le comportement en temps long des solutions dépend essentiellement
d’un unique paramètre : le nombre de reproduction de baseℜ0 défini comme la plus grande valeur
propre de la matrice 𝐾/𝛾 = (𝐾𝑖,𝑗/𝛾𝑗)0≤𝑖,𝑗≤𝑁−1 dans ce modèle hétérogène :

ℜ0 = 𝜌(𝐾/𝛾), (I.13)

où l’on note 𝜌(𝐴) le rayon spectral d’une matrice 𝐴, c’est-à-dire le plus grand module de ces
valeurs propres. Rappelons que, d’après le théorème de Perron-Froebenius, ℜ0 est en fait une
valeur propre de 𝐾/𝛾 et qu’il existe un vecteur propre à droite 𝐺0 associé à ℜ0 dont tous les
coefficients sont positifs. Comme dans le modèle homogène, le vecteur sans individu infecté est
un équilibre du système et il y a deux régimes possibles pour le comportement en temps long des
solutions du système différentiel.

1. Si ℜ0 ≤ 1, alors lim𝑡→∞ 𝐼 (𝑡) = (0, 0, … , 0).

2. Si ℜ0 > 1, alors il existe au moins un équilibre 𝐺 endémique, c’est-à-dire, tel que 𝐺 ≠
(0, 0, … , 0). Si on suppose aussi que 𝐾 est irréductible, alors cet équilibre endémique est
unique et tous ses coefficients sont strictement positifs : 𝐺 ∈]0, 1]𝑁 et pour toute condition
initiale 𝐼 (0) ≠ (0, 0, … , 0), on a lim𝑡→∞ 𝐼 (𝑡) = 𝐺.

Dans une population hétérogène, l’interprétation biologique du nombre de reproduction de base
est plus subtile que dans le modèle homogène : il correspond au nombre moyen de personnes
qu’infecte un individu « typique » au début de l’épidémie [42]. Cela signifie que l’individu malade
à l’instant initial est tiré au hasard selon la loi donnée par 𝐺0, le vecteur propre de Perron à
droite de la matrice 𝐾/𝛾 dont la somme des coefficients vaut 1. En effet, en approximant le début
de l’épidémie par un processus de branchement multitype, on peut démontrer, sous certaines
conditions sur la matrice 𝐾, qu’une proportion 𝐺0

𝑖 des premiers individus infectés appartient au
groupe étiqueté 𝑖 ∈ {1, 2, … , 𝑁 } [10].

Supposons, comme pour le modèle SIS homogène, que l’on dispose d’un vaccin qui immunise
parfaitement ceux qui le reçoivent. Comme pour les autres classes épidémiologiques, il faut spécifier
la proportion totale d’individus vaccinés dans chaque groupe. Notons donc 𝑉0, 𝑉1, …, 𝑉𝑁−1 la
proportion de personnes vaccinées dans chaque groupe. Le vecteur des forces d’infection reste le
même mais la proportion de susceptibles devient 𝑆𝑖 = (1 − 𝑉𝑖 − 𝐼𝑖). Ainsi, la nouvelle dynamique
s’écrit :

d𝐼𝑖
d𝑡

= (1 − 𝑉𝑖 − 𝐼𝑖)
𝑁
∑
𝑗=1

𝐾𝑖,𝑗𝐼𝑗 − 𝛾𝑖𝐼𝑖. (I.14)

Pour les calculs, il est en fait plus pratique de donner la proportion de personnes non-vaccinées
dans chaque groupe, notée 𝜂𝑖 = 1 − 𝑉𝑖. En divisant l’Équation (I.14) par 𝜂𝑖, on obtient que la
proportion 𝐽𝑖 = 𝐼𝑖/𝜂𝑖 d’individus infectés dans la population non-vaccinée évolue selon :

d𝐽𝑖
d𝑡

= (1 − 𝐽𝑖)
𝑁
∑
𝑗=1

𝐾𝑖,𝑗𝜂𝑗𝐽𝑗 − 𝛾𝑖𝐽𝑖. (I.15)
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Ainsi, on retrouve la dynamique SIS sans vaccination dans la population effective avec un nombre
de reproduction :

ℜ𝑒(𝜂) = 𝜌(𝐾𝜂/𝛾), (I.16)

où l’on note 𝐾𝜂/𝛾 la matrice 𝐾 × Diag(𝜂) × Diag(1/𝛾).
Notons 𝜇1, 𝜇2, …, 𝜇𝑁 la taille relative des différentes sous-populations. Le nombre total de doses

de vaccin administrées est proportionnel à la proportion totale d’individus immunisés :

𝐶(𝜂) =
𝑁
∑
𝑖=1

(1 − 𝜂𝑖)𝜇𝑖 = 1 −
𝑁
∑
𝑖=1

𝜂𝑖𝜇𝑖. (I.17)

Il est alors naturel de chercher, étant donnée une quantité de vaccin, une distribution des doses qui
« freine » le plus l’épidémie ou l’éradique au plus vite. Pour évaluer l’efficacité d’une stratégie, la
littérature en modélisation mathématiques des maladies transmissibles utilise la plupart du temps
le nombre de reproduction effectif comme critère et ce, pour plusieurs raisons dont nous donnons
une liste non exhaustive :

• ℜ𝑒 est défini pour une large classe de modèles,

• ℜ𝑒 détermine le comportement en temps long de l’épidémie pour beaucoup de modèles,

• bien qu’on ne puisse pas en donner une expression explicite en fonction de 𝜂 dans la plupart
des cas, il est possible d’étudier la fonction ℜ𝑒 en utilisant les propriétés bien connues du
rayon spectral.

Il est alors naturel de chercher une stratégie qui donne lieu à un nombre de reproduction
inférieur ou égal à 𝑟 ∈ [0, ℜ0] et qui minimise le nombre de doses à administrer :

{
Minimiser : 𝐶(𝜂)
Avec : ℜ𝑒(𝜂) ≤ 𝑟

(I.18)

En particulier, si ℜ0 > 1, le problème (I.18) avec 𝑟 = 1 correspond à chercher la stratégie
de coût minimal qui permet d’atteindre l’immunité grégaire. Remarquons qu’en prenant 𝜂 =
(1/ℜ0, 1/ℜ0, … , 1/ℜ0) on obtient, par homogénéité du rayon spectral, ℜ𝑒(𝜂) = 1 pour une pro-
portion 𝐶(𝜂) = 1 − 1/ℜ0 de la population vaccinée. Ainsi, le théorème de seuil reste également
vrai dans le modèle hétérogène. La question sous-jacente est donc la suivante : peut-on abaisser le
coût pour atteindre l’immunité de groupe en profitant de l’inhomogénéité de la population?

Il est également intéressant d’étudier le problème inverse de minimisation du nombre de
reproduction effectif quand la société ne dispose que d’une quantité limitée de doses de vaccins :

{
Minimiser : ℜ𝑒(𝜂)
Avec : 𝐶(𝜂) ≤ 𝑐

(I.19)

Il existe une littérature abondante traitant du Problème (I.18) et/ou du Problème (I.19), voir
par exemple [29, 46, 52, 81, 116, 130, 161]. Nous en discuterons en détail dans les chapitres 3, 4 et 5
de la thèse.

I.2 Les réseaux sociaux comme limites de grands graphes

L’objectif de cette section est de motiver de manière informelle le modèle déterministe SIS que
l’on étudie dans cette thèse. Pour cela, dans la section I.2.1, nous définissons le processus SIS
stochastique qui permet de décrire à l’échelle locale l’évolution de l’épidémie. Nous exposons
ensuite les résultats de convergence connus pour ces processus quand la taille de la population
tend vers l’infini. Dans la section I.2.2, nous présentons rapidement les objets limites que considère
la littérature qui étudie la convergence des grands graphes. Ces objets limites sont à la base de
notre modèle SIS en dimension infinie.
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I.2.1 La modélisation stochastique des épidémies

Dans les modèles décrits dans la section précédente, on a supposé qu’il y avait suffisamment
d’individus dans la population (ou dans les sous-populations) pour appliquer le principe d’action
de masse. Pour une description locale des épidémies, on utilise généralement des processus sto-
chastiques. Dans cette section, nous présentons le modèle SIS markovien et en donnons quelques
propriétés.

Soit 𝑛 ≥ 2 la taille de la population. Soient 𝐴𝑛 = (𝑎𝑛𝑖,𝑗)1≤𝑖,𝑗≤𝑛 une matrice positive de taille
𝑛 × 𝑛 et 𝑏𝑛 un vecteur de taille 𝑛 dont les coefficients sont strictement positifs. Pour 1 ≤ 𝑖, 𝑗 ≤ 𝑛,
𝑎𝑛𝑖,𝑗 représente l’intensité des contacts susceptibles d’aboutir à une transmission de l’infection de
l’individu 𝑗 à l’individu 𝑖. La quantité 1/𝑏𝑛𝑖 est égale au temps moyen de guérison de l’individu 𝑖.
Notons 𝑋 𝑛

𝑖 (𝑡) la variable aléatoire égale à 1 si 𝑖 est infecté au temps 𝑡 et 0 sinon. L’évolution du
processus se fait selon les règles suivantes :

• Guérison : si l’individu 𝑖 est infecté alors il guérit à taux 𝑏𝑛𝑖 .

• Contamination : si l’individu 𝑖 est sain au temps 𝑡 alors il devient infecté à taux :

𝜆𝑛𝑖 (𝑡) =
𝑛
∑
𝑗=1

𝑎𝑛𝑖,𝑗𝑋
𝑛
𝑗 (𝑡). (I.20)

Le processus 𝑋 𝑛 est markovien et prend ses valeurs dans un espace d’états de taille 2𝑛. L’état
(0, 0, … , 0) où tous les individus sont sains, est absorbant.

En partant de ce modèle SIS stochastique local, on peut retrouver les dynamiques déterministes
de la section précédente.

On considère une population de plus en plus grande en faisant tendre 𝑛 vers l’infini. Pour tout
𝑛 ≥ 2, supposons que tous les coefficients 𝑎𝑛𝑖,𝑗 sont égaux à une constante 𝐾/𝑛 et que les 𝑏𝑛𝑖 sont
égaux à une constante 𝛾 > 0. Notons 𝑌 𝑛(𝑡) = ∑𝑖 𝑋

𝑛
𝑖 (𝑡)/𝑛 la proportion d’individus infectés. Si

𝑌 𝑛(0) converge en probabilité vers 𝑦 ∈ [0, 1], alors, pour tout 𝑡 ∈ ℝ+ et tout 𝛿 > 0, on a :

ℙ (sup
𝑠≤𝑡

| 𝑌 𝑛(𝑠) − 𝐼 (𝑠) | ≥ 𝛿) = 0, (I.21)

où 𝐼 ∶ ℝ+ → [0, 1] est l’unique solution de l’équation différentielle (I.8) vérifiant la condition
initiale 𝐼 (0) = 𝑦.

Supposons maintenant que les coefficients de la matrice de transmission et du vecteur des taux
de guérison sont périodiques de période 𝑁 ≥ 2 :

𝑎𝑖,𝑗 = 𝐾𝑖∗,𝑗∗/𝑛, 𝑏𝑛𝑖 = 𝛾𝑖∗ , où 𝑖 = 𝑖∗ mod 𝑁 , 𝑗 = 𝑗∗ mod 𝑁 . (I.22)

Définissons pour tout 𝑖 ∈ {1, 2, … , 𝑁 }, la proportion d’individu dans la sous-population 𝑖 :

𝑌 𝑛𝑖 (𝑡) =
𝑁
𝑛
∑
𝑚

𝑋 𝑛
𝑚𝑁+𝑖(𝑡). (I.23)

En utilisant les résultats de Kurtz [101], on peut montrer la convergence du processus stochastique
vers la solution des équations (I.12) de Lajmanovich et Yorke à 𝑁 groupes. Plus précisément, si
pour tout 𝑖 ∈ {1, 2, … , 𝑁 }, 𝑌 𝑛𝑖 (0) converge vers en probabilité vers 𝑦𝑖 ∈ [0, 1], alors, pour tout 𝑡 ∈ ℝ+
et tout 𝛿 > 0, on a :

ℙ (sup
𝑠≤𝑡

‖ 𝑌 𝑛(𝑠) − 𝐼 (𝑠) ‖ ≥ 𝛿) = 0, (I.24)

où 𝐼 ∶ ℝ+ → [0, 1]𝑁 est l’unique solution de l’équation différentielle (I.12) vérifiant la condition
initiale 𝐼 (0) = 𝑦. Le cas 𝑁 = 1 est rigoureusement traité dans la monographie d’Andersson et
Britton [4] et la généralisation de ce résultat pour un nombre fini de groupes est évoquée dans
[13].

Ces résultats de convergence permettent de justifier les Équations (I.8) et (I.12). Néanmoins,
les coefficients de la matrice 𝐴𝑛 et du vecteur 𝑏𝑛 avait une forme bien particulière. On a en fait
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classé les individus par groupe. Le nombre 𝑁 de groupe était fixé et le nombre d’individus dans
chaque groupe tendait vers l’infini. Cela nous limite dans la modélisation. Par exemple, si l’on
veut décrire une population formée de ménages, il faudrait faire tendre le nombre de groupes 𝑁
vers l’infini et les tailles des groupes resteraient constante.

Dans la deuxième partie de la section, nous utilisons la théorie des graphons pour tenter
de répondre de manière non-rigoureuse aux questions suivantes : que se passe-t-il dans le cas
général ? Peut-on écrire une équation limite vers lequel converge le processus stochastique?

I.2.2 La convergence des graphes denses

Comprendre les grands réseaux est un problème fondamental en théorie moderne des graphes. Au
cours des 15 dernières années, la théorie des graphons développée entre autres par Borgs, Chayes,
Lovász, Janson et Szegedy [18, 20, 90, 111, 112] a connu un important succès. Elle décrit les limites
de graphes denses, c’est-à-dire les graphes dont le nombre d’arêtes est proportionnel au carré
du nombre de nœuds. Nous donnons dans cette section quelques éléments de cette théorie qui
permettront de comprendre notre modèle SIS en dimension infinie.

Un graphon est une fonction mesurable 𝑘 ∶ [0, 1]×[0, 1] → ℝ+ bornée et symétrique : 𝑘(𝑥, 𝑦) =
𝑘(𝑦, 𝑥), pour tout 𝑥, 𝑦 ∈ [0, 1]. Étant donné deux graphons 𝑘1 et 𝑘2, on peut définir la norme de
coupe de 𝑘1 − 𝑘2 :

‖ 𝑘1 − 𝑘2 ‖□ = sup
𝐴, 𝐵 ⊂[0,1]

| ∫
𝐴×𝐵

(𝑘1(𝑥, 𝑦) − 𝑘2(𝑥, 𝑦)) d𝑥d𝑦 | . (I.25)

Il est facile de voir que cette norme est plus faible que les normes 𝐿𝑝. Soit une matrice symétrique
𝐴 = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛 aux coefficients positifs. On peut lui associer le graphon suivant :

𝑘[𝐴] = ∑
1≤𝑖,𝑗≤𝑛

𝑎𝑖,𝑗𝟙[(𝑖−1)/𝑛,𝑖/𝑛[×[(𝑗−1)/𝑛,𝑗/𝑛[. (I.26)

Tout comme les matrices 𝑛 × 𝑛 agissent sur les vecteurs, on peut faire agir les graphons sur les
fonction 𝑓 ∶ [0, 1] → ℝ par l’opérateur intégral :

𝑇𝑘(𝑓 )(𝑥) = ∫
1

0
𝑘(𝑥, 𝑦)𝑓 (𝑦) d𝑦. (I.27)

Reprenons notre suite de matrices 𝐴𝑛 = (𝑎𝑛𝑖,𝑗)1≤𝑖,𝑗≤𝑛 de taille 𝑛 × 𝑛 et aux coefficients positifs de
la section précédente. Supposons que les coefficients des matrices sont bornés par une constante
𝑀 (indépendante de 𝑛) et que les matrices sont symétriques : 𝑎𝑖,𝑗 = 𝑎𝑗,𝑖 pour tout 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.
D’après la théorie des graphons [111], quitte à re-numéroter les individus, on peut trouver une
sous-suite de matrices 𝐴𝑛 qui converge pour la norme de coupe vers un graphon. Plus précisément,
il existe :

• une fonction 𝜓 ∶ ℕ → ℕ strictement croissante,

• pour toute 𝑛 ∈ ℕ, une permutation 𝜎𝑛 de {1, 2, … , 𝜓 (𝑛)},

• un graphon 𝑘 ∶ [0, 1] × [0, 1] → [0,𝑀],

tels que :

lim
𝑛→∞

‖ 𝑘 − 𝑘 [𝐴𝜓(𝑛)
𝜎𝑛 ] ‖

□
= 0, (I.28)

où 𝐴𝜓(𝑛)
𝜎𝑛 est la matrice 𝐴𝜓(𝑛) dont on a permuté les coefficients selon 𝜎𝑛. Réciproquement, il

est facile de montrer que tout graphon s’exprime comme la limite d’une suite de matrices. La
convergence d’une suite de matrice en norme de coupe est illustrée dans la Figure I.2.

Si l’on suppose que les coefficients des matrices sont donnés par (I.22), alors il est facile de
montrer que la suite 𝑘[𝐴𝑛] converge en norme de coupe (à permutation près) vers le noyau 𝑘[𝐾].
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Figure I .2 : Illustration de la convergence d’une suite de matrices vers le graphon
𝑘(𝑥, 𝑦) = 1 + (2𝑥 − 1)(2𝑦 − 1) en norme de coupe. Les niveaux de gris correspondent aux valeurs

prises par les noyaux 𝑘[𝐴𝑖] et 𝑘.

Ainsi, la théorie des graphons donne un sens à la convergence d’une suite de matrices de tailles
différentes et la généralise.

Comme dans le cas où le nombre de groupe est fini, le système de particules converge, on
est amené à penser que cela reste encore vrai quand les matrices de transmissions convergent en
norme de coupe vers un graphon 𝑘. Par analogie avec l’équation (I.12), il est naturel de considérer
une équation de « champ moyen » du type :

𝜕𝑡𝑢(𝑡, 𝑥) = (1 − 𝑢(𝑡, 𝑥)) ∫
1

0
𝑘(𝑥, 𝑦)𝑢(𝑡, 𝑦) d𝑦 − 𝛾(𝑥)𝑢(𝑡, 𝑥), (I.29)

où :

• les individus de la population sont étiquetés par [0, 1] au lieu de 1, 2, … , 𝑁,

• 𝑢(𝑡, 𝑥) représente la probabilité qu’un individu étiqueté par 𝑥 soit infecté au temps 𝑡,

• 𝑘 est le graphon qui représente les contacts entre les individus et qui joue le même rôle que
la matrice 𝐾,

• 𝛾 donne le taux de guérison en fonction de l’étiquette de l’individu.

Récemment, plusieurs articles généralisent la théorie des graphons et définissent les limites
de graphes non denses, possiblement orientés [12, 19, 21, 100]. Ainsi, dans cette thèse, nous
considérons des objets un peu plus généraux que des graphons pour décrire l’hétérogénéité des
contacts dans les populations.

I.3 Contribution de la thèse

Cette section rassemble les résultats principaux obtenus pendant la thèse.

I.3.1 Un modèle SIS en dimension infinie

Inspirés par la théorie des graphons, nous définissons dans le chapitre II un nouveau modèle SIS
en dimension infinie.

Remarquons en premier lieu que les graphons ne sont pas obligatoirement définis sur le carré
[0, 1] × [0, 1] munie de la mesure de Lebesgue. Ils peuvent être définis sur un espace de probabilité
général (Ω,ℱ , 𝜇). Cet espace représente les étiquettes/caractères des individus de la population.
Pour un ensemble d’étiquettes 𝐴 ∈ ℱ, le nombre 𝜇(𝐴) correspond à la proportion d’individus de la
population dont l’étiquette appartient à 𝐴. Soient 𝛾 ∶ Ω → ℝ+ et 𝑘 ∶ Ω × Ω → ℝ+. Pour 𝑥, 𝑦 ∈ Ω,
𝛾 (𝑥) correspond au taux de guérison d’un individu étiqueté par 𝑥 ∈ Ω et 𝑘(𝑥, 𝑦) donne le taux de
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transmission de la maladie d’un infecté étiqueté 𝑦 vers les individus étiquetés 𝑥. En généralisant
l’équation (I.29), nous supposons que l’évolution de la probabilité 𝑢(𝑡, 𝑥) qu’un individu de type 𝑥
soit infecté au temps 𝑡 suit la dynamique :

𝜕𝑡𝑢(𝑡, 𝑥) = (1 − 𝑢(𝑡, 𝑥)) ∫
Ω
𝑘(𝑥, 𝑦)𝑢(𝑡, 𝑦) 𝜇(d𝑦) − 𝛾(𝑥)𝑢(𝑡, 𝑥). (I.30)

En particulier, le théorème 1 assure que le nombre 𝑢(𝑡, 𝑥) appartient à [0, 1] pour tout 𝑡 ∈ ℝ+ et
𝑥 ∈ Ω et donc peut bien être interprété comme une probabilité d’être infecté.

Notons qu’en prenant Ω = {1, 2, … , 𝑁 } et 𝑘(𝑥, 𝑦) = 𝐾𝑥,𝑦/𝜇({𝑦}) pour tout 𝑥, 𝑦 ∈ Ω, on retrouve
le système (I.12) (la fonction 𝛾 sur un espace discret pouvant être interprété comme un vecteur).
Ce modèle est donc une généralisation des équations différentielles proposées par Lajmanovich et
Yorke.

Notons 𝐤(𝑥, 𝑦) = 𝑘(𝑥, 𝑦)/𝛾 (𝑦), pour tout 𝑥, 𝑦 ∈ Ω.

Hypothèse 1. Il existe 𝑞 ∈]1, +∞[ tel que :

sup
𝑥∈Ω

∫
Ω
𝐤(𝑥, 𝑦)𝑞 𝜇(d𝑦) < ∞. (I.31)

Cette hypothèse servira à montrer l’existence de solutions de l’équation différentielle (I.30).
Même si dans les chapitres III, IV et V cette condition d’intégrabilité est allégée, nous supposerons,
sauf mention contraire, que, dans cette introduction, tous les noyaux 𝐤 vérifient cette condition
pour simplifier la présentation des résultats.

Notons 𝑝 = 𝑞/(𝑞 − 1). L’hypothèse 1 assure également la compacité de l’opérateur à noyau
défini sur 𝐿𝑝(Ω, 𝜇) :

𝑇𝐤(𝑓 )(𝑥) = ∫
Ω
𝐤(𝑥, 𝑦)𝑓 (𝑦) 𝜇(d𝑦), 𝑓 ∈ 𝐿𝑝(Ω, 𝜇). (I.32)

Cet opérateur étant également positif, on en déduit, grâce au théorème de Krein-Rutman, que le
rayon spectral est une valeur propre. Ce rayon spectral définit le nombre de reproduction de base
du modèle de manière analogue à la dimension finie :

ℜ0 = 𝜌(𝑇𝐤). (I.33)

Pour énoncer le résultat principal, nous avons besoin d’une condition qui assure qu’il n’existe
pas un groupe d’individus isolés qui ne peuvent pas se faire contaminer quand le reste de la
population est infecté. Il s’agit de l’analogue de l’hypothèse d’irréductibilité de la matrice 𝐾 qui
garantit l’unicité de l’équilibre endémique dans le théorème de Lajmanovich et Yorke (voir le
point 2 page 7). Ainsi, on dit que le noyau 𝐤 est irréductible si pour tout 𝐴 ∈ ℱ :

∫
𝐴×𝐴∁

𝐤(𝑥, 𝑦) 𝜇(d𝑦)𝜇(d𝑥) = 0 ⟹ 𝜇(𝐴) ∈ {0, 1}. (I.34)

Nous montrons alors dans le chapitre II le théorème suivant.

Théorème 1. Supposons que l’hypothèse 1 est satisfaite. Nous avons les propriétés suivantes :

(i) Existence de solution globale : il existe une unique solution 𝑢 à l’équation (I.30). Cette solution
vérifie pour tout (𝑥, 𝑡) ∈ Ω × ℝ+, 𝑢(𝑡, 𝑥) ∈ [0, 1].

(ii) Équilibre sans infectés stable dans les régimes critique et sous-critique : Si ℜ0 ≤ 1,
alors la maladie régresse jusqu’à être éradiquée :

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 0, 𝑥 ∈ Ω.



Introduction 13

(iii) Équilibre endémique stable dans le régime sur-critique : Si ℜ0 > 1, alors il existe un
équilibre 𝔤 ∶ Ω → [0, 1], appelé équilibre endémique, dont l’intégrale sur Ω est strictement
positive et qui domine tout autre équilibre. Si nous supposons en plus que le noyau 𝐤 est
irréductible, alors les seuls équilibres du système sont 𝟘 et 𝔤. En outre, pour toute condition
initiale 𝑢0 telle que :

∫
Ω
𝑢0(𝑥) 𝜇(d𝑥) > 0,

la solution 𝑢 de l’équation (I.30) converge simplement vers l’équilibre endémique :

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 𝔤(𝑥), 𝑥 ∈ Ω.

Si 𝑢0 = 𝟘 𝜇-p.s., alors 𝑢 converge simplement vers 𝟘.

Pour démontrer ce théorème, nous suivons l’approche proposée par Hirsch et Smith pour
traiter le système de Lajmanovich et Yorke [82, 142]. Nous prouvons que le semi-flot défini par
l’équation (I.30) est monotone. Nous obtenons alors la stabilité des équilibres en montrant les deux
propriétés ci-dessous.

• En partant de l’état où tout le monde est infecté, le système converge vers 0 dans les régimes
critique et sous-critique.

• Il existe une famille de conditions initiales arbitrairement proche de 𝟘 (dans un sens à définir),
pour lesquelles le semi-flot converge vers 𝔤.

Dans le régime sur-critique, quand 𝐤 n’est pas supposé irréductible, il peut y avoir des équilibres
différents de 𝔤 et 𝟘. Nous montrons dans le chapitre III que tous les équilibres différents de 𝔤 sont
instables (voir le théorème 3). Si ℜ0 ≤ 1, on pose 𝔤 = 𝟘. En effet, avec cette convention, 𝔤 reste le
plus grand équilibre (car c’est le seul) dans les régimes critiques et sous-critiques et il a encore la
propriété d’être stable.

Dans la seconde partie du chapitre II, nous appliquons notre modèle SIS en dimension infinie
à l’étude des effets du confinement et de la vaccination sur la dynamique de l’épidémie et sur le
nombre de reproduction. En particulier, donnons ici la forme de la dynamique quand on dispose
d’un vaccin qui immunise parfaitement les personnes qui le reçoivent. Pour 𝑥 ∈ Ω, notons 𝜂(𝑥) la
probabilité pour un individu 𝑥 de ne pas être vacciné. L’évolution de la probabilité 𝑢(𝑡, 𝑥) qu’un
individu de type 𝑥 soit infecté au temps 𝑥 suit alors la dynamique :

𝜕𝑡𝑢(𝑡, 𝑥) = (𝜂(𝑥) − 𝑢(𝑡, 𝑥)) ∫
Ω
𝑘(𝑥, 𝑦)𝑢(𝑡, 𝑦) 𝜇(d𝑦) − 𝛾(𝑥)𝑢(𝑡, 𝑥). (I.35)

Comme pour le cas fini-dimensionnel, on peut diviser l’équation précédente par 𝜂 pour retrouver
l’équation (I.30) avec un nouveau noyau de transmission :

𝜕𝑡𝑢̃(𝑡 , 𝑥) = (1 − 𝑢̃(𝑡, 𝑥)) ∫
Ω
𝑘(𝑥, 𝑦)𝜂(𝑦)𝑢̃(𝑡 , 𝑦) 𝜇(d𝑦) − 𝛾(𝑥)𝑢̃(𝑡 , 𝑥), (I.36)

où 𝑢̃(𝑡 , 𝑥) est la probabilité pour un individu non-vacciné en 𝑥 d’être infecté au temps 𝑡. En particu-
lier, le nombre de reproduction effectif est défini par la formule :

ℜ𝑒(𝜂) = 𝜌(𝑇𝐤𝜂), (I.37)

où 𝐤𝜂 est le noyau qui à (𝑥, 𝑦) ∈ Ω × Ω associe 𝐤(𝑥, 𝑦)𝜂(𝑦). Remarquons que, comme dans le cas
fini-dimensionnel, le théorème de seuil reste vrai par homogénéité du rayon spectral.

On définit également 𝔤[𝜂] comme l’équilibre maximal associé à la dynamique (I.36) du nombre
d’infectés chez les non-vaccinés.

I.3.2 Stratégies de vaccination optimales

Le chapitre III traite du problème de vaccination optimale pour le modèle SIS en dimension infinie
du chapitre précédent. Rappelons que l’on suppose que l’hypothèse 1 est satisfaite pour que la
dynamique (I.30) fasse sens.
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Formalisation du problème de vaccination optimale

On considère l’ensemble des stratégies de vaccination :

Δ = {𝜂 ∶ Ω → [0, 1] mesurable}. (I.38)

Rappelons que pour 𝜂 dans Δ, 𝜂(𝑥) correspond à la proportion d’individus de type 𝑥 non-vaccinés.
Ainsi, la proportion 𝐶(𝜂) de personnes vaccinées est donnée par :

𝐶(𝜂) = ∫
Ω
(1 − 𝜂(𝑥)) 𝜇(d𝑥). (I.39)

Cette fonction peut également être interprétée comme le coût de la vaccination. La plupart des
résultats énoncés ici ne reposent en réalité que sur la continuité de 𝐶 par rapport à la topologie
faible (voir la fin de la section) et sur sa décroissance stricte (i.e., si 𝜂2 −𝜂1 est une fonction positive
qui n’est pas égale à 0 presque sûrement, alors 𝐶(𝜂1) > 𝐶(𝜂2)). Ainsi on pourrait considérer des
fonctions coût plus générales vérifiant ces deux propriétés.

La société cherche alors à minimiser ce coût et une autre fonction « perte » qui mesure la
gravité de l’épidémie et que nous notons L (pour loss function). Nous formalisons cela grâce au
problème bi-objectif :

min
𝜂∈Δ

(𝐶(𝜂), L(𝜂)). (I.40)

Dans ce chapitre, nous considérons deux fonctions pertes L :

• le nombre de reproduction effectif ℜ𝑒,

• la proportion totale ℑ d’infectés dans l’état endémique 𝔤[𝜂] maximal de (I.36) :

ℑ(𝜂) = ∫
Ω
𝔤[𝜂](𝑥)𝜂(𝑥) 𝜇(d𝑥). (I.41)

En général le profil 𝜂 ne résulte pas d’une décision prise par la société mais plutôt de l’ensemble
des volontés des individus de la population. Il peut alors être intéressant d’avoir une estimation de
la « pire » distribution des doses de vaccin que l’on peut faire. Ainsi nous considérons également
le problème opposé :

max
𝜂∈Δ

(𝐶(𝜂), L(𝜂)). (I.42)

Il n’est généralement pas possible de minimiser (ou maximiser) à la fois la fonction coût et
la fonction perte. En optimisation bi-objectif, on cherche donc les stratégies dont on ne peut pas
améliorer un objectif sans dégrader l’autre.

Definition I.3.1. Une stratégie 𝜂⋆ ∈ Δ est dite Pareto optimale pour le Problème bi-objectif (I.40) si
pour tout 𝜂 ∈ Δ :

𝐶(𝜂) < 𝐶(𝜂⋆) ⟹ L(𝜂) > L(𝜂⋆) et L(𝜂) < L(𝜂⋆) ⟹ 𝐶(𝜂) > 𝐶(𝜂⋆).

Une stratégie 𝜂⋆ ∈ Δ est dite anti-Pareto optimale pour le Problème bi-objectif (I.42) si pour tout
𝜂 ∈ Δ :

𝐶(𝜂) > 𝐶(𝜂⋆) ⟹ L(𝜂) < L(𝜂⋆) et L(𝜂) > L(𝜂⋆) ⟹ 𝐶(𝜂) < 𝐶(𝜂⋆).

Les frontières de Pareto et d’anti-Pareto correspondent à l’image des ensembles des stratégies
Pareto et anti-Pareto optimales par les fonctions objectives :

ℱL = {(𝐶(𝜂), L(𝜂) ∶ 𝜂 Pareto optimal}, (I.43)

ℱAnti
L = {(𝐶(𝜂), L(𝜂) ∶ 𝜂 anti-Pareto optimal}. (I.44)

Remarquons qu’une stratégie Pareto optimale 𝜂⋆ est solution des problèmes sous contraintes
suivants :

{
Minimiser : 𝐶(𝜂)
Avec : L(𝜂) ≤ ℓ

(I.45)
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et :

{
Minimiser : L(𝜂)
Avec : 𝐶(𝜂) ≤ 𝑐

(I.46)

où ℓ = L(𝜂⋆) et 𝑐 = 𝐶(𝜂⋆). Nous avions considérés initialement ces deux problèmes de minimisation
sous contraintes dans la section I.1.3 avec L = ℜ𝑒. Nous préférons le formalisme bi-objectif car il
fait jouer les mêmes rôles à la fonction perte et à la fonction coût.

De la même manière, si 𝜂⋆ est une stratégie anti-Pareto optimale, alors elle est solution des
problèmes :

{
Maximiser : 𝐶(𝜂)
Avec : L(𝜂) ≥ ℓ

(I.47)

et :

{
Maximiser : L(𝜂)
Avec : 𝐶(𝜂) ≥ 𝑐

(I.48)

où ℓ = L(𝜂⋆) et 𝑐 = 𝐶(𝜂⋆).
Maintenant que l’on a défini les objets principaux nécessaires pour étudier l’optimalité des

stratégies de vaccination, nous allons énoncer les résultats principaux du chapitre III.

Régularité des fonctions pertes

On munit l’espace Δ de la topologie faible : on dit qu’une suite (𝜂𝑛, 𝑛 ∈ ℕ) converge faiblement
vers 𝜂 ∈ Δ si pour toute fonction bornée ℎ ∈ 𝐿∞(Ω, 𝜇) :

lim
𝑛→∞∫

Ω
ℎ(𝑥)𝜂𝑛(𝑥) 𝜇(d𝑥) = ∫

Ω
ℎ(𝑥)𝜂(𝑥) 𝜇(d𝑥). (I.49)

Il est facile de voir que la fonction coût 𝐶 est continue pour cette topologie. On obtient dans le
chapitre III la continuité des fonctions pertes.

Théorème 2. Les fonctions ℜ𝑒 et ℑ sont continues par rapport à la topologie faible.

La continuité de la fonction ℜ𝑒 ne découle pas directement des résultats connus en analyse
fonctionnelle sur la convergence des spectres des opérateurs compacts. En effet, la convergence
faible de 𝜂𝑛 vers 𝜂 n’implique pas la convergence de 𝑇𝐤𝜂𝑛 vers 𝑇𝐤𝜂 en norme d’opérateur mais
seulement la convergence forte, c’est-à-dire :

lim
𝑛→∞

‖ 𝑇𝐤𝜂𝑛(𝑔) − 𝑇𝐤𝜂(𝑔) ‖𝑝
= 0, 𝑔 ∈ 𝐿𝑝(Ω, 𝜇), (I.50)

où l’on rappelle que 𝑝 = 𝑞/(𝑞 − 1) où 𝑞 ∈]1, +∞[ est défini dans l’hypothèse 1. En général, la
convergence forte n’implique pas la convergence du spectre ou du rayon spectral, même pour
des opérateurs compacts. Néanmoins la famille (𝑇𝐤𝜂𝑛 , 𝑛 ∈ ℕ) vérifie une propriété plus forte. Elle
est collectivement compacte, c’est-à-dire que l’ensemble suivant est relativement compact pour la
topologie induite par la norme ‖ ⋅ ‖𝑝 :

⋃
𝑛∈ℕ

𝑇𝐤𝜂(𝐵),

où 𝐵 est la boule unité de 𝐿𝑝(Ω, 𝜇). Cette propriété permet d’obtenir la convergence des spectres
grâce à un résultat d’Anselone [6].

Criticalité de la stratégie consistant à vacciner selon le profil endémique maximal

La continuité de la fonctionnelle ℑ découle du résultat ci-dessous.

Théorème 3. Supposons que ℜ0 > 1. La stratégie qui consiste à vacciner selon le profil 𝔤 = 𝔤[1]
est critique, c’est-à-dire qu’on a ℜ𝑒(1 − 𝔤) = 1. Réciproquement, si un équilibre ℎ associé à la
dynamique (I.30) vérifie ℜ𝑒(1 − ℎ) = 1, alors il est égal à 𝔤.
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En plus de son utilité pour démontrer la continuité de ℑ, ce théorème nous donne une stratégie
critique différente de la stratégie qui consiste à vacciner uniformément à un niveau 1 − 1/ℜ0. Il
est alors naturel de se demander laquelle de ces deux vaccinations est la moins coûteuse. Nous
n’avons pas obtenu de résultats généraux mais dans un prochain article [40], nous allons exhiber
une classe de noyau pour lesquels 𝐶(1 − 𝔤) ≤ 𝐶(1/ℜ0).

Le théorème 3 est à mettre en parallèle avec la section 4.5 du livre [80] de Hethcote et Yorke
qui propose de vacciner les individus après qu’ils ont été infectés par la gonorrhée.

Propriétés des problèmes bi-objectifs

Nous avons vu que les fonctions pertes considérées sont continues par rapport à la topologie
faible. En outre, d’après le théorème de Banach-Alaoglu, l’espace Δ muni de la topologie faible
est compact. Ainsi, son image par L est compact. Par connexité de Δ, il vient que L(Δ) est un
intervalle [0, ℓmax] où ℓmax ∈ ℝ+. On déduit également du théorème 2 que les Problèmes (I.45)
et (I.46) admettent des solutions pour tout 𝑐 ∈ [0, 1] et ℓ ∈ [0, ℓmax]. Nous notons les valeurs de ces
problèmes :

L⋆(𝑐) = min{L(𝜂) ∶ 𝜂 ∈ Δ, 𝐶(𝜂) ≤ 𝑐}, (I.51)

𝐶⋆,L(ℓ) = min{𝐶(𝜂) ∶ 𝜂 ∈ Δ, L(𝜂) ≤ ℓ}. (I.52)

Notons que d’après le théorème 1, nous avons 𝐶⋆,ℑ(0) = 𝐶⋆,ℜ(1). En outre, grâce au théorème 3,
nous obtenons que :

𝐶⋆,ℑ(0) = 𝐶⋆,ℜ(1) ≤ min (1 −
1
ℜ0

, ∫
Ω
𝔤 d𝜇) .

Nous avons vu que les stratégies Pareto optimales sont solutions des problèmes (I.46) et (I.45)
avec des contraintes bien choisies. Réciproquement, nous pouvons nous demander pour quelles
contraintes les solutions de ces problèmes sont Pareto optimales. Le résultat suivant répond à cette
question.

Théorème 4. Pour L ∈ {ℜ𝑒, ℑ}, la fonction 𝐶⋆,L est continue et strictement décroissante sur
l’intervalle [0, ℓmax]. La fonction L⋆ est continue sur l’intervalle [0, 1], strictement décroissante
sur [0, 𝐶⋆,L(0)] et constante égale à 0 sur [𝐶⋆,L(0), 1]. Enfin, la frontière de Pareto est donnée par :

ℱL = {(𝑐, L⋆(𝑐)) ∶ 𝑐 ∈ [0, 𝐶⋆,L(0)]} = {(𝐶⋆,L(ℓ), ℓ) ∶ ℓ ∈ [0, ℓmax]}.

En particulier, on déduit de ce théorème que, pour tout ℓ ∈ [0, ℓmax], il existe une stratégie
Pareto optimale 𝜂⋆ telle que L(𝜂⋆) = ℓ. Dans le chapitre III, nous prouvons également une propriété
de stabilité de la fonction L⋆ par rapport à des petites variations de 𝑘 ou de la fonction 𝛾. Cette
propriété est importante car, même si nous n’avons qu’une estimation du noyau de transmission et
des temps de guérison, il est quand même possible de donner des stratégies proches de l’optimalité.

La description de la frontière anti-Pareto est légèrement plus compliquée. Ici, nous ne donnons
que les résultats pour la fonction perte L = ℜ𝑒 et en supposant une condition supplémentaire sur
le noyau. Notons les valeurs des problèmes de maximisation sous contraintes (I.47) :

ℜ⋆
𝑒 (𝑐) = max{L(𝜂) ∶ 𝜂 ∈ Δ, 𝐶(𝜂) ≥ 𝑐}, (I.53)

𝐶⋆(𝑟) = min{𝐶(𝜂) ∶ 𝜂 ∈ Δ, ℜ𝑒(𝜂) ≥ 𝑟}. (I.54)

Nous avons obtenu le résultat suivant qui donne la forme de la frontière d’anti-Pareto pour la
fonction perte L = ℜ𝑒.

Théorème 5. Supposons que 𝐤 est irréductible (voir l’équation (I.34)). La fonction 𝐶⋆ est continue et
strictement décroissante sur l’intervalle [0, ℜ0]. La fonctionℜ⋆

𝑒 est continue et strictement décroissante
sur l’intervalle [0, 1]. Enfin, la frontière d’anti-Pareto est donnée par :

ℱAnti = {(𝑐, ℜ⋆
𝑒 (𝑐)) ∶ 𝑐 ∈ [0, 1]} = {(𝐶⋆(𝑟), 𝑟) ∶ 𝑟 ∈ [0, ℜ0]}.
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Figure I .3 : Allure typique de la frontière de Pareto et de la frontière d’anti-Pareto pour L = ℜ𝑒
et 𝐤 est irréductible. Ligne rouge continue : la frontière de Pareto ℱ ; Ligne en pointillé :

l’anti-frontière de Pareto ℱAnti ; zone bleutée : résultats réalisables.

L’expression de la frontière d’anti-Pareto pour la fonction de perte ℑ est plus compliquée car
discontinue. Dans la figure I.3, nous avons représenté l’allure typique des frontières de Pareto et
d’anti-Pareto quand L = ℜ𝑒 et le noyau 𝐤 est irréductible.

Nous prouvons également dans le chapitre III que, pour L ∈ {ℜ𝑒, ℑ}, l’ensemble des résultats
réalisables (en bleu dans la figure I.3) :

{(𝐶(𝜂), L(𝜂)) ∶ 𝜂 ∈ Δ},

est simplement connexe, c’est-à-dire, qu’il n’a pas de « trou ».

I.3.3 Propriétés du nombre de reproduction effectif

L’objectif du chapitre IV est d’étudier les propriétés de la fonctionnelle ℜ𝑒. Cela nous permettra
d’avoir une meilleure compréhension du problème de minimisation bi-objectif associé.

La conjecture de Hill-Longini

En optimisation, la convexité ou la concavité des fonctions objectives joue un rôle très impor-
tant. Dans un article de 2003 [81], Hill et Longini formulent dans le cadre fini-dimensionnel une
conjecture qui fournit une condition nécessaire pour que la fonction ℜ𝑒 soit convexe et une autre
condition qui implique la concavité de cette même fonction. Nous montrons que cette conjecture
telle qu’elle est formulée dans l’article de 2003 est fausse. Néanmoins, en rajoutant une condi-
tion de symétrie, nous parvenons à prouver un résultat proche qui se généralise dans le cadre
infini-dimensionnel.

Notons 𝜎(𝑇𝐤) le spectre de l’opérateur 𝑇𝐤. D’après le théorème de Krein-Rutman, ℜ0 ∈ 𝜎(𝑇𝐤).
Si on suppose que le noyau 𝐤 est symétrique, c’est-à-dire 𝐤(𝑥, 𝑦) = 𝐤(𝑦, 𝑥) 𝜇 ⊗𝜇-presque sûrement,
alors l’opérateur 𝑇𝐤 est auto-adjoint et donc son spectre appartient à la droite réelle : 𝜎(𝑇𝐤) ⊂ ℝ.
Dans le chapitre IV, nous obtenons le résultat suivant.

Théorème 6. Supposons 𝐤 symétrique et ∫Ω×Ω 𝐤(𝑥, 𝑦)2𝜇(d𝑥)𝜇(d𝑦) < ∞.

(i) Si 𝜎(𝑇𝐤) ⊂ ℝ+, alors la fonction ℜ𝑒 est convexe.

(ii) Si 𝜎(𝑇𝐤)\{ℜ0} ⊂ ℝ− et la valeur propre ℜ0 est simple, alors la fonction ℜ𝑒 est concave.

Le point (i) avait déjà été obtenu par Cairns dans le cadre fini-dimensionnel [29]. Pour le
démontrer en dimension infinie, nous suivons la même stratégie qui consiste à exprimer ℜ𝑒(𝜂)
en fonction de la racine carrée de l’opérateur 𝑇𝐤 grâce à la formule de Courant-Fisher. Sous cette
forme, ℜ𝑒(𝜂) est égal au supremum d’une famille de fonctions linéaires en 𝜂, d’où sa convexité.

Pour montrer le point (ii), on calcule la hessienne de ℜ𝑒 grâce à la formule de Kloeckner [98].
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La politique du cordon sanitaire n’est pas anti-Pareto optimal

Si on suppose que le noyau 𝐤 est irréductible, on dit qu’une stratégie 𝜂 ∈ Δ est un cordon sanitaire si
𝜂 n’est pas presque-sûrement nulle et le noyau 𝐤 restreint à l’ensemble {𝜂 > 0} n’est pas irréductible.
Un cordon sanitaire est donc une stratégie qui permet de diviser la population non-vaccinée en
deux groupes 𝐴 et 𝐵 tels que les individus du groupe 𝐴 n’infectent pas ceux du groupe 𝐵. Il n’existe
pas toujours de cordon sanitaire (prendre par exemple 𝐤 > 0 𝜇⊗𝜇-presque sûrement). En revanche,
quand une telle stratégie existe, ce n’est jamais la pire.

Théorème 7. Si la stratégie 𝜂 ∈ Δ est un cordon sanitaire alors elle n’est pas anti-Pareto optimal.

Une caractérisation du coût minimal pour arrêter toute contamination

Parmi les cordons sanitaires, il peut exister des stratégies qui stoppent complètement les trans-
missions. Elles correspondent aux stratégies pour lesquelles tous les individus non-vaccinés ne
sont en contact qu’avec des personnes vaccinées et sont donc complètement protégés. Décrivons
formellement ces stratégies.

En théorie des graphes, un ensemble indépendant – appelé aussi stable – est un ensemble de
sommets deux à deux non adjacents. Le nombre d’indépendance d’un graphe 𝐺, noté 𝛼(𝐺), est
alors défini comme au rapport #𝐴/#𝐺 où 𝐴 est un ensemble indépendant de taille maximale. Par
analogie, nous appelons ensemble indépendant un ensemble mesurable 𝐴 tel que 𝐤(𝑥, 𝑦) = 0 pour
presque tout 𝑥, 𝑦 ∈ 𝐴. Nous montrons dans le chapitre IV, que tout noyau admet un ensemble
indépendant maximal, c’est-à-dire un ensemble 𝐴 tel que pour tout autre ensemble indépendant
𝐵 ∈ ℱ, 𝜇(𝐵) ≤ 𝜇(𝐴). On note alors 𝛼(𝐤) = 𝜇(𝐴). Nous obtenons le résultat suivant.

Théorème 8. Supposons que 𝐤 est symétrique. Si 𝐴 est un ensemble indépendant maximal alors 𝟙𝐴
est Pareto optimal pour la fonction perte L = ℜ𝑒. En particulier, on a :

𝐶⋆(0) = 1 − 𝛼(𝐤). (I.55)

I.3.4 Quelques exemples de vaccinations optimales

Dans le chapitre V, nous présentons des exemples de noyaux où l’on peut résoudre analytiquement
les problèmes (I.40) et (I.42) avec L = ℜ𝑒. En particulier, ces exemples permettent de construire
des intuitions autour des trois questions suivantes.

- Est-il possible de toujours vacciner optimalement quand les doses de vaccins ne sont dis-
ponibles qu’au fur et à mesure, autrement dit, est-ce que l’algorithme glouton parcourt
l’ensemble des solution Pareto optimales?

- Quel est l’effet de l’assortativité (propension des individus à créer des liens avec des individus
aux caractéristiques communes) sur les profils des vaccination optimale?

- Que se passe-t-il quand tous les individus de la population ont le même nombre de contacts ?

Revenons rapidement sur la dernière question dans cette introduction. On dit qu’un noyau 𝐤
est de degré constant si les fonctions ci-dessous sont presque-sûrement constante :

𝑥 ↦ ∫
Ω
𝐤(𝑥, 𝑦) 𝜇(d𝑦) et 𝑥 ↦ ∫

Ω
𝐤(𝑦, 𝑥) 𝜇(d𝑦). (I.56)

Dans le chapitre V, nous démontrons le résultat suivant.

Théorème 9. Supposons que 𝐤 est de degré constant.

(i) Si ℜ𝑒 est convexe, alors les stratégies uniformes sont Pareto optimales,

(ii) Si ℜ𝑒 est concave, alors les stratégies uniformes sont anti-Pareto optimales.
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correspondant aux stratégies de vaccination
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Figure I .4 : Exemple d’optimisation pour la perte L = ℜ𝑒.

Ainsi, malgré l’hétérogénéité de la population, pour certaines configurations, on ne peut pas
faire mieux (ou pire) que la vaccination uniforme. La figure I.4 illustre cela avec un noyau 𝐤 de
degré constant pour lequel ℜ𝑒 est convexe d’après le théorème 6.

Dans le chapitre V, on construit un noyau de degré constant pour lequel l’ensemble des
stratégies Pareto optimales a une infinité de composantes connexes. En particulier, l’algorithme
glouton ne parcourt pas cet ensemble.
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Summary of the main assumptions on
the kernels

Let (Ω,ℱ , 𝜇) be a probability space. A kernel is a measurable fonction 𝐤 ∶ Ω × Ω → ℝ+. In order
to define the reproduction number associated to a kernel 𝐤, we make the following assumption.

Assumption A. There exists 𝑝 ∈ (1, +∞) such that:

∫
Ω
(∫

Ω
𝐤(𝑥, 𝑦)𝑞 𝜇(d𝑦))

𝑝/𝑞
𝜇(d𝑥) with 𝑞 given by

1
𝑝
+
1
𝑞
= 1.

A kernel satisfying Assumption A is said to have finite double-norm. Assumption A corre-
sponds to Assumption III.1. In Chapter IV, we mainly consider kernels with finite double-norm. In
Chapter V, all the kernels satisfy Assumption A with 𝑝 = 𝑞 = 2; see Equation (V.22). Assumption A
ensures that the integral operator associated to the kernel 𝐤 is bounded from 𝐿𝑝 to 𝐿𝑝 and compact.
It is needed to apply the Krein-Rutman theorem which is an important tool used many times
throughout the thesis.

In the dense case, the parameters of the SIS dynamic studied in Chapter II are the transmission
kernel 𝑘 ∶ Ω×Ω → ℝ+ and the recovery rate function 𝛾 ∶ Ω → ℝ+. In order to prove the existence
and the uniqueness of the trajectory of the SIS differential equation along with their long-time
behavior, we make the following assumption on the parameters.

Assumption B. The function 𝛾 is bounded and positive and there exists 𝑞 ∈ (1, +∞):

sup
𝑥∈Ω

∫
Ω

𝑘(𝑥, 𝑦)𝑞

𝛾 (𝑦)𝑞
𝜇(d𝑦) < +∞.

Assumption B corresponds to Assumption II.2 and Assumption III.2. Note that if Assumption B
is satified, then Assumption A is satisfied for the kernel 𝐤(𝑥, 𝑦) = 𝑘(𝑥, 𝑦)/𝛾 (𝑦).

Finally, we consider the following assumption which is the analogue of the irreducibility of
matrices but for kernels.

Assumption C. The kernel 𝐤 is such that

∫
𝐴×𝐴∁

𝐤(𝑥, 𝑦) 𝜇(d𝑥)𝜇(d𝑦) > 0.

for all measurable set 𝐴 ∈ ℱ such that 𝜇(𝐴) > 0 and 𝜇(𝐴∁) > 0.

A kernel satisfying Assumption C is called (strongly) connected or irreducible; see Assump-
tion II.3, Sections III.5.4 and IV.3.4. It ensures the uniqueness of the endemic equilibrium in the
SIS dynamic. In Chapter IV, we prove that it also implies the regularity of the anti-Pareto frontier
of vaccination.
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Chapter II

An Infinite-Dimensional
Metapopulation SIS Model

Chapter Abstract

In this chapter, we introduce an infinite-dimensional deterministic metapopulation SIS model
which takes into account the heterogeneity of the infections and the social network among a large
population. We study the long-time behavior of the dynamic. We identify the basic reproduction
number ℜ0 which determines whether there exists a stable endemic steady state (super-critical
case: ℜ0 > 1) or if the only equilibrium is disease-free (critical and sub-critical case: ℜ0 ≤ 1).
As an application of this general study, we prove that the so-called “leaky” and “all-or-nothing”
vaccination mechanism have the same effect on ℜ0. This framework is also very natural and
intuitive to model lockdown policies and study their impact.

The material for this chapter has been released in [35] and is currently under review
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II.1 Introduction

II.1.1 Motivation

Our goal in this chapter is to provide a generalization of the classical SIS model to infinite-
dimensional metapopulation and study its properties, under very weak assumptions. For pedagog-
ical purposes, we start by discussing in detail how one can arrive at this generalization, starting
from the one-dimensional model, and building our way through the finite dimensional model of
Lajmanovich and Yorke, before introducing the general framework. The huge literature concern-
ing these models, how our framework is situated in this picture, and comparison with related
works, are discussed below in Section II.1.6.

The SIS model

Some infections do not confer any long-lasting immunity. With such infections, individuals
become susceptible again once they have recovered from the disease. The simplest deterministic
way to model this kind of epidemics in a constant size population is the following system of
ordinary differential equations, introduced by Kermack and McKendrick in [95] and known as the
SIS (susceptible/infected/susceptible) model:

{

d𝑆
d𝑡 = −𝐾

𝑁 𝐼 𝑆 + 𝛾 𝐼 ,

d𝐼
d𝑡 =

𝐾
𝑁 𝐼 𝑆 − 𝛾 𝐼 ,

where 𝑆 = 𝑆(𝑡) and 𝐼 = 𝐼 (𝑡) are the number of susceptible and infected individuals, the total size
𝑁 = 𝑆(𝑡) + 𝐼 (𝑡) of the population is constant in time, and 𝐾 and 𝛾 are two positive numbers which
represent the infectiousness and the recovery rate of the disease. The proportion 𝑈 (𝑡) = 𝐼 (𝑡)/𝑁 of
infected individuals in the population evolves autonomously, according to:

d𝑈
d𝑡

= (1 − 𝑈 )𝐾𝑈 − 𝛾𝑈 . (II.1)

Looking at a time change of 𝑈 given by 𝑉 (𝑡) = 𝑈 (𝑡/𝛾 ) and setting ℜ0 = 𝐾/𝛾, one gets that
d𝑉/d𝑡 = (1 − 𝑉 )ℜ0𝑉 − 𝑉. The parameter ℜ0 can be interpreted as the number of infected
individuals one infected individual generates on average over the course of its infectious period,
in an otherwise uninfected population. This basic reproduction number was first introduced by
Macdonald [113], and appears in a large class of models in epidemiology, see the monograph
[24] from Brauer and Castillo-Chavez . The ordinary differential equation in 𝑉 is well-posed and
admits an explicit solution. If 𝑉 (0) = 0, then 𝑉 (𝑡) = 0 for all 𝑡: as 𝑉 represents the proportion
of infected individuals, this constant solution is called the disease-free equilibrium. Now assume
𝑉 (0) = 𝑉0 ∈ (0, 1]. If ℜ0 ≠ 1, the proportion of infected individuals in the population for 𝑡 ≥ 0 is
given by:

𝑈 (𝛾 𝑡) = 𝑉 (𝑡) =
ℜ0 − 1

ℜ0 + ((1 − ℜ0)/𝑉0 − ℜ0)e(1−ℜ0)𝑡
⋅

If ℜ0 = 1, then the proportion of infected individuals in the population is given by:

𝑈 (𝛾 𝑡) = 𝑉 (𝑡) =
1

(1/𝑉0) + 𝑡
⋅

Hence, one can identify three possible longtime behaviors for the dynamical system:

Sub-critical regime If ℜ0 < 1, 𝑈 (𝑡) converges exponentially fast to 0, and the only equilibrium
is the disease-free solution 𝑈 (𝑡) = 0.

Critical regime If ℜ0 = 1, 𝑈 (𝑡) still converges to 0 but not exponentially. The disease-free
equilibrium is still the only one.

Super-critical regime If ℜ0 > 1, the constant solution 0 becomes unstable and another equilib-
rium appears, 𝐺∗ = 1 − ℜ−1

0 . This equilibrium is called endemic, and is globally stable in
the sense that 𝑈 (𝑡) converges towards 𝐺∗ for all initial positive conditions.
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The multidimensional Lajmanovich Yorke extension

In a pioneering paper [102], Lajmanovich and Yorke introduced an extension of the SIS model
for the propagation of gonorrhea, which takes into account the fact that the propagation of the
virus is highly non homogeneous among the population — we refer to the survey [125, Section
V.A.2] from Pastor-Satorras, Castellano, van Mieghem and Vespignani, and more precisely Section
2 therein, for broader context and more details.

In this model the population is divided into 𝑛 groups and the transmission rates of the disease
between these groups are not equal, leading to a system of coupled ODEs:

d𝑈𝑖
d𝑡

= (1 − 𝑈𝑖)
𝑛
∑
𝑗=1

𝐾𝑖,𝑗 𝑈𝑗 − 𝛾𝑖𝑈𝑖, ∀𝑖 ∈ { 1, 2, … , 𝑛 } (II.2)

where 𝑈𝑖 is the proportion of infected individuals in group 𝑖 with 𝑈𝑖(0) ∈ [0, 1] for all 1 ≤ 𝑖 ≤ 𝑛,
𝐾 = (𝐾𝑖,𝑗)1≤𝑖,𝑗≤𝑛 is a non-negative matrix that represents the transmission rates of the infection
between the different groups, and the non-negative number 𝛾𝑖 > 0 is the recovery rate of group
𝑖. Since the matrix 𝐾/𝛾 = (𝐾𝑖,𝑗/𝛾𝑗)1≤𝑖,𝑗≤𝑛 has non-negative entries, we recall it has a Perron
eigenvalue, that is, an eigenvalueℜ0 ∈ ℝ+ such that all other complex eigenvalues 𝜆 of 𝐾/𝛾 satisfy
|𝜆| ≤ ℜ0. The following result is given in [102].

1. There exists a unique solution (𝑈𝑖(𝑡) ∶ 𝑡 ≥ 0)1≤𝑖≤𝑛 of Equation (II.2) and 𝑈𝑖(𝑡) ∈ [0, 1] for all
𝑡 ∈ ℝ+.

2. Ifℜ0 ≤ 1, 𝑈𝑖(𝑡) converges to 0 for all 1 ≤ 𝑖 ≤ 𝑛, so that the disease-free equilibrium (0, 0, … , 0)
is globally stable.

3. If 𝐾 is irreducible and ℜ0 > 1, then there exists an endemic equilibrium 𝐺∗ = (𝐺∗
𝑖 )1≤𝑖≤𝑛

such that for 𝑖 = 1… 𝑛:
lim
𝑡→∞

𝑈𝑖(𝑡) = 𝐺∗
𝑖 ∈ (0, 1),

provided that 𝑈 (0) ≠ (0, 0, … , 0).

Thus, under the assumption that people are connected enough, the epidemic has two possible
behaviors exactly like in the one-dimensional model:

Biotheorem 1, [102] Either the epidemic will die out naturally for every possible initial
stage of the epidemic, or when it is not true and the initial number of infectives of
at least one group is nonzero, the disease will remain endemic for all the future time.
Moreover, the number of infectives and susceptibles of each group will approach
nonzero constant levels which are independent of the initial levels.

In 1957, before Lajmanovich and Yorke’s seminal work, a similar type of behavior was formally
derived by Kendall [94] for a heterogeneous SIR epidemic model but with strong assumptions on
the transmission rates (see Equation (4) therein).

Towards a generalization

The epidemiological models discussed so far assume a large population, possibly made of a few
groups with different behaviors, so that the epidemics is deterministic. At the opposite side of the
modelling spectrum, some probabilistic models of interacting particles may be seen as modelling
epidemics.

In 1974, Harris [76] introduced the so-called contact process on ℤ𝑑. The contact process is
a continuous-time Markov process often used as a model for the spread of an infection. Nodes
of the graph represent the individuals of a population. They can either be infected or healthy.
Infected individuals become healthy after an exponential time, independently of the configuration.
Healthy individuals become infected at a rate which is proportional to the number of infected
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neighbors. The contact process share a numerous properties with the multigroup SIS equations:
the existence of an upper invariant measure, a disease-free invariant measure and a monotone
coupling [105, 106]. This proximity is not surprising since Equation (II.2) can be obtained from
a mean-field approximation of the contact process [125, Section V.A]. Notice that Equation (II.2)
can also be obtained as a limit of individual based models, see [13].

We refer to [125], and the numerous references therein, for a survey on epidemic processes in
complex networks. Since social networks are very large graphs, it is natural to consider epidemic
processes on limits of large graphs using theories developed during the last two decades. The first
type of limiting objects are called graphings, and are used to deal with very sparse graphs, namely
those with bounded degree, see [2, 50, 111]. At the other end of the spectrum, graphons are flexible
objects that define a limit for dense graphs where the mean degree is of the same order as the
number of vertices, see, for example, [111, 112]. We refer to [19, 21, 100] for further attempts at
defining a limit theory for all kind of graphs.

The SIS equation that we propose in the present chapter has to be thought as the limit of
the mean-field approximations of the contact processes defined on a convergent sequence of
large graphs. Thus, the solutions take values in an abstract space Ω (the set of vertices), which
can be interpreted as the set of features of the individuals, the transmission of the disease is
given by a kernel 𝜅 and the recovery rate by a function 𝛾 (see Examples II.1.3 and II.1.2), see the
infinite-dimensional evolution Equation (II.3) below.

The two main goals of this chapter are the following:

• introduce an infinite-dimensional SIS model, generalizing the model developed by Laj-
manovitch and Yorke (see Equation (II.3) below), and prove a result similar to [102, Biotheo-
rem 1] in that general setting;

• argue that this general setting is flexible enough to take into account not only the topology
of the social network, or the disparities between different subgroups of the population, but
also the effect of vaccination policies (see Section II.5), or the effect of lockdown (see Section
II.6), in the spirit of the policies used to slow down the propagation of Covid-19 in 2020.

II.1.2 The model

It is natural to extend the Lajmanovich and Yorke model (II.2) to a population with an infinite
number of groups. We choose to present this extension in an abstract setting, as this allows us
to include general vaccination and lockdown policies. We denote by Ω the set of the features
of the individuals in a given population. Since Ω might not be countable, we shall consider a
𝜎-field ℱ on Ω so that (Ω,ℱ ) is a measurable space. We represent the transmission rate from an
infinitesimal part of the population d𝑦 to 𝑥 by a non-negative kernel 𝜅(𝑥, d𝑦): 𝜅 is a function from
Ω × ℱ to ℝ+ such that, for all 𝐴 ∈ ℱ, the mapping 𝑥 ↦ 𝜅(𝑥, 𝐴) is measurable and, for all 𝑥 ∈ Ω,
the mapping 𝐴 ↦ 𝜅(𝑥, 𝐴) is a non-negative measure defined on (Ω,ℱ ). We model the recovery
rate of individuals with feature 𝑥 by 𝛾 (𝑥), where 𝛾 is a non-negative measurable function defined
on (Ω,ℱ ). The number 1/𝛾(𝑥) can be thought as the typical time of recovery for individuals
with feature 𝑥. For 𝑥 ∈ Ω and 𝑡 ≥ 0, we denote by 𝑢(𝑡, 𝑥) the probability for an individual (or
the proportion of individuals) with feature 𝑥 to be infected at time 𝑡. So the intensity of infection
attempts on 𝑥 coming from infected individuals in d𝑦 is given by 𝑢(𝑡, 𝑦)𝜅(𝑥, d𝑦). Recall that in a
SIS model, the probability for an infection attempt to succeed is proportional to the number of
susceptible individuals, i.e., those who are not already infected; this explains the term (1 − 𝑢(𝑡, 𝑥))
in front of the integral in the next equation. The evolution equation of the function 𝑢 for the
SIS model of the probability for being infected is given by the following differential equation (in
infinite dimension):

{
𝜕𝑡𝑢(𝑡, 𝑥) = (1 − 𝑢(𝑡, 𝑥)) ∫

Ω
𝑢(𝑡, 𝑦) 𝜅(𝑥, d𝑦) − 𝛾(𝑥)𝑢(𝑡, 𝑥), 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝜏 ),

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ Ω,
(II.3)
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where the measurable function 𝑢0 ∶ Ω → [0, 1] is the so-called initial condition and the solution
𝑢 is defined up to time 𝜏 ∈ (0, ∞]. We shall prove that Equation (II.3) is well defined up to 𝜏 = +∞,
and we will mainly focus our study on the long-time behavior of the solutions to this equation and
on the study of existence of equilibria. Once again, we refer to Section II.1.6 for a discussion on
related work, and in particular the work by Thieme [150] on a spatial SIR model and by Busenberg,
Iannelli and Thieme [28] on long-time behavior of an age-structured SIS infection.

Example II.1.1 (Lajmanovich and Yorke model). Consider a finite set of features, Ω = { 1, 2, … , 𝑛 }
(with the 𝜎-field ℱ = 𝒫 (Ω) of all sub-sets of Ω), a finite kernel 𝜅 and a positive recovery rate 𝛾.
We set for all 𝑖, 𝑗 ∈ Ω and 𝑡 ≥ 0:

𝐾𝑖,𝑗 = 𝜅(𝑖, { 𝑗 }), 𝛾𝑖 = 𝛾(𝑖) and 𝑈𝑖(𝑡) = 𝑢(𝑡, 𝑖),

where 𝑢 is the solution to Equation (II.3). The functions 𝑈𝑖, for 1 ≤ 𝑖 ≤ 𝑛, clearly solve the
finite-dimensional model (II.2).

There are two natural extensions of Example II.1.1 to large bounded degree graphs and large
dense graphs, which is a first approach to model large complex social networks.

Example II.1.2 (Graph model). Consider a representation of the social interaction of a population
by a simple graph 𝐺, with set of vertices 𝑉 (𝐺) = Ω which is at most countable, and set of edges
𝐸(𝐺) ⊂ Ω × Ω. For 𝑥 ∈ Ω, let 𝒩 (𝑥) = { 𝑦 ∈ 𝐺 ∶ (𝑥, 𝑦) ∈ 𝐸(𝐺) } stands for the neighborhood of 𝑥 in
𝐺 and deg𝐺(𝑥) = Card (𝒩 (𝑥)) for its degree. If the degree of the vertices of 𝐺 are finite, we may
consider a kernel with the following form:

𝜅(𝑥, d𝑦) = 𝛽(𝑥) ∑
𝑧∈𝒩 (𝑥)

𝜃(𝑦)𝛿𝑧(d𝑦), (II.4)

where 𝛽 and 𝜃 are non-negative functions, which represent the susceptibility and the infectiousness
of the individuals respectively, and 𝛿𝑧 is the Dirac mass at 𝑧. Then Equation (II.3) represents the
evolution equation for a SIS model on a graph. The strength of the formalism of (II.3) is that one
can consider limit of large bounded degree undirected graphs called graphings, see Section 18
in [111] for the definition of a graphings.

Example II.1.3 (Graphon form). One of the initial motivation of this work, was to consider a SIS
model on graphons, which are limit of large dense graphs, see the monograph [111] from Lovàsz. In
a recent paper [156], Vizuete, Frasca and Garin studied the stability of deterministic SIS epidemics
over a large network generated by a Lipschitz graphon.

Recall the set of features of the individuals in the population is given by a set Ω. In this
approach, the typical form of the transmission kernel 𝜅 we may consider is:

𝜅(𝑥, d𝑦) = 𝛽(𝑥)𝑊 (𝑥, 𝑦)𝜃(𝑦) 𝜇(d𝑦), (II.5)

where 𝛽 represents the susceptibility and 𝜃 the infectiousness of the individuals; 𝑊 models the
graph of the contacts within the population and the quantity 𝑊(𝑥, 𝑦) ∈ [0, 1] is interpreted as
the probability that 𝑥 and 𝑦 are connected, or as the density of contacts between individuals with
features 𝑥 and 𝑦; 𝜇 is a probability measure on (Ω,ℱ ) and 𝜇(d𝑦) represents the infinitesimal pro-
portion of the population with feature 𝑦. Formally, 𝛽 and 𝜃 are non-negative measurable functions,
and the function 𝑊 ∶ Ω × Ω → [0, 1] is symmetric measurable. The quadruple (Ω,ℱ , 𝜇,𝑊 ) is
called a graphon. The degree deg𝑊(𝑥) of 𝑥 ∈ Ω (i.e. the average number of his contacts) and the
mean degree d𝑊 for a graphon 𝑊 are defined by:

deg𝑊(𝑥) = ∫
Ω
𝑊(𝑥, 𝑦) 𝜇(d𝑦) and d𝑊 = ∫

Ω
deg𝑊(𝑥) 𝜇(d𝑥) = ∫

Ω2
𝑊(𝑥, 𝑦) 𝜇(d𝑦) 𝜇(d𝑥). (II.6)

Let us give a bit more detail in three particular cases.
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(i) Constant graphon. One elementary example, is the constant graphon, 𝑊 = 𝑝 ∈ [0, 1]. In
this case, the degree function is constant, equal to the mean degree and thus equal to the
parameter 𝑝. We recall this constant graphon appears as the limit, as 𝑛 goes to infinity, of
Erdös-Rényi random graphs with 𝑛 vertices and parameter 𝑝 (that is: independently, for
each pair of vertices, there is an edge between those two vertices with probability 𝑝). If
furthermore the functions 𝛽, 𝜃 and 𝛾 from (II.3) are constant on Ω, then we recover the SIS
model (II.1) with 𝐾 = 𝑝𝛽𝜃 and 𝑈 (𝑡) = ∫Ω 𝑢(𝑡, 𝑥)𝜇(d𝑥).

(ii) Stochastic block model. The stochastic block model of communities, introduced by [85]
(and referred to as step graphons in [111], see also [1] for further references), corresponds to
the case where𝑊 is constant by block, i.e. there exists a finite partition (Ω𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛) of Ω
such that 𝑊 is constant on the blocks Ω𝑖 × Ω𝑗 for all 𝑖, 𝑗, and equal say to 𝑊𝑖,𝑗. If furthermore,
the functions 𝛽, 𝜃 and 𝛾 from (II.3) are also constant on the partition, then we recover the
Lajmanovich and Yorke model, see (II.2), with: 𝐾𝑖,𝑗 = 𝛽𝑖𝑊𝑖,𝑗 𝜃𝑗 𝜇(Ω𝑗); 𝛽𝑖, 𝜃𝑖 and 𝛾𝑖 are the
constant values of 𝛽, 𝜃 and 𝛾 on Ω𝑖; and 𝑈𝑖(𝑡) = ∫Ω𝑖

𝑢(𝑡, 𝑥)𝜇(d𝑥)/𝜇(Ω𝑖).

(iii) Geometric graphon. In this case, which is a natural generalization of the Random Geo-
metric Graph (see [129] for a survey and [32] and references therein for related models),
the probability of contact between 𝑥 and 𝑦 depends on their relative distance. For example,
consider the population uniformly spread on the unit circle: Ω = [0, 2𝜋] and 𝜇(d𝑥) = d𝑥/2𝜋.
Let 𝑓 be a measurable non-negative function defined on ℝ which is bounded by 1 and
2𝜋-periodic. Define the corresponding geometric graphon 𝑊𝑓 by 𝑊𝑓(𝑥, 𝑦) = 𝑓 (𝑥 − 𝑦) for
𝑥, 𝑦 ∈ Ω. In this case, the degree of 𝑥 ∈ [0, 1] is constant with:

deg𝑊𝑓
(𝑥) = d𝑊𝑓

=
1
2𝜋 ∫

[0,2𝜋]
𝑓 (𝑦) d𝑦.

II.1.3 Main assumptions and definition of the reproduction rate

In order for Equation (II.3) to make sense, we will need the following assumption. It will always
be in force throughout this chapter without supplementary specification.

Assumption II.1. The function 𝛾 is positive, bounded and the non-negative kernel 𝜅 is uniformly
bounded:

sup
𝑥∈Ω

𝜅(𝑥, Ω) < ∞. (II.7)

Assuming the recovery rate 𝛾 to be bounded is equivalent to require the time of recovery 1/𝛾
to be bounded from below by a positive constant. The function 1/𝛾 is also finite for all individuals
because 𝛾 is supposed to be positive. It is possible with Assumption II.1 to have individuals
with arbitrary large time of recovery, though. Finally, Equation (II.7) limits the maximal force of
infection that can be put upon a susceptible individual.

In Examples II.1.1, II.1.2 and II.1.3, we observe that the kernel has a density with respect to a
reference measure (the counting measure in the first two examples and the probability measure 𝜇
in the third one). From an epidemiological point of view, the reference measure 𝜇 can be seen as a
way to quantify the size of the population and its sub-groups (defined by a given feature such as
sex, spatial coordinates, social condition, health background, ...). If the measure 𝜇 is finite, then for
every measurable set 𝐴, the number 𝜇(𝐴)/𝜇(Ω) is the proportion of individuals in the population
whose features belong to 𝐴. We shall consider the case where the density 𝑘 of 𝜅with respect to the
reference measure 𝜇 satisfies some mild integrability condition. We emphasize that the space Ω is
not equipped with a topology and, as a consequence, we do not assume any smoothness condition
on the density 𝑘. By a slight abuse of language, we will also call the density 𝑘 a kernel.

Assumption II.2. There exists a finite positive measure 𝜇 on (Ω,ℱ ), a non-negative measurable
function 𝑘 ∶ Ω ×Ω → ℝ+ such that for all 𝑥 ∈ Ω, 𝜅(𝑥, d𝑦) = 𝑘(𝑥, 𝑦)𝜇(d𝑦). Besides, there exists 𝑞 > 1
such that:

sup
𝑥∈Ω

∫
Ω

𝑘(𝑥, 𝑦)𝑞

𝛾 (𝑦)𝑞
𝜇(dy) < ∞. (II.8)
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Note that the kernel 𝑘(𝑥, 𝑦)/𝛾 (𝑦) that appears in Assumption II.2 is the analogue of the ratio
𝐾/𝛾 in the multi-dimensional Lajmanovich–Yorke model.

Since we assume that 𝛾 is bounded, Equation (II.8) implies the following integrability condition
for the kernel 𝑘:

sup
𝑥∈Ω

∫
Ω
𝑘(𝑥, 𝑦)𝑞 𝜇(dy) < ∞. (II.9)

We shall study in Section II.4.5 an example which does not satisfy the integrability condition (II.8)
nor (II.9).

Finally, some results in the supercritical regime will only hold under the following connectivity
assumption.

Assumption II.3 (Connectivity). The kernel 𝑘 is connected, that is,

∫
𝐴×𝐴∁

𝑘(𝑥, 𝑦) 𝜇(d𝑥)𝜇(d𝑦) > 0 (II.10)

for any measurable set 𝐴 such that 𝜇(𝐴) > 0 and 𝜇(𝐴∁) > 0.

The sociological interpretation of the connectivity assumption is that we cannot separate the
population into two groups of individuals with no interaction. Contrary to Assumption II.1 which
is assumed throughout the text, we will specify each time whether Assumptions II.2 or II.3 are
needed.

Remark II.1.4 (The finite dimensional case). Assumption II.2 is automatically satisfied in the finite-
dimensional model of Example II.1.1, where we supposed Assumption II.1. We can indeed take 𝜇
to be the counting measure and Equation (II.8) is true because 𝑘 is bounded from above and 𝛾 is
bounded from below by a positive constant as it is positive. Notice Assumption II.3 is equivalent
to the matrix of transmission rates 𝐾 = (𝐾𝑖,𝑗)1≤𝑖,𝑗≤𝑛 being irreducible.

The basic reproduction number of an infection, denoted by ℜ0, has originally been defined
as the number of cases one typical individual generates on average over the course of its infec-
tious period, in an otherwise uninfected population. This number plays a fundamental role in
epidemiology as it provides a scale to measure how difficult to control an infectious disease is.
More importantly, in many models, the particular value ℜ0 = 1 turns out to be a threshold: the
disease will die out if ℜ0 < 1, and invade the population if ℜ0 > 1.

In mathematical epidemiology, Diekmann, Heesterbeek and Metz [42] define rigorously the
basic reproduction number for a class of models with heterogeneity in the population. They
propose to consider the next-generation operator which gives the distribution of secondary cases
arising from an infected individual picked randomly according to a certain distribution — the
population being assumed uninfected otherwise. In our model, under Assumption II.2, following
[42, Equation (4.2)], we define the next generation operator, denoted by 𝑇𝑘/𝛾, as the integral
operator:

𝑇𝑘/𝛾(𝑔)(𝑥) = ∫
Ω

𝑘(𝑥, 𝑦)
𝛾 (𝑦)

𝑔(𝑦) 𝜇(d𝑦) for all 𝑥 ∈ Ω, (II.11)

which is, thanks to (II.8), a bounded positive operator on the spaceℒ∞(Ω) of bounded real-valued
measurable functions defined on Ω. Following [42, Definition of ℜ0 in Section 2], the basic
reproduction number is then defined by, :

ℜ0 = 𝜌(𝑇𝑘/𝛾), (II.12)

where 𝜌 is the spectral radius, whose exact definition in our general setting will be recalled below
(Equation (II.34)). These definitions of the next-generation operator and the basic reproduction
number are consistent with the finite dimensional SIS model given in [153].
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II.1.4 Long time behavior of solutions to the evolution equation (II.3)

We now state our main result concerning solutions of the evolution equation (II.3). Recall the
initial condition of (II.3), 𝑢0, takes values in [0, 1].

Theorem II.1.5. We have the following properties.

(i) (Equation (II.3) is well defined and 𝜏 = +∞.) Under Assumption II.1, there exists a unique
solution 𝑢 to Equation (II.3). This solution is such that, for all (𝑥, 𝑡) ∈ Ω × ℝ+, 𝑢(𝑡, 𝑥) ∈ [0, 1].

(ii) (Disease free equilibrium in the critical and sub-critical case.) Assume that Assumptions
II.1 and II.2 are in force. Let ℜ0 be defined by (II.12). If ℜ0 ≤ 1, then the disease dies out: for
all 𝑥 ∈ Ω,

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 0.

(iii) (Stable endemic equilibrium in the super-critical case.) Assume that Assumptions II.1,
II.2 and II.3 are in force. If ℜ0 > 1, then there exists a unique equilibrium 𝔤 ∶ Ω → [0, 1]
different from 0 and it is positive 𝜇-a.e. For all initial condition 𝑢0 such that its integral is
positive:

∫
Ω
𝑢0(𝑥) 𝜇(d𝑥) > 0,

the solution 𝑢 to (II.3) converges pointwise to 𝔤, i.e., for all 𝑥 ∈ Ω:

lim
𝑡→∞

𝑢(𝑡, 𝑥) = 𝔤(𝑥).

If 𝑢0 = 0 𝜇-a.e. then the solution 𝑢 to (II.3) converges pointwise to 0.

For property (i), see Proposition II.2.7; property (ii) is a consequence of Theorems II.4.6 and
II.4.7; and property (iii) follows from Corollary II.4.9 and Theorem II.4.13.

Remark II.1.6 (Uniform convergence). The convergence of 𝑢(𝑡, ⋅) towards 0 in (ii) or towards 𝔤
in (iii) in Theorem II.1.5 is uniform on any measurable subset 𝐴 ⊂ Ω such that inf𝐴 𝛾 > 0, see
Theorem II.4.17. In particular these convergences hold in uniform norm if the recovery rate 𝛾 is
bounded from below.

II.1.5 Modelling vaccination policies, vaccination mechanisms and lockdown

Vaccination

In Section II.5, we propose extensions of Equation (II.3) which take into account the effect of a
vaccination policy. Vaccination confers a direct protection on the targeted individuals but also acts
indirectly on the rest of the population through herd immunity. However, all vaccinated individuals
will not be totally immune to the disease. In [146], Smith, Rodrigues and Fine propose two possible
models to explain vaccine efficacy. In the first model, the vaccine offers complete protection to a
portion of the vaccinated individuals but does not take in the remainder of vaccinated individuals.
The second model supposes that the vaccination confers a partial protection to every vaccinated
individual. In [140], Halloran, Lugini and Struchiner called the former mechanism the all-or-
nothing vaccination and the latter one the leaky vaccination. We define below one infinite-
dimensional SIS model for each of these two mechanisms.

In order towrite down the vaccinationmodel, we first adapt the one-group SIRmodels proposed
by Shim and Galvani in [140] to the one-group SIS model. Let us denote by 𝜂v the proportion
of vaccinated individuals in the total population, and let 𝜂u = 1 − 𝜂v . Let 𝑈v and 𝑈u be the
proportion of infected individuals in the vaccinated and unvaccinated population respectively, so
that 𝜂v𝑈v + 𝜂u𝑈u is the proportion of infected individuals in the total population. For both models,
we assume that vaccinated individuals who are nevertheless infected by the disease become less
contagious (see [131, 139] for instance). We will denote the vaccine efficacy for infectiousness,
that is, the relative reduction of infectiousness for vaccinated individuals by a parameter 𝛿 ∈ [0, 1].
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In what follows, 𝐾 and 𝛾 represent the transmission rate and the recovery rate of the disease as
in the model (II.1) or (II.2) and are assumed to be the same for the vaccinated and unvaccinated
population. We now introduce two models for the so-called vaccine efficacy 𝑒, see [70, 74, 140,
146] for discussion on this parameter.

In the leaky vaccination, we define the efficacy 𝑒 ∈ [0, 1] as the relative reduction of suscep-
tibility for vaccinated individual. Following [140, Equations (1)-(8)], with the parameters 𝛿 and
𝑒 corresponding to 𝜎 and 𝛼 in [140], the evolution equations for the leaky vaccination are then
given by:

{

d𝑈v
d𝑡 = (1 − 𝑈v)(1 − 𝑒)𝐾((1 − 𝛿)𝜂v𝑈v + 𝜂u𝑈u) − 𝛾𝑈v ,

d𝑈u
d𝑡 = (1 − 𝑈u)𝐾((1 − 𝛿)𝜂v𝑈v + 𝜂u𝑈u) − 𝛾𝑈u .

(II.13)

In the all-or-nothing vaccination, we denote the proportion of vaccinated individuals immu-
nized to the disease (people who can neither contract not transmit the disease) by the parameter
1 − 𝑒 ∈ [0, 1]. Following [140, Equations (13)-(20)], the evolution equations for the all-or-nothing
vaccination in the SIS setting are given by:

{

d𝑈v
d𝑡 = (1 − 𝑒 − 𝑈v)𝐾((1 − 𝛿)𝜂v𝑈v + 𝜂u𝑈u) − 𝛾𝑈v ,

d𝑈u
d𝑡 (1 − 𝑈u)𝐾((1 − 𝛿)𝜂v𝑈v + 𝜂u𝑈u) − 𝛾𝑈u .

(II.14)

Since vaccinated individuals that are immunized cannot get the disease, we have 𝑈v(𝑡) ≤ 1 − 𝑒 for
all 𝑡 ∈ ℝ+.

Remark II.1.7. Notice that, in both models, the unvaccinated population can be viewed as a
population inoculated with a vaccine of efficacy equal to 0.

In Section II.5, we derive in Equations (II.66) and (II.69) the analogue of (II.13) and (II.14)
in the infinite-dimensional setting. Those two equations can be seen as a particular case of
Equation (II.3). We also prove that, as far as the basic reproduction number is concerned the two
different vaccination mechanisms, the all-or-nothing and leaky mechanisms, have the same effect
in the infinite dimensional model, see Proposition II.5.2. This result was already observed in a
one-group model by Shim and Galvani [140]. In the case of a perfect vaccine, where vaccinated
people cannot be infected nor infect others, the evolution equation of the proportion of infected
among the non vaccinated population is also given by Equation (II.3) with the kernel 𝜅(𝑥, d𝑦)
replaced by 𝜂0(𝑦)𝜅(𝑥, d𝑦) where 𝜂0(𝑦) is the proportion of individuals with feature 𝑥 ∈ Ω which
are not vaccinated, see Equation (II.73). We shall study in a future work the optimal vaccination
in this setting with the basic reproduction number as an objective function to minimize.

Effect of lockdown policies

Eventually, we model the effect of lockdown (see Section II.6) for graphon models presented in
Example II.1.3, in the spirit of the policies used to slow down the propagation of Covid-19 in 2020,
see for example the study [41]. In particular, we prove that a lockdown which bounds the number
of contacts of the individuals (this roughly corresponds to reduce significantly the number of
contacts for highly connected groups) is enough to reduce the basic reproduction number, see
Proposition II.6.3. Recall the definition of the degree deg𝑊(𝑥) of 𝑥 and the mean degree d𝑊 for a
graphon 𝑊 defined in (II.6). Following Remark II.6.4, we get that the heterogeneity in the degree
for the graphon model implies larger value of the basic reproduction number. In this direction,
see also [108, Section 1.1] on the SIS model from Pastor-Satorras and Vespignani, where the basic
reproduction number increases with the variance of the degrees of the nodes in a finite graph.

Corollary II.1.8. Consider the SIS model (II.3)with transmission kernel given in a graphon form (II.5)
(so that 𝑘(𝑥, 𝑦) = 𝛽(𝑥)𝑊 (𝑥, 𝑦)𝜃(𝑦)). Assume that the susceptibility 𝛽, the infectiousness 𝜃 and the
recovery rate 𝛾 are constant and positive. The weakest value of the basic reproduction number ℜ0
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defined by (II.12) among all graphons 𝑊 with mean degree d𝑊 ≥ 𝑝 for some threshold 𝑝 ∈ [0, 1] is
obtained for graphons with constant degree equal to 𝑝 (i.e. graphon 𝑊 such that deg𝑊(𝑥) = 𝑝 for all
𝑥 ∈ Ω).

We recall from Example II.1.3 (i) and (iii), that the constant graphon and the geometric graphons
have constant degree. Considering a geometric graphon with (mean) degree 𝑝, we get that
ℜ0 = 𝛾−1 𝛽𝜃𝑝, and forℜ0 > 1, we deduce (directly or from Proposition II.2.17), that the equilibrium
𝔤 is constant equal to 1−ℜ−1

0 (compare with model (II.1) with 𝐾 = 𝛽𝜃𝑝). Furthermore, the example
of the geometric graphon with a given mean degree, indicates that, if the parameters 𝛽, 𝜃 and 𝛾 are
constant, then the contamination distance (or support of the function 𝑓, see end of Remark II.6.4)
from an infected individual is not relevant for the value of the basic reproduction number nor for
the equilibria.

II.1.6 Discussion and related results

The dichotomy of possible dynamics described in [102, Biotheorem 1] has been established for
many other compartmental models and possibly their multigroup version by using Lyapunov
function techniques (see for instance [14, 107]). For a survey, we refer to Fall, Iggidr, Sallet and
Tewa [55]. In [82, Section 6] and [142], Hirsch and Smith proved the long-time behavior of
Equation (II.2) thanks to their theory of order preserving systems, thereby giving a completely
new perspective to the study of mathematical epidemic models. Their work greatly inspired Li
and Muldowney [104] in their important proof of the global stability of the endemic equilibrium
of the SEIR model (susceptible-exposed-infected-recovered) which was a long-standing conjecture
at that time.

Continuous models involving transmission rates that depend on the localization of the indi-
viduals [11, 94, 118] or their age [86] have long been studied. Both of these can be thought of as
multigroup models with a continuous set of groups and therefore lead to differential equations
in infinite-dimensional space. In this setting, results about global stability of the endemic or the
disease-free equilibrium have also been obtained. We outline some of them below and highlight
how they differ from our framework.

In [28], Busenberg, Iannelli and Thieme established the long-time behavior of an age-structured
SIS infection. They proved, thanks to semi-group theory and positive operators methods, that
the system converges to a unique endemic equilibrium if it exists. Otherwise, it converges to the
disease-free equilibrium. In this work the transmission kernel is assumed to be bounded from
above and below by product kernels (see Equation (2.9) therein). This represents a restriction (see
the discussion at the end of [28]) as it is not possible to forbid contacts between some but not all
groups. By contrast, in the setting of Example II.1.3, it is easy and natural to model the absence of
contact between individuals with feature 𝑥 and 𝑦 by imposing that 𝑊(𝑥, 𝑦) = 0, without imposing
conditions on the probability of contact between 𝑥 and other features than 𝑦.

In [58] Feng, Huang and Castillo-Chavez considered a similar dynamic for a multigroup age-
structured SIS model, but where the endemic equilibrium exists but is not globally stable. They
assume that the system has a quasi-irreducibility property (see Definition 3.1 therein) which is a
weaker assumption than Assumption II.3, but impose bounds on the transmission kernel.

In [152], Thieme also used an operator approach to study a SIR model with variable suscep-
tibility (see Section 4 therein). In particular, he studied the close relation between the spectral
bound of the operator 𝑇𝑘 − 𝛾 and of the basic reproduction number ℜ0 which is the spectral radius
of the operator 𝑇𝑘/𝛾. In [150], Thieme analyzed a space-structured SIR model with birth. In this
model, the incidence term, i.e. the equivalent of (1 − 𝑢(𝑡, 𝑥))𝑢(𝑡, 𝑦)𝜅(𝑥, d𝑦) in Equation (II.3), is
replaced by a non bilinear term 𝑓 (𝑥, 𝑦 , 1 − 𝑢(𝑡, 𝑥), 𝑢(𝑡, 𝑦)) d𝑦, where the function 𝑓 is continuous,
locally Lipschitz continuous and increasing in its third and fourth argument. Imposing also that
the recovery rate 𝛾 is bounded away from 0, he proved an analogue of [102, Biotheorem 1] (see
Theorems 7.1, 8.2, 9.1 and 12.1 therein) using Lyapunov functions. Part of those results would
not hold in general if inf 𝛾 = 0. In contrast to these works, we consider very few regularity
assumptions on the parameters, and in particular allow that inf 𝛾 = 0.
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Other works introduce movement of populations, either between discrete patches, see for
example [8] and the biological examples therein, or in a continuous space. In [134], Ruan and
Xiao obtained the global stability of the steady states for a general spatial SIS model with delay, a
diffusion term for the infected population and a non-local kernel governing the transmission of
the disease. It is assumed that the transmission kernel is smooth and satisfies a constant-degree
assumption, so that the endemic equilibrium is unique and constant. Here, we do not consider
the constant degree assumption as this condition intrinsically does not hold when considering
vaccination strategies, see Section II.5. In the recent [3], Almeida, Bliman, Nadin, Perthame and
Vauchelet studied a spatial SEIR model with or without diffusion. The case without diffusion is
formally very close to our model, and makes no smoothness assumptions on the infection kernel;
however, the infection kernel is supposed to be bounded and positive everywhere, and the various
rates bounded above below. Once again, the positiveness assumption of the infection kernel breaks
down when taking into account vaccination strategies or lockdown policies. Let us mention also
that removing the boundedness assumption on the infection kernel could lead to the existence
of an infinite number of positive equilibria, see Section II.4.5. For a deeper discussion on spatial
epidemic models and a detailed review, we refer the reader to [133].

The principal tools we use to prove Theorem II.1.5, see also the key Lemma II.3.7 and Proposi-
tion II.2.5, can be summarized as follows.

Cooperative systems The function 𝑔 ↦ 𝐹(𝑔) = (1 − 𝑔)𝑇𝜅(𝑔) − 𝛾𝑔 is cooperative (see Definition
II.2.1 and Remarks II.2.2 and II.2.3), which implies that the solution of (II.3) are well defined
and the corresponding dynamical system is order preserving. For approaches based on
cooperation (or quasi-monotonicity) and monotone dynamical systems on various models,
see [13, 82, 83, 142, 143, 144].

Positive operators Under Assumption II.2 and Equation (II.8), the integral operator 𝑇𝑘/𝛾 can be
seen as an Hille-Tamarkin operator on 𝐿𝑝(𝜇) with the corresponding compactness property
see [159, Theorem 41.6]. Then the positivity of the operator 𝑇𝑘/𝛾 allows to use Krein-Rutman
theorem to get that its spectral radius is an eigenvalue with a non-negative eigenfunction.
This argument has been widely used, see for example [28] (where the operator is of rank
one, and thus is compact) and also [150, 152].

Connectivity Under Assumption II.3 on the connectivity of kernel 𝑘 (which in finite dimension
corresponds to the irreducibility of non-negative matrices and is related to the Perron-
Frobenius theorem), we can consider the unique corresponding eigenvector, thanks to the
Perron-Jentzsch theorem (see [136, Theorem V.6.6] or [69, Theorem 5.2]). This eigenvector
is an essential tool to study the long-time behavior of the solution to Equation (II.3) in
the super-critical regime. In finite dimension, see [102], where the matrix 𝐾 from (II.2) is
assumed to be irreducible, or [13] for a more general finite-dimensional model. In infinite
dimension, see [58] for a weaker quasi-irreducibility condition.

Finally let us remark that we do not use the standard tool of Lyapunov functions, in contrast with
many previous works, see for example [14, 107, 150].

II.1.7 Structure of the chapter

In Section II.2 we construct the semi-flow associated to the infinite dimensional SIS model (II.3),
and prove its main regularity and monotonicity properties. We introduce in Section II.3 some
important tools of spectral analysis in Banach lattices. This allows us to define in Section II.4.1
the basic reproduction number ℜ0. The convergence of the system towards an equilibrium is
established in Section II.4. In Section II.5, we take into account the effect of a vaccination policies
on the propagation of the disease. Eventually, in Section II.6, we model the impact of lockdown
policies on the propagation of the disease when 𝜅 takes the graphon form of Example II.1.3.
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II.2 Model analysis

II.2.1 Preamble

In this paragraph, we recall some definitions of functional analysis. Most of them can be found
in [33]. Let (𝑋 , ‖ ⋅ ‖) be a Banach space. The topological dual 𝑋⋆ of 𝑋 is the space of all bounded
linear forms and we use the notation ⟨𝑥⋆, 𝑥⟩ for the value of an element 𝑥⋆ ∈ 𝑋⋆ at 𝑥 ∈ 𝑋. We
consider 𝐾 a proper cone on 𝑋, i.e., a closed convex subset of 𝑋 such that 𝜆𝐾 ⊂ 𝐾 for all 𝜆 ≥ 0 and
𝐾 ∩ (−𝐾) = { 0 }. The proper cone 𝐾 defines a partial ordering ≤ on 𝑋: 𝑥 ≤ 𝑦 if 𝑦 − 𝑥 ∈ 𝐾. It is said
to be reproducing if 𝐾 − 𝐾 = 𝑋 (any element 𝑥 ∈ 𝑋 can be expressed as a difference of elements
of 𝐾). The dual cone of 𝐾 is the set 𝐾⋆ ⊂ 𝑋⋆ consisting of all 𝑥⋆ such that ⟨𝑥⋆, 𝑥⟩ ≥ 0 for all 𝑥 ∈ 𝐾.
If the proper cone 𝐾 is reproducing then the set 𝐾⋆ is a proper cone (see beginning of [33, Section
19.2]).

We denote by ℒ(𝑋) the space of bounded linear operators from 𝑋 to 𝑋. The operator norm of
a bounded operator 𝐴 ∈ ℒ(𝑋) is given by:

‖ 𝐴 ‖ = sup { ‖ 𝐴𝑥 ‖ ∶ 𝑥 ∈ 𝑋 , ‖ 𝑥 ‖ ≤ 1 } .

The topology associated to ‖ ⋅ ‖ in ℒ(𝑋) is called the uniform operator topology. A linear bounded
operator 𝐴 ∈ ℒ(𝑋) is said to be positive (with respect to the proper cone 𝐾) if 𝐴𝐾 ⊂ 𝐾.

Let 𝐹 be a function defined on an open domain 𝐷 ⊂ 𝑋 and taking values in 𝑋. The function 𝐹
is said to be Fréchet differentiable at 𝑥 ∈ 𝐷, if there exists a bounded linear operator 𝒟𝐹[𝑥] such
that:

lim
𝑦→0

‖ 𝐹 (𝑥 + 𝑦) − 𝐹(𝑥) − 𝒟𝐹[𝑥](𝑦) ‖ / ‖ 𝑦 ‖ = 0.

The operator 𝒟𝐹[𝑥] is called the Fréchet derivative of 𝐹 at point 𝑥.
We define the cooperativeness property which is related to the definition of quasimonotony

firstly introduced by Volkmann [157] for abstract operators.

Definition II.2.1 (Cooperative function). Let 𝐷1, 𝐷2 ⊂ 𝑋. A function 𝐹 ∶ 𝑋 → 𝑋 is said to be
cooperative on 𝐷1 × 𝐷2 (with respect to 𝐾) if, for all (𝑥, 𝑦) ∈ 𝐷1 × 𝐷2 such that 𝑥 ≤ 𝑦 and for all
𝑧⋆ ∈ 𝐾⋆, we have the following property:

⟨𝑧⋆, 𝑥 − 𝑦⟩ = 0 ⟹ ⟨𝑧⋆, 𝐹 (𝑥) − 𝐹(𝑦)⟩ ≤ 0. (II.15)

We shall mainly consider the cases 𝐷1 = 𝑋 or 𝐷2 = 𝑋.

Remark II.2.2. For a better understanding of the cooperativeness property, let us examine the finite
dimensional case. Let 𝑑 ≥ 2, 𝑋 = ℝ𝑑 and 𝐾 = ℝ𝑑+. Then, for a smooth function 𝐹 = (𝐹1, 𝐹2, … , 𝐹𝑑),
it is easy to see that 𝐹 is cooperative on 𝑋 × 𝑋 with respect to 𝐾 if and only if:

𝜕𝐹𝑗
𝜕𝑥𝑖

(𝑥) ≥ 0 for all 𝑥 ∈ ℝ𝑑 and all 𝑖 ≠ 𝑗. (II.16)

We recover the definition of cooperativeness introduced by Hirsch [82]. Suppose the vector 𝑥
represents the utilities of a group of agents { 1, 2, … 𝑑 } and 𝐹 is the dynamics of the system, that is,
d𝑥/d𝑡 = 𝐹(𝑥). Then, the higher the utilities of agents 𝑗 ≠ 𝑖 are, the more beneficial the situation
is for agent 𝑖, as it increases the value of the time derivative of 𝑥𝑖. For this reason, the function 𝐹
satisfying (II.16) is called cooperative.

We extend the differential version of cooperativeness of Remark II.2.2 to infinite dimension in
the next remark.

Remark II.2.3. Let 𝑋 be a Banach space, 𝐷 an open domain and 𝐹 ∶ 𝑋 → 𝑋 be a Fréchet differen-
tiable function. Assume that 𝐹 is cooperative on 𝐷 × 𝑋. Let (𝑥, 𝑧) ∈ 𝐷 × 𝐾 and let 𝑧⋆ ∈ 𝐾⋆ such
that ⟨𝑧⋆, 𝑧⟩ = 0. Since 𝐹 is cooperative on 𝐷 × 𝑋, we have:

⟨𝑧⋆, (𝐹 (𝑥 + 𝜆𝑧) − 𝐹(𝑥))/𝜆⟩ ≥ 0,
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for all 𝜆 > 0. Letting 𝜆 go to 0, we obtain the following inequality:

⟨𝑧⋆,𝒟𝐹[𝑥](𝑧)⟩ ≥ 0. (II.17)

Using path integrals in Banach space, we can prove the reverse implication in the case 𝐷 = 𝑋.
Indeed, for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑧⋆ ∈ 𝑋⋆, we have:

⟨𝑧⋆, 𝐹 (𝑥) − 𝐹(𝑦)⟩ = −∫
1

0
⟨𝑧⋆,𝒟𝐹[(1 − 𝜆)𝑥 + 𝜆𝑦](𝑦 − 𝑥)⟩ d𝜆. (II.18)

Assume (II.17) holds for 𝑧⋆ ∈ 𝐾⋆ and 𝑧 ∈ 𝐾. Then, if 𝑥 ≤ 𝑦, 𝑧⋆ ∈ 𝐾⋆ and ⟨𝑧⋆, 𝑦 − 𝑥⟩ = 0, we get that
⟨𝑧⋆, 𝐹 (𝑥) − 𝐹(𝑦)⟩ is non-positive thanks to Equation (II.17). Thus the function 𝐹 is cooperative.

Ordinary differential equations (ODEs) driven by cooperative vector fields enjoy a number of
nice properties that we now review. Let us first recall a few definitions and classical properties of
ODEs. Let 𝐹 ∶ 𝑋 → 𝑋 be a locally Lipschitz function. The Picard–Lindelöf theorem ensures the
existence of 0 < 𝜏 ≤ ∞ and of a continuously differentiable function 𝑦 from 𝐽 = [0, 𝜏 ) to 𝑋 which
is the unique solution of the Cauchy problem:

{
𝑦 ′(𝑡) = 𝐹(𝑦(𝑡)) 𝑡 ∈ 𝐽 ,

𝑦(0) = 𝑦0,
(II.19)

where 𝑦0 ∈ 𝑋 is the so-called initial condition (see [34, Section 1.1]). A solution 𝑦 defined on an
interval [0, 𝜏 ) is said to be maximal if there is no solution of Equation (II.19) defined on [0, 𝜏 ′) with
𝜏 ′ > 𝜏. A solution is said to be global if it is defined on [0, ∞).

All comparison properties will be derived from the following key result.

Theorem II.2.4 (Comparison Theorem). Let 𝐾 be a proper cone of 𝑋 with non-empty interior.
Denote by ≤ the corresponding partial order. Let 𝐹 ∶ 𝑋 → 𝑋 be locally Lipschitz, 𝐷1, 𝐷2 ⊂ 𝑋, 𝜏 > 0,
and let 𝑎 ∶ [0, 𝜏 ) → 𝐷1 and 𝑏 ∶ [0, 𝜏 ) → 𝐷2 be 𝒞1 paths. Suppose that 𝐹 is cooperative on 𝐷1 × 𝑋 or
on 𝑋 × 𝐷2, and that:

𝑎′(𝑡) − 𝐹(𝑎(𝑡)) ≤ 𝑏′(𝑡) − 𝐹(𝑏(𝑡)) ∀𝑡 ∈ [0, 𝜏 ). (II.20)

If 𝑎(0) ≤ 𝑏(0), then 𝑎(𝑡) ≤ 𝑏(𝑡) for all 𝑡 ∈ [0, 𝜏 ).

This result, in the spirit of [34, Theorem 5.2], is a generalization to infinite dimensional systems
of classical comparison theorems for ODEs. Note in particular that (II.20) holds if 𝑎 and 𝑏 solve
the ODE 𝑢′ = 𝐹(𝑢), yielding the monotony of the flow of cooperative vector fields as a corollary,
see Proposition II.2.8 below. For the sake of completeness, a proof of Theorem II.2.4 is given in
Section II.7.

II.2.2 Notations

In this section, we will work in the Banach space ℒ∞(Ω) of measurable bounded real-valued
functions defined on Ω equipped with the supremum norm ‖ ⋅ ‖. We shall write ℒ∞ when there is
no ambiguity on the underlying space. The set:

ℒ∞
+ = { 𝑓 ∈ ℒ∞ ∶ 𝑓 (𝑥) ≥ 0 ∀𝑥 ∈ Ω } , (II.21)

is a proper cone in ℒ∞ with non-empty interior. The order defined by this proper cone is the
usual order: 𝑔 ≤ ℎ if 𝑔(𝑥) ≤ ℎ(𝑥) for all 𝑥 ∈ Ω.

We denote by ℒ∞,⋆, the topological dual of ℒ∞. It can be identified as the space of bounded
and finitely additive signed measures on Ω equipped with the total variation norm (see [158,
Section 2]). Since ℒ∞

+ is reproducing, the dual cone ℒ∞,⋆
+ is a proper cone. It consists of the

continuous linear positive forms on ℒ∞.
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Let 𝜅 be a non-negative kernel on ℒ∞ (endowed with its Borel 𝜎-field) satisfying Assumption
II.1. We denote by 𝑇𝜅 the operator:

𝑇𝜅 ∶ ℒ∞ → ℒ∞ (II.22)

𝑔 ↦ (𝑥 ↦ ∫
Ω
𝑔(𝑦) 𝜅(𝑥, d𝑦)) .

According to Assumption II.1, the operator 𝑇𝜅 is a bounded linear operator with:

‖ 𝑇𝜅 ‖ = sup
𝑥∈Ω

𝜅(𝑥, Ω) < ∞. (II.23)

Since, for all 𝑥 ∈ Ω, 𝜅(𝑥, d𝑦) is a positive measure, the operator 𝑇𝜅 is moreover positive. Defining
now a function 𝐹 from ℒ∞ to ℒ∞ by:

𝐹(𝑔) = (1 − 𝑔)𝑇𝜅(𝑔) − 𝛾𝑔, (II.24)

we may rewrite Equation (II.3) as an ODE in the Banach space (ℒ∞, ‖ ⋅ ‖):

{
𝜕𝑡𝑢 = 𝐹(𝑢), 𝑡 ∈ [0, 𝜏 )

𝑢(0, ⋅) = 𝑢0,
(II.25)

where 𝑢0 ∈ ℒ∞ and 𝜏 ∈ (0, ∞]. Let Δ be the set of non-negative functions bounded by 1:

Δ = { 𝑓 ∈ ℒ∞ ∶ 0 ≤ 𝑓 ≤ 1 } . (II.26)

Since the solution 𝑢(𝑡, 𝑥) of Equation (II.3) defines the proportion of 𝑥-type individuals being
infected at time 𝑡, it should remain below 1 and above 0. Hence, for (II.3) to make a biological
sense, the initial condition should belong to Δ and the solution, if it exists, should remain in Δ.
This will be checked in Proposition II.2.7.

II.2.3 Properties of the vector field

Recall that Assumption II.1 is in force. The main results of this section are gathered in the following
proposition.

Proposition II.2.5 (Properties of 𝐹). The function 𝐹 defined in (II.24) has the following properties.

(i) 𝐹 is of class 𝒞∞ on ℒ∞ in the Fréchet sense.

(ii) 𝐹 and its repeated derivatives are bounded on bounded sets.

(iii) 𝐹 is continuous on Δ with respect to the topology of pointwise convergence.

(iv) 𝐹 is cooperative both on (1 − ℒ∞
+ ) × ℒ∞ and onℒ∞ × (1 − ℒ∞

+ ), where:

1 − ℒ∞
+ = { 𝑔 ∈ ℒ∞ ∶ 𝑔 ≤ 1 } . (II.27)

Proof. The bilinear map (𝑔, ℎ) ↦ 𝑔ℎ and the linear maps 𝑔 ↦ 𝛾𝑔 and 𝑔 ↦ 𝑇𝜅(𝑔) are bounded
on ℒ∞ (hence, smooth as they are linear). Since the function 𝐹 is a sum of compositions of the
previous maps, properties (i) and (ii) are proved.

In order to prove property (iii), consider (𝑔𝑛, 𝑛 ∈ ℕ), a sequence of functions in Δ converging
pointwise to 𝑔 ∈ Δ. Let 𝑥 ∈ Ω. The functions 𝑔𝑛 are dominated by the function equal to 1
everywhere. The latter is integrable with respect to the measure 𝜅(𝑥, d𝑦) since 𝜅(𝑥, Ω) < ∞
according to (II.7). Therefore, we can apply the dominated convergence theorem and obtain:

lim
𝑛→∞∫

Ω
𝑔𝑛(𝑦)𝜅(𝑥, d𝑦) = ∫

Ω
𝑔(𝑦)𝜅(𝑥, d𝑦).
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Thus, the operator 𝑇𝜅 is continuous on Δ with respect to the pointwise convergence topology. The
maps (ℎ1, ℎ2) ↦ ℎ1ℎ2 and (ℎ1, ℎ2) ↦ ℎ1 + ℎ2 are also continuous with respect to the pointwise
convergence topology. Hence, property (iii) is proved since 𝐹 is a composition of these functions.

Finally, let us prove property (iv). Let 𝑔, ℎ ∈ ℒ∞ such that 𝑔 ≤ 1 and 𝑔 ≤ ℎ, and let 𝜈 ∈ ℒ∞,⋆
+

such that ⟨𝜈, 𝑔 − ℎ⟩ = 0. We have:

⟨𝜈, 𝐹 (𝑔) − 𝐹(ℎ)⟩ = ⟨𝜈, (1 − 𝑔)𝑇𝜅(𝑔 − ℎ) + (ℎ − 𝑔)(𝑇𝜅(ℎ) + 𝛾)⟩
= ⟨𝜈, (1 − 𝑔)𝑇𝜅(𝑔 − ℎ)⟩ ,

where we used Lemma II.2.6 below (with 𝑔 replaced by ℎ − 𝑔 and ℎ by 𝑇𝜅(ℎ) + 𝛾) in order to get
that ⟨𝜈, (ℎ − 𝑔)(𝑇𝜅(ℎ) + 𝛾)⟩ is equal to 0. Since 𝑇𝜅 is a positive operator and 𝑔 ≤ 1, the function
(1 − 𝑔)𝑇𝜅(𝑔 − ℎ) is non-positive. The number ⟨𝜈, (1 − 𝑔)𝑇𝜅(𝑔 − ℎ)⟩ is also non-positive because 𝜈 ∈
ℒ∞,⋆

+ . Hence, we get that ⟨𝜈, 𝐹 (𝑔) − 𝐹(ℎ)⟩ ≤ 0. This proves that 𝐹 is cooperative on (1−ℒ∞
+ )×ℒ∞,

thanks to Definition II.2.1. If (𝑔, ℎ) ∈ ℒ∞ × (1 − ℒ∞
+ ) satisfy 𝑔 ≤ ℎ, then 𝑔 is itself bounded above

by 1, and the exact same proof applies, showing that 𝐹 is also cooperative on ℒ∞ × (1 −ℒ∞
+ ).

The proof of Property (iv) of Proposition II.2.5 uses the following lemma.

Lemma II.2.6. Let 𝑔 ∈ ℒ∞
+ and 𝜈 ∈ ℒ∞,⋆

+ such that ⟨𝜈, 𝑔⟩ = 0. Then, for all ℎ ∈ ℒ∞, we have
⟨𝜈, ℎ𝑔⟩ = 0.

Proof. Let 𝑔 ∈ ℒ∞
+ and 𝜈 ∈ ℒ∞,⋆

+ such that ⟨𝜈, 𝑔⟩ = 0. Since 𝑔 is everywhere non-negative, we
have:

− ‖ ℎ ‖ 𝑔 ≤ ℎ𝑔 ≤ ‖ ℎ ‖ 𝑔.

Since 𝜈 ∈ ℒ∞,⋆
+ , the previous inequalities give:

− ‖ ℎ ‖ ⟨𝜈, 𝑔⟩ ≤ ⟨𝜈, ℎ𝑔⟩ ≤ ‖ ℎ ‖ ⟨𝜈, 𝑔⟩ .

By assumption, ⟨𝜈, 𝑔⟩ is equal to 0. Hence, the lemma is proved.

II.2.4 Properties of the ODE semi-flow

The aim of this subsection is to define a semi-flow associated to Equation (II.3) and to study its
main properties. Proposition II.2.5 (ii) enables to apply the Picard-Lindelöf theorem and show the
existence of local solutions of in ℒ∞ of Equation (II.3). We can actually prove a stronger result.
Recall that Δ = { 𝑓 ∈ ℒ∞ ∶ 0 ≤ 𝑓 ≤ 1 }.

Proposition II.2.7. Let 𝐹 defined by (II.24).

(i) The domain Δ is forward invariant: if 𝑢0 ∈ Δ and 𝑢 solves (II.25) on [0, 𝜏 ), then 𝑢(𝑡) ∈ Δ for
all 0 ≤ 𝑡 < 𝜏.

(ii) Maximal solutions of Equation (II.25) such that 𝑢0 ∈ Δ are global, i.e., they are defined on ℝ+.

Proof. We first prove property (i). Let 𝑢0 ∈ Δ, and suppose that 𝑢 solves (II.25) on [0, 𝜏 ). Let
𝑎(𝑡) ∈ (1 − ℒ∞

+ ) be equal to the constant function 0, for all 𝑡; let 𝑏(𝑡) = 𝑢(𝑡). Since 𝐹(0) = 0, and
𝑏(𝑡) = 𝑢(𝑡) solves the ODE, we have for all 𝑡 < 𝜏:

𝑎′(𝑡) − 𝐹(𝑎(𝑡)) = 0 = 𝑏′(𝑡) − 𝐹(𝑏(𝑡)).

Since 0 = 𝑎(0) ≤ 𝑢(0) = 𝑢0, we may apply the comparison principle from Theorem II.2.4, noting
that 𝐹 is locally Lipschitz and cooperative on (1 − ℒ∞

+ ) × ℒ∞ by Lemma II.2.5. We deduce that
0 ≤ 𝑢(𝑡) for all 𝑡 < 𝜏.

Similarly, letting now 𝑎(𝑡) = 𝑢(𝑡) ∈ ℒ∞ and 𝑏(𝑡) ∈ (1 − ℒ∞
+ ) be the constant function 1 for all

𝑡, and remarking that 𝐹(𝑏(𝑡)) = −𝛾 ≤ 0, we may apply Theorem II.2.4 again, using this time the
cooperativeness on ℒ∞ × (1 − ℒ∞

+ ), to get 𝑢(𝑡) ≤ 1 for all 𝑡 < 𝜏.
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Now we prove property (ii). Let (𝑦 , [0, 𝜏 )) be a solution of Equation (II.3) with 𝑦(0) ∈ Δ.
Assume that 𝜏 is a positive finite number. Property (i) asserts that 𝑦(𝑡) ∈ Δ, for all 0 ≤ 𝑡 < 𝜏. Since
𝐹 is bounded on Δ (see Proposition II.2.5 (ii)), 𝑠 ↦ 𝐹(𝑦(𝑠)) is integrable and:

lim
𝑡→𝜏−

𝑦(𝑡) = 𝑦(0) + lim
𝑡→𝜏− ∫

𝑡

0
𝐹(𝑦(𝑠)) d𝑠 = 𝑦(0) + ∫

𝜏

0
𝐹(𝑦(𝑠)) d𝑠.

The solution 𝑦 can be extended up to its right boundary, i.e., on [0, 𝜏 ]. By the Picard–Lindelöf
theorem, it may thus be extended to [0, 𝜏 ′) for a 𝜏 ′ > 𝜏. This shows that 𝑦 is not maximal. We
deduce that the maximal solution is defined on ℝ+.

Thanks to Proposition II.2.7, it is possible to define the semi-flow associated to the autonomous
differential equation (II.3) on Δ, i.e., the unique function 𝜙 ∶ ℝ+ × Δ → Δ solution of:

{
𝜕𝑡𝜙(𝑡, 𝑔) = 𝐹(𝜙(𝑡, 𝑔)),

𝜙(0, 𝑔) = 𝑔.
(II.28)

It satisfies the semi-group property, that is, for all 𝑔 ∈ Δ and for all 𝑡 , 𝑠 ∈ ℝ+, we have:

𝜙(𝑡 + 𝑠, 𝑔) = 𝜙(𝑡, 𝜙(𝑠, 𝑔)).

The result below is a fundamental property about the semi-flow of the SIS model. It expresses
the intuitive idea that if an epidemics is worse everywhere compared to a reference state, it will
remain worse compared to the evolution of this reference state in the future.

Proposition II.2.8 (Order-preserving flow). If 0 ≤ 𝑔 ≤ ℎ ≤ 1, then we have 𝜙(𝑡, 𝑔) ≤ 𝜙(𝑡, ℎ) for all
𝑡 ∈ ℝ+.

Proof. Since 𝜕𝑡𝜙(𝑡, 𝑔) − 𝐹(𝜙(𝑡, 𝑔)) = 0 and 𝜕𝑡𝜙(𝑡, ℎ) − 𝐹(𝜙(𝑡, ℎ)) = 0, the inequality (II.20) is satisfied
on ℝ+ for the paths 𝑎 ∶ 𝑡 ↦ 𝜙(𝑡, 𝑔) and 𝑏 ∶ 𝑡 ↦ 𝜙(𝑡, ℎ). By assumption, we have also that
𝑔 = 𝜙(0, 𝑔) ≤ 𝜙(0, ℎ) = ℎ. Furthermore 𝐹 is locally Lipschitz (see Proposition II.2.5 (ii)) and
cooperative on (1 − ℒ∞

+ ) × ℒ∞ (see Proposition II.2.5 (iv)), and 𝑎(𝑡) = 𝜙(𝑡, 𝑔) ∈ (1 − ℒ∞
+ ) by

Proposition II.2.7. Hence, we can apply Theorem II.2.4 to obtain that 𝜙(𝑡, 𝑔) ≤ 𝜙(𝑡, ℎ) for all
𝑡 ∈ ℝ+.

As a consequence of the previous proposition, we have the following result.

Corollary II.2.9 (Local Monotony implies Global Monotony). Let 𝑔 ∈ Δ. Suppose that there exist
0 ≤ 𝑎 < 𝑏 such that, for all 𝑡 ∈ [𝑎, 𝑏), the inequality 𝜙(𝑎, 𝑔) ≤ 𝜙(𝑡, 𝑔) (resp. 𝜙(𝑎, 𝑔) ≥ 𝜙(𝑡, 𝑔)) holds.
Then, 𝑡 ↦ 𝜙(𝑡, 𝑔) is non-decreasing (resp. non-increasing) on [𝑎, ∞).

Proof. It is sufficient to show that 𝑡 ↦ 𝜙(𝑡, 𝑔) is non-decreasing on all subintervals of [𝑎, ∞) whose
lengths are bounded from above by 𝑏 − 𝑎. Let 𝑡 > 𝑠 ≥ 𝑎 such that 𝑡 − 𝑠 < 𝑏 − 𝑎. By assumption, we
have: 𝜙(𝑎, 𝑔) ≤ 𝜙(𝑎 + 𝑡 − 𝑠, 𝑔). Thus, Proposition II.2.8 gives:

𝜙(𝑠 − 𝑎, 𝜙(𝑎, 𝑔)) ≤ 𝜙(𝑠 − 𝑎, 𝜙(𝑎 + 𝑡 − 𝑠, 𝑔)).

By the semi-group property of the semi-flow, this implies that 𝜙(𝑠, 𝑔) ≤ 𝜙(𝑡, 𝑔).

Proposition II.2.10. Let 𝑔 ∈ Δ. The path 𝑡 ↦ 𝜙(𝑡, 𝑔) is non-decreasing (resp. non-increasing) if and
only if 𝐹(𝑔) ≥ 0 (resp. 𝐹(𝑔) ≤ 0).

Proof. Let 𝑔 ∈ Δ, and suppose 𝐹(𝑔) ≥ 0. Let 𝑎(𝑡) = 𝑔 for all 𝑡, and let 𝑏(𝑡) = 𝜙(𝑡, 𝑔). Since
(𝑎(𝑡), 𝑏(𝑡)) ∈ (1 − ℒ∞

+ ) × ℒ∞ for all 𝑡, and

𝑎′(𝑡) − 𝐹(𝑎(𝑡)) = −𝐹(𝑔) ≤ 0 = 𝑏′(𝑡) − 𝐹(𝑏(𝑡)),
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we may apply the comparison Theorem II.2.4: for all 𝑡 ≥ 0,

𝑔 = 𝑎(𝑡) ≤ 𝑏(𝑡) = 𝜙(𝑡, 𝑔).

We may now apply Corollary II.2.9, proving that 𝑡 ↦ 𝜙(𝑡, 𝑔) is non-decreasing.

Now, suppose that 𝑡 ↦ 𝜙(𝑡, 𝑔) is non-decreasing. For all 𝑡 > 0, the function (𝜙(𝑡, 𝑔) − 𝑔)/𝑡
belongs to ℒ∞

+ . Since ℒ∞
+ is closed, it follows that 𝐹(𝑔) = lim𝑡→0+(𝜙(𝑡, 𝑔) − 𝑔)/𝑡 also belongs to

ℒ∞
+ .

The equivalence between 𝐹(𝑔) ≤ 0 and the fact that 𝑡 ↦ 𝜙(𝑡, 𝑔) is non-increasing is proved
the same way.

Now we give some results about the regularity of the semi-flow.

Proposition II.2.11 (Flow regularity). Let 𝜙 ∶ ℝ+ × Δ → Δ be the semi-flow defined by Equa-
tion (II.28).

(i) For all 𝑔 ∈ Δ, 𝑡 ↦ 𝜙(𝑡, 𝑔) is 𝒞∞ and its repeated derivatives are bounded.

(ii) For all 𝑡 ∈ ℝ+, 𝑔 ↦ 𝜙(𝑡, 𝑔) is Lipschitz with respect to ‖ ⋅ ‖.

(iii) For all 𝑡 ∈ ℝ+, 𝑔 ↦ 𝜙(𝑡, 𝑔) is continuous with respect to the pointwise convergence topology.

Remark II.2.12. Stronger regularity property than (ii) could be proved as in finite dimension. Since
we use only the Lipschitz continuity property, we didn’t go further in this direction.

Proof. We begin with property (i). The smoothness of the semi-flow with respect to the time
variable can be shown by recurrence in a classical way. We have indeed:

𝜕𝑡𝜙(𝑡, 𝑔) = 𝐹(𝜙(𝑡, 𝑔)), 𝜕2𝑡 𝜙(𝑡, 𝑔) = 𝒟𝐹[𝜙(𝑡, 𝑔)](𝜕𝑡𝜙(𝑡, 𝑔)), …

Since 𝐹 is of class 𝒞∞ and its repeated derivatives are bounded on Δ (see (i) and (ii) in Proposition
II.2.5), the function 𝑡 ↦ 𝜙(𝑡, 𝑔) is of class 𝒞∞ and its repeated derivatives are bounded for all 𝑔 ∈ Δ.

We prove (ii). Recall that, since 𝜙 is the semi-flow associated to Equation (II.25), the following
equality holds for all 𝑔 ∈ Δ and 𝑡 ∈ ℝ+:

𝜙(𝑡, 𝑔) = 𝑔 + ∫
𝑡

0
𝐹(𝜙(𝑠, 𝑔)) d𝑠. (II.29)

Let 𝑔, ℎ ∈ Δ. We have the following control:

‖ 𝜙(𝑡, 𝑔) − 𝜙(𝑡, ℎ) ‖ ≤ ‖ 𝑔 − ℎ ‖ + ∫
𝑡

0
‖ 𝐹 (𝜙(𝑠, 𝑔)) − 𝐹(𝜙(𝑠, ℎ)) ‖ d𝑠

≤ ‖ 𝑔 − ℎ ‖ + 𝐶 ∫
𝑡

0
‖ 𝜙(𝑠, 𝑔) − 𝜙(𝑠, ℎ) ‖ d𝑠,

where 𝐶 is the Lipschitz coefficient of 𝐹 on Δ (see Proposition II.2.5 (ii)). We conclude by applying
Grönwall’s inequality.

We prove property (iii). Let (𝑔𝑛, 𝑛 ∈ ℕ) be a sequence of functions in Δ converging pointwise
toward 𝑔 ∈ Δ. We define for 𝑛 ∈ ℕ:

𝑔𝑛 = sup
𝑗≥𝑛

𝑔𝑗 and 𝑔
𝑛
= inf

𝑗≥𝑛
𝑔𝑗.

The sequence (𝑔𝑛, 𝑛 ∈ ℕ) is non-increasing while (𝑔
𝑛
, 𝑛 ∈ ℕ) is non-decreasing. We also have

𝑔
𝑛
≤ 𝑔𝑛 ≤ 𝑔𝑛 for all natural number 𝑛. Since the semi-flow is order-preserving by Proposition

II.2.8, the following inequalities hold for all (𝑡, 𝑥) ∈ ℝ+ × Ω and all 𝑛 ∈ ℕ∗:

𝜙(𝑡, 𝑔
𝑛−1

)(𝑥) ≤ 𝜙(𝑡, 𝑔
𝑛
)(𝑥) ≤ 𝜙(𝑡, 𝑔𝑛)(𝑥) ≤ 𝜙(𝑡, 𝑔𝑛)(𝑥) ≤ 𝜙(𝑡, 𝑔𝑛−1)(𝑥). (II.30)
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Thus, we can define two measurable functions 𝑣 , 𝑤 ∶ ℝ+ × Ω → [0, 1] by:

𝑣(𝑡, 𝑥) = lim
𝑛→∞

𝜙(𝑡, 𝑔
𝑛
)(𝑥), 𝑤(𝑡, 𝑥) = lim

𝑛→∞
𝜙(𝑡, 𝑔𝑛)(𝑥),

for all (𝑡, 𝑥) ∈ ℝ+ × Ω. Notice that 𝑣(𝑡, 𝑥) ≤ 𝑤(𝑡, 𝑥) by construction.
Fix 𝑥 ∈ Ω and 𝑡 ≥ 0. We have:

𝜙(𝑡, 𝑔𝑛)(𝑥) = 𝑔𝑛(𝑥) + ∫
𝑡

0
𝐹(𝜙(𝑠, 𝑔𝑛))(𝑥) d𝑠.

The sequence of functions (𝑔𝑛(𝑥), 𝑛 ∈ ℕ) converges to 𝑔(𝑥) while the sequence of functions
(𝜙(𝑠, 𝑔𝑛), 𝑛 ∈ ℕ) converges pointwise to 𝑤(𝑠, ⋅) ∈ Δ for all 𝑠 ≥ 0. By continuity (see Proposition
II.2.5 (iii)), 𝐹(𝜙(𝑠, 𝑔𝑛))(𝑥) converges to 𝐹(𝑤(𝑠, ⋅))(𝑥). Furthermore, the functions 𝑠 ↦ 𝐹(𝜙(𝑠, 𝑔𝑛))(𝑥)
are uniformly bounded since 𝐹 is bounded on Δ (see Proposition II.2.5 (ii)). Hence, we deduce from
the dominated convergence theorem that:

𝑤(𝑡, 𝑥) = 𝑔(𝑥) + ∫
𝑡

0
𝐹(𝑤(𝑠, ⋅))(𝑥) d𝑠.

The previous equality is true for all 𝑥 ∈ Ω and 𝑡 ≥ 0. Since 𝑡 ↦ 𝜙(𝑡, 𝑔) is the only solution of (II.3)
having 𝑔 as initial condition, we have necessarily 𝑤(𝑡, ⋅) = 𝜙(𝑡, 𝑔). We prove that 𝑣(𝑡, ⋅) = 𝜙(𝑡, 𝑔)
the same way. Letting 𝑛 go to infinity in (II.30) proves that 𝜙(𝑡, 𝑔𝑛) converges pointwise to 𝜙(𝑡, 𝑔),
for all 𝑡 ≥ 0.

II.2.5 Equilibria

A function 𝑔 ∈ Δ is an equilibrium of the dynamical system (Δ, 𝜙) (also called a stationary point)
if for all 𝑡 ∈ ℝ+, 𝜙(𝑡, 𝑔) = 𝑔. The latter assertion is equivalent to 𝐹(𝑔) = 0. The function equal to 0
everywhere is a trivial stationary point. In mathematical epidemiology, the other equilibria, if they
exist, are called endemic states because they model a situation where the infection is constantly
maintained at a baseline level in the population.

The following result gives an easy way to identify those special states in the system. It is a
well-known fact in dynamical system theory, we give a short proof for completeness.

Proposition II.2.13 (Limit points are equilibria). Let 𝑔 ∈ Δ. If 𝑡 ↦ 𝜙(𝑡, 𝑔) converges pointwise to a
limit ℎ∗ ∈ Δ when 𝑡 goes to ∞, then the function ℎ∗ is an equilibrium.

Proof. For all 𝑥 ∈ Ω and 𝑠 ≥ 0, we have

𝜙(𝑠, ℎ∗)(𝑥) = lim
𝑡→∞

𝜙(𝑠, 𝜙(𝑡, 𝑔))(𝑥) = lim
𝑡→∞

𝜙(𝑠 + 𝑡, 𝑔)(𝑥) = ℎ∗(𝑥),

where the first inequality follows from the continuity of 𝜙 with respect to the pointwise conver-
gence topology given in Proposition II.2.11 (iii). Thus, ℎ∗ is an equilibrium.

In the next remark, we check that any equilibrium is continuous with respect to an intrinsic
distance on Ω based on 𝜅 and 𝛾.
Remark II.2.14 (Continuity of the equlibria). We consider for all 𝑥, 𝑦 ∈ Ω:

𝑟(𝑥, 𝑦) = ‖ 𝜅(𝑥, ⋅) − 𝜅(𝑦, ⋅) ‖TV + | 𝛾 (𝑥) − 𝛾(𝑦) | ,

where ‖ ⋅ ‖TV is the total variation norm. The function 𝑟 defines a pseudo-metric on the space Ω.
This pseudo-metric can be thought as an extension of the neighborhood distance on graphons
(see [111, Section 13.3]). Notice that the Borel 𝜎-field associated to the topology defined by 𝑟 is
included in ℱ since 𝛾 is measurable and 𝜅 is a kernel.

We have that if ℎ∗ is an equilibrium of the dynamical system (Δ, 𝜙), then it is continuous with
respect to 𝑟. Indeed, we have for all 𝑥 ∈ Ω:

ℎ∗(𝑥) =
𝜆(𝑥)

𝜆(𝑥) + 𝛾(𝑥)
with 𝜆(𝑥) = ∫

Ω
ℎ∗(𝑧) 𝜅(𝑥, d𝑧).

Both 𝜆 and 𝛾 are continuous with respect to 𝑟 and the function (𝑎, 𝑏) ↦ 𝑎/(𝑎 + 𝑏) is continuous on
ℝ+ × ℝ∗+. This implies that ℎ∗ is continuous.
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II.2.6 The maximal equilibrium

As a consequence of Proposition II.2.7 and Corollary II.2.9, the path 𝑡 ↦ 𝜙(𝑡, 1) is non-increasing
and bounded below by 0. Thus, the path 𝑡 ↦ 𝜙(𝑡, 1) converges pointwise to a limit say 𝔤 when 𝑡
goes to infinity:

𝔤(𝑥) = lim
𝑡→+∞

𝜙(𝑡, 1)(𝑥), ∀𝑥 ∈ Ω. (II.31)

Proposition II.2.15. Let 𝔤 be defined by (II.31). We have the following properties.

(i) The function 𝔤 is the maximal equilibrium of the dynamical system (Δ, 𝜙), i.e., if ℎ∗ is an
equilibrium, then ℎ∗ ≤ 𝔤.

(ii) For all 𝔤 ≤ 𝑔 ≤ 1, 𝜙(𝑡, 𝑔) converges pointwise to 𝔤 as 𝑡 goes to infinity.

Proof. We first prove property (i). The function 𝔤 is an equilibrium according to Proposition II.2.13.
Let ℎ∗ be another equilibrium in Δ. By Proposition II.2.8, ℎ∗ = 𝜙(𝑡, ℎ∗) ≤ 𝜙(𝑡, 1) for all 𝑡; sending 𝑡
to infinity yields ℎ∗ ≤ 𝔤. The function 𝔤 is thus the maximal equilibrium.

To prove property (ii), we consider 𝔤 ≤ 𝑔 ≤ 1. By Proposition II.2.8, we know that:

𝔤 = 𝜙(𝑡, 𝔤) ≤ 𝜙(𝑡, 𝑔) ≤ 𝜙(𝑡, 1).

Since the rightmost term converges to 𝔤 by (II.31), this implies that 𝜙(𝑡, 𝑔) converges to 𝔤 as 𝑡 tends
to infinity for the pointwise convergence.

Remark II.2.16. Since 𝛾 (𝑥) > 0 for all 𝑥 ∈ Ω according to Assumption II.1 and 𝐹(𝔤) = 0, we have
that 𝔤(𝑥) < 1 for all 𝑥 ∈ Ω.

There is no closed-form formula for 𝔤 in the general case, even in a finite dimensional model.
However, if the function 𝑥 ↦ 𝜅(𝑥, Ω)/𝛾(𝑥) is constant, then the formula used for the one-group
model can be extended.

Proposition II.2.17. Suppose that there exists 𝐶 ∈ ℝ+ such that 𝜅(𝑥, Ω)/𝛾(𝑥) = 𝐶 for all 𝑥 ∈ Ω.
Then, 𝔤 is a constant function equal to max(0, 1 − 1/𝐶).

Proof. It is straightforward to check that the function 𝑥 ↦ max(0, 1−1/𝐶) is an equilibrium. Now,
we prove that it is maximal. Let ℎ∗ ∈ Δ be an equilibrium. From 𝐹(ℎ∗)/𝛾 = 0, we obtain the
inequality:

ℎ∗ ≤ 𝐶(1 − ℎ∗) ‖ ℎ∗ ‖ .

Taking a sequence (𝑥𝑛, 𝑛 ∈ ℕ) such that ℎ∗(𝑥𝑛) converges to ‖ ℎ∗ ‖, we obtain at the limit that
‖ ℎ∗ ‖ ≤ 𝐶(1 − ‖ ℎ∗ ‖) ‖ ℎ∗ ‖. It follows that ‖ ℎ∗ ‖ ≤ max(0, 1 − 1/𝐶).

Since we cannot determine 𝔤 in the general case, the important question that naturally arises
is to find out whether the epidemic can survive in the population or if it will die out whatever the
initial condition is, i.e., we have to determine if 𝔤(𝑥) = 0 for all 𝑥 ∈ Ω. In the following, we answer
this question with Assumption II.2 which imposes further conditions on the transmission kernel 𝜅
and the recovery rate 𝛾.

II.3 Tools from operator theory

In this section, we introduce some tools that we will use in Section II.4.
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II.3.1 Compactness, weak compactness and the Dunford Pettis property

Let 𝑋 and 𝑌 be Banach spaces and 𝑇 ∶ 𝑋 → 𝑌 be a bounded linear operator. Recall that 𝑇 is compact
if the image of the unit ball in 𝑋 is relatively compact for the strong topology on 𝑌. Similarly
it is weakly compact if the image of the unit ball in 𝑋 by 𝑇 is relatively compact for the weak
topology on 𝑌 (that is, its weak closure is weakly compact). We recall the following results on
weak compactness ([48, Corollary VI.4.3, Theorem VI.4.5]).

Theorem II.3.1 (Weak compactness). If 𝑋 and 𝑌 are Banach spaces, one of which is reflexive, and 𝑇
is a bounded operator from 𝑋 to 𝑌, then 𝑇 is weakly compact.

The composition of a bounded operator and a weakly compact operator, in any order, is weakly
compact.

The following important property is given in [136] (the space ℒ∞ is a so-called “abstract-max
space” by [136, II §7, example 3 p. 103], so that [136, Theorem II.9.9] applies).

Theorem II.3.2 (Dunford Pettis property). If 𝑌 is a Banach space, and if 𝑇 ∶ ℒ∞ → 𝑌 is weakly
compact, then 𝑇 is absolutely continuous, that is, it maps weakly convergent sequences in ℒ∞ to
strongly convergent sequences in 𝑌.

Corollary II.3.3. If 𝑇 ∶ ℒ∞ → ℒ∞ is weakly compact then 𝑇 2 is compact.

Proof. Let 𝑥𝑛 be a bounded sequence inℒ∞. Since 𝑇 is weakly compact there exists a subsequence
such that (𝑇 𝑥𝑛) converges weakly. By the Dunford Pettis property, 𝑇 is absolutely continuous so
𝑇 (𝑇𝑥𝑛) converges strongly along the subsequence. Therefore 𝑇 2 is compact.

II.3.2 Banach lattices

Let us first recall standard definitions on Banach lattices; we refer the reader to the standard
texts [159] and [136] for a more detailed introduction to the subject. Banach lattices provide a
convenient framework to study positive operators and generalizations of the Perron–Frobenius
theorem; the two examples we have in mind are the spaceℒ∞ of bounded functions and the space
𝐿𝑝(𝜇).

Let (𝑋 , ≤) be a set equipped with a partial order. The set 𝑋 is a lattice if for any 𝑥 and 𝑦 in 𝑋,
there exist two elements 𝑖 and 𝑠 in 𝑋 such that for all 𝑧,

(𝑧 ≤ 𝑥 and 𝑧 ≤ 𝑦) ⟹ 𝑧 ≤ 𝑖; (𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑧) ⟹ 𝑠 ≤ 𝑧.

The infimum 𝑖 and supremum 𝑠 are customarily denoted 𝑥 ∧ 𝑦 and 𝑥 ∨ 𝑦 respectively. A Riesz space
is a vector space 𝑋 endowed with a lattice structure (denoted ≤), such that the two following
compatibility conditions are satisfied:

Translation invariance For all 𝑥, 𝑦 and 𝑧 in 𝑋, if 𝑥 ≤ 𝑦 then 𝑥 + 𝑧 ≤ 𝑦 + 𝑧.

Positive homogeneity For all 𝑥, 𝑦 in 𝑋, if 𝑥 ≤ 𝑦, then 𝜆𝑥 ≤ 𝜆𝑦, for all non negative scalar 𝜆 ≥ 0.

The absolute value | 𝑥 | of an element 𝑥 of a Riesz space is defined by | 𝑥 | = 𝑥 ∨ (−𝑥). We proceed
with some further definitions.

Definition II.3.4. A Banach lattice (𝑋 , ≤, ‖ ⋅ ‖) is a Riesz space (𝑋 , ≤) equipped with a complete
norm ‖ ⋅ ‖ and such that, for any 𝑥, 𝑦 ∈ 𝑋, we have:

| 𝑥 | ≤ | 𝑦 | ⟹ ‖ 𝑥 ‖ ≤ ‖ 𝑦 ‖ . (II.32)

In the Banach lattice 𝑋, the positive cone:

𝑋+ = { 𝑥 ∈ 𝐸 ∶ 𝑥 ≥ 0 } .

is a proper cone, as it is a closed (see Theorem 15.1 (ii) in [159]) convex set such that 𝜆𝑋+ ⊂ 𝑋+ for
all 𝜆 ∈ ℝ+, and 𝑋+ ∩ (−𝑋+) = { 0 }. It is also a reproducing cone (𝑋 = 𝑋+ −𝑋+) as every element 𝑥
in 𝑋 can be decomposed as 𝑥 = (𝑥 ∨ 0) − ((−𝑥) ∨ 0) and 𝑦 ∨ 0 ∈ 𝑋+ for all 𝑦 ∈ 𝑋.
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II.3.3 Spectral analysis in Banach lattices

The main result of this section concerns the spectrum of operators on Banach lattices. Let us
first recall a few classical definitions of spectral theory in Banach spaces. Let (𝑋 , ‖ ⋅ ‖) be a Banach
space. The spectrum 𝜎(𝐴) of a bounded operator 𝐴 on 𝑋 is the set of all complex numbers 𝜆 such
that 𝐴 − 𝜆Id does not have a bounded inverse operator. It is well known that the spectrum of
a bounded operator is a compact set in ℂ. The essential spectrum of an operator is the part that
cannot be removed by a compact perturbation:

𝜎ess(𝐴) = ⋂
𝑃 compact operator

𝜎(𝐴 + 𝑃).

Note that there are several conflicting definitions of the essential spectrum, see [49, Section 1.4];
by [49, Theorem 9.1.4, p 422], our definition corresponds to 𝜎𝑒4(𝐴) defined p 37 in [49]. Let us
remark that other definitions would lead to the same essential spectral radius in the definition
below, see [49, Corollary 1.4.11].

For a bounded operator 𝐴 on 𝑋, the spectral bound, the spectral radius and the essential
spectral radius are defined as:

𝑠(𝐴) = sup {Re(𝜆) ∶ 𝜆 ∈ 𝜎(𝐴) } , (II.33)

𝜌(𝐴) = sup { | 𝜆 | ∶ 𝜆 ∈ 𝜎(𝐴) } = lim
𝑛→+∞

‖ 𝐴𝑛 ‖1/𝑛 = inf
𝑛∈ℕ∗

‖ 𝐴𝑛 ‖1/𝑛 , (II.34)

𝑟ess(𝐴) = sup { | 𝜆 | ∶ 𝜆 ∈ 𝜎ess(𝐴) } , (II.35)

respectively, with the convention that sup∅ = 0. Since 𝜎ess(𝐴) ⊂ 𝜎(𝐴), we get:

𝑟ess(𝐴) ≤ 𝜌(𝐴) ≤ ‖𝐴 ‖ . (II.36)

The spectral theory of positive bounded operator on Banach lattice extends the Perron-
Frobenius theory in infinite dimension. Let 𝐴 be a positive operatoron a Banach lattice (𝑋 , ≤, ‖ ⋅ ‖),
that is, 𝐴𝑋+ ⊂ 𝑋+, such that its spectral radius 𝜌(𝐴) is positive. Recall 𝑋⋆

+ is the dual cone of 𝑋+.
A vector 𝑥 ∈ 𝑋+\ { 0 } (resp. 𝑥⋆ ∈ 𝑋⋆

+\ { 0 }) such that 𝐴𝑥 = 𝜌(𝐴)𝑥 (resp. 𝐴⋆𝑥⋆ = 𝜌(𝐴)𝑥⋆) is called
a right (resp. left) Perron eigenvector. We have the following important result.

Theorem II.3.5. Let (𝑋 , ≤, ‖ ⋅ ‖) be a Banach lattice. Let 𝐴, 𝐵 be positive bounded operators on 𝑋.
We have the following properties.

(i) If 𝐵 − 𝐴 is a positive operator, then 𝜌(𝐴) ≤ 𝜌(𝐵).

(ii) The spectral radius 𝜌(𝐴) belongs to 𝜎(𝐴) and thus 𝜌(𝐴) = 𝑠(𝐴).

(iii) If 𝑟ess(𝐴) < 𝜌(𝐴), then, there exists 𝑥 ∈ 𝑋+\ { 0 } such that: 𝐴𝑥 = 𝜌(𝐴)𝑥.

Proof. Property (i) is proved in [114, Theorem 4.2]. Property (ii) is proved in [137] (notice that (II.32)
implies that 𝑋+ is normal in the setting of [137]), see also [159, Lemma 41.1.(ii)]. Property (iii) was
shown by Nussbaum in [123, Corollary 2.2] (notice that a reproducing cone is total), where the
essential spectrum in [123] is defined in [124] and corresponds to 𝜎𝑒5(𝐴) in [49, p. 37]. However,
the essential spectral radius of 𝜎𝑒5(𝐴) is equal to 𝑟ess(𝐴) the essential spectral radius of 𝜎𝑒4(𝐴),
according to [49, Theorem I.4.10].

It 𝐴 is assumed to be a compact operator, then Theorem II.3.5 (iii) is the so called Krein-
Rutman theorem, see [159, Theorem 41.2]. We will also need the following result proved in [62,
Propositions 2.1-2.2].

Proposition II.3.6 (Collatz-Wielandt inequality). Let (𝑋 , ≤, ‖ ⋅ ‖) be a Banach lattice and 𝐴 be a
positive bounded operator on 𝑋. We have:

sup { 𝜆 ∈ ℝ ∶ ∃𝑥 ∈ 𝑋+\ { 0 } , 𝐴𝑥 ≥ 𝜆𝑥 } ≤ 𝜌(𝐴).
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II.3.4 The Banach lattice of bounded measurable functions

The Banach space (ℒ∞, ‖ ⋅ ‖) equipped with the partial order ≤ defined by the proper cone ℒ∞
+

from (II.21) is a Banach lattice.
Let 𝜈 be a finite signed measure on (Ω,ℱ ). For 𝑔 ∈ ℒ∞, we write ⟨𝜈, 𝑔⟩ = ∫Ω 𝑔(𝑥) 𝜈(d𝑥) and

thus identify 𝜈 as an element of ℒ∞,⋆, the dual space of ℒ∞ (recall that ℒ∞,⋆ can be identified as
the space of bounded and finitely additive signed measures on (Ω,ℱ ).)

Let 𝜇 be a given finite positive measure on (Ω,ℱ ). For 𝑞 ∈ (1, +∞), denote by (𝐿𝑞(𝜇), ‖ ⋅ ‖𝑞)
the usual Banach space of real-valued measurable functions 𝑓 defined on (Ω,ℱ ) such that ‖ 𝑓 ‖𝑞 =

(∫Ω |𝑓 (𝑥)|𝑞 𝜇(d𝑥))
1/𝑞

is finite and where we have identified functions which agree 𝜇-almost every-
where.

Let 𝜄 be the natural linear application 𝜄 from ℒ∞ to 𝐿𝑝(𝜇), with 𝑝 = 𝑞/(𝑞 − 1) the conjugate of
𝑞, and 𝜄⋆ its dual. For 𝑓 ∈ 𝐿𝑞(𝜇), we can see 𝜄⋆(𝑓 ) as the bounded 𝜎-finite signed measure 𝑓 (𝑥)𝜇(d𝑥)
elements of ℒ∞,⋆. By convention, for 𝑓 ∈ 𝐿𝑞(𝜇) and 𝑔 in ℒ∞, we write:

⟨𝑓 , 𝑔⟩ = ⟨𝜄⋆(𝑓 ), 𝑔⟩ = ∫
Ω
𝑓 (𝑥)𝑔(𝑥) 𝜇(d𝑥).

Let k be a non-negative measurable function defined on (Ω × Ω,ℱ ⊗ ℱ ) such that :

sup
𝑥∈Ω

∫ k(𝑥, 𝑦) 𝜇(d𝑦) < ∞.

We define the integral operator 𝑇k as the operator 𝑇𝜅 defined by (II.22) with kernel 𝜅(𝑥, d𝑦) =
k(𝑥, 𝑦) 𝜇(d𝑦). Let 𝑞 ∈ (1, +∞). We assume the following condition holds:

sup
𝑥∈Ω

∫ k(𝑥, 𝑦)𝑞 𝜇(d𝑦) < ∞. (II.37)

Then, we can also define the bounded operator:

̃𝑇k ∶ 𝐿𝑝(𝜇) → ℒ∞

𝑔 ↦ (𝑥 ↦ ∫
Ω
𝑔(𝑦) k(𝑥, 𝑦) 𝜇(d𝑦)) .

With this notation, 𝑇k = ̃𝑇k𝜄. We also define a bounded operator ̂𝑇k from 𝐿𝑝(𝜇) to 𝐿𝑝(𝜇):

̂𝑇k = 𝜄 ̃𝑇k. (II.38)

To sum up we have the following commutative diagram:

ℒ∞ 𝐿𝑝(𝜇)

ℒ∞ 𝐿𝑝(𝜇)

𝑇k

𝜄

̃𝑇k
̂𝑇k

𝜄

The following lemma has a fundamental importance for the development of Section II.4. The
last property on connected integral operator is part of the Perron-Jentzsch theorem, see [136,
Theorem V.6.6 and Example V.6.5.b].

Lemma II.3.7. Let k be a non-negative measurable function defined on (Ω × Ω,ℱ ⊗ℱ ) such (II.37)
holds for some 𝑞 ∈ (1, +∞). Then, the positive bounded operators 𝑇k ∶ ℒ∞ → ℒ∞ and ̂𝑇k ∶ 𝐿𝑝(𝜇) →
𝐿𝑝(𝜇), with 𝑝 = 𝑞/(𝑞 − 1), satisfies:

(i) If 𝑔 = 0 𝜇-a.e. then we have 𝑇k𝑔 = 0.
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(ii) The operator 𝑇k is weakly compact.

(iii) The operators 𝑇 2k and ̂𝑇k are compact.

(iv) The operators 𝑇k and ̂𝑇k have the same spectrum, and thus 𝜌(𝑇k) = 𝜌( ̂𝑇k).

(v) If 𝜌(𝑇k) > 0, then the operator 𝑇k has a right Perron eigenvector in ℒ∞
+ \ { 0 } and a left Perron

eigenvector in 𝐿𝑞+(𝜇)\ { 0 } ⊂ ℒ∞,⋆
+ \ { 0 }.

(vi) If k is connected in the sense of Assumption II.3, then 𝜌(𝑇k) > 0 and the right and left Perron
eigenvector are unique (up to a multiplicative constant) and are 𝜇-a.e. positive, with the left
Perron eigenvector seen as an element of 𝐿𝑞+(𝜇)\ { 0 }.

Proof. Property (i) is straightforward.

To prove property (ii), one may write 𝑇k as the composition 𝑇k = ̃𝑇k ∘ 𝜄, where ̃𝑇k is bounded,
and 𝜄 is weakly compact by the first part of Theorem II.3.1 since 𝐿𝑝(𝜇) is reflexive ([48, Corollary
IV.8.2]). By the second part of Theorem II.3.1, 𝑇k is weakly compact.

The first part of Property (iii), that is, the compactness of 𝑇 2k , follows directly from Corol-
lary II.3.3. Consider now the operator ̂𝑇k = 𝜄 ∘ ̃𝑇k. By Theorem II.3.1, both ̃𝑇k and 𝜄 are weakly
compact. From any bounded sequence 𝑥𝑛 in 𝐿𝑝(𝜇), we may extract a subsequence such that ̃𝑇k𝑥𝑛
converges weakly in ℒ∞. By the Dunford Pettis property (Theorem II.3.2), the weakly compact
operator 𝜄 maps this weakly convergent subsequence to a strongly convergent subsequence in
𝐿𝑝(𝜇). Therefore ̂𝑇k is compact.

Let us prove property (iv). If Ω is finite then the operators 𝑇k and ̂𝑇k coincide and there is
nothing to prove. So, we assume that Ω is infinite. In this case, 𝜎ess(𝑇k) and 𝜎ess( ̂𝑇k) are non empty
according to [92, Footnote 2, p. 243]. As ̂𝑇k and 𝑇 2k are compact, we deduce from [48, Theorems
VII.4.5 and VII.4.6] respectively, that the essential spectra of ̂𝑇k and 𝑇k are reduced to {0}, and that
the non-null elements of their spectrum are eigenvalues. Then, use that 𝜄𝑇k = ̂𝑇k𝜄 and property (i),
to deduce that if 𝑓 ∈ ℒ∞ ⧵ { 0 } is an eigenvector of 𝑇k, then 𝜄(𝑓 ) belongs to 𝐿𝑝(𝜇)\ { 0 } thanks to
property (i) and that 𝜄(𝑓 ) is thus an eigenvector of ̂𝑇k corresponding to the same eigenvalue. If
𝑣 ∈ 𝐿𝑝(𝜇)\ { 0 } is an eigenvector of ̂𝑇k corresponding to the eigenvalue 𝜆, then 𝑓 = ̃𝑇k(𝑣) belongs
to ℒ∞ and 𝑓 ≠ 0 (as 𝜄(𝑓 ) = ̂𝑇k(𝑣) = 𝜆𝑣). We have 𝑇k(𝑓 ) = ̃𝑇k𝜄 ̃𝑇k(𝑣) = ̃𝑇k( ̂𝑇k(𝑣)) = 𝜆 ̃𝑇k(𝑣) = 𝜆𝑓,
thus 𝜆 is also an eigenvalue of 𝑇k. We deduce that 𝜎(𝑇k) = 𝜎( ̂𝑇k).

Let us now prove property (v). We have seen that 𝜎ess(𝑇k) ⊂ { 0 } and thus 𝑟ess(𝑇k) = 0. Accord-
ing to Theorem II.3.5 (iii) (or the Krein-Rutman theorem) there exists a right Perron eigenvector
for 𝑇k. Since ̂𝑇 ⋆k is a compact operator, thanks to Schauder Theorem [48, Theorem VI.5.2], with the
same spectrum as ̂𝑇k, thanks to [48, Lemma VII.3.7], and which is clearly positive, we deduce from
Theorem II.3.5 (iii) that there exists a right Perron eigenvector, 𝑣⋆ ∈ 𝐿𝑞+(𝜇)\ { 0 }, for ̂𝑇 ⋆k . Since
𝑇 ⋆k 𝜄

⋆ = 𝜄⋆ ̂𝑇 ⋆k , we deduce that 𝜄⋆(𝑣⋆), and thus 𝑣⋆ by convention, is also a left Perron eigenvector
for 𝑇k. This gives property (v).

Finally let us prove property (vi). Set 𝜆 = 𝜌(𝑇k) = 𝜌( ̂𝑇k), see property (iv). According to
the Perron-Jentzsch theorem [136, Theorem V.6.6 and Example V.6.5.b], since k is connected in
the sense of Assumption II.3, we have 𝜆 > 0 and there exists a unique (up to a multiplicative
constant) eigenvector 𝑣 of ̂𝑇k associated to the eigenvalue 𝜆, and it can chosen such that 𝜇-a.e. 𝑣 > 0.
According to the proof of property (iv), we get that 𝑓 = ̃𝑇k(𝑣) is an eigenvector of 𝑇k associated to
𝜆. Notice that 𝑓 ≥ 0 as k ≥ 0. Since 𝜄(𝑓 ) = ̂𝑇k(𝑣) = 𝜆𝑣, we deduce that 𝜇-a.e. 𝑓 > 0. Assume that
𝑔 ∈ ℒ∞ ⧵ { 0 } is a right Perron eigenvector of 𝑇k, then 𝜄(𝑔) is a right Perron eigenvector of ̂𝑇k and
thus (up to a multiplicative constant chosen to be equal to 𝜆), we have 𝜇-a.e. 𝜄(𝑔) = 𝜆𝑣 = 𝜄(𝑓 ). We
deduce that 𝜇-a.e. 𝑔 − 𝑓 = 0 and thanks to property (i), we deduce that 𝜆(𝑓 − 𝑔) = 𝑇k(𝑓 − 𝑔) = 0.
So the right Perron eigenvector of 𝑇k is unique and 𝜇-a.e. positive.

Let 𝑓 ⋆ be a left Perron eigenvector of 𝑇k. Then 𝑣⋆ = ̃𝑇 ⋆k (𝑓
⋆) is an eigenvector of ̂𝑇 ⋆k associated

to 𝜆 and 𝑣⋆ ∈ 𝐿𝑞+(𝜇)\ { 0 } as k ≥ 0. By the Perron-Jentzsch theorem, we get that 𝑣⋆ is unique (up to
a multiplicative constant) and that 𝜇-a.e 𝑣⋆ > 0. Since 𝜄⋆(𝑣⋆) = 𝜆𝑓 ⋆, we deduce that 𝜇-a.e 𝑓 ⋆ > 0
and that 𝑓 ⋆ is unique (up to a multiplicative constant).
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Remark II.3.8. As a consequence of Lemma II.3.7 (i), under Assumption II.2, if ℎ∗ is an equilibria
which is 𝜇-a.e. equal to 0, then it is equal to 0 everywhere.

II.4 Infinite-dimensional SIS model when the kernel has a density

The objective of this section is to study the long time behavior of the solutions of (II.3) under
Assumption II.1 and Assumption II.2 (but for Section II.4.2 where the latter is not assumed). Recall
the definition of the spectral bound given in (II.33). We will consider the spectral bound 𝑠(𝑇𝑘 − 𝛾)
of the bounded operator 𝑇𝑘 − 𝛾 on ℒ∞ to characterize three different regimes: sub-critical, critical
and super-critical, corresponding to the cases 𝑠(𝑇𝑘 − 𝛾) <, =, > 0 respectively. In the first part of
the section, we establish a link between 𝑠(𝑇𝑘 − 𝛾) and the basic reproduction number ℜ0 = 𝜌(𝑇𝑘/𝛾)
associated to (II.3).

II.4.1 Basic reproduction number and spectral bound

Recall that Assumption II.1 is in force. If we assume inf 𝛾 > 0, then the operator 𝑇𝜅/𝛾, where 𝜅/𝛾
is the kernel defined by (𝜅/𝛾)(𝑥, d𝑦) = 𝜅(𝑥, d𝑦)/𝛾(𝑦) is bounded. The following result is a direct
consequence of a theorem of Thieme [152, Theorem 3.5].

Proposition II.4.1 (Equivalent conditions for criticality). If inf 𝛾 > 0, then 𝜌(𝑇𝜅/𝛾) − 1 has the
same sign as 𝑠(𝑇𝜅 − 𝛾) (i.e. these two numbers are simultaneously negative, zero, or positive).

Proof. Consider the operators𝐴 = 𝑇𝜅−𝛾 and 𝐵 = −𝛾, where−𝛾 is the operator corresponding to the
multiplication by −𝛾. It is clear from [152, Definition 3.1] that the operator 𝐵 is a resolvent-positive
operator, as the operator 𝜆 − 𝐵 = 𝜆 + 𝛾 is invertible and its inverse is positive for 𝜆 > 0. We also
get that 𝑠(𝐵) = 𝑠(−𝛾) = − inf 𝛾 < 0. Let 𝑄 = 𝐴+ ‖ 𝛾 ‖. The operator 𝑄 is positive. For 𝜆 > 𝜌(𝑄), the
resolvent operator (𝜆 − 𝑄)−1 is also positive since, thanks to the Neumann series expansion, we
have:

(𝜆 − 𝑄)−1 =
∞
∑
𝑖=0

1
𝜆𝑖+1

𝑄 𝑖 ≥ 0.

We deduce that (𝜆 − 𝐴) is invertible and its inverse is positive for 𝜆 > 𝜌(𝑄) − ‖ 𝛾 ‖, thus 𝐴 is
resolvent-positive. Applying [152, Theorem 3.5] (notice it is required that ℒ∞

+ is normal, which is
the case, see [33, Proposition 19.1], as the norm ‖ ⋅ ‖ is monotonic: 0 ≤ 𝑓 ≤ 𝑔 implies ‖ 𝑓 ‖ ≤ ‖ 𝑔 ‖),
we deduce that 𝑠(𝐴) has the same sign as 𝜌(−(𝐴 − 𝐵)𝐵−1) − 1 = 𝜌(𝑇𝜅/𝛾) − 1.

Notice that under Assumption II.2, we have by definition ℜ0 = 𝜌(𝑇𝜅/𝛾) = 𝜌(𝑇𝑘/𝛾), as 𝑘 is the
density of 𝜅 with respect to 𝜇. In what follows, we also write 𝑇𝑘 for 𝑇𝜅. According to Assumption
II.2 (see (II.8)), the operator 𝑇𝑘/𝛾 defined by (II.11) is a bounded operator on ℒ∞ which satisfies
the integrability condition of Lemma II.3.7 with k(𝑥, 𝑦) = 𝑘(𝑥, 𝑦)/𝛾 (𝑦).

We wish to prove a result similar to Proposition II.4.1 without assuming that inf 𝛾 > 0. In this
case however, ℜ0 − 1 and 𝑠(𝑇𝑘 − 𝛾) may have different signs: For instance, if one takes 𝑇𝑘 = 0 and
inf 𝛾 = 0, then we clearly have 𝑠(𝑇𝑘 − 𝛾) = 𝑠(−𝛾) = 0 and ℜ0 = 0 < 1. In order to get a result
similar to Proposition II.4.1, we must therefore settle for a weaker conclusion, which will however
be sufficient for our purposes.

Proposition II.4.2 (Equivalent conditions for the supercritical regime). Suppose Assumption II.2
is in force. Then, the following assertions are equivalent:

(i) 𝑠(𝑇𝑘 − 𝛾) > 0.

(ii) ℜ0 > 1.

(iii) There exists 𝜆 > 0 and 𝑤 ∈ ℒ∞
+ \ { 0 } such that:

𝑇𝑘(𝑤) − 𝛾𝑤 = 𝜆𝑤. (II.39)
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Proof. It is immediate that property (iii) implies property (i).

We assume property (i) and prove (ii). Let 𝑎 ∈ (0, 𝑠(𝑇𝑘 − 𝛾)), so that 𝑠(𝑇𝑘 − (𝛾 + 𝑎)) = 𝑠(𝑇𝑘 −
𝛾) − 𝑎 > 0. Using Proposition II.4.1 (with 𝛾 replaced by 𝛾 + 𝑎), we get that 𝑟 (𝑇𝑘/(𝛾+𝑎)) > 1. Since
𝜌(𝑇𝑘/𝛾) ≥ 𝑟 (𝑇𝑘/(𝛾+𝑎)) according to Theorem II.3.5 (i), property (ii) is shown.

We assume property (ii) and prove property (iii). For any non-negative real number 𝑎 ≥ 0, let
𝜓(𝑎) = 𝜌(𝑇𝑘/(𝛾+𝑎)). Property (ii) exactly means that:

𝜓(0) > 1. (II.40)

Moreover, it follows from the inequality 𝜌(𝑇𝑘/(𝛾+𝑎)) ≤ ‖ 𝑇𝑘/(𝛾+𝑎) ‖ ≤ ‖ 𝑇𝑘 ‖ /𝑎 (use (II.36) for the first
inequality), that:

lim
𝑎→∞

𝜓(𝑎) = 0. (II.41)

Equation (II.8) of Assumption II.2 enables to apply Lemma II.3.7 (iii) and we obtain that all the
operators 𝑇𝑘/(𝛾+𝑎), for 𝑎 ∈ ℝ+, are power compact (as 𝑇 2𝑘/(𝛾+𝑎) is compact). According to [99,
Theorem p. 21], their spectra are totally disconnected. Moreover, the function 𝑎 ↦ 𝑇𝑘/(𝛾+𝑎)
mapping ℝ+ to ℒ(ℒ∞) is continuous as (II.8) holds. Indeed, for all 0 ≤ 𝑎1 ≤ 𝑎2, thanks to Hölder’s
inequality, we have:

‖ 𝑇𝑘/(𝛾+𝑎1) − 𝑇𝑘/(𝛾+𝑎2) ‖ ≤ ‖
𝑎2 − 𝑎1
𝛾 + 𝑎2

‖
𝑝

sup
𝑥∈Ω

(∫
Ω
𝑘(𝑥, 𝑦)𝑞/𝛾(𝑦)𝑞 𝜇(d𝑦))

1/𝑞
,

and by dominated convergence ‖ 𝑎2−𝑎1𝛾+𝑎2
‖
𝑝
converges to 0 as |𝑎2 − 𝑎1| converges to 0. Thanks to [119,

Theorem 11], we get that the application 𝑎 ↦ 𝜎(𝑇𝑘/(𝛾+𝑎)) mapping ℝ+ to the set 𝒦(ℂ) of non-
empty compact subsets endowed with the Hausdorff distance (see Section II.8 for the definition of
the Hausdorff distance) is continuous. Hence, the function 𝜓 is continuous according to Lemma
II.8.1. From the continuity of 𝜓 and Equations (II.40) and (II.41), we conclude that there exists 𝜆 > 0
such that 𝜓(𝜆) = 1. According to Lemma II.3.7 (v), there exists a function 𝑣 ∈ ℒ∞

+ \ { 0 } such that:

𝑇𝑘 (
𝑣

𝛾 + 𝜆
) = 𝑣.

Then, Equation (II.39) holds with 𝑤 = 𝑣/(𝛾 + 𝜆) which proves property (iii).

Remark II.4.3. Using Lemma II.3.7 (i), it is easy to show that 𝑤 in Proposition II.4.2 (iii) should
satisfy ∫Ω 𝑤(𝑥) 𝜇(d𝑥) > 0.

The next result is stronger than the implication (i) ⟹ (ii) in Proposition II.4.2.

Lemma II.4.4. Under Assumption II.2, the following inequality holds:

𝑠(𝑇𝑘 − 𝛾) ≤ max(‖ 𝛾 ‖ (ℜ0 − 1), 0). (II.42)

Proof. If 𝑠(𝑇𝑘 − 𝛾) ≤ 0, the result is obviously true. Suppose 𝑠(𝑇𝑘 − 𝛾) > 0. Since 𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖
is a positive operator, Theorem II.3.5 (ii) implies that 𝜌(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖) = 𝑠(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖). Since
𝑠(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖) = 𝑠(𝑇𝑘 − 𝛾) + ‖ 𝛾 ‖ > ‖ 𝛾 ‖, we obtain that:

𝜌(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖) > ‖ 𝛾 ‖ .

Besides, we have ‖ 𝛾 ‖ ≥ 𝜌(‖ 𝛾 ‖ − 𝛾) according to Theorem II.3.5 (i) and 𝜌(‖ 𝛾 ‖ − 𝛾) ≥ 𝑟ess(‖ 𝛾 ‖ − 𝛾)
according to Equation (II.36). We deduce that:

𝜌(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖ > 𝑟ess(‖ 𝛾 ‖ − 𝛾).

The operator 𝑇𝑘 is weakly compact thanks to Lemma II.3.7 (ii) since 𝑘 satisfies (II.37), see Assump-
tion II.2 and more precisely (II.9). Since ℒ∞ has the Dunford-Pettis property, see Theorem II.3.2,
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we deduce from [103, Theorem 3.1] (where 𝜎ess(𝐴) in our setting corresponds to 𝜎𝑒5(𝐴) in [103])
that 𝑟ess(‖ 𝛾 ‖ − 𝛾) = 𝑟ess(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖). Therefore, we get that:

𝜌(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖) > 𝑟ess(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖).

Hence, we can apply Theorem II.3.5 (iii) with the positive operator 𝑇𝑘−𝛾 +‖ 𝛾 ‖, to get the existence
of a function 𝑤 ∈ ℒ∞

+ \ { 0 } such that:

𝑇𝑘(𝑤) − 𝛾𝑤 = 𝑠(𝑇𝑘 − 𝛾)𝑤, (II.43)

where we used 𝜌(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖) = 𝑠(𝑇𝑘 − 𝛾 + ‖ 𝛾 ‖) = 𝑠(𝑇𝑘 − 𝛾) + ‖ 𝛾 ‖ for the equality. We have shown
that one can actually take 𝜆 = 𝑠(𝑇𝑘 − 𝛾) in Equation (II.39). Thus, we obtain:

𝑇𝑘/𝛾(𝛾𝑤) = 𝑇𝑘(𝑤) = (𝛾 + 𝑠(𝑇𝑘 − 𝛾))𝑤 ≥ (1 +
𝑠(𝑇𝑘 − 𝛾)

‖ 𝛾 ‖
) 𝛾𝑤.

According to Proposition II.3.6, we conclude that:

ℜ0 = 𝜌(𝑇𝑘/𝛾) ≥ 1 +
𝑠(𝑇𝑘 − 𝛾)

‖ 𝛾 ‖
⋅ (II.44)

We deduce that Equation (II.42) holds.

The next result gives information about the behavior of ℜ0 when we modify the susceptibility
of individuals, and will be needed below in the proof of Theorem II.4.13. For 𝑔 ∈ Δ, we define
ℜ0(𝑔) = 𝜌(𝑔𝑇𝑘/𝛾).

Proposition II.4.5 (A continuity property of ℜ0). Suppose Assumption II.2 holds. The function
𝑔 ↦ ℜ0(𝑔) defined on Δ is non-decreasing and continuous with respect to the 𝐿1(𝜇) topology.

Proof. The fact that 𝑔 ↦ ℜ0(𝑔) is non-decreasing is a direct consequence of Theorem II.3.5 (i).
For 𝑔 ∈ Δ, the bounded operator 𝐴𝑔 = ̂𝑇k on 𝐿𝑝(𝜇) defined in Equation (II.38) with the

kernel k(𝑥, 𝑦) = 𝑔(𝑥)𝑘(𝑥, 𝑦)/𝛾 (𝑦) is compact according to Lemma II.3.7 (iii). According to Lemma
II.3.7 (iv), we have that for all 𝑔 ∈ Δ:

ℜ0(𝑔) = 𝜌(𝐴𝑔). (II.45)

Besides, the function 𝑔 ↦ 𝐴𝑔 mapping Δ to ℒ(𝐿𝑝(𝜇)) is continuous with respect to the 𝐿𝑝(𝜇) norm.
We deduce from [119, Theorem 11], that the function 𝑔 ↦ 𝜎(𝐴𝑔) from (Δ, ‖ ⋅ ‖𝑝) to (𝒦(ℂ), 𝑑H)
is continuous, where 𝒦(ℂ) is the set of non-empty compact subsets and 𝑑H is the Hausdorff
distance (see Section II.8 for the definition of the Hausdorff distance). Using Lemma II.8.1 and then
Equation (II.45), we get that 𝑔 ↦ ℜ0(𝑔) defined on (Δ, ‖ ⋅ ‖𝑝) is continuous. In order to conclude,

we notice that the topologies induced by 𝐿𝑝(𝜇) and 𝐿1(𝜇) are equal on Δ because Δ is a bounded
subset of 𝐿∞(𝜇). This proves that 𝑔 ↦ ℜ0(𝑔) defined on (Δ, ‖ ⋅ ‖1) is continuous.

II.4.2 The subcritical regime: 𝑠(𝑇𝜅 − 𝛾) < 0

We showhere that in the subcritical regime, the solutions of Equation (II.25) converge exponentially
fast to 0 in norm.

Theorem II.4.6 (Uniform exponential extinction). Suppose that 𝑠(𝑇𝜅 − 𝛾) < 0. Then, for all
𝑐 ∈ (0, −𝑠(𝑇𝜅 − 𝛾)), there exists a finite constant 𝜃 = 𝜃(𝑐) such that, for all 𝑔 ∈ Δ, we have:

‖ 𝜙(𝑡, 𝑔) ‖ ≤ 𝜃 ‖ 𝑔 ‖ e−𝑐𝑡. (II.46)

In particular, the maximal equilibrium 𝔤 is equal to 0 everywhere.
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Proof. Recall 𝑇𝜅 − 𝛾 is a bounded operator. For all 𝑡 ∈ ℝ+, define:

𝑣(𝑡) = e𝑡(𝑇𝜅−𝛾)1 = ∑
𝑛∈ℕ

𝑡𝑛

𝑛!
(𝑇𝜅 − 𝛾)𝑛 1. (II.47)

Since multiplication by the constant ‖ 𝛾 ‖ commutes with 𝑇𝜅 − 𝛾, we also have:

e‖ 𝛾 ‖𝑡𝑣(𝑡) = e𝑡(𝑇𝜅−𝛾+‖ 𝛾 ‖)1 = ∑
𝑛∈ℕ

𝑡𝑛

𝑛!
(𝑇𝜅 − 𝛾 + ‖ 𝛾 ‖)𝑛 1.

As 𝑇𝜅 − 𝛾 + ‖ 𝛾 ‖ is positive, we deduce that 𝑣(𝑡) ≥ 0. As 𝑇𝜅 is positive, we deduce that:

𝑣 ′(𝑡) − 𝐹(𝑣(𝑡)) = (𝑇𝜅 − 𝛾)(𝑣(𝑡)) − 𝐹(𝑣(𝑡)) = 𝑣(𝑡)𝑇𝜅(𝑣(𝑡)) ≥ 0.

Thus, the following inequality holds for all 𝑔 ∈ Δ and all 𝑡 ≥ 0:

0 = 𝜕𝑡𝜙(𝑡, 𝑔) − 𝐹(𝜙(𝑡, 𝑔)) ≤ 𝑣 ′(𝑡) − 𝐹(𝑣(𝑡)).

As 𝐹 is cooperative on (1 − ℒ∞
+ ) × ℒ∞, see Proposition II.2.5 (iv), we can apply Theorem II.2.4

with the positive cone 𝐾 = ℒ∞
+ , 𝐷1 = 1 − ℒ∞

+ , 𝐷2 = ℒ∞, 𝑎(𝑡) = 𝜙(𝑡, 𝑔) and 𝑏(𝑡) = 𝑣(𝑡), to obtain
that:

𝜙(𝑡, 𝑔) ≤ 𝑣(𝑡) for all 𝑡 ∈ ℝ+. (II.48)

Besides, since 𝑇𝑘 − 𝛾 is a bounded operator, its growth bound (i.e., the left member of the equality
below) is equal to its spectral bound according to [31, Theorem I.4.1]:

inf {𝜂 ∈ ℝ ∶ sup
𝑡∈ℝ+

e−𝜂𝑡 ‖ exp(𝑡(𝑇𝜅 − 𝛾)) ‖ < ∞} = 𝑠(𝑇𝜅 − 𝛾). (II.49)

We deduce from Equations (II.47), (II.48) and (II.49), that for all 𝑐 ∈ (0, −𝑠(𝑇𝜅 − 𝛾)), there exists a
finite constant 𝜃 such that Equation (II.46) is true. In particular, 𝑡 ↦ 𝜙(𝑡, 1) converges uniformly to
0. It then follows from Equation (II.31) that 𝔤 is equal to 0 everywhere.

II.4.3 Critical regime: 𝑠(𝑇𝑘 − 𝛾) = 0

We suppose here that Assumption II.2 holds, so that the kernel 𝜅 has a density 𝑘, and we write 𝑇𝑘
for 𝑇𝜅. We give the main result of this section.

Theorem II.4.7 (Extinction at criticality). Suppose Assumption II.2 is in force and 𝑠(𝑇𝑘 − 𝛾) = 0.
Then the maximal equilibrium 𝔤 is equal to 0 everywhere. In other words, for all 𝑔 ∈ Δ and all 𝑥 ∈ Ω,
we have that:

lim
𝑡→∞

𝜙(𝑡, 𝑔)(𝑥) = 0.

Proof. Suppose, to derive a contradiction, that 𝔤 is not equal to 0 𝜇-almost everywhere. We know
according to Remark II.2.16 that 1 − 𝔤 is positive everywhere. Hence, we get:

𝑇𝑘/𝛾(𝛾𝔤) = 𝑇𝑘(𝔤) = (1 +
𝔤

1 − 𝔤
) 𝛾𝔤 ≥ 𝛾𝔤. (II.50)

According to Proposition II.3.6, ℜ0 is then greater than or equal to 1.

We now prove that the inequality is strict: ℜ0 > 1. Consider the support of 𝔤: 𝐴 =
{ 𝑥 ∈ Ω ∶ 𝔤(𝑥) > 0 }. Equation (II.50) remains true by replacing 𝑘 by 𝑘′ = 𝟙𝐴 𝑘 𝟙𝐴 (i.e. 𝑘′(𝑥, 𝑦) =
𝟙𝐴(𝑥)𝑘(𝑥, 𝑦)𝟙𝐴(𝑦)):

𝑇𝑘′/𝛾(𝛾𝔤) = (1 +
𝔤

1 − 𝔤
) 𝛾𝔤 ≥ 𝛾𝔤. (II.51)

Using Proposition II.3.6, we get that 𝜌(𝑇𝑘′/𝛾) ≥ 1. Since Assumption II.2 is in force, 𝑇𝑘′/𝛾 has a
left Perron eigenvector ℎ in 𝐿𝑞+(𝜇)\ { 0 } (see Lemma II.3.7 (v)). By multiplying both members of
Equation (II.51) by ℎ and integrating with respect to 𝜇, we obtain:

(𝜌(𝑇𝑘′/𝛾) − 1) ⟨ℎ, 𝛾𝔤⟩ = ⟨ℎ, (𝔤)2𝛾/(1 − 𝔤)⟩ (II.52)
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It is clear that ℎ𝟙𝐴∁ = 0. Since ℎ ∈ 𝐿𝑞+(𝜇)\ { 0 }, we have necessarily:

∫
𝐴
ℎ(𝑥) 𝜇(d𝑥) > 0.

Hence, both brackets in Equation (II.52) are positive. Thus, we get that 𝜌(𝑇𝑘′/𝛾) > 1. Using
Theorem II.3.5 (i) and that the operator 𝑇𝑘/𝛾 − 𝑇𝑘′/𝛾 is positive, we deduce that ℜ0 ≥ 𝜌(𝑇𝑘′/𝛾) > 1.
This is in contradiction with Proposition II.4.2 which asserts that ℜ0 ≤ 1 as 𝑠(𝑇𝑘 − 𝛾) = 0. Thus,
we obtain that 𝜇-a.e. 𝔤 = 0. We conclude using Remark II.3.8.

II.4.4 Supercritical regime: 𝑠(𝑇𝑘 − 𝛾) > 0

Assumption II.2 is in force in this section, where we consider the case 𝑠(𝑇𝑘 − 𝛾) > 0. We begin by
proving that 𝔤 is different from 0, then we show the convergence of the system to 𝔤.

Informally, the main idea in the following is to write the linear approximation of the dy-
namics (II.25) near the zero equilibrium: 𝜕𝑡𝑢 = (𝑇𝑘 − 𝛾)𝑢, and apply the results from Section II.3
(Theorem II.3.5 (iii) and Lemma II.3.7) in order to identify a dominant component of the evolution
near 0 as a Perron eigenvector of 𝑇𝑘 − 𝛾. A particularly nice feature is that this procedure yields a
monotonous trajectory.

In order to control the non-linearity, we give ourselves a little room by choosing 𝜀 small enough
so that (1 − 𝜀)ℜ0 > 1. Since 𝜌((1 − 𝜀)𝑇𝑘/𝛾) = (1 − 𝜀)𝜌(𝑇𝑘/𝛾) = (1 − 𝜀)ℜ0 > 1, Proposition II.4.2
ensures the existence of a vector 𝑤𝜀 ∈ ℒ∞

+ \ { 0 } and a positive real number 𝜆(𝜀) > 0, such that:

(1 − 𝜀)𝑇𝑘(𝑤𝜀) = (𝛾 + 𝜆(𝜀))𝑤𝜀. (II.53)

We can take 𝑤𝜀 such that ‖ 𝑤𝜀 ‖ < 𝜀. Moreover, according to Remark II.4.3:

∫
Ω
𝑤𝜀(𝑥) d𝑥 > 0. (II.54)

Then, we get the following proposition.

Proposition II.4.8 (Increasing trajectory). Suppose Assumption II.2 is in force and that 𝑠(𝑇𝑘−𝛾) > 0,
and let 𝑤𝜀 be defined by (II.53). The trajectory starting from 𝑤𝜀 is monotonous: the map 𝑡 ↦ 𝜙(𝑡, 𝑤𝜀)
is non-decreasing.

Proof. Using Equation (II.53) and the fact that ‖ 𝑤𝜀 ‖ < 𝜀, we have:

0 ≤ 𝜆(𝜀)𝑤𝜀 = (1 − 𝜀)𝑇𝑘(𝑤𝜀) − 𝛾𝑤𝜀 ≤ (1 − 𝑤𝜀)𝑇𝑘(𝑤𝜀) − 𝛾𝑤𝜀 = 𝐹(𝑤𝜀).

This implies the stated monotony by Proposition II.2.10.

Proposition II.4.8 shows that the equilibrium 0 is not asymptotically stable, in the sense that
we can find initial conditions arbitrarily close to 0 in norm such that 𝜙(𝑡, 𝑔) does not converge to
0 pointwise (note that ‖ 𝑤𝜀 ‖ may be chosen arbitrarily small). Since 𝑤𝜖 ≤ 1, we get by monotony
and the comparison Theorem that 𝑤𝜀 ≤ 𝜙(𝑡, 𝑤𝜀) ≤ 𝜙(𝑡, 1), which implies that 𝑤𝜀 ≤ 𝔤. In particular
we get the following corollary.

Corollary II.4.9. If Assumption II.2 is in force and 𝑠(𝑇𝑘 − 𝛾) > 0, then we have:

∫
Ω
𝔤(𝑥) 𝜇(d𝑥) > 0.

We deduce from Proposition II.4.8 that 𝑡 ↦ 𝜙(𝑡, 𝑤𝜀) converges pointwise as 𝑡 tends to infinity
since 𝜙(𝑡, 𝑤𝜀) ≤ 1 for all 𝑡. According to Proposition II.2.13, the limit is an equilibrium. It is not 0
but it might be different from 𝔤. We will use Assumption II.3 to ensure that 0 and 𝔤 are the only
equilibria. In order to prove this result, we need the following lemma.
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Lemma II.4.10 (Instantaneous propagation of the infection). Suppose Assumptions II.2 and II.3
are in force. If 𝑔 ∈ Δ satisfies ∫Ω 𝑔(𝑥) 𝜇(d𝑥) > 0, then, for all 𝑡 > 0, 𝜙(𝑡, 𝑔) is 𝜇-a.e. positive.

Proof. Since the flow is order-preserving (see Proposition II.2.8), it is sufficient to show the propo-
sition for 𝑔 such that ‖ 𝑔 ‖ < 1/2. It follows from Equation (II.29) that:

𝜙(𝑡, 𝑔) ≤ ‖ 𝑔 ‖ + 𝑡 ‖ 𝑇𝑘 ‖ .

Thus, for all 𝑡 ∈ [0, 𝑐), with 𝑐 = (1 − 2 ‖ 𝑔 ‖)/2 ‖ 𝑇𝑘 ‖ (and 𝑐 = +∞ if ‖ 𝑇 ‖ = 0), we have that
𝜙(𝑡, 𝑔) < 1/2. Now, we define the function:

𝑢(𝑡) = e−‖ 𝛾 ‖𝑡 e𝑡𝑇𝑘/2𝑔.

Taking 𝑐 > 0 smaller if necessary, we get 𝑢(𝑡) ≤ ‖ 𝑔 ‖ (1 + 𝑡 ‖ 𝑇𝑘 ‖) < 1/2 for 𝑡 ∈ [0, 𝑐). Then we get
for 𝑡 ∈ [0, 𝑐):

𝑢′(𝑡) − 𝐹(𝑢(𝑡)) = (𝑇𝑘/2 − ‖ 𝛾 ‖)𝑢(𝑡) − (1 − 𝑢(𝑡))𝑇𝑘𝑢(𝑡) + 𝛾𝑢(𝑡)
= (𝑢(𝑡) − 1/2)𝑇𝑘𝑢(𝑡) − (‖ 𝛾 ‖ − 𝛾)𝑢(𝑡)
≤ 0 = 𝑏′(𝑡) − 𝐹(𝑏(𝑡)),

where 𝑏(𝑡) = 𝜙(𝑡, 𝑔). Using the comparison Theorem II.2.4, we deduce

𝜙(𝑡, 𝑔) ≥ 𝑢(𝑡). (II.55)

Now, we fix 𝑡 ∈ [0, 𝑐). We denote by 𝐴 = { 𝑥 ∈ Ω ∶ 𝑢(𝑡)(𝑥) > 0 } the support of 𝑢(𝑡). We have:

0 = ⟨𝟙𝐴∁ , 𝑢(𝑡)⟩ = e−‖ 𝛾 ‖𝑡 ∑
𝑛∈ℕ

1
𝑛!

⟨𝟙𝐴∁ , (𝑡𝑇𝑘/2)𝑛(𝑔)⟩ .

This implies that ⟨𝟙𝐴∁ , (𝑡𝑇𝑘/2)𝑛(𝑔)⟩ = 0 for all 𝑛, and thus that ⟨𝟙𝐴∁ , 𝑇𝑘𝑢(𝑡)⟩ = 0. We deduce that:

∫
𝐴∁×𝐴

𝑘(𝑥, 𝑦) 𝜇(d𝑥)𝜇(d𝑦) = 0.

Since the set 𝐴 contains the support of 𝑔, we get 𝜇(𝐴) > 0. It follows from Assumption II.3 that
𝜇(𝐴∁) = 0. This means that 𝑢(𝑡) is 𝜇-a.e. positive. Hence, from Equation (II.55), we get that, for
𝑡 ∈ [0, 𝑐), 𝜙(𝑡, 𝑔) is 𝜇-a.e. positive. Using the semi-group property of the semi-flow this results
propagates on the whole positive half-line and the result is proved.

Remark II.4.11. One can check from its proof, that Lemma II.4.10 does not require the integrability
condition (II.8) in Assumption II.2 to be true.

Now we can show the following important result.

Proposition II.4.12 (Uniqueness of the endemic state). Under Assumptions II.2 and II.3, the maxi-
mal equilibrium 𝔤:

(i) is positive 𝜇-a.e.,

(ii) is the unique equilibrium different from 0.

Proof. From Lemma II.4.10 together with Remark II.3.8, we deduce that every equilibrium different
from 0 is positive 𝜇-a.e. This proves Point (i) as ∫ 𝔤d𝜇 > 0 in the supercritical regime according to
Corollary II.4.9.

We now prove Point (ii). Let ℎ∗ be another equilibrium different from 0. Since 𝔤 is the maximal
equilibrium, we have ℎ∗ ≤ 𝔤. We shall prove that ℎ∗ is equal to 𝔤 almost everywhere. Let us define
the non-negative kernel k by:

k(𝑥, 𝑦) = (1 − 𝔤(𝑥))
𝑘(𝑥, 𝑦)
𝛾 (𝑦)

for 𝑥, 𝑦 ∈ Ω.
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Notice that k satisfies (II.37). Since 𝑇k(𝛾𝔤) = 𝛾𝔤, we deduce from Proposition II.3.6 that 𝜌(𝑇k) ≥ 1.
Let 𝑣 ∈ 𝐿𝑞(𝜇)+\ { 0 } be a left Perron vector of the operator 𝑇k (given by Lemma II.3.7 (v)). The
kernel k satisfies Assumption II.3 as 𝑘 does and 1 − 𝔤 is positive everywhere (see Remark II.2.16).
Hence, 𝑣 can be chosen positive 𝜇-a.e. according to Lemma II.3.7 (vi). The following computation:

⟨𝑣 , 𝛾𝔤⟩ = ⟨𝑣 , 𝑇k(𝛾𝔤)⟩ = 𝜌(𝑇k) ⟨𝑣 , 𝛾𝔤⟩ ,

shows that 𝜌(𝑇k) is actually equal to 1 since ⟨𝑣 , 𝛾𝔤⟩ > 0. Now we compute:

0 = ⟨𝑣 , 𝐹 (ℎ∗)⟩
= ⟨𝑣 , 𝑇k(𝛾ℎ∗) − 𝛾ℎ∗⟩ + ⟨𝑣 , (𝔤 − ℎ∗)𝑇𝑘/𝛾(𝛾ℎ∗)⟩

= ⟨𝑣 , (𝔤 − ℎ∗)𝑇𝑘(ℎ∗)⟩ ,

where we used that ⟨𝑣 , 𝑇k𝑓 − 𝑓⟩ = 0 as 𝜌(𝑇k) = 1 and 𝑣 is a left Perron eigenvector. According to
the first part of the proof, ℎ∗ is 𝜇-a.e. positive. Since we have 𝑇𝑘(ℎ∗) = 𝛾ℎ∗/(1 − ℎ∗), the function
𝑇𝑘(ℎ∗) is also 𝜇-a.e. positive. Hence 𝔤 and ℎ∗ are equal 𝜇-a.e. since 𝑣 is 𝜇-a.e. positive, see Lemma
II.3.7 (vi). This implies in particular that 𝑇𝑘(ℎ∗) = 𝑇𝑘(𝔤) by Lemma II.3.7 (i). We deduce that, for all
𝑥 ∈ Ω:

ℎ∗(𝑥) = 𝑇𝑘(ℎ∗)(𝑥)/(𝛾 (𝑥) + 𝑇𝑘(ℎ∗)(𝑥)) = 𝑇𝑘(𝔤)(𝑥)/(𝛾 (𝑥) + 𝑇𝑘(𝔤)(𝑥)) = 𝔤(𝑥).

Therefore 𝔤 is then unique equilibrium different from 0.

Now we can prove the main result of this section on the pointwise convergence of 𝜙(𝑡, 𝑔). If 𝑔
is 𝜇-a.e. equal to 0, then clearly, as 𝛾 is positive, we get that lim

𝑡→∞
𝜙(𝑡, 𝑔) = 0 pointwise, so we only

need to consider the case where 𝑔 is not 𝜇-a.e. equal to 0.

Theorem II.4.13 (Convergence towards the endemic equilibrium). Suppose that Assumptions II.2
and II.3 are in force. Let 𝑔 ∈ Δ such that ∫Ω 𝑔(𝑥) 𝜇(d𝑥) > 0. Then,we have that for all 𝑥 ∈ Ω:

lim
𝑡→∞

𝜙(𝑡, 𝑔)(𝑥) = 𝔤(𝑥).

Proof. By Lemma II.4.10, it is enough to show the result for 𝑔 𝜇-a.e. positive. The idea is similar to
the proof of Proposition II.4.8, that is, to try and find a monotonous trajectory; the difference here
is that we look for a trajectory that is below 𝜙(𝑡, 𝑔), and we have to adapt the proof accordingly.
For such a 𝑔, the functions (1 − 𝜀)𝑔𝟙𝑔≥𝜀 converge in 𝐿1(𝜇) to 𝑔 when 𝜀 goes to zero. Besides, ℜ0 is
greater than 1 by Proposition II.4.2. Hence, according to Proposition II.4.5, for 𝜀 small enough, we
get

ℜ0 ((1 − 𝜀) 𝟙𝑔≥𝜀𝑇𝑘/𝛾) > 1.

By Proposition II.4.2 (iii), applied to the kernel (1 − 𝜀)𝟙𝑔(𝑥)≥𝜀𝑘(𝑥, 𝑦), there exists 𝑤𝜀 ∈ ℒ∞
+ \ { 0 }

and 𝜆(𝜀) > 0 such that:
(1 − 𝜀) 𝟙𝑔≥𝜀𝑇𝑘(𝑤𝜀) = (𝛾 + 𝜆(𝜀))𝑤𝜀. (II.56)

We may and will assume additionally that ‖ 𝑤𝜀 ‖ ≤ 𝜀. Since (II.56) implies that 𝑤𝜀(𝑥) = 0 when
𝑔(𝑥) < 𝜀, we know that 𝑤𝜀 ≤ 𝑔. The monotony of the semi-flow (see Proposition II.2.8) then
implies that, for all 𝑡 ∈ ℝ+:

𝜙(𝑡, 𝑤𝜀) ≤ 𝜙(𝑡, 𝑔) ≤ 𝜙(𝑡, 1). (II.57)

Besides, we have:

0 ≤ 𝜆(𝜀)𝑤𝜀 = (1 − 𝜀)𝟙𝑔≥𝜀𝑇𝑘(𝑤𝜀) − 𝛾𝑤𝜀
≤ (1 − 𝜀)𝑇𝑘(𝑤𝜀) − 𝛾𝑤𝜀
≤ (1 − 𝑤𝜀)𝑇𝑘(𝑤𝜀) − 𝛾𝑤𝜀
= 𝐹(𝑤𝜀),

where the last inequality follows from the fact that ‖ 𝑤𝜀 ‖ ≤ 𝜀. Thus, the path 𝑡 ↦ 𝜙(𝑡, 𝑤𝜀) is
non-decreasing according to Proposition II.2.10. Hence, it converges pointwise to a limit ℎ∗ ≠ 0
since 𝑤𝜀 ∈ ℒ∞

+ \ { 0 }. This limit has to be an equilibrium by Proposition II.2.13. Since 0 and 𝔤 are
the only equilibria by Proposition II.4.12, we have necessarily ℎ∗ = 𝔤. We conclude thanks to
Equation (II.57).
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II.4.5 Endemic states in the critical regime

Here we show by a counter-example that the integral condition (II.8) is necessary to obtain the
convergence towards the disease-free equilibrium in the critical regime. In the following example,
the transmission kernel has a bounded density with respect to a finite measure 𝜇 and we have
inf 𝛾 > 0 and ℜ0 = 1. However, there exists a continuum of distinct equilibria.

Consider the set ℕ∗ equipped with some finite measure 𝜇 such that 𝜇𝑛 = 𝜇({ 𝑛 }) > 0 for all
𝑛 ∈ ℕ∗. We choose 𝛾 constant equal to 1 and the kernel 𝜅 defined for 𝑖, 𝑗 ∈ ℕ∗ by:

𝜅(𝑖, { 𝑗 }) = {
2𝑖+2
2𝑖−1 if 𝑗 = 𝑖 + 1,
0 otherwise, (II.58)

Clearly Assumption II.1 is satisfied. Moreover, the kernel 𝜅 admits with respect to 𝜇 the density
𝑘 defined by 𝑘(𝑖, 𝑗) = 𝜅(𝑖, { 𝑗 })/𝜇({ 𝑗 }), for 𝑖, 𝑗 ∈ ℕ∗. However condition (II.9), and thus (II.8) from
Assumption II.2, is not satisfied. Indeed, for all 𝑞 > 1 we have:

sup
𝑛∈ℕ∗ ∫ℕ∗

𝑘(𝑥, 𝑦)𝑞 𝜇(dy) = sup
𝑛∈ℕ∗

𝑘(𝑛, 𝑛 + 1)𝑞 𝜇𝑛+1 = lim
𝑛→∞

(2𝑛 + 1)𝑞

(2𝑛 − 1)𝑞
𝜇1−𝑞𝑛+1 = +∞,

where divergence of the sequence follows from the convergence of 𝜇𝑛+1 to 0 (because 𝜇 is a finite
measure). The following proposition asserts that we are in the critical regime.

Proposition II.4.14. Let 𝜅 be defined by (II.58), 𝑘 be its density and 𝛾 = 1. We have for the
reproduction number: ℜ0 = 𝜌(𝑇𝑘/𝛾) = 1, and for the spectral bound: 𝑠(𝑇𝑘 − 𝛾) = 0.

Proof. Since 𝛾 is the function constant equal to 1, we have 𝑠(𝑇𝑘 − 𝛾) = ℜ0 − 1 and ℜ0 = 𝜌(𝑇𝑘). We
compute the spectral radius of 𝑇𝑘 using Gelfand’s formula:

𝜌(𝑇𝑘) = lim
𝑛→∞

‖ 𝑇 𝑛𝑘 ‖
1/𝑛 = lim

𝑛→∞
(

𝑛
∏
𝑖=1

2𝑖 + 2
2𝑖 − 1

)
1/𝑛

= 1.

The limit is found by applying the logarithm to the sequence and using Cesàro lemma.

The following result shows that even if we are in the critical regime, the maximal equilibrium
𝔤 is not equal to 0 everywhere, and there exists infinitely many distinct equilibria. For 𝛼 ∈ [0, 1],
we define the function 𝑔∗𝛼 on ℕ∗ by 𝔤𝛼(1) = 𝛼 and for 𝑛 ∈ ℕ∗:

𝔤𝛼(𝑛 + 1) = {
2𝑛−1
2𝑛+2

𝔤𝛼(𝑛)
1−𝔤𝛼(𝑛)

if 𝔤𝛼(𝑛) < 1,

0 if 𝔤𝛼(𝑛) ≥ 1.

Proposition II.4.15. Let 𝜅 be defined by (II.58), 𝑘 be its density and 𝛾 = 1.

(i) The equilibria of Equation (II.3) are { 𝔤𝛼 ∶ 𝛼 ∈ [0, 1/2] }.

(ii) The function 𝛼 ↦ 𝔤𝛼 defined on [0, 1/2] and taking values in Δ ⊂ ℒ∞ is increasing and
continuous (with respect to ‖ ⋅ ‖). In particular, the set of equilibria is totally ordered, compact
and connected.

(iii) The equilibrium 𝑔∗1/2 is the maximal equilibrium and is given by 𝑔∗1/2(𝑛) = 1/(2𝑛) for 𝑛 ∈ ℕ∗.

(iv) For every 𝛼 ∈ (0, 1/2), there exists a constant 𝑐𝛼 such that 𝑔∗𝛼 (𝑛) ∼ 𝑐𝛼𝑛−3/2. Moreover, the map
𝛼 → 𝑐𝛼 is strictly increasing and continuous on [0, 1/2), with the convention 𝑐0 = 0.

Proof. We start by remarking that for 𝛼 = 1/2, the induction may be solved explicitly, so that
𝔤1/2(𝑛) = 1/(2𝑛). Similarly 𝔤0(𝑛) = 0.

We prove property (ii) first. Let Γ denote the function 𝛼 ↦ 𝔤𝛼 defined on [0, 1/2] and taking
values in ℒ∞. Since the function 𝑥 ↦ 𝜆𝑥/(1 − 𝑥) is increasing on [0, 1) for all 𝜆 > 0, we deduce
by induction that 0 ≤ 𝑔∗𝛼 (𝑛) < 𝑔∗𝛽 (𝑛) ≤ 𝔤1/2(𝑛) for all 0 ≤ 𝛼 < 𝛽 ≤ 1/2 and 𝑛 ∈ ℕ∗. As
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𝔤0 and 𝔤1/2 both belong to Δ, we deduce that Γ takes values in Δ by monotonicity. It is also
immediate to check that the function Γ is continuous for the pointwise convergence in Δ. Since
lim𝑛→∞ sup𝛼∈[0,1/2] 𝑔

∗
𝛼 (𝑛) = lim𝑛→∞ 𝑔∗1/2(𝑛) = 0, this continuity also holds with respect to the

uniform convergence in Δ. This proves property (ii).

We now prove property (i). It is clear that if ℎ∗ is an equilibrium, then ℎ∗(𝑛) < 1 for all 𝑛 ∈ ℕ∗

thanks to Remark II.2.16 and by the definition of the kernel 𝜅 we have that:

ℎ∗(𝑛 + 1) =
2𝑛 − 1
2𝑛 + 2

ℎ∗(𝑛)
1 − ℎ∗(𝑛)

for all 𝑛 ∈ ℕ∗. (II.59)

This readily implies that ℎ⋆ = 𝔤𝛼 where 𝛼 = ℎ∗(0), so that the only possible equilibria are the 𝔤𝛼
for 𝛼 ∈ [0, 1].

If 𝛼 ∈ [0, 1/2], 𝔤𝛼 is indeed an equilibrium as 𝔤𝛼(𝑛) ≤ 𝔤1/2(𝑛) = 1/(2𝑛) and 𝔤𝛼 solves (II.59).
On the contrary, since 𝔤1(1) = 1, the function 𝔤1 is not an equilibrium.

Let 𝛼 ∈ (1/2, 1). We shall now prove by contradiction that there exists 𝑛 ∈ ℕ∗ such that
𝔤𝛼(𝑛) ≥ 1. Let us assume that 𝔤𝛼(𝑛) < 1 for all 𝑛 ∈ ℕ∗. Arguing as in the first part of the proof,
we get 𝔤𝛼(𝑛) > 𝔤1/2(𝑛) for all 𝑛 ∈ ℕ∗. Thus the sequence 𝑣 = (𝑣𝑛 ∶ 𝑛 ∈ ℕ∗) with 𝑣𝑛 = 2𝑛𝔤𝛼(𝑛)
satisfies the following recurrence for 𝑛 ∈ ℕ∗:

𝑣𝑛+1 = 𝑣𝑛
2𝑛 − 1
2𝑛 − 𝑣𝑛

and 1 < 𝑣𝑛 < 2𝑛.

We deduce that the sequence 𝑣 is increasing, and thus 𝑣𝑛+1 ≥ 𝑣𝑛 2𝑛−1
2𝑛−2𝛼 , as 𝑣1 = 2𝛼. We deduce that

𝑣𝑛 ≥ 𝑐 𝑛𝛼−1/2 for some positive constant 𝑐. This in turn implies that 𝑣𝑛+1 ≥ 𝑣𝑛 2𝑛−1
2𝑛−𝑐 𝑛𝛼−1/2 and thus

𝑣𝑛 ≥ 𝑐′ exp(𝑐″𝑛𝛼−1/2) for some positive constants 𝑐′ and 𝑐″. This contradicts the fact that 𝑣𝑛 < 2𝑛
for 𝑛 ∈ ℕ∗. As a conclusion, there exists 𝑛 ∈ ℕ∗ such that 𝔤𝛼(𝑛) ≥ 1. This implies that 𝑔∗𝛼 can not
be an equilibrium. This ends the proof of property (i).

We end the proof of property (iii). We have already computed 𝑔∗1/2. We deduce from properties
(i) and (ii) that 𝑔∗1/2 is the maximal equilibrium.

Finally, let us prove the asymptotic result (iv). The asymptotics of 𝔤𝛼(𝑛) is obtained by starting
from an easy bound on its decay, and then refining it by plugging it back into the induction
relation (II.59).

Linear decay. Since 𝛼 ≤ 1/2, we already know that 𝔤𝛼(𝑛) ≤ 𝑔∗1/2(𝑛) = 1/(2𝑛). We can prove
a little bit better. The sequence 𝑤 = (𝑤𝑛 ∶ 𝑛 ∈ ℕ∗) defined by 𝑤𝑛 = 𝑛𝔤𝛼(𝑛)/𝛼 satisfies

𝑤𝑛+1 =
2𝑛 − 1

2𝑛 − 2𝛼𝑤𝑛
𝑤𝑛.

Since 2𝛼𝑤𝑛 = 2𝑛𝔤𝛼(𝑛) ≤ 1, the sequence 𝑤 is non-increasing. In particular 𝑤𝑛 ≤ 𝑤1 = 1, so we
deduce that:

𝔤𝛼(𝑛) ≤
𝛼
𝑛
⋅ (II.60)

Sublinear decay. Let 𝑞𝑛 be the quotient 𝑞𝑛 = 𝔤𝛼(𝑛 + 1)/𝔤𝛼(𝑛). By the recurrence relation and
the linear bound (II.60), we get successively

𝑞𝑛 ≤
1 − 1/(2𝑛)
1 + 1/𝑛

1
1 − 𝛼/𝑛

≤ 1 − (
3
2
− 𝛼)

1
𝑛
+ 𝑂(𝑛−2) and log(𝑞𝑛) ≤ −(

3
2
− 𝛼)

1
𝑛
+ 𝑟𝑛,

where 𝑟𝑛 = 𝑂(𝑛−2). Summing the terms from 1 to 𝑛 − 1, we get

log(𝔤𝛼(𝑛)) − log(𝔤𝛼(1)) ≤ −(3/2 − 𝛼) log(𝑛) + 𝑂(1).

Therefore, there exists a constant 𝐶 (that may depend on 𝛼) such that

𝔤𝛼(𝑛) ≤
𝐶

𝑛3/2−𝛼
⋅ (II.61)
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Optimal decay. We come back to the recurrence relation, and use the sublinear bound (II.61)
on the term 1 − 𝔤𝛼(𝑛) that appears in the denominator. This yields successively

𝑞𝑛 = (1 −
3
2𝑛

+ 𝑂(𝑛−2)) (1 + 𝑂(𝑛−(3/2−𝛼))) = 1 −
3
2𝑛

+ 𝑂(𝑛−(3/2−𝛼)),

which gives log(𝑞𝑛) = − 3
2𝑛 + 𝑟𝑛 where 𝑟𝑛 = 𝑂(𝑛−(3/2−𝛼)). As ∑𝑚 𝑟𝑚 is finite, summing from 1 up

to 𝑛 − 1 and taking the exponential yields

𝔤𝛼(𝑛) = 𝛼 exp (−(3/2) ln(𝑛) + 𝑂(1)) .

In other words we obtain, as claimed, the existence of a (non-explicit) constant 𝑐𝛼 such that
𝔤𝛼(𝑛) ∼ 𝑐𝛼𝑛−3/2.

Properties of 𝑐𝛼. Notice that for 𝛼 ∈ [0, 1/2) the limit 𝑑𝛼 = lim𝑛→∞∏𝑛
𝑘=1(1 − 𝔤𝛼(𝑘))−1

exists and is positive. Let 0 ≤ 𝛼 ≤ 𝛽 < 1/2 and set 𝐷𝑛 = 𝔤𝛽(𝑛) − 𝔤𝛼(𝑛) for 𝑛 ≥ 1. We have
𝐷𝑛+1 = 2𝑛−1

2𝑛+2 (1 − 𝔤𝛽(𝑛))−1(1 − 𝔤𝛼(𝑛))−1𝐷𝑛. So we deduce that:

𝐷𝑛 = (𝛽 − 𝛼) (
𝑛−1
∏
𝑘=1

2𝑘 − 1
2𝑘 + 2

) (
𝑛−1
∏
𝑘=1

(1 − 𝔤𝛼(𝑘))−1) (
𝑛−1
∏
𝑘=1

(1 − 𝑔∗𝛽 (𝑘))
−1) .

Using that ∏𝑛−1
𝑘=0

2𝑘−1
2𝑘+2 ∼ 𝐶 𝑛−3/2 for some finite constant 𝐶 > 0, we deduce that

𝑐𝛽 − 𝑐𝛼 = 𝐶(𝛽 − 𝛼)𝑑𝛼𝑑𝛽.

This gives the strict monotonicity of the map 𝛼 ↦ 𝑐𝛼. Then, use that 𝑑𝛼 ≤ 𝑑𝛽 ≤ 𝑑𝛽′ < +∞ for some
𝛽′ ∈ (𝛽, 1/2) to get the continuity.

We are not able to describe entirely the basins of attraction of each equilibrium. However, the
asymptotic behavior in 𝑛 of the starting point 𝑔 tells us quite a lot.

Proposition II.4.16. For all 𝑔 ∈ Δ, and for all 𝛼 ∈ (0, 1/2), we have:

lim sup
𝑛

𝑛3/2𝑔(𝑛) ≤ 𝑐𝛼 ⟹ lim sup
𝑡→∞

𝜙(𝑡, 𝑔) ≤ 𝑔⋆∗ ,

lim inf
𝑛

𝑛3/2𝑔(𝑛) ≥ 𝑐𝛼 ⟹ lim inf
𝑡→∞

𝜙(𝑡, 𝑔) ≥ 𝑔⋆∗ .

In particular, we have:

lim sup
𝑛

𝑛3/2𝑔(𝑛) = 0 ⟹ 𝜙(𝑡, 𝑔) → 0,

lim inf
𝑛

𝑛3/2𝑔(𝑛) = ∞ ⟹ 𝜙(𝑡, 𝑔) → 𝔤1/2.

Proof. Since 𝑘 is upper-triangular, the long-time behavior of the dynamic does not depend on the
first terms of the initial condition. Indeed, for 𝑛 ≥ 2, consider the subspace of functions whose
first 𝑛 − 1 terms are 0:

𝐸𝑛 = { 𝑔 ∈ ℒ∞ ∶ 𝑔(𝑝) = 0 for 1 ≤ 𝑝 < 𝑛 } .

Denote by 𝑃𝑛 the canonical projection from ℒ∞ on 𝐸𝑛. For 𝑛 ≥ 2 and 𝑔 ∈ Δ, we have:

𝑃𝑛𝜙(𝑡, 𝑔) = 𝑃𝑛 (𝜙(𝑡, 𝑃𝑛(𝑔))) . (II.62)

Let us denote by ⪯ the partial order defined by 𝑔 ⪯ ℎ if there exists 𝑛 ≥ 2 such that 𝑃𝑛(𝑔) ≤ 𝑃𝑛(ℎ).
Suppose that lim sup 𝑛3/2𝑔(𝑛) ≤ 𝑐𝛼. Since 𝛼 → 𝑐𝛼 is strictly increasing, for any 𝛼 < 𝛽 < 1/2,

the asymptotics of 𝑔 and 𝔤𝛽 imply that 𝑔 ⪯ 𝔤𝛽. Since the flow is order-preserving, this entails
lim sup 𝜙(𝑡, 𝑔) ≤ 𝔤𝛽. This inequality holds for all 𝛽 > 𝛼: we get the conclusion by continuity of the
map Γ ∶ 𝛼 → 𝔤𝛼. The proof of the other implication is similar.



56 II.4 Infinite-dimensional SIS model when the kernel has a density

II.4.6 Uniform convergence

In the subcritical case, Theorem II.4.6 shows an exponentially fast convergence, in the uniform
norm. By contrast, the convergence results in the critical and supercritical case from Sections
II.4.3 and II.4.4 only hold pointwise.

In the next result, we show how to recover a form of uniformity; in particular we recover
uniform convergence in the particular case where inf 𝛾 > 0.

Theorem II.4.17. Suppose that Assumption II.2 and II.3 are in force and let 𝐴 ∈ ℱ. If 𝛾 is bounded
away from 0 on 𝐴, that is:

inf
𝑥∈𝐴

𝛾 (𝑥) > 0,

then, for 𝑔 ∈ Δ, with positive integral if 𝔤 ≠ 0, we have:

lim
𝑡→∞

sup
𝑥∈𝐴

| 𝜙(𝑡, 𝑔)(𝑥) − 𝔤(𝑥) | = 0.

Proof. Set 𝑚 = inf
𝑥∈𝐴

𝛾 (𝑥). Let us first study the convergence of the trajectory starting from 1. For
𝑠 ∈ ℝ+, we have:

𝜕𝑡(𝜙(𝑠, 1) − 𝔤) = 𝐹(𝜙(𝑠, 1)) − 𝐹(𝔤)
≤ (1 − 𝜙(𝑠, 1))𝑇𝑘(𝜙(𝑠, 1) − 𝔤) − 𝛾(𝜙(𝑠, 1) − 𝔤)
≤ 𝑇𝑘(𝜙(𝑠, 1) − 𝔤) − 𝛾(𝜙(𝑠, 1) − 𝔤)
≤ 𝑀 ‖ 𝜙(𝑠, 1) − 𝔤 ‖𝑝 − 𝛾(𝜙(𝑠, 1) − 𝔤),

where we used that 𝑇𝑘 is positive for the second inequality and Hölder inequality for the last with

𝑀 = sup
𝑥∈Ω

(∫Ω 𝑘(𝑥, 𝑦)𝑞 𝜇(dy))
1/𝑞

< ∞. For 𝑠 ∈ ℝ+, set 𝑣𝑠 = e𝑚𝑠(𝜙(𝑠, 1) − 𝔤). Notice that 𝑣𝑠 ≥ 0 and

that 𝜕𝑡𝑣𝑠(𝑥) ≤ 𝑀 ‖ 𝑣𝑠 ‖𝑝 for 𝑥 ∈ 𝐴. Integrating for 𝑠 ∈ [0, 𝑡], we deduce that for 𝑥 ∈ 𝐴:

0 ≤ (𝜙(𝑡, 1) − 𝔤)(𝑥) ≤ e−𝑚𝑡(1 − 𝔤) + 𝑀 ∫
𝑡

0
e−𝑚(𝑡−𝑠) ‖ 𝜙(𝑠, 1) − 𝔤 ‖𝑝 d𝑠

≤ e−𝑚𝑡 + 𝑀 ∫
𝑡

0
e−𝑚𝑠 ‖ 𝜙(𝑡 − 𝑠, 1) − 𝔤 ‖𝑝 d𝑠.

Note the right hand-side does not depend on 𝑥. As 𝜙(𝑠, 1) converges pointwise to 𝔤 (see Equa-
tion (II.31)) and is bounded by 1, using the dominated convergence theorem, we deduce that the
right hand-side goes to 0 as 𝑡 goes to infinity. So, we obtain that:

lim
𝑡→+∞

sup
𝑥∈𝐴

| 𝜙(𝑡, 1)(𝑥) − 𝔤(𝑥) | = 0. (II.63)

If 𝔤 = 0, use that 0 ≤ 𝜙(𝑡, 𝑔) ≤ 𝜙(𝑡, 1) for all 𝑔 ∈ Δ and 𝑡 ∈ ℝ+ to conclude.

If 𝔤 is non zero (which corresponds to the super-critical case), consider a function 𝑓 ≤ 𝑔 with
positive integral such that 𝑓 ≤ 𝔤. By monotonicity of the flow, this implies that 0 ≤ 𝔤 − 𝜙(𝑠, 𝑓 ) for
all 𝑠 ∈ ℝ+. Arguing similarly as above, we get for 𝑠 ∈ ℝ+:

𝜕𝑡(𝔤 − 𝜙(𝑠, 𝑓 )) ≤ 𝑀 ‖ 𝔤 − 𝜙(𝑠, 𝑓 ) ‖𝑝 − 𝛾(𝔤 − 𝜙(𝑠, 𝑓 )).

Using that 𝜙(𝑠, 𝑓 ) converges pointwise to 𝔤 (see Theorem II.4.13), we similarly get that

lim
𝑡→+∞

sup
𝑥∈𝐴

| 𝜙(𝑡, 𝑓 )(𝑥) − 𝔤(𝑥) | = 0. (II.64)

Then, use the monotonicity of the flow which implies that 𝜙(𝑡, 𝑓 ) ≤ 𝜙(𝑡, 𝑔) ≤ 𝜙(𝑡, 1) for 𝑓 ≤ 𝑔 ≤ 1
as well as (II.63) and (II.64) to conclude.
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II.5 Vaccination model

II.5.1 Infinite-dimensional models

We write an infinite-dimensional model with two goals in mind: take into account the hetero-
geneity in the transmission of the infectious disease, in the spirit of (II.3), and model the effect
of vaccination by generalizing Equations (II.13) and (II.14), allowing even for different types of
vaccine. Recall that the measurable space (Ω,ℱ ) represents the features of the individuals in a
given population, the finite measure 𝜇 describes the size of the population and its sub-groups, and
the number 𝛾 (𝑥) is the recovery rate of individuals with feature 𝑥 ∈ Ω. The transmission kernel 𝜅
describes the way the disease is spread among the population without vaccination.

Suppose that we have different vaccines or treatments available that we can give to individuals
in order to fight the disease upstream. The set of vaccines is represented by a set Σ which
is finite in practice. We endow Σ with a 𝜎-field 𝒢. We are also given two measurable functions
𝑒, 𝛿 ∶ Ω×Σ → [0, 1]. For both models, the number 𝛿(𝑥, 𝜉 ) is the relative reduction of infectiousness
for people with feature 𝑥 vaccinated by the vaccine 𝜉. The coefficient 𝑒(𝑥, 𝜉 ) is the efficacy of vaccine
𝜉 given on individuals with feature 𝑥. We encode the absence of vaccination by a particular type of
vaccine 𝜉0 ∈ Σ. This vaccination has no efficacy upon the individuals: 𝑒(𝑥, 𝜉0) = 0 and 𝛿(𝑥, 𝜉0) = 0
for all 𝑥 ∈ Ω. We define a vaccination policy as a non-negative kernel 𝜂 ∶ Ω × 𝒢 → [0, 1]. The
probability for an individual with feature type 𝑥 to be vaccinated by a vaccine in the measurable
set 𝐴 ∈ 𝒢 under the policy 𝜂 is equal to 𝜂(𝑥, 𝐴). The recovery rate can be affected by the vaccine,
and in this case 𝛾 is then a non-negative measurable function defined on Ω × Σ, with 𝛾 (𝑥, 𝜉 ) the
recovery rate of individuals with feature 𝑥 and vaccine 𝜉. The number 𝑢(𝑡, 𝑥, 𝜉 ) is the probability
for an individual with feature 𝑥 which has been inoculated by the vaccine 𝜉 to be infected at time 𝑡.
The total number of infected individuals at time 𝑡 is therefore given by:

∫
Ω×Σ

𝑢(𝑡, 𝑥, 𝜉 ) 𝜂(𝑥, d𝜉 )𝜇(d𝑥). (II.65)

The leaky vaccination mechanism

In this setting, 𝑒(𝑥, 𝜉 ) denotes the leaky vaccine efficacy of 𝜉 ∈ Σ on an individual with feature
𝑥, i.e., the relative reduction in the transmission rate. We generalize Equation (II.13) to get the
following infinite dimensional evolution equation:

𝜕𝑡𝑢(𝑡, 𝑥, 𝜉 ) = −𝛾(𝑥, 𝜉 ) 𝑢(𝑡, 𝑥, 𝜉 )

+ (1 − 𝑢(𝑡, 𝑥, 𝜉 ))(1 − 𝑒(𝑥, 𝜉 )) ∫
Ω×Σ

(1 − 𝛿(𝑦, 𝜁 ))𝑢(𝑡, 𝑦 , 𝜁 )𝜅(𝑥, d𝑦)𝜂(𝑦 , d𝜁 ). (II.66)

The evolution Equation (II.66) can be seen as the SIS evolution Equation (II.3) on an extended
feature space:

• the feature 𝑥 = (𝑥, 𝜉 ) lives in Ω = Ω × Σ endowed with the 𝜎-field ℱ ⊗ 𝒢,

• the recovery rate is given by 𝛾(𝑥) = 𝛾(𝑥, 𝜉 ),

• the extended transmission kernel is given by:

𝜅𝑎(𝑥, d𝑦) = (1 − 𝑒(𝑥, 𝜉 ))(1 − 𝛿(𝑦, 𝜁 ))𝜅(𝑥, d𝑦)𝜂(𝑦 , d𝜁 ). (II.67)

Remark II.5.1. In the leaky mechanism, we suppose that the vaccine acts directly on the suscepti-
bility and the infectiousness of the individuals. Protective gears (like respirators or safety glasses)
which are designed to protect the wearer from absorbing airborne microbes or transmitting them
have a similar effect. Hence, Equation (II.66) is not limited to vaccination and can also be used as
a model for distribution of equipment in the population.



58 II.5 Vaccination model

The all-or-nothing mechanism

In this setting, 𝑒(𝑥, 𝜉 ), is defined as the probability to immunize completely the individual with
feature 𝑥 to the disease with vaccine 𝜉. We generalize Equation (II.14) to get the following infinite
dimensional evolution equation:

𝜕𝑡𝑢(𝑡, 𝑥, 𝜉 ) = −𝛾(𝑥, 𝜉 ) 𝑢(𝑡, 𝑥, 𝜉 )

+ (1 − 𝑒(𝑥, 𝜉 ) − 𝑢(𝑡, 𝑥, 𝜉 )) ∫
Ω×Σ

(1 − 𝛿(𝑦, 𝜁 ))𝑢(𝑡, 𝑦 , 𝜁 )𝜅(𝑥, d𝑦)𝜂(𝑦 , d𝜁 ). (II.68)

The probability 𝑣(𝑡, 𝑥, 𝜉 ) = 𝑢(𝑡, 𝑥, 𝜉 )/(1 − 𝑒(𝑥, 𝜉 )) for an individual with feature 𝑥 which has not
been vaccinated by the inoculation of vaccine 𝜉 to be infected at time 𝑡 satisfies the following
equation:

𝜕𝑡𝑣(𝑡, 𝑥, 𝜉 ) = −𝛾(𝑥)𝑣(𝑡, 𝑥, 𝜉 )

+ (1 − 𝑣(𝑡, 𝑥, 𝜉 )) ∫
Ω×Σ

(1 − 𝛿(𝑦, 𝜁 ))𝑣(𝑡, 𝑦 , 𝜁 )(1 − 𝑒(𝑦 , 𝜁 ))𝜅(𝑥, d𝑦)𝜂(𝑦 , d𝜁 ). (II.69)

As before, the evolution Equation (II.69) can be seen as the SIS evolution Equation (II.3) on the
same extended feature space Ω = Ω × Σ, still endowed with the 𝜎-field ℱ ⊗ 𝒢, with the same
recovery rate 𝛾(𝑥) = 𝛾(𝑥, 𝜉 ), but the transmission kernel now reads:

𝜅ℓ(𝑥, d𝑦) = (1 − 𝑒(𝑦, 𝜁 ))(1 − 𝛿(𝑦, 𝜁 ))𝜅(𝑥, d𝑦)𝜂(𝑦 , d𝜁 ). (II.70)

Notice the difference between the evolution Equation (II.66) for leakymechanism and the evolution
Equation (II.69) for the all-or-nothing mechanism is that 𝑒(𝑦 , 𝜁 ) in (II.69) (or in the kernel 𝜅𝑎
from (II.70)) is replaced by 𝑒(𝑥, 𝜉 ) in (II.66) (or in the kernel 𝜅ℓ from (II.67)).

II.5.2 Discussion on the basic reproduction number

Suppose that Assumption II.2 is in force. Then, we can define a new basic reproduction number
for the vaccination models. We consider the following bounded operators on ℒ∞(Ω × Σ):

𝑇 (𝑔)(𝑥, 𝜉 ) = ∫
Ω×Σ

(1 − 𝛿(𝑦, 𝜁 ))𝑔(𝑦 , 𝜁 )
𝜅(𝑥, d𝑦)
𝛾 (𝑦 , 𝜁 )

𝜂(𝑦 , d𝜁 ),

𝑀(𝑔)(𝑥, 𝜉 ) = (1 − 𝑒(𝑥, 𝜉 ))𝑔(𝑥, 𝜉 ).

Following Section II.4.1, the all-or-nothing vaccination reproduction number ℜ𝑎
0(𝜂) associated to

Equation (II.69) and vaccine policy 𝜂 is:

ℜ𝑎
0(𝜂) = 𝜌(𝑇𝑀). (II.71)

where we recall that 𝑟 stands for the spectral radius. For the leaky vaccination, the basic reproduc-
tion number associated to Equation (II.66) and vaccine policy 𝜂 is:

ℜℓ
0(𝜂) = 𝜌(𝑀𝑇). (II.72)

In [140], the authors already remarked that the two vaccination mechanisms actually leads to the
same basic reproduction number for the one-group models. This result also holds in the infinite-
dimension SIS model. Notice that Assumption II.2 insures that those two basic reproduction
numbers are well defined.

Proposition II.5.2. We assume Assumption II.2 holds. Let 𝜂 be a vaccination policy. The basic
reproduction number for the leaky vaccination and the for the all-or-nothing vaccination are the
same:

ℜℓ
0(𝜂) = ℜ𝑎

0(𝜂).
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Proof. Thanks to the definition of the spectral radius (II.34) and the basic reproduction numbers
defined in (II.71) and (II.72), the result is a direct consequence of the following equality on the
spectra:

𝜎(𝑀𝑇) ∪ { 0 } = 𝜎(𝑇𝑀) ∪ { 0 } .

We prove this later equality by following [127, Appendix A1]. Let 𝜆 ∈ ℂ\(𝜎(𝑀𝑇) ∪ { 0 }). By
definition, there exists a bounded operator 𝐴 on ℒ∞(Ω × Σ) such that:

𝐴(𝜆Id − 𝑀𝑇) = (𝜆Id − 𝑀𝑇)𝐴 = Id,

where Id is the identity operator. Then, one can check easily that 𝜆−1(Id + 𝑇𝐴𝑀) is the inverse of
𝜆Id− 𝑇𝑀, whence 𝜆 ∈ ℂ\(𝜎(𝑇𝑀) ∪ { 0 }). This gives that 𝜎(𝑇𝑀) ∪ { 0 }) ⊂ 𝜎(𝑀𝑇) ∪ { 0 }). The other
inclusion is proved similarly.

II.5.3 The perfect vaccine

The simplest case is a situation where there is only one vaccine with complete efficacy on every
individual: Σ = { 𝜉0, 𝜉1 } with 𝑒(𝑥, 𝜉1) = 1 and 𝛿(𝑥, 𝜉1) = 1 for all 𝑥 ∈ Ω. Recall that 𝜉0 corresponds
to the absence of vaccine. For simplicity, we denote by 𝜂0(𝑥) = 𝜂(𝑥, { 𝜉0 }) the probability for (or
the proportion of) individuals of type 𝑥 ∈ Ω which are not vaccinated. We assume for simplicity
that initially no vaccinated individuals are infected, that is 𝑢(0, 𝑥, 𝜉1) = 0. Since individuals that
have been vaccinated are fully immunized, we have 𝑢(𝑡, 𝑥, 𝜉1) = 0 for all 𝑥 and 𝑡. The only equation
that matters is the one on 𝑢0(𝑡, 𝑥) = 𝑢(𝑡, 𝑥, 𝜉0) which represents the proportion of unvaccinated
individuals that are infected. For both mechanisms (all-or-nothing and leaky vaccination), the
evolution equation of 𝑢0 writes:

𝜕𝑡𝑢0(𝑡, 𝑥) = (1 − 𝑢0(𝑡, 𝑥)) ∫
Ω
𝑢0(𝑡, 𝑦)𝜂0(𝑦)𝜅(𝑥, d𝑦) − 𝛾(𝑥)𝑢0(𝑡, 𝑥). (II.73)

We shall use this formulation in a future work to find optimal vaccination policies for a given cost.

II.6 Limiting contacts within the population

Motivated by the recent lockdown policies taken by many countries all around the world to slow
down the propagation of Covid-19 in 2020, we propose to investigate the possible impact on our
SIS model of the limitations of contacts within the population. We consider the case where 𝜅 takes
the form of Example II.1.3:

𝜅𝑊(𝑥, d𝑦) = 𝛽(𝑥)𝑊 (𝑥, 𝑦)𝜃(𝑦) 𝜇(d𝑦),

where 𝛽 is the susceptibility function, 𝜃 is the infectiousness function, 𝜇 is a probability measure
on the space Ω of features of the individuals and the graphon 𝑊 represents the initial graph
of the contacts between individuals of the population (recall that 𝑊(𝑥, 𝑦) = 𝑊(𝑦, 𝑥) ∈ [0, 1]
is the probability that 𝑥 and 𝑦 are connected and can be also seen as the density of contact
between the individuals with features 𝑥 and 𝑦). In order to stress the dependence in 𝑊, we write
ℜ0(𝑊 ) = 𝜌(𝑇𝜅𝑊/𝛾) the corresponding basic reproduction number and 𝜙𝑊 the semi-flow (II.28)
associated to 𝐹 = 𝐹𝑊 in (II.24) given by 𝐹𝑊(𝑔) = (1 − 𝑔)𝑇𝜅𝑊(𝑔) − 𝛾𝑔. We model the impact of a
policy which reduces the contacts between the individuals, by a new graph of contact given by a
new graphon 𝑊 ′. We say that 𝑊 ′ is a perfect lockdown with respect to 𝑊 if:

𝑊 ′(𝑥, 𝑦) ≤ 𝑊(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ Ω. (II.74)

Intuitively 𝑥 and 𝑦 have a lesser probability to be connected in the graphon 𝑊 ′ than in the
graphon 𝑊. We get the following intuitive result as a direct application of Theorem II.3.5 (i) and
Corollary II.2.4.



60 II.6 Limiting contacts within the population

Proposition II.6.1 (Perfect Lockdown). Assume that 𝛽 and 𝜃 are bounded and 𝛾 is bounded away
from 0. If𝑊 ′ is a perfect lockdown with respect to𝑊 thenℜ0(𝑊 ′) ≤ ℜ0(𝑊 ) and 𝜙𝑊 ′(𝑡, 𝑔) ≤ 𝜙𝑊(𝑡, 𝑔)
for all initial condition 𝑔 ∈ Δ.

However, assuming that all the contacts within the population are reduced might be unrealistic
(e.g. people can have stronger contacts with their family in lockdown). Instead, we can suppose as a
weaker condition, that each individual reduces the average number of contacts he has. Recall (II.6)
for the definition of the degree deg𝑊(𝑥) of an individual 𝑥 ∈ Ω (i.e. the average number of his
contacts) and the mean degree d𝑊 over the population for a graphon 𝑊 as:

deg𝑊(𝑥) = ∫
Ω
𝑊(𝑥, 𝑦) 𝜇(d𝑦) and d𝑊 = ∫

Ω
deg𝑊(𝑥) 𝜇(d𝑥) = ∫

Ω2
𝑊(𝑥, 𝑦) 𝜇(d𝑦) 𝜇(d𝑥).

Recall that ‖ ⋅ ‖1 is the usual 𝐿1(𝜇) norm. The following lemma bounds the basic reproduction
number with the supremum and the mean degree of the graphon.

Lemma II.6.2. Let 𝑊 be a graphon. Assume that 𝛽 and 𝜃/𝛾 are bounded. We have that:

1
‖ 𝛾/𝛽𝜃 ‖1

d𝑊 ≤ ℜ0(𝑊 ) ≤ ‖ 𝛽𝜃/𝛾 ‖ sup
𝑥∈Ω

deg𝑊(𝑥). (II.75)

Proof. Recall 𝑇k is the operator defined by (II.22) with 𝜅(𝑥, d𝑦) = k(𝑥, 𝑦) 𝜇(d𝑦). Let 𝑀(𝑣) be the
operator corresponding to the multiplication by the function 𝑣. We have:

ℜ0(𝑊 ) = 𝜌(𝑀(𝛽) 𝑇𝑊𝑀(𝜃/𝛾))
= 𝜌(𝑀(𝛽𝜃/𝛾) 𝑇𝑊)
≤ ‖𝑀(𝛽𝜃/𝛾) 𝑇𝑊 ‖

= sup
𝑥∈Ω

𝛽(𝑥)𝜃(𝑥)
𝛾 (𝑥) ∫

Ω
𝑊(𝑥, 𝑦) 𝜇(d𝑦)

≤ ‖ 𝛽𝜃/𝛾 ‖ sup
𝑥∈Ω

deg𝑊(𝑥),

where we used the definition of the basic reproduction number (II.12) for the first equality, argu-
ments similar as in the proof of Proposition II.5.2 for the second, and the (third) definition of the
spectral radius (II.34) for the first inequality.

Using similar arguments, we have:

ℜ0(𝑊 ) = 𝜌(𝑀(𝛽) 𝑇𝑊𝑀(𝜃/𝛾)) = 𝑟 (𝑀(𝑣) 𝑇𝑊𝑀(𝑣)) ,

with 𝑣 = √𝛽𝜃/𝛾. Recall notations from Lemma II.3.7, and notice that 𝑀(𝑣) 𝑇𝑊𝑀(𝑣) = 𝑇k is a
bounded integral operator on ℒ∞ associated to the symmetric kernel k(𝑥, 𝑦) = 𝑣(𝑥)𝑊 (𝑥, 𝑦)𝑣(𝑦).
According to Lemma II.3.7 (iv) with 𝑞 = 𝑝 = 1/2 and ̂𝑇k the integral operator on 𝐿2(𝜇) with the
same kernel k, defined in (II.38), we get ℜ0(𝑊 ) = 𝜌( ̂𝑇k). The operator ̂𝑇k is self-adjoint, as k is
symmetric, and compact according to (iii). Thanks to the Courant-Fischer-Weyl min-max principle,
we obtain:

ℜ0(𝑊 ) = 𝜌( ̂𝑇k) = sup
𝑔∈𝐿2(𝜇)\{ 0 }

⟨𝑀(𝑣) 𝑔, 𝑇𝑊𝑀(𝑣) 𝑔⟩
⟨𝑔, 𝑔⟩

⋅

Taking 𝑔 = 1/𝑣, we get 𝑀(𝑣)𝑔 = 1 and thus:

ℜ0(𝑊 ) ≥
⟨1, 𝑇𝑊1⟩
‖ 𝛾/𝛽𝜃 ‖1

=
𝑑𝑊

‖ 𝛾/𝛽𝜃 ‖1
⋅

This ends the proof of Lemma II.6.2.

We deduce from Lemma II.6.2 the following result for a lockdown policy 𝑊 ′ for which the
degree of each individuals is less than the average degree of the initial graphon 𝑊.
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Corollary II.6.3 (Partial Lockdown). Assume that 𝛽 and 𝜃/𝛾 are bounded. If 𝑊 ′ is a partial
lockdown of 𝑊, that is:

sup
𝑥∈Ω

deg𝑊 ′(𝑥) ≤ 𝐶d𝑊 with 𝐶 =
1

‖ 𝛽𝜃/𝛾 ‖ ‖ 𝛾/𝛽𝜃 ‖1
, (II.76)

then we have ℜ0(𝑊 ′) ≤ ℜ0(𝑊 ).

In the general case, we have 𝐶 ≤ 1. But, if the functions 𝛽, 𝜃 and 𝛾 are constants (or simply if
𝛽𝜃/𝛾 constant), then we have 𝐶 = 1 since 𝜇 is a probability measure.

Remark II.6.4. Suppose that 𝛽, 𝜃 and 𝛾 are constants (or that 𝛽𝜃/𝛾 is constant). Inequality (II.75)
shows that the graphon 𝑊 which corresponds to a minimal basic reproduction number ℜ0(𝑊 ),
when the mean degree d𝑊 is fixed, say equal to 𝑝, is any graphon with constant degree equal to 𝑝,
that is deg𝑊(𝑥) = 𝑝 for all 𝑥 ∈ Ω. We then deduce from Lemma II.6.2 that ℜ0(𝑊 ) = 𝑝𝛽𝜃/𝛾.

This is in particular the case for the constant graphon 𝑊 = 𝑝 ∈ [0, 1]. According to Example
II.1.2(i), this corresponds to the one dimensional SIS model (II.1).

This is also the case for the geometric graphon, where the probability of edges between 𝑥 and
𝑦 depends only on the distance between 𝑥 and 𝑦. Keeping notations from Example II.1.2(iii), we
consider the population uniformly spread on the unit circle: Ω = [0, 2𝜋] and 𝜇(d𝑥) = d𝑥/2𝜋, and
the graphon𝑊𝑓 defined by𝑊𝑓(𝑥, 𝑦) = 𝑓 (𝑥 − 𝑦) for 𝑥, 𝑦 ∈ Ω, where 𝑓 is a measurable non-negative
function defined on ℝ which is bounded by 1 and 2𝜋-periodic. Let 𝑝 = (2𝜋)−1 ∫[0,2𝜋] 𝑓 (𝑦) d𝑦. We
have: deg𝑊(𝑥) = d𝑊 = 𝑝; the basic reproduction number ℜ0(𝑊𝑓) = 𝑝𝛽𝜃/𝛾 and the maximal
equilibrium 𝔤 = max(0, 1 − ℜ−1

0 ). Furthermore, the graphon 𝑊𝑓 minimizes the basic reproduction
number among all graphons with mean degree 𝑝. It is interesting to notice that ℜ0(𝑊𝑓) does not
depend on the support of 𝑓 or even on sup{|𝑟 | ∶ 𝑟 ∈ [−𝜋, 𝜋] and 𝑓 (𝑟) > 0}, which can be seen as
the maximal contamination distance from an infected individual.

II.7 Proof of Theorem II.2.4

We use notation from Section II.2.1 and let 𝑋 be a Banach space. Let us first recall a few definitions
and classical properties of ODEs. Let 𝑎 > 0. We consider a function 𝐺 ∶ [0, 𝑎) × 𝑋 → 𝑋. We
suppose that 𝐺 is locally Lipschitz in the second variable, that is: for all (𝑡, 𝑥) ∈ [0, 𝑎)×𝑋, there exist
𝜂 = 𝜂(𝑡, 𝑥) > 0, 𝐿 = 𝐿(𝑡, 𝑥) > 0 and a neighborhood 𝑈𝑥 of 𝑥 such that ‖ 𝐺(𝑠, 𝑦) − 𝐺(𝑠, 𝑧) ‖ ≤ 𝐿 ‖ 𝑦 − 𝑧 ‖
for all 𝑠 ∈ [0, 𝑎) ∩ [𝑡, 𝑡 + 𝜂] and 𝑦, 𝑧 ∈ 𝑈𝑥. With this assumption over 𝐺, the Picard–Lindelöf theorem
ensures the existence of 0 < 𝑏 ≤ 𝑎 and a continuously differentiable function 𝑦 from 𝐽 = [0, 𝑏) to
𝑋 which is the unique solution of the Cauchy problem:

{
𝑦 ′(𝑡) = 𝐺(𝑡, 𝑦(𝑡)) 𝑡 ∈ 𝐽 ,

𝑦(0) = 𝑦0,
(II.77)

where 𝑦0 ∈ 𝑋 is the so-called initial condition (see [34, Section 1.1]). A solution 𝑦 defined on an
interval [0, 𝑏) is said to be maximal if there is no solution of Equation (II.77) defined on [0, 𝑐) with
𝑐 > 𝑏. A solution is said to be global if it is defined on [0, 𝑎).

Global existence, existence and theorems on differential inequalities are intimately connected
with the flow invariance of certain subsets in the domain of 𝐺, i.e., the question whether every
solution starting in 𝐷 remains in 𝐷 as long as it exists. We recall the definition of flow invariance
given in [34, Section 5].

Definition II.7.1 (Forward invariance). A set 𝐷 ⊂ 𝑋 is said to be forward invariant with respect to
𝐺 if the maximal solution (𝑦 , 𝐽 ) of the Cauchy problem (II.77) takes values in 𝐷 for 𝑡 ∈ 𝐽 provided
that 𝑦0 ∈ 𝐷.
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In most applications, the set 𝐷 owns a structure which make the forward invariance easier to
show. For instance, when 𝐷 is the translation of a cone, the forward invariance is implied by the
following condition:

Theorem II.7.2. Let 𝐺 ∶ [0, 𝑎) × 𝑋 → 𝑋 be locally Lipschitz in the second variable. Let 𝐾 be a
proper cone of 𝑋 with non-empty interior and 𝑦 ∈ 𝑋. If for all (𝑥, 𝑡) ∈ 𝜕𝐾 × [0, 𝑎) and for all 𝑥⋆ ∈ 𝐾⋆

such that ⟨𝑥⋆, 𝑥⟩ = 0, we have: ⟨𝑥⋆, 𝐺(𝑡, 𝑦 + 𝑥)⟩ ≥ 0, then 𝑦 + 𝐾 is forward invariant with respect to
𝐺.

Before proving this result let us state two lemmas. Let 𝑋 be a Banach space. For 𝑥 ∈ 𝑋 and
𝐷 ⊂ 𝑋, we denote by d(𝑥, 𝐷) the distance between 𝑥 and the set 𝐷:

d(𝑥, 𝐷) = inf
𝑦∈𝐷

‖ 𝑥 − 𝑦 ‖ . (II.78)

Let 𝑎 > 0 and 𝐺 ∶ [0, 𝑎) × 𝑋 → 𝑋 be a locally Lipschitz function with respect to the second
variable. Recall Definition II.7.1 of a forward invariant set with respect to 𝐺. The following result
appears in [34, Theorem 5.2].

Lemma II.7.3. Let 𝐷 be a closed convex set with non-empty interior. Suppose that 𝐺 satisfies:

lim
𝜆→0+

1
𝜆
d(𝑥 + 𝜆𝐺(𝑡, 𝑥), 𝐷) = 0, ∀(𝑡, 𝑥) ∈ (0, 𝑎) × 𝜕𝐷. (II.79)

Then 𝐷 is forward invariant with respect to 𝐺.

If the set 𝐷 is a proper cone, the following equivalence enables to establish (II.79) more easily.
It is a consequence of [34, Lemma 4.1] and [34, Example 4.1.ii]

Lemma II.7.4. Let 𝐾 be a proper cone and let 𝑥 ∈ 𝜕𝐾 and 𝑧 ∈ 𝑋. The following conditions are
equivalent:

(i) lim
𝜆→0+

𝜆−1 d(𝑥 + 𝜆𝑧, 𝐾) = 0.

(ii) For all 𝑥⋆ ∈ 𝐾⋆ such that ⟨𝑥⋆, 𝑥⟩ = 0, we have ⟨𝑥⋆, 𝑧⟩ ≥ 0.

We have now all the tools to prove Theorem II.7.2.

Proof of Theorem II.7.2. Let 𝑦 ∈ 𝑋. We assume that, for all (𝑥, 𝑡) ∈ 𝜕𝐾 × [0, 𝑎) and for all 𝑥⋆ ∈ 𝐾⋆

such that ⟨𝑥⋆, 𝑥⟩ = 0, we have: ⟨𝑥⋆, 𝐺(𝑡, 𝑦 + 𝑥)⟩ ≥ 0. According to Lemma II.7.4, we obtain:

lim
𝜆→0+

𝜆−1 d(𝑥 + 𝜆𝐺(𝑡, 𝑦 + 𝑥), 𝐾) = 0,

for all (𝑥, 𝑡) ∈ 𝜕𝐾×[0, 𝑎). Since d(𝑦+𝑥+𝜆𝐺(𝑡, 𝑦+𝑥), 𝑦+𝐾) = d(𝑥+𝜆𝐺(𝑡, 𝑦+𝑥), 𝐾) by Equation (II.78),
we can conclude the proof using Lemma II.7.3 with 𝐷 = 𝑦 + 𝐾.

Finally, the main comparison result used in the text, Theorem II.2.4, may be proved as a
corollary.

Proof of Theorem II.2.4. We suppose that 𝐹 is cooperative on 𝐷1 ×𝑋 and the inequality (II.20) holds.
Let 𝑤 = 𝑣 − 𝑢. The function 𝑤 is solution of the ODE 𝑤 ′ = 𝐺(𝑡, 𝑤) where:

𝐺(𝑡, 𝑥) = 𝐹(𝑢(𝑡) + 𝑥) − 𝐹(𝑢(𝑡)) + 𝑑(𝑡) and 𝑑(𝑡) = 𝑣 ′(𝑡) − 𝐹(𝑣(𝑡)) − 𝑢′(𝑡) + 𝐹(𝑢(𝑡)).

First we show that 𝐺 is locally Lipschitz with respect to the second variable. Let (𝑡, 𝑥) ∈ [0, 𝑎) × 𝑋.
Let 𝑈 be a neighborhood of 𝑢(𝑡) + 𝑥 such that 𝐹 is Lipschitz on 𝑈 with a Lipschitz constant 𝐿. By
continuity of 𝑢, there exist a neighborhood 𝑉𝑥 of 𝑥 and a positive constant 𝜂, such that 𝑢(𝑠) + 𝑦 ∈ 𝑈,
for all 𝑠 ∈ [𝑡, 𝑡 + 𝜂] ∩ [0, 𝑎) and 𝑦 ∈ 𝑉𝑥. Thus, for all 𝑠 ∈ [𝑡, 𝑡 + 𝜂] ∩ [0, 𝑎) and 𝑦, 𝑧 ∈ 𝑉𝑥, we have
‖ 𝐺(𝑠, 𝑦) − 𝐺(𝑠, 𝑧) ‖ ≤ 𝐿 ‖ 𝑦 − 𝑧 ‖.

Let 𝑡 ∈ [0, 𝑎), 𝑥 ∈ 𝜕𝐾 and let 𝑥⋆ ∈ 𝐾⋆ such that ⟨𝑥⋆, 𝑥⟩ = 0. Let us prove that ⟨𝑥⋆, 𝐺(𝑡, 𝑥)⟩ ≥ 0.
By (II.20), we know that 𝑑(𝑡) belongs to𝐾. Furthermore, the inequality ⟨𝑥⋆, 𝐹 (𝑢(𝑡) + 𝑥) − 𝐹(𝑢(𝑡))⟩ ≥
0 holds because the function 𝐹 is cooperative on 𝐷1 ×𝑋. Thus, ⟨𝑥⋆, 𝐺(𝑡, 𝑥)⟩ is non-negative. Hence,
we can apply Theorem II.7.2 with 𝑦 = 0 and obtain that 𝐾 is forward invariant with respect to 𝐺.
Since 𝑤(0) ∈ 𝐾, this shows that 𝑤(𝑡) ∈ 𝐾 for all 𝑡 ∈ [0, 𝑎), i.e., 𝑢(𝑡) ≤ 𝑣(𝑡) for all 𝑡 ∈ [0, 𝑎).

When 𝐹 is cooperative on 𝑋 × 𝐷2, the proof is similar.
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II.8 The Hausdorff distance on the compact sets of ℂ

Let 𝒦(ℂ) be the set of non-empty compact subsets of ℂ. The Hausdorff distance between 𝐴 and
𝐵 in 𝒦(ℂ) is defined as:

𝑑H(𝐴, 𝐵) = max {sup
𝑧1∈𝐴

inf
𝑧2∈𝐵

| 𝑧1 − 𝑧2 | , sup
𝑧2∈𝐵

inf
𝑧1∈𝐴

| 𝑧2 − 𝑧1 |} . (II.80)

We recall that the space (𝒦(ℂ), 𝑑H) is a metric space, see [26, Section 7.3.1]. Since:

sup { | 𝑧 | ∶ 𝑧 ∈ 𝐴 } = 𝑑H(𝐴, { 0 }),

for all 𝐴 ∈ 𝒦(ℂ), we deduce the following result.

Lemma II.8.1. The map 𝐴 ↦ sup { | 𝑧 | ∶ 𝑧 ∈ 𝐴 } from (𝒦(ℂ), 𝑑H) to ℝ endowed with the usual
Euclidean distance is continuous.
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Chapter III

Targeted vaccination strategies for an
infinite-dimensional SIS model

Chapter Abstract

We formalize and study the problem of optimal allocation strategies for a (perfect) vaccine in an
infinite-dimensional metapopulation SIS model. The question may be viewed as a bi-objective
minimization problem, where one tries to minimize simultaneously the cost of the vaccination, and
a loss that may be either the effective reproduction number, or the overall proportion of infected
individuals in the endemic state. We prove the existence of Pareto optimal strategies for both loss
functions.

We also show that vaccinating according to the profile of the endemic state is a critical
allocation, in the sense that, if the initial reproduction number is larger than 1, then this vaccination
strategy yields an effective reproduction number equal to 1.

The material for this chapter has been released in [39].
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III.1 Introduction

III.1.1 Motivation

Increasing the prevalence of immunity from contagious disease in a population limits the circula-
tion of the infection among the individuals who lack immunity. This so-called “herd effect” plays
a fundamental role in epidemiology as it has had a major impact in the eradication of smallpox
and rinderpest or the near eradication of poliomyelitis; see [60]. Targeted vaccination strategies,
based on the heterogeneity of the infection spreading in the population, are designed to increase
the level of immunity of the population with a limited quantity of vaccine. These strategies rely
on identifying groups of individuals that should be vaccinated in priority in order to slow down
or eradicate the disease.

In this chapter, we establish a theoretical framework to study targeted vaccination strategies
for the deterministic infinite-dimensional SIS model introduced in Chapter II, that encompasses
as particular cases the SIS model on graphs or on stochastic block models. In the next chapters,
we provide a series of general and specific examples that complete and illustrate the present work:
see Section III.1.5 for more detail.

III.1.2 Herd immunity and targeted vaccination strategies

Let us start by recalling a few classical results in mathematical epidemiology; we refer to Keeling
and Rohani’s monograph [93] for an extensive introduction to this field, including details on the
various classical models (SIS, SIR, etc.)

In an homogeneous population, the basic reproduction number of an infection, denoted byℜ0,
is defined as the number of secondary cases one individual generates on average over the course
of its infectious period, in an otherwise uninfected (susceptible) population. This number plays
a fundamental role in epidemiology as it provides a scale to measure how difficult an infectious
disease is to control. Intuitively, the disease should die out if ℜ0 < 1 and invade the population
if ℜ0 > 1. For many classical mathematical models of epidemiology, such as SIS or S(E)IR, this
intuition can be made rigorous: the quantity ℜ0 may be computed from the parameters of the
model, and the threshold phenomenon occurs.

Assuming ℜ0 > 1 in an homogeneous population, suppose now that only a proportion 𝜂uni of
the population can catch the disease, the rest being immunized. An infected individual will now
only generate 𝜂uniℜ0 new cases, since a proportion (1 − 𝜂uni) of previously successful infections
will be prevented. Therefore, the new effective reproduction number is equal to ℜ𝑒(𝜂uni) = 𝜂uniℜ0.
This fact led to the recognition by Smith in 1970 [141] and Dietz in 1975 [43] of a simple threshold
theorem: the incidence of an infection declines if the proportion of non-immune individuals is
reduced below 𝜂unicrit = 1/ℜ0. This effect is called herd immunity, and the corresponding per-
centage 1 − 𝜂unicrit of people that have to be vaccinated is called herd immunity threshold ; see for
instance [147, 148].

It is of course unrealistic to depict human populations as homogeneous, and many generaliza-
tions of the homogeneous model have been studied; see [93, Chapter 3] for examples and further
references. For most of these generalizations, it is still possible to define a meaningful reproduction
number ℜ0, as the number of secondary cases generated by a typical infectious individual when
all other individuals are uninfected; see [42]. After a vaccination campaign, let the vaccination
strategy 𝜂 denote the (non necessarily homogeneous) proportion of the non-vaccinated popu-
lation, and let the effective reproduction number ℜ𝑒(𝜂) denote the corresponding reproduction
number of the non-vaccinated population. The vaccination strategy 𝜂 is critical if ℜ𝑒(𝜂) = 1. The
possible choices of 𝜂 naturally raises a question that may be expressed as the following informal
optimization problem:

{
Minimize: the quantity of vaccine to administrate

Such that: herd immunity is reached, that is, ℜ𝑒 ≤ 1.
(III.1)
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If the quantity of available vaccine is limited, then one is also interested in:

{
Minimize: the effective reproduction number ℜ𝑒
Such that: a given quantity of available vaccine.

(III.2)

Interestingly enough, the strategy 𝜂unicrit, which consists in delivering the vaccine uniformly to the
population, without taking inhomogeneity into account, leaves a proportion 𝜂unicrit = 1/ℜ0 of the
population unprotected, and is therefore critical since ℜ𝑒(𝜂unicrit) = 1. In particular it is admissible
for the optimization problem (III.1).

However, herd immunity may be achieved even if the proportion of unprotected people is
greater than 1/ℜ0, by targeting certain group(s) within the population; see Figure 3.3 in [93]. For
example, the discussion of vaccination control of gonorrhea in [80, Section 4.5] suggests that it
may be better to prioritize the vaccination of people that have already caught the disease: this
leads us to consider a vaccination strategy guided by the equilibrium state. This strategy denoted
by 𝜂equi will be defined formally below. Let us mention here an observation in the same vein made
by Britton, Ball and Trapman in [25]. Recall that in the S(E)IR model, immunity can be obtained
through infection. Using parameters from real-world data, these authors noticed that the disease-
induced herd immunity level can, for some models, be substantially lower than the classical herd
immunity threshold 1 − 1/ℜ0. This can be reformulated in term of targeted vaccination strategies:
prioritizing the individuals that are more likely to get infected in a S(E)IR epidemic may be more
efficient than distributing uniformly the vaccine in the population.

The main goal of this chapter is two-fold: formalize the optimization problems (III.1) and (III.2)
for a particular infinite dimensional SIS model, recasting them more generally as a bi-objective
optimization problem; and give existence and properties of solutions to this bi-objective problem.
We will also consider a closely related problem, where one wishes to minimize the size of the
epidemic rather than the reproduction number. We will in passing provide insight on the efficiency
of classical vaccination strategies such as 𝜂unicrit or 𝜂

equi.

III.1.3 Literature on targeted vaccination strategies

Targeted vaccination problems have mainly been studied using two different mathematical frame-
works.

On meta-populations models

Problems (III.1) and (III.2) have been examined in depth for deterministic meta-population models,
that is, models in which an heterogeneous population is stratified into a finite number of homo-
geneous sub-populations (by age group, gender, …). Such models are specified by choosing the
sizes of the subpopulations and quantifying the degree of interactions between them, in terms
of various mixing parameters. In this setting, ℜ0 can often be identified as the spectral radius of
a next-generation matrix whose coefficients depend on the subpopulation sizes, and the mixing
parameters. It turns out that the next generation matrices take similar forms for many dynamics
(SIS, SIR, SEIR,...); see the discussions in [81, Section 10] and Section IV.2. Vaccination strategies
are defined as the levels at which each sub-population is immunized. After vaccination, the next-
generation matrix is changed and its new spectral radius corresponds to the effective reproduction
number ℜ𝑒.

Problem (III.1) has been studied in this setting by Hill and Longini [81]. These authors study
the geometric properties of the so-called threshold hypersurface, that is, the vaccination allocations
for which ℜ𝑒 = 1. They also compute the vaccination belonging to this surface with minimal cost
for an Influenza A model. Making structural assumptions on the mixing parameters, Poghotanyan,
Feng, Glasser and Hill derive in [130] an analytical formula for the solutions of Problem (III.2), for
populations divided in two groups. Many papers also contain numerical studies of the optimization
problems (III.1) and (III.2) on real-world data using gradient techniques or similar methods; see
for example [46, 56, 57, 67, 161].
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Finally, the effective reproduction number is not the only reasonable way of quantifying a
population’s vulnerability to an infection. For an SIR infection for example, the proportion of
individuals that eventually catch (and recover from) the disease, often referred to as the attack
rate, is broadly used. We refer to [46, 47] for further discussion on this topic.

On networks

Whereas the previously cited works typically consider a small number of subpopulations, often
with a “dense” structure of interaction (every subpopulation may directly infect all the others),
other research communities have looked into a similar problem for graphs. Indeed, given a (large),
possibly random graph, with epidemic dynamics on it, and supposing that we are able to suppress
vertices by vaccinating, one may ask for the best way to choose the vertices to remove.

The importance of the spectral radius of the network has been rapidly identified as its value de-
termines if the epidemic dies out quickly or survives for a long time [66, 132]. Since Van Mieghem
et al. proved in [154] that the problem of minimizing spectral radius of a graph by removing a
given number of vertices is NP-complete (and therefore unfeasible in practice), many computa-
tional heuristics have been put forward to give approximate solutions; see for example [135] and
references therein.

III.1.4 Main results

The differential equations governing the epidemic dynamics in meta-population SIS models were
developed by Lajmanovich and Yorke in their pioneer paper [102]. In Chapter II, we introduced a
natural generalization of their equation, to a possibly infinite space Ω, where 𝑥 ∈ Ω represents a
feature and the probability measure 𝜇(d𝑥) represents the fraction of the population with feature 𝑥.

Regularity of the effective reproduction function ℜ𝑒

We consider the effective reproduction function in a general operator framework which we call
the kernel model. This model, which will be defined in detail below in Section III.2, is characterized
by a probability space (Ω,ℱ , 𝜇) and a measurable non-negative kernel 𝐤 ∶ Ω × Ω → ℝ+. Let 𝑇𝐤 be
the corresponding integral operator defined by:

𝑇𝐤(ℎ)(𝑥) = ∫
Ω
𝐤(𝑥, 𝑦)ℎ(𝑦) 𝜇(d𝑦).

In the setting of Chapter II (see in particular Equation (11) therein), 𝑇𝐤 is the so-called next
generation operator, where the kernel 𝐤 is defined in terms of a transmission rate kernel 𝑘(𝑥, 𝑦)
and a recovery rate function 𝛾 by the product 𝐤(𝑥, 𝑦) = 𝑘(𝑥, 𝑦)/𝛾 (𝑦); the reproduction number ℜ0
is then the spectral radius 𝜌(𝑇𝐤) of 𝑇𝐤.

Following Chapter II Section 5, we represent a vaccination strategy by a function 𝜂 ∶ Ω → [0, 1],
where 𝜂(𝑥) represents the fraction of non-vaccinated individuals with feature 𝑥; the effective
reproduction number associated to 𝜂 is then given by

ℜ𝑒(𝜂) = 𝜌(𝑇𝐤𝜂), (III.3)

where 𝜌 stands for the spectral radius and 𝐤𝜂 stands for the kernel (𝐤𝜂)(𝑥, 𝑦) = 𝐤(𝑥, 𝑦)𝜂(𝑦). Ifℜ0 ≥
1, then a vaccination strategy 𝜂 is called critical if it achieves precisely the herd immunity threshold,
that is ℜ𝑒(𝜂) = 1.

In particular, the “strategy” that consists in vaccinating no one (resp. everybody) corresponds
to 𝜂 = 𝟙, the constant function equal to 1, (resp. 𝜂 = 𝟘, the constant function equal to 0), and of
course ℜ𝑒(𝟙) = ℜ0 (resp. ℜ𝑒(𝟘) = 0). As the spectral radius is positively homogeneous, we also
get, when ℜ0 ≥ 1, that the uniform strategy that corresponds to the constant function:

𝜂unicrit =
1
ℜ0

𝟙
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is critical, as ℜ𝑒(𝜂unicrit) = 1. This is consistent with results obtained in the homogeneous model
that were recalled in Section III.1.2.

Let Δ be the set of strategies, that is, the set of [0, 1]-valued functions defined on Ω. The usual
technique to obtain the existence of solutions to optimization problems like (III.1) or (III.2) is to
prove that the functionℜ𝑒 is continuous with respect to a topology for which the set of strategies Δ
is compact. It is natural to try and prove this continuity by writing ℜ𝑒 as the composition of
the spectral radius 𝜌 and the map 𝜂 ↦ 𝑇𝐤𝜂. The spectral radius is indeed continuous at compact
operators (and 𝑇𝐤𝜂 is in fact compact under a technical integrability assumption on the kernel 𝐤
formalized on page 75 as Assumption III.1), if we endow the set of bounded operators with the
operator norm topology; see [27, 119]. However, this only works if we equip Δ with the uniform
topology, for which it is not compact.

We instead endow Δ with the weak topology, see Section III.3.1, for which compactness holds;
see Lemma III.3.1. This forces us to equip the space of bounded operators with the strong topology,
for which the spectral radius is in general not continuous; see [92, p. 431]. However, the family of
operators (𝑇𝐤𝜂, 𝜂 ∈ Δ) is collectively compact which enables us to recover continuity, using a series
of results obtained by Anselone [6]. This leads to the following statement, proved in Theorem III.4.2
below. We recall that Assumption III.1, formulated on page 75, provides an integrability condition
on the kernel 𝐤. In particular, it is satisfied if 𝐤 is bounded or even in 𝐿2(Ω × Ω, 𝜇 ⊗ 𝜇).

Theorem III.1.1 (Continuity of the spectral radius). Under Assumption III.1 on the kernel 𝐤, the
function ℜ𝑒 ∶ Δ → ℝ+ is continuous with respect to the weak topology on Δ.

In fact, we also prove the continuity of the spectrum with respect to the Hausdorff distance on
the set of compact subsets of ℂ. We shall write ℜ𝑒[𝐤] to stress the dependence of the function ℜ𝑒
in the kernel 𝐤. In Proposition III.4.3, we prove the stability of ℜ𝑒, by giving natural sufficient
conditions on a sequence of kernels (𝐤𝑛, 𝑛 ∈ ℕ) converging to 𝐤which imply thatℜ𝑒[𝐤𝑛] converges
uniformly towards ℜ𝑒[𝐤]. This result has both a theoretical and a practical interest: the next-
generation operator is unknown in practice, and has to be estimated from data. Thanks to this
result, the value of ℜ𝑒 computed from the estimated operator should converge to the true value.

On the maximal endemic equilibrium in the SIS model

We consider the SIS model from Chapter II. This model is characterized by a probability space
(Ω,ℱ , 𝜇), the transmission kernel 𝑘 ∶ Ω×Ω → ℝ+ and the recovery rate 𝛾 ∶ Ω → ℝ∗+. We suppose
in the following that the technical Assumption III.2, formulated on page 76, holds, so that the SIS
dynamical evolution is well defined.

This evolution is encoded as 𝑢 = (𝑢𝑡, 𝑡 ∈ ℝ+), where 𝑢𝑡 ∈ Δ for all 𝑡 and 𝑢𝑡(𝑥) represents the
probability of an individual with feature 𝑥 ∈ Ω to be infected at time 𝑡 ≥ 0, and follows the
equation:

𝜕𝑡𝑢𝑡 = 𝐹(𝑢𝑡) for 𝑡 ∈ ℝ+, where 𝐹(𝑔) = (1 − 𝑔)𝒯𝑘(𝑔) − 𝛾𝑔 for 𝑔 ∈ Δ, (III.4)

with an initial condition 𝑢0 ∈ Δ and with 𝒯𝑘 the integral operator corresponding to the kernel
𝑘 acting on the set of bounded measurable functions, see (III.16). It is proved in Chapter II that
such a solution 𝑢 exists and is unique under Assumption III.2. An equilibrium of (III.4) is a
function 𝑔 ∈ Δ such that 𝐹(𝑔) = 0. According to Chapter II, there exists a maximal equilibrium 𝔤,
i.e., an equilibrium such that all other equilibria ℎ ∈ Δ are dominated by 𝔤: ℎ ≤ 𝔤. Furthermore,
we have ℜ0 ≤ 1 if and only if 𝔤 = 0. In the connected case (for example if 𝑘 > 0), then 0 and 𝔤
are the only equilibria. Besides, 𝔤 is the long-time distribution of infected individuals in the
population: lim𝑡→+∞ 𝑢𝑡 = 𝔤 as soon as the initial condition is non-zero; see Theorem II.1.5.

As hinted in [80, Section 4.5] for vaccination control of gonorrhea, it is interesting to consider
vaccinating people with feature 𝑥 with probability 𝔤(𝑥); this corresponds to the strategy based on
the maximal equilibrium:

𝜂equi = 1 − 𝔤.
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The following result entails that this strategy is critical and thus achieves the herd immunity
threshold. Recall that Assumption III.2, formulated page 76, provides technical conditions on the
parameters 𝑘 and 𝛾 of the SIS model. It is fulfilled in particular if 𝑘/𝛾 and 𝛾 are bounded. The
effective reproduction number of the SIS model is the functionℜ𝑒 defined in (III.3) with the kernel
𝐤 = 𝑘/𝛾.

Theorem III.1.2 (The maximal equilibrium yields a critical vaccination). Suppose Assumption III.2
holds. If ℜ0 ≥ 1, then the vaccination strategy 𝜂equi is critical, that is, ℜ𝑒(𝜂equi) = 1.

This result will be proved below as a part of Proposition III.8.2. Let us finally describe informally
another consequence of this Proposition. We were able to prove in Theorem II.1.5 that, in the
connected case, if ℜ0 > 1, the disease-free equilibrium 𝑢 = 0 is unstable. Proposition III.8.2 gives
spectral information on the formal linearization of the dynamics (III.4) near any equilibrium ℎ; in
particular if ℎ ≠ 𝔤 then ℎ is linearly unstable.

Regularity of the total proportion of infected population function ℑ

According to Section II.5.3, the SIS equation with vaccination strategy 𝜂 is given by (III.4), where 𝐹
is replaced by 𝐹𝜂 defined by:

𝐹𝜂(𝑔) = (1 − 𝑔)𝑇𝑘𝜂(𝑔) − 𝛾𝑔.

and 𝑢𝑡 now describes the proportion of infected among the non-vaccinated population. We denote by
𝔤𝜂 the corresponding maximal equilibrium (thus considering 𝜂 = 𝟙 gives 𝔤 = 𝔤𝟙), so that 𝐹𝜂(𝔤𝜂) = 0.
Since the probability for an individual 𝑥 to be infected in the stationary regime is 𝔤𝜂(𝑥) 𝜂(𝑥), the
fraction of infected individuals at equilibrium, ℑ(𝜂), is thus given by:

ℑ(𝜂) = ∫
Ω
𝔤𝜂 𝜂 d𝜇 = ∫

Ω
𝔤𝜂(𝑥) 𝜂(𝑥) 𝜇(d𝑥). (III.5)

As mentioned above, for a SIR model, distributing vaccine so as to minimize the attack rate is at
least as natural as trying to minimize the reproduction number, and this problem has been studied
for example in [46, 47]. In the SIS model the quantity ℑ appears as a natural analogue of the attack
rate, and is therefore a natural optimization objective.

We obtain results on ℑ that are very similar to the ones on ℜ𝑒. Recall that Assumption III.2 on
page 76 ensures that the infinite-dimensional SIS model, given by equation (III.4), is well defined.
The next theorem corresponds to Theorem III.4.6.

Theorem III.1.3 (Continuity of the equilibrium infection size). Under Assumption III.2, the func-
tion ℑ ∶ Δ → ℝ+ is continuous with respect to the weak topology on Δ.

In Proposition III.4.7, we prove the stability of ℑ, by giving natural sufficient conditions on a
sequence of kernels and functions ((𝑘𝑛, 𝛾𝑛), 𝑛 ∈ ℕ) converging to (𝑘, 𝛾 ) which imply that ℑ[𝑘𝑛, 𝛾𝑛]
converges uniformly towards ℑ[𝑘, 𝛾 ]. We also prove that the loss functions L = ℜ𝑒 and L = ℑ are
both non-decreasing (𝜂 ≤ 𝜂′ implies L(𝜂) ≤ L(𝜂′)), and sub-homogeneous (L(𝜆𝜂) ≤ 𝜆L(𝜂) for all
𝜆 ∈ [0, 1]); see Propositions III.4.1 and III.4.5.

Optimizing the protection of the population

Consider a cost function 𝐶 ∶ Δ → [0, 1] which measures the cost for the society of a vaccination
strategy (production and diffusion). Since the vaccination strategy 𝜂 represents the non-vaccinated
population, the cost function 𝐶 should be decreasing (roughly speaking 𝜂 < 𝜂′ implies 𝐶(𝜂) > 𝐶(𝜂′);
see Definition III.5.1). We shall also assume that 𝐶 is continuous with respect to the weak topology
on Δ, and that doing nothing costs nothing, that is, 𝐶(𝟙) = 0. A simple and natural choice is the
uniform cost 𝐶uni given by the overall proportion of vaccinated individuals:

𝐶uni(𝜂) = ∫
Ω
(1 − 𝜂) d𝜇 = 1 − ∫

Ω
𝜂 d𝜇.
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See Remark III.5.2 for comments on other examples of cost functions.

Our problem may now be seen as a bi-objective minimization problem: we wish to minimize
both the loss L(𝜂) and the cost 𝐶(𝜂), subject to 𝜂 ∈ Δ, with the loss function L being either ℜ𝑒
or ℑ. Following classical terminology for multi-objective optimisation problems [117], we call a
strategy 𝜂⋆ Pareto optimal if no other strategy is strictly better:

𝐶(𝜂) < 𝐶(𝜂⋆) ⟹ L(𝜂) > L(𝜂⋆) and L(𝜂) < L(𝜂⋆) ⟹ 𝐶(𝜂) > 𝐶(𝜂⋆).

The set of Pareto optimal strategies will be denoted by 𝒫L, and we define the Pareto frontier as
the set of Pareto optimal outcomes:

ℱL = {(𝐶(𝜂⋆), L(𝜂⋆)) ∶ 𝜂⋆ ∈ 𝒫L}.

Notice that, with this definition, the Pareto frontier is empty when there is no Pareto optimal
strategy.

For any strategy 𝜂, the cost and loss of 𝜂 vary between the following bounds:

0 = 𝐶(𝟙) ≤ 𝐶(𝜂) ≤ 𝐶(𝟘) = 𝑐max = cost of vaccinating the whole population,
0 = L(𝟘) ≤ L(𝜂) ≤ L(𝟙) = ℓmax = loss incurred in the absence of vaccination.

Let L⋆ be the optimal loss function and 𝐶⋆,L the optimal cost function defined by:

L⋆(𝑐) = inf { L(𝜂) ∶ 𝜂 ∈ Δ, 𝐶(𝜂) ≤ 𝑐 } for 𝑐 ∈ [0, 𝑐max],
𝐶⋆,L(ℓ) = inf { 𝐶(𝜂) ∶ 𝜂 ∈ Δ, L(𝜂) ≤ ℓ } for ℓ ∈ [0, ℓmax].

When there is no confusion on the loss function, we simply write 𝐶⋆ for 𝐶⋆,L. Proposition III.5.5
(in a more general framework in particular for the cost function) and Lemma III.5.6 state that the
Pareto frontier is non empty and has a continuous parametrization for the cost 𝐶 = 𝐶uni and the
loss L = ℜ𝑒 or L = ℑ. More formally, we prove the following result, illustrated in Figure III.1(b)
below.

Theorem III.1.4 (Properties of the Pareto frontier). For the kernel model with loss function L = ℜ𝑒 or
the SIS model with L ∈ {ℜ𝑒, ℑ}, and the uniform cost function 𝐶 = 𝐶uni, the function 𝐶⋆,L is continuous
and decreasing on [0, ℓmax], the function L⋆ is continuous on [0, 𝑐max] decreasing on [0, 𝐶⋆,L(0)] and
zero on [𝐶⋆,L(0), 𝑐max]; furthermore the Pareto frontier is connected and:

ℱL = {(𝑐, L⋆(𝑐)) ∶ 𝑐 ∈ [0, 𝐶⋆,L(0)]} = {(𝐶⋆,L(ℓ), ℓ) ∶ ℓ ∈ [0, ℓmax]}.

We also establish that 𝒫L is compact in Δ for the weak topology in Corollary III.5.7; that the
set of outcomes or feasible region F = {(𝐶(𝜂), L(𝜂)), 𝜂 ∈ Δ} has no holes in Proposition III.6.1;
and that the Pareto frontier is convex if 𝐶 and L are convex in Proposition III.6.6. We study
in Proposition III.6.2 the stability of the Pareto frontier and the set of Pareto optima when the
parameters vary.

In a sense the Pareto optimal strategies are intuitively the “best” strategies. Similarly, we
also study the “worst” strategies, which we call anti-Pareto optimal strategies, and describe the
corresponding anti-Pareto frontier. Understanding the “worst strategies” also helps to avoid pit-
falls when one has to consider sub-optimal strategies: for example, we prove in Chapter IV that
disconnecting strategies are not the “worst” strategies, and we provide in Chapter V Section 4 an
elementary example where the same strategies can be “best” or “worst” according to model param-
eters values. Surprisingly, proving properties of the anti-Pareto frontier sometimes necessitates
stronger assumptions than in the Pareto case. For example, under some irreducibility assumption
on the kernel developed in Section III.5.4, we establish the connectedness of the anti-Pareto frontier
when the loss is given by L = ℜ𝑒; and a slightly different behavior when the loss is given by L = ℑ.
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Remark III.1.5 (Eradication strategies do not depend on the loss). In Chapter II, we proved that,
for all 𝜂 ∈ Δ, the equilibrium infection size ℑ(𝜂) is non zero if and only if ℜ𝑒(𝜂) > 1. Consider the
uniform cost 𝐶 = 𝐶uni. First, this implies that 𝒫ℑ is a subset of {𝜂 ∈ Δ ∶ ℜ𝑒(𝜂) ≥ 1}. econdly, a
vaccination strategy 𝜂 ∈ Δ is Pareto optimal for the objectives (ℜ𝑒, 𝐶) and satisfies ℜ𝑒(𝜂) = 1 if
and only if 𝜂 is Pareto optimal for the objectives (ℑ, 𝐶) and satisfies ℑ(𝜂) = 0:

𝜂 ∈ 𝒫ℜ𝑒
and ℜ𝑒(𝜂) = 1 ⟺ 𝜂 ∈ 𝒫ℑ and ℑ(𝜂) = 0. (III.6)

Remark III.1.6 (Minimal cost of eradication). Assume ℜ0 > 1 and consider the uniform cost
𝐶 = 𝐶uni. The equivalence (III.6) implies directly that:

𝐶⋆,ℜ𝑒
(1) = 𝐶⋆,ℑ(0).

thus, this latter quantity can be seen as the minimal cost (or minimum percentage of people
that have to be vaccinated) required to eradicate the infection. Recall that the vaccination strate-
gies 𝜂unicrit = ℜ−1

0 𝟙 and 𝜂equi = 1 − 𝔤 are critical (as ℜ𝑒(𝜂unicrit) = ℜ𝑒(𝜂equi) = 1). Since 𝐶(𝜂unicrit) =
1 − 1/ℜ0 and 𝐶(𝜂equi) = ∫Ω 𝔤 d𝜇 = ℑ(𝟙), we obtain the following upper bounds of the minimal
cost required to eradicate the infection:

𝐶⋆,ℜ𝑒
(1) = 𝐶⋆,ℑ(0) ≤ min (1 −

1
ℜ0

, ∫
Ω
𝔤 d𝜇) .

Equivalence of models

Our last results address a natural question stemming from our choice of a very general framework
to modelize the infection. Since our models are infinite dimensional and depend on the choices of
the probability space (Ω,ℱ , 𝜇), the kernel 𝐤 (for the kernel model) or the kernel 𝑘 and recovery
rate 𝛾 (for the SIS model), there are different, equivalent ways to model the same situation. We
study in Section III.7 a way to ensure that, even if the parameters are different, we end up with
the same Pareto frontiers. This situation is similar to random variables having the same law in
probability theory, or to equivalent graphons in graphon theory. In particular it allows us to treat
the same meta-population model in either a discrete or a continuous setting, see Example III.1.7
and Figure III.5 for an illustration.

An illustrative example: the multipartite graphon

Let us illustrate some of our results on an example, which will be discussed in details in Chapter V.

Example III.1.7 (Multipartite graphon). Graphs whose vertices can be colored with ℓ colors, so
that the endpoints of every edge are colored differently, are known as ℓ-partite graphs. In a
biological setting, this corresponds to a population of ℓ groups, such that individuals in a group
only contaminate individuals of the other groups. Let us generalize and assume there is an infinity
of groups, ℓ = ∞, of respective size (2−𝑛, 𝑛 ∈ ℕ∗), and that the next generation kernel 𝐤 is equal
to the constant 𝜅 > 0 between individuals of different groups and equal to 0 between individuals
of the same group (so there is no intra-group contamination). Using the equivalence of models
from Section III.7, we can represent this model by using a continuous state space Ω = [0, 1],
endowed with 𝜇 the Lebesgue measure on Ω, the group 𝑛 being represented by the interval 𝐼𝑛 =
[1 − 2−𝑛+1, 1 − 2−𝑛) for 𝑛 ∈ ℕ∗. The kernel 𝐤 is then given by 𝐤 = 𝜅(1 − ∑𝑛∈ℕ∗ 𝟙𝐼𝑛×𝐼𝑛); it is
represented in Figure III.1(a).

Consider the loss L = ℜ𝑒 and the cost 𝐶 = 𝐶uni giving the overall proportion of vaccinated
individuals. Building on the results of [54, 149], we prove in Chapter V that the vaccination
strategies 𝟙[0,1−𝑐], with cost 𝐶(𝟙[0,1−𝑐]) = 𝑐 ∈ [0, 1/2], are Pareto optimal. Remembering that the
natural definition of the degree in a continuous graph is given by deg(𝑥) = ∫Ω 𝐤(𝑥, 𝑦) 𝜇(d𝑦), we
note that the vaccination strategy 𝟙[0,1−𝑐] corresponds to vaccinating individuals with feature 𝑥 ∈
(1−𝑐, 1], that is, the individuals with the highest degree. In Figure III.1(b), the corresponding Pareto
frontier (i.e., the outcome of the “best” vaccination strategies) is drawn as the solid red line; the
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(a) Grayplot of the kernel 𝐤, with Ω = [0, 1] and 𝜇
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(b) The Pareto frontier in solid red line compared
to the cost and loss of the uniform vaccinations in
dotted line and the worst vaccination strategy in

red dashed line.

Figure III.1: Example of optimization with L = ℜ𝑒.

blue-colored zone corresponds to the feasible region that is, all the possible values of (𝐶(𝜂), ℜ𝑒(𝜂)),
where 𝜂 ranges over Δ; the dotted line corresponds to the outcome of the uniform vaccination
strategy 𝜂 = 𝑐𝟙, that is (𝐶(𝜂), ℜ𝑒(𝜂)) = (𝑐, (1 − 𝑐)ℜ0) where 𝑐 ranges over [0, 1]; and the red
dashed curve corresponds to the anti-Pareto frontier (i.e., the outcome of the “worst” vaccination
strategies), which for this model correspond to the uniform vaccination of the nodes with the
updated lower degree; see Chapter V. Notice that the path (𝟙[0,1−𝑐], 𝑐 ∈ [0, 1/2]) is an increasing
continuous (for the topology of the simple convergence and thus the 𝐿1(𝜇) topology) path of
Pareto optima which gives a complete parametrization of the Pareto frontier. The latter has been
computed numerically using the power iteration method. In particular, we obtained the following
value: ℜ0 ≃ 0.697𝜅.

III.1.5 On the next chapters and the companion papers

Let us discuss briefly the results that can be found in Chapter IV and V and in the companion
papers [37, 40].

In Chapter IV, motivated by a conjecture formulated by Hill and Longini in finite dimension
(see [81, Conjecture 8.1]), we investigate the convexity and concavity of the effective reproduction
function ℜ𝑒. We also prove that a disconnecting strategy is better than the worst, i.e., is not
anti-Pareto optimal.

In [40], under monotonicity properties of the kernel, satisfied for example by the configuration
model, we prove that vaccinating the individuals with the highest (resp. lowest) number of contacts
is Pareto (resp. anti-Pareto) optimal. In this case the greedy algorithm, which performs infinitesimal
locally optimal steps, is optimal as it browses continuously the set of Pareto (resp. anti-Pareto)
optimal strategies, providing an increasing parametrization of the Pareto (resp. anti-Pareto) frontier.
In this setting, we provide some examples of SIS models where the set of Pareto optimal strategies
coincide for the losses ℜ𝑒 and ℑ:

𝒫ℑ = 𝒫ℜ𝑒
∩ {𝜂 ∈ Δ ∶ ℜ𝑒(𝜂) ≥ 1}. (III.7)

In Chapter V, we study the Pareto and anti-Pareto frontier for a number of examples. In
some of them, like the multipartite kernel of Example III.1.7, the optimal vaccinations target the
individuals with the highest number of contacts. When the individuals have the same number of
contacts, this heuristic cannot be used, and the situations may be extremely varied: for example,
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we give models for which the uniform vaccination is Pareto optimal, or anti-Pareto optimal, or
not optimal for either problem. We also provide an example where the set 𝒫ℜ𝑒

has a countable
number of connected components (and is thus not connected). This implies in particular that the
greedy algorithm is not optimal in this case.

In [37], we give a comprehensive treatment of the two groups model, Ω = {1, 2}, for L = ℜ𝑒,
and some partial results for L = ℑ. Despite its apparent simplicity, the derivation of formulae for
the Pareto optimal strategies is non trivial, see also [130]. In addition, this model is rich enough
to give examples of various interesting behaviours:

• On the critical strategies 𝜂unicrit and 𝜂equi. Depending on the parameters, the strategies 𝜂unicrit
and/or 𝜂equi may or may not be Pareto optimal, and the cost 𝐶(𝜂unicrit) may be larger than,
smaller than or equal to 𝐶(𝜂equi).

• Vaccinating the most connected individuals. The intuitive idea of vaccinating the individ-
uals with the highest number of contacts may or may not provide the optimal strategies,
depending on the parameters.

• Dependence on the choice of the loss function. For examples where ℜ0 > 1, the optimal
strategies for the losses ℑ andℜ𝑒 may coincide, so that (III.7) holds, or not at all, so that 𝒫ℑ ∩
𝒫ℜ𝑒

∩ {𝜂 ∈ Δ ∶ 1 < ℜ𝑒(𝜂) < ℜ0} = ∅, depending on the parameters.

III.1.6 Structure of the chapter

Section III.2 is dedicated to the presentation of the vaccination model and the various assumptions
on the parameters. We also define properly the so-called loss functionsℜ𝑒 and ℑ. After recalling a
few topological facts in Section III.3, we study the regularity properties ofℜ𝑒 and ℑ in Section III.4.
We present the multi-objective optimization problem in Section III.5 under general conditions on
the loss function L and cost function 𝐶 and prove the first results on the Pareto frontier. This is
completed in Section III.6 with miscellaneous properties of the Pareto frontier. In Section III.7, we
discuss the equivalent representation of models with different parameters. The proofs of a few
technical results are gathered in Section III.8.

III.2 Setting and notation

III.2.1 Spaces, operators, spectra

All metric spaces (𝑆, 𝑑) are endowedwith their Borel 𝜎-field denoted byℬ(𝑆). The set𝒦 of compact
subsets ofℂ endowedwith the Hausdorff distance 𝑑H is a metric space, and the function rad from𝒦
to ℝ+ defined by rad(𝐾) = max{|𝜆| , 𝜆 ∈ 𝐾} is Lipschitz continuous from (𝒦, 𝑑H) to ℝ endowed
with its usual Euclidean distance.

Let (Ω,ℱ , 𝜇) be a probability space. We denote by ℒ∞, the Banach spaces of bounded real-
valued measurable functions defined on Ω equipped with the sup-norm, ℒ∞

+ the subset of ℒ∞

of non-negative function, and Δ = {𝑓 ∈ ℒ∞ ∶ 0 ≤ 𝑓 ≤ 1} the subset of non-negative functions
bounded by 1. For 𝑓 and 𝑔 real-valued functions defined on Ω, we may write ⟨𝑓 , 𝑔⟩ or ∫Ω 𝑓 𝑔 d𝜇 for
∫Ω 𝑓 (𝑥)𝑔(𝑥) 𝜇(d𝑥) whenever the latter is meaningful. For 𝑝 ∈ [1, +∞], we denote by 𝐿𝑝 = 𝐿𝑝(𝜇) =

𝐿𝑝(Ω, 𝜇) the space of real-valued measurable functions 𝑔 defined Ω such that ‖ 𝑔 ‖𝑝 = (∫ |𝑔|𝑝 d𝜇)1/𝑝

(with the convention that ‖ 𝑔 ‖∞ is the 𝜇-essential supremum of |𝑔|) is finite, where functions which
agree 𝜇-almost surely are identified. We denote by 𝐿𝑝+ the subset of 𝐿𝑝 of non-negative functions.

Let (𝐸, ‖ ⋅ ‖) be a Banach space. We denote by ‖ ⋅ ‖𝐸 the operator norm on ℒ(𝐸) the Banach
algebra of bounded operators. The spectrum Spec(𝑇 ) of 𝑇 ∈ ℒ(𝐸) is the set of 𝜆 ∈ ℂ such
that 𝑇 − 𝜆Id does not have a bounded inverse operator, where Id is the identity operator on 𝐸.
Recall that Spec(𝑇 ) is a compact subset of ℂ, and that the spectral radius of 𝑇 is given by:

𝜌(𝑇 ) = rad(Spec(𝑇 )) = lim
𝑛→∞

‖ 𝑇 𝑛 ‖1/𝑛𝐸 . (III.8)
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The element 𝜆 ∈ Spec(𝑇 ) is an eigenvalue if there exists 𝑥 ∈ 𝐸 such that 𝑇𝑥 = 𝜆𝑥 and 𝑥 ≠ 0.
If 𝐸 is also a functional space, for 𝑔 ∈ 𝐸, we denote by 𝑀𝑔 the (possibly unbounded) multiplica-

tion operator defined by 𝑀𝑔(ℎ) = 𝑔ℎ for all ℎ ∈ 𝐸.

III.2.2 Kernel operators

We define a kernel (resp. signed kernel) on Ω as a ℝ+-valued (resp. ℝ-valued) measurable function
defined on (Ω2, ℱ ⊗2). For 𝑓 , 𝑔 two non-negative measurable functions defined onΩ and 𝐤 a kernel
on Ω, we denote by 𝑓 𝐤𝑔 the kernel defined by:

𝑓 𝐤𝑔 ∶ (𝑥, 𝑦) ↦ 𝑓 (𝑥) 𝐤(𝑥, 𝑦)𝑔(𝑦). (III.9)

When 𝛾 is a positive measurable function defined on Ω, we write 𝐤/𝛾 for 𝐤𝛾−1, and remark that it
may differ from 𝛾−1𝐤.

For 𝑝 ∈ (1, +∞), we define the double norm of a signed kernel 𝐤 by:

‖ 𝐤 ‖𝑝,𝑞 = (∫
Ω
(∫

Ω
| 𝐤(𝑥, 𝑦) |𝑞 𝜇(d𝑦))

𝑝/𝑞
𝜇(d𝑥))

1/𝑝

with 𝑞 given by
1
𝑝
+
1
𝑞
= 1. (III.10)

Assumption III.1 (On the kernel model [(Ω,ℱ , 𝜇), 𝐤]). The kernel 𝐤 defined on the probability
space (Ω,ℱ , 𝜇) has a finite double-norm, that is, ‖ 𝐤 ‖𝑝,𝑞 < +∞ for some 𝑝 ∈ (1, +∞).

To a kernel 𝑘 such that ‖ 𝐤 ‖𝑝,𝑞 < +∞, we associate the integral operator 𝑇𝐤 on 𝐿𝑝 defined by:

𝑇𝐤(𝑔)(𝑥) = ∫
Ω
𝐤(𝑥, 𝑦)𝑔(𝑦) 𝜇(d𝑦) for 𝑔 ∈ 𝐿𝑝 and 𝑥 ∈ Ω. (III.11)

This operator is positive (in the sense that 𝑇𝐤(𝐿
𝑝
+) ⊂ 𝐿𝑝+), and compact (see [68, p. 293]). It is well

known and easy to check that:
‖ 𝑇𝐤 ‖𝐿𝑝 ≤ ‖ 𝐤 ‖𝑝,𝑞 . (III.12)

For 𝜂 ∈ Δ, the kernel 𝐤𝜂 has also a finite double norm on 𝐿𝑝 and the operator 𝑀𝜂 is bounded, so
that the operator 𝑇𝐤𝜂 = 𝑇𝐤𝑀𝜂 is compact. We can define the effective spectrum function Spec[𝐤]
from Δ to 𝒦 by:

Spec[𝐤](𝜂) = Spec(𝑇𝐤𝜂), (III.13)

the effective reproduction number function ℜ𝑒[𝐤] = rad ∘ Spec[𝐤] from Δ to ℝ+ by:

ℜ𝑒[𝐤](𝜂) = rad(Spec(𝑇𝐤𝜂)) = 𝜌(𝑇𝐤𝜂), (III.14)

and the corresponding reproduction number :

ℜ0[𝐤] = ℜ𝑒[𝐤](𝟙) = 𝜌(𝑇𝐤). (III.15)

When there is no ambiguity, we simply write ℜ𝑒 for the function ℜ𝑒[𝐤], and ℜ0 for the number
ℜ0[𝐤]. We say a vaccination strategy 𝜂 ∈ Δ is critical if ℜ𝑒(𝜂) = 1.

Following the framework of Chapter II, for 𝑞 ∈ (1, +∞), we also consider the following norm
for the kernel 𝐤:

‖ 𝐤 ‖∞,𝑞 = sup
𝑥∈Ω

(∫
Ω
𝐤(𝑥, 𝑦)𝑞 𝜇(d𝑦))

1/𝑞
.

If this norm ‖ 𝐤 ‖∞,𝑞 is finite, then for 𝑝 such that 1/𝑝 + 1/𝑞 = 1, the norm ‖ 𝐤 ‖𝑝,𝑞 is also finite.
When ‖ 𝐤 ‖∞,𝑞 < +∞, the corresponding positive bounded linear integral operator 𝒯𝐤 on ℒ∞ is
similarly defined by:

𝒯𝐤(𝑔)(𝑥) = ∫
Ω
𝐤(𝑥, 𝑦)𝑔(𝑦) 𝜇(d𝑦) for 𝑔 ∈ ℒ∞ and 𝑥 ∈ Ω. (III.16)

Notice that the integral operators 𝒯𝐤 and 𝑇𝐤 corresponds respectively to the operators 𝑇𝐤 and ̂𝑇𝐤
in Chapter II. According to Lemma II.3.7, the operator 𝒯 2

𝐤 onℒ∞ is compact and 𝒯𝐤 has the same
spectral radius as 𝑇𝐤:

𝜌(𝒯𝐤) = 𝜌(𝑇𝐤). (III.17)
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III.2.3 Dynamics for the SIS model and equilibria

In accordance with Chapter II, we consider the following assumption. Recall that 𝑘/𝛾 = 𝑘𝛾−1.

Assumption III.2 (On the SIS model [(Ω,ℱ , 𝜇), 𝑘, 𝛾 ]). The recovery rate function 𝛾, defined on a
probability space (Ω,ℱ , 𝜇), is bounded and non negative.

The transmission rate kernel 𝑘 on Ω2 is such that ‖ 𝑘/𝛾 ‖∞,𝑞 < +∞ for some 𝑞 ∈ (1, +∞).

If 𝑘 and 𝛾 satisfy Assumption III.2, then 𝐤 = 𝑘/𝛾 clearly satisfies Assumption III.1. Under
Assumption III.2, we also consider the bounded operators 𝒯𝑘/𝛾 on ℒ∞, as well as 𝑇𝑘/𝛾 on 𝐿𝑝,
which are the so called next-generation operator. The SIS dynamics considered in Chapter II (under
Assumption III.2) follows the vector field 𝐹 defined on ℒ∞ by:

𝐹(𝑔) = (1 − 𝑔)𝒯𝑘(𝑔) − 𝛾𝑔. (III.18)

More precisely, we consider 𝑢 = (𝑢𝑡, 𝑡 ∈ ℝ), where 𝑢𝑡 ∈ Δ for all 𝑡 ∈ ℝ+ such that:

𝜕𝑡𝑢𝑡 = 𝐹(𝑢𝑡) for 𝑡 ∈ ℝ+, (III.19)

with initial condition 𝑢0 ∈ Δ. The value 𝑢𝑡(𝑥)models the probability that an individual of feature 𝑥
is infected at time 𝑡; it is proved in Chapter II that such a solution 𝑢 exists and is unique.

An equilibrium of (III.19) is a function 𝑔 ∈ Δ such that 𝐹(𝑔) = 0. According to Chapter II,
there exists a maximal equilibrium 𝔤, i.e., an equilibrium such that all other equilibria ℎ ∈ Δ are
dominated by 𝔤: ℎ ≤ 𝔤. The reproduction number ℜ0 associated to the SIS model given by (III.19)
is the spectral radius of the next-generation operator, so that using the definition of the effective
reproduction number (III.14), (III.15) and (III.17), this amounts to:

ℜ0 = 𝜌(𝒯𝑘/𝛾) = ℜ0[𝑘/𝛾 ] = ℜ𝑒[𝑘/𝛾 ](𝟙). (III.20)

Ifℜ0 ≤ 1 (sub-critical and critical case), then 𝑢𝑡 converges pointwise to 0when 𝑡 → ∞. In particular,
the maximal equilibrium 𝔤 is equal to 0 everywhere. If ℜ0 > 1 (super-critical case), then 0 is still
an equilibrium but different from the maximal equilibrium 𝔤, as ∫Ω 𝔤 d𝜇 > 0.

III.2.4 Vaccination strategies

A vaccination strategy 𝜂 of a vaccinewith perfect efficiency is an element ofΔ, where 𝜂(𝑥) represents
the proportion of non-vaccinated individuals with feature 𝑥. Notice that 𝜂 d𝜇 corresponds in a
sense to the effective population.

Recall the definition of the kernel 𝑓 𝐤𝑔 from (III.9). For 𝜂 ∈ Δ, the kernels 𝑘𝜂/𝛾 and 𝑘𝜂 have finite
norm ‖ ⋅ ‖∞,𝑞 under Assumption III.2, so we can consider the bounded positive operators 𝒯𝑘𝜂/𝛾
and 𝒯𝑘𝜂 on ℒ∞. According to Section 5.3.] of Chapter II, the SIS equation with vaccination
strategy 𝜂 is given by (III.19), where 𝐹 is replaced by 𝐹𝜂 defined by:

𝐹𝜂(𝑔) = (1 − 𝑔)𝒯𝑘𝜂(𝑔) − 𝛾𝑔. (III.21)

We denote by 𝑢𝜂 = (𝑢𝜂𝑡 , 𝑡 ≥ 0) the corresponding solution with initial condition 𝑢𝜂0 ∈ Δ. We recall
that 𝑢𝜂𝑡 (𝑥) represents the probability for an non-vaccinated individual of feature 𝑥 to be infected at
time 𝑡. Since the effective reproduction number is the spectral radius of 𝒯𝑘𝜂/𝛾, we recover (III.14)
as 𝜌(𝒯𝑘𝜂/𝛾) = 𝜌(𝑇𝑘𝜂/𝛾) = ℜ𝑒[𝑘/𝛾 ](𝜂) with 𝐤 = 𝑘/𝛾. We denote by 𝔤𝜂 the corresponding maximal
equilibrium (so that 𝔤 = 𝔤𝟙). In particular, we have:

𝐹𝜂(𝔤𝜂) = 0. (III.22)

We will denote by ℑ the fraction of infected individuals at equilibrium. Since the probability for an
individual with feature 𝑥 to be infected in the stationary regime is 𝔤𝜂(𝑥) 𝜂(𝑥), this fraction is given
by the following formula:

ℑ(𝜂) = ∫
Ω
𝔤𝜂 𝜂 d𝜇 = ∫

Ω
𝔤𝜂(𝑥) 𝜂(𝑥) 𝜇(d𝑥). (III.23)
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We deduce from (III.21) and (III.22) that 𝔤𝜂𝜂 = 0 𝜇-almost surely is equivalent to 𝔤𝜂 = 0. Applying
the results of Chapter II to the kernel 𝑘𝜂, we deduce that:

ℑ(𝜂) > 0 ⟺ ℜ𝑒[𝑘/𝛾 ](𝜂) > 1. (III.24)

III.3 Preliminary topological results

III.3.1 On the weak topology

We first recall briefly some properties we shall use frequently. We can see Δ as a subset of 𝐿1, and
consider the corresponding weak topology: a sequence (𝑔𝑛, 𝑛 ∈ ℕ) of elements of Δ converges
weakly to 𝑔 if for all ℎ ∈ 𝐿∞ we have:

lim
𝑛→∞∫

Ω
ℎ𝑔𝑛 d𝜇 = ∫

Ω
ℎ𝑔 d𝜇. (III.25)

Notice that (III.25) can easily be extended to any function ℎ ∈ 𝐿𝑞 for any 𝑞 ∈ (1, +∞); so that the
weak-topology on Δ, seen as a subset of 𝐿𝑝 with 1/𝑝 + 1/𝑞 = 1, can be seen as the trace on Δ
of the weak topology on 𝐿𝑝. The main advantage of this topology is the following compactness
result.

Lemma III.3.1 (Topological properties of Δ). We have that:

(i) The set Δ endowed with the weak topology is compact and sequentially compact.

(ii) A function from Δ (endowed with the weak topology) to a metric space (endowed with its metric
topology) is continuous if and only if it is sequentially continuous.

Proof. Let 𝑝 ∈ (1, +∞), and consider the weak topology on Δ as the trace on Δ of the weak topology
on 𝐿𝑝. We first prove (i). Since 𝐿𝑝 is reflexive, by the Banach-Alaoglu theorem [30, Theorem V.4.2],
its unit ball is weakly compact. The set Δ is closed and convex, therefore it is weakly closed; see [30,
Corollary V.1.5]. Thus, Δ is weakly compact as a weakly closed subset of the weakly compact
unit ball. By the Eberlein–Šmulian theorem [30, Theorem V.13.1], Δ is also weakly sequentially
compact.

We now prove (ii). A continuous function is sequentially continuous. Conversely, the inverse
image of a closed set by a sequentially continuous function is sequentially closed. Besides, a
sequentially closed subset of a sequentially compact set is sequentially compact. Using the Eber-
lein–Šmulian theorem, we deduce that the inverse images of closed sets are compact. In particular
they are closed, which proves that a sequentially continuous function is continuous.

III.3.2 Invariance and continuity of the spectrum for compact operators

We recall a few facts on operators. Let (𝐸, ‖ ⋅ ‖) be a Banach space. Let 𝐴 ∈ ℒ(𝐸). We denote by
𝐴⊤ the adjoint of 𝐴. A sequence (𝐴𝑛, 𝑛 ∈ ℕ) of elements of ℒ(𝐸) converges strongly to 𝐴 ∈ ℒ(𝐸)
if lim𝑛→∞ ‖ 𝐴𝑛𝑥 − 𝐴𝑥 ‖ = 0 for all 𝑥 ∈ 𝐸. Following [6], a set of operators 𝒜 ⊂ ℒ(𝐸) is collectively
compact if the set {𝐴𝑥 ∶ 𝐴 ∈ 𝒜, ‖ 𝑥 ‖ ≤ 1} is relatively compact.

We collect some known results on the spectrum of to compact operators. Recall that the
spectrum of a compact operator is finite or countable and has at most one accumulation point,
which is 0. Furthermore, 0 belongs to the spectrum of compact operators in infinite dimension.
We refer to [136] for an introduction to Banach lattices; we shall only consider the Banach lattices
𝐿𝑝(Ω, 𝜇) for 𝑝 ≥ 1 on a probability space (Ω,ℱ , 𝜇) and a bounded operator 𝐴 is positive if
𝐴(𝐿𝑝+) ⊂ 𝐿𝑝+.

Lemma III.3.2. Let 𝐴, 𝐵 be elements of ℒ(𝐸).

(i) If 𝐸 is a Banach lattice, and if 𝐴, 𝐵 and 𝐴 − 𝐵 are positive operators, then we have:

𝜌(𝐴) ≥ 𝜌(𝐵). (III.26)
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(ii) If 𝐴 is compact, then we have 𝐴𝐵 and 𝐵𝐴 compact and:

Spec(𝐴) = Spec(𝐴⊤) (III.27)

Spec(𝐴𝐵) = Spec(𝐵𝐴) (III.28)

and in particular:
𝜌(𝐴𝐵) = 𝜌(𝐵𝐴). (III.29)

(iii) Let (𝐸′, ‖ ⋅ ‖′) be a Banach space such that 𝐸′ is continuously and densely embedded in 𝐸.
Assume that 𝐴(𝐸′) ⊂ 𝐸′, and denote by 𝐴′ the restriction of 𝐴 to 𝐸′ seen as an operator on 𝐸′.
If 𝐴 and 𝐴′ are compact, then we have:

Spec(𝐴) = Spec(𝐴′). (III.30)

(iv) Let (𝐴𝑛, 𝑛 ∈ ℕ) be a collectively compact sequence which converges strongly to 𝐴. Then, we
have lim𝑛→∞ Spec(𝐴𝑛) = Spec(𝐴) in (𝒦, 𝑑H), and lim𝑛→ 𝜌(𝑇𝑛) = 𝜌(𝑇 ).

Proof. Property (i) can be found in [114, Theorem 4.2]. Equation (III.27) from Property (ii) can
be deduced from the [99, Theorem page 20]. Using the [99, Proposition page 25], we get that
Spec(𝐴𝐵) ∩ ℂ∗ = Spec(𝐵𝐴) ∩ ℂ∗, and thus (III.29). As 𝐴 is compact we get that 𝐴𝐵 and 𝐵𝐴 are
compact, thus 0 belongs to their spectrum in infinite dimension. Whereas in finite dimension,
as det(𝐴𝐵) = det(𝐴)det(𝐵) = det(𝐵𝐴) (where 𝐴 and 𝐵 denote also the matrix of the corresponding
operator in a given base), we get that 0 belongs to the spectrum of 𝐴𝐵 if and only if it belongs to
the spectrum of 𝐵𝐴. This gives (III.28).

Property (iii) follows from [72, Corollary 1 and Section 6]. We eventually check Property (iv).
We deduce from [6, Theorems 4.8 and 4.16] (see also (d) and (e) in [7, Section 3]) that

lim
𝑛→∞

Spec(𝑇𝑛) = Spec(𝑇 ).

Then use that the function rad is continuous to deduce the convergence of the spectral radius
from the convergence of the spectra (see also (f) in [7, Section 3]).

III.4 First properties of the functions ℜ𝑒 and ℑ

III.4.1 The effective reproduction number ℜ𝑒

We consider the kernel model [(Ω,ℱ, 𝜇), 𝐤] under Assumption III.1, so that 𝐤 is a kernel on Ω
with finite double norm. Recall the effective reproduction number function ℜ𝑒[𝐤] defined on Δ
by (III.14): ℜ𝑒[𝐤](𝜂) = 𝜌(𝑇𝐤𝑀𝜂), and the reproduction number ℜ0[𝐤] = 𝜌(𝑇𝐤). When there is no
risk of confusion on the kernel 𝐤, we simply write ℜ𝑒 and ℜ0 for ℜ𝑒[𝐤] and ℜ0[𝐤].

Proposition III.4.1 (Basic properties of ℜ𝑒). Suppose Assumption III.1 holds. Let 𝜂, 𝜂1, 𝜂2 ∈ Δ. The
function ℜ𝑒 = ℜ𝑒[𝐤] satisfies the following properties:

(i) ℜ𝑒(𝜂1) = ℜ𝑒(𝜂2) if 𝜂1 = 𝜂2 𝜇-almost surely.

(ii) ℜ𝑒(𝟘) = 0 and ℜ𝑒(𝟙) = ℜ0.

(iii) ℜ𝑒(𝜂1) ≤ ℜ𝑒(𝜂2) if 𝜂1 ≤ 𝜂2 𝜇-almost surely.

(iv) ℜ𝑒(𝜆𝜂) = 𝜆ℜ𝑒(𝜂) for all 𝜆 ∈ [0, 1].

Proof. If 𝜂1 = 𝜂2 𝜇-almost surely, then we have that 𝑇𝐤𝜂1 = 𝑇𝐤𝜂2 , and thus ℜ𝑒(𝜂1) = ℜ𝑒(𝜂2). This
gives Point (i). Point (ii) is a direct consequence of the definition of ℜ𝑒. Since for any fixed 𝜆 ∈ ℂ
and any operator 𝐴, the spectrum of 𝜆𝐴 is equal to {𝜆𝑠, 𝑠 ∈ Spec(𝐴)}, Point (iv) is clear. Finally,
note that if 𝜂1 ≤ 𝜂2 𝜇-almost everywhere, then the operator 𝑇𝐤𝜂2 − 𝑇𝐤𝜂1 is positive. According
to (III.26), we get that 𝜌(𝑇𝐤𝜂1) ≤ 𝜌(𝑇𝑘𝜂2). This concludes the proof of Point (iii).
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We generalize a continuity property on the spectral radius originally stated in Chapter II by
weakening the topology.

Theorem III.4.2 (Continuity of ℜ𝑒[𝐤] and Spec[𝐤]). Suppose Assumption III.1 holds. Then, the
functions Spec[𝐤] and ℜ𝑒[𝐤] are continuous functions from Δ (endowed with the weak-topology)
respectively to𝒦 (endowed with the Hausdorff distance) and to ℝ+ (endowed with the usual Euclidean
distance).

Let us remark the proof holds even if 𝐤 takes negative values.

Proof. Let 𝐵 denote the unit ball in 𝐿𝑝, with 𝑝 ∈ (1, +∞) from Assumption III.1. Since the op-
erator 𝑇𝐤 is compact, the set 𝑇𝐤(𝐵) is relatively compact. For all 𝜂 ∈ Δ, set 𝜂𝐵 = {𝜂𝑔 ∶ 𝑔 ∈ 𝐵}.
As 𝜂𝐵 ⊂ 𝐵, we deduce that 𝑇𝐤𝜂(𝐵) = 𝑇𝐤(𝜂𝐵) ⊂ 𝑇𝐤(𝐵). This implies that the family (𝑇𝐤𝜂, 𝜂 ∈ Δ) is
collectively compact.

Let (𝜂𝑛, 𝑛 ∈ ℕ) be a sequence in Δ converging weakly to some 𝜂 ∈ Δ. Let 𝑔 ∈ 𝐿𝑝. The weak
convergence of 𝜂𝑛 to 𝜂 implies that (𝑇𝐤𝜂𝑛(𝑔), 𝑛 ∈ ℕ) converges 𝜇-almost surely to 𝑇𝐤𝜂(𝑔). Consider
the function:

𝐾(𝑥) = (∫
Ω
𝐤(𝑥, 𝑦)𝑞 𝜇(d𝑦))

1/𝑞
,

which belongs to 𝐿𝑝, thanks to (III.10). Since for all 𝑥,

| 𝑇𝐤𝜂𝑛(𝑔)(𝑥) | ≤ 𝑇𝐤(| 𝜂𝑛𝑔 |)(𝑥) ≤ 𝐾(𝑥) ‖𝜂𝑛𝑔‖𝑝 ≤ 𝐾(𝑥) ‖ 𝑔 ‖𝑝 ,

we deduce, by dominated convergence, that the convergence holds also in 𝐿𝑝:

lim
𝑛→∞

‖ 𝑇𝐤𝜂𝑛(𝑔) − 𝑇𝐤𝜂(𝑔) ‖𝑝
= 0, (III.31)

so that 𝑇𝐤𝜂𝑛 converges strongly to 𝑇𝐤𝜂. Using Lemma III.3.2 (iv) (with 𝑇𝑛 = 𝑇𝐤𝜂𝑛 and 𝑇 = 𝑇𝐤𝜂) on the
continuity of the spectrum, we get that lim𝑛→∞ Spec[𝐤](𝜂𝑛) = Spec[𝐤](𝜂). The function Spec[𝐤] is
thus sequentially continuous, and, thanks to Lemma III.3.1, it is continuous from Δ endowed with
the weak topology to the metric space 𝒦 endowed with the Hausdorff distance. The continuity
of ℜ𝑒[𝐤] then follows from its definition (III.8) as the composition of the continuous functions rad
and Spec[𝐤].

We now give a stability property of the spectrum and spectral radius with respect to the
kernel 𝐤.

Proposition III.4.3 (Stability of ℜ𝑒[𝐤] and Spec[𝐤]). Let 𝑝 ∈ (1, +∞). Let (𝐤𝑛, 𝑛 ∈ ℕ) and 𝐤 be
kernels on Ω with finite double norms on 𝐿𝑝. If lim𝑛→∞ ‖ 𝐤𝑛 − 𝐤 ‖𝑝,𝑞 = 0, then we have:

lim
𝑛→∞

sup
𝜂∈Δ

|ℜ𝑒[𝐤𝑛](𝜂) − ℜ𝑒[𝐤](𝜂)| = 0 and lim
𝑛→∞

sup
𝜂∈Δ

𝑑H( Spec[𝐤𝑛](𝜂), Spec[𝐤](𝜂)) = 0. (III.32)

Proof. Let us first prove that, if (𝜂𝑛, 𝑛 ∈ ℕ) is a sequence in Δ which converges weakly to 𝜂 ∈ Δ,
then Spec[𝐤𝑛](𝜂𝑛) converges to Spec[𝐤](𝜂) in Haussdorff distance.

All the operators in 𝒜 = {𝑇𝐤} ∪ {𝑇𝐤𝑛 ∶ 𝑛 ∈ ℕ} are compact, and we deduce from (III.12) that:

lim
𝑛→∞

‖ 𝑇𝐤𝑛 − 𝑇𝐤 ‖𝐿𝑝
= 0.

Therefore 𝒜 is a compact set (in the uniform topology) of compact operators: by [5, Theorem 2.4],
𝒜 is collectively compact. This implies, see [6, Proposition 4.1(2)] for details, that the family 𝒜 ′ =
{𝑇 ′𝑀𝜂 ∶ , 𝑇 ′ ∈ 𝒜 and 𝜂 ∈ Δ} is collectively compact. A fortiori the sequence (𝑇𝑛 = 𝑇𝐤𝑛𝜂𝑛 =
𝑇𝐤𝑛𝑀𝜂𝑛 , 𝑛 ∈ ℕ) of elements of 𝒜 ′ is collectively compact, and 𝑇 = 𝑇𝐤𝜂 = 𝑇𝐤𝑀𝜂 is compact.

Let 𝑔 ∈ 𝐿𝑝. We have:

‖ 𝑇𝑛(𝑔) − 𝑇 (𝑔) ‖𝑝 ≤ ‖ 𝑇𝐤𝑛 − 𝑇𝐤 ‖𝐿𝑝 ‖ 𝑔 ‖𝑝 + ‖ 𝑇𝐤𝜂𝑛(𝑔) − 𝑇𝐤𝜂(𝑔) ‖𝑝
.
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Using lim𝑛→∞ ‖ 𝑇𝐤𝑛 − 𝑇𝐤 ‖𝐿𝑝
= 0 and (III.31), we get that lim𝑛→∞ ‖ 𝑇𝑛(𝑔) − 𝑇 (𝑔) ‖𝑝, thus (𝑇𝑛, 𝑛 ∈ ℕ)

converges strongly to 𝑇. With Lemma III.3.2 (iv), we get that lim𝑛→∞ Spec(𝑇𝑛) = Spec(𝑇 ), that is
lim𝑛→∞ Spec[𝐤𝑛](𝜂𝑛) = Spec[𝐤](𝜂).

Then, as the function 𝜂 ↦ 𝑑H( Spec[𝐤𝑛](𝜂), Spec[𝐤](𝜂)) is continuous on the compact set Δ,
thanks to Theorem III.4.2, it reaches its maximum say at 𝜂𝑛 ∈ Δ for 𝑛 ∈ ℕ. As Δ is compact,
consider a sub-sequence which converges weakly to a limit say 𝜂. Since

sup
𝜂∈Δ

𝑑H( Spec[𝐤𝑛](𝜂), Spec[𝐤](𝜂))

= 𝑑H( Spec[𝐤𝑛](𝜂𝑛), Spec[𝐤](𝜂𝑛))

≤ 𝑑H( Spec[𝐤𝑛](𝜂𝑛), Spec[𝐤](𝜂)) + 𝑑H( Spec[𝐤](𝜂𝑛), Spec[𝐤](𝜂)),

using the continuity of Spec[𝐤], we deduce that along this sub-sequence the right hand side
converges to 0. Since this result holds for any converging sub-sequence, we get the second part
of (III.32). The first part then follows from the definition (III.8) of ℜ𝑒 as a composition, and the
Lipschitz continuity of the function rad.

III.4.2 The asymptotic proportion of infected individuals ℑ

We consider the SIS model [(Ω,ℱ , 𝜇), 𝑘, 𝛾 ] under Assumption III.2. Recall from (III.23) that the
asymptotic proportion of infected individuals ℑ is given on Δ by ℑ(𝜂) = ∫Ω 𝔤𝜂 𝜂 d𝜇, where 𝔤𝜂 is the
maximal solution in Δ of the equation 𝐹𝜂(ℎ) = 0. We first give preliminary results on the maximal
equilibrium, which complete what is known from Chapter II. Notice that, if ℜ0 > 1, then Property
(iii) implies that the strategy 1 − 𝔤 is critical.

Lemma III.4.4 (Properties of the maximal equilibrium). Suppose Assumption III.2 holds and write
ℜ𝑒 for ℜ𝑒[𝑘/𝛾 ].

(i) Let 𝜂, 𝑔 ∈ Δ. If 𝐹𝜂(𝑔) ≥ 0, then we have 𝑔 ≤ 𝔤𝜂.

(ii) For any ℎ ∈ Δ, ℎ = 𝔤 if and only if 𝐹(ℎ) = 0 and ℜ𝑒(1 − ℎ) ≤ 1.

(iii) If 𝔤 ≠ 0, then ℜ𝑒(1 − 𝔤) = 1.

Proof. For the first point, consider the solution 𝑢𝑡 of the SIS model with vaccination 𝜕𝑡𝑢𝑡 = 𝐹𝜂(𝑢𝑡)
and initial condition 𝑢0 = 𝑔. According to Proposition II.2.10, this solution is non-decreasing since
𝐹𝜂(𝑔) ≥ 0. According to Proposition II.2.13, the pointwise limit of 𝑢𝑡 is an equilibrium. As this
limit is dominated by the maximal equilibrium 𝔤𝜂 and since 𝑢𝑡 is non-decreasing, this proves that
𝑔 ≤ 𝔤𝜂.

The other two points follow from Proposition III.8.2 and will be proved in Section III.8.1.

We may now state the main properties of the function ℑ.

Proposition III.4.5 (Basic properties of ℑ). Suppose that Assumption III.2 holds. Let 𝜂, 𝜂1, 𝜂2 ∈ Δ.
The function ℑ has the following properties:

(i) ℑ(𝜂1) = ℑ(𝜂2) if 𝜂1 = 𝜂2 𝜇-almost surely.

(ii) ℑ(𝜂) = 0 if and only if ℜ𝑒[𝑘/𝛾 ](𝜂) ≤ 1.

(iii) ℑ(𝜂1) ≤ ℑ(𝜂2) if 𝜂1 ≤ 𝜂2 𝜇-almost surely.

(iv) ℑ(𝜆𝜂) ≤ 𝜆ℑ(𝜂) for all 𝜆 ∈ [0, 1].
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Proof. If 𝜂1 = 𝜂2 𝜇-almost surely, then the operators 𝒯𝑘𝜂1 and 𝒯𝑘𝜂2 are equal. Thus, the equilibria
𝔤𝜂1 and 𝔤𝜂2 are also equal, which in turns implies that ℑ(𝜂1) = ℑ(𝜂2). Point (ii) is already stated in
Equation (III.24).

To prove the monotonicity (Point (iii)), consider 𝜂1 ≤ 𝜂2. Since 𝒯𝑘𝜂1 ≤ 𝒯𝑘𝜂2 , we get 𝐹𝜂1(𝑔) ≤
𝐹𝜂2(𝑔) for all 𝑔 ∈ Δ. In particular, taking 𝑔 = 𝔤𝜂1 and using (III.22), we get 𝐹𝜂2(𝔤𝜂1) ≥ 0. By
Lemma III.4.4 this implies 𝔤𝜂1 ≤ 𝔤𝜂2 . To sum up, we get:

𝜂1 ≤ 𝜂2 ⟹ 𝔤𝜂1 ≤ 𝔤𝜂2 . (III.33)

This readily implies that ℑ(𝜂1) = ∫Ω 𝔤𝜂1 𝜂1 d𝜇 ≤ ∫Ω 𝔤𝜂2 𝜂2 d𝜇 = ℑ(𝜂2). We conclude using Point (i).

We now consider Point (iv). Since 𝜆 ∈ [0, 1], we deduce from (III.33) that 𝔤𝜆𝜂 ≤ 𝔤𝜂. This implies
that ℑ(𝜆𝜂) = ∫Ω 𝔤𝜆𝜂 𝜆𝜂 d𝜇 ≤ 𝜆 ∫Ω 𝔤𝜂 𝜂 d𝜇 = 𝜆ℑ(𝜂).

The proof of the following continuity results are both postponed to Section III.8.1.

Theorem III.4.6 (Continuity of ℑ). Suppose that Assumption III.2 holds. The function ℑ defined
on Δ is continuous with respect to the weak topology.

We write ℑ[𝑘, 𝛾 ] for ℑ to stress the dependence on the parameters 𝑘, 𝛾 of the SIS model.

Proposition III.4.7 (Stability of ℑ). Let ((𝑘𝑛, 𝛾𝑛), 𝑛 ∈ ℕ) and (𝑘, 𝛾 ) be a sequence of kernels and
functions satisfying Assumption III.2. Assume furthermore that there exists 𝑝′ ∈ (1, +∞) such that
𝐤 = 𝛾−1𝑘 and (𝐤𝑛 = 𝛾−1𝑛 𝑘𝑛, 𝑛 ∈ ℕ) have finite double norm in 𝐿𝑝

′
and that lim𝑛→∞ ‖ 𝐤𝑛 − 𝐤 ‖𝑝′,𝑞′ = 0.

Then we have:
lim
𝑛→∞

sup
𝜂∈Δ

|ℑ[𝑘𝑛, 𝛾𝑛](𝜂) − ℑ[𝑘, 𝛾 ](𝜂)| = 0. (III.34)

III.5 Pareto and anti-Pareto frontiers

III.5.1 The setting

To any vaccination strategy 𝜂 ∈ Δ, we associate a cost and a loss.

• The cost function. The cost 𝐶(𝜂) measures all the costs of the vaccination strategy (pro-
duction and diffusion). The cost is expected to be a decreasing function of 𝜂, since 𝜂 encodes
the non-vaccinated population. Since doing nothing costs nothing, we also expect 𝐶(𝟙) = 0,
see Assumptions III.3 below. We shall also consider natural hypothesis on 𝐶, see Assump-
tions III.4 (p. 86) and III.6 (p. 87). A simple cost model is the affine cost given by:

𝐶aff(𝜂) = ∫
Ω
(1 − 𝜂(𝑥)) 𝑐aff(𝑥) 𝜇(d𝑥), (III.35)

where 𝑐aff(𝑥) is the cost of vaccination of population of feature 𝑥, with 𝑐aff ∈ 𝐿1 positive.
The particular case 𝑐aff = 1 is the uniform cost 𝐶 = 𝐶uni:

𝐶uni(𝜂) = ∫
Ω
(1 − 𝜂) d𝜇. (III.36)

The real cost of the vaccination may be a more complicated function 𝜓(𝐶aff(𝜂)) of the affine
cost, for example if the marginal cost of producing a vaccine depends on the quantity
already produced. However, as long as 𝜓 is strictly increasing, this will not affect the optimal
strategies.

• The loss function. The loss L(𝜂)measures the (non)-efficiency of the vaccination strategy 𝜂.
Different choices are possible here. We prove in this section general results that only depend
on a few natural hypothesis for L; see Assumptions III.3 (p. 82), III.5 (p. 86) and III.7 (p. 88).
These hypothesis are in particular satisfied if the loss is the effective reproduction number
ℜ𝑒 (kernel and SIS models), or the asymptotic proportion of infected individuals ℑ (SIS
model); more precisely see Lemmas III.5.6, III.5.14 and III.5.16.
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We shall consider cost and loss functions with some regularities.

Definition III.5.1. We say that a real-valued function 𝐻 defined on Δ endowed with the weak
topology is:

• Continuous: if 𝐻 is continuous with respect to the weak topology on Δ.

• Non-decreasing: if for any 𝜂1, 𝜂2 ∈ Δ such that 𝜂1 ≤ 𝜂2, we have 𝐻(𝜂1) ≤ 𝐻(𝜂2).

• Decreasing: if for any 𝜂1, 𝜂2 ∈ Δ such that 𝜂1 ≤ 𝜂2 and ∫Ω 𝜂1 d𝜇 < ∫Ω 𝜂2 d𝜇, we have
𝐻(𝜂1) > 𝐻(𝜂2).

• Sub-homogeneous: if 𝐻(𝜆𝜂) ≤ 𝜆𝐻(𝜂) for all 𝜂 ∈ Δ and 𝜆 ∈ [0, 1].

The definition of non-increasing function and increasing function are similar.

Assumption III.3 (On the cost function and loss function). The loss function L ∶ Δ → ℝ is
non-decreasing and continuous with L(𝟘) = 0. The cost function 𝐶 ∶ Δ → ℝ is non-increasing and
continuous with 𝐶(𝟙) = 0. We also have:

ℓmax ∶= max
Δ

L > 0 and 𝑐max ∶= max
Δ

𝐶 > 0.

Assumption III.3 will always hold. In particular, the loss and the cost functions are non-negative
and non-constant.

We will consider the multi-objective minimization and maximization problems:

{
Minimize: (𝐶(𝜂), L(𝜂))
subject to: 𝜂 ∈ Δ

and {
Maximize: (𝐶(𝜂), L(𝜂))
subject to: 𝜂 ∈ Δ

(III.37)

Remark III.5.2 (On the generality of the uniform cost). For the reproduction number optimization in
the vaccination context, one can without loss of generality consider the uniform cost instead of the
affine cost. Indeed, consider the kernel model Param = [(Ω,ℱ , 𝜇), 𝐤] with the affine cost function
𝐶aff and the lossℜ𝑒. If we assume furthermore that 𝑐aff is bounded and bounded away from 0 (that
is 𝑐aff and 1/𝑐aff belongs to ℒ∞

+ ), and, without loss of generality, that ∫ 𝑐aff d𝜇 = 1, then we can
consider the weighted kernel model Param0 = [(Ω,ℱ , 𝜇0), 𝐤0]with measure 𝜇0(d𝑥) = 𝑐aff(𝑥) 𝜇(d𝑥)
and kernel 𝐤0 = 𝐤/𝑐aff. (Notice that if Assumption III.2 holds for the model Param, then it also
holds for the model Param0.) Consider the loss L = ℜ𝑒. Then for a strategy 𝜂 ∈ Δ, we get that
(𝐶aff(𝜂), L(𝜂)) for the model Param is equal to (𝐶uni(𝜂), L(𝜂)) for the model Param0. Therefore, for
the loss function L = ℜ𝑒, instead of the affine cost 𝐶aff, one can consider without any real loss of
generality the uniform cost. (This holds also for the SIS model.) However, this is no longer the
case for the loss function L = ℑ in the SIS model.

Multi-objective problems are in a sense ill-defined because in most cases, it is impossible to
find a single solution that would be optimal to all objectives simultaneously. Hence, we recall the
concept of Pareto optimality. Since the minimization problem is crucial for vaccination, we shall
define Pareto optimality for the bi-objective minimization problem. A strategy 𝜂⋆ ∈ Δ is said to be
Pareto optimal for the minimization problem in (III.37) if any improvement of one objective leads
to a deterioration of the other, for 𝜂 ∈ Δ:

𝐶(𝜂) < 𝐶(𝜂⋆) ⟹ L(𝜂) > L(𝜂⋆) and L(𝜂) < L(𝜂⋆) ⟹ 𝐶(𝜂) > 𝐶(𝜂⋆). (III.38)

The set of Pareto optimal strategies will be denoted by 𝒫L, and the Pareto frontier is defined
as the set of Pareto optimal outcomes:

ℱL = {(𝐶(𝜂), L(𝜂)) ∶ 𝜂 Pareto optimal}.

Similarly, a strategy 𝜂⋆ ∈ Δ is anti-Pareto optimal if it is Pareto optimal for the bi-objective
maximization problem in (III.37). Intuitively, the “best” vaccination strategies are the Pareto



Targeted vaccination strategies for an infinite-dimensional SIS model 83

optima and the “worst” vaccination strategies are the anti-Pareto optima. We denote similarly
by 𝒫Anti

L the set of anti-Pareto optimal strategies, and by ℱAnti
L its frontier:

ℱAnti
L = {(𝐶(𝜂), L(𝜂)) ∶ 𝜂 anti-Pareto optimal}.

Finally, we define the feasible region as the set of all possible outcomes:

F = {(𝐶(𝜂), L(𝜂)), 𝜂 ∈ Δ}.

We now consider the classical, single-objective minimization problems related to the “best” vacci-
nation strategies, with a fixed loss ℓ ∈ [0, ℓmax] or a fixed cost 𝑐 ∈ [0, 𝑐max]:

Minimize: L(𝜂) (III.39a)

subject to: 𝜂 ∈ Δ, 𝐶(𝜂) ≤ 𝑐, (III.39b)

as well as

Minimize: 𝐶(𝜂) (III.40a)

subject to: 𝜂 ∈ Δ, L(𝜂) ≤ ℓ. (III.40b)

We denote the values of Problems (III.39) and (III.40) by:

L⋆(𝑐) = inf{L(𝜂) ∶ 𝜂 ∈ Δ and 𝐶(𝜂) ≤ 𝑐} for 𝑐 ∈ [0, 𝑐max],
𝐶⋆(ℓ) = inf{𝐶(𝜂) ∶ 𝜂 ∈ Δ and L(𝜂) ≤ ℓ} for ℓ ∈ [0, ℓmax].

Similarly, the maximization problem related to the “worst” vaccination strategies for a fixed
loss ℓ ∈ [0, ℓmax] or a fixed cost 𝑐 ∈ [0, 𝑐max] are defined by:

Maximize: L(𝜂) (III.41a)

subject to: 𝜂 ∈ Δ, 𝐶(𝜂) ≥ 𝑐, (III.41b)

as well as

Maximize: 𝐶(𝜂) (III.42a)

subject to: 𝜂 ∈ Δ, L(𝜂) ≥ ℓ. (III.42b)

We denote the values of Problems (III.41) and (III.42) by:

L⋆(𝑐) = sup{L(𝜂) ∶ 𝜂 ∈ Δ and 𝐶(𝜂) ≥ 𝑐} for 𝑐 ∈ [0, 𝑐max],
𝐶⋆(ℓ) = sup{𝐶(𝜂) ∶ 𝜂 ∈ Δ and L(𝜂) ≥ ℓ} for ℓ ∈ [0, ℓmax].

If necessary, we may write 𝐶⋆,L and 𝐶⋆,L to stress the dependence of the function 𝐶⋆ and 𝐶⋆
in the loss function L.

Under Assumption III.3, as the loss and the cost functions are continuous on the compact set Δ,
the infima in the definitions of the value functions 𝐶⋆ and L⋆ are minima; and the suprema in
the definition of the value functions 𝐶⋆ and L⋆ are maxima. Since Δ in endowed with the weak
topology, we will consider the set of Pareto and anti-Pareto optimal vaccination modulo 𝜇-almost
sure equality.

See Figure III.2 for a typical representation of the possible aspects of the feasible region F
(in light blue), the value functions and the Pareto and anti-Pareto frontiers under the general
Assumption III.3, and the connected Pareto and anti-Pareto frontiers under further regularity on
the cost and loss functions (see Assumption III.4-III.7 below) in Figure III.2(d). In Figure III.1(b),
we have plotted in solid red line the Pareto frontier and in dashed red line the anti-Pareto frontier
from Example III.1.7.
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Outline of the section

It turns out that the anti-Pareto optimization problem can be recast as a Pareto optimization
problem by changing signs and exchanging the cost and loss functions. In order to make use of
this property for the kernel and SIS models, we study the Pareto problem under assumptions on
the cost that are general enough to cover the choices 𝐶uni and −L, and assumptions on the loss
that cover the choices ℜ𝑒, ℑ and −𝐶uni.

The main result of this section states that all the solutions of the optimization Problems (III.39)
or (III.40) are Pareto optimal, and gives a description of the Pareto frontier ℱL as a graph in Section
III.5.2, and similarly for the anti-Pareto frontier in Section III.5.3. Surprisingly, those two problems
are not completely symmetric for the loss functions ℜ𝑒 and ℑ considered in Section III.5.4, see
Lemmas III.5.14 and III.5.16, where one uses some irreducibility condition on the kernels to study
the anti-Pareto frontier.

III.5.2 On the Pareto frontier

We first check that Problems (III.39) and (III.40) have solutions.

Proposition III.5.3 (Optimal solutions for fixed cost or fixed loss). Suppose that Assumption III.3
holds. For any cost 𝑐 ∈ [0, 𝑐max], there exists a minimizer of the loss under the cost constraint 𝐶(⋅) ≤ 𝑐,
that is, a solution to Problem (III.39). Similarly, for any loss ℓ ∈ [0, ℓmax], there exists a minimizer of
the cost under the loss constraint L(⋅) ≤ ℓ, that is a solution to Problem (III.40).

Proof. Let 𝑐 ∈ [0, 𝑐max]. Since 𝐶(𝟙) = 0, the set {𝜂 ∈ Δ ∶ 𝐶(𝜂) ≤ 𝑐} is non-empty. It is also compact
as 𝐶 is continuous on the compact set Δ (for the weak topology). Therefore, since the loss function
L is continuous (for the weak topology), we get that L restricted to this compact set reaches its
minimum. Thus, Problem (III.39) has a solution. The proof is similar for the existence of a solution
to Problem (III.40).

We start by a general result concerning the links between the three problems.

Proposition III.5.4 (Single-objective and bi-objective problems). Suppose Assumption III.3 holds.

(i) If 𝜂⋆ is Pareto optimal, then 𝜂⋆ is a solution of (III.39) for the cost 𝑐 = 𝐶(𝜂⋆), and a solution
of (III.40) for the loss ℓ = L(𝜂⋆). Conversely, if 𝜂⋆ is a solution to both problems (III.39) and
(III.40) for some values 𝑐 and ℓ, then 𝜂⋆ is Pareto optimal.

(ii) The Pareto frontier is the intersection of the graphs of 𝐶⋆ and L⋆:

ℱL = {(𝑐, ℓ) ∈ [0, 𝑐max] × [0, ℓmax] ∶ 𝑐 = 𝐶⋆(ℓ) and ℓ = L⋆(𝑐)}.

(iii) The points (0, L⋆(0)) and (𝐶⋆(0), 0) both belong to the Pareto frontier, and:

𝐶⋆(L⋆(0)) = L⋆(𝐶⋆(0)) = 0.

Moreover, we also have 𝐶⋆(ℓ) = 0 for ℓ ∈ [L⋆(0), ℓmax], and L⋆(𝑐) = 0 for 𝑐 ∈ [𝐶⋆(0), 𝑐max].

Proof. Let us prove (i). If 𝜂⋆ is Pareto optimal, then for any strategy 𝜂, if 𝐶(𝜂) ≤ 𝐶(𝜂⋆) then
L(𝜂) ≥ L(𝜂⋆) by taking the contraposition in (III.38), and 𝜂⋆ is indeed a solution of Problem (III.39)
with 𝑐 = 𝐶(𝜂⋆). Similarly 𝜂⋆ is a solution of Problem (III.40).

For the converse statement, let 𝜂⋆ be a solution of (III.39) for some 𝑐 and of (III.40) for some ℓ. It
is also a solution of (III.39) with 𝑐 = 𝐶(𝜂⋆). In particular, we get that for 𝜂 ∈ Δ, L(𝜂) < L(𝜂⋆) implies
that 𝐶(𝜂) > 𝑐 = 𝐶(𝜂⋆), which is the second part of (III.38). Similarly, use that 𝜂⋆ is a solution to
(III.40), to get that the first part of (III.38) also holds. Thus the strategy 𝜂⋆ is Pareto optimal.

To prove Point (ii), we first prove that ℱL is a subset of {(𝑐, ℓ) ∶ 𝑐 = 𝐶⋆(ℓ) and ℓ = L⋆(𝑐)}. A
point in ℱL may be written as (𝐶(𝜂⋆), L(𝜂⋆)) for some Pareto optimal strategy 𝜂⋆. By Point (i), 𝜂⋆
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(a) Value functions for Problems (III.39) and
(III.41).

0 𝐶⋆(ℓmax) 𝐶⋆(0) 𝑐max

0

L⋆(𝑐max)

L⋆(0)

ℓmax

𝐶⋆ 𝐶⋆

(b) Value functions for Problems (III.40) and
(III.42).
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(c) Pareto and anti-Pareto frontier.

0 𝐶⋆(ℓmax) 𝐶⋆(0) 𝑐max

0

L⋆(𝑐max)

L⋆(0)

ℓmax

ℱL ℱAnti
L

(d) Pareto and anti-Pareto frontier under
additional regularity Assumptions III.4-III.7.

Figure III.2: An example of the possible aspects of the feasible region F (in light blue), the value
functions L⋆, L

⋆, 𝐶⋆, 𝐶⋆, and the Pareto and anti-Pareto frontier (in red) under Assumption III.3.

solves Problem (III.39) for the cost 𝐶(𝜂⋆), so L⋆(𝐶(𝜂⋆)) = L(𝜂⋆). Similarly, we have 𝐶⋆(L(𝜂⋆)) =
𝐶(𝜂⋆), as claimed.

We now prove the reverse inclusion. Assume that 𝑐 = 𝐶⋆(ℓ) and ℓ = L⋆(𝑐), and consider 𝜂
a solution of Problem (III.40) for the loss ℓ: L(𝜂) ≤ ℓ and 𝐶(𝜂) = 𝐶⋆(ℓ) = 𝑐. Then 𝜂 is admissible
for Problem (III.39) with cost 𝑐 = 𝐶⋆(ℓ), so L(𝜂) ≥ L⋆(𝐶⋆(ℓ)) = L⋆(𝑐) = ℓ. Therefore, we get
L(𝜂) = 𝐿⋆(𝑐), and 𝜂 is also a solution of Problem (III.39). By Point (i), 𝜂 is Pareto optimal, so
(𝐶(𝜂), L(𝜂)) = (𝑐, ℓ) ∈ ℱL, and the reverse inclusion is proved.

Finally we prove Point (iii). We have 𝐶⋆(0) = min{𝐶(𝜂) ∶ 𝜂 ∈ Δ and L(𝜂) = 0} ∈ [0, 𝑐max].
Let 𝜂 ∈ Δ such that L(𝜂) = 0 and 𝐶(𝜂) = 𝐶⋆(0). We deduce that L⋆(𝐶⋆(0)) ≤ L(𝜂) = 0 and thus
L⋆(𝐶⋆(0)) = 0 as L is non-negative. We deduce from (ii) that (𝐶⋆(0), 0) belongs to ℱL. Since 𝐶⋆ is
non-increasing, we also get that 𝐶⋆ = 0 on [𝐶⋆(0), 𝑐max]. The other properties of (iii) are proved
similarly.

The next two hypotheses on 𝐶 and L will imply that the Pareto frontier is connected.
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Assumption III.4. If the cost 𝐶 has a local minimum (for the weak topology) at 𝜂, then 𝐶(𝜂) = 0,
that is, 𝜂 is a global minimum of 𝐶.

Assumption III.5. If the loss L has a local minimum (for the weak topology) at 𝜂, then L(𝜂) = 0,
that is, 𝜂 is a global minimum of L.

Under these hypotheses, the picture becomes much nicer, see Figure III.2(d), where the only
flat parts of the graphs of 𝐶⋆ and L⋆ occur at zero cost or zero loss.

Proposition III.5.5. Under Assumption III.3 and III.4 the following properties hold:

(i) The optimal cost 𝐶⋆ is decreasing on [0, L⋆(0)].

(ii) If 𝜂 solves Problem (III.40) for the loss ℓ ∈ [0, L⋆(0)], then L(𝜂) = ℓ (that is, the constraint is
binding). Moreover 𝜂 is Pareto optimal, and:

L⋆(𝐶⋆(ℓ)) = ℓ. (III.43)

(iii) The Pareto frontier is the graph of 𝐶⋆:

ℱL = {(𝐶⋆(ℓ), ℓ) ∶ ℓ ∈ [0, L⋆(0)]}. (III.44)

Similarly, under Assumptions III.3 and III.5, the following properties hold:

(iv) The optimal loss L⋆ is decreasing on [0, 𝐶⋆(0)].

(v) If 𝜂 solves Problem (III.39) for the cost 𝑐 ∈ [0, 𝐶⋆(0)], then 𝐶(𝜂) = 𝑐. Moreover 𝜂 is Pareto
optimal, and 𝐶⋆(L⋆(𝑐)) = 𝑐.

(vi) The Pareto frontier is the graph of L⋆:

ℱL = {(𝑐, L⋆(𝑐)) ∶ 𝑐 ∈ [0, 𝐶⋆(0)]}. (III.45)

Finally, if Assumptions III.4 and III.5 hold, then L⋆ is a continuous decreasing bijection of [0, 𝐶⋆(0)]
onto [0, 𝐿⋆(0)] and 𝐶⋆ is the inverse bijection, and the Pareto frontier is compact and connected.

Proof. We prove (i). Let 0 ≤ ℓ < ℓ′ ≤ L⋆(0), and let 𝜂⋆ be a solution of Problem (III.40):

𝐶(𝜂⋆) = 𝐶⋆(ℓ) and L(𝜂⋆) ≤ ℓ. (III.46)

The set 𝒪 = {𝜂 ∶ L(𝜂) < ℓ′} is open and contains 𝜂⋆. Since L(𝜂⋆) < L⋆(0), we get 𝐶(𝜂⋆) > 0, so
𝜂⋆ is not a global minimum for 𝐶. By Assumption III.4, it cannot be a local minimum for 𝐶, so 𝒪
contains at least one point 𝜂′ for which 𝐶(𝜂′) < 𝐶(𝜂⋆). Since 𝜂′ ∈ 𝒪, we get L(𝜂′) ≤ ℓ′, so that
𝐶⋆(ℓ′) ≤ 𝐶(𝜂′) < 𝐶(𝜂⋆) = 𝐶⋆(ℓ). Since ℓ < ℓ′ are arbitrary, 𝐶⋆ is decreasing on [0, L⋆(0)].

We now prove (ii). If the inequality in (III.46) was strict, that is L(𝜂⋆) < ℓ, then we would
get a contradiction as 𝐶(𝜂⋆) ≥ 𝐶⋆(L(𝜂⋆)) > 𝐶⋆(ℓ) = 𝐶(𝜂⋆). Therefore any solution 𝜂⋆ of (III.40)
satisfies L(𝜂⋆) = ℓ, and in particular 𝐶⋆(L(𝜂⋆)) = 𝐶⋆(ℓ) = 𝐶(𝜂⋆). This implies in turn that 𝜂⋆ also
solves (III.39): if 𝜂 satisfies L(𝜂) < L(𝜂⋆), then using the definition of 𝐶⋆, the fact that it decreases,
and the definition of 𝜂⋆, we get:

𝐶(𝜂) ≥ 𝐶⋆(L(𝜂)) > 𝐶⋆(L(𝜂⋆)) = 𝐶(𝜂⋆).

By contraposition, we have L(𝜂) ≥ L(𝜂⋆) for any 𝜂 such that 𝐶(𝜂) ≤ 𝐶(𝜂⋆), proving that 𝜂⋆ is also a
solution of (III.39) with 𝑐 = 𝐶(𝜂∗). By Point (i) of Proposition III.5.4, 𝜂⋆ is Pareto optimal. Therefore
(𝐶(𝜂⋆), L(𝜂⋆)) = (𝐶⋆(ℓ), ℓ) belongs to the Pareto frontier. Using Point (ii) of Proposition III.5.4, we
deduce that ℓ = L⋆(𝐶⋆(ℓ)).

To prove Point (iii), note that Equation (III.43) shows that, if 𝑐 = 𝐶⋆(ℓ) for ℓ ∈ [0, L⋆(0)], then
ℓ = L⋆(𝑐). Use Point (ii) and (iii) of Proposition III.5.4, to get that ℱL = {(𝑐, ℓ) ∶ 𝑐 = 𝐶⋆(ℓ), ℓ ∈
[0, L⋆(0)]}.
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The claims (iv), (v) and (vi) are proved in the same way, exchanging the roles of L and 𝐶.

To conclude the proof, it remains to check that 𝐶⋆ and L⋆ are continuous under Assumptions
III.3, III.4 and III.5. We deduce from Point (ii) and Proposition III.5.3 that [0, L⋆(0)] is in the range
of L⋆. Since L⋆ is decreasing, thanks to Point (iv) and L⋆(𝐶⋆(0)) = 0, see Proposition III.5.4 (iii),
the function L⋆ is continuous and decreasing on [0, L⋆(0)], and thus one-to-one from [0, 𝐶⋆(0)]
onto [0, L⋆(0)]. Thanks to (III.43), its inverse bijection is the function 𝐶⋆. Since the frontier ℱL is
given by (III.45), and L⋆ is continuous, ℱL is compact and connected.

Finally, let us check that Assumptions III.4 and III.5 hold under very simple assumptions, which
are in particular satisfied by the cost functions 𝐶uni and 𝐶aff and the loss functionsℜ𝑒 and ℑ (recall
from Propositions III.4.1 and III.4.5 that ℜ𝑒 and ℑ are sub-homogeneous).

Lemma III.5.6. Suppose Assumption III.3 holds. If the cost function 𝐶 is decreasing, then Assumption
III.4 holds and L⋆(0) = ℓmax. If the loss function L is sub-homogeneous, then Assumption III.5 holds.

Proof. Let 𝜂 ∈ Δ. If 𝐶 has a local minimum at 𝜂, then, as 𝐶 is non-increasing, for 𝜀 > 0 small enough,
we get that 𝐶(𝜂) ≥ 𝐶(𝜂 + 𝜀(1 − 𝜂)) ≥ 𝐶(𝜂). If 𝐶 is decreasing, this is only possible if 𝜂 = 𝟙, so that 𝜂
is a global minimum of 𝐶. This also gives L⋆(0) = ℓmax. Similarly if L has a local minimum at 𝜂,
then for 𝜀 > 0 small enough L(𝜂) ≤ L((1− 𝜀)𝜂) ≤ (1− 𝜀)L(𝜂), so L(𝜂) = 0 and 𝜂 is a global minimum
of L.

Corollary III.5.7. Suppose that Assumptions III.3, III.4 and III.5 hold. The set of Pareto optimal
strategies 𝒫L is compact (for the weak topology).

Proof. Since L⋆ is continuous thanks to Proposition III.5.5, we deduce that ℱL, which is given
by (III.45), is compact and thus closed. Since 𝒫L = 𝑓 −1(ℱL), where the function 𝑓 = (𝐶, L) defined
on Δ is continuous, we deduce that 𝒫L is closed and thus compact as Δ is compact.

III.5.3 On the anti-Pareto frontier

Letting 𝐶′(𝜂) = ℓmax − L(𝜂) and L′(𝜂) = 𝑐max − 𝐶(𝜂), it is easy to see that:

𝐶′⋆(𝑐) = ℓmax − L⋆(𝑐max − 𝑐) and L′⋆(ℓ) = 𝑐max − 𝐶⋆(ℓmax − ℓ),

so that Proposition III.5.5 may be applied to the cost function 𝐶′ and the loss function L′ to yield
the following result.

Proposition III.5.8 (Single-objective and bi-objective problems for the anti Pareto). Suppose
Assumption III.3 holds.

(i) If 𝜂⋆ is anti-Pareto optimal, then 𝜂⋆ is a solution of (III.41) for the cost 𝑐 = 𝐶(𝜂⋆), and a solution
of (III.42) for the loss ℓ = L(𝜂⋆). Conversely, if 𝜂⋆ is a solution to both problems (III.41) and
(III.42) for some values 𝑐 and ℓ, then 𝜂⋆ is anti-Pareto optimal.

(ii) The anti-Pareto frontier is the intersection of the graphs of 𝐶⋆ and L⋆:

ℱAnti
L = {(𝑐, ℓ) ∈ [0, 𝑐max] × [0, ℓmax] ∶ 𝑐 = 𝐶⋆(ℓ) and ℓ = L⋆(𝑐)}.

(iii) The points (𝐶⋆(ℓmax), ℓmax) and (𝑐max, L⋆(𝑐max)) both belong to the anti-Pareto frontier, and
we have 𝐶⋆(L⋆(𝑐max)) = 𝑐max and L⋆(𝐶⋆(ℓmax)) = ℓmax.

Moreover, we also have 𝐶⋆(ℓ) = 𝑐max for ℓ ∈ [0, L⋆(𝑐max)], and L⋆(𝑐) = ℓmax for 𝑐 ∈
[0, 𝐶⋆(ℓmax)].

The following additional hypotheses rule out the occurrence of flat parts in the anti-Pareto
frontier.

Assumption III.6. If the cost 𝐶 has a local maximum at 𝜂 (for the weak topology), then 𝐶(𝜂) = 𝑐max
and 𝜂 is a global maximum of 𝐶.
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Assumption III.7. If the loss L has a local maximum at 𝜂 (for the weak topology), then L(𝜂) = ℓmax
and 𝜂 is a global maximum of L.

The following result is now a consequence of Proposition III.5.5 and Corollary III.5.7 applied
to the loss function L′ and cost function 𝐶′.

Proposition III.5.9. Under Assumption III.3 and III.6 the following properties hold:

(i) The optimal cost 𝐶⋆ is decreasing on [L⋆(𝑐max), ℓmax].

(ii) If 𝜂 solves Problem (III.42) for the loss ℓ ∈ [L⋆(𝑐max), ℓmax], then L(𝜂) = ℓ (that is, the constraint
is binding). Moreover 𝜂 is anti-Pareto optimal, and L⋆(𝐶⋆(ℓ)) = ℓ.

(iii) The anti-Pareto frontier is the graph of 𝐶⋆:

ℱAnti
L = {(𝐶⋆(ℓ), ℓ) ∶ ℓ ∈ [L⋆(𝑐max), ℓmax]}. (III.47)

Similarly, under Assumptions III.3 and III.7, the following properties hold:

(iv) The optimal loss L⋆ is decreasing on [𝐶⋆(ℓmax), 𝑐max].

(v) If 𝜂 solves Problem (III.41) for the cost 𝑐 ∈ [𝐶⋆(ℓmax), 𝑐max], then 𝐶(𝜂) = 𝑐. Moreover 𝜂 is
anti-Pareto optimal, and 𝐶⋆(L⋆(𝑐)) = 𝑐.

(vi) The anti-Pareto frontier is the graph of L⋆:

ℱAnti
L = {(𝑐, L⋆(𝑐)) ∶ 𝑐 ∈ [𝐶⋆(ℓmax), 𝑐max]}. (III.48)

Finally, suppose that Assumptions III.3, III.6 and III.7 hold. Then, L⋆ is a continuous decreasing
bijection of [𝐶⋆(ℓmax), 𝑐max] onto [L⋆(𝑐max), ℓmax], 𝐶⋆ is the inverse bijection, and the anti-Pareto
frontier is compact and connected. Furthermore, the set of anti-Pareto optimal strategies 𝒫Anti

L is
compact (for the weak topology).

The following result is similar to the first part of Lemma III.5.6.

Lemma III.5.10. Suppose Assumption III.3 holds. If the cost function 𝐶 is decreasing, then Assumption
III.6 holds and L⋆(𝑐max) = 0.

Proof. Let 𝜂 ∈ Δ and 𝜀 ∈ (0, 1). Since 𝐶 is decreasing, 𝐶((1−𝜀)𝜂) ≥ 𝐶(𝜂), with equality if and only if
𝜂 = 𝟘 𝜇-almost surely. Therefore the only local maximum of 𝐶 is 𝜂 = 𝟘, and it is a global maximum.
Since 𝐶(𝜂) = 𝑐max implies that 𝜂 = 𝟘 𝜇-almost surely, we also get that L⋆(𝑐max) = L(𝟘) = 0.

III.5.4 The particular case of the kernel and SIS models

We check in this section that the loss functions ℜ𝑒 and ℑ satisfy Assumption III.5. We also prove
under some irreducibility condition on the kernel thatℜ𝑒 satisfies Assumption III.7. The situation is
a bit more complicated fo the lossℑ, for which Assumption III.7 does not hold. However, ℑ satisfies
a weakened version; see Assumption III.8 below and its consequences in Proposition III.5.15 (to be
compared with items (iv)-(vi) from Proposition III.5.9). The reducible case is more delicate and
it is studied in more details in Section 7 of Chapter IV for the loss function L = ℜ𝑒; in particular
Assumption III.7 may not hold and the anti-Pareto frontier may not be connected.

We represent in Figure III.3 the typical Pareto and anti-Pareto frontiers for the loss ℜ𝑒[𝐤]
and ℑ[𝑘, 𝛾 ] with a continuous decreasing cost function, when the kernel 𝐤 and 𝑘 have only one
irreducible component, that is are monatomic (see definition in the next section).
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0 𝐶⋆(ℓmax) 𝐶⋆(0) 𝑐max

0

ℜ0

(a) The loss function L = ℜ𝑒 for the kernel model
with 𝐤 monatomic.

0 𝑐0 𝑐max𝐶⋆(0)𝐶⋆(ℓmax)

0

ℑ(𝟙)

(b) The loss function L = ℑ for the SIS model with
𝑘 (or 𝑘/𝛾) monatomic and 𝑐0 = 𝐶⋆(0+).

Figure III.3: Typical shape of the Pareto frontier ℱ in solid red line, the anti-Pareto frontier ℱAnti

in red dashed line and the feasible region F in light blue for monatomic cases with continuous
decreasing cost function 𝐶 and loss functions ℜ𝑒 or ℑ.

Irreducible, quasi-irreducible and monatomic kernels

We first define irreducible andmonatomic kernels. For𝐴, 𝐵 ∈ ℱ, we write𝐴 ⊂ 𝐵 a.s. if 𝜇(𝐵∁∩𝐴) = 0
and 𝐴 = 𝐵 a.s. if a.s. 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴. For 𝐴, 𝐵 ∈ ℱ, 𝑥 ∈ Ω and an integrable kernel 𝐤, we simply
write 𝐤(𝑥, 𝐴) = ∫𝐴 𝐤(𝑥, 𝑦) 𝜇(d𝑦), 𝐤(𝐵, 𝑥) = ∫𝐵 𝐤(𝑧, 𝑥) 𝜇(d𝑧) and:

𝐤(𝐵, 𝐴) = ∫
𝐵×𝐴

𝐤(𝑧, 𝑦) 𝜇(d𝑧)𝜇(d𝑦).

A set 𝐴 ⊂ ℱ is 𝐤-invariant, or simply invariant when there is no ambiguity on the kernel 𝐤, if
𝐤(𝐴∁, 𝐴) = 0. If 𝐤 is symmetric, then 𝐴 is invariant if and only if 𝐴∁ is invariant. In the epidemio-
logical setting, the set 𝐴 is invariant if the subpopulation 𝐴 does not infect the subpopulation 𝐴∁.

A kernel 𝐤 is irreducible or connected if any 𝐤-invariant set 𝐴 is such that a.s. 𝐴 = ∅ or
a.s. 𝐴 = Ω. According to [136, Theorem V.6.6], if 𝐤 is an irreducible kernel with finite double
norm, then we have ℜ0[𝐤] > 0. If the kernel is a.s. positive, then it is irreducible. Following [17,
Definition 2.11], we say that a kernel is quasi-irreducible if 𝐤 restricted to {𝐤 ≡ 0}∁, with {𝐤 ≡ 0} =
{𝑥 ∈ Ω ∶ 𝐤(𝑥, Ω) + 𝐤(Ω, 𝑥) = 0}, is irreducible. The quasi-irreducible property was introduced for
symmetric kernel; for general kernel one can consider the following weaker property. A kernel
𝐤 is monatomic if the operator 𝑇𝐤 has a unique (up to a multiplicative constant) non-negative
eigenfunction. Intuitively, this corresponds to have only one irreducible component. Formally,
this is also equivalent to the following two properties:

(i) There exists a measurable subset Ωa ⊂ Ω, the irreducible component or atom such that:

• 𝜇(Ωa) > 0 and the kernel 𝐤 restricted to Ω𝑎 is irreducible.

• If a.s. Ω∁
a ≠ ∅ then the restriction of 𝑇𝐤 to Ω∁

a is quasi-nilpotent, that is,ℜ𝑒[𝐤](𝟙Ω∁
a
) = 0.

(ii) There exists a measurable subset Ωi ⊂ Ω∁
a, “the subpopulation infected by” Ωa such that:

• The sets Ωa ∪ Ωi and Ωi are invariant.

• The setΩi is the minimal set such thatΩa ∪Ωi is invariant: if𝐴 is invariant andΩa ⊂ 𝐴
then a.s. Ωi ⊂ 𝐴.
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In the epidemiological setting, the subpopulation Ωi can only infect itself, and the subpopulation
Ωa infects only itself and Ωi. We refer to [138] for further details on the decomposition of a
kernel on its irreducible components; in particular the sets Ωa and Ωi are unique up to the a.s.
equivalence.

The following result explains the usefulness of monatomicity: it implies in particular that the
effective spectral radius of a vaccination only depends on its value on the atom.

Lemma III.5.11 (Reduction to the atom). Assume that the kernel 𝐤 is monoatomic with atom Ωa.
Let 𝐤𝑎 be the restriction of 𝐤 to Ωa × Ωa. Then, for any 𝜂 ∈ Δ,

ℜ𝑒[𝐤](𝜂) = ℜ𝑒[𝐤a](𝜂a),

where 𝜂a is the restriction of 𝜂 to Ωa.

Proof. We deduce from [138, Lemma 11] that if 𝐴, 𝐵 ∈ ℱ are such that 𝐴 ∩ 𝐵 = ∅ a.s. and
𝐤′(𝐵, 𝐴) = 0 for a kernel 𝐤′ with finite double norm, then the spectral radius of the operator 𝑇𝐤′
restricted to 𝐴 ∪ 𝐵 is the maximum of the spectral radii of the operator 𝑇𝐤′ restricted to 𝐴 and to 𝐵:

ℜ𝑒[𝐤′](𝟙𝐴∪𝐵) = max (ℜ𝑒[𝐤′](𝟙𝐴), ℜ𝑒[𝐤′](𝟙𝐵)) . (III.49)

Set Ω′ = (Ωa ∪ Ωi)∁. We deduce that:

ℜ𝑒[𝐤](𝜂) = max (ℜ𝑒[𝐤𝜂](𝟙Ωa
), ℜ𝑒[𝐤𝜂](𝟙Ωa

), ℜ𝑒[𝐤𝜂](𝟙Ω′)) = ℜ𝑒[𝐤𝜂](𝟙Ωa
),

where we used (III.49) once with 𝐴 = 𝐵∁ = Ωa ∪Ωi, which is invariant by definition, and once with
𝐴 = Ωi, which is invariant by definition, and 𝐵 = Ωa for the first equality, and that the restriction
of 𝐤 to Ω∁

a = Ωi ∪ Ω′ is quasi-nilpotent. We deduce that:

ℜ𝑒[𝐤](𝜂) = ℜ𝑒[𝐤a](𝜂a),

where 𝐤a is the kernel 𝐤 restricted to Ωa and 𝜂a is the restriction of 𝜂 to Ωa.

Remark III.5.12. Irreducible and quasi-irreducible kernels are also monatomic (take Ωa = {𝐤 ≡ 0}𝑐
and Ωi = ∅). If the kernel 𝐤 is monatomic and symmetric, then we get 𝐤 = 𝟙Ωa

𝐤 𝟙Ωa
and thus the

kernel 𝐤 is quasi-irreducible.

The notion of irreducibility of a kernel depends only on its support: the kernel 𝐤 is irreducible
(resp. quasi-irreducible, resp. monatomic) if and only if the kernel 𝟙{𝐤>0} is irreducible (resp.
quasi-irreducible, resp. monatomic). Furthermore, if 𝐤 is monatomic, then the kernels 𝐤 and 𝟙{𝐤>0}
have the same atom Ωa and the same set Ωi infected by Ωa.

In the epidemiological setting, the support of the endemic equilibrium in the supercritical
regime (ℜ0 > 1) for a monatomic kernel is given by the atom and the subpopulation it infects,
that is, Ωa ∪ Ωi. A very similar proof yields that Ωa ∪ Ωi is also the support of the non-negative
right Perron eigenfunction of the operator 𝑇𝑘/𝛾 (or of the operator 𝑇𝛾−1𝑘).

Lemma III.5.13 (Support of the equilibrium in the monatomic case). Consider the supercritical
SIS model Param = [(Ω,ℱ , 𝜇), 𝑘, 𝛾 ] under Assumption III.2 (that is, ℜ0[𝑘/𝛾 ] > 1). If 𝑘 is monatomic
with atom Ωa and Ωi the smallest subpopulation infected by Ωa, then the maximal equilibrium 𝔤 is
the only non-zero equilibrium, and the following equality is satisfied up to a zero-measure set:

{𝔤 > 0} = Ωa ∪ Ωi.

Proof. Let ℎ be a (non-zero) equilibrium. We recall from (III.18) with 𝐹(ℎ) = 0 that:

ℎ
1 − ℎ

= 𝛾−1 ∫
Ω
𝑘(⋅, 𝑦) ℎ(𝑦) 𝜇(d𝑦). (III.50)

In a first step, we prove that {ℎ > 0} ⊂ Ωa ∪ Ωi. Let 𝐴 be an invariant subset. Since ℎ is
an equilibrium, we deduce using (III.50) that ℎ restricted to 𝐴∁ is also an equilibrium of the SIS
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model restricted to 𝐴∁. As 𝑘 restricted to Ω′ = (Ωa ∪ Ωi)∁ is quasi-nilpotent, we get that the only
equilibrium of the SIS model restricted to Ω′ is zero. Since Ωa ∪ Ωi is invariant, we deduce that
ℎ = 0 on Ω′ and thus {ℎ > 0} ⊂ Ωa ∪ Ωi.

Let us prove the reverse inclusion. Since 𝑘(Ωa, Ωi) = 0 asΩi is invariant, we deduce from (III.50)
that ℎ restricted to the atom Ωa, say ℎa, is an equilibrium of the SIS model restricted to Ωa. Since 𝑘
restricted to Ωa is irreducible, the function ℎa is either identically zero, or positive everywhere. By
definition of Ωi and using (III.50), we deduce that if ℎa = 0, then the restriction of ℎ to Ωi, say ℎ𝑖, is
an equilibrium of the SIS model restricted to Ωi. Since 𝑘 is quasi-nilpotent on Ωi, we deduce that
ℎ𝑖 = 0, and thus ℎ = 0, which is absurd by hypothesis. Therefore ℎa is positive, thus Ωa ⊂ {ℎ > 0}.

Let us now check that Ωi ⊂ {ℎ > 0}. We deduce from (III.50) that for 𝑥 ∈ {ℎ = 0} we have
∫Ω 𝑘(𝑥, 𝑦) ℎ(𝑦) 𝜇(d𝑦) = 0 and thus 𝑘(𝑥, {ℎ > 0}) = 0. This implies that {ℎ > 0} is invariant. Since
Ωa ∪ Ωi is by definition the smallest invariant set containing Ωa and since Ωa ⊂ {ℎ > 0}, we must
have Ωi ⊂ {ℎ > 0}. In conclusion, we have obtained that the support of any non-zero equilibrium
ℎ is almost surely equal to Ωa ∪ Ωi.

Finally let us prove that 𝔤 is the only non-zero equilibrium. Let ℎ be another non-zero equi-
librium. The previous points show that ℎa and 𝔤a, the restrictions of ℎ and 𝔤 to the atom Ωa, are
positive equilibria for the SIS model restricted to Ωa; since this model is irreducible, they are equal,
so ℎ = 𝔤 on Ωa. Now, using Lemma III.5.11, for the first and third equalities, and Lemma III.4.4,
point (iii) for the last one, we get:

ℜ𝑒[𝐤](1 − ℎ) = ℜ𝑒[𝐤a](1 − ℎa) = ℜ𝑒[𝐤a](1 − 𝔤a) = ℜ𝑒[𝐤](1 − 𝔤) = 1.

By Lemma III.4.4, point (ii), this implies that ℎ is the maximal equilibrium 𝔤.

The kernel model

We now check Assumptions III.5 and III.7 for the loss L = ℜ𝑒.

Lemma III.5.14. Consider the kernel model Param = [(Ω,ℱ , 𝜇), 𝐤] under Assumption III.1 with the
loss L = ℜ𝑒[𝐤] and ℓmax = ℜ0[𝐤].

(i) Assumption III.5 holds, and if ℜ0[𝐤] > 0, then the part of Assumption III.3 on the loss holds.

(ii) If 𝐤 is monatomic with atom Ωa, then Assumption III.7 holds, and we have ℜ0[𝐤] > 0 and
𝐶⋆(ℓmax) = 𝐶(𝟙Ωa

) (which is 0 if 𝐤 is irreducible).

Proof. Since the loss L = ℜ𝑒[𝐤] is homogeneous according to Proposition III.4.1, we deduce
from Lemma III.5.6 that Assumption III.5 holds. Using Theorem III.4.2, for the continuity, and
Proposition III.4.1, for the monotonicity of the function ℜ𝑒[𝐤], and the fact that ℜ0[𝐤] > 0, the
hypotheses on the loss in Assumption III.3 hold.

To prove that Assumption III.7 holds, we first assume that the kernel 𝐤 is irreducible. In
particular, we have 𝐤(Ω, 𝑦) > 0 almost surely. Let 𝜂 ∈ Δ be a local maximum; we want to show
that it is also a global maximum.

Suppose first that inf 𝜂 > 0. Then 𝐤𝜂 is irreducible with finite double norm. According [136,
Theorem V.6.6 and Example V.6.5.b], the eigenspace of 𝑇𝐤𝜂 associated to ℜ𝑒(𝜂) is one-dimensional
and it is spanned by a vector 𝑣d such that 𝑣d > 0 almost surely, and the corresponding left
eigenvector associated to ℜ𝑒(𝜂), say 𝑣g, can be chosen such that ⟨𝑣g, 𝑣d⟩ = 1 and 𝑣g > 0 almost
surely. According to [98, Theorem 2.6], applied to 𝐿0 = 𝑇𝐤𝜂 and 𝐿 = 𝑇𝐤(𝜂+𝜀(1−𝜂)) with 𝜀 ∈ (0, 1), we
have, using that ‖ 𝐿0 − 𝐿 ‖ = 𝑂(𝜀) thanks to (III.12):

ℜ𝑒(𝜂 + 𝜀(1 − 𝜂)) = ℜ𝑒(𝜂) + 𝜀⟨𝑣g, 𝑇𝐤(1−𝜂)𝑣d⟩ + 𝑂(𝜀2).

Since ℜ𝑒 has a local maximum at 𝜂, the first order term on the right hand side vanishes, so
𝑣g(𝑥)𝐤(𝑥, 𝑦)(1 − 𝜂(𝑦))𝑣d(𝑦) = 0 for 𝜇 almost all 𝑥 and 𝑦. Since 𝑣g and 𝑣d are positive almost surely
and 𝐤 is irreducible, we get that 𝐤(Ω, 𝑦)(1 − 𝜂(𝑦)) = 0 almost surely and thus 𝜂(𝑦) = 1 almost
surely. Therefore 𝜂 = 𝟙, which is a global maximum for ℜ𝑒.
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Finally, suppose that inf 𝜂 = 0. Let 𝒪 be an open subset of Δ on which ℜ𝑒 ≤ ℜ𝑒(𝜂) and
with 𝜂 ∈ 𝒪. For 𝜀 > 0 small enough, the strategy 𝜂𝜀 = 𝜂 + 𝜀(1 − 𝜂) belongs to 𝒪 and satisfies
ℜ𝑒(𝜂) ≤ ℜ𝑒(𝜂𝜀) ≤ ℜ𝑒(𝜂) (where the first inequality comes from the fact that ℜ𝑒 is non-decreasing).
Therefore 𝜂𝜀 is a local maximum with inf 𝜂𝜀 ≥ 𝜀, and thus, thanks to the first part of the proof,
𝜂𝜀 = 𝟙. This readily implies that 𝜂 = 𝟙.

We deduce that if 𝜂 is a local maximum, then 𝜂 = 𝟙. Thus 𝜂 is a global maximum and
𝐶⋆(ℓmax) = 𝐶(𝟙) = 0. This ends the proof for the irreducible case.

To treat the monatomic case, recall that for any 𝜂, we know by Lemma III.5.11 that

ℜ𝑒[𝐤](𝜂) = ℜ𝑒[𝐤a](𝜂a),

where 𝜂a is the restriction of 𝜂 to the atom Ωa. Since by hypothesis 𝐤a is irreducible, we deduce
from [136, Theorem V.6.6] that ℜ0[𝐤a] > 0 and thus ℜ0[𝐤] > 0. Furthermore, if 𝜂 is a local
maximum for ℜ𝑒[𝐤], then 𝜂a is a local maximum for ℜ𝑒[𝐤a]. Since by hypothesis 𝐤a is irreducible,
we deduce from the first part of the proof that 𝜂a = 𝟙a, and thus 𝜂 ≥ 𝟙Ωa

as well as ℜ𝑒[𝐤](𝜂) ≥
ℜ𝑒[𝐤](𝟙Ωa

) = ℜ𝑒[𝐤](𝟙). Thus, the strategy 𝜂 is a global maximum. This implies that Assumption
III.7 holds.

Use that 𝟙a, the unity function defined on Ωa, is the only global maximum of ℜ𝑒[𝐤a] thanks to
the first part of the proof, to deduce that 𝜂 is a global maximum of ℜ𝑒[𝐤] if and only if a.s. 𝜂 ≥ 𝟙Ωa

.
We deduce that 𝐶⋆(ℓmax) = 𝐶(𝟙Ωa

).

The SIS model

The loss L = ℑ does not satisfies Assumption III.7 in general even when the kernel 𝐤 is irreducible.
Indeed, by continuity of ℜ𝑒, there exists a (weakly) open neighborhood 𝒪 of 𝟘 such that ℜ𝑒(𝜂) < 1
for all 𝜂 ∈ 𝒪: consequently ℑ is identically zero on 𝒪, and any 𝜂 ∈ 𝒪 is a local maximum of L = ℑ.
However, these maxima are not global in the supercritical case where ℑ(𝟙) > 0. For this reason,
we shall consider the following variant of Assumption III.7, where one does not consider the zeros
of the loss.

Assumption III.8. If the loss L has a local maximum at 𝜂 (for the weak topology) and L(𝜂) > 0,
then L(𝜂) = ℓmax and 𝜂 is a global maximum of L.

We set:
𝑐0 = 𝐶⋆(0+) = lim

ℓ→0
ℓ>0

𝐶⋆(ℓ).

Under Assumption III.7, we have 𝑐0 = 𝑐max. If Assumption III.8 holds and 𝑐0 = 𝑐max, then
Assumption III.7 holds; so we only need to consider Assumption III.8 with 𝑐0 < 𝑐max. Eventually,
if 𝑐0 < 𝑐max, then we have L⋆(𝑐max) = 0.

Considering Assumption III.8 with 𝑐0 < 𝑐max instead of Assumption III.7 impacts only items (iv),
(v), (vi) and the conclusion of Proposition III.5.9 as follows; we refer to Figure IV.3(a) for an
illustration, and leave the proof to the reader.

Proposition III.5.15. Under Assumptions III.3 and III.8 and 𝑐0 < 𝑐max, the following properties hold:

(iv) The optimal loss L⋆ is decreasing on [𝐶⋆(ℓmax), 𝑐0] and zero on (𝑐0, 𝑐max].

(v) If 𝜂 solves Problem (III.41) for the cost 𝑐 ∈ [𝐶⋆(ℓmax), 𝑐0), then 𝐶(𝜂) = 𝑐. Moreover 𝜂 is anti-
Pareto optimal, and 𝐶⋆(L⋆(𝑐)) = 𝑐.

(vi) The anti-Pareto frontier is also given by:

ℱAnti
L = {(𝑐, L⋆(𝑐)) ∶ 𝑐 ∈ [𝐶⋆(ℓmax), 𝑐0)} ∪ {(𝑐max, 0)}. (III.51)
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If furthermore Assumption III.6 holds, then the function L⋆ is a continuous decreasing bijection
of [𝐶⋆(ℓmax), 𝑐0) onto (0, ℓmax], 𝐶⋆ is the inverse bijection, and the union of the anti-Pareto frontier
with its limit point {(𝑐0, 0)} is compact but not connected.

We are now ready to check that Assumption III.8 holds for the loss L = ℑ when the kernel 𝑘 is
monatomic.

Lemma III.5.16. Consider the SIS model Param = [(Ω,ℱ , 𝜇), 𝑘, 𝛾 ] under Assumption III.2 with the
loss L = ℑ and ℓmax = ℑ(𝟙).

(i) Assumption III.5 holds, and if ℑ(𝟙) > 0, then the part of Assumption III.3 on the loss holds.

(ii) If 𝑘 is monatomic and ℑ(𝟙) > 0, then Assumption III.8 holds for L = ℑ. Moreover, 𝐶⋆(ℓmax) =
𝐶(𝟙{𝔤>0}), where 𝔤 is the maximal equilibrium, and ℓmax = ℑ(𝟙) (we also have that 𝐶⋆(ℓmax) =
0 if 𝑘 is irreducible). Furthermore, if the cost function 𝐶 is decreasing, then we have 𝑐0 < 𝑐max.

Proof. We prove Point (i). Since the loss L = ℑ is sub-homogeneous, see Proposition III.4.5, we
deduce from Lemma III.5.6 that Assumption III.5 holds. Using Theorem III.4.6 (for the continu-
ity), Proposition III.4.5 (for the monotonicity of the function ℑ) and the fact that ℑ(𝟙) > 0, the
hypotheses on the loss in Assumption III.3 hold.

We now prove Point (ii). Assume that ℑ(𝟙) > 0 and set 𝐤 = 𝑘/𝛾. Since {𝐤 > 0} = {𝑘 > 0},
and 𝑘 is monatomic, we deduce that 𝐤 is monatomic with the same atom Ωa and same smallest
subpopulation Ωi infected by Ωa. Let 𝔤 be the maximal equilibrium. It is non-zero as ℑ(𝟙) > 0.
Suppose that ℑ has a local maximum at some 𝜂 ∈ Δ and ℑ(𝜂) > 0. For 𝜀 ∈ (0, 1), set 𝜂𝜀 = 𝜂+𝜀(1−𝜂).
We have that for 𝜀 > 0 small enough:

ℑ(𝜂) ≥ ℑ(𝜂𝜀) = ∫
Ω
𝔤𝜂𝜀 𝜂𝜀 d𝜇 ≥ ∫

Ω
𝔤𝜂𝜀 𝜂 d𝜇 ≥ ∫

Ω
𝔤𝜂 𝜂 d𝜇 = ℑ(𝜂), (III.52)

where we used that 𝜂 ≤ 𝜂𝜀 and 0 ≤ 𝔤𝜂 ≤ 𝔤𝜂𝜀 , see (III.33). Therefore all these quantities are equal.
Since {𝑘𝜂𝜀 > 0} = {𝑘 > 0}, we deduce that 𝐤𝜂𝜀 is monatomic with atom Ωa and the smallest
subpopulation Ωi infected by Ωa. We deduce from Lemma III.5.13, that {𝔤𝜂𝜀 > 0} = Ωa ∪ Ωi. We
deduce from (III.52), as all the inequalities are equalities, that 𝜂𝜀 = 𝜂 onΩa ∪Ωi, and thus 𝜂 ≥ 𝟙Ωa∪Ωi

.
Recall from (III.33) that 𝔤𝜂 ≤ 𝔤. and from Lemma III.5.13 that {𝔤 > 0} = Ωa ∪ Ωi. So 𝔤𝜂 is zero

outside Ωa ∪ Ωi, and we deduce that changing the value of 𝜂 outside Ωa ∪ Ωi does not affect the
value of ℑ(𝜂). In conclusion, 𝜂 ∈ Δ is a local maximum such that ℑ(𝜂) > 0 if and only if 𝜂 ≥ 𝟙Ωa∪Ωi

,
and thus is a global maximum. We deduce that 𝐶⋆(ℓmax) = 𝐶(𝟙{𝔤>0}).

Eventually, notice that the set {𝜂 ∈ Δ ∶ ℜ𝑒[𝐤](𝜂) < 1} is an open neighborhood of 𝟘 on which
ℑ is zero. If the cost function 𝐶 is decreasing, this implies there exists 𝜂 ∈ Δ such that 𝐶(𝜂) < 𝑐max
and ℑ(𝜂) = 0 and thus 𝑐0 < 𝑐max.

III.6 Miscellaneous properties of the feasible region and the Pareto
frontier

We prove results concerning the feasible region, the stability of the Pareto frontier and its geometry.

III.6.1 The feasible region

In the following proposition we check a number of topological properties of the set of outcomes F =
{(𝐶(𝜂), L(𝜂)), 𝜂 ∈ Δ}.

Proposition III.6.1 (No hole in the feasible region). Suppose that Assumption III.3 holds. The
feasible region F is compact, path connected, and its complement is connected in ℝ2. It is the whole
region between the graphs of the one-dimensional value functions:

F = {(𝑐, ℓ) ∈ ℝ2 ∶ 0 ≤ 𝑐 ≤ 𝑐max, L⋆(𝑐) ≤ ℓ ≤ L⋆(𝑐)}
= {(𝑐, ℓ) ∈ ℝ2 ∶ 0 ≤ ℓ ≤ ℓmax, 𝐶⋆(ℓ) ≤ 𝑐 ≤ 𝐶⋆(ℓ)}.
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Proof. The region F is compact and path-connected as a continuous image by (𝐶, L) of the compact,
path-connected set Δ.

By symmetry, it is enough to prove that F is equal to 𝐹1 = {(𝑐, ℓ) ∈ ℝ2 ∶ 0 ≤ 𝑐 ≤ 𝑐max, L⋆(𝑐) ≤
ℓ ≤ L⋆(𝑐)}. Let (𝑐, ℓ) ∈ F and 𝜂 ∈ Δ be such that (𝑐, ℓ) = (𝐶(𝜂), L(𝜂)). By definition of L⋆ and L⋆, we
have: L⋆(𝑐) = L⋆(𝐶(𝜂)) ≤ L(𝜂) ≤ L⋆(𝐶(𝜂)) = L⋆(𝑐). We deduce that (𝑐, ℓ) ∈ 𝐹1.

Let us now prove that 𝐹1 ⊂ F. Let us first consider a point of the form (𝑐, L⋆(𝑐)), where
0 ≤ 𝑐 ≤ 𝑐max. By definition, there exists 𝜂 such that 𝐶(𝜂) ≤ 𝑐 and L(𝜂) = L⋆(𝑐). Let 𝜂𝑡 = 𝑡𝜂. The
map 𝑡 ↦ 𝐶(𝜂𝑡) is continuous from [0, 1] to [𝐶(𝜂), 𝑐max], and 𝑐 ∈ [𝐶(𝜂), 𝑐max], so there exists 𝑠 such
that 𝐶(𝜂𝑠) = 𝑐. Since L is non-decreasing, L(𝜂𝑠) ≤ L(𝜂). By definition of L⋆(𝑐), L(𝜂𝑠) ≥ L⋆(𝑐).
Therefore (𝑐, L⋆(𝑐)) = (𝐶(𝜂𝑠), L(𝜂𝑠)) belongs to F. Similarly the graphs of 𝐶⋆, 𝐶⋆ and L⋆ are also
included in F.

So, it is enough to check that, if 𝐴 = (𝑐, ℓ) is in 𝐹1, with 𝑐 ∈ (0, 𝑐max) and ℓ ∈ (L⋆(𝑐), L⋆(𝑐)), then
𝐴 belongs to F. We shall assume that 𝐴 ∉ F and derive a contradiction by building a loop in F that
encloses 𝐴 and which can be continuously contracted into a point in F.

Since L⋆(𝑐) < ℓ < L⋆(𝑐), there exist 𝜂SO and 𝜂NE such that:

𝐶(𝜂SO) ≤ 𝑐, L(𝜂SO) < ℓ, 𝐶(𝜂NE) ≥ 𝑐 and L(𝜂NE) > ℓ.

We concatenate the four paths defined for 𝑢 ∈ [0, 1]:

𝑢 ↦ 𝑢𝜂SO, 𝑢 ↦ (1 − 𝑢)𝜂SO + 𝑢, 𝑢 ↦ (1 − 𝑢) + 𝑢𝜂NE and 𝑢 ↦ (1 − 𝑢)𝜂NE,

to obtain a continuous loop (𝜂𝑡, 𝑡 ∈ [0, 4]) from [0, 4] to Δ, such that:

(𝜂0, 𝜂1, 𝜂2, 𝜂3, 𝜂4) = (𝟘, 𝜂SO, 𝟙, 𝜂NE, 𝟘).

We now define a continuous family of loops (𝛾𝑠, 𝑠 ∈ [0, 1]) in ℝ2 by

𝛾𝑠(𝑡) = (𝐶(𝑠𝜂𝑡), L(𝑠𝜂𝑡), 𝑡 ∈ [0, 4]).

By definition, for all 𝑠 ∈ [0, 1], 𝛾𝑠 is a continuous loop in 𝐹. Since 𝐴 = (𝑐, ℓ) ∉ F, the loops 𝛾𝑠 do
not contain 𝐴, so the winding number 𝑊(𝛾𝑠, 𝐴) is well-defined (see for example [88, Definition
6.1]). As 𝐴 ∉ F, we get that 𝛾𝑠 is a continuous deformation in ℝ2 ⧵ {𝐴} from 𝛾1 to 𝛾0. Thanks to
[88, Theorem 6.5], this implies that 𝑊(𝛾𝑠, 𝐴) does not depend on 𝑠 ∈ [0, 1].

For 𝑠 = 0, the loop degenerates to the single point (𝐶(0), 0) so the winding number is 0. For
𝑠 = 1, let us check that the winding number is 1, which will provide the contradiction. To do this,
we compare 𝛾1 with a simpler loop 𝛿 defined by:

𝛿(0) = 𝛿(4) = (𝑐max, 0), 𝛿(1) = (0, 0), 𝛿(2) = (0, ℓmax) and 𝛿(3) = (𝑐max, ℓmax),

and by linear interpolation for non integer values of 𝑡: in other words, 𝛿 runs around the perimeter
of the axis-aligned rectangle with corners (0, 0) and (𝑐max, ℓmax). Clearly, we have 𝑊(𝛿, 𝐴) = 1.

Let 𝑀𝑡, 𝑁𝑡 denote 𝛾1(𝑡) and 𝛿(𝑡) respectively. For 𝑡 ∈ [0, 1], we have 𝑁𝑡 = ((1 − 𝑡)𝑐max, 0), so the
second coordinate of ⃖⃖⃖⃖⃗𝐴𝑁𝑡 is non-positive. On the other hand L(𝑡𝜂SO) ≤ L(𝜂SO) < ℓ, so the second
coordinate of ⃖⃖ ⃖⃖ ⃖⃗𝐴𝑀𝑡 is negative. Therefore the two vectors ⃖⃖⃖⃖⃗𝐴𝑁𝑡 and ⃖⃖ ⃖⃖ ⃖⃗𝐴𝑀𝑡 cannot point in opposite
directions. Similar considerations for the other values of 𝑡 ∈ [1, 4] show that ⃖⃖⃖⃖⃗𝐴𝑁𝑡 and ⃖⃖ ⃖⃖ ⃖⃗𝐴𝑀𝑡 never
point in opposite directions. By [88, Theorem 6.1], the winding numbers 𝑊(𝛾1, 𝐴) and 𝑊(𝛿, 𝐴)
are equal, and thus 𝑊(𝛾1, 𝐴) = 1.

This gives that 𝐴 ∈ F by contradiction, and thus 𝐹1 ⊂ F.

Finally, it is easy to check that 𝐹1 has a connected complement, because 𝐹1 is bounded, and all
the points in 𝐹 ∁1 can reach infinity by a straight line: for example, if ℓ > L⋆(𝑐), then the half-line
{(𝑐, ℓ′), ℓ′ ≥ ℓ} is in 𝐹 ∁1 .
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Figure III.4: On the stability of the Pareto frontier

III.6.2 Stability

We can consider the stability of the Pareto frontier and the set of Pareto optima. Recall that, thanks
to (III.45), the graph {(𝑐, L⋆(𝑐)) ∶ 𝑐 ∈ [0, 𝑐max]} of L⋆ is the union of the Pareto frontier and the
straight line joining (0, 𝐶⋆(0)) to (0, 𝑐max) and can thus be seen as an extended Pareto frontier. The
proof of the following proposition is immediate. It implies in particular the convergence of the
extended Pareto frontier. This result can also easily be adapted to the anti-Pareto frontier.

Proposition III.6.2. Let 𝐶 be a cost function and (L(𝑛), 𝑛 ∈ ℕ) a sequence of loss functions converging
uniformly on Δ to a loss function L. Assume that Assumptions III.3, III.4 and III.5 hold for the cost 𝐶
and the loss functions L(𝑛), 𝑛 ∈ ℕ, and L. Then L(𝑛)⋆ converges uniformly to L⋆. Let 𝜂 ∈ Δ be the weak
limit of a sequence (𝜂𝑛, 𝑛 ∈ ℕ) of Pareto optima, that is 𝜂𝑛 ∈ 𝒫L(𝑛) for all 𝑛 ∈ ℕ. If 𝐶(𝜂) ≤ 𝐶⋆(0), then
we have 𝜂 ∈ 𝒫L.

Remark III.6.3 (On the continuity of the Pareto Frontier). It might happen that some elements
of 𝒫L are not weak limits of any sequences of elements of 𝒫L(𝑛) ; see [37] for an example of
such a discontinuity. It might also happen that a sequence (𝜂𝑛, 𝑛 ∈ ℕ) such that 𝜂𝑛 ∈ 𝒫L(𝑛) and
L(𝑛)(𝜂𝑛) > 0 converges to some 𝜂 that does not belong to 𝒫L if L(𝜂) = 0. In particular, in this
case, 𝐶⋆,L(𝑛)(0) does not converge to 𝐶⋆,L(0), where 𝐶⋆,L′ is the value function 𝐶⋆ associated to
the loss L′. This situation is represented in Figure III.4. In Figure III.4(a), we have plotted a
perturbation 𝐤𝜀 = 𝐤+𝜀 ∑𝑛∈ℕ⋆ 𝟙𝐼𝑛×𝐼𝑛 of the multipartite kernel 𝐤 defined in Example III.1.7 for 𝜀 > 0
small. According to Proposition III.4.3, ℜ𝑒[𝐤𝜀] converges uniformly to ℜ𝑒[𝐤] when 𝜀 vanishes.
However, the Pareto optimal strategies for 𝐤𝜀 that cost more than 1/2 do not converge to some
Pareto optimal strategies for 𝐤. This can be seen in Figure III.4(b), where the Pareto frontier of 𝐤𝜀
(in blue) corresponding to costs larger than 1/2 does not have a counterpart in the Pareto frontier
of 𝐤 (in red).

III.6.3 Geometric properties

If the cost function is affine, then there is a nice geometric property of the Pareto frontier.

Lemma III.6.4. Suppose that Assumption III.3 holds, the cost function 𝐶 = 𝐶aff is given by (III.35),
with 𝑐aff ∈ 𝐿1 positive, and the loss function L is sub-homogeneous. Then, we have L⋆(𝜃𝑐 + (1 −
𝜃)𝑐max) ≤ 𝜃L⋆(𝑐) for all 𝑐 ∈ [0, 𝑐max] and 𝜃 ∈ [0, 1].
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Remark III.6.5. Geometrically, Lemma III.6.4 means that the graph of the loss L⋆ ∶ [0, 𝑐max] →
[0, ℓmax] is below its chords with end point (1, L⋆(𝟙)) = (1, 0). See Figures III.1(b) for a typical
representation of the Pareto frontier (red solid line).

Proof. Let 𝑐 ∈ [0, 𝑐max] and 𝜃 ∈ [0, 1]. Thanks to Lemma III.5.6, Assumption III.5 holds. Thus,
thanks to Proposition III.5.5 (iv), there exists 𝜂 ∈ 𝒫L with cost 𝐶(𝜂) = 𝑐 and thus L(𝜂) = L⋆(𝑐).
Since 𝐶 is affine, we have:

𝐶(𝜃𝜂) = 𝜃𝐶(𝜂) + (1 − 𝜃)𝑐max ≤ 𝜃𝑐 + (1 − 𝜃)𝑐max.

Therefore, 𝜃𝜂 is admissible for Problem (III.39) with cost constraint 𝐶(⋅) ≤ 𝜃𝑐 + (1 − 𝜃)𝑐max. This
implies that L⋆(𝜃𝑐 + (1 − 𝜃)𝑐max) ≤ L(𝜃𝜂) ≤ 𝜃L⋆(𝑐), thanks to the sub-homogeneity of the loss
function L.

In some cases, see for example Section 5 in Chapter IV, it is possible to prove that the loss
function is a convex function of 𝜂 (which in turn implies Assumption III.5). In this case, choosing
a convex cost function implies that Assumption III.4 holds and the Pareto frontier is convex. A
similar result holds in the concave case. We provide a short proof of this result.

Proposition III.6.6. Suppose that Assumption III.3 holds. If the cost function 𝐶 and the loss function
L are convex, then the functions 𝐶⋆ and L⋆ are convex. If the cost function 𝐶 and the loss function L
are concave, then the functions 𝐶⋆ and L⋆ are concave.

Proof. Let ℓ0, ℓ1 ∈ [0, ℓmax]. By Proposition III.5.3, there exist 𝜂0, 𝜂1 such that L(𝜂𝑖) ≤ ℓ𝑖 and
𝐶(𝜂𝑖) = 𝐶⋆(ℓ𝑖) for 𝑖 ∈ {0, 1}. For 𝜃 ∈ [0, 1], let ℓ = (1 − 𝜃)ℓ0 + 𝜃ℓ1. Since 𝐶 and L are assumed to be
convex, 𝜂 = (1 − 𝜃)𝜂0 + 𝜃𝜂1 satisfies:

𝐶(𝜂) ≤ (1 − 𝜃)𝐶⋆(ℓ0) + 𝜃𝐶⋆(ℓ1) and L(𝜂) ≤ (1 − 𝜃)ℓ0 + 𝜃ℓ1.

Therefore, we get that 𝐶⋆((1 − 𝜃)ℓ0 + 𝜃ℓ1) ≤ 𝐶(𝜂) ≤ (1 − 𝜃)𝐶⋆(ℓ0) + 𝜃𝐶⋆(ℓ1), and 𝐶⋆ is convex. The
proof of the convexity of L⋆ is similar. The concave case is also similar.

III.7 Equivalence of models by coupling

III.7.1 Motivation

The aim of this section is to provide examples of different set of parameters for which two kernel
or SIS models are “equivalent”, in the intuitive sense that their Pareto frontiers are the same (as
subsets of ℝ2+), and it is possible to map nicely the Pareto optima from one model to the another.
In Section III.7.4, we present an example where discrete models can be represented as a continuous
models and an example based on measure preserving transformation in the spirit of the graphon
theory. We shall consider the two families of models:

• the kernel model characterized by Param = [(Ω,ℱ , 𝜇), 𝐤], with Assumption III.1 fulfilled,
and loss function L = ℜ𝑒;

• the SIS model characterized by Param = [(Ω,ℱ , 𝜇), 𝑘, 𝛾 ], with Assumption III.2 fulfilled,
and loss function L ∈ {ℜ𝑒, ℑ};

where (Ω,ℱ , 𝜇) is a probability space, 𝐤 and 𝑘 are non-negative kernels onΩ and 𝛾 is a non-negative
function on Ω.

In order to emphasize the dependence of a quantity 𝐻 on the parameters Param of the model,
we shall write 𝐻[Param] for 𝐻. For example we write: Δ[Param] for the set of functions {𝜂 ∈
ℒ∞(Ω,ℱ ) ∶ 1 ≥ 𝜂 ≥ 0}, which clearly depends on the parameters Param; and the effective
reproduction function ℜ𝑒[Param]. For example, under Assumption III.2, we have the equality of
the following functions: ℜ𝑒[(Ω,ℱ , 𝜇), 𝑘, 𝛾 ] = ℜ𝑒[(Ω,ℱ , 𝜇), 𝑘/𝛾 , 1] = ℜ𝑒[(Ω,ℱ , 𝜇), 𝑘/𝛾 ], where
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for the last equality the left hand-side refers to the SIS model and the right hand-side refers to the
kernel model (where Assumption III.1 holds as a consequence of Assumption III.2).

If inf 𝛾 > 0, then, using (III.29) (see Section IV.3 for details and more general results), we also
have ℜ𝑒[(Ω,ℱ , 𝜇), 𝑘/𝛾 ] = ℜ𝑒[(Ω,ℱ , 𝜇), 𝛾−1𝑘].

Remark III.7.1 (On the cost function). Even if, in full generality, the cost function could also be
treated as a parameter, we shall for simplicity consider only the uniform cost 𝐶uni given by (III.36)
in this section. The interested reader can use Remark III.5.2 for a first generalization to the affine
cost function given by (III.35).

III.7.2 On measurability

Let us recall some well-known facts on measurability. Let (𝐸, ℰ) and (𝐸′, ℰ ′) be two measurable
spaces. If 𝐸′ = ℝ, then we take ℰ ′ = ℬ(ℝ) the Borel 𝜎-field. Let 𝑓 be a function from 𝐸 to 𝐸′. We
denote by 𝜎(𝑓 ) = {𝑓 −1(𝐴) ∶ 𝐴 ∈ ℰ ′} the 𝜎-field generated by 𝑓. In particular 𝑓 is measurable
from (𝐸, ℰ) to (𝐸′, ℰ ′) if and only if 𝜎(𝑓 ) ⊂ ℰ. Let 𝜑 be a measurable function from (𝐸, ℰ)
to (𝐸′, ℰ ′). For 𝜈 ameasure on (𝐸, ℰ), wewrite 𝜑#𝜈 for the for the push-forwardmeasure on (𝐸′, ℰ ′)
of the measure 𝜈 by the function 𝜑 (that is 𝜑#𝜈(𝐴) = 𝜈(𝜑−1(𝐴)) for all 𝐴 ∈ ℰ ′). By definition of
𝜑#𝜈, for a non-negative measurable function 𝑔 defined from (𝐸′, ℰ ′) to (ℝ,ℬ(ℝ)), we have:

∫
𝐸′
𝑔 d𝜑#𝜈 = ∫

𝐸
𝑔 ∘ 𝜑 d𝜈. (III.53)

Let 𝑓 be a measurable function from (𝐸, ℰ) to (ℝ,ℬ(ℝ)). We recall that:

𝜎(𝑓 ) ⊂ 𝜎(𝜑) ⟹ 𝑓 = 𝑔 ∘ 𝜑, (III.54)

for some measurable function 𝑔 from (𝐸′, ℰ ′) to (ℝ,ℬ(ℝ)).
The random variables we consider are defined on a probability space, say (Ω0, ℱ0, ℙ).

III.7.3 Coupled models

We refer the reader to [90] for a similar development in the graphon setting. We first define
coupled models in the next definition and state in Proposition III.7.4 that coupled models have
related (anti-)Pareto optima and the same (anti-)Pareto frontiers.

In the kernel model, we consider the models Param𝑖 = [(Ω𝑖, ℱ𝑖, 𝜇𝑖), 𝐤𝑖] for 𝑖 ∈ {1, 2}, where
Assumption III.1 holds for each model; in the SIS model, we consider the models

Param𝑖 = [(Ω𝑖, ℱ𝑖, 𝜇𝑖), 𝑘𝑖, 𝛾𝑖],

for 𝑖 ∈ {1, 2}, where Assumption III.2 holds for each model. In what follows, we simply write Δ𝑖
the set of functions Δ for the model Param𝑖.

A measure 𝜋 on (Ω1 × Ω2, ℱ1 ⊗ℱ2) is a coupling if its marginals are 𝜇1 and 𝜇2.

Definition III.7.2 (Coupled models). The models Param1 and Param2 are coupled if there exists
two independent Ω1 × Ω2-valued random vectors (𝑋1, 𝑋2) and (𝑌1, 𝑌2) (defined on a probability space
(Ω0, ℱ0, ℙ)) with the same distribution given by a coupling ( i.e. 𝑋𝑖 and 𝑌𝑖 have distribution 𝜇𝑖) such
that, ℙ-almost surely:

Kernel model: 𝐤1(𝑋1, 𝑌1) = 𝐤2(𝑋2, 𝑌2),
SIS model: 𝛾1(𝑋1) = 𝛾2(𝑋2) and 𝑘1(𝑋1, 𝑌1) = 𝑘2(𝑋2, 𝑌2).

In this case, two real-valued measurable functions 𝑣1 and 𝑣2 defined respectively on Ω1 and Ω2 are
coupled (through 𝑉) if there exists a real-valued 𝜎(𝑋1, 𝑋2)-measurable integrable random variable 𝑉
such that ℙ-almost surely:

𝔼 [𝑉 | 𝑋𝑖] = 𝑣𝑖(𝑋𝑖) for 𝑖 ∈ {1, 2}.

Remark III.7.3. We keep notation from Definition III.7.2
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(i) Since 𝑉 is real-valued and 𝜎(𝑋1, 𝑋2)-measurable, we deduce from (III.54) that there exits
a measurable function 𝑣 defined on Ω1 × Ω2 such that 𝑉 = 𝑣(𝑋1, 𝑋2), thus the following
equality holds ℙ-almost surely:

𝔼 [𝑣(𝑌1, 𝑌2)| 𝑌𝑖] = 𝑣𝑖(𝑌𝑖) for 𝑖 ∈ {1, 2}.

(ii) If 𝑊 is a real-valued integrable 𝜎(𝑋1) ∩ 𝜎(𝑋2)-measurable random variable, then setting
𝑣𝑖(𝑋𝑖) = 𝔼 [𝑊 |𝑋𝑖] = 𝑊, the equality 𝑣1(𝑋1) = 𝑣2(𝑋2) holds almost surely, and we get that 𝑣1
and 𝑣2 are coupled (through 𝑊).

(iii) Let 𝜂1 ∈ Δ1. According to (III.54), there exists 𝜂2 ∈ Δ2 such that 𝔼 [𝜂1(𝑋1)|𝑋2] = 𝜂2(𝑋2).
Thus, by definition 𝜂1 and 𝜂2 are coupled (through 𝑉 = 𝜂1(𝑋1)).

The main result of this section, whose proof is given in Section III.8.2, states that coupled
models have coupled Pareto optimal strategies, and thus the same (anti-)Pareto frontier.

Proposition III.7.4 (Coupling and Pareto optimality). Let Param1 and Param2 be two coupled
(kernel or SIS) models with the uniform cost function 𝐶 = 𝐶uni and loss function L (with L = ℜ𝑒 in
the kernel model and L ∈ {ℜ𝑒, ℑ} in the SIS model). If the functions 𝜂1 ∈ Δ1 and 𝜂2 ∈ Δ2 are coupled,
then:

𝜂1 is Pareto optimal (for Param1) ⟺ 𝜂2 is Pareto optimal (for Param2).

Furthermore, if 𝜂1 ∈ Δ1 is Pareto optimal (for Param1), then there exists a Pareto optimal (for Param2)
strategy 𝜂2 ∈ Δ2 such that 𝜂1 and 𝜂2 are coupled. In particular, the (anti-)Pareto frontiers are the
same for the two models Param1 and Param2.

The next Corollary is useful for model reduction, which corresponds to merging individuals
with identical behavior, see the examples in Sections III.7.4 and III.7.4. Equation (III.55) below
could also be stated for anti-Pareto optima; and the adaptation to the kernel model is immediate.

Corollary III.7.5. Let Param = [(Ω,ℱ , ℙ), 𝑘, 𝛾 ] be a SIS model with the uniform cost function
𝐶 = 𝐶uni and loss function L ∈ {ℜ𝑒, ℑ}. Let 𝒢 ⊂ ℱ be a 𝜎-field such that 𝛾 is 𝒢-measurable and 𝑘 is
𝒢 ⊗ 𝒢-measurable. Then, for any 𝜂 ∈ Δ[Param], we have:

𝜂 is Pareto optimal ⟺ 𝔼[𝜂| 𝒢] is Pareto optimal. (III.55)

Proof. Let Ω0 = Ω2 endowed with the product 𝜎-field and the product probability measure ℙ0, and
𝑋 (resp. 𝑌) be the projection on the first (resp. second) coordinate. Thus the random variables𝑋 and
𝑌 are independent, (Ω,ℱ )-valued with distribution ℙ. Write (𝑋 ′, 𝑌 ′) for (𝑋 , 𝑌 ) when considered
as (Ω, 𝒢 )-valued random variables. Notice that 𝑋 ′ and 𝑌 ′ are by construction independent with
distribution ℙ′, where ℙ′ is the restriction of ℙ to 𝒢. As 𝛾 is 𝒢-measurable and 𝑘 is 𝒢 ⊗ 𝒢-
measurable, we can consider the model Param′ = [(Ω, 𝒢 , ℙ′), 𝑘, 𝛾 ]. Then (𝑋 , 𝑋 ′) and (𝑌 , 𝑌 ′) are
two trivial couplings such that 𝑘(𝑋 , 𝑌 ) = 𝑘(𝑋 ′, 𝑌 ′) and 𝛾 (𝑋) = 𝛾(𝑋 ′). Thus the models Param
and Param′ are coupled. We have that 𝜂 ∈ Δ and 𝜂′ = 𝔼[𝜂| 𝒢 ] ∈ Δ′ are coupled through 𝜂 ∘ 𝑋 since
𝔼0[𝜂 ∘ 𝑋 | 𝜎(𝑋)] = 𝜂 ∘ 𝑋 and 𝔼0[𝜂 ∘ 𝑋 | 𝜎(𝑋 ′)] = 𝜂′ ∘ 𝑋 ′ as 𝜎(𝑋 ′) = 𝑋−1(𝒢 ) and 𝑋 = 𝑋 ′ can be seen
as the identity map on Ω. The conclusion then follows from Proposition III.7.4.

III.7.4 Examples of couplings

In this section, we consider the SIS model as the kernel model can be handled in the same way.
We denote by Leb the Lebesgue measure.

Discrete and continuous models

We now formalize how finite population models can be seen as particular cases of models with
a continuous population. Let Ωd ⊂ ℕ, ℱd the set of subsets of Ωd and 𝜇d a probability measure
on Ωd. Without loss of generality, we can assume that 𝜇d({ℓ}) > 0 for all ℓ ∈ Ωd. We set Ωc = [0, 1),
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with ℱc its Borel 𝜎-field and 𝜇c = Leb. Let (𝐵ℓ, ℓ ∈ Ωd) be a partition of [0, 1) in measurable sets
such that Leb(𝐵ℓ) = 𝜇d({ℓ}) for all ℓ ∈ Ωd. The measure 𝜋 on Ωd × Ωc uniquely defined by:

𝜋({ℓ} × 𝐴) = Leb(𝐵ℓ ∩ 𝐴)

for all measurable 𝐴 ⊂ [0, 1) and ℓ ∈ Ωd is clearly a coupling of 𝜇d and 𝜇c. If the kernels 𝑘d on Ωd
and 𝑘c on Ωc and the functions 𝛾d and 𝛾c are related through the formula:

𝛾c(𝑥) = 𝛾d(ℓ) and 𝑘c(𝑥, 𝑦) = 𝑘d(ℓ, 𝑗), for 𝑥 ∈ 𝐵ℓ, 𝑦 ∈ 𝐵𝑗 and ℓ, 𝑗 ∈ Ωd,

then the discrete model Paramd = [(Ωd, ℱd, 𝜇d), 𝑘d, 𝛾d] and the continuous model Paramc =
[([0, 1), ℱc, Leb), 𝑘c, 𝛾c] are coupled. Roughly speaking, we can blow up the atomic part of the
measure 𝜇d into a continuous part, or, conversely, merge all points that behave similarly for 𝑘c
and 𝛾c into an atom, without altering the Pareto frontier.

Example III.7.6. We consider the so called stochastic block model, with 2 populations for simplicity,
in the setting of the SIS model, and give in this elementary case the corresponding discrete and
continuous models. Then, we explicit the relation with the formalism of the same model developed
in [102] by Lajmanovich and Yorke.

The discrete SIS model is defined on Ωd = {1, 2} with the probability measure 𝜇d defined by
𝜇d({1}) = 1 − 𝜇d({2}) = 𝑝 with 𝑝 ∈ (0, 1), and a kernel 𝑘d and recovery function 𝛾d given by the
matrix and the vector:

𝑘d = (𝑘11 𝑘12
𝑘21 𝑘22

) and 𝛾d = (𝛾1𝛾2
) .

Notice 𝑝 is the relative size of population 1. The corresponding discrete model is Paramd =
[({1, 2}, ℱd, 𝜇d), 𝑘d, 𝛾d]; see Figure III.5(b).

The continuous model is defined on the state space Ωc = [0, 1) is endowed with its Borel 𝜎-
field, ℱc, and the Lebesgue measure 𝜇c = Leb. The segment [0, 1) is partitioned into two in-
tervals 𝐵1 = [0, 𝑝) and 𝐵2 = [𝑝, 1), the transmission kernel 𝑘c and recovery rate 𝛾c are given
by:

𝑘c(𝑥, 𝑦) = 𝑘𝑖𝑗 and 𝛾c(𝑥) = 𝛾𝑖 for 𝑥 ∈ 𝐵𝑖, 𝑦 ∈ 𝐵𝑗, and 𝑖, 𝑗 ∈ {1, 2}.

The corresponding continuous model is Paramc = [([0, 1), ℱc, Leb), 𝑘c, 𝛾c]; see Figure III.5(a). By
the general discussion above, the discrete and continuous models are coupled, and in particular
they have the same Pareto and anti-Pareto frontiers.

Furthermore, in this simple example, it is easily checked that a discrete vaccination 𝜂d = (𝜂1, 𝜂2)
and a continuous vaccination 𝜂c = (𝜂c(𝑥), 𝑥 ∈ [0, 1)) are coupled if and only if there exists a
function 𝜂 defined on Ωc × Ωd = [0, 1) × {1, 2} such that:

⎧

⎨
⎩

𝜂𝑖 =
1

Leb(𝐵𝑖) ∫𝐵𝑖
𝜂(𝑥, 𝑖) d𝑥, 𝑖 ∈ {1, 2},

𝜂𝑐(𝑥) = 𝜂(𝑥, 1)𝟙𝐵1(𝑥) + 𝜂(𝑥, 2)𝟙𝐵2(𝑥), Leb-a.s.,

which occurs if and only if:

𝜂𝑖 =
1

Leb(𝐵𝑖) ∫
𝜂𝑐(𝑥)𝟙𝐵𝑖(𝑥) d𝑥, 𝑖 ∈ {1, 2}.

Therefore, in this case, the optimal strategies of the continuous model are easily deduced from the
optimal strategies of the discrete model.

To conclude this example, we rewrite, using the formalism of the discrete model Paramd, the
next-generation matrix 𝐾 in the setting of [102], and the effective next-generation matrix 𝐾𝑒(𝜂)
when the vaccination strategy 𝜂 is in force (recall 𝜂𝑖 is the proportion of population with feature 𝑖
which is not vaccinated):

𝐾 = (𝐤11 𝑝 𝐤12 (1 − 𝑝)
𝐤21 𝑝 𝐤22 (1 − 𝑝)) and 𝐾𝑒(𝜂) = (𝐤11 𝑝 𝜂1 𝐤12 (1 − 𝑝) 𝜂2

𝐤21 𝑝 𝜂1 𝐤22 (1 − 𝑝) 𝜂2
) ,
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0 𝑝 1
0

𝑝

1

𝑘12 𝑘22

𝑘21𝑘11

𝑥

𝑦

(a) Continuous model: kernel 𝑘c on Ωc = [0, 1)
with the Lebesgue measure.

𝑝

{1}

1 − 𝑝

{2}

𝑘11

𝑘22

𝑘21

𝑘12

(b) Discrete model: kernel 𝑘d on Ωd = {1, 2} with
the measure 𝑝𝛿1 + (1 − 𝑝)𝛿2.

Figure III.5: Coupled continuous model (left) and discrete model (right).

with 𝑝 = 𝜇d({1}), 1 − 𝑝 = 𝜇d({2}) and 𝐤d = 𝑘d/𝛾d, that is:

𝐤d = (𝐤11 𝐤12
𝐤21 𝐤22

) = (𝑘11/𝛾1 𝑘12/𝛾2
𝑘21/𝛾1 𝑘22/𝛾2

) .

Measure preserving function

This section is motivated by the theory of graphons, which are indistinguishable by measure
preserving transformation, see [111, Sections 7.3 and 10.7]. Let (Ω,ℱ , 𝜇) be a measurable space.
We say a measurable function 𝜑 from (Ω,ℱ ) to itself ismeasure preserving if 𝜇 = 𝜑#𝜇. For example
the function 𝜑 ∶ 𝑥 ↦ 2𝑥 mod (1) defined on the probability space ([0, 1],ℬ([0, 1], Leb) is measure
preserving.

Let 𝜑 be measure preserving function on Ω. Let 𝑘1 be a kernel and 𝛾1 a function on Ω such
that the model Param1 = [(Ω,ℱ , 𝜇), 𝑘1, 𝛾1] satisfies Assumption III.2. Let 𝑋1 be a random variable
with probability distribution 𝜇 and let 𝑋2 = 𝜑(𝑋1), so that (𝑋1, 𝑋2) is a coupling of (Ω,ℱ , 𝜇) with
itself. Then for the kernel 𝑘2 and the function 𝛾2 defined by:

𝑘2(𝑥, 𝑦) = 𝑘1(𝜑(𝑥), 𝜑(𝑦)) and 𝛾2(𝑥) = 𝛾1(𝜑(𝑥)),

the models Param1 and Param2 = [(Ω,ℱ , 𝜇), 𝑘2, 𝛾2] are coupled. Roughly speaking, we can give
different labels to the features of the population without altering the Pareto and anti-Pareto
frontiers.

Model reduction using deterministic coupling

This example is in the spirit of Section III.7.4, where one merges individual with identical behavior.
We consider a SIS model Param1 = [(Ω1, ℱ1, 𝜇1), 𝑘1, 𝛾1]. Let 𝜑 be a measurable function from
(Ω1, ℱ1) to (Ω2, ℱ2). Assume that:

𝜎(𝛾1) ⊂ 𝜎(𝜑) and 𝜎(𝑘1) ⊂ 𝜎(𝜑) ⊗ 𝜎(𝜑).

We can then build an elementary coupling. Let𝑋1 and 𝑌1 be independent 𝜇1 distributed random
elements of Ω1, and set (𝑋2, 𝑌2) = (𝜑(𝑋1), 𝜑(𝑌1)). Since 𝜎(𝛾1) ⊂ 𝜎(𝜑) and 𝜎(𝑘1) ⊂ 𝜎(𝜑) ⊗ 𝜎(𝜑), we
get that 𝛾1(𝑋1) is 𝜎(𝑋2)-measurable and 𝑘1(𝑋1, 𝑌1) is 𝜎(𝑋2, 𝑌2)-measurable. According to (III.54),
there exists two measurable functions 𝛾2 ∶ Ω2 → ℝ and 𝑘2 ∶ Ω2 × Ω2 → ℝ such that 𝛾1 = 𝛾2 ∘ 𝜑
and 𝑘1 = 𝑘2(𝜑 ⊗ 𝜑) that is almost surely:

𝛾1(𝑋1) = 𝛾2(𝑋2) and 𝑘1(𝑋1, 𝑌1) = 𝑘2(𝑋2, 𝑌2).
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Let 𝜇2 = 𝜑#𝜇1 be the push-forward measure of 𝜇1 by 𝜑. Using (III.53) it is easy to check that the
integrability condition from Assumption III.2 is fulfilled, so we can consider the reduced model
Param2 = [(Ω2, ℱ2, 𝜇2), 𝑘2, 𝛾2]. By Definition III.7.2, Param1 is coupled with Param2 through the
(deterministic) coupling 𝜋 given by the distribution of (𝑋1, 𝜑(𝑋1)).

Eventually, we get from Corollary III.7.5 with 𝒢 = 𝜎(𝜑), that 𝜂1 ∈ Δ1 is Pareto optimal if and
only if 𝔼1[𝜂1| 𝜑] is Pareto optimal (for the model Param1), where 𝔼1 correspond to the expectation
with respect to the probability measure 𝜇1 on (Ω1, ℱ1).

III.8 Technical proofs

III.8.1 The SIS model: properties of ℑ and of the maximal equilibrium

We prove here Theorem III.4.6 and Proposition III.4.7, and properties of the maximal equilibrium.
For the convenience of the reader, we only use references to the results recalled in Chapter II for
positive operators on Banach spaces. For an operator 𝐴, we denote by 𝐴⊤ its adjoint. We first
give a preliminary lemma.

Lemma III.8.1. Suppose Assumption III.2 holds, and consider the positive bounded linear integral
operator 𝒯𝑘/𝛾 on ℒ∞. If there exists 𝑔 ∈ ℒ∞

+ , with ∫Ω 𝑔 d𝜇 > 0 and 𝜆 > 0 satisfying:

𝒯𝑘/𝛾(𝑔)(𝑥) > 𝜆𝑔(𝑥), for all 𝑥 such that 𝑔(𝑥) > 0,

then we have 𝜌(𝒯𝑘/𝛾) > 𝜆.

Proof. Set 𝒯 = 𝒯𝑘/𝛾. Let 𝐴 = { 𝑔 > 0 } be the support of the function 𝑔. Let 𝒯 ′ be the bounded
operator defined by 𝒯 ′(𝑓 ) = 𝟙𝐴𝒯 (𝟙𝐴𝑓 ). Since 𝒯 ′(𝑔) = 𝟙𝐴𝒯 (𝟙𝐴𝑔) = 𝟙𝐴𝒯 (𝑔) > 𝜆𝑔, we deduce
from the Collatz-Wielandt formula, see Proposition II.3.6, that 𝜌(𝒯 ′) ≥ 𝜆 > 0. According to
Lemma II.3.7 (v), there exists 𝑣 ∈ 𝐿𝑞+ ⧵ {0}, seen as an element of the topological dual of ℒ∞, a left
Perron eigenfunction of 𝒯 ′, that is such that (𝒯 ′)⊤(𝑣) = 𝜌(𝒯 ′)𝑣. In particular, we have 𝑣 = 𝟙𝐴 𝑣
and thus ∫𝐴 𝑣 d𝜇 > 0 and ∫Ω 𝑣𝑔 d𝜇 > 0. We obtain:

(𝜌(𝒯 ′) − 𝜆) ⟨𝑣 , 𝑔⟩ = ⟨𝑣 , 𝒯 ′(𝑔) − 𝜆𝑔⟩ > 0.

This implies that 𝜌(𝒯 ′) > 𝜆. Since 𝒯 − 𝒯 ′ is a positive operator, we deduce from (III.26) that
𝜌(𝒯 ) ≥ 𝜌(𝒯 ′) > 𝜆.

We now state an interesting result on the characterization of the maximal equilibrium 𝔤. We
keep notations from Sections III.2.3 and III.2.4 and write ℜ𝑒 for ℜ𝑒[𝑘/𝛾 ]. Recall that ℜ0 = ℜ𝑒(𝟙)
and 𝐹 defined by (III.18). Let 𝐷𝐹[ℎ] denote the bounded linear operator on ℒ∞ of the derivative
of the map 𝑓 ↦ 𝐹(𝑓 ) defined on ℒ∞ at point ℎ:

𝐷𝐹[ℎ](𝑔) = (1 − ℎ)𝒯𝑘(𝑔) − (𝛾 + 𝒯𝑘(ℎ))𝑔 for ℎ, 𝑔 ∈ ℒ∞.

Let 𝑠(𝐴) denote the spectral bound of the bounded operator 𝐴, see (33) in Chapter II.

Proposition III.8.2. Suppose Assumption III.2 holds and write ℜ𝑒 for ℜ𝑒[𝑘/𝛾 ]. Let ℎ in Δ be an
equilibrium, that is 𝐹(ℎ) = 0. The following properties are equivalent:

(i) ℎ = 𝔤,

(ii) 𝑠(𝐷𝐹[ℎ]) ≤ 0,

(iii) ℜ𝑒((1 − ℎ)2) ≤ 1.

(iv) ℜ𝑒(1 − ℎ) ≤ 1.

We also have: 𝔤 = 0 ⟺ ℜ0 ≤ 1; as well as: 𝔤 ≠ 0 ⟹ ℜ𝑒(1 − 𝔤) = 1.
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Proof. Let ℎ ∈ Δ be an equilibrium, that is 𝐹(ℎ) = 0.

Let us show the equivalence between (ii) and (iii). According to Proposition II.4.2, we have
𝑠(𝐷𝐹[ℎ]) ≤ 0 if and only if:

𝜌 (𝒯𝐤) ≤ 1 with 𝐤(𝑥, 𝑦) = (1 − ℎ(𝑥))
𝑘(𝑥, 𝑦)

𝛾 (𝑦) + 𝒯𝑘(ℎ)(𝑦)
⋅

Since 𝐹(ℎ) = 0, we have (1 − ℎ)/𝛾 = 1/(𝛾 + 𝒯𝑘(ℎ)). This gives:

k(𝑥, 𝑦) = (1 − ℎ(𝑥))
𝑘(𝑥, 𝑦)(1 − ℎ(𝑦))

𝛾 (𝑦)
(III.56)

and thus 𝒯𝐤 = 𝑀1−ℎ 𝒯𝑘/𝛾𝑀1−ℎ, where 𝑀𝑓 is the multiplication operator by 𝑓. Recall the defini-
tion (III.14) of ℜ𝑒. According to (III.29), we have:

𝜌 (𝒯𝐤) = 𝜌 (𝒯𝑘/𝛾𝑀(1−ℎ)2) = ℜ𝑒((1 − ℎ)2). (III.57)

This gives the equivalence between (ii) and (iii).

We prove that (i) implies (iv). Suppose that ℜ𝑒(1 − ℎ) > 1. Thanks to (III.29), we have
𝜌(𝑀1−ℎ𝒯𝑘/𝛾) = 𝜌(𝒯𝑘/𝛾𝑀1−ℎ) = ℜ𝑒(1 − ℎ) > 1. According to Lemma II.3.7 (v), there exists
𝑣 ∈ 𝐿𝑞+ ⧵ {0} a left Perron eigenfunction of 𝒯(1−ℎ)𝑘/𝛾, that is 𝒯 ⊤

(1−ℎ)𝑘/𝛾(𝑣) = ℜ𝑒(1 − ℎ)𝑣. Using
𝐹(ℎ) = 0, and thus (1 − ℎ)𝒯𝑘(ℎ) = 𝛾ℎ, for the last equality, we have:

ℜ𝑒(1 − ℎ) ⟨𝑣 , 𝛾ℎ⟩ = ⟨𝑣 , (1 − ℎ)𝒯𝑘/𝛾(𝛾ℎ)⟩ = ⟨𝑣 , 𝛾ℎ⟩ .

We get ⟨𝑣 , 𝛾ℎ⟩ = 0 and thus ⟨𝑣 , 𝟙𝐴⟩ = 0, where 𝐴 = { ℎ > 0 } denote the support of the function ℎ.
Since 𝒯 ⊤

(1−ℎ)𝑘/𝛾(𝑣) = ℜ𝑒(1 − ℎ)𝑣 and setting 𝑣 ′ = (1 − ℎ)𝑣 (so that 𝑣 ′ = 𝑣 𝜇-almost surely on 𝐴∁),
we deduce that:

𝒯 ⊤
𝑘′/𝛾(𝑣

′) = ℜ𝑒(1 − ℎ)𝑣 ′,

where 𝑘′ = 𝟙𝐴∁ 𝑘 𝟙𝐴∁ . This implies that 𝜌(𝒯𝑘′/𝛾) ≥ ℜ𝑒(1−ℎ). Since 𝑘′ = (1−ℎ)𝑘′ and 𝒯𝑘/𝛾−𝒯𝑘′/𝛾
is a positive operator as 𝑘 − 𝑘′ ≥ 0, we get, using (III.26) for the inequality, that 𝜌(𝒯𝑘′/𝛾) =
𝜌(𝑀1−ℎ𝒯𝑘′/𝛾) ≤ 𝜌(𝑀1−ℎ𝒯𝑘/𝛾) = ℜ𝑒(1 − ℎ). Thus, the spectral radius of 𝒯𝑘′/𝛾 is equal to ℜ𝑒(1 − ℎ).
According to Proposition II.4.2, since 𝜌(𝒯𝑘′/𝛾) > 1, there exists 𝑤 ∈ ℒ∞

+ ⧵ {0} and 𝜆 > 0 such that:

𝒯𝑘′(𝑤) − 𝛾𝑤 = 𝜆𝑤.

This also implies that 𝑤 = 0 on 𝐴 = { ℎ > 0 }, that is 𝑤ℎ = 0 and thus 𝑤𝒯𝑘(ℎ) = 0 as 𝒯𝑘(ℎ) =
𝛾ℎ/(1 − ℎ). Using that 𝐹(ℎ) = 0, 𝒯𝑘(𝑤) = 𝒯𝑘′(𝑤) = (𝛾 + 𝜆)𝑤 and ℎ𝒯𝑘(𝑤) = 0, we obtain:

𝐹(ℎ + 𝑤) = 𝑤(𝜆 − 𝒯𝑘(𝑤)).

Taking 𝜀 > 0 small enough so that 𝜀𝒯𝑘(𝑤) ≤ 𝜆/2 and 𝜀𝑤 ≤ 1, we get ℎ + 𝜀𝑤 ∈ Δ and 𝐹(ℎ + 𝜀𝑤) ≥ 0.
Then use Lemma III.4.4 to deduce that ℎ + 𝜀𝑤 ≤ 𝔤 and thus ℎ ≠ 𝔤.

To see that (iv) implies (iii), notice that (1 − ℎ)2 ≤ (1 − ℎ), and then deduce from Proposi-
tion III.4.1 (iii) that ℜ𝑒((1 − ℎ)2) ≤ ℜ𝑒(1 − ℎ).

We prove that (iii) implies (i). Notice that 𝐹(𝑔) = 0 and 𝑔 ∈ Δ implies that 𝑔 < 1. Assume
that ℎ ≠ 𝔤. Notice that 𝛾/(1 − ℎ) = 𝛾 + 𝒯𝑘(ℎ), so that 𝛾 (𝔤 − ℎ)/(1 − ℎ) ∈ ℒ∞

+ . An elementary
computation, using 𝐹(ℎ) = 𝐹(𝔤) = 0 and 𝐤 defined in (III.56), gives:

𝒯𝐤 (𝛾 ×
𝔤 − ℎ
1 − ℎ

) = (1 − ℎ)𝒯𝑘 (𝔤 − ℎ) = 𝛾 ×
𝔤 − ℎ
1 − 𝔤

=
1 − ℎ
1 − 𝔤

× 𝛾 ×
𝔤 − ℎ
1 − ℎ

⋅

Since ℎ ≠ 𝔤 and ℎ ≤ 𝔤, we deduce that (1 − ℎ)/(1 − 𝔤) ≥ 1, with strict inequality on { 𝔤 − ℎ > 0 }
which is a set of positive measure. We deduce from Lemma III.8.1 (with 𝑘 replaced by 𝐤𝛾) that
𝜌 (𝒯k) > 1. Then use (III.57) to conclude.
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To conclude notice that 𝔤 = 0 ⟺ ℜ0 ≤ 1 is a consequence of the equivalence between (i) and
(iv) with ℎ = 0 and ℜ0 = ℜ𝑒(𝟙).

Using that 𝐹(𝔤) = 0, we get 𝒯𝑘(𝔤) = 𝛾𝔤/(1 − 𝔤). We deduce that 𝒯𝑘(1−𝔤)/𝛾(𝒯𝑘(𝔤)) = 𝒯𝑘(𝔤). If
𝔤 ≠ 0, we get 𝒯𝑘(𝔤) ≠ 0 (on a set of positive 𝜇-measure). This implies that ℜ𝑒(1 − 𝔤) ≥ 1. Then
use (iv) to deduce that ℜ𝑒(1 − 𝔤) = 1 if 𝔤 ≠ 0.

In the SIS model, in order to stress, if necessary, the dependence of a quantity 𝐻, such as 𝐹𝜂,
ℜ𝑒 or 𝔤𝜂, in the parameters 𝑘 and 𝛾 (which satisfy Assumption III.2) of the model, we shall write
𝐻[𝑘, 𝛾 ]. Recall that if 𝑘 and 𝛾 satisfy Assumption III.2, then the kernel 𝑘/𝛾 has a finite double norm
on 𝐿𝑝 for some 𝑝 ∈ (1, +∞). We now consider the continuity property of the maps 𝜂 ↦ 𝔤𝜂[𝑘, 𝛾 ]
and (𝑘, 𝛾 , 𝜂) ↦ 𝔤𝜂[𝑘, 𝛾 ].

Lemma III.8.3. Let ((𝑘𝑛, 𝛾𝑛), 𝑛 ∈ ℕ) and (𝑘, 𝛾 ) be kernels and functions satisfying Assumption III.2
and (𝜂𝑛, 𝑛 ∈ ℕ) be a sequence of elements of Δ converging weakly to 𝜂.

(i) We have lim𝑛→∞ 𝔤𝜂𝑛[𝑘, 𝛾 ] = 𝔤𝜂[𝑘, 𝛾 ] 𝜇-almost surely.

(ii) Assume furthermore there exists 𝑝′ ∈ (1, +∞) such that 𝐤 = 𝛾−1𝑘 and (𝐤𝑛 = 𝛾−1𝑛 𝑘𝑛, 𝑛 ∈ ℕ)
have finite double norm on 𝐿𝑝

′
and that lim𝑛→∞ ‖ 𝐤𝑛 − 𝐤 ‖𝑝′,𝑞′ = 0. Then, we have:

lim
𝑛→∞

𝔤𝜂𝑛[𝑘𝑛, 𝛾𝑛] = 𝔤𝜂[𝑘, 𝛾 ] 𝜇 − a.s.

Proof. The proof of (i) and (ii) being rather similar, we only provide the latter and indicate the
difference when necessary. To simplify, we write 𝑔𝑛 = 𝔤𝜂𝑛[𝑘𝑛, 𝛾𝑛]. We set ℎ𝑛 = 𝜂𝑛𝑔𝑛 ∈ Δ for 𝑛 ∈ ℕ.
Since Δ is sequentially weakly compact, up to extracting a subsequence, we can assume that ℎ𝑛
converges weakly to a limit ℎ ∈ Δ. Since 𝐹𝜂𝑛[𝑘𝑛, 𝛾𝑛](𝑔𝑛) = 0 for all 𝑛 ∈ ℕ, see (III.22), we have:

𝑔𝑛 =
𝒯𝐤𝑛(𝜂𝑛𝑔𝑛)

1 + 𝒯𝐤𝑛(𝜂𝑛𝑔𝑛)
=

𝒯𝐤𝑛(ℎ𝑛)
1 + 𝒯𝐤𝑛(ℎ𝑛)

⋅ (III.58)

We set 𝑔 = 𝒯𝐤(ℎ)/(1 + 𝒯𝐤(ℎ)). Notice that 𝒯𝐤𝑛(ℎ𝑛) = (𝒯𝐤𝑛 − 𝒯𝐤)(ℎ𝑛) + 𝒯𝐤(ℎ𝑛). We have

lim𝑛→∞ 𝒯𝐤(ℎ𝑛) = 𝒯𝐤(ℎ) pointwise. Since ‖ (𝒯𝐤𝑛 − 𝒯𝐤)(ℎ𝑛) ‖𝑝′
≤ ‖ 𝐤𝑛 − 𝐤 ‖𝑝′,𝑞′ , up to taking a sub-

sequence, we deduce that lim𝑛→∞(𝒯𝐤𝑛 − 𝒯𝐤)(ℎ𝑛) = 0 almost surely. (Notice the previous step
is not used in the proof of (i) as 𝐤𝑛 = 𝐤 and lim𝑛→∞ 𝒯𝑘(ℎ𝑛) = 𝒯𝑘(ℎ) pointwise.) This implies
that 𝑔𝑛 converges almost surely to 𝑔. By the dominated convergence theorem, we deduce that 𝑔𝑛
converges also in 𝐿𝑝 to 𝑔. This proves that ℎ = 𝜂𝑔 almost surely. We get 𝑔 = 𝒯𝐤(𝜂𝑔)/(1 + 𝒯𝐤(𝜂𝑔))
and thus 𝐹𝜂[𝑘, 𝛾 ](𝑔) = 0: 𝑔 is an equilibrium for 𝐹𝜂[𝑘, 𝛾 ]. We recall from Section IV.3 the functional
equality ℜ𝑒[𝑘′ℎ] = ℜ𝑒[ℎ𝑘′], where 𝑘′ is a kernel, ℎ a non-negative functions such that the kernels
𝑘′ℎ and ℎ𝑘′ have some finite double norm. We deduce from the weak-continuity and the stability
of ℜ𝑒, see Theorem III.4.2 and Proposition III.4.3, that:

ℜ𝑒[𝑘/𝛾 ](𝜂(1 − 𝑔)) = ℜ𝑒[𝐤](𝜂(1 − 𝑔)) = lim
𝑛→∞

ℜ𝑒[𝐤𝑛](𝜂𝑛(1 − 𝑔𝑛))

= lim
𝑛→∞

ℜ𝑒[𝑘𝑛/𝛾𝑛](𝜂𝑛(1 − 𝑔𝑛))

≤ 1.

(Only the weak-continuity of 𝜂′ ↦ ℜ𝑒[𝑘/𝛾 ](𝜂′) is used in the proof of (i) to getℜ𝑒[𝑘/𝛾 ](𝜂(1−𝑔)) ≤
1.) We deduce that property (iv) of Proposition III.8.2 holds with 𝑘 replaced by 𝑘𝜂, and thus
property (i) therein implies that 𝑔 = 𝔤𝜂[𝑘, 𝛾 ].

Proofs of Theorem III.4.6 and Proposition III.4.7. Under the assumptions of Lemma III.8.3, taking the
pair (𝑘𝑛, 𝛾𝑛) equal to (𝑘, 𝛾 ) in the case (i) therein, we deduce that (𝜂𝑛 𝔤𝜂𝑛[𝑘𝑛, 𝛾𝑛], 𝑛 ∈ ℕ) converges
weakly to 𝜂 𝔤𝜂[𝑘, 𝛾 ]. This implies that:

lim
𝑛→∞

ℑ[𝑘𝑛, 𝛾𝑛](𝜂𝑛) = lim
𝑛→∞∫

Ω
𝜂𝑛 𝔤𝜂[𝑘𝑛, 𝛾𝑛] d𝜇 = ∫

Ω
𝜂 𝔤𝜂[𝑘, 𝛾 ] d𝜇 = ℑ[𝑘, 𝛾 ](𝜂).

Taking (𝑘𝑛, 𝛾𝑛) = (𝑘, 𝛾 ) provides the continuity of ℑ[𝑘, 𝛾 ] and thus Theorem III.4.6. Then,
arguing as in the end of the proof of Proposition III.4.3, we get Proposition III.4.7.
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III.8.2 Coupling and Pareto optimality

We prove here Proposition III.7.4. We only consider the SIS model Param = [(Ω,ℱ , 𝜇), 𝑘, 𝛾 ], as the
kernel model can be handled similarly. We suppose throughout this section that Assumption III.2
holds.

The random variables we consider, are defined on a probability space, say (Ω0, ℱ0, ℙ). We
recall an elementary result on conditional independence. Let 𝒜, ℬ and ℋ be 𝜎-fields subsets of
ℱ0, such that ℋ ⊂ 𝒜 ∩ℬ. Then, according to [91, Theorem 8.9], we have that for any integrable
real-valued random variable 𝑋 which is ℬ-measurable:

𝒜 and ℬ are conditionally independent given ℋ ⟹ 𝔼[𝑋|𝒜] = 𝔼 [𝑋 |ℋ] . (III.59)

We now state two technical lemmas.

Lemma III.8.4 (Measurability). Let Param1 and Param2 be coupled models with independent cou-
pling (𝑋1, 𝑋2) and (𝑌1, 𝑌2). Then the random variable 𝛾1(𝑋1) is 𝜎(𝑋1) ∩ 𝜎(𝑋2)-measurable. For any
measurable function 𝑣 ∶ Ω1×Ω2 → ℝ, such that 𝑘1(𝑋1, 𝑌1)𝑣(𝑌1, 𝑌2) is integrable, the random variable
𝔼 [𝑘1(𝑋1, 𝑌1)𝑣(𝑌1, 𝑌2)|𝑋1] is also 𝜎(𝑋1) ∩ 𝜎(𝑋2)-measurable.

Proof. The 𝜎(𝑋1) ∩ 𝜎(𝑋2)-measurability of 𝛾1(𝑋1) is an immediate consequence of the almost-
sure equality 𝛾1(𝑋1) = 𝛾2(𝑋2). Since 𝔼 [𝑘(𝑋1, 𝑌1)𝑣(𝑌1, 𝑌2)|𝑋1] is 𝜎(𝑋1)-measurable, it remains to
prove that it is also 𝜎(𝑋2)-measurable. Since (𝑋1, 𝑋2) is independent from (𝑌1, 𝑌2), the 𝜎-fields
𝒜 = 𝜎(𝑋1, 𝑋2) and ℬ = 𝜎(𝑋1, 𝑌1, 𝑌2) are conditionally independent given ℋ = 𝜎(𝑋1). Using
(III.59), we deduce that:

𝔼 [𝑘1(𝑋1, 𝑌1)𝑣(𝑌1, 𝑌2)|𝑋1] = 𝔼 [𝑘1(𝑋1, 𝑌1)𝑣(𝑌1, 𝑌2)|𝑋1, 𝑋2] .

Since 𝑘1(𝑋1, 𝑌1) = 𝑘2(𝑋2, 𝑌2) ℙ-almost surely, we get:

𝔼 [𝑘1(𝑋1, 𝑌1)𝑣(𝑌1, 𝑌2)|𝑋1] = 𝔼 [𝑘2(𝑋2, 𝑌2)𝑣(𝑌1, 𝑌2)|𝑋1, 𝑋2]
= 𝔼 [𝑘2(𝑋2, 𝑌2)𝑣(𝑌1, 𝑌2)|𝑋2] ,

where the last equality follows from another application of (III.59) with 𝒜 = 𝜎(𝑋1, 𝑋2), ℬ =
𝜎(𝑋2, 𝑌1, 𝑌2) which are conditionally independent given ℋ = 𝜎(𝑋2). The last expression is 𝜎(𝑋2)
measurable, so the proof is complete.

In the following key lemma, we simply write 𝐻𝑖 for 𝐻[Param𝑖] for 𝐻 the loss functions ℜ𝑒 and
ℑ, the cost function 𝐶 = 𝐶uni and the spectrum Spec.

Lemma III.8.5. If Param1 and Param2 are coupled models, and if the functions 𝜂1 ∈ Δ1 and 𝜂2 ∈ Δ2
are coupled, then Spec1(𝜂1) ∪ {0} = Spec2(𝜂2) ∪ {0} and for 𝐻 any one of the mappings 𝐶uni, ℜ𝑒 or ℑ:

𝐻1(𝜂1) = 𝐻2(𝜂2). (III.60)

Proof. Let (𝑋1, 𝑋2) and (𝑌1, 𝑌2) be two independent couplings, and assume that 𝜂1 and 𝜂2 are
coupled through the function 𝜂, see Remark III.7.3 (i):

𝔼 [𝜂(𝑋1, 𝑋2)| 𝑋𝑖] = 𝜂𝑖(𝑋𝑖) for 𝑖 ∈ {1, 2}. (III.61)

Step 1: The cost function (𝐻 = 𝐶uni). We directly have:

𝐶1(𝜂1) = 1 − 𝔼 [𝜂1(𝑋1)] = 1 − 𝔼 [𝜂(𝑋1, 𝑋2)] = 1 − 𝔼 [𝜂2(𝑋2)] = 𝐶2(𝜂2).

Step 2: The spectrum and the effective reproduction function (𝐻 = ℜ𝑒). Set 𝐤𝑖 = 𝑘𝑖/𝛾𝑖 for
𝑖 ∈ {1, 2}. Let 𝜆 be a non-zero eigenvalue of 𝑇𝐤1𝜂1 associated with an eigenvector 𝑣1. Notice that
𝐤(𝑋1, 𝑌1)𝜂1(𝑌1)𝑣(𝑌1) is integrable thanks to the integrability condition from Assumption III.2. By
definition of eigenvectors, 𝑣1(𝑋1) is a version of the conditional expectation:

𝜆−1𝔼 [𝐤1(𝑋1, 𝑌1) 𝜂1(𝑌1)𝑣1(𝑌1)|𝑋1] .
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By Lemma III.8.4 applied to the function 𝑣(𝑦1, 𝑦2) = (𝑣1𝜂1/𝛾1)(𝑦1), the real-valued random variable
𝑣1(𝑋1) is 𝜎(𝑋1) ∩ 𝜎(𝑋2)-measurable and thus 𝜎(𝑋2)-measurable. Thanks to (III.54), there exists 𝑣2
such that 𝑣2(𝑋2) = 𝑣1(𝑋1) almost surely. Since (𝑌1, 𝑌2) is distributed as (𝑋1, 𝑋2), we deduce that
(III.61) holds also with (𝑋1, 𝑋2) replaced by (𝑌1, 𝑌2) and that 𝑣2(𝑌2) = 𝑣1(𝑌1) almost surely. Recall
that 𝐤𝑖 = 𝑘𝑖/𝛾𝑖, so that 𝐤1(𝑋1, 𝑌1) = 𝐤2(𝑋2, 𝑌2) almost surely. We may now compute:

𝜆𝑣2(𝑋2) = 𝜆𝑣1(𝑋1)
= 𝔼 [𝑘1(𝑋1, 𝑌1) 𝜂1(𝑌1)𝑣1(𝑌1)|𝑋1]
= 𝔼 [𝐤1(𝑋1, 𝑌1) 𝜂(𝑌1, 𝑌2)𝑣1(𝑌1)|𝑋1] (de-conditioning on (𝑌1, 𝑋1))
= 𝔼 [𝐤1(𝑋1, 𝑌1) 𝜂(𝑌1, 𝑌2)𝑣1(𝑌1)|𝑋2] (Lemma III.8.4)

= 𝔼 [𝐤2(𝑋2, 𝑌2) 𝜂(𝑌1, 𝑌2)𝑣2(𝑌2)|𝑋2] (a.s. equality)

= 𝔼 [𝐤2(𝑋2, 𝑌2) 𝜂2(𝑌2)𝑣2(𝑌2)|𝑋2] (conditioning on (𝑌2, 𝑋2))
= 𝑇𝐤2𝜂2𝑣2(𝑋2).

(III.62)

Since the distribution of 𝑋2 is 𝜇2, we have 𝜆𝑣2 = 𝑇𝐤2𝜂2𝑣2 𝜇2-almost surely. Therefore 𝜆 is also
an eigenvalue for 𝑇𝐤2𝜂2 . By symmetry we deduce that the spectrum up to {0} of 𝑇𝐤1𝜂1 and 𝑇𝐤2𝜂2
coincide, that is Spec1(𝜂1) ∪ {0} = Spec2(𝜂2) ∪ {0}, and in particular the spectral radius coincide.

Step 3: The total proportion of infected population function (𝐻 = ℑ). We assume without
loss of generality that 𝜌(𝒯𝑘1/𝛾1) > 1, which is equivalent to 𝜌(𝒯𝑘2/𝛾2) > 1, thanks to (III.60)
with 𝐻 = ℜ𝑒 and 𝜂1 = 𝜂2 = 𝟙. Let 𝑔1 = 𝔤𝜂1 be the maximal equilibrium for the model Param1.
Since 𝐹𝜂1(𝑔1) = 0, see (III.22), we have:

𝑔1 =
𝒯𝑘1(𝜂1𝑔1)

𝛾1 + 𝒯𝑘1(𝜂1𝑔1)
⋅ (III.63)

By Lemma III.8.4, this implies that 𝑔1(𝑋1) is 𝜎(𝑋1) ∩ 𝜎(𝑋2) measurable. Thus, there exists 𝑔′2 such
that 𝑔′2(𝑋2) = 𝑔1(𝑋1) ℙ-almost surely.. Therefore, by the same computation as in (III.62):

𝒯𝑘1(𝜂1𝑔1)(𝑋1) = 𝒯𝑘2(𝜂2𝑔
′
2)(𝑋2) ℙ − a.s.

We set:

𝑔2 =
𝒯𝑘2(𝜂2𝑔

′
2)

𝛾2 + 𝒯𝑘2(𝜂2𝑔
′
2)
⋅ (III.64)

Then, we deduce from (III.63) that 𝑔2(𝑋2) = 𝑔′2(𝑋2) ℙ-almost surely, that is 𝑔2 = 𝑔′2 𝜇2-almost
surely. Thus (III.64) holds with 𝑔′2 replaced by 𝑔2. In other words, 𝑔2 satisfies (III.22): it is an
equilibrium for the model given by Param2.

Let us now prove that 𝑔2 is in fact the maximal equilibrium. Since 𝑔2(𝑋2) = 𝑔1(𝑋1) ℙ-almost
surely and 𝑔1(𝑋1) is 𝜎(𝑋1) ∩ 𝜎(𝑋2)-measurable, we deduce from Remark III.7.3 (ii), that (1 − 𝑔1)
and (1 − 𝑔2) are coupled, so ℜ𝑒[Param1](1 − 𝑔1) = ℜ𝑒[Param2](1 − 𝑔2), by Property (III.60)
applied to 𝐻 = ℜ𝑒. Since ℜ0 > 1 and 𝑔1 is the maximal equilibrium for Param1, we deduce from
Proposition III.8.2 that ℜ𝑒[Param1](1 − 𝑔1) = 1. Using again Proposition III.8.2, this gives that 𝑔2
is the maximal equilibrium for Param2.

We may now compute:

ℑ1(𝜂1) = 𝔼 [𝜂1(𝑋1) 𝑔1(𝑋1)]
= 𝔼 [𝜂(𝑋1, 𝑋2) 𝑔1(𝑋1)] (deconditioning on 𝑋1)

= 𝔼 [𝜂(𝑋1, 𝑋2) 𝑔2(𝑋2)] ( a.s. equality)

= 𝔼 [𝜂2(𝑋2) 𝑔2(𝑋2)] (conditioning on 𝑋2)

= ℑ2(𝜂2),

thus (III.60) holds for 𝐻 = ℑ, and the proof is complete.

We now give the proof of Proposition III.7.4. Its first part is an elementary consequence of the
Lemma III.8.5; and the second part is a direct consequence of Remark III.7.3 (iii).
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Chapter IV

Effective reproduction number:
convexity, invariance and cordons
sanitaires

Chapter Abstract

We consider the problem of optimal allocation strategies for a (perfect) vaccine in an infinite-
metapopulation model (including SIS, SIR, SEIR, ...), when the loss function is given by the effective
reproduction number ℜ𝑒, which is defined as the spectral radius of the effective next generation
matrix (in finite dimension) or more generally of the effective next generation operator (in infinite
dimension). We give sufficient conditions for ℜ𝑒 to be a convex or a concave function of the
vaccination strategy. Then, following a previous work, we consider the bi-objective problem of
minimizing simultaneously the cost and the loss of the vaccination strategies. In particular, we
prove that a cordon sanitaire might not be optimal, but it is still better than the “worst” vaccination
strategies. Inspired by the graph theory, we compute the minimal cost which ensures that no
infection occurs using independent sets. Using Frobenius decomposition of the whole population
into irreducible sub-populations, we give some explicit formulae for optimal (“best” and “worst”)
vaccinations strategies. Eventually, we provide equivalence properties on models which ensure
that the functionℜ𝑒 is unchanged; in the matrix setting this corresponds to identify the preservers
for the spectral radius of matrices.

The material for this chapter has been released in [36].
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IV.1 Introduction

IV.1.1 Vaccination in metapopulation models

The study of vaccination strategies for metapopulation models with 𝑁 ≥ 2 sub-populations,
naturally leads to an easily stated linear algebra problem:c3- given a matrix 𝐾, of size 𝑁 × 𝑁, with
non-negative entries, what can be said about the function

ℜ𝑒 ∶ {
Δ → ℝ,
𝜂 ↦ spectral radius of 𝐾 ⋅ Diag(𝜂),

(IV.1)

where Δ = [0, 1]𝑁, Diag(𝜂) denotes the 𝑁 × 𝑁 matrix with diagonal elements 𝜂 = (𝜂1, … , 𝜂𝑁), and
the spectral radius is the largest modulus of the eigenvalues. In this form, the problem appears for
instance, with a mathematical point of view, in Elsner and Hadeler [51], see also Friedland [64]
and Nussbaum [122].

In metapopulation epidemiological models, the indices 𝑖 = 1, … , 𝑁 correspond to various
sub-populations with respective proportional size 𝜇1, … , 𝜇𝑁. Following [81], the entry 𝐾𝑖𝑗 of the
so-called next-generation matrix 𝐾 is equal to the expected number of secondary infections for
people in subgroup 𝑖 resulting from a single randomly selected non-vaccinated infectious person in
subgroup 𝑗. Finally, 𝜂 represents a vaccination strategy, that is, 𝜂𝑖 is the fraction of non-vaccinated
individuals in the 𝑖th sub-population; thus 𝜂𝑖 = 0 when the 𝑖th sub-population is fully vaccinated,
and 1 when it is not vaccinated at all. (This seemingly unnatural convention is in particular
motivated by the simple form of Equation IV.1). So, the strategy 𝟙 ∈ Δ, with all its entries equal
to 1, corresponds to an entirely non-vaccinated population. The quantity ℜ𝑒, referred to as the
effective reproduction number, may then be interpreted as the mean number of infections coming
from a typical case. In particular, we denote by ℜ0 = ℜ𝑒(𝟙) the so-called basic reproduction
number associated to the metapopulation epidemiological model. With the interpretation of the
function ℜ𝑒 in mind, it is then very natural to minimize it under a constraint on the cost 𝐶(𝜂) of
the vaccination strategies 𝜂. A natural choice for the cost function is given by the uniform cost
𝐶(𝜂) = 1 − ∑𝑖 𝜂𝑖𝜇𝑖, which corresponds to the fraction of vaccinated individuals in the population.
This constrained optimization problem appears in most of the literature for designing efficient
vaccination strategies for multiple epidemic situation (SIR/SEIR), see [29, 46, 52, 81, 116, 130,
161]. Note that in some of these references, the effective reproduction is defined as the spectral
radius of the matrix Diag(𝜂) ⋅ 𝐾. Since the eigenvalues of Diag(𝜂) ⋅ 𝐾 are exactly the eigenvalues
of the matrix 𝐾 ⋅ Diag(𝜂), this actually defines the same function ℜ𝑒. In Section IV.2, we discuss
the generalization of the effective reproduction number to the kernel model that offers a finer
description of the contacts within the population.

The goal of this chapter is to prove a number of properties ofℜ𝑒, that shed a light on how to vac-
cinate in the best possible way. In previous chapters, we introduced a general infinite-dimensional
kernel framework in which the matrix formulation appears as a special finite-dimensional case.
We state our results in this general framework, but for ease of presentation, we shall stick to
the matrix formulation in this introduction. Finally, many results of this chapter are applied and
illustrated in detail on various examples in the next chapters and in future papers [37, 40].

IV.1.2 Convexity properties of the effective reproduction number

Given the importance of convexity to solve optimization problems efficiently, it is natural to look
for conditions on the matrix 𝐾 that imply convexity or concavity for the map ℜ𝑒 defined by (IV.1).
In their investigation of the behavior of this map in the finite dimensional matrix setting, Hill and
Longini conjecture in [81] sufficient spectral conditions to get either concavity or convexity. More
precisely, guided by explicit examples, they state that ℜ𝑒 should be convex if all the eigenvalues
of 𝐾 are non negative real numbers, and that it should be concave if all eigenvalues are real, with
only one positive eigenvalue.

Our first series of results show that, while this conjecture cannot hold in full generality, see
Section IV.5.1, it is true under an additional symmetry hypothesis. Recall that a matrix 𝐾 is called
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diagonally symmetrizable if there exist positive numbers (𝑑1, … 𝑑𝑁) such that for all 𝑖, 𝑗, 𝑑𝑖𝐾𝑖𝑗 = 𝑑𝑗𝐾𝑗𝑖.
Such a matrix is necessarily diagonalizable with real eigenvalues. The following result, which
appears below in the text as Theorem IV.5.1, settles the conjecture for diagonally symmetrizable
matrices. It is a special case of the more general Theorem IV.5.5, which holds in the infinite
dimensional kernel setting, and for which the symmetry assumption has to be carefully worded.
Let us mention that the eigenvalue 𝜆1 in the theorem below is non-negative and is equal to the
spectral radius of 𝐾, that is, 𝜆1 = ℜ𝑒(𝟙) = ℜ0, thanks to the Perron-Frobenius theory.

Theorem IV.1.1. Let 𝐾 be an 𝑁 × 𝑁 matrix with non-negative entries. Suppose that 𝐾 is diagonally
symmetrizable with eigenvalues 𝜆1 ≥ 𝜆2⋯ ≥ 𝜆𝑁.

(i) If 𝜆𝑁 ≥ 0, then the function ℜ𝑒 is convex.

(ii) If 𝜆2 ≤ 0, then the function ℜ𝑒 is concave.

Note that the case (i) appears already in Cairns [29]; see also [57, 64] and Section IV.5.1 below
for a detailed comparison with existing results.

IV.1.3 Equivalence properties

When studying the effective reproduction number ℜ𝑒, it is natural to ask what kind of transfor-
mations may be done on the matrix 𝐾 that leave the function ℜ𝑒 unchanged. It is easy to see
that if 𝐾 and 𝐾 ′ are diagonally similar up to transposition, they define the same function ℜ𝑒; we
check in Section IV.4.1 that this is essentially still true in the generalized kernel setting. We also
investigate, in the matrix case, whether diagonal similarity up to transposition is necessary for
defining the same ℜ𝑒, and give partial results in this case, in the spirit of Hartfiel and Loewy [77].
In the terminology of linear algebra, this corresponds to identify all the preservers of the map
𝐾 ↦ ℜ𝑒[𝐾], where we write ℜ𝑒[𝐾] to stress the dependence of the function ℜ𝑒 in (IV.1) on the
parameter 𝐾.

IV.1.4 Properties of Pareto and anti-Pareto optima, cordons sanitaires

Let us now come back to the problem of finding optimal vaccination strategies. In contrast with
the previous chapter, where we put minimal assumptions on the loss function which measures the
efficiency of the vaccination strategies, we consider here that the loss of a strategy 𝜂 is given by its
effective reproduction number ℜ𝑒(𝜂). This focus and the fact that we consider strictly decreasing
cost functions (because vaccinating more costs more, see Section IV.6.1), allow us to simplify some
of the statements of Chapter III and to give additional specific results.

The problem of minimizing the effective reproduction number while keeping the cost of the
vaccination low leads to a bi-objective optimization problem. We recall in Section IV.6.1 the setting
introduced in detail in Chapter III for a general framework. One can identify Pareto optimal and
anti-Pareto optimal vaccinations strategies, informally “best” and “worst” vaccination strategies,
and consider the Pareto frontier ℱ (resp. anti-Pareto frontier ℱAnti) as the outcomes (𝐶(𝜂), ℜ𝑒(𝜂))
of the Pareto (resp. anti-Pareto) optimal strategies 𝜂.

In Figure IV.1(a), we have plotted in red the Pareto frontier and in a dashed line the anti-Pareto
frontier when the next-generation matrix is the adjacency matrix of the non-oriented cycle graph
with 𝑁 = 12 nodes from Figure IV.2(a) and Example IV.1.2.

A cordon sanitaire is not the worst vaccination strategy

Recall that a matrix 𝐾 is reducible if there exists a permutation 𝜎 such that (𝐾𝜎(𝑖)𝜎(𝑗))𝑖,𝑗 is block
upper triangular, and irreducible otherwise. A cordon sanitaire is a vaccination strategy 𝜂 such that
the infection matrix between non-vaccinated people, 𝐾 ⋅ Diag(𝜂), is reducible: informally, such a
vaccination cuts the effective population in two or more groups that do not infect one another.

Disconnecting the population by creating a cordon sanitaire is not always the “best” choice,
that is, it may not be Pareto optimal. However, we prove in Proposition IV.6.5 that a cordon
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Figure IV.1: Efficacy of the disconnecting vaccination strategy “one in 4” for the non-oriented
cycle graph with 12 nodes and uniform cost 1/4.

sanitaire can never be anti-Pareto optimal; this result still holds in the general kernel framework,
provided that the definition of cordon sanitaires is generalized in an appropriate way.

Example IV.1.2 (Non-oriented cycle graph). Suppose that the matrix 𝐾 is given by the adjacency
matrix (see Figure IV.2(b) for a grayplot representation) of the non-oriented cycle graph with
𝑁 = 12 nodes; see Figure IV.2(a). For a cost 𝐶uni = 1/4, there is a disconnecting strategy 𝜂
that consists in vaccinating one sub-population in four; see Figure IV.2(c) (and Figure IV.2(d)
for a grayplot representation of the corresponding adjacency matrix). The effective reproduction
number associated is equal to √2. This strategies performs better than the anti-Pareto optimal
strategy and is out-performed by the Pareto optimal one as we can see in Figure IV.1. This example
is discussed in detail in Section 2.4 of Chapter V.

Minimal cost required to completely stop the transmission of the disease

A vaccination strategy 𝜂 such that ℜ𝑒(𝜂) = 0 completely eradicates the epidemic. Section IV.6.4
is devoted to the characterization of the minimal cost of such vaccinations, which is denoted
by 𝑐⋆. This quantity is introduced and discussed in Chapter III under general assumption for
the loss function. Since we consider here the special case of measuring the loss by the effective
reproduction number ℜ𝑒, we are able to give in Proposition IV.6.9 an explicit expression of this
quantity in the kernel model. In the symmetric matrix case, when the cost is uniform (the cost is
proportional to the number of vaccinated individuals), this expression is proportional to the size
of maximal independent sets of the non-oriented graph with vertices {1, … , 𝑁 }, where there is an
edge between 𝑖 and 𝑗 if and only if 𝐾𝑖𝑗 > 0.

We can observe this property in Figure IV.1(a) as the size of the maximal independent set of
the non-oriented cycle graph of size 𝑁 from Example IV.1.2 is equal to ⌊ 𝑁/2 ⌋.

Reducible case

When the matrix 𝐾 happens to be reducible, up to a relabeling, we may assume that it is block
upper triangular. Denoting by 𝑚 the number of blocks and 𝐼1, … , 𝐼𝑚 the sets of indices describing
the blocks, this means that for all ℓ > 𝑘 and (𝑖, 𝑗) ∈ 𝐼ℓ × 𝐼𝑘, we have 𝐾𝑖𝑗 = 0. In the epidemiological
interpretation, this means that the populations with indices in 𝐼𝑘 never infect the ones with indices
in 𝐼ℓ. One may then hope that the study ofℜ𝑒 can be effectively reduced to the study of the effective
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Figure IV.2: An example of disconnecting vaccination strategy on the non-oriented cycle graph.

radius of the square sub-matrices (𝐾𝑖𝑗)𝑖,𝑗∈𝐼𝑘 describing the infections within block 𝐼𝑘. This is indeed
the case, and we give in Section IV.7 a complete picture of the Pareto and anti-Pareto frontiers
of ℜ𝑒, in terms of the effective reproduction numbers restricted to each irreducible component
of the infection kernel or matrix. In particular, this allows a better understanding of the possible
disconnection of the anti-Pareto frontier, whereas the Pareto frontier is always connected. Once
more, special care has to be taken with the definitions when handling the infinite dimensional
kernel case.

Optimal ray

It is observed by Poghotanyan, Feng, Glasser and Hill in [130], that if there exists a Pareto optimal
strategy 𝜂 with all its entries strictly less than 1, then all the strategies 𝜆𝜂, with 𝜆 ≥ 0 such
that 𝜆𝜂 ∈ Δ, are Pareto optimal. We give a short proof on the existence of such optimal rays in
Section IV.6.2, when one assumes that the cost function 𝐶 is affine on Δ.

IV.1.5 Structure of the chapter

Wediscuss in Section IV.2 the generality of the setting, showing that studying vaccination strategies
in many different epidemic models gives rise to the same optimization problem. After recalling
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formally our infinite dimensional kernel setting in Section IV.3, we discuss invariance properties
ofℜ𝑒 in Section IV.4. The convexity properties ofℜ𝑒 and the related conjecture of Hill and Longini
are discussed in Section IV.5. Various properties of the Pareto and anti-Pareto frontiers, and in
particular the fact that establishing a cordon sanitaire by disconnecting the population is never
the worst solution, are discussed in Section IV.6. Finally, the case of reducible kernels is treated in
Section IV.7.

IV.2 Discussion on the next-generation operator

In Chapters II and III, we developed a framework that we call the kernel model where the population
is represented as an abstract probability space (Ω,ℱ , 𝜇). Individuals are characterized by a feature
𝑥 ∈ Ω, and the relative size of the sub-population with feature is given by 𝜇(d𝑥). The underlying
structure described by this trait can be very varied, typical examples being one or several of the
following characteristics: spatial position, social contacts, susceptibility, infectivity, characteristics
of the immunological response…The analogue of the next-generation matrix 𝐾 is then the kernel
operator defined formally by:

𝑇k(𝑔)(𝑥) = ∫
Ω
k(𝑥, 𝑦) 𝑔(𝑦) d𝜇(𝑦);

where the nonnegative kernel k is defined on Ω × Ω and k(𝑥, 𝑦) still represents a strength of
infection from 𝑦 to 𝑥. Vaccination strategies 𝜂 ∶ Ω → [0, 1] encode the density of non-vaccinated
individuals with respect to the measure 𝜇. The (sub-probability) measure 𝜂(𝑦) 𝜇(d𝑦) may then be
understood as an effective population, giving rise to an effective next-generation operator:

𝑇k𝜂(𝑔)(𝑥) = ∫
Ω
k(𝑥, 𝑦) 𝑔(𝑦) 𝜂(𝑦) 𝜇(d𝑦).

The effective reproduction number is then defined by ℜ𝑒(𝜂) = 𝜌(𝑇k𝜂), where 𝜌 stands for the
spectral radius of the operator and k𝜂 for the kernel (k𝜂)(𝑥, 𝑦) = k(𝑥, 𝑦)𝜂(𝑦).

Most of the results mentioned in the introduction will be given in this general framework as
we argue that the latter is sufficiently flexible to describe a wide range of epidemic models from the
literature including themetapopulationmodels. We give in the following a few examples to support
this claim: in each of them, the spectral radius of a particular, explicit kernel operator appears
as a threshold parameter, and the epidemic either “invades/survives” or “dies out” depending on
the value of this parameter. Classical notations are used: 𝑆 denotes the proportion of susceptible
individuals, 𝐸 the proportion of those who have been exposed to the disease, 𝐼 the proportion of
infected individuals, 𝑅 the proportion of removed individuals in the population.

Example IV.2.1 (Meta-population models). Recall that in metapopulation models, the population
is divided into 𝑁 ≥ 2 different sub-populations of respective proportional size 𝜇1, … , 𝜇𝑁, and
the reproduction number is given by ℜ𝑒(𝜂) = 𝜌(𝐾 ⋅ Diag(𝜂)), where 𝐾 is the next generation
matrix and 𝜂 belongs to [0, 1]𝑁 and gives the proportion of non-vaccinated individuals in each
sub-population. To express the functionℜ𝑒 as the effective reproduction number of a kernel model,
consider the discrete state space Ωd = {1, … , 𝑁 } equipped with the probability measure 𝜇d defined
by 𝜇d({𝑖}) = 𝜇𝑖, and let kd denote the discrete kernel on Ωd defined by:

kd(𝑖, 𝑗) = 𝐾𝑖𝑗/𝜇𝑗. (IV.2)

For all 𝜂 ∈ Δ = [0, 1]𝑁, the matrix 𝐾 ⋅ Diag(𝜂) is the matrix representation of the endomorphism
𝑇kd𝜂 in the canonical basis of ℝ𝑁. In particular, we have: ℜ𝑒(𝜂) = 𝜌(𝑇k𝜂) = 𝜌(𝐾 ⋅ Diag(𝜂)).

In Figure IV.2(b), we have plotted the kernel on [0, 1] associated to kd for the non-oriented
cycle graph when the sub-populations have the same size.

Example IV.2.2 (An SIR model with nonlinear incidence rate and vital dynamics). In [150], Thieme
proposed an SIR model in an infinite-dimensional population structure with a nonlinear incidence
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rate. The structure space is given by Ω a compact subset of ℝ𝑁 and it is equipped with the
normalized Lebesgue measure. We restrict slightly his assumption so that the incidence rate is a
linear function of the number of susceptible. The dynamic of the epidemic then writes:

For 𝑡 ≥ 0, 𝑥 ∈ Ω,

⎧
⎪

⎨
⎪
⎩

𝜕𝑡𝑆(𝑡, 𝑥) = Λ(𝑥) − 𝜈(𝑥)𝑆(𝑡, 𝑥) − 𝑆(𝑡, 𝑥) ∫Ω 𝑓 (𝐼 (𝑡 , 𝑦), 𝑥, 𝑦) d𝑦,

𝜕𝑡𝐼 (𝑡 , 𝑥) = 𝑆(𝑡, 𝑥) ∫Ω 𝑓 (𝐼 (𝑡 , 𝑦), 𝑥, 𝑦) d𝑦 − (𝛾(𝑥) + 𝜈(𝑥))𝐼 (𝑡 , 𝑥),

𝜕𝑡𝑅(𝑡, 𝑥) = 𝛾(𝑥)𝐼 (𝑡, 𝑥).

(IV.3)

Here Λ(𝑥) is the rate at which fresh susceptibles are recruited into the population at location
𝑥, 𝜈(𝑥) is the per capita death rate of the individuals, and 𝛾 (𝑥) is the per capita recovery rate of
infectious individuals The integral term describes the incidence at 𝑥 at time 𝑡, i.e., the rate of new
infections. Thieme identified a threshold parameter that plays the role of the reproduction number,
and is given by the spectral radius of the operator 𝑇k with the kernel given by:

k(𝑥, 𝑦) =
Λ(𝑥)

𝛾 (𝑥) + 𝜈(𝑥)
𝜕𝐼𝑓 (0, 𝑥, 𝑦), 𝑥, 𝑦 ∈ Ω, (IV.4)

where 𝜕𝐼𝑓 (0, 𝑥, 𝑦), the derivative of 𝑓 with respect to 𝐼, is supposed to be non-negative for all
𝑥, 𝑦 ∈ Ω.

Suppose that individuals at location 𝑥 are vaccinated with probability 1 − 𝜂(𝑥) at birth so that
the susceptible individuals with feature 𝑥 are recruited at rate 𝜂(𝑥)Λ(𝑥) and recovered/immunized
individuals are also recruited at rate (1− 𝜂(𝑥))Λ(𝑥) at location 𝑥. The threshold parameterℜ𝑒(𝜂) is
then given by the spectral radius of the integral operator 𝑇𝜂k with kernel 𝜂k given by (𝜂k)(𝑥, 𝑦) =
𝜂(𝑥)k(𝑥, 𝑦). According to Lemma IV.3.1 (ii), we have 𝜌(𝑇𝜂k) = 𝜌(𝑇k𝜂), and our framework can be
used for this model.

Under regularity assumptions on the parameters of the model, Thieme proved that if ℜ𝑒(𝜂)
is greater than 1, then there exists an endemic equilibrium that attracts all the solutions while if
ℜ𝑒(𝜂) is smaller than 1, then 𝐼 (𝑡 , 𝑥) converges to 0 for all 𝑥 ∈ Ω as 𝑡 goes to infinity.

Example IV.2.3 (An SEIR model without vital dynamics). In [3], Almeida, Bliman, Nadin and
Perthame studied an heterogeneous SEIR model where the population is again structured with a
bounded subset Ω ⊂ ℝ𝑁 equipped with the normalized Lebesgue measure. The dynamic of the
susceptible, exposed, infected and recovered individuals writes:

For 𝑡 ≥ 0, 𝑥 ∈ Ω,

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝜕𝑡𝑆(𝑡, 𝑥) = −𝑆(𝑡, 𝑥) ∫Ω 𝑘(𝑥, 𝑦)𝐼 (𝑡 , 𝑦) d𝑦,

𝜕𝑡𝐸(𝑡, 𝑥) = 𝑆(𝑡, 𝑥) ∫Ω 𝑘(𝑥, 𝑦)𝐼 (𝑡 , 𝑦) d𝑦 − 𝛼(𝑥)𝐸(𝑡, 𝑥),

𝜕𝑡𝐼 (𝑡 , 𝑥) = 𝛼(𝑥)𝐸(𝑡, 𝑥) − 𝛾(𝑥)𝐼 (𝑡 , 𝑥),

𝜕𝑡𝑅(𝑡, 𝑥) = 𝛾(𝑥)𝐼 (𝑡, 𝑥).

(IV.5)

Here, the average incubation rate is denoted by 𝛼(𝑥) and the average recovery rate by 𝛾 (𝑥); both
quantities may depend upon the trait 𝑥. The function 𝑘 is the transmission kernel of the disease. In
this model, the basic reproduction number is given by the spectral radius of the integral operator
𝑇k with kernel k = 𝑘/𝛾:

k(𝑥, 𝑦) = 𝑘(𝑥, 𝑦)/𝛾 (𝑦). (IV.6)

Suppose that, prior to the beginning of the epidemic, the decision maker immunizes a density 1−𝜂
of individuals. Then the effective reproduction is given by 𝜌(𝑇𝜂k) which is also equal to 𝜌(𝑇k𝜂), see
Lemma IV.3.1 (ii) below, and our model is indeed suitable for studying the vaccination strategies
in this context.

Example IV.2.4 (An SIS model without vital dynamic). In Chapter II, we introduced the follow-
ing heterogeneous SIS model where the population is structured with an abstract probability
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space (Ω,ℱ , 𝜇):

For 𝑡 ≥ 0, 𝑥 ∈ Ω, {
𝜕𝑡𝑆(𝑡, 𝑥) = −𝑆(𝑡, 𝑥) ∫Ω 𝑘(𝑥, 𝑦)𝐼 (𝑡 , 𝑦) d𝑦 + 𝛾(𝑥)𝐼 (𝑡, 𝑥),

𝜕𝑡𝐼 (𝑡 , 𝑥) = 𝑆(𝑡, 𝑥) ∫Ω 𝑘(𝑥, 𝑦)𝐼 (𝑡 , 𝑦) d𝑦 − 𝛾(𝑥)𝐼 (𝑡, 𝑥).
(IV.7)

The function 𝛾 is the per-capita recovery rate and 𝑘 is the transmission kernel. For this model,
ℜ𝑒(𝜂) = 𝜌(𝑇k𝜂) where k = 𝑘/𝛾 is defined by (IV.6).

Suppose that, prior to the beginning of the epidemic, a density 1−𝜂 of individuals is vaccinated
with a perfect vaccine. In the same way as for the SEIR model, we proved, as 𝑡 goes to infinity,
that if ℜ𝑒(𝜂) is smaller than or equal to 1, then 𝐼 (𝑡 , ⋅) converges to 0, and, under a connectivity
assumption on the kernel 𝑘, that if ℜ𝑒(𝜂) is greater than 1, then 𝐼 (𝑡 , ⋅) converges to an endemic
equilibrium. This highlights the importance of ℜ𝑒 in the design of vaccination strategies.

IV.3 Setting, notations and previous results

IV.3.1 Spaces, operators, spectra

All metric spaces (𝑆, 𝑑) are endowedwith their Borel 𝜎-field denoted byℬ(𝑆). The set𝒦 of compact
subsets ofℂ endowedwith the Hausdorff distance 𝑑H is a metric space, and the function rad from𝒦
to ℝ+ defined by rad(𝐾) = max{|𝜆| , 𝜆 ∈ 𝐾} is Lipschitz continuous from (𝒦, 𝑑H) to ℝ endowed
with its usual Euclidean distance.

Let (Ω,ℱ , 𝜇) be a probability space. We denote by Δ the set of [0, 1]-valued measurable
functions defined on Ω. For 𝑓 and 𝑔 real-valued functions defined on Ω, we may write ⟨𝑓 , 𝑔⟩ or
∫Ω 𝑓 𝑔 d𝜇 for ∫Ω 𝑓 (𝑥)𝑔(𝑥) 𝜇(d𝑥) whenever the latter is meaningful. For 𝑝 ∈ [1, +∞], we denote
by 𝐿𝑝 = 𝐿𝑝(𝜇) = 𝐿𝑝(Ω, 𝜇) the space of real-valued measurable functions 𝑔 defined Ω such that

‖ 𝑔 ‖𝑝 = (∫ |𝑔|𝑝 d𝜇)1/𝑝 (with the convention that ‖ 𝑔 ‖∞ is the 𝜇-essential supremum of |𝑔|) is finite,

where functions which agree 𝜇-a.s. are identified. We denote by 𝐿𝑝+ the subset of 𝐿𝑝 of non-negative
functions.

Let (𝐸, ‖ ⋅ ‖) be a Banach space. We denote by ‖ ⋅ ‖𝐸 the operator norm on ℒ(𝐸) the Banach
algebra of bounded operators. The spectrum Spec(𝑇 ) of 𝑇 ∈ ℒ(𝐸) is the set of 𝜆 ∈ ℂ such
that 𝑇 − 𝜆Id does not have a bounded inverse operator, where Id is the identity operator on 𝐸.
Recall that Spec(𝑇 ) is a compact subset of ℂ, and that the spectral radius of 𝑇 is given by:

𝜌(𝑇 ) = rad(Spec(𝑇 )) = lim
𝑛→∞

‖ 𝑇 𝑛 ‖1/𝑛𝐸 . (IV.8)

The element 𝜆 ∈ Spec(𝑇 ) is an eigenvalue if there exists 𝑥 ∈ 𝐸 such that 𝑇𝑥 = 𝜆𝑥 and 𝑥 ≠ 0.
Following [99], we define the (algebraic) multiplicity of 𝜆 ∈ ℂ by:

m(𝜆, 𝑇 ) = dim ( ⋃
𝑘∈ℕ∗

ker(𝑇 − 𝜆Id)𝑘) ,

so that 𝜆 is an eigenvalue if m(𝜆, 𝑇 ) ≥ 1. We say the eigenvalue 𝜆 of 𝑇 is simple if m(𝜆, 𝑇 ) = 1.
If 𝐸 is also an algebra, for 𝑔 ∈ 𝐸, we denote by 𝑀𝑔 the multiplication (possibly unbounded)

operator defined by 𝑀𝑔(ℎ) = 𝑔ℎ for all ℎ ∈ 𝐸.

IV.3.2 Invariance and continuity of the spectrum for compact operators

We collect some known results on the spectrum and multiplicity of eigenvalues related to compact
operators. Let (𝐸, ‖ ⋅ ‖) be a Banach space. Let 𝐴 ∈ ℒ(𝐸). We denote by 𝐴⊤ the adjoint of 𝐴. A
sequence (𝐴𝑛, 𝑛 ∈ ℕ) of elements of ℒ(𝐸) converges strongly to𝐴 ∈ ℒ(𝐸) if lim𝑛→∞ ‖ 𝐴𝑛𝑥 − 𝐴𝑥 ‖ =
0 for all 𝑥 ∈ 𝐸. Following [6], a set of operators𝒜 ⊂ ℒ(𝐸) is collectively compact if the set {𝐴𝑥 ∶ 𝐴 ∈
𝒜, ‖ 𝑥 ‖ ≤ 1} is relatively compact. Recall that the spectrum of a compact operator is finite or
countable and has at most one accumulation point, which is 0. Furthermore, 0 belongs to the
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spectrum of compact operators in infinite dimension. We refer to [136] for an introduction to
Banach lattices and positive operators; we shall only consider the Banach lattices 𝐿𝑝(Ω, 𝜇) for
𝑝 ≥ 1 on a probability space (Ω,ℱ , 𝜇) and a bounded operator 𝐴 is positive if 𝐴(𝐿𝑝+) ⊂ 𝐿𝑝+.

Lemma IV.3.1. Let 𝐴, 𝐵 be elements of ℒ(𝐸).

(i) If 𝐸 is a Banach lattice, and if 𝐴, 𝐵 and 𝐴 − 𝐵 are positive operators, then we have:

𝜌(𝐴) ≥ 𝜌(𝐵). (IV.9)

(ii) If 𝐴 is compact, then we have 𝐴𝐵 and 𝐵𝐴 compact and:

Spec(𝐴) = Spec(𝐴⊤) and m(𝜆, 𝐴) = m(𝜆, 𝐴⊤) for 𝜆 ∈ ℂ∗, (IV.10)

Spec(𝐴𝐵) = Spec(𝐵𝐴) and m(𝜆, 𝐴𝐵) = m(𝜆, 𝐵𝐴) for 𝜆 ∈ ℂ∗, (IV.11)

and in particular:
𝜌(𝐴𝐵) = 𝜌(𝐵𝐴). (IV.12)

(iii) Let (𝐸′, ‖ ⋅ ‖′) be a Banach space such that 𝐸′ is continuously and densely embedded in 𝐸.
Assume that 𝐴(𝐸′) ⊂ 𝐸′, and denote by 𝐴′ the restriction of 𝐴 to 𝐸′ seen as an operator on 𝐸′.
If 𝐴 and 𝐴′ are compact, then we have:

Spec(𝐴) = Spec(𝐴′) and m(𝜆, 𝐴) = m(𝜆, 𝐴′) for 𝜆 ∈ ℂ∗. (IV.13)

(iv) Let (𝐴𝑛, 𝑛 ∈ ℕ) be a collectively compact sequence which converges strongly to 𝐴. Then, we
have lim𝑛→∞ Spec(𝐴𝑛) = Spec(𝐴) in (𝒦, 𝑑H), lim𝑛→ 𝜌(𝑇𝑛) = 𝜌(𝑇 ) and for 𝜆 ∈ Spec(𝐴) ∩ ℂ∗,
𝑟 > 0 such that 𝜆′ ∈ Spec(𝐴) and |𝜆 − 𝜆′| ≤ 𝑟 implies 𝜆 = 𝜆′, and all 𝑛 large enough:

m(𝜆, 𝐴) = ∑
𝜆′∈Spec(𝐴𝑛), |𝜆−𝜆′|≤𝑟

m(𝜆′, 𝐴𝑛). (IV.14)

Proof. Property (i) can be found in [114, Theorem 4.2]. Equation (IV.10) from Property (ii) can be
deduced from from [99, Theorem p. 20]. Using [99, Proposition p. 25], we get the second part of
(IV.11) and Spec(𝐴𝐵) ∩ ℂ∗ = Spec(𝐵𝐴) ∩ ℂ∗, and thus (IV.12) holds. To get the first part of (IV.11),
see Lemma III.3.2.

We now provide a short proof for Property (iii). According to [72, Corollary 1 and Section 6],
we have Spec(𝐴) = Spec(𝐴′). Let 𝜆 ∈ Spec(𝐴) ∩ ℂ∗. Since the multiplicity of 𝜆 for 𝐴 is finite,
we get that m(𝜆, 𝐴) = dim (ker(𝐴 − 𝜆Id)𝑛) for 𝑛 large enough, and similarly for m(𝜆, 𝐴′). Clearly,
we have ker(𝐴′ − 𝜆Id)𝑛 ⊂ ker(𝐴 − 𝜆Id)𝑛. Let us prove that ker(𝐴 − 𝜆Id)𝑛 ⊂ ker(𝐴′ − 𝜆Id)𝑛. Let
𝑥 ∈ ker(𝐴 − 𝜆Id)𝑛 and (𝑥ℓ, ℓ ∈ ℕ) be a sequence of elements of 𝐸′ which converges (in 𝐸) towards
𝑥. Up to taking a sub-sequence, since 𝐴′ is compact, we can assume that 𝐴′𝑥ℓ converges in 𝐸′, say
towards 𝑦 ∈ 𝐸′. We deduce that:

𝜆𝑛𝑥 =
𝑛
∑
𝑘=1

(
𝑛
𝑘
)(−𝜆)𝑛−𝑘+1𝐴𝑘𝑥

= lim
ℓ→∞

𝑛
∑
𝑘=1

(
𝑛
𝑘
)(−𝜆)𝑛−𝑘+1𝐴𝑘𝑥ℓ

= lim
ℓ→∞

𝑛
∑
𝑘=1

(
𝑛
𝑘
)(−𝜆)𝑛−𝑘+1(𝐴′)𝑘−1(𝐴′𝑥ℓ)

=
𝑛
∑
𝑘=1

(
𝑛
𝑘
)(−𝜆)𝑛−𝑘+1(𝐴′)𝑘−1𝑦.

Since 𝜆 ≠ 0, we get that 𝑥 belongs to 𝐸′ and thus (𝐴′ − 𝜆Id)𝑛𝑥 = (𝐴 − 𝜆Id)𝑛𝑥 = 0, that is
ker(𝐴 − 𝜆Id)𝑛 ⊂ ker(𝐴′ − 𝜆Id)𝑛. Then use the definition of the multiplicity to conclude.

We eventually check Point (iv). We deduce from [6, Theorems 4.8 and 4.16] (see also (d), (g)
[take care that 𝑑(𝜆, 𝐾) therein is the algebraic multiplicity of 𝜑 for the compact operator 𝐾 and not
the geometric multiplicity] and (e) in [7, Section 3]) that lim𝑛→∞ Spec(𝑇𝑛) = Spec(𝑇 ) and (IV.14).
Then use that the function rad is continuous to deduce the convergence of the spectral radius
from the convergence of the spectra.
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IV.3.3 Kernel operators

We define a kernel (resp. signed kernel) on Ω as a ℝ+-valued (resp. ℝ-valued) measurable function
defined on (Ω2, ℱ ⊗2). For 𝑓 , 𝑔 two non-negative measurable functions defined onΩ and k a kernel
on Ω, we denote by 𝑓 k𝑔 the kernel defined by:

𝑓 k𝑔 ∶ (𝑥, 𝑦) ↦ 𝑓 (𝑥) k(𝑥, 𝑦)𝑔(𝑦). (IV.15)

For 𝑝 ∈ (1, +∞), we define the double norm of a signed kernel k on 𝐿𝑝 by:

‖ k ‖𝑝,𝑞 = (∫
Ω
(∫

Ω
| k(𝑥, 𝑦) |𝑞 𝜇(d𝑦))

𝑝/𝑞
𝜇(d𝑥))

1/𝑝

with 𝑞 given by
1
𝑝
+
1
𝑞
= 1. (IV.16)

We say that k has a finite double norm, if there exists 𝑝 ∈ (1, +∞) such that ‖ k ‖𝑝,𝑞 < +∞. To such
a kernel k, we then associate the positive integral operator 𝑇k on 𝐿𝑝 defined by:

𝑇k(𝑔)(𝑥) = ∫
Ω
k(𝑥, 𝑦) 𝑔(𝑦) 𝜇(d𝑦) for 𝑔 ∈ 𝐿𝑝 and 𝑥 ∈ Ω. (IV.17)

According to [68, p. 293], 𝑇k is compact. It is well known and easy to check that:

‖ 𝑇k ‖𝐿𝑝 ≤ ‖ k ‖𝑝,𝑞 . (IV.18)

We define the reproduction number associated to the operator 𝑇k as:

ℜ0[k] = 𝜌(𝑇k). (IV.19)

The proof of the next stability result appears already in Chapter III (but for (IV.20) whose proof
relies on (IV.14) and is left to the reader).

Corollary IV.3.2. Let 𝑝 ∈ (1, +∞). Let (k𝑛, 𝑛 ∈ ℕ) and k be kernels on Ω with finite double norms
on 𝐿𝑝 such that lim𝑛→∞ ‖ k𝑛 − k ‖𝑝,𝑞 = 0. Then, we have lim𝑛→∞ Spec(𝑇k𝑛) = Spec(𝑇k) in (𝒦, 𝑑H),
lim𝑛→ 𝜌(𝑇k𝑛) = 𝜌(𝑇k) and for 𝜆 ∈ Spec(𝑇k) ∩ ℂ∗, 𝑟 > 0 such that 𝜆′ ∈ Spec(𝑇k) and |𝜆 − 𝜆′| ≤ 𝑟
implies 𝜆 = 𝜆′, and all 𝑛 large enough:

m(𝜆, 𝑇k) = ∑
𝜆′∈Spec(𝑇k𝑛), |𝜆−𝜆

′|≤𝑟
m(𝜆′, 𝑇k𝑛). (IV.20)

IV.3.4 Irreducibility, quasi-irreducibility and monatomic kernel

We first define irreducible andmonatomic kernels. For𝐴, 𝐵 ∈ ℱ, we write𝐴 ⊂ 𝐵 a.s. if 𝜇(𝐵∁∩𝐴) = 0
and 𝐴 = 𝐵 a.s. if 𝐴 ⊂ 𝐵 a.s. and 𝐵 ⊂ 𝐴 a.s. For 𝐴, 𝐵 ∈ ℱ, 𝑥 ∈ Ω and an integrable kernel k, we
simply write k(𝑥, 𝐴) = ∫𝐴 k(𝑥, 𝑦) 𝜇(d𝑦), k(𝐵, 𝑥) = ∫𝐵 k(𝑧, 𝑥) 𝜇(d𝑧) and:

k(𝐵, 𝐴) = ∫
𝐵×𝐴

k(𝑧, 𝑦) 𝜇(d𝑧)𝜇(d𝑦).

A set 𝐴 ⊂ ℱ is k-invariant, or simply invariant when there is no ambiguity on the kernel k, if
k(𝐴∁, 𝐴) = 0. In the epidemiological setting, the set 𝐴 is invariant if the sub-population 𝐴 does not
infect the sub-population 𝐴∁. If k is symmetric, then 𝐴 is invariant if and only if 𝐴∁ is invariant.

A kernel k is said to be irreducible or connected if any k-invariant set 𝐴 is such that 𝐴 = ∅ a.s.
or 𝐴 = Ω a.s. According to [136, Theorem V.6.6], if k is an irreducible kernel with finite double
norm, then we have ℜ0[k] > 0. If the kernel is positive a.s., then it is irreducible. Following [17,
Definition 2.11], we say that a kernel is quasi-irreducible if k restricted to {k ≡ 0}∁, with {k ≡ 0} =
{𝑥 ∈ Ω ∶ k(𝑥, Ω) + k(Ω, 𝑥) = 0}, is irreducible. The quasi-irreducible property was introduced for
symmetric kernel; for general kernel one can consider the following weaker property. A kernel k is
said to bemonatomic if the operator 𝑇k has a unique (up to a multiplicative constant) non-negative
eigenfunction. Intuitively, this corresponds to have only one irreducible component. Formally,
this is also equivalent to the following two properties:
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Ωi Ωa
0 1

0

1

𝑥

𝑦

(a) A representation of a monatomic kernel.

Ωa
0 1

0

1

𝑥

𝑦

(b) A representation of a quasi-irreducible kernel.

Figure IV.3: Example of monatomic and quasi-irreducible kernels (𝑥, 𝑦) ↦ k(𝑥, 𝑦), where
k(𝑥, 𝑦) = 0 on the white zone and k reduced to the blue zone is irreducible.

(i) There exists a measurable subset Ωa ⊂ Ω, the irreducible component or atom such that:

• 𝜇(Ωa) > 0 and the kernel k restricted to Ω𝑎 is irreducible.

• If Ω∁
a ≠ ∅ a.s. then the restriction of 𝑇k to Ω∁

a is quasi-nilpotent, that is, ℜ𝑒[k](𝟙Ω∁
a
) = 0.

(ii) There exists a measurable subset Ωi ⊂ Ω∁
a, “the sub-population infected by” Ωa such that:

• The sets Ωa ∪ Ωi and Ωi are invariant.

• The setΩi is the minimal set such thatΩa ∪Ωi is invariant: if𝐴 is invariant andΩa ⊂ 𝐴
then Ωi ⊂ 𝐴 a.s.

In the epidemiological setting, the sub-population Ωi can only infect itself, and the sub-population
Ωa infects only itself andΩi. The setΩa ∪Ωi corresponds to the support of the endemic equilibrium
in the supercritical regime; see Lemma III.5.12. We refer to [138] for further details on the decom-
position of a kernel on its irreducible components; in particular the setsΩa andΩi are unique up to
the a.s. equivalence. We represented in Figure IV.3(a) a monatomic kernel and in Figure IV.3(b) a
quasi-irreducible kernel; the set Ω being “nicely ordered” so that the representation of the kernels
are upper triangular.

Remark IV.3.3. Irreducible and quasi-irreducible kernels are also monatomic (take Ωa = {k ≡ 0}∁
and Ωi = ∅). If the kernel k is monatomic and symmetric, then we get k = 𝟙Ωa

k 𝟙Ωa
and thus the

kernel k is quasi-irreducible.

The notion of irreducibility of a kernel depends only on its support: the kernel k is irreducible
(resp. quasi-irreducible, resp. monatomic) if and only if the kernel 𝟙{k>0} is irreducible (resp.
quasi-irreducible, resp. monatomic). Furthermore, if k is monatomic, then the kernels k and 𝟙{k>0}
have the same atom Ωa and the same set Ωi infected by Ωa.

The introduction of monatomic kernel is also motivated by the following result which can be
deduced from [136, Theorem V.6.6] and [138, Theorem 8], see also Section IV.7.

Lemma IV.3.4. Let k be a kernel with finite double norm and set ℜ0 = ℜ0[k]. If the kernel k
is monatomic then ℜ0 > 0 and ℜ0 is simple ( i.e. m(ℜ0, 𝑇k) = 1). If ℜ0 is simple and the only
eigenvalue in (0, +∞), then the kernel k is monatomic.

IV.3.5 The effective reproduction number ℜ𝑒

A vaccination strategy 𝜂 of a vaccinewith perfect efficiency is an element ofΔ, where 𝜂(𝑥) represents
the proportion of non-vaccinated individuals with feature 𝑥. In particular 𝜂 = 𝟙 (the constant
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function equal to 1) corresponds to no vaccination and 𝜂 = 𝟘 (the constant function equal to
0) corresponds to the whole population vaccinated. Notice that 𝜂 d𝜇 corresponds in a sense to
the effective population. Let k be a kernel on Ω with finite double norm on 𝐿𝑝. For 𝜂 ∈ Δ, the
kernel k𝜂 has also a finite double norm on 𝐿𝑝 and the operator𝑀𝜂 is bounded, so that the operator
𝑇k𝜂 = 𝑇k𝑀𝜂 is compact. We can define the effective spectrum function Spec[k] from Δ to 𝒦 by:

Spec[k](𝜂) = Spec(𝑇k𝜂), (IV.21)

the effective reproduction number function ℜ𝑒[k] = rad ∘ Spec[k] from Δ to ℝ+ by:

ℜ𝑒[k](𝜂) = rad(Spec(𝑇k𝜂)) = 𝜌(𝑇k𝜂), (IV.22)

and the corresponding reproduction number is then given by ℜ0[k] = ℜ𝑒[k](𝟙). When there is
no risk of confusion on the kernel k, we simply write ℜ𝑒 and ℜ0 for the function ℜ𝑒[k] and the
number ℜ0[k].

We can see Δ as a subset of 𝐿1, and consider the corresponding weak topology: we say that a
sequence (𝑔𝑛, 𝑛 ∈ ℕ) of functions in Δ converges weakly to 𝑔 if for all ℎ ∈ 𝐿∞ we have:

lim
𝑛→∞∫

Ω
ℎ𝑔𝑛 d𝜇 = ∫

Ω
ℎ𝑔 d𝜇. (IV.23)

Notice that (IV.23) can easily be extended to any function ℎ ∈ 𝐿𝑞 for any 𝑞 ∈ (1, +∞); so that the
weak-topology on Δ, seen as a subset of 𝐿𝑝 with 1/𝑝 + 1/𝑞 = 1, can be seen as the trace on Δ of
the weak topology on 𝐿𝑝. We recall the following property Lemma III.3.1 that follows from the
Banach-Alaoglu theorem.

Lemma IV.3.5 (Topological properties of Δ). The set Δ endowed with the weak topology is compact
and sequentially compact.

We also recall the properties of the effective reproduction number given in Proposition III.4.1
and Theorem III.4.2.

Proposition IV.3.6. Let k be a kernel on a probability space (Ω,ℱ 𝜇) with finite double norm. Then,
the functions Spec[k] and ℜ𝑒 = ℜ𝑒[k] are continuous functions from Δ respectively to 𝒦 (endowed
with the Hausdorff distance) and to ℝ+. Furthermore, the function ℜ𝑒 = ℜ𝑒[k] satisfies the following
properties:

(i) ℜ𝑒(𝜂1) = ℜ𝑒(𝜂2) if 𝜂1 = 𝜂2, 𝜇 a.s., and 𝜂1, 𝜂2 ∈ Δ,

(ii) ℜ𝑒(𝟘) = 0 and ℜ𝑒(𝟙) = ℜ0,

(iii) ℜ𝑒(𝜂1) ≤ ℜ𝑒(𝜂2) for all 𝜂1, 𝜂2 ∈ Δ such that 𝜂1 ≤ 𝜂2,

(iv) ℜ𝑒(𝜆𝜂) = 𝜆ℜ𝑒(𝜂), for all 𝜂 ∈ Δ and 𝜆 ∈ [0, 1].

We complete Corollary IV.3.2 on the stability property of the spectrum and spectral radius
with respect to the kernel k; see Proposition III.4.3.

Proposition IV.3.7 (Stability of ℜ𝑒[k] and Spec[k]). Let 𝑝 ∈ (1, +∞). Let (k𝑛, 𝑛 ∈ ℕ) and k be
kernels on Ω with finite double norms on 𝐿𝑝. If lim𝑛→∞ ‖ k𝑛 − k ‖𝑝,𝑞 = 0, then we have:

lim
𝑛→∞

sup
𝜂∈Δ

|ℜ𝑒[k𝑛](𝜂) − ℜ𝑒[k](𝜂)| = 0 and lim
𝑛→∞

sup
𝜂∈Δ

𝑑H( Spec[k𝑛](𝜂), Spec[k](𝜂)) = 0. (IV.24)
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IV.4 Spectrum-preserving transformations

IV.4.1 Diagonal similarity — the operator case

In this section, we consider a given probability state space (Ω,ℱ , 𝜇), and we discuss two op-
erations on the kernel k that leave the functions Spec[k] and ℜ𝑒[k] defined on Δ. Recall the
convention (IV.15) for the kernel 𝑓 k𝑔 defined from the kernel k and the non-negative functions 𝑓
and 𝑔.

Lemma IV.4.1. Let k be a kernel on Ω and ℎ be a non-negative measurable function on Ω.

(i) If ℎk and kℎ have finite double norms (with possibly different 𝑝), then we have:

Spec[ℎk] = Spec[ℎk𝟙{ ℎ>0 }] = Spec[𝟙{ ℎ>0 }kℎ] = Spec[kℎ],

ℜ𝑒[ℎk] = ℜ𝑒[ℎk𝟙{ ℎ>0 }] = ℜ𝑒[𝟙{ ℎ>0 }kℎ] = ℜ𝑒[kℎ].

(ii) If ℎ is positive and if k and ℎk/ℎ have finite double norms (with possibly different 𝑝), then we
have:

Spec[k] = Spec[ℎk/ℎ] and ℜ𝑒[k] = ℜ𝑒[ℎk/ℎ].

(iii) If k and its transpose k⊤ ∶ (𝑥, 𝑦) ↦ k(𝑦, 𝑥) have finite double norms (with possibly different
𝑝), then we have:

Spec[k] = Spec[k⊤] and ℜ𝑒[k] = ℜ𝑒[k⊤].

Even if (ii) is a consequence of (i), we state it separately since (ii) and (iii) describe two
modifications of k that leave the functions ℜ𝑒 and Spec invariant.

Proof. Since ℜ𝑒 = rad ∘ Spec, we only need to prove (i)-(iii) for the function Spec. We give the
detailed proof of (ii) and leave the proof of (i), which is very similar, to the reader. We first assume
that k, ℎ and 1/ℎ are bounded. The operators 𝑇k𝜂 and 𝑇ℎk𝜂/ℎ and the multiplication operators 𝑀ℎ
and 𝑀1/ℎ are bounded operators on 𝐿𝑝 for 𝑝 ∈ (1, +∞). We have, using that 𝑇k𝜂/ℎ = 𝑇k𝑀𝜂/ℎ is
compact and (IV.11) for the second equality:

Spec(𝑇k𝜂) = Spec(𝑇k𝜂/ℎ𝑀ℎ) = Spec(𝑀ℎ𝑇k𝜂/ℎ) = Spec(𝑇ℎk𝜂/ℎ).

Since 𝜂 ∈ Δ is arbitrary, this gives that Spec[k] = Spec[ℎk/ℎ].
In the general case, we use an approximation scheme. Define the kernel k𝑛 = (𝑣𝑛k𝑣𝑛) ∧ 𝑛

with 𝑣𝑛 = 𝟙{𝑛≥ℎ≥1/𝑛} and the function ℎ𝑛 = 𝑛−1 ∨ (ℎ ∧ 𝑛) for 𝑛 ∈ ℕ∗. From the first part of the
proof, we get Spec[k𝑛] = Spec[k′𝑛], with k′𝑛 = ℎ𝑛k𝑛/ℎ𝑛. Since ‖ k ‖𝑝,𝑞 is finite for some 𝑝 ∈ (1, +∞),
we get by dominated convergence that lim𝑛→∞ ‖ k − k𝑛 ‖𝑝,𝑞 = 0, and we deduce from Proposition
IV.3.7 that lim𝑛→∞ Spec[k𝑛] = Spec[k]. Similarly, setting k′ = ℎk/ℎ, the norm ‖ k′ ‖𝑝′,𝑞′ is finite
for some 𝑝′ ∈ (1, +∞), and thus lim𝑛→∞ ‖ k′ − k′𝑛 ‖𝑝′,𝑞′ = 0, so that lim𝑛→∞ Spec[k′𝑛] = Spec[k′].
This proves that Spec[k] = Spec[k′], and thus (ii).

We now prove (iii). For any 𝜂 ∈ Δ, the kernel k⊤𝜂 defines a bounded integral operator in
𝐿𝑞, whose adjoint is 𝑇𝜂k. Since the spectrum of an operator and its adjoint are the same, we
get Spec[k⊤](𝜂) = Spec(𝑇k⊤𝜂) = Spec(𝑇𝜂k) = Spec(𝑀𝜂𝑇k) = Spec(𝑇k𝑀𝜂) = Spec[k](𝜂), where
the fourth equality follows once more from (IV.11). Since this is true for any 𝜂 ∈ Δ, this gives
Spec[k⊤] = Spec[k].

Remark IV.4.2. In the infinite dimensional SIS model developed in Chapter II, the next generation
operator is given by the integral operator 𝑇k, where the kernel k = 𝑘/𝛾 is defined in terms
of a transmission rate kernel 𝑘(𝑥, 𝑦) and a recovery rate function 𝛾 by the product k(𝑥, 𝑦) =
𝑘(𝑥, 𝑦)/𝛾 (𝑦); and the reproduction numberℜ0 is then the spectral radius 𝜌(𝑇k) of 𝑇k. Furthermore
the operator 𝑇𝛾−1𝑘 appears very naturally in the definition of the maximal equilibrium 𝔤 which is
solution to Equation (II.24), that is 𝑇𝛾−1𝑘(𝔤) = 𝔤/(1 − 𝔤). According to Lemma IV.4.1 (i), provided
that 𝑘/𝛾 and 𝛾−1𝑘 have finite double norms, the next generation operator and 𝑇𝛾−1𝑘 have the same
effective spectrum function.
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We shall use the following extension in the proof of Lemma IV.5.12.

Remark IV.4.3. Following closely the proof of Lemma IV.4.1 (ii) and using Corollary IV.3.2, we also
get that if ℎ is positive and if k and ℎk/ℎ have finite double norms (with possibly different 𝑝), then
we have:

m(𝜆, 𝑇k) = m(𝜆, 𝑇ℎk/ℎ) for all 𝜆 ∈ ℂ∗. (IV.25)

IV.4.2 The matrix case

It is then natural to ask if the invariance properties stated in Lemma IV.4.1 describe all possible
cases. In other words, does Spec[k] = Spec[k̃] or even the weaker condition ℜ𝑒[k] = ℜ𝑒[k̃] imply
that k and k̃, or k and k̃⊤, are diagonally similar? Building on results from [77, 109], we give a
partial answer in the matrix case.

For clarity’s sake let us describe how our general notation adapts to the matrix case. Let 𝐾 be
an 𝑛 × 𝑛matrix with 𝑛 ∈ ℕ∗, and Δ = [0, 1]𝑛. For 𝜂 ∈ Δ, let 𝐾𝜂 denote the square matrix 𝐾 ⋅Diag(𝜂),
defined by:

(𝐾𝜂)𝑖𝑗 = 𝐾𝑖𝑗 𝜂𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

We define two maps:
Spec[𝐾] ∶ Δ → 𝒦 and ℜ𝑒[𝐾] ∶ Δ → ℝ+,

where for all 𝜂 ∈ Δ, Spec[𝐾](𝜂) (resp. ℜ𝑒[𝐾](𝜂)) is the spectrum (resp. the spectral radius) of the
square matrix 𝐾𝜂. We denote by ℰ(Δ) = {0, 1}𝑛 the extreme points of Δ.

For 𝛼 and 𝛽 non-empty subsets of {1, ..., 𝑛} we denote by 𝐾[𝛼, 𝛽] the sub-matrix of 𝐾 obtained
by keeping the lines in 𝛼 and the columns in 𝛽, and let 𝐾[𝛼] = 𝐾[𝛼, 𝛼]. The determinant of 𝐾[𝛼]
is called a principal minor of 𝐾, whose size is the cardinal of 𝛼. It is elementary to check that the
characteristic polynomial of 𝐾 may be written as:

𝜒𝐾(𝑡) =
𝑛
∑
𝑘=0

(−1)𝑘𝑐𝑛−𝑘𝑡𝑘, (IV.26)

where 𝑐0 = 1 and, for 𝑗 ≥ 1, 𝑐𝑗 is the sum of all principal minors of size 𝑗 of 𝐾.

Definition IV.4.4. Let 𝐾 be a square matrix of size 𝑛. A non-empty subset 𝛼 of {1, ..., 𝑛} is a clan if
it satisfies 2 ≤ Card(𝛼) ≤ 𝑛 − 2 and the submatrices 𝐾[𝛼, 𝛼∁] and 𝐾[𝛼∁, 𝛼] have rank at most 1. The
matrix 𝐾 is clan-free if there exists no clan.

Remark IV.4.5. A square matrix of size 𝑛 ≤ 3 is automatically clan-free.

Assume that 𝛼 = {1, ..., 𝑚} is a clan for 𝐾. Then, there exists vectors 𝑣, 𝑤 of size 𝑚, and 𝑏, 𝑐 of
size 𝑛 − 𝑚 such that 𝐾 may be written in block form as:

𝐾 = ( 𝐴 𝑣𝑏⊤
𝑐𝑤⊤ 𝐵 ) . (IV.27)

Let us then say that:

𝐾̃ = (𝐴
⊤ 𝑤𝑏⊤

𝑐𝑣⊤ 𝐵 ) (IV.28)

is a partial transpose of 𝐾 (note that the partial transpose is not unique in general).

Remark IV.4.6. Such transformations have been considered in the special case where 𝑣 = 𝑤 in
[109, Lemma 5]; see also [22] where a similar transformation called clan reversal is introduced for
skew symmetric matrices.

Our main result in this direction is summarized in the following proposition. Recall the matrix
𝐾 is diagonally similar to a matrix 𝐾̃ if there exists a non singular real diagonal matrix 𝐷 such that
𝐾 = 𝐷 ⋅ 𝐾̃ ⋅ 𝐷−1. The matrix 𝐾 is irreducible if 𝐾[𝛼, 𝛼∁] ≠ 0 for all subsets 𝛼 such that 𝛼 and 𝛼∁ are
non-empty. The matrix 𝐾 is completely reducible if 𝐾[𝛼, 𝛼∁] = 0 implies 𝐾[𝛼∁, 𝛼] = 0 whenever
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𝛼 and 𝛼∁ are non-empty. We have the following graph interpretation when 𝐾 has non-negative
entries: consider the oriented graph 𝐺 = (𝑉 , 𝐸)with 𝑉 = {1, … , 𝑛} and 𝑖𝑗 ∈ 𝐸, that is 𝑖𝑗 is an oriented
edge of 𝐺, if and only if 𝐾𝑖𝑗 > 0. Then the matrix 𝐾 is irreducible if for any choice of vertices 𝑖, 𝑗 ∈ 𝑉
there is an oriented path from 𝑖 to 𝑗; the matrix 𝐾 is completely reducible if for any vertices 𝑖, 𝑗 ∈ 𝑉
there is an oriented path from 𝑖 to 𝑗 if and only if there is an oriented path from 𝑗 to 𝑖.

Proposition IV.4.7 (Matrix case). Let 𝐾 and 𝐾̃ be square matrices of the same size with non-negative
entries.

(i) Assume 𝐾 is symmetric and ℜ𝑒[𝐾] = ℜ𝑒[𝐾̃ ]. If 𝐾̃ is symmetric then 𝐾̃ = 𝐾; if 𝐾̃ is completely
reducible then 𝐾̃ is diagonally similar to 𝐾.

(ii) Assume that 𝐾 is irreducible, clan-free and ℜ𝑒[𝐾] = ℜ𝑒[𝐾̃ ]. Then 𝐾̃ is diagonally similar to 𝐾
or to 𝐾⊤.

(iii) If 𝐾 is not clan-free, then we have ℜ𝑒[𝐾] = ℜ𝑒[𝐾̃ ] for any partial transpose 𝐾̃ of 𝐾.

The proof of this proposition, which is postponed to the end of this section, hinges on the
following characterization of matrices whose functions ℜ𝑒 coincide.

Lemma IV.4.8. Let 𝐾 and 𝐾̃ be square matrices of the same size with non-negative entries. The
following are equivalent:

(i) The functions ℜ𝑒[𝐾] and ℜ𝑒[𝐾̃ ] coincide on Δ.

(ii) The functions ℜ𝑒[𝐾] and ℜ𝑒[𝐾̃ ] coincide on ℰ(Δ).

(iii) The functions Spec[𝐾] and Spec[𝐾̃ ] coincide on Δ.

(iv) The functions Spec[𝐾] and Spec[𝐾̃ ] coincide on ℰ(Δ).

(v) All principal minors of 𝐾 and 𝐾̃ coincide.

Before giving the proof of this result, we comment on the non-negativeness condition for the
entries of the matrices.

Remark IV.4.9 (When the matrices 𝐾 and 𝐾̃ have signed entries). If two effective reproduction
functions coincide on ℰ(Δ), they may not coincide on Δ nor does the principal minors coincide in
general if the entries of the matrices are signed (that is Property (ii) from Lemma IV.4.8 does not
imply (i) nor (v)). Indeed, consider the following two matrices:

𝐾 = (1 𝛽
𝛽 1) and 𝐾̃ = (1 −𝛾

𝛾 1 ) ,

where 𝛾 > 0 and 𝛽 = √1 + 𝛾 2 − 1. We have det(𝐾) ≠ det(𝐾̃ ), so that all the principal minors
of size 1 coincide but the principal minor of size two is different. The eigenvalues of 𝐾 are

√1 + 𝛾 2 and 2 − √1 + 𝛾 2; the eigenvalues of 𝐾̃ are 1 ± 𝛾 𝑖. In particular, the two matrices have
the same spectral radius √1 + 𝛾 2. The functions ℜ𝑒[𝐾] and ℜ𝑒[𝐾̃ ] clearly coincide on ℰ(Δ) =
{(1, 1), (1, 0), (0, 1) (0, 0)} even if ℜ𝑒[𝐾] ≠ ℜ𝑒[𝐾̃ ].

Proof of Lemma IV.4.8. Clearly (iii) ⟹ (i) ⟹ (ii), and (iii) ⟹ (iv) ⟹ (ii).
Let us check that (v) implies (iii). Assume that all principal minors of 𝐾 and 𝐾̃ coincide. Recall

that any vector 𝜂, 𝐾𝜂 denotes the square matrix 𝐾 ⋅Diag(𝜂). For any vector 𝜂 and any set of indices
𝛼, by multi-linearity of the determinant,

det ((𝐾𝜂)[𝛼]) = (∏
𝑖∈𝛼

𝜂𝑖) det (𝐾[𝛼]) .

Consequently, all principal minors of (𝐾𝜂) and (𝐾̃𝜂) coincide. By (IV.26) this implies that 𝐾𝜂 and
𝐾̃𝜂 have the same spectrum. Thus, Point (iii) holds.
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Therefore, it is enough to prove that (ii) implies (v). The proof is an induction on the dimension.
The result is clear in dimension 1. Assume that it holds for any matrix of dimension smaller
than or equal to 𝑛. Let 𝐾 and 𝐾̃ be two matrices of dimension 𝑛 + 1, and assume that ℜ𝑒[𝐾]
and ℜ𝑒[𝐾̃ ] coincide on ℰ(Δ). For any non-empty 𝛼 ⊂ {1, ..., 𝑛 + 1}, let 𝜂𝛼 be the column vector
(𝟙𝛼(𝑖), 1 ≤ 𝑖 ≤ 𝑛 + 1). Recall that 𝐾𝜂 = 𝐾 ⋅ Diag(𝜂) for 𝜂 ∈ Δ. Notice that for any matrix 𝐾 ′:

ℜ𝑒[𝐾 ′](𝜂𝛼) = 𝜌(𝐾 ′𝜂𝛼) = 𝜌(𝐾 ′[𝛼]).

Fix 𝛼 ⊂ {1, ..., 𝑛 + 1} nonempty, with 𝛼 ≠ {1, ..., 𝑛 + 1}. Let 𝛽 ⊂ 𝛼 and set 𝜂̃𝛽 = (𝟙𝛽(𝑖), 𝑖 ∈ 𝛼). We have:

ℜ𝑒[𝐾 ′[𝛼]](𝜂̃𝛽) = 𝜌(𝐾 ′[𝛼]𝜂̃𝛽) = 𝜌(𝐾 ′𝜂𝛼𝜂𝛽) = 𝜌(𝐾 ′𝜂𝛽) = ℜ𝑒[𝐾 ′](𝜂𝛽). (IV.29)

Since the vector 𝜂𝛽 is extremal in Δ, we get ℜ𝑒[𝐾](𝜂𝛽) = ℜ𝑒[𝐾̃ ](𝜂𝛽) for all 𝛽 ⊂ 𝛼. We deduce
from (IV.29) that ℜ𝑒[𝐾[𝛼]] = ℜ𝑒[𝐾̃ [𝛼]] on the extremal points. By the induction hypothesis the
principal minors of 𝐾[𝛼] and 𝐾̃ [𝛼] are equal, that is all principal minors of size less than or equal
to 𝑛 of 𝐾 and 𝐾̃ coincide. It remains to check that the determinants are the same. Since all principal
minors of size less than or equal to 𝑛 coincide, we deduce from (IV.26) that:

𝜒𝐾(𝑡) − det(𝐾) = 𝜒𝐾̃(𝑡) − det(𝐾̃ ). (IV.30)

Since 𝐾 and 𝐾 ′ have non-negative entries, by Perron-Frobenius theorem, their spectral radius
ℜ𝑒[𝐾](𝟙) and ℜ𝑒[𝐾 ′](𝟙) is also an eigenvalue, and thus a root of their characteristic polynomial.
As ℜ𝑒[𝐾](𝟙) = ℜ𝑒[𝐾 ′](𝟙), we deduce from (IV.30) that det(𝐾) = det(𝐾̃ ). This ends the proof of
the induction step.

Proof of Proposition IV.4.7. To prove the first two points (i) and (ii), we use that the principal minors
of 𝐾 and 𝐾̃ coincide thanks to Lemma IV.4.8. The results then follow directly from [53, Theorem
3.5], for the symmetric case, [77, Theorem 3] for the irreducible case when 𝑛 ≤ 3 (by Remark IV.4.5,
there can be no clan in this case), and [109, Theorem 1] for the clan-free case when 𝑛 ≥ 4.

To prove Point (iii), suppose that 𝐾 has a clan 𝛼, and let 𝐾̃ be a partial transpose of 𝐾, so that
𝐾 and 𝐾̃ may be given by (IV.27) and (IV.28). For any 𝜆 ∉ Spec(𝐵), using a classical formula for
determinants of block matrices, we get:

det(𝐾 − 𝜆𝐼 ) = det(𝐴 − 𝜆𝐼 − 𝑣𝑏⊤(𝐵 − 𝜆𝐼 )−1𝑐𝑤⊤) det(𝐵 − 𝜆𝐼 ),

det(𝐾̃ − 𝜆𝐼 ) = det(𝐴⊤ − 𝜆𝐼 − 𝑤𝑏⊤(𝐵 − 𝜆𝐼 )−1𝑐𝑣⊤) det(𝐵 − 𝜆𝐼 )
= det(𝐴 − 𝜆𝐼 − 𝑣𝑐⊤((𝐵 − 𝜆𝐼 )−1)⊤𝑏𝑤⊤) det(𝐵 − 𝜆𝐼 ).

Since 𝑏⊤(𝐵 − 𝜆𝐼 )−1𝑐 is a one-dimensional matrix, it is equal to its transpose, so that det(𝐾 − 𝜆𝐼 ) =
det(𝐾̃ − 𝜆𝐼 ) are equal for all 𝜆 ∉ Spec(𝐵), and thus for all 𝜆 ∈ ℂ by continuity. Consequently, the
matrices 𝐾 and 𝐾̃ have the same spectrum. For any 𝛽, it is easily seen that 𝐾[𝛽] and 𝐾̃ [𝛽] are partial
transposes of each other, so that 𝐾[𝛽] and 𝐾̃ [𝛽] also have the same spectrum, and in particular
the same spectral radius. Therefore ℜ𝑒[𝐾] and ℜ𝑒[𝐾̃ ] coincide as (i) and (ii) are equivalent in
Lemma IV.4.8.

IV.5 Sufficient conditions for convexity or concavity of ℜ𝑒

IV.5.1 A conjecture from Hill and Longini

Recall that, in the metapopulation framework, the effective reproduction number is equal to
the spectral radius of the matrix 𝐾 ⋅ Diag(𝜂), where 𝐾 has non-negative entries and is the next-
generation matrix and 𝜂 is the vaccination strategy giving the proportion of non-vaccinated
people in each groups. The Hill-Longini conjecture appears in [81] and gives conditions on the
spectrum of the next-generation matrix that implies the convexity or the concavity of the effective
reproduction number. It states that the function ℜ𝑒[𝐾] is:

(i) convex when Spec(𝐾) ⊂ ℝ+,
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Figure IV.4: Counter-example of the Hill-Longini conjecture (convex case).

(ii) concave when Spec(𝐾)\{ℜ0} ⊂ ℝ−.

It turns out that the conjecture cannot be true without additional assumption on the matrix 𝐾.
Indeed, consider the following next-generation matrix:

𝐾 = (
16 12 11
1 12 12
8 1 1

) (IV.31)

Its eigenvalues are approximately equal to 24.8, 2.9 and 1.3. Sinceℜ𝑒 is homogeneous, the function
is entirely determined by the value it takes on the plane {𝜂 ∶ 𝜂1 + 𝜂2 + 𝜂3 = 1/3}. The graph of
the function ℜ𝑒 restricted to this set has been represented in Figure IV.4(b). The view clearly
shows the saddle nature of the surface. Hence, the Hill-Longini conjecture (i) is contradicted in
its original formulation. In Figure IV.4(a), we have represented the corresponding kernel model
when the population is splitted equally into three groups, i.e., 𝜇1 = 𝜇2 = 𝜇3 = 1/3.

In the same manner, the eigenvalues of the following next-generation matrix:

𝐾 = (
9 13 14
18 6 5
1 6 6

) (IV.32)

are approximately equal to 26.3, −1.4 and −3.9. Thus, 𝐾 satisfies the condition that should imply
the concavity of the effective reproduction number in the Hill-Longini conjecture (ii). However,
as we can see in Figure IV.5(b), the function ℜ𝑒 is neither convex nor concave. In Figure IV.5(a),
we have represented the corresponding kernel model when the population is splitted equally into
three groups, i.e., 𝜇1 = 𝜇2 = 𝜇3 = 1/3.

Despite these counter-examples, the Hill-Longini conjecture is indeed true when making
further assumption on the next-generation matrix. Let 𝑀 be a square real matrix. The matrix 𝑀 is
diagonally similar to a matrix𝑀′ if there exists a non singular real diagonal matrix𝐷 such that𝑀 =
𝐷 ⋅ 𝑀′ ⋅ 𝐷−1. The matrix 𝑀 is said to be diagonally symmetrizable or simply symmetrizable if it is
diagonally similar to a symmetric matrix, or, equivalently, if 𝑀 admits a decomposition 𝑀 = 𝐷 ⋅ 𝑆
(or 𝑀 = 𝑆 ⋅ 𝐷), where 𝐷 is a diagonal matrix with positive diagonal entries and 𝑆 is a symmetric
matrix. If a matrix 𝑀 is diagonally symmetrizable, then its eigenvalues are real since similar
matrices share the same spectrum. We obtained the following result when the next-generation
matrix is symmetrizable.
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Theorem IV.5.1. Suppose the non-negative matrix 𝐾 is diagonally symmetrizable.

(i) If Spec(𝐾) ⊂ ℝ+, then the function ℜ𝑒[𝐾] is convex.

(ii) If ℜ0 is a simple eigenvalue of 𝐾 and Spec(𝐾)\{ℜ0} ⊂ ℝ−, then the function ℜ𝑒[𝐾] is concave.

This result is a particular case of Theorem IV.5.5 below. The first point (i) has been proved
by Cairns in [29]. In [64], Friedland obtained that, if the next-generation matrix 𝐾 is not singular
and if its inverse is an M-matrix (i.e., its non-diagonal coefficients are non-positive), then ℜ𝑒 is
convex. Friedland’s condition does not imply that 𝐾 is symmetrizable nor that Spec(𝐾) ⊂ ℝ+. On
the other hand, the following matrix is symmetric definite positive (and thus ℜ𝑒 is convex) but its
inverse is not an M-matrix.

𝐾 = (
3 2 0
2 2 1
0 1 4

) with inverse 𝐾−1 = (
1.4 −1.6 0.4
−1.6 2.4 −0.6
0.4 −0.6 0.4

) .

Thus Friedland’s condition and Property (i) in Theorem IV.5.1 are not comparable. Note that if 𝐾 is
symmetrizable and its inverse is an M-matrix, then the eigenvalues of 𝐾 are actually non-negative
thanks to [15, Chapter 6 Theorem 2.3] and one can apply Theorem IV.5.1 (i).

IV.5.2 Generalization for the kernel model

In this section, we give the analogue of Theorem IV.5.1 for kernels instead of matrices. First, we
proceed with some definitions.

We say that a kernel k′ is an Hilbert-Schmidt non-negative symmetric kernel if k′ ≥ 0,
‖ k′ ‖2,2 < +∞ and 𝜇(d𝑥) ⊗ 𝜇(d𝑦)-a.e. k′(𝑥, 𝑦) = k′(𝑦 , 𝑥). By analogy with the matrix case and
following [160, Example A, p252] we introduce the notion of symmetrizability in the context of
kernels.

Definition IV.5.2 (Diagonally HS kernel). A kernel k on Ω is diagonally HS if there exists an
Hilbert-Schmidt symmetric non-negative kernel k′ on Ω and two positive measurable functions 𝑓 , 𝑔
defined on Ω such that k = 𝑓 k′𝑔 a.s., that is 𝜇(d𝑥) ⊗ 𝜇(d𝑦)-a.s.:

k(𝑥, 𝑦) = 𝑓 (𝑥) k′(𝑥, 𝑦) 𝑔(𝑦). (IV.33)

If furthermore 𝑓 and 𝑔 are bounded and bounded away from 0, then we say that the kernel k is strongly
diagonally HS.
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The notion of diagonally HS kernel appears naturally when considering the SIS model on
graphons, see Example II.1.3, where the kernel k is written as k = 𝛽𝑊𝜃, where 𝛽(𝑥) represents the
susceptibility and 𝜃(𝑥) the infectiousness of the individuals with feature 𝑥, and𝑊models the graph
of the contacts within the population with the quantity 𝑊(𝑥, 𝑦) = 𝑊(𝑦, 𝑥) ∈ [0, 1] representing
the density of contacts between individuals with features 𝑥 and 𝑦.

Remark IV.5.3. We complete the notion of diagonally HS kernel with three comments.

(i) In finite dimension (i.e. Ω finite), a kernel diagonally HS is strongly diagonally HS.

(ii) Notice that a strongly diagonally HS kernel has finite double norm in 𝐿2.

(iii) Consider the decomposition (IV.33), where 𝑓 and 𝑔 are assumed to be non-negative instead
of positive, with the other assumptions unchanged. Then using Lemma IV.4.1 (i), we get
that ℜ𝑒[k] = ℜ𝑒[k0] coincide on Δ, where k0 = 𝟙{𝑓 𝑔>0} k 𝟙{𝑓 𝑔>0}. As k0 = 𝑓 ′ k′0 𝑔

′ with
k′0 = 𝟙{𝑓 𝑔>0} k′ 𝟙{𝑓 𝑔>0} and ℎ′ = ℎ + 𝟙{𝑓 𝑔=0} for ℎ ∈ {𝑓 , 𝑔}, we get that the kernel k0 is
diagonally HS (indeed 𝑓 ′ and 𝑔′ are positive, and the other assumptions hold). So, as far as
the study of ℜ𝑒[k] is concerned, without loss of generality one can indeed assume that the
functions 𝑓 and 𝑔 which appear in the decomposition of a diagonally HS kernel are positive
instead of non-negative.

The following elementary lemma states that the integral operator of a diagonally HS kernel
has real eigenvalues.

Lemma IV.5.4. Let k be a diagonally HS kernel with finite double norm. The spectrum of 𝑇k is real:
Spec(𝑇k) ⊂ ℝ.

Proof. Let k′, 𝑓 and 𝑔 as in (IV.33) and for 𝑛 ∈ ℕ∗ set:

𝑣𝑛 = 𝟙{𝑛≥𝑓 ≥1/𝑛 and 𝑛≥𝑔≥1/𝑛}. (IV.34)

Let 𝑝 ∈ (1, +∞) be such that ‖ k ‖𝑝,𝑞 is finite. By the monotone convergence theorem, we have

lim
𝑛→∞

‖ k − 𝑓 𝑣𝑛k′𝑣𝑛𝑔 ‖𝑝,𝑞 = 0.

We deduce that:

Spec(𝑇k) = Spec(𝑇𝑓 k′𝑔) = lim
𝑛→∞

Spec(𝑇𝑓 𝑣𝑛k′𝑣𝑛𝑔) = lim
𝑛→∞

Spec(𝑇
√𝑓 𝑔 𝑣𝑛k′𝑣𝑛√𝑓 𝑔

),

where we used (IV.33) for the first equality, Corollary IV.3.2 for the second, Lemma IV.4.1 (ii) with
ℎ = 𝑣𝑛 √𝑔/𝑓+ (1− 𝑣𝑛) for the last. Since the kernel √𝑓 𝑔 𝑣𝑛k

′𝑣𝑛√𝑓 𝑔 is symmetric with finite double
norm in 𝐿2, we deduce that the associated compact integral operator is self-adjoint, and thus
Spec(𝑇

√𝑓 𝑔 𝑣𝑛k′𝑣𝑛√𝑓 𝑔
) ⊂ ℝ. Then, use that ℝ is closed for the Hausdorff distance to deduce that

Spec(𝑇k) ⊂ ℝ.

For a compact operator 𝑇, we denote by p(𝑇 ) and n(𝑇 ) the number of its positive and negative
eigenvalues with their multiplicity:

p(𝑇 ) = ∑
𝜆>0

m(𝜆, 𝑇 ) and n(𝑇 ) = ∑
𝜆<0

m(𝜆, 𝑇 ).

Note that ℜ0[k] > 0 implies that p(𝑇k) ≥ 1.
The following result is the analogue of Theorem IV.5.1 for the kernel model.

Theorem IV.5.5 (Convexity/Concavity ofℜ𝑒). Let k be a strongly diagonally HS kernel. We consider
the function ℜ𝑒 = ℜ𝑒[k] defined on Δ.

(i) If n(𝑇k) = 0, then the function ℜ𝑒 is convex.

(ii) If p(𝑇k) = 1, then the function ℜ𝑒 is concave.
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In the case of diagonally HS kernels, we have the following partial result.

Proposition IV.5.6. Let k be a diagonally HS kernel of finite double norm, with the HS kernel k′
from (IV.33). We consider the function ℜ𝑒 = ℜ𝑒[k] defined on Δ.

(i) If n(𝑇k′) = 0, then n(𝑇k) = 0 and the function ℜ𝑒 is convex.

(ii) If p(𝑇k′) = 1, then p(𝑇k) = 1 and the function ℜ𝑒 is concave.

The proof for HS kernels is given in Section IV.5.4 for the convex case and in Section IV.5.4 for
the concave case. The extension to (strongly) diagonally HS kernel follows from Sections IV.5.5.

Remark IV.5.7. The fact that ℜ0 > 0, where we write ℜ0 = ℜ0[k], and p(𝑇k) = 1 in Theo-
rem IV.5.5 (ii) implies that k is monatomic, see Lemma IV.3.4. Using the decomposition of a
reducible kernel from Lemma IV.7.2, we get that if Spec(𝑇k) ∈ ℝ− ∪ {ℜ0}, then the function ℜ𝑒
is the maximum of 𝑚 = m(ℜ0, 𝑇k) concave functions which are non-zero on 𝑚 pairwise disjoint
subsets of Δ.

Remark IV.5.8. It is unclear whether or not p(𝑇k) = 1 (resp. n(𝑇k) = 0) in Proposition IV.5.6 implies
that p(𝑇k′) = 1 (resp. n(𝑇k′) = 0).

Remark IV.5.9. A configuration model corresponds in finite dimension to the next generation
matrix having rank one, this is the so-called proportionate mixing model in the metapopulation
literature; see Cairns [29] for optimal vaccinations strategies in this setting.

Motivated by the finite dimensional case, we say that a kernel k is a configuration kernel if
there exist 𝑝 ∈ (1, +∞), 𝑓 ∈ 𝐿𝑝 and 𝑔 ∈ 𝐿𝑞 where 𝑞 = 𝑝/(𝑝 − 1) such that k(𝑥, 𝑦) = 𝑓 (𝑥)𝑔(𝑦),
𝜇⊗𝜇-almost surely. We also suppose that 𝜇(𝑓 𝑔 > 0) > 0. Such a kernel has finite double norm and,
following Remark IV.5.3 (iii), we have ℜ𝑒[k] = ℜ𝑒[𝟙𝑓 𝑔>0 k 𝟙𝑓 𝑔>0] with 𝟙𝑓 𝑔>0 k 𝟙𝑓 𝑔>0 diagonally
HS. Indeed, we have 𝟙𝑓 𝑔>0 k 𝟙𝑓 𝑔>0 = (𝑓 +𝟙𝑓 =0)𝟙𝑓 𝑔>0𝟙𝑓 𝑔>0(𝑔+𝟙𝑔=0). Besides, the only eigenvalue
of the kernel 𝟙𝑓 𝑔>0(𝑥)𝟙𝑓 𝑔>0(𝑦) different from 0 is its spectral radius equal to 𝜇(𝑓 𝑔 > 0) and it has
multiplicity 1. Applying Proposition IV.5.6, we obtain that ℜ𝑒 is convex and concave and thus
linear. This can be checked directly as ℜ𝑒 has the following expression:

ℜ𝑒[k](𝜂) = ∫
Ω
𝑓 𝑔 𝜂 d𝜇. (IV.35)

We shall provide a deeper study of configuration kernels in the context of epidemiology, in a future
paper [40].

IV.5.3 Sylvester’s inertia theorem

Following [128, Section 4.1.2], we state and provide a short proof for the Sylvester’s inertia theorem
in our context; see also [87, Theorem 4.5.8] in finite dimension. This result will be used to prove
the concavity of ℜ𝑒.

Theorem IV.5.10 (Sylvester’s inertia theorem). Let (Ω,ℱ , 𝜇) be a probability space. Let 𝑇 ′ be a
self-adjoint compact operator on 𝐿2(𝜇), and two non-negative measurable functions 𝑓 , 𝑔 defined on Ω
which are bounded and bounded away from 0. Set 𝑇 = 𝑀𝑓𝑇 ′𝑀𝑔. Then, we have Spec(𝑇 ) ⊂ ℝ and:

p(𝑇 ) = p(𝑇 ′) as well as n(𝑇 ) = n(𝑇 ′). (IV.36)

Proof. Set ℎ = √𝑓 /𝑔, 𝑀 = 𝑀
√𝑓 𝑔

and
𝑇″ = 𝑀𝑇 ′𝑀,

so that 𝑇 = 𝑀ℎ𝑇″𝑀1/ℎ. Thanks to (IV.11), we get that m(𝜆, 𝑇 ) = m(𝜆, 𝑇″) for all 𝜆 ∈ ℂ∗. So, we
need to prove (IV.36) with 𝑇 replaced by 𝑇″. We only consider the number of positive eigenvalues
as the number of negative eigenvalues can be handled similarly.

We introduce some general notations. For a self-adjoint compact operator 𝑆 on 𝐿2, let (𝑢𝑖, 𝑖 ∈ 𝐼 ),
with 𝐼 at most countable and ♯𝐼 = p(𝑆), be a sequence of orthogonal eigenvectors associated to
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the positive eigenvalues (𝜆𝑖, 𝑖 ∈ 𝐼 ) of 𝑆. Let 𝑈 ⊂ 𝐿2 be the (closed) vector sub-space spanned by
(𝑢𝑖, 𝑖 ∈ 𝐼 ). The orthogonal complement of 𝑈, say 𝑈⊤ is the (closed) vector space spanned by the
kernel of 𝐼 and the eigenvectors associated to the negative eigenvalues. We consider the quadratic
form 𝑄𝑆 on 𝐿2 defined by:

𝑄𝑆(𝑢) = ⟨𝑆𝑢, 𝑢⟩.

Let 𝑃𝑆 be the orthogonal projection on 𝑈⊤. By decomposing 𝑢 on 𝑈 ⊕ 𝑈⊤, we get:

𝑄𝑆(𝑢) = ∑
𝑖∈𝐼

𝜆𝑖⟨𝑢, 𝑢𝑖⟩2 + 𝑄𝑆(𝑃𝑆(𝑢)),

and the quadratic form 𝑄𝑆 ∘ 𝑃𝑆 is negative semi-definite.

We shall now prove that p(𝑇″) = p(𝑇 ′) by contradiction. First assume that p(𝑇 ′) < p(𝑇″), so
in particular p(𝑇 ′) is finite. Let (𝑢″𝑖 , 𝑖 ∈ 𝐼″) be a sequence of orthogonal eigenvectors associated to
the positive eigenvalues (𝜆″𝑖 , 𝑖 ∈ 𝐼″) of 𝑇″. Set 𝑣𝑖 = 𝑀𝑢″𝑖 for 𝑖 ∈ 𝐼″. In particular, the dimension of
the space spanned by (𝑣𝑖, 𝑖 ∈ 𝐼″), which is equal to p(𝑇″), is larger than the finite dimension of the
space 𝑈 spanned by the orthogonal eigenvectors (𝑢′𝑖 , 𝑖 ∈ 𝐼 ′) associated to the positive eigenvalues
of 𝑇 ′. Thus, solving a linear system, we get there exists (𝑐𝑖, 𝑖 ∈ 𝐼″) such that 𝑐𝑖 ≠ 0 for at most
p(𝑇 ′) + 1 indices, 𝑢 = ∑𝑖∈𝐼″ 𝑐𝑖𝑣𝑖 ≠ 0, and 𝑢 ∈ 𝑈⊤. On one hand, since 𝑄𝑇 ′ is negative semi-definite
on 𝑈⊤, we get 𝑄𝑇 ′(𝑢) ≤ 0. On the other hand, we have:

𝑄𝑇 ′(𝑢) = ⟨𝑢, 𝑇 ′𝑢⟩ = ∑
𝑖,𝑗∈𝐼″

𝑐𝑖𝑐𝑗 ⟨𝑣𝑖, 𝑇 ′𝑣𝑗⟩ = ∑
𝑖,𝑗∈𝐼″

𝑐𝑖𝑐𝑗 ⟨𝑢″𝑖 , 𝑇
″𝑢″𝑗 ⟩ = ∑

𝑖∈𝐼″
𝑐2𝑖 𝜆

″
𝑖 > 0.

By contradiction, we deduce that p(𝑇 ′) ≥ p(𝑇″), and by symmetry p(𝑇 ′) = p(𝑇″).

IV.5.4 The symmetric case

Let k be an Hilbert-Schmidt non-negative symmetric kernel. As ℜ0[k] = 0 implies ℜ𝑒[k] = 0
by (IV.9), we shall only consider the case ℜ0[k] > 0. We now prove Theorem IV.5.5 when k is
symmetric with finite double norm in 𝐿2.

The convex case

The proof relies on an idea from [64] (see therein just before Theorem 4.3). Let k be an Hilbert-
Schmidt non-negative symmetric kernel such that Spec(𝑇k) ⊂ ℝ+, where 𝑇k is the corresponding
integral operator on 𝐿2. Since 𝑇k is a self-adjoint positive semi-definite operator on 𝐿2, there exists
a self-adjoint positive semi-definite operator 𝑄 on 𝐿2 such that 𝑄2 = 𝑇. Recall that for a real-valued
function 𝑢 defined on Ω, 𝑀𝑢 denotes the multiplication by 𝑢 operator. Thanks to (IV.12), we have
for 𝜂 ∈ Δ:

ℜ𝑒[k](𝜂) = 𝜌(𝑇k𝑀𝜂) = 𝜌(𝑄2𝑀𝜂) = 𝜌(𝑄𝑀𝜂 𝑄).

Since the self-adjoint operator 𝑄𝑀𝜂 𝑄 (on 𝐿2) is also positive semi-definite, we deduce from the
Courant-Fischer-Weyl min-max principle that:

ℜ𝑒[k](𝜂) = 𝜌 (𝑄𝑀𝜂 𝑄) = sup
𝑢∈𝐿2⧵{ 0 }

⟨𝑢, 𝑄𝑀𝜂 𝑄𝑢⟩
⟨𝑢, 𝑢⟩

⋅

Since the map 𝜂 ↦ ⟨𝑢, 𝑄𝑀𝜂 𝑄𝑢⟩ defined on Δ is linear, we deduce that 𝜂 ↦ ℜ𝑒[k](𝜂) is convex as a
supremum of linear functions.

The concave case

Let k be an Hilbert-Schmidt non-negative symmetric kernel such that p(𝑇k) = 1. In particular k
is monatomic, see Lemma IV.3.4. Let Δ∗ be the subset of Δ of the functions which are bounded
away from 0. The set Δ∗ is a dense convex subset of Δ. So its suffice to prove that ℜ𝑒 = ℜ𝑒[k] is
concave on Δ∗. Let 𝜂0, 𝜂1 be elements of Δ∗, and set 𝜂𝛼 = (1 − 𝛼)𝜂0 + 𝛼𝜂1 for 𝛼 ∈ [0, 1] (which is
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also an element of Δ∗). We write 𝑇𝛼 = 𝑇k𝜂𝛼 , so that 𝑇𝛼 = 𝑇0 + 𝛼𝑇k𝑀, where 𝑀 is the multiplication
by (𝜂1 − 𝜂0) operator, and:

𝑅(𝛼) = ℜ𝑒(𝜂𝛼) = 𝜌(𝑇𝛼) = 𝜌(𝑇0 + 𝛼𝑇k𝑀).

So, to prove that ℜ𝑒 is concave on Δ∗ (and thus on Δ), it is enough to prove that 𝛼 ↦ 𝑅(𝛼) is
concave on (0, 1). As 𝜂𝛼 is also bounded away from 0, we get that k𝜂𝛼 is monatomic and its spectral
radius 𝑅(𝛼) is positive and a simple eigenvalue, thanks to Lemma IV.3.4. Thanks to Sylvester’s
inertia theorem, see Theorem IV.5.10 (with 𝑓 = 1 and 𝑔 = 𝜂𝛼), we also get that p(𝑇𝛼) = 1.

We consider the following scalar product on 𝐿2 defined by ⟨𝑢, 𝑣⟩𝛼 = ⟨𝑢, 𝜂𝛼𝑣⟩. The operator
𝑇𝛼 is self-adjoint and compact on 𝐿2(𝜂𝛼d𝜇) with spectrum Spec(𝑇𝛼) thanks to Lemma IV.3.1 (iii).
Let (𝜆𝑛, 𝑛 ∈ 𝐼 = [[0, 𝑁 [[), with 𝑁 ∈ ℕ ∪ {∞} be an enumeration of the non-zero eigenvalues of 𝑇𝛼
with their multiplicity so that 𝜆0 = 𝑅(𝛼) > 0 and thus 𝜆𝑛 < 0 for 𝑛 ∈ 𝐼 ∗ = 𝐼 ⧵ {0}; and denote
by (𝑢𝑛, 𝑛 ∈ 𝐼 ) a corresponding sequence of orthogonal eigenvectors. The functions 𝑣𝛼 = 𝑢0 and
𝜙𝛼 = 𝜂𝛼𝑢0 are the right and left-eigenvectors for 𝑇𝛼 (seen as an operator on 𝐿2(𝜇)) associated to
𝑅(𝛼).

We now follow [98] to get that 𝛼 ↦ 𝑅(𝛼) = 𝜌(𝑇0 + 𝛼𝑇k𝑀) is analytic and compute its second
derivative. Let 𝜋𝛼 be the projection on the (⟨⋅, ⋅⟩𝛼)-orthogonal of 𝑣𝛼, and define:

𝑆𝛼 = (𝑇𝛼 − 𝑅(𝛼))−1𝜋𝛼.

In other words, 𝑆𝛼 maps 𝑢0 to 0 and 𝑢𝑖 to (𝜆𝑖 − 𝑅(𝛼))−1 𝑢𝑖. Let 𝛼 ∈ (0, 1) and 𝜀 small enough so that
𝛼 + 𝜀 ∈ [0, 1]. We have:

𝑇𝛼+𝜀 = 𝑇𝛼 + 𝜀𝑇k𝑀,

and thus ‖ 𝑇𝛼+𝜀 − 𝑇𝛼 ‖𝐿2(𝜇) = 𝑂(𝜀). Using [98, Theorem 2.6] on the Banach space 𝐿2(𝜂𝛼 d𝜇), we get

that:
𝑅(𝛼 + 𝜀) = 𝑅(𝛼) + 𝜀 ⟨𝑣𝛼, 𝑇k𝑀𝑣𝛼⟩𝛼 − 𝜀2 ⟨𝑣𝛼, 𝑇k𝑀𝑆𝛼𝑇k𝑀𝑣𝛼⟩𝛼 + 𝑂(𝜀3).

Let 𝑁𝛼 = 𝑀1/𝜂𝛼𝑀 = 𝑀𝑀1/𝜂𝛼 be the multiplication by (𝜂1 − 𝜂0)/𝜂𝛼 bounded operator. Since
𝛼 ↦ 𝑅(𝛼) is analytic and 𝑇k self-adjoint (with respect to ⟨⋅, ⋅⟩), we get that:

𝑅″(𝛼) = −2 ⟨𝑣𝛼, 𝑇k𝑀𝑆𝛼𝑇k𝑀𝑣𝛼⟩𝛼
= −2 ⟨𝑀𝑇𝛼𝑣𝛼, 𝑆𝛼𝑇k𝑀𝑣𝛼⟩
= −2𝑅(𝛼) ⟨𝑀𝑣𝛼, 𝑆𝛼𝑇k𝑀𝑣𝛼⟩
= −2𝑅(𝛼) ⟨𝑁𝛼𝑣𝛼, 𝑆𝛼𝑇𝛼𝑁𝛼𝑣𝛼⟩𝛼 .

Since the kernel and the image of 𝑇𝛼 are orthogonal (in 𝐿2(𝜂𝛼d𝜇)), and the latter is generated by
(𝑢𝑛, 𝑛 ∈ 𝐼 ), we have the decomposition 𝑁𝛼𝑣𝛼 = 𝑔 +∑𝑛∈𝐼 𝑎𝑛𝑢𝑛 with 𝑔 ∈ Ker(𝑇𝛼) and 𝑎𝑛 = ⟨𝑁𝛼𝑣𝛼, 𝑢𝑛⟩𝛼.
This gives, with 𝐼 ∗ = 𝐼 ⧵ {0}:

𝑅″(𝛼) = 2𝑅(𝛼) ∑
𝑛∈𝐼 ∗

𝜆𝑛
𝑅(𝛼) − 𝜆𝑛

𝑎2𝑛 ⟨𝑢𝑛, 𝑢𝑛⟩𝛼 . (IV.37)

Since 𝜆𝑛 < 0 for all 𝑛 ∈ 𝐼 ∗, we deduce that 𝑅 is concave on [0, 1]. This implies that ℜ𝑒[k] is
concave.

Remark IV.5.11. The same proof with obvious changes gives that if k is an Hilbert-Schmidt non-
negative symmetric monatomic (and thus quasi-irreducible) kernel such that n(𝑇k) = 0, thenℜ𝑒[k]
is convex on Δ.

IV.5.5 Proof of Theorem IV.5.5 and Proposition IV.5.6

We first consider the following technical Lemma.
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Lemma IV.5.12. Let k be a diagonally HS kernel, with the HS kernel k′ from (IV.33). We have:

p(𝑇k) ≤ p(𝑇k′) and n(𝑇k) ≤ n(𝑇k′).

If furthermore k is strongly diagonally HS, then the previous inequalities are equalities.

Proof. We only consider the number of positive eigenvalues as the number of negative eigenvalues
can be handled similarly. Let 𝑓 , 𝑔 be the functions from (IV.33) and 𝑣𝑛 defined in (IV.34) for 𝑛 ∈ ℕ∗.
For simplicity, we write p(k″) for p(𝑇k″) when k″ is a kernel with finite double norm. Let 𝑚 ∈ ℕ∗.
As the function 𝑤𝑛,𝑚 = √𝑓 𝑔 𝑣𝑛 + 𝑚−1(1 − 𝑣𝑛) is bounded and bounded away from 0, we deduce
from the Sylvester’s inertia Theorem IV.5.10 that:

p(k′) = p (𝑤𝑛,𝑚 k′ 𝑤𝑛,𝑚) . (IV.38)

Notice that lim𝑚→∞ ‖ √𝑓 𝑔 𝑣𝑛 k
′ 𝑣𝑛√𝑓 𝑔 − 𝑤𝑛,𝑚 k′ 𝑤𝑛,𝑚 ‖

2,2
= 0. Letting 𝑚 goes to infinity, we deduce

from (IV.20) in Corollary IV.3.2 and the fact that the spectrum is real that:

p(k′) ≥ p (√𝑓 𝑔 𝑣𝑛 k′ 𝑣𝑛√𝑓 𝑔) . (IV.39)

We also deduce from Remark IV.4.3, with ℎ = √𝑓 /𝑔 𝑣𝑛 + (1 − 𝑣𝑛) that:

p (√𝑓 𝑔 𝑣𝑛 k′ 𝑣𝑛√𝑓 𝑔) = p (𝑓 𝑣𝑛 k′ 𝑣𝑛𝑔) .

Recall that k has a finite double norm on some 𝐿𝑝 space. By the monotone convergence theorem,
we get that:

lim
𝑚→∞

‖ 𝑓 k′ 𝑔 − 𝑓 𝑣𝑛 k′ 𝑣𝑛𝑔 ‖𝑝,𝑞 = 0.

Letting 𝑛 goes to infinity, we also deduce from (IV.20) in Corollary IV.3.2 and the fact that the
spectrum is real according to Lemma IV.5.4, that:

lim inf
𝑛→∞

𝑝 (𝑓 𝑣𝑛 k′ 𝑣𝑛𝑔) ≥ 𝑝 (𝑓 k′ 𝑔) . (IV.40)

Thus, we have p(k′) ≥ p(k).

Notice that if k is strongly diagonally HS, then 𝑣𝑛 = 1 for 𝑛 large enough, so that inequalities
(IV.39) and (IV.40) are in fact equalities and thus p(k′) = p(k).

Proof of Proposition IV.5.6. We only prove (ii) as the proof of (i) is similar and easier for the last
part. We keep notations from the proof of Lemma IV.5.12. Assume that p(k′) = 1. We deduce from
(IV.38) and from Section IV.5.4 that ℜ𝑒[𝑤𝑛,𝑚 k′ 𝑤𝑛,𝑚] is concave. We deduce from Corollary IV.3.2,
letting 𝑚 goes to infinity, that ℜ𝑒[√𝑓 𝑔 𝑣𝑛 k

′ 𝑣𝑛√𝑓 𝑔] is concave. Use Lemma IV.4.1 (ii) with ℎ =

√𝑓 /𝑔 𝑣𝑛 + (1 − 𝑣𝑛) to obtain that ℜ𝑒[𝑓 𝑣𝑛 k′ 𝑣𝑛𝑔] is concave. Then, letting 𝑛 goes to infinity and
using again Corollary IV.3.2, we deduce that ℜ𝑒[𝑓 k′𝑔] = ℜ𝑒[k] is concave.

Use also Lemma IV.5.12 to get p(k) ≤ p(k′). Now if p(k) = 0, then we have that ℜ0[k] = 0
which is equivalent to ℜ0[𝟙{k>0}] = 0. Since {k > 0} = {k′ > 0}, this is also equivalent to
ℜ0[k′] = 0. As this is ruled out because p(k′) = 1, we deduce that p(k) = 1.

Proof of Theorem IV.5.5. The result is an immediate consequence of Proposition IV.5.6 and the
second part of Lemma IV.5.12.

IV.6 Three properties of the Pareto and anti-Pareto frontiers

We introduce in Section IV.6.1 the bi-objective minimization problem, where one tries to minimize
simultaneously the cost of the vaccination and the effective reproduction number, and recall results
from Chapter III on the Pareto and anti-Pareto optimal strategies and frontiers. Then, we derive
in Section IV.6.2 there existence of Pareto optimal rays as soon as there exists a Pareto optimal
strategy uniformly strictly bounded from above by 1. We prove in Section IV.6.3 that creating a
cordon sanitaire is not the worst idea in the sense that it is not anti-Pareto optimal (and it can be
Pareto optimal or not). Eventually, in Section IV.6.4 we give a characterization of 𝑐⋆ = 𝐶⋆(0) using
the notion of independent set from graph theory.
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IV.6.1 Pareto and anti-Pareto frontiers

We quantify the cost of the vaccination strategy 𝜂 ∈ Δ by a function 𝐶 ∶ Δ → ℝ+, and we assume
that 𝐶(𝟙) = 0 (doing nothing costs nothing), 𝐶 is non-increasing (doing more costs more) and
continuous for the weak topology on Δ defined in Section IV.3.5. Recall that 1 − 𝜂 represents the
proportion of the population which has been vaccinated when using the strategy 𝜂. One natural
choice is the uniform cost function 𝐶 = 𝐶uni defined for 𝜂 ∈ Δ by:

𝐶uni(𝜂) = ∫
Ω
(1 − 𝜂) d𝜇. (IV.41)

In Chapter III, we formalized and study the problem of optimal allocation strategies for a
perfect vaccine. This question may be viewed as a bi-objective minimization problem, where
one tries to minimize simultaneously the cost of the vaccination and the effective reproduction
number:

min
Δ

(𝐶,ℜ𝑒). (IV.42)

We briefly summarize the results from Chapter III. We shall assume that the kernel k has a
finite double norm, the loss function is given by the effective reproduction function ℜ𝑒[k], and
the cost function 𝐶 is furthermore decreasing (this is the case of the uniform cost), that is, for any
𝜂1, 𝜂2 ∈ Δ:

𝜂1 ≤ 𝜂2 and ∫
Ω
𝜂1 d𝜇 < ∫

Ω
𝜂2 d𝜇 ⟹ 𝐶(𝜂1) > 𝐶(𝜂2).

To be precise, the next results can be found in Propositions III.5.4 and III.5.5 (notice in particular,
that Assumptions 4 and 5 holds thanks to Lemma III 5.13). By definition, we have ℜ0 = maxΔ ℜ𝑒
and we set 𝑐max = maxΔ 𝐶 which is positive as 𝐶 is decreasing. Related to the minimization
problem (IV.42), we shall consider ℜ𝑒⋆ the optimal loss function and 𝐶⋆ the optimal cost function
defined by:

ℜ𝑒⋆(𝑐) = min { ℜ𝑒(𝜂) ∶ 𝜂 ∈ Δ, 𝐶(𝜂) ≤ 𝑐 } for 𝑐 ∈ [0, 𝑐max],
𝐶⋆(ℓ) = min { 𝐶(𝜂) ∶ 𝜂 ∈ Δ, ℜ𝑒(𝜂) ≤ ℓ } for ℓ ∈ [0, ℜ0].

We have 𝐶⋆(ℜ0) = 0 and ℜ𝑒⋆(0) = ℜ0 since 𝐶 is decreasing. For convenience, we write 𝑐⋆ for the
minimal cost required to completely stop the transmission of the disease:

𝑐⋆ = 𝐶⋆(0) = inf{𝑐 ∈ [0, 𝑐max] ∶ ℜ𝑒⋆(𝑐) = 0}. (IV.43)

The function ℜ𝑒⋆ is continuous, decreasing on [0, 𝑐⋆] and zero on [𝑐⋆, 1]; the function 𝐶⋆ is contin-
uous and decreasing on [0, ℜ0]; and the functions ℜ𝑒⋆ and 𝐶⋆ are the inverse of each other, that
is, ℜ𝑒⋆ ∘ 𝐶⋆(ℓ) = ℓ for ℓ ∈ [0, ℜ0] and 𝐶⋆ ∘ ℜ𝑒⋆(𝑐) = 𝑐 for 𝑐 ∈ [0, 𝑐⋆].

We define the Pareto optimal strategies 𝒫 as the “best” solutions of the minimization prob-
lem (IV.42) (we refer the reader to Chapter III for a precise justification of this terminology):

𝒫 = {𝜂 ∈ Δ ∶ 𝐶(𝜂) = 𝐶⋆(ℜ𝑒(𝜂)) and ℜ𝑒(𝜂) = ℜ𝑒⋆(𝐶(𝜂))} ,

and the Pareto frontier as their outcomes:

ℱ = {(𝐶(𝜂), ℜ𝑒(𝜂)) ∶ 𝜂 ∈ 𝒫} .

The set 𝒫 is a non empty compact (for the weak topology) in Δ and furthermore the Pareto frontier
can be easily represented using the graph of the optimal loss function or cost function:

ℱ = {(𝐶⋆(ℓ), ℓ) ∶ ℓ ∈ [0, ℜ0]} = {(𝑐, ℜ𝑒⋆(𝑐)) ∶ 𝑐 ∈ [0, 𝑐⋆]}.
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It is also of interest to consider the “worst” strategies which can be viewed as solutions to the
bi-objective maximization problem:c3-

max
Δ

(𝐶,ℜ𝑒). (IV.44)

To be precise, the next results can be found in Propositions III.5.8 and III.5.9 (notice in particular that
Assumption 6 holds in general but that Assumption 7 holds under the stronger condition that the
kernel k is monatomic, see Section 5.4 in Chapter III). Related to the maximization problem (IV.44),
we shall consider ℜ⋆

𝑒 the optimal loss function and 𝐶⋆ the optimal cost function defined by:

ℜ⋆
𝑒 (𝑐) = max { ℜ𝑒(𝜂) ∶ 𝜂 ∈ Δ, 𝐶(𝜂) ≥ 𝑐 } for 𝑐 ∈ [0, 𝑐max],

𝐶⋆(ℓ) = max { 𝐶(𝜂) ∶ 𝜂 ∈ Δ, ℜ𝑒(𝜂) ≥ ℓ } for ℓ ∈ [0, ℜ0].

We have 𝐶⋆(0) = 𝑐max and ℜ⋆
𝑒 (𝑐max) = 0 since 𝐶 is decreasing and 𝐶(𝟘) = 𝑐max. For convenience,

we write 𝑐⋆ for the maximal cost of totally inefficient strategies:

𝑐⋆ = 𝐶⋆(ℜ0) = max{𝑐 ∈ [0, 𝑐max] ∶ ℜ⋆
𝑒 (𝑐) = ℜ0}. (IV.45)

The function 𝐶⋆ is decreasing on [0, ℜ0]; the function ℜ⋆
𝑒 is constant equal to ℜ0 on [0, 𝑐⋆]; we

have ℜ⋆
𝑒 ∘ 𝐶⋆(ℓ) = ℓ for ℓ ∈ [0, ℜ0]. This latter property implies that the function ℜ⋆

𝑒 is continuous.
We define the anti-Pareto optimal strategies 𝒫Anti as the “worst” strategies, that is solutions

of the maximization problem (IV.44):

𝒫Anti = {𝜂 ∈ Δ ∶ 𝐶(𝜂) = 𝐶⋆(ℜ𝑒(𝜂)) and ℜ𝑒(𝜂) = ℜ⋆
𝑒 (𝐶(𝜂))} ,

and the anti-Pareto frontier as their outcomes:

ℱAnti = {(𝐶(𝜂), ℜ𝑒(𝜂)) ∶ 𝜂 ∈ 𝒫Anti} .

The set 𝒫 is non empty and furthermore the Pareto frontier can be easily represented using the
graph of the optimal cost function:

ℱAnti = {(𝐶⋆(ℓ), ℓ) ∶ ℓ ∈ [0, ℜ0]}. (IV.46)

We also have that the feasible region or set of possible outcomes for (𝐶,ℜ𝑒):

F = {(𝐶(𝜂), ℜ𝑒(𝜂)) ∶ 𝜂 ∈ Δ}

is compact, path connected, and its complement is connected in ℝ2. It is the whole region between
the graphs of the one-dimensional value functions:

F = {(𝑐, ℓ) ∈ [0, 𝑐max] × [0, ℜ0] ∶ ℜ𝑒⋆(𝑐) ≤ ℓ ≤ ℜ⋆
𝑒 (𝑐)}

= {(𝑐, ℓ) ∈ [0, 𝑐max] × [0, ℜ0] ∶ 𝐶⋆(ℓ) ≤ 𝑐 ≤ 𝐶⋆(ℓ)}.

If furthermore k is monatomic with atom Ωa, then thanks to Lemma III.5.13, we have 𝑐⋆ =
𝐶(𝟙Ωa

) (which is 0 if k is irreducible); the function ℜ⋆
𝑒 is continuous, decreasing on [𝑐⋆, 𝑐max]; the

function 𝐶⋆ is continuous and decreasing on [0, ℜ0]; the functions ℜ⋆
𝑒 and 𝐶⋆ are the inverse of

each other, that is, ℜ⋆
𝑒 ∘ 𝐶⋆(ℓ) = ℓ for ℓ ∈ [0, ℜ0] and 𝐶⋆ ∘ ℜ⋆

𝑒 (𝑐) = 𝑐 for 𝑐 ∈ [𝑐⋆, 𝑐max]; and the set
𝒫Anti is compact and ℱAnti = {(𝑐, ℜ⋆

𝑒 (𝑐)) ∶ 𝑐 ∈ [𝑐⋆, 𝑐max]}.

We plotted in Figure IV.6 the typical Pareto and anti-Pareto frontiers for a general kernel
(notice the anti-Pareto frontier is not connected a priori), a monatomic kernel (notice the anti-
Pareto frontier is connected), and a positive kernel. In the latter case, the properties of the frontiers
are stated in the next lemma.
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Figure IV.6: Generic appearance of the feasible region (light blue), the Pareto frontier (thick red
line) and the anti-Pareto frontiers (dashed red line) for the cost function ℜ𝑒[k], with kernel k, and

a continuous decreasing cost function 𝐶.

Lemma IV.6.1. Suppose that the cost function 𝐶 is continuous decreasing with 𝐶(𝟙) = 0 and consider
the loss function ℜ𝑒[k], with k a finite double norm kernel such that a.s. k > 0. Then, we have
ℜ0[k] > 0, 𝑐⋆ = 0, 𝑐⋆ = 𝑐max and the strategy 𝟙 (resp. 𝟘) is the only Pareto optimal as well as the
only anti-Pareto optimal strategy with cost 𝑐 = 0 (resp. 𝑐 = 1).

Proof. Since k > 0, we get that k is irreducible (and thus monatomic) and ℜ0 > 0, thanks to
Lemma IV.3.4. We get that 𝑐⋆ = 0. This implies that the strategy 𝟙 is anti-Pareto optimal. As 𝐶 is
decreasing, we also get that the strategy 𝟙 is Pareto optimal.

Let 𝜂 ∈ Δ be different from 𝟘. We get that the kernel k𝜂 restricted to the set of positive
𝜇-measure {𝜂 > 0} is positive, thus k𝜂 is monatomic (take Ωa = {𝜂 > 0} and Ωi = Ω∁

a). Thanks
Lemma IV.3.4, we get that ℜ𝑒(𝜂) > 0. This readily implies that 𝑐⋆ = 𝑐max and that the strategy 𝟘 is
Pareto optimal. As 𝐶 is decreasing, we also get that the strategy 𝟘 is anti-Pareto optimal.

IV.6.2 Optimal ray

As the loss function ℜ𝑒 is convex and homogeneous, and if the cost function is affine, then the
set 𝒫 of Pareto optimal strategies may contains a non-trivial optimal ray {𝜆𝜂 ∶ 𝜆 ∈ [0, 1]}. This
optimal ray has already been observed in finite dimension, see [130].

Proposition IV.6.2 (Optimal ray). Suppose that the cost function 𝐶 is continuous decreasing and
affine with 𝐶(𝟙) = 0, and that the loss function ℜ𝑒[k], with k a finite double norm kernel, is convex.
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If there exists a Pareto optimal strategy 𝜂⋆ ∈ 𝒫 such that supΩ 𝜂⋆ ∈ (0, 1), then the strategies 𝜆𝜂⋆ are
Pareto optimal for all 𝜆 ∈ [0, 1/ supΩ 𝜂⋆].

Remark IV.6.3. Suppose assumptions of Proposition IV.6.2 hold so that there is an optimal ray
{𝜆𝜂⋆ ∶ 𝜆 ∈ [0, 1]} ⊂ 𝒫, where sup 𝜂⋆ = 1. Then, by homogeneity of the loss function, the Pareto
frontier has a linear part (from (𝐶(𝜂⋆), ℜ𝑒(𝜂⋆)) to (𝑐max, 0)).

Proof of Proposition IV.6.2. Assume there exists a Pareto optimal strategy 𝜂⋆ such that supΩ 𝜂⋆
belongs to (0, 1). Let 𝜆 ∈ (0, 1/ supΩ 𝜂⋆], so that 𝜆𝜂⋆ ∈ Δ, and let 𝜂 ∈ Δ such that ℜ𝑒(𝜂) ≤ ℜ𝑒(𝜆𝜂⋆),
and thus ℜ𝑒(𝜂) ≤ 𝜆ℜ𝑒(𝜂⋆). Since supΩ 𝜂⋆ < 1, there exists 𝑠 ∈ (0, 1] such that (1 − 𝑠)𝜂⋆ + 𝑠𝜂/𝜆 ∈ Δ.
Using the homogeneity and the convexity of ℜ𝑒, we get:

ℜ𝑒((1 − 𝑠)𝜂⋆ + 𝑠𝜂/𝜆) =
1
𝜆
ℜ𝑒((1 − 𝑠)𝜆𝜂⋆ + 𝑠𝜂)

≤ (1 − 𝑠)ℜ𝑒(𝜆𝜂⋆)/𝜆 + 𝑠ℜ𝑒(𝜂)/𝜆
≤ ℜ𝑒(𝜂⋆).

Since 𝜂⋆ is Pareto optimal, we deduce that 𝐶((1 − 𝑠)𝜂⋆ + 𝑠𝜂/𝜆) ≥ 𝐶(𝜂⋆). Since 𝐶 is affine, we get
that 𝐶(𝜂) ≥ 𝐶(𝜆𝜂⋆). Hence, 𝜆𝜂⋆ is solution of the problem min 𝐶(𝜂) for 𝜂 ∈ Δ such that ℜ𝑒(𝜂) ≤ ℓ
with ℓ = ℜ𝑒(𝜆𝜂⋆). We conclude that 𝜆𝜂⋆ is Pareto optimal using Proposition III.5.5 (ii). Use that
the Pareto optimal set is closed, see Corollary III.5.7 to get that 𝜆𝜂⋆ is Pareto optimal for 𝜆 = 0.

IV.6.3 Creating a cordon sanitaire is not the worst idea

We say a strategy 𝜂 ∈ Δ is a cordon sanitaire or disconnecting (for the kernel k) if 𝜂 ≠ 𝟘 and the
kernel k restricted to the set {𝜂 > 0} is not connected. We make some elementary comments on
disconnecting strategies.

Remark IV.6.4. Let k be a kernel.

(i) The strategy 𝜂 = 𝟙 is disconnecting if and only if k is not connected.

(ii) A strategy 𝜂 is disconnecting if and only if the strategy 𝟙{𝜂>0} is disconnecting.

(iii) If k > 0, then there does not exist a disconnecting strategy.

The next proposition states that if the strategy 𝜂 is anti-Pareto optimal for a kernel k and
non zero, then the kernel k restricted to {𝜂 > 0} is irreducible and thus the kernel 𝟙{𝜂>0}k𝟙{𝜂>0} is
quasi-irreducible. Let us remark that in general none of those implications are equivalences.

Proposition IV.6.5 (A cordon sanitaire is never the worst idea). Suppose that the cost function
𝐶 is continuous decreasing and consider the loss function ℜ𝑒[k], with k a finite double norm kernel
such that ℜ0[k] > 0. Then, a disconnecting strategy is not anti-Pareto optimal.

In the non-oriented cycle graph from Example IV.1.2, this property is illustrated in Figure IV.1
as the disconnecting strategy “one in 4”, see Figure IV.2, is not anti-Pareto.

The proof of the proposition relies on the next lemma which is a direct application of [138,
Lemma 11] to our setting. For 𝐴 ∈ ℱ, let m(𝜆, k, 𝐴) be the multiplicity (possibly equal to 0) of the
eigenvalue 𝜆 ∈ ℂ∗ for the integral operator 𝑇k𝟙𝐴 associated to the kernel k𝟙𝐴.

Lemma IV.6.6. Let k be kernel with finite double norm. Let 𝐴, 𝐵 ∈ ℱ be such that 𝐴 ∩ 𝐵 = ∅ a.s.
and k(𝐵, 𝐴) = 0. For all 𝜆 ∈ ℂ∗, we have:

m(𝜆, k, 𝐴 ∪ 𝐵) = m(𝜆, k, 𝐴) +m(𝜆, k, 𝐵),

and thus
ℜ𝑒[k](𝟙𝐴 + 𝟙𝐵) = max (ℜ𝑒[k](𝟙𝐴), ℜ𝑒[k](𝟙𝐵)) . (IV.47)

We are now in a position to prove Proposition IV.6.5.
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Proof of Proposition IV.6.5. Let 𝜂 be a disconnecting strategy, and thus 𝜂 ≠ 𝟘. Since 𝜂 is disconnect-
ing, that is, k restricted to {𝜂 > 0} is not irreducible, we deduce there exists 𝐴, 𝐵 ∈ ℱ such that
𝜇(𝐴) > 0, 𝜇(𝐵) > 0, (k𝜂)(𝐵, 𝐴) = 0 and a.s. 𝐴 ∪ 𝐵 = {𝜂 > 0} and 𝐴 ∩ 𝐵 = ∅. In particular (IV.47)
holds with k replaced by k𝜂. First assume that ℜ𝑒[k𝜂](𝟙𝐴) ≥ ℜ𝑒[k𝜂](𝟙𝐵), so that (IV.47) yields:

ℜ𝑒[k](𝜂) = ℜ𝑒[k𝜂](𝟙𝐴 + 𝟙𝐵) = ℜ𝑒[k𝜂](𝟙𝐴).

For 𝜃 ∈ [0, 1], define the strategy 𝜂𝜃 = 𝜂𝟙𝐴 + 𝜃𝜂𝟙𝐵. We deduce that:

ℜ𝑒[k](𝜂𝜃) = ℜ𝑒[k𝜂𝜃](𝟙𝐴 + 𝟙𝐵) = max(ℜ𝑒[k𝜂𝜃](𝟙𝐴), ℜ𝑒[k𝜂𝜃](𝟙𝐵))
= max(ℜ𝑒[k𝜂](𝟙𝐴), 𝜃ℜ𝑒[k𝜂](𝟙𝐵))
= ℜ𝑒[k𝜂](𝟙𝐴)
= ℜ𝑒[k](𝜂),

where we used (IV.47) with k replaced by k𝜂𝜃 for the second equality as (k𝜂𝜃)(𝐵, 𝐴) = 0, and the
homogeneity of the spectral radius in the third. Thus, the map 𝜃 ↦ ℜ𝑒[k](𝜂𝜃) is constant on [0, 1].
Since 𝜇(𝐵) > 0 and 𝐶 is decreasing, we get that 𝜃 ↦ 𝐶(𝜂𝜃) is decreasing. This implies that 𝜂𝜃 is
worse than 𝜂 for any 𝜃 ∈ [0, 1), and thus 𝜂 is not anti-Pareto optimal.

The case ℜ𝑒[k𝜂](𝟙𝐵) ≥ ℜ𝑒[k𝜂](𝟙𝐴) is handled similarly.

IV.6.4 A characterization of 𝑐⋆ = 𝐶⋆(0) when the support of k is symmetric

We characterize the Pareto optimal strategies which minimizeℜ𝑒 when the kernel k has a symmet-
ric support; and we get a very simple representation of 𝐶⋆(0) when the cost is uniform 𝐶 = 𝐶uni.

Let us first recall a notion from graph theory. If 𝐺 = (𝑉 , 𝐸) is an non-oriented graph with
vertices set 𝑉 and edge set 𝐸, an independent set of 𝐺 is a subset 𝐴 ⊂ 𝑉 of vertices which are
pairwise not adjacent, that is, 𝑖, 𝑗 ∈ 𝐴 implies 𝑖𝑗 ∉ 𝐸. The independence number of a graph 𝐺,
denoted by 𝛼(𝐺), is the maximum of ♯𝐴/♯𝐺, over all the independent sets 𝐴 of 𝐺. Following [84],
we generalize this definition to kernels.

Definition IV.6.7 (Independent sets for kernels). Let k be a kernel on Ω. A measurable set 𝐴 ∈ ℱ is
an independent set of k if k = 0 𝜇⊗2-a.s. on 𝐴 × 𝐴. The independence number 𝛼(k) of the kernel k is:

𝛼(k) = sup{𝜇(𝐴) ∶ 𝐴 is an independent set of k}.

A compactness argument will show that the supremum defining 𝛼 is reached.

Proposition IV.6.8 (Existence of a maximal independent set). For any kernel k on Ω, there exists
an independent set 𝐴 of k that is maximal, in the sense that 𝜇(𝐴) = 𝛼(k).

Proof. First, notice that the independent sets and maximal independent sets of a kernel k depends
only on the support { k > 0 } of k. Therefore, the maximal independent sets of the kernel k and of
the kernel 𝟙{ k>0 } are the same. In particular, we can assume without loss of generality that the
kernel k is bounded.

Let (𝐴𝑛, 𝑛 ∈ ℕ) be a sequence of independent sets for k such that:

lim
𝑛→∞

𝜇(𝐴𝑛) = 𝛼(k).

Since Δ is sequentially compact for the weak topology according to Lemma IV.3.5, up to taking a
sub-sequence, we may assume that the sequence (𝟙𝐴𝑛

, 𝑛 ∈ ℕ) converges weakly to some function
𝑔 ∈ Δ. Since k is bounded, the integral operator 𝑇k is well defined. We deduce that 𝑇k(𝟙𝐴𝑛

) belongs
to Δ and converges a.s. towards 𝑇k(𝑔). This implies that 𝟙𝐴𝑛

𝑇k(𝟙𝐴𝑛
) converges weakly towards

𝑔𝑇k(𝑔). We deduce that:

∫
Ω
𝑔𝑇k(𝑔) d𝜇 = lim

𝑛→∞∫
Ω
𝟙𝐴𝑛

𝑇k(𝟙𝐴𝑛
) d𝜇 = lim

𝑛→∞
k(𝐴𝑛, 𝐴𝑛) = 0.
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As 𝑔 ∈ Δ, this implies that { 𝑔 > 0 } is an independent set of k and thus 𝜇 (𝑔 > 0) ≤ 𝛼(k). Besides,
since (𝟙𝐴𝑛

, 𝑛 ∈ ℕ) converges weakly to 𝑔, we get:

∫
Ω
𝑔 d𝜇 = lim

𝑛→∞
𝜇(𝐴𝑛) = 𝛼(k).

This implies that 𝜇 (𝑔 > 0) ≥ ∫Ω 𝑔 d𝜇 = 𝛼(k). We deduce that 𝜇 (𝑔 > 0) = 𝛼(k), and since { 𝑔 > 0 }
is an independent set, it is also maximal.

In the following result, we prove that maximum independent sets provides an optimal Pareto
strategy for the loss function ℜ𝑒 and the cost function 𝐶uni given by (IV.41) corresponding to the
cost 𝑐⋆ = 𝐶⋆(0), see also Remark IV.6.10 for a general cost function. This property is illustrated
in Figure IV.1 where the Pareto frontier of the non-oriented cycle graph from Example IV.1.2 is
plotted. It is possible to prevent infections without vaccinating the whole population as 𝑐⋆ = 1/2 <
1 = 𝑐max.

Proposition IV.6.9. Let k be a kernel with finite double norm such that its support, {k > 0}, is
a.s. a symmetric subset of Ω2. We consider the cost 𝐶 = 𝐶uni given by (IV.41). For any maximal
independent set 𝐴⋆ of k, the strategy 𝟙𝐴⋆

is Pareto optimal for the loss ℜ𝑒[k] and we have:

𝑐⋆ = 𝐶⋆(0) = 𝐶(𝟙𝐴⋆
) = 1 − 𝛼(k). (IV.48)

Remark IV.6.10. Definition IV.6.7 on maximal independent set is in fact associated to the uniform
cost 𝐶 = 𝐶uni. More generally, we could define the independence number 𝛼𝐶(k) of the kernel
k with respect to a decreasing continuous cost function 𝐶 (recall the convention 𝐶(𝟙) = 0 and
𝑐max = 𝐶(𝟘)) as:

𝛼𝐶(k) = sup{𝑐max − 𝐶(𝟙𝐴) ∶ 𝐴 is an independent set of k}.

The notations are consistent as 𝛼𝐶 = 𝛼 for 𝐶 = 𝐶uni. Adapting the proof of Proposition IV.6.8, we
get that for any kernel k on Ω, there exists an independent set 𝐴 of k that is 𝐶-maximal, in the
sense that 𝛼𝐶(k) = 𝑐max − 𝐶(𝟙𝐴). Following the proof of Proposition IV.6.9, we then get that if the
kernel k has a finite double norm whose support, {k > 0}, is a.s. a symmetric subset of Ω2, then
for any 𝐶-maximal independent set 𝐴⋆ of k, the strategy 𝟙𝐴⋆

is Pareto optimal for the loss ℜ𝑒[k]
and the cost 𝐶. Furthermore, we have:

𝑐⋆ = 𝐶⋆(0) = 𝐶(𝟙𝐴⋆
) = min{𝐶(𝟙𝐴) ∶ 𝐴 is an independent set of k}.

Proof of Proposition IV.6.9. The existence of a maximum independent set 𝐴 is given by Proposition
IV.6.8. The effective reproduction number obviously vanishes for the strategy 𝟙𝐴 with cost 1−𝛼(k)
as (𝑇k𝟙𝐴)

2 = 𝑇k 𝑇𝟙𝐴k𝟙𝐴 = 0. Now, let 𝜂 ∈ Δ be such that ℜ𝑒[k](𝜂) = 0. To complete the proof of the
proposition, it is enough to prove that 𝐶uni(𝜂) ≥ 1 − 𝛼(k).

Since ℜ𝑒[k](𝜂) = 0, the spectral radius of 𝑇k𝜂 is equal to 0. Let 𝜀 > 0 and consider the kernel
k𝜀 defined on Ω by:

k𝜀(𝑥, 𝑦) = 𝟙{ k(𝑥,𝑦)>𝜀 }.

Since 𝑇k𝜂 − 𝜀𝑇k𝜀𝜂 is a positive operator, we deduce from (IV.9) that 𝜀𝜌(𝑇k𝜀𝜂) = 𝜌(𝜀𝑇k𝜀𝜂) ≤ 𝜌(𝑇k𝜂) = 0
and thus 𝜌(𝑇k𝜀𝜂) = 0. Set k′ = 𝟙{ k>0 }. Since lim𝜀→0+ ‖ k𝜀 − k′ ‖𝑝,𝑞 = 0, we deduce from Proposition
IV.3.7 on the stability of ℜ𝑒 that 𝜌(𝑇k′𝜂) = ℜ𝑒[k′](𝜂) = lim𝜀→0+ℜ𝑒[k𝜀](𝜂) = lim𝜀→0+ 𝜌(𝑇k𝜀𝜂) = 0.
As the support of k is symmetric, we deduce that the kernel k′ is symmetric. According to (IV.12),
we have:

𝜌(𝑇k″) = 𝜌(𝑇k′𝜂) = 0,

with k″ = √𝜂 k
′
√𝜂 = √𝜂 𝟙{ k>0 } √𝜂. Since the kernel k″ is symmetric, non-negative and bounded

by 1, this implies that k″ = 0 d𝜇⊗2-a.s., and thus { 𝜂 > 0 } is an independent set for k. This gives
𝜇 (𝜂 > 0) ≤ 𝛼(k). Therefore, we have the following lower bound for the cost 𝐶uni(𝜂):

𝐶uni(𝜂) = 1 − ∫
Ω
𝜂 d𝜇 ≥ 1 − 𝜇 (𝜂 > 0) ≥ 1 − 𝛼(k).

This ends the proof of the proposition.
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IV.7 Pareto and anti-Pareto frontiers for reducible kernels

When the kernel k is “truly reducible” (corresponding to the set of indices 𝐼 below to be such
that ♯𝐼 ≥ 2), it is natural to ask whether the frontiers of the subsystems entirely characterize the
frontiers for k, and in what sense the optimization problems can be “reduced” to the separate
study of each irreducible component.

We can achieve an elementary description of the anti-Pareto frontier when the kernel is not
reducible using a Frobenius decomposition, see [89, 155] and [138] or the “super diagonal” form,
see [45, Part II.2]. For convenience, we follow [138], see also [17, Lemma 5.17] in the case k
symmetric.

Let k be a kernel on Ω with finite double norm. Let 𝒜 be the set of k-invariant sets, and notice
that𝒜 is stable by countable unions and countable intersections. Let 𝜎(𝒜) be the 𝜎-field generated
by 𝒜, and we denote by (Ω𝑖, 𝑖 ∈ 𝐼 ) the at most countable (but possibly empty) collection of atoms
with respect to the measure 𝜇. Notice that the atoms are define up to an a.s. equivalence and can
be chosen to be pair-wise disjoint. For 𝑖 ∈ 𝐼, we set:

k𝑖 = 𝟙Ω𝑖
k𝟙Ω𝑖

, (IV.49)

which is a kernel on Ω with finite double norm. Set Ω0 = (∪𝑖∈𝐼Ω𝑖)
∁ (and assume the set of indices

𝐼 has been chosen so that it does not contain 0). Thanks to [138, Lemma 12] or [155, Section II],
there exists a total order, say ≼, on 𝐼 (not unique in general) such that for all 𝑖, 𝑗 ∈ 𝐼:

(i) 𝑗 ≺ 𝑖 implies k(Ω𝑖, Ω𝑗) = 0. In the epidemiology setting, 𝑗 ≺ 𝑖 means that the sub-population
Ω𝑗 can not infect the sub-population Ω𝑖.

(ii) 𝜇(Ω𝑖) > 0 and k restricted to Ω𝑖 is irreducible and has positive spectral radius, that is k𝑖 is
quasi-irreducible, and ℜ𝑒[k](𝟙Ω𝑖

) = ℜ0[k𝑖] > 0.

(iii) k reduced to Ω0 is quasi-nilpotent, that is ℜ𝑒[k](𝟙Ω0
) = 0.

(iv) For all 𝜆 ∈ ℂ∗:
m(𝜆, k) = ∑

𝑖∈𝐼
m(𝜆, k𝑖). (IV.50)

The next remark gives some elementary results related to the Frobenius decomposition.

Remark IV.7.1. Recall ℜ0[k] denote the spectral radius of the integral operator with kernel k.
Recall that {k ≡ 0} = {𝑥 ∈ Ω ∶ k(𝑥, Ω) + k(Ω, 𝑥) = 0}. We have:

(i) If the spectral radius of the kernel k is positive, then 𝐼 is non-empty.

(ii) If the kernel k is quasi-irreducible, then Ω0 = {k ≡ 0} and 𝐼 is a singleton.

(iii) The kernel k is monatomic if and only if 𝐼 is a singleton, say 𝐼 = {𝑎}. Then the set Ω𝑎 is the
atom of k.

(iv) If 𝐴 invariant implies 𝐴∁ invariant, then we have Ω0 = {k ≡ 0} and k = ∑𝑖∈𝐼 k𝑖 (k reduced
to Ω0 is zero and intuitively k is block diagonal).

(v) The cardinal of set of indices 𝑖 ∈ 𝐼 such thatℜ0[k𝑖] = ℜ0[k] is exactly equal to themultiplicity
of ℜ0[k] for 𝑇k, that is m(ℜ0[k], k).

(vi) An eigenvalue 𝜆 of 𝑇k is distinguished if its distinguished multiplicity ♯{𝑖 ∈ 𝐼 ∶ ℜ0[k𝑖] = 𝜆}
is positive. Notice that ℜ0[k] is distinguished with its distinguished multiplicity equal to its
multiplicity. Indeed if ℜ0[k] is an eigenvalue of k𝑖, then it is its spectral radius and thus has
multiplicity one as k𝑖 is quasi-irreducible. We also deduce that m(ℜ0[k], k𝑖) ∈ {0, 1} for all
𝑖 ∈ 𝐼.

For 𝑖 ∈ 𝐼 and 𝜂 ∈ Δ, we set 𝜂𝑖 = 𝜂𝟙Ω𝑖
and recall that k𝑖 = 𝟙Ω𝑖

k𝟙Ω𝑖
. We now give the decomposi-

tion of ℜ𝑒[k] according to the quasi-irreducible components (k𝑖, 𝑖 ∈ 𝐼 ) of k.
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(a) A representation of the kernel k.

Ω𝑗 Ω𝑖
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𝑥

𝑦

(b) A representation of the kernel k̃ = ∑𝑖∈𝐼 k𝑖. We
have Spec[k] = Spec[k̃] and thus ℜ𝑒[k] = ℜ𝑒[k̃].

Figure IV.7: Example of a kernel k with the white zone included in {k = 0} and the kernel
k̃ = ∑𝑖∈𝐼 k𝑖, with k𝑖 = 𝟙Ω𝑖

k𝟙Ω𝑖
and k(Ω𝑖, Ω𝑗) = 0 for 𝑗 ≺ 𝑖.

Lemma IV.7.2. Let k be a kernel with a finite double norm and positive spectral radius. We have for
𝜂 ∈ Δ:

ℜ𝑒[k](𝜂) = max
𝑖∈𝐼

ℜ𝑒[k𝑖](𝜂𝑖) = max
𝑖∈𝐼

ℜ𝑒[k](𝜂𝟙Ω𝑖
). (IV.51)

Proof. For 𝐴 ∈ ℱ, recall m(𝜆, k, 𝐴) denotes the multiplicity (possibly equal to 0) of the eigenvalue
𝜆 ∈ ℂ∗ for the integral operator 𝑇k𝟙𝐴 associated to the kernel k𝟙𝐴. Let 𝐴, 𝐵 ∈ ℱ be such that
𝐴 ∩ 𝐵 = ∅ a.s. and k(𝐵, 𝐴) = 0. Let 𝜂 ∈ Δ. Clearly we have (k𝜂)(𝐵, 𝐴) = 0, and thus Lemma IV.6.6
gives that for all 𝜂 ∈ Δ:

m(𝜆, k𝜂, 𝐴 ∪ 𝐵) = m(𝜆, k𝜂, 𝐴) +m(𝜆, k𝜂, 𝐵).

Then, an immediate adaptation of the proof of [138, Theorem 7] gives that for all 𝜆 ∈ ℂ∗:

m(𝜆, k𝜂, Ω) = ∑
𝑖∈𝐼

m(𝜆, k𝜂, Ω𝑖). (IV.52)

By definition of m(𝜆, ⋅, ⋅), we get ℜ𝑒[k](𝜂) = max{|𝜆| ∶ m(𝜆, k𝜂, Ω) > 0} and ℜ𝑒[k𝟙Ω𝑖
](𝜂) =

max{|𝜆| ∶ m(𝜆, k𝜂, Ω𝑖) > 0}. This gives that:

ℜ𝑒[k](𝜂) = max
𝑖∈𝐼

ℜ𝑒[k𝟙Ω𝑖
](𝜂).

To conclude, notice thatℜ𝑒[k](𝜂𝟙Ω𝑖
) = ℜ𝑒[k𝟙Ω𝑖

](𝜂) = ℜ𝑒[𝟙Ω𝑖
k𝟙Ω𝑖

](𝜂) = ℜ𝑒[k𝑖](𝜂𝑖), where we used
Lemma IV.4.1 (i) for the second equality.

Set k̃ = ∑𝑖∈𝐼 k𝑖. As a consequence of (IV.52), we have that:

Spec[k] = Spec[k̃] and ℜ𝑒[k] = ℜ𝑒[k̃].

In view of Section IV.4.1, we get an other transformation of the kernel k which leaves the function
Spec[k] unchanged. We represent in Figure IV.7(a) an example of a kernel k with its atomic
decomposition using ≼ as a partial order on Ω and in Figure IV.7(b) the corresponding kernel k̃.

We set ℜ0 = ℜ0[k]. For 𝑖 ∈ 𝐼, we consider the loss ℜ𝑒[k𝑖] and the corresponding optimal
loss function 𝑅⋆𝑖 defined on [0, 𝑐max] and optimal cost function 𝐶⋆𝑖 . For convenience the function
𝐶⋆𝑖 which is defined on [0, ℜ0[k𝑖]] is extended to [0, ℜ0] by setting 𝐶⋆𝑖 = 0 on (ℜ0[k𝑖], ℜ0]. We
eventually give the description of the anti-Pareto frontier. Notice also that {k𝑖 ≡ 0} = Ω∁

𝑖 . Recall
that 𝑐max = 𝐶(𝟙).
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Corollary IV.7.3. Suppose that the cost function 𝐶 is continuous decreasing with 𝐶(𝟙) = 0 and
consider the loss function ℜ𝑒[k], with k a finite double norm kernel. Assume that ℜ0 = ℜ0[k] > 0.
We have:

ℜ⋆
𝑒 = max

𝑖∈𝐼
𝑅⋆𝑖 (on [0, 𝑐max]), and 𝐶⋆ = max

𝑖∈𝐼
𝐶⋆𝑖 (on [0, ℜ0]);

the maximal cost of totally inefficient strategies is given by:

𝑐⋆ = 𝐶⋆(ℜ0) = max
𝑖∈𝐼

{𝐶(𝟙Ω𝑖
) ∶ ℜ0[k𝑖] = ℜ0[k]};

and the anti-Pareto frontier is given by:

ℱAnti = {(max
𝑖∈𝐼

𝐶⋆𝑖 (ℓ), ℓ) ∶ ℓ ∈ [0, ℜ0]} . (IV.53)

Furthermore, we have for ℓ ∈ [0, ℜ0]:

𝐶⋆(ℓ) = 𝐶 (𝜂⋆) with 𝜂⋆ = 𝟙Ω0
+∑

𝑖∈𝐼
𝜂𝑖,⋆,

where 𝜂⋆ is Pareto optimal with ℜ𝑒[k](𝜂⋆) = ℓ, and, for 𝑖 ∈ 𝐼, the strategy 𝜂𝑖,⋆ = 𝜂⋆ 𝟙Ω𝑖
restricted to Ω𝑖

is Pareto optimal for the kernel k𝑖 restricted to Ω𝑖, with ℜ𝑒[k𝑖](𝜂𝑖,⋆) = min(ℓ, ℜ0[k𝑖]). We also have
an upper bound for the minimal cost which ensures that no infection occurs at all:

𝑐⋆ = 𝐶⋆(0) ≤ 𝐶(𝟙Ω0
).

Proof. Equation (IV.51) and the definition of ℜ⋆
𝑒 readily implies that ℜ⋆

𝑒 = max𝑖∈𝐼 𝑅⋆𝑖 .
We set ℜ0 = ℜ0[k] and recall that ℜ𝑒[k𝑖](𝟙) = ℜ0[k𝑖]. Let ℓ ∈ (0, ℜ0]. Notice that (IV.50)

implies that there is a finite number of indices 𝑖 ∈ 𝐼 such that ℜ0[k𝑖] ≥ ℓ. This and (IV.51) readily
implies that 𝐶⋆(ℓ) = max𝑖∈𝐼 𝐶⋆𝑖 (ℓ) for ℓ > 0. Use that 𝐶⋆(0) = 𝐶⋆𝑖 (0) = 𝑐max to deduce that the
equality 𝐶⋆ = max𝑖∈𝐼 𝐶⋆𝑖 holds on [0, ℜ0]. The formula for 𝑐⋆ = 𝐶⋆(ℜ0) is a consequence of (IV.51),
Lemma III.5.13 and Remark IV.7.1 (v). The formula (IV.53) for ℱAnti is then a consequence of
(IV.46).

Eventually, if 𝜂⋆ is Pareto optimal withℜ𝑒[k](𝜂⋆) = ℓ, we deduce from (IV.51) thatℜ𝑒[k](𝜂⋆𝟙Ω∁
0
)

is also equal to ℓ, and since 𝐶 is decreasing, this implies that 𝜂⋆ ≥ 𝟙Ω0
and thus 𝜂⋆ = 𝟙Ω0

+∑𝑖∈𝐼 𝜂𝑖,⋆
with 𝜂𝑖,⋆ = 𝜂⋆ 𝟙Ω𝑖

. Now if 𝜂𝑖,⋆ were not Pareto optimal for the kernel k𝑖 restricted to Ω𝑖 or if
ℜ𝑒[k𝑖](𝜂𝑖,⋆) < min(ℓ, ℜ0[k𝑖]), we could increase 𝜂⋆ on Ω𝑖 without changing the value of ℜ𝑒[k],
and thus 𝜂⋆ would not be Pareto optimal. Thus, we get that 𝜂𝑖,⋆ is Pareto optimal for the kernel
k𝑖 restricted to Ω𝑖, that is, 𝜂𝑖,⋆ + 𝟙Ω0

is Pareto optimal for the kernel k𝑖, and that ℜ𝑒[k𝑖](𝜂𝑖,⋆) =
min(ℓ, ℜ0[k𝑖]). From the inequality 𝜂⋆ ≥ 𝟙Ω0

, we deduce that 𝑐⋆ = 𝐶⋆(0) ≤ 𝐶(𝟙Ω0
).

Remark IV.7.4. If k is not monatomic, then Assumption 7 in Chapter III (that is any local maximum
of the loss function is also a global maximum) may or may not be satisfied for the loss function
ℜ𝑒 = ℜ𝑒[k], see the case of the two population model in [37]. In the former case the function 𝐶⋆
is continuous and the anti-Pareto frontier is connected, whereas in the latter case the function 𝐶⋆
may have jumps and then the anti-Pareto frontier has more than one connected component.



Chapter V

Optimal vaccination: various (counter)
intuitive examples

Chapter Abstract

In previous the previous chapters, we formalized the problem of optimal allocation strategies for
a (perfect) vaccine in an infinite-dimensional metapopulation SIS model. The aim of the current
chapter is to illustrate this theoretical framework with multiple examples where one can derive
the analytic expression of the optimal strategies. In particular, we investigate three questions:
whether or not it is possible to vaccinate optimally when the vaccine doses are given one at a
time; the effect of assortativity (the tendency to have more contacts with similar individuals) on
the shape of optimal vaccination strategies; the particular case where everybody has the same
number of neighbours.

The material for this chapter has been released in [38].
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V.1 Introduction

V.1.1 Motivation

The basic reproduction number, denoted by ℜ0, plays a fundamental role in epidemiology as it
determines the long-term behavior of an epidemic. For an homogeneous model, it is defined as
the number of secondary cases generated by an infected individual in an otherwise susceptible
population. When this number is below 1, an infected individual causes less than one infection
before its recovery in average; the disease therefore declines over time until it eventually dies
out. On the contrary, when the reproduction number is greater than 1, the disease will invade the
population. From this property, we deduce that a proportion equal to 1 − 1/ℜ0 of the population
should be immunized in order to stop the outbreak. We refer the reader to the monograph of
Keeling and Rohani [93] for a reminder of these basic properties on the reproduction number.

In heterogeneous generalizations of classical compartmental models, see [14, 102] and Chap-
ter II, the population is stratified into homogeneous groups sharing the same characteristics (time
to recover from the disease, interaction with the other groups, …). For these models, it is still
possible to define a meaningful reproduction number ℜ0, as the number of secondary cases gen-
erated by a typical infectious individual when all other individuals are uninfected; see [42]. With
this definition, it is still true that the outbreak dies out if ℜ0 is smaller than 1 and invade the
population otherwise; see [79, 150, 151, 153] and Chapter II for instance.

Suppose now that we have at our disposal a vaccine with perfect efficacy, that is, vaccinated
individuals are completely immunized to the disease. After a vaccination campaign, let 𝜂 denote
the (non necessarily homogeneous) proportion of non-vaccinated individuals in the population:
we will call 𝜂 a vaccination strategy. For any strategy 𝜂, let us denote by ℜ𝑒(𝜂) the corresponding
reproduction number of the non-vaccinated population. The choice of 𝜂 naturally raises a question
that may be expressed as the following informal constrained optimization problem:

{
Minimize: the quantity of vaccine to administrate

Such that: herd immunity is reached, that is, ℜ𝑒 ≤ 1.
(V.1)

For practical reasons, we will instead look at the problem the other way around. If the vaccine
is only available in limited quantities, the decision makers could try to allocate the doses so as
to maximize efficiency; a natural indicator of this efficiency is the effective reproduction number.
This reasoning leads to the following constrained problem:

{
Minimize: the effective reproduction number ℜ𝑒
Such that: a given quantity of available vaccine.

(V.2)

In accordance with Chapter III, we will denote by ℜ𝑒⋆ the value of this problem: it is a function of
the quantity of available vaccine. The graph of this function is called the Pareto frontier. In order
to measure how bad a vaccination strategy can be, we will also be interested in maximizing the
effective reproduction number given a certain quantity of vaccine:

{
Maximise: the effective reproduction number ℜ𝑒
subject to: a given quantity of available vaccine.

(V.3)

The value function corresponding to this problem is denoted byℜ⋆
𝑒 and its graph is called the anti-

Pareto frontier. We will quantify the “quantity of available vaccine” for the vaccination strategy 𝜂
by a cost 𝐶(𝜂). Roughly speaking the “best” (resp. “worst”) vaccination strategies are solutions
to Problem (V.2) (resp. Problem (V.3)) and will be called Pareto optimal (resp. anti-Pareto optimal)
strategies.

The problem of optimal vaccine allocation has been studied mainly in the metapopulation
setting where the population is divided into a finite number of subgroups with the same character-
istics. Longini, Ackerman and Elverback were the first interested in the question of optimal vaccine
distribution given a limited quantity of vaccine supply [110]. Using the concept of next-generation
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matrix introduced by Diekmann, Heesterbeek and Metz [42], Hill and Longini reformulated this
problem thanks to the reproduction number [81]. Several theoretical and numerical studies fol-
lowed focusing on Problem (V.1) and/or Problem (V.2) in the metapopulation setting [47, 67, 75,
130]. We also refer the reader to the introduction of Chapter III for a detailed review of the
bibliography.

In the two previous Chapters, we provided a framework where Problems (V.2) and (V.3) are
well-posed, justified that the optimizers are indeed Pareto optimal and studied in detail the Pareto
and anti-Pareto frontiers. Since there is no closed form for the effective reproduction number,
Problems (V.2) and (V.3) are hard to solve in full generality: our goal here is to exhibit examples
where one can derive analytic expressions for the optimal vaccination strategies. The simple mod-
els we study give a gallery of examples and counter-examples to natural questions or conjectures,
and may help understanding common rules of thumb for choosing vaccination policies. We will
in particular be interested in the following two notions.

(i) (Greedy parametrization of the frontiers). For the decisionmaker it is important to know
if global optimization and sequential optimization are the same as one cannot unvaccinate
people and redistribute the vaccine once more doses become available. More precisely,
there is a natural order on the vaccination strategies: let us write 𝜂′ ≤ 𝜂 if all the people
that are vaccinated when following the strategy 𝜂 are also vaccinated when following the
strategy 𝜂′. Let 𝜂 be an optimal solution of (V.2) for cost 𝑐 = 𝐶(𝜂), that is, ℜ𝑒(𝜂) = ℜ𝑒⋆(𝑐). If,
for 𝑐′ > 𝑐, we can find a strategy 𝜂′ ≤ 𝜂 such that ℜ𝑒(𝜂′) = ℜ𝑒⋆(𝑐′), then the optimization
may be, at least in principle, found in a greedy way: giving sequentially each new dose
of vaccine so as to minimize ℜ𝑒 gives, in the end, an optimal strategy for any quantity of
vaccine. By analogy with the corresponding notion for algorithms we will say in this case
that there exists a greedy parametrization of the Pareto frontier. The existence of such a
greedy parametrization was already discussed by Cairns in [29] and is examined for each
model throughout this chapter.

(ii) (Assortative/Disassortative network). The second notion is a property of the network
called assortativity: a network is called assortative when the nodes tend to attach to others
that are similar in some way and disassortative otherwise. The assortativity or disassortativ-
ity of a network is an important property that helps to understand its topology. It has been
oberved that social networks are usually disassortative while biological and technological
networks are disassortative, see for example [120]. The optimal vaccination strategies can
differ dramatically in the case of assortative versus disassortative mixing, see Galeotti and
Rogers [65] for a study in a population composed of two groups.

V.1.2 Main results

Section V.2 is dedicated to metapopulation models. We present two simple models that, despite
being seemingly very similar, display totally different behaviors: the asymmetric and symmetric
circle graphs. For the first one, we derive a greedy parametrization of the Pareto frontier. On the
second one, we observe numerically that the Pareto frontier is much more complicated, and in
particular cannot be parametrized greedily.

After Section V.3, where we recall the kernel setting used in Chapter III, we focus in Section V.4
on the effect of assortativity on optimal vaccination strategies. We define a simple kernel model
that may be assortative or disassortative depending on the value of two parameters. We describe
completely the optimal vaccination strategies, and show that the best strategies for the assortative
case are the worst ones if the mixing pattern is disassortative, and vice-versa. We also prove that
all the Pareto and anti-Pareto frontiers admit greedy parametrizations, and that Pareto optimal
strategies prioritize individuals that in some sense have the highest degree, that is, are the most
connected.

Targeting individuals that are the most connected is a common approach used to prevent
an epidemic in a complex network [126]. In [40], we show that these strategies are optimal for
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the so-called monotonic kernel models in which we can naturally order individuals according
to their connectivity. The question then arises of how to treat a model in which all individuals
share the same degree. This motivates Section V.5 which is devoted to constant degree kernels.
Those are the analogue of regular graphs in the infinite-dimensional setting. We prove a general
result that gives a sufficient conditions on the kernel to make the uniform strategies either the
“best” or the “worst” possible strategies. In Section V.6, we study in detail one particular case
of a constant degree kernel. We also provide an example of kernel for which the set of optimal
strategies has an infinite number of connected components. In this particular case, there is no
greedy parametrization of the Pareto frontier.

V.2 First examples in the discrete setting

In this section, we use the framework developped by Hill and Longini in [81] for metapopulation
models and provide optimal vaccination strategies for two very simple examples. Despite their
simplicity, these examples showcase a number of interesting behaviors, that will occur a in much
more general setting, as we will see in the rest of the chapter.

V.2.1 The reproduction number in metapopulation models

In metapopulation models, the population is divided into 𝑁 ≥ 2 different subpopulations and
we suppose that individuals within a same subpopulation share the same characteristics. The
different groups are labeled 0, 1, …, 𝑁 − 1. We denote by 𝜇0, 𝜇1, …, 𝜇𝑁−1 their respective size
(in proportion with respect to the total size) and we suppose that those do not change over time.
By the linearization of the dynamic of the epidemic at the disease-free equilibrium, we obtain
the so-called next-generation matrix 𝐾, see [153], which is a 𝑁 × 𝑁 matrix with non-negative
coefficients. For a detailled discussion on the biological interpretation of the coefficients of the
next-generation matrix, we refer the reader to Section IV.2. We also refer to [37] for an extensive
treatment of the case 𝑁 = 2.

The basic reproduction number is equal to the spectral radius of the next-generation matrix:

ℜ0 = 𝜌(𝐾), (V.4)

where 𝜌 denotes the spectral radius. Since the matrix 𝐾 has non-negatives entries, Perron-
Frobenius theory implies that ℜ0 is also an eigenvalue of 𝐾. If ℜ0 > 1, the epidemic process
grows away from zero infectives while if ℜ0 < 1, the disease cannot invade the population; see
[153, Theorem 2].

Now, let us introduce the effect of vaccination. Suppose that we have at our disposal a vaccine
with perfect efficacy, i.e., vaccinated individuals are completely immunized to the infection. We
denote by 𝜂 = (𝜂0, … , 𝜂𝑁−1) the vector of the proportions of non-vaccinated individuals in the
different groups. We shall call 𝜂 a vaccination strategy and denote by Δ = [0, 1]𝑁 the set of all
possible vaccination strategies. According to Chapters III and IV, the next-generation matrix
corresponding to the dynamic with vaccination is equal to the matrix 𝐾 multiplied by the matrix
Diag(𝜂) on the right, where Diag(𝜂) is the 𝑁 × 𝑁 diagonal matrix with coefficients 𝜂 ∈ Δ. We call
the spectral radius of this matrix the effective reproduction number :

ℜ𝑒(𝜂) = 𝜌 (𝐾 ⋅ Diag(𝜂)) . (V.5)

The effective reproduction number accounts for the vaccinated (and immunized) people in the
population, as opposed to the basic reproduction number, which corresponds to a fully susceptible
population. When nobody is vaccinated, that is 𝜂 = 𝟙 = (1, … , 1), Diag(𝜂) is equal to the identity
matrix, the next-generation matrix is unchanged and ℜ𝑒(𝜂) = 𝑅(𝟙) = ℜ0.

We suppose that the cost of a vaccination strategy is, up to an irrelevant multiplicative constant,
equal to the total proportion of vaccinated people and is therefore given by:

𝐶(𝜂) =
𝑁−1
∑
𝑖=0

(1 − 𝜂𝑖)𝜇𝑖 = 1 −
𝑁−1
∑
𝑖=0

𝜂𝑖𝜇𝑖, (V.6)
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where 𝜂 = (𝜂0, … , 𝜂𝑁−1) ∈ Δ. We refer to Section III.5.1 and Remark III.5.2. for considerations on
more general cost functions.

Example V.2.1 (Uniform vaccination). The uniform strategy of cost 𝑐 consists in vaccinating the
same proportion of people in each group: 𝜂 = (1 − 𝑐)𝟙. By homogeneity of the spectral radius, the
reproduction number ℜ𝑒(𝜂) is then equal to (1 − 𝑐)ℜ0.

V.2.2 Optimal allocation of vaccine doses

As mentioned in the introduction and recalled in Section V.2.1, reducing the reproduction number
is fundamental in order to control and possibly eradicate the epidemic. However, the vaccine may
only be available in a limited quantity, and/or the decision maker may wish to limit the cost of
the vaccination policy. This motivates our interest in the following related problem:

{ min ℜ𝑒(𝜂),
such that 𝐶(𝜂) = 𝑐. (V.7)

According to Chapter III, one can replace the constraint {𝐶(𝜂) = 𝑐} by {𝐶(𝜂) ≤ 𝑐}without modifying
the solutions. The opposite problem consists in finding out the worst possible way of allocating
vaccine. While this does not seem at first sight to be as important, a good understanding of bad
vaccination strategies may also provide rules of thumb in terms of anti-patterns. In order to
estimate how bad a vaccination strategy can be, we therefore also consider the following problem:

{ max ℜ𝑒(𝜂),
such that 𝐶(𝜂) = 𝑐. (V.8)

According to Chapter III, one can replace the constraint {𝐶(𝜂) = 𝑐} by {𝐶(𝜂) ≥ 𝑐}without modifying
the solutions.

Since the coefficients of the matrix 𝐾Diag(𝜂) depend continuously on 𝜂, it is classical that its
eigenvalues also depend continuously on 𝜂 (see for example [87, Appendix D]) and in particular
the function ℜ𝑒 is continuous on Δ = [0, 1]𝑁. Since the function 𝐶 is also continuous on Δ, the
compactness of Δ ensures the existence of solutions for Problems (V.7) and (V.8). For 𝑐 ∈ [0, 1],
ℜ𝑒⋆(𝑐) (resp. ℜ⋆

𝑒 (𝑐)) stands for the minimal (resp. maximal) value taken by ℜ𝑒 on the set of all
vaccination strategies 𝜂 such that 𝐶(𝜂) = 𝑐:

ℜ𝑒⋆(𝑐) = min{ℜ𝑒(𝜂) ∶ 𝜂 ∈ Δ and 𝐶(𝜂) = 𝑐}, (V.9)

ℜ⋆
𝑒 (𝑐) = max{ℜ𝑒(𝜂) ∶ 𝜂 ∈ Δ and 𝐶(𝜂) = 𝑐}. (V.10)

It is easy to check that the functions ℜ𝑒⋆ and ℜ⋆
𝑒 are non increasing. Indeed, if 𝜂1 and 𝜂2 are

two vaccination strategies such that 𝜂1 ≤ 𝜂2 (where ≤ stands for the pointwise order), then
ℜ𝑒(𝜂1) ≤ ℜ𝑒(𝜂2) according to the Perron-Frobenius theory. This easily implies that ℜ𝑒⋆ and ℜ⋆

𝑒
are non-increasing. We refer to Chapters III and IV for more properties on those functions; in
particular they are also continuous. For the vaccination strategy 𝜂 = 𝟘 = (0, ..., 0) (everybody is
vaccinated) with cost 𝐶(𝟘) = 1, the transmission of the disease in the population is completely
stopped, i.e., the reproduction number is equal to 0. In the examples below, we will see that for
some next-generation matrices 𝐾, this may be achieved with a strategy 𝜂 with cost 𝐶(𝜂) < 1.
Hence, let us denote by 𝑐⋆ the minimal cost required to completely stop the transmission of the
disease:

𝑐⋆ = inf{𝑐 ∈ [0, 1] ∶ ℜ𝑒⋆(𝑐) = 0}. (V.11)

In a similar fashion, we define by symmetry the maximal cost of totally inefficient vaccination
strategies:

𝑐⋆ = sup{𝑐 ∈ [0, 1] ∶ ℜ⋆
𝑒 (𝑐) = ℜ0}. (V.12)

According to Lemma III.5.13, we have 𝑐⋆ = 0 if the matrix 𝐾 is irreducible, i.e., not similar via a
permutation to a block upper triangular matrix. The two matrices considered below in this section
are irreducible.
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Following Chapter III, the Pareto frontier associated to the “best” vaccination strategies, solution
to Problem V.7, is defined by:

ℱ = {(𝑐, ℜ𝑒⋆(𝑐)) ∶ 𝑐 ∈ [0, 𝑐⋆]}. (V.13)

The set of “best” vaccination strategies, called Pareto optimal strategies, is defined by:

𝒫 = {𝜂 ∈ Δ ∶ , (𝐶(𝜂), ℜ𝑒(𝜂)) ∈ ℱ}. (V.14)

When 𝑐⋆ = 0 (which will be the case for all the examples considered in this chapter), the anti-Pareto
frontier associated to the “worst” vaccination strategies, solution to Problem V.8, is defined by:

ℱAnti = {(𝑐, ℜ⋆
𝑒 (𝑐)) ∶ 𝑐 ∈ [0, 1]}. (V.15)

The set of “worst” vaccination strategies, called anti-Pareto optimal strategies, is defined by:

𝒫Anti = {𝜂 ∈ Δ ∶ (𝐶(𝜂), ℜ𝑒(𝜂)) ∈ ℱAnti}. (V.16)

The set of uniform strategies will play a role in the sequel:

𝒮uni = {𝑡𝟙 ∶ 𝑡 ∈ [0, 1]}. (V.17)

We denote by F = {(𝐶(𝜂), ℜ𝑒(𝜂)) ∶ 𝜂 ∈ Δ} the set of all possible outcomes. According to Section 6.1
in Chapter III, the set F is a subset of [0, 1] × [0, ℜ0] delimited below by the graph ofℜ𝑒⋆ and above
by the graph of ℜ⋆

𝑒 ; it is compact, path connected and its complement is connected in ℝ2.

A path of vaccination strategies is a measurable function 𝛾 ∶ [𝑎, 𝑏] → Δ where 𝑎 < 𝑏. It is
monotone if for all 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏 we have 𝛾 (𝑠) ≥ 𝛾(𝑡), where ≤ denotes the pointwise order. A
greedy parametrization of the Pareto (resp. anti-Pareto) frontier is a monotone continuous path 𝛾
such that the image of (𝐶 ∘ 𝛾 , ℜ𝑒 ∘ 𝛾 ) is equal to ℱ (resp. ℱAnti). If such a path exists, then its
image can be browsed by a greedy algorithm which performs infinitesimal locally optimal steps.

Remark V.2.2. Let 𝐾 be the next-generation matrix and let 𝜆 ∈ ℝ+\{0}. By homogeneity of the
spectral radius, we have 𝜌(𝜆𝐾 ⋅ Diag(𝜂)) = 𝜆𝜌(𝐾 ⋅ Diag(𝜂)). Thus, the solutions of Problems (V.7)
and (V.8) and the value of 𝑐⋆ are invariant by scaling of the matrix 𝐾. As for the functions ℜ𝑒⋆
and ℜ⋆

𝑒 , they are scaled by the same quantity. Hence, in our study, the value of ℜ0 will not matter.
Our main concern will be to find the best and the worst vaccination strategies for a given cost and
compare them to the uniform strategy.

V.2.3 The fully asymmetric circle model

We consider a model of 𝑁 ≥ 2 equal subpopulations (i.e. 𝜇0 = ⋯ = 𝜇𝑁−1 = 1/𝑁) where each
subpopulation only contaminates the next one. The next-generation matrix, which is equal to the
cyclic permutation matrix, and the effective next generation matrix are given by:

𝐾 =

⎛
⎜
⎜
⎜
⎝

0 1
0 1

⋱ ⋱
0 0 1
1 0 0

⎞
⎟
⎟
⎟
⎠

and 𝐾 ⋅ Diag(𝜂) =

⎛
⎜
⎜
⎜
⎝

0 𝜂0
0 𝜂1

⋱ ⋱
0 0 𝜂𝑁−2

𝜂𝑁−1 0 0

⎞
⎟
⎟
⎟
⎠

, (V.18)

where 𝜂 = (𝜂0, … , 𝜂𝑁−1) ∈ [0, 1]𝑁. The next-generation matrix can be interpreted as the adjacency
matrix of a directed graph. In this case, this is the fully asymmetric cyclic graph; see Figure V.1(a).

By an elementary computation, the characteristic polynomial of the matrix 𝐾 ⋅Diag(𝜂) is equal
to 𝑋𝑁 −∏0≤𝑖≤𝑁−1 𝜂𝑖. Hence, the effective reproduction number can be computed via an explicit
formula, it corresponds to the geometric mean:

ℜ𝑒(𝜂) = (
𝑁−1
∏
𝑖=0

𝜂𝑖)
1/𝑁

. (V.19)
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Figure V.1: Example of optimization for the fully asymmetric circle model with 𝑁 = 5
subpopulations.

The Pareto and anti-Pareto frontier are totally explicit for this elementary example, and given
by the following proposition. For additional comments on this example see also Example V.5.9
below.

Proposition V.2.3 (Asymmetric circle). For the fully asymmetric circle model, we have:

(i) The least quantity of vaccine necessary to completely stop the propagation of the disease is
𝑐⋆ = 1/𝑁. Pareto optimal strategies have a cost smaller than 𝑐⋆, and correspond to giving all
the available vaccine to one subpopulation:

𝒫 = {𝜂 = (𝜂0, … , 𝜂𝑁−1) ∈ [0, 1]𝑁 ∶ 𝜂𝑖 = 1 for all 𝑖 but at most one} .

The Pareto frontier is given by the graph of the function ℜ𝑒⋆ on [0, 𝑐⋆], where ℜ𝑒⋆ is given by:

ℜ𝑒⋆(𝑐) = (1 − 𝑁 𝑐)1/𝑁+ for 𝑐 ∈ [0, 1].

(ii) The maximal cost of totally inefficient vaccination strategies is 𝑐⋆ = 0. The anti-Pareto optimal
strategies consist in vaccinating uniformly the population, i.e.:

𝒫Anti = 𝒮uni.

The anti-Pareto frontier is given by the graph of the function ℜ⋆
𝑒 ∶ 𝑐 ↦ 1 − 𝑐.

Remark V.2.4 (Greedy parametrization). From Proposition V.2.3, we see that there exists a greedy
parametrization of the Pareto frontier, which consists in giving all the available vaccine to one
subpopulation until its complete immunization. Similarly, the anti-Pareto frontier is greedily
parametrized by the uniform strategies.

Proof. We first prove (i). Suppose that 𝑐 ≥ 1/𝑁. There is enough vaccine to protect entirely one
of the groups and obtain ℜ𝑒(𝜂) = 0 thanks to Equation (V.19). This gives 𝑐⋆ ≤ 1/𝑁 and ℜ𝑒⋆(𝑐) = 0
for 𝑐 ≥ 1/𝑁.

Let 0 ≤ 𝑐 < 1/𝑁. According to [23, Section 3.1.5], the map 𝜂 ↦ ℜ𝑒(𝜂) is concave. According to
Bauer’s maximumprinciple [121, Corollary A.3.3],ℜ𝑒 attains its minimumon {𝜂 ∈ [0, 1]𝑁 ∶ 𝐶(𝜂) =
𝑐} at some extreme point of this set. These extreme points are strategies 𝜂 ∈ [0, 1]𝑁 such that
𝜂𝑖 = 1−𝑁𝑐 for some 𝑖 and 𝜂𝑗 = 1 for all 𝑗 ≠ 𝑖. Sinceℜ𝑒 is a symmetric function of its 𝑁 variables, it
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takes the same value (1 − 𝑁 𝑐)1/𝑁 on all these strategies, so they are all minimizing, which proves
Point (i).

We give another elementary proof of (i) when 𝑐 < 1/𝑁. Let 𝜂 be a solution of Problem (V.7).
Assume without loss of generality that 𝜂0 ≤ ⋯ ≤ 𝜂𝑁−1. Suppose for a moment that 𝜂1 < 1,
and let 𝜀 > 0 be small enough to ensure 𝜂0 > 𝜀 and 𝜂1 < 1 − 𝜀. Then the vaccination strategy
𝜂̃ = (𝜂0 − 𝜀, 𝜂1 + 𝜀, 𝜂2, … , 𝜂𝑁−1) is admissible, and:

ℜ𝑒(𝜂̃)𝑁 = ℜ𝑒(𝜂)𝑁 − (𝜀(𝜂1 − 𝜂0) + 𝜀2)
𝑁−1
∏
𝑖=2

𝜂𝑖 < ℜ𝑒(𝜂)𝑁,

contradicting the optimality of 𝜂. Therefore the Pareto-optimal strategies have only one term
different from 1, and must be equal to ((1 − 𝑁 𝑐), 1, … , 1), up to a permutation of the indices.

Now, let us prove (ii). Let 𝜂 such that 𝐶(𝜂) = 𝑐. According to the inequality of arithmetic and
geometric means:

ℜ𝑒(𝜂) ≤
𝜂0 + ⋯ + 𝜂𝑁−1

𝑁
= 1 − 𝑐.

By Example V.2.1, the right hand side is equal to the effective reproduction number of the uniform
vaccination at cost 𝑐. This ends the proof of the proposition.

In Figure V.1(b), we have plotted the Pareto and the anti-Pareto frontiers corresponding to
asymmetric circle model with 𝑁 = 5 subpopulations.

V.2.4 Fully symmetric circle model

We now consider the case where each of the 𝑁 subpopulation may infect both of their neighbours.
The next-generation matrix and the effective next-generation matrix are given by:

𝐾 =

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0 1
1 0 1 0

1 ⋱ ⋱
0 ⋱ 0 1
1 0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

and 𝐾 ⋅ Diag(𝜂) =

⎛
⎜
⎜
⎜
⎜
⎝

0 𝜂0 0 𝜂0
𝜂1 0 𝜂1 0

𝜂2 ⋱ ⋱
0 ⋱ 0 𝜂𝑁−2

𝜂𝑁−1 0 𝜂𝑁−1 0

⎞
⎟
⎟
⎟
⎟
⎠

. (V.20)

Again, we can represent this model as a graph; see Figure V.2(a). There is no closed-form formula
to express ℜ𝑒 for 𝑁 ≥ 5 and the optimization is way harder than the asymmetric case. Since 𝐾 is
irreducible, we have 𝑐⋆ = 0. Our only analytical result for this model is the computation of 𝑐⋆.

Proposition V.2.5 (Optimal strategy for stopping the transmission). For the fully symmetric circle
model, the strategy 𝜂∗ = 𝟙𝑖 odd is Pareto optimal for the fully symmetric circle and ℜ𝑒(𝜂∗) = 0. In
particular, 𝑐⋆ is equal to 𝐶(𝜂∗) = ⌈ 𝑁/2 ⌉ /𝑁.

Proof. The term 𝑋𝑁−2 of the characteristic polynomial of 𝐾Diag(𝜂) has a coefficient equal to the
sum of all principal minors of size 2:

𝜂0𝜂1 + 𝜂1𝜂2 + … + 𝜂𝑁−2𝜂𝑁−1 + 𝜂𝑁−1𝜂0. (V.21)

If 𝜂 is such that 𝑁𝐶(𝜂) < ⌈𝑁/2 ⌉, then at least one of the term above is not equal to 0, proving
that the sum is positive. Hence, there is at least one eigenvalue of 𝐾Diag(𝜂) different from 0, and
ℜ𝑒(𝜂) > 0. We deduce that 𝑐⋆ ≥ ⌈𝑁/2 ⌉ /𝑁.

Now, let 𝜂∗ such that 𝜂∗𝑖 = 0 for all even 𝑖 and 𝜂∗𝑖 = 1 for all odd 𝑖, so that 𝐶(𝜂∗) = ⌈ 𝑁/2 ⌉ /𝑁.
The matrix 𝐾Diag(𝜂∗) is nilpotent as its square is 0. Since the spectral radius of a nilpotent matrix
is equal 0, we get ℜ𝑒(𝜂∗) = 0. This ends the proof of the proposition.

We can give another proof of the proposition: it is enough to notice that the nodes labelled
with an odd number form a maximal independent set of the cyclic graph. Taking 𝜂∗ equal to the
indicator function of this set, we deduce from Section IV.6.4 that 𝜂∗ is Pareto optimal, ℜ𝑒(𝜂∗) = 0
and 𝑐⋆ = 𝐶(𝜂∗).
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Figure V.2: Example of optimization for the fully symmetric circle model with 𝑁 = 12
subpopulations.

We pursue the analysis of this model with numerical computations. We choose 𝑁 = 12
subpopulations, and compute an approximate Pareto frontier, using the Borg multiobjective evo-
lutionary algorithm1. The results are plotted in Figure V.3. We represent additionnally the curves
(𝑐, 𝑅(𝜂(𝑐))) where the vaccination strategy 𝜂(𝑐) for a given cost 𝑐 are given by deterministic path
of “meta-strategies”:

• Uniform strategy: distribute the vaccine uniformly to all 𝑁 subpopulations;

• “One in 𝑗” strategy: vaccinate one in 𝑗 subpopulation, for 𝑗 = 2, 3, 4.

Let us follow the scatter plot of ℜ𝑒⋆ in Figure V.3(a), starting from the upper left.

1. In the beginning nobody is vaccinated, and ℜ0 is equal to 2.

2. For small costs all strategies have similar efficiency. Zooming shows that the (numerically)
optimal strateges split the available vaccine equally between four subpopulations that are
separed from each other by two subpopulations. This corresponds to the “one in 3” meta-
strategies path. As represented in Figure V.3(b), 𝜂𝐴 with outcome point𝐴 = (𝐶(𝜂𝐴), ℜ𝑒(𝜂𝐴))
belongs to this path. In particular, note that disconnecting the graph is not Pareto optimal for
12𝑐 = 3 as the disconnecting “one in 4” strategy gives values ℜ𝑒 = √2 ≃ 1.41 opposed to the
valueℜ𝑒 ≃ 1.37 for the “one in 3” strategy with same cost. However, note that, in agreement
with Proposition IV.6.5, this disconnecting “one in 4” strategy is also not anti-Pareto optimal,
since it performs better than the uniform strategy with the same cost.

3. When 12𝑐 = 4 the circle has been split in four “islands” of two interacting subpopulations.
There is a small interval of values of 𝑐 for which it is (numerically) optimal to split the addi-
tional vaccine uniformly between the four “islands”, and give it entirely to one subpopulation
in each island: see point B and the associated strategy 𝜂𝐵.

4. Afterwards (see point C), it is in fact better to try and vaccinate all the (say) even numbered
subpopulations. Therefore, the optimal vaccinations do not vary monotonously with respect
to the amount of available vaccine; in other words, distributing vaccine in a greedy way is

1The algorithm is described in [71]; we use the version coded in the BlackBoxOptim package for the Julia program-
ming language.
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Figure V.3: Pareto frontier and computation of the outcomes for the paths of the four
meta-strategies. Some meta-strategies {𝜂𝐴, 𝜂𝐵, 𝜂𝐶, 𝜂𝐷} are represented on the right with their

corresponding outcome points {𝐴, 𝐵, 𝐶, 𝐷} on the left.

not optimal. This also suggests that, even though the frontier is continuous (in the objective
space (𝑐, 𝑟)), the set of optimal strategies may not be connected: the “one in two” vaccination
strategy of point C cannot be linked to “no vaccination” strategy by a continuous path of
optimal strategies. In particular, the Pareto frontier cannot be greedily parametrized. The
disconnectedness of the set of optimal strategies will be established rigorously in Section V.6
for another model.

5. For 12𝑐 = 6, that is 𝑐 = 𝑐⋆ as stated in Proposition V.2.5, it is possible to vaccinate completely
all the (say) even numbered subpopulations, thereby disconnecting the graph completely.
The infection cannot spread at all.

6. Even though the problem is symmetric and all subpopulations play the same role, the
proportional allocation of vaccine is far from optimal; on the contrary, the optimal allocations
focus on some subpopulations.

Using the same numerical algorithm, we have also computed the anti-Pareto frontier for this
model; see the dashed line in Figure V.2(b). Althoughwe do not give a formal proof, the anti-Pareto
frontier seems to be perfectly given by the following greedy parametrization:

1. Distribute all the available vaccine supply to one group until it is completely immunized.

2. Once this group is fully vaccinated, distribute the vaccine doses to one of its neighbour.

3. Continue this procedure by vaccinating the neighbour of the last group that has been
immunized.

4. When there are only two groups left, the vaccine shall be split equitably between these two.

V.3 The kernel model

In order to get a finer description of the heterogeneity, we could divide the population into a
growing number of subgroups 𝑁 → ∞. The recent advances in graph limits theory [12, 111]
justify describing the transmission of the disease by a kernel defined on a probability space.

Let (Ω,ℱ , 𝜇) be a probability space that represents the population: the individuals have
features labeled by Ω and the infinitesimal size of the population with feature 𝑥 is given by
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𝜇(d𝑥). Let 𝐿2(𝜇) (𝐿2 for short) be the space of real-valued measurable functions 𝑓 defined on Ω
such that ‖ 𝑓 ‖2 = (∫Ω 𝑓 2 d𝜇)1/2 is finite, where functions which agree 𝜇-a.s. are identified. Let
𝐿2+ = {𝑓 ∈ 𝐿2 ∶ 𝑓 ≥ 0} be the subset of non-negative functions of 𝐿2. We define a kernel on Ω as
a ℝ+-valued measurable function defined on (Ω2, ℱ ⊗2). We will only consider kernels with finite
double-norm on 𝐿2:

‖ k ‖2,2 = ∫
Ω×Ω

k(𝑥, 𝑦)2 𝜇(d𝑥)𝜇(d𝑦) < +∞. (V.22)

To a kernel k with finite doubel norm on 𝐿2, we associate the integral operator 𝑇k on 𝐿2 defined
by:

𝑇k(𝑔)(𝑥) = ∫
Ω
k(𝑥, 𝑦)𝑔(𝑦) 𝜇(d𝑦) for 𝑔 ∈ 𝐿2 and 𝑥 ∈ Ω. (V.23)

The operator 𝑇k is bounded with operator norm ‖ 𝑇k ‖𝐿2 such that:

‖ 𝑇k ‖𝐿2 ≤ ‖ k ‖2,2 . (V.24)

According to [68, p. 293], 𝑇k is actually compact (and even Hilbert-Schmidt). A kernel is said to be
symmetric if k(𝑥, 𝑦) = k(𝑦, 𝑥), 𝜇(d𝑥)𝜇(d𝑦) almost surely. It is said to be irreducible if for all 𝐴 ∈ ℱ,
we have:

∫
𝐴×𝐴∁

k(𝑥, 𝑦) 𝜇(d𝑥)𝜇(d𝑦) = 0 ⟹ 𝜇(𝐴) ∈ {0, 1}. (V.25)

If k is not irreducible, it is called reducible.
By analogy with the discrete setting and also based on Chapters II and IV, we define the basic

reproduction number in this context thanks to the following formula:

ℜ0 = 𝜌(𝑇k), (V.26)

where 𝜌 stands for the spectral radius of an operator. According to the Krein-Rutman theorem,ℜ0
is an eigenvalue of 𝑇k. Besides, there exists left and right eigenvectors associated to this eigenvalue
in 𝐿2+; such functions are called Perron eigenfunctions.

For 𝑓 , 𝑔 two non-negative bounded measurable functions defined on Ω and k a kernel on Ω
with finite double norm on 𝐿2, we denote by 𝑓 k𝑔 the kernel on Ω defined by:

(𝑓 k𝑔)(𝑥, 𝑦) = 𝑓 (𝑥) k(𝑥, 𝑦)𝑔(𝑦). (V.27)

Since 𝑓 and 𝑔 are bounded, the kernel 𝑓 k𝑔 has also a finite double norm on 𝐿2.
Denote byΔ the set of measurable functions defined onΩ taking values in [0, 1]. A function 𝜂 in

Δ represents a vaccination strategy: 𝜂(𝑥) represents the proportion of non-vaccinated individuals
with feature 𝑥. In particular 𝜂 = 𝟙 (the constant function equal to 1) corresponds to no vaccination
and 𝜂 = 𝟘 (the constant function equal to 0) corresponds to the whole population vaccinated. The
uniform strategies are given by:

𝜂uni = 𝑡𝟙

for some 𝑡 ∈ [0, 1], and we denote by 𝒮uni = {𝑡𝟙 ∶ 𝑡 ∈ [0, 1]} the set of uniform strategies.

The (uniform) cost of the vaccination strategy 𝜂 ∈ Δ is given by the total proportion of
vaccinated people, that is:

𝐶(𝜂) = ∫
Ω
(1 − 𝜂) d𝜇 = 1 − ∫

Ω
𝜂 d𝜇. (V.28)

The measure 𝜂 d𝜇 corresponds to the effective population, that is the individuals who effectively
play a role in the dynamic of the epidemic. The effective reproduction number is defined by:

ℜ𝑒(𝜂) = 𝜌(𝑇k𝜂), (V.29)

We consider the weak topology on Δ, so that with a slight abuse of notation we identify Δwith
{𝜂 ∈ 𝐿2 ∶ 0 ≤ 𝜂 ≤ 1}. According to Theorem III.4.2, the function ℜ𝑒 ∶ 𝜂 ↦ ℜ𝑒(𝜂) is continuous on
Δ equipped with the weak topology. Since Δ is compact with respect to this topology, we have
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deduced the existence of solutions for Problems (V.7) and (V.8). We will conserve the same notation
and definitions as in the discrete setting for: the value functionsℜ𝑒⋆ andℜ⋆

𝑒 , the minimal/maximal
costs 𝑐⋆ and 𝑐⋆, the various sets of strategies 𝒮uni, 𝒫 and 𝒫Anti, and the various frontiers ℱ and
ℱAnti, see Equations (V.9)-(V.17) in Section V.2.2.

We shall also use the following result from Corollary IV.6.1 (recall that a vaccination strategy
is defined up the a.s. equality).

Lemma V.3.1. Let k be a kernel on Ω with finite double norm on 𝐿2 such that a.s. k > 0. Then,
we have 𝑐⋆ = 0, 𝑐⋆ = 1 and the strategy 𝟙 (resp. 𝟘) is the only Pareto optimal as well as the only
anti-Pareto optimal strategy with cost 𝑐 = 0 (resp. 𝑐 = 1).

Example V.3.2 (Discrete and continuous representations of a metapopulation model). We recall
the natural correspondence between metapopulation models (discrete models) and kernel models
(continuous models) from Section 7.4 in Chapter III. Consider a metapopulation model with 𝑁
groups given by a finite setΩd = {0, 1, … , 𝑁 −1} equipped with a probability measure 𝜇d giving the
relative size of each group and a next generation matrix 𝐾 = (𝐾𝑖𝑗, 𝑖, 𝑗 ∈ Ωd). the discrete 𝜎-algebra.
The corresponding discrete kernel kd on Ωd) is defined by:

𝐾𝑖𝑗 = kd(𝑖, 𝑗)𝜇𝑗 where 𝜇𝑖 = 𝜇d({𝑖}). (V.30)

Then, the matrix 𝐾 ⋅Diag(𝜂) is the matrix representation of the endomorphism 𝑇kd𝜂 in the canonical
basis of ℝ𝑁.

Following Chapter III, we can also consider a continuous representation on the state space
Ωc = [0, 1) equipped with the Lebesgue measure 𝜇c. Let 𝐼0 = [0, 𝜇0), 𝐼1 = [𝜇0, 𝜇0 + 𝜇1), …,
𝐼𝑁−1 = [1 − 𝜇𝑁−1, 1), so that the intervals (𝐼𝑛, 0 ≤ 𝑛 < 𝑁) form a partition of Ω. Now define the
kernel:

kc = ∑
1≤𝑖,𝑗<𝑁

kd(𝑖, 𝑗)𝟙𝐼𝑖×𝐼𝑗 . (V.31)

Denote by ℜd
𝑒 and ℜc

𝑒 the effective reproduction number in the discrete and continuous repre-
sentation models. In the same manner, the uniform cost in each model is denoted by 𝐶d and 𝐶c.
According to Chapter III, these functions are linked through the following relation:

ℜd
𝑒 (𝜂d) = ℜc

𝑒 (𝜂c) , and 𝐶d(𝜂d) = 𝐶c(𝜂c),

for all 𝜂d ∶ Ωd → [0, 1] and 𝜂c ∶ Ωc → [0, 1] such that:

𝜂d(𝑖) =
1
𝜇𝑖 ∫𝐼𝑖

𝜂c d𝜇c for all 𝑖 ∈ Ωd.

Let us recall that the Pareto and anti-Pareto frontiers for the two models are the same.
In Figure V.4, we have plotted the kernels of the continuous models associated to the asym-

metric and symmetric circles models from Sections V.2.3 and V.2.4.

V.4 Assortative versus disassortative mixing

V.4.1 Motivation

We consider a population divided into an at most countable number of groups. Individuals within
the same group interact with intensity 𝑎 and individuals in different groups interact with intensity
𝑏. Hence, the model is entirely determined by the coefficients 𝑎 and 𝑏 and the size of the different
groups. This simple model allows to study the effect of assortativity, that is, the tendancy for
individuals to connect with individuals belonging to their own subgroup. The mixing pattern
is called assortative (higher interaction in the same subgroup) if 𝑎 > 𝑏, and disassortative (lower
interaction in the same subgroup) when 𝑏 < 𝑎. Our result illustrate how assortativity affects
optimal vaccination strategies. This has been already studied by Galeotti and Rogers [65] in a
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(a) The asymmetric circle.
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(b) The symmetric circle.

Figure V.4: Kernels kc (equal to 0 in the white zone and to 1 in the black zone) on Ωc = [0, 1) and
𝜇c the Lebesgue measure of the continuous model associated to discrete metapopulation models.

population composed of two groups. They observed that the optimal immunization strategies can
differ dramatically in the case of assortative versus disassortative mixing.

When the number of subgroups is finite and 𝑎 is equal to 0, the next-generation matrix of
this model corresponds, up to a multiplicative constant, to the adjacency matrix of a complete
multipartite graph. Recall that an 𝑚-partite graph is a graph that can be colored with 𝑚 different
colors, so that no two endpoints of an edge have the same color. When 𝑚 = 2 these are the
so-called bipartite graphs. A complete multipartite graph is a 𝑚-partite graph (for some 𝑚 ∈ ℕ∗)
in which there is an edge between every pair of vertices from different colors.

The complete multipartite graphs have interesting spectral properties. Indeed, Smith [145]
showed that a graph with at least one edge has its spectral radius as its only positive eigenvalue
if and only if its non-isolated vertices induce a complete multipartite graph. In [54], Esser and
Harary proved that two complete 𝑚-partite graphs with the same number of nodes are isomorphic
if and only if they have the same spectral radius. More precisely, they obtained a comparison
of the spectral radii of two complete 𝑚-partite graphs by comparing the sizes of the sets in their
partitions through majorization; see [54, Lemma 3].

The goal of this section is to generalize and complete these results and give a full picture of
the Pareto and anti-Pareto frontiers for the assortative and the disassortative models.

V.4.2 Spectrum and convexity

We will use an integer intervals notation to represent the considered kernels. For 𝑖, 𝑗 ∈ ℕ ∪ {+∞},
we set [[𝑖, 𝑗]] (resp. [[𝑖, 𝑗[[) for [𝑖, 𝑗] ∩ (ℕ ∪ {+∞}) (resp. [𝑖, 𝑗) ∩ ℕ). Let 𝑁 ∈ [[2, +∞]] and Ω = [[0, 𝑁 [[.
The set Ω is endowed with the discrete 𝜎-algebra ℱ = 𝒫(Ω) and a probability measure 𝜇. To
simplify the notations, we write 𝜇𝑖 for 𝜇({𝑖}) and 𝑓𝑖 = 𝑓 (𝑖) for a function 𝑓 defined on Ω. Without
loss of generality, we can suppose that 𝜇𝑖 ≥ 𝜇𝑗 > 0 for all 0 ≤ 𝑖 ≤ 𝑗 < 𝑁. We consider the kernel k
defined for 𝑖, 𝑗 ∈ Ω by:

k(𝑖, 𝑗) = {
𝑎 if 𝑖 = 𝑗,
𝑏 otherwise,

(V.32)

where 𝑎 and 𝑏 are two non-negative real numbers.

If 𝑏 = 0, then the kernel is reducible, see Section IV.7, and the effective reproduction number is
given by the following formula: ℜ𝑒(𝜂) = 𝑎max𝑖∈Ω 𝜂𝑖 𝜇𝑖, for all 𝜂 = (𝜂𝑖, 𝑖 ∈ Ω) ∈ Δ. This is sufficient
to treat this case and we have 𝑐⋆ = 1 − 𝜇0.
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From now on, we assume that 𝑏 > 0. For 𝑛 ∈ ℕ, we consider the symmetric matrix 𝑀𝑛 of size
(𝑛 + 1) × (𝑛 + 1) given by:

𝑀𝑛(𝑖, 𝑗) = {
𝑎 if 𝑖 = 𝑗,
𝑏 otherwise.

The matrix 𝑀𝑛 is the sum of 𝑏 times the all-ones matrix and 𝑎 − 𝑏 times the identity matrix. Hence,
𝑀𝑛 has two distinct eigenvalues: 𝑛𝑏 + 𝑎 with multiplicity 1 and 𝑎 − 𝑏 with multiplicity 𝑛.

The next two results describe the spectrum of 𝑇k in both the assortative and disassortative
case. Notice the spectrum of 𝑇k is real as k is symmetric.

Proposition V.4.1 (Concavity of ℜ𝑒 in the disassortative case). Let k be given by (V.32), with
𝑏 ≥ 𝑎 ≥ 0 and 𝑏 > 0. Then, ℜ0 is the only positive eigenvalue of 𝑇k, and it has multiplicity one.
Furthermore, the function ℜ𝑒 is concave.

Proof. We give a direct proof when 𝑁 is finite, and uses an approximation procedure for 𝑁 = ∞.
We first assume that 𝑁 is finite. For 𝑛 < 𝑁, let 𝑣𝑛 = 𝟙[[0,𝑛]] and set 𝑇𝑛 = 𝑇𝑣𝑛k𝑣𝑛 . The non-null
eigenvalues of 𝑇𝑛 (with their multiplicity) are the eigenvalues of the matrix 𝑀𝑛 ⋅ Diag𝑛(𝜇), where
Diag𝑛(𝜇) is the diagonal (𝑛 + 1) × (𝑛 + 1)-matrix with (𝜇0, … , 𝜇𝑛) on the diagonal. Thanks to [87,

Theorem 1.3.22], these are also the eigenvalues of the matrix 𝑄𝑛 = Diag𝑛(𝜇)
1/2 ⋅ 𝑀𝑛 ⋅ Diag𝑛(𝜇)

1/2.
By Sylvester’s law of inertia [87, Theorem 4.5.8], the matrix 𝑄𝑛 has the same signature as the
symmetric matrix 𝑀𝑛. In particular, since we have supposed 𝑎 − 𝑏 ≤ 0, 𝑀𝑛 has only one positive
eigenvalue. Thus, 𝑄𝑛 has only one positive eigenvalue, and thanks to Perron-Frobenius theory, it
is its spectral radius. This concludes the proof when 𝑁 is finite by choosing 𝑛 = 𝑁 − 1.

If 𝑁 = ∞, we consider the limit 𝑛 → 𝑁. Since

lim
𝑛→∞

‖ k − 𝑣𝑛k𝑣𝑛 ‖2,2 = 0,

the spectrum of 𝑇𝑛 converges to the spectrum of 𝑇k, with respect to the Hausdorff distance, and
the multiplicity on the non-zero eigenvalues also converge, see Corollary IV.3.2. This shows that
𝜌(𝑇k) is the only positive eigenvalue of 𝑇k, and it has multiplicity one. Since k is symmetric, we
deduce the concavity of the function ℜ𝑒 from Theorem IV.5.5.

Now, let us examine the assortative case. Adapting the proof of Proposition V.4.1, we could
directly conclude that the spectrum of 𝑇k is a subset of ℝ+ when 𝑎 ≥ 𝑏. Below, we give a more
direct proof of this result relying on Chapter IV.

PropositionV.4.2 (Convexity ofℜ𝑒 in the assortative case). Let k be given by (V.32), with 𝑎 ≥ 𝑏 > 0.
Then the operator 𝑇k is positive semi-definite and the function ℜ𝑒 is convex.

Proof. Since for any 𝑔 ∈ 𝐿2, we have:

∫
Ω×Ω

𝑔(𝑥)k(𝑥, 𝑦)𝑔(𝑦) 𝜇(d𝑥)𝜇(d𝑦) = 𝑎∑
𝑖∈Ω

𝑔2𝑖 𝜇
2
𝑖 + 𝑏∑

𝑖≠𝑗
𝑔𝑖𝑔𝑗 𝜇𝑖𝜇𝑗 ≥ 𝑏 ‖ 𝑔 ‖22 .

This implies that 𝑇k is positive semi-definite. Thus, as k is symmetric, the fonction ℜ𝑒 is convex,
thanks to Theorem IV.5.5.

V.4.3 Explicit description of the Pareto and anti-Pareto frontiers

For 𝑐 ∈ [0, 1], we define a “horizontal vaccination” 𝜂h(𝑐) ∈ Δ with cost 𝑐 in the following manner. It
will be convenient to define first the quantity, rather than the proportion, of vaccinated people of
same type. For all 𝛼 ∈ [0, 𝜇0], let 𝜉h(𝛼) be defined by

𝜉h𝑖 (𝛼) = min(𝛼, 𝜇𝑖), 𝑖 ∈ Ω. (V.33)

For all 𝑖 ∈ Ω, 𝜉h𝑖 (𝛼) is a non-decreasing and continuous function of 𝛼. The map 𝛼 ↦ ∑𝑖 𝜉
h
𝑖 (𝛼) is

continuous and increasing from [0, 𝜇0] to [0, 1], so for any 𝑐 ∈ [0, 1], there exists a unique 𝛼𝑐 such
that ∑𝑖 𝜉

h
𝑖 (𝛼𝑐) = 1 − 𝑐. We then define the horizontal vaccination profile 𝜂h(𝑐) by:

𝜂h𝑖 (𝑐) = 𝜉h𝑖 (𝛼𝑐)/𝜇𝑖, 𝑖 ∈ Ω. (V.34)
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(b) Representation of the greedy path 𝒫v.

Figure V.5: Greedy parametrization of the (anti-)Pareto front. The bar plot represents the measure
𝜇. The proportion of green in each bar correspond to the proportion of vaccinated individuals in

each subpopulation.

Inwords, it consists in vaccinating in such away that the quantity of the non-vaccinated individuals
𝜉h𝑖 = 𝜂𝑖𝜇𝑖 in each subpopulation is always less than the “horizontal” threshold 𝛼: see Figure V.5(a).
Note that 𝜂h(0) = 𝟙 (no vaccination), whereas 𝜂h(1) = 𝟘 (full vaccination), and that the path
𝑐 ↦ 𝜂h(𝑐)is greedy. We denote its range by 𝒫h.

For 𝑐 ∈ [0, 1], we define similarly a “vertical vaccination” 𝜂v(𝑐) ∈ Δ with cost 𝑐. First let us
define for 𝛽 ∈ [0, 𝑁 ]:

𝜉 v𝑖 (𝛽) = 𝜇𝑖 ⋅min(1, (𝛽 − 𝑖)+), 𝑖 ∈ Ω. (V.35)

The map 𝛽 ↦ ∑𝑖 𝜉
v
𝑖 (𝛽) is increasing and continuous from [0, 𝑁 ] to [0, 1], so for any 𝑐 ∈ [0, 1] there

exists a unique 𝛽𝑐 such that ∑𝑖 𝜉
v
𝑖 (𝛽𝑐) = 1 − 𝑐. We then define the vertical vaccine profile 𝜂v(𝑐) by:

𝜂v𝑖 (𝑐) = 𝜉 v𝑖 (𝛽𝑐)/𝜇𝑖, 𝑖 ∈ Ω. (V.36)

In words, if ⌊𝛽⌋ = ℓ, this consists in vaccinating all subpopulations 𝑗 for 𝑗 > ℓ, and a fraction
(ℓ + 1 − 𝛽) of the subpopulation ℓ, see Figure V.5(b) for a graphical representation.

For all 𝑖 ∈ Ω, 𝜂v𝑖 (𝑐) is a non-increasing and continuous function of 𝑐. In this case also, 𝜂v(0) = 𝟙
(no vaccination), while 𝜂v(1) = 𝟘 (full vaccination). The path 𝑐 ↦ 𝜂v(𝛽(𝑐)) is also greedy. We
denote its range by 𝒫v.

These two paths give a greedy parametrization of the Pareto and anti-Pareto frontiers for the
assortative and disassortative models: more explicitly, we have the following result, whose proof
can be found in Section V.4.4.

Theorem V.4.3 (Assortative vs disassortative). Let k be given by (V.32), with 𝑏 > 0 and 𝑎 ≥ 0.

(i) (Assortative model.) If 𝑎 ≥ 𝑏 > 0, then 𝒫v and 𝒫h are greedy parametrizations of the
anti-Pareto and Pareto frontiers respectively.

(ii) (Disassortative model.) If 𝑏 ≥ 𝑎 > 0, then 𝒫v and 𝒫h are greedy parametrizations of the
Pareto and anti-Pareto frontiers respectively.

(iii) (Complete multipartite model.) If 𝑎 = 0 and 𝑏 > 0, then 𝒫h is a greedy parametrization of
the anti-Pareto frontier and the subset of strategies 𝜂 ∈ 𝒫v such that 𝐶(𝜂) ≤ 1 − 𝜇0 is a greedy
parametrization of the Pareto frontier. In particular, we have 𝑐⋆ = 1 − 𝜇0 and 𝑐⋆ = 0.

Notice that 𝑐⋆ = 0 and 𝑐⋆ = 1 in cases (i) and (ii) as k is positive.

Remark V.4.4 (Highest Degree vaccination). The effective degree function of a symmetric kernel k
at 𝜂 ∈ Δ is the function on Ω is defined by:

deg𝜂(𝑥) = ∫
Ω
k(𝑥, 𝑦)𝜂(𝑦) 𝜇(d𝑦). (V.37)
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When 𝜂 = 𝟙, it is simply called the degree of k and is denoted by deg. In our model, the effective
degree of the subgroup 𝑖 is given by

deg𝜂(𝑖) = 𝑎𝜂𝑖𝜇𝑖 + 𝑏∑
ℓ≠𝑖

𝜂ℓ𝜇ℓ, (V.38)

and thus the degree of the subgroup 𝑖 is given by deg(𝑖) = (𝑎 − 𝑏)𝜇𝑖 +𝑏. As 𝜇𝑖 ≥ 𝜇𝑗 for 0 ≤ 𝑖 < 𝑗 < 𝑁,
we deduce that the degree function in monotone: non-increasing in the assortative model and
non-decreasing in the disassortative model. So the group with the highest degree corresponds to
the largest group in the assortative model and the smallest group (if it exists) in the disassortative
model.

Consider the assortative model where all the groups have different size, i.e., 𝜇0 > 𝜇1 > …
Following the parametrization 𝑐 ↦ 𝜂h(𝑐), starting from 𝑐 = 0, will first decrease the effective size
of the group 0 (the group with the highest degree) until it reaches the effective degree of group 1
(with the second highest degree). Once these two groups share the same effective degree which
corresponds to reaching 𝜇0𝜂h0 = 𝜇1, they are vaccinated uniformly (that is, ensuring that they keep
the same effective degree: using (V.38) this corresponds to 𝜇0𝜂h0 = 𝜇1𝜂h1 ) until their effective degree
is equal to the third highest degree, and so on and so forth.

In the disassortative model, the function deg𝜂 remains (strictly) increasing when the vacci-
nation strategies in 𝒫v are applied. In particular, if 𝜇0 > 𝜇1 > …, then the optimal strategies
prioritize the groups with the higher effective degree until they are completely immunized. If
multiple groups share the same degree, it is optimal to give all available doses to one group.

In conclusion, in both models, the optimal vaccination consists in vaccinating the groups with
the highest effective degree in priority if this group is unique. But if multiple groups share the
same degree (i.e., have the same size), the optimal strategies differ between the assortative and
the disassortative case. In the assortative case, groups with the same size must be vaccinated
uniformly while in the disassortive case, all the vaccine doses shall be given to one group until it
is completely vaccinated.

Example V.4.5 (Group sizes following a dyadic distribution). Let 𝑁 = ∞, Ω = ℕ and 𝜇𝑖 = 2−(𝑖+1)
for all 𝑖 ∈ Ω. Following Section 7.4.1 in Chapter III, we will couple this discrete model with a
continuum model for a better visualization on the figures. Let Ω𝑐 = [0, 1) be equipped with the
Borel 𝜎-field ℱ𝑐 and the Lebesgue measure 𝜇𝑐. The set Ω𝑐 is partitionned into a countable number
of intervals 𝐼𝑖 = [1 − 2−𝑖, 1 − 2−𝑖−1), for 𝑖 ≥ 0, so that 𝜇𝑐(𝐼𝑖) = 𝜇𝑖. The kernel of the continuous
model corresponding to k in (V.32) is given by:

k𝑐 = (𝑎 − 𝑏)∑
𝑖∈ℕ

𝟙𝐼𝑖×𝐼𝑖 + 𝑏𝟙. (V.39)

The kernel k𝑐 is plotted in Figures V.6(a), V.7(a) and V.8(a) for different values of 𝑎 and 𝑏 cor-
responding respectively to the assortative, the disassortative and the complete multipartite case
corresponding to points (i), (ii) and (iii) of Theorem V.4.3 respectively. Their respective Pareto and
anti-Pareto frontiers are plotted in Figures V.6(b), V.7(b) and V.8(b), using a finite-dimensional
approximation of the kernel k and the power iteration method. In Figure V.8(b), the value of
𝑐⋆ is equal to 1 − 𝜇0 = 1/2. With this continuous representation of the population, the set 𝒫v
corresponds to the strategies of the form 𝟙[0,𝑡) for 𝑡 ∈ [0, 1].

Notice that the Pareto frontier in the assortative case is convex. This is consistent with Propo-
sition III.6.6 since the cost function is affine and ℜ𝑒 is convex when 𝑎 ≥ 𝑏; see Proposition V.4.2.
In the same manner, the anti-Pareto frontier in the disassortative and the multipartite cases is
concave. Once again, this is consistent with Proposition III.6.6 since the cost function is affine and
ℜ𝑒 is concave when 𝑎 ≤ 𝑏; see Proposition V.4.1.

V.4.4 Proof of Theorem V.4.3

After recalling known facts of majorization theory, we first consider the finite dimension models,
and then the general case by an approximation argument.
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outcomes F.

Figure V.6: An example of assortative model.

Majorization

In this section, we recall briefly some definitions and results from majorization theory, and refer
to [9, 115] for an extensive treatment of this topic.

Let 𝑛 ≥ 2 and 𝜉 , 𝜒 ∈ ℝ𝑛+. We denote by 𝜉 ↓ and 𝜒↓ their respective order statistics, that is
the vectors in ℝ𝑛+ with the same components, but sorted in descending order. We say that 𝜉 is
majorized by 𝜒, and write 𝜉 ≺ 𝜒, if:

𝑖
∑
𝑗=1

𝜉 ↓𝑗 ≤
𝑖

∑
𝑗=1

𝜒↓
𝑗 for all 𝑖 ∈ {1, … , 𝑛}, and

𝑛
∑
𝑗=1

𝜉𝑗 =
𝑛
∑
𝑗=1

𝜒𝑗. (V.40)

Among the various characterizations of majorization, we will use the following by Hardy, Little-
wood and Pòlya; see [115, Proposition I.4.B.3]:

𝜉 ≺ 𝜒 ⟺ ∑
𝑖
(𝜉𝑖 − 𝑡)+ ≤ ∑

𝑖
(𝜒𝑖 − 𝑡)+ for all 𝑡 ∈ ℝ+, (V.41)

where 𝑢+ = max(𝑢, 0), for all 𝑢 ∈ ℝ. A real-valued function Θ defined on ℝ𝑛+ is called Schur-convex
if it is non-decreasing with respect to ≺, that is, 𝜉 ≺ 𝜒 implies Θ(𝜉 ) ≤ Θ(𝜒). A function Θ is called
Schur-concave if (−Θ) is Schur-convex.

Shur convexity and concavity of the spectral radius in finite dimension

We define the function Θ𝑛 on ℝ𝑛+1+ by:

Θ𝑛(𝜉 ) = 𝜌(𝑀𝑛 ⋅ Diag(𝜉 )),

where Diag(𝜉 ) is the diagonal (𝑛 + 1) × (𝑛 + 1)-matrix with 𝜉 on the diagonal. By construction, for
𝜂 = (𝜂0, … , 𝜂𝑛, 0, …), we have:

ℜ𝑒(𝜂) = Θ𝑛(𝜂0𝜇0, … , 𝜂𝑛𝜇𝑛). (V.42)

The key property below will allow us to identify the optimizers.

Lemma V.4.6 (Schur-concavity and Schur-convexity). Let 𝑏 > 0 and 𝑎 ≥ 0. The function Θ𝑛 is
Schur-convex if 𝑎 ≥ 𝑏, and Schur-concave if 𝑎 ≤ 𝑏.
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outcomes F.

Figure V.7: An exmple of disassortative model.

Proof. Let us consider the disassortative case where 𝑎 ≤ 𝑏. By a classical result of majorization
theory [115, Proposition I.3.C.2.], it is enough to show that Θ𝑛 is symmetric and concave.

To prove that Θ𝑛 is symmetric, consider 𝜎 be a permutation of {0, 1, … , 𝑛} and 𝑃𝜎 the associated
permutation matrix of size (𝑛 + 1) × (𝑛 + 1). Since 𝑃𝜎𝑀𝑛𝑃−1𝜎 = 𝑀𝑛, we deduce that Θ𝑛(𝜉𝜎) = Θ𝑛(𝜉 ),
where 𝜉𝜎 is the 𝜎-permutation of 𝜉 ∈ ℝ𝑛+1+ . Thus Θ𝑛 is symmetric.

We now prove that Θ𝑛 is concave on ℝ𝑛+1+ . Sinceℜ𝑒 is concave thanks to Proposition V.4.1, we
deduce from (V.42), that the functionΘ𝑛 is concave on [0, 𝜇0]×…×[0, 𝜇𝑛]. SinceΘ𝑛 is homogeneous,
it is actually concave on the whole domain ℝ𝑛+. This concludes the proof when 𝑎 ≤ 𝑏.

The proof is the same for the assortative case 𝑎 ≥ 𝑏, replacing the reference to Proposition V.4.1
by Proposition V.4.2.

Extreme vaccinations for fixed cost

Let us show that the horizontal and vertical vaccinations give extreme points for the preorder ≺
on finite sets, when the quantity of vaccine is fixed. Recall that 𝜉h and 𝜉 v are defined in (V.33)
and (V.35) respectively.

Proposition V.4.7 (Extreme vaccinations). Let 𝑛 ∈ [[0, 𝑁 [[, 𝛽 ∈ [0, 𝑛) and 𝛼 ∈ [0, 𝜇0]. Let 𝜉 v,𝑛 =
(𝜉 v0 (𝛽), … , 𝜉 v𝑛 (𝛽)), and 𝜉h,𝑛 = (𝜉h0 (𝛼), … , 𝜉h𝑛 (𝛼)). For any 𝜉 = (𝜉0, … , 𝜉𝑛) ∈ [0, 𝜇0] × ⋯ × [0, 𝜇𝑛], we
have:

(
𝑛
∑
𝑖=0

𝜉𝑖 =
𝑛
∑
𝑖=0

𝜉 v,𝑛𝑖 ) ⟹ 𝜉 ≺ 𝜉 v,𝑛, and (
𝑛
∑
𝑖=0

𝜉𝑖 =
𝑛
∑
𝑖=0

𝜉h,𝑛𝑖 ) ⟹ 𝜉h,𝑛 ≺ 𝜉 .

Proof. Let 𝜉 ∈ [0, 𝜇0] × ⋯ × [0, 𝜇𝑛] be such that ∑𝑛
𝑖=0 𝜉𝑖 = ∑𝑛

𝑖=0 𝜉
v,𝑛
𝑖 . The reordered vector 𝜉 ↓ clearly

satisfies the same conditions, so without loss of generality we may assume that 𝜉 is sorted in
descending order. Using Equation (V.35), we get:

ℓ
∑
𝑖=0

𝜉𝑖 ≤
ℓ
∑
𝑖=0

𝜇𝑖 =
ℓ
∑
𝑖=0

𝜉 v,𝑛𝑖 , 0 ≤ ℓ < ⌊ 𝛽 ⌋ .

We also have:
ℓ
∑
𝑖=0

𝜉𝑖 ≤
𝑛
∑
𝑖=0

𝜉𝑖 =
𝑛
∑
𝑖=0

𝜉 v,𝑛𝑖 =
ℓ
∑
𝑖=0

𝜉 v,𝑛𝑖 , ℓ ≥ ⌊ 𝛽 ⌋ .

Therefore, 𝜉 ≺ 𝜉 v,𝑛, by the definition of ≺.
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outcomes F.

Figure V.8: An example of complete multipartite model.

Similarly, let 𝜉 ∈ [0, 𝜇0] × ⋯ × [0, 𝜇𝑛] be such that ∑𝑛
𝑖=0 𝜉𝑖 = ∑𝑛

𝑖=0 𝜉
h,𝑛
𝑖 . If 𝑡 ≥ 𝛼 then

∑
𝑖
(𝜉h,𝑛𝑖 − 𝑡)+ = 0 ≤ ∑

𝑖
(𝜉𝑖 − 𝑡)+,

while if 𝑡 ∈ [0, 𝛼), using the fact that ∑𝑛
𝑖=0 𝜉𝑖 = ∑𝑛

𝑖=0 𝜉
h,𝑛
𝑖 , the expression 𝜉h𝑖 = min(𝛼, 𝜇𝑖), and the

inequalities 𝜉𝑖 ≤ 𝜇𝑖, we get:

𝑛
∑
𝑖=0

(𝜉h,𝑛𝑖 − 𝑡)+ =
𝑛
∑
𝑖=0

(𝜉h,𝑛𝑖 − 𝑡) +
𝑛
∑
𝑖=0

(𝑡 − 𝜉h,𝑛𝑖 )+

=
𝑛
∑
𝑖=0

(𝜉𝑖 − 𝑡) +
𝑛
∑
𝑖=0

(𝑡 − 𝜇𝑖)+

≤
𝑛
∑
𝑖=0

(𝜉𝑖 − 𝑡) +
𝑛
∑
𝑖=0

(𝑡 − 𝜉𝑖)+

=
𝑛
∑
𝑖=0

(𝜉𝑖 − 𝑡)+.

This gives 𝜉h,𝑛 ≺ 𝜉, by the characterization (V.41).

“Vertical” Pareto optima in the disassortative case

We consider here the disassortative model 𝑏 ≥ 𝑎 ≥ 0 and 𝑏 > 0. Let 𝑐 ∈ (0, 1) and set 𝐷(𝑐) = {𝜂 ∈
Δ ∶ 𝐶(𝜂) = 𝑐}. We will solve the constrained optimization Problem (V.7) that corresponds to:

{ min ℜ𝑒(𝜂),
such that 𝜂 ∈ 𝐷(𝑐). (V.43)

Recall the definitions of 𝛽𝑐 and 𝜂v(𝑐) given page 153. Let 𝜂 ∈ Δ be any strategy with cost 𝑐. Let 𝑛
be large enough so that ∑𝑗>𝑛 𝜇𝑗 < 1 − 𝑐 so that ∑𝑗≤𝑛 𝜂𝑗𝜇𝑗 > 0, and assume that 𝑛 > 𝛽. Let 𝜂(𝑛) ∈ Δ
be defined by:

𝜂(𝑛)𝑖 =
∑𝑗≤𝑛 𝜂

v
𝑗 (𝑐)𝜇𝑗

∑𝑗≤𝑛 𝜂𝑗𝜇𝑗
𝟙{𝑖≤𝑛} 𝜂𝑖.
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Note that since 𝐶(𝜂v(𝑐)) = 𝑐 = 𝐶(𝜂), we have lim𝑛→𝑁 𝜂(𝑛) = 𝜂 (pointwise and in 𝐿2). Let 𝜉 𝑛 =
(𝜂(𝑛)0 𝜇0, … , 𝜂(𝑛)𝑛 𝜇𝑛) and 𝜉 v,𝑛 be defined as in Proposition V.4.7 with 𝛽 = 𝛽𝑐. By construction, we
have ∑𝑛

𝑖=0 𝜉
𝑛
𝑖 = ∑𝑛

𝑖=0 𝜉
v,𝑛
𝑖 , so by Proposition V.4.7, we get 𝜉 𝑛 ≺ 𝜉 v,𝑛. This implies that:

ℜ𝑒(𝜂(𝑛)) = Θ𝑛(𝜉 𝑛) ≥ Θ𝑛(𝜉 v,𝑛) = ℜ𝑒(𝜂v(𝑐)),

where the inequality follows from the Schur concavity of Θ𝑛 in the disassortative case (see
Lemma V.4.6) and where the last equality is holds as 𝑛 ≥ ⌈ 𝛽𝑐 ⌉. Since ℜ𝑒 is continuous and
𝜂(𝑛) converges to 𝜂, we get ℜ𝑒(𝜂) ≥ ℜ𝑒(𝜂v). This implies that 𝜂v is a solution of Problem (V.43).

If 𝑎 > 0, then k is positive everywhere, and we deduce from Lemma V.3.1 that 𝑐⋆ = 1. If 𝑎 = 0,
it is easy to prove that {0} is a maximal independant set of k; this gives that 𝑐⋆ = 1 − 𝜇0, thanks
to Section 6.4 in Chapter IV. Since for all 𝑐 ∈ [𝑐⋆, 1] there exists 𝜂 ∈ 𝒫v such that 𝐶(𝜂) = 𝑐, we
also get that 𝒫v ∩ {𝜂 ∈ Δ ∶ 𝐶(𝜂) ≤ 𝑐⋆} is a parametrization of the Pareto frontier. This gives the
parametrization of the Pareto frontier using 𝒫v from Theorem V.4.3 (ii) and (iii).

“Horizontal” anti-Pareto optima in the disassortative case

We still consider 𝑏 ≥ 𝑎 ≥ 0 and 𝑏 > 0. Let 𝑐 ∈ (0, 1). We now turn to the anti-Pareto frontier by
studying the constrained maximization Problem (V.8) that corresponds to:

{ max ℜ𝑒(𝜂),
such that 𝜂 ∈ 𝐷(𝑐). (V.44)

Recall the definitions of 𝛼𝑐 and 𝜂h(𝑐) given page 152. Let 𝜂 be such that 𝐶(𝜂) = 𝑐. Let 𝑛 be large
enough so that ∑𝑗>𝑛 𝜇𝑗 < 1 − 𝑐 so that ∑𝑗≤𝑛 𝜂𝑗𝜇𝑗 > 0. Define 𝜂(𝑛) ∈ Δ by:

𝜂(𝑛)𝑖 =
∑𝑗≤𝑛 𝜂

h
𝑗 (𝑐)𝜇𝑗

∑𝑗≤𝑛 𝜂𝑗𝜇𝑗
𝟙{𝑖≤𝑛} 𝜂𝑖.

Let 𝜉 𝑛 = (𝜂(𝑛)0 𝜇0, 𝜂
(𝑛)
1 𝜇1, … , 𝜂(𝑛)𝑛 𝜇𝑛) and let 𝜉h,𝑛 be defined as in Proposition V.4.7 with 𝛼 = 𝛼𝑐. By

construction, we have ∑𝑛
𝑖=0 𝜉

𝑛
𝑖 = ∑𝑛

𝑖=0 𝜉
h,𝑛
𝑖 , so by Proposition V.4.7, we obtain 𝜉h,𝑛 ≺ 𝜉 𝑛. This

implies that:
ℜ𝑒(𝜂(𝑛)) = Θ𝑛(𝜉 𝑛) ≤ Θ𝑛(𝜉h,𝑛) = ℜ𝑒(𝜂h(𝑐) 𝟙[[0,𝑛]]),

where the inequality follows from the Schur concavity of Θ𝑛.

Now, as 𝑛 goes to infinity 𝜂(𝑛) converges pointwise and in 𝐿2 to 𝜂, and 𝜂h(𝑐) 𝟙[[0,𝑛]] converges
pointwise and in 𝐿2 to 𝜂h(𝑐), so by continuity ofℜ𝑒 we getℜ𝑒(𝜂) ≤ ℜ𝑒(𝜂h(𝑐)), and 𝜂h(𝑐) is solution
of the Problem (V.44) and is thus anti-Pareto optimal for 𝑐 ∈ (0, 1) as 𝑐⋆ = 0. Since 𝑐⋆ = 0, we
also deduce from Propsotion III.5.8 (iii) that 𝟘 and 𝟙 are anti-Pareto optimal. Since for all 𝑐 ∈ [0, 1]
there exists 𝜂 ∈ 𝒫h such that 𝐶(𝜂) = 𝑐, we deduce that 𝒫h is a parametrization of the anti-Pareto
frontier.

The assortative case

The case 𝑎 ≥ 𝑏 > 0, corresponding to point (i) in Proposition V.4.3, is handled similarly, replacing
concavity by convexity, minima by maxima and vice versa.

V.5 Constant degree kernels and unifom vaccinations

V.5.1 Motivation

We have seen in the previous section an example of model where vaccinating individuals with
the highest degree is the best strategy. A similar phenomenon is studied in [40], where under
monotonicity arguments on the kernel, vaccinating individuals with the highest (resp. lowest)
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degree is Pareto (resp. anti-Pareto) optimal. However, in case multiple individuals share the
same maximal degree, the optimal strategies completely differs between the assortative and the
disassortative models: the Pareto optimal strategies for one model correspond to the anti-Pareto
optimal strategies for the other and vice versa. Motivated by this curious symmetry, we investigate
further into constant degree kernels in this section.

In graph theory, a regular graph is a graph where all vertices have the same number of in-
neighbors, and the same number of out-neighbors. In other words all vertices have the same
in-degree and the same out-degree. Limits of undirected regular graphs have been studied in
details by Backhausz and Szegedy [12] and Kunszenti-Kovács, Lovász and Szegedy [100]. When
the graphs are dense, their limit can be represented as a regular graphon, that is a symmetric kernel
with a constant degree function. In this section, we do not require the kernel to be symmetric and
the condition for a general kernel to be constant degree is given by Definition V.5.1.

In this section, we examine the situation where all the individuals have the same number of
connections. In Section V.5.2, we first introduce the constant degree kernels and give the main
result (see Proposition V.5.4) on the optimality of the uniform strategies with respect to the convex
or concave property of ℜ𝑒. Section V.5.3 is devoted to the proof of this main result. We study in
more detail the optimal strategies in an example of constant degree symmetric kernel of rank two
in Section V.6.

V.5.2 On the uniform strategies for constant degree kernels

We now give the definition of constant degree kernels and then study in detail some examples.
For a kernel k on Ω, we set, for all 𝑧 ∈ Ω and 𝐴 ∈ ℱ:

k(𝑧, 𝐴) = ∫
𝐴
k(𝑧, 𝑦) 𝜇(d𝑦) and k(𝐴, 𝑧) = ∫

𝐴
k(𝑥, 𝑧) 𝜇(d𝑥).

For 𝑧 ∈ Ω, its in-degree is k(𝑧, Ω) and its out-degree is k(Ω, 𝑧).

Definition V.5.1 (Constant degree kernel). A kernel k with a finite 𝐿2 double-norm and a positive
spectral radius ℜ0 > 0 is called constant degree if all the in-degrees and all the out-degrees have
the same value, that is, the maps 𝑥 ↦ k(𝑥, Ω) and 𝑦 ↦ k(Ω, 𝑦) defined on Ω are constant, and thus
equal.

Remark V.5.2. Let k be a constant degree kernel with spectral radius ℜ0 > 0. Notice the condition
“all the in-degrees and out-degrees have the same value” is also equivalent to 𝟙 being a left and
right eigenfunction of 𝑇k. We now check that the corresponding eigenvalue is ℜ0.

Let ℎ ∈ 𝐿2+(Ω)\{𝟘} be a left Perron-eigenfunction. Denote by 𝜆 the eigenvalue associated to 𝟙.
Then, we have:

𝜆 ∫
Ω
ℎ(𝑥) 𝜇(d𝑥) = ∫

Ω
ℎ(𝑥)k(𝑥, 𝑦)𝜇(d𝑥)𝜇(d𝑦) = ℜ0 ∫

Ω
ℎ(𝑦) 𝜇(d𝑦),

where the first equality follows from the regularity of k and from the fact that ℎ is a left Perron-
eigenfunction of 𝑇k. Since ℎ is non-negative and not equal to 𝟘 almost everywhere, we get that
𝜆 = ℜ0 and 𝟙 is a right Perron-eigenvector of 𝑇k. With a similar proof, we show that 𝟙 is a left
Perron-eigenvector of 𝑇k. In particular, if k is constant degree, then the reproduction number is
expressed:

ℜ0 = ∫
Ω×Ω

k(𝑥, 𝑦) 𝜇(d𝑥)𝜇(d𝑦). (V.45)

Example V.5.3. We now give examples of constant degree kernels.

(i) Let 𝐺 = (𝐸, 𝑉 ) be a finite non-oriented simple graph, and 𝜇 the uniform probability measure
on the vertices 𝑉. The degree of a vertex 𝑥 ∈ 𝑉 is given by deg(𝑥) = ♯{𝑦 ∈ 𝑉 ∶ (𝑥, 𝑦) ∈ 𝐸}.
The graph 𝐺 is constant degree if all its vertices have the same degree, say 𝑑 ≥ 1. Then the
kernel defined on the finite space Ω = 𝑉 by the adjacency matrix is constant degree with
ℜ0 = 𝑑. Notice it is also symmetric.
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(ii) Let 𝐺 = (𝐸, 𝑉 ) be a finite directed graph, and 𝜇 be the uniform probability measure on the
vertices 𝑉. The in-degree of a vertex 𝑥 ∈ 𝑉 is given by degin(𝑥) = ♯{𝑦 ∈ 𝑉 ∶ (𝑦, 𝑥) ∈ 𝐸} and
the out-degree is given by degout(𝑥) = ♯{𝑦 ∈ 𝑉 ∶ (𝑥, 𝑦) ∈ 𝐸}. The graph 𝐺 is regular if all
its vertices have the same in-degree and out-degree, say 𝑑 ≥ 1. Then the kernel defined on
the finite space Ω = 𝑉 by the adjacency matrix is regular with ℜ0 = 𝑑. Notice it might not
be symmetric.

(iii) Let Ω = (ℝ/(2𝜋ℤ))𝑛 be the 𝑛-dimensional torus endowed with its Borel 𝜎-field ℱ and the
normalized Lebesgue measure 𝜇. Let 𝑓 be a measurable square-integrable non-negative
function defined on Ω. We consider the geometric kernel defined by, for 𝑥, 𝑦 ∈ Ω:

k𝑓(𝑥, 𝑦) = 𝑓 (𝑥 − 𝑦).

The operator 𝑇k𝑓 corresponds to the convolution by 𝑓, and its spectral radius is given by
ℜ0 = ∫Ω 𝑓 d𝜇. Then the kernel k𝑓 is constant degree as soon as 𝑓 is not equal to 0 almost
surely.

(iv) More generally, let (Ω, ⋅) be a compact topological group and let 𝜇 be its left Haar probability
measure. Let 𝑓 be non-negative square-integrable function on Ω. Then the kernel k𝑓(𝑥, 𝑦) =
𝑓 (𝑦−1 ⋅ 𝑥) is constant degree.

We summarize our main result in the next proposition, whose proof is given in Section V.5.3.
We recall that a strategy is called uniform if it is constant over Ω.

Proposition V.5.4. Let k be a constant degree kernel on Ω.

(i) If the map ℜ𝑒 defined on Δ is convex, then all uniform strategies are Pareto optimal ( i.e.
𝒮uni ⊂ 𝒫). Consequently, 𝑐⋆ = 1, the Pareto frontier is the segment joining (0, ℜ0) to (1, 0),
and for all 𝑐 ∈ [0, 1]:

ℜ𝑒⋆(𝑐) = (1 − 𝑐)ℜ0.

(ii) If k is irreducible and the map ℜ𝑒 defined on Δ is concave, then all uniform strategies are
anti-Pareto optimal ( i.e. 𝒮uni ⊂ 𝒫Anti). Consequently, 𝑐⋆ = 0, the anti-Pareto frontier is the
segment joining (0, ℜ0) to (1, 0), and for all 𝑐 ∈ [0, 1]:

ℜ⋆
𝑒 (𝑐) = (1 − 𝑐)ℜ0.

In Section 5.2 in Chapter IV, we give sufficient condition on the spectrum of 𝑇k to be either
concave or convex. Combining this result with Proposition V.5.4, we get the following corollary.

Corollary V.5.5. Let k be a constant degree symmetric kernel.

(i) If the eigenvalues of 𝑇k are non-negative, then the uniform vaccination strategies are Pareto
optimal and 𝑐⋆ = 1 ( i.e. 𝒮uni ⊂ 𝒫).

(ii) If k is irreducible and the eigenvalues of 𝑇k different fromℜ0 are non-positive, then the uniform
vaccination strategies are anti-Pareto optimal and 𝑐⋆ = 0 ( i.e. 𝒮uni ⊂ 𝒫Anti).

Remark V.5.6 (Equivalent conditions). Let k be a constant degree symmetric kernel. The eigenval-
ues of the operator 𝑇k are non-negative if and only if 𝑇k is semi-definite positive, that is:

∫
Ω×Ω

k(𝑥, 𝑦)𝑔(𝑥)𝑔(𝑦)𝜇(d𝑥)𝜇(d𝑦) ≥ 0 for all 𝑔 ∈ 𝐿2. (V.46)

Similarly, the condition given in Corollary V.5.5 (ii) that implies the concavity of ℜ𝑒 is equivalent
to the semi-definite negativity of 𝑇k on the orthogonal of 𝟙:

∫
Ω×Ω

k(𝑥, 𝑦)𝑔(𝑥)𝑔(𝑦)𝜇(d𝑥)𝜇(d𝑦) ≤ 0 for all 𝑔 ∈ 𝐿2 such that ∫
Ω
𝑔 d𝜇 = 0. (V.47)
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Remark V.5.7 (Comparison with a result from [130]). Poghotanyan, Feng, Glasser and Hill [130,
Theorem 4.7] obtained a similar result in finite dimension using a result from Friedland [64]: if
the next-generation non-negative matrix 𝐾 of size 𝑁 × 𝑁 satisfies the following conditions

(i) ∑𝑁−1
𝑗=0 𝐾𝑖𝑗 does not depend on 𝑖 ∈ [[0, 𝑁 − 1]] (which corresponds the parameters 𝑎𝑖 in [130,

Equation (2.4)] being all equal),

(ii) 𝜇𝑖𝐾𝑖𝑗 = 𝜇𝑗𝐾𝑗𝑖 for all 𝑖, 𝑗 ∈ [[0, 𝑁 − 1]] where 𝜇𝑖 denote the relative size of population 𝑖 (which
corresponds to [130, Equation (2.4)]),

(iii) 𝐾 is not singular and its inverse is an M-matrix (i.e., its non-diagonal coefficients are non-
positive),

then the uniform strategies are Pareto optimal (i.e., they minimize the reproduction number
among all strategies with same cost). Actually, this can be seen as a direct consequence of
Corollary V.5.5 (i). Indeed, the corresponding kernel kd defined by (V.30) in the discrete probability
space Ω = [[0, 𝑁 − 1]] endowed with the discrete probability measure 𝜇d also defined by (V.30) has
constant degree thanks to Point (i) and is symmetric thanks to Point (ii). Since 𝐾−1 is an M-matrix,
its real eigenvalues are positive according to [15, Chapter 6 Theorem 2.3]. The eigenvalues of 𝑇kd
and 𝐾 are actually the same as 𝐾 is the representation matrix of 𝑇kd in the canonic basis of ℝ𝑁.
We conclude that the operator 𝑇kd is positive definite. Hence Corollary V.5.5 (i) can be applied to
recover that the uniform strategies are Pareto optimal.

However, the converse is not true. As a counter-example, consider a population divided in
𝑁 = 3 groups of same size (i.e, 𝜇0 = 𝜇1 = 𝜇2 = 1/3) and the following next-generation matrix:

𝐾 = (
3 2 0
2 2 1
0 1 4

) with inverse 𝐾−1 = (
1.4 −1.6 0.4
−1.6 2.4 −0.6
0.4 −0.6 0.4

) .

Clearly Points (i) and (ii) hold and Point (iii) fails as 𝐾−1 is not an M-matrix. Nevertheless, the
matrix 𝐾 is definite positive as its eigenvalues 𝜎(𝐾) = {5, 2 + √3, 2 − √3} are positive. And
thus, thanks to Corollary V.5.5 (i), we get that the uniform strategies are Pareto optimal. Hence,
Corollary V.5.5 (i) is a strict generalization of [130, Theorem 4.7] even for finite metapopulation
models.

Remark V.5.8. We also refer the reader to the paper of Friedland and Karlin [63]. From the
Inequality (7.10) therein, we can obtain Corollary V.5.5 (i) when Ω is a compact set of ℝ𝑛, 𝜇 is a
finite measure, k is a continuous symmetrizable kernel such that k(𝑥, 𝑥) > 0 for all 𝑥 ∈ Ω.

Below, we give examples of metapopulation models from the previous sections where Propo-
sition V.5.4 applies. For continuous models, we refer the reader to Sections V.6.

Example V.5.9 (Fully asymmetric cycle model). We consider the fully asymmetric circle model with
𝑁 ≥ 2 vertices developed in Section V.2.3. Since the in and out degree of each vertex is exactly one,
the adjacency matrix is regular according to Example V.5.3 (ii). In this case the effective spectral
radius ℜ𝑒 is given by formula (V.19), which corresponds to the geometric mean. According to [23,
Section 3.1.5], the map 𝜂 ↦ ℜ𝑒(𝜂) is concave. So Proposition V.5.4 (ii) applies.

The spectrum of the adjency matrix is given by the 𝑁th roots of unity. So, for 𝑁 ≥ 3 in this
example, we get that the functionℜ𝑒 is concave whereas its spectrum does not lie in ℝ−∪{ℜ0}. This
proves that the condition given in Section 5.2 in Chapter IV to get ℜ𝑒 concave (mainly the kernel
or adjacency matrix is diagonally symmetrizable and has only one simple positive eigenvalue) is
only sufficient.

Example V.5.10 (Finite assortative and disassortative model). Let Ω = {0, 1, … , 𝑁 − 1} and 𝜇 be the
uniform probability on Ω. Let 𝑎, 𝑏 ∈ ℝ+. We consider the kernel from the models developed in
Section V.4:

k(𝑖, 𝑗) = 𝑎𝟙𝑖=𝑗 + 𝑏𝟙𝑖≠𝑗.
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Since 𝜇 is uniform, the kernel k is constant degree; provided its spectral radius is positive, i.e., 𝑎 or
𝑏 is positive.

In the assortative model 0 < 𝑏 ≤ 𝑎, according to Proposition V.4.2, the eigenvalues of the
symmetric operator 𝑇k are non-negative. Hence, Corollary V.5.5 (i) applies: the Pareto optimal
strategies are the uniform ones. This is consistent with Theorem V.4.3 (i).

In the dissortative model, we have 0 ≤ 𝑎 ≤ 𝑏 and 𝑏 > 0. According to Proposition V.4.1, the
eigenvalues of 𝑇k different from its spectral radius are non-positive. Thanks to Section 5.2 in
Chapter IV, the function ℜ𝑒 is concave. Hence, Corollary V.5.5 (ii) applies: the uniform strategies
are anti-Pareto. This is consistent with Theorem V.4.3 (ii) and (iii).

V.5.3 Proof of Proposition V.5.4

We start with a series of lemmas.

Lemma V.5.11 (Reduction). If k is a constant degree kernel on Ω, then there exists a finite partition
(Ω𝑖, 𝑖 ∈ 𝐼 ) of Ω in measurable subsets such that a.e. k = ∑𝑖∈𝐼 k𝑖, where k𝑖 = 𝟙Ω𝑖

k𝟙Ω𝑖
, ℜ0[k𝑖] = ℜ0[k],

and k𝑖 restricted to Ω𝑖 is irreducible and constant degree.

Proof. We recall that a set 𝐴 ∈ ℱ is invariant if k(𝐴∁, 𝐴) = 0, where for 𝐴, 𝐵 ∈ ℱ:

k(𝐵, 𝐴) = ∫
𝐵×𝐴

k(𝑥, 𝑦) 𝜇(d𝑥)𝜇(d𝑦).

Since k is constant degree, we get k(Ω, Ω) = ℜ0, k(𝐴∁, Ω) = ℜ0 𝜇(𝐴∁) and k(Ω, 𝐴) = ℜ0 𝜇(𝐴).
Assume that 𝐴 is an invariant set, then:

k(𝐴, 𝐴∁) = k(Ω, Ω) − k(Ω, 𝐴) − k(𝐴∁, Ω) + k(𝐴∁, 𝐴) = 0.

This gives that 𝐴∁ is also invariant. According to Section 7 in Chapter IV there exists an at most
countable partition (Ω𝑖, 𝑖 ∈ 𝐼 ) of Ω with positive measure such that k = ∑𝑖∈𝐼 k𝑖, with k𝑖 = 𝟙Ω𝑖

k𝟙Ω𝑖
and k𝑖 restricted toΩ𝑖 is irreducible or quasi-nilpotent. Since 𝟙 is an eigenvector of 𝑇k associated to
the eigenvalueℜ0 and the sets (Ω𝑖, 𝑖 ∈ 𝐼 ) are pairwise disjoint, we deduce that 𝟙Ω𝑖

is an eigenvector
of 𝑇k𝑖 with eigenvalue ℜ0 > 0, for all 𝑖 ∈ 𝐼. Hence, all the kernels k𝑖 restricted to Ω𝑖 are irreducible
and regular and the cardinal of 𝐼 is equal to the multiplicity of ℜ0 (for 𝑇k). Since k has finite 𝐿2
double-norm, the operator 𝑇k is compact, and the multiplicity of ℜ0 > 0, and thus the cardinal of
𝐼, is finite.

Lemma V.5.12. Let k be a constant degree irreducible kernel on Ω. Then the uniform strategy is a
critical point for ℜ𝑒 among all the strategies with the same cost in (0, 1), and more precisely: for all 𝜂
with the same cost in (0, 1) as 𝜂uni and 𝜀 > 0 small enough,

ℜ𝑒((1 − 𝜀)𝜂uni + 𝜀𝜂) = ℜ𝑒(𝜂uni) + 𝑂(𝜀2).

Proof. Let 𝜂uni be the uniform strategy with cost 𝑐 ∈ (0, 1). Since k is irreducible, we get that
(1 − 𝑐)ℜ0 is a simple isolated eigenvalue of k𝜂uni, whose corresponding left and right eigenvector
are 𝟙 as k𝜂uni is also constant degree. For 𝜂 ∈ Δ, we get that 𝑇k((1−𝜀)𝜂uni+𝜀𝜂) converges to 𝑇k𝜂uni (in
operator norm, thanks to (V.24)) as 𝜀 goes down to 0. Notice that:

‖ 𝑇k(𝜂uni+𝜀(𝜂−𝜂uni)) − 𝑇k𝜂uni ‖𝐿2
= 𝑂(𝜀2).

According to [98, Theorem 2.6], we get that for any 𝜂 ∈ Δ and 𝜀 > 0 small enough:

ℜ𝑒((1 − 𝜀)𝜂uni + 𝜀𝜂) − ℜ𝑒(𝜂uni) = 𝜀 ∫
Ω
k(𝑥, 𝑦)(𝜂(𝑦) − 𝜂uni(𝑦)) 𝜇(d𝑥)𝜇(d𝑦) + 𝑂(𝜀2)

= 𝜀ℜ0 ∫
Ω
(𝜂(𝑦) − 𝜂uni(𝑦)) 𝜇(d𝑦) + 𝑂(𝜀2),

where for the last equality we used that k is constant degree. In particular, if 𝜂 and 𝜂uni have the
same cost 𝑐 ∈ (0, 1), then ℜ𝑒((1 − 𝜀)𝜂uni + 𝜀𝜂) − ℜ𝑒(𝜂uni) = 𝑂(𝜀2), which means that the uniform
strategy is a critical point for ℜ𝑒 among all the strategies with cost 𝑐 ∈ (0, 1).



Optimal vaccination: various (counter) intuitive examples 163

Proof of Proposition V.5.4. We prove (i), and thus consider ℜ𝑒 convex and k constant degree. We
first consider the case where k irreducible. For any 𝜂, Lemma V.5.12 and the convexity ofℜ𝑒 imply
that ℜ𝑒(𝜂uni) + 𝑂(𝜀2) = ℜ𝑒((1 − 𝜀)𝜂uni + 𝜀𝜂) ≤ (1 − 𝜀)ℜ𝑒(𝜂uni) + 𝜀ℜ𝑒(𝜂), where 𝜂uni the uniform
strategy with the same cost as 𝜂. Sending 𝜀 to 0, we get ℜ𝑒(𝜂) ≥ ℜ𝑒(𝜂uni), so ℜ𝑒 is minimal at 𝜂uni.

Since 𝐶(𝜂uni) = 𝑐 and ℜ𝑒(𝜂uni) = (1 − 𝑐)ℜ0, we deduce that ℜ𝑒⋆(𝑐) = ℜ0(1 − 𝑐) and thus, the
Pareto frontier is a segment given by ℱ = {(𝑐, (1 − 𝑐)ℜ0) ∶ 𝑐 ∈ [0, 1]}.

If k is not irreducible, then use the representation from Lemma V.5.11, to get that ℜ𝑒[k] =
max𝑖∈𝐼ℜ𝑒[k𝑖]. Since the cost is affine, we deduce that a strategy 𝜂 with ℜ𝑒[k](𝜂) = ℓ ∈ [0, ℜ0] is
optimal if and only if, for all 𝑖 ∈ 𝐼, the strategies 𝜂𝑖 = 𝜂𝟙Ω𝑖

are optimal for the kernel k restricted to
Ω𝑖 and ℜ𝑒[k𝑖](𝜂𝑖) = ℓ. Then the first step of the proof yields that 𝜂𝑖 = ℓ𝟙Ω𝑖

and thus the uniform
strategy 𝜂uni = ℓ𝟙Ω is optimal. This ends the proof of (i).

The proof of (ii) is similar to the case ℜ𝑒 convex when k is irreducible.

V.6 Constant degree symmetric kernels of rank two

V.6.1 Pareto and anti-Pareto frontiers

Any constant degree symmetric kernel may be decomposed spectrally as

k(𝑥, 𝑦) = ℜ0 + ∑
𝑛∈ℕ∗

𝜀𝑛𝛼𝑛(𝑥)𝛼𝑛(𝑦),

with 𝜀𝑛 ∈ {−, +}, (𝛼𝑛, 𝑛 ∈ ℕ∗) an orthogonal family of 𝐿2 also orthogonal to 𝟙. As an application of
the results from the previous section, we will treat the case of symmetric constant degree kernel
operators of rank 2, where one can explicitely minimize and maximize ℜ𝑒 among all strategies of
a given cost.

We suppose that Ω = [0, 1) is equipped with the Borel 𝜎-field ℱ and a probability measure 𝜇
such that its cumulative distribution function 𝜑, defined by 𝜑(𝑥) = 𝜇([0, 𝑥]) for 𝑥 ∈ Ω, is continuous
and increasing. We consider the following two kernels on Ω:

k𝜀(𝑥, 𝑦) = ℜ0 + 𝜀𝛼(𝑥)𝛼(𝑦), with 𝜀 ∈ {−, +}, (V.48)

ℜ0 > 0 and 𝛼 ∈ 𝐿2 is increasing and satisfies:

sup
Ω

𝛼2 ≤ ℜ0 and ∫
Ω
𝛼 d𝜇 = 0. (V.49)

Remark V.6.1 (Generality). We note that this particular choice of Ω may be made without loss of
generality, and that the strict monotonicity assumption is almost general: we refer the interested
reader to Section V.6.2 for further discussion of this point.

For 𝜀 ∈ {−, +}, the kernel k𝜀 is symmetric and constant degree. Furthermore, ℜ0 and 𝜀 ∫Ω 𝛼2 d𝜇
are the only eigenvalues (and their multiplicity is one) of 𝑇k𝜀 with corresponding eigen-vector 𝟙
and 𝛼. Since 𝛼2 ≤ ℜ0, we also get that ℜ0 is indeed the spectral radius of 𝑇k𝜀 .

The Pareto (resp. anti-Pareto) frontier is already greedily parametrized by the uniform strate-
gies for the kernel k+ (resp. k−), see Corollary V.5.5. The following result restricts the choice of
anti-Pareto (resp. Pareto) optimal strategies to two extreme strategies. Hence, in order to find
them, it is enough to compute and compare the two values of ℜ𝑒 for each cost.

We recall the set of uniform strategies 𝒮uni = {𝑡𝟙 ∶ 𝑡 ∈ [0, 1]} and consider the following set
of extremal strategies:

𝒮0 = {𝟙[0,𝑡) ∶ 𝑡 ∈ [0, 1]} and 𝒮1 = {𝟙[𝑡,1) ∶ 𝑡 ∈ [0, 1]}

as well as the following set of strategies which contains 𝒮uni thanks to (V.49):

𝒮⊥𝛼 = {𝜂 ∈ Δ ∶ ∫
Ω
𝛼 𝜂 d𝜇 = 0} .

Recall that strategies are defined up to the a.s. equality. The proof of the next proposition is given
is Section V.6.3



164 V.6 Constant degree symmetric kernels of rank two

0
0

𝑥

𝑦

(a) Grayplot of the kernel
k+(𝑥, 𝑦) = 1 + (2𝑥 − 1)(2𝑦 − 1) on [0, 1).

0 1
0

ℜ0

𝐶

ℜ
𝑒

(b) Red line: the Pareto frontier ℱ (which
corresponds to the uniform strategies); dashed line:

the anti-Pareto frontier ℱAnti; blue region: all
possible outcomes F.

Figure V.9: An example of a constant degree kernel operator of rank 2.

Proposition V.6.2 (Optima are uniform or on the sides). Let the kernel k𝜀 on [0, 1) endowed with a
probability measure whose cumulative distribution function is increasing and continuous, be given
by (V.48) with ℜ0 > 0 and 𝛼 a strictly increasing function on [0, 1) such that (V.49) holds.

The kernel k+ A strategy is Pareto optimal if and only if it belongs to 𝒮⊥𝛼. In particular, for any
𝑐 ∈ [0, 1], the strategy (1 − 𝑐)𝟙 costs 𝑐 and is Pareto optimal. The only possible anti-Pareto
strategies of cost 𝑐 are 𝟙[0,1−𝑐) and 𝟙[𝑐,1). In other words,

𝒫 = 𝒮⊥𝛼 and 𝒫Anti ⊂ 𝒮0 ∪ 𝒮1.

The kernel k− A strategy is anti-Pareto optimal if and only if it belongs to 𝒮⊥𝛼. In particular, for
any 𝑐 ∈ [0, 1], the strategy (1 − 𝑐)𝟙 costs 𝑐 and is anti-Pareto optimal. The only possible Pareto
strategies of cost 𝑐 are 𝟙[0,1−𝑐) and 𝟙[𝑐,1). In other words,

𝒫 ⊂ 𝒮0 ∪ 𝒮1 and 𝒫Anti = 𝒮⊥𝛼.

In both cases, we have 𝑐⋆ = 0 and 𝑐⋆ = 1.

Remark V.6.3. Intuitively, the populations {𝛼 < 0} and {𝛼 > 0} behave in an assortative way for k+
and in a disassortative way for k−. As in Section V.4, the uniform strategies are Pareto optimal in
the “assortative” k+ case and anti-Pareto optimal in the “disassortative” k− case.

Remark V.6.4. Under the assumptions of Proposition V.6.2, if furthermore 𝛼 is anti-symmetric
with respect to 1/2, that is 𝛼(𝑥) = −𝛼(1 − 𝑥) for 𝑥 ∈ (0, 1), and 𝜇 is symmetric with respect to
1/2, that is 𝜇([0, 𝑥]) = 𝜇([1 − 𝑥, 1)), then it is easy to check from the proof of Proposition V.6.2
that the strategies from 𝒮0 and 𝒮1 are both optimal: 𝒫Anti = 𝒮0 ∪ 𝒮1 for k+ and 𝒫 = 𝒮0 ∪ 𝒮1 for
k−. We plotted such an instance of k+ and the corresponding Pareto and anti-Pareto frontiers in
Figure V.9. We refer to Section V.6.4 for an instance where 𝛼 is not symmetric and 𝒫 ≠ 𝒮0 ∪𝒮1 for
k−.

V.6.2 On the choice of Ω and on the monotonicity assumption

Using a reduction model technique from Section 7 in Chapter III, let us first see that there is no
loss of generality by considering the kernel k𝜀 = ℜ0 + 𝜀𝛼 ⊗ 𝛼 on Ω = [0, 1) endowed with the
Lebesgue measure and with 𝛼 non-decreasing.
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Suppose that the function 𝛼 in (V.48) is replaced by an ℝ-valued measurable function 𝛼0 defined
on a general probability space (Ω0, ℱ0, 𝜇0) such that (V.49) holds. Thus, with obvious notations,
for 𝜀 ∈ {−, +}, the kernel ℜ0 + 𝜀𝛼0 ⊗ 𝛼0 is a kernel on Ω0. Denote by 𝐹 the repartition function
of 𝛼0 (that is, 𝐹(𝑟) = 𝜇0(𝛼0 ≤ 𝑟) for 𝑟 ∈ ℝ) and take 𝛼 as the quantile function of 𝛼0, that is, the
right continuous inverse of 𝐹. Notice the function 𝛼 is defined on the probability space (Ω,ℱ , 𝜇) is
non-decreasing and satisfies (V.49). Consider the probability kernel 𝜅 ∶ Ω0×ℱ → [0, 1] defined by
𝜅(𝑥, ⋅) = 𝛿𝐹(𝛼0(𝑥))(⋅), with 𝛿 the Dirac mass, if 𝛼 is continuous at 𝛼0(𝑥) (that is, 𝐹(𝛼0(𝑥)−) = 𝐹(𝛼0(𝑥)))
and the uniform probability measure on [𝐹 (𝛼0(𝑥)−), 𝐹 (𝛼0(𝑥))] otherwise. On the measurable space
(Ω0 × Ω,ℱ0 ⊗ ℱ ), we consider the probability measure 𝜈(d𝑥1, d𝑥2) = 𝜇0(d𝑥1)𝜅(𝑥1, d𝑥2), whose
marginals are exactly 𝜇0 and 𝜇. Then, for 𝜀 ∈ {−, +}, we have that 𝜈(d𝑥1, d𝑥2) ⊗ 𝜈(d𝑦1, d𝑦2)-a.s.:

ℜ0 + 𝜀𝛼0(𝑥1)𝛼0(𝑦1) = ℜ0 + 𝜀𝛼(𝑥2)𝛼(𝑦2).

According to Section 7.3 of Chapter III, see in particular Proposition III.7.3, the kernelsℜ0+𝜀𝛼0⊗𝛼0
andℜ0+𝜀𝛼 ⊗𝛼 are coupled and there is a correspondence between the corresponding (anti-)Pareto
optimal strategies and their (anti-)Pareto frontiers are the same.

Hence, there is no loss in generality in assuming that the function 𝛼 in (V.48) is indeed defined
on [0, 1) and is non-decreasing.

On the contrary, one cannot assume in full generality that 𝛼 is strictly increasing, and when
it is only non-decreasing, the situation is more complicated. Indeed, let us take the parameters
ℜ0 = 1 and 𝛼 = 𝟙[0,0.5) − 𝟙[0.5,1). Then, the kernel k− is complete bi-partite: k− = 𝟙[0,0.5)×[0.5,1) +
𝟙[0.5,1)×[0,0.5). Hence, according to Theorem V.4.3 (iii), we have 𝑐⋆ = 0.5 for the kernel k−. In a
similar fashion, one can see that k+ = 𝟙[0,0.5)×[0,0.5) + 𝟙[0.5,1)×[0.5,1) is assortative and reducible; it
is then easy to check that 𝑐⋆ = 0.5 for the kernel k+. However, it is still true that, for all costs 𝑐:

• 𝟙[0,1−𝑐) or 𝟙[𝑐,1) is solution of Problem (V.8) when the kernel k+ is considered,

• 𝟙[0,1−𝑐) or 𝟙[𝑐,1) is solution of Problem (V.7) when the kernel k− is considered,

From the proof of Proposition V.6.2, we can not expect to have strict inequalities in (V.59) if 𝛼 is
only non-decreasing, and thus one can not expect 𝒮0 ∪ 𝒮1 to contain 𝒫Anti for the kernel k+ or 𝒫
for the kernel k−.

V.6.3 Proof of Proposition V.6.2

We assume that ℜ0 > 0 and 𝛼 is a strictly increasing function defined on Ω such that (V.49) holds.
Without loss of generality, we shall assume that ℜ0 = 1 unless otherwise specified. We write ℜ𝜀

𝑒
for the effective reproduction function associated to the kernel k𝜀. We shall also write 𝜀𝑎 for 𝑎
if 𝜀 = + and −𝑎 if 𝜀 = −1. We first rewrite ℜ𝑒 in two different ways in Section V.6.3. Then, we
consider the kernel k− in Section V.6.3 and the kernel k+ in Section V.6.3.

Two expressions of the effective reproduction function

We provide an explicit formula for the function ℜ𝑒, and an alternative variational formulation,
both of which will be needed below.

Lemma V.6.5. Assume ℜ0 = 1 and 𝛼 is a strictly increasing function defined on Ω such that (V.49)
holds. We have for 𝜀 ∈ {+, −} and 𝜂 ∈ Δ:

2ℜ𝜀
𝑒(𝜂) = ∫ 𝜂 d𝜇 + 𝜀 ∫ 𝛼2 𝜂 d𝜇 +

√
(∫ 𝜂 d𝜇 − 𝜀 ∫ 𝛼2 𝜂 d𝜇)

2
+ 4𝜀 (∫ 𝛼 𝜂 d𝜇)

2
. (V.50)

Alternatively, ℜ𝑒 is the solution of the variational problem:

ℜ𝜀
𝑒(𝜂) = sup

ℎ∈𝐵𝜂+
(∫

1

0
ℎ 𝜂 d𝜇)

2

+ 𝜀 (∫
1

0
ℎ 𝛼 𝜂 d𝜇)

2

, (V.51)
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where

𝐵𝜂+ = {ℎ ∈ 𝐿2+ ∶ ∫
1

0
ℎ2 𝜂 d𝜇 = 1} .

The supremum in (V.51) is reached for the right Perron eigenfunction of 𝑇k+𝜂 chosen in 𝐵𝜂+.

Proof. We first prove (V.50). For all 𝜂 ∈ Δ, the rank of the kernel operator 𝑇k𝜀𝜂 is smaller or equal
to 2 and Im(𝑇k𝜀𝜂) ⊂ Vect(𝟙, 𝛼). The matrix of 𝑇k𝜀𝜂 in the basis (𝟙, 𝛼) of the range of 𝑇k𝜀𝜂 is given by:

( ∫ 𝜂 d𝜇 ∫ 𝛼 𝜂 d𝜇
𝜀 ∫ 𝛼 𝜂 d𝜇 𝜀 ∫ 𝛼2 𝜂 d𝜇) . (V.52)

An explicit computation of the spectrum of this matrix yields Equation (V.50) for its largest
eigenvalue.

The variational formula (V.51) is a direct consequence of general Lemma V.6.6 below.

Lemma V.6.6 (Variational formula for ℜ𝑒 when k is symmetric). Suppose that k is a symmetric
kernel on Ω with a finite double norm in 𝐿2. Then, we have that for all 𝜂 ∈ Δ:

ℜ𝑒(𝜂) = sup
ℎ∈𝐵𝜂+

∫
Ω×Ω

ℎ(𝑥)𝜂(𝑥) k(𝑥, 𝑦) ℎ(𝑦)𝜂(𝑦) 𝜇(d𝑥)𝜇(d𝑦), (V.53)

where
𝐵𝜂+ = {ℎ ∈ 𝐿2+ ∶ ∫

Ω
ℎ2 𝜂 d𝜇 = 1} .

The supremum in (V.53) is reached for the right Perron eigenfunction of 𝑇k+𝜂 chosen in 𝐵𝜂+.

Proof. For a finite measure 𝜈 on (Ω,ℱ ), as usual, we denote by 𝐿2(𝜈) the set of measurable real-
valued functions 𝑓 such that ∫Ω 𝑓 2d𝜈 < +∞ endowed with the usual scalar product, so that
𝐿2(𝜈) is an Hilbert space. Let 𝜂 ∈ Δ. We denote by 𝒯k𝜂 the integral operator associated to
the kernel k𝜂 seen as an operator on the Hilbert space 𝐿2(𝜂d𝜇): for 𝑔 ∈ 𝐿2(𝜂d𝜇) and 𝑥 ∈ Ω
we have 𝒯k𝜂(𝑔)(𝑥) = ∫Ω k(𝑥, 𝑦)𝑔(𝑦) 𝜇(d𝑦). The operator 𝒯k𝜂 is self-adjoint and compact since
the double-norm of k in 𝐿2(𝜂d𝜇) is finite. It follows from the Krein-Rutman theorem and the
Courant–Fischer–Weyl min-max principle that its spectral radius is given by the variational
formula:

𝜌(𝒯k𝜂) = sup
ℎ∈𝐵𝜂+

∫
Ω×Ω

ℎ(𝑥) k(𝑥, 𝑦) ℎ(𝑦) 𝜂(𝑥)𝜇(d𝑥) 𝜂(𝑦)𝜇(d𝑦).

Besides, the set 𝐿2(𝜇) is densely and continuously embedded in 𝐿2(𝜂d𝜇) and the restriction of 𝒯k𝜂
to 𝐿2(𝜇) is equal to 𝑇k𝜂. Thanks to Lemma III.3.2 (iii), we deduce that 𝜌(𝑇k𝜂) is equal to 𝜌(𝒯k𝜂),
which gives (V.53).

Let ℎ0 be the right Perron eigenfunction of 𝑇k+𝜂 chosen such that ℎ0 ∈ 𝐵𝜂+. We get:

∫
Ω×Ω

𝜂(𝑥)ℎ0(𝑥) k(𝑥, 𝑦) 𝜂(𝑦)ℎ0(𝑦) 𝜇(d𝑥)𝜇(d𝑦) = ℜ𝑒(𝜂) ∫
Ω
𝜂(𝑥)ℎ0(𝑥)2 𝜇(d𝑥) = ℜ𝑒(𝜂).

Thus, the supremum in (V.53) is reached for ℎ = ℎ0.

The kernel k−

Since 𝛼 is increasing, we have 𝜇(𝛼2 = ℜ0) = 0 and thus the symmetric kernel k+ is 𝜇⊗2-a.s.
positive. It follows from Remark V.3.1 that 𝑐⋆ = 0 and 𝑐⋆ = 1, and the strategy 𝟙 (resp. 𝟘) is the
only Pareto optimal as well as the only anti-Pareto optimal strategy with cost 𝑐 = 0 (resp. 𝑐 = 1).
Since the kernel k− is constant degree and symmetric, and the non-zero eigenvalues of 𝑇k− are
given by ℜ0 = 1 and −∫ 𝛼2 d𝜇, the latter being negative, we deduce from Corollary V.5.5 (ii) that
𝒮uni ⊂ 𝒫Anti. On the one hand, if 𝜂 is anti-Pareto optimal, one can use that ℜ−

𝑒 (𝜂) = ∫ 𝜂 d𝜇 (as
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ℜ−
𝑒 (𝜂uni) = ∫ 𝜂uni d𝜇) and (V.50) to deduce that 𝜂 ∈ 𝒮⊥𝛼. On the other hand, if 𝜂 belongs to 𝒮⊥𝛼,

we deduce from (V.50) that ℜ𝑒(𝜂) = ∫ 𝜂 d𝜇, and thus 𝜂 is anti-Pareto optimal. In conclusion, we get
𝒫Anti = 𝒮⊥𝛼.

We now study the Pareto optimal strategies. We first introduce a notation inspired by the
stochastic order of real valued random variables: we say that 𝜂1, 𝜂2 ∈ Δ with the same cost are in
stochastic order, and we write 𝜂1 ≤st 𝜂2 if:

∫
𝑡

0
𝜂1 d𝜇 ≥ ∫

𝑡

0
𝜂2 d𝜇 for all 𝑡 ∈ [0, 1]. (V.54)

We also write 𝜂1 <st 𝜂2 if the inequality in (V.54) is strict for at least one 𝑡 ∈ (0, 1). If 𝜂1 <st 𝜂2 and
ℎ is an increasing bounded function defined on [0, 1), then we have:

∫
Ω
ℎ 𝜂1 d𝜇 < ∫

Ω
ℎ 𝜂2 d𝜇. (V.55)

Let 𝑐 ∈ (0, 1) be fixed. Define the vaccination strategies with cost 𝑐:

𝜂0 = 𝟙[0,1−𝑐) and 𝜂1 = 𝟙[𝑐,1). (V.56)

In particular we have 𝜂0 <st 𝜂1 as 𝜇 has no atom and Ω as full support. Let 𝜂 be a vaccination
strategy with cost 𝑐 not equal to 𝜂0 or 𝜂1. We get:

𝜂0 <st 𝜂 <st 𝜂1.

We now rewrite the function ℜ−
𝑒 in order to use the stochastic order on the vaccination

strategies. We deduce from (V.50) that:

4ℜ−
𝑒 (𝜂) = 4∫ 𝜂 d𝜇 − 𝐻(𝜂)2 with 𝐻(𝜂) =

√∫(1 + 𝛼)2𝜂 d𝜇 −
√∫(1 − 𝛼)2𝜂 d𝜇. (V.57)

Then, using that 𝛼 is increasing and [−1, 1]-valued, we deduce from (V.55) (with ℎ = (1 + 𝛼)2 and
ℎ = −(1 − 𝛼)2) and the definition of 𝐻 in (V.57) that:

𝐻(𝜂0) < 𝐻(𝜂) < 𝐻(𝜂1).

This readily implies that ℜ−
𝑒 (𝜂) > min (ℜ−

𝑒 (𝜂0), ℜ−
𝑒 (𝜂1)): among strategies of cost 𝑐, the only

possible Pareto optimal ones are 𝜂0 and 𝜂1. We deduce that 𝒫 ⊂ 𝒮0 ∪ 𝒮1.

The kernel k+

Arguing as for k−, we get that 𝑐⋆ = 0 and 𝑐⋆ = 1, and the strategy 𝟙 (resp. 𝟘) is the only Pareto
optimal as well as the only anti-Pareto optimal strategy with cost 𝑐 = 0 (resp. 𝑐 = 1). Since the
kernel k+ is constant degree and symmetric, and the non-zero eigenvalues of 𝑇k+ given by ℜ0 and
∫Ω 𝛼2 d𝜇 are positive, we deduce from Corollary V.5.5 (i) that 𝒮uni ⊂ 𝒫.

Arguing as in Section V.6.3 for the identification of the anti-Pareto optima based on (V.50)
(with 𝜀 = + instead of 𝜀 = −) and using that 𝒮uni ⊂ 𝒫 (instead of 𝒮uni ⊂ 𝒫Anti), we deduce that
𝒫 = 𝒫⊤.

We now consider the anti-Pareto optima. Let 𝑐 ∈ (0, 1). We first start with some comparison of
integrals with respect to the vaccination strategies, with cost 𝑐, 𝜂0 and 𝜂1 defined by (V.56). Let 𝜂
be a strategy of cost 𝑐 not equal to 𝜂0 or 𝜂1 (recall that a strategy is defined up to the a.s. equality).
Consider the monotone continuous non-negative functions defined on [0, 1]:

𝜙0 ∶ 𝑥 ↦ 𝜑−1 (∫
[0,𝑥)

𝜂 d𝜇) , and 𝜙1 ∶ 𝑥 ↦ 𝜑−1 (1 − ∫
[𝑥,1)

𝜂 d𝜇) .
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Let 𝑖 ∈ {0, 1}. Let 𝜙−1𝑖 denote the generalized left-continuous inverse of 𝜙𝑖. Notice that
𝜂(𝑥) 𝜇(d𝑥)-a.s. 𝜙−1𝑖 ∘ 𝜙𝑖(𝑥) = 𝑥. The measure 𝜂𝑖d𝜇 is the push-forward of 𝜂 d𝜇 through 𝜙𝑖, so
that for ℎ bounded measurable:

∫ℎ 𝜂 d𝜇 = ∫ℎ𝑖 𝜂𝑖 d𝜇 with ℎ𝑖 = ℎ ∘ 𝜙−1𝑖 . (V.58)

Since 𝜂 is not equal to 𝜂0 a.s., there exists 𝑥0 < 1 − 𝑐 such that, 𝜙0(𝑥) = 𝑥 for 𝑥 ∈ [0, 𝑥0] and
𝜙0(𝑥) < 𝑥 for 𝑥 ∈ (𝑥0, 1]. Thus, we deduce that 𝜙−10 (𝑦) = 𝑦 for all 𝑦 ∈ [0, 𝑥0] and 𝜙−10 (𝑦) > 𝑦 for
all 𝑦 ∈ (𝑥0, 1 − 𝑐]. Similarly, since 𝜂 is not equal to 𝜂1 almost surely, there exists 𝑥1 > 𝑐 such that
𝜙−11 (𝑦) = 𝑦 for all 𝑦 ∈ (𝑥1, 1] and 𝜙−11 (𝑦) < 𝑦 for all 𝑦 ∈ [𝑐, 𝑥1). Since 𝛼 is non-decreasing as 𝜇 has
no atom and Ω as full support, we deduce from from (V.58), applied to ℎ𝛼, that if ℎ is a.s. positive
bounded measurable, then:

∫ℎ0 𝛼 𝜂0 d𝜇 < ∫ℎ 𝛼 𝜂 d𝜇 < ∫ℎ1 𝛼 𝜂1 d𝜇. (V.59)

Let ℎ be the right Perron eigenfunction of 𝑇k+𝜂 chosen such that ℎ ∈ 𝐵𝜂+. Since k+ is a.s.
positive and thus irreducible, we have that ℎ is a.s. positive. Thanks to Lemma V.6.5, we have:

ℜ+
𝑒 (𝜂) = (∫ ℎ 𝜂 d𝜇)

2
+ (∫ℎ 𝛼 𝜂 d𝜇)

2
and ∫ℎ2 𝜂 d𝜇 = 1. (V.60)

We deduce from (V.58) that for 𝑖 ∈ {0, 1}:

∫ℎ 𝜂 d𝜇 = ∫ℎ𝑖 𝜂𝑖 d𝜇 and 1 = ∫ℎ2 𝜂 d𝜇 = ∫ℎ2𝑖 𝜂𝑖 d𝜇.

In particular ℎ𝑖 belongs to 𝐵𝜂𝑖+ . Using that a.s. ℎ > 0, we then deduce from (V.60) and (V.59) that:

ℜ+
𝑒 (𝜂) < max

𝑖∈{0,1}
(∫ ℎ𝑖 𝜂𝑖 d𝜇)

2
+ (∫ℎ𝑖 𝛼 𝜂𝑖 d𝜇)

2
≤ max

𝑖∈{0,1}
ℜ𝑒(𝟙𝐴𝑖

).

We conclude that only 𝜂0 or 𝜂1 can maximizeℜ+
𝑒 among the strategies of cost 𝑐 ∈ (0, 1). We deduce

that 𝒫Anti ⊂ 𝒮0 ∪ 𝒮1.

V.6.4 An example where all parametrizations of the Pareto frontier have an
infinite-number of discontinuities

The purpose of this section is to give a particular example of kernel on a continuous model where
we rigorously prove that the Pareto frontier cannot be greedily parametrized, that is, parametrized
by a continuous path in Δ (as in the fully symmetric circle), and that all the parametrizations have
an arbitrary large number of discontinuities (possibly countably infinite).

We keep the setting from Section V.6. Without loss of generality, we assume that ℜ0 = 1, and
we consider the kernel k− = 1 − 𝛼 ⊗ 𝛼 on Ω = [0, 1) endowed with its Lebesgue measure. We
know from the previous section that, for any cost, either 𝜂0 or 𝜂1 are Pareto optimal, and that all
other strategies are non-optimal. The idea is then to build an 𝛼 in such a way that for some costs,
one must vaccinate “on the left” and for other costs “on the right”.

Let 𝑁 ∈ [[2, +∞]]. Consider an increasing sequence (𝑥𝑛, 𝑛 ∈ [[0, 𝑁 ]]) such that 𝑥0 = 1/2, 𝑥𝑁 = 1
and lim𝑛→∞ 𝑥𝑛 = 1 if 𝑁 = ∞. For 0 ≤ 𝑛 < 𝑁, let 𝑝𝑛 = 𝑥𝑛+1 − 𝑥𝑛 and assume that 𝑝𝑛+1 < 𝑝𝑛 for
𝑛 ∈ [[0, 𝑁 [[. For 𝑛 ≥ 1, let 𝑥−𝑛 be the symmetric of 𝑥𝑛 with respect to 1/2, i.e., 𝑥−𝑛 = 1 − 𝑥𝑛. The
function 𝛼 is piecewise linear defined on (0, 1) by:

𝛼(𝑥) =
⎧

⎨
⎩

2𝑥 − 1, for 𝑥 ∈ [𝑥2𝑚, 𝑥2𝑚+1),

𝑥 − 1 + 𝑥2𝑚−1+𝑥2𝑚
2 for 𝑥 ∈ [𝑥2𝑚−1, 𝑥2𝑚).

(V.61)
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(a) Graph of the function 𝛼 defined by
Equation (V.61) and Example V.6.9.
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(b) Graph of the corresponding function 𝛿 defined
in Equation (V.64).

Figure V.10: Plots of the functions of interest in Section V.6.4.

See Figure V.10(a) for an instance of the graph of 𝛼 given in Example V.6.9. Note that for all
𝑛 ∈ [[0, 𝑁 [[, we have:

∫
𝑥𝑛+1

𝑥𝑛
𝛼 d𝜇 = −∫

𝑥−𝑛

𝑥−𝑛−1
𝛼 d𝜇. (V.62)

This proves that the integral of 𝛼 over [0, 1) is equal to 0. Of course, sup[0,1) 𝛼
2 = 1 = ℜ0. Hence,

𝛼 satisfies Condition (V.49).
We recall that a function 𝛾 ∶ [0, 𝑐⋆] ↦ Δ is a prametrization of the Pareto frontier if for all

𝑐 ∈ [0, 𝑐⋆] the strategy 𝛾 (𝑐) is Pareto optimal with cost 𝐶(𝛾(𝑐)) = 𝑐. Now we can prove there exists
no greedy parametrization of the Pareto frontier of the kernel k− and even impose an arbitrary
large lower bound for the number of discontinuities.

Proposition V.6.7. Let 𝑁 ∈ [[2, +∞]]. Consider the kernel k− = 1 − 𝛼 ⊗ 𝛼 from (V.48) on Ω = [0, 1)
endowed with its Lebesgue measure, with 𝛼 given by (V.61). Then, any parametrization of the Pareto
frontier has at least 2𝑁 − 2 and at most 20𝑁 − 2 discontinuities.

The proof is given at the end of this section, and relies on the following technical lemma based
on the comparison of the following monotone paths 𝛾0 and 𝛾1 from [0, 1] to Δ:

𝛾0(𝑡) = 𝟙[0,𝑡), and 𝛾1(𝑡) = 𝟙[1−𝑡,1), 𝑡 ∈ [0, 1] (V.63)

which parameterizes 𝒮0 and 𝒮1 as 𝛾0([0, 1]) = 𝒮0 and 𝛾1([0, 1]) = 𝒮1. Notice that strategies 𝛾0(𝑡)
and 𝛾1(𝑡) have the same cost 1 − 𝑡.

Consider the function 𝛿 ∶ [0, 1] → ℝ which, according to Proposition V.6.2, measures the
difference between the effective reproduction numbers at the extreme strategies:

𝛿(𝑡) = ℜ𝑒(𝛾0(𝑡)) − ℜ𝑒(𝛾1(𝑡)). (V.64)

The function 𝛿 is continuous and 𝛿(0) = 𝛿(1) = 0. We say that 𝑡 ∈ (0, 1) is a zero crossing of 𝛿 if
𝛿(𝑡) = 0 and there exists 𝜀 > 0 such that 𝛿(𝑡 + 𝑟)𝛿(𝑡 − 𝑟) < 0 for all 𝑟 ∈ (0, 𝜀). The following result
gives some information on the zeros of the function 𝛿.

Lemma V.6.8. Under the assumptions of Proposition V.6.7, the function 𝛿 defined in (V.64) has at
least 2𝑁 − 2 zero-crossing in (0, 1) and at most 20𝑁 zeros in [0, 1]. Besides, if 𝑁 = ∞, 0 and 1 are the
only accumulation points of the set of zeros of 𝛿.
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(a) Grayplot of the kernel k−(𝑥, 𝑦) = 1 − 𝛼(𝑥)𝛼(𝑦)
where 𝛼 is plotted in Figure V.10(a).
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(b) Red line: the Pareto frontier ℱ; dashed line:
the anti-Pareto frontier ℱAnti (which corresponds
to the uniform strategies); blue region: all possible

outcomes F.

Figure V.11: An example of a constant degree kernel operator of rank 2.

Proof. Using the explicit representation of ℜ−
𝑒 from Lemma V.6.5, see (V.50) with 𝜀 = −, we get

the function 𝛿 can be expressed as:

2𝛿(𝑡) = 𝑉1(𝑡) − 𝑉0(𝑡) + √𝑉0(𝑡)2 − 𝑀0(𝑡)2 − √𝑉1(𝑡)2 − 𝑀1(𝑡)2, (V.65)

where, as ∫ 𝛼 d𝜇 = 0:

𝑀0(𝑡) = 2∫
𝑡

0
𝛼 d𝜇, 𝑉0(𝑡) = 𝑡 + ∫

𝑡

0
𝛼2 d𝜇, 𝑀1(𝑡) = 𝑀0(1 − 𝑡) and 𝑉1(𝑡) = 𝑡 + ∫

1

1−𝑡
𝛼2 d𝜇.

Elementary computations give that for all 𝑛 ∈ [[0, 𝑁 [[:

∫
𝑥𝑛+1

𝑥𝑛
𝛼(𝑥)2 d𝑥 − ∫

𝑥−𝑛

𝑥−𝑛−1
𝛼(𝑥)2 d𝑥 =

(−1)𝑛𝑝3𝑛
4

, (V.66)

where we recall that 𝑝𝑛 = 𝑥𝑛+1 − 𝑥𝑛. Hence, we obtain that for all 𝑛 ∈ [[−𝑁 , 𝑁 ]]:

𝑉1(𝑥𝑛) − 𝑉0(𝑥𝑛) =
1
4

∞
∑
𝑖=| 𝑛 |

(−1)𝑖𝑝3𝑖 . (V.67)

Since the sequence (𝑝𝑛, 𝑛 ∈ [[0, 𝑁 [[) is decreasing, we deduce that the sign of 𝑉1(𝑥𝑛) − 𝑉0(𝑥𝑛)
alternates depending on the parity of 𝑛 ∈]] − 𝑁 , 𝑁 [[: it is positive for odd 𝑛 and negative for even
𝑛. The same result holds for the numbers 𝛿(𝑥𝑛) since 𝑀0(𝑥𝑛) = 𝑀1(1 − 𝑥𝑛) for all 𝑛 ∈ [[−𝑁 , 𝑁 ]]
according to (V.62) (use that, with 𝑏 > 0, the function 𝑥 ↦ 𝑥 − √𝑥2 − 𝑏2 is decreasing for 𝑥 ≥ √𝑏
as its derivative is negative). This implies that 𝛿 has at least 2𝑁 − 2 zero-crossing in (0, 1).

We now prove that 𝛿 has at most 20𝑁 zeros in [0, 1] and that 0 and 1 are the only possible
accumulation points of the set of zeros of 𝛿. It is enough to prove that 𝛿 has at most 10 zeros on
[𝑥𝑛, 𝑥𝑛+1] for all finite 𝑛 ∈ [[−𝑁 , 𝑁 [[. On such an interval [𝑥𝑛, 𝑥𝑛+1], the function 𝛼 is a polynomial
of degree one. Consider first 𝑛 odd and non-negative, so that for 𝑡 ∈ [𝑥𝑛, 𝑥𝑛+1], we get that with
𝑎 = 1 − (𝑥𝑛 + 𝑥𝑛+1)/2:

𝑀0(𝑡) = 2𝑡2 − 2𝑡 + 𝑏1, 𝑉0(𝑡) =
4
3
𝑡3 − 2𝑡2 + 2𝑡 + 𝑏2,

𝑀1(𝑡) = 𝑡2 − 2𝑎𝑡 + 𝑏3, 𝑉1(𝑡) = −
1
3
𝑡3 + 𝑎𝑡2 + (1 − 𝑎2)𝑡 + 𝑏4,
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where 𝑏𝑖 are constants. If 𝑡 is a zero of 𝛿, then it is also a zero of the polynomial 𝑃 given by:

𝑃 = 4(𝑉1 − 𝑉0) (𝑉0𝑀2
1 − 𝑉1𝑀2

0 ) − (𝑀2
0 − 𝑀2

1 )
2 .

Since the degree of 𝑃 is exactly 10, it has at most 10 zeros. Thus 𝛿 has at most 10 zeros on [𝑥𝑛, 𝑥𝑛+1].
This ends the proof.

Proof of Proposition V.6.7. According to Proposition V.6.2, the Pareto strategy of cost 𝑐 = 1 − 𝑡 ∈
[0, 1] is 𝛾0(𝑡) or 𝛾1(𝑡). Then, a zero crossing of the function 𝛿 on (0, 1) corresponds to a discontinuity
of any parametrization of the Pareto frontier. We deduce from Lemma V.6.8 that in (0, 1) there are
at least 2𝑁 − 2 and at most 20𝑁 − 2 zeros crossing and thus discontinuities of any parametrization
of the Pareto frontier.

Example V.6.9. In Figure V.10(a), we have represented the function 𝛼 defined by (V.61) where:

𝑥𝑛 =
1
2
log12(12(𝑛 + 1)), 0 ≤ 𝑛 ≤ 𝑁 = 11.

Hence, the mesh (𝑥𝑛, −𝑁 ≤ 𝑛 ≤ 𝑁) is composed by 2𝑁 + 1 = 23 points. The graph of the
corresponding function 𝛿 defined in (V.64) is drawn in Figure V.10(b). The grayplot of the kernel
k− = 1 − 𝛼 ⊗ 𝛼 is given in Figure V.11(a) and the associated Pareto and anti-Pareto frontiers are
plotted in Figure V.11(b).
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